

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It can be used for reference or private study, as well as research and learning activities or materials in the terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis and its abstracts and indexes.

Immobilization of 2,4-cis-Diarylprolinol Silyl Ethers, Isothioureas, SPINOL-Derived Phosphoric Acids and Their Application in the Catalytic Enantioselective Synthesis in Batch and Flow

Junshan Lai

TESI DOCTORAL – TESIS DOCTORAL- DOCTORAL THESIS 2020

Immobilization of 2,4-cis-Diarylprolinol Silyl Ethers, Isothioureas, SPINOL-Derived Phosphoric Acids and Their Application in the Catalytic Enantioselective Synthesis in Batch and Flow

PhD Thesis by Junshan Lai

Supervised by Prof. Miquel A. Pericàs Brondo, Dr. M. Sonia Sayalero Sanz

Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili (URV) Institute of Chemical Research of Catalonia (ICIQ)

Tarragona 2020

Universitat Rovira i Virgili

Universitat Rovira i Virgili

Prof. Miquel A. Pericas Brondo, Group Leader and Director of the Institute of Chemical Research of Catalonia (ICIQ) and,

Dr. M. Sonia Sayalero Sanz, Researcher and former Group Coordinator of the Pericàs Research Group (ICIQ),

STATE, that the present Doctoral Thesis entitled: "Immobilization of 2,4-cis-Diarylprolinol Silyl Ethers, Isothioureas, SPINOL-Derived Phosphoric Acids and Their Application in the Catalytic Enantioselective Synthesis in Batch and Flow ", presented by <u>Junshan Lai</u> to receive the degree of Doctor, has been carried out under our supervision at the Institute of Chemical Research of Catalonia (ICIQ).

Tarragona, 15th of September, 2020

PhD Thesis Supervisor

Prof. Miquel A. Pericàs Brondo

PhD Thesis Co-supervisor

Dr. M. Sonia Sayalero Sanz

Acknowledgements

Let's imagine an enantiomerically pure compound existing as a pair of diastereomers that we plan to use as a catalyst. For diastereomeric excesses between 80% and 90%, we can consider that it already has a practical value in view of its application in catalysis. If we observe the HPLC trace and the NMR spectrum of our catalyst candidate, although the peaks due to the minor isomer are lower than those corresponding to the major isomer, its presence has a particularly important effect on the catalytic activity and selectivity of the considered compound (in some cases positive and in some cases negative). For my life, the four-year PhD study is like this minor isomer---short but very important for my life and future career choices. I am grateful for the positive impact that these four years in ICIQ has exerted on me.

During my four years PhD study in ICIQ, a lot of people have made my life here unforgettable and meaningful.

First of all, I would like to thank my supervisor Prof. Miquel A. Pericàs (Miquel) for his guidance, caring, encouragement, professional advice and constant support during the time of my career in ICIQ. And giving me the opportunity to do my research in an international team which has given me a lot of adventure and experience.

At the same time, I wish to thank Dr. Carles Rodríguez Escrich and Dr. Sonia Sayalero Sanz for their invaluable advice and help in the development of the projects. In addition, I would like to thank all the technical support and administrative staff of ICIQ, especially thanks to Ms. Sara Gacia for all her help.

I am also grateful to all the past and present members of the Pericas group. Special thanks to Dr. Patricia Llanes for her help for renting a house in Tarragona, and advice and help in the experiments set up. Special thanks to Dr. Parijat Borah for his professional advice during discussion.

In addition, I would like to thank the friends I made in Tarragona for their support and friendship. Special thanks to Nicola Zanda for his funny jokes in the lab.

Special thanks to my family---my parents, grandparents, my sister and my girlfriend---for their endless love and unconditional supports during all my life.

Thank you very much to all of you!

The present doctoral thesis has been possible thanks to the funding received from AEI/MINECO/FEDER (FPI Fellowship BES-2016-078937) and ICIQ Foundation (ICIQ grant 2016/13) as well as from the following projects: CERCA Programme/Generalitat de Catalunya, AEI/MINECO/FEDER (Grants: CTQ2015-69136-R and PID2019-109236RB-I00) and AGAUR (Grants: 2014SGR827 and 2017SGR1139)

UNIVERSITAT ROVIRA i VIRGILI

Unión Europea

Fondo Europeo de Desarrollo Regional "Una manera de hacer Europa"

Abbreviations

In this document the abbreviations and acronyms most commonly used in organic chemistry have been used, according to the recommendations of the ACS "Guidelines for authors":

http://pubs.acs.org/paragonplus/submission/joceah/joceah_authguide.

Table of Contents

Thesis Overview	1
Chapter I. General Introduction	5
1.1. General introduction of immobilization of chiral organocatalysts	5
1.2. General principles for immobilization of chiral organocatalysts	7
1.3. Supports and strategies for immobilization of chiral organocatalysts	8
1.4. Continuous flow process based on immobilized chiral organocatalysts	15
1.5. Examples of immobilized chiral organocatalysts in batch and continuous flow system	18
1.6. Aim of this thesis	63
Chapter II. Immobilization of cis-4-Hydroxydiphenylprolinol Silyl Ethers	64
onto Polystyrene. Application in the Catalytic Enantioselective	
Synthesis of 5-Hydroxyisoxazolidines in Batch and Flow	
2.1. Polymer-supported prolinol and diarylprolinol derivatives	64
2.2. Isoxazolidines	72
2.3. Aim of this project	74
2.4. Article A	77
Chapter III. Continuous Flow Preparation of Enantiomerically Pure	155
BINOL(s) by Acylative Kinetic Resolution	
3.1. Introduction	155
3.2. Polymer-immobilized chiral benzotetramisole analogues	158
3.3. Aim of this project	161
3.4. Article B	163

Chapter IV. Development of Immobilized SPINOL-Derived Chiral	240
Phosphoric Acids for Catalytic Continuous Flow Processes. Use in	
the Catalytic Desymmetrization of 3,3-Disubstituted Oxetanes	
4.1. Polymer-immobilized chiral phosphoric acids	240
4.2. Synthesis of SPAs	246
4.3. The synthesis of SPINOL derivatives	248
4.4. Aim of this project	257
4.5. Article C	259
Chapter V. Manganese/Copper Co-Catalyzed Electrochemical Wacker-	450
Tsuji-Type Oxidation of Aryl-Substituted Alkenes	
5.1. Introduction	450
5.2. Palladium catalyzed Wacker-Tsuji oxidation	450
5.3. Non-palladium catalysed Wacker-Tsuji-type oxidation	456
5.4. Aim of this project	457
5.5. Article D	459
Conclusions	501
List of Publications	503

Thesis Overview

Chapter I. General Introduction

The first chapter is a general introduction of immobilized organocatalysis dealing with the general concept, general principles for immobilization, supports and strategies, continuous flow process and device. Some representative immobilized organocatalysts are presented in this chapter as well.

Chapter II. Immobilization of *cis*-4-Hydroxydiphenylprolinol Silyl Ethers and application in the Synthesis of 5-Hydroxyisoxazolidines

In chapter II, a new family of polystyrene-supported *cis*-4-hydroxydiphenylprolinol has been prepared, and the resulting polymers have been evaluated as between organocatalysts to promote the tandem reaction *N*-protected hydroxylamines and α , β -unsaturated aldehydes in batch and flow. The new PSsupported catalysts compare favorably with well-established immobilized Jørgensen-Hayashi catalysts, affording 5-hydroxyisoxazolidines as single diastereoisomers with high enantioselectivities and good yields (up to 83% yield, up to 99% ee).

Chapter III. Continuous Flow Preparation of Enantiomerically Pure BINOL(s) by Acylative Kinetic Resolution

A polystyrene-immobilized isothiourea has been applied to the enantioselective acylative kinetic resolution (KR) of monoacylated BINOL(s) with inexpensive isobutyric anhydride in batch and flow. High selectivity values (s = 35 at 0 °C) and a remarkable stability of the catalytic system in the operation conditions have been recorded for unsubstituted BINOL. No significant loss of activity/selectivity is recorded after 10 consecutive KR cycles in batch. A continuous flow process has been implemented and operated with a 100 mmol (32.8 g) sample of racemic monoacetylated BINOL in an 84 hours experiment with a packed bed reactor containing 1 g (f = 0.37 mmol.g⁻¹) of the functional resin. Residence time can be decreased to 10 min with the same reactor to achieve a conversion of 58% with a selectivity factor s = 17 in dichloromethane solution when a more highly functionalized catalyst (f = 0.88 mmol.g⁻¹) is used. This translates into a remarkable combined productivity of 5.5 mmol_{prod}·mmol_{cat}⁻¹·h⁻¹.

Chapter IV. Development of Immobilized SPINOL-Derived Chiral Phosphoric Acids for Catalytic Continuous Flow Processes. Use in the Catalytic Desymmetrization of 3,3-Disubstituted Oxetanes

A family of C2-symmetrical 1,1'-spirobiindane-7,7'-diol (SPINOL) derivatives containing polymerizable styryl units has been prepared through a highly convergent approach. Radical co-polymerization of these monomers with styrene has allowed the synthesis of a new family of immobilized SPINOL-derived chiral phosphoric acids (SPAs) where the combination of the restricted axial flexibility of the SPINOL units and the existence of extended and adaptable chiral walls adjacent to them leads to enhanced stereocontrol in catalytic processes. The optimal immobilized species (Cat f) brings about the catalytic desymmetrization of 3,3-disubstituted oxetanes in up to 90% yield with up to >99% enantioselectivity, exhibiting a very high recyclability (no decrease in conversion or enantioselectivity after sixteen, 16-hour runs). To exploit these characteris-tics, a continuous flow process has been implemented and operated for the sequential preparation of 17 diverse enantioen-riched products. The suitability of the flow setup for gram scale preparations (20 mmol scale) and its deactiva-tion/reactivation by treatment with pyridine/hydrochloric acid in dioxane have been demonstrated. Density Functional Theo-ry has been employed to provide a rational justification of the deep effect on enantioselectivity arising from the presence of sterically bulky substituents at the 6,6'-positions of the SPINOL unit. The main structural features of **Cat f** have subse-quently been incorporated to the design of a simplified homogeneous analog available in a straightforward manner (Cat g) that performs the benchmark desymmetrization reaction with similar yields and enantioselectivities as **Cat f**, providing a convenient alternative for cases when single use in solution is sought.

Chapter V. Manganese/Copper Co-Catalyzed Electrochemical Wacker-Tsuji-Type Oxidation of Aryl-Substituted Alkenes

A manganese/copper co-catalyzed electrochemical Wacker-Tsuji oxidation of arylsubstituted olefins has been developed. The process involves the use of 5 mol% MnBr₂ and 7.5 mol% CuCl₂, in 4:1 acetonitrile/water in an undivided cell at 60 °C, with 2.8 V constant applied potential. α -Aryl ketones are formed in moderate to excellent yields, with the advantages of avoidance of palladium as a catalyst and any external chemical oxidant, in an easily operated, cost effective procedure.

Chapter I

General Introduction

1.1. General introduction of immobilization of chiral organocatalysts

Optically active compounds are very important molecules in the fields of medical, pharmaceutical, and agricultural science. ¹ The synthesis of optically active compounds requires in most cases the use of asymmetric transformation methodology. Within this approach, asymmetric organocatalysis represents one of the most useful methods to synthesize optically active compounds. Since 2000, when MacMillan introduced chiral imidazolidinones as catalysts for asymmetric Diels-Alder reactions using the term *organocatalysis* for the first time,² and List *et al.* reported on the direct asymmetric aldol reaction catalyzed by proline,³ this topic has raised paramount interest worldwide. In the past twenty years, organocatalysis has become a hot field and has been used to achieve a variety of diverse organic transformations.⁴

¹a) Kobayashi, S.; Ishitani, H. *Chem. Rev.* **1999**, *99*, 1069–1094; b) Brunel, J. M. *Recent Res. Dev. Org. Chem.* **2003**, *7*, 155-190; c) Cobley, C. J.; Henschke, J. P. *Adv. Synth. Catal.* **2003**, *345*, 195-201.

² Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243-4244.

³ List, B.; Lerner, R. A.; Barbas III, C. F. J. Am. Chem. Soc. 2000, 122, 2395-2396.

⁴ a) Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis, (Eds. Berkessel, A.; Gröger, H.), Wiley-VCH, Weinheim, Germany, 2005; b) Benaglia, M.; Puglisi, A.; Cozzi, F. Chem. Rev. 2003, 103, 3401–3430; c) Dalko, P. I.; Moisan, L. Angew.Chem. Int. Ed. 2004, 43, 5138–5175; d) Houk K.N.; List B. Acc. Chem. Res. 2004, 37, 631-847; e) Guillena, G.; Ramón, D. J. Tetrahedron: Asymmetry 2006, 17, 1465-1492; f) List B. Chem. Rev. 2007, 107, 5413–5883; g) Guillena, G.; Nájera, C.; Ramón, D. J. Tetrahedron: Asymmetry 2006, 18, 2249–2293; h) Pellissier, H. Tetrahedron 2007, 63, 9267-9331.

Homogeneous asymmetric organocatalysis is one of the most useful methodologies for preparing chiral compounds. However, in most cases a relatively large amount (at least 10 mol%) of organocatalyst is required to complete the desired reaction within a reasonable time. Isolation of these catalysts from the reaction mixture, required for purification purposes and advisable from an economic perspective, is relatively hard due to the similar organic nature of catalyst and reaction product and thus results poorly economic. In this context, Immobilized organocatalysts were designed to overcome these limitations of their homogeneous counterparts by simultaneously allowing easy product purification and catalyst recovery. ⁵

Immobilization of chiral catalysts onto polymers for catalytic asymmetric reactions represents an important, useful and green approach to increased sustainability in organic synthesis. The approach has received considerable attention for the preparation of optically active compounds and has become one of the basic technology in organic synthesis. ⁶ As already pointed out, there are several

⁶ a) El-Shahawy, A. A.; Itsuno, S. *Current Topics in Polymer Research* (Ed.: Bregg, R. K.), Nova Science, New York, *chapter 1*, **2005**, pp. 1-69; b) Itsuno, S.; Haraguchi, N. *Heterogeneous Enantioselective Catalysis Using Organic Polymeric Suopports* in *Handbook of Asymmetric Heterogeneous Catalysis*, (Eds.: Ding, K.; Uozumi, Y.), Wiley-VCH, Weinheim, Germany, *chapter 3*, **2008**, pp. 73-129; c) Clapham, B.; Reger, T. S.; Janda, K.D. *Tetrahedron* **2001**, *57*, 4637-4662; d) Miguel, Y. R.; Brule, E.; Margue, R. G. *J. Chem. Soc. Perkin. Trans.* **2001**, *1*, 3085-3094; e) Fan, Q. H.; Li, Y. M.; Chan, A. S. C. *Chem. Rev.* **2002**, *102*, 3385-3466; f) Dickerson, T. J.; Reed, N. N.; Janda, K. D. *Chem. Rev.* **2002**, *102*, 3325-3344; g) McNamara, C. A.; Dixon, M. J.; Bradley, M. *Chem. Rev.* **2002**, *102*, 3275-3300; h) Itsuno, S.; Haraguchi, N.; Arakawa, Y. *Recent Res. Dev.*

⁵ a) Chiral Catalyst Immobilization and Recycling, (Ed.: De Vos, D. E.; Van-kelecom, I. F. J.; Jacobs, P. A.), Wiley-VCH, Weinheim, **2000**; b) Fine Chemicals Through Heterogeneous Catalysis, (Ed.: Sheldon, R. A.; Bekkum, H.), Wiley-VCH, Weinheim, **2001**; c) McMorn, P.; Hutchings G. J. Chem. Soc. Rev. **2004**, 33, 108-122; d) Handbook of Asymmetric Heterogeneous Catalysis (Eds.: Ding, K.; Uozumi, Y.), Wiley-VCH, Weinheim, **2008**; e) Recoverable and Recyclable Catalysts, (Eds.: Benaglia, M.), John Wiley & Sons, Chichester, **2009**; f) Heterogenized Homogeneous Catalysts for Fine Chemicals Production Catalysis by Metal Complexes, (Eds.: Barbaro, P.; Liguari, F.), Springer, Heidelberg, Vol. 33, **2010**; g) Enantioselective Homogeneous Supported Catalysts, (Eds.: Šebesta, R.), RCS Publishing, Cambridge, **2011**.

advantages associated to the use of polymer-supported chiral organocatalysts for organic transformations. The catalysts can be recovered by simple filtration if the immobilized chiral organocatalysts is not soluble in the reaction mixture, and, if soluble polymeric chiral organocatalysts are used, the catalysts can be recovered by adding appropriate solvents to precipitate them from the reaction mixture. After several runs of recovery and reusing, very high cumulative turnover numbers (TONs) can be achieved. Moreover, it's possible to apply the immobilized chiral organocatalysts in the development of catalytic enantioselective continuous flow processes.

1.2. General principles for immobilization of chiral organocatalysts

The goal of immobilization of chiral catalysts onto polymers aims at combining the positive properties of the corresponding homogeneous catalysts with the additional stability, recyclability and separation properties of support materials. However, some general principles that need to be considered during the immobilization process to maintain both reactivity and efficiency of the immobilized catalysts.

The nature of the catalyst support and the immobilization process affect the performance of the immobilized catalysts. Up to now, a big variety of catalytic supports, both organic and inorganic, combined with different methodologies for the immobilization of homogeneous catalysts have been designed and applied in catalysis.⁷ The physico-chemical properties, porosity and dimensions of supports; the properties and length of the spacer and linker connecting catalyst and support;

Org. Chem. **2005**, *9*, 27-47; i) Itsuno, S.; Arakawa, Y.; Haraguchi, N. J. Soc. Rubber Ind. Jpn. **2006**, *79*, 448-454; j) Chen, J.; Yang, G.; Zhang, H.; Chen, Z. *React. Funct. Polym.* **2006**, *66*, 1434-1451; k) Trindade A. F.; Gois P. M. Afonso C. A. *Chem. Rev.* **2009**, *109*, 418-514; l) Altava B.; Burguete M. I.; García-Verdugo E.; Luis S.V. Chem. Soc. Rev. **2018**, *47*, 2722-2771.

⁷ Supported Catalysts and Their Applications, (Eds.: Sherrington, D.C.; Kybett, A.P.), Cambridge: The Royal Society of Chemistry, **2001**.

the catalytic active sites density on the surface of supports are parameters that will mainly affect the activity and efficiency of catalysts.⁸ The deleterious interactions between catalytic active sites and support must be restricted to avoid deactivation, undesired cooperative effects, and loss of efficiency in catalysts. In addition, the catalyst supports should be chemically inert and not harmful to the environment. Moreover, the linker or spacer connecting catalyst and support should be chemically inert in the reaction conditions, and should present a conformational behavior that contributes to projecting the catalytic units away from the polymer backbone, thus facilitating mass transfer.

1.3. Supports and strategies for immobilization of chiral organocatalysts

The immobilization of organocatalysts can be divided into three different types: covalent immobilization, non-covalent interactions, and encapsulation.

In covalent immobilization, the catalyst is covalently bound to the support. This is the preferred approach, due to the very strong binding established between the homogeneous organocatalysts and the support that renders leaching essentially impossible. In the non-covalent immobilization, the catalysts are adsorbed on the surface of the support *via* weak intermolecular interactions such as hydrogen bonding and electrostatic or van der Waals forces. Finally, in encapsulation, the catalyst is physically trapped in the pores or cavities of the support. It is worth mentioning that immobilization based on non-covalent interactions and encapsulation is less convenient, because of the weak interactions involved, the problem of catalyst leaching, the instability of the catalyst/support assembly, and the occurrence of pore size problems in the entrapment immobilization.⁸

⁸ a) Heitbaum, M.; Glorius, F.; Escher, I. *Angew. Chem. Int. Ed.* **2006**, *45*, 4732-4762; b) Cozzi, F. *Adv. Synth. Catal.* **2006**, *348*, 1367-1390.

Consequently, we will mainly focus on covalent immobilization of chiral organocatalysts in this thesis.

Generally, organic polymers, ⁹ organic–inorganic materials, ¹⁰ inorganic bulk supports,¹¹ inorganic oxides,¹² nanomaterials and magnetic nanoparticles (MNPs)¹³ are conveniently used as supports in the literature.

In the following introduction, we will briefly introduce Immobilization of chiral organocatalysts on polymeric resins, silica and magnetic nanoparticles, and will discuss the copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC reaction; a copper-catalyzed Huisgen 1,3-dipolar cycloaddition) as the preferred tool to build 1,4-disubstituted-1,2,3-triazole moieties as broadly used linkers for covalent immobilization.

1.3.1 Immobilization of chiral organocatalysts on polymeric resins

Polymeric resins were introduced by Merrifield in the 1960s. The first example was based on polystyrene (PS), and used divinylbenzene (DVB) as the cross-linker. Several organic insoluble and soluble polymers have been investigated as catalyst

⁹ a) Altava, B.; Burguete, M.I.; García-Verdugo, E.; Luis, S.V. *Chem.Soc. Rev.* **2018**, *47*, 2722-2771; b) *Polymeric Materials in Organic Synthesis and Catalysis*, (Ed.: Buchmeiser, M.R.), Wiley-VCH Weinheim., **2005**; c) Lu, J.; Toy, P.H. *Chem. Rev.* **2009**, *109*, 815-838.

¹⁰ Bridging Heterogeneous and Homogeneous Catalysis: Concepts, Strategies, and Applications, (Eds.: Li, C.; Liu, Y.), Weinheim: Wiley-VCH, **2014**.

¹¹ a) Catalyst Preparation: Science and Engineering, (Ed.: Regalbuto, J.), Boca Raton, FL: CRC Press, Taylor & Francis Group, **2007**; b) Freire, C.; Pereira, C.; Rebelo, S. *Catalysis* **2012**, *24*, 116-203.

¹² a) Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Angew. Chem. Int. Ed. 1999, 38, 56-77; b) Alcón, M. J.; Corma,
A.; Iglesias, M.; Sánchez, F. J. Organomet. Chem. 2002, 655, 134-145; c) Tao, Y.; Kanoh, H.; Abrams, L.;
Kaneko, K. Chem. Rev. 2006, 106, 896-910.

¹³ Rossi, L.M.; Costa, N.J.S.; Silva, F.P.; Wojcieszak, R. Green Chem. 2014, 16, 2906-2933.

supports during the next years with the advantages of easy separation, catalyst recovery and robustness.^{9, 14}

Polymeric resins-supported chiral organocatalysts are mainly prepared by coupling reaction of functional polymeric resins with modified chiral organocatalyst containing an additional functional group for immobilization purposes. Less commonly, the whole immobilized system is prepared by co-polymerization of a vinyl- or styryl-substituted organocatalyst with appropriate co-monomers. An important condition, to be fulfilled in all cases, is that the anchoring point in the catalytic unit should be away from the active site in order to avoid perturbations in the enantiodetermining transition state.

There are several functionalized polymeric resins are commercially available in reagents supply companies. The structures of some functionalized polymers based on polystyrene (PS) such as Merrifield Resin, Wang resin, TentaGel[™] and ArgoGel[™] are presented in Figure 1. In addition, polyethyleneglycol (PEG) and poly(ethylene oxide) (PEO) and cellulose are also commonly used as supports.

Figure 1. Commercially available functionalized polymers based on PS

With the advantages of inexpensive, easy to prepare, easy to functionalize, mechanistically robust, chemically inert, and commercially available, PS is still one of the most common polymeric resins.

¹⁴ Altava, B.; Burguete, M.I.; García-Verdugo, E.; Luis, S.V. Chem.Soc. Rev. 2018, 47, 2722-2771;

1.3.2 Immobilization of chiral organocatalysts on silica

With the advantages of bio-friendly nature, inertness, and impressive thermal stability, porous property, and with the possibility of being designed to fit different shapes and pore sizes, silica is becoming an ideal support for catalysts immobilization.¹⁵

Scheme 1. Post-synthetic methods for the immobilization of catalysts onto silica supports

The supporting of catalysts onto functionalized silica can be performed using postsynthetic methods by attaching the desired compound onto the surface of pristine silica supports (Scheme 1).¹⁶

Scheme 2. The immobilization of catalysts onto silica supports by sol-gel process

 ¹⁵ a) Giraldo, L. F.; López, B. L.; Pérez, L.; Urrego, S.; Sierra, L.; Mesa, M. *Macromol. Symp.* 2007, 258, 129-141; b) Liang, J.; Liang, Z.; Zou, R.; Zhao, Y. *Adv. Mater.* 2017, 29, 1701139.

¹⁶ a) Walcarius, A.; Etienne, M.; Bessière, J. *Chem. Mater.* 2002, *14*, 2757-2766; b) González-Arellano, C.;
Corma, A.; Iglesias, M.; Sánchez, F. *Adv.Synth. Catal.* 2004, *346*, 1316-1328; c) Kume, Y.; Qiao, K.; Tomida,
D.; Yokoyama, C. *Catal. Commun.* 2008, *9*, 369-375; d) Bruhwiler, D. *Nanoscale* 2010, *2*, 887-892; e) Karimi,
B.; Khorasani, M. *ACS Catal.* 2013, *3*, 1657.

Alternatively, a functional trialkoxysilane co-condensates with other silane monomers (usually tetraethoxysilane, TES) in the sol-gel process to produce silica supported catalysts. This second approach is conceptually equivalent to the copolymerization of vinyl monomers discussed above, and has been used in different contexts (Scheme 2).¹⁷

1.3.3 Immobilization of chiral organocatalysts on magnetic nanoparticles

Magnetic nanoparticles (MNPs) have attracted significant interest as alternative support for catalyst immobilization. MNPs have properties such as high surface area, high dispersion, outstanding stability, low toxicity and superparamagnetic behavior.¹⁸

Among their unique properties, high surface area allows high catalyst loading and the superparamagnetic nature allows nanoparticle an efficient separation and recovery from the reaction medium by magnetic decantation. In addition, MNPs presents a large number of hydroxyl groups on the surface of their particles. This characteristic allows the immobilization of catalysts by covalent bonds. Fe₃O₄ is the most exploited iron oxide nanomaterial for magnetic nanoparticles supports (Scheme 3).¹⁹

¹⁷ a) Parish, R.V.; Habibi, D.; Mohammadi, V. *J. Organomet. Chem.* **1989**, *369*, 17-28; b) Burkett, S.L.; Sims, S.D.; Mann, S. *Chem. Commun.* **1996**, 1367-1368; c) Che, S.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Terasaki, O.; Tatsumi, T. *Nature* **2004**, *429*, 281-284.

¹⁸ a) Wendy, T.; Ageeth, A. B.; John, W. G. *Catal. Today* **1999**, *48*, 329-336; b) Ko, S.; Jang, J. *Angew. Chem. Int. Ed.* **2006**, *45*, 7564-7567; c) Yi, D. K.; Lee, S. S.; Ying, J. Y. *Chem. Mater.* **2006**, *18*, 2459-2461.

¹⁹ McCafferty, E.W.; Wightman J. P. Surf. Interface Anal. 1998, 26, 549.

Scheme 3. Immobilization of chiral organocatalysts on magnetic nanoparticles

1.3.4 The copper-catalyzed azide-alkyne cycloaddition reaction as a tool for the formation of 1,4-disubstituted-1,2,3-triazole linkers for covalent organocatalyst immobilization

The copper-catalyzed Azide-Alkyne cycloaddition (CuAAC, namely Cu-catalyzed Huisgen 1,3-dipolar cycloaddition) is probably the most known example of click reaction.²⁰ It is a very convenient strategy for immobilization of catalysts due to its broad scope, easy realization and mild reaction conditions. On the other hand, the progress of the reaction can be easily monitored by IR spectroscopy, through the disappearance of the characteristic triple bond bands of the reactants. Depending on the different immobilization strategies, both alkyne-functionalized and azido-functionalized resins are available. In every case, the partner organocatalyst must be functionalized in a complementary manner (Scheme 4).

²⁰ a) Huisgen, R. *Centenary Lecture-1,3-Dipolar Cycloadditions* 1961, 357-396; b) Vsevolod, V. R.; Luke, G. G.; Valery, V. F.; Sharpless, K. B. *Angew. Chem. Int. Ed.* 2002, *41*, 2596-2599; c) Tornøe, C. W.; Christensen, C.; Meldal, M. *J. Org. Chem.* 2002, *67*, 3057-3064; d) Bock, V. D.; Hiemstra, H.; Van Maarseveen, J. H. *Eur. J. Org. Chem.* 2006, 51-68; e) Meldal, M.; Tornøe, C. W. *Chem. Rev.* 2008, *108*, 2952-3015; f) Hein, J. E.; Fokin, V. V. *Chem. Soc. Rev.* 2010, *39*, 1302-1315.

Scheme 4. The CuAAC reaction as a tool for the formation of triazole linkers for covalent organocatalyst immobilization

The possible interaction of the triazole linker with the catalytic active sites should be taken into consideration, since it can interfere with the catalytic activity both in a positive and in a negative manner.²¹ The experience of our group has shown that CuAAC reaction is an efficient technique to immobilize organocatalysts. The role of triazole linker was related to an increase in the swelling ability of PS-support, probably through forming a hydrogen bond-based aqueous microphase around the hydrophobic resin.²²

1.3.5 Immobilization of chiral organocatalysts by copolymerization of a monomer with a chiral organocatalyst

Chiral organocatalysts can also be supported by the polymerization of the chiral monomers with an achiral comonomer and cross-linker.

A variety of monomers can be used according to the type of polymerization. Styrene derivatives have been most frequently used as the chiral monomer because of their easy ability to co-polymerize with other vinyl monomers. In any case, many other types of derivatives, such as acrylates, acrylamides, ethylene oxide, ethylene imine, and methacrylates have also been sometimes used as the chiral monomers. Divinylbenzene (DVB) is the most commonly used difunctional monomer as a cross-linker. In addition, ethyleneglycol dimethacrylate, N,N'-bis(acrylamide), and a difunctional styrene derivative with oligo(ethylene glycol) spacer have been used as cross-linkers in vinyl polymerization.

²¹ For a case of negative influence in metal-catalyzed processes, see: Bastero, A.; Font, D.; Pericàs, M. A. J. *Org. Chem.* **2007**, *72*, 2460-2468.

²² For a case of cooperativity between the triazole linker and the organocatalytic unit, see: Font, D.; Sayalero, S.; Bastero, A.; Jimeno, C.; Pericàs, M. A., *Org. Lett.* **2008**, *10*, 337-340.

A variety of copolymerization techniques can be used for the preparation of a polymer-supported catalyst. One of the most efficient copolymerization methods employed in our laboratory can be summarized as shown in Scheme 5. Representatively, the polymer supported organocatalysts could be prepared by radical copolymerization of chiral vinyl monomers, styrene, and DVB with 2,2'-azabis(2-methylpropionitrile) (AIBN) or benzoyl peroxide (BPO) as an initiator.

Scheme 5. Immobilization of chiral organocatalysts by copolymerization

1.4. Continuous flow process based on immobilized chiral organocatalysts

In addition to the recovery and reuse ability of solid-supported catalysts mentioned above, one of the main advantages of immobilized catalysts is the possibility of implementing continuous flow (CF) processes, in which the initial reactants are pumped through a reactor and the product flows out in a continuous manner.²³

CF systems can be divided into two different types according to the use of soluble or insoluble catalysts. ²⁴

In many cases, soluble catalysts are more active and selective than the analogous insoluble ones; accordingly, much effort has been devoted to explore separation and

²³ a) Jas, G.; Kirschning, A. *Chem. -Eur. J.* 2003, *9*, 5708-5723; b) Puglisi, A.; Benaglia, M.; Chiroli, V. *Green Chem.* 2013, *15*, 1790-1813; c) Tsubogo, T.; Ishiwata, T.; Kobayashi, S. *Angew. Chem. Int. Ed.* 2013, *52*, 6590-6604.

²⁴ For a field guide to flow chemistry, see: Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. *Chem. Rev.* **2017**, *117*, 11796-11893.

recovery strategies of the former in view of their use in continuous flow processes. Although such processes avoid the catalyst immobilization step, the use of soluble catalytic system is still facing the question of how to perform the separation and recycling of the catalyst in an effective and truly continuous manner.

In many cases, soluble catalysts have higher activity and selectivity than the analogous insoluble ones. Although using soluble catalysts in CF avoids the immobilization of the catalysts, the use of soluble catalyst system still faces the problem of how to separate and recover the catalyst effectively and continuously. Accordingly, much effort has been devoted to explore separation and recovery strategies of the former in view of their use in continuous flow processes.

The use of insoluble catalysts in the CF devices is one of the most obvious and common methods to achieve its continuous recylcling. Therefore, it is not surprising that efforts to use polymer-supported catalysts in laboratory-scale fine chemical transformations were reported the early 1980s.²⁵ In such processes, the insoluble catalysts can be confined inside a CF device by mechanical means or using magnetic fields (when MNPs are used as a support). The absence of need to fine-tune the system properties for solubility and phase distribution of products and active species represent an important advantage of this approach. Thus, the packed-bed immobilized catalysts can be separated and recovered easily in a single operation. On the other hand, no mechanical stirring is needed in flow systems, which contributes to increase the lifetime of the material supporting the immobilized catalyst. Compared with conventional batch systems, CF systems have advantages of significant time, space and energy savings by simplifying operation. In addition,

²⁵ a) Ragaini, V.; Saed, G. Z. *Phys. Chem.* **1980**, *119*, 117-128; b) Ragaini, V.; Verzella, G.; Ghignone, A.;
Colombo, G. *Ind. Eng. Chem. Process Des. Dev.* **1986**, *25*, 878-885; c) Itsuno, S.; Ito, K.; Maruyama, T.; Kanda, N.; Hirao, A.; Nakahama, S. *Bull. Chem. Soc. Jpn.* **1986**, *59*, 3329-3331; d) Hodge, P.; Sung, D.W.L.; Stratford, P.W. J. Chem. Soc., Perkin Trans. **1999**, *1*, 2335-2342.

continuous flow processes are easy to scale up, more cost-effective, and sometimes give higher and stereoselectivities than the corresponding batch processes.²⁴ The use of continuous flow processes is expected to grow significantly in the next few years, especially in industrial applications.

A possible reaction set-up for CF with the symbols of all the components and the description of the critical parts is provided below (Figure 2).

Figure 2. Schematic representation of a flow set-up with some of the devices.

Pumbs. Most flow processes require the use of pumps to ensure stable flow. There are several options, but we tend to use regular syringe pumps or HPLC-like piston pumps.

Tubing. Most commonly PTFE tubing of 1/16" is used.

Packed bed reactor. It refers to the cylindrical laboratory utensils filled with solventswelled resin. It can be made of any material, such as PTFE, glass or steel. Since we usually do not need high pressure, our most common choice is a glass column with a diameter of 1 cm.

Check valve. The small tool can ensure that the flow direction is one-way, avoiding the backflow situation that may damage the internal catalyst of the packed bed reactor. Back-pressure regulator. Commonly abbreviated as BPR. It is a device that can put a certain pressure on each part of the upstream system. It can work with gas and avoid the use of low boiling point solvents to form bubbles.

Liquid-liquid separator. It is a device that can separate a two-phase mixture in a flowing state through their different polarities.

Residence time. For a given device operating at a given total flow rate, it is the time for the reactants to enter the column and contact the catalyst.

Accumulated TON. For batch operation, yield is the best parameter for product generated in a given catalytic experiment. In flow operation, the best parameter is the accumulated TON instead of yield.

1.5. Examples of immobilized chiral organocatalysts in batch and continuous flow system

Some examples of immobilization of organocatalysts such as proline-derived catalysts, prolinamides, pyrrolidine derivatives, amino acid derivatives, chiral imidazolidinone (MacMillan) catalysts, Cinchona alkaloids, cinchona alkaloid quaternary ammonium salts, chiral DMAP Analogue, chiral thioureas ureas and squaramide organocatalysts will be briefly introduced in this Chapter. The immobilization of diarylprolinol and their silyl ethers derivatives, chiral benzotetramisole analogues, and chiral phosphoric acid will be described in Chapters II, III, IV, respectively.

1.5.1 Immobilized proline-derived catalysts.

L-Proline and its derivatives are quite effective organocatalysts for a plenty of asymmetric transformations, where they have been extensively used. Catalytic processes involving proline take place via the formation of activated enamines (HOMO activation) or iminium ions (LUMO activation)²⁶ intermediates between the carbonyl substrates and L-Proline or its derivatives.²⁷ It's not unusual that these processes require high catalyst loadings, in the 20–30 mol% range or even higher. Since L-proline is inexpensive, its immobilization could be considered worthless; however, proline derivatives are usually expensive materials whose preparation from the natural amino acid involves multistep sequences. One should add to this economic argument the often costly separation of these organocatalysts in monomeric form from reaction crudes. In this regard, in the last few years, immobilized proline derivatives have been developed and used as efficient catalysts for a plethora of asymmetric reactions.^{4,28} The immobilization strategies used for L-proline and its derivatives involve both covalent linking to the support and immobilization by noncovalent interactions.

The first examples of supported proline involved covalent linking to a cross-linked polystyrene and were reported in 1985 by the Takemoto group. These polymeric prolines were used in a Robinson cyclization reaction and produced the corresponding diketones in modest yield and enantioselectivity.²⁹ (Scheme 6).

²⁸ a) Catalyst Separation, Recovery and Recycling. Chemistry and Process Design, (Eds.: Cole-Hamilton, D. J.; Tooze, R. P.), Springer, Dordrecht, Netherlands, **2006**; b) The Power of Functional Resins in Organic Synthesis, (Eds.: Albericio, F.; Tulla-Puche, J.), Wiley-VCH, Weinheim, Germany, **2008**; c) Cozzi, F. Adv. Synth. Catal. **2006**, 348, 1367-1390; e) Benaglia, M. New J. Chem. **2006**, 30, 1525-1533; f) Gruttadauria, M.; Giacalone, F.; Noto, R. Chem. Soc. Rev. **2008**, 37, 1666-1688; h) Trindade, A. F.; Gois, P. M. P.; Afonso, C. A. M. Chem. Rev. **2009**, 109, 418-514; i) Bergbreiter, D. E.; Tian, J.; Hongfa, C. Chem. Rev. **2009**, 109, 530–582; j) Lu, J.; Toy, P. H. Chem. Rev. **2009**, 109, 815-838; k) Kristensen, T. E.; Hansen, T. Eur. J. Org. Chem. **2010**, 17, 3179-3204.

²⁶ HOMO: Highest Occupied Molecular Orbital; LUMO: Lowest Unoccupied Molecular Orbital.

²⁷ a) Mukherjee, S.; Woon Yang, Y.; Hoffmann, S.; List, B. *Chem. Rev.* **2007**, *107*, 5471-5569; b) Erkkilä, A., Majander, I.; Pihko, P. M. *Chem. Rev.* **2007**, *107*, 5416-5470.

²⁹ Kondo, K.; Yamano, T.; Takemoto, K. Makromol. Chem. 1985, 186, 1781–1785.

Scheme 6. The first examples of supported proline and application for Robinson cyclization

Asymmetric aldol reactions between cyclic ketones and aldehydes are the most common used to test newly developed immobilized proline derivatives. Some recent examples are summarized in Scheme 7. In 2012, our laboratory reported the asymmetric aldol reactions catalyzed by a novel polystyrene-immobilized proline derivative **I-26**. The reactions were completed in short reaction times and took place with excellent diastereo- and enantioselectivity. The catalyst could be recovered by simple filtration and exhibited very high reusability in batch, which prompted its application in packed-bed reactors for continuous flow processing. The high catalytic activity of **I-26** allowed a short residence time of 26 minutes in the flow process,³⁰ in sharp contrast with the initially developed supported prolines, involving shorter linkers and lacking the synergistic triazole linker, where reaction time in batch was in the range of days.

³⁰ C. Ayats, A. H. Henseler, M. A. Pericàs, *ChemSusChem* **2012**, *5*, 320-325.

Scheme 7. Immobilized prolines for organocatalytic applications in aldol reactions

In 2013, Massi and co-workers reported silica-supported proline derivative **I-27**. It was packed in a microreactor to be used in continuous flow. The gathered information by reaction-progress kinetic analysis allowed them to assess optimal operating parameters and reaction conditions.³¹

³¹ Bortolini, O.; Cavazzini, A.; Giovannini, P. P.; Greco, R.; Marchetti, N.; Massi, A.; Pasti, L. *Chem. Eur. J.* **2013**, *19*, 7802-7808.

In the same year, O'Reilly and Monteiro group reported the bounding of L-proline moieties to a thermoresponsive polymer nanoreactor (I-28) that consisted of a permanently hydrophilic block (poly(dimethylacrylamide), PDMA) and a thermoresponsive block, which above its lower critical solution temperature (LCST) becomes hydrophobic block. When temperatures were higher than the LCST (ranging from 25 to 40°C), the polymer-bound proline formed micelles promoted the aldol reaction; decreasing the temperature to below the LCST of the polymer, it became fully water-soluble, and allowed to separate the catalyst from the water with insoluble aldol product. It provided recyclability over five runs with yield decreased slightly and selectivity remained high.³² Still in the same year, Suzuki group reported the bounding of (S)-proline moieties on block copolymers (I-29) that consisted of thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) and PEG-grafted polyacrylate blocks. The copolymer dissolved in water at temperatures below LCST (25 °C), and they formed micelles at temperatures above the LCST (50 °C). The conducted Aldol reactions between 4-Nitrobenzaldehyde and cyclohexanone in aqueous solution obtained products in a high yield with high diastereo- and enantioselectivity (96% ee). The catalyst could be reused up to 3 times.³³ In 2014, Fan and Hua group showed the preparation of **I-30** by copolymerization between Nisopropylacrylamide (NIPAM) and a hydroxyproline derivative. This polymeric material was applied to the catalysis of aldol reactions in aqueous media, with excellent activity and stereoselectivity. For its recycling, the polymer could be recovered by adding diethyl ether or brine as precipitating agents. This allowed its use in ten consecutive runs without loss of conversion and stereoselectivity. ³⁴ The

³² Zayas, H. A.; Lu, A.; Valade, D.; Amir, F.; Jia, Z.; O'Reilly, R. K.; Monteiro, M. J. ACS Macro Lett. 2013, 2, 327-331.

³³ Suzuki, N.; Inoue, T.; Asada, T.; Akebi, R.; Kobayashi, G.; Rikukawa, M.; Masuyama, Y.; Ogasawara, M.; Takahashi, T.; Thang, S. H. *Chem. Lett.* **2013**, *42*, 1493–1495.

³⁴ Liu, Y.; Tong, Q.; Ge, L.; Zhang, Y.; Hua, L.; Fan, Y. *RSC Adv.* **2014**, *4*, 50412-50416.
same year, the He group reported the preparation of L-proline-grafted mesoporous silica with alternating hydrophobic and hydrophilic blocks (I-31). The aldol product afforded in good results in neat or aqueous media and I-31 could be reused three times.³⁵ In 2015, the Verboom group reported the covalent attachment of L-proline derivatives onto the inner walls of a microreactor via glycidyl methacrylate polymer brushes. Catalyst I-32 in a microreactor afforded good diastereo- and enantioselectivity but low conversions (23%) in the tested aldol reaction.³⁶ In the same year, the Albéniz group in collaboration with our laboratory reported the immobilization of L-proline derivatives onto rationally designed vinyl addition polynorbornene (VA-PNB) resins through click reactions. The resulting recoverable and highly reusable resins **I-33** are very active in the aldol reaction in aqueous media. The results provided a promising strategy for the immobilization of organocatalyst with the combination of modular VA-PNB resins. ³⁷ In the same year, the Wang group reported the bounding of L-proline onto hyperbranched polyethylene (HBPE), which was prepared by copolymerization of ethylene with an acryloyl-derivatized hydroxyproline (I-34). Good yields and stereoselectivities were reported with very good recyclability up to seven runs. ³⁸ In 2016, the Mase group reported the selfassembling gold nanoparticle (GNP)-supported L-proline derivative I-35. Moderate to good selectivities were afforded in the asymmetric aldol reaction, and the catalyst could be reused for five cycles without significant loss of weight and efficiency.³⁹

³⁵ An, Z.; Guo, Y.; Zhao, L.; Li, Z.; He, J. ACS Catal. 2014, 4, 2566-2576.

³⁶ Munirathinam, R.; Leoncini, A.; Huskens, J.; Wormeester, H.; Verboom, W. J. Flow Chem. 2015, 5, 37-42.

³⁷ Sagamanova, I. K.; Sayalero, S.; Martínez-Arranz, S.; Albéniz, A. C. Pericàs, MA.*Catal. Sci. Technol.* **2015**, *5*, 754-764.

³⁸ Wang, S.; Liu, P.; Wang, W. J.; Zhang, Z.; Li, B. G. Catal. Sci. Technol. **2015**, *5*, 3798-3805.

³⁹ Soti, P. L., Yamashita, H., Sato, K., Narumi, T., Toda, M., Watanabe, N.; Marosi, G.; Mase, N. (2016). Tetrahedron 72: 1984–1990.

Immobilized prolines also have been applied in other reactions besides the aldol reactions between cyclic ketones and aldehydes.

Scheme 8. Immobilized prolines for organocatalytic applications

In 2006, our laboratory prepared and tested several resins obtained mainly by means of azide-alkyne Huisgen cycloaddition in the key steps (scheme 8). ^{37, 40, 41, 42, 43} Catalysts (I-36) - (I-40) proved to be very active and selective polymers. Catalyst **36** has been applied in the aldol reaction between several ketones and benzaldehydes in water.⁴⁰ The high hydrophobicity of the resin and the presence of water are key to obtaining high stereoselectivity, whereas yield can be increased by using catalytic amounts of DiMePEG. Resin I-36 was the first immobilized insoluble organocatalyst active in the -aminoxylation of aldehydes and ketones giving a good yield and a high enantioselectivity and higher reaction rates than those reported with L-proline.⁴³ In all the mentioned cases, recycle and reuse of the catalyst was accomplished with no losses in either activity or stereoselectivity.

Finally, **I-36** was also applied to Mannich reactions both in batch and in continuous flow.⁴⁵ In this pioneer example of an organocatalytic, highly enantioselective flow process using an immobilized species, a simple ¼" PTFE tube filled with **I-36** was used as the flow reactor, and a mixture of both reagents was pumped through it at 0.2 mL min⁻¹. Two different examples provided the corresponding *syn*-Mannich products with very good results, replicating the batch process but with higher productivities. Notably, residence time for complete conversion in these experiments was only 6 minutes (Figure 3).

⁴⁰ Font, D.; Jimeno, C.; Pericàs, M. A. Org. Lett. 2006, 8, 4653-4656.

⁴¹ Font, D.; Bastero, A.; Sayalero, S.; Jimeno, C.; Pericàs, M. A. Org. Lett. 2007, 9, 1943-1946.

⁴² Font, D.; Sayalero, S.; Bastero, A.; Jimeno, C.; Pericàs, M. A. Org. Lett. **2008**, *10*, 337-340.

⁴³ Alza, E.; Rodríguez - Escrich, C.; Sayalero, S.; Bastero, A.; Pericàs, M. A. *Chem. Eur. J.* **2009**, *15*, 10167-10172.

Figure 3. Polystyrene-supported proline for the syn-selective Mannich reaction in flow

For supported catalysts, the longer the continuous flow system runs, the lower the overall catalyst loading and the higher the total TON. The robustness of the supported catalyst is thus fundamental to prolong operation time and increase the total TON. Encouraged by the behavior of **I-36** in the alfa-aminoxylation of aldehydes with nitrosobenzene, we decided to inplement **I-36** to a packed-bed reactor. It turned out to be very active and in 5 min residence time the desired products were obtained in good conversions (Figure 4).⁴⁴ However, the practicality of this process was hampered by a side reaction of the catalyst that led to deactivation of the resin.

Figure 4. Immobilized proline for the flow aminoxylation of aldehydes

⁴⁴ Cambeiro, X. C.; Martín-Rapún, R.; Miranda, P. O.; Sayalero, S.; Alza, E.; Llanes, P.; Pericàs, M. A. *Beilstein J. Org. Chem.* **2011**, *7*, 1486-1493.

In 2007, the Gruttadauria group reported the immobilization of 4-hydroxy-L-proline on a mercaptomethyl-functionalized resin.⁴⁵ These authors showed that the proline resin could be applied in direct asymmetric aldol reactions in water as the sole solvent without any additive with good-to-excellent conversions and parallel stereoselectivities (Scheme 9). The proline resin **I-46** can be reused for five cycles without loses in reactivity or selectivity. As mentioned in this paper, the formation of a hydrophobic core in the inner surface of the resin accompany with the hydrophilic proline moiety lies at the resin/water interface, this microenvironment both promoted the aldol reaction and increased the stereoselectivity.

Scheme 9. Immobilization of 4-hydroxy-L-proline on a mercaptomethyl-functionalized PS resin

In 2016, our group reported the preparation of a PS-immobilized triazolylproline by a bottom-up approach involving co-polymerization with full regiocontrol. The resulting supported resin swelled in water and was applied to the enantioselective cross-aldol reaction and self-aldol reaction of aldehydes under neat conditions with excellent yields and stereoselectivities. (Scheme 10) ⁴⁶

⁴⁵ a) Giacalone, F.; Gruttadauria, M.; Mossuto Marculescu, A.; Noto R. *Tetrahedron Lett.* 2007, *48*, 255–259;
b) Gruttadauria, M.; Giacalone, F.; Mossuto Marculescu, A.; Lo Meo, P.; Riela, S.; Noto, R. *Eur. J. Org. Chem.* 2007, 4688–4698.

⁴⁶ Llanes, P.; Sayalero, S.; Rodríguez-Escrich, C.; Pericàs, M. A. *Green Chem.* **2016**, *18*, 3507-3512.

Scheme 10. PS immobilized triazolylproline by a bottom-up approach

In summary, several strategies have been developed to immobilize proline derivatives. A significant feature of immobilized proline catalysts is that some of them tend to swell in water. Obviously, the presence of proline units can compensate for the low affinity of polystyrene resins for polar proton transfer solvents.

1.5.2 Polymer-supported prolinamides

Recently, several chiral prolinamides have been found to be active and highly stereoselective catalysts for the direct aldol reaction both in organic solvents ⁴⁷ and in aqueous conditions. ⁴⁸ In 2009, the Gruttadauria group developed a highly recoverable and regenerable supported organocatalyst **I-50** for the aldol reaction between ketones and substituted benzaldehydes afforded high stereoselectivities at

⁴⁷ a) Raj, M.; Maya, V.; Ginotra, S. K.; Singh, V. K. *Org. Lett.* 2006, *8*, 4097-4099; b) Tang, Z.; Jiang, F.; Yu, L. T.; Cui, X.; Gong, L. Z.; Mi, A. Q.; Jiang, Y. Z.; Wu, Y. D. *J. Am. Chem. Soc.* 2003, *125*, 5262-5263; c) Tang, Z.; Yang, Z. H.; Chen, X. H.; Cun, L. F.; Mi, A. Q.; Jiang, Y. Z.; Gong, L. Z. *J. Am. Chem. Soc.* 2005, *127*, 9285-9289.

⁴⁸ a) Raj, M.; Maya, V.; Ginotra, S. K.; Singh, V. K. *Org. Lett.* **2006**, *8*, 4097-4099; b) Tang, Z.; Jiang, F.; Yu,
L. T.; Cui, X.; Gong, L. Z.; Mi, A. Q.; Jiang, Y. Z.; Wu, Y. D. *J. Am. Chem. Soc.* **2003**, *125*, 5262-5263; c) Tang,
Z.; Yang, Z. H.; Chen, X. H.; Cun, L. F.; Mi, A. Q.; Jiang, Y. Z.; Gong, L. Z. *J. Am. Chem. Soc.* **2005**, *127*, 9285-9289.

room temperature, while prolinamide **I-51** was used at -5 or -10 °C. ⁴⁹ (Scheme 11). When the resins were recovered by filtration and reused in the next cycle, the catalysts were deactivated. This happened might because the excess of ketone reacted with the catalyst and formed the corresponding imidazolidinone. Therefore, when the recovered polymers were treated with formic acid, the catalysts' activity could be regenerated.

Scheme 11. Polymer-supported prolinamides for the direct aldol reaction

In 2013, the Pedrosa group reported a prolylsulfonamide derived from ethylene diamine and its supported counterpart **I-53**. They showed to excellent yields and enantioselectivities in the Robinson annulation of cyclic and acyclic triketones under solvent free conditions. (Scheme 12).⁵⁰

Scheme 12. Prolylsulfonamide derived from ethylene diamine and its supported counterpart

In 2013, Gröger and co-workers developed the combination of an asymmetric organocatalytic reaction with a biotransformation toward a "one-pot like" process for

⁴⁹ Gruttadauria, M.; Giacalone, F.; Mossuto Marculescu, A.; Salvo, A. M. P.; Noto, R. *ARKIVOC* **2009**, 8, 5-15.

⁵⁰ Pedrosa, R.; Andrés, J. M.; Manzano, R.; Pérez-López, C. *Tetrahedron Lett.* **2013**, *54*, 3101-3104.

the preparation of 1,3-diols based on immobilized organo- and biocatalysts. A (*S*)proline functionalized chiral amide alcohol was bounded to a polymer gave catalyst **I-55**. It was used for the asymmetric aldol reaction, and a subsequent reduction of the aldol adduct catalyzed by an alcohol dehydrogenase (ADH) afforded the *anti*-1,3-diol via the combined organocatalytic/biocatalytic approach with high yield and excellent diastereo- and enantioselectivity (d.r. >35:1, >99% ee). Moreover, **I-55** showed excellent reusability.⁵¹ (Scheme 13).

Scheme 13. "One-pot like" process for 1,3-diols based on immobilized organo- and biocatalysts

In the same year, the same group conducted a detailed study on the impact of the non-immobilized and immobilized prolinamide catalyst loading on reactivity and selectivity for a direct aldol reaction in aqueous medium. The use of 5.0 mol% non-immobilized proline amide catalysts **I-57** for 24 hours led to a significant impact of the retro-aldol reaction and a thermodynamic control of the reaction. In contrast, excellent enantioselectivities with high conversions were achieved within this reaction time at an amount of 0.5 mol% catalyst **I-57**. On the other hand, the immobilized proline amide **I-58** led to a kinetically controlled reaction within a broad range (0.5 to 10 mol%) of catalyst amount because of a lower reactivity of the

⁵¹ Heidlindemann, M.; Rulli, G.; Berkessel, A.; Hummel, W.; Gröger, H. ACS Catal. **2014**, *4*, 1099-1103.

heterogeneous catalyst. Catalyst **I-58** also showed a good recyclability in five reaction cycles.⁵² (Scheme 14).

Scheme 14. Polymer-supported prolinamides for the direct aldol reaction

In 2014, the Cui group designed a strategy for the immobilization of (S)-prolinamide. The *N*-(p-hydroxyhenyl) (*S*)-prolinamide **I-60** was enzymatically polymerized using horseradish peroxidase (HRP) to give the polymer immobilized prolinamide **I-61**. **I-61** was tested as an organocatalyst for direct asymmetric aldol reaction between aromatic aldehydes and cyclohexanone to give the aldol addition products in good yields (up to 91%) and with high diastereoselectivity (up to 6:94 dr), and medium enantioselectivity (up to 87% ee). In addition, **I-61** can be recovered and reused for at least 5 cycles without significant loss in reactivity and selectivity.⁵³ (Scheme 15).

Scheme 15. Polymer immobilized prolinamide prepared by enzymatically HRP

⁵² Rulli, G.; Fredriksen, K. A.; Duangdee, N.; Bonge-Hansen, T.; Berkessel, A.; Gröger, H. *Synthesis* **2013**, *45*, 2512-2519.

⁵³ Qu, C.; Zhao, W.; Zhang, L.; Cui, Y. Chirality 2014, 26, 209-213.

In 2015, the Yilmaz group reported the supporting of a L-proline-derived Calix[4]arene chiral organocatalyst onto well-defined (15 ± 3 nm) magnetic Fe₃O₄ nanoparticles (**I-62**). This catalyst showed high catalytic activity (up to 95%), enantioselectivity (up to 94%) and diastereoselectivity (up to 97:3) for the asymmetric aldol reaction of aromatic aldehydes and cyclohexanone in water. Magnetically recoverable **I-62** could be easily be separated from the reaction crude by application of an external magnetic field and reused for several times without any significant loss of activity. (Scheme 16)⁵⁴

Scheme 16. Calix-Pro-MN and application in asymmetric aldol reaction

⁵⁴ Akceylan, E.; Uyanik, A.; Eymur, S.; Sahin, O.; Yilmaz, M. Appl. Catal. A-Gen. 2015, 499, 205-212.

Scheme 17. Prolinamide derived ionic liquid supported organocatalyst

In 2015, the Zlotin group reported a recyclable prolinamide-derived organocatalyst supported onto an ionic liquid bearing and bearing an auxiliary Brønsted acidic group (**I-63**). This species catalyzed asymmetric mono- and bis-aldol reactions of aromatic aldehydes with cyclic or linear ketones in aqueous medium with excellent catalytic performance (up to 96:4 dr and 81–99 % ee) over ten cycles. (Scheme 17)⁵⁵

1.5.3 Polymer-immobilized pyrrolidine derivatives

Chiral pyrrolidines are one of the most efficient motifs as a chiral organocatalyst. Oriyama and coworkers reported on the utility of chiral pyrrolidine-based ligands as catalysts for kinetic resolution.⁵⁶ In 2001, the Janda group reported the preparation of polymer-supported proline-based diamine catalyst I-65 for the kinetic resolution of racemic mixtures of secondary alcohols. It can be recovered and reused several times without loss of reactivity and selectivity.⁵⁷ A series of racemic secondary I-65. 2-Phenylcyclohexanol alcohols were resolved using and 2-Phenylcyclopentanol were resolved with excellent selectivity (S = 134 and 27, respectively), whereas some fused ring cycloalkanols and open-chain alcohols such as 1-naphthylethanol and 1-phenylethanol resulted in little or no selective resolution. (Scheme 18)

⁵⁵ Kucherenko, A. S.; Gerasimchuk, V. V.; Lisnyak, V. G.; Nelyubina, Y. V.; Zlotin, S. G. *Eur. J. Org. Chem.* **2015**, 5649-5654.

⁵⁶ Oriyama, T.; Hori, Y.; Imai, K.; Sasaki, R. Tetrahedron Lett. 1996, 37, 8543–8546. Sano, T.; Imai, K.; Ohashi, K.; Oriyama, T. *Chem. Lett.* **1999**, 265-266.

⁵⁷ Clapham, B.; Cho, C. W.; Janda, K. D. J. Org. Chem. **2001**, 66, 868-873.

Scheme 18. Immobilized pyrrolidine for kinetic resolution of secondary alcohols

In 2007, our laboratory reported the preparation of PS-immobilized chiral pyrrolidines bearing 2-triazolylmethyl substituents by the copper-mediated Azide-alkyne Huisgen cycloaddition between the pyrrolidine derivative with azide and alkyne bounded PS resins. ⁵⁸ It represented the first insoluble mediator of the reaction and achieved the performance of the soluble counterpart in the same process. Catalyst I-68 was applied to the Michael addition of ketones to -nitrostyrenes in good yields with excellent selectivity. It was also tested in the Michael addition of aldehydes to nitrostyrenes. Quantitative conversions and high diastereoselectivities were achieved for linear aldehydes with moderate enantioselectivities (Scheme 19). In 2008, Wang and coworkers reported a similar polymer-immobilized chiral pyrrolidine bearing a triazole block. ⁵⁹ It was also used in the Michael reaction of cyclohexanone to nitroolefins with high yields (up to >99%), excellent diastereoselectivities (up to >99:1 dr) and enantioselectivities (up to >99% ee) in the presence of TFA. The supported catalyst could be recovered and recycled by a simple filtration and reused for more than 10 cycles without significant loss of efficiency.

⁵⁸ Alza, E.; Cambeiro, X. C.; Jimeno, C.; Pericàs, M. A. Org. Lett. 2007, 9, 3717–3720.

⁵⁹ Miao, T.; Wang, L. Tetrahedron Lett. 2008, 49, 2173–2176.

Scheme 19. Immobilized pyrrolidine for Michael addition of aldehydes to nitrostyrene

In 2008, the Zhang group reported a new type of polymer - immobilized pyrrolidine based chiral ionic liquid, synthesized from Merrifield resin with N-Boc–protected chiral pyrrolidine substituted by the imidazole moiety. ⁶⁰ Upon deprotection, the immobilized catalyst efficiently mediated the Michael addition reaction of ketones and aldehydes with -nitrostyrenes in high yields, excellent enantioselectivies, and diastereoselectivities in neat conditions. The catalyst **I-71** could be reused up to 8 times without significant loss of catalytic activity and stereoselectivity (Scheme 20).

Scheme 20. Immobilized pyrrolidine-based chiral ionic liquid in Michael addition reaction

In 2015, our group in collaboration with the Gilmour laboratory reported a polymersupported fluorinated pyrrolidine derivative **I-72** and applied it to the enantioselective Michael addition of aldehydes to nitroalkenes. Catalyst **I-72** exhibited high activity and displayed excellent selectivities with a wide variety of substrates. The implementation of a continuous flow process based on **I-72** allowed either the multigram synthesis of a single Michael adduct over a 13 h period or the sequential

⁶⁰ Li, P.; Wang, L.; Wang, M.; Zhang, Y. Eur. J. Org. Chem. **2008**, 1157–1160.

generation of a library of enantiopure Michael adducts from different combinations of substrates (13 examples, 16 runs, 18.5 h total operation). A customized in-line aqueous workup, followed by liquid–liquid separation in flow, allowed for product isolation without the need of chromatography or other separation techniques (figure 5).⁶¹

Figure 5. A co-polymerized version of the Gilmour catalyst for the continuous Michael addition of aldehydes to nitroalkenes.

In 2011, our laboratory developed pyrrolidine derivative **I-75** and its solid-supported version **I-76** and applied them to the *anti*-selective Mannich addition of aldehydes and ketones to imines. ⁶² **I-76** exhibited very high activity and excellent stereoselectivity whith low catalyst loadings and short reaction times. The polymeric atalyst **I-76** was later used for the successful implementation of a continuous flow process allowing both the sequential preparation of small libraries of enantiopure

⁶¹ Sagamanova, I.; Rodríguez-Escrich, C.; Molnár, I. G.; Sayalero, S.; Gilmour, R.; Pericàs, M. A. ACS Catal. **2015**, *5*, 6241-6248.

⁶² Martín - Rapún, R.; Fan, X.; Sayalero, S.; Bahramnejad, M.; Cuevas, F.; Pericàs, M. A. *Chem. Eur. J.* 2011, 17, 8780-8783.

anti-Mannich adducts and for the preparation of single adducts at the 0.05–0.1 mol scale with close to 300 of TONs (Figure 6).⁶³

Figure 6. anti-Selective Mannich reaction in flow promoted by a PS-supported pyrrolidine derivative

Scheme 21. Immobilized pyrrolidine-based swellable pearl-like copolymer in Michael addition

In 2016, the Drabina group reported the preparation by copolymerization of a swellable, pearl-like (20–600 μ m diameter), PS-supported benzoylthioureapyrrolidine organocatalyst **I-78**, and its use as a recyclable mediator for the Michael addition of ketones to functionalized β -nitrostyrenes with quantitatively yields and up to 98% ee (scheme 21).⁶⁴ Interestingly, **I-78** retained most of its activity and enantioselectivity after five consecutive uses.

1.5.4 Immobilized primary amino acids

⁶³ Martín-Rapún, R.; Sayalero, S.; Pericàs, M. A. Green Chem. 2013, 15, 3295-3301.

⁶⁴ Androvič, L.; Drabina, P.; Svobodová, M.; Sedlák, M. Tetrahedron: Asymmetry 2016, 27, 782-787.

In addition to proline and its derivatives, primary amino acids chiral organocatalysts have been immobilized onto polymers also.

Scheme 22. Immobilized primary amino acids and application

In 2014, our laboratory reported the immobilization of a series of primary amino acidderived PS-supported organocatalysts through alkyne-azide cycloaddition reactions. The resulting polymers (**I-79**) - (**I-84**) were tested as organocatalysts in *anti*-selective Mannich reactions. The immobilized threonine derivative **I-84** performed best reactivity and selectivity in three-component Mannich reactions to provide *anti*- β amino- α -hydroxycarbonyl compounds (up to 95% ee). A family of five different enantioenriched *anti*-Mannich adducts has been prepared under the sequential continuous flow process by passing different combinations of anilines and aromatic aldehydes through the same catalyst sample.⁶⁵ Those immobilized catalysts also were tested in asymmetric aldol reactions. The easily recyclable polymeric catalyst **I-84** performed highly reactive and stereoselective (up to 99% ee) in the aldol reaction of both cyclic and acyclic ketone donors with aromatic aldehydes in aqueous media.⁶⁶ (Scheme 22)

1.5.5 Immobilized peptide catalysts.

Peptides are also promising candidates for chiral organocatalysts.⁶⁷ Some of the peptides developed with this purpose showed efficient catalytic activity in asymmetric reactions, although sometimes they have problems to separate and recover. To overcome these problems, the immobilization of peptides have recently been developed and used as catalysts for asymmetric synthesis.

Scheme 23. Immobilized peptide catalysts Pro-D-Pro-Aib-Trp-Trp combined with polyleucine

In 2010, Kudo and Akagawa designed the peptide catalyst **I-88**, which contained a terminal five-residue Pro-D-Pro-Aib-Trp-Trp and polyleucine, and was bounded to a polymer support. **I-88** performed as an effective catalyst in the asymmetric

⁶⁵ Ayats, C.; Henseler, A. H.; Dibello, E.; Pericàs, M. A. ACS Catal. **2014**, *4*, 3027-3033.

⁶⁶ Henseler, A. H.; Ayats, C.; Pericas, M. A. Adv. Synth. Catal. **2014**, 356, 1795-1802.

⁶⁷ Kudo, K.; Akagawa, K. in *Polymeric Chiral Catalyst Design and Chiral Polymer Synthesis*, (Ed.: Itsuno, S.), Wiley, New Jersey, **2011**, pp. 91-123.

asymmetric *R*-oxyamination of aldehydes in aqueous media (Scheme 23). The structure and chirality of the hydrophobic segment play a decisive role in its reactivity and enantioselectivity.⁶⁸

In 2013, the same group developed a similar immobilized peptide catalyst **I-91** and applied it to the asymmetric reduction of unsaturated aldehydes. The peptide polymer **I-91** performed a highly regio- and enantioselectivity in the reduction of α , β , γ , δ -unsaturated aldehyde (Scheme 24).⁶⁹

Scheme 24. Immobilized peptide catalysts for asymmetric reduction of unsaturated aldehydes

Scheme 25. Immobilized peptide catalysts for aldol reaction

⁶⁸ Akagawa, K.; Fujiwara, T.; Sakamoto, S.; Kudo, K. Org. Lett. 2010, 12, 1804-1807.

⁶⁹ Akagawa, K.; Sen, J.; Kudo, K. Angew. Chem. Int. Ed, 2013, 52, 11585-11588.

The most reactive peptidic organocatalysts developed to date for the asymmetric $aldol^{70}$ reaction and Michael addition⁷¹ were reported by the Wennemers group in 2008. Based on these works, in 2012, the Fülöp group developed a heterogeneous catalytic continuous-flow process using an immobilized Wennemers' tripeptide as heterogeneous organocatalyst (**I-96**) for asymmetric aldol reactions. The peptide was synthetized by solid-phase peptide synthesis and immobilized in the same step. The yields and stereoselectivities of β -hydroxyketone products were obtained both high and comparable to the best homogeneous catalytic batch results. (Scheme 25).⁷²

In 2015, the Chen group reported the synthesis of supported organocatalysts **I-97** by immobilizing valine-derived formamide onto the surface of Fe₃O₄ magnetic nanoparticles. The immobilizied catalyst **I-97** performed high reactivity and enantioselectivity in the asymmetric reduction of imines with trichlorosilane at room temperature with toluene as solvent (Scheme 26). **I-97** can be recovered with the help of an external magnet, and can be reused five cycles without a significant loss of reactivity and selectivity.⁷³

Scheme 26. Immobilized peptide catalysts for asymmetric reduction of imines

⁷⁰ Krattiger, P.; Kovasy, R.; Revell, J. D.; Ivan, S.; Wennemers, H. Org. Lett. **2005**, *7*, 1101-1103.

 ⁷¹ a) Wiesner, M.; Revell, J. D.; Wennemers, H. *Angew. Chem., Int. Ed.* 2008, *47*, 1871-1874; b) Wiesner, M.;
 Revel, I. J. D.; Tonazzi, S.; Wennemers, H. *J. Am. Chem. Soc.* 2008, *130*, 5610-5611.

⁷² Ötvös, S. B.; Mándity, I. M.; Fülöp, F. J. Catal. 2012, 295, 179-185.

⁷³ Ge, X.; Qian, C.; Ye, X.; Chen, X. *RSC Adv.* **2015**, *5*, 65402-65407.

1.5.6 Immobilized chiral imidazolidinone (MacMillan) catalysts.

The series of chiral imidazolidinones, known as MacMillan catalysts, is one of the most powerful and applicable designed organocatalysts. The iminium salt generated as an intermediate from these species can be widely applied to mediate asymmetric reactions.⁷⁴ Like for the different conventional effective chiral catalysts that have been reported, several research groups have been working on the immobilization of chiral imidazolidinone catalysts both for immobilization strategy and materials.

The first example was reported by Benaglia and Cozzi and coworkers in 2002. A tyrosine-derived imidazolidinone was immobilized onto a modified poly(ethylene glycol) and converted *in situ* into a soluble polymer-supported catalyst **(I-100)**. The polymeric catalyst **I-100** was applied for the enantioselective Diels-Alder cycloaddition of acrolein with 1,3-cyclohexadiene, moderate yield (67%) and high enantioselectivity (92% ee) of products were obtained. Some loss of chemical efficiency and slight erosion of enantioselectivity was observed during the recycling of catalysts.⁷⁵ The polymeric catalyst **I-100** was also used in some 1,3-dipolar cycloadditions involving α , β - unsaturated aldehydes and nitrones. The immobilized catalyst showed similar enantioselectivity with the unsupported MacMillan catalysts, but a lower yield of products are obtained.⁷⁶ However, the polymeric catalyst can't be effective reuse in these two studied reactions, due to the chemical instability under these reaction conditions. (Scheme 27)

⁷⁴ a) Lelais, G.; MacMillan, D. W. D. In New Frontiers in Asymmetric Catalysis (Mikami, K.; Lautens, M., Eds.), Wiley, New York, 2007, pp. 319–331; b) Lelais, G.; MacMillan, D. W. C. *Aldrichim. Acta* 2006, *39*, 79-87; b) MacMillan, D. W. C. *Nature* 2008, *455*, 304-308; c) Erkkila, A.; Majander, I.; Pihko, P. M. *Chem. Rev.* 2007, *107*, 5416–5470; d) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. *Chem. Rev.* 2007, *107*, 5471-5569.

⁷⁵ Benaglia, M.; Celentano, G.; Cinquini, M.; Puglisi, A.; Cozzi, F. Adv. Synth. Catal. 2002, 344, 149-152.

⁷⁶ Puglisi, A.; Benaglia, M.; Cinquini, M.; Cozzi, F.; Celentano, G. Eur. J. Org. Chem. 2004, 567-573.

Scheme 27. Immobilized chiral MacMillan's imidazolidinone for Diels-Alder and 1,3 - dipolar cycloadditions

In the same year, the Pihko group used JandaJel[™] and silica as supports, and immobilized the catalyst using the *N*-position of the amide moiety, which is not directly involved in the catalytic event. The JandaJel[™] supported polymer **I-106** performed significantly higher enantioselectivity than the silica-supported one in the Diels–Alder reaction of cyclopentadiene and cinnamaldehyde, and the adducts were obtained in 70% yield with 99% ee (endo) and 99% ee (exo). Furthermore, the catalytic activity can be easily adjusted by changing the support medium; it can be easily recovered by filtration and directly reused in the next cycle (Scheme 28).⁷⁷

⁷⁷ Selkälä, S. A.; Tois, J.; Pihko, P. M.; Koskinen, A. M. P. Adv. Synth. Catal. 2002, 344, 941-945.

Scheme 28. Immobilized chiral imidazolidinone for Diels-Alder cycloaddition

In 2006, the Ying group reported the immobilization of a chiral imidazolidinone onto siliceous meso-cellular foams (MCF) and polymer-coated MCF, and the resulting materials (**I-109**) were used for asymmetric Friedel-Crafts alkylation and Diels-Alder reaction. High activity and excellent recyclability were achieved with the polymer-coated MCF immobilized catalyst (scheme 29).⁷⁸

Scheme 29. Immobilized chiral imidazolidinone for Friedel-Crafts alkylation and Diels-Alder reaction

The chiral imidazolidinone sulfonate salt was an effective catalyst for the Diels–Alder reaction of cyclopentadiene and cinnamaldehyde. In 2009, the Itsuno group reported the preparative of the polymer-supported organocatalyst imidazolidinone sulfonate salt **I-114** by ion exchange reaction of MacMillan iminium catalyst with PS-supported sulfonic acids (Scheme 30). The immobilized recyclable catalyst **I-114** performed good enantioselectivity and effectively in the asymmetric Diels–Alder reaction of 1,3-cyclopentadiene and *trans*-cinnamaldehyde in CH₃OH/H₂O.⁷⁹ Later in 2012, the same group reported the synthesis a polymer **I-117** with chiral imidazolidinone

⁷⁸ Zhang, Y.; Zhao, L.; Lee, S. S.; Ying, J. Y. Adv. Synth. Catal. **2006**, 348, 2027-2032.

⁷⁹ Haraguchi, N.; Takemura, Y.; Itsuno, S. *Tetrahedron Lett.* **2010**, *51*, 1205-1208.

incorporated into the main-chain by reacting chiral imidazolidinone dimers with naphthalene 2,6-disulfonic acid via ionic bonding. Polymer **I-117** were tested in the Diels–Alder reactions and afforded the chiral adducts with good enantioselectivity.⁸⁰

Scheme 30. Supporting chiral imidazolidinone by ion exchange reaction

Scheme 31. Supporting chiral imidazolidinone onto magnetic nanoparticles

In 2012, Our laboratory reported the bounding of a chemically modified, first generation MacMillan imidazolidinone onto Fe₃O₄ (5.3 ± 1.4 nm) magnetic nanoparticles (**I-118**) and 1% DVB Merrifield resin (**I-119**) via click reactions. Both of the catalysts were used in the asymmetric Friedel-Crafts alkylation of N-substituted pyrroles with α , β -unsaturated aldehydes. The PS-supported catalyst (**I-119**) showed

⁸⁰ Haraguchi, N.; Kiyono, H.; Takemura ,Y.; Itsuno, S. Chem. Commun. 2012, 48, 4011-4013.

higher catalytic activity and enantioselectivity, while the MNP-supported one (**I-118**) showed higher recyclability. (Scheme 31). ⁸¹

Radical co-polymerization of DVB with a properly modified chiral imidazolidinone inside a stainless-steel column with dodecanol and toluene as porogens afforded a MacMillan-type chiral organocatalyst immobilized monolith (**I-122**) (Scheme 32). It was implemented into continuous flow process for the cycloadditions of cyclopentadiene and α , β -unsaturated aldehydes, the chiral adducts were obtained with good enantioselectivities (90% ee at 25 °C) and high productivities (higher than 330). The same catalytic reactor was also used for three different stereoselective transformations (Diels-Alder, 1,3-dipolar nitrone-olefin cycloaddition, and Friedel-Crafts alkylation) in a sequential manner; up to 99% yield with 93% ee and 71% yield with 90% ee at 25 °C were obtained in the case of the former two reactions, respectively. In addition to simplifying product recovery, the monolithic reactor can continuously work for more than 8 days.⁸²

Scheme 32. Supporting chiral imidazolidinone through radical co-polymerization

In 2016, our laboratory reported two supported versions of the second-generation MacMillan imidazolidinone. This organocatalyst was immobilized on 1% DVB Merrifield resin (I-123) and Fe₃O₄ magnetic nanoparticles by the copper-catalyzed

⁸¹ Riente, P.; Yadav, J.; Pericàs, M. A. Org. Lett. 2012, 14, 3668-3671.

⁸² Chiroli, V.; Benaglia, M.; Puglisi, A.; Porta, Rv Jumde, R. P.; Mandoli, A. *Green Chem.* **2014**, *16*, 2798-2806.

"click reaction". Both of the polymeric catalysts were applied to the asymmetric Friedel-Crafts alkylation of indoles with α ,β-unsaturated aldehydes. While both polymeric catalysts could be easily recovered and exhibited good recyclability, the PS-based catalyst **I-123** showed higher stability and provided better stereoselectivities. (Scheme 32).⁸³

Scheme 32. Supported chiral imidazolidinone for asymmetric Friedel-Crafts alkylation of indoles

Scheme 33. PS-Supported imidazolidinone **I-126** for the catalytic reduction of imines with trichlorosilane

In 2017, the Puglisi group reported the solid supported chiral imidazolidinone organocatalysts **I-126** for the catalytic asymmetric reduction of imines with trichlorosilane. PS showed better effect as a support than silica in this case in terms of both chemical and stereochemical efficiency. Even at 1 mol% loading **I-126** showed a remarkable activity and stereocontrol ability, promoting the reduction with excellent enantioselectivities (up to 98% ee and in most cases ranging between 90– 95% ee). Functional polymer **I-126** was implemented into continuous flow process;

⁸³ Ranjbar, S.; Riente, P.; Rodríguez-Escrich, C.; Yadav, J.; Ramineni, K.; Pericàs, M. A. *Org. Lett.* **2016**, *18*, 1602-1605.

chiral amines were obtained in excellent yields and enantioselectivities (Scheme 33).⁸⁴

1.5.7 Immobilized Cinchona alkaloids

Cinchona alkaloids are isolated from the bark of several species of cinchona trees. Readily available and inexpensive cinchona alkaloids, such as quinine, quinidine, cinchonine and cinchonidine, have been widely applied in some catalytic asymmetric transformations.⁸⁵ Some active sites in cinchona alkaloids are suitable for the immobilization onto a polymer: the vinyl group at C-3, hydroxyl group at C'-6 of the quinoline moiety after demethylation, and hydroxyl group at C-9 are readily available for further transformation and for immobilization. Supporting through the nitrogen of the amino functionalities is also possible. The resulting quaternary ammonium salt has been used as a phase-transfer catalyst (PTC).

In 2001, the Lectka group reported the use of PS-immobilized quinine that constitute the packing of a series of "reaction columns" for catalytic asymmetric reaction process. This process was applied to the [2+2] Staudinger reactions of ketenes and imines to yield β -lactams with excellent enantio- and diastereoselectivity. The polymeric catalyst can be reused up to 60 cycles without significant loss of catalytic efficiency (scheme 34).⁸⁶

⁸⁴ Porta, R.; Benaglia, M.; Annunziata, R.; Puglisi, A.; Celentano, G. Adv. Synth. Catal. 2017, 359, 2375-2382.

⁸⁵ a) Cinchona alkaloids in synthesis and catalysis: ligands, immobilization and organocatalysis, (Ed.: Song, C. E.) John Wiley & Sons. 2009; b) Tian, S. K.; Chen, Y.; Hang, J.; Tang, L.; McDaid, P.; Deng, L. Acc. Chem. Res. 2004, 37, 621-631; c) Marcelli, T.; Hiemstra, H. Synthesis 2010, 1229-1279; d) Kacprzak, K.; Gawroński, J. Synthesis 2001, 961-998.

⁸⁶ Hafez, A. M.; Taggi, A. E.; Dudding, T.; Letcka, T. J. Am. Chem. Soc. 2001, 123, 10853-10859.

Scheme 34. PS-immobilized quinine for [2+2] Staudinger reaction

In 2004, the Cahard group reported the synthesis of linear PS-immobilized cinchona alkaloids **I-131** and applied them to enantioselective α -fluorination of carbonyl compounds. The the PS-bound cinchona alkaloid soluble polymers **I-131** can be easily recovered by solid/liquid separation and exhibite an efficient recycling without any loss of enantioselectivity (Scheme 35). ⁸⁷

Scheme 35. PS-immobilized quinine for enantioselective α -fluorination

In 2005, Lectka and coworkers reported a flow system based on Wang resinimmobilized quinine packed in a column (**I-134**), that promoted the asymmetric α chlorination of acid chlorides to afford chiral α -chloroesters with excellent enantioselectivities up to 94% ee and in good yields (Scheme 36).⁸⁸

⁸⁷ Thierry, T.; Audouard, C.; Plaquevent, J. C.; Cahard, D. Synlett 2004, 2004, 856-860.

⁸⁸ Bernstein, D.; France, S.; Wolfer, J.; Lectka, T. Tetrahedron: Asymmetry 2005, 16, 3481-3483.

Scheme 36. PS-immobilized quinine for asymmetric α-chlorination of acid chlorides

Cinchona-based bifunctional thiourea ⁸⁹ and sulfonamide ⁹⁰ organocatalysts are also highly effective in a variety of asymmetric reactions. In 2009, Song and coworkers reported a polymer-supported bifunctional Cinchona-based sulfonamide organocatalyst **I-140**. It showed excellent activity and enantioselectivity (up to 97% ee) in the methanolytic desymmetrization of meso-cyclic anhydrides. Moreover, the polymeric catalyst showed long-term stability under catalytic conditions, which made it reusable without decrease in TOF or in enantioselectivity (Scheme 37).⁹¹

⁸⁹ Connon, S. J. Chem. Comm. 2008, 2499-2510.

⁹⁰ Oh, S. H.; Rho, H. S.; Lee, J. W.; Lee, J. E.; Youk, S. H.; Chin, J.; Song, C. E. *Angew. Chem. Int. Ed.* **2008**, 47, 7872-7875.

⁹¹ Youk, S. H.; Oh, S. H.; Rho, H. S.; Lee, J. E.; Lee, J. W.; Song, C. E. Chem. Comm. 2009, 2220-2222.

Scheme 37. PS-immobilized Cinchona alkaloid **I-140** for the desymmetrization of *meso*-cyclic anhydrides

In 2012, the Hansen group developed the immobilization of Cinchona alkaloids by copolymerization of polyfunctional thiols and alkenes together with unmodified Cinchona precursors. In this way, bead polymerization and catalyst immobilization were combined in a single step. The supported Cinchona derivatives (I-143) – (I-145) have been successfully applied in several asymmetric transformations, but catalyst recycling ability is relatively poor so far (Figure 7).⁹²

Figure 7. PS-immobilized Cinchona alkaloids (I-143) – (I-145) prepared by copolymerization of polyfunctional thiols and alkenes together with unmodified Cinchona precursors

In addition to synthetic polymer supports, biopolymers such as chitosan have also been applied for the immobilization of cinchona alkaloids. In 2012, the Cui group reported the use of chitosan-supported cinchona alkaloids (I-149) - (I-150) as catalysts for the asymmetric Michael addition of 1,3-dicarbonyl compounds to maleimides, achieving high yields and high stereoselectivities. The catalyst was recovered by simple filtration and reused several times without a significant loss in activity (Scheme 38).⁹³

⁹² Fredriksen, K. A.; Kristensen, T. E.; Hansen, T. Beilstein J. Org. Chem. 2012, 8, 1126-1133.

⁹³ Qin, Y.; Zhao, W.; Yang, L.; Zhang, X.; Cui, Y. *Chirality* **2012**, *24*, 640-645.

Scheme 38. Chitosan-immobilized cinchona alkaloids derivatives (I-149) - (I-150) for the asymmetric Michael addition

In 2015, our group reported the synthesis of a PS-supported 9-amino(9-deoxy)*epi* quinine derivative **I-151** and used it to catalyse Michael additions of a variety of nucleophiles and enones, affording excellent conversion and enantioselectivity. Catalyst **I-151** was used for the implementation of a single-pass continuous flow process, which could be used for the sequential synthesis of a small library of enantiopure compounds, being operated for 21 hours without significant decrease in conversion and with improved enantioselectivity with respect to batch operation (Figure 8).⁹⁴

Figure 8. PS-Supported Cinchona-derived primary amine for continuous flow Michael additions.

In 2016, the Mandoli group reported the preparation of Merrifield resin-immobilized dimeric quinidine **I-154** by a click reaction of an alkyne-functionalized dimeric quinidine bounding onto azido-functionalized Merrifield resin. Excellent yields and enantioselectivities (89–95% ee) were attained in 100 performed reaction cycles in

⁹⁴ Izquierdo, J.; Ayats, C.; Henseler, A. H.; Pericàs, M. A. Org. Biomol. Chem. 2015, 13, 4204-4209.

the enantioselective α -amination of 2-oxindoles with diethyl azodicarboxylate catalysed with polymeric catalyst **I-154**. Operation time for more than 5300 hours over 8 months, showing excellent stability (Scheme 39).⁹⁵

Scheme 39. Merrifield resin-immobilized dimeric quinidine for the enantioselective *α*-amination of 2oxindoles with diethyl azodicarboxylate

1.5.8 Polymer-immobilized cinchona alkaloid-derived quaternary ammonium salts

One of the most promising applications of cinchona alkaloids in asymmetric reactions are probably the application of the derived quaternary ammonium salts to phase-transfer catalysis (PTC). As already discussed, the cinchona alkaloid can be immobilized onto a polymer mainly through the nitrogen (R¹), the hydroxyl group of C-9 position (R²), the vinyl group of C-3, and 6'-position (4-position of quinolone moiety). The resulting polymer-supported cinchona alkaloid quaternary ammonium salts can be applied to a variety of organic reactions, including alkylation of amino acids imine,⁹⁶ hydrocyanation of imines,⁹⁷ the aldol reaction,⁹⁸ and epoxidation,⁹⁹ as representative examples.

⁹⁵ Jumde, R.P.; Mandoli, A. ACS Catal. 2016, 6, 4281-4285.

⁹⁶ O'Donnell, M. J.; Bennett, W. D.; Wu, S. J. Am. Chem. Soc. 1989, 111, 2353-2355.

⁹⁷ Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2000, 39, 1279-1281.

⁹⁸ Sakthivel, K.; Notz, W.; Bui, T.; Barbas III, G. F. J. Am. Chem. Soc. 2001, 123, 5260-5267.

⁹⁹ Berkessel, A.; Gasch, N.; Glaubitz, K.; Koch, C. Org. Lett. **2001**, *3*, 3839-3842.

Scheme 40. Polymer-immobilized cinchona alkaloid quaternary ammonium salts

The asymmetric alkylation of glycine derivatives to produce optically active α -amino acids have been commonly used as model reaction to test the catalytic activity of cinchona alkaloid quaternary ammonium salts. In 1989, O'Donnell and co-workers

reported the alkylation of a glycine Schiff base¹⁰⁰ under PTC conditions catalysed by cinchona alkaloid quaternary ammonium salt, highly enantioselective afforded desired products.⁹⁶ A variety of modified cinchona alkaloid quaternary ammonium salts, as well as the polymeric version of those catalysts ((**I-160**) - (**I-174**)) have been reported since the initial report in this field (Scheme 40).¹⁰¹

1.5.9 Polymer-immobilized chiral DMAP Analogues

Chiral DMAP analogues have been well explored since the late 1990s, and have been used for enantioselective acyl transfer reactions (kinetic resolution (KR), dynamic kinetic resolution (DKR), desymmetrization, rearrangements, and opening *meso* anhydride) and regioselective acylations of carbohydrates.¹⁰²

¹⁰⁰ O'Donnell, M. J.; Polt, R. L. J. Org. Chem. 1982, 47, 2663–2666.

¹⁰¹ a) Zhengpu, Z.; Yongmer, Y.; Zhen, W.; Hodge, P. *React. Funct. Polym.* **1999**, *41*, 37-43; b) Chinchilla, R.;
Mazo'n, P.; Najera, C. *Tetrahedron: Asymmetry* **2000**, *11*, 3277-3281; c) Chinchilla, R.; Mazo'n, P.; Najera, C. *Adv. Synth. Catal.* **2004**, *346*, 1186-1194; d) Thierry, B.; Plaquevent, J. C.; Cahard, D. *Tetrahedron: Asymmetry* **2001**, *12*, 983-986; e) Thierry, B.; Perrard, T.; Audouard, C.; Plaquevent, J. C.; Cahard, D. *Synthesis* **2001**, *11*, 1742-1746; f) Thierry, B.; Plaquevent, J. C.; Cahard, D. *Mol. Divers.* **2005**, *9*, 277-290; g) Shi, Q.; Lee, Y. J.; Song, H.; Cheng, M.; Jew, S. S.; Park, H. G.; Jeong, B. S. *Chem. Lett.* **2008**, *37*, 436-437; h) Thierry, B.; Plaquevent, J. C.; Cahard, D. *Tetrahedron: Asymmetry* **2003**, *14*, 1671-1677; i) Lv, J.; Wang, X.; Liu, J.; Zhang, L.; Wang, Y. *Tetrahedron: Asymmetry* **2006**, *17*, 330-335; j) Wang, X.; Yin, L.; Yang, T.; Wang, Y. *Tetrahedron: Asymmetry* **2006**, *17*, 330-335; j) Wang, X.; Yin, L.; Yang, T.; Wang, Y. *Tetrahedron: Asymmetry* **2006**, *17*, 330-335; j) Wang, X.; Yin, L.; Yang, T.; Wang, Y. *Tetrahedron: Asymmetry* **2006**, *17*, 330-335; j) Wang, X.; Yin, L.; Yang, T.; Wang, Y. *Tetrahedron: Asymmetry* **2006**, *17*, 330-335; j) Wang, X.; Yin, L.; Yang, T.; Wang, Y. *Tetrahedron: Asymmetry* **2006**, *17*, 330-335; j) Wang, X.; Yin, L.; Yang, T.; Wang, Y. *Tetrahedron: Asymmetry* **2006**, *17*, 330-335; j) Wang, X.; Yin, L.; Yang, T.; Wang, Y. *Tetrahedron: Asymmetry* **2006**, *17*, 330-335; j) Wang, X.; Yin, L.; Yang, T.; Wang, Y. *Tetrahedron: Asymmetry* **2007**, *18*, 108-114; k) Arakawa, Y.; Haraguchi, N.; Itsuno, S. *Angew. Chem. Int. Ed.* **2008**, *47*, 8232-8235; 1) Itsuno, S.; Paul, D. K.; Ishimoto, M.; Haraguchi, N. *Chem. Lett.* **2010**, *39*, 86-87; m) Itsuno, S.; Paul, D. K.; Salam, M. A.; Haraguchi, N. *J. Am. Chem. Soc.* **2010**, *132*, 2864-2865.

¹⁰² a) Wurz, R. P. *Chem. Rev.* 2007, *107*, 5570-5595; b) Atodiresei, I.; Schiffers, I.; Bolm, C. *Chem Rev.* 2007, *107*, 5683-5712; c) Alba, A. -N. R.; Rios, R. *Chem Asian J.* 2011, *6*, 720-734; d) Müller, C.E.; Schreiner, P. R. *Angew. Chem. Int. Ed.* 2011, *50*, 6012-6042; e) Pellissier, H. *Adv Synth Catal.* 2011, *353*, 1613-1666; f) Taylor, J. E.; Bull, S. D.; Williams, J. M. *Chem. Soc. Rev.* 2012, *41*, 2109-2121; g) Krasnov, V.P.; Gruzdev, D. A.; Levit, G. L. *Eur J Org Chem.* 2012, 1471-1493; h) Diaz-de-Villegas, M. D.; Galvez, J. A.; Badorrey, R.; Lopez-Ram-de-Viu, M. P. *Chem Eur J.* 2012, *18*, 13920-13935; i) Enriquez-Garcia, A.; Kündig, E. P. *Chem Soc Rev.* 2012, *41*, 7803-7831; j) Lee, D.; Taylor, M. S. *Synthesis-Stuttgart.* 2012, *44*, 3421-3431; k) Candish, L.; Nakano,

In 2003, the Anson group reported the synthesis of a family of immobilized chiral DMAP analogues as enantioselective acylation catalysts in two steps and identified the best candidates in the acylative KR of racemic sec - alcohols. Wang resinimmobilized DMAP analogue **I-175**, turned out to be optimal for the enantioselective acylation reactions of secondary alcohols, including a variety of cis-2-substituted cycloalkanols (Scheme 41).¹⁰³

Scheme 41. Polymer-immobilized chiral DMAP Analogue for KR of second alcohol

In 2009, Connon and Gun'ko reported the immobilization of a chiral DMAP analogue I-178 onto magnetic nanoparticles. This system was used to the acylative KR of racemic sec - alcohols, affording moderate selectivity. The magnetic catalyst is simple to prepare, insensitive to air/moisture and easily recoverable by magnetic

<sup>Y.; Lupton, D. W. Synthesis-Stuttgart. 2014, 46, 1823-1835; 1) Seidel, D. Synlett. 2014, 25, 783-794; m)
Lawandi, J.; Rocheleau, S.; Moitessier, N.; Tetrahedron. 2016, 72, 6283-6319; n) Zeng, X.-P.; Cao, Z. -Y.;
Wang, Y.-H.; Zhou, F.; Zhou, J. Chem Rev. 2016, 116, 7330-7396; o) Suzuki, T. Tetrahedron Lett. 2017, 58, 4731-4739; p) Pellissier, H. Tetrahedron 2018, 74, 3459-3468; q) Mandai, H.; Fujii, K.; Suga, S. Tetrahedron Lett. 2018, 59, 1787-1803; r) Yang, H.; Zheng, W. H. Tetrahedron Lett. 2018, 59, 583-591</sup>

¹⁰³ Pelotier, B.; Priem, G.; Campbell, I. B.; Macdonald, S. J. F.; Anson, M. S. *Synlett* **2003**, 679-683.

decantation. It retained excellent activity and selectivity after 32 iterative cycles (Scheme 42).¹⁰⁴

Scheme 42. Magnetic nanoparticles immobilized Chiral DMAP analogue I-178 for the KR of secondary alcohols

1.5.10 Polymer-immobilized chiral thioureas and squaramides organocatalysts

Recently, chiral thioureas and squaramides have emerged as a promising class of organocatalysts based on non-covalent interactions. The immobilization of them onto polymers have attracted a plenty of attention in the past years.

Scheme 43. Polymer-immobilized chiral squaramide organocatalyst for Michael addition

In 2012, our laboratory reported the first example of bounding a chiral squaramide organocatalyst covalently onto a Merrifield type resin with a copper-catalyzed azidealkyne cycloaddition strategy. The functional resin **I-180** was explored in the asymmetric Michael addition of 1,3-dicarbonyl compounds to β -nitrostyrenes,

¹⁰⁴ Gleeson, O.; Tekoriute, R.; Gun'ko, Y, K.; Connon , S. J. Chem. Eur. J. 2009, 15, 5669-5673.

affording good to excellent yields and enantioselectivities. The 1,2,3-triazole linker provided the functional resin **I-180** with excellent catalytic stability, allowing its reuse in 10 consecutive reaction cycles (Scheme 43).¹⁰⁵

Figure 9. Supported squaramide catalyst **I-182** for the continuous flow conjugate addition of hydroxynaphthoquinones to nitroalkenes.

In 2013, our laboratory applied the immobilized, minimalistic catalyst **I-182** to promote the fast Michael addition of 2-hydroxy-1,4-naphthoquinone to β -nitroalkenes, obtaining excellent enantioselectivities at low catalyst loadings. The PS-supported catalyst **I-182** can be recycled up to 10 times without any decrease in enantioselectivity and adapted to long (24 h) continuous flow operation (Figure 9).¹⁰⁶

Scheme 44. Polymer-immobilized quinidine-squaramide for the asymmetric Michael addition

¹⁰⁵ Kasaplar, P.; Riente, P.; Hartmann, C.; Pericàs, M. A. Adv. Synth. Catal. 2012, 354, 2905-2910.

¹⁰⁶ Kasaplar, P.; Rodriguez-Escrich, C.; Pericas, M. A. Org. Lett. 2013, 15, 3498-3501.
In 2013, the Soós group reported the immobilization of quinine- and quinidinesquaramide organocatalysts (**I-185**) for batch and continuous - flow applications. These organocatalysts were used in the asymmetric addition of 1,3-dicarbonyl compounds to β -nitrostyrenes, affording Michael adducts in excellent yields with enantioselectivities, even on the gram scale. Moreover, these immobilized catalysts exhibited stability to survive several cycles without significant loss of activity (Scheme 44).¹⁰⁷

Figure 10. Immobilized thiourea for the enantioselective amination of ketoesters.

In 2015, Our laboratory prepared an immobilized bifunctional thiourea organocatalyst (PS-TU) and used it in the enantioselective α -amination of 1,3-dicarbonyl compounds with azodicarboxylates. Homogeneous thioureas can be irreversibly deactivated by the azodicarboxylate reagents, in contrast, PS-TU could be recovered by simple washing with triethylamine between runs, which allowed the reuse up to 9 cycles. Finally, the PS-TU had also been implemented to continuous flow process (7.5 h operation, 21 min residence time, TON = 37) (Figure 10).¹⁰⁸

¹⁰⁷ Kardos, G.; Soós, T. Eur. J. Org. Chem. 2013, 4490-4494.

¹⁰⁸ Kasaplar, P.; Ozkal, E.; Rodríguez-Escrich, C.; Pericàs, M. A. Green Chem. 2015, 17, 3122-3129.

Figure 11. Immobilized chiral squaramide **I-189** for the enantioselective production of a library of pyranonaphthoquinones **I-192** in continuous flow

In 2016, our group reported the development of the new, cost-effective PS-supported squaramide **I-189** and the implement of it to a continuous flow setup for the enantioselective production of a library of pyranonaphthoquinones. This was accomplished by a two-step process took place in aequence, which involved a squaramide-catalyzed Michael reaction and *oxa*-Michael cyclization reaction (Figure 11).¹⁰⁹

In 2017, Itsuno and coworkers reported the synthesis of a chiral polymer containing cinchona-based chiral squaramides in their main chain structure (**I-193**). Resin **I-193** was applied to the asymmetric addition of β -ketoesters to β -nitroolefins, achieving the Michael adducts in good yields and enantioselectivities of up to 99% ee.¹¹⁰ In the next year, the same group reported the synthesis of another chiral polymers containing cinchona-based squaramide dimers that contain two cinchona squaramide units connected by diamines in the main chain structure (**I-195**). The chiral polymers were applied in asymmetric Michael adducts **I-194** in good yields with excellent enantio- and diastereoselectivities. The polymeric catalysts **I-193** and **I-195**

¹⁰⁹ Osorio-Planes, L.; Rodríguez-Escrich, C.; Pericàs, M. A. Catal. Sci. Technol. 2016, 6, 4686-4689.

¹¹⁰ Ullah, M. S.; Itsuno, S. *Molecular Catal.* **2017**, *438*, 239-244.

could be easily recovered and reused several times without loss of catalytic activity (Scheme 45).¹¹¹

Scheme 45. Immobilized cinchona-based squaramides for the Michael addition of β-ketoesters to nitroolefins

1.5.11 Immobilization of other types of organocatalyst

Motivated by works of the application of diamine **I-196** to Robinson annulations reported by the Luo group,¹¹² in 2017, our laboratory reported its supported version (**I-198**) and tested it in the enantioselective Robinson annulation with a good recyclability. In this case, the immobilized catalyst **I-198** presented clear advantages over the homogeneous analogue **I-197**.¹¹³ A continuous flow process based on **I-198** was implemented by placing the polymeric catalyst in a jacketed packed bed reactor. With it, 11.7 g of the Wieland-Miescher ketone (**I-203**) in 91% ee was prepared with a 24-h flow experiment. A library of eight diverse structure cylohexenones were prepared with a similar set-up. (Figure 12).

¹¹¹ Ullah, M. S.; Itsuno, S. ACS Omega **2018**, *3*, 4573-4582.

¹¹² a) Zhou, P.; Zhang, L.; Luo, S.; Cheng, J. P. J. Org. Chem. 2012, 77, 2526-2530; b) Xu, C.; Zhang, L.; Zhou,
P.; Luo, S.; Cheng, J. P. Synthesis 2013, 45, 1939-1945.

¹¹³ Cañellas, S.; Ayats, C.; Henseler, A. H.; Pericàs, M. A. ACS Catal. 2017, 7, 1383-1391.

Figure 12. Immobilized chiral diamine catalyst for the flow Robinson annulation.

Apart from a non-recyclable MNP-supported chiral NHC catalyst,¹¹⁴ the Massi group reported in 2017 the only recyclable example of supported chiral NHC catalyst. The chiral NHC was immobilized onto silica and PS. Both functionalized resins were applied to the asymmetric intramolecular Stetter reaction to produce chromanones **I-206** (Scheme 46).¹¹⁵ The PS-supported catalyst **I-204** exhibited better results in this reaction and good recyclability of up to 10 times. Then, a monolithic version of **I-204** was prepared and used for 120 hours in a single flow experiment at 10 µl/min with a TON of 132.

Scheme 46. Immobilized chiral NHC catalyst

¹¹⁴ Ranganath, K.V.S.; Schäfer, A.H.; Glorius, F. ChemCatChem 2011, 3, 1889-1891.

¹¹⁵ Ragno, D., Di Carmine, G., Brandolese, A., Bortolini, O., Giovannini, P. P., & Massi, A. *ACS Catal.* **2017**, 7, 6365–6375.

1.6 Aim of this thesis

The immobilization of chiral catalysts onto polymers for catalytic asymmetric reactions represents an important and useful approach to increase sustainability in organic synthesis through a significant number of clear advantages (minimization of solvent usage through simplified work-up, easy catalyst separation by filtration or magnetic decantation, opportunities for recycling and continuous flow processing.). According to this, the immobilization of organocatalysts and the implementation of continuous flow processes based on them is attractive for its potential in practical applications in the future in industry.

Thus, the aims of this thesis cover three main areas: (a) studies towards the immobilization of organocatalysts with known ability for high enantiocontrol in asymmetric reactions, and application of the resulting immobilized species in batch and continuous flow processes; (b) development of new methodology for the preparation of highly sterically congested, polymerizable chiral phosphoric acids and demonstration of their potential in asymmetric catalysis; (c) within the broad area of developing green and economically viable alternatives for relevant, synthetic processes, the development a non-palladium dependent, electrochemical Wacker-Tsuji-type oxidation.

Chapter II

Immobilization of *cis*-4-Hydroxydiphenylprolinol Silyl Ethers onto Polystyrene. Application in the Catalytic Enantioselective Synthesis of 5-Hydroxyisoxazolidines in Batch and Flow

2.1. Polymer-supported prolinol and diarylprolinol derivatives

The pursuit of preparing optically enriched compounds has greatly promoted the development of asymmetric catalysis, which has been greatly expanding the toolkit of synthetic chemists.¹¹⁶ Organocatalysis has been providing varieties of synthetic approach to optically active compounds under generally mild conditions. In the past years, prolinol is becoming a promising candidate for asymmetric organocatalysis.¹¹⁷ Some of its derivatives such as diarylprolinols and their silyl ethers (generally known as Jørgensen–Hayashi catalysts, one of the most versatile chiral organo-aminocatalysts) have been widely used in varieties of asymmetric processes.¹¹⁸

¹¹⁶ a) Asymmetric Organocatalysis: from Biomimetic Concepts to Applications in Asymmetric Synthesis (Eds.: Berkessel, A.; Groeger, H.) Wiley-VCH, **2005**; b) Enantioselective Organocatalysis: Reactions and Experimental Procedures (Eds.: Dalko, P. I.) Wiley-VCH: Weinheim, **2007**; c) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. **2007**, *107*, 5471–5569; d) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. **2007**, *107*, 5713–5743; e) MacMillan, D. W. C. Nature **2008**, *455*, 304-308; f) Dondoni, A.; Massi, A. Angew. Chem., Int. Ed. **2008**, *47*, 4638-4660.

¹¹⁷ a) Juhl, K.; Jørgensen, K. A. *Angew. Chem. Int. Ed.* **2003**, *42*, 1498-1501; b) Zhong, G.; Fan, J.; Barbas, III, C. F. *Tetrahedron Lett.* **2004**, *45*, 5681-5684.

¹¹⁸ a) Palomo, C.; Mielgo, A. Angew. Chem. Int. Ed. 2006, 45, 7876-7880; b) Verkade, J. M.; van Hemert, L. J.; Quaedflieg, P. J.; Rutjes, F. P. Chem. Soc. Rev. 2008, 37, 29-41; c) Mielgo, A.; Palomo, C. Chem. Asian. J. 2008, 3, 922-948; d) Bertelsen, S.; Jørgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178-2189; e) Wong, C. T. Tetrahedron 2009, 65, 7491-7497; f) Jensen, K. L.; Dickmeiss, G.; Jiang, H.; Albrecht, Ł.; Jørgensen, K. A. Acc. Chem. Res. 2012, 45, 248-264; g) Volla, C. M.; Atodiresei, I.; Rueping, M. Chem. Rev. 2013, 114, 2390-2431; h) Donslund, B. S.; Johansen, T. K.; Poulsen, P. H.; Halskov, K. S.; Jørgensen, K. A. Angew. Chem. Int.

For prolinol and its derivatives in the asymmetric organocatalysis, it's quite common a relatively large amount (in the 10–30 mol% range or even higher) of organocatalyst is required to complete the desired reaction within a reasonable time. Isolation of these catalysts from the reaction mixture, required for purification purposes and advisable from an economic perspective, is relatively hard due to the similar organic nature of catalyst and reaction product and thus results poorly economic.¹¹⁹ To solve those problems, immobilized organocatalysts have been designed with the aim of overcoming these limitations by simultaneously allowing easy product purification and recovery.¹²⁰ In the last few years, immobilized prolinol derivatives have been developed and used as efficient catalysts for a plenty of asymmetric reactions.

In 2008, Wendorff and Studer reported the synthesis and immobilization of α , α - diphenylprolinol-oligostyrene conjugates into a polystyrene (PS) matrix by electrospinning affording fibers with a large surface area (fiber diameter of 1.2 µm).¹²¹ The fibers (**II-1**) were tested in the asymmetric Michael addition of dimethyl

Ed. **2015**, *54*, 13860-13874; i) Halskov, K. S.; Donslund, B. S.; Paz, B. M.; Jørgensen, K. A. Acc. Chem. Res. **2016**, *49*, 974-986; j) Klier, L.; Tur, F.; Poulsen, P. H.; Jørgensen, K. A. Chem. Soc. Rev. **2017**, *46*, 1080-1102.

¹¹⁹ a) Patora-Komisarska, K.; Benohoud, M.; Ishikawa, H.; Seebach, D.; Hayashi, Y. *Helv. Chim. Acta* 2011, 94, 719-745; b) Burés, J.; Armstrong, A.; Blackmond, D. G. *Acc. Chem. Res.* 2016, 49, 214-222.

¹²⁰ a) *Chiral catalyst immobilization and recycling*, (Eds.: De Vos, D. E.; Vankelecom, I. F. J.; Jacobs, P. A.)
Wiley-VCH, Weinheim; New York, **2000**; b) Benaglia, M.; Puglisi, A.; Cozzi, F. *Chem. Rev.* **2003**, *103*, 3401-3430; c) Benaglia, M. *New J. Chem.* **2006**, *30*, 1525-1533; d) Cozzi, F. *Adv. Synth. Catal.* **2006**, *348*, 1367-1390; e) Gruttadauria, M.; Giacalone, F.; Noto, R. *Chem. Soc. Rev.* **2008**, *37*, 1666-1688; f) Margelefsky, E. L.;
Zeidan, R. K.; Davis, M. E. *Chem. Soc. Rev.* **2008**, *37*, 1118-1126; g) *Recoverable and recyclable catalysts*, *1st ed.* (Eds.: Benaglia, M.) Wiley, Hoboken, N.J., **2009**; h) Trindade, A. F.; Gois, P. M. P.; Afonso, C. A. M. *Chem. Rev.* **2009**, *109*, 418-514; i) Kristensen, T. E.; Hansen, T. *Eur. J. Org. Chem.* **2010**, 3179-3204; j) *Polymeric chiral catalyst design and chiral polymer synthesis* (Eds.: Itsuno, S.) John Wiley & Sons, **2011**.

¹²¹ Röben, C.; Stasiak, M.; Janza, B.; Greiner, A.; Wendorff, J. H.; Studer, A. Synthesis **2008**, 2163-2168.

malonate to cinnamaldehyde. However, the selected immobilization strategy turned out to be non-optimal, since a decrease of the catalyst activity was observed in the study of its recyclability (Scheme 1).

Scheme 1. diarylprolinol derivatives functionalized fibers and application in the Michael reaction

2010, the Zeitler group reported a MeOPEG-immobilized recvclable In Jørgensen-Hayashi catalyst (II-5). II-5 provided the same reactivity and selectivity with its homogeneous version in the Michael addition of nitromethane to α,β unsaturated aldehydes.¹²² In 2011, our laboratory reported the bounding of two α, α - diphenylprolinol ethers onto a PS-resin through copper-catalyzed azide-alkyne cycloaddition (II-6). These catalysts were tested in the asymmetric addition of aldehydes to nitroolefins (Scheme 2, a) and the addition of malonates (Scheme 2, b) or nitromethane (Scheme 2, c) to α , β - unsaturated aldehydes.¹²³ As a general trend, the triazole-linked diarylprolinol ethers immobilized onto insoluble PS resins showed high catalytic activity, and it can be easily recovered by filtration and can be reused in new reaction cycles.¹²³ In the same year, our laboratory used **II-6** as catalysts in the enantioselective domino Michael-Knoevenagel reaction of dimethyl 3-3-substituted acrolein derivatives (Scheme 2, d). With the oxoglutarate and

¹²² I. Mager, I.; Zeitler, K. Org. Lett. 2010, 12, 1480-1483.

¹²³ Alza, E.; Sayalero, S.; Kasaplar, P.; Almaşi, D.; Pericas, M. A. Chem.-Eur. J. 2011, 17, 11585-11595.

developed polymeric catalyst **II-6**, highly functionalized cyclohexane derivatives were prepared in a simple and effective manner both under batch and continuous flow conditions.¹²⁴

Scheme 2. PS-supported Jørgensen-Hayashi catalyst and application.

In 2012, our laboratory developed the immobilized species **II-7** as an highly active catalyst for the enantioselective α - amination of aldehydes (Scheme 2, e).¹²⁵ The

¹²⁴ Alza, E.; Sayalero, S.; Cambeiro, X. C.; Martín-Rapún, R.; Miranda, P. O.; Pericas, M. A. *Synlett* **2011**, 464-468.

¹²⁵ Fan, X.; Sayalero, S.; Pericas, M. A. Adv. Synth. Catal. 2012, 354, 2971-2976.

desired products obtained with high yields and enantioselectivities in short times at low (1–2 mol%) catalyst loading. Catalyst **II-7** could be reused 10 times, achieving with an accumulated TON of 480. A long - standing continuous flow operation with very short residence time (6 min) could also be implemented.

In 2012, the Wang group reported the bounding of Jørgensen–Hayashi catalysts into a robust chiral porous polymer (**II-17**) through a "bottom - up" strategy. The high BET surface area (881 m²/g), wide openings, and interconnected nanopores increased the accessibility of catalytic sites of the immobilized catalysts and promoted the mass transport process, these behaviors are the key to its high catalytic activity. Polymer **II-17** showed excellent activity in the asymmetric Michael addition of aldehydes to nitroalkenes as a recoverable polymeric catalyst. It can be reused 4 times without significant loss of enantio- and diastereoselectivity.¹²⁶ In 2013, the Ouali group reported the immobilization of the Jørgensen–Hayashi catalyst by grafting the catalyst *via* triazole linkers onto the surface of two different supports, PSfunctionalized Co/C MNPs (**II-18**) and phosphorus dendrimers (**II-19**). These supported catalysts were tested in Michael additions of various aldehydes to different nitroolefins, displaying high activities and selectivities. Moreover, **II-19** could be recovered by precipitation/filtration and reused in 7 consecutive cycles without loss of efficiency (Figure 1).¹²⁷

¹²⁶ Wang, C. A.; Zhang, Z. K.; Yue, T.; Sun, Y. L.; Wang, L.; Wang, W. D.; Zhang, Y.; Liu, C.; Wang, W. *Chem. -Eur. J.* **2012**, *18*, 6718-6723.

¹²⁷ Keller, M.; Perrier, A.; Linhardt, R.; Travers, L.; Wittmann, S.; Caminade, A. M.; Majoral, J. P.; Reiser,
O.; Ouali, A. *Adv. Synth. Catal.* **2013**, *355*, 1748-1754.

Figure 1. Jørgensen-Hayashi catalysts embedded into a nanoporous polymer

In 2010, the Wang group reported the immobilization of a (S)-diarylprolinol trimethylsilyl ether onto superparamagnetic nanoparticle Fe₃O₄@SiO₂ (**II-20**) and applied for the asymmetric Michael addition of aldehydes to nitroalkenes in water, obtaining the desired adducts with moderate to good yields and selectivities (up to 90% ee and 99:1 dr). The NMP-immobilized catalyst **II-20** could be easily separated from the reaction by an external magnet and reused for four cycles.¹²⁸ In 2011, our group reported the supporting of (*S*)- α , α -Diphenylprolinol trimethylsilyl ether onto well-defined (5.7 ± 1.1 nm) Fe₃O₄ NMPs (**II-21**). NMPs catalyst **II-21** exhibited high activity, high enantioselectivity and showed to be magnetically recoverable and reusable in the same reactions. The assembly process of nanoparticles and their catalytic use in CH₂Cl₂ solution didn't cause particle growth or agglomeration. This behavior ensured its high catalytic activity and recyclability (Scheme 3).¹²⁹

¹²⁸ Wang, B. G.; Ma, B. C.; Wang, Q.; Wang, W. Adv. Synth. Catal. 2010, 352, 2923.

¹²⁹ Riente, P.; Mendozaa, C.; Pericás, M. A. J. Mater. Chem. 2011, 21, 7350-7355.

Scheme 3. Jørgensen–Hayashi catalysts supported onto superparamagnetic nanoparticle $Fe_3O_4@SiO_2$ and applied for the asymmetric Michael addition

Since acetaldehyde is highly volatile and susceptible to oligomerization, it is best used by *in situ* generation from its cyclic trimer, 2,4,6-trimethyl-1,3,5-trioxane (**II-23**), with an acidic catalyst. However, acid catalysts cannot coexist with amine-type organocatalysts because of mutual deactivation. By taking advantage of the properties inherent to immobilized species, our laboratory proposed a new approach for combining two otherwise incompatible catalysts, using a tea bag to hold the polymer-immobilized sulfonic acid catalyst, physically separating in this manner the acidic species (**II-22**) from the chiral amine organocatalyst (**II-6**). With the polymeric sulfonic acid in the tea bag, trioxane was easily decomposed to form acetaldehyde, whose enamine gave Michael adducts **II-24** in good yields with excellent enantioselectivities (Scheme 4).¹³⁰

Scheme 4. Immobilized Jørgensen–Hayashi catalysts working with polymeric sulfonic acid in the tea bag for the Michael addition

¹³⁰ Fan, X.; Rodriguez-Escrich, C.; Sayalero, S.; Pericas, M. A. Chem. -Eur. J. 2013, 19, 10814-10817.

In 2014, our laboratory reported two hybrid magnetic materials which were prepared from κ -carrageenan and Fe₃O₄ nanoparticles and exhibited good reactivities and selectivities in the Michael addition of aldehydes to nitroalkenes. After the reaction process was completed, the catalysts could be conveniently retrieved from the reaction mixture by simple magnetic decantation. (Scheme 5)¹³¹

Scheme 5. Immobilized Jørgensen–Hayashi catalysts onto κ-carrageenan and Fe3O4 nanoparticles **25** and use in the Michael addition of aldehydes to nitroalkenes

In 2016, our laboratory reported the synthesis of six solid-supported diarylprolinol catalysts and applied them to the enantioselective cyclopropanation reactions. Among those prepared catalysts, **II-26** afforded excellent results and exhibited remarkable robustness under the conditions of the cyclopropanation reaction. The use of **II-26** allowed the implementation of a long flow experiment (48 h) and could be adapted to the generation of a library of 12 different cyclopropanes by sequential flow experiments. (Figure 2)¹³²

¹³¹ Mak, C. A.; Ranjbar, S.; Riente, P.; Rodríguez-Escrich, C.; Pericàs, M. A. *Tetrahedron* **2014**, *70*, 6169-6173.

¹³² Llanes, P.; Rodríguez-Escrich, C.; Sayalero, S.; Pericàs, M. A. Org. Lett. 2016, 18, 6292-6295.

Figure 2. Continuous flow asymmetric cyclopropanation.

2.2 Isoxazolidines

Isoxazolidines are valuable chiral building blocks that can be easily converted to γ amino alcohols, β -lactams and β -amino acids, important scaffolds for chemical and biological applications.¹³³ This has prompted several authors to develop novel asymmetric methods for their preparation. For instance, in 2000, the MacMillan group reported an imidazolidinone-catalyzed enantioselective synthesis of isoxazolidines that relied on 1,3-dipolar cycloaddition reactions of an iminium ion intermediate.¹³⁴ This represented the first example of a chiral organocatalyst catalyzed 1,3-dipolar cycloaddition.

¹³³ a) Chiacchio, U.; Rescifina, A.; Corsaro, A.; Pistarà, V.; Romeo, G.; Romeo, R. *Tetrahedron: Asymmetry* 2000, *11*, 2045-2048; b) Sibi, M. P.; Liu, M. Org. Lett. 2001, *3*, 4181-4184; c) Lee, H. S.; Park, J. S.; Kim, B. M.; Gellman, S. H. J. Org. Chem. 2003, 68, 1575-1578; d) Sibi, M. P.; Prabagaran, N.; Ghorpade, S. G.; Jasperse, C. P. J. Am. Chem. Soc. 2003, *125*, 11796-11797; e) Chiacchio, U.; Balestrieri, E.; Macchi, B.; Iannazzo, D.; Piperno, A.; Rescifina, A.; Mastino, A. J. Med. Chem. 2005, *48*, 1389-1394; f) Chiacchio, U.; Rescifina, A.; Iannazzo, D.; Piperno, A.; Romeo, R.; Borrello, L.; Romeo, G. J. Med. Chem. 2007, *50*, 3747-3750; g) Pagar, V. V.; Liu, R. S. Angew. Chem. Int. Ed. 2015, *54*, 4923-4926; h) Diethelm, S.; Carreira, E. M. J. Am. Chem. Soc. 2015, *137*, 6084-6096; i) Berthet, M.; Cheviet, T.; Dujardin, G.; Parrot, I.; Martinez, J. Chem. Rev. 2016, *116*, 15235-15283.

¹³⁴ Jen, W. S.; Wiener, J. J.; MacMillan, D. W. J. Am. Chem. Soc. 2000, 122, 9874-9875.

Scheme 6. Imidazolidinone-catalyzed enantioselective synthesis of isoxazolidines

In 2007, Córdova reported α,α -diarylprolinol TMS ether catalyzed asymmetric domino Michael reaction between *N*-protected hydroxylamines and enals,¹³⁵ the reaction provided the preparation of 5-hydroxyisoxazolidines and β -amino acids in high yields and highly chemo- and enantioselectivity (Scheme 7, cat. **II-34**). Later in 2016, the Wang group developed a spiro - pyrrolidine catalyst for this asymmetric domino Michael reaction with excellent enantioselectivity (Scheme 7, cat. **II-35**).¹³⁶

In 2010, the Zlotin group reported the using of recoverable α, α -diarylprolinol-derived chiral ionic liquids catalyst for this asymmetric domino Michael reaction. Corresponding adducts were obtained in excellent yields and with moderate to high enantioselectivities. The supported chiral ionic liquids catalyst can be easily recycled and reused for more than four times in this domino reaction (Scheme 7, cat. **II-36**).¹³⁷

¹³⁵ a) Ibrahem, I.; Rios, R.; Vesely, J.; Zhao, G. L.; Córdova, A. *Chem. Commun.* 2007, 849-851; b) Ibrahem,
I.; Rios, R.; Vesely, J.; Zhao, G. L.; Córdova, A. *Synthesis* 2008, 1153-1157.

¹³⁶ Dou, Q. Y.; Tu, Y. Q.; Zhang, Y.; Tian, J. M.; Zhang, F. M.; Wang, S. H. *Adv. Synth. Catal.* **2016**, *358*, 874-879.

¹³⁷ Maltsev, O. V.; Kucherenko, A. S.; Chimishkyan, A. L.; Zlotin, S. G. *Tetrahedron: Asymmetry* **2010**, *21*, 2659-2670.

Scheme 7. Asymmetric domino Michael reaction between N-protected hydroxylamines and enals

2.3 Aim of this project

In 2017, our group reported the preparation of a diverse family (37 compounds) of *cis* - 4 - alkoxydiorganylprolinol derivatives starting from trans-4-hydroxyproline. Through the combined use of high-throughput-experimentation (HTE) techniques and Design of Experiments (DoE), the most promising catalysts were identified in the asymmetric *aza*-Michael addition of succinimide to α , β - unsaturated aldehydes, affording corresponding adducts **II-39** in good yields and excellent enantioselectivities (Scheme 8).¹³⁸

Scheme 8. *Cis* - 4 - alkoxydiorganylprolinol derivatives **II-37** for the enantioselective *aza*-Michael addition of succinimide to α,β - unsaturated aldehydes

¹³⁸ Arenas, I.; Ferrali, A.; Rodríguez-Escrich, C.; Bravo, F.; Pericàs, M. A. *Adv. Synth. Catal.* **2017**, *359*, 2414-2424.

Encouraged by the behavior of the *cis* derivatives, which performed better than their *trans* analogues, we planned to develop immobilized versions of **II-37** and to apply these heterogeneous catalysts in the development of new organocatalytic processes. Thus, in this project, we aim at study the immobilization of *cis*-4-hydroxyprolinol derivatives and establish a direct comparison with the *trans* series we have previously reported in the formation of isoxazolidines.

With this aim in mind, we prepared two members of this family, bearing TMS and TBDMS protecting groups (**II-45a** and **II-45b**), according to the sequence outlined in Scheme 9. With comparison purposes, we decided to evaluate as well the activity in the same process of supported diarylprolinol catalysts previously reported in our group, either having a 2,4-trans array¹³⁹ or prepared by co-polymerization of a distyrylprolinol derivative.¹⁴⁰ And the addition of Cbz protected hydroxylamine to cinnamaldehyde as model reaction.

¹³⁹ Fan, X.; Sayalero, S.; Pericàs, M. A. Adv. Synth. Catal. 2012, 354, 2971-2976.

¹⁴⁰ a) Llanes, P.; Rodríguez-Escrich, C.; Sayalero, S.; Pericàs, M. A. *Org. Lett.* **2016**, *18*, 6292-6295; b) Sagamanova, I.; Rodríguez-Escrich, C.; Gábor Molnár, I.; Sayalero, S.; Gilmour, R.; Pericàs, M. A. ACS *Catal.* **2015**, *5*, 6241-6248.

Scheme 9. Synthetic sequence for the preparation of resins II-45a and II-45b.

This manuscript was later published in Advanced Synthesis & Catalysis. (*Adv. Synth. Catal.* **2018**, 360, 2914-2924)

Immobilization of *cis*-4-Hydroxydiphenylprolinol Silyl Ethers onto Polystyrene. Application in the Catalytic Enantioselective Synthesis of 5-Hydroxyisoxazolidines in Batch and Flow

Junshan Lai,^{a,c} Sonia Sayalero,^a Alessandro Ferrali,^a Laura Osorio-Planes,^a Fernando Bravo,^a Carles Rodríguez-Escrich,^{*,a} and Miquel A. Pericàs^{*a,b}

- ^a Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007 Tarragona (Spain). crodriguez@iciq.es; mapericas@iciq.es; (+34) 977-920-200.
- ^b Departament de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), 08028 Barcelona (Spain).
- ^c Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain

Abstract. A new family of polystyrene-supported *cis*-4hydroxydiphenylprolinol has been prepared, and the resulting polymers have been evaluated as organocatalysts to promote the tandem reaction between *N*-protected hydroxylamines and α , β -unsaturated aldehydes in batch and flow. The new PSsupported catalysts compare favorably with well-established immobilized Jørgensen-Hayashi catalysts, affording 5hydroxyisoxazolidines as single diastereoisomers with high enantioselectivities and good yields (up to 83% yield, up to 99% ee).

Keywords: supported catalysts; organic catalysis; flow chemistry; asymmetric catalysis; isoxazolidines

Introduction

The development of asymmetric catalysis has significantly expanded the toolkit of synthetic chemists when tackling the preparation of optically enriched compounds.¹ The advent of organocatalysis, that arrived to complement biocatalysis and transition metal-based approaches, has provided new opportunities to activate very reactive intermediates in generally mild conditions. a,a-Diarylprolinols, generally known as Jørgensen-Hayashi catalysts, are amongst the most successful aminocatalysts.² Their main drawback is the high catalyst loadings usually required as a consequence of unfavourable equilibria and the formation of off-cycle species.³ To address this issue, our research group, as well as others, have studied their immobilization in an attempt to increase their lifespan.4 In the cases where the anchoring strategy has proven successful, the resulting solidsupported Jørgensen-Hayashi catalysts display high catalytic activity and selectivity, while being recyclable and even amenable to application in continuous flow.5

Recently, we reported the preparation of a family of 37 modular *cis*-4-hydroxyprolinol derivatives starting from *trans*-4-hydroxyproline. The synthesis relied on the intermediacy of the bicyclic lactone depicted in Figure 1 (previously described by Joullié⁶) to invert the stereochemistry at C4. With the help of high-throughput-experimentation (HTE) techniques and Design of Experiments (DoE) we were able identify the most promising catalysts for the *aza*-Michael addition and fine-tune the reaction conditions to optimize yield and enantioselectivity.^{6c} Encouraged by the behavior of the *cis*-derivatives, which performed

better than their *trans* analogues, we decided to study the immobilization of *cis*-4-hydroxyprolinol derivatives and establish a direct comparison with the *trans* series we have previously reported (Figure 1).

Figure 1. Immobilized cis- and trans-diarylprolinols.

Isoxazolidines⁷ are valuable chiral building blocks that can be easily converted to γ -amino alcohols,⁸ β lactams⁹ and β -amino acids,^{10,re,r} important scaffolds for chemical and biological applications. This has prompted several authors to develop novel asymmetric methods for their preparation. For instance, in 2000, MacMillan and co-workers were the first to report an imidazolidinone-catalyzed enantioselective synthesis of isoxazolidines that relied on 1,3-dipolar cycloaddition reactions of an iminium ion intermediate.¹¹ In 2007, Córdova reported the preparation of 5-hydroxyisoxazolidines mediated by a,a-diarylprolinol TMS ether via an asymmetric domino Michael reaction pathway between *N*protected hydroxylamines and enals,¹² for which Wang later employed a spiranic catalyst¹³ (Scheme 1). In 2010, Zlotin and co-workers used recoverable α , α -diarylprolinol-derived chiral ionic liquids which could be easily recycled and reused more than four times in this domino reaction.¹⁴ However, to the best of our knowledge, the asymmetric organocatalytic synthesis of 5-hydroxyisoxazolidines in flow remains unexplored.

Scheme 1. Organocatalytic isoxazolidine formation.

When dealing with supported catalysts, besides the type of monomer and the immobilization strategy, the choice of solid phase is crucial because poor mechanical stability of non-properly selected supports can counterbalance the putative advantages of easy recycling and reuse.¹⁵ In our experience, polystyrene resins have proven reliable in terms of thermal and mechanical stability. In this context, the

implementation of flow processes entails a further advantage because, once the resin is packed, the beads are not shaken nor stirred. In light of the abovementioned, we thought the addition of hydroxylamine derivatives to enals catalyzed by immobilized diarylprolinol derivatives would be a good benchmark to assess the relative merits of the *cis* and *trans* series both in batch and flow.

Results and Discussion

In order to establish the catalytic behavior of the supported *cis*-diarylprolinols, we prepared two members of this family, bearing TMS and TBDMS protecting groups, according to the sequence outlined in Scheme 2. First, lactone 5^6 was treated with phenylmagnesium chloride to generate the 2,4-*cis* diphenylprolinol derivative **6**. Propargylation of the secondary alcohol took place with concomitant oxazolidinone formation and the product **7** was then hydrolyzed to the amino alcohol **8**. This intermediate was protected as a TMS (**9**) or TBS (**10**) ether which, after immobilization via azide-alkyne cycloaddition with azidomethyl-polystyrene, gave rise to resins **1b** and **1c**, respectively with full functionalization.

Scheme 2. Synthetic sequence for the preparation of resins 1b and 1c.

For the sake of comparison, we decided to evaluate as well the activity of supported diarylprolinol catalysts previously reported in our group, either having a 2,4-*trans* array^{5c} (1d) or prepared by copolymerization of a distyrylprolinol derivative^{5e,16} (1e,f). Finally, homogeneous *cis*-1g would also tested in an attempt to assess the impact of the triazole linker. Thus, the stage was set to run a comparative study of catalysts **1a-1g** (Table 1), placing special emphasis on the stereochemistry at C4. The model reaction selected was the addition of protected hydroxylamine **3a** to cinnamaldehyde **2a**, which afforded chiral 5hydroxyisoxazolidine **4aa** via a tandem sequence consisting of aza-Michael addition followed by hemiacetalization. Preliminary tests run with **1b** established CHCl₃ and rt as a good starting point to optimize reaction conditions (see SI for details).

 Table 1. Solid-supported catalyst screening for the enantioselective formation of isoxazolidines.

a) Conversion and yield determined by ¹H NMR using mesitylene as an internal standard; for the functionalization level of catalysts, see SI.

According to literature precedents,¹² diarylprolinol TMS ether 1a proved competent in this reaction (entry 1). In comparison, the supported catalysts from the novel 2,4-cis series 1b and 1c (bearing a TMS and a TBS group, respectively; entries 2 and 3) displayed improved activity and enantioselectivity. Interestingly, the results were also better than those recorded for the trans analog 1d (entry 4). A direct comparison between 1c and 1d, which differ only on the relative stereochemistry of the pyrrolidine 2,4 substituents allows to establish the superiority of the *cis*-derivatives over the trans ones, at least for this reaction. Then, the two catalysts prepared by co-polymerization of a distyrylprolinol were submitted to the reaction conditions: 1e (with a fluorine; entry 5) gave moderate enantioselectivity, whereas 1f, bearing a silvl ether (entry 6), matched the ee's of 1c, albeit with a slightly lower activity. Finally, an homogeneous analogue of 1c, without the triazole $(1g^{6c} \text{ entry } 7)$ was shown to behave similarly in terms of yield and selectivity, which points out to a steric rather than electronic effect of the linker. In summary, the catalyst of choice for this reaction is **1c**, with a *cis*-2,4 arrangement and a TBS group.

During the investigation of this tandem reaction, we found that the addition of acid had a significant impact on the reaction rate and selectivity, leading in most cases to full conversions in shorter times (Scheme 3). While strong acids like TFA or TsOH completely shut down the catalytic activity, with less acidic cocatalysts the ee value increased (acids 11c-e) and full conversion was reached in 6 h. Among all carboxylic acids tested, cinnamic acid turned out to give the best enantioselectivity in CHCl₃. Because of the toxicity of CHCl₃ which may limit the utilization of the immobilized diarylprolinol in flow, we carried out a similar screening in CH₂Cl₂ (see SI). In this solvent, benzoic and cinnamic acid behave similarly; given that the former is inexpensive, we established a second set of conditions involving CH2Cl2 and benzoic acid as an additive.

Scheme 3. Screening of the acidic co-catalyst. ^{*a*}) Conv. determined by ¹H NMR using mesitylene as internal standard; full conversion recorded with acids **11c-11j** in 6 h.

Thus, we decided to investigate the scope of the catalytic asymmetric tandem reaction in batch using immobilized diarylprolinol 1c with cinnamic acid as additive in CHCl₃ (Scheme 4, conditions A) or benzoic acid as additive in CH₂Cl₂ (Scheme 4, conditions B), in both cases at room temperature. Indeed, βsubstituted enals provided the corresponding hvdroxyisoxazolidines 4 as single diastereoisomers with high enantioselectivities and moderate to good yields (34-83% yield, 71-99% ee). Moreover, the gave reactions with N-Boc-NHOH 3b the corresponding products in 51-74% yield and in 71-99% ee. Cinnamaldehyde and its derivatives containing halogen atoms (F or Cl) or a nitro group at the *para*-position of the aromatic ring afforded the desired isoxazolidines in a short time. Introduction of a group in the ortho-position or the presence of a

methoxy group at the *para*-position slowed down the reaction.

Scheme 4. Scope of the catalytic reaction in batch. ^{*a*)} Reaction conditions: 2 (0.05 mmol, 1 eq.), 3 (10 mg, 0.06 mmol, 1.2 eq.), 1c (23 mg, 20 mol %), 11i (1.5 mg, 20 mol %), CHCl₃(0.25 mL), rt. ^{*b*} Reactions run in CH₂Cl₂ (0.5 mmol of 2) with 11d (12 mg, 20 mol %) as co-catalyst.

The good results recorded prompted us to study the recyclability of the catalyst in batch. To our delight, the reaction between **2a** and **3a** catalyzed by **1c** could be run for 10 consecutive cycles after simply filtering and recovering the resin. As shown in Table 2, the results obtained in the tenth cycle match those recorded in the initial one, which bears witness of the catalyst robustness. Indeed, the accumulated TON in these ten runs was 36.5.

Encouraged by the robustness of the supported catalyst, a family of α , β -unsaturated aldehydes was submitted to the flow process with **3a** or **3b** as reaction partners (Scheme 5). To this end, a packed bed reactor was filled with catalyst **1c** (1.00 g, 0.41 mmol) and two channels were used to feed the reagents through the

system. Due to compatibility issues, the first contained a solution of **2** while the second had a mixture of hydroxylamine **3** and benzoic acid (**11d**); the use of a single syringe pump equipped with two syringe slots ensured that both flow rates were equal. For each experiment, 9.84 mmol of **2** were passed through the packed bed reactor, at a combined flow rate of 100 μ L min⁻¹. When the solutions of starting materials were consumed, the column was rinsed with CH₂Cl₂ to remove all organic products.

Table 2. Study of the catalyst recyclability.

Ph 2a +	Cbz N OH - H 3a	1c (20 mol %) PhCOOH (20 mol %) CH ₂ Cl ₂ , rt, 7 h	Cbz N-O Ph 4aa
Run	Conv. (%)	Yield (%)	ee (%)
1	98	73	94
2	97	79	95
3	97	89	95
4	97	80	96
5	96	71	95
6	97	68	96
7	97	65	96
8	96	72	96
9	92	64	96
10	91	69	96

With this sequential approach, up to ten different 5hydroxyisoxazolidines were prepared with excellent enantioselectivities and moderate to good yields. As shown in Scheme 5, cinnamaldehyde and its electron poor derivatives afforded the corresponding products in good yields and excellent ee's working at 100 µL min⁻¹. On the other hand, the slower kinetics observed for **2e** forced us to lower the flow rate to 50 μ L min⁻¹; under these conditions, even if the yields were not fully satisfactory, the enantioselectivities remained excellent. Overall, the accumulated TON in these flow processes was of 134. Remarkably, the same packed bed reactor was used for all the flow experiments (preliminary runs and scope), carried out within a period of 2 months without apparent decrease in performance.

Scheme 5. Set-up and results of the continuous flow reaction promoted by 1c.

The synthetic versatility of the products was demonstrated by taking the crude mixture from one of the reactions and submitting it to oxidation to furnish isoxazolidinone 12 (Scheme 6). Even more interestingly, this could be reduced to a β -amino acid in a continuous flow experiment carried out with a Hcube reactor (90 atm of H₂, 0.5 mL min⁻¹, 50 °C) that involved N-O bond reduction and hydrogenolysis of the Cbz protecting group. Remarkably, this allows the generation of enantioenriched β -amino acids in only three steps, two of which are carried out in a continuous flow manner. Moreover, the use of the Hcube enables to carry out the reduction without a bottle of gaseous hydrogen (it is generated in situ from water), which greatly improves the safety profile of the procedure.

Scheme 6. Derivatization of Product 4aa.

Conclusion

In summary, a solid-supported organocatalyst has been applied to the enantioselective domino reaction between α , β -unsaturated aldehydes and *N*-protected hydroxylamines in batch and flow. Immobilized diarylprolinol **1c**, has afforded the best results while proving remarkably stable under the reaction conditions. This has allowed to run ten consecutive cycles of the same reaction, providing the same enantioselectivity and without significant loss of yield. In addition, eleven flow experiments involving nine different substrates have been carried out over a period of 2 months with the same packed column. Finally, a sequence consisting of oxidation and continuous flow hydrogenation allowed the preparation of β -amino acids, thus proving the synthetic potential of this methodology.

Experimental Section

Preparation of immobilized 2,4-cis-diarylprolinols 1b,1c

A solution of the lactone 5^6 (1.377 g, 6.46 mmol) in dry THF (38 ml) under Ar was cooled to 0 °C and PhMgCl (2.0 M in THF, 6.5 ml, 12.92 mmol) was added dropwise. The mixture was stirred for 2 h (conversion was checked by TLC). Then, the reaction mixture was quenched with aq. sat. NH4Cl (50 mL), the layers were separated, the aqueous phase was extracted with TBME (3 x 40 mL) and dried over Na₂SO₄. Purification by flash column chromatography (Cy/EtOAc 80:20 - 70:30 - 65:35 - 60:40) gave 2.11 g of product **6** (88% yield).

tert-Butyl (2*S*,4*S*)-4-hydroxy-2-(hydroxydiphenylmethyl)pyrrolidine-1-carboxylate (6). White solid. Melting point: 197.3-199.5. R_f : 0.30 (Cy/EtOAc 60:40). $[\alpha]_{D^{25}} =$ +122.3 (c 1.00, DCM). ¹H NMR (400, CDCl₃): $\delta =$ 7.52-7.48 (m, 2H), 7.41-7.35 (m, 4H), 7.33-7.28 (m, 1H), 7.26 (-7.17 (m, 3H), 4.92 (d, J = 9.1 Hz, 1H), 4.54 (br s, 1H), 4.35 (br s, 1H), 4.20-3.70 (br s, 2H), 3.33 (br s, 1H), 2.30 (ddd, J == 14.6, 9.3, 7.6 Hz, 1H), 1.82 (d, J = 14.6 Hz, 1H), 1.14 (br s, 9H). ¹³C NMR (100.4, CDCl₃): $\delta =$ 154.8, 145.0, 144.7, 128.2 (2C), 127.8 (2C), 127.2, 127.1 (3C), 126.9 (2C), 81.4,

79.7, 70.1, 64.7, 57.1, 38.2, 27.9 (3C). **HRMS** (ESI+): calcd for C₂₂H₂₇NNaO₄ [M+Na]⁺: 392.1832, found: 392.1840.

A suspension of NaH (60% in mineral oil, 0.200 g, 5.0 mmol) in 9 mL of anhydrous DMF under N_2 was cooled to -25 °C (internal temperature) and a solution of alcohol **6** (0.924 g, 2.5 mmol) in 7 mL of DMF was added dropwise. The mixture was stirred at this temperature for 20 min and The mixture was stirred at this temperature for 20 min and then propargyl bromide (80% in toluene, 0.28 mL, 2.5 mmol) was added dropwise. The resulting mixture was stirred at 0 °C for 1 h and then brought to RT. When TLC analysis showed complete conversion of the starting material, 35 mL of NH₄Cl were added and it was extracted with EtOAc (3×60 mL). the combined organic phases were dried over Na₂SO₄ and concentrated in vacuo. Purification by flash column chromatography (Cy/EtOAc 90:10 to 60:40) gave the propargylated derivative 7 in 80% yield (0.668 g, 2.00 mmol) as a white solid.

(65,7aS)-1,1-Diphenyl-6-(prop-2-yn-1-yloxy)tetrahy-dro-1H,3H-pyrrolo[1,2-c]oxazol-3-one (7). White solid. Melting point: 140.0-141.8. R_c 0.27 (Cy/EtOAc 70:30). [a] $p^{25} = -209.8$ (c 1.00, DCM). ¹H NMR (400, CDCl₃): $\delta =$ 7.53-7.48 (m, 2H), 7.38-7.25 (m, 8H), 4.64 (dd, J = 9.0, 7.1Hz, 1H), 4.41 (qd, J = 5.9, 3.2 Hz, 1H), 4.04 (dd, J = 16.1, 2.4 Hz, 1H), 3.96 (dd, J = 16.1, 2.4 Hz, 1H), 3.89 (dd, J =12.6, 3.2 Hz, 1H), 3.30 (dd, J = 12.6, 5.9 Hz, 1H), 2.39 (d, J =12.6, 3.2 Hz, 1H), 3.00 (dd, J = 13.4, 7.1, 6.2 Hz, 1H), 1.42 (dddd, J = 13.5, 9.1, 5.4, 0.8 Hz, 1H). ¹³C NMR (125.0, CDCl₃): $\delta = 160.3, 143.2, 139.9, 128.6$ (2C), 128.4 (2C), 128.3, 127.8, 126.0 (2C), 125.7 (2C), 86.2, 79.0, 78.0, 74.9, 67.4, 56.3, 52.0, 35.5. HRMS (ESI+): calcd. for C₂₁H₁₉NNaO₃ [M+Na]⁺: 356.1257, found: 356.1251.

A solution of the oxazolidinone 7 (503 mg, 1.51 mmol) in EtOH (11 mL) was treated with a solution of KOH (423 mg, 7.54 mmol) in water (0.8 M). The mixture was heated at reflux overnight turning from a slurry to a clear yellowish solution. The next morning, TLC analysis (Cy/EA 50:50) solution. The next morning, TLC analysis (Cy/EA 50:50) shows that the starting material has disappeared, so the reaction mixture is concentrated in vacuo. The resulting slurry is diluted with water, extracted with EtOAc (3×25 mL), dried over Na₂SO₄ and evaporated. Purification by flash column chromatography gave 456 mg (1.51 mmol) of the amino alcohol **8** (98%).

Diphenyl((25,45)-4-(prop-2-yn-1-yloxy)pyrrolidin-2-yl)methanol (8). Colourless oil. $[a]_{p}^{25} = -44.5$ (*c* 1.00, DCM). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.62-7.56$ (m, 2H), 7.53-7.47 (m, 2H), 7.32-7.25 (m, 4H), 7.20-7.14 (m, 2H), 4.32 (dd, J = 8.2, 7.1 Hz, 1H), 4.23 (ddd, J = 6.1, 5.1, 3.7, 2.3 Hz, 1H), 4.15 (dd, J = 15.9, 2.4 Hz, 1H), 4.16 (ddd, J = 10.9, 2.3, 1.4 Hz, 1H), 4.08 (dd, J = 15.9, 2.4 Hz, 1H), 3.16 (ddd, J = 10.9, 2.3, 1.4 Hz, 1H), 3.04 (dd, J = 14.4, 8.2, 6.3 Hz, 1H), 1.80 (dddd, J = 14.1, 7.1, 3.7, 1.4 Hz, 1H). ¹³C NMR (100.4 MHz, CDCl₃): $\delta = 147.2, 145.4, 128.2 (2C), 128.0 (2C), 126.5, 126.4, 125.9 (2C), 125.5 (2C), 79.7, 77.6, 76.9, 74.2, 63.8, 55.8, 51.9, 32.6. HRMS (ESI+): calcd for C20H22NO2 [M+H]⁺: 308.1645, found: 308.1641.$ calcd for C20H22NO2 [M+H]+: 308.1645, found: 308.1641.

A solution of the amino alcohol **8** (250 mg, 0.813 mmol) in CH₂Cl₂ (8133 μ l) was cooled to 0 °C. Then, imidazole (166 mg, 2.440 mmol) and chlorotrimethylsilane (258 μ l, 2.033 mmol) were sequentially added. The solution was then allowed to reach 0 °C and stirred at this temperature for 3 h. allowed to reach 0 °C and sturred at this temperature for 3 h. Then, it was quenched with water and the aqueous layer was extracted with EtOAc (3 x 20 mL). The combined organic extracts were dried over Na²SO⁴ and concentrated under reduced pressure. Flash chromatography on silica gel with 2.5% Et₃N (Cy/EtOAc 50:50) afforded 282 mg of the silylated product **9** (91% yield, 0.813 mmol).

(25,4S)-2-(Diphenyl((trimethylsilyl)oxy)methyl)-4-(prop-2-yn-1-yloxy)pyrrolidine (9). Colourless oil. *R*: 0.42 (Cy/EtOAc 80:20). $[a]p^{25} = -50.0$ (*c* 1.00, DCM). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.51-7.47$ (m, 2H), 7.35-7.31 (m, 2H), 7.29-7.18 (m, 6H), 4.14 (dtd, *J* = 6.7, 5.2, 3.0 Hz, 1H), 3.98 (dd, *J* = 15.8, 2.4 Hz, 1H), 3.92 (dd, *J* = 15.8, 2.4

Hz, 1H), 3.89 (dd, J = 9.3, 6.9 Hz, 1H), 3.01 (ddd, J = 12.0, 3.1, 1.0 Hz, 1H), 2.94 (dd, J = 12.0, 5.6 Hz, 1H), 2.34 (t, J = 2.4 Hz, 1H), 1.82 (br s, 1H), 1.74 (dt, J = 13.5, 6.9 Hz, 1H), 1.58 (dddd, J = 13.5, 9.4, 4.9, 1.0 Hz, 1H), -0.08 (s, 9H). ¹³C NMR (100.4 MHz, CDCl₃): $\delta = 146.8$, 145.2, 128.7 (2C), 127.7 (2C), 127.6 (2C), 127.2 (2C), 127.1, 126.8, 82.4, 80.0, 78.6, 73.8, 65.8, 55.8, 53.2, 34.6, 2.1 (3C). HRMS (ESI+): calcd. for C₂₃H₃₀NO₂Si [M+H]⁺: 380.2040, found: 380 2050 found: 380.2050.

Azidomethylpolystyrene (f = 0.60, 5.90 g, 3.52 mmol) was suspended in DMF (53 ml) and THF (53 ml). Then, DIPEA (6.1 ml, 35.2 mmol) and copper(I) iodide (34 mg, 0.176 mmol) were added, followed by a solution of the alkyne **9** mmo1) were added, tollowed by a solution of the alkyne 9 (1.61 g, 4.23 mmol) in the same solvent mixture (via cannula). The resulting mixture was shaken overnight at 40 °C. The next morning, after checking a small aliquot by IR to confirm full conversion, the resin **1b** was filtered and washed with water, water/MeOH, MeOH, MeOH/CH₂Cl₂ and CH₂Cl₂. Then, it was dried overnight in the vacuum oven at 40 °C.

 $f_{\text{max}} = 0.49$; f = 0.49 (based on N Elemental Analysis). Complete functionalization.

A solution of the diphenylprolinol derivative **8** (350 mg, 1.139 mmol) in DCE (5.5 mL) under Ar was cooled to 0 °C and treated with 2,6-lutidine (1.05 mL, 9.11 mmol) and TBSOTf (1.05 mL, 4.55 mmol). Then, it was heated at reflux overnight under vigorous stirring. The next morning, the reaction mixture was quenched with sat. aq. NH₄Cl (25 mL) and the aqueous layer was extracted with CH₂Cl₂ (3 × 25 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash chromatography on silica gel with 2.5% Et₃N (Cy/EtOAc 90:10) gave silyl ether **10** in 63% yield (302 mg, 1.14 mmol). yield (302 mg, 1.14 mmol).

(2S,4S)-2-(((tert-Butyldimethylsilyl)oxy)diphenylme-

(2*S*,4*S*)-2-(((*tert*-Butyldimethylsilv])oxy)diphenylmethyl)-4-(prop-2-yn-1-yloxy)pyrrolidine (10). yellow oil. *R*₇: 0.28 (Cy/EtOAc 80:20). $[\alpha]_0^{25} = -33.3$ (*c* 1.00, DCM). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.61$ -7.55 (m, 2H), 7.38-7.32 (m, 2H), 7.32-7.22 (m, 6H), 4.13 (dtd, *J* = 6.8, 5.0, 3.2 Hz, 1H), 3.95 (dd, *J* = 15.8, 2.4 Hz, 1H), 3.89 (dd, *J* = 15.8, 2.4 Hz, 1H), 3.88 (dd, *J* = 9.5, 7.0 Hz, 1H), 2.99-2.89 (m, 2H), 2.34 (t, *J* = 2.4 Hz, 1H), 1.92 (br s, 1H), 1.77 (dt, *J* = 13.6, 6.9 Hz, 1H), 1.56 (ddd, *J* = 13.6, 9.7, 4.7 Hz, 1H), 0.99 (s, 9H), -0.12 (s, 3H), -0.51 (s, 3H). ¹³C NMR (100.4 MHz, CDCl₃): $\delta = 146.5$, 144.8, 129.5, 127.7 (2C), 127.6 (2C), 127.4 (2C), 127.3 (2C), 126.9, 82.2, 80.0, 78.5, 73.7, 66.1, 55.7, 53.2, 35.0, 26.3 (3C), 19.1, -2.5, -3.6. HRMS (ESI+): calcd for C₂₆H₃₆O₂ [M+H]⁺: 422.2510, found: 422.2513.

Azidomethylpolystyrene (f = 0.509, 6 g, 3.05 mmol) was suspended in DMF (46 ml) and THF (46 ml). Then, DIPEA (5.3 ml, 30.5 mmol) and copper(I) iodide (29 mg, 0.153 mmol) were added, followed by a solution of the alkyne (1.545 g, 3.66 mmol) in the same solvent mixture (via cannula). The resulting mixture was shaken overnight at 40 °C. The next morning, after checking a small aliquot by IR to confirm full conversion, the resin **1c** was filtered and washed with water water/MeOH MeOH/CH₂Cl₂ washed with water, water/MeOH, MeOH, MeOH/CH₂Cl₂ and CH₂Cl₂. Then, it was dried overnight in the vacuum oven at 40 °C.

 $f_{\text{max}} = 0.42$; f = 0.41 (based on N Elemental Analysis). Complete functionalization.

General Procedures for the Batch Experiments

Conditions A

To a 2 mL glass vial were sequentially added PS-catalyst 1c $(f = 0.41 \text{ mmol/g}, 0.01 \text{ mmol}, 23 \text{ mg}, 20 \text{ mol }\% \text{ loading}), 0.25 \text{ mL CHCl}_3 \text{ and } 11i (1.5 \text{ mg}, 20 \text{ mol }\%), followed by 2 (1 eq., 0.05 \text{ mmol}) and 3 (1.2 eq., 0.06 \text{ mmol}) at room$ temperature. The reaction mixture was shaken until TLC analysis showed consumption of the enal (for reaction times, see Scheme 4). Then, it was filtered and the resin beads were washed with DCM (5 x 0.25 mL). The solvent was concentrated under reduced pressure and the product was isolated after purification by column chromatography on silica gel with cyclohexane/ethyl acetate (EtOAc/c-Hex = 1:5) to yield 4.

Conditions B

To a 5 mL glass vial were sequentially added PS-catalyst 1c (f = 0.41 mmol/g, 0.1 mmol, 232 mg, 20 mol % loading), 2.5 mL CH₂Cl₂ and 11d (12 mg, 0.1mmol, 20 mol %), followed by 2 (1 eq., 0.5 mmol) and 3 (1.2 eq., 0.6 mmol) at room temperature. The reaction mixture was shaken until TLC analysis showed consumption of the enal (for reaction times, see Scheme 4). Then, it was filtered and the resin beads were washed with DCM (8 x 1.5 mL). The solvent was isolated after purification by column chromatography on silica gel with cyclohexane/ethyl acetate (EtOAc/c-Hex = 1:5) to yield 4.

General Procedure for the Flow Experiments

Using the set-up depicted in Scheme 5, the packed bed reactor (Omnifit glass column, 10 mm Ø) was filled with 1.0 g of catalyst 1c, which was swollen by pumping CH₂Cl₂ at 0.1 mL min⁻¹ for one hour. The reagents were then introduced in the system in two separate streams (50 μ L min⁻¹ each unless otherwise stated) using a dual syringe pump: (a) containing 2 (0.4 M, 1.0 eq) in 21.5 mL of CH₂Cl₂ and (b) containing a mixture of 3 (0.48 M, 1.2 eq.) and PhCOOH in 21.5 mL of CH₂Cl₂. When the solutions of reagents were consumed, the packed bed reactor was rinsed with CH₂Cl₂ at 0.1 mL min⁻¹ for 2 h. The collected outstream was concentrated under reduced pressure and purified by column chromatography on silica gel with cyclohexane/ethyl acetate (EtOAc/c-Hex 1:5) to yield the corresponding product 4.

Preparation of b-Amino Acid Hydrochloride 13

To a 25 mL round-bottom flask were sequentially added **4aa** (1.50 g, 5 mmol), *tert*-butanol (8 mL), H₂O (4 mL), 2-methylbut-2-ene (2 mL), KH₂PO₄ (1088 mg, 8 mmol), NaClO₂ (720 mg, 8 mmol). The reaction mixture was stirred at room temperature for 16 h and then it was washed with saturated Na₂SO₃ and concentrated under reduced pressure. The residue obtained was dissolved in MeOH (200 mL), filtered to remove insoluble material and circulated through the H-Cube at 0.5 mL min⁻¹ flow rate (90 atm, 50 °C). The outstream collected was concentrated in vacuo and the residue was washed with 2 M HCl in diethyl ether (10 mL), then with diethyl ether (5 x 10 mL), to give hydrochloride **13** in 67% yield (673 mg, 3.35 mmol).

Compound Characterization Data

Benzyl (3*S*,5*S*)-5-hydroxy-3-phenylisoxazolidine-2carboxylate (4aa).¹² ¹H NMR (400 MHz, CDCI₃) δ 7.37-7.17 (m, 10H), 5.91 (d, *J* = 4.4 Hz, 1H), 5.38 (t, *J* = 8.2 Hz, 1H), 5.17 (s, 2H), 2.79 (dd, *J*=12.6, 8.4 Hz, 1H), 2.30 (ddd, *J* = 12.6, 8.2, 4.5 Hz, 1H). ¹³C NMR (101 MHz, CDCI₃) δ 159.3, 141.4, 135.6, 128.6 (x2), 128.4 (x2), 128.1, 127.7 (x2), 127.4, 126.0 (x2), 98.8, 68.1, 61.3, 45.3. IR (neat): 3362, 3063, 3032, 2860,1707, 1496, 1453, 1390, 1301, 1238, 1027, 902, 754, 696 cm⁻¹. [α]p²⁵ = -29.5 (*c* = 1.0, CHCI₃). HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 13.2 min; minor isomer: t_R = 15.3 min.

tert-Butyl (35,55)-5-hydroxy-3-phenylisoxazolidine-2carboxylate (4ab).¹² ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 4.4 Hz, 4H), 7.26 (dd, J = 8.2, 4.5 Hz, 1H), 5.92 (d, J =4.0 Hz, 1H), 5.29 (dd, J = 8.9, 7.7 Hz, 1H), 2.76 (dd, J =12.5, 8.3 Hz, 1H), 2.33-2.21 (m, 1H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 142.1, 128.5 (x2), 127.2, 126.1 (x2), 98.6, 82.5, 61.4, 45.3, 28.1 (x3). IR (neat): 3347, 2977, 2933, 1703, 1456, 1367, 1346, 1316, 1247, 1162, 1070, 911, 848, 758, 697 cm⁻¹. [α]p²⁵ = -15.2 (*c* = 1.0, CHCl₃). HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 6.3 min; minor isomer: t_R = 7.5 min.

Benzyl (3*S*,5*S*)-3-(4-chlorophenyl)-5-hydroxyisoxazolidine-2-carboxylate (4ba). ¹H NMR (400 MHz, CDCI₃) δ 7.40-7.21 (m, 9H), 5.94-5.83 (m, 1H), 5.38 (t, *J* = 8.2 Hz, 1H), 5.21 (s, 2H), 2.80 (dd, *J* = 12.6, 8.4 Hz, 1H), 2.33-2.21 (m, 1H). ¹³C NMR (101 MHz, CDCI₃) δ 159-1, 139-9, 135.5, 133.2, 128.8 (x3), 128.4 (x2), 128.2, 127.8, 127.4 (x2), 98.7, 68.2, 60.8, 45.2. IR (neat): 3356, 3033, 2961, 1707, 1492, 1391, 1296, 1237, 1087, 1014, 903, 825, 736, 696 cm⁻¹. HRMS (ESI): m/z: [M+Na]⁺ (C₁₇H₁₆CINNaO₄), calcd.: 356.0660; found: 356.0660. [α]₂²⁵ = -33.2 (c = 1.0, CHCI₃). HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 14.911 min; minor isomer: t_R = 17.611 min.

tert-Butyl (3*S*,5*S*)-3-(4-chlorophenyl)-5-hydroxyisoxazolidine-2-carboxylate (4bb).¹² ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.22 (m, 4H), 5.91 (d, *J* = 4.4 Hz, 1H), 5.27 (t, *J* = 8.3 Hz, 1H), 2.76 (dd, *J* = 12.4, 8.3 Hz, 1H), 2.22 (ddd, *J* = 12.6, 8.5, 4.4 Hz, 1H), 1.43 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 158.7, 140.6, 133.1, 128.7 (x2), 127.5 (x2), 98.6, 82.8, 60.9, 45.3, 28.1 (x3). IR (neat): 3378, 2979, 2931, 2854, 1702, 1491, 1351, 1325, 1249, 1163, 1089, 1014, 956, 907, 847, 821, 769 cm⁻¹. [α]p²⁵ = -14.6 (*c* = 1.0, CHCl₃). HPLC (Daicel Chiralpak AD-H, hexane/i-PrOH = 98:2, flow rate 1.0 mL/min, λ = 210 nm): minor isomer: t_R = 22.3 min; major isomer: t_R = 24.7 min.

Benzyl (3S,5S)-3-(4-fluorophenyl)-5-hydroxyisoxazolidine-2-carboxylate (4ca). ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.15 (m, 7H), 7.00 (t, J = 8.7 Hz, 2H), 5.84 (d, J = 4.2Hz, 1H), 5.34 (t, J = 8.2 Hz, 1H), 5.17 (s, 2H), 2.76 (dd, J =12.6, 8.4 Hz, 1H), 2.24 (ddd, J = 12.6, 8.1, 4.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.1 (d, J = 245.8 Hz), 159.2, 137.1 (d, J = 3.1 Hz), 135.5, 128.4 (x2), 128.2, 127.8 (x2), 127.7 (x2, d, J = 8.0 Hz), 115.5 (x2, d, J = 21.6 Hz), 98.7, 68.2, 60.8, 45.3. ¹⁹F NMR (376 MHz, CDCl₃) δ –115.1. IR (neat): 3367 (s), 3035, 2962, 1709, 1605, 1509, 1454, 1390, 1297, 1224, 1070, 905, 835, 736, 697 cm⁻¹. HRMS (ESI): m/z: [M+Na]⁺ (C₁₇H₁₆FNNaO₄), calcd.: 340.0956; found: 340.0961. [α]p²⁵ = -33.2 (c = 1.0, CHCl₃). HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 210$ m): major isomer: t_R = 13.3 min; minor isomer: t_R = 15.8 min.

tert-Butyl (3*S*,5*S*)-3-(4-fluorophenyl)-5-hydroxyisoxazolidine-2-carboxylate (4cb). ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.26 (m, 2H), 7.10-6.99 (m, 2H), 5.93-5.82 (m, 1H), 5.29 (t, *J* = 8.3 Hz, 1H), 2.77 (dd, *J* = 12.5, 8.3 Hz, 1H), 2.26 (dddd, *J* = 12.6, 8.3, 4.4, 1.7 Hz, 1H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 162.1 (d, *J* = 245.41), 158.6, 137.8 (d, *J* = 3.2), 127.7 (x2, d, *J* = 8.1), 115.4 (x2, d, *J* = 21.5), 98.5, 82.6, 60.8, 45.4, 28.1 (x3). ¹⁹F NMR (376 MHz, CDCl₃) δ – 115.52. IR (neat): 3395, 2979, 2935, 1714, 1604, 1367, 1321, 1248, 1221, 1155, 1069, 910, 833, 766, 551 cm⁻¹. HRMS (ESI): m/z: [M+Na]⁺ (C_{14H18}FNO4Na), calcd.: 306.1112; found: 306.1112. [α] p^{25} = -10.7 (c = 1.0, CHCl₃). HPLC (Daicel Chiralpak AD-H, hexane/i-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 9.3 min; minor isomer: t_R = 11.3 min.

Benzyl (3*S*,5*S*)-5-hydroxy-3-(4-nitrophenyl)isoxazolidine-2-carboxylate (4da).¹² ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.7 Hz, 2H), 7.49 (d, *J* = 8.7 Hz, 2H), 7.37-7.16 (m, 5H), 5.94 (d, *J* = 4.2 Hz, 1H), 5.48 (t, *J* = 8.3 Hz, 1H), 5.18 (s, 2H), 2.87 (dd, *J* = 12.5, 8.5 Hz, 1H), 2.25 (ddd, *J* = 12.5, 8.2, 4.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.1, 148.6, 147.2, 135.1, 128.4 (x2), 128.3, 127.8 (x2), 126.8 (x2), 123.9 (x2), 98.7, 68.5, 60.8, 45.0. IR (neat): 3363, 2958, 2837, 1706, 1612, 1513, 1455, 1392, 1319, 1290, 1243, 1113, 1029, 903, 849, 747, 695 cm⁻¹. HRMS (ESI):

m/z: $[M+Na]^+$ (C₁₇H₁₆N₂NaO₆), calcd.: 367.0901; found: 367.0903. $[\alpha]_D^{25} = -40.5$ (c = 1.0, CHCl₃). HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, $\lambda = 210$ nm): minor isomer: t_R = 19.7 min; major isomer: t_R = 22.1 min.

tert-Butyl (3*S*,5*S*)-5-hydroxy-3-(4-nitrophenyl)isoxazolidine-2-carboxylate (4db).¹² ¹H NMR (400 MHz, CDCI₃) δ 8.22 (d, *J* = 8.8 Hz, 2H), 7.53 (d, *J* = 8.6 Hz, 2H), 5.94 (d, *J* = 4.3 Hz, 1H), 5.40 (t, *J* = 8.4 Hz, 1H), 2.85 (dd, *J* = 12.4, 8.4 Hz, 1H), 2.23 (ddd, *J* = 12.6, 8.5, 4.4 Hz, 1H), 1.44 (s, 9H). ¹³C NMR (101 MHz, CDCI₃) δ 158.6, 149.4, 147.25, 126.9 (x2), 123.9 (x2), 98.5, 83.3, 61.0, 45.1, 28.0 (x3). IR (neat): 3329, 2960, 2931, 2840, 1702, 1614, 1514, 1455, 1368, 1336, 1299, 1246, 159, 1088, 1064, 1032, 965, 913, 868, 835, 807 cm⁻¹. [α]p²⁵ = -26.9 (*c* = 1.0, CHCI₃). HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 m): minor isomer: t_R = 12.1 min; major isomer: t_R = 14.1 min.

Benzyl (3S,5S)-5-hydroxy-3-(4-methoxyphenyl)isoxazolidine-2-carboxylate (4ea). ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.17 (m, 7H), 6.86 (d, J = 8.7 Hz, 2H), 5.90 (d, J = 4.2Hz, 1H), 5.33 (t, J = 8.2 Hz, 1H), 5.17 (s, 2H), 3.79 (s, 3H), 2.75 (dd, J = 12.6, 8.3 Hz, 1H), 2.29 (ddd, J = 12.6, 8.3, 4.5Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 159.0, 135.7, 133.4, 128.4 (x2), 128.1, 127.7 (x2), 127.3 (x2), 114.0 (x2), 98.7, 68.0, 60.9, 55.3, 45.2. IR (neat): 3475, 3120, 2960, 2850, 1707, 1610, 1513, 1396, 1346, 1324, 1261, 1124, 1012, 962, 833, 758, 694, 518 cm⁻¹. HRMS (ESI): m/z: [M+Na]⁺ (Cl₈H₁9NNaO₅), calcd.: 352.1155; found: 352.1152. [α]p²⁵ = -51.7 (c = 1.0, CHCl₃). HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 85:15, flow rate 1.0 mL/min, $\lambda = 210$ nm): major isomer: t_R = 16.1 min; minor isomer: t_R = 19.8 min.

tert-Butyl (3*S*,5*S*)-5-hydroxy-3-(4-methoxyphenyl)isoxazolidine-2-carboxylate (4eb). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 5.93-5.82 (m, 1H), 5.23 (t, J = 8.2 Hz, 1H), 3.79 (s, 3H), 2.71 (dd, J = 12.5, 8.3 Hz, 1H), 2.26 (dddd, J = 12.6, 8.3, 4.5, 2.0 Hz, 1H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 158.7, 134.1, 127.4 (x2), 113.9 (x2), 98.6, 82.3, 60.9, 55.3, 45.3, 28.1 (x3). IR (neat): 3329, 2960, 2931, 1702, 1613, 1514, 1455, 1336, 1299, 1246, 1159, 1088, 1064, 1032, 965, 91, 807 cm⁻¹. HRMS (ESI): m/z: [M+Na]⁺ (C1₅H₂₁NNaO₅), calcd.: 318.1312; found: 318.1311. [a]p²⁵ = -33.8 (c = 1.0, CHCl₃). HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 210$ nm): major isomer: t_R = 9.1 min; minor isomer: t_R = 10.0 min.

Benzyl (3*S*,5*S*)-5-hydroxy-3-(2-nitrophenyl)isoxazolidine-2-carboxylate (4fa). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.79 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.65 (td, *J* = 7.8, 1.2 Hz, 1H), 7.49 – 7.41 (m, 1H), 7.35-7.20 (m, 5H), 6.09 (t, *J* = 7.8 Hz, 1H), 5.91 (d, *J* = 4.3 Hz, 1H), 5.24-5.15 (m, 2H), 3.17 (dd, *J* = 12.9, 8.6 Hz, 1H), 2.28-2.16 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 147.3, 137.7, 135.3, 134.1 (x2), 128.5 (x2), 128.3 (x2), 127.9, 127.8, 124.8, 98.9, 68.4, 58.7, 45.2. IR (neat): 3366, 3067, 3035, 2961, 1710, 1609, 1578, 1523, 1446, 1391, 1339, 1292, 1067, 907, 738, 676 cm⁻¹. HRMS (ESI): m/z: [M+Na]⁺ (C₁₇H₁₆N₂NaO₆), Calcd.: 367.0901. Found: 367.0910. [α]p²⁵ = +67.7 (*c* = 1.0, CHCl₃). HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 11.3 min; minor isomer: t_R = 14.7 min.

tert-Butyl (**3***S*,**5***S*)-**5**-hydroxy-**3**-(**2**-nitrophenyl)isoxazolidine-**2**-carboxylate (**4fb**). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.2 Hz, 1H), 7.70 (d, *J* = 7.8 Hz, 1H), 7.60-7.50 (m, 1H), 7.42-7.28 (m, 1H), 5.92-5.76 (m, 2H), 3.01 (dd, *J* = 12.7, 8.4 Hz, 1H), 2.10 (ddd, *J* = 7.9, 4.6, 2.1 Hz, 1H), 1.32 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 158.1, 147.6, 138.2, 133.9, 128.1(x2), 124.4, 98.8, 83.1, 58.4, 45.3, 28.0 (x3). IR (neat): 3348, 2977, 2927, 2854, 1707, 1345, 1244, 1138, 1066, 958, 913, 848, 788, 744 cm⁻¹. HRMS (ESI): m/z: [M+Na]⁺ (C₁₄H₁₈N₂NaO₆), calcd.: 333.1057; found: 333.1059. $[\alpha]_D^{25} = +83.4$ (c = 1.0, CHCl₃). HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 95:5, flow rate 1.0 mL/min, $\lambda = 210$ nm): minor isomer: $t_R = 19.0$ min; major isomer: $t_R = 20.2$ min.

Benzyl (3*S*,5*S*)-5-hydroxy-3-(2-methoxyphenyl)isoxazolidine-2-carboxylate (4ga). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.6 Hz, 1H), 7.32-7.18 (m, 6H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.86 (d, *J* = 8.2 Hz, 1H), 5.81 (s, 1H), 5.72 (t, *J* = 7.8 Hz, 1H), 5.19 (s, 2H), 3.80 (s, 3H), 2.89 (dd, *J* = 12.7, 8.4 Hz, 1H), 2.13 (ddd, *J* = 12.4, 7.2, 4.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 156.1, 135.9, 129.9, 128.3 (z), 128.2, 128.1, 127.7 (x2), 125.8, 120.6, 110.3, 98.8, 67.9, 56.8, 55.3, 44.2. IR (neat): 3360, 2960, 2838, 1707, 1601, 1491, 1460, 1389, 1339, 1285, 1239, 1068, 1025, 908, 751, 696 cm⁻¹. HRMS (ESI): m/z: [M+Na]⁺ (Cl₃H₁₉NNaO₅), calcd: 352.1155; found: 352.1154. [a]p²⁵ = -42.0 (*c* = 1.0, CHCl₃). HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 7.8 min; minor isomer: t_R = 13.2 min.

tert-Butyl (3*S*,5*S*)-5-hydroxy-3-(2-methoxyphenyl)isoxazolidine-2-carboxylate (4gb). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, J = 7.6, 1.5 Hz, 1H), 7.29-7.16 (m, 1H), 6.94 (td, J = 7.5, 0.9 Hz, 1H), 6.86 (dd, J = 8.2, 0.7 Hz, 1H), 5.84 (dd, J = 4.2, 2.8 Hz, 1H), 5.64 (t, J = 7.9 Hz, 1H), 3.84 (s, 3H), 2.85 (dd, J = 12.7, 8.4 Hz, 1H), 2.14-2.03 (m, 1H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 156.1, 130.6, 128.0, 126.0, 120.6, 110.2, 98.7, 82.1, 56.7, 55.3, 44.2, 28.1 (x3). IR (neat): 3356, 2976, 2930, 2850, 1703, 1602, 1491, 1461, 1348, 1315, 1239, 1160, 1066, 1027, 916, 848, 806, 751 cm⁻¹. HRMS (ESI): m/z: [M+Na]⁺ (Cl₃H₂1NNaO₅), calcd.: 318.1312; found: 318.1312. [α]p²⁵ = -22.0 (c = 1.0, CHCl₃). HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 210$ nm): major isomer: t_R = 7.9 min; minor isomer: t_R = 11.1 min.

(S)-3-Amino-3-phenylpropanoic acid hydrochloride (13).¹⁸ ¹H NMR (400 MHz, Deuterium Oxide) δ 7.38 (s, 5H), 4.69 (m, 5 H), 3.10 (dd, *J* = 17.2, 7.7 Hz, 1H), 2.98 (dd, *J* = 17.2, 6.6 Hz, 1H). ¹³C NMR (101 MHz, D₂O) δ 173.4, 135.1, 129.7, 129.4 (x2), 127.1 (x2), 51.5, 37.7. [α]D²⁵ = +2.8 (*c* = 0.28, H₂O).

Acknowledgements

Financial support from CERCA Programme/Generalitat de Catalunya, MINECO (CTQ2015-69136-R, AEI/MINECO/FEDER, UE and Severo Ochoa Excellence Accreditation 2014–2018, SEV-2013-0319) and the CELLEX Foundation [CELLEX-ICIQ High Throughput Experimentation (HTE) platform] is gratefully acknowledged.

References

- a) Asymmetric Organocatalysis: from Biomimetic Concepts to Applications in Asymmetric Synthesis (Eds.: A. Berkessel, H. Groeger) Wiley-VCH, **2005**; b) Enantioselective Organocatalysis: Reactions and Experimental Procedures (Eds.: P. I. Dalko) Wiley-VCH: Weinheim, **2007**; c) S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem. Rev. **2007**, 107, 5471–5569; d) A. G. Doyle, E. N. Jacobsen, Chem. Rev. **2007**, 107, 5713–5743; e) D. W. C. MacMillan, Nature **2008**, 455, 304-308; f) A. Dondoni, A. Massi, Angew. Chem., Int. Ed. **2008**, 47, 4638-4660.
- [2] a) C. Palomo, A. Mielgo, Angew. Chem., Int. Ed. 2006, 45, 7876-7880; b) J. M. Verkade, L. J. van Hemert, P. J. Quaedflieg, F. P. Rutjes, Chem. Soc. Rev. 2008, 37, 29-

41; c) A. Mielgo, C. Palomo, Chem. - Asian J. 2008, 3,
922-948; d) S. Bertelsen, K. A. Jørgensen, Chem. Soc. Rev. 2009, 38, 2178-2189; e) C. T. Wong, Tetrahedron 2009, 65, 7491-7497; f) K. L. Jensen, G. Dickmeiss, H. Jiang, Ł. Albrecht, K. A. Jørgensen, Acc. Chem. Res. 2011, 45, 248-264; g) C. M. Volla, I. Atodiresei, M. Rueping, Chem. Rev. 2013, 114, 2390-2431; h) B. S. Donslund, T. K. Johansen, P. H. Poulsen, K. S. Halskov, K. A. Jørgensen, Angew. Chem. Int. Ed. 2015, 54, 13860-13874; i) K. S. Halskov, B. S. Donslund, B. M. Paz, K. A. Jørgensen, Acc. Chem. Res. 2016, 49, 974-986; j) L. Klier, F. Tur, P. H. Poulsen, K. A. Jørgensen, Chem. Soc. Rev. 2017, 46, 1080-1102.

- [3] a) K. Patora-Komisarska, M. Benohoud, H. Ishikawa, D. Seebach, Y. Hayashi, *Helv. Chim. Acta* 2011, *94*, 719-745; b) J. Burés, A. Armstrong, D. G. Blackmond, *Acc. Chem. Res.* 2016, *49*, 214-222.
- [4] a) Chiral catalyst immobilization and recycling, (Eds.: D. E. De Vos, I. F. J. Vankelecom, P. A. Jacobs) Wiley-VCH, Weinheim; New York, 2000; b) M. Benaglia, A. Puglisi, F. Cozzi, Chem. Rev. 2003, 103, 3401-3430; c) M. Benaglia, New J. Chem. 2006, 30, 1525-1533; d) F. Cozzi, Adv. Synth. Catal. 2006, 348, 1367-1390; e) M. Gruttadauria, F. Giacalone, R. Noto, Chem. Soc. Rev. 2008, 37, 1666-1688; f) E. L. Margelefsky, R. K. Zeidan, M. E. Davis, Chem. Soc. Rev. 2008, 37, 1118-1126; g) Recoverable and recyclable catalysts, 1st ed. (Eds.: M. Benaglia) Wiley, Hoboken, N.J., 2009; h) A. F. Trindade, P. M. P. Gois, C. A. M. Afonso, Chem. Rev. 2009, 109, 418-514; i) T. E. Kristensen, T. Hansen, Eur. J. Org. Chem. 2010, 3179-3204; j) Polymeric chiral catalyst design and chiral polymer synthesis (Eds.: S. Itsuno) John Wiley & Sons, 2011.
- [5] a) P. Riente, C. Mendoza, M. A. Pericàs, J. Mater. Chem. 2011, 21, 7350-7355; b) E. Alza, S. Sayalero, X. C. Cambeiro, R. Martín-Rapún, P. O. Miranda, M. A. Pericàs, Synlett 2011, 464-468; c) X. Fan, S. Sayalero, M. A. Pericàs, Adv. Synth. Catal. 2012, 354, 2971-2976; d) X. Fan, C. Rodríguez-Escrich, S. Sayalero, M. A. Pericàs, Chem. - Eur. J. 2013, 19, 10814-10817; e) P. Llanes, C. Rodríguez-Escrich, S. Sayalero, M. A. Pericàs, Org. Lett. 2016, 18, 6292-6295.
- [6] a) M. M. Bowers-Nemia, M. M. Joullié, *Heterocycles* 1983, 20, 817–828; b) J. Seo, P. Martásek, L. J. Roman, R. B. Silverman, *Bioorg. Med. Chem.* 2007, 15, 1928–1938; c) I. Arenas, A. Ferrali, C. Rodríguez-Escrich, F. Bravo, M. A. Pericàs, *Adv. Synth. Catal.* 2017, 359, 2414-2424.
- [7] a) U. Chiacchio, A. Rescifina, A. Corsaro, V. Pistarà, G. Romeo, R. Romeo, *Tetrahedron: Asymmetry* 2000, 11, 2045-2048; b) M. P. Sibi, M. Liu, Org. Lett. 2001, 3, 4181-4184; c) H. S. Lee, J. S. Park, B. M. Kim, S. H. Gellman, J. Org. Chem. 2003, 68, 1575-1578; d) M. P. Sibi, N. Prabagaran, S. G. Ghorpade, C. P. Jasperse, J. Am. Chem. Soc. 2003, 125, 11796-11797; e) U. Chiacchio, E. Balestrieri, B. Macchi, D. Iannazzo, A. Piperno, A. Rescifina, A. Mastino, J. Med. Chem. 2005,

48, 1389-1394; f) U. Chiacchio, A. Rescifina, D. Iannazzo, A. Piperno, R. Romeo, L. Borrello, G. Romeo, J. Med. Chem. 2007, 50, 3747-3750; g) V. V. Pagar, R. S. Liu, Angew. Chem. Int. Ed. 2015, 54, 4923-4926; h) S. Diethelm, E. M. Carreira, J. Am. Chem. Soc. 2015, 137, 6084-6096; i) M. Berthet, T. Cheviet, G. Dujardin, I. Parrot, J. Martinez, Chem. Rev. 2016, 116, 15235-15283.

- [8] a) S. Tang, J. He, Y. Sun, L. He, X. She, J. Org. Chem.
 2010, 75, 1961-1966; b) A. P. Kozikowski, C. Yon-Yih,
 B. C. Wang, Z. B. Xu, Tetrahedron 1984, 40, 2345-2358.
- [9] a) B. Alcaide, P. Almendros, C. Aragoncillo, *Chem. Rev.* 2007, 107, 4437-4492; b) F. M. Cordero, F. Pisaneschi, A. Goti, J. Ollivier, J. Salaün, A. Brandi, *J. Am. Chem. Soc.* 2000, 122, 8075-8076; c) F. M. Cordero, M. Salvati, F. Pisaneschi, A. Brandi, *Eur. J. Org. Chem.* 2004, 2205-2213.
- [10] a) M. Liu, M. P. Sibi, *Tetrahedron* 2002, 58, 7991-8035; b) N. Sewald, *Angew. Chem. Int. Ed.* 2003, 42, 5794-5795; c) A. R. Minter, A. A. Fuller, A. K. Mapp, *J. Am. Chem. Soc.* 2003, 125, 6846-6847.
- [11] W. S. Jen, J. J. Wiener, D. W. MacMillan, J. Am. Chem. Soc. 2000, 122, 9874-9875.
- [12] a) I. Ibrahem, R. Rios, J. Vesely, G. L. Zhao, A. Córdova, *Chem. Commun.* 2007, 849-851; b) I. Ibrahem, R. Rios, J. Vesely, G. L. Zhao, A. Cordova, *Synthesis* 2008, 1153-1157.
- [13] Q. Y. Dou, Y. Q. Tu, Y. Zhang, J. M. Tian, F. M. Zhang,
 S. H. Wang, *Adv. Synth. Catal.* **2016**, *358*, 874-879.
- [14] O. V. Maltsev, A. S. Kucherenko, A. L. Chimishkyan, S. G. Zlotin, *Tetrahedron: Asymmetry* 2010, 21, 2659-2670.
- [15] a) A. Kirschning, W. Solodenko, K. Mennecke, *Chem. Eur. J.* 2006, *12*, 5972-5990; b) X. Y. Mak, P. Laurino, P. H. Seeberger, *Beilstein J. Org. Chem.* 2009, *5*, 19; c) T. Tsubogo, T. Ishiwata, S. Kobayashi, *Angew. Chem. Int. Ed.* 2013, *52*, 6590-6604; d) D. Zhao, K. Ding, *ACS Catal.* 2013, *3*, 928-944; e) I. Atodiresei, C. Vila, M. Rueping, *ACS Catal.* 2015, *5*, 1972-1985; f) C. Rodríguez-Escrich, M. A. Pericàs, *Eur. J. Org. Chem.* 2015, *2015*, 1173-1188; g) R. Porta, M. Benaglia, A. Puglisi, *Org. Process Res. Dev.* 2016, *20*, 2-25.
- [16] I. Sagamanova, C. Rodríguez-Escrich, I. Gábor Molnár, S. Sayalero, R. Gilmour, M. A. Pericàs, ACS Catal. 2015, 5, 6241-6248.
- [17] L. Hong, W. Sun, D. Yang, G. Li, R. Wang, Chem. Rev. 2016, 116, 4006-4123.
- [18] a) E. Forró, T. Paál, G. Tasnádi, F. Fülöp, Adv. Synth. Catal. 2006, 348, 917-923; b) O. Marianacci, G. Micheletti, L. Bernardi, F. Fini, M. Fochi, D. Pettersen, V. Sgarzani, A. Ricci, Chem. Eur. J. 2007, 13, 8338-8351; c) G. Tasnádi, E. Forró, F. Fülöp, Tetrahedron: Asymmetry 2008, 19, 2072-2077.

Supporting Information

Immobilization of *cis*-4-Hydroxydiphenylprolinol Silyl Ethers onto Polystyrene. Application in the Catalytic Enantioselective Synthesis of 5-Hydroxyisoxazolidines in Batch and Flow

Junshan Lai, Sonia Sayalero, Alessandro Ferrali, Laura Osorio-Planes,

Fernando Bravo, Carles Rodríguez-Escrich* and Miquel A. Pericàs*

crodriguez@iciq.es, mapericas@iciq.es

-Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007 Tarragona (Spain),

-Departament de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), 08028 Barcelona (Spain)

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

Table of Contents

1. General information		
2. Preparation of the 2,4- <i>cis</i> catalysts 1b and 1c		
3. Experimental procedures		
3.1 Optimization of reaction temperature	95	
3.2 Solvent screening	95	
3.3. PS-catalyst screening with $CHCl_3$ as solvent	96	
3.4. Acid co-catalyst screening with CHCl₃ as solvent	97	
3.5. Re-evaluation of reaction conditions with different PS-catalysts in $CHCl_3$	99	
3.6. Optimization of acid as co-catalyst when CH_2Cl_2 as solvent	100	
3.7. Re-evaluation of reaction conditions with different PS-catalysts in CH_2Cl_2	101	
3.8. General procedure for the gram scale experiment in batch	102	
3.9. General procedure for the scope of the reaction in batch	102	
3.10. Recycling experiments of the PS-Supported catalyst ${f 1c}$ in batch	103	
3.11. Parameter optimization for the flow experiment	103	
3.12. Continuous flow process	104	
3.13. Preparation of β -amino acid hydrochloride 13	105	
3.14. Comparative kinetic studies of catalysts 1c and 1d	106	
4. Compound characterization data		
5. References	116	
6. NMR spectra		
7. HPLC chromatograms		

1. General information

Unless otherwise noted, all reactions were conducted under air. All commercial reagents were used as received except cinnamaldehyde derivatives, that were purified by flash chromatography. Flash chromatography was carried out using 60 mesh silica gel and drypacked columns. Thin layer chromatography was carried out using Merck TLC Silicagel 60 F254 aluminum sheets. Components were visualized by UV light (λ = 254 nm) and stained with phosphomolybdic dip. NMR spectra were recorded at 298 K on a Bruker Avance 400 Ultrashield apparatus. ¹H NMR spectroscopy chemical shifts are quoted in ppm relative to tetramethylsilane (TMS). CDCl₃ was used as internal standard for ¹³C NMR spectra. Chemical shifts are given in ppm and coupling constants in Hz. IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer and are reported in wavenumbers (cm⁻¹). High performance liquid chromatography (HPLC) was performed on Agilent Technologies chromatographs (1100 and 1200 Series), using Chiralpak AD-H columns and guard columns. FAB mass spectra were obtained on a Fisons V6-Quattro instrument, ESI mass spectra were obtained on a Waters LCT Premier Instrument and CI and EI spectra were obtained on a Waters GCT spectrometer. Specific optical rotation measurements were carried out on a Jasco P-1030 polarimeter.

Catalysts **1b** and **1c** were prepared as described below (see Section 2) based on the protocol described in a previous paper.¹ Catalysts **1d**,² **1e**,³ **1f**² and **1g**¹ were prepared according to procedures previously reported by our laboratories. Catalyst loading was determined by elemental analysis: **1b** (f = 0.49 mmol g⁻¹); **1c** (f = 0.41 mmol g⁻¹); **1d** (f = 0.49 mmol g⁻¹); **1e** (f = 0.45 mmol g⁻¹); **1f** (f = 0.72 mmol g⁻¹).

2. Preparation of the 2,4-*cis* catalysts 1b and 1c

A solution of the lactone 5^1 (1.377 g, 6.46 mmol) in dry THF (38 ml) under Ar was cooled to 0 °C and PhMgCl (2.0 M in THF, 6.5 ml, 12.92 mmol) was added dropwise. The mixture was stirred for 2 h (conversion was checked by TLC). Then, the reaction mixture was quenched with aq. sat. NH₄Cl (50 mL), the layers were separated, the aqueous phase was extracted with TBME (3 x 40 mL) and dried over Na₂SO₄. Purification by flash column chromatography (Cy/EtOAc 80:20 - 70:30 - 65:35 - 60:40) gave 2.11 g of product **6** (88% yield).

tert-Butyl (2*S*,4*S*)-4-hydroxy-2-(hydroxydiphenylmethyl)pyrrolidine-1-carboxylate (6). White solid. Melting point: 197.3-199.5. *R*_f: 0.30 (Cy/EtOAc 60:40). $[\alpha]_D^{25}$ = +122.3 (*c* 1.00, DCM). ¹H NMR (400, CDCl₃): δ = 7.52-7.48 (m, 2H), 7.41-7.35 (m, 4H), 7.33-7.28 (m, 1H), 7.26-7.17 (m, 3H), 4.92 (d, *J* = 9.1 Hz, 1H), 4.54 (br s, 1H), 4.35 (br s, 1H), 4.20-3.70 (br s, 2H), 3.33 (br s,

1H), 2.30 (ddd, *J* = 14.6, 9.3, 7.6 Hz, 1H), 1.82 (d, *J* = 14.6 Hz, 1H), 1.14 (br s, 9H). ¹³C NMR (100.4, CDCl₃): δ = 154.8, 145.0, 144.7, 128.2 (2C), 127.8 (2C), 127.2, 127.1 (3C), 126.9 (2C), 81.4, 79.7, 70.1, 64.7, 57.1, 38.2, 27.9 (3C). HRMS (ESI+): calcd for C₂₂H₂₇NNaO₄ [M+Na]⁺: 392.1832, found: 392.1840.

A suspension of NaH (60% in mineral oil, 0.200 g, 5.0 mmol) in 9 mL of anhydrous DMF under N₂ was cooled to -25 °C (internal temperature) and a solution of alcohol 6 (0.924 g, 2.5 mmol) in 7 mL of DMF was added dropwise. The mixture was stirred at this temperature for 20 min and then propargyl bromide (80% in toluene, 0.28 mL, 2.5 mmol) was added dropwise. The resulting mixture was stirred at 0 °C for 1 h and then brought to RT. When TLC analysis showed complete conversion of the starting material, 35 mL of NH₄Cl were added and it was extracted with EtOAc (3×60 mL). the combined organic phases were dried over Na₂SO₄ and concentrated in vacuo. Purification by flash column chromatography (Cy/EtOAc 90:10 to 60:40) gave the propargylated derivative 7 in 80% yield (0.668 g, 2.00 mmol) as a white solid. (6S,7aS)-1,1-Diphenyl-6-(prop-2-yn-1-yloxy)tetrahydro-1H,3H-pyrrolo[1,2-c]oxazol-3-one (7). White solid. Melting point: 140.0-141.8. *R*_f: 0.27 (Cy/EtOAc 70:30). [α]_D²⁵ = -209.8 (*c* 1.00, DCM). ¹H NMR (400, CDCl₃): δ = 7.53-7.48 (m, 2H), 7.38-7.25 (m, 8H), 4.64 (dd, J = 9.0, 7.1 Hz, 1H), 4.41 (qd, J = 5.9, 3.2 Hz, 1H), 4.04 (dd, J = 16.1, 2.4 Hz, 1H), 3.96 (dd, J = 16.1, 2.4 Hz, 1H), 3.89 (dd, J = 12.6, 3.2 Hz, 1H), 3.30 (dd, J = 12.6, 5.9 Hz, 1H), 2.39 (t, J = 2.4 Hz, 1H), 2.09 (ddd, J = 13.4, 7.1, 6.2 Hz, 1H), 1.42 (dddd, J = 13.5, 9.1, 5.4, 0.8 Hz, 1H). ¹³C NMR (125.0, $CDCl_3$): $\delta = 160.3, 143.2, 139.9, 128.6 (2C), 128.4 (2C), 128.3, 127.8, 126.0 (2C), 125.7 (2C), 128.4 (2C), 12$ 86.2, 79.0, 78.0, 74.9, 67.4, 56.3, 52.0, 35.5. HRMS (ESI+): calcd. for C₂₁H₁₉NNaO₃ [M+Na]⁺: 356.1257, found: 356.1251.

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

<u>NOTE</u>: if more equivalents of NaH are used or higher temperatures are reached the corresponding allene **7'** can be generated in significant amounts. Characterization for this allene is as follows:

 $(6S,7aS)-6-((2\lambda^{5}-Propa-1,2-dien-1-yl)oxy)-1,1-diphenyltetrahydro-1H,3H-pyrrolo[1,2-c]oxazol-3-one (7'). White solid. Melting point: 127.8-129.2.$ *R_f*: $0.40 (Cy/EtOAc 70:30). [<math>\alpha$] $_{D}^{25}$ = -207.6 (*c* 1.00, DCM). ¹H NMR (400, CDCl₃): δ = 7.55-7.48 (m, 2H), 7.40-7.26 (m, 8H), 6.53 (t, *J* = 6.0 Hz, 1H), 5.44 (dd, *J* = 8.2, 6.0 Hz, 1H), 5.35 (dd, *J* = 8.2, 6.0 Hz, 1H), 4.64 (dd, *J* = 9.2, 7.2 Hz, 1H), 4.39 (qd, *J* = 5.9, 2.6 Hz, 1H), 3.95 (dd, *J* = 13.0, 2.6 Hz, 1H), 3.26 (dd, *J* = 13.0, 5.9 Hz, 1H), 2.13 (dt, *J* = 13.9, 6.9 Hz, 1H), 1.52 (dddd, *J* = 14.1, 9.2, 5.0, 0.8 Hz, 1H). ¹³C NMR (125.0, CDCl₃): δ = 201.0, 160.1, 143.1, 139.9, 128.6 (2C), 128.4 (2C), 128.3, 127.8, 125.9 (2C), 125.6 (2C), 120.1, 91.0, 86.1, 77.7, 67.5, 52.7, 35.7. HRMS (ESI+): calcd for C₂₁H₁₉NNaO₃ [M+Na]⁺: 356.1257, found: 356.1258.

A solution of the oxazolidinone **7** (503 mg, 1.51 mmol) in EtOH (11 mL) was treated with a solution of KOH (423 mg, 7.54 mmol) in water (0.8 M). The mixture was heated at reflux overnight turning from a slurry to a clear yellowish solution. The next morning, TLC analysis (Cy/EA 50:50) shows that the starting material has disappeared, so the reaction mixture is concentrated in vacuo. The resulting slurry is diluted with water, extracted with EtOAc (3 × 25 mL), dried over Na₂SO₄ and evaporated. Purification by flash column chromatography gave 456 mg (1.51 mmol) of the amino alcohol **8** (98%).

Diphenyl((2*S*,4*S*)-4-(prop-2-yn-1-yloxy)pyrrolidin-2-yl)methanol (8). Colourless oil. $[\alpha]_D^{25} =$ -44.5 (*c* 1.00, DCM). ¹H NMR (400 MHz, CDCl₃): $\delta =$ 7.62-7.56 (m, 2H), 7.53-7.47 (m, 2H), 7.32-7.25 (m, 4H), 7.20-7.14 (m, 2H), 4.32 (dd, *J* = 8.2, 7.1 Hz, 1H), 4.23 (dddd, *J* = 6.1, 5.1,

3.7, 2.3 Hz, 1H), 4.15 (dd, J = 15.9, 2.4 Hz, 1H), 4.08 (dd, J = 15.9, 2.4 Hz, 1H), 3.16 (ddd, J = 10.9, 2.3, 1.4 Hz, 1H), 3.04 (dd, J = 10.9, 5.1 Hz, 1H), 2.38 (t, J = 2.4 Hz, 1H), 1.90 (ddd, J = 14.4, 8.2, 6.3 Hz, 1H), 1.80 (dddd, J = 14.1, 7.1, 3.7, 1.4 Hz, 1H). ¹³C NMR (100.4 MHz, CDCl₃): $\delta = 147.2$, 145.4, 128.2 (2C), 128.0 (2C), 126.5, 126.4, 125.9 (2C), 125.5 (2C), 79.7, 77.6, 76.9, 74.2, 63.8, 55.8, 51.9, 32.6. HRMS (ESI+): calcd for C₂₀H₂₂NO₂ [M+H]⁺: 308.1645, found: 308.1641.

A solution of the amino alcohol **8** (250 mg, 0.813 mmol) in CH₂Cl₂ (8133 μ l) was cooled to 0 °C. Then, imidazole (166 mg, 2.440 mmol) and chlorotrimethylsilane (258 μ l, 2.033 mmol) were sequentially added. The solution was then allowed to reach 0 °C and stirred at this temperature for 3 h. Then, it was quenched with water and the aqueous layer was extracted with EtOAc (3 x 20 mL). The combined organic extracts were dried over Na²SO⁴ and concentrated under reduced pressure. Flash chromatography on silica gel with 2.5% Et₃N (Cy/EtOAc 50:50) afforded 282 mg of the silylated product **9** (91% yield, 0.813 mmol).

(2*S*,4*S*)-2-(Diphenyl((trimethylsilyl)oxy)methyl)-4-(prop-2-yn-1-yloxy)pyrrolidine (9). Colourless oil. *R*_f: 0.42 (Cy/EtOAc 80:20). $[\alpha]_{D}^{25} = -50.0$ (*c* 1.00, DCM). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.51-7.47$ (m, 2H), 7.35-7.31 (m, 2H), 7.29-7.18 (m, 6H), 4.14 (dtd, *J* = 6.7, 5.2, 3.0 Hz, 1H), 3.98 (dd, *J* = 15.8, 2.4 Hz, 1H), 3.92 (dd, *J* = 15.8, 2.4 Hz, 1H), 3.89 (dd, *J* = 9.3, 6.9 Hz, 1H), 3.01 (ddd, *J* = 12.0, 3.1, 1.0 Hz, 1H), 2.94 (dd, *J* = 12.0, 5.6 Hz, 1H), 2.34 (t, *J* = 2.4 Hz, 1H), 1.82 (br s, 1H), 1.74 (dt, *J* = 13.5, 6.9 Hz, 1H), 1.58 (dddd, *J* = 13.5, 9.4, 4.9, 1.0 Hz, 1H), -0.08 (s, 9H). ¹³C NMR (100.4 MHz, CDCl₃): $\delta = 146.8$, 145.2, 128.7 (2C), 127.7 (2C), 127.6 (2C), 127.2 (2C), 127.1, 126.8, 82.4, 80.0, 78.6, 73.8, 65.8, 55.8, 53.2, 34.6, 2.1 (3C). HRMS (ESI+): calcd. for C₂₃H₃₀NO₂Si [M+H]⁺: 380.2040, found: 380.2050.

Azidomethylpolystyrene (f = 0.60, 5.90 g, 3.52 mmol) was suspended in DMF (53 ml) and THF (53 ml). Then, DIPEA (6.1 ml, 35.2 mmol) and copper(I) iodide (34 mg, 0.176 mmol) were added, followed by a solution of the alkyne **9** (1.61 g, 4.23 mmol) in the same solvent mixture (via cannula). The resulting mixture was shaken overnight at 40 °C. The next morning, after checking a small aliquot by IR to confirm full conversion, the resin **1b** was filtered and washed with water, water/MeOH, MeOH, MeOH/CH₂Cl₂ and CH₂Cl₂. Then, it was dried overnight in the vacuum oven at 40 °C.

 $f_{\text{max}} = 0.49$; f = 0.49 (based on N Elemental Analysis). Complete functionalization.

A solution of the diphenylprolinol derivative **8** (350 mg, 1.139 mmol) in DCE (5.5 mL) under Ar was cooled to 0 °C and treated with 2,6-lutidine (1.05 mL, 9.11 mmol) and TBSOTf (1.05 mL, 4.55 mmol). Then, it was heated at reflux overnight under vigorous stirring. The next morning, the reaction mixture was quenched with sat. aq. NH₄Cl (25 mL) and the aqueous layer was extracted with CH_2Cl_2 (3 × 25 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash chromatography on silica gel with 2.5% Et₃N (Cy/EtOAc 90:10) gave silyl ether **10** in 63% yield (302 mg, 1.14 mmol).

(2*S*,4*S*)-2-(((*tert*-Butyldimethylsilyl)oxy)diphenylmethyl)-4-(prop-2-yn-1-yloxy)pyrrolidine (10).
yellow oil. *R_f*: 0.28 (Cy/EtOAc 80:20). [α]_D²⁵ = -33.3 (*c* 1.00, DCM). ¹H NMR (400 MHz, CDCl₃):
δ = 7.61-7.55 (m, 2H), 7.38-7.32 (m, 2H), 7.32-7.22 (m, 6H), 4.13 (dtd, *J* = 6.8, 5.0, 3.2 Hz, 1H),
3.95 (dd, *J* = 15.8, 2.4 Hz, 1H), 3.89 (dd, *J* = 15.8, 2.4 Hz, 1H), 3.88 (dd, *J* = 9.5, 7.0 Hz, 1H),

2.99-2.89 (m, 2H), 2.34 (t, J = 2.4 Hz, 1H), 1.92 (br s, 1H), 1.77 (dt, J = 13.6, 6.9 Hz, 1H), 1.56 (ddd, J = 13.6, 9.7, 4.7 Hz, 1H), 0.99 (s, 9H), -0.12 (s, 3H), -0.51 (s, 3H). ¹³**C** NMR (100.4 MHz, CDCl₃): δ = 146.5, 144.8, 129.5, 127.7 (2C), 127.6 (2C), 127.4 (2C), 127.3 (2C), 126.9, 82.2, 80.0, 78.5, 73.7, 66.1, 55.7, 53.2, 35.0, 26.3 (3C), 19.1, -2.5, -3.6. HRMS (ESI+): calcd for C₂₆H₃₆O₂ [M+H]⁺: 422.2510, found: 422.2513.

Azidomethylpolystyrene (f = 0.509, 6 g, 3.05 mmol) was suspended in DMF (46 ml) and THF (46 ml). Then, DIPEA (5.3 ml, 30.5 mmol) and copper(I) iodide (29 mg, 0.153 mmol) were added, followed by a solution of alkyne **10** (1.545 g, 3.66 mmol) in the same solvent mixture (via cannula). The resulting mixture was shaken overnight at 40 °C. The next morning, after checking a small aliquot by IR to confirm full conversion, the resin **1c** was filtered and washed with water, water/MeOH, MeOH, MeOH/CH₂Cl₂ and CH₂Cl₂. Then, it was dried overnight in the vacuum oven at 40 °C.

 $f_{\text{max}} = 0.42$; f = 0.41 (based on N Elemental Analysis). Complete functionalization.
```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

3. Experimental procedures

3.1. Optimization of reaction temperature

To a 2 mL glass vial were sequentially added PS-catalyst **1b** (f = 0.49 mmol/g, 21 mg, 20 mol % loading) and 0.25 mL CHCl₃, followed by cinnamaldehyde **2a** (6.7 mg, 0.05 mmol) and **3a** (10 mg, 0.06 mmol) at the indicated reaction temperature. The reaction mixture was shaken until TLC analysis showed consumption of the enal. Then, it was filtered and the resin beads were washed with DCM (5 x 0.25 mL). The solvent was concentrated under reduced pressure. Conversion and yield were determined by ¹H NMR using mesitylene as an internal standard.

Table S1. Optimization of reaction temperature

Temperature	Conversion (%)	Yield	Time (h)	ee (%)
60	99	70	6	74
rt	99	73	6	92
0	100	68	23	92

^a Reaction conditions: **2a** (6.7 mg, 0.05 mmol, 1 eq.), **3a** (10 mg, 0.6 mmol, 1.2 eq.) PScat. **1b** (21 mg, 20 mol %), CHCl₃ (0.25 mL). Conversion and yield determined by ¹H NMR using mesitylene as an internal standard.

3.2. Solvent screening

To a 2 mL glass vial were sequentially added PS-catalyst **1b** (f = 0.49 mmol/g, 0.01mmol, 21 mg, 20 mol % loading) and 0.25 mL of the solvent indicated, followed by cinnamaldehyde **2a**

(6.7 mg, 0.05 mmol) and **3a** (10 mg, 0.06 mmol) at room temperature. The reaction mixture was shaken until TLC analysis showed consumption of the enal. Then, it was filtered and the resin beads were washed with DCM (5 x 0.25 mL). The solvent was concentrated under reduced pressure. Conversion and yield were determined by ¹H NMR using mesitylene as an internal standard.

Entry	Solvent	Conversion (%)	Yield (%)	Time	ee (%)
1	CHCl₃	99	76	6	90
2	DCM	96	72	6	88
3	CH₃CN	75	71	30	86
4	DMF	0	0	30	_
5	EtOH	47	28	30	90
6	toluene	94	74	16	92

Table S2. Solvent screening

^{*a*} Reaction conditions: **2a** (6.7 mg, 0.05 mmol, 1 eq.), **3a** (10 mg, 0.06 mmol, 1.2 eq.) PS-cat. **1b** (21 mg, 20 mol %), solvent (0.25 mL), rt. Conversion and yield determined by ¹H NMR using mesitylene as an internal standard.

3.3. PS-catalyst screening with CHCl₃ as solvent

To a 2 mL glass vial were sequentially added indicated PS-catalyst (20 mol % loading) and 0.25 mL CHCl₃, followed by cinnamaldehyde **2a** (6.7 mg, 0.05 mmol) and **3a** (10 mg, 0.06 mmol) at room temperature. The reaction mixture was shaken until TLC analysis showed consumption of the enal. Then, it was filtered and the resin beads were washed with DCM (5 x 0.25 mL). The solvent was concentrated under reduced pressure. Conversion and yield were determined by ¹H NMR using mesitylene as an internal standard.

Entry	Cat. ^b	Conversion (%)	Yield (%)	Time (h)	ee (%)
1	1a	99	65	6	89
2	1b	99	80	6	90
3	1c	100	76	7	95
4	1d	98	71	7	92
5	1e	100	74	18	76
6	1f	97	68	18	95
8	1g	98	70	6	93

Table S3. PS-catalyst screening with $CHCl_3$ as solvent

^a Reaction conditions: **2a** (6.7 mg, 0.05 mmol, 1 eq.), **3a** (10 mg, 0.06 mmol, 1.2 eq.) PS-cat. (20 mol % loading), CHCl₃ (0.25 mL), rt. Conversion and yield determined by ¹H NMR using mesitylene as an internal standard. ^b **1b** (f = 0.49 mmol/g); **1c** (f = 0.41 mmol/g); **1d** (f = 0.49 mmol/g); **1e** (f = 0.45 mmol/g); **1f** (f = 0.72 mmol/g).

3.4. Acid co-catalyst screening with CHCl₃ as solvent

To a 2 mL glass vial were sequentially added PS-catalyst **1c** (f = 0.41 mmol/g, 0.01mmol, 23 mg, 20 mol % loading), 0.25 mL CHCl₃ and the indicated acid co-catalyst **11** (20 mol %), followed by cinnamaldehyde **2a** (6.7 mg, 0.05 mmol) and **3a** (10 mg, 0.06 mmol) at room temperature. The reaction mixture was shaken until TLC analysis showed consumption of the enal. Then, it was filtered and the resin beads were washed with DCM (5 x 0.25 mL). The solvent was concentrated under reduced pressure. Conversion and yield were determined by ¹H NMR using mesitylene as an internal standard.

Entry	Acid	Time (h) ee (
1	11a	48	_
2	11b	48	_
3	11c	6	98
4	11d	6	96
5	11e	6	93
6	11f	6	95
7	11g	6	97
8	11h	6	91
9	11 i	6	>99
10	11 j	6	92

Table S4. Acid co-catalyst screening with CHCl₃ as solvent

11	-	30	93

^a Reaction conditions: **2a** (6.7 mg, 0.05 mmol, 1 eq.), **3a** (10 mg, 0.06 mmol, 1.2 eq.) PS-cat. **1c** (23 mg, 20 mol %), acid (20 mol %), $CHCl_3$ (0.25 mL), rt. Conversion and yield determined by ¹H NMR using mesitylene as an internal standard.

3.5. Re-evaluation of reaction conditions with different PS-catalysts in CHCl₃

To a 2 mL glass vial were sequentially added indicated PS-catalyst, 0.25 mL CHCl₃ and **11**i, followed by cinnamaldehyde **2a** (6.7 mg, 0.05 mmol) and **3a** (10 mg, 0.06 mmol) at room temperature. The reaction mixture was shaken until TLC analysis showed consumption of the enal. Then, it was filtered and the resin beads were washed with DCM (5 x 0.25 mL). The solvent was concentrated under reduced pressure. Conversion and yield were determined by ¹H NMR using mesitylene as an internal standard.

Entry	PS-cat.	5i (x mol%)	Time (h)	ee (%)
1	1c	-	>30	92
2	1c	5	15	93
3	1c	10	15	96
4	1c	20	6	>99
5	1b	20	6	95
6	1d	20	6	95
7	1f	20	18	99

Table S5. Re-evaluation of reaction conditions with different PS-catalysts in CHCl₃

^a Reaction conditions: **2a** (6.7 mg, 0.05 mmol, 1 eq.), **3a** (10 mg, 0.06 mmol, 1.2 eq.) PS-cat. (20 mol %), **11i** (x mol %), CHCl₃ (0.25 mL), rt. Conversion and yield determined by ¹H NMR using mesitylene as an internal standard.

3.6. Acid co-catalyst screening with CH₂Cl₂ as solvent

To a 2 mL glass vial were sequentially added PS-catalyst **1c** (f = 0.41 mmol/g, 0.01mmol, 23 mg, 20 mol % loading), 0.25 mL CH₂Cl₂ and the indicated co-catalyst acid (20 mol %), followed by cinnamaldehyde **2a** (6.7 mg, 0.05 mmol) and **3a** (10 mg, 0.06 mmol) at the indicated temperature. The reaction mixture was shaken until TLC analysis showed consumption of the enal. Then, it was filtered and the resin beads were washed with DCM (5 x 0.25 mL). The solvent was concentrated under reduced pressure. Conversion and yield were determined by ¹H NMR using mesitylene as an internal standard.

	Entry	Temp (°C)	Acid	Time (h)	Conv (%)	ee (%)
_	1	rt	11d	7	98	97
	2	rt	11i	7	97	97
	3	rt	11k	7	99	93
	4	rt	11	7	95	94
	5	rt	_	24	82	95
	6	0	11d	24	98	98
	7	40	11d	7	95	0

Table S6. Acid co-catalyst screening with CH₂Cl₂ as solvent

^a Reaction conditions: **2a** (6.7 mg, 0.05 mmol, 1 eq.), **3a** (10 mg, 0.6 mmol, 1.2 eq.) PS-cat. **1c** (21 mg, 20 mol %), acid (20 mol %), CH_2Cl_2 (0.25 mL). Conversion and yield determined by ¹H NMR using mesitylene as an internal standard.

3.7. Re-evaluation of reaction conditions with different PS-catalysts in CH₂Cl₂

To a 2 mL glass vial were sequentially added the indicated catalyst, 0.25 mL CH_2CI_2 and PhCOOH (1.2 mg, 20 mol %), followed by cinnamaldehyde **2a** (6.7 mg, 0.05 mmol) and **3a** (10 mg, 0.06 mmol) at room temperature. The reaction mixture was shaken until TLC analysis showed consumption of the enal. Then, it was filtered and the resin beads were washed with DCM (5 x 0.25 mL). The solvent was concentrated under reduced pressure. Conversion and yield were determined by ¹H NMR using mesitylene as an internal standard.

Entry	Cat.	Conversion (%)	NMR yield (%)	ee (%)
1	1b	96	81	89
2	1c	97	79	97
3	1d	98	74	90
4	1f	96	72	97
5	1g	97	76	99

Table S7. Re-evaluation of reaction conditions with different PS-catalysts in CH₂Cl₂

^a Reaction conditions: **2a** (6.7 mg, 0.05 mmol, 1 eq.), **3a** (10 mg, 0.06 mmol, 1.2 eq.) PS-cat. (20 mol %), PhCOOH (5-20 mol%), CH₂Cl₂ (0.25 mL), 7 h, rt.

3.8. General procedure for the gram scale experiment in batch

To a 50 mL round-bottom flask were sequentially added PS-catalyst **1c** (f = 0.41 mmol/g, 1 mmol, 2.32 g, 20 mol% loading), 25 mL CH₂Cl₂ and PhCOOH (122 mg, 1 mmol, 20 mol%), followed by cinnamaldehyde **2a** (670 mg, 5 mmol) and **3a** (1.0 g, 6 mmol) at room temperature. The reaction mixture was shaken overnight. Then, it was filtered and the resin beads were washed with DCM (8 x 10 mL). The solvent was concentrated under reduced pressure and the product was isolated after purification by column chromatography on silica gel with cyclohexane/ethyl acetate (EtOAc/*c*-Hex = 1:5) to yield **4aa** (65%, 972 mg).

3.9. General procedure for the scope of the reaction in batch

Conditions A: To a 2 mL glass vial were sequentially added PS-catalyst **1c** (f = 0.41 mmol/g, 0.01 mmol, 23 mg, 20 mol % loading), 0.25 mL CHCl₃ and **11i** (1.5 mg, 20 mol %), followed by cinnamaldehyde **2** (1 eq., 0.05 mmol) and **3** (1.2 eq., 0.06 mmol) at room temperature. The reaction mixture was shaken until TLC analysis showed consumption of the enal. Then, it was filtered and the resin beads were washed with DCM (5 x 0.25 mL). The solvent was concentrated in vacuo and the product was isolated after purification by column chromatography on silica gel with cyclohexane/ethyl acetate (EtOAc/*c*-Hex = 1:5) to yield **4**. **Conditions B:** To a 5 mL glass vial were sequentially added PS-catalyst **1c** (f = 0.41 mmol/g, 0.1 mmol, 232 mg, 20 mol % loading), 2.5 mL CH₂Cl₂ and **11d** (12 mg, 0.1mmol, 20 mol %), followed by cinnamaldehyde **2** (1 eq., 0.5 mmol) and **3** (1.2 eq., 0.6 mmol) at room temperature. The reaction mixture was shaken until TLC analysis showed consumption of the enal. Then, it was filtered and the resin beads were sequentially added PS-catalyst **1c** (f = 0.41 mmol/g, 0.1 mmol, 232 mg, 20 mol % loading), 2.5 mL CH₂Cl₂ and **11d** (12 mg, 0.1mmol, 20 mol %), followed by cinnamaldehyde **2** (1 eq., 0.5 mmol) and **3** (1.2 eq., 0.6 mmol) at room temperature. The reaction mixture was shaken until TLC analysis showed consumption of the enal. Then, it was filtered and the resin beads were washed with DCM (8 x 1.5 mL). The solvent was concentrated in vacuo and the product was isolated after purification by column chromatography on silica gel with cyclohexane/ethyl acetate (EtOAc/*c*-Hex = 1:5) to yield **4**.

3.10. Recycling experiments of the PS-Supported catalyst 1c in batch

To a 5 mL glass vial were sequentially added cinnamaldehyde **2a** (67 mg, 0.5 mmol), **3a** (100 mg, 0.6 mmol), PS-catalyst **1c** (f = 0.41 mmol/g, 0.1 mmol, 232 mg, 20 mol % loading), PhCOOH (12 mg, 20 mol%) and 2.5 mL CH₂Cl₂ at room temperature. The reaction mixture was shaken at room temperature for 7 hours. Then, it was filtered and the resin beads were washed with DCM (8 x 1.5 mL). The solvent was concentrated under reduced pressure and the product was isolated after purification by column chromatography on silica gel with cyclohexane/ethyl acetate (EtOAc/*c*-Hex = 1:5) to yield **4aa**.

Run	Conversion (%)	Yield (%)	ee (%)
1	98	73	94
2	97	79	94
3	97	89	95
4	97	80	96
5	96	71	95
6	97	68	96
7	97	65	96
8	96	72	96
9	92	64	96
10	91	69	96

Table S8. Recycling experiments in batch

Reaction condition: **2a** (67 mg, 0.5mmol, 1 eq.), **3a** (100 mg, 0.6 mmol, 1.2 eq.) PS-cat. **1c** (232 mg, 20 mol %), PhCOOH (12 mg, 20 mol%), CH₂Cl₂ (2.5 mL), rt, 7 h. Isolated yield.

3.11. Parameter optimization for the flow experiment

The amount of catalyst **1c** indicated was placed in a glass Omnifit column (10 mm \emptyset). A stream of CH₂Cl₂ was passed for one hour at 0.1 mL min⁻¹. The reagents were then introduced in the system in two separate streams using a dual syringe pump: (a) containing **2a** (0.4 M in CH₂Cl₂, 1.0 eq) and (b)

containing a mixture of **3a** (1.2 eq.) and the amount of PhCOOH indicated in CH_2Cl_2 (0.48 M of **3a**). When the flow finished the packed bed reactor was rinsed with CH_2Cl_2 at 0.1 mL min⁻¹ for 2 h. The collected outstream was concentrated under reduced pressure and purified by column chromatography on silica gel with cyclohexane/ethyl acetate (EtOAc/*c*-Hex = 1:5) to yield **4aa**.

Table S9. Parameter optimization for the flow experiment

Amount of 2a	Flow rate (µL min ⁻¹)	11d (eq.)	Cat. 1c (g, mmol)	Conversion (%)	Yield (%)	ee (%)
0.2 M (4.8 mmol)	100	0.5	0.5, 0.21	68	47	95
0.2 M (2.4 mmol)	100	0.5	0.8, 0.33	84	58	96
0.2 M (2.4 mmol)	50	0.5	0.8, 0.33	95	77	96
0.1 M (2.4 mmol)	100	0.5	0.8, 0.33	76	50	95
0.2 M (2.4 mmol)	100	1	0.8, 0.33	87	72	96
0.2 M (2.4 mmol)	100	1	1.0, 0.41	95	75	95
0.2 M (8.2 mmol)	100	1	1.0, 0.41	81	67	95

Reaction conditions: 2a (1 eq.), 3a (1.2 eq.) PS-cat. 1c (f = 0.41 mmol/g), PhCOOH, CH₂Cl₂, rt. Isolated yield.

3.12. Continuous flow process

Using the same set-up depicted above, the packed bed reactor (Omnifit glass column, 10 mm Ø) was filled with 1.0 g of catalyst **1c**, which was swollen by pumping CH₂Cl₂ at 0.1 mL min⁻¹ for one hour. The reagents were then introduced in the system in two separate streams (50 µL min⁻¹ each unless otherwise stated) using a dual syringe pump: (a) containing **2** (0.4 M, 1.0 eq) in 21.5 mL of CH₂Cl₂ and (b) containing a mixture of **3** (0.48 M, 1.2 eq.) and PhCOOH in 21.5 mL of CH₂Cl₂. When the solutions of reagents were consumed, the packed bed reactor was rinsed with CH₂Cl₂ at 0.1 mL min⁻¹ for 2 h. The collected outstream was concentrated under reduced pressure and purified by column chromatography on silica gel with cyclohexane/ethyl acetate (EtOAc/*c*-Hex = 1:5) to yield the corresponding product **4**.

3.13. Preparation of β -amino acid hydrochloride 13

To a 25 mL round-bottomed flask were sequentially added **4aa** (1.50 g, 5 mmol), *tert*-butanol (8 mL), H₂O (4 mL), 2-methylbut-2-ene (2 mL), KH₂PO₄ (1088 mg, 8 mmol), NaClO₂ (720 mg, 8 mmol). The reaction mixture was stirred at room temperature for 16 h and then it was washed with saturated Na₂SO₃ and concentrated under reduced pressure. The residue obtained was dissolved in MeOH (200 mL), filtered to remove insoluble material and circulated through the H-Cube at 0.5 mL min⁻¹ flow rate (90 atm, 50 °C). The outstream collected was concentrated in vacuo and the residue was washed with 2 M HCl in diethyl ether (10 mL), then with diethyl ether (5 x 10 mL), to give hydrochloride **13** in 67% yield (673 mg, 3.35 mmol).

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```


3.14. Comparative kinetic studies of catalysts 1c and 1d

Reactions were run in CDCl₃ in an NMR tube according to the procedure described in Section 3.9 of this Supporting Information (using mesitylene as internal standard).

4. Compound characterization data

Benzyl (3S,5S)-5-hydroxy-3-phenylisoxazolidine-2-carboxylate⁵

¹H NMR (400 MHz, CDCl₃) δ 7.37-7.17 (m, 10H), 5.91 (d, *J* = 4.4 Hz, 1H), 5.38 (t, *J* = 8.2 Hz, 1H), 5.17 (s, 2H), 2.79 (dd, *J* = 12.6, 8.4 Hz, 1H), 2.30 (ddd, *J* = 12.6, 8.2, 4.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 159.3, 141.4, 135.6, 128.6 (x2), 128.4 (x2), 128.1, 127.7 (x2), 127.4, 126.0 (x2), 98.8, 68.1, 61.3, 45.3.

IR (neat): 3362, 3063, 3032, 2860,1707, 1496, 1453, 1390, 1301, 1238, 1027, 902, 754, 696 cm⁻¹.

 $[\alpha]_D^{25} = -29.5$ (*c* = 1.0, CHCl₃).

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 13.2 min; minor isomer: t_R = 15.3 min.

tert-Butyl (3S,5S)-5-hydroxy-3-phenylisoxazolidine-2-carboxylate⁵

¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 4.4 Hz, 4H), 7.26 (dd, *J* = 8.2, 4.5 Hz, 1H), 5.92 (d, *J* = 4.0 Hz, 1H), 5.29 (dd, *J* = 8.9, 7.7 Hz, 1H), 2.76 (dd, *J* = 12.5, 8.3 Hz, 1H), 2.33-2.21 (m, 1H), 1.42 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 158.8, 142.1, 128.5 (x2), 127.2, 126.1 (x2), 98.6, 82.5, 61.4, 45.3, 28.1 (x3).

IR (neat): 3347, 2977, 2933, 1703, 1456, 1367, 1346, 1316, 1247, 1162, 1070, 911, 848, 758, 697 cm⁻¹.

 $[\alpha]_{D}^{25} = -15.2$ (*c* = 1.0, CHCl₃).

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer:

 $t_R = 6.3$ min; minor isomer: $t_R = 7.5$ min.

Benzyl (35,55)-3-(4-chlorophenyl)-5-hydroxyisoxazolidine-2-carboxylate

¹H NMR (400 MHz, CDCl₃) δ 7.40-7.21 (m, 9H), 5.94-5.83 (m, 1H), 5.38 (t, *J* = 8.2 Hz, 1H), 5.21 (s, 2H), 2.80 (dd, *J* = 12.6, 8.4 Hz, 1H), 2.33-2.21 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 159.1, 139.9, 135.5, 133.2, 128.8 (x3), 128.4 (x2), 128.2, 127.8, 127.4 (x2), 98.7, 68.2, 60.8, 45.2.

IR (neat): 3356, 3033, 2961, 1707, 1492, 1391, 1296, 1237, 1087, 1014, 903, 825, 736, 696 cm⁻¹

HRMS (ESI): m/z: [M+Na]⁺ (C₁₇H₁₆ClNNaO₄), calcd.: 356.0660; found: 356.0660.

 $[\alpha]_D^{25} = -33.2$ (c = 1.0, CHCl₃).

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 14.911 min; minor isomer: t_R = 17.611 min.

tert-Butyl (35,55)-3-(4-chlorophenyl)-5-hydroxyisoxazolidine-2-carboxylate⁵

¹H NMR (400 MHz, CDCl₃) δ 7.36-7.22 (m, 4H), 5.91 (d, *J* = 4.4 Hz, 1H), 5.27 (t, *J* = 8.3 Hz, 1H), 2.76 (dd, *J* = 12.4, 8.3 Hz, 1H), 2.22 (ddd, *J* = 12.6, 8.5, 4.4 Hz, 1H), 1.43 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 158.7, 140.6, 133.1, 128.7 (x2), 127.5 (x2), 98.6, 82.8, 60.9, 45.3, 28.1 (x3).

IR (neat): 3378, 2979, 2931, 2854, 1702, 1491, 1351, 1325, 1249, 1163, 1089, 1014, 956, 907, 847, 821, 769 cm⁻¹.

 $[\alpha]_D^{25} = -14.6$ (*c* = 1.0, CHCl₃).

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 98:2, flow rate 1.0 mL/min, λ = 210 nm): minor isomer:

 t_R = 22.3 min; major isomer: t_R = 24.7 min.

Benzyl (35,55)-3-(4-fluorophenyl)-5-hydroxyisoxazolidine-2-carboxylate

¹H NMR (400 MHz, CDCl₃) δ 7.35-7.15 (m, 7H), 7.00 (t, *J* = 8.7 Hz, 2H), 5.84 (d, *J* = 4.2 Hz, 1H), 5.34 (t, *J* = 8.2 Hz, 1H), 5.17 (s, 2H), 2.76 (dd, *J* = 12.6, 8.4 Hz, 1H), 2.24 (ddd, *J* = 12.6, 8.1, 4.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 162.1 (d, *J* = 245.8 Hz), 159.2, 137.1 (d, *J* = 3.1 Hz), 135.5, 128.4 (x2), 128.2, 127.8 (x2), 127.7 (x2, d, *J* = 8.0 Hz), 115.5 (x2, d, *J* = 21.6 Hz), 98.7, 68.2, 60.8, 45.3.

¹⁹F NMR (376 MHz, CDCl₃) δ –115.1.

IR (neat): 3367 (s), 3035, 2962, 1709, 1605, 1509, 1454, 1390, 1297, 1224, 1070, 905, 835, 736, 697 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₁₇H₁₆FNNaO₄), calcd.: 340.0956; found: 340.0961.

 $[\alpha]_D^{25} = -33.2$ (c = 1.0, CHCl₃).

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 13.3 min; minor isomer: t_R = 15.8 min.

tert-Butyl (35,55)-3-(4-fluorophenyl)-5-hydroxyisoxazolidine-2-carboxylate

¹H NMR (400 MHz, CDCl₃) δ 7.37-7.26 (m, 2H), 7.10-6.99 (m, 2H), 5.93-5.82 (m, 1H), 5.29 (t, J = 8.3 Hz, 1H), 2.77 (dd, J = 12.5, 8.3 Hz, 1H), 2.26 (dddd, J = 12.6, 8.3, 4.4, 1.7 Hz, 1H), 1.45 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 162.1 (d, *J* = 245.41), 158.6, 137.8 (d, *J* = 3.2), 127.7 (x2, d, *J* = 8.1), 115.4 (x2, d, *J* = 21.5), 98.5, 82.6, 60.8, 45.4, 28.1 (x3).

¹⁹F NMR (376 MHz, CDCl₃) δ –115.52.

IR (neat): 3395, 2979, 2935, 1714, 1604, 1367, 1321, 1248, 1221, 1155, 1069, 910, 833, 766, 551 cm⁻¹

HRMS (ESI): m/z: [M+Na]⁺ (C₁₄H₁₈FNO₄Na), calcd.: 306.1112; found: 306.1112.

 $[\alpha]_D^{25} = -10.7$ (c = 1.0, CHCl₃).

HPLC (Daicel Chiralpak AD-H, hexane/i-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 9.3 min; minor isomer: t_R = 11.3 min.

Benzyl (35,55)-5-hydroxy-3-(4-nitrophenyl)isoxazolidine-2-carboxylate⁵

¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.7 Hz, 2H), 7.49 (d, *J* = 8.7 Hz, 2H), 7.37-7.16 (m, 5H), 5.94 (d, *J* = 4.2 Hz, 1H), 5.48 (t, *J* = 8.3 Hz, 1H), 5.18 (s, 2H), 2.87 (dd, *J* = 12.5, 8.5 Hz, 1H), 2.25 (ddd, *J* = 12.5, 8.2, 4.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 159.1, 148.6, 147.2, 135.1, 128.4 (x2), 128.3, 127.8 (x2), 126.8 (x2), 123.9 (x2), 98.7, 68.5, 60.8, 45.0.

IR (neat): 3363, 2958, 2837, 1706, 1612, 1513, 1455, 1392, 1319, 1290, 1243, 1113, 1029, 903, 849, 747, 695 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₁₇H₁₆N₂NaO₆), calcd.: 367.0901; found: 367.0903.

 $[\alpha]_D^{25} = -40.5$ (*c* = 1.0, CHCl₃).

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): minor isomer: t_R = 19.7 min; major isomer: t_R = 22.1 min.

tert-Butyl (35,55)-5-hydroxy-3-(4-nitrophenyl)isoxazolidine-2-carboxylate⁵

¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.8 Hz, 2H), 7.53 (d, *J* = 8.6 Hz, 2H), 5.94 (d, *J* = 4.3 Hz, 1H), 5.40 (t, *J* = 8.4 Hz, 1H), 2.85 (dd, *J* = 12.4, 8.4 Hz, 1H), 2.23 (ddd, *J* = 12.6, 8.5, 4.4 Hz, 1H), 1.44 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 158.6, 149.4, 147.25, 126.9 (x2), 123.9 (x2), 98.5, 83.3, 61.0, 45.1, 28.0 (x3).

IR (neat): 3329, 2960, 2931, 2840, 1702, 1614, 1514, 1455, 1368, 1336, 1299, 1246, 1159, 1088, 1064, 1032, 965, 913, 868, 835, 807 cm⁻¹.

 $[\alpha]_D^{25} = -26.9$ (*c* = 1.0, CHCl₃).

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): minor isomer: t_R = 12.1 min; major isomer: t_R = 14.1 min.

Benzyl (3S,5S)-5-hydroxy-3-(4-methoxyphenyl)isoxazolidine-2-carboxylate

¹H NMR (400 MHz, CDCl₃) δ 7.35-7.17 (m, 7H), 6.86 (d, *J* = 8.7 Hz, 2H), 5.90 (d, *J* = 4.2 Hz, 1H), 5.33 (t, *J* = 8.2 Hz, 1H), 5.17 (s, 2H), 3.79 (s, 3H), 2.75 (dd, *J* = 12.6, 8.3 Hz, 1H), 2.29 (ddd, *J* = 12.6, 8.3, 4.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 159.2, 159.0, 135.7, 133.4, 128.4 (x2), 128.1, 127.7 (x2), 127.3 (x2), 114.0 (x2), 98.7, 68.0, 60.9, 55.3, 45.2.

IR (neat): 3475, 3120, 2960, 2850, 1707, 1610, 1513, 1396, 1346, 1324, 1261, 1124, 1012, 962, 833, 758, 694, 518 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₁₈H₁₉NNaO₅), calcd.: 352.1155; found: 352.1152.

 $[\alpha]_{D}^{25} = -51.7$ (*c* = 1.0, CHCl₃).

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 85:15, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 16.1 min; minor isomer: t_R = 19.8 min.

tert-Butyl (35,55)-5-hydroxy-3-(4-methoxyphenyl)isoxazolidine-2-carboxylate

¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 8.6 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 5.93-5.82 (m, 1H), 5.23 (t, *J* = 8.2 Hz, 1H), 3.79 (s, 3H), 2.71 (dd, *J* = 12.5, 8.3 Hz, 1H), 2.26 (dddd, *J* = 12.6, 8.3, 4.5, 2.0 Hz, 1H), 1.42 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 158.8, 158.7, 134.1, 127.4 (x2), 113.9 (x2), 98.6, 82.3, 60.9, 55.3, 45.3, 28.1 (x3).

IR (neat): 3329, 2960, 2931, 1702, 1613, 1514, 1455, 1336, 1299, 1246, 1159, 1088, 1064, 1032, 965, 91, 807 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₁₅H₂₁NNaO₅), calcd.: 318.1312; found: 318.1311.

 $[\alpha]_{D}^{25} = -33.8$ (*c* = 1.0, CHCl₃).

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 9.1 min; minor isomer: t_R = 10.0 min.

Benzyl (35,55)-5-hydroxy-3-(2-nitrophenyl)isoxazolidine-2-carboxylate

¹H NMR (400 MHz, CDCl₃) δ 8.04 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.79 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.65 (td, *J* = 7.8, 1.2 Hz, 1H), 7.49 – 7.41 (m, 1H), 7.35-7.20 (m, 5H), 6.09 (t, *J* = 7.8 Hz, 1H), 5.91 (d, *J* = 4.3 Hz, 1H), 5.24-5.15 (m, 2H), 3.17 (dd, *J* = 12.9, 8.6 Hz, 1H), 2.28-2.16 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 147.3, 137.7, 135.3, 134.1 (x2), 128.5 (x2), 128.3 (x2), 127.9, 127.8, 124.8, 98.9, 68.4, 58.7, 45.2.

IR (neat): 3366, 3067, 3035, 2961, 1710, 1609, 1578, 1523, 1446, 1391, 1339, 1292, 1067, 907, 738, 676 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₁₇H₁₆N₂NaO₆), Calcd.: 367.0901. Found: 367.0910.

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

 $[\alpha]_D^{25} = +67.7 (c = 1.0, CHCl_3).$

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 11.3 min; minor isomer: t_R = 14.7 min.

tert-Butyl (35,55)-5-hydroxy-3-(2-nitrophenyl)isoxazolidine-2-carboxylate

¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.2 Hz, 1H), 7.70 (d, *J* = 7.8 Hz, 1H), 7.60-7.50 (m, 1H), 7.42-7.28 (m, 1H), 5.92-5.76 (m, 2H), 3.01 (dd, *J* = 12.7, 8.4 Hz, 1H), 2.10 (ddd, *J* = 7.9, 4.6, 2.1 Hz, 1H), 1.32 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 158.1, 147.6, 138.2, 133.9, 128.1(x2), 124.4, 98.8, 83.1, 58.4, 45.3, 28.0 (x3).

IR (neat): 3348, 2977, 2927, 2854, 1707, 1345, 1244, 1138, 1066, 958, 913, 848, 788, 744 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₁₄H₁₈N₂NaO₆), calcd.: 333.1057; found: 333.1059.

 $[\alpha]_{D}^{25} = +83.4$ (*c* = 1.0, CHCl₃).

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 95:5, flow rate 1.0 mL/min, λ = 210 nm): minor isomer: t_R = 19.0 min; major isomer: t_R = 20.2 min.

Benzyl (35,55)-5-hydroxy-3-(2-methoxyphenyl)isoxazolidine-2-carboxylate

¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.6 Hz, 1H), 7.32-7.18 (m, 6H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.86 (d, *J* = 8.2 Hz, 1H), 5.81 (s, 1H), 5.72 (t, *J* = 7.8 Hz, 1H), 5.19 (s, 2H), 3.80 (s, 3H), 2.89 (dd, *J* = 12.7, 8.4 Hz, 1H), 2.13 (ddd, *J* = 12.4, 7.2, 4.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 159.3, 156.1, 135.9, 129.9, 128.3 (x2), 128.2, 128.1, 127.7 (x2), 125.8, 120.6, 110.3, 98.8, 67.9, 56.8, 55.3, 44.2.

IR (neat): 3360, 2960, 2838, 1707, 1601, 1491, 1460, 1389, 1339, 1285, 1239, 1068, 1025, 908, 751, 696 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₁₈H₁₉NNaO₅), calcd.: 352.1155; found: 352.1154.

 $[\alpha]_{D}^{25} = -42.0$ (*c* = 1.0, CHCl₃).

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 7.8 min; minor isomer: t_R = 13.2 min.

tert-Butyl (35,55)-5-hydroxy-3-(2-methoxyphenyl)isoxazolidine-2-carboxylate

¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.29-7.16 (m, 1H), 6.94 (td, *J* = 7.5, 0.9 Hz, 1H), 6.86 (dd, *J* = 8.2, 0.7 Hz, 1H), 5.84 (dd, *J* = 4.2, 2.8 Hz, 1H), 5.64 (t, *J* = 7.9 Hz, 1H), 3.84 (s, 3H), 2.85 (dd, *J* = 12.7, 8.4 Hz, 1H), 2.14-2.03 (m, 1H), 1.43 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 158.8, 156.1, 130.6, 128.0, 126.0, 120.6, 110.2, 98.7, 82.1, 56.7, 55.3, 44.2, 28.1 (x3).

IR (neat): 3356, 2976, 2930, 2850, 1703, 1602, 1491, 1461, 1348, 1315, 1239, 1160, 1066, 1027, 916, 848, 806, 751 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₁₅H₂₁NNaO₅), calcd.: 318.1312; found: 318.1312.

 $[\alpha]_{D}^{25} = -22.0 \ (c = 1.0, \ CHCl_{3}).$

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 7.9 min; minor isomer: t_R = 11.1 min.

Benzyl (35,55)-5-hydroxy-3-(p-tolyl)isoxazolidine-2-carboxylate

¹H NMR (400 MHz, CDCl₃) δ 7.30–7.16 (m, 7H), 7.11 (d, J = 7.8 Hz, 2H), 5.89 (d, J = 4.3 Hz, 1H), 5.38 – 5.29 (m, 1H), 5.20 – 5.08 (m, 2H), 2.80 – 2.68 (m, 1H), 2.33 – 2.21 (m, 4H).
¹³C NMR (101 MHz, CDCl₃) δ 159.3, 138.4, 137.0, 135.6, 129.2 (x2), 128.3 (x2), 128.0, 127.6 (x2), 125.9 (x2), 98.7, 68.0, 61.1, 45.1, 20.9.

IR (neat): 3363, 3062, 3032, 2860, 1708, 1515, 1454, 1390, 1337, 1302, 1237, 1068, 906, 806, 731, 696 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₁₈H₁₉NNaO₄), Calcd.: 336.1206. Found: 336.1198.

 $[\alpha]_D^{25} = -34.5$ (*c* = 1.0, CHCl₃).

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 11.5 min; minor isomer: t_R = 15.6 min.

(S)-3-Amino-3-phenylpropanoic acid hydrochloride⁶

¹H NMR (400 MHz, Deuterium Oxide) δ 7.38 (s, 5H), 4.69 (m, 5 H), 3.10 (dd, J = 17.2, 7.7 Hz, 1H), 2.98 (dd, J = 17.2, 6.6 Hz, 1H).

¹³C NMR (101 MHz, D2O) δ 173.4, 135.1, 129.7, 129.4 (x2), 127.1 (x2), 51.5, 37.7.

 $[\alpha]_D^{25} = +2.8 (c = 0.28, H_2O)$. Lit.: +3.0^{6a} (c = 0.28, H_2O), +3.0^{6b} (c = 0.47, H_2O) and +4.0^{6c} (c = 0.3, H_2O).

5. References

[1] I. Arenas, A. Ferrali, C. Rodríguez-Escrich, F. Bravo, M. A. Pericàs, *Adv. Synth. Catal.* **2017**, *359*, 2414.

[2] X. Fan, S. Sayalero, M. A. Pericàs, Adv. Synth. Catal. 2012, 354, 2971-2976.

[3] I. Sagamanova, C. Rodríguez-Escrich, I. Gábor Molnár, S. Sayalero, R. Gilmour, M. A. Pericàs, *ACS Catal.* **2015**, *5*, 6241-6248.

[4] P. Llanes, C. Rodríguez-Escrich, S. Sayalero, M. A. Pericàs, Org. Lett. 2016, 18, 6292-6295.

[5] a) I. Ibrahem, R. Rios, J. Vesely, G. L. Zhao, A. Córdova, *Chem. Commun.* 2007, 849-851; b) I.
Ibrahem, R. Rios, J. Vesely, G. L. Zhao, A. Cordova, *Synthesis* 2008, 1153-1157.

[6] a) E. Forró, T. Paál, G. Tasnádi, F. Fülöp, *Adv. Synth. Catal.* 2006, *348*, 917-923; b) O. Marianacci,
G. Micheletti, L. Bernardi, F. Fini, M. Fochi, D. Pettersen, V. Sgarzani, A. Ricci, *Chem. Eur. J.* 2007, *13*, 8338-8351; c) G. Tasnádi, E. Forró, F. Fülöp, *Tetrahedron: Asymmetry* 2008, *19*, 2072-2077.

6. NMR spectra 160 150 140 HO 130 120 ÓН Boc th0 6 00 1.254 2.03 4.08 1.09 3.38 1.107 1.00-1.05-1.91-9.39-8.0 2.5 2.0 1.0 0.0 7.5 6.5 5.5 4.0 3.5 3.0 1.5 0.5 7.0 6.0 5.0 4.5 -154,77 -144,96 128.18 127.79 127.17 127.07 127.07 × 73.37 × 79.70 × 79.70 × 79.70 × 79.70 × 79.70 × 79.70 × 79.70 × 79.70 × 79.70 × 79.70 × 79.70 -38.22 -27.95 HO 15000 ÓН Boc 0000 6 5000 0000 5000 0000

100

70

80

60 50

40 30 20

10

6

190 180

170 160 150 140 130 120 110

122

123

130
Junshan Lai

210 230 730 180 170 160 150 140 120 120 110 130 90 90 70 60 30 40 33 20 10 0 -10 [1 (qu)]

134

135

Junshan Lai

137

Chapter III

Continuous Flow Preparation of Enantiomerically Pure BINOL(s) by Acylative Kinetic Resolution

3.1. Introduction

Enantiopure 1,1'-binaphthol (BINOL) and its derivative are probably the most versatile building blocks for the preparation of chiral catalysts, including Brønsted/Lewis acid/base catalysts.¹⁴¹

Although the development of the asymmetric oxidative dimerization of naphthyl derivatives has experienced a significant progress in recent years,¹⁴² the kinetic resolution (KR) of racemic biaryl derivatives (and, in particular, of unsubstituted BINOL) continues to be the main entrance to the ever growing family of 1,1'-binaphthols and derivatives.^{141,143} Within this approach, the acylative KR of 1,1'-

¹⁴¹ For some reviews on the use of BINOL-based, chiral biaryl ligands in asymmetric catalysis, see: a) Noyori,
R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345-350; b) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029-3070;
c) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155-3212; d) Xia, Q. H.; Ge, H. Q.; Ye, C. P.;
Liu, Z. M.; Su, K. X. Chem. Rev. 2005, 105, 1603-1662; e) Shibasaki, M.; Matsunaga, S. Chem. Soc. Rev.
2006, 35, 269-279; f) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999-1010; g) Connon, S.
J. Angew. Chem. Int. Ed. 2006, 45, 3909-3912; h) Xie, J.-H.; Zhou, Q.-L. Acc. Chem. Res. 2008, 41, 581-593;
i) Rueping, M.; Kuenkel, A.; Atodiresei, I. Chem. Soc. Rev. 2011, 40, 4539-4549; j) D. Parmar; E. Sugiono; S.
Raja; M. Rueping, Chem. Rev. 2014, 114, 9047-9153; k) Sunoj, R. B. Acc. Chem. Res. 2016, 49, 1019-1028.

¹⁴² For some recent examples, see: a) Narute, S.; Parnes, R.; Toste, F. D.; Pappo, D. J. Am. Chem. Soc. 2016, 138, 16553-16560; b) Kim, H. Y.; Takizawa, S.; Sasai, H.; Oh, K. Org. Lett. 2017, 19, 3867-3870; c) Tian, J. M.; Wang, A. F.; Yang, J. S.; Zhao, X. J.; Tu, Y. Q.; Zhang, S. Y.; Chen, Z. M. Angew. Chem. Int. Ed. 2019, 58, 11023-11027.

¹⁴³ For the catalytic non-enzymatic KR of biaryl compounds, see: a) Aoyama, H.; Tokunaga, M.; Kiyosu, J.; Iwasawa, T.; Obora, Y.; Tsuji, Y. *J. Am. Chem. Soc.* **2005**, *127*, 10474-10475. For KR with biaryl-derived

binaphthyl derivatives has received comparatively little attention in spite of its potential.

In 2014, the Sibi group reported the KR of racemic 1,1'-binaphthols derivatives with chiral 4-dimethylaminopyridine (DMAP) catalysts achieving selectivity factors of up to 51 (Scheme 1).¹⁴⁴ The developed chiral DMAP was also evaluated in the KR of racemic secondary alcohols achieving selectivity factors of up to 37. In this report, a low operation temperature at -50 °C was used, which render them impractical for large scale operation.

Scheme 1. Chiral DMAP in the KR of racemic methylated 1,1'-binaphthols and derivatives

In the same year, the Zhao group reported the acylative KR of a wide range of 1,1'biaryl-2,2'-diols and NOBIN derivatives with a chiral NHC **III-5**, leading to acylated products with excellent enantiomeric purity (99% ee) with selectivity factors of up to

^{catalysts, see: b) Mori, K.; Ichikawa, Y.; Kobayashi, M.; Shibata, Y.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2013, 135, 3964-3970; c) Shirakawa, S.; Wu, X.; Maruoka, K. Angew. Chem. Int. Ed. 2013, 52, 14200-14203; d) Cheng, D. J.; Yan, L.; Tian, S. K.; Wu, M. Y.; Wang, L. X.; Fan, Z. L.; Zheng, S. C.; Liu, X. Y.; Tan, B. Angew. Chem. Int. Ed. 2014, 53, 3684-3687; e) Arseniyadis, S.; Mahesh, M.; McDAID, P.; Hampel, T.; Davey, S. G.; Spivey, A. C. Collect. Czech. Chem. Commun. 2011, 76, 1239-1253.}

¹⁴⁴ Ma, G.; Deng, J.; Sibi, M. P. Angew. Chem. Int. Ed. 2014, 53, 11818-11821.

52 (Scheme 2).¹⁴⁵ In the case of KR of 1,1'-binaphthyl-2,2'-diol, the unsubstituted BINOL, the KR process worked with selectivity factors of up to 52. However, when the reaction scaled up to 1 g, the s factor decreased to 25, which may limit the application of this process in bigger scales.

Scheme 2. Chiral NHC-catalyzed acylative KR of a wide range of 1,1'-biaryl-2,2'-diols and NOBIN derivatives

In 2019, during our study of the acylative KR of 1,1'-binaphthyl derivatives with immobilized isothiourea catalysts, the Smith group reported an chiral isothiourea - catalysed acylative KR of unprotected 1,1' - biaryl - 2,2' - diol derivatives in highly enantioenriched form (s values up to 190). In this study, 2,2 - diphenylacetic pivalic anhydride was used to minimize diacylation and to achieve high selectivity.¹⁴⁶

¹⁴⁵ Lu, S.; Poh, S. B.; Zhao, Y. Angew. Chem. Int. Ed. 2014, 53, 11041-11045.

¹⁴⁶ Qu, S.; Greenhalgh, M. D.; Smith, A. D. Chem. Eur. J. **2019**, 25, 2816-2823.

Scheme 3. Chiral isothiourea - catalysed acylative KR of 1,1' - biaryl - 2,2' - diol derivatives

3.2. Polymer-immobilized chiral benzotetramisole analogues

Chiral isothioureas, an amidine-based catalyst first reported by Birman group in 2006,¹⁴⁷ have become very useful catalysts for nonenzymatic enantioselective acyl transfer for the KR of alcohols¹⁴⁸ and carboxylic acids,¹⁴⁹ and desymmetrization of axially chiral diols.¹⁵⁰ Benzotetramisole (BTM), the archetypical example of chiral isothioureas, is among the most readily available and effective nonenzymatic enantioselective acylation catalysts¹⁵¹ reported to date.^{147,152} Over the last years, the Smith group has expanded its use to a variety of processes.¹⁵³

¹⁴⁷ Birman, V. B.; Li, X. Org. Lett. 2006, 8, 1351–1354.

¹⁴⁸ Merad, J.; Borkar, P.; Bouyon Yenda, T.; Roux, C.; Pons, J.-M.; Parrain, J.-L.; Chuzel, O.; Bressy, C. *Org. Lett.* **2015**, *17*, 2118-2121.

¹⁴⁹ Yang, X.; Birman, V. B. Adv. Synth. Catal. **2009**, 351, 2301-2304.

¹⁵⁰ Qu, S.; Greenhalgh, M. D.; Smith, A. D. Chem. Eur. J. **2019**, 25, 2816-2823.

¹⁵¹ Vedejs, E.; Jure, M. Angew. Chem. Int. Ed. 2005, 44, 3974-4001.

¹⁵² a) Birman, V. B.; Guo, L. *Org. Lett.* 2006, *8*, 4859-4861; b) Birman, V. B.; Jiang, H.; Li, X.; Guo, L.; Uffman,
E. W. *J. Am. Chem. Soc.* 2006, *128*, 6536-6537; c) Birman, V. B.; Jiang, H.; Li, X. *Org. Lett.* 2007, *9*, 3237-3240.

 ¹⁵³ a) Belmessieri, D.; Morrill, L. C.; Simal, C.; Slawin, A. M. Z.; Smith, A. S. J. Am. Chem. Soc. 2011, 133, 2714-2720; b) Simal, C.; Lebl, T.; Slawin, A. M. Z.; Smith, A. D. Angew. Chem. Int. Ed. 2012, 51, 3653-3657;

In 2016, our group reported the preparation of a PS-supported BTM analogue (III-12). The functional resin III-12 was used in the domino Michael addition/cyclization reaction of in situ activated arylacetic acids with chalcone-type tosylimines (Scheme 4, a), affording the cyclization products dihydropyridinones **15** with high yields and excellent enantioselectivities (ee up to 99%). Recycling studies suggested that pivaloyl chloride was the main reason of deactivation of III-12, an otherwise very stable catalyst.¹⁵⁴ In 2017, our group reported the use of this supported BTM (**III-12**) as a highly efficient organocatalyst in a variety of formal [4+2] cycloaddition reactions, leading to six-membered heterocycles and spiro-heterocycles (III-17) in high yields and excellent enantioselectivities (Scheme 4, b) and exhibiting notable chemical stability under operation conditions with high recyclability (11 cycles, accumulated TON of 76.8). Finally, this supported BTM (III-12) was implemented into an extended-operation continuous flow process (no decrease in yield or ee after 18 h).¹⁵⁵ In the same year, our labratory reported the use of this immobilized BTM III-12 in the periselective [8+2] cycloaddition between in situ generated chiral ammonium enolates and azaheptafulvenes, producing enantioenriched cycloheptatrienes fused

^{c) Morrill, L. C.; Douglas, J.; Lebl, T.; Slawin, A.M. Z.; Fox, D. J.; Smith, A. D.} *Chem. Sci.* 2013, *4*, 4146-4155; d) Morrill, L. C.; Stark, D. G.; Taylor, J. E.; Smith, S. R.; Squires, J. A.; D'Hollander, A. C. A.; Simal, C.; Shapland, P.; O'Riordanc, T. J. C.; Smith, A. D. *Org. Biomol. Chem.* 2014, *12*, 9016-9027; e) Smith, R. S.; Douglas, J.; Prevet, H.; Shapland, P.; Slawin, A. M. Z.; Smith, A. D. *J. Org. Chem.* 2014, *79*, 1626-1639; f) Morrill, L. C.; Smith, S. M.; Slawin, A. M. Z.; Smith, A. D. *J. Org. Chem.* 2014, *79*, 1640-1655; g) Smith, S. R.; Leckie, S. M.; Holmes, R.; Douglas, J.; Fallan, C.; Shapland, P.; Pryde, D.; Slawin, A. M. Z.; Smith, A. D. *Org. Lett.* 2014, *16*, 2506-2509; h) Morrill, L. C.; Ledingham, L. A.; Couturier, J. P.; Bickel, J.; Harper, A. D.; Fallan, C.; Smith, A. D. *Org. Biomol. Chem.* 2014, *12*, 624-636; i) Yeh, P. P.; Daniels, D. S. B.; Fallan, C.; Gould, E.; Simal, C.; Taylor, J. E.; Slawin, A. M. Z.; Smith, A. *Org. Biomol. Chem.* 2015, *13*, 2177-2191.

¹⁵⁴ Izquierdo, J.; Pericàs, M. A. ACS Catal. **2016**, *6*, 348-356.

¹⁵⁵ Wang, S.; Izquierdo, J.; Rodríguez-Escrich, C.; Pericàs, M. A. ACS Catal. 2017, 7, 2780-2785.

Scheme 4. PS-supported BTM analogue and application in asymmetric transformation

In 2018, in a joint effort of our laboratories, the Smith group reported the PSimmobilized of a Hyper-BTM based chiral isothiourea catalyst (**III-20**). The polymeric catalyst was evaluated in the acylative KR of a wide range of secondary alcohols *rac* **III-21**, including benzylic, allylic, and propargylic alcohols, cycloalkanol derivatives, and one 1,2-diol, obtaining good to excellent selectivity factors of up to 600. The good recyclability allowed the implementation of it into a continuous flow process.¹⁵⁷ A few months later, it was reported the application in the acylative KR of secondary

¹⁵⁶ Wang, S.; Rodríguez-Escrich, C.; Pericàs, M. A. Angew. Chem. Int. Ed. 2017, 56, 15068-15072.

¹⁵⁷ Neyyappadath, R. M.; Chisholm, R.; Greenhalgh, M. D.; Rodríguez-Escrich, C.; Pericàs, M. A.; Hähner, G.; Smith, A. D. *ACS Catal.* **2018**, *8*, 1067-1075.

and tertiary heterocyclic alcohols, including secondary benzylic, propargylic, allylic and cycloalkanols, and a range of 22 privileged 3-hydroxyoxindoles and 3-hydroxypyrrolidinones, obtaining up to excellent selectivity (s = 7–190). Finally, it was applied in a packed bed reactor to a continuous flow process with high selectivities (Scheme 5).¹⁵⁸

Scheme 5. PS-supported BTM analogue and application in the KR of alcohols

3.3. Aim of this project

In spite of the performance of the acylative KR of 1,1'-binaphthyl derivatives, these methods involve reaction conditions, such as low operation temperature or long reaction time, that render them impractical for large scale operation.

With these limitations in mind, and taking into account the industrial importance of enantiopure BINOLs and their derivatives, we considered alternative processes that could be operated under mild reaction conditions with high turnover frequencies, with the ultimate goal of developing a continuous flow process for the preparation of enantiomerically pure BINOL.

There are currently no examples where immobilized BTM catalysts have been applied for the acylative KR of 1,1'-bi-2-naphthol (BINOL). We wish to report the application of second generation immobilized BTM in the acylative KR of BINOLs in

¹⁵⁸ Guha, N. R.; Neyyappadath, R. M.; Greenhalgh, M. D.; Chisholm, R.; Smith, S. M.; McEvoy, M. L.; Young,
C. M.; Rodríguez-Escrich, C.; Pericàs, M. A.; Hähner, G.; Smith, A. D. *Green Chem.* 2018, 20, 4537-4546.

batch and long-term continuous flow, allowing the preparation of highly enantioenriched BINOL in large scale.

Scheme 6. Aim of this project

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

This manuscript was later published in Advanced Synthesis & Catalysis. (Adv. Synth. Catal. 2020,

362, 1370-1377) Continuous Flow Preparation of Enantiomerically Pure BINOL(s) by Acylative Kinetic Resolution

Junshan Lai,^{a,b} Rifahath M. Neyyappadath,^c Andrew D. Smith^c and Miquel A. Pericàs^{a,d,*}

^a Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007 Tarragona (Spain). mapericas@iciq.es; (+34) 977-920-200.

^b Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain

^c EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K.

^d Departament de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), 08028 Barcelona (Spain)

Abstract. A polystyrene-immobilized isothiourea has been applied to the enantioselective acylative kinetic resolution (KR) of monoacylated BINOL(s) with inexpensive isobutyric anhydride in batch and flow. High selectivity values (s = 35 at 0 °C) and a remarkable stability of the catalytic system in the operation conditions have been recorded for unsubstituted BINOL. No significant loss of activity/selectivity is recorded after 10 consecutive KR cycles in batch. A continuous flow process has been implemented and operated with a 100 mmol (32.8 g) sample of racemic monoacetylated BINOL in an 84 hours experiment with a packed bed reactor containing 1g (f = 0.37 mmol.g⁻¹) of the functional resin. Resident time can be decreased to 10 min with the same reactor to achieve a conversion of 58% with a selectivity factor s = 17 in dichloromethane solution when a more highly functionalized catalyst (f = 0.88 mmol.g⁻¹) is used. This translates into a remarkable combined productivity of 5.5 mmol_{prof} ·mmol_{cat}⁻¹·h⁻¹.

Keywords: BINOL; Kinetic resolution; Isothiourea organocatalysts; Immobilization; Continuous flow

Introduction

Enantiopure 1,1'-binaphthols (BINOLs) are probably the most versatile building blocks for the preparation of chiral catalysts. Their almost unlimited applicability cover the broad areas of metal catalysis and organocatalysis, and simple structural variations lead to applications in the comprehensive area of Brønsted/Lewis acid/base catalysis.^[1] Although the development of methods for the asymmetric oxidative dimerization of naphthyl derivatives has experienced a significant progress in recent years,^[2] the kinetic resolution (KR) of racemic biaryl derivatives (and, in particular, of unsubstituted BINOL) continues to be the main entrance to the ever growing family of 1,1'-binaphthols and derivatives.^[1,3] Within this approach, the acylative KR of 1,1'-binaphthyl derivatives has received comparatively low attention in spite of its potential.^[4] In 2014, Sibi reported chiral 4dimethylaminopyridine catalysts achieving selectivity factors of up 51 in the considered acylative process (Scheme 1a).^[5] In the same year, Zhao (Scheme 1b)reported the highly efficient NHC-catalyzed acylative KR of a wide range of 1,1'-biaryl-2,2'-diols and amino alcohols leading to products with consistently very high enantiomeric purity (99% ee).^[6]

In spite of its performance, these methods involve reaction conditions, such as low operation temperature^[5] or long reaction time,^[6] that render them impractical for large scale operation.

Scheme 1. Approaches to the acylative KR of BINOL and related compounds.

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

With these limitations in mind, and taking into account the industrial importance of enantiopure BINOLs and their derivatives, we considered alternative processes that could be operated under mild reaction conditions with high turnover frequencies, with the ultimate goal of developing a continuous flow process for the preparation of enantiomerically pure BINOL (Scheme 1c).^[7]

Chiral isothioureas, first reported by Birman in 2006,^[8] have become useful catalysts for the acylative KR of alcohols^[9] and carboxylic acids^[10] and, quite recently, for the desymmetrization of axially chiral diols.^[11] Benzotetramisole (BTM), the archetypical example of chiral isothioureas, is among the most readily available and effective nonenzymatic enantioselective acylation catalysts^[12] reported to date.^[8, 13] In 2016, we reported the preparation of a polystyrene-supported BTM analogue which was successfully used in the domino Michael addition/cyclization reaction with excellent yields and very high enantioselectivities, ^[14] and later applied to asymmetric [4+2] and [8+2] annulation reactions.^[15] More recently, in a joint effort of our laboratories, new polystyrene-supported isothiourea catalysts, based on the homogeneous catalysts BTM and HyperBTM, have been prepared and used for the acylative KR of secondary^[16a] and secondary and tertiary heterocyclic alcohols^[16b] in batch and in continuous flow. However, there are currently no examples where BTM catalysts have been applied for the acylative KR of 1,1'-bi-2-naphthol (BINOL). We report herein the application of second generation immobilized BTM in the acylative KR of BINOLs with high selectivity in batch and continuous flow, and we show that the flow procedure can be operated at the 100 mmol scale (32.8 g) without any decrease in the performance of the catalyst.

Results and Discussion

We decided to evaluate isothioureas **5a-d** as catalysts for this study. The selection includes monomers **5b-c** as well as the first and second generation PS-immobilized BTM-type catalysts **5a**^[14] and **5d**,^[16b] and is guided by previous results in the KR of axially chiral diols with homogeneous isothioureas (Figure 1).^[11]

Figure 1. Catalysts used in this study.

For the preparation of **5d** (Scheme 2) we used a slight modification of the reported procedure that simplifies the installment of the propargyl anchor by performing the replacement of the methoxy by a

propargyloxy group at the beginning of the sequence. Thus, 2-chloro-6-methoxybenzothiazole (1) was demethylated with BBr3 and alkylated without isolation with propargyl bromide (2) to afford 2chloro-6-propynyloxybenzo[d]thiazole (3) in 93% yield. Then, following a modification of a literature procedure, $[^{17]}$ neat **3** was heated in a pressure tube (135 $^{\circ}$ C. 24 h) with a stoichiometric amount of (S)-2-amino-2-phenylethanol and Hunig's base (2 eq.) followed by in situ cyclization to afford 8-propynyloxy-BTM (4) in 58% yield (3 steps). Immobilization of 4 onto azidomethyl polystyrene, prepared from commercial Merrifield resin, was achieved by a Cu-catalyzed azide-alkyne cycloaddition reaction. The nitrogen content of the resulting polymer, determined by elemental analysis, was used to calculate the functionalization^[18] of **5d** (0.37 mmol g^{-1}), and this value was used to determine the catalyst loading in all subsequent KRs.

Scheme 2. Synthesis of the second-generation polystyrenesupported BTM catalyst (5d).

Our initial studies focused on the KR of parent BINOL **6a** with anhydrides, using 5 mol % of BTM **5**c as the catalyst (Scheme 3). Unfortunately, the reactions were poorly selective, mixtures of binol with its monoacylated and bisacylated products being always obtained. Moreover, the reproducibility of these experiments was rather poor.

Scheme 3. Acylative KR of rac-BINOL (6a).

In light of these results, we modified our strategy to the acylative KR of monoacylated BINOLs (Table 1). We first used isobutyric anhydride as an acyl donor (0.6 equiv) for the KR of a series of monoacylated BINOLs in CH₂Cl₂ at room temperature. As shown in entry 1, the KR of monoacetyl BINOL with isobutyric anhydride took place with a selectivity factor s = 14 at 58% conversion. The use of larger acyl groups on the monoacylated BINOL substrate, such as isobutyryl, pivaloyl or benzoyl, gave much lower selectivities (entries 2-4). According to this, monoacetyl BINOL **8a** was used as the model substrate to optimise the nature of the acylating agent **7**. As shown in entry 6, pivalic anhydride did not work in this reaction, while both acetic anhydride and benzoic anhydride (entries 5 and 7) gave low selectivities. Accordingly, the combination of **8a** and isobutyric anhydride was established as optimal for the planned KR process.

Table 1. Acylative KR of monoacylated BINOLs.a)

(1) = 1								$O \\ R^2$ $O \\ R^1$ O
	8	\mathbb{R}^1	9	\mathbb{R}^2	8 ee ^{b)}	9 ee ^{b)}	c ^{c)}	s ^{d)}
					[%]	[%]	[%]	
1	8a	Me	9ab	ⁱ Pr	91	65	58	14
2	8b	ⁱ Pr	9bb	ⁱ Pr	52	42	55	4
3	8c	^t Bu	9cb	ⁱ Pr	43	33	56	3
4	8d	Ph	9db	ⁱ Pr	78	51	60	7
5	8a	Me	9aa	Me	24	18	57	2
6	8a	Me	9ac	^t Bu	-	-	-	-
7	8a	Me	9ad	Ph	34	31	52	3

Table 2. Solvent optimization for the acylative KR.^{a)}

rac-	OH OH OH O Ba Tb (0.6 of O	(A) = (A) + (A)			
	solvent	8a ee ^{b)}	9ab	c ^{c)}	s ^{d)}
		[%]	ee ^{b)} [%]	[%]	
1	CHCl ₃	95	67	58	18
2	CHCl3 (0 °C)	95	78	55	29
3	CHCl3 (60 °C)	70	47	60	6
4	CH ₂ Cl ₂	90	65	58	14
5	CH2Cl2 (0 °C)	92	74	55	21
6	CH ₃ CN	26	21	55	2
7	DMF	28	23	55	2
8	toluene	83	61	58	10
9	THF	89	61	59	12
10	dioxane	83	58	59	9
11	Et ₂ O	77	55	58	8

^{a)} Reaction conditions: (+/-) **8** (0.5 mmol, 1 eq.), **7y** (0.3 mmol, 0.6 eq.) and *i*Pr₂NEt (45.2 mg, 61 μ L, 0.35 mmol, 0.7 eq.), catalyst (0.025 mmol), CH₂Cl₂ (2.5 mL), rt. ^{b)} ee determined by HPLC. ^{c)}Conversion determined by Kagan's equations. ^{d)}Selectivity factors calculated from ee data.

Since the main goal of this project was applying immobilized isothiourea catalysts to the KR process, 5d featuring an almost unperturbed BTM structure was directly used to optimise the reaction solvent (Table 2). Gratifyingly, the reaction rate was not affected by the heterogeneous nature of the catalyst (in both cases the process was complete in 10 h) and the s value even increased (s = 18) when chloroform was used at room temperature (entry 1). Slightly lower selectivity (s =14) was recorded in dichloromethane under the same conditions (entry 4), while non-chlorinated solvents like DMF, CH₃CN, Dioxane, Et₂O, toluene and THF provided only moderate selectivities (entries 7-11). With halogenated solvents, the effect of temperature was also studied. Working in chloroform, a temperature decreased to 0 °C led to an increased s value of 29 (Table 2, entry 2) without any significant decrease in catalytic activity. However, when the reaction temperature was increased to 60 °C (4 h reaction time), the s value decreased to 6. According to these results, we decided to use CHCl₃ and CH₂Cl₂ as solvents in the acylative KR performed in batch, and CH₂Cl₂ for the processes in continuous flow.

^{a)} Reaction conditions: *rac*-**8a** (164 mg, 0.5 mmol, 1 eq.), **7b** (47.4 mg, 50 μ L, 0.3 mmol, 0.6 eq.) and iPr₂NEt (45.2 mg, 61 μ L, 0.35 mmol, 0.7 eq.), **5d** (135 mg, 5 mol %, f = 0.37 mmol%), solvent (2.5 mL), rt or indicated temperature. ^{b)} ee determined by HPLC. ^{c)} Conversion determined by Kagan's equations. ^{d)} Selectivity factors calculated from ee data.

As a final step in the optimization process, we wanted to compare the first- and second-generation polystyrene-supported BTM analogues (5a and 5d) in the acylative KR (Table 3) in the optimal solvent. Results with the homogeneous catalysts 5b and 5c have been included for comparison purposes. The comparison gave a clear result in favour of 5d. Thus, as shown in entry 1, 5a proved unsuitable for this transformation, affording enantioenriched 8a and 9ab with very poor selectivity (s = 3). It is thus strongly suggested that the presence of the linker in position 3 of the heterocyclic nucleus leads to a much less efficient chemzyme for this particular process. To gain some further indication on the structural factors of 5 affecting selectivity, the reaction was also tested with **5b** and **5c**. With tetramisole **5b** (entry 2) the reaction was poorly selective, but benzotetramisole 5c afforded the best selectivity results over a temperature range ranging from room temperature to -20 °C, where a selectivity of 36 was reached (entries 3-5). A similar decrease in temperature working with 5d (entry 8) proved deleterious for catalytic activity and selectivity, and this can be attributed to the arrest of mobility of the polymer at this temperature, preventing swelling and the achievement of an optimal conformation. From a structural perspective it can be concluded that the presence of a condensed benzo ring in positions 2,3 of tetramisole is necessary for high selectivity in the acylative KR. Furthermore, a bulky substituent (the

> polymer chain) in one of the distal positions on the benzo group is well tolerated in terms of both catalytic activity and enantioselectivity.

Table 3. Comparison of catalysts 5a and 5d in the acylative KR of 8a with 7b.^{a)}

\bigcirc	ОН ОН ОН	5a-d (5 mol%) DIPEA (0.7 eq CHCl ₃ , rt					
rac -8a		7b (0.6 eq)		8a		9ab	
	Cot	t	8a ee ^{b)}	9ab ee ^{b)}	c ^{c)}	cd)	
	Cal.	[h]	[%]	[%]	[%]	5	
1	5a	8	-41	-33	57	3	
2	5b	8	42	30	58	3	
3	5c	8	98	73	57	28	
4	5c (0 °C)	8	99	71	58	30	
5	5c (-20°C)	16	98	78	56	36	
6	5d	10	95	67	59	18	
7	5d (0 °C)	12	95	78	55	29	
8	5d (-20 °C) 24	33	61	35	6	

^{a)} Reaction conditions: *rac*-**8a** (164 mg, 0.5 mmol, 1 eq.), **7b** (47.4 mg, 50 μ L, 0.3 mmol, 0.6 eq.), *i*Pr₂NEt (45.2 mg, 61 μ L, 0.35 mmol, 0.7 eq.), **5a-d** (0.025 mmol), CHCl₃ (2.5 mL), rt or indicated temperature. ^{b)} ee determined by HPLC. ^{c)} Conversion determined by Kagan's equations. ^{d)} Selectivity factors calculated from ee data.

Although our main goal in this project was the development of a practical procedure for the preparation of enantiopure BINOL, we decided to investigate the scope of the catalytic acylative KR reaction in batch using the immobilized BTM catalyst 5d in CHCl₃ (Table 4) at 0 °C. Catalyst 5d does not behave as a promiscuous chemzyme being rather specific with respect to the nature and substitution of the substrate. Substituents on the distal ring are generally well tolerated (8e, 8h, 8i), but excessive steric congestion (8f) leads to a significant decrease in enantioselectivity. Acylation of one of the oxygen atoms in the BINOL system (8g) and the presence of the two connected naphthyl units (8g, 8l, 8m) seem to be strict structural requirements, as the absence of substitution in o-, o'- in the BINOL system (8j, 8k, 8m) also seems to be. Fortunately, the parent substrate of interest 8a, stands as the optimal substrate for the acylative KR, achieving a selectivity of up to 29 with the immobilized catalyst 5d and up to 36 with the homogeneous BTM 5c. It is worth noting that either scalemic 8a or the diester 9ab can be easily converted into the enantiomeric forms of BINOL through saponification and recrystallization from either toluene or chloroform (ESI).

Table 4. Scope of the acylative KR of BINOLs catalyzed by $\mathbf{5d}^{(a)}$

^{a)} Reaction conditions: *rac*-**8** (0.5 mmol, 1 eq.), **7b** (47.4 mg, 50 μ L, 0.3 mmol, 0.6 eq.), *i*Pr₂NEt (45.2 mg, 61 μ L, 0.35 mmol, 0.7 eq.), **5d** (135 mg, 5 mol %), CHCl₃ (2.5 mL), 0 °C, 10 h. ^{b)} Conversion determined by Kagan's equations. ^{c)} Isolated yield. ^{d)} ee determined by HPLC.

In view of the excellent results achieved with catalyst **5d** in the acylative KR of **8a**, the study of the recyclability of the catalyst in this particular process was undertaken. The process was initially studied in chloroform, however, slow deactivation of the catalyst was observed although selectivity remained constant over ten consecutive cycles (see Table S1). The deactivation process can be tentatively attributed to hydrolysis of the intermediate acylisothiouronium species as suggested by Birman,^[17a] and we reasoned that using the less labile and less toxic anhydrous CH₂Cl₂ could minimize the deactivation problem without requiring solvent pre-treatments. As shown in Table 5, no decrease in catalytic activity or enantioselectivity was observed in a ten-cycle experiment in this solvent.

Table 5. Recycling of **5d** in the acylative KR of *rac*-**8a** with **7b** in CH_2Cl_2 .^{a)}

9	91	73	55	20
10	90	73	55	19
^{a)} Rea	ction c	conditions: rac-8a ((164 mg, 0.5	mmol, 1 eq.), 7a
(50 ul	L, 0.3	mmol, 0.6 eq.) iPr	2NEt (61 uL	, 0.35 mmol, 0.7
eq), P	S-cat.	5d (135 mg, 5 mo	1%), CH2Cl	2 (2.5 mL), 0 °C,
	1.)	-		

10 h. b° ee determined by HPLC. c° Conversion determined by Kagan's equations. d° Selectivity factors calculated from ee data.

Once the robustness of 5d in dichloromethane had been established, a large scale (100 mmol) experiment in continuous flow was planned. The employed setup is shown in Figure 3. Catalyst 5d (1.0 g, 0.37 mmol) was swollen in CH₂Cl₂ in a size-adjustable medium pressure glass column to create a packed bed reactor, and a cooling jacket was attached to maintain an internal temperature of 0 °C. Two syringes mounted on a single syringe pump were used to feed the reagents to the flow reactor. One of the syringes contained a solution of 8a and isobutyric anhydride (7b) in dichloromethane, and the second one a solution of *i*Pr₂NEt in dichloromethane, with concentrations adapted to secure the desired ratio (0.2 M in 8a in the combined flow). The optimal combined flow rate was initially determined as 0.1 mL.min⁻¹ at a reaction temperature of 0 °C. Then, the preparative experiment was performed under the optimal condition from 250 mL of a 0.4 M solution of rac-8a (32.8 g, 100 mmol) in CH₂Cl₂. The experiment took 84 h to completion, and the measured residence time of the employed setup (visual inspection with a solution of methyl red) was ca. 40 min. Data at different operation times have been summarized in Table 6.

Table 6. Continuous flow acylative KR of **8a** with isobutyric anhydride (**7b**) catalyzed by **5d** (f = 0.37 mmol.g⁻¹).^{a)}

Operation time [h]	8a ee ^{b)} [%]	8a yield ^{c)} [%]	9ab ee ^{b)} [%]	9ab yield ^{c)} [%]	Conv ^{d)} [%]	S e)
0	94	40	62	57	60	14
2	91	43	69	50	57	17
12	96	40	64	58	60	17
21	96	40	64	55	60	17
32	96	41	66	56	59	18
42	96	43	67	52	59	19
56	97	39	66	55	60	20
66	96	43	69	55	58	21
76	96	42	69	50	58	21
84	90	45	74	49	55	20

^{a)} Reaction conditions: *rac*-**8a** (1 eq., 0.2 M in CH₂Cl₂), **7b** (0.6 eq., 0.2 M in CH₂Cl₂), *i*Pr₂NEt (0.7 eq., 0.2 M in CH₂Cl₂), **5d** (1.0 g), 0 °C, 0.1 mL.min⁻¹ combined flow, residence time 40 min. ^{b)} ee determined by HPLC. ^{c)} Isolated yield ^{d)} Conversion determined by Kagan's equations. ^{e)} Selectivity factors calculated from ee data.

It was highly rewarding to see that 5d does not show any sign of deterioration after 84 hours operation. This was clearly an indication of potential practical applicability in the continuous preparation of both enantiomers of BINOL. Taking into account that the original preparation of $ent-5d^{[16a]}$ provided a more highly functionalized resin ($f = 0.88 \text{ mmol.g}^{-1}$), we reasoned that the use of this particular resin could lead to an important increase in the productivity of the acylative KR. To test this possibility a new packed bed reactor was prepared with 1.0 g of *ent*-5d with f = 0.88mmol.g⁻¹. Working with this resin under the same experimental conditions of the previous flow process, we could easily determine that a combined flow rate of 0.4 mL.min^{-1} provided a conversion of *ca*. 58% (Table 7). At this rate, the acylative KR of a sample of 12.6 g (38.4 mmol) of rac-8a could be completed in a 8 hours experiment. This represents an impressive four-fold increase in productivity relative to the use of 5d with f= 0.37 mmol.g^{-1} , resulting in residence times of *ca*. 10 min. Interestingly, no variation in selectivity or catalytic activity could be detected during the whole experiment.

Table 7. Continuous flow acylative KR of **8a** with isobutyric anhydride (**7b**) catalyzed by *ent*-**5d** (f = 0.88 mmol.g⁻¹).^{a)}

Operation time [h]	8a [%]	ee ^{b)}	9ab [%]	ee ^{b)}	conv ^{c)} [%]	<i>s</i> ^{d)}
0.5	-90		-66		58	14
1	-92		-67		58	16
2	-93		-68		58	17
3	-93		-68		58	17
4	-93		-68		58	17
5	-93		-67		58	17
6	-92		-68		57	17
7	-93		-67		58	17
8	-93		-68		58	17

^{a)} Reaction conditions: *rac*-**8a** (12.6 g, 1 eq., 0.2 M in CH₂Cl₂), **7b** (0.6 eq., 0.2 M in CH₂Cl₂), *i*Pr₂NEt (0.7 eq., 0.2 M in CH₂Cl₂), *ent*-**5d** (1.0 g, 0.88 mmol), 0 °C, 0.4 mL.min⁻¹ combined flow, residence time 10 min. ^{b)} ee determined by

HPLC. ^{c)} Conversion determined by Kagan's equations. ^{d)} Selectivity factors calculated from ee data.

Although the hydrolysis of BINOL mono- and diesters and the enantioenrichment of scalemic BINOL (6) by recrystallization are well documented, $^{[19]}$ we wanted to show that both BINOL (6) enantiomers of 6 can be easily obtained in highly enantiopure form from either 8a or 9ab resulting from the flow process. To this end, representative samples (500 mg) of both compounds, isolated from the effluent of the flow process mediated by 5d were treated with finely powdered K₂CO₃ (4 eq.) in MeOH for 2 h at room temperature, and the resulting 6 submitted enantioenrichment to by slow crystallization from toluene (Scheme 4). Through this non-optimized process (S)-8a with 96% ee afforded (S)-6 with 99.2% ee in 75-85% yield. Starting from the diester (R)-**9ab** with 67% ee, (R)-6 with 99.6% ee was obtained in 35-41% yield.

Scheme 4. Recovery of enantiopure BINOL (6) from its mono- and diesters.

In summary, the polystyrene-immobilized isothiourea 5d is a suitable catalyst for the acylative KR of O-acetyl BINOL 8a and some of its derivatives with isobutyric anhydride 7b. Working in dichloromethane, the catalyst can used in batch for ten consecutive cycles or in continuous flow for 84 h without showing any decrease in catalytic activity or in selectivity. With the use of a highly functionalized resin ($f = 0.88 \text{ mmol.g}^{-1}$), a 58% conversion is achieved with a residence time of 10 min. in a packed bed reactor containing 1 g. of the functional resin. In this manner, a productivity of 5.5 mmol_{(R)-8a+(S)-9ab} mmol_{ent-} $\mathbf{5d}^{1}\mathbf{h}^{1}$ can be achieved in a very simple manner. Although some optimization work for the conversion of enantioenriched 8a and 9ab into the enantiomers of BINOL (6) is still required, the present procedure appears as a most promising alternative for the largescale preparation of these industrially important materials.

Experimental Section

General procedure for the AKR in batch. To a 5 mL glass vial at 0 °C (ice bath), cat. **5d** (f = 0.37 mmol/g, 135 mg, 5 mol % loading) and 2.5 mL CHCl₃, followed by *rac*-**8** (0.5 mmol, 1 eq.), **7b** (47.4 mg, 50 µL, 0.3 mmol, 0.6 eq.) and "Pr_2NEt (45.2 mg, 61 µL, 0.35 mmol, 0.7 eq.), were sequentially added. The reaction mixture was shaken 10 hours. Then, it was filtered and the resin beads were washed with CHCl₃ (3 x 1 mL). The solvent was concentrated in vacuo and the product was isolated after purification by column chromatography on silica gel with cyclohexane/ethyl acetate (EtOAc/c-Hex = 1:10). In the recycling experiments, the functional resin **5d** was used directly in the next reaction cycle. After each cycle, the organic phase was concentrated under vacuum, and the product was isolated after purification by column chromatography as indicated above.

Continuous flow AKR of rac-8a with isobutyric anhydride 7b using catalyst 5d. Catalyst 5d (1.0 g, 0.37 mmol), contained in a size-adjustable medium pressure glass column (Omnifit glass column, 10 mm Ø) to create a packed bed reactor, was swollen by pumping CH₂Cl₂ at 0.1 mL. min⁻¹ for one hour and a cooling jacket was attached to the reactor to maintain an internal temperature of 0 °C. Two syringes mounted on a single syringe pump were used to feed the reagents to the flow reactor,one containing a solution of 8a and isobutyric anhydride (7b) in dichloromethane, with concentrations adapted to secure the desired ratio (0.2 M in 8a in the combined flow). The optimal combined flow rate was initially determined as 0.1 mL.min⁻¹ at a reaction temperature of 0 °C. Then, the preparative experiment was performed under the optimal condition from 250 mL of a 0.4 M solution of *Tac-8a* (32.8 g, 100 mmol) and 7b (10.0 mL, 60 mmol) in dichloromethane, and 250 mL of a solution of DIPEA (11.9 mL, 70 mmol) in dichloromethane. The experiment took 84 h to completion, and the measured residence time of the employed setup (visual inspection with a solution of methyl red) was *ca*. 40 min. Data at different operation times have been summarized in Table S3.5 (see Supporting Information). When the solutions of reagents were consumed, CH₂Cl₂ was circulated at 0.1 mL min⁻¹ until TLC analysis showed no product in the effluent (ca. 1.5 h). The collected outstream was concentrated under reduced pressure and purified by column chromatography on silica gel with cyclohexane/ethyl acetate (20:1) to yield the corresponding products (*S*)-8a and (*R*)-9ab.

Acknowledgements

Financial support from CERCA Programme/Generalitat de Catalunya, MINECO (CTQ2015-69136-R) and AGAUR/ Generalitat de Catalunya (2017 SGR 1139) is gratefully acknowledged.

References

 For some reviews on the use of BINOL-based, chiral biaryl ligands in asymmetric catalysis, see: a) R. Noyori, H. Takaya, Acc. Chem. Res. **1990**, 23, 345; b) W. Tang, X. Zhang, Chem. Rev. **2003**, 103, 3029; c) Y. Chen, S. Yekta, A. K. Yudin, Chem. Rev. **2003**, 103, 3155; d) Q.-H. Xia, H.-Q. Ge, C.-P. Ye, Z.-M. Liu, K.-X. Su, Chem. Rev. **2005**, 105, 1603; e) M. Shibasaki, S. Matsunaga, Chem. Soc. Rev. **2006**, 35, 269; f) T. Akiyama, J. Itoh, K. Fuchibe, Adv. Synth. Catal. **2006**, 348, 999; g) S. J. Connon, Angew. Chem. Int. Ed. **2006**, 45, 3909; h) J.-H. Xie, Q.-L. Zhou, Acc. Chem. Res. **2008**, 41, 58; i) M. Rueping, A. Kuenkel, I. Atodiresei, Chem. Soc. Rev. **2011**, *40*, 4539; j) D. Parmar; E. Sugiono; S. Raja; M. Rueping, *Chem. Rev.* **2014**, *114*, 9047; k) R. B. Sunoj, *Acc. Chem. Res.* **2016**, *49*, 1019.

- [2] For some recent examples, see: a) S. Narute, R. Pames,
 F. D. Toste, D. Pappo, J. Am. Chem. Soc. 2016, 138, 16553; b) H. Y. Kim, S. Takizawa, H. Sasai, K. Oh, Org. Lett. 2017, 19, 3867; c) J.-M. Tian, A.-F. Wang, J.-S. Yang, X.-J. Zhao, Y.-Q. Tu, S.-Y. Zhang, Z.-M. Chen, Angew. Chem. Int. Ed. 2019, 58, 11023.
- [3] For the catalytic non-enzymatic KR of biaryl compounds, see: a) H. Aoyama, M. Tokunaga, J. Kiyosu, T. Iwasawa, Y. Obora, Y. Tsuji, J. Am. Chem. Soc. 2005, 127, 10474. For KR with biaryl-derived catalysts, see: b) K. Mori, Y. Ichikawa, M. Kobayashi, Y. Shibata, M. Yamanaka, T. Akiyama, J. Am. Chem. Soc. 2013, 135, 3964; c) S. Shirakawa, X. Wu, K. Maruoka, Angew. Chem. Int. Ed. 2013, 52, 14200; d) D.-J. Cheng, L. Yan, S.-K. Tian, M.-Y. Wu, L.-X. Wang, Z.-L. Fan, S.-C. Zheng, X.-Y. Liu, B. Tan, Angew. Chem. Int. Ed. 2014, 53, 3684; e) S. Arseniyadis, M. Mahesh, P. McDaid, T. Hampel, S. G. Davey, A. C. Spivey, Collect. Czech. Chem. Commun. 2011, 76, 1239.
- [4] H. B. Kagan, J. C. Fiaud, Top. Stereochem. 1988, 18, 249
- [5] G. Ma, J. Deng, M. P. Sibi, Angew. Chem. Int. Ed. 2014, 53, 11818.
- [6] S. Lu, S. B. Poh, Y. Zhao, Angew. Chem. Int. Ed. 2014, 53, 11041.
- [7] For recent work on organocatalysed flow processes, see:
 a) S. Watanabe, N. Nakaya, J. AkaiKenji, Kanaori, T. Harada, Org. Lett. 2018, 20, 2737; b) J. Lai, S. Sayalero, A. Ferrali, L. Osorio Planes, F. Bravo, C. Rodríguez Escrich, M.A. Pericàs, Adv Synth Catal. 2018, 360, 2914; c) L. Clot-Almenara, C. Rodriguez-Escrich, M.A. Pericàs, RSC Adv. 2018, 8, 6910; d) C. Rodríguez-Escrich, M.A. Pericàs, Chem Rec. 2019, 19, 1872; e) A. Ciogli, D. Capitani, N. Di Iorio, S. Crotti, G. Bencivenni, M. Pia Donzello, C. Villani, Eur. J. Org. Chem. 2019, 2020; f) M. G. Russell, C. Veryser, J. F. Hunter, R. L. Beingessner, T. F. Jamison, Adv. Synth. Catal. 2019, https://doi.org/10.1002/adsc.201901185; g) S. B. Ötvös,

M. A. Pericàs, C. O. Kappe, *Chem. Sci.* **2019**, 10.1039/C9SC04752.

- [8] V. B. Birman, X. Li, Org. Lett. 2006, 8, 1351-1354.
- [9] J. Merad, P. Borkar, T. Bouyon Yenda, C. Roux, J.-M. Pons, J.-L. Parrain, O. Chuzel, C. Bressy, *Org. Lett.* 2015, 17, 2118.
- [10] X. Yang, V. B. Birman, Adv. Synth. Catal. 2009, 351, 2301.
- [11] S. Qu, M. D. Greenhalgh, A. D. Smith, *Chem. Eur. J.* 2019, 25, 2816.
- [12] E. Vedejs, M. Jure, Angew. Chem. Int. Ed. 2005, 44, 3974.
- [13] a) V. B. Birman, L. Guo, Org. Lett. 2006, 8, 4859; b)
 V. B. Birman, H. Jiang, X. Li, L. Guo, E. W. Uffman, J. Am. Chem. Soc. 2006, 128, 6536; c) V. B. Birman, H. Jiang, X. Li, Org. Lett. 2007, 9, 3237.
- [14] J. Izquierdo, M. A. Pericàs. ACS Catal. 2016, 6, 348.
- [15] a) S. Wang, J. Izquierdo, C. Rodríguez-Escrich, M. A. Pericàs, *ACS Catal.* **2017**, *7*, 2780; b) S. Wang, C. Rodríguez-Escrich, M. A. Pericàs, *Angew. Chem. Int. Ed.* **2017**, *56*, 15068.
- [16] a) R. M. Neyyappadath, R. Chisholm, M. D. Greenhalgh, C. Rodríguez-Escrich, M. A. Pericàs, G. Hähner, A.D. Smith, *ACS Catal.* 2018, *8*, 1067; b) N. Ranjan Guha, R. M. Neyyappadath, M. D. Greenhalgh, R. Chisholm, S. M. Smith, M. L. McEvoy, C. M. Young, C. Rodríguez-Escrich, M. A. Pericàs, G. Hähner, A. D. Smith, *Green Chem.* 2018, *20*, 4537.
- [17] a) X. Li, H. Jiang, E. X. Uffman, L. Guo, Y. Zhang, X. Yang, V. B. Birman, *J. Org. Chem.* **2012**, *77*, 1722; b) J. Merad, J.-M. Pons, O. Chuzel, C. Bressy, *Eur. J. Org. Chem.* **2016**, 5589.
- [18] A. Vidal-Ferran, N. Bampos, A. Moyano, M. A. Pericàs, A. Riera, J. K. M. Sanders, *J. Org. Chem.* **1998**, *63*, 6309.
- [19] a) N. Aoyagi, N. Ogawa, T. Izumi, *Tetrahedron Lett.* **2006**, 47, 4797; b) M. Juárez-Hernandez, D. V. Johnson,
 H. L. Holland, J. McNulty, A. Capretta, *Tetrahedron:* Asymmetry **2003**, 14, 289.

Supporting Information

Continuous Flow Preparation of Enantiomerically Pure BINOL(s) by Acylative Kinetic Resolution

Junshan Lai,^{a,b} Rifahath M. Neyyappadath,^c Andrew D. Smith^c and Miquel A. Pericàs^{a,d,*}

mapericas@iciq.es

aInstitute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Paï	SOS
^b Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain ^c EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K. ^d Departament de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), 08028 Barcelona (Spain)	
Table of Contents	
1. General information	171
2. Preparation of the immobilized isothiourea 5d.	172
Experimental procedures for the acylative kinetic resolution (AKR) of BINOLs	174
3.1. Solvent screening	174
3.2. Optimization of reaction temperature	175
3.3. General procedure for the AKR in batch	176
3.4. Recycling of 5d in batch (CHCl ₃)	176
3.5. Recycling of 5d in batch (CH ₂ Cl ₂)	177
3.6. Continuous flow process with catalyst 5d	177
3.7. Continuous flow process with catalyst ent-5d	179
3.8. Recovery of enantiopure BINOL from its mono- and diesters	180
4. Compound characterization data	181
5. References	194
6. NMR spectra	195
7. HPLC chromatograms	217

1. General information

Unless otherwise noted, all reactions were conducted under air. All commercial reagents were used as received; Substituted binaphthols was synthesized according to the reported procedures.¹ CHCl₃ were sequentially washed with concentrated sulfuric acid, water, 1N NaOH solution and water, dried with Na₂SO₄, refluxed with CaCl₂ and distilled. Flash chromatography was carried out using 60 mesh silica gel and dry-packed columns. Thin layer chromatography was carried out using Merck TLC Silica gel 60 F254 aluminum sheets. Components were visualized by UV light (λ = 254 nm) and stained with phosphomolybdic dip. NMR spectra were recorded at 298 K on a Bruker Avance 400 Ultrashield apparatus. ¹H NMR spectroscopy chemical shifts are quoted in ppm relative to tetramethylsilane (TMS). CDCl₃ was used as internal standard for ¹³C NMR spectra. Chemical shifts are given in ppm and coupling constants in Hz. IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer and are reported in wavenumbers (cm⁻¹). High performance liquid chromatography (HPLC) was performed on Agilent Technologies chromatographs (1100 and 1200 Series), using Chiralpak AD-H columns and guard columns. FAB mass spectra were obtained on a Fisons V6-Quattro instrument, ESI mass spectra were obtained on a Waters LCT Premier Instrument and CI and EI spectra were obtained on a Waters GCT spectrometer. Specific optical rotation measurements were carried out on a Jasco P-1030 polarimeter.

2. Preparation of the immobilized isothiourea 5d.

a) Propargyl ether **3**: A solution of the 2-chloro-6-methoxybenzothiazole **1** (2.0 g, 10 mmol) in dry DCM (100 ml) under Argon was cooled to 0 °C with ice bath and BBr₃ (1.0 M in DCM, 18 ml, 18 mmol, 1.8 eq.) was added dropwise. The mixture was stirred for 5 h in the same temperature. Then, the reaction mixture was washed with aq. sat. NaHCO₃ (3x20 mL) and dried over Na₂SO₄. Removed the solvent and used in the next step without purification. Acetone (50 mL) was added to the mixture, followed by K₂CO₃ (6.4 g, 50 mmol, 5 eq) and 3-bromopropyne (3.0 g, 20 mmol, 2 eq, 80% w.t. in toluene). The mixture was heated under reflux overnight, then cooled to room temperature and filtered. The solid residue was washed with a small amount of acetone, the filtrates were collected and the solvent was evaporated under reduced pressure. Purification by flash column chromatography (Cyclohexane/EtOAc 98:2) afforded the desired propargyl ether **3** in 93% yield (2.07 g, 9.3 mmol) as a white solid.

b) Propargyloxy-BTM **4**: Following a modification of a literature procedure¹, a suspension of 2-chloro-6- methoxybenzo[d]thiazole **3** (2.0 g, 9.0 mmol, 1.0 eq.), ⁱPr₂NEt (3.13 mL, 18 mmol, 2.0 eq.), and (*S*)-phenylglycinol (2.0 g, 10.0 mmol, 1.11 eq.) was heated at 135 °C for 24 h. The orange mixture was allowed to cool to 40 °C, 100 mL of CH₂Cl₂ were then added to the

viscous reaction crude, and the mixture was left at room temperature till a solution was formed (around 2-3 hours). The mixture was then cooled to 0 °C in an ice bath under Ar and treated with freshly distilled Et₃N (2.5 mL, 18 mmol, 2 eq.), and methanesulfonyl chloride (0.83 mL, 10.8 mmol, 1.2 eq.) was added dropwise. The mixture was stirred at 0 °C for 1 h and then at to room temp for 3 hours. MeOH (0.7 mL, 2 eq) was then added, and the reaction was heated under reflux overnight. When cold (room temperature), the reaction was quenched with 50 mL of water. Phases were separated, and the aqueous one was extracted with CH_2Cl_2 (2 x 50 mL). The combined organic extracts were dried over Na_2SO_4 , filtered, and concentrated to dryness in the rotatory evaporator. The obtained dark-red oil was purified by column chromatography eluting with cyclohexane: EtOAc (10-100 %) to afford **4** as a yellow oil (1.60 g, 58% yield).

c) Immobilized catalyst **5d**: To a round bottom flask, azidomethylpolystyrene (7.0 g, 4.13 mmol, f = 0.59 mmol/g, 1 equiv.) suspended in a 1:1 mixture of THF and DMF (60 mL), (S)-2-phenyl-7-(prop-2- yn-1-yloxy)-2,3-dihydrobenzo[d]imidazo[2,1-b]thiazole **4** (1.39 g, 4.54 mmol, 1.1 equiv.), iPr₂NEt (2.4 mL, 14 mmol, 3.5 equiv.) and CuI (38 mg, 0.2 mmol, 5 mol%), were added. The mixture was shaken (orbital stirrer) at 40 °C and the reaction progress was monitored by IR. The reaction mixture was stirred until disappearance of the azide band (~2094 cm⁻¹) was confirmed by IR (*ca*. 48 h). The resin was filtered and washed with water, water/MeOH, MeOH, MeOH/CH₂Cl₂ and CH₂Cl₂. Then, it was dried overnight in a vacuum oven at 40 °C. In this way, 8.0 g of light brown resin **5d** were obtained. Elemental analysis indicated a functionalization of 0.37 mmol/g.

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

3. Experimental procedures

3.1. Solvent screening for the acylative kinetic resolution of BINOLs

To a 5 mL glass vial, cat. **5d** (f = 0.37 mmol/g, 135 mg, 5 mol % loading) and 2.5 mL solvent, followed by (+/-)8a (164 mg, 0.5 mmol, 1 eq.), 7b (47.4 mg, 50 µL, 0.3 mmol, 0.6 eq.) and iPr₂NEt (45.2 mg, 61 µL, 0.35 mmol, 0.7 eq.), were sequentially added at room temperature or the indicated reaction temperature. The reaction mixture was shaken for 10 hours at rt, or 12 hours at 0 °C or 4 h at 60 °C. Then, it was filtered and the resin beads were washed with CH₂Cl₂ (3 x 0.5 mL). The combined organic phases were concentrated under reduced pressure, and the residue was used to measure conversion and ee's for the determination of the selectivity (s) of the transformation.

entry	solvent	8a ee ^{b)} [%]	9ab ee ^{b)} [%]	c ^{c)} [%]	s ^{d)}
1	CHCl ₃	95	67	58	18
2	CHCl ₃ (0 °C)	95	78	55	29
3	CHCl ₃ (60 °C)	70	47	60	6
4	CH_2Cl_2	90	65	58	14
5	CH ₂ Cl ₂ (0 °C)	92	74	55	21
6	CH ₃ CN	26	21	55	2
7	DMF	28	23	55	2
8	toluene	83	61	58	10
9	THF	89	61	59	12
10	dioxane	83	58	59	9
11	Et ₂ O	77	55	58	8

Table S3.1. Solvent screeni	ng
-----------------------------	----

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

^a Reaction conditions: *rac*-**8a** (164 mg, 0.5 mmol, 1 eq.), **7b** (47.4 mg, 50 μ L, 0.3 mmol, 0.6 eq.) and ⁱPr₂NEt (45.2 mg, 61 μ L, 0.35 mmol, 0.7 eq.), cat. **5d** (135 mg, 5 mol %, f = 0.37 mmol%), solvent (2.5 mL), rt or indicated temperature. Conversions were determined by Kagan's equations and ee's by HPLC. ^b Reaction time was 4 h.

3.2. Optimization of reaction temperature

To a 5 mL glass vial were sequentially added the indicated amount of catalyst and 2.5 mL CHCl₃, followed by *rac*-**8a** (164 mg, 0.5 mmol, 1 eq.), **7b** (47.4 mg, 50 μ L, 0.3 mmol, 0.6 eq.), ⁱPr₂NEt (45.2 mg, 61 μ L, 0.35 mmol, 0.7 eq.) at room temperature or at the indicated reaction temperature. The reaction mixture was shaken (orbital stirrer) for the indicated time. Then, it was filtered and the resin beads were washed with CH₂Cl₂ (3 x 0.5 mL). The combined organic phases were concentrated under reduced pressure, and the residue was used to measure conversion and ee's for the determination of the selectivity (*s*) of the transformation.

Entry	cat	time (h)	Ee of 8a (%)	Ee of 9ab	Conv. (%)	S
1	5a	8	-41	-33	57	3
2	5b	8	42	30	58	3
3	5c	8	98	73	57	28
4	5c (0 °C)	8	99	71	58	30
5	5c (-20 °C)	16	98	78	56	36

Table S3.2. Optimization of reaction temperature^a

6	5d	10	95	67	59	18
7	5d (0 °C)	12	95	78	55	29
8	5d (-20 °C)	24	33	61	35	6

^{*a*} Reaction conditions: **(+/-)8a** (164 mg, 0.5 mmol, 1 eq.), **7b** (47.4 mg, 50 μ L, 0.3 mmol, 0.6 eq.) and iPr₂NEt (45.2 mg, 61 μ L, 0.35 mmol, 0.7 eq.), catalyst, CHCl₃ (2.5 mL), rt or indicated temperature. Conversions determined by Kagan's equations. *ee*s were determined by HPLC.

3.3. General procedure for the AKR in batch

To a 5 mL glass vial at 0 °C (ice bath), cat. **5d** (f = 0.37 mmol/g, 135 mg, 5 mol % loading) and 2.5 mL CHCl₃, followed by *rac*-**8** (0.5 mmol, 1 eq.), **7b** (47.4 mg, 50 µL, 0.3 mmol, 0.6 eq.) and ⁱPr₂NEt (45.2 mg, 61 µL, 0.35 mmol, 0.7 eq.), were sequentially added. The reaction mixture was shaken 10 hours. Then, it was filtered and the resin beads were washed with CHCl₃ (3 x 1 mL). The solvent was concentrated in vacuo and the product was isolated after purification by column chromatography on silica gel with cyclohexane/ethyl acetate (EtOAc/*c*-Hex = 1:10).

3.4. Recycling of 5d in batch (CHCl₃)

To a 5 mL glass vial at 0 °C (ice bath), filled with Ar, cat. **5d** (f = 0.37 mmol/g, 135 mg, 5 mol % loading) and 2.5 mL CHCl₃, followed by rac-**8a** (0.5 mmol, 1 eq.), **7b** (47.4 mg, 50 µL, 0.3 mmol, 0.6 eq.) and ⁱPr₂NEt (45.2 mg, 61 µL, 0.35 mmol, 0.7 eq.), were sequentially added. The reaction mixture was shaken for the indicated time, the liquid phase was separated and the resin beads were washed with CHCl₃ (3 x 0.5 mL) under Ar. After that, the functional resin **5d** was used directly in the next recycle. After each cycle, the organic phase was concentrated under vacuum, and the product was isolated after purification by column chromatography on silicagel eluting with cyclohexane/ethyl acetate (10:1).

Table S3.3. Recycling of 5d in batch (reactions in CHCl₃)^a

run	time (h)	Ee of 8a (%)	Ee of 9a (%)	Conv. (%)	S
1	10	95	78	55	29
2	10	95	77	55	28

3	10	95	77	55	28
4	10	94	78	55	28
5	10	94	78	55	28
6	14	94	78	55	28
7	14	94	77	55	27
8	14	93	77	55	26
9	14	93	77	55	26
10	14	94	76	55	25

^{*o*} Reaction conditions: *rac*-**8a** (164 mg, 0.5 mmol, 1 eq.), **7b** (50 uL, 0.3 mmol, 0.6 eq.) DIPEA (61 uL, 0.35 mmol, 0.7 eq), PS-cat. **5d** (135 mg, 5 mol %), CHCl₃ (2.5 mL), 0 °C. Conversions were determined by Kagan's equations and ee's by HPLC.

3.5. Recycling of 5d in batch (CH₂Cl₂)

The same procedure described under 3.4 was repeated in CH₂Cl₂. The reaction time was 10

hours in all cases. The results are summarized in Table S3.4.

run	ee of 8a (%)	ee of 9a (%)	conv. (%)	S
1	92	74	55	21
2	91	75	55	22
3	92	74	55	21
4	93	73	56	21
5	92	74	55	21
6	92	73	55	20
7	91	73	55	20
8	91	73	55	20
9	91	73	55	20
10	90	73	55	19

Table S3.4. Recycling experiments in batch with $\mathsf{CH}_2\mathsf{Cl}_2$

^{*a*} Reaction conditions: (+/-)**8a** (164 mg, 0.5 mmol, 1 eq.), **7b** (50 uL, 0.3 mmol, 0.6 eq.) DIPEA (61 uL, 0.35 mmol, 0.7 eq), PS-cat. **5d** (135 mg, 5 mol %), DCM (2.5 mL), 0 °C, 10 h. Conversions determined by Kagan's equations. ees were determined by HPLC.

3.6. Continuous flow process with catalyst 5d

177

Catalyst 5d (1.0 g, 0.37 mmol), contained in a size-adjustable medium pressure glass column (Omnifit glass column, 10 mm Ø) to create a packed bed reactor, was swollen by pumping CH₂Cl₂ at 0.1 mL. min⁻¹ for one hour and a cooling jacket was attached to maintain an internal temperature of 0 °C. Two syringes mounted on a single syringe pump were used to feed the reagents to the flow reactor, one containing a solution of **8a** and isobutyric anhydride (**7b**) in dichloromethane, and the second one a solution of DIPEA in dichloromethane, with concentrations adapted to secure the desired ratio (0.2 M in 8a in the combined flow). The optimal combined flow rate was initially determined as 0.1 mL.min⁻¹ at a reaction temperature of 0 °C. Then, the preparative experiment was performed under the optimal condition from 250 mL of a 0.4 M solution of *rac*-8a (32.8 g, 100 mmol) and 7b (10.0 mL, 60 mmol) in dichloromethane, and 250 mL of a solution of DIPEA (11.9 mL, 70 mmol) in dichloromethane. The experiment took 84 h to completion, and the measured residence time of the employed setup (visual inspection with a solution of methyl red) was ca. 40 min. Data at different operation times have been summarized in Table S3.5. When the solutions of reagents were consumed, CH₂Cl₂ was circulated at 0.1 mL min⁻¹ until TLC analysis showed no product in the effluent (ca. 1.5 h). The collected outstream was concentrated under reduced pressure and purified by column chromatography on silica gel with cyclohexane/ethyl acetate (20:1) to yield the corresponding product (S)-8a and (R)-9ab.

Operation	8a ee ^b	8a yield ^c	9ab ee ^b	9ab yield ^c	conversion ^d	s ^e
time [h]	[%]	[%]	[%]	[%]	[%]	
0	94	40	62	57	60	14
2	91	43	69	50	57	17
12	96	40	64	58	60	17
21	96	40	64	55	60	17
32	96	41	66	56	59	18
42	96	43	67	52	59	19
56	97	39	66	55	60	20

Table S3.5. Preparative scale continuous flow process with catalyst 5d^a

669643695558217696426950582184904574495520							
7696426950582184904574495520	66	96	43	69	55	58	21
84 90 45 74 49 55 20	76	96	42	69	50	58	21
	84	90	45	74	49	55	20

^a Reaction conditions: *rac*-**8a** (1 eq., 0.2 M in DCM), **7b** (0.6 eq., 0.2 M in DCM) DIPEA (0.7 eq., 0.2 M in DCM), **5d** (1.0 g), 0 °C, 0.1 mL.min⁻¹ combined flow, residence time 40 min. ^b ee determined by HPLC. ^c Isolated yield ^d Conversion determined by **Kagan's equations**. ^e Selectivity factors calculated from ee data.

3.7. Continuous flow process with catalyst ent-5d

For this experiment, the packed bed reactor (Omnifit glass column, 10 mm Ø) was filled with 1 g (0.88 mmol) of catalyst *ent*-**5d**, which was swollen by pumping CH_2Cl_2 at 0.1 mL min⁻¹ for one hour. The column was connected with cooling system and the temperature was set at 0 °C, and the reagents were then introduced in the system in two separate streams (0.2 mL min⁻¹ each) using a dual syringe pump, as in the previous case. The preparative experiment was performed from 96 mL of a 0.4 M solution of *rac*-**8a** (12.6 g, 38.4 mmol) and **7b** (3.85 mL, 23.0 mmol) in dichloromethane, and 96 mL of a solution of DIPEA (4.57 mL, 26.9 mmol) in dichloromethane. The experiment took 8 h to completion, and the measured residence time of the employed setup was *ca*. 10 min. Data at different operation times have been summarized in Table S3.6. When the solutions of reagents were consumed, CH_2Cl_2 was circulated at 0.1 mL min⁻¹ until TLC analysis showed no product in the effluent (ca. 1.5 h). The collected outstream was concentrated under reduced pressure and purified by column

chromatography on silica gel with cyclohexane/ethyl acetate (20:1) to yield the corresponding product (*R*)-**8a** and (*S*)-**9ab**.

Operation	8a ee ^[b]	9ab ee ^[b]	conv. ^[c]	<i>s</i> ^[d]
time [h]	[%]	[%]	[%]	
0.5	-90	-66	58	14
1	-92	-67	58	16
2	-93	-68	58	17
3	-93	-68	58	17
4	-93	-68	58	17
5	-93	-67	58	17
6	-92	-68	57	17
7	-93	-67	58	17
8	-93	-68	58	17

Table S3.6. Preparative scale continuous flow process with catalyst ent-5d^a

^a Reaction conditions: *rac*-8a (12.6 g, 1 eq., 0.2 M in DCM), 7b (0.6 eq., 0.2 M in DCM) DIPEA (0.7 eq., 0.2 M in DCM), *ent*-5d (1.0 g, 0.88 mmol), 0 °C, 0.4 mL.min⁻¹ combined flow, residence time 10 min. ^b ee determined by HPLC. ^c Conversion determined by Kagan's equations. ^d Selectivity factors calculated from ee data.

3.8. Recovery of enantiopure BINOL (6) from its mono- and diesters

To a 10 mL round-bottom flask, 5 mL MeOH, enantioentiched (*R*)-**9ab** (500 mg, 1.19 mmol, 1 eq; 68% ee), finely powdered K_2CO_3 powder (657 mg, 4.76 mmol, 4 eq). [**Important**: for this procedure, it is necessary to grind K_2CO_3 into a fine powder; otherwise, saponification will not work or will take a much longer time] were sequentially added. The reaction mixture was stirred at rt until TLC analysis showed complete consumption of the starting diester (ca.

2 hours). The mixture was then diluted with ethyl acetate (20 mL) and sequentially washed with 1 N HCl (2 x 20 mL) and water (20 mL). The ethyl acetate phase was then dried with MgSO₄ and the solvent removed under vacuum. The crude product was dissolved in the minimal amount of toluene at 110 °C, to make sure that the solution was oversaturated. The heating bath was then removed, and the solution was kept at room temperature overnight. At this point a quasi-racemic (11-23% ee) BINOL precipitate was separated by filtration, and the resulting solution showed a 89-91% ee. This solution was left in an uncapped flask at room temperature for 2 to 3 days, when abundant crystallization of (*R*)-**6** took place. This crystalline material was separated by filtration and washed with a small amount of cold toluene to give 120-140 mg (35% to 41% yield) of (*R*)-**6** with >99.6% ee. By following an analogous procedure from the same amount of (*S*)-**8a** with 96% ee, the enantiomeric diol (*S*)-**6** with 99.2% enantiomeric excess was obtained in 75-85% yield.

4. Compound characterization data

2-chloro-6-(prop-2-yn-1-yloxy)benzo[d]thiazole (3)

2.07 g, 93% yield. Colourless solid. m. p. 60–61 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, J = 9.0 Hz, 1H), 7.30 (d, J = 2.6 Hz, 1H), 7.11 (dd, J = 9.0, 2.6 Hz, 1H), 4.73 (d, J = 2.5 Hz, 2H), 2.57 (t, J = 2.4 Hz, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 155.7, 150.5, 145.8, 137.0, 123.3, 116.12, 105.4, 77.9, 76.1, 56.3 ppm.

IR (neat): 3300, 3279, 3228, 2928, 2114, 1601, 1557, 1486, 1453, 1383, 1257, 1226, 1200, 1014, 826, 808, 676 cm⁻¹.

HRMS (ESI): m/z: [M+H]⁺ (C₁₀H₇ClNOS), calcd.: 223.9931; found: 223.9923.

(S)-2-phenyl-7-(prop-2-yn-1-yloxy)-2,3-dihydrobenzo[d]imidazo[2,1-b]thiazole (4)

1.60 g, 58% yield. Light yellow oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.33 (m, 4H), 7.29 – 7.24 (m, 1H), 6.99 (d, *J* = 2.5 Hz, 1H), 6.81 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.56 (d, *J* = 8.5 Hz, 1H), 5.62 (dd, *J* = 10.2, 8.3 Hz, 1H), 4.62 (d, *J* = 2.4 Hz, 2H), 4.26 – 4.15 (m, 1H), 3.63 (t, *J* = 8.5 Hz, 1H), 2.52 (t, *J* = 2.4 Hz, 1H) ppm.

 13 C NMR (101 MHz, CDCl₃) δ 166.8, 152.6, 142.8, 132.0 (x2), 128.5, 128.2, 127.4, 126.4 (x2), 113.5, 111.1, 108.5, 78.3, 75.7, 75.2, 56.8, 52.8 ppm.

IR (neat): 3285, 3060, 3030, 2929, 2871, 2117, 1760, 1697, 1596, 1569, 1485, 1364, 1191, 1024, 697 $\rm cm^{-1}.$

HRMS (ESI): m/z: [M-H]⁺ (C₁₈H₁₃N₂OS), calcd.: 305.0749; found: 305.0739.

 $[\alpha]_D^{25} = -81.4$ (*c* = 0.1, CH₂Cl₂).

(S)-2'-hydroxy-[1,1'-binaphthalen]-2-yl acetate (8a)

69 mg, 42% yield. Colourless oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 8.9 Hz, 1H), 7.96 – 7.79 (m, 3H), 7.46 (ddd, *J* = 8.1, 6.6, 1.4 Hz, 1H), 7.37 (d, *J* = 8.9 Hz, 1H), 7.34 – 7.18 (m, 5H), 7.03 (dt, *J* = 8.4, 1.1 Hz, 1H), 1.82 (s, 3H) ppm.²

 $[\alpha]_D^{25} = -10.3$ (*c* = 0.1, CH₂Cl₂).

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 12.9 min; minor isomer: t_R = 15.1 min.

(R)-2'-acetoxy-[1,1'-binaphthalen]-2-yl isobutyrate (9ab)

101 mg, 51% yield. Colourless oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (t, *J* = 7.9 Hz, 2H), 7.90 (t, *J* = 7.7 Hz, 2H), 7.48 – 7.36 (m, 4H), 7.32 – 7.18 (m, 4H), 2.45 – 2.25 (m, 1H), 1.78 (s, 3H), 0.75 (d, *J* = 6.7 Hz, 3H), 0.67 (d, *J* = 6.9 Hz, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 175.1, 169.1, 146.7 (x2), 133.3 (x2), 131.5, 131.4, 129.4, 129.3, 127.9 (x2), 126.7, 126.6, 126.1 (x2), 125.6 (x2), 123.5 (x2), 121.9, 121.8, 33.74, 20.5, 18.1 (x2) ppm.

IR (neat): 3059, 2974, 2935, 2875, 1752, 1508, 1469, 1365, 1185, 1091, 807, 756 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₂₆H₂₂NaO₄), calcd.: 421.1416; found: 421.1410.

 $[\alpha]_D^{25} = -8.2$ (*c* = 0.1, CH₂Cl₂).

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 6.9 min; minor isomer: t_R = 11.4 min.

(S)-2'-hydroxy-[1,1'-binaphthalen]-2-yl isobutyrate (8b)

75 mg, 42% yield. Colourless solid. m. p. 147-148 °C.

¹H NMR (300 MHz, Chloroform-*d*) δ 8.07 (d, *J* = 8.9 Hz, 1H), 7.97 (d, *J* = 8.1 Hz, 1H), 7.86 (dd, *J* = 17.0, 8.4 Hz, 2H), 7.50 (ddd, *J* = 8.2, 6.2, 1.9 Hz, 1H), 7.43 – 7.19 (m, 6H), 7.05 (d, *J* = 8.2 Hz, 1H), 5.15 (s, 1H), 2.38 (p, *J* = 7.0 Hz, 1H), 0.77 (d, *J* = 7.0 Hz, 3H), 0.60 (d, *J* = 7.0 Hz, 3H) ppm.³

 $[\alpha]_D^{25} = -15.3$ (*c* = 0.1, CH₂Cl₂).

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 9.8 min; minor isomer: t_R = 11.8 min.

(R)- [1,1'-binaphthalene]-2,2'-diyl bis(2-methylpropanoate) (9bb)

109 mg, 51% yield. Colourless solid. m. p. 66–68 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 – 7.94 (m, 2H), 7.91 (dt, J = 8.3, 1.1 Hz, 2H), 7.51 – 7.37 (m, 4H), 7.34 – 7.24 (m, 4H), 2.32 (p, J = 7.0 Hz, 2H), 0.71 (d, J = 7.0 Hz, 6H), 0.62 (d, J = 7.0 Hz, 6H) ppm.⁴

 $[\alpha]_D^{25} = +41.6 \ (c = 0.1, CH_2Cl_2).$

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 5.1 min; minor isomer: t_R = 9.2 min.

(S)-2'-hydroxy-[1,1'-binaphthalen]-2-yl pivalate (8c)

74 mg, 40% yield. Colourless solid. m. p. 108-110 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 (d, J = 8.8 Hz, 1H), 7.97 (d, J = 8.3 Hz, 1H), 7.92 – 7.77 (m, 2H), 7.50 (ddd, J = 8.1, 5.9, 2.1 Hz, 1H), 7.42 – 7.20 (m, 6H), 7.06 (d, J = 8.4 Hz, 1H), 5.14 (s, 1H), 0.78 (s, 9H) ppm.⁵

 $[\alpha]_{D}^{25} = +60.3$ (*c* = 0.1, CH₂Cl₂).

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 7.1 min; minor isomer: t_R = 10.6 min.

(R)-2'-(isobutyryloxy)-[1,1'-binaphthalen]-2-yl pivalate (9cb)

119 mg, 54% yield. Colourless oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (dd, *J* = 8.9, 2.1 Hz, 2H), 7.91 (ddt, *J* = 8.3, 2.1, 1.0 Hz, 2H), 7.48 – 7.37 (m, 4H), 7.30 (ddd, *J* = 5.7, 2.5, 1.1 Hz, 4H), 2.31 (p, *J* = 7.0 Hz, 1H), 0.74 (s, 9H), 0.69 (d, *J* = 7.0 Hz, 3H), 0.61 (d, *J* = 7.0 Hz, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 176.4, 174.9, 146.9, 146.8, 133.4 (x2), 131.5, 131.4, 129.2 (x2), 127.9, 127.8, 126.6, 126.1, 126.0, 125.6 (x2), 123.7, 123.6, 121.9 (x2), 38.6, 33.8, 26.3 (x3), 18.1, 18.0 ppm.

IR (neat): 3063, 2975, 2930, 1757, 1737, 1509, 1450, 1368, 1262, 1185, 1059, 876, 807, 704 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₂₉H₂₈NaO₄), calcd.: 463.1880; found: 463.1884.

 $[\alpha]_{D}^{25} = -1.5$ (*c* = 0.1, CH₂Cl₂).

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 4.5 min; minor isomer: t_R = 8.8 min.

(S)-2'-hydroxy-[1,1'-binaphthalen]-2-yl benzoate (8d)

74 mg, 38% yield. Colourless solid. m. p. 180–181 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (d, J = 8.9 Hz, 1H), 7.99 (dt, J = 8.3, 1.0 Hz, 1H), 7.82 – 7.74 (m, 2H), 7.70 – 7.61 (m, 2H), 7.57 – 7.48 (m, 2H), 7.42 (d, J = 7.4 Hz, 1H), 7.39 – 7.20 (m, 7H), 7.15 (dd, J = 8.3, 1.5 Hz, 1H), 5.33 (s, 1H) ppm.⁶

 $[\alpha]_D^{25} = -114.4$ (*c* = 0.1, CH₂Cl₂).

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 9.6 min; minor isomer: t_R = 15.1 min.

(R)-2'-(isobutyryloxy)-[1,1'-binaphthalen]-2-yl benzoate (9db)

131 mg, 57% yield. Colourless oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 8.9 Hz, 1H), 7.97 – 7.77 (m, 3H), 7.68 – 7.53 (m, 3H), 7.50 – 7.25 (m, 8H), 7.20 (t, *J* = 7.8 Hz, 2H), 2.35 (dt, *J* = 14.0, 6.9 Hz, 1H), 0.68 (dd, *J* = 26.9, 7.0 Hz, 6H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 175.0, 164.6, 146.9, 146.8, 133.3 (x2), 133.1, 131.5 (x2), 129.7 (x2), 129.4, 129.3, 129.2, 128.1 (x2), 127.9 (x2), 126.7 (x2), 126.1, 126.0, 125.7, 125.5, 123.6, 123.5, 121.8 (x2), 33.7, 18.1 (x2) ppm.

IR (neat): 3079, 2976, 2934, 1760, 1587, 1490, 1466, 1366, 1317, 1191, 1082, 1011, 986, 937, 883, 826 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₃₁H₂₄NaO₄), calcd.: 483.1572; found: 483.1567.

 $[\alpha]_D^{25} = +38.5$ (*c* = 0.1, CH₂Cl₂).

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 6.7 min; minor isomer: t_R = 13.0 min.

(R)- [1,1'-binaphthalene]-2,2'-diyl diacetate (9aa)

102 mg, 55% yield. Colourless solid. m. p. 112–114 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 – 7.97 (m, 2H), 7.96 – 7.89 (m, 2H), 7.51 – 7.39 (m, 4H), 7.31 – 7.24 (m, 2H), 7.23 – 7.13 (m, 2H), 1.85 (s, 6H) ppm.⁷

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

 $[\alpha]_{D}^{25} = +4.2$ (*c* = 0.1, CH₂Cl₂).

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 9.7 min; minor isomer: t_R = 11.0 min.

(R)-2'-acetoxy-[1,1'-binaphthalen]-2-yl benzoate (9ad)

106 mg, 49% yield. Colourless oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (d, *J* = 8.9 Hz, 1H), 7.98 – 7.83 (m, 3H), 7.68 – 7.57 (m, 3H), 7.50 – 7.18 (m, 10H), 1.81 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 164.8, 146.8 (x2), 133.3, 133.1, 131.5, 129.8 (x2), 129.5 (x2), 129.2 (x2), 128.2 (x2), 128.0 (x2), 127.9 (x2), 126.7(x2), 126.2, 126.1, 125.7, 125.6, 123.6, 121.8, 121.7, 20.5 ppm.

IR (neat): 3063, 2975, 2930, 1757, 1737, 1509, 1450, 1368, 1262, 1185, 1059, 876, 807, 704 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₂₉H₂₀NaO₄), calcd.: 455.1259; found: 455.1254.

 $[\alpha]_{D}^{25} = -4.6$ (*c* = 0.1, CH₂Cl₂).

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 10.7 min; minor isomer: t_R = 19.0 min.

(S)-6,6'-dibromo-2'-hydroxy-[1,1'-binaphthalen]-2-yl acetate (8e)

97 mg, 40% yield. Colourless solid. m. p. 161-163 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (d, J = 2.0 Hz, 1H), 7.97 (d, J = 2.1 Hz, 1H), 7.91 (d, J = 8.9 Hz, 1H), 7.76 (d, J = 9.0 Hz, 1H), 7.36 (dd, J = 8.9, 2.0 Hz, 2H), 7.27 (dd, J = 9.0, 1.6 Hz, 2H), 7.06 (d, J = 9.0 Hz, 1H), 6.85 (d, J = 9.0 Hz, 1H), 5.39 (s, 1H), 1.83 (s, 3H) ppm.⁹

 $[\alpha]_D^{25} = +75.3$ (*c* = 0.1, CH₂Cl₂).

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 8.6 min; minor isomer: t_R = 10.5 min.

(R)-2'-acetoxy-6,6'-dibromo-[1,1'-binaphthalen]-2-yl isobutyrate (9eb)

130 mg, 47% yield. Colourless solid. m. p. 155–155 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (dd, *J* = 5.1, 2.2 Hz, 2H), 7.89 (dd, *J* = 8.9, 5.6 Hz, 2H), 7.53 – 7.29 (m, 4H), 7.05 (t, *J* = 9.6 Hz, 2H), 2.37 (qd, *J* = 7.1, 4.7 Hz, 1H), 1.83 (s, 3H), 0.75 (dd, *J* = 24.4, 6.9 Hz, 6H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 174.9, 168.8, 147.0 (x2), 132.5, 131.7, 131.6, 130.2 (x2), 130.0 (x2), 129.9 (x2), 128.7 (x2), 127.7, 127.6, 123.3, 123.2, 123.1, 123.0, 120.0, 33.7, 20.5, 18.2 (x2). ppm

IR (neat): 3079, 2976, 2934, 1760, 1587, 1490, 1466, 1366, 1317, 1191, 1082, 1011, 986, 937, 883, 826 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₂₆H₂₀BrNaO₄), calcd.: 576.9621; found: 576.9619.

 $[\alpha]_{D}^{25} = +6.2$ (*c* = 0.1, CH₂Cl₂).

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 6.3 min; minor isomer: t_R = 11.6 min.

(S)-6,6'-di-tert-butyl-2'-hydroxy-[1,1'-binaphthalen]-2-yl acetate (8f)

99 mg, 45% yield. Colourless solid. m. p. 206-208 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 8.9 Hz, 1H), 7.91 – 7.73 (m, 3H), 7.45 – 7.16 (m, 5H), 6.99 (d, *J* = 8.9 Hz, 1H), 5.17 (s, 1H), 1.87 (s, 3H), 1.38 (s, 18H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 170.6, 151.3, 149.0, 147.5, 146.0, 132.2, 131.7, 131.6 (x2), 130.2, 128.8, 126.4, 125.5 (x2), 124.3, 123.3, 123.0, 122.9, 121.5, 118.0, 113.9, 34.8, 34.5, 31.2 (x3), 31.1 (x3), 20.5 ppm.

IR (neat): 3494, 3068, 2958, 2904, 2868, 1749, 1597, 1502, 1463, 1364, 1263, 1199, 1067, 1014, 945, 885, 825 cm⁻¹.

HRMS (ESI): m/z: [M-H]⁺ (C₃₀H₃₁O₃), calcd.: 438.2279; found: 439.2270.

 $[\alpha]_D^{25} = 56.5 \ (c = 0.1, CH_2Cl_2).$

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 4.7 min; minor isomer: t_R = 9.4 min.

(R)-2'-acetoxy-6,6'-di-tert-butyl-[1,1'-binaphthalen]-2-yl isobutyrate (8fb)

105 mg, 41% yield. Colourless solid. m. p. 82-84 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (t, *J* = 8.4 Hz, 2H), 7.83 (dd, *J* = 9.9, 1.9 Hz, 2H), 7.37 (t, *J* = 7.9 Hz, 4H), 7.18 (ddd, *J* = 15.1, 8.8, 1.2 Hz, 2H), 2.34 (td, *J* = 7.0, 1.1 Hz, 1H), 1.80 (s, 3H), 1.38 (d, *J* = 4.3 Hz, 18H), 0.76 (d, *J* = 7.0 Hz, 3H), 0.67 (d, *J* = 7.0 Hz, 3H) ppm.

 13 C NMR (101 MHz, CDCl₃) δ 175.2, 169.2, 148.3, 148.2, 146.2 (x2), 131.5 (x2), 131.5, 131.4, 129.2, 129.1, 125.9, 125.8, 125.5 (x2), 123.2 (x2), 122.9, 122.8, 121.8, 121.6, 34.7 (x2), 33.7, 31.2 (x6), 20.6, 18.2, 18.1 ppm.

IR (neat): 2962, 2906, 2871, 1754, 1596, 1500, 1364, 1263, 1191, 1123, 1093, 1014, 887, 826, 731 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₃₄H₃₈NaO₄), calcd.: 533.2668; found: 533.2657.

 $[\alpha]_D^{25} = -76.0 \ (c = 0.1, CH_2Cl_2).$

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 7.6 min; minor isomer: t_R = 10.7 min.

(S)-2'-methoxy-[1,1'-binaphthalen]-2-ol (8g)

83 mg, 46% yield. Colourless solid. m. p. 152–154 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (d, J = 9.1 Hz, 1H), 7.85 (q, J = 8.8 Hz, 3H), 7.42 (d, J = 9.1 Hz, 1H), 7.37 – 7.12 (m, 6H), 7.10 – 6.97 (m, 1H), 4.94 (s, 1H), 3.74 (s, 3H) ppm.⁷

 $[\alpha]_D^{25} = +43.2$ (*c* = 0.1, CH₂Cl₂).

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 13.5 min; minor isomer: t_R = 19.2 min.

(S)-2'-hydroxy-7,7'-dimethoxy-[1,1'-binaphthalen]-2-yl acetate (8h)

74 mg, 38% yield. Light yellow oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 8.8 Hz, 1H), 7.84 – 7.65 (m, 3H), 7.27 – 7.06 (m, 3H), 6.96 (dd, *J* = 8.9, 2.5 Hz, 1H), 6.58 (t, *J* = 2.7 Hz, 1H), 6.39 (t, *J* = 3.1 Hz, 1H), 5.28 (s, 1H), 3.50 (d, *J* = 5.5 Hz, 6H), 1.79 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 170.2, 158.8, 158.3, 152.1, 148.6, 134.8, 134.7, 130.2, 130.0, 129.8, 129.4, 127.6, 124.3, 121.8, 119.2, 118.6, 115.5, 115.4, 113.2, 104.0, 103.5, 55.0, 54.9, 20.3 ppm.

IR (neat): 3438, 3060, 3002, 2937, 2833, 1755, 1619, 1509, 1459, 1423, 1367, 1271, 1193, 1136, 1017, 902, 831, 729 cm⁻¹.

HRMS (ESI): m/z: [M-H]⁺ (C₂₄H₁₉O₅), calcd.: 387,1232; found: 387.1238.

 $[\alpha]_D^{25} = +97.8 \ (c = 0.1, CH_2Cl_2).$

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 60:40, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 8.0 min; minor isomer: t_R = 8.7 min.

(*R*)-2'-acetoxy-7,7'-dimethoxy-[1,1'-binaphthalen]-2-yl isobutyrate (9hb)

126 mg, 55% yield. Yellow oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (dd, *J* = 8.8, 6.9 Hz, 2H), 7.80 (dd, *J* = 8.9, 7.6 Hz, 2H), 7.25 (dd, *J* = 8.8, 6.0 Hz, 2H), 7.11 (ddd, *J* = 8.9, 5.0, 2.5 Hz, 2H), 6.61 (dd, *J* = 9.5, 2.5 Hz, 2H), 3.55 (d, *J* = 1.2 Hz, 6H), 2.31 (hept, *J* = 7.0 Hz, 1H), 1.74 (s, 3H), 0.74 (d, *J* = 6.9 Hz, 3H), 0.58 (d, *J* = 7.0 Hz, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 175.1, 169.2, 158.2, 158.2, 147.3, 147.2, 134.7, 134.6, 129.5, 129.4, 129.0 (x2), 127.0, 126.9, 122.5 (x2), 119.5, 119.4, 118.5, 118.4, 104.4, 104.3, 55.1 (x2), 33.8, 20.6, 18.1, 18.0 ppm.

IR (neat): 2972, 2938, 2834, 1752, 1622, 1508, 1459, 1420, 1383, 1366, 1177, 1135, 1017, 959, 899, 833, 731 cm⁻¹.

HRMS (ESI): m/z: [M+H]⁺ (C₂₈H₂₇O₆), calcd.: 459.1808; found: 459.1809.

 $[\alpha]_D^{25} = -12.2$ (*c* = 0.1, CH₂Cl₂).

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 60:40, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 4.3 min; minor isomer: t_R = 15.2 min.

(S)-2'-hydroxy-6,6'-diphenyl-[1,1'-binaphthalen]-2-yl acetate (8i)

89 mg, 37% yield. Colourless solid. m. p. 96-98 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (d, *J* = 1.8 Hz, 1H), 8.04 (dd, *J* = 5.4, 3.5 Hz, 2H), 7.91 (d, *J* = 8.9 Hz, 1H), 7.62 (d, *J* = 8.3 Hz, 4H), 7.57 – 7.52 (m, 1H), 7.49 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.41 – 7.27 (m, 9H), 7.14 (d, *J* = 8.8 Hz, 1H), 5.39 (s, 1H), 1.83 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 170.4, 151.9, 147.9, 140.8, 140.4, 139.0, 136.2, 132.6 (x2), 132.5, 130.9, 130.7, 129.2, 128.8 (x2), 128.7 (x2), 127.5, 127.3 (x2), 127.1 (x4), 126.3 (x2), 126.0, 125.9, 125.1, 123.0, 122.2, 118.7, 113.9, 20.3 ppm.

IR (neat): 3511, 3027, 1754, 1594, 1491, 1360, 1194, 1076, 1013, 889, 809, 754, 695 cm⁻¹.

HRMS (ESI): m/z: [M-H]⁺ (C₃₄H₂₃O₃), calcd.: 479,1653; found: 479.1632.

 $[\alpha]_D^{25} = +259.0 \ (c = 0.1, CH_2Cl_2).$

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 60:40, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 9.8 min; minor isomer: t_R = 27.3 min.

(R)-2'-acetoxy-6,6'-diphenyl-[1,1'-binaphthalen]-2-yl isobutyrate (9ib)

146 mg, 53% yield. Colourless solid. m. p. 107–109 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 5.0 Hz, 2H), 8.04 (dd, J = 8.8, 6.8 Hz, 2H), 7.68 (d, J = 7.7 Hz, 4H), 7.57 (dd, J = 8.8, 0.9 Hz, 2H), 7.50 – 7.40 (m, 6H), 7.39 – 7.30 (m, 4H), 2.40 (dt, J = 14.0, 7.0 Hz, 1H), 1.85 (s, 3H), 0.80 (d, J = 7.0 Hz, 3H), 0.74 (d, J = 7.0 Hz, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 175.2, 169.1, 146.8 (x2), 140.6 (x2), 138.3 (x2), 132.5 (x2), 131.8 (x2), 129.7, 129.6, 128.8 (x4), 127.4 (x2), 127.3 (x2), 126.7, 126.6, 126.4 (x2), 125.8, 125.7, 123.4, 123.3, 122.4 (x2), 122.3 (x2), 33.8, 20.6, 18.2 (x2) ppm.

IR (neat): 3027, 2973, 2935, 2875, 1753, 1594, 1491, 1367, 1191, 1092, 1012, 905, 890, 754, 729, 695 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₃₈H₃₀NaO₄), calcd.: 573,2042; found: 573,2036.

 $[\alpha]_D^{25} = -60.6$ (*c* = 0.1, CH₂Cl₂).

HPLC (Daicel Chiralpak AD-H, hexane/ⁱPrOH = 60:40, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 8.2 min; minor isomer: t_R = 14.5 min.

[1,1'-binaphthalene]-2,2'-diol (6)

¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 9.0 Hz, 2H), 7.87 (d, *J* = 8.0 Hz, 2H), 7.41 – 7.33 (m, 4H), 7.29 (ddd, *J* = 8.2, 6.8, 1.4 Hz, 2H), 7.14 (d, *J* = 8.9 Hz, 2H), 5.02 (s, 2H) ppm.

 13 C NMR (101 MHz, CDCl₃) δ 152.7 (x2), 133.4 (x2), 131.4 (x2), 129.4 (x2), 128.4 (x2), 127.5 (x2), 124.2 (x2), 124.0 (x2), 117.7 (x2), 110.8 (x2) ppm.

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 16.4 min; minor isomer: t_R = 19.8 min.

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

5. References

[1] V. B. Birman, X. Li, Org. Lett. 2006, 8, 1351-1354.

[2] O. Karam, A. Martin-Mingot, M. P. Jouannetaud, J. C. Jacquesy, A. Cousson, *Tetrahedron*, **2004**, *60*, 6629-6638.

[3] S. Lu, S. B. Poh, Y. Zhao, Y. Angew. Chem. Int. Ed. 2014, 53, 11041-11045.

[4] L. Gialih, L. Shih-Huang, C. Show-Jane, W. Fang-Chen, S. Hwey-Lin, *Tetrahedron Lett.* **1993**, *34*, 6057-6058.

[5] H. Aoyama, M. Tokunaga, J. Kiyosu, T. Iwasawa, Y. Obora, Y. Tsuji, *J. Am. Chem. Soc.* **2005**, *127*, 10474-10475.

[6] J. Green, J. S. Woodward, Synlett 1995, 1995, 155-156.

[7] S. T. Kadam, H. B. Lee, S. S. Kim, B. Kor. Chem. Soc. 2009, 30, 1071-1076.

[8] G. Ma, J. Deng, M. P. Sibi, Angew. Chem. Int. Ed. 2014, 53, 11818-11821.

[9] M. Juárez-Hernandez, D. V. Johnson, H. L. Holland, J. McNulty, A. Capretta, *Tetrahedron: Asymmetry* **2003**, *14*, 289-291.

6. NMR spectra

197

200

209

211

213

UNIVERSITAT ROVIRA I VIRGILI

7. HPLC chromatograms

The result of catalyst 5d' in continue flow

Chapter IV

Development of Immobilized SPINOL-Derived Chiral Phosphoric Acids for Catalytic Continuous Flow Processes. Use in the Catalytic Desymmetrization of 3,3-Disubstituted Oxetanes

4.1. Polymer-immobilized chiral phosphoric acids

Chiral phosphoric acids (CPAs) are powerful and versatile Brønsted acid catalysts. Since the pioneer studies on these substances by the groups of Akiyama, ¹⁵⁹ Terada and Uraguchi¹⁶⁰ in 2004, the use of CPAs in the development and application in asymmetric catalysis has experienced a rapid growth, and they have been applied in over 500 asymmetric transformations so far.¹⁶¹

¹⁵⁹ Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566-1568.

¹⁶⁰ Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356-5357.

¹⁶¹ a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. *Angew. Chem., Int. Ed.* **2004**, *43*, 1566-1568; b) Uraguchi, D.; Terada, M. *J. Am. Chem. Soc.* **2004**, *126*, 5356-5357; c) Akiyama, T.; Itoh, J.; Fuchibe, K. *Adv. Synth. Catal.* **2006**, *348*, 999-1010; d) Taylor, M. S.; Jacobsen, E. N. *Angew. Chem. Int. Ed.* **2006**, *45*, 1520-1543; e) Connon, S. J. *Angew. Chem. Int. Ed.* **2006**, *45*, 3909-3912; f) Akiyama, T. *Chem. Rev.* **2007**, *107*, 5744-5758; g) Doyle, A. G.; Jacobsen, E. N. *Chem. Rev.* **2007**, *107*, 5713-5743; h) Dondoni, A.; Massi, A. *Angew. Chem. Int. Ed.* **2008**, *47*, 4638-4660; i) Terada, M. *Chem. Commun.* **2008**, *44*, 4097-4112; j) You, S.-L.; Cai, Q.; Zeng, M. *Chem. Soc. Rev.* **2009**, *38*, 2190-2215; k) Adair, G.; Mukherjee, S.; List, B. *Aldrichimica Acta* **2009**, *41*, 31-39;
I) Terada, M. *Synthesis* **2010**, 1929-1982; m) Rueping, M.; Kuenkel, A.; Atodiresei, I. *Chem. Soc. Rev.* **2011**, *40*, 4539-4549; n) Yu, J.; Shi, F.; Gong, L.-Z. *Acc. Chem. Res.* **2011**, *44*, 1156-1171; o) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. *Chem. Rev.* **2014**, *114*, 9047-9153; p) Wu, H.; He, Y.-P.; Shi, F. *Synthesis* **2015**, *47*, 1990-2016; q) Merad, J.; Lalli, C.; Bernadat, G.; Maury, J.; Masson, G. *Chem. -Eur. J.* **2018**, *24*, 3925-2943; r) Maji, R.; Mallojjala, S. C.; Wheeler, S. E. *Chem. Soc. Rev.* **2018**, *47*, 1142-1158; s) Rahman, A.; Lin, X. *Org. Biomol. Chem.* **2018**, *16*, 4753–4777.

The reason for the excellent catalytic performance of CPAs can be ascribed to their unique structural features. For instance, a variety of bulky steric groups can be introduced by Suzuki coupling or Kumada coupling into the basic skeleton of CPAs (mostly BINOL) inducing excellent enantioselectivity and catalytic activity in many different processes. Moreover, they are stable and compatible with oxidation and hydrolysis conditions. In addition, both enantiomers of CPAs are available in most cases.

Attracted by the versatility displayed by these catalysts, our group, as well as several other groups have studied the immobilization of these species in an effort to minimize the problems associated to their tedious synthesis and purification and to lower their very high commercial cost by allowing recycling and reuse.

In 2011, Blechert, Thomas and coworkers reported a new concept for the immobilization of a thienyl-functionalized BINOL-derived CPA and to increase its enantioselectivity through a single step allowed introducing microporosity, chirality and catalytic active centers in a polymer network at the same time. This porous network (**IV-2**) was used as a recoverable heterogeneous organocatalyst in asymmetric transfer hydrogenation and showed increased enantioselectivity compared with the homogeneous reaction catalyzed by **IV-1** (Scheme 1).¹⁶²

¹⁶² Bleschke, C.; Schmidt, J.; Kundu, D. S.; Blechert, S.; Thomas, A. Adv. Synth. Catal. 2011, 353, 3101-3106.

Scheme 1. Microporous polymer of thienyl-functionalized chiral phosphoric acid

In 2012, the same authors reported the synthesis of a new BINOL-derived CPA with 9-anthracenyl as bulky groups derived heterogeneous catalyst (**IV-6**) with high permanent surface area. The highly active and selective porous heterogeneous catalyst (**IV-6**) was evaluated in asymmetric organocatalytic processes, such as transfer hydrogenation, aza-ene-type reactions and the asymmetric Friedel-Crafts alkylation of pyrrole. The catalyst is stable, easily separable, and can be reused several times. The reaction rates are comparable with the corresponding homogeneous catalyst when using the same mass of both in different reactions (Scheme 2).¹⁶³

¹⁶³ Kundu, D. S.; Schmidt, J.; Bleschke, C.; Thomas, A.; Blechert, S. *Angew. Chem., Int. Ed.* **2012**, *51*, 5456-5459.

Scheme 2. Porous material of chiral phosphoric acid

In 2010, the Rueping group reported the synthesis of polymer-immobilized CPAs by radical copolymerization. The stick-type polymeric catalysts **IV-7** and **IV-8** were evaluated in the asymmetric transfer hydrogenation of quinolines and benzoxazines; **IV-8** in this reaction gave the products up to 97% yield with 96% ee. The monolithic materials were found to be stable and had the same catalytic activity and selectivity with their homogeneous counterparts. Moreover, the polymeric catalysts were easily recovered with a tea-bag approach and reused more than 12 cycles without any loss of reactivity and enantioselectivity (Scheme 3). ¹⁶⁴

Scheme 3. Stick-type polymeric chiral phosphoric acid

In 2014, our group reported the synthesis of a very robust PS-supported BINOL derived CPA (**IV-9**). The highly active and selective polymeric catalyst **IV-9** was

¹⁶⁴ Rueping. M.; Sugiono. E.; Steck. A.; Theissmann. T. Adv. Synth. Catal. 2010, 352, 281-287.

applied in the enantioselective Friedel-Crafts reaction of indoles and sulfonylimines (Scheme 4),¹⁶⁵ producing a broad range of 3-indolylmethanamines **IV-12** in high yields and excellent enantioselectivities (up to 98 % ee). Moreover, the polymeric catalyst was recycled for 14 cycles without significant loss in catalytic performance. The versatility of the immobilization approach was also demonstrated in the rapid and convenient, sequential production of a library of enantiopure compounds in continuous-flow.

Scheme 4. PS-supported CPA in Friedel-Crafts reaction of indoles and sulfonylimines

In 2016, our laboratory reported the PS-immobilized TRIP phosphoric acid catalyst using a copolymerization-based strategy. The highly active and enantioselective polymeric resin (PS-TRIP, **IV-13**) was evaluated in the asymmetric allylboration of aldehydes leading to **IV-16** (Scheme 5, a). ¹⁶⁶ Moreover, **IV-13** was reused for 18 times retaining its activity, showing great robust. Finally, the polymeric catalyst **IV-13** was able to be implemented into a continuous flow process operating for 28 h. In 2018, the supported TRIP was applied as efficient organocatalyst to the desymmetrisation of meso-1,3-diones to produce cyclohexenones **IV-18** in excellent yields and enantioselectivities(Scheme 5, b).¹⁶⁷

¹⁶⁵ Osorio-Planes, L.; Rodríguez-Escrich, C.; Pericàs, M. A. Chem. Eur. J. 2014, 20, 2367-2372.

¹⁶⁶ Clot-Almenara, L.; Rodríguez-Escrich, C.; Osorio-Planes, L.; Pericàs, M. A. ACS Catal. **2016**, *6*, 7647-7651.

¹⁶⁷ Clot-Almenara, L.; Rodríguez-Escrich, C.; Pericàs, M. A. RSC Adv. 2018, 8, 6910-6914.

Scheme 5. PS-supported TRIP in the asymmetric allylboration of aldehydes and desymmetrisation of *meso*-diones

In 2017, the Zhang group reported the synthesis of a porous heterogeneous BINOLderived chiral phosphoric acid BiCz-POF-1 (**IV-20**) using the mild, FeCl₃-promoted oxidative polymerization of carbazole units (Scheme 6).¹⁶⁸ Application of **IV-20** in the asymmetric transfer hydrogenation of quinolines and benzoxazines led to excellent yields and stereoselectivities, while reusability was proven for five consecutive runs.

Scheme 6. FeCl₃-promoted oxidative polymerization to prepare BiCz-POF-1

¹⁶⁸ Zhang, X.; Kormos, A.; Zhang, J. Org. Lett. 2017, 19, 6072-6075.

At about the same time, the Kobayashi group reported the preparation of a novel chiral bifunctional heterogeneous materials (**IV-21**) with Au/Pd nanoparticles and CPAs as active orthogonal catalysts by using a facile pseudo-suspension co-polymerization method. With this bifunctional heterogeneous materials, they were able to carry out a sequential one-pot aerobic oxidation–cyclization process to provide **IV-24** in high yields and enantioselectivities (Scheme 7). The catalytic system was recycled several cycles without significant loss of activity or enantioselectivity. (Scheme 7)¹⁶⁹

Scheme 7 CPAs on Au/Pd nanoparticles **IV-21** as active orthogonal catalysts for a one-pot, sequential oxidation–cyclization process

4.2. Synthesis of SPAs

SPAs are a class of chiral phosphoric acids derived from the C₂-symmetric chiral SPINOLs. The simple, highly rigid chiral C₂ symmetric spirocyclic backbone of SPINOL involving a quaternary center makes racemization virtually impossible; therefore, SPAs combine chemical robustness and conformational rigidity and this makes the catalyst characteristics (both electronic and steric) of SPAs very different from that of BINOL-derived phosphoric acids (BPAs).

¹⁶⁹ Cheng, H. G.; Miguélez, J.; Miyamura, H.; Yoo, W. J.; Kobayashi, S. Chem. Sci. 2017, 8, 1356-1359.

These characteristics convert SPINOL and its derivatives (like SPAs) into good candidates for immobilization in view of their use as reusable chiral catalysts. However, in spite of the different studies dealing with the immobilization of BINOL-derived phosphoric acid, the immobilization of SPINOL-derived phosphoric acid has not been explored up to date.

The synthesis of SPAs normally start with commercially available R- or S-configured SPINOL **IV-25** as shown in Scheme 8. Protection of the hydroxyl groups with MOMCI gives **IV-26**, which leads to the introduction of iodine atoms at the 6,6'-positions using a lithiation–halogenation strategy to yield **IV-27**. Intermediate **IV-28** can be then prepared by two different strategies: a) by performing a Suzuki coupling (for highly sterically hindered groups, Kumada coupling is used) to introduce the aryl groups before hydrolytic deprotection [In this method, Pd (0) in combination with suitable ligands is used, which increases the cost of the procedure],¹⁷⁰ and b) by performing hydrolytic deprotection before coupling. While this second approach presents the advantage of involving the use of comparatively cheaper Pd/C as catalyst in the Suzuki coupling when X = I, suffers from the limitation that highly hindered bulky groups cannot be introduced with this method.¹⁷¹ Finally, the phosphorylation of **IV-28** affords the desired SPA catalysts **IV-29**.

A practical detail clearly advocating in favor of SPAs immobilization is the need for thorough removal of metal cations after the requisite purification of **IV-29** by flash chromatography on silica gel, since the metal phosphates originated during

¹⁷⁰ a) Čorić, I.; Müller, S.; List, B. J. Am. Chem. Soc. 2010, 132, 17370-17373; b) Xing, C. H.; Liao, Y. X.; J. Ng, J.; Hu, Q. S. J. Org. Chem. 2011, 76, 4125-4131; c) Xu, B.; Zhu, S.-F.; Xie, X. L.; Shen, J. J.; Zhou, Q.-L. Angew. Chem. Int. Ed. 2011, 50, 11483-11486.

¹⁷¹ a) Xu, F.; Huang, D.; Han, C.; Shen, W.; Lin, X.; Wang, Y. *J. Org. Chem.* **2010**, *75*, 8677-8680; b) González,
A. Z.; Benitez, D.; Tkatchouk, E.; Goddard III, W. A.; Toste, F. D. *J. Am. Chem. Soc.* **2011**, *133*, 5500-5507;
c) Xing, C. H.; Liao, Y. X.; Ng, J.; Hu, Q. S. J. Org. Chem. **2011**, *76*, 4125-4131.

purification present catalytic characteristics very different from those of the free-acid forms of CPAs.

Scheme 8. Synthesis of SPAs

4.3 The synthesis of SPINOL derivatives

In 1999, the Birman group¹⁷² reported the synthesis of SPINOL, and numerous important works by the Qilin Zhou group have later demonstrated the outstanding performance of 1,1'-spirobiindane-based chiral ligands in diverse asymmetric catalytic processes.¹⁷³ However, the seven steps synthetic procedure required to prepare SPINOL in enantiomerically pure form importantly increased the cost of this compound and hampered its application of catalysts. To solve this limitation and to enlarge the manifold of potential applications, in the following years, a number of synthesis of spirocyclic backbone structures was reported.

According to Birman's procedure, ¹⁶ the synthesis of SPINOL started with the coupling of *m*-anisaldehyde **IV-31** with acetone in the present of NaOH. Then, both double bonds in **IV-32** were reduced by low-pressure hydrogenation with Raney Nickel. Before the

¹⁷² Birman, B. V.; Rheingold, A. L.; Lam, K. C. *Tetrahedron: Asymmetry* **1999**, *10*, 125-131.

¹⁷³ Xie, J.-H.; Zhou, Q.-L. Acc. Chem. Res. 2008, 41, 581-593.

spirocyclization, the para positions of the aryl groups with respect to the MeO substituents were brominated to block these positions and to make sure only the *ortho* positions (with respect to methoxy) in **IV-34** react with the carbonyl carbon to produce the target spirobiindane **IV-35**. Then, the Br and O-methyl groups were sequentially cleaved with n-BuLi and BBr₃ producing SPINOL **IV-25** as a racemate. (±)-**IV-25** can be resolved by treating with L-menthyl chloroformate and NEt₃. Later on, in 2002, Zhou and coworkers reported a method to resolve SPINOL by inclusion crystallization with N-benzylcinchonidinium chloride.¹⁷⁴ This new method represents a highly efficient and practical way to resolve SPINOL in gram scale.

Scheme 9. Common procedure for the synthesis of SPINOL

In 2013, a US patent reported a five steps procedure to prepare (±)-**IV-25** (Scheme 10). In this patent, 3-hydroxybenzaldehyde **IV-37** was used as starting material instead of *m*-anisaldehyde. In this way, the deprotection of MeO- group is no longer required. In addition, the removal of the Br substituents by low-pressure hydrogenation with Pd/C is safer and cheaper than the use of *n*BuLi with the same purpose.¹⁷⁵

¹⁷⁴ Zhang, J. H.; Liao, J.; Cui, X.; Yu, K. B.; Zhu, J.; Deng, J. G.; Zhu, S. F.; Wang, L. X.; Zhou, Q. L.; Chung,

L. W.; Ye, T. Tetrahedron: Asymmetry 2002, 13, 1363-1366.

¹⁷⁵ Wang, Y. R.; Chin, C. L.; Cheng, K. L.; Liu, S. H. US20130135574.

Scheme 10. Improved procedure for synthesis of SPINOL

In 2004, the Dai group reported the preparation of spiro-bisphenol by treatment of bisphenol A with concentrated sulfuric acid at room temperature.¹⁷⁶ Later in 2018, the Lin group reported the preparation of the corresponding spiro-bisphenol **IV-43** by treatment of bisphenol C with methanesulfonic acid (Scheme 11). This compound could be resolved by derivatization with L-menthyl chloroformate or by inclusion crystallization with N-benzylcinchonidinium chloride. A variety of ligands based on the structure of **IV-43** were later prepared ((**IV-44**) - (**IV-48**)) and showed good to excellent results in different catalytic asymmetric processes.¹⁷⁷

The syntheses of **IV-43**, however, are poorly atom-economical; equivalent amounts of phenolic by-products are co-produced, and this increases the difficulty of isolation of the target derivatives while representing a heavy burden of environmental pollution.

¹⁷⁶ Chen, W. F.; Lin, H. Y.; Dai, S. A. Org. Lett. **2004**, 6, 2341-2343.

¹⁷⁷ a) Sun, W.; Gu, H.; Lin, X. J. Org. Chem. 2018, 83, 4034–4043; b) Shan, H.; Zhou, Q.; Yu, J.; Zhang, S.; Hong, X.; Lin, X. J. Org. Chem. 2018, 83, 11873–11885; c) Chang, S.; Wang, L.; Lin, X. Org. Biomol. Chem. 2018, 16, 2239-2247; d) Shan, H.; Pan, R.; Lin, X. Org. Biomol. Chem. 2018, 16, 6183-6186; e) Gu, H.; Han, Z.; Xie, H.; Lin, X. Org. Lett. 2018, 20, 6544-6549.

Scheme 11. Synthesis and application of spiro-bisphenol IV-43

In 2004, the Zhou group reported the synthesis and optical resolution of 9,9'spirobifluorene-1,1'-diol (SBIFOL, **IV-51**). SBIFOL was synthesized from 1,2dibromobenzene and 3-bromoanisole (Scheme 12). It can be resolved by inclusion resolution with 2,3-dimethoxy-N,N,N',N'-tetracyclohexylsuccinamide. ¹⁷⁸ In 2005, Zhou and coworkers used SBIFOL for preparing diphosphane ligands and applied them in the ruthenium - catalyzed asymmetric hydrogenation of α , β - unsaturated carboxylic acids.¹⁷⁹ However, during the next 16 years, no further studies about SBIFOL has been reported.

Scheme 12. Synthesis and SBIFOL

In 2007, the Zhou group reported the synthesis of a racemic 1,1' - spirobitetralin - 8,8' - diol (SBITOL, rac-**IV-57**) via a 9 steps synthetic procedure in 26% over yield,

¹⁷⁸ Cheng, X.; Hou, G. H.; Xie, J. H.; Zhou, Q. L. Org. Lett. 2004, 6, 2381-2383.

¹⁷⁹ Cheng, X.; Zhang, Q.; Xie, J. H.; Wang, L. X.; Zhou, Q. L. Angew. Chem. Int. Ed. **2005**, 44, 1118-1121.

and it was resolved *via* bis - (S) - camphorsulfonates (Scheme 13).¹⁸⁰ The resolved enantiomerically pure SBITOL was applied to the synthesis of chiral spirobitetraline monophosphoramidite ligands and then applied in the Rh catalyzed enantioselective hydrogenation of dehydroamino esters.

Scheme 13. Synthesis and SBITOL

Scheme 14. Synthesis of SPINOL based on aromatic spiroketals backbones

In 1997, the Caruso group reported the preparation of **IV-58** in large scale by acidcatalyzed reaction of p-cresol with acetone.¹⁸¹ Later in 2011, Ding and coworkers developed a new type of spiro bisoxazoline ligand (SPANbox) based on **IV-58** and two oxazoline chelating units **IV-59a** and **IV-59b** (Scheme 14, a). Their Zn(II)

¹⁸⁰ Huo, X. H.; Xie, J. H.; Wang, Q. S.; Zhou, Q. L. Adv. Synth. Catal. 2007, 349, 2477-2484.

¹⁸¹ Caruso, A. J.; Lee, J. L. J. Org. Chem. **1997**, 62, 1058-1063.

complexes showed excellent activity and enantioselectivity in the catalytic hydroxylation of various β -keto esters and 1,3-diesters.¹⁸² In 2012, the same group reported a resolution-free preparation of aromatic spiroketals **IV-61** by catalytic asymmetric hydrogenation of α , α' - bis(2 - hydroxyarylidene) ketones with an iridium(I) complex involving a spiranic P,N ligand (SpinPhox) in high yields with excellent diastereo - and enantioselectivities (Scheme 14, b).¹⁸³ **IV-61** was applied to the synthesis of diphosphine (SKP) ligands in one step with 78–95% yields on multigram scale. ¹⁸⁴ After that, several asymmetric transformation have been reported with type ligands, showing its great application potential.

Scheme 15. Synthesis of oxa-SPINOL

In 2018, the Zhang group reported the synthesis of chiral *oxa*-spirocyclic ligands for Ir-catalyzed direct asymmetric reduction of bringmann's lactones with molecular hydrogen. The 6 steps synthetic procedure (Scheme 15) included the construction of the all-carbon quaternary center at an early stage, a key double intramolecular S_NAr reaction to create the spirocycles, and could be operated at >100 g scale. The *oxa*-SPINOL **IV-70** can be resolved with L-proline by control of the solvent.¹⁸⁵

¹⁸² Li, J.; Chen, G.; Wang, Z.; Zhang, R.; Zhang, X.; Ding, K. Chem. Sci. **2011**, *2*, 1141-1144.

¹⁸³ Wang, X.; Han, Z.; Wang, Z.; Ding, K. Angew. Chem. Int. Ed. **2012**, *51*, 936-940.

¹⁸⁴ Wang, X.; Guo, P.; Wang, X.; Wang, Z.; Ding, K. Adv. Synth. Catal. 2013, 355, 2900-2907.

¹⁸⁵ Chen, G. Q.; Lin, B. J.; Huang, J. M.; Zhao, L. Y.; Chen, Q. S.; Jia, S. P.; Yin, Q.; Zhang, X. J. Am. Chem. Soc. **2018**, *140*, 8064-8068.

Although the *oxa*-spirocyclic ligands prepared in this manner didn't show any significant advantages in terms of catalytic activity and enantioselectivity, this work presented a new concept in the synthesis SPINOL analogs.

In 2018, Sun group reported the synthesis of a series of chiral spiroketal bisphosphine ligands containing 1,1'-spirobi(3*H*,3'*H*)isobenzofuran backbones. The synthesis (Scheme 16) was performed at gram scale, and no kinetic resolution of enantiomers is required. Enantiopure diphosphines **IV-73a** and **IV-73b** were applied in the enantioselective, Rh-catalyzed hydrogenation of α -dehydroamino acid esters.¹⁸⁶

Scheme 16. Synthesis and SPINOL based on 1,1'-spirobi(3H,3'H)isobenzofuran backbones

Scheme 17. Synthesis of spiroketal - based SPINOL

In 2018, the Nagorny group reported a new enantioselective route to the synthesis of spiroketal - based SPINOLs **IV-76** (Scheme 17). Based on it, several chiral ligands were generated and employed in an array of stereoselective

¹⁸⁶ Huang, J.; Hong, M.; Wang, C. C.; Kramer, S.; Lin, G. Q.; Sun, X. W. *J. Org. Chem.* **2018**, *83*, 12838-12846. 254

transformations.¹⁸⁷ Notably, this approach represents an expedient and economical method to prepare SPINOL analogs.

In 2016, Tan and coworkers reported a chiral phosphoric acid-catalyzed asymmetric synthesis of SPINOLs. Their approach is characterized by its highly convergent nature and functional group tolerance, and efficiently provides SPINOLs in good yield with excellent enantioselectivity.¹⁸⁸ For systems containing electron donating groups (EDG) in the *para* position with respect to OH, the corresponding spinols can be prepared from ketone directly by heating at 120 °C for 2 days. However, the presence of electron withdrawing groups (EWG) such as F, Cl, Br and I in those *para* positions diverted the reaction towards the corresponding ketals **IV-79**, In general, the reaction conditions required for the formation of **IV-25** involve heating at 80 °C for 4-7 days. The long reaction time and high reaction temperature required are the main limitations for the application of this method. (Scheme 18)

Scheme 18. Synthesis of SPINOL with CPA

In 2004, Venugopal reported the synthesis and resolution of new cyclohexyl fused spirobiindane 7,7'-diol CHEXDBSPINOL (**IV-84**).¹⁸⁹ The compound was prepared following birman's procedure, replacing acetone with cyclohexanone (Scheme 19). However, **IV-84** failed to be resolved by inclusion crystallization with N-benzyl

¹⁸⁷ Argüelles, A. J.; Sun, S.; Budaitis, B. G.; Nagorny, P. Angew. Chem. Int. Ed. 2018, 57, 5325 –5329.

¹⁸⁸ Li, S.; Zhang, J. W.; Li, X. L.; Cheng, D. J.; Tan, B. J. Am. Chem. Soc. **2016**, 138, 16561-16566.

¹⁸⁹ Venugopal, M.; Elango, S.; Parthiban, A.; Eni. *Tetrahedron: Asymmetry* **2004**, *15*, 3427-3431.

cinchonidinium chloride in either toluene or a mixture of hexane and toluene. On the other hand, it could be resolved by treatment with L-menthyl chloroformate and NEt₃ followed by crystallization in hexane. In 2019, the Ding group presented a facile enantioselective synthesis of CHEXDBSPINOL in high yields and excellent stereoselectivities (up to >99% ee).¹⁹⁰ The protocol can be performed in one pot and is readily scalable. Notably a 25 g batch scale was performed without any chromatographic purification. SPINOL **IV-84** was evaluated as a chiral ligand in several transition metal (Rh, Au, or Ir) catalyzed enantioselective transformations (hydrogenation, hydroacylation, and [2 + 2] cycloaddition reaction).

Scheme 19. Enantioselective synthesis of cyclohexyl-fused chiral SPINOL analog

Most recently, in 2019, the Dou group reported the synthesis of a series of 3,3' diaryl - SPINOLs IV-86 by sequential Rh - catalyzed asymmetric conjugate addition of arylboronic acids/BF3 - promoted diastereoselective spirocyclization with excellent yields and stereoselectivities (Scheme 20). Some phosphoramidite ligands prepared from 3,3' - diphenyl - SPINOL showed higher enantioselectivities than the privileged nonsubstituted ligand in several catalytic asymmetric reactions.¹⁹¹

¹⁹⁰ Zheng, Z.; Cao, Y.; Chong, Q.; Han, Z.; Ding, J.; Luo, C.; Wang, Z.;Zhu, D.; Zhou, Q. C.; Ding, K. J. Am. Chem. Soc. **2018**, *140*, 10374–10381.

¹⁹¹ Yin, L.; Xing, J.; Wang, Y.; Shen, Y.; Lu, T.; Hayashi, T.; Dou, X. Angew. Chem. Int. Ed. **2019**, 58, 2474-2478

Scheme 20. Enantioselective synthesis of 3,3' - diaryl - SPINOLs

4.4 Aim of this project

CPAs present many important advantages in asymmetric catalysis. For instance, a variety of bulky steric groups could be introduced into the structure of CPAs to optimize enantioselectivity up to very high levels. In addition, they are stable and compatible with oxidation and hydrolysis conditions. Not less important, in most cases, both enantiomers of CPAs are available.

The simple highly rigid chiral C₂ symmetric quaternary center of spirocyclic backbone of SPINOL makes racemization virtually impossible, and this converts SPINOL derivatives into potentially high profile, reusable chiral catalysts.

However, the seven steps procedure required to achieve enantiomerically pure SPINOLs can represent an unaffordable effort in cost and time required for their preparation. In particular, the introduction of optimal bulky substituents, highly beneficial for catalytic performance, is particularly painful.

Consequently, we thought that it would be highly desirable to immobilize these catalysts onto a solid support to allow their recovery, multiple reuse and, eventually, application in continuous flow.

According to Dou's work, 3,3' - diaryl - SPINOLs could be prepared in two steps (three steps if including the synthesis of the starting material) with excellent yield and stereoselectivities. As already mentioned, some phosphoramidite ligands prepared

from 3,3' - diphenyl - SPINOL exhibit superior catalytic performance than the privileged nonsubstituted ligand in several catalytic asymmetric reactions. For these reasons, this type of SPINOL derivative is an ideal candidate for immobilization and conversion (before or after immobilization) into chiral phosphoric acids.

With this aim in mind, we synthesized a family of immobilized 3,3'-diphenyl-SPINOLs derived chiral phosphoric acids with different bulky substituents at 6,6'-positions ((**IV-90**)- (**IV-94**)). The catalytic enantioselective desymmetrization of 3-substituted oxetanes (**IV-87**) with benzo[d]thiazole-2-thiol (**IV-88**) was chosen as a model reaction to evaluate this family of immobilized SPAs (Scheme 21).

Scheme 21. Immobilized Chiral 3,3' - diaryl - SPINOLs derived phosphoric acid and application

Development of Immobilized SPINOL-Derived Chiral Phosphoric Acids for Catalytic Continuous Flow Processes. Use in the Catalytic Desymmetrization of 3,3-Disubstituted Oxetanes

Junshan Lai, Mauro Fianchini, and Miquel A. Pericàs*

ABSTRACT: A family of C₂-symmetrical 1,1'-spirobiindane-7,7'-diol (SPINOL) derivatives containing polymerizable styryl units has been prepared through a highly convergent approach. Radical co-polymerization of these monomers with styrene has allowed the synthesis of a new family of immobilized SPINOL-derived chiral phosphoric acids (SPAs) where the combination of the restricted axial flexibility of the SPINOL units and the existence of extended and adaptable chiral walls adjacent to them leads to enhanced stereocontrol in catalytic processes. The optimal immobilized species (**Cat f**) brings about the catalytic desymmetrization of 3,3-disubstituted oxetanes in up to 90% yield with up to >99% enantioselectivity, exhibiting a very high recyclability (no decrease in conversion or enantioselectivity after sixteen, 16-hour runs). To exploit these characteristics, a continuous flow process has been implemented and operated for the sequential preparation of 17 diverse enantioenriched products. The suitability of the flow setup for gram scale preparations (20 mmol scale) and its deactivation/reactivation by treatment with pyridine/hydrochloric acid in dioxane have been demonstrated. Density Functional Theory has been employed to provide a rational justification of the deep effect on enantioselectivity arising from the presence of sterically bulky substituents at the 6,6'-positions of the SPINOL unit. The main structural features of **Cat f** have subsequently been incorporated to the design of a simplified homogeneous analog available in a straightforward manner (**Cat g**) that performs the benchmark desymmetrization reaction with similar yields and enantioselectivities as **Cat f**, providing a convenient alternative for cases when single use in solution is sought.

KEYWORDS: Chiral Phosphoric Acids • Immobilization • SPINOL • Continuous Flow • Density Functional Theory.

Among the different families of successful organocatalysts, chiral phosphoric acids stands out for the unique peculiarity of combining a Lewis basic site with a Brønsted acid site within the same catalytic unit.¹⁻⁵ Moreover, since the first pioneering works of Akiyama,⁶ Terada and Uraguchi⁷ in 2004, the high versatility of BINOL-derived chiral phosphoric acids (BPAs) as Brønsted acid-Lewis base catalysts translates in over 500 publications.^{2-4, 6-20} Drawbacks in the use of BPAs in asymmetric catalysis can be ascribed to the conformational flexibility of the BINOL scaffold that may hamper enantioselection,²¹ or to the unaffordable cost in derivatives like TRIP, where this problem has been solved through the introduction of very bulky substituents in the 2,2' positions.¹² A conceptual, synthetic evolution of BINOL, 1,1'-spirobiindane-7,7'-diol or SPINOL (1), first in-troduced by Birman in 1999,²² and its derivatives found initial application as ligands in asymmetric metal catalysis.23-24 From 2010 on, a new generation of SPINOL-derived phosphoric acids (SPAs) has been developed.²⁵⁻²⁶ Over the last decade, both the number of synthetic procedures for the preparation of SPAs and their catalytic applications have sensibly grown, leading to the characterization of diverse chiral SPAs and their application in different catalytic processes resulting in over 100 publications.²⁷ The most significant advantage of SPAs over BPAs lays in the structural rigidity of the C2-symmetric chiral spirocyclic backbone: the configuration of the quaternary carbon in SPINOLS is blocked. Thus, conformational mobility is completely restricted and racemization in solution becomes virtually impossible. Thus, the chemical robustness and conformational rigidity of SPAs enables different electronic and steric factors compared to those of BPAs. Following pioneering work by Birman,²² a considerable amount of work involving the use in catalysis of structures with spirocyclic backbones has been reported.24, 28-36 Thus, asymmetric syntheses of SPINOL and SPIROL derivatives (2-5) have been achieved by the Tan,³⁰ Ding,^{29,35} Nagorny,³⁴ and Dou groups³⁶ (Figure 1).

Figure 1. Development of SPINOL and SPIROL derivatives. Most notably, Dou and coworkers reported in 2019 a highly diastereo- and enantioselective synthesis of 3,3'-diaryl-SPINOLS (5) and could show that the derived phosphoramidite ligands showcased higher enantioselectivities than those containing the non-substituted SPINOL skeleton in several different types of catalytic asymmetric processes.³⁶ In addition, it has been shown²⁷ that bulky substituents at the 6,6'-positions on the SPINOL skeleton in derived phosphoric acids are essential for the achievement of optimal enanticcontrol with SPINOLderived ligands and organocatalysts. This is not a trivial detail,

> since the introduction of such substituents always requires additional synthetic steps leading to increased production costs that could hamper large scale application. This limitation, however, could be efficiently mitigated by immobilization of the catalyst onto solid supports. If correctly planned, this strategy could allow the easy recovery and recycling of the catalyst (thus extending its useful life span) and easy product isolation without paying a penalty in catalytic activity.^{37,38} Moreover, catalytic processes based on immobilized catalysts often present the remarkable advantage of allowing implementation in continuous-flow.^{39,56} As a consequence of these advantages, interest in the immobilization of homogeneous chiral catalysts onto diverse solid supports has spread in recent years, ^{57,61} chiral phosphoric acids clearly illustrating this tendency.

Figure 2. Immobilized chiral phosphoric acids.

Thus, Rueping⁶² and Blechert⁶³ already envisioned the potential advantages of immobilization of chiral phosphoric acids onto

Core-Shell Au/Pd NPs-PS

stationary phases (Structures 6 and 7 in Figure 2). Later on, the Pericàs laboratory developed immobilized CPAs 8 and 9 and demonstrated their practicality for long-time operable, highly enantioselective processes in continuous flow.⁶⁴⁻⁶⁶ Structures 10 and 11 correspond to more recent examples exemplifying the continued interest for the immobilization of CPAs.^{67,68} We report in this manuscript the synthesis of a family of 3,3'-diphenyl-SPINOL bearing polymerizable substituents at either C4-C4' or C6-C6', their immobilization by copolymerization, the preparation of the corresponding CPAs (Cat b-Cat f) and the use of these catalytic species for the desymmetrization of 3-substituted oxetanes with benzothiazole thiols (up to 90% yield and >99% ee) has been tested both in batch and in flow. These experimental studied are complemented by a theoretical (DFT) analysis of the factors governing the enantioselectivity of the desymmetrization process that opens new perspectives for the design of even more efficient catalysts of this type.

Figure 3. Immobilized SPINOL-derived chiral phosphoric acids prepared in this study.

For the preparation of polystyrene immobilized SPAs (**Cat b**-**Cat f**) in high enantiomeric purity, the Dou method was used as

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

an efficient entry to the key SPINOL intermediates.³⁶ For comparison purposes, we designate the homogeneous 6,6'-bis(9-anthryl) SPA as **Cat a** (Figure 3). We will discuss here the preparation of **Cat f** as a most representative example of our modular approach to these catalytic species (Scheme 1). On the other hand, full details for the preparation of **Cat b-Cat e** can be found in the Supporting Information.

The starting material for the preparation of Cat f, 3,3'-diphenylSPINOL (12) was prepared in multigram amount with high enantiomeric purity (>99% ee) as a single diastereomer following the reported procedure.³⁶ To direct the introduction of 6,6' aryl substituents, the phenolic units were first protected as MOM ethers (13, 85% yield). Then, double ortho lithiation (n-BuLi, THF, 0 °C to rt) followed by treatment with perfluorotoluene at -78 °C, selectively led to the 6,6'-bis(arylated) product 14 in 89% yield. The standard deprotection of the MOM ethers in 14 (HCl in dioxane), followed by regioselective dibromination at 4,4' with NBS in dichloromethane afforded 16 in 64% yield (2 steps). At this stage, the phenolic units were re-protected as MOM ethers (17, 82% yield), and the protected intermediate was reacted with catechol in the presence of K2CO3 to increase the structural complexity of the aryl substituents at 6,6' (18, 90% yield).⁶⁹ Interestingly, monocrystals of 18 could be grown from a mixture of iodobenzene and hexane. X-ray diffraction (see Supporting Information) confirmed the structure

and configuration of the compound, showing two molecules of 18 per unit cell that display p-p stacking between the heteroaromatic wings at the 6,6' positions, with interplane distances of 3.5-3.6 Å. As discussed below, the logic of the transformation leading to 18 was precisely that of creating a deep chiral groove around the active phosphoric acid site that will favor enantiocontrol in catalytic processes mediated by Cat f. It is also worth mentioning here that the apparently antieconomic protection/deprotection sequences of the phenolic units are necessary for: a) the selective introduction of the perfluoroaryl substituents at 6,6'; b) the subsequent bromination at 4,4'; c) the aromatic nucleophilic substitutions leading to the formation of the pentacyclic substituents at 6,6' and d) the ultimate Suzuki coupling with 4-vinylphenylboronic acid in the presence tetrakis(triphenylphino)palladium (0) leading to the introduction of the polymerizable units in 20 (19% yield, two steps). The polystyrene-supported SPINOL 21 was then prepared by copolymerization with styrene and DVB induced by AIBN, and Cat f was generated by reaction of 21 with POCl3. The functionalization of the polymer was determined by phosphorus elemental analysis providing a value of $f_p = 0.17$ mmol/g, very appropriate for catalytic purposes.

Scheme 1. Synthesis of the polystyrene-supported SPA Cat f.

From a practical perspective, is it important to highlight that the preparation of **19** can be significantly shortened by obviating the isolation of some of its precursors. Thus, **16** can be advantageously prepared from **14** in 70% yield, while **19** can be

reached from **16** in 59% yield (three steps). In this manner, the overall yield for the preparation of **19** from **12** increases from 16.6% in the step-by-step procedure to 34.5%, while three chromatographic purifications are avoided. Experimental details for

these shortcuts can be found in the Supporting Information. As a benchmark of the catalytic performance of the PS-supported SPAs **Cat b-Cat f**, we selected the desymmetrization of 3,3disubstituted oxetanes. This scaffold is increasingly used in drug design,⁷⁰ and the desymmetrizing ring-opening of these prochiral structures could be relevant to their use as prodrugs. The reaction of 3-phenyloxetan-3-ol (**22a**) with benzo[d]thiazole-2-thiol (**23a**) was used for the selection of the optimal immobilized catalytic species and for solvent optimization (Table 1). It is to be mentioned that this reaction had been previously studied by Sun and coworkers with homogeneous CPAs as catalysts,⁷¹ 6,6'-bis(9-anthryl) SPA providing in that case the best results in terms of yield and enantioselectivity. As already mentioned, we have now used this compound (designated as **Cat a**) as a reference for the immobilized species.

 Table 1. Catalyst and solvent optimization in the desymmetrization of 22a with 23a mediated by Cat a-Cat f.^a

H0 - 0 +	Solvent, rt, 4			
22a	23a	(R)-24 Majo	J kaa or	(S)-24aa Minor
Entry	Solvent	Catalyst	Yield [%]	ee [%]
1 ⁷⁰	CH ₂ Cl ₂	Cat a	91	97
2	CH ₂ Cl ₂	Cat b	85	20
3	CH ₂ Cl ₂	Cat c	85	63
4	CH ₂ Cl ₂	Cat d	87	72
5	CH ₂ Cl ₂	Cat e	90	83
6	CH ₂ Cl ₂	Cat f	81	90
7	toluene	Cat e	92	76
8	Et ₂ O	Cat e	90	81
9	1,2-DCE	Cat e	90	82
10	CHCI₃	Cat e	90	86
11	CHCI3/toluene (1:9)	Cat e	86	86
12	CHCI₃	Cat f	92	95
13	CHCI ₃ /toluene (1:9)	Cat f	88	87
14 ^b	CHCI₃	Cat f	92	98
15 ^{b,c,d}	CHCI₃	Cat f	95	97
16 ^{b,c,d,e}	CHCI₃	Cat f	90	97

^aStandard conditions: **22a** (30 mg, 0.2 mmol), **23a** (42 mg, 0.25 mmol), **Cat a-f** (10 mol%; for the immobilized SPAs, calculated according to the determined functionalization) in the specified solvent (1 mL). shaking at room temperature for 48 h. Under these conditions, **23a** is only partially soluble. ^bReaction under more dilute conditions (4 mL CHCl₃) to favor solubility of **23a**. ^cReaction performed at 60 °C. ^dReaction time was 16 h (overnight). ^{c5} mol% catalyst was used.

For the initial screening, the reaction of **22a** with **23a** was performed in dichloromethane in the presence of **Cat b-Cat f** and compared with the results reported for **Cat a** under identical conditions (entries 1-6). Although yields were satisfactory in all cases, it became clear from these results that a combination of bulky substituents at 6,6' and rotational mobility of these substituents was required for high enantioselectivity (entries 2 and 3). The more promising results were those achieved with **Cat e** and **Cat f** (entries 5 and 6), and for this reason special attention was paid to the optimization of reaction conditions with these two ligands.

It is important to point out that, from a chronological perspective, **Cat e** was designed and prepared first, with the aim of exploring the combination of steric and electronic effects by the perfluoroaryl substituents at 6,6' on enantioselectivity, already pointed out by **Cat d** (entry 4). At a later stage in the project, the susceptibility of those perfluoroaryl substituents towards nucleophilic aromatic substitution was used as a vehicle for the preparation of **Cat f** where, as discussed below, the pentacyclic heteroaryl substituents at 6,6' play a fundamental role on the catalytic performance.

The use of **Cat e** in combination with different solvents was studied in detail. The use of more benign solvents (THF, 2-me-thyltetrahydrofuran, ethyl acetate, acetone, 1,4-dioxane, methanol) was studied first, but none of these solvents led to measurable conversion in the studied process. When using toluene, diethyl ether or 1,2-dichoroethane (entries 7-9) the results were similar to those achieved with dichloromethane, and only with the use of chloroform (entry 10) some improvement in enanti-oselectivity (86%) was noticed. Interestingly, very similar results were recorded when a 9:1 mixture of toluene and chloroform was used as the solvent (entry 11).

When **Cat f** was used (entries 12, 14-16) in chloroform, yield and enantioselectivity even outperformed those recorded with the homogeneous reference **Cat a**. Thus, with 0.05M initial concentration of **22a**, enantioselectivity achieved 98% (entry 14). Interestingly, the reaction time in CHCl₃ could be significantly shortened by performing the reaction at 60 °C, the reaction being completed overnight under these conditions (entry 15), and the catalyst loading could be decreased to 5 mol% without decrease in enantioselectivity (entry 16). On the other hand, with **Cat f** the use of 9:1 mixture of toluene and chloroform had a negative effect on the performance of the reaction (entry 13), so that advantages derived from the use of this more benign solvent are counterbalanced by a significant decrease in enantioselectivity.

Once we had established that **Cat f** exhibited optimal characteristics in the target desymmetrization of **22a** with thiol **23a**, we next studied the recyclability of this catalyst under the most productive conditions (those of entry 16 in Table 1). In this manner, sixteen consecutive cycles of sixteen hours could be run without substantial loss of yield and enantioselectivity. After each cycle the resin was simply separated by filtration and immediately reused in the next reaction cycle. Table S1 shows that there are negligible fluctuations in the results obtained for yields and enantioselectivity between the 1th and the 16th reaction cycles. The cumulative turnover number (TON) achieved in these sixteen runs was 280.

Previous experience in our laboratory with immobilized CPAs has shown that the only significant deactivation mode is deprotonation by basic components in reaction mixtures. Fortunately, this is a reversible process and previously studied immobilized CPAs have shown to be easily reactivated by treatment with acid.^{64,65} Although **Cat f** did not show any sign of deactivation during the recycling experiment, we decided to force the base-induced deactivation of the catalyst to confirm the possibility of a subsequent reactivated by treatment with excess pyridine for 6 h. Then, the use of this deactivated catalyst in the reaction of **22a** with **23a** under the standard conditions of Table

1 led to only 15% conversion, although enantioselectivity kept high (93%). Interestingly, the employed catalyst sample could be reactivated by treatment with 2M HCl in dioxane and reused in the reaction after washing with chloroform. In this manner, complete conversion of **22a** and 96% enantioselectivity in the formation of **24aa** were recorded.

Scheme 2. Deactivation/reactivation of the polystyrene-supported SPA Cat f.

In view of the excellent recyclability depicted by **Cat f** and its compatibility with rather high temperatures, with the derived consequence of short reaction times, we decided to explore the desymmetrization as a genuine flow process, bypassing any intermediate scope development in batch. For the flow experiments, 2.0 g of **Cat f** (f=0.17 mmol/g, 0.34 mmol) were loaded in a size adjustable, jacketed tubular reactor. The feed of the reactor could be selected through a three-way valve from the appropriate mixture of **22** and **23** (they are unreactive to one another in the absence of **Cat f**) to the reaction solvent (chloroform) for resin cleaning between distinct operations. At the reactor outlet, a back-pressure regulator was intercalated to secure uneventful operation near the boiling point of chloroform (Figure 4)

Figure 4. Schematic representation of the flow system for the desymmetrization of oxetanes mediated by the PS-supported SPA Cat f.

As an initial step, the parameters of reaction temperature, concentration of 22a, and combined flow rate were optimized for the simultaneous achievement of high yield and enantioselectivity in the reaction with 23a leading to 24aa. Full data for the optimization process can be found in the Supporting Information (Table S3). In summary, work at 60 °C is highly recommended for high yield with no penalty in enantioselectivity, and two sets of [22a]/flow rate conditions seem to be equally suitable: a) Work with 0.05 M 22a in chloroform at 1 mL/min (residence time = 8 min) leads to a conversion of 92% and enantioselectivity of 97%, and b) Work with 0.1 M 22a in chloroform at 0.5 mL/min (residence time = 15 min) leads to a conversion of 98% and enantioselectivity of 95%. In all these experiments, a 25 mol% excess of 23a was used. As a general comment, the productivity of the experiments under any of the two optimal sets of experimental conditions is remarkable (ca. 8 mmol_{24aa}.mmol_{Catf}⁻¹.hour⁻¹) and can be further increased till *ca*. 14 mmol_{24aa}.mmol_{Cat r}⁻¹.hour⁻¹ at the expense of a somewhat lower instant conversion.

The same flow system, with the same catalyst sample, was next used for the study of the scope of the desymmetrization process by reaction of 22a-n with 23a-d. For this study, we selected 3,3-disubstituted oxetanes as substrates. Besides having been comparatively less studied, they offer the additional interest of leading to products with a quaternary stereocenter. All the experiments were sequentially performed with 2 mmol of 22 and 2.5 mmol of 23 in 20 mL CHCl₃, operating the flow system at 0.5 mL/min. In this manner, every individual experiment lasted 40 minutes, and the packed bed reactor was rinsed for 20 min with CHCl3 between individual experiments in order to remove traces of the previous product (Figure 5). In this manner, a family of fourteen different oxetanes 22a-n was submitted to the desymmetrization process in flow in combination with the mercaptobenzothiazoles 23a-d to produce the seventeen products depicted in Figure 5. The process tolerates well a variety of substituent types at C3 on the oxetane structure (aryl, heteroaryl, alkyl, alkenyl, alkynyl) defining in most cases tertiary alcohols at that position. In the same manner, substituents on the aromatic ring of 23 do not affect in a substantial manner the outcome of the reaction with the same oxetane (22a).

From the point of view of yield, it is important to remark that all the studied desymmetrization reactions are very clean, no significant byproducts being detected. Thus, although lower than optimal yields detected in some cases (>65%), it should be possible to increase them by simply adjusting flow rate in those particular examples. As for enantioselectivity, the results in Figure 5 tend to indicate that the differences between the steric requirements of the C3 substituents on the oxetane ring play a fundamental role on the outcome of the reaction. In tertiary alcohol-type substrates, the presence of an aromatic substituent at C3 generally leads to very high *ee*, whereas in the parallel cases involving linear alkyl substituents, a certain chain length is required for high enantioselectivity (40% *ee* in **24ha**, where \mathbb{R}^1 = methyl, but 90% *ee* in **24ia**, where \mathbb{R}^1 = butyl).

The success of the desymmetrization in the case of product **24ea**, containing a terminal propargyl alcohol moiety, offers an additional interest. Thus, this type of substrates easily undergo copper-catalyzed alkyne-azide (CuAAC) reactions in continu-

ous flow,⁷² and the integration of these two constructive reactions can lead to the telescoped, highly convergent preparation of modular enantioenriched triazoles.

Figure 5. Oxetanes and benzothiazolethiols scope in the **Cat f** catalyzed desymmetrization reaction. All yields shown refer to isolated products. The reactions were performed with oxetane **22** (2 mmol) and benzothiazolethiol **23** (2.5 mmol) in 20 mL chloroform, flowing for 40 minutes (flow rate = 0.5 ml/min) through a packed bed reactor at 60 °C containing 2.0 g (0.34 mmol) of **Cat f**. When the circulation of a given reactants mixture was complete, chloroform was circulated through the reactor for 20 minutes at 0.5 mL/min. Then the system is ready for the next reactant combination.

As a final test of the practical value of the desymmetrization in continuous flow catalyzed by **Cat f**, we planned to use the same packed bed reactor employed for the scope in Figure 5 for the gram scale preparation of **24aa** (two runs) and **24na**. In a first preparative experiment (Scheme 3, a), starting from 20 mmol of **22a** and 25 mmol of **23a** in chloroform (200 mL) the system was operated at 0.5 mL/min for *ca*. 400 minutes, till the reactants solution had completely circulated, and the packed bed reactor was then washed by circulating chloroform at 0.5 mL/min for 20 minutes. Product purification by the usual protocol afforded **24aa** (5.7g, 90% yield) with 95% ee. In the same manner, **22a** (0.24 g, 92% conversion) was recovered. After keeping the employed sample of **Cat. f** swollen with chloroform for 15 months, the flow preparation of **24aa** was performed again under identical conditions, starting from 18 mmol of **22a** and 22.5 mmol of 23a in chloroform (180 mL) (Scheme 3, b). Gratifyingly, both yield and enantioselectivity of the previous run were duplicated. Subsequently, the preparation of 24na was also performed at the 20 mmol scale using one more time the same packed bed reactor (Scheme 3, c), a slight improvement in yield and the same enantioselectivity with respect to the smaller scale preparation in Figure 5 being recorded. Data for instant conversion and enantioselectivity during experiments b) and c) are presented in the Supporting Information. Thus, all the data collected in our study, from recycling in batch to sequential scoping in flow and use at the multigram scale in flow point out to the important robustness of Cat f and its suitability for large scale production. In this respect it is worth mentioning that, setting apart the initial adjustment of flow rate, the 0.34 mmol sample of Cat. f used for the scope in Figure 5 and the preparative experiments in Scheme 3 accounts for a cumulative TON of ca. 243, without decreases in performance.

Scheme 3. Continuous flow preparation of 24aa in gram scale using a multiply reused sample of Cat f.

In order to rationalize the enantioselectivity performance of Cat f and the differences with the poorly behaving Cat b, we decided to undertake a theoretical study of the desymmetrization process. Early computational studies on organocatalytic reactions mediated by chiral phosphoric acids include Mannich reaction, 1,3-dipolar cycloadditions73a as well as desymmetrization processes.^{73b-c} In particular, Seguin and Wheeler studied the desymmetrization of 3-substituted oxetanes catalyzed by 6,6'bis(9-anthryl)SPINOL phosphoric acid, reaching the conclusion that competing noncovalent interactions are the main factor controlling enantioselectivity in that case.74 The main focus of the present computational study has been directed to establishing the relevance of the pentacyclic substituents at the 6,6'-positions of Cat f in biasing the enantioselectivity of the oxetane desymmetrizations mediated by this species. Cat b and Cat f were selected for the computational study as they represent the two extremes in size of the substituents at the 6,6'-positions and of recorded enantioselectivity. Since our experimental studies have shown that the polymer backbone does not affect enantioselectivity (with respect to homogeneous models), the truncated versions of the real catalysts 25 and 26 were used in the calculations (Figure 6).

Figure 6. Structures 25 and 26, models for Cat b and Cat f in the theoretical studies.

Focusing first our attention onto the reactants, we were surprised to find that the thiol tautomeric form of the reactant benzo[d]thiazole-2-thiol is not involved in the catalytic nucleophilic attack onto the 3-hydroxyoxetane structure. At the employed level of theory (M06-2X-D3/DGTZVP/SMD//M06-2X-D3/DGDZVP) the results of the theoretical studies suggest that the tautomeric form of 23a, benzo[d]thiazole-2(3H)-thione, keto-23a, is thermodynamically preferred over the thiol form by $DG = -8.4 \text{ kcal} \cdot \text{mol}^{-1}$ at 333 K (Figure 7). The interconversion between enethiol and thione tautomers can take place in either intermolecular or intramolecular fashions. In the former case, the calculated barrier is very low, $DG^{\ddagger} = +6.0 \text{ kcal} \cdot \text{mol}^{-1}$, while the intramolecular process is not competitive at the considered temperature (DG^{\ddagger} = +29.8 kcal·mol⁻¹). It is thus suggested that only the thione form of 23a will be present in the reaction media and will likewise be the nucleophile acting in the desymmetrization reaction.

Figure 7. Free energy profiles for the intermolecular and the intramolecular tautomerization of benzo[d]thiazole-2-thiol (23a) into benzo[d]thiazole-2-thione (keto-23a) in CHCl₃ at 333K. Displacements associated to the imaginary frequencies in the relevant transition states are indicated by red dotted lines and related atomic distances in Å.

Xie and co-workers were able to isolate tautomeric 2-(methylthio)benzo[d]thiazole (27a) and 3-methylbenzo[d]thiazole-2(3H)-thione (27b) prepared through different synthetic routes and characterize them by NMR spectroscopy.⁷⁵ As expected, the thiol and thione tautomers present very different chemical shift in ¹³C{¹H}NMR: d = 167.0 ppm for *C*-SH, and d = 188.4 ppm for *C*=S.⁷⁵ To determine the tautomeric form of 23 present in solution, we measured the ¹³C{¹H}NMR spectrum on a freshly prepared sample of the reagent. A chemical shift of 190.9 ppm was found for the considered carbon, strongly suggesting that **27b** is the largely predominant tautomer present in CHCl₃ solution at 298 K (Figure 8). Moreover, a full geometrical optimization of a Van der Waals complex featuring the contact of a molecule of **23a** with **25** triggers a barrierless proton exchange to form keto-**23a**.

Figure 8. Tautomeric equilibrium of 23a in chloroform

Interestingly, the benzo[d]thiazole-2(3H)-thione tautomer (keto-23a) exhibits nucleophilic character and easily undergoes nucleophilic attack to the oxetane partner in the presence of phosphoric acid catalysts. Figure 9 shows the calculated reaction profile for the reaction of 22a with keto-23a catalyzed by the Cat b truncated model, 25. Mechanistic information from the intrinsic reaction coordinates (IRC) following the hypersurface downhill from the transition states suggests that proton transfer from the catalyst to the ether oxygen of the oxetane ring happens first, followed by a nucleophilic attack of the thione sulphur atom onto one of the enantiotopic carbon atoms a to oxygen in the oxetane ring (C2 or C4). The transition states for these desymmetrizing processes exhibit marked S_N2 characteristics, with O····C···S angle of nearly 180°. As already pointed out by Seguin and Wheeler,72 the shape of the oxetanol substrate provides a perfect interlocking match with the phosphoric acid catalyst via the formation of two complementary O-H *** O hydrogen interactions. The result is the formation of stable Van der Waals adducts between oxetanol 22a and 25 (IO 1 and IO 2 in Figure 9). We also investigated the possible involvement of similar Van der Waals complexes of 25 with keto-23a in the early stages of the reaction; however, their higher endergonic nature (compared to I0 1 and I0 2) discarded them as competent reaction intermediates.

To get a more comprehensive scenario of the possible transition states involved in the desymmetrization process, we considered four different geometric catalyst-to-reactants approaches, including two (R)- and two (S)-stereodifferentiating pathways. In this respect, Figures 9 and 10 show the lowest energetically demanding pathways leading to (R)- and two (S)stereoisomers in processes mediated by 25 and 26, respectively (data concerning redundant transition structures and minima thereof are included in the computational section of SI). Calculations M06-2X-D3/DGTZVP/SMD//M06-2Xat the D3/DGDZVP level estimate the reaction barrier for the process mediated by 25 as +25.5 kcal·mol⁻¹ for the (R)-directing **TS1d_**R and +26.3 kcal·mol⁻¹ for (S)-directing **TSb_**S, Figure 9. This results in a calculated enantioselectivity at 333 K of 78:22 (65:35 without BSSE corrections) in favor of the R enantiomer ($ee_R = 55\%$ with BSSE corrections and $ee_R = 29\%$ without BSSE corrections). These data are in excellent agreement

with the experimental results obtained with **Cat b** at the same temperature ($ee_R = 20\%$).

Figure 9. Free energy profiles for the desymmetrization of 22a with keto-23a catalyzed by the Cat b model (25). The values are reported in kcal·mol⁻¹. 10_{-1} represents the resting states of the catalyst. Relevant hydrogen bonds distances are reported in black (in Å). Relevant distances associated to displacements of the imaginary frequency for transition states are reported in magenta (in Å).

Figure 10 shows the calculated reaction profile for the reaction of 22a with keto-23a catalyzed by the Cat f truncated model, 26. The first substantial difference between catalysts 25 and 26 is that the latter binds the substrates somewhat stronger than the former, as it can be seen in the coordination of the oxetanol at I0_1 and I0_2 in Figure 10. Thus, 26 binds the oxetanol exergonically with a net gain of up to -13.2 kcal·mol⁻¹, while 25 binds oxetanol with a net gain up to -3.9 kcal·mol⁻¹ (as comparison, an intermediate situation is seen for Cat a, with a net gain of up to -6.5 kcal·mol⁻¹, see Supporting Information). Consequently, while 25 expels easily the products at the end of the desymmetrization (the value of -13.4 kcal·mol-1 in Figure 9 and 10 refers to the separation of the product and catalyst at infinite distance), the product of the desymmetrization prefers to remain bound to catalyst 26 than to be separated from it. Catalyst-product adduct resides at -26.3 kcal·mol⁻¹ in the free energy profile of Figure 10. In the case of **26** the system must pay an energetic penalty of +12.9 kcal·mol⁻¹ to free the catalytic site and allows the release of the (*R*)-product (again, an intermediate situation is seen for **Cat a**, whose catalyst-product adduct resides at -18.6 kcal·mol⁻¹ and the system has to pay a penalty of +5.2 kcal·mol⁻¹ to free the catalytic site, see Supporting Information).

Secondly, **26** displays an enhanced reactivity towards the desymmetrization of **22a** with **23a**: the lowest free energy barrier stands out at +20.3 kcal·mol⁻¹, five kcal·mol⁻¹ lower than that shown for catalysis carried out by **25**. Thus, the results of these calculations suggest that **Cat f** will kinetically outperfom even **Cat a**, whose activation barrier stands out at +21.5 kcal·mol⁻¹ (see Supporting Information) and correctly reproduces the experimental enantioselectivity recorded for **Cat f** at 333 K, of up to ee ~98% (calculated ee is 100% with and without BSSE correction). The predominance of *R* product arises from **TS1d_R**, represented in Figure 10 in side and bottom views. For comparison, calculations at the same level of theory also correctly predicts ee ~ 100% for **Cat a** (see Supporting Information).

Figure 10. Free energy profiles for the desymmetrization of 22a with keto-23a catalyzed by the Cat f model (26). The values are

> reported in kcal·mol⁻¹. **I0**_1 represents the resting states of the catalyst. Relevant hydrogen bond distances are represented in black (in Å). Relevant distances associated to displacements following the imaginary frequency for transition states are represented in magenta (in Å).

> The stronger binding towards the substrates seen for 26, compared to 25, can be rationalized considering that the extended heteroaromatic wings do not only create a deep chiral groove of steric nature around the catalytic center but, even more importantly, they also offer extra differential stabilization via noncovalent interactions and p-p stacking. Figure 11a represents dginter isosurfaces mapping the non-covalent interactions between the anionic catalyst (Fragment 1, [(RO)₂PO₂]⁻) and the protonated activated complex of the substrates (Fragment 2, Oxetanol + keto-23a + H⁺) via Independent Gradient Model (IGM), developed by Henon and co-workers⁷⁶ and implemented by Lu and co-workers in MULTIWFN.⁷⁷ We found over 1300 weak interactions in TS1d R of 26 including strong interfragment O-H +++O and N-H+++O hydrogen bonds, a plethora of F•••C, F•••O, F•••H, S•••O, S•••F and S•••C Van der Waals contacts and other interactions assimilable to p-p stacking. The cumulative effect of these weak interactions within 26 is so strong that the extended heteroaromatic conjugation of the wings is overcome, enabling the loss of planarity and the formation of a "templated" cradle around the catalytic center, reminiscent to the *induced fit* operating in enzymes.⁷⁸

> Figure 11b displays a quantitative measurement of these weak interactions at transition states between anionic catalyst (Fragment 1) and the protonated activated complex of the substrates (Fragment 2) for Cat a, Cat b (25) and Cat f (26): $DPE_{TS(R)}$ and $DPE_{TS(S)}$ represent the molar work (i.e., a difference of potential energies) that must be spent in order to separate Frag. 1 and 2 at infinite distance in chloroform, with a dielectric constant e = 4.7113, for (R)-directing TS and (S)-directing TS, respectively. Figure 11b conveys two fundamental concepts at glance: firstly, the Cat f model binds the (R)-activated complex 3.4 kcal·mol⁻¹ stronger than Cat a and 19.6 kcal·mol⁻¹ ¹ stronger than **Cat b** model (25) at transition state in chloroform and, secondly, the fragments within (R)-stereoinducing transition state are tighter bound than those in (S)-stereoinducing transition state for Cat f (and Cat a) compared to Cat b (the difference between $DPE_{TS(R)}$ and $DPE_{TS(S)}$ is essentially negligible for 25, even more so considering that it is of the same order of magnitude as the differences between the (R)- and (S)-directing isolated fragments, DPE_{Frag#1} and DPE_{Frag#2}, Figure 11). This is an unequivocal sign that cumulative weak interactions between Frag. 1 and 2 at (R)-stereoinducing TS1d R of Cat f are competitively stronger than those within the fragments in (S)stereoinducing TS1c_S, causing an overall increased stabilization of the former structure over the latter.

Figure 11. a) IGM on computational densities for TS1d_R and TS1c_S structures in reactions mediated by Cat f model (26). Green and yellow Dg^{inter} surfaces represent non-covalent interaction regions between anionic catalyst (Frag. 1) and protonated activated complex of substrates (Frag. 2) at 0.004 a.u. isovalue. The darker the red color of the atoms, the more they contribute to the Dg^{inter} isosurface (atoms in grey do not contribute). b) Energetics of the dissociation of Fragment 1 and Fragment 2 at transition states. Values are in kcal·mol⁻¹, being only valid for reactions in chloroform.

At the light of the results of the theoretical study, where the role of the pentacyclic substituents at 6,6' on the enantioselectivity recorded with **Cat. f** in the catalytic desymmetrization of 3,3-disubstituted oxetanes has been stressed, we considered the potential interest of developing a minimalistic, readily available analog of this species for work in homogeneous phase. Since substitution at 4,4' is required for immobilization, but does not seems to play an important role on enantioselectivity according to the calculated structures for the relevant transition states (see Figures 10 and 11), we conceived **Cat. g** as the candidate structure fulfilling the above conditions.

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```


Interestingly, **Cat g** is available in only two steps, already optimized in the course of the present study, from intermediate 14 in 45% yield (four steps, 38% yield from 12). With **Cat g** in hands, its use in the catalytic desymmetrization of a representative family of oxetanes 22 was studied. We have collected in Table 2 the results of this study. For comparison purposes, the results obtained with **Cat f** in continuous flow have also been included.

 Table 2. Desymmetrization of 22 with 23 leading to 24 mediated by the homogeneous catalyst Cat g.^a

HO D R ¹	+ (1)	≻SH CHCl ₃ , 60 °C, 16 h	
22	23		(<i>R</i>)-24
Entry	Product	with Cat g	with Cat f ^b
		Yield [%]; ee [%]	Yield [%]; ee [%]
1	24aa	87; 95	95; 95
2	24ba	78; 98	80; 95
3	24ca	83; >99	90; 99
4	24da	86; 95	65; 79
5	24ea	90; 73	85; 70
6	24ga	84; 7°	75; 0
7	24ha	87; 13 ^d	80; 37
8	24ia	90; 90	85; 90
9	24ja	85; 92	92; 91
10	24ka	88; 92	84; 90
11	24ma	87; 97	95; 93
12	24na	95; 78	95; 72
13	24ab	96; 95	90; >99
14	24ac	85; 85	88; 87
15	24ad	80; 74	78; 92

^aStandard conditions: **22** (0.2 mmol), **23** (0.25 mmol) and **Cat g** (12 mg, 5 mol%) in chloroform (4 mL) stirred at 60 °C (oil bath temp) in a sealed vial for 16 h. ^bReaction conditions are those in Figure 5. ^cWhen the reaction was performed at rt for 16 h, yield was 82% and ee 4%. ^dWhen the reaction was performed at rt. for 16 h, yield was 86% and ee 10%.

To facilitate comparison with Cat f, the scope of the desymmetrization with Cat g was studied in chloroform solution at 60 °C. Under these conditions, the parallelism with Cat f in terms of performance is remarkable. Thus, the preparations of 24ga and 24ha turned out to be poorly enantioselective, as it is the case with Cat f. For the rest of products 24, although some differences can be noted in individual cases, the average yield and enantioselectivity recorded with the heterogeneous (Caf f) and the simplified homogeneous catalyst (Cat g) are essentially identical: 86.9% average yield with Cat g vs. 86.3% with Cat f, and 89.5% average ee with Cat g vs. 88.6% with Cat f. The desymmetrization of the two reluctant examples was also studied at room temperature in an attempt to improve the enantioselectivity of the transformations, but without success (entries 6 and 7). All together, these results tend to indicate that the pentacyclic substituents present at the 6,6' positions of Cat f, possess the power to impart optimal enantiocontrol characteristics to SPINOL-derived phosphoric acids without the need of other structural characteristics.

In summary, a new family of chiral phosphoric acids derived from 3,3'-diphenyl-SPINOL (SPAs) been successfully synthesized and immobilized onto cross-linked polystyrene using either the 4.4' or the 6.6' positions. The resulting catalytic polymers efficiently mediate the desymmetrization of 3-substituted oxetanes (22) with 3-mercaptobenzothiazoles (23). The optimal catalyst (Cat f) involves immobilization through positions 4,4', remote from the catalytic site, and presents two very extended heteroaromatic substituents at positions 6,6'. Cat f exhibits unlimited recyclability (to the extent of the attempted reuses) in batch and flow, providing the target desymmetrized products in high yield (up to 92%) and enantioselectivity and (up to >99%) ee), high productivity being recorded under both types of experimental conditions. A DFT study on monomer models of Cat b and Cat f, the worst and the best-performing SPAs in this study, has demonstrated that the extended, geometrically adaptable heteroaromatic wings at the 6,6' positions of the SPINOL skeketon in Cat f are key to improved kinetics and enantioselectivity in the desymmetrization process thanks to extended and cumulatively strong non-covalent interactions. The lessons learned from this theoretical study have guided the design of a readily available, minimalistic homogeneous analog (Cat g) with catalytic performance similar to Cat f, that could represent an interesting and economic alternative when single catalytic use in batch is considered.

Notes

=\B²

The authors declare no competing financial interest.

ASSOCIATED CONTENT

Supporting Information. The Supporting Information is available free of charge on the ACS Publications website at http://pubs.acs.org.

Synthetic procedures and complete spectroscopic (NMR and HPLC) characterizations of the catalytic structures and their precursors. Synthetic procedures of immobilization of catalysts onto polystyrene stationary phase, full methodology of the flow chemistry implementation, complete characterization of all the products (NMR and HPLC). Cartesian coordinates and frequencies of all characterized stationary points, absolute values of thermodynamic state functions, absolute and relative values of RRHOcorrected thermodynamic state functions (PDF)

Accession Codes. CCDC 2018564 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Miquel A. Pericàs – Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), E-43007 Tarragona, Spain; Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, 08028 Barcelona, Spain; orcid.org/0000-0003-0195-8846;

Email: mapericas@iciq.es

Authors

Junshan Lai – Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), E-43007 Tarragona, Spain; Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain

Mauro Fianchini – Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), E-43007 Tarragona, Spain; orcid.org/0000-0003-2619-7932. Inquiries on computational aspects of the manuscript should be addressed to this author at: mfianchini@iciq.es

ACKNOWLEDGMENT

This work was funded by MINECO/FEDER (grants CTQ2015-69136-R and PID2019-109236RB-I00) and the CERCA Program/Generalitat de Catalunya. J. L. thanks the MINECO for a FPI fellowship (BES-2016-078937). MF would like to thank Prof. E. Henon and Prof. T. Lu for the useful discussions on the nature and the implementation of Independent Gradient Model (IGM).

REFERENCES

1. Kampen, D.; Reisinger, C. M.; List, B. Chiral Brønsted Acids for Asymmetric Organocatalysis. In *Asymmetric Organocatalysis*, List, B., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2009; pp 1-37.

2. Akiyama, T.; Itoh, J.; Fuchibe, K. Recent Progress in Chiral Brønsted Acid Catalysis. *Adv. Synth. Catal.* **2006**, *348* (9), 999-1010.

3. Akiyama, T. Stronger Brønsted Acids. Chem. Rev. 2007, 107 (12), 5744-5758.

4. Connon, S. J. Chiral Phosphoric Acids: Powerful Organocatalysts for Asymmetric Addition Reactions to Imines. *Angew. Chem. Int. Ed.* **2006**, *45*, 3909-3912.

5. Ouellet, S. G.; Walji, A. M.; Macmillan, D. W. C. Enantioselective Organocatalytic Transfer Hydrogenation Reactions using Hantzsch Esters. *Acc. Chem. Res.* **2007**, *40*, 1327-1339.

6. Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K., Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Brønsted Acid. *Angew. Chem. Int. Ed.* **2004**, *43*, 1566-1568.

7. Uraguchi, D.; Terada, M. Chiral Brønsted Acid-Catalyzed Direct Mannich Reactions via Electrophilic Activation. J. Am. Chem. Soc. 2004, 126, 5356-5357.

8. Taylor, M. S.; Jacobsen, E. N., Asymmetric Catalysis by Chiral Hydrogen-Bond Donors. *Angew. Chem. Int. Ed.* **2006**, *45*, 1520-1543.

9. Doyle, A. G.; Jacobsen, E. N. Small-Molecule H-Bond Donors in Asymmetric Catalysis. *Chem. Rev.* **2007**, *107*, 5713-5743.

10.Dondoni, A.; Massi, A., Asymmetric Organocatalysis: From Infancy to Adolescence. Angew. Chem. Int. Ed. 2008, 47, 4638-4660. 11. Terada, M. Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon–carbon bond forming reactions. *Chem. Commun.* **2008**, 4097-4112.

12. Adair, G.; Mukherjee, S.; List, B. TRIP-A Powerful Bronsted Acid Catalyst for Asymmetric Synthesis. *Aldrichimica Acta* **2008**, *41*, 31-39.

13. You, S.-L.; Cai, Q.; Zeng, M. Chiral Brønsted acid catalyzed Friedel–Crafts alkylation reactions. *Chem. Soc. Rev.* **2009**, *38*, 2190-2201.

14. Terada, M. Chiral Phosphoric Acids as Versatile Catalysts for Enantioselective Transformations. *Synthesis* **2010**, 1929-1982.

15. Yu, J.; Shi, F.; Gong, L.-Z. Brønsted-Acid-Catalyzed Asymmetric Multicomponent Reactions for the Facile Synthesis of Highly Enantioenriched Structurally Diverse Nitrogenous Heterocycles. *Acc. Chem. Res.* **2011**, *44*, 1156-1171.

16. Rueping, M.; Kuenkel, A.; Atodiresei, I. Chiral Brønsted acids in enantioselective carbonyl activations–activation modes and applications. *Chem. Soc. Rev.* **2011**, *40*, 4539-4549.

17. Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Complete Field Guide to Asymmetric BINOL-Phosphate Derived Brønsted Acid and Metal Catalysis: History and Classification by Mode of Activation; Brønsted Acidity, Hydrogen Bonding, Ion Pairing, and Metal Phosphates. *Chem. Rev.* **2014**, *114*, 9047-9153.

18. Wu, H.; He, Y.-P.; Shi, F. Recent Advances in Chiral Phosphoric Acid Catalyzed Asymmetric Reactions for the Synthesis of Enantiopure Indole Derivatives. *Synthesis* **2015**, *47*, 1990-2016.

19. Merad, J.; Lalli, C.; Bernadat, G.; Maury, J.; Masson, G., Enantioselective Brønsted Acid Catalysis as a Tool for the Synthesis of Natural Products and Pharmaceuticals. *Chem. Eur. J.* **2018**, *24*, 3925-3943.

20. Maji, R.; Mallojjala, S. C.; Wheeler, S. E. Chiral phosphoric acid catalysis: from numbers to insights. *Chem. Soc. Rev.* **2018**, *47*, 1142-1158.

21. Xing, C.-H.; Liao, Y.-X.; Ng, J.; Hu, Q.-S. Optically Active 1,1'-Spirobiindane-7,7'-diol (SPINOL)-Based Phosphoric Acids as Highly Enantioselective Catalysts for Asymmetric Organocatalysis. *J. Org. Chem.* **2011**, *76*, 4125-4131.

22. Birman, V. B.; L. Rheingold, A.; Lam, K.-C., 1,1'-Spirobiindane-7,7'-diol: a novel, C2-symmetric chiral ligand. *Tetrahedron: Asymmetry* **1999**, *10*, 125-131.

23. Xie, J.-H.; Zhou, Q.-L. Chiral Diphosphine and Monodentate Phosphorus Ligands on a Spiro Scaffold for Transition-Metal-Catalyzed Asymmetric Reactions. *Acc. Chem. Res.* **2008**, *41*, 581-593.

24. Chung, Y. K.; Fu, G. C. Phosphine-Catalyzed Enantioselective Synthesis of Oxygen Heterocycles. *Angew. Chem. Int. Ed.* **2009**, *48*, 2225-2227.

25. Čorić, I.; Müller, S.; List, B. Kinetic Resolution of Homoaldols via Catalytic Asymmetric Transacetalization. *J. Amer. Chem. Soc.* **2010**, *132*, 17370-17373.

26. Xu, F.; Huang, D.; Han, C.; Shen, W.; Lin, X.; Wang, Y. SPINOL-Derived Phosphoric Acids: Synthesis and Application in Enantioselective Friedel–Crafts Reaction of Indoles with Imines. *J. Org. Chem.* **2010**, *75*, 8677-8680.

27. Rahman, A.; Lin, X. Development and application of chiral spirocyclic phosphoric acids in asymmetric catalysis. *Org. Biomol. Chem.* **2018**, *16*, 4753-4777.

28. Li, J.; Chen, G.; Wang, Z.; Zhang, R.; Zhang, X.; Ding, K. Spiro-2,2'-bichroman-based bisoxazoline (SPANbox) ligands for ZnII-catalyzed enantioselective hydroxylation of β -keto esters and 1,3-diester. *Chem. Sci.* **2011**, *2*, 1141-1144.

29. Wang, X.; Han, Z.; Wang, Z.; Ding, K. Catalytic Asymmetric Synthesis of Aromatic Spiroketals by SpinPhox/Iridium(I)-Catalyzed Hydrogenation and Spiroketalization of α,α' -Bis(2-hydroxyarylidene) Ketones. *Angew. Chem. Int. Ed.* **2012**, *51*, 936-940.

30. Li, S.; Zhang, J.-W.; Li, X.-L.; Cheng, D.-J.; Tan, B. Phosphoric Acid-Catalyzed Asymmetric Synthesis of SPINOL Derivatives. J. Am. Chem. Soc. 2016, 138, 16561-16566.

31. Sun, W.; Gu, H.; Lin, X. Synthesis and Application of Hexamethyl-1,1'-spirobiindane-Based Phosphine-Oxazoline Ligands in Ni-Catalyzed Asymmetric Arylation of Cyclic Aldimines. *J. Org. Chem.* **2018**, *83*, 4034-4043. 32. Huang, J.; Hong, M.; Wang, C.-C.; Kramer, S.; Lin, G.-Q.; Sun, X.-W. Asymmetric Synthesis of Chiral Spiroketal Bisphosphine Ligands and Their Application in Enantioselective Olefin Hydrogenation. *J. Org. Chem.* **2018**, *83*, 12838-12846.

33. Chen, G.-Q.; Lin, B.-J.; Huang, J.-M.; Zhao, L.-Y.; Chen, Q.-S.; Jia, S.-P.; Yin, Q.; Zhang, X. Design and Synthesis of Chiral oxa-Spirocyclic Ligands for Ir-Catalyzed Direct Asymmetric Reduction of Bringmann's Lactones with Molecular H₂. J. Am. Chem. Soc. **2018**, *140*, 8064-8068.

34. Argüelles, A. J.; Sun, S.; Budaitis, B. G.; Nagorny, P. Design, Synthesis, and Application of Chiral C2-Symmetric Spiroketal-Containing Ligands in Transition-Metal Catalysis. *Angew. Chem. Int. Ed.* **2018**, *57*, 5325-5329.

35. Zheng, Z.; Cao, Y.; Chong, Q.; Han, Z.; Ding, J.; Luo, C.; Wang, Z.; Zhu, D.; Zhou, Q.-L.; Ding, K. Chiral Cyclohexyl-Fused Spirobiindanes: Practical Synthesis, Ligand Development, and Asymmetric Catalysis. J. Am. Chem. Soc. **2018**, *140*, 10374-10381.

36. Yin, L.; Xing, J.; Wang, Y.; Shen, Y.; Lu, T.; Hayashi, T.; Dou, X. Enantioselective Synthesis of 3,3'-Diaryl-SPINOLs: Rhodium-Catalyzed Asymmetric Arylation/BF3-Promoted Spirocyclization Sequence. *Angew. Chem. Int. Ed.* **2019**, *58*, 2474-2478.

37. Rodríguez-Escrich, C.; Pericàs, M. A. Organocatalysis on Tap: Enantioselective Continuous Flow Processes Mediated by Solid-Supported Chiral Organocatalysts. *Eur. J. Org. Chem.* **2015**, 1173-1188.

38. Rodriguez-Escrich, C.; Pericàs, M. A. Catalytic Enantioselective Flow Processes with Solid-Supported Chiral Catalysts. *Chem. Rec.* **2019**, *19*, 1872-1890.

39. Jas, G.; Kirschning, A. Continuous Flow Techniques in Organic Synthesis. *Chem. Eur. J.* **2003**, *9*, 5708-5723.

40. Kirschning, A.; Jas, G. Applications of Immobilized Catalysts in Continuous Flow Processes. In *Immobilized Catalysts. Topics in Current Chemistry*, Kirschning, A., Ed. Springer: Berlin, Heidelberg, 2004; Vol. 242, pp 209-239.

41. Phan, N. T. S.; Brown, D. H.; Styring, P. A facile method for catalyst immobilisation on silica: nickel-catalysed Kumada reactions in mini-continuous flow and batch reactors. *Green Chem.* **2004**, *6*, 526-532.

42. Baxendale, I. R.; Deeley, J.; Griffiths-Jones, C. M.; Ley, S. V.; Saaby, S.; Tranmer, G. K. A flow process for the multi-step synthesis of the alkaloid natural product oxomaritidine: a new paradigm for molecular assembly. *Chem. Commun.* **2006**, 2566-2568.

43. Baxendale, I. R.; Griffiths-Jones, C. M.; Ley, S. V.; Tranmer, G. K. Microwave-Assisted Suzuki Coupling Reactions with an Encapsulated Palladium Catalyst for Batch and Continuous-Flow Transformations. *Chem. Eur. J.* **2006**, *12*, 4407-4416.

44. Kirschning, A.; Solodenko, W.; Mennecke, K. Combining Enabling Techniques in Organic Synthesis: Continuous Flow Processes with Heterogenized Catalysts. *Chem. Eur. J.* **2006**, *12*, 5972-5990.

45. Baxendale, I. R.; Ley, S. V.; Mansfield, A. C.; Smith, C. D. Multistep Synthesis Using Modular Flow Reactors: Bestmann–Ohira Reagent for the Formation of Alkynes and Triazoles. *Angewandte Chemie* **2009**, *121* (22), 4077-4081.(es la misma que 45)

46. Baxendale, I. R.; Ley, S. V.; Mansfield, A. C.; Smith, C. D. Multistep Synthesis Using Modular Flow Reactors: Bestmann–Ohira Reagent for the Formation of Alkynes and Triazoles. *Angew. Chem. Int. Ed.* **2009**, *48*, 4017-4021.

47. Ceylan, S.; Kirsching, A. Organic synthesis with mini flow reactors using immobilised catalysts. In *Recoverable and Recyclable Catalysts*, Benaglia, M., Ed. Wiley: Chichester, 2009; pp 379-410.

48. Alza, E.; Rodríguez-Escrich, C.; Sayalero, S.; Bastero, A.; Pericàs, M. A., A Solid-Supported Organocatalyst for Highly Stereoselective, Batch, and Continuous-Flow Mannich Reactions. *Chem. Eur. J.* **2009**, *15*, 10167-10172.

49. Bedore, M. W.; Zaborenko, N.; Jensen, K. F.; Jamison, T. F. Aminolysis of Epoxides in a Microreactor System: A Continuous Flow Approach to β-Amino Alcohols. *Organic Process Research & Development* **2010**, *14*, 432-440.

50. Alza, E.; Sayalero, S.; Cambeiro, X. C.; Martín-Rapún, R.; Miranda, P. O.; Pericàs, M. A. Catalytic Batch and Continuous Flow Production of Highly Enantioenriched Cyclohexane Derivatives with Polymer-Supported Diarylprolinol Silyl Ethers. *Synlett* **2011**, 464-468. 51. Wegner, J.; Ceylan, S.; Kirschning, A. Ten key issues in modern flow chemistry. *Chem. Commun.* **2011**, *47*, 4583-4592.

52. Ayats, C.; Henseler, A. H.; Pericàs, M. A. A Solid-Supported Organocatalyst for Continuous-Flow Enantioselective Aldol Reactions. *ChemSusChem* **2012**, *5*, 320-325.

53. Fan, X.; Sayalero, S.; Pericàs, M. A., Asymmetric α-Amination of Aldehydes Catalyzed by PS-Diphenylprolinol Silyl Ethers: Remediation of Catalyst Deactivation for Continuous Flow Operation. *Adv. Synth. Cat.* **2012**, *354* (16), 2971-2976.

54. Kasaplar, P.; Rodríguez-Escrich, C.; Pericàs, M. A. Continuous Flow, Highly Enantioselective Michael Additions Catalyzed by a PS-Supported Squaramide. *Org. Lett.* **2013**, *15*, 3498-3501.

55. Tsubogo, T.; Ishiwata, T.; Kobayashi, S. Asymmetric Carbon– Carbon Bond Formation under Continuous-Flow Conditions with Chiral Heterogeneous Catalysts. *Angew. Chem. Int. Ed.* **2013**, *52*, 6590-6604.

56. Puglisi, A.; Benaglia, M.; Chiroli, V. Stereoselective organic reactions promoted by immobilized chiral catalysts in continuous flow systems. *Green Chem.* **2013**, *15*, 1790-1813.

57. Chiral Catalyst Immobilization and Recycling; De Vos, D.; Vankelecom, I. F.; Jacobs, P. A., Eds.; Wiley-VCH: Weinheim, 2000.

58. Cozzi, F. Immobilization of Organic Catalysts: When, Why, and How. *Adv. Synth. Cat.* **2006**, *348*, 1367-1390.

59. Handbook of Asymmetric Heterogeneous Catalysis; Ding, K.; Uozumi, Y., Eds.; Wiley-VCH: Weinheim, 2008.

60. Gruttadauria, M.; Giacalone, F.; Noto, R. Supported proline and proline-derivatives as recyclable organocatalysts. *Chem. Soc. Rev.* **2008**, *37*, 1666-1688.

61. Jimeno, C.; Sayalero, S.; Pericàs, M. A. Covalent Heterogenization of Asymmetric Catalysts on Polymers and Nanoparticles. In *Heterogenized Homogeneous Catalysts for Fine Chemicals Production. Catalysis by Metal Complexes*, Barbato, P.; Liguori, F., Eds. Springer: Dordrecht, 2010; Vol. 33, pp 123-170.

62. Rueping, M.; Sugiono, E.; Steck, A.; Theissmann, T. Synthesis and Application of Polymer-Supported Chiral Brønsted Acid Organocatalysts. *Adv. Synth. Cat.* **2010**, *352*, 281-287.

63. Kundu, D. S.; Schmidt, J.; Bleschke, C.; Thomas, A.; Blechert, S. A Microporous Binol-Derived Phosphoric Acid. *Angew. Chem. Int. Ed.* **2012**, *51*, 5456-5459.

64. Osorio-Planes, L.; Rodríguez-Escrich, C.; Pericàs, M. A. Enantioselective Continuous-Flow Production of 3-Indolylmethanamines Mediated by an Immobilized Phosphoric Acid Catalyst. *Chem. Eur. J.* **2014**, *20*, 2367-2372.

65. Clot-Almenara, L.; Rodríguez-Escrich, C.; Osorio-Planes, L.; Pericàs, M. A. Polystyrene-Supported TRIP: A Highly Recyclable Catalyst for Batch and Flow Enantioselective Allylation of Aldehydes. *ACS Catal.* **2016**, *6*, 7647-7651.

66. Clot-Almenara, L.; Rodríguez-Escrich, C.; Pericàs, M. A., Desymmetrisation of meso-diones promoted by a highly recyclable polymer-supported chiral phosphoric acid catalyst. *RSC Adv.* **2018**, *8*, 6910-6914.

67. Zhang, X.; Kormos, A.; Zhang, J. Self-Supported BINOL-Derived Phosphoric Acid Based on a Chiral Carbazolic Porous Framework. *Org. Lett.* **2017**, *19*, 6072-6075.

68. Cheng, H.-G.; Miguélez, J.; Miyamura, H.; Yoo, W.-J.; Kobayashi, S. Integration of aerobic oxidation and intramolecular asymmetric aza-Friedel–Crafts reactions with a chiral bifunctional heterogeneous catalyst. *Chem. Sci.* **2017**, *8*, 1356-1359.

69. For a related, multiple nucleophilic aromatic substitution involving 2,3,5,6-tetrafluoroterephthalonitrile, see: Weng, X.; Baez, J. E.; Khiterer, M.; Hoe, M. Y.; Bao, Z.; Shea, K. J. Chiral Polymers of Intrinsic Microporosity: Selective Membrane Permeation of Enantiomers. *Angew. Chem. Int. Ed.* **2015**, *54*, 11214-11218.

70. (a) Wuitschik, G.; Rogers-Evans, M.; Mueller, K.; Fischer, H.; Wagner, B.; Schuler, F.; Polonnchuk, L.; Carreira, E. M. Oxetanes as promising modules in drug discovery. *Angew. Chem. Int. Ed.* **2006**, *45*, 7736-7739; (b) Wuitschik, G.; Carreira, E. M.; Wagner, B.; Fischer, H. Parrilla, I.; Schuler, F.; Rogers-Evans, M.; Muller, K. Oxetanes in Drug Discovery: Structural and Synthetic Insights. *J. Med. Chem.* **2010**, *53*, 3227-3246; (c) Burkhard, J. A.; Wuitschik, G.; Rogers-Evans, M.; Mueller, K.; Carreira, E. M. Oxetanes as Versatile Elements in Drug Discovery and Synthesis. *Angew. Chem. Int. Ed.* **2010**, *49*, 9052-9067;

(d) Burkhard, J. A.; Wuitschik, G.; Plancher, J.-M.; Rogers-Evans, M.; Carreira, E. M. Synthesis and Stability of Oxetane Analogs of Thalidomide and Lenalidomide. Org. Lett. 2013, 15, 4312-4315; (e) Moller, G. P.; Muller, S.; Wolfstadter, B. T.; Wolfrum, S.; Schepmann, D.; Wunsch, B.; Carreira, E. M. Oxetanyl amino acids for peptidomimetics. Org. Lett. 2017, 19, 2510-2513; (f) Geary, G. C.; Nortcliffe, A.; Pearce, C. A.; Hamza, D.; Jones, G.; Moody, C. J. Densely functionalised spirocyclic oxetane-piperidine scaffolds for drug discovery. Bioorg. Med. Chem. 2018, 26, 791-797.

71. Wang, Z.; Chen, Z.; Sun, J. Catalytic Enantioselective Intermolecular Desymmetrization of 3-Substituted Oxetanes. *Angew. Chem. Int. Ed.* **2013**, *52*, 6685-6688.

72 (a) Jumde, R. P.; Evangelisti, C.; Mandoli, A.; Scotti, N.; Psaro, R. Aminopropyl-silica-supported Cu nanoparticles: An efficient catalyst for continuous-flow Huisgen azide-alkyne cycloaddition (Cu-AAC). J. Catal. **2015**, 324, 25-31; (b) Wen, J.; Wu, K.; Yang, D.; Tian, J.; Huang, Z.; Filatov, A. S.; Lei, A. Lin, X.-M. Low-Pressure Flow Chemistry of CuAAC Click Reaction Catalyzed by Nanoporous AuCu Membrane. ACS Appl. Mater. Inter. **2018**, 10, 25930-25935; (c) Santos de Sa, D.; Bustamante, R. A.; Rocha, C. E. R.; Diniz da Silva, V.; Rodrigues, E. J. R. Muller, C. D. B.; Ghavami, K.; Massi, A.; Pandoli, O. G. Fabrication of Lignocellulose-Based Microreactors: Copper-Functionalized Bamboo for Continuous-Flow CuAAC Click Reactions. ACS Sust. Chem. Eng. **2019**, 7, 3267-3273.

73. (a) Cheong, P. H.-Y.; Legault, C. Y.; Um, J. M.; Çelebi-Ölçüm, N.; Houk, K. N. Quantum Mechanical Investigations of Organocatalysis: Mechanisms, Reactivities, and Selectivities. *Chem. Rev.* **2011**, *111*, 5042-5137; (b) Champagne, A.; Houl, K. N. Origins of Selectivity and General Model for Chiral Phosphoric Acid-Catalyzed Oxetane Desymmetrizations. J. Am. Chem. Soc. 2016, 138, 12356-12359; (c) Duarte, F.; Patton, R. S. Molecular Recognition in Asymmetric Counteranion Catalysis: Understanding Chiral Phosphate-Mediated Desymmetrization. J. Am. Chem. Soc. 2017, 139, 8886-8896.

74. Seguin, T. J.; Wheeler, S. E. Competing Noncovalent Interactions Control the Stereoselectivity of Chiral Phosphoric Acid Catalyzed Ring Openings of 3-Substituted Oxetanes. *ACS Catal.* **2016**, *6*, 7222-7228.

75. Xie, J.-G.; Quan, J.; Li, S.-B.; Zheng, Y.; Zhu, L.-M. SH-Methylation of SH-Containing Heterocycles with Dimethyl Carbonate via Phase-Transfer Catalytic Reaction. *Synth. Commun.* **2011**, *41*, 871-878.

76. Lefebvre, C.; Rubez, G.; Khartabil, H.; Boisson, J.-C.; Contreras-García, J.; Hénon, E. Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. *Chem. Phys. Phys. Chem.* **2017**, *17*, 17928-17936.

77. Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-592.

78. It is worth mentioning that 9-antrhyl substituents in Cat a, one of the catalytic systems also studied by Seguin and Wheeler91 are unable and adapt to the substrates by bending while aromatic stabilization intact according to the reliable theoretical model used in the present calculations. Accordingly, the 9-anthryl wings in Cat a undergo very negligible deviations from planarity throughout the catalytic cycle.

Supporting Information

Development of Immobilized SPINOL-Derived Chiral Phosphoric Acids for Catalytic Continuous Flow Processes. Use in the Catalytic Desymmetrization of 3,3-Disubstituted Oxetanes

Junshan Lai,^{†,§} Mauro Fianchini,[†] and Miquel A. Pericàs^{†,‡,*}

⁺ Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007 Tarragona (Spain)

§ Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona (Spain)

[‡] Departament de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), 08028 Barcelona (Spain) <u>mapericas@iciq.es</u>

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

Table of Contents

	Page
1. General information	274
2. Preparation of the immobilized SPINOL-derived chiral phosphoric acids	275
2.1 Preparation of Cat b	275
2.2 Preparation of Cat c	276
2.3 Preparation of Cat d	278
2.4 Preparation of Cat e	282
2.5 Preparation of Cat f	287
2.6 Preparation of Cat g	292
3. Experimental procedures	294
3.1 Optimization of catalyst and solvent for the desymmetrization reaction	294
3.2 Recycling of Cat f in the desymmetrization of 22a with 23a in batch	294
3.3 Optimization of the desymmetrization of 22a with 23a mediated by Cat f in flow	295
3.4 Continuous flow desymmetrization of oxetanes ${f 22}$ with thiols ${f 23}$ mediated by Cat f	296
3.5 Desymmetrization of oxetanes 22 with thiols 23 mediated by Cat g in batch	297
4. Compound characterization data	298
5. Computational section	303
6. X-ray diffraction data	386
7. References	388
8. NMR spectra	391
9. HPLC chromatograms	433

1. General information

Unless otherwise noted, all reactions were conducted under air. All commercial reagents were used as received; 3,3'-Diaryl-SPINOLs **S1** and **12** were synthesized according to the reported procedures.^{1a} **22g** is commercially available, **22n** was prepared according to a reported procedure.^{1b} All other oxetanes were prepared from the coupling of 3oxetanone with the corresponding Grignard reagents. Flash chromatography was carried out using 60 mesh silicagel and dry-packed columns. For the continuous flow system, the packed bed reactor was an adjustable volume Omnifit glass column with 10 mm Ø, and a dual syringe pump was used for the circulation of reactants and solvent. Thin layer chromatography was carried out using Merck TLC Silicagel 60 F254 aluminum sheets. Components were visualized by UV light (λ = 254 nm) and stained with phosphomolybdic dip. NMR spectra were recorded at 298 K on a Bruker Avance 400 Ultrashield apparatus. ¹H NMR spectroscopy chemical shifts are quoted in ppm relative to tetramethylsilane (TMS). CDCl₃ was used as internal standard for ¹³C NMR spectra. Chemical shifts are given in ppm and coupling constants in Hz. IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer and are reported in wavenumbers (cm⁻¹). Elemental analyses were performed by MEDAC Ltd. (Surrey, UK) on a LECO CHNS 932 micro-analyzer. High performance liquid chromatography (HPLC) was performed on Agilent Technologies chromatographs (1100 and 1200 Series), using Chiralpak AD-H columns and guard columns. FAB mass spectra were obtained on a Fisons V6-Quattro instrument, ESI mass spectra were obtained on a Waters LCT Premier Instrument and CI and EI spectra were obtained on a Waters GCT spectrometer. Specific optical rotation measurements were carried out on a Jasco P-1030 polarimeter.
```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

2. Preparation of the immobilized SPINOL-derived chiral phosphoric acids

2.1. Preparation of Cat b

Scheme S1. The procedure of preparation of Cat b

S2 was synthesized following a typical Suzuki coupling procedure. Under N₂, to a Schlenk tube containing **S1** (1.12 g, 2 mmol), 4-vinylphenylboronic acid (1.18 g, 8 mmol, 4.0 equiv), Pd₂(dba)₃ (36.8 mg, 2 mol %), S-Phos (66 mg, 8 mol %) and K₃PO₄ (1.7 g, 8 mmol, 4.0 equiv) was added degased toluene (15 mL) and water (5 mL). The reaction mixture was stirred and heated to 95 °C for 18 h. After being cooled to room temperature, HCl (2 N) was added to the reaction mixture. The mixture was then extracted with CH₂Cl₂ (40 mL × 3). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash column

chromatography on silicagel using cyclohexane/CH₂Cl₂ (5:1) as the eluent to give compound **S2** as a slightly yellow solid. (791 mg, 65% yield).

Yellow solid. Carbonization or polymerization starts from 280 °C; Melting point could not be detected.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.12 (d, *J* = 8.2 Hz, 2H), 7.06 (d, *J* = 8.2 Hz, 4H), 6.99-6.79 (m, 16H), 6.58 (dd, *J* = 17.6, 10.9 Hz, 2H), 5.61 (dd, *J* = 17.6, 1.0 Hz, 2H), 5.15 (dd, *J* = 10.8, 1.0 Hz, 2H), 4.99 (s, 2H), 4.73 (dd, *J* = 10.1, 7.7 Hz, 2H), 2.94 (dd, *J* = 13.3, 7.7 Hz, 2H), 2.37 (dd, *J* = 13.2, 10.3 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 151.9 (x2), 145.3 (x2), 143.9 (x2), 139.7 (x2), 136.7 (x2), 135.3 (x2), 133.1 (x2), 131.8 (x2), 131.7 (x2), 128.8 (x4), 128.0 (x4), 127.7 (x4), 125.6 (x2), 125.3 (x4), 115.2 (x2), 113.0 (x2), 55.6 (x2), 50.0 (x3).
IR (neat): 3527, 3020, 2927, 2867, 1595, 1480, 1261, 1201, 988, 906, 822, 762, 698 cm⁻¹.
HRMS (ESI): m/z: [M-H]⁺ (C₄₅H₃₅O₂), calcd.: 607.2643; found: 607.2627.

 $[\alpha]_D^{25} = +288 \ (c = 0.1, CH_2Cl_2).$

S3 was synthesized Following a modification of a literature procedure.² A 100 mL reactor was charged with a suspension of polyvinyl alcohol (PV-OH) (100 mg, 0.96 μ mol, 0.001 equiv.) in 72 mL of degassed MiliQ water. The solution was heated at 100 °C until PV-OH was dissolved. Then, it was cooled to RT and a solution of boric acid (449 mg, 7.26 mmol) in 18 mL of degassed MiliQ water was transferred to the reactor. Later, a degassed solution containing divinylbenzene (DVB), filtered on a short pad of silica immediately before use, (80%, 119 μ L, 0.68 mmol, 0.65 equiv.), BINOL derivative **S2** (645 mg, 1.06 mmol), styrene (2.9 mL, 25.5 mmol, 23.66 equiv.) and AIBN (31 mg, 0.19 mmol,

0.18 equiv.) in toluene (2.4 mL) was transferred to the reactor. After that, the system was heated at 90 °C and magnetically stirred at 440 rpm overnight, the aqueous solution was decanted off and the resin was washed with water (50 °C) several times, followed by MeOH and CH₂Cl₂. Finally, it was dried overnight in a 40 °C vacuum oven to furnish 2.7 g of light-yellow beads.

Cat b was synthesized Following a modification of a literature procedure.² In a dry Schlenk tube, resin **S3** (2.7 g, ca. 1.06 mmol) was suspended in pyridine (20 mL) under Ar. Then, POCl₃ (495 μL, 5.3 mmol, 5 eq.) was added and the reaction mixture was heated in the closed Schlenk tube at 120 °C. After 2 days, it was cooled to RT and 5 mL of water were added. Then the system was closed again and heated at 100 °C overnight. The resin was filtered and washed with water, THF/water, THF, 2 M HCl/EtOAc, EtOAC/DCM, and DCM and dried overnight in a 40 °C vacuum oven to give 2.7 g of brown beads.

P elemental analysis (%): 0.34 $f_{(P)}$: 0.11 mmol/g resin

2.2. Preparation of Cat c

Scheme S2. The procedure of preparation of Cat c

S4

S4 was synthesized according to the reported procedures.³ In a Schlenk tube, SPINOL **12** (3.232 g, 8 mmol) and NaHCO₃ (1.344 g, 16 mmol, 2.0 equiv) were mixed with CH₂Cl₂ (80 mL), and the mixture was stirred and cooled to -20 °C. Then, NBS (2.92 g, 16.4 mmol, 2.05 equiv) was added slowly. After being stirred at -20 °C for 2 h, the reaction mixture was poured into HCl (2 N). The reaction mixture was then extracted with CH_2Cl_2 (40 mL × 3). After removal of solvent by rota-evaporation, the

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

residue was subjected to column chromatography (silicagel, cyclohexane/ethyl acetate (v/v = 20/1) as eluent), affording the expected compound **S4** as a Light yellow solid (3.6 g, 80% yield).

m.p. 241 °C.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.33-7.24 (m, 12H), 6.36 (dd, *J* = 8.1, 1.2 Hz, 2H), 5.43 (d, *J* = 1.4 Hz, 2H), 4.39 (dd, *J* = 10.6, 7.7 Hz, 2H), 2.76 (dd, *J* = 12.8, 7.6 Hz, 2H), 2.49 (dd, *J* = 12.9, 10.8 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 148.4 (x2), 144.0 (x2), 134.5 (x2), 131.2 (x2), 128.6 (x2), 128.4 (x2), 128.3 (x4), 126.7 (x2), 118.5 (x2), 108.5 (x2), 99.9 (x2), 57.4, 49.9 (x2), 48.0 (x2).

IR (neat): 3492, 3061, 3023, 2935, 2863, 1579, 1493, 1445, 1317, 1237, 1160, 907, 806, 759, 698 cm⁻¹.

HRMS (ESI): m/z: [M-H]⁺ (C₂₉H₂₁Br₂O₂), calcd.: 558.9914; found: 558.9903.

 $[\alpha]_{D}^{25} = +65 (c = 0.1, CH_2Cl_2).$

S5 was synthesized Following a modification of a literature procedure.³ Under N₂, to a Schlenk tube containing **S4** (1.12 g, 2 mmol), 4-vinylphenylboronic acid (1.18 g, 8 mmol, 4.0 equiv), $Pd_2(dba)_3$ (36.8 mg, 2 mol %), S-Phos (66 mg, 8 mol %) and K₃PO₄ (34 mmol) was added toluene (20 mL) and water (20 mL). The reaction mixture was stirred and heated to 95 °C for 18 h. After being cooled to room temperature, HCl (2 N) was added to the reaction mixture.

The mixture was then extracted with CH_2Cl_2 (40 mL × 3). After removal of solvent by rota evaporation, the residue was subjected to column chromatography [silicagel, cyclohexane/ dichloromethane (v/v = 5/2) as eluent], affording the expected product as a white solid. (780 mg, 64% yield).

Light yellow solid. Carbonization or polymerization, Melting point cannot be detected.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (t, *J* = 2.1 Hz, 8H), 7.33 (dd, *J* = 4.1, 2.1 Hz, 8H), 7.29-7.20 (m, 2H), 7.20-7.12 (m, 2H), 6.72 (ddd, *J* = 17.7, 10.9, 1.8 Hz, 2H), 6.58 (dd, *J* = 7.6, 2.2 Hz, 2H), 5.76 (d, *J* = 17.6 Hz, 2H), 5.31-5.18 (m, 4H), 4.50 (dd, *J* = 10.8, 7.4 Hz, 2H), 2.87 (dd, *J* = 13.0, 7.5 Hz, 2H), 2.55 (t, *J* = 11.9 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 149.3 (x2), 148.3 (x2), 143.9 (x2), 136.7 (x2), 136.6 (x2), 136.4 (x2), 132.2 (x2), 130.6 (x2), 129.4 (x4), 128.6 (x4), 128.4 (x4), 126.9 (x2), 126.7 (x2), 126.5 (x4), 117.9(x2), 114.1 (x2), 56.3, 50.0 (x2), 48.0 (x2).
IR (neat): 3497, 3024, 2958, 2927, 2864, 1601, 1576, 1446, 1400, 1228, 1117, 990, 909, 848, 818, 759, 698 cm⁻¹.
HRMS (ESI): m/z: [M-H]⁺ (C₄₅H₃₅O₂), calcd.: 607.2643; found: 607.2657.
[α]_D²⁵ = +232 (*c* = 0.1, CH₂Cl₂).

S6 was synthesized Following a modification of a literature procedure.² A 100 mL reactor was charged with a suspension of polyvinyl alcohol (PV-OH) (100 mg, 0.96 μ mol, 0.001 equiv.) in 72 mL of degassed MiliQ water. The solution was heated at 100 °C until PV-OH was dissolved. Then, it was cooled to RT and a solution of boric acid (449 mg, 7.26 mmol) in 18 mL of degassed MiliQ water was transferred to the reactor. Later, a degassed solution containing divinylbenzene (DVB), filtered on a short pad of silica immediately before use, (80%, 119 μ L,

0.68 mmol, 0.65 equiv.), BINOL derivative **S5** (645 mg, 1.06 mmol), styrene (2.9 ml, 25.5 mmol, 23.66 equiv.) and AIBN (31 mg, 0.19 mmol, 0.18 equiv.) in toluene (2.4 mL) was transferred to the reactor. After that, the system was heated at 90 °C and magnetically stirred at 440 rpm overnight, the aqueous solution was decanted off and the resin was washed with water (50 °C) several times, followed by MeOH and CH_2Cl_2 . Finally, it was dried overnight in a 40 °C vacuum oven to furnish 3.5 g of light-yellow beads.

Cat c was synthesized Following a modification of a literature procedure.² In a dry Schlenk tube, resin **S6** (3.5 g, ca. 1.06 mmol) was suspended in pyridine (20 mL) under Ar. Then, POCl₃ (495 μ L, 5.3 mmol, 5 eq.) was added and the reaction mixture was heated in the closed Schlenk tube at 120 °C. After 2 days, it was cooled to RT and 5 mL of water were added. Then the system was closed again and heated at 100 °C overnight. The resin was filtered and washed with water, THF/water, THF, 2 M HCl/EtOAc, EtOAC/DCM, and DCM and dried overnight in a

40 °C vacuum oven to give 3.5 g of brown beads.

P elemental analysis (%): 0.93

f(P): 0.3 mmol/g resin

2.3. Preparation of Cat d

Scheme S3. The procedure of preparation of Cat d

S7 was synthesized Following a modification of a literature procedure.³ Under N₂, to a Schlenk tube containing **S4** (1.124 g, 2 mmol), (3,5-bis(trifluoromethyl)phenyl)boronic acid (2.064 g, 8 mmol, 4.0 equiv), $Pd_2(dba)_3$ (36.8 mg, 2 mol %), S-Phos (66 mg, 8 mol %) and K_3PO_4 (34 mmol) was added toluene (20 mL) and water (20 mL). The reaction mixture was stirred and heated to 95 °C for 18 h. After being cooled to room temperature, HCl (2 N) was added to the reaction mixture. The mixture was then extracted with CH₂Cl₂ (30 mL × 3). After

removal of solvent by rota evaporation, the residue was subjected to column chromatography [silicagel, cyclohexane/ dichloromethane (v/v = 5/2) as eluent], affording the expected product as a white solid. (1.34 g, 81% yield). White solid. m.p. 140 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (s, 4H), 7.84 (s, 2H), 7.44 – 7.23 (m, 12H), 6.73 (dq, *J* = 7.8, 1.3 Hz, 2H), 5.17 (t, *J* = 1.8 Hz, 2H), 4.57 (dd, *J* = 11.0, 7.5 Hz, 2H), 3.05 – 2.85 (m, 2H), 2.51 (t, *J* = 12.1 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 150.0 (x2), 149.6 (x2), 142.6 (x2), 139.5 (x2), 131.9 (x2), 131.7 (x4, q, ²J_(C-F) = 33 Hz), 130.9 (x2), 129.5 (x4), 128.9 (x4), 128.3 (x4), 127.2 (x2), 125.1 (x2), 123.4 (x4, q, ¹J_(C-F) = 275 Hz), 121.0 (x2), 119.1 (x2), 55.8, 50.0 (x2), 48.0 (x2).

 ^{19}F NMR (376 MHz, CDCl₃) δ -62.90.

IR (neat): 3525, 3030, 2955, 2869, 1617, 1579, 1495, 1457, 1418, 1381, 1275, 1169, 1125, 1000, 897, 823, 762, 699, 682 cm⁻¹.

HRMS (ESI): m/z: [M-H]⁺ (C₄₅H₂₇F₁₂O₂), calcd.: 827.1825; found: 829.1813.

 $[\alpha]_D^{25} = +53 (c = 0.1, CH_2Cl_2).$

For the preparation of **S8**, to a Schlenk tube containing **S7** (829 mg, 1 mmol) under Ar, hexamethylenetetramine (HMTA) (561 mg, 4 mmol, 4.0 equiv), and trifluoroacetic acid (4 mL) were added. The reaction mixture was stirred and heated to 70 °C for 6 h. After being cooled to room temperature, 4 mL HCl (6 N) was added to the reaction mixture and heated at 50 °C for two more hours. The mixture was then extracted with dichloromethane. After removal of solvent by rota evaporation, the residue was subjected to column chromatography [silicagel, cyclohexane/ ethyl acetate (v/v = 5/1) as eluent], affording the expected product as a light

yellow solid. (575 mg, 65% yield).

Light yellow solid. m.p. 215 $^{\circ}$ C.

¹H NMR (400 MHz, Chloroform-*d*) δ 9.59 (s, 2H), 8.04 – 7.79 (m, 8H), 7.38 – 7.22 (m, 11H), 5.94 (d, *J* = 4.4 Hz, 2H), 4.98 (dd, *J* = 10.1, 7.8 Hz, 2H), 3.09 (dd, *J* = 13.4, 7.9 Hz, 2H), 2.51 (dd, *J* = 13.3, 10.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 188.7 (x2), 153.8 (x2), 151.6 (x2), 145.2 (x2), 137.9 (x2), 133.8 (x2), 132.4 (x4, q, ²J_(C-F) = 33 Hz), 131.9 (x2), 129.5 (x2), 129.4 (x6), 127.3 (x6), 127.2 (x2), 126.2 (x2), 123.1 (x4, q, ¹J_(C-F) = 274 Hz), 122.0 (x2), , 56.4, 50.1 (x2), 49.2 (x2).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.99.

IR (neat): 3502, 3061, 2929, 2870, 1671, 1600, 1566, 1479, 1453, 1377, 1275, 1171, 1126, 1032, 896, 845, 767, 701, 682 cm⁻¹.

HRMS (ESI): m/z: [M-H]⁺ (C₄₇H₂₇F₁₂O₄), calcd.: 883.1723; found: 883.1726.

 $[\alpha]_D^{25} = +52$ (*c* = 0.1, CH₂Cl₂).

S9: To a Schlenk tube, **S8** (500 mg, 0.56 mmol), (4-vinylbenzyl) triphenylphosphonium chloride (930 mg, 2.24 mmol, 4.0 equiv) and 15 mL THF were added under Ar. The mixture was cooled to 0 °C with an ice bath, then NaH (a mixture of 60% sodium hydride (w/w) in mineral oil, 134 mg, 3.36 mmol, 6 eq) suspended in 5 mL THF was added dropwise. The reaction mixture was stirred at rt for 48 h, then cooled to 0 °C with an ice bath, and 1 mL water was added dropwise to quench the reaction. The mixture was then extracted with dichloromethane. After removal of solvent by rota-evaporation, the residue was subjected to column chromatography [silicagel, cyclohexane/ dichloromethane (v/v = 5/2) as eluent], affording the expected product as a white solid. (377 mg, 62% yield).

White solid. Decomposed by carbonization or polymerization upon heating. A melting point could not be detected. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (d, *J* = 4.2 Hz, 4H), 7.90 (d, *J* = 3.7 Hz, 2H), 7.64 – 7.56 (m, 2H), 7.44 – 7.34 (m, 8H), 7.33 – 7.28 (m, 2H), 7.24 (dd, *J* = 8.3, 2.5 Hz, 4H), 6.92 (dd, *J* = 8.1, 3.2 Hz, 4H), 6.78 (dd, *J* = 16.2, 3.5 Hz, 2H), 6.63 (ddd, *J* = 16.2, 7.5, 3.1 Hz, 4H), 5.70 (dd, *J* = 17.7, 2.3 Hz, 2H), 5.37 (q, *J* = 3.2, 2.7 Hz, 2H), 5.19 (dd, *J* = 11.1, 2.0 Hz, 2H), 4.73 (td, *J* = 8.9, 7.5, 3.2 Hz, 2H), 3.13 – 2.92 (m, 2H), 2.50 (td, *J* = 10.5, 9.9, 5.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 149.0 (x2), 146.0 (x2), 144.3 (x2), 139.3 (x2), 136.8 (x2), 136.7 (x2), 136.4 (x4), 132.0 (x2), 131.8 (x4, q, ²J_(C-F) = 33 Hz), 129.6 (x6), 129.2 (x6), 129.1 (x2), 128.3 (x2), 128.0 (x6), 127.9 (x2), 127.1 (x2), 126.5 (x4), 126.3 (x4), 124.7 (x2), 123.5 (x4, q, ¹J_(C-F) = 274 Hz), 121.3 (x2), 113.6 (x2), 55.7, 50.0 (x2), 49.6 (x2).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.73, -62.74.

IR (neat): 3501, 3028, 2937, 2865, 1600, 1510, 1479, 1463, 1407, 1380, 1333, 1275, 1171, 1127, 1031, 989, 961, 893, 845, 822, 767, 700, 681 cm⁻¹.

HRMS (ESI): m/z: $[M-H]^+$ ($C_{65}H_{43}F_{12}O_2$), calcd.: 1083.3064; found: 1083.3077.

 $[\alpha]_{D}^{25} = -84$ (*c* = 0.1, CH₂Cl₂).

S10 was synthesized Following a modification of a literature procedure.² A 100 mL reactor was charged with a suspension of polyvinyl alcohol (PV-OH) (50 mg, 0.58 μ mol, 0.002 equiv.) in 36 mL of degassed MiliQ water. The solution was heated at 100 °C until PV-OH was dissolved. Then, it was cooled to RT and a solution of boric acid (225 mg, 3.63 mmol) in 9 mL of degassed MiliQ water was transferred to the reactor. Later, a degassed solution containing divinylbenzene (DVB), filtered on a short pad of silica immediately before use, (80%, 60 μ L, 0.34 mmol, 1.3 equiv.), SPINOL derivative **S9** (293 mg, 0.27 mmol), styrene (1.45 ml, 12.75 mmol, 47.75 equiv.) and AIBN (15.5 mg, 0.1 mmol, 0.35 equiv.) in toluene (1.2 mL) were

added to the reactor. After that, the system was heated at 80 °C and magnetically stirred at 440 rpm. After two days, the aqueous solution was decanted off and the resin was washed with water (50 °C) several times, followed by MeOH and CH₂Cl₂. Finally, it was dried overnight in a 40 °C vacuum oven to furnish 1.5 g of light-yellow beads.

Cat d was synthesized Following a modification of a literature procedure.² In a dry Schlenk tube, resin **S10** (1.5 g, ca. 0.27 mmol) was suspended in pyridine (5 mL) under Ar. Then, POCl₃ (126 μ L, 1.35 mmol, 5 eq.) was added, and the reaction mixture was heated in the sealed Schlenk tube at 120 °C. After 2 days, it was cooled to room temperature and 1.25 mL of water were added. Then the system was sealed again and heated at 100 °C overnight. The resin was then filtered and sequentially washed with water, THF/water, THF, 2 M HCl/EtOAc, EtOAC/DCM, and DCM, and finally dried overnight in a vacuum oven at 40 °C to afford 1.5 g of brown beads.

P elemental analysis (%): 0.56

f_(P): 0.18 mmol/g resin

Scheme S4. The procedure of preparation of Cat e

13

13: In a dry Schlenk tube under Argon, NaH (a mixture of 60% sodium hydride (w/w) in mineral oil, 2.4 g, 60 mmol, 3 eq) was suspended in 200 mL dry THF, and the mixture was stirred and cooled to 0 °C in an ice bath. SPINOL **12** (8.09 g, 20 mmol) was dissolved in 40 mL dry THF and added to the mixture dropwise with syringe. The mixture was stirred at this temperature for 1 hour, then removed the ice bath and stirred at rt for 15 min. The mixture was cooled to 0 °C again

and Chloromethyl methyl ether (4.83 g, 4.56 mL, 60mmol, 3 eq) was added dropwise with syringe. After being stirred at rt for 16 h, the reaction mixture was quenched with 8 mL water. The reaction mixture was then extracted with CH_2Cl_2 (100 mL × 3). After removal of solvent by rota-evaporation, the residue was subjected to column chromatography (silicagel, cyclohexane/ethyl acetate (v/v = 20/1) as eluent), affording the expected compound **13** as a white solid (8.79 g, 90% yield).

White solid. m.p. 142.6 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.28 (m, 8H), 7.26 – 7.21 (m, 2H), 7.10 – 7.03 (m, 2H), 6.81 (d, *J* = 8.1 Hz, 2H), 6.53 (d, *J* = 7.5 Hz, 2H), 5.00 (d, *J* = 6.3 Hz, 2H), 4.95 (d, *J* = 6.3 Hz, 2H), 4.47 (t, *J* = 9.2 Hz, 2H), 3.17 (s, 6H), 2.77 (dd, *J* = 12.7, 7.9 Hz, 2H), 2.50 (t, *J* = 11.8 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 153.3 (x2), 148.1 (x2), 145.5 (x2), 137.4, 128.5 (x6), 128.4 (x2), 128.3, 128.0 (x2), 126.3 (x2), 118.2 (x2), 111.1 (x2), 93.7 (x2), 57.3 (x2), 55.8, 50.3 (x2), 48.5 (x2).

IR (neat): 3064, 3026, 2954, 2926, 2853, 2823, 1587, 1473, 1406, 1251, 1150, 1080, 1022, 918, 794, 764, 746, 698 cm⁻¹.

> HRMS (ESI): m/z: [M+Na]⁺ (C₃₃H₃₂NaO₄), calcd.: 515.2193; found: 515.2195. $[\alpha]_D^{25} = +55$ (c = 0.1, CH₂Cl₂).

14 was synthesized Following a modification of a literature procedure.⁴ In a Schlenk tube under Argon, **13** (7.88 g, 16 mmol) was dissolved in 160 mL dry THF, and the mixture was stirred and cooled to 0 °C with ice bath. *n*-BuLi (2.5 M in hexanes, 19.2 mL, 48 mmol) was added to the mixture dropwise with syringe. The mixture was stirred at rt for 3 hours, then cooled to -78 °C. Perfluorotoluene (26.43 g, 7.93 mL, 112 mmol, 7 eq) was added dropwise with syringe. The mixture was stirred at this temperature for one more hour and allowed to warm to rt slowly.

After being stirred at rt for 16 h, the reaction mixture was quenched with 20 mL water by dropwise at 0 °C (ice bath). The reaction mixture was then extracted with CH_2Cl_2 (80 mL × 3). After removal of solvent by rota-evaporation, the residue was subjected to column chromatography (silica gel, cyclohexane/ dichloromethane (v/v = 5/2) as eluent), affording the expected compound **14** as a white solid (13.77 g, 93% yield).

White solid. m.p. 184.1 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 (dd, *J* = 4.3, 1.3 Hz, 8H), 7.32 – 7.26 (m, 2H), 7.06 (dd, *J* = 7.7, 1.4 Hz, 2H), 6.85 – 6.78 (m, 2H), 4.60 (dd, *J* = 6.0, 1.7 Hz, 2H), 4.53 (dd, *J* = 11.1, 7.4 Hz, 2H), 4.38 (dd, *J* = 6.0, 1.6 Hz, 2H), 2.94 (d, *J* = 1.6 Hz, 6H), 2.92 – 2.84 (m, 2H), 2.55 (t, *J* = 11.9 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 153.3 (x2), 150.8 (x2), 143.1 (x2), 141.6 (x2), 130.9 (x4), 128.8 (x8), 128.4 (x8), 126.9 (x4), 120.9 (x2), 117.6 (x4), 99.3 (x2), 57.6, 56.1 (x2), 50.0 (x2), 48.3 (x2).

¹⁹F NMR (376 MHz, CDCl₃) δ -56.18 (t, J = 21.7 Hz, 6F), -137.85 (dd, J = 22.6, 12.5 Hz, 2F), -138.13 (dd, J = 21.7, 12.1 Hz, 2F), -141.13 - -141.52 (m, 2F), -141.56 - -141.89 (m, 2F).

IR (neat): 3064, 3030, 2954, 2934, 2838, 1657, 1601, 1478, 1430, 1392, 1338, 1258, 1187, 1136, 1086, 1013, 984, 944, 901, 827, 765, 714, 700 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₄₇H₃₀F₁₄NaO₄), calcd.: 947.1813; found: 947.1802.

 $[\alpha]_D^{25} = +85 \ (c = 0.1, CH_2Cl_2).$

15: Compound **14** (6.50 g, 7 mmol) was dissolved in 35 mL 1,4-dioxane, 7 mL con. HCl was added and heated at 80 °C for 16 h. The reaction mixture was then extracted with dichloromethane. After removal of solvent by rota-evaporation, the residue was subjected to column chromatography (silicagel, cyclohexane/ dichloromethane (v/v = 5/2) as eluent), affording the expected compound **15** as a white solid (4.685 g, 80% yield).

15 F Note: the polarity of **14** and **15** are almost the same. The consumption of **14** couldn't be checked by TLC. It should be detected by 1H NMR.

White solid. m.p. 169.7 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 (t, *J* = 7.4 Hz, 4H), 7.33 – 7.26 (m, 6H), 7.21 (d, *J* = 7.8 Hz, 2H), 6.74 (d, *J* = 7.8 Hz, 2H), 5.08 (s, 2H), 4.58 (dd, *J* = 11.0, 7.4 Hz, 2H), 2.98 (dd, *J* = 13.3, 7.4 Hz, 2H), 2.50 (dd, *J* = 13.1, 11.1 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 151.5 (x2), 150.4 (x2), 142.2 (x2), 132.6 (x4), 130.6 (x2), 128.9 (x8), 128.2 (x8), 127.3 (x4), 118.8 (x4), 113.0 (x2), 55.6, 50.3 (x2), 47.7 (x2).

¹⁹F NMR (376 MHz, CDCl₃) δ -56.27 (t, J = 21.7 Hz, 6F), -136.93 (p, J = 16.3 Hz, 2F), -138.44 (dd, J = 22.2, 12.4 Hz, 2F), -140.61 - -141.52 (m, 4F).

IR (neat): 3530, 3029, 2954, 1659, 1602, 1479, 1454, 1428, 1338, 1257, 1186, 1145, 982, 901, 827, 763, 714, 699 cm⁻¹.

HRMS (ESI): m/z: $[M+Na]^+$ (C₄₃H₂₂F₁₄NaO₂), calcd.: 859.1294; found: 859,1290. $[\alpha]_D^{25} = +85$ (c = 0.1, CH₂Cl₂).

a) Preparation of **16** from **15**: In a Schlenk tube, **15** (4.6 g, 5.5 mmol) and NaHCO₃ (924 mg, 11 mmol, 2.0 equiv) were mixed with dichloromethane (55 mL), and the mixture was stirred and cooled to 0 °C. Then, NBS (2.007 g, 11.275 mmol, 2.05 equiv) was added slowly. After being stirred at 0 °C for 16 h, the reaction mixture was poured into HCl (2 N). The reaction mixture was then extracted with dichloromethane (50 mL x 3). After removal of solvent by rota-evaporation, the residue was subjected to column chromatography (silicagel,

cyclohexane/ethyl acetate (v/v = 20/1) as eluent), affording the expected compound **16** as a white solid (4.375 g, 80% yield).

b) Preparation of **16** from **14**: Compound **14** (13.0 g, 14 mmol) was dissolved in 70 mL 1,4-dioxane, 14 mL con. HCl was added and heated at 80 °C for 16 h. The reaction mixture was then extracted with dichloromethane. After removal of solvent by rota-evaporation, we obtained 11.5 g yellow solid. The obtained yellow solid was used in the next step directly without purification.

In a 250 mL round bottle, the obtained yellow solid was dissolved in 100mL MeCN, and cooled with ice bath. One drop of Br₂ was added to the mixture. Then, NBS (5.11 g, 28.7 mmol, 2.05 equiv) was added slowly. After being stirred at 0 °C for 4 h and TLC showed SM consumed completely, 20 mL saturated Na₂S₂O₄ was added to the mixture to quench the reaction. The double phase mixture was separated and the aqueous phase was extracted with dichloromethane (20 mL x 3). After removal of solvent by rota-evaporation, the residue was subjected to column chromatography (silicagel, cyclohexane/ethyl acetate (v/v = 20/1) as eluent), affording the expected compound **16** as a white solid (9.71 g, 70% yield).

Light yellow solid. m.p. 175 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.18 (m, 12H), 5.11 (s, 2H), 4.59 (dd, *J* = 10.1, 7.9 Hz, 2H), 2.99 (dd, *J* = 13.6, 7.9 Hz, 2H), 2.37 (dd, *J* = 13.5, 10.3 Hz, 2H).

¹³C NMR (126 MHz, CDCl3) δ 149.6 (x2), 148.2 (x2), 142.7 (x2), 136.0 (x4), 134.1 (x2), 128.8 (x8), 128.1 (x8), 126.9 (x4), 115.2 (x4), 112.5 (x2), 56.5, 51.6 (x2), 49.6 (x2).

¹⁹F NMR (376 MHz, CDCl₃) δ -56.31 (t, J = 21.7 Hz, 6F), -136.21 – -137.16 (p, J = 16.0 Hz, 2F), -137.90 (dd, J = 21.8, 12.4 Hz, 2F), -139.56 – -140.78 (m, 4F).

IR (neat): 3538, 3067, 3028, 2956, 2937, 2871, 1660, 1602, 1480, 1454, 1337, 1261, 1232, 1143, 987, 843, 763, 715, 699, 676 cm⁻¹.

HRMS (ESI): m/z: [M-H]⁺ (C₄₃H₁₉Br₂F₁₄O₂), calcd.: 990.9534; found: 990.9505.

 $[\alpha]_D^{25} = +87 (c = 0.1, CH_2Cl_2).$

S11: Under N₂, to a Schlenk tube containing **16** (2.0 g, 2 mmol), 4-vinylphenylboronic acid (0.9 g, 6 mmol, 3.0 equiv), Pd(PPh3)4 (116 mg, 0.1 mmol, 5 mol%) and K₃PO₄ (1.272 g, 6 mmol, 3.0 eq) was added degassed 1,4-dioxane (15 mL) and water (5 mL). The reaction mixture was stirred and heated to 95 °C for 48 h. and then it was cooled to room temperature and extracted with CH_2Cl_2 (20 mL×3). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silicagel using cyclohexane/CH₂Cl₂ (5:1) as the eluent to give compound **S11** as a slightly yellow

solid. (1.33 g, 64% yield).

Light yellow solid. Decomposed upon heating by carbonization or polymerization; a melting point could not be detected.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 1.3 Hz, 2H), 7.26 – 6.88 (m, 20H), 6.64 (dd, *J* = 17.6, 10.9 Hz, 2H), 5.69 (d, *J* = 17.6 Hz, 2H), 5.22 (d, *J* = 10.9 Hz, 2H), 5.00 (t, *J* = 8.6 Hz, 2H), 3.25 (ddd, *J* = 13.7, 8.6, 1.4 Hz, 2H), 2.77 (ddd, *J* = 13.7, 8.9, 1.5 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 152.4 (x2), 147.8 (x2), 144.5 (x2), 139.2 (x2), 137.4 (x2), 136.5 (x4), 136.1 (x2), 132.8 (x2), 128.9 (x6), 128.0 (x12), 125.9 (x4), 125.5 (x6), 124.3 (x2), 120.7 (x2), 113.7 (x4), 56.8, 52.0 (x2), 51.2 (x2).

¹⁹F NMR (376 MHz, CDCl₃)δ -55.36 (t, J = 21.8 Hz, 6F), -138.61 – -139.77 (pd, J = 21.1, 5.8 Hz, 2F), -144.06 (pd, J = 21.1, 5.8 Hz, 2F), -145.79 (t, J = 19.6 Hz, 4F).

IR (neat): 3538, 3027, 2939, 2871, 1663, 1629, 1603, 1516, 1464, 1427, 1321, 1234, 1184, 1136, 986, 906, 841, 756, 714, 697 cm⁻¹.

HRMS (ESI): m/z: [M-H]⁺ (C₅₉H₃₃F₁₄O₂), calcd.: 1039.2257; found: 1039.2268.

 $[\alpha]_D^{25} = +24$ (*c* = 0.1, CH₂Cl₂).

S12 was synthesized Following a modification of a literature procedure.² A 100 mL reactor was charged with a suspension of polyvinyl alcohol (PV-OH) (100 mg, 0.96 μ mol, 0.001 equiv.) in 72 mL of degassed MiliQ water. The solution was heated at 100 °C until PV-OH was dissolved. Then, it was cooled to RT and a solution of boric acid (449 mg, 7.26 mmol) in 18 mL of degassed MiliQ water was transferred to the reactor. Later, a degassed solution containing divinylbenzene (DVB), filtered on a short pad of silica immediately before use, (80%, 119 μ L, 0.68 mmol, 0.65 equiv.), BINOL derivative **S11** (1.1 g, 1.06 mmol), styrene (2.9 ml, 25.5 mmol,

23.66 equiv.) and AIBN (31 mg, 0.19 mmol, 0.18 equiv.) in toluene (2.4 mL) was transferred to the reactor. After that,

the system was heated at 90 °C and magnetically stirred at 440 rpm overnight, the aqueous solution was decanted off and the resin was washed with water (50 °C) several times, followed by MeOH and CH_2Cl_2 . Finally, it was dried overnight in a vacuum oven at 40 °C to furnish 3.0 g of light-yellow beads.

Cat e was synthesized Following a modification of a literature procedure.² In a dry Schlenk tube, resin **S12** (3.0 g, ca. 1.06 mmol) was suspended in pyridine (20 mL) under Ar. Then, POCl₃ (495 μ L, 5.3 mmol, 5 eq.) was added and the reaction mixture was heated in the closed Schlenk tube at 120 °C. After 2 days, it was cooled to RT and 5 mL of water were added. Then the system was closed again and heated at 100 °C overnight. The resin was filtered and washed with water, THF/water, THF, 2 M HCl/EtOAc, EtOAC/DCM, and DCM and dried overnight in a 40 °C vacuum oven to give 3.0 g of brown beads. P elemental analysis (%): 0.40

f_(P): 0.13 mmol/g resin

2.5. Preparation of Cat f

Scheme S5. The procedure of preparation of Cat f

17

Preparation of **17**: In a Schlenk tube under Ar, NaH (a mixture of 60% sodium hydride (w/w) in mineral oil, 0.6 g, 15 mmol, 3 eq) was dissolved in 50 mL dry THF, and the mixture was stirred and cooled to 0 °C with ice bath. SPINOL **16** (5.0 g, 5 mmol) was dissolved in 10 mL dry THF and added to the mixture dropwise with syringe. The mixture was stirred at this temperature for 1 hour, then removed the ice bath and stirred at rt for 15 min. The mixture was cooled to 0 °C again and Chloromethyl methyl ether (1.21 g, 1.14 mL, 15mmol, 3 eq) was added dropwise with syringe. After being stirred at rt for 16 h, the reaction mixture was quenched with 2 mL

water. The reaction mixture was then extracted with dichloromethane. After removal of solvent by rota-evaporation, the residue was subjected to column chromatography (silicagel, cyclohexane/ CH_2Cl_2 (v/v = 5/2) as eluent), affording the expected compound **17** as a white solid (4.44 g, 82% yield).

White solid. m. p. 177.2 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.25 (m, 12H), 4.68 (dd, *J* = 6.1, 1.9 Hz, 2H), 4.55 (dd, *J* = 10.2, 7.9 Hz, 2H), 4.44 (dd, *J* = 6.2, 1.9 Hz, 2H), 3.06 (s, 6H), 2.95 – 2.89 (m, 2H), 2.34 (dd, *J* = 13.0, 10.3 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 152.5 (x2), 147.5 (x2), 144.5 (x2), 143.5 (x2), 135.0 (x4), 128.6 (x8), 128.2 (x8), 126.7 (x4), 121.9 (x2), 119.5 (x2), 115.3 (x2), 99.3 (x2), 58.4, 56.3 (x2), 51.4 (x2), 50.5 (x2).

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

¹⁹F NMR (376 MHz, CDCl₃)δ -56.27 (t, J = 21.7 Hz, 6F), -137.37 (dd, J = 20.3, 12.3 Hz, 2F), -138.03 - -138.40 (m, 2F), -140.71 - -141.33 (m, 2F).
IR (neat): 3063, 3027, 2943, 1660, 1603, 1550, 1480, 1452, 1415, 1386, 1336, 1262, 1143, 1082, 1031, 986, 907, 845, 763, 733, 714, 699, 675 cm⁻¹.
HRMS (ESI): m/z: [M+Na]⁺ (C₄₇H₂₈Br₂F₁₄NaO₄), calcd.: 1103.0023; found: 1103.0036.

 $[\alpha]_D^{25} = +96 \ (c = 0.1, CH_2Cl_2).$

Preparation of **18**: In a Schlenk tube was added **17** (4.33 g, 4 mmol), pyrocatechol (1.98 g, 18 mmol, 4.5 equiv) and K_2CO_3 (11.04 g, 80 mmol, 20 equiv). The flask was reflashed with Ar three times. 50 mL degassed DMF was added and stirred at 120 °C overnight. The reaction mixture was cooled to rt and quenched with 100 mL water and 100 mL ethyl acetate. The biphasic solution was separated and the organic solution was washed with saturated NaHCO₃, water and brine, dried with MgSO₄. After removal of solvent by rota-evaporation, the residue was subjected to column chromatography (silicagel, cyclohexane/ethyl acetate (v/v = 20/1) as eluent), affording the expected compound **18** as

a white solid (4.91 g, 90% yield).

White solid. m. p. 227.9 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 (dt, *J* = 5.8, 3.4 Hz, 4H), 7.30 – 7.25 (m, 8H), 6.89 (d, *J* = 4.3 Hz, 4H), 6.86 (d, *J* = 4.3 Hz, 4H), 6.81 – 6.77 (m, 2H), 6.69 – 6.65 (m, 2H), 6.59 (d, *J* = 7.9 Hz, 2H), 6.29 (d, *J* = 7.9 Hz, 2H), 4.77 – 4.71 (m, 2H), 4.64 – 4.56 (m, 4H), 3.02 (d, *J* = 3.0 Hz, 8H), 2.68 – 2.59 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 152.7 (x2), 145.8 (x2), 144.5 (x2), 144.2 (x2), 141.3 (x2), 141.0 (x2), 140.8 (x2), 136.9 (x2), 136.6 (x2), 136.4 (x2), 135.8 (x2), 135.4 (x2), 128.7 (x6), 128.5 (x6), 126.3 (x2), 124.8 (x2), 124.6 (x2), 124.5 (x2), 124.2 (x2), 123.3 (x2, q, J = 277 Hz), 118.8 (x2), 116.6 (x2), 116.5 (x2), 116.3 (x2), 115.9 (x2), 114.2 (x2), 106.4 (x2, q, ¹J_(C-F) = 32 Hz), 98.9 (x2), 58.5, 56.5 (x2), 51.8 (x2), 50.6 (x2).

¹⁹F NMR (376 MHz, CDCl₃) δ -55.00.

IR (neat): 3063, 3026, 2940, 1645, 1602, 1495, 1438, 1311, 1253, 1158, 1121, 1100, 1028, 986, 875, 744, 729, 697 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₇₁H₄₄Br₂F₆NaO₁₂), calcd.: 1383.0996; found: 1383.0974. [α]_D²⁵ = +185 (*c* = 0.1, CH₂Cl₂).

a) Preparation of **19** from **18**: In a round-bottom flask equipped with a condenser, compound **18** (4.85 g, 3.56 mmol) was dissolved in 30 mL 1,4-dioxane, 7 mL con. HCl was added, and the mixture was heated at 95 °C for 48 h. The reaction mixture was then extracted with dichloromethane. After removal of solvent by rota-evaporation, the residue was subjected to column chromatography (silicagel, cyclohexane/ dichloromethane (v/v = 5/2) as eluent), affording the expected compound **19** as a white solid (1.91 g, 42% yield). *Note: the polarity of 18 and 19 are almost the same. The consumption of 18 couldn't be checked by TLC; it should be detected by ¹H NMR or HPLC.*

b) Preparation of 19 from 16: In a Schlenk tube under Argon, NaH (a mixture of 60% sodium hydride (w/w) in mineral oil, 1.08 g, 27 mmol, 3 eq) was suspended in 100 mL dry THF, and the mixture was stirred and cooled to 0 °C with an ice bath. SPINOL **16** (8.93 g, 9 mmol) was dissolved in 30 mL dry THF and added to the mixture dropwise via syringe. The mixture was stirred at this temperature for 1 hour, the ice bath was then removed and stirring was continued at rt for 15 min. The mixture was cooled again to 0 °C and chloromethyl methyl ether (2.17 g, 2.05 mL, 27 mmol, 3 eq) was added dropwise via syringe. After being stirred at rt for 16 h, the reaction mixture was quenched with 4 mL water and extracted with dichloromethane (3x 100 mL). After removal of solvent by rota-evaporation, the residue was passed through a short pad of silicagel eluting with cyclohexane/EA (v/v = 2/1) and the clear eluate was evaporated to dryness. The solid residue (9.23 g) was placed in a a Shlenck tube, catechol (4.46 g, 40.5 mmol, 4.5 equiv) and K₂CO₃ (24.84 g, 180 mmol, 20 equiv) were added, and an Ar atmosphere was established (3 X vacuum/refill). Degassed DMF (120 mL) was added, and the misture stirred at 120 °C for 48 h. The reaction mixture was cooled to rt and quenched with 400 mL water and 400 mL ethyl acetate. The biphasic solution was separated and the organic solution was washed with saturated NaHCO₃, water and brine, dried with MgSO₄. After removal of solvent by rota-evaporation, the residue was used in the next step without purification. The obtained yellow semi-solid was dissolved in 90 mL 1,4dioxane, 9 mL con. HCl was added and the solution was heated at 95 °C for 48 h. The reaction mixture was then extracted with dichloromethane (3x 100 mL). After removal of solvent by rota-evaporation, the residue was subjected to column chromatography (silicagel, cyclohexane/ dichloromethane (v/v = 5/2) as eluent), affording the expected compound **19** as a white solid (6.75 g, 59% yield).

Light yellow solid. m. p. >300 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.22 (m, 12H), 6.93 – 6.88 (m, 4H), 6.85 – 6.76 (m, 4H), 6.72 (td, *J* = 7.7, 1.7 Hz, 2H), 6.66 – 6.57 (m, 6H), 5.16 (s, 2H), 4.62 (dd, *J* = 10.2, 7.5 Hz, 2H), 3.08 – 2.97 (m, 2H), 2.43 (dd, *J* = 13.2, 10.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 149.6 (x2), 146.4 (x2), 143.5 (x2), 141.1 (x2), 140.8 (x2), 140.3 (x2), 139.9 (x2), 136.7 (x2), 136.3 (x2), 135.8 (x2), 135.8 (x2), 135.4 (x2), 134.3 (x2), 128.7 (x4), 128.3 (x4), 126.6 (x2), 124.6 (x2), 124.5 (x2), 124.5 (x2), 124.3 (x2), 122.3 (x2, q, J = 274 Hz), 118.9 (x2), 116.5 (x4), 116.4 (x2), 116.1 (x2), 115.8 (x2), 111.9 (x2), 106.4 (x2, q, ¹J_(C-F) = 32 Hz), 56.6, 51.5 (x2), 49.9 (x2).

¹⁹F NMR (376 MHz, CDCl₃) δ -55.11.

IR (neat): 3507, 3059, 3028, 2930, 2866, 1648, 1602, 1495, 1439, 1311, 1255, 1124, 1099, 1030, 988, 905, 876, 743, 728, 697 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₆₇H₃₆Br₂F₆NaO₁₀), calcd.: 1295.0472; found: 1295.0464.

 $[\alpha]_D^{25} = -32$ (*c* = 0.1, CH₂Cl₂).

20: Under N₂, to a Schlenk tube containing **19** (1.8 g, 1.41 mmol), 4-vinylphenylboronic acid (626 mg, 4.23 mmol, 3.0 equiv), Pd(PPh₃)₄ (130 mg, 0.07 mmol, 5 mol%) and K₃PO₄ (0.9 g, 4.23 mmol, 3.0 eq) was added degassed 1,4-dioxane (9 mL) and water (3 mL). The reaction mixture was stirred and heated to 95 °C for 48 h. and then it was cooled to room temperature and extracted with CH₂Cl₂ (10 mL×3). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silicagel using cyclohexane/CH₂Cl₂ (5:2) as the eluent to give compound **20** (838 mg, 45% yield) as a slightly yellow solid. The reaction can also be

performed with $Pd_2(dba)_3$ (2 mol %) and S-Phos (8 mol %) in 3:1 toluene/water (95 °C, 18 h), **20** being obtained in almost identical yield (44%).

Light yellow solid. m. p. >300 °C.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.10 (s, 2H), 7.06 (d, *J* = 8.4 Hz, 4H), 7.02 (d, *J* = 8.3 Hz, 4H), 7.00 – 6.89 (m, 10H), 6.88 (d, *J* = 2.1 Hz, 1H), 6.86 (dd, *J* = 2.9, 1.7 Hz, 2H), 6.85 (d, *J* = 1.4 Hz, 1H), 6.84 – 6.80 (m, 2H), 6.76 – 6.72 (m, 6H), 6.66 – 6.62 (m, 2H), 6.57 (d, *J* = 10.9 Hz, 1H), 6.56 – 6.52 (m, 3H), 5.60 (dd, *J* = 17.5, 1.0 Hz, 2H), 5.37 (s, 2H), 5.14 (dd, *J* = 10.8, 1.0 Hz, 2H), 4.88 (dd, *J* = 10.3, 7.5 Hz, 2H), 3.14 (dd, *J* = 13.3, 7.5 Hz, 2H), 2.51 (dd, *J* = 13.1, 10.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6 (x2), 146.0 (x2), 143.3 (x2), 141.3 (x2), 140.9 (x2), 140.5 (x2), 140.0 (x2), 139.0 (x2), 136.6 (x4), 136.2 (x2), 135.9 (x2), 135.6 (x2), 135.5 (x2), 133.5 (x2), 133.0 (x2), 131.9 (x2), 128.8 (x4), 128.0 (x4), 127.9 (x4), 125.8 (x2), 125.3 (x4), 124.4 (x2), 124.3 (x2), 124.2 (x2), 124.1 (x2), 122.4(x2, q, *J* = 222 Hz), 117.9 (x2), 117.2 (x2), 116.5 (x4), 116.4 (x2), 116.1 (x2), 113.2 (x2), 105.8 (x2, q, ¹_{J(C-F)} = 32 Hz), 55.9, 50.2 (x2), 50.1 (x2).

IR (neat): 3511, 3059, 3027, 2932, 2862, 1647, 1603, 1495, 1439, 1310, 1256, 1165, 1124, 1098, 1031, 988, 906, 885, 842, 743, 730, 698 cm⁻¹.

HRMS (ESI): m/z: $[M+Na]^+$ (C₈₃H₅₀F₆NaO₁₀), calcd.: 1343.3200; found: 1343.3176. $[\alpha]_D^{25} = +50$ (c = 0.1, CH₂Cl₂).

21 was synthesized Following a modification of a literature procedure.² A 100 mL reactor was charged with a suspension of polyvinyl alcohol (PV-OH) (100 mg, 0.96 μ mol, 0.002 equiv.) in 72 mL of degassed MiliQ water. The solution was heated at 100 °C until PV-OH was dissolved. Then, it was cooled to rt and a solution of boric acid (449 mg, 7.26 mmol) in 18 mL of degassed MiliQ water was transferred to the reactor. Later, a degassed solution containing divinylbenzene (DVB), filtered on a short pad of silica immediately before use, (80%, 119 μ L, 0.68 mmol, 1.3 equiv.), BINOL derivative **20** (700 mg, 0.53 mmol), styrene (2.9 ml, 25.5 mmol, 47.75 equiv.) and AIBN (31 mg, 0.19 mmol, 0.35 equiv.) in toluene (2.4 mL) was transferred to the reactor. After that, the system was heated at 90 °C and magnetically

stirred at 440 rpm. After two days, the aqueous solution was decanted off and the resin was washed with water (50 $^{\circ}$ C) several times, followed by MeOH and CH₂Cl₂. Finally, it was dried overnight in a 40 $^{\circ}$ C vacuum oven to furnish 3.0 g of yellow beads.

Cat f was synthesized Following a modification of a literature procedure.² In a dry Schlenk tube, resin **21** (3.0 g, ca. 0.53 mmol) was suspended in pyridine (20 mL) under Ar. Then, POCl₃ (248 μ L, 2.65 mmol, 5 eq.) was added and the reaction mixture was heated in the closed Schlenk tube at 120 °C. After 2 days, it was cooled to RT and 5 mL of water were added. Then the system was closed again and heated at 100 °C overnight. The resin was filtered and washed with water, THF/water, THF, 2 M HCl/EtOAc, EtOAC/DCM, and DCM and dried overnight in a 40 °C vacuum oven to give 3.0 g of brown beads. P elemental analysis (%): 0.53 f(p): 0.17 mmol/g resin

2.6. Preparation of Cat g

28: The protected diol **14** (924 mg, 1 mmol) was placed In a Schlenk tube, pyrocatechol (495 mg, 4.5 mmol, 4.5 equiv) and K_2CO_3 (2.75 g, 20 mmol, 20 equiv) were added, and an Ar atmosphere was established (3 X vacuum/refill). Degassed anhydrous DMF (12 mL) was added, and the mixture was stirred at 120 °C overnight. The reaction mixture was cooled to rt and quenched with 30 mL water and 30 mL ethyl acetate. Phases were separated, and the organic one was washed with saturated NaHCO₃, water and brine, and dried with MgSO₄. Removal of solvent by rota-evaporation afforded 1.2 g of a yellow semi-solid, which was

dissolved in 1,4-dioxane (10 mL). Concentrated aqueous HCl (1.0 mL) was added, and the solution was heated at 95 °C for 48 h. The reaction mixture was then extracted with dichloromethane (3x15 mL). After solvent removal by rotaevaporation, the residue was puridied by column chromatography [silicagel, cyclohexane/dichloromethane (v/v = 5/2) as eluent], affording the expected compound **28** as a white solid (647 mg, 58% yield).

Light yellow solid. m. p. >300 °C with decomposition.

¹H NMR (400 MHz, CDCl₃) δ 7.32-7.15 (m, 10H), 7.00 (d, *J* = 7.7 Hz, 2H), 6.79 (dd, *J* = 5.9, 1.8 Hz, 4H), 6.74-6.63 (m, 4H), 6.61-6.45 (m, 10H), 5.08 (s, 2H), 4.52 (dd, *J* = 11.0, 7.1 Hz, 2H), 2.92 (dd, *J* = 13.0, 7.1 Hz, 2H), 2.44 (t, *J* = 12.0 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 150.4 (x2), 149.7 (x2), 143.1 (x2), 141.4 (x2), 141.0 (x2), 140.4 (x2), 139.9 (x2), 136.5 (x2), 136.1 (x2), 135.8 (x2), 135.6 (x2), 132.3 (x2), 130.7 (x2), 128.8 (x4), 128.4 (x4), 126.9 (x2), 124.4 (x2), 124.2 (x2), 124.2 (x2), 124.1 (x2), 122.4 (x2, q, ¹J = 276 Hz), 118.3 (x2), 118.1 (x2), 116.6 (x2), 116.5 (x2), 116.3 (x2), 115.9 (x2), 106.1 (x2), 105.5 (x2, q, ¹J_(C-F) = 33 Hz), 55.8, 50.2 (x2), 48.0 (x2).

¹⁹F NMR (376 MHz, CDCl₃) δ -54.96.

IR (neat): 3510, 3060, 3028, 2930, 2860, 1648, 1600, 1496, 1440, 1311, 1257, 1166, 1120, 1030, 985, 900, 887, 843 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₆₇H₃₈F₆NaO₁₀), calcd.: 1139.2261; found: 1139.2242.

 $[\alpha]_{D}^{25} = -48$ (*c* = 0.1, CH₂Cl₂).

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```


Cat g: To a dry Schlenk tube, **28** (500 mg, 0.448 mmol) and pyridine (5 mL) were added under Ar. Then, $POCl_3$ (126 μ L, 1.35 mmol, 3 eq.) was added, and the reaction mixture was heated at 100 °C in the sealed Schlenk tube. After 18 hours, the reaction mixture was cooled to room temperature and water (5 mL) was added. The system was sealed again and heated at 100 °C overnight. Afterwards, the solution was cooled to rt, diluted with DCM (20 mL), washed with 2N HCl (3x 10 mL). Volatiles were removed under vacuum and the residue was purified by column chromatography on silicagel (ethyl

acetate/hexane=1:1). The collected product was redissolved in DCM (5 mL), 6N HCl (5 mL) was added, and the mixture stirred for 1 hour at room temperature. By evaporation of the organic phase, compound **Cat g** (413 mg, 78% yield) was obtained as a slightly yellow solid.

Light yellow solid. m. p. >300 °C or polymerized.

¹H NMR (500 MHz, CDCl₃) δ 7.40 (t, *J* = 7.4 Hz, 4H), 7.33 (dd, *J* = 12.4, 7.3 Hz, 6H), 7.23 (d, *J* = 7.7 Hz, 2H), 6.90 – 6.77 (m, 14H), 6.69 (d, *J* = 7.7 Hz, 2H), 6.45 (d, *J* = 8.0 Hz, 2H), 4.63 (dd, *J* = 10.8, 6.3 Hz, 2H), 2.98 (dd, *J* = 12.3, 6.3 Hz, 2H), 2.43 (t, *J* = 11.6 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 149.6 (x2), 143.6 (x2), 143.2 (x2), 141.6 (x2), 141.4 (x2), 141.3 (x2), 141.1 (x2), 139.7 (x2), 137.1 (x2), 136.5 (x2), 136.2 (x2), 135.7 (x2), 131.4 (x2), 128.8 (x4), 128.6(x4), 128.5 (x2), 127.1 (x2), 125.6 (x2), 124.3 (x2), 124.2 (x2), 124.1 (x4), 122.8 (x2), 122.4 (x2), 122.3 (x2, q, ¹J = 275 Hz), 117.9 (x2), 116.6 (x2), 116.5 (x2), 116.3 (x2), 116.0 (x2), 106.1 (x2, q, ¹J_(C-F) = 33 Hz), 57.7, 50.1 (x2), 49.2 (x2).

¹⁹F NMR (471 MHz, CDCl₃) δ -54.91.

³¹P NMR (162 MHz, CDCl₃) δ -7.09.

IR (neat): 3648, 3358, 3081, 3062, 3025, 2960, 2926, 2858, 1640, 1600, 1493, 1434, 1308, 1256, 1165, 1120, 1090, 1020, 985, 906, 834, 747, 730, 698 cm⁻¹.

HRMS (ESI): m/z: [M-H]⁺ (C₆₇H₃₆F₆O₁₂P), calcd.: 1177.1854; found: 1177.1843.

 $[\alpha]_D^{25} = 240$ (c = 0.1, CH₂Cl₂).

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

3. Experimental procedures

3.1. Optimization of catalyst and solvent for the desymmetrization reaction

Scheme S6. Optimization of reaction conditions

These experiments refer to Table 1 in the main text. To a 10 mL glass vial were sequentially added **Cat b-Cat f** (10 mol % loading) and the indicated solvent (1 mL), followed by oxetane **22a** (30 mg, 0.2 mmol) and **23a** (42 mg, 0.25 mmol). The reaction mixture was shaken at room temperature for 48 h, or at 60 °C for 16 h in specified cases. Then, it was filtered and the resin beads were washed with DCM (3 x 0.25 mL). The solvent was concentrated under reduced pressure and the product was isolated after purification by column chromatography on silicagel with cyclohexane/ethyl acetate (EtOAc/*c*-Hex = 1:5) to yield **24aa**.

3.2. Recycling of Cat f in the desymmetrization of 22a with 23a in batch

Scheme S7. Recycling experiments of Cat f in batch

To a 10 mL glass vial were sequentially **Cat f** (59 mg, $f_p = 0.17$ mmol/g, 5 mol % loading) and 4 mL CHCl₃, followed by oxetane **22a** (30 mg, 0.2 mmol) and **23a** (42 mg, 0.25 mmol). The reaction mixture was shaken at 60 °C for 16 h. Then, it was filtered and the resin beads were washed with CHCl₃ (3 x 0.25 mL). The solvent was removed under reduced pressure and the residue was purified by column chromatography on silicagel with cyclohexane/ethyl acetate (EtOAc/*c*-Hex = 1:5) to yield **24aa**.

Conversion (%)	Yield (%)	ee (%)
92	90	95
89	90	96
92	85	97
90	89	97
93	90	97
90	90	97
90	85	97
90	87	95
93	90	96
92	90	95
91	90	95
89	85	95
92	89	95
91	82	94
91	85	95
90	84	94
	Conversion (%) 92 89 92 90 93 90 90 90 90 90 90 93 92 91 89 92 91 89 92 91 89 92 91 89 92 91 89 92	Conversion (%) Yield (%) 92 90 89 90 92 85 90 89 91 90 92 85 90 89 93 90 90 85 90 85 90 87 93 90 90 87 93 90 90 85 90 87 93 90 92 90 93 90 92 90 91 90 89 85 92 89 91 82 91 85 90 84

Table S1. Recycling experiments in batch

Isolated yield.

3.3. Optimization of the desymmetrization of 22a with 23a mediated by Cat f in flow

Scheme S8. Parameter optimization for the flow experiment

Cat f (2.0 g, $f_p = 0.17 \text{ mmol/g}$, 0.34 mmol) was placed in a size-adjustable, jacketed glass Omnifit column (10 mm Ø), and temperature was controlled at 60 °C by an external circulating pump. A stream of CHCl₃ was passed for 1 h at 0.1 mL min⁻¹ to swell the polymer, and size of the packed bed was adjusted. The reagents were then introduced in the system using the two-pump system, represented in Figure 4 of the main text: One of the pumps was used to circulate a solution of **22a** (300 mg, 2 mmol, 1.0 eq) and **23a** (418 mg, 1.25 eq.) in CHCl₃ (40 mL for 0.05 M; 20 mL for 0.1 M), while the other was used to circulate CHCl₃ at 0.5 mL min⁻¹ for 1 h between the eight individual experiments in Table S2. The collected outstream was concentrated under reduced pressure and purified by column chromatography on silicagel, eluting with cyclohexane/ethyl acetate (EtOAc/*c*-Hex = 1:5) to yield **24aa**.

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

Flow rate	concentration	Temperature	conversion	yield (%)	ee (%)
0.5 ml/min	0.05 M	rt	84	80	95
0.3 ml/min	0.05 M	rt	89	85	96
1 ml/min	0.05 M	60 °C	92	90	97
2 ml/min	0.05 M	60 °C	78	72	95
2 ml/min	0.1 M	60 °C	81	80	95
1.0 ml/min	0.1 M	60 °C	87	80	94
0.75 ml/min	0.1 M	60 °C	87	82	95
0.5 ml/min	0.1 M	60 ℃	98	90	95

Table S2. Parameter optimization for the flow experiment

3.4. Continuous flow desymmetrization of oxetanes 22 with thiols 23 mediated by Cat f

Scheme S9. Continuous flow process

a) Processes at 2 mmol scale: Using the same set-up depicted above, filled with the same sample of Cat f (2.0 g, $f_p = 0.17 \text{ mmol/g}, 0.34 \text{ mmol}$), previously swollen with CHCl₃ and operated at the same temperature (60 °C), the reactants were circulated through the reactor using the two-pump system. One of the syringes contained the oxetane (**22a-n**, 2.00 mmol, 1.00 eq) and the thiol (**23a-d**, 2.50 mmol, 1.25 eq) to be reacted, dissolved in CHCl₃ (20 mL), while the other syringe was filled with chloroform for rinsing the resin between individual experiments. A three-way valve was intercalated between the syringes and the reactor, to act as a flow selector, and a back pressure regulator was placed at the outlet of the reactor to prevent the formation of bubbles near the boiling point of chloroform. Flow rate in the preparative experiments was 0.5 mL/min. In each case, when the circulation of the solution containing the reactants was complete, the channel used for the addition of the reactants and the packed bed reactor was rinsed with CHCl₃ at 0.5 mL min⁻¹ for 1 h. The collected outstream was concentrated under reduced pressure and purified by column chromatography on silicagel with cyclohexane/ethyl acetate (EtOAc/*c*-Hex = 1:5) to yield the corresponding products (**24aa-24ad**).

b) Processes at 20 mmol scale: With the same set-up and catalyst sample, operated under the same experimental conditions, the large-scale preparation of **24aa** (one run at 20 mmol scale and one run at 18 mmol scale) and **24na** (20 mmol scale) was performed with the results shown in Scheme 3 of the main text. Results for the two runs in the

preparation of **24aa**, performed in a non-consecutive manner, indicate tha **Cat f** can be stored for 15 months without losses in its catalytic performance.

3.5. Desymmetrization of oxetanes 22 with thiols 23 mediated by Cat g in batch

In a tall reaction vial with screw-on cap, **22** (0.2 mmol), **23** (0.25 mmol), **Cat g** (12 mg, 5 mol%) and chloroform (4 mL) were placed. The system was stirred at 60 $^{\circ}$ C (bath temperature) for 16 h. Then, the products were purified as in the flow experiments mediated by **Cat f**. The results (yield and enantiomeric excess) for the fifteen examples studied are summarized in Table S3. For comparison purposes, the results achieved with **Cat f** in the preparation of the same products in flow (Figure 5 in the main text) are also included in the table.

Product	with Cat g	with Cat f ^b
	Yield [%]; ee [%]	Yield [%]; ee [%]
24aa	87; 95	95; 95
24ba	78; 98	80; 95
24ca	83; >99	90; 99
24da	86; 95	65; 79
24ea	90; 73	85; 70
24ga	84; 7°	75; 0
24ha	87; 13 ^d	80; 37
24ia	90; 90	85; 90
24ja	85; 92	92; 91
24ka	88; 92	84; 90
24ma	87; 97	95; 93
24na	95; 78	95; 72
24ab	96; 95	90; >99
24ac	85; 85	88; 87
24ad	80; 74	78; 92
	Product 24aa 24ba 24ca 24da 24ea 24ga 24ga 24ha 24ja 24ja 24ja 24ka 24ma 24ma 24ma 24ma 24ma 24ab 24ac	Product with Cat g Yield [%]; ee [%] 24aa 87; 95 24ba 78; 98 24ba 78; 98 24ba 83; >99 24da 86; 95 24da 86; 95 24da 86; 95 24ea 90; 73 24ga 84; 7 ^c 24ha 87; 13 ^d 24ja 85; 92 24ka 88; 92 24ka 87; 97 24ma 95; 78 24ab 96; 95 24ac 85; 85 24ab 80; 74

Table S3. Desymmetrization of 22 with 23 leading to 24 mediated by the homogeneous catalyst Cat g.

^aStandard conditions: **22** (0.2 mmol), **23** (0.25 mmol) and **Cat g** (12 mg, 5 mol%) in chloroform (4 mL) stirred at 60 °C (oil bath temp) in a sealed vial for 16 h. ^bReaction conditions are those in Figure 5. ^cWhen the reaction was performed at rt for 16 h, yield was 82% and ee 4%. ^dWhen the reaction was performed at rt. for 16 h, yield was 86% and ee 10%.

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

4. Compound characterization data

(Data on prepared amounts and yields refer to the flow processes summarized in Figure 5 in the

main text)

(R)-3-(benzo[d]thiazol-2-ylthio)-2-phenylpropane-1,2-diol

Colorless solid. 603 mg, 95% yield. Reported compound.⁵ ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (dt, *J* = 8.1, 0.9 Hz, 1H), 7.73 (dt, *J* = 7.9, 0.9 Hz, 1H), 7.56 – 7.49 (m, 2H), 7.47 – 7.26 (m, 5H), 5.37 (s, 1H), 4.00 (dd, *J* = 11.2, 7.3 Hz, 1H), 3.93 – 3.83 (m, 2H), 3.82 – 3.74 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 151.8, 142.5, 135.2, 128.4 (x2), 127.6, 126.4, 125.5 (x2), 124.8, 121.1, 121.0, 76.4, 68.3, 42.6.

24aa

$$[\alpha]_{D^{25}} = +112.2 \ (c = 0.1, CH_2Cl_2).$$

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): minor isomer: t_R = 12.6 min; major isomer: t_R = 15.4 min.

(*R*)-3-(benzo[*d*]thiazol-2-ylthio)-2-(4-methoxyphenyl)propane-1,2diol

Colorless solid. M.p. 167.8 °C. 592 mg, 80% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.82 (m, 1H), 7.73 (dt, *J* = 8.0, 0.8 Hz, 1H), 7.48 – 7.40 (m, 3H), 7.33 (d, *J* = 1.0 Hz, 1H), 6.91 (d, *J* = 8.8 Hz, 2H), 5.18 (s, 1H), 4.02 – 3.94 (m, 1H), 3.90 (dd, *J* = 12.3, 5.3 Hz, 1H), 3.85 – 3.71 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.2, 159.0, 151.8, 135.2, 134.5, 126.8 (x2), 126.4, 124.8, 121.1, 121.0, 113.7 (x2), 76.1, 68.2, 55.2, 42.7.

IR (neat): 3368, 2957, 1609, 1579, 1512, 1452, 1419, 1307, 1246, 1209, 1180, 1080, 1011, 968, 815, 751, 565 cm⁻¹. HRMS (ESI): m/z: [M+Na]⁺ (C₁₇H₁₇NNaO₃S₂), calcd.: 370.0542; found: 370.0538.

 $[\alpha]_{D^{25}} = +132.0 \ (c = 0.1, CH_2Cl_2).$

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): minor isomer: t_R = 37.6 min; major isomer: t_R = 39.3 min.

24ca

(R)-2-(benzo[d][1,3]dioxol-5-yl)-3-(benzo[d]thiazol-2ylthio)propane-1,2-diol

Colorless solid. M.p. 120.4 °C. 650 mg, 90% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (ddd, J = 8.2, 1.2, 0.6 Hz, 1H), 7.70 (ddd, J = 8.0, 1.3, 0.6 Hz, 1H), 7.41 (ddd, J = 8.3, 7.3, 1.3 Hz, 1H), 7.30 (ddd, J = 8.0, 7.3, 1.2 Hz, 1H), 7.05 (d, J = 1.8 Hz, 1H), 6.94 (dd, J = 8.1, 1.8 Hz, 1H), 6.78 (d, J = 8.1 Hz, 1H), 5.92 (s, 2H), 5.42 (s, 1H), 4.01 (d, J = 6.9 Hz, 1H), 3.94 – 3.81 (m, 2H), 3.77 – 3.66 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0, 151.7, 147.7, 146.8, 136.6, 135.1, 126.3, 124.7, 121.0, 120.9, 118.8, 107.9, 106.5, 101.0, 76.3, 68.4, 42.7.

IR (neat): 3366, 3200, 2888, 1501, 1419, 1396, 1244, 1079, 1039, 1011, 933, 858, 824, 749 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₁₇H₁₅NNaO₄S₂), calcd.: 384.0335; found: 384.0319.

 $[\alpha]_D^{25} = +169.5$ (*c* = 0.1, CH₂Cl₂).

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): minor isomer: t_R = 22.5 min; major isomer: t_R = 24.3 min.

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```


(R)-3-(benzo[d]thiazol-2-ylthio)-2-(o-tolyl)propane-1,2-diol

Colorless solid. M.p. 106.7 °C. 457 mg, 65% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.53 – 7.43 (m, 2H), 7.39 – 7.31 (m, 1H), 7.25 – 7.13 (m, 3H), 5.38 (q, J = 2.4, 1.5 Hz, 1H), 4.21 (d, J = 8.0 Hz, 2H), 4.00 (s, 2H), 3.88 (d, J = 5.8 Hz, 1H), 2.62 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 151.7, 139.4, 136.0, 135.1, 132.7, 127.7, 126.9, 126.4, 125.6, 124.7, 121.1, 120.9, 77.7, 67.0, 41.0, 22.4.

```
24da
```

IR (neat): 3398, 3054, 2928, 2856, 1492, 1451, 1417, 1390, 1344, 1309, 1235, 1208, 1075, 1053, 1022, 1005, 966, 882, 752, 722, 568 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₁₇H₁₇NNaO₂S₂), calcd.: 354.0593; found: 354.0583.

71.6, 66.8, 40.6.

 $[\alpha]_{D}^{25} = +81.9 (c = 0.1, CH_2Cl_2).$

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): minor isomer: t_R = 13.1 min; major isomer: $t_R = 16.5$ min.

(R)-2-((benzo[d]thiazol-2-ylthio)methyl)but-3-yne-1,2-diol Colorless solid. 411 mg, 85% yield. Reported compound. ⁵

HO. ¹H NMR (400 MHz, Chloroform-d) δ 7.85 – 7.78 (m, 1H), 7.76 – 7.70 (m, 1H), 7.42 (ddd, J = 8.3, 7.2, 1.3 Hz, 1H), 7.32 (td, J = 7.6, 1.2 Hz, 1H), 5.15 (s, 1H), 4.51 (t, J = 8.1 Hz, 1H), ÓН 3.84 (dd, J = 11.8, 6.5 Hz, 1H), 3.80 – 3.71 (m, 2H), 3.65 (d, J = 14.6 Hz, 1H), 2.58 (s, 1H).

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): minor isomer: t_R = 12.9 min; major isomer: $t_R = 15.3$ min.

(R)-2-((benzo[d]thiazol-2-ylthio)methyl)but-3-ene-1,2-diol

Colorless solid. 455 mg, 85% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (dd, *J* = 8.3, 1.1 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.50 - 7.38 (m, 1H), 7.36 - 7.25 (m, 1H), 6.04 (dd, J = 17.3, 10.9 Hz, 1H), 5.55 (dd, J = 17.3, 1.4 Hz, 1H), 5.32 (dd, J = 10.8, 1.4 Hz, 1H), 4.65 – 4.50 (m, 1H), 4.42 (d, J = 14.4 Hz, 1H), 3.79 - 3.51 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 151.7, 138.4, 134.9, 126.3, 124.7, 121.0, 120.9,

¹³C NMR (101 MHz, CDCl₃) δ 168.9, 151.6, 135.0, 126.5, 124.9, 121.1, 120.9, 83.2, 74.6,

116.2, 75.3, 66.6, 40.2.

IR (neat): 3333, 2926, 2871, 2243, 1642, 1561, 1456, 1425, 1310, 1240, 1128, 1076, 1020, 993, 926, 754, 724, 670 cm^{-1} .

HRMS (ESI): m/z: [M+Na]⁺ (C₁₂H₁₃NNaO₂S₂), calcd.: 290.0280; found: 290.0281.

 $[\alpha]_{D}^{25} = +7.71 \ (c = 0.1, CH_2Cl_2).$

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): minor isomer: t_R = 22.6 min; major isomer: $t_R = 24.1$ min.

24ga

3-(benzo[d]thiazol-2-ylthio)propane-1,2-diol

Colorless oil. 394 mg, 75% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.69 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.42 – 7.33 (m, 1H), 7.33 – 7.18 (m, 1H), 4.67 (d, J = 5.4 Hz, 1H), 4.26 – 4.01 (m, 2H), 3.73 (d, J = 4.8 Hz, 2H), 3.60 – 3.39 (m, 2H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 168.3, 152.0, 135.0, 126.3, 124.6, 121.0 (x2), 71.4, 64.1, 36.1.

IR (neat): 3320, 2926, 2872, 1644, 1455, 1424, 1310, 1238, 1074, 1020, 996, 905,

752, 724 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₁₀H₁₁NNaO₂S₂), calcd.: 264,0129; found: 264,0125.

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): t_{R1} = 12.6 min; t_{R2} = 15.4 min.

(R)-3-(benzo[d]thiazol-2-ylthio)-2-methylpropane-1,2-diol

Colorless oil. 445 mg. 80% vield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 8.1 Hz, 1H), 7.74 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.46 – 7.39 (m, 1H), 7.36 – 7.30 (m, 1H), 4.90 (t, J = 7.6 Hz, 1H), 3.93 (t, J = 5.1 Hz, 1H), 3.69 - 3.56 (m, 2H), 3.49 - 3.34 (m, 2H), 1.33 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.2, 151.7, 134.8, 126.4, 124.7, 121.0, 120.8, 73.18, 67.07, 40.7, 22.9.

24ha

IR (neat): 3347, 2971, 2930, 2871, 1456, 1426, 1375, 1310, 1238, 1167, 1127, 1077, 1046, 1003, 904, 754, 724 cm⁻¹. HRMS (ESI): m/z: [M+Na]⁺ (C₁₁H₁₃NNaO₂S₂), calcd.: 278.0280; found: 278.0275.

 $[\alpha]_{D}^{25} = -10.9 \ (c = 0.1, CH_2Cl_2).$

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 210 nm): minor isomer: t_R = 19.1 min; major isomer: $t_R = 20.6$ min.

(R)-2-((benzo[d]thiazol-2-ylthio)methyl)hexane-1,2-diol

Colorless oil. 505 mg, 85% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.76 (m, 1H), 7.71 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.40 (td, J = 8.2, 7.8, 1.4 Hz, 1H), 7.34 – 7.25 (m, 1H), 4.89 (ddt, J = 6.4, 4.3, 2.3 Hz, 1H), 3.72 (q, J = 4.6 Hz, 1H), 3.66 - 3.57 (m, 2H), 3.49 - 3.32 (m, 2H), 1.66 - 1.55 (m, 2H), 1.50 – 1.29 (m, 4H), 0.93 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 151.7, 134.8, 126.3, 124.7, 121.0, 120.8, 74.7, 65.6,

24ia 38.8, 35.2, 25.0, 23.2, 14.0.

IR (neat): 3059, 3063, 2954, 2930, 2869, 1456, 1426, 1310, 1240, 1053, 1019, 1002, 906, 754, 724 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₁₄H₁₉NNaO₂S₂), calcd.: 320.0749; found: 320.0746.

 $[\alpha]_{D}^{25} = -46.8 \ (c = 0.1, CH_2Cl_2).$

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): minor isomer: t_R = 10.4 min; major isomer: $t_R = 12.8$ min.

(R)-2-((benzo[d]thiazol-2-ylthio)methyl)octane-1,2-diol

Colorless oil. 585 mg, 92% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, J = 8.1 Hz, 1H), 7.72 (d, J = 7.9 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.34 – 7.23 (m, 1H), 4.92 – 4.80 (m, 1H), 3.73 – 3.57 (m, 3H), 3.45 (dd, J = 11.9, 8.0 Hz, 1H), 3.36 (d, J = 14.7 Hz, 1H), 1.61 (dd, J = 10.1, 7.4 Hz, 2H), 1.51 – 1.19 (m, 8H), 0.93 – 0.83 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.3, 151.8, 134.8, 126.3, 124.7, 121.0, 120.8, 74.8, 65.62, 38.8, 35.5, 31.7, 29.8, 22.9, 22.5, 14.0.

IR (neat): 3355, 2926, 2855, 1561, 1456, 1426, 1310,1277, 1240, 1060, 1003, 909, 753, 724 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₁₆H₂₃NNaO₂S₂), calcd.: 348,1068; found: 348,1058.

 $[\alpha]_{D^{25}} = -46.1 (c = 0.1, CH_2Cl_2).$

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): major isomer: t_R = 14.2 min; minor isomer: $t_R = 16.1$ min.

(R)-2-((benzo[d]thiazol-2-ylthio)methyl)decane-1,2-diol

Colorless oil. 593 mg, 84% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 8.1 Hz, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.40 (t, J = 7.8 Hz, 1H), 7.29 (dd, J = 14.9, 7.3 Hz, 1H), 4.94 - 4.81 (m, 1H), 3.74 - 3.55 (m, 3H), 3.48 – 3.31 (m, 2H), 1.60 (dd, J = 8.7, 6.1 Hz, 2H), 1.43 – 1.22 (m, 12H), 0.88 (t, J = 6.7 Hz, 3H).

24ka

¹³C NMR (101 MHz, CDCl₃) δ 169.3, 151.7, 134.8, 126.3, 124.7, 121.0, 120.8, 74.8, 65.6, 38.8, 35.5, 31.8, 30.1, 29.5, 29.2, 22.9, 22.6, 14.1.

IR (neat): 3355, 2922, 2852, 1457, 1427, 1310, 1240, 1046, 1003, 753, 724 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₁₈H₂₇NNaO₂S₂), calcd.: 376.1375; found: 376.1371. $[\alpha]_{D}^{25} = 41.2 \ (c = 0.1, CH_2Cl_2).$

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): minor isomer: t_R = 8.4 min; major isomer: t_R = 10.6 min.

(R)-2-((benzo[d]thiazol-2-ylthio)methyl)tetradecane-1,2-diol

Colorless oil. 708 mg, 82% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.74 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.46 – 7.40 (m, 1H), 7.35 – 7.29 (m, 1H), 4.91 (t, *J* = 7.2 Hz, 1H), 3.74 – 3.59 (m, 3H), 3.52 – 3.34 (m, 2H), 1.63 (dd, *J* = 8.8, 6.0 Hz, 2H), 1.30 (d, *J* = 17.4 Hz, 20H), 0.94 – 0.84 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.3, 151.7, 134.8, 126.3, 124.7, 121.0, 120.8, 74.8, 65.6, 38.8, 35.5, 31.7, 30.1, 29.6, 29.6, 29.5, 29.5, 29.3, 22.9, 22.6, 14.1.

IR (neat): 3355, 2921, 2851, 1457, 1427, 1310, 1241, 1128, 1020, 1003, 908, 753, 724 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₂₂H₃₅NNaO₂S₂), calcd.: 432.2001; found: 432.1997.

 $[\alpha]_{D}^{25} = -50.0 \ (c = 0.1, CH_2Cl_2).$

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): minor isomer: t_R = 6.7 min; major isomer: t_R = 7.6 min.

(*R*)-3-(benzo[*d*]thiazol-2-ylthio)-2-(5-chlorothiophen-2-yl)propane-1,2-diol

Colorless solid. M.p. 96.8 °C. 675 mg, 95% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 8.2 Hz, 1H), 7.75 – 7.69 (m, 1H), 7.45 – 7.39 (m, 1H), 7.36 – 7.29 (m, 1H), 6.80 (d, *J* = 1.9 Hz, 2H), 5.69 (t, *J* = 4.7 Hz, 1H), 4.42 (s, 1H), 3.91 – 3.70 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0, 151.5, 146.0, 135.0, 129.5, 126.5, 126.0, 125.0, 122.6, 121.1, 121.0, 76.1, 67.8, 42.4.

IR (neat): 3212, 1453, 1423, 1399, 1238, 1215, 1081, 997, 924, 791, 755 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₁₄H₁₂ClNNaO₂S₃), calcd.: 379.9611; found: 379.9611.

 $[\alpha]_D^{25} = +130.5 (c = 0.1, CH_2Cl_2).$

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): minor isomer: t_R = 12.7 min; major isomer: t_R = 15.6 min.

(*R*)-3-(benzo[*d*]thiazol-2-ylthio)-2-((benzyloxy)methyl)-2methylpropan-1-ol

Colorless oil. 682 mg, 95% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.74 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.44 – 7.27 (m, 7H), 5.00 (t, *J* = 7.2 Hz, 1H), 4.57 (d, *J* = 1.6 Hz, 2H), 3.63 (d, *J* = 14.3 Hz, 1H), 3.56 – 3.45 (m, 5H), 1.13 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 152.0, 138.2, 134.8, 128.3, 127.5, 127.4, 126.2, 124.5, 120.9, 120.8, 74.9, 73.4, 65.4, 41.7, 37.8, 19.5.

IR (neat): 3354, 3061, 3029, 2858, 1602, 1496, 1454, 1426, 1361, 1309, 1277, 1205, 1095, 1046, 994, 895, 842, 753, 725, 696, 608 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₁₉H₂₁NNaO₂S₂), calcd.: 382.0906; found: 382.0895.

 $[\alpha]_D^{25} = -25.2$ (*c* = 0.1, CH₂Cl₂).

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): minor isomer: t_R = 9.0 min; major isomer: t_R = 13.9 min.

OEt (R)-3-((5-ethoxybenzo[d]thiazol-2-yl)thio)-2-phenylpropane-1,2-diol

Colorless solid. 650 mg, 90% yield. Reported compound. ⁵

¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 8.8 Hz, 1H), 7.59 – 7.50 (m, 2H), 7.44 – 7.27 (m, 3H), 7.20 (d, *J* = 2.4 Hz, 1H), 7.04 (dd, *J* = 8.8, 2.4 Hz, 1H), 5.47 (d, *J* = 2.3 Hz, 1H), 4.16 – 3.94 (m, 4H), 3.92 – 3.69 (m, 3H), 1.47 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 156.7, 146.2, 142.6, 136.5, 128.3, 127.5, 125.5, 121.5, 115.6, 104.8, 76.4, 68.3, 64.1, 42.8, 14.7. $[\alpha]_D^{25} = +115.6$ (*c* = 0.1, CH₂Cl₂).

24ab

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = R = 19.7 min; major isomer: $t_R = 28.5$ min.

210 nm): minor isomer: t_R = 19.7 min; major isomer: t_R = 28.5 min.

(R)-3-((6-chlorobenzo[d]thiazol-2-yl)thio)-2-phenylpropane-1,2-diol

Colorless solid. 620 mg, 88% yield. Reported compound. ⁵ ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (d, *J* = 2.1 Hz, 1H), 7.64 (d, *J* = 8.5 Hz, 1H), 7.58 – 7.51 (m, 2H), 7.43 – 7.38 (m, 2H), 7.33 (td, *J* = 8.5, 1.7 Hz, 2H), 5.20 (d, *J* = 2.5 Hz, 1H), 4.03 – 3.88 (m, 2H), 3.86 – 3.77 (m, 2H), 3.69 (t, *J* = 6.7 Hz, 1H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 171.3, 152.6, 142.3, 133.4, 132.6, 128.4, 128.3, 127.7, 125.5, 125.5, 125.2, 121.7, 121.0, 76.4, 68.5, 42.7.

 $[\alpha]_{D}^{25} = +168.8 \ (c = 0.1, CH_2Cl_2).$

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): minor isomer: t_R = 7.5 min; major isomer: t_R = 8.3 min.

(*R*)-3-((6-bromobenzo[*d*]thiazol-2-yl)thio)-2-phenylpropane-1,2diol

Light-yellow solid. M.p. 150.6 °C. 616 mg, 78% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (d, J = 1.9 Hz, 1H), 7.65 – 7.51 (m, 3H), 7.48 – 7.30 (m, 4H), 5.17 (d, J = 2.6 Hz, 1H), 3.98 (dd, J = 20.0, 13.8 Hz, 2H), 3.86 – 3.75 (m, 2H), 3.64 (d, J = 6.9 Hz, 1H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 171.2, 152.9, 142.3, 134.0, 128.4, 127.8, 127.7, 125.5, 125.2, 124.0, 122.0, 121.7, 121.0, 120.1, 76.4, 68.5, 42.7.

IR (neat): 3529, 3089, 2911, 1497, 1446, 1409, 1246, 1202, 1071, 1050, 1024, 959, 858, 696, 569 cm⁻¹.

HRMS (ESI): m/z: [M+Na]⁺ (C₁₆H₁₄BrNNaO₂S₂), calcd.: 417.9542; found: 417.9548.

 $[\alpha]_D^{25} = +139.3$ (c = 0.1, CH_2Cl_2).

HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 210 nm): minor isomer: t_R = 7.8 min; major isomer: t_R = 8.8 min.

5. Computational section

The calculations were carried out using G09 D.01 program.⁶ M06-2X was selected for this investigation given the excellent performances of this functional reported for kinetics and thermodynamics of the main group and the noncovalent interactions (particularly π - π stacking of arenes).⁷ Our recent study pointed out that M06-2X-D3 is particularly suitable to produce kinetically relevant model for the chemistry of phosphine oxides vis-à-vis with experiments.⁸ Furthermore, M06-2X-D3 delivers better performances than M06-2X in describing weak interactions.⁹ Preliminary stationary points used as good guesses for higher level calculations have been located using multi-layer ONIOM¹⁰⁻¹⁶ (DFT:PM6) calculations. Guesses structures were firstly optimized at M06-2X-D3/DGDZVP¹⁷ level in gas phase and, secondly, the solvent correction was introduced during the single-point energy refinement at M06-2X-D3/DGTZVP/SMD¹⁸ (chloroform, ε = 4.7113). Single-point energy corrections have been calculated using an "ultrafine" (99 radial shells by 590 angular points) grid to avoid potential problems deriving from quadrature issues of the Minnesota functionals.¹⁹ Vibrational analysis was carried out to identify the nature of stationary points and to obtain ZPE, enthalpic (H) and free energy corrections (G) to the potential energy via statistical thermodynamics. ΔH , -T ΔS and ΔG have been calculated at 333K and 1M. GoodVibes v. 2.0.3²⁰ has been used to introduce the guasi-harmonic correction to the entropic term derived from low-frequency vibrations ($v < 100 \text{ cm}^{-1}$ cut off) via Grimme's RRHO corrections. Basis set superimposition error (BSSE) have been estimated at M06-2X-D3/DGTZVP level in gas phase for each stationary point using the counterpoise scheme implemented in G09 based on Boys and Bernardi method²¹⁻ ²²(the partition schemes for reactants, transition states and products are displayed in Fig. S1, S2 and S3) and added as a correction to the total single-point potential energy. For simplicity and clarity in the computational profiles, Van der Waals complexes found to be endergonic with respect to the reactants or the products separated at infinite distance have been removed from the profiles. CHIMERA v.1.13.1²³ and VMD v.1.9.3²⁴ have been used to visualize, render and generate all the graphical content included in the computational work via POV-Ray²⁵ and Tachyon²⁶ libraries, respectively.

Cartesian coordinates, vibrations and non-corrected values for energies

Benzo[d]thiazole-2-thiol

Center	Atomic	At	omic	Coordin	ates (Angstroms)
Number	Num	ber	Туре	Х	Y	Z
			 г 10742			
1	6	0	-5.19/43:	3 -5./32	2430	-0.074661
2	6	0	-3.80665	/ -5.925	5135	0.032468
3	6	0	-2.949692	2 -4.818	3007	0.017625
4	6	0	-3.49812	7 -3.548	3786	-0.103458
5	6	0	-4.887310	0 -3.368	3910	-0.210385
6	6	0	-5.752396	5 -4.457	7232	-0.197110
7	6	0	-4.42059	7 -8.034	1746	0.132690
8	1	0	-1.87906	7 -4.973	3913	0.100985
9	1	0	-2.845872	2 -2.681	1660	-0.115837
10	1	0	-5.29404	4 -2.36	7387	-0.305097
11	1	0	-6.82522	4 -4.31	6067	-0.279644
12	16	0	-4.3322	15 -9.78	84615	0.257634
13	1	0	-2.99158	80 -9.78	8737	0.307133
14	16	0	-6.0025	80 -7.27	79050	-0.027200
15	7	0	-3.39846	68 -7.24	9414	0.148947
Frequence	nio e	1011	200	100 01	070	101 01 07

Frequencies	104.1360	189.6270	191.910/
Frequencies	257.6143	292.9460	374.3202
Frequencies	387.7570	432.4147	511.7332
Frequencies	531.1037	599.6660	601.4862
Frequencies	659.7282	719.7802	741.3648
Frequencies	777.7204	876.0156	876.4382
Frequencies	917.5204	964.2259	1003.3537
Frequencies	1051.3082	1060.8864	1114.9294
Frequencies	1153.9121	1186.5066	1280.0095
Frequencies	1314.7471	1360.6119	1486.8536
Frequencies	1507.5366	1575.1762	1648.6841
Frequencies	1685.1011	2764.3400	3227.9745
Frequencies	3235.8498	3243.8381	3252.5495

SCF Done: E(RM062X/DGDZVP) = -1120.65058655 Sum of electronic and zero-point Energies= -1120.547701 Sum of electronic and thermal Energies= -1120.537731 Sum of electronic and thermal Free Energies= -1120.586309 SCF Done: E(RM062X/DGTZVP/SMD) = -1120.81574335

TS1Ha

Center	Ator	nic At	omic	Coord	inates	s (Angstroms)
Number	N	umber	Туре	Х	Y	Z
1	16	0	-1 473481	-3 78	7416	0 669706
2	6	0	-1.977063	-3.449	9680	-0.951264
3	16	0	-2.491276	-4.74	4429	-2.012884
4	7	0	-2.018660	-2.262	2290	-1.497572
5	6	0	-2.791159	-3.576	5982	-3.275803
6	6	0	-2.464242	-2.291	L791	-2.814314
7	6	0	-3.269671	-3.779	9701	-4.571262
8	6	0	-2.607366	-1.179	9170	-3.649944
9	6	0	-3.411917	-2.668	3770	-5.395015
10	1	0	-3.522388	-4.77	3110	-4.927289

11	6	0	-3.082940	-1.382141	-4.938229
12	1	0	-2.345041	-0.189776	-3.287181
13	1	0	-3.781682	-2.800622	-6.406438
14	1	0	-3.201416	-0.533714	-5.603998
15	1	0	-0.733582	-2.533570	0.795868
16	1	0	-1.956285	-1.022280	-0.773234
17	16	0	-1.895690	0.338794	-0.061592
18	6	0	-0.376256	-0.005234	0.689085
19	16	0	0.640687	1.305961	1.267513
20	7	0	0.120822	-1.198791	0.886286
21	6	0	1.809871	0.137629	1.825022
22	6	0	1.358788	-1.157850	1.516560
23	6	0	3.026980	0.345441	2.475586
24	6	0	2.136098	-2.271812	1.854706
25	6	0	3.789672	-0.768462	2.810632
26	1	0	3 371503	1 346882	2 712485
27	6	0	3 347195	-2 064609	2 501508
28	1	0	1 788526	-3 270414	1 606990
29	1	0	4 740681	-0.630899	3 314542
30	1	0	3 961783	-2 917171	2 771174
Frequen	cies	-877.5	730	12.5050	22.4898
Freque	ncies	30.63	378	49.6159	65.9400
Freque	ncies	103.7	174	106.6099	186.7690
Freque	ncies	192.5	403	196.3899	216.4836
Freque	ncies	285.8	666	297.6936	354.3899
Freque	ncies	383.4	696	389.6339	398.3790
Freque	ncies	410.0	559	429.8172	430.5120
Freque	ncies	511.9	237	512.9308	532.3886
Freque	ncies	537.3	675	599.1356	604.1531
Freque	ncies	611.9	578	615.9727	696.6839
Freque	ncies	707.8	178	725.1419	733.0035
Freque	ncies	739.9	246	742.1845	769.4200
Freque	ncies	773.9	651	842.5311	868.8566
Freque	ncies	869.1	053	881.7151	889.0184
Freque	ncies	956.7	807	957.9128	980.0724
Freque	ncies	996.8	577	1001.5645	1046.2482
Freque	ncies	1049.1	1485	1059.2169	1060.3222
Freque	ncies	1111.4	4573	1115.8374	1149.8279
Freque	ncies	1157.3	7927	1167.4540	1184.9782
Freque	ncies	1186	1485	1252 8510	1285 2786
Freque	ncies	1290 2	2932	1297 5739	1341 8349
Freque	ncies	1347	5923	1365,1360	1370 0329
Freque	ncies	1489 0	9900	1493 6516	1510 1384
Freque	ncies	1510 4	5733	1547 2346	1557 5746
Freque	ncies	1654	1143	1658 0178	1684 4211
Freque	ncies	1686	5783	3220 9730	3222 6524
Freque		2226 (2773	3220.3730	3735 7067
Eroquei		2720.3	7106	22/15 21/02	2252.2007
neque	10162	5233.	120	JZ4J.ZIU3	5255.2600

SCF Done: E(RM062X/DGDZVP) = -2241.31134437 Sum of electronic and zero-point Energies= -2241.109213 Sum of electronic and thermal Energies= -2241.088358 Sum of electronic and thermal Free Energies= -2241.166226 SCF Done: E(RM062X/DGTZVP/SMD) = -2241.64215807

Benzo[d]thiazole-2(3H)-thione

Center	Atomic	At	omic	Coordir	nates	(Angstroms)
Number	Numb	er	Туре	Х	Y	Z
1	16	0	-0.000084	0.000	000	-0.003844

2	6	0	0 002414	0 000000	1 639210
~	0	0	0.002+1+	0.000000	1.055210
3	16	0	1.441255	0.000000	2.662505
4	7	0	-1.097081	0.000000	2.449341
5	6	0	0.481924	0.000000	4.131178
6	6	0	-0.884822	0.000000	3.822530
7	6	0	0.906254	0.000000	5.457015
8	6	0	-1.851089	0.000000	4.826276
9	6	0	-0.056759	0.000000	6.464996
10	1	0	1.963937	0.000000	5.699337
11	6	0	-1.420521	0.000000	6.150531
12	1	0	-2.908322	0.000000	4.579951
13	1	0	0.257290	0.000000	7.503078
14	1	0	-2.155788	0.000000	6.948005
15	1	0	-2.016575	0.000000	2.019252

Frequencies	90.2679	188.0419	209.0542
Frequencies	281.7423	384.9194	403.5443
Frequencies	430.1006	504.7645	523.1969
Frequencies	555.3698	576.3708	621.9335
Frequencies	668.5946	723.5974	734.7883
Frequencies	761.3246	870.6349	883.2073
Frequencies	951.5913	992.0682	1055.2400
Frequencies	1074.2844	1115.1751	1161.3382
Frequencies	1180.2769	1254.2635	1295.5396
Frequencies	1315.8380	1368.1783	1460.3870
Frequencies	1517.8067	1536.7507	1673.0820
Frequencies	1688.7806	3228.2050	3240.9820
Frequencies	3244.5452	3257.8298	3597.0997

SCF Done: E(RM062X/DGDZVP) = -1120.66395890Sum of electronic and zero-point Energies=-1120.557749Sum of electronic and thermal Energies=-1120.548147Sum of electronic and thermal Free Energies=-1120.596096SCF Done: E(RM062X/DGTZVP/SMD) = -1120.83289725

TS1Hb

Center	Atomic	: At	omic	Coordinates	(Angstroms)
Number	Num	ber	Туре	X Y	Z
1	16	0	-1.972467	-2.043090	1.390312
2	6	0	-1.628666	-2.088370	-0.285707
3	16	0	-1.300976	-3.313174	-1.460024
4	7	0	-1.623344	-0.854746	-0.767183
5	6	0	-1.144772	-2.064266	-2.690865
6	6	0	-1.353520	-0.789697	-2.126458
7	6	0	-0.860768	-2.216943	-4.046712
8	6	0	-1.278171	0.354235	-2.925505
9	6	0	-0.787985	-1.071807	-4.834566
10	1	0	-0.701215	-3.200105	-4.477920
11	6	0	-0.995035	0.198847	-4.276682
12	1	0	-1.439805	1.332868	-2.486040
13	1	0	-0.568456	-1.166096	-5.892714
14	1	0	-0.934834	1.076291	-4.912100
15	1	0	-1.911863	-0.565860	0.541642
Frequenc	cies:	1791.	7319	96.6327	192.3924
Frequen	cies	231.5	5125	274.3485	392.1086
Frequen	cies	422.2	2681	427.5883	504.0108
Frequen	cies	513.4	1839	576.2388	643.0212
Frequen	cies	707.0)575	719.4309	736.6681
Frequen	cies	768.8	3068	863.4105	877.2180

960.5877

998.4210

Frequencies -- 904.9025

Frequencies	1056.3680	1080.8570	1143.8096
Frequencies	1159.0840	1182.7738	1290.7266
Frequencies	1316.7638	1364.6377	1466.7644
Frequencies	1502.6788	1513.3681	1653.8101
Frequencies	1682.0835	1747.0970	3228.4493
Frequencies	3241.8355	3249.2991	3257.4515

SCF Done: E(RM062X/DGDZVP) = -1120.59695302Sum of electronic and zero-point Energies=-1120.496832Sum of electronic and thermal Energies=-1120.487519Sum of electronic and thermal Free Energies=-1120.534950SCF Done: E(RM062X/DGTZVP/SMD) = -1120.76598765

(*R*)-3-(benzo[d]thiazol-2-ylthio)-2phenylpropane-1,2-diol ((*R*)-Product)

Center	Atom	ic At	tomic	Coordinates	(Angstroms)
Number	Nur	nber	Туре	X Y	Z
			 0 127702	0 160/07	0.049577
2	6	0	-0.137702	0.109497	1 454043
2	6	0	2 //8661	0.047498	1,454045
1	1	0	0.048046	1 059210	1.255020
5	1	0	-0.048040	-0.498300	1.86/997
6	6	0	1 222407	-0.438366	1.857707
7	8	0	1.222407	-0.714184	1 228583
2 2	1	0	-0.067433	-0.734033	-0 300271
Q	6	0	1 283306	-0.826834	3 372721
10	6	0	1 179643	-0.820834	4 001951
11	6	0	1.175045	0 322316	4.001551
12	6	0	1 221519	2 161106	5 202202
12	1	0	1.231318	2.101100	2 207570
17	6	0	1.055750	-2.900333	5.597579
14	1	0	1.470027	1 2083/7	3 687566
16	6	0	1 376833	-1 013816	6 170506
17	1	0	1 154747	-3.13/168	5 869/35
18	1	0	1.134747	1 132780	6 143676
19	1	0	1 416123	-1 087072	7 252951
20	1	0	2 235750	1.087695	1 115465
20	1	0	2.233730	-0 383504	0 237871
22	16	0	4 027536	0.046623	2 147091
22	6	0	4 408637	-1 648305	2 277567
23	16	0	5 849297	-2 094559	3 180661
25	7	0	3 725491	-2 630411	1 777491
26	6	0	5.491104	-3.769117	2.848139
27	6	0	4.311402	-3.853851	2.087382
28	6	0	6.191920	-4.912455	3.234661
29	6	0	3.813126	-5.104955	1.706976
30	6	0	5.686851	-6.149181	2.848309
31	1	0	7.102489	-4.842458	3.820733
32	6	0	4.506997	-6.243901	2.092353
33	1	0	2.901945	-5.164285	1.119420
34	1	0	6.214055	-7.052529	3.136986
35	1	0	4.134579	-7.221376	1.803956
36	1	0	1.936227	-2.418282	1.252864
Froquer	sion	11 10	220	20 0224	10 2260
Eroquon	cios	68.6	202	29.0524	49.2209
Frequen	cies	116	1788	141 2212	1/12 6/60
Frequen	cies	100.4	5215	199 1509	255 5022
Frequen	cies	28/1	5231	301 4874	233.3333
Frequen	cies	204.	1714	366 6704	383 0561
Frequen	cies	412	4321	414 6108	431 1679
Frequen	cies	456.2	2651	491.7236	512.7939

Frequencies	522.6731	531.3491	579.7863
Frequencies	599.5083	611.1904	628.1193
Frequencies	631.5738	698.4652	703.0788
Frequencies	714.6379	723.1534	726.9346
Frequencies	741.3095	773.9987	778.0558
Frequencies	818.3065	867.3160	872.4377
Frequencies	874.2167	883.8157	942.7161
Frequencies	955.7006	960.0461	996.6329
Frequencies	997.6510	1001.8410	1012.9175
Frequencies	1024.6269	1042.2414	1057.5915
Frequencies	1069.3870	1104.5157	1110.7913
Frequencies	1112.8711	1126.3255	1157.0529
Frequencies	1160.6458	1176.6521	1184.7379
Frequencies	1204.7347	1212.5312	1249.4947
Frequencies	1282.5411	1302.7544	1315.8339
Frequencies	1327.2899	1339.9790	1361.7935
Frequencies	1362.9560	1377.8497	1436.3385
Frequencies	1458.3976	1459.7340	1490.5292
Frequencies	1493.0060	1507.6419	1513.3575
Frequencies	1543.9612	1559.4381	1651.6138
Frequencies	1674.9336	1685.3041	1698.1197
Frequencies	3087.0660	3108.2393	3170.3140
Frequencies	3184.9543	3202.3310	3218.0584
Frequencies	3222.9988	3225.0828	3231.5270
Frequencies	3234.6647	3239.4312	3243.1136
Frequencies	3246.7554	3542.8085	3800.5642

SCF Done: E(RM062X/DGDZVP) = -1619.92929868						
Sum of electronic and zero-point Energies=	-1619.646631					
Sum of electronic and thermal Energies=	-1619.624138					
Sum of electronic and thermal Free Energies=	-1619.703320					
SCF Done: E(RM062X/DGTZVP/SMD) = -1620.21479048						

(S)-3-(benzo[d]thiazol-2-ylthio)-2phenylpropane-1,2-diol ((S)-Product)

Center	Atomic	A	tomic	Coordinates	s (Angstroms)
Number	Num	ber	Туре	X Y	Z
1	8	0	0.007381	0.028286	0.004492
2	6	0	0.009477	-0.051927	2.894252
3	6	0	1.228962	0.003596	0.711640
4	1	0	-0.981012	-0.194152	2.456241
5	6	0	1.079042	-0.761597	2.040469
6	1	0	1.524925	1.040752	0.884901
7	1	0	2.018910	-0.492624	0.133100
8	8	0	0.647797	-2.054078	1.647136
9	1	0	-0.264932	-0.900905	-0.076841
10	6	0	2.425725	-0.808287	2.745840
11	6	0	3.088937	-2.021542	2.929969
12	6	0	3.026058	0.370510	3.205687
13	6	0	4.326882	-2.057755	3.573729
14	1	0	2.625835	-2.931477	2.564016
15	6	0	4.262083	0.335269	3.846826
16	1	0	2.530429	1.329907	3.071217
17	6	0	4.917009	-0.882741	4.034717
18	1	0	4.830592	-3.009402	3.714400
19	1	0	4.712156	1.257484	4.201442
20	1	0	5.879246	-0.913706	4.536426
21	1	0	0.208181	1.022677	2.917505
22	16	0	-0.058813	-0.492491	4.667163
23	6	0	-1.069012	-1.917622	4.639415
24	16	0	-1.829312	-2.426180	6.138192
25	7	0	-1.309442	-2.655923	3.601693
26	6	0	-2.528344	-3.774347	5.279427

27	6	0	-2.145414	-3.719390	3.926971
28	6	0	-3.350859	-4.792721	5.763560
29	6	0	-2.594976	-4.698023	3.033159
30	6	0	-3.791218	-5.757490	4.864476
31	1	0	-3.641797	-4.831206	6.808248
32	6	0	-3.416121	-5.709450	3.511522
33	1	0	-2.295100	-4.650930	1.991108
34	1	0	-4.434373	-6.557920	5.215140
35	1	0	-3.773960	-6.475257	2.831243
36	1	0	-0.031946	-2.389801	2.270611
Frequen	cies	7.37	93	26.6969	44.4741
Frequer	ncies	58.4	343	79.5700	104.0162
Frequer	ncies	127.1	L108	142.1247	184.0885
Frequer	ncies	190.7	7003	207.1183	242.6401
Frequer	ncies	289.3	3714	297.5904	332.8236
Frequer	ncies	349.3	3119	364.9423	380.4041
Frequer	ncies	410.7	7551	414.0055	434.0302
Frequer	ncies	457.2	2284	490.3359	512.6722
Frequer	ncies	515.5	5604	531.2132	580.9667
Frequer	ncies	595.8	3564	612.2785	624.9165
Frequer	ncies	629.1	L138	659.2603	700.3386
Frequer	ncies	714.8	3316	719.7310	724.1803
Frequer	ncies	741.8	3447	775.7372	778.9930
Frequer	ncies	808.3	3213	871.0917	875.8713
Frequer	ncies	877.5	5223	887.4267	940.6716
Frequer	ncies	954.2	L881	964.5050	999.9646
Frequer	ncies	1000.	3282	1007.2379	1016.1054
Frequer	ncies	1026.	8347	1038.2963	1056.8233
Frequer	ncies	1070.	9474	1107.0287	1110.7151
Frequer	ncies	1120.	8695	1131.5375	1158.7500
Frequer	ncies	1169.	6011	1177.0084	1184.7394
Frequer	ncies	1207.	4729	1212.5091	1253.1698
Frequer	ncies	1282.	9883	1306.8909	1318.1476
Frequer	ncies	1325.	8941	1342.7872	1363.7224
Frequer	ncies	1364.	7489	1384.1251	1439.8099
Frequer	ncies	1458.	8594	1462.8623	1489.1134
Frequer	ncies	1492.	2632	1510.1182	1513.2463
Frequer	ncies	1546.	8266	1560.0568	1652.0152
Frequer	ncies	1675.	2617	1686.7621	1699.6260
Frequer	ncies	3079.	9400	3114.3386	3171.2100
Frequer	ncies	3189	4115	3202.3302	3215,9925
Frequer	ncies	3224	8059	3228 5957	3236 5053
Frequer	ncies	3238	1836	3246 0368	3250.2693
Frequer		3250	4507	3546 0167	2790 1303
ricquei	icics .=	5250.	-507	5540.0107	5750.1505

SCF Done: E(RM062X/DGDZVP) = -1619.92907204Sum of electronic and zero-point Energies=-1619.646255Sum of electronic and thermal Energies=-1619.623754Sum of electronic and thermal Free Energies=-1619.703735SCF Done: E(RM062X/DGTZVP/SMD) = -1620.21547081

3-Phenyloxetan-3-ol

Center	Ato	omic At	omic	Coordinate	s (Angstroms)
Number	Ν	lumber	Туре	X Y	Z
1	8	0	0.137658	-1.198681	-0.829289
2	6	0	0.643784	-2.316164	-0.076728
3	6	0	0.627681	-1.756377	-2.062601
4	1	0	1.565488	-2.057008	0.460875
5	1	0	-0.098332	-2.716187	0.618987
6	6	0	0.908929	-3.116080	-1.375785
7	8	0	2.191843	-3.665920	-1.540846

8	1	0	2.850772	-2.983051	-1.346468
9	1	0	1.542429	-1.250796	-2.399142
10	1	0	-0.127271	-1.737493	-2.853028
11	6	0	-0.121405	-4.180875	-1.668324
12	6	0	-1.482843	-3.869581	-1.560073
13	6	0	0.258507	-5.469243	-2.045596
14	6	0	-2.449224	-4.835522	-1.825640
15	1	0	-1.787414	-2.865784	-1.267276
16	6	0	-0.713272	-6.436024	-2.311607
17	1	0	1.312669	-5.708626	-2.128060
18	6	0	-2.066496	-6.124414	-2.202785
19	1	0	-3.501660	-4.583345	-1.738465
20	1	0	-0.408402	-7.436311	-2.604027
21	1	0	-2.819737	-6.878855	-2.407977

Frequencies	53.1801	117.8919	140.2864
Frequencies	232.9607	309.8066	324.8309
Frequencies	342.7273	410.6848	413.7259
Frequencies	416.4638	522.9715	559.2501
Frequencies	628.6483	700.1318	718.0760
Frequencies	777.9285	803.7395	875.2143
Frequencies	921.3744	948.5266	965.0766
Frequencies	1005.3082	1015.2464	1019.6501
Frequencies	1043.8363	1064.9114	1087.4103
Frequencies	1090.0886	1098.6886	1117.9587
Frequencies	1154.2205	1178.9953	1182.4369
Frequencies	1210.6908	1217.0152	1263.9193
Frequencies	1298.0914	1342.7895	1368.1090
Frequencies	1389.4218	1422.9881	1499.0289
Frequencies	1526.5169	1548.2840	1555.3147
Frequencies	1678.5990	1700.9109	3062.7541
Frequencies	3072.4638	3158.3777	3164.8192
Frequencies	3194.7523	3216.8129	3224.3511
Frequencies	3240.2954	3250.9207	3833.2432

SCF Done: E(RM062X/DGDZVP) = -499.212120525Sum of electronic and zero-point Energies=-499.037424Sum of electronic and thermal Energies=-499.026165Sum of electronic and thermal Free Energies=-499.077392SCF Done: E(RM062X/DGTZVP/SMD) = -499.335004990

Cat a

Center	Ator	nic At	omic	Coordinates	s (Angstroms)
Number	Νι	umber	Туре	X Y	Z
1	15	0	-0.266770	-0.212339	0.299723
2	8	0	-0.205384	-0.083627	1.908538
3	8	0	1.276424	-0.130695	-0.147704
4	8	0	-0.715947	1.211554	-0.243746
5	8	0	-1.046064	-1.383866	-0.099364
6	6	0	0.408371	1.036608	2.461450
7	6	0	2.048358	-1.224112	0.254419
8	6	0	1.781666	1.039539	2.652848
9	6	0	-0.379547	2.143945	2.803408
10	6	0	2.656003	-1.197117	1.500289
11	6	0	2.154724	-2.333480	-0.591821
12	6	0	2.803792	-0.070968	2.503877
13	6	0	2.404543	2.210316	3.098257
14	6	0	0.264016	3.277777	3.311032
15	6	0	3.297667	-2.347818	1.968791
16	6	0	2.861625	-3.446473	-0.122211
17	6	0	2.964324	-0.888247	3.817322
18	6	0	4.087826	0.766411	2.240402

19	6	0	3.906690	2.030816	3.101398
20	6	0	1.653280	3.329658	3.436390
21	6	0	3.756340	-2.141370	3.395960
22	6	0	3.409108	-3.473666	1.161402
23	1	0	2.949880	-4.311450	-0.774069
24	1	0	3.448304	-0.310452	4.609948
25	1	0	1.969287	-1.184265	4.166655
26	1	0	5.000053	0.207662	2.467485
27	1	0	4.110430	1.044262	1.181183
28	1	0	4.278058	1.878871	4.121166
29	1	0	4.837201	-1.965376	3.436349
30	1	0	3.908136	-4.368863	1.522232
31	1	0	2.135750	4.237257	3.788477
32	1	0	3.542489	-3.007171	4.027472
33	1	0	4.426954	2.899800	2.690985
34	6	0	1.568892	-2.325261	-1.962687
35	6	0	0.499732	-3.183239	-2.282229
36	6	0	2.127497	-1.480784	-2.943562
37	6	0	-0.140522	-4.012716	-1.302599
38	6	0	-0.000854	-3.216869	-3.627595
39	6	0	1.606485	-1.509560	-4.280870
40	6	0	3.221080	-0.594021	-2.668839
41	6	0	-1.16/584	-4.841591	-1.648575
42	1	0	0.178099	-3.946227	-0.267940
43	6	0	-1.0/82/6	-4.103775	-3.951602
44	6	0	0.562093	-2.381645	-4.593498
45	6	0	2.1//284	-0.649670	-5.274255
46	1 C	0	3.644290	-0.568423	-1.669522
47	6	0	3./40441	0.210341	-3.642664
48	1	0	1 640652	-4.898302	-2.996058
49 E0	1	0	1 440775	-3.446330	-0.000373
50	1	0	-1.440773	-4.124200	-4.970113 5 611202
52	6	0	2 200825	0 107060	1 069/21
52	1	0	1 768/177	-0.682180	-6.280972
54	1	0	1.708477	0.873368	-3.410579
55	1	0	-2 459440	-5 564124	-3.249660
56	1	0	3 635042	0.836462	-5 728189
57	1	0	-0 342276	4 137442	3 583871
58	6	0	-1 862566	2 106130	2 653239
59	6	0	-2.503882	2.948136	1.721817
60	6	0	-2.619716	1.234506	3.463430
61	6	0	-1.777315	3.821226	0.841521
62	6	0	-3.936431	2.918499	1.607814
63	6	0	-4.048712	1.202615	3.329981
64	6	0	-2.017704	0.373603	4.439748
65	6	0	-2.429868	4.617034	-0.056846
66	1	0	-0.692879	3.821610	0.877030
67	6	0	-4.582296	3.775605	0.658133
68	6	0	-4.673698	2.045931	2.410303
69	6	0	-4.810794	0.307321	4.148474
70	1	0	-0.941028	0.396928	4.573424
71	6	0	-2.777042	-0.464367	5.204238
72	6	0	-3.856464	4.603944	-0.146714
73	1	0	-1.858683	5.260016	-0.719360
74	1	0	-5.666611	3.745558	0.590347
75	1	0	-5.757436	2.021093	2.314612
/6	6	0	-4.197058	-0.505090	5.055500
//	1	0	-5.890882	0.291069	4.029031
/8	1	U	-2.299915	-1.108/94	5.936058
/9	1	U	-4.354/43	5.246844	-0.8055/8
8U 01	⊥ 1	U	-4./82529	1 274015	5.0/U2/8
01	1	0	-1.0/202/	1.2/4015	-0.400000
Frequen	cies	17.2	797	18.6374	26.9829

Frequencies	31.1196	34.6001	45.8512
Frequencies	55.4137	79.1476	84.6839
Frequencies	91.1969	98.0679	105.4735
Frequencies	122.2634	128.6238	138.8232
Frequencies	140.0306	151.4566	176.2440
Frequencies	176.8859	184.8938	197.3522
Frequencies	206.0175	225.0428	230.3841
Frequencies	234.4971	235.4947	249.8301
Frequencies	271.5364	290.9841	292.4331
Frequencies	295.8339	315.1145	329.0085
Frequencies	340.8255	357.0824	363.7999
Frequencies	368.0488	377.2281	390.4262
Frequencies	401.5205	402.2687	414.9394
Frequencies	419.4050	423.0265	425.7213
Frequencies	433.4373	473.8577	482.8759
Frequencies	487.8742	494.4587	497.5971
Frequencies	497.7551	516.5549	524.8932
Frequencies	539.8712	547.2890	554.7937
Frequencies	559.3417	560.7609	569.2127
Frequencies	571.1492	605.9515	608.4595
Frequencies	615.6467	620.8618	623.2840
Frequencies	639.8284	648,7340	649.4679
Frequencies	650.3158	657.7776	662.8051
Frequencies	675.2406	688,7008	705.6030
Frequencies	707.3900	732,9997	748.4554
Frequencies	753.9718	754,7425	756.4660
Frequencies	757.5740	771.0109	778.6942
Frequencies	795.2747	797.1568	808.8854
Frequencies	809 5219	824 5988	833 2283
Frequencies	842 6399	845 6957	847 0200
Frequencies	866 1721	869 6048	870 7232
Frequencies	870 8389	877 1128	880 1008
Frequencies	881 0554	887 4461	902 8653
Frequencies	921 5627	921 9452	939 3238
Frequencies	939 8103	943 0637	947 6921
Frequencies	955 4509	971 6029	972 7482
Frequencies	982 8719	984 6692	989 8165
Frequencies	991.0666	993 6883	994 4009
Frequencies	1000 4959	1000 7867	1004 6221
Frequencies	1005 7542	1014 4957	1020 8784
Frequencies	1035 3713	1045 0489	1045 5161
Frequencies	1047 3483	1047 5504	1049 1324
Frequencies	1061 2444	1081 0801	1092 4476
Frequencies	1103 2493	1139 1704	1140 3618
Frequencies	1159 1298	1159 4924	1164 6924
Frequencies	1168 6164	1178 3829	1186 4150
Frequencies	1193 0399	1198 0830	1203 2723
Frequencies	1206 5601	1207 1698	1207 5317
Frequencies	1210 6692	1220 1341	1251 2436
Frequencies	1252 9871	1253 4608	1257 2441
Frequencies	1259 2153	1268 0727	1279 3609
Frequencies	1295.2133	1296 3742	1304 4706
Frequencies	1316 4070	1321 4690	1321 9581
Frequencies	1324 9162	13// 1507	13/7 900/
Frequencies	13/8 6212	1351 8509	1357 4634
Frequencies	1362 3925	1371 2531	1/09 6532
Frequencies	1412 7543	1413 2735	1415 2051
Frequencies	1442 7563	1443 1757	1482 6660
Frequencies	1483 /03/	1486 / 8//	1489 2072
Frequencies	1420 0071	1/02 NEEE	1/02 2//0
Frequencies	1499 7011	1500 /7/2	1504 7424
Frequencies	1512 2202	1518 0510	1570 //52
Frequencies	1521 2700	1550.0310	1555 0322
Frequencies	1602 1020	1604 2682	1648 9586
Frequencies	1650 2780	1657 2525	1659 17/5
Frequencies	1661 9151	1665 4060	1706 2256
······································	10010101	1000.4000	1,00.2200

Frequencies	1711.6739	1713.0722	1714.4358
Frequencies	1718.0701	1719.6582	3076.1116
Frequencies	3077.4972	3084.0342	3091.6913
Frequencies	3140.5574	3145.1610	3155.9108
Frequencies	3160.2232	3193.5982	3200.0272
Frequencies	3204.2979	3205.6318	3206.8308
Frequencies	3209.7512	3209.8432	3210.7514
Frequencies	3214.7164	3218.3407	3219.5089
Frequencies	3223.0951	3223.5955	3227.3226
Frequencies	3230.5413	3232.3320	3233.0831
Frequencies	3234.4238	3236.1983	3241.8853
Frequencies	3243.0049	3247.4516	3803.0299

SCF Done:E(RM062X/DGDZVP) =-2375.13878930Sum of electronic and zero-point Energies=-2374.494913Sum of electronic and thermal Energies=-2374.448765Sum of electronic and thermal Free Energies=-2374.576069SCF Done:E(RM062X/DGTZVP/SMD) =-2375.67807820

Cat a I0_1

Center	Ator	nic At	omic	Coordinate	s (Angstroms)
Number	Nu	umber	Туре	X Y	Z
1	15	0	-0.167938	-0.020550	0.097086
2	8	0	-0.080758	0.012287	1.698012
3	8	0	1.373657	-0.036155	-0.385163
4	6	0	0.586379	1.087547	2.284045
5	8	0	-0.964151	-1.178396	-0.351347
6	8	0	-0.610085	1.404779	-0.347686
7	6	0	2.100202	-1.172870	-0.038591
8	6	0	1.961823	1.025555	2.442435
9	6	0	-0.154142	2.210507	2.675248
10	6	0	2.731330	-1.208124	1.195791
11	6	0	2.144671	-2.258249	-0.921822
12	6	0	2.936568	-0.119527	2.233900
13	6	0	2.638180	2.155809	2.914081
14	6	0	0.544389	3.301028	3.203114
15	6	0	-1.640558	2.215366	2.551185
16	6	0	3.339412	-2.394970	1.614818
17	6	0	2.822862	-3.409312	-0.501455
18	6	0	1.517501	-2.198838	-2.273957
19	6	0	4.247528	0.677978	1.975483
20	6	0	3.089529	-0.987095	3.515864
21	6	0	4.131588	1.916490	2.884098
22	6	0	1.937671	3.292295	3.300819
23	1	0	-0.020961	4.175411	3.514226
24	6	0	-2.278250	3.066589	1.628310
25	6	0	-2.399010	1.343043	3.359034
26	6	0	3.829785	-2.251947	3.039141
27	6	0	3.396471	-3.496193	0.767894
28	1	0	2.868236	-4.257117	-1.179723
29	6	0	0.470987	-3.083117	-2.605168
30	6	0	2.012174	-1.289833	-3.235476
31	1	0	5.141991	0.077910	2.165470
32	1	0	4.261947	0.992678	0.926433
33	1	0	3.605832	-0.453002	4.318553
34	1	0	2.090435	-1.259948	3.872530
35	1	0	4.681272	2.778177	2.497253
36	1	0	4.511973	1.710929	3.891181
37	1	0	2.463416	4.168582	3.670044
38	6	0	-1.549557	3.945482	0.758041
39	6	0	-3.709279	3.036193	1.509464
40	6	0	-1.798647	0.472349	4.327906
41	6	0	-3.827974	1.316679	3.227610

3.597341 -3.130595 3.645755

4.916631 -2.114341 3.064684 3.872602 -4.418812 1.088230

-0.125860 -3.967030 -1.644058

-0.053063 -3.094547 -3.943364

3.075687 -0.369243 -2.955503

1.442115 -1.273209 -4.553906

-2.197115 4.741799 -0.141853

-0.465431 3.944163 0.798426

-4.449578 2.161977 2.307082

-4.352034 3.889640 0.554014

-2.559351 -0.366809 5.090229

-0.721335 0.490693 4.459595

-4.591643 0.420687 4.043813

-1.110989 -4.838448 -2.011135

0.193123 -3.912401 -0.608435

0.434214 -2.183594 -4.881701

-1.072439 -4.038357 -4.292195

3.508464 0.519255 -3.897975 3.544069 -0.382915 -1.976701

1.920534 -0.323900 -5.513906

-3.622955 4.719972 -0.245436

-3.820404 0.174158 -5.149493

-4.036932 -2.188493 -4.711413

-2.058467 -1.898227 -1.648796

-4.543900 0.027442 -6.330163

-3.454061 1.159281 -4.862543

-4.760134 -2.334815 -5.896612

-3.831868 -3.038203 -4.068604

-5.014706 -1.231400 -6.709043

-4.741024 0.893372 -6.954936

-5.127892 -3.315455 -6.184461

-5.577457 -1.347909 -7.630257

21.2552

35.5763

58.2085

0 -1.161411 1.430208 -1.215094

18.9454

34.5037

52.1634

Frequencies -- 9.5389

 Frequencies - 29.6134

 Frequencies - 39.7977

1	0	-1.624164	5.388151	-0.799556	Frequencies
1	0	-5.533082	2.136717	2.207168	Frequencies
1	0	-5.435896	3.855665	0.478584	Frequencies
6	0	-3.979899	-0.399579	4.945497	Frequencies
1	0	-2.083118	-1.016911	5.817723	Frequencies
1	0	-5.672215	0.410104	3.927196	Frequencies
6	0	-1.576060	-4.895837	-3.360772	Frequencies
1	0	-1.559297	-5.487848	-1.265491	Frequencies
1	0	0.016012	-2.179463	-5.886871	Frequencies
1	0	-1.441962	-4.043029	-5.314625	Frequencies
6	0	2.917936	0.551935	-5.197580	Frequencies
1	0	4.312448	1.208942	-3.660205	Frequencies
1	0	1.470078	-0.319640	-6.503385	Frequencies
1	0	-4.118150	5.360064	-0.969147	Frequencies
1	0	-4.567293	-1.075776	5.558749	Frequencies
1	0	-2.352570	-5.605672	-3.630021	Frequencies
1	0	3.273443	1.268655	-5.931341	Frequencies
8	0	-1.982811	1.159521	-2.472679	Frequencies
6	0	-3.195119	0.414358	-2.157598	Frequencies
6	0	-1.446066	0.048153	-3.253850	Frequencies
6	0	-2.756273	-0.765895	-3.064704	Frequencies
1	0	-3.228294	0.148086	-1.096271	Frequencies
1	0	-4.081950	0.977835	-2.454009	Frequencies
1	0	-1.200981	0.374039	-4.266963	Frequencies
1	0	-0.572789	-0.402086	-2.770315	Frequencies
6	0	-3.560131	-0.932780	-4.333190	Frequencies
8	0	-2.643124	-1.999307	-2.428487	Frequencies

Frequencies	61.4754	70.9651	76.5223
Frequencies	81.4427	85.1005	93.8216
Frequencies	100.1702	104.5680	110.2234
Frequencies	120.2570	127.3986	135.8356
Frequencies	141.8057	148.3270	153.7387
Frequencies	172.6106	180.4064	181.2176
Frequencies	190.5951	198.2905	221.6034
Frequencies	229.3779	232.1071	236.6821
Frequencies	241.8748	252.5578	274.8007
Frequencies	289.2293	291.7385	294.4843
Frequencies	296.1676	318.3300	331.4455
Frequencies	336.7802	338.7773	359.8981
Frequencies	363.7300	367.5401	376.2329
Frequencies	381.9502	389.5873	402.2467
Frequencies	402.6394	414.9935	417.1529
Frequencies	421.5063	423.6669	424.2948
Frequencies	431.2422	437.2453	441.9471
Frequencies	474.5468	484.7386	485.1725
Frequencies	495.9337	497.4306	502.0881
Frequencies	517.2713	526.4251	529.2856
Frequencies	539.7820	547.4317	554.51/5
Frequencies	559.1704	560.8963	563.9671
Frequencies	568.2392	570.1834	593.6620
Frequencies	605.4558	607.9697	615.2002
Frequencies	620.9389	623.1878	627.8079
Frequencies	639.3576	648.4667	648.8709
Frequencies	650.1274	657.5237	662.7647
Frequencies	675.2206	688.5203	703.8424
Frequencies	706.8561	707.0925	719.4828
Frequencies	753.3411	749.1575	751.9995 766 6143
Frequencies	755.4905	754.3007	750.5143
Frequencies	772.4252	775.0033	775.4142
Frequencies	793.3903 909 4147	210 C2C7	007.7172
Frequencies	824 6250	Q11 2451	844.0008
Frequencies	853 / 819	865 7377	868 1303
Frequencies	869 8578	803.7377	874 1104
Frequencies	875 7196	879 3476	880 8969
Frequencies	888 9133	909 7676	915 3319
Frequencies	916 5358	920.0635	938 9004
Frequencies	939 5823	942 7430	944 0511
Frequencies	951.7471	952.9773	971.9648
Frequencies	975.7025	977.4554	985.2695
Frequencies	987.5664	987.6971	988.7604
Frequencies	991.2567	993.8155	1000.4172
Frequencies	1000.7511	1003.4033	1003.9397
Frequencies	1003.9614	1007.0316	1009.8133
Frequencies	1014.3147	1019.6283	1020.1366
Frequencies	1037.1540	1042.6964	1045.9372
Frequencies	1047.0557	1047.5151	1048.3831
Frequencies	1060.6314	1063.0866	1067.4524
Frequencies	1080.6115	1083.1498	1088.5012
Frequencies	1093.5377	1103.7436	1113.1222
Frequencies	1139.0993	1139.7367	1158.7979
Frequencies	1159.0603	1165.5220	1170.0105
Frequencies	1173.0025	1177.7132	1181.6085
Frequencies	1185.5017	1192.4194	1198.7963
Frequencies	1204.1521	1204.3418	1206.3371
Frequencies	1207.3051	1208.3575	1208.4363
Frequencies	1211.0745	1220.2705	1240.4438
Frequencies	1251.1225	1253.0014	1254.0293
Frequencies	1257.9041	1260.0264	1268.6192
Frequencies	1279.2232	1284.8242	1295.1203
Frequencies	1296.1337	1299.3776	1305.1617
Frequencies	1314.4940	1316.7907	1320.7975

Frequencies -- 1321.1714 1325.6535

1335.7305

Frequencies	1344.6744	1344.8648	1347.9544
Frequencies	1348.4927	1351.0762	1362.4273
Frequencies	1365.9352	1370.4499	1391.2632
Frequencies	1408.8217	1412.4243	1412.5822
Frequencies	1413.9985	1440.1692	1443.9033
Frequencies	1471.9635	1482.7263	1483.6486
Frequencies	1485.6328	1488.8134	1489.9031
Frequencies	1492.6766	1498.3690	1498.7160
Frequencies	1500.3676	1500.6415	1504.4685
Frequencies	1510.8894	1511.6042	1517.6507
Frequencies	1529.7025	1531.1945	1532.4228
Frequencies	1549.6504	1551.2513	1554.0514
Frequencies	1601.5401	1603.2427	1646.2605
Frequencies	1649.8555	1654.7495	1658.1547
Frequencies	1660.9614	1664.9519	1676.3810
Frequencies	1700.7930	1705.7929	1711.7151
Frequencies	1712.8807	1714.6821	1718.1492
Frequencies	1718.2602	2687.7483	3077.7720
Frequencies	3079.6166	3085.4366	3091.4218
Frequencies	3109.7294	3116.8666	3141.8112
Frequencies	3148.0339	3158.0454	3161.2295
Frequencies	3183.1854	3189.7243	3192.6622
Frequencies	3194.8214	3197.7361	3201.5269
Frequencies	3202.8802	3207.5707	3208.3729
Frequencies	3208.5408	3209.6629	3209.8256
Frequencies	3216.4462	3217.7717	3217.9127
Frequencies	3221.8387	3222.0628	3224.1469
Frequencies	3228.4532	3230.7213	3231.3116
Frequencies	3232.1358	3233.7670	3234.5883
Frequencies	3240.9200	3241.9417	3242.8146
Frequencies	3245.3835	3250.3741	3649.4400

SCF Done: E(RM062X/DGDZVP) = -2874.40395778Sum of electronic and zero-point Energies=-2873.583004Sum of electronic and thermal Energies=-2873.524884Sum of electronic and thermal Free Energies=-2873.678420SCF Done: E(RM062X/DGTZVP/SMD) = -2875.05444715

Cat a I0_2

Center	Atomic	A	tomic	Coordinates	s (Angstroms)
Number	Num	ber	Туре	X Y	Z
1	15	0	-0.250624	-0.048558	0.273059
2	8	0	-0.046887	-0.002601	1.862649
3	8	0	1.245970	0.064787	-0.324646
4	8	0	-0.845221	1.331828	-0.131597
5	8	0	-0.976358	-1.272712	-0.114785
6	6	0	0.574862	1.120140	2.407590
7	6	0	2.091634	-1.006401	-0.046045
8	6	0	1.959058	1.158257	2.475925
9	6	0	-0.217854	2.188666	2.846442
10	6	0	2.812442	-0.996766	1.139914
11	6	0	2.163064	-2.078571	-0.943627
12	6	0	3.001368	0.094252	2.179945
13	6	0	2.580844	2.331000	2.918121
14	6	0	0.433544	3.319884	3.349341
15	6	0	3.551188	-2.129585	1.495355
16	6	0	2.973495	-3.166066	-0.593171
17	6	0	3.312364	-0.771907	3.433280
18	6	0	4.224824	0.993957	1.842474
19	6	0	4.082130	2.207696	2.779870
20	6	0	1.826742	3.408558	3.367406
21	1	0	-0.172112	4.152179	3.697913
22	6	0	4.124011	-1.962220	2.885965

~ ~	6	~	0.040500	0.040000	
23	6	0	3.646522	-3.212008	0.628008
24	1	0	3.038596	-4.002533	-1.283719
25	1	0	3.833819	-0.206172	4.210574
26	1	0	2.366028	-1.133970	3.849106
27	1	0	5.173829	0.462292	1.954392
28	1	0	4.136980	1.322898	0.801386
29	1	0	4 548571	2 020110	3 753518
20	1	0	5 10/271	1 721296	2 9/1700
21	1	0	1 45 6 2 0 7	-1.751280	2.841733
31	1	0	-1.456287	1.315401	-0.959328
32	8	0	-2.334424	0.991548	-2.159568
33	6	0	-1.758644	-0.077588	-2.970855
34	6	0	-2.984208	-0.993919	-2.703047
35	1	0	-1.600962	0.261520	-3.996892
36	1	0	-0.824043	-0.450184	-2.540271
37	8	0	-2 733750	-2 207089	-2 066496
38	6	0	-3 /68128	0 157221	-1 780537
20	c	0	2 044450	1 220672	2 020802
39	0	0	-3.844438	-1.239672	-3.920803
40	1	0	-2.101911	-2.055991	-1.332385
41	1	0	-3.431571	-0.099748	-0.716961
42	1	0	-4.408870	0.647578	-2.038902
43	6	0	-4.273359	-2.528414	-4.240768
44	6	0	-4.212330	-0.170257	-4.746316
45	6	0	-5 053486	-2 744592	-5 378175
46	1	0	-3 990755	-3 350032	-3 591251
40	6	0	1 001/22	0.396032	5 970740
47	1	0	-4.991425	-0.360937	-3.879740
48	1	0	-3.888401	0.841076	-4.502836
49	6	0	-5.412573	-1.6/8/88	-6.201460
50	1	0	-5.383566	-3.750757	-5.619832
51	1	0	-5.269731	0.450752	-6.512026
52	1	0	-6.018604	-1.850599	-7.085846
53	1	0	4.534884	3.114021	2.370432
54	1	0	2 310222	4 316632	3 717044
55	1	0	1 009732	-2 865668	3 /90082
55	1	0	4.005752	4.000626	0.909142
50	1 C	0	4.225090	-4.090020	0.898145
57	6	0	-1./05/26	2.11//42	2.768713
58	6	0	-2.402578	1.194006	3.5/3033
59	6	0	-2.405418	2.957735	1.879450
60	6	0	-1.737762	0.328684	4.503729
61	6	0	-3.832055	1.105106	3.476155
62	6	0	-3.835654	2.864801	1.795186
63	6	0	-1.740219	3.879699	1.003468
64	6	0	-2 439641	-0 562190	5 264009
65	1	0	0.659973	0.202150	4 606126
05	L C	0	4 5 3 2 0 0	0.392132	4.000120
00	0	0	-4.532699	0.156046	4.288362
67	6	0	-4.515020	1.941625	2.591841
68	6	0	-4.541288	3.705297	0.873143
69	1	0	-0.656480	3.924486	1.011530
70	6	0	-2.445650	4.660806	0.134071
71	6	0	-3.861048	-0.656283	5.154088
72	1	0	-1.915238	-1.207649	5.961905
73	1	0	-5 614325	0 098089	4 198064
74	1	0	-5 598602	1 869376	2 518658
75	r C	0	2.950002	4.570975	2.910050
75	1	0	-3.6/133/	4.379673	0.008903
76	1	0	-5.624278	3.624495	0.825841
//	1	0	-1.9191//	5.339918	-0.529508
78	1	0	-4.400721	-1.374200	5.763806
79	1	0	-4.414036	5.208931	-0.629889
80	6	0	1.408933	-2.090469	-2.231276
81	6	0	0.417672	-3.070531	-2.445666
82	6	0	1.719815	-1.160752	-3.246665
83	6	0	-0.010950	-3.971368	-1.413697
84	6	ñ	-0 226282	-3 163669	-3 726684
04	с С	0	1 0120002	1 275000	1 500004
80 00	o C	U	1.020003	-1.2230/8	-4.302626
86	b	U	2./0/265	-0.134162	-3.08026/
87	6	0	-0.944407	-4.934691	-1.667860
88	1	0	0.391278	-3.854366	-0.412988
89	6	0	-1.182967	-4.204311	-3.960034
------	---	---	-----------	-----------	-----------
90	6	0	0.082597	-2.234768	-4.720353
91	6	0	1.307601	-0.250606	-5.512053
92	1	0	3.269331	-0.084191	-2.153198
93	6	0	2.950737	0.778497	-4.067033
94	6	0	-1.520780	-5.074937	-2.967832
95	1	0	-1.266690	-5.594675	-0.868341
96	1	0	-1.641031	-4.272901	-4.943635
97	1	0	-0.429006	-2.291920	-5.679688
98	6	0	2.234315	0.728897	-5.301478
99	1	0	0.762887	-0.308147	-6.451099
100	1	0	3.697724	1.551359	-3.914813
101	1	0	-2.251148	-5.857928	-3.148189
102	1	0	2.436638	1.467600	-6.070811

Frequencies	15.2964	20.4916	25.5952
Frequencies	31.2979	36.1362	40.5977
Frequencies	43.4503	53.5314	59.8824
Frequencies	63.0021	77.5221	81.6741
Frequencies	87.2661	90.0945	97.4116
Frequencies	100.6777	106.7585	109.1354
Frequencies	123.6902	129.9232	140.2707
Frequencies	143.0274	149.1809	155.3125
Frequencies	171.7583	179.9138	184.1336
Frequencies	191.6083	199.7200	225.7101
Frequencies	230.7831	234.0027	239.5721
Frequencies	244.2438	256.7259	275.1834
Frequencies	287.0984	292.4542	294.4029
Frequencies	297.4924	318.7974	331.8800
Frequencies	336.3952	338.8227	361.1432
Frequencies	366.1028	368.0646	376.7084
Frequencies	384.4082	390.9592	402.7446
Frequencies	403.0708	416.7906	419.5525
Frequencies	422.8254	424.9041	425.8031
Frequencies	432.9640	438.2402	442.6153
Frequencies	476.2355	486.8542	488.5785
Frequencies	497.4518	497.8164	503.7318
Frequencies	517.5524	522.9141	529.2770
Frequencies	539.6893	548.9251	556.3322
Frequencies	560 2396	561 8442	564 7629
Frequencies	568 9650	570 3269	605 7156
Frequencies	608 1911	615 2870	621 1966
Frequencies	624 1869	630 0048	639 7954
Frequencies	649 3582	650 6696	650 9453
Frequencies	658 7821	663 6966	675 6432
Frequencies	688 8950	704 4134	706 6762
Frequencies	707 /138	709 579/	700.0702
Frequencies	733 3395	751 0587	753 4458
Frequencies	754 6620	754 7702	757 1002
Frequencies	773 9899	776 3050	777 8670
Frequencies	794 6829	796 1422	807 6902
Frequencies	809 5105	810 0270	807.0002
Frequencies	005.5105	013.3373	02J.72J2
Frequencies	050.0027	967 6024	040.0434
Frequencies	034.0440	807.0034	875 6520
Frequencies	872.7077	8/3.031/	8/5.0529
Frequencies	881.0611	011 2000	885.4030
Frequencies	889.4618	911.2060	915.1502
Frequencies	917.4603	919.7669	940.4940
Frequencies	941.0407	942.8776	947.4187
Frequencies	952.9775	955.8399	9/2.4383
Frequencies	974.8989	980.5476	985.2079
Frequencies	986.5556	990.9603	992.8520
Frequencies	994.446/	994.9010	1001.7251
Frequencies	1002.6486	1004.5309	1007.5628
Frequencies	1009.6847	1010.3933	1013.2028

Frequencies	1019.2844	1019.7945	1022.7574
Frequencies	1037.2922	1044.8872	1046.4610
Frequencies	1047.7159	1050.5242	1050.9160
Frequencies	1060.8764	1063.9229	1071.3167
Frequencies	1080.6779	1084.6679	1089.7662
Frequencies	1093.4623	1103.9351	1116.4516
Frequencies	1138.0548	1143.2314	1160.8785
Frequencies	1164.0108	1166.7115	1172.7782
Frequencies	1174.9263	1175.8182	1178.7306
Frequencies	1187.6091	1193.2668	1199.2483
Frequencies	1202.3067	1202.6178	1206.6107
Frequencies	1207.2083	1210.8134	1214.0622
Frequencies	1214.6847	1220.9282	1239.8541
Frequencies	1251.5560	1254.3277	1255.8884
Frequencies	1259.3113	1260.5403	1269.7218
Frequencies	1279.7527	1285.0497	1297.4802
Frequencies	1299.4251	1301.0446	1305.4922
Frequencies	1313.4548	1316.6794	1321.4120
Frequencies	1324.9962	1326.9590	1338.7936
Frequencies	1345.9114	1346.2126	1349.4834
Frequencies	1351.8946	1354.3222	1361.6800
Frequencies	1367.6821	1370.3094	1389.6139
Frequencies	1408.5975	1410.9857	1413.7558
Frequencies	1418.4360	1444.0625	1444.8785
Frequencies	1463.5771	1484.5273	1485.4335
Frequencies	1487.1152	1490.1317	1491.9576
Frequencies	1494.3253	1497.7805	1498.1502
Frequencies	1500.6006	1502.2865	1507.3061
Frequencies	1511.0354	1511.4172	1519.0978
Frequencies	1529.3446	1530.9573	1534.2249
Frequencies	1549.8474	1554.0763	1555.1601
Frequencies	1603.4648	1604.6358	1648.1402
Frequencies	1650.8824	1657.2248	1659.8511
Frequencies	1662.6430	1665.6474	1676.6225
Frequencies	1701.9965	1706.5972	1711.8048
Frequencies	1715.0207	1715.7857	1718.9536
Frequencies	1720.6685	2678.4506	3079.3725
Frequencies	3081.8296	3084.4409	3091.9911
Frequencies	3102.2676	3117.4605	3141.1073
Frequencies	3142.9388	3154.6252	3160.5531
Frequencies	3186.6064	3187.5528	3193.6743
Frequencies	3195.1369	3202.9146	3205.9538
Frequencies	3207.6973	3208.1340	3208.2010
Frequencies	3209.3406	3211.3992	3214.4655
Frequencies	3218.2737	3218.4871	3218.9327
Frequencies	3223.5851	3224.6399	3225.3565
Frequencies	3230.8543	3231.1489	3232.5647
Frequencies	3234.0879	3236.1989	3236.8766
Frequencies	3239.5189	3242.0796	3247.0661
Frequencies	3249.5843	3249.9395	3642.5239

SCF Done: E(RM062X/DGDZVP) = -2874.40451469						
Sum of electronic and zero-point Energies= -2873.582442						
Sum of electronic and thermal Energies= -2873.524644						
Sum of electronic and thermal Free Energies=	-2873.676204					
SCF Done: E(RM062X/DGTZVP/SMD) = -2875.05432386						

Cat a TS1a_R

Center	Ato	mic Ato	omic	Coord	dinate	s (Angstroms)
Number	Ν	umber	Туре	Х	Y	Z
1	15	0	0.028777	-0.00	02382	0.012552
2	8	0	0.008829	0.00	0246	1.633286
3	8	0	1.634993	0.01	5650	-0.306234

4	8	0	-0.442304	1.313309	-0.544620	70	1	0	3.021699	-3.742964	3.469912
5	8	0	-0.613887	-1.275633	-0.432269	71	1	0	2.847643	3.750838	3.996915
6	6	0	0 738349	0 992150	2 272316	72	6	0	1 971644	-1 729356	-2 450671
7	6	0	2 204602	1 102001	0.045059	72	6	0	2 625602	0 6 5 1 2 2 2	2.100071
/	0	0	2.264002	-1.182081	-0.043938	75	0	0	2.023002	-0.031223	-5.066094
8	6	0	2.061677	0.729596	2.615320	/4	6	0	0.890890	-2.3/58/6	-3.083238
9	6	0	0.150074	2.240113	2.532796	75	6	0	3.734158	0.040147	-2.494993
10	6	0	2.732075	-1.446389	1.235718	76	6	0	2.172098	-0.205811	-4.375007
11	6	0	2.401440	-2.121049	-1.077989	77	6	0	0.484429	-1.959241	-4.397674
12	6	0	2 900594	-0 525432	2 427464	78	6	0	0 132764	-3 413200	-2 441921
13	6	0	2,200551	1 738024	3 2158/2	70	6	0	1 313364	1 111897	-3 112362
14	c	0	2.022055	2.206726	2.106700	, , ,	1	0	4.110401	0.200012	1 520110
14	6	0	0.925541	3.206726	3.186708	80	T	0	4.119481	-0.296913	-1.538110
15	6	0	3.1//0/2	-2./33402	1.549030	81	6	0	2./94/0/	0.929974	-4.986463
16	6	0	2.929079	-3.375922	-0.759733	82	6	0	1.124127	-0.878865	-5.007699
17	6	0	2.775921	-1.551171	3.586678	83	6	0	-0.613192	-2.624673	-5.036775
18	6	0	4.330092	0.095901	2.419670	84	1	0	0.376905	-3.685945	-1.421000
19	6	0	4 249483	1 275954	3 401665	85	6	0	-0 915768	-4 012965	-3 078319
20	6	0	2 257752	2 971130	3 522668	86	6	0	3 830306	1 57/636	-4 374254
20	1	0	2.237732	2.371130	2.2000	07	1	0	5.050500	1.074050	2 625 004
21	1	0	0.472531	4.1/198/	3.396729	87	1	0	5.141819	1.028009	-2.033884
22	6	0	3.443707	-2.832436	3.037491	88	1	0	2.415559	1.2/24/9	-5.946324
23	6	0	3.282170	-3.700954	0.554992	89	1	0	0.787382	-0.537359	-5.985088
24	1	0	3.030598	-4.115482	-1.549577	90	6	0	-1.290358	-3.623743	-4.401769
25	1	0	3.228748	-1.188658	4.514222	91	1	0	-0.898889	-2.306831	-6.036855
26	1	0	1 713696	-1 739992	3 772929	92	1	0	-1 486028	-4 782259	-2 567104
27	1	0	5 101/10	0.636053	2 672025	02	1	0	1 201061	2 427000	1 9/3597
27	1	0	4 5 2008 2	-0.030333	1 411007	04	1	0	2 1 2 5 0 9 5	4 110075	4 900154
28	1	0	4.539082	0.474360	1.411907	94	1	0	-2.125085	-4.116975	-4.890154
29	1	0	4.416374	0.948023	4.434310	95	6	0	-1.232654	2.5/1086	2.081836
30	1	0	4.520000	-2.843241	3.242893	96	6	0	-1.418275	3.580067	1.110582
31	1	0	-1.554593	-1.299235	-1.711715	97	6	0	-2.339012	1.868469	2.593959
32	8	0	-2.193882	-1.005093	-2.444793	98	6	0	-0.322670	4.251561	0.472070
33	6	0	-3.122243	-0.049346	-1.871251	99	6	0	-2.743297	3.899302	0.662364
34	6	0	-2 736943	1 160192	-2 740428	100	6	0	-3 660024	2 183316	2 123758
25	1	0	-2.750545	0.400055	1 000201	100	c	0	-3.000024	2.103310	2.123730
35	1	0	-4.144505	-0.409855	-1.989301	101	6	0	-2.206349	0.834976	3.580870
36	1	0	-2.892377	0.122315	-0.815917	102	6	0	-0.530440	5.1/0104	-0.51/68/
37	8	0	-2.506777	2.328792	-2.022894	103	1	0	0.692632	4.002579	0.759681
38	6	0	-1.477667	0.454079	-3.327662	104	6	0	-2.923916	4.892468	-0.354835
39	6	0	-3.727607	1.447465	-3.852147	105	6	0	-3.832705	3.193765	1.177195
40	1	0	-1.899093	2.122561	-1.280655	106	6	0	-4.779163	1.446993	2.633413
41	1	0	-0 523624	0 440929	-2 811392	107	1	0	-1 219649	0 594685	3 963629
40	1	0	1 504172	0.001170	4 210425	100	c I	0	2,200521	0.157107	4.044155
42	1	0	-1.504172	-0.001179	-4.510455	108	0	0	-3.296521	0.15/19/	4.044155
43	6	0	-4.144840	2.751739	-4.113356	109	6	0	-1.854320	5.509642	-0.933090
44	6	0	-4.206555	0.395478	-4.640771	110	1	0	0.323619	5.641083	-0.999907
45	6	0	-5.036666	3.000459	-5.157792	111	1	0	-3.936490	5.112805	-0.682570
46	1	0	-3.756264	3.558343	-3.500244	112	1	0	-4.833525	3.422977	0.816456
47	6	0	-5.094461	0.646669	-5.684051	113	6	0	-4.606700	0.461701	3.560290
48	1	0	-3 881951	-0 626345	-4 441667	114	1	0	-5 770704	1 693741	2 262504
10	6	0	-5 512454	1 95278/	-5 9//527	115	1	0	-3 17098/	-0.622816	1 788653
	1	0	5.512454	4.019205	5.544527	110	1	0	2.000222	0.022010	1 701007
50	1	0	-3.333602	4.016595	-3.300334	110	1	0	-2.000323	0.240934	-1.721097
51	1	0	-5.460083	-0.1/5138	-6.292159	11/	T	0	-5.460850	-0.091676	3.938360
52	1	0	-6.204334	2.150804	-6.757440						
53	1	0	4.312294	3.662280	0.647327						
54	6	0	3.831711	3.831927	-0.311625	Frequen	cies	-545.34	128	13.0686	19.3787
55	6	0	2.717821	3.072330	-0.651539	Frequer	ncies	22.34	33	30.7183	31.5672
56	6	0	1 3/1922	4 805819	_1 18/218	Frequer		37.16	.73	10 6320	13 2/1/
50	c	0	2 117545	4.000010	1 000010	Frequer		40.41	-7-5 		43.2414
57	0	0	2.11/545	3.320774	-1.888018	Frequer	icles	49.41	.21	55.2587	57.3500
58	1	0	2.327594	2.298177	0.006214	Frequer	ncies	62.42	13	67.5637	//.4505
59	6	0	3.740253	5.046638	-2.417142	Frequer	ncies	85.37	74	88.7007	92.1538
60	7	0	1.008525	2.665715	-2.411746	Frequer	ncies	93.56	88	99.3714	105.2506
61	6	0	2.616680	4.294048	-2.759520	Frequer	ncies	108.20	065	114.7835	124.3812
62	1	0	4.133603	5.799823	-3.092264	Frequer	ncies	132.0	524	139.0702	143.0026
63	-	0	0 611894	3 053606	-3 633831	Frequer	ncies	149 /	075	154 0602	163 0739
61	1	0	0 / 271 / 0	2 051150	1 702210	Eroquer	ncioc	172.40	07 <i>1</i>	102 0577	101 2010
04	10	0	0.437149	2.031130	016027.1. ²	- requer	10162	100 1	J/H	100.00//	104.0048
65	10	0	1.643165	4.35083/	-4.214932	+requer	icles	190.40	UZI	196./584	202.3947
66	16	0	-0.651262	2.452952	-4.559847	Frequer	ncies	205.80	0/2	215.4573	225.3004
67	1	0	5.215345	5.382171	-0.897412	Frequer	ncies	232.1	643	236.4757	242.4943
68	1	0	4.978533	2.062027	3.187443	Frequer	ncies	248.08	895	252.6617	274.8286
69	1	0	3.631046	-4.702748	0.790127	Frequer	ncies	279.93	255	287.0010	294.4315

Frequencies	299.0326	303.1460	307.0105	Frequen	cies	1366.	0151	1369.1738	1370.5200
Frequencies	321.6500	333.0835	345.1780	Frequen	cies	1388.	2682	1408.6437	1412.9957
Frequencies	354.0148	364.6750	376.6255	Frequen	cies	1414.	8185	1418.8431	1421.2150
Frequencies	377.6432	389.4284	393.0495	Frequen	cies	1437.	0111	1440.9366	1447.1294
Frequencies	396.7759	400.8930	403.8120	Frequen	cies	1466.	0552	1480.9077	1482.1855
Frequencies	404.4392	413.3813	417.7550	Frequen	cies	1482.	8106	1484.8704	1490.7202
Frequencies	419.0297	423.8157	428.3316	Frequen	cies	1491.	9993	1494.5806	1497.0991
Frequencies	435.6665	439.3429	441.0052	Frequen	cies	1499.	4670	1500.5827	1501.2609
Frequencies	449.7799	455.3183	482.7301	Frequen	cies	1505.	4537	1511.0508	1520.1419
Frequencies	485.2823	489.6858	497.9085	Frequen	cies	1520.	9583	1525.0569	1528.1889
Frequencies	499 2553	508 3466	509 2716	Frequen	cies	1532	2877	1547 9206	1551 1493
Frequencies	523 5575	529 4015	530 5267	Frequen	cies	1552	3907	1557 8522	1601 9084
Frequencies	520.09/0	525.4015	550 7007	Eroquon	cios	1604	0106	1646 6572	1649 9410
Frequencies	550.5040	540.4115	550.7007	Frequen	cioc	1655	E 9 4 1	1659 0177	1661 2240
Frequencies	550.9596	502.4054	500.7015	Frequen	cies	1000.	1041	1038.0177	1001.5240
Frequencies	507.0344	5/3.59/9	580.4010	Frequen	cies	1005.	4848	1672.2490	10/9.5298
Frequencies	583.2074	604.4310	608.3179	Frequen	cies	1084.	5327	1697.0425	1700.9002
Frequencies	615.9578	617.8662	621.6110	Frequen	cies	1/11.	8217	1/13.6938	1/14.2033
Frequencies	624.9017	630.1379	644.5607	Frequen	cies	1/1/.	4116	1/1/.5309	2928.7796
Frequencies	648.9939	651.2365	652.2610	Frequen	cies	3074.	6326	3076.9232	3080.2647
Frequencies	658.4692	660.1275	662.5609	Frequen	cies	3086.	9863	3096.6966	3121.5395
Frequencies	676.4937	677.3892	690.2776	Frequen	cies	3137.	5245	3141.9943	3150.3414
Frequencies	702.4137	709.5928	710.3515	Frequen	cies	3155.	6628	3181.6567	3195.6915
Frequencies	719.4178	726.1771	732.9877	Frequen	cies	3196.	0625	3200.2142	3200.9995
Frequencies	734.8042	746.6765	748.1032	Frequen	cies	3203.	2224	3205.5771	3208.1651
Frequencies	753.5368	755.0932	755.4532	Frequen	cies	3208.	5082	3209.2096	3211.0684
Frequencies	756.1865	768.7037	776.8972	Frequen	cies	3212.	9356	3213.0925	3219.1271
Frequencies	777.9541	779.0570	795.6426	Frequen	cies	3222.	2254	3222.3658	3222.8045
Frequencies	799.8287	809.0886	812.0090	Frequen	cies	3225.	1952	3226.4533	3227.4526
Frequencies	825.3245	837.6450	841.8442	Frequen	cies	3228.	9450	3230.3753	3230.6845
Frequencies	844.9400	847.9493	855.5326	Frequen	cies	3233.	8935	3236.5428	3239.6049
Frequencies	863.5191	867.1516	869.0197	Frequen	cies	3240.	7932	3241.5884	3244.6900
Frequencies	872 1844	873 5473	877 7945	Frequen	cies	3245	6764	3254 4246	3256 4000
Frequencies	880 1503	880 7080	882 2957	Frequen	cies	3260	3955	3351 6554	3632 3211
Frequencies	884 2520	888 9004	889 8441	riequen	eres	5200.	5555	5551.0551	5052.5211
Frequencies	004.2320	016 1262	000.0441		E E D	10622		2005 0859	26902
Frequencies	025 6002	020 0070	920.0941	Sumofo	Loctron	ic and	DODZVF) =	-3993.0838	2004 157120
Frequencies	012 2662	050.0078	0E1 1120	Sumofo	loctror	ic anu	thormal En	orgioc=	-3994.137130
Frequencies	945.5005	930.6033	931.1129	Sumofe	lectror	lic anu	thermal En	eigies-	-3994.000040
Frequencies	964.6730	970.5875	978.7092	SUITOLE				e Energies=	-3994.202400
Frequencies	981.1565	981.7766	988.1825	SCF DONE	E(RIV	10628/	DGTZVP/SIV	1D) = -3995.8	88703288
Frequencies	988.7714	990.4595	995.5259						
Frequencies	1000.5727	1001.0653	1002.1596	Cat a l	1a_ <i>F</i>	?			
Frequencies	1003.1481	1004.8136	1012.3330		_				
Frequencies	1013.0557	1015.9707	1019.3578	Center	Atomi	c At	omic	Coordinates	s (Angstroms)
Frequencies	1019.9464	1029.9354	1033.7567	Number	Num	nber	Type	ХҮ	7
Frequencies	1045.7737	1047.8860	1049.1924						
Frequencies	1051.1236	1053.5605	1054.3243	1	15	0	-0 017129	-0.010930	0 008492
Frequencies	1055.6990	1064.1933	1067.0998	2	8	0	-0.000580	-0.000692	1 631943
Frequencies	1074.6658	1077.5781	1090.8993	3	8	0	1 590770	-0.004269	-0 334890
Frequencies	1100.7796	1103.6085	1111.2619	1	8	0	-0 442739	1 351203	-0 506582
Frequencies	1114.7965	1115.6274	1135.4064	5	0	0	0.693970	1 245800	0.300382
Frequencies	1140.3623	1144.2135	1159.2384	6	6	0	0.755497	0.065741	2 272470
Frequencies	1160.7660	1167.1528	1168.9791	0	6	0	0.755487	1 215 427	2.2/34/8
Frequencies	1170.2351	1179.3103	1180.4885	/	6	0	2.221035	-1.215427	-0.095792
Frequencies	1184.8604	1187.9393	1194.4837	8	6	0	2.079039	0.674574	2.593766
Frequencies	1196.1337	1200.4414	1201.2596	9	6	0	0.192935	2.218037	2.5/4116
Frequencies	1203.6151	1206.8915	1208.6642	10	6	0	2.690683	-1.49/166	1.1/49/4
Frequencies	1208.8211	1212.8062	1218.9804	11	6	0	2.293362	-2.152843	-1.132963
Frequencies	1222.6208	1236.7855	1250.2405	12	6	0	2.894768	-0.590511	2.372253
Frequencies	1253.9274	1257.2375	1259.5395	13	6	0	2.864303	1.654532	3.210500
Frequencies	1261 5924	1271 9142	1277 5507	14	6	0	0.988815	3.150161	3.252502
Frequencies	1281 5678	1287 4830	1297 6008	15	6	0	3.117997	-2.794629	1.470376
Frequencies -	1298 7629	1303 5074	1304 1590	16	6	0	2.802314	-3.420022	-0.833959
Frequencies	1212 2800	1315 7002	1304.1350	17	6	0	2.773586	-1.625316	3.524028
Frequencies	1272 /700	1276 /6/1	12/1 /011	18	6	0	4.332618	0.009924	2.349813
Frequencies	1343.4769	1347 6039	1250 7022	19	6	0	4.287122	1.166988	3.361073
Frequencies	1351 6130	1347.0UZŎ	1262 1140	20	6	0	2.321626	2.884707	3.565026
	1331 61/9	1 3 3 3 7 / 94	130/1149						

21	1	0	0.552510	4.114158	3.500918
22	6	0	3.412711	-2.910631	2.952089
	- C	0	2 101202	2 750627	0.400071
25	0	0	5.101303	-3./3003/	0.409071
24	1	0	2.866322	-4.157833	-1.629388
25	1	0	3 246394	-1 278548	4 447635
20	1	0	1 711674	1 700020	2 725020
26	T	0	1./110/4	-1./99929	5.725028
27	1	0	5.098450	-0.739263	2.569504
28	1	0	4 526042	0 109681	1 3/17071
20	1	0	4.520042	0.405084	1.547071
29	1	0	4.466776	0.811248	4.382250
30	1	0	4.492638	-2.937652	3.136225
21	1	0	2 062566	1 517614	1 7/7000
51	1	0	-2.002500	-1.517014	-1.747555
32	8	0	-2.839552	-1.227074	-2.267961
33	6	0	-3.192327	0.054545	-1.787912
24	- C	0	2 70190	1 100250	2 740642
54	0	0	-2.739163	1.199330	-2.740045
35	1	0	-4.279054	0.102488	-1.667310
36	1	0	-2.737859	0.238341	-0.809369
27	-	0	2 5 6 1 2 1 4	2 202225	2 010057
37	0	0	-2.501214	2.392225	-2.019957
38	6	0	-1.467118	0.780664	-3.486579
39	6	0	-3 831071	1 462642	-3 795759
40	1	0	2,000005	2.1702072	1 240512
40	T	0	-2.008895	2.178307	-1.240512
41	1	0	-0.670653	0.431993	-2.821792
42	1	0	-1 670358	-0.029208	-4 189970
42	- -	0	4.200070	0.025200	4.055570
43	6	0	-4.286876	2.755451	-4.055588
44	6	0	-4.353635	0.387341	-4.525891
45	6	0	-5 254046	2 972566	-5 039794
10	1	0	2.0705.00	2.572500	2.400202
46	1	0	-3.8/9566	3.580670	-3.480202
47	6	0	-5.318799	0.607393	-5.505946
48	1	0	-4 011400	-0 623836	-4 308636
10	-	0	5.770510	1.0025050	5,300000
49	6	0	-5.//0518	1.902562	-5./68025
50	1	0	-5.604742	3.981578	-5.236342
51	1	0	-5 723853	-0 233230	-6.061602
51	-	0	5.725055	0.200200	0.001002
52	1	0	-6.523624	2.073086	-6.531427
53	1	0	4.203627	3.709336	0.504258
54	6	0	3 680262	3 833867	-0.438852
54	c	0	2.502122	2.020657	0.730052
55	6	0	2.583133	3.028657	-0./1146/
56	6	0	4.122579	4.800167	-1.359205
57	6	0	1 931922	3 222175	-1 932159
50	1	0	2.240622	2.222175	1.552155
58	1	0	2.240633	2.262738	-0.019066
59	6	0	3.472437	4.987143	-2.574855
60	7	0	0 822568	2 511282	-2 385624
C1	,	0	0.022500	4.102202	2.000021
61	6	0	2.364894	4.182399	-2.849328
62	1	0	3.816644	5.732498	-3.284323
63	6	0	0 406130	2 854759	-3 587945
C 4	1	0	0.100100	1.005752	1 (5 (5 40
64	T	0	0.265795	1.905752	-1.656549
65	16	0	1.338429	4.160152	-4.266609
66	16	0	-0.843630	2 149216	-4 530337
c7	1	0	4.000011	F 41340F	1 120470
67	T	0	4.985911	5.412485	-1.120479
68	1	0	5.024038	1.947502	3.153462
69	1	0	3.514622	-4.768623	0.692116
70	1	0	2 000070	2 010074	2 285002
70	T	0	2.980070	-3.818974	3.383092
71	1	0	2.928073	3.639060	4.059132
72	6	0	1.835305	-1.753716	-2.493830
72	G	0	2 401002	0 6 9 0 1 0 5	2 161220
/5	0	0	2.491902	-0.069195	-5.151550
74	6	0	0.727724	-2.382258	-3.096129
75	6	0	3.612128	0.000411	-2.577753
76	G	0	2 020022	0.255200	A 42007E
70	0	0	2.020955	-0.255590	-4.436073
77	6	0	0.305908	-1.973929	-4.407782
78	6	0	-0.045866	-3.386654	-2.422380
70	6	0	A 1012CE	1 064210	-3 200166
19	U	U	4.191303	1.004219	-2.202100
80	1	0	4.006566	-0.331263	-1.622781
81	6	0	2.658526	0.865693	-5.069646
82	F	0	0.962021	-0 921006	-5.047615
02	0	0	0.903021	-0.921900	-3.047013
83	6	0	-0.827346	-2.611513	-5.011263
84	1	0	0.210725	-3.649558	-1.402211
85	6	0	-1 130392	-3 957338	-3 023450
00	6	0	1.130332	3.5575556	3.023430
86	6	U	3./01082	1.514/33	-4.4/2538

88	1 1	0 0	5.028913 2.283715	1.578571 1.190789	-2.746328 -6.037783
89	1	0	0.620237	-0.594087	-6.027783
90	6	0	-1.524887	-3.573029	-4.342418
91	1	0	-1.130037	-2.294922	-6.006622
92	1	0	-1.720563	-4.691235	-2.483988
93	1	0	4.170993	2.365194	-4.958889
94	1	0	-2.396238	-4.034400	-4.796256
95	6	0	-1.1/9600	2.5/9639	2.118430
90	6	0	-1.341005	3.013394	1.1/08/0
97	6	0	-2.295015	1.849081	2.500270
90	6	0	-0.234302	4.552015	0.664074
100	6	0	-3 597566	2 140344	2 033347
101	6	0	-2 187772	0 799892	3 539188
102	6	0	-0.417571	5.275455	-0.367130
103	1	0	0.771651	4.109122	0.941226
104	6	0	-2.805875	4.924136	-0.339786
105	6	0	-3.745497	3.164322	1.098151
106	6	0	-4.721128	1.360072	2.461162
107	1	0	-1.216690	0.579681	3.971039
108	6	0	-3.281873	0.083965	3.928318
109	6	0	-1.726718	5.588035	-0.844697
110	1	0	0.445645	5.789563	-0.784493
111	1	0	-3.805503	5.119856	-0.718420
112	1	0	-4.728224	3.366912	0.677174
113	6	0	-4.571070	0.359684	3.375223
114	1	0	-5.696181	1.583158	2.035902
115	1	0	-3.175312	-0.707769	4.663338
116	1	0	-1.854570	6.336619	-1.620477
117	1	0	-5.42/08/	-0.229640	3.688835
Frequen					
	CIES	11 63	26 1	5 5303	22 9722
Frequer	cies ncies	11.63 27.3	26 1 323 3	.5.5303 32.4390	22.9722 36.6823
Frequer	cies ncies ncies	11.63 27.33 37.83	323 3 316 4	.5.5303 32.4390 45.9283	22.9722 36.6823 47.4365
Frequer Frequer Frequer Frequer	ncies ncies ncies ncies	11.63 27.33 37.83 49.04	26 1 323 3 316 4 452 5	.5.5303 32.4390 45.9283 54.5346	22.9722 36.6823 47.4365 58.4733
Frequer Frequer Frequer Frequer Frequer	cies ncies ncies ncies ncies	11.63 27.33 37.83 49.04 62.75	26 1 323 3 316 4 452 5 541 5	.5.5303 32.4390 45.9283 54.5346 71.5539	22.9722 36.6823 47.4365 58.4733 84.0371
Frequer Frequer Frequer Frequer Frequer Frequer	ncies ncies ncies ncies ncies ncies	11.63 27.3 37.8 49.0 62.7 87.7	326 1 323 3 316 4 452 5 541 5 365 9	.5.5303 32.4390 45.9283 54.5346 71.5539 94.4851	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311
Frequer Frequer Frequer Frequer Frequer Frequer	cies ncies ncies ncies ncies ncies ncies	11.63 27.33 37.83 49.04 62.75 87.73 99.60	126 1 323 3 316 4 452 5 541 5 365 9 006 1	.5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 .06.9127	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230
Frequer Frequer Frequer Frequer Frequer Frequer Frequer	cies ncies ncies ncies ncies ncies ncies ncies	11.63 27.33 37.83 49.04 62.79 87.73 99.60 115.9	126 1 323 1 316 4 452 1 541 1 365 9 006 1 1825 1	.5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 .06.9127 121.4741	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	cies ncies ncies ncies ncies ncies ncies ncies	11.63 27.33 37.83 49.04 62.75 87.73 99.60 115.9 139.6	126 1 323 3 316 4 452 5 541 5 365 5 006 1 1825 5 5278 5	.5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 .06.9127 121.4741 142.5808	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	cies ncies ncies ncies ncies ncies ncies ncies ncies	11.63 27.33 37.83 49.04 62.75 87.75 99.60 115.9 139.6 156.3	126 1 323 3 316 4 452 5 541 3 365 9 006 1 825 2 278 5	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 06.9127 121.4741 142.5808 172.3025	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	cles ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies	11.63 27.33 37.83 49.04 62.79 87.73 99.60 115.9 139.60 156.3 182.5	126 1 323 3 316 4 452 5 541 3 365 9 006 1 825 5 5278 5 592 5 215 5	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 06.9127 121.4741 142.5808 172.3025 187.2258	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	Cles ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies	11.63 27.33 37.83 49.04 62.75 99.60 115.9 139.60 156.3 182.5 192.4	126 1 323 1 316 4 452 9 541 1 365 9 006 1 825 1 1278 1 592 1 215 408	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 06.9127 121.4741 142.5808 172.3025 187.2258 201.5207	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	Cles ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies 	11.63 27.3: 37.8: 49.04 62.7! 87.7: 99.60 115.9 139.60 156.3 182.5 192.4 215.7	126 1 323 3 316 4 452 9 541 3 365 9 006 1 1825 5 5278 5 5592 5 215 5 408 5 5504 5	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	Cles ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies 	11.63 27.3: 37.8: 49.04 62.7! 87.7: 99.60 115.9 139.60 156.3 182.5 192.4 215.7 235.7	126 1 323 3 316 4 452 9 541 3 365 9 006 1 1825 5 5278 5 5278 5 5278 5 5278 5 5278 5 52592 5 5215 5 5504 2 408 2 5504 2 463 2	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	Cles Tocies To	11.63 27.3: 37.8: 49.04 62.7! 87.7: 99.60 115.9 139.6 156.3 182.5 192.4 215.7 235.7 235.7	126 1 323 3 316 4 452 9 541 3 365 9 206 1 1825 5 5278 5 2215 408 5504 5 463 6 689 3	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418 256.7226	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057 279.8168
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	Cles Tocies To	11.63 27.33 37.83 49.04 62.79 87.73 99.60 115.9 139.60 156.3 182.5 192.4 215.7 235.7 253.1 283.6 280.6	126 1 323 3 316 4 452 9 541 3 365 9 006 1 1825 5 5278 5 5292 5 215 5 408 5 5592 5 4463 6 6892 5	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418 256.7226 294.3630 296.430	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057 279.8168 297.2574
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	Cles ncies	11.63 27.33 37.83 49.04 62.79 87.73 99.60 115.9 139.60 156.3 182.5 192.4 215.7 235.7 253.1 283.6 299.7 330.7	126 1 323 3 316 4 452 9 541 3 365 9 006 1 1825 5 5278 5 5292 5 215 5 4463 6 892 3 8892 3 804 7	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418 256.7226 294.3630 306.4398 339.6517	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057 279.8168 297.2574 320.7110
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	Cles Tocies	11.63 27.3: 37.8: 49.00 62.7! 87.7: 99.60 115.9 139.6 156.3 182.5 192.4 215.7 235.7 253.1 283.6 299.7 330.7	126 1 323 3 316 4 452 9 541 3 365 9 006 1 1825 5 5278 5 5278 5 5278 5 5278 5 5278 5 5274 5 5592 5 5592 5 5504 5 463 5 8892 2 708 5	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418 256.7226 294.3630 306.4398 339.6517 369.7942	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057 279.8168 297.2574 320.7110 349.4056 373.7247
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	Cless Tracies	11.63 27.3: 37.8:49.04 62.7! 87.7: 99.66 115.9 139.66 156.3 182.5 192.4 215.7 235.7 253.1 283.66 299.7 330.7 364.5	126 1 323 3 316 4 452 9 541 3 365 9 006 1 1825 5 5278 5 5278 5 5278 5 5592 5 2408 5 5504 5 689 5 8892 5 708 5 6699 5 6044 5	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 .06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418 256.7226 294.3630 306.4398 339.6517 369.7942 385.9135	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057 279.8168 297.2574 320.7110 349.4056 373.7247 387.3915
Frequer Frequer	Cles Tocies	11.63 27.3: 37.8:49.04 62.79 87.77 99.66 115.9 139.66 156.3 182.55 192.44 215.77 235.77 235.77 233.07 330.77 364.55 377.44	126 1 323 3 316 4 452 5 5541 5 365 9 3066 1 825 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5204 5 5892 5 5892 5 5892 5 5892 5 5892 5 504 5 5699 5 504 5 504 5 5892 5 593 5 504 5 505 5 506 5 507 5 508 5 509 5 </td <td>5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 .06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418 256.7226 294.3630 306.4398 339.6517 369.7942 385.9135 403 3189</td> <td>22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057 279.8168 297.2574 320.7110 349.4056 373.7247 387.3915 403 7019</td>	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 .06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418 256.7226 294.3630 306.4398 339.6517 369.7942 385.9135 403 3189	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057 279.8168 297.2574 320.7110 349.4056 373.7247 387.3915 403 7019
Frequer Frequer	Cless nciess	11.63 27.33 37.88 49.00 62.79 99.60 115.9 115.9 115.9 115.9 115.9 115.9 125.7 235.7 235.7 235.7 235.7 235.7 330.7 3364.5 377.4 399.C	126 1 323 3 316 4 452 5 5541 3 365 9 3066 1 825 1 5278 1 5278 1 5278 1 5278 1 5278 1 5278 1 5278 1 5278 1 5278 1 5278 1 5278 1 5278 1 5278 1 5278 1 5278 1 5278 1 5278 1 5278 1 5204 1 531 1	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 .06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418 256.7226 294.3630 306.4398 339.6517 369.7942 385.9135 403.3189 409.4293	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057 279.8168 297.2574 320.7110 349.4056 373.7247 387.3915 403.7019 415.2423
Frequer Frequer	Cless nciess	11.63 27.33 37.8: 49.00 62.79 87.77 99.60 115.9 139.66 156.3 182.55 192.44 215.7 235.7 253.1 283.66 299.7 330.7 364.55 377.4 406.9 419.2	126 1 323 3 316 4 452 5 5541 3 365 9 3066 1 8257 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5215 9 5204 9 5892 9 8894 9 9044 9 2295 9 5231 9 106 9	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 .06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418 256.7226 294.3630 306.4398 339.6517 369.7942 385.9135 403.3189 409.4293 424.2279	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057 279.8168 297.2574 320.7110 349.4056 373.7247 387.3915 403.7019 415.2423 429.7880
Frequer Frequer	Cless nciess	11.63 27.33 37.88 49.00 62.79 99.60 115.9 115.9 115.9 115.9 115.9 125.7 235.7 235.7 235.7 235.7 235.7 330.7 3364.5 377.4 399.C 406.9 419.2 435.5	126 1 323 3 3316 4 452 5 5541 3 365 9 3066 1 8257 1 5278 1 5592 1 5278 1 5592 1 5504 1 5504 1 6899 1 6892 1 708 1 6699 1 708 1 6295 4 5531 4 5231 4 5265 4	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 .06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418 256.7226 294.3630 306.4398 339.6517 369.7942 385.9135 403.3189 409.4293 424.2279 435.8522	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057 279.8168 297.2574 320.7110 349.4056 373.7247 387.3915 403.7019 415.2423 429.7880 444.2038
Frequer FreqUer FreqUe	Cles Tocies	11.63 27.33 37.88 49.00 62.79 87.77 99.60 115.9 139.6 156.3 182.5 192.4 215.7 235.7 235.7 235.7 235.7 330.7 336.7 330.7 336.7 330.7 340.5 299.7 340.5 2435.5	126 1 323 3 316 4 452 5 5541 3 3065 9 3078 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5215 9 5204 9 5892 9 5892 9 6899 9 699 9 6044 9 521 9 521 9 521 9 521 9 521 9 525 9 526 9 527 9 526	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418 256.7226 294.3630 306.4398 339.6517 369.7942 385.9135 403.3189 409.4293 424.2279 435.8522 485.1638	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057 279.8168 297.2574 320.7110 349.4056 373.7247 387.3915 403.7019 415.2423 429.7880 444.2038 487.5737
Frequer FreqUer FreqUe	Cless Tacless	11.63 27.33 37.88 49.00 62.79 87.77 99.60 115.9 139.6 156.3 182.5 192.4 215.7 235.7 235.7 235.7 233.0 7 330.7 330.7 330.7 330.7 330.7 330.7 340.5 299.7 340.5 245.5 455.8 490.1	126 1 323 3 3316 4 452 5 5541 3 3065 9 3026 1 8255 1 8278 5 5592 2 215 1 5504 2 5504 2 689 3 8804 2 708 3 699 3 9044 2 5531 4 106 4 2265 4 6077 4	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418 256.7226 294.3630 306.4398 339.6517 369.7942 385.9135 403.3189 409.4293 409.4293 442.2279 435.8522 485.1638 497.0432	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057 279.8168 297.2574 320.7110 349.4056 373.7247 387.3915 403.7019 415.2423 429.7880 444.2038 487.5737 497.4898
Frequer FreqUer FreqUe	Cless nciess	11.63 27.33 37.88 49.00 62.79 87.77 99.60 115.9 139.6 156.3 182.5 192.4 215.7 235.7 235.7 235.7 235.7 330.7 330.7 330.7 330.7 330.7 330.7 340.5 9.9 406.9 419.2 435.5 455.8 490.1 506.3	126 1 323 3 3316 4 452 5 5541 3 3065 9 3078 9 4252 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5278 9 5215 9 5204 9 5892 9 5804 9 531 9 5531 9 5251 9 5265 9 6077 9 609 9 313 9	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418 256.7226 294.3630 306.4398 339.6517 369.7942 385.9135 403.3189 409.4293 409.4293 442.2279 435.8522 485.1638 497.0432 510.1930	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057 279.8168 297.2574 320.7110 349.4056 373.7247 387.3915 403.7019 415.2423 429.7880 444.2038 487.5737 497.4898 521.3213
Frequer FreqUer FreqUe	Cless nciess	11.63 27.33 37.88 49.00 62.79 87.77 99.60 115.9 139.6 156.3 182.55 192.4 215.7 235.7 235.7 253.1 283.6 299.7 364.5 377.4 406.9 419.2 435.5 455.8 490.1 506.3 528.8	1226 1 3233 3 3316 4 4452 5 5541 3 3065 9 30278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5204 2 5504 2 5604 2 5804 2 5804 2 5531 4 5531 4 5265 4 5313 4 5313 5 5313 5 5313 5 5313 5 5313 5 5313 5 5636 5	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418 256.7226 294.3630 306.4398 339.6517 369.7942 385.9135 403.3189 409.4293 409.4293 442.2279 435.8522 485.1638 497.0432 510.1930 529.9758	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057 279.8168 297.2574 320.7110 349.4056 373.7247 387.3915 403.7019 415.2423 429.7880 444.2038 487.5737 497.4898 521.3213 533.2380
Frequer FreqUer FreqUe	Cless nciess	11.63 27.33 37.88 49.00 62.79 87.77 99.60 115.9 139.6 156.3 182.55 192.4 215.7 235.7 235.7 253.1 283.6 299.7 364.5 377.4 406.9 419.2 435.5 455.8 490.1 506.3 528.8 539.4	1226 1 3233 3 3316 4 452 5 5541 3 3065 9 30278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5204 5 5504 5 5604 5 5804 5 5804 5 5531 6 5531 6 5077 6 609 6 6313 5 6366 5	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418 256.7226 294.3630 306.4398 339.6517 369.7942 385.9135 403.3189 409.4293 409.4293 409.4293 442.2279 435.8522 485.1638 497.0432 510.1930 529.9758 550.8410	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057 279.8168 297.2574 320.7110 349.4056 373.7247 387.3915 403.7019 415.2423 429.7880 444.2038 487.5737 497.4898 521.3213 533.2380 556.9829
Frequer FreqUer FreqUe	Cless nciess	11.63 27.33 37.88 49.00 62.79 87.77 99.60 115.9 139.6 156.3 182.55 192.4 215.7 235.7 253.1 283.6 299.7 330.7 364.5 377.4 406.9 419.2 435.5 455.8 490.1 506.3 528.8 539.4 558.9	1226 1 3233 3 3316 4 452 5 5541 3 365 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5215 5 5204 5 5892 5 5804 5 5531 5 609 5 5313 5 5636 5 5733 5 5733 5 5217 5	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418 256.7226 294.3630 306.4398 339.6517 369.7942 385.9135 403.3189 409.4293 424.2279 435.8522 485.1638 497.0432 510.1930 529.9758 550.8410 566.6834	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057 279.8168 297.2574 320.7110 349.4056 373.7247 387.3915 403.7019 415.2423 429.7880 444.2038 487.5737 497.4898 521.3213 533.2380 556.9829 567.4018
Frequer FreqUer FreqUe	Cless nciess	11.63 27.33 37.83 49.00 62.79 87.77 99.60 115.9 139.61 156.3 182.55 192.4 215.7 235.7 253.1 283.6 299.7 330.7 330.7 364.5 377.4 399.0 409.2 435.5 499.1 506.3 528.8 539.4 558.9 573.3	1226 1 3233 3 3316 4 452 5 5541 3 365 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5278 5 5215 5 5204 5 5204 5 5892 5 5804 5 5531 5 6699 5 5106 5 5265 5 6077 6 6313 5 5313 5 6366 5 6373 5 5217 5	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 .06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418 256.7226 294.3630 306.4398 339.6517 369.7942 385.9135 403.3189 409.4293 424.2279 445.8522 485.1638 497.0432 510.1930 529.9758 550.8410 566.6834 580.4066	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057 279.8168 297.2574 320.7110 349.4056 373.7247 387.3915 403.7019 415.2423 429.7880 444.2038 487.5737 497.4898 521.3213 533.2380 556.9829 567.4018 586.2013
Frequer FreqUer FreqUe	Cless nciess	11.63 27.33 37.83 49.00 62.79 87.77 99.60 115.9 139.61 156.3 182.55 192.4 215.7 235.7 253.1 283.62 299.7 330.7 330.7 330.7 330.7 330.7 349.55 419.2 435.5 490.1 506.3 528.8 539.4 558.9 573.3 595.4	126 1 323 3 3316 4 452 5 5541 3 365 9 506 1 1825 9 5278 9 5592 9 5215 9 5204 1 5504 1 6689 1 804 1 708 1 6699 1 6699 1 6699 1 6699 1 6699 1 6699 1 6699 1 6699 1 6699 1 6609 1 6636 1 6636 1 6313 1 6363 2 6313 2 2265 2 2267 2 2277 2 2291 1	5.5303 32.4390 45.9283 54.5346 71.5539 94.4851 .06.9127 121.4741 142.5808 172.3025 187.2258 201.5207 220.2057 240.7418 256.7226 294.3630 306.4398 339.6517 369.7942 385.9135 403.3189 409.4293 424.2279 4435.8522 485.1638 497.0432 510.1930 529.9758 550.8410 566.6834 580.4066 603.7923	22.9722 36.6823 47.4365 58.4733 84.0371 96.9311 110.3230 127.8502 148.1334 176.1057 188.7017 206.5749 234.9888 242.8057 279.8168 297.2574 320.7110 349.4056 373.7247 387.3915 403.7019 415.2423 429.7880 444.2038 487.5737 497.4898 521.3213 533.2380 556.9829 567.4018 586.2013 606.7574

Frequencies	625.2857	629.7307	630.5485
Frequencies	643.6940	648.7236	651.0569
Frequencies	652.4461	655.2185	658.3237
Frequencies	661.9406	672.1969	681.5430
Frequencies	690.2958	710.0485	710.5736
Frequencies	719.7548	724.3549	730.3102
Frequencies	731.3244	733.7902	749.8353
Frequencies	751.6088	754.5775	754.8011
Frequencies	756.1501	762.7385	770.2861
Frequencies	774.1965	779.8739	788.9567
Frequencies	796.1951	800.2051	810.1642
Frequencies	813.1307	824.7597	836.1865
Frequencies	837.6040	843.4646	845.7457
Frequencies	855.7479	865.1896	866.7859
Frequencies	869.3491	871.1163	873.6192
Frequencies	875.4788	878.9996	880.3230
Frequencies	881.6232	884.7550	887.3205
Frequencies	889.5525	917.8162	919.6475
Frequencies	926.3545	939.4644	939.6296
Frequencies	943 0554	950 7845	956 8818
Frequencies	965 9515	970 6613	974 8009
Frequencies	978 0095	985 9140	986 7148
Frequencies	988 8908	990 5030	997 4308
Frequencies	998 3041	1000 2750	1001 8055
Frequencies	1005 1802	1005 4769	1005 9882
Frequencies	1013 5579	1013 7124	1018 0684
Frequencies	1019.3379	1010.7124	1034 4798
Frequencies	1019.2750	1045 8675	1049 8724
Frequencies	1051.8967	1053 4483	1055 1/21
Frequencies	1051.8907	1069 9/3/	1070 3099
Frequencies	1077 7813	1000.0404	1103 4782
Frequencies	1109 2052	111/ 2200	1103.4762
Frequencies	1108.2952	1127 7617	1121.0107
Frequencies	11/2 5292	1157.7017	1140.9447
Frequencies	1143.5382	1157.5710	1159.7285
Frequencies	1162.8992	1104.3897	1105.8520
Frequencies	1106.0547	11/9.0/24	1180.9442
Frequencies	1100.0023	1100.5209	1195.8000
Frequencies	1199.9423	1200.7537	1203.0421
Frequencies	1206.5608	1208.2262	1210.3527
Frequencies	1212.4787	1218.1453	1222.1254
Frequencies	1245.8207	1250.4976	1252.8727
Frequencies	1256.8286	1258.9281	1261.4087
Frequencies	1266.4525	1272.6209	1282.1305
Frequencies	1285.9804	1292.5834	1298.0571
Frequencies	1303.1597	1303.3383	1308.1709
Frequencies	1316.2309	1317.0135	1322.3961
Frequencies	1322.9361	1326.6444	1341.5311
Frequencies	1343.5479	1347.9448	1350.7866
Frequencies	1355.1936	1361.6938	1365.2042
Frequencies	1368.2552	1369.2902	1406./381
Frequencies	1408.9657	1413./4/6	1415.9173
Frequencies	1418.2550	1420.0170	1441.9771
Frequencies	1442.2480	1446.8622	1454.2601
Frequencies	1464.6665	1482.1099	1482.6799
Frequencies	1485.3938	1490.8954	1492.5173
Frequencies	1494.7654	1494.9577	1496.7964
Frequencies	1498.0600	1499.0007	1500.9097
Frequencies	1505.4731	1511.0343	1515.3059
Frequencies	1515.6021	1520.5641	1527.9812
Frequencies	1532.1497	1546.7023	1547.0475
Frequencies	1552.6224	1581.9355	1601.0525
Frequencies	1604.6209	1646.2124	1649.5092
Frequencies	1656.7385	1658.7985	1662.2540
Frequencies	1666.3665	1671.7851	1675.7991
Frequencies	1684.4796	1694.3011	1694.7391
Frequencies	1712.0689	1713.0809	1713.5741

Frequencies	1717.9030	1719.5507	2159.9890
Frequencies	3075.2232	3076.1558	3080.6910
Frequencies	3086.9311	3101.1239	3128.7127
Frequencies	3138.3662	3141.4823	3151.9548
Frequencies	3155.7895	3163.4789	3190.6651
Frequencies	3194.5646	3196.8792	3197.2018
Frequencies	3199.3572	3201.2707	3203.2174
Frequencies	3204.6136	3208.2699	3209.4735
Frequencies	3212.3152	3213.2784	3217.0503
Frequencies	3218.3291	3218.9282	3219.7406
Frequencies	3220.1301	3223.4605	3224.8455
Frequencies	3228.7705	3230.2050	3233.9839
Frequencies	3235.6677	3236.9797	3237.2551
Frequencies	3241.5700	3243.0320	3245.7878
Frequencies	3246.1768	3248.9819	3252.9901
Frequencies	3262.8209	3665.5673	3684.2073

SCF Done:E(RM062X/DGDZVP) =-3995.13807371Sum of electronic and zero-point Energies=-3994.209234Sum of electronic and thermal Energies=-3994.140233Sum of electronic and thermal Free Energies=-3994.315529SCF Done:E(RM062X/DGTZVP/SMD) =-3995.94025335

Cat a TS1b_S

Center	Atomi	ic At	omic	Coordinates	(Angstroms)
Number	Nur	nber	Туре	Х Ү	Z
1	15	0	-0.038321	0.182197	0.423642
2	8	0	0.097787	-0.023876	2.028931
3	8	0	1.518892	0.281446	-0.035246
4	8	0	-0.649251	1.496504	0.074721
5	8	0	-0.685563	-1.082549	-0.078289
6	6	0	0.741979	0.974122	2.742312
7	6	0	2.276230	-0.867993	0.117814
8	6	0	2.110351	0.858613	2.955682
9	6	0	0.021834	2.093406	3.190054
10	6	0	2.910778	-1.111894	1.327616
11	6	0	2.341549	-1.778984	-0.947124
12	6	0	3.087013	-0.238511	2.559915
13	6	0	2.786090	1.888334	3.618441
14	6	0	0.714462	3.060741	3.929432
15	6	0	3.555461	-2.338796	1.518035
16	6	0	3.077361	-2.954050	-0.757200
17	6	0	3.236268	-1.333777	3.651999
18	6	0	4.402174	0.588730	2.469322
19	6	0	4.277497	1.639015	3.588614
20	6	0	2.090389	2.973143	4.140448
21	6	0	4.018338	-2.464889	2.953860
22	6	0	3.662403	-3.252773	0.475328
23	1	0	3.151626	-3.660320	-1.579971
24	1	0	3.726361	-0.956598	4.554188
25	1	0	2.238266	-1.690413	3.927129
26	1	0	5.294224	-0.038607	2.551841
27	1	0	4.428460	1.093047	1.497192
28	1	0	4.629870	1.245766	4.548887
29	1	0	5.100565	-2.310615	3.031954
30	1	0	-2.250979	-1.401823	0.453332
31	8	0	-3.220861	-1.529252	0.229708
32	6	0	-3.219358	-2.008385	-1.144149
33	6	0	-3.370304	-0.650978	-1.845632
34	1	0	-2.290329	-2.530907	-1.379055
35	1	0	-4.079441	-2.665546	-1.269278
36	8	0	-2.165064	-0.147155	-2.351475
37	6	0	-3.751111	0.073295	-0.528065

38	6	0	-4.417007	-0.638850	-2.937713
39	1	0	-1.434727	-0.466454	-1.780908
40	1	0	-4.756980	0.043625	-0.123277
41	1	0	-3.032975	0.715122	-0.022593
42	6	0	-4 075920	-0 247683	-4 232174
/2	6	0	-5 729042	-1 033301	-2 661953
43	0	0	-5.729042	-1.033301	-2.001955
44	0	0	-5.042974	-0.242096	-5.23/110
45	1	0	-3.056113	0.063618	-4.433684
46	6	0	-6.695518	-1.021918	-3.664556
47	1	0	-6.011710	-1.341831	-1.656740
48	6	0	-6.353746	-0.625113	-4.957802
49	1	0	-4.772323	0.070953	-6.241047
50	1	0	-7 713922	-1 321029	-3 436571
51	1	0	-7 105688	-0.613585	-5 740782
52	1	0	1 664479	2 1 2 2 5 2 1	1 000106
52	1	0	-1.004473	2.133321	1.7050100
53	/	0	-1.972215	2.861790	-1./65653
54	6	0	-3.242156	3.084062	-2.104432
55	6	0	-1.028045	3.736329	-2.282451
56	16	0	-4.601565	2.217809	-1.626538
57	16	0	-3.341996	4.477063	-3.169702
58	6	0	-1.608901	4.725121	-3.083913
59	6	0	0 347558	3 688155	-2 051387
60	6	0	-0.819474	5 713664	-3 671214
60 61	6	0	1 1 2 7 0 2 6	4 676107	2 640206
C2	1	0	0.766244	4.070107	1 42270
62	I	0	0.766244	2.904384	-1.423765
63	6	0	0.553595	5.679476	-3.43/313
64	1	0	-1.260685	6.487533	-4.291141
65	1	0	2.200608	4.668569	-2.478306
66	1	0	1.186663	6.440731	-3.881830
67	1	0	4.177329	-4.198967	0.617706
68	1	0	2.612296	3.765677	4.669695
69	1	0	3.799416	-3.450842	3.371452
70	1	0	4 844538	2 549664	3 380100
70	6	0	1 507954	1 502041	2 200201
71	0	0	1.597654	-1.302041	-2.209601
72	6	0	0.574668	-2.3/9535	-2.632689
/3	6	0	1.881355	-0.338978	-2.956378
74	6	0	0.197852	-3.548260	-1.887728
75	6	0	-0.162348	-2.086539	-3.829697
76	6	0	1.106400	-0.033254	-4.126519
77	6	0	2.932756	0.569953	-2.597334
78	6	0	-0.780372	-4.390174	-2.338438
79	1	0	0.680993	-3.747004	-0.937712
80	6	0	-1.200322	-2.977853	-4.255044
81	6	0	0 110092	-0.916523	-4 540576
01 01	6	0	1 270609	1 175551	1.910970
02	1	0	2.570008	0.242111	1 740122
83	I	0	3.55/881	0.342111	-1.740133
84	6	0	3.166001	1.703504	-3.320945
85	6	0	-1.490464	-4.10/83/	-3.546243
86	1	0	-1.044801	-5.267752	-1.755918
87	1	0	-1.754832	-2.732222	-5.157155
88	1	0	-0.474016	-0.684292	-5.428921
89	6	0	2.364126	2.023305	-4.460450
90	1	0	0.757049	1.402833	-5.718607
91	1	0	3 972848	2 370617	-3 031208
92	1	0	-2 273838	-4 780447	-3 882023
02	1	0	2.273030	2 020522	- J.002025
93	1	0	2.332012	2.939323	4 201260
94	I	0	0.102011	3.924276	4.291308
95	6	0	-1.398046	2.317895	2.790531
96	6	0	-2.408477	1.404734	3.147388
97	6	0	-1.704033	3.427217	1.968814
98	6	0	-2.148777	0.245211	3.952116
99	6	0	-3.752451	1.609881	2.681959
100	6	0	-3.058024	3.646122	1.547290
101	6	0	-0.698826	4.307242	1.442940
102	6	0	-3.135373	-0.655316	4.234605
103	- 1	n n	-1 145883	0.085601	4 334702
	-	0	T.T 10000	5.555001	

104	6	0	-4 7623	183	0 645137	3 004829
105	6	0	-4 0500	188	2 733489	1 909775
105	6	0	-3 3687	744	4 767762	0 709782
100	1	0	0 3445	.01	4.109116	1 662133
107	6	0	1 026/	100	5 25/522	0.620204
100	6	0	-1.0204	105	0.450060	2 747045
109	1	0	-4.4030	:10	1 E20666	3.747043 4.926025
110	1	0	-2.9100	000	-1.330000	4.050055
111	1	0	-5.//52	299	0.810139	2.041755
112	1 C	0	-5.0695	904 0C7	2.891//9	1.561/91
113	1	0	-2.3835	107	5.005205	0.208841
114	1	0	-0.2430	133	5.98/541	0.221935
115	1	0	-5.2342	239	-1.190/01	3.977062
116	1	0	-4.4036	534	4.916344	0.410411
11/	T	0	-2.6266	54	6.445401	-0.376536
_						
Frequen	cies	-531.2	406		14.5734	18.9315
Frequen	icies	22.11	102	2	24.2096	33.7156
Frequen	icies	34.36	565	3	38.8776	42.9261
Frequen	icies	51.08	346	5	55.3673	59.6475
Frequen	icies	60.91	170	6	57.3060	74.4629
Frequen	icies	77.85	545	8	35.1113	91.8592
Frequen	icies	94.56	507	1	00.7795	102.6982
Frequen	icies	108.4	418	-	114.2368	119.0114
Frequen	icies	130.0	863	-	135.0727	139.2735
Frequen	icies	145.2	596	-	150.0827	161.0544
Frequen	icies	167.4	518	-	177.4402	183.4110
Frequen	icies	191.9	038	-	196.5879	198.1568
Frequen	icies	200.9	183	2	211.9438	232.5400
Frequen	icies	236.7	068	2	237.7189	241.0075
Frequen	icies	245.0	021	ź	249.4786	272.2226
Frequen	icies	277.9	178	2	286.3218	293.4582
Frequen	icies	294.7	420	ź	296.4382	302.2075
Frequen	icies	322.3	779	3	335.2823	341.8188
Frequen	icies	346.8	290	3	365.0653	374.0852
Frequen	icies	376.7	450	3	378.1090	385.8975
Frequen	icies	393.1	320	4	402.1469	403.2616
Frequen	icies	403.7	223	4	105.8479	417.8633
Frequen	icies	419.0	800	4	421.1941	427.2165
Frequen	icies	432.4	333	2	433.0683	436.5095
Frequen	icies	448.1	754	2	465.2322	484.4477
Frequen	icies	486.5	917	4	190.2685	491.8064
Frequen	icies	498.3	139	4	199.1894	504.6645
Frequen	icies	506.7	133	Ę	529.0340	529.9693
Frequen	icies	530.4	589	Ę	538.9596	551.6724
Frequen	icies	557.8	843	1	559.8996	565.3912
Frequen	cies	567.0	782		568.5815	570.3863
Frequen	icies	578.6	827	f	504 3133	607 6287
Frequen	icies	615.7	960	e	519 0857	620 8455
Frequen	icies	625.2	290	f	526 7540	644 3702
Frequen	icies	648.9	620	f	520.7540	654 7304
Frequen	icies	657.7	573	f	559 2153	666 5046
Frequen		675.3	377	é	579 5000	682 2013
Frequen		690.3	8/8	-	709 3698	712 6773
Eroquon		715.0	260	-	723 6000	720 5625
Eroquon	icies	726.1	025	-	746 0207	751 9422
Frequen	icies	750.1	1035	-	740.0297	751.8423
Erequen	icies	765 1	972	-	765 5720	777 5474
Frequen	icies	ר כסי. ב בקד	073	-	100.0/30 774 E252	705 7622
Frequen	icies	1/3.3	520		14.335Z	/95./623
Frequen		/98.6	047	2	0/202.05/b	814.9/13
Frequen	icies	0/L.9	94Z	2	040.0432	030.3590
⊢requen	icies	845.4	011	5	340.3518	850.4844
Frequen	icies	801.1	252	5		8/0.0663
⊢requen	icies	8/1.4	353	5	3/3.069/	875.1949
+requen	icles	8/9.2	132	ξ.	381.5549	881.7495
Frequen	icies	888.8	458	8	589.7789	891.3972

Frequencies	904.0686	915.8512	916.8031	
Frequencies	932.2278	939.5908	941.0604	
Frequencies	942.7470	946.1373	951.5148	
Frequencies	963.8929	971.1811	980.9954	
Frequencies	981.7461	983.5953	985.8061	
Frequencies	990.4486	991.7024	992.5732	
Frequencies	995.5739	1000.1454	1002.7458	
Frequencies	1004.2675	1004.5745	1005.0214	
Frequencies	1006.1581	1008.9797	1015.8350	
Frequencies	1018.8292	1019.7718	1030.1213	
Frequencies	1035.3821	1046.2880	1047.3928	
Frequencies	1048.3388	1049.8752	1051.0282	
Frequencies	1052.8895	1058.9932	1064.0885	
Frequencies	1073.7059	1079.3908	1090.6934	
Frequencies	1091.1209	1103.1836	1109.6575	
Frequencies	1111.5665	1117.4121	1136.9626	
Frequencies	1140.0204	1144.6351	1159.4081	
Frequencies	1162.4531	1163.6942	1166.3776	
Frequencies	1170.0281	1173.0824	1174.8999	
Frequencies	1177.8068	1180.7040	1188.2920	
Frequencies	1189.2042	1196.4592	1200.3344	
Frequencies	1203.0352	1206.0068	1207.1828	
Frequencies	1211.9715	1212.4567	1214.4515	
Frequencies	1222.2553	1242.1075	1249.5416	
Frequencies	1253.1329	1256.4405	1257.9286	
Frequencies	1260.7425	1270.6378	1272.6211	
Frequencies	1282.7745	1287.8697	1297.2292	
Frequencies	1298.9039	1302.5321	1302.9714	
Frequencies	1312.8098	1315.8253	1320.8691	
Frequencies	1324.4011	1327.7716	1341.2892	
Frequencies	1342.4437	1346.2282	1349.1842	
Frequencies	1351.9101	1356.1534	1360.0928	
Frequencies	1360.7092	1365.5092	1367.9781	
Frequencies	1394.6754	1408.5138	1414.1448	
Frequencies	1415.6258	1419.1491	1427.6876	
Frequencies	1433.0782	1442.4568	1448.9410	
Frequencies	1466.2316	1480.6000	1482.3875	
Frequencies	1485.8216	1487.1624	1489.8902	
Frequencies	1492.2772	1494.3736	1497.6071	
Frequencies	1499.1308	1500.4223	1502.8719	
Frequencies	1508.1311	1508.5868	1513.2541	
Frequencies	1518.2025	1519.4706	1528.3990	
Frequencies	1531.4898	1546.9259	1550.7992	
Frequencies	1552.2881	1557.6777	1601.2693	
Frequencies	1604.3437	1646.2019	1651.8510	
Frequencies	1654.9199	1658.3813	1662.4099	
Frequencies	1665.6589	16/3.4850	16/9.4412	
Frequencies	1700.0049	1700.3020	1701.7821	
Frequencies	1716.0048	1713.2359	1/15.6255	
Frequencies	1/16.6599	1/19.8868	3079.5832	
Frequencies	3082.1027	3084.8301	3080.4848	
Frequencies	3140.1082	3140.2448	3142.8099	
Frequencies	3152.1100	3156.3222	3167.0094	
Frequencies	2100.0040	0120.0210 0022 0022	2202 8062	
Frequencies	2206 1252	3200.7708	2203.0002	
Frequencies	3200.1552	3200.4347	3210.2303	
Frequencies	3210.3370	3212.4203	3215 6824	
Frequencies	3224.2007	2777 7750	3777 6796	
Frequencies	2775 7/01	3222.2730	3222.0200	
Frequencies	3223.7491 3777 9171	3778 8300	3227.4321	
Frequencies	3221 6/67	3737 9165	3231.3023	
Frequencies	3231.0402	3238 3202	3230.4332	
Frequencies	3230.1372	3230.3202	3254 2640	
- equencies ==	5240.J44J	JZ7/.1/J1	5254.2040	

3330.4644

Frequencies -- 3255.8545

SCF Done: E(RM062X/DGDZVP) = -3995.07424617Sum of electronic and zero-point Energies=-3994.145600Sum of electronic and thermal Energies=-3994.076824Sum of electronic and thermal Free Energies=-3994.251549SCF Done: E(RM062X/DGTZVP/SMD) = -3995.87663314

Cat a I1b_S

Center	Aton	nic A [.]	tomic	Coordinates	(Angstroms)
Number	Νι	ımber	Туре	X Y	Z
1	15	0	-0.149419	0.073272	0.432866
2	8	0	0.115333	0.040713	2.033840
3	8	0	1.365984	0.251649	-0.154298
4	8	0	-0.850897	1.339792	0.047446
5	8	0	-0.729171	-1.255860	0.070054
6	6	0	0.772539	1.119791	2.598879
7	6	0	2.188020	-0.853271	0.008506
8	6	0	2.154993	1.054598	2.731428
9	6	0	0.055126	2.262232	2.991644
10	6	0	2.910263	-0.998792	1.186148
11	6	0	2.198716	-1.841598	-0.986409
12	6	0	3.132995	-0.047195	2.351896
13	6	0	2.842300	2.143729	3.275805
14	6	0	0.766588	3.300187	3.607694
15	6	0	3.597474	-2.195381	1.416294
16	6	0	2.980668	-2.981781	-0.768992
17	6	0	3.366244	-1.068605	3.498777
18	6	0	4.423656	0.797297	2.137976
19	6	0	4.334420	1.914594	3.192376
20	6	0	2.152850	3.253407	3.751440
21	6	0	4.140150	-2.222152	2.829106
22	6	0	3.660525	-3.177746	0.434595
23	1	0	3.001975	-3.749665	-1.537941
24	1	0	3.891631	-0.625176	4.349569
25	1	0	2.393230	-1.430821	3.846248
26	1	0	5.332482	0.193569	2.212155
27	1	0	4.387143	1.237680	1.135676
28	1	0	4.732261	1.583818	4.158671
29	1	0	5.220868	-2.041132	2.840490
30	1	0	-2.389927	-1.687748	0.712466
31	8	0	-3.365780	-1.756664	0.678623
32	6	0	-3.745472	-1.986943	-0.657567
33	6	0	-3.722715	-0.716939	-1.544648
34	1	0	-3.105513	-2.732834	-1.151043
35	1	0	-4.764229	-2.381881	-0.627975
36	8	0	-2.414138	-0.418633	-1.994948
37	6	0	-4.217980	0.466764	-0.682983
38	6	0	-4.597603	-0.942942	-2.769709
39	1	0	-1.762525	-0.836445	-1.390365
40	1	0	-5.106560	0.203602	-0.099719
41	1	0	-3.448307	0.768908	0.033618
42	6	0	-4.037343	-0.905039	-4.047573
43	6	0	-5.972829	-1.169785	-2.639392
44	6	0	-4.837568	-1.095088	-5.175382
45	1	0	-2.971474	-0.721986	-4.138821
46	6	0	-6.772013	-1.359937	-3.764337
47	1	0	-6.433204	-1.198077	-1.653425
48	6	0	-6.205450	-1.323876	-5.039617
49	1	0	-4.389674	-1.060753	-6.164805
50	1	0	-7.836933	-1.535956	-3.645977
51	1	0	-6.826967	-1.472141	-5.917501
52	1	0	-1.750202	1.781878	-1.061013
53	7	0	-2.102714	2.454769	-1.830492
54	6	0	-3.339994	2.667202	-2.205186

3643.1582

Frequer	ncies	14.01	.47 1	5.8284	22.8076
117	1	0	-2.865116	6.227865	-0.801694
116	1	0	-5.104700	-0.922426	4.490621
115	1	0	-0.441260	5.846296	-0.310887
114	1	0	-4.572122	4,779599	0.250299
112 113	1 6	0	-3.140546	2.079410	1.000207
111	1	0	-5./55658	0.934244	2.999541
110	1	0	-2.722556	-1.187468	5.188287
109	6	0	-4.360493	-0.219195	4.130479
108	6	0	-1.191652	5.248418	0.199362
107	1	0	0.253652	4.126088	1.272011
106	6	0	-3.517064	4.655060	0.484136
105	6	0	-4.101882	2.756286	1.938098
104	6	0	-4.719943	0.802619	3.303440
103	1	0	-1.006948	0.361875	4.391760
101	6	0	-2.996443	-0.371577	4.526801
101	6	0	-0.803486	4.289471	1.092253
<i>33</i> 100	6	0	-3.143535	3.624826	1.408903
30 99	6	0	-2.037610	1 722221	2 802834
97 27	0 6	0	-1./02/8U	3.43/2/5 0.480715	1.701953 4 078488
96	b	U	-2.365523	1.563479	3.185210 1.761052
95	6	0	-1.390891	2.436242	2.665749
94	1	0	0.215828	4.179916	3.930345
93	1	0	1.932306	2.277941	-5.675498
92	1	0	-2.596846	-5.242749	-3.015983
91	1	0	3.499588	2.051615	-3.738934
90	1	0	0.151045	0.604088	-6.018199
89	6	0	1.811976	1.452068	-4.980572
88	1	0	-0.959633	-1.464874	-5.358402
87	1 1	0	-1.241001	-3.333607	-4 668436
ده ۶۶	1	0	-1.000071	-4.322423	-2.03/412
85	6	0	-1 800071	-4 522425	-2.857412
کک 21	1 6	0	3.23/968 2.699217	U.231632 1 328101	-2.120/89
82 02	6 1	0	U.826/50	0.528393	-5.1/UU14
81	6	U	-0.328956	-1.530803	-4.4/3108
80	6	U	-1.568388	-3.538644	-3.//3/22
/9	1	0	0.533579	-3./10886	-0.502891
78	6	0	-1.016322	-4.583283	-1.663838
77	6	0	2.554661	0.310888	-2.966823
76	6	0	0.654805	-0.565230	-4.259560
75	6	0	-0.526052	-2.576278	-3.569970
74	6	0	-0.012278	-3.685602	-1.439033
73	6	0	1.516253	-0.669352	-3.114632
72	6	0	0.297187	-2.662451	-2.397401
71	6	0	1.330946	-1.720771	-2.194855
09 70	1 1	0	3.300843 4 879557	2 817037	2 904890
60 60	1 1	0	2.00455/	4.091/42 -3.185/02	4.193254 3 315/3/
6/ 60	1 1	0	4.204133 2.604527	-4.102380	U.6U8635 / 10275/
66 67	1	0	1.055924	5.///075	-4.331/69
65	1	0	2.070760	4.155037	-2.762180
64	1	0	-1.390282	5.791785	-4.740474
63	6	0	0.421296	5.068142	-3.809858
62	1	0	0.643313	2.506464	-1.529021
61	6	0	0.996892	4.147398	-2.917417
60	6	0	-0.949810	5.085391	-4.044771
59	6	0	0.222255	3.226471	-2.226896
58	6	0	-1.734465	4.162991	-3.351134
50	16 16	0	-4./80345 -3.465134	3 911666	-1.032582 -3.412677
50	6	0	-1.155432	3.261490	-2.452903

Frequencies	25 2503	28 9004	3/ /87/
Frequencies	25.2505	40.0022	49 7092
Frequencies	55.8041	40.9923	48.7082
Frequencies	53.8889	58.8675	59.7560
Frequencies	68.9002	74.7161	78.0438
Frequencies	89.1407	93.2714	99.9695
Frequencies	101.6435	105.6160	108.5441
Frequencies	121.5778	124,1187	130.3490
Eroquoncios	124 0677	142 4521	144 3060
Frequencies	140 2425	142.4551	169 4175
Frequencies	149.2435	159.8402	108.4175
Frequencies	169.1983	176.8990	192.9388
Frequencies	196.8698	204.4776	211.6967
Frequencies	222.6019	231.4157	237.3680
Frequencies	240.5447	243.3308	245.9412
Frequencies	257 9571	265 5196	280 2033
Frequencies	290 7070	20/ 2723	296.8566
Frequencies	201.0007	204.2723	200.0000
Frequencies	301.0897	306.4822	322.0892
Frequencies	328.7583	337.9434	345.3259
Frequencies	348.3670	366.0541	373.6064
Frequencies	377.0385	380.4397	385.4371
Frequencies	398.7614	403.3158	403.6231
Frequencies	404.3912	409.8420	417.8913
Frequencies	419 0266	424 8567	430 6590
Eroquoncios	122 5424	126.4469	130.0330
Frequencies	455.5424	430.4409	444.0100
Frequencies	468.6841	480.7300	485.0965
Frequencies	487.4117	490.9482	497.0651
Frequencies	498.0854	504.6321	507.9635
Frequencies	523.3886	527.0955	531.8814
Frequencies	539.9023	550.6803	556.4770
Frequencies	558 5814	563 6848	566 7682
Frequencies	569 7773	581 4710	586 7067
Eroquoncios	605 1777	608 2487	610.0580
riequencies	615 0007	008.2487	010.0580
Frequencies	615.9927	619.3426	621.3285
Frequencies	626.5303	631.0217	635.9069
Frequencies	643.9080	648.7313	650.6627
Frequencies	654.7437	658.2900	661.1301
Frequencies	670.4533	682.2171	690.4767
Frequencies	705.5479	710.4319	712.7737
Frequencies	716 6684	722 1947	727 6976
Eroquoncios	722 5240	722.2517	744 4070
Frequencies	733.3340	755.8255	744.4070
Frequencies	747.3399	/50.599/	754.3810
Frequencies	/58./431	/69.91/3	//1.3833
Frequencies	773.5407	776.5816	792.3163
Frequencies	796.8645	798.7539	809.9916
Frequencies	812.6276	827.9617	835.9681
Frequencies	842.1888	842.9113	851.5771
Frequencies	859.5112	860.5386	861.7245
Frequencies	865 9849	870 1400	871 0876
Eroquoncios	975 4991	970 6919	890 0917
Frequencies	000 1100	07 0.0010	000.3017
Frequencies	888.1109	890.8290	891.9031
Frequencies	892.9491	906.9007	915./306
Frequencies	934.0655	938.0771	940.1771
Frequencies	942.9924	949.1601	951.9711
Frequencies	957.6317	971.0269	974.1404
Frequencies	975.6019	976.5324	982.3544
Frequencies	983 7643	985 8483	990 4991
Frequencies	991 8439	995 7905	997 6673
Eroquencies	221.0422	1000 2150	1002 0220
Frequencies	333.0394	1000.3159	1010 1057
Frequencies	1002.4359	1004.9299	1019.105/
Frequencies	1019.6847	1021.9731	1023.5042
Frequencies	1035.1227	1046.2433	1046.5738
Frequencies	1047.8325	1050.1570	1052.8019
Frequencies	1059.6325	1067.1067	1071.8121
Frequencies	1077,8930	1092 2151	1104 0049
Frequencies	1108 5972	1113 27/5	1118 5304
Eroquencies	1124 2524	1126 0561	11/0.06/1
Frequencies	1145 5057	1155.0304	1140.9041
Frequencies	1145.5867	1155.6763	1160.6462

Frequencies 1163.9552	1164.8836	1168.8641	6	6	0	0.500990	1.099926	2.188063
Frequencies 1171.1334	1173.9098	1177.7343	7	6	0	2.369263	-1.099660	0.110059
Frequencies 1182.5962	1184.7773	1194.8119	8	6	0	1.850631	1.143459	2.510894
Frequencies 1199.1274	1203.1920	1203.6276	9	6	0	-0.360632	2.169435	2.478254
Frequencies 1204.3963	1206.9333	1210.6147	10	6	0	2.917690	-1.041278	1.384959
Frequencies 1211.4578	1213.0664	1222.4409	11	6	0	2.461470	-2.260208	-0.675911
Frequencies 1247.3130	1250.2195	1251.6968	12	6	0	2.941144	0.088599	2.402188
Frequencies 1255.1418	1256.7610	1258.7885	13	6	0	2.379411	2.315306	3.062218
Frequencies 1272.2177	1274.5292	1282.6298	14	6	0	0.181240	3.285268	3.127549
Frequencies 1293.7369	1297.0922	1298.8346	15	6	0	3.563720	-2.168631	1.901504
Frequencies 1300.4849	1303.6081	1312.1135	16	6	0	3.192020	-3.338794	-0.161755
Frequencies 1313.2284	1315.7047	1318.1394	17	6	0	3.055963	-0.733328	3.719471
Frequencies 1321.5145	1328.2065	1342.5431	18	6	0	4.189076	1.001692	2.250939
Frequencies 1342.6145	1344.4972	1347.7094	19	6	0	3.886820	2.212600	3.156815
Frequencies 1351.0458	1360.0406	1365.2547	20	6	0	1.547622	3.377576	3.398786
Frequencies 1366.4955	1368.2320	1400.7100	21	1	0	-0.478849	4.111808	3.377206
Frequencies 1402.8783	1407.2686	1411.3608	22	6	0	3.938601	-1.939065	3.348385
Frequencies 1414.4669	1415,2122	1431.8478	23	6	0	3.736045	-3.307110	1.122444
Frequencies 1439.8745	1444,7341	1455.8023	24	1	0	3,282540	-4.235597	-0.769049
Frequencies 1481.5266	1481.9858	1484.0866	25	1	0	3.451239	-0.137728	4.547162
Erequencies 1486 6500	1489 7186	1490 7638	26	1	0	2 056341	-1 083748	3 998310
Frequencies 1492 9567	1494 8441	1496 8184	27	1	0	5 116582	0 482642	2 509005
Frequencies 1498 5560	1499 3682	1501 1443	28	1	0	4 256918	1 329542	1 208326
Erequencies 1507 2116	1507 9733	1511 2734	20	1	0	4 204526	2 029662	4 189601
Erequencies 1514 7943	1522 1430	1511.2754	30	1	0	5 004103	-1 701020	3 444718
Erequencies 1529 3211	1546 1508	1546 5943	31	1	0	-0 347338	1 707924	-2 250116
Erequencies 15/9 9399	1596 / 91/	1599 9271	32	2	0	-0.347338	1 802620	-3 112854
Erequencies 1601 6020	1646 2112	16/8 6819	32	6	0	-2.092350	2 /01382	-2 70/168
Frequencies 1661.0020	1656 5759	1660 9042	24	6	0	2.00200	1 205274	2.704108
Frequencies 1654.3536	1674 2052	1676 2970	24 2E	1	0	-2.929436	2.007012	1 749077
Frequencies 1004.1487	1609 1256	1609 9025	33	1	0	-1.991094	3.00/913 3.101333	-1.746077
Frequencies 1087.7474	1098.1250	1712 2520	20	1	0	-2.400077	0.711101	1 226270
Frequencies 1704.5523	1719.9500	2460 1412	37	0 C	0	-3.080859	0.711101	-1.330370
Frequencies 1/10.1078	2077 45 67	2409.1413	38	6	0	-1.860283	1 212050	-3.405577
Frequencies 3077.4116	3077.4567	3081.4469	39	5	0	-4.288152	1.312850	-3.295999
Frequencies 3086.3918	3089.5409	3108.8860	40	1	0	-2.299962	0.969215	-0.813513
Frequencies 3141.4172	3144.0313	3154.3335	41	1	0	-1.771423	0.419664	-4.485642
Frequencies 3154.6229	3157.9989	31/8.43/4	42	1	0	-1.22/313	-0.32/003	-2.8/6/99
Frequencies 3180.7546	3190.0949	3191.8220	43	6	0	-5.439450	0.993146	-2.5/5864
Frequencies 3194.7439	3198.4453	3201.6228	44	6	0	-4.403432	1./35136	-4.623210
Frequencies 3204.3077	3204.6249	3205.5072	45	6	0	-6.691541	1.085123	-3.183004
Frequencies 3207.1690	3209.1707	3211.8454	46	1	0	-5.339930	0.655888	-1.549443
Frequencies 3217.5151	3219.3555	3219.8412	47	6	0	-5.653898	1.821811	-5.230394
Frequencies 3220.2725	3220.3865	3221.5893	48	1	0	-3.515249	1.988058	-5.200058
Frequencies 3223.1767	3226.9176	3232.3719	49	6	0	-6.803801	1.496124	-4.510170
Frequencies 3233.0739	3235.3671	3235.4058	50	1	0	-7.582165	0.825464	-2.618613
Frequencies 3235.4819	3242.5825	3243.5178	51	1	0	-5.730476	2.142389	-6.264759
Frequencies 3243.8505	3245.2268	3250.8034	52	1	0	-7.779120	1.562104	-4.982330
Frequencies 3253.4663	3574.0066	3644.6630	53	1	0	-2.056694	-1.679779	-1.237886
			54	7	0	-2.881240	-2.304277	-1.350935
SCF Done: E(RM062X/DGDZVP	') = -3995.13267	7500	55	6	0	-3.571945	-2.436577	-2.482662
Sum of electronic and zero-poi	nt Energies=	-3994.204104	56	6	0	-3.264371	-3.112525	-0.291646
Sum of electronic and thermal	Energies=	-3994.135081	57	16	0	-3.340736	-1.618455	-3.934070
Sum of electronic and thermal	Free Energies=	-3994.310404	58	16	0	-4.829814	-3.643760	-2.281019

Sum of electronic and thermal Free Energies= -3994.310404 SCF Done: E(RM062X/DGTZVP/SMD) = -3995.93630212

Cat a TS1c_S

Center	Ato	mic At	omic	Coord	linate	s (Angstroms)
Number	N	umber	Туре	Х	Y	Z
1	15	0	0.079566	0.04	2670	-0.105938
2	8	0	-0.001430	-0.00	3626	1.518292
3	8	0	1.681414	0.006	5321	-0.363655
4	8	0	-0.379849	1.378	3290	-0.630508
5	8	0	-0.595709	-1.19	7448	-0.582863

0 -4.335277 -3.948343 -0.627261

0 -2.677423 -3.139894 0.974130

0 -4.847536 -4.851907 0.303842 0 -3.192965 -4.043237 1.896245

-1.846947 -2.475136 1.201354

-4.262617 -4.891053 1.567426

-5.677093 -5.504751 0.052067

-2.757622 -4.092669 2.889622

-4.643531 -5.588338 2.306641

4.382424 3.126787 2.820497

3.741978 -2.815638 3.970848

1.953767 4.280865 3.845816 0 4.252816 -4.177657 1.517206

Frequencies -- 348.0302

Frequencies -- 376.3722

364.2459

378.1480

373.1023

385.6251

402.9252

414.6054

427.0511

438.3692

483.0436

491.4057

502.2567

531.0383

547.9104

565.0884

571.5046

604.5727

618.5900

629.5915

649.4355

661.8259

686.4954

712.0162 731.5878

753.9480

758.2258

772.7788

796.9663

813.5778

836.8434

851.7299

872.7083

877.3987

883.6530

893.0453

928.6232

940.2788

951.0033

979.0682

987.5912

992.0898

1004.1092

1006.7803 1017.5280

1032.2921 1048.1576

1051.3898

1062.9968

1089.6712

1108.6022

1137.9498

1155.8897

1165.1614

1179.8685

1187.2681 1199.9572

1211.5697

1215.5173

1249.0284 1257.2835

1272.2353

1294.7059

1301.6764

1322.1293

1341.0673

1349.3671

1359.7230

1368.8165

1412.8703

1407.7174

-1.788340 2.134760 2.047551

-2.277094 3.125681 1.164102

72

73

6

6

Frequencies -- 323.8088

335.1502

342.6756

0

0

74	6	0	-2.644966	1.105415	2.490337	Frequencies	390.4264	401.6233
75	6	0	-1.441704	4.154673	0.611544	Frequencies	403.4456	404.4144
76	6	0	-3.652603	3.094983	0.751995	Frequencies	418.2840	421.7637
77	6	0	-4.001939	1.051559	2.020740	Frequencies	431.5860	435.0911
78	6	0	-2.218781	0.089630	3.411448	Frequencies	443.6898	465.8340
79	6	0	-1.953925	5.117070	-0.214414	Frequencies	489.2393	489.6744
80	1	0	-0 380486	4 147471	0 832648	Frequencies	499 9300	500 3220
81	6	0	-4 148832	4 108325	-0 130869	Frequencies	507 3494	527 2446
82	6	0	1.170774	2 054858	1 120256	Frequencies	521 /561	540 2228
02	6	0	4.473774	2.034838	2 421645	Frequencies	551.4501	540.2328
03	1	0	-4.645710	-0.037993	2.421045	Fiequencies	555.7024	558.0702
84	1 C	0	-1.214615	0.135630	3.819640	Frequencies	567.8648	569.4662
85	6	0	-3.054684	-0.922606	3./841/4	Frequencies	581.7082	598.9080
86	6	0	-3.333525	5.105238	-0.585374	Frequencies	607.2191	615.6744
8/	1	0	-1.29/802	5.881826	-0.619089	Frequencies	621.7822	627.5294
88	1	0	-5.191573	4.061735	-0.434795	Frequencies	646.8146	648.6060
89	1	0	-5.511264	2.018920	0.835141	Frequencies	655.9609	657.7031
90	6	0	-4.385134	-1.004014	3.266472	Frequencies	675.2953	678.1739
91	1	0	-5.856924	-0.078002	2.030345	Frequencies	690.6130	708.7502
92	1	0	-2.707055	-1.677360	4.483815	Frequencies	717.5818	724.6583
93	1	0	-3.720803	5.871411	-1.250023	Frequencies	737.3670	753.3469
94	1	0	-5.025111	-1.832467	3.554607	Frequencies	755.5741	756.9753
95	6	0	1.716120	-2.383818	-1.962070	Frequencies	766.1829	769.5945
96	6	0	0.685849	-3.345966	-2.067113	Frequencies	777.8940	780.0878
97	6	0	1.967042	-1.498935	-3.028334	Frequencies	799.2568	811.7829
98	6	0	0 292972	-4 189170	-0 973518		826 0069	834 2957
99	6	0	-0.075737	-3 439156	-3 279854	Frequencies	843 5602	845 6387
100	6	0	1 162192	-1 565591	-4 216578	Frequencies	863 //29	870 4640
100	6	0	2 995559	-0.499838	-4.210378	Frequencies	875 1516	876 8740
101	. C	0	0.716420	E 100472	1 106400	Frequencies	000 2071	001 7225
102	. 0	0	-0.710439	-3.100472	-1.100409	Frequencies	000.3071	002.7555
103		0	0.781602	-4.072693	-0.012475	Frequencies	887.6031	889.1928
104	6	0	-1.115138	-4.420283	-3.390547	Frequencies	904.4554	919.8430
105	6	0	0.169756	-2.541263	-4.321/25	Frequencies	935.4737	939.6506
106	6	0	1.385105	-0.617862	-5.269216	Frequencies	942.2707	949.9769
107	1	0	3.634997	-0.452401	-2.096541	Frequencies	970.5262	970.7437
108	6	0	3.179108	0.385466	-3.994400	Frequencies	980.1683	987.1069
109	6	0	-1.421762	-5.237140	-2.341159	Frequencies	991.0763	991.5181
110) 1	0	-1.008887	-5.709300	-0.255402	Frequencies	1000.0455	1003.3715
111	. 1	0	-1.670120	-4.480081	-4.323537	Frequencies	1004.2143	1005.7877
112	1	0	-0.438069	-2.594821	-5.223065	Frequencies	1012.1540	1015.3630
113	6	0	2.354271	0.335785	-5.160848	Frequencies	1017.7724	1021.7243
114	1	0	0.762019	-0.678149	-6.158525	Frequencies	1035.6325	1045.8136
115	1	0	3.959029	1.137286	-3.923669	Frequencies	1048.9068	1050.2112
116	5 1	0	-2.215558	-5.973320	-2.430637	Frequencies	1051.8947	1058.9168
117	' 1	0	2.509966	1.054538	-5.959351	Frequencies	1076.0615	1078.9306
						Frequencies	1092,7190	1101 1077
						Frequencies	1113 6231	1122 1658
Freque	encies	-535 3	208	10 9249	16 5920	Frequencies	1140 4876	1141 6130
Erocu	iencies	1.9 6	102	26 20/1	30 5120	Eroquoncios	1162 6507	116/ 2102
Frequ	iencies	10.0. 21 11	192	20.2941 25 0010	20 C2C1	Frequencies	1160 1226	1175 6100
Frequ	iencies	34.14	∠07 100	55.9212 F1 1202	33.0301	Frequencies	1100.4230	1102 2552
⊦requ -	iencies	50.4	122	51.1282	54.8654	Frequencies	1180.2334	1182.3552
Frequ	iencies	60.54	481	63.//29	66.4964	Frequencies	1191.6/63	1195.9131
Frequ	uencies	75.66	547	83.5788	91.8862	Frequencies	1202.1511	1204.8382
Frequ	uencies	94.83	326 1	100.3533	104.1125	Frequencies	1212.5203	1213.7271
Frequ	uencies	108.4	730	115.2352	120.7578	Frequencies	1221.8054	1243.8686
Frequ	uencies	129.0	967	136.9571	144.4449	Frequencies	1251.9850	1255.1677
Frequ	uencies	145.6	585	150.0602	161.2617	Frequencies	1260.0260	1270.9080
Frequ	uencies	169.6	435	177.4161	184.8873	Frequencies	1281.8947	1286.0454
Frequ	uencies	194.2	494	196.8967	199.6933	Frequencies	1299.6526	1300.3937
Freau	uencies	202.5	984	211.1434	232.1451	Frequencies	1311.6935	1316.5070
Freau	uencies	237.3	704	238.5775	240.6267	Frequencies	1322.2652	1328.1579
Frequ	iencies	245 5	252	248.7801	274 7479	Frequencies	1343.6299	1346 0561
Frequ	iencies	275.9	927	283 8720	293 9267	Frequencies	1351 5245	1355 6557
Frequ	iencies	294 6	644	298 6829	302 1923	Frequencies	1360 9678	1367 5345
i i equ	ACTICICS	204.0		200.0020	202.1223	i cquencies	1000.0010	101.0040

Frequencies -- 1394.8377

Frequencies	1415.7861	1417.8767	1436.0030
Frequencies	1441.7336	1443.5532	1445.7203
Frequencies	1460.7261	1481.2293	1483.1770
Frequencies	1483.8697	1484.9589	1489.7749
Frequencies	1492.5178	1493.7722	1497.9932
Frequencies	1498.6049	1499.5742	1500.5380
Frequencies	1503.7740	1508.2880	1513.8350
Frequencies	1515.9158	1517.5794	1527.6354
Frequencies	1530.4281	1546.2147	1549.2087
Frequencies	1553.5968	1558.9588	1600.6840
Frequencies	1602.7423	1647.3838	1648.2485
Frequencies	1655.7441	1657.9689	1662.5323
Frequencies	1665.2244	1670.0484	1679.8832
Frequencies	1685.5860	1698.9403	1701.5258
Frequencies	1704.8056	1712.2133	1713.2606
Frequencies	1717.1468	1718.5471	3076.4086
Frequencies	3078.3718	3083.7863	3086.8961
Frequencies	3128.0533	3139.7793	3142.2891
Frequencies	3150.5401	3151.9059	3155.7279
Frequencies	3181.9445	3197.9959	3199.5882
Frequencies	3203.9197	3204.0706	3204.5608
Frequencies	3205.1085	3205.8216	3205.9754
Frequencies	3206.3165	3211.0690	3216.1964
Frequencies	3217.2868	3219.9388	3220.0349
Frequencies	3221.5546	3221.5697	3222.1056
Frequencies	3222.9758	3226.8328	3229.6248
Frequencies	3231.4966	3231.6866	3232.9464
Frequencies	3233.0624	3234.4867	3237.0426
Frequencies	3238.9283	3241.5722	3246.9153
Frequencies	3248.7281	3250.6719	3252.5307
Frequencies	3254.8938	3338.3821	3661.2363

SCF Done: E(RM062X/DGDZVP) = -3995.07397851Sum of electronic and zero-point Energies=-3994.145241Sum of electronic and thermal Energies=-3994.076408Sum of electronic and thermal Free Energies=-3994.252244SCF Done: E(RM062X/DGTZVP/SMD) = -3995.87720105

Cat a l1c_S

Atomic	A	tomic	Coordinates	s (Angstroms)
Numl	ber	Туре	ХҮ	Z
15	0	-0.099252	-0.038836	0.170419
8	0	0.003327	0.013208	1.799988
8	0	1.462845	0.030777	-0.266241
8	0	-0.748575	1.188764	-0.382423
8	0	-0.659940	-1.396600	-0.127868
6	0	0.418006	1.233524	2.311737
6	0	2.309689	-0.938509	0.243492
6	0	1.775298	1.490269	2.445968
6	0	-0.547331	2.208529	2.600964
6	0	2.990912	-0.663574	1.423585
6	0	2.440789	-2.177994	-0.403553
6	0	2.984257	0.579297	2.301601
6	0	2.190615	2.780321	2.792307
6	0	-0.102316	3.461119	3.037433
6	0	3.826599	-1.639530	1.974285
6	0	3.345381	-3.103025	0.134366
6	0	3.365194	-0.053751	3.672321
6	0	4.063089	1.619322	1.890665
6	0	3.697792	2.884778	2.693546
6	0	1.259677	3.762502	3.111093
1	0	-0.842354	4.222500	3.269944
6	0	4.348484	-1.182855	3.317887
	Atomic Numl 15 8 8 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Atomic Atomic Atomic 15 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 1 0 6 0 1 0	Atomic Atomic Number Type 15 0 -0.099252 8 0 0.003327 8 0 1.462845 8 0 -0.748575 8 0 -0.659940 6 0 0.418006 6 0 2.309689 6 0 2.309689 6 0 2.309689 6 0 2.309689 6 0 2.309689 6 0 2.309689 6 0 2.309689 6 0 2.440789 6 0 2.990912 6 0 2.940757 6 0 2.940757 6 0 3.826599 6 0 3.345381 6 0 3.345381 6 0 3.65174 6 0 3.657792 6 0 1.259677	AtomicAtomicCoordinatesNumberTypeXY150 -0.099252 -0.038836 80 0.003327 0.013208 80 1.462845 0.03777 80 -0.748575 1.188764 80 -0.659940 -1.396600 60 0.418006 1.23524 60 2.309689 -0.938509 60 2.309689 -0.938509 60 2.90912 2.063574 60 2.94078 2.177944 60 2.94078 2.177944 60 2.94078 3.77774 60 2.94078 3.777774 60 2.94078 $3.777777777777777777777777777777777777$

23	6	0	4.036994	-2.84/0/2	1.318124
24	1	0	3.464878	-4.058716	-0.369258
25	1	0	3.772978	0.683359	4.369581
26	1	0	2.461706	-0.483021	4.118722
27	1	0	5.079535	1.261180	2.078722
28	1	0	3.962382	1.821083	0.819174
29	1	0	4.159409	2.875942	3.687595
30	1	0	5.373944	-0.806009	3.230047
31	1	0	-0.765563	1.341977	-2.210454
32	8	0	-1.158810	1.252342	-3.101969
33	6	0	-2.548214	1.451959	-2.991198
34	6	0	-3.319173	0.225725	-2.440123
35	1	0	-2.797598	2.306112	-2.344982
36	1	0	-2.910954	1.672981	-3.998422
37	8	0	-3.259051	0.152719	-1.027609
38	6	0	-2.653458	-1.043827	-3.017758
39	6	0	-4.784342	0.334152	-2.839178
40	1	0	-2.469370	0.643915	-0.710957
41	1	0	-2 445541	-0 944817	-4 088338
42	1	0	-1 694773	-1 236286	-2 525801
43	6	0	-5 773868	0.427661	-1 859322
43	6	0	-5 164302	0.427001	-4 186505
44	6	0	-7 120333	0.511204	-9.100505
45	1	0	5 469345	0.301310	0.017770
40		0	-5.408545 6 E07E40	0.434407	-0.017770 A E A 7772 A
47	1	0	-0.307349	0.365500	4.047734
48	I C	0	-4.410459	0.229930	-4.90/438
49	5	0	-7.492569	0.479527	-3.563221
50	1	0	-7.881374	0.573888	-1.448523
51	1	0	-6.786286	0.363667	-5.59/012
52	1	0	-8.540156	0.535049	-3.843126
53	1	0	-1.999544	-1.952090	-0.434560
54	/	0	-2.821857	-2.653963	-0.354942
55	6	0	-3.635437	-3.047460	-1.303526
56	6	0	-2.996607	-3.292279	0.869198
57	16	0	-3.696985	-2.545828	-2.950824
58	16	0	-4.744536	-4.272353	-0.763513
58 59	16 6	0	-4.744536 -4.012344	-4.272353 -4.251999	-0.763513 0.825898
58 59 60	16 6 6	0 0 0	-4.744536 -4.012344 -2.260212	-4.272353 -4.251999 -3.049582	-0.763513 0.825898 2.031283
58 59 60 61	16 6 6 6	0 0 0 0	-4.744536 -4.012344 -2.260212 -4.317311	-4.272353 -4.251999 -3.049582 -5.022949	-0.763513 0.825898 2.031283 1.948594
58 59 60 61 62	16 6 6 6	0 0 0 0 0	-4.744536 -4.012344 -2.260212 -4.317311 -2.565982	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466	-0.763513 0.825898 2.031283 1.948594 3.143271
58 59 60 61 62 63	16 6 6 6 1	0 0 0 0 0 0	-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542
58 59 60 61 62 63 64	16 6 6 6 1	0 0 0 0 0 0 0	-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950
58 59 60 61 62 63 64 65	16 6 6 6 1 6 1	0 0 0 0 0 0 0 0	-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139
58 59 60 61 62 63 64 65 66	16 6 6 1 6 1 1	0 0 0 0 0 0 0 0 0	-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659
58 59 60 61 62 63 64 65 66 67	16 6 6 1 6 1 1 1	0 0 0 0 0 0 0 0 0 0	-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763
58 59 60 61 62 63 64 65 66 67 68	16 6 6 6 1 6 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0	-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750 4.012985	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112
58 59 60 61 62 63 64 65 66 67 68 69	16 6 6 6 1 6 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0	-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750 4.012985 4.357724	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719
58 59 60 61 62 63 64 65 66 67 68 69 70	16 6 6 6 1 6 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750 4.012985 4.357724 1.581035	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267
58 59 60 61 62 63 64 65 66 67 68 69 70 71	16 6 6 1 6 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750 4.012985 4.357724 1.581035 4.700642	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241 -3.598866	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267 1.736426
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72	16 6 6 1 6 1 1 1 1 1 1 1 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102988 -2.013996 -3.790750 4.012985 4.357724 1.581035 4.700642 -1.996399	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241 -3.598866 1.922441	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267 1.736426 2.387362
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73	16 6 6 1 6 1 1 1 1 1 1 6 6		-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750 4.012985 4.357724 1.581035 4.700642 -1.996399 -2.716189	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241 -3.598866 1.922441 2.644877	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267 1.736426 2.387362 1.411490
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74	16 6 6 1 6 1 1 1 1 1 1 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750 4.012985 4.357724 1.581035 4.700642 -1.996399 -2.716189 -2.639521	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241 -3.598866 1.922441 2.644877 0.916437	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267 1.736426 2.387362 1.411490 3.137328
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75	16 6 6 1 6 1 1 1 1 1 1 6 6 6 6		-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750 4.012985 4.357724 1.581035 4.700642 -1.996399 -2.716189 -2.639521 -2.094002	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241 4.762241 2.644877 0.916437 3.615956	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267 1.736426 2.387362 1.411490 3.137328 0.556503
58 59 60 61 62 63 64 65 66 67 68 70 71 72 73 74 75 76	16 6 6 1 6 1 1 1 1 1 6 6 6 6 6 6		-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750 4.012985 4.357724 1.581035 4.700642 -1.996399 -2.716189 -2.639521 -2.094002 -4.112003	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241 2.64877 0.916437 3.615956 2.374034	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267 1.736426 2.387362 1.411490 3.137328 0.556503 1.210967
58 59 60 61 62 63 64 65 66 67 68 70 71 72 73 74 75 76 77	16 6 6 1 6 1 1 1 1 1 6 6 6 6 6 6 6		-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750 4.012985 4.357724 1.581035 4.700642 -1.996399 -2.716189 -2.639521 -2.094002 -4.112003 -4.024592	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241 2.648877 0.916437 3.615956 2.374034 0.623035	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267 1.736426 2.387362 1.411490 3.137328 0.556503 1.210967 2.896400
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78	16 6 6 1 6 1 1 1 1 1 6 6 6 6 6 6 6 6 6		-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750 4.012985 4.357724 1.581035 4.700642 -1.996399 -2.716189 -2.639521 -2.094002 -4.112003 -4.012052 -1.966030	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241 2.598866 1.922441 2.644877 0.916437 3.615956 2.374034 0.623035 0.170472	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267 1.736426 2.387362 1.411490 3.137328 0.556503 1.210967 2.896400 4.162122
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79	16 6 6 1 1 1 1 1 1 6 6 6 6 6 6 6 6 6 6		-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750 4.012985 4.357724 1.581035 4.700642 -1.996399 -2.716189 -2.639521 -2.094002 -4.112003 -4.024592 -1.966030 -2.817974	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241 2.598866 1.922441 2.644877 0.916437 3.615956 2.374034 0.623035 0.170472 4.300175	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267 1.736426 2.387362 1.411490 3.137328 0.556503 1.210967 2.896400 4.162122 0.37361
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80	16 6 6 1 1 1 1 1 1 6 6 6 6 6 6 6 6 1		-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750 4.012985 4.357724 1.581035 4.700642 -1.996399 -2.716189 -2.639521 -2.094002 -4.112003 -4.024592 -1.966030 -2.817974 -1.023496	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241 2.644877 0.916437 3.615956 2.374034 0.623035 0.170472 4.300175 3.70382	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267 1.736426 2.387362 1.411490 3.137328 0.556503 1.210967 2.896400 4.162122 -0.377361 0.629834
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81	16 6 6 1 1 1 1 1 1 6 6 6 6 6 6 6 6 6 6		-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750 4.012985 4.357724 1.581035 4.700642 -1.996399 -2.716189 -2.639521 -2.094002 -4.112003 -4.024592 -1.966030 -2.817974 -1.023496 -4.839135	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241 2.644877 0.916437 3.615956 2.374034 0.623035 0.170472 4.300175 3.770382 3.116488	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267 1.736426 2.387362 1.411490 3.137328 0.555503 1.210967 2.896400 4.162122 -0.377361 0.629834 0.224048
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82	16 6 6 1 1 1 1 1 1 1 1		-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750 4.012985 4.357724 1.581035 4.700642 -1.996399 -2.716189 -2.639521 -2.094002 -4.112003 -4.024592 -1.966030 -2.817974 -1.023496 -4.839135 -4.731326	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241 -3.598866 1.922441 2.644877 0.916437 3.615956 2.374034 0.623035 0.170472 4.300175 3.770382 3.116488 1.365560	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267 1.736426 2.387362 1.411490 3.137328 0.555503 1.210967 2.896400 4.162122 -0.377361 0.629834 0.224048 1.949475
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 80 81 82 83	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.10298 -2.013996 4.012985 4.357724 1.581035 4.700642 -1.996399 -2.716189 -2.639521 -2.094002 -4.112003 -4.024592 -1.966030 -2.817974 -1.023496 -4.839135 -4.731326 -4.63118	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241 -3.598866 1.922441 2.644877 0.916437 3.615956 2.374034 0.623035 0.170472 4.300175 3.770382 3.176488 1.365560 -0.417416	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267 1.736426 2.387362 1.411490 3.137328 0.556503 1.210967 2.896400 4.162122 -0.377361 0.629834 0.924048 1.949475 3.66638
58 59 60 61 62 63 64 65 66 70 71 72 73 74 75 76 77 80 81 82 83 84	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.10298 -2.013996 4.012985 4.357724 1.581035 4.700642 -1.996399 -2.716189 -2.639521 -2.094002 -4.112003 -4.024592 -1.966030 -2.817974 -1.023496 -4.839135 -4.731326 -4.663118 -0.027023	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241 -3.598866 1.922441 2.644877 0.916437 3.615956 2.374034 0.623035 0.170472 4.300175 3.770382 3.116488 1.365560 -0.417416 0.396528	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267 1.736426 2.387362 1.736426 2.387362 1.411490 3.137328 0.556503 1.210967 2.896400 4.162122 -0.377361 0.629834 0.224048 1.949475 3.646638 4.381537
58 59 60 61 62 63 64 65 66 70 71 72 73 74 75 76 77 80 81 82 83 84 85	16 6 6 1 1 1 1 1 1 1 1		-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750 4.012985 4.357724 1.581035 4.700642 -1.996399 -2.716189 -2.639521 -2.094002 -4.112003 -4.024592 -1.966030 -2.817974 -1.023496 -4.839135 -4.731326 -4.63118 -0.927023 -2.614510	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241 -3.598866 1.922441 2.644877 0.916437 3.615956 2.374034 0.623035 0.170472 4.300175 3.770382 3.116488 1.365560 -0.417416 0.396528 -0.798529	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267 1.736426 2.387362 1.411490 3.137328 0.556503 1.210967 2.896400 4.162122 -0.377361 0.629834 0.224048 1.949475 3.646638 4.381537 4.873626
58 59 60 61 62 63 64 65 66 70 71 72 73 74 75 76 77 80 81 82 83 84 586	16 6 6 6 1 1 1 1 1 1 1 1		-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750 4.012985 4.357724 1.581035 4.700642 -1.966399 -2.716189 -2.639521 -2.094002 -4.112003 -4.024592 -1.966030 -2.817974 -1.023496 -4.839135 -4.731326 -4.63118 -0.927023 -2.614510	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241 2.644877 0.916437 3.615956 2.374034 0.623035 0.170472 4.300175 3.770382 3.116488 1.365560 -0.417416 0.39528 -0.798592 4.058591	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267 1.736426 2.387362 1.411490 3.137328 0.556503 1.210967 2.896400 4.162122 -0.377361 0.629834 0.224048 1.949475 3.646638 4.381537 4.873626
58 59 60 61 62 63 64 65 66 71 72 73 74 75 76 77 80 81 82 83 84 85 86 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750 4.012985 4.357724 1.581035 4.700642 -1.996399 -2.716189 -2.639521 -2.094002 -4.112003 -4.024592 -1.966030 -2.817974 -1.023496 -4.839135 -4.731326 -4.663118 -0.927023 -2.614510 -4.217616	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241 -3.598866 1.922441 2.644877 0.916437 3.615956 2.374034 0.623035 0.170472 4.300175 3.770382 3.116488 1.365560 -0.417416 0.396528 -0.798592 4.058581 5.017089	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267 1.736426 2.387362 1.411490 3.137328 0.556503 1.210967 2.896400 4.162122 -0.377361 0.629834 0.224048 1.949475 3.646638 4.381537 4.873626 -0.541287
58 59 60 61 62 63 64 65 66 67 68 970 71 73 74 75 76 77 80 81 82 83 84 85 86 87 80	16 6 6 6 1 1 1 1 1 1 6 6 6 6 6 6 6 6 1 6 6 1 6 6 1 6 6 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 6 6 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1		-4.744536 -4.012344 -2.260212 -4.317311 -2.565982 -1.483007 -3.576460 -5.102298 -2.013996 -3.790750 4.012985 4.357724 1.581035 4.700642 -1.996399 -2.716189 -2.639521 -2.094002 -4.112003 -4.024592 -1.966030 -2.817974 -1.023496 -4.839135 -4.731326 -4.663118 -0.927023 -2.614510 -4.217616 -2.321184 5 5 5 7 4 4 4 5 5 5 7 4 4 4 5 5 5 7 4 4 4 4	-4.272353 -4.251999 -3.049582 -5.022949 -3.821466 -2.288492 -4.797426 -5.771511 -3.660545 -5.383550 3.805469 -1.988161 4.762241 -3.598866 1.922441 2.644877 0.916437 3.615956 2.374034 0.623035 0.170472 4.300175 3.770382 3.116488 1.365560 -0.417416 0.396528 -0.798592 4.058581 5.017898	-0.763513 0.825898 2.031283 1.948594 3.143271 2.038542 3.103950 1.922139 4.063659 3.991763 2.196112 4.056719 3.390267 1.736426 2.387362 1.411490 3.137328 0.556503 1.210967 2.896400 4.162122 -0.377361 0.629834 0.224048 1.949475 3.646638 4.381537 4.873626 -0.541287 -1.023314

89	1	0	-5.785648	1.151575	1.781481
90	6	0	-3.983972	-1.109422	4.605951
91	1	0	-5.706213	-0.639449	3.436133
92	1	0	-2.087396	-1.336707	5.656570
93	1	0	-4.775169	4.608727	-1.293233
94	1	0	-4.479035	-1.894009	5.170734
95	6	0	1.582036	-2.555811	-1.564219
96	6	0	0.653555	-3 610312	-1 411157
97	6	0	1 649021	-1 844693	-2 776817
98	6	0	0.442747	-4 282297	-0.160271
00	6	0	0.199612	3 080000	2 512551
100	6	0	0.188012	2 204199	2.512551
100	0	0	0.781409	-2.204188	-3.804482
101	6	0	2.554574	-0.749941	-2.975212
102	6	0	-0.482217	-5.280561	-0.035437
103	1	0	1.005478	-3.964273	0./10946
104	6	0	-1.133863	-5.046211	-2.351645
105	6	0	-0.103335	-3.272750	-3.715066
106	6	0	0.832252	-1.449684	-5.081391
107	1	0	3.232909	-0.476140	-2.173967
108	6	0	2.568682	-0.050382	-4.146609
109	6	0	-1.274293	-5.685999	-1.153366
110	1	0	-0.635281	-5.757539	0.928883
111	1	0	-1.743704	-5.327538	-3.207086
112	1	0	-0.750476	-3.552586	-4.545293
113	6	0	1.689499	-0.398770	-5.217487
114	1	0	0 164409	-1 730842	-5 892083
115	1	0	3 253482	0 782823	-4 269515
116	1	0	1 00216/	6 102712	1 040212
117	1	0	1 700200	-0.492742	-1.040312
11/	±		1.709209	0.170202	-0.130337
Frequen	cies	17 70	67 5	20 3034	23 5363
-	icic 5	17.70	2	-0.5054	25.5505
Fragua	ncias	20 / 2	227	22 / 795	37 7710
Frequer	ncies	29.43	337	32.4795	37.7710
Frequer Frequer	ncies ncies	29.43 41.06	337 507	32.4795 45.9336	37.7710 54.0417
Frequer Frequer Frequer	ncies ncies ncies	29.43 41.06 57.35	337 507 580	32.4795 45.9336 60.0555	37.7710 54.0417 62.5943
Frequer Frequer Frequer Frequer	ncies ncies ncies ncies	29.43 41.06 57.35 72.05	337 507 580 528	32.4795 45.9336 60.0555 77.2387	37.7710 54.0417 62.5943 85.1183
Frequer Frequer Frequer Frequer Frequer	ncies ncies ncies ncies ncies	29.43 41.06 57.35 72.05 89.01	337 507 580 528 162	32.4795 45.9336 60.0555 77.2387 92.4961	37.7710 54.0417 62.5943 85.1183 97.2450
Frequer Frequer Frequer Frequer Frequer Frequer	ncies ncies ncies ncies ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3	337 507 580 528 162 017	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690
Frequer Frequer Frequer Frequer Frequer Frequer	ncies ncies ncies ncies ncies ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8	337 507 580 528 162 017 958	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	ncies ncies ncies ncies ncies ncies ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8	337 507 580 528 162 017 958 368	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	ncies ncies ncies ncies ncies ncies ncies ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 152.1	337 507 580 528 162 017 958 368 104	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	ncies ncies ncies ncies ncies ncies ncies ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 152.1 170.2	337 507 580 528 162 017 958 368 104 345	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 152.1 170.2 194.3	337 507 580 528 162 017 958 368 104 345 112	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 152.1 170.2 194.3 217.8	337 507 528 162 017 958 368 104 345 104 345 112 115	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 152.1 170.2 194.3 217.8 240.3	337 507 580 528 162 017 958 368 104 345 104 345 112 1155 169	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies	29.43 41.06 57.39 72.09 89.01 102.3 120.8 142.8 152.1 170.2 194.3 217.8 240.3 255.3	337 507 580 528 162 017 958 368 104 345 112 155 169 940	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 152.1 170.2 194.3 217.8 240.3 255.3 290.6	337 507 580 528 162 017 958 368 104 345 112 155 169 940 072	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 152.1 170.2 194.3 217.8 240.3 255.3 290.6 301.8	337 507 580 528 162 017 958 368 104 345 112 155 169 940 072 843	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 152.1 170.2 194.3 217.8 240.3 255.3 290.6 301.8 331.3	337 507 580 528 162 017 958 368 104 345 112 155 169 940 072 843 119	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581 333.9378	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314 343.9169
Frequer FreqUer FreqUe	ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 152.1 170.2 194.3 217.8 240.3 255.3 290.6 301.8 331.3 349.9	337 507 580 528 162 017 958 368 104 345 112 155 169 940 072 843 119 681	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581 333.9378 362.1675	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314 343.9169 372.2262
Frequer Frequer	ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 152.1 170.2 194.3 240.3 255.3 290.6 301.8 331.3 349.9 377.7	337 507 580 528 162 017 958 368 104 345 112 155 169 940 072 843 119 681 075	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581 333.9378 3362.1675 379.4176	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314 343.9169 372.2262 384.6112
Frequer FreqUer FreqUe	ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 152.1 170.2 194.3 240.3 255.3 290.6 301.8 331.3 349.9 377.7 397.0	337 507 580 528 162 017 958 368 104 345 112 155 169 940 072 843 119 681 075 550	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581 333.9378 362.1675 379.4176 402 7821	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314 343.9169 372.2262 384.6112 403 1799
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 152.1 170.2 194.3 240.3 255.3 290.6 301.8 331.3 349.9 377.7 397.0	337 507 580 528 162 017 958 368 104 345 112 155 169 940 072 843 119 681 075 550 633	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581 333.9378 362.1675 379.4176 402.7821	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314 343.9169 372.2262 384.6112 403.1799 419.2939
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 142.8 142.8 152.1 170.2 194.3 217.8 240.3 255.3 290.6 301.8 331.3 349.9 377.7 397.0 404.0	337 507 580 528 162 017 958 368 104 345 112 155 169 940 072 843 119 681 075 550 633 990	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581 333.9378 362.1675 379.4176 402.7821 408.5516 402.677	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314 343.9169 372.2262 384.6112 403.1799 419.2939
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 152.1 170.2 194.3 217.8 240.3 255.3 290.6 301.8 331.3 349.9 377.7 397.0 404.0 421.1	337 507 580 528 162 017 958 368 104 345 112 155 169 940 072 843 119 681 075 550 633 999	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581 333.9378 362.1675 379.4176 402.7821 408.5516 425.6878 427.712.4	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314 343.9169 372.2262 384.6112 403.1799 419.2939 428.3397
Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer Frequer	ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 143.8 142.8 143.8	337 507 580 528 162 017 958 368 104 345 112 155 169 940 072 843 119 681 075 550 633 999 659	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581 333.9378 362.1675 379.4176 402.7821 408.5516 425.6878 437.7124	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314 343.9169 372.2262 384.6112 403.1799 419.2939 428.3397 441.9903
Frequer Frequer	ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 142.8 152.1 170.2 194.3 217.8 240.3 217.8 240.3 255.3 290.6 301.8 331.3 349.9 377.7 397.0 404.0 421.1 431.6 467.4	337 507 580 528 162 017 958 368 104 345 112 155 169 940 072 843 119 681 075 550 633 999 659 185 071	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581 333.9378 362.1675 379.4176 402.7821 408.5516 425.6878 437.7124 483.1294	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314 343.9169 372.2262 384.6112 403.1799 419.2939 428.3397 441.9903 488.0064
Frequer Frequer	ncies ncies	29.43 41.06 57.35 72.09 89.01 102.3 120.8 142.8 142.8 142.8 142.8 142.8 217.8 240.3 255.3 290.6 301.8 331.3 349.9 377.7 397.0 404.0 421.1 431.6 467.4 490.1	337 507 580 528 162 017 958 368 104 345 112 155 169 940 072 843 119 681 075 550 633 999 659 185 071	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581 333.9378 362.1675 379.4176 402.7821 408.5516 425.6878 437.7124 483.1294 492.5282	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314 343.9169 372.2262 384.6112 403.1799 419.2939 428.3397 441.9903 488.0064 500.0736
Frequer FreqUer FreqUe	ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 142.8 152.1 170.2 194.3 255.3 290.6 301.8 331.3 349.9 377.7 397.0 404.0 421.1 431.6 467.4 490.1 501.1	337 507 580 528 162 017 958 368 104 345 115 1155 169 940 072 843 119 681 075 550 633 999 659 185 071 755	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581 333.9378 362.1675 379.4176 402.7821 408.5516 425.6878 437.7124 483.1294 492.5282 502.8606	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314 343.9169 372.2262 384.6112 403.1799 419.2939 428.3397 441.9903 488.0064 500.0736 507.7678
Frequer Frequer	ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 152.1 170.2 194.3 217.8 240.3 255.3 290.6 301.8 331.3 349.9 377.7 397.0 404.0 421.1 431.6 467.4 490.1 501.1 523.9	337 507 580 528 162 017 958 368 104 345 112 155 169 940 072 843 119 681 075 550 633 999 659 185 071 755 279	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581 333.9378 362.1675 379.4176 402.7821 408.5516 425.6878 437.7124 483.1294 492.5282 502.8606 527.7251	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314 343.9169 372.2262 384.6112 403.1799 419.2939 428.3397 441.9903 488.0064 500.0736 507.7678 531.3632
Frequer FreqUer FreqUe	ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 152.1 170.2 194.3 217.8 240.3 255.3 290.6 301.8 331.3 349.9 377.7 397.0 404.0 421.1 431.6 467.4 490.1 501.1 523.9 540.3	337 507 580 528 162 017 958 368 104 345 112 155 169 940 072 843 119 681 075 550 633 999 659 185 071 755 279 479	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581 333.9378 362.1675 379.4176 402.7821 408.5516 402.7821 408.5516 425.6878 437.7124 483.1294 492.5282 502.8606 527.7251 550.1233	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314 343.9169 372.2262 384.6112 403.1799 419.2939 428.3397 441.9903 488.0064 500.0736 507.7678 531.3632 555.2115
Frequer FreqUer FreqUe	ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 152.1 170.2 194.3 240.3 255.3 290.6 301.8 331.3 349.9 377.7 397.0 404.0 421.1 431.6 467.4 490.1 501.1 523.9 540.3 558.0	337 507 580 528 162 017 958 368 104 345 112 155 169 940 072 843 119 681 075 550 633 999 659 185 071 755 279 479 520	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581 333.9378 362.1675 379.4176 402.7821 408.5516 402.7821 408.5516 425.6878 437.7124 483.1294 492.5282 502.8606 527.7251 550.1233 564.3496	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314 343.9169 372.2262 384.6112 403.1799 419.2939 428.3397 441.9903 488.0064 500.0736 507.7678 531.3632 555.2115 568.2656
Frequer FreqUer FreqUe	ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 142.8 142.8 142.8 240.3 255.3 290.6 301.8 331.3 349.9 377.7 397.0 404.0 421.1 431.6 467.4 490.1 501.1 523.9 540.3 558.0 571.2	337 507 580 528 162 017 958 368 104 345 112 155 169 940 072 843 119 681 075 550 633 999 685 185 071 755 279 479 520 824	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581 333.9378 362.1675 379.4176 402.7821 408.5516 402.7821 408.5516 425.6878 437.7124 483.1294 492.5282 502.8606 527.7251 550.1233 564.3496 579.4006	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314 343.9169 372.2262 384.6112 403.1799 419.2939 419.2939 428.3397 441.9903 488.0064 507.7678 531.3632 555.2115 568.2656 588.1415
Frequer FreqUer FreqUe	ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 142.8 142.8 142.2 194.3 217.8 240.3 255.3 290.6 301.8 331.3 349.9 377.7 397.0 404.0 421.1 431.6 467.4 490.1 523.9 540.3 558.0 571.2 605.1	 337 337 337 507 510 528 162 017 958 368 104 345 112 155 169 940 072 843 119 681 075 550 633 999 659 185 071 755 279 479 520 824 959 	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581 333.9378 362.1675 379.4176 402.7821 408.5516 402.7821 408.5516 402.7821 408.5516 402.7821 502.8606 527.7251 550.1233 564.3496 579.4006 607.2949	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314 343.9169 372.2262 384.6112 403.1799 419.2939 428.3397 441.9903 488.0064 500.0736 507.7678 531.3632 555.2115 568.2656 588.1415 608.1151
Frequer FreqUer FreqUe	ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 142.8 142.8 142.8 240.3 217.8 240.3 217.8 240.3 255.3 290.6 301.8 331.3 349.9 377.7 397.0 404.0 421.1 431.6 467.4 490.1 501.1 523.9 540.3 558.0 571.2 605.1 616.0	337 507 580 528 162 017 958 368 104 345 112 155 169 940 072 843 119 681 075 550 633 999 659 185 071 755 279 479 520 824 959 223	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581 333.9378 362.1675 379.4176 402.7821 408.5516 402.7821 408.5516 425.6878 437.7124 483.1294 492.5282 502.8606 527.7251 550.1233 564.3496 579.4006 607.2949 616.4104	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314 343.9169 372.2262 384.6112 403.1799 419.2939 428.3397 441.9903 488.0064 500.0736 507.7678 531.3632 555.2115 568.2656 588.1415 608.1151 621.2442
Frequer FreqUer FreqUe	ncies ncies	29.43 41.06 57.35 72.05 89.01 102.3 120.8 142.8 152.1 170.2 194.3 217.8 240.3 255.3 290.6 301.8 331.3 349.9 377.7 397.0 404.0 421.1 431.6 467.4 490.1 501.1 523.9 540.3 558.0 571.2 605.1 616.0 623.7	 337 337 337 507 507 528 500 528 162 017 958 368 104 345 112 155 169 940 072 843 119 681 075 550 633 999 659 185 071 755 279 479 520 824 959 223 576 	32.4795 45.9336 60.0555 77.2387 92.4961 109.4057 123.9491 143.4978 160.1031 176.5500 205.8561 230.9298 244.1640 267.4112 294.9565 307.7581 333.9378 362.1675 379.4176 402.7821 408.5516 425.6878 437.7124 483.1294 483.1294 492.5282 502.8606 527.7251 550.1233 564.3496 579.4006 607.2949 616.4104 627.7764	37.7710 54.0417 62.5943 85.1183 97.2450 111.4690 134.2329 144.7883 168.6409 188.2395 214.3964 233.5958 246.1656 275.0492 296.8315 322.7314 343.9169 372.2262 384.6112 403.1799 419.2939 428.3397 441.9903 488.0064 500.0736 507.7678 531.3632 555.2115 568.2656 588.1415 608.1151 621.2442 630.5833

Frequencies	654.1157	657.5029	661.8400
Frequencies	672.8317	683.0997	690.6838
Frequencies	703.6430	709.2591	711.5789
Frequencies	718.2129	724.9513	727.8205
Frequencies	733.3267	736.8818	751.6204
Frequencies	754.5557	755.4388	756.4150
Frequencies	757.3406	776.2065	779.0810
Frequencies	779.8534	785.6584	790.0162
Frequencies	798.1157	800.2219	812.1534
Frequencies	816.2122	826.0879	836.2815
Frequencies	842.1079	845.2287	851.1409
Frequencies	859.8108	866.2272	868.7592
Frequencies	873.7095	874.5451	879.3053
Frequencies	880.1509	881.5021	883.1622
Frequencies	884.6191	887.3333	890.7536
Frequencies	891.0197	914.4330	917.3020
Frequencies	934.6615	939.2582	940.1202
Frequencies	941.2169	951.5230	958.2114
Frequencies	969.0912	969.6228	9/3.66/2
Frequencies	981.1025	986.2333	987.6148
Frequencies	991.1270	992.9552	996.0670
Frequencies	1002.1714	1002.8804	1004.2316
Frequencies	1005.7021	1009.3022	1009.0217
Frequencies	1016.3443	1019.3080	1021.3043
Frequencies	1025.0455	1025.9900	1047 2493
Frequencies	1049 3565	1040.3303	1053 1506
Frequencies	1059 1701	1061 0216	1070 7730
Frequencies	1079 3639	1091 2707	1103 7624
Frequencies	1104.6263	1112.4053	1115.0310
Frequencies	1121.2229	1140.2438	1141.5319
Frequencies	1148.2461	1160.7418	1163.8284
Frequencies	1164.2855	1164.5267	1165.3065
Frequencies	1171.1509	1174.2646	1177.6041
Frequencies	1180.7355	1188.4656	1194.8736
Frequencies	1200.2566	1203.5895	1206.9168
Frequencies	1207.1550	1209.6311	1212.1879
Frequencies	1212.8382	1213.7444	1223.6773
Frequencies	1248.9804	1251.8591	1255.0077
Frequencies	1256.3861	1258.2068	1260.6628
Frequencies	1272.6885	1276.0782	1283.6305
Frequencies	1290.1189	1297.5501	1298.8231
Frequencies	1302.1820	1304.2379	1308.6938
Frequencies	1312.1740	1316.8218	1322.08//
Frequencies	1323.0861	1329.6168	1342.1242
Frequencies	1343.5545	1347.7028	1349.0850
Frequencies	1352.2001	1300.1382	1301.3052
Frequencies	1404 0720	1408 2206	1/12 7950
Frequencies	1404.0720	1408.2200	1412.7855
Frequencies	1415.0078	1417.8403	1455.0180
Frequencies	1484 3918	1485 0456	1485 5712
Frequencies	1486 3361	1491 0494	1492 5772
Frequencies	1493.8166	1494.0345	1495.0923
Frequencies	1498.4668	1500.0726	1500.4292
Frequencies	1502.9040	1507.3528	1510.0287
Frequencies	1512.6528	1517.8811	1529.2841
Frequencies	1531.9389	1546.2806	1547.9073
Frequencies	1551.4047	1593.5452	1602.0226
Frequencies	1602.6773	1648.6729	1649.1908
Frequencies	1656.4039	1659.2419	1662.6274
Frequencies	1665.6812	1671.3855	1672.8371
Frequencies	1681.3211	1696.5692	1701.8355
Frequencies	1707.4701	1711.4762	1715.4550
Frequencies	1718.9801	1720.1492	2430.1352
Frequencies	3072.7485	3074.8432	3076.7494

Frequencies	3085.6595	3086.8005	3103.9014
Frequencies	3138.4607	3140.3148	3154.2514
Frequencies	3156.1886	3158.9734	3172.0989
Frequencies	3185.8552	3190.4496	3198.2909
Frequencies	3200.7418	3202.3765	3205.7315
Frequencies	3207.2067	3209.8473	3212.4919
Frequencies	3214.8121	3215.8662	3216.2893
Frequencies	3221.1924	3221.4576	3221.6093
Frequencies	3224.3598	3225.5645	3229.9295
Frequencies	3230.8342	3231.0604	3231.9582
Frequencies	3234.5858	3235.1611	3237.4464
Frequencies	3240.5980	3243.5009	3243.8301
Frequencies	3246.9208	3251.8443	3253.8019
Frequencies	3254.8918	3566.0728	3657.3390

SCF Done: E(RM062X/DGDZVP) = -3995.13332598Sum of electronic and zero-point Energies=-3994.203812Sum of electronic and thermal Energies=-3994.134984Sum of electronic and thermal Free Energies=-3994.308549SCF Done: E(RM062X/DGTZVP/SMD) = -3995.93678555

Cat a TS1d_R

Center	Ato	mic At	omic	Coordinates	s (Angstroms)
Number	Ν	umber	Туре	X Y	Z
1	15	0	0.040215	-0.015199	-0.102558
2	8	0	-0.035096	-0.043652	1.533309
3	8	0	1.640125	-0.042180	-0.365208
4	8	0	-0.480113	1.266343	-0.665617
5	8	0	-0.599425	-1.323303	-0.478485
6	6	0	0.375990	1.125025	2.154508
7	6	0	2.349454	-1.080472	0.220799
8	6	0	1.721690	1.321588	2.412362
9	6	0	-0.581022	2.102485	2.444880
10	6	0	2.892857	-0.882548	1.486275
11	6	0	2.474653	-2.311248	-0.443860
12	6	0	2.880361	0.345227	2.383646
13	6	0	2.156011	2.578103	2.841702
14	6	0	-0.130264	3.325713	2.952782
15	6	0	3.552053	-1.941668	2.120102
16	6	0	3.191282	-3.331071	0.196425
17	6	0	3.043398	-0.329422	3.778069
18	6	0	4.058781	1.323463	2.126282
19	6	0	3.669705	2.603883	2.899007
20	6	0	1.234398	3.582773	3.118994
21	1	0	-0.862077	4.095028	3.185139
22	6	0	3.954455	-1.541462	3.521552
23	6	0	3.721071	-3.162204	1.475575
24	1	0	3.298281	-4.283660	-0.315498
25	1	0	3.431441	0.363486	4.529898
26	1	0	2.058875	-0.678109	4.112224
27	1	0	5.021376	0.905550	2.435237
28	1	0	4.104752	1.539833	1.054042
29	1	0	4.021518	2.568387	3.936185
30	1	0	5.013310	-1.258909	3.551425
31	1	0	-1.959780	1.297876	-1.275443
32	8	0	-2.822945	1.013042	-1.727052
33	6	0	-2.490208	0.047436	-2.757659
34	6	0	-3.265718	-1.150824	-2.180059
35	1	0	-2.835586	0.408746	-3.726501
36	1	0	-1.412812	-0.136589	-2.774796
37	8	0	-2.522299	-2.322330	-2.086264
38	6	0	-3.570925	-0.423779	-0.835346
39	6	0	-4.558212	-1.444758	-2.917512

40	1	0	-1.654900	-2.106813	-1.681013
41	1	0	-2 877939	-0 415373	0 000718
12	1	0	-4 530206	0.051255	-0.671476
12	6	0	4.990256	2 752404	3 269656
43	C	0	-4.890230	-2.752404	-3.209050
44	6	0	-5.430079	-0.398482	-3.238265
45	6	0	-6.085957	-3.010061	-3.940943
46	1	0	-4.207828	-3.553847	-3.006419
47	6	0	-6.624089	-0.658425	-3.907013
48	1	0	-5.176015	0.626542	-2.966620
49	6	0	-6.954405	-1.967620	-4.261257
50	1	0	-6.341351	-4.030465	-4.210463
51	1	0	-7 294367	0 159378	-4 153393
51	1	0	7 00 1 2 1 1	2 172057	4.792060
52	1	0	-7.004511	-2.172037	-4.762909
53	1	0	1.580568	-3.661470	3.815282
54	6	0	0.528380	-3.814249	3.591876
55	6	0	-0.054367	-3.072857	2.570450
56	6	0	-0.216225	-4.747879	4.328802
57	6	0	-1.406039	-3.294816	2.298229
58	1	0	0 509549	-2 333095	2 007813
50	6	0	1 56/172	1 961705	4.052375
23	7	0	-1.304172	-4.904703	4.032373
60	/	0	-2.168212	-2.650301	1.330172
61	6	0	-2.153125	-4.227860	3.024686
62	1	0	-2.140044	-5.687877	4.621002
63	6	0	-3.462092	-3.001451	1.258882
64	1	0	-1.692776	-2.052814	0.623111
65	16	0	-3 802987	-4 259585	2 437180
66	16	0	1 651294	2 300660	0.246660
60	10	0	-4.031384	-2.390000	0.240000
67	1	0	0.201273	-5.511124	5.123881
68	1	0	4.083268	3.508640	2.446/50
69	1	0	1.564676	4.560531	3.458683
70	1	0	3.811835	-2.345024	4.249365
71	1	0	4.238095	-3.982857	1.965554
72	6	0	-2.023562	1.803949	2.216315
73	6	0	-2 638728	0 758703	2 941516
74	6	0	2.050720	2 5 2 0 9 5 0	1 267042
74	0	0	-2.702300	2.339630	1.207642
/5	6	0	-1.930207	-0.041569	3.899509
76	6	0	-4.027527	0.466925	2.723619
77	6	0	-4.160661	2.261369	1.083767
78	6	0	-2.158174	3.535028	0.427611
79	6	0	-2.545852	-1.066152	4.560483
80	1	0	-0.885186	0.170062	4.101230
81	6	0	-4 640784	-0.612467	3 437890
01	6	0	4.760216	1 725424	1 01E067
02	c	0	4.700310	2.015522	0.110024
83	6	0	-4.905258	3.015522	0.118034
84	1	0	-1.089137	3./02/8/	0.500171
85	6	0	-2.898710	4.222729	-0.490615
86	6	0	-3.924524	-1.359988	4.327207
87	1	0	-1.982200	-1.667666	5.268716
88	1	0	-5.688076	-0.829959	3.245093
89	1	0	-5 814111	1 010456	1 659050
90	6	0	_/ 297309	3 970788	-0.642001
01	1	0	F 064707	2 201056	0.000011
91	1	0	-3.904797	2.801030	-0.000011
92	1	0	-2.41/199	4.956831	-1.129110
93	1	0	-4.398809	-2.176704	4.862885
94	1	0	-4.866848	4.531882	-1.376462
95	6	0	1.833127	-2.557471	-1.767673
96	6	0	0.812644	-3.527474	-1.875539
97	6	0	2.221555	-1.808296	-2.895091
98	6	0	0 307100	-4 24995/	-0 743146
00	c	0	0.307100	2 7EC024	2 1// 101
33	U C	U	0.101901	-3./30924	-3.144231
100	6	U	1.5/0064	-2.032405	-4.155/03
101	6	0	3.257258	-0.816488	-2.842323
102	6	0	-0.722735	-5.138827	-0.869160
103	1	0	0.734469	-4.066836	0.236672
104	6	0	-0.872453	-4.722417	-3.243652
105	6	0	0.571712	-3.002676	-4.253038

100	c	0	1 057224	1 251600		
106	0	0	1.957234	-1.251080	-5.293505	Frequencies 946.1901 951.0054 953.2255
107	1	0	3.773348	-0.642059	-1.903743	Frequencies 953.8575 972.1999 975.9932
108	6	0	3.601022	-0.094815	-3.948316	Frequencies 985.9604 987.9375 989.2715
109	6	0	-1.315854	-5.394403	-2.143501	Frequencies 990.7057 993.2396 993.5957
110	1	0	-1 099664	-5 651799	0.012528	Erequencies 995 9844 1003 0952 1004 9705
111	1	0	-1 335629	-4 879205	-4 214309	Erequencies 1005 4284 1008 0665 1010 9292
112	1	0	0.079011	3 167264	5 2002/0	Eroquencies 1013 0204 1015 7820 1010 2601
112	T	0	0.078911	-3.107204	-5.209549	1013.3031
113	6	0	2.938397	-0.309497	-5.196315	Frequencies 1020.7455 1027.0848 1034.7297
114	1	0	1.450689	-1.430476	-6.238513	Frequencies 1044.0822 1046.4607 1048.1567
115	1	0	4.385760	0.652466	-3.882458	Frequencies 1050.0271 1050.8931 1053.2985
116	1	0	-2.132778	-6.104689	-2.223922	Frequencies 1056.3430 1060.8714 1064.2871
117	1	0	3.223542	0.277586	-6.063810	Frequencies 1078.1064 1080.2263 1092.3435
						Erequencies 1098 5760 1105 3131 1109 3828
						Frequencies 1030.5700 1105.5151 1105.5020
-		F 4 C O O		4 4 5 4 9 6	10 0000	Frequencies 1114.6912 1119.4645 1153.3169
Frequen	cies	-546.922	29	14.5196	19.9889	Frequencies 1140.1223 1140.3856 1160.8780
Frequer	ncies	21.601	.4	33.6200	35.4574	Frequencies 1161.8705 1163.8397 1165.1361
Frequer	ncies	38.818	32	43.3286	43.9461	Frequencies 1169.3548 1177.2246 1180.2008
Frequer	ncies	52.524	9	56.1444	58.7776	Frequencies 1180.3776 1187.4562 1188.0090
Frequer	ncies	63.581	7	67.5095	77.9058	Frequencies 1193.3419 1197.6683 1201.2396
Frequer	ncies	83 189	0	87 1121	92 3002	
Eroquor		05.103	1	100 4146	105 6212	Eroquencies 1201.0203 1203.0002 1207.1000
riequei		107.77	-4	110.4140	103.0313	1210.2721 1212.2582 1215.3857
+requer	icles	10/.//	91	118.5499	127.5688	Frequencies 1221.8202 1234.1596 1251.0058
Frequer	ncies	131.55	60	139.3343	144.7295	Frequencies 1253.1537 1255.6527 1258.5542
Frequer	ncies	146.16	05	155.8061	160.9130	Frequencies 1260.1675 1271.2864 1277.8198
Frequer	ncies	171.86	29	181.6779	187.2917	Frequencies 1282.5077 1288.3598 1293.0393
Frequer	ncies	191.69	12	197.2324	202.1441	Frequencies 1293.9827 1298.2896 1304.4194
Frequer	ncies	207 12	93	215 6561	225 0466	Erequencies 1309 4834 1317 4977 1322 1083
Eroquor		226.07	07	220,0001	244 2256	Eroquencies 1303.1031 1317.1377 1322.1003
riequei		230.97	17	255.4255	244.3230	1242.0323 1326.2262 1343.1431
Frequer	icles	248.85	1/	255.0354	273.8406	Frequencies 1343.4629 1346.4320 1347.0432
Frequer	icies	282.36	/9	291.1119	294.7927	Frequencies 1348.9559 1352.0330 1361.4580
Frequer	ncies	297.93	38	299.2538	308.7122	Frequencies 1367.7728 1369.3603 1373.7664
Frequer	ncies	322.79	81	336.2838	348.3247	Frequencies 1385.0309 1407.4067 1412.1946
Frequer	ncies	359.79	75	366.9339	377.4699	Frequencies 1413.4474 1414.9464 1424.9054
Frequer	ncies	380 48	17	386 6753	394 1331	Frequencies 1436 8421 1443 3679 1443 6232
Erequer		305.00	28	400 8031	403 7217	$\frac{1}{1000} = \frac{1}{1000} = 1$
Frequer		404.00	50 70	411 0014	405.7217	Frequencies 1493.3104 1474.7210 1402.7430
Fiequei	icies	404.02	75	411.9614	410.3500	Frequencies 1403.1431 1407.3420 1490.0893
Frequer	icles	419.15	63	424.8620	427.4271	Frequencies 1490.9439 1493.1777 1498.0098
Frequer	ncies	431.75	35	434.8668	440.7849	Frequencies 1498.4463 1500.6867 1501.0940
Frequer	ncies	450.65	35	455.0650	486.9556	Frequencies 1510.9920 1513.0573 1516.7820
Frequer	ncies	487.74	57	488.1478	498.8205	Frequencies 1523.2056 1529.8654 1530.7163
Frequer	ncies	501.72	43	506.9579	508.2196	Frequencies 1531.6304 1548.0203 1550.6114
Frequer	ncies	525.07	63	531 1117	532 8191	Erequencies 1551 8375 1552 6978 1601 4263
Frequer		53/ /8	5/	540 9834	5/9 877/	Erequencies 1602 2635 1646 9706 1648 6168
Frequer		554.40) - Эг	540.5054	545.0774	Frequencies 1002.2000 1040.0700 1040.0100
Frequer	icies	556.92	25	565.0236	568.6685	Frequencies 1655.1054 1657.7309 1661.0823
Frequer	icies	568.70	/8	574.8850	579.9001	Frequencies 1665.5339 1672.6008 1677.3630
Frequer	ncies	583.46	12	604.8318	607.1723	Frequencies 1684.4831 1699.9978 1701.7496
Frequer	ncies	615.64	00	616.7434	621.7609	Frequencies 1710.7812 1712.8065 1713.2086
Frequer	ncies	626.44	22	628.5935	645.0383	Frequencies 1717.7226 1717.8359 2961.2414
Freauer	ncies	648.69	18	649.5756	652.1529	Frequencies 3077.8180 3079.7952 3081.5772
Frequer	ncies	657 40	70	660 7255	662 7607	Erequencies 3088 8371 3125 6237 3137 9989
Eroquor		674.91	90 91	676 0975	690 0115	Eroquencies 21/1 6677 2154 09/7 2159 2254
Frequer		074.01	10	700 7250	711 0702	Frequencies 3141.0077 3154.0847 3158.3254
Frequer	icies	090.80	τ3 C T	/08./350	/11.0/03	Frequencies 5109.0914 5188.8000 3191.2/31
Frequer	icles	/20.28	14	/24.36/4	/32.00/0	Frequencies 3199.2470 3200.2636 3201.3377
Frequer	ncies	735.23	65	748.8889	753.0827	Frequencies 3207.8865 3208.3791 3208.9531
Frequer	ncies	753.81	90	757.1932	757.4821	Frequencies 3209.6673 3215.0886 3215.3963
Frequer	ncies	758.12	67	764.7614	774.9465	Frequencies 3215.4781 3217.7116 3218.2905
Frequer	ncies	776 17	47	780.6825	796.6152	Frequencies 3218.4139 3218 7636 3220 1341
Frequer	ncies	800 82	83	813 0824	813 21/10	Erequencies 3223 7147
Erequer		000.0Z	23 21	020 1210	010.0449	Eroquoncios 2221.157 2220.3735 3227.3000
Fiequer	ICIES	047.54	∠⊥ 00	023.1710	042.0038	Frequencies 5251.1557 5251.2254 3235.1310
+requer	icles	847.56	8U	850.3228	857.5618	Frequencies 3235.91/0 3236.0284 3238.1691
Frequer	ncies	860.75	60	869.8352	871.1598	Frequencies 3239.2738 3243.9853 3245.5540
Frequer	ncies	873.18	20	874.3833	875.2627	Frequencies 3246.2140 3247.2497 3248.4190
Frequer	ncies	876.63	78	881.4425	882.3449	Frequencies 3256.2916 3350.2118 3596.3437
Freauer	ncies	887.70	09	890.1350	899.5462	
Frequer	ncies	911 36	40	921.0727	926 2399	SCE Done: F(RM062X/DGD7VP) = -3995 08584176
Fraguer	ncies	920 71	43	939 6217	013 3000	Sum of electronic and zero-point Energine 2004 156702
ricquel	10103	222.21		JJJ.UZ1/	0000.040	Sum of clear only and zero-point Energies= -3334.130705

Sum of electronic and thermal Energies=-3994.088416Sum of electronic and thermal Free Energies=-3994.261394SCF Done:E(RM062X/DGTZVP/SMD) = -3995.88726983

Cat a I1d_R

Center	Ato	mic At	omic	Coordinates	(Angstroms)
Number	N	umber	Туре	ХҮ	Z
1	15	0	0.034660	-0.036579	-0.092191
2	8	0	-0.038372	-0.070895	1.551206
3	8	0	1.639692	-0.061156	-0.347674
4	8	0	-0.514356	1.211113	-0.667099
5	8	0	-0.555157	-1.392033	-0.429948
6	6	0	0.364393	1.104047	2.164419
7	6	0	2.356501	-1.090720	0.237083
8	6	0	1.709225	1.308837	2.424313
9	6	0	-0.595529	2.082728	2.440032
10	6	0	2.896624	-0.889778	1.503642
11	6	0	2.498128	-2.319425	-0.430110
12	6	0	2.873845	0.338629	2.399734
13	6	0	2.137587	2.570375	2.844635
14	6	0	-0.150546	3.312901	2.936398
15	6	0	3.566434	-1.942391	2.137429
16	6	0	3.226557	-3.331478	0.208795
17	6	0	3.043009	-0.332818	3.794664
18	6	0	4.046967	1.322517	2.138613
19	6	0	3.650802	2.603577	2.905872
20	6	0	1.212122	3.575321	3.107650
21	1	0	-0.885820	4.083263	3.153712
22	6	0	3.963976	-1.537984	3.539358
23	6	0	3.751115	-3.159518	1.490309
24	1	0	3.349847	-4.280453	-0.306290
25	1	0	3.425949	0.364000	4.545492
26	1	0	2.061458	-0.688803	4.130001
27	1	0	5.012071	0.911125	2.448648
28	1	0	4.090977	1.534891	1.065503
29	1	0	4.000204	2.572884	3.944101
30	1	0	5.020409	-1.246774	3.570033
31	1	0	-2.137362	1.516772	-1.639919
32	8	0	-2.850395	1.228673	-2.246014
33	6	0	-2.490790	-0.055183	-2.717299
34	6	0	-3.313495	-1.196746	-2.050549
35	1	0	-2.661687	-0.097001	-3.797356
36	1	0	-1.429065	-0.248379	-2.536333
37	8	0	-2.567680	-2.394989	-2.044049
38	6	0	-3.696812	-0.767664	-0.614931
39	6	0	-4.599825	-1.458161	-2.820450
40	1	0	-1.666591	-2.184074	-1.725696
41	1	0	-2.851577	-0.424470	-0.009313
42	1	0	-4.418242	0.050946	-0.641237
43	6	0	-4.958946	-2.751474	-3.202393
44	6	0	-5.442825	-0.385697	-3.139426
45	6	0	-6.152587	-2.972147	-3.892428
46	1	0	-4.292322	-3.572717	-2.959472
47	6	0	-6.632014	-0.609312	-3.829743
48	1	0	-5.151103	0.626442	-2.861235
49	6	0	-6.992590	-1.905057	-4.206045
50	1	0	-6.425510	-3.981474	-4.186553
51	1	0	-7.275226	0.228986	-4.080394
52	1	0	-7.919746	-2.079019	-4.743854
53	1	0	1.602594	-3.823804	3.762172
54	6	0	0.545394	-3.910715	3.528538
55	6	0	0.013766	-3.111619	2.525231
56	6	0	-0.254879	-4.823606	4.236080

57	6	0	-1.347478	-3.252906	2.244035
58	1	0	0.621128	-2.394123	1.978625
59	6	0	-1.609425	-4.963082	3.951190
60	7	0	2.062600	2 541090	1 204015
00	/	0	-2.003099	-2.341080	1.284015
61	6	0	-2.146461	-4.163149	2.941385
62	1	0	-2.226334	-5.668204	4.498444
63	6	0	-3.348814	-2.830900	1.231283
64	1	0	-1 502318	-1 954750	0 549319
CT	10	0	2 702224	4 007255	2 251420
65	10	0	-3.792324	-4.08/355	2.351429
66	16	0	-4.5/0838	-2.113327	0.263429
67	1	0	0.187787	-5.432995	5.017101
68	1	0	4.061485	3.508609	2.451573
69	1	0	1 538205	4 557734	3 437811
70	1	0	2 0 2 2 2 0 0	2 241090	4 267804
70	1	0	5.627260	-2.541960	4.207694
/1	1	0	4.280211	-3.974053	1.977896
72	6	0	-2.038875	1.787388	2.212144
73	6	0	-2.664429	0.763111	2.957236
74	6	0	-2 771269	2 512526	1 250860
75	6	0	1 056607	0.040025	2 006200
/5	0	0	-1.950097	-0.049035	3.906200
/6	6	0	-4.064109	0.504480	2.769561
77	6	0	-4.175282	2.255837	1.083652
78	6	0	-2.152826	3.469223	0.377384
79	6	0	-2 582804	-1 053763	4 588422
00	1	0	0.0022001	0.126470	1.000122
00	1	0	-0.902299	0.130478	4.065000
81	6	0	-4.691434	-0.544195	3.516835
82	6	0	-4.791498	1.269498	1.854623
83	6	0	-4.909784	2.984921	0.091964
84	1	0	-1.080709	3.619343	0.439233
85	6	0	-2 883527	4 130349	-0 567313
86	6	0	-3 976284	-1 305720	4 395623
07	1	0	2 010250	1 662217	E 200624
0/	1	0	-2.019230	-1.002217	3.290034
88	1	0	-5.752202	-0.724813	3.360532
89	1	0	-5.853237	1.069725	1.717709
90	6	0	-4.285690	3.894084	-0.709151
91	1	0	-5.971652	2.779790	-0.020174
92	1	0	-2.390537	4.824458	-1.240548
93	1	0	-4 462702	-2 099196	4 955606
91	1	0	-1 812691	1 121615	-1 /7/83/
05	c L	0	1 057720	2 5 6 1 9 4 2	1.755022
95	0	0	1.637729	-2.301642	-1.755022
96	6	0	0.850256	-3.544298	-1.8/3203
97	6	0	2.223768	-1.784438	-2.870943
98	6	0	0.373845	-4.307456	-0.755083
99	6	0	0.201825	-3.747884	-3.137263
100	6	0	1.555853	-1.984603	-4.126641
101	6	0	3 251168	-0 784537	-2 810197
101	c	0	0.0000	-0.704007	-2.010157
102	0	0	-0.642315	-5.210982	-0.890663
103	1	0	0.817486	-4.149986	0.221590
104	6	0	-0.842163	-4.723634	-3.246811
105	6	0	0.563907	-2.960002	-4.231984
106	6	0	1.917476	-1.173269	-5.251128
107	1	0	3.779637	-0.626302	-1.875694
108	6	0	3 571343	-0.034189	-3 903864
100	ć	0	1 255222	5.426020	2.161002
109	0	0	-1.255555	-5.430830	-2.101082
110	1	0	-0.989332	-5./62412	-0.020009
111	1	0	-1.321280	-4.856557	-4.213096
112	1	0	0.053928	-3.102233	-5.182683
113	6	0	2.891541	-0.224988	-5.146417
114	1	0	1 395798	-1 332451	-6 191236
115	1	0	1 3/9/33	0 719//3	-3 8317/1
116	1	0	2 061406	C 1E0202	2 250769
110	1	0	-2.061406	-0.158282	-2.250768
11/	T	U	3.156862	0.386546	-0.003158
Frequen	cies	13.28	31 1	L8.5508	22.5658
Frequen	cies	28.33	357	32.1970	36.7233
Frequen	cies	43.07	725	45.0577	48.4185

Frequencies	51.8675	54.9403	61.1328	Frequer	ncies	1180.	.0363	1187.6568	1193.7329
Frequencies	63.0492	67.8369	80.7959	Frequer	ncies	1197.	.3850	1200.6281	1201.3582
Frequencies	82.4011	92.9023	95.9382	Frequer	ncies	1206.	.1990	1208.5782	1209.7694
Frequencies	97.5343	102.4921	108.1257	Frequer	ncies	1210.	.1152	1212.6376	1222.0301
Frequencies	117.9589	123.2193	125.4334	Frequer	ncies	1245.	.4401	1251.6721	1253.8078
Frequencies	135.5158	142.9148	147.2731	Frequer	ncies	1255.	.7929	1258.5717	1260.6965
Frequencies	154.1226	170.8782	174.1575	Frequer	ncies	1268.	.2444	1273.1130	1283.3365
Frequencies	180.6490	184.5313	186.7979	Frequer	ncies	1284.	.2156	1289.3937	1295.0327
Frequencies	192.7458	199.6531	203.2844	Frequer	ncies	1299.	.1992	1304.3674	1308.0150
Frequencies	216.5547	223.7112	234.6891	Frequer	ncies	1316.	.1894	1318.2860	1322.3265
Frequencies	238.2826	239.3226	243.7340	Frequer	ncies	1322.	.7251	1329.0613	1341.7294
Frequencies	255.5812	257.0233	281.2737	Frequer	ncies	1343.	.4835	1348.0023	1348.9586
Frequencies	284.1071	294.4234	295.5072	Frequer	ncies	1352.	.4782	1361.5964	1364.5246
Frequencies	297.4189	304.7240	320.8453	Frequer	ncies	1366.	.9214	1369.5852	1406.6958
Frequencies	331.9028	339.9356	349.8562	Frequer	ncies	1408.	.0652	1413.1065	1414.2812
Frequencies	365.4690	366.4767	375.9728	Frequer	icies	1414.	.6459	1417.5915	1427.1202
Frequencies	378.4805	382.7744	388.1463	Frequer	ncies	1443.	.2646	1444.0432	1455.2035
Frequencies	397.6608	402.6855	403.7197	Frequer	icies	1460.	.6192	1482.7501	1483.8415
Frequencies	406.4266	412.3291	414.5464	Frequer	icies	1487.	.6221	1490.3352	1491.4208
Frequencies	419.1666	425.4100	429.7189	Frequer	icies	1493.	.1537	1493.3085	1495.7874
Frequencies	434.0792	436.1273	445.5776	Frequer	icies	1498.	.2977	1499.2485	1501.4135
Frequencies	454.6289	487.0120	488.1764	Frequer	icies	1510.	.3877	1510.8785	1512.7523
Frequencies	489.6446	497.6685	497.7420	Frequer	icies	1519.	.7037	1523.0833	1530.1430
Frequencies	505.8649	510.0719	520.4784	Frequer	icies	1531.	.4225	1547.2670	1548.1465
Frequencies	525.8091	528.4337	532.2295	Frequer	icies	1552.	.3984	1580.4755	1600.5622
Frequencies	539.9951	549.1862	556.9346	Frequer	icies	1602.	.8816	1647.2631	1648.4522
Frequencies	561.9114	567.3606	567.7481	Frequer	icies	1655.	.2275	1658.4248	1661.4000
Frequencies	573.0362	576.4382	584.9287	Frequer	icies	1665.	.8027	16/2.9261	16/3.3200
Frequencies	595.1433	604.5397	606.4211	Frequer	icies	1684.	.6622	1698.988/	1699.1498
Frequencies	608.2221	615.5194	618.7585	Frequer	icies	1709.	.9421	1/11.49/2	1/13.//10
Frequencies	623.0120	626.6565	628.2683	Frequer	icies	1/1/.	.2505	1/19.0193	2219.0128
Frequencies	644.5863	648.7635	649.7929	Frequer	icies	3078.	.2756	3080.16/4	3081.4184
Frequencies	652.5475	657.1812	660.7090	Frequer	icies	3088.	.5041	3097.5407	3133.5768
Frequencies	663.3770	6/5.524/	688.1377	Frequer	icies	3137.	.6344	3141.5772	3154.4149
Frequencies	690.9143	708.7889	711.5970	Frequer	icies	3158.	.0983	3161.565/	3189.2214
Frequencies	/18.56/9	723.6175	729.0661	Frequer	icies	3199.	.3264	3199.6558	3200.3361
Frequencies	732.5740	736.7345	750.2064	Frequer	icies	3203.	.2748	3203.5591	3203.9999
Frequencies	751.7995	755.0574	756.0057	Frequer	icies	3207.	.3991	3208.9804	3211.4100
Frequencies	750.9291	758.5970	704.4414	Frequer	icies	3211.	.7949	3212.7002	3218.9201
Frequencies	771.0310	774.9757 901 0701	790.0940 912.4470	Frequer	icies	2219.	4506	2220.2330	2223.9200
Frequencies	214 0102	001.2751	012.4479	Frequer	icies	3224.	7060	2224.7319	3220.4011
Frequencies	014.0195	023.3703 04E 0314	037.1424 940.0027	Frequer	icies	2220. 2221	2766	2222.2020	2222.2401
Frequencies	855.4405	845.8214	867 5204	Eroquor	icies	22/10	0211	22/0 1210	2240 7040
Frequencies	868 3545	871 2634	873 1211	Frequer		3240.	1/130	3240.1313	3253 6744
Frequencies	874 5640	871.2034	881 1035	Frequer		3242.	6757	3656 1665	3665 3294
Frequencies	881 2992	882 9863	886 8571	ricquei	icics	5205.	.0757	5050.1005	5005.5254
Frequencies	889 8525	919 3433	921 2350	SCE Don	e. E(RN	1062X	/DGD7\/P) =	-3995 138	01731
Frequencies	923 0916	938 9765	940 0848	Sum of e	lectron	nic and	zero-noint F	=nergies=	-3994 209289
Frequencies	943 5741	951 7608	955 5814	Sumofe		nic and	thermal En	ergies=	-3994 140240
Frequencies	961 8051	972 1674	976 9088	Sumofe	electror	nic and	thermal Fre	e Fnerøies=	-3994 315334
Frequencies	983 3597	987 7720	987 9456	SCE Don	e∙ F(RN	1062X	/DGT7VP/SN	(D) = -3995	94092534
Frequencies	990 6619	991 4248	992 3926	00.001	21 2(111		, 5 6 12 11 , 611		5 1052001
Frequencies	999 3527	1002 2632	1002 7591	Cath					
Frequencies	1003 3577	1005 6468	1008 9306	Cat b					
Frequencies	1010 4913	1015 2498	1015 9650						
Frequencies	1019.6943	1020.7488	1034.9040	Center	Atomi	c At	tomic	Coordinate	s (Angstroms)
Frequencies	1038.3593	1044.1885	1047.1036	Number	Num	nber	Туре	X Y	Z
Frequencies	1049.9730	1051.3412	1053.6472						
Frequencies	1058.6518	1066.8814	1069.7624	1	15	0	0.004905	0.010892	0.009161
Frequencies	1080.4790	1092.5116	1105.1570	2	8	0	0.011245	0.004531	1.604864
Frequencies	1107.4187	1110.1285	1114.5105	3	8	0	1.586463	0.010491	-0.281518
Frequencies	1119.4631	1137.4068	1139.8457	4	1	0	-0.450677	0.//9296	1.964546
Frequencies	1140.9755	1155.4280	1156.8022	5	8	0	-0.461429	-1.468517	-0.39/255
Frequencies	1161.8215	1163.1387	1164.8119	6	8	U	-0.787901	1.064101	-0.627253
Frequencies	1169.3277	1174.5520	1179.5351	/	б	U	1.928479	-0.110262	-1.632880

8	6	0	0.164262	-2.558635	0.219437
9	6	0	2.099161	-1.370684	-2.187871
10	6	0	2.022479	1.033804	-2.421480
11	6	0	1.355869	-3.062835	-0.282285
12	6	0	-0.409823	-3.096522	1.367242
13	6	0	2.128526	-2.739544	-1.544873
14	6	0	2 317236	-1 480287	-3 563419
15	6	0	2.317230	0.007737	3 777040
10	c c	0	2.320770	4.090222	-3.777040
10	0	0	2.005422	-4.080232	0.424872
1/	6	0	0.211455	-4.163548	2.011649
18	6	0	3.564054	-3.130444	-1.10/532
19	6	0	1.676292	-3.623330	-2.737330
20	6	0	2.258498	-2.939331	-3.998727
21	6	0	2.472225	-0.351091	-4.370540
22	1	0	2.419338	1.798344	-4.391451
23	6	0	3.386552	-4.342434	-0.162597
24	6	0	1.432682	-4.671420	1.552830
25	1	0	-0 247692	-4 602880	2 892883
26	1	0	4 215656	-3 348677	-1 959142
20	1	0	4.004600	2 207206	0 5 5 0 1 7 2
27	1	0	4.004690	-2.297260	-0.330278
28	1	0	1.999628	-4.003040	-2.034353
29	1	0	0.582966	-3.614290	-2.791486
30	6	0	1.422389	-3.153011	-5.243893
31	1	0	3.271122	-3.314846	-4.192832
32	6	0	2.793314	-0.491994	-5.817336
33	6	0	4.471880	-4.455294	0.887795
34	1	0	3.373385	-5.271380	-0.746449
35	6	0	2.105757	-5.805318	2.243554
36	6	0	0.095296	-2.708073	-5.283994
37	6	0	1.965428	-3.749840	-6.382396
38	6	0	1 862105	-0 144343	-6.800620
20	6	0	1.002103	1 020600	6 202727
40	c c	0	4.029428	-1.020099	1 921510
40	0	0	4.001433	-5.429012	1.621319
41	6	0	5.269932	-5.596598	0.973027
42	6	0	2.649190	-5.643397	3.522143
43	6	0	2.239624	-7.038087	1.596727
44	6	0	-0.667648	-2.853642	-6.439595
45	1	0	-0.337204	-2.220981	-4.411591
46	6	0	1.206148	-3.894058	-7.544063
47	1	0	3.000900	-4.082568	-6.370140
48	6	0	2.157175	-0.338331	-8.149241
49	1	0	0.892873	0.246164	-6.501283
50	6	0	4.329584	-1.205193	-7.552553
51	1	0	4 757548	-1 283615	-5 439733
52	6	0	5 625840	-3 546990	2 819327
52	1	0	4 020722	2 5 4 2 2 7 7	1 702200
55 E /		0	6 224072	-2.342277	1.785508
54	1	0	0.234075	-3.721370	1.975075
55	1	0	5.121415	-6.406738	0.262802
56	6	0	3.332/1/	-6.691948	4.135349
57	1	0	2.564124	-4.679798	4.017995
58	6	0	2.913652	-8.091401	2.213867
59	1	0	1.809538	-7.168834	0.606423
60	6	0	-0.112546	-3.444068	-7.576869
61	1	0	-1.693374	-2.497561	-6.456833
62	1	0	1.650427	-4.346252	-8.425721
63	6	0	3.390227	-0.870750	-8.528068
64	1	0	1 418180	-0.086394	-8 903820
65	1	0	5 294219	-1 611584	-7 841837
66	5	n	6 412707	-4 697100	2 90122/
67	1	0	5 7ECOOF	-7.007 100 2 7/EOE1	2.501554
60	1	0	2.120305	-2.743931	3.040/1/
0ð	Ţ	0	2.460000	-0.023/28	2.032601
69	6	0	3.469002	-/.91/265	3.4816/2
/0	1	0	3./70386	-6.548171	5.118513
71	1	0	3.008520	-9.045587	1.704180
72	1	0	-0.703288	-3.548750	-8.481847
73	1	0	3.617019	-1.024167	-9.578688

74	1	0	7.159668	-4.794182	3.684291
75	1	0	4.004049	-8.732171	3.959524
76	1	0	1.845516	2.002932	-1.966470
77	1	0	-1.334603	-2.670333	1.742329
_					
Frequen	icies	20.210)8	24.1348	32.6538
Freque	ncies	34.17	42	53.7400	57.6414
Freque	ncies	61.66	26	63.4364	70.4344
Freque	ncies	//./9	03	82.4323	94.8072
Freque	ncies	100.88	390	101.3679	108.3793
Freque	ncies	120.97	/9/	146./988	159.3810
Freque	ncies	1/4.5/	/16	178.3907	186.1831
Freque	ncies	209.93	349	222.0607	232.4510
Freque	ncies	233.92	209	241.8311	249.5028
Freque	ncies	2/3.95	592 - c 7	281.1523	287.1439
Freque	ncies	301.25	251	306.8007	326.4657
Freque	ncies	350.07	/51	383.3047	392.7842
Freque	ncies	399.25	726 221	399.9569	408.3370
Freque	ncies	408.53	021	409.9830	413.8070
Freque	ncies	427.15			403.0975
Freque	ncies	480.11	137	500.0977	504.3065
Freque	ncies	529.53	044 007	530.4151	541.0408
Frequei	ncies	549.00	007 50E	535.0232	570.1939
Eroquo	ncies	621.91	121	625 0454	620 4034
Freque		629 53	202	635 1476	638 8324
Freque	ncies	654 31	101	664 0253	669 1718
Freque		677.57	773	680 0802	708 4454
Freque	ncies	708.95	549	715 2742	716 3788
Freque	ncies	720.61	152	729 9644	736 5471
Freque	ncies	772 56	576	774 8792	778 8098
Freque	ncies	789.60	132	801 4722	817 1119
Freque	ncies	825 35	590	844 1629	849 5884
Freque	ncies	857.05	536	858 1233	865 8104
Freque	ncies	867.84	415	871.0639	871.3464
Freque	ncies	895.55	598	919.7475	929.1157
Freque	ncies	931.12	212	935.8550	936.0283
Freque	ncies	941.37	765	943.2493	953.4896
Freque	ncies	970.20)45	973.8824	989.4807
Freque	ncies	990.28	386	997.1993	997.7985
Freque	ncies	999.28	355	1001.4018	1005.9831
Freque	ncies	1010.4	227	1013.2684	1015.9801
Freque	ncies	1019.0	394	1019.5133	1019.7114
Freque	ncies	1020.0	258	1024.3514	1042.9734
Freque	ncies	1049.7	793	1062.5726	1065.9672
Frequei	ncies	1066.7	658	1067.3869	1069.7582
Freque	ncies	1085.9	446	1099.4246	1104.2607
Freque	ncies	1109.7	194	1113.0434	1120.8771
Freque	ncies	1122.1	745	1138.6609	1174.8458
Freque	ncies	1175.2	610	1175.4087	1178.6650
Freque	ncies	1188.0	174	1198.6594	1203.2830
Freque	ncies	1204.4	053	1205.9489	1206.2132
Freque	ncies	1213.1	441	1224.1460	1232.2743
Freque	ncies	1235.5	923	1242.9416	1252.7690
Freque	ncies	1272.4	359	1282.0792	1292.9087
Frequei	ncies	1297.6	846	1307.1994	1312.2353
Frequei	ncies	1325.1	807	1327.4904	1334.3190
Frequei	ncies	1335.7	495	1340.9499	1343.0208
Freque	ncies	135/.1	6U4	1358.6469	1358.8339
Freque:	ncies	1277 4	ŏ∠/	1303./536	1368.8618
Freque:	ncies	1450.0	399 017	1472 5565	1390.2696
Freque	ncies	1458.8	01/ 200	1406 0720	1491.9148
Freque	ncies	1504.0	20U 210	1507 6012	1498.3783
Freque	ncies	1504.0	219 772	1507.0912	1527.9676
rrequel	10162	100.9	115	T742.0222	1047.0007

Frequencies	1564.8312	1568.9399	1668.3016
Frequencies	1668.6756	1675.2494	1675.6281
Frequencies	1682.6271	1684.5852	1686.1277
Frequencies	1689.8627	1696.6797	1698.2858
Frequencies	1699.8321	1702.4500	3072.2571
Frequencies	3072.3917	3088.1390	3092.3703
Frequencies	3152.9383	3157.5151	3190.8579
Frequencies	3198.6322	3200.0128	3201.2069
Frequencies	3204.9031	3209.1872	3212.5214
Frequencies	3215.2635	3215.2762	3217.1074
Frequencies	3217.7799	3218.6773	3221.5964
Frequencies	3225.6776	3225.8091	3227.2365
Frequencies	3230.0167	3235.6721	3236.6377
Frequencies	3237.0269	3243.9202	3249.0682
Frequencies	3249.8791	3252.5042	3823.0952

SCF Done: E(RM062X/DGDZVP) = -2222.74132429 Sum of electronic and zero-point Energies= -2222.122488 Sum of electronic and thermal Energies=-2222.078367Sum of electronic and thermal Free Energies=-2222.202490 SCF Done: E(RM062X/DGTZVP/SMD) = -2223.24177564

Cat b I0_1

Center	Ator	nic At	omic	Coordinate	s (Angstroms)
Number	Nu	umber	Туре	X Y	Z
	15	0	0,00000	0,00000	0 000000
2	8	0	0.000000	0.000000	1.601596
3	8	0	1 559282	0.000000	-0 400122
4	8	0	-0.686096	1 135169	-0.649638
5	8	0	-0.559922	-1.429269	-0.301656
6	6	0	0.564892	1.137234	2.196230
7	6	0	2.340001	-1.065847	0.062448
8	6	0	1.925731	1.168612	2.461450
9	6	0	-0.240330	2.242748	2.448670
10	6	0	2.903628	-1.023803	1.329525
11	6	0	2.484969	-2.189264	-0.745156
12	6	0	2.984335	0.092577	2.349356
13	6	0	2.489755	2.352358	2.943172
14	6	0	0.327907	3.388536	3.002406
15	6	0	3.562794	-2.159443	1.809267
16	6	0	3.215272	-3.280643	-0.281038
17	6	0	3.105856	-0.724908	3.661997
18	6	0	4.252878	0.960747	2.137360
19	6	0	4.010238	2.258095	2.947627
20	6	0	1.701991	3.462765	3.258053
21	1	0	-0.298955	4.247402	3.225294
22	6	0	3.899827	-2.000206	3.286299
23	6	0	3.760668	-3.286223	1.007842
24	1	0	3.348673	-4.150997	-0.917528
25	1	0	3.579512	-0.154006	4.466569
26	1	0	2.103287	-1.009337	3.997082
27	1	0	5.167812	0.439893	2.435887
28	1	0	4.339265	1.209946	1.074883
29	1	0	4.380389	2.136695	3.973216
30	6	0	4.670987	3.478918	2.339693
31	6	0	2.317440	4.688316	3.836102
32	1	0	4.975743	-1.827495	3.413512
33	6	0	3.507210	-3.213458	4.105374
34	6	0	4.520076	-4.459086	1.520749
35	6	0	4.305175	3.906557	1.057393
36	6	0	5.609431	4.223796	3.054269
37	6	0	2.350733	5.884473	3.112221
38	6	0	2.912292	4.639433	5.101089

39	6	0	2 195211	-3 699702	4 047848
10	6	0	1 111597	-3 891918	1 888337
40	6	0	3 8781/5	-5.678/82	1 759279
41	6	0	5 992270	4 226505	1 912791
42	6	0	1 962666	=4.330303	0.505701
45	1	0	4.803333	3.056807	0.506394
44	1 C	0	3.330275	5.349444	0.496506
45	6	0	6.168306	5.380095	2.508145
46	1	0	5.888351	3.911981	4.058242
47	6	0	2.988310	7.007471	3.636970
48	1	0	1.905933	5.920493	2.121015
49	6	0	3.540424	5.765312	5.631547
50	1	0	2.877901	3.712813	5.669432
51	6	0	1.830563	-4.843891	4.752278
52	1	0	1.458986	-3.192834	3.425756
53	6	0	4.081804	-5.041950	5.592527
54	1	0	5.467692	-3.533522	4.928699
55	6	0	4.582914	-6.750997	2.302988
56	1	0	2.815920	-5.771743	1.548514
57	6	0	6.591176	-5.412561	2.346063
58	1	0	6.385197	-3.391804	1.620055
59	6	0	5.795487	5.801089	1.233005
60	1	0	4.563659	5.379655	-0.486080
61	1	0	6.884957	5.956606	3.085372
62	6	0	3.586884	6.949953	4.896136
63	1	0	3.028331	7.923926	3.056195
64	1	0	3.995511	5.716426	6.616355
65	6	0	2,775603	-5.522879	5.524626
66	1	0	0.810817	-5.212244	4.691552
67	1	0	4 826596	-5 566302	6 183698
68	6	0	5 940032	-6 619884	2 600344
69	1	0	4 069063	-7 685711	2 505702
70	1	0	7 649393	-5 307032	2 565851
71	1	0	6 2 2 3 8 7 0	6 704054	0.808853
72	1	0	4 085184	7 82/829	5 302430
72	1	0	2 /9/768	-6 / 20095	6.067666
74	1	0	6 / 8688/	-0.420000	3 026917
74	1	0	1 120204	1 453272	1 140600
75	- -	0	1 905942	1 172227	2 505772
70	0 6	0	-1.093043	-1.1/525/	-2.303772
77	6	0	-2.913220	-0.152525	-2.431474 3 E03031
70	1	0	-2.105557	0.717045	-5.303651
79	1	0	-3.893643	-0.533755	-2.701894
80	1	0	-2.931279	0.330075	-1.444372
81	8	0	-1.//2438	1.986934	-3.098858
82	6	0	-1.100782	-0.393285	-3.443445
83	6	0	-2.902358	0.814304	-4.829219
84	1	0	-1.328583	1.900699	-2.230046
85	1	0	-0.160661	-0.054069	-2.994626
86	1	0	-0.91/259	-0.958329	-4.359591
87	6	0	-3.05/149	2.042057	-5.4/2/34
88	6	0	-3.418555	-0.342639	-5.425411
89	6	0	-3.723204	2.110513	-6.697938
90	1	0	-2.654198	2.934253	-5.006771
91	6	0	-4.083324	-0.273052	-6.646470
92	1	0	-3.301766	-1.308285	-4.934419
93	6	0	-4.237882	0.957787	-7.287625
94	1	0	-3.839521	3.070533	-7.191785
95	1	0	-4.480380	-1.177316	-7.097492
96	1	0	-4.755946	1.014782	-8.239973
97	1	0	-1.294657	2.196619	2.196089
98	1	0	2.014705	-2.198784	-1.723656
Frequen	cies	1.52	30	7.1214	18.5931
Freque	ncies	26.3	407	28.6203	37.5423
Freque	ncies	39.6	425	53.0236	56.2762

Frequencies -- 58.5006

62.1873

62.9376

Frequencies	68.6424	74.8127	75.2746
Frequencies	79.9946	92.6386	93.4719
Frequencies	95.6179	101.9084	111.0114
Frequencies	122.2369	126.0720	155.2031
Frequencies	166.1652	168.5883	177.0836
Frequencies	184.1034	198.6934	210.7253
Frequencies	221.7196	234.0492	241.7045
Frequencies	245.8420	254.8054	275.0152
Frequencies	279.1382	281.1535	287.4597
Frequencies	303.9633	307.7620	324.5156
Frequencies	334.9213	351.3339	365.9124
Frequencies	390.0711	391.9972	400.6796
Frequencies	408.5489	411.1455	412.8910
Frequencies	415.0057	410.0552	421.2921
Frequencies	449 2960	466 5795	433.0213
Frequencies	504 5541	505 0946	526 4303
Frequencies	532,1096	537.5544	542,4073
Frequencies	550.9636	559.4357	559.9755
Frequencies	575.9817	591.5102	608.3690
Frequencies	614.1339	622.7263	624.7085
Frequencies	628.2575	629.3211	631.1226
Frequencies	636.2820	638.4802	654.1950
Frequencies	663.3660	670.2903	677.7151
Frequencies	684.6799	688.4106	704.0136
Frequencies	706.0936	713.8204	714.4043
Frequencies	718.9790	720.1303	721.2527
Frequencies	730.5591	737.1163	771.7592
Frequencies	774.2599	776.5305	///.9053
Frequencies	/8/.//98	800.4477	817.3449
Frequencies	824.0522	823.4780	837.3774
Frequencies	866 75 <i>1</i> 9	868 3303	872 5005
Frequencies	874 5156	878 7965	895 8669
Frequencies	913.9678	917.9221	924.7160
Frequencies	931.5492	934.2116	935.9925
Frequencies	940.2927	943.8799	946.4736
Frequencies	948.6311	958.4029	968.6741
Frequencies	974.5109	986.4523	992.9708
Frequencies	995.2554	996.0314	998.2979
Frequencies	1001.0645	1005.2253	1006.5505
Frequencies	1007.6854	1008.0296	1009.7296
Frequencies	1013.4152	1017.8576	1019.1916
Frequencies	1019.3041	1019.6955	1019.8484
Frequencies	1019.9313	1024.1814	1034.9307
Frequencies	1042.8011	1052.3890	1060.5724
Frequencies	1068 9215	1072 1709	1086 6725
Frequencies	1089 8824	1090 1603	1100 3937
Frequencies	1103.2177	1107.7794	1111.7507
Frequencies	1116.2398	1121.8237	1126.4101
Frequencies	1134.6386	1172.1159	1174.1896
Frequencies	1175.9424	1178.2593	1179.0888
Frequencies	1183.2665	1184.7302	1192.4636
Frequencies	1200.1211	1201.1532	1202.0721
Frequencies	1207.4232	1211.9900	1214.2846
Frequencies	1214.4553	1223.2245	1230.9000
Frequencies	1233.9011	1235.5292	1242.4274
Frequencies	1252.0597	1254.0078	1270.6809
Frequencies	12/8.1864	1292.4882	1296.3972
Frequencies	1215 2122	1306.1837	1310.935/
Frequencies	1220 4400	1323.Ub92	1226.2838
Frequencies	1341 6917	1341 6730	13/15 0301
Frequencies	1356 6713	1359 1670	1365 7590
Frequencies	1367.3296	1368.8841	1370.6753

Frequencies	1376.0367	1382.2531	1387.7275
Frequencies	1393.6966	1457.0870	1469.1381
Frequencies	1470.6278	1489.0590	1492.3859
Frequencies	1499.4004	1500.4612	1500.9175
Frequencies	1506.5289	1510.0319	1513.5700
Frequencies	1526.4895	1528.7279	1538.0248
Frequencies	1546.9956	1551.4374	1555.5072
Frequencies	1563.6022	1567.2844	1664.2900
Frequencies	1669.2068	1677.0267	1678.0206
Frequencies	1679.6804	1682.3887	1684.1353
Frequencies	1685.3293	1691.7462	1697.7627
Frequencies	1701.0679	1701.4340	1702.8930
Frequencies	1703.1442	2908.0890	3072.2951
Frequencies	3076.6858	3088.5436	3089.6066
Frequencies	3104.5627	3122.9037	3153.1238
Frequencies	3155.5995	3185.7581	3186.2935
Frequencies	3190.0073	3190.3926	3200.2727
Frequencies	3200.4754	3200.9593	3203.7095
Frequencies	3204.1364	3208.9983	3210.2783
Frequencies	3212.4118	3214.7877	3216.4124
Frequencies	3216.6717	3217.4378	3217.4848
Frequencies	3223.1245	3223.5641	3226.0116
Frequencies	3226.4941	3228.8568	3228.9825
Frequencies	3229.6540	3236.6202	3236.6623
Frequencies	3238.6932	3239.0938	3239.1173
Frequencies	3248.0873	3251.2192	3670.9629

SCF Done: E(RM062X/DGDZVP) = -2721.99270329Sum of electronic and zero-point Energies=-2721.196670Sum of electronic and thermal Energies=-2721.140300Sum of electronic and thermal Free Energies=-2721.296791SCF Done: E(RM062X/DGTZVP/SMD) = -2722.60970473

Cat b 10_2

Atomic	At	tomic	Coordinate	s (Angstroms)
Num	ber	Туре	X Y	Z
15	0	-0.032029	0.038638	0.121493
8	0	0.000433	0.040447	1.730151
8	0	1.511035	0.067296	-0.307985
8	0	-0.504719	1.457952	-0.336495
8	0	-0.815512	-1.113931	-0.366789
6	0	0.655035	1.105043	2.360411
6	0	2.244872	-1.070240	0.059388
6	0	2.026542	1.058081	2.568301
6	0	-0.081951	2.229114	2.719436
6	0	2.859484	-1.119391	1.301446
6	0	2.280738	-2.162145	-0.801000
6	0	3.030233	-0.058207	2.366738
6	0	2.664909	2.186652	3.088893
6	0	0.561422	3.314316	3.310931
6	0	3.472736	-2.308633	1.702210
6	0	2.966448	-3.312669	-0.415814
6	0	3.158708	-0.942818	3.634809
6	0	4.330606	0.759495	2.147691
6	0	4.178372	2.028433	3.022011
6	0	1.947522	3.311930	3.501801
1	0	-0.014781	4.183856	3.614521
6	0	3.873664	-2.236004	3.170363
6	0	3.571730	-3.405796	0.842813
1	0	3.017890	-4.160799	-1.092807
1	0	3.688666	-0.433396	4.445515
1	0	2.155996	-1.194199	3.995060
1	0	5.229130	0.183745	2.389812
	Atomic Numl 15 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6	Atomic A: Number 15 0 8 0 8 0 8 0 8 0 8 0 8 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6	Atomic Atomic Number Type 15 0 -0.032029 8 0 0.000433 8 0 1.511035 8 0 -0.504719 8 0 -0.655035 6 0 2.244872 6 0 2.026542 6 0 2.280738 6 0 2.859484 6 0 2.864909 6 0 2.664909 6 0 2.664909 6 0 3.030233 6 0 2.966448 6 0 3.158708 6 0 3.158708 6 0 3.158708 6 0 3.873664 6 0 3.873664 6 0 3.571730 1 0 3.017890 1 0 3.688666 1 0 2.155996	Atomic Atomic Coordinates Number Type X Y 15 0 -0.032029 0.038638 8 0 0.000433 0.040447 8 0 1.511035 0.067296 8 0 -0.504719 1.457952 8 0 -0.615512 -1.113931 6 0 2.026542 1.05043 6 0 2.026542 1.058081 6 0 2.026542 1.058081 6 0 2.026542 1.058081 6 0 2.026542 1.058081 6 0 2.026542 1.058081 6 0 2.0280738 -2.162145 6 0 3.030233 -0.058207 6 0 2.664909 2.186652 6 0 3.14316 6 0 3.158708 -0.942818 6 0 3.158708 -0.942818

28	1	0	4.392316	1.052308	1.094747
29	1	0	4.589264	1.852172	4.023803
30	6	0	4.857632	3.247006	2.429317
31	6	0	2.650599	4.464199	4.129196
32	1	0	4 960843	-2 120860	3 262579
33	6	0	3.451516	-3.466163	3.948592
34	6	0	4 292984	-4 635579	1 269182
35	6	0	4 434213	3 741821	1 189485
36	6	0	5 870233	3 920923	3 112688
37	6	0	2 744206	5.698620	3 479049
20	6	0	2 274022	4 207200	5 270617
30	6	0	2 11/679	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 02/228
40	6	0	4 270722	4 227420	J.JZ4JJ8
40	6	0	4.373732	-4.227430 E 027177	1 474626
41	C	0	5.00/9/2	-3.65/1//	1.474030
42	C	0	5.006726	4.365131	1.31/343
43	5	0	5.007124	4.889/68	0.649746
44	1 C	0	3.629878	3.238429	0.655088
45	6	0	6.445042	5.074672	2.576848
46	1	0	6.196482	3.556169	4.084006
4/	6	0	3.468429	6.742628	4.052800
48	1	0	2.279036	5.824879	2.504810
49	6	0	3.989341	5.343996	5.950184
50	1	0	3.192393	3.340477	5.881213
51	6	0	1.718586	-5.038290	4.591972
52	1	0	1.382255	-3.310861	3.356417
53	6	0	3.988205	-5.389129	5.326561
54	1	0	5.424243	-3.924137	4.670894
55	6	0	4.285066	-6.962188	1.942808
56	1	0	2.536002	-5.876143	1.299180
57	6	0	6.349051	-5.710782	1.974211
58	1	0	6.204090	-3.651866	1.347089
59	6	0	6.013533	5.563919	1.345331
60	1	0	4.662353	5.264928	-0.309212
61	1	0	7.221594	5.595999	3.128444
62	6	0	4.095426	6.566786	5.287247
63	1	0	3.555336	7.689508	3.528650
64	1	0	4.465146	5.204390	6.916275
65	6	0	2.656743	-5.799291	5.292966
66	1	0	0.679343	-5.351535	4.558088
67	1	0	4.727108	-5.977801	5.861974
68	6	0	5.655966	-6.900739	2.196727
69	1	0	3.739468	-7.883541	2.122314
70	1	0	7.417782	-5.659762	2.159844
71	1	0	6.454907	6.464814	0.930148
72	1	0	4.661749	7.379888	5.731055
73	1	0	2.351172	-6.705458	5.807096
74	1	0	6.180946	-7.776978	2.564731
75	1	0	-1.457611	1.457389	-0.685048
76	8	0	-2.960062	1.126125	-1.102820
77	6	0	-3.109371	0.097253	-2.125488
78	6	0	-3.946673	-0.791605	-1.167682
79	1	0	-3.622560	0.498816	-3.001283
80	1	0	-2.144349	-0.342037	-2.391434
81	8	0	-3.409354	-2.045771	-0.879218
82	6	0	-3.665532	0.317236	-0.119151
83	6	0	-5.400152	-0.941280	-1.552887
84	1	0	-2.465908	-1.927133	-0.644935
85	1	0	-3.000933	-0.011026	0.687052
86	1	0	-4.528677	0.855763	0.277396
87	6	0	-6.003734	-2.198102	-1.584076
88	6	0	-6.154844	0.190856	-1.883691
89	6	0	-/.347479	-2.320639	-1.942390
90	1	0	-5.413862	-3.070206	-1.326049
91	6	0	-/.494977	0.06/492	-2.240427
92	1	0	-5.695154	1.1/8580	-1.863989
93	6	0	-8.096120	-1.1921/4	-2.270483

94	1	0 -	7.809390	-3.303120	-1.964955
95	1	0 -	8.069903	0.952369	-2.495689
96	1	0 -	9.140786	-1.290626	-2.549031
97	1	0 -	1.149812	2.243349	2.525147
98	1	0	1.759594	-2.102874	-1.750970
Frequen	cies	8.3217	1	4.3967	24.6890
Frequer	ncies	26.868	0	30.1279	34.4649
Frequer	ncies	39.936	0	57.7758	60.7013
Frequer	ncies	61.447	2	64.0926	66.1560
Frequer	ncies	70.423	5	75.3722	78.8713
Frequer	ncies	80.037	4	88.5692	92.2220
Frequer	ncies	95.541	1	98.2983	115.2854
Frequer	ncies	123.036	50	126.7227	156.8571
Frequer	ncies	165.383	16	168.1554	180.7965
Frequer	ncies	186.596	53	200.6144	212.3613
Frequer	ncies	223.102	28	234.0689	242.7512
Frequer	ncies	246.698	31	256.3885	275.2250
Frequer	ncies	279.004	48	281.9186	287.0393
Frequer	ncies	304.836	59	308.4643	325.9598
Frequer	ncies	331.520	00	351.4566	364.7929
Frequer	ncies	389.97	36	393.7433	401.1693
Frequer	ncies	409.10	75	411.5680	412.3089
Frequer	icies	414.988	30	416.115/	421.0541
Frequer	icies	424.54	52 	427.0591	438.6201
Frequer	icies	451.154	14	467.9518	489.3522
Frequer	icies	504.929) 5	506.2769	521.1513
Frequer	icies	533.05	18	538.8416	543.1955
Frequer	icles	551.41	56 N 7	559.55/3	560.4969
Frequer	icles	577.32:	37	591.9856	609.2372
Frequer	icies	614.64:	32	623.0631	625.4629
Frequer	icies	629.63	24	630.5925	631.3927
Frequer	icles	636.894	19	640.1782	654.3233
Frequer	icles	664.075	56 53	6/0.33//	678.4581
Frequer	icles	700 142	23	589.9705	704.7786
Frequer	icies	708.14:	54 1 F	714.2588	714.9698
Frequer	icies	710.094	+5	720.9150	722.9795
Frequer	icies	750.620	50	730.4910	777 5820
Frequer		789 /3/	10	801 9367	818 9639
Frequer		874 58	17	827 3409	818.9659
Frequer	ncies	849.62	16	859 4826	864 2728
Frequer	ncies	869.243	36	869 9932	871 1681
Frequer	ncies	876 102	26	878 8703	895 7946
Frequer	ncies	916.71	73	919.4143	929.9260
Frequer	ncies	932.992	21	936.5695	938.9904
Frequer	ncies	941.792	27	945.4250	947.5346
Frequer	ncies	950.914	45	965.1946	970.9047
Frequer	ncies	975.135	50	991.7135	992.6255
Frequer	ncies	996.193	19	997.9799	998.6567
Frequer	ncies	1003.55	12	1005.0479	1006.7625
Frequer	ncies	1009.20	59	1011.2904	1012.1971
Frequer	ncies	1014.33	10	1017.2873	1019.0846
Frequer	ncies	1019.36	42	1019.7109	1020.1248
Frequer	ncies	1020.28	90	1026.4517	1034.1444
Frequer	ncies	1044.06	48	1052.7256	1061.8591
Frequer	ncies	1063.91	.36	1065.0410	1065.8993
Frequer	ncies	1069.71	42	1071.2623	1087.8288
Frequer	ncies	1090.71	56	1091.6043	1102.4219
Frequer	ncies	1105.86	77	1110.9809	1112.1342
Frequer	ncies	1121.05	82	1121.5278	1127.5710
Frequer	ncies	1138.25	31	1173.1197	1174.3469
Frequer	ncies	1176.49	24	1177.5289	1177.6608
Frequer	ncies	1184.34	73	1187.2523	1191.7921
Frequer	ncies	1201.97	16	1203.5971	1203.9156

Frequencies	1206.0112	1215.1487	1216.6946	17	6	0	2.866483	-1.096563	3.694342
Frequencies	1220.0465	1225.0706	1230.8228	18	6	0	4.284335	0.544853	2.369417
Frequencies	1233.9399	1237.9755	1244.7962	19	6	0	4.124366	1.800551	3.257459
Frequencies	1256.6524	1260.4840	1273.4394	20	6	0	1.921754	3.266755	3.433256
Frequencies	1280.8282	1292.6944	1298.3234	21	1	0	-0.013482	4.204672	3.344981
Frequencies	1300.4250	1309.9648	1314.4183	22	6	0	3.579192	-2.408572	3.279682
Frequencies	1315.9783	1327.1241	1327.4086	23	6	0	3.496843	-3.520124	0.909313
Frequencies	1330.4412	1336.6257	1338.0367	24	1	0	3.125849	-4.222101	-1.089260
Frequencies	1342.9000	1346.0748	1348.2330	25	1	0	3.320182	-0.629299	4.573901
Frequencies	1358.8486	1359.3659	1362.5845	26	1	0	1.819460	-1.312356	3.928842
Frequencies	1367.5700	1370.1764	1372.1630	27	1	0	5.120210	-0.087731	2.683704
Frequencies	1376.1835	1381.2781	1387.3518	28	1	0	4.466503	0.853944	1.335092
Frequencies	1393.8722	1460.0234	1471.2433	29	1	0	4.342860	1.531457	4.298556
Frequencies	1473.3878	1491.7871	1492.8766	30	6	0	5.057827	2.919138	2.848034
Frequencies	1497.3934	1502.5469	1502.9229	31	6	0	2.528513	4.419227	4.150738
Frequencies	1505.6931	1510.7745	1510.8969	32	1	0	4.652135	-2.341940	3.498573
Frequencies	1528.3354	1530.3555	1531.1496	33	6	0	3.022557	-3.637700	3.969803
Frequencies	1543.7125	1550.5156	1556.9158	34	6	0	4.141238	-4.776585	1.378668
Frequencies	1564.5486	1568.3048	1666.6337	35	6	0	4.966018	3.471084	1.566540
Frequencies	1670.1920	1674.3682	1676.2323	36	6	0	6.034843	3.406705	3.718261
Frequencies	1678.8431	1682.6035	1684.8533	37	6	0	2.275476	5.736548	3.746482
Frequencies	1687.5536	1691.6455	1697.4074	38	6	0	3.314185	4.212112	5.290584
Frequencies	1700.3954	1701.0483	1702.8085	39	6	0	1.682030	-3.995471	3.779284
Frequencies	1703.7819	2936.7385	3080.2570	40	6	0	3.832476	-4.457386	4.756541
Frequencies	3082.1437	3090.6986	3094.2517	41	6	0	3.411965	-5.964975	1.485497
Frequencies	3098.9664	3119.8970	3156.0623	42	6	0	5.486205	-4.765296	1.764035
Frequencies	3159.3233	3181.3821	3184.7336	43	6	0	5.814720	4.501838	1.170738
Frequencies	3189.4426	3198.5317	3199.8185	44	1	0	4.218663	3.093764	0.871274
Frequencies	3202.5366	3204.9690	3206.3241	45	6	0	6.889609	4.437206	3.327502
Frequencies	3206.8751	3207.7105	3212.5021	46	1	0	6.118657	2.986606	4.718374
Frequencies	3215.8539	3216.0215	3218.5717	47	6	0	2.823145	6.813910	4.440263
Frequencies	3218.6653	3219.0622	3224.9726	48	1	0	1.645106	5.922312	2.880151
Frequencies	3225.0623	3226.6364	3227.3491	49	6	0	3.853625	5.286839	5.992560
Frequencies	3228.5278	3234.6106	3235.9046	50	1	0	3.482442	3.198452	5.644557
Frequencies	3235.9924	3238.9789	3239.0507	51	6	0	1.166210	-5.150513	4.360703
Frequencies	3241.4360	3242.3698	3243.2464	52	1	0	1.044391	-3.378525	3.147599
Frequencies	3243.2665	3270.7599	3659.9581	53	6	0	3.320743	-5.618821	5.337317

SCF Done: E(RM062X/DGDZVP) = -2721.99305799Sum of electronic and zero-point Energies=-2721.196148Sum of electronic and thermal Energies=-2721.139938Sum of electronic and thermal Free Energies=-2721.293115SCF Done: E(RM062X/DGTZVP/SMD) = -2722.60955718

Cat b TS1a_R

Center	Aton	nic At	omic	Coordinates	s (Angstroms)
Number	Nu	ımber	Туре	X Y	Z
1	15	0	0.000000	0.000000	0.000000
2	8	0	0.000000	0.000000	1.618772
3	8	0	1.592226	0.000000	-0.355332
4	8	0	-0.509173	1.314963	-0.534852
5	8	0	-0.652970	-1.270953	-0.449718
6	6	0	0.632436	1.075949	2.231535
7	6	0	2.294394	-1.135914	0.049513
8	6	0	1.980827	0.993145	2.551352
9	6	0	-0.082931	2.241570	2.487632
10	6	0	2.801607	-1.221533	1.339756
11	6	0	2.398951	-2.215965	-0.822333
12	6	0	2.921829	-0.186703	2.440575
13	6	0	2.631847	2.099956	3.112724
14	6	0	0.558190	3.313589	3.101150
15	6	0	3.340457	-2.435321	1.774667
16	6	0	3.024304	-3.387204	-0.401366

26	1	0	1.819460	-1.312356	3.928842
27	1	0	5.120210	-0.087731	2.683704
28	1	0	4.466503	0.853944	1.335092
29	1	0	4.342860	1.531457	4.298556
30	6	0	5.057827	2.919138	2.848034
31	6	0	2.528513	4.419227	4.150738
32	1	0	4.652135	-2.341940	3.498573
33	6	0	3.022557	-3.637700	3.969803
34	6	0	4.141238	-4.776585	1.378668
35	6	0	4.966018	3.471084	1.566540
36	6	0	6.034843	3.406705	3.718261
37	6	0	2.275476	5.736548	3.746482
38	6	0	3.314185	4.212112	5.290584
39	6	0	1.682030	-3.995471	3.779284
40	6	0	3 832476	-4 457386	4 756541
41	6	0	3 411965	-5 964975	1 485497
42	6	0	5 486205	-4 765296	1 764035
43	6	0	5 814720	4 501838	1 170738
44	1	0	4 218663	3 093764	0.871274
15	6	0	6 889609	1 137206	3 3 2 7 5 0 2
45	1	0	6 118657	2 986606	J.JZ/JUZ
40	6	0	2 9221/15	6 913010	4.710374
47	1	0	1 645106	E 022212	4.440203
48	L	0	1.045100	5.922512	2.880151
49	1	0	3.833023	3.280839 3.1094F3	5.992500
50	T	0	3.482442	5.198452	3.044557
51	1	0	1.166210	-5.150513	4.360703
52	1 C	0	1.044391	-3.3/8525	3.14/599
53	6	0	3.320743	-5.618821	5.33/31/
54	1	0	4.879823	-4.199995	4.897146
55	6	0	4.013593	-/.11/963	1.987603
56	1	0	2.361653	-5.971530	1.205/40
5/	6	0	6.092044	-5.9203/1	2.256136
58	1	0	6.056913	-3.843898	1.6/2/44
59	6	0	6.779132	4.991/09	2.053069
60	1	0	5.721431	4.919151	0.171734
61	1	0	7.636346	4.811299	4.021302
62	6	0	3.619102	6.592999	5.563620
63	1	0	2.626248	7.826940	4.102785
64	1	0	4.455463	5.103577	6.877758
65	6	0	1.986755	-5.970048	5.139347
66	1	0	0.126442	-5.417706	4.196981
67	1	0	3.968624	-6.253542	5.934478
68	6	0	5.353670	-7.097841	2.376789
69	1	0	3.431972	-8.029475	2.086715
70	1	0	7.137844	-5.900631	2.548292
71	1	0	7.440393	5.797082	1.748451
72	1	0	4.046125	7.431578	6.104783
73	1	0	1.588505	-6.876952	5.584132
74	1	0	5.819150	-7.995959	2.771187
75	1	0	-1.480501	-1.365878	-1.718523
76	8	0	-2.042320	-1.168400	-2.557538
77	6	0	-3.047496	-0.191010	-2.199641
78	6	0	-2.537838	0.968578	-3.076805
79	1	0	-4.039093	-0.568300	-2.450337
80	1	0	-2.983468	0.044810	-1.133853
81	8	0	-2.346508	2.161232	-2.380567
82	6	0	-1.228969	0.216874	-3.462602

83	6	0	-3.395627	1.229348	-4.298460
84	1	0	-1.878744	1.954498	-1.543779
85	1	0	-0.346055	0.266089	-2.835207
86	1	0	-1.138680	-0.317836	-4.399789
87	6	0	-3.782583	2.526078	-4.632679
88	6	0	-3.793391	0.158492	-5.106151
89	6	0	-4.562195	2.748773	-5.767771
90	1	0	-3.463443	3.349454	-4.003728
91	6	0	-4.568233	0.383385	-6.241474
92	1	0	-3.500037	-0.859432	-4.849956
93	6	0	-4.955005	1.682171	-6.574810
94	1	0	-4.858305	3.761147	-6.024880
95	1	0	-4.870832	-0.453644	-6.862959
96	1	0	-5.558739	1.860614	-7.459264
97	1	0	2.720612	5.111015	1.137689
98	6	0	2.491881	5.035831	0.078791
99	6	0	1.713102	3.977346	-0.375335
100	6	0	3.011291	5.991215	-0.807802
101	6	0	1.467376	3.904786	-1.746568
102	1	0	1.306238	3.227341	0.301194
103	6	0	2.764380	5.909517	-2.175754
104	7	0	0.711359	2.933980	-2.395104
105	6	0	1.983006	4.851250	-2.637828
106	1	0	3.167456	6.647565	-2.861657
107	6	0	0 595465	3 056116	-3 724614
108	1	0	0.234805	2.205275	-1.832788
109	16	0	1 48744	2 4 463549	-4 273097
110	16	0	-0 24358	5 2 070003	-4 794176
111	1	0	-1 128952	2 291870	2 203336
112	1	0	1.970449	-2.130086	-1.815844
113	1	0	3.618148	6.804035	-0.421285
Frequenc	ies	-549.72	239	11.2966	13.3012
Frequenc	cies	19.34	156	23.8691	28.8128
Frequenc	cies	30.22	262	30.7234	38.7619
Frequenc	cies	43.77	76	44.8968	48.9787
Frequenc	cies	51.20)76	57.9965	61.7455
Frequenc	cies	65.30)92	73.0161	77.0646
Frequenc	cies	82.74	195	85.6103	90.3757
Frequenc	cies	94.08	383	97.4307	98.6858
Frequenc	cies	99.51	85	113.6584	122.8922
Frequenc	cies	130.0	576	131.8091	156.9583
Frequenc	cies	161.8	679	171.2765	181.3600
Frequenc	cies	185.1	235	193.2343	194.2303
Frequenc	cies	207.7	187	210.3814	218.1021
Frequenc	cies	226.0	023	231.3263	241.2168
Frequenc	cies	251.9	956	261.8995	273.3999
Frequenc	cies	276.9	322	284.1573	289.2470
Frequenc	cies	293.8	888	304.7843	313.7676
Frequenc	cies	324.8	935	330.0821	351.7046
Frequenc	cies	365.2	607	385.4473	387.7907
Frequenc	cies	398.1	744	406.0363	411.1028
Frequenc	cies	412.1	627	412,9732	414.9469
Frequenc	cies	415.4	702	418,2602	421.6718
Frequenc	cies	421 9	875	433.6511	438 7661
Frequenc	cies	445 5	222	452.8911	461 3236
Frequenc	cies	471.8	565	493.7147	507.9045
· · · · · · · · ·				- • •	

Frequencies -- 508.9477

Frequencies -- 531.5615

Frequencies -- 542.6686

Frequencies -- 576.3773

Frequencies -- 597.7045

Frequencies -- 618.9233

 Frequencies - 628.9191

 Frequencies - 637.9256

511.9447

536.4820

555.2510

576.7275

609.2676

623.3498

629.5585

639.9197

523.9004

538.6139

567.6414

586.1916

614.8005

627.0654

632.3067

653.8270

Frequencies	663.9226	664.8229	673.0238
Frequencies	681.2067	683.8269	693.2976
Frequencies	704.6898	712,2917	713.0174
Frequencies	717 4250	719 3055	720 7706
Frequencies	722 2896	725 7112	732 17/1
Frequencies	726 7359	739 8658	7/8 8/62
Frequencies	750.7555	755.0050	775 5007
Frequencies	709.8775	771.9357	775.5007
Frequencies	779.8519	/80.4396	/83./04/
Frequencies	799.4480	817.6459	825.0657
Frequencies	841.6531	849.8458	862.7805
Frequencies	864.3374	866.1514	868.5120
Frequencies	872.6014	873.3777	879.2431
Frequencies	881.0133	885.4618	890.4430
Frequencies	896.7844	901.2759	904.1417
Frequencies	933.1828	934.7806	939.4745
Frequencies	939.9291	942.1533	943.3234
Frequencies	944.2371	954.0321	965.8221
Frequencies	967.6953	974,7973	993.3685
Frequencies	995 6968	997 4508	998 2229
Frequencies	998 8910	1001 8149	1006 1902
Frequencies	1010 2250	1010 /612	1011 1596
Frequencies	1010.2233	1010.4012	1012.0726
Frequencies	1011.3027	1017.4010	1010.0750
Frequencies	1019.1216	1019.2921	1019.9908
Frequencies	1020.8501	1022.6789	1027.5733
Frequencies	1042.5095	1045.5146	1051.5983
Frequencies	1053.3305	1058.7613	1063.4426
Frequencies	1064.7651	1068.2401	1069.8021
Frequencies	1071.5099	1079.2893	1087.2321
Frequencies	1089.2725	1102.0676	1103.2958
Frequencies	1105.7129	1109.4813	1111.1481
Frequencies	1114.3686	1117.6495	1119.8422
Frequencies	1124.1738	1125.6342	1139.0890
Frequencies	1153.7644	1158.9257	1175.2888
Frequencies	1176.2361	1176.2917	1177.6660
Frequencies	1178.9751	1180.3117	1189.0403
Frequencies	1198.1238	1202.0466	1206.3841
Frequencies	1207 5547	1209 4407	1200.0011
Frequencies	1210 8214	1214 1901	1214 6140
Frequencies	1224 7701	1230 9172	12211.0110
Frequencies	1224.7701	1230.3172	1252.0750
Frequencies	1241.0772	1240.8040	1207.1403
Frequencies	1204.9570	1277.4510	1209.9334
Frequencies	1291.0639	1295.4487	1296.7475
Frequencies	1300.3763	1306.0305	1308.3665
Frequencies	1312.1854	1324.7021	1327.4939
Frequencies	1333.6003	1337.2053	1343.3444
Frequencies	1343.8922	1346.9664	1349.7928
Frequencies	1357.2361	1358.6251	1366.1566
Frequencies	1367.0073	1368.0774	1370.0194
Frequencies	1371.5801	1376.9730	1382.6429
Frequencies	1385.6343	1394.7940	1441.8145
Frequencies	1451.7902	1465.0351	1468.4369
Frequencies	1474.6896	1478.2164	1490.6592
Frequencies	1494.2118	1499.5537	1500.6174
Frequencies	1500.9803	1506.4187	1510.6853
Frequencies	1514.9389	1523.7025	1527.6211
Frequencies	1530.5881	1547.9568	1550.7214
Frequencies	1552 9174	1555 5070	1563 8139
Frequencies	1567 8984	1662 8643	1664 8815
Frequencies	1673 5065	1675 6312	1676 4468
Frequencies	1678 3777	1679 5116	1682 2186
Frequencies	168/ 7/20	1686 1020	1600 1610
Frequencies	1600 1000	1600.4000	1701 0210
Frequencies	1702 0140	1702 0015	1/01.8319
Frequencies	1/02.0148	1/02.9815	2690.9465
Frequencies	30/4./061	30/7.5/82	3091.1751
Frequencies	3092.8142	3121.3975	3155.1837
Frequencies	3157.8132	3189.8592	3198.9895

Frequencies	3201.9876	3202.3093	3202.9041
Frequencies	3204.5087	3205.3540	3207.3949
Frequencies	3207.8445	3213.0652	3213.7088
Frequencies	3215.3823	3216.8504	3217.7117
Frequencies	3218.2762	3218.8263	3218.9176
Frequencies	3221.8018	3224.9566	3226.0826
Frequencies	3226.6571	3229.2161	3229.7456
Frequencies	3229.8253	3233.1269	3235.1881
Frequencies	3237.4690	3239.6311	3239.7516
Frequencies	3241.4530	3241.6534	3242.8627
Frequencies	3243.7242	3247.5105	3250.0473
Frequencies	3258.8232	3349.5619	3608.6537

SCF Done: E(RM062X/DGDZVP) = -3842.65727870Sum of electronic and zero-point Energies=-3841.753818Sum of electronic and thermal Energies=-3841.686876Sum of electronic and thermal Free Energies=-3841.863287SCF Done: E(RM062X/DGTZVP/SMD) = -3843.434344433

Cat b TS1b_S

Center Number	Ato N	mic At umber	omic Type	Coordinate: X Y	s (Angstroms) Z
1	15	0	0.000000	0.000000	0.000000
2	8	0	0.000000	0.000000	1.635973
3	8	0	1.571144	0.000000	-0.374553
4	8	0	-0.546272	1.310179	-0.510647
5	8	0	-0.688819	-1.270068	-0.395588
6	6	0	0.535663	1.122420	2.256090
7	6	0	2.337882	-1.057994	0.108730
8	6	0	1.907113	1.234624	2.447734
9	6	0	-0.312789	2.158626	2.635878
10	6	0	2.940708	-0.955128	1.355287
11	6	0	2.448355	-2.224865	-0.640780
12	6	0	3.009281	0.203187	2.328028
13	6	0	2.431152	2.443657	2.913597
14	6	0	0.219109	3.335395	3.160188
15	6	0	3.623184	-2.060445	1.867900
16	6	0	3.199522	-3.289413	-0.146103
17	6	0	3.182914	-0.561612	3.668910
18	6	0	4.233921	1.118492	2.074371
19	6	0	3.954336	2.409325	2.884567
20	6	0	1.602630	3.503831	3.291269
21	1	0	-0.446075	4.140842	3.464668
22	6	0	3.995200	-1.834992	3.327383
23	6	0	3.800417	-3.224691	1.116139
24	1	0	3.308773	-4.194073	-0.738139
25	1	0	3.660315	0.049443	4.441299
26	1	0	2.194701	-0.854132	4.037677
27	1	0	5.177042	0.640045	2.356112
28	1	0	4.283607	1.359164	1.007601
29	1	0	4.337762	2.296409	3.906517
30	6	0	4.576134	3.653962	2.285649
31	6	0	2.170936	4.772649	3.821995
32	1	0	5.070066	-1.636595	3.423068
33	6	0	3.642037	-3.018852	4.205443
34	6	0	4.594167	-4.361959	1.656327
35	6	0	4.258155	4.048564	0.980818
36	6	0	5.451392	4.446588	3.030366
37	6	0	2.121208	5.939270	3.053065
38	6	0	2.785872	4.807063	5.077059
39	6	0	2.337228	-3.527493	4.195333
40	6	0	4.602724	-3.649550	4.996124
41	6	0	3.984708	-5.581745	1.967130

42	6	0	5.961957	-4.202404	1.902758
43	6	0	4.808813	5.206580	0.436277
44	1	0	3.567630	3.446977	0.391456
45	6	0	5.990389	5.616548	2.495428
46	1	0	5.697382	4.157818	4.049569
47	6	0	2.700542	7.117203	3.520665
48	1	0	1.654187	5.906819	2.071281
49	6	0	3.354543	5.988879	5.551885
50	1	0	2.814610	3.903459	5.681696
51	6	0	2.004206	-4.644363	4.956607
52	1	0	1.582861	-3.060790	3.563548
53	6	0	4.274724	-4.772808	5.757451
54	1	0	5.624338	-3.276335	4.997544
55	6	0	4.726735	-6.616250	2.534810
56	1	0	2.918550	-5.703734	1.794003
57	6	0	6.708088	-5.240482	2.459010
58	1	0	6.439976	-3.257957	1.652897
59	6	0	5.670839	6.000613	1.194471
60	1	0	4.573770	5.489946	-0.585578
61	1	0	6.654389	6.228821	3.098162
62	6	0	3.320370	/.144/34	4.770820
63	1	0	2.6/6692	8.010644	2.903216
64	1 C	0	3.826373	6.00/13/	6.529925
65	1	0	2.9/4/93	-5.2/4685	5./38566
60	1	0	0.989304 E 020E00	-3.030039 E 3600E7	4.931083 6 354163
67	I C	0	5.039309 6.000375	-3.200937	0.334103
60	1	0	1 227215	7 550226	2.704707
70	1	0	4.237213	= 10E220	2./93/20
70	1	0	6 091927	6 907987	0 772451
72	1	0	3 772469	8.062136	5 135475
73	1	0	2 718802	-6 151875	6 324940
74	1	0	6 664578	-7 253145	3 230979
75	1	0	-2.252159	-1.304869	-0.242882
76	8	0	-3.238918	-1.048958	-0.315514
77	6	0	-3.421630	-0.434324	-1.612538
78	6	0	-3.773061	0.991326	-1.144266
79	1	0	-2.483386	-0.456599	-2.173331
80	1	0	-4.210122	-0.951938	-2.159081
81	8	0	-2.947503	1.975254	-1.690961
82	6	0	-3.490383	0.679740	0.352937
83	6	0	-5.223490	1.367080	-1.367703
84	1	0	-2.016216	1.689086	-1.574824
85	1	0	-4.288134	0.395712	1.028744
86	1	0	-2.497824	0.787029	0.769815
87	6	0	-5.564139	2.576423	-1.970993
88	6	0	-6.232908	0.490706	-0.956813
89	6	0	-6.906529	2.907682	-2.156510
90	1	0	-4.774759	3.249491	-2.286503
91	6	0	-7.572709	0.825317	-1.137707
92	1	0	-5.9/6015	-0.461508	-0.492871
93	6	0	-7.9124/1	2.037708	-1./39333
94	1	0	-7.166142	3.851816	-2.625527
95	1	0	-8.349297	0.140228	-0.812107
90	1	0	1 220040	2.300371	-1.882470
97	1	0	1 5249040	2.747107	0.009103
90 00	, 6	0	-1.JZ4099 _7 705217	2.7 14027 1 006000	0.507594
99 100	6 G	0	-0 653176	4 775364	0.0001/9
101	16	0	-3 964884	2 956672	1 241452
102	16	0 0	-2.800600	5.726941	1.192250
103	6	Ő	-1.194914	5,990508	0.541437
104	6	0	0.614843	4.698139	-0.465661
105	6	0	-0.476388	7.177131	0.395693
106	6	0	1.319451	5.886292	-0.621499
107	1	0	1.008400	3.736676	-0.784844

108 6	0 0.78	31862 7.111560	-0.197554	Frequencies 1051.9927 1057.3489	1061.5735
109 1	0 -0.88	86748 8.124412	0.729920	Frequencies 1061.7586 1067.9060	1068.5907
110 1	0 2.30	04540 5.865274	-1.073909	Frequencies 1069.6853 1072.1586	1077.6421
111 1	0 -1.38	88354 2.034194	2.524605	Frequencies 1085.0225 1098.4365	1100.4180
112 1	0 1.93	32432 -2.286363	-1.593439	Frequencies 1104.0999 1108.5637	1109.4309
113 1	0 1.35	56476 8.022799	-0.327555	Frequencies 1109.9586 1115.6916	1118.0006
				Frequencies 1122.4037 1123.0426	1133.8906
				Frequencies 1137.7863 1155.7893	1173.2853
Frequencies	-551.3082	11.4255	16.8705	Frequencies 1175.6987 1176.2400	1178.6003
Frequencies	18.8554	24.8882	29.1649	Frequencies 1181.3359 1182.7264	1183.8491
Frequencies	33.1426	36.4211	36.8854	Frequencies 1187.1170 1199.4478	1199.8760
Frequencies	45.1772	50.8296	55.6331	Frequencies 1201.4153 1208.2060	1208.5668
Frequencies	56.5464	61.3090	63.0220	Frequencies 1210.3298 1210.7373	1212.8417
Frequencies	67,2065	69.9126	77.2147		1232,9914
Frequencies	77,4810	82,2687	83.0798		1252.8488
Frequencies	90.6767	93.4105	95.2208	Frequencies 1263.0338 1278.3067	1286.9818
Frequencies	107.6663	114.1708	121.1726	Frequencies 1292.4414 1292.9983	1295,4441
Frequencies	128,9696	133.3957	150.3469	Frequencies 1297.9771 1309.4287	1310.6529
Frequencies	163.0046	168,1643	178.8419	Frequencies 1312.0900 1324.9780	1325.6429
Frequencies	185.5186	192,2169	193.4189	Frequencies 1335.4437 1336.7659	1340.5262
Frequencies	205.7507	214,4970	226,9680	Frequencies 1344.1779 1344.9289	1356.7796
Frequencies	232.1842	240.3713	241.7539	Frequencies 1357.6857 1357.7241	1366.0276
Frequencies	249 7436	256 5519	270 5496	Erequencies 1366 5958 1367 9115	1368 1613
Frequencies	275 8069	280 1772	293 2751	Erequencies 1374 1234 1375 5855	1382 8033
Frequencies	297 5127	300 1951	307 6656	Erequencies 1392 1873 1392 8890	1437 9232
Frequencies	309 9414	335 1026	351 0721	Erequencies 1454 9264 1456 4374	1468 3001
Frequencies	354 0328	385 4807	390 9976	Erequencies 1470 1141 1481 5467	1490 6522
Frequencies	394.0320	405 8226	407 2998	Erequencies 1491 1811 1499 3092	1500.6891
Frequencies	108 69/8	409.8228	407.2000	$\frac{1495.3052}{1495.3052}$	1509 30/9
Frequencies	408.0948	409.3498	411.4103	$\frac{1502.2000}{1503.7840}$	1527 3101
Frequencies	128 6219	129 1318	/33 3777	Erequencies 1529 5736 1547 7294	15/18 0121
Frequencies	420.0213	454 0561	455.5777	Erequencies 1553/980 1561 3521	1563 933/
Frequencies	430.7741	494.0901	507 4842	Erequencies 1568 3828 1667 0979	1668 0577
Frequencies	509 5132	516 1330	520 2876	Erequencies 1672 5210 1676 0932	1678 6774
Frequencies	521 0201	524 2250	520.2870	Eroquencies 1670.7210 1670.0552	1691 6725
Frequencies	5/3 5/2/	558 2160	565 9310	Erequencies 1682 9827 1689 5634	1689 9591
Frequencies	574 0243	575 7059	584 1726	Erequencies 1696.8653 1698.7932	1699 /3/2
Frequencies	595 9591	608 3766	613 5775	Erequencies 1702 5301 1703 2226	2812 0922
Frequencies	617 3478	623 0307	625 2530	Erequencies 3069 7329 3072 8123	3088 5223
Frequencies	678 8878	628 9317	631 8394	Erequencies 3089.6319 3120.3374	3152 5139
Frequencies	637 1/81	639 3562	654 7941	$\frac{1120.3374}{120.3374}$	3178 3653
Frequencies	650 0722	664 5618	670 4184	Eroquencies 2189.0750 2101.9674	2106 2020
Frequencies	690 5521	682.0100	602 2274	Eroquencies 2108.5755 5151.8074	2205 5652
Frequencies	605 3638	707 9606	712 2026	Eroquencies 2207 8112 2209 1790	3203.3033
Frequencies	713 4651	707.5000	712.2550	1100000000000000000000000000000000000	3215 1686
Frequencies	710 9910	710.0390	718.3737	Eroquencies 2217.4728 2217.6261	2210.1080
Frequencies	722.6054	723.2742	729.2203	Eroquencies 2210.1517 2222.2777	2222 7520
Frequencies	750 7774	772 6654	747.8382	Eroquencies 2223.1517 5222.5777	2225 5544
Frequencies	739.7774	772.0034	773.4707	Frequencies 2226.2477 2228.2440	2223.3344
Eroquencies	700 5760	017 700	205 0761	Eroquoncios 2001 6E76 2005 0140	3220.303/
Frequencies	9/5 0C1/	01/.//98 0170 TN0	023.U/01	Frequencies 3231.03/b 3235.9143	3237.5038
Frequencies	043.9014	047.0729	052.5920 069 E100	Frequencies - 3240.7487 - 3242.0239	2245.1565
Frequencies	802.2101	804.3038	808.3190	Frequencies - 3244.0144 - 3243.2420	3249.1012
Frequencies	075 2745	872.3074	874.0717	Frequencies 3249.7938 3362.3208	3602.2240
Frequencies	0/5.2/45	000.027/	893.40Ub	SCE Danas $E(DMOCAY/DCDZ)(D) = -2042 CE02C$	C10
Frequencies	022 5204	899.0820	926.5214	SCF DUTIE: E(RIVIDEZA/DGDZVP) = -3842.05830	
Frequencies	932.5394	934.30/5	930.9247	Sum of electronic and thermal Energies=	-3841./33/29
Frequencies	939.8/42	940.3512	944.1633	Sum of electronic and thermal Energies=	-3841.088686
Frequencies	950.1128	953.433/	959.2908	Sum of electronic and thermal Free Energies=	-3841.864539
Frequencies	967.7672	983.1536	986.5824	SUF DONE: $E(KIVIU62X/DG12VP/SMID) = -3843.43$	3328230
Frequencies	989.1193	992.2010	995.8840		
Frequencies	997.5887	998.0/19	999.5123	Cat b TS1c_S	
Frequencies	1005./330	1010 2245	1008.7501	—	
Frequencies	1008.8285	1010.0845	1014./203	Center Atomic Atomic Coordinates (Angstroms)
Frequencies	1018.9957	1019.9298	1019.9810	Number Number Type X Y	Z
Frequencies	1019.9979	1020.0430	1023.4793		
Frequencies	1041.2/00	1042.9230	1049.0641		

1	15	0	0.000000	0.000000	0.000000	67	1	0	4.976768	-5.993616	5.798955
2	8	0	0.000000	0.000000	1.615391	68	6	0	5.773925	-6.920991	2.167585
3	8	0	1.589075	0.000000	-0.383170	69	1	0	3.859029	-7.906641	2.058822
4	8	0	-0.553265	1.261291	-0.587483	70	1	0	7.533617	-5.676927	2.163449
5	8	0	-0.616781	-1.317667	-0.401766	71	1	0	6.499567	6.363884	1.018682
6	6	0	0.625577	1.071690	2.248234	72	1	0	4.541536	7.340868	5.738121
7	6	0	2.339797	-1.100113	0.007261	73	1	0	2.625991	-6.802739	5.895779
8	6	0	1.982622	1.005632	2.535890	74	1	0	6.297703	-7.800580	2.529551
9	6	0	-0.107910	2.218486	2.535567	75	1	0	-0.811877	1.237116	-2.144171
10	6	0	2.859351	-1.177319	1.293277	76	8	0	-1.129899	0.950254	-3.071442
11	6	0	2 538071	-2 142434	-0.894076	77	6	0	-2 420891	0 317848	-2 904052
12	6	0	2 979269	-0 124502	2 375741	78	6	0	-2 037250	-1 106092	-3 349990
13	6	0	2 611702	2 131486	3 072250	79	1	0	-2 718380	0.346812	-1 852638
1/	6	0	0.520/69	3 301050	3 1/8161	80	1	0	-3 162208	0.818192	-3 527507
15	6	0	3 / 8381/	-2 358/7/	1 703/15	81	8	0	-2 3/362/	-2.085186	-2 /03812
16	6	0	3 21759/	-3 290520	-0.489778	82	6	0	-0 521604	-0 772664	-3 /61811
17	6	0	3.066306	-1.021/18/	3 637077	83	6	0	-0.521004	-0.772004	-1 692788
10	6	0	1 205776	0.692211	2 204556	Q/	1	0	2.013743	1 792475	1 5252/1
10	C	0	4.293770	1.057577	2.204330	04	1	0	-2.001360	-1.765475	4 411152
19	6	0	4.125014	1.957577	3.067011	85	1	0	-0.0/08/1	-0.498527	-4.411152
20	6	0	1.8913/1	3.275145	3.42/181	80	1 C	0	0.137401	-0.858178	-2.608017
21	T	0	-0.054798	4.187622	3.400378	87	6	0	-3.22/659	-2.746212	-4.862782
22	6	0	3.842088	-2.282499	3.182620	88	6	0	-2.515350	-0.628546	-5.///051
23	6	0	3.689922	-3.422569	0.821262	89	6	0	-3./36029	-3.105695	-6.110832
24	1	0	3.383200	-4.098105	-1.199693	90	1	0	-3.295193	-3.421315	-4.017103
25	1	0	3.544745	-0.512656	4.479581	91	6	0	-3.020187	-0.990646	-7.023874
26	1	0	2.053489	-1.303476	3.942879	92	1	0	-2.042540	0.345449	-5.652481
27	1	0	5.182152	0.102838	2.478335	93	6	0	-3.632928	-2.233063	-7.192875
28	1	0	4.396220	0.971772	1.153532	94	1	0	-4.209355	-4.074357	-6.238614
29	1	0	4.499694	1.783356	4.083332	95	1	0	-2.937820	-0.303562	-7.860259
30	6	0	4.835866	3.165360	2.488380	96	1	0	-4.026759	-2.518115	-8.163533
31	6	0	2.576699	4.425632	4.075890	97	1	0	-0.163316	-2.749108	-1.161905
32	1	0	4.920654	-2.107710	3.286144	98	7	0	0.015541	-3.724365	-1.475847
33	6	0	3.496712	-3.533618	3.963135	99	6	0	0.233928	-4.062691	-2.749498
34	6	0	4.416807	-4.647100	1.254650	100	6	0	0.083399	-4.746241	-0.541331
35	6	0	4.462442	3.648811	1.228042	101	16	0	0.248483	-3.059994	-4.101157
36	6	0	5.823147	3.844143	3.203218	102	16	0	0.549642	-5.785361	-2.862535
37	6	0	2.694600	5.659232	3.427817	103	6	0	0.365548	-5.982692	-1.129977
38	6	0	3.159286	4.260519	5.337542	104	6	0	-0.112227	-4.610700	0.833075
39	6	0	2 178801	-4 002340	4 013622	105	6	0	0 441110	-7 136332	-0 349164
40	6	0	4 490787	-4 260088	4 621910	106	6	0	-0.047585	-5 765968	1 603342
41	6	0	3 732042	-5 851805	1 437193	107	1	0	-0 315804	-3 630702	1 257955
42	6	0	5 789657	-4 594291	1 515589	108	6	0	0.222320	-7 014196	1 020905
43	6	0	5.059821	4 788933	0.698585	109	1	0	0.657140	-8 101403	-0 795713
11	1	0	3 675715	3 1/3603	0.650505	110	1	0	-0.205307	-5 701213	2 67/01/
44	6	0	6 / 21591	1 990965	2 678114	111	1	0	2 169504	-2.042006	-1 913172
45	1	0	6 100205	3 490014	4 101054	112	1	0	1 157010	2 240246	2 262208
40	6	0	3 402011	6 702877	4.131034	112	1	0	0.260000	7 202500	1 647904
47	1	0	2 260716	5 79/272	2 /201/1	115	T	0	0.200900	-7.090390	1.047834
40	L C	0	2.200710	5.784575	2.439141 E 020220						
49	1	0	3.837700	2.204712	5.956559	F			00	15.0526	10 2200
50	1 C	0	3.058996	3.304/13	5.846729	Frequence	cies	-550.46	80	15.0536	18.3299
51	6	0	1.866689	-5.166536	4./12915	Frequen	cies	21.34	97	25.8595	32.5099
52	1	0	1.394101	-3.456372	3.491979	Frequen	cles	35.95	/8	37.5800	43.7581
53	6	0	4.185540	-5.435282	5.307726	Frequen	cies	43.99	35	51.6410	58.0689
54	1	0	5.521036	-3.914553	4.5//414	Frequen	cies	59.48	/5	65.3430	67.4357
55	6	0	4.405512	-6.981629	1.898556	Frequen	cies	70.30	83	72.8181	78.5221
56	1	0	2.662203	-5.888062	1.244131	Frequen	cies	80.21	29	84.1298	91.3177
57	6	0	6.466809	-5.727014	1.966488	Frequen	cies	93.40	51	97.4063	99.5105
58	1	0	6.325566	-3.660496	1.361452	Frequen	cies	114.19	915	117.1154	121.5759
59	6	0	6.040441	5.467991	1.425464	Frequen	cies	130.55	529	137.5501	150.0111
60	1	0	4.752379	5.155128	-0.276451	Frequen	cies	163.58	384	169.6330	181.7332
61	1	0	7.176303	5.517162	3.254954	Frequen	cies	189.12	263	193.2901	197.6020
62	6	0	3.988187	6.528195	5.277440	Frequen	cies	206.78	336	215.3612	226.9782
63	1	0	3.508015	7.648671	3.500270	Frequen	cies	232.96	551	240.2553	243.0599
64	1	0	4.302335	5.167516	6.919330	Frequen	cies	251.30)20	257.7945	271.3404
65	6	0	2.869846	-5.892124	5.357277	Frequen	cies	276.27	701	280.9448	292.7332
66	1	0	0.837451	-5.510034	4.764448	Frequen	cies	297.33	359	302.3314	308.8142

Frequencies	309.4999	333.9401	352.9562
Frequencies	354.7359	386.6714	392.0680
Frequencies	396.0379	406.8722	408.8800
Frequencies	410.7192	412.1718	413.6843
Frequencies	416.5310	420.1607	421.1822
Frequencies	428.9706	431.5573	435.7274
Frequencies	438.7534	454.1363	458.4675
Frequencies	473.2010	493.2484	507.7284
Frequencies	510.3631	516.7122	523.9324
Frequencies	529.7062	536.2959	539.6585
Frequencies	544.3247	558.2039	566.1188
Frequencies	575.4236	576.5009	584,4632
Frequencies	596.2445	609.3712	614,1290
Frequencies	618 4841	623 4565	625 8917
Frequencies	627 9074	629 5186	631 8093
Frequencies	637 0754	640 9574	655.0182
Frequencies	659 7231	665 9626	670 6371
Frequencies	681 / 93/	684 4364	695 0/32
Frequencies	704 6601	712 7750	715 4162
Frequencies	717 6469	721 2465	721 4669
Frequencies	717.0409	721.3403	721.4009
Frequencies	723.9074	725.5109	730.0078
Frequencies	730.2047	738.0943	748.2207
Frequencies	762.6645	773.8548	775.8796
Frequencies	779.2043	/80.2688	789.0648
Frequencies	801.0697	818.5425	826.3998
Frequencies	849.8636	852.5034	866.7285
Frequencies	867.6684	870.8805	8/1.39/1
Frequencies	878.0748	880.2655	881.6525
Frequencies	881.8348	887.7669	895.2239
Frequencies	898.1323	900.9121	930.9715
Frequencies	936.3198	938.3345	940.5586
Frequencies	942.9611	947.6575	949.5457
Frequencies	954.3918	955.6182	963.2474
Frequencies	974.9825	991.6251	993.9779
Frequencies	995.1508	997.0208	999.5323
Frequencies	1000.6649	1005.3458	1005.5216
Frequencies	1008.4775	1008.6954	1010.6864
Frequencies	1013.4948	1014.6656	1019.4386
Frequencies	1019.5704	1019.7573	1020.3496
Frequencies	1020.6296	1021.2672	1026.2052
Frequencies	1041.9652	1043.8727	1050.3781
Frequencies	1052.5357	1057.4462	1061.7466
Frequencies	1064.3276	1069.0294	1069.9192
Frequencies	1071.8533	1074.8850	1080.0159
Frequencies	1086.8045	1100.8203	1102.9558
Frequencies	1105.6547	1108.9848	1110.1538
Frequencies	1112.7034	1116.6512	1117.5322
Frequencies	1122.3959	1125.6169	1136.5497
Frequencies	1142.0949	1158.2197	1174.8166
Frequencies	1176,1612	1178.0450	1178.2553
Frequencies	1180.2613	1182.6249	1186.8881
Frequencies	1190 5793	1200 6017	1203 2749
Frequencies	1204 9759	1206 3914	1211 5738
Frequencies	1211 6601	1214 6031	1211.3730
Frequencies	1225 4941	1214.0051	1214.7505
Frequencies	1225.4541	12/13 3796	1253.2273
Frequencies	1263 7100	1243.3730	1223.0790
Frequencies	1203./100	1200./092	1205./540
Frequencies	1207 0200	1211 4010	1212 0001
Frequencies	1215 2025	1311.4818	1313.9081
Frequencies	1315.3835	1325./605	1327.5503
Frequencies	1336.0423	1338.0007	1342.1936
Frequencies	1344.5503	1344.8031	1358.3037
Frequencies	1358.9311	1359.0630	1365.2258
Frequencies	1366.4143	1367.2165	1368.1391
Frequencies	13/5.2452	1376.1382	1382.1371
Frequencies	1389.8583	1394.3887	1438.3808

Frequencies	1457.8875	1458.9870	1472.4070
Frequencies	1474.9892	1482.7436	1490.3304
Frequencies	1493.2546	1499.1861	1500.2616
Frequencies	1501.5202	1505.6211	1509.7058
Frequencies	1518.2821	1527.6411	1529.8650
Frequencies	1531.4205	1545.6182	1548.0625
Frequencies	1554.4498	1564.5365	1566.5045
Frequencies	1569.3913	1666.3653	1669.5559
Frequencies	1673.0069	1675.2055	1677.3423
Frequencies	1678.4810	1681.2255	1683.3366
Frequencies	1684.0246	1687.6015	1690.7479
Frequencies	1697.9182	1699.5005	1700.2056
Frequencies	1701.9976	1702.2818	2832.2765
Frequencies	3072.3430	3075.6490	3090.5037
Frequencies	3093.1120	3128.5516	3155.6189
Frequencies	3157.3672	3158.0864	3192.7904
Frequencies	3196.0775	3196.9260	3197.8182
Frequencies	3198.8232	3199.0994	3205.7587
Frequencies	3206.7544	3207.1018	3208.2968
Frequencies	3210.9531	3213.5779	3215.6917
Frequencies	3216.2714	3217.4602	3218.2383
Frequencies	3223.2282	3224.2102	3224.7446
Frequencies	3227.5016	3227.9670	3228.1609
Frequencies	3228.6049	3231.7326	3232.1609
Frequencies	3233.7300	3235.1146	3236.4430
Frequencies	3241.2955	3241.3883	3243.8859
Frequencies	3245.4994	3253.6201	3255.3749
Frequencies	3256.1954	3362.0819	3626.9469

SCF Done: E(RM062X/DGDZVP) = -3842.65863965Sum of electronic and zero-point Energies=-3841.754507Sum of electronic and thermal Energies=-3841.687804Sum of electronic and thermal Free Energies=-3841.861642SCF Done: E(RM062X/DGTZVP/SMD) = -3843.43304769

Cat b TS1d_R

Center	Atomic	At	omic	Coordinate	s (Angstroms)
Number	Num	ber	Туре	X Y	Z
1	15	0	0.000000	0.000000	0.000000
2	8	0	0.000000	0.000000	1.625213
3	8	0	1.583630	0.000000	-0.353781
4	8	0	-0.580426	1.272123	-0.538482
5	8	0	-0.624872	-1.311154	-0.406602
6	6	0	0.611963	1.092086	2.239017
7	6	0	2.286071	-1.124241	0.070825
8	6	0	1.977425	1.068599	2.491754
9	6	0	-0.141630	2.224439	2.533390
10	6	0	2.857518	-1.153403	1.335596
11	6	0	2.359780	-2.238936	-0.759540
12	6	0	2.997337	-0.043554	2.354324
13	6	0	2.592672	2.217941	2.991856
14	6	0	0.475049	3.333145	3.110734
15	6	0	3.464336	-2.329668	1.797967
16	6	0	3.029777	-3.375569	-0.320305
17	6	0	3.111124	-0.867922	3.658317
18	6	0	4.290757	0.782484	2.126066
19	6	0	4.108948	2.072831	2.963079
20	6	0	1.853906	3.349073	3.347845
21	1	0	-0.116579	4.207575	3.367385
22	6	0	3.865966	-2.160085	3.264024
23	6	0	3.593916	-3.449903	0.963561
24	1	0	3.122948	-4.226738	-0.988885
25	1	0	3.611816	-0.319846	4.462460

26 1 0 2.104920 -1.127229 4.00 27 1 0 5.195617 0.228197 2.39 28 1 0 4.591164 1.046387 1.06 29 1 0 4.59154 3.28158 2.35 30 6 0 4.791574 3.28138 4.16 31 6 0 4.35252 -4.682102 1.36 32 1 0 4.394246 3.743488 1.09 35 6 0 4.394246 3.743488 1.09 36 6 0 2.129073 3.982637 3.04 37 6 0 2.128176 3.92584 4.97 40 6 0 4.470897 -3.93284 4.97 41 6 0 3.806428 -5.95041 1.00 42 6 0 5.577188 4.602361 1.92 43 6 0 3.20925 6.810692 3.85 44 1 0 3.604467 <	1.1272294.0033280.2281972.3940550.2541.0463871.0658861.1061.9249203.9769791.5743.2818582.3555760.4014.5236853.9634990.830-1.9802863.3347823.779-3.3241384.1651295522-4.6821021.3602621.2443.7434881.0944830.4733.9826373.0479110.0505.7464503.2911600.4964.3901215.2191933.176-3.9325844.97921154285.9504011.0682819.897-3.9325844.97921154285.9504011.0682819.897-3.9325844.97921154285.9504011.0682819.8973.42206960.55354754383.2206960.55354754285.2209013.869309.843.2206960.55354754383.2442375.7468989.7045.4566575.7906405584.8990315.8100519.744593.3264393.58711075884.9990315.8100519.744595.8476502.3276289.744595.234029-0.432849.7544252.3276282.3276289.744595.54471255.837619.744595.234029-0.432849.7459455.8476595.837629.74459586.6675095.0569739.74459595.837621.246781 </th
27 1 0 5.195617 0.228197 2.33 28 1 0 4.359254 1.046387 1.06 29 1 0 4.501106 1.924920 3.97 30 6 0 2.529401 4.523685 3.93 31 6 0 2.529401 4.523685 3.93 33 6 0 3.513779 -3.324138 4.16 34 6 0 4.394246 3.743488 1.09 35 6 0 2.620005 5.746450 3.29 38 6 0 3.132496 4.390121 5.21 39 6 0 2.198176 -3.795748 4.21 40 6 0 4.470897 -3.932584 4.97 41 6 0 3.806428 5.90401 1.00 42 6 0 6.5577188 -4.602362 1.92 43 6 0 3.820427 5.4567 5.72 50 1 0 3.053593	5617 0.228197 2.394055 6254 1.046387 1.065886 1106 1.924920 3.976979 12574 3.281858 2.355576 0401 4.523685 3.963499 5830 -1.980286 3.334782 3779 -3.24138 4.165129 5522 -4.682102 1.360262 1246 3.743488 1.094483 3.982637 3.047991 0005 5.746450 3.291160 2496 4.390121 5.21913 3176 -3.795748 4.210173 0897 -3.932584 4.979211 5428 -5.950401 1.068281 7188 -4.602362 1.982189 958 4.84347 0.542500 9584 3.20696 0.553547 373 5.129570 2.500201 3818 3.644767 4.036216 9255 6.810692 3.856930 9400 5.847650 2.306772 <
27 1 0 5.139017 0.128137 1.06 29 1 0 4.359254 1.046387 1.06 29 1 0 4.359254 1.046387 1.06 30 6 0 4.791574 3.281858 2.35 31 6 0 3.513779 -3.324138 4.16 34 6 0 4.32552 -4.682102 1.36 35 6 0 4.394246 3.743488 1.09 36 6 0 2.198176 -3.795748 4.21 36 0 2.198176 -3.795748 4.29 40 6 0 4.470897 -3.932584 4.9 41 6 3.806428 -5.95041 1.06 42 6 0 5.577188 -4.602362 1.98 43 6 0 4.320595 6.810692 3.85 44 1 0 3.606428 5.99	0.17 0.1228137 2.334033 0254 1.046387 1.065886 1106 1.924920 3.976979 1574 3.281858 2.355576 0401 4.523685 3.963499 0530 -1.980286 3.34782 3779 -3.324138 4.165129 0522 -4.682102 1.360262 1246 3.743488 1.094483 0473 3.982637 3.047991 0005 5.746450 3.291160 2496 4.390121 5.219193 3176 -3.795748 4.210173 0897 -3.932584 4.979211 5428 -5.950401 1.068281 7188 -4.602362 1.982189 0958 4.884347 0.542500 5844 3.220696 0.553547 3318 3.644767 4.036216 0325 6.810692 3.856930 0400 5.847650 2.306772 4467 5.456657 5.790640
28 1 0 4.359254 1.046387 1.06 29 1 0 4.501106 1.924920 3.97 30 6 0 4.791574 3.281858 2.35 31 6 0 2.529401 4.523685 3.96 32 1 0 4.945830 -1.980286 3.33 33 6 0 3.513779 -3.324138 4.16 34 6 0 4.394246 3.74488 1.09 36 6 0 5.779473 3.982637 3.04 37 6 0 2.620005 5.746450 3.29 38 6 0 3.132496 4.39121 5.21 39 6 0 2.198176 -3.795748 4.23 40 6 0 3.80428 3.20050 1.55 41 0 3.606848 3.206490 3.53 44 1 0 3.20955 <	1.046387 1.046387 1.00 1.924920 3.976979 1.574 3.281858 2.355576 9401 4.523685 3.963499 5830 -1.980286 3.34782 3779 -3.24138 4.165129 552 -4.682102 1.360262 1.464 3.74348 1.094483 9473 3.982637 3.047991 9005 5.746450 3.291160 2496 4.390121 5.219193 8176 -3.795748 4.210173 9897 -3.932584 4.979211 5428 -5.950401 1.068281 7188 -4.602362 1.982189 9958 4.884347 0.542500 6384 3.220696 0.553547 5373 5.129570 2.500201 8318 3.644767 4.036216 9925 6.810692 3.85630 9400 5.847657 5.790640 8593 3.442373 5.746898
29 1 0 4.501106 1.924920 3.97 30 6 0 2.529401 4.523685 3.96 31 6 0 3.513779 -3.324138 4.16 34 6 0 4.325522 -4.682102 1.36 35 6 0 4.325522 -4.682102 1.36 36 6 0 5.779473 3.982637 3.04 36 6 0 2.198176 -3.795748 4.21 40 6 0 4.470897 -3.932584 4.97 41 6 0 3.806428 -5.950401 1.06 42 6 0 5.577188 -4.602362 1.98 43 6 0 3.320925 6.810692 3.85 44 1 0 3.663263 5.73 5.73 45 6 0 3.82437 5.74 5.3 45 1 0 3.209	1.924920 3.976979 1.574 3.281858 2.355576 3.4782 3.34782 3.334782 3.334782 3.779 -3.324138 4.165129 5522 -4.682102 1.360262 1246 3.743488 1.094483 3.982637 3.04791 3.982637 0005 5.746450 3.291160 2496 4.390121 5.219193 3176 -3.932584 4.979211 5428 -5.950401 1.068281 7188 -4.602362 1.982189 9584 4.82437 0.542500 58484 3.20696 0.553547 5373 5.129570 2.500201 3818 3.644767 4.036216 9255 6.810692 3.856930 9400 5.847650 2.306772 4467 5.45657 5.790640 558 -4.999031 5.810051 976 -4.861330 5.03593 3326439 3.587110
30 6 0 4.791574 3.281858 2.35 31 6 0 2.529401 4.523685 3.96 32 1 0 4.945830 -1.980286 3.36 33 6 0 3.513779 -3.324138 4.10 34 6 0 4.395522 4.682102 1.36 35 6 0 2.120005 5.746450 3.29 38 6 0 3.132496 4.390121 5.21 39 6 0 2.198176 -3.975748 4.29 40 6 0 4.470897 -3.932584 4.91 41 6 0 3.806428 5.950401 1.06 42 6 0 5.577188 4.602302 1.92 44 1 0 3.606848 3.20667 5.79 50 1 0 3.179775 4.93 5.74 51 6 0 4.2	1.281858 2.355576 2.401 4.523685 3.963499 2.801 -1.980286 3.34782 2.779 -3.24138 4.165129 5522 -4.682102 1.360262 2.44 3.743488 1.094483 2.473 3.982637 3.047991 2.005 5.746450 3.291160 2.49 4.390121 5.219193 2.47 -3.932584 4.979211 2.48 -5.950401 1.068281 2.48 -5.950401 1.068281 2.48 -5.950401 1.068281 2.48 -5.950401 1.068281 2.48 -5.950401 1.068281 2.48 -3.220696 0.553547 3.48 3.220696 0.553547 3.48 3.220696 0.36670 3.49533 5.442675 2.30672 3.442373 5.746450 3.36470 3.422373 5.45067 1.46083 3.326439 3.58710 1.42063
31 6 0 2.529401 4.523685 3.96 32 1 0 4.945830 -1.980286 3.33 33 6 0 3.513779 -3.324138 4.16 34 6 0 4.394246 3.744388 1.09 35 6 0 5.779473 3.982637 3.04 37 6 0 2.620005 5.746450 3.29 38 6 0 3.132496 4.390121 5.21 39 6 0 2.198176 -3.795748 4.23 40 6 0 4.470897 -3.932584 4.97 41 6 0 5.57188 4.602612 1.98 43 6 0 6.356373 5.129570 2.50 44 1 0 3.066884 3.220696 0.55 54 6 0 6.356373 5.129570 2.50 44 1 0 3.043237 5.77 50 1 0 3.045475 5.495	Add14.5236853.963499304014.5236853.3478230779-3.3241384.165129522-4.6821021.36026212463.7434881.09448330733.9826373.04799130055.7464503.29116024964.3901215.2191933176-3.7957484.2101732897-3.9325844.9792115428-5.9504011.0682817188-4.6023621.98218999584.8843470.54250038433.2206960.55354737335.1295702.50020131383.6447674.03621699584.8843470.54250038433.2204960.5354737335.1295702.50020131383.6447674.03621699533.4423735.746898376-4.8613305.0359334263735.7546252.30677244675.4566575.7906403538-4.9990315.8100519045.3264393.5871107588-4.9990315.81051903-5.7544252.327628903-5.7544252.327628903-5.7544252.3276289045.3415286.76743190535.850471.2467819045.3415286.76743190545.4701255.837621914-5.4559686.430075923-7.0119152.056316934 <t< td=""></t<>
32 1 0 4.945830 -1.380286 3.33 33 6 0 3.513779 -3.324138 4.16 34 6 0 4.325522 -4.682102 1.36 35 6 0 4.394246 3.743488 1.09 36 6 0 2.198176 -3.795748 4.22 40 6 0 4.470897 -3.932584 4.97 41 6 0 3.806428 -5.950401 1.06 42 6 0 5.577188 -4.602362 1.98 43 6 0 4.969958 4.884347 0.54 44 1 0 3.066884 3.220960 0.55 45 6 0 6.356373 5.129570 2.50 46 1 0 6.035138 3.644767 4.03 47 6 0 3.824467 5.45657 5.79 50 1 0 3.42373 5.74 5.13 51 6 0 4.127588	Name Name 3830 -1.980286 3.334782 3779 -3.324138 4.165129 3522 -4.682102 1.360262 1246 3.743488 1.094483 3073 3.982637 3.047991 0005 5.746450 3.291160 2496 4.390121 5.219193 3176 -3.795748 4.210173 3087 -3.932584 4.979211 5428 -5.950401 1.068281 7188 -4.602362 1.982189 9958 4.884347 0.542500 5848 3.220696 0.553547 3573 5.129570 2.500201 3318 3.644767 4.036216 9925 6.810692 3.856930 9400 5.847650 2.306772 4467 5.456657 5.790640 8328 -3.326439 3.587110 7588 -4.999031 5.81051 9014 -3.57757 4.95416
32 1 0 4.343630 -1.360266 3.53 33 6 0 3.513779 -3.324138 4.16 34 6 0 4.39426 3.74488 1.09 35 6 0 4.39426 3.743488 1.09 35 6 0 2.620005 5.746450 3.29 38 6 0 3.132496 4.390121 5.21 39 6 0 2.198176 -3.795748 4.21 40 6 0 4.470897 -3.932584 4.97 41 6 0 3.806428 -5.950401 1.06 42 6 0 5.57188 -4.602362 1.98 43 6 0 4.969958 4.884347 0.54 44 1 0 3.606884 3.220696 0.55 45 6 0 3.824467 5.456657 5.79 50 1 0	3330 -1.9302260 3.3.34/32 3779 -3.324138 4.165129 3522 -4.682102 1.360262 1246 3.743488 1.094483 3.982637 3.047991 0005 5.746450 3.291160 2496 4.390121 5.219193 3176 -3.795748 4.210173 0897 -3.932584 4.979211 5428 -5.950401 1.068281 7188 -4.602362 1.982189 0958 4.884347 0.542500 5844 3.220696 0.553547 5373 5.129570 2.500201 3318 3.644767 4.036216 0925 6.810692 3.856930 1400 5.847650 2.306772 4467 5.45657 5.790640 3583 3.442373 5.746898 3776 -4.861330 5.035939 3328 -3.326439 3.587110 758 -6.035215 0.564905
33 6 0 3.513779 -3.324138 4.16 34 6 0 4.394246 3.743488 1.09 35 6 0 2.62005 5.746450 3.29 38 6 0 2.198176 -3.795748 4.21 40 6 0 4.470897 -3.932584 4.97 41 6 0 3.806428 -5.950401 1.06 42 6 0 5.577188 4.602362 1.98 43 6 0 4.969958 4.884347 0.54 44 1 0 3.606884 3.22056 0.55 45 6 0 6.356373 5.129570 2.30 44 1 0 3.824467 5.45657 5.79 50 1 0 1.438328 -3.326439 3.54 51 6 0 4.52218 -7.105292 1.42 55 6 0	3779 -3.324138 4.165129 3522 -4.682102 1.360262 1246 3.743488 1.094483 9473 3.982637 3.047991 9005 5.746450 3.291160 9496 4.390121 5.219193 8176 -3.795748 4.210173 9897 -3.932584 4.979211 5428 5.950401 1.068281 9897 -3.92584 4.979211 5428 -5.950401 1.068281 9897 -3.92584 4.979211 5428 -5.950401 1.068281 9897 -4.602362 1.982189 9858 4.884347 0.542500 5884 3.220696 0.553547 5373 5.129570 2.500201 3818 3.644767 4.036216 9255 6.810692 3.856930 9400 5.847650 2.306721 9467 5.456657 5.790640 558503 3.587110 758
34 6 0 4.325522 -4.682102 1.36 35 6 0 4.394246 3.743488 1.09 36 6 0 2.620005 5.746450 3.29 38 6 0 2.132496 4.390121 5.21 39 6 0 2.198176 -3.795748 4.21 40 6 0 4.470897 -3.932584 4.97 41 6 0 5.577188 -4.602362 1.98 43 6 0 4.3609958 4.884347 0.54 44 1 0 3.606884 3.220696 0.55 45 6 0 6.320795 6.810692 3.85 44 1 0 2.170400 5.847650 2.30 47 6 0 3.82467 5.45657 5.79 50 1 0 3.442373 5.74 4.22 51 6 0 4.5	5522 -4.682102 1.360262 1246 3.743488 1.094483 1473 3.982637 3.047991 1005 5.746450 3.291160 2496 4.390121 5.219193 3176 -3.795748 4.210173 0897 -3.932584 4.979211 5428 -5.950401 1.068281 7188 -4.602362 1.982189 9958 4.884347 0.542500 9858 3.20696 0.553547 0373 5.129570 2.500201 3318 3.644767 4.036216 9955 6.810692 3.856930 9400 5.847650 2.306772 8467 4.461330 5.03593 3328 -3.326439 3.587110 7588 -4.999031 5.810651 9014 -3.57757 4.954116 218 -7.105292 1.420263 3636 -6.035215 0.564905 9030 -5.754425 2.327628
35 6 0 4.394246 3.743488 1.09 36 6 0 5.779473 3.982637 3.04 37 6 0 2.620005 5.746450 3.29 38 6 0 3.132496 4.390121 5.21 39 6 0 2.198176 -3.795748 4.21 40 6 0 4.470897 -3.932584 4.97 41 6 0 3.806428 -5.950401 1.06 42 6 0 5.577188 -4.602362 1.95 43 6 0 4.969958 4.884347 0.54 44 1 0 3.606884 3.220696 0.55 45 6 0 6.356373 5.129570 2.50 46 1 0 6.083318 3.644767 4.03 47 6 0 3.824467 5.45657 5.79 50 1 0 5.499014 -3.57575 4.99 51 6 0 4.50218	1246 3.743488 1.094483 1005 5.746450 3.047991 1005 5.746450 3.291160 2496 4.390121 5.219193 3176 -3.795748 4.210173 1897 -3.932584 4.979211 5428 -5.950401 1.068281 7188 -4.602362 1.982189 958 4.884347 0.542500 5.84 3.220696 0.553547 5.129570 2.500201 3.644767 4.036216 925 6.810692 3.856930 9400 5.847650 2.306772 4467 5.456657 5.790640 953 3.442373 5.746898 8776 -4.861330 5.03593 9328 -3.26439 3.587110 7588 -4.999031 5.81051 914 -5.75425 2.327628 9030 -5.754425 2.32763 914 -5.234099 -0.43284 924
36 6 0 5.779473 3.982637 3.04 37 6 0 2.620005 5.746450 3.29 38 6 0 3.132496 4.390121 5.21 39 6 0 2.198176 -3.795748 4.21 40 6 0 4.470897 -3.932584 4.97 41 6 0 3.806428 -5.950401 1.06 42 6 0 4.969958 4.884347 0.54 43 6 0 4.969958 4.884347 0.54 44 1 0 3.606884 3.22050 2.55 45 6 0 6.356373 5.129570 2.30 47 6 0 3.824467 5.45657 5.79 50 1 0 3.053593 3.442373 5.74 51 6 0 4.127588 -499031 5.81 53 6 0 4.	94733.9826373.04799100055.7464503.29116024964.3901215.2191933176-3.7957484.2101730897-3.9325844.9792115428-5.9504011.0682817188-4.6023621.98218999584.8843470.54250058843.2206960.5534753735.1295702.50020133183.6447674.03621699256.8106575.79064099256.8106575.79064083933.4423735.7468988776-4.8613305.035933328-3.3264393.5871107588-4.9990315.8100519014-3.5775754.954116218-7.1052921.420263363-6.0352150.5649059030-5.7544252.32762890455.234099-0.43284424385.6723333.0593145575.7468903.1553490455.3415286.76743145655.33155.050125911-5.4659686.430075893-7.0119152.0563165382-8.0788901.197100709-5.6695892.805053512126.4810150.82199159247.4963575.54308
37 6 0 2.620005 5.746450 3.29 38 6 0 3.132496 4.390121 5.21 39 6 0 2.198176 -3.795748 4.21 40 6 0 4.470897 -3.932584 4.97 41 6 0 3.806428 -5.950401 1.06 42 6 0 5.577188 -4.602362 1.98 43 6 0 4.969958 4.884347 0.54 44 1 0 3.606884 3.220696 0.55 45 6 0 6.356373 5.129570 2.50 46 1 0 6.083318 3.644767 4.03 47 6 0 3.824467 5.456657 5.79 50 1 0 3.053593 3.442373 5.74 51 6 0 4.127588 -4.999031 5.81 52 1 0 1.438328 -3.326439 3.05 53 6 0 4.502118 <td>Arya S.50203 S.04791 0005 S.746450 S.291160 02496 4.390121 S.219133 3176 -3.795748 4.210173 38176 -3.795748 4.210173 3827 -3.932584 4.979211 5428 -5.950401 1.068281 7188 -4.602362 1.982189 958 4.884347 0.542500 5848 3.220696 0.553547 5373 5.129570 2.500201 3818 3.644767 4.036216 9025 6.810692 3.856930 9400 5.847650 2.306772 4467 5.456557 5.790640 8593 3.442373 5.746898 8776 -4.861330 5.035939 3328 -3.326439 3.587110 7588 -4.999031 5.81051 9014 -5.75757 4.954116 218 -7.105292 1.420263 36363 -6.035215 0.564905</td>	Arya S.50203 S.04791 0005 S.746450 S.291160 02496 4.390121 S.219133 3176 -3.795748 4.210173 38176 -3.795748 4.210173 3827 -3.932584 4.979211 5428 -5.950401 1.068281 7188 -4.602362 1.982189 958 4.884347 0.542500 5848 3.220696 0.553547 5373 5.129570 2.500201 3818 3.644767 4.036216 9025 6.810692 3.856930 9400 5.847650 2.306772 4467 5.456557 5.790640 8593 3.442373 5.746898 8776 -4.861330 5.035939 3328 -3.326439 3.587110 7588 -4.999031 5.81051 9014 -5.75757 4.954116 218 -7.105292 1.420263 36363 -6.035215 0.564905
37 6 0 2.620005 5.746450 3.29 38 6 0 3.132496 4.390121 5.21 39 6 0 2.198176 -3.795748 4.21 40 6 0 4.470897 -3.932584 4.97 41 6 0 3.806428 -5.950401 1.06 42 6 0 5.577188 -4.602362 1.98 43 6 0 4.969958 4.884347 0.54 44 1 0 3.606884 3.220956 6.810692 3.85 45 6 0 6.355373 5.129570 2.50 46 1 0 6.083318 3.644767 4.03 47 6 0 3.824467 5.45657 5.79 50 1 0 3.053593 3.442373 5.74 51 6 0 4.127588 -4.99031 5.81 54 1	0.005 5.746450 3.291160 2496 4.390121 5.219193 3176 -3.795748 4.210173 0897 -3.932584 4.979211 5428 -5.950401 1.068281 7188 -4.602362 1.982189 9958 4.884347 0.542500 9884 3.20696 0.553547 5373 5.129570 2.500201 3318 3.644767 4.036216 9925 6.810692 3.856930 9400 5.847650 2.306772 4467 5.456657 5.790640 8593 3.442373 5.746898 8776 -4.861330 5.035939 3228 -3.326439 3.587110 7588 -4.999031 5.810051 9014 -3.57757 4.954116 218 -7.105292 1.420263 3363 -6.035215 0.564905 9030 -5.754425 2.327628 904 5.234099 -0.432844
38 6 0 3.132496 4.390121 5.21 39 6 0 2.198176 -3.795748 4.21 40 6 0 3.400428 -5.950401 1.06 42 6 0 5.577188 -4.602362 1.98 43 6 0 4.969958 4.884347 0.54 44 1 0 3.606884 3.220696 0.55 46 1 0 6.083318 3.644767 4.03 47 6 0 3.320925 6.810692 3.85 58 1 0 2.170400 5.847650 2.30 49 6 0 3.824467 5.456657 5.79 50 1 0 3.053593 3.442373 5.74 51 6 0 4.127588 4.999031 5.81 53 6 0 4.50218 7.105292 1.42 56 1 0	2496 4.390121 5.219193 3176 -3.795748 4.210173 3897 -3.932584 4.979211 5428 -5.950401 1.068281 7188 -4.602362 1.982189 9958 4.884347 0.542500 5884 3.220696 0.553547 5373 5.129570 2.500201 3318 3.644767 4.036216 9925 6.810692 3.856930 9400 5.847650 2.306772 4467 5.456657 5.790640 3593 3.442373 5.746898 8776 -4.861330 5.03593 3328 -3.326439 3.587110 7588 -4.999031 5.810051 9014 -3.577575 4.95416 218 -7.105292 1.420263 3636 -6.035215 0.564905 9030 -5.754425 2.327628 9066 -3.626326 2.176030 1859 5.85047 1.246781
39 6 0 2.198176 -3.795748 4.21 40 6 0 4.470897 -3.932584 4.97 41 6 0 3.806428 -5.950401 1.06 42 6 0 5.577188 -4.602362 1.98 43 6 0 4.969958 4.884347 0.54 44 1 0 3.606884 3.220696 0.55 46 1 0 6.083318 3.644767 4.03 47 6 0 3.820925 6.810692 3.82 48 1 0 2.170400 5.847550 2.30 49 6 0 3.824467 5.45657 5.79 50 1 0 3.053593 3.442373 5.64 51 6 0 4.127588 -4.999031 5.81 53 6 0 4.50218 -7.105292 1.42 56 1 0 <t< td=""><td>8176 -3.795748 4.210173 0897 -3.932584 4.979211 5428 -5.950401 1.068281 188 -4.602362 1.982189 9958 4.884347 0.542500 5884 3.220696 0.553547 5373 5.129570 2.500201 3318 3.644767 4.036216 9925 6.810627 5.790640 8393 3.442373 5.746898 8776 -4.861330 5.03593 3442373 5.746898 8776 -4.861330 5.03593 342373 5.746898 8776 -4.861330 5.03593 342373 5.746898 8766 -3.026439 3.587110 7588 -4.999031 5.81051 9014 -3.57575 4.95416 218 -7.105292 1.42063 3036 -5.54047 1.246781 9031 5.545047 1.246781 9036 5.234099 <t< td=""></t<></td></t<>	8176 -3.795748 4.210173 0897 -3.932584 4.979211 5428 -5.950401 1.068281 188 -4.602362 1.982189 9958 4.884347 0.542500 5884 3.220696 0.553547 5373 5.129570 2.500201 3318 3.644767 4.036216 9925 6.810627 5.790640 8393 3.442373 5.746898 8776 -4.861330 5.03593 3442373 5.746898 8776 -4.861330 5.03593 342373 5.746898 8776 -4.861330 5.03593 342373 5.746898 8766 -3.026439 3.587110 7588 -4.999031 5.81051 9014 -3.57575 4.95416 218 -7.105292 1.42063 3036 -5.54047 1.246781 9031 5.545047 1.246781 9036 5.234099 <t< td=""></t<>
40 6 0 4.470897 -3.932584 4.97 41 6 0 3.806428 -5.950401 1.06 42 6 0 5.577188 -4.602362 1.98 43 6 0 4.969958 4.884347 0.54 44 1 0 3.606884 3.220696 0.55 45 6 0 6.356373 5.129570 2.50 46 1 0 6.083318 3.644767 4.03 47 6 0 3.824467 5.45657 5.77 50 1 0 3.053593 3.442373 5.74 51 6 0 4.127588 -4.99031 5.81 52 1 0 5.499014 -3.577575 4.99 54 1 0 5.499014 -3.575754 2.32 55 6 0 4.50218 -7.105292 1.42 56 1 0 <t< td=""><td>0897 -3.932584 4.979211 05428 -5.950401 1.068281 1488 -4.602362 1.982189 0558 4.884347 0.542500 0584 3.200696 0.553547 05373 5.129570 2.500201 0318 3.644767 4.036216 0925 6.810692 3.856930 0400 5.847650 2.306772 1467 5.456657 5.790640 0593 3.442373 5.746898 8776 -4.861330 5.03593 3328 -3.326439 3.587110 7588 -4.999031 5.810051 0514 -7.105292 1.420263 05363 -6.035215 0.564905 05363 -6.035215 0.564905 05363 -5.23409 -4.32844 2438 5.672333 3.059631 16066 -3.626326 2.176303 0541528 6.667509 5.105637 6.430152 5.837621</td></t<>	0897 -3.932584 4.979211 05428 -5.950401 1.068281 1488 -4.602362 1.982189 0558 4.884347 0.542500 0584 3.200696 0.553547 05373 5.129570 2.500201 0318 3.644767 4.036216 0925 6.810692 3.856930 0400 5.847650 2.306772 1467 5.456657 5.790640 0593 3.442373 5.746898 8776 -4.861330 5.03593 3328 -3.326439 3.587110 7588 -4.999031 5.810051 0514 -7.105292 1.420263 05363 -6.035215 0.564905 05363 -6.035215 0.564905 05363 -5.23409 -4.32844 2438 5.672333 3.059631 16066 -3.626326 2.176303 0541528 6.667509 5.105637 6.430152 5.837621
160 3.806428 5.950401 1.06 4260 5.577188 4.602362 1.96 4360 4.969958 4.884347 0.54 4410 3.606884 3.220696 0.55 4560 6.356373 5.129570 2.50 4610 6.083318 3.644767 4.03 4760 3.320925 6.810692 3.85 4810 2.170400 5.847650 2.30 4960 3.824467 5.456657 5.79 5010 3.053593 3.442373 5.74 5160 1.848776 -4.861330 5.03 5210 1.438328 -3.326439 3.58 5360 4.127588 -4.999031 5.81 5410 5.499014 -3.577575 4.99 5560 4.502218 -7.105292 1.42 5610 2.846363 -6.035215 0.56 5760 5.951859 5.85047 1.24 6010 4.644963 5.234099 0.43 5110 7.112438 5.672333 3.05 5260 3.927678 6.667509 5.10 6310 4.284904 5.341528 6.76 5560 2.815636 -5.470125 5	5428 -5.950401 1.068281 7188 -4.602362 1.982189 9958 4.884347 0.542500 5373 5.129570 2.500201 3318 3.644767 4.036216 9955 4.884347 0.542500 5373 5.129570 2.500201 3318 3.644767 4.036216 9925 6.810692 3.856930 9400 5.847650 2.306772 1467 5.456657 5.790640 9593 3.442373 5.746898 8776 -4.861330 5.035939 3328 -3.326439 3.587110 7588 -4.999031 5.810051 9014 -3.577575 4.954116 2218 -7.105292 1.420263 3633 -6.035215 0.564905 9030 -5.754425 2.327628 9063 5.234099 -0.432844 42438 5.672333 3.059631 9663 5.234099 5.34554
41 0 0 0.5300428 0.502462 1.90 42 6 0 4.969958 4.884347 0.54 44 1 0 3.606884 3.220696 0.55 45 6 0 6.356373 5.129570 2.50 46 1 0 6.083318 3.644767 4.03 47 6 0 3.320925 6.810692 3.85 48 1 0 2.170400 5.847650 2.30 49 6 0 3.824467 5.456657 5.79 50 1 0 3.053593 3.442373 5.74 51 6 0 4.127588 -4.999031 5.81 52 1 0 1.438328 -3.326439 3.56 53 6 0 4.50218 -7.105292 1.42 56 1 0 2.846363 -6.035215 0.56 57 6 0 5.951859 5.58047 1.24 60 1 0 4.644963	NH28 -1.530-0411 1.003231 7188 -4.602362 1.982189 9958 4.884347 0.542500 9884 3.220696 0.553547 3373 5.129570 2.500201 3318 3.644767 4.036216 9925 6.810692 3.856930 9400 5.847650 2.306772 1467 5.456657 5.790640 3593 3.442373 5.746898 8776 -4.861330 5.035939 3282 -3.326439 3.587110 7588 -4.999031 5.810051 9014 -3.57757 4.954116 218 -7.105292 1.420263 3363 -6.035215 0.564905 9030 -5.754425 2.327628 9063 5.234099 -0.432844 42438 5.67233 3059631 7678 6.667509 5.105637 844 5.215331 5.050122 3911 -5.465968 6.430075
42 6 0 5.57/188 -4.602362 1.98 43 6 0 4.969958 4.884347 0.54 44 1 0 3.606884 3.220960 0.55 46 1 0 6.083318 3.644767 4.03 47 6 0 3.320925 6.810692 3.85 48 1 0 2.170400 5.847650 2.30 49 6 0 3.824467 5.456657 5.79 50 1 0 3.053593 3.442373 5.74 51 6 0 4.127588 -4.999031 5.81 52 1 0 1.438328 -3.326439 3.52 53 6 0 4.50218 -7.105292 1.42 56 1 0 2.846363 -6.035215 0.56 57 6 0 5.951859 5.85047 1.24 60 1 0 <td< td=""><td>1188 -4.602362 1.982189 9958 4.884347 0.542500 5884 3.220696 0.553547 5373 5.129570 2.500201 3318 3.644767 4.036216 9925 6.810692 3.856930 9400 5.847650 2.306772 1467 5.456657 5.790640 3593 3.442373 5.746898 8776 -4.861330 5.035939 3328 -3.326439 3.587110 7588 -4.999031 5.810051 9014 -3.577575 4.954116 2218 -7.105292 1.420263 3636 -6.035215 0.564905 9030 -5.754425 2.327628 1066 -3.626326 2.176030 1859 5.585047 1.246781 1963 5.234099 -0.432844 2438 5.67233 3059631 1415 7.748090 3.15534 1904 5.341528 6.767431</td></td<>	1188 -4.602362 1.982189 9958 4.884347 0.542500 5884 3.220696 0.553547 5373 5.129570 2.500201 3318 3.644767 4.036216 9925 6.810692 3.856930 9400 5.847650 2.306772 1467 5.456657 5.790640 3593 3.442373 5.746898 8776 -4.861330 5.035939 3328 -3.326439 3.587110 7588 -4.999031 5.810051 9014 -3.577575 4.954116 2218 -7.105292 1.420263 3636 -6.035215 0.564905 9030 -5.754425 2.327628 1066 -3.626326 2.176030 1859 5.585047 1.246781 1963 5.234099 -0.432844 2438 5.67233 3059631 1415 7.748090 3.15534 1904 5.341528 6.767431
43 6 0 4.969958 4.884347 0.54 44 1 0 3.606884 3.220696 0.55 45 6 0 6.356373 5.129570 2.50 46 1 0 6.083318 3.644767 4.03 47 6 0 3.320925 6.810692 3.83 48 1 0 2.170400 5.847650 2.30 49 6 0 3.824467 5.45657 5.79 50 1 0 3.053593 3.442373 5.74 51 6 0 4.127588 -4.999031 5.81 53 6 0 4.502218 -7.105292 1.42 56 1 0 2.846363 -6.035215 0.56 57 6 0 6.279030 -5.754425 2.32 58 1 0 6.114066 -3.626326 2.17 59 6 0 <t< td=""><td>9958 4.884347 0.542500 5884 3.220696 0.553547 3373 5.129570 2.500201 3318 3.644767 4.036216 9925 6.810692 3.856930 90400 5.847650 2.306772 4467 5.456657 5.790640 8593 3.442373 5.746898 8776 -4.861330 5.035939 3328 -3.326439 3.587110 7588 -4.999031 5.810051 9014 -3.577575 4.954116 2218 -7.105292 1.420263 3633 -6.035215 0.564905 3030 -5.754425 2.327628 1066 -3.626326 2.176030 1859 5.585047 1.246781 1963 5.234099 -0.432844 2438 5.672333 3.059631 16361 -5.470125 5.837621 1384 -5.215331 5.050122 3911 -5.465968 6.430075</td></t<>	9958 4.884347 0.542500 5884 3.220696 0.553547 3373 5.129570 2.500201 3318 3.644767 4.036216 9925 6.810692 3.856930 90400 5.847650 2.306772 4467 5.456657 5.790640 8593 3.442373 5.746898 8776 -4.861330 5.035939 3328 -3.326439 3.587110 7588 -4.999031 5.810051 9014 -3.577575 4.954116 2218 -7.105292 1.420263 3633 -6.035215 0.564905 3030 -5.754425 2.327628 1066 -3.626326 2.176030 1859 5.585047 1.246781 1963 5.234099 -0.432844 2438 5.672333 3.059631 16361 -5.470125 5.837621 1384 -5.215331 5.050122 3911 -5.465968 6.430075
44 1 0 3.606884 3.220696 0.55 45 6 0 6.356373 5.129570 2.50 46 1 0 6.083318 3.644767 4.03 47 6 0 3.320925 6.810692 3.85 48 1 0 2.170400 5.847650 2.30 49 6 0 3.824467 5.456657 5.79 50 1 0 3.053593 3.442373 5.74 51 6 0 1.848776 -4.861330 5.03 52 1 0 1.438328 -3.326439 3.58 53 6 0 4.127588 -4.999031 5.81 54 1 0 5.499014 -3.57757 4.92 55 6 0 4.50218 -7.105292 1.42 56 1 0 2.846363 -6.035215 0.53 57 6 0 5.951859 5.85047 1.24 60 1 0 4.284904	3220696 0.553547 5373 5.129570 2.500201 3318 3.644767 4.036216 925 6.810692 3.856930 9400 5.847650 2.306772 4467 5.456657 5.790640 3593 3.442373 5.746898 8776 -4.861330 5.035939 3328 -3.326439 3.587101 7588 -4.999031 5.810051 9014 -3.57757 4.954116 2218 -7.105292 1.420263 36363 -6.035215 0.564905 9030 -5.754425 2.327628 9030 -5.754425 2.327628 9030 -5.85047 1.246781 9030 5.85047 1.246781 9030 5.85047 1.246781 9145 5.747019 3.15534 9264 5.341528 6.767431 9363 -5.415128 6.767431 937 -7.011915 2.056316
45 6 0 6.356373 5.129570 2.50 46 1 0 6.083318 3.644767 4.03 47 6 0 3.320925 6.810692 3.85 48 1 0 2.170400 5.847650 2.30 49 6 0 3.824467 5.456657 5.79 50 1 0 3.053593 3.442373 5.74 51 6 0 4.127588 -4.999031 5.81 53 6 0 4.127588 -4.999031 5.81 54 1 0 5.499014 -3.577575 4.95 55 6 0 4.502218 -7.105292 1.42 56 1 0 2.846363 -6.035215 0.56 57 6 0 5.951859 5.585047 1.24 50 1 0 4.284904 5.341528 6.76 51 0 3.927678	3333 5.129570 2.500201 3318 3.644767 4.036216 3025 6.810692 3.856930 3400 5.847650 2.306772 3467 5.456657 5.790640 3593 3.442373 5.746898 3776 -4.861330 5.03593 3328 -3.326439 3.587110 7588 -4.999031 5.810051 9014 -3.57757 4.95416 218 -7.105292 1.420263 3030 -5.754425 2.327628 9030 -5.754425 2.327628 9030 -5.754425 2.327628 9053 5.85047 1.246781 9053 5.234099 -0.43284 42438 5.672333 3.059631 963 5.2470125 5.837621 1364 -5.215331 5.050122 9311 -5.465968 6.430075 9323 -7.011915 2.056316 9334 -7.011915 2.056316
1606.033183.6447674.0346106.0833183.6447674.0347603.3209256.8106923.8548102.1704005.8476502.3049603.8244675.4566575.7950103.0535933.4423735.7451601.848776-4.8613305.0352101.438328-3.3264393.5853604.127588-4.9990315.8154105.499014-3.5775754.9555604.502218-7.1052921.4256102.846363-6.0352150.5657606.279030-5.7544252.3258106.014066-3.6263262.1759605.9518595.5850471.2460104.6449635.234099-0.4361107.1124385.6723333.0562603.9276786.6675095.1063100.821384-5.2153315.0564104.2849045.3415286.7665602.815636-5.4701255.8466100.821384-5.2153315.0567104.2849045.3415286.766865.7398	Sing Sing Sing Sing 3318 3.644767 4.036216 3925 6.810692 3.856930 3400 5.847650 2.306772 1467 5.456657 5.790640 3593 3.442373 5.746898 3776 -4.861330 5.035939 3328 -3.326439 3.587110 7588 -4.999031 5.810051 9014 -3.577575 4.954116 2218 -7.105292 1.420263 3636 -6.035215 0.564905 9030 -5.754425 2.327628 9066 -3.626326 2.176030 1859 5.585047 1.246781 963 5.234099 -0.432844 42438 5.672333 3059631 16767 6.667509 5.105637 4150 7.748090 3.315534 1904 5.341528 6.767431 3636 -5.470125 5.837621 1384 -5.215331 <
40100.035318 3.64470 4.03 4760 3.320925 6.810692 3.85 4810 2.170400 5.847650 2.30 4960 3.824467 5.456657 5.79 5010 3.053593 3.442373 5.74 5160 1.848776 -4.861330 5.03 5210 1.438328 -3.326439 3.58 5360 4.127588 -4.999031 5.81 5410 5.499014 -3.577575 4.95 5560 4.502218 -7.105292 1.42 5610 2.846363 -6.035215 0.56 5760 6.279030 -5.754425 2.32 5810 6.014066 -3.626326 2.17 5960 5.951859 5.85047 1.24 6010 4.644963 5.234099 -0.43 6110 7.112438 5.672333 3.05 6260 3.927678 6.667509 5.106 6310 4.284904 5.341528 6.76 6560 2.815636 -5.470125 5.83 6710 4.284904 5.341528 6.76 6860 5.739893 -7.011915 2.05 6910 4.275924 7.496357 <td< td=""><td>3.518 3.044707 4.050216 0925 6.810692 3.856930 0400 5.847650 2.306772 04467 5.456657 5.790640 3593 3.442373 5.746898 3776 -4.861330 5.035939 3328 -3.326439 3.587110 7588 -4.999031 5.810051 0014 -3.57757 4.954116 2118 -7.105292 1.420263 3633 -6.035215 0.564905 0300 -5.754425 2.327628 0466 -3.626326 2.176030 0303 -5.754425 2.327628 0466 -3.626326 2.176030 1859 5.585047 1.246781 1963 5.234099 -0.432844 2438 5.672333 3.059631 7.748090 3.315534 1904 5.341528 6.767431 3636 -5.470125 5.837621 1384 -5.215331 5.050122 <t< td=""></t<></td></td<>	3.518 3.044707 4.050216 0925 6.810692 3.856930 0400 5.847650 2.306772 04467 5.456657 5.790640 3593 3.442373 5.746898 3776 -4.861330 5.035939 3328 -3.326439 3.587110 7588 -4.999031 5.810051 0014 -3.57757 4.954116 2118 -7.105292 1.420263 3633 -6.035215 0.564905 0300 -5.754425 2.327628 0466 -3.626326 2.176030 0303 -5.754425 2.327628 0466 -3.626326 2.176030 1859 5.585047 1.246781 1963 5.234099 -0.432844 2438 5.672333 3.059631 7.748090 3.315534 1904 5.341528 6.767431 3636 -5.470125 5.837621 1384 -5.215331 5.050122 <t< td=""></t<>
47 6 0 3.320925 6.810692 3.85 48 1 0 2.170400 5.847650 2.30 49 6 0 3.824467 5.456657 5.79 50 1 0 3.053593 3.442373 5.74 51 6 0 1.848776 -4.861330 5.05 52 1 0 1.438328 -3.326439 3.58 53 6 0 4.127588 -4.999031 5.81 54 1 0 5.499014 -3.577575 4.99 55 6 0 4.50218 -7.105292 1.42 56 1 0 2.846363 -6.035215 0.56 57 6 0 5.951859 5.585047 1.24 60 1 0 4.644963 5.234099 0.43 61 1 0 7.112438 5.672333 3.05 62 6 0 2.815636 -5.470125 5.83 63 1 0 4.284904 <td>1925 6.810692 3.856930 1926 6.810692 3.856930 1467 5.456657 5.790640 3593 3.442373 5.746898 3776 -4.861330 5.035939 3328 -3.326439 3.587110 7588 -4.999031 5.810051 9014 -3.577575 4.954116 2218 -7.105292 1.420263 36363 -6.035215 0.564905 9030 -5.754425 2.327628 90303 -5.754425 2.327628 90304 -5.234099 -0.432844 2438 5.672333 3.059631 12663 -5.470125 5.837621 13636 -5.470125 5.837621 1384 -5.215331 5.050122 9311 -5.465968 6.430075 1382 -8.078890 1.197100 9709 -5.669589 2.805053 1212 6.481015 0.821991 924 7.496357 5.</td>	1925 6.810692 3.856930 1926 6.810692 3.856930 1467 5.456657 5.790640 3593 3.442373 5.746898 3776 -4.861330 5.035939 3328 -3.326439 3.587110 7588 -4.999031 5.810051 9014 -3.577575 4.954116 2218 -7.105292 1.420263 36363 -6.035215 0.564905 9030 -5.754425 2.327628 90303 -5.754425 2.327628 90304 -5.234099 -0.432844 2438 5.672333 3.059631 12663 -5.470125 5.837621 13636 -5.470125 5.837621 1384 -5.215331 5.050122 9311 -5.465968 6.430075 1382 -8.078890 1.197100 9709 -5.669589 2.805053 1212 6.481015 0.821991 924 7.496357 5.
48 1 0 2.170400 5.847650 2.30 49 6 0 3.824467 5.456657 5.79 50 1 0 3.053593 3.442373 5.74 51 6 0 1.848776 -4.861330 5.03 52 1 0 1.438328 -3.326439 3.58 53 6 0 4.127588 -4.999031 5.81 54 1 0 5.499014 -3.57575 4.99 55 6 0 4.502218 -7.105292 1.42 56 1 0 2.846363 -6.035215 0.52 57 6 0 6.279030 -5.754425 2.32 58 1 0 6.14066 -3.626326 2.12 59 6 0 5.951859 5.585047 1.24 60 1 0 4.284904 5.341528 6.76 61 0 2.815636	A400 5.847650 2.306772 1467 5.456657 5.790640 1593 3.442373 5.746898 3776 -4.861330 5.035939 3328 -3.326439 3.587110 7588 -4.999031 5.810051 9014 -3.577575 4.954116 2218 -7.105292 1.420263 3630 -6.035215 0.564905 9030 -5.754425 2.327628 9066 -3.626326 2.176030 8559 5.585047 1.246781 9063 5.234099 -0.432844 42438 5.672333 3.059631 9663 5.24079 5.105637 9614 5.341528 6.767431 9635 -5.470125 5.837621 1384 -5.215331 5.050122 9311 -5.465968 6.430075 9323 -7.011915 2.056316 9382 -8.078890 1.197100 9709 -5.669582 2.80505
49 6 0 3.824467 5.456657 5.79 50 1 0 3.053593 3.442373 5.74 51 6 0 1.848776 -4.861330 5.03 52 1 0 1.438328 -3.326439 3.58 53 6 0 4.127588 -4.999031 5.81 54 1 0 5.499014 -3.577575 4.95 56 0 4.502218 -7.105292 1.42 56 1 0 2.846363 -6.035215 0.56 57 6 0 6.279030 -5.754425 2.32 58 1 0 6.014066 -3.626326 2.17 59 6 0 5.951859 5.85047 1.24 60 1 0 4.644963 5.234099 -0.43 61 1 0 3.405415 7.748090 3.31 64 1 0 4.284904	H467 5.456657 5.790640 3593 3.442373 5.746898 3776 -4.861330 5.035939 3328 -3.326439 3.587110 7588 -4.999031 5.810051 9014 -3.57757 4.954116 2218 -7.105292 1.420263 3636 -6.035215 0.564905 9030 -5.754425 2.327628 9066 -3.626326 2.176030 1859 5.85047 1.246781 9063 5.234099 -0.432844 42438 5.67233 3059631 16767 6.667509 5.105637 14904 5.341528 6.767431 3636 -5.470125 5.837621 1384 -5.215331 5.050122 3911 -5.465968 6.430075 2893 -7.011915 2.056316 3328 -8.078890 1.197100 364598 2.805053 2.805053 3121 5.465968 2.80505
50 1 0 3.053593 3.442373 5.74 51 6 0 1.848776 -4.861330 5.03 52 1 0 1.438328 -3.326439 3.58 53 6 0 4.127588 -4.999031 5.81 54 1 0 5.499014 -3.577575 4.99 55 6 0 4.502218 -7.105292 1.42 56 1 0 2.846363 -6.035215 0.56 57 6 0 6.279030 -5.754425 2.32 58 1 0 6.014066 -3.626326 2.17 59 6 0 5.951859 5.585047 1.24 60 1 0 4.644963 5.234099 -0.43 61 1 0 3.405415 7.748090 3.1 64 1 0 4.284904 5.341528 6.76 65 6 0	3.442373 5.746898 3.776 -4.861330 5.035939 3.28 -3.326439 3.587110 7588 -4.999031 5.810051 9014 -3.577575 4.954116 2218 -7.105292 1.420263 3633 -6.035215 0.564905 9030 -5.754425 2.327628 9046 -3.626326 2.176030 1859 5.585047 1.246781 9053 5.234099 -0.432844 9243 5.672333 3.05931 7678 6.667509 5.105637 4155 7.748090 3.315534 9040 5.341528 6.767431 3636 -5.470125 5.837621 1384 -5.215331 5.050122 931 -5.465968 6.430075 8393 -7.011915 2.056316 3382 -8.078890 1.197100 709 -5.669589 2.805053 1212 6.481015 0.821991 <tr< td=""></tr<>
30101.833333.142333.14233351601.848776-4.8613305.0352101.438328-3.3264393.5853604.127588-4.9990315.8154105.499014-3.5775754.9555604.502218-7.1052921.4256102.846363-6.0352150.5657606.279030-5.7544252.3258106.014066-3.6263262.1759605.9518595.5850471.2460104.6449635.234099-0.4361107.1124385.6723333.0562603.9276786.6675095.1063103.4054157.7480903.3164104.2849045.3415286.7665602.815636-5.4701255.8366100.821384-5.2153315.0567104.886911-5.4659686.4368605.739893-7.0119152.0569104.076382-8.0788901.1970107.250709-5.6695892.8071106.283227-7.9106442.337510-1.8865481.325503-1.3376<	3376 -4.861330 5.035939 33776 -4.861330 5.035939 3328 -3.326439 3.587100 7588 -4.999031 5.810051 9014 -3.57757 4.954116 21218 -7.105292 1.420263 3633 -6.035215 0.564905 9030 -5.754425 2.327628 4066 -3.626326 2.176030 1859 5.585047 1.246781 1963 5.234099 -0.432844 2438 5.672333 3.059631 7678 6.667509 5.105637 6415 7.748090 3.315534 1904 5.341528 6.767431 5636 -5.470125 5.837621 1384 -5.215331 5.050122 9311 -5.465968 6.430075 8933 -7.011915 2.056316 3328 -8.078890 1.197100 709 -5.669589 2.805053 1212 6.481015 0.8219
31 6 0 1.848776 -4.861330 5.03 52 1 0 1.438328 -3.326439 3.58 53 6 0 4.127588 -4.999031 5.81 54 1 0 5.499014 -3.577575 4.92 55 6 0 4.502218 -7.105292 1.42 56 1 0 2.846363 -6.035215 0.56 57 6 0 6.279030 -5.754425 2.32 58 1 0 6.014066 -3.626326 2.17 59 6 0 5.951859 5.585047 1.24 60 1 0 4.644963 5.234099 -0.43 61 1 0 7.112438 5.672333 3.05 62 6 0 3.927678 6.667509 5.10 63 1 0 4.284904 5.341528 6.76 65 6 0 2.815636 -5.470125 5.832 66 1 0 0.821384 -5.215331 5.05 67 1 0 4.886911 -5.465968 6.432 68 6 0 5.739893 -7.011915 2.05 69 1 0 4.076382 -8.078890 1.19 71 1 0 6.283227 -7.910644 2.332 72 1 0 -4.251922 0.202117 -2.9377 78 6 0	3776 -4.861330 3.03939 3328 -3.326439 3.587110 7588 -4.999031 5.810051 9014 -3.577575 4.954116 2218 -7.105292 1.420263 36363 -6.035215 0.564905 9030 -5.754425 2.327628 9066 -3.626326 2.176030 9030 -5.754425 2.327628 9066 -3.626326 2.176030 9030 5.585047 1.246781 1963 5.234099 -0.432844 2438 5.672333 3.059631 7678 6.667509 5.105637 6415 7.748090 3.315534 1904 5.341528 6.767431 5636 -5.470125 5.837621 1384 -5.215331 5.050122 5911 -5.465968 6.430075 893 -7.011915 2.056316 3828 -8.078890 1.197100 709 -5.669589 2.80505
52 1 0 1.438328 -3.326439 3.58 53 6 0 4.127588 -4.999031 5.81 54 1 0 5.499014 -3.577575 4.95 55 6 0 4.502218 -7.105292 1.42 56 1 0 2.846363 -6.035215 0.56 57 6 0 6.279030 -5.754425 2.32 58 1 0 6.014066 -3.626326 2.17 59 6 0 5.951859 5.585047 1.24 60 1 0 4.644963 5.234099 -0.43 61 1 0 7.112438 5.672333 3.05 62 6 0 3.927678 6.667509 5.10 63 1 0 4.284904 5.341528 6.76 64 1 0 4.284904 5.341528 6.76 65 6 0 2.815636 -5.470125 5.83 66 1 0 8.28493<	3328 -3.326439 3.587110 7588 -4.999031 5.810051 9014 -3.577575 4.954116 2218 -7.105292 1.420263 36363 -6.035215 0.564905 9030 -5.754425 2.327628 9066 -3.626326 2.176030 1859 5.585047 1.246781 9063 5.234099 -0.432844 9438 5.672333 3.059631 7678 6.667509 5.105637 748090 3.315534 1904 95341528 6.767431 5.050122 9911 -5.465968 6.430075 1384 -5.215331 5.050122 9911 -5.465968 6.430075 1382 -8.078890 1.197100 709 -5.669589 2.805053 1212 6.481015 0.821991 924 7.496357 5.543083
53 6 0 4.127588 -4.999031 5.81 54 1 0 5.499014 -3.577575 4.95 55 6 0 4.502218 -7.105292 1.42 56 1 0 2.846363 -6.035215 0.56 57 6 0 6.279030 -5.754425 2.32 58 1 0 6.014066 -3.626326 2.17 59 6 0 5.951859 5.585047 1.24 60 1 0 4.644963 5.234099 -0.43 61 1 0 7.112438 5.672333 3.05 62 6 0 3.927678 6.667509 5.10 63 1 0 4.284904 5.341528 6.76 65 6 0 2.815636 -5.470125 5.83 66 1 0 4.886911 -5.465968 6.43 67 1 0 4.076382 -8.078890 1.19 70 1 0 7.25070	7588 -4.999031 5.810051 9014 -3.577575 4.954116 2218 -7.105292 1.420263 3636 -6.035215 0.564905 9030 -5.754425 2.327628 9066 -3.626326 2.176030 1859 5.585047 1.246781 1963 5.234099 -0.432844 9243 5.67533 3.059631 7678 6.667509 5.105637 5415 7.748090 3.315534 904 5.341528 6.767431 56366 -5.470125 5.837621 1384 -5.215331 5.050122 9311 -5.465968 6.430075 8293 -7.011915 2.056316 3382 -8.078890 1.197100 709 -5.669589 2.805053 1212 6.481015 0.821991 924 7.496357 5.543083
54 1 0 5.499014 -3.577575 4.99 55 6 0 4.502218 -7.105292 1.42 56 1 0 2.846363 -6.035215 0.56 57 6 0 6.279030 -5.754425 2.32 58 1 0 6.014066 -3.626326 2.17 59 6 0 5.951859 5.585047 1.24 60 1 0 4.644963 5.234099 -0.43 61 1 0 7.112438 5.672333 3.05 62 6 0 3.927678 6.667509 5.10 63 1 0 4.284904 5.341528 6.76 65 6 0 2.815636 -5.470125 5.83 66 1 0 4.284904 5.341528 6.76 67 1 0 4.86911 -5.465968 6.43 68 6 0 5.739893 -7.011915 2.05 69 1 0 4.284524<	0014 -3.577575 4.954116 0218 -7.105292 1.420263 0363 -6.035215 0.564905 0300 -5.754425 2.327628 0406 -3.626326 2.176030 045754 2.327628 0.366302 0406 -3.626326 2.176030 0459 5.585047 1.246781 0463 5.234099 -0.432844 0438 5.672333 3.059631 7678 6.667509 5.105637 6415 7.748090 3.315534 1904 5.341528 6.767431 6636 -5.470125 5.837621 1384 -5.215331 5.050122 911 -5.465968 6.430075 1382 -8.078890 1.197100 7079 -5.645185 2.85053 1212 6.481015 0.821991 924 7.496357 5.54308
55604.502218 -7.105292 1.4256102.846363 -6.035215 0.565760 6.279030 -5.754425 2.325810 6.014066 -3.626326 2.175960 5.951859 5.585047 1.246010 4.644963 5.234099 -0.43 6110 7.112438 5.672333 3.05 6260 3.927678 6.667509 5.10 6310 4.284904 5.341528 6.76 6560 2.815636 -5.470125 5.83 6610 0.821384 -5.215331 5.05 6710 4.886911 -5.465968 6.43 6860 5.739893 -7.011915 2.05 6910 4.076382 -8.078890 1.19 7010 7.250709 -5.669589 2.80 7110 6.394212 6.481015 0.82 7210 4.28427 -7.910644 2.33 7510 -1.886548 1.325503 -1.33 768 -2.729697 1.111933 -1.88 801 01274169 0.018482 -2.83 818 0 -2.390173 -2.184986 -2.33 8260 -3.557319 -0.357688 1.002 <td>2218 -7.105292 1.420263 3363 -6.035215 0.564905 3030 -5.754425 2.327628 4066 -3.626326 2.176030 1859 5.585047 1.246781 4963 5.234099 -0.432844 2438 5.672333 3.059631 7678 6.667509 5.105637 5415 7.748090 3.315534 4904 5.341528 6.767431 5636 -5.470125 5.837621 1384 -5.215331 5.050122 9911 -5.465968 6.430075 8933 -7.011915 2.056316 3382 -8.078890 1.197100 7079 -5.669589 2.805053 1212 4.481015 0.821991 9224 7.496357 5.54303</td>	2218 -7.105292 1.420263 3363 -6.035215 0.564905 3030 -5.754425 2.327628 4066 -3.626326 2.176030 1859 5.585047 1.246781 4963 5.234099 -0.432844 2438 5.672333 3.059631 7678 6.667509 5.105637 5415 7.748090 3.315534 4904 5.341528 6.767431 5636 -5.470125 5.837621 1384 -5.215331 5.050122 9911 -5.465968 6.430075 8933 -7.011915 2.056316 3382 -8.078890 1.197100 7079 -5.669589 2.805053 1212 4.481015 0.821991 9224 7.496357 5.54303
3560 $+,302216$ $+,102232$ $1,42$ 5610 2.846363 -6.035215 0.56 5760 6.279030 -5.754425 2.32 5810 6.014066 -3.626326 2.17 5960 5.951859 5.585047 1.24 6010 4.644963 5.234099 -0.43 6110 7.112438 5.672333 3.05 6260 3.927678 6.667509 5.10 6310 3.405415 7.748090 3.31 6410 4.284904 5.341528 6.76 6560 2.815636 -5.470125 5.83 6610 0.821384 -5.215331 5.05 6710 4.886911 -5.465968 6.43 6860 5.739893 -7.011915 2.05 6910 4.076382 -8.078890 1.19 7010 7.250709 -5.669589 2.80 7110 6.394212 6.481015 0.82 7210 4.475924 7.496357 5.54 7310 -2.8729697 1.11933 -1.86 7410 6.23227 -7.910444 2.33 7510 -1.876574 -0.025440 -2.44 7910 -2.648824 0.611552	11 9,163522 1.42035 5363 -6.035215 0.564905 9030 -5.754425 2.327628 4066 -3.626326 2.176030 4859 5.585047 1.246781 4963 5.234099 -0.432844 2438 5.672333 3.059631 7678 6.667509 5.105637 5415 7.748090 3.315534 4904 5.341528 6.767431 5636 -5.470125 5.837621 1384 -5.215331 5.050122 5911 -5.465968 6.430075 2893 -7.011915 2.056316 5382 -8.078890 1.197100 709 -5.669589 2.805053 1212 6.481015 0.821991 5924 7.496357 5.543083
56 1 0 2.846363 -6.03215 0.365 57 6 0 6.279030 -5.754425 2.32 58 1 0 6.014066 -3.626326 2.17 59 6 0 5.951859 5.585047 1.24 60 1 0 4.644963 5.234099 -0.43 61 1 0 7.112438 5.672333 3.05 62 6 0 3.927678 6.667509 5.10 63 1 0 4.284904 5.341528 6.76 63 1 0 4.284904 5.341528 6.76 65 6 0 2.815636 -5.470125 5.83 66 1 0 8.28911 -5.465968 6.43 66 0 5.739893 -7.011915 2.05 69 1 0 4.275924 7.496357 5.54	3363 -6.035213 0.36405 3030 -5.754425 2.327628 4066 -3.626326 2.176030 1859 5.585047 1.246781 1963 5.234099 -0.432844 42438 5.672333 3.059631 7678 6.667509 5.105637 5415 7.748090 3.315534 4904 5.341528 6.767431 5636 -5.470125 5.837621 1384 -5.215331 5.050122 3911 -5.465968 6.430075 3823 -7.011915 2.056316 3382 -8.078890 1.197100 709 -5.669588 2.805053 1212 6.481015 0.821991 3924 7.496357 5.543083
57 6 0 6.279030 -5.754425 2.33 58 1 0 6.014066 -3.626326 2.17 59 6 0 5.951859 5.585047 1.24 60 1 0 4.644963 5.234099 -0.43 61 1 0 7.112438 5.672333 3.05 62 6 0 3.927678 6.667509 5.10 63 1 0 3.405415 7.748090 3.31 64 1 0 4.284904 5.341528 6.76 65 6 0 2.815636 -5.470125 5.83 66 1 0 0.821384 -5.215331 5.05 67 1 0 4.886911 -5.465968 6.43 68 6 0 5.739893 -7.011915 2.05 69 1 0 4.267507 -5.669589 2.80 71 1 0	0030 -5.754425 2.327628 0066 -3.626326 2.176030 1859 5.585047 1.246781 1963 5.234099 -0.432844 2438 5.672333 3.059631 7678 6.667509 5.105637 5415 7.748090 3.315534 904 5.341528 6.767431 5636 -5.470125 5.837621 1384 -5.215331 5.050122 9911 -5.465968 6.430075 9383 -7.011915 2.056316 9382 -8.078890 1.197100 9709 -5.669589 2.805053 1212 6.481015 0.821991 924 7.496357 5.543083
58 1 0 6.014066 -3.626326 2.17 59 6 0 5.951859 5.585047 1.24 60 1 0 4.644963 5.234099 -0.43 61 1 0 7.112438 5.672333 3.05 62 6 0 3.927678 6.667509 5.10 63 1 0 4.284904 5.341528 6.76 65 6 0 2.815636 -5.470125 5.83 66 1 0 4.284904 5.341528 6.76 65 6 0 2.815636 -5.470125 5.83 66 1 0 0.821384 -5.215331 5.05 67 1 0 4.886911 -5.465968 6.43 68 6 0 5.739893 -7.011915 2.05 70 1 0 7.250709 -5.69589 2.80 71 1 0	4066 -3.626326 2.176030 1859 5.585047 1.246781 1963 5.234099 -0.432844 2438 5.672333 3.059631 7678 6.667509 5.105637 5415 7.748090 3.315534 1904 5.341528 6.767431 5636 -5.470125 5.837621 1384 -5.215331 5.050122 1911 -5.465968 6.430075 1893 -7.011915 2.056316 1384 -8.078890 1.197100 1709 -5.669589 2.805053 1212 6.481015 0.821991 5924 7.496357 5.54303
59 6 0 5.951859 5.585047 1.24 60 1 0 4.644963 5.234099 -0.43 61 1 0 7.112438 5.672333 3.05 62 6 0 3.927678 6.667509 5.10 63 1 0 4.284904 5.341528 6.76 65 6 0 2.815636 -5.470125 5.83 66 1 0 4.284904 5.341528 6.76 65 6 0 2.815636 -5.470125 5.83 66 1 0 0.821384 -5.215331 5.05 67 1 0 4.886911 -5.465968 6.43 68 6 0 5.739893 -7.011915 2.05 69 1 0 4.076382 -8.078890 1.19 70 1 0 7.250709 -5.69589 2.80 71 1 0	12859 5.585047 1.246781 14963 5.234099 -0.432844 12438 5.672333 3.059631 16778 6.667509 5.105637 16415 7.748090 3.315534 1904 5.341528 6.767431 1663 -5.470125 5.837621 1384 -5.215331 5.050122 1911 -5.465968 6.430075 1893 -7.011915 2.056316 1382 -8.078890 1.197100 1709 -5.669589 2.805053 1212 6.481015 0.821911 15924 7.496357 5.54308
60104.6449635.2340990.43 61 107.1124385.6723333.05 62 603.9276786.6675095.10 63 103.4054157.7480903.31 64 104.2849045.3415286.76 65 602.815636-5.4701255.83 66 100.821384-5.2153315.05 67 104.886911-5.4659686.43 68 605.739893-7.0119152.05 69 104.076382-8.0788901.19 70 106.3942126.4810150.82 71 106.3942126.4810150.82 72 104.2847657-6.3037026.47 73 102.547657-6.3037026.47 74 106.283227-7.910442.33 75 10-1.8865481.325503-1.33 76 80-2.7296971.111933-1.86 77 60-2.3519220.202117-2.93 78 60-3.155402-1.025440-2.48 80 10-1.2741690.018482-2.38 81 80-2.390173-2.184986-2.33 82 60-3.557319-0.357688-1.02 83 60-4.373067-1.3	1963 5.234099 -0.432844 2438 5.672333 3.059631 7678 6.667509 5.105637 5415 7.748090 3.315534 1904 5.341528 6.767431 5636 -5.470125 5.837621 1384 -5.215331 5.050122 5911 -5.465968 6.430075 2893 -7.011915 2.056316 5382 -8.078890 1.197100 709 -5.669589 2.805053 1212 6.481015 0.821991 5924 7.496357 5.543083
61 1 0 7.112438 5.672333 3.05 61 1 0 7.112438 5.672333 3.05 62 6 0 3.927678 6.667509 5.10 63 1 0 4.284904 5.341528 6.76 65 6 0 2.815636 -5.470125 5.83 66 1 0 4.284904 5.341528 6.76 65 6 0 2.815636 -5.470125 5.83 66 1 0 4.886911 -5.465968 6.43 68 6 0 5.739893 -7.011915 2.05 69 1 0 4.076382 -8.078890 1.19 70 1 0 7.250709 -5.669589 2.80 71 1 0 6.394212 6.481015 0.82 72 1 0 4.475924 7.496357 5.54 73 1 0 2.547657 -6.303702 6.47 74 1 0 6.283227<	503 5.254039 6.0.432444 2438 5.672333 3.059631 2438 5.672333 3.059631 3415 7.748090 3.315534 4904 5.341528 6.767431 5636 -5.470125 5.837621 1384 -5.215331 5.050122 5911 -5.465968 6.430075 3893 -7.011915 2.056316 5382 -8.078890 1.197100 709 -5.669589 2.805053 1212 6.481015 0.821991 5924 7.496357 5.543083
61107.1124385.6723333.05 62 603.9276786.6675095.10 63 103.4054157.7480903.31 64 104.2849045.3415286.76 65 602.8156365.4701255.83 66 100.821384-5.2153315.05 67 104.886911-5.4659686.43 68 605.739893-7.0119152.05 69 104.076382-8.0788901.19 70 107.250709-5.6695892.80 71 106.283227-7.9106442.33 72 104.27296971.111933-1.86 74 106.283227-7.9106442.33 75 10-1.8865481.325503-1.33 76 80-2.7296971.111933-1.86 77 60-2.3519220.202117-2.93 78 60-3.155402-1.025440-2.44 79 10-2.6488240.611552-3.88 80 10-1.2741690.018482-2.89 81 80-2.390173-2.184986-2.33 82 60-3.557319-0.357688-1.09 83 60-4.373067-1.316622-3.33 84 10-1.5737	2438 5.672333 3.059631 7678 6.667509 5.105637 5415 7.748090 3.315534 4904 5.341528 6.767431 5636 -5.470125 5.837621 1384 -5.215331 5.050122 5911 -5.465968 6.430075 3382 -8.078890 1.197100 7079 -5.669589 2.805033 1212 6.481015 0.821991 5924 7.496357 5.543083
62 6 0 3.927678 6.667509 5.10 63 1 0 3.405415 7.748090 3.31 64 1 0 4.284904 5.341528 6.76 65 6 0 2.815636 -5.470125 5.83 66 1 0 0.821384 -5.215331 5.05 67 1 0 4.886911 -5.465968 6.43 68 6 0 5.739893 -7.011915 2.05 69 1 0 4.076382 -8.078890 1.19 70 1 0 7.250709 -5.69589 2.80 71 1 0 6.394212 6.481015 0.82 72 1 0 4.475924 7.496357 5.54 73 1 0 2.547657 -6.303702 6.47 74 1 0 6.283227 -7.910644 2.33 75 1 0	7678 6.667509 5.105637 5415 7.748090 3.315534 1904 5.341528 6.767431 5636 -5.470125 5.837621 1384 -5.215331 5.050122 5911 -5.465968 6.430075 3893 -7.011915 2.056316 3382 -8.078890 1.197100 0709 -5.669589 2.805053 1212 6.481015 0.821991 5924 7.496357 5.543083
63 1 0 3.405415 7.748090 3.31 64 1 0 4.284904 5.341528 6.76 65 6 0 2.815636 -5.470125 5.83 66 1 0 0.821384 -5.215331 5.05 67 1 0 4.886911 -5.465968 6.43 68 6 0 5.739893 -7.011915 2.05 69 1 0 4.076382 -8.078890 1.19 70 1 0 7.250709 -5.669589 2.80 71 1 0 6.394212 6.481015 0.82 72 1 0 4.475924 7.496357 5.54 73 1 0 2.547657 -6.303702 6.47 74 1 0 6.283227 -7.910644 2.33 75 1 0 -1.25402 -1.025440 -2.44 79 1 0 -2.351922 0.202117 -2.93 78 6 0 -3.15	5415 7.748090 3.315534 1904 5.341528 6.767431 5636 -5.470125 5.837621 1384 -5.215331 5.050122 5911 -5.465968 6.430075 3893 -7.011915 2.056316 3382 -8.078890 1.197100 0709 -5.669589 2.805053 1212 6.481015 0.821991 3924 7.496357 5.543083
64 1 0 4.284904 5.341528 6.76 65 6 0 2.815636 -5.470125 5.83 66 1 0 0.821384 -5.215331 5.05 67 1 0 4.886911 -5.465968 6.43 68 6 0 5.739893 -7.011915 2.05 69 1 0 4.076382 -8.078890 1.19 70 1 0 7.250709 -5.669589 2.80 71 1 0 6.394212 6.481015 0.82 72 1 0 4.475924 7.496357 5.54 73 1 0 2.547657 -6.303702 6.47 74 1 0 6.283227 -7.910644 2.33 75 1 0 -2.264824 0.02117 -2.95 76 8 0 -2.2729697 1.11933 -1.86 77 6 0	4904 5.341528 6.767431 5636 -5.470125 5.837621 1384 -5.215331 5.050122 5911 -5.465968 6.430075 3893 -7.011915 2.056316 5382 -8.078890 1.197100 7009 -5.669588 2.805053 1212 6.481015 0.821991 5924 7.496357 5.543083
65 6 0 2.815636 -5.470125 5.83 66 1 0 0.821384 -5.215331 5.05 67 1 0 4.886911 -5.465968 6.43 68 6 0 5.739893 -7.011915 2.05 69 1 0 4.076382 -8.078890 1.19 70 1 0 6.394212 6.481015 0.82 71 1 0 6.394212 6.481015 0.82 72 1 0 4.475924 7.496357 5.54 73 1 0 2.547657 -6.303702 6.47 74 1 0 6.283227 -7.910644 2.33 75 1 0 -1.886548 1.325503 -1.33 76 8 0 -2.351922 0.202117 -2.91 78 6 0 -3.155402 -1.025440 2.48 80 1 0	5636 -5.470125 5.837621 1384 -5.215331 5.050122 5911 -5.465968 6.430075 3893 -7.011915 2.056316 3382 -8.078890 1.197100 0709 -5.669589 2.805053 1212 6.481015 0.821991 3924 7.496357 5.543083
66 1 0 0.821384 -5.215331 5.05 67 1 0 4.886911 -5.465968 6.43 68 6 0 5.739893 -7.011915 2.05 69 1 0 4.076382 -8.078890 1.19 70 1 0 6.394212 6.481015 0.82 71 1 0 6.394212 6.481015 0.82 72 1 0 6.394212 6.481015 0.82 72 1 0 6.394212 6.481015 0.82 73 1 0 2.547657 -6.303702 6.47 74 1 0 6.283227 -7.910644 2.33 75 1 0 -1.886548 1.325503 1.33 76 0 -2.351922 0.202117 -2.93 77 6 0 -3.155402 <td>1384 -5.215331 5.050122 5911 -5.465968 6.430075 3893 -7.011915 2.056316 5382 -8.078890 1.197100 3709 -5.669589 2.805053 1212 6.481015 0.821991 3924 7.496357 5.543083</td>	1384 -5.215331 5.050122 5911 -5.465968 6.430075 3893 -7.011915 2.056316 5382 -8.078890 1.197100 3709 -5.669589 2.805053 1212 6.481015 0.821991 3924 7.496357 5.543083
66 1 0 0.821364 -5.213331 5.03 67 1 0 4.886911 -5.465968 6.43 68 6 0 5.739893 -7.011915 2.05 69 1 0 4.076382 -8.078890 1.19 70 1 0 7.250709 -5.669589 2.80 71 1 0 6.394212 6.481015 0.82 72 1 0 4.475924 7.496357 5.54 73 1 0 2.547657 -6.303702 6.47 74 1 0 6.283227 -7.910644 2.33 75 1 0 -1.886548 1.325503 -1.33 76 8 0 -2.729697 1.111933 -1.86 77 6 0 -3.155402 -1.025440 -2.44 79 1 0 -2.648824 0.611552 -3.88 80 1 0 <td>5384 -5.215331 5.050122 5911 -5.465968 6.430075 9893 -7.011915 2.056316 5382 -8.078890 1.197100 9709 -5.669589 2.805053 1212 6.481015 0.821991 5924 7.496357 5.543083</td>	5384 -5.215331 5.050122 5911 -5.465968 6.430075 9893 -7.011915 2.056316 5382 -8.078890 1.197100 9709 -5.669589 2.805053 1212 6.481015 0.821991 5924 7.496357 5.543083
67 1 0 4.886911 -5.465968 6.43 68 6 0 5.739893 -7.011915 2.05 69 1 0 4.076382 -8.078890 1.19 70 1 0 7.250709 -5.669589 2.80 71 1 0 6.394212 6.481015 0.82 72 1 0 4.475924 7.496357 5.54 73 1 0 6.283227 -7.910644 2.33 75 1 0 -1.886548 1.325503 -1.33 76 8 0 -2.729697 1.111933 -1.88 77 6 0 -3.155402 -1.025440 -2.44 79 1 0 -1.274169 0.018482 -2.88 80 1 0 -1.279169 -1.34986 -2.33 81 8 0 -2.390173 -2.184986 -2.33 82 6 0 -3.557319 -0.357688 -1.09 83 6 0	9911 -5.465968 6.430075 9893 -7.011915 2.056316 5382 -8.078890 1.197100 0709 -5.669589 2.805053 1212 6.481015 0.821991 9924 7.496357 5.543083
68 6 0 5.739893 -7.011915 2.05 69 1 0 4.076382 -8.078890 1.19 70 1 0 7.250709 -5.669589 2.80 71 1 0 6.394212 6.481015 0.82 71 1 0 6.394212 6.481015 0.82 73 1 0 2.547657 -6.303702 6.47 73 1 0 2.547657 -6.303702 6.47 74 1 0 6.283227 -7.910644 2.33 75 1 0 -1.886548 1.325503 -1.33 76 8 0 -2.729697 1.11933 -1.86 77 6 0 -3.155402 -1.025440 -2.44 79 1 0 -1.274169 0.018482 -2.88 80 1 0 -1.273107 -1.316622 -3.33 82 6 0 <td>3893 -7.011915 2.056316 5382 -8.078890 1.197100 7009 -5.669589 2.805053 1212 6.481015 0.821991 5924 7.496357 5.543083</td>	3893 -7.011915 2.056316 5382 -8.078890 1.197100 7009 -5.669589 2.805053 1212 6.481015 0.821991 5924 7.496357 5.543083
69 1 0 4.076382 -8.078890 1.19 70 1 0 7.250709 -5.669589 2.80 71 1 0 6.394212 6.481015 0.82 72 1 0 4.475924 7.496357 5.54 73 1 0 2.547657 -6.303702 6.47 74 1 0 6.283227 -7.910644 2.33 75 1 0 -1.886548 1.325503 -1.33 76 8 0 -2.729697 1.111933 -1.86 77 6 0 -2.351922 0.202117 -2.92 78 6 0 -3.155402 -1.025440 -2.44 79 1 0 -2.648824 0.611552 -3.88 80 1 0 -1.274169 0.018482 -2.89 81 8 0 -2.390173 -2.184986 -2.39 82 6 0	5382 -8.078890 1.197100 0709 -5.669589 2.805053 1212 6.481015 0.821991 5924 7.496357 5.543083
70 1 0 7.250709 -5.669589 2.80 71 1 0 6.394212 6.481015 0.82 72 1 0 4.475924 7.496357 5.54 73 1 0 2.547657 -6.303702 6.47 74 1 0 6.283227 -7.910644 2.33 75 1 0 -1.886548 1.325503 -1.33 76 8 0 -2.729697 1.111933 -1.86 77 6 0 -2.351922 0.202117 -2.93 78 6 0 -3.155402 -1.025440 -2.44 79 1 0 -2.648824 0.611552 -3.88 80 1 0 -1.274169 0.018482 -2.89 81 8 0 -2.390173 -2.184986 -2.33 82 6 0 -3.557319 -0.357688 -1.09 83 6 <th< td=""><td>0709-5.6695892.80505312126.4810150.82199119247.4963575.54308310551055710553083</td></th<>	0709-5.6695892.80505312126.4810150.82199119247.4963575.54308310551055710553083
71 1 0 6.394212 6.481015 0.82 72 1 0 4.475924 7.496357 5.54 73 1 0 2.547657 -6.303702 6.47 74 1 0 6.283227 -7.910644 2.33 75 1 0 -1.886548 1.325503 -1.33 76 8 0 -2.729697 1.111933 -1.86 77 6 0 -2.351922 0.202117 -2.93 78 6 0 -3.155402 -1.025440 -2.44 79 1 0 -2.648824 0.611552 -3.88 80 1 0 -1.274169 0.018482 -2.89 81 8 0 -2.390173 -2.184986 -2.33 82 6 0 -3.557319 -0.357688 -1.09 83 6 0 -4.373067 -1.316622 -3.30 84 1 0 -1.573758 -1.956606 -1.83 85 1 0	4212 6.481015 0.821991 5924 7.496357 5.543083
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5924 7.496357 5.543083 2657 6.303702 6.470152
72 1 0 4.4/5924 7.496357 5.54 73 1 0 2.547657 -6.303702 6.47 74 1 0 6.283227 -7.910644 2.33 75 1 0 -1.886548 1.325503 -1.33 76 8 0 -2.729697 1.111933 -1.86 77 6 0 -2.351922 0.202117 -2.92 78 6 0 -3.155402 -1.025440 -2.44 79 1 0 -2.648824 0.611552 -3.88 80 1 0 -1.274169 0.018482 -2.88 81 8 0 -2.390173 -2.184986 -2.33 82 6 0 -3.557319 -0.357688 -1.09 83 6 0 -4.373067 -1.316622 -3.33 84 1 0 -1.573758 -1.956606 -1.83 85 1 0 -2.908414 -0.414137 -0.23 86 1 0 <td>5924 /.49635/ 5.543083</td>	5924 /.49635/ 5.543083
73 1 0 2.547657 -6.303702 6.47 74 1 0 6.283227 -7.910644 2.33 75 1 0 -1.886548 1.325503 -1.33 76 8 0 -2.729697 1.111933 -1.86 77 6 0 -2.351922 0.202117 -2.92 78 6 0 -3.155402 -1.025440 -2.44 79 1 0 -2.648824 0.611552 -3.88 80 1 0 -1.274169 0.018482 -2.89 81 8 0 -2.390173 -2.184986 -2.33 82 6 0 -3.557319 -0.357688 -1.09 83 6 0 -4.573758 -1.956606 -1.83 84 1 0 -1.573758 -1.956606 -1.83 85 1 0 -2.908414 -0.414137 -0.23 86 1 0 -4.516321 0.128499 -0.97	
74 1 0 6.283227 -7.910644 2.33 75 1 0 -1.886548 1.325503 -1.33 76 8 0 -2.729697 1.111933 -1.86 77 6 0 -2.351922 0.202117 -2.92 78 6 0 -3.155402 -1.025440 -2.44 79 1 0 -2.648824 0.611552 -3.88 80 1 0 -1.274169 0.018482 -2.89 81 8 0 -2.390173 -2.184986 -2.33 82 6 0 -3.557319 -0.357688 -1.09 83 6 0 -4.373067 -1.316622 -3.30 84 1 0 -1.573758 -1.956606 -1.83 85 1 0 -2.908414 -0.414137 -0.22 86 1 0 -4.516321 0.128499 -0.91	1057 -6.303702 6.479450
75 1 0 -1.886548 1.325503 -1.33 76 8 0 -2.729697 1.111933 -1.86 77 6 0 -2.351922 0.202117 -2.93 78 6 0 -3.155402 -1.025440 -2.44 79 1 0 -2.648824 0.611552 -3.88 80 1 0 -1.274169 0.018482 -2.89 81 8 0 -2.390173 -2.184986 -2.33 82 6 0 -3.557319 -0.357688 -1.09 83 6 0 -4.373067 -1.316622 -3.33 84 1 0 -1.573758 -1.956606 -1.83 85 1 0 -2.908414 -0.414137 -0.22 86 1 0 -4.516321 0.128499 -0.99	3227 -7.910644 2.330797
76 8 0 -2.729697 1.111933 -1.88 77 6 0 -2.351922 0.202117 -2.93 78 6 0 -3.155402 -1.025440 -2.44 79 1 0 -2.648824 0.611552 -3.88 80 1 0 -1.274169 0.018482 -2.89 81 8 0 -2.390173 -2.184986 -2.33 82 6 0 -3.557319 -0.357688 -1.09 83 6 0 -4.373067 -1.316622 -3.33 84 1 0 -1.573758 -1.956606 -1.83 85 1 0 -2.908414 -0.414137 -0.22 86 1 0 -4.516321 0.128499 -0.91	5548 1 325503 -1 312147
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2697 1 111933 -1 861/65
77 6 0 -2.351922 0.202117 -2.9. 78 6 0 -3.155402 -1.025440 -2.44 79 1 0 -2.648824 0.611552 -3.88 80 1 0 -1.274169 0.018482 -2.88 81 8 0 -2.390173 -2.184986 -2.3 82 6 0 -3.557319 -0.357688 -1.09 83 6 0 -4.373067 -1.316622 -3.33 84 1 0 -1.573758 -1.956606 -1.8 85 1 0 -2.908414 -0.414137 -0.22 86 1 0 -4.516321 0.128499 -0.97	1022 0 202117 2 010700
78 6 0 -3.155402 -1.025440 -2.44 79 1 0 -2.648824 0.611552 -3.88 80 1 0 -1.274169 0.018482 -2.89 81 8 0 -2.390173 -2.184986 -2.33 82 6 0 -3.557319 -0.357688 -1.09 83 6 0 -4.373067 -1.316622 -3.30 84 1 0 -1.573758 -1.956606 -1.83 85 1 0 -2.908414 -0.414137 -0.21 86 1 0 -4.516321 0.128499 -0.91	1922 0.202117 -2.919760
79 1 0 -2.648824 0.611552 -3.88 80 1 0 -1.274169 0.018482 -2.89 81 8 0 -2.390173 -2.184986 -2.33 82 6 0 -3.557319 -0.357688 -1.09 83 6 0 -4.373067 -1.316622 -3.30 84 1 0 -1.573758 -1.956606 -1.83 85 1 0 -2.908414 -0.414137 -0.22 86 1 0 -4.516321 0.128499 -0.91	5402 -1.025440 -2.447956
80 1 0 -1.274169 0.018482 -2.89 81 8 0 -2.390173 -2.184986 -2.3 82 6 0 -3.557319 -0.357688 -1.09 83 6 0 -4.373067 -1.316622 -3.30 84 1 0 -1.573758 -1.956606 -1.83 85 1 0 -2.908414 -0.414137 -0.22 86 1 0 -4.516321 0.128499 -0.99	3824 0.611552 -3.885581
81 8 0 -2.390173 -2.184986 -2.3 82 6 0 -3.557319 -0.357688 -1.09 83 6 0 -4.373067 -1.316622 -3.36 84 1 0 -1.573758 -1.956606 -1.83 85 1 0 -2.908414 -0.414137 -0.23 86 1 0 -4.516321 0.128499 -0.97	4169 0.018482 -2.897578
81 6 0 -2.350173 -2.164,366 -2.35 82 6 0 -3.557319 -0.357688 -1.09 83 6 0 -4.373067 -1.316622 -3.30 84 1 0 -1.573758 -1.956606 -1.83 85 1 0 -2.908414 -0.414137 -0.22 86 1 0 -4.516321 0.128499 -0.97	173 -7 18/986 -7 3191/5
82 6 0 -3.557319 -0.357688 -1.05 83 6 0 -4.373067 -1.316622 -3.30 84 1 0 -1.573758 -1.956606 -1.83 85 1 0 -2.908414 -0.414137 -0.22 86 1 0 -4.516321 0.128499 -0.97	7210 0 257600 1 00071
83 6 0 -4.373067 -1.316622 -3.30 84 1 0 -1.573758 -1.956606 -1.83 85 1 0 -2.908414 -0.414137 -0.23 86 1 0 -4.516321 0.128499 -0.97	1/3400-1-800/00-11/998/1
84 1 0 -1.573758 -1.956606 -1.8 85 1 0 -2.908414 -0.414137 -0.2 86 1 0 -4.516321 0.128499 -0.9	3067 -1.316622 -3.301536
85 1 0 -2.908414 -0.414137 -0.23 86 1 0 -4.516321 0.128499 -0.97	3758 -1.956606 -1.826156
86 1 0 -4.516321 0.128499 -0.97	8414 -0.414137 -0.234093
55 I 5 7.510521 0.120455 0.57	5321 0128499 -0973475
07 C O $1C^{1}$	221 0.120755 -0.575475
o/ 0 U -4.042422 -2.01186U -3./4	<u>2422 -2.011800 -3./40100</u>
88 6 0 -5.241/31 -0.2/5337 -3.64	1/31 -0.2/533/ -3.644424
89 6 0 -5.773601 -2.862495 -4.5	3601 -2.862495 -4.516883
90 1 0 -3.966345 -3.412816 -3.4	5345 -3.412816 -3.462892
	3248 -0.528201 -4.416394

92	1	0	-5.036867	0.741682	-3.310377
93	6	0	-6.641338	-1.825370	-4.855194
94	1	0	-5.979561	-3.873765	-4.854024
95	1	0	-7.042350	0.286078	-4.676538
96	1	0	-7.522306	-2.025674	-5.457122
97	1	0	1.375398	-5.421738	2.176572
98	6	0	0.310240	-5.379609	1.969031
99	6	0	-0.227882	-4.230328	1.400273
100	6	0	-0.500630	-6.476096	2.299534
101	6	0	-1.604429	-4.211804	1.173537
102	1	0	0.386481	-3.371031	1.133538
103	6	0	-1.8/36/2	-6.449895	2.068/4/
104		0	-2.330815	-3.163628	0.620034
105	6	0	-2.41961/	-5.300951	1.497834
100	1	0	-2.499004	-7.298/91	2.323489
107	1	0	1 9 2 9 9 6 2	-3.302102	0.406433
100	16	0	-1.020302	-2.320192	1 071372
110	16	0	-4.786790	-7.314896	-0.182878
111	1	0	-1 199887	2 226507	2 293846
112	1	0	1 887725	-2 201501	-1 735903
113	1	0	-0.050494	-7.357418	2.745355
Frequen	cies	-552.07	767	5.2420	17.2492
Frequen	icies	20.50	26	22.0478	24.8205
Frequen	icies	29.44	06	31.3085	33.1234
Frequen	icies	38.97	'04 ·	43.5088	46.9708
Frequen	icies	54.13	68	57.7411	62.7327
Frequen	icies	65.02	32	69.1898	78.0490
Frequen	icies	81.04	18	89.4592	91.3351
Frequen	icies	92.97	33	98.9127	99.1619
Frequen	icies	103.4	471	113.9562	125.2369
Frequen	icies	126.1	241	131.6957	157.9127
Frequen	icies	162.3	587	170.1609	182.4592
Frequen	icies	185.7	412	191.3260	196.3646
Frequen	icies	209.9	996	215.0181	219.4835
Frequen	icles	227.9	607 026	232.3487	241.0595
Frequen	icles	250.4	030	200.3142	2/1./328
Frequen	icies	2/8.2	090 650	283.4552	291.7094
Frequen	icies	294.0	272	22/ 2020	312.3004
Frequen		365.3	372 297	334.3929	386 7269
Frequen		395.5	273	405.0052	408 9836
Frequen	icies	412.2	042	413 0679	414 2908
Frequen	icies	416.1	511	418 5159	419 4532
Frequer	icies	422.2	806	435.0274	437.8154
Frequen	icies	443.9	155	452.9219	462.7903
Frequen	icies	472.5	053	495.8658	507.3898
Frequen	icies	508.8	360	513.4525	524.1191
Frequen	icies	532.1	587	537.6251	539.4909
Frequen	icies	544.0	565	555.0042	567.3071
Frequen	icies	573.7	267	576.8240	587.3243
Frequen	icies	597.7	316	609.9332	614.6525
Frequen	icies	619.5	166	624.3396	626.6218
Frequen	icies	628.5	213	629.6341	633.1819
Frequen	icies	638.3	831	640.8278	653.2095
Frequen	icies	662.7	901	664.2446	672.8698
Frequen	icies	680.9	273	685.2686	694.1679
Frequen	icies	704.5	586	714.8066	716.6594
Frequen	icies	717.3	349	720.3519	722.6744
Frequen	icies	723.6	399	725.4091	732.9486
Frequen	icies	/38.2	858	/40.2221	/48.8472
Frequen	icies	//2.1	3/9	775.2002	//6.1659
Frequen	icies	///.9	921	/84.4132	/85.0616
⊦requen	icles	800.1	USP	818./3//	826.2736

Frequencies	844.1977	848.0302	866.6704	Freque
 Frequencies	866.7909	869.4607	870.5377	Freque
 Frequencies	871.8296	872.7397	878.7300	Freque
Frequencies	885.6925	890.2396	894.2034	'
Frequencies	896 2999	901 6227	912 5996	SCE Dor
Frequencies	932 5332	935 7453	940 3284	Sum of
Frequencies	943 2844	944 1883	948 7679	Sum of
Frequencies	949.2044	950.0910	969 3717	Sum of
Frequencies	971 3/97	975 8408	903.3717	SCE Dor
Frequencies	971.3497	975.8408	994.0403	3CI D0I
Frequencies	1000 5369	1001 0064	1005 0070	.
Frequencies	1000.3309	1001.0004	1012 5121	Catif
Frequencies	1008.9755	1011.1640	1012.3121	
Frequencies	1012.9272	1015.3172	1018.4893	Center
Frequencies	1019.2298	1019.5737	1020.1698	Numbe
Frequencies	1020.5231	1026.3977	1030.6214	
Frequencies	1043.4067	1045.7303	1050.8543	1
Frequencies	1052.5386	1059.4411	1062.2270	2
Frequencies	1064.4672	1068.0749	1070.3401	3
Frequencies	1072.1129	1079.1700	1086.8482	4
Frequencies	1089.9906	1101.4962	1102.6195	5
Frequencies	1106.1342	1109.9996	1111.4735	6
Frequencies	1117.5803	1117.8191	1120.3948	7
Frequencies	1122.4462	1127.4279	1140.4012	, 8
Frequencies	1152.4574	1158.4741	1175.7218	9
Frequencies	1177.9434	1178.3823	1178.5829	10
Frequencies	1181.6376	1184.6526	1189.5452	10
Frequencies	1196.3664	1203.2017	1204.8305	11
Frequencies	1207.3941	1209.7159	1213.1332	12
Frequencies	1213.3276	1213.8663	1215.5551	13
Frequencies	1226.8625	1231.8132	1234.4464	14
Frequencies	1235.5785	1244.5622	1256.5957	15
Frequencies	1261.5993	1278.7585	1287.8941	16
Frequencies	1289.0637	1293.9297	1295.5501	17
Frequencies	1298.1862	1305.5631	1309.6652	18
 Frequencies	1313.4025	1324.5014	1326.3205	19
Frequencies	1334.2558	1338.1032	1342.7207	20
Frequencies	1344.9393	1345.5050	1347.9965	21
Frequencies	1357 4379	1362 0709	1364 8432	22
Frequencies	1367 9251	1369 4705	1371 1113	23
Frequencies	1372 7405	1378 2756	1383 9419	24
Frequencies	1386 8263	1388 8221	1441 1532	25
Frequencies	1451 3884	1464 1632	1469 1224	26
Frequencies	1475 3377	1479 4434	1490 3460	27
Frequencies	1495 2060	1/08 8656	1501 4713	28
Frequencies	1501 5537	1505 4269	1509 3208	29
Frequencies	1512 6071	1528 6286	1520 2759	30
Frequencies	1512.0071	1528.0280	1529.3738	31
Frequencies	1551.5546	1540.5705	1551.2592	32
Frequencies	1555.2308	1003.38/1	1003.0078	33
Frequencies	1568.7252	1662.3953	1664.5643	34
Frequencies	1672.2432	1676.7472	1678.2448	35
Frequencies	1679.2131	1682.0114	1682.1528	36
Frequencies	1684.1337	1687.1233	1691./958	37
Frequencies	1698.2335	1699.3204	1701.0107	38
Frequencies	1702.3032	1702.5795	2698.8358	39
Frequencies	3073.5321	3074.8948	3089.1919	40
Frequencies	3090.3582	3119.1289	3153.9746	41
Frequencies	3156.4886	3184.3325	3192.3029	42
Frequencies	3197.6784	3198.1548	3200.6265	42
Frequencies	3204.5064	3205.1120	3207.5609	45
Frequencies	3210.3682	3214.2512	3214.3311	44
Frequencies	3214.9813	3215.3476	3216.5764	45
Frequencies	3216.8092	3220.2040	3221.9524	40
Frequencies	3223.0664	3224.5383	3224.6312	4/
Frequencies	3225.4291	3226.7463	3230.1254	48
 Frequencies	3230.9078	3232.2186	3235.0888	49
 Frequencies	3236.6774	3237.6071	3237.9849	50

Frequencies	3239.1073	3239.6288	3242.9018
Frequencies	3243.8772	3246.4005	3248.6883
Frequencies	3251.1052	3358.3602	3618.2220

SCF Done: E(RM062X/DGDZVP) = -3842.65693498Sum of electronic and zero-point Energies=-3841.753274Sum of electronic and thermal Energies=-3841.686352Sum of electronic and thermal Free Energies=-3841.863671SCF Done: E(RM062X/DGTZVP/SMD) = -3843.43435353

Center	Aton	nic A [.]	tomic	Coordinate	s (Angstroms)
Number	Νι	ımber	Туре	X Y	Z
1	15	0	0.604621	0.259730	0.141339
2	8	0	0.409991	0.469504	1.698272
3	8	0	2.168469	-0.102282	0.187089
4	1	0	-0.473725	0.784098	1.978407
5	8	0	-0.087600	-1.160711	-0.242096
6	8	0	0.146839	1.327412	-0.748551
7	6	0	2.727037	-0.868472	-0.836261
8	6	0	-0.135067	-2.069568	0.812939
9	6	0	2.747688	-2.252972	-0.724016
10	6	0	3.219831	-0.234957	-1.977510
11	6	0	0.970421	-2.821418	1.153816
12	6	0	-1.290106	-2.079597	1.598339
13	6	0	2.216578	-3.160719	0.367917
14	6	0	3.287369	-3.002794	-1.769496
15	6	0	3.823955	-1.003929	-2.972969
16	6	0	3.002156	1.223259	-2.147958
17	6	0	0.982448	-3.474621	2.386890
18	6	0	-1.290899	-2.801871	2,789506
19	6	0	-2 470720	-1 365844	1 040400
20	6	0	3 220228	-3 421027	1 517774
21	6	0	1 949487	-4 461284	-0 443717
22	6	0	2 976200	-4 482434	-1 599253
23	6	0	3 887398	-2 394560	-2 876817
23	1	0	4 233592	-0 505189	-3 847736
24	6	0	3 800515	2 164446	-1 507250
25	6	0	1 915483	1 669942	-2 889034
20	6	0	2 376318	-4 020077	2.605054
27	6	0	-0 140885	-3 481233	3 217611
20	1	0	-2 188925	-2 828102	3 401523
30	6	0	-2 951097	-0 157466	1 528/88
31	6	0	-3 052312	-1 878308	-0.120957
32	1	0	1 040458	-4.077665	1 211501
32	1	0	3 651858	-4.077005	1 837178
34	1	0	1 992538	-5 357/27	0.182917
25	1	0	0.041650	4 400320	0.102517
35	L C	0	2 411622	E 00/7/0	-0.807557
27	1	0	2.411022	5 0/1625	1 2099/1
20	L C	0	4 E 20410	2 21 5027	2 025706
20	C	0	4.550410	-5.213927	-5.955700
39	0	0	3.503674	3.51/400	-1.591105
40	8	0	4.880477	1./15/9/	-0.783145
41	6	0	1.586959	3.024832	-2.959233
42	8	0	1.107745	0.731404	-3.48/284
43	1	0	2.862968	-3.610941	4.053644
44	I	0	2.375069	-5.115264	2.618942
45	6	0	-0.110780	-4.19/509	4.521836
46	6	U	-4.0139/3	0.514/82	0.91/998
4/	8	U	-2.283046	0.422662	2.59/135
48	6	U	-4.103/91	-1.221/48	-0.744294
49	8	U	-2.544405	-3.052/92	-0.615695
50	6	0	1.339401	-4.455446	-3.518888

51	6	0	2.973856	-6.220356	-3.454796
52	6	0	4.043667	-3.210750	-5.246678
53	6	0	5.608594	-4.045780	-3.610197
54	6	0	2.383169	3.962759	-2.301379
55	8	0	4.306446	4.447795	-0.973283
56	6	0	5.327281	2.595193	0.182215
57	8	0	0.460203	3 397904	-3 647738
Б0	6	0	0.224709	1 000 210	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
50	0	0	-0.224796	1.099219	-3.336320
59	6	0	2.879915	-2.256709	4.411009
60	6	0	3.245200	-4.563138	4.998666
61	6	0	-0.129891	-3.484631	5.724726
62	6	0	-0.010074	-5.592014	4.555505
63	6	0	-4.607808	-0.025316	-0.223209
64	8	0	-4.447674	1.713599	1.419267
65	6	0	-3.039073	1.327316	3.332610
66	8	0	-4.692706	-1.729672	-1.871990
67	6	0	-2.912244	-3.363805	-1.908045
68	6	0	0.852469	-4.943878	-4.728337
69	1	0	0 907401	-3 549295	-3 094060
70	6	0	2 /8/959	-6 717/33	-4 664472
70	1	0	2.404000	6 705 75 2	2 074726
71	1 C	0	3.620374	-0.703732	-2.974720
72	6	0	4.612680	-4.041502	-6.210748
/3	1	0	3.193593	-2.581144	-5.49/442
74	6	0	6.185615	-4.867620	-4.576346
75	1	0	5.997069	-4.038719	-2.594437
76	6	0	2.109913	5.448514	-2.283622
77	6	0	5.040783	3.956078	0.088808
78	6	0	6.087149	2.108078	1.234817
79	6	0	-0.550577	2.447739	-3.631000
80	6	0	-1.216059	0.130683	-3.536071
81	6	0	3 270957	-1 866815	5 689318
82	1	0	2 559864	-1 503955	3 6911/7
02	6	0	2.5555004	1.303333	6 797599
0.0	1	0	2 217170	-4.170470	0.282388
04	1 C	0	5.21/1/0	-3.018037	4.757962
85	6	0	-0.030925	-4.155107	6.942444
86	1	0	-0.188585	-2.399517	5.698882
87	6	0	0.077643	-6.264674	5.//36/3
88	1	0	-0.005365	-6.148800	3.621320
89	6	0	-5.787355	0.589568	-0.942882
90	6	0	-4.114955	1.971174	2.732205
91	6	0	-2.684547	1.601119	4.643788
92	6	0	-3.974079	-2.711569	-2.530149
93	6	0	-2.222952	-4.367995	-2.572129
94	6	0	1.425846	-6.078651	-5.306989
95	1	0	0.042054	-4.422245	-5.229773
96	1	0	2.945332	-7.592967	-5.112223
97	6	0	5 681243	-4 874519	-5 877158
98	1	0	4 212832	-4 047293	-7 220126
90	1	0	7 026397	-5 502759	-4 314002
100		0	1.020357	-3.302733	2,002640
100	9	0	1.030009	5.005255	-2.992040
101	9	0	1.913490	5.886258	-1.025790
102	9	0	3.153333	6.138335	-2.781060
103	6	0	5.514090	4.840759	1.046243
104	6	0	6.579464	2.996093	2.191975
105	1	0	6.287235	1.042441	1.280614
106	6	0	-1.873533	2.853708	-3.684304
107	6	0	-2.552583	0.531407	-3.602123
108	1	0	-0.931890	-0.915184	-3.456317
109	6	0	3.645168	-2.827285	6.631824
110	1	0	3.276112	-0.813405	5.953181
111	1	0	3,913271	-4.931246	7.011035
112	6	ñ	0.075903	-5.546319	6,969525
113	1	ñ	-0 024295	-3 59020	7 869587
11/	1 1	0	-0.024233 0.15031F	-7 2/7005	5 700000
11F	- -	0	0.130313	-1.34/333	0.020001
110	9	0	-0.034603	-0.254404	-0.939001
ττρ	9	U	-5.493983	0.845264	-2.230848

117	9	0	-6.205294	1.735076	-0.402231
118	6	0	-4.852449	2.907840	3.441397
119	6	0	-3.414735	2.552850	5.356446
120	1	0	-1.840051	1.077705	5.081000
121	6	0	-4.347539	-3.047329	-3.822703
122	6	0	-2.607041	-4.724431	-3.865191
123	1	0	-1.403809	-4.868010	-2.063802
124	1	0	1.057163	-6.453797	-6.256870
125	1	0	6.120593	-5.523384	-6.628599
126	6	0	6.294404	4.357630	2.097375
127	1	0	5.270601	5.893353	0.944954
128	1	0	7.183517	2.620103	3.010823
129	6	0	-2.879223	1.885850	-3.676471
130	1	0	-2.094724	3.915210	-3.726236
131	1	0	-3.342540	-0.214891	-3.593602
132	1	0	3.942395	-2.524985	7.631345
133	1	0	0.156019	-6.06/41/	7.918584
134	6	0	-4.492761	3.202912	4./561//
135	1	0	-5.684/5/	3.39/84/	2.94/131
127	1	0	-3.139038	2.783707	0.3/95/9
120	1	0	5 175020	2 51/022	4.491000
120	1	0	2 077/10	-2.314903 5 532125	-4.279340
140	1	0	6 675571	5.048605	2 8/1582
140	1	0	-3 918568	2 192085	-3 719925
141	1	0	-5.059014	3 943147	5 310884
143	1	0	-3.960616	-4.336360	-5.497501
Frequence	cies	6.594	9 13	1.0183	12.8363
Frequen	cies	21.32	81 2	22.4683	24.6758
Frequen	cies	26.82	77 2	29.8956	32.9820
Frequen	cies	35.59	90 4	40.0641	41.5891
Frequen	cies	44.19	985 4	45.7741	49.1107
Frequen	cies	54.53	576	56.4049	59.8903
Frequen	cies	61.80	195 (58.7883	/0.1//8
Frequen	cies	73.12		/4.3869	/6./110
Frequen	cies	/9.58	5/1 8 NCO (83.1208	87.4512
Frequen	cies	93.98	100	98.4450 107 F072	98.9431
Frequen	cies	101.8	198	107.5072	118.4038
Eroquon	cios	121.7	54Z	127 2061	120.2100
Frequen	cies	15/ 7	350	156 6357	163 2739
Frequen	cies	170.1	021	177 1527	181 8198
Frequen	cies	190.2	485	199 4558	203 8871
Frequen	cies	211.9	638	225.5579	230.3783
Frequen	cies	232.6	531	239.2671	244.2146
Frequen	cies	247.1	443	252.1636	268.0910
Frequen	cies	269.2	060	273.6640	275.2405
Frequen	cies	277.9	295	287.6285	290.4372
Frequen	cies	291.2	595	293.2154	295.0864
Frequen	cies	299.4	554	301.8184	302.3786
Frequen	cies	307.2	308	311.2750	316.8949
Frequen	cies	321.7	025	322.6261	327.2434
Frequen	cies	330.0	108	334.4525	347.3854
Frequen	cies	367.0	957	391.6637	403.8178
Frequen	cies	406.6	181 4	407.7330	409.6516
Frequen	cies	414.3	334 4 226	415.1/51	41/.1762
Frequen	cies	418.1	336 4 772	421.6280	441.9236
Frequen	cies	443.0	//2 4	440.115/	447.7454
Frequen	cies	449.8 166 E	782	455.3024	430.02/3
Frequen	cies	400.5	770	403.0030 197 7029	501 0/07
Frequen	cies	505 5	,,0	511 9629	516 5010
Frequen	cies	521.2	834	527.0236	530 1533
Frequen	cies	536.4	919	540.0263	543.4772
•					

Frequencies	549.6209	555.5957	557.1799	Frequence	cies	1340.	5085	1350.7364	1357.2523
Frequencies	558.3109	559.1892	564.4425	Frequence	cies	1357.8	8801	1358.7861	1359.0495
Frequencies	567.5656	569.4623	582.5970	Frequence	cies	1362.0	0177	1362.5147	1364.2242
Frequencies	588.5968	596.5473	598.2975	Frequence	cies	1364.3	3292	1370.8719	1372.1259
Frequencies	600.6716	602.4829	603.7161	Frequence	cies	1375.	1553	1376.4896	1385.0931
Frequencies	605.5184	607.3441	608.9022	Frequence	cies	1395.	3010	1411.4124	1452.6015
Frequencies	610.4493	617.5090	623.2335	Frequence	cies	1463.0	5624	1472.9155	1475.0095
Frequencies	624.8420	626.4982	631.2370	Frequence	cies	1490.9	9047	1494.0902	1498.2658
Frequencies	632.0580	633.9965	635.7907	Frequence	cies	1499.	7118	1506.1244	1507.1753
Frequencies	646.2771	648.5785	653.5649	Frequence	cies	1508.8	8995	1509.3158	1510.9408
Frequencies	662.5912	665.6055	670.1387	Frequence	cies	1515.	7461	1519.7845	1523.3571
Frequencies	680.1460	683.0841	702.8534	Frequence	cies	1529.9	9924	1534.8767	1544.8847
Frequencies	705.8721	712.8522	715.2799	Frequence	cies	1550.	7662	1555.9609	1557.6548
Frequencies	715.4815	715.8693	716.4818	Frequence	cies	1560.	5221	1563.2439	1564.1028
Frequencies	717.2009	720.7738	723.0324	Frequence	cies	1565.0	5688	1569.4587	1578.2293
Frequencies	727.4106	731.1988	734.9414	Frequen	cies	1666.	7503	1667.5712	1671.0349
Frequencies	740.2823	743.6513	748.9917	Frequence	cies	1671.	5842	1673.5741	1674.2515
Frequencies	755.1728	757.3442	768.9814	Frequence	cies	1676.	2378	1679.2519	1691.3981
Frequencies	769.6638	770.4806	771.5483	Frequence	cies	1693.	1502	1695.8643	1696.9360
Frequencies	774.2550	776.9325	779.4664	Frequence	cies	1698.4	4637	1699.1823	1701.7636
Frequencies	780.5170	784.9989	790.9371	Frequence	cies	1703.0	0104	1703.7451	1704.0154
Frequencies	797.0331	800.3661	805.5392	Frequence	cies	1704.9	9391	1707.1902	1722.7488
Frequencies	807.7348	820.0842	825.3152	Frequence	cies	1722.8	8746	1740.1099	1743.2582
Frequencies	828.3472	830.1484	857.8641	Frequence	cies	3076.	5421	3084.2504	3088.5154
Frequencies	859.2484	862.9967	864.1081	Frequence	cies	3089.0	0875	3151.9215	3155.8392
Frequencies	866.3855	868.5618	870.4225	Frequence	cies	3178.	7407	3187.5701	3200.8481
Frequencies	871.7789	873.0949	882.5993	Frequence	cies	3201.	5006	3205.2214	3206.6827
Frequencies	887.6485	889.2213	890.0199	Frequence	cies	3211.0	0629	3211.3322	3211.7900
Frequencies	896.6662	909.9282	913.4304	Frequence	cies	3214.4	4338	3218.6416	3219.7303
Frequencies	915.5053	922.7787	931.6894	Frequence	cies	3221.	7487	3222.3420	3225.2449
Frequencies	933.8809	934.3274	938.4076	Frequence	cies	3225.	5625	3227.4548	3228.6386
Frequencies	942.5893	944.1054	945.6448	Frequence	cies	3229.	5177	3230.2360	3231.3578
Frequencies	946.9729	948.4015	948.8867	Frequence	cies	3231.8	8069	3234.4326	3235.0655
Frequencies	955.8890	960.0686	966.2978	Frequence	cies	3237.0	0613	3237.4737	3239.4862
Frequencies	971.7662	986.7648	990.5078	Frequence	cies	3239.8	8029	3239.9128	3241.3153
Frequencies	991.1095	992.9956	993.7390	Frequence	cies	3243.	1597	3247.3530	3248.0601
Frequencies	996.8167	998.3259	1002.1234	Frequence	cies	3253.0	0982	3253.7827	3254.5759
Frequencies	1003.3838	1011.7790	1013.5386	Frequence	cies	3258.	7008	3259.0131	3679.6712
Frequencies	1013.6754	1017.5557	1018.5743						
Frequencies	1019.2779	1019.6315	1020.4973	SCF Done	: E(RN	1062X/	DGDZVP) =	-4879.4073	31991
Frequencies	1026.5671	1031.5309	1036.9290	Sum of el	ectron	ic and	zero-point E	nergies=	-4878.341618
Frequencies	1037.9864	1042.6136	1054.5464	Sum of e	lectror	nic and	thermal En	ergies=	-4878.250170
Frequencies	1057.4283	1063.0334	1063.6586	Sum of e	lectror	nic and	thermal Fre	ee Energies=	-4878.478168
Frequencies	1066.1856	1067.0541	1069.9331	SCF Done	: E(RM	1062X/	DGTZVP/SN	1D) = -4880.	43072127
Frequencies	1071.5412	1074.3837	1091.8312						
Frequencies	1101.9385	1107.0587	1110.3921	Cat f IC) 1				
Frequencies	1113.5487	1114.9835	1123.0742		-				
Frequencies	1127.2927	1129.5526	1130.4976	Center	Atomi	c At	omic	Coordinates	s (Angstroms)
Frequencies	1135.3233	1136.6601	1166.5229	Number	Num	nber	Type	X Y	Ζ
Frequencies	1167.7378	1169.6214	1172.8851						
Frequencies	1173.6055	1175.7303	1177.6267	1	15	0	0.225185	0.018377	0.027214
Frequencies	1179.0590	1179.3450	1180.6952	2	8	0	0.188651	0.254195	1.620224
Frequencies	1186.7441	1195.6406	1202.8287	3	8	0	1.802781	-0.000227	-0.308670
Frequencies	1204.9089	1207.1270	1209.7368	4	8	0	-0.464117	1.038332	-0.791645
Frequencies	1212.3017	1215.8834	1216.4496	5	8	0	-0.286949	-1.449833	-0.067253
Frequencies	1218.6044	1223.7747	1228.2745	6	6	0	0.833603	1.388863	2.113007
Frequencies	1231.5229	1232.6070	1233.4326	7	6	0	2,512193	-1.081054	0.221307
Frequencies	1234.8829	1241.3943	1246.0046	8	6	0	2.173521	1.310311	2.462953
Frequencies	1249.0915	1257.2029	1258.3583	9	6	0	0.146254	2.602969	2.175213
Frequencies	1267.0314	1275.9097	1276.4589	10	6	0	2,988511	-1.033013	1.519379
Frequencies	1291.8037	1293.2931	1296.1357	11	6	0	2.620189	-2.245556	-0.545464
Frequencies	1302.1897	1303.1495	1303.1950	12	6	0	3.112995	0.123051	2.488271
Frequencies	1306.8071	1307.4246	1311.6617	13	6	0	2.839619	2.469727	2.860595
Frequencies	1313.0541	1314.1207	1316.356/	14	6	0	0.817514	3.734192	2.644294
Frequencies	1320.3910	1325.2393	1327.1716	15	6	0	3.501251	-2.198769	2.091338
Frequencies	1330.4838	1332.0306	1337.4924						

16	6	0	3.202845	-3.377645	0.022869	82	6	0	-2.071884	-0.851433	-2.840370
17	6	0	3.062480	-0.627411	3.843891	83	6	0	-4.435441	0.041869	-3.341661
18	6	0	4 481102	0 832151	2 294738	84	1	0	-1 954418	1 502141	-1 884890
10	6	0	1 330066	2 220072	2 0/5729	95	1	0	1 070904	0 397393	2 991629
19	0	0	4.339900	2.230073	2.943728	00	1	0	-1.079894	-0.387283	-2.881028
20	6	0	2.165307	3.686313	3.002507	86	1	0	-2.246383	-1.505150	-3./006/8
21	1	0	0.281211	4.677492	2.706846	87	6	0	-5.013/08	1.1//32/	-3.905914
22	6	0	3.712482	-2.012919	3.588002	88	6	0	-5.010346	-1.212583	-3.574008
23	6	0	3.641161	-3.374975	1.351172	89	6	0	-6.157725	1.058189	-4.695920
24	1	0	3,294381	-4.284045	-0.569818	90	1	0	-4.566580	2.146709	-3.714739
25	1	0	3 555926	-0.069086	4 645401	91	6	0	-6 150283	-1 330597	-4 363975
20	1	0	2.014001	0.000000	4.120225	02	1	0	4.565010	2.104622	4.303373
26	1	0	2.014881	-0.768226	4.129335	92	1	0	-4.565013	-2.104622	-3.131972
27	1	0	5.310398	0.250948	2./10020	93	6	0	-6./28314	-0.191///	-4.928091
28	1	0	4.663547	0.953742	1.221747	94	1	0	-6.606020	1.947592	-5.128233
29	1	0	4.668357	2.198636	3.991634	95	1	0	-6.589768	-2.308157	-4.538383
30	6	0	5.122364	3.307988	2.220717	96	1	0	-7.618892	-0.279772	-5.542727
31	6	0	2 874118	4 906083	3 472336	97	6	0	-1 234177	2 689332	1 651641
22	1	0	1 791070	1.9000005	3 828660	08	6	0	1 520205	2 512262	0.565008
32	T	0	4.781970	-1.964023	3.828009	90	0	0	-1.320303	3.312202	0.303908
33	6	0	3.063475	-3.131083	4.380836	99	6	0	-2.254224	1.8/1105	2.124830
34	6	0	4.213770	-4.596795	1.977095	100	6	0	-2.769171	3.508625	-0.057799
35	6	0	4.788240	3.641273	0.901266	101	8	0	-0.503686	4.262524	0.020149
36	6	0	6.131197	4.027014	2.860648	102	6	0	-3.500681	1.854545	1.512031
37	6	0	3 024317	6 008521	2 625024	103	8	0	-2 006191	1 015575	3 175763
20	6	0	2 / 22 29 9	1 016013	4 753450	104	6	0	2 772146	2 654466	0.400225
20	0	0	1 721 221	4.940943	4.755450	104	0	0	-3.773140	2.034400	1.1.00223
39	6	0	1./21321	-3.456553	4.144570	105	8	0	-2.944824	4.297382	-1.168399
40	6	0	3.785629	-3.884084	5.306133	106	6	0	-0.563995	4.315027	-1.363199
41	6	0	3.422829	-5.732772	2.175341	107	8	0	-4.458294	0.973199	1.965477
42	6	0	5.539067	-4.599763	2.424076	108	6	0	-2.657696	-0.194734	3.028319
43	6	0	5.445795	4.677166	0.243541	109	6	0	-5.120095	2,483340	-0.258896
11	1	0	3 976901	3 112710	0 400798	110	6	0	-1 813970	1 3/3772	-1 970034
44	6	0	6 702011	5.112710	2 202774	111	6	0	0 506096	4.343772	2 1210/1
45	0	0	0.795611	3.003002	2.203774	111	0	0	0.390080	4.525566	-2.121041
46	1	0	6.384480	3.791924	3.891814	112	6	0	-3.912234	-0.214419	2.422254
47	6	0	3.746275	7.124410	3.043971	113	6	0	-2.072015	-1.368305	3.477472
48	1	0	2.598322	5.973387	1.625037	114	9	0	-6.115499	2.765865	0.599983
49	6	0	4.142646	6.069296	5.178803	115	9	0	-5.298426	1.201822	-0.649231
50	1	0	3 304258	4 097067	5 419713	116	9	0	-5 297878	3 249804	-1 333432
51	6	0	1 110206	1.037007	1 919700	117	6	0	1 0210/2	1 209/22	2 2/0520
21	1	0	1.119200	-4.514755	4.818700	110	C C	0	-1.931942	4.398433	-3.349520
52	T	0	1.155834	-2.896894	3.399463	118	6	0	0.485432	4.400964	-3.510887
53	6	0	3.186173	-4.949363	5.980715	119	1	0	1.558281	4.260811	-1.622727
54	1	0	4.833585	-3.654016	5.484014	120	6	0	-4.608078	-1.403589	2.267682
55	6	0	3.943385	-6.845888	2.832858	121	6	0	-2.774031	-2.567118	3.340105
56	1	0	2.388354	-5.725907	1.840720	122	1	0	-1.085563	-1.321366	3.927962
57	6	0	6 064454	-5 717449	3 070337	123	6	0	-0 769587	4 440160	-4 120332
57 E0	1	0	6 1 5 9 0 6 4	2 7210EE	2 256001	120	1	0	2 021052	4 202004	2 702094
50	T	0	0.136904	-3.721633	2.230901	124	1	0	-2.921932	4.392604	-5.792964
59	6	0	6.451169	5.395/81	0.894474	125	1	0	1.386263	4.409987	-4.115333
60	1	0	5.156123	4.943998	-0.768739	126	6	0	-4.034177	-2.584690	2.741712
61	1	0	7.566396	5.624913	2.722559	127	1	0	-5.582029	-1.383933	1.788672
62	6	0	4.309496	7.156220	4.320202	128	1	0	-2.332451	-3.489677	3.702331
63	1	0	3.875674	7.965637	2.369873	129	1	0	-0.847991	4.481207	-5.201512
64	1	0	4 566667	6 094540	6 178180	130	1	0	-4 575772	-3 519450	2 640735
CL	ć	0	1.9000007		E 72970C	101		0	2 0 0 7 1 1 7	2 222552	1 010074
65	0	0	1.851760	-5.208527	5./38/06	131	0	0	2.067117	-2.223552	-1.918874
66	1	0	0.081252	-4./639/8	4.618027	132	6	0	1.050113	-3.085141	-2.318890
67	1	0	3.767729	-5.535890	6.685493	133	6	0	2.503182	-1.262129	-2.830388
68	6	0	5.263663	-6.839431	3.284925	134	6	0	0.436373	-2.962748	-3.567488
69	1	0	3.314704	-7.714738	3.002351	135	8	0	0.606364	-4.042167	-1.436950
70	1	0	7 096507	-5 711625	3 407964	136	6	0	1 889380	-1 114930	-4 068270
71	1	0	6 055037	6 211020	0.286880	127	0	0	2 5/9550	0.455640	2 460211
71	1	0	0.955957	0.211930	0.380880	120	0	0	3.348333	-0.433049	-2.400311
12	1	0	4.8/2262	8.026170	4.044520	138	6	0	0.830994	-1.94845/	-4.443566
/3	1	0	1.385549	-6.100519	6.257347	139	8	0	-0.582528	-3.828414	-3.890669
74	1	0	5.667383	-7.706839	3.798080	140	6	0	-0.749392	-4.293780	-1.548237
75	1	0	-1.108209	-1.583600	-0.689538	141	8	0	2.304006	-0.148664	-4.948279
76	8	0	-2.269000	-1.584412	-1.593776	142	6	0	3.637233	0.737814	-3.144924
77	6	0	-3 284462	-0 639696	-1 140977	143	6	0	0 154067	-1 647096	-5 760291
79	6	0	-3 201061	0 1/1/705	_2 /75000	111	6	0	_1 2/0007	_1 205707	_2 700010
70	1	0	-3.204804	U.144/00	-2.4/3388	144	C	0	-1.349003	-4.203/0/	-2./33010
/9	T	0	-4.21830/	-1.156422	-0.9118/6	145	6	0	-1.49/944	-4.6038/3	-0.424130
80	1	0	-2.929058	-0.065075	-0.278366	146	6	0	3.019735	0.891368	-4.384771
81	8	0	-2.809853	1.480866	-2.362551	147	6	0	4.392915	1.766917	-2.603948

Frequencies -- 603.8427

Frequencies -- 610.2600

Frequencies -- 620.8805

Frequencies -- 629.5229

Frequencies -- 632.2177

Frequencies -- 646.4380

Frequencies -- 669.9417

Frequencies -- 684.3933

Frequencies -- 704.8629

Frequencies -- 709.9230

607.7970

617.3708

624,4944

630.3079

633.3281

649.8022

673 2325

691.2520

705.8566

714.5549

609.6840

618.4805

626.6328

630.5365

635.1315

654 5384

680.9496

701.2297

708.3002

714.8257

723.7115

730.2308

741.1310

750.8984

769.3057

775.7955

780.7033

795.9955

804.1713

823.8014

829.8032

858.8975

864.8139

870.3444

885.6014

905.2601 919.0076

930.6513

938.0923

943.9883

948.7185

954.9240

986 5446

990.4508

995.1526

1000.9352

1009.8565

1014.0509

1019.5518 1021.9618

1033.6202

1044.2502 1056.6102

1063.9225

1072.0374

1093 0950

1107.9395 1114.3961

1125.9356

1130.1983

1167.4445

1170.8104

1172.3558

1178.2108

1192.7415

1199.1905

1212.8674

1216.1698

1224.6439

1232.0992

1241.3162

1255.8997

1273.7727 1289.8495

1296.0340

1301.6125

1300.1367

1.008970 -1.746482 -6.789657

-0.327055 -0.388465 -5.759923

-0.878404 -2.453472 -6.024205

-2.701564 -4.460597 -2.959167

-2.860795 -4.865002 -0.575681

-1.007704 -4.623518 0.544223

3.151337 2.074505 -5.094863

4.544006 2.953359 -3.322610

4.872318 1.614367 -1.641466

-3.457235 -4.801940 -1.835633

148

149

150

151

152

153

154

155

156

157

9

9

9

6

6

1

6

6

1

6

Frequencies -- 597.7494

600.9678

0

0

0

0

0

0

0

0

0

0

159	1	0 3	127027	1 301130	2 050702	Fraguancias	719 0291	721 7510
150	1	0 -3	156225	5 115/00	0.205755	Frequencies	716.9361	721.7515
160	6	0 3	025540	2 106001	4 562166	Frequencies	723.7550	727 6780
161	1	0 3	657019	2 160660	-4.303100	Frequencies	745 1620	747 2506
162	1	0 5	160101	2.100009	2 917046	Frequencies	762 5565	769 1764
162	1	0 1	516275	5.010925	1 0/60/0	Frequencies	703.3303	772 0964
164	1	0 -4	040060	-3.010623	-1.940949 E 104070	Frequencies	776 2005	772.9604
104	T	0 4	.049000	4.027555	-3.124376	Frequencies	770.0003	770.7000
						Frequencies	200 2205	201 2202
Frequen	cioc	15 0500	1		17 5656	Frequencies	800.3293	001.5200
Frequen	cies	21 2002	1	7.5505	25 7151	Frequencies	003.3045 015 7064	020.3104
Frequer	icies	21.2992	4	22.2803	25.7151	Frequencies	825.7804	827.9831
Frequer	icies	28.0341	4	29.4085	30.9976	Frequencies	850.9007	857.0712
Frequer	icies	40.0007		11 0204	38.0201	Frequencies	802.1525	803.4392
Frequer	icles	40.9607	2	1.9264	42.1176	Frequencies	866.7608	867.4748
Frequer	ncies	44./181		2.8974	55.3088	Frequencies	874.0959	883.9506
Frequer	ncies	56./8/5	t	51.6772	63.4852	Frequencies	887.9306	890.1916
Frequer	ncies	64.4061	6	6.8842	68.8113	Frequencies	916.2019	918.4625
Frequer	ncies	/3.0031	,	3.3683	//./801	Frequencies	921.4004	923.8869
Frequer	ncies	78.2200	8	31.4453	86.6609	Frequencies	932.2823	933.4043
Frequer	ncies	91.7249	9	92.3858	94.9593	Frequencies	940.0770	942.1746
Frequer	ncies	97.9237	1	00.3179	104.9519	Frequencies	945.1060	945.9973
Frequer	ncies	106.9101	. 1	113.1710	116.0094	Frequencies	950.3730	954.5745
Frequer	ncies	119.2255	1	123.3963	126.8867	Frequencies	970.5364	974.2678
Frequer	ncies	132.9618	3	L35.1651	143.3184	Frequencies	987.8880	988.5253
Frequer	ncies	144.8866	; <u>^</u>	155.0913	159.2866	Frequencies	990.7747	991.0952
Frequer	ncies	163.9471		L71.0830	179.1515	Frequencies	999.0324	1000.5665
Frequer	ncies	183.8827	· -	L95.8791	197.7571	Frequencies	1006.8166	1008.3871
Frequer	ncies	197.9333	2	204.8663	212.2355	Frequencies	1011.6415	1012.5492
Frequer	ncies	217.9689) 2	227.6721	237.4993	Frequencies	1018.8546	1019.0730
Frequer	ncies	241.0942	2	244.9354	248.0462	Frequencies	1019.7808	1019.8600
Frequer	ncies	253.0668		262.1912	270.9953	Frequencies	1023.0522	1029.3200
Frequer	ncies	273.3648		275.0350	278.5445	Frequencies	1035.5542	1042.7093
Frequer	ncies	282.5253		291.2098	292.5240	Frequencies	1053.8663	1055.0482
Frequer	ncies	294.8600) 2	297.0955	298.8239	Frequencies	1059.4738	1063.1208
Frequer	ncies	304.7809) 3	310.6201	311.0855	Frequencies	1066.8380	1069.2936
Frequer	ncies	315.5745	. 3	316.1844	323.5768	Frequencies	1073.1969	1084.7665
Frequer	ncies	327.2962		330.2860	332.5741	Frequencies	1093.7718	1100.6238
Frequer	ncies	336.2482	. 3	337.3636	339.7138	Frequencies	1108.6584	1110.0215
Frequer	ncies	346.9937	1 3	358.1172	369.0445	Frequencies	1116.4507	1122.7761
Frequer	ncies	372.1082	4	103.6278	404.9467	Frequencies	1126.7919	1128.1093
Frequer	ncies	408.3130) 4	109.0986	411.1875	Frequencies	1132.1706	1162.6181
Frequer	ncies	412.3846	5 4	115.4040	416.0888	Frequencies	1169.2957	1169.5771
Frequer	ncies	419,7126	5 4	124,2988	433,4024	Frequencies	1171.1086	1171.8963
Frequer	ncies	435.7794		137.4526	439.8937		1174.5660	1176.3075
Frequer	ncies	441 3944	L 2	144 0572	447 1312	Frequencies	1181 3565	1183 8697
Frequer	ncies	449 1953	4	151 4251	456 6806	Frequencies	1195 5758	1198 7185
Frequer	ncies	466 5410) 4	174 2607	486 7288	Erequencies	1202 9503	1210 1223
Frequer	ncies	491 7529	, , [501.0682	512 4864	Frequencies	1202.3305	1210.1229
Frequer	ncies	516.0950	, <u> </u>	516 5742	521.0950	Frequencies	1213.2043	1214.7035
Frequer		577 8553	, .	529 0175	531 7190	Frequencies	12221.4350	1220.3070
Frequer		526 / 529	, . , E	20 62/1	542 2070	Frequencies	1222 0055	1226 5671
Frequer	ncies	5/8 0076		55.0241	545.2070	Frequencies	12/3 080/	12/7 100/1
Eroquer	icies	561 521	, 5 r	562 5125	553.2820	Frequencies	1243.0094	1266 2112
Froguer	icies			CC 0011	505./050	Frequencies	1077 1040	1200.2113
Frequer	icies	202.593/		00.0011	5/0.9/88	Frequencies	1200 5510	1201 7072
⊦requer	icles	583.1423	i L	588.4774	596.5233	Frequencies	1290.5519	1781./0/5

601.6026

Frequencies -- 1297.1621

Frequencies 1304.510	4 1307.1324	1308.0947	5	8	0	-0.862674	-1.196666	0.023676
Frequencies 1308.984	8 1311.1095	1313.0418	6	6	0	0.838989	1.142777	2.504785
Frequencies 1314.601	3 1318.3526	1324.5575	7	6	0	2.239007	-1.236937	0.232542
Frequencies 1325.100	5 1326.6540	1328.6839	8	6	0	2.213895	1.035253	2.664025
Frequencies 1336.460	6 1339.7434	1341.1403	9	6	0	0.171357	2.333483	2.819820
Frequencies 1345.466	5 1346.8459	1357.0047	10	6	0	2.923007	-1.235314	1.439445
Frequencies 1357.198	5 1359.9600	1362.8508	11	6	0	2.202047	-2.382038	-0.573479
Frequencies 1366.270	5 1366.7279	1368.0001	12	6	0	3.158963	-0.133250	2.454501
Frequencies 1368.3893	3 1370.3702	1371.7671	13	6	0	2.930506	2.143078	3.121507
Frequencies 1372.427	6 1377.8782	1383.0772	14	6	0	0.904803	3.392109	3.362264
Frequencies 1383.865	7 1394.4831	1410.3863	15	6	0	3.548294	-2.408466	1.864508
Frequencies 1450.790	9 1459.6268	1461.8143	16	6	0	2.928942	-3.505738	-0.169853
Frequencies 1468.901	5 1471.6976	1490.4514	17	6	0	3.306447	-0.968323	3.753777
Frequencies 1491.637	5 1495.7035	1498.1596	18	6	0	4.480212	0.618824	2.144428
Frequencies 1499 662	1 1499 9606	1505 1755	19	6	0	4 428832	1 919477	2 981318
Erequencies 1506.090	4 1508.0555	1508 8069	20	6	0	2 287090	3 313860	3 529098
Frequencies 1512 576	2 1512 7593	1516 1803	21	1	0	0 387031	4 307785	3 634375
Erequencies 1518 021	8 1527 6113	1530 5183	22	6	0	3 963913	-2 304011	3 325112
Frequencies 1530 724	7 1548 8591	1549 4658	22	6	0	3 611185	-3 539109	1 046158
Erequencies 1553 508	7 1555 0029	1555 1627	23	1	0	2 927221	-4 389025	-0.802204
Erequencies 1555.819	8 1560 6204	1562 2836	24	1	0	3 879926	-0.441486	4 522605
Erequencies 1563 476	2 1570 4679	1575 9/68	25	1	0	2 309788	-1.16770/	4.322003
Erequencies 1664 9959	a 1665.69/2	1668 5939	20	1	0	5 363832	0.010154	2 359/31
Erequencies 1669 572	7 1674 7456	1675 2259	27	1	0	4 500104	0.010134	1 079591
Eroquencies 1676 949	2 1677 2002	1677 6007	20	1	0	4.300104	1 759420	2 06/217
Eroquencies 1698 021	2 1600 8/08	160/ 8200	20	-	0	5 115274	2 005204	2 21/515
Frequencies 1696 727	2 1090.8408 5 1606.0407	1609 9706	21	6	0	3 062725	1 150166	1 001151
Eroquencies 1690.727	5 1701 24427	1701 5194	27	1	0	5.003723	2 2/1/10	2 / 20702
Frequencies 1099.302	1 1701.2443	1701.3184	32		0	2 470022	2 107702	1 1 2 0 0 4 4
Frequencies 1702.718	1 1702.0039	1703.4099	22	6	0	3.470925	-3.497795	4.120044
Frequencies 1707.221	7 1720.1626 9 1724.2505	2476 0012	54 2F	0	0	4.555250	-4.736509	1.495090
Frequencies - 1733.730	o 1754.2595	2470.0012	33	0	0	4.052040	2 741020	1.095649
Frequencies 3082.301	0 3083.4024	3087.5789	30	6	0	0.193889	5.741920	2.91/300
Frequencies 3089.3496	8 3090.3185	3110.0339	37	6	0	3.129845	3.0/0303	5.422580
Frequencies 3151.311	1 3155./250	31/1.8656	38	6	0	3.778425	4.281845	5.281580
Frequencies 3180.371	5 3183.2231	3192.0362	39	6	0	2.11/208	-3.854342	4.064573
Frequencies 3194.539	1 3197.7578	3200.9900	40	6	0	4.344130	-4.289644	4.865995
Frequencies 3204.042	3 3205.3580	3210.3889	41	6	0	3.647695	-5.960872	1.091013
Frequencies 3214.5410	0 3215.4609	3217.8993	42	6	0	5.703016	-4.698857	1.//1036
Frequencies 3218.465	3 3218.9946	3219.3106	43	6	0	5.214569	4.695539	0.492336
Frequencies 3220.221	9 3221.0137	3221.8544	44	1	0	3.771949	3.103/83	0.628136
Frequencies 3223.337	/ 3223.55/6	3224.9943	45	6	0	6.776288	4.861941	2.322086
Frequencies 3227.523	4 3228.2147	3228.7927	46	1	0	6.565534	3.384322	3.8/4/62
Frequencies 3230.082	4 3231.9785	3232.5387	47	6	0	3.920559	6.709110	3.923532
Frequencies 3232.779.	2 3233.0250	3234.3384	48	1	0	2.583312	5.805888	2.491346
Frequencies 3237.520	5 3238.2484	3240.2957	49	6	0	4.55/889	5.318605	5./9148/
Frequencies 3240.689	9 3241.2959	3243.0468	50	1	0	3./14/65	3.333515	5.810313
Frequencies 3243.189	5 3243.3979	3247.2444	51	6	0	1.649227	-4.977854	4./39565
Frequencies 3247.724	6 3249.8742	3255./20/	52	1	0	1.432535	-3.261298	3.458/95
Frequencies 3256.645	5 3258.4149	3647.2515	53	6	0	3.880837	-5.422/98	5.536883
605 D = = = = = = = = = = = = = = = = = =		770 6	54	1	0	5.401185	-4.036027	4.899457
SCF Done: E(RM062X/DGI	JZVP) = -5378.68898	3/26	55	6	0	4.317025	-/.0/9348	2.185059
Sum of electronic and zero	p-point Energies=	-5377.446857	56	1	0	2.581013	-6.005522	1.484999
Sum of electronic and the	rmal Energies=	-5377.343581	57	6	0	6.376020	-5.820100	2.252651
Sum of electronic and the	rmal Free Energies=	-5377.594377	58	1	0	6.240532	-3.768816	1.600416
SCF Done: E(RM062X/DG	TZVP/SMD) = -5379.8	2096920	59	6	0	6.287795	5.342893	1.108775
			60	1	0	4.828202	5.064563	-0.453558
Cat f IO 2			61	1	0	7.604633	5.363564	2.813028
· · · -			62	6	0	4.638782	6.531455	5.106781

15)
3

 0 3.983067 7.649988 3.385377

0 2.533017 -5.770653 5.475446

0 0.596869 -5.242963 4.687259

0 4.576575 -6.038326 6.099071

 0
 5.681279
 -7.010147
 2.470857

 0
 3.771762
 -8.002424
 2.356131

 0
 7.440679
 -5.765102
 2.459158

5.102675 5.179266 6.720410

71	1	0	6.737444	6.216274	0.646645
72	1	0	5.255289	7.336397	5.494913
73	1	0	2.172870	-6.653992	5.993736
74	1	0	6.200862	-7.881576	2.857316
75	1	0	-1.417907	1.395299	-0.489643
76	8	0	-2.822805	1.183231	-1.075247
77	6	0	-2.637603	0.425271	-2.310226
78	6	0	-3.572512	-0.706291	-1.809373
79	1	0	-2.967497	1.004570	-3.173933
80	1	0	-1.593931	0.110418	-2.423285
81	8	0	-2.983797	-1.970041	-1.678348
82	6	0	-3.642329	0.119493	-0.501177
83	6	0	-4.876407	-0.824760	-2.558489
84	1	0	-2.223170	-1.881868	-1.067178
85	1	0	-3.133228	-0.365398	0.336480
86	1	0	-4.628371	0.490803	-0.212595
87	6	0	-5.304144	-2.050957	-3.065980
88	6	0	-5 664550	0 314727	-2 753198
89	6	0	-6 511076	-2 135509	-3 761941
90	1	0	-4 684845	-2 928619	-2 915370
91	6	0	-6 870047	0.228050	-3 444206
92	1	0	-5.339792	1 276937	-2 250128
02	5	0	7 206903	1.000527	2 051500
93	1	0	6 8 2 6 4 0 4	2 002/20	1 150005
94	1	0	7 476101	1 117760	-4.136903 3 E0E330
95	1	0	-7.470101 9.32E062	1.11//00	-2.202222
90	I C	0	-8.235963	-1.070109	-4.492025
97	6	0	1.294788	-2.441901	1.022052
98	6	0	0.332032	-3.450906	-1.822853
99	6	0	1.267602	-1.454952	-2./23591
100	6	0	-0.663029	-3.449477	-2.800831
101	8	0	0.328384	-4.434150	-0.856915
102	6	0	0.261025	-1.425909	-3.682959
103	8	0	2.212467	-0.452983	-2./23105
104	6	0	-0.725610	-2.410488	-3./30592
105	8	0	-1.6115/3	-4.442236	-2./92453
106	6	0	-0.927717	-4.918707	-0.550174
107	8	0	0.198701	-0.359690	-4.551319
108	6	0	1.654639	0.776431	-3.030914
109	6	0	-1.819992	-2.246823	-4.757697
110	6	0	-1.912477	-4.920503	-1.532054
111	6	0	-1.183550	-5.430073	0.712174
112	6	0	0.621429	0.823766	-3.961942
113	6	0	2.103408	1.932467	-2.412785
114	9	0	-1.309099	-2.201509	-6.000312
115	9	0	-2.484501	-1.086414	-4.569130
116	9	0	-2.727421	-3.222253	-4.740523
117	6	0	-3.174634	-5.426073	-1.263754
118	6	0	-2.443908	-5.966692	0.980950
119	1	0	-0.391383	-5.407709	1.455158
120	6	0	0.004941	2.024702	-4.280237
121	6	0	1.502536	3.146577	-2.742631
122	1	0	2.898461	1.856531	-1.678521
123	6	0	-3.434619	-5.961796	-0.001311
124	1	0	-3.925661	-5.403491	-2.046395
125	1	0	-2.649687	-6.388838	1.960012
126	6	0	0.454631	3.193566	-3.663029
127	1	0	-0.810822	2.024992	-4.996460
128	1	0	1.843240	4.059494	-2.265762
129	1	0	-4.415265	-6.374775	0.211192
130	1	0	-0.024690	4.140501	-3.890753
131	6	0	-1.255999	2.506637	2.465825
132	6	0	-2.236243	1.592227	2.839921
133	6	0	-1.646463	3.572343	1.648574
134	6	0	-3.542945	1.665346	2.347146
135	8	0	-1.906760	0.569279	3.698718
136	6	0	-2.950117	3.675484	1.182208

137	8	0	-0.703291	4.498976	1.265746
138	6	0	-3.912935	2.715817	1.505525
139	8	0	-4.424082	0.664436	2.678182
140	6	0	-2.519526	-0.620948	3.346380
141	8	0	-3.312394	4.710307	0.355422
142	6	0	-0.965773	5.122549	0.062759
143	6	0	-5.290266	2.903794	0.915233
144	6	0	-3.809481	-0.571803	2.832002
145	6	0	-1.855794	-1.829647	3.484649
146	6	0	-2.274729	5.220363	-0.401716
147	6	0	0.078980	5.684177	-0.653918
148	9	0	-5.241032	2.933349	-0.431625
149	9	0	-5.832864	4.065370	1.313133
150	9	0	-6.146248	1.932944	1.248563
151	6	0	-4.461516	-1.729246	2.433274
152	6	0	-2.508873	-2.999324	3.098447
153	1	0	-0.843326	-1.830040	3.874354
154	6	0	-2.552593	5.858302	-1.600741
155	6	0	-0.195555	6.350959	-1.849100
156	1	0	1.086202	5.595480	-0.258028
157	6	0	-3.799765	-2.950402	2.570170
158	1	0	-5.458193	-1.655933	2.009496
159	1	0	-1 998808	-3 952755	3 188766
160	6	0	-1 504874	6 432531	-2 323076
161	1	0	-3 582594	5 909331	-1 938192
162	1	0	0.616062	6 805528	-2 408488
163	1	0	-4 286264	-3 862804	2.400400
164	1	0	-1 716678	6 947726	-3 254027
104			1.710070	0.547720	
Frequen	ries	10 59	71 1	6 7936	22 0905
Frequen	ries	23.94	48 1	25 3216	27 1427
Frequen	icies	28.63	161	22 5539	34 6652
Frequen	icies	40.14	137 4	11 6126	43 8277
Erequen		40.14	57 /	19 0653	51 2723
Erequen		51 90	,57 E	56 8259	59 8138
Frequen		61.03	169 6	53 3113	67 13/1
Frequen		68.89	189 6	50 3511	73 6333
Frequen		7/ 89	18 ⁻	78 2776	80 6437
Frequen		8/ 29	255 9	25 1788	86 1571
Frequen		88 05	.so (00.1700 07.1781	96 2555
Frequen		97.87	718 1	00 /169	106 2258
Eroquon		100 5	10 I	122 1/10	125 0067
Frequen		126.5	676	122.1415	131 //09
Eroquon		122.0	001	140 5506	1// 9102
Eroquon		1/07	001	157 1670	164 2800
Eroquon		170.0	752	172 2690	104.2000
Eroquon		102.0	021	102 5242	102.0230
Frequen	icies	2016	174	193.3243	211 2006
Frequen	icies	201.0	410	200.1875	211.3800
Frequen	icies	210.4	41Z -	223.1239	230.0347
Frequen	icies	240.3	000	241.9890	247.2000
Frequen	icies	233.2	420	201.3373	271.3909
Frequen	icies	272.8	420 .	2/0.4104	279.5568
Frequen	icles	286.2	421 4	288.5038	290.7619
Frequen	icles	294.3	827 -	299.0567	302.8022
Frequen		304.9	047 : 400 ·	203.2039	310.3690
Frequen	icies	31/.0	49U :	519'99'99'99'9	324.6691
Frequen	icies	328.4	/ ŏ5 :	529.7098	334.4486
Frequen	icies	33/.6	510	342.2825	347.6485
Frequen	icies	351.9	3/5 3	358.9425	372.0355
Frequen	icies	3//.3	686 4	403.3039	407.1352
Frequen	icies	411.4	53/ 4	412.7912	413.//80
Frequen	icies	416.1	/98 4	416.7538	417.3103
Frequen	icies	418.9	438 4	424.8/22	430.3126
Frequen	icies	431.8	U85 4	435.3158	438.7144
Frequen	icies	444.2	120 4	446.5720	449.2418

Frequencies	450.2458	454.6076	456.9552	Frequencies 1198.0563	1202.5061	1204.4227
Frequencies	466.1186	471.7019	486.8416	Frequencies 1207.3740	1211.3597	1211.5791
Frequencies	492.6905	502.8709	514.2013	Frequencies 1215.3717	1216.1463	1217.3483
Frequencies	515.5056	518.0470	519.8489	Frequencies 1219.0453	1222.4179	1224.5862
Frequencies	521 3235	530 8620	535 1018		1230 3717	1232 7775
Frequencies	537 7663	541 4973	543 4343	Erequencies 1235 5262	1237 0025	1242 0549
Eroquencies	545.0866	555 1722	557 6297	Frequencies 1243 4946	1249 0052	125/ 9709
Frequencies	545.0600	555.1255	557.0567	Frequencies 1243.4940	1246.0032	1234.0790
Frequencies	560.6556	561.8357	562.8939	Frequencies 1258.5542	1266.1581	12/2./511
Frequencies	564.4797	568.4868	572.3080	Frequencies 1280./118	1283.3220	1285.5161
Frequencies	586.0052	589.5149	597.1876	Frequencies 1289.0216	1294.8650	1295.5525
Frequencies	598.7256	599.4675	601.1921	Frequencies 1296.9867	1297.6403	1301.8267
Frequencies	605.0070	606.4701	609.8179	Frequencies 1305.9642	1307.6476	1308.0907
Frequencies	614.6433	615.1721	617.6213	Frequencies 1309.8789	1310.8156	1312.9237
Frequencies	621.0488	624.1597	624.6751	Frequencies 1315.7792	1318.2185	1321.8574
Frequencies	626.6021	629.3821	630.1757	Frequencies 1324.3900	1327.9827	1329.1369
Frequencies	632 1224	633 3127	636 5338	Erequencies 1335 5070	1337 5958	1341 0946
Frequencies	644 8701	651 9887	655 4767	Erequencies 1344 2248	1345 2425	1356 9377
Eroquencies	673 5766	675 4504	679 1725	Eroquencies 1360.6895	1262 1212	1262 0011
Frequencies	073.3700	075.4504	700 1170	Frequencies 1300.0895	1302.1312	1302.9011
Frequencies	082.7238	088.1760	700.1170	Frequencies 1363.9383	1365.3080	1300.1030
Frequencies	/03.86/4	704.7606	/11.6160	Frequencies 1367.8059	1369.5297	1370.1260
Frequencies	/13.1151	/16.1//6	/1/.2969	Frequencies 13/1.9480	13/8.49/5	1384.0495
Frequencies	717.8261	718.9900	720.3542	Frequencies 1389.6147	1392.3669	1405.6908
Frequencies	727.5135	728.0424	730.1075	Frequencies 1448.1094	1456.7764	1457.7559
Frequencies	732.3668	737.6990	741.5686	Frequencies 1467.1069	1470.2545	1490.3047
Frequencies	745.5198	748.5813	749.9285	Frequencies 1494.6264	1497.2476	1499.9226
Frequencies	762.1948	766.3069	770.3125	Frequencies 1502.2110	1502.4541	1505.1042
Frequencies	771.3435	773.0453	773.4303	Frequencies 1506.5074	1510.5067	1510.6253
Frequencies	775 1162	775 8910	779 0943	Erequencies 1511 8403	1512 5619	1515 0292
Frequencies	785 8587	787 3474	795 4283	Frequencies 1519 1554	1526 2816	1527 4770
Frequencies	800 2602	201 2214	202 4205	Frequencies 1519.1334	15/2 0059	1551 9699
Frequencies	800.2092	801.8814	802.4883	Frequencies 1539.1550	1545.9058	1551.0000
Frequencies	804.8178	820.2650	824.9147	Frequencies 1553.3568	1553.9076	1554.3248
Frequencies	826.3371	829.5033	832.5146	Frequencies 1557.5124	1559.1774	1561.2501
Frequencies	852.8370	862.9506	863.3714	Frequencies 1562.9631	1567.3767	1570.1448
Frequencies	866.0128	866.4617	868.3913	Frequencies 1661.6095	1662.4284	1667.6493
Frequencies	869.5008	873.3342	873.9006	Frequencies 1669.4830	1673.0478	1673.6543
Frequencies	876.0492	876.5670	885.5745	Frequencies 1675.2768	1677.6671	1678.4738
Frequencies	887.8112	890.2702	907.5544	Frequencies 1690.2965	1691.0246	1694.4818
Frequencies	917.9117	919.4598	922.4636	Frequencies 1695.7667	1698.6767	1700.4436
Frequencies	923.6202	924.9351	935.4971	Frequencies 1701.6274	1701.7142	1702.2182
Frequencies	936.4972	937,2921	938.1243		1703.3207	1703.8252
Frequencies	940 4919	943 0292	945 1398	Erequencies 1706 1791	1718 9599	1719 7596
Frequencies	946.8300	947 5792	948 8828	Frequencies 1728 1166	1731 9928	2673 2284
Eroquencies	040.0011	057 9026	962 1212	Eroquencies 2082-0040	2099 7664	2079.2204
Frequencies	949.9011	937.8930	902.1515	Frequencies 3083.0040	3066.7004	2126 9226
Frequencies	964.5652	973.7652	987.7140	Frequencies 3094.3248	3112.9653	3120.8320
Frequencies	988.0210	989.3623	992.4532	Frequencies 3152.0592	3159.2564	3183.7734
Frequencies	993.3283	995.2649	996.1513	Frequencies 3184.2605	3195.7094	3198.8130
Frequencies	996.3202	997.4876	997.6734	Frequencies 3201.4671	3201.4829	3205.0839
Frequencies	1002.7760	1005.9709	1007.8820	Frequencies 3205.7402	3208.1166	3208.1910
Frequencies	1008.7366	1009.0583	1011.6615	Frequencies 3213.4967	3214.1469	3214.9412
Frequencies	1014.9790	1019.5069	1019.5873	Frequencies 3215.3557	3216.5644	3216.8817
Frequencies	1019.8033	1020.3156	1020.9458	Frequencies 3219.3467	3219.8140	3221.1890
Frequencies	1025.5655	1027.4600	1031.7479	Frequencies 3223.3095	3224.6333	3225.6112
Frequencies	1033 5631	1037 4487	1044 4224	Frequencies 3225 6926	3226 2064	3226 6100
Frequencies	1051 1354	1055 0484	1056 3606	Erequencies 3227 7287	3230 6069	3232 9637
Frequencies	1057.0908	1058 3847	1060 7921	Erequencies 3235 1132	3235 /159	3235 5151
Frequencies	1057.0908	1058.5847	1000.7921	Frequencies 3235.1132	3235.4155	3233.3131
Frequencies	1064.0248	1067.0742	1008.3830	Frequencies 3235.5254	3233.0232	3235.7711
Frequencies	10/2.6/25	1074.0272	1091.3431	Frequencies 3236.4627	3237.3689	3238.5769
Frequencies	1095.0926	1095.4642	1099.0123	Frequencies 3241.8891	3243.0192	3244.6588
Frequencies	1106.9636	1111.9007	1113.0727	Frequencies 3246.2000	3248.2219	3248.5239
Frequencies	1117.8235	1123.1617	1123.5251	Frequencies 3248.6386	3248.9677	3646.0000
Frequencies	1125.8030	1129.2717	1130.1426			
Frequencies	1131.3343	1160.8091	1164.5212	SCF Done: E(RM062X/DGDZVP) =	-5378.68958	244
Frequencies	1165.7483	1166.4608	1170.8213	Sum of electronic and zero-point E	nergies=	-5377.446451
Frequencies	1171.5385	1172.6802	1173.4620	Sum of electronic and thermal Fro	ergies=	-5377.343614
Frequencies	1174,0240	1176 5719	1177.4785	Sum of electronic and thermal Fre	e Energies=	-5377 591446
Frequencies	1186 5438	1192 8953	1195 5522	SCE Done: E(BM062Y/DGT7\/P/SM	1D) = -2370 93	0132726
ricquencies ==	1100.3430	11200000	1133.3322	301 2011C. E(1101002A/20120F/30		002120

Cat f IOa_R

Center	Atomic	A	tomic	Coordinates	s (Angstroms)
Number	Num	ber	Туре	Х Ү	Z
1	15	0	0.234062	-0.033140	-0.307778
2	8	0	0.121367	-0.090182	1.294472
3	8	0	1.802982	-0.225662	-0.602047
4	8	0	-0.168995	1.269992	-0.897968
5	8	0	-0.528920	-1.300523	-0.745181
6	6	0	0.821813	0 927603	1 944575
7	6	0	2 338951	-1 446816	-0 182740
, 8	6	0	2.330331	0.707406	2 298573
q	6	0	0.203545	2 164607	2 1/9671
10	6	0	2 745746	1 600208	1 1205/15
10	6	0	2.743740	2 517772	1.123343
11	0	0	2.328120	-2.51///3	-1.079028
12	0	0	2.928494	-0.585255	2.241211
13	6	0	2.901927	1.756985	2.826370
14	6	0	0.967902	3.189288	2.702807
15	6	0	-1.226655	2.321895	1./90663
16	6	0	3.076728	-2.878367	1.579728
17	6	0	2.742587	-3.770049	-0.626810
18	6	0	1.871846	-2.256604	-2.465589
19	6	0	2.670569	-1.479231	3.482286
20	6	0	4.375556	-0.035215	2.232608
21	6	0	4.339950	1.284074	3.041333
22	6	0	2.318669	3.017080	3.043307
23	1	0	0.493116	4.148393	2.887784
24	6	0	-1.678043	3.325658	0.933193
25	6	0	-2.159212	1.414044	2.294527
26	6	0	3.174940	-2.897214	3.100351
27	6	0	3.115320	-3.970355	0.707502
28	1	0	2.757250	-4.607700	-1.319250
29	6	0	0.747784	-2.868887	-3.014370
30	6	0	2 533758	-1 306701	-3 240118
31	1	0	3 149276	-1 087434	4 385110
32	1	0	1 591466	-1 518902	3 664422
32	1	0	5 100388	-0.753099	2 628779
3/	1	0	1 659662	0.191963	1 199//9
35	1	0	4.055002	1 058/91	1.100394
25	L L	0	4.492203 E 4109E0	2 241461	2 597521
20	C	0	3.419639	2.241401 4.172000	2.387321
37	0	0	3.050179	4.1/3055	3.623012
20	0	0	-3.012385	3.359941	0.529504
39	8	0	-0.768548	4.248404	0.484953
40	6	0	-3.491188	1.428090	1.885795
41	8	0	-1.726668	0.503923	3.230651
42	I	0	4.211/58	-3.033884	3.429503
43	6	0	2.325431	-4.014768	3.677251
44	6	0	3.513320	-5.314014	1.203773
45	6	0	0.291612	-2.512768	-4.278689
46	8	0	0.046144	-3./95099	-2.2/855/
47	6	0	2.086153	-0.936335	-4.511245
48	8	0	3.662135	-0.733162	-2.707760
49	6	0	5.341262	2.817403	1.315875
50	6	0	6.516071	2.544540	3.395864
51	6	0	2.862980	5.460592	3.098975
52	6	0	3.903039	4.016802	4.720611
53	6	0	-3.921650	2.395414	0.974524
54	8	0	-3.483783	4.317504	-0.318430
55	6	0	-1.202616	5.079180	-0.536421
56	8	0	-4.367486	0.493496	2.377586
57	6	0	-2.460155	-0.661783	3.280544
58	6	0	0.998422	-4.163286	3.251386
59	6	0	2.858151	-4.954333	4.559738
-					

60	6	0	2 618013	-6 387262	1 163902
60	~		1 700 140	5.501202	4.766976
61	6	0	4.780413	-5.501398	1./668/6
62	6	0	0.940127	-1.535708	-5.039610
62	0	0	0 0 1 0 2 2 0	2 106425	4 77000
05	0	0	-0.040550	-3.100423	-4.772203
64	6	0	-1.318361	-3.727823	-2.508137
65	8	0	2,792760	-0.008079	-5.229340
c c	- C	0	2 0 2 0 1 5 2	0 5 2 1 5 4 0	2 107201
00	0	0	3.938132	0.551540	-3.18/291
67	6	0	6.317714	3.706002	0.874931
68	1	0	4 497590	2 576642	0 669985
c0	ć	0	7.500204	2.370012	2.052072
69	6	0	7.506364	3.422159	2.953073
70	1	0	6.590715	2.102697	4.387534
71	6	0	3 535659	6 554291	3 638238
7 1	0	0	3.333033	0.554251	3.050250
72	1	0	2.190980	5.605103	2.255619
73	6	0	4.571730	5.109874	5.265840
74	1	0	4 027949	3 033256	5 165311
7 -	-	0	4.027 <i>5</i> 45	2.055250	5.105511
/5	6	0	-5.314649	2.454554	0.390426
76	6	0	-2.531911	5.089834	-0.949104
77	6	0	0 200603	5 025760	1 121506
	0	0	-0.280085	5.925700	-1.131300
78	6	0	-3.783133	-0.666923	2.847724
79	6	0	-1.890083	-1.808145	3.813010
80	6	0	0 222405	5 242041	2 69/190
80	0	0	0.232403	-3.242041	5.064169
81	1	0	0.576919	-3.457453	2.535262
82	6	0	2.088611	-6.030960	5.004435
0.2	1	0	2 202440	4.900.004	4 990000
83	T	0	5.895440	-4.862984	4.880090
84	6	0	2.976606	-7.621930	1.702475
85	1	0	1 628553	-6 240242	0 737974
00	ć	0	E 144020	6.2.102.12	2 204450
86	6	0	5.144039	-6./38/46	2.294458
87	1	0	5.483648	-4.671895	1.782440
88	6	0	0 357742	-1 226734	-6 400999
00	с С	0	1 772052	2.207201	2,770242
89	6	0	-1.//3053	-3.38/391	-3.779242
90	6	0	-2.213653	-3.968859	-1.477386
91	6	0	3 505975	0 893175	-4 460391
02	с С	0	4.670100	1 410242	2 412240
92	6	0	4.679188	1.410342	-2.412240
93	6	0	7.405651	4.012677	1.694422
94	1	0	6 223885	4 165574	-0 105614
05	4	0	0.225005	2.652465	2.505011
95	Ţ	0	8.350141	3.653465	3.595996
96	6	0	4.398281	6.381650	4.720566
97	1	0	3 386024	7 541277	3 211361
	1	0	5.300024	1.041277	5.211501
98	T	0	5.229491	4.968111	6.118041
99	9	0	-5.931290	3.605751	0.696985
100	9	0	-5 264935	2 370431	-0.953608
100	~	0	5.204555	1.460002	0.555000
101	9	0	-6.106285	1.460093	0.806634
102	6	0	-2.940379	5.913277	-1.986430
103	1	0	0 741104	5 927849	-0 763258
104		0	0.711101	6.757405	2.175061
104	6	0	-0.685698	6.757405	-2.1/5861
105	6	0	-4.548217	-1.820820	2.926897
106	1	0	-0.861362	-1 774278	4 159082
107	- -	0	2 6 6 2 0 5 0	2.004720	2 021070
107	6	0	-2.662950	-2.964720	3.921970
108	6	0	0.775825	-6.182123	4.562888
109	1	0	-0 779026	-5 367078	3 308344
110	1	0	2 5 2 2 7 2 2	C 7C1024	5.500544
110	T	0	2.523792	-6.761824	5.679230
111	6	0	4.237775	-7.799196	2.272895
112	1	0	2 266888	-8 443393	1 685650
110	1	0	C 122111	0.113555	2 722771
115	T	0	0.132111	-0.874094	2./23//1
114	9	0	1.051849	-0.322554	-7.087117
115	9	0	-0 905008	-0 769556	-6 293849
110	0	0	0.204024	2.241420	7 152500
τīρ	Э	U	0.304634	-2.341429	-1.123260
117	6	0	-3.129986	-3.305544	-4.049956
118	1	0	-1 827533	-4 193086	-0 487773
110	-	~	2.027.000	2.004501	1 742524
113	ь	U	-3.381881	-3.894591	-1./43521
120	6	0	3.816244	2.139450	-4.980939
121	1	0	5.001864	1.095332	-1.424076
122	~	~	E 000577	2.000002	2.02000
122	ь	U	5.009577	2.000488	-2.930051
123	1	0	8.167881	4.706169	1.353253
124	1	0	4,924342	7,232739	5,141533
125	1	0	2 00/127	5 007400	2 202007
1/2				1 00 14 1X	-/ /0304/
126	6	0	-2.009966	6.744544	-2.609545
-----------	--------	--------	-----------	-----------	-----------------------
127	1	0	0.042057	7.410080	-2.648001
128	1	0	-5.576694	-1.788510	2.582060
129	6	0	-3.983987	-2.973813	3,474707
130	1	0	-2 228314	-3 851111	4 371452
131	1	0	0 183700	-7 031592	4 889277
132	1	0	4 514455	-8 761099	2 693/97
122	1	0	4.514455	-8.701033	2.093497
133	I	0	-3.449820	-3.034666	-5.051569
134	6	0	-4.03/103	-3.5/0953	-3.022630
135	1	0	-4.2918/9	-4.083452	-0.945036
136	1	0	3.454893	2.397334	-5.971821
137	6	0	4.582184	3.020741	-4.214245
138	1	0	5.593238	3.355393	-2.341494
139	1	0	-2.324652	7.383152	-3.427849
140	1	0	-4.583258	-3.874122	3.560038
141	1	0	-5.102319	-3.517750	-3.222780
142	1	0	4 831305	3 997850	-4 615928
143	1	0	-1 389110	-1 148327	-1 372903
1//	Q I	0	-2 441657	-0 792226	-2 202880
144	6	0	2.441037	0.752220	1 627190
145	C C	0	-3.202113	1.254066	-1.02/109
146	6	0	-2.88/9/6	1.253431	-2.747757
147	1	0	-4.322466	-0.073510	-1.580036
148	1	0	-2.913099	0.543596	-0.63/111
149	8	0	-2.239282	2.407599	-2.298973
150	6	0	-1.978153	0.102633	-3.270713
151	1	0	-1.489237	2.130024	-1.738158
152	1	0	-0.902706	0.287388	-3.195650
153	1	0	-2.228103	-0.311518	-4.249747
154	1	0	3.467341	4.595984	0.619402
155	6	0	3.100058	4.657353	-0.400533
156	6	0	2 304862	3 631945	-0 907653
157	6	0	3 436802	5 771082	-1 182720
150	6	0	1 952001	2 754427	2 220810
150	1	0	1.652091	3.734427	-2.220019
159	I	0	2.029449	2.764599	-0.308779
160	6	0	2.9/106/	5.890006	-2.493759
161	1	0	4.061559	6.552536	-0.760924
162	7	0	1.068011	2.846086	-2.911800
163	6	0	2.168875	4.873169	-3.004940
164	1	0	3.224892	6.755407	-3.098608
165	6	0	0.737422	3.150872	-4.192741
166	1	0	0.696228	2.012056	-2.452202
167	16	0	1.426778	4.733004	-4.584785
168	16	0	-0.127994	2.217996	-5.242330
169	6	0	-3.997116	1.637530	-3.694071
170	6	0	-4 150251	2 960705	-4 104693
171	6	0	-4 866139	0.656705	-4 182251
172	6	0	-5 176963	3 300721	-/ 985925
172	1	0	2 455522	3 708064	2 725144
174	L C	0	-3.433322	0.007572	-3.733144 F 0C1F1C
174	0	0	-5.890307	0.997573	-5.001510
175	1	0	-4.740702	-0.382668	-3.8//184
176	6	0	-6.050451	2.324842	-5.462841
177	1	0	-5.291511	4.332308	-5.305483
178	1	0	-6.562842	0.231058	-5.434338
179	1	0	-6.849225	2.593588	-6.147250
Frequence	cies	11.460)3 1	4.1677	20.7109
Frequen	cies	22.22	28 2	23.7521	26.4235
Frequen	cies	29.68	28 3	32.3005	33.3021
Frequen	cies	33.99	32 3	34.4809	38.7470
Frequen	cies	40.45	25 4	1.4294	43.9544
Frequen	cies	45.62	89 4	18.8468	53.6625
Frequen	cies	55.35	74 5	56.7206	58.0755
Frequen	cies	61.03	98 F	51.7049	65.0268
Frequen	cies	66 85	68 F	58.1225	73.6565
Frequen	cies	75.51	59 7	77,4056	78.5194
			. /		

Frequencies	82.7116	84.0719	88.1624
Frequencies	91.1401	93.6033	98.2724
Frequencies	103.5222	104.4990	106.2233
Frequencies	109.0384	111.9642	116.7571
Frequencies	118.9373	124.9710	126.1757
Frequencies	127.0431	129.4082	131.1878
Frequencies	137.7968	144.2597	144.7308
Frequencies	147.3497	151.9952	154.8852
Frequencies	166.0615	172.7669	177.2434
Frequencies	181.8517	188.2311	192.7668
Frequencies	195.9698	201.5120	207.6472
Frequencies	213.5600	222.5552	224.5380
Frequencies	230.9186	233.2361	237.6871
Frequencies	244.5970	246.0123	248.5664
Frequencies	251.3776	264.0551	269.0864
Frequencies	2/1.6450	2/3.6263	278.0599
Frequencies	281.1321	286.3964	289.9845
Frequencies	295.7989	297.8423	298.8428
Frequencies	200 1151	304.0234 313 E313	3U3.7331 316 EE33
Frequencies	210 ////0	212.3313	310.3332
Frequencies	313.4440	333 /008	335 8664
Frequencies	338 1709	344 8225	359 4046
Frequencies	368 5948	379 3210	386 0761
Frequencies	402 6220	404 5269	408 3785
Frequencies	409 6839	410 8549	414 5196
Frequencies	415 0078	419 3148	420 5509
Frequencies	420.9095	426,1002	428.1752
 Frequencies	432.9159	440.6678	441.2476
Frequencies	444.5407	446.0611	449.6416
Frequencies	451.4791	455.4276	459.5471
Frequencies	467.8086	470.3936	474.7155
Frequencies	485.8163	489.4662	502.2173
Frequencies	506.2026	507.5398	511.9564
Frequencies	516.6863	520.2577	521.1532
Frequencies	524.0535	529.6250	531.5686
Frequencies	535.6321	540.2032	540.6454
Frequencies	547.0885	550.8613	555.0038
Frequencies	556.3865	558.6393	559.2022
Frequencies	561.0123	564.6384	569.2978
Frequencies	571.0098	583.5942	584.3958
Frequencies	588.4576	593.4685	597.2447
Frequencies	599.//6/	602.7477	603.2534
Frequencies	604.5318	604.7982	611.3075
Frequencies	612.7363	619.0510	621.1051
Frequencies	622.3730	625.4138	626.8697
Frequencies	629.7922	630.4840	631.0660
Frequencies	633.3393	035.4349 CEC 1011	645.6690
Frequencies	049.3000	672 4602	675 2699
Frequencies	681 3122	683 3972	701 3/03
Frequencies	704 5649	708 0145	711 5718
Frequencies	717 5217	717 8107	719 6407
Frequencies	719 7782	721 1895	721 2464
Frequencies	722 1151	723 9332	727 1912
Frequencies	727.9068	732.5318	733.4289
Frequencies	737.6718	740.1279	741.7542
Frequencies	744.0829	747.4161	752.6918
Frequencies	760.8397	762.6652	771.0243
Frequencies	771.1670	772.8805	773.1655
Frequencies	775.1029	776.3607	779.9493
Frequencies	783.4416	783.5460	784.9913
Frequencies	791.1160	796.1403	802.0103
Frequencies	804.9743	805.8985	819.6422
Frequencies	820.5358	825.2619	827.8208
Frequencies	829.8068	866.7256	867.2710

Frequencies	868.4121	868.8866	870.3532
Frequencies	872.5442	874.8434	875.6665
Frequencies	879.1985	880.8223	883.6605
Frequencies	886.6776	887.3568	889.4925
Frequencies	890.0080	891.0597	909.7850
Frequencies	913.4587	914.0498	920.5922
Frequencies	922.1122	925.8503	930.4163
Frequencies	936.6271	939.0516	939.8496
Frequencies	941.4966	942.1276	945.9833
Frequencies	947.2016	948.7446	951.7383
Frequencies	954.2371	954.5643	955.1893
Frequencies	960.5977	964.4194	970.1424
Frequencies	980.2166	988.3822	989.8655
Frequencies	992.5236	993.5626	994.8009
Frequencies	997.6630	1002.5432	1002.7409
Frequencies	1005.2151	1006.5050	1009.8475
Frequencies	1012.0562	1013.2890	1016.9793
Frequencies	1018.1020	1018.4889	1018.9815
Frequencies	1019.0997	1019.6186	1020.6795
Frequencies	1022.5698	1027.7103	1029.7070
Frequencies	1034.0384	1036.3204	1040.3212
Frequencies	1044.4818	1051.0312	1051.9384
Frequencies	1055.9414	1058.2317	1059.3494
Frequencies	1060.1606	1066.3177	1068.3403
Frequencies	1069.5418	1070.8512	1071.6771
Frequencies	1072.4549	1073.8876	1080.9508
Frequencies	1085.9293	1094.4352	1100.3799
Frequencies	1109.1974	1112.7222	1114.1949
Frequencies	1114.8558	1117.5417	1120.4188
Frequencies	1124.2452	1125.4542	1127.2888
Frequencies	1129.7048	1132.6477	1157.3180
Frequencies	1162.1010	1163.7626	1167.3439
Frequencies	1168.3135	1169.9112	1171.4693
Frequencies	1171.8230	1173.2772	1174.4150
Frequencies	1175.6271	1175.7757	1177.3329
Frequencies	1178.4105	1182.3058	1189.8388
Frequencies	1198.0656	1201.5684	1204.8002
Frequencies	1207.0280	1207.3469	1208.5467
Frequencies	1208.8254	1209.8404	1210.6681
Frequencies	1213.0768	1221.6218	1223.4953
Frequencies	1225.5658	1227.5171	1229.8426
Frequencies	1230.9504	1233.3285	1236.3619
Frequencies	1240.9963	1245.2848	1251.3323
Frequencies	1257.1050	1257.5487	1262.8796
Frequencies	1268.3852	1278.2172	1279.1906
Frequencies	1282.5382	1285.1628	1287.9242
Frequencies	1294.1624	1294.5768	1297.6934
Frequencies	1298.1432	1300.5568	1302.6414
Frequencies	1302.7764	1304.6607	1306.3054
Frequencies	1309.3473	1309.7561	1311.0599
Frequencies	1314.9231	1323.4390	1324.7010
Frequencies	1326.8099	1329.4769	1331.1501
Frequencies	1332.4589	1334.2332	1339.1964
Frequencies	1340.4705	1344.3054	1344.8310
Frequencies	1356.5643	1358.7676	1360.5133
Frequencies	1361.0699	1362.5333	1363.4408
Frequencies	1365.5921	1366.2886	1366.7406
Frequencies	1371.1873	1371.9410	1374.9923
Frequencies	1378.0677	1381.0631	1381.3719
Frequencies	1393.7755	1408.2744	1446.1556
Frequencies	1457.9505	1461.6298	1464.6102
Frequencies	1470.3236	1471.2682	1491.9135
Frequencies	1495.3799	1496.2912	1496.7535
Frequencies	1498.8024	1499.8752	1503.4661
Frequencies	1504.3698	1504.7190	1506.6935
Frequencies	1509.9027	1510.9447	1517.1492

Frequencies	1517.9036	1520.3499	1522.2939
Frequencies	1526.4357	1532.7563	1536.9366
Frequencies	1543.3113	1545.7890	1552.1682
Frequencies	1554.6662	1555.9413	1558.1653
Frequencies	1559.0862	1559.7328	1566.3863
Frequencies	1571.6980	1576.2811	1652.8574
Frequencies	1665.3326	1667.5184	1667.6066
Frequencies	1668.0533	1671.8385	1674.1204
Frequencies	1674.8919	1677.1553	1679.5854
Frequencies	1682.4064	1688.8080	1690.5533
Frequencies	1696.2440	1696.5661	1698.9018
Frequencies	1699.2985	1699.9540	1700.6972
Frequencies	1702.5687	1702.6609	1703.1622
Frequencies	1705.4110	1708.8866	1721.6180
Frequencies	1722.5862	1732.1861	1734.9530
Frequencies	2026.7079	3068.3208	3082.2497
Frequencies	3085.2355	3090.4511	3104.3729
Frequencies	3130.0328	3146.5841	3156.5508
Frequencies	3166.7806	3189.4020	3191.9924
Frequencies	3195.8879	3198.7252	3199.5415
Frequencies	3200.3250	3200.8348	3209.0071
Frequencies	3210.6866	3211.6614	3212.1418
Frequencies	3213.7189	3213.8306	3216.2597
Frequencies	3217.5682	3217.9775	3219.0441
Frequencies	3221.0845	3221.8871	3222.0312
Frequencies	3222.9721	3223.8740	3225.8298
Frequencies	3227.1110	3228.9319	3230.0541
Frequencies	3231.7538	3232.6443	3232.7910
Frequencies	3233.0613	3234.1365	3234.5693
Frequencies	3236.7832	3236.8359	3237.5133
Frequencies	3238.4133	3241.0637	3241.5955
Frequencies	3241.5996	3241.6125	3243.4495
Frequencies	3243.4967	3243.8529	3244.6170
Frequencies	3245.7849	3248.7428	3250.2793
Frequencies	3250.3553	3479.2680	3686.7433

SCF Done: E(RM062X/DGDZVP) = -6499.39950806 Sum of electronic and zero-point Energies= -6498.049855 Sum of electronic and thermal Energies= -6497.935546

Sum of electronic and thermal Free Energies= -6498.208075 SCF Done: E(RM062X/DGTZVP/SMD) = -6500.68639466

Cat f TS1a_R

Center	Atomic	C A	tomic	Coordinates	s (Angstroms)
Number	Num	ber	Туре	X Y	Z
1	15	0	-0.026717	0.008552	0.003297
2	8	0	-0.013331	0.020778	1.626204
3	8	0	1.568125	0.011530	-0.349501
4	8	0	-0.498933	1.330399	-0.539897
5	8	0	-0.702605	-1.257077	-0.421269
6	6	0	0.721910	1.043110	2.212010
7	6	0	2.215095	-1.177756	-0.043589
8	6	0	2.050483	0.803841	2.530196
9	6	0	0.146163	2.305682	2.408317
10	6	0	2.654482	-1.421238	1.246049
11	6	0	2.258494	-2.175438	-1.017977
12	6	0	2.825874	-0.491472	2.429026
13	6	0	2.836706	1.840391	3.034825
14	6	0	0.945981	3.324290	2.933319
15	6	0	-1.274869	2.505047	2.037166
16	6	0	3.029309	-2.716092	1.599331
17	6	0	2.733995	-3.440706	-0.669838
18	6	0	1.742432	-1.861258	-2.370397

19	6	0	2.555084	-1.472193	3.596165	85	1	0	1.687708	-6.036559	0.483611
20	6	0	4.290108	0.026599	2.465947	86	6	0	5.200876	-6.563720	2.035689
21	6	0	4.276033	1.374737	3.226788	87	1	0	5.488854	-4.454782	1.690425
22	6	0	2.289124	3.110013	3.262101	88	6	0	0.187363	-1.047982	-6.334322
23	1	0	0.507355	4.303952	3.102939	89	6	0	-1.725344	-3.430866	-3.724098
24	6	0	-1.685917	3.511179	1.160306	90	6	0	-2.112668	-4.064492	-1.426734
25	6	0	-2.238167	1.605012	2.489767	91	6	0	3.406418	1.204411	-4.551067
26	6	0	3.104290	-2.845566	3.117706	92	6	0	4.904997	1.627895	-2.709435
27	6	0	3.109989	-3.735036	0.645395	93	6	0	7.220585	4.147436	1.689523
28	1	0	2.779378	-4.221201	-1.425174	94	1	0	6.239758	3.850466	-0.212234
29	6	0	0.697696	-2.592926	-2.927248	95	1	0	7.966397	4.233945	3.709146
30	6	0	2.264916	-0.797486	-3.109870	96	6	0	4.656193	6.230147	5.017093
31	1	0	3.008000	-1.138024	4.534996	97	1	0	4.272222	7.329184	3.204353
32	1	0	1.473580	-1.549663	3.748095	98	1	0	4.832901	4.911177	6.712214
33	1	0	4.973903	-0.700027	2.915184	99	9	0	-5.909787	3.780971	0.639737
34	1	0	4.626190	0.196345	1.439167	100	9	0	-5.161832	2.507184	-0.943990
35	1	0	4.462272	1.205820	4.294734	101	9	0	-6.099788	1.639496	0.788455
36	6	0	5.321308	2.339566	2.702507	102	6	0	-2.735262	5.804159	-2.060393
37	6	0	3.093970	4.204088	3.868927	103	1	0	0.929244	5.711379	-0.781432
38	6	0	-2.996755	3.550620	0.693405	104	6	0	-0.413806	6.411459	-2.337235
39	8	0	-0.757416	4.427186	0.724995	105	6	0	-4.517882	-1.739672	2,705085
40	6	0	-3 539473	1 600934	1 986848	106	1	0	-0.931733	-1 634074	4 210407
41	8	0	-1 877686	0.688713	3 450913	107	6	0	-2 643005	-2 883238	3 723487
42	1	0	4 137923	-2 980054	3 457361	108	6	0	0 787560	-6 301804	4 286556
43	6	0	2 278882	-4 026712	3 592465	100	1	0	-0 786709	-5 427639	3 099568
43	6	0	3 5/3039	-4.020712	1 038691	110	1	0	2 5/8258	-6.925038	5 359892
44	6	0	0.214033	-2 201007	-1 193767	111	6	0	1 32/153	-0.525058	1 9212/6
45	8	0	0.114093	-2.201007	-4.155707	112	1	0	2 375791	-7.043003	1.521240
40	6	0	1 702120	-3.000700	4 200292	112	1	0	£ 107£17	6 706162	2 466146
47	0	0	2 272715	0.080455	2 515/25	114	1	0	0.187017	0.022500	7.002656
40	6	0	5 2 2 6 2 1 4	2 688304	1 249022	114	9	0	1 1/5150	0.0333333	6 205626
4 <i>5</i>	6	0	C 207707	2.000334	2 520119	115	9	0	0.275245	-0.833803 0.1ECE00	7 072646
50 E1	6	0	0.207707	2.039373 E 101E77	3.339110 3.10EC03	117	9	0	2 076452	2 5 2 2 5 2 5 0 1	-7.075040
51	6	0	2.511139	1 0/1010	5.165062	110	1	0	-5.070455	1 210071	-4.013421
52	6	0	2 02/056	4.041010	1 050252	110	L C	0	-1./10/04	-4.2190/1	1 712705
55	0	0	-3.924930	2.370324 4 E 2100E	0.166747	120	6	0	-3.47431Z	-4.100409	-1./12/93
54	0 6	0	-3.411912	4.331063 E 0070E0	-0.100747	120	1	0	4.053103 E 222200	2.10/331 1 27701E	1 701506
55	0	0	-1.08/143	0.00/900	-0.447875	121	1	0	5.225580	1.5//815	-1./01380
50	8	0	-4.418404	0.632843	2.405706	122	1	0	5.523416	2.631119	-3.452855
5/	6	0	-2.533369	-0.519621	3.341610	123	1	0	7.951209	4.849968	1.300648
58	6	0	0.958216	-4.1/52/3	3.146026	124	1	0	5.266956	7.011968	5.45//95
59	6	0	2.833714	-5.020964	4.397796	125		0	-3.775334	5.819367	-2.3/0/53
60	6	0	2.677602	-6.191/59	0.906036	126	6	0	-1./32320	6.442394	-2./8936/
61	6	0	4.809174	-5.299129	1.600624	127	1	0	0.3/13/8	6.913000	-2.894606
62	6	0	0.752999	-1.242970	-4.944649	128	1	0	-5.51/384	-1.725340	2.282490
63	8	0	-0.832454	-3.023/4/	-4.705035	129	6	0	-3.926240	-2.912623	3.1/6958
64	6	0	-1.244795	-3./089//	-2.44/4/4	130	1	0	-2.18//38	-3./90508	4.106455
65	8	0	2.332532	0.545145	-5.114614	131	1	0	0.21/12/	-7.190095	4.540084
66	6	0	3.852389	0.913010	-3.266917	132	1	0	4.622638	-8.626783	2.270194
6/	6	0	6.264106	3.585383	0.842495	133	1	0	-3.41/566	-3.308360	-5.019245
68	1	0	4.576038	2.263/15	0.681945	134	6	0	-3.952059	-3.923700	-2.998460
69	6	0	7.230025	3./99/65	3.039720	135	1	0	-4.162691	-4.461812	-0.922833
70	1	0	6.294954	2.643312	4.595823	136	1	0	3.668173	2.3/9604	-6.30/685
71	6	0	4.096562	6.408153	3.751679	137	6	0	5.093664	2.906131	-4.752023
/2	1	0	2.865653	5.54//35	2.203898	138	1	0	6.344550	3.190962	-3.01/296
/3	6	0	4.416494	5.048233	5./18686	139	1	0	-1.984812	6.965399	-3./05556
/4	1	0	3.452879	3.120788	5.693057	140	1	0	-4.4/4453	-3.84/3/1	3.123065
/5	6	0	-5.281232	2.621372	0.394421	141	1	0	-5.011758	-4.014965	-3.212575
/6	6	0	-2.405264	5.132723	-0.893473	142	1	0	5.581200	3.6/8192	-5.337983
//	6	0	-0.088388	5./36613	-1.159970	143	1	0	-1.949055	-1.232294	-1.409053
78	6	0	-3.817548	-0.547503	2.807371	144	8	0	-2.649407	-0.951295	-2.086062
79	6	0	-1.933354	-1.683947	3.794745	145	6	0	-3.382280	0.190177	-1.572328
80	6	0	0.221587	-5.306995	3.485825	146	6	0	-2.921536	1.214986	-2.627636
81	1	0	0.519038	-3.423813	2.488532	147	1	0	-4.449817	-0.031171	-1.559574
82	6	0	2.094245	-6.152679	4.746412	148	1	0	-3.029008	0.452072	-0.569900
83	1	0	3.864637	-4.926675	4.731183	149	8	0	-2.412076	2.396933	-2.090939
84	6	0	3.064092	-7.454891	1.351696	150	6	0	-1.851117	0.250806	-3.227665

	1	0	-1 807573	2 148033	-1 360271
151	1	0	0.0007373	0.160930	2 001042
152	1	0	-0.833708	0.100829	4 12000
153	1	0	-2.045422	-0.310856	-4.136008
154	1	0	3.581823	4.334/12	0.395963
155	6	0	3.186971	4.280119	-0.613396
156	6	0	2.244748	3.303830	-0.923331
157	6	0	3.626276	5.203292	-1.573777
158	6	0	1 735615	3 297790	-2 222386
159	1	0	1 885564	2 590519	_0 183774
160	6	0	2 110542	E 102E7E	2 971616
100	0	0	5.116545	5.162575	-2.871010
161	1	0	4.365951	5.949632	-1.300094
162	7	0	0.741688	2.456689	-2.712092
163	6	0	2.156590	4.223840	-3.183506
164	1	0	3.452618	5.900214	-3.614660
165	6	0	0.314489	2.699743	-3.966007
166	1	0	0 231224	1 854836	-2 044353
100	10	0	1 240070	1.034030	4 6 6 2 5 6 4
167	10	0	1.246878	4.011040	-4.003504
168	16	0	-0.905594	1.928025	-4.809847
169	6	0	-3.979764	1.537684	-3.660951
170	6	0	-4.232145	2.857529	-4.027987
171	6	0	-4.697578	0.499334	-4.262252
172	6	0	-5 204063	3 137644	-4 987868
173	1	0	-3 656794	3 648655	-3 558/66
174	C I	0	-5.050754	0.780040	-3.330400 F 334193
174	0	0	-5.004739	0.780949	-5.224182
1/5	1	0	-4.502544	-0.535773	-3.978917
176	6	0	-5.921536	2.103565	-5.587574
177	1	0	-5.399082	4.167527	-5.271644
178	1	0	-6.217532	-0.029526	-5.689143
179	1	0	-6 676369	2 324386	-6 335978
F		E 4 2 0	150	0.0500	15.0004
Frequenc	.ies	-545.8	100	10.0599	15.9684
Frequen	cies	18.23	324 2	0.3338	24.5509
Frequen	cies	26.22	233 2	8.4622	31.3556
Frequen	cies	34.32	215 3	5.9874	37.7787
Eroquon					
riequen	cies	39.94	412 4	0.5073	41.4971
Frequen	cies cies	39.94 43.74	412 4 143 4	0.5073	41.4971 47.2644
Frequen	cies cies cies	39.94 43.74 50.27	412 4 143 4 729 5	0.5073 5.5274 52 3670	41.4971 47.2644 58 5803
Frequen	cies cies cies	39.94 43.74 50.27	412 4 443 4 729 5	0.5073 5.5274 52.3670	41.4971 47.2644 58.5803 64.5206
Frequen Frequen Frequen	cies cies cies cies	39.94 43.74 50.27 59.81	412 4 443 4 729 5 156 6	0.5073 5.5274 52.3670 53.2984	41.4971 47.2644 58.5803 64.5206
Frequen Frequen Frequen Frequen	cies cies cies cies cies	39.94 43.74 50.27 59.81 66.45	412 4 443 4 729 5 156 6 591 6	0.5073 5.5274 62.3670 63.2984 68.6765	41.4971 47.2644 58.5803 64.5206 74.7620
Frequen Frequen Frequen Frequen Frequen	cies cies cies cies cies cies	39.94 43.74 50.27 59.81 66.45 75.08	412 4 443 4 729 5 156 6 591 6 399 7	0.5073 5.5274 62.3670 63.2984 68.6765 78.9614	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879
Frequen Frequen Frequen Frequen Frequen Frequen	cies cies cies cies cies cies cies	39.94 43.74 50.27 59.81 66.45 75.08 83.98	412 4 443 4 729 5 156 6 591 6 399 7 304 8	0.5073 5.5274 52.3670 53.2984 58.6765 78.9614 55.6960	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872
Frequen Frequen Frequen Frequen Frequen Frequen Frequen	cies cies cies cies cies cies cies cies	39.94 43.74 50.27 59.81 66.45 75.08 83.98 92.48	112 4 143 4 729 5 156 6 591 6 399 7 304 8 377 9	0.5073 5.5274 5.3670 5.2984 5.69614 5.6960 5.4292	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668
Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen	cies cies cies cies cies cies cies cies cies	39.94 43.74 50.27 59.81 66.45 75.08 83.98 92.48 98.25	112 4 143 4 729 5 156 6 591 6 399 7 304 8 377 5 597 1	0.5073 5.5274 52.3670 53.2984 58.6765 78.9614 55.6960 93.4292 01.7933	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896
Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen	cies cies cies cies cies cies cies cies cies cies	39.94 43.74 50.27 59.81 66.45 75.08 83.98 92.48 98.25 109.3	112 4 143 4 729 5 156 6 591 6 309 7 304 8 877 9 697 1 033 1	0.5073 5.5274 2.3670 3.2984 8.6765 8.9614 5.6960 13.4292 01.7933 12.1100	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695
Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen	cies cies cies cies cies cies cies cies cies	39.94 43.74 50.27 59.81 66.45 75.08 83.98 92.48 98.25 109.3 119.0	112 4 143 4 729 5 156 6 591 6 389 7 304 8 3877 9 597 1 033 1 002 1	0.5073 15.5274 15.3670 13.2984 18.6765 18.9614 15.6960 13.4292 01.7933 12.1100 19.6186	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850
Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen	cies cies cies cies cies cies cies cies cies cies	39.94 43.74 50.27 59.81 66.45 75.08 83.98 92.48 98.25 109.3 119.0	112 4 143 4 729 5 156 6 591 6 389 7 3804 8 3877 9 597 1 0033 1 0002 11	0.5073 5.5274 52.3670 53.2984 58.6765 78.9614 55.6960 01.7933 12.1100 19.6186 31.5961	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850
Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen	cies cies cies cies cies cies cies cies cies cies	39.94 43.74 50.27 59.81 66.45 75.08 83.98 92.48 98.25 109.3 119.0 127.0	112 4 143 4 729 5 156 6 591 6 804 8 877 9 597 1 0033 1 0012 1 014 11	0.5073 5.5274 2.3670 3.2984 8.6765 8.9614 5.6960 01.7933 .12.1100 .19.6186 .31.5961 .20.8112	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501
Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen	cies cies cies cies cies cies cies cies cies cies cies	39.94 43.74 50.27 59.81 66.45 75.08 83.98 92.48 98.25 109.3 119.0 127.0 126.7	112 4 143 4 729 5 156 6 591 6 304 8 377 9 597 1 0033 1 0002 1 014 1 112 1	0.5073 5.5274 2.3670 3.2984 8.6765 8.9614 5.6960 03.4292 01.7933 12.1100 .19.6186 .31.5961 .39.8112 5.5561	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820
Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen	cies cies cies cies cies cies cies cies cies cies cies cies cies	39.94 43.74 50.27 59.81 66.45 75.08 83.98 92.48 98.25 109.3 119.0 127.0 136.7 150.8	112 4 143 4 729 5 156 6 591 6 399 7 304 8 8777 9 597 1 0033 1 0002 1 014 1 112 1 336 1	0.5073 5.5274 5.23670 3.2984 8.6765 8.9614 5.6960 3.4292 01.7933 12.1100 19.6186 31.5961 39.8112 55.5844	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330
Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen	cies cies cies cies cies cies cies cies cies cies cies cies cies cies cies	39.94 43.74 50.27 59.81 66.45 75.08 83.98 92.48 98.25 109.3 119.0 127.0 136.7 150.8 167.4	112 4 143 4 729 5 156 6 391 6 399 7 304 8 8377 9 997 1 0033 1 0002 1 014 1 112 1 336 1 185 1	0.5073 5.5274 5.5274 5.3670 5.2984 8.6765 78.9614 5.56960 13.4292 01.7933 12.1100 19.6186 31.5961 39.8112 55.5844 .70.9407	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330 174.9303
Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen	cies cies cies cies cies cies cies cies cies cies cies cies cies cies cies cies cies	39.94 43.74 50.27 59.81 66.45 75.08 83.98 92.48 98.25 109.3 119.0 127.0 136.7 150.8 167.4 187.5	112 4 143 4 729 5 156 6 591 6 389 7 304 8 877 9 597 1 0033 1 014 1 112 1 336 1 185 1 222 1	0.5073 5.5274 5.3670 3.2984 8.6765 8.9614 5.6960 13.4292 01.7933 12.1100 .19.6186 31.5961 39.8112 55.5844 .70.9407 .88.9673	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330 174.9303 192.9908
Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen	cies cies	39.94 43.74 50.27 59.81 66.45 75.08 83.98 92.48 98.25 109.3 119.0 127.0 136.7 150.8 167.4 187.5 195.7	112 4 143 4 729 5 156 6 591 6 389 7 304 8 877 9 597 1 0033 1 0014 1 112 1 336 1 185 1 222 1 078 2	0.5073 5.5274 5.3274 5.32984 5.32984 5.6960 13.4292 01.7933 12.1100 1.9.6186 31.5961 39.8112 55.5844 70.9407 88.9673 203.9153	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330 174.9303 192.9908 209.8729
Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen	cies cies cies cies cies cies cies cies cies cies cies cies cies cies cies cies cies cies	39.94 43.74 50.27 59.81 66.45 75.08 83.98 92.48 98.25 109.3 119.0 127.0 136.7 150.8 167.4 187.5 195.7 216.5	112 4 143 4 729 5 156 6 591 6 389 7 304 8 377 9 597 1 0033 1 0014 1 112 1 336 1 222 1 078 2 480 2	0.5073 5.5274 52.3670 33.2984 58.6765 78.9614 55.6960 13.4292 01.7933 12.1100 19.6186 31.5961 39.8112 55.5844 70.9407 88.9673 103.9153 118.8343	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330 174.9303 192.9908 209.8729 226.1028
Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen	cies cies cies cies cies cies cies cies cies cies cies cies cies cies cies cies cies cies	39.94 43.74 50.27 59.81 66.45 75.08 83.98 92.48 98.25 109.3 119.0 127.0 136.7 150.8 167.4 187.5 195.7 216.5 227.9	112 4 143 4 729 5 156 6 591 6 399 7 304 8 8777 9 597 10 003 1 002 1 014 1 112 1 336 1 185 1 0078 2 480 2	0.5073 5.5274 52.3670 53.2984 58.6765 78.9614 55.6960 01.7933 12.1100 19.6186 31.5961 39.8112 55.5844 70.9407 88.9673 203.9153 218.8343 229.6503	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330 174.9303 192.9908 209.8729 226.1028 232.1187
Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen	cies cies	39.94 43.74 50.27 59.81 66.45 75.08 83.98 92.48 98.25 109.3 119.0 127.0 136.7 150.8 167.4 187.5 195.7 216.5 227.9	112 4 143 4 729 5 156 6 591 6 399 7 777 9 597 1 002 1 014 1 112 1 336 1 185 1 222 1 078 2 480 2 613 2	0.5073 5.5274 5.5274 5.5274 5.32984 8.6765 8.9614 5.56960 3.4292 01.7933 12.1100 19.6186 31.5961 39.8112 55.5844 70.9407 88.9673 10.39153 118.8343 129.6503 144.4502	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330 174.9303 192.9908 209.8729 226.1028 232.1187
Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen	cies cies	39,94 43,72 50,27 59,81 66,45 75,08 83,98 92,48 98,25 109,3 119,0 127,0 136,7 150,8 167,4 187,5 195,7 216,5 227,9 232,7	112 4 143 4 729 5 156 6 399 7 304 8 377 9 997 1 0033 1 0014 1 112 1 336 1 185 1 222 1 0078 2 480 2 613 2 2016 2	0.5073 5.5274 5.5274 5.5274 5.32984 8.6705 8.9614 5.56960 1.9233 1.2.1100 1.9.6186 3.1.5961 3.9.8112 5.5.5844 .70.9407 88.9673 10.3.9153 118.8343 129.6503 44.4593 14.4593 15.5274 15.5284 16.5274 17.5274	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330 174.9303 192.9908 209.8729 226.1028 232.1187 249.3967
Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen Frequen	cies cies	39,94 43,72 50,27 59,81 66,45 75,08 83,98 92,48 92,48 92,48 109,33 119,00 127,00 136,7 150,8 167,4 187,5 195,7 216,5 227,9 232,7 252,6	112 4 143 4 729 5 156 6 391 6 399 7 304 8 377 9 997 10 0033 1 0014 1 112 1 336 1 185 1 222 1 0078 2 480 2 613 2 9916 2	0.5073 15.5274 15.5274 15.5274 15.5274 15.5274 15.5274 15.52960 15.56960 13.4292 0.17933 12.1100 19.6186 11.5961 19.8112 15.5844 70.9407 88.9673 10.39153 118.8343 129.6503 144.4593 161.2427	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330 174.9303 192.9908 209.8729 226.1028 232.1187 249.3967 269.7950
Frequen Frequen	cies cies	39,94 43,72 50,27 59,81 66,45 75,08 92,48 98,25 109,3 119,00 127,00 136,7 150,8 167,4 187,5 195,7 216,5 227,9 232,7 252,6 271,6	112 4 143 4 729 5 156 6 591 6 389 7 304 8 877 9 597 1 0033 1 002 1 014 1 112 1 336 1 185 1 222 1 0078 2 480 2 613 2 916 2 604 2	0.5073 15.5274 15.5274 15.574 15.32984 18.6765 18.9614 15.6960 13.4292 17.1100 19.6186 31.5961 39.8112 19.6186 31.5961 39.8112 155.5844 70.9407 18.8343 19.6503 18.8343 19.6503 14.4593 16.2427 174.1688	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330 174.9303 192.9908 209.8729 226.1028 232.1187 249.3967 269.7950 275.2418
Frequen Frequen	cies cies	39,94 43,74 50,27 59,81 66,45 75,08 92,48 98,25 109,3 119,0 127,00 136,7 150,8 167,4 187,5 195,7 216,5 227,9 232,7 252,6 271,6 271,6	112 4 143 4 729 5 156 6 591 6 389 7 304 8 877 9 597 1 0033 1 0014 1 112 1 1336 1 185 1 222 1 078 2 613 2 916 2 295 2	0.5073 5.5274 2.3670 3.2984 8.6765 8.9614 5.6960 13.4292 01.7933 12.1100 19.6186 31.5961 39.8112 55.5844 70.9407 88.9673 20.39153 18.8343 29.6503 24.4593 261.2427 74.1688 284.6152	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330 174.9303 192.9908 209.8729 226.1028 232.1187 249.3967 269.7950 275.2418 289.4405
Frequen Frequen	cies cies	39.94 43.74 50.27 59.81 66.45 75.08 83.98 92.48 98.25 109.3 119.0 127.0 136.7 150.8 167.4 187.5 195.7 216.5 227.9 232.7 252.6 271.6 278.2 291.9	112 4 143 4 729 5 156 6 591 6 399 7 304 8 8777 9 597 10 0033 1 0002 1 014 1 112 1 336 1 185 1 222 1 0078 2 892 2 916 2 295 2 502 2	0.5073 5.5274 5.5274 5.5274 5.5274 5.23670 5.2984 5.6960 13.4292 01.7933 12.1100 19.6186 31.5961 39.8112 55.5844 70.9407 88.9673 03.9153 18.8343 29.6503 24.4593 24.4593 24.4593 24.4593 24.152 29.4395	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330 174.9303 192.9908 209.8729 226.1028 232.1187 249.3967 269.7950 275.2418 289.4405 296.8329
Frequen Frequen	cies cies	39,94 43,74 50,27 59,81 66,45 75,08 83,98 92,48 98,25 109,3 119,0 127,0 136,7 150,8 167,4 187,5 195,7 216,5 227,9 232,7 252,6 271,6	112 4 143 4 729 5 156 6 591 6 399 7 7304 8 8777 9 597 1 0033 1 0014 1 112 1 336 1 185 1 222 1 078 2 916 2 295 2 502 2 502 2 578 3	0.5073 5.5274 5.5274 5.5274 5.5274 5.5274 5.5270 5.56960 5.6960 5.6960 1.7933 1.2.1100 1.9.6186 3.1.5961 3.9.8112 5.5.5844 70.9407 88.9673 1.8.8343 1.2.9553 1.8.8343 1.2.9553 1.8.8343 1.2.9553 1.8.8343 1.2.9553 1.4.4593 1.6.152 1.2.427 1.7.4.1688 1.8.46152 1.2.4355 1.2.4555 1.2.4555 1.2.4555 1.2.4555 1.2.4555 1.2.4555 1.2.45555 1.2.45555 1.2.45	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330 174.9303 192.9908 209.8729 226.1028 232.1187 249.3967 269.7950 275.2418 289.4405 296.8329 302.6551
Frequen Frequen	cies cies	39,94 43,72 50,27 59,81 66,45 75,08 83,98 92,48 98,25 109,3 119,0 127,0 136,7 150,8 167,4 187,5 195,7 216,5 227,9 232,7 252,6 271,6 271,6 278,2 291,9 299,6 306,9	112 4 143 4 729 5 156 6 399 7 8377 9 597 1 0033 1 0014 1 112 1 336 1 185 1 222 1 078 2 916 2 295 2 502 2 502 2 578 2 574 3	0.5073 5.5274 5.5274 5.5274 5.5274 5.5274 5.5270 5.5960 5.6960 5.6960 5.6960 5.6960 5.6960 5.6960 5.5694 5.5961 39.8112 5.55844 70.9407 88.9673 03.9153 18.8343 29.6503 29.4593 20.225 292.4395 502.0215 508.6280	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330 174.9303 192.9908 209.8729 226.1028 232.1187 249.3967 269.7950 275.2418 289.4405 296.8329 302.6551 309.6916
Frequen Frequen	cies cies	39,94 43,72 50,27 59,81 66,45 75,08 83,98 92,48 92,48 92,48 98,25 109,33 119,00 127,00 136,7 150,8 167,4 187,5 195,7 216,5 227,9 232,7 252,6 271,6 278,2 291,9 299,6 306,9 315,6	112 4 143 4 729 5 156 6 391 6 399 7 304 8 377 9 997 1 0033 1 0014 1 112 1 336 1 185 1 222 1 0078 2 613 2 996 2 295 2 502 2 578 3 544 3	0.5073 15.5274 15.5274 15.5274 15.5274 15.5274 15.5270 15.52960 13.4292 17.733 12.1100 19.6186 11.5961 19.6186 11.5961 19.6186 11.5961 19.6186 11.5961 19.6186 11.5961 19.6186 11.5961 19.6186 11.5961 19.6186 11.5961 19.6186 11.5961 11.5961 12.1100 12.1	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330 174.9303 192.9908 209.8729 226.1028 232.1187 249.3967 269.7950 275.2418 289.4405 296.8329 302.6551 309.6916 320.6290
Frequen Frequen	cies cies	39,92 43,72 50,27 59,81 66,45 75,08 83,98 92,48 98,25 109,3 119,00 127,00 136,7 150,8 167,4 187,5 195,7 216,5 227,9 232,7 252,6 271,6 277,7 277,6 277,6 277,7 277,6 277,6 277,6 277,6 277,7 277,6 277,6 277,7 277,6 277,7 277,	112 4 143 4 729 5 156 6 391 6 399 7 304 8 877 9 997 1 0033 1 002 1 014 1 112 1 336 1 185 1 222 1 0078 2 916 2 295 2 502 2 578 3 544 3 957 3	0.5073 15.5274 15.5274 15.5274 15.5274 15.5274 15.5270 15.52960 13.2924 13.4292 17.100 19.6186 1.2.1100 19.6186 1.55.5844 1.70.9407 18.8343 19.6503 18.8343 19.6503 14.4593 161.2427 17.4.1688 18.4.6152 19.2.4395 102.0215 108.6280 17.5247 12.1522 10.5247 12.1522 15.5247 12.1522 15.5247 15.5447 15.5457 15.5447 15.5457 15.5447 15.5457	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330 174.9303 192.9908 209.8729 226.1028 232.1187 249.3967 269.7950 275.2418 289.4405 296.8329 302.6551 309.6916 320.6299
Frequen Frequen	cies cies	39,94 43,74 50,27 59,81 66,45 75,08 92,48 98,25 109,3 119,00 127,00 136,7 150,8 167,4 187,5 195,7 216,5 227,9 232,7 252,6 271,6 271,6 278,2 291,9 299,6 306,9 315,6 321,4	112 4 143 4 729 5 156 6 591 6 399 7 304 8 877 9 597 1 0033 1 014 1 112 1 336 1 185 1 222 1 0078 2 916 2 295 2 502 2 578 3 544 3 957 3 841 3	0.5073 15.5274 15.5274 15.5274 15.5274 15.6960 13.2984 15.6960 13.4292 01.7933 12.1100 19.6186 13.15961 19.6186 11.55.5844 70.9407 18.8343 12.55.5844 70.9407 18.8343 12.55.5844 10.9407 18.8343 12.55.5844 10.9407 18.8343 12.55.5844 10.9407 18.8343 19.6503 11.2427 12.41688 18.46152 19.24395 10.20215 10.8.6280 11.5227 11.523 10.2275 1	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330 174.9303 192.9908 209.8729 226.1028 232.1187 249.3967 269.7950 275.2418 289.4405 296.8329 302.6551 309.6916 320.6299 334.0125
Frequen Frequen	cies cies	39,94 43,74 50,27 59,81 66,45 75,08 83,98 92,48 98,25 109,3 119,0 127,0 136,7 150,8 167,4 187,5 195,7 216,5 227,9 232,7 252,6 271,6 271,6 278,2 291,9 299,6 306,9 315,6 321,4 338,7	112 4 143 4 729 5 156 6 591 6 399 7 304 8 8777 9 597 10 0033 1 0002 1 014 1 112 1 336 1 078 2 613 2 9078 2 9078 2 9078 2 9078 2 9078 2 9078 2 906 2 2095 2 502 2 504 3 9957 3 841 3 599 3	0.5073 15.5274 15.5274 15.5274 15.6270 13.2984 18.6765 18.9614 15.6960 13.4292 01.7933 12.1100 19.6186 31.5961 39.8112 15.5844 70.9407 18.8343 12.9.6503 18.8343 12.9.6503 18.8343 12.9.6503 18.8343 12.9.6503 18.8343 12.9.6503 18.8343 12.9.6503 18.8343 12.9.6503 14.4553 14.4553 10.215	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330 174.9303 192.9908 209.8729 226.1028 232.1187 249.3967 269.7950 275.2418 289.4405 296.8329 302.6551 309.6916 320.6299 334.0125 351.6656
Frequen Frequen	cies cies	39,94 43,74 50,27 59,81 66,45 75,08 83,98 92,48 98,25 109,3 119,0 127,0 136,7 150,8 167,4 187,5 195,7 216,5 227,9 232,7 252,6 271,6 271,6 271,6 271,6 271,6 306,9 315,6 306,9 315,6 321,4 338,7 362,2	112 4 143 4 729 5 156 6 591 6 399 7 7304 8 8777 9 597 1 0033 1 0002 1 014 1 112 1 336 1 185 1 222 1 078 2 916 2 295 2 502 2 578 3 544 3 957 3 841 3 599 3 807 3	0.5073 5.5274 5.5274 5.5274 5.5274 5.5274 5.5274 5.5970 5.5960 3.2984 5.56960 3.4292 01.7933 12.1100 19.6186 31.5961 39.8112 55.5844 70.9407 88.9673 29.6503 24.4593 261.2427 774.1688 88.46152 192.4395 302.0215 308.6280 31.75247 31.6523 42.6018 37.8670	41.4971 47.2644 58.5803 64.5206 74.7620 81.1879 91.3872 96.4668 106.5896 113.8695 122.2850 134.4501 146.7820 163.1330 174.9303 192.9908 209.8729 226.1028 232.1187 249.3967 269.7950 275.2418 289.4405 296.8329 302.6551 309.6916 320.6299 334.0125 351.6656 385.1959

Frequencies	410.9346	412.1076	413.1918
Frequencies	415.8853	417.2507	419.9970
Frequencies	421.8847	424.1463	424.5886
Frequencies	435.1620	435.9464	442.7173
Frequencies	445.0173	449.0529	452.4711
Frequencies	454.9931	460.4990	463.3727
Frequencies	464.4240	466.8878	469.9622
Frequencies	475.8676	485.6376	490.0740
Frequencies	500.7194	505.8125	509,2466
Frequencies	512.1159	520.1731	522.1187
Frequencies	526 6107	530 7741	534 1029
Frequencies	537 6442	539 7053	5/5 8639
Frequencies	E 49 1001	555.7055	545.8055
Frequencies	546.1001	552.2494	552.5009
Frequencies	557.4303	558.0408	501.7319
Frequencies	563.2629	569.2045	570.5132
Frequencies	577.8996	582.3944	584.2641
Frequencies	586.2311	590.9848	596.6580
Frequencies	596.8505	599.1571	601.3404
Frequencies	603.3286	609.3339	609.7914
Frequencies	610.7205	613.9654	618.4903
Frequencies	620.8624	624.7716	626.6676
Frequencies	630.2509	630.9638	632.0704
Frequencies	634.9337	635.2035	646.1418
Frequencies	648.0722	656.2915	658.8931
Frequencies	663.6839	664.5644	674.6204
Frequencies	677.3013	677.7158	682.2374
Frequencies	684.5655	698.7308	706.9220
Frequencies	714.0327	714.8256	715.1876
Frequencies	716.2271	718.9011	721.8649
Frequencies	722.8857	724.6964	726.4352
Frequencies	726.6500	729.4250	731.6919
Frequencies	733 4872	736 5559	740 2195
Frequencies	745 5292	745 9743	751 1390
Frequencies	752 5164	762 5788	765 2598
Frequencies	768 1780	768 3550	771 4910
Frequencies	775 5227	776 2979	779 7318
Frequencies	780 1890	781 7088	782 7049
Frequencies	789 1739	794 4900	798 9287
Frequencies	801 5408	804 3111	804 7308
Frequencies	872 5611	825 3063	826 9545
Frequencies	831 9396	858 4870	866 9145
Frequencies	868 2082	868 6584	860 5116
Frequencies	008.3082	071 0442	073 047E
Frequencies	071.4350	071.0445	075.0475
Frequencies	874.8001	870.3094	878.7008
Frequencies	884.0624	880.7052	887.0554
Frequencies	888.1085	889.4424	897.2506
Frequencies	900.0715	901.8452	912.7162
Frequencies	918.2185	919.5318	923.8272
Frequencies	928.6366	935.6488	936.9902
Frequencies	940.4739	941.8618	946.6357
Frequencies	946.8174	948.0873	951.2701
Frequencies	952.8153	953.8867	956.1125
Frequencies	958.0579	961.7330	968.3835
Frequencies	974.9717	984.9991	986.2857
Frequencies	990.7737	992.3633	996.9463
Frequencies	997.0614	1001.5242	1002.9144
Frequencies	1004.3197	1006.3163	1006.8618
Frequencies	1009.4057	1012.9364	1013.7538
Frequencies	1015.0759	1015.9510	1018.1634
Frequencies	1018.5437	1019.9916	1020.7949
Frequencies	1021.1202	1023.3198	1024.4769
Frequencies	1028.0176	1036.1027	1036.2522
Frequencies	1043.0803	1048.9286	1051.7157
Frequencies	1054.7520	1056.4733	1057.6442
Frequencies	1058.7856	1062.8574	1065.1424
Frequencies	1065.3972	1067.6662	1068.2405

Frequencies	1071.2681	1073.9437	1078.7389
Frequencies	1092.2564	1094.4459	1099.3242
Frequencies	1108.9911	1109.3094	1111.3366
Frequencies	1112.4304	1113.9862	1115.8409
Frequencies	1121.9863	1124.7658	1126.4721
Frequencies	1128.2152	1129.2607	1130.4555
Frequencies	1132.4655	1160.5353	1164.3031
Frequencies	1165.3845	1167.1245	1170.4661
Frequencies	1171.2072	1171.8633	1172.8981
Frequencies	1174.6931	1175.3196	1177.2628
Frequencies	1177.6115	1180.8072	1180.8623
Frequencies	1186.8321	1194.6528	1196.7266
Frequencies	1201.6441	1203.6604	1204.4951
Frequencies	1207.1623	1209.3338	1209.8891
Frequencies	1210.0793	1210.9503	1218.6449
Frequencies	1222.3684	1226.1312	1227.5466
Frequencies	1230.4024	1231.0495	1233.3362
Frequencies	1251 6018	1242.0331	1240.4205
Frequencies	1268 3027	1233.4723	1279 4785
Frequencies	1281 1369	1284 2255	1286 8201
Frequencies	1289.4205	1292.7264	1296.9907
Frequencies	1297.7847	1298.7260	1300.7534
Frequencies	1302.4373	1305.2449	1306.7200
Frequencies	1307.9203	1309.9967	1310.9932
Frequencies	1313.5116	1321.5498	1324.7771
Frequencies	1327.0590	1328.5434	1333.6781
Frequencies	1337.1650	1340.2375	1340.6824
Frequencies	1341.9326	1346.5961	1357.0386
Frequencies	1358.2425	1360.5440	1361.4950
Frequencies	1362.8705	1363.9039	1364.2943
Frequencies	1365.9020	1366.7486	1368.5533
Frequencies	1369.7395	1370.1428	1375.3453
Frequencies	1382.0852	1383.4832	1392.7903
Frequencies	1407.7710	1438.5960	1447.8536
Frequencies	1452.7362	1459.9143	1466.0527
Frequencies	1468.8645	1470.4815	1481.4026
Frequencies	1490.4666	1494.7287	1496.8107
Frequencies	1498.5727	1502.7408	1505.0991
Frequencies	1510 5002	1505.5655	1512 9702
Frequencies	1516 5652	1517 6792	1524 8469
Frequencies	1526 1039	1528 7913	1540 6590
Frequencies	1544.2945	1547.1640	1552.1723
Frequencies	1555.2430	1557.2026	1557.3927
Frequencies	1559.1727	1560.9513	1561.6739
Frequencies	1568.8871	1572.8729	1657.0064
Frequencies	1662.7883	1665.6089	1666.9161
Frequencies	1668.3969	1672.7198	1674.3773
Frequencies	1675.2555	1677.7653	1678.8615
Frequencies	1682.0462	1688.1044	1689.5761
Frequencies	1694.1778	1695.3793	1697.3103
Frequencies	1698.8802	1700.0645	1700.2263
Frequencies	1700.8066	1701.3908	1702.2237
Frequencies	1704.2268	1705.6893	1718.1462
Frequencies	1/19.884/	1/30.5691	1/31.1433
Frequencies	2957.2369	3072.4779	3082./544
Frequencies	3088.5799	3093.4304	3118.1340
Frequencies	3132.9324 2177 E730	3133.5223	31//.444U
Frequencies	32/1.3/39	2202 A241	3203 1010
Frequencies	3201.7773	3202.4241	3203.1910
Frequencies	3213 0326	3211.3373	3215 9208
Frequencies	3216 1715	3215.5782	3217 7495
Frequencies	3219.5642	3220.4931	3221.7935
Frequencies	3222.1381	3223.1203	3223.3711

Frequencies	3223.5569	3225.2824	3229.2385
Frequencies	3229.5726	3230.7391	3231.3946
Frequencies	3231.5937	3232.6342	3232.9204
Frequencies	3233.0211	3233.3467	3234.8630
Frequencies	3238.1756	3238.2304	3240.2514
Frequencies	3240.7121	3240.9133	3241.5480
Frequencies	3243.1767	3243.3329	3243.5354
Frequencies	3246.4141	3246.9661	3247.4004
Frequencies	3248.0780	3250.5248	3252.9636
Frequencies	3266.6789	3331.0438	3596.5203

SCF Done: E(RM062X/DGDZVP) = -6499.37479158Sum of electronic and zero-point Energies=-6498.024768Sum of electronic and thermal Energies=-6497.911090Sum of electronic and thermal Free Energies=-6498.181743SCF Done: E(RM062X/DGTZVP/SMD) = -6500.65713238

Cat f I1a_R

Center	Atom	nic At	omic	Coordinate	s (Angstroms)
Number	Nu	mber	Туре	X Y	Z
1	15	0	0.044349	0.060565	-0.042029
2	8	0	0.002249	0.033213	1.580893
3	8	0	1.655957	0.079396	-0.343740
4	8	0	-0.368704	1.437691	-0.523767
5	8	0	-0.625911	-1.159164	-0.555962
6	6	0	0.707196	1.044370	2.217809
7	6	0	2.300360	-1.112263	-0.050734
8	6	0	2.030071	0.809332	2.565635
9	6	0	0.114669	2.295983	2.434029
10	6	0	2.708611	-1.378942	1.246899
11	6	0	2.366219	-2.096884	-1.037205
12	6	0	2.826878	-0.473258	2.455963
13	6	0	2.788383	1.838929	3.122785
14	6	0	0.889515	3.306502	3.012190
15	6	0	-1.292352	2.518436	2.024058
16	6	0	3.083309	-2.677009	1.587234
17	6	0	2.849325	-3.362962	-0.698765
18	6	0	1.809815	-1.812255	-2.379975
19	6	0	2.527421	-1.482443	3.591668
20	6	0	4.283049	0.061671	2.555919
21	6	0	4.225061	1.387049	3.351800
22	6	0	2.223913	3.095453	3.370106
23	1	0	0.439105	4.279013	3.191824
24	6	0	-1.664091	3.573080	1.184923
25	6	0	-2.285690	1.620919	2.408330
26	6	0	3.105975	-2.839748	3.103627
27	6	0	3.201145	-3.677482	0.616827
28	1	0	2.905377	-4.133793	-1.463297
29	6	0	0 766476	-2 592618	-2 872959
30	6	Ő	2 251876	-0 743122	-3 161013
31	1	0	2 944352	-1 164329	4 552526
32	1	0	1 442177	-1 573473	3 705359
32	1	0	4 959913	-0.669473	3 008358
34	1	0	4 651016	0.262086	1 545872
35	1	0	4.001010	1 191864	1.040072
36	6	0	5 268372	2 389202	2 898632
27	6	0	2 010995	1 179622	4 009752
20	6	0	2 069690	2 620122	4.008732
30	0	0	-2.300080	1 1000123	0.710901
22	o E	0	2 50777	1 601100	1 202650
40	U O	0	1 060062	0 620014	2 210750
41 42	0	0	-1.909003 1 1 2 7 0 1 F	2 074692	3.313238 2.477020
42	L L	0	4.12/015	-2.9/4082	3.4//U39 3 E34227
43	ь	U	2.274298	-4.037054	3.524327

44	6	0	3.621825	-5.051811	0.994160	110	1	0	2.506673	-6.960941	5.254922
45	6	0	0.210931	-2.342566	-4.121936	111	6	0	4.363263	-7.616357	1.843760
46	8	0	0.253042	-3.602101	-2.101018	112	1	0	2.439581	-8.241373	1.098139
47	6	0	1.712256	-0.490939	-4.426618	113	1	0	6.206014	-6.698148	2.482765
48	8	0	3 234546	0.058423	-2 624853	114	9	0	0 541512	-0 138302	-7 004629
49	6	0	5 337402	2 768128	1 553228	115	q	0	-1 280741	-0.957061	-6 192860
50	6	0	6 161064	2.700120	2 201261	116	0	0	0.226565	2 260.95	7.015194
50	0	0	0.101004	2.909569	3.801201	110	9	0	0.220303	-2.209083	-7.013184
51	6	0	3.414179	5.303547	3.2/6151	11/	6	0	-3.019164	-3./13420	-3./5560/
52	6	0	3.408344	4.068074	5.34/406	118	1	0	-1.460037	-4.250668	-0.226/31
53	6	0	-3.936200	2.721606	1.030750	119	6	0	-3.276809	-4.331393	-1.428401
54	8	0	-3.335901	4.713284	-0.106462	120	6	0	3.951590	2.061675	-5.620439
55	6	0	-0.991208	5.143627	-0.395412	121	1	0	5.339658	1.428729	-2.052026
56	8	0	-4.484181	0.708750	2.234728	122	6	0	5.586566	2.537752	-3.905899
57	6	0	-2.636299	-0.549519	3.099809	123	1	0	7.870576	5.033515	1.704183
58	6	0	0.972153	-4.190480	3.027148	124	1	0	5.220200	6.929540	5.655295
59	6	0	2 808558	-5 039397	4 333302	125	1	0	-3 634178	5 962605	-2 348370
60	6	0	2 759834	-6 136435	0.802047	126	6	0	-1 563541	6 494406	-2 759147
61	6	0	1 964661	5 266407	1 500694	127	1	0	0.556599	6 999103	2 9 4 9 0 4 0
C2	C	0	4.604001	1 201205	1.399064	120	1	0	0.330388	1 (19002	1 95 75 40
62	0	0	0.684828	-1.301305	-4.923144	128	1 C	0	-5.601356	-1.618093	1.857540
63	8	0	-0.833328	-3.115325	-4.564191	129	6	0	-4.050306	-2.898440	2.692945
64	6	0	-1.11186/	-3./6146/	-2.2/3/86	130	1	0	-2.348/12	-3.8//281	3.587643
65	8	0	2.162175	0.563918	-5.185662	131	1	0	0.208990	-7.232858	4.347644
66	6	0	3.837444	0.942003	-3.485558	132	1	0	4.646019	-8.609123	2.180184
67	6	0	6.269460	3.709343	1.122315	133	1	0	-3.419318	-3.521248	-4.746103
68	1	0	4.647484	2.325794	0.835160	134	6	0	-3.824958	-4.127743	-2.694556
69	6	0	7.089423	3.920946	3.377750	135	1	0	-3.915167	-4.615693	-0.598961
70	1	0	6 115002	2 692048	4 851583	136	1	0	3 527767	2 204871	-6 609615
71	6	0	1 208524	6 286525	3 86/107	137	6	0	5 08/1771	2 751179	-5 191078
71	1	0	4.200524	C.200323	2.226622	120	1	0	5.004771 C.4CEE70	2.751175	2 5 6 6 1 9 1
72	T	0	3.107093	5.393288	2.230022	138	1	0	0.405579	3.075708	-3.500181
/3	6	0	4.191/18	5.057020	5.941198	139	1	0	-1.787960	7.018118	-3.682373
74	1	0	3.090489	3.2021//	5.923485	140	1	0	-4.605052	-3.818306	2.539599
75	6	0	-5.305010	2.894521	0.411846	141	1	0	-4.889198	-4.262858	-2.853905
76	6	0	-2.304837	5.246771	-0.847581	142	1	0	5.574163	3.449490	-5.861817
77	6	0	0.038934	5.739821	-1.109109	143	1	0	-2.332189	-1.408535	-1.388179
78	6	0	-3.908542	-0.513105	2.539053	144	8	0	-3.165544	-1.094297	-1.794088
79	6	0	-2.059179	-1.755533	3.464063	145	6	0	-3.298957	0.267143	-1.448326
80	6	0	0.234691	-5.333857	3.322784	146	6	0	-2.842300	1.239626	-2.576963
81	1	0	0 551489	-3 433115	2 364251	147	1	0	-4 352344	0.470556	-1 228838
82	6	0	2 068082	-6 183197	4 637056	1/18	1	0	-2 71/532	0.493293	-0.548740
02	1	0	2.000002	4.040621	4.037030	140	1 0	0	2.714552	2.409255	2 009090
03	L L	0	3.823330	-4.940031	4.700599	149	o c	0	-2.426240	2.406555	-2.008089
84	6	0	3.126323	-7.411019	1.231242	150	6	0	-1.6/6215	0.594400	-3.363928
85	1	0	1.786422	-5.968181	0.346852	151	1	0	-1.832070	2.240391	-1.266921
86	6	0	5.236806	-6.542533	2.018348	152	1	0	-0.852097	0.256578	-2./2692/
87	1	0	5.541473	-4.426299	1.737924	153	1	0	-2.026700	-0.275271	-3.926681
88	6	0	0.051598	-1.153471	-6.288410	154	1	0	3.845977	4.368515	0.083855
89	6	0	-1.663947	-3.535680	-3.530794	155	6	0	3.364767	4.262107	-0.883084
90	6	0	-1.912393	-4.138971	-1.207127	156	6	0	2.371352	3.302713	-1.045786
91	6	0	3.323624	1.173691	-4.757410	157	6	0	3.741361	5.113455	-1.934931
92	6	0	4.967587	1.625399	-3.053120	158	6	0	1.752803	3.240534	-2.295856
93	6	0	7 147140	4 295253	2 036264	159	1	0	2 054181	2 644694	-0 238139
9/	1	0	6 310585	3 986120	0.071134	160	6	0	3 126445	5.036661	-3 181178
05	1	0	7 764269	4 272020	4 00 90 5 5	161	1	0	4 521069	5.050001 E 9E0144	1 772070
95	T	0	7.704208	4.572050	4.096933	101	1	0	4.321908	3.830144	-1.775079
96	6	0	4.602177	6.163398	5.197276	162	/	0	0.697363	2.399750	-2.643829
97	1	0	4.523074	7.146640	3.280928	163	6	0	2.114/46	4.090832	-3.344233
98	1	0	4.483182	4.963144	6.983089	164	1	0	3.416418	5.695537	-3.993205
99	9	0	-5.863122	4.055639	0.800702	165	6	0	0.224603	2.574479	-3.865356
100	9	0	-5.238259	2.917248	-0.929240	166	1	0	0.217023	1.854917	-1.846799
101	9	0	-6.158848	1.920196	0.741893	167	16	0	1.087508	3.807550	-4.732201
102	6	0	-2.598150	5.909650	-2.029203	168	16	0	-1.040674	1.725481	-4.652645
103	1	0	1.051592	5.678893	-0.722555	169	6	0	-3.976768	1.520719	-3.547068
104	6	0	-0.250701	6.416618	-2.295540	170	6	0	-4.314566	2.827278	-3.899495
105	6	n	-4 618115	-1 681886	2 311975	171	6	0	-4 677366	0 448877	-4 112229
106	1	0	-1 065077	-1 755277	2 002346	170	6	0	-5 3/6521	3 061572	-1 808032
107	т С	0	-1.00332/	-1.1JJJ1/	2 272042	170	1	0	2 760400	3 640145	3 1160000
100	o c	0	-2.782026	-2.933/18	5.2/3043	174	T	0	-3./09486	3.049145	-3.440U22
108	6	U	0.780396	-6.336219	4.128010	1/4	6	0	-5./06658	0.686256	-5.020/20
109	1	0	-0./5/893	-5.459534	2.899491	1/5	1	0	-4.425027	-0.5/0580	-3.823215

176	6	0 .	-6.043214	1.994302	-5.373281	Frequencies	678.7100	681.9739	685.4854
177	1	0 .	-5.608273	4.081450	-5.075334	Frequencies	698.0584	703.9048	711.2516
178	1	0 .	-6.248931	-0.149918	-5.451914	Frequencies	712.8388	714.0924	715.2816
179	1	0 -	-6.845962	2.178685	-6.080741	Frequencies	715.6644	718.7810	718.8667
						Frequencies	721.8183	722.5254	724.5886
						Frequencies	726.3907	728.5836	730.8308
Frequen	cies	12.3355	5	17.7047	21.9561	Frequencies	732.5617	733.7408	736.9013
Frequer	ncies	23.248	2	23.7798	28.7654	Frequencies	740.9920	746.0538	749.3397
Frequer	ncies	29.656	1	31.3176	35.7652	Frequencies	751.9343	762.2173	764.0165
Frequer	ncies	36.245	1	36.9302	39.0885	Frequencies	764.1449	767.2309	770.3158
Frequer	ncies	40.616	7	43.0241	46.0745	Frequencies	771.3361	773.9447	779.4878
Frequer	ncies	46.812	8	49.7203	55.3701	Frequencies	780.1450	783.2198	784.1992
Frequer	ncies	57.924	2	58.6943	60.7509	Frequencies	786.7072	787.4043	797.2940
Frequer	ncies	62.302	0	65.9268	66.9975	Frequencies	799.5947	800.6261	804.6163
Frequer	ncies	68.185	3	70.5986	73.6158		805.4312	823,4382	824.7434
Frequer	ncies	78.796	1	80.8268	81.8787		827.0117	832.2505	855.3410
Frequer	ncies	86.862	7	90.7283	92,4656		863.6386	866.0950	867.6183
Frequer	ncies	94.184	4	96.2791	98.5037	Frequencies	868.6590	869,4892	871.7347
Frequer	ncies	104.270)1	104.7427	109.4344	Frequencies	872.5595	874.5806	876.0175
Frequer	ncies	111.28	14	113.1262	118.2921	Frequencies	876.3818	883,1545	885.4555
Frequer	ncies	119 630)4	126 4481	129 7021	Frequencies	887 4247	887 8591	888 6984
Frequer	ncies	132.080	00	135 3187	136 8440	Frequencies	889 8755	892 5942	909 3995
Frequer	ncies	140.24	13	146 0130	152 5852	Frequencies	912 3191	918 5958	923 5091
Frequer	ncies	156 21	71	164 1442	167 2591	Frequencies	929 4998	930 3462	934 0608
Erequer		171 / 8/	12	184 5054	186 7448	Frequencies	936 1610	938 9208	9/1 9670
Eroquor	ncios	100 /63	+Z 27	104.2074	105 8607	Frequencies	942 6870	944 6723	945 1020
Eroquor	icies	201 120	ג 1	211 4605	215 2495	Frequencies	942.0870	944.0723	943.1029
Eroquor	icies	201.130	22	211.4005	215.2405	Frequencies	058 5512	955.2948	953.4041
Frequer		217.440))	220.0330	220.2928	Frequencies	958.5512	908.0348	908.0000
Eroquer	icies	220.023	71	231.7670	255.6279	Frequencies	970.2013	960.0001	900.3303
Eroquor	icies	245.00	/ <u>1</u>	249.2438	233.3837	Frequencies	990.3097	991.9491	008 1812
Frequer	icies	200.410		206.2055	271.7200	Frequencies	1001 5278	1000 0122	1007 0072
Frequer	icies	2/3.93.	10	275.2980	277.5362	Frequencies	1001.5278	1000.0132	1012 1200
Frequer	icies	203.402	22	200.3743	209.0903	Frequencies	1008.7834	1012.0003	1013.1390
Frequer	icies	292.103	5Z	293.9414	298.5480	Frequencies	1013.4229	1015.08//	1017.2343
Frequer	icies	299.96	- 7	304.0270	307.2278	Frequencies	1018.5499	1019.2555	1019.4308
Frequer	icies	216.00	70	311.0330	313.7029	Frequencies	1021.1094	1025.2070	1024.4169
Frequer	ncies	316.88	10	320.0723	322.4935	Frequencies	1028.4487	1035.0885	1036.2278
Frequer	ncies	330.03	12	333.3019	338.6369	Frequencies	1040.7475	1044.4518	1051.5337
Frequer	ncies	341.774	48	346.0636	354.2065	Frequencies	1052.5917	1057.0575	1059.5910
Frequer	ncies	370.058	51	380.9735	388.8152	Frequencies	1062.5822	1062.8343	1065.9129
Frequer	ncies	406.33:	32	408.4914	409.4854	Frequencies	1068.5374	1069.1141	1070.3448
Frequer	ncies	410.69	L/	411.4127	413.0075	Frequencies	1071.0408	10/3.2561	1094.8138
Frequer	ncies	415.13:	34	417.4171	420.4070	Frequencies	1099.1036	1105.2459	1108.9210
Frequer	ncies	422.19	/1	423.2802	428.4926	Frequencies	1109.5357	1109.5913	1112.6460
Frequer	ncies	432.144	42	439.8899	442.8048	Frequencies	1113.3809	1117.9249	1124.3398
Frequer	ncies	445.190)1	446.7370	452.5895	Frequencies	1125.6502	1127.1553	1129.7735
Frequer	ncies	457.508	32	460.3912	463.6997	Frequencies	1130.3114	1132.2306	1134.8/6/
Frequer	ncies	465.55	/4	466.3201	4/4.5/53	Frequencies	1158.0867	1162.8079	1163.9211
Frequer	ncies	487.280	J5 	491.3845	500.8799	Frequencies	1164.5408	1166.2681	1167.8827
Frequer	ncies	507.69	//	509.1552	513.4269	Frequencies	11/1.4200	11/1.9/98	11/3.3552
Frequer	ncies	520.482	26	521.9446	525.3800	Frequencies	11/4.6526	11/5.1844	11/7.5048
Frequer	ncies	528.96	14	530.7297	533.6114	Frequencies	11//./4/1	1181.4651	1187.2263
Frequer	ncies	537.530	01	539.0071	546.2548	Frequencies	1195.7057	1197.7310	1199.6169
Frequer	ncies	551.062	19	553.8656	555.6006	Frequencies	1202.7675	1204.5236	1206.3148
Frequer	ncies	559.119	97	560.1226	561.9207	Frequencies	1211.9626	1212.3040	1212.8643
Frequer	ncies	566.767	76	570.9509	574.6180	Frequencies	1215.5560	1220.6682	1222.1883
Frequer	ncies	576.073	36	584.8036	586.3641	Frequencies	1226.7022	1228.8415	1230.6325
Frequer	ncies	589.008	37	592.8838	595.7270	Frequencies	1232.0788	1238.1603	1244.2270
Frequer	ncies	596.998	33	597.5234	599.1145	Frequencies	1246.8902	1250.3638	1253.3696
Frequer	ncies	601.915	57	604.9787	609.0366	Frequencies	1255.3678	1258.4753	1270.5184
Frequer	ncies	610.174	45	611.0273	613.0488	Frequencies	1275.5001	1278.1272	1279.8031
Frequer	ncies	617.786	50	620.8224	624.0874	Frequencies	1280.0520	1285.9269	1290.4216
Frequer	ncies	625.868	30	630.1009	630.8535	Frequencies	1293.2978	1297.1647	1299.5532
Frequer	ncies	632.254	45	634.2005	634.7839	Frequencies	1300.4926	1301.1735	1301.7677
Frequer	ncies	645.798	35	648.0759	656.5591	Frequencies	1307.8740	1309.1600	1310.0694
Frequer	ncies	663.845	58	672.5687	676.9330	Frequencies	1311.4623	1312.2436	1314.8443

Frequencies	1314.8538	1321.2948	1324.5792		3	8	0	1.675752	0.086588	-0.342175
Frequencies	1325.7919	1327.5504	1333.9641		4	8	0	-0.517608	1.311107	-0.572550
Frequencies	1335.4258	1342.7026	1342.9425		5	8	0	-0.447447	-1.300796	-0.453068
Frequencies 2	1345.4352	1356.2334	1357.3404		6	6	0	0.525352	1.094646	2.268783
Frequencies 2	1358.2943	1360.6299	1361.6342		7	6	0	2.435686	-1.006997	0.073064
Frequencies 2	1363.3090	1364.3983	1366.6091		8	6	0	1.869337	1.077041	2.617974
Frequencies 2	1367.2172	1368.8185	1370.1125		9	6	0	-0.287402	2.201990	2.549848
Frequencies 2	1370.4773	1377.0491	1383.9653	-	10	6	0	2.909009	-1.057876	1.376901
Frequencies 2	1390.5642	1405.4779	1408.1608	-	11	6	0	2.625304	-2.078856	-0.808662
Frequencies 2	1409.6333	1427.5394	1448.7831	-	12	6	0	2.890272	-0.039653	2.504486
Frequencies 2	1458.9740	1463.6159	1468.9019	-	13	6	0	2.433052	2.191854	3.238858
Frequencies 2	1470.3631	1478.8837	1489.8311	-	14	6	0	0.290390	3.273282	3.245261
Frequencies 2	1491.5848	1492.5167	1495.7805		15	6	0	-1.699763	2.266191	2.086998
Frequencies 2	1496.0553	1498.6757	1503.5434		16	6	0	3.537593	-2.223879	1.818083
Frequencies 2	1504.6071	1506.0024	1506.8284		17	6	0	3.367018	-3.179290	-0.370361
Frequencies	1510.4595	1512.9191	1513.9255	-	18	6	0	1.906050	-2.102305	-2.103774
Frequencies	1516.4664	1518.4955	1519.8830	-	19	6	0	2.834219	-0.984337	3.733291
Frequencies	1527.6875	1528.0852	1545.2620		20	6	0	4.209665	0.774013	2.519437
Frequencies	1548.1745	1549.3430	1554.2157	2	21	6	0	3.936108	2.009121	3.409764
Frequencies	1555.7476	1558.0155	1560.1740	2	22	6	0	1.640568	3.286401	3.601395
Frequencies 2	1561.1702	1562.0815	1569.3346		23	1	0	-0.329676	4.124377	3.511007
Frequencies 2	1573.1807	1575.2568	1659.0827		24	6	0	-2.172948	3.389110	1.398237
Frequencies 2	1664.1336	1666.7056	1668.1408		25	6	0	-2.594487	1.211339	2.273574
Frequencies 2	1671.7783	1672.0179	1673.4016		26	6	0	3.667918	-2.229001	3.335592
Frequencies 2	1674.4733	1674.9614	1678.4708		27	6	0	3.832145	-3.271433	0.942000
Frequencies	1680.8067	1686.8525	1689.4725		28	1	0	3.545566	-4.002322	-1.056795
Frequencies	1693.2663	1695.9860	1696.9794		29	6	0	1.053541	-3.169063	-2.398776
Frequencies	1698.1889	1698.3713	1698.7466	3	30	6	0	1.938780	-1.038455	-3.000418
Frequencies 1	1701.2828	1702.0158	1702.2539	3	31	1	0	3.201671	-0.503271	4.644989
Frequencies	1704.2093	1704.6172	1719.4872		32	1	0	1.794096	-1.280602	3.906145
Frequencies	1721.6325	1728.7645	1731.9945	3	33	1	0	5.060238	0.182005	2.870622
Frequencies 2	2474.8630	3069.7673	3083.3826	3	34	1	0	4.432923	1.099809	1.498926
Frequencies 3	3090.2035	3093.0962	3093.3578		35	1	0	4.152642	1.765386	4.457533
Frequencies 3	3120.4555	3153.6682	3154,9500		36	6	0	4.768797	3.216230	3.026462
Frequencies 3	3155.9384	3178.7085	3186.4777		37	6	0	2.218382	4.427879	4.359721
Frequencies 3	3190.6885	3198.4543	3200.8447		38	6	0	-3.468455	3.447910	0.872567
Frequencies 3	3201.4204	3203.3525	3208.5265		39	8	0	-1.291521	4.429556	1.211099
Frequencies 3	3208.8397	3210.4908	3213.1708	2	40	6	0	-3.888988	1.265443	1.769099
Frequencies 3	3213.5763	3215.9521	3217.9985	4	41	8	0	-2.216386	0.097615	2.986041
Frequencies 3	3218.3355	3220.0055	3221.4061	4	42	1	0	4.712538	-2.102792	3.644115
Frequencies 3	3221.6401	3222.5006	3224.6137	4	43	6	0	3.140360	-3.522507	3.926387
Frequencies 3	3225 9349	3226 1010	3226 5779	2	44	6	0	4 569637	-4 469593	1 420545
Frequencies 3	3226 7596	3228 1420	3229 9152	2	45	6	0	0 229944	-3 139486	-3 514450
Frequencies 3	3230 7643	3230 7992	3230 8224	2	46	8	0	0 991941	-4 233541	-1 524931
Frequencies 3	3233 0805	3234 4907	3235 8543	2	47	6	0	1 071209	-0.972855	-4 094693
Frequencies 3	3239 9359	3240 5587	3240 6748	2	48	8	0	2 844200	-0.028179	-2 778521
Frequencies 3	3240 7737	3241 7861	3242 4114	2	49	6	0	4 743695	3 711172	1 717962
Frequencies 3	3242 5345	3243 1380	3243 8802	1	50	6	0	5 579190	3 857100	3 966206
Frequencies 3	3245 4045	3247 8421	3248.0912		51	6	0	2 275904	5 706949	3 799102
Frequencies 3	3249.4349	3250 4502	3251 2078		52	6	0	2 735806	4 222099	5 642813
Frequencies 3	3257 1589	3663 8535	3672 7923		53	6	0	-4 350414	2 382149	1 071766
inequencies :	5257.1505	5005.0555	5072.7525		54	8	0	-3 882119	4 520885	0 131898
SCE Done: E/RM		-6100 12013	2890		55	6	0	-1 83/7/9	5 617766	0.151050
Sum of electronic	c and zero-noint F	-0455.42545	-6498 078550		56	8	0	-1.034743	0.192/66	1 950/77/
Sum of electroni	c and thermal En	ergies-	-6497 964524		57	6	0	-9.757647	-1.062738	2 /5/635
Sum of electroni	c and thermal Er	ergies-	-6498 234677	-	58	6	0	1 861114	-3 972125	2.404000
SCE Dono: E/DM		1D)6500 7	123767/		50	6	0	2 0770/1	-1 312020	1 767710
SCI DONE. E(RIVI	0021/001207/310	- 1000.7	123/0/4		59	6 G	0	3 975690	-4.313030	1 305011
					50 51	6 G	0	5 856720	-3.733042	1 051000
cat f IUb_S					57	6 G	0	0.204520	-4.323404	T.321300
					53	2 2	0	-0 638362	-4 181277	-3 76/02
Center Atomic	Atomic	Coordinates (Angstroms)		55	o F	0	-0.030303	-4.1012//	-3.704328
	-		-	(- -	0	U	0.221//2	4.0002711	1.500704

Number	Nu	umber	Туре	Х	Y	Z
1	15	0	0.104248	0.0829	37	-0.034561
2	8	0	0.022003	0.00254	3	1.573980

65

66 67

68

6

6 1

8 0 1.070371 0.141908 -4.888020

 0
 2.425566
 1.211491
 -3.217936

 0
 5.518247
 4.812414
 1.356703

 0
 4.110741
 3.234651
 0.969965

69	6	0	6.340018	4.971846	3.615668	-	L35	1	0	-2.099838	-6.861461	0.497413
70	1	0	5 605463	3 488253	4 988725		36	1	0	0 388229	2 559852	-5 566619
71	6	0	2 881720	6 754420	1.300723	-	127	6	0	1 657206	2.555652	4 204820
71	1	0	1.9001723	0.734423	2,907220	-	120	1	0	2.000452	4 5007033	2 741044
72	1	0	1.860255	5.869/11	2.807220	-	138	1	0	3.009452	4.509763	-2.741044
/3	6	0	3.324083	5.272543	6.344/33	-	139	1	0	-3.242225	8.929054	-0.632337
/4	1	0	2.669112	3.233608	6.091670	-	L40	1	0	-4.392607	-4.250455	1.02/352
75	6	0	-5.796199	2.368855	0.628125	-	141	1	0	-3.568252	-6.810339	-1.507238
76	6	0	-3.107720	5.655348	0.207564	-	L42	1	0	1.362491	4.655498	-4.597221
77	6	0	-1.074535	6.774020	0.860378	-	L43	1	0	-1.484790	-1.329940	-0.635736
78	6	0	-4.054328	-1.020054	1.950221	-	L44	8	0	-2.876953	-1.302591	-1.009796
79	6	0	-2.026983	-2.239548	2.424967	-	L45	6	0	-2.924099	-1.744270	-2.400882
80	6	0	1 376971	-5 185638	4 055141		46	6	0	-2 964529	-0 288022	-2 898324
81 81	1	0	1 253735	-3 377733	2 89/086	-	147	1	0	-2 028/37	-2 304425	-2 667067
01		0	2 4 4 5 4 5 5	-3.377733 E E 2E 0 20	E 242261	-	147	1	0	2.020457	2.304423	-2.007007
02	1	0	3.443434	-3.353659	5.245501	-	140	1	0	1 640272	-2.320088	-2.361393
83	I	0	4.925838	-3.985614	5.031601	-	149	8	0	-1.640272	0.082368	-3.21/419
84	6	0	4.64/141	-6.837754	1.921201	-	150	6	0	-3.293678	0.043367	-1.424/36
85	1	0	2.973030	-5.844596	0.989588	-	151	1	0	-1.582725	1.057785	-3.129685
86	6	0	6.534292	-5.433541	2.464712	-	L52	1	0	-4.353089	0.172234	-1.201352
87	1	0	6.325895	-3.348326	1.956174	-	L53	1	0	-2.683239	0.825115	-0.967150
88	6	0	-0.777795	-2.055912	-5.511960	-	L54	1	0	-0.466429	2.898916	-1.172164
89	6	0	-1.041133	-4.864854	-2.633347	-	L55	7	0	-0.439910	3.858382	-1.557070
90	6	0	-0.599340	-5.592115	-0.374853		156	6	0	-1.317340	4.233278	-2.510239
91	6	0	1 519812	1 294572	-4 271709		157	6	0	0 505007	4 791767	-1 173184
92	6	0	2 953192	2 360944	-2 6/9/36	-	158	16	0	-2 538880	3 307300	-3 158213
02	6	0	6 21/021	E 4E1016	2.040430	-		16	0	-2.558888	5.307300 E 00EE0E	2 000057
95	0	0	0.314831	5.451910	2.307017	-	159	10	0	-0.972476	5.895585	-2.989857
94	1	0	5.495577	5.1/3849	0.332016	-	160	6	0	0.385725	5.989052	-1.890002
95	1	0	6.951939	5.463440	4.365899	-	L61	6	0	1.472322	4.631638	-0.180349
96	6	0	3.412265	6.537981	5.763711	-	L62	6	0	1.261437	7.047518	-1.655898
97	1	0	2.941779	7.738775	4.037281	-	L63	6	0	2.338650	5.695086	0.055637
98	1	0	3.718176	5.103373	7.342403	-	L64	1	0	1.527653	3.703897	0.388330
99	9	0	-6.607529	2.178781	1.683966	-	L65	6	0	2.242750	6.887515	-0.678845
100	9	0	-6.189439	3.492006	0.030012		166	1	0	1.171460	7.976694	-2.209930
101	9	0	-6 040822	1 358790	-0 233570		67	1	0	3 099592	5 600731	0 823906
102	6	0	-3 621495	6 842114	-0 294255	-	168	1	0	2 936269	7 698118	-0.478400
102	1	0	0.021455	6 712005	1 206996	-	160	6	0	2.071615	0.090910	2 961201
103	L C	0	-0.081404	0.712003	1.290000	-	109	C C	0	-3.9/1013	0.060605	-3.901201
104	6	0	-1.582207	7.970017	0.353145	-	170	0	0	-5.541227	-0.107457	-3.741802
105	6	0	-4.659784	-2.156603	1.440285	-	L/1	6	0	-3.546044	0.601190	-5.184942
106	1	0	-1.008261	-2.232/33	2.797855	-	1/2	6	0	-6.268814	0.224112	-4./26282
107	6	0	-2.629923	-3.390036	1.913487	-	L73	1	0	-5.697915	-0.512273	-2.797102
108	6	0	2.172374	-5.976400	4.887864	-	L74	6	0	-4.474413	0.934027	-6.170218
109	1	0	0.382035	-5.520518	3.775078	-	L75	1	0	-2.484512	0.740112	-5.363682
110	1	0	4.074548	-6.147683	5.882694	-	L76	6	0	-5.837136	0.748023	-5.945230
111	6	0	5.925784	-6.688883	2.460467	-	L77	1	0	-7.328232	0.078673	-4.538975
112	1	0	4.168321	-7.812206	1.917262		L78	1	0	-4.128665	1.339668	-7.115984
113	1	0	7 534417	-5 314006	2 870376		179	1	0	-6 559348	1 010415	-6 712267
114	ģ	0	-2 045657	-2 206795	-5.075914						110101110	
115	a	0	-0.526145	-3 096982	-6 326935							
110	9	0	-0.320143	-3.090982	-0.320933	Fre	auanai		0 0 0 0 0	1-	1469	10 0722
110	9	0	-0.754445	-0.954980	-0.202899	Fre	quencie	25	0.003	¹	2.4408	19.0755
11/	6	0	-2.252151	-5.541187	-2.636972	Fr	equenci	es	20.70	/9 2	23.6541	24.3654
118	1	0	0.062286	-5.585191	0.486528	Fr	equenci	es	27.871	10 2	28.7406	31.4018
119	6	0	-1.806290	-6.292887	-0.379334	Fr	equenci	ies	32.962	12 3	35.9684	37.1273
120	6	0	1.107952	2.527363	-4.754669	Fr	equenci	es	40.28	′0 4	41.0594	42.6379
121	1	0	3.660227	2.261257	-1.831405	Fr	equenci	ies	44.960)7 4	16.5297	48.2715
122	6	0	2.582856	3.604724	-3.164779	Fr	equenci	es	53.300		54.1272	58.4884
123	1	0	6 911969	6 314635	2 028502	Fr	auenci	es	61 148	35 é	52 2120	64 7427
124	1	0	3 884257	7 353750	6 302464	Fn	equenci	es	66.04	7 6	57 5098	70 1412
124	1	0	1 612021	6 921015	0.724942	Er	auonci	ioc	72 5 9	0 -	77 3656	78 6360
120		0		0.001700	0.734042	F11	auenci	 ioc	70 50		1 1601	0.0303
120	5	0	-2.8484//	0.001/96	-0.230106	Fr	equenci	182	/9.58:	אי איז אר אר	51.4091 0.5020	82.1158
12/	1	U	-0.980014	8.8/0881	0.408148	Fr	equenci	ies	84.028	52 9	90.5929	95.4302
128	1	0	-5.669930	-2.086106	1.049809	Fr	equenci	es	98.576	6 9	99.3080	101.7792
129	6	0	-3.938244	-3.351331	1.430954	Fr	equenci	es	104.76	69	110.8497	113.1186
130	1	0	-2.070654	-4.319251	1.886466	Fr	equenci	ies	117.59	56 2	120.0250	126.0408
131	1	0	1.801550	-6.928546	5.254465	Fre	equenci	ies	130.13	42 2	131.9988	136.0778
132	1	0	6.446280	-7.548664	2.871032	Fr	equenci	es	138.73	24	140.4523	143.9839
133	1	0	-2.869048	-5.502595	-3.529235	Fr	equenci	ies	146.82	77 .	154.9668	158.7079
134	6	0	-2.630313	-6.265322	-1.504419	Fr	equenci	ies	165.75	54	171.9356	175.0380
	-	-								-		

Frequencies	179.6764	186.2973	189.3457	Frequencies	947.2982	950.9344	951.7257
Frequencies	195 3081	198 8426	206 9547	Frequencies	952 1098	952 7903	957 8553
Frequencies	215 4331	224 4213	226 1610	Frequencies	958 4751	963 2502	971 1121
Frequencies	210.2002	225.111/	220.1010	Frequencies	075 9952	097 077/	002 7972
Frequencies	230.3002		250.0572	Frequencies	005 4750	005 5670	006 2410
Frequencies	241.1885	244.0580	250.1392	Frequencies	995.4756	995.5670	996.3419
Frequencies	251.1847	258.6324	272.3469	Frequencies	996.6565	997.2444	999.3588
Frequencies	2/4.143/	276.7194	277.5691	Frequencies	1001.8168	1008.2028	1010.6563
Frequencies	282.3177	285.7947	291.7571	Frequencies	1011.5606	1012.1324	1014.6677
Frequencies	294.2071	295.0353	300.6213	Frequencies	1015.1061	1018.8285	1019.2145
Frequencies	302.2189	303.9389	306.5432	Frequencies	1019.5525	1019.8003	1020.2287
Frequencies	308.5324	312.4475	316.3440	Frequencies	1023.6624	1024.2857	1028.1704
Frequencies	318.1150	321.7699	323.0277	Frequencies	1032.9296	1035.7098	1037.2595
Frequencies	323.3363	330.7383	335.8306	Frequencies	1044.7901	1046.1336	1049.8245
Frequencies	339.4067	348.4409	355.1380	Frequencies	1053.2684	1057.0975	1058.5136
Frequencies	371 2257	377 3021	389 2043	Frequencies	1060 7701	1061 0276	1062 9311
Frequencies	400 9643	403 4869	410 1970	Frequencies	1065 0298	1068 0141	1069 3028
Frequencies	400.5045	403.4005	112 1979	Frequencies	1069.8736	1071 2699	1005.5020
Frequencies	411.1990	412.7369	413.4070	Frequencies	1009.0750	1071.2000	1072.3422
Frequencies	415.1941	417.2754	417.8015	Frequencies	1074.7722	1092.8761	1096.2382
Frequencies	419.8508	422.3105	425.6836	Frequencies	1096.9848	1110.7247	1110.8138
Frequencies	430.8036	434.2108	438.3118	Frequencies	1111.9038	1113.2460	1119.3202
Frequencies	440.6582	443.2063	449.9082	Frequencies	1123.8284	1124.9168	1127.6323
Frequencies	450.8966	453.4987	455.9291	Frequencies	1129.6848	1130.8499	1132.5087
Frequencies	457.0789	466.2324	472.4140	Frequencies	1160.5256	1166.7667	1167.0442
Frequencies	486.9576	490.6359	497.8756	Frequencies	1167.3132	1169.3626	1170.4566
Frequencies	501.6636	507.8430	511.8355	Frequencies	1172.5352	1173.2174	1175.3861
Frequencies	512.3619	517.4182	521.7659	Frequencies	1176.4716	1178.0699	1178.3936
Frequencies	524 3686	533 0716	534 2641	Frequencies	1182 1129	1183 9059	1185 0389
Frequencies	536 1613	537 0254	5/13 80/13	Frequencies	110/ 8/63	1100.7058	1202 5429
Frequencies	E 4E 7201	557.0254	543.0045	Frequencies	1202 7946	1204 0072	1202.3423
Frequencies	545.7201	550.7249	552.0950	Frequencies	1202.7640	1204.9975	1207.4020
Frequencies	555.7321	560.7003	501.7800	Frequencies	1209.0132	1211.0190	1211.9408
Frequencies	563.0137	566.9911	570.8743	Frequencies	1214.//22	1215.6969	1221.8507
Frequencies	572.7012	583.3968	586.0388	Frequencies	1224.7784	1228.8719	1232.9537
Frequencies	589.6277	592.8451	597.4831	Frequencies	1235.3969	1238.3590	1243.3933
Frequencies	599.0667	601.0102	603.0891	Frequencies	1245.1344	1247.5741	1253.3930
Frequencies	605.3285	610.0044	610.5799	Frequencies	1255.5453	1257.4884	1267.4136
Frequencies	612.3506	617.4690	619.8061	Frequencies	1280.0883	1282.1759	1289.1011
Frequencies	621.7242	625.2757	627.4335	Frequencies	1293.3430	1293.9958	1297.9532
Frequencies	629.5436	631.0210	632.9013	Frequencies	1298.2902	1299.3847	1301.4000
Frequencies	633.5787	636.9334	644,2098	Frequencies	1303.7995	1305.5104	1307.0279
Frequencies	651 2874	656 9185	670 0924	Frequencies	1308 0717	1309 4024	1311 0813
Frequencies	671 4520	673 2529	677 5024	Frequencies	1311 5952	1314 5320	1317 0460
Frequencies	690 2909	682 0621	605 9990	Frequencies	1220 2690	1224 2121	1227 2556
Frequencies	080.2808	702.0409	700.0700	Frequencies	1320.3089	1324.2121	1327.3330
Frequencies	099.0193	703.0498	709.9706	Frequencies	1328.7750	1332.2027	1333.0320
Frequencies	715.5252	/16.08//	716.3840	Frequencies	1336.7199	1341.1374	1343.6939
Frequencies	/1/./242	/1/.8/13	/20.465/	Frequencies	1347.7585	1348.5545	1358.6647
Frequencies	723.3167	724.0469	724.8955	Frequencies	1359.6325	1360.6031	1363.6676
Frequencies	725.6640	730.9962	731.7921	Frequencies	1364.0758	1365.0300	1366.7501
Frequencies	735.3484	740.3404	745.0385	Frequencies	1366.9989	1368.6214	1370.8484
Frequencies	746.9130	753.2294	764.6785	Frequencies	1372.7142	1373.6412	1376.6747
Frequencies	768.6633	768.7816	770.6090	Frequencies	1384.5218	1386.7297	1389.0296
Frequencies	771.3943	774.8672	776.0820	Frequencies	1403.5941	1424.1407	1435.6512
Frequencies	776.6636	781.0513	781.6448	Frequencies	1448.6862	1458.1858	1464.9056
Frequencies	784 6882	785 3807	795 3186	Frequencies	1470 2378	1479 7415	1493 1092
Frequencies	798 5620	801 3/12	805 3892	Frequencies	1/93 720/	1/9/ 1011	1/97 1513
Frequencies	7 98.3020 ONE 7222	801.3412 910 7625	805.5852 836 037E	Frequencies	1493.7204	1494.1011	1497.1513
Frequencies	003.7525	019.7055	020.0273	Frequencies	1497.4374	1500.5494	1502.7502
Frequencies	827.3045	829.5847	847.2916	Frequencies	1504.9924	1506.6894	1508.0464
Frequencies	849.1823	858.8392	861.2395	Frequencies	1510.5666	1511.2182	1516.2168
Frequencies	863.4/33	865.4695	86/.83//	Frequencies	1518.6936	1520.4817	1526.8059
Frequencies	868.3038	870.8085	873.1477	Frequencies	1529.0648	1532.0254	1548.3391
Frequencies	873.3373	875.1123	876.6011	Frequencies	1549.7185	1550.9857	1552.7700
Frequencies	876.8197	888.0856	888.3019	Frequencies	1553.6994	1554.8674	1559.4326
Frequencies	890.0613	892.9309	907.9975	Frequencies	1560.2950	1562.4744	1564.1866
Frequencies	916.4550	917.8934	922.9548	Frequencies	1566.0879	1572.5263	1657.1603
Frequencies	925.5912	931.8167	933.9990	Frequencies	1662.8068	1668.3782	1668.5542
Frequencies	935.3082	939.8801	940.0517	Frequencies	1669,8393	1672.1207	1674.1038
Frequencies	941 9417	943 0684	945 2556	Frequencies	1674 1752	1678 7281	1679 4580
equencies ···		2.0.0001		equencies			10, 0.4000

Frequencies	1683.6334	1687.7375	1690.6082
Frequencies	1691.0565	1694.9062	1696.7421
Frequencies	1697.9183	1698.9899	1699.2656
Frequencies	1700.5866	1701.5046	1702.7881
Frequencies	1703.7733	1704.3639	1719.2121
Frequencies	1722.5182	1730.0656	1737.0533
Frequencies	2281.6037	3079.7842	3079.9190
Frequencies	3086.8408	3092.4186	3132.1048
Frequencies	3145.3900	3151.0634	3154.5246
Frequencies	3183.0963	3186.9339	3195.5326
Frequencies	3197.9503	3202.1843	3204.3047
Frequencies	3206.3708	3206.4822	3208.2920
Frequencies	3213.8072	3214.3723	3214.6986
Frequencies	3216.4166	3217.5214	3218.0879
Frequencies	3218.5845	3219.9541	3223.2718
Frequencies	3224.0448	3224.4385	3225.6282
Frequencies	3225.8925	3228.5209	3229.6452
Frequencies	3230.7426	3231.6861	3232.4811
Frequencies	3232.4913	3232.8526	3232.8912
Frequencies	3233.4465	3233.5426	3235.3700
Frequencies	3236.3856	3236.8651	3237.1021
Frequencies	3238.7110	3241.2543	3241.6132
Frequencies	3244.2895	3245.8851	3246.4224
Frequencies	3247.5767	3248.4736	3249.0617
Frequencies	3251.6502	3251.9492	3252.8465
Frequencies	3257.6975	3278.2045	3635.0847

SCF Done: E(RM062X/DGDZVP) = -6499.39696055Sum of electronic and zero-point Energies=-6498.046728Sum of electronic and thermal Energies=-6497.932205Sum of electronic and thermal Free Energies=-6498.206737SCF Done: E(RM062X/DGTZVP/SMD) = -6500.68236596

Cat f TS1b_S

Center	Atomic	A	tomic	Coordinates	s (Angstroms)
Numbe	r Num	ber	Туре	X Y	Z
1	15	0	0.052661	0.008195	-0.056709
2	8	0	0.020621	0.009593	1.567332
3	8	0	1.646649	-0.005739	-0.361149
4	8	0	-0.414758	1.325591	-0.610821
5	8	0	-0.674495	-1.228451	-0.476816
6	6	0	0.561473	1.085653	2.238522
7	6	0	2.382594	-1.096974	0.066472
8	6	0	1.913912	1.067670	2.551731
9	6	0	-0.246456	2.184675	2.573297
10	6	0	2.902791	-1.114933	1.353150
11	6	0	2.516325	-2.205996	-0.778022
12	6	0	2.928968	-0.055924	2.440563
13	6	0	2.493259	2.186430	3.152242
14	6	0	0.347293	3.261563	3.243225
15	6	0	-1.680772	2.183981	2.185095
16	6	0	3.519883	-2.278360	1.814145
17	6	0	3.236697	-3.314662	-0.326764
18	6	0	1.762339	-2.223708	-2.053189
19	6	0	2.902519	-0.957757	3.703668
20	6	0	4.247862	0.756778	2.395011
21	6	0	4.001656	2.004778	3.276920
22	6	0	1.712475	3.280988	3.541020
23	1	0	-0.267634	4.105150	3.541920
24	6	0	-2.266404	3.279329	1.537023
25	6	0	-2.487194	1.064143	2.399042
26	6	0	3.704373	-2.229973	3.324927
27	6	0	3.751138	-3.368175	0.969932

28	1	0	3.364057	-4.168335	-0.98/113
29	6	0	0.816802	-3.225472	-2.280586
30	6	0	1.851093	-1.192933	-2.984858
31	1	0	3.303553	-0.452643	4.587941
32	1	0	1 864345	-1 233944	3 917735
32	1	0	5 110955	0 171091	2 725700
24	1	0	4 422711	1.007018	1 201042
54	1	0	4.455711	1.06/018	1.301943
35	1	0	4.253699	1.//4//1	4.319779
36	6	0	4.810348	3.213884	2.852377
37	6	0	2.313067	4.419698	4.286381
38	6	0	-3.575835	3.234850	1.044880
39	8	0	-1.479932	4.397151	1.369704
40	6	0	-3.766886	0.985386	1.859429
41	8	0	-2.035327	0.014353	3.161030
42	1	0	4 760992	-2 109059	3 592509
43	6	0	3 176213	-3 488314	3 986691
43	6	0	4 475 270	1 6 6 6 2 1 2	1 472241
44	0	0	4.473270	-4.303515	1.4/2241
45	0	0	-0.043904	-3.101210	-3.308287
46	8	0	0.725402	-4.249439	-1.366506
47	6	0	0.981694	-1.109367	-4.073722
48	8	0	2.808664	-0.219484	-2.810907
49	6	0	4.725455	3.700463	1.543303
50	6	0	5.643771	3.875350	3.756893
51	6	0	2.346090	5.705340	3.738804
52	6	0	2.875082	4.203511	5.549314
53	6	0	-4 331795	2 064546	1 179802
54	8	0	-4 133472	4 303942	0 397382
55	6	0	2 102002	5 5 2 2 6 1 0	0.0076065
55	0	0	-2.103903	0.174420	1.000400
50	0	0	-4.482072	-0.174429	1.996490
57	6	0	-2.426583	-1.209056	2.640089
58	6	0	1.888179	-3.944000	3.6/66/4
59	6	0	3.961570	-4.240320	4.859596
60	6	0	3.844863	-5.811645	1.538806
61	6	0	5.785882	-4.438907	1.945321
62	6	0	0.021686	-2.100330	-4.276313
63	8	0	-1.023260	-4.109289	-3.556863
64	6	0	-0.463684	-4.939870	-1.363632
65	8	0	1 078011	-0.030849	-4 915484
66	6	0	2 385849	1 031816	-3 216541
67	6	0	5 461947	4 815902	1 1/72/13
607	1	0	4.070756	2 207255	0.025443
00	1 C	0	4.070730	5.207255	0.020442
69	6	0	6.366975	5.003669	3.3/2253
70	1	0	5./1458/	3.513688	4.779853
/1	6	0	2.972563	6.747630	4.421225
72	1	0	1.893534	5.879119	2.765183
73	6	0	3.484079	5.248335	6.241737
74	1	0	2.826475	3.210308	5.990125
75	6	0	-5.746848	1.887480	0.677126
76	6	0	-3.404530	5.470715	0.381978
77	6	0	-1 396041	6 715818	0 863218
78	6	0	-3 669865	-1 300775	2 025837
79	6	0	-1 586895	-2 308793	2 707107
,,,	c	0	1 204022	-2.500755	2.707107
80	0	0	1.394832	-5.119482	4.234044
81	1	0	1.284/1/	-3.388934	2.959088
82	6	0	3.475554	-5.427036	5.412565
83	1	0	4.972369	-3.911598	5.090178
84	6	0	4.504753	-6.906644	2.093821
85	1	0	2.821704	-5.908741	1.183809
86	6	0	6.452290	-5.536053	2.487943
87	1	0	6.283246	-3.473860	1.879710
88	6	0	-0.970307	-2.094865	-5.414344
89	6	ñ	-1 338878	-4 863336	-2 444550
90	6	0	-0.757070	-5 750060	_0.282646
01	6	0	1 /05524	1 1 1 2 7 7 1	1 2012040
21	0	0	1.430034	1.123/31	-4.201230
92	ь	U	2.80/543	2.1/50/4	-2.595368
43	6	0	6.280962	5.4/6/14	2.063523

94	1	0	5.392196	5.172346	0.122709
95	1	0	6.996936	5.511918	4.096012
96	6	0	3.548495	6.520017	5.671397
97	1	0	3.013532	7.737010	3.975725
98	1	0	3.912391	5.070199	7.223663
99	9	0	-6.596138	1.676861	1.694343
100	9	0	-6.207366	2.929765	-0.017879
101	9	0	-5.841028	0.813913	-0.139249
102	6	0	-4.001206	6.606581	-0.146078
103	1	0	-0.378688	6.721369	1.246518
104	6	0	-1 991503	7 861780	0 336355
105	6	0	-4 086143	-2 481839	1 431094
106	1	0	-0.620417	-2 196988	3 186863
107	6	0	2 007140	2.100000	2 122270
107	6	0	2.007140	-3.307048	E 102127
100	1	0	2.191353	-3.809003	3.103127
109	1	0	0.392790	-5.458764	3.987033
110	1	0	4.106738	-6.010135	6.076337
111	6	0	5.808307	-6.//0/19	2.5/3328
112	1	0	3.997297	-7.864095	2.162234
113	1	0	7.470941	-5.426825	2.847936
114	9	0	-2.239278	-2.017025	-4.956523
115	9	0	-0.887420	-3.229165	-6.131408
116	9	0	-0.802101	-1.083302	-6.265847
117	6	0	-2.526412	-5.580467	-2.439110
118	1	0	-0.043872	-5.807856	0.534864
119	6	0	-1.938330	-6.500343	-0.280974
120	6	0	1.045147	2.361077	-4.722778
121	1	0	3 561368	2 066891	-1 767610
122	6	0	2 457227	3 423081	-3.066812
122	1	0	6 8/18818	6 350452	1 759166
120	1	0	1 036348	7 221947	6 201022
124	1	0	4.030348	7.331847	0.201932
125	1	0	-5.010824	6.524777	-0.535085
126	6	0	-3.289236	7.805848	-0.1/144/
127	1	0	-1.433700	8.792306	0.318997
128	1	0	-5.045636	-2.506631	0.925144
129	6	0	-3.243129	-3.592021	1.488894
130	1	0	-1.355382	-4.373951	2.165229
131	1	0	1.813582	-6.793551	5.530018
132	1	0	6.319562	-7.623746	3.008826
133	1	0	-3.186777	-5.497208	-3.296346
134	6	0	-2.824518	-6.406318	-1.353925
135	1	0	-2.163395	-7.149791	0.559000
136	1	0	0.330091	2.400612	-5.537707
137	6	0	1.539858	3.515585	-4.115148
138	1	0	2.845779	4.326963	-2.606329
139	1	0	-3.751811	8.693289	-0.589762
140	1	0	-3.544346	-4.520374	1.013823
141	1	0	-3.744738	-6.980703	-1.355292
142	1	0	1 209694	4 488650	-4 466038
143	1	0	-2 375112	-0.810941	-0 567067
144	8	0	-3 214074	-0 579198	-1.060650
145	6	0	-2 957419	-0.987791	-2 437088
145	6	0	2.337413	0.067731	2.437088
140	1	0	-2.707930	1.621110	-3.044936
147	1	0	-2.078847	-1.631119	-2.476619
148	1	0	-3.843836	-1.494390	-2.81/428
149	8	0	-1.356334	0.652589	-3.338/58
150	6	0	-3.16/06/	1.14/8/6	-1.//3/13
151	1	0	-0.865233	0.816739	-2.508010
152	1	0	-4.218841	1.356008	-1.618098
153	1	0	-2.456377	1.537129	-1.057325
154	1	0	-0.736517	2.858134	-1.099155
155	7	0	-0.782106	3.831218	-1.455812
156	6	0	-1.723015	4.266522	-2.308426
157	6	0	0.226003	4.727347	-1.135989
158	16	0	-3.095979	3.463596	-2.839859
159	16	0	-1.334000	5.898563	-2.834260

160	6	0	0 101551	5 933049	-1 832020
161	6	0	1 240550	1 519/07	0 201605
101	6	0	1.240555	4.510457	-0.201005
162	6	0	1.019/12	6.964410	-1.635610
163	6	0	2.142244	5.557165	0.005284
164	1	0	1.304410	3.572699	0.335648
165	6	0	2 040870	6 762249	-0 709491
100	1	0	0.020201	7 002213	2 172275
100	T	0	0.929281	7.902857	-2.1/33/5
167	1	0	2.940037	5.433588	0.730819
168	1	0	2.765545	7.550933	-0.532951
169	6	0	-3 554616	0 697166	-4 266448
170	c	0	4.045120	0 5 7 2 8 8 4	4 105 247
170	0	0	-4.943120	0.372664	-4.193347
171	6	0	-2.958213	1.075487	-5.467757
172	6	0	-5.733994	0.838278	-5.312563
173	1	0	-5.427559	0.273497	-3.265497
17/	6	0	-3 7/7221	1 3255/17	-6 589328
174	1	0	-3.747221	1.525547	-0.303320
175	T	0	-1.878987	1.169704	-5.513404
176	6	0	-5.134754	1.213051	-6.515195
177	1	0	-6.813709	0.749679	-5.243569
178	1	0	-3 274541	1 612024	-7 523827
170	1	0	5.274341	1.012024	7.323027
179	1	0	-5./46///	1.416211	-7.388541
Frequenc	ies	-536 10	550	14 5663	18 3956
Fraguene		20.10		21.5005	
Frequen	cies	20.25	100	21.5980	26.5025
Frequen	cies	29.63	366	32.2953	35.0943
Frequen	cies	35.47	27	37.6086	38.2773
Frequen	cies	40.05	524	41.4346	43.5995
Frequent	cioc	17 26	557	10 10 99	E0 2007
Frequen	cies	47.50		49.4000	30.8097
Frequen	cies	52.12	250	55.0032	55.9538
Frequen	cies	58.26	518	62.1292	65.2789
Frequen	cies	67.94	17	70.1692	72,6024
Frequence	cioc	7/ 00	77	76 9707	70 1724
Frequen	ues	74.60	0//	/0.8/9/	/0.1/24
Frequen	cies	/8.5/	/34	84./349	86.7235
Frequen	cies	88.25	508	92.1646	95.4583
Frequen	cies	97.35	509	99.1617	102.2562
Frequen	cios	103 5	591	106 5100	113 0879
ricquein		105.5	100	110.3100	115.0075
Frequen	cies	116.1	108	119.2134	125.6296
Frequen	cies	127.9	022	130.4621	136.1459
Frequen	cies	138.8	387	141.5651	147.1759
Frequen	cies	153.2	783	157 6317	163 1577
Frequent	cioc	165.2	026	160 0011	172 0100
riequein		105.5	320	100.0911	172.0100
Frequen	cies	1/6.6	/39	188.3196	190.8608
Frequen	cies	197.0	608	197.2792	200.4621
Frequen	cies	208.6	689	217.3079	224.1307
Frequen	ries	227 5	815	230 5316	232 8871
Frequent	cioc	227.0	120	242 2606	240 1655
riequein		257.2	120	243.2090	249.1055
Frequen	cies	254.3	597	256.4596	267.5147
Frequen	cies	271.9	452	274.6500	276.8527
Frequen	cies	277.9	311	279.9278	281.0791
Frequen	cios	287.7	637	290 1021	293 2671
Frequen	-:	207.7	010	200.1021	200.2670
Frequen	cies	295.6	019	297.5423	300.3679
Frequen	cies	306.2	166	312.8670	315.0235
Frequen	cies	317.1	396	321.4446	324.2815
Frequen	ries	328.4	353	331 2804	335 8448
Frequen	cioc	220.1	001	244 2211	249 6604
Frequen	cies	339.0	180	344.2211	348.0094
Frequen	cies	353.2	126	375.5528	387.4340
Frequen	cies	398.5	064	404.8472	408.9945
Frequen	cies	410.6	089	411.3197	412.6543
Frequen	- ries	4117	209	414 5066	415 1762
	-:	410.0	205	421 1546	421.0470
Frequen	cies	419.0	ō4/	421.1546	421.8479
Frequen	cies	428.1	765	434.7383	437.8572
Frequen	cies	441.5	531	444.1168	448.5571
Frequen	cies	450 R	172	452,8415	460 2049
Eroquero	cios	1610	1, 2	166 6527	160.204J
riequeño		404.9		400.02/	408.3511
Frequen	cies	473.6	206	486.9808	490.4285
Frequen	cies	500.7	041	508.2077	510.3366

Frequencies	512 2657	512 5238	521 7266	Frequencies	1175 9663	1176 8717	1178 1974
r .	512.2057	512.5250	521.7200	r ·	1170.3003	1170.0717	1170.1374
Frequencies	522.0852	525.5376	530.9887	Frequencies	11/8.//5/	11/9.0138	11/9.2105
Frequencies	534.3832	535.3461	537.3300	Frequencies	1187.1648	1193.7343	1193.9592
Frequencies	542.9759	546.6640	555.2956	Frequencies	1200.1071	1201.4618	1204.5631
Frequencies	555.6806	558.9038	559.2437	Frequencies	1204.6639	1205.2304	1206.4375
Frequencies	563 5008	566 2852	571 3300	Frequencies	1209 0120	1212 0440	1215 6090
Frequencies	505.5000	500.2052	571.5500	Frequencies	1200.0120	1212.0440	1219.0050
Frequencies	575.0004	582.4079	585.4734	Frequencies	1220.1271	1225.5277	1228.0452
Frequencies	586.7445	590.5781	591.1894	Frequencies	1234.2522	1237.5865	1239.4283
Frequencies	596.0324	599.0071	601.2084	Frequencies	1239.6489	1244.3983	1246.0619
Frequencies	602.6629	603.8494	610.3480	Frequencies	1252.1664	1255.9814	1262.2438
Frequencies	612 3219	614 0361	618 4424	Frequencies	1275 2338	1276 8542	1280 5306
Frequencies	612.3213	C21 200C	616.4424	Frequencies	1202 1120	1200.0342	1200.5500
Frequencies	620.1097	021.2900	023.7901	Frequencies	1203.1130	1200.0220	1207.0140
Frequencies	626.7412	629.4949	631.2784	Frequencies	1293.1946	1294.1335	1294.6765
Frequencies	632.8760	633.9636	636.5594	Frequencies	1298.2585	1299.3743	1305.8154
Frequencies	644.6278	651.0498	657.3347	Frequencies	1306.9205	1308.0141	1310.5626
Frequencies	669.6467	670.4935	673.8908	Frequencies	1311.7056	1313.0375	1317.6051
Frequencies	675.9614	678.8791	679.9787	Frequencies	1318.6729	1321.9598	1325.7976
Frequencies	683 2676	696 3602	703 8505	Frequencies	1326 9743	1329 0145	1334 8341
Frequencies	711 0492	712 7452	703.0303	Frequencies	1220.2743	1240 7904	1240 0041
Frequencies	711.0462	712.7433	717.0182	Frequencies	1556.4204	1540.7694	1340.6941
Frequencies	/1/./098	/18.0203	/18.6818	Frequencies	1343.5930	1354.2158	1358.6084
Frequencies	718.9088	722.7821	724.9531	Frequencies	1359.7943	1361.1378	1361.9541
Frequencies	726.1556	727.0176	732.4594	Frequencies	1362.3859	1363.3955	1365.1177
Frequencies	732.9491	734.2540	739.3993	Frequencies	1365.2851	1365.5047	1366.8805
Frequencies	744 6271	747 7057	752 8511	Frequencies	1370 2616	1373 5315	1374 1444
Frequencies	762 5277	764 7620	766 5006	Frequencies	1206 2717	1200 5002	1201 0002
riequencies	702.3377	704.7023	700.3990	riequencies	1300.3717	1300.3903	1391.9082
Frequencies	769.0336	//1.1/85	//3.2922	Frequencies	1404.7398	1420.5694	1447.3758
Frequencies	775.0343	776.4056	776.9352	Frequencies	1449.9054	1458.3766	1461.8742
Frequencies	778.9181	781.2540	783.6068	Frequencies	1467.7011	1472.6708	1482.0069
Frequencies	785.9099	796.5742	799.4763	Frequencies	1492.2415	1493.6845	1494.5614
Frequencies	801.0158	804.2504	806.4029	Frequencies	1496.9707	1498.8240	1499.6461
Frequencies	822 4986	826 7017	878 7379	Frequencies	1501 4092	1504 0374	1507 2619
Frequencies	022.4500	856 1050	860 6752	Frequencies	1501.4052	1510 5412	1507.2015
Frequencies	831.1037	850.1050	860.6752	Frequencies	1507.7585	1510.5415	1511.8050
Frequencies	862.4115	862.5341	864.8382	Frequencies	1514.1971	1520.2868	1520.9507
Frequencies	865.7099	866.4350	867.1833	Frequencies	1530.1467	1533.2350	1544.6532
Frequencies	867.3025	871.1229	874.1207	Frequencies	1546.7101	1550.7644	1553.5890
Frequencies	881.4671	881.9122	888.1594	Frequencies	1554.4362	1556.9591	1557.6192
Frequencies	888 9439	890 3600	893 7820	Frequencies	1560 0152	1561 9115	1566 1805
Eroquoncios	205 0227	012 0790	01/ 2000	Frequencies	1569 2205	1572 0786	1655 5427
Frequencies	030.5007	022.1/00	026 1042	Frequencies	1000.0200	1073.0700	1000.0407
Frequencies	920.5094	923.1620	926.1842	Frequencies	1662.8322	1667.4393	1669.8764
Frequencies	930.1303	931.9446	935.0365	Frequencies	16/1.8334	16/2.6809	16/4.5166
Frequencies	938.9681	941.2503	942.3794	Frequencies	1677.9492	1677.9655	1679.1566
Frequencies	942.9031	944.6212	946.2772	Frequencies	1685.5518	1687.1663	1690.3320
Frequencies	947.4926	951.7570	953.9414	Frequencies	1692.9071	1694.6223	1696.0159
Frequencies	954 9456	958 0443	966 5399	Frequencies	1697 2391	1699 2037	1700 0464
Frequencies	071 4140	074 0476	087 2651	Frequencies	1700 0669	1701 2607	1702 6070
Frequencies	971.4149	974.0470	987.2031	Frequencies	1700.9000	1701.5007	1705.0079
Frequencies	989.0287	991./3/3	994.0492	Frequencies	1/04.1/48	1/04.4057	1/18./163
Frequencies	995.4310	996.3894	998.2829	Frequencies	1722.9416	1725.0694	1738.9729
Frequencies	998.7082	999.8191	1001.8424	Frequencies	3077.8636	3080.4097	3086.7217
Frequencies	1009.1432	1009.7689	1011.8772	Frequencies	3092.9530	3149.6094	3150.4892
Frequencies	1013,2090	1014.8989	1018.7522	Frequencies	3155,7979	3181.0384	3181.8454
Frequencies	1019 3967	1019/1812	1019 8970	Frequencies	3181 9//9	3184 8552	3196 9825
Frequencies	1015.5507	1013.4012	1019.8970	Frequencies	2202 7441	2202.2140	2202 7140
Frequencies	1020.1000	1022.4815	1028.0877	Frequencies	3202.7441	5205.2148	3203.7140
Frequencies	1030.4572	1036.5496	1037.7553	Frequencies	3203.8200	3206.0299	3210.2123
Frequencies	1038.9266	1045.4142	1045.9538	Frequencies	3211.3595	3213.4097	3214.7142
Frequencies	1052.1023	1054.4625	1054.7543	Frequencies	3214.7946	3216.4583	3217.1448
Frequencies	1061.3293	1064,1069	1066.1965	Frequencies	3217.5966	3220.4437	3221.7891
Frequencies	1066 7682	1067 0667	1069 1667	Frequencies	3222 7164	3226 2978	3227 4004
Frequencies	1070 2497	1073 0110	1075 8142	Erequencies	3777 1226	3778 1019	2770 6000
Frequencies	1070.040/	1002 0022	1005 00 40	Frequencies	3227.4330	JZZ0.4U10	2220.0758
Frequencies	1078.9194	1092.6923	1096.8049	Frequencies	3229.8993	3230.1696	3231.0759
Frequencies	1105.7928	1110.0485	1111.9047	Frequencies	3232.0386	3235.0939	3236.7504
Frequencies	1112.9305	1113.9792	1115.1787	Frequencies	3237.2563	3238.0607	3238.0667
Frequencies	1120.7471	1123.3467	1126.5583	Frequencies	3238.6696	3239.2289	3239.6033
Frequencies	1129,1158	1131 9910	1134,7970	Frequencies	3241,3194	3242,9975	3243 7977
Frequencies	1135 5618	1164 1507	1164 4102	Frequencies	3243 9505	3244 2388	3246 1314
Frequencies	1166 7600	1160 0770	1160 2210	Frequencies	2273.3303	2277.2300	2240.1314
r equencies	1170 2100	1172 5000	1175 4400	rrequencies	JZ47.8U91	JZ40.0024	3249.2033
Frequencies	11/0.3180	11/3.5896	11/5.4492	requencies	3250.1148	3256.8112	3260.6075

 Frequencies - 3279.1630
 3377.3051
 3662.0271

 SCF Done:
 E(RM062X/DGDZVP) =
 -6499.36618258

 Sum of electronic and zero-point Energies=
 -6498.015868

 Sum of electronic and thermal Energies=
 -6497.901949

 Sum of electronic and thermal Free Energies=
 -6498.171987

 SCF Done:
 E(RM062X/DGTZVP/SMD) = -6500.64666827

Cat f I1b_S

Center	Ator	mic At	omic	Coordinates	s (Angstroms)
Number	N	umber	Туре	X Y	Z
1	15	0	0.013282	0.020951	0.056719
2	8	0	0.028359	-0.009813	1.686511
3	8	0	1.612016	0.097306	-0.268632
4	8	0	-0.528634	1.340211	-0.429276
5	8	0	-0.614070	-1.248949	-0.395705
6	6	0	0.566446	1.071851	2.347402
7	6	0	2.369465	-1.001760	0.100872
8	6	0	1.925855	1.074880	2.637234
9	6	0	-0.246044	2.165805	2.684071
10	6	0	2.920494	-1.057997	1.374929
11	6	0	2.478709	-2.096194	-0.767829
12	6	0	2.947879	-0.037511	2.498226
13	6	0	2.502702	2.201485	3.225597
14	6	0	0.346888	3.258355	3.328714
15	6	0	-1.677541	2.153894	2.286426
16	6	0	3.555830	-2.227736	1.792027
17	6	0	3.228390	-3.205159	-0.366510
18	6	0	1.663055	-2.128768	-2.004023
19	6	0	2.934720	-0.980353	3.730151
20	6	0	4.264710	0.778063	2.471442
21	6	0	4.012460	2.021014	3.357049
22	6	0	1.715504	3.294032	3.610100
23	1	0	-0.272755	4.101117	3.621703
24	6	0	-2.228888	3.212562	1.557180
25	6	0	-2.490309	1.041976	2.501732
26	6	0	3.749894	-2.228736	3.302875
27	6	0	3.781936	-3.288921	0.911659
28	1	0	3.340149	-4.042287	-1.050477
29	6	0	0.732220	-3.153732	-2.182084
30	6	0	1.676813	-1.094625	-2.934680
31	1	0	3.335482	-0.500423	4.628669
32	1	0	1.900723	-1.275060	3.938961
33	1	0	5.125048	0.191259	2.807203
34	1	0	4.461310	1.090606	1.441750
35	1	0	4.253024	1.785263	4.401634
36	6	0	4.832188	3.228117	2.947519
37	6	0	2.311313	4.444070	4.344066
38	6	0	-3.506095	3.142640	1.002829
39	8	0	-1.416220	4.305841	1.322410
40	6	0	-3.751728	0.946123	1.917894
41	8	0	-2.054765	0.001644	3.285190
42	1	0	4.806057	-2.104513	3.571011
43	6	0	3.239903	-3.516312	3.921440
44	6	0	4.525676	-4.494638	1.360043
45	6	0	-0.163458	-3.123493	-3.241826
46	8	0	0.692808	-4.165216	-1.250700
47	6	0	0.767907	-1.041877	-3.991874
48	8	0	2.620501	-0.100389	-2.792874
49	6	0	4.809336	3.684798	1.625786
50	6	0	5.616159	3.918322	3.875117
51	6	0	2.382869	5.716186	3.768566
52	6	0	2.829774	4.250585	5.629089

53	6	0	-4.286467	1.995557	1.176305
54	8	0	-3.968715	4.145262	0.175919
55	6	0	-2.036073	5.427293	0.825648
56	8	0	-4.464932	-0.211223	2.053038
57	6	0	-2.423108	-1.229772	2.759218
58	6	0	1.952474	-3.972025	3.608069
59	6	0	4.043715	-4.294773	4.753667
60	6	0	3.910626	-5.750240	1.381857
61	6	0	5.840161	-4.372158	1.823521
62	6	0	-0.145777	-2.080634	-4.171589
63	8	0	-1.115806	-4.102513	-3.396999
64	6	0	-0.465043	-4.906357	-1.219724
65	8	0	0.784754	0.036913	-4.844491
66	6	0	2.198574	1.129962	-3.242510
67	6	0	5.539470	4.808951	1.242576
68	1	0	4.210376	3.157157	0.884960
69	6	0	6.338592	5.051036	3.502057
70	1	0	5.647672	3.576318	4.906579
71	6	0	3.002515	6.765476	4.446590
72	1	0	1 966131	5 874271	2 776552
73	6	0	3 431722	5 302825	6 316888
74	1	0	2 753576	3 268303	6 089714
75	6	0	-5 674343	1 800479	0.611093
76	6	0	2 200950	5 346435	0.011055
70	6	0	1 261692	6 6 2 9 7 2 2	0.247103
70	6	0	2 649070	1 222005	0.009090 0.1100E0
70	6	0	1 570776	-1.332303	2.112330
79	C	0	-1.376230	-2.323241	4 1 2 2 4 0 0
80	0	0	1.4/98/3	-5.1/5/18	4.122480
81	1 C	0	1.332233	-3.394007	2.923222
82	6	0	3.577912	-5.509174	5.262126
83	1	0	5.053605	-3.964124	4.985624
84	6	0	4.589188	-6.858948	1.884402
85	1	0	2.884839	-5.844414	1.033592
86	6	0	6.525155	-5.482505	2.313557
87	1	0	6.325648	-3.399333	1./91998
88	6	0	-1.098446	-2.179236	-5.339423
89	6	0	-1.368830	-4.867711	-2.278453
90	6	0	-0.697833	-5.736539	-0.133003
91	6	0	1.270350	1.198483	-4.278902
92	6	0	2.740701	2.287676	-2.703007
93	6	0	6.302211	5.502190	2.182994
94	1	0	5.512940	5.142302	0.208160
95	1	0	6.928335	5.581145	4.243836
96	6	0	3.533149	6.560016	5.720362
97	1	0	3.074225	7.743108	3.979471
98	1	0	3.826230	5.141131	7.315659
99	9	0	-6.556658	1.539477	1.587528
100	9	0	-6.133976	2.872456	-0.053077
101	9	0	-5.726115	0.770052	-0.253026
102	6	0	-3.899375	6.473362	-0.298962
103	1	0	-0.372336	6.668921	1.319580
104	6	0	-1.953237	7.773947	0.312814
105	6	0	-4.043006	-2.520038	1.517429
106	1	0	-0.624184	-2.204615	3.358322
107	6	0	-1.978551	-3.528583	2.281629
108	6	0	2.295145	-5.952969	4.948888
109	1	0	0 478554	-5 516033	3 873480
110	1	0	4 223293	-6 111921	5 893942
111	6	0	5 896543	-6 727266	2 354931
112	1	0	2 092299	-7 874782	1 912779
112	1	n	7 546586	-5 37507/	2 666572
11/	<u>م</u>	0	-7 2702/1	-2 01/507	-1 92222
115	2	0	-2.3/3041	-2.04439/	
116	2	0	-0.330289	-J.J/0/21	-J.340937
117	9 E	0	-U.000230	-1.204480 5 622540	-0.20/393
110	1	0	-2.324/30	-3.033340	-2.244982
TTQ	T	U	0.05410/	-3./33840	0.009348

40.4153

48.2219 58.0681

63.4720

70.7553

76.5074

87.1915

92.9829

98.8785

108.6668

120.0681

128.0893

140.9894

158.0491

166.5209

177.6006

194.9312

213.4123

229.9606

237.0311

247.6240

271.9500 279.7626

289.6167

298.3067

306.2240 318.1905

328.2217

336.6460

349.6159 388.6437

410.5962

414.2150

419.6647

425.8254

441.7602

449.6066

460.8721

472.7671 500.9330

511.2095

523.9518

530.8869

543.4526

556.9417 563.2096

572.5663

588.3777 596.6535

602.1688

610.5452

618.0024

626.7187

632.7879

640.4598

656.8814

675.6031

694.9611

707.9908

717.1569

721.4315

725.7590

734.0067

738.8411

751.0164 767.0168

119	6	0	-1.846881	-6.528169	-0.103599	Frequencies	38.6415	39.6321
120	6	0	0 867913	2 426072	-4 783942	Erequencies	43 4979	46 8181
121	1	0	3 454680	2 196015	-1 890205	Frequencies	50.8122	53 9439
121	6	0	2 270777	2 5 2 2 7 2 4	2 22/2/6	Frequencies	50.0122	60 1001
122	1	0	2.370777	6 200607	1 000002	Frequencies	64 0297	68 0700
123	1	0	4.015212	0.360067	1.009220	Frequencies	72 7054	74 9924
124	1	0	4.015512	7.377242	0.247823	Frequencies	73.7054	74.8834
125	1	0	-4.884488	6.3/155/	-0.742989	Frequencies	/9.694/	84.9297
126	6	0	-3.21/312	/.6905//	-0.2/1956	Frequencies	88.0531	90.3564
127	1	0	-1.423370	8.720451	0.340135	Frequencies	96.5624	97.7781
128	1	0	-4.985644	-2.550546	0.981432	Frequencies	100.4841	103.1982
129	6	0	-3.197883	-3.625691	1.608125	Frequencies	108.9198	114.0983
130	1	0	-1.323966	-4.392296	2.337971	Frequencies	120.3279	123.6299
131	1	0	1.932440	-6.898125	5.340987	Frequencies	132.1800	133.6040
132	1	0	6.422833	-7.591525	2.748489	Frequencies	141.7193	147.9132
133	1	0	-3.209568	-5.574318	-3.084689	Frequencies	161.5647	164.8319
134	6	0	-2.762054	-6.471250	-1.154325	Frequencies	169.2495	172.7394
135	1	0	-2.024837	-7.185298	0.741741	Frequencies	188.8377	191.3830
136	1	0	0 140998	2 451373	-5 589681	Frequencies	195 5624	209 3342
137	6	0	1 434843	3 592706	-4 266907	Erequencies	217 5388	225 6541
138	1	0	2 807262	1 133879	-2 830845	Frequencies	23/ 1791	225.0511
120	1	0	2.607202	9 571020	0.704251	Frequencies	234.4751	245 0843
140	1	0	-3.078834	4 5 5 7 1 9 3 0	1 1 2 2 0 2 5	Frequencies	242.4230	245.0845
140	1	0	-3.481639	-4.559538	1.132935	Frequencies	255.5757	250.5105
141	1	0	-3.658628	-7.081583	-1.133318	Frequencies	273.6686	276.6969
142	1	0	1.149960	4.554584	-4.682611	Frequencies	282.1588	287.1881
143	1	0	-2.359849	-0.889846	-0.633659	Frequencies	294.0780	295.9420
144	8	0	-3.190929	-0.394864	-0.800336	Frequencies	301.3734	304.5664
145	6	0	-3.501885	-0.459125	-2.176291	Frequencies	311.7989	314.9186
146	6	0	-3.001902	0.785091	-2.943681	Frequencies	321.1972	322.9353
147	1	0	-3.051776	-1.336550	-2.656406	Frequencies	330.9664	331.8824
148	1	0	-4.589009	-0.534258	-2.268030	Frequencies	339.0924	346.9233
149	8	0	-1.589827	0.774253	-3.063739	Frequencies	355.1467	376.2411
150	6	0	-3.411189	2.038734	-2.152235	Frequencies	393.2240	404.8733
151	1	0	-1.215120	0.688875	-2.164624	Frequencies	411.3833	412.6588
152	1	0	-4 487153	2 070604	-1 960699	Frequencies	415 6566	418 4418
153	1	0	-2 892964	2 063865	-1 190145	Frequencies	421 8780	423 5720
15/	1	0	-0.832796	2.684276	-1 170321	Frequencies	421.0700	425.5720
155	7	0	0.812658	2.004270	1 551249	Frequencies	434.0002	430.3303
155	6	0	1 650695	4 205025	2 424417	Frequencies	442.0140	447.4771
150	0	0	-1.050085	4.205835	-2.424417	Frequencies	450.0712	455.1990
157	0	0	0.233294	4.510375	-1.164/44	Frequencies	407.3937	4/1.1592
158	16	0	-3.095498	3.5/3366	-3.093782	Frequencies	486.2631	491.7368
159	16	0	-1.183404	5.811419	-2.891075	Frequencies	502.3137	510.2633
160	6	0	0.203211	5.735539	-1.833307	Frequencies	512./163	521.1904
161	6	0	1.202364	4.224352	-0.202078	Frequencies	524.6830	524.9553
162	6	0	1.161975	6.718581	-1.587892	Frequencies	534.5001	536.1975
163	6	0	2.140094	5.214498	0.059828	Frequencies	548.3756	554.2845
164	1	0	1.198945	3.265132	0.313909	Frequencies	557.3917	559.5996
165	6	0	2.129785	6.440656	-0.629361	Frequencies	567.6753	569.9178
166	1	0	1.138876	7.669647	-2.109777	Frequencies	584.1965	585.3552
167	1	0	2.898683	5.041194	0.815061	Frequencies	588.8622	592.6730
168	1	0	2.886239	7.185711	-0.402270	Frequencies	599.0294	600.4266
169	6	0	-3.599739	0.827505	-4.338281	Frequencies	605.0500	610.0283
170	6	0	-4 988742	0 855907	-4 510536	Erequencies	611 6392	614 8908
171	6	0	-2 774414	0.885526	-5 461409	Erequencies	622 2604	625 5449
172	6	0	-5 5/1772	0.927093	-5 788002	Frequencies	630 1758	630 9285
172	1	0	5 652102	0.927095	2 640275	Frequencies	632 0285	626 5274
174	L L	0	-3.033102	0.822480	-3.049375	Frequencies	033.3385	050.5274
174	0	0	-3.327438	0.947552	-0./39550	Frequencies	644.6026	650.5051
175	Ţ	0	-1.698488	0.865468	-5.323734	Frequencies	669.6288	672.5930
1/6	6	0	-4./11039	0.969830	-6.908125	Frequencies	b/8.2510	683.0259
177	1	0	-6.620735	0.944254	-5.90/450	Frequencies	697.3248	/03.8961
178	1	0	-2.672194	0.969585	-7.605332	Frequencies	714.0214	715.6883
179	1	0	-5.140747	1.017744	-7.904031	Frequencies	718.9808	719.8533
						Frequencies	723.1178	723.6041
						Frequencies	729.1826	731.6154
Frequenc	ies	16.20	88 2	3.2722	24.5065	Frequencies	735.1417	735.1855
Frequence	cies	26.93	300 2	8.5304	29.2366	Frequencies	744.2477	748.1645
Frequen	cies	34.37	766 3	35.5432	36.4923	Frequencies	755.9045	758.6539

Frequencies	767.8565	770.0828	771.2018	Frequencies 1404.1688	1442.3693 1448.5951
Frequencies	775.1926	779.1973	780.2482	Frequencies 1458.5897	1462.0239 1467.0073
Frequencies	780.5821	781.4739	784.3685	Frequencies 1471.7690	1488.5297 1492.2958
Frequencies	795 3084	797 2300	799 9864	Frequencies 1493 8167	1495 9901 1496 2122
Frequencies	800 7290	801 9533	804 1706	Erequencies 1/98 6019	1/08 7300 1500 /7/8
Frequencies	806.1217	001.0000	826 4492	Fraguancias 1502 8227	1502 7640 1506 1956
Frequencies	000.1317	023.2007	820.4492	1502.8337	1505.7049 1500.1950
Frequencies	829.1135	832.0040	858.4411	Frequencies 1506.4369	1510.4142 1510.6758
Frequencies	860.0591	860.9567	862.2527	Frequencies 1514.41/1	1515.1783 1519.7168
Frequencies	864.2275	866.0392	869.6686	Frequencies 1529.3768	1533.2788 1544.9879
Frequencies	870.6736	871.8183	874.4196	Frequencies 1546.7793	1549.1377 1553.9641
Frequencies	880.1573	882.6198	883.4875	Frequencies 1555.2485	1559.8018 1561.0436
Frequencies	887.7107	889.6480	891.4633	Frequencies 1562.6485	1564.9986 1567.9965
Frequencies	894.4607	905.8897	911.9776	Frequencies 1569.2680	1570.6954 1655.1933
Frequencies	916.4577	921.0959	924.9136	Frequencies 1663.0008	1669.1037 1669.6979
Frequencies	930 8056	934 5160	938 6713		1673 6173 1674 2758
Frequencies	939 7632	939 9839	942 1109	Erequencies 1677.0672	1677 2795 1677 3236
Frequencies	9/3 7102	944 2605	9/6 37//	Frequencies 1682 1246	1686 / 708 1689 / 38/
Eroquoncios	0/0 0215	052 1944	054 2097	Fraguancias 1601.2294	1602 2003 1605 4200
Frequencies	940.021J	952.1044	954.5087	Frequencies 1091.3284	1092.8003 1093.4890
Frequencies	955.1821	960.5582	966.9406	Frequencies 1696.2275	1698.9226 1699.0150
Frequencies	969.9318	978.7929	984.5928	Frequencies 1700.2340	1/00.4837 1/02.5701
Frequencies	986.9440	987.1187	991.5457	Frequencies 1702.9925	1/03.9928 1/20.92/3
Frequencies	992.7422	994.1297	997.5831	Frequencies 1723.3716	1728.4501 1739.2016
Frequencies	998.7522	1000.5154	1005.6777	Frequencies 2818.9736	3077.4628 3077.8769
Frequencies	1007.3262	1011.1212	1012.4816	Frequencies 3085.2208	3087.9589 3095.3432
Frequencies	1014.9912	1018.4367	1018.8541	Frequencies 3124.3819	3148.5995 3156.7781
Frequencies	1019.6099	1019.9327	1021.6533	Frequencies 3164.5082	3183.8506 3183.8820
Frequencies	1023.5167	1027.8729	1028.4617	Frequencies 3199.1284	3199.2195 3202.2201
Frequencies	1030.9341	1034.7274	1036.0502	Frequencies 3202.2738	3204.9367 3206.7981
Frequencies	1036.6093	1044.3788	1051.7547	Frequencies 3209.0348	3209.3903 3211.7599
Frequencies	1053 3703	1059 7483	1059 8062	Frequencies 3211 8673	3212 4268 3213 8694
Frequencies	1062 1569	1064 8190	1066.0868	Frequencies 3214 4184	3215 5946 3215 6903
Eroquoncios	1067 4574	1060 2500	1070 8261	Fraguencies 2216 0099	2216 2645 2222 1219
Frequencies	1071 0016	1009.3309	1070.8201	Frequencies - 3210.0035	2224 2025 2224 272
Frequencies	1071.0910	1072.3000	1110 0215	Frequencies 3223.4214	3224.2933 3224.3778 2226.4622 2227.7FE6
Frequencies	1096.8882	1109.6453	1110.8215	Frequencies 3225.1552	3226.4632 3227.7556
Frequencies	1112.2999	1115.0045	1118.3941	Frequencies 3228.4936	3229./159 3231.0/12
Frequencies	1120.4/14	1124.1450	1125.0938	Frequencies 3231.9951	3233.5162 3234.0969
Frequencies	1126.3693	1127.2719	1129.6621	Frequencies 3234.1890	3234.6413 3236.4960
Frequencies	1131.3062	1132.9075	1142.7731	Frequencies 3236.6196	3237.7401 3238.2193
Frequencies	1153.9375	1160.9814	1163.3937	Frequencies 3239.8165	3242.8895 3244.3707
Frequencies	1163.7585	1164.3487	1165.9965	Frequencies 3246.8880	3248.0338 3249.7087
Frequencies	1170.6663	1173.2528	1174.4462	Frequencies 3250.8610	3253.2864 3254.6722
Frequencies	1175.3344	1177.8735	1178.3301	Frequencies 3265.8913	3559.3416 3704.0212
Frequencies	1179.1563	1180.7728	1183.0931		
Frequencies	1195.6183	1197.2861	1199.5895	SCE Done: F(RM062X/DGD7VP) =	-6499.42805541
Frequencies	1201 4766	1206 6135	1207 5311	Sum of electronic and zero-point B	nergies= -6498 076245
Frequencies	1211 2903	1212 8579	1214 1917	Sum of electronic and thermal En	ergies= -6497 962393
Frequencies	1211.2505	1217.0496	12214.1317	Sum of electronic and thermal En	-6/98 230158
Frequencies	1215.2517	1217.0450	1221.0052	SCE Dono: E/PM062V/DCT7//D/SN	ID) - CEOO 7084008E
Frequencies	1223.0102	1228.3203	1233.9709	SCF DOILE. E(KINIO02X/DG12VP/SIV	10)0300.70849983
Frequencies	1237.0706	1238.2496	1243.8026		
Frequencies	1246.9018	1249.7064	1252.9677	Cat f lOc_S	
Frequencies	1253.6028	1259.1581	12/1.13/4	_	
Frequencies	1276.0275	1277.7282	1280.1628	Center Atomic Atomic	Coordinates (Angstroms)
Frequencies	1286.7607	1290.0530	1293.9421	Number Number Type	X Y 7
Frequencies	1295.4176	1297.0493	1298.6082	Humber Humber Type	
Frequencies	1300.8130	1301.9491	1306.0689	1 15 0 0.020786	0.002427 0.115202
Frequencies	1307.0590	1308.0970	1309.5370		-0.032427 0.113302 0.004E74 1.718300
Frequencies	1310.5872	1311.9365	1313.2002	2 8 U -U.UZ/364	-0.034574 1.718269
Frequencies	1317.7623	1321.3327	1326.1684	3 8 U 1.51/618	-0.032500 -0.292154
Frequencies	1326.8585	1327.5414	1334.2373	4 8 0 -0.543571	1.29/606 -0.338/99
Frequencies	1337.5621	1340.8624	1342.0867	5 8 0 -0.714684	-1.3104/2 -0.382069
Frequencies	1347 6790	1357 5337	1359 0267	6 6 0 0.503239	1.017258 2.372338
Frequencies	1360 7915	1361 6856	1361 8683	7 6 0 2.328913	-1.093065 0.091575
Frequencies	1364 0295	1365 / 202	1365 9907	8 6 0 1.875345	1.113142 2.563631
Frequencies	1366 2202	1366 5690	1367 3159	9 6 0 -0.350029	2.068342 2.731352
Eroquencies	1260 0/E1	127/ 115/	1207.3130	10 6 0 2.950626	-1.014175 1.332146
Frequencies	1207.3431	1207 2700	1400 2007	11 6 0 2.481161	-2.224633 -0.724673
Frequencies	1301.4/5/	1331.7100	1400.2007		

12	6	0	3.006700	0.127392	2.329451	78	6	0	-3.993835	-1.309230	2.344429
13	6	0	2.402571	2.306268	3.062933	79	6	0	-2.110352	-2.419712	3.362553
14	6	0	0.200693	3.191860	3.354584	80	6	0	2.634238	-4.752601	5.143809
15	6	0	-1 765941	2 073232	2 296658	81	1	0	1 900299	-3 206659	3 840439
16	6	0	2 77209/	2.073232	1 794069	01	6	0	5 011170	1 761186	5 541100
17	6	0	2 246522	2.005240	0.280204	02	1	0	6 122142	2 202154	4 572504
10	C	0	3.540322	-3.233733	1 05 2201	03		0	0.132142	-5.205154	4.373394
18	6	0	1.664189	-2.425381	-1.952201	84	6	0	5.128629	-6.541915	2.288036
19	6	0	3.319403	-0.646908	3.637309	85	1	0	3.231682	-5.665555	1.742876
20	6	0	4.168178	1.099331	1.995221	86	6	0	7.059808	-5.124014	1.990943
21	6	0	3.906626	2.374119	2.837324	87	1	0	6.664519	-3.151735	1.209135
22	6	0	1.577618	3.334937	3.522383	88	6	0	-1.065254	-2.908543	-5.305590
23	1	0	-0.457016	3.999942	3.662396	89	6	0	-0.274668	-6.021388	-2.505581
24	6	0	-2.244009	3.157245	1.552848	90	6	0	1.123761	-6.952560	-0.774752
25	6	0	-2 635269	1 006874	2 508360	91	6	0	0 659233	0 642990	-4 420607
26	6	0	4 189818	-1 851651	3 213093	92	6	0	1 709918	2 070566	-2 783028
20	6	0	2 070504	2 1 9 7 7 7 9	0.065347	02	6	0	1 927012	6 05 05 4 2	0.775161
27	1	0	3.970304	4 100058	0.905347	93	1	0	4.837012	C.039342	0.775101
28	1 C	0	3.514176	-4.100058	-0.915109	94	1	0	5.546584	5.429331	-0.050345
29	6	0	0.955331	-3.621010	-2.121524	95	1	0	6.253488	6.412372	2.35/946
30	6	0	1.489246	-1.441474	-2.926172	96	6	0	3.394534	6.904139	5.044539
31	1	0	3.805996	-0.015050	4.386631	97	1	0	2.385240	7.913946	3.430331
32	1	0	2.379046	-1.007619	4.066147	98	1	0	4.249197	5.632667	6.560270
33	1	0	5.148724	0.655342	2.192543	99	9	0	-6.451083	1.007824	0.664940
34	1	0	4.124262	1.350054	0.930492	100	9	0	-6.424403	3.150866	0.882390
35	1	0	4 458734	2 334411	3 783285	101	9	0	-5 543955	2 227609	-0 862643
36	6	0	4 276059	3 652598	2 106974	102	6	0	-3 212651	5 468694	-1 649570
27	6	0	2 162275	1 590591	1 092262	102	1	0	0 202025	5 441029	0.16/027
27	c	0	2.102275	4.380381	4.082302	103	L L	0	0.383933	C 12E 940	1 707124
30	0	0	-3.524838	3.152946	1.023681	104	6	0	-0.886865	0.125840	-1.797124
39	8	0	-1.402953	4.219617	1.286489	105	6	0	-4.570920	-2.527795	2.022290
40	6	0	-3.905936	0.968335	1.923521	106	1	0	-1.155055	-2.344313	3.873330
41	8	0	-2.220400	-0.025858	3.316558	107	6	0	-2.714734	-3.650492	3.095787
42	1	0	5.248652	-1.562943	3.205082	108	6	0	3.753257	-5.327639	5.748664
43	6	0	4.036649	-3.059438	4.114546	109	1	0	1.647754	-5.175600	5.313769
44	6	0	4.855255	-4.295611	1.421290	110	1	0	5.889405	-5.205887	6.002456
45	6	0	0.035155	-3.801939	-3.157824	111	6	0	6.506680	-6.342233	2.385208
46	8	0	1 146817	-4 607656	-1 181569	112	1	0	4 691578	-7 485433	2 601106
17	6	0	0.603483	-1 623826	-3 983187	113	1	0	8 132384	-4 967145	2.001100
47	0	0	2 210000	0.279090	-3.303102 2.9E709E	111	1	0	2 010614	1 047797	E 200007
48	0	0	2.218989	-0.278980	-2.85/985	114	9	0	-2.010614	-1.947787	-5.289897
49	6	0	3.597549	3.990942	0.928622	115	9	0	-1.69///6	-4.076975	-5.391700
50	6	0	5.237020	4.531182	2.605/1/	116	9	0	-0.3/1144	-2.750540	-6.448240
51	6	0	1.933027	5.811797	3.459429	117	6	0	-0.811876	-7.272030	-2.771948
52	6	0	2.997512	4.526821	5.203118	118	1	0	1.873748	-6.795007	-0.006103
53	6	0	-4.367146	2.049234	1.177145	119	6	0	0.580035	-8.210770	-1.029312
54	8	0	-3.954707	4.212135	0.251367	120	6	0	0.006159	1.724990	-4.988854
55	6	0	-1.646579	4.834310	0.076203	121	1	0	2.368066	2.166819	-1.925638
56	8	0	-4 685309	-0 144323	2 074799	122	6	0	1 047315	3 163896	-3 343864
57	6	0	-2 762033	-1 253540	2.071733	122	1	0	5 0/9738	6 993/98	0.264274
57 E0	6	0	2.702033	2 624447	1 22.001047	120	1	0	2 077505	7 904202	E 412020
50	0	0	2.777350	-3.034447	4.524640	124	1	0	3.677363	7.804303	3.412030
59	6	0	5.146818	-3.633622	4.736101	125	1	0	-4.228242	5.445974	-2.032103
60	6	0	4.309018	-5.525079	1.802352	126	6	0	-2.1/893/	6.122911	-2.322843
61	6	0	6.236468	-4.103584	1.514832	127	1	0	-0.087651	6.640470	-2.321082
62	6	0	-0.144398	-2.796123	-4.110430	128	1	0	-5.521451	-2.536253	1.498258
63	8	0	-0.720734	-4.941515	-3.233931	129	6	0	-3.930021	-3.705107	2.414360
64	6	0	0.673658	-5.860892	-1.502366	130	1	0	-2.224465	-4.568230	3.408630
65	8	0	0.448920	-0.631307	-4.921947	131	1	0	3.643581	-6.203678	6.380481
66	6	0	1 526271	0.816403	-3 344906	132	1	0	7 146275	-7 133299	2 764345
67	6	0	2 979/21	5 190007	0.264170	122	1	0	1 562909	7 250094	2 5/0559
07 C0	1	0	2,070431	2 222009	0.204170	124	L L	0	-1.303808	-7.339084	-3.549558
00	1	0	2.822123	5.527008	0.546504	154	0	0	-0.391863	-8.308270	-2.018174
69	6	0	5.514615	5.730989	1.947263	135	1	0	0.912395	-9.064490	-0.448117
/0	1	0	5.755147	4.290314	3.531113	136	1	0	-0.655818	1.555069	-5.832411
71	6	0	2.552380	6.966604	3.933610	137	6	0	0.211595	2.994553	-4.447486
72	1	0	1.291018	5.851321	2.582490	138	1	0	1.180659	4.150092	-2.911314
73	6	0	3.607449	5.683216	5.685773	139	1	0	-2.388068	6.631336	-3.258037
74	1	0	3.161901	3.572703	5.698618	140	1	0	-4.389528	-4.663336	2.194083
75	6	0	-5.702121	2.093246	0.471428	141	1	0	-0.820155	-9.345905	-2.212400
76	6	0	-2.937905	4.838808	-0.444812	142	- 1	0	-0.299027	3.849537	-4.878351
77	6	0	-0.612585	5 468501	-0 59637/	1/12	1	0	-1 017120	1 335205	-1 28//15
, ,	0	0	0.012303	J.400JUI	0.00024	T40	T	0	1.01/120	1.333203	1.204413

144	8	0	-1.	750488	1.344664	-2.506987
145	6	0	-3.	118268	1.765696	-2.225776
146	6	0	-3.	596634	0.303529	-2.189340
147	1	0	-3.	178459	2.295689	-1.277099
148	1	0	-3.	504116	2.365019	-3.053988
149	8	0	-3.	595480	-0.094501	-0.834091
150	6	0	-2.	234376	0.003318	-2.855359
151	1	0	-3.	457187	-1.065214	-0.816091
152	1	0	-2.	253712	-0.096358	-3.941524
153	1	0	-1.	644036	-0./86536	-2.384810
154	1	0	-1.	26/338	-2.904850	-0.205800
155	/	0	-1.	639754	-3.868288	-0.13/02/
156	6	0	-2.	/506/2	-4.211947	-0.825843
157	10	0	-1. 2	119917	-4.816917	1 882705
158	10	0	-3	100702	-3.233039	-1.883/95
159	10	0	-3	057172	-5.8/1529	-0.425288
161	6	0	-1.	037423	4 670228	1 5/11/1
162	6	0	_1	504061	-7.07/101	1.541141
163	6	0	0	353802	-5 739472	2 359200
164	1	0	0.	581025	-3 747219	1 517771
165	6	0	-0	395727	-6 927092	2 363630
166	1	0	-2	075130	-7 997152	1 522159
167	1	0	1.	224050	-5.652899	3.003833
168	1	0	-0.	103099	-7.745613	3.013457
169	6	0	-4.	860560	-0.065157	-2.926725
170	6	0	-4.	975218	0.162290	-4.302811
171	6	0	-5.	939556	-0.622772	-2.238640
172	6	0	-6.	146643	-0.167294	-4.980273
173	1	0	-4.	147145	0.596908	-4.858955
174	6	0	-7.	111669	-0.954416	-2.916542
175	1	0	-5.	858090	-0.789767	-1.169070
176	6	0	-7.	219375	-0.729383	-4.287659
177	1	0	-6.	219207	0.008769	-6.049096
178	1	0	-7.	941772	-1.391501	-2.370161
179	1	0	-8.	131117	-0.991417	-4.815545
Frequenc	ios	15 95	12	1	7 1136	20 6167
Frequenc	cies	22 82	75	1	7.4430 04.8579	26 3977
Frequen	cies	30.42	97	2	32 3133	33 3978
Frequen	cies	35.38	31	3	39.5374	40.9859
Frequen	cies	41.96	73	4	4.0721	47.1162
Frequen	cies	48.97	74	5	50.3321	55.8603
Frequen	cies	56.51	15	5	57.6028	60.2180
Frequen	cies	63.01	08	e	53.9489	64.9193
Frequen	cies	69.07	34	7	71.1584	73.2443
Frequen	cies	74.47	93	8	30.5813	83.9368
Frequen	cies	85.99	14	8	37.5423	89.3580
Frequen	cies	90.32	99	ç	94.3423	95.1056
Frequen	cies	98.47	28	1	01.4901	103.1762
Frequen	cies	106.62	276	1	110.3212	116.7364
Frequen	cies	119.82	200	1	123.7016	129.1505
Frequen	cies	131.8	128	1	L34.4373	135.1882
Frequen	cies	141.41	101	1	142.9436	147.5843
Frequen	cies	150.66	208	1	15/.//56	165.2203
Frequen	cies	170 10	+45	1	197 20E7	102 0221
Frequen	cies	106 /0	23U 21/	-	102.3003 001 3160	192.9331 208.0064
	cies	216.9	514 75 <i>1</i>	4	201.3103	200.0004
Frequen	185			4	-27.5020	220.3032
Frequen	cies	231 7	778	-	34 6412	239 8060
Frequent	cies cies	231.72	278 540	2	234.6412	239.8060 250 2215
Frequent Frequent Frequent Frequent	cies cies cies	231.72 240.76 252.1	278 540 180	2	234.6412 242.0369 258.4218	239.8060 250.2215 272.8573
Frequent Frequent Frequent Frequent Frequent	cies cies cies cies cies	231.72 240.76 252.12 275.22	278 540 180 753		234.6412 242.0369 258.4218 275.7366	239.8060 250.2215 272.8573 278.6959
Frequent Frequent Frequent Frequent Frequent	cies cies cies cies cies cies	231.72 240.76 252.12 275.22 283.30	278 540 180 753 010		234.6412 242.0369 258.4218 275.7366 286.7465	239.8060 250.2215 272.8573 278.6959 290.1472

Frequencies	303.6910	307.2088	308.2666
Frequencies	311.7391	314.5774	317.8478
 Frequencies	319.6611	322.0723	323.1387
Frequencies	324.8559	330.9046	337,4664
Frequencies	342.6706	345.3734	356.9737
Frequencies	369.5723	375.1487	388.7025
Frequencies	401.3916	402.5688	408.5374
Frequencies	410 4431	412 4675	414 3433
Frequencies	416.0523	416 6659	419 4416
Frequencies	421 7851	423 4710	427.0509
Frequencies	435 1226	139 9388	427.0505
Frequencies	433.1220	433.3368	442.4403
Frequencies	445.5855	447.0003	449.7000
Frequencies	452.5621	434.9739	433.1640
Frequencies	437.1320	407.5251	472.9172
Frequencies	400.2070	409.2932 EDE 0364	491.0157 E11.0662
Frequencies	502.4158	500.9204	511.0005
Frequencies	513.0652	519.1821	521.9548
Frequencies	522.5609	533.3139	536.5722
Frequencies	537.0806	538.7258	545.2753
Frequencies	546.9862	552.2799	553.2090
Frequencies	555.2590	560.3660	564.2287
Frequencies	565.3291	569.9976	572.2081
Frequencies	574.3307	582.5968	586.1099
Frequencies	590.0320	592.6507	597.7496
Frequencies	598.8664	601.1826	602.3366
Frequencies	606.3982	609.0627	610.3850
Frequencies	611.6802	616.3717	621.2553
Frequencies	622.4813	624.6443	626.1294
Frequencies	628.6873	630.3657	632.1349
Frequencies	633.1919	635.9412	643.7134
Frequencies	651.7652	656.3959	668.8665
Frequencies	672.6748	675.6273	678.1943
Frequencies	680.7522	683.2188	694.7988
Frequencies	699.9667	702.7082	709.3461
Frequencies	711.6709	714.7235	716.7001
Frequencies	719.0429	720.4143	720.9140
Frequencies	724.2608	724.4201	725.1398
Frequencies	728.0251	732.9841	735.0002
Frequencies	737.3942	740.9347	745.7396
Frequencies	747.2311	751.6373	760.1732
Frequencies	762.3193	769.1259	770.0070
Frequencies	771.1827	773.8744	775.1341
Frequencies	777.1240	780.1681	782.2903
Frequencies	783.4508	793.7524	795.3925
Frequencies	798.9686	800.9704	804.4460
Frequencies	804.6228	820.3409	826.3231
Frequencies	827.3589	829.7471	847.2914
Frequencies	857.9332	858.7610	861.7044
Frequencies	863.5985	864.3396	865.6737
Frequencies	866.6864	870.0932	870.6785
Frequencies	874.2856	878.7836	879.2448
Frequencies	885.1985	887,4987	887,9861
Frequencies	889 4345	891 8265	907 5995
Frequencies	913 2968	919 2588	921 5782
Frequencies	923 7039	929 5504	930 1090
Frequencies	933 6673	935 3305	938 6138
Frequencies	940 3956	942 2082	943 1606
Frequencies	944 9477	945 8220	942 0929
Frequencies	951 36/7	952 6220	952 9662
Frequencies	956 8/12	92.0290 QEQ 1007	971 1097
Frequencies	976 2055	990.4902	988 7/61
Frequencies	001 6075	907.9007	003 7555
Frequencies	221.0023	JJZ.11//	333.2333 1002 0100
Frequencies	1005 0100	333.7230 1007 7777	1000 4150
Frequencies	1011 6760	1012 0012	1014 7702
Frequencies	1017 0705	1010 0051	1010 2574
i i equelloles	TOT1.0122	TCT0202T	1019.23/4

Frequencies	1019.4528	1019.7939	1020.1387
Frequencies	1020.4102	1020.6120	1025.5417
Frequencies	1028.5232	1034.5134	1036.1937
Frequencies	1040.4755	1047.1621	1048.0410
Frequencies	1053.7112	1056.4688	1057.3962
Frequencies	1061.0784	1061.9825	1063.4257
Frequencies	1064.4387	1067.8134	1068.2117
Frequencies	1068.5147	1070.3340	1071.4028
Frequencies	1074.9953	1093.2350	1094.2838
Frequencies	1097.9565	1107.4037	1110.2097
Frequencies	1111.4013	1113.3691	1122.0264
Frequencies	1122.7169	1123.8408	1126.3500
Frequencies	1128.4530	1131.0812	1134.1306
Frequencies	1159.5948	1161.7934	1164.3439
Frequencies	1167.2773	1167.7083	1169.8972
Frequencies	11/2.408/	11/3.0248	11/4.26/1
Frequencies	11/5.1433	11/5.4/41	11/7.3064
Frequencies	11/7.6496	1181.0201	1181.1680
Frequencies	1195.2315	1199.4490	1201.1209
Frequencies	1203.0017	1204.2500	1205.5780
Frequencies	1211.2309	1212.4495	1214.1174
Frequencies	1214.9739	1217.7578	1224.5805
Frequencies	1227.4140	1229.2400	12/13 6085
Frequencies	1233.0003	1238.4043	1249.3956
Frequencies	1257 6880	1260 3476	1266 4593
Frequencies	1280.7695	1281.9543	1286.7033
Frequencies	1292.8350	1295.8688	1297.1645
Frequencies	1297.6274	1298.8676	1300.3744
Frequencies	1302.8451	1303.0004	1305.3385
Frequencies	1306.6528	1308.7852	1310.0415
Frequencies	1311.1953	1314.2259	1316.2236
Frequencies	1321.2315	1323.6295	1325.4509
Frequencies	1329.9608	1332.2575	1332.5454
Frequencies	1337.3695	1342.2242	1343.3219
Frequencies	1345.0363	1345.7689	1355.7506
Frequencies	1360.1288	1361.1953	1362.2927
Frequencies	1362.5563	1363.1707	1364.9337
Frequencies	1365.5699	1368.1310	1368.8973
Frequencies	1370.2562	1373.6902	1378.0535
Frequencies	1381.3201	1384./4/1	1387.5463
Frequencies	1403.1128	1416.2293	1418.5767
Frequencies	1447.4405	1457.7754	1404.2099
Frequencies	1400.9227	1474.8708	1409.2300
Frequencies	1489.4012	1494.3024	1502 3076
Frequencies	1505 5257	1505.8386	1502.3070
Frequencies	1510 4854	1511 5210	1515 5298
Frequencies	1516.1925	1517.4340	1518.7892
Frequencies	1528.1669	1529.4134	1545.3966
Frequencies	1549.0171	1549.1430	1550.6814
Frequencies	1552.5853	1554.0798	1559.4806
Frequencies	1560.2488	1561.6748	1562.6418
Frequencies	1567.2926	1569.0696	1656.8502
Frequencies	1663.2799	1666.7647	1666.9665
Frequencies	1668.5897	1669.0855	1673.8788
Frequencies	1674.3011	1677.3818	1679.2595
Frequencies	1683.6049	1688.0246	1690.6458
Frequencies	1691.5750	1694.5940	1696.8687
Frequencies	1699.8229	1699.8857	1700.1921
Frequencies	1700.9744	1701.2057	1702.4543
Frequencies	1702.7833	1703.4342	1717.8749
Frequencies	1/20.9435	1/30.4507	1/35.0926
Frequencies	2228.5931	30/7.2263	3088.2874
Frequencies	3091.0396	3093.1378	3132.2840
Frequencies	3142.5084	3154.3062	312/.8/23

Frequencies	3179.4874	3181.5587	3196.5133
Frequencies	3197.0597	3198.8917	3201.9373
Frequencies	3205.3450	3207.3249	3209.9081
Frequencies	3210.6746	3213.0373	3215.0523
Frequencies	3215.6456	3216.2683	3217.9402
Frequencies	3218.2179	3218.5397	3219.0846
Frequencies	3220.9967	3222.8649	3225.2299
Frequencies	3225.8714	3227.2912	3227.3082
Frequencies	3227.9223	3228.3672	3228.5270
Frequencies	3229.8143	3230.1501	3231.9810
Frequencies	3233.1943	3233.8498	3234.9913
Frequencies	3235.9129	3236.2924	3236.8996
Frequencies	3238.2884	3239.0720	3239.6340
Frequencies	3240.4984	3241.5211	3241.6009
Frequencies	3243.3031	3243.3332	3247.8976
Frequencies	3251.0468	3252.0071	3255.1308
Frequencies	3256.1861	3262.2097	3634.8402

SCF Done: E(RM062X/DGDZVP) = -6499.39694452Sum of electronic and zero-point Energies=-6498.046953Sum of electronic and thermal Energies=-6497.932831Sum of electronic and thermal Free Energies=-6498.203599SCF Done: E(RM062X/DGTZVP/SMD) = -6500.6820721

Cat f TS1c_S

Center	Atom	ic A	tomic	Coordinate	s (Angstroms)
Number	Nur	nber	Туре	X Y	Z
1	15	0	-0.014269	-0.009930	0.010924
2	8	0	-0.020468	-0.004823	1.635637
3	8	0	1.573248	0.000148	-0.326187
4	8	0	-0.580947	1.228542	-0.602597
5	8	0	-0.624025	-1.336574	-0.352506
6	6	0	0.506645	1.107948	2.268745
7	6	0	2.344124	-1.063171	0.097777
8	6	0	1.872019	1.181984	2.510651
9	6	0	-0.333291	2.187064	2.566607
10	6	0	2.917407	-0.997542	1.360971
11	6	0	2.516914	-2.194033	-0.717677
12	6	0	2.978562	0.156723	2.342673
13	6	0	2.409191	2.377955	2.988308
14	6	0	0.218305	3.330145	3.151504
15	6	0	-1.749593	2.149209	2.134798
16	6	0	3.635669	-2.088821	1.847954
17	6	0	3.311298	-3.241284	-0.231634
18	6	0	1.817839	-2.280195	-2.026406
19	6	0	3.220779	-0.606529	3.671311
20	6	0	4.180205	1.087476	2.030379
21	6	0	3.923630	2.393130	2.828377
22	6	0	1.592365	3.447557	3.365911
23	1	0	-0.431965	4.163339	3.404023
24	6	0	-2.244239	3.153765	1.299760
25	6	0	-2.605231	1.099207	2.457250
26	6	0	4.043801	-1.863411	3.297291
27	6	0	3.876171	-3.208167	1.044769
28	1	0	3.488830	-4.107968	-0.861042
29	6	0	1.087680	-3.420514	-2.390339
30	6	0	1.807994	-1.205900	-2.918812
31	1	0	3.718368	0.015614	4.421703
32	1	0	2.253279	-0.911093	4.082778
33	1	0	5.139900	0.621894	2.276099
34	1	0	4.182379	1.311615	0.958457
35	1	0	4.432747	2.357476	3.798467
36	6	0	4.369927	3.638276	2.083708

37	6	0	2.190053	4.697947	3.901951	103	1	0	0.286456	5.535626	-0.458971
38	6	0	-3.526744	3.081650	0.776414	104	6	0	-0.994535	6.117330	-2.121887
39	8	0	-1.416771	4.201546	0.963082	105	6	0	-4.532844	-2.461421	2.255117
40	6	0	-3.895847	1.010194	1.927031	106	1	0	-0.958336	-2.164688	3.761610
41	8	0	-2 159075	0 121707	3 317363	107	6	0	-2 541785	-3 521956	3 131212
42	1	0	5 116426	-1 636580	3 343882	108	6	0	3 245991	-5 266968	5 847543
43	6	0	3 770123	-3.050643	4 199141	109	1	0	1 180925	-4 977535	5 298702
4.0	c	0	4 712000	4 224516	1 5 4 0 5 4 2	110	1	0	L.100525	-4.377333	C 2042E1
44	0	0	4.712696	-4.334516	1.540545	110	1	0	5.370794	-5.292079	0.204251
45	6	0	0.298587	-3.455634	-3.545720	111	5	0	6.266388	-6.412110	2.599819
46	8	0	1.14/621	-4.502836	-1.539507	112	1	0	4.460766	-7.586281	2.518016
47	6	0	0.981932	-1.209292	-4.038001	113	1	0	7.900054	-5.007686	2.534083
48	8	0	2.631396	-0.124854	-2.714749	114	9	0	-1.433839	-1.174455	-5.607605
49	6	0	3.734480	3.982249	0.883015	115	9	0	-1.381020	-3.311643	-5.845065
50	6	0	5.357830	4.483692	2.586998	116	9	0	0.178983	-2.099019	-6.710411
51	6	0	2.028536	5.910765	3.224273	117	6	0	-0.883650	-6.857504	-3.505619
52	6	0	2.977523	4.662972	5.057819	118	1	0	1.335268	-6.765880	-0.322130
53	6	0	-4.369194	2.005665	1.074496	119	6	0	0.079014	-7.994722	-1.602065
54	8	0	-3 976103	4 039748	-0 104259	120	6	0	0 472967	2 236404	-4 504797
55	6	0	-1 693997	4 780734	-0.255077	120	1	0	2 986539	2 193880	-1 527591
55	0	0	1 674710	4.780734	2 2425677	121	6	0	1 644056	2.100600	2 720095
50	o c	0	-4.074710	-0.072134	2.242300	122	1	0	1.044030	5.408089	-2.759965
57	6	0	-2.6/9159	-1.128543	3.043487	123	1	0	5.342335	6.896663	0.186/13
58	6	0	2.466210	-3.536477	4.349869	124	1	0	3.960104	7.915745	5.1//4/9
59	6	0	4.804409	-3.691092	4.884223	125	1	0	-4.274444	5.205652	-2.407458
60	6	0	4.147247	-5.591066	1.777952	126	6	0	-2.272194	6.016871	-2.672291
61	6	0	6.070369	-4.136581	1.810966	127	1	0	-0.223523	6.686167	-2.632379
62	6	0	0.212633	-2.326005	-4.366493	128	1	0	-5.530342	-2.503664	1.830246
63	8	0	-0.414278	-4.569465	-3.893895	129	6	0	-3.819938	-3.616082	2.580363
64	6	0	0.542602	-5.664909	-1.967838	130	1	0	-1.994342	-4.424224	3.388446
65	8	0	0 928102	-0.099722	-4 838339	131	1	0	3 042212	-6 121590	6 485251
66	6	0	2 027253	1 071092	-3.066015	132	1	0	6 865354	-7 214402	3 019625
67	6	0	4 087274	5 141426	0 199035	133	1	0	-1 500306	-6.834430	-4 398165
60	1	0	2 0 2 7 7 0 6	2 2 5 2 1 0 2	0.100000	124	6	0	0.725027	0.034430	2 74106E
00	ſ	0	2.327700	5.555185	1 000481	104	1	0	-0.723337	-0.012903	1 000174
70	0	0	5.705958	5.654530	1.909481	135	1	0	0.208240	-8.892212	-1.006174
70	1	0	5.842050	4.241545	3.530355	136	1	0	-0.239387	2.195405	-5.322035
/1	6	0	2.666595	7.063083	3.679543	137	6	0	0./31948	3.409670	-3./965/0
72	1	0	1.424537	5.937088	2.320443	138	1	0	1.837657	4.326089	-2.193625
73	6	0	3.606285	5.817095	5.521308	139	1	0	-2.500615	6.503811	-3.614422
74	1	0	3.091052	3.723841	5.594536	140	1	0	-4.267619	-4.589662	2.406636
75	6	0	-5.720664	1.980079	0.403029	141	1	0	-1.230589	-8.925239	-3.040622
76	6	0	-2.974846	4.695703	-0.795524	142	1	0	0.210052	4.322155	-4.065157
77	6	0	-0.698696	5.486126	-0.913208	143	1	0	-1.194286	0.914164	-2.206518
78	6	0	-3.958695	-1.224714	2.504529	144	8	0	-1.923862	0.691382	-2.853592
79	6	0	-1.955593	-2.272716	3.346324	145	6	0	-3.165644	0.990191	-2.151885
80	6	0	2 202423	-4 626308	5 177270	146	6	0	-3 597531	-0.451429	-1 816331
81	1	0	1 6/8369	-3 057832	3 811910	1/7	1	0	-2 959765	1 583795	-1 260705
01	6	0	1.040505	4 709042	5.011510	147	1	0	2.00017	1.505755	2 226200
02	1	0	4.349030	-4.796042	3.093772	140	1	0	-3.650647	0.774165	-2.850209
00	Ţ	0	5.823731	-3.329992	4.771188	149	0	0	-3.452640	-0.774165	-0.456357
84	6	0	4.916151	-6.621301	2.316599	150	6	0	-2.492704	-1.085208	-2.684772
85	1	0	3.093248	-5./46884	1.558926	151	1	0	-2.50/816	-0.936982	-0.25/455
86	6	0	6.845700	-5.171396	2.332107	152	1	0	-2.655771	-1.232693	-3.745128
87	1	0	6.517292	-3.165691	1.609414	153	1	0	-1.570713	-1.451276	-2.252268
88	6	0	-0.608672	-2.245584	-5.633095	154	1	0	-1.147269	-2.885209	-0.506397
89	6	0	-0.245535	-5.689203	-3.114717	155	7	0	-1.554380	-3.837052	-0.436214
90	6	0	0.718958	-6.817219	-1.215580	156	6	0	-2.597974	-4.245702	-1.177006
91	6	0	1 141591	1 079450	-4 137973	157	6	0	-1 095065	-4 722288	0 528017
92	6	0	2 291675	2 233787	-2 360069	158	16	0	-3 347081	-3 461835	-2 455228
02	6	0	5 074104	5 0 9 5 0 1 7	0.712109	150	16	0	2 120092	5 922767	0.639344
01	1	0	2 5 9 7 6 0 1	5 206510	0.721279	160	6	0	1 950626	5 902225	0.574274
94 0F	1	0	5.567091	C 2112F7	-0.731378	100	c	0	-1.859020	-5.892555	1 246977
32	Ţ	U	0.404/19	0.31135/	2.324037	101	o C	0	1.547207	-4.543319	1.3408//
96	6	0	3.460989	/.01/95/	4.825911	162	6	U	-1.54/30/	-0.911561	1.4/2543
97	1	0	2.552638	/.994513	3.133424	163	6	U	0.337885	-5.569784	2.230550
98	1	0	4.211520	5.779681	6.422132	164	1	0	0.611993	-3.631068	1.278911
99	9	0	-6.488737	0.957050	0.777372	165	6	0	-0.440523	-6.737365	2.300265
100	9	0	-6.413424	3.103382	0.655480	166	1	0	-2.137427	-7.821693	1.510661
101	9	0	-5.583527	1.901446	-0.939872	167	1	0	1.202786	-5.465077	2.878599
102	6	0	-3.268235	5.295692	-2.010839	168	1	0	-0.172140	-7.519047	3.003977

169	6	0	-5.005812 -0.782828	-2.264824	Frequencies	602.7093	605.8311	609.6877
170	6	0	-5.384097 -0.578029	-3.594528	Frequencies	610.8563	613.7036	617.4957
171	6	0	-5.939551 -1.267563	-1.351259	Frequencies	620.0853	621.4898	624.2433
172	6	0	-6.681905 -0.867513	-4.010012	Frequencies	626.1375	630.0817	630.7719
173	1	0	-4.668997 -0.192595	-4.320269	Frequencies	632.0928	634.4780	635.8472
174	6	0	-7.241817 -1.543320	-1.764081	Frequencies	644.0808	651.2025	656.7087
175	1	0	-5.636083 -1.419904	-0.321151	Frequencies	666.6633	669.9041	673.6694
176	6	0	-7.616343 -1.348776	-3.092611	Frequencies	676.9657	680.8743	682.1449
177	1	0	-6.963325 -0.712684	-5.046965	Frequencies	684.1847	695.7241	703.6652
178	1	0	-7.966182 -1.911903	-1.044144	Frequencies	709.8803	714.4797	714.7008
179	1	0	-8.630125 -1.568598	-3.412668	Frequencies	717.3454	717.9969	718.2265
					Frequencies	720.2990	722.8794	723.6101
					Frequencies	724.3093	726.1523	732.0525
Frequenc	cies	-538.589	2.3415	12.7084	Frequencies	732.8563	734.6723	739.1237
Frequen	icies	19.883	5 20.8353	22.9470	Frequencies	744.0436	748.1123	751.7374
Frequen	icies	23.838	0 28.0338	31.6982	Frequencies	763.5368	764.1364	765.4389
Frequen	icies	35.532	5 37.1717	38.3091	Frequencies	766.5218	770.3966	771.4491
Frequen	icies	40.104	7 43.3487	44.0209	Frequencies	772.1297	774.5392	776.4258
Frequen	icies	48.040	9 51.5601	52.8818	Frequencies	779.7161	782.2200	783.5029
Frequen	icies	53.318	9 55.1646	58.1321	Frequencies	794.9151	796.1059	798.9730
Frequen	icies	60.488	0 62.0651	63.6796	Frequencies	800.7702	804.3502	804.9721
Frequen	icies	69.111	0 69.5195	71.6234	Frequencies	822.9091	826.4330	827.7029
Frequen	icies	74.429	4 76.1841	79.6532	Frequencies	830.9976	857.6053	862.9928
Frequen	icies	80.326	1 83.4500	83.9574	Frequencies	865.8142	866.3028	867.6771
Frequen	icies	90.481	7 91.5305	93.9990	Frequencies	869.7850	871.1645	871.9702
Frequen	icies	97.683	1 100.0964	100.9613	Frequencies	873.7254	877.1632	878.0584
Frequen	icies	102.11	70 107.0551	109.3873	Frequencies	881.2119	886.4070	888.0122
Frequen	icies	113.808	30 118.2896	125.4361	Frequencies	888.9871	889.1533	894.5442
Frequen	icies	127.12	71 131.9349	136.2682	Frequencies	900.7593	913.7157	917.1325
Frequen	icies	138.170	140.5873	149.2239	Frequencies	923.4478	924.0078	927.0769
Frequen	icies	156.340	53 158.1003	164.3626	Frequencies	931.5753	934.2407	935.3453
Frequen	icies	165.353	35 168.1780	172.4872	Frequencies	935.5422	936.1232	941.7562
Frequen	icies	182.763	37 187.1283	189.5298	Frequencies	943.9116	946.7657	947.1380
Frequen	icies	197.249	98 200.0484	201.2862	Frequencies	950.4414	952.1711	956.7392
Frequen	icies	210.92	35 216.6744	220.8454	Frequencies	959.9152	961.0902	963.0817
Frequen	icies	224.468	31 229.9748	233.5997	Frequencies	970.4349	970.6935	987.5023
Frequen	icies	236.60	19 241.6229	250.3218	Frequencies	988.5548	989.5813	991.0769
Frequen	icies	252.924	1/ 256.9342	267.8432	Frequencies	993.8750	995.6139	996.4003
Frequen	icies	2/2.86	35 2/4.4898	276.0129	Frequencies	999.7710	1003.3543	1005.4719
Frequen	icies	280.25	281.1279	288.7780	Frequencies	1005.9598	1008.7938	1013.4239
Frequen	icies	290.46	36 292.5424	294.3376	Frequencies	1014.2322	1016.3015	1018.4035
Frequen	icles	296.70	70 300.0644	302.7050	Frequencies	1019.3654	1019.8092	1020.1905
Frequen	icles	305.79	2/ 310.41/1	313.9984	Frequencies	1020.9803	1021.3551	1024.4764
Frequen	icles	318.08	19 319.0940	323.1438	Frequencies	1026.0100	1033.6646	1036.2112
Frequen	icles	325.38	23 331.1503	337.0493	Frequencies	1038.0397	1044.0675	1045.7069
Frequen	icies	259.43	DZ 343.2849	347.4130	Frequencies	1049.0307	1054.0551	1057.8247
Frequen	icies	206 67	54 574.9705 56 402.0219	109 5127	Frequencies	1056.7555	1059.2424	1069 7661
Frequen		108 580	A A A A A A A A A A A A A A A A A A A	408.5137	Frequencies	1000.3702	1073 2365	1077 0699
Eroquon		400.00	57 411.5581	412.0103	Frequencies	1090 2690	1001 6022	1006 7499
Frequen		/18 33	57 414.3270 57 /18 7997	413.7202	Frequencies	1106 7/92	1108 0839	1110 6008
Frequen		410.55	52 410.7557	419.0207	Frequencies	1111 718/	1113 3951	1117 8935
Eroquon		420.55	10 444 5082	433.4740	Frequencies	1110 2012	1113.3551	1126.0652
Frequen		441.77	57 452 4806	447.5550	Frequencies	1129 2270	1122.7552	1132 2486
Frequen	icies	466 419	A67 4431	469 3198	Frequencies	1123.2270	1154 3296	1160 6653
Frequen	icies	473 689	407.4451 2 487.7993	491 0435	Frequencies	1165 8681	1168 0423	1170 0331
Frequen	icies	500.81	14 505 9987	507 0283	Frequencies	1171 2372	1171 8555	1174 0102
Frequen	icies	512 001	12 513 9506	521 4397	Frequencies	1174 1463	1175 7639	1176 4997
Frequen	icies	522.00	79 522 6447	530 5404	Frequencies	1177 1456	1178 8228	1179 2311
Frequen	icies	534 11	18 535 7238	538 0652	Frequencies	1189 1441	1193 6826	1200 4499
Frequen	icies	543.73	97 546 9458	554,4879	Frequencies	1201.9134	1203.4375	1203.8322
Frequen	icies	556.52	34 559 9780	561,2111	Frequencies	1204.3996	1204.7569	1205.9587
Frequen	icies	564.41	13 567.1731	571.6457	Frequencies	1212.6853	1214.3820	1216.0868
Frequen	icies	574.83	33 583.3612	585.9061	Frequencies	1223,4582	1225.6002	1227.1120
Frequen	icies	587.78	16 589.6631	593.7220	Frequencies	1232.3340	1234.1475	1240.5112
Frequen	icies	595.57	599.4273	601.6283	Frequencies	1242.2424	1242.6302	1247.0578
1								

Frequencies	1252.0971 1274 3505	1256.0105 1275 9520	1262.6010 1279 2554	Ca	at f l:	lc_S		
Frequencies	1279.9726	1284.6065	1286.2994					
Frequencies	1287.9506	1293.5092	1296.2866	Ce	nter	Atomic	At	com
Frequencies	1298.7996	1299.0808	1304.7167	N	umber	Numb	er	T.
Frequencies	1308.2313	1308.8102	1309.4251		4	4.5		
Frequencies	1311.0395	1314.4430	1315.0406		1	15	0	-(
Frequencies	1318.3867	1321.3349	1324.0571		2	8	0	-0
Frequencies	1326.7367	1330.1039	1333.9677		2	0	0	T
Frequencies	1338.7431	1341.5286	1343.6361		4	8	0	-0
Frequencies	1343.9407	1352.7054	1357.2167		5	8	0	-0
Frequencies	1359.9232	1360.6988	1360.8413		0 7	6	0	2
Frequencies	1362.5688	1363.5244	1364.6975		/	6	0	2
Frequencies	1365.1481	1366.8591	1369.3263		8	6	0	1
Frequencies	1371.4628	1373.1744	1376.6353		9	6	0	-0
Frequencies	1381.1380	1386.9038	1390.0020		10	0	0	2
	1403.3334	1416.2171	1445.7391		11	0	0	2
requencies	1448.8493	1456.1603	1459.9066		12	6	0	2
requencies	1467.5717	1472.0596	1477.2061		11	6	0	2
requencies	1490.3333	1492.0715	1495.7910		14 15	6	0	Ĺ
requencies	1496.7339	1499.1124	1499.9821		10 10	o c	0	
requencies	1502.1399	1504.6001	1507.5024		10 17	o c	0	3
requencies	1507.5961	1509.7771	1510.9720		⊥/ 10	o c	0	1
requencies	1514.0978	1515.7373	1518.1585		10 10	b C	0	1
equencies	1528.8883	1530.0845	1544.1729		19	6	0	3
equencies	1544.7675	1553.1505	1554.0055		20	6	0	4
equencies	1555.1455	1555.7515	1558.8415		21	6	0	5
equencies	1559.8473	1561.5105	1564.6060		22	5	0	1
equencies	1567.3062	1571.6896	1654.6789		23		0	-(
equencies	1662.4102	1665.5668	1669.2158		24	6	0	-4
equencies	1669.2806	1669.8715	1674.1524		25	6	0	-4
quencies	1674.9877	1679.1163	1680.1925		26	6	0	4
quencies	1682.8327	1687.4121	1689.9963		27	6	0	3
equencies	1691.5293	1695.2355	1696.1210		28	1	0	3
equencies	1698.2881	1698.7366	1701.3030		29	6	0	(
equencies	1701.6763	1702.3572	1703.2961		30	6	0	1
equencies	1704.0902	1705.3766	1719.2132		31	1	0	3
equencies	1721.2429	1725.6563	1734.8157		32	1	0	2
requencies	3071.6309	3085.0795	3087.7032		33	1	0	5
requencies	3090.4746	3148.9033	3153.5447		34	1	0	4
requencies	3154.0177	3173.4036	3184.5596		35	1	0	4
requencies	3188.8777	3195.3281	3198.7255		36	6	0	4
equencies	3200.8070	3203.9077	3204.9151		37	6	0	2
requencies	3205.6265	3207.5338	3208.3962		38	6	0	-3
requencies	3208.8296	3211.0998	3217.2300		39	8	0	-1
requencies	3217.9271	3218.2244	3220.5857		40	6	0	-3
requencies	3221.0173	3221.7789	3222.0532		41	8	0	-2
requencies	3222.5085	3223.5701	3225,1960		42	1	0	5
equencies	3227,9029	3228.6926	3229,7075		43	6	0	2
equencies	3229.7468	3230 4458	3231,5470		44	6	0	2
equencies	3233.9608	3234 4636	3234,6550		45	6	0	C
requencies	3234,7330	3236 8390	3238.5237		46	8	0	C
equencies	3239 1760	3239 2088	3240 3231		47	6	0	0
equencies	3241 2180	3233.2000	3240.3231		48	8	0	2
	3241 8912	3243 7206	3246 0711		49	6	0	3
requencies	3746 1973	3243.7200	3240.0711		50	6	0	5
requencies	3748 5187	3240.4037	3255 68/3		51	6	0	1
requencies	3787 79/9	3249.7101	3650 7059		52	6	0	2
cquencies	5207.7343	5502.7171	5050.7055		53	6	0	-4
E Done - E/PM) = -6/00 26575	894		54	8	0	-3
m of electron	ic and zero-poi	1 = -0+33.30373	-6498 015603		55	6	0	-
um of electron	nic and thermal	Fnergies=	-6497 901639		56	8	0	-4
Sum of electron	nic and thermal	Eree Energies-	-6498 174468		57	6	0	-2
Juin OF CICCUIUI	ne unu ununulat	I I CC LIICI SICO-	0720.117700			-	~	

SCF Done: E(RM062X/DGTZVP/SMD) = -6500.64748533

Center	Atom	ic A	tomic	Coordinates	(Angstroms)
Number	Nur	nber	Type	X Y	Z
1	15	0	-0.073518	-0.078696	0.088959
2	8	0	-0.024747	-0.113580	1.721330
3	8	0	1.514372	-0.013913	-0.274063
4	8	0	-0.694386	1.158395	-0.454552
5	8	0	-0.636212	-1.423708	-0.289108
6	6	0	0.481850	1.007830	2.357042
7	6	0	2 308409	-1 067028	0 125593
8	6	0	1 848444	1 112245	2 590311
9	6	0	-0 369697	2 080415	2 654109
10	6	0	2 911411	-1 016164	1 376679
11	6	0	2 469905	-2 185258	-0.706060
12	6	0	2 984698	0 130580	2 365200
13	6	0	2.365682	2 312622	3 079598
1/	6	0	0 160383	3 213539	3 276228
15	6	0	-1 7/8789	2 090029	2 112517
16	6	0	2 655199	2.00020	1 920070
17	6	0	3 261206	2 244020	0.247725
10	6	0	1 75201300	-3.244920	2 005 421
10	6	0	2 220052	-2.239470	2.003431
20	6	0	1 1 2 2 0 5 2	1 110404	2 012964
20	6	0	4.155959	2 201510	2.012004
21	C	0	1 520415	2.361319	2.002034
22	1	0	1.550415	3.351120	3.499415
25	L C	0	-0.303936	2 101040	1 210117
24	C	0	-2.103309	1.050522	1.219117
25	c c	0	-2.050045	1.050522	2.318040
20	c c	0	4.157402	-1.858191	3.248030
27	1	0	3.803383	-3.223998	1.012/50
28	Ţ	0	3.414849	-4.106919	-0.891119
29	6	0	0.932007	-3.324902	-2.325960
30	6	0	1.//1805	-1.1/1015	-2.899513
31	1	0	3.840439	0.002007	4.399632
32	1	0	2.384660	-0.960352	4.134604
33	1	0	5.122425	0.6/565/	2.192472
34	1	0	4.06/0/3	1.364481	0.949760
35	1	0	4.422437	2.332850	3.809658
36	6	0	4.251284	3.663138	2.143138
37	6	0	2.103602	4.601270	4.060191
38	6	0	-3.317490	3.063354	0.545466
39	8	0	-1.197838	4.106156	0.978551
40	6	0	-3.870359	0.994760	1.632940
41	8	0	-2.329631	0.077819	3.231614
42	1	0	5.219385	-1.583705	3.203217
43	6	0	4.017868	-3.040304	4.186170
44	6	0	4.742720	-4.345124	1.448558
45	6	0	0.107560	-3.321082	-3.449347
46	8	0	0.894524	-4.374753	-1.428221
47	6	0	0.926136	-1.142236	-4.005962
48	8	0	2.618672	-0.110454	-2.691960
49	6	0	3.564329	4.028753	0.977042
50	6	0	5.230656	4.520436	2.643115
51	6	0	1.879652	5.830724	3.431510
52	6	0	2.929532	4.553838	5.188476
53	6	0	-4.224584	2.021581	0.756415
54	8	0	-3.648720	4.033064	-0.372268
55	6	0	-1.369942	4.793046	-0.200354
56	8	0	-4.703963	-0.081847	1.829800
57	6	0	-2.865465	-1.155454	2.941650
58	6	0	2.752000	-3.520783	4.537116
59	6	0	5.141769	-3.688745	4.703372
60	6	0	4.212440	-5.596761	1.775205

61	6	0	6.123335	-4.144898	1.550332		127	1	0	0.308058	6.934722	-2.215532
62	6	0	0.093792	-2.216809	-4.306801		128	1	0	-5.563086	-2.504646	1.396649
63	8	0	-0.790474	-4.346825	-3.660558		129	6	0	-4.033815	-3.625044	2.461858
64	6	0	0 310395	-5 533869	-1 879599		130	1	0	-2 375036	-4 443958	3 573469
65	0	0	0.800731	0.027222	1 70/100		121	1	0	2.575050	6 145272	6 512047
66	6	0	2 02596731	1 101166	2 01 9204		122	1	0	7.064095	7 206659	2 602051
60	c	0	2.023804	L.101100	0.225041		122	1	0	1.004985	-7.200038	4.275122
67	6	0	3.861584	5.221817	0.325041		133	1	0	-1.815224	-6.635587	-4.275123
68	1	0	2.764292	3.389507	0.601355		134	6	0	-0.946426	-7.869149	-2.706562
69	6	0	5.521548	5.724595	1.998300		135	1	0	0.079363	-8.808945	-1.058233
70	1	0	5.753959	4.259079	3.560066		136	1	0	-0.243392	2.296240	-5.231036
71	6	0	2.495632	6.987452	3.905338		137	6	0	0.760534	3.469523	-3.694556
72	1	0	1.244477	5.866974	2.549475		138	1	0	1.889941	4.340989	-2.084417
73	6	0	3.535514	5.712038	5.671660		139	1	0	-1.855677	6.837583	-3.441500
74	1	0	3 090892	3 601343	5 688106		140	1	0	-4 503998	-4 588821	2 291756
75	6	0	-5 555404	2 112/25	0.048300		1/1	1	0	-1 440509	-8 779324	-3 029398
75	6	0	2 596201	4 754024	0.040333		141	1	0	0.240225	4 205 229	2 026702
76	6	0	-2.586301	4.754024	-0.877013		142	1	0	0.248325	4.395238	-3.930/92
//	6	0	-0.326215	5.570488	-0.678798		143	1	0	-1.252216	0.739679	-2.128477
78	6	0	-4.059448	-1.235749	2.227987		144	8	0	-1.561824	0.201757	-2.888315
79	6	0	-2.244487	-2.303405	3.412203		145	6	0	-2.972483	0.243570	-2.945502
80	6	0	2.611667	-4.629316	5.370514		146	6	0	-3.621880	-0.955705	-2.218590
81	1	0	1.862728	-3.024143	4.152280		147	1	0	-3.372414	1.154457	-2.483675
82	6	0	5.008900	-4.803743	5.529751		148	1	0	-3.260066	0.234567	-3.999891
83	1	0	6 133714	-3 330011	4 4 3 9 8 9 4		149	8	0	-3 463119	-0.838253	-0 815586
84	6	0	5 043152	-6 620603	2 228544		150	6	0	-2 924632	-2 246300	-2 678637
95	1	0	3 140740	5 758705	1 697207		150	1	0	2.524052	0 712002	0.637017
00	L C	0	5.140740	-5.758705	1.087207		151	1	0	-2.510780	-0.713333	-0.037017
80	0	0	0.957745	-5.1/1/01	1.989899		152	1	0	-2.948221	-2.301/08	-3./05/32
87	1	0	6.541634	-3.1/8404	1.278598		153	1	0	-1.881233	-2.245491	-2.354230
88	6	0	-0.773432	-2.089737	-5.536606		154	1	0	-1.414058	-2.751635	-0.335378
89	6	0	-0.535749	-5.519409	-2.986048		155	7	0	-1.762192	-3.747657	-0.197961
90	6	0	0.542230	-6.715122	-1.188528		156	6	0	-2.784994	-4.326851	-0.799378
91	6	0	1.130651	1.139311	-4.080483		157	6	0	-1.130327	-4.535280	0.763190
92	6	0	2.313628	2.245674	-2.292636		158	16	0	-3.785106	-3.741274	-2.063573
93	6	0	4 839864	6 077956	0 836240		159	16	0	-3 082522	-5 928501	-0 195869
9/	1	0	3 325390	5 / 95177	-0 579673		160	6	0	-1 751960	-5 775164	0.923397
05	1	0	6 274104	6 200252	2 A11EA1		161	6	0	0.010146	1 196266	1 400270
95	1 C	0	0.274104	0.369332	2.411341		101	0	0	0.010140	-4.100300	1.400279
96	6	0	3.328806	6.930218	5.023350		162	6	0	-1.274539	-6.709126	1.844074
97	1	0	2.333279	7.932353	3.395/94		163	6	0	0.495539	-5.12561/	2.388394
98	1	0	4.170602	5.664848	6.551265		164	1	0	0.485163	-3.218349	1.335595
99	9	0	-6.443934	1.207189	0.473958		165	6	0	-0.141488	-6.366155	2.573331
100	9	0	-6.121031	3.317070	0.247601		166	1	0	-1.757424	-7.672478	1.970959
101	9	0	-5.426145	1.956319	-1.281158		167	1	0	1.390076	-4.900759	2.959095
102	6	0	-2.761251	5.472667	-2.050147		168	1	0	0.264951	-7.071776	3.291342
103	1	0	0.606598	5 580968	-0 121462		169	6	0	-5 105766	-1 020950	-2 529622
104	6	0	-0 503399	6 3 1 5 7 3 8	-1 8/15233		170	6	0	-5 544965	-1 1/3693	-3 853513
104	c	0	-0.3033333	0.313738	-1.845255		170	C	0	-5.544905	1.004755	-3.833313
105	0	0	-4.038440	-2.468502	1.964188		171	6	0	-6.046126	-1.004755	-1.499794
106	1	0	-1.311254	-2.203161	3.95/9//		1/2	6	0	-6.905991	-1.230804	-4.140951
107	6	0	-2.845157	-3.542713	3.188399		173	1	0	-4.829185	-1.172790	-4.672869
108	6	0	3.742140	-5.280080	5.865743		174	6	0	-7.407891	-1.082962	-1.788050
109	1	0	1.618509	-4.982190	5.636650		175	1	0	-5.700750	-0.916659	-0.475188
110	1	0	5.896745	-5.301223	5.908391		176	6	0	-7.842766	-1.196226	-3.107626
111	6	0	6.417725	-6.409214	2.341089		177	1	0	-7.233866	-1.320672	-5.172061
112	1	0	4 617109	-7 582326	2 498402		178	1	0	-8 128924	-1 046320	-0 976723
113	1	0	8 028612	-5.005346	2.059660		179	1	0	-8 903531	-1 25/90/	-3 331/37
114		0	1 626012	1 05 2041	Z.033000		175	T	0	-0.505551	-1.234304	-3.331437
114	9	0	-1.020200	-1.052041	-3.442007	-						
115	9	0	-1.526769	-3.1/5392	-5.//10/6	-			40.076		0 4740	24.0404
116	9	0	-0.02/301	-1.888192	-6.633197	F	requenci	ies	12.376	9 1	8.4/19	21.9104
117	6	0	-1.162545	-6.682961	-3.409303	F	requenc	ies	23.674	18 2	25.4271	28.1406
118	1	0	1.201730	-6.690570	-0.324739	F	requenc	ies	30.856	59 3	32.0678	35.1082
119	6	0	-0.095040	-7.885801	-1.601103	F	requenc	ies	37.629	98 3	38.6131	40.2655
120	6	0	0.478043	2.312867	-4.420933	F	requenc	ies	44.934	49 4	17.5925	50.3056
121	1	0	3.015438	2.181275	-1.467204	F	requenc	ies	52.296	55 !	56.1535	59.7080
122	6	0	1 679726	3 436092	-2 644714	F	requenc	ies	60.81	76 4	52 0028	64 6564
122	1	n	5 062360	7 01/510	0 33/307		requenc	 	68 /03	21 v	59 5591	70 8702
122	1 1	0	3 0002303	7 021001	5.334307	г г	roquent	ioc	73 400		74 0200	70.0705
125	1	0	3.009820	/.051001	3.330000	F	requenc	105	/ 5.485	י בר יר	94.0233	/ 0.2005
125	Ţ	U	-3./19810	5.414825	-2.555653	-	requenc	.ies	80.222	<u> 2</u> 2 8	50.U001	88.8451
1.76	6	0	-1./16196	6.263026	-2.531748	F	requenc	ies	91.020)T (12.1/41	94.1629

Frequencies	95.1515	96.5310	98,7892	Frequencies	865.8835	867.2866	868.8848
Frequencies	100.1584	101.8867	104.0110	Frequencies	869.1702	873.2013	874.0270
Frequencies	106.3322	113.7882	116.4690	Frequencies	876.4146	880.8276	881.7115
Frequencies	120.5235	122.1062	126.3862	Frequencies	888.7291	889.2331	890.6695
Frequencies	128 8856	134 3722	139 6385	Frequencies	893 1932	907 1399	911 8109
Frequencies	141.4355	146.6303	152,5743	Frequencies	915.6344	919.5790	922.5162
Frequencies	158 2629	161 7887	166 0794	Frequencies	930 4141	933 5214	935 7587
Frequencies	167 4012	173 2606	179 1358	Frequencies	936 6615	939 3072	941 1405
Frequencies	188 4989	191 1984	194 6911	Frequencies	941 3228	944 2978	944 5407
Frequencies	198 8595	207 6144	212 3056	Frequencies	950 7730	952 1504	953 3477
Frequencies	212 9642	223 1345	227 0583	Frequencies	955 9626	958 5573	969 8351
Frequencies	231 7590	225.1545	240 2386	Frequencies	975 6378	982 7743	986 7313
Frequencies	240 9065	242 9507	250 4250	Frequencies	986 9567	989 1320	991 8527
Frequencies	254 1146	254 7924	269 6198	Frequencies	992 1712	994 3216	995 7812
Frequencies	274 4692	277 8/36	279 9289	Frequencies	996 77/9	100/ 0719	1004 5407
Frequencies	274.4032	277.0430	289 8679	Frequencies	1004 7634	1004.0715	1004.5407
Frequencies	202.4031	207.0455	205.0075	Frequencies	1004.7034	1012 6035	1018 3575
Frequencies	300.0246	303 2468	304 8276	Frequencies	1019 1020	1012.0055	1010.3373
Frequencies	308 6638	312 5260	315 5659	Frequencies	1010.1020	1013.2133	1015.7558
Frequencies	318 6578	321 9472	328 7685	Frequencies	1020.3033	1034 2691	1025.5552
Frequencies	320.0370	321.5472	224 0775	Frequencies	1026 0206	10/3 2051	1050.1550
Frequencies	227 7257	348 5656	251 2070	Frequencies	1052 1622	1043.8008	1052.3203
Frequencies	337.7337 SEE 40E9	27E 721C	292 6904	Frequencies	1053.1025	1057.0554	1055.2551
Frequencies	205 0027	373.7310	302.0094 405.0105	Frequencies	1002.0692	1002.9605	1000.7070
Frequencies	395.0627	404.5587	405.0195	Frequencies	1071 9120	1009.8482	1001 5703
Frequencies	413.1681	415.5067	415./91/	Frequencies	1071.8136	1072.3355	1091.5792
Frequencies	416.5611	417.8542	420.1459	Frequencies	1096.9110	1108.7507	1111.7091
Frequencies	422.2567	423.2662	424.0295	Frequencies	1113.2289	1114.7485	1116.5282
Frequencies	433.1470	434.5242	443.2117	Frequencies	1120.1227	1123.4397	1126.0404
Frequencies	445.2981	448.6551	448.9718	Frequencies	1126.2433	1128.1523	1129.0016
Frequencies	453.0507	454.2881	459.2526	Frequencies	1129.7584	1131./980	1145.4862
Frequencies	462.9679	467.5188	472.1596	Frequencies	1157.2710	1158.6046	1161.4399
Frequencies	481.8604	486.1132	491.8438	Frequencies	1166.0389	1166.1257	1166.5310
Frequencies	499.8776	501.7238	511.2122	Frequencies	1168.9592	11/0.1291	11/3./034
Frequencies	511./108	512.8823	522.0066	Frequencies	11/5.3/40	11/5.85/4	11/6.9/18
Frequencies	522.5470	522.9455	525.9692	Frequencies	1177.1567	1178.5003	1188.7894
Frequencies	531.8073	533.7357	538.3084	Frequencies	1195.9801	1200.0548	1201.9617
Frequencies	544.3293	549.3356	556.3100	Frequencies	1203.2140	1207.7894	1207.9415
Frequencies	557.6498	558.4888	562.5129	Frequencies	1211.0181	1211.6886	1213.1570
Frequencies	564.1718	568.4138	569.9211	Frequencies	1214.9478	1216.2124	1222.7106
Frequencies	583.2778	584.6692	586.6755	Frequencies	1225.4258	1229.9120	1235.4265
Frequencies	589.4298	593.2002	597.8280	Frequencies	1236.9198	1238.2333	1243.1974
Frequencies	598.4761	600.0248	601.9776	Frequencies	1244.6826	1247.9211	1251.1265
Frequencies	604.5258	609.6236	610.1977	Frequencies	1253.2940	1259.3809	1271.7237
Frequencies	611.2135	614.0222	617.0902	Frequencies	1272.9342	1275.4259	1280.6367
Frequencies	621.9693	624.8202	626.1217	Frequencies	1284.4827	1292.6824	1294.6323
Frequencies	628.7775	630.4064	632.0346	Frequencies	1297.1451	1297.4596	1298.1973
Frequencies	633.8926	636.2211	640.9251	Frequencies	1299.1801	1303.2326	1305.0558
Frequencies	643.9516	650.0556	655.9731	Frequencies	1307.1856	1308.4016	1309.6856
Frequencies	667.9062	670.4866	675.3577	Frequencies	1311.1559	1314.5471	1316.0651
Frequencies	678.4626	682.5340	693.9841	Frequencies	1316.5801	1322.2743	1324.2517
Frequencies	695.8223	701.0041	710.7691	Frequencies	1327.6846	1329.4082	1333.0793
Frequencies	712.9933	716.3166	716.4882	Frequencies	1336.5052	1341.2938	1342.7602
Frequencies	717.6540	719.2854	720.4154	Frequencies	1346.5980	1356.2687	1359.6490
Frequencies	722.9968	725.3125	725.6694	Frequencies	1360.7753	1361.1909	1362.8273
Frequencies	727.3059	730.8386	732.2805	Frequencies	1365.0114	1365.2297	1366.2422
Frequencies	732.7879	734.9490	739.1115	Frequencies	1366.6500	1367.5991	1368.3855
Frequencies	744.5000	748.4578	751.5302	Frequencies	1369.9431	1375.0514	1383.8912
Frequencies	755.5151	762.0617	765.1931	Frequencies	1387.8990	1392.9610	1402.6748
Frequencies	767.5931	770.3412	771.6685	Frequencies	1404.5871	1433.8025	1447.2844
Frequencies	772.0792	773.1230	777.0546	Frequencies	1458.2810	1459.2091	1466.3337
Frequencies	779.1194	781.8639	784.5836	Frequencies	1470.6932	1488.6944	1490.5037
Frequencies	789.2072	796.5207	798.6071	Frequencies	1493.1932	1495.3218	1496.1878
Frequencies	799.4558	800.6029	804.1659	Frequencies	1498.8622	1499.2449	1502.2061
Frequencies	805.0761	822.7960	826.3857	Frequencies	1502.6986	1505.1878	1506.4695
Frequencies	828.6760	830.2172	858.8719	Frequencies	1506.7439	1507.6267	1509.5016
Frequencies	859.4325	861.8011	863.1029	Frequencies	1515.7002	1517.6458	1518.4873

Frequencies	1528.9346	1532.3265	1546.2673	20	6	0	4.360385	2.210185	1.021041
Frequencies	1547.7616	1548.3481	1553.3845	21	6	0	3.942882	3.592117	1.598618
Frequencies	1555.0480	1559.5209	1561.1979	22	6	0	1.504000	4.344083	2.213699
Frequencies	1564.1234	1565.0989	1568.3422	23	1	0	-0.609643	4.698670	2.411514
Frequencies	1570.5119	1575.0257	1654.7961	24	6	0	-2.459567	2.915266	0.831187
Frequencies	1661.8383	1667.7931	1668.6154	25	6	0	-2.154996	1.147227	2.412952
Frequencies	1672.1087	1672.5535	1673.8815	26	6	0	4.650000	-0.507257	2.957119
Frequencies	1677.1508	1677.2552	1678.1222	27	6	0	4.263753	-2.403367	1.161933
Frequencies	1683.4447	1687.7644	1689.3553	28	1	0	3.727972	-3.748641	-0.427946
Frequencies	1691.6362	1694.7917	1697.6152	29	6	0	1.227991	-3.175967	-2.111059
Frequencies	1698.3998	1698.6553	1699.1441	30	6	0	2.304133	-1.295278	-3.115644
Frequencies	1699.7919	1701.1245	1702.1540	31	1	0	4.392401	1.600368	3.569206
Frequencies	1703.2142	1704.2203	1721.2905	32	1	0	2.940747	0.610973	3.689526
Frequencies	1723.0625	1733.1362	1737.3862	33	1	0	5.405933	1.962673	1.229158
Frequencies	2728.4014	3070.9951	3085.0614	34	1	0	4.219751	2.216736	-0.064620
Frequencies	3086.5625	3094.1462	3101.4561	35	1	0	4.528053	3.826436	2.495366
Frequencies	3126.4783	3150.8468	3158.3692	36	6	0	4.095153	4.731602	0.608395
Frequencies	3170.8090	3174.6135	3185.5325	37	6	0	1.901363	5.755624	2.454595
Frequencies	3193.7343	3198.7598	3200.1867	38	6	0	-3.771572	2.505423	0.633970
Frequencies	3203.1756	3203.5139	3205.1253	39	8	0	-1.963099	3.986470	0.122863
Frequencies	3206.2391	3207.7171	3209.3001	40	6	0	-3.487830	0.750249	2.252532
Frequencies	3209.6252	3211.8860	3212.5723	41	8	0	-1.304482	0.469258	3.251718
Frequencies	3212.8800	3215.4470	3215.9389	42	1	0	5.713344	-0.271637	2.821504
Frequencies	3216.2783	3217.3163	3219.7170	43	6	0	4.510083	-1.406979	4.169826
Frequencies	3220.3213	3220.4506	3222.2005	44	6	0	5.128445	-3.392917	1.861663
Frequencies	3222.7440	3223.8615	3224.2408	45	6	0	0.400979	-3.305614	-3.232295
Frequencies	3224.4595	3228.4246	3230.1258	46	8	0	1.106618	-4.042900	-1.050267
Frequencies	3232.1194	3232.2911	3232.9517	47	6	0	1.483573	-1.414890	-4.228453
Frequencies	3233.0401	3234.0328	3235.2374	48	8	0	3.265594	-0.309265	-3.086842
Frequencies	3235.3511	3236.6170	3236.8278	49	6	0	3.313027	4.750438	-0.555142
Frequencies	3239.5907	3239.9401	3240.7039	50	6	0	4.940465	5.809474	0.870212
Frequencies	3241.9591	3243.8294	3245.9272	51	6	0	1.471361	6.775104	1.599386
Frequencies	3247.4657	3248.8134	3250.4116	52	6	0	2.759066	6.068726	3.514436
Frequencies	3260.8317	3588.0535	3714.1814	53	6	0	-4.306853	1.427078	1.343498

SCF Done: E(RM062X/DGDZVP) = -6499.42768961

Sum of electronic and zero-point Energies= -6498.076763 Sum of electronic and thermal Energies=-6497.962686Sum of electronic and thermal Free Energies=-6498.231810 SCF Done: E(RM062X/DGTZVP/SMD) = -6500.70823578

Cat f IOd_R

Center	Atomic	C A	tomic	Coordinate	s (Angstroms)
Number	Num	ber	Туре	X Y	Z
1	15	0	0.380511	0.396154	-0.477466
2	8	0	0.392812	0.470910	1.129326
3	8	0	1.938575	0.428943	-0.863687
4	8	0	-0.139714	1.737361	-1.039921
5	8	0	-0.334343	-0.848339	-0.871388
6	6	0	0.783993	1.708037	1.649598
7	6	0	2.742353	-0.519435	-0.223267
8	6	0	2.124666	2.039175	1.734846
9	6	0	-0.215024	2.650486	1.895689
10	6	0	3.362434	-0.155682	0.961253
11	6	0	2.854552	-1.813432	-0.745229
12	6	0	3.377673	1.191785	1.647920
13	6	0	2.471561	3.374545	1.936417
14	6	0	0.159532	3.957491	2.211466
15	6	0	-1.628885	2.243620	1.726773
16	6	0	4.110127	-1.103565	1.660553
17	6	0	3.619866	-2.742414	-0.032709
18	6	0	2.148625	-2.131853	-2.009744
19	6	0	3.829842	0.798377	3.082004

25	6	0	-2.154996	1.147227	2.412952
26	6	0	4.650000	-0.507257	2.957119
27	6	0	4.263753	-2.403367	1.161933
28	1	0	3.727972	-3.748641	-0.427946
29	6	0	1.227991	-3.175967	-2.111059
30	6	0	2.304133	-1.295278	-3.115644
31	1	0	4.392401	1.600368	3.569206
32	1	0	2 940747	0.610973	3 689526
33	1	0	5 405933	1 962673	1 229158
34	1	0	4 219751	2 216736	-0.064620
35	1	0	4 528053	3 826436	2 495366
36	6	0	4 095153	4 731602	0.608395
37	6	0	1 901363	5 755624	2 454595
38	6	0	-3 771572	2 505423	0.633970
39	8	0	-1 963099	3 986470	0.0000070
10	6	0	-3 /87830	0.750249	2 252532
40 //1	8	0	-1 304482	0.750245	3 251718
41	1	0	5 7122//	0.405258	2 921504
42	6	0	4 510092	1 406070	1 160926
43	6	0	4.310083 E 12044E	2 202017	1 0616620
44 4	0	0	0.400070	-3.392917	1.001005
45	0	0	1 100019	-3.303014	-3.232293
40	°	0	1.100018	-4.042900	-1.050207
47	6	0	1.483573	-1.414890	-4.228453
48	8	0	3.265594	-0.309265	-3.086842
49	6	0	3.313027	4.750438	-0.555142
50	6	0	4.940465	5.809474	0.870212
51	6	0	1.4/1361	6.//5104	1.599386
52	6	0	2.759066	6.068/26	3.514436
53	6	0	-4.306853	1.427078	1.343498
54	8	0	-4.559209	3.167128	-0.278792
55	6	0	-2.528378	4.115148	-1.133552
56	8	0	-3.994979	-0.296997	2.974143
57	6	0	-1.898650	-0.367890	4.169149
58	6	0	3.240026	-1.774137	4.625391
59	6	0	5.628926	-1.906271	4.839470
60	6	0	4.584939	-4.527254	2.471706
61	6	0	6.508992	-3.177971	1.927080
62	6	0	0.498775	-2.399828	-4.289373
63	8	0	-0.541053	-4.294000	-3.278071
64	6	0	-0.120598	-4.678589	-0.944318
65	8	0	1.603101	-0.519483	-5.265815
66	6	0	2.889607	0.834931	-3.762479
67	6	0	3.366601	5.838218	-1.422846
68	1	0	2.624475	3.929795	-0.762251
69	6	0	5.002117	6.896912	-0.002886
70	1	0	5.536198	5.813819	1.780025
71	6	0	1.911923	8.083874	1.788863
72	1	0	0.817101	6.530183	0.766031
73	6	0	3.189637	7.379111	3.712302
74	1	0	3.081351	5.279136	4.189431
75	6	0	-5.765555	1.109381	1.091460
76	6	0	-3.841234	3.700327	-1.336028
77	6	0	-1.779422	4.630482	-2.179767
78	6	0	-3.235287	-0.726564	4.043854
79	6	0	-1.128020	-0.867603	5.210278
80	6	0	3.088692	-2.635399	5.709856
81	1	0	2.353512	-1.397860	4.117743
82	6	0	5.484929	-2.771976	5.923413
83	1	0	6.624147	-1.636054	4.494702
84	6	0	5.405664	-5.412447	3.169410
85	1	0	3.514594	-4.708136	2.408406

86	6	0	7.332553	-4.071513	2.609318
87	1	0	6.936166	-2.306195	1.436636
88	6	0	-0.409863	-2.393264	-5.498070
89	6	0	-0.965063	-4.753161	-2.046882
90	6	0	-0.483297	-5.271555	0.256103
91	6	0	2.044785	0.728898	-4.864902
92	6	0	3.375461	2.071309	-3.366076
93	6	0	4 210162	6 917348	-1 149003
94	1	0	2 727906	5 857681	-2 301524
95	1	0	5 653638	7 734923	0 225293
96	6	0	2 77/2/0	0 200750	2 842025
07	1	0	1 5 9 9 9 0 0	0.00200	2.042925
97	1	0	1.588890	8.804/50	1.10/1/5
98	1	0	3.849424	7.612584	4.542528
99	9	0	-6.528966	2.180813	1.384880
100	9	0	-5.982534	0.821622	-0.203794
101	9	0	-6.228/28	0.091967	1.813543
102	6	0	-4.429515	3.796470	-2.587292
103	1	0	-0.748542	4.917213	-1.994671
104	6	0	-2.368155	4.740408	-3.440466
105	6	0	-3.828601	-1.560924	4.981320
106	1	0	-0.084326	-0.574376	5.271280
107	6	0	-1.710999	-1.729641	6.137393
108	6	0	4.213692	-3.142272	6.361412
109	1	0	2.089959	-2.914326	6.037687
110	1	0	6.367890	-3.163059	6.419964
111	6	0	6.780065	-5.184488	3.243577
112	1	0	4.970459	-6.279839	3.656059
113	1	0	8 403728	-3 897634	2 648688
114	9	0	-1 032514	-1 200380	-5 622728
115	9	0	-1 356677	-3 326485	-5 476909
116	q	0	0.301671	-2 573227	-6 626523
117	c S	0	2 210802	-2.373227	1 042622
110	1	0	-2.219602	-3.3333340	1.942023
110		0	1 727172	-3.230346	1.093307
119	6	0	-1./2/1/3	-5.896935	0.354203
120	6	0	1.659218	1.855879	-5.575148
121	1	0	4.038743	2.12/330	-2.508495
122	6	0	3.016701	3.206583	-4.094117
123	1	0	4.241326	/.//0601	-1.819553
124	1	0	3.117797	9.407878	2.988043
125	1	0	-5.452542	3.454762	-2.713140
126	6	0	-3.685523	4.327680	-3.642630
127	1	0	-1.791141	5.141989	-4.266844
128	1	0	-4.875704	-1.816943	4.855313
129	6	0	-3.060430	-2.069651	6.027591
130	1	0	-1.109559	-2.131220	6.946330
131	1	0	4.101200	-3.819286	7.202640
132	1	0	7.417763	-5.875160	3.786657
133	1	0	-2.864970	-5.336963	-2.814571
134	6	0	-2.603232	-5.905372	-0.730341
135	1	0	-2.013653	-6.363084	1.291599
136	1	0	0.993796	1.736802	-6.424438
137	6	0	2.157458	3.101078	-5.188109
138	1	0	3.420114	4.170255	-3.801405
139	1	0	-4.138291	4.416331	-4.624913
140	1	0	-3.517633	-2.732698	6.754398
141	1	0	-3.584336	-6.358165	-0.636234
142	1	0	1 878796	3 986101	-5 750362
143	1	0	-0.987883	1 691019	-1 689476
144	8	0	-2.063002	1 467833	-2 554598
145	6	ñ	-1 654082	0 596428	-3 653835
146	6	n	-2 671488	-0 493481	-3 225717
147	1	0	-1 8107/6	1 029/01	-4 614/21
1⊿Q	1 1	0	-0 607077	0.288220	-3 226/20
1/0	0 T	0	-0.007377	-1 727050	-2 00030429
150	o E	0	-2.102330	-1.727039 0 /57525	-2.300384
15U 1E1	1	0	1 442507	1 676400	2.03/2/3
TOT	Ŧ	U	-1.447237/	-1.3/3433	-2.130032

152	1	0	-2.678360	0.090498	-1.057007
153	1	0	-4.010355	0.857736	-1.990572
154	1	0	1.839706	-3.435832	3.297932
155	6	0	0.762549	-3.477916	3.175940
156	6	0	0 157111	-2 675910	2 211434
157	6	0	0.012707	-4 350690	3 974703
158	6	0	-1 221917	-2 796147	2 043026
150	1	0	0 7/1///0	2.008500	1 5921/1
109	L C	0	1 200442	-2.006509	2,912624
100	1	0	-1.369442	-4.451042	3.812024
101	1	0	0.512580	-4.961813	4.720188
162	1	0	-1.99/1/6	-2.161/8/	1.082343
163	6	0	-1.979613	-3.674248	2.831883
164	1	0	-1.955522	-5.131320	4.423803
165	6	0	-3.304868	-2.535981	0.997487
166	1	0	-1.563/31	-1.60/916	0.335568
167	16	0	-3.64812/	-3.680/91	2.298695
168	16	0	-4.412653	-2.027546	-0.111176
169	6	0	-3.820007	-0.701680	-4.180920
170	6	0	-4.228829	-1.985838	-4.536193
171	6	0	-4.489842	0.407584	-4.708196
172	6	0	-5.295517	-2.157061	-5.419478
173	1	0	-3.708285	-2.839367	-4.115541
174	6	0	-5.555245	0.235033	-5.587120
175	1	0	-4.179679	1.414515	-4.426440
176	6	0	-5.959660	-1.051852	-5.947499
177	1	0	-5.607856	-3.159669	-5.695271
178	1	0	-6.070091	1.101329	-5.991782
179	1	0	-6.788601	-1.189469	-6.634940
Frequence	cies	11.91	02 1	L5.4349	20.7485
Frequen	cies	23.35	87	25.0632	27.7685
Frequen	cies	30.22	32	32.7748	34.8830
Frequen	cies	36.63	69	39.8931	41.4741
Frequen	cies	42.32	41	43.8269	45.6852
Frequen	cies	48.93	14	51.7691	55.4877
Frequen	cies	58.16	17	58.7210	62.2207
Frequen	cies	64.61	92	65.5908	68.1146
Frequen	cies	69.09	71	71.6339	73.1325
Frequen	cies	74.62	23	78.8863	81.3304
Frequen	cies	85.90	17	88.4777	90.3893
Frequen	cies	92.75	19	95.0912	95.7542
Frequen	cies	100.59	960	102.5834	105.5284
Frequen	cies	107.53	343	114.3219	117.1162
Frequen	cies	121.0	254	122.9199	124.0839
Frequen	cies	125.12	230	130.1275	134.4293
Frequen	cies	137.54	497	142.6331	146.2461
Frequen	cies	146.74	441	153.8088	160.6709
Frequen	cies	167.52	208	172.8149	174.3989
Frequen	cies	184.0	242	187.1821	192,4385
Frequen	cies	199.6	204	201 9574	211 8364
Frequen	cies	218.9	513	223 0543	226 4657
Frequen	cies	220.0	326	231 7741	233 3865
Frequen	cies	227.7	320	243 0469	235.3003
Eroquon	cios	250.0	591	245.0405	245.1425
Frequen	cies	251.0	001 075	239.3039	209.0737
Eroquen	cies	2/1./	575	210.3032 200 10E7	201.3348
Eroquen	cios	204.9	502	203.102/	231.30/3
rieuuen		233.91	502	230.3000	299.4220
Eroquer	cies	302 6	55/		2110 6 5 5
Frequen	cies	302.6	554 171	303.2964	308.5334
Frequen	cies cies	302.60 311.5	554 171 122	303.2964 314.6690 321.2024	308.5334 316.5796
Frequen Frequen Frequen	cies cies cies	302.60 311.5 317.8	554 171 122	303.2964 314.6690 321.2924	308.5334 316.5796 325.2965
Frequen Frequen Frequen Frequen	cies cies cies cies	302.60 311.5 317.8 329.3	554 171 122 276	303.2964 314.6690 321.2924 334.2452	308.5334 316.5796 325.2965 337.0938
Frequen Frequen Frequen Frequen Frequen	cies cies cies cies cies	302.60 311.53 317.83 329.33 344.40	554 171 122 276 043	303.2964 314.6690 321.2924 334.2452 346.0000	308.5334 316.5796 325.2965 337.0938 357.1704
Frequen Frequen Frequen Frequen Frequen	cies cies cies cies cies cies	302.60 311.5 317.8 329.3 344.40 371.58	554 171 122 276 043 842	303.2964 314.6690 321.2924 334.2452 346.0000 373.9925	308.5334 316.5796 325.2965 337.0938 357.1704 385.3285
Frequen Frequen Frequen Frequen Frequen Frequen	cies cies cies cies cies cies cies	302.60 311.53 317.83 329.33 344.40 371.58 404.23	554 171 122 276 043 842 285	303.2964 314.6690 321.2924 334.2452 346.0000 373.9925 405.5978	308.5334 316.5796 325.2965 337.0938 357.1704 385.3285 406.2147

Frequencies	413.0773	418.0007	418.7711	Frequencies	1090.5877	1094.3447	1100.4299
Frequencies	425.5998	429.1438	436.2433	Frequencies	1110.7956	1111.7949	1113.1461
Frequencies	436.9286	437.2065	439.8282	Frequencies	1114.2186	1117.1703	1124.1990
Frequencies	445.0715	447.0234	449.4265	Frequencies	1126.2912	1127.7592	1129.5968
Frequencies	452.9746	458.1605	461.6106	Frequencies	1130.6259	1132.7908	1160.7806
Frequencies	463.1417	467.2943	474.9066	Frequencies	1164.8330	1165.5527	1167.2225
Frequencies	486 6456	489 7384	499 3647	Frequencies	1168 2800	1170 0783	1171 2107
Frequencies	505 2268	506 2083	513 2143	Frequencies	1171 4696	1174 0566	1175 0046
Frequencies	519 /668	519 9857	521 6472	Frequencies	1176 63/1	1178 0528	1178 2059
Frequencies	530 2682	533 5494	537 9329	Frequencies	1170.0341	1182 8044	1196 1177
Frequencies	E 20 7011	E 41 4024	537.3323 EAA 3396	Frequencies	1100 0101	1202.0044	1202 0459
Frequencies	559.7911	541.4924 EEA 1AAE	J44.2200	Frequencies	1190.9101	1202.0307	1202.9436
Frequencies	551.9520	554.1445	550.4000	Frequencies	1205.6910	1200.2034	1200.1507
Frequencies	557.4514	500.0748	502.2885	Frequencies	1210.8002	1212.1010	1213.3009
Frequencies		507.9521	508.9007	Frequencies	1214.0962	1223.4581	1220.1021
Frequencies	581.8018	583.2615	589.4521	Frequencies	1227.1581	1227.9990	1229.1657
Frequencies	593.5800	595./3/8	596.8629	Frequencies	1232.1791	1234.9978	1238.1151
Frequencies	598.0105	601.4783	604.9697	Frequencies	1241.9834	1242.7984	1247.7050
Frequencies	607.1328	609.6235	610.0681	Frequencies	1256.4659	1259.2549	1265.4988
Frequencies	611.1173	618.6572	620.9965	Frequencies	1268.3549	1277.0426	1283.0144
Frequencies	624.7720	626.5897	627.8033	Frequencies	1284.1799	1287.1587	1293.5597
Frequencies	630.4439	631.0220	632.4048	Frequencies	1294.9657	1295.0704	1296.7741
Frequencies	633.4991	634.7575	646.4650	Frequencies	1298.3637	1300.3017	1301.5481
Frequencies	648.3919	655.7512	659.6941	Frequencies	1303.0078	1306.4193	1306.9700
Frequencies	666.1217	673.2781	675.8146	Frequencies	1308.0879	1311.1981	1311.6634
Frequencies	682.1149	682.9870	697.2982	Frequencies	1318.8755	1323.1946	1324.3888
Frequencies	705.5144	705.8590	711.7072	Frequencies	1326.0254	1326.6402	1327.7821
Frequencies	711.9678	714.1571	716.5603	Frequencies	1335.2568	1337.8477	1340.0472
Frequencies	717.6500	719.7652	720.3548	Frequencies	1340.6971	1345.4585	1350.5466
Frequencies	722.8472	725.4626	725.9741	Frequencies	1358.8294	1359.0471	1360.2490
Frequencies	729.0686	730.0903	732.5509	Frequencies	1362.4214	1363.0080	1366.3002
Frequencies	735.3851	740.9153	744.0096	Frequencies	1367.0510	1368.8673	1370.3276
Frequencies	746.1733	749.9233	753.6841	Frequencies	1371.2406	1372.8339	1375.8233
Frequencies	760.9584	764.9087	767.8699	Frequencies	1378.0851	1383.9299	1388.0391
Frequencies	769.8586	771.0754	773.0242	Frequencies	1392.6010	1407.6261	1449.1464
Frequencies	773.2260	776.1889	779.9017	Frequencies	1457.3820	1461.4914	1468.4924
Frequencies	780.3818	782.2357	785.0398	Frequencies	1471.6849	1474.5128	1491.9173
Frequencies	793.8312	796.9966	801.5814	Frequencies	1493.2199	1497.1047	1498.5710
Frequencies	803.0439	805.5881	820.3861	Frequencies	1499.9098	1503.1057	1504.2161
Frequencies	824.7338	825.2949	827.5378	Frequencies	1504.8302	1506.8798	1507.3663
Frequencies	830.0429	864.9012	865.1933	Frequencies	1510.0167	1511.9961	1515.3635
Frequencies	867.1290	867.8757	868.3209	Frequencies	1515.6472	1517.6645	1525.0122
Frequencies	869.1975	871.1403	872.1560	Frequencies	1526.8032	1529.3416	1532.8840
Frequencies	872.9772	875.8565	877.0038	Frequencies	1546.8639	1549.3573	1554.9874
Frequencies	885.8015	887.6236	888.5309	Frequencies	1555.2984	1555.9673	1558.1905
Frequencies	889.9425	891.1129	909.4508	Frequencies	1560.3231	1561.2774	1563.2095
Frequencies	918.7935	920.0371	921.6850	Frequencies	1565.5286	1571.8813	1660.6540
Frequencies	923.3969	925.9621	932.6144	Frequencies	1663.5765	1668.2337	1668.6744
Frequencies	934.0911	937.0986	940.0074	Frequencies	1669.3801	1672.4946	1674.7353
Frequencies	941.9675	943.1069	943.5096	Frequencies	1677.3604	1677.7010	1679.5012
Frequencies	944.1407	947.2963	951.6412	Frequencies	1680.1919	1689.2929	1691.1252
Frequencies	952.8937	953.6766	954.2536	Frequencies	1696.1458	1697.7970	1699.8068
Frequencies	964.1531	968.1142	973.5817	Frequencies	1700.2802	1701.2298	1701.6104
Frequencies	982.5423	986.8071	987.8303	Frequencies	1702.6594	1703.1482	1703.6035
Frequencies	989.9380	993.5849	994.6571	Frequencies	1704.2991	1706.0935	1719.1781
Frequencies	997.2153	997.9157	998.9681	Frequencies	1719.7074	1731.2491	1733.2763
Frequencies	999.4541	1008.3874	1010.2094	Frequencies	2074.7398	3068.4911	3086.1156
Frequencies	1010.6312	1010.7882	1011.4864	Frequencies	3090.8013	3097.6422	3101.6318
Frequencies	1011.6466	1014.4451	1018.0455	Frequencies	3124.7764	3156.9002	3163.2700
Frequencies	1018.6483	1019.1621	1019.7537	Frequencies	3169.1761	3170.1690	3187.5337
Frequencies	1020.6805	1020.8610	1025.2056	Frequencies	3194.9113	3199.3374	3201.5426
Frequencies	1030.0968	1035.5916	1036.0728	Frequencies	3201.9421	3205.3628	3205.4191
Frequencies	1044.0577	1051.8603	1054.6170	Frequencies	3206.6626	3207.3590	3209.5158
Frequencies	1055.8809	1059.5835	1061.0872	Frequencies	3210.0565	3212.8146	3216.0687
Frequencies	1062.1281	1062.9876	1068.4841	Frequencies	3216.8626	3218.5095	3218.5169
Frequencies	1068.8169	1071.0305	1071.6328	Frequencies	3220.7502	3221.2918	3222.4731
Frequencies	1073.1579	1077.5874	1080.9561	Frequencies	3222.7066	3225.7128	3226.1017
,	. =			,			

Frequencies	3226.7027	3227.2731	3227.4188
Frequencies	3228.0106	3228.7419	3229.0763
Frequencies	3231.2172	3231.8935	3232.5486
Frequencies	3232.5863	3233.1725	3235.5165
Frequencies	3236.6065	3236.9852	3237.0255
Frequencies	3238.1063	3239.6689	3241.2972
Frequencies	3246.8391	3247.3661	3247.6744
Frequencies	3248.2595	3248.4988	3252.4109
Frequencies	3260.2839	3428.6563	3710.8780

SCF Done: E(RM062X/DGDZVP) = -6499.40019055Sum of electronic and zero-point Energies=-6498.050144Sum of electronic and thermal Energies=-6497.936044Sum of electronic and thermal Free Energies=-6498.206875SCF Done: E(RM062X/DGTZVP/SMD) = -6500.6845574

Cat f TS1d_R

Center	Aton	nic At	omic	Coordinates	(Angstroms)
Number	Nu	ımber	Туре	X Y	Z
1	15	0	-0.011846	-0.020306	0.006666
2	8	0	0.000717	-0.003940	1.639022
3	8	0	1.570245	0.001360	-0.346108
4	8	0	-0.588988	1.241529	-0.555824
5	8	0	-0.626391	-1.351673	-0.336588
6	6	0	0.371845	1.217558	2.184252
7	6	0	2.374164	-0.949131	0.267455
8	6	0	1.711756	1.552530	2.302844
9	6	0	-0.626091	2.161951	2.431320
10	6	0	2.980775	-0.614508	1.470735
11	6	0	2.526019	-2.228358	-0.286520
12	6	0	2.967496	0.709326	2.204348
13	6	0	2.056397	2.880250	2.550370
14	6	0	-0.256725	3.458449	2.796088
15	6	0	-2.042170	1.800359	2.192538
16	6	0	3.745151	-1.565652	2.145184
17	6	0	3.319120	-3.156519	0.397634
18	6	0	1.792203	-2.571035	-1.527859
19	6	0	3.397463	0.271987	3.632452
20	6	0	3.958829	1.747742	1.625082
21	6	0	3.529757	3.112750	2.232718
22	6	0	1.085965	3.842915	2.842185
23	1	0	-1.029101	4.196779	2.995510
24	6	0	-2.806213	2.540607	1.290681
25	6	0	-2.649192	0.708315	2.815939
26	6	0	4.240842	-1.015345	3.477027
27	6	0	3.943017	-2.842337	1.606988
28	1	0	3.453577	-4.147611	-0.026165
29	6	0	0.937569	-3.675044	-1.589511
30	6	0	1.824586	-1.722065	-2.633486
31	1	0	3.935747	1.065411	4.159654
32	1	0	2.499194	0.047532	4.213742
33	1	0	5.001096	1.495577	1.844542
34	1	0	3.838221	1.782677	0.537476
35	1	0	4.106858	3.330080	3.139049
36	6	0	3.682229	4.275125	1.268965
37	6	0	1.477936	5.248149	3.123673
38	6	0	-4.137009	2.225666	1.048588
39	8	0	-2.230446	3.590183	0.615893
40	6	0	-3.994549	0.391120	2.591150
41	8	0	-1.875401	-0.048510	3.663611
42	1	0	5.305167	-0.763064	3.388619
43	6	0	4.070590	-1.972456	4.640137
44	6	0	4.808182	-3.837574	2.298087

45	6	0	0.052739	-3.854147	-2.655685
46	8	0	0.939610	-4 560571	-0 534218
47	6	0	0 944876	-1 890165	-3 695652
48	8	0	2 723427	-0.680543	-2 663897
10	6	0	2 902175	4 316221	0 104277
50	6	0	1 5 2 5 7 7 2	5 249977	1 553200
50 E 1	6	0	4.525275	5.340022	1.333003
21	6	0	1.051464	6.286820	2.289383
52	6	0	2.328013	5.538835	4.195974
53	6	0	-4./54/86	1.155006	1./00559
54	8	0	-4.855496	2.970001	0.142781
55	6	0	-2.735758	3.741279	-0.663690
56	8	0	-4.572196	-0.675316	3.229952
57	6	0	-2.562394	-0.846463	4.550658
58	6	0	2.791703	-2.408922	5.003666
59	6	0	5.168778	-2.454223	5.353525
60	6	0	4.257440	-4.970501	2.904914
61	6	0	6.188881	-3.627990	2.371319
62	6	0	0.027539	-2.940062	-3.710339
63	8	0	-0.833351	-4 898430	-2 646925
64	6	0	-0.236310	-5 263672	-0 351273
65	8	0	0.230310	-0.980236	-1 727021
66	6	0	2 220446	0.446000	2 205040
60	C	0	2.220440	0.440000 F 410C18	-5.265040
67	6	0	2.958457	5.419618	-0.742753
68	1	0	2.212956	3.499781	-0.11/193
69	6	0	4.58/555	6.453417	0./01964
70	1	0	5.118263	5.336713	2.465433
71	6	0	1.488383	7.591586	2.511642
72	1	0	0.403752	6.058896	1.446166
73	6	0	2.755135	6.845122	4.426507
74	1	0	2.647841	4.734388	4.854366
75	6	0	-6.224575	0.939944	1.414517
76	6	0	-4.074998	3.446042	-0.900622
77	6	0	-1.909151	4.156275	-1.695710
78	6	0	-3.905560	-1.142621	4.345576
79	6	0	-1.885123	-1.377642	5.639686
80	6	0	2 615376	-3 313042	6 048415
81	1	0	1 923636	-2 041973	4 457129
82	6	0	1.929030	-3 365660	6 396368
02	1	0	6 169703	2 120076	5 079077
0.0	L C	0	0.109703	-2.130070	3.078377
84 05	1	0	3.071444	-5.800211	3.390397
85	I	0	3.183989	-5.135814	2.848480
86	6	0	7.006039	-4.529028	3.052512
8/	1	0	6.621067	-2.754703	1.888247
88	6	0	-0.938495	-2.999/91	-4.8/1156
89	6	0	-1.146834	-5.386488	-1.395902
90	6	0	-0.483090	-5.876151	0.868188
91	6	0	1.315874	0.294093	-4.333060
92	6	0	2.631305	1.708625	-2.887113
93	6	0	3.799983	6.494444	-0.446261
94	1	0	2.323759	5.456590	-1.623579
95	1	0	5.236467	7.288301	0.948503
96	6	0	2.343930	7.873243	3.577631
97	1	0	1.169235	8.387266	1.845368
98	1	0	3.410033	7.060687	5.265478
99	9	0	-6 930036	2 034460	1 752050
100	9	0	-6 440803	0 732245	0.098529
101	q	0	-6 759060	-0.088897	2 069316
102	6	0	-4 622630	3 592537	-2 164474
102	1	0	0 857473	4 326907	1 / 2 7 7 7
104	L C	0	-U.UJ/4/3	4.320307	-1.40/U/S
104 105	C	0	-2.404000	4.311090	-2.3/132U
100	1	0	-4.594011	-1.352123	5.230915
102	Ţ	0	-0.834088	-1.136323	5./66345
10/	6	0	-2.565963	-2.209938	6.52/475
108	6	0	3./21912	-3./99956	6./46818
109	1	0	1.612907	-3.637796	6.317661
110	1	0	5.867764	-3.740659	6.929430

20.8232

27.7565

32.6736

39.2407

46.3748

54.0185

59.8365

66.8795

73.4533

80.1871

89.5372

97.4311

105.7059

115.5224 125.7284

134.9356

148.7049

163.4244

174.9815

194.1920

209.5304

221.5578

233.8772

247.7907 269.4463

278.5555

288.7623

298.5916

304.2531

315.8557

321.5177

336.7100

353.2025

386.8573

406.7691

414.6242

421.0897 429.1359

442.1372

452.0536

461.2751

466.6894

491.4859

508.7153

521.3587

536.1259

541.3060

556.1832

562.3204

571.2145

587.6264

596.0194

601.0530

610.3434

618.9920

626.7164

632.6814

645.7446

665.9646

677.3237

684.9672

111	6	0	6.447145	-5.645358	3.674989		177	1	0	-5.997192	-4.101335	-4.634188
112	1	0	4.630529	-6.732849	4.079421		178	1	0	-6.944501	0.086853	-4.795386
113	1	0	8.077548	-4.358911	3.098839		179	1	0	-7.472530	-2.263531	-5.409953
114	9	0	-1.661765	-1.862050	-4.956482							
115	9	0	-1.807392	-4.006686	-4.808416							
116	9	0	-0.275254	-3.121162	-6.035477	Fre	eauenc	ies	-552.75	41	12.4527	20.823
117	6	0	-2.352301	-6.046319	-1.209778	Fr	equen	cies	23.78	98	27.1042	27.756
118	1	0	0 257932	-5 794790	1 656025	Fr	equen	ries	29.06	29	31 3692	32 673
119	6	0	-1 678640	-6 572054	1.052639	Fr	equen	ries	35 33	67	38.0973	39.240
120	6	0	0.800698	1 398940	-4 993807	Fr	equen	ries	40.49	93	41 3025	46 374
120	1	0	3 335051	1 800250	-2.065803	Fr	oquen		10.15	11	53 39//	54.019
121	6	0	2 139510	2 823878	-2.005805	Er	aguan		56 37	19 19	57 3914	59 836
122	1	0	3 832299	7 359985	-1.100824	Er	aguan		61 12	13	63 5454	66 879
123	1	0	2.632233	0 0007E4	2 747560	Fr	equent	cies	60 60	20	72 2110	72 / 62
124	1	0	2.003399	0.009734	2,747,500	FI	equent	cies	76 11	20	73.2113	75.433 00 107
125	L C	0	-3.070373	3.332410	-2.513004	FI Fr	equenc	les	70.11	20	77.7567 9C 9C01	00.107
120	0	0	-3.803/39	4.040298	-3.202828	FI	equenc	lies	04.04	40	80.8001	07.401
127	1	0	-1.818426	4.637663	-3./8/588	Fr	equen	cies	90.74	42	95.2133	97.431
128	I	0	-5.642984	-2.15/4/9	5.044659	Fr	equen	cies	99.53	82	101.3712	105.70
129	6	0	-3.918187	-2.493441	6.330005	Fr	equen	cies	112.28	881	114.3535	115.5
130	1	0	-2.036563	-2.635053	7.373832	Fr	equen	cies	117.90	196	120.0963	125.7
131	1	0	3.588686	-4.510055	7.55/123	Fr	equen	cies	127.84	10	129.4743	134.9
132	1	0	7.080345	-6.342610	4.214997	Fr -	equen	cies	135.68	385	143.9663	148./
133	1	0	-3.049907	-6.100387	-2.038962	Fr	equen	cies	153.78	322	156.4510	163.4
134	6	0	-2.619184	-6.639860	0.024640	Fr	equen	cies	167.17	'55	172.3393	174.9
135	1	0	-1.871724	-7.050867	2.007267	Fr	equen	cies	187.44	184	190.4327	194.1
136	1	0	0.092524	1.244549	-5.801741	Fr	equen	cies	198.66	541	202.9501	209.5
137	6	0	1.226161	2.671655	-4.609257	Fr	equen	cies	218.05	597	219.1890	221.5
138	1	0	2.480379	3.812041	-3.275841	Fr	equen	cies	224.02	43	230.7450	233.8
139	1	0	-4.220885	4.164073	-4.196670	Fr	equen	cies	237.09	964	244.2379	247.7
140	1	0	-4.450467	-3.133660	7.025558	Fr	equen	cies	252.43	343	262.6099	269.4
141	1	0	-3.558444	-7.161120	0.175770	Fr	equen	cies	272.55	573	277.2497	278.5
142	1	0	0.845955	3.542801	-5.132664	Fr	equen	cies	283.34	100	284.9554	288.7
143	1	0	-1.837642	1.264549	-1.481347	Fr	equen	cies	292.27	'01	295.5984	298.5
144	8	0	-2.653864	1.015134	-2.035702	Fr	equen	cies	300.52	77	302.8837	304.2
145	6	0	-2.272338	-0.022550	-2.971100	Fr	equen	cies	306.76	518	312.9422	315.8
146	6	0	-3.145565	-1.154121	-2.389598	Fr	equen	cies	316.45	61	319.5838	321.5
147	1	0	-2.513403	0.291325	-3.986309	Fr	equen	cies	324.42	90	329.9961	336.7
148	1	0	-1.202860	-0.240237	-2.881769	Fr	equen	cies	339.24	88	345.4777	353.2
149	8	0	-2.444567	-2.326904	-2.105399	Fr	equen	cies	364.55	57	377.9343	386.8
150	6	0	-3.550199	-0.318419	-1.138051	Fr	equen	cies	398.34	49	406.0942	406.7
151	1	0	-1.642636	-2.076149	-1.598211	Fr	equen	cies	411.57	'99	412.6880	414.6
152	1	0	-2.925803	-0.293212	-0.249730	Fr	equen	cies	416.62	.48	419.0657	421.0
153	1	0	-4.495483	0.210822	-1.091312	Fr	equen	cies	422.32	.98	423.8044	429.1
154	1	0	0.980932	-4.004014	3.934807	Fr	equen	cies	430.47	'11	436.3501	442.1
155	6	0	-0.075769	-3.984235	3.686718	Fr	equeno	cies	445.40)13	446.6342	452.0
156	6	0	-0.516831	-3.158554	2.656016	Fr	equen	cies	454.32	.21	460.8834	461.2
157	6	0	-0.962673	-4.812044	4.389510	Fr	eauena	cies	462.98	362	463.8507	466.6
158	6	0	-1.872933	-3.208274	2.334329	Fr	eauena	cies	474.95	541	486.5073	491.4
159	1	0	0.161231	-2.516427	2.097326	Fr	equen	cies	501.37	'35	506.4999	508.7
160	6	0	-2 319239	-4 842080	4 071266	Fr	equen	cies	513.96	43	519 6707	521 3
161	1	0	-0.589826	-5.441139	5.192065	Fr	equen	cies	526.01	55	530.4357	536.1
162	7	0	-2 501846	-2 509894	1 307140	Fr	equen	cies	538 53	23	540 3806	541 3
163	6	0	-2 763793	-4 038571	3 023423	Fr	equen	ries	545.23	67	553 0228	556.1
164	1	0	-3.007520	-5 481332	4 615295	Fr	equen		559.4	/19	561 2971	562.3
165	6	0	-3 811591	-2 761915	1 126139	Fr	equen	nies	563.28	19	569 0796	571.2
166	1	0	-1 922222	_1 9777/1	0.633118	Er	aguan		578 //	127	584 8029	587.6
167	16	0	-1.322222	-1.577741	2 326087	Er	aguan		590.30	505	594.08025	596.0
169	16	0	4 840300	2 121011	0.020449	Fr	oquon	cioc	507.2	126	508 1640	601.0
160	E 10	0	-4.040330	-2.121311	-0.023448	FI Fr	aquan	nics	601 10	30	500.1040 608 6162	610 P
170	C C	0	-4.3343/3 A 650575	-1.4/0002	-2.222222	Fr r	equent	cies	610.07	126 126	000.0103 616 0075	C10.0
171	o c	0	-4.0303/5	-2./90305	-3.JOZOOO	Fr r	equerio	LIES	621 1	30 106	010.00/5	C1C.7
170	o c	0	-3.182100	-0.442061	-3.082519	Fr	equent	ues	620.20	50	024.8033	626.7
172	1	0	-5.//U&UI	-3.0/3/28	-4.3000//	Fr	equent	ues	625.14	/ כי גרא	030.9860	032.0
174	Ţ	0	-4.001832	-3.390/55	-3.229/9/	Fr	equen	ues	035.1t	р47 ГО	033.0/8/	645.7
175	0	0	-0.30353/	-0.722199	-4.458909	Fr -	equen	ues	648.8	.50	CZ1 0712	665.9
1/5	1	U	-4.949896	0.5915/9	-3.422998	Fr -	equen	ues	666.52	:3Z	b/1.8/12	6//.3
1/6	6	U	-6.599666	-2.041938	-4.803650	Fr	equen	cies	681.70	132	683.4081	684.9

Fraguanaias	COC E 411		700 2050	Fraguanaias	1226 2206	1227 0050	1225 5241
Frequencies	742.4006	705.9302	709.5950	Frequencies	1520.5290	1327.6939	1555.5541
Frequencies	/13.4996	/16.1188	/19.1995	Frequencies	1338.2322	1341.6296	1342.5034
Frequencies	719.8033	720.1593	722.2923	Frequencies	1342.6976	1345.0558	1358.2718
Frequencies	723.8206	724.6613	726.5706	Frequencies	1359.5705	1359.8809	1360.2786
Frequencies	727.6856	729.4609	731.2745	Frequencies	1361.8829	1364.8928	1365.1605
Frequencies	732.5676	738.0177	740.1883	Frequencies	1366.1860	1367.5265	1370.0747
Frequencies	745 4872	747 2176	750 9953	Frequencies	1371 0898	1371 5142	1375 4569
Frequencies	752 1121	762 0974	764 0903	Frequencies	1292 7201	129/ 1252	1200 8220
Frequencies	752.1151	702.0874	704.0303	Frequencies	1302.7331	1425 4121	1390.8220
Frequencies	764.1726	769.4941	771.9782	Frequencies	1406.1717	1435.4121	1445.6524
Frequencies	//2.5//0	//3.84//	//8.5429	Frequencies	1450.2888	1459.6189	1468.0515
Frequencies	781.2766	781.5697	782.4285	Frequencies	1471.4778	1472.7426	1478.8963
Frequencies	788.2319	795.8983	798.3878	Frequencies	1491.6462	1493.5987	1497.8548
Frequencies	801.6277	803.5922	806.3243	Frequencies	1498.4375	1502.4421	1503.8265
Frequencies	822.9616	824.9833	826.3525	Frequencies	1504.8263	1506.2272	1508.2530
Frequencies	831 5468	859 7779	862 0607	Frequencies	1509 8275	1510 0509	1512 5325
Frequencies	863 /151	866 8594	867 4694	Frequencies	1515 3756	1518 0802	1525 7150
Frequencies	000.4101	800.8554	807.4094	Frequencies	1515.5750	1518.0802	1525.7150
Frequencies	868.6484	868.9061	869.0300	Frequencies	1526.8238	1531.0718	1545.5210
Frequencies	8/4.0814	875.1169	876.0660	Frequencies	1548.1902	1549.8750	1554.3660
Frequencies	880.0921	883.3348	886.8821	Frequencies	1555.0021	1556.0934	1558.1177
Frequencies	887.5360	888.8568	890.5430	Frequencies	1559.3139	1562.0185	1563.1685
Frequencies	897.8386	912.5686	915.7165	Frequencies	1566.2275	1571.5850	1660.3157
Frequencies	916.6477	920.4459	923.1043	Frequencies	1663.2093	1668.6320	1669.1558
Frequencies	930 7767	932 7322	937 6827	Frequencies	1670 9387	1672 6173	1674 5098
Frequencies	9/1 /938	9/3 /598	944 0037	Frequencies	1677 2089	1677 3622	1678 6621
Frequencies	044 6502	047 5720	040 5046	Frequencies	1691 0190	1697 7121	1690 0629
Frequencies	944.0395	947.3720	949.3940	Frequencies	1001.9100	1007.7121	1009.9320
Frequencies	951.2613	951.5449	952.9327	Frequencies	1694.1741	1696.0850	1698.1248
Frequencies	957.5075	959.3462	966./2/1	Frequencies	1698.8829	1699.7415	1/00.321/
Frequencies	968.9655	984.3275	988.0680	Frequencies	1700.4230	1701.9674	1702.4637
Frequencies	988.6723	992.1135	995.0516	Frequencies	1703.5276	1705.9765	1718.5086
Frequencies	996.5005	997.6095	1001.2278	Frequencies	1720.8440	1728.9086	1731.7200
Frequencies	1004.5897	1005.4413	1005.9168	Frequencies	2866.8281	3071.5135	3083.6356
Frequencies	1007 4534	1008 4151	1009 8545	Frequencies	3091 4855	3099 5697	3122 7769
Frequencies	1011 0832	1011 3082	1018 5256	Frequencies	3157 1785	3160 9293	3168 5127
Frequencies	1018 8390	1019 5244	1019 8215	Frequencies	318/ 6081	3185 3383	3200 1067
Eroquoncios	1020 1602	1020 9592	1021 2161	Frequencies	2200 0211	2201 2104	2200.1007
Frequencies	1020.1002	1020.8582	1021.3101	Frequencies	3200.3211	3201.8194	2201.9330
Frequencies	1020.9410	1034.7917	1053.9004	Frequencies	3203.2443	3207.3000	2207.6739
Frequencies	1043.5748	1047.0831	1053.0941	Frequencies	3208.4693	3211.0078	3213.6974
Frequencies	1056.9672	1057.8317	1058.8886	Frequencies	3215.0725	3217.0667	3218.4089
Frequencies	1059.5782	1060.7658	1062.0718	Frequencies	3219.6169	3220.0945	3220.5201
Frequencies	1063.5260	1068.3524	1068.8152	Frequencies	3220.5565	3221.2469	3222.4078
Frequencies	1071.9820	1073.3797	1079.3797	Frequencies	3225.2317	3226.7175	3226.9187
Frequencies	1094.5260	1098.2800	1100.1207	Frequencies	3227.2562	3228.4782	3229.9372
Frequencies	1109.6713	1110.4173	1111.6474	Frequencies	3230.4343	3231.1909	3231.8789
Frequencies	1113.0374	1115.2708	1118.5375	Frequencies	3232.2885	3233.1166	3234.6785
Frequencies	1123 6462	1125 2770	1126 9466	Frequencies	3235 7151	3236 6814	3238 5364
Frequencies	1127 9236	1128 8267	1130 1631	Frequencies	3238 6095	3239 1678	3239 5018
Frequencies	1127.5250	1120.0207	1162 2026	Frequencies	2230.0033	2241 (127	2232.3010
Frequencies	1152.1420	1156.5447	1102.3920	Frequencies	3241.4230	3241.0127	3242.4421
Frequencies	1165.0185	1165.6808	1166.5682	Frequencies	3244.9142	3245.9961	3246.7960
Frequencies	1166./4//	11/2.3126	11/3.2423	Frequencies	3246.9771	3249.6374	3253.5768
Frequencies	1175.3248	1176.9618	1178.0515	Frequencies	3256.1366	3338.6295	3601.0779
Frequencies	1178.7496	1178.9547	1183.2123				
Frequencies	1192.2803	1196.5870	1200.8777	SCF Done: E(RM	M062X/DGDZVP) =	-6499.37689	9259
Frequencies	1201.4139	1201.9709	1202.9171	Sum of electror	nic and zero-point B	Energies=	-6498.026708
Frequencies	1205 2870	1207 7316	1210 6585	Sum of electro	nic and thermal En	ergies=	-6497 913330
Frequencies	1213 6822	1213 8502	1214 7732	Sum of electro	nic and thermal Er	e Energies=	-6498 181075
Frequencies	1222 6700	1775 5919	1226 6505	SCE Doport E/PM		AD)6500 6	5858215
Frequencies	1227.0703	1223.3010	1222.0303	SCI DOILE. E(RI	1002A/DUI2VF/SN	- 1000.0	JUJUZIJ
Frequencies	1227.03/0	1231./282	1233.9013		_		
Frequencies	1237.2860	1241.5345	1246.8189	Catfl1d F	?		
Frequencies	1249.2234	1255.3013	1261.7293	_			
Frequencies	1268.1664	1271.4173	1281.1063	Contor Atom	ic Atomic	Coordinates	(Angstroms)
Frequencies	1283.0376	1286.4106	1286.7627	Number N	nhor Tur-	v v	7
Frequencies	1293.2139	1294.0641	1296.3362	Number Nur	nuer Type	хY	L
Frequencies	1299.4137	1299.7570	1301.5822				
Frequencies	1305 4886	1307 5194	1308 9858	1 15	0 0.398421	0.435629	-0.462442
Frequencies	1309 9115	1310 9100	1311 9149	2 8	0 0.455291	0.463923	1.176477
Eroquencies	1212 0612	1220 7124	1224 7099	3 8	0 1.971977	0.487221 -	0.855668
i i cquelicies	TOTO.0017	TOTO'' TOH	1024./000				

4	8	0	-0.262634	1.640059	-1.023232	70	1	0	5.581447	5.809709	1.997656
5	8	0	-0.141105	-0.954415	-0.743349	71	6	0	1.958906	8.065743	2.049923
6	6	0	0.824087	1.693072	1.702121	72	1	0	0.869677	6.539343	0.980064
7	6	0	2 809199	-0.452230	-0 273332	73	6	0	3 223705	7 309880	3 962438
, 0	c	0	2.005155	2 02000	1 005125	74	1	0	2 111040	F 107800	4 202005
8	6	0	2.165660	2.030608	1.805135	74	1	0	3.111848	5.197809	4.382895
9	6	0	-0.170041	2.640956	1.952453	/5	6	0	-5.763544	1.529040	0.804652
10	6	0	3.433876	-0.124414	0.924232	76	6	0	-3.508820	4.020804	-1.449494
11	6	0	2.978965	-1.720606	-0.847841	77	6	0	-1.327309	4.766154	-2.161917
12	6	0	3.418782	1.187111	1.682137	78	6	0	-3.565098	-0.611114	3.784249
13	6	0	2.514387	3.355766	2.059786	79	6	0	-1.590663	-0.880046	5.140355
1/	6	0	0.204643	3 935188	2 321716	80	6	0	3 213676	-2 928440	5 457047
10	6	0	1 E00170	2 202272	1 600019	01	1	0	2 460269	1 646204	2 200660
15	0	0	-1.588172	2.302372	1.690018	81	1	0	2.460368	-1.646304	5.899660
16	6	0	4.229522	-1.070607	1.569683	82	6	0	5.603736	-2.923651	5.761454
17	6	0	3.812042	-2.638068	-0.196876	83	1	0	6.715662	-1.631396	4.447549
18	6	0	2.224015	-2.089391	-2.069185	84	6	0	5.657867	-5.354833	2.947429
19	6	0	3.860806	0.725627	3.097983	85	1	0	3.745282	-4.630573	2.259359
20	6	0	4.409340	2.232179	1.112525	86	6	0	7.566825	-3.999152	2.360577
21	6	0	3 986601	3 589710	1 739932	87	1	0	7 137290	-2 220844	1 217394
22	6	0	1 5/7359	1 317248	2 366523	88	6	0	-0.455944	-2 781338	-5 /21319
22	1	0	1.547555	4.517248	2.300323	00	c	0	-0.4553944	-2.781338	1 020027
23	1	0	-0.565616	4.675444	2.522484	89	6	0	-0.601373	-4.999975	-1.836637
24	6	0	-2.309/43	3.052343	0./61891	90	6	0	0.092032	-5.384019	0.440334
25	6	0	-2.233000	1.225016	2.298805	91	6	0	1.518736	0.705827	-4.887838
26	6	0	4.732462	-0.536373	2.904845	92	6	0	2.731645	2.219496	-3.451502
27	6	0	4.450216	-2.331500	1.005947	93	6	0	4.285324	6.986667	-0.916802
28	1	0	3 961604	-3 618589	-0.639660	94	1	0	2 815826	5 959673	-2 110792
20	6	0	1 422047	2 225210	2 104620	05	1	0	5 716729	7 767776	0.490001
29	0	0	2.100000	-3.233210	-2.104023	35	L C	0	2.015221	7.707770	0.483331
30	6	0	2.189660	-1.253501	-3.183/9/	96	6	0	2.815331	8.341/11	3.116/53
31	1	0	4.381656	1.51/5/9	3.644593	97	1	0	1.642214	8.864238	1.385866
32	1	0	2.968104	0.465212	3.673382	98	1	0	3.879720	7.521003	4.801690
33	1	0	5.452218	1.975346	1.323723	99	9	0	-6.457209	2.634403	1.122052
34	1	0	4.285290	2.281359	0.025831	100	9	0	-5.956562	1.313752	-0.513473
35	1	0	4 566685	3 792322	2 647896	101	9	0	-6 333686	0 509407	1 452104
36	6	0	1 1/3390	4 762775	0 790299	102	6	0	-4 032881	1 252746	-2 709910
27	c	0	1.042227	F 720429	2 (5 4702	102	1	0	-4.032001	4.232740	1 0 2 2 7 0
37	6	0	1.942227	5.720438	2.654702	103	1	0	-0.279599	4.921989	-1.923879
38	6	0	-3.639568	2.763070	0.480087	104	6	0	-1.851/69	5.015896	-3.430704
39	8	0	-1.689065	4.083971	0.108231	105	6	0	-4.294619	-1.411022	4.651770
40	6	0	-3.575362	0.934455	2.035238	106	1	0	-0.540771	-0.654592	5.301559
41	8	0	-1.496477	0.448593	3.166409	107	6	0	-2.312639	-1.701947	6.005562
42	1	0	5.788690	-0.255532	2.805829	108	6	0	4.345438	-3.398474	6.126293
43	6	0	4 606039	-1 522222	4 049356	109	1	0	2 226958	-3 282269	5 746411
10	6	0	5 344646	2 221022	1.667610	110	1	0	6 /01757	2 2052205	6 271064
44	0	0	0.544040	-3.321082	2.150251	111	1	0	7.022600	-3.283278	2.000712
45	6	0	0.542861	-3.481816	-3.158251	111	6	0	7.033690	-5.124177	2.989/13
46	8	0	1.4/4168	-4.104968	-1.033446	112	1	0	5.236675	-6.22/5//	3.43/132
47	6	0	1.315115	-1.493515	-4.239670	113	1	0	8.637790	-3.820666	2.379694
48	8	0	3.020038	-0.158535	-3.241158	114	9	0	-1.238003	-1.705699	-5.608103
49	6	0	3.367832	4.815166	-0.376439	115	9	0	-1.265350	-3.837272	-5.317155
50	6	0	4.991571	5.829901	1.084120	116	9	0	0.259822	-2.943793	-6.551296
51	6	0	1 518284	6 762936	1 823989	117	6	0	-1 795409	-5 668508	-1 610025
52	6	0	2 702102	6.005363	2 777722	110	1	0	0.844000	5 264222	1 211611
52	0	0	2.793192	1 711700	3.727723	110	1	0	0.844990	-5.204225	1.211011
53	6	0	-4.29/14/	1./11/00	1.124264	119	6	0	-1.0881/3	-6.094373	0.664912
54	8	0	-4.322088	3.511414	-0.444855	120	6	0	0.892814	1./6394/	-5.52/6//
55	6	0	-2.171745	4.288300	-1.172591	121	1	0	3.438283	2.364829	-2.640520
56	8	0	-4.187457	-0.134224	2.647524	122	6	0	2.129005	3.290986	-4.112007
57	6	0	-2.223247	-0.336129	4.030517	123	1	0	4.329616	7.852475	-1.570274
58	6	0	3 345869	-2 002152	4 425296	124	1	0	3 160004	9 356677	3 289472
50	6	n	5 729102	-1 987/69	4 73/080	125	1	ñ	-5 077969	4 026042	_7 805155
55	C C	0	1 010105	1 160700	7.1 34202	120	L L	0	2 10 2 17	4.020043	2.000100
00 C1	0 C	0	4.019105	-4.400700	2.204320	127	0	0	-2.13021/	4.700908	-3./UL0/5
61	6	U	ь./24925	-3.100488	1./061/0	12/	1	U	-1.200892	5.394313	-4.211522
62	6	0	0.469061	-2.600898	-4.238587	128	1	0	-5.341654	-1.594067	4.430868
63	8	0	-0.297716	-4.565771	-3.107369	129	6	0	-3.661991	-1.964519	5.765438
64	6	0	0.314911	-4.816569	-0.805241	130	1	0	-1.817828	-2.133315	6.869422
65	8	0	1.249148	-0.597331	-5.278030	131	1	0	4.245109	-4.125339	6.926395
66	6	0	2.422569	0.929610	-3.852675	132	1	0	7.686793	-5.820350	3.506989
67	6 F	0	2 /20270	5 010504	-1 221709	132	1	0	-2 /00105	-5 7609/0	-2 120505
60	1	0	2.420273	1 004452	1.221/30	124	L L	0	2.433133	C 215020	0.240000
00	Ţ	0	2.0/3305	4.004452	-0.001118	125	0	0	-2.039146	-0.215839	-0.349000
69	ь	0	5.064104	6.937695	0.237066	132	Ţ	0	-1.259189	-6.548345	1.635625

136	1	0	0.175163	1.555145	-6.314422
137	6	0	1.211235	3.065445	-5.138055
138	1	0	2.379930	4.305182	-3.819553
139	1	0	-3.595069	4.948702	-4.693624
140	1	0	-4.227122	-2.594100	6.444578
141	1	0	-2.964443	-6.753196	-0.169216
142	1	0	0.736112	3.901446	-5.640101
143	1	0	-1.492457	1.954140	-2.404761
144	8	0	-2.098658	1.668159	-3.116933
145	6	0	-1.734287	0.343267	-3.437461
146	6	0	-2.676593	-0.726918	-2.802149
147	1	0	-1.760781	0.226985	-4.522453
148	1	0	-0.710651	0.136352	-3.099117
149	8	0	-1.964278	-1.932610	-2.588410
150	6	0	-3.218289	-0.177705	-1.464571
151	1	0	-1.139362	-1.692375	-2.119064
152	1	0	-2.425192	0.145770	-0.782920
153	1	0	-3.866028	0.684645	-1.637968
154	1	0	1.260170	-3.536104	3.580176
155	6	0	0.224617	-3.492641	3.257158
156	6	0	-0.122588	-2.656306	2.202420
157	6	0	-0.729439	-4.301263	3.895264
158	6	0	-1.456629	-2.674175	1.794105
159	1	0	0.600911	-2.022164	1.694130
160	6	0	-2.061065	-4.302045	3.490733
161	1	0	-0.426698	-4.935946	4.722282
162	7	0	-1.998442	-1.941414	0.737985
163	6	0	-2.410486	-3.481896	2.418761
164	1	0	-2.799121	-4.922921	3.987986
165	6	0	-3.286271	-2.142934	0.523217
166	1	0	-1.316545	-1.419849	0.085/3/
167	16	0	-3.964663	-3.294092	1.63/041
168	16	0	-4.308272	-1.386484	-0.627658
169	6	0	-3.848263	-1.025329	-3./20838
170	6	0	-4.122/8/	-2.326338	-4.142057
1/1	6	0	-4.664457	0.027968	-4.151/2/
172	1	0	-5.209782	-2.5/35//	-4.981917
174	L C	0	-3.4/5401	-3.134340	-3.81/390
174	1	0	-3./303/1	1 049520	-4.900077
175	6	0	-6.028527	-1 526869	-5.049233
177	1	0	-5.413735	-3 588103	-5.311296
178	1	0	-6 377805	0 599119	-5 317258
179	1	0	-6 873980	-1 722930	-6.054429
Frequen	cies	8.335	1 1	7.6539	19.6299
Frequen	ncies	22.40	37 .	23.7277	26.4324
Frequen	ncies	26.89	80	30.5191	32.0641
Frequen	ncies	34.61	.27	36.9726	40.2626
Frequen	ncies	40.97	'99 4	43.2646	48.1517
Frequen	ncies	52.12	21	52.8996	54.5355
Frequen	ncies	55.31	.99	58.8957	59.5577
Frequen	icies	60.31	.24	54.5774	66.4507
Frequen	icies	70.06	98	71.7166	73.5414
Frequen	ncies	74.74	13	77.0846	82.7797
Frequen	icies	85.53	96	87.4616	89.3765
Frequen	icies	92.52	20	94.9208	98.7999
Frequen	icies	100.0	36/	103.2383	109.2509
Frequen	icies	112.1	496	113.9955	11/.4310
Frequen	icles	121.4	827	126.1624	128.9620
Frequen	icles	142.7	400	134.3416	138.6043
Frequen	icies	157.2	7U8	140.11/3	152./24/
Frequen	icies	171.5	547	103.3538 101 E027	107.4488
Eroquen	icies	1070	5/12	100 0E03	102.2010
riequell	ICIES	101.9	0+0	170.2202	131.3318

Frequencies	199.1105	207.2593	211.7314
Frequencies	216.8492	219.0558	224.1393
Frequencies	230.0577	233.6162	236.2804
Frequencies	244.1374	247.4928	254.2494
Frequencies	256.6996	265.1935	270.2410
Frequencies	275.0777	276.4343	282.0002
Frequencies	285.8577	287.3790	288.3815
Frequencies	292.5772	296.8251	297.8201
Frequencies	299.1056	302.8000	306.0328
Frequencies	309.1162	311.6533	314.5982
Frequencies	319.6611	320.1852	322.7764
Frequencies	329.8448	335.8785	337.0097
Frequencies	338.0826	347.0648	355.4660
Frequencies	376.9086	381.4271	391.5916
Frequencies	405.1261	407.7200	409.7618
Frequencies	412.0914	412.8704	414.8056
Frequencies	417.6436	418,7948	419.7210
Frequencies	421.1206	422.9367	425.1886
Frequencies	428.7947	436.9811	440.8121
Frequencies	443.4430	446.8036	452.8169
Frequencies	458.7217	460.5763	462.2532
Frequencies	464.7623	468.3356	473.5090
Frequencies	487 6831	492 6575	501 5958
Frequencies	507 0986	509 7123	515 7371
Frequencies	521 9541	523 1536	528.0600
Frequencies	530 4683	531 7419	534 4927
Frequencies	538.0529	540 4745	545 9161
Frequencies	552 3168	556 1822	558 4369
Frequencies	560 8616	561 7301	563 7376
Frequencies	567 4533	572 0760	580.0431
Frequencies	585 3755	588 5318	591 2692
Frequencies	595.3793	596 9659	597.2052
Frequencies	598 5540	598 9516	601 6282
Frequencies	607 2558	607 4744	609 9628
Frequencies	611 8064	612 5080	614 3660
Frequencies	618 5998	621 3454	624 7966
Frequencies	626 3855	629.8864	631.0960
Frequencies	632 5184	634 7814	635 6451
Frequencies	645 1969	648 8903	656 2816
Frequencies	664 9115	672 2804	677 2736
Frequencies	681 4923	685 4169	685 7365
Frequencies	696 9750	703 0297	710 0910
Frequencies	713 3949	715 7985	717 4299
Frequencies	718 1943	719 9215	720 5333
Frequencies	720 8074	724 4780	725.8010
Frequencies	727.9511	729.0168	731 3066
Frequencies	731 8030	733 1713	737 3529
Frequencies	740 8951	746 1605	749 1913
Frequencies	751 8032	740.1005	763 1175
Frequencies	764 7376	768 / 338	769.0539
Frequencies	771 4480	772 4400	773 2522
Frequencies	778 1978	779 935/	784 1638
Frequencies	700 E011	707 2645	709.0201
Frequencies	700.3044	201 2515	205 5502
Frequencies	006 JECC	001.2313 022 210C	003.3330
Frequencies	000.2000	023.2100	023.4230
Frequencies	020.0009 857 2772	021.0010	861 100C
Frequencies	00/.0/23 06/ 0607	000.0400 866 0016	004.4800
Frequencies	204.009/ 270 2015	871 2074	000.1/UZ
Frequencies	075 0000	0/1.0924	013.9328
Frequencies	0/3.8380	00U.0249 000 7007	003.0049
Frequencies	201 0/E2	000./03/ 002 217E	003.3302
Frequencies	091.0452	072.21/3	911.9/19
Frequencies	912.8292	919./03U	924.7406
Frequencies	33U.1244	331.02/0 041 7597	334.1243
Frequencies	COT/.OCE	341./30/ 044.07FF	342.4030
Frequencies	943.2984	944.8755	943.6611

Frequencies	947.2339	954.0790	955.6189
Frequencies	957.7743	958.4169	968.6560
Frequencies	969.7355	984.7736	989.2410
Frequencies	989.6235	992.4402	992.7215
Frequencies	994.1857	997.3516	1000.6231
Frequencies	1006.1278	1007.7749	1008.2504
Frequencies	1008.5953	1011.1672	1011.8462
Frequencies	1014.3794	1017.5828	1017.9971
Frequencies	1018.4891	1019.2292	1019.4562
Frequencies	1019.6371	1020.3208	1022.6413
Frequencies	1029.4505	1033.9633	1036.8377
Frequencies	1042.3246	1043.2749	1053.1678
Frequencies	1053.5809	1058.7458	1059.1609
Frequencies	1060.9068	1064.4612	1065.6798
Frequencies	1008.1097	1009.7780	1070.3332
Frequencies	109/ 90/9	1092.9499	11093.4922
Frequencies	1109 3504	1111 4070	1113 0136
Frequencies	1114 4909	1118 9038	1123 3704
Frequencies	1124.6647	1127.0821	1127.8416
Frequencies	1129.9666	1132.6107	1137.1829
Frequencies	1157.5832	1161.5399	1164.7838
Frequencies	1165.2952	1165.8148	1167.1259
Frequencies	1170.1646	1170.5050	1174.4276
Frequencies	1175.8907	1177.0129	1177.2829
Frequencies	1177.9793	1182.9895	1185.7393
Frequencies	1196.3476	1200.0814	1200.8372
Frequencies	1201.6795	1204.8877	1207.0338
Frequencies	1207.3277	1211.6184	1212.3671
Frequencies	1215.0899	1219.1557	1221.7896
Frequencies	1223.1749	1225.6017	1226.8703
Frequencies	1234.6199	1239.4366	1242.9391
Frequencies	1247.5324	1250.3136	1253.2557
Frequencies	1254.4173	1261.0055	1270.1543
Frequencies	12/4.29/4	1277.1730	1282.9908
Frequencies	1203.0027	1200.7505	1290.7509
Frequencies	1300 3342	1303 0733	1303 5816
Frequencies	1304 3098	1308 2134	1309 3726
Frequencies	1311.2078	1313.5073	1313.6965
Frequencies	1314.8896	1321.5546	1325.9551
Frequencies	1326.3881	1328.2750	1335.3349
Frequencies	1338.2065	1341.3402	1342.0569
Frequencies	1344.3504	1358.2344	1358.3370
Frequencies	1359.4744	1360.0870	1362.8194
Frequencies	1363.8236	1364.4491	1364.6097
Frequencies	1365.6523	1368.6226	1369.0801
Frequencies	1371.0095	1374.6801	1382.1273
Frequencies	1389.4250	1404.9680	1406.9488
Frequencies	1413.3347	1439.2692	1449.1266
Frequencies	1458.9795	1467.3375	14/0.4//1
Frequencies	14/1.3335	14/6./08/	1491.3444
Frequencies	1493.7155	1495.1812	1497.4943
Frequencies	1497.9815	1498.7083	1504.2075
Frequencies	1509 7100	1510.6794	1512 15/2
Frequencies	1515 8817	1519 3503	1520 7268
Frequencies	1528 2543	1531 9673	1545 6807
Frequencies	1547.4812	1550.0407	1554.9435
Frequencies	1555.7399	1559.2294	1559.6713
Frequencies	1562.6535	1564.1562	1568.4251
Frequencies	1572.1152	1576.4927	1660.0961
Frequencies	1664.1617	1668.7527	1669.6374
Frequencies	1672.2223	1674.5947	1674.7890
Frequencies	1676.1187	1677.0422	1677.5652
Frequencies	1681.5639	1688.2583	1689.6352

Frequencies	1693.4878	1695.4368	1697.5569
Frequencies	1698.2926	1698.6092	1699.5027
Frequencies	1700.2631	1701.8767	1702.1780
Frequencies	1703.6454	1705.6127	1719.7108
Frequencies	1720.0878	1729.4579	1732.7466
Frequencies	2432.4827	3070.9289	3082.0548
Frequencies	3091.0329	3091.1541	3098.3028
Frequencies	3124.9366	3156.3999	3159.5663
Frequencies	3172.9519	3179.3179	3181.8973
Frequencies	3192.0812	3197.3789	3199.5689
Frequencies	3200.7266	3201.1288	3201.8151
Frequencies	3204.3229	3207.1216	3207.7832
Frequencies	3212.3704	3214.4196	3217.0565
Frequencies	3218.3856	3220.4757	3221.2281
Frequencies	3221.9008	3222.5271	3222.8662
Frequencies	3223.0289	3224.0801	3225.6909
Frequencies	3225.7136	3226.7835	3228.3065
Frequencies	3229.5151	3233.0509	3234.5906
Frequencies	3234.9438	3235.6263	3236.3056
Frequencies	3236.4445	3236.6922	3237.8564
Frequencies	3239.2786	3239.9249	3241.6503
Frequencies	3242.3829	3242.3981	3243.4835
Frequencies	3244.1749	3245.5774	3247.9230
Frequencies	3248.3856	3252.2627	3253.8564
Frequencies	3262.2893	3648.2542	3659.4336

SCF Done: E(RM062X/DGDZVP) = -6499.42926344Sum of electronic and zero-point Energies=-6498.078417Sum of electronic and thermal Energies=-6497.964364Sum of electronic and thermal Free Energies=-6498.235515SCF Done: E(RM062X/DGTZVP/SMD) = -6500.71185914873

RRHO- and BSSE-corrected absolute and relative energies

Table S3. RRHO- and BSSE-corrected thermodynamics for tautomerization N•••H•••S at M06-2X-D3/DGTZVP/SMD//M06-2X-D3/DGDZVP: absolute H, TS and G are presented in Hartrees and relative Δ H, -T Δ S and Δ G are presented in kcal·mol⁻¹.

Structures	Н	T∙qh-S	qh-G(T)	ΔH	-T∆S	ΔG
2*Benzo[d]thiazole-2-thiol	-2241.40287	0.09196	-2241.49483	0.0	0.0	0.0
I0Ha	-2241.41350	0.07346	-2241.48695	-6.7	11.6	4.9
TS1Ha	-2241.41494	0.07033	-2241.48527	-7.6	13.6	6.0
I1Ha	-2241.44392	0.07169	-2241.51561	-25.8	12.7	-13.0
2*Benzo[d]thiazole-2(3H)- thione	-2241.43109	0.09052	-2241.52161	-17.7	0.9	-16.8
Benzo[d]thiazole–2–thiol	-1120.70144	0.04598	-1120.74742	0.0	0.0	0.0
TS1Hb	-1120.65510	0.04479	-1120.69989	29.1	0.7	29.8
Benzo[d]thiazole-2(3H)- thione	-1120.71555	0.04526	-1120.76080	-8.9	0.5	-8.4

Table S4. RRHO- and BSSE-corrected thermodynamics for reaction of 22a and 23a catalyzed by Cat b at M06-2X-D3/DGTZVP/SMD//M06-2X-D3/DGDZVP: absolute H, TS and G are presented in Hartrees and relative Δ H, -T Δ S and Δ G are presented in kcal·mol⁻¹.

Structures	Н	T∙qh-S	qh-G(T)	Δн	-T∆S	∆G
Benzo[<i>d</i>]thiazole- 2(3 <i>H</i>)-thione	-1120.71555	0.04526	-1120.76080	Reactants		
3-Phenyloxetan-3-ol	-499.14799	0.04801	-499.19600			
Catalyst b	-2222.57703	0.11320	-2222.69023	0.0	0.0	0.0
10_1	-2721.75349	0.13899	-2721.89248	-17.9	13.9	-3.9
TS1a_ <i>R</i>	-3842.45492	0.15747	-3842.61239	-9.0	30.7	21.7
(<i>R</i>)-Product	-1619.90535	0.07278	-1619.97813	-26.2	12.9	-13.4
TS1b_S	-3842.45407	0.15729	-3842.61136	-8.5	30.9	22.4
(S)-Product	-1619.90535	0.07278	-1619.97813	-26.2	12.9	-13.4
10_2	-2721.75265	0.13732	-2721.88997	-17.3	15.0	-2.3
TS1c_S	-3842.45271	0.15626	-3842.60897	-7.6	31.5	23.9
(S)-Product	-1619.90535	0.07278	-1619.97813	-26.2	12.9	-13.4
TS1d_R	-3842.45479	0.15787	-3842.61266	-8.9	30.5	21.6
(R)-Product	-1619.90535	0.07278	-1619.97813	-26.2	12.9	-13.4

Table S5. RRHO- and BSSE-corrected thermodynamics for reaction of **22a** and **23a** catalyzed by Cat a at M06-2X-D3/DGTZVP/SMD//M06-2X-D3/DGDZVP: absolute H, TS and G are presented in Hartrees and relative Δ H, -T Δ S and Δ G are presented in kcal·mol⁻¹.

Structures	Н	T.qh-S	qh-G(T)	∆н	-T∆S	∆G
Benzo[<i>d</i>]thiazole- 2(3 <i>H</i>)-thione	-1120.71555	0.04526	-1120.76080		Reactants	
3-Phenyloxetan-3-ol	-499.14799	0.04801	-499.19600			
Catalyst f	-2374.98632	0.11650	-2375.10282	0.0 0.0 0.0		
10_1	-2874.16993	0.13918	-2874.30911	-22.4	15.9	-6.5
TS1a_ <i>R</i>	-3994.87786	0.15784	-3995.03570	-17.6	32.6	15.0
l1a_ <i>R</i>	-3994.92965	0.15891	-3995.08856	-50.1	31.9	-18.2
(R)-Product	-1619.90535	0.07278	-1619.97813	-26.2	12.9	-13.4
TS1b_S	-3994.86796	0.15855	-3995.02651	-11.4	32.1	20.8
l1b_S	-3994.92658	0.15901	-3995.08559	-48.1	31.9	-16.3
(S)-Product	-1619.90535	0.07278	-1619.97813	-26.2	12.9	-13.4
10_2	-2874.16898	0.13812	-2874.30709	-21.8	16.6	-5.2
TS1c_ <i>S</i>	-3994.86830	0.15898	-3995.02728	-11.6	31.9	20.3
l1c_S	-3994.92641	0.15820	-3995.08461	-48.0	32.4	-15.7
(S)-Product	-1619.90535	0.07278	-1619.97813	-26.2	12.9	-13.4
TS1d_ <i>R</i>	-3994.87796	0.15742	-3995.03538	-17.6	32.8	15.2
l1d_R	-3994.93045	0.15884	-3995.08929	-50.6	32.0	-18.6
(R)-Product	-1619.90535	0.07278	-1619.97813	-26.2	12.9	-13.4

Table S6. RRHO- and BSSE-corrected thermodynamics for reaction of **22a** and **23a** catalyzed by Cat f at M06-2X-D3/DGTZVP/SMD//M06-2X-D3/DGDZVP: absolute H, TS and G are presented in Hartrees and relative Δ H, -T Δ S and Δ G are presented in kcal·mol⁻¹.

Structures	н	T.qh-S	qh-G(T)	Δн	-T∆S	ΔG
Benzo[<i>d</i>]thiazole- 2(3 <i>H</i>)-thione	-1120.71555	0.04526	-1120.76080		Reactants	
3-Phenyloxetan-3-ol	-499.14799	0.04801	-499.19600			
Catalyst f	-4879.27182	0.20274	-4879.47456	0.0	0.0	0.0
10_1	-5378.46810	0.22350	-5378.69160	-30.3	17.1	-13.2
10a_ <i>R</i>	-6499.20831	0.24364	-6499.45195	-45.8	32.9	-12.9
TS1a_ <i>R</i>	-6499.17765	0.24227	-6499.41992	-26.5	33.7	7.2
l1a_R	-6499.23096	0.24238	-6499.47333	-60.0	33.7	-26.3
(R)-Product	-1619.90535	0.07278	-1619.97813	-26.2	12.9	-13.4
10b_S	-6499.20325	0.24455	-6499.44779	-42.6	32.3	-10.3
TS1b_S	-6499.16758	0.24222	-6499.40980	-20.2	33.8	13.5
l1b_S	-6499.22711	0.24145	-6499.46856	-57.6	34.2	-23.3
(S)-Product	-1619.90535	0.07278	-1619.97813	-26.2	12.9	-13.4
10_2	-5378.46681	0.22209	-5378.68890	-29.5	18.0	-11.5
10c_ <i>S</i>	-6499.20303	0.24279	-6499.44582	-42.5	33.4	-9.1
TS1c_ <i>S</i>	-6499.16842	0.24358	-6499.41200	-20.8	32.9	12.2
l1c_5	-6499.22745	0.24238	-6499.46983	-57.8	33.7	-24.1
(S)-Product	-1619.90535	0.07278	-1619.97813	-26.2	12.9	-13.4
I0d_R	-6499.20551	0.24287	-6499.44838	-44.0	33.3	-10.7
TS1d_R	-6499.17923	0.24085	-6499.42008	-27.5	34.6	7.1
l1d_R	-6499.23044	0.24281	-6499.47325	-59.7	33.4	-26.3
(R)-Product	-1619.90535	0.07278	-1619.97813	-26.2	12.9	-13.4
Table S7. Accounting for weak interactions in the principal (*R*)- and (*S*)-enantiodirecting transition states for **Cat a**, **Cat b** and **Cat f**: BSSE-corrected Δ PE is calculated as difference of single point energies between the aggregated complex (TS) and Fragment 1 (Catalyst⁻) and Fragment 2 (H⁺- Activated complex of reactants) separated at infinite distance at MO6-2X-D3/DGTZVP/SMD level. Δ PEs are BSSE-corrected and calculated in kcal·mol⁻¹.

Structures	E+BSSE (DGTZVP)	BSSE	E (DGTZVP)
Cat b TS1d_ <i>R</i>	-3843.42643	0.00792	-3843.43435
Fragment 1	-2222.77256	0.00000	-2222.77256
Fragment 2	-1620.53565	0.00353	-1620.53919
ΔPE (R-directing)	74.2	-2.8	76.9
Cat b TS1b_S	-3843.42480	0.00848	-3843.43328
Fragment 1	-2222.77134	0.00000	-2222.77134
Fragment 2	-1620.53672	0.00353	-1620.54025
ΔPE (S-directing)	73.3	-3.1	76.4
Cat a TS1a_R	-3995.87614	0.01089	-3995.88703
Fragment 1	-2375.19727	0.00000	-2375.19727
Fragment 2	-1620.53498	0.00340	-1620.53838
ΔPE (R-directing)	90.3	-4.7	95.0
Cat a TS1c_R	-3995.86693	0.01027	-3995.87720
Fragment 1	-2375.19594	0.00000	-2375.19594
Fragment 2	-1620.53738	0.00359	-1620.54097
ΔPE (S-directing)	83.8	-4.2	88.0
Cat f TS1d_R	-6500.64385	0.01473	-6500.65858
Fragment 1	-4879.95945	0.00000	-4879.95945
Fragment 2	-1620.53502	0.00345	-1620.53847
ΔPE (R-directing)	93.7	-7.1	100.8
Cat f TS1c_S	-6500.63360	0.01389	-6500.64749
Fragment 1	-4879.95954	0.00000	-4879.95954
Fragment 2	-1620.53409	0.00340	-1620.53749
ΔPE (S-directing)	87.8	-6.6	94.4

Fragmentation schemes for counterpoise corrections

In order to counterpoise the energies of the structures and ensure the best and most reliable partition of the system in different fragments, thus properly accounting for BSSE corrections, we fragmented the stationary points as follows: three examples are given for reactant, transition state and product.

Figure S1. Clipped structure of **Cat f** TS1d_*R* transition state. Five fragments for counterpoise corrections are defined with their relative assigned charges: Catalyst⁻¹, H⁺, Oxetane⁰, H⁺ and R₂N⁻.

Figure S2. Two fragments are defined for the reactant with their relative assigned charges: R_2N^- and H^+ .

Figure S3. Three fragments are defined for the product with their relative assigned charges: Oxetane⁰, R_2N^- and H^+ .

6. X-ray diffraction data

Figure S4. ORTEP X-ray structure of Compound 19

Empirical formula	C79 H45.50 Br2 F6 I2 O10	
Formula weight	1682.27	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	monoclinic	
Space group	P 21	
	a = 18.5988(4) Å	$\alpha = 90^{\circ}$
Unit cell dimensions	b = 13.7054(3) Å	$\beta = 104.1331(16)^{\circ}$
	c = 26.5064(4) Å	$\gamma = 90^{\circ}$
Volume	6552.1(2) Å ³	
Z	4	
Density (calculated)	1.705 Mg/m ³	
Absorption coefficient	2.261 mm ⁻¹	
F(000)	3318	
Crystal size	0.250 x 0.120 x 0.050 mm ³	
Theta range for data collection	2.258 to 29.786°.	
	-25<=h<=25,-19<=k<=19,-	
Index ranges	36<=l<=36	
Reflections collected	52522	
Independent reflections	52522[R(int) = ?]	
Completeness to theta =29.786°	95.1%	
Absorption correction	Multi-scan	
Max. and min. transmission	1.00 and 0.91	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	52522/ 755/ 2003	
Goodness-of-fit on F ²	1.151	
Final R indices [I>2sigma(I)]	R1 = 0.0676, wR2 = 0.1666	
R indices (all data)	R1 = 0.0993, wR2 = 0.1756	
Flack parameter	x =0.002(4)	
Largest diff. peak and hole	1.388 and -0.979 e.Å ⁻³	

Table S8. Crystal data and structure refinement for Compound 19.

7. References

1. a) Yin, L.; Xing, J.; Wang, Y.; Shen, Y.; Lu, T.; Hayashi, T.; Dou, X. Enantioselective Synthesis of 3,3'-Diaryl-SPINOLs: Rhodium-Catalyzed Asymmetric Arylation/BF₃-Promoted Spirocyclization Sequence. *Angew. Chem. Int. Ed.* **2019**, *58*, 2474-2478; b) St John-Campbell, S.; White, A. J.; Bull, J. A. Single operation palladium catalysed C (sp3)–H functionalisation of tertiary aldehydes: investigations into transient imine directing groups. *Chem. Sci.* **2017**, *8*, 4840-4847.

2. Clot-Almenara, L.; Rodríguez-Escrich, C.; Osorio-Planes, L.; Pericàs, M.A. Polystyrene-Supported TRIP: A Highly Recyclable Catalyst for Batch and Flow Enantioselective Allylation of Aldehydes. *ACS Catalysis* **2016**, *6*, 7647–7651.

3. Xing, C.H.; Liao, Y.X.; Ng, J.; Hu, Q.S. Optically Active 1,1'-Spirobiindane-7,7'-diol (SPINOL)-Based Phosphoric Acids as Highly Enantioselective Catalysts for Asymmetric Organocatalysis. *J. Org. Chem.* **2011**, *76*, 4125–4131.

4. a) Shih, J.L.; Nguyen, T.S.; May, J.A. Organocatalyzed Asymmetric Conjugate Addition of Heteroaryl and Aryl Trifluoroborates: a Synthetic Strategy for Discoipyrrole D. *Angew. Chem. Int. Ed.* **2015**, *54*, 9931-9935; b) Le, P.Q.; Nguyen, T.S.; May, J.A. A General Method for the Enantioselective Synthesis of α -Chiral Heterocycles. *Org. Lett.* **2012**, *14*, 6104-6107.

5. Wang, Z.; Chen, Z.; Sun, J. Catalytic Enantioselective Intermolecular Desymmetrization of 3-Substituted Oxetanes. *Angew. Chem. Int. Ed.* **2013**, *52*, 6685–6688.

M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani,
 V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko,
 R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe,
 V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
 Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A.
 Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.
 Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S.
 Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L.
 Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox Gaussian 09, Revision D.01,
 Gaussian, Inc., Wallingford CT, 2016.

7. Zhao, Y.; Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **2008**, *120*, 215-241.

8. Fianchini, M.; O'Brien, C. J.; Chass, G. A., Reduction Rate of 1-Phenyl Phospholane 1-Oxide Enhanced by Silanol Byproducts: Comprehensive DFT Study and Kinetic Modeling Linked to Reagent Design. *J. Org. Chem.* **2019**, *84*, 10579-10592.

9. Sedlak, R.; Janowski, T.; Pitoňák, M.; Řezáč, J.; Pulay, P.; Hobza, P., Accuracy of Quantum Chemical Methods for Large Noncovalent Complexes. *J. Chem. Theory Comput.* **2013**, *9*, 3364-3374.

10. Dapprich, S.; Komáromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J., A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. *J. Mol. Struct. (THEOCHEM)* **1999**, *461-462*, 1-21.

11. Maseras, F.; Morokuma, K., IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. *J. Comp. Chem.* **1995**, *16*, 1170-1179.

Vreven, T.; Byun, K. S.; Komáromi, I.; Dapprich, S.; Montgomery, J. A.; Morokuma, K.; Frisch,
 M. J., Combining Quantum Mechanics Methods with Molecular Mechanics Methods in ONIOM.
 J. Chem. Theory Comput. 2006, 2, 815-826.

13. Vreven, T.; Frisch, M. J.; Kudin, K. N.; Schlegel, H. B.; Morokuma, K., Geometry optimization with QM/MM methods II: Explicit quadratic coupling. *Mol. Phys.* **2006**, *104*, 701-714.

14. Vreven, T.; Morokuma, K.; Farkas, Ö.; Schlegel, H. B.; Frisch, M. J., Geometry optimization with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints. J. *Comp. Chem.* **2003**, *24*, 760-769.

15. Vreven, T.; Morokuma, K., On the application of the IMOMO (integrated molecular orbital + molecular orbital) method. *J. Comput. Chem.* **2000**, *21*, 1419-1432.

16. Vreven, T.; Mennucci, B.; da Silva, C. O.; Morokuma, K.; Tomasi, J., The ONIOM-PCM method: Combining the hybrid molecular orbital method and the polarizable continuum model for solvation. Application to the geometry and properties of a merocyanine in solution. *J. Chem. Phys.* **2001**, *115*, 62-72.

17. Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E., Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. *Can. J. Chem.* **1992**, *70*, 560-571.

18. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* **2009**, *113*, 6378-6396.

Wheeler, S. E.; Houk, K. N., Integration Grid Errors for Meta-GGA-Predicted Reaction Energies:
 Origin of Grid Errors for the M06 Suite of Functionals. *J. Chem. Theory Comput.* 2010, *6*, 395-404.
 Funes-Ardoiz, I.; Paton, R., GoodVibes, v.2.0.3. DOI: 10.5281/zenodo.1435820.

21. Boys, S. F.; and Bernardi, F., Calculation of Small Molecular Interactions by Differences of Separate Total Energies - Some Procedures with Reduced Errors. *Mol. Phys.* **1970**, *19*, 553-566.

22. Simon, S.; Duran, M.; Dannenberg, J.J. How does basis set superposition error change the potential surfaces for hydrogen bonded dimers? *J. Chem. Phys.* **1996**, *105*, 11024-11031.

23. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E., UCSF Chimera—A visualization system for exploratory research and analysis. *J. Comput. Chem.* **2004**, *25*, 1605-1612.

24. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. J. Mol. Graphics. 1996,

14, 33-38.

25. Persistence of Vision(TM) Raytracer, 3.6; Williamstown, Victoria, Australia, 2004.

26. Stone, J. An Efficient Library for Parallel Ray Tracing and Animation. University of Missouri-Rolla, 1998.

8. NMR spectra

¹H NMR of **S1**

¹H NMR of **S4**

$\begin{array}{c} 7 \ 33\\ 7 \ 33\\ 7 \ 33\\ 7 \ 29\\ 7 \ 29\\ 6 \ 37\\ 6 \ 37\\ 6 \ 36\\ 6 \ 37\\ 6 \ 36\\$ -5.43 -5.43 4 41 4 39 4 39 4 37 -750 -700 -650 -600 ſ ſſ ſ ſ -550 -500 -450 -400 OH -350 -300 -250 -200 -150 -100 -50 -0 ٣ ۲ T Ψ Ψ -_50 12.31 2.09 6. 2.16 2.00 2.12 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm) ¹³C NMR of **S4** -7500 48 36 48 35 44 03 34 45 31 17 31 17 31 17 28 57 28 57 28 57 28 57 28 39 28 39 28 33 28 33 28 33 28 33 28 33 28 33 28 33 28 33 28 33 28 33 28 45 108.48 -99.90 $\frac{77}{76}$ 25 $\frac{77}{76}$ 00 76 75 --57 39 --49 92 --47 99 -7000 -6500 -6000

¹H NMR of **S5**

¹H NMR of **S7**

8.01 -400 -350], ſ ſſ -300 ſ -250 -200 -150 **S**7 -100 -50 -0 12.11-ተ ተ ٣ Ч Ч Ч Ч 10.5 10.0 9.5 9.0 8.5 8.0 ₽ 2.5 1.97 1.94 2.00 1.97 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1(ppm)¹³C NMR of **S7** $\begin{array}{c} 139 \ 45\\ 131 \ 87\\ 131 \ 54\\ 131 \ 54\\ 131 \ 54\\ 130 \ 95\\ 1129 \ 57\\ 128 \ 89\\ 1128 \ 89\\ 1128 \ 89\\ 1128 \ 89\\ 1128 \ 128\\ 1128 \ 10\\ 1127 \ 16\\ 1122 \ 10\\ 1127 \ 10\\ 1120 \ 97\\ 1120 \ 97\\ 119 \ 06\\ 119 \ 06\\ 119 \ 06\\ 119 \ 06\\ 119 \ 06\\ 119 \ 06\\ 110 \ 0$ -21000 149.96 77 32 77 00 76 68 -55.79 50.00 47.95 -20000 -19000 . -18000 . -17000 . -16000 . -15000 . -14000 -13000 -12000 -11000 . -10000 ĊF₂ **S**7 . -9000 . -8000 . -7000 . -6000 . -5000 -4000 -3000 -2000 . -1000 -0 -1000 __2000 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 _10 f1₍ppm)

¹⁹F NMR of **S7**

$^{19}\mathsf{F}~\mathsf{NMR}$ of S8

¹H NMR of **S9**

¹H NMR of **15**

¹H NMR of **16**

¹⁹F NMR of **16**

¹⁹F NMR of **17**

 $\leftarrow^{56.31}_{56.37}$ -550 -500 -450 -400 -350 -300 -250 -200 17 -150 -100 -50 -0 -_50 _90 _100 _110 _120 _130 _140 _150 _160 _170 _180 _190 f1 (ppm) _10 _20 _30 _40 _50 _60 _70 _80 ¹⁹F NMR of **18** 54.98 55.00 55.01 -650 -600 -550 -500 -450 -400 -350 -300 -250 -200 -150 -100 -50 -0 -_50

_10 _20 _30 _40 _50 _60 _70 _80 _90 _100 _110 _120 _130 _140 _150 _160 _170 _180 _190 f1(ppm)

1 H NMR of **18**

¹H NMR of **19**

¹H NMR of **20**

¹H NMR of **24ba**

¹H NMR of **24ea**

-5.15 $\begin{array}{c} \mathbf{4} \, \mathbf{5} \, \mathbf{5} \\ \mathbf{5} \, \mathbf{3} \, \mathbf{5} \, \mathbf{5} \\ \mathbf{5} \, \mathbf{3} \, \mathbf{3} \, \mathbf{5} \, \mathbf{5} \\ \mathbf{5} \, \mathbf{3} \, \mathbf{3} \, \mathbf{7} \, \mathbf{5} \\ \mathbf{5} \, \mathbf{3} \, \mathbf{3} \, \mathbf{7} \, \mathbf{5} \\ \mathbf{5} \, \mathbf{3} \, \mathbf{5} \, \mathbf{1} \\ \mathbf{5} \, \mathbf{5} \, \mathbf{5} \mathbf{5} \, \mathbf{5} \, \mathbf{5} \, \mathbf{5} \\ \mathbf{5} \, \mathbf{5} \, \mathbf{5} \, \mathbf{5} \, \mathbf{5} \\ \mathbf{5} \, \mathbf{5} \, \mathbf{5} \, \mathbf{5} \, \mathbf{5} \\ \mathbf{5} \, \mathbf{5} \, \mathbf{5} \, \mathbf{5} \, \mathbf{5} \, \mathbf{5} \\ \mathbf{5} \, \mathbf{5} \, \mathbf{5} \, \mathbf{5} \, \mathbf{5} \, \mathbf{5} \, \mathbf{5} \\ \mathbf{5} \, \mathbf{5} \\ \mathbf{5} \, \mathbf{$ -800 -750 -700 -650 -600 -550 -500 HO -450 // 400 ЮН -350 24ea -300 -250 -200 -150 -100 -50 -0 100 1.014 101 102 102 102 1.05 2.07 1.04 Å 0.94-1 -_50 5.5 5.0 f1₍ppm₎ 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 4.5 3.5 3.0 2.5 4.0 2.0 1.5 1.0 0.5 0.0 _0.5 _1.0 ¹³C NMR of **24ea** F10000 -151.57 -135.00 126.46 124.89 121.12 120.93 -40.62 -83.21 -77.32 -77.00 -76.68 -76.68 -74.58 -71.62 -66.81 -9000 -8000 -7000 -6000 HO -5000 // ЮН -4000 24ea -3000 -2000 -1000 -0 -_1000 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl.(ppm)

¹H NMR of **24fa**

¹H NMR of **24ga**

+450 -400 -350 -300 -250 HO -200 ÓН 24ga -150 -100 -50 -0 100 × -66.0 2.03-2.11-10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 5.5 5.0 f1₍ppm₎ 3.5 3.0 2.5 0.0 _0.5 _1.0 6.0 4.5 4.0 2.0 1.5 1.0 0.5 ¹³C NMR of **24ga** -135.00 7126.26 7124.61 7120.99 -36.13 77 32 76 68 71 43 71 43 64 09 64 07 -8500 -8000 -7500 -7000 -6500 -6000 -5500 -5000 -4500 -4000 HO -3500 ÓН -3000 24ga -2500 -2000 -1500 1000 -500 -0 -500 210 200 190 180 170 160 150 140 130 120 110 100 90 fl.ppm, 80 70 60 50 40 30 20 10 0 -10

¹H NMR of **24ha**

7, 83 7, 77 7, 77 7, 77 7, 77 7, 77 7, 77 7, 77 7, 77 7, 77 7, 73 7, 74 1, 73 7, 74 1, 73 1, 73 1, 73 1, 73 1, 73 2, 77 7, 73 2, 77 7, 75 1.33 -1100 -1000 -900 || || -800 -700 -600 HO. -500 ÔH -400 24ha -300 -200 -100 -0 1.03 년 2.13 년 12.11 년 F00'I 3.25-L_100 5.5 5.0 4.5 f1₍ppm₎ 10.5 10.0 9.5 9.0 8.5 8.0 7.5 3.5 7.0 6.5 6.0 4.0 3.0 2.5 2.0 1.5 1.0 0.5 0.0 _0.5 ¹³C NMR of **24ha** -169.20 -151.73 -134.83 -126.37 -124.75 -121.05 -40.74 -22.87 -77 32 -77 00 -76 68 -73 18 -67 07 -11000 -10000 -9000 -8000 HO. -7000 5 ЮН -6000 24ha -5000 -4000 -3000 -2000 -1000 -0 -1000 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 fl(ppm) 40 30 20 10 0 _10

¹H NMR of **24ia**

¹H NMR of **24ja**

¹H NMR of **24ka**

¹H NMR of **24la**

¹H NMR of **24ab**

¹H NMR of **24ac**

¹H NMR of **24ad**

9. HPLC chromatograms

HPLC of 24aa (result for Cat f)

HPLC of 24aa (result for Cat g)

HPLC of 24ba (result for Cat f)

HPLC of **24ba** (result for **Cat** g)

2 8.597 BB 0.2345 1240.83838 82.02414 7.5831

Chapter V

Manganese/Copper Co-Catalyzed Electrochemical Wacker-Tsuji-Type Oxidation of Aryl-Substituted Alkenes

5.1. Introduction

The oxidation of olefins represents a powerful tool for converting mineral oil into high value-added chemicals. The Wacker process, which was originally developed by *Wacker Chemie* in the 1950s and 1960s, was one of the first homogeneous catalytic processes applied on an industrial scale for the oxidation of ethylene to acetaldehyde. It involves the use of palladium (II) chloride and copper (II) as catalysts, the reaction taking place in aqueous media under oxygen.¹⁹² The lab scale modified version, namely the Wacker-Tsuji Oxidation, is one of the most useful methods for the conversion of terminal olefins into methyl ketones.¹⁹³ In the Wacker-Tsuji Oxidation, water serves as the oxygen source, and the reduced palladium is re-oxidized by copper (II) and, ultimately, by atmospheric oxygen.¹⁹⁴ A variety of methods based on this reaction, resulting by modifying the re-oxidation process for palladium, have been reported during the past decades. In this part, some examples of recent developments of Wacker-type process will be described below.

5.2. Palladium catalyzed Wacker-Tsuji oxidation

In 2004, Sigman group reported the use of low catalyst loading of Pd[(-)-sparteine]Cl₂ as catalyst to prevent olefin isomerization and led to selective formation of corresponding methyl ketones from terminal olefins (Scheme 1).

¹⁹² Organometallics; Elschenbroich, C., Ed.; Wiley-VCH: Weinheim, 2006.

¹⁹³ (a) Organic Synthesis with Palladium Compounds; Tsuji, J., Ed.; Springer Verlag, Berlin, **1980**.

⁽b) Palladium Reagents in Organic Synthesis; Heck, R. F., Ed.; Academic Press, London, 1985.

¹⁹⁴ Palladium Reagents and Catalysts, First Edition; Tsuji, J., Ed.; Wiley, **2004**, 29-35.

Oxidation of enantiomerically enriched substrates in this process didn't led to racemization.¹⁹⁵

Scheme 1. Pd[(-)-sparteine]Cl₂ as catalyst for Wacker oxidation

In 2006, the Kaneda group reported that the combination of PdCl₂ and N,N - dimethylacetamide (DMA) constituted a highly efficient and reusable catalytic system for converting terminal olefins into methyl ketones. In this system, if water is replaced with HOAc in the present of 20 mol% NaOAc the reaction produced the corresponding linear allylic acetates (Scheme 2).¹⁹⁶

Scheme 2. PdCl₂ and N,N - dimethylacetamide (DMA) for Wacker oxidation

In 2009, the Sigman group reported the use of 2-(4,5-dihydro-2-oxazolyl)quinoline (Quinox) ligand and aqueous TBHP for the efficient conversion of protected allylic alcohols to the corresponding acylation products and the conversion of terminal olefins into methyl ketones in short reaction times (Scheme 3). The catalytic system used by Sigman is scalable and can be performed with a low loading (1 mol%) of catalyst.¹⁹⁷

¹⁹⁵ Cornell, C. N.; Sigman, M. S. Org. Lett. **2006**, *8*, 4117-4120.

¹⁹⁶ Mitsudome, T.; Umetani, T.; Nosaka, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. *Angew. Chem., Int. Ed.* **2006**, *45*, 481-485.

¹⁹⁷ Michel, B. W.; Camelio, A. M.; Cornell, C. N.; Sigman, M. S. *J. Am. Chem. Soc.* **2009**, *131*, 6076-6077.

Scheme 3. Pd(Quinox)Cl₂ and aqueous TBHP for Wacker oxidation of protected allylic alcohols

In a 2013 update, Sigman and coworkers applied this methodology to the oxidation of internal alkenes and in the total synthesis of the antimalarial drug artemisinin (Scheme 4).¹⁹⁸

Scheme 4. Pd(Quinox)Cl₂ and aqueous TBHP for Wacker oxidation of internal alkenes

In 2017, the Ishida group reported the Wacker oxidation of terminal alkenes into methyl ketones by using reusable ZrO₂ supported Pd⁰ nanoparticles (NPs) under acid- and cocatalyst-free conditions (Scheme 5). For this application, the Pd NPs with a diameter of 4–12 nm exhibited the highest activity.¹⁹⁹

Scheme 5. ZrO2 supported Pd0 NPs for Wacker oxidation

In 2014, the Wang group reported a palladium-catalyzed oxidation system using molecular oxygen as the sole oxidant and involving any palladium ligand. Terminal olefins, and especially styrene, can be oxidized to methyl ketones by

¹⁹⁸ DeLuca, R. J.; Edwards, J. L.; Steffens, L. D.; Michel, B. W.; Qiao, X.; Zhu, C.; Cook, S. P.; Sigman, M. S. *J. Org. Chem.* **2013**, *78*, 1682-1686.

¹⁹⁹ Zhang, Z.; Kumamoto, Y.; Hashiguchi, T.; Mamba, T.; Murayama, H.; Yamamoto, E.; Ishida, T.; Honma, T.; Tokunaga, M. *ChemSusChem* **2017**, *10*, 3482-3489.

this system. In addition, for some substrates, oxidation–dehydrogenation of terminal olefins to α , β -unsaturated ketones was observed.²⁰⁰

Scheme 6. Non ligand palladium-catalyzed Wacker oxidation

In 2016, the Fernandes group reported a combination of Pd(II) and Dess–Martin periodinane to produce methyl ketones from terminal olefins in high yields (Scheme 7). This operationally simple and scalable method has good functional group compatibility.²⁰¹

Scheme 7. Pd(II) and Dess-Martin periodinane for Wacker oxidation

In the same year, the Fernandes group reported a traceless one-pot synthesis of α , β -unsaturated and non-conjugated ketones from homo-allyl alcohols by a sequential PdCl₂/CrO₃-promoted Wacker process followed by an acid-mediated dehydration reaction (Scheme 8).²⁰² Remarkably, internal homo-allyl alcohols delivered regioselectively non-conjugated unsaturated carbonyl compounds by using the same protocol.

 ²⁰⁰ Wang, Y. F.; Gao, Y. R.: Mao, S.; Zhang, Y. L.; Guo, D. D.; Yan, Z. L.; Guo, S. H.; Wang, Y.
Q. Org. Lett. 2014, 16, 1610-1613.

²⁰¹ Chaudhari, D. A.; Fernandes, R. A. *J. Org. Chem.* **2016**, *81*, 2113-2121.

²⁰² Bethi, V.; Fernandes, R. A. *J. Org. Chem.*, **2016**, *81*, 8577-8584.

Scheme 8. One-pot synthesis of α , β -unsaturated and non-conjugated ketones

In 2017, the Peng group showed that a 5% palladium on charcoal catalyst displayed excellent catalytic activity in the oxidation of styrenes to the corresponding ketones with H_2O_2 as oxidant (Scheme 9). The method offers an option for avoiding the use of a copper salt as a co-catalyst.²⁰³

Scheme 9. Pd(0)/C catalyst for Wacker oxidation

In 2018, the Kang group reported a regioselectivity switchable aerobic Wacker– Tsuji oxidation using catalytic *tert*-butyl nitrite as a redox co-catalyst (Scheme 10). Either substituted aldehydes or ketones could be prepared with this procedure by simply switching the reaction solvent from *tert*-butyl alcohol to wet ethanol.²⁰⁴

Scheme 10. tert-Butyl nitrite as a redox cocatalyst for Wacker oxidation

In 2019, Brunzel and coworkers reported a selective procedure for the conversion of an isomeric mixture of 1,9-cyclohexadecadiene to the corresponding monounsaturated cyclohexadec-8-en-1-one *via* Wacker type oxidation at room

²⁰³ Xia, X.; Gao, X.; Xu,J.; Hu, C.; Peng, X. Synlett **2017**, 28, 607-610.

²⁰⁴ Hu, K. F., Ning, X. S., Qu, J. P., & Kang, Y. B. J. Org. Chem. 2018, 83, 11327-11332.
temperature (Scheme 11). Iron (III) salts were used as co-catalysts in this process.²⁰⁵

Scheme 11. Iron (III) salts as co-catalysts for Wacker oxidation

In the same year, the Gotor - Fernández group reported a sequential and selective chemoenzymatic approach involving the Wacker-Tsuji oxidation of allylbenzenes to the corresponding ketones followed by an enzyme catalyzed *biotransamination* with good to excellent yields and excellent selectivities in aqueous medium (Scheme 12).²⁰⁶

Scheme 12. Iron (III) salts as co-catalysts for Wacker oxidation in aqueous medium

Visible light has been used as a green oxidant in the Wacker-type oxidations. In 2019, the Fabry group reported a catalytic Wacker-type oxidation using a combined palladium/photoredox catalytic system (Scheme 13). A broad range of substrates was examined affording the desired products in good yields.²⁰⁷

²⁰⁵ Brunzel, T.; Heppekausen, J.; Panten, J.; Köckritz, A. RSC Adv. **2019**, *9*, 27865-27873.

²⁰⁶ González-Martínez, D.; Gotor, V.; Gotor-Fernández, V. *Adv. Synth. Catal.* **2019**, *361*, 2582-2593.

²⁰⁷ Ho, Y. A.; Paffenholz, E.; Kim, H. J.; Orgis, B., Rueping, M.; Fabry, D. C. *ChemCatChem* **2019**, *11*, 1889-1892.

Scheme 13. Visible light was used as green oxidant for Wacker oxidation

Most recently, in 2020, the Kang group reported a regioselective Wacker-Tsuji oxidation of internal olefins to the corresponding ketones in ^{*t*}BuOH, using oxygen as the terminal oxidant and *tert*-butyl nitrite as a co-catalyst. The reaction takes place in generally good yields and with high regioselectivities.²⁰⁸

Scheme 14. tert-Butyl nitrite as co-catalyst for Wacker oxidation of internal olefins

5.3. Non-palladium catalysed Wacker-Tsuji-type oxidation

In 2016, the Lei group presented a direct anti-Markovnikov oxidation of β -alkyl styrenes with H₂O under external-oxidant-free conditions by utilizing a photo redox-metal dual catalytic system to access the corresponding carbonyl compounds (Scheme 15).²⁰⁹

Scheme 15. Anti-Markovnikov oxidation of β-alkyl styrenes with H₂O

²⁰⁹ Zhang, G.; Hu, X.; Chiang, C. W.; Yi, H.; Pei, P.; Singh, A. K.; Lei, A. *J. Am. Chem. Soc.* **2016**, *138*, 12037-12040.

²⁰⁸ Huang, Q.; Li, Y. W.; Ning, X. S.; Jiang, G. Q.; Zhang, X. W.; Qu, J. P.; Kang, Y. B. *Org. Lett.* **2020**, *22*, 965-969.

In 2017, Han and coworkers reported a FeCl₂ catalyzed Wacker - type oxidation of olefins to ketones using polymethylhydrosiloxane (PMHS) as an additive and air as the sole oxidant (Scheme 16). The process demonstrated excellent functional - group tolerance and could be applied to oxidize derivatives of complex natural product and polyfunctionalized molecules.²¹⁰

Scheme 16. FeCl₂ catalyzed Wacker - type oxidation

In 2018, the Knölker group described the oxidation of olefins into ketones catalyzed by the iron–complex FePcF₁₆ with stoichiometric amounts of triethylsilane as an additive under oxygen atmosphere with functional group tolerance (Scheme 17). The process was not completely selective, and the corresponding alcohols were observed as by-products.²¹¹

Scheme 17. FePcF₁₆ catalyzed Wacker-type oxidation

5.4. Aim of this project

 ²¹⁰ Liu, B.; Jin, F.; Wang, T.; Yuan, X.; Han, W. Angew. Chem. Int. Ed. 2017, 56, 12712-12717.
 ²¹¹ Puls, F.; Knölker, H. J. Angew. Chem. Int. Ed. 2018, 57, 1222-1226.

Organic electrochemistry offers a mild and efficient alternative to conventional chemical approaches, with electricity representing a green oxidant or reducing agent in these processes. Electro oxidation methods have been employed for the direct oxidation of Pd(0) to Pd(II)^{212,213,214,215} or for the generation of recyclable oxidants such as p-benzoquinone, ferric chloride or triarylamine, and as a co-oxidant for regeneration of Pd(II) catalysts. In these studies, divided cell systems have been usually utilized to avoid the deposition of palladium metal onto the cathode, which often led to unsatisfactory reaction conversion.²¹⁶

Hitherto, the most significant progress on the knowledge and mastering of the Wacker-type oxidation is focused on palladium catalysis. However, challenges in the Wacker-Tsuji Oxidation remains, such as the poor activity for internal alkenes, degradation of the palladium catalyst, isomerization of the olefin, the formation of chlorinated byproducts, the generation of copper waste, high cost derived from the use of palladium, the generation of chemical waste, and/or safety concerns. Therefore, less hazardous, cost-effective, and noble-metal-free oxidation of alkenes is still in challenging and deserves further effort.

The electrochemical functionalization of olefins has received considerable attention in recent times and the use of manganese catalysis for this purpose, pioneered by Lin, has played a central role in these developments. In 2017, the Song Lin group reported the electrochemical diazidation of alkenes catalyzed by Manganese salts. ²¹⁷ They later reported a Mn-catalyzed electrochemical dichlorination of alkenes using MgCl₂ as the chlorine source ²¹⁸ and a

²¹² (a) Blake, A. R.; Sunderland, J. G. *J. Chem. Soc. A*, **1969**, 3015-3018; (b) Goodridge, F.; King,
C. J. H. *Trans. Faraday Soc.* **1970**, *66*, 2889-2896.

²¹³ Tsuji, J.; Minato, M. *Tetrahedron Lett.***1987**, *28*, 3683-3686.

²¹⁴ Horrowitz, H. H. J. Appl. Electrochem. **1984**, *14*, 779-790.

²¹⁵ a) Inokuchi, T.; Ping, L.; Hamaue, F.; Izawa, M.; Torii, S. *Chem. Lett.* **1994**, 121; b) Tesfu, E.; Maurer, K.; Ragsdale, S. R.; Moeller, K. D. *J. Am. Chem. Soc.* **2004**, *126*, 6212-6213.

²¹⁶ Wayner, D. D. M.; Hartstock, F. W. J. Mol. Catal. **1988**, 48, 15-19.

²¹⁷ Fu, N.; Sauer, G. S.; Saha, A.; Loo, A; Lin, S. *Science* **2017**, *357*, 575-579.

²¹⁸ Fu, N.; Sauer, G. S.; Lin, S. J. Am. Chem. Soc. **2017**, 139, 15548-15553.

chlorotrifluoromethylation of alkenes.²¹⁹ Encouraged by those works, most recently the Chen group reported a Mn-catalyzed electrochemical oxychlorination of styrenes via the oxygen reduction reaction, with MgCl₂ as the chlorine source.²²⁰ At the light of these findings, we decided to explore the possibility of developing an electrochemical alternative to the Wacker-Tsuji-type process where toxic and expensive palladium could be replaced by abundant and less harmful metals used as catalysts.

Herein we wish to report the successful development of an electrochemical Wacker-Tsuji-type oxidation of aryl-substituted alkenes through a manifold of parallel oxidative events taking place at a carbon felt anode in an undivided cell using cheap, environmentally friendly MnBr₂ and CuCl₂ as co-catalysts in acetonitrile/water under *forbidden* conditions (2.8 V) as shown in Scheme 18.

Scheme 18. Aim of this project

²¹⁹ Ye, K.; Pombar, G.; Fu, N.; Sauer, G. S.; Keresztes, I.; Lin, S. *J. Am. Chem. Soc.* **2018**, *140*, 2438-2441.

²²⁰ Tian, S.; Jia, X.; Wang, L.; Li, B.; Liu, S.; Ma, L.; Gao, W.; Wei, Y.; Chen, J. *Chem. Commun.* **2019**, *55*, 12104-12107.

This manuscript was later published in Organic letters. (Org. Lett. 2020, 22, 7338-7342)

Manganese/Copper Co-Catalyzed Electrochemical Wacker-Tsuji-Type Oxidation of Aryl-Substituted Alkenes

Junshan Lai, and Miquel A. Pericàs*

Supporting Information Placeholder

ABSTRACT: A manganese/copper co-catalyzed electrochemical Wacker-Tsuji-type oxidation of aryl-substituted alkenes has been developed. The process involves the use of 5 mol% MnBr₂ and 7.5 mol% CuCl₂, in 4:1 acetonitrile/water in an undivided cell at 60 °C, with 2.8 V constant applied potential. α -Aryl ketones are formed in moderate to excellent yields, with the advantages of avoidance of palladium as a catalyst and any external chemical oxidant, in an easily operated, cost effective procedure.

The oxidation of olefins is a powerful tool for the industrial conversion of petrochemical feedstocks into high value-added chemicals.¹ Among the processes used with this purpose, the Wacker oxidation for the preparation of acetaldehyde from ethylene in aqueous media, with palladium (II) chloride and copper (II) as catalysts under oxygen, was one of the first homogeneous catalytic processes applied on an industrial scale.2 The laboratory scale modification, namely the Wacker-Tsuji oxidation, is one of the most useful methods for convert terminal olefins into methyl ketones.³ In this protocol water serves as the oxygen source, and the reduced palladium generated in the process is re-oxidized by copper (II) and ultimately by atmospheric oxygen.⁴ A variety of synthetic methods based on this reaction by modification of the palladium re-oxidation process⁵ or the nature of the involved nucleophile⁶ have been reported during the past decades, and the process has found application in broadly different fields.

Organic electrochemistry offers a mild and efficient alternative to conventional chemical approaches to redox chemistry, electricity representing (depending on its origin) a potentially *green* oxidizing or reducing agent⁸ with no limitations for large scale application.⁹ Electrooxidation methods have already been used for the partial oxidation of ethylene on palladium electrodes¹⁰ and for the regeneration of recyclable oxidants such as quinone,¹¹ iron trichloride¹² or triarylamines,¹³ used for the regeneration of the Pd(II) catalyst in Wacker-Tsuji reactions. In these studies, divided cell systems have been normally used to avoid the deposition of palladium metal onto the cathode that could result in unsatisfactory conversion.¹⁴

Hitherto, progress in the Wacker-type oxidation has rarely escaped from the palladium catalysis paradigm. There are, however, important limitations in the Wacker-Tsuji Oxidation still remaining, such as cost and toxicity to humans of palladium compounds, low activity for internal alkene substrates, moderate TON due to degradation of the palladium catalyst, and the formation of chlorinated by-products,¹⁵ among others. Therefore, the development of cost-effective, noble-metal-free procedures for the oxidation of alkenes offers considerable interest. In this respect, Lei and coworkers reported a direct anti-Markovnikov oxidation of β -alkylstyrenes to carbonyl compounds involving a dual photoredox-metal catalytic system,¹⁶ while the Han group reported the iron-catalyzed Wacker-type oxidation of olefins to ketones using ambient air as the sole oxidant under mild reaction conditions.¹⁷

The electrochemical functionalization of olefins has received considerable attention in recent times¹⁸⁻²³ and the use of manganese catalysis, pioneered by Li, has played a central role in these developments.¹⁹⁻²³ At the light of these findings, we decided to explore the possibility of developing an electrochemical alternative to the Wacker-Tsuji process where toxic and expensive palladium could be replaced by abundant and less harmful metals used as catalysts. Herein we wish to report the successful development of an electrochemical Wacker-Tsuji-type oxidation of aryl-substituted alkenes through a manifold of parallel oxidative events taking place at a carbon felt anode in an undivided cell using cheap, environmentally friendly MnBr₂ and CuCl₂ as co-catalysts in acctonitrile/water under *forbidden* conditions (2.8 V) as shown in Scheme 1.

Scheme 1. Standard and Electrochemical Wacker-Tsuji Oxidation

A. Standard Wacker-Tsuji oxidation

B. This work: [Mn]/[Cu] co-catalyzed electrochemical Wacker-Tsuji oxidation

Our initial study targeted the oxidation of styrene (1a) to acetophenone (2a), as shown in Table S1. An undivided cell with Pt as cathode and carbon felt as anode was used in the experiments, operated at an applied voltage of 3.0 V. Since it has been previously reported that Mn(II) salts catalyze the coupling of styrenes and aliphatic alcohols under oxidative conditions (TBHP),²⁴ we wanted to discard first the operation of this mechanism under electrooxidative conditions. As shown in entries S1-S2, no coupling took place between primary alcohols used as co-solvents and styrene 1a, while acetophenone 2a was detected in low yield when 1:1 isopropanol/water was used as a solvent in the presence of 5 mol% MnBr₂ as catalyst at 60 °C (entry S3). Binary mixtures of polar aprotic solvents and water also afforded poor results (entries S4-S5) but the use of 4:1 vol/vol acetonitrile/water was somewhat promising, especially when performing the reaction at 60 °C (entries S7-S8). The use of NiCl₂ (entry S9), FeCl₃ (entry S10), or even PdCl₂ (entry S11) instead of MnBr₂ was deleterious. On the other hand, the combined use of MnBr2 and $CuCl_2\ (5\ mol\%\ each)$ led to a very significant yield increase (67%, entry S12). Alternatively, the exclusive use of CuCl₂ didn't produce any detectable amount of 2a (entry S13).

Once we had established the determining roles in the reaction of $MnBr_2$ and $CuCl_2$, we proceeded to optimize the relative amounts of these two species (Figures S1 and S2). The initial concentration of **1a** (Figure S4) and of the support electrolyte $LiClO_4$ (Figure S5) were also optimized.

Interestingly, the reaction gave a similar yield in the presence or in the absence of oxygen in the reaction cell. Besides the operative advantage in reaction practicality, this observation provides a clear indication that oxygen reduction is not involved in the observed reaction and that the oxygen atom in the final product arises from water. We accordingly studied the effect of the proportion of water in the solvent system on the efficiency of the process (Figure S3). As anticipated, the presence of water in the solvent is a requisite for the reaction to take place, and the optimal yield (77%) is achieved with a volumetric composition of 80% MeCN and 20% water. Further increases in the amount of water lead to a rather sharp decrease in yield, probably because of the insolubility of styrene in those solvent mixtures.

As a final parameter, we studied the effect of the applied potential on the reaction yield while working in constant voltage mode (Figure S6). The onset voltage for the reaction to proceed was shown to be 1.7 V. Yield slightly increased with the applied potential and, at *ca*. 2.5 V, a sudden increase in the slope of the yield *vs*. voltage graph occurs, a maximum 85% yield being achieved at 2.8 V.²⁵ These experiments were later repeated in a single compartment, three electrode cell including a AgCl reference electrode (see Figure S7). Interestingly, the results

between 2.4 and 3.0 V are exactly duplicated, the highest (85%) yield being achieved again at 2.8 V. The observed yield *vs*. applied voltage behavior is strongly indicative of some additional redox process, on top of $Cu^{I/}Cu^{II}$ and Mn^{II}/Mn^{III} , taking also place above 2.5 V. According to the known electrochemical oxidation behavior of acetonitrile at platinum electrodes in the presence of water, solvent oxidation appears as a logical, and in this case synergistic, candidate.²⁶

Once the optimization process was completed, different combinations of manganese and copper compounds were tested as potential catalytic systems (Table S2). It is interesting to note that combinations of chlorides and bromides of Mn(II) and Cu(II) are almost equally suitable catalysts for the process (entries S1, S5, and S15), the combined use of both dibromides (entry S1) leading to the highest (86%) yield. By the contrary, the combination of both chlorides (entry S12) results in a mediocre catalyst. Thus, the presence of bromide ions is of primordial importance for catalytic activity. The reaction didn't produce any 2a when Cu(acac)₂, involving a highly chelated Cu(II) species, was used as a cocatalyst (entry S6). It is also worth mentioning that polymerization of styrene was observed when Cu(OTf)₂ replaced CuCl₂ as the Cu(II) source (entry S4).27 As already mentioned, no acetophenone was detected in the absence of a Mn(II) source (entries S16-S20).

Once the optimal reaction conditions had been fully established, the applicability of the Mn/Cu co-catalyzed electrochemical oxidation was studied on a representative series of substrates **Ia-z** containing in their structures an aryl group conjugated with a carbon-carbon double bond (Scheme 2). In general, the reaction tolerates well alkyl groups and medium polarity substituents, such as halogen or trifluoromethyl groups and even groups with strong withdrawing character (**2n**). With respect to regiochemistry, *para*-substituted substrates are those leading to higher yields.

Scheme 2. Substrate Scope in the Mn/Cu Co-Catalyzed Wacker-Tsuji Electrochemical Oxidation^a

^aReaction conditions: Substrate (**1a-z**) (1mmol), CuCl₂ (7.5 mol%), MnBr₂ (5 mol%), 4:1 acetonitrile:water (3 mL), Constant applied potential: 2.8 V (Pt cathode, Carbon felt anode, 0.05 M LiClO₄), 60 °C, 8 h. Isolated yield.

Also in this respect, the reaction appears to be sensitive to steric effects, since ortho-substituted substrates, like 1d, 1f, and 1h afford the corresponding oxidation products in lower yield than the corresponding para-isomers, and heavily ortho-substituted substrates, like 1u and 1x, fail to react. Interestingly, substrates containing 1.2-disubstituted double bonds are efficiently oxidized, irrespectively of their cyclic (1q, 1s) or acyclic nature (1p, 1r). In the case of 1p, no appreciable bias exists with respect to the stereochemistry of the double bond in the substrate. 2H-Chromene (1t), a substrate belonging to an important class of natural substances, was successfully oxidized to chromanone 2t (47% yield). However, the analogue 2,2,dimethyl-2H-chromene 1y failed to react, thus indicating that heavy substitution on the double bond is deleterious to the reaction. On the other hand, when extension of the electrochemical oxidation to commercially available dihydroquinoline 1z was attempted, fast deprotection of the

carbamate moiety took place, but oxidation did not proceed. It is also worth mentioning that allylbenzene, a regioisomer of **10** of non-styrene nature, completely failed to provide the corresponding oxidation product.²⁸ Finally, *p*-methoxystyrene (**1t**) and m-nitrobenzaldehyde (**1u**) failed to provide the corresponding acetophenone products **2t** and **2u** for completely different reasons. While **1t** underwent a very fast reaction, but led to ill-defined products of oligomeric nature, **1u** was reluctant to electrochemical Wacker-Tsuji oxidation. This behavior can be rationalized through the tentative mechanistic proposal shown in Figure 1.

Figure 1. Tentative mechanistic proposal for the Mn/Cu cocatalyzed electrochemical oxidation of styrenes.

As it can be seen, we propose that three parallel oxidative events could take place at the carbon felt anode: the standard oxidation of Mn(II) to Mn(III) $[E^{\circ} = 1.56 \text{ V},^{29} \text{ and peak at } ca. 1.50 \text{ V in}$ the cyclic voltammogram (CV, Figure 2)], the oxidation of Cu(II) to Cu(III) [$E^{\circ} = 2.4 \text{ V}$,²⁹ and peaks at *ca*. 1.85 and 2.45 V in the CV (Figure 2)], and the oxidation of acetonitrile to its radical cation which, as discussed above (Figure S6), becomes possible at the high applied potential $[E^{\circ} = 1.78 \text{ V},^{23} \text{ and peak}]$ at ca. 2.32 V in the cyclic voltammogram (Figure 2)]. Interestingly, the peak at ca. 2.5 V in the CV which, according to our optimization studies appears to be very relevant to the overall oxidation process, cannot be observed when water is not present in the solvent system (see SI). We discard the possibility that oxidation of Mn(III) to Mn(IV) can also occur, since MnO2 does not appear to be a competent chemical oxidant in the overall process (see Table S2, entry S11) and no assignable peak is observed in the CV.

Figure 2. Cyclic voltammetry studies

A chemically or electrochemically generated Mn(III) halide, preferably containing bromide anions (X = Br) according to our optimization studies (Table S2), would transfer a halogen atom onto the starting styrene, generating the intermediate radical (I). Evolution of this species towards the final ketone product requires hydration, but this is hardly conceivable at this oxidation level. We accordingly propose that I could be further oxidized to carbocation II by electrogenerated Cu(III) or, more probably, by electrogenerated acetonitrile radical cation.

Hydration of II would lead to bromohydrin III, already possessing the overall oxidation state of the product acetophenone 2. Then, either chemically or electrochemically promoted dehydrobromination would lead to the acetophenone product via. keto-enol tautomerism. It is worth mentioning that III has been detected as a minor byproduct in most oxidation crudes (see SI). On the other hand, independently prepared III³⁰ has been converted to acetophenone under the electrochemical conditions employed in our study with high selectivity (91%, corresponding to 50% yield at 55% conversion, see SI). Interestingly this transformation also occurs, albeit in a less selective manner (70%) in the absence of any metal halide. The intermediacy of carbocation II is consistent with the behavior in the reaction of highly electron-deficient substrates like 1w, where the highly electron poor carbocation intermediate would be hardly available, and highly electron-rich ones like 1v, where the exceeding electron density of the corresponding intermediate could trigger a highly promiscuous behavior leading to oligomeric product mixtures.

In conclusion, we have developed an electrochemical Wacker-Tsuji-type oxidation of aryl-substituted alkenes, applicable to monosubstituted and 1,2-disubstituted substrates. The process relies on a dual Mn/Cu catalytic system with solvent (acetonitrile) participation, and likely operates by means to three parallel electrochemical oxidative events where Mn(III), Cu(III) and acetonitrile radical cation are likely generated. By this process, a-aryl ketones are formed in moderate to excellent yields, with the advantages of avoidance of palladium as a catalyst and of any external chemical oxidant, in an easily operated, cost effective procedure.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.xxxxxxx.

Experimental procedures and spectral data (PDF)

AUTHOR INFORMATION

Corresponding Author

Miquel A. Pericàs – Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), E-43007 Tarragona, Spain; Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, 08028 Barcelona, Spain; orcid.org/0000-0003-0195-8846; Email: mapericas@iciq.es

Authors

Junshan Lai – Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), E-43007 Tarragona, Spain; Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

Financial support from CERCA Programme/Generalitat de Catalunya, MINECO/FEDER (grants CTQ2015-69136-R and PID2019-1092336RB-I00) and AGAUR/ Generalitat de Catalunya (2017 SGR 1139) is gratefully acknowledged. J.L. thanks MINECO for a FPI fellowship (BES-2016-078937). We also thank Prof. Antoni Llobet (ICIQ) for helpful discussions and Dr. Marcos Gil-Sepulcre (ICIQ) for technical assistance.

REFERENCES

(1) Industrial Organic Chemistry, Fifth, completely revised Edition; Arpe, H.-J.; Wiley-VCH: Weinheim, 2010.

(2) Jira, R. Acetaldehyde from Ethylene-A Retrospective on the Discovery of the Wacker Process. Angew. Chem. Int. Ed. 2009, 48, 9034-9037

(3) (a)Tsuji, J. Synthetic applications of the palladium-catalyzed oxidation of olefins to ketones. Synthesis, 1984, 369-384; (b) Li, J. J. Wacker-Tsuii oxidation. in Name Reactions for Functional Group Transformations, Li, J. J.; Corey, E. J., Eds. Wiley-Interscience: Hoboken, NJ, 2007, pp. 309-326; (c) Baiju, T. V.; Gravel, E.; Doris, E.; Namboothiri, I. N. N. Recent developments in Tsuji-Wacker oxidation. Tetrahedron Lett. 2016, 57, 3993-4000.

(4) (a) Keith, J. A.; Henry, P. M. The Mechanism of the Wacker Reaction: A Tale of Two Hydroxypalladations. Angew. Chem. Int. Ed. 2009, 48, 9038-9049; (b) Vidossich, P.; Lledós, A.; Ujaque, G. First-Principles Molecular Dynamics Studies of Organometallic Complexes and Homogeneous Catalytic Processes. Acc. Chem. Res. 2016, 49, 1271-1278.

(5) (a) Tsuji, J.; Nokami, J.; Mandai, T. Oxidation of Olefins to Ketones Catalyzed by Pd²⁺ Salts and Its Applications to Organic Synthesis. J. Syn. Org. Chem. Jpn, **1989**, 47, 649-659; (b) Cornell, C. N.; Sigman, M. S. Discovery of a Practical Direct O2-Coupled Wacker Oxidation with Pd[(-)sparteine]Cl₂. Org. Lett. 2006, 8, 4117-4120; (c) Mitsudome, T.; Umetani, T.; Nosaka, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Convenient and Efficient Pd-Catalyzed Regioselective Oxyfunctionalization of Terminal Olefins by Using Molecular Oxygen as Sole Reoxidant. Angew. Chem., Int. Ed. 2006, 45, 481-485. (d) Michel, B. W.; Camelio, A. M.; Cornell, C. N.; Sigman, M. S. A general and efficient catalyst system for a Wackertype oxidation using TBHP as the terminal oxidant: application to classically challenging substrates. J. Am. Chem. Soc. 2009, 131, 6076-6077. (e) DeLuca, R. J.; Edwards, J. L.; Steffens, L. D.; Michel, B. W.; Qiao, X.; Zhu, C.; Cook, S. P.; Sigman, M. S. Wacker-type oxidation of internal alkenes using Pd(Quinox) and TBHP. J. Org. Chem. 2013, 78, 1682-1686. (f) Wang, Y.-F.; Gao, Y.-R.: Mao, S.; Zhang, Y.-L.; Guo, D.-D.; Yan, Z.-L.; Guo, S.-H.; Wang, Y.-Q. Wacker-type oxidation and dehydrogenation of terminal olefins using molecular oxygen as the sole oxidant without adding ligand. *Org. Lett.* **2014**, *16*, 1610-1613; (g) Chaudhari, D. A.; Fernandes, R. A. Hypervalent Iodine as a Terminal Oxidant in Wacker-Type Oxidation of Terminal Olefins to Methyl Ketones. *J. Org. Chem.* **2016**, *81*, 2113-2121. (h) Xia, X.; Gao, X.; Xu,J.; Hu, C.; Peng, X. Selective Oxidation of Styrene Derivatives to Ketones over Palladium(0)/Carbon with Hydrogen Peroxide as the Sole Oxidant. *Synlett* **2017**, *28*, 607-610.

(6) McDonald, R. I.; Liu, G.; Stahl, S. S. Palladium(II)-Catalyzed Alkene Functionalization via Nucleopalladation: Stereochemical Pathways and Enantioselective Applications. *Chem. Rev.* **2011**, *111*, 2981-3019.

(7) Fong, D.; Luo, S.-X.; Andre, R. S.; Swager, T. M. Trace Ethylene Sensing via Wacker Oxidation. *ACS Cent. Sci.* **2020**, *6*, 507-512.

(8) Frontana-Uribe, B. A.; Little, R. D.; Ibanez, J. G.; Palma A.; Vasquez-Medrano, R. Organic electrosynthesis: a promising green methodology in organic chemistry. *Green Chem.* **2010**, *12*, 2099–2119.

(9) (a) Cardoso, D. S. P.; Šljukic, B.; Santos, D. M. F.; Sequeira C. A.C. Organic Electrosynthesis: From Laboratorial Practice to Industrial Applications. *Org. Process Res. Dev.* 2017, *21*, 1213–1226; (b) Leow, W. R.; Lum, Y.; Ozden, A.; Wang, Y.; Nam, D.-H.; Chen, B.; Wicks, J.; Zhuang, T.-T.; Li, F.; Sinton, D.; Sargent, E. H. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. *Science* 2020, *368*, 1228-1233.

(10) (a) Blake, A. R.; Sunderland, J. G.; Kuhn, A. T. The partial anodic oxidation of ethylene on palladium. *J. Chem. Soc. A*, **1969**, 3015-3018; (b) Goodridge, F.; King, C. J. H. Oxidation of ethylene at a palladium electrode. *Trans. Faraday Soc.* **1970**, *66*, 2889-2896; (c) Otsuka, K.; Kobayashi, A. Design of the Catalyst for Partial Oxidation of Ethylene by Applying an Electrochemical Device. *Chem. Lett.* **1991**, *20*, 1197-1200.

(11) (a) Tsuji, J.; Minato, M. Oxidation of olefins to ketones in combination with electrooxidation. *Tetrahedron Lett.***1987**, *28*, 3683-3686; (b) Bäckvall, J.-E.; Gogoll, A. Palladium-hydroquinone catalysed electrochemical 1,4-oxidation of conjugated dienes. *J. Chem. Soc., Chem. Commun.***1987**, 1236-1238.

(12) Horowitz, H. H. Preliminary examination of an electrochemical process for converting olefins to ketones. *J. Appl. Electrochem.* **1984**, *14*, 779-790.

(13) Inokuchi, T.; Ping, L.; Hamaue, F.; Izawa, M.; Torii, S. Electrochemical Wacker Type Reaction with a Double Mediatory System Consisting of Palladium Complex and Tri(4-bromophenyl)amine *Chem. Lett.* **1994**, *23*, 121-124.

(14) Wayner, D. D. M.; Hartstock, F. W. Electrode-mediated catalytic carbonylation of olefins. *J. Molecular Catalysis* **1988**, *48*, 15-19.

(15) Stangl, H.; Jira, R. Die durch palladium(II) chlorid und kupfer(II) chlorid katalysierte oxychlorierung von äthylen zu äthylenchlorhydrin. *Tetrahedron Lett.* **1970**, *11*, 3589-3592.

(16) Zhang, G.; Hu, X.; Chiang, C. W.; Yi, H.; Pei, P.; Singh, A. K.; Lei, A. Anti-Markovnikov Oxidation of β -Alkyl Styrenes with H₂O as the Terminal Oxidant. J. Am. Chem. Soc. **2016**, 138, 12037-12040.

(17) Liu, B.; Jin, F.; Wang, T.; Yuan, X.; Han, W. Wacker-Type Oxidation Using an Iron Catalyst and Ambient Air: Application to

Late-Stage Oxidation of Complex Molecules. Angew. Chem. Int. Ed. 2017, 56, 12712-12717.

(18) Imada, Y.; Okada, Y.; Noguchi, K.; Chiba, K. Selective Functionalization of Styrenes with Oxygen Using Different Electrode Materials: Olefin Cleavage and Synthesis of Tetrahydrofuran Derivatives. *Angew. Chem. Int. Ed.* **2019**, *58*, 125-129.

(19) Fu, N.; Sauer, G. S.; Saha, A.; Loo, A; Lin, S. Metal-catalyzed electrochemical diazidation of alkenes. *Science* **2017**, *357*, 575-579.

(20) Fu, N.; Sauer, G. S.; Lin, S. Electrocatalytic Radical Dichlorination of Alkenes with Nucleophilic Chlorine Sources. J. Am. Chem. Soc. 2017, 139, 15548-15553.

(21) Ye, K.; Pombar, G.; Fu, N.; Sauer, G. S.; Keresztes, I.; Lin, S. Anodically Coupled Electrolysis for the Heterodifunctionalization of Alkenes. J. Am. Chem. Soc. **2018**, *140*, 2438-2441.

(22) Zhang, Z.; Zhang, L.; Cao, Y.; Li, F.; Bai, G.; Liu, G.; Yang, Y.; Mo, F. Mn-Mediated Electrochemical Trifluoromethylation/C(sp²)-H Functionalization Cascade for the Synthesis of Azaheterocycles. *Org. Lett.* **2019**, *21*, 762-766

(23) Tian, S.; Jia, X.; Wang, L.; Li, B.; Liu, S.; Ma, L.; Gao, W.; Wei, Y.; Chen, J. The Mn-catalyzed paired electrochemical facile oxychlorination of styrenes *via* the oxygen reduction reaction. *Chem. Commun.* **2019**, *55*, 12104.

(24) Zhang, W.; Wang, N. X.; Bai, C. B.; Wang, Y. J.; Lan, X. W.; Xing, Y.; Li, Y. H.; Wen, J. L. Manganese-Mediated Coupling Reaction of Vinylarenes and Aliphatic Alcohols. *Sci. Rep.* **2015**, *5*, 15250.

(25) Current intensity was also optimized for reactions ran in constant current mode. A highest 80 % yield was recorded in 8 hours for a reaction ran at 25 mA.

(26) Foley, J. K.; Korzeniewski, C.; Pons, S. Anodic and cathodic reactions in acetonitrile/tetra-n-butylammonium tetrafluoroborate: an electrochemical and infrared spectroelectrochemical study. *Can. J. Chem.* **1988**, *66*, 201–206.

(27) (a) Iroh, J. O.; Bell, J. P.; Scola, D. A. Mechanism of the electrocopolymerization of styrene and *N*-(3 carboxyphenyl)maleimide onto graphite fibers in aqueous solution. *Applied Pol. Sci.* **1993**, *47*, 93-104; (b) Lorandi, F.; Fantin, M.; Shanmugam, S.; Wang, Y.; Isse, A. A.; Gennaro, A.; Matyjaszewski, K. Toward Electrochemically Mediated Reversible Addition-Fragmentation Chain-Transfer (eRAFT) Polymerization: Can Propagating Radicals Be Efficiently Electrogenerated from RAFT Agents? *Macromolecules* **2019**, *52*, 1479–1488.

(28) However, when ethylbenzene was used as starting material, acetophenone could be isolated in 20% yield. This is probably related with the behavior in the reaction of the allyl ether of p-vinylbenzyl alcohol, where polymerization, and not selective oxidation of the aryl-substituted vinyl group, was the major reaction pathway.

(29) Bratsch, S. G. Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K. J. Phys. Chem. Ref. Data **1989**, 18, 1–21.

(30) Das, B.; Venkateswarlu, K.; Damodar, K.; Suneel, K. Ammonium acetate catalyzed improved method for the regioselective conversion of olefins into halohydrins and haloethers at room temperature. *J. Mol. Catal. A-Chem.* **2007**, *269*, 17-21.

Supporting Information

Manganese/Copper Co-Catalyzed Electrochemical Wacker-Tsuji-Type Oxidation of Aryl-Substituted Alkenes

Junshan Lai,^{a,b} and Miquel A. Pericàs^{a,c,*}

^a Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007 Tarragona, Spain

^b Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain

^c Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11,08028 Barcelona, Spain

*mapericas@iciq.es

Table of Contents

1. General information	466
2. General procedure for the electrochemical Wacker-Tsuji-type oxidation	466
3. Initial screening of solvents and catalysts	467
4. Optimization of the different reaction parameters	469
5. Cyclic voltammetry studies	473
6. Mechanistic studies: detection of bromohydrin III and conversion into acetophenone 2a	ı under
electrochemical conditions	474
7. Compound characterization data	475
8. References	480
9. NMR Spectra	481

1. General information

Unless otherwise noted, all reactions were conducted under air. All commercial reagents and solvents were used as received. Starting compounds **1a-z** are all known. **1a-x**, and **1z** were commercially available and were used as received, while **1y** was prepared by a reported procedure¹. Flash chromatography was carried out using 60 mesh silica gel and dry-packed columns. Thin layer chromatography was carried out using Merck TLC Silicagel 60 F254 aluminum sheets. Components were visualized by UV light (λ = 254 nm) and stained with phosphomolybdic dip. NMR spectra were recorded at 298 K on a Bruker Avance 400 Ultrashield apparatus. ¹H NMR spectroscopy chemical shifts are quoted in ppm relative to tetramethylsilane (TMS). CDCl₃ was used as internal standard for ¹³C NMR spectra. Chemical shifts are given in ppm and coupling constants in Hz.

2. General procedure for the electrochemical Wacker-Tsuji-type oxidation

Experiments were performed using a DC power supply. The reaction vessel was a simple glass tube equipped with a rubber septum and carbon felt (G200, 10 mm x 10 mm x 5 mm) as the anode and platinum plate (10 mm x 10 mm x 0.25 mm) as the cathode. Experiments were normally performed under air atmosphere. For experiments under exclusion of oxygen, the cell was sealed and flushed with argon for 15 minutes. To the undivided glass tube (10 mL) used as electrochemical cell, MnBr₂ (10.7 mg, 0.05 mmol, 5 mol %), CuCl₂ (10.1 mg, 0.075 mmol, 7.5 mol %) and LiClO₄ solution (3 mL, 0.05 M in a 4:1 vol/vol MeCN/water) were added, followed by the addition of the reacting olefins (1 mmol) via syringe. The cell was placed in an oil bath heated at 60 °C, and current pass was then started at a constant potential of 2.8 V and kept under these conditions for 8 h, when TLC analysis indicated that the reaction was complete. The solution was then transferred to a round-bottom flask, and the reaction flask and the electrodes were washed with DCM which was combined with the reaction mixture. The solvents were directly evaporated under reduced pressure, and the residue was submitted to purification by flash column chromatography on silicagel, eluting with solvent mixtures specified in Section 7 for each particular case.

3. Initial screening of solvents and catalysts

3.1 Table S1. Screening of reaction conditions: solvent and catalyst^a

	Cataly Pt(-), C(+) LiCIO4 (0 solve 1a 8 h, 60 °C	vst , 3.0 V 0.1 M) nt C or rt 2a	•
entry	Solvent/H ₂ O (v:v) ^b	Catalyst ^c	yield [%] ^d
S1	MeOH (1:1)	MnBr ₂	trace
S2	EtOH (1:1)	MnBr ₂	trace
\$3	PrOH (1:1)	MnBr ₂	10
S4	DMF (1:1)	MnBr ₂	trace
S5	Acetone (1:1)	MnBr ₂	12
S6	MeCN (1:1)	MnBr ₂	23
S7	MeCN (4:1)	MnBr ₂	28
S8 ^e	MeCN (4:1)	MnBr ₂	15
S9	MeCN (4:1)	NiCl ₂	nde
S10	MeCN (4:1)	FeCl ₃	nd ^e
S11	MeCN (4:1)	PdCl ₂	trace
S12	MeCN (4:1)	MnBr ₂ , CuCl ₂	67
S13	MeCN (4:1)	CuCl ₂	ndf

^aReaction conditions: styrene (1mmol), catalyst (5 mol%), solvent (3 mL), 3.0 V (Pt cathode, Carbon felt anode, 0.1 M LiClO₄), 60 °C, Argon, 8 h. ^bSolvent:water ratio. ^c5 mol ^dIsolated yield.%. ^eReaction at room temperature. ^fNot detected.

3.2 Table S2. Optimization of reaction conditions: copper and manganese sources^a

Mn (5 mol%)

\sim	Cu (7 Pt(-),	(5 mol%) 7.5 mol%) C(+), 2.8 V	Ĩ
Ļ		0 ₄ (0.05 M) H ₃ CN-H ₂ O D 60 °C	2a
		.,	
entry	Cu source	Mn or Br source	yield [%] ^b
S1	CuBr ₂	MnBr ₂	86
S2	Cu(OAc) ₂	MnBr ₂	35
S3	Cul	MnBr ₂	10
S4	Cu(OTf) ₂	MnBr ₂	44
S5	CuCl ₂	MnBr ₂	85
S6	Cu(acac) ₂	MnBr ₂	trace
S7	CuCN	MnBr ₂	10
58	CuSO ₄	MnBr ₂	27
S9	Cu(TFA) ₂	MnBr ₂	49
S10	Cu beads	MnBr ₂	53
S11	Cu beads	MnO ₂	trace
S12	CuCl ₂	MnCl ₂	40
S13	Cu(OAc) ₂	Mn(OAc) ₂	trace
S14	CuSO ₄	MnSO ₄	trace
S15	CuBr ₂	MnCl ₂	80
S16	CuBr ₂	-	trace
S17	CuCl ₂	NaBr	trace
S18	CuCl ₂	HBr	trace
S19	CuCl ₂	"Bu₄N⁺Br⁻	trace
S20	CuCl ₂	-	trace

^aReaction conditions: styrene (1mmol), copper source (7.5 mol%), Mn or Br source (5 mol%), MeCN/water (5:1) (3 mL), 2.8 V (Pt cathode, Carbon felt anode, 0.05 M LiClO₄), 60 °C, 8 h. ^bIsolated yield.

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

4. Optimization of the different reaction parameters

4.1. Amount of MnBr₂

Different experiments were performed according to the general procedure varying the amount of MnBr₂ between 0 and 10 mol%. Results are summarized in Figure S1.

Figure S1. Reaction conditions: MnBr₂ (x mol%), CuCl₂ (6.8 mg, 0.05 mmol, 5 mol %), styrene (104 mg, 1 mmol), LiClO₄ solution [0.1 M in 4:1 MeCN/water (3 mL)], Pt(-), C(+), 3.0 V, 8 h, 60 °C.

4.2. Amount of CuCl₂

Different experiments were performed according to the general procedure varying the amount of CuCl₂ between 0 and 15 mol%. Results are summarized in Figure S2.

Figure S2. Reaction conditions: MnBr₂ (10.7 mg, 0.05 mmol, 5 mol%), CuCl₂ (x mol%), styrene (104 mg, 1 mmol), LiClO₄ solution [0.1 M in 4:1 MeCN/water (3 mL)], Pt(-), C(+), 3.0 V, 8 h, 60 °C.

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

4.3. Amount of water in acetonitrile/water solvent mixtures

Different experiments were performed according to the general procedure in acetonitrile/water solvent mixtures with compositions ranging from 100% acetonitrile to 100% water. Results are summarized in Figure S3.

Figure S3. Reaction conditions: MnBr₂ (10.7 mg, 0.05 mmol, 5 mol%), CuCl₂ (10.1 mg, 0.075 mmol, 7.5 mol%), styrene (104 mg, 1 mmol), LiClO₄ solution (0.1 M in 3 mL of MeCN/water with the indicated vol/vol compositions), Pt(-), C(+), 3.0 V, 8 h, 60 °C.

4.4. Amount of Styrene

Different experiments were performed according to the general procedure varying the amount of styrene between 0.25 mmol and 3.00 mmol. Results are summarized in Figure S4.

Figure S4. Reaction conditions: MnBr₂ (10.7 mg, 0.05 mmol, 5 mol%), CuCl₂ (10.1 mg, 0.075 mmol, 7.5 mol%), styrene (x mmol), LiClO₄ solution [0.1 M in 4:1 MeCN/water (3 mL)], Pt(-), C(+), 3.0 V, 8 h, 60 °C.

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

4.5. Concentration of LiClO₄ solution

Different experiments were performed according to the general procedure varying the concentration of LiClO₄ in 4:1 MeCN/water between 0.025 and 0.30 M. Results are summarized in Figure S5.

Figure S5. Reaction conditions: MnBr₂ (10.7 mg, 0.05 mmol, 5 mol%), CuCl₂ (10.1 mg, 0.075 mmol, 7.5 mol%), styrene (104 mg, 1 mmol), LiClO₄ solution [*x* M in 4:1 MeCN/water(3 mL)], Pt(-), C(+), 3.0 V, 8 h, 60 °C.

4.6. Applied potential

Different experiments were performed according to the general procedure varying the applied potential between 1.7 and 3.4 V. Results are summarized in Figure S6.

Figure S6. Reaction conditions: MnBr₂ (10.7 mg, 0.05 mmol, 5 mol%), CuCl₂ (10.1 mg, 0.075 mmol, 7.5 mol%), styrene (104 mg, 1 mmol), LiClO₄ solution [0.05 M in 4:1 MeCN/water(3 mL)], Pt(-), C(+), x V, 8 h, 60 °C.

The study was repeated in a single compartment, three electrode cell including an Ag/AgCl reference electrode. The results are summarized in Figure S7 for potentials ranging from 2.4 to 3.0 V. Each point corresponds to the mean value of two independent determinations.

Figure S7. Reaction conditions: MnBr₂ (10.7 mg, 0.05 mmol, 5 mol%), CuCl₂ (10.1 mg, 0.075 mmol, 7.5 mol%), styrene (104 mg, 1 mmol), LiClO₄ solution [0.05 M in 4:1 MeCN/water(3 mL)], Pt(-), C(+), (x V vs AgCl), 8 h, 60 °C.

5. Cyclic voltammetry studies

Cyclic voltammetry (CV) experiments were conducted in a 5 mL glass vial equipped with a glassy carbon working electrode, an Ag/AgCl reference electrode, and a platinum wire counter electrode. Ag/AgCl reference electrodes were stored in 0.1 M LiClO₄ in acetonitrile. Concentrations of the individual individual components were 8 mM. The blank experiment refers to 0.1 M LiClO₄ in 4:1(v/v) CH₃CN/ H₂O. Scan rate was 50 mV/s. In the case of 5 eq. styrene, the concentration of styrene is 40 mM.

6. Mechanistic studies: detection of bromohydrin III and conversion into acetophenone 2a under electrochemical conditions.

a) ¹H NMR spectra of a reaction crude of the electrochemical oxidation of styrene leading to **2a**, showing the presence of bromohydrin **III**.

b) ¹H NMR spectra of an authentic sample of bromohydrin III

c) Conversion of bromohydrin III into acetophenone 2a under electrochemical conditions

Conditions	Conversion [%]	Yield [%]	Selectivity [%]
			(100.yield.conv ⁻¹)
CuCl ₂ (7.5 mol%)	40	35	87.5
MnBr ₂ (5 mol%)	58	50	86.2
CuCl ₂ (7.5 mol%), MnBr ₂ (5 mol%)	55	50	90.9
no metal catalyst	50	35	70.0

7. Compound characterization data

Acetophenone (2a). The general procedure was followed from 1a (0.104 g, 1 mmol) to afford 2a (0.103 g, 0.85 mmol, 85% yield) as colorless oil. 2a was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:20). The structure of 2a was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature.² ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.91 (m, 2H), 7.61 – 7.52 (m, 1H), 7.52 – 7.39 (m, 2H), 2.61 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 198.0, 137.0, 132.9, 128.4 (x2), 128.1 (x2), 26.4 ppm.

p-tert-Butylacetophenone (2b). The general procedure was followed from 1b (0.160 g, 1 mmol) to afford 2b (0.132 g, 0.75 mmol, 75% yield) as colorless oil. 2b was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:20). The structure of 2b was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature.³ ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.5 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 2H), 2.59 (s, 3H), 1.35 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 197.7, 156.7, 134.6, 128.2 (x2), 125.4 (x2), 35.0, 31.0 (x3), 26.4 ppm.

2c

p-Methylacetophenone (2c). The general procedure was followed from 1c (0.118 g, 1 mmol) to afford 2c (0.106 g, 0.79 mmol, 79% yield) as colorless oil. 2c was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:20). The structure of 2c was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the

literature.⁴ ¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.2 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 2.57 (s, 3H), 2.40 (s, 3H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 197.7, 143.8, 134.6, 129.1 (x2), 128.3 (x2), 26.4, 21.5 ppm.

o-Methylacetophenone (2d). The general procedure was followed from 1d (0.118 g, 1 mmol) to afford 2d (0.047 g, 0.35 mmol, 35% yield) as colorless oil. 2d was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:20). The structure of 2d was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature.⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.68 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.37 (td, *J* = 7.5, 1.4 Hz, 1H), 7.30 – 7.20 (m, 2H), 2.57 (s, 3H), 2.53 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 201.6, 138.3, 137.6, 131.9, 131.4, 129.3, 125.6, 29.4, 21.5 ppm.

p-Fluoroacetophenone (2e). The general procedure was followed from 1e (0.122 g, 1 mmol) to afford 2e (0.109 g, 0.79 mmol, 79% yield) as colorless oil. 2e was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:20). The structure of 2e was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature.⁶ ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dd, *J* = 5.3, 3.0 Hz, 2H), 7.10 (dd, *J* = 8.7, 3.4 Hz, 2H), 2.58 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 196.3, 165.7 (d, *J* = 256 Hz), 133.5 (d, *J* = 3 Hz), 130.9 (d, *J* = 9 Hz) (x2), 115.6 (d, *J* = 21 Hz) (x2), 26.4 ppm.

o-Fluoroacetophenone (2f). The general procedure was followed from 1f (0.122 g, 1 mmol) to afford 2f (0.063 g, 0.46 mmol, 46% yield) as colorless oil. 2f was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:20). The structure of 2f was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature.⁷ ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.79 (m, 1H), 7.52 (dq, *J* = 7.6, 2.5 Hz, 1H), 7.27 – 7.02 (m, 2H), 2.65 (dd, *J* = 5.3, 3.3 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 195.8, 162.2 (d, *J* = 256 Hz), 134.6 (d, *J* = 9 Hz), 130.5(d, *J* = 4 Hz), 125.7(d, *J* = 13 Hz), 124.3(d, *J* = 4 Hz), 116.7(d, *J* = 23 Hz), 31.4(d, *J* = 8 Hz) ppm.

p-Chloroacetophenone (2g). The general procedure was followed from 1g (0.138 g, 1 mmol) to afford 2g (0.134 g, 0.87 mmol, 87% yield) as colorless oil. 2g was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:20). The structure of 2g was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature.⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* = 8.6 Hz, 2H), 2.58 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 196.6, 139.4, 135.3, 129.6 (x2), 128.7 (x2), 26.4 ppm.

o-Chloroacetophenone (2h). The general procedure was followed from **1h** (0.138 g, 1 mmol) to afford **2h** (0.082 g, 0.53 mmol, 53% yield) as colorless oil. **2h** was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:20). The structure of **2h** was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature.⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.55 (ddd, *J* = 7.6, 1.7, 0.6 Hz, 1H), 7.45 – 7.26 (m, 3H), 2.64 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 200.3, 139.1, 131.9, 131.2, 130.6, 129.3, 126.8, 30.6 ppm.

*p***-Bromoacetophenone (2i)**. The general procedure was followed from **1i** (0.183 g, 1 mmol) to afford **2i** (0.149 g, 0.75 mmol, 75% yield) as colorless oil. **2i** was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:20). The structure of **2i** was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature.⁸ ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.6 Hz, 2H), 7.60 (d, *J* = 8.6 Hz, 2H), 2.58 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 196.9, 135.8, 131.8 (x2), 129.8 (x2), 128.2, 26.5 ppm. Known compound.⁷

m-Bromoacetophenone (2j). The general procedure was followed from 1j (0.183 g, 1 mmol) to afford 2i (0.140 g, 0.70 mmol, 70% yield) as colorless oil. 2j was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:20). The structure of 2i was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature.⁷ ¹H NMR (400 MHz, CDCl₃) δ 8.08 (t, *J* = 1.9 Hz, 1H), 7.94 – 7.85 (m, 1H), 7.69 (ddd, *J* = 8.0, 2.0, 1.0 Hz, 1H), 7.35 (t, *J* = 7.9 Hz, 1H), 2.60 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 196.5, 138.7, 135.8, 131.2, 130.1, 126.7, 122.8, 26.5 ppm.

p-Trifluoromethylacetophenone (2k). The general procedure was followed from 1k (0.172 g, 1 mmol) to afford 2k (0.128 g, 0.68 mmol, 68% yield) as colorless oil. 2k was purified by column chromatography on silica gel with pentane/DCM (4:1), and further purified by Kugelrohr distillation. The structure of 2k was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature.⁹ ¹H NMR (400 MHz, CDCl₃) δ 8.09 – 7.98 (m, 2H), 7.79 – 7.62 (m, 2H), 2.65 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 196.9, 139.7, 134.4 (q, *J* = 33 Hz), 128.6 (x2), 125.6 (q, *J* = 4 Hz) (x2), 123.6 (q, *J* = 271 Hz), 26.7 ppm.

m-Trifluoromethylacetophenone (2I). The general procedure was followed from 1I (0.172 g, 1 mmol) to afford 2I (0.135 g, 0.72 mmol, 72% yield) as colorless oil. 2I was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:20). The structure of 2I was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature.¹⁰ ¹H NMR (400 MHz, CDCl₃) δ 8.27 – 8.08 (m, 2H), 7.87 – 7.74 (m, 1H), 7.68 – 7.51 (m, 1H), 2.64 (d, *J* = 0.8 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 196.5, 137.5, 131.4, 131.3 (q, *J* = 33 Hz), 129.5 (q, *J* = 4 Hz), 129.3, 125.1(q, *J* = 5 Hz), 123.7 (q, *J* = 271 Hz), 26.5 ppm.

m-Methoxyacetophenone (2m). The general procedure was followed from 1m (0.134 g, 1 mmol) to afford 2m (0.049 g, 0.33 mmol, 33% yield) as colorless oil. 2m was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:5). The structure of 2m was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature.¹¹ ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.44 (m, 2H), 7.36 (ddd, *J* = 8.2, 7.6, 0.4 Hz, 1H), 7.10 (ddd, *J* = 8.2, 2.7, 1.0 Hz, 1H), 3.85 (s, 3H), 2.59 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 159.7, 138.4, 129.5, 121.0, 119.5, 112.3, 55.3, 26.6 ppm.

p-Methoxycarbonylacetophenone (2n). The general procedure was followed from 1n (0.176 g, 1 mmol) to afford 2n (0.138 g, 0.72 mmol, 72% yield) as white solid. 2n was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:10). The structure of 2n was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature. ¹² ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.7 Hz, 2H), 8.01 (d, *J* = 8.7 Hz, 2H), 3.95 (s, 3H), 2.65 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 166.2, 140.2, 133.9, 129.8, 128.17, 52.4, 26.8 ppm.

m-Methylacetophenone (2o). The general procedure was followed from 1n (0.118 g, 1 mmol) to afford 2n (0.093 g, 0.69 mmol, 69% yield) as colorless oil. 2o was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:20). The structure of 2n was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature.⁶ ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.68 (m, 2H), 7.39 – 7.30 (m, 2H), 2.58 (s, 3H), 2.40 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 198.2, 138.2, 137.1, 133.7, 128.7, 128.3, 125.5, 26.5, 21.2 ppm.

2p

Propiophenone (2p). The general procedure was followed from (*E*)-**1o** or (*Z*)-**1o** (0.118 g, 1 mmol in each case) to afford **2o** [0.078 g, 0.58 mmol, 58% yield from (*E*)-**1o** or 0.087 g, 0.65 mmol, 65% yield from (*Z*)-**1o**] as colorless oil. **2p** was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:20). The structure of **2n** was confirmed by comparing

its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature.¹³ ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.89 (m, 2H), 7.58 – 7.48 (m, 1H), 7.50 – 7.37 (m, 2H), 3.00 (qd, *J* = 7.2, 0.9 Hz, 2H), 1.22 (td, *J* = 7.2, 0.6 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 200.7, 136.9, 132.8, 128.5 (x2), 127.9 (x2), 31.7, 8.2 ppm.

2q

1-Indanone (2p). The general procedure was followed from indene (**1p**) (0.116 g, 1 mmol) to afford **2p** (0.079 g, 0.60 mmol, 60% yield) as colorless oil. **2q** was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:20). The structure of **2p** was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature.¹⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.7 Hz, 1H), 7.59 (td, *J* = 7.4, 1.3 Hz, 1H), 7.48 (dt, *J* = 7.7, 1.0 Hz, 1H), 7.41 – 7.34 (m, 1H), 3.20 – 3.09 (m, 2H), 2.72 – 2.63 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 206.9, 155.1, 137.0, 134.5, 127.2, 126.6, 123.6, 36.1, 25.7 ppm.

1,2-Diphenylethan-1-one (**2r**). The general procedure was followed from (*E*)-**1r** (0.180 g, 1 mmol) to afford **2r** (0.096 g, 0.49 mmol, 49% yield) as white solid. **2r** was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:20). The structure of **2r** was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature.^{15 1}**H NMR** (400 MHz, CDCl₃) δ 8.00 (dd, *J* = 8.3, 1.4 Hz, 2H), 7.56 – 7.37 (m, 3H), 7.36 – 7.17 (m, 5H), 4.27 (s, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 136.5, 134.5, 133.1, 130.1, 129.4, 128.6, 128.6, 128.5, 128.4, 126.8, 45.4 ppm.

2s

1-Tetralone (2s). The general procedure was followed from **1s** (0.130 g, 1 mmol) to afford **2s** (0.080 g, 0.55 mmol, 55% yield) as colorless oil. **2s** was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:20). The structure of **2s** was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature.⁴ ¹H NMR (400 MHz, CDCl₃) δ 8.02 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.46 (td, *J* = 7.5, 1.5 Hz, 1H), 7.33 – 7.18 (m, 2H), 2.95 (t, *J* = 6.1 Hz, 2H), 2.64 (dd, *J* = 7.3, 5.9 Hz, 2H), 2.13 (tt, *J* = 7.4, 5.7 Hz, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 198.3, 144.4, 133.3, 132.5, 128.7, 127.0, 126.5, 39.0, 29.6, 23.2 ppm.

4-Chromanone (2t). The general procedure was followed from **1t** (0.132 g, 1 mmol) to afford **2t** (0.070 g, 0.47 mmol, 47% yield) as white solid. **2t** was purified by column chromatography on silica gel, eluting with ethyl acetate cyclohexane mixtures (EtOAc/C₆H₁₂ = 1:20). The structure of **2t** was confirmed by comparing its ¹H- and ¹³C-NMR spectra with previously reported data described in the literature.¹⁶ ¹H **NMR** (400 MHz, CDCl₃) δ 7.89 (ddd, *J* = 7.9, 1.8, 0.5 Hz, 1H), 7.47 (ddd, *J* = 8.3, 7.2, 1.8 Hz, 1H), 7.06 – 6.94 (m, 2H), 4.56 – 4.50 (m, 2H), 2.85 – 2.78 (m, 2H) ppm. ¹³C **NMR** (101 MHz, CDCl₃) δ 191.7, 161.8, 135.9, 127.1, 121.3, 117.8, 66.9, 37.7 ppm.

```
UNIVERSITAT ROVIRA I VIRGILI
IMMOBILIZATION OF 2,4-CIS-DIARYLPROLINOL SILYL ETHERS, ISOTHIOUREAS, SPINOL-DERIVED PHOSPHORIC ACIDS
AND THEIR APPLICATION IN THE CATALYTIC ENANTIOSELECTIVE SYNTHESIS IN BATCH AND FLOW
Junshan Lai
```

8. References

- de Boer, J. W.; Browne, W. R.; Harutyunyan, S. R.; Bini, L.; Tiemersma-Wegman, T. D.; Alsters, P. L.; Hage, R.; Feringa, B. L. Chem. Commun. 2008, 3747-3749.
- 2. Yuan, Y.; Shi, X.; Liu, W. Synlett, 2011, 559-564.
- 3. Nobuta, T.; Hirashima, S. I.; Tada, N.; Miura, T.; Itoh, A. Org. Lett. 2011, 13, 2576-2579.
- Cunningham, A.; Mokal-Parekh, V.; Wilson, C.; Woodward, S. Org. Biomol. Chem. 2004, 2, 741-748.
- 5. Ruan, J.; Li, X.; Saidi, O.; Xiao, J. J. Am. Chem. Soc. 2008, 130, 2424-2425.
- Murphy, J. A.; Commeureuc, A. G. J.; Snaddon, T. N.; McGuire, T. M.; Khan, T. A.; Hisler, K.; Dewis, M. L.; Carling, R. Org. Lett. 2005, 7, 1427-1429.
- 7. Genna, D. T.; Posner, G. H. Org. Lett. 2011, 13, 5358-5361.
- 8. Scheiper, B.; Bonnekessel, M.; Krause, H.; Fuerstner, A. J. Org. Chem. 2004, 69, 3943-3949.
- 9. Chu, L.; Qing, F. -L. Org. Lett. 2010, 12, 5060-5063.
- 10. Schultz, M. J.; Hamilton, St. S.; Jensen, D. R.; Sigman, M. S. J. Org. Chem. 2005, 70, 3343-3352.
- 11. Liu, M.; Hyder, Z.; Sun, Y.; Tang, W.; Xu, L.; Xiao, J. Org. Biomol. Chem. 2010, 8, 2012-2015.
- 12. Liu, S.; Berry, N.; Thomson, N.; Pettman, A.; Hyder, Z.; Mo, J.; Xiao, J. J. Org. Chem. 2006, 71, 7467-7470.
- (a) Zhao, B.; Lu, X. Tetrahedron Lett. 2006, 47, 6765-6768; (b) linuma, M.; Moriyama, K.; Togo, H. Tetrahedron 2013, 69, 2961-2970.
- 14. Dohi, T.; Takenaga, N.; Goto, A.; Fujioka, H.; Kita, Y. J. Org. Chem. 2008, 73, 7365-7368.
- 15. Zhao, B.; Lu, X. Org. Lett. 2006, 8, 5987-5990.
- 16. Kotani, S.; Osakama, K.; Sugiura, M.; Nakajima, M. Org. Lett. 2011, 13, 3968–3971.

Conclusions

The present thesis focuses on developing processes and products, ultimately suitable for industrial use, that exploit resources more efficiently and minimize waste, with the goal of contributing to a more sustainable practice of chemistry. The main goal in this research has been to develop novel immobilization strategies leading to heterogenized catalysts with improved catalytic properties. The work also includes the design of new immobilized organocatalytic systems acting through non-covalent activation (SPINOL-derived CPAs) and the development of new flow processes for the sustainable production of high added-value chemicals. In addition, the use of electricity as a green oxidant in combination with salts of abundant metals as catalysts has also been explored.

of polystyrene-supported In the first project, а new family cis-4hydroxydiphenylprolinol derivatives has been prepared, and the resulting functional polymers have been evaluated as organocatalysts to promote the tandem reaction between N-protected hydroxylamines and a, \beta-unsaturated aldehydes in batch and flow. The new PS-supported catalysts compare favorably with well-established immobilized Jørgensen-Hayashi catalysts belonging to the trans-4-hydroxydiphenylprolinol series, affording 5-hydroxyisoxazolidines as single diastereoisomers with high enantioselectivities and good yields (up to 83% yield, up to 99% ee).

In the second project, a polystyrene-immobilized isothiourea has been applied to the enantioselective acylative kinetic resolution (KR) of monoacylated BINOL(s) with inexpensive isobutyric anhydride in batch and flow. High selectivity values (s = 35 at 0 °C) and a remarkable stability of the catalytic system in the operation conditions have been recorded for unsubstituted BINOL. No significant loss of activity/selectivity is recorded after 10 consecutive KR cycles in batch. A continuous flow process has been implemented and operated with a 100 mmol (32.8 g) sample of racemic monoacetylated BINOL in an 84 hours experiment with a packed bed reactor containing 1g (f = 0.37 mmol.g⁻¹) of the functional resin. Residence time can be decreased to 10 min with the same reactor to achieve a conversion of 58% with a selectivity factor s = 17 in dichloromethane solution

when a more highly functionalized catalyst ($f = 0.88 \text{ mmol.g}^{-1}$) is used. This translates into a remarkable combined productivity of 5.5 mmol_{prod}·mmol_{cat}⁻¹·h⁻¹.

In the third project, a family of C2-symmetrical 1,1'-spirobiindane-7,7'-diol (SPINOL) derivatives containing polymerizable styryl units has been prepared through a highly convergent approach. Radical co-polymerization of these monomers with styrene has allowed the synthesis of a new family of immobilized SPINOL-derived chiral phosphoric acids (SPAs) where the combination of the restricted axial flexibility of the SPINOL units and the existence of extended and adaptable chiral walls adjacent to them leads to enhanced stereocontrol in catalytic processes. The optimal immobilized species (Cat f) brings about the catalytic desymmetrization of 3,3-disubstituted oxetanes in up to 90% yield with up to >99% enantioselectivity, exhibiting a very high recyclability (no decrease in conversion or enantioselectivity after sixteen, 16-hour runs). To exploit these characteris-tics, a continuous flow process has been implemented and operated for the sequential preparation of 17 diverse enantioen-riched products. The suitability of the flow setup for gram scale preparations (20 mmol scale) and its deactiva-tion/reactivation by treatment with pyridine/hydrochloric acid in dioxane have been demonstrated. Density Functional Theo-ry has been employed to provide a rational justification of the deep effect on enantioselectivity arising from the presence of sterically bulky substituents at the 6,6'-positions of the SPINOL unit. The main structural features of **Cat f** have subse-quently been incorporated to the design of a simplified homogeneous analog available in a straightforward manner (Cat g) that performs the benchmark desymmetrization reaction with similar yields and enantioselectivities as **Cat f**, providing a convenient alternative for cases when single use in solution is sought.

In the fourth project, a manganese/copper co-catalyzed electrochemical Wacker-Tsuji-type oxidation of aryl-substituted alkenes has been developed. The process involves the use of 5 mol% MnBr₂ and 7.5 mol% CuCl₂, in 4:1 acetonitrile/water in an undivided cell at 60 °C, with 2.8 V constant applied potential. α -Aryl ketones are formed in moderate to excellent yields, with the advantages of avoidance of palladium as a catalyst and any external chemical oxidant, in an easily operated, cost effective procedure.

List of Publications

Publications in prof. Miquel A. Pericàs group in ICIQ (included in the thesis book).

(1) **Junshan Lai,** Sonia Sayalero, Alessandro Ferrali, Laura Osorio-Planes, Fernando Bravo, Carles Rodríguez-Escrich, Miquel A. Pericàs. Immobilization of cis-4-hydroxydiphenylprolinol silyl ethers onto polystyrene. Application in the catalytic enantioselective synthesis of 5-hydroxyisoxazolidines in batch and flow. *Adv. Synth. Catal.* **2018**, *360*, 2914-2924;

(2) **Junshan Lai,** Rifahath M. Neyyappadath, Andrew D. Smith, Miquel A. Pericàs. Continuous flow preparation of enantiomerically pure binol(s) by acylative kinetic resolution. *Adv. Synth. Catal.* **2020**, 362, 1370-1377;

(3) **Junshan Lai,** Mauro Fianchini, Miquel A. Pericàs. Development of Immobilized SPINOL-Derived Chiral Phosphoric Acids for Catalytic Continuous Flow Processes. Use in the Catalytic Desymmetrization of 3,3-Disubstituted Oxetanes. **Submitted**;

(4) **Junshan Lai**, Miquel A. Pericàs. Manganese/Copper Co-catalyzed Electrochemical Wacker–Tsuji-Type Oxidation of Aryl-Substituted Alkenes. *Org. Lett.* **2020**, *22*, 7338-7342.

<u>Publications before join prof. Miquel A. Pericàs group in ICIQ (not included in the thesis book).</u>

(1) Junshan Lai, Wenbin Du, Lixia Tian, Changgui Zhao, Xuegong She, Shouchu Tang.
Fe-catalyzed direct dithioacetalization of aldehydes with 2-chloro-1, 3-dithiane. *Org. Lett.*2014, *16*, 4396–4399.

(2) **Junshan Lai**, Lixia Tian, Xing Huo, Yuan Zhang, Xingang Xie, Shouchu Tang. Metal-free difunctionalization of alkynes with 2-chlorodithiane for synthesis of β -ketodithianes. *J. Org. Chem.* **2015**, *80*, 5894–5899.

(3) **Junshan Lai**, Lixia Tian, Yongping Liang, Yuan Zhang, Xingang Xie, Bowen Fang, Shouchu Tang. Di-tertbutyl peroxide mediated atom transfer radical addition of 2-chlorodithiane to aryl alkynes under mild conditions. *Chem. Eur. J.* **2015**, *21*, 14328–14331.

(4) Junshan Lai, Yongping Liang, Teng Liu, Shouchu Tang. Dithiane induced cycloaddition/ aromatization tactic for the synthesis of multisubstituted furans. *Org. Lett.*2016, 18, 2066-2069.

(5) Wenbin Du, **Junshan Lai**, Lixia Tian, Xingang Xie, Xuegong She, Shouchu Tang. Metal-free Mizoroki-Heck type reaction: a radical oxidative coupling reaction of 2chloro-dithiane with substituted olefins. *Chem. Commun.* **2014**, *50*, 14017-14020.

(6) Yongping Liang, **Junshan Lai**, Teng Liu, Shouchu Tang. Direct regioselective [3+2] -cyclization reactions of ambivalent electrophilic/nucleophilic β -chlorovinyl dithianes: access to cyclopentene derivatives. *Org. Lett.* **2016**, 18, 5086-5089.

(7) Wenbin Du, Lixia Tian, **Junshan Lai**, Xing Huo, Xingang Xie, Xuegong She, Shouchu Tang. Iron-catalyzed radical oxidative coupling reaction of aryl olefins with 1, 3-dithiane. *Org. Lett.* **2014**, *16*, 2470-2473.

(8) Teng Liu, Lixia Tian, **Junshan Lai**, Deng Min, Mengnan Qu, Shouchu Tang. Alcohol-mediated direct dithioacetalization of alkynes with 2-chloro-1,3-dithiane for the synthesis of Markovnikov dithianes. *Org. Biomol. Chem.* **2017**, *15*, 4068-4071.