

Modelling Uncertainty
in Black-box Classification Systems

José Mena Roldán

Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial 4.0. Espanya de
Creative Commons.

Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial 4.0. España de
Creative Commons.

This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial 4.0.
Spain License.

Modelling Uncertainty in Black-box

Classification Systems

José Mena Roldán

Doctor of Philosophy

Facultat de Matemàtiques i Informàtica

Universitat de Barcelona

2020

Directors Dr. Oriol Pujol

Dept. de Matemàtiques i Informàtica

Universitat de Barcelona

Dr. Jordi Vitrià

Dept. de Matemàtiques i Informàtica

Universitat de Barcelona

Tutor Dr. Oriol Pujol

Dept. de Matemàtiques i Informàtica

Universitat de Barcelona

Responsible from Eurecat Dr. Marc Torrent

Unitat Big Data and Data Science

Eurecat, Centre Tecnològic de Catalunya

ii

Abstract

Currently, thanks to the Big Data boom, the excellent results obtained by deep learn-

ing models and the strong digital transformation experienced over the last years, many

companies have decided to incorporate machine learning models into their systems.

Some companies have detected this opportunity and are making a portfolio of artificial

intelligence services available to third parties in the form of application programming

interfaces (APIs). Subsequently, developers include calls to these APIs to incorpo-

rate AI functionalities in their products. Although it is an option that saves time and

resources, it is true that, in most cases, these APIs are displayed in the form of black-

boxes, the details of which are unknown to their clients. The complexity of such prod-

ucts typically leads to a lack of control and knowledge of the internal components,

which, in turn, can drive to potential uncontrolled risks. Therefore, it is necessary to

develop methods capable of evaluating the performance of these black-boxes when

applied to a specific application.

In this work, we present a robust uncertainty-based method for evaluating the per-

formance of both probabilistic and categorical classification black-box models, in par-

ticular APIs, that enriches the predictions obtained with an uncertainty score. This

uncertainty score enables the detection of inputs with very confident but erroneous

predictions while protecting against out of distribution data points when deploying the

model in a productive setting.

In the first part of the thesis, we develop a thorough revision of the concept of un-

certainty, focusing on the uncertainty of classification systems. We review the existing

related literature, describing the different approaches for modelling this uncertainty,

its application to different use cases and some of its desirable properties. Next, we

introduce the proposed method for modelling uncertainty in black-box settings. More-

over, in the last chapters of the thesis, we showcase the method applied to different

domains, including NLP and computer vision problems. Finally, we include two real-

life applications of the method: classification of overqualification in job descriptions

and readability assessment of texts.

iii

A mis padres.

A la Imma i la Vera, per les estones perdudes.

iv

Acknowledgements

This work has been partially funded by the Spanish projects TIN2016-74946-P,

TIN2015-66951-C2 (MINECO/FEDER, UE), RTI2018-095232-B-C21 and 2017 SGR

1742, and by AGAUR of the Generalitat de Catalunya through the Industrial PhD grant.

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(José Mena Roldán)

vi

Contents

1 Introduction 1

1.1 Context . 1

1.2 Goals . 4

1.3 Contributions . 6

1.4 Thesis Layout . 7

2 Uncertainty in Classification Systems 9

2.1 Problem formulation . 11

2.2 Definition of Uncertainty . 13

2.3 Related Work . 16

2.3.1 Epistemic Uncertainty . 16

2.3.2 Heteroscedastic Aleatoric Uncertainty 27

2.3.3 Measuring Uncertainty . 34

2.4 Desirable properties of uncertainty 36

2.4.1 Calibration . 37

2.4.2 Robustness . 39

2.4.3 Interpretability . 41

2.5 Applications of uncertainty . 43

2.5.1 Model Selection . 43

2.5.2 Active Learning . 44

2.5.3 Classification with rejection 46

3 Uncertainty Estimation for Black-box Classifiers 49

3.1 Gaussian approach . 50

3.1.1 Measuring uncertainty . 53

3.2 Dirichlet approach . 54

3.2.1 Dirichlet concentration reparameterization 55

vii

3.2.2 Inference in the Dirichlet setting 57

3.2.3 Measuring uncertainty . 58

3.3 Out-of-distribution . 60

3.4 Illustration of the Dirichlet Wrapper and Uncertainty Measurement . . 62

3.4.1 Analysis of the measured uncertainties when using the wrapper 65

3.4.2 Evaluating out-of-distribution samples 70

4 Experiments 73
4.1 Sentiment Analysis . 74

4.1.1 Relation with calibration methods 80

4.2 Image Classification . 84

4.2.1 Uncertainty evaluation of unknown classes 88

4.2.2 Out of Distribution Image Case 89

5 A real-life use case: Overqualification analysis. 95
5.1 Context of the project . 95

5.2 Task 4: Identification of overqualification 97

5.3 Computing the uncertainty score . 99

5.4 Uncertainty-based rejection classifier 100

5.5 Adequacy between required functions/skills and the level of studies . 101

5.6 Lessons learned . 102

6 Unsupervised, Uncertainty-based Text Readability Assessment 103
6.1 Readability assessment . 104

6.2 Explainability . 105

6.3 Method . 106

6.4 Experiments . 108

6.4.1 Results . 108

7 Conclusion 111
7.1 Contributions . 112

7.2 Future Research . 114

Publications 115
7.3 Journals submissions . 115

7.4 International Conferences . 115

7.5 Workshops . 116

viii

Bibliography 117

ix

List of Figures

1.1 Machine learning pipeline . 2

2.1 Example of reliability diagrams . 38

2.2 Rejection performance metrics as proposed in Condessa et al. [2015] . 48

3.1 Architecture of the full aleatoric model. The blue components corre-

spond to the original classifier as exposed by the API. In orange, there

is the aleatoric trainable part of the model. 52

3.2 Model used to estimate the aleatoric uncertainty from the original black-

box model . 57

3.3 Result of applying the black-box classification to the toy test dataset . 63

3.4 Examples of points from the toy problem together with the correspond-

ing Dirichlet distribution. 66

3.5 Classifier with rejection using different uncertainty metrics: softmax

response, Gaussian predictive entropy and variation ratios and Dirich-

let wrapper predictive entropy. 69

3.6 (a) Training set including out-of-distribution points from U [−20,20]

and (b) Uncertainty of points in U [−40,40] (The darker, the more un-

certain) . 71

4.1 Apply Amazon Music BB to Video reviews, Yelp 2013 BB to SST-2

movie reviews and Amazon video BB to SST-2 movie reviews 77

4.2 Comparative of different baseline metrics that obtain an uncertainty

score directly from the black-box prediction, as applied for the Yelp

black-box to SST-2 scenario. The baselines compared show similar

performance when used for sorting uncertain predictions in the rest of

the experiments. 78

xi

4.3 Non-rejected accuracy of the wrapper compared to original BB with

both probabilistic (a) and categorical (b) outputs 80

4.4 Reliability diagram displaying the calibration of the black-box applied

to the source, target domain and after calibrating for the target domain,

compared to the calibration obtained by the predictions from the wrapper 82

4.5 (a) Apply SST-2 BB to Yelp with calibrated black-box probabilities for

baseline. (b) Apply SST-2 BB to Yelp with calibrated probabilities for

training the beta . 83

4.6 Mapping from the 1000 classes of ImageNet to the 10 of STL-10 based

on the Wu-Plamer similarity of the ImageNet sysnet as definied in

WordNet to the corresponding STL-10 cateogry 85

4.7 (a) Apply ImageNet BB trained with MobileNet V2 model to STL-10;

(b) Apply ImageNet BB trained with DenseNet model to STL-10; (c)

Apply ImageNet BB trained with Inception V3 model to STL-10 . . . 86

4.8 Results of applying the wrapper to the target STl-10 dataset with dif-

ferent rejection points. 87

4.9 (a) Distribution of uncertainty scores for the "horses", and (b) "deers"

categories in STL-10 . 89

4.10 Examples of images included in the unlabeled set of STL-10 images . 90

4.11 Histogram of the distribution of uncertainties of the test unlabeled im-

ages from STL-10 obtained using the two wrapper versions 91

4.12 Rejection performance metrics comparing the results from applying

the softmax response, the predictive entropy of the original wrapper

and the OOD version . 91

5.1 Models used in the project. (a) Deep learning model used for challenge

1, (b) Uncertainty Bayesian wrapper for deep black-box models used

in challenge 2. 97

5.2 Performance measures showing the accuracy of kept points, how cor-

rect predictions are kept and wrong discarded, and the ability of reject-

ing wrong samples. 100

6.1 Model used to estimate the aleatoric uncertainty 107

6.2 (a) Entropy of the disagreement among the scores. (b) Entropy pre-

dicted by the wrapper . 109

xii

6.3 Modifying the more uncertain part of the sentence, the complexity de-

creases. 110

xiii

List of Tables

2.1 Summary of uncertainty methods reviewed 33

4.1 Datasets used for NLP experiments 76

4.2 The accuracy obtained by training a standalone classifier, applying the

API and the proposed wrapper for each domain 92

4.3 The accuracy obtained by training a categorical standalone classifier,

applying the API and the proposed wrapper for each domain 93

4.4 ECE scores for the different combinations of black-boxes and target

applications . 94

6.1 Mapping of grade levels and Reading ease 106

xv

xvi

Nomenclature

Acronyms

BB Black-box

CV Computer Vision

DL Deep Learning

ML Machine Learning

MLE Maximum Likelihood Estimate

NLP Natural Language Processing

OOD Out of Distribution sample

RV Random Variable

Greek Symbols

α Diriclet concentration parameters

β The uncertainty correction factor estimated

λ Regularization parameter

µ location parameter of a Gaussian RV

σ scale parameter of a Gaussian RV

Other Symbols

R Real numbers

N The Gaussian Distribution

xvii

Dir The Dirichlet Distribution

Roman Symbols

D Dataset

D Output dimensionality

H Hidden dimesionality

L Number of network layers

x∗ Prediction input data point for model

xn Training input data point for model

y∗ Prediction output data point for model

yn Training label for model

A matrix

a vector

W Weight matrix

X Dataset inputs(matrix with N rows, one for each data point)

Y Dataset labels(matrix with N rows, one for each data point)

a scalar

xviii

Chapter 1

Introduction

Contents
1.1 Context . 1

1.2 Goals . 4

1.3 Contributions . 6

1.4 Thesis Layout . 7

1.1 Context

Machine learning as a service (MLaaS) defines a set of services delivered by Cloud

providers that aim to deliver Artificial Intelligence solutions through a kit of tools and

APIs. These AI solutions include a wide variety of applications, from computer vision

to natural language processing, based on last generation technologies like Big Data

platforms or Deep Learning. The main advantage of these services is that the provider

takes care of all the details in their data centres. These details include storing the

data, training the models or the infrastructure required to emit the predictions. MLaaS

thus allows the customer to get started quickly with machine learning without having

to provision their servers, to install software or having advanced data science skills,

applying the same paradigm as in other cloud products. This relaxation in the require-

ments is especially relevant in Deep Learning, where the needs for data, computational

resources and talented engineers can be very demanding.

Moreover, the increasing demand for this type of services is fostering the growth

of the MLaaS market. All the big players in the cloud industry are currently offering

ML platforms and APIs, including Microsoft, Amazon, Google or IBM. According to

1

2 Chapter 1. Introduction

different market analysis, the MLaaS market is still growing with a foreseen CAGR of

around 40% for the next years. This type of products is especially relevant for medium

and small companies that may do not have enough capacity to put resources into the

development of ML models but can take advantage of these solutions for optimizing

their supply chain. Still, big companies can also benefit from these solutions when

looking for experimentation environments before committing for final developments

or for reducing direct costs. Moreover, public administrations, research institutes and

academia are a potential recipient for these technologies, and applications can be found

in business so unlike as defence, healthcare, retail, finance or agriculture.

The variety of services delivered by MLaaS platforms is great: risk management,

fraud detection, automatic translation, recommender systems, user segmentation, and

almost any ML model. These Machine Learning models include different types de-

pending on the training they follow: from supervised, semi- or unsupervised learning,

including reinforcement learning; and different types of applications including regres-

sion, classification, anomaly detection or clustering.

Figure 1.1: Machine learning pipeline

Figure 1.1 displays a typical MLaaS architecture. The diagram includes all the

phases:

• Data Preparation. Usually, MLaaS provide connectors for a variety of data

sources, including files with different formats, databases, or distributed storage

1.1. Context 3

systems. This phase also includes the ETLs required to transform the data, join

different sources or clean the data, including handling missing values, normaliz-

ing, validating formats, and all the preparation required for each case. All these

processes run in the cloud, and it is the provider who manages the data storage,

access or back-ups. The platform also takes care of handling both applications

that operate using batch processing or that handle real-time streams.

• Build and Training the model. Once the data is ready, it is time for the learning

properly said. This phase will include model selection, choosing the attributes

to be included, optimization of hyper-parameters for each model, and validation

of the results.

• Deploy and Predict. Finally, the trained and validated models have to start emit-

ting predictions. The process of controlling different versions of the model, or-

chestrating training processes, and all the engineering work of delivering ways to

consume the model is carried out by the provider in this later phase. It may also

include visualization and monitoring tools to allow the end-user to gain control

over the operation of the predictive models.

As one can see, there is a lot to do when developing an ML model beyond training

it. It is a very resource-demanding task that not all organizations can afford. The first

resource that it requires is time. Time for acquiring the data, label it for supervised

problems, designing and optimizing the models. Plus developing the serving mod-

ules required to start using and monitoring them. The critical second resource is data.

Particularly relevant in DL settings. Having access to enough data from the target ap-

plication is vital for correctly training the models. In supervised settings, the process

of labelling the data might imply a significant effort in terms of cost, time and access to

domain experts. Besides, another aspect to bear in mind is the computational resources

needed to handle significant volumes of data or to train the models. Finally, the specific

skillsets required for developing ML models are not very common among IT profes-

sionals these days, so companies are struggling for incorporating profiles such as Data

Engineers or Data Scientists to their developing teams.

Therefore, for companies that might have difficulties affording the requirements

mentioned above, taking advantage of MLaaS might be a sensible choice. Depend-

ing on the customer needs and available resources, vendors offer different approaches

for using the MLaaS pipeline. MLaaS might appear as a platform where the user

designs, develops and test their models, benefiting from the provided infrastructure

4 Chapter 1. Introduction

while abstracting from the engineering details and the operation of the system. Al-

ternatively, customers might see the services delivered as APIs that act as completely

opaque black-boxes, where the user only has access to the outcomes of the provided

methods. Very often, MLaaS vendors offer a trade-off between the two: pre-trained

models with fixed data formats and outputs that still allow some personalization by

supplying custom data examples to fine-tune the existing models.

As practitioners, this new offering of available pre-trained models in the shape of

APIs opens a new scenario where the issue might be on selecting the appropriate tool

for our given problem, more than developing a custom one. Take, for example, the case

where we have a corpus of product reviews that we want to classify according to their

sentiment. Performing a quick search, one can find solutions from all the prominent

vendors: Amazon Comprehend 1, Microsoft’s Text Analytics 2, Google’s Natural Lan-

guage API 3 or IBM’s Watson 4, or many other specialized companies like Twinwords,

Aylien or MeaningCloud, among many others. Each vendor has their pricing policy,

including free samples and different plans, and delivers different outcomes that might

include additional metrics like polarity of the sentiments, for example.

In this use case, and many others, the number of choices is significant. In such a

scenario, some questions arise: which is the option that works better in our problem?

Which are the criteria to follow when choosing among the different implementations?

Will it work for all the instances of the target data set? How will it adapt to potential

changes in the distribution of the data once integrated? For answering these and other

questions, a new set of tools that allow practitioners to assess the performance of these

APIs in particular target applications is required.

1.2 Goals

The main goal of the present work is to furnish developers and practitioners consid-

ering the use of black-box classification systems in their applications with tools that

allow them to assess the performance of these pre-trained models and to intervene ac-

cording to this performance. In this thesis, this score will evaluate the confidence of

the BB for predicting a given input. The principal hypothesis, in this case, is that con-

1https://aws.amazon.com/es/getting-started/tutorials/
analyze-sentiment-comprehend/

2https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
3https://cloud.google.com/natural-language/docs/analyzing-sentiment
4https://www.ibm.com/watson/services/tone-analyzer/

https://aws.amazon.com/es/getting-started/tutorials/analyze-sentiment-comprehend/
https://aws.amazon.com/es/getting-started/tutorials/analyze-sentiment-comprehend/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://cloud.google.com/natural-language/docs/analyzing-sentiment
https://www.ibm.com/watson/services/tone-analyzer/

1.2. Goals 5

fident predictions will belong to right predictions while uncertain ones will correspond

to erroneous results. Thus, the goals of this thesis are three-fold:

• Assess the confidence of a BB applied to a particular problem and domain. The

provided confidence score will allow determining to what extent the predictions

emitted are to be trusted or not for the target use case. By analyzing the confi-

dence of the predictions, one can detect potential issues at some examples of the

target domain, or a class level. This analysis is especially relevant when there

is a need to include some mapping due to differences in the outcomes of the

black-box model and the target problem. Take, for example, the case where our

problem is to classify a review on whether it is positive or negative, and the BB

model predicts a rating score of 1 to 5 stars. In this case, predictions belonging

to 3 stars might result very uncertain for the binary case.

• Provide actionable mechanisms based on the confidence score. If the practitioner

integrates a BB into the target application, it is important to have a way to esti-

mate the uncertainty of the prediction and actuate accordingly. When detecting

an uncertain result, the system might opt for warning the user and ask for hu-

man supervision or rejecting the prediction when it is below a given confidence

threshold. This mechanism is particularly pertinent is some fields of applica-

tion where they might impact human lives, such as on healthcare DigitalRea-

soning [2019], education Turnitin [2019], or employment AvrioAI [2019]; Ideal

[2019]. The increment on reports on failures and unintended effects Amodei

et al. [2016]; Bostrom [2009]; D. Sculley and Young. [2014]. Having a way to

detect and prevent these risks is, therefore, essential when incorporating third-

party technologies to a system.

• Early detection of system degradation. After integrating the black-box and start

serving predictions, changes may occur that may lead to a decrease in the per-

formance of the system. Variations in the equipment that captures the images

in a medical diagnose system, or the addition of new types of products to the

catalogue in a review classifier, might introduce domain shifts that can impact

on the confidence of the predictions. To have a way to monitor and detect these

variations and be able to intervene in situations of degradation of the system may

prevent and eventually mitigate when they end up in potential harm or risk.

6 Chapter 1. Introduction

1.3 Contributions

In this thesis, we present some contributions to the characterization of uncertainty in

Deep Learning Classification systems, especially when served as black-boxes. The

main contribution is an empirical method for estimating this uncertainty, comple-

mented by some applications of this uncertainty and extended with the detection of

out of distribution samples. Thus, the main contributions can be grouped into three:

• A method for estimating the uncertainty of black-box classifiers predictions. We

introduce the concept of uncertainty in DL classification systems and highlight

the constraints imposed in a black-box scenario. We propose a method for es-

timating the uncertainty of the predictions in such scenarios. The main idea is

to turn each original output of the BB into a random variable. Here we pro-

pose to apply the concept of a wrapper that works around the original black-box,

overlaying it and operating with its input and the generated output or prediction.

This wrapper, based on a DL architecture, enables the obtention of a numerical

uncertainty score of the prediction from this RV, which allows assessing the con-

fidence of the BB for every input sample. In the context of this work, we studied

different methods for implementing this wrapper, working with both Gaussian

and Dirichlet distributions for modelling this RV, being the Dirichlet version the

one that obtained better results, as we will show in the following chapters.

• Out-of-distribution detection in Deep Learning classification systems. The wrap-

per proposed for estimating the uncertainty in the predictions of the BB can

learn the uncertainties from a training set of samples from the target domain.

Even though this method ensures that the wrapper will be able to generalize for

other samples of the distribution of the target dataset, it might be interesting to

complement this with the ability to detect points that might not be in this target

distribution. Here, we complement the proposed wrapper with a new training

method and loss functions that allow identifying OOD samples.

• Applications of uncertainty in BB Classification systems. After modelling the

uncertainty of the predictions of a given classifier, we discuss different applica-

tions of this uncertainty.

– Analysis of the uncertainty. First, we show how by analyzing this uncer-

tainty, we can determine to what extent the API applied is appropriate for

1.4. Thesis Layout 7

the target application. We can analyze the results obtained at the class level

and identify categories with potentially higher risks of miss-classification.

We can also compare different APIs to determine which fits better in our

problem.

– Rejection. Another application of this uncertainty, once the API is in use,

might be to reject uncertain predictions. We propose a method of finding

the optimal rejection point based on the uncertainty found. This method

will allow to reject the prediction directly or to ask for the intervention of

an expert or an alternative decision system.

– Attribution. Another aspect that can be of interest is to find an explanation

for the uncertainty score obtained. Based on explainability methods, we

propose a method for attributing the elements of the input that contribute

more to the uncertainty. This attribution can be useful, in the case of NLP,

to identify which words are making the prediction more uncertain, for ex-

ample.

1.4 Thesis Layout

The first part of this thesis, Chapter 2, will be devoted to introducing the concept of

uncertainty in classification systems, and its peculiarities when applied to black-box

systems. Chapter 3 includes a description of the methods developed during the course

of the present work, showing the evolution of the work carried out and the incremental

complexity of the developed system.

Chapter 4 is devoted to showcasing the applications of uncertainty and to highlight

potential implications of its usage on real scenarios. In Chapter 5, we present an im-

plementation of a variation of the proposed method in a real project where we applied

rejection based on the uncertainty of predictions in the analysis of overqualification in

the description of job offers. Chapter 6 describes another application of the proposed

method, focused on this case to assess the readability of texts. A relevant aspect of this

application is that, in this case, the black-boxes do not correspond to ML models but

readability indexes, demonstrating how extensive are the potential applications of the

method. Finally, Chapter 7 concludes the work, pointing to possible research lines that

can derive from this thesis.

Some of the results presented in this thesis, including some of the experiments run,

8 Chapter 1. Introduction

are available at https://github.com/menajosep/dirichlet_uncertainty.

https://github.com/menajosep/dirichlet_uncertainty

Chapter 2

Uncertainty in Classification Systems

Contents
2.1 Problem formulation . 11

2.2 Definition of Uncertainty . 13

2.3 Related Work . 16

2.3.1 Epistemic Uncertainty . 16

2.3.2 Heteroscedastic Aleatoric Uncertainty 27

2.3.3 Measuring Uncertainty . 34

2.4 Desirable properties of uncertainty 36

2.4.1 Calibration . 37

2.4.2 Robustness . 39

2.4.3 Interpretability . 41

2.5 Applications of uncertainty . 43

2.5.1 Model Selection . 43

2.5.2 Active Learning . 44

2.5.3 Classification with rejection 46

As mentioned in the introduction, the goal of this thesis is to asses the performance

of pre-trained classification models delivered as black-boxes, as part of APIs or MLaaS

solutions. In many situations, these systems will deliver a probability for an input to

belong to a given class. Sometimes the system returns this probability as a measure

of the confidence of the predictions - e.g. a high probability like 0.91 is considered

as a right and confident prediction in a binary classification setting. In contrast, in the

9

10 Chapter 2. Uncertainty in Classification Systems

same setting, a probability of 0.51 might mean that the system is not very sure about

the predicted class.

In any case, the output is a single number: a categorical value or a probability,

but just a point estimate. In contrast, as we will see, the method proposed here trans-

forms this output into a random variable following probability distribution. To some

extent, we are going from a frequentist approach of parameter estimation to a Bayesian

approach.

Statistical inference is one of the main branches of Statistics. Its goal is to make

inferences of populations based on random samples. These inferences are possible by

modelling the population as probability distributions. One of the main tasks of statis-

tical inference is the estimation of the parameters of these distributions. In statistics,

there are two main philosophies for tackling this problem, see Cox [1946]: the frequen-

tists and the Bayesian. The root of the difference between the two is in the concept of

probability. While frequentists consider them as long-term frequencies of repeatable

random events, the Bayesian concept of probabilities is broader in the sense that they

consider them as degrees of belief, representing the uncertainty, in any event, no matter

if this event is repeatable or not. In fact, one can consider frequencies as a particular

case of probabilities, according to Jaynes [1986].

When tackling the problem of finding the parameters of the distribution, frequentist

will base their approach on the data available. For example, if we model an attribute

like the height of the population in a country as a Gaussian random variable, we must

find values for the mean, µ, and the variance, σ2. Frequentists will look at the sample

of data available and will approximate these two parameters according to that data.

Thus, they will find a point-estimate for the values of the parameters, what is called

the maximum likelihood estimate, MLE.

On the other hand, Bayesians will consider the uncertainty of finding the unknown

values of the two parameters. Instead of focusing on finding the value that best de-

scribes the available data, they will consider each parameter as a random variable.

They will approximate the parameters for these new distributions. To some extent is

like adding a new layer of complexity to the problem: we model the parameters of

distribution with RV variables, and we estimate the parameters of the secondary distri-

butions.

The Bayesian process follows the Bayes Rule. Parting from a prior distribution

that holds our previous beliefs on the data, we use newly collected data to narrow

the distribution around the (unknown) parameter value. It is using this concept of

2.1. Problem formulation 11

probability as a degree of belief: we update those degrees as new data is coming.

Following this update process, we will obtain an RV for each parameter. This process

will enable not only the obtention of the expected value of the parameter but also a

way to estimate the uncertainty of this estimate.

Therefore, the Bayesian process delivers a natural way of estimating the uncertainty

of the predictions. However, frequentists also have a way to express this uncertainty:

the confidence intervals. In confidence intervals, one defines a priori a confidence level,

usually 90% or 95%, and then compute the margin of error for the chosen level. The

trick here is that it is not correct to say that it covers the real value with a probability

of 95%. It only says that in the long-run, 95% of the confidence intervals generated by

following the same procedure will cover the correct value.

Hence, there is a subtle difference to what its Bayesian counterpart, credible inter-

vals, promises: the interval has a 95% probability of holding the real value. Again, this

is a matter of interpretation of the concepts involved in the definition of these intervals.

On the frequentists side, the parameter to estimate is considered as fixed, while the

intervals and the data used are RV. On the contrary, Bayesians consider that it is the

parameter what is an RV and leave the rest as fixed.

Moreover, there is also a difference in the assumptions previous to the definition of

the intervals. In the frequentist case, it is the confidence level which is defined before

to have access to any data. In the Bayesian approach, one must define a prior over

the distribution of the data. Usually, the confidence levels are chosen arbitrarily, while

selecting a prior allows bringing previous knowledge of the problem that can help on

having better results.

In this work, we do not want to take sides in the conflict between the two philoso-

phies (we are not so strict as in Briggs [2012]), but we still consider that for our goal,

the Bayesian approach is more natural. We want to have a way to estimate the un-

certainty of the predictions of a model given samples from a target data distribution.

Thus, by considering these predictions as RVs, we can later analyse the corresponding

distributions to measure this uncertainty.

2.1 Problem formulation

Before going more rooted in the definition of uncertainty, first, we would like to de-

scribe the problem we try to solve, i.e. assess the quality of classification systems. In

such systems, we have a training data set, D = {(xi,yi)}, i = 1 . . .N, where y ∈ 1 . . .C

12 Chapter 2. Uncertainty in Classification Systems

with C the number of categories, and xi ∈ Rd . Given a new sample of data points x∗,
we want to predict their labels y.

In this work, we focus on discriminative models, where the goal is to capture the

distribution that generated the outputs based on the data. We assume that from the ob-

served data in Y,X and x∗, we want to infer the distribution parameters that maximizes

the following conditional:

p(y∗|x∗,D) = p(y∗|x∗,X ,Y) (2.1)

To estimate this output distribution, we employ a model with parameters W. Ap-

plying the Law of Total Probability we have:

p(y∗|x∗,X ,Y) =
∫

W
p(y∗|W,x∗,X ,Y)p(W|x∗,X ,Y)dW (2.2)

At this point, usually, we can make two assumptions for making this problem solv-

able:

• Assumption 1: when learning the parameter W, usually we do not have access

to the test data x∗, so we approximate:

p(W|x∗,X ,Y) = p(W|X ,Y) (2.3)

• Assumption 2: we assume that the model W has been able to capture the distri-

butions in X ,Y , so when predicting the output y∗ we approximate by:

p(y∗|W,x∗,X ,Y) = p(y∗|W,x∗) (2.4)

Bearing these assumptions in mind, we end up with:

p(y∗|x∗,X ,Y) =
∫

W
p(y∗|W,x∗)p(W|X ,Y)dW (2.5)

Once reached this point, there are two main approaches to approximate the result-

ing integral. One approach is to consider a discrete set of models m ∈W such as:

p(y∗|x∗,X ,Y) = ∑
m∈W

p(y∗|W,x∗)αm (2.6)

This approach is followed by ensemble methods like Random Forests, Bagging, or

similar others.

2.2. Definition of Uncertainty 13

On the other hand, there is the traditional approach of estimating a model W ∗ such

as it maximizes the likelihood of the predictions. Assuming that model W ∗ is trained

until finding its optimal set of parameters, we have that:

W∗ = argmax
W

p(W|X ,Y)

p(W|X ,Y) =

{
1 W = W∗

0 otherwise

(2.7)

Thus, in prediction time, the target probability is approximated as follows:

p(y∗|x∗,X ,Y) = p(y∗|x∗,W∗) (2.8)

The last expression describes the prediction obtained using the MLE of the optimized

model. This resembles the previous discussion where we confronted the frequentist

and Bayesian approaches. Again, in this case there is no direct way to measure the

uncertainty of the predictions thus obtained.

Moreover, let us remark that the expression in 2.8 corresponds to the type of pre-

dictions obtained when using a black-box predictor. As stated in MacKay [1992b], in

the classification task, we should have two outputs: one for the prediction of the most

probable model, MLP, and another one that takes into account the uncertainty of the

prediction. In this work, we consider the black-box as the MLP and proposed ways

to estimate the associated uncertainty. To be able to measure the uncertainty of those

predictions, we should go back to the expression in 2.5. In the next section, we will

see how the different parts of this integral link with different aspects of the uncertainty

of the predictions.

2.2 Definition of Uncertainty

In this section, we review the concept of uncertainty. The Collins Concise English Dic-

tionary defines the concept of uncertainty as "the state or condition of being uncertain",

relating it with words like doubt, hesitancy, unpredictability or indeterminacy. When

related to Machine Learning models, and classification systems in particular, uncer-

tainty is associated with a lack of confidence in the predictions emitted by a model.

In section 2.1, we described the process followed to estimate the probability of the

output of a classifier. In equation 2.5, we can observe how two terms contribute to this

integral:

14 Chapter 2. Uncertainty in Classification Systems

• p(y∗|W,x∗): given a model with parameters W, this term defines the probability

of the output for the inputs x∗ received during test time. Remember that, in this

case, we assumed that model W has been able to capture the distributions in X ,y.

Here, therefore, by considering y∗ as an RV, we want to estimate the variance in

the prediction caused by the noise inherent in x∗.

• p(W|X ,Y): the second term estimates the probability of the model with parame-

ters W conditioned by the training dataset D . Also, as commented in section 2.1,

we assume that we train the model using only X ,Y , as we do not have access to

x∗ or y∗ during the training. At this point, there is the option of taking the model

which parameters W maximize this probability, the frequentist approach, or we

can consider these parameters as RV to have a way to express this probability,

the Bayesian approach.

According to this definition, we can identify different sources of uncertainty. First,

let us review the assumption that the model W captures the distribution of the training

data. What if the expressivity of the model is not enough to capture the original distri-

butions? What if D is not a representative sample of the whole data distribution? This

links with the second assumption made, where we consider enough to train the model

with D and then apply that model for predicting x∗. What if the distributions in x∗ or

y∗ differ from the training ones? How to deal with the inherent noise induced by the

acquisition or labelling of the data?

The answers to these questions and more lead to different sources of uncertainty.

Depending on the question that they try to answer, in the literature, we find different

names for each type of uncertainty. One possible classification, as discussed in Faber

[2005]; Senge et al. [2014]; Kendall and Gal [2017], is considering the trained model

as an expert that takes decisions and define the following types of uncertainty:

• Epistemic uncertainty corresponds to the uncertainty originated by a lack of

knowledge ("episteme" is the Ancient Greek word for knowledge). This lack of

knowledge can come from two different sources. One is the lack of evidence

to learn. In this case, the model, our expert here, has not seen enough cases to

have a proper knowledge to emit confident predictions. Another source of lack

of knowledge might come from the ignorance of what kind of model suits better

for the given problem.

• Aleatoric uncertainty. Aleatoric, or aleatory uncertainty, refers to statistical

variability and effects that are inherently random in the data generation process,

2.2. Definition of Uncertainty 15

i.e. due to measurement noise or inherent ambiguity of the data. There are two

types of aleatoric uncertainty according to the following assumptions:

– Homocedastic uncertainty measures the level of noise derived from the

measurement process. This uncertainty is constant for all the data.

– Heteroscedastic uncertainty measures the level of uncertainty caused by

the data. For example, in the case of NLP, this can be explained by the

ambiguity of some words or sentences.

Another criterion used to categorize uncertainty is to which extent we can reduce it:

• Reducible. This type of uncertainty can decrease as we go incorporating more

examples to our training set, for example. Hence, gaining more knowledge about

the problem, we reduce the derived uncertainty. The same happens with the

type of model applied. By increasing the complexity and tuning architectures

and hyperparameters, the uncertainty associated with the capacity of the model

shrinks.

• Irreducible. The uncertainty is inherent to the data. Even after adding more

examples or increasing the capacity of the models, still, this type of uncertainty

will not decrease. In this case, uncertainty is caused by the statistical variability

and effects that are inherently random in the process of acquiring the data or in

the data itself.

In many works, epistemic uncertainty is associated with reducible and aleatoric

with irreducible uncertainties. By increasing the knowledge, we reduce the epistemic

uncertainty, while even when we master the problem, the aleatoric uncertainty will

never get smaller. The problem is that this distinction between epistemic and aleatoric

is not always a matter of blacks and whites. As stated in Faber [2005]; Der Kiureghian

and Ditlevsen [2009], this categorization is not something static. There might be situa-

tions where aleatoric uncertainty turn into epistemic uncertainty as the model evolves.

There are situations where changes in the measurement of the data, e.g. adding more

precision, will reduce the aleatoric uncertainty.

Moreover, aleatoric and epistemic uncertainties are not disjunct categories. As re-

flected in Hora [1996], both types of uncertainty are related, as aleatoric uncertainty is

conditioned many times by the underlying epistemic one. Take for example the equa-

tion 2.5. One can consider that the term, p(y∗|W,x∗), models the aleatoric uncertainty,

16 Chapter 2. Uncertainty in Classification Systems

also known as the data uncertainty, as it estimates the variability in the output. On

the other hand, the second term, p(W|X ,Y), can be seen as modelling the epistemic

uncertainty, sometimes called the model uncertainty. A closer look at the aleatoric ex-

pression, though, will reveal how the model parameters condition the output. Thus, we

can appreciate how there exists a relation between the two types of uncertainties that

makes it very hard to estimate them separately.

This link between the two is especially relevant in the case of using black-box

models. In this case, the parameters of the model are given and fixed, and there is

no way to reduce the epistemic uncertainty. Therefore, we have to focus on the term

p(y∗|W,x∗) and try to measure the aleatoric uncertainty associated.

In the next section, we will review the role of uncertainty in Deep Learning and

different approaches that tried to measure the different types of uncertainties described

so far.

2.3 Related Work

The present section surveys the role of uncertainty in classification systems mainly fo-

cused on Deep Learning Systems. We include works that propose different approaches

for incorporating an estimate of the uncertainty together with the prediction emitted.

These works include ways to model the different types of uncertainty listed in the pre-

vious section, focusing in some cases in both epistemic and aleatoric, or tackling each

of them separately.

2.3.1 Epistemic Uncertainty

One of the main types of uncertainty, the epistemic one, is also known as model uncer-

tainty because it measures the confidence of the model according to the amount of data

seen while training it or its expressivity and capability of capturing the complexity of

the data.

As stated in the introduction, a natural approach for including the study of uncer-

tainty in predictive models is to apply the Bayesian inference method. As described

at the beginning of the chapter, this Bayesian approach will consider all parameters as

unknown constants and will model them as RV. A neural network implemented by con-

sidering a prior over its parameters and that approximates the posterior using Bayesian

inference is called a Bayesian Neural Network. In this section, we review some of the

2.3. Related Work 17

approaches utilised for inferring this posterior.

2.3.1.1 Laplace approximations

One of the first works to implement a Bayesian NN was MacKay [1992c] where David

MacKay ported his previous work MacKay [1992a] to the backpropagation learning

method commonly used in DL. The goal, in this case, is to compare among models

and to empirically obtain values for the regularisation terms.

Beyond the commonly used approach of hold-out data or cross-validation, they

propose to include an additional step in the inference process called model selection.

This model selection includes also the selection of hyper-parameters like regulariza-

tion terms, terms that are included in the loss function to, for example, penalize large

weights and achieve a smoother or simpler mapping, Rumelhart et al. [1986]. This ad-

ditional step is part of a Bayesian inference schema where he sets a Gaussian prior

over the parameters and uses Bayes to estimate the posterior of the evidence, i.e.

p(D|W,R), where R corresponds to the set of regularisation parameters. Then, he

uses the value of this evidence for comparing models.

More relevant to this work is the extension he did for classification systems in

MacKay [1992b]. The schema followed is the same as in the previous work. However,

in this new one, he proposes that every classifier should have two kinds of outputs. In

essence, the most probable, used for training the models, and a moderated one used for

making decisions based on the predictions, compare models and use it even for active

learning schemas.

In both works, he evaluates the evidence employing the Laplace’s method with

a Gaussian approximation from the properties of the most probable fit WMAP, and

the error bars A−1, which is the inverse of the Hessian matrix of the parameters of

the loss function. For this Gaussian approximation, he made some assumptions, like

considering the surface around the minima as quadratic, something that rarely occurs

in real problems.

Moreover, approximating the Hessian, especially when using complex architec-

tures with millions of parameters like those used in DL nowadays, is not trivial and,

as reported by Bishop [1995], "the accurate evaluation of the evidence can prove to be

very difficult. One of the reasons for this is that the determinant of the Hessian is given

by the product of the eigenvalues and so is very sensitive to errors in the small eigen-

values". Besides, to obtain the moderated output, resulting from the combination of

the Gaussian and the sigmoid non-linearity, they introduce a new approximation based

18 Chapter 2. Uncertainty in Classification Systems

on a function of the variance parameter applied to the output activations.

2.3.1.2 Markov chain Monte Carlo approximations

MacKay’s approach tackles the problem of solving the integral in equation 2.5 by

employing Gaussian approximations for the prior and posterior distributions, which

allows solving these integrals analytically. Because of the limitations posed in the

previous section, sometimes this Gaussian approximation might not be recommended,

especially in nowadays architectures. An alternative for solving the integral in equation

2.5 is to approximate the integral with the sum of L models:

p(y∗|x∗,D) =
1
L

L

∑
i=1

p(y∗|Wi,x∗) (2.9)

Similarly to what they do in ensemble learning. In this case, the vector of parameters,

Wi, is sampled from the distribution p(W|D). In Neal [2012] reviews this approach

and different ways to do this sampling. The proposed method is a combination of dif-

ferent sampling policies, called hybrid Monte Carlo. Briefly, the method combines a

Gibbs sampling method for selecting the hyperparameters together with a Metropolis-

like sampling method for selecting the parameters or the network. By using the hybrid

Monte Carlo algorithm, one can generate suitable sampling vectors of parameters Wi

in reasonable computational times. Once the method reaches an equilibrium, in pre-

diction time, it is possible to sample predictions from the posterior. By analysing this

sampling, it is possible to assess the uncertainty of the predictions given an input xi,

what we called the aleatoric uncertainty of the model.

The problem with this kind of solutions is that they can take longer to converge

because of the stochasticity inherent in the process, even when using smart approaches

like hybrid Monte Carlo. Besides, it is difficult to obtain insights about the evidence of

the model, as it was the case for Gaussian approaches burdening the capacity of these

algorithms for model selection.

Following, in Chen et al. [2014], they work on the problem of convergence by us-

ing second-order Langevin dynamics with a friction term that counteracts the effects

of the noisy gradient. They study the effect of applying this method on the classifica-

tion of MNIST images, and they observe how sampling-based methods are better than

optimisation-based ones, showing an advantage to Bayesian inference in this setting.

2.3. Related Work 19

2.3.1.3 Variational Inference

A different approach for estimating the posterior is that followed in Hinton and Van Camp

[1993], called ensemble learning. The premise is that the amount of information in the

weights should be much less than in the output. It provides a way to derivate the error

together with the amount of information in the weights. This assumption is especially

relevant in problems with a small dataset. It seems to be limited to models that have

a linear output, however. They apply the Minimum Description Length Principle that

asserts that the best model of some data is the one that minimises the combined cost

of describing the model and describing the misfit between the model and the data. In

supervised NN the model cost is the number of bits it takes to describe the weights, and

the data-misfit cost is the number of bits it takes to describe the discrepancy between

the correct output and the output of the neural network on each training case.

For encoding the misfits, the output, it discretises the distribution in t-wide bins

and each output unit is modelled by a Gaussian with 0 mean and a standard deviation

of σ. Assigning a value for this σ to the root square deviation of the misfits from zero,

it ends up with a misfit cost function of a constant. For coding the weights, again,

they are modelled as a Gaussian with 0 mean and σw. Then the cost function is equal

to an RMSE with quadratic weight decay. They complain though that this approach

uses the same σ for all the weights, without taking into account the different levels

of contribution that they might have, translated into a waste of bits for encoding this

information. Comparing to MacKay [1992a], where they also looked at variations at

the output once the model is trained, here they look at this variance during the training.

They use the information theory to encode the weights adding Gaussian noise to

each weight. So, noisy weights are more natural to communicate, but they may lead

to high variance on the output that would imply more cost at communicating the mis-

fits. To measure the cost, they propose to use the K L divergence as a measure of the

difference between the likelihood P and the posterior Q . To determine the bits that it

cost to communicate the weights, C (w), it takes each weight’s posterior and binarises

it. For each bin, it computes the information using the prior. Then it encodes the noisy

weights by using the weights and obtain the exact posterior Q . Next, it uses the Q
and binarises the misfits to compute the transmission cost of the weights, R (w). The

difference between one and another is, again, the K L , which by using Gaussian can

be solved analytically.

To learn the communication cost of the misfits, it needs the expected value of the

20 Chapter 2. Uncertainty in Classification Systems

RMSE. Considering the noisy weights, obtained the root squared error might be hard

to get. They do the calculations considering linear outputs and a single hidden layer.

By having one single layer, they can create a matrix with the mean and variance for

the outputs, by sampling with Monte Carlo. Then, for computing the RMSE, for each

output unit, they use the sum of the mean for subtracting the ground truth, adding

a variance term obtained from the table. The number of computations required for

this approach when using DL it is unfeasible. A nice feature of the paper is that they

do not require a unimodal Gaussian approach for the prior. For adapting to cases

like a pike around 0 or 1, they propose to use a mixture of Gaussians instead. This

approach for computing the posterior, therefore, is an alternative to restrictive Gaussian

approximations, by using more adaptative functions.

Moreover, by employing the K L divergence, they can approximate the integral

of the posterior analytically, avoiding the high computational requirements associated

with the use of MCMC. We would also like to highlight the fact that it is addressing

the estimate the epistemic uncertainty when modelling the distribution for the weights,

and the aleatoric one when modelling the distribution of the outputs. We would also

like to remark that the architectures used in the paper to illustrate the method are very

simple, compared to the current DL models. Besides, a significant limitation of this

work when applied to the classification problem is that they assume a linear output,

which is not the case for probabilistic classifiers that use a softmax no-linearity.

To tackle the issues exposed in Hinton and Van Camp [1993], in Barber and Bishop

[1998] they extend it to allow a Gaussian approximating distribution with a general co-

variance matrix, so it can capture the posterior correlations between parameters, while

still leading to a tractable algorithm. Besides, for illustrating the method, they over-

come the stated limitation of using linear output functions only and apply a variation

of a sigmoid function(cumulative Gaussian).

Like in Hinton and Van Camp [1993], in Barber and Bishop [1998] they make use

of the K L divergence to approximate the integral defined in equation 2.5. In order

to capture the variance in weights and output, this method still applies a Gaussian

approximation for both concepts. In the case of the output, they model the variance

with a parameter β and the weights with a covariance matrix A. Hence, the marginal

likelihood is given by:

p(D|β,A) =
∫

W
p(D|W,β)p(W|A)dW (2.10)

Being this integration analytically intractable. Instead of applying a Laplace approxi-

2.3. Related Work 21

mation as in MacKay [1992c], here the authors consider the logarithm of the marginal

likelihood defined in equation 2.10. By introducing a variational posterior Q (W), and

making use of Jensen’s inequality together with the convexity of the logarithmic func-

tion, they end up with the following decomposition of the marginal likelihood:

log p(D|β,A) = K L(Q||P)+F (Q) (2.11)

The main idea is that this posterior Q (W) represents a lower bound on the log marginal

likelihood, as K L(Q||P) ≥ 0. By maximising the lower bound F (Q) for the param-

eters of Q , is equivalent to minimising the Kullback-Leibler divergence. When taken

to the limit, if Q (W) is equal to the true posterior, the K L(Q||P) will be 0. The trick

here is to choose a form for the Q (W) distribution such that they can evaluate the

lower bound F (Q) efficiently.

Again, they choose a Gaussian model for the posterior Q (W)∼N (W̄,C), where

C is a covariance matrix. By playing with decompositions of the covariance matrix C
and making use of analytical techniques to reduce the different non-tractable integrals

to one-dimensional ones, they end up with a set of derivates that can be applied to a

gradient optimiser.

Still, so far, the variance parameters, β,A, have been considered as constants. To

include those parameters in the Bayesian framework, they consider a standard isotropic

prior covariance matrix of the form A=αI and introduce hyperpriors given by Gamma

distributions. Then by modelling the joint posterior p(W,α,β|D) by a factorised ap-

proximating distribution of the form Q (w)R (α)S(β), they can use an alternate opti-

mization process to approximate these posterior distributions.

We can observe how the proposed method yet has a strong dependency on Gaussian

distributions to take advantage of analytical operations that simplify the calculation of

the integrals. The covariance matrix used for modelling the variance on the weights

may represent a problem with modern architectures as it correlates with the number of

parameters. While it is true that they provide an approximation for using a diagonal

matrix, still it represents a significant amount of extra-parameters to optimise. Also,

the method and problems used to illustrate it, focus on regression problems, leaving

the classification problem unsolved.

One of the main problems of the methods described so far is that they are hard to

implement in modern DL architectures, where the number of parameters is high. In

Graves [2011], they tackle this problem by introducing a variational stochastic method.

They propose to work with expectations of variational distributions that approximate

22 Chapter 2. Uncertainty in Classification Systems

the true posterior, instead of trying to apply analytical solutions to find it.

For implementing the variational stochastic method that estimates these posteriors,

they get back to the Minimum Description Length Principle introduced by Hinton and

Van Camp [1993], applying it to the loss function for finding a trade-off between the

prediction accuracy and the complexity of the model. This variational distribution

takes the shape of a diagonal Gaussian Q (W|β). By applying the MDL Principle, the

loss is:

L = LN(W,D)W∼Q (β)+K L(Q (β) ‖ P(α)) (2.12)

Where the left term corresponds to the accuracy objective, i.e. the negative log-

likelihood(NLL) of the network, and the right term controls the complexity by trying

to minimise the distance between the posterior and the prior. The NLL is computed

by obtaining samples from the posterior Q (β). In the paper, they run experiments

with different combinations of posterior distributions, e.g. Gaussian and Delta, and

priors, e.g. Uniform, LaPlace and Gaussian, obtaining the best results when both are

Gaussian. To optimise the loss function, they apply an optimiser that can tolerate

noisy gradient estimates, so they experiment with Steepest descent with momentum

and RPROP. The method has been later criticised because it presents limitations due to

a bias effect on the gradients caused by the MC samplings.

In the same line, in Hoffman et al. [2013] they also develop the concept of Stochas-

tic Variational Inference for approximating the posterior of predictive models, empha-

sising the fact that the stochastic version of Variational Inference is better suited for

massive data sets. By making use of the mean-field assumption where they consider

all the parameters as independent variables, they achieve noisy but unbiased gradients

and apply and stochastic optimisation process to estimate the posteriors similarly to

what they did in Graves [2011]. In this case, though, the priors and posteriors used are

modelled as Dirichlet distributions applied to topic modelling problems.

Built upon the work of Graves [2011] on Variational Inference, we find the Bayes

by Backprop method described in Blundell et al. [2015] for learning a probability dis-

tribution on the weights of a neural network, focusing in this case in the regularisation

effect when attributing a compression costs over the weights while obtaining the uncer-

tainty associated with the predictions. In this case, the novelty is the reparametrisation

trick, which consists of decomposing the parameters of Gaussian variational posteriors

:

w = µ+ log(1+ exp(ρ)) · ε, ε∼N (0,1) (2.13)

2.3. Related Work 23

Hence, by sampling using the mean after drawing MC samples from this distribution,

they derivate the gradients of the mean, µ, and standard deviation, ρ, and use them to

update the weights, again obtaining noisy but unbiased gradients. Note how, in this

case, by doubling the number of parameters, two per weight, they handle an infinite

number of models to an ensemble. As for the prior distribution they propose to use

a mixture of Gaussians with 0 mean but different variances. An interesting thing to

highlight in this work is that they illustrate the method with a classification problem,

MNIST.

Beyond this seminal works, Variational Inference, VI, is a very active research

topic. Different research lines are tackling problems like creating black-box versions

of the VI or using other distributions rather than Gaussians, and how to apply the

reparametrisation trick to them, Knowles [2015]; Ruiz et al. [2016]; Figurnov et al.

[2018]; Jankowiak and Obermeyer [2018].

Another approach recently used in modern architectures is Flipout, Wen et al.

[2018], which performs a Monte Carlo approximation of the distribution integrating

over the weights. Flipout uses roughly twice as many floating-point operations as the

reparameterisation estimator but has the advantage of significantly lower variance. By

substituting the layers of a classifier by the equivalent Flipout ones, it is easy to apply

VI to a classification system, including RNN or CNN architectures. Then, they use the

Flipout gradient estimator to minimise the KL divergence up to a constant, also known

as the negative Evidence Lower Boundor ELBO. It consists of the sum of two terms:

the expected negative log-likelihood, which they approximate via Monte Carlo; and

the KL divergence, which is added via regulariser terms which are arguments to the

layer.

Another approach for applying VI in the case of the classification problem is that

proposed in Rossi et al. [2018]. In that work, they extend the VI regression setting to k-

class classification problems. They assume a one-hot encoding of the labels so that Y is

a matrix of zeros and ones. Then, they model the posterior over classification functions

by applying regression on a transformation of the labels, as proposed in Milios et al.

[2018].

2.3.1.4 Expectation propagation

In this section, we review an alternative to VI introduced in Hernandez-Lobato and

Adams [2015] called probabilistic backpropagation (PBP). Again, the goal of the method

is to tackle the scalability problems of BNN, similarly to stochastic VI, while preserv-

24 Chapter 2. Uncertainty in Classification Systems

ing their benefits, i.e. hyperparameter tuning, less overfitting, a measure for uncertainty

and smaller volumes of training data. The main idea is to compute a forward propa-

gation of probabilities through the network to obtain the marginal likelihood and then

doing a backward computation of gradients of the marginal likelihood for the parame-

ters of the posterior approximation.

They assume Gaussian distribution for the output conditioned to the input, the

weights and the γ with a mean equal to the output of the NN, and deviation equal to

γ−1. They also assume priors over the weights modelled as Gaussians with mean equal

to 0 and deviation λ−1. Hyper priors of both γ and λ are Gamma distributions. The

posterior distribution for the parameters W, γ and λ can then be obtained by applying

Baye’s rule. However, the exact computation of this posterior is not tractable.

For approximating this posterior, they propose the PBP. Similar to traditional BP,

in the forward phase, the apply the weights to the input to produce the activations. As

the weights are now RV distributions, the resulting activations are also random with

untractable distributions. They approximate these activations with one-dimensional

Gaussians that match their marginal means and variances. Even though the example

they use for illustrating is again a regression, at the output, they do not evaluate the

error but the logarithm of the marginal probability of the target variable. Based on this,

they update the gradients of this quantity for the means and variances of the approxi-

mate Gaussian posterior.

The update of the weights, in this case, is complex. Applying the Baye’s rule to

update the beliefs based on the data requires an approximation with a more straight-

forward distribution function Q (W). This new Q (W) function is one that minimises

the K L with the original update function. The parameters of this new function come

from an update based on the original mean and variances. All in all, they approximate

the posterior with a factored distribution of these Q (W) and the Gamma hyperpriors,

assuring that both the true posterior and the approximation share the same moments.

The Expectation propagation method, EP, improves this ADF implementation by

iteratively incorporating each factor multiple times. On each pass, EP removes one

factor from the posterior, re-estimates it, reincorporating it afterwards. One drawback

of EP is that it requires to keep all the factors in memory for each sample, but as they

operate in mini-batches, it is not a big issue.

In Li et al. [2015], they propose a variation of the method called Stochastic expec-

tation propagation. In that article, the authors illustrate how the method can be applied

to different classification problems.

2.3. Related Work 25

One of the main advantages of using PBP is that it does not require hyperparameters

as in traditional BP approaches, like learning rates.

2.3.1.5 MC Dropout

The methods presented so far all belong to the category of Bayesian Neural Networks.

Mainly they present different approaches for solving the integral defined in Equation

2.5, solving it analytically assuming some approximations, using Monte Carlo by sam-

pling different models or approximating the posterior with a simpler distribution. The

weights or parameters of the network are assumed to follow a given distribution and

different ways of learning the parameters of those distributions with variants of the

backpropagation optimisation process of the NN.

In this section, we present an alternative that does not require to modify the ar-

chitecture of the NN nor assume distributions over the network parameters. It builds

upon the concept of dropout introduced in Srivastava et al. [2014]. Dropout was con-

ceived as a method for reducing overfitting on the training of NN. The main idea is

that, during training, some neurons are deactivated, forcing the active ones to assume

the training effort of the deactivated. Imagine a company organised by departments

with a person assigned to each of them: sales, HR, accounting,... picture now that the

HR responsible breaks a leg. Instead of looking for a substitute, the manager splits the

HR workload among the rest of the team members. Now the salesperson gets married,

and the manager repeats the process. Hence, after some time, all the members of the

team will know all the aspects of the company, and they will adapt better to unknown

situations instead of getting overspecialised in their specific duties. The same applies

to neurons in a NN using dropout. Each unit will have a probability of getting offline.

On every training pass, based on this probability, some units will get off, and the rest

will keep the training process for the examples of a given batch. Thus, by avoiding

specialisation on the neurons, the NN will be more robust against overfitting problems.

Another point of view of the dropout method is the fact that on every training

batch, the architecture and the parameters are different. The probabilities associated

with each unit allow sampling of different models similar to the MC method proposed

in Neal [2012]. In Gal and Ghahramani [2015], they take advantage of this sampling

ability and propose to use dropout as an approximation to the probabilistic deep Gaus-

sian process. With regular Dropout layers, as present in many architectures, dropout

minimises the Kullback–Leibler divergence between an approximate distribution and

the posterior of a deep Gaussian process.

26 Chapter 2. Uncertainty in Classification Systems

As in VI methods, the idea is to reduce the KL divergence between the true pos-

terior and a variational posterior Q (W). In this case though, Q (W) is a distribution

over matrices Wi = Miḋiag([zi, j j = 1]), and zi, j ∼ Bernoulli(pi). The binary variable

zi, j = 0 corresponds then to unit j in layer i−1 being dropped out as an input to layer

i.

On prediction time, they sample T sets of vectors from the Bernoulli distribu-

tion zi, j ∼ Bernoulli(pi), thus obtaining different T values for y∗, and E(y∗|x∗)(Q) ≈
1
T ∑

T
t=1 f Ŵ j(x∗). This Monte Carlo estimate is what they call MC Dropout. The main

advantage of the MC Dropout is the fact that it operates directly with dropout layers

present in the definition of many NN architectures, so there is no need of extra param-

eters, modifications on the backpropagation process or computing complex Hessian

matrices.

2.3.1.6 Ensemble and Bootstrapping

In the line of MC Dropout, where the approach is to have a way of having multiple

models at the same time and then be able to sample from them and thus obtain an

approximation for the posterior of the data, we find Ensemble Lakshminarayanan et al.

[2017] and Bootstrapping Osband et al. [2016]. The idea is to approximate the integral

of the posterior with a set of models, similarly to equation 2.6.

In Ensemble methods, the idea is to train M models using different weights initial-

isation for each of them. Then, they train the models altogether sharing a joint loss

function. On prediction time, the outcome of the ensemble model is the average of the

individuals. By observing the variance of the outputs, one can also obtain a measure

of uncertainty of the models.

Bootstrapping uses a similar strategy, but instead of replicating the same model

M times, it uses a shared network with different heads. The training data, D is split

into different subsamples D̃ sampled uniformly with replacement from D . It can be

seen as a data dropout, in the sense that each data point is included in the training

of a particular head depending on a probability ∼ Bernoulli(p). Thus, each head is

trained only on its bootstrapped D̃ , letting the shared network to learn a joint feature

representation across all the data.

Both Ensemble and Bootstrapping represent methods that do not require signifi-

cant changes in the architecture of the network while providing means for obtaining

the uncertainty of the predictions. In particular, despite its simplicity, uncertainties

obtained with the Ensemble method manifest higher robustness to posterior domain

2.3. Related Work 27

shifts according to Snoek et al. [2019].

2.3.2 Heteroscedastic Aleatoric Uncertainty

Approaches surveyed in the previous section had a common goal which was to estimate

the uncertainty of the models. By imposing probability distributions over the weights

or proposing approximations like using dropout or ensembles of different networks,

they measured to which extent the model was sure about its predictions based on its

capabilities and limitations.

This model uncertainty is what we called epistemic uncertainty in section 2.2, as

associated with the term p(W|X ,y) in equation 2.5. This term expresses a probability

of the weights conditioned by the training data. As we said, this epistemic can be

reduced by training with more data or by increasing the expressiveness of the models.

However, let us remark here that this work tackles uncertainty associated with

black-box models. Thus, we can not reduce the epistemic uncertainty by including

additional data, nor increasing the capabilities of the model, as the model is already

trained, and we have no option of modifying it.

In this black-box scenario, we have to focus on to which extent the given model

adapts to our use case, specifically to our data. Hence, we focus on another type of

uncertainty: heteroscedastic aleatoric uncertainty. From equation 2.2, we analyse now

the term p(y∗|W,x∗), where we evaluate the probability of the output of a given model

with parameters W predicting testing input data. The so-called data uncertainty.

Despite methods in section 2.3.1 mostly studied epistemic uncertainty, and mainly

on regression problems, some already considered the uncertainty of the data. In the in-

troduction of Variational Inference, when describing the work in Hinton and Van Camp

[1993], we saw how they split the contribution of the noisy weights and the data-misfit.

In this case, they centred on a regression task, and they were approximating the out-

put distribution of the square error with a Gaussian posterior distribution. One could

analyse the uncertainty on the output activations by observing their posterior distribu-

tion. However, it might be difficult to isolate only the aleatoric part, as they are trained

together with the posteriors over the weights.

Moreover, still, there would the problem of adapting the method to classification

were the output is not a single unit and includes non-linearities like the standard soft-

max function. In recent VI approaches, Zhang et al. [2018], they tackled this problem

by using categorical distribution at the output, instead of Gaussian ones. Nevertheless,

28 Chapter 2. Uncertainty in Classification Systems

the training process includes both the weights and outputs as one.

2.3.2.1 Gaussian output models

With regards to this separation of concerns, between model and data uncertainties, we

find a relevant contribution in Gal [2016]; Kendall and Gal [2017]. In those works, they

extend the application of dropout as a method for estimating the model uncertainty in

NN introduced in Gal and Ghahramani [2015], bearing the classification problem and

aleatoric uncertainty explicitly.

In their proposal for uncertainty in classification tasks, instead of modelling the

output distribution, y∗∼Categorical(p), they model the noise at the logits u activation,

avoiding thus to deal with the softmax non-linearity.

u∼N (f W(x∗),diag(σ2(x∗))) (2.14)

Here, each logit is modelled with a Gaussian distribution, with mean equal to the

output for the corresponding class as obtained from the model f W(x∗) with parameters

W , and the variance modelled as a diagonal matrix with a parameter σ that is learned

from the input data. The resulting output of the model is:

p = so f tmax(u) (2.15)

And the associated likelihood is obtained from the expectation of this probability

by applying MC to this distributions, drawing M samples from the Gaussian modelling

the logits:

E[p] =
1
M

M

∑
m=1

so f tmax(um) (2.16)

Next, the model is trained with a cross-entropy loss function that includes the re-

sulting log-likelihood. To able to apply backpropagation to the training including these

new Gaussian RV, they apply the reparametrization-trick introduced in Blundell et al.

[2015]:

u = f W(x∗)+
√

diag(σ2(x∗)) · ε, ε∼N (0,1) (2.17)

Finally, to obtain the model parameters, W , they combine the MC dropout method

with this aleatoric cross-entropy loss, allowing to model aleatoric and epistemic uncer-

tainty jointly.

2.3. Related Work 29

In the original paper, Kendall and Gal [2017], they focused on Computer Vision,

analysing the role of uncertainty in image classification and segmentation. In Xiao

and Wang [2019], they extend this work by studying its impact in the NLP field. It

is interesting how they study the different contributions of epistemic, aleatoric and a

combination of both uncertainties. They run different NLP experiments: Language

modelling, Sentiment analysis and Named Entity Recognition, NER. In those experi-

ments, they observe how the combination of including a combination of both epistemic

and aleatoric uncertainties in training contributes to achieving better results at the clas-

sification tasks included. Especially relevant to our work are the results obtained with

NER, where the best results are obtained when incorporating only the aleatoric uncer-

tainty.

2.3.2.2 Dirichlet models

In the method described in the previous section, we can observe two limitations. First

of all, contrary to what happens in regression, where they directly approximate the

output distribution, in classification, they model the aleatoric uncertainty by modelling

RVs at the logits level, not the output. They model each logit using a separate Gaussian

RV. By modelling each logit variable individually, they are not considering possible

interactions between classes, and they tie these RVs together by applying a softmax at

the output.

Moreover, using Gaussian modelling as a generic recipe might impose unnecessary

constraints in some problems. In the regressions setting, it is imposing a uni-modality

that might not reflect the actual condition of the data. In this type of problems, some al-

ternatives consider more elaborated approximations as detailed in Brando et al. [2019].

In a classification problem, ideally, we would like to model the Categorical output

distribution, as composed by the probabilities associated with each output class. A

natural interpretation of the Categorical output can bet to consider the natural conju-

gates of those distributions. Thinking of this output as elements in a simplex, one can

contemplate a Beta for the binary case or a Dirichlet for the Multinomial.

The use of these distributions is the approach suggested in Sadowski and Baldi

[2018]. In this work, they consider different applications of Beta and Dirichlet for

different solutions. They use the Beta for problems with a real output with upper and

lower bounds. More relevant to us is the solution they provide for multinomial classifi-

cation systems. In those scenarios, they propose two alternatives. One is to model the

output as a multi-headed Dirichlet, where each output unit corresponds to an α control

30 Chapter 2. Uncertainty in Classification Systems

parameter of the overall distribution. This approach resembles the one in Kendall and

Gal [2017], but instead of modelling at the logits level, they model each output unit.

Alternatively, they propose also to model the softmax output directly with a Dirichlet

and learn the parameters at once. For each option, they derive the corresponding gra-

dients to enable training using standard optimisers. They detected stability problems

due to the digamma terms in the gradient of the Dirichlet, that may become large for

small αi, causing large gradients. To fix those problems, they introduce different ac-

tivation functions, i.e. Inverse-Linear (IL), Exponential-Linear (EL) and Exponential-

Tanh (ET). However, even after including these activation units, they needed to add

some regularizers to prevent very small α that generated overflow errors.

Another work that states using a Dirichlet as a probabilistic output layer is Gast and

Roth [2018]. In this work, they include uncertainty in CNN by two means. First, they

propose to change the output layer for a probabilistic one, in the line of Sadowski and

Baldi [2018]. Second, by modelling the input as a Gaussian RV, they apply expectation

propagation, similarly to Hernandez-Lobato and Adams [2015]. For implementing

ADF in a CNN, they provide a variational approximation for all the layers involved:

pool and max-pool layers, and Relu and leaky Relus. Thus, they achieve to model each

output activation as a Gaussian RV.

For classification, they use a Dirichlet as the output probabilistic layer, building

on top of the ADF outputs. To convert these Gaussian activations to the α j control

parameters that reign the Dirichlet, they propose a decomposition of these parameters

based on the Gaussian output activations.

p(y|x∗,W) = Dir(α(µ,v), α(µ,v) =
m
s
, s = ∑

j
α
−1
j (2.18)

and

m = so f tmax(µ), s = c1 + c2

√
∑

j
m jv j (2.19)

Where c1 controls how peaky the distribution is and c2 is an amplification factor

for converting uncertainties into the Dirichlet scale. By including the m term in the

variance, the corresponding uncertainty mainly comes from the class contributing most

to the softmax activation. Hence, as the output is already a distribution, they can apply

the maximum conditional likelihood learning that finds the parameters by maximising

the conditional likelihood of the data under a predictive model.

2.3. Related Work 31

Similarly to Kendall and Gal [2017], in Gast and Roth [2018] we find a way to

model the aleatoric uncertainty, by using a Dirichlet at the output, and the epistemic by

including Gaussian noise at the input and propagating the expectation with ADF. By

combining both types of uncertainty, including minimal changes in the architecture of

the network, they achieve the goal of converting a CNN that outputs point estimates to

a probabilistic NN that outputs the predictions together with a measure of uncertainty.

An extension of Gast and Roth [2018] is proposed in Loquercio et al. [2020]. In

there, they incorporate prior information coming from the sensors used in robotics

to the Gaussian input noise. Their work focuses on regression problems and tackles

both data and model uncertainties. For model uncertainties, they rely on the existence

of dropout layers that enable MC dropout sampling. They claim to deliver a general

framework applicable also to pre-trained networks, but, again, it relies on the dropout

layers to find the most suitable dropout rates for the new problem.

In Thiagarajan et al. [2019], we find another extension for Gast and Roth [2018],

adding in this case an uncertainty attribution method. This attribution means for identi-

fying which features in the input data have a higher impact on the aleatoric uncertainty

of the model. They focus on regression problems with tabular input data, so it is easy

to illustrate the influence at an attribute level. For measuring this attribution, they sug-

gest decomposing the function value f(x) as a sum of relevance scores, obtained using

a first-order Taylor expansion of the function. Another benefit of this decomposition is

that it can act as a regulariser when added to the loss, increasing its generalisation.

In Malinin and Gales [2018]; Chen et al. [2018], we find new approaches that

build on top of Dirichlet distributions, focused in this case on the detection of out-of-

distribution data. Both methods model distributional uncertainty, i.e. a distributional

mismatch between the test and training data distributions. Although this type of uncer-

tainty is different from the aleatoric one analysed in this section, we include them here

because of their usage of Dirichlet distributions for modelling the data. In Malinin and

Gales [2018], they explicitly separate the three types of uncertainty:

p(y∗|x∗,X ,Y) =
∫

W

∫
µ

p(y∗|µ)︸ ︷︷ ︸
data

p(µ|W,x∗)︸ ︷︷ ︸
distributional

p(W|X ,Y)︸ ︷︷ ︸
model

dµW (2.20)

The point estimate for the data uncertainty comes determined by the distributional un-

certainty. To model the new term p(µ|W,x∗) they use a Dirichlet distribution Dir(µ|α),
where α = f (x∗;W∗). For training the posterior, they explicitly train in a multi-task

fashion to minimize the KL divergence between the model and a sharp Dirichlet distri-

bution focused on the appropriate class for in-distribution data, and between the model

32 Chapter 2. Uncertainty in Classification Systems

and a flat Dirichlet distribution for OOD:

L(W) = Epin(x)[KL[Dir(µ|α̂)‖p(µ|x;W)]]+Epout(x)[KL[Dir(µ|α̃)‖p(µ|x;W)]] (2.21)

Where we can find a decomposition of the loss composed by a term for the in distri-

bution and OOD data samples. The multi task part comes from the need of having in

and out of distribution points, that they simulate by generating points on the boundary

of the in-domain region using a generative model or using a different, real dataset as a

set of samples from the out-of-domain distribution.

Following a similar approach, in Chen et al. [2018] they propose to parameterize a

posterior model pW(Z|X) and optimize its parameters to approach such true posterior

pW(Z|X) given a pairwise input (X ,Y) by minimizing their KL-divergence:

DKL (PW(Z|X)‖P(Z|Y)) (2.22)

For minimising the divergence, they use VI using a Dirichlet as the variational pos-

terior. In this case, though, they do not explicitly separate the OOD part. To demon-

strate the OOD detection, they train the network using a dataset and then analyse the

uncertainties found when applying the model to a different one.

To wrap up, table 2.1 holds a summary of the different methods analysed including

the type of uncertainty studied on each of them.

2.3. Related Work 33

Table 2.1: Summary of uncertainty methods reviewed

Method Reference Type of uncertainty Section

Bayesian Neural Networks using Laplace approximation MacKay [1992c,b] Epistemic 2.3.1.1

Markov chain Monte Carlo approximations Neal [2012]
Epistemic

Aleatoric
2.3.1.2

Stochastic gradient Hamiltonian Monte Carlo Chen et al. [2014]
Epistemic

Aleatoric
2.3.1.2

Minimum Description Length Principle Hinton and Van Camp [1993]
Epistemic

Aleatoric
2.3.1.3

Ensemble Learning Barber and Bishop [1998]
Epistemic

Aleatoric
2.3.1.3

Variational Inference Graves [2011] Epistemic 2.3.1.3

Stochastic Variational Inference Hoffman et al. [2013] Epistemic 2.3.1.3

Bayes by Backprop Blundell et al. [2015] Epistemic 2.3.1.3

Stochastic gradient variational Bayes for gamma

approximating distributions
Knowles [2015] Epistemic 2.3.1.3

The generalized reparameterization gradient Ruiz et al. [2016] Epistemic 2.3.1.3

Implicit reparameterization gradients Figurnov et al. [2018] Epistemic 2.3.1.3

Pathwise derivatives beyond the reparameterization trick Jankowiak and Obermeyer [2018] Epistemic 2.3.1.3

Flipout Wen et al. [2018]
Epistemic

Aleatoric
2.3.1.3

Expectation propagation Hernandez-Lobato and Adams [2015]; Li et al. [2015] Epistemic 2.3.1.4

MC Dropout Gal and Ghahramani [2015] Epistemic 2.3.1.5

Network Ensemble Lakshminarayanan et al. [2017] Epistemic 2.3.1.6

Bootstrapped DQN Osband et al. [2016] Epistemic 2.3.1.6

Aleatoric MC Dropout Gal [2016]; Kendall and Gal [2017]
Epistemic

Aleatoric
2.3.2.1

Neural Network Regression with Beta, Dirichlet,

and Dirichlet-Multinomial Outputs
Sadowski and Baldi [2018] Aleatoric 2.3.2.2

Lightweight probabilistic deep networks (LPN) Gast and Roth [2018]
Epistemic

Aleatoric
2.3.2.2

A general framework for uncertainty estimation in deep learning Loquercio et al. [2020]
Epistemic

Aleatoric
2.3.2.2

Understanding DNN through input uncertainties Thiagarajan et al. [2019] Aleatoric 2.3.2.2

Predictive Uncertainty Estimation via Prior Networks Malinin and Gales [2018]

Epistemic

Aleatoric

Distributional

2.3.2.2

Variational Dirichlet Framework Chen et al. [2018]
Aleatoric

Distributional
2.3.2.2

34 Chapter 2. Uncertainty in Classification Systems

2.3.3 Measuring Uncertainty

In the previous section, we have reviewed previous works that mean to model uncer-

tainty in DL models. In the present section, we review how to measure this uncertainty,

i.e. how to obtain a numerical score out of the probability distributions that describe

the output of the predictive system.

In classification systems, the subject of this thesis, specifically in probabilistic clas-

sifiers, the output of the model already has the shape of a probability distribution over

the predicted classes, as resulting from applying a softmax operation over the output

logits. Therefore, a first approach for obtaining a measure of the uncertainty is by ob-

serving the output distribution itself. At this point, we want to make two remarks. On

the one hand, recall that even when the probability associated with the predictions is

high, it can correspond to a confident but erroneous prediction. On the other hand, the

output of a DL might suffer from miscalibration, as detailed in Guo et al. [2017].

However, assuming a calibrated and right prediction, these are the metrics derived

directly from observing the predictions of the original model, namely:

• Softmax response, as the maximal neuronal response of the softmax layer.

• Predictive entropy: the difference between all predictions, as defined by infor-

mation theory, Dagan and Engelson [1995], understood as the entropy of the

softmax probability distribution.

−∑y PW(y∗1|x∗) log2 PW(y∗1|x∗)
)

log2(n)
(2.23)

• Least confidence: the difference between the most confident prediction and

100% confidence, as defined in Culotta and McCallum [2005].

n(1−PW (y∗1|x∗))
n−1

(2.24)

• Margin of confidence: difference between the top two most confident predic-

tions.

1− (PW (y∗1|x∗)−PW (y∗2|x∗)) (2.25)

• Ratio of confidence: ratio between the top two most confident predictions , as

defined in Scheffer et al. [2001], understood as the margin and ratio respectively

between the first and second more confident output units.

Pθ (y∗2|x)
Pθ

(
y∗1|x

) (2.26)

2.3. Related Work 35

All these metrics obtain an uncertainty score out of point estimates. Nevertheless,

as explained in the previous section, in order to accurately model uncertainty, instead

of point estimates, a proper output probability is mandatory. In literature, Gal [2016],

we find different ways of obtaining a numerical uncertainty score out of a probabilistic

output layer:

Variation ratios measures the variability of the predictions obtained from sampling

Freeman [1965] by computing the fraction of samples with the correct output. This

heuristic is a measure of the dispersion of the predictions around its mode. To that

respect, for a given data point x we can sample M output vectors from the output

distribution yt
x, t = 1 . . .M, and compute the variation ratios as follows,

V R = 1− fc∗

M
(2.27)

where fc∗ = ∑t 1[yt
x = c∗], and c∗ corresponds to the sampled majority class,

c∗ = arg max
c=1,...,C

M

∑
t=1

1[yt
x = c]. (2.28)

Predictive entropy considers the average amount of information contained in the

predictive distribution, Shannon [1948]. Results with low entropy values correspond

to confident predictions, whereas high entropy leads to significant uncertainty. This

score takes into account the variability of the predicted value by sampling from the

wrapper inferred distribution, the sampled predictive entropy, defined as

H=−∑
c
E[y∗]c logE[y∗]c. (2.29)

Mutual information considers the relationship between two RV, X ,Y and measures

the mutual dependence between the two. Again, it relates to the Information theory as

it can be viewed as the amount of information obtained about one RV by observing the

other RV. Mutual information, MI, determines how different the joint distribution of

the pair (X ,Y) is to the product of the marginal distributions ofX and Y :

I(X ;Y) = DKL
(
P(X ,Y)‖PX ⊗PY

)
(2.30)

Where we use KL divergence to measure this difference, which when considering con-

tinuous variables translates to:

I(X ;Y) =
∫

Y

∫
X

p(X ,Y)(x,y) log
(

p(X ,Y)(x,y)
pX(x)pY (y)

)
dxdy (2.31)

Or seeing it from the Information theory perspective:

I(X ;Y) = H(Y)−H(Y |X) (2.32)

36 Chapter 2. Uncertainty in Classification Systems

When measuring the uncertainty of NN models, the two variables to consider are

the prediction y∗ and the posterior over the model parameters W. Usually, this metric

relates more to epistemic uncertainty as it compares the posterior of W with Y , as

approximated in Gal [2016]:

I [Y,W|X ,Dtrain]≈−→
T→∞

H [Y |X ,Dtrain]−Eq∗
θ
(W)[H[y|X ,W]] (2.33)

by sampling T models for the posterior q∗
θ
(W). In Houlsby et al. [2011], they state

that test points x∗ that maximise the mutual information are points on which the model

is uncertain on average, as the model parameters W erroneously produce predictions

with high confidence.

Additional methods for measuring uncertainty are present also in the works re-

viewed in the previous section, Malinin and Gales [2018]; Chen et al. [2018], that

make use of Dirichlet distributions.

In Chen et al. [2018], they propose to use the entropy of the resulting Dirichlet

output distribution:

E(α) =−C(α) =−
∫

z
zDir(z|α)dz = logB(α)+(α0−K)ψ(α0)−

k

∑
i
(αi−1)ψ(αi)

(2.34)

The final uncertainty score corresponds to the negative of this entropy. In this work,

they also analyze the resulting α parameters. They observe how these parameters

tend to adopt big values α >> 1.0, compromising the performance of the method. To

prevent this problems, they suggest a smoothing factor α̂ = log(α+ 1), while other

smoothing functions can be applied.

Finally, in Malinin and Gales [2018], they propose different metrics of uncertainty.

Recall that in that article, they talk about three different types of uncertainty: model,

data and distributional. Depending on the type of marginalisation applied to equa-

tion 2.20, they can calculate the different types of uncertainty. For obtaining the total

uncertainty, they propose the use of max probability, P = maxc P(ωc|x∗;D), and the

predictive entropy. For the rest of uncertainties, they propose to use the mutual infor-

mation between the total uncertainty and each type of uncertainty.

2.4 Desirable properties of uncertainty

In previous sections, we have seen the importance of uncertainty and its role in clas-

sification systems. We have reviewed different methods for modelling the different

2.4. Desirable properties of uncertainty 37

types of uncertainty associated with classifiers, and different ways to measure it. In

the present section, we outline some properties that are desirable in any measure of

uncertainty.

2.4.1 Calibration

As mentioned in section 2.3.3, the more straightforward way to measure the uncer-

tainty of classification systems is to observe the probability associated with the pre-

dicted class. Take, for instance, a binary classifier—a prediction of 0.9 would mean

that the classifier is confident on assigning a positive prediction. In contrast, a predic-

tion of 0.51 would mean that the uncertainty of the prediction is high.

Apart from the fact that these predictions might be confident but erroneous, another

aspect that is essential for considering these probabilities is the fact that they need to be

calibrated. Usually, the output of a classifier comes from the application of a sigmoid

or a softmax function. These functions transform the output into values from 0 to 1. In

the case of softmax, by normalizing the outputs, results describe sets of C values, one

for each class, that adds to 1, which resembles a probability distribution.

To consider a classification system as calibrated its output must match the expected

distribution of probabilities for each class. The problem is that most of the time this

is not the case, especially with modern DL architectures. As reported in Gast and

Roth [2018], the more complex the architecture, the less calibrated the output is. The

miscalibration problem also extends to other types of predictive systems, as analyzed in

Niculescu-Mizil and Caruana [2005], like Support Vector Machines, Random Forests

or boosted trees.

2.4.1.1 How to measure calibration

The workhorse, when analyzing calibration in a classification system, is reliability dia-

grams, also known as calibration curves. For a further analysis of reliability diagrams,

see Bröcker and Smith [2007], but the main idea is that a proper output probability

distribution should adequately reflect the actual likelihood of the predicted data. For

example, given 100 predictions, each with a probability of correctness of 0.8, we ex-

pect that 80 should be correctly classified. So a definition for the perfect calibration

should be:

P(y∗ = y|P̂ = p) = p, ∀p ∈ [0,1] (2.35)

38 Chapter 2. Uncertainty in Classification Systems

where P̂ is the confidence of the prediction, and p is the actual likelihood of the pre-

dicted data.

To build a reliability diagram, we group predictions into M interval bins (each of

size 1/M) and calculate the average accuracy and confidence of each bin. Next, we

plot the expected sample accuracy as a function of confidence. Figure 2.1 shows an

example of reliability diagrams. In this case, we observe how the ideal calibration

would correspond to the diagonal, where the accuracy is equal to the confidence. In

contrast, we observe how the blue line corresponds to a better-calibrated model than

the orange one.

Figure 2.1: Example of reliability diagrams

Even though the reliability diagram is a handy tool for diagnosing calibration is-

sues, sometimes we require a numerical score. One of the most common metrics is

Expected Calibration Error (ECE). It is very related to reliability diagrams, as it mea-

sures the difference between the average accuracy and confidence, as calculated in the

diagrams:

ECE =
M

∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm) | (2.36)

Where M is the number of bins m, n is the number of samples, and acc and confi-

2.4. Desirable properties of uncertainty 39

dence correspond to the accuracy and confidence of the predictions respectively. A

variation of this measure is Maximum Calibration Error (MCE), which computes the

maximum instead of the average. Furthermore, sometimes, measuring the Negative

log-likelihood, NLL, of the model can be used.

2.4.1.2 Calibration methods

The methods described in Gast and Roth [2018] help on tackling this calibration issues.

These methods required a hold-out data set drawn from the same distribution to train

the calibrators. These are the main ones:

• Isotonic regression. The most common non-parametric calibration method. It

learns a constant function f to transform uncalibrated outputs. The function f is

trained to reduce the RMSE between the label and the prediction:
n

∑
i=1

(f (y∗i)− yi)
2 (2.37)

• Platt Scaling. A parametric approach to calibration, where the original predic-

tions, y∗, of a classifier are used as features for a logistic regression model, q̂.

This model is trained on the validation to learn scalar parameters a,b ∈ R such

as q̂i = σ(azi +b) emits a calibrated probability.

• Temperature Scaling. It is an extension of Platt scaling that uses a single scalar

parameter T > 0 to modify the temperature of the softmax function applied to

the output logits. T is optimized for NLL on the validation set, modifying the

output probabilities but preserving the predicted class.

To sum up, calibration is an essential property of classification systems, especially

when evaluating the output probabilities for measuring the confidence of the predic-

tions. As reported in Gast and Roth [2018]; Niculescu-Mizil and Caruana [2005],

methods that rely on measuring probabilities, like logistic regression, seem to be more

calibrated than others. Thus, when developing methods that transform the outputs of

classifiers as RV, we should expect that the outputs of such systems will be better cali-

brated than the original black boxes.

2.4.2 Robustness

Another aspect that any uncertainty modelling technique must bear in mind is the ro-

bustness of its metric. By robustness of an uncertainty metric, we understand its capa-

40 Chapter 2. Uncertainty in Classification Systems

bility of adapting to new data distribution on prediction time. These data distributions

might differ from the original ones used for training the models, but the uncertainty

must keep efficiently detecting uncertainty of the new data points.

To this extent, we find the work presented in Snoek et al. [2019] very relevant to

the robustness of uncertainty methods. In this work, they analyse different uncertainty

metrics, and they subject them to different types of distortion of the original training

inputs, including a study of their behaviour on OOD data.

The methods analysed in the study include a vanilla implementation based on the

Maximum softmax probability, Hendrycks and Gimpel [2016], the same metric but

after applying the Temperature scaling calibration method introduced in the previous

section, MC Dropout, Gal and Ghahramani [2015], Stochastic Variational Inference,

Blundell et al. [2015], ensemble methods, Lakshminarayanan et al. [2017] and a last-

layer-only variation of both dropout ad SVI, Riquelme et al. [2018].

For measuring the quality of the uncertainty modelled, they use the metrics de-

tailed in section 2.4.1, namely ECE and NLL, plus Brier Score, a score that measures

the accuracy of predicted probabilities, as the squared error of a predicted probability

vector, y∗, and the one-hot encoded true response y.

They include experiments using datasets from different domains, including image

and text classification, tabular data or even genomics. For each dataset, they include

the original data plus two additional datasets: one with gradual levels of distortion,

and another one with a completely different distribution to test the OOD case. In the

case of OOD, as labels do not apply, they plot a distribution of the predictive entropy

to observe the detection capability of the model for OOD points.

They provide the reader with some insights that are relevant when talking about

the robustness of uncertainty measures. First is that along with accuracy, the quality of

uncertainty consistently degrades with increasing dataset shift regardless of method.

Methods seem to work well with test data, like Temperature scaling, do not adapt to

shifts in the data distributions. For the epistemic models, they outline Ensemble as the

best performing, while indicating that SVI, even though they seem to work well on

small datasets, are hard to apply to datasets that require complex architectures.

All in all, from the analysis we can derive that modelling uncertainty for a given

problem or dataset does not mean that this model adapts well to changes on the data

once we deploy the model in a real environment. At this point, we want to remark a

couple of aspects relative to the present work.

The first thing to consider is that, except for the Vanilla and Temperature scaling,

2.4. Desirable properties of uncertainty 41

the included methods were all tackling epistemic uncertainty. They measure how the

model adapts to the data, not the uncertainty of the data itself. Training the original

models with data points from the additional distorted datasets would reduce this uncer-

tainty. In the present work, we do not measure the epistemic uncertainty as the model

is a fixed black box, but focused on measuring the uncertainty inherent in this data.

After rotating an image that represents a horse, the image will still represent a horse.

If the picture is appropriately representing a horse, the associated aleatoric uncertainty

will be low. The problem is when the picture of this horse is labelled as a dog. Then

the model will be very confident predicting it like a horse, so epistemic uncertainty

will be low, whereas the aleatoric uncertainty will be high.

Besides, in their analysis, they explicitly discard methods that train specifically for

OOD detection. As mentioned above, they analyse the uncertainty of OOD points by

observing the resulting predictive entropy. Looking at the results reported for the text

models, the only ones reported for OOD, we observe how, except for the last-layer-

only versions, all the methods used, including Vanilla, already report OOD points with

high uncertainty. We reckon that as outlined in Malinin and Gales [2018], epistemic

and distributional uncertainties are separate concepts, and consequently, it must be

explicitly tackled.

Nonetheless, the work presented in Snoek et al. [2019] delivers an appealing frame-

work for evaluating uncertainty in scenarios that might mimic what one can expect

when deploying classification models to the wild, where data distributions may shift

or new types of examples might appear.

2.4.3 Interpretability

Last but not least, another aspect that is crucial when estimating the uncertainty of a

classification system is its interpretability. Habitually, uncertainty is considered as a

source of interpretability of the predictions of a classifier: uncertain predictions can

warn the practitioner about problematic inputs that might require the intervention of a

human expert or complementary sources of information, like sensors in a self-driving

car.

In this section, though, we would like to focus on the interpretability of the un-

certainty itself. In section 2.3.3, we analysed different ways of obtaining a numerical

score for measuring uncertainty. Taking the simpler of those methods, the confidence

or softmax response of the prediction, we observe that it can be treated as a proba-

42 Chapter 2. Uncertainty in Classification Systems

bility(omitting calibration issues). In this case, the interpretation of the uncertainty is

quite straightforward, as humans understand well probabilities, Cosmides and Tooby

[1996].

The problem comes with more complex metrics like predictive entropy. Such mea-

sures might require further explanations for making them understandable and useful

for practitioners. For example, predictive entropy scores will depend on the number of

classes predicted, being 0.69 the maximum entropy for a binary classifier and 2.30 for

ten classes one.

Many of these complex metrics derive from the output probability layers modelled,

as detailed in section 2.3.2. What they want to capture is the variance of the distribu-

tions that describe the output, based on the given inputs. Depending on the distribution

used, variance might be the σ parameter of a Gaussian RV. In other cases, it can be a

β parameter resulting from the decomposition of the α concentration parameters of a

Dirichlet distribution. In any case, the model trained for estimating the uncertainty, u,

takes input and outputs a number for that input, so u(xi) = σ, where sigma corresponds

to the uncertainty parameter. In any case, we can consider it as a regression problem.

As such, we can apply explainability tools to search for explanations on which parts of

the input contribute more to this uncertainty. Tools like LIME, Ribeiro et al. [2016b],

os Shap values, Lundberg and Lee [2017], among others, can hep on attributing uncer-

tainty to words in a text that increase uncertainty in a sentiment analysis tool. Tools

like the What-if-tool, Wexler et al. [2019], can help on identifying attributes in a tabular

dataset that can be changed to diminish this uncertainty.

To the best of our knowledge, there is no previous work on the interpretability of

uncertainty, and we firmly believe that it could benefit the application of uncertainty

in real problems. Having ways to identify which elements of our data contribute more

to uncertain predictions can enable actionable mechanisms that allow increasing the

quality of the predictions by intervening in the data. An example of this could be an

image of a horse behind a fence. This kind of patterns might hinder the results of a pre-

trained image classifier, increasing the associated uncertainty. What if we had a way

to detect this issue? In this case, we could apply a pre-processing to our target dataset

images, removing fences(see Jonna et al. [2015]) and thus increasing the quality of the

resulting predictions.

2.5. Applications of uncertainty 43

2.5 Applications of uncertainty

In the present section, we analyse potential applications of uncertainty. Beyond the

interpretability of the predictions introduced in the previous section, in literature, we

find many examples of how to use the different types of uncertainty to help with im-

proving the quality of ML models. Using epistemic uncertainty, we will see how one

can estimate to which extent a model adapts for a given problem or how to select

new examples that foster the training speed. We will also observe how by using the

aleatoric uncertainty, we can discard those examples that are more uncertain, increas-

ing the quality of the preserved predictions or permitting the intervention of experts to

decide on those cases.

2.5.1 Model Selection

The first application of uncertainty is model comparison or selection. When designing

DL models, the choices of architectures, parameters and regularizers can be cumber-

some. Working with held-out data or cross-validation to optimise these hyperparame-

ters imply sacrificing some of the training data available for that purpose. This sacrifice

has brought researchers to try to include the optimisation of these hyperparameters in

the model training. To this aim, the use of epistemic uncertainty allows to compare

models effectively and include the implicit optimisation of hyperparameters and regu-

larizers.

One of the first to introduce this use of model uncertainty was David Mackay in

MacKay [1992a,b]. By adding the evidence step to the modelling, he modelled the

probability of the data given the model parameters and regularizers, p(D|W,R). By

estimating this posterior to find its MAP, he was able to find the most optimal combi-

nation of parameters and regularizers.

In Mackay’s work, the estimation of this model uncertainty was carried out in the

additional step in the inference process called model selection. Later works like VI,

EM or ensembles, propose to include the uncertainty in the training process. By con-

sidering the weights as RV, they obtain not only one valid model but a collection of

infinite(or finite in the case on ensembles) models that maximise the posterior of those

model given the training data.

In Gal [2016]; Kendall and Gal [2017], they propose to use dropout for sampling

models W, also tackling the optimisation of the regularizers by using the aleatoric

uncertainty in what they call loss attenuation.

44 Chapter 2. Uncertainty in Classification Systems

After modelling the model uncertainty by choosing one of the approaches pre-

sented in section 2.3.1, it would be possible to sample parameters W∗ from the ob-

tained distributions. This sampling will allow estimating the expectation of the output,

Ep(ω|Dtrain)[Y |X ,ω]. With this expectation, it is possible then to estimate the mutual

information between the prediction Y and the posterior over the model parameters W.

As illustrated in Gal [2016], mutual information captures the model’s confidence in its

output, and it is an excellent way for comparing the performance of different models

for a given problem.

In any case, model selection based on epistemic uncertainty lies out of the goal of

the present work, as when working with black-boxes, we can not alter the model to

include the required variability for measuring it. In this work, we propose to analyse

the aleatoric uncertainty of pre-trained models given the target dataset. By comparing

the resulting uncertainty, we can measure to which extent those model fit our problem

and decide which of them we apply to solve our requirements.

2.5.2 Active Learning

Another recurrent application of uncertainty present in the literature of ML is Active

Learning (AL), Cohn et al. [1996]. The goal of AL is to boost the training process

by selecting meaningful and representative examples that let the model learn faster.

This task is especially relevant in constrained scenarios where obtaining training data

requires the intervention of human experts to label the samples, implying extra-efforts

in time and costs. In such scenarios, having a way to drive the selection of the new

samples to label that fosters the training speed, is a very desirable feature.

There exist different ways to tackle AL, as surveyed in Settles [2009]. Among

them, the simplest one is uncertainty sampling, Lewis and Gale [1994]. By observing

the output confidence or predictive entropy of the so-far-trained model when applied to

unlabelled points, one can choose those that are more uncertain, expecting that those

will be the more challenging ones for the model, thus fostering the training process.

The problem with this approach is that sampling from the more uncertainty areas

of the unlabelled data distributions, most of the times are equivalent to sample from the

decision boundary of the classifier. As David Mackay suggested in MacKay [1992b]:

"The strategy of sampling on decision boundaries is motivated by the argument that we

are unlikely to gain information by sampling in a region where we are already confident

of the correct classification. But similarly, if we have already sampled a great deal on

2.5. Applications of uncertainty 45

one particular boundary then we do not gain useful information by repeatedly sampling

there either, because the location of the boundary has been established!".

In this work, Mackay proposes another way to use uncertainty for AL. The main

idea is to divide the unlabelled dataset in what he called regions of interest and obtain

labels for points that maximize the mean marginal entropy. The intuition is that those

points with a higher variance according to the entropy of the predictions obtained draw-

ing samples from the posterior over the models, will translate to more representative

points and better AL.

Recently, this concept of regions of interests has been extended to the context of

Thompson sampling (TS) and multi-armed bandits. In Russo et al. [2018], they pro-

pose to use ensembles as the arms and include TS in the selection of new training

inputs. In Bouneffouf et al. [2014], they propose to create clusters of the unlabelled

points and consider each of these clusters as the arms. Then applying TS, they chose

examples based on a reward function that looks at the cosine distance of a vector com-

posed by the points before and after adding the selected input.

Other approaches to AL are those based on variance reduction and Fisher infor-

mation Ratio, like Zhang and Oles [2000]. In this case, they are pool-based method

that look at the ratio X∗FIR = argmin
X

tr
(
IX(θ)

−1IU(θ)
)
, between the selected point and

the rest of the unlabelled examples. Fisher information ratio is a measure of epistemic

uncertainty that in addition to the uncertainty of the model also measures which model

parameters are most responsible for this uncertainty.

In general, based on the uncertainty of the model, different strategies select new

samples to label based on different criteria: reducing the expected error or maximiz-

ing the variance of the model or how much it changes after adding the sample to the

training.

Regarding AL, the use of aleatoric uncertainty is not indicated, as the same con-

clusions extracted from the selection of points in the decision boundaries would apply

here. Aleatoric uncertainty measures the noise inherent in the data, so selecting points

that are noisy by their own would not help on improving the variance of the model or

the expected error, as this type of uncertainty will not reduce with more training, unlike

it occurs with epistemic.

46 Chapter 2. Uncertainty in Classification Systems

2.5.3 Classification with rejection

Another application where the role of uncertainty is key is classification systems with

rejection. The process of abstaining on producing an answer or discarding a prediction

when the system is not confident enough can be found under different names in the

machine learning literature: Rejection Methods, Selective Classification, Abstention,

or Three-Way Classification. The most common approach sets a threshold based on

a given metric and discards predictions accordingly. Following the ideas proposed

in the seminal work of Chow [1970], where the authors set a threshold for rejection

with which to minimise the classification risk, other works like Cordella et al. [1995];

De Stefano et al. [2000b]; El-Yaniv and Wiener [2010]; Geifman and El-Yaniv [2017b]

consider different cost-based rejection models based on the output responses of deep

learning models.

Alternatively, other works Bartlett and Wegkamp [2008]; Cortes et al. [2016];

De Stefano et al. [2000a] include a term for the rejector in the loss that is learned to-

gether with the classifier. Following a similar approach, in Thulasidasan et al. [2019],

the authors propose to omit noisy labels in order to improve the training process. These

works have in common the approach of considering a fixed-cost for the abstention, in

which the classifier incurs a fixed cost every time the abstain option is invoked. On

the contrary, in Shekhar et al. [2019], authors set a fixed fraction of input samples, δ,

in which the learner is allowed to abstain without incurring any costs. They propose

a plug-in classifier that employs unlabelled samples to decide the region of abstention

and derive an upper-bound on the excess risk. Another strategy, followed by authors

of Geifman and El-Yaniv [2019], is to train the model together with a particular loss

function for rejection. In this case, though, they fit a model specifically for each degree

of coverture chosen a priori.

The main limitation of the methods described so far is the fact that they jointly

learn the classification model together with the rejection function. Unfortunately, in a

black-box scenario, re-training the model is not an option.

Finally, the evaluation of the performance of classification with rejection mod-

els usually use standard metrics such as accuracy or F1-score for obtaining accuracy-

rejection curves (ARC) Nadeem et al. [2009] or 3D receiver operating characteristic

Landgrebe et al. [2006]. Other works focus on the rejection of multi-label classifica-

tion systems Pillai et al. [2013]. These approaches present limitations as they are not

able to determine the optimal rejection rate by comparing the performance of the clas-

2.5. Applications of uncertainty 47

sifiers. Beyond the ROC space, some authors Hanczar [2019] have analysed different

representation spaces to build a rejection system, mainly the cost-reject (CR) and the

error-reject (ER) space.

Aligned with this error-rejection approach, we find Condessa et al. [2015], where

authors propose three different performance measures for evaluating the best rejection

point that overcomes the previous restrictions. In order to evaluate the rejection metric,

they split the dataset using two criteria: whether the method Rejects the data point or

Not; and whether the point is Accurately classified, or Missclassified named as R,

N, A or M respectively. By using these values, three quality metrics can be derived

(illustrated in Fig.2.2):

• Non-rejected Accuracy measures the ability of the classifier to classify non-

rejected samples accurately. It is computed as follows,

NRA =
|A

⋂
N|

|N|

• Classification Quality measures the ability of the classifier with rejection to

classify non-rejected samples accurately and to reject misclassified samples. It

is computed as follows,

CQ =
|A

⋂
N|+ |M

⋂
R|

|N|+ |R|

• Rejection Quality measures the ability to concentrate all misclassified samples

onto the set of rejected samples. It is computed as follows,

RQ =
|M

⋂
R| |A|

|A
⋂

R| |M|

An optimal rejection point will show a trade-off between the three metrics, being

able to divide misclassified predictions from the right ones and preserve only those

points that provide useful information. The higher the value displayed, the better that

metric performs for rejection.

In a rejection setting, the model is enhanced with a new class, the rejection class.

Thus, the final prediction becomes

y∗ =

 f (x), if φ(x)< τ

re ject, if φ(x)≥ τ

48 Chapter 2. Uncertainty in Classification Systems

Figure 2.2: Rejection performance metrics as proposed in Condessa et al. [2015]

Here, f (x) is the classifier without rejection, the function φ(x) is a function on

the input that evaluates the confidence of the prediction model, and τ is a threshold

value that indicates the rejection point. Those predictions with lower confidence than

the given threshold get rejected, whereas those more confident are predicted using the

original classifier.

In the context of the present (observing the black-box constrain), the φ(x) function

can not be learned together with the classifier when it comes to pre-trained black-boxes.

In this case, we must obtain the confidence score from the input and the correspond-

ing prediction. In probabilistic classifiers, risk can derive from the observation of the

output probabilities employing different metrics, like Least Confidence Culotta and

McCallum [2005], Margin of Confidence Scheffer et al. [2001] and Variation Ratios

and Predictive Entropy, as proposed in Gal [2016].

In the present work, we propose to use the aleatoric uncertainty as the φ(x) func-

tion to model the uncertainty of black-box classification systems. To validate that the

proposed method better captures the uncertainty in such models, we apply the perfor-

mance measures proposed in Condessa et al. [2015].

An option to automatize the selection of the rejection point could be to use a method

like Geifman and El-Yaniv [2017a], where they use a binary search to optimise it.

Chapter 3

Uncertainty Estimation for Black-box

Classifiers

Contents
3.1 Gaussian approach . 50

3.1.1 Measuring uncertainty . 53

3.2 Dirichlet approach . 54

3.2.1 Dirichlet concentration reparameterization 55

3.2.2 Inference in the Dirichlet setting 57

3.2.3 Measuring uncertainty . 58

3.3 Out-of-distribution . 60

3.4 Illustration of the Dirichlet Wrapper and Uncertainty Measure-

ment . 62

3.4.1 Analysis of the measured uncertainties when using the wrap-

per . 65

3.4.2 Evaluating out-of-distribution samples 70

In the previous sections, we have reviewed how different approaches modelled the

uncertainty in classification systems. The present chapter aims to address the primary

goal of this thesis which is how to model this uncertainty for black-box classifiers. In

previous works, we saw how to model uncertainty they apply different changes in the

training process. It included different ways to model the weights as RVs, or changes

in the output activation units to include some variability, turning them into probability

distributions.

49

50 Chapter 3. Uncertainty Estimation for Black-box Classifiers

In the case of black-box pre-trained classification systems, like those offered by

third-party APIs, there is no chance to modify the model or to retrain it using the orig-

inal data. These constraints prevent the application of previously described methods

and demands for the development of new methods that work directly with the outcomes

of those black-boxes.

In this work, we focus on discriminative models, where the goal is to capture the

distribution that generated the outputs based on the data. We assume that from the data

in X ,Y and x∗, we want to know the distribution that generated y∗. However, in the

case of using a black-box classifier, the model is given, and the parameters W ∗ set:

p(y∗|x∗,X ,Y) =
∫

W∗
p(y∗|W∗,x∗)p(W∗|X ,Y)W (3.1)

, where the probability p(W∗|X ,Y) is equal to 1.

Thus, the fact that black-box fixes the model prevents us from estimating the epis-

temic uncertainty, as there is no chance to add variability to the parameters W∗, forcing

us to focus on the aleatoric one: p(y∗|W∗,x∗). In the rest of the chapter, we describe

different approaches that we analysed to estimate the aleatoric uncertainty, following

the same timeline that took us to the final method proposed. These approaches con-

sist of different versions of a deep learning wrapper, based on a probability distribution,

that given a black-box classification system allows the measurement of aleatoric uncer-

tainty. Moreover, at the end of the chapter, we illustrate the different methods analysed

through the thesis employing a toy problem to compare them and to show the intuition

behind the proposed method.

3.1 Gaussian approach

The first version of the wrapper for modelling aleatoric uncertainty builds on top of the

idea of considering p(y∗|W∗,x∗) as a Gaussian RV. Because we are assuming a black-

box model, we are constrained to the estimation of heteroscedastic uncertainty. Thus,

we consider that we have a fixed deterministic black-box model f W(x) with undis-

closed non-trainable parameters W. Our goal is to compute the variability of the term

p(y∗|W,x∗) in Equation 3.1. For the sake of simplicity, let us assume that this condi-

tional distribution follows a normal distribution, i.e. y∗|W,x∗ ∼ N (f W(x∗),σ2(x∗)),
where f W(x∗) is the black-box model evaluated at the data point x∗, and σ2(x∗) is

a function of the input data that models the variance for that data point. In regres-

sion tasks, applying this approximation to the log-likelihood adds a term to the loss

3.1. Gaussian approach 51

that depends on σ(x) Kendall and Gal [2017]. However, in classification tasks, this

approximation is not as straightforward as in regression.

We consider the scenario where f W(x∗) is implemented by a deep neural network.

In general, the computation of aleatoric uncertainty for fully trainable networks con-

siders the introduction of a stochastic layer to represent the output logits space. Here

we consider that the output logits, u, of the classification model follow a Normal dis-

tribution, with a diagonal variance term, described as follows,

u∼N (f W(x∗),diag(σ2(x∗))) (3.2)

p = so f tmax(u) (3.3)

y∼Categorical(p) (3.4)

by reparameterizing the logits, u, we obtain,

u = f W(x∗)+
√

diag(σ2(x∗)) · ε, ε∼N (0,1) (3.5)

In its simple approach, working with this stochastic layer requires of its sampling.

In general, we would need to compute the expected value by applying Monte Carlo

sampling, obtaining,

E[p] =
1
M

M

∑
m=1

so f tmax(um) (3.6)

When applied to a cross-entropy loss allows us to obtain the loss we will use for the

wrapper, i.e.

L(W) =
1
N

N

∑
i=1
− 1

C

C

∑
c=1

yi,c log(pi,c) = (3.7)

1
N

N

∑
i=1
− 1

C

C

∑
c=1

yi,c log
1
M

M

∑
m=1

so f tmax(um) (3.8)

Where N is the number of examples, C is the number of classes and M is the number

of Monte Carlo samples.

Hence, the goal of the wrapper is to endow this model with an aleatoric uncertainty

layer given a black-box model. For all purposes, we can not change the black box as

it is frozen, and we do not have access to the internals of the model. However, we

require an entry point that allows connecting the black box to the wrapper. In this

work, we consider that the black box gives access to the pre-normalized logits (before

52 Chapter 3. Uncertainty Estimation for Black-box Classifiers

Figure 3.1: Architecture of the full aleatoric model. The blue components correspond to

the original classifier as exposed by the API. In orange, there is the aleatoric trainable

part of the model.

the softmax) of the last layer1. This is a very mild requirement. It is agnostic to

the particular architecture of the classifier since it does not interfere with the model

internals and all models display this same structure making the wrapper generic for

any architecture.

Figure 3.1 shows an illustration of the proposed wrapper architecture. The wrapper

architecture aims at computing aleatoric uncertainty as expressed in Equation 3.5. In

that equation we distinguish two components: the original black-box model, shown in

blue/gray in figure 3.1, corresponding to f W(x) and the trainable wrapper architecture,

shown in orange/light gray in figure 3.1, that will gives us σ(x). The first component

corresponds to the logits of the original classifier, what we call µ-logits, and is the

result of the last layer when applying the original classifier to the inputs. The second

component, σ(x), is the aleatoric part of the equation and will capture the variance of

the predictions. We train this component using as input the same latent representation

resulting from applying the frozen model to the training examples. The result of this

component is what we call the σ-logits. It is worth mentioning that the composition

1This is consistent with the former use of the notation of the model, f W(x).

3.1. Gaussian approach 53

of the µ-logits and σ-logits define a normal random variable layer. The evaluation of

the network using random variables requires of its sampling. Note that the same input

might generate different instantaneous predictions. Through this sampling process, we

use the reparametrization trick, as described in Equation 3.5 to be able to propagate

gradients through the wrapper layers and infer the output distributions and statistics.

In particular, by analysing the variance of these predictions, we may infer the aleatoric

uncertainty and use it as a heuristic for rejecting uncertain predictions, as shown in

section 4.

3.1.1 Measuring uncertainty

Using the former wrapper, we have access to the variance of the logits. In this section,

we discuss how to compute uncertainty scores based on that measure. In regression

systems, it is usual to approximate the output with a Gaussian random variable. In this

setting, the uncertainty score can be identified with the associated standard deviation.

However, in classification systems, obtaining a single estimate is harder as the random

variable is applied to the set of the last layer logits.

For the case of classification, we apply two of the metrics described in section

2.3.3: variation ratios and predictive entropy.

The first heuristic, variation ratios, evaluates the variability of the predictions made

when sampling different predictions using the aleatoric model, sort of a measure of

the dispersion of the predictions around their mode. Once we trained the wrapper, to

obtain the variation ratios we sample M logits as defined in equation 3.2, obtaining M

predictions after applying so f tmax(uy). Then we count the number of votes in M to

the majority class:

c∗ = arg max
c=1,...,C

M

∑
t=1

1[yt
x = c]. (3.9)

And from that we obtain the variation ratio:

V R = 1− fc∗

M
(3.10)

The second heuristic, predictive entropy, is based on the information theory and

evaluates the average amount of information contained in the predictive distribution.

In this case, again, we sample M predictions, drawing samples from the Gaussian

distribution N (f w(x∗),diag(σ2(x∗))). After obtaining the predicted output probability

distribution, ŷ, we compute the predictive entropy by:

54 Chapter 3. Uncertainty Estimation for Black-box Classifiers

H=−∑
c
E[y∗]c logE[y∗]c. (3.11)

Those results with lower entropy values will correspond with confident predictions,

whereas a high entropy will correspond with high uncertainty. In our case, we evalu-

ate variation ratios and predictive entropy as both can be obtained directly analysing

the output layer of the black-box model. We discard mutual information because it

describes the relationship between the distribution of the output and the posterior dis-

tribution over the parameters of the model, W, and it is more related to epistemic

uncertainty.

In this first approach, by considering the output logits as Gaussian RV, we achieved

the goal of being able to measure the aleatoric uncertainty of the black-box predictions.

Even though in some circumstances practitioners will have access to the output logits

of the system, this requirement of having access to these internal components breaks

the constraint of working with black-box systems. It is, therefore, necessary to extend

the method with a solution that can deal directly with the output of the classifier.

3.2 Dirichlet approach

Very often, third-party classification APIs will deliver their predictions as probabili-

ties over the predicted classes or, in some cases, as categorical values, preventing the

application of methods that require access to the internals of those APIs, like those pre-

sented in the previous section or section 2.3.2. In this section, we propose a wrapper

algorithm that takes a black-box model and operates on top of it. As such, there are

several constraints to observe. First, we need to exclusively operate on the inputs and

outputs of the black-box classifier, as we will not have access to the internals of the

model, such as the logits. Second, the input of the wrapper has to be compatible with

the original distribution over the output classes. Finally, the wrapper must be able to

operate on both probabilistic and categorical classification systems.

In the previous section, we showed how by using independent Gaussian random

variables to model the pre-activation value of the logits, we could then use Monte

Carlo sampling to obtain the variance of the final output. In our opinion, independent

Gaussian distributions impose unnecessary assumptions and need for additional nor-

malization steps. Here we consider a more natural approach for the output distribution

and suppose it can be modelled by a Dirichlet probability distribution, following Ma-

3.2. Dirichlet approach 55

linin and Gales [2018]; Chen et al. [2018]; Gast and Roth [2018]. Again, the problem

with these approaches is that they do not conform to the black-box constraints here

imposed, as they need to train the model and to have access to internal parameters.

We propose a new method that combines a Dirichlet output distribution with a Monte

Carlo sampling method that allows for modelling the uncertainty while observing the

black-box restrictions. This approach results in a model that is compatible with both

hard and soft predictions.

3.2.1 Dirichlet concentration reparameterization

We denote with Dtarget the data set of our target application. This is the data cor-

responding to the domain we want to apply the black-box classifier, f bb. Dtarget is

composed of pairs {(xi,yi)}i=1...N , where yi ∈ RCtarget and Ctarget is the number of dif-

ferent classes. This data set is usually different from that used to train the black-box

model. When applying the black-box model to our data, we obtain a new prediction

y∗target = f bb(xtarget).

Sometimes, the original black-box model may have been trained with a slightly

different set of target labels, Cbb, than our domain. Thus we also consider a mapping

function m that maps the classes from one set to the other, m(y) : Cbb→Ctarget .

A wrapper is defined as a model, f w, that considers a black-box and operates on its

inputs and outputs while potentially adding new features:

yw = f w(f bb(x),x). (3.12)

Initially, we will consider the output of the black-box classifier, f bb(x), to be a vec-

tor representing the multinomial distribution associated to the probabilities of belong-

ing to each of the output classes. Later we will relax this assumption and consider pure

hard categorical outputs. The proposed wrapper changes the black-box output vector

into a random variable that follows a Dirichlet distribution. This can be regarded as

modelling the probability of the multinomial black-box output:

p(yw|x,m(ybb),w)∼ Dir(α), (3.13)

where w are the parameters of the wrapper.

We will also impose the wrapper to preserve the translated multinomial output

m(ybb) of the black-box in expectation:

56 Chapter 3. Uncertainty Estimation for Black-box Classifiers

E(yw) = m(ybb). (3.14)

We propose to use a decomposition of the concentration parameter in two terms

to relate the output of the black-box classifier2, ybb, with the concentration parameter,

α, in the Dirichlet distribution of the wrapper. To that effect, we recall some basic

statistics of the Dirichlet distribution.

Given a Dirichlet random variable x ∈ RC with concentration parameter α ∈ RC,

the expected value of the distribution is defined as E(xi) = αi/
C
∑

k=1
αk.

Observe that the expected value has the same properties as a probability distribu-

tion and that the output of the black-box ybb ∈RC can also be regarded as a probability

distribution. In this sense, we could directly use the output of the black box as the

concentration parameter. However, by taking advantage from the fact that each term of

the concentration parameter is not necessarily constrained to the interval [0,1], we in-

troduce a new scalar parameter, β ∈R that allows the wrapper to adapt the distribution

properties to the input data:

α = βybb. (3.15)

Introducing this parameter fulfills the constraint in Eq.3.14, i.e. E(yw) = ybb.

By means of this decomposition, while the output of the black-box classifier stands

for the mean, parameter β defines the shape of the distribution. This approach share

similarities to the decompositions present in other works in a different context3 Malinin

and Gales [2018]; Chen et al. [2018]; Gast and Roth [2018].

This decoupling allows to effectively isolate the contribution of the black-box and

the value of parameter β. Figure 3.2 shows the integration of the wrapper (in light

green colour) with the black-box classifier (in grey). Observe that the wrapper consists

of two blocks:

• The Dirichlet reparameterization layer of the wrapper that decouples the influ-

ence of the black-box model from the rest (see the dashed line)

• A deep learning architecture4 which aims to compute the scalar value of β.

2For the sake of simplicity. Without loss of generalization, in this section, we assume an identity m
function so that m(ybb) = ybb

3It is worth noting that in the context of those works, there is a degradation in performance when
using Dirichlet. This degradation does not happen in our case since the black-box model is non-mutable.

4The architecture used in this figure corresponds to the one used in the experimental section.

3.2. Dirichlet approach 57

Figure 3.2: Model used to estimate the aleatoric uncertainty from the original black-box

model

Moreover, the figure also shows a possible decomposition of the most usual build-

ing blocks:

• A latent representation block that adapts the to the nature of the input data (e.g.

recurrent models or embeddings for natural language processing, or convolu-

tional blocks for image data).

• A standard feedforward/convolutional block that squeezes the information into

the single output parameter β.

3.2.2 Inference in the Dirichlet setting

Similarly to the Gaussian approach, we approximate the expected value of the classifi-

cation probabilities using Monte Carlo sampling. The main difference here is the fact

that we sample the learned Dirichlet distribution to directly obtain the output instead

of each of the logits individually for each sample, as follows:

58 Chapter 3. Uncertainty Estimation for Black-box Classifiers

yw ∼ Dir(α), E[yw] =
1
M

M

∑
m=1

yw
m, (3.16)

,

where M is the number of times that we sample from the Dirichlet distribution.

Still, to be able to apply backpropagation to this setting, where we sample from the

Dirichlet distribution, we need a way to compute the gradients for the cumulative dis-

tribution function. As in the Gaussian version, where we applied the reparametrization

trick, here we apply the Implicit Reparameterization Gradients method proposed in

Figurnov et al. [2018]. Thus, now it is possible to obtain the gradient of the Dirichlet

parameters.

The trick here is to use a standardization function Sφ(z) that when applied to a sam-

ple from qφ(z), removes its dependence on the distribution parameters. This function

allows computing the gradient of the expectation as the expectation of the gradients,

making it possible to obtain the gradients by sampling from the distribution. In the

case of using Dirichlet functions, the proposed standardization is a Gamma function,

zi ∼ Gamma(αi,1), and then
(

z1
∑

D
j=1 z j

, · · · , zD
∑

D
j=1 z j

)
∼ Dirichlet (α1, . . . ,αD).

This expectation obtained from the samples drawn from the resulting Dirichlet dis-

tribution defines the outcome of the model. This is used to define the loss function for

our learning stage. Given a set of N training samples, we propose to use a regularized

version of the cross-entropy loss function as follows,

L(W) =− 1
N

N

∑
i=1

1
C

C

∑
c=1

yi,c logE[ybb
i]c +λ‖β‖2

=− 1
N

1
C

N

∑
i=1

C

∑
c=1

yi,c log
(1

M

M

∑
m=1

ybb
m,i,c
)
+λ‖β‖2. (3.17)

Observe that we introduce the norm of the β value in the minimization function.

This term is required since the unregularized cross-entropy forces the value of β to

grow unbounded. By adding this term, we control its growth and govern the trade-off

with a scalarization parameter λ.

3.2.3 Measuring uncertainty

Modelling the output of the black-box model with the described Dirichlet layer allows

studying the variability of the parameters of the black-box output distribution. Using

Monte Carlo simulation, we can characterize the heteroscedastic aleatoric uncertainty.

3.2. Dirichlet approach 59

Similarly to what we did with the Gaussian variables associated with the logits, in this

case, we can directly sample from the Dirichlet distribution.

Then, we can use standard techniques for measuring uncertainty like variation ra-

tios or predictive entropy.

To measure Variation ratios, in the Dirichlet version of the wrapper, for a given

data point x we sample M output vectors from the Dirichlet wrapper yt
x, t = 1 . . .M,

and compute the variation ratios as usual,

V R = 1− fc∗

M

where fc∗ = ∑t 1[yt
x = c∗], and c∗ corresponds to the sampled majority class,

c∗ = arg max
c=1,...,C

M

∑
t=1

1[yt
x = c]. (3.18)

Alternatively, for predictive entropy considers the average amount of information

contained in the predictive distribution. In our case, this corresponds to the vectorial

output of the black-box. Results with low entropy values correspond to confident pre-

dictions, whereas high entropy leads to large uncertainty. Since the wrapper allows us

to model the variability of the parameters of the black-box output distribution, we can

compute a score takes into account the variability of the predicted value by sampling

from the wrapper inferred distribution, the sampled predictive entropy, defined as

H=−∑
c
E[ybb]c logE[ybb]c. (3.19)

At this point, we would like to remark two relevant aspects of the Dirichlet version

of the wrapper:

• It is fully compatible with a black-box setting. By operating directly with the out-

put of the original classification system, the wrapper abstracts completely of any

implementation or training details. This capacity of abstraction allows applying

the wrapper for any BB, no matter whether the model implementation uses the

last state-of-the-art DL architecture, a simple logistic regression or whether the

outputs come from human evaluations. As illustrated in Figure 3.2, as long as

we have a way to represent inputs in the latent representation layer, we can ap-

ply the ANN and the Dirichlet composition layers to obtain the corresponding

output probability functions.

60 Chapter 3. Uncertainty Estimation for Black-box Classifiers

• The present method is not constrained to probabilistic classification systems.

The Dirichlet wrapper can consider the output of categorical classifiers as a prob-

ability distribution centred around the predicted class and apply the same method

as for probabilistic outputs. This compatibility with hard predictors adds a layer

of abstraction and makes the proposed method fit in scenarios where confidence

based methods are not applicable.

All in all, we showed how the Dirichlet wrapper here presented provides practi-

tioners with means for obtaining the aleatoric uncertainty of the predictions of a given

classification API. Once trained to the target use case and deployed, the method will be

able to identify inputs where the BB is uncertain. A potential issue of this method may

come with possible variations in the inputs of the system once deployed in the wild.

The apparition of out-of-distribution examples that are from different distributions of

both the original and the target data sets may cause a degradation of the system. In

the next section, we see how to extend the proposed method to deal with these OOD

points.

3.3 Out-of-distribution

In the previous section, we introduced a deep learning wrapper, based on the Dirichlet

distribution, that given any black-box classification system allows aims to measure

three different uncertainty sources, namely:

• uncertainty associated with cases that are close to the decision boundary,

• uncertainty associated with cases that, while being far from the decision bound-

ary, get overconfident but erroneous predictions,

• uncertainty associated with out of source distribution cases.

These measures may serve as a prophylactic measure against the possible chang-

ing environment or distribution shifts in the data when the system is deployed. With

regards to the last one, the OOD detection, we align with the definition given in Ma-

linin and Gales [2018], where they explicitly separate the three types of uncertainty,

i.e. epistemic, aleatoric and distributional. In this section, we describe a method for

tackling the third one, where the goal is to identify samples that do not belong to the

distributions of data used for training nor the original black box neither the wrapper.

3.3. Out-of-distribution 61

The method proposed here for furnishing the Dirichlet wrapper with OOD detec-

tion consists of inserting, during the training stage, OOD samples and teaching the

model to tell from in and out of distribution examples. To illustrate the concept, we

can think of the process as a sort of vaccine that inoculates OOD samples to the model

to develop antibodies that allow their detection on prediction time. To ease this detec-

tion, we force the model to attribute maximum entropy to the OOD points detected.

During the learning phase, we use the minimization of an extended version of the

loss function presented in equation 3.17. In this OOD version, this loss function is split

into two terms. The goal of this separation is to use an alternating learning schema that

will allow to train the estimation of the uncertainty for the target training set and also

model out-of-distribution points. For the former, we use a regularized version of the

cross-entropy loss function described in equation 3.17:

Lale(W) =− 1
N

N

∑
i=1

1
C

C

∑
c=1

yi,c logE[yw
i]c +λ‖β‖2

=− 1
N

1
C

N

∑
i=1

C

∑
c=1

yi,c log
(1

M

M

∑
m=1

yw
m,i,c
)
+λ‖β‖2

(3.20)

The second term of the loss minimizes the Kullback-Leibler divergence between

the expected output and a Uniform distribution over the labels Lee et al. [2018]:

Lood(W) = K L(U(y)‖E[yw]) = K L(U(y)‖
(1

M

M

∑
m=1

yw
m)
)

(3.21)

Both losses are combined into the final training loss as follows,

L(W) = (yo)Lale(W)+(1− yo)Lood(W) (3.22)

In order to enable the alternating learning scheme when modelling the out-of-

distribution, we include an additional label yo that is used to change among both losses

and identifies whether the sample corresponds to the target data set or to an additional

set that is modelling the out-of-distribution. To this effect, the original training set gets

augmented with a set of inputs that are intentionally out of the original distribution.

For example, in natural language processing, the added elements might belong to a

domain different from the target problem. In computer vision, they might be images

from categories not present in the target application. The label, yo, will tell whether

the input belongs or not to the distribution.

62 Chapter 3. Uncertainty Estimation for Black-box Classifiers

As mentioned, the KL term in equation 3.21 will force the model to emit a max-

imum entropy for OOD. Later on, by applying the same metrics for obtaining an un-

certainty score, we will be able to identify those points, allowing the practitioner to

intervene on these problematical predictions.

3.4 Illustration of the Dirichlet Wrapper and Uncertainty

Measurement

In this section, we introduce a toy scenario to illustrate the intuition of the proposed

method. Recall that we are dealing with a black-box, single-label probabilistic clas-

sifier. The outcome of this system consists of a probability distribution of C different

possible categories. We assume an original black-box, trained to match the categorical

distribution of the labels in an unknown source domain.

This experiment aims to illustrate how the methods presented in this work, i.e.

Gaussian, Dirichlet and OOD versions of the uncertainty wrapper. The first part of

the experiment focuses on comparing Gaussian and Dirichlet implementations of the

wrapper. Results will show how the Dirichlet version delivers better results than its

Gaussian counterpart in addition to being applicable in actual black-box scenarios.

We generate a total of 20000 two dimensional points corresponding to three differ-

ent classes, each of them modelled as a Gaussian distribution (Figure 3.3(a)). These

points are split into train, validation and test sets. We randomly select 9600 points for

training a classification model for the three classes. The accuracy of the resulting clas-

sifier reaches 88.86%. We consider the trained classification model as the simulated

black-box.

In order to exemplify potential changes in the data distribution when applying the

black-box to a different data domain, we introduce in the test set a new set of points,

labelled as class 2, far from the class 2 original distribution. We can consider these

points as a new cluster from class 2 that was not present in the source domain. Figure

3.3(d) shows the result of applying the trained classifier to the test dataset. Note that

the new cluster falls in the class 1 region, inducing an erroneous prediction for all these

points. Now the black-box classifier achieves a 71.76% accuracy score in the test data

set.

Observing the decision regions defined by the classifier, one can see three potential

locations where predictions are prone to be wrong. The first error-prone region corre-

3.4. Illustration of the Dirichlet Wrapper and Uncertainty Measurement 63

Figure 3.3: Result of applying the black-box classification to the toy test dataset

(a) Original synthetic

dataset used to train the

black-box classifier (BB)

(b) Uncertainty as mea-

sured using the softmax

response of the BB

(c) Uncertainty as mea-

sured using predictive en-

tropy using a Gaussian

RV for the logits

(d) Learned BB applied to

the test synthetic dataset

(e) Uncertainty as mea-

sured using variation ra-

tios using a Gaussian RV

for the logits

(f) Uncertainty as mea-

sured using predictive en-

tropy resulting from the

application of the pro-

posed Dirichlet wrapper

sponds to the decision boundary between class 2 against the rest of the classes. The

second one corresponds to the boundary between class 0 and class 1. Points close to

these regions produce uncertain predictions. The third region of high uncertainty can

be found in the area of the new class 2 cluster.

Figure 3.3 shows the results of applying the different methods for computing the

uncertainty on this simple problem. Figure 3.3(b) shows the uncertainty measured by

using the softmax-response of the predictions obtained with the black-box classifier.

Figures 3.3(c) and 3.3(e) show the uncertainty obtained by computing the predictive

entropy and variation-ratios respectively, by using a Gaussian random variables for

the logits. Finally, Figure 3.3(f) displays the uncertainties obtained by using the pro-

64 Chapter 3. Uncertainty Estimation for Black-box Classifiers

posed Dirichlet wrapper. Figures show the uncertainty metrics computed for each

class, where the lighter the colour of the point is, the more confident the associated

prediction. Looking at the results, we can see that the Dirichlet method exhibits the

best performance, detecting all enumerated sources of uncertainty.

Looking in detail to Figure 3.3(b), we observe how this metric can detect the un-

certainty from the decision boundaries, but it is not able to identify the new cluster. We

have to recall that in this case, we consider the output of the classifier as a single point

estimate, and we try to compute the confidence of the prediction based only on the out-

put probabilities. We, therefore, apply a method based on the distance to the decision

boundary of the predictions obtained, the softmax response, traditionally used as the

confidence score for probabilistic classification systems.

In figures 3.3(c) and 3.3(e), we apply a the Gaussian version of the wrapper, as pre-

sented in section 3.1, for capturing the aleatoric uncertainty. We would like to recall

that in this case, we need to access the logits as they model the noise of the output pre-

dictions with Gaussian random variables with a diagonal variance term for each of the

logits, u, as follows u∼N (f w(x∗),diag(σ2(x∗))). This approach models uncertainty

through the σ parameter expressing the variance of the distribution of the logits. As

detailed in section 3.2.3, after modelling the logits as Gaussian random variables, we

still need to obtain a numerical score for the uncertainty. Hence, we use two differ-

ent methods for obtaining such score: predictive entropy (Figure 3.3(c)) and variation

ratios (Figure 3.3(e)). If we analyse the results obtained with the two uncertainty met-

rics, we see that each one focuses on a different type of uncertainty. Predictive entropy

can capture the uncertainty of points near the decision boundary, similarly to softmax

response. Variation ratios are able to capture the uncertainty associated with the noisy

class two labels, while at the same time capturing some of the uncertain points at the

decision boundaries.

In order to understand this behaviour, we should examine the value of the standard

deviation for each random variable. Observing the values for the σ parameter, we

distinguish three different behaviours. First, for points that are far from the decision

boundary between the original class 2 samples and the rest, the values for the sigma

tend to be close to 0. As it gets closer to this boundary, the value of sigmas starts

to grow until 20. Finally, the class 2 points that correspond to the new cluster at the

bottom right, they all exhibit the higher σ values, from 20 to more than 40.

Based on these observations, we can conclude that the entropy of the original pre-

diction heavily determines predictive entropy. As such, it can detect the uncertainty

3.4. Illustration of the Dirichlet Wrapper and Uncertainty Measurement 65

at the decision boundary. However, it is not able to identify the new class 2 clus-

ter. All those points have a very confident (wrong) prediction, resulting in a minimal

probability for the correct class. Then, even if the uncertainty associated with those

points is high, the effect of the sampling on those points is diluted when averaging for

computing the entropy value.

Regarding variation ratios, we observe more sensitivity for the different kind of

uncertainties included in this toy problem. First, for points in the decision boundaries,

subtle variations in their logit values likely forces a change in the predicted class for

some cases. This accounts for larger uncertainty values associated with points close

to the decision boundaries. More interesting is the new class 2 cluster. Changes in

the predicted label have a significant impact in this case. This is since we are merely

counting changes and not averaging them as in the case of predictive entropy. Thus,

even when the number of prediction changes is below 10%, the associated uncertainty

is higher compared to those points that have no modifications.

Finally, Figure 3.3(f) shows the uncertainty score obtained by using the Dirichlet

wrapper. Next subsection explicitly analyses this figure and builds the intuition of the

different types of uncertainty found.

3.4.1 Analysis of the measured uncertainties when using the wrap-

per

Now we analyse some examples to see how the Dirichlet method works on different

cases. To that effect, we will refer to Figure 3.4, where different cases are plotted

jointly with their predicted Dirichlet distribution. The bottom line figures show the

contour and concentration of the points distributed in the simplex of the three classes.

Each class corresponds to one of the corners of the triangle: the bottom left corner one

corresponds to class zero, the bottom right one to class one and the top corner to class

two.

3.4.1.1 Example of a very confident prediction

First, we consider a point from class 2 that belongs to the original class 2 set at the

left side of the figure. In this case, we would expect it to have low uncertainty, as it

corresponds to a confident and right prediction. Figure 3.4(a) shows an example of

this case as a yellow star. The point belongs to class 2 and the classifier outputs a

prediction of [3.01× 10−10,2.75× 10−11,1.00× 100], very confident of belonging to

66 Chapter 3. Uncertainty Estimation for Black-box Classifiers

(a) Example of a

point at very con-

fident region from

class 2

(b) Example of a

point at the deci-

sion boundary be-

tween class 0 and

1

(c) Example of a

point that belongs

to class 2 but is

predicted by the

BB as class 1 with

high confidence.

(d) Example of a

point that belongs

to class 1 but is in

the class 0 region

(e) We observe

how, as the predic-

tion is right, the

concentration of

the distribution is

around class 2.

(f) We observe

how the distribu-

tion concentrates

in the line between

the class 0 and 1.

(g) We observe

how the distribu-

tion concentrates

around class 1

even though the

point belongs to

class 2

(h)We observe

how the distribu-

tion concentrates

around class 0

even though the

point belongs to

class 1

Figure 3.4: Examples of points from the toy problem together with the corresponding

Dirichlet distribution.

3.4. Illustration of the Dirichlet Wrapper and Uncertainty Measurement 67

class 2. After applying the wrapper, we obtain a beta value of 0.11, quite high for the

operational regime used. The alphas in this case are [3.03×10−11,2.77×10−12,1.00×
10−1]. Figure 3.4(e) shows the corresponding Dirichlet distribution. In this example,

we see that the points concentrate around the top corner, that correspond to a very

confident prediction of class 2, which aligns with their mean value [2.54×10−8,2.54×
10−8,9.99×10−1]. In this case, the entropy value is very low: 3.86×10−10.

3.4.1.2 Example of a prediction at the decision boundary

Next, we examine a class 1 point that corresponds to the set at the bottom, close to the

decision boundary between class 0 and 1. In this case, because the prediction is not

that confident, we would expect it to have a higher uncertainty than before. The chosen

point corresponds to the yellow star in Figure 3.4(b).

The point belongs to class 0, and the classifier outputs a prediction of [4.12×
10−1,5.87× 10−1,2.67× 10−6], predicting the point as class 1 but with less con-

fidence. After applying the wrapper, we obtain a beta value of 0.084, quite high

for the operational regime used, but less than before. The alphas in this case are

[3.45×10−2,4.91×10−2,2.23×10−7]. As before, we observe the distribution in Fig-

ure 3.4 (f), where we see a higher variance. We can see that there is a higher probability

concentrated around the line that connects class 0 and class 1. This is a clear indication

that the confidence in that prediction is small. In this case, the entropy is a bit higher,

0.68.

So far, the uncertainty detected does not differ a lot from what a softmax response

in a well-calibrated classifier can identify. The critical point of the proposed method

lies in its ability to detect overconfident predictions; this is high confidence samples

with wrong predictions.

3.4.1.3 Example of a prediction for wrongly labelled points

Consider now an example from class 2 in the new cluster. The chosen point corre-

sponds to the yellow star in Figure 3.4(c). In this case, the point belongs to class

2, but the classifier outputs a prediction of [1.13× 10−3,9.98× 10−1,8.86× 10−24],

considering it to be class 1 with high confidence. Note that despite the high confi-

dence value, the prediction is wrong if we are in the target domain. After applying

the wrapper, we obtain a beta value of 1.06× 10−4. The alphas, in this case, are

[1.21× 10−7,1.06× 10−4,9.46× 10−28] that produce the density displayed in Figure

68 Chapter 3. Uncertainty Estimation for Black-box Classifiers

3.4(g). In this case, the distribution shows large probabilities in the connections be-

tween class 1 and 0 and 2. Computing the expected value in this case, we obtain

[0.33,0.33,0.33] that corresponds to a value of entropy of 1.09. This assigns the point

with considerable uncertainty.

3.4.1.4 Example of a non-captured uncertain point

Finally, we would like to discuss a limitation of the proposed method for the toy sce-

nario described here. Let us analyse, for example, a point that belongs to class 1

but is surrounded by class 0 points. The point corresponds to the yellow star in Fig-

ure 3.4(d). The point belongs to class 1, but the classifier outputs a prediction of

[9.93× 10−1,6.60× 10−3,3.07× 10−8] and considers it to be class 0 with high con-

fidence. After applying the wrapper, we obtain a beta value of 0.087, not very small.

The alphas, in this case, are [8.73×10−2,5.80×10−4,2.70×10−9] that produces the

density distribution shown in Figure 3.4(h).

In this case, we observe that the higher density values are found around class 0

and 1. We can further see this effect by observing that the values corresponding to

those classes are more significant in the expected value of the distribution, [9.92×
10−1,7.60×10−3,7.88×10−10]. In this case, the entropy is quite low, 0.044, and the

wrapper fails to assign this point a substantial uncertainty value. The Dirichlet wrapper

is not able to capture the wrong point, since, despite belonging to class 1, it is in a zone

with a very high concentration of points labelled as 0.

3.4.1.5 Example wrap-up

To sum up, we observe that for confident predictions, the value of the beta parameter

is much higher than for those with high uncertainty. Here we would like to high-

light that, in the proposed model, β belongs to the interval [0,1). This interval differs

from other approaches that use Dirichlet for modelling the uncertainty, Sadowski and

Baldi [2018]; Malinin and Gales [2018]; Chen et al. [2018], where they work with

unbounded values bigger than 1 for the β value. Working with values of β > 1 pro-

duces simpler uni-modal distributions. On the contrary, in the regime of work used in

this work, the distribution is originally multi-modal, thus avoiding stability problems

regarding the lack of control in the growth of the parameter.

Working in the interval [0,1), we observe that confident predictions usually take

values of βs close to 0.1. When drawing samples from the corresponding Dirichlet

3.4. Illustration of the Dirichlet Wrapper and Uncertainty Measurement 69

distribution, this value alters a bit the expectation of the output, but still produces sim-

ilar values as before. For points where the black-box itself is uncertain, for example,

those close to the decision boundary, the wrapper assigns a β a bit lower, around 0.05.

This β still does not affect too much the generated prediction samples drawn from the

Dirichlet. Thus, the final prediction keeps being uncertain. Finally, for those predic-

tions that are very confident but correspond to very erroneous outcomes, the model

estimates a very low β. In this case, the Dirichlet is forced to output points with high

entropy, hence marking them as uncertain predictions.

Figure 3.5: Classifier with rejection using different uncertainty metrics: softmax re-

sponse, Gaussian predictive entropy and variation ratios and Dirichlet wrapper predic-

tive entropy.

Consequently, we claim that the proposed method seems to better capture the no-

tions of uncertainty in this simple problem when working with the soft predictions

of the black-box classification system. We now compare the results of applying the

proposed uncertain parameter for the rejection system against the rest of the metrics

analysed. Figure 3.5 shows the results of the three performance metrics described in

section 2.5.3. From left to right, the chart displays the value of the corresponding

metric after rejecting the percentage of points indicated. We observe how the softmax-

response and the Gaussian wrapper entropy exhibit similar results, as they struggle on

detecting the noisy class 2 data points. The variation ratios obtained with the wrapper

shows a bit better result than the previous two, but it is still insufficient to detect wrong

predictions at low rejection ratios. The two best results correspond to variation ratios

of the Gaussian version and the predicted entropy obtained with the Dirichlet wrapper.

In the case of the later, by rejecting only 20% of the less confident points, we can in-

crease the accuracy of the preserved data points in almost 20 points, outperforming the

results obtained with Gaussian RV. Besides, we want to highlight that in the case of the

70 Chapter 3. Uncertainty Estimation for Black-box Classifiers

wrapper, the model has no access to the internal details of the black-box.

3.4.2 Evaluating out-of-distribution samples

Following the motivation of the Dirichlet wrapper and the role of uncertainty as an ex-

cellent proxy for capturing noisy labels when using black-box models in target applica-

tions, in this section, we motivate the addition of the out-of-distribution loss presented

in section 3.3.

Taking advantage of the toy problem introduced in the present section, we will

show how to train the model to enable the detection of out-of-distribution data inputs.

First, we generate random points drawing samples from a Uniform distribution centred

around the original training distribution of the wrapper. The goal of adding these points

is to simulate potential out-of-distribution inputs that might arise in prediction time.

Next, we add these synthetic data points to the training dataset defined as in figure 3.6

(a). To differentiate between the two types of points, we add an extra label with values

yo = 1 for the original data points and yo = 0 for the newly generated data inputs. With

the augmented dataset, we trained the wrapper model using the out-of-distribution loss

function as defined in equation 3.22.

Figure 3.6(b) shows the results of applying the out-of-distribution wrapper, the

darker, the more uncertain the prediction is. In order to validate the proposal, we

further draw the samples from a broader Uniform distribution, corresponding to a

100× 100 bounding box around the test points, instead of the 20× 20 one used for

training. In this respect, we validate that the method generalises for out-of-distribution

samples not seen during the training stage. The results show that the out-of-distribution

wrapper preserves the ability to detect uncertain predictions, showing similar results

to those obtained in 3.3. Moreover, we also note how the model identifies the new

out-of-distribution points by assigning a high uncertainty to those points.

To sum up, we conclude that the out-of-distribution wrapper here proposed is a

handy tool for assessing the performance of a black-box classifier given a new target

application. With only a small fraction of labelled data from the target domain, we can

train the model to estimate the uncertainty of future predictions. This uncertainty can

help with the evaluation of different black-box APIs or can provide an actionable mech-

anism to improve the performance of them in production through rejection strategies.

We also show how by augmenting the target datasets and using a new loss function, we

can deliver a more robust method of uncertainty estimation that can prevent the model

3.4. Illustration of the Dirichlet Wrapper and Uncertainty Measurement 71

(a) (b)

Figure 3.6: (a) Training set including out-of-distribution points from U [−20,20] and (b)

Uncertainty of points in U [−40,40] (The darker, the more uncertain)

from degrading in case of future changes in the distribution of the inputs.

The experiment described in the present section validates the proposed method as

illustrated with a toy scenario. In the next section, we showcase how the wrapper is

also capable of modelling uncertainty for more complex situations dealing with real

data.

Chapter 4

Experiments

Contents
4.1 Sentiment Analysis . 74

4.1.1 Relation with calibration methods 80

4.2 Image Classification . 84

4.2.1 Uncertainty evaluation of unknown classes 88

4.2.2 Out of Distribution Image Case 89

This section contains the experiments carried out to validate the effectiveness of

the proposed model using real data. The tests included aim at simulating the central

use case of this work, i.e. to evaluate the performance of a pre-trained black-box in a

target scenario, and how to respond when this performance is not satisfactory.

In all the cases, we take a source domain with a large number of labelled training

samples and proceed to simulate a black-box classification model for this source do-

main. Next, we freeze this model and pretend its exposition as it was an API part of an

MLaaS platform.

We then change roles and act as a consumer of this API. At this stage, we assume

that we do not have any information about the details of the API and we want to

evaluate it when applied to a given target domain with a small number of labelled

training samples. The first thing to do in this case is to assess whether or not the output

of the API, the predicted categories, fit our problem or whether a mapping function

to adapt the API results to the target use case is required. Then, we proceed to call

the API for our target dataset and obtain the output predictions, calling the mapping

function when needed.

73

74 Chapter 4. Experiments

In order to simulate the case when the classifier outputs hard predictions, we gen-

erate a new set of predictions based on the probabilities obtained with the black-box.

However, only the class with maximum probability is reported as output.

Next, we take the target training samples together with the predictions obtained to

train the Dirichlet wrapper, after what we can call it to estimate the uncertainty score

associated with each prediction. At this point, we can use the score to reject uncertain

predictions or to evaluate the performance on each class and decide whether to keep

using the API, try another one or collect more data to train our model.

In particular, in the experiments described, we make use of the uncertainty score

for building a rejection system. To evaluate the performance of the resulting rejection

classifier, we follow the measures proposed by Condessa et al. [2015], as described in

section 2.5.3.

Scenarios proposed to validate the method include use cases in Natural Language

Processing and Computer Vision. In particular, we consider the problems of sentiment

analysis and image classification. In both cases, pre-trained models are applied to solve

different tasks than those they were trained for. This scenario shows how the use of

uncertainty to detect problematic examples can help in increasing the overall quality

of the predictions obtained for the new task.

4.1 Sentiment Analysis

The impact of domain shift and the consequent domain adaption of machine learning

models is very relevant in the field of natural language processing. Many previous

works have studied this issue in NLP tasks in general Mou et al. [2016] and sentiment

analysis in particular Tan et al. [2009]; Glorot et al. [2011]. The central goal of these

contributions was to train models that are capable enough to capture the differences

between domains and be able to generalize across them. Differently from these words,

our proposal focuses on the problem of detecting this shift between the training dataset

of an original black-box model and the data of a given application and provide a means

to identify difficult examples that may lead to overconfident and wrong predictions.

In order to validate the method proposed, we applied the wrapper to an NLP-based

sentiment analysis system applied to product reviews. The experiment consists of

training a sentiment analysis classifier using reviews of a given domain and evaluating

the uncertainty of the predictions obtained when applying the pre-trained model to a

new domain.

4.1. Sentiment Analysis 75

To illustrate real scenarios, we include two types of experiments: in the first one, we

train the black-box with Amazon products of a section with multiple reviews. These

reviews correspond to 1 to 5 stars assessments made by Amazon’s users. Then we

apply the black-box to reviews of another department and evaluate the performance

of the model. The second experiment consists of training a model using reviews of

Yelp venues, rated as 1 to 5 stars, and apply the model for IMDB movie reviews in a

binary setting. In this case, we need to provide the mapping function that transforms

the original five classes to a binary problem. Finally, for the sake of completeness,

we also apply the Yelp classifier to the Amazon’s product reviews and the Amazon

classifier to the SST-2, adapting in each case for the number of target classes. In total

it adds to 30 experiments.

The experiments are conducted using the following datasets:

• Amazon Multi-Domain Sentiment dataset contains product reviews taken from

Amazon.com from many product types (domains) Blitzer et al. [2007]. The

dataset consists of ratings from 1 to 5 stars despite 3-star reviews, i.e. reviews

with neutral sentiment were not included in the original.

• Yelp challenge 20131, the goal is to classify reviews about Yelp venues where

their users rated them using 1 to 5 stars. This dataset is used to train the black-

box applied to the SST-2 problem. As mentioned, we need to transform the Yelp

dataset from a multiclass set to a binary problem, grouping the ratings below

three as a negative review, and as positive otherwise.

• Stanford Sentiment Treebank Socher et al. [2013], SST-2, binary version where

the task is to classify a movie review is positive or negative.

Table 4.1 lists the datasets used for the NLP experiments.

We train a deep learning classifier for the big datasets(Yelp2013 and Amazon’s

music and DVD product reviews) using a model based on a representation obtained

averaging the Word2vec embeddings Mikolov et al. [2013b] on the review words. Once

trained, we use the model to predict the sentiment using the rest of datasets.

After obtaining the predictions for each target domain, we used the proposed Dirich-

let wrapper to estimate the uncertainty score for each prediction. Finally, we evaluate

the accuracy of the predictions using different values of the uncertainty score for re-

jecting uncertain examples.

1https://www.yelp.com/dataset/challenge

https://www.yelp.com/dataset/challenge

76 Chapter 4. Experiments

Table 4.1: Datasets used for NLP experiments

Train Validation Test N. classes

Amazon apparel 5,828 648 2,776 4

Amazon camera 4,666 519 2,223 4

Amazon computer 1,994 222 555 4

Amazon dvd 89,593 9,955 24,884 4

Amazon electronics 14,495 1,616 6,903 4

Amazon health care 4,551 506 2,168 4

Amazon kitchen 12,509 1,390 5,957 4

Amazon magazines 2,639 294 1,258 4

Amazon music 109,733 12,193 52,254 4

Amazon toys 9,465 1,032 2,630 4

Amazon videos 22,793 2,533 10,854 4

SST-2 65,538 872 1,821 2

YELP2013 186,189 20,691 22,991 5

Figure 4.1 compares the performance metrics of the three rejection measures: the

entropy of the predictions of the black-box (baseline), the predictive entropy of the

wrapper (pred. entropy) and the predictive entropy of the wrapper when applied to a

categorical output of the black-box (pred. entropy cat.).

First, we compare the two uncertainty metrics derived from the wrapper when ap-

plied to soft and hard predictions with the predictive entropy of the black-box. This

metric is obtained directly from the predictions of the pre-trained model by computing

the entropy over the softmax probabilities.

It is worth noting that one can replace predictive entropy by other different metrics

without differences in the results. In Figure 4.2 we compare results obtained using

different baseline metrics„ namely:

• Predictive entropy, Dagan and Engelson [1995], understood as the entropy of the

softmax probability distribution.

• Softmax response, as the maximal neuronal response of the softmax layer.

4.1. Sentiment Analysis 77

a

b

c

Figure 4.1: Apply Amazon Music BB to Video reviews, Yelp 2013 BB to SST-2 movie

reviews and Amazon video BB to SST-2 movie reviews

• Least confidence, as defined in Culotta and McCallum [2005].

• Margin of confidence and ratio of confidence, as defined in Scheffer et al. [2001],

understood as the margin and ratio respectively between the first and second

more confident output units.

Moreover, we would like to remark that the comparison with the predictive entropy

obtained for categorical predictions is included as a reference, taking advantage of the

fact that here we simulate the API. In the real world, the baseline used here will not be

available as it is based on the output probability distribution.

On each experiment, the three pictures refer to the three performance metrics (non-

rejected accuracy, classification and rejection quality) on each rejection point. The

X-axis corresponds to the percentage of points rejected at a given point, and the Y-axis

78 Chapter 4. Experiments

Figure 4.2: Comparative of different baseline metrics that obtain an uncertainty score

directly from the black-box prediction, as applied for the Yelp black-box to SST-2 sce-

nario. The baselines compared show similar performance when used for sorting uncer-

tain predictions in the rest of the experiments.

depends on each performance metric. For the non-rejected accuracy, the value displays

the accuracy of the predictions for the non-rejected points. For the classification qual-

ity, the value shows the percentage of points that are right and not rejected plus the

wrong and rejected versus all the points. Finally, the rejection quality corresponds to

a proportion between the rejection and the misclassification. In the first and second

metrics, the closer the value to 1 the better, while in the third one values above 1 mean

a good rejection point. An optimal rejection point, therefore, will be one that combines

excellent performance in the three metrics.

To apply the rejection, we proceed as follows. For each point in the test set, we

proceed to apply the uncertainty function. In the case of the black-box predictive en-

tropy, the value is obtained directly from the prediction, computing the entropy of the

probability distribution of the softmax. For the Dirichlet predictive entropy and the

variation ratios, we apply the wrapper to the input and the corresponding black-box

prediction to obtain the uncertainty. Once we have a value of the uncertainty for each

point, we sort from more to less uncertain, and we start to reject those more uncertain.

Each point in the X-axis shows the performance of the resulting classifier after reject-

ing x% points in the test dataset. Each line in the plots displays the performance of

each of the uncertainty functions compared.

According to the results obtained, the predictive entropy obtained after the pro-

posed method shows better behaviour in all scenarios and metrics. As we remove

more samples according to the uncertainty, the proposed method displays much better

accuracy than its counterparts. These results validate the hypothesis that the aleatoric

4.1. Sentiment Analysis 79

uncertainty computed by the wrapper effectively captures the confidence in the predic-

tion and the samples prone to error. Note that, although our proposal performs much

better, its absolute gain depends on the scenario. In domains where there is a need to

adapt the original model to the particular target application, there is more to gain by

using the wrapper. If we observe the classification quality (plot at the centre of each

figure) and the rejection quality, we can see that the proposed metric is also excellent

at rejecting the miss-classified points.

Concerning the predictive entropy for the categorical version of the black-boxes,

we observe that when compared with the performance of the baseline and the predictive

entropy of the soft predictions, in some scenarios we can observe that the performance

is a bit lower. However, we have to recall that this comparison is not fair as in cate-

gorical scenarios, we will not have access to the probabilities. Even though we still

appreciate that it is a good rejector, even when the predictions are categorical.

Figure 4.3 displays a summary of the results obtained. On each plot, the x-axis

corresponds to the accuracy of the black-box as applied to a target domain2. Y-axis

shows the accuracy of the predictions obtained by applying the wrapper model, and

the non-rejected accuracy for 10%, 20%, and 30% of the points using the predictive

entropy. We show the results for both the probabilistic and categorical versions of the

black-boxes. We also plot a line that displays the accuracy of the BB to compare the

results.

In all the experiments, the accuracy obtained when using rejection outperforms

the original black-box, and we can observe how by increasing the number of rejected

points, the accuracy increases accordingly. Even though the gains are higher for the

probabilistic version, we still can appreciate how the predictive entropy for the cate-

gorical predictions behaves like a good rejector too.

Moreover, we would like to remark the value in the first plot, that displays the

accuracy of the wrapper applied to the target data source. In this case, to predict the

values, we follow the same approach as for the entropy: once we have modelled the

output as a Dirichlet distribution, we sample from this distribution N times and take

the expected value as the prediction. In this case, we would like to highlight how just

applying the wrapper on top of the original black-box, in some applications, we see an

increase in the accuracy without the need of rejecting any sample.

Table 4.2 and Table 4.3 shows a detail of the numerical results obtained during the

2The gap between accuracy scores correspond to the difference of results obtained from the binary
and multi-label classifiers applied for movies and Amazon products respectively

80 Chapter 4. Experiments

(a)

(b)

Figure 4.3: Non-rejected accuracy of the wrapper compared to original BB with both

probabilistic (a) and categorical (b) outputs

experiments for the different combinations tested, both for probabilistic and categori-

cal outputs. The first column, black-box source acc, describes the accuracy obtained

for the source dataset after training the original classifier. Next, column black-box

target acc. describes the accuracy obtained when applying the black-box to the target

dataset. The third column displays the result of obtaining predictions by applying the

wrapper model, sampling from the learned Dirichlet output distribution. The rest of

the columns show the non-rejected accuracy and the classification and rejection quality

after rejecting 10, 20 and 30% of the points, using the proposed predictive entropy as

a rejector.

4.1.1 Relation with calibration methods

As mentioned in section 2.4.1, calibration methods ensure that the output of proba-

bilistic classification systems describes a proper probability distribution. Thus, one

can take advantage of these probabilities to not only emit a prediction but also to esti-

mate the confidence of such prediction. Calibration methods, as described in Guo et al.

[2017], are similar to the proposed uncertainty wrapper in the sense that they actuate

4.1. Sentiment Analysis 81

on already trained models, working on the output of the classifier to deliver a measure

of confidence. Nevertheless, some differences make the proposed method to be more

generic and applicable.

First of all, in the present work, we proposed a method for evaluating the predic-

tions obtained using a pre-trained black-box system, checking whether the obtained

results fit for the current problem or not. It is not the goal of this method to alter the

predictions obtained, but to evaluate their appropriateness for the given domain. Cali-

bration, on the other hand, alters the probabilities of the output. This alteration, though,

will not affect the results when using those predictions for rejecting unconfident points,

as it is the order of this probabilities what matters.

However, the main difference comes from the constraint imposed by black-box

systems: we do not have access to the internals of the model. The calibration methods

described in Guo et al. [2017] all work at the logits level3, which prevent them from

being applied in the scenario here described. Moreover, as outlined in the results,

the proposed method also applies when the output of the black-box system is a hard

categorical result and not a probabilities distribution, situation in which the use of

calibration is not possible.

To illustrate the relationship between calibration and the proposed uncertainty wrap-

per, we take advantage of the simulation of a black-box scenario in the NLP test cases.

There, we have access to the logits of the original model, so we can apply a calibration

method and observe how it relates to the wrapper.

In the case of training a reviews classifier using Yelp reviews and apply it to clas-

sify movie reviews from the SST-2 data set as positive or negative, the first thing that

we observe in figure 4.4 is that the model trained with the source dataset is well cali-

brated. We also notice that when applied to the target domain, the calibration is lost,

as expected, as the distributions of both datasets are different. The most relevant result

observed in this plot is the fact that the result after applying a recalibration method,

Temperature scaling Guo et al. [2017], to the SST-2 predictions are similar to the cali-

bration of the probabilities obtained directly from the wrapper, so the proposed method

already yields calibrated predictions.

Table 4.4 shows the Expected Calibration Error, ECE, Naeini et al. [2015], com-

puted for each of the experiments included in the present paper in the following sce-

narios:

3Logit activations are those previous to the last activation function, usually a softmax function in
neural networks applied to classification.

82 Chapter 4. Experiments

Figure 4.4: Reliability diagram displaying the calibration of the black-box applied to

the source, target domain and after calibrating for the target domain, compared to the

calibration obtained by the predictions from the wrapper

• ECE of the Black-box applied to the original data source, except for the case of

image classification, where we do not have access to the initial training set.

• ECE of the Black-box applied to the target data source.

• ECE of a calibrated version of the Black-box using the Temperature scaling

method applied to the target data set.

• ECE of the predictions obtained from the wrapper applied to the target data

4.1. Sentiment Analysis 83

source by drawing 1000 samples from each Dirichlet distribution.

Results show that predictions obtained using the wrapper are similar to those ob-

tained after applying the calibration or even better, as in the case of image classifica-

tion.

(a)

(b)

Figure 4.5: (a) Apply SST-2 BB to Yelp with calibrated black-box probabilities for base-

line. (b) Apply SST-2 BB to Yelp with calibrated probabilities for training the beta

Next, we validate that the calibration has no direct impact on the outcomes of the

wrapper. We use temperature scaling Guo et al. [2017] for calibrating the predictions

for the target dataset. We then run two different experiments to evaluate the impact of

calibration in the proposed method:

• Compare the wrapper uncertainty with the predictive entropy of the calibrated

output. In this experiment, we validate that even with calibrated probabilities, the

confidence of those probabilities alone is not enough to capture the uncertainty

of overconfident and erroneous predictions. Figure 4.5 (a) displays the rejection

performance comparing the proposed uncertainty obtained using the wrapper

against the predictive entropy using the calibrated probabilities from the original

model.

84 Chapter 4. Experiments

• Compare the wrapper uncertainty using calibrated and non-calibrated probabil-

ities as input for the modelling of the uncertainty. Figure 4.5 (b) shows the

performance of the wrapper trained using the calibrated version of the probabil-

ities.

In both cases, we do not appreciate substantial changes in performance when using and

not using calibrated probabilities compared to the uncalibrated version. The only ob-

servation that we can remark is the fact that when using the calibrated probabilities as

the input for training the wrapper, the training process seems to be smoother than when

using the non-calibrated predictions. Moreover, we find that using calibrated probabil-

ities improves the performance of the variation ratios metric in the first stages of the

rejection process. Nevertheless, we want to remark that the wrapper itself already has

the effect of producing well-calibrated predictions by itself.

4.2 Image Classification

Similar to the NLP case, in computer vision applications, the adaptation of the trained

models to new domains is essential. In the literature, one can find different works

that tackle the problem using different approaches Chen et al. [2020]; Liang et al.

[2019], including the observation of discrepancies in the distributions of both source

and target domains or proposing a conditional adaptation network for cross-domain

image classification. In our work, we focus on estimating the uncertainty of every

single prediction by applying the proposed wrapper and use this uncertainty to discard

overconfident and erroneous predictions.

In this use case, we show how the proposed wrapper applies in transfer learn-

ing scenarios. Here the simulated API, the reference pre-trained model, are different

Keras4 implementations of a MobileNet.V2 Sandler et al. [2018], DenseNet Huang

et al. [2017] and Inception.V3 Szegedy et al. [2016] models, trained for classifying

1000 classes of the ImageNet dataset Deng et al. [2009].

As the target domain we use the STL-10 dataset Coates et al. [2011]. Due to the

difference in the output categories(1000 to 10), a mapping between both domains is

needed. Figure 4.6 illustrates the mapping process used to adapt the ImageNet pre-

trained models to the 10 STL-10 classes. Taking advantage of the fact that each Im-

ageNet label belongs to a SynSet in WordNet, we assign a SynSet for each of the 10

4https://keras.io/applications/

https://keras.io/applications/

4.2. Image Classification 85

STL labels. Next, we use the Wu-Palmer Similarity Wu and Palmer [1994] to find

those ImageNet Sysnet that are more similar to the chosen STL ones.

Figure 4.6: Mapping from the 1000 classes of ImageNet to the 10 of STL-10 based on

the Wu-Plamer similarity of the ImageNet sysnet as definied in WordNet to the corre-

sponding STL-10 cateogry

Thanks to this mapping method now we can assign ImageNet predictions to the

STL-10 labels. For each new example, we use the ImageNet models to obtain the

probabilities for each of the 1000 categories. Then we use the mapping to get only

the probabilities of the categories mapped with the corresponding STL-10 classes. For

each STL-10, we compute the weighted average, considering the number of assigned

ImageNet classes for each STL-10 label. In addition to the labels mapping, we needed

to rescale the size of STL-10 images, which were 96x96x3, to the ImageNet size,

224x224x3. Later on, we use these images together with the corresponding predictions

as the input for the Dirichlet method to estimate the uncertainties.

Finally, we proceed in the same way as done in the Sentiment analysis case, using

the uncertainty score to evaluate the performance of different rejection points.

Similarly to the NLP experiments, Figure 4.7 displays the performance metrics of

the three rejection measures (baseline), pred. entropy and pred. entropy cat.) for the

tests run in the computer vision case.

In this domain, we can see that by only rejecting 10% of the more uncertain pre-

dictions, we increase in 8 points the accuracy for the remaining images. This increase

goes over 12 points when rejecting 20% of the less confident predictions. In all the

cases, the results using the predictive entropy of the wrapper outperform the baseline

of using the softmax response of the BB. Observing the values for the classification

86 Chapter 4. Experiments

(a)

(b)

(c)

Figure 4.7: (a) Apply ImageNet BB trained with MobileNet V2 model to STL-10; (b)

Apply ImageNet BB trained with DenseNet model to STL-10; (c) Apply ImageNet BB

trained with Inception V3 model to STL-10

quality, we can determine that it takes its maximum when discarding 20%, indicating

that this could be a good rejection point for these cases.

About the categorical version, we observe that it behaves differently depending

on the original black-box model. For MobileNet.V2, we see that it outperforms the

baseline for the first 40% predictions. For the rest of the models, we observe that

this threshold falls to around 30%. This difference might be explained by the fact

that during the selection of the model used for implementing the wrapper, we observe

4.2. Image Classification 87

that MobileNet showed the best results. However, as commented for the NLP case,

uncertainty still appears as a good rejector, especially if we bear in mind the fact that

there is no chance to use the softmax response or similar metrics in such scenarios.

Figure 4.8 illustrates the overall results obtained in the computer vision scenario

for both probabilistic and categorical versions of the black-box. In this domain, even

though the results of rejection are outstanding, we observe how the accuracy of the

prediction obtained from sampling the output from the wrapper, with no rejection,

does not improve the results obtained from applying the original black-box. This lack

of improvement might be caused by the fact that for this domain, and due to the need

for mapping the BB and target labels, the cases of over-confident predictions might

be very relevant. For preventing this overconfidence, rejection is a handy tool, as the

results show.

Figure 4.8: Results of applying the wrapper to the target STl-10 dataset with different

rejection points.

After analysing the results obtained, now it is time to design the rejection mecha-

nism for the classification model. Take, for example, the use case where we are using

the ImageNet model to predict STL-10 images. Looking at the values of the classifica-

tion and rejection quality measures, they show their maximum around 10% of rejected

points, (84.67% and 54.32% respectively). Observing the accuracy of the kept exam-

ples, 83.54%, we conclude that only by rejecting this 10% we increase the accuracy of

the model in almost 8 points.

If we examine the value of the uncertainty score predicted at the selected rejection

88 Chapter 4. Experiments

point, 2.3024, we can see that this value is quite close to the maximum predictive

entropy for ten classes, 2.3026. Thus we can see that the proposed wrapper is taking

the more uncertain and erroneous points to the maximum entropy, as we saw in the toy

scenario for the wrong labelled class 2 points. Filtering the predictions with uncertainty

scores higher than this 2.3024 value, we discarded 798 of the 8000 test data points.

In case we wanted to put this system in production for classifying new STL-10-like

images, for those predictions that reached an uncertainty score higher than 2.3024, we

could warn the user about the uncertainty of the prediction, or directly discard those

examples.

To find the right balance between the number of rejected points and the accuracy

of the kept data will depend on each use case, as in some cases we would rather high

accuracy no matter the number of discarded points. In contrast, in some other cir-

cumstances, the system will have to give a prediction for all the data points. In any

case, the proposed method will always be able to indicate a level of confidence for the

prediction, leaving it in the hands of the user to make the final decision.

4.2.1 Uncertainty evaluation of unknown classes

During the description of the image classification use case, we mention the necessity of

developing a mapping between the 1000 ImageNet labels and the 10 used in STL. By

using similarities between the WordNet SynSets that defined the ImageNet categories

and those selected for STL, we created a correspondence between each STL category

and N matching ImageNet labels.

Although in many cases the mapping can identify clear matchings for each STL-10

category in those predicted in ImageNet, there are some cases where the equivalence

is not that evident. In Figure 4.6, we see the number of ImageNet categories that are

bound to each STL-10 category. One can see that there are categories well represented,

dogs mapped to Japanese spaniel, Maltese dog, Pekinese, Shih-Tzu, up to 34 different

categories; others like horses have an inferior representation. In the latter case, the only

mapping identified with horses is the zebras. Beyond the biological discussion of their

similarities, it is clear that in this case, the level of uncertainty might be high when

applying the ImageNet to identify horses, as it shows when looking at the distribution

of the uncertainties obtained for the "horses" category displayed in Figure 4.9(a).

Moreover, in classes that exhibit more matches, some of those matches are not

very accurate. Take, for example, the deers category. In the WordNet mapping, we

4.2. Image Classification 89

(a) (b)

Figure 4.9: (a) Distribution of uncertainty scores for the "horses", and (b) "deers" cate-

gories in STL-10

find similarities with hartebeests, impalas, gazelles, but also with wild boars, warthogs,

hippopotamus, water buffalos, bison, Arabian camels or llamas. Figure 4.9 (b) shows

the distribution of uncertainties for this class. In this case, we see that the model is

more confident than in the case of horses. We conjecture that this may be because we

consider the weighted contributions of the mappings, and this is helping to identify

deers as a combination of those animals.

4.2.2 Out of Distribution Image Case

Beyond the uncertainties induced by the possible mismatches in the label mapping, in

this section, we also analyse the role of the out-of-distribution term added to the loss

function of the wrapper. To validate the out-of-distribution method, we take advantage

of the fact that the STL-10 data set incorporates, according to the description, "100000

unlabeled images for unsupervised learning". These examples are extracted from a

similar but broader image domain. Figure 4.10 show some examples of these images

that contain other types of animals (bears, rabbits, etc.) and vehicles (trains, buses,

etc.) in addition to the ones in the labelled set.

In training time, we added 1000 of these unlabeled images to the STL-10 training

set for learning the uncertainties, labelling them according to whether they belong to

the distribution or not. After training the out-of-distribution wrapper, we take 1000

images more from the unlabeled data set to test the method.

In figure 4.11, we can see the results of applying the original wrapper and the

new out-of-distribution version to the test unlabelled images. We can observe how

the new version outperforms the previous one detecting the out-of-distribution images

90 Chapter 4. Experiments

Figure 4.10: Examples of images included in the unlabeled set of STL-10 images

by assigning a high entropy to them. Thus, on prediction time, the out-of-distribution

version of the wrapper can detect not only uncertainties associated with noisy labels

of images included in the training set but also can protect against the addition of im-

ages that are away from the original distribution. By analysing the uncertainty of the

predictions, the practitioner will be able to identify such new categories and decide on

whether discard them or train a specific model for them.

Moreover, in figure 4.12, we analyse the performance of the new method compared

to the original one with regards to the rejection ability when applied to the labelled test

images. In this part of the experiment, we use both the original wrapper and the out-

of-distribution version to the test set in STL-10 to compute the prediction uncertainty.

4.2. Image Classification 91

(a) Original wrapper (b) Out-of-distribution version

Figure 4.11: Histogram of the distribution of uncertainties of the test unlabeled images

from STL-10 obtained using the two wrapper versions

Figure 4.12: Rejection performance metrics comparing the results from applying the

softmax response, the predictive entropy of the original wrapper and the OOD version

Next, we use these uncertainties for rejecting uncertain predictions, as in section 4.2.

We observe how, despite a small reduction of the rejection performance, the wrapper

still retains its ability to detect the uncertainty in erroneous predictions, outperforming

the softmax response.

92 Chapter 4. Experiments

Table 4.2: The accuracy obtained by training a standalone classifier, applying the API

and the proposed wrapper for each domain

BB source
acc.

BB target
acc.

Wrapper target
acc.

Non-reject.
acc.

(10/20/30%)

Class.
quality

(10/20/30%)

Reject.
quality

(10/20/30%)

Apply Yelp BB to SST-2 89.18±0.08% 77.13±0.52% 82.62±0.49%

82.43±0.22%

88.19±0.50%

93.60±0.16%

80.04±0.39%

83.11±0.80%

83.05±0.23%

6.03±0.45

6.04±0.51

4.97±0.07

Apply Yelp BB to Amazon apparel 87.86±0.02% 87.68±0.02%

91.37±4×10−4%

94.15±2×10−3%

95.75±3×10−3%

86.18±9×10−4%

82.38±3×10−3%

75.82±5×10−3%

5.25±2.5%

4.18±0.4

3.13±0.2%

Apply Yelp BB to Amazon camera 87.31±0.04% 87.44±0.00%

91.58±7×10−4%

94.68±2×10−3%

96.62±1×10−3%

87.09±1×10−3%

83.07±3×10−3%

77.57±1×10−3%

6.66±4.4

4.84±0.4

3.54±0.0

Apply Yelp BB to Amazon computer 84.32±0.02% 85.58±0.00%

90.24±1×10−3%

93.61±3×10−3%

96.24±4×10−3%

86.16±2×10−3%

83.56±6×10−3%

78.66±7×10−3%

7.29±6.5

5.03±0.7

3.75±0.3

Apply Yelp BB to Amazon electronics 82.52±0.04% 81.87±0.00%

85.39±1×10−4%

88.81±1×10−3%

92.04±2×10−3%

81.06±2×10−4%

79.46±3×10−3%

76.21±3×10−3%

3.54±0.7

3.47±0.2

3.08±0.1

Apply Yelp BB to Amazon health 80.95±0.02% 80.69±0.00%

83.24±6×10−4%

86.36±7×10−4%

88.70±1×10−3%

78.35±1×10−3%

76.74±1×10−3%

72.78±1×10−3%

2.59±0.7

2.81±0.0

2.45±0.0

Apply Yelp BB to Amazon kitchen 83.22±0.04% 82.90±0.00%

86.43±4×10−4%

89.47±2×10−3%

92.36±2×10−3%

82.15±9×10−4%

79.75±4×10−3%

75.91±4×10−3%

4.03±2.8

3.51±0.3

3.02±0.1

Apply Yelp BB to Amazon magazines 83.14±0.03% 86.70±0.01%

88.44±1×10−3%

92.33±6×10−3%

94.58±6×10−3%

85.05±3×10−3%

83.59±1×10−2%

78.37±1×10−2%

7.10±3.2

5.17±1.4

3.62±0.5

Apply Yelp BB to Amazon toys 85.09±0.02% 86.05±0.01%

88.53±5×10−3%

91.08±1×10−4%

94.08±1×10−4%

83.74±1×10−3%

81.27±3×10−3%

76.15±3×10−3%

3.03±0.9

4.43±0.2

3.93±0.1

Apply Yelp BB to Amazon videos 85.91±0.03% 87.65±0.00%

91.75±1×10−4%

94.65±2×10−3%

96.26±9×10−4%

89.15±2×10−4%

85.38±4×10−3%

78.77±1×10−3%

11.92±0.2

5.78±1.0

3.76±0.0

Apply DVD BB to SST-2 89.18±0.08% 78.31±0.03% 81.13±0.00%

82.99±1×10−3%

88.03±2×10−3%

93.05±5×10−3%

80.47±2×10−4%

81.92±4×10−3%

81.36±8×10−3%

5.41±5.6

5.14±0.4

4.41±0.4

Apply DVD BB to apparel 64.87±0.02% 64.73±0.09% 64.38±0.00%

68.19±4×10−4%

71.54±1×10−3%

74.30±4×10−4%

67.83±8×10−4%

69.54±2×10−3%

69.09±5×10−3%

3.37±1.8

2.96±0.1

2.45±0.1

Apply DVD BB to camera 54.25±0.12% 53.62±0.00%

58.21±5×10−4%

60.38±1×10−3%

62.19±2×10−4%

59.94±8×10−4%

61.77±2×10−3%

62.23±5×10−3%

3.59±1.7

2.47±0.3

2.00±0.1

Apply DVD BB to computer 60.54±0.07% 59.96±0.00%

66.04±2×10−3%

69.67±5×10−3%

71.16±6×10−3%

67.56±4×10−3%

70.09±9×10−3%

68.28±9×10−3%

5.76±1.7

3.88±0.3

2.52±0.1

Apply DVD BB to electronics 56.83±0.02% 54.93±0.00%

59.40±1×10−4%

62.02±4×10−3%

64.69±1×10−4%

60.06±2×10−4%

62.37±8×10−4%

63.70±3×10−3%

2.54±1.9

2.31±0.0

2.09±0.0

Apply DVD BB to health 59.82±0.03% 58.69±0.00%

62.61±4×10−4%

65.76±3×10−3%

68.23±3×10−3%

62.69±7×10−4%

65.19±5×10−4%

65.49±4×10−3%

2.59±0.6

2.53±0.3

2.16±0.1

Apply DVD BB to kitchen 61.28±0.03% 60.41±0.00%

63.94±4×10−4%

66.52±2×10−3%

70.82±3×10−3%

63.94±7×10−4%

66.52±5×10−4%

67.77±4×10−3%

2.71±3.8

2.69±0.3

2.45±0.1

Apply DVD BB to magazines 62.79±0.05% 64.16±0.00%

67.38±4×10−4%

70.88±2×10−3%

74.19±6×10−4%

68.04±7×10−4%

70.14±4×10−4%

70.58±1×10−2%

4.65±0.3

3.51±0.4

2.82±0.3

Apply DVD BB to toys 60.76±0.03% 60.19±0.00%

63.83±5×10−4%

66.67±2×10−3%

69.32±5×10−3%

63.94±1×10−4%

65.71±4×10−4%

66.09±4×10−2%

2.87±2.1

2.53±0.2

2.20±0.1

Apply DVD BB to video 64.98±0.03% 66.49±0.00%

69.11±5×10−4%

71.09±3×10−3%

74.04±5×10−3%

69.93±1×10−4%

70.05±7×10−4%

68.64±8×10−2%

4.72±0.1

3.10±0.1

2.37±0.1

Apply Music BB to SST-2 93.08±0.03% 76.65±0.15% 79.71±0.03%

81.61±7×10−4%

86.67±1×10−3%

92.25±2×10−3%

79.67±2×10−4%

81.43±5×10−3%

81.91±7×10−3%

5.85±3.3

5.26±0.6

4.65±0.4

Apply Music BB to apparel 71.88±0.01% 63.68±0.32% 63.31±0.03%

65.53±7×10−4%

69.73±1×10−3%

72.62±2×10−3%

65.90±1×10−4%

67.70±1×10−3%

67.80±3×10−3%

2.69±1.1

2.61±0.1

2.30±0.0

Apply Music BB to camera 59.96±0.09% 60.35±0.00%

63.16±7×10−4%

66.66±3×10−3%

69.59±2×10−3%

63.59±1×10−3%

66.54±6×10−3%

67.30±3×10−3%

3.12±1.3

2.91±0.4

2.45±0.1

Apply Music BB to computer 62.34±0.13% 62.81±0.00%

68.64±2×10−3%

72.12±3×10−3%

74.92±4×10−3%

70.30±4×10−3%

72.11±5×10−3%

71.60±6×10−3%

7.71±1.2

4.28±1.2

3.01±0.3

Apply Music BB to electronics 56.64±0.12% 55.17±0.00%

59.35±0.22%

62.34±0.32%

64.77±0.61%

60.46±0.40%

63.36±0.51%

64.29±0.86%

3.05±0.30

2.67±0.15

2.22±0.13

Apply Music BB to health 58.16±0.26% 57.34±0.00%

61.35±1×10−3%

64.09±2×10−3%

66.85±3×10−3%

62.10±2×10−3%

64.19±4×10−3%

65.23±5×10−3%

3.02±4.2

2.54±0.3

2.23±0.1

Apply Music BB to kitchen 60.53±0.10% 60.29±0.00%

63.76±2×10−4%

66.81±3×10−3%

70.08±4×10−3%

64.16±4×10−4%

66.29±5×10−3%

67.50±7×10−3%

3.25±1.0

2.76±0.4

2.45±0.2

Apply Music BB to magazines 60.96±0.14% 62.06±0.01%

65.07±1×10−3%

69.25±4×10−3%

72.23±5×10−3%

65.77±2×10−3%

69.39±7×10−3%

69.71±8×10−3%

3.95±3.6

3.65±0.6

2.79±0.3

Apply Music BB to toys 60.38±0.11% 60.69±0.00%

63.73±6×10−4%

66.44±2×10−3%

69.45±4×10−3%

64.15±1×10−3%

65.73±4×10−3%

66.65±6×10−3%

3.21±3.5

2.60±0.8

2.32±0.1

Apply Music BB to video 62.73±0.03% 64.27±0.00%

67.17±1×10−4%

70.05±2×10−3%

72.52±7×10−4%

68.13±2×10−4%

69.32±4×10−3%

68.76±1×10−3%

5.62±0.8

3.32±0.3

2.52±0.0

4.2. Image Classification 93

Table 4.3: The accuracy obtained by training a categorical standalone classifier, apply-

ing the API and the proposed wrapper for each domain

BB source
acc.

BB target
acc.

Wrapper target
acc.

Non-reject.
acc.

(10/20/30%)

Class.
quality

(10/20/30%)

Reject.
quality

(10/20/30%)

Apply Yelp BB to SST-2 89.18±0.08% 77.13±0.52% 81.14±0.00%

82.38±2×10−3%

87.89±3×10−3%

93.61±3×10−3%

80.27±4×10−3%

82.58±6×10−3%

83.01±4×10−3%

5.87±2.5

5.70±0.4

4.97±0.3

Apply Yelp BB to Amazon apparel 87.86±0.02% 87.60±0.00%

91.01±2×10−3%

94.06±2×10−3%

96.37±1×10−3%

85.54±4×10−1%

82.24±3×10−3%

76.69±1×10−3%

4.62±2.5

4.12±0.1

3.34±0.0

Apply Yelp BB to Amazon camera 87.31±0.04% 86.90±0.00%

90.78±4×10−4%

94.79±2×10−3%

97.36±8×10−3%

85.67±6×10−4%

83.94±4×10−3%

77.60±1×10−3%

5.03±1.9

4.93±0.5

3.81±0.0

Apply Yelp BB to Amazon computer 84.32±0.02% 85.87±0.00%

90.20±1×10−3%

92.91±3×10−3%

95.92±4×10−3%

86.09±2×10−3%

82.48±1×10−3%

78.23±2×10−3%

7.16±4.4

4.55±0.2

3.65±0.1

Apply Yelp BB to Amazon electronics 82.52±0.04% 82.99±0.00%

84.40±1×10−4%

88.22±2×10−3%

92.86±1×10−3%

79.27±2×10−4%

78.51±4×10−3%

77.37±2×10−3%

2.44±0.7

3.15±0.2

3.34±0.1

Apply Yelp BB to Amazon health 80.95±0.02% 80.88±0.00%

83.00±8×10−4%

86.34±2×10−3%

89.59±2×10−3%

77.97±1×10−3%

76.72±3×10−3%

74.02±3×10−3%

2.40±0.7

2.80±0.2

2.68±0.1

Apply Yelp BB to Amazon kitchen 83.22±0.04% 82.90±0.00%

85.84±4×10−4%

89.30±9×10−3%

92.78±8×10−3%

81.11±9×10−3%

79.47±1×10−2%

76.49±1×10−2%

3.41±3.2

3.43±1.4

3.15±0.5

Apply Yelp BB to Amazon magazines 83.14±0.03% 83.35±0.01%

86.03±9×10−4%

90.66±2×10−3%

95.00±3×10−3%

80.79±1×10−3%

80.98±4×10−3%

78.95±5×10−3%

3.24±1.4

4.02±0.2

3.76±0.2

Apply Yelp BB to Amazon toys 85.09±0.02% 85.72±0.00%

88.42±7×10−4%

92.20±4×10−3%

94.57±1×10−3%

83.53±1×10−3%

81.91±8×10−3%

76.82±2×10−3%

4.31±0.8

4.18±0.1

3.27±0.1

Apply Yelp BB to Amazon videos 85.91±0.03% 88.21±0.00%

90.51±1×10−4%

96.35±2×10−3%

98.29±3×10−3%

86.91±2×10−4%

88.15±3×10−3%

81.61±5×10−3%

7.46±4.0

7.64±0.5

4.57±0.4

Apply Music BB to SST-2 89.18±0.08% 78.31±0.03% 80.09±0.00%

81.11±1×10−3%

86.34±3×10−3%

91.69±3×10−3%

78.79±2×10−3%

80.90±6×10−3%

81.13±6×10−3%

4.92±0.6

4.98±0.3

4.40±0.1

Apply Music BB to apparel 64.87±0.02% 64.73±0.09% 63.54±0.00%

66.37±4×10−4%

68.91±2×10−3%

72.07±2×10−3%

65.61±8×10−4%

66.39±3×10−3%

67.03±4×10−3%

2.55±0.8

2.29±0.1

2.18±0.1

Apply Music BB to camera 54.25±0.12% 59.48±0.00%

62.66±4×10−3%

66.38±6×10−3%

70.45±8×10−3%

62.69±7×10−3%

66.09±1×10−2%

68.51±1×10−2%

2.59±0.4

2.80±0.3

2.67±0.2

Apply Music BB to computer 60.54±0.07% 62.37±0.00%

65.88±2×10−3%

69.58±6×10−3%

72.48±5×10−3%

65.47±4×10−3%

68.14±1×10−2%

62.88±8×10−3%

2.83±0.5

2.84±0.2

2.41±0.1

Apply Music BB to electronics 56.83±0.02% 55.83±0.00%

58.76±1×10−3%

61.43±3×10−3%

64.18±3×10−3%

59.38±1×10−3%

61.90±5×10−3%

63.47±6×10−3%

2.39±0.1

2.27±0.0

2.09±0.0

Apply Music BB to health 59.82±0.03% 58.11±0.00%

60.51±1×10−3%

63.17±3×10−3%

65.80±2×10−3%

60.60±4×10−4%

62.73±4×10−3%

63.78±3×10−3%

2.21±0.1

2.18±0.1

2.01±0.1

Apply Music BB to kitchen 61.28±0.03% 59.92±0.00%

63.45±9×10−4%

66.62±3×10−3%

70.03±1×10−3%

63.61±1×10−3%

65.99±5×10−3%

67.43±2×10−3%

2.86±0.0

2.67±0.1

2.54±0.0

Apply Music BB to magazines 62.79±0.05% 60.90±0.00%

64.42±3×10−3%

67.80±7×10−3%

71.98±9×10−3%

64.62±6×10−3%

67.10±1×10−2%

69.36±1×10−2%

3.09±0.3

2.86±0.3

2.73±0.2

Apply Music BB to toys 60.76±0.03% 60.28±0.00%

63.43±4×10−4%

66.45±3×10−3%

69.31±1×10−3%

63.61±6×10−3%

65.74±2×10−3%

66.45±5×10−3%

2.87±0.3

2.59±0.1

2.28±0.0

Apply Music BB to video 64.98±0.03% 63.71±0.00%

67.40±5×10−5%

71.25±2×10−3%

80.51±4×10−3%

68.55±3×10−3%

71.23±7×10−3%

73.28±8×10−2%

6.32±0.7

4.17±0.3

3.51±0.2

Apply DVD BB to SST-2 93.08±0.03% 76.65±0.15% 80.91±0.03%

82.76±2×10−3%

87.76±5×10−3%

92.59±5×10−3%

80.07±5×10−3%

81.50±9×10−3%

80.71±7×10−3%

5.02±0.4

4.94±0.4

4.22±0.1

Apply DVD BB to apparel 71.88±0.01% 63.68±0.32% 64.35±0.03%

67.17±1×10−4%

70.16±3×10−3%

73.24±4×10−3%

66.00±2×10−4%

67.34±4×10−3%

67.61±5×10−3%

2.34±0.1

2.37±0.1

2.21±0.0

Apply DVD BB to camera 54.74±0.09% 54.67±0.00%

57.40±1×10−3%

60.16±2×10−3%

63.46±4×10−3%

58.50±2×10−3%

61.43±3×10−3%

63.99±4×10−3%

2.55±0.1

2.38±0.1

2.26±0.0

Apply DVD BB to computer 62.34±0.13% 60.43±0.00%

64.77±2×10−3%

68.00±3×10−3%

70.74±4×10−3%

65.33±6×10−3%

67.49±9×10−3%

67.71±1×10−2%

3.49±0.4

2.95±0.2

2.43±0.1

Apply DVD BB to electronics 56.64±0.12% 56.14±0.00%

59.24±7×10−4%

61.56±2×10−3%

64.47±5×10−3%

59.77±1×10−3%

61.63±4×10−3%

63.38±7×10−3%

2.39±0.1

2.14±0.1

2.05±0.1

Apply DVD BB to health 58.16±0.26% 58.94±0.00%

61.98±2×10−3%

64.48±3×10−3%

67.14±6×10−3%

61.56±3×10−3%

63.16±5×10−3%

63.98±9×10−3%

2.07±0.1

2.06±0.1

1.96±0.1

Apply DVD BB to kitchen 60.53±0.10% 60.79±0.00%

64.14±1×10−3%

67.31±3×10−3%

70.51±4×10−3%

64.10±3×10−3%

66.33±5×10−3%

67.35±6×10−3%

2.78±0.1

2.64±0.1

2.38±0.0

Apply DVD BB to magazines 60.96±0.14% 62.60±0.01%

66.97±3×10−3%

70.90±3×10−3%

74.23±1×10−3%

67.31±1×10−3%

70.17±6×10−3%

70.65±4×10−3%

3.99±0.4

3.50±0.5

2.83±0.1

Apply DVD BB to toys 60.38±0.11% 60.15±0.00%

63.67±3×10−3%

66.30±3×10−3%

68.61±4×10−3%

63.67±5×10−3%

65.12±4×10−3%

65.10±6×10−3%

2.73±0.3

2.38±0.1

2.06±0.1

Apply DVD BB to video 62.73±0.03% 64.98±0.00%

69.71±5×10−4%

73.40±2×10−3%

77.75±2×10−3%

70.45±1×10−3%

72.41±3×10−3%

73.82±3×10−3%

6.23±0.1

4.03±0.1

3.40±0.1

94 Chapter 4. Experiments

Table 4.4: ECE scores for the different combinations of black-boxes and target applica-

tions

BB applied to source BB applied to target Calibrated BB to target Wrapper to target

Apply Yelp BB to SST-2 0.0104067 0.150570 0.032845 0.039284

Apply Music BB to Electronics 0.0165734 0.035458 0.035698 0.055868

Apply ImageNet to STL-10 N/A 0.612243 0.206683 0.092530

Chapter 5

A real-life use case: Overqualification

analysis.

Contents
5.1 Context of the project . 95

5.2 Task 4: Identification of overqualification 97

5.3 Computing the uncertainty score 99

5.4 Uncertainty-based rejection classifier 100

5.5 Adequacy between required functions/skills and the level of stud-

ies . 101

5.6 Lessons learned . 102

In this chapter, we present a practical application of the proposed uncertainty wrap-

per, applied in this case at a classification system for detecting overqualification in job

adverts.

5.1 Context of the project

The project that frames the task of overqualification detection is BDFP, Big Data for

Vocational and Educational Training (VET 1, FP in Catalan). The project was an ini-

tiative of Eurecat in the context of the Big Data Center of Excellence in Barcelona2,

1training for a specific occupation through a combination of theoretical teaching and practical expe-
rience

2https://www.bigdatabcn.com/

95

https://www.bigdatabcn.com/

96 Chapter 5. A real-life use case: Overqualification analysis.

a public-private partnership aiming to assist and boost a data culture at all types of

organisations operating in Catalonia.

Big Data for VET aimed to analyse the role of Vocational and Educational Training

(VET) as one of the critical factors for current societal challenges. The work proposed

a data-driven approach with a combination of different data analysis algorithms includ-

ing data mining, rule-based systems and machine learning. The goal was to analyse

the evolution of the labour market (extracted by the free text job vacancies posted in

the leading job portal) and the VET offering (extracted by the official training curric-

ula in the whole territory) in Catalonia during the last few years. Special attention was

devoted to two main strategic market sectors for the region, namely ICT and Industry

4.0, and the transformation of the particular skill set demanded by employers.

The main objectives of the project were two-fold:

• Provide valuable insights about the evolution of the skill-sets offered in the VET

contents in all Catalan territory as well as the ones demanded by the job market

during the same period, 2015-2018. This information is of great value for the

Catalan Education Department in charge of designing the curricula of the VET

courses trying to satisfy the local job market near future requirements.

• Showcase the need and benefits of joining efforts by different institutions to solve

societal challenges, with different knowledge and assets, ranging from datasets,

data science experts, technology providers, domain experts, decision-makers and

facilitators.

Different meetings happened among the stakeholders of the project, after which

those two objectives translated to five particular research topics, namely:

• T1: Geographic characterisation of the labour demand, the evolution of the

labour demand based on the contracts registered in Catalonia during the last

five years.

• T2: Analysis of the relationship between Dual VET and sectorial labour demand,

a particular study case of the type of VET training includes an internship in a

company.

• T3: Temporal evolution of the VET skills, the evolution of the demanded kills

focusing on ICT and Industry 4.0.

• T4: Comparison of labour supply and demand in ICT and Industry 4.0,

5.2. Task 4: Identification of overqualification 97

• T5: Identification of overqualification, required in a job post concerning the

responsibilities described.

During the execution of the project, we compiled data from both the description

of VET studies, occupations and job demands. To be able to compare supply and

demand, we selected to link both worlds by the skills acquired during the training and

required by companies. In the case of job advertisements, we worked with millions of

them, making it necessary to develop automated tagging mechanism to deal with such

amount of unstructured data. We develop this automatic tagging leveraging on ML

classification models that automatically tag the skills required for each job description.

Figure 5.1 (a) illustrate the type of models used for the skills classifier.

Figure 5.1: Models used in the project. (a) Deep learning model used for challenge 1,

(b) Uncertainty Bayesian wrapper for deep black-box models used in challenge 2.

To develop those ML models needed having access to labelled job offers were ex-

perts manually tagged the skills demanded. The effort required for labelling and the

limited access to experts prevented the inclusion of all the skills defined in a prelimi-

nary analysis, so, finally, the study of the evolution of skill demand and the matching

with VET studies was limited to those skills more asked by companies.

5.2 Task 4: Identification of overqualification

During the labelling process, we took advantage of having access to experts to ask them

for an additional labelling task. In this case, while identifying the skills demanded in a

98 Chapter 5. A real-life use case: Overqualification analysis.

job vacant, we asked them also to tell whether the description of the work suggested an

overqualification issue or not. In many cases, we have detected that the level of studies

required in a job description was higher than what was actually needed to fulfil the

position. The overqualification issues seemed to be especially relevant in the case of

VET and high school engineering curriculums in both ICT and Industry 4.0 positions.

Similarly to the case of detecting the skills present in the job offers, in the case

of detecting overqualification in demand, it requires to deal with unstructured textual

information, which motivates us to use advanced NLP models.

The model used in this case was the same used for identifying skills, shown in Fig-

ure 5.1(a). The input for the models is the description of the job, including different

attributes like the level of education, minimum requirements, description of the posi-

tion, title or previous knowledge. In order to fight the lack of positive labels for some

of the skills, we try different combinations of those fields for building different sam-

ples out of the same labelled job. We also combine samples obtained from the labelling

tool with some from a rule-based model to obtain balanced datasets. The resulting text

for each job position is transformed into a sequence of words with a limited length of

120 words, using left padding for shorter texts.

We used an artificial neural network, where the first layer of the model is an em-

bedding layer. In this work, we use a pre-trained Word2vec embedding Mikolov et al.

[2013a] trained with a billion of Spanish words Cardellino [2019]. We average the em-

beddings of the words included in the job description to obtain a latent representation

for it. This latent representation is the input for a fully connected layer with a softmax

activation, used for obtaining the probabilities of each class predicted. For some of

the classifiers, we substitute the average of the embeddings for an LSTM layer plus a

hidden dense layer, showing better accuracy scores. Sometimes, though, this leads to

overfitting, despite having 50% of dropout, probably due to the lack of sufficient data

samples, so we have to stick to the original model.

By using this model, the prediction accuracy only reaches 72.28%. This value,

though acceptable in some contexts, is inadequate for a careful analysis of the prob-

lem. Our hypothesis for justifying this value considers the difficulty of defining the

concept of over-qualification and the subjectivity involved in those definitions. There

are different levels of overqualification. For example, they are asking a university de-

gree for a job that a VET student can perform, or asking for a high level of VET when

it can be carried out by medium degree VET graduates.

These two different properties introduce noise in the labelling process, and con-

5.3. Computing the uncertainty score 99

sequently, affect the performance of the machine learning classifiers. In this setting,

the degree of confidence in the prediction can help to refine the results, making this

problem very suitable for modelling uncertainty using the wrapper method proposed

in this thesis.

5.3 Computing the uncertainty score

The method used in this use case applied for the two terms in equation 2.5: the one

that depends on the application of the model to the input data, the aleatoric component,

and a second one that is measuring how the model may vary depending on the training

data, the epistemic component.

For the epistemic uncertainty, we model the weights as random variables by in-

troducing Gaussian perturbations and Flipout as introduced in Wen et al. [2018], to

estimate the conditioned probability by using Montecarlo (MC) sampling. The model

trained up to this model is a deterministic model, except for the epistemic components.

As such, it does not allow to infer the aleatoric component of the uncertainty.

Moreover, for computing the aleatoric uncertainty, we leverage on the wrapper de-

scribed in section 3.1. While the wrapper output will stand for the mean value of that

distribution, we will let the assistance NN to work out the standard deviation corre-

sponding to each input sample. As in the former case, we use Montecarlo approxima-

tions to sample from the latent layer and approximate the output distribution.

As a result of both Montecarlo samplings, we obtained a probability density func-

tion of the output values that served for computing the overall uncertainty.

It is remarkable that just by training the model with the new architecture for 20

epochs(compared to the 500 used for training the original model), the resulting accu-

racy increases up to 84,25%.

Model in Figure 5.1(c) depicts the model used to predict the uncertainty score. In

this case, we used predictive entropy as defined in Gal [2016]. The predictive entropy,

introduced by Shannon [1948], measures the dispersion of the predictions around the

mode. In this case, we combine the computation of the aleatoric and epistemic uncer-

tainty. Thus it is necessary to combine the random variables that learned the variability

of the model, the epistemic component, together with the random variables assigned

to the output logits that model the aleatoric uncertainty.

In order to obtain the uncertainty score, we carry out two consecutive Montecarlo

simulations: first, we sample a model W. We then use this model to sample the output

100 Chapter 5. A real-life use case: Overqualification analysis.

prediction for each logit, following the distribution parameterised by the outputs of

the ANN and the assistance NN. Using the resulting probabilities, we compute the

predictive entropy as follows,

H[y∗|x∗,Dtrain] :=−∑
c
E(y∗) logE(y∗) (5.1)

For obtaining the uncertainty score of the overqualification classifier, we sample 10

models and for each model 100 probabilities.

5.4 Uncertainty-based rejection classifier

Despite the increment in accuracy obtained after training the ANN with uncertainty,

we could further exploit the uncertainty scored to improve the results by filtering out

the less confident predictions. As a result, the quality of the filtered predictions ob-

tained increases as it only outputs confident predictions. Then, we used this score as a

rejection mechanism for the classification.

The test dataset was sorted by the rejection value, from higher to lower scores. If

there were a correlation between the uncertainty score and the misclassification value

of the input, by discarding the more uncertain data points, we would increase the per-

formance of the classification system. We considered different rejection points corre-

sponding to descending values of the rejector from including all points to discard all

of them in the last iteration. The analysis of the three performance measures Condessa

et al. [2015] for each rejection point considered a trade-off between the number of

samples rejected and the quality of the classifications.

Figure 5.2: Performance measures showing the accuracy of kept points, how correct

predictions are kept and wrong discarded, and the ability of rejecting wrong samples.

Figure 5.2 compares the results obtained after applying three different models for

computing uncertainty: predictive entropy for the aleatoric model, as proposed in this

5.5. Adequacy between required functions/skills and the level of studies 101

work, the predictive entropy of the original model, used as a baseline, and an additional

uncertainty score, variation ratios, as described in Gal [2016]. The plot shows how only

by rejecting the 10% of predictions with higher uncertainty scores, the model increases

its performance up to 88% — reaching 92% prediction accuracy when rejecting the

20% more uncertain predictions.

5.5 Adequacy between required functions/skills and the

level of studies

Finally, the research topic T5: Identification of overqualification was answered based

on the results obtained from the uncertainty-based rejection method described in sec-

tion 5.3. Taking the 222,957 job posts that corresponded to ICT and Industry 4.0

positions, we applied a rejection ratio that, on test time, reached a 92.5% of accuracy.

Thus, we discarded 137,157 job descriptions, focusing the study on the remaining

85,800. From those, we estimated only 17,388 as including overqualification in the

job position.

The analysis of those overqualified job descriptions resulted in 19% overqualifica-

tion in ICTs and 24% in IND4.0. The trend of under qualification in ICTs is decreasing,

while in IND4.0 it is increasing. The "computing and communications" category has

the highest number of overqualified ads. We note that the programming subcategory is

the most affected with 4,300 cases followed by "analysis", "ERP", "Project Manage-

ment" and "Systems" that are around 800. In general, those categories with a higher

rate of overqualification, coincide with the most demanded ones.

The "engineering and technical" category is not only the one with the most overqual-

ified ads in the industrial area, but its presence in such ads is 40% higher than in the

total Industry 4.0 ads. A similar case occurs in the category of Quality and R + D pro-

duction, whose weight in ads with overqualification increases by 8%. Regarding the

"Engineering and Technical" subcategories, the industrial category is the most prone

to overqualification. With 2,240 cases, it presents 33% more overqualification than In-

dustry 4.0 at a whole. Next comes "electronic and industrial automatisation" with 941,

"other engineering" with 393 and "electronics" with 316. In these cases, the demands

of employment request higher degrees to develop skills included in VET. At the other

extreme, the Professions, Arts and Crafts category reduces its presence by 35% in ads

with overqualification, which tells us that, in general, these types of ads are better made

102 Chapter 5. A real-life use case: Overqualification analysis.

and better match their requirements.

5.6 Lessons learned

The overqualification detection use case was appealing for the development of the

present work, as it presented an opportunity for showcasing the methods proposed in

a different setting from the black-box scenario. In this case, the combination of both

epistemic and aleatoric uncertainty showed astonishing results in a severe problem

such as this one.

The definition of the problem itself makes it very prone to subjective opinions on

what is and what is not overqualification. This subjectiveness led the labelling process

to introduce noise in the training data set. Besides, the scarcity of job descriptions

annotated, made it necessary to have a method that filter out uncertain and noisy ex-

amples, enabling the posterior analysis of the overqualification to focus on compelling

examples only.

Chapter 6

Unsupervised, Uncertainty-based Text

Readability Assessment

Contents
6.1 Readability assessment . 104

6.2 Explainability . 105

6.3 Method . 106

6.4 Experiments . 108

6.4.1 Results . 108

In this chapter, we present another application of the uncertainty wrapper proposed

in this thesis, which is the assessment of readability in texts. The appraisal of text

readability is an open problem. There is not, and will not be, a unique model of read-

ability, and therefore, it is necessary to develop methods that allow assessing multi-

ple models. This application presents an unsupervised method that leverages a set of

traditional readability scores to train a Deep Learning model capable of estimating a

readability score for a text together with the uncertainty of this prediction. By applying

explainability methods, we analyse the uncertainty found and attribute the words that

contributed more to it. We run experiments with texts of different levels of complexity

and demonstrate that, by modifying these words, we can increase their readability.

In the context of the new regulations of data privacy like the European General

Data Protection Regulation (GDPR), the importance of legal texts like privacy policies

or consent forms is vital to communicate to the end-users about their rights. A good

103

104 Chapter 6. Unsupervised, Uncertainty-based Text Readability Assessment

example is the SMOOTH project1, that aims to assist micro-enterprises on the assess-

ment of GDPR. In SMOOTH, one of the key activities is the analysis of the readability

of this type of texts, to ensure that final users understand how their data is handled and

what rights they do have over it, and how to exercise them.

Usually, the level of complexity of a text is measured using readability indexes

that analyse the text and look at things like the number of words, their length or other

syntactic aspects. Alternatively, Machine Learning (ML) models are trained to predict

the complexity of texts using a labelled text corpus based on the criteria of domain

experts that tag each text depending on its difficulty.

Both approaches have significant limitations. In the first case, Redish [1981], the

type of measures used usually does not include semantic aspects of the words. Also,

due to many readability formulas, one can get wide variations in results of the same

text. On the other hand, the ML approach requires a meaningful amount of labelled

texts to train the model, which may prevent its applicability to some scenarios with

scarce resources.

In this case, we opt for a combination of both. First, we consider a set of existing

readability indexes that we use to label texts according to their reading complexity.

Next, we use a Deep Learning (DL) Wrapper to estimate the uncertainty of these pre-

dictions. The wrapper learns this uncertainty from two sources: the potential disagree-

ment between the distinct readability scores, and the uncertainty inherent in the text

itself.

Later on, we apply explainability techniques to identify the words that contribute

more to the uncertainty score predicted. By examining the results obtained for texts of

high complexity, we observe how by changing those words in the original text, we can

reduce its complexity and improve the overall readability.

6.1 Readability assessment

In the literature, we can find different readability scores. Following the seminal work

defined in the Dale-Chall Readability Score Dale and Chall [1948], we find the result of

studies carried out in the U.S. navy Senter and Smith [1967]; Kincaid et al. [1975]. In

those works, they provided diverse readability scores: Automated Readability Index,

the Flesch–Kincaid readability tests or the Flesch-Kincaid Grade Level. These scores

included different formulas that combine the number of words, sentences and syllables

1https://smoothplatform.eu/

https://smoothplatform.eu/

6.2. Explainability 105

to map a given text to the required grade level. Similar formulas were developed

in different studies like the Gunning fog index Gunning [1968], or variations like the

SMOG index Mc Laughlin [1969], the Coleman-Liau Index Coleman and Liau [1975],

and the Linsear Write Formula Klare [1974].

Alternatively, some works leverage machine learning models such as SVM, Schwarm

and Ostendorf [2005]; Petersen and Ostendorf [2009], or KNN, vor der Brück et al.

[2008] to predict the reading ease of texts. Other works propose more sophisticated

features than those used in the "classic" approaches, like in Feng et al. [2009]; Štajner

et al. [2012], based on cognitive or linguistic models. More recent models propose the

use of Knowledge Graphs, Štajner and Hulpuş [2018]. All in all, these approaches are

based on some existing corpus of labelled texts, like articles from the Encyclopedia

Britannica Barzilay and Elhadad [2003], Weekly Reader 2, or OneStopEnglish corpus,

Vajjala and Lučić [2018], among others.

Even though ML approaches seem to be more effective than "classic" formulas,

François and Miltsakaki [2012], they require the non-trivial effort of labelling texts.

Still, they do not improve on the explainability of these models. Besides, the use

of generic models in more specific use cases might induce domain shifting issues as

described in Elsahar and Gallé [2019].

6.2 Explainability

One of the goals of this application is to provide explanations to the predicted read-

ability score for a text, and how to attribute it to the words that compose it. In the case

of model explainability, the goal is to be able to produce an explanation of the output

in human terms, usually by proposing a simplified version of the model. For example,

LIME Ribeiro et al. [2016a], approximates a simpler model that locally explains each

prediction. Other methods, like DeepLIFT Shrikumar et al. [2017] or Layer-wise rele-

vance propagation Bach et al. [2015], focus on DL models and analyze the changes in

the gradients to study the relevance of the different input features. SHAP Lundberg and

Lee [2017] proposes a generalization for some of these methods based on the fact that

all of them share an additive structure in the function applied to the feature attribution

based on a linear function of binary variables.

In this article, we apply SHAP to produce an explanation of the prediction uncer-

tainty. By applying the DeepExplainer method and the visualization tools provided in

2http://www.weeklyreader.com

http://www.weeklyreader.com

106 Chapter 6. Unsupervised, Uncertainty-based Text Readability Assessment

Lundberg et al. [2018], we obtain an explanation for how each feature, words, in this

case, contributes to the estimated uncertainty.

6.3 Method

Building the dataset. In this case, we do not rely on a human-annotated data source.

Instead, our ground-truth is a consensus between the readability metrics studied. We

then consider each readability score as a black-box classifier that emits a prediction,

the uncertainty of which we want to estimate. Here, the model input consists of sen-

tences, x, and the different readability score functions, fr(x), that predict a category of

complexity, y∗, where y∗ = fr(x).

Here, y will take one of the values defined in The Flesch Reading Ease formula,

as shown in Table 6.1. We use the readability score functions present in the library

Texstats 3, i.e. Flesch Reading Ease formula, Flesch-Kincaid Grade Level, Fog Scale,

SMOG Index, Automated Readability Index, The Coleman-Liau Index, Linsear Write

Formula and Dale-Chall. For the ground-truth, we use the consensus score included in

the same library as "the estimated school grade level required to understand the text".

Table 6.1: Mapping of grade levels and Reading ease

School level Reading Ease Class

< 5th grade Very easy to read. 0

6th grade Easy to read. 1

7th grade Fairly easy to read. 2

8th & 9th grade Plain English. 3

10th to 12th grade Fairly difficult to read. 4

College (13th to 15th) Difficult to read. 5

College graduate (>15th) Very difficult to read. 6

As outputs of each readability score may differ from one to another, it was neces-

sary to develop a mapping function that transforms the result of each type of score to

one of the seven categories described in Table 6.1.

3https://github.com/shivam5992/textstat

https://github.com/shivam5992/textstat

6.3. Method 107

To build the dataset, we create individual samples as the triplet
〈
x,mr(fr(x)),mcon(fcon(x))

〉
,

where fr correspond to each readability function and mr the required mapping func-

tion. The subscript con refers to the consensus output. Hence, for each text in the

corpus, we create seven inputs, one for each different readability function.

Estimating the uncertainty. Using the described triplets, we now proceed to apply

the wrapper described in section 3.2. The output of the wrapper yw transforms the

score of each readability score mr(fr(x)) into a RV that models p(yw|x,mr(fr(x)),w)∼
Dir(α). Here, the concentration parameter α is decomposed into α = β ·mr(fr(x)),

where β corresponds to the output of the wrapper ANN as shown in Figure 6.1.

Figure 6.1: Model used to estimate the aleatoric uncertainty

The wrapper is trained applying the loss as defined in equation 3.17, where the

label corresponds to mcon(fcon(x)) in this case. Finally, the output of the wrapper can

be obtained by sampling from the resulting Dirichlet distribution as defined in equation

3.16.

Word attribution. In this case, contrary to what they propose in the original paper,

108 Chapter 6. Unsupervised, Uncertainty-based Text Readability Assessment

we are not analyzing the whole uncertainty as measured by the predictive entropy of

the resulting Dirichlet distribution. Here, we understand that this predictive entropy is

combining two sources of uncertainty: one derived from the disagreement among the

different readability metrics applied, and a measure of uncertainty due to the variability

inherent in the texts analyzed. It is this later source of uncertainty what we use here to

attribute the complexity of the input sentence.

Hence, in this work, we apply the DeepExplainer method to the wrapper model, in

green in Figure 6.1, to analyze the variations induced by the different input elements

in the activations of the wrapper NN. Next, we use the visualization tools provided by

the SHAP library 4 to analyze which words are burdening more the readability of a

sentence.

6.4 Experiments

To validate the consistency of the proposed method, we run experiments using RACE

dataset Lai et al. [2017]. The dataset was meant for benchmark evaluation of methods

in the reading comprehension task. RACE consists of 27,933 passages and 97,687

questions collected from English exams for middle and high school Chinese students.

For analyzing the readability of the texts, we only took the 27,933 text passages. We

observed the same split as defined in the original RACE paper, with 25,137, 1,389 and

1,407 examples for train, validation and test, respectively.

Using RACE, we generated the dataset, as explained in section 6.3. We applied

a pre-processing of texts, including the removal of punctuation symbols, numbers

and expansion of English contractions. Next, we trained the Dirichlet wrapper for

40 epochs in Google Colab, using a learning rate of 1e-3 and a λ parameter of 0.1,

optimized manually observing the output of the wrapper. We also set a maximum se-

quence length of 60 words and 30 units for the hidden dense layers. Once the wrapper

was trained, we applied DeepExplainer, using a sample of 1000 examples from the

training set to learn the Shap values.

6.4.1 Results

In this section, we discuss the results obtained when applying the method to the RACE

test dataset. First of all, we wanted to analyse whether the wrapper was able to capture

4https://github.com/slundberg/shap

https://github.com/slundberg/shap

6.4. Experiments 109

uncertainties beyond the disagreement among the set of readability scores used for

training. Because the wrapper is using the input text and the corresponding readability

score, it is expected to identify uncertainties associated with the text itself, such as the

ambiguity of some words.

(a) (b)

Figure 6.2: (a) Entropy of the disagreement among the scores. (b) Entropy predicted

by the wrapper

In figure 6.2, we observe how the wrapper uncovers higher uncertainty scores than

those obtained using the disagreement among the readability values5. We hypothesize

that this behavior is due to the wrapper detecting rare or ambiguous words contributing

to the uncertainty of the predicted readability score.

To confirm this hypothesis, we carried out a qualitative analysis of the predictions

of some sentences. For texts with high uncertainty and reading complexity, we plot the

corresponding SHAP values and substitute those words that contributed more to the

uncertainty score for more frequent or simpler expressions. Figure 6.3 displays some

examples of the results obtained:

We can observe that by replacing those words, we reduce the value of the readabil-

ity score, i.e. the consensus. Thus, we observe a correlation between the uncertainty

measure obtained with the wrapper and the readability complexity, allowing to identify

which parts of the text are more related to this complexity, being possible, therefore,

to modify them to ease the text complexity.

Potential applications of the method include online editors that can use the read-

ability score only when there is low uncertainty on its prediction, or that can highlight

which words to change to ease the comprehension of a text. Even though the results ob-

tained are preliminary, we think that this work can serve as the basis for future studies.

Potential extensions may include the automatization of these alterations by applying a
5maximum entropy for seven classes, as in this use case, would correspond to 1.9459

110 Chapter 6. Unsupervised, Uncertainty-based Text Readability Assessment

Figure 6.3: Modifying the more uncertain part of the sentence, the complexity de-

creases.

framework like TextAttack Morris et al. [2020]. Moreover, we foresee other potential

research lines that might include the analysis of other languages beyond English or the

incorporation of alternative methods for readability assessment.

Chapter 7

Conclusion

Contents
7.1 Contributions . 112

7.2 Future Research . 114

With the advent of the Internet, Big Data and the success of technologies like Deep

Learning, many companies are currently including AI to their digital solutions. How-

ever, not all companies are able to develop their own AI technology, as requirements

of this type of technology in terms of talent and computational resources can be very

demanding. Many technological enterprises have identified this demand and are pro-

viding out-of-the-box AI solutions through MLaaS platforms. These platforms deliver

a portfolio of ML services or APIs that companies can consume on the cloud by pro-

viding their data and receiving the corresponding predictions.

In this work, we take the point of view of practitioners that have to make use of

these APIs. Sometimes there may be different alternatives for a given problem, e.g.,

different Sentiment Analysis APIs, and they have to choose the more convenient to

their problem and data. Sometimes the problem is that the definition of the service is

slightly different from the particular need, maybe the image categories identified by

the API are not the same as in their use case.

In this thesis, we propose to use the uncertainty of the predictions to assess the

quality of a given classification API when applied to a target application. Thus, the

goal of this work is to enrich the output of those APIs, considering them as black-

boxes, with an uncertainty measure. Once equipped with this measure of uncertainty,

practitioners will be able to make more informed decisions on whether to trust or not

the predictions of those third-party APIs.

111

112 Chapter 7. Conclusion

In the literature, many works exist based on Bayesian methods that can estimate the

different types of uncertainty, both related to the trained model or the noise inherent

in the data. We studied the use of different types of RV for modelling the output of

the classification systems, mainly following Gaussian or Dirichlet distributions. Even

though some of those methods present excellent results on estimating uncertainty in

different scenarios, they all require to have access to the internals of the classifier. This

constraint compelled us to develop a method that acts as a wrapper around the black-

box classifier, operating only with the input passed to the black-box, and the result

obtained. Even though the wrapper has neither access to the internals of the model

nor the possibility of modifying it, it can obtain the uncertainty associated with the

prediction. A relevant feature of the proposed method is its ability to operate with any

classification system, both categorical or probabilistic, without imposing any architec-

ture, working for DL, ML or even human-annotated classifications.

7.1 Contributions

As mentioned above, this thesis focuses on classifications systems and aims to furnish

practitioners with an uncertainty wrapper for assessing existing APIS when applied to

a target application. The proposed wrapper operates on top of the given API, enrich-

ing its predictions with an uncertainty score that practitioners can use to evaluate the

performance of that API into their use case.

The main advantages of this wrapper are:

• Black-box compatible. Differently from previous works that measure uncer-

tainty in Deep Learning models, the novelty of the proposed method relies on

the fact that it can operate in the constrained setting of pure black-box models1.

• Model agnostic. Even though the examples included correspond to DL architec-

tures, the wrapper can operate on top of any classification system. These include

traditional ML models, such as logistic regressions, ensemble models or SVMs,

or even human-based annotations.

• Works with categorical predictions. One advantage of the present work is

its ability to work also when the black-box model returns hard predictions, i.e.

just the predicted class instead of a distribution over the different classes. The

1Defined by not having access to the internals of the black-box model

7.1. Contributions 113

fact that it can measure the uncertainty even in the lack of a probabilistic output

makes the proposed work to stand out in front of other approaches like calibra-

tion methods, that relay on those probabilities to adjust the predictions.

• Domain agonistic. As we have seen in the experiments, the model performs

well in different domains. We can apply the wrapper to any problem where we

can obtain a latent representation of the input.

• Out-of-distribution detection. In addition to the uncertainty estimation for the

black-box results, the proposed Dirichlet wrapper incorporates mechanisms to

capture the uncertainty even for out-of-distribution points. This feature brings

extra-robustness to the proposed method as it will act as a vaccine against future

changes in the distribution of the target data set.

In the Experiments chapter, we have seen how we applied the proposed wrapper to

different domains such as NLP or CV. In those experiments, we have validated how the

wrapper captured a more comprehensive set of uncertainties than traditional methods

for uncertainty estimation or calibration, and how we increased the performance of the

original black-boxes by implementing a rejection system leveraging those uncertainties

obtained. Besides, in the CV example, we included an analysis of how the wrapper was

able to detect uncertainty when facing OOD examples of unknown image categories.

Moreover, to illustrate the application of the proposed method, we included two

more contributions addressing two real-life use cases. In the first one, we applied the

wrapper to the analysis of over-qualification in job descriptions. This example was

very interesting as it showed an application of the method where the classifier can be

modified. In this case, by combining both aleatoric and epistemic uncertainties, we

were able to improve the performance of the over-qualification classifier in a scenario

with limited access to labelled data.

Last, we include an example of how to apply the method to classification sys-

tems different from ML or DL models. In this use case, we first applied the wrapper

to analyse the disagreement among different "classic" readability metrics, using the

uncertainty obtained as a measure of this disagreement. Then, by employing explain-

ability tools, we analysed the uncertainty obtained, being able to identify those words

that contributed more to this uncertainty, and offering the possibility to the editor of

changing these words in order to relax the complexity of the resulting text.

114 Chapter 7. Conclusion

7.2 Future Research

In addition to the work presented in this thesis, we see potential lines of future research

that could be build on top of it. In the first place, one could study how to apply the

wrapper to different types of classification scenarios, like multi-label systems. More-

over, options could include assessing its performance when applied to use cases with

high dimensionality in the labels, like those typical in NLP such as Language Modeling

dealing with an output of thousands of words from a vocabulary.

Other types of applications could require an analysis to see how to apply the wrap-

per to more complex scenarios, like Question Answering, where the output of the

model varies on each request. Another potential application of the uncertainty in clas-

sification systems could be in the context of chatbots. In the case of combining differ-

ent chatbots engines to apply given a user’s utterance, the wrapper’s uncertainty can be

an excellent complement to other methods like those based on Reinforcement learning,

Serban et al. [2017], to make the selection on which response to emit.

Moreover, we would like to study how to automatise the application of the wrapper.

The goal would be to deliver it as a plugin for classification systems. We would like

to see how to adapt for each case the hyperparameters of the ANN of the wrapper.

Further, this automatisation could be extended to the selection of the rejection point

using the resulting uncertainty score.

Besides its usage for rejecting uncertain predictions made by ML or DL classifiers,

it could be also useful to explore other applications of the uncertainty. A potential

line of research could be the use of the uncertainty for evaluating the performance of

human annotators. By considering each of those human oracles as a target application,

we could train the wrapper to estimate the uncertainty of their predictions and include

only those whose predictions are less uncertain.

Finally, some questions left opened with regards to the interpretability of the un-

certainty obtained could be addressed. In the experiments carried out in the read-

ability use case, we applied SHAP values to analyse the words that contributed more

to the uncertainty on readability measures. We reckon that linking this uncertainty

with explainability techniques might help on better understanding the performance of

classification systems, especially for domain shifting scenarios.We firmly believe that

uncertainty can be beneficial in the explanation of bias or discrimination existing in

some ML models.

Hopefully, future research will shed light on some of these questions.

Publications

This thesis has led to the publications summarized below.

7.3 Journals submissions

Accepted

• Mena, J., Pujol, O., and Vitrià, J. (2020). Uncertainty-based Rejection System

for Black-box Classifiers. IEEE Access, doi: 10.1109/ACCESS.2020.2996495.

Submitted

• Mena, J., Pujol, O., and Vitrià, J. (2020). A Survey on Uncertainty Estimation in

Classification Systems. Submitted to ACM Computing Surveys (CSUR). Under

review.

7.4 International Conferences

Accepted

• Mena, J., Brando, A., Pujol, O., and Vitrià, J. Uncertainty estimation for black-

box classification models: a use case for sentiment analysis. In Iberian Con-

ference on Pattern Recognition and Image Analysis (IbPRIA), Madrid, Spain,

2019.

• Mena, J., Pujol, O., and Vitrià, J. Dirichlet uncertainty wrappers for action-

able algorithm accuracy accountability and auditability. In ACM Conference

on Fairness, Accountability, and Transparency (ACM FAT 2020), Barcelona,

Spain, 2020.

Submitted

115

116 Chapter 7. Conclusion

• Mena, J., Pujol, O., and Vitrià, J. Unsupervised, Uncertainty-based Text Read-

ability Assessment. Submitted to The 2020 Conference on Empirical Methods in

Natural Language Processing (EMNLP 2020), Online Conference, 2020. Under

review.

7.5 Workshops

Accepted

• Mena, J., Torrent-Moreno, M., Portell, L., González, D., Pujol, O., and Vitrià,

J. Analysis of Vocational Education and Training and the labour market in Cat-

alonia. A Data-driven approach.. In The European Conference on Machine

Learning and Principles and Practice of Knowledge Discovery in Databases -

ECML PKDD 2019 (The 4th Workshop on Data Science for Social Good - So-

Good 2019), Würzburg, Germany, 2019.

Bibliography

D. Amodei, C. Olah, J. Steinhardt, P. F. Christiano, J. Schulman, and D. Mané. Con-

crete problems in AI safety. CoRR, abs/1606.06565, 2016. Cited on page 5.

AvrioAI. Avrio ai: Ai talent platform,. https://www.goavrio.com/, 2019. Ac-

cessed: 2019-08-01. Cited on page 5.

S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek. On

pixel-wise explanations for non-linear classifier decisions by layer-wise relevance

propagation. PLOS ONE, 10(7):1–46, 07 2015. Cited on page 105.

D. Barber and C. M. Bishop. Ensemble learning in bayesian neural networks. Nato

ASI Series F Computer and Systems Sciences, 168:215–238, 1998. Cited on pages

20 and 33.

P. L. Bartlett and M. H. Wegkamp. Classification with a reject option using a hinge

loss. J. Mach. Learn. Res., 9:1823–1840, June 2008. Cited on page 46.

R. Barzilay and N. Elhadad. Sentence alignment for monolingual comparable corpora.

In Proceedings of the 2003 conference on Empirical methods in natural language

processing, pages 25–32. Association for Computational Linguistics, 2003. Cited

on page 105.

C. M. Bishop. Bayesian methods for neural networks. 1995. Cited on page 17.

J. Blitzer, M. Dredze, and F. Pereira. Biographies, Bollywood, boom-boxes and

blenders: Domain adaptation for sentiment classification. In Proceedings of the

45th Annual Meeting of the Association of Computational Linguistics, pages 440–

447, Prague, Czech Republic, June 2007. Association for Computational Linguis-

tics. Cited on page 75.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in

neural networks, 2015. Cited on pages 22, 28, 33, and 40.

117

https://www.goavrio.com/

118 Bibliography

N. Bostrom. Ethical issues in advanced artificial intelligence. In ScienceFiction

and Philosophy: From Time Travel to Superintelligence, pages 277––284. Wiley-

Blackwell, 2009. Cited on page 5.

D. Bouneffouf, R. Laroche, T. Urvoy, R. Féraud, and R. Allesiardo. Contextual bandit

for active learning: Active thompson sampling. In International Conference on

Neural Information Processing, pages 405–412. Springer, 2014. Cited on page 45.

A. Brando, J. A. Rodriguez, J. Vitria, and A. R. Muñoz. Modelling heterogeneous

distributions with an uncountable mixture of asymmetric laplacians. In Advances in

Neural Information Processing Systems, pages 8836–8846, 2019. Cited on page 29.

W. M. Briggs. It is time to stop teaching frequentism to non-statisticians.

arXiv:1201.2590, 2012. Cited on page 11.

J. Bröcker and L. A. Smith. Increasing the reliability of reliability diagrams. Weather

and forecasting, 22(3):651–661, 2007. Cited on page 37.

C. Cardellino. Spanish Billion Words Corpus and Embeddings, August 2019. Cited

on page 98.

T. Chen, E. Fox, and C. Guestrin. Stochastic gradient hamiltonian monte carlo. In

International conference on machine learning, pages 1683–1691, 2014. Cited on

pages 18 and 33.

W. Chen, Y. Shen, H. Jin, and W. Wang. A variational dirichlet framework for out-of-

distribution detection, 2018. Cited on pages 31, 32, 33, 36, 55, 56, and 68.

Y. Chen, C. Yang, Y. Zhang, and Y. Li. Deep conditional adaptation networks and label

correlation transfer for unsupervised domain adaptation. Pattern Recognition, 98:

107072, 2020. Cited on page 84.

C. Chow. On optimum recognition error and reject tradeoff. IEEE Transactions on

information theory, 16(1):41–46, 1970. Cited on page 46.

A. Coates, A. Ng, and H. Lee. An analysis of single-layer networks in unsupervised

feature learning. In G. Gordon, D. Dunson, and M. Dudík, editors, Proceedings of

the Fourteenth International Conference on Artificial Intelligence and Statistics, vol-

ume 15 of Proceedings of Machine Learning Research, pages 215–223, Fort Laud-

erdale, FL, USA, 11–13 Apr 2011. PMLR. Cited on page 84.

Bibliography 119

D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with statistical models.

Journal of artificial intelligence research, 4:129–145, 1996. Cited on page 44.

M. Coleman and T. L. Liau. A computer readability formula designed for machine

scoring. Journal of Applied Psychology, 60(2):283, 1975. Cited on page 105.

F. Condessa, J. Kovacevic, and J. M. Bioucas-Dias. Performance measures for clas-

sification systems with rejection. CoRR, abs/1504.02763, 2015. Cited on pages xi,

47, 48, 74, and 100.

L. P. Cordella, C. De Stefano, F. Tortorella, and M. Vento. A method for improving

classification reliability of multilayer perceptrons. IEEE Transactions on Neural

Networks, 6(5):1140–1147, 1995. Cited on page 46.

C. Cortes, G. DeSalvo, and M. Mohri. Boosting with abstention. In D. D. Lee,

M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neu-

ral Information Processing Systems 29, pages 1660–1668. Curran Associates, Inc.,

2016. Cited on page 46.

L. Cosmides and J. Tooby. Are humans good intuitive statisticians after all? rethinking

some conclusions from the literature on judgment under uncertainty. cognition, 58

(1):1–73, 1996. Cited on page 42.

R. T. Cox. Probability, frequency and reasonable expectation. American journal of

physics, 14(1):1–13, 1946. Cited on page 10.

A. Culotta and A. McCallum. Reducing labeling effort for structured prediction tasks.

In Proceedings of the 20th National Conference on Artificial Intelligence - Volume

2, AAAI’05, pages 746–751. AAAI Press, 2005. Cited on pages 34, 48, and 77.

D. G. E. D. T. P. D. V. C. D. Sculley, Gary Holt and M. Young. Machine learning:

Thehigh interest credit card of technical debt. In SE4ML: Software Engineering for

Machine Learning (NIPS 2014), 2014. Cited on page 5.

I. Dagan and S. P. Engelson. Committee-based sampling for training probabilistic

classifiers. In Proceedings of the Twelfth International Conference on International

Conference on Machine Learning, ICML’95, pages 150–157, San Francisco, CA,

USA, 1995. Morgan Kaufmann Publishers Inc. Cited on pages 34 and 76.

120 Bibliography

E. Dale and J. S. Chall. A formula for predicting readability: Instructions. Educational

research bulletin, pages 37–54, 1948. Cited on page 104.

C. De Stefano, C. Sansone, and M. Vento. To reject or not to reject: That is the

question-an answer in case of neural classifiers. Trans. Sys. Man Cyber Part C, 30

(1):84–94, Feb. 2000a. Cited on page 46.

C. De Stefano, C. Sansone, and M. Vento. To reject or not to reject: that is the question-

an answer in case of neural classifiers. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 30(1):84–94, 2000b. Cited on

page 46.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale

Hierarchical Image Database. In CVPR09, 2009. Cited on page 84.

A. Der Kiureghian and O. Ditlevsen. Aleatory or epistemic? does it matter? Structural

safety, 31(2):105–112, 2009. Cited on page 15.

DigitalReasoning. Healthcare ai: Digital reasoning,. https://digitalreasoning.

com/solutions/healthcare/, 2019. Accessed: 2019-08-01. Cited on page 5.

R. El-Yaniv and Y. Wiener. On the foundations of noise-free selective classifica-

tion. Journal of Machine Learning Research, 11(May):1605–1641, 2010. Cited

on page 46.

H. Elsahar and M. Gallé. To annotate or not? predicting performance drop under

domain shift. In Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), pages 2163–2173, Hong Kong, China,

Nov. 2019. Association for Computational Linguistics. Cited on page 105.

M. H. Faber. On the treatment of uncertainties and probabilities in engineering decision

analysis. 2005. Cited on pages 14 and 15.

L. Feng, N. Elhadad, and M. Huenerfauth. Cognitively motivated features for read-

ability assessment. In Proceedings of the 12th Conference of the European Chapter

of the ACL (EACL 2009), pages 229–237, 2009. Cited on page 105.

M. Figurnov, S. Mohamed, and A. Mnih. Implicit reparameterization gradients. In

Advances in Neural Information Processing Systems, pages 441–452, 2018. Cited

on pages 23, 33, and 58.

https://digitalreasoning.com/solutions/healthcare/
https://digitalreasoning.com/solutions/healthcare/

Bibliography 121

T. François and E. Miltsakaki. Do nlp and machine learning improve traditional read-

ability formulas? In Proceedings of the First Workshop on Predicting and Improving

Text Readability for Target Reader Populations, PITR ’12, page 49–57, USA, 2012.

Association for Computational Linguistics. Cited on page 105.

L. Freeman. Elementary applied statistics: for students in behavioral science. Wiley,

1965. Cited on page 35.

Y. Gal. Uncertainty in deep learning. PhD thesis, PhD thesis, University of Cambridge,

2016. Cited on pages 28, 33, 35, 36, 43, 44, 48, 99, and 101.

Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation. arXiv preprint

arXiv:1506.02157, 2015. Cited on pages 25, 28, 33, and 40.

J. Gast and S. Roth. Lightweight probabilistic deep networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 3369–3378,

2018. Cited on pages 30, 31, 33, 37, 39, 55, and 56.

Y. Geifman and R. El-Yaniv. Selective classification for deep neural networks. In

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and

R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages

4878–4887. Curran Associates, Inc., 2017a. Cited on page 48.

Y. Geifman and R. El-Yaniv. Selective classification for deep neural networks. In

Advances in neural information processing systems, pages 4878–4887, 2017b. Cited

on page 46.

Y. Geifman and R. El-Yaniv. Selectivenet: A deep neural network with an integrated

reject option, 2019. Cited on page 46.

X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for large-scale sentiment

classification: A deep learning approach. In Proceedings of the 28th International

Conference on International Conference on Machine Learning, ICML’11, pages

513–520, USA, 2011. Omnipress. Cited on page 74.

A. Graves. Practical variational inference for neural networks. In Advances in neural

information processing systems, pages 2348–2356, 2011. Cited on pages 21, 22,

and 33.

R. Gunning. The Technique of Clear Writing. McGraw-Hill, 1968. Cited on page 105.

122 Bibliography

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural

networks. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International

Conference on Machine Learning, volume 70 of Proceedings of Machine Learning

Research, pages 1321–1330, International Convention Centre, Sydney, Australia,

06–11 Aug 2017. PMLR. Cited on pages 34, 80, 81, and 83.

B. Hanczar. Performance visualization spaces for classification with rejection option.

Pattern Recognition, 96:106984, 2019. Cited on page 47.

D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-of-

distribution examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

Cited on page 40.

J. M. Hernandez-Lobato and R. Adams. Probabilistic backpropagation for scalable

learning of bayesian neural networks. In F. Bach and D. Blei, editors, Proceedings of

the 32nd International Conference on Machine Learning, volume 37 of Proceedings

of Machine Learning Research, pages 1861–1869, Lille, France, 07–09 Jul 2015.

PMLR. Cited on pages 23, 30, and 33.

G. E. Hinton and D. Van Camp. Keeping the neural networks simple by minimizing

the description length of the weights. In Proceedings of the sixth annual conference

on Computational learning theory, pages 5–13, 1993. Cited on pages 19, 20, 22,

27, and 33.

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference.

The Journal of Machine Learning Research, 14(1):1303–1347, 2013. Cited on pages

22 and 33.

S. C. Hora. Aleatory and epistemic uncertainty in probability elicitation with an exam-

ple from hazardous waste management. Reliability Engineering & System Safety,

54(2-3):217–223, 1996. Cited on page 15.

N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel. Bayesian active learning for

classification and preference learning. arXiv preprint arXiv:1112.5745, 2011. Cited

on page 36.

G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger. Densely connected con-

volutional networks. In 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2261–2269, July 2017. Cited on page 84.

Bibliography 123

Ideal. Ideal: Ai for recruiting software,. https://ideal.com/, 2019. Accessed:

2019-08-01. Cited on page 5.

M. Jankowiak and F. Obermeyer. Pathwise derivatives beyond the reparameterization

trick. arXiv preprint arXiv:1806.01851, 2018. Cited on pages 23 and 33.

E. T. Jaynes. Bayesian methods: General background. 1986. Cited on page 10.

S. Jonna, K. K. Nakka, and R. R. Sahay. My camera can see through fences: A deep

learning approach for image de-fencing. In 2015 3rd IAPR Asian Conference on

Pattern Recognition (ACPR), pages 261–265. IEEE, 2015. Cited on page 42.

A. Kendall and Y. Gal. What uncertainties do we need in bayesian deep learning for

computer vision? In Advances in neural information processing systems, pages

5574–5584, 2017. Cited on pages 14, 28, 29, 30, 31, 33, 43, and 51.

J. P. Kincaid, R. P. Fishburne Jr, R. L. Rogers, and B. S. Chissom. Derivation of new

readability formulas (automated readability index, fog count and flesch reading ease

formula) for navy enlisted personnel. STARS, 1975. Cited on page 104.

G. R. Klare. Assessing readability. Reading research quarterly, pages 62–102, 1974.

Cited on page 105.

D. A. Knowles. Stochastic gradient variational bayes for gamma approximating distri-

butions. arXiv preprint arXiv:1509.01631, 2015. Cited on pages 23 and 33.

G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy. Race: Large-scale reading comprehen-

sion dataset from examinations. arXiv preprint arXiv:1704.04683, 2017. Cited on

page 108.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive

uncertainty estimation using deep ensembles. In Advances in neural information

processing systems, pages 6402–6413, 2017. Cited on pages 26, 33, and 40.

T. C. Landgrebe, D. M. Tax, P. Paclík, and R. P. Duin. The interaction between classi-

fication and reject performance for distance-based reject-option classifiers. Pattern

Recognition Letters, 27(8):908–917, 2006. Cited on page 46.

K. Lee, H. Lee, K. Lee, and J. Shin. Training confidence-calibrated classifiers for de-

tecting out-of-distribution samples. In International Conference on Learning Rep-

resentations, 2018. Cited on page 61.

https://ideal.com/

124 Bibliography

D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. In

SIGIR’94, pages 3–12. Springer, 1994. Cited on page 44.

Y. Li, J. M. Hernández-Lobato, and R. E. Turner. Stochastic expectation propaga-

tion. In Advances in neural information processing systems, pages 2323–2331,

2015. Cited on pages 24 and 33.

J. Liang, R. He, Z. Sun, and T. Tan. Exploring uncertainty in pseudo-label guided

unsupervised domain adaptation. Pattern Recognition, 96:106996, 2019. Cited on

page 84.

A. Loquercio, M. Segu, and D. Scaramuzza. A general framework for uncertainty

estimation in deep learning. IEEE Robotics and Automation Letters, 5(2):3153–

3160, 2020. Cited on pages 31 and 33.

S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and

R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages

4765–4774. Curran Associates, Inc., 2017. Cited on pages 42 and 105.

S. M. Lundberg, B. Nair, M. S. Vavilala, M. Horibe, M. J. Eisses, T. Adams, D. E.

Liston, D. K.-W. Low, S.-F. Newman, J. Kim, et al. Explainable machine-learning

predictions for the prevention of hypoxaemia during surgery. Nature Biomedical

Engineering, 2(10):749, 2018. Cited on page 106.

D. J. MacKay. Bayesian interpolation. Neural computation, 4(3):415–447, 1992a.

Cited on pages 17, 19, and 43.

D. J. MacKay. The evidence framework applied to classification networks. Neural

computation, 4(5):720–736, 1992b. Cited on pages 13, 17, 33, 43, and 44.

D. J. MacKay. A practical bayesian framework for backpropagation networks. Neural

computation, 4(3):448–472, 1992c. Cited on pages 17, 21, and 33.

A. Malinin and M. Gales. Predictive uncertainty estimation via prior networks. In

S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-

nett, editors, Advances in Neural Information Processing Systems 31, pages 7047–

7058. Curran Associates, Inc., 2018. Cited on pages 31, 33, 36, 41, 54, 56, 60,

and 68.

Bibliography 125

G. H. Mc Laughlin. Smog grading-a new readability formula. Journal of reading, 12

(8):639–646, 1969. Cited on page 105.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word represen-

tations in vector space. arXiv preprint arXiv:1301.3781, 2013a. Cited on page 98.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed repre-

sentations of words and phrases and their compositionality. In Advances in neural

information processing systems, pages 3111–3119, 2013b. Cited on page 75.

D. Milios, R. Camoriano, P. Michiardi, L. Rosasco, and M. Filippone. Dirichlet-based

gaussian processes for large-scale calibrated classification. In Advances in Neural

Information Processing Systems, pages 6005–6015, 2018. Cited on page 23.

J. X. Morris, E. Lifland, J. Y. Yoo, and Y. Qi. Textattack: A framework for adversarial

attacks in natural language processing. arXiv preprint arXiv:2005.05909, 2020.

Cited on page 110.

L. Mou, Z. Meng, R. Yan, G. Li, Y. Xu, L. Zhang, and Z. Jin. How transferable

are neural networks in nlp applications? Proceedings of the 2016 Conference on

Empirical Methods in Natural Language Processing, 2016. Cited on page 74.

M. S. A. Nadeem, J.-D. Zucker, and B. Hanczar. Accuracy-rejection curves (arcs)

for comparing classification methods with a reject option. In Machine Learning in

Systems Biology, pages 65–81, 2009. Cited on page 46.

M. P. Naeini, G. Cooper, and M. Hauskrecht. Obtaining well calibrated probabilities

using bayesian binning. In Twenty-Ninth AAAI Conference on Artificial Intelligence,

2015. Cited on page 81.

R. M. Neal. Bayesian learning for neural networks, volume 118. Springer Science &

Business Media, 2012. Cited on pages 18, 25, and 33.

A. Niculescu-Mizil and R. Caruana. Predicting good probabilities with supervised

learning. In Proceedings of the 22nd international conference on Machine learning,

pages 625–632, 2005. Cited on pages 37 and 39.

I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped

dqn. In Advances in neural information processing systems, pages 4026–4034, 2016.

Cited on pages 26 and 33.

126 Bibliography

S. E. Petersen and M. Ostendorf. A machine learning approach to reading level assess-

ment. Computer speech & language, 23(1):89–106, 2009. Cited on page 105.

I. Pillai, G. Fumera, and F. Roli. Multi-label classification with a reject option. Pattern

Recogn., 46(8):2256–2266, Aug. 2013. Cited on page 46.

J. C. Redish. Understanding the limitations of readability formulas. IEEE Transactions

on Professional Communication, PC-24(1):46–48, 1981. Cited on page 104.

M. T. Ribeiro, S. Singh, and C. Guestrin. "why should I trust you?": Explaining the

predictions of any classifier. CoRR, abs/1602.04938, 2016a. Cited on page 105.

M. T. Ribeiro, S. Singh, and C. Guestrin. " why should i trust you?" explaining

the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD in-

ternational conference on knowledge discovery and data mining, pages 1135–1144,

2016b. Cited on page 42.

C. Riquelme, G. Tucker, and J. Snoek. Deep bayesian bandits showdown: An empir-

ical comparison of bayesian deep networks for thompson sampling. arXiv preprint

arXiv:1802.09127, 2018. Cited on page 40.

S. Rossi, P. Michiardi, and M. Filippone. Good initializations of variational bayes for

deep models. arXiv preprint arXiv:1810.08083, 2018. Cited on page 23.

F. R. Ruiz, M. T. R. AUEB, and D. Blei. The generalized reparameterization gradient.

In Advances in neural information processing systems, pages 460–468, 2016. Cited

on pages 23 and 33.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-

propagating errors. nature, 323(6088):533–536, 1986. Cited on page 17.

D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, Z. Wen, et al. A tutorial on thomp-

son sampling. Foundations and Trends R© in Machine Learning, 11(1):1–96, 2018.

Cited on page 45.

P. Sadowski and P. Baldi. Neural network regression with beta, dirichlet, and dirichlet-

multinomial outputs. 2018. Cited on pages 29, 30, 33, and 68.

M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2:

Inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 4510–4520, 2018. Cited on page 84.

Bibliography 127

T. Scheffer, C. Decomain, and S. Wrobel. Active hidden markov models for infor-

mation extraction. In Proceedings of the 4th International Conference on Advances

in Intelligent Data Analysis, IDA ’01, pages 309–318, London, UK, UK, 2001.

Springer-Verlag. Cited on pages 34, 48, and 77.

S. E. Schwarm and M. Ostendorf. Reading level assessment using support vector

machines and statistical language models. In Proceedings of the 43rd Annual Meet-

ing on Association for Computational Linguistics, pages 523–530. Association for

Computational Linguistics, 2005. Cited on page 105.

R. Senge, S. Bösner, K. Dembczyński, J. Haasenritter, O. Hirsch, N. Donner-Banzhoff,

and E. Hüllermeier. Reliable classification: Learning classifiers that distinguish

aleatoric and epistemic uncertainty. Information Sciences, 255:16–29, 2014. Cited

on page 14.

R. Senter and E. A. Smith. Automated readability index. Technical report, CINCIN-

NATI UNIV OH, 1967. Cited on page 104.

I. V. Serban, C. Sankar, M. Germain, S. Zhang, Z. Lin, S. Subramanian, T. Kim,

M. Pieper, S. Chandar, N. R. Ke, et al. A deep reinforcement learning chatbot.

arXiv preprint arXiv:1709.02349, 2017. Cited on page 114.

B. Settles. Active learning literature survey. Technical report, University of Wisconsin-

Madison Department of Computer Sciences, 2009. Cited on page 44.

C. E. Shannon. A mathematical theory of communication. Bell system technical jour-

nal, 27(3):379–423, 1948. Cited on pages 35 and 99.

S. Shekhar, M. Ghavamzadeh, and T. Javidi. Binary classification with bounded ab-

stention rate. arXiv preprint arXiv:1905.09561, 2019. Cited on page 46.

A. Shrikumar, P. Greenside, and A. Kundaje. Learning important features through

propagating activation differences. CoRR, abs/1704.02685, 2017. Cited on

page 105.

J. Snoek, Y. Ovadia, E. Fertig, B. Lakshminarayanan, S. Nowozin, D. Sculley, J. Dil-

lon, J. Ren, and Z. Nado. Can you trust your model’s uncertainty? evaluating predic-

tive uncertainty under dataset shift. In Advances in Neural Information Processing

Systems, pages 13969–13980, 2019. Cited on pages 27, 40, and 41.

128 Bibliography

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts. Re-

cursive deep models for semantic compositionality over a sentiment treebank. In

Proceedings of the 2013 Conference on Empirical Methods in Natural Language

Processing, pages 1631–1642, Seattle, Washington, USA, Oct. 2013. Association

for Computational Linguistics. Cited on page 75.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:

a simple way to prevent neural networks from overfitting. The journal of machine

learning research, 15(1):1929–1958, 2014. Cited on page 25.

S. Štajner and I. Hulpuş. Automatic assessment of conceptual text complexity using

knowledge graphs. In Proceedings of the 27th International Conference on Com-

putational Linguistics, pages 318–330, Santa Fe, New Mexico, USA, Aug. 2018.

Association for Computational Linguistics. Cited on page 105.

S. Štajner, R. Evans, C. Orasan, and R. Mitkov. What can readability measures re-

ally tell us about text complexity. In Proceedings of the the Workshop on Natural

Language Processing for Improving Textual Accessibility (NLP4ITA), pages 14–21.

Citeseer, 2012. Cited on page 105.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception

architecture for computer vision. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 2818–2826, 2016. Cited on page 84.

S. Tan, X. Cheng, Y. Wang, and H. Xu. Adapting naive bayes to domain adaptation for

sentiment analysis. In M. Boughanem, C. Berrut, J. Mothe, and C. Soule-Dupuy, ed-

itors, Advances in Information Retrieval, pages 337–349, Berlin, Heidelberg, 2009.

Springer Berlin Heidelberg. Cited on page 74.

J. J. Thiagarajan, I. Kim, R. Anirudh, and P.-T. Bremer. Understanding deep neural

networks through input uncertainties. In ICASSP 2019-2019 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2812–

2816. IEEE, 2019. Cited on pages 31 and 33.

S. Thulasidasan, T. Bhattacharya, J. Bilmes, G. Chennupati, and J. Mohd-Yusof.

Combating label noise in deep learning using abstention. arXiv preprint

arXiv:1905.10964, 2019. Cited on page 46.

Bibliography 129

Turnitin. Turnitin: Revision assistant,. http://turnitin.com/, 2019. Accessed:

2019-08-01. Cited on page 5.

S. Vajjala and I. Lučić. OneStopEnglish corpus: A new corpus for automatic readabil-

ity assessment and text simplification. In Proceedings of the Thirteenth Workshop on

Innovative Use of NLP for Building Educational Applications, pages 297–304, New

Orleans, Louisiana, June 2018. Association for Computational Linguistics. Cited on

page 105.

T. vor der Brück, S. Hartrumpf, and H. Helbig. A readability checker with supervised

learning using deep indicators. Informatica, 32(4), 2008. Cited on page 105.

Y. Wen, P. Vicol, J. Ba, D. Tran, and R. Grosse. Flipout: Efficient pseudo-independent

weight perturbations on mini-batches. arXiv preprint arXiv:1803.04386, 2018.

Cited on pages 23, 33, and 99.

J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg, F. Viégas, and J. Wilson. The

what-if tool: Interactive probing of machine learning models. IEEE transactions on

visualization and computer graphics, 26(1):56–65, 2019. Cited on page 42.

Z. Wu and M. Palmer. Verbs semantics and lexical selection. In Proceedings of the

32nd annual meeting on Association for Computational Linguistics, pages 133–138.

Association for Computational Linguistics, 1994. Cited on page 85.

Y. Xiao and W. Y. Wang. Quantifying uncertainties in natural language processing

tasks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,

pages 7322–7329, 2019. Cited on page 29.

C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt. Advances in variational inference.

IEEE transactions on pattern analysis and machine intelligence, 41(8):2008–2026,

2018. Cited on page 27.

T. Zhang and F. J. Oles. A probability analysis on the value of unlabeled data for

classification problems. In 17th International Conference on Machine Learning,

2000. Cited on page 45.

http://turnitin.com/

	Introduction
	Context
	Goals
	Contributions
	Thesis Layout

	Uncertainty in Classification Systems
	Problem formulation
	Definition of Uncertainty
	Related Work
	Epistemic Uncertainty
	Heteroscedastic Aleatoric Uncertainty
	Measuring Uncertainty

	Desirable properties of uncertainty
	Calibration
	Robustness
	Interpretability

	Applications of uncertainty
	Model Selection
	Active Learning
	Classification with rejection

	Uncertainty Estimation for Black-box Classifiers
	Gaussian approach
	Measuring uncertainty

	Dirichlet approach
	Dirichlet concentration reparameterization
	Inference in the Dirichlet setting
	Measuring uncertainty

	Out-of-distribution
	Illustration of the Dirichlet Wrapper and Uncertainty Measurement
	Analysis of the measured uncertainties when using the wrapper
	Evaluating out-of-distribution samples

	Experiments
	Sentiment Analysis
	Relation with calibration methods

	Image Classification
	Uncertainty evaluation of unknown classes
	Out of Distribution Image Case

	A real-life use case: Overqualification analysis.
	Context of the project
	Task 4: Identification of overqualification
	Computing the uncertainty score
	Uncertainty-based rejection classifier
	Adequacy between required functions/skills and the level of studies
	Lessons learned

	Unsupervised, Uncertainty-based Text Readability Assessment
	Readability assessment
	Explainability
	Method
	Experiments
	Results

	Conclusion
	Contributions
	Future Research

	Publications
	Journals submissions
	International Conferences
	Workshops

	Bibliography

