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Abstract
Due to the emergence of new technologies, algorithm-assisted drivers are close
to becoming a reality. In this thesis, different aspects of managing such drivers
in a blocked-lane scenario are discussed. The first chapter presents an algorithm
for the optimal merging of self-interested drivers. The optimal policy can include
undesirable velocity oscillations. We propose measures for a central planner to
eradicate them, and we test the efficiency of our algorithm versus popular heuris-
tic policies. In the second chapter, a mechanism for positional bidding of the
drivers is developed. It allows trading of highway positions of the drivers with
heterogeneous time valuations, resulting in a socially beneficial outcome. The
final chapter presents a deep learning policy for centralized clearing of the bot-
tleneck in the shortest time. Its use is fast enough to allow future operational
applications, and a training set consists of globally optimal merging policies.

Resum
En aquesta tesi, es discuteixen diferents aspectes de la gestió els conductors assis-
tits per algoritmes en un escenari de carril bloquejat. El primer capı́tol presenta
un algorisme de la gestió òptima dels conductors egoistes. La polı́tica òptima pot
incloure oscil·lacions de velocitat no desitjades. Proposem mesures per a un plan-
ificador central per erradicar-les i comprovem l’eficiència del nostre algoritme en-
front de les polı́tiques heurı́stiques populars. En el segon capı́tol, es desenvolupa
un mecanisme per a la licitació posicional dels conductors. Permet negociar posi-
cions per carretera dels conductors amb valoracions de temps heterogènies, do-
nant lloc a un resultat socialment beneficiós. El capı́tol final presenta una polı́tica
d’aprenentatge profund per a l’aclariment centralitzat del coll d’ampolla en el
menor temps possible. El seu ús és prou ràpid per permetre futures aplicacions
operatives, i un conjunt de formació consisteix en polı́tiques de fusió òptimes a
nivell mundial.
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Prologue

Smooth vehicular traffic flow can reduce environmental pollution, improve quality-
of-life for commuters, and save billions of dollars in lost productivity. The nature
of road traffic, however, poses significant modeling and technical challenges. It is
highly dynamic and stochastic, with a large number of autonomous, self-interested
agents, of varying skills and attitudes, with the decisions of one agent potentially
affecting the actions of many others. Moreover, traffic is generally controlled only
by coarse static rules and guidelines, which by necessity have to be applicable to
a broad spectrum of driving conditions.

Despite many decades of sustained research by various communities, a num-
ber of research questions and challenges in optimal traffic control remain, as ev-
ident from the prevalence of traffic jams and delays to this day. Some of these
research questions have taken on renewed urgency with the advent of sensors,
vehicle-to-vehicle communication (V2V), vehicle-to-infrastructure communica-
tion (V2I), 5G, and driverless car technologies, which enable more information
and more control, and allows algorithmic decision-making that can be based on
clear objectives.

In this new transportation paradigm where driving is assisted by algorithms,
either fully or partially, the real challenge, as should be apparent upon some reflec-
tion, is the management of algorithm-assisted vehicular traffic. For instance, what
are fair, safe, and efficient real-time protocols for overtaking and lane-changing?
How should one model the objective functions of different drivers? How can we
take these different objective functions into account for the benefit of everyone?
How can a central planner best control the flow? While the technology behind
driverless cars is advancing at a breath-taking pace, much is still unknown about
such issues of optimization, incentives, and collective decision-making by hetero-
geneous agents, and the resulting outcomes.

This thesis addresses these questions in application to one particular but com-
mon in practice scenario: mandatory lane changing. Due to an accident or con-
struction work, one of the two lanes of a road segment is blocked, as illustrated in
Figure 1. All drivers that happen to be on the blocked lane need to merge to the
free-flowing lane to continue with their routes. Throughout the thesis, we consis-
tently call one lane B (Blocked) and the other F (Free). This scenario is a back-
bone of the thesis, and in the different chapters, we model and analyze the problem
from different angles. Nevertheless, all chapters share some similarities in the un-
derlying assumptions. First, we assume that the drivers are “algorithmic”—that
is, they are self-interested and rational, which is expected from algorithm-assisted
drivers in the nearest future. Second, we cut smaller details of traffic dynamics
and come to a stylized model. We focus on proving theoretical results and getting
valuable insights.
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Figure 1: Illustration of a mandatory lane-changing scenario

In the first chapter, we develop a Dynamic Programming (DP) formulation
of a single merging car, and we characterize the optimal policy. As we surpris-
ingly found out, the optimal solution can oscillate between high and low velocities
during merging attempts. Traffic oscillations are not a new phenomenon, as is dis-
cussed in detail in the literature review of Chapter 1. However, our results show
that optimizing nature of algorithmic drivers can induce a new endogenous source
of oscillations. We take a more in-depth look into possible causes via our the-
oretical analysis; we also propose a central planner strategy on how to diminish
these oscillations. We compare our policy to popular heuristics policies such as
“merge early” and “merge late”. Cellular Automata simulations show a significant
advantage of using our merging policy, reducing the merging driver’s total travel
time.

In the second chapter, we turn our attention to a different aspect of merging.
We assume that all drivers on the road have different “urgency” of their trips or
time valuation. This valuation is inherently a private value, and neither the cen-
tral planner nor other drivers can freely observe it. The drivers are ready to give
up some of their travel time to the merging driver in exchange for monetary pay-
ment. Can we organize an auction format that would allow finding equilibrium
and possess desirable properties? Auctions are a rich topic, but many existing
formats such as first-price auction, position auction, or VCG mechanism are not
applicable in this rather complex environment. On the other hand, formats that
can be found in traffic engineering literature typically lack equilibrium analysis.
We propose two ad-hoc bidding schemes called Tail-To-Head (T2H) and Head-
to-Tail (H2T). We show that equilibrium for both mechanisms can be computed
via Dynamic Program, and provide analytical solutions. Furthermore, we show
both analytically and numerically that Tail-To-Head is efficient in terms of social
welfare and guarantees zero externalities, while Head-to-Tail excels at delivering
high utility of the merging driver.

In the third chapter, we consider the merging problem from the central plan-
ner’s position who can control drivers, either directly or through instructions or
recommendations. There are several drivers on both lanes, and the central planner
needs to find a way to clear the bottleneck as fast as possible. We formulate this
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problem using Mixed-Integer Programming (MIP). For very few cars on the road,
it can be solved fast. However, when there are more than a dozen vehicles, solv-
ing time is prohibitive for real-time recommendations. We propose Deep Neural
Network architecture, which we train on a large massive of optimal MIP solu-
tions. The output of this neural network is merging time and merging order. To
obtain full recommended trajectories, we post-process these outputs using Linear
Programming formulation. The resulting policy is fast to compute and is within
1.5% optimality gap from the exact MIP solutions.
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Chapter 1

MANAGING LANE-CHANGING
OF ALGORITHM-ASSISTED
DRIVERS

1.1 Introduction

The development of new communication technologies opens up numerous possi-
bilities for car traffic. It is conceivable that central planners, in a not-too-distant
future, will be able to coordinate road traffic, or at least provide real-time rec-
ommendations to drivers. These developments raise the need for better under-
standing, via models and analysis, of optimal policies that take drivers’ objectives
and self-interested nature into consideration. Governments, car manufacturers,
and start-up companies are already testing such scenarios—for instance, the EU-
funded 5GCAR project (Sequeira et al. (2019))—and developing new standards
and protocols to turn this potential into reality; see New York Times (2016), DOT
(2018).

Meanwhile, issues of driver lane-changes and traffic oscillations remain to
be not fully understood even for the present-day traffic conditions. For instance,
highway design choices, such as short additional overtaking lanes on two-lane
highways, are common in some countries, e.g., Spain. Are they beneficial, or in
fact detrimental because of the forced merges they induce? Researchers have also
linked accidents, stop-and-go traffic, and traveling shock-waves to lane changes.
However, the fundamental reason as to how a single lane change can induce such
traffic phenomena is still not fully understood.

Many macroscopic as well as microscopic models of traffic introduce exoge-
nous stochastic terms to model human behavior such as over or under-reacting
to traffic with random braking, or acceleration or reacting with time delay; for
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instance, see Section G of the survey paper Helbing (2001). These stochastic er-
rors then propagate upstream and make the traffic flow “unstable”, occasionally
even causing it to come to a complete halt for seemingly no reason. Hence, by
implication, the “causal” factor for these puzzling stop-and-go waves and traffic
oscillations is the suboptimal and/or unpredictable nature of human driving. This
naturally raises the question that we address in this chapter: would traffic oscil-
lations go away if vehicles were controlled or assisted by algorithms, removing
human driving “behavior” from the equation?

In this chapter, we develop and analyze this question in the setting of a stylized
model of mandatory lane changing. Due to an accident or construction work, one
of the two lanes of a road segment is blocked. All drivers that happen to be on the
blocked lane need to merge to the free lane in order to continue with their routes.
Drivers on the blocked lane know that they have to merge, and each driver has the
following decisions to make: the velocity at which she moves; whether, and when
to attempt to merge to the free lane.

In our model, the blocked-lane drivers have only a stochastic view of the state
of the free lane: although they know the exact locations of merging opportunities
on the free lane at the time of their planning decisions, the gaps may not be there,
or may be of insufficient size when they actually get there, due to uncertainty in
the driving behavior of free-lane drivers.

What makes the problem interesting is that moving at higher velocity on the
blocked lane reduces travel time in the short run but requires a larger gap to merge
at that velocity, reducing the chance of merging and increasing the risk of a long
wait at the blockage point. Consequently, blocked-lane drivers are trading off
faster travel time at the current stage with an increased risk of not being able to
merge before reaching the end of the road segment.

The contributions of this work are as follows:

1. We provide a Dynamic Programming (DP) formulation of the problem for
a single merging car, and we characterize the optimal policy. We show that
the latter exhibits a surprising structure: in the presence of merging un-
certainty, it may be optimal for a driver, in certain parameter regimes, to
oscillate between high and low velocities while attempting to merge; i.e.,
rational self-interested driving behavior, based on global stochastic opti-
mization, may lead to oscillatory traffic patterns. So on the descriptive side,
our main finding is that traffic oscillations can arise endogenously due to
drivers’ global optimization decisions. This adds another potential source
of disturbance, in addition to suboptimality or unpredictability in their driv-
ing behavior, which has been the focus of existing literature. So algorithm-
assisted driving, with each driver minimizing their individual travel times,
may eliminate some sources of velocity oscillations, but adds a new one;

2
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2. On the normative side, we show how a traffic regulator can set velocity lim-
its so that oscillations do not arise even in the presence of algorithm-assisted
drivers, optimizing their total expected travel time. This would lead to safer,
smoother, and more efficient traffic flow. We use Monte Carlo discrete-event
simulations of more realistic traffic environments to show that merging poli-
cies arising from our DP approach can both improve throughput and reduce
delays compared to various alternative policies proposed in the literature.

Our research highlights the additional disturbances that algorithmic drivers
can bring to traffic. The fundamental reason is that while manual drivers can do
local/heuristic optimization based on immediate surrounding vehicles and con-
ditions, algorithm-assisted drivers can make globally optimal decisions because
of their computational power and ability to process significant amounts of infor-
mation on-the-fly. This research highlights the fact that, if left to rational selfish
objectives, uncertainty on other agents’ future actions and locations can lead to
undesirable phenomena. Hence, altruistic or cooperative behavior, e.g., courtesy
yielding, has to be incentivized or imposed on such algorithms for the greater
good.

Our approach is fundamentally different from traffic modeling via differential
equations that link macroscopic measures such as density and flow; such equa-
tions may fit observed data well, but do not provide causal or normative insights.
The very simplicity of our model also differentiates it from complex microscopic
simulations that are not amenable to analysis; such simulation set-ups capture
many features of human driving behavior, but often have too many confounding
factors to pinpoint fundamental causes.

The chapter is organized as follows. To motivate our work, we analyze in Sec-
tion 1.2 a large highway dataset and show that traffic oscillations are not uncom-
mon around mandatory merging points, even with manual driving. In Section 1.3
we survey the related literature, focusing primarily on articles that research lane
changing. In Section 1.4, we present a stylized discrete-stage and velocity model
of lane changing in forced-merge scenarios, and show that velocity oscillations
that can occur at optimality. In Section 1.5, we show how a central planner can
set velocity limits to eliminate these kinds of oscillations. In Section 1.6 we re-
lax some of the simplifying assumptions and test the robustness of our model.
In Section 1.7 we introduce details of our numerical set-up and investigate the
throughput-delay tradeoffs of the optimal policy in more realistic environments,
through Monte Carlo discrete-event simulations. In Section 1.8 we conclude.

3
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1.2 Data and evidence
In this section, we analyze merging instances from the on-ramp in the US High-
way 101 Dataset, which is part of the Next Generation Simulation (NGSIM)
project of the US DOT1. The particular road segment has 5 main lanes and an
auxiliary lane, with both an on-ramp and an off-ramp and total length of 2100
feet. Video data over three 15-minute intervals, recorded between 7.50am and
8.35am, has been transcribed into high-precision snapshots of x and y coordinates
and velocities at 100 millisecond intervals. The data is invaluable for calibration of
simulations, and understanding of human driving behavior. Our analysis focuses
on velocity oscillations in one of the two forced-merging situations in the data:
vehicles coming from the on-ramp (lane 6) have to merge to the rightmost main
lane (lane 5) within a specified distance, mimicking our blocked-lane scenario.
In total we analyze 280 such cases. To the best of our knowledge, the NGSIM
dataset has not been analyzed before with the focus on driver-level oscillations
while attempting to merge.

The main factor in identifying a merge attempt was a temporal traversal move-
ment towards lane 5, which we identified by checking difference over a period on
the local x-coordinate. The x-axis is almost perpendicular (but not perfectly) to
the direction of the lanes. As a general rule, a merge is identified if a vehicle is
moving towards the target lane at the velocity of at least 5 feet per second, and if
a period of such movement could be observed for at least 10 consecutive frames
(i.e. one second).

To identify velocity oscillations, we use the following criteria:

• Cases where a vehicle left the auxiliary lane within 4 seconds were dis-
carded, as there was no time for several merging opportunities.

• We compare the velocity of the merging vehicle to the velocity of the vehicle
ahead on the same lane, checking for correlations. This is to rule out the
possibility that the merging car simply follows the velocity pattern of the
preceding car.

• We track the velocity of the car behind on the target lane as additional con-
firmation of merge attempt: in many cases, the car on the target lane reacts
by decelerating, and sometimes, by accelerating.

• Our main focus is on the cases when the driver oscillates while merging with
the same driver on the target lane or skips one or more target lane drivers
after a failed attempt.

1https://data.transportation.gov/Automobiles/
Next-Generation-Simulation-NGSIM-Vehicle-Trajector/8ect-6jqj
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In total, we found 27 cases (9.65% of all merges) where velocity oscillations
of merging cars satisfy the above specification. If we only consider the cases
where it took more than 4 seconds for the driver to merge, then 19.7% merges
show merging-related oscillations. Usually, oscillations are not significant and
appear as small (3-7 feet/s) and short (1-2 seconds) velocity drop. However, there
are also a few cases where the driver shows a consistent and significant velocity
drop. In Fig. 1.1 we demonstrate four such examples of velocity oscillations of the
merging car. One particularly interesting example is vehicle 2122, which changes
velocity from low to high and then back to low while continuing merging attempts.
Car 1789 shows local temporal drops of velocity which coincide with merging
attempts. Cars 344 and 1098 demonstrate examples of merging attempts at a
lower velocity if compared to earlier or later ones. We emphasize that many of
those oscillations are not small variations in velocity which are usually part of the
execution of the merging maneuver, but rather more strategic change of velocity.
This is especially clear in case of the third merging attempt of car 1098 in Fig. 1.1.

In addition, we found that courtesy yielding, where a target-lane driver slows
down, presumably to create a large enough gap for the merging driver, does occur
occasionally but not always. There are also occasional cases of blocked merging,
where a target-lane driver not only does not courtesy-yield but instead closes the
gap, presumably to prevent merging.

It is, of course, impossible to attribute precise causal factors to the above phe-
nomena from a purely observational dataset, such as the NGSIM one. In Section
1.4.2, we list several reasons due to which oscillations may arise in manual driv-
ing.

Since algorithmic driving is based on precise objective functions, our theo-
retical findings highlight the need for “fair” protocols to be built into algorithm-
assisted driving: if vehicles on the target lane have no incentives to show “cour-
tesy” to merging drivers, then some form of altruistic/cooperative behavior may
have to be imposed by a central planner; otherwise, velocity oscillations, detri-
mental to the overall traffic flow, may arise.

We complement our analysis with further evidence on velocity oscillations,
this time from the literature. In Table 1.1, we review papers that perform empirical
analysis on merging, and show either oscillations or shock-waves originating from
lane changes. In Section 1.3, we further review papers on lane changing that are
based on simulations and theoretical models.

1.3 Literature on traffic merging and lane-changing
Traffic modeling follows either a macroscopic approach, studying traffic at the
population/fluid level, or a microscopic approach, studying the behavior of indi-

5
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(a) (b)

(c) (d)

Figure 1.1: Velocity oscillations of merging drivers. Each of 4 cases displays 3
subplots. Top: velocity of the merging driver, the velocity of the driver ahead on
the same lane, and the driver behind on the target lane. Middle: traversal velocity
of the merging car. Bottom: distance to cars behind and ahead (on the target lane),
vertical bars show when the driver behind changes, along with a new car ID number.
Identified merging attempts (which often comes with velocity drop) are shown in red
strips. Time measured in frames, one frame is 0.1 seconds.

6
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Table 1.1: Empirical, observed data-based papers studying lane changes or forced-
merging at on and off ramps, focusing mostly on describing the effects of merging.
Data is transcribed from video recordings of sections ranging from 150m to 1 km
during periods of 45min to 8 hours. Further empirical studies, not necessarily focused
on oscillations but demonstrating their presence or effects in traffic are Hidas (2005),
Kerner et al. (2006), Schönhof and Helbing (2007), Ahn and Cassidy (2007), Zheng
et al. (2010), Zheng et al. (2013), Zheng (2014), Ahn et al. (2010), Knoop et al.
(2018), Sheu (2013) and Wei et al. (2000).

Reference Data & Methodol-
ogy

Focus Main modeling ele-
ments

Conclusions

Daamen et al.
(2010), Loot (2009)

Data at on-ramps
from helicopter-
mounted video in
Netherlands

Gap acceptance the-
ory for merge be-
havior

Data Analysis,
verification of
gap-acceptance,
car-following and
relaxation theories

During free-flow,
most vehicles merge
at the first half of the
acceleration lane;
under congested
traffic conditions,
relatively more
merges happen
at the end of the
lane—supporting a
hypothesis of travel-
time minimization
objective

Mauch and Cassidy
(2002)

Observed data on a
10-km stretch

Modeling oscilla-
tions and testing the
Kinematic Wave
Theory

Descriptive; Estima-
tion of parametric
equations

Formation of
new oscillations
strongly correlated
with vehicle lane-
changing and less
to endogenous car-
following effects in
moderately dense
queues. “. . . marked
improvements in
traffic flow theories
will likely come
by incorporating
lane-changing
effects”

Lee et al. (2016) Stochastic model of
lane changes based
on the NGSIM data

Data Analysis; De-
velop a probability
model for a discre-
tionary lane change

Parametric equa-
tion estimation by
regression

Explains discre-
tionary lane changes
under relative veloc-
ity (both positive as
well as negative),
and relative lead gap

vidual drivers2. Both strands of literature are too vast, and the models too many,
to even attempt to summarize here. Instead we refer to a relatively recent survey
due to Helbing (2001) from a macroscopic point of view, and to Chowdhury et al.
(2000) from the microscopic Cellular-Automata perspective.

2A smaller body of work is classified as mesoscopic that attempts to describe microscopic
dynamics as a function of macroscopic parameters.

7



“Thesis” — 2020/10/1 — 18:52 — page 8 — #22

In the rest of this section, we concentrate only on research relevant to lane-
changing. Over the last two decades, lane-changing has gained prominence in the
traffic literature. It is increasingly recognized as one of the principal reasons for
creating disturbances in traffic flows, as well as oscillations leading to stop-and-go
waves in traffic patterns.

The merging problem in particular is the topic of early influential papers in
Operations Research, such as Evans et al. (1964) and McNeil and Smith (1969).
These papers build detailed models of merging, and compute quantities of inter-
est such as the merging delay from on-ramp to highway. However, while traffic
flow is modeled as a stochastic process, the modeling of individual behavior and
incentives of drivers are absent from these early works. After a rather long hia-
tus, the Operations Research community is picking up this important topic, as in
Jain and Smith (1997), Heidemann (2001), based on queueing theory, as well as
Gregoire et al. (2015), Le et al. (2015) and Como et al. (2016), from a control and
optimization perspective.

Merging is essentially an optimal stopping problem with similarities to the
classical “parking problem” (see McQueen and Miller Jr. (1960)). The main dif-
ference in our setting is the existence of an additional decision variable, the veloc-
ity, which affects in a non-trivial way both the travel time and the probability of
finding space to merge.

Many empirical works have focused on how drivers behave at merging points,
e.g., Chang and Kao (1991), Hounsell et al. (1992), Hidas (2005), Liu and Hyman
(2012), and Knoop et al. (2012). Many models have been proposed on explaining
the data with parametric forms for the merge probabilities and driver behavior, as
in Gipps (1986), Kita (1999), Daganzo (2002a), Daganzo (2002b), Hidas (2002),
Jin (2010), Laval and Daganzo (2006), Kondyli and Elefteriadou (2011), Zhang
et al. (2012), Keyvan-Ekbatani et al. (2016) and Ngoduy et al. (2019). Choudhury
et al. (2007), Choudhury and Ben-Akiva (2013) and Kesting et al. (2007) pro-
pose sophisticated merging decision structures and regimes, including potential
cooperation with cars in the target lane.

A notable difference with our model, though, is the lack of a velocity decision,
with the exception of Sun and Elefteriadou (2010) which does have a velocity
element. We refer the reader to Rahman et al. (2013), and Zheng (2014) for a
broader review of lane-changing models. The thesis of Ahmed (1999) proposes
a logistic-regression model to determine the probability of a driver choosing to
merge, while Toledo et al. (2003) propose an integrated lane-changing model that
works for mandatory and discretionary considerations based on a gap-acceptance
model.

Note that while the vast majority of the literature concentrates on local expla-
nations of driver choices, that is, based only on immediate surroundings, Nilsson
et al. (2016) and Rios-Torres and Malikopoulos (2017) propose global driver op-
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timization models based on optimal control theory.
Tarko et al. (1999) and McCoy and Pesti (2001) have documented experi-

ments with “zipper merging” and “late merging” strategies, and have reported
on improvements over the uncontrolled random merging benchmark. A similar
approach is also taken in Grillo et al. (2008). These works advance our under-
standing of typical traffic scenarios, but lack an explicit control/optimization di-
mension, as well as any theoretical support of their findings. Baykal-Gürsoy et al.
(2009) and Duret et al. (2010) can be viewed as a step in that direction: the au-
thors introduce theoretical models for predicting the effect of lane-changing using
kinematic-wave theory, with a future plan to use these results for better decisions
in traffic management.

Given the recent interest in driverless cars, a number of researchers have turned
their attention to connected automated vehicles and how they interact with manu-
ally driven vehicles. In this stream, some notable papers are the following: Buis-
son et al. (2018), Lee et al. (2019), Zheng et al. (2020). Systems such as adaptive
cruise control for automated vehicles are proposed, either at the individual or co-
operative level (Van Arem et al. (2006), Kesting et al. (2008)). They can control
car-following and lane-changing decisions of automated vehicles, leading to bet-
ter flow characteristics, including diminishing stop-and-go waves (Wang et al.
(2015), Wang et al. (2016)).

Finally, a related strand of literature lies in the intersection of Traffic Engineer-
ing and Computer Science, where lane-changing is studied through simulations at
a microscopic level (for instance, merging rules studied in MITSIM and Yang and
Koutsopoulos (1996)). From this literature, let us highlight Ebersbach and Schnei-
der (2004) and Han and Ko (2012), which focus on merging into a highway with
a blocked lane and mandatory on-ramp merging, respectively.

1.4 Modeling and analysis of merging
In this section we study a discrete-time and discrete-velocity model of merging.
By using a stylized model, we hope to provide insights into the dynamics of the
merging process. Later, we show that the same insights hold in continuous-time
and/or continuous-velocity models.

1.4.1 Mandatory lane-changing under uncertainty
Consider a two-lane road, with traffic moving in the same direction on both lanes.
One lane is blocked unexpectedly due to accident, construction, or maintenance
work, while traffic on the other lane continues to flow freely. We refer to the
lanes as B (Blocked) and F (Free). Every car that happens to be on lane B when

9
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the blockage occurs, needs to merge to lane F at some place before the blockage
point, i.e., we have a scenario of mandatory lane-changing.

Table 1.2: Notation used in the chapter

Notation To represent
B Blocked lane
F Free lane
dk Distance between merging positions k and k + 1
vsk , vek velocity at the start and end of stage k respectively
vH , vL Upper (superscript H) and lower (superscript L) bounds on velocity respectively
uk 0-1 decision variable of the driver to merge
V F
k Velocity on the F lane in stage k modeled as i.i.d random variables
Yk 0-1 random variable; 1 means there is a sufficient gap to allow merging at end of stage k − 1
q(·) Probability of the Bernoulli r.v Yk as a function of velocities and distances between merging points
c(·) Impact of the relaxation on the merging car in terms of travel time
P Penalty in expeted time units if the car reaches the blockage without merging
TB
k (·) Value function representing optimal travel time to the blockage point for the car in stage k as a function of

the velocity choice

We focus on the behavior of a single car on the blocked lane, whose goal is
to merge to the free lane and get through the bottleneck in the shortest possible
time. The timing of decision making is fundamentally discrete, in the sense that
the driver of a vehicle on the B-lane can merge only at N specific gaps/merging
opportunities present on the free lane. Let the starting point of the car be at merg-
ing position 0, and the bottleneck be at merging position N + 1. We denote the
distance between positions k and k + 1 by dk, k = 0, . . . , N . We assume that the
driver knows the location of the gaps, e.g., via inspection or V2I information. This
discretizes the road segment into cells that we call stages, and we define stage k
as the road segment between positions k and k+1. We use the superscripts B and
F to denote stages on the B and F lane, respectively.

The vehicle reaches stages 1 to N sequentially. The driver on lane B has
two decisions to make at the start of stage k ∈ {0, . . . , N − 1}: (a) whether to
merge to lane F at the end of stage k, if there is a sufficiently large gap to do
so; and (b) whether to accelerate, decelerate, or keep the same speed during stage
k, effectively determining the velocity of the car at the end of stage k. We use
a binary decision variable, uk, whose value is 1 if the driver’s decision is to try
merge, and the value 0 otherwise. Let vsk and vek denote the velocity of the vehicle
at the start and at the end of stage k, respectively. In our benchmark model, we
assume that these velocities can only take two values, a high and a low one, vH
and vL, respectively. Later, we show that our insights hold even when the velocity
decision is continuous.

Three important assumptions underlie our model:

1. The driver on lane B cannot predict with certainty the state of lane F at the
end of a given stage, i.e. before she actually reaches that point. In other
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words, while the ex ante start/end of the stages are synonymous to merging
opportunities, they may or may not materialize when the B-lane driver ac-
tually reaches there. This is because the size of the gap itself depends on
the driving behavior of vehicles on the free lane, specifically the vehicles on
either side of the gap, which cannot be predicted accurately, since there is
no communication/coordination between vehicles.

2. Decisions and actions are not executed instantaneously. Instead, drivers
(both human, as well as algorithmic) plan a bit ahead to execute an action.
In our case, the driver decides to merge at the start of the stage and the
decision — if it is to merge — is attempted at the end of the stage. Such
a lag, in both information and action, is certainly realistic for humans, and
will be reduced but unlikely to go away completely even in fully automated
driving scenarios.

3. For safety, convenience, and fuel efficiency, a constant acceleration or de-
celeration rate is applied whenever a change in velocity is mandated. In
particular, if varying acceleration/deceleration patterns were allowed, the
fastest way to reach the end of a stage with a target velocity could very well
be to accelerate and subsequently decelerate within the stage. These triv-
ial, in some sense, oscillations are not the focus of our work. In contrast,
what we uncover is that velocity oscillations can arise across stages, even if
drivers maintain a constant acceleration or deceleration within each stage.

We assume that the velocity of the F lane at stage k is a random variable, V F
k ,

with known distribution. To be more precise, this is the velocity of a free-lane
vehicle that happens to be between the kth and the (k + 1)st merging position.
We also assume that once the vehicle merges to lane F , it never merges back to
the lane B. Indeed, when drivers are aware of a blockage, constant lane-changing
is rarely observed in practice. As a result, conditional on a successful merging,
the expected remaining travel time is a simple function of these velocities, and of
the point where the merging occurs. In particular, the (expected) time to traverse
stage k on lane F is equal to E

[
dk
/
V F
k

]
. While on lane B, the time that it takes to

traverse stage k is deterministic and equal to 2dk
/(
vsk + vek

)
, i.e., reciprocal to the

vehicle’s average velocity, as we assume constant acceleration or deceleration.
Let Yk+1 be an indicator random variable that takes the value yk+1 = 1 if a

sufficiently large gap (to allow merging) is realized at the end of stage k on the
free lane, at the point in time when the blocked lane driver is attempting to merge;
and yk+1 = 0, otherwise. Following the literature, we model the random variable
of finding a gap to merge Yk+1 = q

(
vek, V

F
k , dk

)
, with a (stationary) function q(·)

of the velocity of the blocked-lane car vek, velocity on the free lane V F
k at the end

of stage k, and the distance dk between the kth and the (k+ 1)st merging position.
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It should be intuitively clear why the first two arguments of q affect the ability to
merge; the last one, dk, can also play a role because conditional on an unsuccessful
merging attempt in the previous stage, the length of the current stage may affect
the driver’s uncertainty on merging in the near future.

A merging car creates a local disturbance in the flow of the target lane; in
our case, lane F . This disturbance affects one or more cars on the target lane,
as well as the merging car itself. This phenomenon, termed relaxation in the
literature, is well studied and understood empirically; see Zheng et al. (2013) for
a recent review. We do not attempt to model the details of the relaxation process
as our focus is on the merging car and its objective of minimizing its total travel
time. Hence, for simplicity and tractability, we capture the aggregate impact of
relaxation on the merging car by a merging penalty which, following the literature,
we assume to be a (stationary) function c

(
vek, V

F
k , dk

)
of the velocity of theB-lane

car and of the F lane at the end of stage k, as well as of the distance between the
kth and the (k + 1)st merging position.

If the driver reaches the bottleneck stage without having merged to lane F ,
she incurs an expected late-merging penalty of P time units, and then exits the
bottleneck. (In this late-merging penalty we also include the traveling time from
the last merging opportunity, at position N , to the bottleneck, at position N + 1.)
This penalty models the fact that the car needs to come to a complete stop, and
then wait for a large enough gap on lane F in order to bypass the blockage. The
regime of interest is when P is reasonably large, as otherwise there may be no
incentive to merge and the solution to the driver’s problem becomes trivial.

The B-lane driver’s problem is then a Dynamic Program (DP) with the fol-
lowing primitives.

State: The state of the system at the start of stage k consists of the
lane on which the car is located, F or B, and its current velocity vsk,
in case the car is still on the B lane.

Decision: The decision at stage k, assuming that the car is still on
lane B, consists of two components. The first component represents
the driver’s intention to merge at the end of stage k, uk ∈ {0, 1}. The
second component is the velocity to achieve at the end of stage k,
vek ∈

{
vL, vH

}
. If the car has already merged to lane F at stage k,

then there is no decision to be made.

Uncertainty: The uncertainty is on the existence of a sufficient gap on
lane F at the end of stage k (equivalently, at merging position k + 1),
which is captured by the indicator random variable Yk+1.
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Dynamics: If the car is on lane B at the end of stage k, and uk =
yk+1 = 1, then the car merges to lane F at the start of stage k + 1.
Otherwise, the car remains on lane B and moves at velocity vsk+1 =
vek.

Objective Function: The objective for the B-lane vehicle is to take
decisions to minimize expected remaining travel time.

We denote by TBk (vsk) the optimal expected remaining travel time, if at the
start of stage k the car is on lane B and moves at velocity vsk. Similarly, T Fk
represents the cost-to-go if the car is on lane F . We are interested in calculating
TB0 (vs0) and, along the way, in obtaining the optimal merging and velocity control
policy. This can be done via the following DP recursion:

TBk (vsk) = min
vek∈{vL,vH}

{
2dk

vsk + vek
+ min

{
TBk+1

(
vek
)︸ ︷︷ ︸

uk=0

, (1.1)

E
[
q
(
vek, V

F
k , dk

)(
T Fk+1 + c

(
vek, V

F
k , dk

))
+
(

1− q
(
vek, V

F
k , dk

))
TBk+1

(
vek
)]︸ ︷︷ ︸

uk=1

}}
,

for k = 0, . . . , N − 1, with boundary condition:

TBN (vsN) = P,

where

T Fk = E

[
N∑
j=k

dj
V F
j

]
, k = 0, . . . , N.

Note that in Eq. (1.1) decisions are made at the start of stage k, whereas the
realization of the random variables occurs when they reach the gap. Hence, the
blocked-lane driver minimizes their expected travel time with respect to the dis-
tribution of V F

k .

Structure of the optimal policy

To simplify the notation and analysis, we assume that d0 = d1 = . . . = dN =

1, and that the random variables
{
V F
k

}N
k=0

are independent and identically dis-
tributed with a probability law VF on (0,∞), and we denote E

[
VF
]

= vF . From
an analytical standpoint, the former assumption is basically a normalization, made
without much loss of generality. The latter assumption, however, is a stronger one:
while assuming that the velocities of the free lane at different stages are identically
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distributed seems reasonable for a lane that is free flowing, assuming that they are
also mutually independent could be restrictive. In fact, one would expect at least
a weak dependence between the velocities of consecutive stages. Assuming inde-
pendence makes the analysis tractable. To validate our insights, in the simulation
set-up presented later, we consider the model presented above in its full generality.

Note that the independence assumption for the sequence
{
V F
k

}N
k=0

implies
that TBk+1

(
vek
)

and T Fk+1 are independent of q
(
vek, V

F
k , dk

)
. Moreover, in order to

ease the notation, we define

q
(
vek
)
≡ E

[
q
(
vek, VF , 1

)]
,

and

c
(
vek
)
≡

E
[
q
(
vek, VF , 1

)
c
(
vek, VF , 1

)]
q
(
vek
) ,

where the expectations are taken with respect to the distribution of VF .
We assume that vF ≤ vL, i.e., we have a relatively congested free lane, which

is typical in mandatory lane-changing scenarios.
We let q

(
vL
)

= qL and q
(
vH
)

= qH , and we assume that qL > qH > 0. This
is motivated by the fact that, all else being equal, the driver requires less space to
merge if the difference between the velocities in the two lanes is small; see Lee
(2006), Choudhury et al. (2010) and Toledo et al. (2003) for exact estimates of this
effect; and in our case vL is closer to vF , as our main interest is in scenarios where
the free lane is relatively dense. We discuss the empirical background and model-
ing aspects of merging such as gap-acceptance in more detail in Section 1.7.1.

Similarly, we let c(vL) = cL and c(vH) = cH , and we assume that cH < cL.
The reasoning is that, on average, merging requires a larger gap if vek = vH ,
but conditional on a successful merge event, the relaxation process is smoother
overall. In-depth studies of relaxation are limited, but statistical support for the
aforementioned claim can be found in van Beinum et al. (2018). A more detailed
discussion of relaxation and merging penalties can be found in Section 1.7.1.

For technical reasons, we assume that the late merging penalty satisfies P �
1
/

min
{
vL, v

F
}

+ cL, which is consistent with the intuition that penalty needs to
be “large enough.”

With these assumptions and notation, the DP formulation reduces to:

TBk (vsk) = min
vek∈{vL,vH}

{
2

vsk + vek
+ min

{
TBk+1

(
vek
)
, q
(
vek
)(
T Fk+1 + c

(
vek
))

+
(
1− q

(
vek
))
TBk+1

(
vek
)}}

, (1.2)
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for k = 0, . . . , N − 1, with boundary condition:

TBN (vsN) = P, (1.3)

and

T Fk =
N − k + 1

vF
, k = 0, . . . , N. (1.4)

Let us denote by (u∗k, v
∗e
k ) the element of an optimal policy at the kth stage.

Our initial finding is quite intuitive, and follows directly from the DP recursion in
Eq. (1.2).

Proposition 1.1. Consider the mandatory lane-changing problem in Eq. (1.2)-
(1.4). If it is optimal not to merge at stage k, i.e., u∗k = 0, then it is optimal to have
high velocity during stage k, i.e., v∗ek = vH .

In other words, the decision pair (0, vL) can never be part of an optimal merg-
ing and velocity control policy. In order to characterize further the structure of
optimal policies, we need to introduce following notation:

Bk (vsk) ≡
2

vsk + vL
− 2

vsk + vH
+ qL

(
T Fk+1 + cL

)
− qH

(
T Fk+1 + cH

)
,

and
∆Tk+1 ≡ (1− qH)TBk+1(vH)− (1− qL)TBk+1(vL).

In our formulation, merging can be viewed as an optimal stopping problem,
where the driver incurs a lump-sum cost T Fk+1 + c(vek) if she merges successfully
at the end of stage k, and after which the whole process terminates. In that light,
Bk (vsk) can be interpreted as the expected loss of choosing vL over vH at stage k,
while ∆Tk+1 as the expected continuation benefit of that same decision.

We now prove two technical lemmas, which will facilitate proofs of our main
theoretical results.

Lemma 1.1. TBk (vH) ≤ TBk (vL), for all k ∈ {1, . . . , N − 1}.

Proof. Fix an arbitrary k ∈ {1, . . . , N − 1}. The result follows directly from
Eq. (1.2), by noting that the objective function in the optimization problem defin-
ing TBk (vH) takes lower values than the objective function in the optimization
problem defining TBk (vL), for every feasible solution. �
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Lemma 1.2. If it is optimal to merge at stage k, i.e., u∗k = 1, then

(vL − vH)

vL(vL + vH)
≤ TBk (vH)− TBk (vL) ≤ (vL − vH)

vH(vL + vH)
.

Proof. Let us assume that it is optimal to merge, and that v∗ek = ṽ is the optimal
velocity at the end of stage k, if the velocity at the start of the stage is vH . Eq. (1.2)
implies that

TBk (vH) =
2

vH + ṽ
+ q(ṽ)

(
T Fk+1 + C(ṽ)

)
+
(
1− q(ṽ)

)
TBk+1(ṽ).

Note that,

TBk (vL) ≤ 2

vL + ṽ
+ q(ṽ)

(
T Fk+1 + C(ṽ)

)
+
(
1− q(ṽ)

)
TBk+1(ṽ),

since ṽ is a feasible, but not necessarily optimal solution to the optimization prob-
lem defining TBk (vL). Together, the two equations imply that

TBk (vH)− TBk (vL) ≥ 2

vH + ṽ
− 2

vL + ṽ
=

2(vL − vH)

(vL + ṽ)(vH + ṽ)

≥ 2(vL − vH)

(vL + vL)(vL + vH)
=

(vL − vH)

vL(vL + vH)
,

where the right-most inequality uses the fact that the numerator is negative, so that
the fraction decreases by substituting vL for ṽ.

This proves the lower bound on TBk (vH) − TBk (vL). The upper bound can be
proved by considering that v∗ek = v̂ is the optimal velocity at the end of stage k, if
the velocity at the start of the stage is vL, and working similarly. �

Proposition 1.2. Consider the mandatory lane-changing problem in Eq. (1.2)-
(1.4). An optimal policy has the following multi-threshold structure:

1. (u∗k, v
∗e
k ) = (0, vH) if and only if TBk+1(vH) ≤ T Fk+1 + cH;

2. (u∗k, v
∗e
k ) = (1, vH) if and only if TBk+1(vH) ≥ T Fk+1 + cH and

∆Tk+1 ≤ Bk(v
s
k);

3. (u∗k, v
∗e
k ) = (1, vL) if and only if TBk+1(vH) ≥ T Fk+1 + cH and

∆Tk+1 ≥ Bk(v
s
k).

Combining the last two cases, we obtain that it is optimal to merge if and only if
TBk+1(vH) ≥ T Fk+1 + cH .
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Proof. Part (i): Assume that (u∗k, v
∗e
k ) = (0, vH) is the optimal solution. This

implies that

2

vsk + vH
+ TBk+1(vH)

≤ min
vek∈{vL,vH}

{
2

vsk + vek
+ q(vek)(T

F
k+1 + C(vek)) + (1− q(vek))TBk+1(vek)

}
=

2

vsk + vH
+ qH(T Fk+1 + cH) + (1− qH)TBk+1(vH),

where the inequality follows from Eq. (1.2), for u∗k = 0; and the equality from
Proposition 1.1, which disqualifies (0, vL) as an optimal solution. Rearranging
terms, we have that TBk+1(vH) ≤ T Fk+1 + cH , since qH > 0.

Conversely, assume that TBk+1(vH) ≤ T Fk+1 + cH . We note that

min
vek∈{vL,vH}

{
2

vsk + vek
+ q(vek)(T

F
k+1 + C(vek)) + (1− q(vek))TBk+1(vek)

}
≥ 2

vsk + vH
+ min

vek∈{vL,vH}

{
q(vek)T

B
k+1(vH) + (1− q(vek))TBk+1(vH)

}
=

2

vsk + vH
+ TBk+1(vH).

While the equality is derived through simple algebra, the inequality is based on
the following facts: (a) TBk+1(vH) ≤ T Fk+1 + cH ≤ T Fk+1 + cL, by assumption and
the ordering of merging penalties; (b) Lemma 1.1, which implies that TBk+1(vH) ≤
TBk+1(vL). Combined with Proposition 1.1, which precludes (0, vL) as an optimal
solution, the above inequality implies that (u∗k, v

∗e
k ) = (0, vH).

Putting the two parts together, we establish the first part of the proposition:

(u∗k, v
∗e
k ) = (0, vH) ⇐⇒ TBk+1(vH) ≤ T Fk+1 + cH .

Parts (ii)-(iii): In part (i), we have established that the condition TBk+1(vH) ≥
T Fk+1 + cH implies that u∗k = 1. Moreover, the condition ∆Tk+1 ≤ Bk(v

b
k) is

equivalent to

2

vsk + vH
+ qH(T Fk+1 + cH) +

(
1− qH

)
TBk+1

(
vH
)

≤ 2

vsk + vL
+ qL(T Fk+1 + cL) +

(
1− qL

)
TBk+1

(
vL
)
,
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if we use the definitions of ∆Tk+1 and Bk(v
s
k), and rearrange terms. This im-

plies that the high velocity, vH , is optimal, conditional on being optimal to merge.
Combining the two arguments, we have that

TBk+1(vH) ≥ T Fk+1 + cH and ∆Tk+1 ≤ Bk(v
s
k) ⇐⇒ (u∗k, v

∗e
k ) = (1, vH),

and

TBk+1(vH) ≥ T Fk+1 + cH and ∆Tk+1 ≥ Bk(v
s
k) ⇐⇒ (u∗k, v

∗e
k ) = (1, vL),

which prove the second and third part of the result, respectively. �

We emphasize that Proposition 1.2 does not imply the uniqueness of an opti-
mal solution, i.e., in boundary cases such as TBk+1(vH) = T Fk+1 + cH or ∆Tk+1 =
Bk(v

s
k), there may be more than one optimal solutions. This is the reason that we

do not use strict inequalities in the statement or the proof of the result. Note that
optimal policies have an intuitive structure: if merging is not optimal, something
that is associated with moving at high velocity, then the expected remaining travel
time on lane F must be larger than that on lane B, even if successful merging
was guaranteed, and vice versa. Moreover, if merging is optimal, then the driver
should choose vL over vH only if the expected continuation benefit of that decision
outweighs the expected loss from the merge.

Proposition 1.3. Consider the mandatory lane-changing problem in Eq. (1.2)-
(1.4). If it is optimal to merge at stage k, i.e., u∗k = 1, then it is optimal to merge
at stage k + 1, i.e., u∗k+1 = 1.

Proof. Assume that it is optimal to merge at stage k, i.e., u∗k = 1. The velocity in
the free lane is fixed, vF , therefore

T Fk+1 =
1

vF
+ T Fk+2 =⇒ T Fk+1 + cH =

1

vF
+ T Fk+2 + cH

=⇒ TBk+1(vH) ≥ 1

vF
+ T Fk+2 + cH , (1.5)

since Proposition 1.2 implies that TBk+1(vH) ≥ T Fk+1 + cH . Now, Eq (1.2), with
u∗k = 1, implies that

TBk+1(vH) =

= min
vek+1∈{vL,vH}

{
2

vH + vek+1

+
{
q(vek+1)(T Fk+2 + C(vek)) + (1− q(vek+1))TBk+2(vek+1)

}}
≤ 1

vH
+ qH

(
T Fk+2 + cH

)
+
(
1− qH

)
TBk+2(vH).
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Combined with Eq. (1.5), we have that

1

vF
+ T Fk+2 + cH ≤

1

vH
+ qH

(
T Fk+2 + cH

)
+
(
1− qH

)
TBk+2(vH)

⇐⇒
(
1− qH

) (
T Fk+2 + cH

)
≤ 1

vH
− 1

vF
+
(
1− qH

)
TBk+2(vH)

⇐⇒ T Fk+2 + cH ≤ TBk+2(vH),

since vF ≤ vH . This is equivalent to u∗k+1 = 1, according to Proposition 1.2. �

This result can be viewed as the direct extension of the classical result re-
garding the “parking problem”. While such results in optimal stopping problems
are usually established by invoking the One-Step Lookahead rule (the “parking
problem” is one example), we provide a proof from first principles.

1.4.2 Traffic oscillations
We now focus on the final region where it is optimal to merge, and also where
optimizing driver behavior can lead to velocity oscillations, under certain condi-
tions.
Final Merging Zone: This is the region defined as

TBk (vL) ≥ TBk (vH) ≥ T Fk+1 + cH =
N − k + 1

vF
+ cH . (1.6)

Proposition 1.3 establishes that there is typically a zone of consecutive stages,
reaching the blockage point, where it is optimal to merge. On the other hand,
Proposition 1.2 allows for merging to happen at either velocities, depending on
the state of the system and the parameters of the problem. For convenience, let us
adopt the shorthand notation

Ek+1[L] ≡ qL
(
T Fk+1 + cL

)
+ (1− qL)TBk+1(vL), (1.7)

which denotes the expected remaining travel time at the end of stage k, but right
before the merging opportunity is revealed (i.e., before the random variable Yk+1

is realized), assuming that vek = vL; Ek+1[H] is defined similarly.
The DP recursion can be expressed in the following form:

TBk
(
vsk
)

= min
vek∈{vL,vH}

{
2

vsk + vek
+ min

{
Ek+1

[
vek
]
, TBk+1

(
vek
)}}

. (1.8)

The metric of interest here is Ek+1[L] − Ek+1[H], i.e., the future loss/benefit
from choosing vL over vH at stage k. Depending on the exact value of this quan-
tity, the optimal velocity decisions are made as follows:
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1. If Ek+1[L]− Ek+1[H] ≤ 2
vL+vH

− 1
vL

and vsk = vL, then v∗ek = vL;

2. If Ek+1[L]− Ek+1[H] ≥ 2
vL+vH

− 1
vL

and vsk = vL, then v∗ek = vH ;

3. If Ek+1[L]− Ek+1[H] ≤ 1
vH
− 2

vL+vH
and vsk = vH , then v∗ek = vL;

4. If Ek+1[L]− Ek+1[H] ≥ 1
vH
− 2

vL+vH
and vsk = vH , then v∗ek = vH .

To see this, note that if vsk = vL and merging is optimal, Eq. (1.2) implies that
v∗ek = vL, as long as

2

vL + vL
+ qL

(
T Fk+1 + cL

)
+ (1− qL)TBk+1(vL)

≤ 2

vL + vH
+ qH

(
T Fk+1 + cH

)
+ (1− qH)TBk+1(vH).

This is precisely the first case above. The other cases can be proved similarly.
It can be verified that

2

vL + vH
− 1

vL
≤ 1

vH
− 2

vL + vH
≤ 0,

since vL ≤ vH . Hence, in the more interesting part of the state space, the merging
zone, one can view the optimal policy as having three regions:

Region L: If Ek+1[L] − Ek+1[H] < 2
vL+vH

− 1
vL

, then v∗ek = vL. This is the
case when conditions 1 and 3 above are satisfied simultaneously.

Region H: If Ek+1[L] − Ek+1[H] > 1
vH
− 2

vL+vH
, then v∗ek = vH . This is the

case when conditions 2 and 4 above are satisfied simultaneously.

Region X: If 2
vL+vH

− 1
vL
≤ Ek+1[L]−Ek+1[H] ≤ 1

vH
− 2

vL+vH
, then v∗ek 6= v∗sk .

Choosing vL over vH always comes at a short-term disadvantage, since it takes
longer to traverse the current stage. Thus, the velocity decision depends critically
on the future benefit or loss from choosing one over the other. If choosing vL
over vH is harmful or largely indifferent, then the optimal velocity decision is vH ;
this is region H . In contrast, if choosing vL over vH is quite beneficial, then the
optimal velocity decision is vL; this is region L.

Proposition 1.4. Consider the mandatory lane-changing problem in Eq. (1.2)-
(1.4). If the driver enters region L in the merging zone, she stays in region L (i.e.,
she keeps trying to merge at vL) until she exits the bottleneck.

Proof. This result is established as part of the proof of Proposition 1.5. �
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Together, Propositions 1.1 and 1.4 imply that, in the general case, the optimal
policy starts with a region where it is optimal not to merge and move at high
velocity, and ends with a region where it is optimal to merge and move at low
velocity.

Now, to understand why velocity oscillations may be optimal for an optimizing
driver, consider the car on lane B entering stage k with velocity vsk = vH . (An
identical argument can be made if the car enters stage k at low velocity.) During
the next two stages, the driver can act in one of the following three ways (while
intending to merge each time, but unable to find sufficient gap to merge):

(a) H → H → H;

(b) H → L→ L;

(c) H → L→ H .

Sequence (c) is preferable to (a) for the driver if

2

vH + vL
+Ek+1[L] ≤ 1

vH
+Ek+1[H] ⇐⇒ Ek+1[L]−Ek+1[H] ≤ 1

vH
− 2

vL + vH
.

Similarly, sequence (c) may be preferable to (b) in the second step because

2

vL + vH
+Ek+2[H] ≤ 1

vL
+Ek+2[L] ⇐⇒ 2

vL + vH
− 1

vL
≤ Ek+2[L]−Ek+2[H].

So (c) is preferable to both (a) and (b) when condition X is satisfied. Hence, as
long as the quantity Ek[L]− Ek[H] stays in region X for consecutive stages, it is
optimal for the driver to oscillate between high and low velocity over all the stages
in region X: sticking to a low velocity has too high immediate cost, whereas
sticking to a high velocity has too high long-term cost, so a rational decision
maker attempts to “interpolate” the two extremes, as we explain further below.

The nature of oscillations

Velocity oscillations can arise for different reasons. One obvious reason is the
driver fixes her attempted merging points at the (known, estimated, or calculated)
gaps on the free lane, targeting optimal velocities at the merging points, and be-
tween these merge points minimizes her travel time on the blocked lane. This
results in a straightforward bang-bang type behavior, where the driver accelerates
and then decelerates to the required velocity between the merging points. These
are caused by rational optimizing behavior, but they are not the focus of our work
as the phenomenon is not that surprising.

Even if we allow only constant acceleration/deceleration between merging
points though, velocity oscillations may arise for two reasons:

21



“Thesis” — 2020/10/1 — 18:52 — page 22 — #36

1. The driver may unexpectedly see a gap between planned merging points, in
which case she may attempt to decelerate and merge on the spot. Again,
this phenomenon is not particularly surprising and it is not the focus of our
work;

2. Even with constant acceleration/decelertion between decision points, purely
for optimization reasons, tthe optimal velocities at the planned merging
points themselves vary, so that we can have patterns such as v∗0 > v∗2 > v∗1
or v∗1 > v∗2 > v∗0 , which requires the driver to decelerate and then accelerate,
or vice versa, at consecutive stages.

This last phenomenon is counterintuitive and has not been identified in the litera-
ture so far.

Convexity and oscillations

At the heart of the existence of region X is the convexity of function 1
u

, repre-
senting travel time as a function of velocity, itself a law of physics. Intuitively
speaking, the travel time at the average velocity is less than the average of the
travel times at high and low velocities:

1

(vL + vH)/2
≤ 1

2

(
1

vL
+

1

vH

)
, (1.9)

which can be equivalently written as

2

vL + vH
− 1

vL
≤ 1

vH
− 2

vL + vH
. (1.10)

This “convexity gap,” i.e., the difference between the left and right-hand side, is
precisely the range of region X .

Now, Ek+1[L] − Ek+1[H] is the difference in the expected travel time of ar-
riving at the end of the stage at either velocities, L or H , and can be positive or
negative depending on the primitives of the problem. It may also happen to fall
(strictly) in the range defined by the region X inequalities. In that case, if the
driver happens to be at velocity L at the end of the stage and is unable to merge,
then she is better off moving to H and trying to merge at the next stage, as the
lower travel time from average speed dominates:

2

vL + vH
− 1

vL
< Ek+1[L]−Ek+1[H] ⇐⇒ 2

vL + vH
+Ek+1[H] <

1

vL
+Ek+1[L];

(1.11)
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while if she happens to be at H just before the end of stage k, she is better off
slowing down to L and try to merge at the end of the next stage:

Ek+1[L]−Ek+1[H] <
1

vH
− 2

vL + vH
⇐⇒ 2

vL + vH
+Ek+1[L] <

1

vH
+Ek+1[H].

(1.12)
This can happen repeatedly across consecutive stages, as long as the difference of
the expected values stays in region X .

1.4.3 Insight from numerical experiments
To obtain additional insight on whether velocity oscillations occur frequently
enough to be of concern, we derive the optimal policy numerically for a broad
range of parameter values. Figure 1.2 summarizes our findings, illustrating a va-
riety of scenarios that one may encounter. Despite the differences between these

(a) (b) (c)

(d) (e) (f)

Figure 1.2: Examples of the optimal merging and velocity control policy for different
choice of parameters P , vH , vL, vF , qH , qL, cL and cH , assuming N = 15. Optimal
merging decisions are represented with the color and the shape of points (blue circle
for “not merge”, red triangles for “merge”), while the optimal velocities are shown
along the y-axis. The corresponding stages are along the x-axis.

cases, a common theme emerges. The optimal policy, in general, seems to have
the following three phases, in succession:(

no merge, high velocity
)
−→

(
merge, high velocity

)
−→

(
merge, low velocity

)
,
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In Figure 1.3 we dive deeper into one of the examples that exhibit the aforemen-
tioned velocity oscillations: the left-most figure depicts the expected travel time,
at either velocities, for the different stages. Note that after stage 10 the expected
travel time increases, due to the fact that incurring the late merging penalty P be-
comes more and more likely. The center figure shows the evolution, in time, of
the quantity Ek+1[L]−Ek+1[H], which alternates between regions H and X from
stage 7 and onwards. Consistent with our analysis, the optimal policy, which is
presented in the right-most figure, exhibits velocity oscillations from stage 7 and
onwards.

(a) (b) (c)

Figure 1.3: The dynamics of Ek+1[L] − Ek+1[H] lead to an optimal solution that
alternates between regions H and X .

1.5 Managing lane-changing of
algorithm-assisted drivers

Velocity oscillations while attempting to merge increase the risk of accidents.
In this section we show how the traffic manager can avoid global optimization-
induced oscillations, by setting appropriate speed limits in the Final Merging
Zone.

One way to limit the velocity oscillations is to require that Ek[L] − Ek[H]
is monotonically non-increasing in k. Then, the dynamics in the Final Merging
Zone will be as follows: H . . .HX . . .XL . . . L, i.e., with a single region of os-
cillations. Under stronger conditions, the region of oscillations can be completely
avoided.

Proposition 1.5. Consider the mandatory lane-changing problem in Eq. (1.2)-
(1.4).

1. Assume that
qL − qH
vF

+
2(1− qL)

vL + vH
− 1− qH

vH
+

(1− qL)(vL − vH)

vL(vL + vH)
≥ 0,
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and

qL − qH
vF

− 2(qL − qH)

vL + vH

+ qHqL(cL − cH) +
2

vL + vH
− 1

vH
+

(vL − vH)(1− qL)(1− qH)

vL(vL + vH)
≥ 0.

Then, Ek[L]− Ek[H] is monotonically non-increasing in k, so there can be
at most one region of velocity oscillations.

2. A stronger condition guarantees oscillations never occur. Assume that

qL − qH
vF

+
2(1− qL)

vL + vH
− 1− qH

vH
+

(1− qL)(vL − vH)

vL(vL + vH)
≥ 0,

and

qL − qH
vF

− 2(qL − qH)

vL + vH
+ qHqL(cL − cH) +

2

vL + vH

− 1

vH
+

(vL − vH)(1− qL)(1− qH)

vL(vL + vH)
≥ (vL − vH)2

vLvH(vL + vH)
.

Then, the optimal solution lies in region X for, at most, one stage. Hence,
the optimal policy has an intuitive “monotonic” structure:(

no merge, high velocity
)
−→

(
merge, high velocity

)
−→

(
merge, low velocity

)
,

which excludes oscillations.

Proof. See Appendix 1.9. �

Interpreting the sufficient conditions on speed limits in Proposition 1.5 is dif-
ficult. However, as there are just two dimensions in our case, vL and vH , we can
plot the respective regions to (a) check if the conditions have any bite; (b) visualize
and determine useful ranges for a policy maker.

In Figure 1.4 we provide illustrative examples of the velocity regions that sat-
isfy the aforementioned conditions. First, we set the values for qL, qH , cL, cH
in accordance to functions of vF , vH and vL that have appeared in the literature;
see Section 1.7.1 for more details. Then, for different values of vF , we plot the
regions (vH , vL) where the conditions of Proposition 1.5 hold.

As we can see, in general, the conditions capture reasonably large, imple-
mentable regions that, however, need not be convex. Also, the higher the velocity
in the free lane, it appears, the larger the area of the parameter space where the
optimal solution does include at least one oscillation region.
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(a) (b) (c)

Figure 1.4: A region of parameters vH , vL, for which Proposition 1.5 holds, given
reasonable functional forms for qH , qL, cH , cL, for different values of vF (in normal-
ized values; they correspond to 2.5m/s, 5m/s and 10m/s). The blue area shows the
velocity region that satisfies the first part of proposition, while the dotted area the
region that satisfies the second part.

Let us note that the conditions of Proposition 1.5 are only sufficient: in Fig-
ure 1.5 we present indicative examples of optimal policies that avoid oscillations,
despite not satisfying the first part of Proposition 1.5. Specifically, in both exam-
ples, the quantity Ek+1[L]− Ek+1[H] lies in Region X for exactly one stage.

Pursuing safety may require sacrificing efficiency, leading to larger delays for
the drivers. A natural question to ask is the following: if the central planner
were to impose safety constraints via speed limits, satisfying the conditions in
Proposition 1.5, what would be the loss in efficiency, measured in aggregate travel
time of the drivers? We address this question, numerically, in Figure 1.6: for every
such vF , we build the “safe” non-oscillating region like the ones in Figure 1.4,
compute the best policy within the region, and compare it to the best unconstrained
policy.

As expected, the loss is near zero when traffic is relatively free, i.e., vF ≥ 8
m/s. It also goes to zero as the conditions on the free-lane approaches complete
jam, i.e., vF ≈ 0 m/s. The most problematic is the case of intermediately con-
gested traffic, in which case the increase of travel time, experienced by merging
drivers, may exceed 20%.

1.6 Robustness
In this section we study the problem, relaxing some assumptions, to test the ro-
bustness of our insights with respect to different modeling features.

1. First, we consider a direct extension to our benchmark model, where the
velocity takes values in a compact set. We conduct an extensive numerical
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(a) (b)

(c) (d)

Figure 1.5: Two examples of DP solutions that do not oscillate despite failing
to satisfy Proposition 1.5. Top: Ek+1[L] − Ek+1[H] behaves smoothly. Bottom:
Ek+1[L]− Ek+1[H] oscillates, but outside of Region X .

Figure 1.6: Additional delay, experienced by merging drivers due to imposing safety
constraints, as a function of the velocity on the target lane.

study, showing that the optimal policies with continuous velocity decisions
— instead of just the highest and the lowest velocity, as in our benchmark
model — are not too different from the ones in our analysis in Section 1.4.2.
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2. Second, we consider a version of our benchmark model, with continuous
state and action spaces, and we show that the optimal policy is an instance of
bang-bang control. This analysis reinforces our main findings, that regions
of maximum acceleration (thus, high velocity) and deceleration (thus, low
velocity) are a structural characteristic of the problem, and not the artefact
of modeling choices, e.g., discrete vs continuous time and/or state-action
spaces.

3. Finally, we consider an extension to our benchmark where the merging
points are not predetermined but rather specified endogenously. We identify
sufficient conditions such that velocity oscillations persist even then.

Overall, our treatment in this section is informal, geared more towards provid-
ing insight rather than formally proving results.

1.6.1 Continuous velocity
We start with a model that is the same as our benchmark one, except for the fact
that the velocity is a continuous decision variable, with values in

[
vL, vH

]
. The

DP recursion in this case takes the following form:

TBk
(
vsk
)

= min
vL≤vek≤vH

{
2

vsk + vek

+ min

{
q(vek)

(
T Fk+1 + C(vek)

)
+ (1− q(vek))TBk+1

(
vek
)︸ ︷︷ ︸

uk=1

, TBk+1

(
vek
)︸ ︷︷ ︸

uk=0

}}
. (1.13)

The propositions below extend the discrete-velocity results to the case with
continuous velocities, and for brevity, we omit their proofs, as they are very simi-
lar to the proofs of their counterparts.

Proposition 1.6. Consider the mandatory lane-changing problem in Eq. (1.13).
If it is optimal not to merge at stage k, i.e., u∗k = 0, then it is optimal to have the
highest velocity during stage k, i.e., v∗ek = vH .

Proposition 1.7. Consider the mandatory lane-changing problem in Eq. (1.13).
If it is optimal to merge at stage k, i.e., u∗k = 1, then it is optimal to merge at any
later stage, i.e., u∗l = 1, l = k + 1, . . . , N .

Proceeding analytically with Eq. (1.13) is challenging, as the first-order condi-
tion for minimizing the expected travel time requires solving a fourth-order poly-
nomial in vek. Thus, we resort to a numerical investigation, by approximating the
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compact velocity space by a large number (50) of discrete velocity levels. Also,
for the remainder of the section, we adopt a linear merging probability model:
q
(
vB
)

= α−βvB, where α, β > 0 and βvH < α ≤ 1; and a negative-exponential
function for the merging penalty: c

(
vB
)

= eγ−δv
B , where δ > 0. We refer to

Section 1.7.1 for details on selecting these functional forms.
Figure 1.7 presents examples of (approximately) optimal policies in the case of

continuous velocities. Note that we use the same parameter sets as in Figure 1.2,
so that the two scenarios are directly comparable.

(a) (b) (c)

(d) (e) (f)

Figure 1.7: Examples of the optimal solution for different choice of parameters P ,
vH , vL, vF , q(vH), q(vL), C(vL) and C(vH) assuming N = 15. The velocity space
is discretized by dividing the interval evenly into 50 discrete levels.

A first observation is that, overall, the optimal policies in the continuous-
velocity scenario do not differ much from those in the discrete-velocity bench-
mark. In fact, in some cases, the optimal policies are exactly the same, while in
the rest, the difference is typically confined in a relatively narrow window during
which the driver needs to slow down. To investigate this further, we report on the
gap between the optimal expected travel times in the two scenarios in the table
below. (Again, in the continuous-velocity case, the corresponding DP is solved
numerically by discretizing the velocity space in 50 levels, and the linear prob-
ability model is adopted.) The first six rows correspond to the parameter sets in
Figures 1.2 and 1.7, and three additional cases are considered.
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Table 1.3: Comparison of expected travel time for DP solutions with the same pa-
rameters, 2 velocities versus 50 velocities.

vF vL vH q(vL) q(vH) P C(vL) C(vH) Gap
0.6 0.6 2.8 0.14 0.07 15 1.3 0.5 0.331%
1.6 1.6 2.4 0.25 0.2 4 1.3 0.5 0%
0.65 0.65 2.7 0.05 0.01 25 3.1 0.1 1.406%
1.5 1.8 2.9 0.06 0.02 15 0.4 0.3 0.112%
1.0 1.5 2.9 0.45 0.05 35 0.9 0.8 0%
2.0 2.0 2.9 0.3 0.15 12 1.1 0.8 0.092%
0.4 0.4 3.0 0.85 0.15 5 1 0.2 0.749%
0.4 2.4 3.5 0.04 0.03 25 1.5 1 0.027%
2.5 3.0 3.5 0.75 0.6 3 2 1 0%

The reported results show that the gap is less than 1.5% in all cases, and prac-
tically nonexistent in many of them. This can be attributed to the fact that the
optimal policy is only affected in a small number of stages, and that the travel
time seems to be less sensitive to velocity decision in the affected areas, i.e., re-
gions of slowing down.

From a practical standpoint, these findings justify the discrete-velocity sce-
nario being our benchmark. A decision-support tool that is based on this simple
model could provide recommendations in real time, something that may be chal-
lenging with a continuous-velocity model, whose computational complexity is
much higher.

A second observation is that velocity oscillations persist in the continuous-
velocity scenario, albeit somewhat damped, wherever they appear in the discrete-
velocity experiments. Hence, on the descriptive side, this suggests that oscillations
are not an artefact of our modeling choices — to consider just two velocities in
our benchmark model — but rather an intrinsic characteristic of the problem.

1.6.2 Connection to bang-bang control

In this section we consider a version of our benchmark model, where state and ac-
tion spaces are compact, i.e., the driver may attempt to merge at any (continuous)
point in time, as well as continuously change the vehicle’s velocity by accelerat-
ing/decelerating. By deriving the Hamilton-Jacobi-Bellman (HJB) equation of the
problem, we establish a connections between the optimal policy and bang-bang
control.

As before, we consider a car that needs to merge from lane B to lane F in or-
der to get past a blockage point, which lies at positionN of laneB. We denote the
position and velocity of the merging car by x ∈ [0, N ] and v ∈ [vL, vH ], respec-
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tively. The decisions, at each point in time, are whether to accelerate, decelerate,
or keep the same speed; and whether to merge or not, given the opportunity. We
denote the merging decision by u ∈ {0, 1}, and the acceleration/deceleration deci-
sion by α ∈ [−D,A], where A and D are the acceleration and deceleration limits
of the car, respectively. If the car moves at velocity v on lane B, it finds a large
enough gap to merge in lane F with probability q(v). Conditional on merging
successfully, it incurs a penalty c(v), which captures the total effect of the re-
laxation process, and then continues at a constant velocity vF until it gets past the
blockage. Functions q(·) and c(·) are assumed to be continuous and differentiable.
If the car reaches the bottleneck without having merged, it incurs a (significant)
merging penalty P , as it has to come to a complete stop, and then wait for a very
large gap on lane F in order to merge. 3

Let TX
(
x, v
)

be the optimal expected travel time until the car gets past the
blockage, assuming that the car is on lane X ∈ {B,F}, at position x, and moving
at velocity v. Clearly,

T F
(
x
)

=
N − x
vF

,

since every car on lane F moves at the same velocity vF . On the other hand, in
the more interesting case where the car is on lane B, we can intuitively express
the optimal expected travel time through the following recursion:

TB
(
x, v
)

= min
α∈A(v)

{
δ + min

{
q(v + δα)

(
T F
(
x+ δv

)
+ c(v + δα)

)
+
(
1− q(v + δα)

)
TB
(
x+ δv, v + δα

)
, TB

(
x+ δv, v + δα

)}}
,

where δ > 0 is “small” and A(v) = [0, A], if v = vL; A(v) = [−D, 0], if v = vH ;
and A(v) = [−D,A], otherwise. Furthermore, we have the boundary condition
TB
(
N, v

)
= P , for all v ≥ 0.

Let us focus on the region of the state space where it is optimal to merge. (In
the region where it is not optimal to merge, it is clear that the car should move
at the highest possible velocity.) By taking the Taylor expansion and then letting
δ → 0, we derive the HJB equation of the problem, i.e., function TB

(
x, v
)

is such

3This abstract model of merging with continuous state and action spaces has structural similar-
ities to the “rocket-rail car problem” in optimal control theory, where a driver wishes to park a rail
car with rocket engines on both ends, with the goal of firing the rockets so as to make the car stop
at a precise point in the least amount of time. Importantly, however, there is no merging/optimal
stopping aspect to that problem.
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that

min
α∈A(v)

{
1 + q(v)

∂T F

∂x
v +

(
1− q(v)

)∂TB
∂v

+ αF
(
x, v
)}

= 0, (1.14)

where

F
(
x, v
)
≡ ∂q

∂v

(
T F (x) + c(v)− TB

(
x, v
))

+ q(v)
∂c

∂v
+
(
1− q(v)

)∂TB
∂v

.

Solving the HJB equation to determine TB
(
x, v
)

is quite challenging analyti-
cally. However, the mere structure of the equation provides useful insight into the
optimal policy: in order to minimize the left-hand side in Eq. (1.14), the optimal
control needs to be α ≈ −sign

{
F
(
x, v
)}

. In particular,

α = A · 1{v<vH}, if F
(
x, v
)
< 0;

and
α = −D · 1{v>vL}, if F

(
x, v
)
> 0;

while any feasible α is optimal, otherwise. This is the essence of the phenomenon
that the literature terms bang-bang control: the HJB equation decouples in such
a way, so that the product of the control and some state-dependent “drift” term
needs to be minimized over a compact set. This implies that the optimal control
typically takes values on the boundary of the feasible set (the exact value depends
on the sign of the drift term), which allows for, and often implies, oscillatory
regions in the optimal policy, as we elaborate below.

First, let us extend the definition in Eq. (1.7) to continuous space and velocity:

G
(
x, v
)
≡ q(v)

(
T F (x) + c(v)

)
+
(
1− q(v)

)
TB
(
x, v
)
,

which denotes the expected remaining travel time at position x and velocity v,
right before the merging opportunity is revealed; where x ∈ [0, N ] and v ∈
[vL, vH ]. Note that

∂G

∂v
=
∂q

∂v

(
T F (x) + c(v)− TB

(
x, v
))

+ q(v)
∂c

∂v
+
(
1− q(v)

)∂TB
∂v

= F
(
x, v
)
.

In essence, the quantity Ek+1[L]− Ek+1[H], on which the analysis of the oscilla-
tory behavior in our benchmark model is largely based, is simply an approximation—
in discrete state and action space—to the above partial derivative, and thus to the
drift term F

(
x, v
)
:

Ek+1[H]− Ek+1[L]

vH − vL
≈ ∂G

∂v

∣∣∣(
k+1,vL

) = F
(
k + 1, vL

)
.
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The boundaries between regions L, H , and X in the benchmark model are
dictated by the differences in traversing a stage at different velocities. In the con-
tinuous formulation there is no notion of discrete space (stage) or velocity. Hence,
the three regions, in discrete and continuous space and velocity, are as follows:

Region L:
Ek+1[H]− Ek+1[L]

vH − vL
>

1

vL(vL + vH)
⇐⇒ F

(
x, v
)
> 0;

Region H:
Ek+1[H]− Ek+1[L]

vH − vL
<

1

vH(vL + vH)
⇐⇒ F

(
x, v
)
< 0;

Region X:
1

vH(vL + vH)
≤ Ek+1[H]− Ek+1[L]

vH − vL
≤ 1

vL(vL + vH)
⇐⇒ F

(
x, v
)

= 0.

The optimal policy in regions L and H is intuitive: if the derivative of the
expected remaining travel time, with respect to the velocity, is positive (negative),
it is optimal to decelerate (accelerate) as much as possible. In region X on the
other hand, every feasible decision is optimal, and oscillations are likely to appear
“around” it. For instance, if the solution oscillates between the boundaries of
regions L and H , crossing region X but never getting “stuck” there, then we
have shifts between maximum acceleration and maximum deceleration, akin to
the velocity oscillations that we uncover in our benchmark model.

Furthermore, the above analysis reinforces that regions of maximum acceler-
ation (thus, high velocity) and deceleration (thus, low velocity) are a structural
property of the problem, and not the artefact of modeling choices, e.g., discrete
vs continuous time and/or state-action spaces. Moreover, it justifies why in the
numerical experiments of Section 1.6.1, the performance improvement by consid-
ering a continuous velocity spectrum–instead of just the highest and the lowest
velocity, as our benchmark model does–is practically negligible.

1.6.3 Endogenous merging points
Finally, we analyze an extension to our benchmark model where merging points
are themselves endogenous decisions of the driver, along with the (continuous)
velocity. Our aim is to illustrate that velocity oscillations may persist even in this
setting.

We continue with one of our main modeling constructs, the merging proba-
bility function q

(
vek, V

F
k , dk

)
. However, we fix the driver’s belief of the future
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free-lane velocity V F
k at its expected value vF . Hence, we can simplify the merg-

ing probability to q̃
(
vek, dk

)
. We assume q̃(v, 0) = 0, for all v, and that q̃(v, d) is

increasing in d and decreasing in v. Moreover, we assume that there exists some
ε > 0, such that

q̃(v, d) = 0, ∀d < ε.

This is a standard assumption in dynamic programming, e.g., see Section 11.1 of
Puterman (1994), to ensure that we avoid trivial situations with infinite merging
attempts. Moreover, it is also realistic: if the driver is unable to merge at some
point, the chances of merging in that vicinity are practically zero.

Furthermore, our standing assumption throughout the chapter is that accelera-
tion/deceleration between merging points remains constant.

We formulate the Dynamic Program similarly to our benchmark model, whose
solution provides (an optimal) set of merging points and velocities,

(
x∗k, v

∗
k

)
, k =

0, . . . , N , with x∗N+1 being the blocking point. Let d∗k = x∗k+1 − x∗k.
We seek conditions such that v∗0 < v∗1 > v∗2 , which would correspond to

velocity oscillations, at optimality. Fix all optimal merge-points and velocities,
apart from v∗1 . We have that

v∗1 = arg min
vL≤v≤vH

T1(v),

where vH and vL are the upper and lower limits on feasible velocity, and

T1(v) ≡
{

d∗0
v∗0 + v

+ q̃
(
v, d∗0

)
T F1 +

(
1− q̃

(
v, d∗0

))( d∗1
v∗2 + v

+ E
[
TB
(
x∗2, v

∗
2

)])}
.

We use the Envelope Theorem in order to compute the derivative of T1(v), by
viewing x∗k(v) and v∗k(v), for all k 6= 1, as optimized variables for every fixed v:

− d∗0(
v∗0 + v

)2 −
(
1− q̃

(
v, d∗0

))
d∗1(

v∗2 + v
)2 + q̃′

(
v, d∗0

)(
T F1 −

d∗1
v∗2 + v

− E
[
TB
(
x∗2, v

∗
2

)])
.

Let us assume that the vehicle is already in the Final Merging Zone, i.e.,(
T F1 −

d∗1
v∗2+v
− E

[
TB
(
x∗2, v

∗
2

)])
is negative and, for simplicity, that v∗0 = v∗2 =

vL. We explore conditions such that the derivative of T1(v) is negative, for all
v < vH , which would imply that the optimal solution to the above constrained
optimization problem is vH . In other words, we require:

q̃′(d∗0, v)

(
T F1 −

d∗1
v∗2 + v

− E
[
TB
(
x∗2, v

∗
2

)])
<

d∗0(
v∗0 + v

)2 +

(
1− q̃

(
v, d∗0

))
d∗1(

v∗2 + v
)2 .
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For concreteness, let us assume that q̃(v, ·) is a linear function zero slope in
the interval [0, ε], and slope −α from then on, for some α > 0. Since q̃′(v, ·) and(
T F1 −

d∗1
v∗2+v
− E

[
TB
(
x∗2, v

∗
2

)])
are both negative, we have that

α

(
d∗1

v∗2 + v
+ E

[
TB
(
x∗2, v

∗
2

)]
− T F1

)
<

d∗0(
v∗0 + v

)2 +

(
1− q̃

(
v, d∗0

))
d∗1(

v∗2 + v
)2 .

The right-hand side is bounded from below by ε
/(
v∗0 + vH

)2, and we obtain a
sharper sufficient condition:

α

(
d∗1

2vL
+ E

[
TB
(
x∗2, v

∗
2

)]
− T F1

)
<

ε(
vL + vH

)2 .

Summarizing, if T F1 and E
[
TB
(
x∗2, v

∗
2

)]
satisfy the inequality above, then we

have velocity oscillations similarly to our benchmark model, despite the fact that
velocity is continuous and the merging attempt points are optimally decided.

1.7 Monte Carlo discrete-event simulations
In this section, we investigate the performance of optimal policies from our dy-
namic programming formulation under more realistic traffic situations, and com-
pare it against popular merging guidelines used in practice, e.g., merge early,
merge late, merge at a certain point, merge at a random point etc. More specifi-
cally, through Monte Carlo discrete-event simulations, we investigate:

1. The average travel time of all the merging vehicles as a function of the
merging policy;

2. The throughput-delay tradeoffs of the different merging policies, on the par-
ticular road segment.

Our simulations are performed under much more realistic models of driver behav-
ior than the stylized models of our theoretical analysis. We first discuss different
aspects of our numerical set-up.

1.7.1 Numerical study set-up
In the stylized, benchmark model presented in Section 1.4 we made a number of
simplifying assumptions for analytical tractability. To test its validity in more re-
alisting conditions, we employ the framework of Cellular-Automata (CA), a class
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of multi-agent simulations with simple decision rules and their implied dynam-
ics, used in many fields of research where analytical solutions are hard to obtain,
including traffic engineering; e.g., see Maerivoet and Moor (2005), Nagel et al.
(1998).

More specifically, in the analysis of Sections 1.4,1.5 and 1.6 we assumed that
there is a single merging car on the blocked lane; that gaps/merging opportuni-
ties are at predetermined positions; that the distance between these positions is
the same; and that the velocities of the free-lane cars at different stages are i.i.d
random variables. In the CA simulations that follow we relax all the above as-
sumptions: both the blocked and the free lane have multiple cars; the merging
ones follow our DP approach (or different heuristics against which we compare
our approach), while the ones on the free lane follow a specified set of decision
rules that is tuned to mirror characteristics of real vehicular traffic, inducing com-
plicated dynamics about free-lane velocity and merging opportunities.

Gap acceptance and merging probability modeling

While in our theoretical analysis the merging probabilities at different velocities
are given exogenously, in order to evaluate the performance of the optimal policy
under realistic scenarios, we need to obtain more concrete estimates. The prob-
ability of merging depends on the density in the free lane, ρF , as a result of the
existing gaps in that lane, and the velocities in both lanes. Furthermore, parameter
P , which represents the time that the driver has to wait at the blockage point until
she finds an appropriate gap, is also a function of the velocity in the free lane.
In mathematical terms, in this section we review the existing literature in order
to develop functional forms q(vB, vF ) and P (vF ), where vB represents the ve-
locity in the blocked lane, which we can then use, e.g., for blocked-lane velocity
optimization.

There is extensive literature of lane-changing behavior based on the gap-
acceptance theory: a driver who wishes to merge compares the existing gap G
at the target lane to a so-called critical gap Gc. If G > Gc then the driver accepts
the gap and merges to the target lane, otherwise she stays on the current lane. By
adopting the gap-acceptance theory, we define the merging probability as follows:

q(vB, vF ) = P
[
G(vF ) > Gc(v

B, vF )
]
.

Note that this definition is quite flexible, allowing for a broad array of choices for
the functional forms of Gc(v

B, vF ) and G(vF ).
Traffic researchers model the critical gap as made of two components: a lead

gap Glead
c , and a lag gap Glag

c . We base our study on the work of Lee (2006),
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where the following model is developed:

Glead
c = exp(α0 +

α1

1 + exp(−max {0,∆V lead})

+ α2 min
{

0,∆V lead
}

+
α3dnt

1 + exp(α4 + α5ν)
+ α6ν + εlead), (1.15)

and

Glag
c = exp(β0 + β1 max

{
0,∆V lag

}
+ β2 min

{
0,∆V lead

}
+

β3dnt
1 + exp(β4 + β5ν)

+ β6ν + β7 max
{

0, alag
}

+ εlag), (1.16)

where ∆V lead = vlead−vsubj , the difference between a lag vehicle and the subject
vehicle velocities; dnt is the distance to the end of the lane; ν is a driver-specific
aggressiveness parameter; and alag is the acceleration of the lag vehicle. Lee
(2006) also estimates the coefficients αi and βi from US highways data, finding
them to be significant. A number of more elaborate models for Glead

c and Glag
c

have been proposed recently, as well as a different merging models, including
courtesy merging (see Choudhury et al. (2010)). We stick here to a simpler model
of forced merging.

Since our model ignores the microstructure of the traffic on the free lane, we
are not going to divide the whole required gap to lead gap and lag gap. Instead,
we will use the pooled gap Gc:

Gc = l +Glead
c +Glag

c , (1.17)

where l is the length of the car.
(
This is due to the fact that in Lee (2006) the lead

gap was measured starting from the front bumper, while the lag gap was measured
starting from the rear bumper.

)
To simplify our numerical experiments, we also

make the following assumptions:

1. We omit the idiosyncratic aggressiveness term ν, due to the fact that we
only have one driver on lane B;

2. We set dnt = 0, suggesting that the critical gap does not depend on the
distance from the blockage point in our model;

3. We omit the factor regarding alag, as our model does not capture the accel-
eration decision explicitly;

4. The random factors εlead and εlag are assumed to be zero-mean normal ran-
dom variables in the literature, while we set them to zero as an approxima-
tion.
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Summarizing, Gc is determined by the following equation:

Gc(v
B, vF ) =4 + exp(0.627 +

1.90

1 + exp(−max
{

0, vF − vB
}

)

− 0.314 min
{

0, vF − vB
}

) + exp(0.509 + 0.116 max
{

0, vF − vB
}

+ 0.034 min
{

0, vF − vB
}

), (1.18)

where we tentatively use l = 4m for the length of the car.
And while the critical gap is deterministic in our model, the available gap

is a random variable. To find an appropriate distribution for G, we first need
to estimate the mean density on the free lane, which is typically a function of
the velocity, i.e., dF (vF ). Fundamental relationships between velocity and den-
sity/headway have been thoroughly investigated in the literature. Following the
seminal paper of Greenshields (1934), many authors have offered functional forms
for these relationships and have estimated their parameters, e.g., Underwood (1961)
and Pipes (1967). We use one of the popular estimated functional forms (see
Del Castillo and Benı́tez (1995)). If we adjust the units of the function to meters
and meters per second, then the function takes the following form:

dF (vF ) = 7.48 exp(
vF

8.05
)− l, (1.19)

where, again, we let l = 4m. (We have subtracted the length of the car l as the
function determines the headway, i.e., the inter-vehicle distance plus the length of
the car.)

It is common to consider headways on a road that are exponentially distributed,
e.g., see Miller (1961a) and McNeil and Smith (1969). Under our assumption
about a fixed velocity in the free lane vF , this is equivalent to modeling car ar-
rivals to the studied road section as a Poisson process. Hence, in our numerical
experiments we assume that the available gap is an exponential random variable
with parameter 1/dF (vF ).

Putting everything together, the probability of merging that we use in our nu-
merical experiments is equal to

q(vB, vF ) = exp(−Gc(v
B, vF )

dF (vF )
) (1.20)

where Gc(v
B, vF ) and dF (vF ) are given by Eq. (1.18) and (1.19), respectively.

Finally, regarding P , the average delay that the driver experiences when stuck
at the blockage point, we propose the following model:

P (vF ) = m+
1

vF
· 1

q(0, vF )
+ C(0). (1.21)
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Figure 1.8: The function q(vB, vF ) for vF = 3m/s (black solid line), vF = 7m/s
(red dashed line), and vF = 14m/s (blue dot-dashed line).

We interpret the second component as the time that the driver has to wait until she
finds an appropriate gap in the free lane, while stuck at the blockage point: 1/vF

is the average time required to “observe” a new gap, and 1/q(0, vF ) the average
number of attempts needed to find a suitable gap (the mean of corresponding
geometric distribution). In our numerical examples we use m = 2, as a crude
approximation of the time required to actually move from one lane to another. The
last component represents the penalty (due to “relaxation”) from actual merging
to the target lane at 0 velocity. The concrete models that can be used for C(vB)
are discussed below.

Cellular Automata simulation setup

In CA both time and space are discrete. In our simulation setup, we set the time
step to 1 second, and we divide the lanes into cells of 5m each. Every cell can be
either empty or occupied by a car, and every car has its own velocity, which is an
integer number from 0 to vmax (although qualitatively similar, not to be confused
with the vmax in our numerical experiment setup). The velocity indicates how
many cells a car travels per time step. For consistency with our theoretical models,
we allow lane-changing only for the cars on the blocked lane, and in order for a
car to merge to the free lane, there must be enough space both ahead and behind.

Our CA-simulation setup is defined by the following rules:

1. Drivers on the blocked lane who want to merge, check if they have enough
space available. For the merging to take place, the cell next to the car on the
free lane must be empty. Moreover, there should be v empty cells ahead,
where v is the velocity of the car, and vback empty cells behind, where vback

is the velocity of the car right behind on the free lane;

2. Every car on the blocked lane accelerates, or it is required to decelerate.
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That is, for every car we set v ← min {v + 1, x, vmax}, where x is a distance
to the car ahead on the blocked lane;

3. Every car with a positive velocity decreases the velocity by 1 with proba-
bility p. With a reasonable choice of p, this represents various stochastic
real-traffic phenomena, such as over-braking or reaction delay at start.

4. Every car moves ahead by v cells.

In our CA simulations we use an open-boundary condition: if the car reaches
the end of the road segment while driving on the free lane, it exits the system.
On the other hand, car arrivals are generated on the free lane in order to maintain
a traffic flow with the constant density. When all blocked-lane drivers exit the
bottleneck, the simulation terminates. While we could generate infinite inflow
of B-drivers and terminating the simulation after some fixed time, we do not use
this approach, since it prohibits us from meaningful use of total travel time metric.
Indeed, if the number ofB-lane drivers is not fixed, we would not know, whether a
higher travel time is attributed to higher delays or simply due to a higher number of
exited drivers (which is actually good). Hence, we randomly place a fixed number
of B-lane drivers and record how much time they need to leave the bottleneck.

Once we have fixed all the parameters of the CA, we need to evaluate the pa-
rameters of the model in Section 1.4.1, so that we can obtain the optimal solution
to the corresponding DP, and introduce it as a new rule in the CA framework. We
use the CA simulation itself to evaluate these parameters, very similarly to what
we would be doing if we were collecting real data. More specifically, the estima-
tion method that we use is to repeat the CA simulations several times, and to take
the sample averages of the quantities of interest as their estimates.

Velocity on the free lane, vF : we run repeatedly CA simulations (without any
cars on the blocked lane), keeping track of the velocity of each car at all times.
Averaging over the the time horizon, the different cars, and the various simulation
runs, we obtain an estimate for vF ;

Velocities vH and vL: as discussed earlier, vL and vH are parameters that can be
chosen by a blocked-lane driver, or imposed by the traffic regulator. The insights
from Section 1.5 suggest that we choose vH = vmax and vL ≈ vF , as one of
the choices resulting in no oscillations (we set the low velocity, vL, to the closest
integer that is greater or equal than vF );

Merging probabilities qH and qL: to estimate a merging probability, we run
repeated CA simulations with a single driver on the blocked lane, moving at the
corresponding velocity and trying to merge. Counting the number of attempts per
every successful lane-change (at a given velocity), we obtain an estimate for the
merging probability.
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Late merging penalty P : viewed from a CA perspective, the late-merging
penalty, P , in the model of Section 1.4.1 consists of different components. The
first is the time spent during unsuccessful attempts to merge, while the car stands
still near the blockage point. We denote this by P0. Similarly to the estimation of
qH and qL, we can estimate P0 directly from CA simulations by averaging over
many runs. We also introduce two analytically derived components. The final
form of the late merging penalty is:

L = L0 + C(0) +
vF

2
+
√

2d, (1.22)

if we express the distance in CA cells, and the velocity in CA cells per second.
The second component is the merging penalty due to “relaxation”. The third com-
ponent is the travel time lost due to the required acceleration from v = 0 to vF

after merging. This detail is omitted in our theoretical model, but may play an
important role when acceleration is limited. To see how we obtain it, note that
according to the formula x = (v2

2 − v2
1)/2a, if we take a = 1 (since in CA this

is the acceleration we use, expressed in cells per second squared), v2
2 = vF and

v2
1 = 0, we have the distance of acceleration x = (vF )2/2. Trivially, time of ac-

celeration is equal to vF seconds. If the car would move with the constant velocity
vF for vF seconds, it would travel (vF )2 cells. The difference between these two
distances is also (vF )2/2, which is the distance lost due to the finite acceleration.
This corresponds to vF/2 seconds of travel time lost due to the acceleration, since
we assume that the flow on the free lane is moving with the constant velocity vF .
The last component is the time required to cover a distance d after merging, and
can be derived easily from the formula at2/2 = d, if we again take the value for
acceleration a = 1.

Merging penalties cL and cH : we use the theoretical model, described above in
this section. As a distance function dF (vF ) for free lane we use the one described
by Eq. (1.19) and Eq. (1.18) as the model for critical gap Gc(v

B, vF ).
Apart from the aforementioned parameters, we also need to fix d, which deter-

mines the distance between subsequent attempts to change lane. Note that there
is a discrepancy here, between the structure of our theoretical model and the CA
rules. In the latter, a driver can check for merging opportunities once per sec-
ond. The distance between subsequent attempts clearly depends on the driver’s
velocity, so it is not constant. On the opposite, there is a known (potentially dif-
ferent) distance between subsequent attempts in our theoretical model. The best
we can do, therefore, is to try to solve the single-car discrete-velocity DP for dif-
ferent constant choices of d, which would roughly correspond to the distance the
blocked-lane driver covers between CA simulation steps. In the rest of the section
we only report on the case where d = 20m, since the results turned out to be quite
robust to the choice of d.
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Finally, we set the slowdown probability p for the CA to p = 0.3, which is a
typical value in the literature, and we assume the length of the road segment to be
equal to 500m.

Merging penalty

A merging car creates a disturbance, and both the merging driver and the followers
need to adjust velocity and the distance after completing the manoeuver. This
effect is called “relaxation” and may be an important factor for an optimal merging
decision.

We first show important qualitative characterization of the merging penalty,
that is, how does it changes with increase of the velocity of merging car.

Let us denote the merging penalty to the driver that merges into gap g at the
velocity vB into the flow with velocity vF as C(g, vB, vF ). As before, we count
only the pooled gap, rather than discriminating between lead gap and lag gap.
Then, the (expected) merging penalty that we use in our DP can essentially be
written as follows:

C(vB) = E[C(g, vB, vF )|g > Gc(v
B, vF )]. (1.23)

To show analytically the required characterization, we take several assump-
tions:

i. Inter-car distances, and therefore, available gaps g are distributed according
to the exponential distribution with parameter λ;

ii. Velocities vB and vF affect the expected merging penalty only through criti-
cal gapGc(v

B, vF ), and therefore the merging penaltyC(g, vB, vF ) = C(g)
depends only on g;

iii. For g ≥ 0 the function C(g) maps to the non-negative values and is strictly
decreasing. We show results a for negative-exponential function eγ−δg, for
parameters γ ≥ 0, δ > 0. We briefly discuss below also an alternative
model with function eγ−δ(g−Gc(vB ,vF )). These two functions leads to clean
analytical results. Qualitative results for reciprocal function 1/(γ + δg) are
similar, although less tractable.

We start from merging penalty function C(g) = eγ−δg. Expected merging
penalty, conditional on a merging event, can be written then as (we omit variables
of critical gap for brevity):

C(vB) = E[C(g, vB, vF )|g > Gc] =
1

1− F (Gc)

∫ ∞
Gc

f(g)C(g) dg

=
1

e−λGc

∫ ∞
Gc

λeγ−(λ+δ)g dg =
λeγ−δGc

λ+ δ
. (1.24)
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Since it is known (in particular, it follows from the models we discussed above)
that Gc(vH , v

F ) > Gc(vL, v
F ), for some velocities of the blocked lane driver such

that vH > vL, and hence it follows that C(vH) < C(vL). Note that this quali-
tative result remains unchanged, if we would consider a similar functional form
for C(g, vB, vF ), but having the penalty depending on the difference between the
actual gap and some constant minimally required gap g0 < Gc(v

B, vF ). Indeed,
this leads to the result:

C(vB) =
λeγ+δg0−δGc

λ+ δ
, (1.25)

which is the same model with a higher constant.
We consider another special case of the model, when the penalty depends on

the difference between the actual gap and the critical gap, i.e. C(g) = eγ−δ(g−Gc).
It is straightforward to verify, that in this case the expected penalty would be:

C(vB) =
λeγ

λ+ δ
,

which is independent of vB. We can conclude, that under reasonable modelling
assumptions, ex-post merging penalty in the optimal control and velocity problem
is such that C(vH) ≤ C(vL) for vH > vL.

We also can use the same model for obtaining the numerical values of C(vB).
As can be seen from relaxation studies, at a high level the merging penalty is the
time, lost due to “stretching” leading distance after the lane change to a certain
value, normal the for driving conditions on the free lane. Approximately it can be
calculated as (dF (vF )− g/2)/vF , that is the time to cover the difference between
the gap and the normal for that velocity inter-car distance, at velocity vF (in case
dF (vF ) > g/2, and zero otherwise). Note that we use only half of gap g, since
the merging driver takes into account the lead gap after the merge, and we assume
that this is simply the half of the total gap (although it can be not exactly the case
in reality).

We can use this (linear) model to fit our exponential model C(g) = eγ−δg.
To estimate unknown parameters γδ, we need to take two pairs g, C(g) from de-
scribed above linear model. The estimates will depend on what two points we
take; we use here g = 0 and g = 0.5dF (vF ). It is straightforward to see that this
leads to the following estimates:

γ = ln
dF (vF )

vF
; δ =

2 ln 4/3

dF (vF )
.

Once we obtained the estimates for fixed vF , we can calculate ex-post late-
merging penalty C(vB) according to Eq. (1.24). Note that critical gap Gc(v

B, vF )
is needed to calculate merging penalty; any appropriate model can be used for it,
we use the model discussed earlier (see Eq. (1.18)).
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1.7.2 Travel-time optimization of merging vehicles
We now present the results of Cellular Automata simulation. First, we compare
the performance of the proposed DP approach, in terms of average travel time of
merging vehicles, against several heuristic or benchmark policies: an uncontrolled
“random merging” scenario, “early merging”, “late merging,” and the parameter-
ized family of “one-threshold policies”.

DP policy

The DP policy relies on estimating the parameters of the model introduced in
Section 1.4, and then solving (numerically) the corresponding Dynamic Program-
ming problem. The parameters of the model are estimated through training data
that we obtain from additional discrete-event simulations, where a blocked-lane
driver attempts to merge periodically, without travel-time optimization in mind.
While one should aim to estimate the merging model in its full generality, i.e., Eq.
(1), in practice this is quite challenging since there are, simply, too many “degrees
of freedom.” To our knowledge, no estimators for such models, with guaranteed
performance, are readily available in the literature. Therefore, through our train-
ing data, we estimate the functionally simpler model of Eq. (2), i.e., we assume
that merging penalties and merging probabilities only depend on the velocity of
the blocked-lane driver, and that only two velocities are available; so, we estimate
the parameter values qH , qL, cL, and cH . In other words, we sacrifice model ac-
curacy for reliable estimation. Yet, the reduced model performs quite well in our
discrete-event simulations; at least much better than the various heuristics that we
compare it against, as we document below.

Random merging

As a performance benchmark we consider the case where drivers are not provided
with any policy recommendation on when and where to merge. Every driver starts
attempting to merge at a random distance from the blockage point. We consider
the simplest possible case where this distance is uniformly distributed.

In Table 1.4 we summarize the performance of random merging vs. the DP
policy, for different values of ρB and ρF , the density of flow on lane B and F ,
respectively. These values correspond to a spectrum of traffic conditions, ranging
from relatively sparse to dense lane, in both cases. We denote by ∆T the per-
cent decrease of travel time for drivers on the blocked lane under the DP policy,
compared to random merging. The parameters vF , qH , qL, and P are estimated
by averaging over 1000 of CA simulations, while the results for ∆T are obtained
after averaging over 5000 runs.
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Table 1.4: Comparison of DP-based policy and the random merging policy in Cellu-
lar Automata simulations. The last column shows gap in expected travel time.

ρB ρF vF vH vL qH qL P cL cH ∆T
.03 .1 3.87 5 4 .372 .438 8.65 2.36 0.93 3.07%
.06 .1 3.89 5 4 .375 .444 10.8 2.38 0.99 3.68%
.09 .1 3.87 5 4 .379 .435 12.4 2.37 0.95 2.85%
.03 .2 1.91 5 2 .139 .345 6.80 0.96 0 17.05%
.06 .2 1.91 5 2 .138 .340 8.99 0.98 0 15.38%
.09 .2 1.91 5 2 .129 .349 10.6 0.98 0 12.01%
.03 .3 1.21 5 2 .056 .194 6.51 0.43 0 26.6%
.06 .3 1.21 5 2 .051 .208 8.87 0.43 0 22.7%
.09 .3 1.21 5 2 .054 .205 10.1 0.43 0 17.6%

At higher densities of traffic on the free lane, the more interesting case for us,
the difference in travel time between random merging and the DP policy becomes
greater. Intuitively this makes sense, as the cost of a suboptimal decision is mag-
nified by the congestion in the free lane, and merging closer to the blockage point
becomes more appealing.

Moreover, the gap between random merging and the DP policy is quite robust
with respect to the density of traffic on the blocked lane, as long as the free lane is
relatively dense. We have also found the reported results to be robust to the choice
of d, the length of a cell in our simulations, although we do not report on these for
brevity. Together, these observations suggest that the most important primitive in
terms of its effect on the performance of the DP policy is the density of traffic on
the free lane.

One-threshold merging policies

Next, we compare the performance of the DP policy to the class of one-threshold
merging policies, which includes intuitive policies such as ‘merge early” or “merge
late.” More specifically, policies included in this class recommend to the driver to
start attempting to merge after a given threshold, while the velocity is always kept
as high as possible.

We present our simulation results in Figures 1.9 and 1.10, for a sparse and a
dense blocked lane, respectively. Note that when the traffic on the free lane is rel-
atively dense, the empirical performance of the DP policy is much better than the
“merge early” and “merge late” policies, and very close to the best one-threshold
merging policy.4 The benefit of our framework is that it provides a principled way

4As expected, an optimal solution to the single-car problem does not always have the best
performance, in simulations, among threshold policies. This could be due to imperfect estimation
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to achieve good performance, irrespective of the traffic conditions, in contrast to
the aforementioned class of policies, where the best threshold parameter can only
be determined empirically, ex post.

The results in Figures 1.9 and 1.10 also confirm one of the insights derived
in the comparison to random merging: the performance of the DP policy is quite
consistent with respect to the density of the traffic flow on the blocked lane. Cor-
respondingly, the most critical primitive for performance evaluation purposes is
the density on the free lane.

(a) (b) (c)

Figure 1.9: Comparison of the DP policy to one-threshold merging policies via
Cellular-Automata simulations, for a sparse blocked lane. The merging threshold
is presented on the x-axis, and the total travel time (in seconds) on the y-axis. Ev-
ery point is the average of 5000 simulation runs. The red square corresponds to the
proposed DP policy.

1.7.3 Throughput-delay tradeoffs

Finally, we compare the proposed DP policy to the other benchmark policies to
compare the bottleneck throughput and delay that they achieve or induce. First we
compare the total travel time (delay) of blocked-lane drivers; second, the average
flow (throughput) of B-lane drivers through the bottleneck; and third, the total
travel time and the flow of all drivers, both on the free and on the blocked lane. In
the latter case, effectively, we compare the bottleneck capacity, and demonstrate
that the proposed approach does not reduce it; in fact, it often improves it. Indeed,

of the model parameters, or the fact that our model does not account for the influence of merging
drivers on the free lane. Typically, the DP policy recommends to merge slightly closer to the
blockage than the (empirically) best threshold policy, which likely means that either the merging
probability is overestimated, or the late merging penalty P is underestimated, or both. However,
since the performance of the DP policy for a single car on the blocked lane is even closer to the
optimum, the performance gap is likely to be attributed to unaccounted interactions of the blocked-
lane cars.
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(a) (b) (c)

Figure 1.10: Comparison of the DP policy to one-threshold merging policies via
Cellular-Automata simulations, for a dense blocked lane. The merging threshold is
presented on the x-axis, and the total travel time (in seconds) on the y-axis. Every
point is the average of 5000 simulation runs. The red square corresponds to the
proposed DP policy.

a policy that improves traffic conditions on one lane at the expense of other lanes,
would make little sense. Combined, these results imply that the DP policy, on
average, makes more efficient use of the available resources.

In Figures 1.11 and 1.12 we plot the aforementioned measures for the differ-
ent merging policies, for traffic intensity on B-lane 30% and 60%, respectively,
attempting to capture a relatively sparse and a relatively dense scenario. (Simula-
tions at different traffic intensities exhibit, qualitatively, the same behavior.) Note
that, in general, increasing the density leads to a steady increase of total travel
time. The traffic flow metric behaves differently: for the pooled metric, it grows
fast until the bottleneck capacity, and then almost stabilizes. Different policies can
lead to slightly different bottleneck capacity. Also, the flow of B-lane drivers can
behave differently, for example, it can decrease at very high density, due to the
fact that it become harder for B-lane drivers to leave the bottleneck when there
are many F -lane drivers. By and large though, the results supports our main the-
sis: the DP policy provides a principled way to achieve near-optimal performance
under any traffic conditions, whereas the different heuristic policies may or may
not perform well depending on the circumstances.

1.8 Conclusions
Algorithmic-driving and vehicle-to-vehicle communication technologies are reach-
ing maturity, and bring urgency to research on driver behavior, incentives, and
control policies for optimal traffic flow. And while decades of research and macro-
scopic models give good fits to observed phenomena, we still lack a deeper un-
derstanding of the underlying causes for fluctuations originated at the driver level,
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(a) (b)

(c) (d)

Figure 1.11: Comparison of the DP policy to three other popular heuristic policies,
for different traffic densities. Traffic on B-lane is significant (30% of total density)

which makes it difficult to devise good intervention and control policies.
To this end, we isolate a simple traffic situation that is reasonably amenable to

analysis. Our stylized model provides insights into both the underlying causes as
well as potential management policies for algorithm-assisted drivers, i.e., drivers
with clearly defined objectives, whose behavioral or cultural tics play less of a
role in traffic modeling.

Our modeling framework and DP formulation allows for a characterization of
the optimal merging and velocity control policy, resulting in a somewhat counter-
intuitive finding in some parameter regions: in the presence of uncertainty regard-
ing the future state of the target lane, travel-time optimizing drivers may oscillate
between high and low velocities while attempting to merge, a perplexing “irra-
tional” behavior often observed in practice. We validate our theoretical analysis
via extensive discrete-event simulations under real-life scenarios, where we eval-
uate the macroscopic impact of the DP policy against various merging heuristics.

Traffic modeling and analysis is extremely challenging as multiple agents
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(a) (b)

(c) (d)

Figure 1.12: Comparison of the DP policy to three other popular heuristic policies,
for different traffic densities. Traffic on B-lane is heavy (60% of total density on
B-lane)

interact in a dynamically changing environment. However, algorithm-assisted
drivers are somewhat easier to model at the microscopic level and the analysis
more tractable, potentially leading to actionable insights, and we believe this rep-
resents a new and exciting area of research, with a huge potential for making an
impact on our daily lives.

For future research, besides rigorous analysis of the case with multiple cars
on the blocked lane, there are many interesting questions to consider when one
combines our model with free-lane driver behavior, and even more intriguing ones
when drivers are modeled as acting strategically.

On the policy and intervention side, apart from setting velocity limits, technol-
ogy to use prices or set controls on acceleration and distances can lead to signifi-
cant improvements in traffic control. In the next chapter we consider how setting
up an auction or bidding format for the drivers can benefit all driver on the road.
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1.9 Appendix

1.9.1 Proof of Proposition 1.5

Our proof strategy relies on establishing sufficient conditions, such that ∆Ek ≥ 0,
or in other words

Ek+1[L]− Ek+1[H] ≤ Ek[L]− Ek[H]

over the three regions of the Final Merging Zone, L, X , and H . To that end, we
use the fact that

∆Ek =
qL − qH
vF

+(1−qL)
(
TBk (vL)− TBk+1(vL)

)
−(1−qH)

(
TBk (vH)− TBk+1(vH)

)
.

(1.26)

Region L: If Ek+1[L] − Ek+1[H] is in region L, and we are in the merging
zone then v∗ek = vL, irrespective of the velocity at the start of stage k. Eq. (1.26)
implies that

∆Ek =
qL − qH
vF

+ (1− qL)

(
1

vL
+ qL(T Fk+1 + cL) + (1− qL)TBk+1(vL)− TBk+1(vL)

)
− (1− qH)

(
2

vH + vL
+ qL(T Fk+1 + cL) + (1− qL)TBk+1(vL)− TBk+1(vH))

)
=
qL − qH
vF

+
1− qL
vL

− 2(1− qH)

vL + vH
− (1− qL)qLT

B
k+1(vL)

− (1− qH)(1− qL)TBk+1(vL) + (1− qH)TBk+1(vH) + (qH − qL)qL
(
T Fk+1 + cL

)
=
qL − qH
vF

+
1− qL
vL

− 2(1− qH)

vL + vH
+ (1− qH)

(
TBk+1(vH)− TBk+1(vL)

)
+ (qH − qL)qL

(
T Fk+1 + cL − TBk+1(vL)

)
.

Note that if it is optimal to merge at vL, then Eq. (1.2) implies that

2

vsk + vL
+ qL(T Fk+1 + cL) + (1− qL)TBk+1(vL) ≤ 2

vsk + vL
+ TBk+1(vL).

Rearranging terms, we have that T Fk+1 + cL ≤ TBk+1(vL), which implies that the
last term in the expression above is nonnegative (as qH− qL < 0). Combining this
fact with the lower bound on TBk+1(vH) − TBk+1(vL) provided by Lemma 1.2, we
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have the following lower bound for ∆Ek:

∆Ek ≥
qL − qH
vF

+
1− qL
vL

− 2(1− qH)

vL + vH
+

(1− qH)(vL − vH)

vL(vL + vH)

=
qL − qH
v̄F

− qL − qH
vL

≥ 0.

Note that if k is in Region L in the merging zone, then ∆Ek ≥ 0 as long as
vF ≤ vL. This also establishes Proposition 1.4.

Region X: If Ek+1[L] − Ek+1[H] is in region X , then it is optimal to merge
and v∗ek 6= vsk. Eq. (1.26) implies that

∆Ek =
qL − qH
vF

+ (1− qL)

(
2

vH + vL
+ qH(T Fk+1 + cH) + (1− qH)TBk+1(vH)− TBk+1(vL)

)
− (1− qH)

(
2

vH + vL
+ qL(T Fk+1 + cL) + (1− qL)TBk+1(vL)− TBk+1(vH)

)
=
qL − qH
vF

− 2(qL − qH)

vL + vH
+ (qH − qL)T Fk+1 + (1− qL)qHcH

− (1− qH)qLcL + (1− qL)(1− qH)
(
TBk+1(vH)− TBk+1(vL)

)
+ (1− qH)TBk+1(vH)− (1− qL)TBk+1(vL).

By adding and subtracting qLTBk+1(vH), we can rewrite the expression as follows:

∆Ek =
qL − qH
vF

− 2(qL − qH)

vL + vH
+ (qH − qL)T Fk+1 + (1− qL)qHcH (1.27)

− (1− qH)qLcL + (1− qL)(1− qH)
(
TBk+1(vH)− TBk+1(vL)

)
+ (1− qL)TBk+1(vH)− (1− qL)TBk+1(vL) + (qL − qH)TBk+1(vH)

=
qL − qH
vF

− 2(qL − qH)

vL + vH
+ (1− qL)qHcH − (1− qH)qLcL

+ (1− qL)(2− qH)
(
TBk+1(vH)− TBk+1(vL)

)
+ (qL − qH)

(
TBk+1(vH)− T Fk+1

)
.

To find a lower bound on the last term, recall that in region X we have that

2

vL + vH
− 1

vL
≤ Ek+1[L]− Ek+1[H] ≤ 1

vH
− 2

vL + vH
.
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Note that

Ek+1[L]− Ek+1[H]

=(qL − qH)T Fk+1 + qLcL − qHcH + (1− qL)TBk+1(vL)− (1− qH)TBk+1(vH)

=(qL − qH)T Fk+1 + qLcL − qHcH + (1− qL)TBk+1(vL)

−(1− qL)TBk+1(vH)− (qL − qH)TBk+1(vH)

=(qL − qH)
(
T Fk+1 − TBk+1(vH)

)
+ qLcL − qHcH

−(1− qL)
(
TBk+1(vH)− TBk+1(vL)

)
,

where, again, we add and subtract qLTBk+1(vH) to get the second equality. Using
the upper bound for Ek+1[L]−Ek+1[H] and the equality above, we establish that

(qL − qH)(TBk+1(vH)− T Fk+1) ≥

≥ 2

vL + vH
− 1

vH
+ qLcL − qHcH − (1− qL)

(
TBk+1(vH)− TBk+1(vL)

)
.

Combining the above lower bound with Eq. (1.27), we obtain:

∆Ek ≥
qL − qH
vF

− 2(qL − qH)

vL + vH
+ qHqL(cL − cH)

+
2

vL + vH
− 1

vH
+ (1− qL)(1− qH)

(
TBk+1(vH)− TBk+1(vL)

)
.

Finally, using the lower bound on TBk+1(vH)− TBk+1(vL) provided by Lemma 1.2,
we get:

∆Ek ≥
qL − qH
vF

− 2(qL − qH)

vL + vH
+ qHqL(cL − cH) (1.28)

+
2

vL + vH
− 1

vH
+

(vL − vH)(1− qL)(1− qH)

vL(vL + vH)
.

Hence, in regionX , the right-hand side of the above expression being nonnegative
constitutes a sufficient condition for ∆Ek ≥ 0;

Region H: If Ek+1[L] − Ek+1[H] is in region H , then it is optimal to merge
and v∗ek = vH , irrespective of the velocity at the start of stage k. Eq. (1.26) implies
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that

∆Ek =
qL − qH
vF

(1.29)

+ (1− qL)

(
2

vH + vL
+ qH(T Fk+1 + cH) + (1− qH)TBk+1(vH)− TBk+1(vL)

)
− (1− qH)

(
1

vH
+ qH(T Fk+1 + cH) + (1− qH)TBk+1(vH)− TBk+1(vH)

)
=
qL − qH
vF

+
2(1− qL)

vL + vH
− 1− qH

vH
+ qH(qL − qH)

(
TBk+1(vH)− T Fk+1 − cH

)
+ (1− qL)

(
TBk+1(vH)− TBk+1(vL)

)
≥ qL − qH

vF
+

2(1− qL)

vH + vL
− 1− qH

vH
+

(1− qL)(vL − vH)

vL(vL + vH)
,

where, to derive the last inequality, we use Proposition 1.2 and Lemma 1.2. If the
last expression is nonnegative, then ∆Ek ≥ 0 in region H .

Summarizing, if both conditions from Eq. (1.28) and Eq. (1.29) hold, which is
precisely the requirement of Part (i) of Proposition 1.5, then ∆Ek is nonnegative
for every k;

The proof of the second part of Proposition 1.5 builds on the proof of the first
part. Specifically, if the solution lies in region X for at most one stage, then the
optimal policy does not exhibit velocity oscillations. A sufficient condition for
this to hold is if ∆Ek being greater than or equal to the “length” of region X , for
every k. Combining Eq. (1.28) with the fact that the length of the region X is
equal to

(vL − vH)2

vLvH(vL + vH)
,

we derive the following sufficient condition:

qL − qH
vF

− 2(qL − qH)

vL + vH
+ qHqL(cL − cH) +

2

vL + vH
(1.30)

− 1

vH
+

(vL − vH)(1− qL)(1− qH)

vL(vL + vH)
≥ (vL − vH)2

vLvH(vL + vH)

Summarizing, if both conditions from Eq. (1.29) and Eq. (1.30) hold, which is
precisely the requirement of Part (ii) of Proposition 1.5, then the solution lies in
region X at most once, hence the optimal policy exhibits no oscillations.
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Chapter 2

POSITION BIDDING FOR
ALGORITHM-ASSISTED
DRIVERS

2.1 Introduction

During the whole history of car transportation, we got used to the fact that het-
erogeneous drivers with potentially different urgency of their trips must share the
same infrastructure with the same priority in our daily commuting. The only ex-
ception is when the urgency is undoubted and socially agreed upon—such as am-
bulances and other emergency services. Much research efforts were spent on opti-
mization of aggregate traffic flow, improvements of infrastructure, and increasing
safety. Personal incentives of the drivers are often left unattended. Nevertheless, if
the drivers who are in a hurry could reach their destinations faster, it could reduce
potential economic loss. The information about trip urgency is inherently private
and is not known to other drivers or traffic engineers. Therefore, any mechanism
that tries to assign priorities on the road must consider the drivers’ personal incen-
tives. It is important to understand how the trip’s exposed urgency is related to the
true one. Are they equal? If they are not, can we clearly understand the depen-
dencies between them? Failing to do so might lead to the wrong conclusions and
improper solutions, which would harm society rather than help it.

To make the discussion more concrete, we restrict ourselves to the same forced
merge scenario from the Chapter 1, which has all key features of the above dis-
cussion and can be frequently observed in practice. A two-lane highway reduces
to just one lane—because of an accident, road works, or simply because the high-
way narrows down. All drivers must merge from the blocked lane to the free
lane. Assuming that there is some space for maneuvers and several potential spots
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the drivers could merge into, which one should they choose? If the blocked-lane
driver is in a hurry (in other words, she has a higher valuation of one unit of time),
it would be better to place her ahead of as many drivers as possible. On the other
hand, if most of the free-lane drivers have a high valuation of time, while the
blocked-lane driver not, we would like to place her behind.

An auction or a similar bargaining mechanism involving money transfers be-
tween drivers could be a solution. Many auction formats are known to be an effi-
cient solution in different settings where certain goods are to be allocated among
agents with private valuations of these goods. The problem we introduced above
shares similar characteristics. If the blocked-lane driver would be bidding for po-
sitions, we can expect that higher valuations would result in higher bids, which
have a higher chance of being accepted by other drivers, leading to trades that
potentially are beneficial for everyone. However, as we detail in Section 2.2, the
structure of the problem at hand is not amenable to off-the-shelf mechanism de-
sign approaches from Economics (Vickrey-Clarke-Groves mechanism, auctions
with externalities, position auctions, sequential bargaining) or classical conges-
tion pricing ideas from Transportation. Hence, our contribution lies in designing
mechanisms tailored to the particular setting, which are computationally efficient
and achieve very good performance.

There are also good reasons why these interactions were not considered in
Traffic Engineering and other research communities in the past. They were im-
possible to implement in practice: they require complicated communication that
needs to be done on the fly, in parallel with the driving operations. To make it safe
and usable, merging bidding must be processed in (at least partly) automated man-
ner and rely on advanced wireless communications between the drivers. These
components are close to becoming the industry standard: V2V and robotic drivers
are being tested and are on the way to become commercially available. It is the
right time to develop a better understanding of how these technologies can be used
efficiently.

With this in mind, in the current chapter, we study the problem of merging
via position bidding. We take the side of a traffic regulator, who is interested in
designing the efficient mechanism in the sense of reaching as high social welfare
as possible. Moreover, the proposed mechanism must be implementable (that is,
efficient computationally) since our target environment is highly dynamical and
continually changing, and decisions are to be made quickly. We also aim to de-
velop a budget-balanced mechanism. We do not want the central regulator to
collect or inject any money in the system; it would seriously damage the mecha-
nism’s practicality.

What makes this problem challenging is that the drivers are inherently self-
ish. We model them as economic agents. They act strategically; that is, they are
individually rational and seek to maximize their objective (in other words, our
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mechanism must be incentive compatible). In our setting, it means they prefer
shorter trip times for themselves and do not care about trip times of the rest of the
drivers.

We should stress that this is a particularly important matter, and in our model,
we treat it as carefully as possible. As we discuss in Section 2.2, in many existing
attempts of traffic auctions design strategic behavior of the drivers is neglected
to a large extent. Auctions or other mechanisms in traffic can lead to a complex
environment. Unlike many rather static settings, traffic interactions are dynamic,
constantly changing, with many ways of how one agent’s actions might affect the
rest of the drivers. Analyzing equilibria in such situations might be a challenging
task. Nevertheless, not paying enough attention to drivers’ incentives might render
any mechanism to be useless or even harmful to society. It is the responsibility
of the traffic regulator to construct the mechanism in such a way that facilitates
understanding drivers’ behavior and allows for reliable predictions.

We propose two different mechanisms with different properties that can be
useful in different situations. We provide analysis that demonstrates that both
these mechanisms lead to the easily predictable behavior of all participating drivers.
The first mechanism allows the blocked-lane driver to bid on positions as she
moves along the highway, and we hence call it “Tail-to-Head”—because she moves
from the tail of the platoon on the free lane to the head of it. All carefully con-
structed commitments that are prescribed by the mechanism make sure that: (i)
incentives on the side of the free-lane drivers are clear, and they simply take the
bid if it is above their valuation (ii) it is guaranteed that social utility would not
decrease after the termination of the process. We show that the mechanism re-
sults in the outcome that is close to the social optimum under the wide range of
parameters. Finding optimal bids for the blocked-lane driver in the general case
can be time-consuming if the number of drivers is high. We propose heuristics
based on the relaxation of DP and intuitively good bidding strategies to overcome
this. We show that for uniform valuations, our main heuristic on average loses
no more than 2% of total utility, while takes 4 orders of magnitude less time to
calculate. For some special cases of cost functions, we provide an exact analytical
characterization of equilibrium.

Our second mechanism operates differently. The blocked-lane driver proceeds
from head to tail of the platoon (hence we call it “Head-to-Tail”), and takes differ-
ent commitments. Unlike Tail-to-Head mechanism, the driver commits to merge
right away at the first accepted offer. This mechanism does not guarantee positive
social utility. However, it does allow for the easily predictable behavior of the
free-lane drivers. Moreover, it is much simpler computationally, and it provides
a higher expected utility of the blocked-lane driver. In certain situations, such as
limited budget or very few drivers on the free lane, the Head-to-Tail mechanism
might also be preferable in terms of social utility. Therefore, the traffic regulator
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can choose one of these mechanisms depending on the situation and the goals.
The remainder of the chapter is organized as follows. In Section 2.2 we re-

view the literature and discuss why the existing approaches are not suitable for the
problem on hand; in Section 2.3 we discuss the modeling assumptions, introduce
our Tail-to-Head and Head-to-Tail mechanisms and discuss insights that can be
drawn from the solutions; in Section 2.4 we introduce the notion of Partial In-
formation Social Optimum, provide its theoretical comparison with Tail-to-Head
mechanism for special case as well as provide an extensive numerical comparison
for more general cases; in Section 2.5 we discuss the performance of the mech-
anisms when the blocked-lane driver has a limited budget; finally, in Section 2.6
we conclude the chapter and discuss future directions.

2.2 Literature Review
The economic literature on auctions, bargaining, and mechanisms is very rich,
and many problems theoretically are well-understood. However, many existing
approaches do not apply to our scenario due to the complexity of the setting. In
this section, we try to outline what are those approaches and why we can not take
one of them and directly apply to our scenario.

As our final goal is to develop a mechanism, a field of mechanism design
is the first place to look up for a solution. The paper McAfee and McMillan
(1987) is a classical review that discusses equilibrium and main results for models
such as first-price sealed-bid and key results for mechanisms. The book Rakesh
V. Vohra (2011) provides a good theory review of mechanisms design, based on
linear programming. Among all mechanisms and approaches to construct them,
the most famed is the VCG mechanism (originated from Vickrey (1961)). The
mechanism is truthful, efficient, incentive-compatible, and individually rational.
Theoretically, VCG has many very desirable properties. However, its practical
use remains limited, and there are many reasons why VCG is rarely a choice for
practitioners (see Rothkopf (2007)). Unfortunately, in our setting, attempts to
apply VCG also face problems. We discuss more detailed examples of VCG use
in our setting in Section 2.3.1, but we can summarize two main issues: (i) lack
of budget balancedness. Either collecting money or, even worse, paying them to
the participants for the efficient outcome is highly undesirable (ii) VCG payments
are defined based on the “cost of existence for society” of a participant. Unlike
simple and isolated scenarios such as single-item auctions, in the discussed traffic
scenarios, this is not well-defined and is ambiguous to interpret. It makes use of
VCG problematic, and therefore, we need to look for a different, more specific
mechanism or an auction.

One such approach is position auctions. The topic has quickly developed, fol-
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lowing its practical application in internet advertising. Papers Varian (2007) and
Edelman et al. (2007) are seminal on that side, followed by a significant burst
of the literature. As a few notable examples: Gomes and Sweeney (2014) studies
numerically the existence and efficiency of Bayes-Nash equilibria; Athey and Elli-
fason (2011) incorporates the strategical behavior of the customers into the model.
There are two main reasons why this type of auctions is not implementable in our
setting. Firstly, they are used in environments where interchanging positions es-
sentially requires no time and no cost and thus is always possible. On the contrary,
permuting car positions to new ones might be unsafe, costly, and simply not pos-
sible because of time constraints (operations need to be finished before hitting the
blockage). It might be much more appropriate and feasible not to find a new per-
mutation of positions, but to make an auction format that tries to handle a single
driver’s merging, which is easier to implement in real road situations. If needed,
that can be repeated until there is no time for changes left. The second reason
is the problem with drivers who do not want to participate in the auction and in-
stead wish to hold their current position. This is crucially different from online
advertising auctions, where the advertiser has to pay continually to the provider
of the services. There is no such provider in the traffic scenario, which also makes
collecting payment questionable, and again raises the problem with balancedness
of the payments (how to redistribute them without destroying the equilibrium?).

Another possible approach is the auctions with externalities. A general treat-
ment of the auctions with externalities can be found in Jehiel et al. (1999). Neg-
ative externalities play a significant role in our setting, and they are probably its
defining feature, on a technical side. Assume that a free-lane driver competes with
others in selling his position. If another driver wins, externalities depend heavily
on whether the winning position is behind or ahead. This creates asymmetric ex-
ternalities. On the contrary, a key assumption of the model in Jehiel et al. (1999) is
that these externalities must be symmetric (they assumed to be a random variable
drawn from a distribution with the same support, so they are equal in a stochastic
sense). A similar restriction is imposed in Jehiel and Moldovanu (2000). On top
of that, the mechanisms discussed in these papers involve one seller and many
drivers, while we are interested in a reverse auction (with the blocked-lane driver
as the only buyer). Generally speaking, the literature on auctions is centered on
symmetric settings (because of analytical tractability) and one seller, many buyers
(due to richer practical applications). Only recently, a general single-item first-
price sealed-bid auction was analyzed for two bidders and uniform distributions
(Kaplan and Zamir (2012)), which is by itself a rather simple auction format. This
fact emphasizes how hard it is for the researchers to dig deeper into the asymmet-
ric auctions.

Instead of looking at a one-shot traffic auction, another possible way of mod-
eling traffic positions could be a sequence of bargains between the blocked-lane
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driver and the free-lane drivers. The classical models considering such trades
between two agents are bilateral trading (Myerson and Satterthwaite (1983)), se-
quential bargaining (Fudenberg and Tirole (1983)), and simultaneous-offers bar-
gaining (Chatterjee and Samuelson (1990)). These papers capture essential fea-
tures that we want to incorporate, such as private valuations. They can help to ana-
lyze a case of one blocked-lane driver and one free-lane driver. However, this case
is not attractive from a practical viewpoint, and we want to get reliable predictions
for a greater number of agents. As we discussed above, the externalities play a
crucial role in our setting and prevent the problem from being decoupled into a se-
quence of independent bargains. There are, however, the models that specifically
tackle bargaining between many agents or between one agent and multiple agents
(see De Fontenay and Gans (2014), Segal (1999)). They fit our setting better, and
notably, allow for externalities between the agents. Nevertheless, due to being
aimed to solve different practical problems (such as agreements between firms)
and significant analytical complexity, they tend to take technical assumptions that
we can not afford. Examples are the symmetry of the agents or the continuity of
utility functions. We discussed the former above; the latter is problematic since
the blocked-lane driver can abruptly switch from one merging position to another
after an arbitrarily small change in offers, which is not representable by continu-
ous utility functions of corresponding free-lane drivers.

One of the few practically used policies that aim to help congestion and re-
duce travel time is congestion pricing. Early studies Walters (1961) and Vickrey
(1969a) hinted the point that the negative externalities that the drivers cause to
others should be corrected in the form of tolls in congested areas. In the follow-
ing decades, congestion pricing received a solid theoretical basis in the economic
literature and numerous practical applications, both implemented and planned for
future years. A comprehensive review of the modern state of congestion pricing
can be found in de Palma and Lindsey (2011). This pricing mechanism aims to
decrease the travel time of all drivers in a transportation link, path or area. It does
not specifically tackle the differences in the value of time for the different drivers.
Instead, it is concentrated around deriving the average value of time and setting
up a socially beneficial price. On the contrary, we aim to increase efficiency by
providing a mechanism for position trading to the drivers. In principle, this is
perfectly compatible with other measures taken to improve the overall traffic flu-
ency (including congestion pricing). The second known issue with the congestion
pricing is the fact that the payment is collected by a central traffic regulator, i.e.
there is a lack of budget balance. This results in an extensive discussion, both
academic and public, regarding how these funds should be spent, and creates pub-
lic controversy and aversion (see Small (1992)). The mechanism that allows for
voluntary participation and leaves the opportunity to keep the position without
negative externalities potentially can achieve a higher level of public support.

60



“Thesis” — 2020/10/1 — 18:52 — page 61 — #75

Finally, traffic engineers and computer science researchers also try to come
up with efficient ways of trading priorities on the road, expecting autonomous
vehicles to become prevalent in the nearest future. Carlino et al. (2013) and Vasir-
ani and Ossowski (2012) experiment with auction-like schemes for intersection
management. Rewald and Stursberg (2016) is dedicated to the cooperation of au-
tonomous drivers via auctions in a broader range of situations. Notably, in the
paper Lin et al. (2019), the authors develop a bargaining scheme with monetary
payments in case of a discretionary lane change. However, they assume only two
different types of drivers, truthfully reporting their value of time. In general, traf-
fic engineering literature tends to propose algorithmic schemes and formats of
the auctions and test them in simulations without careful derivation of equilibria.
Fixed bidding functions, a random budget, or other simplifications such as truthful
bidding are typically assumed. On the contrary, we aim to develop a mechanism
that provides a more solid theoretical basis, and hence we only consider bidding
strategies that are incentive-compatible.

2.3 Position Bidding Mechanisms

2.3.1 VCG application to a merging scenario

Before introducing our position bidding mechanism, we want to highlight why
the use of VCG mechanism is problematic in traffic. In order to apply VCG to
our merging scenario, for ease of illustration, we use a simpler model than the
one described later in Section 2.3.2. We assume that there are n drivers on the
free-lane and a single driver b on the blocked lane, and all distances between cars
on the free lane are equal. Furthermore, assume that the merging of the blocked-
lane driver causes all free-lane drivers to lose an equal amount of time (pushes
them back equally). We normalize this time to be equal to 1 unit, and all drivers
have valuations of this normalized unit of time equal vb, v1, . . . , vn. All free-lane
drivers initially posses positions on the free-lane according to their indices, while
the blocked-lane driver can have a free and guaranteed merging into the position 0,
resulting in zero total utility. If the blocked-lane driver merges into position i, her
utility is ub = ivb − qb, where qb is the sum of payments she pays to the free-lane
drivers. If the blocked-lane driver merges somewhere ahead of a free-lane driver
j, the utility of the latter is uj = −vj + qj , where qj is the payment received.

Our goal is to find such a position (one of the positions 0, 1, . . . , n) for the
blocked-lane driver that maximizes total utility. VCG is the mechanism that al-
lows for a truthful, incentive-compatible, individually-rational, and efficient way
of doing so.

There are, however, two significant issues with the application of VCG in our
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setting. The first one is the general lack of balancedness property. All the pay-
ments that have to be transferred within the mechanism are not guaranteed to sum
up to zero, and there is usually deficit or surplus. The proposed merging bargain-
ing is aimed to be a day-to-day scheme. Therefore, neither collecting nor inserting
funds from the central planner is acceptable. One possible way out can be found
in Proposition 5.6 in Krishna (2010). According to it, if VCG runs with a surplus
in the sum of all payments, then it is possible to create an efficient, incentive-
compatible, and individually rational mechanism, which is budget-balanced at the
same time. However, as we shortly demonstrate, VCG can run with surplus or
with deficit depending on the drivers’ valuations. The second issue is ambiguity
in interpretations of the “cost to the society” of the driver in this scenario. We
discuss it below.

To simplify the discussion further, let us consider the case of n = 2. According
to VCG, the outcome that maximizes social optimum is always chosen. This
makes the problem with equal valuations trivial, since in this case, in the sense of
social welfare, any outcome is equal. We therefore consider the case vb 6= v1 6= v2.
According to VCG rules, payment of the driver i is determined as:

qi = U−i −W−i,

where U−i is the sum of outcomes for other drivers if i would not present on the
road, and W−i is the sum of outcomes for other drivers in the current outcome.

Here is when the second issue we mentioned above comes into play. The
second component is straightforward to determine. However, there are different
possible interpretations of the first one. If one free-lane driver disappears, one
could bring arguments to claim that any of these interpretations is true:

1. The blocked-lane driver can take opportunity and merge freely into the free
spot where the free-lane driver was.

2. All the free-lane drivers advance ahead for 1 spot and gain utility based on
it, then we identify best total utility from merging.

3. All the free-lane drivers advance 1 spot ahead, but we consider it as a new
“zero-utility” situation (because this additional utility is not related per se
to the trading of the positions). However, the outcome of bargaining and the
best total utility still might change.

4. The blocked-lane driver does not merge and the free-lane drivers do not ad-
vance ahead. However, the distance change, resulting in different merging
penalties and advantages for the blocked-lane driver.
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Which scenario to choose seems to be a choice of arbitrarily taken assump-
tions. As a result, analysis using VCG is unreliable. The third scenario seems the
most sensible one since it excludes any changes in valuations that are not related
to position trading per se. To demonstrate VCG calculations example, below we
assume that this is the correct scenario. If one free-lane driver is not present, all
the drivers stay in their spots (the blocked lane driver merges to position 0), result-
ing in zero utility. Then we determine the best possible outcome (but keeping in
mind that one driver is missing). There are 3 possible outcomes: driver b merges
into positions 0, 1 or 2. This depends on what reordering gives higher total utility,
which in turn depends on valuations. We consider the result in all 3 cases.

1. b merges into positon 0. This happens if vb < v1. In this case qb = q2 = 0,
since absence of drivers b, f2 does not change the outcome. However, q1

depends on whether vb < v2. If so, then q1 = 0. If vb > v2, then in the
absence of driver f1, driver b can merge into position 0, and

q1 = vb − v2 > 0,

in which case the sum of the payments Q = qb + q1 + q2 > 0. Otherwise
Q = 0.

2. b merges into position 1. This happens if v1 < vb, but v1 + v2 > vb. In this
case:

q2 = (vb − v1)− (vb − v1) = 0;

q1 = 0− vb = −vb;
qb = 0− (−v1) = v1.

In this case, Q = v1 − vb < 0.

3. b merges into position 2. This happens if v1 + v2 < 2vb. Payments are
determined as follows:

q2 =

{
(vb − v1)− (2vb − v1) = −vb if vb > v1;

−(2vb − v1) = v1 − 2vb if vb < v1;

q1 = (vb − v2)− (2vb − v2) = −vb;
qb = 0− (−v1 − v2) = v1 + v2.

In this case either Q = v1 + v2 − 2vb < 0 or Q = 2v1 + v2 − 3vb, and the
sign of the expression depends on the valuations.
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Summarizing, for the case n = 2, we can conclude that it is ambiguous
whether VCG runs with surplus or with deficit—it depends on values vi and vb.
Hence even if we overcome ambiguity in the interpretation of VCG application
and choose one, it is still impossible to construct a budget-balanced mechanism
using VCG.

2.3.2 Modelling assumptions
We consider the same blocked-lane scenario from Chapter 1. One lane was blocked
due to an accident or road works. There is traffic on both lanes, and eventually,
drivers from the blocked lane (lane B) must merge into the free lane (lane F ). We
assume that the free-lane drivers move in a relatively dense platoon, and most of
the time, there is not enough space between cars for the blocked-lane driver to
merge without delaying any cars behind. However, the exact distances between
cars might vary. On the other hand, the blocked lane is relatively sparse, and there
are few drivers. As in the previous chapter, we concentrate on a single blocked-
lane driver (for example, the closest one to the blockage).

We assume that there is always a position at the end of the platoon where the
blocked-lane driver could easily merge. We numerate this position as position
0 or call it the reserved position. There are n drivers on the free-lane ahead of
the reserved position. We denote them f1, . . . , fn, starting from the back of the
platoon (closer to the blockage, higher the index). The blocked-lane driver can
merge to the corresponding positions in front of each free-lane car. There might
be cars on the free lane ahead of car fn, but given the current flow speed, the
blocked-lane driver cannot reach them before hitting the blockage point; hence
they are unavailable and excluded from participation.

The distances between cars on the free lane are d1, . . . , dn, where di stands for
a distance between cars fi and fi+1, excluding the length of the car fi (i.e., di is
the the distance from front bumper of fi to a rear bumper of fi+1). The distances
are common knowledge to everyone on the road and remain constant until the
bargaining process ends. We illustrate the merging scenario described above in
Figure 2.1.

Whenever a merge happens ahead of position j, say at position i > j, the car
fj experiences delay that depends not only on dj but also on all the distances up
to di. There are two main reasons for this delay. First of all, there might be not
enough space at all for the blocked-lane driver to merge. In this case, the free-
lane car needs first to create a sufficient gap, and this is effectively is a loss of
travel time. Second, even if there is enough space, cars involved in merging adjust
(stretch) distances after the merge happens. This is known as the “relaxation”
phenomenon and is a well-studied process; see, for example, Zheng et al. (2013).
Both effects take place only when the car merges immediately in front of another
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Figure 2.1: The blocked-lane scenario. Blue car is seeking for a merging spot, grey
cars are n cars reachable by the blue car, and red cars can not be reached, hence are
not considered a part of bargaining process.

car. However, after the merge it propagates upstream, causing loss of travel time
for the drivers behind. Eventually, it vanishes since whenever there is a larger gap,
the effect is mitigated or completely disappears.

To capture this rather complex dynamic, we use a set of functions

Cij(dj, dj+1, . . . , di),

which map distances dj, . . . , di into a time delay for driver j given that the blocked-
lane driver merged into position j. Each function Cij(·) should possess the fol-
lowing properties:

• It is non-negative because it always represents loss of travel time; merging
of another car ahead can not create an advantage for the car behind.

• It decreases in each argument (i.e. must decrease when any of the distances
increase, given that the rest are the same). This is because the car is affected
less by the merge when any of these distances are higher.

• For fixed distances and fixed i, Cij ≤ Cik whenever j < k. This property
is similar to a previous one: the penalty decays over distance, therefore it
must be less when there are more cars between the free-lane driver and the
merging position.

We do not discuss in detail the exact form of function family Cij(·). Identifying
them based on the physics of the traffic and behavior of the drivers can well be a
topic for separate research. Moreover, the shift of technologies towards automated
drivers can change underlying behavior. In our theoretical analysis, we abstract
from these functions and use a general definition of functions Cij(·). For a numer-
ical study, we propose a reasonable and parametric functional form, discussed in
Section 2.3.5, and test with different parameters, demonstrating robustness.

We assume that all drivers on road have different urgency of trip, or valuation
of time. Assuming that all possible valuations are bounded, we normalize them
to be real numbers between 0 and 1, which represents a (normalized) monetary
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equivalent of one unit of travel time for the driver. Furthermore, assume that valu-
ations per unit of time for all drivers vb, v1, . . . , vn are independent and identically
distributed random variables, according to a distribution with CDF F (x) and PDF
f(x). These valuations are private information, and each driver knows only his or
her own valuation. The distribution of values are common knowledge.

It should be noted that although we assume i.i.d. valuations throughout the
chapter, the identical distribution of valuations can be relaxed at a cost of some
computational and notational burden. In principle, different car types might have
different distributions of valuations. For example, drivers of trucks or corporate
vans is likely to be on duty and potentially have different valuations of time than
other drivers. If this is a public information, we can incorporate these considera-
tions into the model. On the contrary, the assumption about the independence of
valuations can not be easily revoked. If valuations are not independent, our anal-
ysis needs to be adjusted to account possible learning, that the driver can obtain
through past interactions. We leave this to future studies for now.

The blocked-lane driver with valuation vb gains ri(vb) units of time from merg-
ing into the position i. We discuss exact functional form of these functions in more
details in Section 2.3.5. For now, we assume that these functions possess two key
properties: (i) they are weakly increasing in i, i.e. ri(vb) ≥ ri−1(vb) (i) each ri(vb)
is weakly increasing in vb.

Finally, we assume that utility of all drivers is linearly additive with respect to
travel time, through the functions ri(·) and Cij(·), and to the monetary payment.
We now try to find mechanisms that can perform well under all stated modeling
assumptions.

2.3.3 Tail-to-Head (T2H) Mechanism
As we discuss above, we want to find a mechanism that is incentive compatible,
individually rational, and budget-balanced. We can give up truthfulness and we
might agree to sacrifice some fraction of efficiency, although we still prefer to have
as high total utility (or social welfare) as possible. As we discuss in Section 2.2,
to our knowledge, there is no obvious or easy way to do so, for example, using
general approaches or readily available mechanisms.

There can be different ways of constructing such a mechanism. In any case,
it seems to be of high importance to prevent the negative externalities (here, the
adverse effect of the merging car on cars behind). One way to do so is to make
the blocked-lane driver pay compensations to all drivers involved. If all free-lane
drivers agree on payment, it means that their valuations of time are low enough
to justify putting the blocked-lane driver ahead in the traffic flow. In our first
proposed bargaining scheme, which we call “Tail-to-Head”, we not only manage
to satisfy this crucial condition but also facilitate analysis by a straightforward
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structure of the mechanism. Key features of the mechanism are: (i) sequential
(one-by-one) and one-shot bargaining (no chance to re-negotiate); (ii) the free-
lane drivers are passive price-takers—greatly decreases potential opportunities for
strategic interaction without harming incentive compatibility; (iii) the blocked-
lane driver can merge only if all affected parties have agreed upon price.

Specifically, the blocked-lane driver starts from the tail of the platoon, a driver
f1, by proposing payment rate b1 per unit of travel time lost due to the merge
ahead. That is, if f1 would suffer any delay due to the blocked-lane driver merg-
ing ahead (not necessarily immediately in front of f1), the blocked-lane driver
would pay to him according to the rate b1. If the driver f1 accepts, the blocked-
lane driver can proceed and negotiates with the next driver f2. The process is
repeated exactly in the same manner until the offer is rejected at any point. In this
case, the blocked-lane driver has to take the last slot that was agreed upon and
cannot proceed with negotiations. Then she pays to all drivers behind according
to the delay they incur. Naturally, the blocked-lane diver is interested in violat-
ing these restrictions and would like to proceed with negotiations further ahead.
However, as we demonstrate later, following this rule is crucial for the mechanism
we propose. Therefore, it is of high importance that the traffic regulator imposes
such commitment and forces the drivers to follow them, if necessary.

Since both the function and the distances are common knowledge, delay values
for each possible pair i, j can be precomputed and stored as numbers. We will
denote them as cij (superscript stands for position to which the blocked-lane driver
merges). Similarly, we can pre-calculate all ri(·). We denote them as ri.

Because the bid is not a fixed amount of money, but rather a rate, incentives
on the side of F-lane drivers are especially easy to check. If driver fi is offered a
price bi per unit of time, expected utilities of accepting and rejecting for him are:

uAi (bi) = (bi − vi)(P0c
i
0 + P1c

i
1 + . . .+ PNciN);

uRi (bi) = 0,

where Pk is the probability that the blocked-lane driver would merge into position
k at the end of the bargaining process. It is preferable for the driver fi to accept the
offer as long as uAi (bi) ≥ uRi (bi). Note the second multiplication term in uAi (bi)
is always non-negative (as both probabilities and costs are non-negative), and the
decision is determined by the sign of bi − vi. As a result, the optimal strategy
for every driver is straightforward: to accept any offered payment that is higher
than his valuation. Then, the problem of finding optimal bids to every position i
for the blocked-lane driver can be formulated as a Dynamic Program (DP). The
primitives of the problem are as follows:

State: The state of the system consists of all bids (rates per unit of
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time) for which the blocked-lane driver has an agreement, prior to the
stage i; we denote it as a vector with i− 1 elements (b1, . . . , bi−1).

Control: The control/decision at stage i is the bid bi to offer to a
current free-lane driver fi.

Uncertainty: The uncertainty at stage i is the unknown valuation of
time vi of a free-lane driver fi.

Dynamics: If a current free-lane driver rejects to be paid at rate bi
in exchange for giving up a slot to the blocked-lane driver, then the
blocked-lane driver can not proceed with bargaining. She has to
merge to a previously negotiated position i − 1. The final utility of
the blocked-lane driver then:

ri−1 −
i−1∑
k=1

bkc
i−1
k .

If there is an agreement, then she can proceed to negotiations for po-
sition i+ 1, and the vector of bids is updated by adding bi.

If we denote reward-to-go of the blocked-lane driver at stage i as Ji(·), then
the solution can be written as DP recursion:

Ji
(
b1, . . . , bi−1

)
= max

bi≥0

{
Ji+1

(
b1, . . . , bi

)
P
[
fi accepts bi

]
+

(
ri−1 −

i−1∑
k=1

bkc
i−1
k

)
P
[
fi rejects bi

]}
, (2.1)

with boundary condition

JN+1

(
b1, . . . , bN

)
= rN −

N∑
k=1

bkc
N
k . (2.2)

For tractability, we derive our analytical results based on two assumptions:
(i) The merging cost satisfy cik = ck, i = 1, . . . , N ;
(ii) The probability distribution function satisfies F (x) = x, x ∈ [0, 1]. In

other words, the time valuations are uniformly distributed in the [0, 1] interval.
The corresponding Dynamic Programming problem is described by the recur-

sion:

Ji
(
b1, . . . , bi−1

)
= max

0≤bi≤1

{
Ji+1

(
b1, . . . , bi

)
bi +

(
ri−1 −

i−1∑
k=1

bkck

)(
1− bi

)}
.

(2.3)
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We denote by b∗i the solution to the above optimization problem, i.e., optimal
bid that the merging driver makes to driver i on the platoon.

Proposition 2.1. The optimal expected reward-to-go of the T2H mechanism is
equal to

Ji
(
b1, . . . , bi−1

)
= ri−1−

i−1∑
k=1

bkck+
N∑
j=i

(
rj−rj−1−b∗jcj

) j∏
k=i

b∗k, i = 1, . . . , N+1,

(2.4)
and the optimal bids to drivers i, . . . , N can be computed through the recursion:

b∗i = max

{
min

{
1

2ci

(
ri − ri−1 +

N∑
j=i+1

(
rj − rj−1 − b∗jcj

) j∏
k=i+1

b∗k

)
, 1

}
, 0

}
.

(2.5)

Proof. The result is proved by induction.
Basis of Induction: For i = N + 1, Eq. (2.4) implies that

JN+1

(
b1, . . . , bN

)
= rN −

N∑
k=1

bkck,

which holds because it coincides with the boundary condition of the DP problem
in Eq. (2.2);

Induction Step: Assume that the statement of Eq. (2.4) holds for i = l + 1,
l ∈ {1, . . . , N}, i.e.,

Jl+1

(
b1, . . . , bl

)
= rl −

l∑
k=1

bkck +
N∑

j=l+1

(
rj − rj−1 − b∗jcj

) j∏
k=l+1

b∗k.

We show that, in turn, the statement of Eq. (2.4) also holds for i = l. According
to Eq. (2.3), we have that

Jl
(
b1, . . . , bl−1

)
= max

0≤bl≤1

{(
rl −

l∑
k=1

bkck +
N∑

j=l+1

(
rj − rj−1 − b∗jcj

) j∏
k=l+1

b∗k

)
bl

+

(
rl−1 −

l−1∑
k=1

bkck

)(
1− bl

)}

= rl−1 −
l−1∑
k=1

bkck + max
0≤bl≤1

{(
rl − rl−1 − blcl

+
N∑

j=l+1

(
rj − rj−1 − b∗jcj

) j∏
k=l+1

b∗k

)
bl

}
. (2.6)
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We study the function

gl(x) ≡

(
rl − rl−1 − xcl +

N∑
j=l+1

(
rj − rj−1 − b∗jcj

) j∏
k=l+1

b∗k

)
x.

Note that it is continuous, differentiable, and strictly concave in x. Hence, the
unconstrained problem of maximizing gl(x) has a unique solution, which is its
stationary point x∗:

g′l
(
x∗
)

= 0 ⇐⇒ rl − rl−1 − x∗cl +
N∑

j=l+1

(
rj − rj−1 − b∗jcj

) j∏
k=l+1

b∗k − x∗ci = 0

⇐⇒ x∗ =
1

2cl

(
rl − rl−1 +

N∑
j=l+1

(
rj − rj−1 − b∗jcj

) j∏
k=l+1

b∗k

)
.

Now, we wish to maximize the continuous function gl(·) over the compact set
[0, 1]. The Extreme Value Theorem implies that the solution to the constrained
problem is either the (unique) stationary point x∗, or lies on the boundary of the
constraint set. On that end, we distinguish between two cases:

1. If x∗ ≥ 0, then g′l(x) ≥ 0, for all x ∈
[
0, x∗

]
. Consequently, b∗l =

min
{
x∗, 1

}
;

2. If x∗ < 0, then note that g′l(x) < 0, for all x ∈ [0, 1]. Consequently, b∗l = 0.

Combining the analysis of the two cases, we have that

b∗l = max {min {x∗, 1} , 0} ,

which verifies Eq. (2.5). Finally, substituting back to Eq. (2.6), we have that

Jl
(
b1, . . . , bl−1

)
= rl−1 −

l−1∑
k=1

bkck

+

(
rl − rl−1 − b∗l cl +

N∑
j=l+1

(
rj − rj−1 − b∗jcj

) j∏
k=l+1

b∗k

)
b∗l

= rl−1 −
l−1∑
k=1

bkck +
N∑
j=l

(
rj − rj−1 − b∗jcj

) j∏
k=l

b∗k,

which verifies Eq. (2.4) and completes the induction. �
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It is convenient to study the “normalized” optimal expected reward-to-go of
the T2H mechanism, after removing the revenue that has been secured up until
the negotiation with driver i:

∆Ji ≡ Ji
(
b1, . . . , bi−1

)
−

(
ri−1 −

i−1∑
k=1

bkck

)
.

Proposition 2.1 implies that

∆Ji =
N∑
j=i

(
rj − rj−1 − b∗jcj

) j∏
k=i

b∗k, (2.7)

so that ∆Ji does not depend on b1, . . . , bi−1. Indeed, given the structure of the
mechanism and the fact that time valuations of different drivers are independent,
a bid that was made to (and accepted by) a driver early on does not have an impact
on future bids.

Using this notation, we can rewrite the DP recursion in Eq. (2.3) as follows:

∆Ji = max
0≤bi≤1

{(
∆Ji+1 + ri − ri−1 − bici

)
bi
}
. (2.8)

with boundary condition ∆JN+1 = 0.

Corollary 2.1. The optimal bids and the (normalized) optimal expected reward-
to-go of the T2H mechanism can be computed via the simple recursive equations:

1. If ∆Ji+1 ≤ −ri + ri−1 + 2ci, then b∗i =
(
∆Ji+1 + ri − ri−1

)/
2ci and

∆Ji =
(
b∗i
)2
ci;

2. Otherwise, b∗i = 1 and ∆Ji = ∆Ji+1+ri−ri−1−ci ⇐⇒ Ji
(
b1, . . . , bi−1

)
=

Ji+1

(
b1, . . . , bi−1, 1

)
.

Proof. Eq. (2.5) and Eq. (2.7) imply directly that

b∗i = min

{
1

2ci

(
∆Ji+1 + ri − ri−1

)
, 1

}
. (2.9)

It is worth noting that the optimal bid to driver i is nonnegative: Eq. (2.8)
implies that ∆Ji ≥ 0, since the feasible solution bi = 0 results in zero value of
the objective function; a value that the optimal solution is no worse than. Hence,
∆Ji+1 + ri − ri−1 ≥ 0, which implies that b∗i ≥ 0.

We distinguish between the two cases:
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1. If ∆Ji+1 ≤ −ri + ri−1 + 2ci, then Eq. (2.9) implies that b∗i = 1
2ci

(
∆Ji+1 +

ri − ri−1

)
. In turn, Eq. (2.8) implies that

∆Ji =
(
∆Ji+1 + ri − ri−1 − b∗i ci

)
b∗i

=

(
∆Ji+1 + ri − ri−1 −

1

2ci

(
∆Ji+1 + ri − ri−1

)
ci

)
×

× 1

2ci

(
∆Ji+1 + ri − ri−1

)
=

1

4ci

(
∆Ji+1 + ri − ri−1

)2

=
(
b∗i
)2
ci.

2. If ∆Ji+1 > −ri + ri−1 + 2ci, then Eq. (2.9) implies that b∗i = 1. In turn,
Eq. (2.8) implies that

∆Ji =
(
∆Ji+1 + ri − ri−1 − b∗i ci

)
b∗i = ∆Ji+1 + ri − ri−1 − ci.

By substitution in the definition of ∆Ji, we have that the latter expression
implies that

Ji
(
b1, . . . , bi−1

)
= Ji+1

(
b1, . . . , bi−1, 1

)
.

�

Proposition 2.2. The expected Social Welfare under the T2H mechanism, SWT2H ,
is equal to

SWT2H =
N∑
j=1

(
rj − rj−1 −

1

2
b∗jcj

)
b∗j

j−1∏
k=1

b∗k. (2.10)

Proof. The expected Social Welfare of the T2H mechanism is equal to the ex-
pected reward of the merging driver, J1, in addition to the externalities that her
merging may cause on the free lane drivers. The former is provided directly by
Proposition 2.1, hence we start our analysis from the latter. Fix j ∈ {1, . . . , N}.
The externality that the merging driver imposes on driver j of the platoon is:

—
(
b∗j − vj

)
cj , on the event

∏j
k=1 1{b∗k≥vk};

— 0, otherwise.
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Therefore, the expected externality that the merging driver imposes on driver j
of the platoon, Xj , assuming that time valuations are independent and distributed
identically to the uniform distribution U(0, 1), is equal to

Xj = Ev1,...,vj

[(
b∗j − vj

)
cj

j∏
k=1

1{b∗k≥vk}

]

= Evj
[(
b∗j − vj

)
cj1{b∗j≥vj}

] j−1∏
k=1

P
(
b∗k ≥ vk

)
=
(
P
(
b∗j ≥ vj

)
b∗jcj − Evj

[
vj1{b∗j≥vj}

]
cj

) j−1∏
k=1

b∗k

=

((
b∗j
)2
cj −

1

2

(
b∗j
)2
cj

) j−1∏
k=1

b∗k.

Consequently, the total expected externality, XT2H that the merging driver
imposes on the drivers of the platoon is equal to

XT2H =
N∑
j=1

(
b∗j
)2
cj

j−1∏
k=1

b∗k −
1

2

N∑
j=1

(
b∗j
)2
cj

j−1∏
k=1

b∗k. (2.11)

Eq. (2.4) and Eq. (2.11) imply that the expected Social Welfare under the T2H
mechanism, SWT2H , is equal to

SWT2H ≡ J1 +XT2H

=
N∑
j=1

(
rj − rj−1 − b∗jcj

) j∏
k=1

b∗k +
N∑
j=1

(
b∗j
)2
cj

j−1∏
k=1

b∗k −
1

2

N∑
j=1

(
b∗j
)2
cj

j−1∏
k=1

b∗k

=
N∑
j=1

(
rj − rj−1

)
b∗j

j−1∏
k=1

b∗k −
N∑
j=1

(
b∗j
)2
cj

j−1∏
k=1

b∗k +
N∑
j=1

(
b∗j
)2
cj

j−1∏
k=1

b∗k

− 1

2

N∑
j=1

(
b∗j
)2
cj

j−1∏
k=1

b∗k

=
N∑
j=1

(
rj − rj−1 −

1

2
b∗jcj

)
b∗j

j−1∏
k=1

b∗k,

which confirms Eq. (2.10). Note that the internal payments from the merging
driver to the drivers of the platoon cancel out in the expression above, and thus, as
expected, do not affect the Social Welfare under the T2H mechanism. �
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Note that Eq. (2.10) can be considered as a function of any set of bids b1, . . . , bN ,
not only the bids solving T2H Dynamic Program. The result would be the ex-
pected Social Welfare under T2H mechanism when the blocked-lane driver bids
b1, . . . , bN . Tail-to-Head bids are incentive-compatible with the blocked-lane driver,
but not necessarily deliver minimum to the expected social welfare. In Sec-
tion 2.4.1, we discuss what “socially optimal” bids can perform this, in a special
case of homogeneous costs and rewards.

2.3.4 Head-to-Tail (H2T) Mechanism
Tail-to-Head mechanism guarantees no negative externalities and thus is expected
to perform well in terms of social welfare. However, is this effect powerful enough
to justify a relatively strong commitment on the block-lane driver’s side? To check
this point in numerical tests, we propose an alternative mechanism. It is con-
structed with the priority of the blocked-lane driver’s utility but might negatively
affect the rest of the drivers. For the blocked-lane driver, the most valuable posi-
tions are at the head of the platoon. Therefore, it is reasonable for her to start from
the head, and just take the position of the first driver who accepts the offer. Given
the fact that positions closer to the head provide a strictly higher utility (less travel
time), and given the identical distribution of valuations, it can be a reasonable sim-
plification. On the positive side, it greatly facilitates analysis and computational
efficiency, as we demonstrate later. Summarizing specific assumptions that make
this model different from the Tail-to-Head model: (i) bargaining process starts
from driver fn, then proceeds to the driver fn−1, etc.; (ii) the blocked-lane driver
does not commit to stop bargaining if any driver declines; instead, she commits
to merge right away if the offer is accepted; (iii) the scheme implies a payment to
a single driver, not to all drivers who face externalities. As an important conse-
quence, no free-lane drivers are guaranteed to have positive utility.

This particular bargaining order might be more suitable if the driver has en-
tered the tapper region (near the blockage). If she cannot accelerate more than
F-lane drivers, Head-to-Tail order would arise naturally. Another potential use
of this scheme is when the traffic regulator prefers maximizing the utility of the
blocked-lane drivers instead of total utility—for example, there is identified ur-
gency on the block-lane driver’s side.

In this “Head-to-Tail” model, the utility of accepting/rejecting the offer by
a free-lane driver remains the same. If there is an agreement, the blocked-lane
driver merges immediately, and utility of the free-lane driver i is (bi − vi)c

i
i. If

the free-lane driver declines the offer, there is 0 utility, since the blocked lane
driver has already visited the drivers ahead of i and they declined (thus, no po-
tential negative externalities may arise in the future). Hence, the probabilities of
accepting and rejecting bid bi remain the same (a free-lane driver accepts only if
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the offered compensation rate per unit of time exceeds valuation). As a result, we
can formulate a similar Dynamic Program to solve for optimal bids. We keep the
same notation as before (including the numeration of the free-lane drivers). The
primitives then can be written as follows:

State: The only state information is the number of stage i (the number
of the current driver).

Control: The control/decision at stage i is the bid-per-unit-of-time bi
to offer to a current free-lane driver fi.

Uncertainty: The uncertainty at stage i is the unknown valuation of
time vi of free-lane driver fi.

Dynamics: If a current free-lane driver declines to be paid bic
i
i in

exchange of giving up a slot to the blocked-lane driver, the blocked-
lane driver proceeds to bargaining with driver i − 1. If there is an
agreement, then she merges right away and the process is terminated.

The DP recursion can be written as follows:

J̃i = max
b̃i≥0

{(
ri − b̃ici

)
P
[
fi accepts b̃i

]
+ J̃i−1P

[
fi rejects b̃i

]}
,

with boundary condition
J̃0 = 0. (2.12)

For tractability, we derive our analytical results based on two assumptions:
(i) The merging cost satisfy cik = ck, i = 1, . . . , N ;
(ii) The probability distribution function satisfies F (x) = x, x ∈ [0, 1]. In

other words, the time valuations are uniformly distributed in the [0, 1] interval.
The corresponding Dynamic Programming problem is described by the recur-

sion:
J̃i = max

0≤b̃i≤1

{(
ri − b̃ici

)
b̃i + J̃i−1

(
1− b̃i

)}
. (2.13)

We denote by b̃∗i the solution to the above optimization problem, i.e., optimal
bid that the merging driver makes to driver i on the platoon.

Proposition 2.3. The optimal expected reward-to-go of the H2T mechanism is
equal to

J̃i =
i∑

j=1

(
rj − b̃∗jcj

)
b̃∗j

i∏
k=j+1

(
1− b̃∗k

)
, i = 0, . . . , N, (2.14)
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and the optimal bids to drivers 1, . . . , i can be computed through the recursion:

b̃∗i = max

{
min

{
1

2ci

(
ri −

i−1∑
j=1

(
rj − b̃∗jcj

)
b̃∗j

i−1∏
k=j+1

(
1− b̃∗k

))
, 1

}
, 0

}
.

(2.15)

Proof. The result is proved by induction.
Basis of Induction: For i = 0, Eq. (2.14) implies that J̃0 = 0, which holds

because it coincides with the boundary condition of the DP problem in Eq. (2.12);
Induction Step: Assume that the statement of Eq. (2.4) holds for i = l − 1,

l ∈ {1, . . . , N}, i.e.,

J̃l−1 =
l−1∑
j=1

(
rj − b̃∗jcj

)
b̃∗j

l−1∏
k=j+1

(
1− b̃∗k

)
.

We show that, in turn, the statement of Eq. (2.14) also holds for i = l. According
to Eq. (2.13), we have that

J̃l = max
0≤bl≤1

{(
rl − b̃lcl

)
b̃l +

(
l−1∑
j=1

(
rj − b̃∗jcj

)
b̃∗j

l−1∏
k=j+1

(
1− b̃∗k

)) (
1− b̃l

)}
(2.16)

We study the function

hl(x) ≡ rlx− clx2 + (1− x)

(
l−1∑
j=1

(
rj − b̃∗jcj

)
b̃∗j

l−1∏
k=j+1

(
1− b̃∗k

))
.

Note that it is continuous, differentiable, and strictly concave in x. Hence, the
unconstrained problem of maximizing hl(x) has a unique solution, which is its
stationary point x∗:

h′l
(
x∗
)

= 0 ⇐⇒ rl − 2clx−

(
l−1∑
j=1

(
rj − b̃∗jcj

)
b̃∗j

l−1∏
k=j+1

(
1− b̃∗k

))
= 0

⇐⇒ x∗ =
1

2cl

(
rl −

l−1∑
j=1

(
rj − b̃∗jcj

)
b̃∗j

l−1∏
k=j+1

(
1− b̃∗k

))
.

Now, we wish to maximize the continuous function hl(·) over the compact set
[0, 1]. The Extreme Value Theorem implies that the solution to the constrained
problem is either the (unique) stationary point x∗, or lies on the boundary of the
constraint set. On that end, we distinguish between two cases:
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1. If x∗ ≥ 0, then h′l(x) ≥ 0, for all x ∈
[
0, x∗

]
. Consequently, b̃∗l =

min
{
x∗, 1

}
;

2. If x∗ < 0, then note that h′l(x) < 0, for all x ∈ [0, 1]. Consequently, b̃∗l = 0.

Combining the analysis of the two cases, we have that

b̃∗l = max {min {x∗, 1} , 0} ,

which verifies Eq. (2.15). Finally, substituting back to Eq. (2.16), we have that

J̃l =
(
rl − b̃∗l cl

)
b̃∗l +

(
l−1∑
j=1

(
rj − b̃∗jcj

)
b̃∗j

l−1∏
k=j+1

(
1− b̃∗k

)) (
1− b̃∗l

)
=

l∑
j=1

(
rj − b̃∗jcj

)
b̃∗j

l∏
k=j+1

(
1− b̃∗k

)
,

which verifies Eq. (2.14) and completes the induction. �

The result analogical to Corollary 2.1 can be established.

Corollary 2.2. The optimal bids and the optimal expected reward-to-go of the
H2T mechanism can be computed via the simple recursive equations:

1. If J̃i−1 > ri, then b̃∗i = 0 and J̃i = J̃i−1;

2. If ri− 2ci ≤ J̃i−1 ≤ ri, then b̃∗i =
(
ri− J̃i−1

)/
2ci and J̃i = J̃i−1 +

(
b̃∗i
)2
ci;

3. Otherwise, b̃∗i = 1 and J̃i = ri − ci.

Proof. The result follows directly from the proof of Proposition 2.3. �

Similar to Tail-to-Head model, it is possible to get an analytical expression for
Social Welfare for H2T.

Proposition 2.4. The expected Social Welfare under the H2T mechanism, SWH2T ,
is equal to

SWH2T =
N∑
j=1

(
rj −

1

2
b̃∗jcj −

1

2

j−1∑
l=1

cl

)
b̃∗j

N∏
k=j+1

(
1− b̃∗k

)
. (2.17)
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Proof. The expected Social Welfare of the H2T mechanism is equal to the ex-
pected reward of the merging driver, J̃N , in addition to the externalities that her
merging may cause on the free lane drivers. The former is provided directly by
Proposition 2.3, hence we start our analysis from the latter. Fix j ∈ {1, . . . , N}.
The externality that the merging driver imposes on driver j of the platoon is:

— −vjcj , on the event
∑N

l=j+1 1{b∗l≥vl}
∏N

k=l+1 1{b̃∗k<vk}
;

—
(
b̃∗j − vj

)
cj , on the event 1{b∗j≥vj}

∏N
k=j+1 1{b̃∗k<vk}

;

— 0, otherwise.

Therefore, the expected externality that the merging driver imposes on driver j
of the platoon, Xj , assuming that time valuations are independent and distributed
identically to the uniform distribution U(0, 1), is equal to

Xj = Evj ,...,vN

[(
b̃∗j − vj

)
cj1{b∗j≥vj}

N∏
k=j+1

1{b̃∗k<vk}

− vjcj
N∑

l=j+1

1{b̃∗l≥vl}

N∏
k=l+1

1{b̃∗k<vk}

]

= Evj
[(
b∗j − vj

)
cj1{b∗j≥vj}

] N∏
k=j+1

P
(
b̃∗k < vk

)
− Evj [vjcj]

N∑
l=j+1

P
(
b̃∗l ≥ vl

) N∏
k=l+1

P
(
b̃∗k < vk

)
=
(
P
(
b∗j ≥ vj

)
b∗jcj − Evj

[
vj1{b∗j≥vj}

]
cj

) N∏
k=j+1

(
1− b̃∗k

)
− 1

2
cj

N∑
l=j+1

b̃∗l

N∏
k=l+1

(
1− b̃∗k

)
=

((
b∗j
)2
cj −

1

2

(
b∗j
)2
cj

) N∏
k=j+1

(
1− b̃∗k

)
− 1

2
cj

N∑
l=j+1

b̃∗l

N∏
k=l+1

(
1− b̃∗k

)
.

Consequently, the total expected externality, XH2T that the merging driver
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imposes on the drivers of the platoon is equal to

XH2T =
N∑
j=1

(
b∗j
)2
cj

N∏
k=j+1

(
1− b̃∗k

)
− 1

2

N∑
j=1

(
b∗j
)2
cj

N∏
k=j+1

(
1− b̃∗k

)
− 1

2

N∑
j=1

cj

N∑
l=j+1

b̃∗l

N∏
k=l+1

(
1− b̃∗k

)
. (2.18)

Eq. (2.14) and Eq. (2.18) imply that the expected Social Welfare under the
H2T mechanism, SWH2T , is equal to

SWH2T ≡ J̃N +XH2T

=
N∑
j=1

(
rj − b̃∗jcj

)
b̃∗j

N∏
k=j+1

(
1− b̃∗k

)
+

N∑
j=1

(
b∗j
)2
cj

N∏
k=j+1

(
1− b̃∗k

)
− 1

2

N∑
j=1

(
b∗j
)2
cj

N∏
k=j+1

(
1− b̃∗k

)
− 1

2

N∑
j=1

cj

N∑
l=j+1

b̃∗l

N∏
k=l+1

(
1− b̃∗k

)
=

N∑
j=1

((
rj −

1

2
b̃∗jcj

)
b̃∗j

N∏
k=j+1

(
1− b̃∗k

)
− 1

2
cj

N∑
l=j+1

b̃∗l

N∏
k=l+1

(
1− b̃∗k

))

=
N∑
j=1

(
rj −

1

2
b̃∗jcj −

1

2

j−1∑
l=1

cl

)
b̃∗j

N∏
k=j+1

(
1− b̃∗k

)
,

which confirms Eq. (2.17). Note that the internal payments from the merging
driver to the drivers of the platoon cancel out in the expression above, and thus, as
expected, do not affect the Social Welfare under the H2T mechanism. �

2.3.5 Properties and Insights In The General Case
In Sections 2.3.3 and 2.3.4 we show that the exact equilibrium for T2H and H2T
can be found under simplifying assumptions. We now relax the assumption about
single-indexed cost and consider a more general case.

Numerical solutions of T2H and H2T

The exact analytical solution of DP recursions for Tail-to-Head is not available
for general costs cij . We, therefore, as a simple approach, have to resort to an
approximate DP—that is, allow the blocked-lane driver to bid only at a discrete
step, not continuously. However, the state space dimension grows by one each
stage, as there is one additional historic bid each time. This makes use of the
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naive approach (exhaustive search, finding an optimal control for every state at
every stage) even for an approximate DP be restricted. After dividing each bid into
10 levels, one instance of the problem can be solved reasonably fast for n = 8, and
becomes too computationally expensive after that. Of course, if higher precision
is required, the problem becomes unsolvable even for smaller n.

On the contrary, the Head-to-Tail model can be solved numerically much more
efficiently than Tail-to-Head. An approximate DP can solve the problem with
high precision: at every stage, the only state is just the index of the stage, and
the problem of finding the optimal bid collapses to a single-variable constrained
optimization problem.

Solutions to both models share some similarities. The optimal bidding policy
is non-monotonic, and bids can increase and decrease as stages proceed, depend-
ing on the distances between drivers. Very often, the blocked-lane driver bids
more aggressively on the stages where there is a higher inter-car distance since
she incurs fewer payments if she merges there. Interestingly, the solution of Tail-
to-Head DP in some cases leads to a rather specific policy. If there is a spot with
a high enough distance and close enough to the blockage point, it becomes prof-
itable for the blocked lane-driver to bid the maximal value bi = 1 to that driver and
all drivers behind him. That way, she can secure a profitable position, while many
of these high bids will not be fully paid or not paid at all (because the merging
penalty decays with the distance). The second notable feature is that the opti-
mal bidding strategy might be discontinuous in the blocked-lane driver valuation
vb. The blocked-lane driver can switch to aggressive bidding bi = 1 from much
smaller bids even if her valuation rises by a tiny value. In the case of Head-to-Tail
model, the driver can continue bargaining without the agreement of all drivers
behind. Therefore, this specific pattern of bidding 1 does not arise.

To solve the problem numerically, we need first to fix a distribution for val-
uations vb, v1, . . . , vn, and also the functional forms for ri and Cij . For the val-
uations, we use uniform distribution U(0, 1), same as we use for our analytical
results earlier. For functions ri and Cij , we use the following functional forms:

ri(vb) =
vb
∑i

k=1 dk
vF

; Cij(dj, . . . , di) = max

{
D − α

∑i
k=j dk

vF
, 0

}
,

(2.19)
where D is measured in meters, and α is a coefficient. These parametric forms al-
low the following interpretation. D/vF controls the maximal possible value of the
merging penalty that any driver can suffer (higher the value, higher the maximal
penalty). α/vF is responsible for the effect of the distance to merging point to the
merging penalty: the higher its value, the faster the penalty decays with distance.
The blocked-lane driver’s gain ri(vb) is straightforward: it is additional travel time
she saves from advancing multiplied by her time valuation.
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To illustrate the properties of numerical solutions, let us consider two exam-
ples. In notation, we superscript “T2H” for the Tail-to-Head model and “H2T”
for the Head-to-Tail model.

1. n = 4, D = 40, α = 1, vF = 10, vb = 0.3. Optimal expected blocked-
driver utilities are JT2H

0 = 0.114, JH2T
0 = 0.597. Distances between cars

and the optimal bidding policy:

Stage 1 2 3 4
di 20 10 15 10
bT2H
i 0.38 0.22 0.3 0.18
bH2T
i 0.3 0.2 0.4 0.32

2. n = 4, D = 40, α = 1, vF = 10, vb = 0.8. Optimal expected blocked-
driver utilities are JT2H

0 = 2.261, JH2T
0 = 2.774. Distances between cars

and the optimal bidding policy:

Stage 1 2 3 4
di 20 10 15 10
bt2hi 1. 1. 1. 0.58
bh2t
i 0.8 0.44 0.86 0.56

To emphasize that the block-lane driver’s valuation also has a significant effect
on the outcome, we vary only vb in the examples above. Note how the optimal
policy jumps from “conservative” bidding to bidding bi = 1 in the second ex-
ample. That way, the blocked-lane driver secures a valuable position i = 3. In
other cases, both in Tail-to-Head and Head-to-Tail, we can see that bids are higher
for larger gaps. As the valuation of the blocked-lane driver increases, bids and
expected utility also increases. Finally, we can see that the H2T format delivers
a higher utility to the blocked-lane driver. This is expected, as the blocked-lane
driver can easily reach valuable positions and does not need to pay compensations
to all drivers involved.

Binary DP and other heuristics for Tail-to-Head

As we note above, Tail-to-Head DP is slow to solve. Can we find a faster, but
slightly less precise way to obtain bids for the blocked-lane driver in this format?
We develop several different approaches.

The first idea is related to “securing” behavior we observed in the examples
above. It seems that often the blocked-lane driver seeks for the most beneficial po-
sition (which is usually the position with relatively large distance and close to the
blockage), and uses the maximal bid bi = 1. for all positions up to the target one.
It might mean that often the blocked-lane driver does not need much flexibility
in bidding to achieve reasonable performance. We, therefore, propose a restricted
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form of the Tail-to-Head format. This is the same DP we consider in Eq. (2.3), but
possible options for bi are restricted to be 0 and 1 only. We call it binary DP. This
approach is faster than simple approximate DP since we only need to check two
options at every stage. However, it still has exponential computational complexity
O(2n). The following simple result shows that the optimal bids of binary DP can
be computed using an algorithm with linear complexity O(n).

Proposition 2.5. To find an optimal solution of binary DP, it is enough to consider
n bidding policies of a threshold form 1, . . . , 1, 0, . . . , 0.

Proof. Consider a DP recursion for an arbitrary stage i:

Ji(b1, . . . , bi−1) = max
bi∈{0,1}

{
Ji+1(b1, . . . , bi)F (bi)

+

(
ri−1 −

i−1∑
k=1

bkc
i−1
k

)
(1− F (bi))

}
.

Note that whenever bi = 0, we have:

Ji(b1, . . . , bi−1) = ri−1 −
i−1∑
k=1

bkc
i−1
k ,

and in this case any value of bj, j > i does not change the resulting cost J0 of
the policy. Since they all are optimal, in particular the choice bj = 0, j > i is
optimal. As the result, the only characteristic that makes the policies different is
index of stage i for which bi = 0 for the first time. This is equivalent to what we
claimed. �

Essentially, the binary DP is a stopping problem where the only decision to
make is the stage (position) at which the driver wants to stop (merge). There are
only n distinct policies, and therefore, computationally, it is very efficient. We
further discuss the efficiency of binary DP and other heuristics concerning total
and blocked-lane driver’s utility in Section 2.4. For now, we emphasize the fact
that securing the positions with the largest gap is usually beneficial both for the
blocked-lane driver’s utility (which is being optimized through DP) and for the
total utility (which traffic regulator is mostly interested in). As a result, the binary
DP that capitalizes on this behavior can obtain high total utility.

Rather than considering a restricted version of Tail-to-Head DP, we can con-
struct a myopic bidding policy. The bid in the original Tail-to-Head DP is trying to
balance the cost with future benefits. What we propose is: (i) balance the bid not
with optimal future benefit, but with immediate utility improvement (considering
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only one future stage); (ii) ignore the fact that current payment is also changing
over time due to merging penalty decay. Therefore, we attempt to balance im-
mediate benefits and immediate costs, obtaining the following expression for the
stage i:

bic
i
i = ri − ri−1,

resulting in the myopic bidding policy bmi = (ri − ri−1)/cii, ∀i.
This myopic bidding on its own is not producing desirable results since it often

overlooks potentially enormous future benefits and underbids in such situations.
It might also overbid in many other situations. If the blocked-lane driver perfectly
balances benefit and the bid, it leaves her with zero net profit. However, combin-
ing the myopic bidding and binary DP should be flexible enough. This approach
allows the blocked-lane driver to bid strategically and reach a highly valuable po-
sition through binary bidding, and if there is no such single outstanding position,
it can resort to myopic bidding. We call this combination binary-myopic DP, and
it is another restricted version of Tail-to-Head DP, where the blocked-lane driver
at every stage can choose her bid out of a three-element set {0, bmi , 1}.

As we show in Section 2.4, this is a powerful approach in terms of social
welfare but works reasonably as well for the utility of the blocked-lane driver.
However, similar to other DP formulations, computational complexity grows ex-
ponentially in n. One possible way to significantly reduce complexity is not to
consider all three options each period, but rather to switch between two distinct
policies. One policy is the optimal binary DP (which we know can be solved effi-
ciently), and another one is “all-periods-myopic” bidding (which also boils down
to calculating n myopic bids). The blocked-lane driver then compares both poli-
cies and choose the one that results in a higher expected utility for her. We call
the resulting policy binary-myopic heuristic.

Below we illustrate example solutions of all three simplified DP and heuris-
tics for the same examples we use above. We use the following abbreviations in
notation: BDP - binary DP, BMDP - binary-myopic DP, BMH - binary-myopic
heuristic.

1. n = 4, D = 40, α = 1, vF = 10, vb = 0.3 Optimal expected blocked-
driver utilities are: JBDP0 = 0, JBMDP

0 = 0.062, JBMH
0 = 0.062. Distances

between cars and the optimal bidding policy:

Stage 1 2 3 4
di 20 10 15 10
bBDPi 0. 0. 0. 0.
bBMDP
i 0.6 0.15 0.3 0.15
bBMH
i 0.6 0.15 0.3 0.15
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2. n = 4, D = 40, α = 1, vF = 10, vb = 0.8 Optimal expected blocked-
driver utilities are: JBDP0 = 1.9, JBMDP

0 = 2.2, JBMH
0 = 1.9. Distances

between cars and the optimal bidding policy:

Stage 1 2 3 4
di 20 10 15 10
bBDPi 1. 1. 1. 1.
bBMDP
i 1. 1. 1. 0.4
bBMH
i 1. 1. 1. 1.

From these examples, we can see the expected relation of the utilities: JBDP0 ≤
JBMH

0 ≤ JBMDP
0 . Furthermore, we can see that sometimes binary-myopic heuris-

tic performs the same as binary DP, and sometimes as myopic-binary DP. For other
problems, it can also perform somewhere in between. Comparing myopic bids of
BMDP with approximate Tail-to-Head DP from examples earlier, we can observe
that sometimes myopic bid exactly equals what recommended by approximate
DP, sometimes lower and sometimes higher. Importantly, it follows the correct
direction: the bid is higher whenever the distance is greater.

2.4 Individual Utility and Social Welfare

2.4.1 Tail-To-Head and Social Optimum
The traffic regulator and, ultimately, society as a whole, are interested in imple-
menting the bargaining scheme that provides a higher total utility. Tail-to-Head
bargaining scheme was explicitly constructed with this in mind. It guarantees that
all drivers have non-negative utility in any situation; the same can be said about
our simplified solution concepts of Tail-to-Head DP (binary and binary-myopic
DP) and the heuristic. In this subsection, we compare the outcome of Tail-to-
Head and Head-to-Tail formats to the social optimum.

There could be different ways of defining the social optimum. In particular,
different assumptions about the information available to the central planner. As
the highest possible standard, one can assume that the central planner perfectly
knows the valuations of all drivers. We call this concept a perfect information
social optimum. For this concept, we can calculate total utility for merging into
position i as:

Ui = ri(vb)−
i∑

j=1

cijvj.

The perfect information social optimum then can be found as US = maxi Ui.
We emphasize that this is the best possible outcome that any mechanism can ever
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achieve. It requires knowing the exact utilities of all drivers and works directly
with them. It is, therefore, can be considered as “not fair” comparison to our
proposed mechanisms. Later in the section, we discuss how we can relax this
concept to be more feasible.

For the Tail-to-Head (either DP of heuristic) and Head-to-Tail it is also straight-
forward to find the outcome and total utility. We take the optimal bids of blocked-
lane driver and run them using corresponding auction scheme and values v1, . . . , vn.
Resulting merging agreement allows to calculate the total utility.

Can we prove the existence of universal bounds regarding the relation of total
utilities in the perfect information social optimum, Tail-to-Head DP and Head-
to-Tail DP? Can we show that Tail-to-Head is universally (meaning for any in-
stance of the problem) better than Head-to-Tail and is close to the social opti-
mum? Unfortunately, as we shortly demonstrate, there are examples for which
Tail-to-Head DP performs arbitrarily bad compared to the social optimum and
Head-to-Tail. Vice versa, we can easily find examples when Head-to-Tail works
arbitrarily poorly compared to the Social Optimum and Tail-to-Head.

Consider the values of parameters that represent a dense, evenly spaced pla-
toon on the free-lane. Assume that advancing one position gives 1 unit of time
for the blocked-lane driver, but after the merge, all the free-lane drivers behind are
pushed back equally, and each looses the same 1 unit of time. In our model’s nota-
tion, this means that Cij = 1 if i ≥ j and zero otherwise. Also, utility from merge
for the blocked-lane driver is ri = ivb. Then, consider a situation when vb = 1,
v1 = 1 and vi = 0 for all i = 2, . . . , n. The Social Optimum utility is US = n−1.
There is only one free-lane driver with a very high valuation, and the rest have
zero valuation. Therefore it is beneficial to put the blocked-lane driver in the head
of the platoon. However, the blocked-lane driver would never pass through the
very first driver with a high valuation, because she always bids strictly less than
vb (and therefore, less than v1). For example, for n = 5, the bids approximately
equal to bTH = [0.8, 0.7, 0.7, 0.6, 0.5]. Intuitively, the blocked-lane driver needs
to bid b1 = 1 to be able to pass through the first driver, but this means she needs
to give up all the utility gained due to advancing. Since she is a rational agent,
she prefers to have less chance of accepting (in expectation), but strictly positive
utility gain. As a result, the blocked-lane driver stays in the reserved position 0,
and total utility is 0.

On the contrary, Head-to-Tail performs optimally in this example. Any posi-
tive bid is enough for the blocked-lane driver to merge immediately into the so-
cially optimal position n. In particular, for the same n = 5, the bids approximately
are bHT = [0.5, 0.9, 1.0, 1.0, 1.0], which achieves the social optimum with total
utility n− 1.

However, let us say now that vb is a small positive number, for example, vb =
0.1, and the free-lane valuations are vi = 1, i = 1, . . . , n− 1 and vn = 0. Now the
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situation is opposite to the previous one, and it is optimal to put the blocked-
lane driver at the tail of the platoon. This results in zero social utility (since
merging at position 0 is the reserved case). Any other merging would result in
negative total utility. We know that Tail-to-Head always guarantees non-negative
total utility, and as a result, it reaches the social optimum. However, the Head-
to-Tail mechanism would allow the blocked-lane driver to merge into position
n. Indeed, the bid in the approximate DP is bHTn = 0.2, which is accepted since
vn = 0. This results in a massive negative utility, specifically, UHT = 0.1n−n+1.

The situations we demonstrate occur not only in exceptional cases. To a less
degree, similar situations arise with other parameters, such as ones allowing for
merging penalty decay. The existence of such examples implies that it is not pos-
sible to make sample-path arguments regarding utility bounds. We can only hope
for the results that hold in expectation. However, these results are more chal-
lenging to establish analytically. Moreover, they are sensitive to the distributional
assumptions that we make.

Nevertheless, later in this section, we provide bounds for Tail-To-Head effi-
ciency for simple homogeneous costs. For the general case, we have to rely on
the numerical computations to demonstrate a comparison of Tail-to-Head, Head-
to-Tail, and social optimum. As we show in Section 2.4.2, Tail-to-Head DP and
related heuristics and relaxations work very well in terms of total utility.

Furthermore, as we mentioned above, the perfect information social optimum
is not a fair comparison to Tail-to-Head DP, since it is based on a somewhat unre-
alistic assumption of revealed valuations. As a much closer to our setting option,
we propose a Partial Information Social Optimum, or PI-SO. We assume that the
central planner possesses the same information that the blocked-lane driver in both
our auction formats, i.e. knows only vb. With that information, the central planner
is trying to maximize the total utility. We furthermore restrict ourselves to opti-
mization within the Tail-to-Head format. The problem can be viewed as a purely
altruistic blocked-lane driver trying to bid in such a way that everyone would be
better off at the end of the process. During the procedure, the driver can adjust her
beliefs regarding the valuations of free-lane drivers.

Let us assume for a moment that the blocked-lane driver knows all valuations
of the free-lane drivers exactly. Note that finding perfect information social opti-
mum can be formalized as a solution to the following DP:

Ji(b1, . . . , bi−1) = max
bi≥0

{
Ji+1(b1, . . . , bi)F (bi)

+

(
ri−1 −

i−1∑
k=1

vkc
i−1
k

)
(1− F (bi))

}
,
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JN+1(b1, . . . , bN) = rN −
N∑
k=1

vkc
N
k .

Here we follow the rules of Tail-to-Head format: at each stage i, the driver
offers a bid bi. If it is accepted, then the blocked-lane driver can proceed. Other-
wise, he needs to merge to the last accepted position i − 1. However, the utility
resulting from the merging is the utility of the blocked-lane driver minus the total
cost of all free-lane drivers. This equation results in the Perfect Information Social
Optimum. The optimal total utility is:

max
i

{
ri −

i∑
k=1

vkc
i
k

}
.

If the optimal position is i∗, to achieve this position, the driver needs to bid bk =
1, k = 1, . . . , i∗ and bk = 0 otherwise. It is easy to see that this is the same social
optimum US we discussed at the beginning of this subsection.

Now again, assume that the blocked-lane driver does not know all the val-
uations. However, she can use the information gathered in the previous stages.
We cannot use exact valuations vk, and instead, we replace them with conditional
expectations. Equation from the above transforms into the following:

Ji(b1, . . . , bi−1) = max
bi≥0

{
Ji+1(b1, . . . , bi)F (bi)

+

(
ri−1 −

i−1∑
k=1

E [vk|k-th driver accepted bk] ci−1
k

)
(1− F (bi))

}
.

In the above equation, we replaced vk with its expectation given the informa-
tion that k-th driver accepted bid bk earlier. This is the only information relevant
to the blocked-lane driver with regard to vk. Recall that we show earlier that a
free-lane driver accepts bid bk if vk < bk and rejects otherwise. This leads us to
the final form of DP recursion:

Ji(b1, . . . , bi−1) = max
bi≥0

{
Ji+1(b1, . . . , bi)F (bi) (2.20)

+

(
ri−1 −

i−1∑
k=1

E[vk|vk < bk]c
i−1
k

)
(1− F (bi))

}
, (2.21)

For tractability, we derive our analytical results based on three assumptions:
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(i) The merging cost satisfy cik = ck, i = 1, . . . , N ;
(ii) The probability distribution function satisfies F (x) = x, x ∈ [0, 1]. In

other words, the time valuations are uniformly distributed in the [0, 1] interval;
(iii) Time valuations are independent across drivers in the platoon.
The corresponding Dynamic Programming problem is described by the recur-

sion:

J̄i
(
b̄1, . . . , b̄i−1

)
= max

0≤b̄i≤1

{
J̄i+1

(
b̄1, . . . , b̄i

)
b̄i +

(
ri−1 −

1

2

i−1∑
k=1

b̄kck

)(
1− b̄i

)}
.

(2.22)
We denote by b̄∗i the solution to the above optimization problem, i.e., optimal

bid that the merging driver makes to driver i on the platoon.

Proposition 2.6. The optimal expected reward-to-go of the Partial-Information
Social Optimum at stage i = 1, . . . , N + 1 is equal to

J̄i
(
b̄1, . . . , b̄i−1

)
= ri−1 −

1

2

i−1∑
k=1

b̄kck +
N∑
j=i

(
rj − rj−1 −

1

2
b̄∗jcj

) j∏
k=i

b̄∗k, (2.23)

and the optimal bids to drivers i = 1, . . . , N can be computed through the recur-
sion:

b̄∗i = max

{
min

{
1

ci

(
ri − ri−1 +

N∑
j=i+1

(
rj − rj−1 −

1

2
b̄∗jcj

) j∏
k=i+1

b̄∗k

)
, 1

}
, 0

}
.

(2.24)

Proof. The proof is very similar to the proof of Proposition 2.1 and, thus, omitted
for brevity. �

Similarly to the T2H mechanism, it is convenient to study the “normalized”
optimal expected reward-to-go of the Partial-Information Social Optimum:

∆J̄i ≡ J̄i
(
b̄1, . . . , b̄i−1

)
−

(
ri−1 −

1

2

i−1∑
k=1

b̄kck

)
.

Proposition 2.6 implies that

∆J̄i =
N∑
j=i

(
rj − rj−1 −

1

2
b̄∗jcj

) j∏
k=i

b̄∗k, (2.25)
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so that ∆J̄i does not depend on b1, . . . , b̄i−1. Using this notation, we can rewrite
the DP recursion in Eq. (2.22) as follows:

∆J̄i = max
0≤b̄i≤1

{(
∆J̄i+1 + ri − ri−1 −

1

2
b̄ici

)
b̄i

}
. (2.26)

with boundary condition ∆J̄N+1 = 0.

Corollary 2.3. The optimal bids and the (normalized) optimal expected reward-
to-go of the Partial-Information Social Optimum can be computed via the simple
recursive equations:

1. If ∆J̄i+1 ≤ −ri + ri−1 + ci, then b̄∗i =
(
∆J̄i+1 + ri − ri−1

)/
ci and ∆J̄i =

1
2

(
b̄∗i
)2
ci;

2. Otherwise, b̄∗i = 1 and ∆J̄i = ∆J̄i+1+ri−ri−1−1
2
ci ⇐⇒ J̄i

(
b1, . . . , b̄i−1

)
=

J̄i+1

(
b1, . . . , b̄i−1, 1

)
.

Proof. The proof is very similar to the proof of Corollary 2.1 and, thus, omitted
for brevity. �

We formulate Partial Information Social Optimum DP on the intuitive basis,
but below we show an argument demonstrating that the resulting bids are the best
bids for the society that can be achieved in the Tail-to-Head format.

Proposition 2.7. The bids of Partial-Information Social Optimum DP maximize
Social Welfare of T2H mechanism, SWT2H .

Proof. We do not have a complete proof of the result, but rather demonstrate some
hints on why it holds in the case 0 < b̄∗i < 1, ∀i.

We want to maximize the following function of N variables b1, . . . , bN :

f(b1, . . . , bN) ≡
N∑
j=1

(
rj − rj−1 −

1

2
bjcj

)
bj

j−1∏
k=1

bk.

Let us fix i and take the partial derivative with respect to bi:

f ′bi = (ri−ri−1−bici)
i−1∏
k=1

bk+
N∑

j=i+1

(
rj − rj−1 −

1

2
bjcj

) i−1∏
k=1

bk

j∏
p=i+1

bp. (2.27)

To identify critical points, we need to find points at which f ′bi = 0 for any i. Note
that in Eq. (2.27) we have

∏i−1
k=1 bk > 0, and hence we can write

ri − ri−1 − bici +
N∑

j=i+1

(
rj − rj−1 −

1

2
bjcj

) j∏
k=i+1

bk = 0,
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or, expressing bi,

bi =
1

ci

(
ri − ri−1 +

N∑
j=i+1

(
rj − rj−1 −

1

2
bjcj

) j∏
k=i+1

bk

)
.

Note that this expression coincides with b̄∗i from Eq. (2.24) under our assumption
that those bids are always in the interior between 0 and 1. It also should be note
that this set of bids has the unique recurrent solution.

�

Some structural properties of the bids under Partial-Information Social Opti-
mum and the T2H mechanism can be shown.

Proposition 2.8. Assume that rj+1 − rj = γ > 0 and cj = c > 0, for all
j ∈ {1, . . . , N − 1}. Then, the following statements are true:

1. Bids for T2H and Partial-Information Social Optimum can be found by the
following recurrent formulas:

b∗i = min

{
γ

2c
+

(b∗i+1)2

2
, 1

}
, b̄∗i = min

{
γ

c
+

(b̄∗i+1)2

2
, 1

}
.

2. If γ > c/2, then b∗i < 1 and b̄∗i < 1, ∀i.

Proof. See the proof of Proposition 2.9 �

Proposition 2.9. Assume that rj+1 − rj = γ > 0 and cj = c > 0, for all
j ∈ {1, . . . , N − 1}. Then, the following statements are true:

1. b∗j ≥ b∗j+1, for all j ∈ {1, . . . , N − 1}, i.e., the bids of the T2H mechanism
are monotonically non-increasing;

2. b̄∗j ≥ b̄∗j+1, for all j ∈ {1, . . . , N − 1}, i.e., the bids of Partial-Information
Social Optimum are monotonically non-increasing;

3. b̄∗j ≥ b∗j , for all j ∈ {1, . . . , N}, i.e., the bids of Partial-Information Social
Optimum are greater than or equal to the bids of the T2H mechanism.

Proof. See Appendix 2.7 �

As we demonstrate in the following theorem, in some special cases, the differ-
ence between total utility of Partial Information Social Optimum and Tail-to-Head
mechanism with a rational (self-interested) driver can be bounded from above.
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Theorem 2.1. Let rj+1− rj = γ > 0 and cj = c > 0, for all j ∈ {1, . . . , N − 1}.
If γ < c/2, then the expected Social Welfare under the Partial-Information Social
Optimum and the T2H mechanism are related as follows:

SOPI − SWT2H ≤ γ

(
γ + c/2

c/2− γ
− γ − γ(γ/(2c))N

2c− γ

)
.

Proof. Recall that SOPI has the same functional form as SWT2H , but with bids
of Partial Information Social Optimum b̄∗i . Then we can write

SOPI − SWT2H =
N∑
j=1

(
γ − 1

2
b̄∗jc

)
b̄∗j

j−1∏
k=1

b̄∗k −
N∑
j=1

(
γ − 1

2
b∗jc

)
b∗j

j−1∏
k=1

b∗k

= γ
N∑
j=1

(
j∏

k=1

b̄∗k −
j∏

k=1

b∗k

)
+
c

2

(
(b∗j)

2

j−1∏
k=1

b∗k − (b̄∗j)
2

j−1∏
k=1

b̄∗k

)
.

Note that according to Proposition 2.8, the second component is negative, and
therefore we can write, using Proposition 2.8 and Proposition 2.9

SOPI − SWT2H ≤ γ
N∑
j=1

(
j∏

k=1

b̄∗k −
j∏

k=1

b∗k

)

≤ γ
N∑
j=1

(
(b̄∗1)j − (b∗N)j

)
= γ

(
b̄∗1(1− (b̄∗1)N)

1− b̄∗1
− b∗N(1− (b∗N)N)

1− b∗N

)
≤ γ

(
b̄∗1

1− b̄∗1
− γ

2c
· (1− (γ/(2c))N)

1− γ/(2c)

)
= γ

(
γ/c+ (b̄∗2)2/2

1− γ/c− (b̄∗2)2/2
− γ − γ(γ/(2c))N

2c− γ

)
≤ γ

(
γ + c/2

c/2− γ
− γ − γ(γ/(2c))N

2c− γ

)
,

which completes the proof. �

This bound tends to be small when γ is small comparative to c, showing that
T2H mechanism is very efficient in terms of social welfare in those cases.
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2.4.2 Social Welfare Comparison in The General Case
In the previous section, we demonstrate that T2H mechanism can be efficient in
case of homogeneous costs for some parameters. Can we say the same in case
of general costs cij , where costs can differ from one driver to another and fall
off with the distance? We would also like to compare T2H, H2T, and heuristics.
To make this comparison, we use a Monte-Carlo simulation set-up. We generate
all relevant values randomly for one instant of the problem, then calculate the
bidding policy, optimal for the blocked-lane driver. Basing on these bids, we
calculate the resulting total utility. After averaging over many instances, we obtain
an estimation of the gap between the bargaining schemes for the given parameters.

For generating valuations vb, v1, . . . , vn we use uniform distribution U(0, 1).
For distances, we use exponential distribution E(λ) with mean distance λ. It is
a well-known fact that distances on the road tend to be distributed exponentially
(see, for example, Miller (1961b)). For functions Cij and ri we take the forms
discussed in Section 2.3.5.

First, we demonstrate several arbitrary examples with different parameters.
Each example in the Table 2.1 is calculated by averaging over 2000 instances.
The bid range is divided into 10 levels. Each column is the total utility for the
corresponding algorithm.

Table 2.1: Examples of bidding problem under different parameters and expected
total utility under different solution concepts.

n D α λ Perf. Soc Part. Soc TH HT BDP BMDP BMH
5 20 1 10 2.024 2.010 1.967 1.947 1.938 1.963 1.949
4 40 1 10 0.956 0.918 0.827 0.658 0.762 0.834 0.827
4 40 0.5 5 0.041 0.033 0.020 -0.651 0.005 0.029 0.029
2 60 0.1 30 0.916 0.888 0.669 0.692 0.448 0.783 0.783

From the examples, we can see that sometimes Tail-to-Head and Head-to-
Tail DPs are very close to the social optimum and each other (the first example).
The second and third examples demonstrate situations when T2H is beneficial
and closer to the optimum. Particularly interesting the third case, where we can
see that T2H scheme manages to keep total utility positive and close to the social
optimum, while H2T results in a negative number. Finally, the last example shows
that there are situations when H2T is better than T2H. We also demonstrate that
Perfect Information Social Optimum and Partial Information Social Optimum are
persistently close.

Regarding heuristics, generally, all three of them are relatively close to Tail-to-
Head DP. Very often, heuristics outperforms it. This is possible because all DPs
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and heuristics optimize the utility of the blocked-lane driver, which is typically
not the same as the total utility of all drivers. Limiting options of the bidding
driver might be beneficial. She would have to choose the bid that might be less
beneficial to her but is preferable for the society. If we add additional flexibility,
the blocked-lane driver might drift to a bid that delivers higher utility for her but
is worse for society. The myopic bid bmi and the binary bidding strategy we use
in our heuristics seem to be a very good choice for the total utility. They also
decrease the computational complexity of the DP.

(a) (b)

(c) (d)

Figure 2.2: Comparison of Partial Information Social Optimum to Tail-To-Head and
Head-to-Tail DP. On y-axis is the total utility. On x-axis: (a) number of free-lane
cars; (b) average distance between free-lane cars; (c) parameter D of merging penalty
function; (d) parameter α of merging penalty function.

Specific examples provide some insides, but we also want to see a bigger pic-
ture. How do the utilities react to a change in one particular parameter? First, we
compare Tail-to-Head and Head-to-Tail. We first pick a base case, for that we use
n = 4, D = 30, α = 1, λ = 10, vF = 10. This corresponds to a case when there is
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relatively dense traffic on the free lane, but not complete congestion; the maximal
merging penalty is 3 seconds, and it decays rather fast (3 cars, with an average
distance, is enough for the penalty to fall to 0).

We now check how the results are sensitive to the change of one particular
parameter, given that the rest of the parameters are fixed to baseline values from
the above. In Figure 2.2 we demonstrate 4 different tests to compare Partial In-
formation Social Optimum with Tail-to-Head and Head-to-Tail DPs. First, we
test how does performance changes with the change in the number of free-lane
drivers. The result implies that Head-to-Tail performs worse when the number of
drivers grows, while Tail-to-Head continues to perform relatively well. Note also
that in all cases, utility grows in the number of drivers. We can interpret it as an
increased potential for beneficial trades between drivers.

In the second test, we evaluate performance under different values of average
distance λ on the free lane. We vary λ from 5 (very dense traffic) to 25 (light
traffic; very large gaps can appear with high probability). The results imply that
as the average distance grows, H2T becomes very close to T2H. At the same time,
Tail-to-Head stays close to the social optimum for any distance (note that the dif-
ference between T2H and H2T is especially large for low λ, corresponding to high
congestion). Note that here again in all cases utility grows—larger average dis-
tances make merging penalty less and increase possibilities for beneficial trades.

In the last two test we vary parameters of the merging penalty function. First
we change D, from 10 (small maximal penalty; corresponds to 1 second of travel
time) to 60 (large maximal penalty, corresponds to 6 seconds). The results shows
that for low D all utilities are very close, but for larger values Head-to-Tail per-
forms significantly worse, while Tail-to-Head stays quite close to the social op-
timum. Similar result can be observed on the last graph, where we vary α, the
parameter that controls the rate of merging penalty decay (with distance). Tail-
to-Head maintains good performance for all α, while Head-to-Tail performs very
poor for low α, resulting in large negative total utility.

We compare the relaxed DP, Partial Information Social Optimum, and heuris-
tics in Figure 2.3. Since heuristics usually are very close to Tail-to-Head DP, for
better readability, we rescale the values by the utility of Tail-to-Head DP and re-
port all utilities in percent. In the figure, we can see that both binary-myopic DP
and binary-myopic heuristic lose no more than 1-2% compared to Tail-to-Head
DP. The binary-myopic DP is almost never worse than Tail-to-Head. In some
extreme cases, both heuristics are capable of reaching 140% of Tail-to-Head DP
efficiency. Notably, the performance of binary-myopic heuristics often becomes
better when the gap between social optimum and Tail-to-Head DP grows, while
binary DP performs worse in such cases.

We can conclude that Tail-to-Head DP and heuristics manage to stay rela-
tively close to Partial Information Social Optimum in terms of total utility. On
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(a) (b)

(c) (d)

Figure 2.3: Comparison of Partial Information Social Optimum to Tail-To-Head DP,
relaxations and heuristics. On y-axis is total utility, rescaled by utility of Tail-to-
Head DP, percent. On x-axis: (a) number of the free-lane cars; (b) average distance
between free-lane cars; (c) parameter D of merging penalty function; (d) parameter
α of merging penalty function.

the contrary, Head-to-Tail often provides low or even negative utility, and typi-
cally it performs worse than Tail-to-Head. Situations when it performs similarly
or slightly better are restricted to low n (no more than 2 drivers), or low merging
penalties (which happens when distances are high, or D is high, or α is low). The
Tail-to-Head DP relaxations and heuristics perform very well, especially binary-
myopic DP and heuristic, and they provide an almost immediate solution. For
example, among all examples we considered above, the average performance of
binary-myopic heuristic is no worse than 2% compared to the Tail-to-Head DP,
and in around 30% cases, it outperforms the latter. Furthermore, the problem with
n = 4 and 30 levels for bidding can be solved 4 orders of magnitude faster, not
speaking of the problems with higher n or greater precision.
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To finalize the comparison of total utilities, we present robustness checks.
Specifically, we test how robust the result (mostly interesting, performance of
Tail-to-Head DP and heuristics) to our assumptions regarding the underlying dis-
tribution of values vb, v1, . . . , vn? As we demonstrate, the performance of all
Tail-to-Head variations stays reasonable when we assume a different distribution
(peaked around certain value). As an example of such distribution, which is gen-
eral enough, we take normal distribution N(µ, σ), truncated on [0, 1].

(a) (b)

(c) (d)

Figure 2.4: Comparison of Perfect Information Social Optimum to Tail-to-Head DP
and heuristic for the normal distribution N(0.5, 0.15), truncated on [0, 1]. On y-
axis is total utility in per cent. On x-axis: (a) number of free-lane cars; (b) average
distance between free-lane cars; (c) parameter D of merging penalty function; (d)
parameter α of merging penalty function.

We show an example in Figure 2.4. We take µ = 0.5, which corresponds
to the peak of density function located precisely in the middle of the interval
[0, 1]. We take a standard deviation σ = 0.15, so that the density would fall off
significantly at the ends of the interval. In this case, density at the peak is around
2.5, and close to 0 at the ends. As a benchmark, we use Perfect Information Social
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Optimum since it is much more challenging to derive DP recursion for Partial
Information Social Optimum under a truncated normal distribution (computation
of conditional expectations is intricate for truncated normal).

As we can see from the results, Tail-to-Head DP and binary DP perform
mainly in the same manner as in the case of uniform distribution, in Fig 2.2.
At the same time, the gaps between these mechanisms and the social optimum
are significantly less. Intuitively, this is easy to understand: as all valuations be-
come closer on average, there is less potential total utility loss, and the cost of a
“wrong” decision becomes less profound. Binary-myopic DP and heuristic per-
forms worse than under normal distribution. However, in almost all cases, they
stay within 10% from Tail-to-Head DP and are significantly better than binary
DP. Therefore, it is still preferable to use binary-myopic heuristic as a fast way of
solving Tail-to-Head DP.

2.4.3 Blocked-Lane Driver Utility Comparison
All solution concepts we discussed give the expected utility for the blocked lane
driver since it results from selfish optimization by the blocked-lane driver. Even
though the traffic regulator is likely to be more interested in total utility, com-
paring the blocked-lane utility can give useful hints regarding our mechanisms’
performance. It can also be useful to observe it to see how it is different from the
total utility. Finally, there might be situations when the regulator is interested in
maximizing the blocked-lane driver utility instead of the total one.

For specific values of free-lane valuations v1, . . . , vn, we can obtain actual
utility that the driver can obtain using her policy taken from any discussed mech-
anisms.

Intuitively, we expect Tail-to-Head to perform worse than the Head-to-Tail
model since the blocked-lane driver needs to compensate all drivers who suffered
the merging penalty in the former and pay to a single driver only in the latter
case. The effect might be enormous if the merging penalty is high, and there is no
fall-off of the penalty with distance from the merging point. The second factor is
that in the Head-to-Tail model, the driver starts bargaining from more beneficial
positions and has a chance to negotiate with all drivers, which increases the chance
of beneficial trade.

We want to check if this intuition is confirmed in numerical solutions, and how
large is this gap, for different parameters. As a secondary goal, we can observe
the performance of our DP relaxations and heuristics. We compare these utilities
using the same Monte-Carlo simulation set-up as above. We use the same normal
distribution U(0, 1), and the same baseline case: n = 4, D = 30, α = 1, λ =
10, vF = 10. In Figure 2.5 we demonstrate the results. They imply that the gap
increases with the number of free-lane drivers n; decreases in average distance λ;
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increases in D; finally, it decreases in α.

(a) (b)

(c) (d)

Figure 2.5: Comparison of blocked-lane driver utility in Tail-to-Head (both DP and
heuristic) and Head-to-Tail barganing formats. On y-axis is utility of the blocked-lane
driver. On x-axis: (a) number of free-lane cars; (b) average distance between free-
lane cars; (c) parameter D of merging penalty function; (d) parameter α of merging
penalty function.

Generally speaking, the gap becomes smaller when the merging penalty be-
comes smaller in expectation (larger distances, less maximal penalty, or faster
decay of the penalty). This is not surprising: the fact that the blocked-lane driver
has to compensate for the penalties in Tail-to-Head is the reason for the gap to
exist in the first place. However, we should note that the gap is not dramatically
large in many cases, except, probably, for a low α.

Regarding relaxations and heuristics, we can see that they all are very close to
Tail-to-Head DP. The heuristic can never achieve a higher blocked-lane driver util-
ity than approximate DP (unlike total utility). However, performance is still good.
Even the binary DP is very close to the Tail-to-Head DP. Binary-myopic heuristic
performs marginally better, and binary-myopic DP is usually impressively close
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to Tail-to-Head DP with almost no difference.

2.5 Budget Constraints
The blocked-lane driver might have a maximal budget she is willing to spend on
position bidding. Both Tail-to-Head and Head-to-Tail models can be adjusted to
incorporate such constraints. Assume that Q is a maximal amount of money the
blocked-lane driver is ready to spend. The case of Head-to-Tail is particularly
trivial. There is only one bid to pay at any time, and this bid is to be paid immedi-
ately. As a result, the blocked-lane driver simply has to bid 0 ≤ bic

i
i ≤ Q at every

stage i.
For the Tail-to-Head model, the situation is different since the blocked-lane

driver needs to pay accordingly to the previous bids and the position she is merg-
ing into. In particular, at stage i the driver needs to bid in such a way that she
would be able to pay all the payments completely if she would be rejected at stage
i+ 1. The only exception is if the probability of rejection equals zero, which hap-
pens if the driver bids bi = 1 (the maximal possible valuation). If the driver bids
anything less than 1, then the constraints are as follows:

0 ≤ bic
i
i ≤ Q−

i∑
k=i

cikbk.

Important to note that because the merging penalties are changing dynamically
with the stage, the amount of money that the blocked-lane driver can bid is not
necessarily decreasing. It can happen that at stage i + 1, the driver has more
available funds that she has at stage i. As a result, the problem of budget bidding
does not reduce to only allocating the budget on hands among different positions.
Since, according to our assumptions cij is non-increasing in j, the blocked-lane
driver can at any stage satisfy budget constraints by bidding 0. A situation when
she is unable to pay previously agreed bids can never happen. This means that
the budget constraints are in a “hard” sense here. One could also think of “soft”
budget constraints when the blocked-lane driver can pay above the budget but
must respect them in expectation.

How do the blocked-lane driver utility and total utility change when there is
a limited budget on the block-lane driver’s side? One could expect, that Tail-to-
Head is more vulnerable to this since the blocked-lane driver needs to keep bids
low enough, in order to be able to pay them off to all drivers involved at the end
of the process.

Figure 2.6 partially confirm this intuition. We compare how does the perfor-
mance of both formats (we also include binary-myopic DP) react to budget limi-
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(a) (b)

(c) (d)

Figure 2.6: Effect of the limited budget on Tail-to-Head DP, Head-to-Tail DP and
binary-myopic DP. On the X-axis: (a, c) utility of the blocked-lane driver; (b, d)
total utility. We test for different values of average distance between the cars: (a, b):
average distance 10; (c, d): average distance 5.

tations (for the rest of the parameters, we used the baseline from the previous sec-
tion). When the budget is close to 0, all three policies, naturally, have close to zero
utilities. Then values for Head-to-Tail grow faster than for Tail-to-Head, before
stabilizing. As a result, there is a range of budgets, for which Head-to-Tail out-
performs Tail-to-Head both in terms of total utility and blocked-lane driver utility.
Nevertheless, Tail-to-Head performance recovers relatively fast. The performance
of binary-myopic DP is typically worse than both DPs and is more vulnerable to
budget constraints. This is easy to understand since the binary DP and heuristics
have much less flexibility in bidding, and flexibility is important when the budget
is limited. When there is not enough budget to make a binary or myopic bids, it
must resort to bidding zero, while an approximate Tail-to-Head DP can choose a
lower, but positive, bid.

One way to understand the numerical properties of mechanisms in Figure 2.6
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is to figure out how much budget the blocked-lane driver needs to bid freely. For
Head-to-Tail, we know that budget of 1 is sufficient to pay under any circum-
stances. Indeed, we can see that utility for Head-to-Tail does not grow after the
budget reaches 1. As we can see, even 0.5 is good enough in expectation since
the expected utility of the blocked-lane driver is equal to 0.5. Moreover, she often
underbids her valuation.

2.6 Conclusions

Driverless technologies and vehicle-to-vehicle communication are coming. Today
is a perfect moment to start developing a better highway traffic paradigm, trying
to incorporate that different drivers have different urgency of their trips. Prioritiz-
ing the drivers properly might achieve social utility improvement via the means
that rarely received traffic engineers’ attention before. The safety was always the
primary consideration (and rightfully so), and thus it was not possible to think
of such complicated interactions as on-the-fly auctions performed by humans in
parallel with the driving operations. Autonomous vehicles will make such inter-
actions safe, and in this chapter, we tackle the efficiency part of the deal in one
specific scenario of a mandatory lane-change.

Unfortunately, there is no easy out-of-the-box mechanism that can solve this
problem. Many standard approaches, such as position auctions and the auctions
with externalities, can not be utilized because of the complicated dynamics. Nei-
ther the standard mechanisms with established properties (such as VCG) can help.
This chapter proposes an ad-hoc mechanism that is carefully crafted to deliver
high total utility while leading to predictable bidding strategies. We demonstrate
that the gap in expected total utility between the Tail-to-Head mechanism and
Partial Information Social Optimum can be bounded for homogeneous costs. To
provide insights for the general case, we demonstrate in the numerical study that
the mechanism performs very well on average and close to the social optimum.

As a potential direction for future research, we can build a better mechanism
based on the same idea of guaranteeing zero negative externalities and prove its
superiority theoretically. If the Tail-to-Head DP is the best such mechanism, we
would like to prove it instead.
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2.7 Appendix

2.7.1 Proof of Proposition 2.9

The main focus is on proving Proposition 2.9, we show Proposition 2.8 as a side
result.

We start from proof of part 1 of Proposition 2.9. We split the proof of part 1
into two parts, each is proved by induction. First, we show that the result holds
when γ < c. As we shortly see, in this case all the bids are always in the interior
between 0 and 1.

Basis of Induction: For i = N Eq. (2.5) implies that

b∗N =
γ

2c
.

Note that 0 < b∗N < 1. For i = N − 1

b∗N−1 = max

{
min

{
1

2c

(
γ + γb∗N − (b∗N)2c

)
, 1

}
, 0

}
= max

{
min

{
γ

2c
+
γ2

8c2
, 1

}
, 0

}
=

γ

2c
+
γ2

8c2
.

Clearly, b∗N−1 ≥ b∗N and 0 < b∗N−1 < 1 holds.
Induction Step: Assume that 0 < b∗i+1 < 1 and the statement of the lemma

holds for b∗i+1 and b∗i+2, that is b∗i+1 ≥ b∗i+2. We need to show that b∗i ≥ b∗i+1 and
0 < b∗i < 1.

According to Eq. (2.5), let us denote x∗i in such way that b∗i = max {min {x∗i , 0} , 1}.
We can write then

x∗i =
1

2c

(
γ +

N∑
j=i+1

(γ − b∗jc)
j∏

k=i+1

b∗k

)

=
1

2c

(
γ + b∗i+1

N∑
j=i+2

(γ − b∗jc)
j∏

k=i+2

b∗k + (γ − b∗i+1c)b
∗
i+1

)

=
γ

2c
+ b∗i+1

(
b∗i+1 −

γ

2c

)
+

(y − b∗i+1c)b
∗
i+1

2c

=
γ

2c
+

(b∗i+1)2

2
.
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which holds for any i. Note that we used Eq. (2.5) again for b∗i+1 in the third
line, using the fact that 0 < b∗i+1 < 1. As γ < c and 0 < b∗i+1 < 1, it is clear that
0 < x∗i < 1 and

b∗i = x∗i =
γ

2c
+

(b∗i+1)2

2
.

We need to show now that b∗i − b∗i+1 ≥ 0. We can write

b∗i − b∗i+1 =
γ

2c
+

(b∗i+1)2

2
− γ

2c
−

(b∗i+2)2

2
=

1

2

(
(b∗i+1)2 − (b∗i+2)2

)
≥ 0.

which completes the induction.
We now assume that γ ≥ c.
Basis of Induction: For i = N Eq. (2.5) implies that

b∗N = min
{ γ

2c
, 1
}
.

Note that b∗N > 0. For i = N − 1, we separate into 2 cases. First, assume that
b∗N = γ/(2c). Then

b∗N−1 = max

{
min

{
1

2c

(
γ + γb∗N − (b∗N)2c

)
, 1

}
, 0

}
= max

{
min

{
γ

2c
+
γ2

8c2
, 1

}
, 0

}
=

γ

2c
+
γ2

8c2
.

In this case b∗N−1 ≥ b∗N and b∗N−1 > 0 holds. Now assume that b∗N = 1; note in
this case γ/(2c) ≥ 1.

b∗N−1 = max

{
min

{
1

2c

(
γ + γb∗N − (b∗N)2c

)
, 1

}
, 0

}
= max

{
min

{
γ

c
− 1

2
, 1

}
, 0

}
= 1,

hence b∗N−1 ≥ b∗N is satisfied in both cases.
Induction Step: Assume that b∗i+1 ≥ b∗i+2. We need to show that b∗i ≥ b∗i+1. We

prove this in two parts. First, assume that 0 < b∗i+1 < 1. Induction step of that case
is completely identical to the one earlier, so we omit it. Assume now that b∗i+1 = 1.
According to Eq. (2.5), denote x∗i in such way that b∗i = max {min {x∗i , 0} , 1}.
We can write then
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x∗i =
1

2c

(
γ +

N∑
j=i+1

(γ − b∗jc)
j∏

k=i+1

b∗k

)

=
1

2c

(
γ + b∗i+1

N∑
j=i+2

(γ − b∗jc)
j∏

k=i+2

b∗k + (γ − b∗i+1c)b
∗
i+1

)

≥ γ

2c
+ b∗i+1

(
b∗i+1 −

γ

2c

)
+

(y − b∗i+1c)b
∗
i+1

2c

=
γ

2c
+

1

2
≥ 1.

We can conclude that b∗i = b∗i+1 = 1, since γ ≥ c. This completes the induc-
tion and the proof of part 1 of the Lemma.

The proof for Part 2 of the Lemma is very similar, we therefore omit it for
brevity and only provide hints on how it differs. We split the proof into 2 parts:
first is assuming that γ < c/2, and the second part is assuming that γ ≥ c/2. It
is possible to show that in the first case the optimal bid b̄∗i is always in the interior
between 0 and 1, and that

b̄∗i =
γ

c
+

(b̄∗i+1)2

2
,

then the result follows by induction. In the second case, we can bound b̄∗i similarly
to b∗i , and the result follows.

Part 3 can be shown by induction.
Basis of Induction: b̄∗N ≥ b∗N as

b̄∗N = min
{γ
c
, 1
}
, b∗N = min

{ γ
2c
, 1
}
.

Induction Step: Assume b̄∗i+1 ≥ b∗i+1. As we show above in the proof of part 1
and part 2, we can express bids b̄∗i and b∗i as

b̄∗i = min

{
γ

c
+

(b̄∗i+1)2

2
, 1

}
, b∗i = min

{
γ

2c
+

(b∗i+1)2

2
, 1

}
.

We need to show b̄∗i ≥ b∗i . Depending on whether b̄∗i , b
∗
i are in the interior or

not, we consider four cases.

1. b̄∗i = 1 and b∗i > 1 — the result holds.

2. Both b̄∗i = 1 and b∗i = 1 — the result holds.
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3. Both b̄∗i < 1 and b∗i < 1. In this case we can write

b̄∗i − b∗i =
γ

2c
+

1

2

(
(b̄∗i+1)2 − (b∗i+1)2

)
≥ 0,

where inequality holds because of the inductive hypothesis. Therefore, the
result holds.

4. Finally, we need to demonstrate that case b̄∗i < 1 and b∗i = 1 is not possible.
Note that if this holds, this would imply that

γ

2c
+

1

2

(
(b̄∗i+1)2 − (b∗i+1)2

)
< 0,

which is a contradiction.
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Chapter 3

REAL-TIME CONTROL OF
TRAFFIC MERGING USING
NEURAL NETWORKS TRAINED
ON OPTIMAL SOLUTIONS

3.1 Introduction

There are a large number of operational problems that require real-time control
over some stochastic configurations. For a fixed configuration, the problem to
be solved is often combinatorial, non-convex with stochastic inputs, and difficult;
finding an optimal solution may take hours even on powerful machines. The con-
trol, however, has to be determined in a fraction of a second. Practitioners, there-
fore, resort to simple heuristics or policies that may be intuitive and transparent
but often do not perform very well compared to the optimal possible solution.

One good example of such a problem is the merging in a blocked-lane sce-
nario discussed in the previous two chapters. Before, we assumed that the drivers
are selfish, setting their own (rational) objectives. The central planner’s role was
merely to provide the general framework or the mechanism and choose its param-
eters according to some criteria. However, one could imagine a situation when
there is a critical need for a central planner to take full control over all involved
drivers. For example, there could be an urgency to clear the bottleneck as fast as
possible. The problem then boils down to finding a set of optimal control for all
the drivers involved.

In this chapter, we combine off-line integer programming and Neural Net-
works (NN) to offer a solution that adapts to the specific configuration in real-time,
yet takes only a fraction of a second. The broad strategy is straightforward: first,
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formulate an integer program to find the optimal solution for a given configuration
of drivers. Then construct an appropriate Neural Network and train it (off-line)
on stochastically generated configurations where the ground-truth is given by the
optimal solution for that configuration. Finally, use the NN to recommend a real-
time traffic control solution, with the specific observed positional configuration as
the input.

The off-line training is highly parallelizable and one can scale to larger prob-
lems or more training samples by investing in more computing resources. We
note two salient facts about this strategy: First, the main computational cost is a
fixed, one-off, expense, and two, the trained neural networks can be reused across
multiple road locations.

Generally speaking, this strategy is quite broad and is applicable (naturally
with problem-specific integer programming formulations or dynamic program-
ming approximations) to many other problems requiring real-time control with
stochastic inputs, such as in job-shop control, air-traffic control, real-time adver-
tising control, and many others. Therefore, we use our traffic merging problem as
a test-bed for this strategy.

With sensors, vehicle-to-vehicle communications, and semi-autonomous driv-
ing becoming a reality, there is suddenly a great opportunity to bring optimization
and control thinking to bear on traffic problems. There is a precedent for this from
a different transportation sphere—airline traffic. Air-traffic controllers space and
schedule the order of take-offs and landings precisely to maximize throughput and
reduce accidents. Such management has greatly improved efficiency and maxi-
mized flow at busy airports while maintaining an excellent safety record. Perhaps,
similar improvements can be achieved in car traffic.

We investigate how well our methodology performs for the same blocked-lane
scenario as before. A central planner wishes to control how the vehicles on the
blocked lane merge into the free-flowing lane to minimize the sum of travel times
for all the vehicles. The optimal merge points and velocities will change depend-
ing on the initial positions, which are stochastic. We first formulate the merging
problem via Mixed-Integer Programming (MIP). Given any starting conditions
(that is, the positions and velocities of all cars), the resulting optimal solution
gives as an output the exact velocities and positions of the cars for any moment un-
til they leave the bottleneck. By numerical simulations, we show that the resulting
optimal solution can be as much as 25% better than simple non-state dependent
policies such as early-merge or late-merge.

We then train a Neural Network, using a large number of exact MIP solutions
for randomly generated inputs. The resulting policy takes the same inputs as MIP
and gives recommendations for all the cars, almost in real-time. We conduct ex-
tensive simulation studies on how our NN-policy performs, both with respect to
the optimal solution and the simple popular policies. In particular, our Neural
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Policy performs four times better than simple policies and can be within 1.4% to
the optimum. Solving for an exact optimal solution even for a small-size problem
requires 10 minutes, while our policy can be computed in a second and takes only
the current snapshot of vehicle positions and velocities as inputs.

We also identify various research problems for future study. The output of
neural networks may not be directly implementable for a certain proportion of
configurations as we do not constrain the outputs to be feasible. So for these
configurations, quick adjustments to the NN output have to be made. This points
to an interesting new research area on how to modify the NN outputs quickly to
obtain good feasible solutions. In this chapter we suggest one that is promising,
solving a smaller quicker optimization problem, but this of course takes more
computational time than just reading off a NN solution.

While there is a body of literature that deals with this topic (see Section 3.2
for a literature review), we believe our point-of-view and NN-policy is new. To
summarize, the contributions of this work are as follows:

1. We formulate a central planner state-dependent optimization problem, that
to our knowledge, is new and gives us a new reference for optimization and
policy bench-marking and to measure scope for potential improvements.

2. We use the integer program to train a NN with an appropriately chosen
architecture on stochastically generated configurations.

3. We devise a policy based on the NN for real-time traffic control. As the NN
gives infeasible solutions for a small percentage of configurations we give
a post-processing procedure that balances speed with performance.

Note that the only requirement for this overall approach is that we have some idea
of the stochastic distribution of traffic. This can usually be estimated quite well
based on historical data.

The broad strategy is, of course, applicable to a wide variety of application
areas requiring real-time control and where we have sufficient data to form a
stochastic model of the input configurations. We are essentially exploiting ad-
vances in integer programming technology and software, the universal approxi-
mation properties of Neural Networks and the subsequent software and optimiza-
tion advances in training them, to devise practical and effective real-time controls
for a concrete operational situation.

The application-specific research problems are in the post-processing, to har-
vest as many solutions as possible that are directly feasible, and to adjust those that
are not, quickly enough to be implementable. Our application in traffic highlights
these issues.

The remainder of the chapter is organized as follows. In Section 3.2 we review
the literature with an accent on deep learning techniques and multi-agent systems;
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in Section 3.3 we discuss the modeling assumptions; in Section 3.4 we provide
a detailed mathematical formulation of the merging problem as a mixed-integer
problem; in Section 3.5 we present an architecture of our Neural Network, as
well as details on a post-processing procedure and the data set; in Section 3.6 we
compare performance of our Neural Network with popular merging heuristics in a
simulation; finally, in Section 3.7 we conclude the chapter and discuss directions
for future research.

3.2 Literature review
The problem we study is of high relevance; indeed, it touches almost everyone
who regularly travels on a highway. Uncoordinated merging is a common ob-
servable, relevant phenomenon, and potentially controllable by incentives, prices,
or information. Not surprisingly, it was extensively studied by different research
communities. For a broader review of the merging literature, we refer the reader
to Section 1.3. Note that, to a large extent, what is known about the traffic merging
is based on human drivers. In the previous chapters, we assumed that the drivers
are algorithm-assisted but rational and self-interested. The situation moves even
further if we assume that the drivers are exogenously controlled. This might create
severe obstacles to the direct application of principles and models that have been
developed during decades.

Theoretical computer scientists and mathematicians (see Olfati-Saber (2006),
Cucker and Smale (2007), Vicsek et al. (1995)) have investigated natural self-
organizing phenomenon by a large number of autonomous agents, motivated by
birds and insects. However, this raises the question on why birds and ants resolve
potential congestion efficiently and quickly with decentralized decision-making,
while human drivers end up with congestion and chaos1. The models that aim to
recreate this type of emergent behavior are known as swarm robotics. However,
the topic faces many challenges, such as scalability problems (see Barca and Sek-
ercioglu (2013)), and is yet to see major practical applications. This highlights
gaps in our understanding of how decentralized multi-agent systems can bring
efficient cooperation.

The classical traffic equilibrium models, such as the Waldrop equilibrium
model (Wardrop (1952)) or the Braess paradox (Braess (1968)), hint at the ineffi-
ciencies in multi-agent systems. Other prominent examples of modeling of Nash
equilibria to explain traffic congestion are Arnott et al. (1991), de Palma et al.
(1983), Vickrey (1969b), Arnott et al. (1990). However, they are, by and large,
macroscopic, population-level models that are good for insight but operationally

1To quote Chazelle (2015)): The emergence of collective structure from the decentralized in-
teraction of autonomous agents remains, with notable exceptions, a mystery
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have not had much impact, at least for resolving local driver-level problems such
as traffic flow upon a lane closure.

Neural networks are receiving increasing attention from both researchers and
practitioners. A textbook Goodfellow et al. (2016) is a thorough description of
state-of-the-art deep learning techniques, both from the practical and academic
viewpoint. The great advance of neural networks is one of the key factors that
made autonomous vehicles possible in the first place. Researchers apply deep
learning techniques to develop robotic cars for more than 30 years by now, starting
from early works such as Pomerleau (1989). Deep learning is essential for image
processing of vehicle cameras and is also used to train robotic drivers for safe and
efficient driving policies.

In a recent paper Amini et al. (2020) the authors develop driving control poli-
cies using neural networks and simulation-enhanced data. Henaff (2019) devel-
ops a neural network for more general policies of autonomous agents in complex
environments. Given that the need to interact with humans is undoubted for au-
tonomous vehicles in the nearest future, policies guaranteeing safety on that side
attract the researchers’ attention. In the work Sadigh et al. (2016) a deep learning
policy is developed, allowing a robotic driver to interact with human drivers on
the road. Similarly, in Gupta et al. (2018) a recurrent neural network is trained to
help predict pedestrians’ maneuvers. We note that it is typical to use human-based
data to train policies in the literature. Our work stands out in that sense, as we use
pre-computed optimal controls for training, and such optimal solutions are also
challenging to find.

There is a recent interest in using modern deep learning as a support for other
optimization algorithms, or as a stand-alone way to solve such problems, outside
of the traffic. The paper Bengio et al. (2018) is an overview of applications of
deep learning to combinatorial optimization. Neural networks can help to pick
parameters for a broad class of other methods, exact or approximate. An example
is the fine-tuning of branch-and-bounds methods, usually used to solve mixed-
integer programming formulations; see Gasse et al. (2019). A different approach
related to our work is imitation learning. The idea is to train machine learning
algorithms on the decisions provided by human experts; see Hussein et al. (2017)
for an overview. Notably, the use of certain types of recurrent networks allows for
a flexible generalization. For example, the model trained on solutions with fewer
cities in the traveling salesman problem can provide heuristic solutions to a larger
problem; see Bello et al. (2016).
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3.3 Model details
In this section, we lay out the details of our model. There are two-lanes, the
blocked (B) lane and the free lane (F ). All cars from both lanes need to exit the
system through the free-lane. Time is discrete with 0 representing the start time
of the blockage and time T representing the end of the observation horizon. We
select a stretch of the highway as our system, and in this section, treat distances,
velocities, and accelerations as continuous variables.

3.3.1 The incident and the driver model
The vehicles can accelerate at a maximum rate ofA and decelerate at a safe rate of
D, and there is a maximum velocity of vmax. If a vehicle at velocity v2 is following
a vehicle at velocity v1 and v2 > v1, the deceleration rate and safe time-headway
α defines when vehicle 2 starts reducing its speed so that by the time it catches up
to vehicle 1, its speed should match it.

For safety reasons, a minimal distance between vehicles, which we denote as
z, is mandatory. When the distance between the vehicles is less than xc = αv2 +z,
the difference in velocities starts affecting vehicle 2, and it starts decelerating
at the rate d. If the distance between 1 and 2 is greater than xc, vehicle 2 will
maintain its speed v2, or even can accelerate to a maximum as long as the distance
to 1 is at least the safety parameters. So the velocity of the vehicle ahead also
limits the velocity and acceleration possibilities of a vehicle.

The model is similar to the rules of Cellular Automata simulations, except
time headway is a parameter that can be calibrated and continuous space and ve-
locities allow for extra flexibility. It also resembles popular car-following models
(see Brackstone and McDonald (1999)), but stylized in a way that allows us to
formulate it as a linear optimization problem.

A central planner has the objective of minimizing the sum of travel times of all
the vehicles in the stretch of study. Alternative objective is to minimize clearing
time, that is the time until the last vehicle leaves the study area.

The decision variables are the locations where each driver should merge and
the velocities at the merges. In notation, a driver at location xt has a velocity of
vt = xt − xt−1 and their position at t+ 1 is xt+1 = xt + min(vmax, vt + d) if they
accelerate or xt+1 = xt + (vt − d) if they decelerate or xt+1 = xt + vt at constant
velocity, where 0 ≤ a ≤ A and 0 ≤ d ≤ D.

The incident happens at location L (with the origin 0 representing the start
of the stretch of study). A vehicle on the B-lane that reaches location L without
merging has to stop completely (velocity 0). So by our deceleration rate, a vehicle
on the B-lane traveling at velocity v will start reducing their velocity from a dis-
tance of ατv + z. Here ατ is a safe time headway towards the blockage point; it
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can be different from α, typically higher since we assume that immobile obstacle
leads to more careful driving. This is commonly called the taper region. We can
visualize merging in the tapper zone on the time-space diagram as in Figure 3.1

t

Taper zone

Decelerate at rate dx

Blockage point

Merge and accelerate 
at rate a

Figure 3.1: The time space diagram of a merge inside the taper region; deceleration
due to the taper and acceleration after the merge to the F -lane.

3.3.2 Merging model

Our stylized model of the merging maneuver is as follows: Vehicles on the B-
lane have priority of merging, and can merge as long as the safety constraints with
respect to the vehicle behind and vehicle ahead are satisfied. However, a merge
creates a penalty (because of natural driver behavior that is called relaxation in
the literature) that we model as a velocity reduction after they merge, given by
κvF , where 0 < κ < 1 is the merge penalty factor and vF is velocity of the
merging vehicle. This is a stylized model based on many empirical observations
(for instance in Hidas (2005)). One could make the penalty κ dependent on the
density of vehicles on the F -lane but we take it as a constant for simplicity.

Safety constraints are incorporated as follows. Let us say that the merging
vehicle has velocity v, and there are two vehicles on the target lane, one ahead
with velocity vA and one behind, with velocity vB. Merging drivers need to ensure
that the maneuver is safe for both the vehicle ahead and behind. First, there must
be a minimum safe distance ahead yA and behind yB. Their role is similar to our
safety distance z, but their values potentially might be greater, since merging is
more dangerous than simple car-following.

In addition, there must be a safe time-headway to all drivers. We denote these
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as βA and βB, respectively, and they are also not necessarily the same as car-
following headway α.

Summarizing, the merging vehicle needs at least a distance behind equal to
βBvB +yB and a distance ahead βAv+yA, where vB is the velocity of the vehicle
behind on the target lane.

Similarly to the previous chapters, for the sake of simplicity and tractability,
we assume that no F -lane to B-lane merges are allowed, so vehicles merge from
the blocked B-lane to the F -lane but they do not merge back to the B-lane (for
example, to exploit lower densities). This is a plausible assumption as long as
the distance to the blockage is not too large as drivers are reluctant to merge to a
blocked lane.

3.4 Formulation of the central planner’s problem
In this section we give our main formulation to minimize the sum of travel times.
The point-of-view is that of a central planner who is able to co-ordinate all the
vehicles. However, the planner realizes that individual drivers are interested in
minimizing their own travel times. So the formulation incorporates incentive con-
straints so no driver has an incentive to deviate from the proposed outcome.

There are m vehicles in the system, for every vehicle i we know (i) starting
lane, B or F ; (ii) starting position xi, measured from the start of the study area;
(iii) starting velocity wi. Velocities are expressed in meters per second, positions
are in meters, and both are real numbers. The distance from the start of the study
area until the blockage is L meters.

The time horizon T is known and is divided into a number of time periods of
length ∆t.

3.4.1 Variables

The primary decision variables are the following:

1. vit: velocity of car i at time period t.

2. `it: binary variable that takes 1 if car i merged by time period t (including t
itself), and zero otherwise. Defined only for the cars starting on B lane.

3. oij: binary variable that defines the final ordering of cars i and j. It takes
1 if i finishes ahead of j and zero otherwise. Clearly, no need to define it
for all i, j since oij = 1− oji. Moreover, if both i, j are from F -lane, oij is
known from the initial ordering and it can not change.
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We also define a number of decision variables derived from the above, i.e.,
expressed as linear functions of the above primary ones.

1. pit: the position of car i at time period t, counting from the start of the study
area. It can be calculated as follows:

pit = xi +
t∑

q=1

viq.

2. dijt: the distance between cars i and j at the time period t, it can be calcu-
lated as dijt = pit − pjt. Note that the value is positive if car i is ahead of
car j.

3. mit: a binary variable representing merge maneuver, which is defined only
the for cars that initially were on B-lane. The variable takes 1 if car i per-
forms merge to the F -lane at time t and 0 otherwise. It can be calculated as
mit = `it − `it−1.

3.4.2 Objective function and constraints
There are three different ways to define the objective function for the problem:

1. find a minimal time horizon T ∗, sufficient for all cars to leave the bottleneck;

2. minimize the sum of leaving times of all individual drivers;

3. maximize the sum of distances traveled by each driver within a fixed horizon
T .

The first strategy involves setting a constant objective, then solving numerous
integer programs, trying to identify minimal T ∗ that gives for a feasible solution
(say using a binary search strategy). The problem, however, is that solving many
MIPs is time-consuming, and the solution time tends to increase greatly when the
current T is close to the minimal one. The other problem is that this objective
may prescribe a solution where a vehicle can be stuck on one position without
moving even when space is available, which is difficult to implement as it wont
be compatible with the behavior of the drivers.

The second and third strategies are similar at a high level. They require solving
only a single problem and lead to incentive-compatible solutions. However, the
second objective function cannot be expressed as a linear function of our decision
variables.
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We, therefore, choose the third objective, expressed as follows:

min
n∑
i=1

piT .

The constraints in our MIP are the following:

1. Basic constraints on all variables: They are 0 ≤ vit ≤ vmax, ∀i, t. For
merging variables, `it ∈ {0, 1}, ∀i, t . Moreover, `it must be a step function,
so we need to enforce this by `it−1 ≤ `it, ∀i, t. For ordering variables,
oij ∈ {0, 1} ∀i, j.

2. Each vehicle, starting on the B-lane must merge at some point (and can
merge only once): `iT = 1.

3. Each car, starting on B-lane must merge at some point (and can merge only
once): `iT = 1.

4. The change of velocity variables must respect maximum acceleration rate
A and maximum deceleration rate D. That is:

vit − vit−1 ≤ A∆t, ∀i, t;
vit−1 − vit ≤ D∆t, ∀i, t;

5. All cars by the end of time horizon T must leave the study area in the sense
of passing the point of blockage. Mathematically,

piT ≥ L, ∀i.

6. Final positions of all cars must respect the final ordering variables. We can
guarantee this by the following set of constraints:

piT ≥ pjT + z − ojiM, ∀i, j,

where z is a minimal required distance between position (i.e. car length),
and M - some excessively large constant. The last component ensure that
the constraint is not active if oji = 1 (j is ahead of i in that case).

7. All cars must respect the distance to the car ahead and keep a safe distance.
The exact form of the constraint depends on the initial lanes of the two cars.
Assume first that both cars i, j start on F lane. Then we know exactly,
which cars are ahead of another and the constraint is:

djit ≥ αvit + z,
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for all cars, such that i is behind j; α is a coefficient we discussed earlier
(safe time headway).

Consider now the case when the car i starts on F and the car j that is ahead
of i starts on B. We want car i to take into account the distance to car j,
if both conditions are satisfied: (1) car j have merged already (2) car j is
ahead of i in the final ordering (and thus, always ahead after merging). The
condition can be written as:

djit ≥ αvit + z − (1− `jt)M − oijM, ∀t,

for all cars i starting on lane F and j starting on lane B.

In case car i is from lane B and j is from lane F , we have very similar
constraint (with slightly changed indices):

djit ≥ αvit + z − (1− `it)M − oijM, ∀t,

Finally, the most complicated case is when both i and j are from B lane.
In this case we use two different constraints to capture two situations, when
the velocity of car i can be affected by j. First situation is when both cars
are currently on lane B and moreover, j is ahead of i. This could be known
from the initial ordering, since it could not potentially change before any
of cars merge. Let us denote bij = 1 if i was initially ahead of j and zero
otherwise. The constraint then is:

djit ≥ αvit + z − (`it + `jt)M − bijM, ∀t.

The second case is when they both on lane F , and final ordering is such that
j is ahead of i. To account for that case:

djit ≥ αvit + z − (2− `it − `jt)M − oijM, ∀t.

8. A special case is a taper region near blockage on B lane, where drivers
should slow down. This can be captured by the following set of constraints:

L− pit ≥ αTvit + z − `itM, ∀t,

and for all i starting on lane B.

9. A merging car should suffer a velocity penalty 0 ≤ κ ≤ 1 at a time of
merge:

vit ≤ vit−1κ+ (1−mit)M, ∀t,

and for all cars i starting on B lane.
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10. A certain distance to a car ahead and a car behind must be satisfied for a
car to perform safe merging maneuver. First we check these conditions for
all cars ahead on the target lane (in the final ordering). The form of the
constraint depends on whether j initially is from F lane, or from B lane. If
it is from the F lane:

djit ≥ βAvit + yA − oijM − (1−mit)M, ∀t,

If j is from the B lane, the condition is:

djit ≥ βAvit + yA − oijM − (1−mit)M − (1− `jt)M, ∀t,

Similarly we can check conditions for the car behind, accounting for the
velocity of that car. If car j is from the lane F , the condition would be:

dijt ≥ βBvjt + yB − ojiM − (1−mit)M, ∀t.

If j is from B lane:

dijt ≥ βBvjt + yB − ojiM − (1−mit)M − (1− `jt)M, ∀t.

3.5 The Policy Neural Network
Solving MIP is in general an NP-hard problem, and we cannot expect to get a so-
lution quickly to our complicated MIP even for a small number of cars. The idea
behind a NN-policy is to train a neural network off-line on a large number of con-
figurations with their corresponding MIP solutions as ground-truths (represented
in an appropriate way), and then use the resulting trained NN to derive a policy
for making merging recommendations for any new configuration occurring on the
road.

Feeding a new configuration (a new set of starting positions and velocities) to
a trained NN and obtaining an output is almost immediate so we obtain recom-
mendations very quickly. However, the resulting recommendations turn out to be
infeasible in a few cases and we have to fix them locally and quickly. We propose
one method that seems to work reasonably well.

As a strategy this usage of NN to memorize, learn and generalize from a col-
lection of optimal solutions is promising. However, we note that this is a new
approach and further research and experimentation is needed to make it opera-
tional.

Our current network is able to predict policy for a fixed number of B and F
vehicles (the same as in the training set). We use a standard multi-layer perceptron
(MLP) and its implementation in an industry-standard Python library (pytorch).
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3.5.1 Architecture

We use a network with 10 hidden layers, with rectified linear activation functions
on each of the layers. We use 200 hidden units in all the layers. These choices
were made after considerable experimentation.

Consistent with the general experience with deep learning, performance im-
proves significantly with multiple hidden layers. In our experimentation ten hid-
den layers was sufficient, with acceptable training times and beyond with perfor-
mance flattens out on our dataset.

As an input to the NN, we use N starting positions and N starting veloci-
ties, where N is the total number of vehicles. We use strict ordering (e.g. the
blocked-lane vehicles are always the first in the input) and keep the same number
of vehicles on each lane.

Rather than trying to predict the full policy, we design a network that predicts
the key information and then we use it to derive the policy. Specifically, we want
the network to predict merging times of each vehicle and the final ordering of
the vehicles. This essentially corresponds to all MIP integer variables `it, oij .
Predicting integer variables, and especially permutations in the latter is much more
challenging for the NN.

The trained network predicts not the ordering, but the position (a real number)
of each vehicle at a future time T , piT , ∀i. This reduces the number of output units
significantly while allowing for a one-to-one transformation of these positions
into variables of interest oij (all positions are real, and thus almost surely different
values).

As a final step, we feed these predicted variables back to MIP solver to check
feasibility. If feasible, we have a solution very quickly. If not, we solve just an
LP without any integer variables. This can be done reasonably quickly (but of
course not in real-time); but as we mentioned earlier is probably the critical area
for future research. Naturally, feeding the NN prediction into LP solver does not
always lead to a feasible solution, but just provides a quick start for the LP. For
a small but significant percentage of configurations the solution provided by the
neural network ordering is not compatible with merging times, and the resulting
LP becomes infeasible. Our heuristic solution strategy in such cases is to solve
a partial MIP discarding predicted values of variables `it but using only the pre-
dicted ordering variables oij . This greatly reduces the size of the problem while
essentially guaranteeing a feasible solution.

As a result of the entire process, we obtain a policy that provides the infor-
mation identical to a solution of MIP. A training set is a number of exact MIP
solutions. The whole process of forming the neural network policy (including
preparation of the training set) is depicted in Figure 3.2.
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Figure 3.2: The principal scheme of forming Neural Policy. NN inputs are initial
positions and velocities; the output is merging times and final positions of the cars,
which then transformed into required integer variables and is fed into LP solver. We
can solve a reduced size MIP or use heuristic if the prediction of NN does not lead to
a feasible solution.

3.5.2 Choice of the hyperparameters and training
As a training set, we use 5000 exact MIP solutions. All solutions have the same
fixed number of blocked-lane vehiclesNB = 4 and free-lane vehiclesNF = 8. We
use the road stretch of 150m length, all starting positions and starting velocities are
generated randomly. This is a proof-of-concept study done with limited resources,
so we did not expand the sizes. We acknowledge realistic situations would require
20 to 30 cars at least (near the critical stage of the road), but the MIP would require
more machines to be able to generate solved instances. The important question
we are interested is the relative performance of the NN policy compared to the
optimal solution.

For learning, we use mean squared error loss function, and the minimization
method is adaptive moments with decoupled weight decay (AdamW). The learn-
ing rate is set to 0.0001, the rest of hyperparameters are PyTorch defaults. We use
full batch optimization and train the network for 30000 epochs.

3.6 Numerical Study
In this section we report a numerical study to see how our policy performs in a
simulation comparing it with a typical traffic setting where each driver behaves
autonomously making their own decisions on when and where to merge.

3.6.1 Description of the simulation setting
To make the comparison easier, in our simulation model we keep all the modeling
assumptions and parameters from Section 3.3 and Section 3.4. We consider the
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same continuous-time, discrete-space environment. Similar to the model used in
our MIP, we consider a closed system, i.e., without new arrivals, focusing on a
snapshot of vehicles during a period of study over a stretch of the road.

The simulation prescribes common-sense rules on how drivers move while
respecting all safety conditions and incorporates probabilistic attempts at merges.
We study the performance of the various policies by tallying statistics if the drivers
followed the policy under study.

In the following we describe in detail driver behavior in our simulation and
how they are implemented at each time period:

1. First, the blocked-lane drivers check conditions for the merging. They
check that the distance to the blockage is less than merging distance dM

(we discuss the choice of this parameter below). Then, the driver checks
that on the target lane there is enough free space, i.e. dA − yA ≤ βAv and
dB−yB ≤ βBvB, where dA is the distance to the car ahead (target lane), dB

is the distance to the car behind (target lane), v is the velocity of merging
car, vB is the velocity of the car behind, yB, yA, βA, βB are the same pa-
rameters we discussed in Section 3.4. If these rules are satisfied, the merge
is performed immediately (the drivers are not strategic in their merging). If
the driver performs the merge, he or she cannot accelerate this time period,
and the velocity is reduced to κv, 0 < κ < 1. As in our MIP, only merges
from B to F are allowed.

2. All vehicles respect the maximum acceleration, deceleration limits, maxi-
mum velocity and of course the forced stoppage at the blockage point (if the
vehicle is on the blocked-lane). At each time-step vehicles on the blocked-
lane follow the velocity rule:

v ← min{v + A, vmax, d/α
τ , dA/α},

where A is the maximum acceleration, d is the distance to the blockage, dA

is the distance to the vehicle ahead (on the same lane), and α, ατ are the pa-
rameters we introduced earlier for the regular and taper zones respectively.

Similarly, for a driver on the free lane:

v ← min{v + A, vmax, d
A/α}.

3. All positions are updated at each clock-tick of the simulation. For each
driver:

p← p+ v,

where p is the position of the driver.
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4. If all driver left the bottleneck (all p > L), the simulation terminates, and
we record the final positions and time of clearing the bottleneck.

As one could see from the steps, our discrete-event simulation is inspired by
CA simulations common in traffic studies (Maerivoet and Moor (2005); Nagel
et al. (1998)), but with more detailed mechanics and in continuous time.

3.6.2 Benchmark merging policies
We compare our NN-based policy against three commonly studied policies:

1. Late Merging: In this policy we assume drivers merge as late as possi-
ble. The motivation for this policy (for practioners, as well as in the aca-
demic literature) is that for an unexpected interruption of service such as an
unplanned lane-closing, drivers who are quite far from the blockage point
cannot observe it, and thus have no incentive to merge from B-lane to the
F -lane. Moreover, drivers in general cannot solve an optimization problem
on-the-fly, due to lack of information and computational power. Hence the
first driver (who can actually observe an approaching obstruction) postpones
the merge till the last minute.

So till reaching a relatively short distance dM before blockage, no one
merges. Within this distance, the first driver checks the opportunity to merge
and performs merging if there is a slot. After that, the second driver at B
can see the blockage, and if he or she is within dM from the bottleneck, he
or she tries to merge, and so on. The choice for dM should be reasonably
small, we choose dM = vmax/α

τ , which corresponds to reaching the start
of our taper point.

2. Random Merging: The motivation for this policy is that the drivers are aware
of the blockage ahead, but have no information about the distance to the
blockage. As a result of different perceptions of different drivers, each one
decides when to start merging randomly. For our simulation, we set for
each vehicle an individual start-to-merge distance, based on an uniform dis-
tribution: dM = U(0, L). This policy also reflects what one observes in
many real-world situations and also serves as a good benchmark policy to
represent totally uncoordinated merges.

3. Early Merging: This policy represents highly risk-averse drivers who merge
as soon as they become aware of a blockage, or when they are either in-
structed to merge right away. This policy has also been studied in the re-
search literature. All drivers start looking for a merge gap as soon as they
enter the study area. Therefore, we set dM = L.
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3.6.3 Comparison of MIP, NN and simulation policies

Our main goal for constructing a NN-based policy is to create a fast on-line al-
gorithm that hopefully is capable of learning optimal patterns from a set of MIP
solutions of random configurations, and provides a solution that is reasonably
close to the global optimum for a particular configuration. Therefore in this sec-
tion, we examine the performance of our NN-policy vis-a-vis the global optimum,
and also the common merging policies described in Section 3.6.2.

NN training and some examples

First, we set all the parameters of the MIP and train the NN with the parameters
as follows: Length of road stretch is L = 150m; length of vehicle (used also as
a minimal distance in checks for available merge space) z = yA = yB = 5m;
discrete time step ∆t = 1sec; maximal velocity vmax = 25m/sec; maximum
acceleration A = 5m/sec2; maximum deceleration D = 25m/sec2. Time headway
coefficients are α = 1 and ατ = 2. The former corresponds to keeping 1 second of
headway to other drivers, the latter means that driver keeps 2 seconds of headway
in the taper zone (drivers are more cautions in the end and also because they keep
hoping for a gap to open and it is difficult to accelerate and merge if they are to
close to the preceding vehicle). Merging penalty κ = 0.7, which corresponds to
losing 30% of velocity upon merging. All the parameters are chosen to be as close
to CA simulations as possible.

In Fig 3.3 we compare 3 solutions of the Neural Policy with their correspond-
ing MIP solutions (all examples are out of the testing set). In the first case (top),
both solutions coincide almost exactly (up to the velocity decisions of the blocked-
lane vehicles, which do not affect the result). In the second scenario (middle), NN
policy looks a bit different from the MIP, and there are clear minor planning er-
rors (note that two drivers on F-lane give the way to a third blocked-lane driver,
clearly losing some efficiency). However, even in that case clearing time is not
much higher than in MIP solution. Finally, in the third and the most frequent
case (bottom) NN policy to a large extent predicts the correct merging pattern, but
some details (merging time and positions) can slightly differ, resulting in minor
efficiency loss. Overall, the Neural Network learned impressively from MIP so-
lutions. Note how it learns typical patterns: merging is usually performed in a
zipper-merge style (B-F-B-F), but often it is optimal for 1-2 blocked-lane vehicles
near the blockage to give the way to all passing vehicles from both lanes. Neural
Network is capable of incorporating these optimal patterns successfully.

123



“Thesis” — 2020/10/1 — 18:52 — page 124 — #138

Figure 3.3: Time-space diagrams of the exact solutions provided by MIP (left col-
umn) and the same input solutions by Neural Network Policy (right column). All
examples are outside of the NN training set.

NN policy on a test set

Ultimately, we are interested in constructing a policy that has low running time,
and at the same time outperforms simple policies like the ones in Section 3.6.2 to
give more “personalized” recommendations specific to the configuration.

In Table 3.1, we summarize the results for different policies and the exact MIP
solution. We test the policies on 100 randomly generated examples (outside of the
training test for NN), with NB = 4 and NF = 8, and the rest of the parameters
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being the same as we described above. As a metric of efficiency, we use two
different options: MIP objective (sum of all distances traveled by the end of time
horizon) and clearing time (time required for all drivers to leave the study area).
We also calculate the average runtime of each policy.

Table 3.1: Comparison of exact MIP solution, Deep Neural Network Policy and
simple Cellular Automata policies.

MIP NN Policy CA (early) CA (random) CA (late)
MIP objective gap , % - 1.422 6.421 6.714 7.827
Clearing time gap , % - 4.136 24.46 25.98 28.59
Runtime, s 536.9 1.285 0.006 0.009 0.006

As we can see, there is no significant difference in two metrics we use—
qualitatively, all policies keep very similar performance in both, which justifies
using the sum of positions as an objective for MIP. The NN-policy works re-
markably well, providing 3-4 times better performance than the simple policies of
Section 3.6.2.

In approximately 25% of cases NN predictions were not feasible in the lin-
ear program, and we used the partial MIP post-processing. This clearly affects
runtime—NN with LP solver is slower than just reading the output of a trained
NN. However, even with this penalty the average run time is only just over a sec-
ond.

In general, MIP gives an exact solution but does not provide it in a reasonable
time. The simple policies of Section 3.6.2 are very fast to compute, but can be
significantly off in efficiency. Our NN-Policy is balancing performance and the
runtime, providing a good solution in a limited time. CA simulations all perform
rather similarly. The Early-Merge seems to be the best policy for this number of
vehicles and density, the Random-Merge is slightly worse, and the Late-Merge is
the worst of all three.

3.7 Conclusions

In this chapter we investigated a novel form of using traditional Operations Re-
search tools such as LP and MIP which are often not suitable for real-time policy
recommendations. We combine the power of these tools to solve to optimality
with the ability of NNs to serve as universal function approximators to recall,
match and generalize to new configurations. Our initial results are very encourag-
ing.
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In that regard, we believe our work shows promise but we wish to emphasize
that there are a number of serious research issues that need to be addressed before
this general strategy can be applied to operational problems. Feed-forward NNs
unfortunately (as they currently stand) do not output structured results that satisfy
hard constraints. As is well known, they also have trouble handling variable length
inputs and outputs.

So in its current form, our NN policy has two drawbacks: (i) it does not gener-
alize to traffic situations with a different number of vehicles; (ii) partial MIP that
we use for infeasible LP cases, is potentially slow, especially for a larger number
of vehicles.

The first drawback can be overcome by using a collection of neural networks,
each trained for a different number of vehicles. It would require generating a
large set of data—and certainly is not the most elegant solution—and is a possible
solution within the proposed NN architecture. An alternative is to explore recur-
rent NNs, which could potentially generalize, based on just a single trained deep
learning model.

The second point is not a critical one as long as the size of the problems the
central regulator is trying to solve are not significantly greater than ones we use in
our numerical comparison. However, developing a faster post-processing heuristic
instead of a partial MIP would be more reliable and scale better.

Improving the NN policy along these two directions is a subject for future
research.
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