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Abstract

Multiphase flows present a rich variety of physical instabilities, which may turn
into a set of interesting techonological features. In the particular case of vertical
fallings films, these features provide with short residence times, good heat transfer
coefficients and low pressure drop, which make them good candidates for the heat
and mass transfer demands of absorption chillers, amid many other thermal and
chemical applications.

The adoption of a discrete vector calculus approach for the numerical treatment
of such flows present with two synergistic advantages: on the one side, the deploy-
ment of numerical methods into massive supercomputing systems is favourished
while, on the the other hand, the mathematical properties of the resulting algorithms
can be conveniently revealed.

Similarly to the symmtery-preserving ideas in place for the Direct Numerical
Simulation of single phase turbulent flows, and equipped with the aforementioned
mathematical machinery, a novel physics-compatible discretization for the numeri-
cal computation of multiphase flows is presented which, similarly to its single phase
counterpart, preserves energy at the discrete level.

The new method introduces the first variation of area in the context of a the Con-
servative Level Set method to match the kinetic energy contribution due to the capil-
lary forces with the potential energy variation due to the interface deformation. This
requires for the re-formulation of the high ressolution scheme used for the transport
of the marker function from an algebraic perspective, which ultimatelly yields to
the design of a novel curvature interpolator. In addition, the adoption of a consis-
tent mass and momentum discretization is presented in terms of the aforementioned
algebraic approach, resulting in the anounced energy-preserving level set method.

XiX



XX



Introduction

1.1 Motivation

Falling films are a family of particularly interesting multiphase flows. They are char-
acterized by narrow sheets of a viscous fluid flowing down a plate. This kind of
flows are present in many industrial applications and natural phenomena and ex-
hibit many particularities of mathematical, physical and technological interest.

The tears of wine phenomena, steam condensing on and falling down the bath-
room mirror or he formation of rivulets down a pouring glass are everyday examples
of film flows.

Its captivating beauty caught the attention of many scientist at the turn of the
20th century, who made a significant effort in understanding such flow dynamics.

C.G.M. Marangoni was the first to provide a rigorous explanation to the tears of
wine phenomena [1] and also theorized on the onset of a convective flow due to a
surface tension gradient, a phenomena named after him [2].

In 1916 E.K.W. Nusselt provided with a laminar solution to the vapor condensa-
tion over a flat film [3]. This is nowadays know as the Nusselt flat film solution and
provides the most fundamental solution to this particular flow.

Later on, P.L. Kapitza, deprived of his Nobel Prize awarded investigations on low
temperature physics, performed outstanding experiments on falling film instabilities
and introduced innovative ideas that set the ground for further development of the
topic [1,4].

The charm of such flows is matched by their complexity: on top of the already
know Navier-Stokes equations, a free boundary problem is in place along which
the capillary force produce a stress discontinuity. This results in a number of know
instabilities even at low Reynolds numbers.

Falling films exhibit a range of favorable features which make them ideal candi-
dates for its use in thermal and chemical equipment [1]. Most remarkably, falling
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films present a small thermal resistance, low pressure drop and a large contact area
per unit flow [5], which makes them ideal candidates for heat transfer applications
where small temperature differences are available/required (e.g., for heat sensitive
alimentary products [6]). They are also good candidates for process involving mass
transfer as well (i.e. concentrating liquids) such as gas absorbers [7] and in general
for heat exchangers with low available pressure drop, like the ones required for neg-
ative pressure absorption chillers [8].

In addition, its inherently unstable nature can be exploited to enhance its heat and
mass transfer characteristics by means of both passive [9] or active techniques [10].

In the context of combined heat and mass transfer, falling films play a key role in
the design of absorption chillers, which fit within the mission of the CTTC and are
an active branch of research at CTTC [8,11-15].

Absorption chillers obey a standard refrigeration cycle where the typical recipro-
cating compressor is replaced by a thermochemical one. Just like regular compres-
sors, thermochemical compressors’ mission is to take the saturated vapor produced
at the evaporator and to deliver superheated vapour to the condenser. This way the
evaporator keeps working at a low partial pressure, while the energy enclosed into
the superheated gas can be released trough the condenser.

The thermochemical compressor splits its task in a three stages cycle. First, it
absorbs the saturated vapor coming from the evaporator into a working liquid so-
lution, which is consequently diluted. This occurs at the absorber, after which the
entire cycle is named. Secondly a pump pressurizes the diluted solution and sends
it to the generator, where, finally, heat is applied to separate the working liquid so-
lution into a liquid and a vapor fraction. While the vapor fraction is delivered to
the condenser, where the regular refrigeration cycle continues, the liquid fraction is
flown to the absorber, where the cycle starts again [16].

This cycle presents several advantages, namely i) mechanical compression is per-
formed over a liquid, which is much more efficient that over a gas; and i) it uses
heat as the main energy stream.

CTTC has long experience in the design and construction of absorption chiller
prototypes. The center has targeted the development of air-cooled, low capacity,
H,O — LiBr absorption chillers because of its lower installation cost and use of non-
toxic working refrigerant/absorbent pair [12-15]. The requirements for low elec-
tric consumption on such air-cooled absorption chillers discourages the use of exter-
nally driven (i.e., an auxiliary pump) absorbers, and thus leads naturally to a gravity
driven solution. Falling films arise then as a suitable choice under such design con-
strains [12].

Critical to the absorber performance assessment are its heat and mass transfer
characteristics. As mentioned above, those can be intensified by promoting the films’
inherent hydrodynamic instabilities [1]. While the use of active techniques, most no-
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tably vibration, is well-known for falling film absorbers [10, 17], the use of passive
techniques, most notably surfactants, is widespread and well reported in the litera-
ture [18-22]

Despite its popularity in absorption systems, the mechanics of such complex
flows are not yet fully understood [22,23]. As a matter of fact, even the plain hy-
drodynamic instabilities are far from a complete understanding [1]. In the particular
case of a HyO — LiBr absorber, typical operating conditions include an absorption
pressure of 1kPa in order to enable vaporization slightly above 10°C. This implies a
density ratio pji;/ poap = 10° and a viscosity ratio Hiig/ Poap R 10%, which pose major
challenges for the accurate numerical simulation of such flows.

This extreme operating conditions are not only difficult to attain in an experimen-
tal setup [24], but also present a rich variety of other physical effects, which compli-
cate the isolation of the thermal dynamics from the fluid ones [25]. In this context,
the use of numerical techniques to gain trustworthy insights into the complicated
dynamics of the falling films appears as a promising technique [26,27].

1.2 Background

This section aims at establishing the current state of the art of the technologies rela-
tive to this thesis. It also intends to establish the influences present at CTTC at the
time of writing.

1.2.1 High Performance Computing

The development of increasingly powerful architectures has fostered the setup of
ever growing massive parallel supercomputers. While the computational capacity
has boomed in recent years, it also has the power consumption of such systems.
In the context of the exascale challenge, novel architectures have proven useful at
reducing the power consumption of such systems [28], increasing the heterogeneity
of computational systems.

The increasing number of architectures comes with increasing programming, de-
bugging and maintaining complexity. In addition, the diversity of architectures that
the scientific computing community is witnessing produces a need for portability
between different architectures [29].

In this context, a modular approach for the development of scientific computing
software can benefit from simplified development, maintainability and portability. A
typical example is the BLAS standard [30], where a minimalist set of basic operations,
known as kernels, has been devised in order to simplify the computational codes.

In this regard, CTTC has advocated for and algebraic approach to the develop-
ment of scientific computing software [29]. As Oyarzun et al. [31] showed, 90% of
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the operations of a typical Direct Numerical Simulation (DNS) of an incompress-
ible flow algorithm can be cast into three simple instructions, namely: i) Sparse Ma-
trix-Vector product (SpMV), ii) generalized vector addition (axpy) and iii) dot prod-
uct (DOT). This reduces enormously the effort required for portability, allowing to
execute the exact same algorithm in different architectures [31-33] and eventually
enabling petascale simulations [34, 35].

1.2.2 Discrete Calculus

As mentioned previously, the adoption of an algebraic approach to scientific com-
puting in the context of massive parallel architectures may present several computa-
tional advantages.

Notwithstanding, a reformulation of the algorithms is required, most of the times,
to convey the stream of operations that define a scientific computing code into the
aforementioned basic algebraic operations.

The adoption of a fully algebraic formulation to the development of numerical
algorithms may benefit as well from a higher degree of abstraction. Actually, this
was also done by Verstappen and Veldmann [36,37] and Trias et al. [38], even when
the computations where performed without the explicit construction of the algebraic
operators.

Long term advocated by Tonti [39,40], mimetic methods [41] aims at preserving
the inherent mathematical structures of space in order to ensure high-quality sim-
ulations. Depending on the mathematical backbone chosen for this approximation,
this approach has also been called Discrete Exterior Calculus [42,43] and Discrete
Vector Calculus [44,45] as well. In addition to fluid dynamics [46—49], mimetic meth-
ods have also been adopted in, and actually have also been enriched from, different
contexts such as electromagnetism [50,51]. Conversely, the adoption by Verstappen
and Veldmann of symmetry preserving [36,37] discretizations for turbulent flows
focused on preserving physical quantities of interest by enforcing the mathematical
structure of the space. Both approaches ensure a physics-compatible simulation and
can be seen as two sides of the same coin.

Beyond its appealing mathematical niceness, symmetry preserving / mimetic
schemes provide with enhanced numerical stability and reliability. As it will be
seen in the coming section, the adoption of high fidelity numerical simulation is of
paramount importance for the development of closure models for multiphase flows.
In the context of bigger and, regardless all efforts, more expensive numerical sim-
ulations, the adoption of high fidelity numerical techniques is a smart strategy to
increase the value of the numerical simulation.

This later approach has been long used at CTTC and adopted as a solid research
line. Following this spirit, several developments on the simulation of turbulent flows
have been conducted by Trias et al. [38,52-54].
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1.2.3 Multiphase flows

While simulation of turbulent single-phase flows has attained a considerable degree
of maturity, the accurate modeling of multiphase flows is not as developed.

It is notwithstanding understandable given the mathematical and physical com-
plexity that needs to be account for on top of the already challenging fluid dynamics,
as the diversity of coexisting numerical techniques illustrates.

Analogous to the use of Reynolds-Averaged Navier-Stokes (RANS) averaging
of the flow properties is possible in multiphase systems considering, the different
physical properties of each phase [55]. Considering the evolution of mass, momen-
tum and energy averaged equations for each phase, results into so-called two-fluid
models [55,56].

Nonetheless, averaged models require of closure relations that account for effects
depending on the interface topology (e.g., surface tension, phase change), which is
inherently overlooked in such models and its main weakness [55]. Such relations
can be derived for simplified flow configurations, or otherwise rely on extensive
experimental validation [57].

In this context is where interface-resolved schemes come into play. Its aim is to
perform high quality simulations able to capture the interface dynamics to provide
insight into interfacial physics. In this regard, due to the extraordinary complexity
ruling multiphase flows, the adoption of high quality, physics-compatible and reli-
able numerical techniques is mandatory in order to replace actual experiment with
numerical ones.

While many techniques have been developed so far, we may distinguish between
two big families of methods: interface capturing techniques, in which the interface
is represented implicitly by some sort of marker function; and interface tracking
ones, in which the interface is actually tracked down in a Lagrangian fashion. The
most popular methods within each family are briefly introduced next, while further
details can be found in [55].

Generally speaking, all interface capturing method deal with transporting a marker
(also named “color”) function indicating the presence of one phase or the other. For
a detailed review on different interface-capturing methods, the reader is referred
to [58].

The Volume of Fluid (VOF) method was popularized by Hirt and Nichols [59]
and use the volume fraction as marker function. Particular advection schemes are
required in order to enforce a sharp transport resolution of the marker [55]. While
mass conservation is inherent to the method, historically it suffers in computing in-
terface curvature, a key quantity for surface tension driven flows.

The level-set method, later introduced by Osher and Sethian [60] and subse-
quently by Sussman et al. [61] adopted a different approach. Instead of transporting
a volume fraction, they used a distance function, as marker function. While the
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method handles flawlessly topological merging and breakup of the interfaces, mass
conservation is not guaranteed.

The phase-field method was introduced to multiphase flows by Anderson [62]
and later by Jacqmin [63], where, resembling the actual smooth physical potential
observed at the vicinity of interfaces at the molecular level, they introduced a smooth
marker function.

Finally, as a compromise solution between the VOF and the level set methods,
the Conservative Level Set (CLS) method was introduced by Olsson and Kreiss [64].
In their approach, a convolution of the distance function with tanh is introduced
such that it resembles a smoothed Heaviside step function, resulting into a smooth
interface method which is much closer to their cousins phase-field methods than to
traditional level set ones.

While interface-capturing method present all different pros and cons, they all
suffer form a very fundamental numerical pathology: the unsuitability of discrete
domains to transport sharp interfaces. This issue has fostered the development of a
rich variety of advection schemes.

Front-tracking methods, on the other hand, rely on explicitly tracking the inter-
face between phases. For such a purpose, Lagrangian particles are placed at the
interface and it position evolved with the underlying velocity field. Surface recon-
struction is then performed by reconnecting the isolated particles.

The Immersed Boundary (IB) methods developed by Peskin [65] is intended at
the resolution of fluid-structure interactions. In this case, the regions of the domain
belonging to the solid phase impose artificial forces to enforce the proper flow be-
havior at the solid wall.

The front-tracking method proposed by Unverdi and Tryggvason [66] was the
first to employ a reconstruction of the interface separating two immiscible fluids in
the context of the Navier-Stokes equations [55].

While front-tracking methods achieve inherently sharp interfaces, they do so at
the expenses of higher computational costs associated with geometric reconstruc-
tion. They also require special treatments when it comes to simulating coalescence
and breakup processes.

The use of two-fluid models has been in place at CTTC since 2009 [67-70], while
made its entrance in interface-resolved simulations in 2004 with the formulation of
VOF [18,71,72] and later on in 2014 with the inclusion of CLS [73-75] techniques.

This work has been influenced by the former research performed at the CTTC in
this regard and has adopted as its interface-capturing scheme the CLS proposed by
Olsson and Kreiss [64] and present at the lab since 2014 [76].
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1.3 Outline of this thesis

This rest of this thesis is organized as follows: in chapter 2 we build upon the single
phase symmetry preserving schemes to provide with a novel energy preserving level
set method suitable for tracking multiphase flows. In chapter 3 we provide with a
new formulation of a flux limiter in order which is suitable for the HPC?framework.
Finally in chapter 4 a DNS of a falling film is presented.
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An energy-preserving level
set method for multiphase
flows.

Contents of this chapter are published in:

N. Valle, EX. Trias, J. Castro. An energy-preserving level set method for multiphase flows. |.
Comput. Phys., 400 108991, 2020

And provided here self-contained.

Abstract. The computation of multiphase flows presents a subtle energetic equi-
librium between potential (i.e., surface) and kinetic energies. The use of traditional
interface-capturing schemes provides no control over such a dynamic balance. In
the spirit of the well-known symmetry-preserving and mimetic schemes, whose
physics-compatible discretizations rely upon preserving the underlying mathemat-
ical structures of the space, we identify the corresponding structure and propose a
new discretization strategy for curvature. The new scheme ensures conservation of
mechanical energy (i.e., surface plus kinetic) up to temporal integration. Inviscid
numerical simulations are performed to show the robustness of such a method.

2.1 Introduction
Multiphase flows are ubiquitous in industrial applications. They are present in a rich

variety of physical phenomena such as vaporization [1], atomization [2], electrohy-
drodynamics [3] or boiling [4], among others [5, 6].
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The use of interface-capturing schemes is widespread for the computation of
multiphase flows due to its computational efficiency. The Volume-Of-Fluid (VOF)
by Hirt and Nichols [7], the Level Set method developed by Osher and Sethian [8]
and most recently phase field methods, introduced by Anderson et al. [9], are the
most popular interface capturing schemes for multiphase flows. An overview of
these can be found in [10] and references therein. Despite the pros and cons that each
method presents, we made our development concrete on the Conservative Level Set
(CLS) initially developed by Olsson and Kreiss [11] and Olsson et al. [12] due to its
good conservation properties, curvature accuracy and ease of handling topological
changes. This was extended to unstructured collocated meshes in [13].

Of particular interest are the incompressible Navier-Stokes equations,

p(?;+(ﬁ'V)ﬁ):V~a V-i=0 (2.1)

where the stress tensor ¢ is composed of the hydrostatic and the deviatoric ones
(0 = —pl + 7). In turn, 7 is defined by Stokes constitutive equation T = 2uS, while
the strain tensor is given by S = 1/2 (Vii + (Vii)T).

The proper solution of equations (2.1) requires an appropriate decoupling of pres-
sure and velocity. In this regard, the Fractional Step Method (FSM) [14] is an excel-
lent tool which properly enforces the incompressibility constraint. However, the
FSM results in a Poisson equation which needs to be solved, which takes most of the
computational time in a typical simulation.

The construction of discrete differential operators in the seminal work of Verstap-
pen and Veldman [15,16] aims at preserving physical quantities of interest, namely
momentum and kinetic energy, by preserving several mathematical properties at the
discrete level. This merges with the conception of mimetic finite difference meth-
ods [17], where the discretization is performed to satisfy the inherent mathemati-
cal structure of the space, naturally producing a physics-compatible discretization.
The present work is motivated by such an appealing idea. This has been named
mimetic [17] or discrete vector calculus [18], among others [19,20]. Mimetic meth-
ods delve into the construction of discrete differential operators by producing dis-
crete counterparts of more fundamental mathematical concepts, making extensive
use of exterior calculus. This approach results in the algebraic concatenation of el-
ementary operators, namely matrices and vectors. Such an approach can be seen
as the mathematical dual of the physics-motivated work on symmetry-preserving
schemes and provides with a different point of view which fortifies the analysis of
this family of methods, which have been used in both academic [21] and industrial
problems [22,23], among others. However, to our knowledge, there is no a straight-
forward extension of these ideas into the multiphase flow community yet.

While Direct Numerical Simulation (DNS) of single-phase flows has reached sub-
stantial maturity, multiphase flows lag behind due to its increased complexity, namely
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due to two main issues: i) surface tension and ii) differences in physical properties.
The former results in a dynamic equilibrium between kinetic and potential ener-
gies, which are exchanged through the capillary term. Indeed this is the reason why
symmetry-preserving discretizations [15, 16], despite conserving flawlessly kinetic
(and thus total) energy in single-phase flows, do not suffice to preserve mechanical
energy in multiphase flows, as this transfer needs to be taken into account explicitly.
The later poses challenges regarding how interpolations need to be done without
breaking physical laws. In the framework of VOEF, Fuster [24] proposed a discretiza-
tion that preserves the (skew-)symmetries of the momentum equation, preserving
kinetic energy up to surface tension, which is regarded as an energy source. How-
ever, as far as surface tension is not included into the analysis, this is a necessary, but
not a sufficient condition for preserving mechanical energy. Regarding the viscous
term, the work of Sussman et al. [25] provided with a conservative discretization.
The interested reader is referred to [26] and references therein for a comparison be-
tween different discretization strategies for the viscous term. Despite the impressive
progress done so far, none of the above have included surface tension, and thus po-
tential energy, in the analysis of conservation of energy. It is well-known, however,
that the imbalances in the surface tension term may lead to spurious currents and,
eventually, unstable solutions [27]. In the framework of phase field methods, the
impact of surface tension on the energy balance has been included in the works of
Jacqmin [28] for the Cahn-Hilliard equation, and Jamet et al. [29] and Jamet and Mis-
bah [30] for the Allen-Cahn formulation. This chapter aims to dig into a discretiza-
tion including surface tension which, without recompression, preserves mechanical
energy for level set schemes.

The rest of the chapter is arranged as follows: in Section 2.2 a glimpse of algebraic
topology is provided. This sets the foundations to review the well-known symmetry-
preserving discretization for single-phase flows in Section 2.3 and, inspired by this,
develop a new energy-preserving scheme for multiphase flows in Section 2.4. Com-
parative results between current techniques and the newly developed methods are
presented in Section 3.4. Finally, conclusions and future insights are outlined in Sec-
tion 3.5.

2.2 Topological model

Any numerical approach requires a finite-dimensional representation of the spaces
under consideration. This implies a discrete representation of the domains involved
in the setup of the problem. Single-phase flows fit well into a fixed frame, typically
discretized on a fixed grid. On the other hand, multiphase flows require to account
for a moving interface which splits the domain at question into two regions. This
interface needs to be properly discretized in order to preserve several inherent topo-
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logical properties. The way this is accomplished has led to a diversity of multiphase
methods [10].

2.2.1 Mesh

Let Q) be the working domain bounded by 9() and assume that M is a partition of
() into a non-overlapping mesh. An illustrative example is given in Figure 2.1. Al-
though we stick to structured meshes for computational simplicity, the formulation
presented here is independent of the mesh structure and thus can be extended into
unstructured meshes. Incidence matrices are used to account for the connectivity
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Figure 2.1: Left: Domain () and its boundary 0Q). Right: Mesh M. c; corresponds
with the ith cell, #1; corresponds with the normal vector to the jth face (i.e., f]-) and vy
corresponds with the kth vertex. Its incidence matrix is stated in equation (2.2).

within geometric entities. An example for Erc, the incidence matrix relating faces
with cells according to the orientation of the mesh given in Figure 2.1 is shown next

i fo fs fa fs fe fz fs fo fio fu fi2

¢ (-1 -1 0 +1 0 41 O 0 0 0 0 0

Ec — Co 0 O -1 -1 +1 0 0O +1 -1 0 0 0
FC~ w0 0o 0o 0 0 -1 -1 0 41 0 +1 0
Cy4 0 0 0 0 0 0 o -1 -1 41 0 +1

2.2)

They replace usual neighboring relations such as ¢ = } s ¢y for the sum of face
values related to cell c. In addition, its transpose provides with an explicit form
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for Arp = ¢4 — ¢ for the difference across face f, among others. Basic geometric
properties such as edge lengths (W), face surfaces (Ag) and cell volumes (V¢) are
arranged as diagonal matrices. This matrix perspective presents several advantages:
i) mesh independence , 7i) computational simplicity and iii) readily accessible alge-
braic analysis. While we restrain ourselves from digging into the first two, the later
is useful both for reviewing the classical symmetry-preserving scheme and the de-
velopment of the novel technique described here. Hereafter, lowercase letters corre-
spond with vectors, whose subscript indicates the geometric entity to which they are
linked (e.g., pc corresponds to pressure located at cells). Capital letters correspond
with matrices, whose subscript(s) identify rows and (if different) columns (e.g. Erc
is the face-to-cell incidence matrix).

2.2.2 Interface

Interfaces imply a moving topology along the working domain, which implies a La-
grangian frame of reference. Interface tracking schemes track such a frame explicitly,
at the expenses of numerical complexity [31]. On the other hand, interface capturing
schemes preserve a fully Eulerian approach, by mapping quantities expressed in the
Lagrangian frame back into the Eulerian one [7,32,33]. This results in a simpler im-
plementation of the interface at the cost of an implicit representation. At this point
we split the presentation between the techniques used to actually capture the evolu-
tion of the interface and the ones used to obtain explicit geometric information out
of the implicit form.

Interface Capturing

Let’s assume now that the domain () presents an interface at I', which splits () into
Q7" and ). We note that the volume of a single phase Q" can be defined as

/m qv = /QH(r)dV 2.3)

where r corresponds with the signed shorter distance from an arbitrary point to the
interface, as can be seen in Figure 2.2, while H(r) is its corresponding Heaviside step
function, which is valued 1 at phase Q7 and 0 otherwise. Note that this function
is the key to map a Lagrangian frame (Q2") back into an Eulerian one (Q). Specific
tracking of such a quantity is the basis of the Volume of Fluid (VOF) method [7],
which yields to the concept of volume fraction or, more generally, marker function.
Despite being formally neat, the implementation of specific convection schemes is
required, eventually requiring full geometric reconstruction, resulting in an intricate
implementation. A different approach is to capture the interface with a CLS [11,12].
This captures the interface as the isosurface of a continuous and smooth function 6.
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The level set marker function, 6, results in a smoothed Heaviside step function that
preserves [, 0dV = [ H(r)dV. Itis constructed as the convolution of the distance
function r as follows

H(r) = 0(r) = % (tanh (é) + 1) (24)

where € corresponds with a smoothing factor. Note that 6(r) — H(r) as € — 0.
Further details can be found in [13,34].

F\

\

Figure 2.2: Distances r.+ are defined as the shorter distances of the interface to the
cell. These are then normal to the interface and correspond with the minimum radius
of the tangent sphere.

By imposing the conservation of the marker function, we can advect such a marker
in an incompressible flow as [11-13]:

a0

g+(ﬁ~V)9:0 (2.5)

where particular advection schemes and recompression stages can be added in order
to obtain a sharper profile. The interested reader is referred to [11,13] and references
therein.

Interface Reconstruction

Surface reconstruction may start by defining the interface normal. It is computed
as [11]
Vo
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Which implies, by definition, that the gradient of the marker function 0 is parallel
to the normal. On the other hand, curvature is computed as

K=—V -7 2.7)

Now, the surface area of I' can be computed in any of the following forms

A:/rdA:/QfS(r)dV:/QVH(r)-ﬁidV 2.8)

where 6(r) is Dirac’s delta function, which formally is the distributional derivative
of the Heaviside step function. This is the basis of the celebrated continuum surface
force of Brackbill et al. [35] for surface tension and, in general, of other smoothed
interface methods. Regardless of the reconstruction method of choice, surface needs
to satisfy first variation of area formula, which relates surface and volume variations
through curvature and velocity as

d .
E/rdA - —/I_Ku-iyldA 2.9)

This is a fundamental identity, and the ultimate responsible of the correct con-
version between kinetic and surface energy, as it will be shown in Section 2.4.1. A
detailed proof of this can be found in chapter 8.4 of Frankel [36]. As an illustrative
example, let us consider the surface variation of a spherical surface. If we analyze
how A = 4712 evolves under the action of the normal velocity, 7, we obtain that
% = 8mr#, which can be rearranged as % = %Ai’, where we identify x = %, the
mean curvature of sphere. We are now going to prove that the use of a smooth
marker function as in equation (4.12) leads to a consistent modeling of the interface

by reconstructing surface area with its smooth counterpart Aas
412 -
A% / VH(r) - dv / vo - fdv / IVo|dV = A 2.10)
Q Q o]

We now show that equation (2.10) is a compatible approximation of A. In par-
ticular, we prove that equation (2.9) is still valid when we replace A by A, which is
defined over the volumes and thus much more convenient to compute. First, as a
preliminary stage, we take the gradient of the transport equation (2.5) in the pursue

of a relation between the marker function and the smoothed surface
oVvo
Tvt +V ((#-V)0) =0 (2.11)

Finally, before moving on to the announced proof, let us introduce the inner prod-
uct notation (-, -), which simplifies bi-linear integrals as [ fgdS = (f,g). In addition,
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concepts such as orthogonality, duality or (skew-)symmetry are naturally expressed
in this framework. Further details can be found in A. With this in mind, we can
proceed to approximate the left hand side of equation (2.9) via equation (2.10), to
yield the following

210) dA _ d L (dve d7;
g faa'= “w<vaﬂﬂ—‘<tﬁfﬂo <Vetﬁ>

ove on; .
:( 11 l)+g/wveﬁm+(ve,£;)+w

_ (Ve W ) _ (o (91000
- (50 + (w3 = - (@-wrena

= (V-#;,ii-V0) O
(2.12)

where we exploit the skew symmetry of the convective operator in the second row

and divergence in the last one

Regarding the approximation of the right hand side of equation (2.9), we can
proceed by including equation (2.7) and then using equation (2.10) to move from
surface to volume integrals as

N (2.7) N A (2.10) L
—/Ku-;yidA = /(V-m)u-mdA ~ (Vi ii- Vo) (2.13)
r r
We finally obtain:
d 7 " N B
%./rdA_ (- V)6,V - ;) = ./rKu fidA (2.14)

We conclude that, from a continuum point of view, the use of a marker function
together with the surface reconstruction strategy stated in equation (2.10) results in
a consistent capture of both the interface and its geometric features, namely the first
variation of area equation (2.9). Notice that this analysis is not exclusive to level sets,
but rather extensible to other interface capturing schemes as far as the surface can be
cast into a potential form as in equation (2.10).

2.3 Symmetry-preserving discretization of single-phase
flows

In an incompressible flow, in the absence of external forces, the net balance of me-
chanical energy is due to the viscous term of the Navier-Stokes equation solely.
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This is a relevant property for the simulation of turbulent flows, particularly for
the computation of DNS. In this section, the well-known finite volume, staggered,
symmetry-preserving discretization of Verstappen and Veldman [15,16] is briefly re-
viewed. This sets the ground of the newly developed energy-preserving scheme pre-
sented in section 2.4. Assuming constant physical properties, Navier-Stokes equa-
tions (2.1) can be rearranged to yield

p(aai‘w.vw) = —Vp+uVi V=0 219

which is the most common form of the Navier-Stokes equations for incompressible
single-phase flows.

2.3.1 Energy conservation

The evolution of kinetic energy, E; = (if, pii), in a single-phase flow is obtained by
taking the inner product of i and equation (2.15), which, in the absence of external
forces and without contributions from the boundaries, yields:

dE
— = P, (@ Vi) ~ (i, Vp) + p(#, Vi) = —p | Vil|* < 0 (216)

Due to the skew-symmetry of the convective operator (i.e., (ii - V) = —(ii - V)*),
the contribution of this term to kinetic energy is null. Duality of the gradient opera-
tor with divergence (i.e., V* = —V:) together with the incompressible constrain of
the velocity (V - if = 0) results in a null contribution of the pressure term to kinetic
energy [16]. Finally, by exploiting again the duality between gradient and diver-
gence in the viscous term, this results in a negative-definite operator, y(il, V2ii) =

—u(Vii, Vit) = —p | Vii||*, which, as expected, dumps kinetic energy.

2.3.2 Symmetry-preserving discretization

We are now going to review the well-know symmetry-preserving, second-order,
staggered, finite volume discretization introduced by Verstappen and Veldman in
[15], which was subsequently extended to fourth order in [16], from the algebraic
perspective by means of the tools introduced in Section 2.2.1. This lays the founda-
tion of the newly developments introduced in Section 2.4. The discretization in a
staggered grid starts by defining the discrete divergence operator, D, directly from
the Gauss-Ostrogradsky theorem

/ V- 7dV = / i-7idS ~ —EpcApus = McDug, 2.17)
Q Q)
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where M¢ € RICI¥ICl stands for the metric of the cells, which is a diagonal matrix
containing cells volume. Egc € RIC/*IF| takes care of the appropriate sum of fluxes
over the faces and A € RIFI*IFl is the diagonal matrix containing the surface of all
faces. Finally u¢ stands for the staggered velocities. We can rearrange equation (2.17)
to yield

D = —Mc YEpcAf, (2.18)

this leads to D € RICI*IF|, as expected for a staggered grid arrangement. Next, the
discrete gradient operator, G, is constructed to preserve duality

(ug, Gpe)g = — (Dug, pe)c (2.19)

where (ac,be)c = aTMcb, stands for the weighted inner product in the cell space,
C. It can be defined conversely for the face space, F. Further details on inner prod-
ucts can be found in A.

In the context of Navier-Stokes equations, preserving this duality at the discrete
level results into a null contribution of the pressure term to kinetic energy [16]

G=-MID"Mc (2.20)

where Mg € RIFIXIFl corresponds to the metric of the face space, and thus the def-
inition of such a metric induces the proper construction of G. This is nothing but
the definition of the staggered control volume. Notice that G € RIFIxICl, Again, this
locates gradients at faces, as expected for a staggered discretization. Mg is defined
as

MF = AXFAF (221)
Note that Axg € RIFI¥IFl is the diagonal arrangement of the distance between

cell centers across the face, while Ar € RIFI*IFl is also diagonal and contains face
surfaces. The final form of G results in

G = (Axp) ‘Ecr (2.22)

where the standard second-order approximation of the gradient arises naturally from
the definition of the staggered control volume (i.e., one induces the other).

By concatenation, the discretization of the scalar Laplacian operator, L, the essen-
tial element of the FSM, can be defined as follows

/ V2pdV ~ McLpe = McDGp, (2.23)
Q

As expected, L € RICI*ICl. We can expand the final integrated form of the discrete
Laplacian as
McL = —ErcAr(Axp) 'Ecr (2.24)
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where such a discretization results in a negative-definite operator since Ag and Axg
are positive-definite, and Epc = Ecp'. This is the ultimate responsible of the diffu-
sive character of viscosity in the context of Navier-Stokes equations.

Finally, the convective term can proceed as in Hicken et al. [37] in order to con-
struct a skew-symmetric discretization. Even when dedicated convective operators
may be constructed for Cartesian meshes, this provides with a more flexible ap-
proach. The idea is to construct proper face-to-cell and cell-to-face shift operators
in order to exploit the collocated convective operator as

Clu)p =Trc (lg® Clug)c) Tesr (2.25)

which guarantees skew-symmetry as far as the vector-valued shift operators are
transpose (i.e., I'r . = FCT . f)’ as it is the case. Further details can be found in
[15,16,37,38] and references therein.

2.3.3 Analysis

By preserving (skew-)symmetries of the operators, as it was described above, the
conservation of kinetic energy is guaranteed in the semi-discrete setup (i.e., up to
temporal integration [39]), mimicking then the continuous behavior of the system.
In particular, the semi-discretized energy balance equation reads

dE;.

= = (e Clug)rug)p — (ug, Gpe)p + p (ug, Lrug)p < 0, (2.26)

which is the discrete counterpart of equation (2.16). As expected, the only term
contributing to kinetic energy is the viscous one, i.e., i (ug, Lpug)p, where Lg is the
standard, negative-definite, staggered diffusive operator [16]. Note that this holds
thanks to the specific construction of the operators involved and if the incompress-
ibility constrain of velocity is satisfied at the discrete level as well (i.e., Dug = 0,).

2.4 Energy-preserving discretization of multiphase flows

Multiphase flows present discontinuities at the interface due to the difference of
physical properties and the existence of interfacial phenomena, namely, surface ten-
sion. This section develops, on top of the symmetry-preserving scheme reviewed in
the previous section, a novel energy-preserving scheme for the discretization of cur-
vature. Curvature plays a key role in the development of discontinuities, -], across
the interface as

o] i = =i (2.27)
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where 7 states for the surface tension coefficient, which we assume constant. This
configures the resulting surface tension force, which acts at the interface by imposing
a jump condition into the stress tensor which “pulls” the interface towards a lower
free energy state. The original governing equations (2.1) can then be reformulated as

p(?:—i-(ﬁ-V)ﬁ):—Vp—i—V-r V-ii=0 (2.28)
[p] = 4] [t] ;i — (2.29)
where ¢ = —pl + T is split into hydrostatic and deviatoric. The discussion about the

discretization of T is out of the scope of this work, so the interested reader is refereed
to Lalanne et al. [26] for a thoughtful discussion on this topic. At this point, it is
assumed that T presents a prescribed discontinuity at the interface.

2.4.1 Energy conservation

Regardless of viscous dissipation, incompressible, multiphase flows, do not preserve
kinetic energy. Instead, surface (E, = 7A) and kinetic (Ex = (if, pif)) energy are
exchanged through the pressure term [28] such that, except for the aforementioned
viscous term, mechanical energy is conserved. Interface deformation results then in
a transfer, through the pressure jump, between surface and kinetic energy. In order
to analyze such a transfer, we start by analyzing the evolution of kinetic energy for
multiphase flows, which is obtained by taking the inner product of i and, this time,
the general formulation of an incompressible, Newtonian fluid given in equation
(2.28)

dEy

dt

As stated in Section 2.3.1, the skew-symmetry of the convective term results in a
null contribution to kinetic energy, while the stress term includes an extra contribu-
tion due to the discontinuity at the interface stated in equation (2.27).

— (i, (pit - V) i) — (it, Vp) + (il,V - T) (2.30)

(@, Vp)+ @,V 1) = (V-ii,p) — (ViL,7) —/r[p]ﬁ’-ﬁid5+/r[ﬂﬁ~ﬁid5 (2.31)

Further details on the treatment of discontinuities within the inner product can be
found in A.

Next, by considering an incompressible flow (V - ii = 0), taking the pressure
jump as stated in equation (2.29) and splitting Vii into symmetric (S) and skew-
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symmetric (W) parts we obtain

dE ~
=@V + @,V ) = = (Vi) - [ @) gdA+ [ i[]fidA

— (Vi T) +'y/rm7~ﬁidA

= — (S+W,2u8) +7 [ il fdA

— —2(S, uS) —|-'y/r1<i[-ﬁidA

= 2||yEsIP + [ ki -fidA O (2.32)

As expected, viscosity results in a negative contribution to kinetic energy, whereas
surface tension can take any sign depending on whether the interface is expanding
or contracting.

On the other hand, the evolution of surface energy is related to the evolution of
the interfacial area. By considering Helmholtz’s free energy [40]

dr = ydA, (2.33)

and plugging it in equation (2.9), we state that

dE, [ d d o
- /rEdF - 'y/rEdA - —'y/rxwmdA (2.34)

Finally, performing a global balance of energy by combining equations (2.32) and
(2.34), we obtain
dE, dE, dE, 2
As expected, surface tension does not play a role in the dissipation of energy, but
rather produce a dynamic exchange between kinetic and surface ones of magnitude

v JpKil - fidA.

2.4.2 Energy-preserving discretization

In the same spirit that symmetry-preserving methods aim at ensuring a null contri-
bution of both pressure and convective terms in equation (2.16) at the discrete level,
the task in a multiphase flow simulation adds to the requirements to preserve the
proper transfer between kinetic and potential energies as

dEm _ dE dEp

dt ~ dt ' dt (2.36)
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Namely, if symmetry-preserving schemes were constructed to satisfy at a discrete
level equation (2.19), energy-preserving methods also satisfy the discrete version of
equation (2.9) in order to properly capture energetic exchanges between kinetic and
surface energies. This requires the reformulation of the convective term for variable
density flows to preserve skew-symmetry, as proposed by Rozema et al. [41], which
however is out of the scope of this work. Nonetheless, the transfer between kinetic
and surface energy occurs trough the surface tension term as
d .

T (GO, fif)p = — (UGH, k¢) g (2.37)
where U = diag(ug) € RIFI*IFl is the diagonal arrangement of face velocities, 8, €
RIC! is the cell-centered marker function vector and k¢ € RIFl is the staggered cur-
vature vector. We consider the advection of the marker function in terms of the
discretized equation (2.5)

d6.

dt
where C(ug)c € RICIXICl stands for the convective term of the marker function. It
may usually include a high-resolution scheme, as we shall see later, but so far we
consider it as a single operator. We disregard the role of recompression stages in
time derivatives but rather consider them as correction steps, which is discussed
later on this section. As previously exposed for the continuum case, we can proceed
by constructing the discrete counterpart of equation (2.14) as

do.

(G ,ﬁf) = — (UGB, YDfig)p (2.39)
dt .

= —C(ug)cOe (2.38)

where a new shift operator, Y € RIFI*ICl, is introduced in order to map the curvature
from cells to faces. Exploiting the duality of the discrete gradient and divergence
operators, equation (2.19), we obtain

- (dec, Dﬁf) = — (UGB, YDAg)p (2.40)
dt C
By subsequently expanding the inner products, we obtain
do. T T
- (dt> McDfis = — (UGO.) MgYDf¢ Vig (2.41)

which must hold regardless of the interface normal, fif, and consequently indepen-
dently of the cell-centered curvature, Dfi¢. This implies that

do. i T
~ (37 ) Mc=-(UG8)" MpY (2.42)
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must hold at any time, while releasing a degree of freedom regarding the definition
of the normal. We can now plug equation (2.38) in for the time derivative and expand
the transpose terms

Ao\ '
—() Mc = (C(ug)cOe) ' Mc = 0" Cug){Mc = —0.TGTUTMEY V0,

dt
(2.43)
which should hold for any 6. This leads to

Clug){M¢c = —GTUTMpY (2.44)

where, exploiting the diagonal arrangement of both U and Mg to cast G' UT Mg into
GTMgU, we can use equation (2.20) to obtain the final condition as

— (McC(ug)c)" = McDUY (2.45)

From where we can infer that the convective scheme of the marker function de-
termines the curvature shift operator. This identity guarantees that energy transfers
are balanced and thus total mechanical energy, En, is preserved up to temporal in-
tegration, in the same way that kinetic energy, Ey, is preserved in the symmetry-
preserving discretization presented in Section 2.3.2 for the single-phase case.

Regarding the construction of C(uf)c, any high-resolution scheme can be em-
bedded into the algebraic form C(uf)c = DUY, where ¥ € RIFIXICl is the actual
high-resolution cell-to-face interpolator. For the CLS, this typically corresponds with
SUPERBEE [11]. We can split ¥ as ¥ = I1 + A [42], to produce

C(uf)c =DU (H + A) (2.46)

This represents the symmetric (DUII) and skew-symmetric (DUA) components of
C(ug)c. The extension to VOF schemes, nicely summarized by Patel et al. [43],
requires a previous casting of the advection scheme into the same framework intro-
duced in [42]. Plugging equation (2.46) into equation (2.45) results in the final form
of the dedicated cell-to-face interpolation for curvature

Y=TI-A (2.47)

which guarantees a proper potential and kinetic energy transfer. An illustrative ex-
ample can be seen in Figure 2.3. In short, any upwind-like component used for
the advection of 6, turns into a downwind-like component for the interpolation of
k¢. This can be compared with the second-order midpoint rule used by Olsson and
Kreiss where Y =TT [11].
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Figure 2.3: Example of a particular high-resolution scheme ¥ for the advection of
B¢ (in this example, the well-known upwind scheme) and the corresponding dedi-
cated curvature interpolator, Y. In this case, the interpolation scheme for curvature
is downwind.

2.4.3 Analysis

By mimicking equations (2.30) and (2.32) we obtain the discrete counterpart of ki-

netic energy as
dEy

dt

which assumes a proper discretization of all other terms described in Section 2.3.
We proceed similarly for potential energy by mimicking equation (2.34) to define
discrete potential energy as

=7 (UGB, Ykc) + p (ug, Lrug) , (2.48)

dEP dec A
= (%) 24

We obtain the semi-discretized total energy equation by combining equations
(2.48) and (2.49), which, in combination with equation (2.39) yields

dE dE dE do. .
T;n = Ttk + TtP =7 (UG@C,YkC) +u (Uf,LFuf) +7 (Gdtc,nf> =u (uf, LFuf) <0

(2.50)
Which can be compared with equation (2.35) to check that (in the absence of vis-
cosity) the proposed numerical setup satisfies energy conservation up to temporal
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integration. Note that, as in the single-phase flow, this holds for any incompressible
flow at the discrete level as well (i.e., Dug = 0,).

The role of interface recompression deserves a special remark. Customarily in-
cluded in the level set literature [11,32], its role is to recover the interface sharpness
that may have been deteriorated by the convective schemes by taking additional,
correcting steps after an initial advection stage. Nonetheless, even when performed
conserving mass, as in [11,12], the nature of recompression results in a non-null
contribution to potential energy, which violates the conservation of mechanical en-
ergy. For this reason, the energy-preserving method presented here disregards re-
compression to focus on the physical coupling between marker advection and mo-
mentum transport. Similarly, other interface capturing schemes may consider ad-
ditional steps aimed at recovering interface quality and/or mass conservation [44].
While the results presented here allow to adopt this formulation into the momentum
equation, including additional correcting steps require an individualized analysis.

2.5 Results

Equipped with the discretization described in Section 2.4, we assess its performance
for canonical tests for multiphase flow systems. We focus on inviscid simulations in
order to isolate the performance of our newly developed discretization. Equations
(2.1) and (2.5) are discretized according to the above-mentioned discretization. These
read as

du
— =~ Clug)pug — Gpe + 7Kr GO (2.51)
do
=5 =~ Clu)cOe (2.52)

where K = diag (Yk) is the diagonal arrangement of the staggered curvature.

Density ratio has been fixed to 1 in order to isolate the surface tension term,
simplify the discretization of the convective term and facilitate the solution of the
pressure-velocity decoupling. Nonetheless, as far as the convective term preserves
skew-symmetry and the Poisson equation is solved exactly, ratios different than 1
may be included flawlessly. Surface tension forces are included as mentioned in Sec-
tion 2.4

The system is integrated in time with a second-order Adams-Bashforth scheme
while the pressure-velocity decoupling is achieved with a classical FSM [14]. An
efficient FFT decomposition in the periodic direction coupled with a Cholesky solver
is used to ensure divergence-free velocity fields to machine accuracy.

All simulations are carried on a ) = [2H x 2H] square domain, where H is both
the semi-width and semi-height of the cavity. Top and bottom faces present periodic
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boundary conditions, while at the sides no-flux boundary conditions is imposed for
the marker function (i.e., V0 - fi,,,; = 0) while free slip is set for velocity (i.e., i -
fiyanr = 0). This enforces conservation of all physical quantities.

Linear perturbation theory is used to obtain reference values for time, velocity
and pressure. Note that linear perturbation assumes small interfacial deformation,
while the cases presented here do not necessarily satisfy such a condition, it still pro-
vides with a reference value. Energy levels are scaled by and referenced to the initial
observed mechanical energy. Because all simulations start with a fluid at rest and
an elongated interface, kinetic energy evolves in the positive region (i.e., velocity is
higher than or equal to the initial one) while potential energy evolves in the negative
region (i.e., elongation is less than or equal to the initial one).

Tests are carried in order to compare the standard midpoint rule used for the
interpolation of curvature proposed by Olsson and Kreiss [11] with the newly de-
veloped interpolation scheme. Recompression has been initially set aside in order to
evaluate its impact on both schemes in a subsequent analysis. It is computed as

do.

E + Dl"f_wNC (lC - .C) 0 = DEFGGC, (2.53)
where 7 stands for pseudo-time, I'; . is vector-valued shift operator, Nc € RI4CIXIC]
maps scalars to vector fields aligned with the interface normal, while mc = diag(6.)
and Ep = diag(eg) are the diagonal arrangements of, respectively, 6. and €; where €
is the face-centered smoothing factor defined in Section 2.2.2. Further details can be
found in Olsson and Kreiss [11] for the CLS and in Trias et al. [38] for the construction
of the operators.

2.5.1 Cylindrical column

The classical setup of a zero gravity cylindrical column of liquid is tested in order to
show the impact of the newly proposed method into spurious currents. The section
of the column is located at the center of the domain and is given a radius of Ry =
0.3H. Velocity is initially stagnant and that is how it should remain throughout the
simulation; however, spurious currents are expected to appear due to errors in the
calculation of curvature [27]. The initial setup is depicted in Figure 2.4.

Linear perturbation theory provides with the time period for an initially cylindri-
cal interface perturbed as r() = Rg + rpcos(s6), where s = 2,3,4,... corresponding
to ellipsoidal, triangular of rectangular deformations, respectively [45]. Because lin-
ear theory predicts perfect equilibrium for both s = 0 and s = 1, we arbitrarily
assume an ellipsoidal perturbation (i.e., s = 2) in order to obtain a reference state.

The oscillation period can be computed for any sas T = 27t/ \/ ZpRg /ys(s? —1) [46],
while the characteristic length scale is L = 2R, which leads a characteristic speed
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ofc=L/T = \/ vs(s2 — 1) /2pR3, while pressure is referenced to pc?. Integration is
carried over 5T.

Figure 2.4: Initial setup of the marker function for cylindrical column test case in a
128 x 128 mesh. Contour lines are plotted for Af = 0.1.

Results in Figure 2.5 show how the newly proposed method (right column) re-
sults in an energy stable simulation by counterbalancing the numerical increase in
kinetic energy with a decrease of potential energy. This yields to a stagnant situation
in which both kinetic and potential energy restore their initial values (i.e., Ex = 0 and
Ep = 0). On the other hand, the standard midpoint rule interpolation for curvature
(left column) results in an increase in total energy .

In Figure 2.6 it can be seen how the newly developed curvature interpolation
scheme (right) provides, first of all, an order of magnitude smaller oscillations that
the standard one produces (left). In addition, there is a dramatic increase in the flow
quality within the interface, extending the benefits of the high resolution advection
scheme for the marker into the velocity field. On the other hand, the use of the
standard midpoint rule for updating curvature pollutes the flow within both phases.

It is remarkable how, despite initializing the interface to a theoretical minimum
energy situation (i.e., cylindrical cross-section), numerical imbalances when com-
puting curvature does not reflect such a situation [27]. Nonetheless, the use of an
energy-preserving scheme acts in order to keep energy constant, and so counter-
balances such an artificial movement by modifying the curvature accordingly. This
results in a robust method which eventually is perturbation-proof.

In comparison with Figure 2.5, Figure 2.7 shows the impact of recompression
in both schemes. As can be seen, the newly developed interpolation method can
do little in terms of energy, as the recompression stage increases the energy of the
system. Actually, we see how the increase in kinetic energy is even higher than in
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Figure 2.5: Energy evolution of the cylindrical section for a pure advection case
(i.e., no recompression) with the standard interpolation of Olsson and Kreiss [11]
for the curvature (left) and the newly proposed method (right) in a 128 x 128 mesh.
Top rows show the discrete values of kinetic (Ey), potential (Ep) and total (Em) en-
ergy. Bottom rows show their semi-discretized time derivative according to equa-
tions (2.48), (2.49) and (2.50), respectively.
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Figure 2.6: Velocity magnitude and interface location at t = 5T for a cylindrical col-
umn in a 128 x 128 mesh advected without recompression. Left figure uses the stan-
dard midpoint rule while the right one uses the newly developed energy-preserving
one. Contour lines are plotted for A6 = 0.1.

the previous case, with no recompression associated.

On the other hand, Figure 2.8 shows how the velocity field is clearly distorted in
both cases, degrading the solution with respect to the pure advection algorithm one
and two orders of magnitude with respect to the midpoint and the energy-preserving
interpolation schemes, respectively. Noticeably, we still retain, even by including
the recompression scheme, a higher quality of the velocity field within the bounded
region for the newly developed interpolation scheme. The impact of recompression
in the overall quality of the solution is discussed in Section 3.5.
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Figure 2.7: Energy evolution of cylindrical column with the complete Olsson and
Kreiss method [11] with a single recompression stage (left), and the same method
including the modified curvature interpolation (right) in a 128 x 128 mesh. Top rows
show the discrete values of kinetic (Ey), potential (Ep) and total (Em) energy. Bottom
rows show their semi-discretized time derivative according to equations (2.48), (2.49)
and (2.50), respectively.
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Figure 2.8: Velocity magnitude and interface location at t = 5T for a cylindrical col-
umn in a 128 x 128 mesh advected with a single recompression step. Left figure uses
the standard 2nd order shift operator while the right one uses the newly developed
energy-preserving one. Contour lines are plotted for Af = 0.1.
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2.5.2 Oscillating ellipsoidal column

In order to stretch the previous result to a dynamic equilibrium situation, an ellip-
soidal section is set by distorting the initially cylindrical case. As in the cylindrical
water column, spurious currents may appear, while this time they accompany legit-
imate currents as a result of regions with a moderate non-constant curvature. The
ellipse is centered in the domain and is defined by x = 0.5cos(«) and y = 0.3sin(«),
where a € [0,271). Velocity field is initialized at rest and should follow to the os-
cillation of the ellipsoid throughout the simulation. The initial setup is depicted in
Figure 2.9.

In the same fashion that in the cylindrical water column described above, linear
perturbation theory is employed in order to obtain a reference state. Characteristic
length is set to L = 2Ry, where Ry = 0.3. Time, velocity and pressure scales used
are the same than those for the cylindrical section case.

Figure 2.9: Initial setup of the marker function for the oscillating ellipse test case in
a 128 x 128 mesh. Contour lines are plotted for A6 = 0.1.

Figure 2.10 shows how, while the standard midpoint interpolation (left) clearly
increases the mechanical energy of the system, the newly proposed energy-preserving
interpolation scheme for curvature (right) preserves mechanical energy, which yields
physically consistent results and numerically stable simulations. There is, however,
both positive and negative offsets for kinetic and potential energies. While kinetic
and potential energy are supposed to oscillate between 0 and its maximum or min-
imum for an ideal harmonic oscillator, we observe that this is not the case. This is
explained by an imbalance in the momentum equation, which provides an artificial
acceleration in the fluid, resulting in an increase of the kinetic energy base state [47].
By virtue of the energy-preserving scheme the oscillation gap for potential energy is
reduced accordingly, resulting in a decrease of the elongation amplitude. This plays
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a relevant role in the next case presented, the capillary wave, which is further dis-
cussed in the next subsection. Despite this well-known issue results still show the
expected oscillatory behavior of the ellipsoid. This can be checked from the bottom
row of Figure 2.10, where the magnitude of the energy transfers remains approxi-
mately constant throughout the simulation. In terms of the oscillating behavior, the
increase in mechanical energy for the naive interpolation results not only in artifi-
cially higher values of kinetic energy, but also in a phase difference with respect to
the energy-preserving one.

Figure 2.11 presents the marker and velocity fields after t = 5T with a pure ad-
vection scheme. Results for the energy-preserving scheme (right) show a shift in
phase with respect to the midpoint interpolation scheme (left). Velocity is not only
higher for the naive approach, but also the shape of the interface provides with non-
physical curvature, as it can be observed by the kink appearing along the horizontal
centerline of the ellipsoid (left), which can be compared with the smoother profile
present in the energy-preserving approach (right).

In summary, the use of the energy-preserving scheme provides a higher degree
of reliability, by preserving mechanical energy also in a dynamical equilibrium sit-
uation. Despite the numerical errors in which the discretization of momentum may
occur, the method is robust and still preserves mechanical energy.

The results obtained by including a single recompression step into the algorithm
are presented in Figure 2.12. They show how;, irrespective of the use of an energy-
preserving scheme into the advection scheme, the amount of energy included into
the system in order to keep a sharper profile results in a small, but non-physical,
increase of mechanical energy. Compared with Figure 2.10, it can be seen how the
difference is not as much in mechanical energy but rather in the nature of the oscilla-
tions. While results without recompression still preserve to some extent the oscillat-
ing nature of the physical system, recompression produces an enhanced smoothing,
resulting in a flat profile in terms of both kinetic and potential energy.

The claim stated above can be clearly seen in Figure 2.13, where the initial ellip-
soid, expected to present a dynamical equilibrium, results in a fully rounded shape.
Besides, Figure 2.13 shows how the resulting fields, in both cases, are irrespective
of the interpolation scheme for curvature used for the advection scheme. Further
discussion on the impact of recompression in the final result is discussed in Section
3.5.
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Figure 2.10: Energy evolution of the ellipsoidal section for a pure advection case
(i.e., no recompression) with the standard interpolation of Olsson and Kreiss [11]
for the curvature (left) and the newly proposed method (right) in a 128 x 128 mesh.
Top rows show the discrete values of kinetic (Ey), potential (Ep) and total (Em) en-
ergy. Bottom rows show their semi-discretized time derivative according to equa-
tions (2.48), (2.49) and (2.50), respectively.
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Figure 2.11: Pressure field and interface location at t = 5T for the oscillating ellipse in
a 128 x 128 mesh advected without recompression. Left figure uses the standard 2nd
order shift operator while the right one uses the newly developed energy-preserving
one. Contour lines are plotted for A6 = 0.1.
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Figure 2.12: Energy evolution of the oscillating ellipse with the complete Olsson and
Kreiss method [11] with a single recompression stage (left), and the same method
including the modified curvature interpolation (right) in a 128 x 128 mesh. Top rows
show the discrete values of kinetic (Ey), potential (Ep) and total (Em) energy. Bottom
rows show their semi-discretized time derivative according to equations (2.48), (2.49)
and (2.50), respectively.
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Figure 2.13: Pressure field and interface location at t = 5T for the oscillating ellipse
in a 128 x 128 mesh advected with a single recompression step. Left figure uses
the standard 2nd order shift operator while the right one uses the newly developed
energy-preserving one. Contour lines are plotted for Af = 0.1.
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2.5.3 Capillary wave

A pure capillary wave is set by originally locating the interface at x = 0.2sin(ky),
producing an initial wave along the vertical center line of wavelength 27t /k. We set
k =t/ H, so that a single oscillating period is contained within the domain. Velocity
is initially at rest. With the mentioned boundary and initial conditions, the wave
is expected to oscillate indefinitely, alternating states of maximum potential energy
(i.e., maximum elongation) and minimum kinetic energy (i.e., fluid at rest) and vice-
versa. Initial setup is presented in Figure 2.14.

As is well known from linear perturbation theory [45], the oscillation of the given
setup present a characteristic period of T = 271+/2p/vk3tanh(kH), which is used as
the reference value for time. On the other hand, the characteristic length scale is
L = 27t /k, the wavelength of the perturbation. This yields a characteristic velocity
of c = L/T = /7y k tanh(kH) /2p, while pressure is referenced to pc?, where p stands
for the average. Integration in time is set to 2T.

Figure 2.14: Initial setup of the marker function in a 128 x 128 mesh. Contour lines
are plotted for Af = 0.1.

Results in Figure 2.15 show how the energy preserving discretization proposed
in the present work preserves mechanical energy (top row, solid line) by balancing
the resulting energy transfers (bottom row, solid line). While the standard midpoint
interpolation of curvature results in a non-physical increase of mechanical energy,
which ultimately leads to instabilities, the novel proposed method provides a stable
discretization.

Even when mechanical energy is conserved in the newly proposed method, both
the amplitude of kinetic and potential oscillations (Figure 2.15, top row, right) and
the magnitude of the energy transfers (Figure 2.15, bottom row, right) exhibit a sig-
nificant damping. The reason behind such a damping is the non-null contribution of
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Figure 2.15: Energy evolution of the capillary wave for a pure advection case (i.e., no
recompression) with the standard interpolation of Olsson and Kreiss [11] for the cur-
vature (left) and the newly proposed method (right) in a 128 x 128 mesh. Top rows
show the discrete values of kinetic (Ey), potential (Ep) and total (Ey) energy. Bot-
tom rows show their semi-discretized time derivative according to equations (2.48),
(2.49) and (2.50), respectively.

surface tension to the momentum equation (the desired result for a closed surface)
which produces an artificial acceleration of the fluid. The origin of such artificial
acceleration lies in the discretization of curvature, particularly the computation of
normals, which is at the origin of the errors that propagate to the momentum equa-
tion. This non-physical increase in kinetic energy manifests itself as an increase of the
base level of kinetic energy at off-peaks, as can be seen in the top row of Figure 2.15.
While naive interpolation techniques are unresponsive to such energy increments,
the new energy-preserving method adjusts the transfers between kinetic and poten-
tial energies through surface tension to keep mechanical energy constant. As a result,
the artificial and progressive increase in the kinetic energy level leaves no room to
capillary oscillations, driving the system to a stagnant, but stable, situation.

Figure 2.17, on the other hand, includes a recompression step into the evolu-
tion of the wave. Results show clearly how, despite its known advantages [11], the
resulting solution does not preserve energetic balances but rather increase total en-
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Figure 2.16: Pressure field and interface location at ¢t = 2T for a pure capillary wave
in a 128 x 128 mesh advected without recompression. Left figure uses the stan-
dard 2nd order shift operator while the right one uses the newly developed energy-
preserving one. Contour lines are plotted for Af = 0.1.

ergy of the system, leading to eventual instabilities. It can be seen how the gain
in sharpness introduced by recompression schemes is at the expenses of destroying
the advantages of the energy-preserving discretization. Results in Figure 2.18 can
be compared with those of Figure 2.16, which shows how recompression increases
the total energy of the system. Namely, the scale in Figure 2.18 shows how velocity
magnitudes are clearly higher regardless of the advective step is energy-preserving
or not. Among them, the energy-preserving scheme shows milder velocity fields.
This role of recompression is analyzed in Section 3.5.
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Figure 2.17: Energy evolution of the capillary wave with the complete Olsson and
Kreiss method [11] with a single recompression stage (left), and the same method
including the modified curvature interpolation (right) in a 128 x 128 mesh. Top rows
show the discrete values of kinetic (Ey), potential (Ep) and total (Em) energy. Bottom
rows show their semi-discretized time derivative according to equations (2.48), (2.49)
and (2.50), respectively.
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Figure 2.18: Pressure field and interface location at t = 2T for a capillary wave
in a 128 x 128 mesh advected with a single recompression step. Left figure uses
the standard 2nd order shift operator while the right one uses the newly developed
energy-preserving one. Contour lines are plotted for Af = 0.1.
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2.6 Concluding Remarks

By incorporating the first variation of area, equation (2.9), into the continuum formu-
lation we have explicitly imposed a novel condition to the system. Equation (2.14)
shows that the use of a smooth marker function is compatible with such a condi-
tion. This condition is implicitly incorporated into the discretized system by means
of a newly developed curvature cell-to-face shift operator, Y, defined in equation
(2.47). Analytical and numerical assessments provide evidence that, in the absence
of recompression, the novel interpolation scheme preserves mechanical energy up to
temporal integration by balancing kinetic and potential energy transfers to machine
accuracy.

The exact value of both kinetic and potential energy is not achieved due to the
lack of conservation of linear momentum. This implies that, while the transfers be-
tween surface and kinetic energy are equal and of opposite sign, its magnitude is not
necessarily the correct one..

In this regard, the adoption of a fully conservative momentum formulation, along
with proper discretization techniques for the convective operator, as already an-
nounced in Section 2.4.2, should be considered in a general case. However, the for-
mulation of the surface tension is the most challenging term. Not being cast into a
conservative form, it relies on the accurate capturing of the interface to produce a
closed, and thus conservative, force field. In summary, the use of a finite grid pre-
vents us from resolving the finest scales of the interface, represented by the marker
function 6. This under-resolution of 0, either induced both by the mesh and the
advection scheme, induces subsequent errors in the computation of both #; and «,
as stated by Magnini et al. [27]. These errors spread into the momentum equation,
which can be seen as a back-scatter of energy from the finest, unresolved, surface
representation scales into larger kinematic ones, manifesting itself as an inappro-
priate momentum balance, which ultimately leads to an inaccurate kinetic energy
level. This is a well-known issue in multiphase flows and the object of ongoing re-
search [48,49].

Nevertheless, despite the lack of linear momentum conservation, mechanical en-
ergy is conserved and thus the stability of the system is guaranteed up to temporal
integration. From this perspective, the novel technique may provide extra reliability
for surface energy governed phenomena, particularly those involving surface break-
up or coalesce, as it may occur in atomization processes or Plateau-Rayleigh insta-
bilities, among others.

Recompression schemes, despite producing an energetic imbalance, as has been
shown in Section 3.4, are common in the level-set community. They preserve a coher-
ent marker field at the expenses of introducing non-physical energy to the system.
Even when the proposed method enforces the energetic consistency between marker
and momentum transport equations, the inclusion of recompression prevents us
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from obtaining a fully energy-preserving scheme. Following the spirit described
in Section 2.4, a first approach may be to modify the recompression step to produce
not only a conservative, but an energetically neutral resharpening. Enforcing a null
contribution to potential energy of equation (2.53), if possible, would allow an ar-
bitrary number of recompression steps, avoiding any penalty in terms of energetic
balances. Although this would be desirable, it requires to re-formulate a mass- and
energy- conservative recompression scheme which effectively moves the interface
irrespective of advection, which is definitively not obvious.

Others have tried to include recompression within the advection step to yield a
single-step method. After all, recompression is included to fix the distortion pro-
duced by interface advection. This leads to phase-field-like methods [50,51]. Inter-
preting this idea as a custom-made high resolution scheme, these approaches can
eventually be cast into a convective form like that in equations (2.46) and proceed to
obtain the equivalent curvature interpolation as in equation (2.47). A variant of this
model may be to approach the advection of the marker function as a regularization
problem [52].

Lastly, both a review of the well-known symmetry-preserving scheme and the
development of the energy-preserving scheme have been approached from an alge-
braic point of view. Aside from the advantages in terms of algebraic analysis, the use
of an algebra-based discretization provides an opportunity for High Performance
Computing (HPC) optimization, parallelization and portability [53]. By casting dif-
ferential forms into algebraic ones, (i.e., matrices and vectors), it has been shown
in [53] that nearly 90% of the operations comprised in a typical FSM algorithm for
the solution of incompressible Navier-Stokes equations can be reduced to Sparse
Matrix-Vector multiplication (SpMV), generalized vector addition (AXPY) and dot
product (DOT). In this regard, the present formulation falls within a smart strategy
towards portable, heterogeneous, HPC.
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And provided here self-contained.

Abstract. The use of flux limiters is widespread within the scientific computing
community to capture shock discontinuities and are of paramount importance for
the temporal integration of high-speed aerodynamics and multiphase flows, among
others.

However, the breakthrough of new heterogeneous architectures in supercomput-
ing facilities pose a huge portability challenge, particularly for legacy codes, since the
computing subroutines that form the algorithms, so-called kernels, must be adapted
to complex parallel programming paradigms. From this perspective, the research for
innovative implementation approaches relying on minimalist sets of kernels simpli-
fies the deployment of scientific computing software in massive supercomputers.

Equipped with basic algebraic topology and graph theory underlying the classi-
cal mesh concept, a new flux limiter formulation is conceived which is based on the
adoption of algebraic data structures and kernels. As a result, traditional flux lim-
iters are cast into a stream of two types of computing kernels: sparse matrix-vector
multiplication and generalized point-wise binary operators. The newly proposed
formulation eases the deployment of such a numerical technique in parallel, poten-
tially heterogeneous, computational systems.
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3.1 Introduction

Sharp discontinuities are present in many industrial applications. Such discontinu-
ities appear in both compressible and multiphase flows, among others. In the con-
text of hyperbolic systems, discontinuities develop as shock waves, which present
a challenge for numerical calculations. Traditionally, high speed aerodynamics has
focused on the appropriate treatment of such discontinuities by developing shock
capturing schemes [1].

As a consequence of Godunov’s theorem [1] (after [2]) the treatment of shock dis-
continuities with linear schemes is limited to first order approximations. Higher or-
der linear schemes will result in an unstable discretization and the onset of wiggles.
The construction of stable, second order (and higher) discretizations, then, requires
the adoption of high resolution non-linear schemes which exhibit a total variation
diminishing (TVD) [3] behavior. Among them, flux limiters are a mature and robust
method, which has been adopted in a diversity of applications. Sweby [4] general-
ized several limiters and stated the conditions for 2nd order TVD schemes in a 1D
homogeneous mesh in its well known Sweby diagram. Despite the known inconsis-
tencies that arise when departing from the 1D homogeneous case [5, 6] these tech-
niques have been ported to non-homogeneous Cartesian [6] and unstructured [7]
meshes as well. Advances in this field have been also exploited by the multiphase
flow community, particularly for the advection of the marker function [8,9].

Traditionally, both the analysis and the implementation of flux limiters are per-
formed from a stencil-based perspective. However, the growing interest of the com-
munity in mimetic methods [10,11], which inherently preserve the spatial structure
of the solution, demands a new approach to flux limiters. Such a family of methods
construct discrete operators directly from the inherent incidence matrices that define
the mesh. This presents an important advantage both from theoretical and practical
points of view, as it is discussed below.

On the one hand, this allows for a flawless discrete mimicking of the continuum
operators. In particular, it allows for the exact conservation of important secondary
properties, such as kinetic energy [12,13], among others. On the other hand, the
adoption of an algebraic topology approach provides, directly, with a set of algebraic
operations which are better suited for both algebraic analysis [14] and computational
implementation than its stencil-based counterpart, as it is discussed next.

The advent of parallel heterogeneous architectures has motivated a new demand
for portability. From this perspective, the use of a unified approach is desired in
order to simplify architecture-oriented implementations to portable ones without a
significant lack of performance.

By casting discrete operators into algebraic forms (i.e., matrices and vectors) it
has been shown that nearly 90% of the calculations in a typical CFD algorithm for
the direct numerical simulation (DNS) and large eddy simulations (LES) of incom-
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pressible turbulent flows are comprised of the following: sparse matrix-vector mul-
tiplication (SpMV), linear combination of vectors (axpy) and dot product (dot) [15].
This reduces the implementation of numerical codes to the right combination of a
few basic operations and provides an opportunity for high-performance computing
(HPC) optimization, parallelization and portability [16].

Oyarzun et al. [17] have implemented a conjugate gradient (CG) method follow-
ing such an operator-based approach. Borrell et al. [18] showed the potential of such
approach with the aim of pursuing petascale simulations. In all cases the use of an
operator-based formulation has provided with robust, portable and optimized im-
plementations. Consequently, the design of operator-based algorithms for its use in
massively parallel architectures is a smart strategy towards the efficient solution of
both industrial and academic scale problems [19].

In this paper a flux limiter formulation based on algebraic operations is detailed
and its implementation tested on the CPU-based MareNostrum 4 supercomputer at
Barcelona Supercomputing Center.

The rest of the paper is organized as follows: In section 3.2 a review of basic
chain and graph theory is briefly summarized in order to provide some context.
Section 3.3 develops a generalization of flux limiters from an algebraic perspective.
Finally, section 3.4 highlights the capabilities of the method in both structured and
unstructured meshes.

3.2 Algebraic Topology

By using concepts from algebraic topology, mimetic methods preserve the inherent
structure of the space, leading to stable and robust discretizations [11,20]. However,
the development of such techniques is out of the scope of this paper, where we rather
focus on exploiting the relationships between the different entities of the mesh for the
construction of flux limiters. The interested reader is referred to [10] and references
therein.

For whatever space of interest ), we can equip it with a partition of unity, namely
a mesh M, by bounding the group of cells, C, with faces, F; those with the set of
edges, E, and finally those with the set of vertices, V. In this sequence, groups are
related to the next element of the sequence by means of the boundary operator 0.
This is know as a chain complex [20,21]. A 2D example can be seen in Figure 3.1,
where face and edges collapse into the same entity.

The relationship between the bounding elements of a geometric entity can be cast
in oriented incidence matrices, Ty, Tr—g and Tc_,f, corresponding to edge-to-
vertex, face-to-edge and cell-to-face, respectively. Conversely, we can define Tr_,c,
Tr—r and Ty_g, for the face-to-cell, edge-to-face and vertex-to-edge incidence ma-
trix. In addition, the converse incidence matrices can be seen by transposing such
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Figure 3.1: 2D mesh composed of cells ¢;, which are bounded by faces f; oriented in
the direction fi;. Faces, which collapse to the same entities as edges, are bounded by
the set of vertices vy.

matrices. The corresponding incidence matrices for the mesh depicted in Figure 3.1

read:
0O 41 +1 +1 O 0 0O -1 0
0 0 0O -1 +1 0 0 0 0
0

10 -1 0 -1 -1 0 0
Trov=109 0 0 0 0 41 -1 0 o0 |’ (3.1)
41 -1 0 0 0 0 -1 0 +1
0 0 0 0 0 0 0 41 -1
0 -1 +1 0
0 -1 0 41
1 41 0 0
410 0 0
Tep=|41 0 0 0 (3.2)
0 0 -1 0
0 0 41 0
0 0 0 +1

Incidence matrices represent the boundary operator between one element of the
chain and the next one. Following the example of Figure 3.1, Tr_,c provides with
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the orientation of the boundary faces f] for cell ¢;. On the other hand, Ty _,r provides
with the orientation of the bounding vertices vy to every face f;.

Incidence matrices play an essential role in preserving properties of the discrete
space. In particular, they form an exact sequence. Exact sequences are those such
that the application of the boundary operator twice results in 0. This can be verified
by checking Tr_,yTc_,r = 0. This property is shared by its continuum counterpart,
the de Rahm cohomology [11], which is the ultimate responsible of the following
vector calculus identities [20]:

V xV=0, (3.3)
V. Vx =0. (3.4)

These are powerful identities that mimetic methods preserve by construction. For an
extended review of the relationship between the continuum and the discrete coun-
terparts, the reader is referred to [11,20] and references therein.

In addition to provide a suitable platform for the construction of appropriate
mimetic methods, the relations contained in incidence matrices can be studied from
a graph theory perspective.

A straightforward use of incidence matrices allows to compute differences across
faces. The fact that differences lie in a different space (faces) than variables (cells) is
an inherent property of such an approach:

Auc = Tcﬁpuc. (35)

Particularly useful is the construction of undirected incidence matrices (Bg_,s),
which are build by taking the absolute value of the elements of the directed ones
(To—s). Considering the index notation between a generic space Q (e.g., cells, faces)
and its boundary S (e.g., faces, edges), we could proceed as follows:

Bg s =bsg = ‘esq|‘ (3.6)

Similarly, one can proceed to compute the degree matrix of the graph, which
accounts for the number of connections that an entity has (e.g., the number of cells
in contact with a face). Degree matrices are always diagonal and the value of the
diagonal elements is obtained as follow:

diag(WQQ) = BS_>Q15 = bqsls- (37)

In particular, undirected incidence matrices can be used to construct suitable shift
operators [22]:

Hcor = Wep Beosr (3.8)
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This provides with a simple face-centered interpolation, weighted with the number
of adjacent faces. Note that by taking this approach, boundaries are inherently in-
cluded from the graph information.

The use of such Ilc_,F is restricted to scalar fields. However, following [22], this
can be readily extended to vector fields as follows. To do so we shall consider first
the discretization of vector fields. First, the discretization of a continuum vector field
¥ = (u,0,w)T is arranged in a single vector as X, = (uc, v¢, wc), where u,, v¢ and we
represent the value of u, v and w at cell c. Note that all components are arranged in a
single RICI**! column vector, where |C| is the number of cells and d is the number of
dimensions of the problem. Next, the interpolator can be extended component-wise
by applying the Kronecker product with the identity matrix of size R?*“. The final
ensemble is as follows:

Ferp=1; @ cp. (3.9)

Similarly, normal vectors can be arranged into a RIFI*IFld matrix by arranging d

diagonal matrices, corresponding to every component of the face vector, next to each
other as Np = (Ny|Ny|Ny) [22]. The Np matrix corresponding to the mesh depicted
in Figure 3.1 reads:

N1y 0 0 nly 0 0
NF _ 0 Nox 0 0 noy (3.10)
0 . 0 T
0 0 ... MNogy 0 0 . ngy

In such a way, it is straightforward to either project a discrete vector as NpX¢, or to
vectorize a scalar quantity as NEsg, provided that both are stored at the faces. An
accurate discussion about the construction of this matrix can be found in [22].

Other basic matrices derived from the graph are both the graph Laplacian (Lcc)
and the adjacency matrix (Acc):

Leec = BrcBeosr, (3.11)
Acc = Wee — Lece. (3.12)

Both are constructed based on the incidence matrices and provide information about
the propagation of information along the graph. They are constructed by connecting
cells to its neighbors trough its bounding faces.

In summary, the constructor of such operators provides with tools able to relate
different elements of the graph between each others. Equipped with such basic con-
cepts, the development of higher level operators can proceed as in the following
section.
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3.3 Flux Limiters

The solution of hyperbolic problems in finite volume methods when sharp disconti-
nuities are present requires the use of high resolution schemes in order to attain sec-
ond order approximations. In turn, the construction of such schemes is reduced to
the appropriate reconstruction of the flux at the faces. Prone to introduce numerical
instabilities, such a reconstruction requires, in turn, an appropriate flux reconstruc-
tion strategy in order to guarantee TVD behavior (i.e., such that no new minima or
maxima are introduced). This is attained by limiting the flux at cell’s boundaries by
means of a flux limiter function.
Typically, flux limited schemes are stated in the following form [4]:

0f =6+ ¥(r) (9’32_%) (3.13)
where 0¢ and 6p stand for the centered and downwind values of 8 according to the
velocity field u and ¥(r) is the flux limiter function. Figure 3.2 depicts this situation.

i
g

e‘A

\&/\2/

i+1/2

Figure 3.2: Classical stencil for the computation of the gradient ratio at face i +1/2.
U, C and D correspond to the upstream, centered and downstream nodes.

From a physical point of view, this is equivalent to the introduction of some sort
of artificial diffusion which stabilizes the method at the expense of smearing out its
profile. This can be easily seen by restating the classical stencil-based formulation
stated in equation (3.13) into:

_9C+9D \Ij(f’)fl
A S

(0p —6c), (3.14)

where (‘¥ (r) — 1) /2 stands for the artificial diffusion added to a classical symmetry-
preserving scheme.

The limiting approach has been used by several authors [1,23], who over the
years developed several discontinuity sensors in order to limit dissipation to the re-
gion near the shock. Among all discontinuity sensors, the most popular is the use of
the gradient ratio. Following Figure 3.2 nomenclature, this is defined as follows [4]:
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_ Ayb  Oc -6y

"TTAG T 0 —6c

where A6 is the gradient of 0 at the upwind face while A, 6 correspond with the

gradient at the face of interest. Both differences are taken as positive in the flow
direction, defined by the velocity field uy.

This provides with an intuitive description of where discontinuities are and its
order of magnitude, at the time that keeps a compact stencil. In addition, it allows
to, after proper manipulation by the flux limiter itself, limit the flux in a way which
can be interpreted as a diffusion-like term. This is known as “upwinding” as it has
the same effect as recovering the 1st order upwind discretization near shocks.

TVD conditions in terms of the gradient ratio where stated by Harten in 1983 [3]
for 1D homogeneous grids. These conditions where used by Sweby in 1984 [4] to
state 2nd order and TVD conditions for different forms of flux limiters. This idea has
been extended, with several degrees of accuracy, to multidimensional and irregular
grids [5,6], among others.

(3.15)

3.3.1 Algebraic Formulation

As stated previously, the discretization of equation (3.14) may benefit from the adop-
tion of an algebraic approach. In this regard, it can be easily extended to the whole
computational domain as:

0f = (Icr + F(r)S(u)EcF) Oc, (3.16)

where 8; € RIFl and 8, € RIC! are the vectors holding all the values of 0 and 6,

Ie_r € REXF is the standard cell-to-face interpolation defined in equation (3.8),
F(r) € R“*F is the diagonal matrix absorbing the artificial diffusion introduced in
equation (3.14), S(u) € RF*F is the diagonal matrix taking the proper sign of the
velocity at the faces and Ec_,f takes the difference across them as in equation (3.5).

At this point, we may be tempted to analyze the construction of new flux limiters
by means of basic algebra concepts. In particular, to bound its spectrum by means
of Gershgorin’s theorem or to check its entropy conditions [24], among others. The
interested reader is referred to Bez et al. [25], where a similar approach is taken for
spatial filters.

While both I'lc_,r and Ec_,f are readily available from the background stated in
section 3.2, the construction of F(r) by means of basic algebraic operations solely is
addressed next.

Because flux limiter functions F(r) depend only on the local value of r¢ and we
defer the details on the implementation of the pointwise operations to section 3.3.2,



3.3. FLUX LIMITERS 65

the problem is turned into the accurate computation of r¢ at faces. Notwithstanding,
we introduce here SUPERBEE [4] as a prototypical flux limiter function.

(diag (F(r))], = max (0, max(min(l,Z[;f}i),min([rf]i,Z))) — 1. (3.17)

There has been several approaches [5, 7] to the construction of r¢ in terms of a
least-squares reconstructed gradient. However, the implementation of such schemes
can be cumbersome and may not, eventually, recover the 1D homogeneous solution
when a homogeneous structured mesh is used.

The construction of the gradient ratio will proceed first by the separate calcula-
tion of both the numerator (A(;8) and the denominator (A, 8) of equation (3.15), then
computed as:

[due}i
[dy6];’

[reli = (3.18)
where d,0 € RIfl is the face-centered vector holding the difference across the face
taken in the direction stated by ug, while dy® € RI/F| holds the upstream differences
according, again, to uy.

In this approach we propose to employ symmetry-preserving gradients (see [12])
into the calculation of both face-centered and upstream gradients in order to pre-
serve, as much as possible, the mimetic properties of the approach. In addition, we
aim at recovering the Cartesian formulation as in [9].

Before any calculation, the sign matrix (S(u)) is constructed by assigning to a
RF*F diagonal matrix +1 for a positive velocity and -1 for a negative one.

[diag (S(u))]; = sign([ug];). (3.19)

This allows for a straightforward calculation of the velocity-oriented gradient at the
face as follows:

du6 = S(u)Tc—Oc, (3.20)

where S(u) is used to provide the right direction in which the difference is taken
according to the velocity field.

The construction of the upwind difference dy6 is more involved. The idea is to
construct a partial adjacency matrix which only considers upstream faces, namely
the upstream adjacency matrix, A (1), which is responsible to garner upstream
information and will be defined further in this paper.

We proceed as follows: Ec_,f is used to compute the difference across every face
according to equation (3.5). In order to asses the contribution of every neighboring
face to the face of interest, face differences are vectorized with its corresponding face
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Figure 3.3: Upstream (red) and downstream (green) adjacent faces for face 1 with
respect to the positive component of velocity at face 1. The selection of the right ones
in AY. (1) will ultimately depend on S(u).

normal using N} and added all together with AY; (). Finally, the resulting value
is projected over the normal of the face of interest by means of Nr. The overall
construction of the operator is then:

dud = Ny (nd ® AgF(u)) NTEc_,¢0c, (3.21)

where, similarly to what we did in equation (3.9), we have reused the AY; (1) opera-
tor for all spatial dimensions. Face normal matrices Nf, defined as in equation (3.10),
are used for both vectorization and projection of the neighboring differences. In this
way, orthogonal meshes recover the original 1D formulation, whereas unstructured
ones are handled inherently by the incidence matrix.

We are now left with construction of the upstream adjacency matrix, All_:IF(u),
which may look, at a first glance, of high computational cost. However, it can be
assembled from other simpler matrices:

Afe() = 5 (Are — S AR, (3.22)

where Arr is the face adjacency matrix, APDP is a “directed adjacency matrix”, which
will be introduced below, and S(u) is the already familiar velocity sign matrix. The
strategy for the construction of AY;(u) is to add the contribution of all neighboring
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faces irrespective of the flow direction and then use S(u) AP, to remove the down-

wind ones depending on the values of S(u). Note that both A and AL are constant

matrices and that the only matrix that needs to be updated according to ug is S(u).
The construction of Arr proceeds similarly to equation (3.12) as follows:

Apr = Wgr — BcoFBrsc- (3.23)

As seen in section 3.2, the adjacency matrix is symmetric and contains non-negative
entries only. Following on the example depicted in Figure 3.3, the corresponding
A FF reads:

0 +1 +1 0 0 +1 +1 0 0
1 0 +1 0 0 0 0 +1 +1
1 41 0 41 41 0 0 0 O
0 0 +1 0 41 0 0 0 0
App=]0 0 +1 41 0 0 0 0 O (3.24)
41 0 0 0 0 0 +1 0 O
41 0 0 0 0O +1 0 0 O
0 +1 0 0 0 0 0 0 +1
0 41 0 0 0 0 0 +1 0

On the other hand, the construction of AZ: allows us to distinguish neighboring
faces which lie, according to the face normal, behind or ahead of the face in question.
This requires the inclusion of the directed incidence matrix T_, r into the calculation
of the adjacency matrix as:

AFDF = TcrBroc, (3.25)
which provides with the following matrix:

0O +1 +1 0 0 -1

|
_
o
o

+1 0 41 0 0 0 0 -1 -1
-1 -1 0 41 +1 0 0 0 0
0 0 -1 0 -1 0 0 0 0
AB=l0o 0o -1 -1 0 0 0 o0 o0]. (3.26)
41 0 0 0 0 0 +1 0 0
-1 0 0 0 0 -1 0 0 0
0 -1 0 0 0 0 0 0 -1
0 -1 0 0 0 0 0 -1 0

Note that AP has the same pattern as Apr but entries corresponding to faces lo-
cated upstream (with respect to the face normal direction) contain —1 whereas those
located downstream contain +1, as shown in Figure 3.3.



68CHAPTER 3. VECTORIAL IMPLEMENTATION OF FLUX LIMITERS FOR HPC.

However, the choice of upstream/downstream faces should depend on the faces
local velocity and not on its arbitrary choice of face normal. The product S(u) AR,
corrects this by inverting the sign of the rows corresponding to the faces whose ve-
locity component is not aligned with the face normal. The result is a correct choice
of upstream and downstream faces according to the local face velocity.

Finally, the combination of A?P and Arr in equation (3.21) results in:

1
dyb = N <1[d D5 (S(u)A}_?F — AFF>> NEEC_,F6.. (3.27)

3.3.2 Algebraic Implementation

While equation (3.27) succeeds at selecting the proper upstream faces, its direct im-
plementation involves many redundant operations that may result in an unneces-
sary overhead. For this reason, the computation of dy0 is rearranged as follows:

dy6 = (S(u)UUDc . + OUDc ,F) O, (3.28)

where we introduce the new matrices UUDc_p = %Np (]Id ® AEF) NgEC—>F and

OUDcr = %Np (I; ® Arr) NEEC_H:, which can be computed and stored before the
start of the simulation and consequently reused.

Note that because we are actually interested in the evaluation of dy6 rather than
in the construction of the operator itself, matrix-matrix products can be avoided if
successive matrix-vector products are performed.

The final algorithm for the deployment of a flux limiter in the advection of a
scalar within our algebra-based framework is described in Algorithm 1.

In previous works of Oyarzun et al. [15] and Alvarez et al. [26], a portable imple-
mentation model for DNS and LES of incompressible turbulent flows was proposed
such that the time-integration algorithm reduces to a set of only three linear alge-
bra operations: the sparse matrix-vector product, the linear combination of vectors
and the dot product. However, a close look to Algorithm 1 reveals that this set is
insufficient to fulfill the flux limiter implementation because it comprises non-linear
operations (e.g., a pointwise division is required for computing the gradient ratio as
in Step 4, or a reduction to get the minimum value for the CFL in Step 7).

Nevertheless, instead of being an inconvenience, this encourages us to demon-
strate the high potential of our algebra-based implementation strategy again. On
the one hand, the generalization of the axpy kernel via the introduction of a binary
operator (i.e., an operator that combines two elements of a vector space to produce
another element), kbin, that performs any given pointwise arithmetic calculation is
sufficient to embed the algebraic flux limiter into our fully-portable, algebra-based
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Algorithm 1 Algorithm for the advection of a scalar field using an algebraic imple-
mentation of the SUPERBEE flux limiter

1. Compute the matrix S(u) as:
[diag (S(u))]; = sign([ugl;).

2. Compute the vector d,0 as:
due = S(u)EC_H:GC.

3. Compute the vector dy0 as:
dyb = (S(M)UUDC_>1: + OUDC_>1:) Oc.

4. Compute the vector r¢ as:
[re]; = [dOuyli/[dOu];.

5. Compute the matrix F(r) as:
[diag(F(r))]; = 0.5 (max (0, max(min(1,2[r¢];), min([re);,2))) —1).

6. Compute the advected field C(ug)0, as:
C(ug)0. = DUy (e + F(r)S(u)Ec o) 6.

7. Calculate a dt satisfying the CFL condition:
dt = C (min (|[uf]0|/[df]o, |[uf]m|/[df]m)) .

framework. On the other hand, the substitution of the dot kernel by a generic re-
duction operator, kred, that calculates the specified reduced value (e.g., minimum,
maximum, addition or product).

This generalization does not alter the computational behavior in comparison with
the original axpy kernel as it still performs simple, pointwise arithmetic operations
over the vector elements (i.e., there is no need for communications in distributed-
memory parallelization) and provides uniform, aligned memory access with coa-
lescing memory transactions which suit the stream processing paradigm perfectly.
Therefore, having already efficient OpenMP, OpenCL and CUDA implementations
of axpy, the implementation of kbin kernel is straightforward (e.g., it can be easily
extended via including a function pointer as a parameter in the former).

On the other hand, the arithmetic intensity (Al) of this new kernel (i.e. the ratio
of computing work in floating-point operations (FLOPs) to memory traffic in bytes)
is not a fixed value anymore, as shown in Table 3.1. While the arithmetic intensity of
the axpy was 1/12 FLOPs per byte (one product and one addition per three 8-byte
values), than of the kbin will depend on the specific arithmetic calculation required
by the function in each call. This allows us to significantly increase the arithmetic
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intensity in our calls by means of kernel-fusion and thus reduce the time-to-solution.

Table 3.1: Analysis of the arithmetic intensity of the different functions given to
kbin kernel during the execution of the Algorithm 1. The functions correspond to:
1) the linear combination of vectors, 2) the pointwise sign operator, 3) the pointwise
division operator and 4) the pointwise SUPERBEE flux limiter operator.

Function Al
y=y+ax 1/12
y=x<0?-1:+1 1/16
y=ay/x 1/12

y = 0.5(max(0, max(min(1,2x), min(x,2))) —1) 7/16

In conclusion, the evaluation of the advection as in Algorithm 1 using our frame-
work is comprised of only three computing kernels: SpMV, kbin and kred. The num-
ber of calls in each step of the algorithm is stated in Table 3.2. This results in a
compact algorithm, which facilitates portability by reducing the number of comput-
ing kernels involved, and simplifying them. As it can be seen, the computation of
several local quantities is required in order to construct the final algebraic scheme.

Table 3.2: Number of operations count for Algorithm 1.

S‘L‘ep SpMV  kbin kred
1. S(u) 0 1 0
2. dybo 3 1 0
3. dy0 2 0 0
4. I 0 1 0
5. F(r) 0 1 0
5. C(ug)6, 4 1 0
5. dt 0 1 1
total 9 6 1

Finally, note that the implementation of different flux limiter functions would
only affect the values in the diagonal of F(r).

3.3.3 Comparison with the stencil-based approach

The new approach for the proper construction of gradient ratios is now compared
with the classical, stencil-based approach.

In a general, 1D case for a Cartesian homogeneous grid, the computation of the
gradient ratio, r, involves the use of, at least, 3 nodes trough a face located at i +
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1/2. Depending on whether the velocity is going in one direction or another, the
definition of the upstream nodes will change accordingly. This can be exemplified in
Figure 3.4.

U il
— —
D D

i+1/2 i+1/2

Figure 3.4: Example of stencils in 1D according to the classical flux limiter approach.
The stencil topology is not constant and changes according to the sign of the velocity
field 7.

The use of the proposed algebraic approach apparently involves a larger stencil,
as it can be seen in Figure 3.5. However, the computation of the proper upstream
adjacency matrix AY;(u) according to equation (3.22) will result in the appropriate

stencil (i.e., the portrait of the sparse matrix) for A% (u).

—

(Y
—

i+1/2

Figure 3.5: Equivalent stencils used in the computation of an algebraic flux limiter.
In this case the adjacency matrices involve the operation with all neighboring nodes.

In comparison with the stencil-based, the algebra-based implementation is very
similar regarding parallelization. The distributed-memory parallelization remains
the same since the size of the halo (i.e., the elements from other computing units
which are coupled with the own elements [27]) depends directly on the partitioning
of the computational domain. On the other hand, the stencil-based approach could
appear to be slightly more efficient regarding the memory traffic in some numerical
schemes as they can make use of specialized kernels that require less intermediate
results, or discriminate some operations with conditional statements, for instance
when locating upwind values. However, these specializations may harm the coales-
cence of memory transactions, which is very important in some parallel paradigms
such as stream processing, and thus reduce the relative performance which, in our
framework, is near the maximum theoretical performance given by the memory
bound.
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3.4 Numerical Results

Next, the application of this technique is applied to a canonical case. In particular, the
advection of a sharp profile has been tested on unstructured, hex-dominant meshes
of 373, 2,985, 23,887 and 80,621 thousand cells. The sharp profile is initialized in a
physical domain of [0,1] x [0,1] x [0,1] as a sphere of radius r = 0.15, located at
(0.35,0.35,0.35) and subject to a divergence free velocity field:

u = 2sin®(rrx)sin(2my)sin(27z)cos(rtt/ T), (3.29)
v = —sin(2mx)sin®(my)sin(2mz)cos (7t / T), (3.30)
w = —sin(2mx)sin(2my)sin®(nz)cos (7t /T), (3.31)

(3.32)

during 3.0 time-units, T. The results of the profile are shown in Figure 3.6 for the
slices in x = 0.35, y = 0.35 and z = 0.35 planes.

0.6 0.6 0.6
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\__/ N/
{ N &
0.2 e 0.2 S 02 L
0.1 0.1 0.1
01 02 03 04 05 06 01 02 03 04 05 06 01 02 03 04 05 06
y X X

Figure 3.6: Contours for § = 0.5in x = 0.35, y = 0.35 and z = 0.35 planes after 3.0
time-units. For meshes of 373, 2,985, 23,887 and 80, 621 thousand cells.

Computations are performed on up to 3,072 cores of the CPU-based MareNos-
trum 4 supercomputer at the Barcelona Supercomputing Center. Its nodes with two
Intel Xeon 8160 CPUs (24 cores, 2.1 GHz, 6 DDR4-2666 memory channels, 128 GB/s
memory bandwidth, 33 MB L3 cache) are interconnected through the Intel Omni-
Path network (12.5 GB/s). The HPC? [19], our numerical framework designed for
the efficient computation of basic algebraic operations in modern supercomputers,
achieves a sustained performance of up to 1.6 TFLOPS, which corresponds to nearly
80% of the maximum theoretical performance (recall that this algorithm is memory
bound). Details of the implementation and a detailed performance and scalability
analysis on different types of supercomputing facilities can be found in Alvarez et
al. [27].
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In Figure 3.7, the temporal evolution of the sphere is shown. In this case, a mesh
of 191,102 thousand cells has been chosen. The entire execution of the Algorithm
1 relies on three computing kernels as described in Section 3.3. The share of the
computational cost among these kernels during the solution of the algorithm on
MareNostrum 4 supercomputer is shown in Figure 3.8: sparse matrix-vector prod-
uct, pointwise binary kernel and reduction kernel take 71.1%, 26.3% and 2.6% of the
time, respectively.

t=0.0 t=0.25 t=0.75 t=1.5

“ 9

¢ o 9

Figure 3.7: Time evolution of the § = 0.5 contour for t = 0, 0.25, 0.75, 1.5, 2.25, 2.75
and 3.0 time-units.
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sparse matrix-vector product

B pointwise binary kernel

reduction kernel

71.1%

Figure 3.8: Share of the computational workload among the HPC? kernels on the
solution of Algorithm 1

3.5 Conclusions and Future Work

A flux limiter scheme has been formulated from an algebraic perspective. This re-
sults in a compact formulation that allows for an easy implementation on different
heterogeneous architectures.

Graph incidence matrices (both directed and undirected) are exploited to con-
struct appropriate gradient ratios. The face velocity sign determines the appropriate
side to pick the upstream information. After the sign operation, the remaining oper-
ations are all of them either linear or local.

This approach presents several advantages. First of all, casting a flux limiter in
algebraic form enhances a higher level of analysis, which has not been considered in
this paper. On the other hand, the deployment of such an algebraic form into an het-
erogeneous computing system reduces the number of computing kernels that need
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to be ported from one architecture to the other, enhancing portability and improving
code development and maintenance.

Regardless the inconsistencies that where already highlighted in sections 3.1 and
3.3, the resulting implementation provides with accurate results and collapses to the
traditional approach of Sweby [4,7,9] when a homogeneous, Cartesian grid is used.

The approach developed in this work can be improved to include the effect of the
non-homogeneous distance across upstream faces or its surface in the calculation of
the upstream gradient.
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DNS methods for vertical
falling films.

Contents of this chapter are partially published in:

N. Valle, EX. Trias, J. Castro. Energy preserving multiphase flows: application to falling films.
14th World Congress on Computational Mechanics. ECCOMAS., 2021

And provided here self-contained.

Abstract. The Direct Numerical Simulation of multiphase flows is presented in
the context of a film flowing down a vertical plate. The characteristic instabilities
of this particular configuration are approached by adopting a symmetry-preserving
formulation. Such and approach requires the adoption of novel discretization tech-
niques of both convective and capillary terms, which result in a fully energy-preserving
scheme.

The cases presented here approximate the working conditions of a LiBr absorp-
tion chiller. Results show the appearance of humps and instabilities, which may
enhance heat and mass transfer phenomena.

The numerical simulation of multiphase flows presents several challenges from a
modeling perspective, namely the capture of a moving interface and the proper cal-
culation of curvature are relevant obstacles to include surface tension effects. In ad-
dition, the inclusion of the aforementioned within a physics-compatible framework
presents a major challenge within multiphase computational methods. Namely, the
imbalance between kinetic and elastic energy in the presence of surface tension is an
open question and prone to numerical instabilities.

79
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4.1 Introduction

The vertical falling film is a canonical flow configurations which is inherently unsta-
ble even at Re = 0. When surface tension is present, the dynamics of such a system
turn even more complex and interesting. Its application is of interest for many indus-
trial applications in which high heat and mass transfer coefficients are expected with
low temperature jumps. These include heat exchangers used in desalination and
gas absorbers, like HCI absorbers used in chlorination processes and, most remark-
ably, H,O — LiBr absorption chillers. While inherently a coupled fluid and thermal
dynamic problem, this work is focused on the implementation of Direct Numerical
Simulation (DNS) techniques for tackling vertical falling films hydrodynamics in a
H,O/LiBr absorber. The ultimate goal is to gain understanding on the instabilities
appearing on this flow as a keystone to approach the heat and mass transfer pro-
cesses in subsequent steps. In this regard, while the vapor phase has little effect
in the fluid dynamics, it plays a key role when considering heat and mass transfer,
in addition to ruling other non-linear phenomena such as the transport of volatile
surfactant.

The unstable nature of this kind of flow has captured the interest of many, al-
though its inherently unstable behavior was not always clear. The pioneering work
of the Kapitza family [1] came along with remarkable experiments and thermody-
namic equilibrium theory. That said theory stated a balance between viscous dissipa-
tion and gravitational energy transfers, which suggested stability of vertical falling
films at sufficiently small Reynolds numbers [2]. However, debates between Yih [3,4]
and Benjamin [5] in terms of the linear stability theory of vertical falling films refuted
the thermodynamic theory developed by the Kapitza’s and confirmed instability of
such a flow configuration at any Reynolds number [2]. A linear stability analysis of
cylindrical falling films was later introduced by Solorio [6].

The characteristics of such instabilities was reported in the experiments of Nosoko
et al. [7], who characterized 2D instabilities in falling films with a prescribed excita-
tion frequency. C.D. Park and Nosoko [8] reported horseshoe shaped perturbations
along leading capillary ripples at Re > 40 and also assessed its mass transfer char-
acteristics in the range 20 < Re < 900. Miyara et al. [9] reported mass transfer
coefficient for cylindrical falling films for 0 < Re < 80. In the context of LiBr/H,O
absorption chillers, S-B. Park and Lee [10] reported heat and mass transfer enhance-
ments by including additional surfactants, which promoted Marangoni convection
in the presence. Additive enhancement in LiBr/H,O absorbers was also the focus
of the work of Cheng et al. [11], who introduced a semi-empirical equation for the
enhancement obtained with the respective additives. Garcia-Rivera et al. [12] also
found that the inclusion of a wavy model was key to explain the experimental data.
Alekseenko et al. [13] assessed 3D instabilities at 1.25 < Re < 4.7, and later on
the wave formation in annular gas-liquid flows [14], while the experiments of Khar-
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malov [15] shed light into the transition form 2D to 3D instabilities. In the particular
case of vertical films, recent studies of Akesjo [16] has focused on the development
of engineered surfaces that enhance flow instabilities and promote heat and mass
transfer.

In the computational front, simulations of Nave et al. [17] replicated the exper-
iments of Nosoko et al. [8] by using a ghost fluid - level set method and showed
potential to capture flows transitioning from 2D to 3D. The dominant role of in-
ertia in governing the surface waves [2] has been studied by Denner et al. [18, 19],
who performed remarkable experimental and numerical work, including the devel-
opment of new numerical techniques [20-22]. The dispersion of capillary waves was
studied by Pradas et al. [23] and also Denner [24]. The role of capillary flow sep-
aration at increasing heat and mass transfer characteristics was assessed by Dietze
and Kneer [25] from both experimental and numerical results, bolstering the role
of surface tension at promoting heat and mass transfer in this flow configuration.
Mass transfer enhancement at the capillary waves region was also confirmed by Bo
et al. [26] in their 2D simulation of a HyO/LiBr absorber at Re = 100. Similarly, the
work of Albert et al. [27] performed numerical simulations in order to asses the heat
and mass transfer characteristics of falling films, which confirmed, again, the role of
flow separation for the enhancement of such phenomena. The study of 3D structures
in Dietze et al. [28] also observed flow separation. The assessment of corrugations
and its impact in heat and mass transfer phenomena was also assessed by Dietze [29]
for Re = 15.

In addition to the already mentioned complex dynamics of such a flow, H,O/ LiBr
absorbers operate at very low pressures (~ 1000 Pa) [30] and hence operate with a
rarefied vapor. In turn, the vapor shows an extremely low density, which results
in an extreme density ratio and consequently extremely delicate dynamics. The re-
sulting working conditions are not only difficult to attain experimentally but also
numerically [12].

In this context, the assessment of inertia and capillary terms, which rule the flow
instabilities that promote heat and mass transfer, is of relevance for the development
of new HyO/LiBr absorbers. Nonetheless, the adoption of physically inconsistent
schemes is customary for both convective and capillary terms. Accentuated by the
high density ratios, this leads to inaccurate results and even numerical instabilities
that compromise the accurate solution of the system. This highlights, once again, the
importance of physics-compatible discretizations.

While the symmetry-preserving ideas [31,32] have been in place for quite some
time for the numerical simulation of turbulent flows, the adoption of this approach
to multiphase flows has lacked behind. The simulation of multiphase flows in a fully
physics-compatible way implies the conservation of discrete primary quantities (i.e.,
mass and momentum) and also secondary ones (i.e., mechanical energy) according
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to the physics described in the continuum. Two major obstacles prevent us from this:
the inclusion of surface tension and the advection of a varying density flow.

Regarding the inclusion of surface tension, and its impact on momentum and
energy, Fuster [33] developed on top of a Volume Of Fluid (VOF) method a dis-
cretization focusing on preserving the (skew-)symmetry of the operators involved,
albeit overlooked surface tension, which is know to introduce spurious oscillations
that may eventually lead to the divergence of the numerical simulation [34]. In the
context of the level set method, our previous work resulted in the inclusion of cur-
vature in an energy-preserving fashion [35], while the conservation of energy is still
elusive, a well known issue for diffuse interface flows [36]. Within phase-field meth-
ods, the pioneering work of Jacqmin [37] included surface tension in a consistent
way in the context of the Cahn-Hilliard equation, while Jamet et al. [38] and Jamet
and Misbah [39] did the same in the Allen-Cahn framework. Phase-field methods
success at capturing surface tension transfers between potential (elastic) and kinetic
energy rely on taking the gradient of a surface potential, while VOF and level set
methods aim at treating the usual curvature form.

The inclusion of a density-varying flow was tackled by Rudman [40] in the con-
text of VOF by adopting a consistent mass and momentum transport scheme, which
was focused on the simulation of multiphase flow with large density ratios. This
approach was also adopted by Raessi and Pitch [41] and Ghods and Hermann [42]
within the level-set method, while the work of Mirjalili and Mani [43] presented
no only a consistent mass and momentum transport scheme, but also an energy-
preserving scheme in the context of phase-field methods.

In this work, the framework of the well-known (mass) Conservative Level-Set
method [44] is adopted for capturing the moving interface. Base on the energy-
preserving level set method introduced in [35], we produce a fully energy-preserving
method for multiphase flows by including a consistent mass and momentum trans-
port as in Mirjalili and Mani [43]. Equipped with such a physics-compatible dis-
cretization, we target DNS of vertical falling films within the working conditions of
an industrial H,O/ LiBr absorption chiller.

The rest of the chapter is organized as follows: in section 4.2 the governing equa-
tions are introduced, in section 4.3 the numerical method is detailed, while in sec-
tion 4.4 the cases under consideration are introduced and the results commented.
Finally, in section 4.5 conclusions are drawn and future developments sketched.

4.2 Mathematical model

The subtle physical equilibrium at which the fluid system is subject calls for a careful,
and thus conservative, formulation of the governing equations.
The interface separating the two phases is modeled implicitly by means of a
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marker function 6 € [0, 1] which can be regularized as needed, as will be discussed in
next chapter. The values § = 0 indicate the liquid phase, 8 = 1 corresponds with the
gaseous one and 6 = 0.5 with the interface location. For a sufficiently well-behaved
0, the interface normal is defined as

. Vo
while the interface curvature is defined as
k=V -7 (4.2)
Note that when the marker function is the distance function, |V0| = 1 and thus
f; = V0.
The flow is assumed incompressible for both liquid and gaseous phases
V-i=0 (4.3)

under this assumption, the marker function obeys the following transport equation

% +V - (if) =0 (4.4)
ot
while the momentum transport is ruled by the conservative version of the dimen-
sionless Navier-Stokes equations. Exploiting the Nusselt flat film solution (see Ap-
pendix B for details) we introduce Reynolds (Re) and Weber (We) numbers. Ad-
ditionally, because we are concerned with the solution of both liquid and gaseous
phases simultaneously, we introduce density (II, = pg/p;) and viscosity (I, =
g/ ) ratios. Accordingly, we consider the non-dimensional versions of density
(Xp = p/p1 € [1,11,]) and viscosity (X, = p/p; € [1,11,]). We finally end up with
the following momentum equation
3 (X,il) o A
3Re | —5—+V- (Xpii @) | = =Vp+V-2X,S+ Xp$ (4.5)

subject to capillary forces at the interface, which impose a stress discontinuity, [¢] as
(o] = —Wexj; (4.6)

being o = —pll + uS the stress tensor, S = 1/2 (Vii + (Vii)T) the strain tensor and
§=1(0,-1,0).
Which introduce the following dimensionless parameters

Re = p’”le]”V 4.7)
We i (4.8)

 prunhy
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being hy the undisturbed film thickness and uy the mean liquid velocity. Details
can be found in Appendix B.

The domain under consideration is assumed to be periodic in both y and z di-
rections, while solid walls are present in the x direction. In a symmetric setup with
respect to the x mid-plane, there is a film flowing down each wall.

No-slip velocity

ﬁ|wall =0 (4.9)

and no marker flow
VO - fiwan =0 (4.10)

are prescribed at both solid walls.
The interface is initialized as in Dietze et al. [28] by prescribing a perturbation at
the film surface as

h=hy (1 + €ycos (27IXy> + €;cos <27‘L’/i>> (4.11)

where & is the perturbed film thickness, €, = 0.2 and €, = 0.05 are chosen according
to Dietze et al. [28] and correspond with amplitude of the perturbation in the y and z
directions, respectively. The wavelength Ay and A; are sufficiently large to represent
long-wave perturbations [2].

The velocity profile is initialized to the undisturbed flat falling film solution. De-
tails can be found on Appendix B.

4.3 Numerical Method

4.3.1 Regularization

The numerical resolution of equations (4.3-4.6) aims at providing an accurate and
reliable approximation. However, the adoption of an Eulerian-Eulerian framework
for tracking the moving interface introduce the need of regularization to: i) trans-
port sharp discontinuities within the domain and 7)) map equations formulated in
a Lagrangian framework into an Eulerian one. For these reasons, before proceed-
ing to the discretization and numerical integration of the aforementioned equations,
we need to take a regularization process which will, eventually, result in a more
amenable set of equations. It is shown how this regularization preserve mass, mo-
mentum (up to capillarity) and energy equations properties.

The numerical integration of equation (4.4) requires from a proper regularization
in order to avoid the appearance of spurious oscillations. This smoothing of the
marker function removes the concept of sharp interface, and replaces it by a diffuse
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transition region between § = 0 and 6 = 1. Nonetheless, the interface location can
still be defined for 6 = 0.5.

In the Conservative Level Set (CLS) method [44], this is accomplished numeri-
cally by the use of a SUPERBBE flux limiter [45], which we adapted to our numerical
platform in Chapter 3. Flux limiters add numerical dissipation in the vicinity of the
interface in order to smooth it down and made it more amenable [46], and so they
actually imply a dynamic regularization. The CLS method [44] regularize the initial
marker function by means of a hyperbolic tangent as

1 r
0 =5 (tann (52) +1) 412)
where r is the distance function to the interface and € is a smoothing parameter (in
this case, € = 0.05), resulting in a smoothed down Heaviside step function. Olsson
and Kreiss [44] introduced recompression steps into the transport of equation (4.4) in
order to maintain reasonably sharp interfaces, especially when it undergoes intricate
deformation.

However, the CLS method presents a major drawback: the recompression steps
are not energy neutral and so are disregarded in favor of energy conservation [35].
Fortunately, the film presents a smooth deformation, and so recompression is not
as critical as in flows undergoing complex interfacial deformations. Consequently,
we use equation (4.12) merely for formulation purposes and let the flux limiter con-
trol the interface thickness. This fact, results in method that effectively tracks the
smoothed volume fraction of the phases, resembling a smoothed version of the VOF
method.

Conservation of mass

Given the sharp interface, the continuous model can flawlessly impose sharp discon-
tinuities in physical properties. However, the use of a regularized marker implies a
phase-transition zone which needs to be taken into account. While sharp approaches
have been proposed in the literature [47], which provide accurate solutions locally,
they sacrifice global conservation as it will be shown next.

Obtaining density as a linear function on the marker function 0

p = po+ (o1 —po)f (4.13)

where p; corresponds with the density of the phase indicated with § = 1 (i.e., va-
por) and po with the density of the # = 0 phase (i.e., liquid). In terms of the non-
dimensional density X,, we obtain:

X, =1+ (T, ~1)6 (4.14)
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Using equation (4.13) along equation (4.4) leads to the following mass transport
equation
9 - 00 _
2V (ip) = o —po) (G + V- (@0)) =0 @15
which results in the conservation of mass within an incompressible flow (V - ii = 0),
as expected. Most remarkably, it is shown how the conservation of the marker func-

tion hide the conservation of mass equation, resembling, again, a smoothed down
VOF method.

Conservation of momentum

The use of the fully conservative version of the momentum equation lets the in-
clusion of capillary forces (disregarding gravity effects) as the only obstacle for the
conservation of momentum.

The inclusion of surface tension into the momentum equation (4.5) requires a
mapping from the Lagrangian frame in which equation (4.6) is formulated into the
Eulerian frame of the momentum equation (4.5). Mathematically, this can be done
by introducing Dirac’s delta function, which does exactly this for the weak form of
the equation. Following [35], we introduce the regularized Dirac’s delta function &
in terms of the regularized marker function 6 as

5 =|Vo| (4.16)

In this way, capillary forces in equation (4.6) can be included by means of the
Continuum Surface Force (CSF) method [48] by adding

We xfj;6 = We xkV (4.17)
to the momentum equation
2 (X, o A
3Re | —5—+V- (Xpii @il) | = =Vp+V-2X,S+X,8 + WexV6  (4.18)

Capillary forces are inherently conservative for a closed surface, owing to its
topological nature [49].
Conservation of energy

The evolution of kinetic energy Ey = 1/2 (pii, if)) for multiphase flows is discussed
next. We first analyze the conservation of energy in terms of the velocity field i and
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the conservative equations (4.15) and (4.18) as in [43]
dE, 1 (_ 9(pif) 1/ _ oi
dt_2<u’ ar ) TPy
1/ 9(pi) 1/ d(pii) 1/, _0
_2<u’at ol ) T2\
_ (- 9u)\ 1/ _dp
= (u, 5 —3 u,ug (4.19)
and introducing equation (4.15) it is shown how the only contributions to kinetic
energy are those arising from the momentum equation (4.18), as expected [50].

Following our previous work [35], we are left with the contribution of viscosity
and surface tension to Ey. Introducing equation (4.18) into equation (4.19) we obtain

Tk~ (5,2X,5) + We (€,x70) + (i, Xo3) (4.20)

We can then introduce surface energy as in [35]

S

E, = We (V6,1;) — (¥, X,3) (4.21)
where ¥ is position vector, and asses its temporal evolution as

dE
Tt" = —We (il,kV0) — (il, X,3) (4.22)
where we have used the First Variation of Area [35,51].
Finally, defining total mechanical energy as E;, = Ex + E, we can combine equa-
tions (4.20) and (4.22) to obtain the total energy equation as

At dt ot

which is negative-definite, as expected. Further details on the derivation on the
energy-preserving level set can be found in [35]. This is quite a remarkable result
as it has been shown that, despite working with a non-conservative form of the cap-
illary term, we may still preserve the total mechanical energy within the system,
resulting in an accurate, physics-compatible and stable system [35].

On the other hand, the only constrain for the inequality to hold is to provide with
a positive-definite non-dimensional viscosity. This leaves room for the adoption of
arbitrary interpolations on the reconstruction of viscosity. In this work we adopt a
linear interpolation, which is well-suited for high viscosity and density ratios

dE
AEn _ By d% _ (8,2X,8) <0 (4.23)

w=po+ (p1—po)0 (4.24)
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whose non-dimensional counterpart is
Xy =1+ (II,—1)6 (4.25)

while we may, eventually, adapt sharper approaches without compromising conser-
vation.

4.3.2 Discretization

The discretization is focused on preserving the underlying mathematical structure
of the space in order to attain consistent discretizations.

To do so, we proceed as in [35] by discretizing differential geometry operators
from a geometrical perspective and then construct discrete vector calculus opera-
tors within a finite volume method. In terms of Mimetic Methods [52-54] this can
be seen as the adoption of a low order basis. Once we obtain the discrete versions
of the differential geometry operators, we construct the discrete counterparts of di-
vergence (D), gradient (G), Laplacian (L) and convective (C(-)) operators, resulting
in a classical finite volume, second order, staggered method as introduced by Har-
low and Welch [32,55]. In addition, we introduce high resolution advectin schemes
(C(ug)) via flux limiters in a similar fashion [56].

After adopting proper regularization as described in section 4.3.1, we introduce
the following equations for the physical properties

pe =1+ (IT, — 1) 6¢ (4.26)
ne =14 (II, — 1) 6¢ (4.27)
while the original set of governing equations (4.3-4.5) is discretized as
Du¢ = 0, (4.28)
% — —C(u)0 (4.29)
3Re@ = —C(Pug)us — Gpc + Lug + We KgGO. + P{]g (4.30)

where ug stands for the staggered velocity field, 6. is the collocated marker function
and pc the collocated pressure, P = diag (p¢) is the diagonal matrix arrangement
of the staggered density, and K¢ = diag (Yk,) is the diagonal arrangement of the
staggered curvature that was introduced in Valle et al. [35].

Conservation of mass

Despite not tracking a discrete counterpart of the mass conservation equation (4.15)
explicitly, the conservation of the marker function stated in equation (4.29) together
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with the linear reconstruction of density in terms of equation (4.26) yields an implicit
conservation of mass equation as

dpc d0.

= = (o1 —Po)g = —(p1 — po)C(ug)8c = —C(ug)pe (4.31)

which, just as in the regularized case, it is implicitly defined by means of equa-
tions (4.26) and (4.29).

As a result, mass is preserved as far as the marker function is, just as in the reg-
ularized case. Note, however, that the velocity field needs to satisfy Dug = 0, which
is not easy to achieve in general at the discrete level, as it will be discussed in sec-
tion 4.3.3.

Conservation of momentum

The discretization of linear momentum stated in equation (4.30) preserves momen-
tum in virtue of the original conservative formulation.

Nonetheless, the inclusion of the capillary term does pose a challenge regarding
conservation of linear momentum.

Conservation of energy

Finally, following the regularization introduced in section (4.3.1), we aim at preserv-
ing total mechanical energy at the discrete level. To do so, we first derive the evo-
lution of discrete kinetic energy as in equation (4.19) by including equations (4.30)
and (4.31), the former requiring the use of the isometric cell-to-face interpolation
operator I in order to match dimensions. After rearranging terms, we obtain

dEy
dt

¢ C(Pug)ug) + (ug, Gpe) + (ug, Lug) + We (ug, KgGOc) + (ug, P[|g)

u
1
+ 3 (g UTIC(ug) pe)

(4.32)
where U = diag (ug) is the diagonal arrangement of the staggered velocity field. We
have also included the implicit version of the mass transfer equations, even when,
as it was discussed above, this equation is not explicitly computed.

Subsequently, the evolution of discrete potential energy equation is obtained in
analogous way as in equation (4.22)
dE
Ttp = —We (ug, KEGO,) — (ug, Pg) (4.33)
where we have adopted an energy-preserving discretization of the capillary terms

as we did in [35].
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Finally, we are now able to assess the evolution of discrete mechanical energy as
we did in equation (4.23) by including equations (4.32) and (4.33). After rearranging,
we obtain

dEm

1
I = — (uf,C(Puf)uf) + 5 (uf, UHC(uf) pc) + (Uf, Luf) <0 (4.34)

where the pressure terms has vanished given that Du¢ = 0, as shown in [32].

We are, however, left with the two first convective terms in equation (4.34) which
should, in virtue of its convective nature, ideally vanish.

From this point onward, we follow Mirjalili and Mani [50] to show how the adop-
tion of a consistent mass and momentum transport and a smart interpolation strat-
egy results in an energy-consistent discretization. To do so, we proceed first by not-
ing that the momentum convective operator is not skew-symmetric due to DPug # 0.
However, a closer look to the convective operator shows that, due to the mimetic
structure adopted for the construction of C(-), it is skew-symmetric except for the
diagonal term, which corresponds with half the staggered divergence of the flow,
1/2diag (TIDPug), where the 1/2 factor arise from the skew-symmetric operator ap-
plied to the transported velocity field [32]. Note that, owing to Dug = 0, this results
in a purely skew-symmetric operator when density is constant, as in Verstappen and
Veldman [32]. Exploiting this fact, we can decompose C(Pug) as

C(Pug) = C(Pug) + %diag (TIDPuy) (4.35)

where we introduce a purely skew-symmetric operator, C(Pug), which results into
an energy neutral operator.
Introducing equation (4.35) into equation (4.34) we obtain

dE 1 , 1
i = 5 (ugdiag (TIDPug) ug) + 5 (ug, UTIC(ug)p) + (uy, Lug) (4.36)
then, exploiting Ab = diag(a)b = diag(b)a = Ba to rearrange diag (IIDPu¢) uy =
UDPug first and Pug = Upg later, we obtain
dEm 1 1
T = 5 (ug, UTIDUpg) + 5 (ug, UHC(uf)pc) + (uf, Luf) (4.37)
We then introduce the definition C(u¢) = DUY introduced in [35,56], where ¥ con-
tains the high resolution cell-to-face interpolation, to yield

dEm

1 1
5 = 5 (ug ULIDUpg) + 5 (ug, ULIDU¥pe) + (uy, Lug) (4.38)
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from where we can infer the proper cell-to-face interpolation for the discrete density
field as
pe = Toc (4.39)

in order to cancel out the convective contributions to the discrete mechanical energy
and yield the desired equation

TEm _ (e Lug) <0 (4.40)
dt
Note, however, that p. is actually not computed. Nonetheless, in virtue of the
linear relationship between 6 and p stated in equation (4.13), the relation can be
expressed in terms of the marker function at the faces 8¢, which is needed for the
integration of equation (4.29) and thus can be reused as

P = po + (01 — P0) O (4.41)

stating an explicit relationship between the advection of the marker function and
the reconstruction of density. This was previously introduced in the literature, along
with other specific techniques, as consistent mass and momentum transport [40—42].
The reader is referred to Mirjalili and Mani [50] for a thoughtful review on this topic.

In summary, we have developed a consistent discretization that can easily pre-
serve mass, momentum (up to surface tension) and energy, as it can be seen in ta-
ble 4.1.

C(uf)0c  C(Pup)uf Gpe Luy WeKgGOc P[]g

mass v n/a n/a n/a n/a n/a
momentum n/a v v v X v
energy n/a v v v v v

Table 4.1: Summary of terms involved in the discretization and whether their dis-
cretization obeys the expected behavior regarding mass, momentum and energy.

4.3.3 Integration

The adoption of a fully conservative formulation removed an explicit equation for
velocity, preventing us form directly adopting a classical Fractional Step Method
(FSM) [57-59] for the pressure-velocity decoupling. However, following the origi-
nal work of Rudman [40], the adoption of the FSM method can proceed with slight
modifications. We adopt the LU decomposition approach introduced by Perot [58] in
order to show the integration procedure of an explicit time integration scheme and
the modification with respect to the classical FSM followed by Rudman [40].
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Next we will highlight the most relevant modifications to the classical FSM. First,
following the conservative nature of the governing, equations, we will integrate in
time discrete momentum 1i.e., considering (Pu¢) as variable on its own. Second, we
will use the new density and momentum fields in order to obtain a new velocity field
which is consistent with the former two. Finally, to ease the algebraic manipulation,
we will apply the Laplace transform (£) to the semi-discretized. Namely, we will use

d L

S <;>sf(s> (4.42)
/ f@)dr <£5 25(5) (4.49)

to handle time derivative and time integration in an entirely algebraic way. Nee-
dles to say, we will recover the differential formulation after we are done with the
algebraic manipulation To sum up, the semi-discretized equations (4.29) and (4.30)
can be compiled together with the velocity-momentum expression and the usual
divergence-free constrain Dug = 0 to result in a linear system of equations Ax = b
as the following one

s 0 0 0 0c —C(ug)0c
0 s 0 G| [Pu]| [R(pi u", p")
01 —P 0| w |~ 0 (4.44)
00 D 0/ \pe 0c
where R(p¢", us”, pc”") = —C(P"ug")u" — Lug" + WeK"GO,." + P"[|g corresponds
p 8 P

with the right hand side of equation (4.30) without the pressure term. Note the role of
the Laplace transform in the first and second rows, which reads as time derivatives of
0c and (Pug), respectively. The third row of the matrix impose the match between the
velocity (ug) and momentum ((Pug)) at the next time level, while the last one enforce
the incompressibility constraint to (ug). Note that the left hand side is evaluated at
time level n + 1, while the right hand side is evaluated at n. In an explicit setup as
the one described here, this implies that the density field used for the momentum
transport (2nd row) is evaluated at time level n, whereas the density field used to
impose the divergence-free velocity field is evaluated at time level n + 1. We can
then perform an LU decomposition as

s 0 0 0 s 0 0 0 .. 00 0
0s 0 G| (0 s O 0 0 If 0 gc
0l —P o]~ |0 I —P 0 0 0 I PG (4.45)
00 D 0 00 D -Ipplg/\o 0 0 I

where the role of s in L and 1/s in U can be read, after undoing the Laplace trans-
form, as “take the derivative of” and “perform the time integration on” whatever
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variable results from the algebraic manipulation, respectively. From here, the mod-
ified FSM algorithm follows by the usual solution of the system by LU inversion.
Namely, we take a predictive step

s 0 0 0\ ' /e \* —C(ug) 0,

0 s 0 0 Pu¢ | | R(pf" ug”, pc”)

0o ppP! —lpp7lGc 0 w | 0 (4.46)
0 —I 1G P Pc 0

and subsequently a corrective one

e 00 0 \ '/o. 6\

0 Ik 0 lg Pug | | Pug

0 0 lf %P_lG ug - ug (447)
0 0 0 le o Pc

Undoing the Laplace transforms for the time derivatives terms, we realize that we
can actually re-define pressure to include the time integration involved in both pre-
dictor and corrector steps, resulting in a way simpler manipulation. We summarize
the resulting algorithm as were we have we have re-stated the computation of the

Algorithm 1 Integration of the governing equations along a Fractional Step Method
as in [40]

1 Integrate d;‘ = —C(ug)6." — 011

2 Integrate % =R(p¢", u¢",pc")  — (Pug)”

3  Solve Prtlyg* = (Puy) — ug”

4 Solve DP1Gp./ "1 = Dug* — pt!

5 Correct  ug"t! =uf* — %PfleC — ugMt

6 Update  (Pug)""! = prilgtl — (Pug)"™!

(PUf)n+l in the equivalent form of step 6 to reassert that the new momentum field is
consistent with the divergence-free velocity and density fields.

Time integration is performed with a 3rd order Runge-Kutta method for step 1
and a 2nd order Adams-Bashforth one for step 2. The solver used in step 4 is a
Preconditioned Conjugate Gradient (PCG) method preconditioned with P in order
to reduce the condition number of the system. Steps 3, 5 and 6 are trivial element-
wise manipulations.
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4.4 Preliminary results

With the aforementioned discretization in mind, we showcase the proposed DNS
discretization of the system with the simulation of three industrially relevant falling
films.

While actual absorbers consist of long tubes in which the film develops, we focus
on the fluid dynamics of a rather simple wave, which can be seen as considering a
single region within the absorber.

Because the physics we target are inherently fluid- and thermal dynamic, we
need to estimate the physical parameters of the working liquid-gas pair to a constant
value. Namely, we impose the conditions at the inlet of the absorber, which is where
most of the heat transfer takes place. Regarding the discretization domain, instead
of imposing symmetry, we set up a symmetric layout consisting of two films falling
down parallel walls.

For the liquid phase three typical working fluids will be considered. Pure wa-
ter (HO) at saturation temperature will set the base case; while two industrial lig-
uid/absorbent pairs at 50°C will also be considered: the classical H,O/ LiBr solution
and the commercial H,O/Carrol; where Carrol is a mixture of mainly LiBr and ethy-
lene glicol in a 4/5 mass ratio. A summary of the working conditions can be found
in table 4.2.

While liquid and vapor properties are well defined for pure H,O, the liquid prop-
erties strongly depend on the absorbent (i.e., LiBr or Carrol) mass fraction, which is
adjusted in order for the solution to exhibit the same saturation pressure (i.e., an
equivalent mass transfer potential). While typical absorption chillers operate under
negative pressures (i.e., ~ 1220 Pa absolute pressure) we will stick to atmospheric
vapor phases.

Density and viscosity for both phases are then obtained from temperature, pres-
sure and, for the liquid phase solely, absorbent concentration. Lacking better con-
ditions, surface tension properties are taken at equilibrium conditions between pure
water and steam, i.e., regardless pressure and absorbent concentration.

Finally, the Reynolds number will be set at Re = {150,200} to define typical
falling film dynamics involved in LiBr absorption chillers.

Introducing the Kapitza number

v

= 173 4/3
o1 2ut

Ka (4.48)

we obtain a dimensionless number that is fixed with the physical properties of the
working liquid, while the density (I1,) and viscosity (I,) ratios provide with the in-
formation regarding the vapor phase. In this manner, the liquid-gas pair properties
can be fully described by Ka, I1, and IT,, while Re is left as the solely variable con-
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id fluid T(°C) Xuws Ka TI,(x1073) TI,(x1073)
A HO 9.9 0.00 2420 0.60 9.37
B  H,O/LiBr 50.0 0.60 443 0.35 2.45
C HyO/Carrol  50.0 0.67 150 0.35 1.10

Table 4.2: Estimated fluid properties dimensionless groups. Because thermal prop-
erties are estimated at a characteristic state, values are rounded to ease its handling.

trolling the fluid dynamics of the system. With this in mind, we obtain the following
table estimating the physical properties group for the 3 working fluids.

The computational domain is a [10ky x Ay x A;] box with periodic boundaries
in both y and z directions, where Ay = Ay = 100k, which correspond with the
length of a long-wave perturbation. We will denote x, y and z directions as wall-
normal, stream-wise and span-wise, and Ny, N, and N; the number of nodes in the
x, y and z directions. The formulation in terms of the Nusselt scaling as presented in
section 4.2 allows for a unified interface resolution regardless of the Reynolds num-
ber. The mesh is refined in the vicinity of the flat film thickness and coarsened at the
center of the box, where the gas phase is expected. It is therefore symmetrical with
respect to the wall-normal mid-plane. The following expression gives the refinement
introduced in the x axis

sinh (oc (ﬁ — 0.5))
x=Ly |05 1+ ~ Vie [0, N,
* fx sinh (%) [0, N/}
tanh ( BN — 0.5
x =Ly | fe +05(1—2f) (1+ (65 22’ ))> Vi € [Ny, Ny — Ni]
tanh (j)
sinh (ac’;l\%ijl\” — 0.5)
x=Ly [ (1—f)+05f [1+ o (5 Vi € [Nx — Ny, Ny]
2
(4.49)

where Ly = 10, fy = 0.2 is the fraction of L, refined close to the wall, while N, =
N, /3 is the number of nodes introduced in the refinement regions. Parameters « = 2
and B = 2 control the smoothness of the refinements.

The numerical methods and algorithms introduced in this work have been im-
plemented in the framework of the in-house platform TermoFluids [60].

Results shown in figures 4.4 and 4.4 show the impact of the decreasing Kapitza
number into the dynamics of the surface. As it can be seen, the stabilizing effect of
surface tension fades as the Kapitza number is reduced, thus enhancing the appear-
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ance of larger humps and complex instabilities.

In this regard, results show the appearance of a leading depression before the
arrival of the wave tip, which drains fluid in the z direction, which contributes to the
appearance of 3D structures as shown in [28]. This depression is more pronounced
in the low Kapitza cases due to the stabilizing effect that capillary force plays in the
development of surface deformations. While the stiffer case A presents a less marked
curvature, it also presents more undulations on the film surface. This results in the
appearance of a more dispersed velocity field on top of the film surface. Conversely,
lower Kapitza numbers result in more acute film deformations, which, on the other
hand, contribute to smaller, but also more coherent, flow patterns.

Il<u>11 Il<u>11 Il<u>l |
0.0e+00 05 1.0e+00 0.0e+00 05 1.0e+00 0.0e+00 05 1.0e+00
i —-— -_—

Figure 4.1: Velocity magnitude on the film surfaces for cases A, B and C at Re = 150
after T = 100.

Regarding the shape of the film interface, it can be observed how case B produces
a more abrupt hump, showing a marked preceding wave rise and a also a central
delay on wave maximum, pushing the flow in the z direction and thus revealing the
incipient formation of a horseshoe pattern. On the other hand, milder surface effects
in case C result in a smoother undulation, which show smaller z axis flow which
is mainly in the y direction. These effects are intensified with the increase of the
Reynolds number, as it can be seen for case B at Re = 200. In that situation, the wave
is rolling on top of itself thus increasing the hump height an resulting into a growing
large scale instability. On the other hand, the high Kapitza case presented in case A
shows milder velocity fields at higher Reynolds numbers, which may caused by an
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I<u>11 Il<u>11 I<u>11
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Figure 4.2: Velocity magnitude on the film surfaces for cases A, B and C at Re = 200
after T = 100.

intensified momentum diffusion at the interface due to the high frequency pattern
that the undulations on top of the surface form.

Figures 4.4 and 4.4 show an increasing intensity of the wavy behavior along with
and increased Reynolds number, as expected. They also reveal a flatter interface for
the high Kapitza case, while cases B and C show the clear appearance of the wave
pattern.
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4.5 Conclusions

The method has been deployed in the DNS of vertical falling films under extreme
density ratios, which pose a major numerical challenge and at the same time are of
industrial relevance.

Results are in accordance with the expected behavior of such films and reported
in both experimental and numerical literature. In this regard, it is shown capillary
forces stabilizing effect on the film dynamics. Accordingly, reducing surface tension
(e.g., by adding surfactants) is observed to enhance instability of the system.

A fully mass and energy-preserving scheme has been developed in the context
of the conservative level set method. Extending our previous work on the energy-
preserving inclusion of curvature [35] and adopting the ideas presented in Mirjalili
and Mani [43] for the discretization of the convective terms, we have succeed at
presenting a formulation which is mathematically consistent. The aforementioned
merits benefit from the adoption of our heavily algebraic-based formulation both for
the discretization of the terms comprising the discrete equations and the formulation
of the modified FSM proposed by Rudman [40], as it simplifies the analysis of the
new method properties; revealing the close connection between consistent mass and
momentum transfer and the conservation of energy.

In summary, such a consistency requires the adoption of the same discretization
for the mass flux at the faces (either it is implicitly or explicitly computed) and the
adoption of a pressure-velocity splitting scheme which enforce the consistency be-
tween density and momentum fields.

While we succeeded at the formulation of a fully mass conservative and energy-
preserving scheme, the conservation of linear momentum is still unclear [36]. How-
ever, as it was already commented in [35] while the lack of conservation of total
momentum is an undesired property, the adoption of an energy-preserving scheme
provides a bound on total energy and thus a bound on the system variables, which
in turn provides with enhanced stability. Nonetheless, the conservation of linear
momentum is an active line of research that deserves further discussion.
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Conclusions

The dynamics of a vertical falling films has been captured by means of DNS.
Special effort has been put to lay down a mathematical model and a computational
setup which are physically consistent, robust, and stable; providing with reliable
results.

A priory analysis of falling film have revealed an intense and interesting nonlinear
behavior, producing intricate flow patterns which are relevant to many industrial
applications. In particular, the role of capillary forces shaping the film interface also
has consequences on the development of the flow pattern on the surface.

Spurred by such an industrially relevant, physically complex, mathematically
unstable and computationally demanding case; and inspired by the rich experi-
ence of the ones that preceded us, we have succeeded at developing a new energy-
preserving scheme that is numerically robust for all working conditions and compu-
tationally efficient. In this regard, the adoption of an algebraic approach has shown
to provide with two synergistic effects: on the one hand, the adoption of an algebraic
language has enabled the analysis and design of novel methods for the computation
of surface tension and convection; on the other hand, the expression of the resulting
scheme in algebraic terms has enabled its deployment into parallel and heteroge-
neous architectures.

During the development of the numerical techniques required for the physics-
compatible simulation of multiphase flows, remarkable issues have been encoun-
tered that deserve further attention on future research.

The elliptic nature of the incompressible constrain in the Navier-Stokes equations
results in the unavoidable need to solve a discrete Poisson equation. While this can,
in principle, be done with arbitrary precision for any working conditions, in practice
the use of an exact method becomes unaffordable when it comes to solve the dis-
crete system of equations and thus the adoption of approximate solvers (e.g. Krylov
methods) is customary.
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Solver performance

In this regard, the presence of particularly high density ratios in the system DP ~1Gp,
Du¢* result in an ill-conditioned system of equations, as the condition number grows
with I'T,. For the Krylov-like solvers used in this work, this degrades its convergence
properties severely, resulting in longer computational runs and, eventually,loss of
quality of the solution. While a precondition strategy has tried to compensate for
this situation by using P to precondition the system, the convergence rate of the
solver has room for improvement. The addition of extra preconditioners may en-
hance the seed of the iterative method, while the overall computational cost must be
assessed to ensure a net gain of this approach.

Numerical resilience

The approximate solution of the Poisson equation, implies that the divergence-free
condition only holds approximately at the discrete level (i.e., Dug ~ 0). This com-
promises most of the developments concerning mass, momentum and energy con-
servation, namely due to the transport and surface tension terms, as it was stated in
chapters 2 and 4.

While single phase flow simulations can correct this inconsistency by imposing at
the discrete level a skew-symmetric convective operator in the momentum equation,
by removing the diagonal terms of C(u). However, the adoption of similar approach
to multiphase flows require of additional variations which make it impractical.

First of all, the convective operator of the momentum equation for multiphase
flows is already know to contain terms at the diagonal. This fact is actually exploited
to come up with a solution that effectively preserve kinetic energy by matching this
diagonal terms with the mass fluxes used to compute the mass conservation equa-
tion, the later being legitimately non divergence-free. The problem has moved then
precisely to the mass conservation equation which, as it was mentioned before, is
implicitly computed by means of the marker function transport equation. While we
can enforce the divergence-free marker function convective operator, this collisions
with the energy-preserving computation of curvature detailed in chapter 2 by break-
ing the DUY pattern for the high-resolution scheme used in C(uy), by virtue of which
we match ¥ = —YT.

High resolution schemes

The advection of sharp discontinuities boils down to the adoption of high resolution
schemes, as has been discussed in chapter 3. While this is a classical problem in
the numerical methods community, and despite the developments and tremendous
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amount of research devoted to this topic, progress in the development of compact
and arbitrarily compact schemes remain exiguous.

While the primary role of high resolution schemes is to transport sharp inter-
faces, which it is on its own a topic of interest for the numerical multiphase flow
community; its secondary role is intimately related with the calculation of curvature,
which is mathematically conceptualized by the First Variation of Area principle and
implemented trough the adoption of the proper cell-to-face interpolation, as stated
in chapter 2. In addition, chapter 2 shown as well that the adoption of numerical
artifacts that sharpen interfaces by including additional terms, namely recompres-
sion, result in the artificial addition of surface energy if they do not match the DUY
form, which leads us, again, to the high-resolution cell-to-face interpolation. Over-
all, this reasserts the interest in the design of high resolution schemes not only from
the stability and boundedness perspectives, as it customary, but also from a wider,
geometric-aware perspective.

Momentum conservation

The inclusion of surface tension in the simulation of multiphase flows is almost as es-
sential as the simulation of the interface itself. As can be stated from the rich physics
that rely on the capillary forces that have been reported in this and other works, its
inclusion has a relevant impact on the system dynamics.

Owing to its inherently surface nature, capillary forces are conservative when
acting on a closed surface, while boundaries should be included when they are not,
giving rise to the appearance of contact angle effects. While this condition is flaw-
lessly formulated in the continuum, preserve this property at the discrete level is
way more challenging.

Despite all the effort put on the achievement of a detailed and accurate physics-
compatible framework, the conservation of linear momentum in the surface tension
term is actually elusive in this work. While this is usual for most diffuse inter-
face models [1], particularly when adopting CSF methods [2], notable exceptions
overcoming the CSF framework are motivated from the phase-field community [3],
which we may see as an interesting variation of the CLS method. Nonetheless, the
adoption of discrete models which are formally different from the continuous ones
(i.e., removing curvature calculations) results into an interesting disquisition.

Closure

The deployment of massive supercomputers promise plenty of computational re-
sources, but come along increased cost for the simulations carried over in such mas-
sive computers. This is a game changer on the way we look at multiphase flow
simulations as, similarly to what the single phase turbulence community realized
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years ago, the performance of more expensive simulations is accompanied by higher
expectations about the reliability of the results. In this context, the development of
techniques for the simulation of multiphase flows is slightly turning into the adop-
tion of more physics-motivated techniques, which promise not only better stability
and robustness, but also higher fidelity results.

As all development shifts, this clashes with the historic inertia of many numer-
ical techniques which, just as we try do today, where suited to the computational
resources at the time of its development. Nonetheless, far from an inconvenience,
this must serve as a stimulating challenge and to enrich present development with
pioneers experience, which must be acknowledged, studied, questioned and revis-
ited once and again.

This work is rooted from a dual perspective. On the one hand, the research
embraced the computational challenge from the very beginning and saw it as an
opportunity to adopt a novel mathematical framework, which in turn boosted the
development of new discretization schemes that lead to the tackling of stimulating
industrial challenges. Conversely, the resolution of a technically relevant problem
required of the adoption of a physics-compatible discretization, which in turn re-
quired of a robust mathematical framework, which resulted to be very favorable to
the deployment of the resulting algorithm in massive supercomputers.
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Appendix A

Inner products

Inner products are bilinear maps from a vector space to its base field (i.e., (-, -)g :
S x § — K). Inner products can be defined over both continuum and discrete spaces
as

(F.89)s = [, fsds Vfges (A1)

This definition can be readily applied to discrete fields, yielding the definition of
inner products for discrete vectors within metric spaces as

(fS/ gs)s = fsTMSgs (A.2)

where Mg takes over the role of integrating in space, whereas the transpose of the
first element provides with the appropriate order to perform the subsequent prod-
ucts and sums. This can be seen by expressing f and g as a finite sum of piecewise
defined base functions.
Within this framework, we can define skew-symmetry as the property of opera-
tors satisfying
(¢, AY) = — (Ap, ) Vo, peS A:S—=S (A.3)

where, in the discrete setting, A must be a skew-symmetric matrix. Similarly, we can
define duality as

(¢, Ap) = (A%, ) VopeSpeT A:T—S A" :S—>T (A4)

By using the aforementioned definitions and the well-known Gauss-Ostrogradsky
theorem, it provides with

,v-*:/ v-*:-/v-w/ g-f NG
(f, V-3 AR G V8t 8 (A.5)
where we can see that, assuming that there are no contributions from the boundary,
the usual relation (f,V - §) = — (Vf,g) holds as usual. However, if there is a dis-

continuity in either f or § as a consequence of, say, an interface (I') in the domain, this
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prevents us from using equation (A.5) directly, but rather first in both sub-domains
separately and then sum them together. This results in an explicit expression as

(u,v.a):/uv-az/ uz‘;’-ﬁ—i—/[uz’;’]-ﬁ—/Vu-z’f (A.6)
Q Q) T O

where the discontinuity is now explicitly included in the system. Note then that for
a discrete system, the aforementioned gradient-divergence duality is

(us,D[s]v)g = — (Gus, [s]v)g —0—/r [us[s]o] (A7)
where the extra rightmost term captures the corresponding jump of the variables

under consideration. Note that a proper approximation of I is required in order to
obtain accurate solutions.



Appendix B

Modified Nusselt Flat Film
scaling

The most elementary solution of falling films date back to Nusselt [1], who de-
veloped an analytic solution for laminar, steady, flat falling films by neglecting the
accompanying phase inertia. This was used as the reference flow used to scale the
Navier-Stokes equations and result into a dimensionless form. However, the inclu-
sion of the gas phase under the same scaling is straightforward and provides insight
into the role of density and viscosity ratios in the system.

The plan of the presentation is as follows: first a review of the Nusselt flat film so-
lution is presented; subsequently, a new version considering both liquid and gaseous
phases is developed.

Because for the original Nusselt solution we are only interested in the liquid
phase, we depart from the incompressible Navier-Stokes equations for a single phase

V-i=0 (B.1)

o " 2., o
Y §+(u-V)u = —=Vp+uVii+pg (B.2)
o] %i = —yxhi (B.3)

and assume a fully developed vertical (y component) laminar flow to yield
0 = uV2uy + pgy (B.4)

Under these assumptions, the velocity profile results in a semi-parabolic vertical
velocity component which is a function of the wall-normal direction x only

uy(x) = ‘(Z%x (2hy — x) (B.5)
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where hy is the thickness of the film, also known as the Nusselt thickness. The
integral of the velocity profile along such a film thickness provides with the average

flat film velocity
1 I Sy
MN = E/O uy(x)dx = 7 (B6)

Because the problem is ruled by an imbalance between viscous stresses and grav-
ity acceleration, characteristic scales should consider them also. Hence can now in-
troduce viscous-gravity scales, namely the viscous length

2N 1/3
I, = V> B.7
(g (87)

1/3
f = (;) (B.8)

These allow to define the following reference values in order to obtain a non-
dimensional version of equations (B.1) and (B.2)

and viscous time scales

- ! W3 -
¥ = hnX t=t,—T =0 p = pghnP (B.9)
hN ty ly
where capital letters are introduced to distinguish non-dimensional variables from
its dimensional counterparts.
Introducing equations (B.9) into equations (B.1-B.3), we finally obtain:

v-U= (B.10)
3Re (aabtl u > —VP+ Vi +3 (B.11)
[ PI + vu = —Wex; (B.12)

Which is the typical dimensionless form used for falling films. Finally, we in-
troduce the dimensionless density and viscosity of both liquid and gas phases, both
referenced to the liquid properties

[ K
X, =& X, = — B.13
_ T (19
which take the values X, = 1 and X;, = 1 for the liquid phase and X, = =% =TI,

and X, = % = I1,, for the gas phase, where I1, and IT, are the gas/ l1qu1d der151ty



References 115

and viscosity ratios, respectively. In this manner, we can modify the dimensionless
momentum equation (B.11) to consider both gas and liquid phases

—

3Re (a@;u)Jrv- (prl®ﬁ)) —V S+ X,8 (B.14)

subject to the definition of stress as
X =—-PI+X,S (B.15)

where S corresponds with the dimensionless form of the strain tensor. Note that due
to the variability of X,,, the usual Laplacian formulation of the viscous term can not
be used. This induce a reformulation the jump conditions as

(2] = —Wexi; (B.16)
for the same reason. Finally, the divergence (B.10) equation close the resulting system
in terms of Re, We, I, and IT,.
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