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Abstract

The fight against malware has never stopped since the dawn of computing. This
fight has turned out to be a never-ending and cyclical arms race: as security analysts
and researchers improve their defenses, malware developers continue to innovate, find
new infection vectors and enhance their obfuscation techniques. Lately, due to the
massive growth of malware streams, new methods have to be devised to complement
traditional detection approaches and keep pace with new attacks and variants.

The aim of this thesis is the design, implementation, and evaluation of machine
learning approaches for the task of malware detection and classification, due to
its ability to handle large volumes of data and to generalize to never-before-seen
malware.

This thesis is structured into four main parts. The first part provides a system-
atic and detailed overview of machine learning techniques to tackle the problem of
malware detection and classification. This dissertation presents the following con-
tributions that extend and complement previous work:(1) it provides a complete
description of the methods and features in a traditional machine learning workflow
for malware detection and classification; (2) it explores the challenges and limita-
tions of traditional machine learning; (3) it analyzes recent trends and developments
in the field with special emphasis on deep learning approaches; (4) it presents the
research issues and unsolved challenges of the state-of-the-art techniques; and (5) it
discusses new directions of research.

The second part is devoted to automating the feature engineering process through
deep learning. Traditional machine learning approaches in the literature rely on
the manual extraction of hand-crafted features defined by experts. However, these
solutions depend almost entirely on the ability of the domain experts to extract
characterizing features that accurately represent malware, and depending on the
type of features extracted, such as n-gram features, the feature extraction process
becomes a very time-consuming and memory-intensive process. Deep learning re-
places the feature engineering process with an underlying system, which typically
consists of a neural network with multiple layers, that performs both feature learn-
ing and classification. With deep learning one can start with raw data, as features
will be automatically created by the network during the training procedure. This
is achieved by stacking one or more convolutional layers, where the first ones learn
to extract n-gram like features from the hexadecimal representation of malware’s
binary content and its the assembly language source code.
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The third part of this thesis is devoted to investigating mechanisms to combine
multiple modalities of information to increase the robustness of deep learning classi-
fiers. Modalities are, essentially, channels of information. These data from multiple
sources are semantically correlated, and sometimes provide complementary informa-
tion to each other, thus reflecting patterns that are not visible when working with
individual modalities on their own. Consequently, by only taking as input the raw
bytes or opcodes a great deal of useful information for classification is overlooked.
Subsequently, this thesis investigates how to combine various sources of information
in deep learning architectures using an intermediate fusion strategy, and it presents
a wide and deep learning framework, named HYDRA, that combines the benefits
of feature engineering and deep learning.

The fourth part of this dissertation discusses the main issues and challenges faced
by security researchers such as the availability of public benchmarks for malware re-
search, and the problems of class imbalance, concept drift and adversarial learning.
To this end, it provides an extensive evaluation of deep learning approaches for mal-
ware classification against common metamorphic techniques, and it explores their
usage to augment the training set and reduce class imbalance. The metamorphic
techniques analyzed are the following: (1) the dead code insertion technique, (2)
the registers reassignment technique, (3) the subroutine reordering technique and
(4) the code reordering through jumps technique.

Thesis Supervisor
Jordi Plances Cid

Thesis Director
Carles Mateu Piñol
Jordi Planes Cid
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GOING DEEP INTO THE CAT AND THE MOUSE GAME: DEEP LEARNING
FOR MALWARE CLASSIFICATION

Resumen

La lucha contra el software malicioso no se ha interrumpido desde los inicios de la era
digital, resultando en una carrera armament́ıstica, ćıclica e interminable; a medida
que los analistas de seguridad y investigadores mejoran sus defensas, los desarrol-
ladores de software malicioso siguen innovando, hallando nuevos vectores de infección
y mejorando las técnicas de ofuscación. Recientemente, debido al crecimiento ma-
sivo y continuo del malware, se requieren nuevos métodos para complementar los
existentes y aśı poder proteger los sistemas de nuevos ataques y variantes.

El objetivo de esta tesis doctoral es el diseño, implementación y evaluación de
métodos de aprendizaje automático para la detección y clasificación de software
malicioso, debido a su capacidad para manejar grandes volúmenes de datos y su
habilidad de generalización.

La tesis se ha estructurado en cuatro partes. La primera parte presenta las
siguientes contribuciones que extienden y complementan los estudios realizados hasta
la fecha: (1) proporciona una descripción completa de los métodos y caracteŕısticas
empleados para la detección y clasificación de software malicioso; (2) explora los
retos y limitaciones de los algoritmos de aprendizaje automático; (3) analiza las
tendencias y avances, con especial énfasis en los métodos de aprendizaje profundo;
(4) introduce los desaf́ıos sin resolver de la técnicas actuales; y (5) presenta nuevas
ĺıneas de investigación.

La segunda parte consiste en la automatización del proceso de extracción de car-
acteŕısticas mediante aprendizaje profundo. Por un lado, los algoritmos de apren-
dizaje automático se basan en la extracción manual de caracteŕısticas definidas por
expertos. Sin embargo, el desempeño de estas soluciones está sujeto casi exclusi-
vamente de la habilidad de los expertos de determinar un conjunto de propiedades
clave que permitan representar con mayor precisión al software malicioso, y dependi-
endo del tipo de caracteŕısticas, como por ejemplo, n-grams, el proceso de extracción
es muy costoso en términos de tiempo y memoria. Por lo contrario, el aprendizaje
profundo reemplaza este proceso por un sistema, que t́ıpicamente está formado por
una red neuronal con múltiples capas o estratos, que lleva a cabo el aprendizaje
de caracteŕısticas y posterior clasificación simultáneamente. Esto es debido a que
con aprendizaje profundo, el sistema puede recibir los datos en bruto, dado que las
caracteŕısticas serán creadas automáticamente por la red neuronal durante el pro-
ceso de entrenamiento. Esto se logra mediante el apilamiento de una o más capas
convolucionales, donde las primeras aprenden a extraer n-grams de la representación
hexadecimal del código binario y del código ensamblador.

La tercera parte consiste en la investigación de mecanismos para combinar múltiples
modalidades o fuentes de información y aśı, incrementar la robustez de los modelos
de clasificación. Esto es debido a que los datos que se reciben de distintas fuentes de
información pueden estar semánticamente correlacionados y, a veces, proporcionan
información complementaria entre śı, reflejando patrones no visibles cuando se tra-
baja únicamente con una modalidad de información. Por consiguiente, si solo se em-
plea como entrada los bytes o los códigos de operación, se prescinde de información
relevante, e.j. la tabla de importación de direcciones (IAT). Subsecuentemente, du-
rante el desarrollo de esta tesis, se ha investigado como combinar varias modalidades
de información en arquitecturas de aprendizaje profundo utilizando una estrategia
de fusión intermedia, y se ha desenvolupado un framework, denominado HYDRA,
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que combina la extracción manual de caracteŕısticas y aprendizaje profundo.
La cuarta parte de esta tesis presenta los principales problemas y retos a los que

se enfrentan los analistas de seguridad, como el problema de la desigualdad entre el
número de muestras por familia, el aprendizaje adverso, entre otros. Asimismo, pro-
porciona una extensa evaluación de los distintos métodos de aprendizaje profundo
contra varias técnicas de ofuscación, y analiza la utilidad de estas para aumentar el
conjunto de entrenamiento y reducir la desigualdad de muestras por familia. Más
concretamente, las técnicas analizadas son las siguientes: (1) la técnica de inserción
de código muerto; (2) la técnica de intercambio de registros; (3) la técnica de reorde-
nación de rutinas; y (4) la técnica de reordenación de código mediante instrucciones
”jump”.
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Resum

La lluita contra el programari maliciós no s’ha interromput mai des dels inicis de l’era
digital, esdevenint una carrera armament́ıstica ćıclica i interminable; a mesura que
els analistes en seguretat i investigadors milloren les seves defenses, els desenvolu-
padors de programari maliciós continuen innovant, trobant nous vectors d’infecció i
millorant les tècniques d’ofuscació. Recentment, degut al creixement massiu i con-
tinu del programari maliciós, es requereixen nous mètodes per a complementar els
existents i aix́ı poder protegir satisfactòriament els sistemes de nous atacs i variants.

L’objectiu d’aquesta tesis doctoral és el disseny, implementació i avaluació de
mètodes d’aprenentatge automàtic per a la detecció i classificació de programari
maliciós, a causa de la seva capacitat per a manipular grans volums de dades aix́ı
com la seva habilitat de generalització.

La recerca s’ha estructurat en quatre parts. La primera part presenta les següents
contribucions que estenen i complementen els estudis realitzats fins a data d’avui:
(1) proporciona una descripció completa dels mètodes i caracteŕıstiques utilitzats per
a la detecció i classificació de programari maliciós; (2) explora les limitacions dels al-
gorismes d’aprenentatge automàtic; (3) analitza les noves tendències i avenços, amb
especial èmfasi en els algorismes d’aprenentatge profund; (4) introdueix els reptes
sense resoldre de les tècniques actuals; i (5) presenta noves ĺınies d’investigació.

La segona part consisteix en l’automatització del procés d’extracció de carac-
teŕıstiques utilitzant tècniques d’aprenentatge profund. Per una banda, els algo-
rismes d’aprenentatge automàtic es basen en l’extracció manual de caracteŕıstiques
definides pels experts en seguretat i, consegüentment, el seu rendiment està sub-
jecte a l’habilitat d’aquests experts en determinar propietats clau que permetin
representar amb major precisió el programari maliciós. No obstant, segons el ti-
pus de caracteŕıstiques, com per exemple n-grams, el procés d’extracció d’aquestes
es computacionalment molt costós i està limitat per dos factors: (1) la complexitat
temporal, el temps estimat d’execució del procés, i (2) la complexitat espacial, l’ús de
memòria (RAM) dels algorismes. Per altra banda, l’aprenentatge profund reemplaça
aquest procés d’extracció per un sistema, t́ıpicament format per una xarxa neuronal
artificial amb múltiples capes o estrats, que du a terme l’aprenentatge de les carac-
teŕıstiques i posterior classificació simultàniament. Això és degut a que amb aprenen-
tatge profund, el sistema pot rebre les dades en brut, donat que les caracteŕıstiques
es crearan automàticament per la xarxa neuronal durant l’entrenament. Aquest
succés s’aconsegueix mitjançant l’apilament d’una o més capes convolucionals, on
les primeres aprenen a extreure n-grams de la representació hexadecimal del codi
binari o del codi ensamblador.

La tercera part consisteix en la investigació de mecanismes per a combinar
múltiples modalitats o fonts d’informació per a incrementar la robustesa dels classi-
ficadors basats en aprenentatge profund. Això és degut a que les dades que es reben
de diverses fonts d’informació acostumen a estar semànticament correlacionades i, a
vegades, proporcionen informació complementària entre si; reflectint patrons no vis-
ibles quan només es processa una única modalitat d’informació. Consegüentment,
si només s’utilitza com a entrada els bytes o els codis d’operació, s’omet infor-
mació rellevant, p.e. la taula d’importació d’adreces (IAT), la qual s’utilitza per
a cercar funcions implementades per mòduls externs. Subseqüentment, durant el
desenvolupament d’aquesta tesis, s’ha investigat com combinar múltiples modali-
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tats d’informació en arquitectures d’aprenentatge profund utilitzant una estratègia
de fusió intermèdia, i s’ha desenvolupat un framework, denominat HYDRA, que
combina l’extracció manual de caracteŕıstiques i aprenentatge profund.

La quarta part d’aquesta tesis presenta els principals problemes i reptes als que
s’enfronten els analistes en seguretat, com el problema de la desigualtat entre el
nombre de mostres per famı́lia, l’aprenentatge advers, entre altres. Tanmateix,
proporciona una extensa avaluació dels diferents mètodes d’aprenentatge automàtic
contra vàries tècniques d’ofuscació, i analitza la utilitat d’aquestes per a augmentar
el conjunt de dades d’entrenament i reduir la desigualtat de mostres per famı́lia.
Més concretament, les tècniques analitzades són: (1) la tècnica d’inserció de codi
mort, (2) la tècnica d’intercanvi de registres, (3) la tècnica de reordenació de rutines
i (4) la tècnica de reordenació de codi mitjançant instruccions ”jump”.
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CPU Central Processing Unit
COA Centroid of Area
CW Confidence Weighted Learning
DAE Denoising Autoencoder
DBN Deep Belief Network
DBSAN Density-based Clustering of Application with Noise
DDOS Distributed Denial-of-Service
DFN Dynamic Feed-forward Network
DLL Dynamic Link Library
DNS Domain Name System
DRN Deep Residual Network
DS Decision Stump
DT Decision Tree
DTW Dynamic Time Warping
ELF Executable and Linkable Format
ELU Exponential Linear Unit
ENT Entropy
FCG Function Call Graph
FPR False Positive Rate
GAN Generative Adversarial Network
GDPR General Data Protection Programming Language
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GLU Gated Linear Unit
GR Generalized Resolution
GRU Gated Recurrent Unit
HAN Hierarchical Attention Network
HCN Hierarchical Convolutional Network
HCNN Hierarchical Convolutional Neural Network
HTTP Hypertext Transfer Protocol
IAT Import Address Table
ICCG Inter-Component Communication Graph
IDA Interactive Disassembler
IDF Inverse Document Frequency
IETF Internet Engineering Task Force
IG Information Gain
IMG Image
IN Intersection
IP Internet Protocol
IT Inference Tree
IoT Internet of Things
JAR Java Archive
K-NN K-Nearest Neighbour
LBP Local Binary Pattern
LE Linear Executable
LOM Largest of Maximum
LR Logistic Regression
LSTM Long Short Term Memory
MD5 Message-Digest Algorithm 5
MI Mutual Information
MISC Miscellaneous
ML Machine Learning
MOM Mean of Maximum
MP Modus Ponens
NB Näıve Bayes
NHERD Normal Herd
NN Neural Network
OOA Object-oriented Association
OPC Opcodes
OS Operating System
PA-I Passive Aggressive I
PA-II Passive Aggressive II
PCA Principal Component Analysis
PE Portable Executable
PGL+ Possibilistic Logic Programming Language
Q1 First Quartile
Q2 Second Quartile
RAM Random Access Memory
RB Recursive Bipartition
REG Register
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Acronyms and Abbreviations

RF Random Forest
RL Reinforcement Learning
ReLU Rectifier Linear Unit
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
SEC Section
SELU Scaled Exponential Linear Units
SFN Statoc Feed-forward Network
SHA-1 Secure Hash Algorithm 1
SIEM Security Information and Event Manager
SJR Scimago Journal Rank
SMO Sequential Minimal Optimization
SOM Smallest of Maximum
SU Semantical Unification
SVN Support Vector Machine
SW Shockwave/Flash
TCP Transmission Control Protocol
TF Term Frequency
TF-IDF Term Frequency - Inverse Document Frequency
TPR True Positive Rate
UDP User Datagram Protocol
UN Uncertainty
URL Uniform Resource Locator
US$1 United States Dollar
VT Voted Perceptron
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Chapter 1

Introduction

1.1 The Global Cybercrime Industry

The global cybercrime industry is estimated to be a US$1 trillion industry [50] and
has been growing year after year. The underground services market is maturing
at increased rates, providing malicious software, cyber-capabilities, and products to
other criminals, gangs, and even nation states. It has evolved into a powerful ecosys-
tem, built to exploit every opportunity and weakness in an increasingly connected
world. According to the Global Risk Reports of 2019 1, prepared by the World
Economic Forum, cyber-attacks are listed among the most severe global threats,
along with weather extremes, climate change and natural disasters. The rise of cy-
ber dependency of people, things and organizations provides cybercriminals with a
vast range of lucrative targets to exploit. The focus of cybercriminals is not limited
to large companies or private individuals, but also affects industries and critical in-
frastructures, such as electrical and nuclear plants, information systems for financial
institutions and health care providers. Some estimates 2 predict that the cost of
cybercrime to the world would be $6 trillion annually by 2021, rising from $3 tril-
lion in 2015. This estimate includes damage and destruction of data, stolen money,
lost productivity, theft of personal, financial data and intellectual property, fraud,
disruption of the normal course of business, forensic investigation and reputational
harm.

The Internet Engineering Task Force (IETF) defined a cyberattack as ”an assault
on system security that derives from an intelligent threat, i.e., an intelligent act that
is a deliberate attempt (especially in the sense of a method or technique) to evade
security services and violate the security policy of a system”3. Cybercriminals use a
variety of methods to launch a cyberattack, including but not limited to malware,
phishing, denial of service, man-in-the-middle attack, SQL injection and zero-day
exploit.

In this thesis we will take a deeper look into malware, and the many mechanisms
to protect against it.

1http://www3.weforum.org/docs/WEF_Global_Risks_Report_2019.pdf
2https://cybersecurityventures.com/
3https://www.rfc-editor.org/info/rfc2828
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CHAPTER 1. INTRODUCTION

1.1.1 Taxonomy of Malware

Malicious software, also known as malware, is any kind of software that is specifically
designed to disrupt, damage or gain unauthorized access to a computer system or
network. Depending on the purposes and proliferation systems, malware can be
divided into various, not mutually exclusive categories.

• Adware. Malware designed to automatically generate online advertisements.
This type of malware generates revenue for its developer by displaying adver-
tisements on the user interface or the screen.

• Backdoor. Computer software that is designed to bypass a system’s security
mechanism and install itself on a computer to allow the attacker to access it.

• Bot. Software created to automatically perform specific operations such as
Distributed Denial of Service (DDoS) attacks or distribute other malware.
Bots are part of a botnet, a network of interconnected devices, which are
controlled using command and control (C&C) software.

• Downloader. A downloader program’s purpose is to download and install
additional malicious programs.

• Launcher. A launcher is a computer program designed to stealthily launch
other malicious programs.

• Ransomware. Malicious software that restricts user access to the computer
system by encrypting the files or locking down the system while demanding a
ransom for its release.

• Rootkit. Malware designed to conceal the existence of other malicious pro-
grams.

• Spyware. Computer software that spies and collects sensitive information with-
out permission from a victim’s computer. Examples include key-loggers, pass-
word gravers and sniffers.

• Trojan. A Trojan is a type of malicious software that disguises itself as legiti-
mate software to trick users into downloading and installing malware on their
systems.

• Virus. Malicious software that can propagate itself from device to device.

• Worm. A type of virus that exploits vulnerabilities of the operating system
to spread. The major difference between worms and viruses is the ability
of worms to independently self-replicate and spread while viruses depend on
human activity.

A brief look at the history of malicious software reminds us that the presence of
malware threats has been with us since the dawn of computing. The earliest docu-
mented virus appeared during the 1970s. It was known as the Creeper Worm and
was an experimental self-replicating program that copied itself to remote systems
and displayed the message: ”I’m the creeper, catch me if you can”. Later, in the
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early 80s, Elk Cloner appeared, a boot-sector virus that targeted Apple II comput-
ers. From these simple beginnings, a massive industry was born and, since then, the
fight against malware has never stopped. This fight has turned out to be a never-
ending and cyclical arms race: as security analysts and researchers improve their
defenses, malware developers continue to innovate, find new infection vectors and
enhance their obfuscation techniques. Malware threats have been expanding verti-
cally (i.e. numbers and volumes) and horizontally (i.e. types and functionality) due
to the opportunities provided by technological advances. Internet, social networks,
smartphones, Internet of Things (IoT) devices and so on, make it possible to create
smart and sophisticated malware. In recent years, ransomware and cryptomining
malware emerged as the most prolific types, with Cerber and Locky holding com-
puters all over the globe to ransom while Cryptoloot used the victim’s computing
power to mine for crypto without their knowledge. Even though malware targeting
computer systems still predominate in the ecosystem, mobile and IoT malware is on
the rise. According to Symantec [16], mobile malware variants increased by 54% in
2017, while IoT attacks had a 600% increase, with the Mirai botnet and its variants
serving as the vehicle for some of the most potent DDoS attacks in history [47].

1.2 Cyberdefenses

To keep up with malware, security analysts and researchers need to constantly im-
prove their cyber-defenses. One essential element is endpoint protection. End-
point protection provides a suite of security programs including, but not limited to,
firewall, URL filtering, email protection, anti-spam and sandboxing. Specifically,
anti-malware software provides the last layer of defense. Anti-virus (AV) engines
are responsible for preventing, detecting and removing malicious software installed
on the endpoint device. Traditionally, AV solutions relied on signature-based and
heuristic-based methods. A signature is an algorithm or hash that uniquely iden-
tifies specific malware while heuristics is a set of rules determined by experts after
analyzing the behavior of malware. However, both approaches require the malware
to be analyzed prior to the definition of these rules and heuristics. The goal of
malware analysis is to provide information about the characteristics, purpose and
behavior of a given piece of software. There are two types of analysis: (1) static
analysis and (2) dynamic analysis.

1.2.1 Static Analysis

Static analysis consists of examining the code or structure of the executable without
running it. This kind of analysis can confirm whether a file is malicious and provides
basic information about its functionality. Common static analysis approaches are:

• Finding sequences of characters or strings. Searching through the strings of a
program is the simplest way to obtain hints about its functionality. Strings
extracted from the binary can contain references to filepaths of files modified or
accessed by the executable, URLs which the program accesses, domain names,
IP addresses, attack commands, names of Windows dynamic link libraries
(DLLs) loaded, registry keys, and so on.
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• Gathering the linked libraries and functions of an executable, as well as the
metadata about the file included in the headers. These data provide infor-
mation about code libraries and functionalities common to many programs,
that programmers link so that they do not need to re-implement a certain
functionality. The names of these Windows functions can give us an idea of
what the executable does.

• Searching for packed/encrypted code. Malware writers usually use packing
and encryption to make their files more difficult to analyze. Software programs
that have been packed or encrypted usually contain very few strings and higher
entropy compared to legitimate programs.

• Disassembling the program, i.e. translating machine code into assembly lan-
guage. This reverse-engineering process loads the executable into a disassem-
bler to discover what the program does.

1.2.2 Dynamic Analysis

Dynamic analysis involves executing the program and monitoring its behavior on
the system. This is typically performed when static analysis has reached a dead
end, either due to obfuscation, or to having exhausted the available static analysis
techniques. Unlike static analysis, it traces the real actions executed by the pro-
gram. However, the analysis must be run in a safe environment so as not to expose
the system to unnecessary risks, where the system is both the machine running
the analysis tool and the rest of the machines on the network. To this end, ded-
icated physical or virtual machines are set up. Physical machines must be set up
on air-gapped networks, that is isolated networks where machines are disconnected
from the Internet or any other network, to prevent malware from spreading. The
main downside of physical machines is this scenario with no Internet connection,
as many malicious programs depend on Internet connection for updates, command
and control and other features. The second option is to set up virtual machines
to perform dynamic analysis. A virtual machine emulates a computer system and
provides the functionality of a physical computer. The operating system (OS) run-
ning in the virtual machine is kept isolated from the host OS and thus, malware
running on a virtual machine cannot harm the host OS. There are several all-in-one
software products based on sandbox technology that can be used to perform basic
dynamic analysis. The most well-known is the Cuckoo Sandbox 4, an open source
automated malware analysis system. This modular sandbox provides capabilities
to trace Application Programming Interface (API) function calls, analyze network
traffic or perform memory analysis. Alternatively, there is a wide list of utilities
to dynamically analyze malware and perform advanced and specific monitoring of
some functionalities. Process Monitor 5, or procmon, is a tool for Windows that
monitors certain registry, file system, network, process and thread activity. Process
Explorer 6 shows the information about which handles and DLL processes are opened
or loaded into the operating system. Regshot 7 is a registry compare utility that

4https://cuckoosandbox.org/
5https://docs.microsoft.com/en-_us/sysinternals/downloads/procmon
6https://docs.microsoft.com/en-_us/sysinternals/downloads/process-explorer
7https://sourceforge.net/p/regshot/wiki/Home/
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allows snapshots of registries to be taken and compared. NetCat 8 is a networking
utility that can be used to monitor data transmission over a network. Wireshark 9

is an open source sniffer that allows packets to be captured and network traffic to
be intercepted and logged. Another indispensable software utility is debuggers. A
debugger is used to examine the execution of another program. They provide a
dynamic view of a program as it runs. The primary debugger of choice for malware
analysts is OllyDbg 10, an x86 debugger that is free and has many plugins to extend
its capabilities.

Both types of analysis have their advantages and limitations and they comple-
ment each other. Static analysis is faster but, if malware is successfully concealed
using code obfuscation techniques, it could evade detection. Contrarily, polymorphic
and metamorphic techniques used to evade static analysis hardly evades dynamic
analysis as it monitors and analyzes the runtime execution of a program. However,
dynamic analysis is slower and computational intensive and can also be evaded with
fingerprinting techniques to detect the presence of sandboxes by looking for artifacts
or characteristics that could reveal the virtual machine [2]. When malware detects
that it is running in a virtual machine or sandbox it will execute differently in a way
that hides its malicious behavior. Nevertheless, traditional malware detection and
malware analysis are unable to keep pace with new attacks and variants.

1.2.3 Malware Evolution

The diversity, sophistication and availability of malicious software pose enormous
challenges for securing networks and computer systems from attacks. Malware is
constantly evolving and forces security analysts and researchers to keep pace by im-
proving their cyberdefenses. The proliferation of malware increased due to the use
of polymorphic and metamorphic techniques used to evade detection and hide its
true purpose. Polymorphic malware uses a polymorphic engine to mutate the code
while keeping the original functionality intact. Packing and encryption are the two
most common ways to hide code. On the one hand, packers hide the real code of a
program through one or more layers of compression. Then, at runtime the unpack-
ing routines restore the original code in memory and execute it. On the other hand,
crypters encrypt and manipulate malware or part of its code, to make it harder
for researchers to analyze the program. A crypter contains a stub used to encrypt
and decrypt malicious code. Metamorphic malware rewrites its code to an equiva-
lent whenever it is propagated. Malware authors may use multiple transformation
techniques including, but not limited to, register renaming, code permutation, code
expansion, code shrinking and garbage code insertion. The combination of the afore-
mentioned techniques resulted in rapidly growing malware volumes, making forensic
investigations of malware cases time-consuming, costly and more difficult.

As a result, organizations are facing the daunting challenge of dealing with mil-
lions of attacks a day. In addition, organizations are also experiencing a shortage
of cybersecurity skills and talent [61]. The identified issues present a unique op-
portunity for machine learning to significantly impact and change the cybersecurity
landscape due to its ability to handle large volumes of data [21] and to generalize

8http://netcat.sourceforge.net/
9https://www.wireshark.org/

10http://www.ollydbg.de/
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to never-before-seen malware.

1.3 The Promise of Machine Learning for Tack-

ling the Problem of Malware Detection and

Classification

Decades ago the number of malware threats was relatively low and simple hand-
crafted rules were often enough to detect threats. Lately, due to the massive growth
of malware streams, anti-malware solutions have not been allowed to rely solely on
expensive hand-designed rules. Consequently, machine learning (ML) has become
an appealing signature-less approach for detecting and classifying malware due to its
ability to generalize in relation to never-before-seen malware. Traditional machine
learning approaches in the literature [59, 78, 64, 67, 38, 65, 3, 79, 37, 19, 54, 69]
rely mainly on feature engineering to extract a set of discriminative features that
provide a feature vector representation of malware that a classifier uses to determine
the maliciousness of an executable. However, these solutions depend almost entirely
on the ability of the domain experts to extract characterizing features that accu-
rately represent the malware. Feature extraction is a very time-consuming process,
and in particular, n-gram extraction where n ≥ 3, because although features are
good for malware classification, they are impractical to compute in an industrial
malware classification system. For instance, considering n = 3, the number of pos-
sible n-grams is 2563 = 16.777.216. This leads to two main problems. First, the
resulting feature vector is too large to keep in memory, even if malware n-grams
tend to follow a Zipfian distribution [65]. Second, the machine learning model will
be affected by the curse of dimensionality [8, 12] which means that the number of
samples in the dataset that need to be accessed to estimate a function with a given
level of accuracy grows exponentially with the underlying dimensionality. There-
fore, feature selection or dimensionality reduction methods must be applied prior to
training the model, increasing the computational time required to perform the fea-
ture extraction process. As a result, alternatives to feature engineering are required
to build sustainable malware detection and classification systems.

1.3. THE PROMISE OF MACHINE LEARNING FOR TACKLING THE
PROBLEM OF MALWARE DETECTION AND CLASSIFICATION
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Chapter 2

Aim and Objectives of the Thesis

The aim of the thesis is to study alternatives to manual feature engineering for the
task of malware detection and classification. To achieve this goal, research was di-
vided into two main parts. The first part consisted of the automation of the feature
engineering process through deep learning. Deep learning replaces the feature engi-
neering process by an underlying system, which typically consists of a neural network
(NN) with multiple layers, that performs both feature learning and classification.
With deep learning one can start with raw data as features will be automatically
created by the network during the training procedure. When speaking of malware,
and more specifically, malicious software targeting the Windows operating system,
raw data refer to either the hexadecimal representation of malware’s binary content
or the assembly language source code of the executable. Thus, we explored both
representations during the development of the thesis.

The second part explores mechanisms to combine multiple modalities of infor-
mation to increase the robustness of deep learning classifiers. Modalities are, essen-
tially, channels of information. These data from multiple sources are semantically
correlated, and sometimes provide complementary information to each other, thus
reflecting patterns that are not visible when working with individual modalities on
their own. Consequently, by only taking as input the raw bytes or opcodes a great
deal of useful information for classification is overlooked, such as structural infor-
mation of the Portable Executable (PE) file, the import address table (IAT) which
is used as a lookup table when the application is calling a function from a different
module, etc. Subsequently, in the second part of the thesis various ways to combine
multiple modalities of information in deep learning architectures are investigated.

To sum up, the research objectives were:

• To review the state-of-the-art approaches in the literature for malware detec-
tion and classification.

• To automate the costly manual feature engineering process in traditional ma-
chine learning approaches.

• To develop mechanisms for the combination of multiple sources of information
in deep learning architectures.
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Chapter 3

Thesis Structure

This thesis is presented as a compendium of four journal articles, six articles pub-
lished in international peer-reviewed conferences (two conference articles ranked as
Core A and two ranked as Core B) and a patent application. Regarding the jour-
nal articles, two are published in journals belonging to the First Quartile (Q1),
one is published in a journal belonging to the Second Quartile (Q2) according to
the Scimago Journal Rank (SJR) and the other one is in the reviewing phase. An
overview of the publications is presented in Figure 3.1. For more information about
the articles published in international peer-reviewed conferences we refer the reader
to Chapter 10. In this regard, the dissertation is organized as follows:

Chapter 1 is an introductory section of this thesis. This chapter presents an
overview of the global cybercrime industry and the existing cyberdefenses to keep
malware at bay.

The aim and objectives of this thesis are presented in Chapter 2 and the entire
scheme of the doctoral thesis is provided in Chapter 3.

Chapter 4 provides an introduction to the task of malware classification and de-
scribes the limitations associated with manual feature engineering and, in particular,
n-gram based features. In this context, Chapter 4 presents various research articles
published in the proceedings of peer-reviewed international conferences that intro-
duce alternatives to manual feature engineering. To this end, these alternatives use
deep learning to replace the feature engineering process with an underlying system
that performs both feature learning and classification. The articles can be divided
into two groups, depending on the nature of the input data: (i) opcode-based ap-
proaches [24, 27] and (ii) byte-based approaches [31, 26]. On the one hand, Gibert
et al. [24] introduce an architecture to learn n-gram like features from the malware’s
assembly language instructions. In addition, D. Gibert et al [27] present a hierarchi-
cal neural network architecture to deal with the hierarchical structure of programs.
On the other hand, Gibert et al. [31] encode the content of a malicious program as an
entropy stream, where each value describes the amount of entropy of a small chunk
of code in a specific location of the file, while Gibert et al. [26] propose a method to
encode the raw byte sequences using denoising autoencoders. Lastly, D. Gibert et
al [29] introduce a bimodal approach to categorize malware into families based on
both modalities of data: (1) the byte sequence representing the malware’s binary
content, and (2) the assembly language instructions extracted from the assembly
language source code of malware.

Chapter 5 corresponds to the article named The rise of machine learning for
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detection and classification of malware: Research developments, trends and chal-
lenges [30]. The contributions of the research article are: (1) it presents an overview
of the methods and features in a traditional machine learning workflow for malware
detection and classification, (2) it explores the challenges and limitations of tradi-
tional machine learning and (3) it analyzes recent trends and developments in the
field with special emphasis on deep learning approaches. Furthermore, (4) it presents
the research issues and unsolved challenges of the state-of-the-art techniques and (5)
it discusses the new directions of research. The survey helps researchers to have an
understanding of the malware detection field and of the new developments and di-
rections of research explored by the scientific community to tackle the problem.

Chapter 6 corresponds to the article named Using convolutional neural networks
for classification of malware represented as images [32], which provides a way to
categorize malware into groups and identify its family based on state-of-the-art
image recognition techniques. In this article, malicious software is visualized as
gray scale images and classified into families based on a set of discriminant patterns
extracted by a convolutional neural network.

Chapter 7 describes a patent application, whose co-ownership belongs to Leap
in Value, S.L and the University of Lleida, and is currently under revision and
not published. The invention described presents a computer-implemented method,
system and computer program for identifying a malicious file that combines different
types of analysis, processes and procedures that allow a malicious file to be detected
and classified.

Chapter 8 corresponds to the article named HYDRA: a multimodal deep learn-
ing framework for malware classification [28]. It introduces a baseline framework
to address the task of malware classification by combining multiple modalities of
information. This framework consists of both hand-engineered and end-to-end com-
ponents to combine the benefits of feature engineering and deep learning so that
malware characteristics are effectively represented. This is achieved through a mod-
ular architecture that can be broken down into three subnetworks, according to the
different types of input in the system: (1) the list of Windows API function calls,
(2) the sequence of assembly language instructions representing malware’s assem-
bly language source code and (3) the sequence of hexadecimal values representing
malware’s binary content.

Chapter 9 provides a comprehensive analysis of the main issues and challenges
that face security researchers in order to build sustainable malware detection and
classification systems such as the problem of class imbalance and adversarial learn-
ing. Correspondingly, it provides an extensive evaluation of the performance of
deep learning approaches for malware classification against common metamorphic
techniques: (1) the dead code insertion technique, (2) the register reassignment tech-
nique, (3) the subroutine reordering technique and (4) the code reordering through
jumps technique. Moreover, the usage of the aforementioned metamorphic tech-
niques to augment the training set and reduce class imbalance is investigated.

Chapter 10 summarizes the research activities carried out during the dissertation
and presents an android malware detection approach based on the function call graph
representation of an application [25]. This conference article has been included in
Chapter 10 as its target is Android malware instead of Windows malware.

Finally, Chapter 11 provides the concluding remarks of this thesis and presents
some future lines of research.
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Figure 3.1: Dissertation timeline.
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Chapter 4

End-to-End Learning as an
Alternative to N-Gram
Approaches

4.1 The Task of Malware Classification

Because of the variety of malware functionalities, it is important not only to detect
malicious software, but also to differentiate between different kinds of malware in
order to provide a better understanding of their capabilities. This task is known
as malware classification. Distinguishing and classifying different types of malware
is an important task as it provides information to better understand how malware
has infected the computers or devices, its threat level and how to protect against
it. Notice that the features extracted from a computer program are useful both for
detecting if it is malicious and for classifying it into families, and the only difference
between machine learning solutions for detection or classification of malware lies
in the output returned by the system implemented. On the one hand, a malware
detection system outputs a single value y = f(x), in the range from 0 to 1, which
indicates the maliciousness of the executable. On the other hand, a classification
system outputs the probability of a given executable belonging to each output class
or family, y ∈ RN , where N indicates the number of different families.

Nevertheless, the task of malware detection and classification has not received
the same attention in the research community as other applications, where rich
labeled datasets exist, including image classification, speech recognition, etc. Due
to legal restrictions, benign binaries are not shared, as they are often protected by
copyright laws and thus, researchers cannot share the binaries used in their research.
Contrarily, malicious binaries are shared through web sites such as VirusShare and
VXHeaven. However, unlike other domains where data may be labeled very quickly
and in many cases by a non-expert, determining whether a file is malicious and
its corresponding family or class can be a time-consuming process, even for security
experts. Furthermore, services like VirusTotal specifically restrict sharing the vendor
anti-malware labels with the public. Thus, for reproducibility purposes, the machine
learning solutions proposed in this thesis have been evaluated on the data provided
by Microsoft for the Big Data Innovators Gathering Challenge [66] of 2015, a high-
quality public labeled benchmark. A complete description of the dataset is provided
in the next section.
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4.1.1 The Microsoft Malware Classification Challenge

Table 4.1: Class distribution in the Microsoft Malware Classification Challenge
dataset [66].

Family #Samples Type
Ramnit 1541 Worm
Lollipop 2478 Adware
Kelihos ver3 2942 Backdoor
Vundo 475 Trojan
Simda 42 Backdoor
Tracur 751 TrojanDownloader
Kelihos ver1 398 Backdoor
Obfuscator.ACY 1228 Any kind of obfuscated malware
Gatak 1013 Backdoor

Microsoft provided almost half a terabyte of malicious software targeting the
Windows OS for the Big Data Innovators Gathering Challenge [66] of 2015. Nowa-
days, the dataset is hosted on Kaggle1 and is publicly accessible. The dataset has
become the standard benchmark to evaluate machine learning techniques for the task
of malware classification. The set of samples represents 9 different malware families,
where each sample is identified by a hash and its class, an integer representing one of
the 9 malware families to which the malware belongs: (1) Ramnit, (2) Lollipop,
(3) Kelihos ver3, (4) Vundo, (5) Simda, (6) Tracur, (7) Kelihos ver1, (8)
Obfuscator.acy and (9) Gatak. Figure 4.1 displays the distribution of classes of
the training data. Notice that the number of instances of some families significantly
outnumbers the number of instances of other families.

4.1.2 The Portable Executable File Format

For the 32-bit and 64-bit version of the Windows operating system, the executables,
object code, DLLs, FON Font files and others are represented with the Portable
Executable (PE) file format, with the PE32 format standing for Portable Executa-
bles of 32-bit while PE32+ refers to the Portable Executables file format for 64-bit
architectures.

Portable Executables encapsulate the information necessary for a Windows op-
erating system to manage the executable code. This includes dynamic library ref-
erences for linking, API export and import tables, resource management data and
threat-local storage data. A PE file consists of a number of headers and sections
that tell the dynamic linker how to map the file into memory. See Figure 4.1. The
PE Header contains information about the executable such as the number of sec-
tions, the size of the ”PE Optional Header”, characteristics of the file, etc 2. It
also contains the import address table (IAT), which is a lookup table used by the
application when calling a function in a different module. In addition, a Portable
Executable file has various sections that contain the code and data of the executable
including, but not limited to, the following:

1https://www.kaggle.com/c/malware-classification/
2https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files\#PE_

Header
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PE File

Header

Sections

MS-DOS Header

PE Header

Optional Header

Sections Table

Import/Export Address Table

.data Section

.rdata Section

.edata Section

.idata Section

.text Section

.bss Section

.reloc Section

.rsrc Section

Figure 4.1: Portable Executable (PE) file format.

• The .data section. This section is used to declare initialized data or constants
that do not change at runtime.

• The .bss section. This section is used for declaring variables and contains
uninitialized data.

• The .text section. This section keeps the actual code of the program.

• The .rsrc section. This section contains all the resources of the program.

• The .rdata section. This section holds the debug directory which stores the
type, size and location of various types of debug information stored in the file.

• The .idata section. This section contains information about functions and
data that the program imports from DLLs.

• The .edata section. This section contains the list of the functions and data
that the PE file exports for other programs.

• The .reloc section. This section holds a table of base relocations. A base
relocation is an adjustment to an instruction or initialized variable value that
is needed if the loader could not load the file where the linker assumed it
would.

More information on the PE file format can be found in the documentation provided
by Microsoft 3.

3https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
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4.2 N-Gram Approaches for Malware Detection

and Classification

In machine learning, a workflow is an iterative process that involves gathering avail-
able data, cleaning and preparing the data, building models, validating and de-
ploying into production. See Fig 4.2. Accordingly, the data preparation process
of traditional machine learning approaches involves preprocessing the executable to
extract a set of features that provide an abstract view of the software. Afterwards,
the features are used to train a model to solve the task at hand. For a complete
description of the features used for malware detection and classification the reader
is referred to Section 5.

Data
Gathering

Data
Preparation

Model
Building

Model
Validation

Model De-
ployment

Figure 4.2: Machine learning workflow.

The most common type of features for malware detection and classification is
n-grams. An n-gram is a contiguous sequence of n items from a given sequence of
text. N-grams can be extracted from the hexadecimal representation of malware’s
binary content and from the assembly language source code. On the one hand,
the hexadecimal representation represents the binary content of an executable as a
sequence of bytes (base-16 number representation with digits [0-9] and [A-F]). See
Figure 4.3. Alternatively, the assembly language source code contains the symbolic
machine code of an executable with metadata information as function calls, memory
allocation and variable information. See Figure 4.4. Thus, byte n-grams [78, 64]
and opcode n-grams [67, 38] refer to the unique combination of all n consecutive
bytes and opcodes as individual features, respectively, where an opcode refers to
the name of a specific instruction, i.e. ”ADD”, ”MUL”, ”PUSH”, etc, without
its arguments. N-gram based approaches construct a feature vector containing an
abstract representation of malware, where each element in the vector indicates the
number of appearances of a particular n-gram in the sequence of text (or the ratio).
Consequently, the length of the feature vector depends on the number of unique
n-grams, which increases exponentially with n. For instance, if we want to extract
byte n-grams with n = 3, the number of possible n-grams is 2563 = 16.777.216. This
leads to two main problems. First, the resulting feature vector is too large to keep in
memory, even if malware n-grams tend to follow a Zipfian distribution [65]. Second,
the machine learning model will be affected by the curse of dimensionality [8, 12]

4.2. N-GRAM APPROACHES FOR MALWARE DETECTION AND
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Figure 4.3: Hexadecimal view of a PE file.

which means that the number of samples in the dataset that need to be accessed
to estimate a function with a given level of accuracy grows exponentially with the
underlying dimensionality. Therefore, feature selection or dimensionality reduction
methods must be applied prior to training the model. While both methods are used
for reducing the number of features, there is an important difference between them:
Feature selection is simply selecting and excluding given features without changing
them, while dimensionality reduction transforms features into a lower dimension.
More specifically, for the task of malware detection and classification, the most
common dimensionality reduction method is the hashing trick [64, 38].

1. Feature Selection. Feature selection is the process of selecting a subset of
relevant features from the initial input space for use in model construction.
A common approach is to rank the features based on high information gain
entropy in decreasing order [67, 78]. Information Gain (IG), also referred as
Mutual Information (MI), is an index of statistical dependence between two
variables [71]. In the case of a classification task, it measures the dependence
between a feature X and the target variable Y. This is done by measuring how
much knowing one of these variables reduces uncertainty about the other. The
Mutual Information between two variables is a non-negative value, which mea-
sures the dependency between the variables. For two independent variables,
their mutual information will be 0. Otherwise, for dependent variables, higher
mutual information mean higher dependency.

2. The Hashing Trick. Feature hashing, also known as the hashing trick, is a
method for handling sparse, high-dimensional feature vectors by using a hash
function to determine the feature’s location in a lower-dimensional vector. It
can be seen as a random projection of the input space A ∈ Rn to a low dimen-
sional space B ∈ Rm, where m � n. More specifically, given an array of size
N that counts the number of times each n-gram occurred, and a hash function,
the hashing trick maps each n-gram to a location in a lower dimensional array.

Afterwards, the resulting low-dimensional feature vector is used for training a clas-
sification algorithm.
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Figure 4.4: Assembly view of the grayed part in Figure 4.3. The first column
represents the address, the second column the byte sequence and the third column
the mnemonics sequence.

4.3 Automatic Feature Extraction with Deep Learn-

ing

The need for manual feature engineering can be obviated by automated feature
learning. Deep learning replaces the feature engineering process by an underlying
system which typically consists of a neural network with multiple layers, that per-
forms both feature learning and classification. With deep learning, one can start
with raw data as features will be automatically created by the neural network when
it learns. The main distinction between deep learning approaches for malware de-
tection and classification is based on what they used as raw data. In particular,
the researcher investigated the application of convolutional neural networks to au-
tomatically perform feature engineering on both the hexadecimal representation of
malware’s binary content [31, 26, 32] and its assembly language instructions [24, 27].
Below, a detailed description is provided of the methodology and results for each of
the aforementioned research articles published during the development of this thesis.
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4.3.1 Convolutional Neural Networks for Classification of
Malware Assembly Code

The main idea behind this conference paper is to build a static classifier to group
malware into families based on their assembly language source code without relying
on the manual extraction of n-gram features. The assembly language source code
of a computer program is the low-level representation of the program’s statements
and machine code instructions. Therefore, the problem of malware classification
can be modeled as a text classification task by preprocessing the assembly files
and extracting their assembly language instructions. The simplest representation
is to retain only the mnemonic of the instruction. That is, on encountering the
instruction add esp 10h we simply extract the add mnemonic. The main argument
behind this representation is that it will generalize better as it would not be affected
by small permutations in the arguments and thus, the obfuscation technique known
as register reassignment would not alter the output of the classifier. Primarily,
this obfuscation technique switches registers from generation to generation without
altering the behavior of the program code.

To build the static classifier, Gibert et al [24] introduced a shallow convolutional
neural network (CNN) architecture that extracts n-gram like features from malware’s
machine instructions. The overall structure of the shallow architecture is presented
in Figure 4.3.1. Below, its layers are described in greater detail.

Input layer. The input of the network is the assembly language source code of a
computer program represented as a concatenation of mnemonics

x1:n = x1 ⊕ x2 ⊕ · · · ⊕ xn

where n is the length of the program and xi ∈ Rk corresponds to the i-th
mnemonic in the program.

Embedding layer. Every mnemonic is represented as a low-dimensional vector of
real values (word embedding). The rationale behind using distributed repre-
sentations to encode the mnemonics is to better capture the semantic infor-
mation about comparable operations or analogous meaning.

Convolutional layers. A convolution operation involves a filter w ∈ Rhk where h
is the number of mnemonics to which it is applied and k is the size of the word
embedding. In particular, filters are applied to sequences containing from 2 to
7 mnemonics.

A feature ci is generated from a window of mnemonics xi:i+h−1 (it comprises
all mnemonics between position i and i + h− 1) and is defined as

ci = f(w · xi:i+h−1 + b),

where f is a rectifier linear unit (ReLU) function and b the bias term.

Max-pooling layers. The maximum value ĉ = max{c} is taken as the feature
corresponding to the filter by applying the max pooling operator over the
feature map.
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Figure 4.5: Shallow convolutional neural network architecture.

Softmax layer. The extracted features are passed to a fully-connected softmax
layer whose output is the normalized probability distribution over families.

The main takeaways of this research article are as follows: (1) the required time
for the feature extraction and classification process is lower than the computational
time required to extract the N-grams for N ≥ 2, as shown in Table 4.3.1; (2)
although state-of-the-art multimodal approaches outperform our classifier, it has
greater predictive power in comparison to opcode-based approaches in the literature
and achieves higher classification accuracy than almost every subset of features in
Ahmadi et al. [3]. See Table 4.3.1.

For a complete description of the experimentation the reader is referred to the
original research article. This publication was honored by the Best Poster Award.

Table 4.2: Feature extraction comparison of our shallow cnn against n-grams.

Method #features RAM Usage Extraction Time (in sec.)
(in GB) Avg Max Min

1-Gram 977 1.39 ×10−6 0.47 3.55 0.02
2-Gram 485809 9.72 ×10−4 0.48 3.74 0.03
3-Gram 338608873 0.68 23.36 31.68 9.42
4-Gram 236010384481 420.02 - - -

CNN 384 1.54 ×10−6 0.49 3.57 0.04
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Table 4.3: Comparison of our CNN against other methods.
Model Training accuracy Private Score
CNN 0.9964 0.0244
Winner’s solution 0.9986 0.0028
NFESF [3] 1.0000 0.0063
SMCMCF [37] 0.9980 0.0259
SMCMCF (4-Gram features) [37] 0.9930 0.0546
STRAND [19] 0.9859 0.0479
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CONVOLUTIONAL NEURAL
NETWORKS FOR CLASSIFICATION

OF MALWARE ASSEMBLY CODE
Daniel Gibert, Javier Béjar, Carles Mateu, Jordi Planes,

Daniel Solis, Ramon Vicens

OBJECTIVES

• Build a static classifier without relying
on hand-crafted features defined by ex-
perts.

• Group malware into families based on
their assembly language source code.

• Extract N-Gram like signatures with
convolutional neural networks from
malware’s machine instructions.

DATA TRANSFORMATION

CNN LAYERS DESCRIPTION
• Input

An assembly program is represented as
a concatenation of mnemonics

x1:n = x1 ⊕ x2 ⊕ · · · ⊕ xn

where n is the length of the program
and xi ∈ Rk corresponds to the i-th
mnemonic in the program.

• Embedding

Every mnemonic is represented as a
low-dimensional vector of real values
(word embedding).

• Convolution

A convolution operation involves a fil-
ter w ∈ Rhk where h is the number of
mnemonics to which is applied and k is
the size of the word embedding. In par-
ticular, filters are applied to sequences
containing from 2 to 7 mnemonics.

A feature ci is generated from a window
of mnemonics xi:i+h−1 (it comprises all
mnemonics between position i and i +
h− 1) and is defined as

ci = f(w · xi:i+h−1 + b),

where f is a rectifier linear unit (ReLU)
function and b the bias term.

• Max-Pooling

The maximum value ĉ = max{c} is
taken as the feature corresponding to the
filter by applying the max pooling oper-
ator over the feature map.

• Softmax layer

The extracted features are passed to
a fully-connected softmax layer whose
output is the probability distribution
over families.

ARCHITECTURE

T-SNE VISUALIZATION

N-GRAM COMPARISON
• An N-Gram is a contiguous sequence of

N items from a given sequence of text.

• N-Gram like signatures have proved
useful in classifying malware.

• The main limitation of standard N-Gram
based methods is the exponential in-
crease in the number of unique n-grams
as n is increased.

Method #features RAM Usage Extraction Time (in sec.)
(in GB) Avg Max Min

1-Gram 977 1.39 ×10−6 0.47 3.55 0.02
2-Gram 485809 9.72 ×10−4 0.48 3.74 0.03
3-Gram 338608873 0.68 23.36 31.68 9.42
4-Gram 236010384481 420.02 - - -

CNN 384 1.54 ×10−6 0.49 3.57 0.04

Table 1: RAM requirements and feature extraction
time considering a subset of 977 mnemonics.

RESULTS

Model Training accuracy Test Score
CNN 0.9964 0.0244
Winner’s solution 0.9986 0.0028
NFESF 1.0000 0.0063
SMCMCF (4-Gram+VT) 0.9980 0.0259
SMCMCF (4-Gram) 0.9930 0.0546
STRAND 0.9859 0.0479

Table 2: Comparison with state-of-the-art methods.

CONCLUSION
• End-to-end deep learning framework to

automatically extract N-Gram like fea-
tures and classify malicious software
into families based on their assembly
language source code.

• Efficient alternative to N-Grams.

• The N-Gram like features learned are
highly discriminant and useful for clus-
tering malware into groups.

• Greater predictive power in comparison
to opcode-based approaches in the liter-
ature.

• Resilient to common obfuscation tech-
niques such as code transposition and
function reordering.
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Abstract. Traditional signature-based methods have started becoming
inadequnate to deal with next generation malware which utilize sophisti-
cated obfuscation (polymorphic and metamorphic) techniques to evade
detection. Recently, research efforts have been conducted on malware
detection and classification by applying machine learning techniques.
Despite them, most methods are build on shallow learning architectures
and rely on the extraction of hand-crafted features. In this paper, based
on assembly language code extracted from disassembled binary files and
embedded into vectors, we present a convolutional neural network ar-
chitecture to learn a set of discriminative patterns able to cluster mal-
ware files amongst families. To demonstrate the suitability of our ap-
proach we evaluated our model on the data provided by Microsoft for
the BigData Innovators Gathering 2015 Anti-Malware Prediction Chal-
lenge. Experiments show that the method achieves competitive results
without relying on the manual extraction of features and is resilient to
the most common obfuscation techniques.

Keywords. Convolutional Neural Network, Malware Classification, Deep
Learning

1. Introduction

Despite that the number of new malware grows exponentially every year [2], the
methods used to defend against this threat remain almost unchanged. Tradition-
ally, anti-virus solutions primarily relied in signature-based methods which strug-
gle to keep up with the evolution of malware. A signature is an algorithm or hash
that uniquely identifies a specific malware or a family. However, malware authors
always try to stay a step ahead by creating new malware using metamorphic and
polymorphic techniques to do not match signatures, thus to avoid detection.

In recent years, machine learning-based systems have been developed as a
solution to defend against malware holding the promise of automating the work
of detecting fresh malware. Several methods based on machine learning have been
applied for classifying a file as malicious or legitimate or to classify malware in
families but all of them rely on the extraction of hand-crafted features. However,
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the process of feature engineering is time-consuming and requires human resources
to determine which features to extract and use for the classification process.

In this paper, we present a novel static approach which does not rely on the
extraction of hand-crafted features to classify malware and is robust to modifica-
tions in the malware code. The method relies on training a Convolutional Neural
Network (CNN), which would automatically extract features from the assembly
language source code of malware and then classifies those samples into families.
The dataset used to evaluate our approach was provided by Microsoft for the
BigData Innovators Gathering (BIG 2015) Anti-Malware Prediction Challenge.
The rest of the paper is organized as follows. Section 2 presents the related work.
Section 3 introduces our approach for malware classification. Section 4 evaluates
the performance of our method in comparison with other approaches presented
in the competition. Finally, Section 5 contains our concluding remarks.

2. Related Work

Most of the static detectors use N-Gram based features extracted from byte se-
quences or instruction opcodes. An N-Gram is a contiguous sequence of N items
from a given sequence of text. Tesauro et al. [10] proposed a byte-sequence N-
Gram based algorithm for malware classification which was part of the IBM’s
antivirus scanner. The algorithm extracted a list of trigrams and used a neural
network as the classification model. Similar to byte-sequence N-grams, opcode N-
gram patterns have been used in the literature to detect and classify malware [8,7].
An opcode (abbreviated from operation code) is the portion of a machine language
instruction that specifies the operation to be performed. Almost all approaches
in literature based on N-Gram features are composed by three main steps. First,
N-Grams are extracted. Second, an algorithm is applied to reduce the dimension-
ality of the data and to select the most discriminant subset of features. Third,
an algorithm classifies the samples based on the features selected in the previous
step.

The main drawback of the representation based on the N-Grams is that it
is dependent on N, the number of words that each N-Gram will contain. Thus,
computing all N-Grams where N is greater than 3 is not feasible (cf. Section 4)
due to the RAM requirements and the decrease in performance. For that reason,
we present an efficient alternative to N-Gram counts that automatically extracts
the most discriminative features from a sequence of opcodes without having to
apply any feature selection technique to make the problem tractable.

3. Convolutional Neural Network Model

The model architecture is a variant of Kim’s CNN architecture [6]. The main
difference between Kim’s model and ours is two fold: (i) their is trained by natural
language words and ours is trained by opcodes; (ii) and the size and the number
of the feature maps in the convolutional layer. In their work, the convolutional
layer contains a total of 300 feature maps with 100 feature maps of size h × k for
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every h ∈ {3, 4, 5}, where h is the number of words the filter comprises and k is
the size of the embedding. Instead, our convolutional layer has 64 feature maps
of size h × k for every h ∈ {2, 3, 4, 5, 6, 7}.

Figure 1. The neural network architecture of our CNN model.

As shown in Figure 1, it has the following layers: (1) Opcodes are embedded
as multi-dimensional vectors, one per opcode; (2) Feature maps slide over opcode
sequences to find patterns, and the maximum value of each of the feature map
activations is assigned into the resulting feature vector; And (3), the convolution-
based feature vector is fed into one fully connected softmax layer which outputs
the probability distribution over malware families.

The input of the network is an assembly program represented as the con-
catenation of opcodes, with every opcode represented as a vector of k real num-
bers (word embedding). The rationale behind using distributed representations
of opcodes is to better capture the meaning of opcode as input. The goal is to
learn vector representations where those corresponding to opcodes used to trans-
fer data, e.g. Push and Pop, are similar and distinct from other representations
corresponding to opcodes used in arithmetic and logical instructions.

A convolution operation involves a filter w ∈ Rhk where h is the number of
opcodes to which is applied and k is the size of the word embedding. In partic-
ular, a feature ci generated from a window of opcodes xi:i+h−1 ( it comprises all
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Table 1. Feature extraction comparison of our method against N-Grams

Method #features RAM Usage Extraction Time (in sec.)

(in GB) Avg Max Min

1-Gram 977 1.39 ×10−6 0.47 3.55 0.02

2-Gram 485809 9.72 ×10−4 0.48 3.74 0.03

3-Gram 338608873 0.68 23.36 31.68 9.42

4-Gram 236010384481 420.02 - - -

CNN 384 1.54 ×10−6 0.49 3.57 0.04

opcodes between position i and i + h − 1 from the sequence of assembly program
opcodes) is defined as ci = f(w · xi:i+h−1 + b), where f is a rectifier linear unit
(ReLU) function and b the bias term. The purpose of the convolution operation
is to extract features from the assembly program while preserving the spatial re-
lationship between opcodes. Thus, a filter is applied to every possible window of
opcodes in an assembly program xi,h, x2:h+1, . . . , xn−h+1:n to produce a feature
map c = [c1, c2, . . . , cn−h+1] with c ∈ Rn−h+1. Then, the maximum value is taken
as the feature corresponding to the filter by applying the max pooling operator [3]
over the feature map. This process is applied for various filters with varying win-
dow sizes to obtain multiple features. Finally, the extracted features are passed
to a fully connected softmax layer whose output is the probability distribution
over families. Dropout [9] was employed as a regularization mechanism, which
randomly drops a proportion of units during forward propagation and prevents
the co-adaptation between neurons on the fully-connected softmax layer.

4. Evaluation

The data used to evaluate our approach was provided by Microsoft for the Big-
Data Innovators Gathering (BIG 2015) Anti-Malware Prediction Challenge. The
dataset is composed of 21741 samples, 10868 for training and 10873 for testing,
whose malware binaries implement common obfuscation techniques [11] and rep-
resent 9 different malware families: Ramnit, Lollipop, Kelihos ver3, Vundo,

Simda, Tracur, Kelihos ver1, Obfuscator.ACY and Gatak.
The first experiment performed is the comparison of our method against N-

Gram feature extraction, shown in Table 1. The CNN has been trained using a
Nvidia GeForce GTX 1080 Ti. We can observe that our method is similar in time
and memory usage to the 1-Gram method.

The second experiment is the comparison of our method in terms of malware
classification accurancy. The performance of our model is evaluated using the
following formula for the logarithmic loss:

logloss = − 1

N

N∑

i=1

M∑

j=1

(yi,j log(pi,j) + (1 − yi,j)log(1 − pi,j))
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where N is the number of observations, M is the number of class labels, log is
the natural logarithm, yi,j is 1 if the observation i is in class j and 0 otherwise,
and pi,j is the predicted probability that observation i is in class j. Our model
achieved a score of 0.0244 in the test set which is an improvement of 98.89% with
respect to the equal probability benchmark (logloss=2.1972) which is obtained
by submitting 1/9 for every prediction.

In Table 2 we show the comparison results of our CNN against the following
methods: Novel Feature Extraction, Selection and Fusion (NFESF) for Effective
Malware Family Classification [1]; Scalable Malware Classification with Multi-
faceted Content Features (SMCMCF) and threat intelligence [5]; and Polymor-
phic Malware Detection Using Sequence Classification Methods (STRAND) [4].

Even that the results are quite promising, they are not as good as the ones
obtained by the winner’s solution or NFESF results [1]. We think the reason
is that their approaches relied on the extraction of domain expert hand-crafted
features and their combination. However, it outperforms the N-Gram based ap-
proach presented in [5] and the results obtained by almost every subset of features
in [1]. Additionally, the required time of feature extraction is lower than other
approaches and, in particular, the extraction of N-Grams for N � 2, as shown
in Table 1. The extraction time for 4-Gram was not able to be computed due to
their RAM requirements.

Table 2. Comparison of our CNN against other methods.

Model Training accuracy Private Score

CNN 0.9964 0.0244

Winner’s solution 0.9986 0.0028

NFESF 1.0000 0.0063

SMCMCF 0.9980 0.0259

SMCMCF (4-Gram features) 0.9930 0.0546

STRAND 0.9859 0.0479

5. Conclusion and Future Work

In the present work, we studied the problem of classifying malware into their
corresponding malware families. In order to tackle with this problem, we used one
of the most recent and biggest datasets publicly available which was provided by
Microsoft for the BigData Innovators Gathering Cup (BIG 2015). As far as we
know, we presented the first method that applies convolutional neural networks
to automatically generate features from the assembly language source code. The
method achieved a logarithmic loss of 0.0244 in the competition, which is an
improvement of 98.89% with respect to the equal probability benchmark.

The results obtained are quite promising in terms of accuracy and compu-
tational time. Firstly, the accuracy obtained in the training set is higher than
those obtained by almost every independent subset of features in [1] and out-
performs the results of the N-Gram based approach presented in [5]. Secondly,
it provides a good alternative to N-grams, where N ≥ 2 for larger datasets, as
the computational time required to extract the features and classify a sample is
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almost lower than calculating 2-Gram counts. And finally, the nature of convolu-
tional neural networks has proved to be resilient to the most common obfuscation
techniques [11].
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4.3.2 A Hierarchical Convolutional Neural Network for Mal-
ware Classification

Gibert et al. [24] trained a learning system feeding as input the sequence of assembly
language instructions extracted from the assembly language source code. However,
the aforementioned approach does not take into account the hierarchical structure
of Portable Executable files. This type of files exhibits various levels of spatial
correlation. Adjacent code instructions tend to be related to one another but this is
not always the case, as function calls and jump commands produce discontinuities.
For instance, the jump instruction transfers the control of the program to a different
point in the instruction stream. Moreover, these discontinuities are maintained when
treating the binary as a sequence of byte values, thus resulting in unrelated adjacent
chunks of bytes. Nevertheless, a Portable Executable consists of functions or macros
and each function is defined by a sequential list of instructions. Consequently, by
representing an executable as a sequence of instructions without considering the
macros, we lose its hierarchical information. As a result, a more natural way to
represent the assembly language source code would be as a sequence of sequences,
where each sequence contains the mnemonics describing a particular function or
procedure.

Thus, to capture the insights at the mnemonics-level and at the function-level, we
designed a hierarchical convolutional network to extract hierarchical features about
the malware structure. See Figure 4.6. This architecture has two convolutional
blocks: (1) one at the mnemonics level and (2) one at the function level.

Mnemonics-level . The mnemonics-level block consists of multiple filters of var-
ious sizes, 1 × F × K, where F ∈ {1, 2, 3, 5, 7}. That is, the size of the
subsequence of mnemonics that the filter can detect ranges from 1 to a max-
imum of 7 mnemonics. The reason behind applying the convolution operator
with filters of different size is because salient and prominent parts in the se-
quence of instructions can vary in size and location. Consequently, choosing
the right kernel size for the convolutional operation might be a difficult choice.
Notice that the convolutions are applied to each function individually and
subsequently, max-pooling is applied to keep only the strongest activation for
each feature map per function.

Function-level . The function-level block takes as input the features extracted
from each function as an N × L array, where N is the number of functions in
a given malware sample and L is the size of the feature vector per function,
and performs convolutions on the input with filters of size 1 × L, 2 × L and
3×L which extract features from one, two or three functions at a time. Then,
we apply both global max-pooling and global average-pooling to generate the
program’s feature vector representation.

For a detailed description of the architecture the reader is referred to the original
publication [27].

The generalization performance of the hierarchical convolutional neural network
was compared with state-of-the-art methods in the literature [32, 31, 26, 63, 49,
51, 24, 56, 56, 73] on the Microsoft Malware Classification benchmark [66]. See
Table 4.4. Results show that methods that are fed with the raw byte sequences
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Figure 4.6: Structure of the Hierarchical Convolutional Neural Network (HCNN)
for malware classification. Blue, green and yellow boxes represent the convolution,
pooling and concatenation operations, respectively.
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as input [63, 49] perform worse than those that first compress or encode the infor-
mation in the byte sequences [31, 26]. Our hypothesis is that, due to the limited
amount of training data and the higher complexity of the network, those meth-
ods are more prone to overfitting. On the other hand, assembly-based approaches
generally perform considerably better than hexadecimal-based approaches, with the
exception of the Hierarchical Attention Network (HAN). However, even though the
HAN architecture achieved a lower 10-fold cross validation accuracy and macro F1
score, it achieved a lower logarithmic loss with the test set in comparison with the
hexadecimal-based approaches. Furthermore, both the Shallow CNNs and the Hi-
erarchical Convolutional Neural Network (HCNN) achieved a higher classification
accuracy and macro F1 score, and a lower logloss than other approaches. This
was for two reasons: (1) The length of the sequence of mnemonics is much shorter
than the length of the raw byte sequences; thus, given the limited training data,
the simpler architectures are less prone to overfitting; (2) Both the Shallow CNNs
and the Hierarchical Convolutional Network perform convolutions on the mnemonic
sequences. Applying convolutions rather than recurrent units is computationally
more efficient and is more suitable for our classification task, since we are dealing
with very long input sequences. Furthermore, malware authors usually employ a
wide range of obfuscation techniques to modify the appearance of executables with-
out modifying their behavior. One of the most common obfuscation techniques is
subroutine reordering. That is, the order of the subroutines in the original code is
changed randomly. Another common technique is code transposition, which reorga-
nizes the order of the instructions without changing the behavior of the computer
program. Thus, convolutional-based networks are more adequate to deal with the
problem at hand, since they are able to detect patterns that might be displaced in
space through the convolution and max-pooling operations.

Table 4.4: State of the art comparison of deep learning methods on the Microsoft
Malware Classification Challenge benchmark. Approaches with a ”*” mark indicate
that they performed 5-fold cross validation instead of 10-fold cross validation to
assess the performance of their method.

Training 10-fold cross validation Test
Accuracy Macro F1 score Logarithmic Loss

Hex-based approaches
CNN IMG [32] 0.975 0.940 0.1844
CNN Entropy [31] 0.9708 0.9314 0.1346
CNN Haar Approximation & Details [31] 0.9828 0.9636 0.1244
Autoencoder + Dilated Residual Network [26] 0.9861 0.9719 0.1063
MalConv [63] 0,9641 0.8902 0.3071
DeepConv [49] 0.9756 0.9071 0.1602
CNN+BiLSTM [51]* 0.9820 0.9605 0.0744
Assembly-based approaches
Shallow CNN: filters with multiple sizes [24] 0.9917 0.9856 0.0351
Shallow CNN [56] 0.9903 0.9743 0.0515
HAN [73] 0.9742 0.9468 0.0933
Hierarchical Convolutional Network 0.9913 0.9830 0.0419
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Abstract—Malware detection and classification is a challenging
problem and an active area of research. Particular challenges
include how to best treat and preprocess malicious executables
in order to feed machine learning algorithms. Novel approaches
in the literature treat an executable as a sequence of bytes or
as a sequence of assembly language instructions. However, in
those approaches the hierarchical structure of programs is not
taken into consideration. An executable exhibits various levels
of spatial correlation. Adjacent code instructions are correlated
spatially but that is not necessarily the case. Function calls
and jump commands transfer the control of the program to
a different point in the instruction stream. Furthermore, these
discontinuities are maintained when treating the binary as a
sequence of byte values. In addition, functions might be arranged
randomly if addresses are correctly reorganized. To address these
issues we propose a Hierarchical Convolutional Network (HCN)
for malware classification. It has two levels of convolutional
blocks applied at the mnemonic-level and at the function-level,
enabling us to extract n-gram like features from both levels
when constructing the malware representation. We validate
our HCN method on the dataset released for the Microsoft
Malware Classification Challenge, outperforming almost every
deep learning method in the literature.

Index Terms—Malware Classification, Machine Learning,
Deep Learning, Hierarchical Convolutional Neural Network

I. INTRODUCTION

Malware as a business is on the rise. It is a booming
criminal industry worth billions of dollars, involving networks
of developers and criminal organizations, that grows more
and more every year. In particular, ransomware as a service
(RaaS) has been a growing problem, with Cerber as its
most prolific family. Regarding the financial industry, the
Ramnit family is still the most prevalent banking malware
in proportion to the total number of cyber-attacks on banks.
The first Ramnit variants emerged in 2010 and it has been
evolving over the years to include new capabilities and evasion
and anti-detection techniques. This trend has been replicated
throughout the malware landscape, with a family originating
from a single source base and its variants exhibiting a set
of consistent behaviors and characteristics but with increased
capabilities and anti-detection techniques. Thus, being able
to group malware into families according to these shared

This research has been partially funded by the Spanish MICINN Projects
TIN2015-71799-C2-2-P, ENE2015-64117-C5-1-R, and is supported by the
University of Lleida. This research article has received a grant for its linguistic
revision from the Language Institute of the University of Lleida (2018 call).

characteristics has proven useful for detecting and classifying
unseen programs.

Over the past decade, there has been an increase in the
research and deployment of machine learning solutions for
malware detection due to the confluence of three recent
developments: (1) the availability of labeled feeds of malware
for research, (2) the bidding down of computational power
and (3) the breakthroughs in the machine learning field. As a
result, machine learning has become an appealing signature-
less approach for detecting malicious software due to its ability
to summarize complex relationships among the input data and
its subsequent decision-making. On the one hand, traditional
machine learning solutions perform feature engineering to
manually extract features that act as an abstract representation
of malware and serve as input for a classifier. Consequently,
the success of machine learning algorithms depends almost
entirely on the features extracted. On the other hand, end-
to-end learning solutions eliminate the need to extract hand-
designed features and, instead, they take an executable as input
and try to directly recognize whether or not it is malicious.
Nevertheless, those approaches still need to perform some kind
of preprocessing process to represent the malware’s content in
a way the machine learning algorithm can understand. For
instance, E. Raff et al. [1] and D. Gibert et al. [2] trained a
learning system feeding as input the hexadecimal representa-
tion of malware’s binary content and the sequence of assembly
language instructions extracted from the assembly language
source code, respectively. However, the aforementioned solu-
tions do not take into account the hierarchical structure of
malware. That is, binary executables exhibit various levels
of spatial correlation. In particular, adjacent code instructions
tend to be related to one another but this is not always the case,
as function calls and jump commands produce discontinuities.
For instance, the jump instruction transfers the control of
the program to a different point in the instruction stream.
Moreover, these discontinuities are maintained when treating
the binary as a sequence of byte values, thus, resulting in
unrelated adjacent chunks of bytes.

Our primary contribution is a new neural architecture,
called Hierarchical Convolutional Network, that is designed to
capture the insights about malware structure at the mnemonics
level and at the function level. Considering that Portable
Executable (PE) files have a hierarchical structure, that is,
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a computer program is composed of functions and functions
consist of instructions, we introduce a hierarchical network
architecture to construct a program representation by first
building representations of their functions, and then building
the later representation by extracting and combining both
the mnemonic-level features and the function-level representa-
tions, which allows us to retain the hierarchical information of
an executable. The generalization performance of our method
has been evaluated on the dataset provided by Microsoft
for the Big Data Innovators Gathering (BIG 2015) Anti-
Malware Prediction Challenge [3]. Furthermore, we present
a comparison with deep learning methods in the literature.

The rest of the paper is organized as follows. Section II
briefly presents the research related to this work. Section III
provides a complete description of the proposed methodology
for classifying malware. Section IV describes the results
achieved by our method on the Microsoft Malware Classifica-
tion Challenge benchmark [3] and provides a comparison with
the deep learning methods in the literature. Lastly, Section V
summarizes the concluding remarks extracted from this work
and proposes some future lines of research.

II. RELATED WORK

Traditional machine learning solutions for malware detec-
tion extract hand-designed features that provide an abstract
representation of the program that is later used for classifi-
cation. These solutions are greatly dependent on the ability
of the domain experts to extract a set of descriptive and
discriminant features into which they represent malware. The
process that transforms raw data into a feature vector is known
as feature engineering. The most common features are bytes
and opcode n-grams [4]–[6]. An n-gram is a sequence of
n items. By treating a malware file as a sequence of bytes
(or opcodes), n-grams are extracted by looking at the unique
combination of every n consecutive byte (or opcode) as an
individual feature. n-gram based approaches in the literature
consist of a three-step process. First, n-grams are extracted.
Second, the features are reduced and only a subset of them
is selected. Third, an algorithm classifies the samples based
on the reduced feature subset. To detect the presence of
compressed and encrypted segments, entropy analysis has
long been used because packed and encrypted executables
usually have higher entropy than native code. For instance,
in the study by Lydia et al. [7] the average entropy of native,
compressed and encrypted executables was 5.099, 6.801 and
7.175, respectively. However, simple entropy statistics are not
enough to detect sophisticated malware, as malware authors
are able to conceal packed and encrypted code in a way
that they pass through entropy filters without much effort.
Thus, researchers started analyzing the structural entropy of
executables [8]. In other words, an executable is represented as
an entropy time series, where each value measures the entropy
over a small chunk of code in a specific location of the file.
Portable Executable (PE) files also contain useful information
associated with dynamically linked libraries, sections of the
programs, etc., that can be used to build descriptive features. In

particular, the usage of the Windows Application Programming
Interface (Windows API) has long been used as discriminant
features for malware detection [9]. Basically, API functions
and system calls provide information related to which services
of the operating system the executable might access.

Following recent trends in the machine learning field, during
the past few years the development of machine learning meth-
ods for malware detection has evolved towards deep learning
solutions. These solutions replace the traditional machine
learning workflow by a fully trainable system with as little
preprocessing as possible. A deep learning system takes as
input a representation of the executable’s content and tries to
directly detect malicious software or the family to which it
belongs. Neural networks are commonly used in such end-
to-end learning systems. In a deep learning setup, an end-
to-end model learns all the features that can occur between
the original input (x) and the final output (y). For malware
detection tasks, an end-to-end model is trained to generate
an output prediction (y) from an input executable represented
in one format or another. D.Gibert et al [10] presented a
convolutional neural network to classify malware based on the
representation of its binary content as gray scale images. E.
Raff et al [1] and M. Krčál [11] proposed a shallow and a deep
convolutional network for detecting malicious software from
its raw byte sequences over millions of bytes. On the contrary,
instead of feeding a learning algorithm with the raw bytes
sequences, D. Gibert et al. [12], [13] proposed firstly com-
pressing or codifying the information using entropy analysis or
autoencoders to reduce the usage of computational resources
in end-point solutions. B.Kolosnjaji et al. [14] constructed a
neural network based on convolutional and recurrent layers to
extract features from malware represented as a sequence of
API function calls. D. Gibert et al [2] presented a shallow
architecture to extract n-gram like signatures of malware
represented as a sequence of assembly language instructions.

III. THE PROBLEM OF MALWARE CLASSIFICATION

Polymorphic and metamorphic techniques are commonly
employed by malware authors to evade detection. These
techniques change the appearance of the computer program
without modifying its behavior and true purpose. Thus, huge
volumes of different files are generated that might be variants
of previously known files. Consequently, being able to identify
these malicious files belonging to the same family is an
effective approach to analyzing and classifying such a large
amount of files. As a result, malware classification refers to
the task of grouping malware into groups and identifying their
respective families. The rest of the section is organized as
follows. Section III-A introduces the Microsoft Malware Clas-
sification Challenge benchmark [3]. Section III-B describes
how malware classification can be treated as a document
classification task. Lastly, Section III-C presents a hierarchical
convolutional network for classifying malware into families.
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Fig. 1. Class distribution of the Microsoft Malware Classification training set

Fig. 2. Assembly View of a Portable Executable file

A. Microsoft Malware Classification Challenge

The Microsoft Malware Classification Challenge [3] is
currently hosted on Kaggle and it is available to the public
for research purposes. It has become the standard benchmark
to assess the performance of machine learning algorithms
on addressing the task of malware classification. The dataset
consists of 10868 malicious samples for training and 10873
samples for testing of malware representing 9 malware fami-
lies. (See Figure 1) For each sample we are provided with the
hexadecimal representation of the malware’s binary content
and with a metadata manifest, which is the assembly language
source code generated using the IDA disassembler tool, a com-
puter program that translates machine language into assembly
language.

B. Malware Classification as a Document Classification Task

The assembly language source code of a computer program
is the low-level representation of the program’s statements
and machine code instructions. Therefore, the problem of
malware classification can be modeled as a text classification
task by preprocessing the assembly files and extracting their
assembly language instructions. The simplest representation
is to retain only the mnemonic of the instruction. That is,
on encountering the instruction add esp 10h we simply
extract the add mnemonic. The main argument behind this
representation is that it will generalize better as it would not be

affected by small permutations in the arguments and thus, the
obfuscation technique known as register reassignment would
not alter the output of the classifier. Primarily, this obfuscation
technique switches registers from generation to generation
without altering the behavior of the program code.

Some of the most frequent approaches in the literature for
classifying malware from the instructions of the assembly lan-
guage source code are based on n-gram analysis [5], [15], [16].
In our domain, an n-gram is defined as a contiguous sequence
of n mnemonics from a given sequence of instructions. The
n-gram features can be used to train a classifier to distinguish
between benign and malicious software. However, these ap-
proaches are greatly affected by the length of the n-gram. By
increasing n, it increases the resulting n-gram features and also
the computational resources needed. Furthermore, the number
of unique combinations jointly increase exponentially with N.
Thus, it is necessary to perform feature selection and reduction
to cut down the size of the feature vector, which would be
composed of millions of elements for long n-grams.

To deal with long n-grams without consuming an exploding
amount of computational resources, the use of convolutional
neural networks [2], [17] has recently been proposed to learn
to detect n-gram like patterns from a computer program repre-
sented as a sequence of mnemonics. Unlike the n-gram based
approaches, these approaches do not need to exhaustively enu-
merate a large number of n-grams during training, as the CNN
is able to learn n-gram like signatures through the various
convolutional layers. In addition, they also remove the need for
hand-designed features, as the features are also learned by the
convolutional layers. Thus, it eliminates the need for a pipeline
consisting of feature extraction, feature selection/reduction and
classification, as both steps are optimized together during
supervised network training.

Although the aforementioned neural approaches to malware
classification performed considerably well, they do not take
into account the hierarchical structure of Portable Executable
files. This type of files exhibits various levels of spatial
correlation. Adjacent instructions tend to be related to one
another but, due to jumps and function calls, this might not
always be true. Function calls and jump instructions transfer
the control of the program into another address in memory
and continue the execution from that address. Furthermore,
these discontinuities are maintained on the binary file, but
also in its hexadecimal representation. Nevertheless, a Portable
Executable consists of functions or macros and each function
is defined by a sequential list of instructions. Consequently,
by representing an executable as a sequence of instructions
without considering the macros, we lose its hierarchical in-
formation. On the contrary, a natural way to represent the
assembly language source code would be as a sequence
of sequences, where each sequence contains the mnemonics
describing a particular function or procedure. For instance, the
assembly language code in Figure 2 would be decomposed into
two sequences of mnemonics (any operands associated with
the assembly language instruction are discarded), as follows:

• Function A (from 004010B1 to 004010E0): [mov,
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mov, mov, push, mov, push, push, push,
push, call, add, mov, pop, retn]

• Function B (from 004010E1 to 004010F2): [xor,
retn]

Thus, to capture the insights at the mnemonic-level and at the
function-level, we designed a hierarchical convolutional net-
work to extract hierarchical features about malware structure.

C. Hierarchical Convolutional Network for Classifying Mal-
ware

The overall structure of the hierarchical convolutional net-
work is shown in Figure 3. Next, the components and structure
of the network are described in greater detail.

Notation. The dataset consists of a set of pairs xi, yi, where
xi is an executable and yi denotes the family to which it
belongs, where xi ∈ ZN×M×I , N is the number of functions,
M is the number of mnemonics and I is the vocabulary size.
The vocabulary is composed of all mnemonics that have ap-
peared at least three times in the training set. Each mnemonic
is associated with a number within the range 1 to I . For
instance, xij,l refers to the one-hot vector of the l-th mnemonic
of the j-th function in program i. Note that each mnemonic is
represented as a one-hot vector, which is a vector of zeros
of size I, with a ’1’ in the position corresponding to the
mnemonic’s integer mapping. The remaining mnemonics that
are executed less than three times are replaced with the UNK
token. In addition, each sequence of mnemonics referring to
a function is padded to the same length. Furthermore, empty
functions are also padded to represent all programs with the
same size. In all our experiments N and M are set to 20000
and 50, respectively. In those cases where the number of
mnemonics per function is greater than M, the sequence is
split into subsequences of size M.

Embedding layer. One-hot vectors are high-dimensional
and sparse. Using such encoding, it is not possible to mean-
ingfully compare mnemonic vectors other than by equality
testing. To address this problem, a distributed representation
of a mnemonic is used. The embedding layer converts a one-
hot vector into a low-dimensional vector representation of size
K. Thus, the output of the embedding layer would be a 3-
dimensional array of size N×M×K, where N is the number
of functions per program, M is the number of mnemonics
per function and K is the embedding size. Each mnemonic
would be represented as a distribution of weights across K
elements where each element in the vector contributes to the
definition of many mnemonics. The embedding space may
encode semantic information about comparable operations
or analogous meaning. This is achieved by projecting those
mnemonics to nearby points in the embedding space.

Mnemonics-level Feature Extraction. This convolutional
block receives the N × M × K program representation as
input. It consists of multiple filters of various sizes, 1×F×K,
where F ∈ {1, 2, 3, 5, 7}. That is, the size of the subsequence
of mnemonics that the filter can detect ranges from 1 to a
maximum of 7 mnemonics. The reason behind applying the
convolution operator with filters of different size is because

salient and prominent parts in the sequence of instructions
can vary in size and location. Consequently, choosing the right
kernel size for the convolutional operation might be a difficult
choice. Note that the 3-dimensional convolutions are applied
for each function individually. Afterwards, max-pooling is
applied to keep only the strongest activation of each feature
map per function. This is achieved by applying the pooling
operator with filters of size 1×M × 1. As a result, the output
is a 2-dimensional vector of size N × L, where L is equal
to the number of filters. Additionally, the strongest activations
within a sample (not only at the function level) are extracted
and gathered in a vector of size L for later usage, hereinafter
called G.

Function-level Feature Extraction. This block takes as
input the N × L array outputted by the previous block.
Similarly, it performs convolutions on the input with filters of
size 1×L, 2×L and 3×L which extract features from one, two
or three functions at a time. Global max-pooling and global
average-pooling are then performed to generate the program’s
feature vector representation. Both pooling operations are
applied with filters of size N × 1. This generates two vectors
of size Q, where Q is equal to the sum of the number filters
of size 1 × L, 2 × L and 3 × L, that are concatenated into a
single feature vector, hereinafter called V , of size Q · 2.

Fully-connected layer. The feature vector V is passed
through a fully connected layers with 128 neurons that non-
linearly combine the high-level input features into a reduced
feature vector.

h(V ) = σ(W1V + b1)

where σ is the non-linearity function and W1 and b1 are the
weights and biases, respectively.

Skip Connection. The result of h(V ) is then concatenated
with the global n-gram like features extracted at the mnemon-
ics level, G. This allows us to pass that information to the
deeper layers. Consequently, the network would assign a given
malware to a family considering both simpler n-gram like
features and complex hierarchical features.

J = h(V )⊕G
where ⊕ is the concatenation of vectors, and G is the vector
containing the global 1-gram, 2-gram, 3-gram, 5-gram and 7-
gram strongest activations at the mnemonics-level.

Fully-connected layer. This layer takes as input vector J
and non-linearly combines the features into a low dimensional
feature vector P , where P = h(J) = σ(W2J + b2), and W2

and b2 denote the weights and biases of the fully-connected
layer.

Malware Classification. The resulting program feature
vector P is the high level representation of the assembly
language source code and can be used to classify a malicious
program into its corresponding family:

probs = s(WcP + bc)

where probs is a vector of size C (C = | families|), Wc

and bc are the weights and biases of the layer, and s is the
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Fig. 3. Structure of the Hierarchical Convolutional Neural Network for Malware Classification. Blue, green and yellow boxes represent the convolution,
pooling and concatenation operations, respectively.

CHAPTER 4. END-TO-END LEARNING AS AN ALTERNATIVE TO
N-GRAM APPROACHES

4.3. AUTOMATIC FEATURE EXTRACTION WITH DEEP LEARNING 49



softmax function. The purpose of the softmax layer is to output
the probability that an executable belongs to one family or
another.

The activation function adopted through all the layers is
the Exponential Linear Unit (ELU) [18]. Additionally, weights
are initialized according to Xavier [19]. Lastly, the dropout
rate [20] during training for the fully-connected and convolu-
tional layers was 0.5 and 0.1, respectively.

IV. EVALUATION

A. Performance Metrics

The generalization performance of our approach was esti-
mated using 10-fold cross validation and the best model was
selected according to the macro F1 score, which is the average
of the individual F1 scores obtained for each class:

F1 = 2 · P ·R
P +R

where P and R are the precision and recall evaluation metrics.
The reason why accuracy is not considered as the only
evaluation metric is because there is a large class imbalance in
the dataset and thus, we do not want to end up with a model
able to correctly predict the value of the majority classes while
making mistakes with the critical classes. Consequently, the
macro F1 score best meets our requirements.

To evaluate how our approach performed on the test set we
used the following multi-class logarithmic loss (logloss):

− 1

N

N∑

i=1

M∑

j=1

(yi,j log(pi,j) + (1− yi,j) log(1− pi,j))

where N is the number of observations, M is the number
of class labels, log is the natural logarithm, yi,j is 1 if the
observation i belongs to class j and 0 otherwise, and pi,j is
the predicted probability that observation i belongs to class
j. This metric is used to evaluate the test set because their
corresponding labels are not provided. Instead, one should
submit a file containing a set of predicted probabilities (one
for each class) to Kaggle to evaluate the performance of a
model on the test set.

B. Comparison with the state-of-the-art

The generalization performance of our approach has been
compared with state-of-the-art methods in the literature on
the Microsoft Malware Classification benchmark [3]. These
methods can be divided into two groups, depending on the
input file type.

1) Hexadecimal-based approaches. This group includes
approaches that are based on the hexadecimal repre-
sentation of malware’s binary content. D. Gibert et
al. [10] presented a convolutional neural network to
classify malware’s binary content represented as gray
scale images. In addition, in the work of D. Gibert et
al. [12] they evaluated the performance of convolutional
neural networks and K-nearest neighbor algorithms to
classify malware represented as a stream of entropy
values. Instead, D. Gibert et al [13] and Quan Le et

al. [21] compressed the information described in the
byte sequence using denoising autoencoders and scaling
methods, respectively. On the contrary, E. Raff et al. [1]
and M. Krčál et al. [11] proposed classifying malware
using only the raw byte sequences as input. On the one
hand, E. Raff et al. [1] presented a shallow convolutional
neural architecture composed of a gated convolutional
layer followed by a global max pooling layer, a fully
connected and a softmax layer. On the other hand,
M. Krčál et al. [11] presented a deeper architecture
consisting of 9 layers in total, 4 convolutional layers
plus a global average pooling layer and 3 fully connected
followed by the softmax layer.

2) Assembly-based approaches. This group includes ap-
proaches that are based on assembly language source
code of the executables. M. McLaughlin [17] and D.
Gibert et al [2] proposed detecting malware using a
shallow convolutional network. The difference between
both methods is that in the work of D. Gibert et al [2] the
network consists of only one convolutional layer with
filters of various sizes. Furthermore, we implemented
a hierarchical attention network based on the work of
Z. Yang et al. [22].

Table I presents a comparison between state-of-the-art meth-
ods in the literature and our approach. More specifically,
it shows the 10-fold cross validation accuracy and macro
f1 score achieved with the training set, and the multi-class
logarithmic loss with the test set. On the one hand, methods
that are fed with the raw byte sequences as input [1], [11]
perform worse than those that first compress or encode the
information in the byte sequences [12], [13]. Our hypothesis
is that due to the limited amount of training data and the higher
complexity of the network, those methods are more prone
to overfitting. An analysis of these methods with a bigger
dataset is necessary to correctly assess their generalization
performance. However, there is no other public benchmark
of Portable Executable files available for comparison due to
copyright laws and restrictions in labeling procedures. To
avoid falling into the trap of evaluating our approach using
an in-house dataset, for reproducibility purposes we decided
to assess its performance with a standard benchmark [3]. On
the other hand, assembly-based approaches generally perform
considerably better than hexadecimal-based approaches with
the exception of the Hierarchical Attention Network (HAN).
However, even though the HAN achieved a lower 10-fold
cross validation accuracy and macro F1 score, it achieved a
lower logarithmic loss with the test set in comparison with the
hexadecimal-based approaches. Furthermore, both the Shallow
CNNs and the Hierarchical Convolutional Network achieved
a higher classification accuracy and macro F1 score, and
a lower logloss than other approaches. This was for two
reasons: (1) The length of the sequence of mnemonics is
much shorter than the length of the raw byte sequences, thus,
given the limited training data, the simpler architectures are
less prone to overfitting; (2) Both the Shallow CNNs and
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TABLE I
STATE OF THE ART COMPARISON OF DEEP LEARNING METHODS ON THE MICROSOFT MALWARE CLASSIFICATION CHALLENGE BENCHMARK.

APPROACHES WITH A "*" MARK INDICATE THAT THEY PERFORMED 5-FOLD CROSS VALIDATION INSTEAD OF 10-FOLD CROSS VALIDATION TO ASSESS
THE PERFORMANCE OF THEIR METHOD.

Training 10-fold cross validation Test
Accuracy Macro F1 score Logarithmic Loss

Hex-based approaches
CNN IMG [12] 0.975 0.940 0.1844
CNN Entropy [12] 0.9708 0.9314 0.1346
CNN Haar Approximation & Details [12] 0.9828 0.9636 0.1244
Autoencoder + Dilated Residual Network [13] 0.9861 0.9719 0.1063
MalConv [1] 0,9641 0.8902 0.3071
DeepConv [11] 0.9756 0.9071 0.1602
CNN+BiLSTM [21]* 0.9820 0.9605 0.0744
Assembly-based approaches
Shallow CNN: filters with multiple sizes [2] 0.9917 0.9856 0.0351
Shallow CNN [17] 0.9903 0.9743 0.0515
HAN [22] 0.9742 0.9468 0.0933
Hierarchical Convolutional Network 0.9913 0.9830 0.0419

the Hierarchical Convolutional Network perform convolutions
on the mnemonic sequences. Applying convolutions rather
than recurrent units is computationally more efficient and is
more suitable for our classification task, since we are dealing
with very long input sequences. Furthermore, malware authors
usually employ a wide range of obfuscation techniques to
modify the appearance of executables without modifying their
behavior. One of the most common obfuscation techniques is
subroutine reordering. That is, the order of the subroutines
in the original code is changed randomly. Another common
technique is code transposition which reorganizes the order
of the instructions without changing the behavior of the
computer program. Thus, convolutional-based networks are
more adequate to deal with the problem at hand , since they
are able to detect patterns that might be displaced in space
through the convolution and max-pooling operations.

Figure 4 displays the confusion matrix and the normalized
confusion matrix achieved by our method. The major contrib-
utor to misclassifications is the Obfuscator.ACY family which,
according to Microsoft, is malware that can have almost any
purpose and has tried to hide its purpose using a combination
of obfuscation methods such as encryption, compression, anti-
debugging, anti-emulation techniques, etc., in such a way
that it could not be detected. In addition, there are some
samples in the dataset which have almost no instructions or
zero instructions, due to certain issues during the disassembly
process, it being very complicated to label them correctly using
only the information provided with the assembly language
instructions. Consequently, to correctly classify those samples
it might be necessary to complement our method with features
extracted from the hexadecimal representation of the binary’s
content or with features not related with the assembly language
source code.

V. CONCLUSIONS

In this paper, we propose a Hierarchical Convolutional Net-
work (HCN) to classify malware’s assembly language source
code in Portable Executable files. The hierarchical structure of
the network is best suited to take advantage of the hierarchical

structure of Portable Executable files, as it allows n-gram like
features to be extracted from both the mnemonics level and
the function level. The use of convolutions has proven to be
more useful to detect malware, due to the higher dimensional
space of the system’s input data than recurrent units and
attention. In addition, the proposed solution does not rely on
costly feature engineering, since it learns the best n-gram like
features automatically during training. Experimental results
demonstrate that our model performs significantly better than
hexadecimal-based approaches in the literature and than the
Hierarchical Attention Network, and performs comparably to
the shallow CNN with filters of multiple sizes.

A. Future Work

Due to the limitations related to disassembling the bi-
nary’s content, a future line of research might be to explore
multimodal learning for malware classification. Multimodal
learning is a model to show the joint representation of different
modalities. In the problem of malware detection and classifica-
tion, one modality might be represented by a different type of
features. For instance, API function calls, assembly language
instructions, raw bytes sequence, function call graph, etc. This
kind of model might be able to discover the relationships
between different modalities and build a robust classifier.
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4.3.3 Classification of Malware by Using Structural Entropy
on Convolutional Neural Networks

To evade detection, malware authors employ a variety of obfuscation techniques
to hide malicious code inside executables. The most common are encryption and
compression, which are employed in most of the malware samples. In the infor-
mation security industry, a common practice to detect the presence of encrypted
or compressed segments hidden beneath portable executables is entropy analysis.
In general, segments of code that have been compressed or encrypted tend to have
higher entropy than native code [54].

In information theory, entropy (more specifically, Shannon’s entropy) is the ex-
pected value of the information contained in each message. Generally speaking, the
entropy of a bytes sequence refers to the amount of disorder (uncertainty) or its
statistical variation. If occurrences of all values are the same, the entropy will be
larger. On the contrary, if certain byte values occur with high probabilities, the
entropy value will be smaller. However, the use of simple entropy statistics may
not be enough to detect sophisticated malware. Authors sometimes try to conceal
encrypted or compressed code in a way that they pass through high entropy filters.
For instance, they may add additional padding to reduce the mean file entropy.
Thus, researchers [69] started analyzing what is defined as the structural entropy
of a file. In other words, each executable file is represented as a stream of entropy
values, where each value describes the amount of entropy over a small chunk of code
in a specific location of the file. Figure 4.7 displays the structural entropy of various
malware executables belonging to two different families. It can be observed that
the entropy streams extracted from malware samples belonging to the same family
appear to be similar while distinct from those belonging to different families.

Figure 4.7: Entropy time series from malicious software. Samples from the first row
belong to the Ramnit family, whereas samples from the second row belong to the
Gatak family. Note the variation of the stream of entropy values between families.
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By representing executable files as a stream of entropy values, the task of mal-
ware classification can be described as a time series classification problem. For time
series classification tasks, the most successful approaches in the literature are: (1)
Time domain distance based classifiers and (2) Shapelet-based classifiers. On the one
hand, the 1-nearest neighbor using the Dynamic Time Warping (DTW) as distance
metric achieves state-of-the-art classification results on the time series classification
task [18]. However, the nearest neighbor classification algorithm is limited by its
space and classification time complexity and subsequently, it is not suitable in those
scenarios where a low prediction time is a requirement, as the prediction time of
the nearest neighbor grows linearly as the dataset grows larger. On the other hand,
shapelet-based classifiers rely on the extraction of discriminant subsequences of the
time series [74] to distinguish the time series by their local variations instead of their
global structure. However, the computational complexity for the brute force algo-
rithm is polynomial, for best cases, O(n2m3), where n is the number of time series
in the dataset and m is the average length of each time series. Alternatively, these
shapelets can be learned automatically by formulating the shapelet learning task as
an optimization of a classification objective function [34]. The main idea behind
this is to directly learn optimal shapelets without needing to explore all possible
candidates. This is done by starting with rough initial guesses for the shapelets and
by iteratively learning/optimizing the shapelets by minimizing a classification loss
function. In our case, the loss function is the multi-class logarithmic loss:

logloss = − 1

N

N∑

i=1

M∑

j=1

(yi,jlog(pi,j) + (1− yi,j)log(1− pi,j))

where N is the number of observations, M is the number of class labels, log is the
natural logarithm, yi,j is 1 if the observation i is in class j and 0 otherwise, and pi,j
is the predicted probability that observation i is in class j. Furthermore, instead of
the learning algorithm presented by Grabocka et al. [34], Gibert et al. [31] proposed
to learn the shapelets by stacking convolutional layers, which allows a hierarchical
decomposition of the input time series. To do this, the wavelet transform is applied
to the entropy time series in order to compress the signal and reduce the noise. See
Figure 4.8.

For a more detailed description of the convolutional network architecture and
the experimental setup the reader is referred to the original research article [31].

Figure 4.8: Convolutional network architecture for malware classification based on
its structural entropy representation.
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Abstract

The number of malicious programs has grown both in num-
ber and in sophistication. Analyzing the malicious intent of
vast amounts of data requires huge resources and thus, ef-
fective categorization of malware is required. In this paper,
the content of a malicious program is represented as an en-
tropy stream, where each value describes the amount of en-
tropy of a small chunk of code in a specific location of the file.
Wavelet transforms are then applied to this entropy signal to
describe the variation in the entropic energy. Motivated by
the visual similarity between streams of entropy of malicious
software belonging to the same family, we propose a file ag-
nostic deep learning approach for categorization of malware.
Our method exploits the fact that most variants are gener-
ated by using common obfuscation techniques and that com-
pression and encryption algorithms retain some properties
present in the original code. This allows us to find discrim-
inative patterns that almost all variants in a family share. Our
method has been evaluated using the data provided by Mi-
crosoft for the BigData Innovators Gathering Anti-Malware
Prediction Challenge, and achieved promising results in com-
parison with the State of the Art.

Introduction
To evade detection, malware authors employ a variety of
obfuscation techniques to hide malicious code inside exe-
cutables. The most common are encryption and compres-
sion which are employed in most of the malware samples.
In the information security industry, a common practice to
detect the presence of encrypted or compressed segments
hidden beneath portable executables is entropy analysis. In
general, segments of code that have been compressed or en-
crypted tend to have higher entropy than native code (Lyda
and Hamrock 2007).

In information theory, entropy (more specifically, Shan-
non’s entropy) is the expected value of the information con-
tained in each message. Generally speaking, the entropy of a
bytes sequence refers to the amount of disorder(uncertainty)
or its statistical variation. If occurrences of all values are the
same, the entropy will be largest. On the contrary, if certain
byte values occur with high probabilities, the entropy value
will be smaller.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, the use of simple entropy statistics may not be
enough to detect sophisticated malware. Authors sometimes
try to conceal encrypted or compressed code in a way that
they pass through high entropy filters. For instance, they may
add additional padding to reduce the mean file entropy. Any-
way, native, encrypted or compressed segments and padding
tend to differ markedly having distinct entropy levels. Thus,
researchers (Sorokin 2011) started analyzing what is defined
as the structural entropy of a file. In other words, each ex-
ecutable file is represented as a stream of entropy values,
where each value describes the amount of entropy over a
small chunk of code in a specific location of the file. Fig-
ure 1 displays the structural entropy of various malware ex-
ecutables belonging to two different families. It can be ob-
served that the entropy streams extracted from malware sam-
ples belonging to the same family appear to be similar while
distinct from those belonging to different families.

Figure 1: Entropy time series from malicious software. Sam-
ples from the first row belong to the Ramnit family, whereas
samples from the second row belong to the Gatak family.
Note the variation of the stream of entropy values between
families.

By representing executable files as a stream of entropy
values, the task of malware classification can be described
as a time series classification problem (Fu 2011; Xing, Pei,
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and Keogh 2010; Bagnall et al. 2017).
The approaches most studied have been (1) Time domain

distance based classifiers and (2) Shapelet based classifiers.
On the one hand, Dynamic Time Warping (DTW) has been
widely used as the preferred method to measure the sim-
ilarity between two temporal sequences that may vary in
length. (Ding et al. 2008), evaluated 8 different distance met-
rics on 38 time series datasets and found that DTW jointly
with 1-Nearest Neighbor (NN) outperformed most of them.
However, the NN is limited by its space complexity and its
classification time complexity. On the other hand, time se-
ries shapelets were first used for classification in (Ye and
Keogh 2009). Shapelets are discriminant subsequences of
time series. The idea is that different classes of time series
can be distinguished by their local variations instead of their
global structure. Nevertheless, the computational complex-
ity for the brute force search algorithm is polynomial, for
best cases, O(n2m3), where n is the number of time series
in the dataset and m is the average length of each time se-
ries. (Grabocka et al. 2014) introduced a more efficient alter-
native to learn shapelets. In their method, instead of search-
ing among possible candidates from time series segments,
they proposed a method to directly learn optimal shapelets
without exploring all possible candidates. Their approach,
starts by guessing a set of initial shapelets. Then, it itera-
tively learns the shapelets by minimizing an error function.

Inspired by the recent advances in the deep learning field
and the work of (Grabocka et al. 2014), in this paper we
propose a file agnostic end-to-end deep nonlinear feature
learning and classification based method for categorization
of malicious software based on its structural entropy. Our
approach has been evaluated using the dataset provided by
Microsoft for the Big Data Innovators Gathering (BIG 2015)
Anti-Malware Prediction Challenge.

The rest of the paper is organized as follows. Firstly, we
introduce our deep learning approach for malware classifi-
cation. Then, the results of the performance evaluation for
our method are presented. And lastly, the paper concludes
with our remarks.

Classification of Software’s Structural
Entropy via Deep Learning

As can be observed in Figure 1, there exists empirical ev-
idence that entropy time series from a given family are vi-
sually similar and distinct from those belonging to a differ-
ent family. This is perhaps the result of reusing the code to
create new malware variants. Consequently, this visual sim-
ilarity motivated us to apply convolutional neural networks
for time series classification to automatically learn good fea-
ture representations from both time and frequency domains
jointly. To do this, a given executable is transformed into a
recognizable input by applying the following two-step pro-
cess:

1. Structural entropy calculation. The entropy of an exe-
cutable file is computed by splitting its hexadecimal rep-
resentation (00h–FFh) into non-overlapping chunks of
fixed size. In the literature, a common value is 256 bytes.

For each chunk of code, the entropy is then computed us-
ing Shannon’s formula defined as:

H(X) = −
n∑

i=1

p(i) · logbp(i)

where H(X) is the measured entropy value of a discrete
random variable X with values x1, . . . , xj , j is the num-
ber of values in X, p(i) refers to the probability of appear-
ances of the byte value i in X and n is equal to 255, i.e.
byte code values are in the range of [0, 255].

2. Discrete Wavelet Transform. The single-level discrete
wavelet transform is applied to the entropy time series in
order to compress the signal and reduce the noise. The
original vector of length N is transformed into two vec-
tors of length N/2, named the approximation coefficients
and the detail coefficients. In this work, the Haar wavelet
transform (Haar 1910) has been used, instead of any other
transforms such as Daubechies or Morlet, due to its effi-
ciency in computation.

Network Architecture
The overall architecture of the network is illustrated in Fig-
ure 2. The input is a multivariate time series M , defined as
M = {m1,m2}, where each element mi is a univariate
time series. A univariate time series is a sequence of data
points measured at successive points in time. It is denoted
as T = {t1, t2, . . . , tn}, where n is the length of T . At any
time stamp t, mt = {m1,t,m2,t} where m1,t and m2,t are
the values of the Haar approximation and Haar coefficient
values at time stamp t.

The core of the convolutional neural network consists
of three convolutional layers plus two fully-connected lay-
ers. The convolutional layers perform feature learning on
both univariate series jointly. Then a normal feed-forward
network is concatenated at the end of feature learning to
perform classification. Specifically, the input is fed into a
3-stage feature extractor which learns hierarchical features
through convolution, activation and pooling layers.

Convolution is an operation that takes an input signal and
a feature map and produces one output signal. A convo-
lution operation involves a filter wk ∈ Rij where i ≤ w
and j ≤ h and i and j are the width and the height of
the an input 2D signal. The output of convolving the k-th
kernel of the convolutional layer l, wl,k over a 2D signal
is defined as c = wl,k × x + bl,k, where bl,k is the bias
of the k-th kernel in layer l. The kernel slides over each
value of the input signal, multiplies the corresponding en-
tries of the input signal and the kernel and adds them up.
The convolutional layers are composed of 50, 70 and 70
feature maps with 3 by 2, 3 by 50 and 3 by 70 receptive
fields for the first, second and third convolutional layers,
respectively.

Activation function introduces non-linearity into the net-
work. It takes a single value x and performs a mathemati-
cal operation on it. In particular, we adopt the ReLU func-
tion max(0, x) in all activation layers.
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Figure 2: Convolutional network architecture for malware classification. It is composed by 3 convolutional layers followed by
2 fully-connected layers. The input of the network are two univariate time series, the average and the details vector generated
by transforming an entropy stream with Haar wavelets. The output of the network is the predicted class of the malware sample.

Pooling is a function that reduces the spatial size of an in-
put signal. It helps to reduce the amount of parameters and
computation in the network as well as to control overfit-
ting. We applied max-pooling with filters of size 2 × 1
with stride 1, which reduces the input signal by half.

Convolutional layers can be seen as detection filters for
the presence of specific features or patterns present in the
data. The first layers detect low-level features whereas the
last ones detect increasingly complex features. At the end of
the extractor, the feature maps are flattened and combined as
the input of the subsequent feed-forward layers plus a soft-
max layer for classification. Particularly, the number of units
in the feed-forward layers is equal to 1000 and 300 for the
first and the second layer, respectively. To prevent overfit-
ting, dropout (Srivastava et al. 2014) was used and, to im-
prove the stability of our model, an ensemble algorithm was
used, named bootstrap aggregating (Breiman 1996).

Resilience to Obfuscation Techniques
By nature, the features learned by the convolutional neural
networks are invariant to translation. That is, CNNs are able
to detect patterns which may be displaced in space through
the convolution and max-pooling operations. The convolu-
tion operation provides equivariance to translation. In our
domain this means that signal patterns may be recognized
at any temporal space. Additionally, the max-pooling opera-
tion returns the largest value in its receptive field. Thus, the
location of this value, if it is still within the receptive field,
do not alters the output of the pooling operation. Thus, both
operations together provide invariance to translation. This
property is really helpful against detecting the changes pro-
duced by the following obfuscation techniques:

Dead-code insertion. This technique adds ineffective in-
structions, such as the NOP instruction, to the program to
change its appearance while maintaining the same func-
tionality. By adding NOP instructions, the average en-
tropy of the executable will decrease, but the entropy of
the adjacent chunks containing the actual code will differ

greatly from the chunks containing NOP instructions as it
can be observed in Figure 3.

Figure 3: Two samples belonging to the Simda family whose
code has been modified by the dead-code insertion technique
(chunks highlighted in red).

Code transposition. This technique reorders the sequence
of the instructions without changing the behavior of the
program. For instance, the instructions

1: ADD R1 R2 1: ADD R3 R4
2: ADD R3 R4 can be replaced by 2: ADD R1 R2

If the sequence of instructions is located inside the same
chunk of code as it was previously to the reordering, the
entropy of the chunk will still be the same.

Subroutine reordering. By applying this technique, the or-
der of the subroutines in the original code is changed ran-
domly. Cf. Figure 4. Being invariant to translation means
that the location of the subroutines will not affect the out-
come of the classifier, because the network is able to find
the patterns independent of their location.

Encryption and packing are the most common methods
employed to hide malicious code into executables. These
methods transform a series of original bytes into a series
of random-looking data bytes. In the information secu-
rity industry, to detect the presence of encrypted or com-
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Figure 4: Two samples belonging to the Kelihos ver3 family.
It can be observed that the actual code of the program (high-
lighted in red) has been reallocated from the start to the end
of the file.

pressed segments hidden beneath the executable, code en-
tropy analysis is commonly performed. Typically, files
with high entropy are relatively likely to have encrypted
or compressed sections inside them (Lyda and Hamrock
2007). Thus, by representing an executable as a stream of
entropy values, the presence of encrypted or compressed
segments hidden within portable executable files can be
detected. Figure 5 shows two samples belonging to the
Obfuscator.ACY family. It can be observed that the en-
tropy of different segments varies along the files. There-
fore, the local patterns learned by the CNN should be able
to detect these changes in the entropy values between en-
crypted or compressed chunks and the chunks containing
the rest of the code.

Figure 5: Two samples belonging to the Obfuscator.ACY
family. The red box highlights the possible encrypted or
compressed segments within the files.

Evaluation
The data used to evaluate our deep learning approach were
provided by Microsoft for the BigData Innovators Gather-
ing (BIG 2015) Anti-Malware Prediction Challenge. The
dataset is composed of 21741 samples, 10868 for training
and 10873 for testing, grouped into 9 different malware fam-
ilies (Cf. Table 1).

Experimental Setup
To estimate the generalization performance of our approach
we used K-fold cross validation, where K = 10. Addition-
ally, the best model was selected according to the F1 score.
That is because classification accuracy alone can be mislead-
ing. Sometimes, it may be desirable to select a model with a

Table 1: BIG 2015 dataset statistics.
Family Class ID #samples Average size Average length

(bytes) (256 bytes)
Ramnit 1 1541 1482169.56 1597.17
Lollipop 2 2478 5829531.16 6281.75
Kelihos ver3 3 2942 8982629.66 9679.56
Vundo 4 475 1120945.27 1207.90
Simda 5 42 4552326.09 4905.52
Tracur 6 751 1801152.85 1940.90
Kelihos ver1 7 398 5051900.48 5443.85
Obfuscator.ACY 8 1228 827118.28 891.29
Gatak 9 1013 2555072.57 2753.31

lower accuracy but with greater predictive power (a.k.a. ac-
curacy paradox). This is true in a problem like ours where
there is a large class imbalance, where a model can predict
the value of the majority class for all predictions and achieve
high classification accuracy while misclassifying samples
from the minority or critical classes. In particular, since the
task we are trying to solve is a multi-class classification
problem we used an adaptation of the score called macro-
averaged F1 score, defined as the average of the individ-
ual F1 scores obtained for each class. Macroaveraging gives
equal weight to each class. Thus, large classes will not dom-
inate small classes.

The experimentation has been divided into three phases.
In the first phase, it has been studied how the chunk size
influences the output of the network. In the second phase, it
has been analyzed how the Haar approximation of the initial
entropic signal impacts our classifier. In the third phase we
compared our best model with state of the art methods in the
literature.

Chunk Size Comparison The size of the malicious pro-
grams varies greatly between families. Thus, their corre-
sponding time series differ in length from one family to an-
other, independently of the chunk size, cf. Table 1.

To study which chunk size provides a better trade-off be-
tween accuracy and performance, we evaluated three net-
work models, by using as training data the time series ob-
tained after splitting an executable file into chunks of size
256, 1024 and 4096 bytes.

The network architecture is the same as the one described
in Figure 2, with the exception of the input layer. In this
case, networks are fed with univariate time series containing
the stream of entropy values representing an executable file.
The percentage of correctly predicted labels over all predic-
tions (accuracy) is 0.9626, 0.9720 and 0.9708 for 256, 1024
and 4096 bytes, respectively. On the contrary, the highest F1
score was achieved by the model trained on the time series
obtained after splitting the malicious programs into chunks
of 4096 bytes, which is 0.9314. In Table 2 and Table 3, it can
be observed that both models failed to predict most of the
samples belonging to the Simda family. Additionally, even
though the overall accuracy is higher, the number of mis-
classified samples (54.76%) belonging to the Ramnit family
has greatly punished the model trained on the time series
obtained after splitting the files in chunks of size 1024.

Haar Wavelet Transform. In the second phase, Haar
Wavelet Transform was used to decompose the initial sig-
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Table 2: 10-fold cross validation confusion matrix obtained
by training the CNN with the time series obtained by split-
ting a program into chunks of 1024 bytes.

Family 1 2 3 4 5 6 7 8 9
1 1499 8 1 3 0 8 2 15 5
2 14 2447 0 1 0 5 0 2 9
3 0 0 2940 0 0 2 0 0 0
4 8 3 0 455 0 4 0 4 1
5 19 2 0 3 14 0 1 2 1
6 16 5 0 4 0 715 4 6 1
7 5 2 0 0 0 3 388 0 0
8 59 9 4 9 1 23 2 1117 4
9 6 6 0 3 0 6 0 3 989

Accuracy 10564 / 10868 = 0.9720
F1 score 0.9127

Table 3: 10-fold cross validation confusion matrix obtained
by training the CNN with the time series obtained by split-
ting a program into chunks of 4096 bytes.

Family 1 2 3 4 5 6 7 8 9
1 1490 9 1 9 1 15 1 10 5
2 12 2445 0 2 0 5 1 2 11
3 0 0 2940 0 0 2 0 0 0
4 8 3 0 455 0 4 0 5 0
5 12 0 1 4 23 1 0 1 0
6 15 9 0 13 0 702 4 4 4
7 2 0 0 0 0 1 395 0 0
8 57 3 3 8 1 40 1 1114 1
9 5 6 0 5 0 9 0 1 987

Accuracy 10551/ 10868 = 0,9708
F1 score 0.9314

nals into two sequences describing an approximation of the
original signal, plus a set of details (coefficients) represent-
ing the localized changes. Then, two models were trained.
On the one hand, we trained a model using as input the re-
sulting signal approximations (hereinafter, Haar approxima-
tion model). On the other hand, the second model was fed
with the approximation of the original signal plus the de-
tails sequence (hereinafter, multiresolution model). The F1
score increased slightly from 0.9314 to 0.9621 and 0.9636
for the Haar approximation and multiresolution models, re-
spectively. Observe in Table 4 that the number of samples
misclassified belonging to the Simda family has been re-
duced by more than half (from 19 to 8). In addition, even
that the number of incorrectly classified samples belonging
to the Obfuscator.ACY family has been reduced from 114 to
70, it is still a major source of error. That’s because the Ob-
fuscator.ACY family comprises malware that has been ob-
fuscated by using compression and encryption techniques,
among others. In consequence, the malware that lies under-
neath this obfuscation can have any purpose and in some
cases, its structural entropy is very similar to those of sam-
ples from the rest of families.

State-of-the-Art Comparison. Many algorithms have
been developed for the task of time series classification.
From among them, the nearest neighbor (particularly 1-NN)
in combination with the Dynamic Time Warping (DTW)
similarity metric achieves the state of the art performance.
If applied to the training data provided by Microsoft, the
resulting 10-fold cross validation accuracy and F1 score

Table 4: 10-fold cross validation confusion matrix obtained
by training the CNN with both the approximation and the
coefficient signals of the entropy time series after applying
the Haar Wavelet Transform.

Family 1 2 3 4 5 6 7 8 9
1 1519 5 1 3 0 4 2 7 0
2 6 2457 0 2 0 1 0 5 7
3 0 0 2941 0 0 1 0 0 0
4 3 1 0 463 0 6 0 2 0
5 1 0 0 3 34 0 1 3 0
6 5 5 0 15 0 720 0 4 2
7 0 0 0 0 0 2 395 1 0
8 29 4 2 8 3 21 1 1158 2
9 2 6 0 4 0 4 0 3 994

Accuracy 10681 / 10868 = 0.9828
F1 score 0.9636

achieved by the 1-NN algorithm are higher than ours. On
the contrary, if both approaches are evaluated on the test set,
our model substantially outperforms the 1-NN algorithm.
Table 5 presents an overview of the results obtained by our
deep learning approach and the nearest neighbor algorithm
in both the training and the test data. The superior predic-
tive power of convolutional networks (CNN) can be ob-
served with respect to the nearest neighbor algorithm. In par-
ticular, the CNN reduced the logarithmic loss to 0.124431
while the logloss obtained by the nearest neighbor is equal
to 0.367724. Furthermore, if bagging is employed, by aver-
aging the predictions of the 10 models the test logarithmic
loss is reduced to 0.075081. Moreover, a great advantage of
the CNN over the nearest neighbor is that its prediction time
always remains constant (approximately 0.02 seconds per
sample). On the contrary, the prediction time of the nearest
neighbor grows linearly as the data set grows larger. That is
because to predict the label of an unknown sample, it has to
be compared with all individuals in the dataset.

Table 5: Comparison of the CNN with the nearest neighbor
algorithm.

Method 10-Fold accuracy F1 score Test logloss
DTW + K-NN 0.9894 0.9813 0.367724
Haar Transform + DTW + K-NN 0.9870 0.9710 0.458191
CNN Entropy 0.9708 0.9314 0.134624
CNN Multiresolution 0.9828 0.9636 0.124431
Bagging CNN Multiresolution - - 0.075081

Transfer Learning. Once trained, the model could be
used to generate domain-specific features based on the struc-
tural entropy of a malicious program. Instead of classify-
ing executable files into families, we could extract the fea-
tures learned by the network in the last feed-forward layer.
Then, these features could be integrated into a bigger clas-
sifier based on different subsets of features. Next, we prove
the suitability of this approach by transferring the features
learned into an XGBoost classifier and comparing with the
results obtained by (Ahmadi et al. 2015). In their work, they
extracted a wide range of hand-crafted features from the ma-
licious executables. The subset of features that achieved the
best results individually were:

Entropy (ENT). Statistical measures from the structural
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entropy of malicious programs such as quantiles, per-
centiles, mean, etc.

Opcodes (OPC). Use of a subset of 93 operation codes
based on their commonness or on their frequent use in
malicious applications.

Application Programming Interfaces (APIs). Frequency
of use of 794 APIs.

Section (SEC). Characteristics from sections such as the
total number of lines in each section, the proportion of
each section in comparison to the whole file, etc.

Registers (REG). Frequency of use of the registers.

Miscellaneous (MISC). Frequency of 95 manually chosen
words from the disassembled code.

Table 6 shows the results obtained in the training data after
performing 5-fold cross validation. It can be observed that
the model trained on the entropy-based features extracted
by the CNN achieved better accuracy and lower logloss than
most hand-crafted features, and in particular, the opposite
manually extracted entropy-based features.

Table 6: List of feature categories and their evaluation with
XGBoost

5-Fold Cross Validation
Feature Category #Features Accuracy Logloss
ENT 203 0.9862 0.0505
OPC 93 0.9907 0.0405
API 796 0.9843 0.0610
SEC 25 0.9899 0.0420
REG 26 0.9833 0.0695
MISC 95 0.9917 0.0306
CNN Multiresolution 300 0.9896 0.0369

Conclusions and Future Work
In this work, we presented a file agnostic deep learning sys-
tem for categorizing malware. As far as we know, it is the
first approach that applies deep learning to find discrimi-
nant patterns from executable files represented as streams of
entropy values. The proposed solution has a number of ad-
vantages that help to detect malicious programs efficiently
in an enterprise environment. First, it is file agnostic and is
based solely on the structural entropy of a file. Second, the
nature of the features learned by convolutional neural net-
works demonstrated robustness against the most common
obfuscation techniques. Third, neural networks scale well
with the data. In general, the more data provided the better
the quality of the model. Fourth, once the entropy values are
computed, the prediction time is minimal. The approach has
been compared with state-of-the-art methods in the literature
for time series classification and demonstrated the superior
predictive power of our deep learning approach.

A future direction of research is to study how differ-
ent mother wavelets affect the model. Applying any other
mother wavelet, such as the Daubechies or the Morlet,
might lead to higher accuracy. Additionally, the hierarchical
entropy-based features learned by the convolutional neural

networks could be useful as a subset of features for machine
learning models which attempt to identify malware based on
distinct types of file features.
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CHAPTER 4. END-TO-END LEARNING AS AN ALTERNATIVE TO
N-GRAM APPROACHES

4.3.4 An End-to-End Deep Learning Architecture for Clas-
sification of Malware’s Binary Content

This research article presents a file agnostic system for malware classification from
raw byte sequences. This is accomplished by using denoising autoencoders to learn
an encoded representation of malware’s binary content that captures the main fac-
tors of variation in the bytes sequences. Afterwards, decisions about the input are
made by a dilated residual network classifier that, given the encoded representation
of the malware’s binary content, outputs the family to which it belongs.

This system can be summarized in two phases:

Phase 1: Chunk Encoding. A given malware binary is divided into contiguous,
non-overlapping chunks of fixed size. Afterwards, a denoising autoencoder
takes as input every chunk of byte values and projects it into a hidden repre-
sentation of only one value that captures the main factors of variation in the
data. The resulting output is a time series m = {m1,m2, ...,mn}, where mi

corresponds to the encoding of the i-th chunk and n is the number of chunks
into which a binary executable has been divided. The idea is similar to the one
presented in Gibert et al. [31] but instead of calculating the entropy of a given
chunk, each chunk is encoded as a single value using denoising autoencoders.
Thus, the encoding function is learned based on the data provided to the au-
toencoders. As observed in Figure 4.9, the encodings of samples belonging to
the same family are similar while distinct to the encodings of samples belong-
ing to a different family. This visual similarity might be the result of reusing
code to create new variants and the result of common obfuscation techniques.

Phase 2: Feature Extraction and Classification. The resulting time series is
then fed into a dilated residual network which learns descriptive patterns from
the encoding of a bytes sequence and classifies a given malware binary into its
corresponding family.

Figure 4.9: Bytes encoding representation. Figures from the first and second row
belong to the Simda and Obfuscator.ACY families, respectively.
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Abstract. In traditional machine learning techniques for malware
detection and classification, significant efforts are expended on manually
designing features based on expertise and domain-specific knowledge.
These solutions perform feature engineering in order to extract features
that provide an abstract view of the software program. Thus, the useful-
ness of the classifier is roughly dependent on the ability of the domain
experts to extract a set of descriptive features. Instead, we introduce a
file agnostic end-to-end deep learning approach for malware classifica-
tion from raw byte sequences without extracting hand-crafted features.
It consists of two key components: (1) a denoising autoencoder that
learns a hidden representation of the malware’s binary content; and (2)
a dilated residual network as classifier. The experiments show an impres-
sive performance, achieving almost 99% of accuracy classifying malware
into families.

Keywords: Malware classification · Deep learning
Denoising autoencoders · Dilated residual networks

1 Introduction

During the last decade, there has been a lot of research and deployment of
machine learning techniques to address the problem of malware detection and
classification. Machine learning is an attractive signaturless approach to mal-
ware detection because of its ability to recognize never-before-seen malware by
summarizing complex relationships among the input features and making deci-
sions about it. In traditional machine learning approaches, efforts are spent on
manually designing features based on expertise and domain-specific knowledge.
These solutions perform feature engineering to extract features that provide an
abstract view of malware that a classifier, e.g. neural network, decision tree, sup-
port vector machine, etc., use to make a decision. The most effective approaches
in the literature are based on N-Gram analysis and entropy analysis. On the
one hand, byte N-grams [7] and opcode N-grams [11] are continuous sequences
of N items from a given sequence of bytes or opcodes, respectively. The main

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 383–391, 2018.
https://doi.org/10.1007/978-3-030-01424-7_38

GOING DEEP INTO THE CAT AND THE MOUSE GAME: DEEP LEARNING
FOR MALWARE CLASSIFICATION

62 4.3. AUTOMATIC FEATURE EXTRACTION WITH DEEP LEARNING



384 D. Gibert et al.

drawback of N-gram based methods is that they are dependent on N and the
number of possible combinations increases exponentially with N. To solve this
limitation, Gibert et al. [3] proposed a convolutional neural network to auto-
matically learn N-gram like patterns from raw sequences of opcodes, removing
the need to exhausivelly enumerate a large number of N-grams. On the other
hand, entropy analysis [8] has been used effectively to detect encrypted and
compressed executables as they tend to have higher entropy. This characteristic
has been exploited by Gibert [4] to group malware into families based on their
structural entropy. However, these solutions depend almost entirely on the ability
and knowledge of domain experts to extract a set of descriptive and discriminant
features into which represent malware.

Instead, the approach presented in this paper neither relies on feature engi-
neering nor on experts’ knowledge of the domain. The main contribution of
our work is the development of a file agnostic end-to-end deep learning sys-
tem for malware classification from raw byte sequences. This is accomplished
by using denoising autoencoders to learn an encoded representation of the mal-
ware’s binary content that captures the main factors of variation in the bytes
sequences. Afterwards, decisions about the input are made by a dilated resid-
ual network classifier that given the encoded representation of the malware’s
binary content it outputs the family it belongs. The suitability of our approach
has been evaluated on a public benchmark provided by Microsoft for the Big-
Data Innovators Gathering (BIG 2015) Anti-Malware Prediction Challenge [10].
Experiments demonstrate the greater predictive generalization performance of
our approach with respect to the binary-based methods in the literature.

The rest of the paper is organized as follows. Section 2 presents our approach
for malware classification. Section 3 describes the experiments and compares our
approach with state-of-the-art methods in the literature. Lastly, Sect. 4 contains
the concluding remarks and our future line of research.

2 Deep Learning for Malware Classification

In the present paper we describe a file agnostic deep learning system to suc-
cessfully process and classify malware from raw byte inputs. The system can be
summarized in two phases:

Step 1 Chunk Encoding. A given malware binary is divided into contiguous,
non-overlapping chunks of fixed size. Afterwards, a denoising autoencoder takes
as input every chunk of bytes values and projects it into a hidden representation
of only on value that captures the main factors of variation in the data. The
resulting output is a time series m = {m1,m2, ...,mn}, where mi corresponds to
the encoding of the i-th chunk and n is the number of chunks into which a binary
executable has been divided. The activation function of the encoding layer is the
hyperbolic tangent. Figure 1 displays the encoded version of samples belonging
to the Simda and Obfuscator.ACY malware families. You can observe that the
encodings of samples belonging to the same family are similar while distinct from
the encoding of samples belonging to a different family. This visual similarity
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is perhaps the result of reusing code to create new variants and the result of
common obfuscation techniques. In consequence, by encoding an executable we
can detect this local changes while retaining the global structure of the file.

Fig. 1. Bytes encoding representation. Figures from the first and second row belong to
the Simda and Obfuscator.ACY families, respectively

Step 2 Feature Extraction and Classification. The resulting time series is
fed into a dilated residual network which learns descriptive patterns from the
encoding of a bytes sequence and classifies a given malware binary into their
corresponding family.

The overall architecture of the network is illustrated in Fig. 2. This architec-
ture corresponds to the network that achieved a higher cross validation accuracy
during evaluation. The hyperparameters of the network were selected using a
grid search. The input is an univariate time series m = m1,m2, ...,mn, where mi

corresponds to the encoding of the i-th chunk. The core of the network consists
of 4 custom residual blocks [6] followed by one fully-connected layer and the
output layer. The residual blocks perform feature learning while the later fully-
connected layer combines the features learned. In particular, each residual block
consists of a few stacked convolutional layers whose formulation is as follows:

h(x) = σ(W2σ(W1x + b1) + b2) + σ(W3x + b3) (1)

where x and h(x) are the input and output of the residual block, Wi and bi are
the weights and biases of the i-th convolutional layer and σ is the activation
function.

The input of each convolutional layer goes through a 3-stage feature extractor
which learns hierarchical features through convolution, activation and pooling
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Fig. 2. Overall architecture of the dilated residual network.

layers. More specifically, in the place of the convolution operation, we calculated
a dilated convolution [12]. The activation function adopted in all layers the
Exponential Linear Unit. Lastly, the pooling operation of our choice has been
the MAX operation.

Afterwards, the feature maps extracted by the residual blocks are combined
and fed as the input of the subsequent fully-connected layer plus a softmax layer
for classification. Additionally, Xavier’s initialization [5] has been used to make
sure weights are neither too small or big to propagate accurately the signals.
To prevent overfitting we employed dropout, a regularization mechanism that
randomly drops a proportion of p units during forward propagation and prevents
the co-adaptation between neurons.

3 Evaluation

3.1 Microsoft Malware Classification Challenge

The system has been evaluated on the dataset released by Microsoft for the Big
Data Innovators Gathering Anti-Malware Prediction Challenge [10]. The dataset
consists of 10868 samples for training and 10873 samples for testing of 9 malware
families. For each sample, it is provided a file containing the hexadecimal’s repre-
sentation of the binary content and its corresponding disassembled file generated
with IDA Pro.

3.2 Experimental Setup

The generalization performance of our approach has been estimated using 10-
fold cross validation. Additionally, the best model has been selected according
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to the macro-averaged F1 score, which is the average of the individual F1 scores
obtained for each class.

macro F1 =
1

q

q∑

i=1

F i
1 (2)

where q is the number of classes in the dataset and F i
1 is the F1 score of class i.

Furthermore, the model has been evaluated on the test set using the multi-class
logarithmic loss.

logloss = − 1

N

N∑

i=1

M∑

j=1

(yi,j log(pi,j) + (1 − yi,j)log(1 − pi,j)) (3)

where N is the number of observations, M is the number of class labels, log is
the natural logarithm, yi,j is 1 if the observation i is in class j and 0 otherwise,
and pi,j is the predicted probability that observation i is in class j.

3.3 State-of-the-art Comparison

To assess the generalization performance of our approach, we compared our
model with state-of-the-art methods in the literature that are based on fea-
tures extracted from the hexadecimal representation of malware on the Microsoft
benchmark. These methods can be divided into two groups, depending on how
they represent the information of binary executables.

1. Entropy-based approaches. This group includes approaches that are based on
the representation of executable files as a stream of entropy values or their
structural entropy. Concretely, Gibert et al. [4] evaluated the performance of
both convolutional neural networks and the K-nearest neighbor algorithm.

2. IMG-based approaches. This group includes approaches that represent the
binary content of an executable as a gray scale image. Such images are gen-
erally constructed by treating each byte of the binary as a gray-scale pixel
value. In particular, Ahmadi et al. [1] and Narayanan et al. [9] extracted Har-
alick and Local Binary Pattern (LBP) features, and Principal Component
Analysis (PCA) features, respectively.

Table 1. 10-fold cross validation confusion matrix
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Table 2. Performance comparison of state-of-the-art approaches based on the binary’s
content of an executable. The approach presented in this article is denoted “AE+DRN”.
“DTW+K-NN” refers to the K-nearest neighbor algorithm plus the dynamic time
warping. “Haar approximation + DTW + K-NN” refers to the aforementioned method
trained using the approximation time series obtained after applying the Haar Wavelet
Transform to the entropy time series. “CNN entropy” and “CNN haar approximation &
details” refer to the convolutional neural networks trained with the structural entropy
of executables and the approximation and details coefficients obtained after applying
the Haar Wavelet Transform to the structural entropy, respectively. “Haralick features
+ XGBoost” and “LBP features + XGBoost” refer to the models of Ahmadi et al. [1],
which extracted Haralick and Local Binary Pattern features and trained boosted trees
for classification. Moreover, Narayanan et al. [9] extracted PCA features and trained
different models. “CNN IMG” refers to a convolutional neural network model trained
on images of size 128 × 128 pixels. Those approaches that their authors have not tested
their performance on the test set or didn’t make public the training confusion matrix
appear with a ‘-’ mark. Approaches with a ‘*’ mark indicate that they performed 5-fold
cross validation instead of 10-fold cross validation.

10-Fold accuracy F1 score Test logloss

Entropy-based approaches

DTW + K-NN [4] 0.9894 0.9813 0.367724

Haar approximation + DTW + K-NN [4] 0.9870 0.9710 0.458191

CNN entropy [4] 0.9708 0.9314 0.134624

CNN haar approximation & details [4] 0.9828 0.9636 0.124431

IMG-based approaches

Haralick features + XGBoost [1]* 0.955 - -

LBP features + XGBoost [1]* 0.951 - -

12 PCA features + 1-NN [9] 0.966 0.910 -

10 PCA features + SVM [9] 0.946 0.864 -

52 PCA features + SFN1 [9] 0.956 0.864 -

52 PCA features + SFN2 [9] 0.942 0.849 -

52 PCA features + DFN [9] 0.955 0.889 -

CNN IMG 0.975 0.940 0.184483

AE + DRN 0.9861 0.9719 0.106343

Table 1 presents the 10-fold cross validation accuracy and F1 score obtained
on the training data. The major contributor to errors is the Obfuscator.ACY
family which comprises malware that can have any purpose, whose code has
been obfuscated and they couldn’t be detected using their respective signatures
and heuristics. This is produced because of the similarity in the encoding of
some samples of the Obfuscator.ACY family and the rest. This issue affects the
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methods in the literature that are based on the hexadecimal representation of
the binary content. Consequently, to correctly classify the remaining samples it
might be necessary to use other type of features such as the assembly language
instructions or the Windows API functions invoked.

Table 2 presents a comparison of the performance of state-of-the-art
approaches based on the binary’s content of an executable. The methods that are
performing worse are those that represent the binary content of an executable as
a gray scale image. This is because this kind of representation is counterintuitive.
Binaries are not images and by constructing them you enforce non-existent 2D
spatial correlations. Nevertheless, following recent trends in machine learning,
it can be seen that deep learning aproaches outperform those that rely on the
use of hand-designed feature extractors such as Haralick and LBP. On the other
hand, the entropy-based convolutional neural network models outmatched the
K-NN approaches on the test set and demonstrated a clear superior predictive
power. Last but not least, our approach outperformed all the other methods on
the test set and only the K-NN method achieved a greater macro-averaged F1
score on the training data, which as already mentioned, it failed to generalize to
unseen data.

4 Conclusions

In this work we have described an end-to-end deep learning system for malware
classification from raw byte sequences. This has been accomplished by learn-
ing an encoded representation of the malware’s binary content using denoising
autoencoders. Afterwards, a dilated residual network classifies the resulting mal-
ware’s encoding into their corresponding family.

The proposed approach in this paper exhibits strong classification perfor-
mance compared with the binary-based state-of-the-art methods in the litera-
ture. This is due to the exploitation of the visual similarity between malware
samples belonging to the same family as the result of reusing code and using
common obfuscation techniques to generate new samples. Therefore, the classi-
fier learns descriptive and robust features through stacking various convolutional
layers which are later used for classification purposes.

As far as we know, it is the first approach that applies deep learning for
encoding malware’s binary content. The main idea behind the encoding is to
reduce the dimensionality of the input bytes sequence while being able to cap-
ture the main factors of variation in the data. The proposed solution has two
major advantages with respect traditional machine learning approaches. First,
it is file agnostic. That is, even that the solution has been evaluated on mal-
ware executables in Portable Executable format, it could be easily deployed for
classifying malware in any other file format or targeting any other operative
system. Second, it neither relies on costly feature engineering nor on expertise
and domain-specific knowledge and thus, the extraction and prediction time are
minimal.
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4.1 Future Work

Even though machine learning solutions are a promising tool for detecting and
classifying malware, they have their limitations. Specifically, they are suscepti-
ble to adversarial attacks that try to poison the training procedure or manipu-
late the binaries to bypass detection [2]. Due to the limitations of binary-based
approaches, a future line of research might be studying how to transfer the fea-
tures learned by the classifier as a subset of input features for M.L. models
attempting to classify malware based on distinct types of file features.

Acknowledgments. This research has been partially funded by the Spanish MICINN
Projects TIN2014-53234-C2-2-R, TIN2015-71799-C2-2-P, ENE2015-64117-C5-1-R, and
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4.3.5 Limitations of Unimodal Approaches

So far, the research presented in this thesis has focused on deep learning approaches
that take raw data as input and extract discriminant features through one or more
convolutional layers that are later used for classification purposes. These approaches
that take as input a single source of information or type of features are known as
unimodal approaches. However, malware detection and classification is a research
problem characterized as multimodal, as it includes multiple modalities of infor-
mation. Multimodal machine learning aims to build models that can process and
relate information from multiple modalities [7]. Modalities are, essentially, channels
of information. These data from multiple sources are semantically correlated, and
sometimes provide complementary information to each other, thus reflecting pat-
terns that are not visible when working with individual modalities on their own.
Thus, by only taking as input the raw bytes or opcodes sequence a great deal of
useful information for classification is overlooked, such as structural information of
the Portable Executable (PE) file, the import address table (IAT) which is used as
a lookup table when the application is calling a function from a different module,
etc. In fact, multimodal methods based on the combination of various hand-crafted
features [3, 79] remain unbeaten in terms of classification performance and have
been the way to go for detecting and classifying malware. These approaches extract
multiple categories of features from the hexadecimal representation of malware’s
binary content and its assembly language source code, including, but not limited to:

Bytes and opcodes n-gram counts. M. Ahmadi et al. [3] extracted unigram fea-
tures from both the hexadecimal representation and its disassembly counter-
part, while Y. Zhang et al. [79] extracted the unigrams of a subset of about 280
opcodes based on their frequency used in malicious applications [10] and uni-
grams and bigrams from the bytes file. For more information about n-grams
the reader is referred to Section 4.2.

Application Programming Interface (API) frequency. The frequency of use
of Application Programming Interfaces (API) and their function calls are re-
garded as very characterizing features. Literature has demonstrated that API
calls can be analyzed to model the program behavior. API functions and
system calls are related with services provided by operating systems. They
support various key operations such as networks, security, system services, file
management, and so on. In addition, they include various functions to utilize
system resources, such as memory, file system, network or graphics. There
is no other way for software to access system resources that are managed by
operating systems without using API functions or system calls and thus, API
function calls can provide key information to represent the behavior of the
software. For instance, Y. Zhang et al. [79] measured the frequency of all the
APIs imported while M. Ahmadi et al. [3] only measured the frequency of 794
frequent APIs commonly used by malicious binaries.

Image-based features. An original way to represent a malware sample is to vi-
sualize the byte code by interpreting each byte as the gray-level of one pixel
in an image [59]. From this representation some features can be extracted
that describe the textures in an image such as the Haralick features and the
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Local Binary Pattern features. For more information about the classification
of malware represented as gray-scale images the reader is referred to Section 6.

Special symbols. The high frequency of the following set of symbols ,-,+,*,],[,?,@,
is typical of code that has been designed to evade detection by utilizing in-
direct calls or dynamic library loading. On the one hand, indirect calls are
those in which the address of the callee is taken from the memory or register.
Although the implementation of the calls depends both on the architecture
and the compiler, indirect calls may reveal some information on data location
obfuscation [57]. On the other hand, dynamic library loading is used to load
a library into memory at run-time and accesses its functions based on their
address to prevent static analyzers from capturing the name of the imported
functions.

Section characteristics. As described in Section 4.1.2, a PE file consists of some
predefined sections like .text, .data, .bss, .rdata, .edata, .idata, .rsrc, .tls, and
.reloc. Due to the usage of evasion techniques like packing, the predefined
sections can be modified, reordered and new sections can be created. Conse-
quently, it is common in methods in the literature to extract sets of features
that capture the characteristics of these sections. For instance, the features
extracted by M. Ahmadi et al. [3] are listed in Table 4.5.

4.4 Fusing Multiple Modalities of Information

Although combining different modalities or types of information for improving per-
formance seems an intuitively appealing task, it is very challenging to combine the
varying levels of noise and conflict between modalities. Multimodal approaches can
be categorized into three groups, considering how the multiple modalities are com-
bined.

• Input-level or early fusion. Early fusion methods create a joint representation
of the unimodal features extracted separately from multiple modalities. The
simplest way to combine these unimodal feature vectors is to concatenate
them to obtain a fused representation. Cf. Figure 4.10. Next, a single model
is trained to learn the correlation and interactions between the features of each
modality. The final outcome of the model can be written as

p = h ([v1, v2, ..., vm])

where h denotes the single model, [v1, v2, ..., vm] represents the concatenation of
the feature vectors, and m is the number of distinct unimodal feature vectors.

• Decision-level or late fusion. In contrast to early fusion, late fusion methods
train one model per modality and fuse the learned decision values with a fusion
mechanism such as averaging, voting, a learned model, etc. Cf. Figure 4.11.
The main advantage of late fusion is that it allows using different models on
different modalities, thus being more flexible. In addition, as the predictions
for each modality are made separately, it is easier to handle missing modalities.
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Table 4.5: List of features extracted from the sections of a PE file.
Feature description
The total number of lines in .bss section
The total number of lines in .data section
The total number of lines in .edata section
The total number of lines in .idata section
The total number of lines in .rdata section
The total number of lines in .rsrc section
The total number of lines in .text section
The total number of lines in .tls section
The total number of lines in .reloc section
The total number of sections
The total number of unknown sections
The total number of lines in unknown sections
The proportion of known sections to all sections
The proportion of unknown sections to all sections
The proportion of the amount of unknown sections to the whole file
The proportion of .text section to the whole file
The proportion of .data section to the whole file
The proportion of .bss section to the whole file
The proportion of .rdata section to the whole file
The proportion of .edata section to the whole file
The proportion of .idata section to the whole file
The proportion of .rsrc section to the whole file
The proportion of .tls section to the whole file
The proportion of .reloc section to the whole file

Feature vector v1 Feature vector v2 Feature vector v3

[v1, v2, ..., vm]

Classifier

benign malware

Figure 4.10: Early fusion strategy.
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Supposing that model hi is the decision value on modality i, the final prediction
is

p = F (h1(v1), h2(v2), ...hm(vm))

where F denotes the type of fusion strategy.

Feature vector v1 Feature vector v2 Feature vector v3

Classifier 1 Classifier 2 Classifier 3

Fusion

benign malware

Figure 4.11: Late fusion strategy.

• Intermediate fusion. Intermediate fusion methods construct a shared repre-
sentation by merging the intermediate features obtained by separate machine
learning models. Afterwards, these intermediate features are concatenated and
then a machine learning model is trained to capture the interactions between
modalities. Cf. Figure 4.12.

Feature vector v1 Feature vector v2 Feature vector v3

Hidden layer

Fusion layer

Hidden layer

benign malware

Figure 4.12: Intermediate fusion strategy.

For the task of malware classification, state-of-the-art classification accuracy is
reported by approaches that perform early fusion to combine the different types of
features [3, 79]. Both approaches implemented a variant of the forward stepwise
selection algorithm to avoid using features irrelevant to the model, where instead of
considering one feature at a time, they considered all the subset of features belonging
to a feature category or type at a time. Thus, at each step, the feature set that
produces the minimum value of the multi-class logarithmic loss is added to the
model. The process stops when adding more features does not decrease the value
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of the logarithmic loss. Afterwards, the joint feature vector is passed as input to a
classification algorithm that generates the corresponding classification output. On
the one hand, M. Ahmadi et al. [3] employed bagging to boost the prediction of
their XGBoost classifier [13]. On the other hand, Y. Zhang et al. [79] combined
XGBoost [13] and Extra-Trees [23] to improve generalization of the final classifier
and avoid overfitting.

However, neither gradient boosting classifiers nor Extra-Trees can handle raw
data as input, e.g. feature engineering has to be performed before training the mod-
els. Thus, new ways to combine unimodal end-to-end learning classifiers have been
studied during the elaboration of this thesis. Section 4.4.1 presents Orthrus [29],
an end-to-end learning architecture that performs automatic feature learning and
classification from two modalities of data: (1) the byte sequence representing the
malware’s binary content and (2) the assembly language source code of malware.
Section 7 describes the European Patent Application EESR EP19382656, which
presents a computer-implemented method, system and computer program to identify
a malicious file that combines different types of analysis, processes and procedures
that allow a malicious file to be detected and classified. The method comprises: (a)
performing a static analysis of a potentially malicious file to obtain a set of features
that provide an abstract view of the malicious file; (b) performing a static machine
learning classification process using as inputs said set of features, to obtain a pre-
liminary classification output; and (c) performing a fuzzy inference procedure based
on fuzzy rules using as input said set of features and said preliminary classification
output, to generate an enhanced classification output that identifies a potentially
malicious file. Finally, Section 8 presents HYDRA [28], a wide and deep learning
framework for malware classification that combines both hand-crafted features and
end-to-end components.
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4.4.1 Orthrus: A Bimodal Learning Architecture for Mal-
ware Classification

A major shortfall of end-to-end learning methods is their inability to consider mul-
tiple sources of information when performing classification, leading them to perform
poorly in comparison to multimodal approaches. This research article attempts to
address the aforementioned shortfall by introducing Orthrus [29], a bimodal ap-
proach to categorize malware into families based on deep learning. Orthrus com-
bines two modalities of data: (1) the byte sequence representing the malware’s
binary content, and (2) the assembly language instructions extracted from the as-
sembly language source code of malware, and performs automatic feature learning
and classification with a convolutional neural network. The automatic feature learn-
ing process is carried through convolutional layers that extract n-gram like features
from both the raw byte sequence and assembly language instructions correspond-
ing to a given malicious file. Afterwards, the most discriminant features learnt by
the filters are combined using an intermediate fusion strategy to produce a final
decision, that is whether the given executable belongs to one family or another.
The overall architecture is presented in Figure 4.4.1. For a complete description of
the experimentation and for each of the layers the reader is referred to the original
publication [29].

Figure 4.13: Bimodal architecture. The letters and the figures on the left side of
the layers represent their sizes.
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Abstract—Malware detection and classification is a challenging
problem and an active area of research. Traditional machine
learning methods depend almost entirely on the ability to extract
a set of discriminative features into which characterize malware.
However, this feature engineering process is very time consuming.
On the contrary, deep learning methods replace manual feature
engineering by a system that performs both feature extraction
and classification from raw data at once. Despite that, a major
shortfall of these methods is their inhability to consider multiple
disparate sources of information when performing classification,
leading them to perform poorly when compared to multimodal
approaches. In this work, we introduce Orthrus, a new bimodal
approach to categorize malware into families based on deep
learning. Orthrus combines two modalities of data: (1) the byte
sequence representing the malware’s binary content, and (2)
the assembly language instructions extracted from the assembly
language source code of malware, and performs automatic
feature learning and classification with a convolutional neural
network. The idea is to benefit from multiple feature types to
reflect malware’s characteristics. The experiments carried on the
Microsoft Malware Classification Challenge dataset show that
our proposed solution achieves higher classification performance
than deep learning approaches in the literature and n-gram based
methods.

Index Terms—Malware Classification, Convolutional Neural
Networks, Deep Learning, Multimodal Learning

I. INTRODUCTION

The detection of malware, malignant computer software
designed to infiltrate or damage a computer system without
consent of the owner, is an important and challenging problem
in cybersecurity. The global malware industry is estimated to
be worth millions and grows year after year, with an under-
ground services market which provides malicious software,
cybercapabilities, and products to criminals, gangs, and even
nation states. Recently, we have seen malware campaigns
affecting our daily lives, influencing major elections, and
crippling businesses overnight. The most notorious cyberespi-
onage campaign affected the Democratic National Committee
computer network and ended up with the release of private and
confidential information from party members. In addition, the
awareness of the danger of cyber threats increased due to the
harm posed by major cyberattacks like WannaCry and Petya

This research has been partially funded by the Spanish MICINN Projects
TIN2015-71799-C2-2-P, ENE2015-64117-C5-1-R, and is supported by the
University of Lleida.

campaigns, among others, which held computer systems from
all over the globe to ransom.

To limit the impact of cyberattacks it is necessary to improve
computer systems’ defenses. One essential layer is endpoint
protection, specially anti-malware scanners, which is the last
layer of defense against malware by preventing, detecting, and
removing malicious software. Traditional anti-virus engines
use a signature-based approach, where a signature is a set
of manually defined rules that can identify a concrete piece of
malware or a group with similar characteristics. However, this
rules are generally specific, sensitive to small changes, and
cannot usually recognize new malware. In consequence, the
need for new methods to detect unknown malware is appealing
for signature-less machine learning approaches due to their
ability to summarize complex relationships and later decision
making.

Traditional machine learning solutions perform feature en-
gineering to manually extract a set of features that provide
an abstract representation of malware. These features can be
obtained from the static and dynamic analysis of malware.
On the one hand, static analysis consists of examining the
code or structure of a computer program without executing it.
On the other hand, dynamic analysis monitors the execution
of the program on the system. Indistinctly of the type of
analysis, feature-based approaches depend almost entirely on
the set of discriminative features used to represent malware.
Contrarily, deep learning approaches obviate the need for
manual feature engineering by automating the feature learning
and classification procedure. Deep learning shifts the burden
of feature engineering to an underlying system, typically
consisting of a neural network with multiple layers, that jointly
perform both feature learning and classification. For instance,
E. Raff et al. [1] and D. Gibert et al. [2] trained a neural
model by feeding it, as input, a sequence of bytes and a
sequence of opcodes (machine language instruction), respec-
tively. Nonetheless, both approaches lack the information from
multiple sources of information that is combined before classi-
fication in traditional machine learning approaches. Thus, deep
learning approaches for malware detection tend to perform
poorly in comparison with multimodal approaches.

The primary contribution of this work is the development
of the first, to our knowledge, bimodal deep learning architec-
ture for malware classification. Orthrus automatically learns
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features from two sources of information, (1) the hexadecimal
representation of malware’s binary content, and (2) the assem-
bly language instructions representing the assembly language
source code of malware. The idea is to learn from multiple
sources of information to maximize the benefits of multiple
features types to reflect the characteristics of malware and,
to compensate for the weaknesses inherent in unimodal rep-
resentations. The generalization performance of our bimodal
learning approach has been evaluated on the dataset provided
by Microsoft for the Big Data Innovators Gathering Anti-
Malware Prediction Challenge [3]. Furthermore, we present
a comparison with deep learning methods in the literature.
Experiments show that our model successfully takes advantage
of both modalities of information to perform significantly
better than unimodal deep learning methods.

The rest of the paper is organized as follows. Firstly,
we introduce the state-of-the-art approaches to address the
problem of malware detection and classification. Afterwards,
we describe the bimodal architecture followed by the results
of the experimentation. Lastly, we summarize the concluding
remarks of our research and proposes some future lines of
research.

II. RELATED WORK

Traditional machine learning solutions rely on a set of hand-
designed features that provide an abstract representation of
the program that is later used for classification. The most
common features are byte and opcode n-grams [4], [5]. Byte
n-grams are extracted from the hexadecimal representation
of malware’s binary content whereas opcode n-grams are
extracted from the assembly language source code of malware.

To detect the presence of compressed and encrypted seg-
ments hidden beneath the executable, security researchers use
entropy analysis, as compressed and encrypted segments tend
to have higher entropy in comparison with native code [6].
However, simple entropy statistics is not enough to detect
sophisticated malware, as packed and encrypted code is often
concealed in a way that pass through entropy filters. Thus,
researchers started analyzing the structural entropy of executa-
bles [7]. The structural entropy consists of a stream of entropy
values, where each value describes the amount of entropy over
a chunk of code in a specific location of the executable.

A distinct way to represent an executable is to visualize
its byte code as a grayscale image [8], where every byte is
interpreted as one pixel in the image. Afterwards, features
describing the texture of the grayscale image can be extracted
such as GIST [8], Haralick [9], Local Binary Patterns [9] and
PCA features [10].

In addition, the usage of system functions and libraries is
a good indicator of the behavior of malware as they offer
information about services and resources provided by the
OS [11].

The need for manual feature engineering can be obviated
by automated feature learning. Deep learning replaces the
feature engineering process by an underlying system which
typically consists of a neural network with multiple layers,

that performs both feature learning and classification. With
deep learning, one can start with raw data as features will be
automatically created by the neural network when it learns.
The main distinction between deep learning approaches for
malware detection and classification lean on what they used
as raw data.

D. Gibert et al. [2] and N. McLaughlin et al. [12] feed
convolutional networks with the opcode sequences extracted
from disassembled Portable Executables (PEs) and Android
APKs, to classify malicious software targeting the Windows
and the Android operative systems, respectively. The shallow
layers of the convolutional networks allow to extract N-gram
like features without consuming the exploding amount of
computational resources required to extract N-grams for a long
N. Alternatively, D. Gibert et al. [13] take advantage of the
hierarchical structure of Portable Executable files to build a
hierarchical convolutional network that extracts features at the
mnemonics-level and at the function-level.

On the contrary, E. Raff et al. [1] presented a detection
system trained on raw byte sequences. In their work, each byte
of the input sequence is embedded into a fixed length feature
vector to avoid representing each byte by its value, as it would
imply that certain byte values are closer to each other than
other byte values, which is false, as the byte value depends
on its context. Afterwards, they combined convolution layer
with global max-pooling to obtain the activations regardless of
the location of the detected features. This shallow architecture
applied filters of width equals to 500 bytes followed by an
stride of 500, which allowed to identify interpretable subre-
gions of the binary, mostly from the PE header. Furthermore,
M. Krl et al. [14] presented a deeper architecture consisting
of 11 layers: the embedding layer, four convolutional and two
pooling layers, followed by 4 fully-connected layers.

As the length of the bytes sequence might be up to various
million time steps, other works preprocessed the sequence
to reduce its size and compress its information. D. Gibert
et al. [15] feed a convolutional neural network with the
structural entropy representation of malware. Hence, the size
of the sequence was diminished from millions to thousands
or hundreds, depending on the chunk size. Alternatively, D.
Gibert et al. [16] generated an encoded representation of
contiguous, non-overlapping chunks using a denoising autoen-
coder. Afterwards, a residual network extracts features from
the compressed sequence and performs classification. Q. Le et
al. [17] scaled the file byte code to a fixed target size using
a generic image scaling algorithm. After scaling, a malware
sample corresponds to one sequence of 10000 values. For
classification purposes, they applied recurrent neural network
layers on top of the convolutional layers.

D. Gibert et al. [18] takes advantage of the representation
of malware as a grayscale image [8] to build a convolutional
neural network classifier that automatically extracts discrimi-
nant features from the image. Moreover, R. Khan et al. [19]
analyzed the performance of the ResNet and GoogleNet ar-
chitectures for the task at hand.

A further way to represent malware is as an ordered
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sequence of API functions invoked during its execution. To
capture the long-term dependencies in the API function traces,
B. Athiwaratkun et al. [20] examined recurrent neural network
architectures. In the first stage, a LSTM or GRU constructs
the features associated to a particular API trace and later,
a single fully-connected layer or logistic regression with
sofmax perform classification.In addition, B. Kolosnjaji [21]
constructed a neural network classifier based on convolutional
and recurrent layers that combines convolution of n-grams
with sequential modeling provided by the recurrent layers.

III. CLASSIFICATION OF MALWARE USING A BIMODAL
ARCHITECTURE

The main focus of this research is the classification into
families of malware targeting the Windows operating system
(OS). The most common executable file extension for Win-
dows systems is the Portable Executable (PE) file format.
In particular, this file format is used for executables, object
code, DLLs, FON Font files, and others in 32-bit and 64-bit
versions of the Windows OS. To this end, the method has been
evaluated on the Microsoft Malware Classification Challenge
dataset [3].

A. N-gram approaches

Static machine learning solutions for malware detection
and classification extract features from either the hexadecimal
representation of malware’s binary content or its assembly
language source code counterpart. The hexadecimal represen-
tation is a simple way to represent the binary’s content of a PE
file. Using this representation the binary content is represented
as a sequence of bytes (base-16 number representation with
digits [0− 9] and [A− F ]). See Figure 1 for an hex view of
a PE file. The main advantage of representing malware as a

Fig. 1. Hexadecimal view of a PE file.

sequence of bytes is that it is OS resilient, i.e., it could be
used to represent malware indistinctively of the target OS and
hardware. Alternatively, the assembly language source code
contains the symbolic machine code of the executable as well
as metadata information such as rudimentary function calls,
memory allocation and variable information. See Figure 2 for
the assembly view of the grayed area in Figure 1.

Fig. 2. Assembly view of the grayed part in Figure 1. The first column
represents the address, the second column the byte sequence and the third
column the mnemonics sequence.

The most common type of features are n-grams. An n-gram
is a contiguous sequence of n items from a given sequence
of text. N-grams can be extracted from the bytes sequence
representing malware’s binary content and from the instruction
statements extracted from the assembly language source code.
By treating a file as a sequence of bytes, byte n-grams are
extracted by looking at the unique combination of every n
consecutive bytes as an individual feature. On the other hand,
n-grams from the assembly language source code refer to the
unique combination of every n consecutive opcodes, e.g. the
instructions ADD, MUL, POP.

N-gram based methods construct a feature vector representa-
tion of malware where each element in the vector indicates the
number of appearances of a particular n-gram in the instruction
sequence. Thus, the length of the feature vector depends on
the number of unique n-grams, which increases exponentially
with n. As an example, considering the extraction of bytes
n-grams with n = 3, the number of possible n-grams is
2563 = 16, 777, 216. Although malware n-grams tend to
follow a Zipfian distribution [22], the resulting feature vector
is still too large to keep in memory, and even if it is not, you
still have to optimize a function with too many input variables,
a.k.a. the curse of dimensionality. N-gram based approaches in
the literature have reduced this high dimensional input space
using feature selection techniques [5], [23] or the hashing
trick [24], [25]. On the one hand, feature selection techniques
select a subset of relevant features from the initial input space.
On the other hand, feature hashing, a.k.a. the hashing trick,
is a method for handling sparse, high-dimensional features
by using a hash function to determine the feature’s location
in a vector of lower dimension. It can be seen as a random
projection of the the input space A ∈ Rn to a low dimensional
space B ∈ Rm, where m � n. In our case, an array of size
N that counts the number of times each n-gram occurred, and
a hash function map each n-gram to a location in a lower
dimensional array, which will be later used for training a
classification algorithm.

In spite of the technique, both feature selection and feature
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hashing require to exhaustively enumerate a large number of
n-grams during training. To overcome this limitation, D. Gibert
et al. [2] explored the application of convolutional networks
to malware classification by the assembly language language
instructions as a text to be analyzed. This approach has the
advantage that the features are automatically inferred from
raw data and hence, it removes the feature extraction and
selection steps. Similarly, E. Raff et al. [1] and M. Krl et
al. [14] presented convolutional neural network architectures to
detect malware from raw byte sequences. The main drawback
of the aforementioned deep learning approaches is that they
focus on only one source of information, either the opcode
or the bytes sequence representation, and malware authors
can exploit this information to easily bypass detectors [26].
As a result, the most accurate Machine Learning systems for
malware detection and classification are still those that are
able to extract and combine subsets of features from various
sources of information [27].

B. Network Architecture

To overcome the current limitations of deep learning sys-
tems in this paper we present Orthrus, a baseline learning sys-
tem to categorize malware into families that involves various
modalities of data. The main idea is to learn from various
sources of information to maximize the benefits of multiple
feature types to reflect the characteristics of malware. To
obviate manual feature engineering, a neural network is used
to perform both feature learning and classification. As a result,
the network receives as input (1) the sequence of hexadecimal
values representing malware’s binary content and (2) the
sequence of assembly language instructions from the assembly
language source code. The automatic feature learning process
is carried through a convolutional layer that extracts N-gram
like features from both input sequences. Afterwards, the most
discriminative features learnt by the filters are combined to
produce a final decision, whether the given executable belongs
to one family or another. The process of merging intermediate
features from the modalities of information is known as
intermediate fusion. The overall architecture is presented in
Figure 3. It comprises the following layers:

• Bytes input layer. Instead of taking as input an executable
represented as a bytes sequence, bytes were grouped
into subsequences representing the bytes content of its
assembly language source code counterpart. For instance,
taking the assembly view in Figure 2 as example, bytes
were grouped as: [8B, 44, 24, 10], [8B, 4C, 24, 0C],
[8B, 54, 24, 08], [56], [8B, 74, 24, 08], and so on. The
maximum sequence length is 16. All subsequences with
lesser length were filled with PAD tokens. Initially we
considered to use one of the aforementioned architec-
tures [1], [14] but they performed poorly due to the size
of the filters and the limited number of samples regarding
some families. See Figures 7 and 8. Thus, by grouping
the bytes into subsequences and by reducing the size
of the kernels we facilitated the learning of simpler and
discriminant features.

• Mnemonics input layer. This layer takes as input an
executable represented as a sequence of mnemonics. A
mnemonic is simply the name of the assembly language
instruction. In other words, the parameters of the instruc-
tion are removed. For example, the instruction mov eax,
[esp + 10h] is reduced to mov. The maximum number
of mnemonics per executable is determined by N, which
is set to 10000.

• Embedding layers. As the network cannot be fed with
just text strings, each token (either byte or mnemonic)
is represented as a low-dimensional vector of real val-
ues, also known as word embedding, of size E. In our
experiments E has been set to 4. We tried various values
[4, 8, 16, 32] for the embedding size and we saw that
increasing E does not lead to an increase in accuracy. In
addition, increasing the embedding size also increases the
memory requirements and in the case of the hexadecimal
sequence, it is prohibitive in terms of resources and
computational time.

• Bytes convolutional layer. This layer is responsible for
convolving various filters over the bytes input and learn
filters that activate when a particular feature is found. The
size of each filter is h×16×E where h ∈ {3, 5, 7}. Thus,
filters are applied to encompass 3, 5 and 7 subsequences
at once.

• Mnemonics convolutional layer. This layer convolves
various filters over the mnemonics sequence to extract
N-gram like features from it. The size of each filter is
h×E, where h ∈ {3, 5, 7}. As a result, filters are applied
to sequences of 3 to 7 mnemonics. The aim behind having
filters of various sizes is to allow the network to detect
discriminant subsequences that have variations in size.

• Global max-pooling layer. Global max-pooling is applied
to extract the maximum activation of each of the feature
map activations passed from the convolutional layer.

• Softmax layer. Lastly, the softmax layer combines the
features learned and applies the softmax function to
output the probability distribution over malware families.

In our experiments we observed that taking both modali-
ties of information as input is suboptimal, since it leads to
overfitting one subset of features belonging to one modality
and underfitting the features belonging to the other. To ad-
dress this issue we separately pretrain each subnetwork and
optimize their hyperparameters for each subtask. Afterwards,
the learned weights of each subnetwork are used to initialize
the bimodal network and thus, the knowledge learned by each
model is transferred into the bimodal network to save training
time and help the network converge faster. Furthermore, to
make the network less sensitive to a particular modality it
is applied modality dropout, which randomly drops one data
modality during training. In addition, dropout has been applied
in the softmax layer with a dropout rate equal to 0.5. The
nonlinearity function adopted is the Exponential Linear Unit
(ELU) [28].
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Fig. 3. Bimodal architecture. The letters and the figures at the left side of the layers represent their sizes.

IV. EVALUATION

The method has been evaluated on the Microsoft Malware
Classification Challenge dataset [3], a standard benchmark for
research.

A. Microsoft Malware Classification Challenge

In comparison with other relevant tasks such as image clas-
sification, speech recognition, text classification, etc, much of
the previous work on malware detection use data not available
to public. In consequence, it is not possible to meaningfully
compare performance across works as different datasets use
different labeling procedures. To simplify comparison and
reproducibility we decided to evaluate the performance of our
approach on the Microsoft Malware Classification Challenge
dataset [3], a standard benchmark for malware research. The
dataset is publicly available on Kaggle1. It contains the hex-
adecimal representation of the malware’s binary content and
its disassembly counterpart. The set of samples represent 9
different families. Cf. Table I. One particularity of the dataset
is that the distribution of samples per family is not balanced,
i.e., there are some classes with a considerably greater num-
ber of samples in comparison with others. Additionally, the
average number of bytes and opcodes differs greatly for each
class. See Figures 4 and 5. You can observe that those classes
with greater number of opcodes do not necessarily coincide
with those with the greater number of bytes. This is because
the bytes representation includes information of several PE
sections, e.g. .data, .edata, .idata.

B. Experimental Setup

The experiments were run on a computer with the following
hardware specifications: Intel i7-7700K, 32 GB RAM, 2xN-
vidia GTX 1080Ti. This allowed us to take advantage of the
multi-GPU setup during training to distribute some parts of the
model to different GPU instances. That is, each subcomponent
of the network was distributed on a different GPU instance.

The generalization performance of our approach has been
estimated using 10-fold cross validation. However, instead of

1https://www.kaggle.com/c/malware-classification/

TABLE I
CLASS DISTRIBUTION IN THE MICROSOFT DATASET

Family #Instances Type
Ramnit 1541 Worm
Lollipop 2478 Adware
Kelihos ver3 2942 Backdoor
Vundo 475 Trojan
Simda 42 Backdoor
Tracur 751 TrojanDownloader
Kelihos ver1 398 Backdoor
Obfuscator.ACY 1228 Obfuscated malware
Gatak 1013 Backdoor

Fig. 4. Distribution of bytes per class.

evaluating the model with accuracy alone, we selected the best
model according to the F1-score. This is because accuracy can
be a misleading measure in datasets were there exist a large
class imbalance. For instance, a model can correctly predict
the value of the majority class for all predictions and achieve
a high classification accuracy while making mistakes on the
minority and critical classes. In our case, a model can achieve
a very high accuracy on the Microsoft dataset by correctly
classifying the majority classes and misclassifying samples
belong to the Simda family. The F1-score metric penalizes
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Fig. 5. Distribution of opcodes per class.

this kind of behavior and best meet the requirements of the
dataset. Alternatively, we unsuccessfully tried the balanced
cross-entropy loss. The results obtained were slightly worse.

C. Comparison with the State-of-the-Art
The 10-fold cross validation confusion matrix is presented

in Figure 6. Notice that the percentage of errors in the minority
classes does not differ from the number of errors on the
majority classes. All classes are classified with more than
97% of accuracy with the exception of the Simda family
which failed to classify 3 of the 42 samples during 10-fold
cross validation. On the other hand, the major contributor
to misclassifications is the Obfuscator.ACY family, which
according to Microsoft, is malware that uses a combination of
obfuscation techniques such as encryption, compression, anti-
debugging, anti-emulation, etc, to hide its purpose, and thus,
are way harsher to classify correctly.

Fig. 6. Orthrus confusion matrix

To evaluate the performance of our bimodal approach,
we compared our model with state-of-the-art methods in the

literature that have evaluated their model on the Microsoft
Malware Classification Challenge dataset. The results are
shown in Table II. Existing deep learning approaches for
malware classification can be categorized into various groups
depending on their corresponding input. With the exception
of M. Mays et al. [30], these approaches take as input a
single modality of information and perform feature extraction
and classification altogether. D. Gibert et al. [18] and J. Kim
et al. [29] take as input the grayscale representation of the
malware’s binary content. D. Gibert et al. [15] represents the
content of a malicious program as an entropy stream, where
each value describes the amount of entropy of a small chunk of
code in a specific location of the file. E. Raff et al. [1] and M.
Krl et al. [14] treat each byte as a unit in a sequence and thus,
presented architectures to process raw byte sequence of over a
few million steps. On the contrary, D. Gibert et al. [16] and Q.
Le et al. [17] preprocessed the byte sequence and reduced the
size of the input with autoencoders and data compression tech-
niques, respectively. Furthermore, N. McLaughlin et al. [12]
and D. Gibert et al. [13] extract N-gram like features from
the assembly language instructions of the assembly language
content using one or various convolutional layers. Lastly, M.
Mays et al. [30] learn two distinct models, one taking as input
a grayscale representation of the malware’s binary content
and the second taking as input a feature vector indicating
the presence of particular opcode N-grams. Afterwards, an
ensemble classifier returns the final prediction. In addition,
we implemented various n-gram classification systems using
the hashing trick as baselines. The classification algorithms
implemented are logistic regression (LR) and feed-forward
neural networks (NN) with one or two hidden layers. The
number of hidden neurons is [256] and [256,128] for the
neural networks with one and two hidden layers, respectively.
The non-linearity applied is the ReLU function. Furthemore,
dropout was applied between layers. With the exception of the
unigram models, the 2-gram and 3-gram based classification
systems apply the hashing trick to map every n-gram into a
lower dimensional vector of size 500. The hashing trick has
been indispensable to reduce the high dimensionality of the
input space. Cf. Table III. As it can be observed in Table II,
the bimodal approach outperforms by some margin the existing
deep learning methods. Notice that each subnetwork achieves
higher accuracy and F1-score than those methods that take as
input either the grayscale image representation of malware,
its structural entropy or the raw byte sequence. Moreover,
the intermediate fusion of features from both the opcode and
byte sequences achieve better performance than opcode-based
methods. This is because there are some malware instances in
the dataset that have been obfuscated with compression and
encryption techniques and have very few instructions or none.
Thus, the features from the byte sequence provide helpful
information and boost the classifier. Additionally, the bytes
subnetwork overcome methods [1], [14] for various reasons.
First, they have higher complexity (more layers, bigger filter
sizes) which make their architectures not suitable for small-
size datasets. Second, the 2-dimensional representation of the
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TABLE II
STATE-OF-THE-ART COMPARISON OF DEEP LEARNING METHODS FOR MALWARE CLASSIFICATION.

Method Input Accuracy F1-score
LR Byte 1-Gram 0.8785 0.7549
NN 1H Byte 1-Gram 0.9718 0.9503
LR Opcode 1-Gram 0.9911 0.9867
NN 1H Opcode 1-Gram 0.9932 0.9833
NN 2H Opcode 1-Gram 0.9865 0.9764
LR Opcode 2-Gram 0.9729 0.9518
NN 1H Opcode 2-Gram 0.9857 0.9761
NN 2H Opcode 2-Gram 0.9871 0.9782
LR Opcode 3-Gram 0.9545 0.9075
NN 1H Opcode 3-Gram 0.9758 0.9530
NN 2H Opcode 3-Gram 0.9650 0.9415
D. Gibert et al. [18] Grayscale images 0.9750 0.9400
J. Kim et al. [29] Grayscale images 0.9639 –
D. Gibert et al. [15] Structural Entropy 0.9828 0.9314
E. Raff et al. [1] Bytes sequence 0.9641 0.8902
M. Krl et al. [14] Bytes sequence 0.9756 0.9071
Q. Le et al. [17] Bytes sequence 0.9820 0.9605
D. Gibert et al. [16] Bytes sequence 0.9828 0.9636
N. McLaughlin et al. [12] Opcodes sequence 0.9903 –
D. Gibert et al. [13] Opcodes sequence 0.9913 0.9830
M. Mays et al. [30] Grayscale images + Opcode N-grams 0.9770 –
Mnemonics subnetwork Opcodes sequence 0.9893 0.9802
Bytes subnetwork Bytes sequence 0.9885 0.9774
Bimodal network Opcodes+Bytes sequences 0.9924 0.9872

TABLE III
NUMBER OF UNIQUE N-GRAMS IN THE MICROSOFT MALWARE

CLASSIFICATION CHALLENGE DATASET.

Bytes Opcodes
1-gram 256 400
2-gram 65536 21036
3-gram 16777216 197442

byte sequence presented in this work allows to group some of
the bytes per default, and provides some insights about their
function to the network.

V. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, this research is the first
application of multimodal deep learning for PE malware
classification that uses intermediate fusion to merge features
from various modalities of information. The multimodal ap-
proach combines two sources of information through a simple
architecture, (1) the byte sequence representing malware’s
binary content and (2) the mnemonic sequence representing
malware’s assembly language source code. This architecture
extracts n-gram like features from both input sequences to
build a robust classifier than existing deep learning approaches.
Experiments demonstrate that our model takes advantage of
both modalities of information to perform significantly better
than state-of-the-art methods on a standard benchmark, the
Microsoft Malware Classification Challenge dataset.

A future line of research might be to explore more modal-
ities of data to build a stronger malware classifier. More
specifically, research on the combination of wide and deep
models [31] to combine the strength of both approaches, mem-
orization (wide models) and generalization (deep models).

Fig. 7. E. Raff et al. [1] confusion matrix.
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The article ”The Rise of Machine Learning for Detection and Classification of
Malware: Research Developments, Trends and Challenges” [30] provides a system-
atic and detailed overview of machine learning techniques to tackle the problem
of malware detection and classification and in particular, deep learning techniques.
The main contributions of this article to the state-of-the-art are the following: (1) it
provides a complete description of the methods and features in a traditional machine
learning workflow for malware detection and classification; (2) it explores the chal-
lenges and limitations of traditional machine learning; (3) it analyzes recent trends
and developments in the field with special emphasis on deep learning approaches;
(4) it presents the research issues and unsolved challenges of the state-of-the-art
techniques; and (5) it discusses new directions of research. This survey aims to
help researchers to have an understanding of the malware detection field and of the
new developments and directions of research explored by the scientific community
to tackle the problem.
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A B S T R A C T

The struggle between security analysts and malware developers is a never-ending battle with the complexity of
malware changing as quickly as innovation grows. Current state-of-the-art research focus on the development
and application of machine learning techniques for malware detection due to its ability to keep pace with mal-
ware evolution. This survey aims at providing a systematic and detailed overview of machine learning techniques
for malware detection and in particular, deep learning techniques. The main contributions of the paper are: (1)
it provides a complete description of the methods and features in a traditional machine learning workflow for
malware detection and classification, (2) it explores the challenges and limitations of traditional machine learn-
ing and (3) it analyzes recent trends and developments in the field with special emphasis on deep learning
approaches. Furthermore, (4) it presents the research issues and unsolved challenges of the state-of-the-art tech-
niques and (5) it discusses the new directions of research. The survey helps researchers to have an understanding
of the malware detection field and of the new developments and directions of research explored by the scientific
community to tackle the problem.

1. Introduction

A brief look at the history of malicious software reminds us that the
presence of malware threats has been with us since the dawn of comput-
ing. The earliest documented virus appeared during the 1970s. It was
known as the Creeper Worm and was an experimental self-replicating
program that copied itself to remote systems and displayed the message:
“I’m the creeper, catch me if you can”. Later, in the early 80s, appeared
Elk Cloner, a boot-sector virus that targeted Apply II computers. From
these simple beginnings, a massive industry was born and, since then,
the fight against malware has never stopped. By the looks of it, this fight
turned out to be a never-ending and cyclical arms race: as security ana-
lysts and researchers improve their defenses, malware developers con-
tinue to innovate, find new infection vectors and enhance their obfus-
cation techniques. Malware threats continue to expand vertically (i.e.
numbers and volumes) and horizontally (i.e. types and functionality)
due to the opportunities provided by technological advances. Internet,
social networks, smartphones, IoT devices and so on, make it possible
for the creation of smart and sophisticated malware. In recent years,
ransomware and cryptomining malware emerged as the most prolific
types, with Cerber and Locky holding computers all over the globe for

∗ Corresponding author.
E-mail addresses: daniel.gibert@diei.udl.cat (D. Gibert), carlesm@diei.udl.cat (C. Mateu), jplanes@diei.udl.cat (J. Planes).

ransom while Cryptoloot used the victim’s computing power to mine
for crypto without their knowledge. Even though malware targeting
computer systems still predominates in the ecosystem, mobile and IoT
malware is on the rise. According to Symantec (Corporation, 2018),
mobile malware variants increased by 54% in 2017 while IoT attacks
had a 600% increase, with the Mirai botnet and its variants serving as
the vehicle for some of the most potent DDoS attacks in history (Kolias
et al., 2017).

To keep up with malware, security analysts and researchers need
to constantly improve their cyber-defenses. One essential element is
endpoint protection. Endpoint protection provides a suite of security
programs including, but not limited to, firewall, URL filtering, email
protection, anti-spam and sandboxing. Specifically, anti-malware soft-
ware provides the last layer of defense. AV engines are responsible for
preventing, detecting and removing malicious software installed on the
endpoint device. Traditionally, AV solutions relied on signature-based
and heuristic-based methods. A signature is an algorithm or hash that
uniquely identifies a specific malware while heuristics are a set of rules
determined by experts after analyzing the behavior of malware. How-
ever, both approaches require the malware to be analyzed prior to
the definition of these rules and heuristics. The goal of malware anal-
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ysis is to provide information about the characteristics, purpose and
behavior of a given piece of software. There are two types of anal-
ysis: (1) static analysis and (2) dynamic analysis. On the one hand,
static analysis involves examining an executable without execution. On
the other hand, dynamic analysis involves examining the behavior of
the executable by running it. Both types of analysis have their advan-
tages and limitations and they complement each other. Static analysis
is faster but, if malware is successfully concealed using code obfusca-
tion techniques, it could evade detection. Contrarily, code obfuscation
techniques and polymorphic malware hardly evades dynamic analysis
as it monitors and analyzes the runtime execution of a program. Never-
theless, traditional malware detection and malware analysis are unable
to keep pace with new attacks and variants. Organizations are facing
the daunting challenge of dealing with millions of attacks a day. In
addition, organizations are also experiencing a shortage of cybersecu-
rity skills and talent (on Cybersecurity for the 44th Presidency et al.,
2010). The identified issues present a unique opportunity for machine
learning to significantly impact and change the cybersecurity landscape
due to its ability to handle large volumes of data (Fraley et al., 2017).

During the last decade, machine learning has triggered a radical
shift in many sectors, including cybersecurity. There is a general belief
among cybersecurity experts that AI-powered antimalware tools will
help detect modern malware attacks and improve scanning engines.
Evidence of this belief is the number of studies published in the last few
years on malware detection techniques that leverage machine learning.
According to Google Scholar,1 the number of research papers pub-
lished in 2018 is 7720, a 95% increase with respect to 2015 and a
476% increase with respect to 2010. This increase in the number of
studies is the result of various factors, including, but not limited to,
the increase in public labeled feeds of malware, the increase in com-
putational power as the same time as its reduction in price, and the
evolution of the machine learning field, which achieved breakthrough
success on a wide range of tasks such as computer vision and speech
recognition. Traditional machine learning approaches can be catego-
rized into two primary groups, static and dynamic approaches, depend-
ing on the type of analysis. The main difference between them is that
static approaches extract features from the static analysis of malware,
while dynamic approaches extract features from the dynamic analy-
sis. A third group, defined as hybrid approaches, might be considered.
Hybrid approaches combine aspects of both static and dynamic anal-
ysis. Furthermore, neural networks have outshone in learning features
from raw inputs in various fields. Recent trends in machine learning for
cybersecurity are replicating the success of neural networks in the mal-
ware domain. For instance, Raff et al. (2018a) and Krčál et al. (2018)
proposed building a convolutional neural network to determine the
maliciousness of PE executables from the raw bytes of the file itself.
The motivation behind neural network approaches is to build detection
systems that do not rely on the experts’ knowledge of the domain to
define discriminative features.

Given the growing impact of AI-powered tools to detect malware, a
new literature review is needed considering the recent research studies
and exploring the details of traditional static and dynamic approaches.
There is some research discussing malware detection methods but we
consider it is incomplete. (The reader is referred to Section 2). To com-
plement the papers surveyed and mitigate some flaws in the literature,
this paper presents a systematic review on traditional and state-of-the-
art machine-learning-powered techniques for malware detection and
classification, with special emphasis on the type of information (fea-
tures) extracted from Portable Executable files. This paper provides the
basic background in malware analysis, and a brief description of the
process and tools to dissect malware. For a more complete description
we refer the reader to Ligh et al. (2010); Sikorski and Honig (2012);
Monnappa (2018). This review is intended to support security analysts,

1 https://scholar.google.es/.

who may be interested in applying machine learning to automate part
of the malware analysis process, to have a general understanding of the
methods currently in use and of the new trends. This paper categorizes
methods in three main groups: (i) static methods, (2) dynamic methods
and (3) hybrid methods. Furthermore, it provides a detailed descrip-
tion of neural-based methods for detecting and classifying malware,
categorized according to how the input is preprocessed before feeding
the neural network, as well as a brief description of multimodal learn-
ing approaches. This paper closes by discussing the research issues and
challenges faced by researchers in the field, including the availability
of open and public benchmarks to evaluate the performance of meth-
ods, the problem of concept drift in the malware domain, incremental
learning, adversarial learning, and the problem of class imbalance.

This survey is organized as follows. Section 2 provides a summary
of the surveyed research in the literature. Section 3 describes the back-
ground of malware analysis. Section 4 provides a systematic description
of static and dynamic methods for malware detection and outlines the
most discriminant features for the task at hand. Section 5 presents a
detailed overview of the neural-based methods. Section 6 introduces
the multimodal and hybrid approaches. In Section 7, a comprehensive
analysis of new challenges and the issues of malware detection are dis-
cussed. Finally, Section 8 summarizes the concluding remarks of this
survey.

2. Related work

This section provides a summary of the surveyed research in the
literature and discusses some of its defects. Table 1 sums up the main
contributions of the surveys in the literature. We follow by presenting a
brief description for each survey, and their flaws that we try to mitigate
in our work.

Shabtai et al. (2009) provide a taxonomy for malware detection
using machine learning algorithms by reporting some feature types and
feature selection techniques used in the literature. They mainly focus on
the feature selection techniques (Gain ratio, Fisher score, document fre-
quency, and hierarchical feature selection) and classification algorithms
(Artificial Neural Networks, Bayesian Networks, Naïve Bayes, K-Nearest
Neighbor, etc). In addition, they review how ensemble algorithms can
be used to combine a set of classifiers. Bazrafshan et al. (2013) iden-
tify three main methods for detecting malicious software: (1) signature-
based methods, (2) heuristic-based methods and behavior-based meth-
ods. In addition, they investigate some features for malware detec-
tion and discuss concealment techniques used by malware to evade
detection. Nonetheless, the aforementioned research does not consider
either dynamic or hybrid approaches. Souri et al. (2018) present a sur-
vey of malware detection approaches divided into two categories: (1)
signature-based methods and (2) behavior-based methods. However,
the survey does not provide either a review of the most recent deep
learning approaches or a taxonomy of the types of features used in data
mining techniques for malware detection and classification. Ucci et al.
(2019) categorize methods according to: (i) what is the target task they
try to solve, (ii) what are the feature types extracted from Portable
Executable files (PEs), and (iii) what machine learning algorithms they
use. Although the survey provides a complete description of the fea-
ture taxonomy, it does not outline new research trends, especially deep
learning and multimodal approaches. Ye et al. (2017) cover traditional
machine learning approaches for malware detection, that consists of
feature extraction, feature selection and classification steps. However,
important features such as the entropy or structural entropy of a file,
and some dynamic features such as network activity, opcode and API
traces, are missing. In addition, deep learning methods or multimodal
approaches for malware detection, which have been hot topics for the
last few years, are not covered. Lastly, Razak et al. (2016) provide a
bibliometric analysis of malware. It analyzes the publications by coun-
try, institution or authors related to malware. Nonetheless, the paper
does not provide a description of the features employed by malware
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Table 1
List of contributions by the surveyed papers. A ✓tick denotes the information that a survey tries to cover but it does not necessarily provides a thoroughly
description of the topic.

Paper Feature Taxonomy Static Methods Dynamic Methods Hybrid Methods Multimodal Learning
Methods

Deep Learning
Methods

Issues and Challenges

Shabtai et al. (2009) ✓ ✓ × × × × ×
Bazrafshan et al. (2013) ✓ ✓ × × × × ×
Souri et al. (2018) × ✓ ✓ × × × ×
Ucci et al. (2019) ✓ ✓ ✓ × × × ✓
Ye et al. (2017) ✓ ✓ ✓ ✓ × × ✓
Razak et al. (2016) ✓ ✓ ✓ × × × ✓
The present survey ✓ ✓ ✓ ✓ ✓ ✓ ✓

detectors and does not consider the state-of-the-art in the field.
Given the aforementioned limitations in the surveyed papers, the

present research presents a systematic review on traditional and state-
of-the-art machine learning techniques for malware detection and clas-
sification. This paper categorizes traditional methods into two groups:
(1) static methods and (2) dynamic methods, categorizing the meth-
ods by the type of information or features extracted from Portable Exe-
cutable files. It extends the surveyed papers by exploring various ways
of combining different modalities or types of information, and analyzes
state-of-the-art deep learning approaches, which are grouped according
to the nature of the raw data fed into the systems. The paper closes with
a discussion of the research issues and challenges faced by researches
including, but not limited to, the problem of concept drift, adversarial
learning and the problem of class imbalance.

3. Background

This section presents an overview of the types of analysis, techniques
and tools for dissecting malware targeting the Windows operating sys-
tem, by far the most used OS worldwide. First, we describe the Portable
Executable file format. Then, we provide a description of the funda-
mental approaches for malware analysis and we give a list of the most
common tools utilized for the examination of malicious software. Lastly,
we introduce the taxonomy of malware and a brief overview of its evo-
lution.

3.1. The Portable Executable file format

The Portable Executable (PE) format is a file format for executables,
object code, DLLs, FON Font files and others used in 32-bit and 64-
bit versions of the Windows operating system. The PE32 format stands
for Portable Executables of 32-bit while PE32 + stands for Portable
Executables of 64-bit format.

Portable Executables encapsulate the information necessary for
a Windows operating system to manage the executable code. This
includes dynamic library references for linking, API export and import
tables, resource management data and threat-local storage data. A PE
file consists of a number of headers and sections that tell the dynamic
linker how to map the file into memory. See Fig. 1. The PE Header con-
tains information about the executable such as the number of sections,
the size of the “PE Optional Header”, characteristics of the file, etc.2
It also contains the import address table (IAT), which is a lookup table
used by the application when calling a function in a different module.
In addition, a Portable Executable file has various sections that contain
the code and data of the executable including, but not limited to, the
following:

• The. data section. This section is used to declare initialized data or
constants that do not change at runtime.

2 https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_
Files#PE_Header.

Fig. 1. Portable executable file format.

• The. bss section. This section is used for declaring variables and
contains uninitialized data.

• The. text section. This section keeps the actual code of the program.
• The. rsrc section. This section contains all the resources of the pro-

gram.
• The. rdata section. This section holds the debug directory which

stores the type, size and location of various types of debug informa-
tion stored in the file.

• The. idata section. This section contains information about functions
and data that the program imports from DLLs.

• The. edata section. This section contains the list of the functions and
data that the PE file exports for other programs.

• The. reloc section. This section holds a table of base relocations.
A base relocation is an adjustment to an instruction or initialized
variable value that is needed if the loader could not load the file
where the linker assumed it would.

More information on the PE file format can be found in the docu-
mentation provided by Microsoft.3

3.2. Taxonomy of malware

Malicious software, also known as malware, is any kind of software
that is specifically designed to disrupt, damage or gain unauthorized
access to a computer system or network. Depending on the purposes
and proliferation systems, malware can be divided into various, not
mutually exclusive categories.

3 https://docs.microsoft.com/en-_us/windows/win32/debug/pe-_format.
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• Adware. Malware designed to automatically generate online adver-
tisements. This type of malware generates revenue for its developer
by displaying advertisements on the user interface or the screen.

• Backdoor. Computer software that is designed to bypass a system’s
security mechanism and install itself on a computer to allow the
attacker to access it.

• Bot. Software created to automatically perform specific operations
such as DDoS attacks or distribute other malware. Bots are part of
a botnet, a network of interconnected devices, which are controlled
using command and control (C&C) software.

• Downloader. A downloader program’s purpose is to download and
install additional malicious programs.

• Launcher. A launcher is a computer program designed to stealthily
launch other malicious programs.

• Ransomware. Malicious software that restricts user access to the
computer system by encrypting the files or locking down the sys-
tem while demanding a ransom for its release.

• Rootkit. Malware designed to conceal the existence of other mali-
cious programs.

• Spyware. Computer software that spies and collects sensitive infor-
mation without permission from a victim’s computer. Examples
include key-loggers, password gravers and sniffers.

• Trojan. A Trojan is a type of malicious software that disguises itself
as legitimate software to trick users into downloading and installing
malware on their systems.

• Virus. Malicious software that can propagate itself from device to
device.

• Worm. A type of virus that exploits vulnerabilities of the operating
system to spread. The major difference between worms and viruses
is the ability of worms to independently self-replicate and spread
while viruses depend on human activity.

3.3. Malware analysis

The process of dissecting malware to understand how it works,
determine its functionality, origin and potential impact is called mal-
ware analysis. With the millions of new malicious programs in the wild,
and the mutated versions of previously detected programs, total mal-
ware encountered by security analysts has been growing over the past
years.4 Consequently, malware analysis is critical to any business and
infrastructure that responds to security incidents.

There are two fundamental approaches to malware analysis: (1)
static analysis and (2) dynamic analysis. On the one hand, static analy-
sis involves examining the malware without running it. On the other
hand, dynamic analysis involves running the malware. An in-depth
description of both approaches is provided in Sections 3.3.1 and 3.3.2.

3.3.1. Static analysis
Static analysis consists of examining the code or structure of the

executable file without executing it. This kind of analysis can confirm
whether a file is malicious, provide information about is functionality
and can also be used to produce a simple set of signatures. For instance,
the most common method used to uniquely identify a malicious pro-
gram is hashing. That is, a hashing program produces a unique hash,
a sort of fingerprint, that identifies the program. The two most popu-
lar hash functions are the Message-Digest Algorithm 5 (MD5) and the
Secure Hash Algorithm 1 (SHA-1). The most common static analysis
approaches are:

• Finding sequences of characters or strings. Searching through the
strings of a program is the simplest way to obtain hints about its
functionality. Strings extracted from the binary can contain refer-
ences to filepaths of files modified or accessed by the executable,

4 https://www.av-_test.org/en/statistics/malware/.

URLs to which the program accesses, domain names, IP addresses,
attack commands, names of Windows dynamic link libraries (DLLs)
loaded, registry keys, and so on. The utility tool Strings5 can be used
to search ASCII or Unicode strings ignoring context and formatting
in an executable.

• Gathering the linked libraries and functions of an executable, as well
as the metadata about the file included in the headers. These data
provide information about code libraries and functionalities com-
mon to many programs, that programmers link so that they do not
need to re-implement a certain functionality. The names of this Win-
dows functions can give us an idea of what the executable does. The
utility Dependency Walker6 is a free program for Microsoft Windows
used to list the imported and exported functions of a PE file.

• Analyze PE file headers and sections. The PE file headers provide
more information than just imports. They contain metadata about
the file itself, such as the actual sections of the file. One way to
retrieve this information is with the PEView tool.7

• Searching for packed/encrypted code. Malware writers usually use
packing and encryption to make their files more difficult to analyze.
Software programs that have been packed or encrypted usually con-
tain very few strings and higher entropy compared to legitimate
programs. One way to detect packed files is with the PEiD program8

• Disassembling the program, i.e. translating machine code into
assembly language. This reverse-engineering process loads the exe-
cutable into a disassembler to discover what the program does. The
most relevant software programs for disassembling PE executables
are IDA Pro,9 Radare210 and Ghidra.11

3.3.2. Dynamic analysis
Dynamic analysis involves executing the program and monitoring its

behavior on the system. This is typically performed when static anal-
ysis has reached a dead end, either due to obfuscation or on having
exhausted the available static analysis techniques. Unlike static analy-
sis, it traces the real actions executed by the program. However, the
analysis must be run in a safe environment to not expose the system to
unnecessary risks, where the system is both the machine running the
analysis tool and the rest of the machines on the network. To this end,
dedicated physical or virtual machines are set up.

Physical machines must be set up on air-gapped networks, that is
isolated networks where machines are disconnected from the Internet
or any other network, to prevent malware from spreading. The main
downside of physical machines is this scenario with no Internet connec-
tion, as many malicious programs depend on Internet connection for
updates, command and control and other features.

The second option is to set up virtual machines to perform dynamic
analysis. A virtual machine emulates a computer system and provides
the functionality of a physical computer. The OS running in the virtual
machine is kept isolated from the host OS and thus, malware running
on a virtual machine cannot harm the host OS. VMware Workstation12

and Oracle VM VirtualBox13 are some of the virtual machine solutions
available to analysts. In addition, there are several all-in-one software
products based on sandbox technology that can be used to perform basic
dynamic analysis. The most well-known is the Cuckoo Sandbox,14 an

5 https://docs.microsoft.com/en-_us/sysinternals/downloads/strings.
6 http://www.dependencywalker.com/.
7 http://wjradburn.com/software/PEview.zip.
8 https://peid.waxoo.com/.
9 https://www.hex-_rays.com/products/ida/.

10 https://rada.re/r/.
11 https://github.com/NationalSecurityAgency/ghidra.
12 https://www.vmware.com/products/workstation-_pro.html.
13 https://www.virtualbox.org/.
14 https://cuckoosandbox.org/.
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open source automated malware analysis system. This modular sandbox
provides capabilities to trace API calls, analyze network traffic or per-
form memory analysis. Alternatively, there is a wide list of utilities for
dynamically analyze malware and perform advanced and specific mon-
itoring of some functionalities. Process Monitor,15 or procmon, is a tool
for Windows that monitors certain registry, file system, network, pro-
cess and thread activity. Process Explorer16 show the information about
which handles and DLL processes are opened or loaded into the operat-
ing system. Regshot17 is a registry compare utility that allows snapshots
of registries to be taken and compared. NetCat18 is a networking utility
that can be used to monitor data transmission over a network. Wire-
shark19 is an open source sniffer that allows packets to be captured
and network traffic to be intercepted and logged. Another indispens-
able software utility are debuggers. A debugger is used to examine the
execution of another program. They provide a dynamic view of a pro-
gram as it runs. The primary debugger of choice for malware analysts
is OllyDbg20 , an ×86 debugger that is free and has many plugins to
extend its capabilities.

The risks of using virtualization and sandboxing for malware anal-
ysis is that some malware can detect when it is running in a virtual
machine or a sandbox and subsequently, they will execute differently
than when in a physical machine to make the job of malware analysts
harder. In addition, even if you take all possible precautions, some risk
is always present when analyzing malware. From time to time, vulnera-
bilities have been found in the virtualization tools that allow an attacker
to exploit some of its features such as the share folders feature.

3.4. Malware evolution

The diversity, sophistication and availability of malicious software
pose enormous challenges for securing networks and computer systems
from attacks. Malware is constantly evolving and forces security ana-
lysts and researchers to keep pace by improving their cyberdefenses.
The proliferation of malware increased due to the use of polymorphic
and metamorphic techniques used to evade detection and hide its true
purpose. Polymorphic malware uses a polymorphic engine to mutate
the code while keeping the original functionality intact. Packing and
encryption are the two most common ways to hide code. Packers hide
the real code of a program through one or more layers of compression.
Then, at runtime the unpacking routines restore the original code in
memory and execute it. Crypters encrypt and manipulate malware or
part of its code, to make it harder for researchers to analyze the pro-
gram. A crypter contains a stub used to encrypt and decrypt malicious
code. Metamorphic malware rewrites its code to an equivalent when-
ever it is propagated. Malware authors may use multiple transformation
techniques including, but not limited to, register renaming, code per-
mutation, code expansion, code shrinking and garbage code insertion.
The combination of the aforementioned techniques resulted in rapidly
growing malware volumes, making forensic investigations of malware
cases time-consuming, costly and more difficult.

Traditional antivirus solutions that relied on signature-based and
heuristic/behavioral methods present some problems. A signature is
a unique feature or set of features that uniquely distinguishes an
executable, like a fingerprint. However, signature-based methods are
unable to detect unknown malware variants. To tackle these challenges,
security analysts proposed behavior-based detection, which analyzes
the file’s characteristics and behavior to determine if it is indeed mal-

15 https://docs.microsoft.com/en-_us/sysinternals/downloads/procmon.
16 https://docs.microsoft.com/en-_us/sysinternals/downloads/process-_

explorer.
17 https://sourceforge.net/p/regshot/wiki/Home/.
18 http://netcat.sourceforge.net/.
19 https://www.wireshark.org/.
20 http://www.ollydbg.de/.

Fig. 2. Machine learning workflow.

ware, though the scanning and analysis can take some time. To over-
come the prior pitfalls of traditional antivirus engines and keep pace
with new attacks and variants, researchers started adopting machine
learning to complement their solutions, as machine learning is well
suited for processing large volumes of data.

4. Traditional machine learning approaches

Over the past decade there has been an increase in the research
and deployment of machine learning solutions to tackle the tasks of
malware detection and classification. The success and consolidation of
machine learning approaches would not have been possible without the
confluence of three recent developments:

1. The first development is the increase in labeled feeds of malware
meaning that, for the first time, labeled malware is available not
only to the security community but also to the research community.
The size of these feeds ranges from limited high-quality samples,
like the ones provided by Microsoft (Ronen et al., 2018) for the Big
Data Innovators Gathering Anti-Malware Prediction Challenge, to
huge volumes of malware, such as theZoo (Yuval Nativ, 2015) or
VirusShare (2011).

2. The second development is that computational power has increased
rapidly and at the same time has become cheaper and closer to the
budget of most researchers. Consequently, it allowed researchers to
speed-up in the iterative training process and to fit larger and more
complex models to the ever increasing data.

3. Third, the machine learning field has evolved at an increased pace
during the last decades, achieving breakthrough success in terms of
accuracy and scalability on a wide range of tasks, such as computer
vision, speech recognition and natural language processing.

In machine learning, a workflow is an iterative process that involves
gathering available data, cleaning and preparing the data, building
models, validating and deploying into production. See Fig. 2. Instead of
dealing with raw malware, the data preparation process of traditional
machine learning approaches involves preprocessing the executable to
extract a set of features that provide an abstract view of the software.
Afterwards the features are used to train a model to solve the task at
hand. Because of the variety of malware functionalities, it is important
not only to detect malicious software, but also to differentiate between
different kinds of malware in order to provide a better understanding of
their capabilities. The main difference between machine learning solu-
tions for detection or classification of malware is the output returned by
the system implemented. On the one hand, a malware detection system
outputs a single value y = f(x), in the range from 0 to 1, which indi-
cates the maliciousness of the executable. On the other hand, a classi-
fication system outputs the probability of a given executable belonging
to each output class or family, y ∈ ℝN , where N indicates the number
of different families.
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Fig. 3. Taxonomy of features used by traditional M.L. approaches.

A taxonomy of the features is provided in Fig. 3. Accordingly, the
types of features can be divided into two groups, like the types of mal-
ware analysis approaches: (1) static features and (2) dynamic features.
Each feature type individually below.

4.1. Static features

Static features are extracted from a piece of program without involv-
ing its execution. In Windows Portable Executable files, static features
are basically derived from two sources of information, the binary con-
tent of the executable or the assembly language source file obtained
after decompiling and disassembling the binary executable. On the
other hand, in Android applications these features are extracted by dis-
assembling the APK. To extract the assembly language source code of
some given software you can use the disassembler tool of your choice.
For Windows, you might use IDA Pro or Radare2. Tables 2 and 3 pro-
vide a summary of the static methods reviewed. Below you will find a
description of each static feature type presented in Fig. 3.

4.1.1. String analysis
String analysis refers to the extraction of every printable string

within an executable or program. A string refers to a sequence of char-
acters. Searching for strings is the simplest way to obtain clues about
the functionality of a program. The information that may be found in
these strings can be, for instance, URLs that the program connects to,
file locations or filepaths of files accessed/modified by the program,
names of the menus of the application, etc. The utility called “Strings”
can be used to search an executable for ASCII and Unicode strings,
ignoring context and formatting.

Although there are studies using string analysis to detect mal-
ware (Konopisky, 2018; Lee et al., 2011), string analysis is commonly
employed together with other static or dynamic techniques to reduce
its pitfalls. (Ye et al., 2008a). developed a malware detection system
based on interpretable strings extracted from both API execution calls
and semantic strings reflecting an attacker’s intent and goal. The sys-
tem was composed of a parser to extract interpretable strings for each
PE file and a SVM ensemble with bagging to construct the detector.
The performance of the system was evaluated on a dataset collected by
Kingsoft anti-virus lab.

4.1.2. Bytes and opcode N-Grams
The most common type of features for malware detection and clas-

sification is n-grams. An n-gram is a contiguous sequence of n items
from a given sequence of text. N-grams can be extracted from the
bytes sequences representing the malware’s binary content and from

the assembly language source code. By treating a file as a sequence
of bytes, byte n-grams are extracted by looking at the unique combi-
nation of every n consecutive bytes as an individual feature. On the
other hand, the sequence of assembly language instructions can also be
extracted from the assembly language source code. In this case, only
the mnemonic of the instruction, i.e. “ADD”, “MUL”, “PUSH”, etc., is
retained. Thus, opcode or mnemonic n-grams refer to the unique com-
bination of every n consecutive opcodes as an individual feature.

Moskovitch et al. (2008) presented a method for classifying mal-
ware based on text categorization techniques. First, they extracted all
n-grams from the training data, with n ranging from 3 to 6. Second,
they selected the top 5500 features according to their Document Fre-
quency (DF) score, to which the Fisher Score feature selection technique
was later applied. Afterwards, using the resulting features as input they
trained various algorithms such as an Artificial Neural Network (ANN),
a Support Vector Machine (SVM), Naïve Bayes (NB) and Decision Trees
(DT).

Jain and Meena (2011) proposed a method to extract bytes n-gram
features, with n ranging from 1 to 8, from known malicious samples
to assist in classification of unknown executables. As the number of
unique n-grams is extremely large, they used a technique called class-
wise document frequency to reduce the feature space. Finally, different
N-gram models were prepared using various classifiers like Naïve Bayes,
Instance-based Learner, Decision Trees, Adaboost and Random Forests.

Fuyong et al. (2017) proposed a method that calculates the infor-
mation gain of each bytes n-gram in the training samples and selected
K n-grams with the maximum information gain as features. Afterwards,
they calculated the averages of each attribute of the feature vectors
from the malware and benign samples separately. Lastly, a new piece
of software was assigned to one of the two categories according to the
similarity between the feature vector of the unknown sample and the
average vectors of the two categories.

Santos et al. (2013) proposed a technique for malware detection
based on the frequency of appearance of opcode sequences and its rele-
vance. Each program was represented as a vector of features where each
feature corresponds to a distinct 1-g or 2-g. To reduce the number of 2-g
features, they applied Information Gain to select the top 1000 features.
Their approach was validated on 17000 malicious and 1000 benign
programs, and results show that the higher accuracy was achieved by a
Support Vector Machine classifier with Pearson VII as kernel.

Shabtai et al. (2012) proposed a framework for detecting malware
based on opcode n-gram features with n ranging from 1 to 6. They
performed a wide set of experiments to: (1) identify the best term rep-
resentation, whether it is the Term Frequency (TF) or Term Frequency-
Inverse Document Frequency, (2) determine the n-gram size, (3) find
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Table 2
A side-by-side comparison of the algorithms and feature types of the reviewed static-based methods. Algorithms: Support Vector Machine
(SVM), Random Forests (RF), Inference Trees (IT), Recursive Bipartition (RB), Naive Bayes (NB), Artificial Neural Networks (ANN), Decision
Trees (DT), Instance-based Learner (IL), K-Nearest Neighbor (K-NN), Logistic Regression (LR), Gradient Boosting (GB), Sequential Minimal
Optimization (SMO), Decision Stump (DS), Random Tree (RT), Voted Perceptron (VT).

Paper Feature Type Feature Selection, Reduction Classification Algorithm

Ye et al. (2008a) Strings – SVM ensemble with bagging
Moskovitch et al. (2008) 3, 4, 5, 6-g (bytes) Fisher Score ANN, SVM, NB, DT
Jain and Meena (2011) n-grams (bytes) Classwise Document Frequency NB, IL, DT, AdaBoost, RF
Fuyong et al. (2017) 3-g (bytes) Information Gain 1-NN
Santos et al. (2013) 1,2-g (opcodes) Information Gain SVM with Pearson’s VII Kernel
Shabtai et al. (2012) 1,2,3,4,5,6-g (opcodes Term Frequency (TF) and TF-Inverse

Document Frequency (TF-IDF)
DT, ANN, LR, RF, BDT; NB, BNB

Hu et al. (2013) n-grams (opcodes) hashing trick agglomerative hierarchical clustering
Yuxin et al. (2019) n-grams (opcodes) – DBN, SVM, K-NN, DT
Sami et al. (2010) API calls Fisher Score + Clospan Algorithm RF
Ye et al. (2008b) API calls – Rule-based Classification System
Ahmadi et al. (2016) API calls – GB
Sorokin and Jun (2011) Structural Entropy Discrete Wavelet Transform Sequence Similarity +

Wagner-Fischer Dynamic
Programming

Baysa et al. (2013) Structural Entropy Discrite Wavelet Transform Sequence Similarity +
Levenhstein distance

Wojnowicz et al. (2016) Structural Entropy Haar Discrete Wavelet Transform Suspiciously Structured Entropic
Change Score (SSECS) + LR

Gibert et al. (2018b) Structural Entropy Haar Discrete Wavelet Transform K-NN + Levenhstein distance
Nataraj et al. (2011) Gray Scale IMG GIST features K-NN
Ahmadi et al. (2016) Gray Scale IMG Haralick & Local

Binary Pattern features
GB

Kancherla et al. (2013) Gray Scale IMG Intensity-based,
Wavelete-based and Gabor-based
features

SVM

Kinable et al. (2011) Function Call Graph – DBSCAN, K-medoids
Hassen and Chan (2017) Function Call Graph In-house vector representation

algorithm
RF, meta-classifier

Eskandari and Hashemi (2011) CFG – RF, SMO, DS, K-Star, NB, RT
Faruki et al. (2012) CFG – RF, SMO, J-48 DT, NB, VP

Table 3
A side-by-side comparison of the dataset characteristics of the reviewed of the static methods.

Paper Source Total Size Task

Ye et al. (2008a) Kingsoft lab 39838 Detection
Moskovitch et al. (2008) VXHeavens, Windows XP 30423 Detection
Jain and Meena (2011) VXHeavens, Windows XP 2138 Detection
Fuyong et al. (2017) Open Malware Benchmark,

Windows XP, Windows 8
2540 Detection

Santos et al. (2013) VXHeavens, Windows OS 18000 Detection
Shabtai et al. (2012) VXHeavens, Windows XP 30423 Detection
Hu et al. (2013) VXHeavens 132234 Classification
Yuxin et al. (2019) – 9200 Detection
Sami et al. (2010) – 34820 Detection
Ye et al. (2008b) Kingsoft Corporation 29580 Detection
Ahmadi et al. (2016) Microsoft Malware Classification Challenge 21741 Classification
Sorokin and Jun (2011) – – –
Baysa et al. (2013) – – –
Wojnowicz et al. (2016) Cylance repository 699121 Detection
Gibert et al. (2018b) Microsoft Malware Classification Challenge 21741 Classification
Nataraj et al. (2011) – 9458 Classification
Ahmadi et al. (2016) Microsoft Malware Classification Challenge 21741 Classification
Kancherla et al. (2013) Offensive Computing, Windows XP,

Windows Vista, Windows 7, Windows NP
27000 Detection

Kinable et al. (2011) – 1919 Classification
Hassen and Chan (2017) Microsoft Malware Classification Challenge 21741, Classification
Eskandari and Hashemi (2011) APA malware research center 4445 Detection
Faruki et al. (2012) – 6234 Detection

the optimal K top n-grams and feature selection method, and (4) evalu-
ate the performance of various machine learning algorithms.

Hu et al. (2013) presented MutantX-S, a clustering approach based
on opcode N-gram features extracted from the assembly language
source code of malware obtained after a disassemble process. MutantX-

S improves the scalability on handling very large numbers of malware
with high-dimensional features by applying a hashing trick and a close-
to-linear clustering algorithm. Instead of working on the large volumes
of data, the algorithm performed agglomerative hierarchical clustering
only on prototypes.
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Alternatively, Yuxin et al., (2019) used a Deep Belief Network (DBN)
as an autoencoder to reduce the dimensions of the input feature vectors.
As a result, after learning is completed, the last hidden layer of the DBN
outputs a new representation or encoding of the N-gram vectors passed
as input. By training the DBN with unlabeled data, their classification
accuracy outperformed that of the K-Nearest Neighbor, Support Vector
Machines and Decision Tree algorithms.

Despite their success at detecting malware, n-gram approaches have
some issues that is worth mentioning. First, it is impractical and compu-
tationally prohibitive to exhaustively enumerate all n-grams. Estimating
model parameters when the number of features is larger than the num-
ber of samples might lead to the curse of dimensionality. As a result,
feature selection and reduction techniques must be employed. Sec-
ond, researchers (Raff et al., 2018b) have concluded that byte n-grams
appear to be learning mostly from string content in an executable, in
particular items from the PE header. As there are millions of potential
n-grams (for a larger n), feature selection techniques tend to select as
features those that occur frequently enough. This encourages the selec-
tion of low entropy features consisting mostly of strings and padding.
Third, regardless of what n-grams are learned, we must obtain an exact
match when classifying a new sample. Consequently, any minor change
will make the feature not occur and, thus, not impact our model. Thus,
this lack of generalization is a potential source of over-fitting.

4.1.3. API function calls
Application Programming Interfaces (API) and their function calls

are regarded as very discriminative features. Literature has shown that
API functions invocation might be used to model the program’s behav-
ior. Essentially, API functions and system calls are related to services
provided by the operating systems such as networking, security, file
management, and so on. As there is no other way for software to access
the system resources without using API functions, the invocation of par-
ticular API functions provides key information to represent the behavior
of malware.

Sami et al. (2010) proposed a three-step framework to classify PE
files based on API calls usage. First, they analyzed the Portable Exe-
cutable files and extracted the list of imported API calls. Second, they
reduced the feature vector using the Clospan algorithm (Yan et al.,
2003). Lastly, the subset of features was used to learn a model using
Random Forest.

Ye et al. (2008b) proposed a rule-based system for malware clas-
sification. The system consists of three major components: (1) the PE
parser, (2) the OOA (Objective-Oriented Association) rule generator
and (3) the malware detection module. The PE parser is responsible
for parsing the executable and extracting the static execution calls of
the corresponding API functions. Then, these calls are used as signa-
tures of the PE files and stored in a signature database. Afterwards, an
OOA algorithm is applied to generate class association rules which are
stored in the rule database. Lastly, the feature calls and the rules are
passed to the malware detection module to determine whether a file is
benign or malicious.

Ahmadi et al. (2016) used the frequency of a subset of 794 API
function calls, extracted from an analysis on almost 500 K malware
samples, to build a multimodal system to classify malware into families.
A complete description of their research is provided in Section 6

4.1.4. Entropy
Malware authors often employ a variety of obfuscation techniques to

hide the malicious purpose of the executables. The two most commonly
used are compression and encryption, which are used to conceal mali-
cious segments from static analysis. Consequently, it is of great interest
for the information security industry to be able to detect the presence
of encrypted or compressed segments of code within executable files.
To this end, entropy analysis has been employed because files with seg-
ments of code that have been compressed or encrypted tend to have

higher entropy than native code. In the context of information the-
ory, the entropy of a bytes sequence reflects its statistical variation. In
particular, zero entropy would mean that the same character has been
repeated over the analyzed segment. This behavior can be observed in
a “padded” chunk of code. On the contrary, a high entropy value would
indicate that the chunk consists entirely of distinct values. For instance,
Lyda et al. (2007) analyzed a corpus of files consisting of plain text
files, native, compressed and encrypted executables, and observed that
the average entropy of the executables was 5.09, 6.80 and 7.17, respec-
tively.

As a result, previous research has used a high mean entropy to detect
the presence of encryption and compression. However, when the mali-
cious code is concealed in a sophisticated manner it might be hard to
detect through such simple entropy statistics. A common approach to
reduce the entropy of a file is to pad “nop” instructions. Nevertheless,
files with encrypted, compressed, native or padded segments tend to
have distinct and unique entropy levels. Thus, researchers (Sorokin and
Jun, 2011) started analyzing what is known as the structural entropy of
a file, the representation of the malware’s byte sequence as a stream of
entropy values, where each value indicates the amount of entropy over
a small chunk of code in a specific location (see Fig. 4). In particular,
Sorokin and Jun (2011) compared the similarity between the structural
entropy of an unknown file with that of the training dataset to detect
malware.

Baysa et al. (2013) extended the previous work to detect metamor-
phic malware. They applied wavelet analysis to determine the areas
where there are significant changes in the entropy values. Afterwards,
they compared the similarity between two files using the Levenshtein
distance. Therefore, given an unknown piece of software, it would be
classified as the class corresponding to the most similar sample in the
training set.

Wojnowicz et al. (2016) developed a method to automatically quan-
tify the extent to which variations in a file’s structural entropy make
it suspicious. This score is calculated through a two-step process: (1)
they computed the wavelet-based energy spectrum of the executable’s
structural entropy; and (2) they fit various logistic regression models
over j-th resolution levels to produce a set of beta coefficients to weight
the strength of each resolution energy on the file’s probability of being
malicious.

4.1.5. Malware representation as a gray scale image
An interesting approach for malware visualization was first intro-

duced by
Nataraj et al. (2011) who visualized the malware’s binary content

as a gray scale image. This is achieved by interpreting every byte as
one pixel in an image, where values range from 0 to 255 (0:black,
255:white). Afterwards, the resulting array is reorganized as a 2-D
array.

Fig. 5 presents samples from two malware families represented as
gray scale images. You can observe that the image representation of
samples of a given family is quite similar while distinct from that
belonging to a different family. This visual similarity is the result of
reusing code to create new binaries. Thus, if old samples are re-used to
implement new binaries, the resulting ones would be similar. In most
cases, by representing an executable as a gray scale image it would be
possible to detect small variations between samples belonging to the
same family.

This visual similarity has been exploited by various authors for
detecting and classifying malware. In particular, Nataraj et al. (2011)
extracted GIST features from the gray scale representation of malware’s
binary content. Finally, a new executable is classified under one fam-
ily or another using the K-Nearest Neighbor algorithm (K-NN) with the
Euclidean distance as metric. Ahmadi et al. (2016) extracted Haralick
and Local Binary Pattern features for classifying malware using boost-
ing tree classifiers.

Kancherla et al. (2013) extracted three sets of features: (1) Intensity-
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Fig. 4. Structural entropy representation of samples belonging to the Ramnit and Gatak families.

Fig. 5. Gray scale representation of the binary content of malware samples
belonging to the Ramnit and the Lollipop families.

based, (2) Wavelet-based and (3) Gabor-based features. In particular,
they extracted the average intensity, variance, mode, skewness, kurto-
sis and the number of pixels with intensity value 0 and 255. Regarding
the wavelet-based features, they applied level 3 wavelet decomposition
using the Daubechies wavelet, also known as db4, and they obtained
one set of approximate coefficients and three sets of detailed coeffi-
cients. The features extracted from each of these coefficients were the
mean, variance, maximum and minimum values. Finally, to extract the
Gabor-based features they applied the Gabor filter (convolution of an
input with Gabor function) to the image. The performance of support
vector machines as learning algorithm was evaluated on a dataset of
15000 malicious and 12000 benign samples where 70% were used for
training and 30% for testing.

The gray scale image representation of software has some draw-
backs directly related to how images are generated. Primarily, binaries
are not 2-D images and by transforming them as such you introduce
unnecessary priors. First, to construct an image you need to select an
image width which adds a new hyper-parameter to tune. Notice that
selecting the width consequently determines the height on the image
depending of the size of the binary. Second, it imposes non-existing
spatial correlations between pixels in different rows, which might not
be true.

Additionally, like the majority of static features, it suffers from code
obfuscation techniques. In particular, techniques like encryption and
compression might completely change the bytes structure of a binary
program and, thus, methods based on this kind of representation would
fail to correctly classify its class. This can be observed in the gray scale
representation of samples belonging to the Autorun. K and Yuner. A
families from the MalImg dataset (Nataraj et al., 2011), which are
almost equal due to both having being compressed with the UPX packer.

4.1.6. Function call graphs
A Function Call Graph (FCG) is a directed graph whose vertices rep-

resent the functions of which a software program is composed, and the
edges symbolize function calls. A vertex is represented by either one of
the following two types of functions:

1. Local functions, implemented by the programmer to perform spe-
cific tasks.

2. External functions: provided by the O.S. or system and external
libraries.

One particularity of the graph is that only local functions can invoke
external functions, not the other way around. Function call graphs are
generated from the static analysis of the disassembly file. To extract the
FCG of Windows PE executables, IDA Pro or Radare2 can be used.

Kinable et al. (2011) presented an approach to cluster malware
based on the structural similarities between function call graphs. They
investigated the performance of the k-medoids and Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN) algorithms for mal-
ware clusterization. The comparison among call graphs was computed
with pairwise graph similarity scores via graph matching. The experi-
ments were performed on a dataset comprising 194,675 samples from
1050 different malware families.

Hassen and Chan (2017) proposed a method to extract a vector rep-
resentation of the function call graph based on function clustering. The
first module of the system extracts the FCG and labels the vertices with
external functions with the function names. The original names of the
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Table 4
A side-by-side comparison of the algorithms and input data of the reviewed dynamic-based methods. Algorithms: Logistic Regression (LR), Decision Tree (DT),
Random Forest (RF), Support Vector Machine (SVM).

Paper Input Classification Algorithm Feature Selection, Reduction Techniques

Ghiasi et al. (2012) Register’s Usage Matching based on Registers Values Set
Analysis

–

Ghiasi et al. (2015) Register’s Usage Matching based on Jaccard’s similarity
distance on dynamic VSA representations

Prototype Extraction

Carlin et al. (2017a) Instruction Traces RF, Hidden Markov models Opcode counts
O’kane et al. (2016) Instruction Traces SVM PCA
Anderson et al. (2011) Instruction Traces SVM –
Storlie et al. (2014) Instruction Traces flexible spline logistic regression –
Bekerman et al. (2015) Network Traffic Naïve Bayes, J48 DT, RF Correlation Feature Selection Algorithm
Zhao et al. (2015) DNS and Network Traffic Reputation Engine –
Kheir (2013) Network Traffic (HTTP traffic) High-level clustering, fine clustering and

Incremental K-means clustering
.

Boukhtouta et al. (2016) Network Traffic Boosted J48, J48, NB, Boosted NB, SVM,
HMMs

–

Perdisci and Wenke Lee (2015) HTTPs Traffic Coarse-grain Clustering, Fine-grain
Clustering, Cluster-merging

–

Galal et al. (2016) API Call Traces DT, RF, SVM Hand-crafted Heuristics
Ding et al. (2013) API Call Traces Object Oriented Association Mining Document Frequency, Information Gain
Salehi et al. (2017) API Call Traces RF, J48 DT, Bayesian Logistics

Regression,
Sequential Minimal Optimization

Fisher Score, SVM based on Recursive Feature Elimination

Rieck et al. (2011) API Call Traces Hierarchical Clustering –
Uppal et al. (2014) API Call Traces NB, RF, DT, SVM odds ratio

internal functions are not preserved and instead, each internal func-
tion is represented as the sequence of instructions that the function
implements. Afterwards, the resulting FCG is passed to the next mod-
ule to cluster the local functions and relabel them with their cluster-id.
Finally, the graph representation is converted into a feature vector using
function clustering based on the Minhash signatures of the functions.

4.1.7. Control Flow Graph
A Control Flow Graph (CFG) is a directed graph in which the nodes

represent basic blocks and the edges represent control flow paths. A
basic block is a linear sequence of program instructions having an entry
point (the first instruction executed) and an exit point (the last instruc-
tion executed). A CFG is a representation of all the paths that can be
traversed during a program’s execution.

Eskandari and Hashemi (2011) presented an approach to detect
metamorphic malware through their Control Flow Graphs. The system
consists of three components. First, the PE file is disassembled. Second,
a preprocessing algorithm is applied to assembly files to generate a CFG
including the API calls. Then, the resulting sparse graph is converted to
a vector representation. Third, the system labels the CFG using a clas-
sification algorithm. The performance of the system was evaluated on
2140 and 2305 benign and malicious PE executables, respectively, and
the best results were achieved by a Random Forest classifier, with 97%
accuracy.

Faruki et al. (2012) proposed an approach to generate API calls n-
grams to detect malicious code from malware’s CFG. In their work,
the abstraction of the executable is represented by the API calls made.
These API calls are later converted into feature vectors using n-gram
analysis with n ranging from 1 to 4. Afterwards, classification is per-
formed with various algorithms, including Random Forest, Sequential
Mining Optimization, J-48 Decision Tree, Naïve Bayes and Voted Per-
ceptron. The best results were achieved by the Random Forest classifier
with the API 4-g feature vector as input.

4.2. Dynamic features

Dynamic features are those extracted from the execution of mal-
ware at runtime. Dynamic analysis involves monitoring malware (and
observing the real sequence of instructions executed or the sequence

of API functions triggered) as it runs or examining the system after
the malware has executed. It reveals process creation, file and reg-
istry manipulation and modifications of memory values, registers and
variables. Tables 4 and 5 compile the dynamic approaches reviewed.
A description of the most common information and features extracted
through dynamic analysis is provided below. Approaches are grouped in
four groups depending on their input data. Section 4.2.1 presents meth-
ods that extract features from malware’s memory, registers and CPU
usage. Section 4.2.2 includes approaches that extract features from the
runtime traces of executables. Section 4.2.3 summarizes methods that
extract features from the network activity of malware. Finally, Section
4.2.4 presents methods that process the API call traces of malware.

4.2.1. Memory and Register’s usage
The behavior of a computer program can be represented by the val-

ues of the memory contents at runtime. In other words, values stored in
different registers while a computer program is running can distinguish
benign from malicious programs.

Ghiasi et al. (2012) proposed a method based on similarities of mal-
ware behaviors. First, they monitored the runtime behavior of malware
and stored the register values for each API call hooked, before and after
the API was invoked. Subsequently, they traced the distribution and
changes of register values and created a vector for each of the values of
the EAX, EBX, EDX, EDI, ESI and EBP registers. In the matching phase, a
similarity score was computed between a new file and the whole train-
ing files. Then, the new file was set to the label of the file in the training
set that had the highest similarity score.

Ghiasi et al. (2015) proposed a method to find similarities of runtime
behaviors based on the assumption that binary behaviors affect regis-
ter values differently. In their work, the runtime behavior is recorded
and some API calls from common DLLs are hooked. The system ana-
lyzes memory contents and register values to build a similarity score
between two files. When a new file is entered into the system, the high-
est similarity score between this file and the prototypes is calculated.
Prototypes are small sets of files that are representative samples of the
whole dataset, which provide an acceptable approximation in pair-wise
distance analysis. Afterwards, the two files are similar if they achieve
the minimum threshold of similarity.
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Table 5
A side-by-side comparison of the dataset characteristics of the reviewed dynamic methods.

Paper Source Total Size Task

Ghiasi et al. (2012) – 1211 Detection
Ghiasi et al. (2015) – 1240 Detection
Carlin et al. (2017a) VirusShare 1000000 Detection
O’kane et al. (2016) – 750 Detection
Anderson et al. (2011) Windows XP 2230 Detection
Storlie et al. (2014) Offensive Computing repository 21988 Detection
Bekerman et al. (2015) Vering, Emerging Threats 50720 (records) Classification
Zhao et al. (2015) Alexa’s TOP 1000 sites 4000000 (records) Detection
Kheir (2013) AV Company 100000 Detection
Boukhtouta et al. (2016) – – Detection, Classification
Perdisci and Wenke Lee (2015) – – Detection, Classification
Galal et al. (2016) VirusSign, Windows7 4000 Detection
Ding et al. (2013) – 8170 Detection
Salehi et al. (2017) Windows XP Sami et al. (2010) 4368 Detection
Rieck et al. (2011) Sunblet Software 33698 Classification
Uppal et al. (2014) VXHeavens 270 Detection

4.2.2. Instruction traces
A dynamic instruction trace is a sequence of processor instructions

called during the execution of a program. Contrary to the static instruc-
tion trace, dynamic traces are ordered as they are executed while static
traces are ordered as they appear in the binary file. Dynamic traces
are a more robust measure of the program’s behavior, since code pack-
ers and encrypters can obfuscate and hinder the code instructions from
static analysis.

Carlin et al. (2017a) presented an approach that performs dynamic
analysis on virtual machines to extract program runtime traces from
both benign and malicious executables. They analyzed the sequence of
opcodes executed to detect malware by testing two algorithms: (1) a
Random Forest classifier to classify all count-based data and (2) a Hid-
den Markov model to classify data based on temporal relations in the
opcode sequences. Carlin etal., 2017b, instead of building a classifica-
tion system based on opcode counts, performed n-gram analysis, where
n = 1… 3, to enhance the feature set. Their approach detected mal-
ware with 99.01% accuracy using sequences of up to 32 K opcodes.

O’kane et al. (2016) analyzed malicious runtime traces to determine
(1) the optimal set of opcodes necessary to build a robust indicator of
maliciousness in software, and to determine (2) the optimal duration
of the program’s execution to accurately classify benign and malicious
software. The proposed approach used a Support Vector Machine on the
opcode density histograms extracted during the program’s execution to
detect malware.

Anderson et al. (2011) introduced a malware detection method
based on the analysis of graphs constructed using the instruction traces
collected from the execution of the target executable. These graphs rep-
resent Markov chains, where the vertices are the instructions and the
transition probabilities were estimated by the data contained in the
trace. A combination of graph kernels, including the Gaussian kernel
and the spectral kernel, was used to calculate the similarity matrix
between the instruction trace graphs. Finally, the resulting similarity
matrix is fed to a support vector machine to perform classification.

Storlie et al. (2014) presented a malware detection system based
on the analysis of dynamically collected instruction traces. Instruction
traces were collected from the execution of malware in a sandbox envi-
ronment, a modified version of the Ether malware analysis framework
(Dinaburg et al., 2008). Each instruction trace was represented with a
Markov chain structure in which each transition matrix P has rows mod-
eled as Dirichlet vector. Afterwards, the maliciousness of the program
was determined using a flexible spline logistic regression model.

4.2.3. Network traffic
Detecting malicious traffic on a network can uniquely provide spe-

cific insights into the behavior of malicious programs. As soon as mal-

ware infects a host machine, it may establish communication with an
external server to obtain the commands to execute on the victim or to
download updates, other malware or to leak private and sensitive infor-
mation of the user/device. As a result, the monitoring of network traffic
entering and exiting the network, the traffic within the network and the
host activity, provide helpful information to detect malicious behavior.
Approaches in the literature extract events at several abstraction levels,
from raw packets to network flows, detailed protocol decoding such as
HTTP and DNS requests, to host-based events and metadata such as IP
addresses, ports and packet counts.

Bekerman et al. (2015) presented a system for detecting malware by
analyzing network traffic. In their work, they extracted 972 behavioral
features from analyzing the network traffic on the Internet, Transport
and Application layers. Afterwards, a subset of the features was selected
using the Correlation Feature Selection Algorithm (Hall, 1999). Then,
the resulting features were used to test three different classification
algorithms, including Naïve Bayes, Decision Tree (J48) and Random
Forest.

Zhao et al. (2015) proposed a system to detect APT malware infec-
tions based on both malicious DNS and traffic analysis. The system con-
sists of two main components: (1) the malicious DNS detector and (2)
the network traffic analyzer. On the one hand, the malicious DNS detec-
tor extracts 14 features indicative of APT malware and C&C domains.
On the other hand, the network traffic analyzer combines a signature-
based system and an anomalous-based system which detect infections
based on the accuracy of the rules from the VRT Rule sets (Snort, 2015)
of Snort, and anomalies occurring on the Protocol and Application level,
respectively. Afterwards, a J48 Decision Tree classifies the threat.

Kheir (2013) presented a systematic approach to build detection sig-
natures based on user agent anomalies within malware HTTP traffic.
First, they extracted user agent header fields within HTTP traffic. Then,
they performed an initial high-level clustering step to group user agents
which are likely to have similar patterns. Afterwards, they applied a sec-
ond clustering step to each group of user agent to group together those
agents that can be described with a common set of signatures. Lastly,
incremental K-means clustering was applied to regroup user agents that
share similar pattern sequences in the same clusters. Then, the token-
subsequence algorithm further extracted these shared patterns and built
lists of token sequences that were translated into signatures that applied
at either the network or the application layer using web proxies.

Boukhtouta et al. (2016) proposed a malware detection and classi-
fication system based on DPI and flow packed headers. Their approach
executed malware in a sandbox for 3 min to generate representa-
tive malicious traffic. Then, bidirectional flow features were extracted
from the traffic such as the number of forward and backward packets,
the maximum and minimum inter-arrival times for forward packets,
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the packet size, etc. The resulting features were provided as input to
the following classification algorithms: Boosted J48, J48, Naïve Bayes,
Boosted Naïve Bayes and SVMs, which detected whether or not the
traffic was malicious. Once the traffic had been defined as malicious,
Hidden Markov Models created non-deterministic models that profiled
malware families using unidirectional flows represented as a set of 45
features including the total number of packets, the median, mean and
first-quartile of inter-arrival times, etc.

Perdisci and Wenke Lee (2015) proposed a method to perform
behavioral clustering of malware based on the HTTPs traffic obtained
from monitoring the executables in a controlled environment. The
method recorded the sequences of HTTP requests performed by mal-
ware and used this information to cluster malware using at least one
of the following clustering algorithms: coarse-grain clustering, fine-
grain clustering and cluster-merging. Finally, network signatures were
extracted for each cluster and used to identify infected computers.

4.2.4. API call traces
Software programmers use the Windows API to access basic

resources available to a Windows system including, but not limited to,
file systems, devices, processes, threads and error handling, and also
to access functions beyond the kernel such as the Windows registry,
start/stop/create a Windows service, manage user accounts and so on.
Consequently, the Windows API call traces have been used in the liter-
ature to capture the behavior of malicious applications.

Galal et al. (2016) presented an approach to process raw information
gathered by API call hooking to produce a set of actions representing
the malicious behaviors of malware. An action was a representative
semantic feature inferred from the sequences of API calls using a set
of heuristic functions. Afterwards, the viability of actions was assessed
by various classification algorithms such as Decision Trees, Random
Forests and Support Vector Machines.

Ding et al. (2013) proposed an API (Application Programming
Interface)-based association mining method for malware detection. To
increase the detection speed of the objective-oriented association (OOA)
mining, they improved the rule quality, changed the criteria for API
selection to remove APIs that cannot become frequent items, find asso-
ciation rules with the strongest discriminant power, among others.
These strategies improved the running speed of their approach by 32%
and 15% of the time cost for data mining and classification, respec-
tively.

Salehi et al. (2017) proposed a dynamic method to detect malicious
activity in Android APKs based on the arguments and return values
of API calls. They developed an “in-house” tool consisting of a virtual
machine, a hooking tool and a logging system, which was used to ana-
lyze the binary files and monitor their behavior. Their approach is based
on the hypothesis that API names alone may not represent intent of the
operations that the function performs. For this reason, the feature set
modeling malicious and benign behaviors was constructed using the
API calls, their input arguments and return values. Afterwards, the fea-
ture set was reduced through a two-stage process. In the first stage, the
Fisher score was applied to select the most discriminative features. In
the second stage, Support Vector Machine based on Recursive Feature
Elimination reduced the feature set even more. Then, the generated fea-
ture set was used as input to the classification algorithms.

Rieck et al. (2011) developed a framework for the automatic anal-
ysis of malware behavior using clustering techniques. The framework
automatically identifies novel classes of malware with similar behav-
ior and assigns unknown malware to these discovered classes. Mal-
ware is monitored in a sandbox and the API calls are inspected at run-
time. Each execution of a binary is represented as a sequential report
of MIST instructions. This information is embedded in a vector space
using q-grams. Afterwards, the embedded reports are clustered using
prototypes. Hierarchical clustering was employed to determine groups
of malware behavior. For classification, the algorithm determines the

nearest prototype of the training data.
Uppal et al. (2014) presented a malware identification approach

based on features from the API sequences. The method monitors the
execution of a binary to keep track of the API calls invoked. Then, API
call grams are generated and the odds ratio of each gram is calculated.
This odds ratio is used to rank the features and select the leading n fea-
tures to form the feature vector. For classification, various algorithms
were proposed including Naïve Bayes, Random Forest, Decision Tree
and Support Vector Machine. The evaluation of their approach was per-
formed on a dataset on 270 binaries obtained from VXHeavens.

5. Deep learning approaches

The above traditional machine learning approaches (see Section 4)
rely mainly on manually designed features based on expert knowledge
of the domain. These solutions provide an abstract view of malware
that a machine learning classifier, e.g. Neural Network, Decision Tree,
Support Vector Machine, etc, uses to make a decision. Feature engi-
neering and feature extraction are key, time-consuming processes of the
machine learning workflow. Following recent trends in computer vision
and natural language processing fields, the development of M.L. solu-
tions for malware detection has started heading towards deep learning
architectures. These solutions have replaced the aforementioned feature
engineering process of the M.L. workflow with a fully trainable system
beginning from raw input to the final output of recognized objects.

Deep learning approaches for tackling the problem of malware
detection and classification can be classified into various groups
depending on how the input is preprocessed before feeding the learning
algorithm. Tables 6 and 7 present a summary of recent developments.
A detailed description of the distinct groups and methods is provided
below.

5.1. Feature vector representation

The methods corresponding to this category perform feature engi-
neering to extract a set of features which provide an abstract repre-
sentation of an executable. Then, the resulting feature vector is fed as
input to a feed-forward Neural Network. Notice that the feature vectors
extracted by the methods presented in Sections 4.1 and 4.2 can also be
used to train feed-forward networks.

Saxe et al. (2015) introduced a malware detection system, powered
by a deep neural network, consisting of three main components: (1)
the feature extraction component extracts 4 different types of features,
byte/entropy histogram features, PE import features, String 2D his-
togram features, and PE metadata features; (2) the second component
consists of the deep neural network classifier; and (3) the third compo-
nent is the score calibrator, which calibrates the final score. Their sys-
tem was evaluated on a dataset of 431926 executables retrieved from
the Invencea database and achieved a detection rate of 95%.

Huang and Stokes (2016) proposed a multi-task deep learning archi-
tecture for malware detection and classification. They extracted a com-
bined feature set consisting of null-terminated tokens, API event plus
parameter value, and API trigrams from static and dynamic analysis.
Due to the high dimensionality of the input space, mutual information
was performed to generate features that best characterize each class.
Afterwards, the resulting feature vector was reduced to 50000 features
using random projections. Finally, a deep feed-forward Neural Network
was trained using the projected feature vector.

Dahl et al. (2013) investigated a malware classification architec-
ture which projects a high-dimensional feature vector to a much lower
dimension using random projections. More specifically, random projec-
tions reduced the dimensionality of the feature vector from 179000 to
4000 features. Afterwards, a Neural Network classifier learned a non-
linear model to classify malware. The system was evaluated on a dataset
of 2.6 million labeled samples and achieved an error rate of 0.49%.
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Table 6
A side-by-side comparison of the algorithms and input data of the reviewed deep learning methods.
Algorithms: Convolutional Neural Network (CNN), Residual Network (ResNet), Autoencoder (AE),
Recurrent Neural Network (RNN), Long Short-Term Memory Network (LSTM), Gated Redurrent Unit
Network (GRU), Neural Network (NN).

Paper Feature Type Classification Algorithm

Saxe et al. (2015) byte/entropy histogram features
PE import features
String 2D histogram feature,
PE metadata features,

Feed-forward network

Huang and Stokes (2016) Sequence of API calls events
Sequence of NULL-terminated objects
API 3-g

Feed-forward network

Dahl et al. (2013) NULL-terminated patterns
API 3-g
API 1-g

Feed-forward network

Gibert et al. (2018c) gray-scale image CNN
Rezende et al. (2017) gray-scale image ResNet-50
Raff et al. (2018a) bytes sequence CNN
Krčál et al. (2018) bytes sequence CNN
Gibert et al. (2018a) bytes sequence Denoising AE + ResNet
Davis et al. (2017) bytes sequence CNN + RNN
Gibert et al. (2018b) structural entropy CNN
Athiwaratkun et al. (2017) API call sequence LSTM, GRU
Kolosnjaji et al. (2016) API call sequence CRNN
Gibert et al. (2017) mnemonics sequence Shallow CNN
Gibert et al. (2019) mnemonics sequence Hierarchical CNN
Prasse et al. (2017) HTTP traffic LSTM
AL-Hawawreh et al. (2018) Network behavior AE + NN

Table 7
A side-by-side comparison of the dataset characteristics of the reviewed deep learning methods.

Paper Source Total Size Task

Saxe et al. (2015) Invencea’s private malware database 431.926 Detection
Huang and Stokes (2016) In-house dataset 6.500.000 Detection, Classification
Dahl et al. (2013) In-house dataset 2.600.000 Detection, Classification
Gibert et al. (2018c) DB A: MalIMG

DB B: Microsoft Malware Classification
Challenge

DB A: 9339
DB B: 21741

Classification

Rezende et al. (2017) MalIMG dataset 9339 Classification
Raff et al. (2018a) In-house dataset 2.011.786 Detection
Krčál et al. (2018) AVAST’s repository 20.000.000 Detection
Gibert et al. (2018a) Microsoft Malware Classification Challenge 21.741 Classification
Davis et al. (2017) – – Detection, Classification
Gibert et al. (2018b) Microsoft Malware Classification Challenge 21.741 Classification
Athiwaratkun et al. (2017) In-house dataset 75.000 Detection
Kolosnjaji et al. (2016) VirusShare

Maltrieve private collection
– Detection

Gibert et al. (2017) Microsoft Malware Classification Challenge 21741 Classification
Gibert et al. (2019) Microsoft Malware Classification Challenge 21741 Classification
Prasse et al. (2017) In-house datasets DB A: 44.348.879

DB B: 129.005.149
Detection

AL-Hawawreh et al. (2018) DB A: KDD Cup 99
DB B: UNSW-NB15

DB A: 148.517
DB B: 257.673

Detection

5.2. IMG-based representation

Deep learning IMG-based approaches take as input the gray scale
image representation of malware’s binary content already described in
Section 4.1.5. Instead of relying on hand-engineered feature extractors
to gather relevant information about the gray scale image, they feed the
images into a Convolutional Neural Network architecture that perform
both feature learning and classification.

Gibert et al. (2018c) proposed a Convolutional Neural Network
architecture composed of three convolutional blocks followed by one
fully-connected and the output layer. Each convolutional block con-
sisted of a convolutional operation, the ReLU activation, max-pooling
and normalization. The convolutional layers acted as detection filters
for the presence of specific features or patterns in the data and the
subsequently fully-connected layers combine the learned features and
determine a specific target output. Their approach was evaluated on

the Microsoft Malware Classification Challenge (Ronen et al., 2018)
against hand-crafted feature extractors (Nataraj et al., 2011; Kancherla
et al., 2013; Ahmadi et al., 2016) and results demonstrate the supe-
rior performance of a deep learning architecture for classifying mal-
ware represented as gray scale images. Similarly, Rezende et al. (2017)
proposed to use the ResNet-50 architecture with pretrained weights to
classify malware images obtained from the MalImg dataset (Nataraj et
al., 2011).

5.3. API call traces

Section 4.1.3 presented approaches that used as input a feature vec-
tor where each position of the vector indicated whether a particular API
function was invoked by the program. However, this kind of feature
representation does not take into account the order in which the API
functions had been invoked. Alternatively, one can collect the ordered
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sequence of API functions invoked and use this information to build
classifiers that capture the dependencies in the API function traces.

Athiwaratkun et al. (2017) examined recurrent neural network
architectures to better capture long-term dependencies in API call
traces. They experimented with the Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) as language models. Their proposed
method is composed of two stages. In the first stage, LSTM or GRU
are used to construct the features associated with a particular API call
trace. In the second stage, these features are classified with either a
single fully-connected layer or Logistic Regression with softmax. In
addition, they also proposed a character-level convolutional neural net-
work (Zhang et al., 2015). This network takes as input a sequence of
1014 characters maximum length where each character is an event.
Sequences with fewer than 1014 characters were padded in the end
with end-of-sequence tokens. The character-level network presented
consists of 9 layers, 6 convolutional and 3 fully-connected.

Kolosnjaji et al. (2016) investigated the utilization of neural net-
works to improve the classification of newly retrieved malware sam-
ples into a predefined set of malware families. They analyzed two types
of neural network layers for modeling system call sequences: convolu-
tional and recurrent layers. They constructed a Neural Network based
on convolutional and recurrent layers that combines the convolution of
n-grams with full sequential modeling. The input of the network is the
API call sequences of malware without API calls repeated more than
two times in a row. Each API call was encoded using one-hot encoding
to find a unique vector for every API call. The convolutional part of
the network consists of a convolutional layer followed by pooling with
the convolution acting as feature extractor. The outputs of the convolu-
tional part are connected to the recurrent part which models sequential
dependencies in the kernel API traces. To extract the features of highest
importance from the LSTM output, mean-pooling was used. Further-
more, they applied dropout to prevent overfitting and a softmax layer
to output the class probabilities.

5.4. Instruction traces

Similarly, a program can be modeled as a sequence of instructions
executed by the processor.

These sequences of instructions can be obtained from both static and
dynamic analysis. On the one hand, it might be possible to obtain them
by disassembling the binary executable and processing the resulting
disassembled file. On the other hand, the executable can be monitored
during runtime and extract the complete sequence of instructions exe-
cuted on the system. These sequences of instructions can be used to
train an end-to-end system to jointly learn the appropriate features and
perform classification without having to explicitly enumerate millions
of n-grams during training.

Gibert et al. (2017) proposed a Neural Network architecture with an
embedding layer, one convolutional layer followed by a max-pooling
and an output layer. The convolutional layer could intrinsically learn
to detect n-gram-like signatures by learning to detect subsequences of
opcodes that are indicative of malware. In addition, depending on the
size of the kernel, the convolutional layer allows detecting very long
n-gram-like signatures which would be impractical if explicit enumera-
tion of all n-grams were required. This is achieved by defining filters
of various sizes. For instance, in their work the convolutional layer
contained 64 filters of size h x k for every h ∈ {2,3,4,5,6,7}, where
k refers to the size of the embedding vector. Then, the maximum value
was taken as the feature corresponding to the filter by applying the
max-pooling operator over the feature map (also known as global max-
pooling). This permits to extract n-gram-like signatures with n ranging
from 2 to 7. Finally, the softmax layer outputs the probability distribu-
tion over the classes.

Alternatively, Gibert et al. (2019) proposed a Hierarchical Convolu-
tional Neural Network (HCNN) to deal with the hierarchical structure
of PE executables. In their work, instead of representing malware as a

sequence of instructions, they grouped instructions in the same func-
tion to keep the hierarchical structure of a computer program. In con-
sequence, the assembly language instructions were split into functions,
where each function was represented by a sequence of mnemonics. In
consequence, the hierarchical convolutional neural network captured
features at the mnemonic-level and at the function-level.

5.5. Bytes-based representation

The simplest way to represent a computer program is as a sequence
of bytes. In other words, each byte is treated as a unit in an input
sequence. The main advantage of this representation is that it could
be used to represent malware indistinctly of the O.S. and hardware
because it is not affected by the file format of the executable, whether
it is a Portable Executable (PE) file, or an Executable and Linkable For-
mat (ELF) file, etc. However, representing an executable as a sequence
of bytes presents considerable challenges not found in other domains.
First, by treating each byte as a unit in a sequence, the size of the result-
ing byte sequences could consist of several million time steps, making it
among the most challenging sequence classification problems. Second,
the meaning of any particular byte depends on its context and could
encode any type of information such as binary code, human-readable
text, images, sound, etc. Third, binary files exhibit various levels of
spatial correlation. Adjacent machine instructions tend to be correlated
spatially, but, due to jumps and function calls, this correlation might
not always hold, as they transfer the control of the program into other
addresses in memory and the execution continues from there. Conse-
quently, these discontinuities are maintained on the binary file and in
its hexadecimal representation. Therefore, when designing a model to
detect malware from a sequence of bytes, (1) its ability to scale well
with sequence length and (2) its ability to consider both local and global
context while examining an entire file must be taken into account.

Raff et al. (2018a) proposed a Convolutional Neural Network archi-
tecture to capture such high level location invariance. They combined
the convolutional activations with a global max-pooling before the fully
connected layer to allow the model to produce its activations regardless
of the location of the detected features in the bytes sequence. Rather
than performing convolutions on the raw byte values, they used an
embedding layer to map each byte to a fixed length feature vector.

Krčál et al. (2018) explored a deeper architecture composed of an
embedding layer followed by four convolutions with strides separated
by a max-pooling layer between the second and third convolutional
layers, followed by global average pooling and four fully connected
layers. They evaluated their model against the MalConv architecture
and observed that they slightly increased the performance of the Mal-
Conv in their dataset from 94.6% to 96.0% of accuracy. In addition,
they enriched the feature vector obtained after the global pooling with
hand-crafted features to build a stronger classifier.

As part of an analysis of the likelihood that a given input includes
malicious code, an executable can be divided into chunks of code.
Afterwards, the information at each chunk can be encoded or codified
as a single value. Thus, the resulting output would be a time series
m = {m1,m2,… ,mn}, where mi is the corresponding codification of
the i-th chunk and n is the number of chunks into which a binary has
been divided. Gibert et al. (2018b) proposed a method for classifying
malware represented as a stream of entropy values using Convolutional
Neural Networks. Thus, they calculated the entropy of each chunk of
code. Afterwards, they applied the single-level discrete wavelet trans-
form to the entropy time series to compress the signal and reduce
the noise. The wavelet transformation generated two time series, the
approximation coefficients and the details coefficients. Then, both time
series were fed into a Convolutional Neural Network that performs fea-
ture learning on both time series and classifies a given malware sample
into its corresponding family.

Gibert et al. (2018a) encoded the information stored by each chunk
using Denoising Autoencoders (DAE). In their work, they first divided a
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binary file into contiguous, non-overlapping chunks of fixed size. After-
wards, a denoising autoencoder takes as input every chunk of bytes and
projects it into a single value that captures the main factors of variation
in the data. The resulting time series is then fed into a Dilated Resid-
ual Network which learns descriptive patterns from the encoding of the
bytes sequence and assigns a label indicating the family to which the
malware belongs.

In Cylance’s patent (Davis et al., 2017), instead of codifying the
information at a particular chunk into a single value, they imple-
mented a computer method to detect malicious code that comprises
three phases:(1) the examination of a sequence of chunks with a Convo-
lutional Neural Network, (2) an analysis of at least some of the chunks
using a Recurrent Neural Network (RNN), and (3) determining the like-
lihood that the input includes malicious code, based on at least some of
the chunks analyzed using the RNN.

5.5.1. Network traffic
The methods that fall under this category are those that aim to clas-

sify network traffic. More specifically, they try to detect malicious traf-
fic by identifying the type and quantity of traffic flowing through a
network.

Prasse et al. (2017) proposed a framework to detect malware on
client computers based on the analysis of HTTP traffic. They extracted
various features from the sequences of flows sent or received by client
computers and domain-name features. Then, an LSTM classifier takes
sequences of flows as input and learns to determine whether or not the
flows originate from malicious applications.

AL-Hawawreh et al. (2018) proposed an anomaly detection tech-
nique for detecting intrusions in Internet Industrial Control Systems
(IICSs) based on deep learning models. The system includes an unsu-
pervised learning phase, where a Deep Autoencoder learns normal net-
work behaviors, and a supervised learning phase, where a Deep Neural
Network uses the estimated parameters of the Autoencoder to fine-tune
its parameters and classify incoming network observations.

6. Multimodal approaches

So far, we have presented approaches that largely rely on one type
of feature or modality of data to detect and classify malware. However,
malware detection is a research problem characterized as multimodal
as it includes multiple modalities of data. Multimodal learning is the
field that studies how to be able to interpret such multimodal signals
together. Though combining different modalities or types of informa-
tion for improving performance seems an intuitively appealing task, it
is very challenging to combine the varying levels of noise and conflict
between modalities. Multimodal approaches can be categorized into
three groups considering how the multiple modalities are combined.

• Input-level or early fusion. Early fusion methods create a joint repre-
sentation of the unimodal features extracted separately from multi-
ple modalities. The simplest way to combine these unimodal feature
vectors is to concatenate them to obtain a fused representation. Cf.
Fig. 6. Next, a single model is trained to learn the correlation and
interactions between the features of each modality. The final out-
come of the model can be written as

p = h
([

v1, v2,… , vm
])

where h denotes the single model,
[
v1, v2,… , vm

]
represents the con-

catenation of the feature vectors, and m is the number of distinct
unimodal feature vectors.

• Decision-level or late fusion. In contrast to early fusion, late fusion
methods train one model per modality and fuses the learned decision
values with a fusion mechanism such as averaging, voting, a learned
model, etc. Cf. Fig. 7. The main advantage of late fusion is that
it allows using different models on different modalities, thus being
more flexible. In addition, as the predictions for each modality are

Fig. 6. Early fusion strategy.

Fig. 7. Late fusion strategy.

made separately, it is easier to handle missing modalities. Supposing
that model hi is the decision value on modality i, the final prediction
is

p = F (h1(v1), h2(v2),… hm(vm))

where F denotes the type of fusion strategy.
• Intermediate fusion. Intermediate fusion methods construct a shared

representation by merging the intermediate features obtained by
separate machine learning models. Afterwards, these intermediate
features are concatenated and then a machine learning model is
trained to capture the interactions between modalities. Cf. Fig. 8.

In addition, features extracted from both types of analysis, static and
dynamic, can be combined to build more robust classifiers. Approaches
that combine static analysis and dynamic analysis are known as hybrid
approaches.

On the one hand, static analysis aims at finding malicious charac-
teristics of an executable, app or program without actually running it.
Static analysis is faster but suffers from code obfuscation. That is, mali-
cious characteristics can be concealed using different obfuscation tech-
niques (You et al., 2010) or by polymorphic and metamorphic malware
(Moser et al., 2007). On the other hand, this obfuscation technique fails
at dynamic analysis as it monitors and analyses the runtime behavior of
a program during its execution in a controlled environment. But there
are some limitations to dynamic analysis. The monitoring process is
time consuming and the environment where the program is run must
be secured as not to infect the platform. In addition, the controlled envi-
ronment might be different from the real runtime environment and the
malware may behave differently, causing an inexact behavior logging.
Moreover, some actions of the program are only triggered if certain con-
ditions are satisfied and may not be detected/activated in a controlled
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Table 8
A side-by-side comparison of the features and fusion strategies of the reviewed multimodal and hybrid methods. Algorithms: Support Vector Machine
(SVM), Naive Bayes (NB), Decision Tree (DT), Random Forest (RF), Convolutional Neural Network (CNN), Neural Network (NN), K-Nearest Neighbor
(K-NN), Passive-Aggressive I (PA-I), Passive-Aggressive II (PA-II), Confidence Weighted Learning (CW), Adaptive Regularization of Weight (AROW),
Normal Herd (NHERD), Logistic Regression (LR).

Paper Fusion Strategy Static Analysis Dynamic Analysis Classification Algorithm

Ahmadi et al. (2016) Early and late fusion Bytes 1-g, metadata features,
entropy statistics, Haralick and
Local Binary Pattern features,
ASCII strings, symbol frequencies,
opcode 1-g, register’s usage,
API function calls, section sizes,
frequency of keywords

– Ensemble of Gradient
Boosting Trees

Microsoft Challenge
winner’s solution

Early and late fusion Opcode 2, 3, 4-g, segment
counts, asm pixel intensity, byte
4-g, single byte frequency,
function names, derived assembly
features

– Ensemble of Gradient
Boosting Trees

Kolosnjaji et al. (2017) Intermediate fusion Instruction traces, PE header
features, imported functions and
DLL files

– CNN + Feedforward NN

Bayer et al. (2009) Early fusion – API call traces and network
traffic

Approximate Nearest
Neighbor

Mohaisen and Alrawi
(2013)

Early fusion – files created, modified or deleted,
registry keys created, modified or
deleted, destination IP addresses,
hosts, TCP and UDP connections,
requests and DNS records

SVM, LR, DT and K-NN

Dhammi and Singh
(2015)

Early fusion – File details, signatures, hosts
involved, affected files, registry
keys, mutexes, section details,
imports and strings

LMT, NB, SVM, Rider and
K-NN

Pektaş and Acarman
(2017)

Early fusion – File system, network and registry
features, API call N-grams

PA-I, PA-II, CW, AROW,
NHERD

Mohaisen et al. (2015) Early fusion – File system, memory, network
and registry based features

SVM, DT, LR, K-NN

Islam et al. (2013) Early fusion Function length frequency, string
information

API function calls SVM, RF, DT, Instance-based

Han et al. (2019a) Early fusion
based on semantic blocks

Static API sequences Dynamic API sequences K-NN, DT, RF,
Extreme Gradient Boosting

Han et al. (2019b) Early fusion PE sections size, API sequence,
DLL information

IP, port, DNS and domain
request,
file manipulation operations,
registry modification operations

K-NN, DT, RF,
Extreme Gradient Boosting

Kumar et al. (2019) Early fusion PE file metadata Network data, system calls,
process and registry features

RF, DT, XGBoost, NN, K-NN

Rhode et al. (2019) Early fusion Machine metrics API calls NN, RF, SVM

Fig. 8. Intermediate fusion strategy.

environment. Considering the advantages and disadvantages of static
and dynamic malware detection, a natural improvement and line of
research is to focus on hybrid schemes that combine elements of both.

Notice that hybrid approaches also include various modalities of data
and could be included under the same category. The main difference
between hybrid and multimodal approaches is that hybrid approaches
combine features from both static and dynamic analysis while multi-
modal approaches do not have to.

A summary of the main characteristics of the multimodal and hybrid
approaches for malware detection and classification is presented in
Tables 8 and 9. A description of each of them is provided below.

Ahmadi et al. (2016) proposed a system that uses different mal-
ware features to effectively classify malware samples according to their
corresponding family. For each malware sample, they extract a set of
content-based and statistical features that reflect the structure of PE
files. Then, these features are combined by stacking the feature cate-
gories into a single feature vector using a variation of the forward step-
wise selection technique. Instead of gradually increasing the feature set
by adding features to the model, one by one, they considered all the
subset of features belonging to a category. The classification algorithm
of their choice was a parallel implementation of the Gradient Boosting
Tree classifier, XGBoost. Additionally, they used bagging to boost the
classifier stability and accuracy. Their approach was evaluated on the
Microsoft Malware Classification Challenge dataset (Ronen et al., 2018)
and it achieved accuracy comparable to the winner of the competition21
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Table 9
A side-by-side comparison of the dataset characteristics of the reviewed multimodal approaches.

Paper Source Total Size Task

Ahmadi et al. (2016) Microsoft Malware Classification Challenge 21741 Classification
Microsoft Challenge winner’s solution Microsoft Malware Classification Challenge 21741 Classification
Kolosnjaji et al. (2017) – 22757 Classification
Bayer et al. (2009) ANUBIS 2658 Classification
Mohaisen and Alrawi (2013) – 3980 Detection
Dhammi and Singh (2015) – 1270 Detection
Pektaş and Acarman (2017) VirusShare 17900 Classification
Mohaisen et al. (2015) – 115157 Classification
Islam et al. (2013) – 2939 Detection
Han et al. (2019a) VirusShare, Windows 7 6471 Classification
Han et al. (2019b) VirusShare, Windows 7 4250 Classification
Kumar et al. (2019) MalShare, VirusShare 120000 Classification
Rhode et al. (2019) VirusShare, Commercial data 6809 Detection

but without requiring the same computational resources. On the other
hand, the winning team relied on a large set of well-known features
including, but not limited to, byte N-grams and opcode N-grams, which
require large computational resources both during the training and the
testing phases.

Kolosnjaji et al. (2017) proposed a neural network architecture that
consists of convolutional and feed-forward subnetworks. The convolu-
tional subnetwork learns features from sequences of disassembled mali-
cious binaries. Conversely, the feed-forward network takes as input a set
of features extracted from the metadata contained in the PE Header and
the list of imported functions and their DLL files. Then, the final neural
network-based classifier combines the feedforward and convolutional
neural network architectures along with their corresponding features
into a single network. This network generates the final classification
output after aggregating the features learned by both subnetworks.

Bayer et al. (2009) built behavioral profiles of malware based on
the system calls, their dependencies and network activities. This gen-
eralized representation serves as input to a clustering algorithm that
groups malware samples that exhibit similar behavior. Clustering mal-
ware is a multi-step process. The first step is the automated analysis
of the executables performed by an extended version of ANUBIS.22

The second step is the extraction of the behavioral profile. Lastly, in the
third step samples that exhibit similar behavior are grouped in the same
cluster using an approximate, probabilistic approach based on locality
sensitive hashing (Indyk and Motwani, 1998).

Mohaisen and Alrawi (2013) proposed a behavior based approach
for identifying malware belonging to the Zeus family. The Zeus bank-
ing trojan is a form of malware that targets the Windows OS and is often
used to steal money and credentials from the infected victim. For clas-
sification purposes, a set of 65 unique and robust features are extracted
including files created, modified or deleted, registry keys created, mod-
ified or deleted, destination IP addresses, ports, TCP and UDP connec-
tions, requests, DNS records, etc. Then, the resulting feature vector is
used to evaluate the performance of various M.L. algorithms such as
SVM, LR, DT and K-NN.

Dhammi and Singh (2015) proposed a malware detection system
based on the dynamic analysis of malware using the Cuckoo sandbox.
Their approach extracted various features from the malware execution
such as file details, signatures, hosts involved, affected files, registry
keys, mutexes, section details, imports and strings. All the features
obtained from Cuckoo are mapped into an Attribute Relation File For-
mat (ARFF) file, and later, the resulting ARRF file is fed into WEKA
(Hall et al., 2009) for classification.

Pektaş and Acarman (2017) presented a malware classification sys-
tem based on runtime behavior by applying online machine learning.

21 http://blog.kaggle.com/2015/05/26/microsoft-_malware-_winners-_
interview-_1st-_place-_no-_to-_overfitting/.

22 http://anubis.iseclab.org.

The system entails three stages. The first stage consists of monitoring
the behavior of the file in sandbox environments; VirMon and Cuckoo.
During the second stage, feature extraction is applied to build a feature
vector consisting of features based on the file system, network and reg-
istry activities and API call N-grams. Finally, the third stage performs
classification using online learning algorithms.

Mohaisen et al. (2015) presented AMAL, an automated behavior-
based malware analysis system that provides tools to collect behavioral
features that characterize malware based on the usage of the file system,
memory, network and registry. Then, the resulting feature vector is used
to perform classification with Support Vector Machine, Decision Tree,
Logistic Regression and K-Nearest Neighbor algorithms.

Islam et al. (2013) presented a method integrating static and
dynamic features into a single classification system. For each executable
file, they extracted and converted to vector representations both func-
tion length frequency and printable string information. After running
the executables and logging the Windows API calls, they extracted API
features comprising API function names and parameters. Then, all fea-
ture vectors are combined into a single vector for each executable. Next,
the resulting vector is used as input to four base classifiers: Support Vec-
tor Machine, Random Forest, Decision Tree and Instance-based.

Han et al. (2019a) built a malware detection framework based on
the correlation and fusion of static and dynamic API call sequences. In
their work, they explored the difference and relation between static and
dynamic API call sequences by defining a number of types of malicious
behaviors. After correlation and fusion, a hybrid feature vector space
is established for detection and classification. To evaluate the effective-
ness of their approach, they trained four classifiers to detect/classify
malware including K-Nearest Neighbor, Decision Tree, Random Forest
and Extreme Gradient Boosting.

Han et al. (2019b) presented MalInsight, a malware detection frame-
work based on programs profiling of: (1) their basic structure, (2)
their low-level behavior, and (3) their high-level behavior. These three
aspects reflect structural features; the primary operations interacting
with the OS, files, the registry and the network. The resulting feature set
is used to train various machine learning classifiers: K-Nearest Neigh-
bor, Decision Tree, Random Forests and Extreme Gradient Boosting.
These classifiers were evaluated on a dataset consisting of 4250 sam-
ples obtained from VirusShare and from the Windows 7 Pro operative
system. Results show accuracy of 97.21% in detecting unknown mal-
ware.

Kumar et al. (2019) used a combination of static and dynamic
approaches to classify malware into types in the initial 4 s of its execu-
tion using a Random Forest classifier. Stopping the process early before
the analysis is fully executed is known as early-stage detection. From
static analysis they extracted information from the PE header such as
file header, optional header and section header. They also extracted
information from the section table and sections such as the number of
sections, their size, the section virtual address, etc. From dynamic anal-
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Fig. 9. Class distribution in the Microsoft Malware Classification Challenge dataset.

ysis they extracted features based on critical resources such as network
data, system calls, process and registry. Afterwards, the feature set is
reduced using the Information Gain algorithm. Finally, the resulting
feature vector is used for classification purposes by training a Random
Forest, Decision Tree, XGBoost, Neural Network and K-NN classifiers.

Rhode et al. (2019) collected two types of features: (1) API calls and
(2) machine metrics. The Cuckoo sandbox was used to collect the API
call features while Psutil library was used to collect the machine met-
rics. Machine metrics include user CPU usage, system CPU usage, mem-
ory use, swap use, bytes received and transmitted, number of packets
received and transmitted, total number of processes, maximum process
ID and time in seconds since execution began. Then, the two feature
vectors are fused into a single vector that is used to detect malware
using a Neural Network, Random Forest or Support Vector Machine as
classifiers.

7. Research issues and challenges

This section presents some of the issues and challenges faced by
security researchers. It is structured as follows: Section 7.1 presents the
class imbalance problems. Section 7.2 reviews the availability of pub-
lic benchmarks of malware for research. Finally, Section 7.3 discusses
the problem of concept drift and presents various adversarial learning
techniques to fool machine learning detectors.

7.1. Class imbalance

Obtaining good training data is one of the most challenging aspects
of any machine learning problem. Machine learning classifiers are only
as good as the data used to train them, and reliable labeled data is espe-
cially important for the task of malware detection, where the process of
labeling a file can be a very time-consuming process.

Additionally, there are various disciplines including fraud detec-
tion, malware detection, malware classification, medical diagnosis, etc,
where it is common to have a disproportional number of samples per
class. For instance, the number of benign samples might not be propor-
tionally equal to the number of malicious samples, or the number of
samples belonging to one family might far exceed the number of sam-
ples from other families. This is known as the class imbalance problem
(Japkowicz and Stephen, 2002; Guo et al., 2008).

By way of an example, let’s look at the distribution of classes of the
Microsoft dataset in Fig. 9. Families Kelihos_ver3, Lollipop and Ramnit
have 2942, 2478, 1541 samples, respectively. On the other hand, fam-
ilies Simda and Kelihos_ver1 have 42 and 398 samples, respectively.

This kind of distribution, where one class much larger than the other(s)
can lead to a model that predicts the value of the majority classes for all
predictions and still achieve high classification accuracy while lacking
predictive power.

In other words, the classifier might be biased towards the major-
ity classes and achieve very poor classification rates on the minority
classes. It might happen that the classifier predicts everything as the
major class and ends up ignoring the minor classes. This is called the
accuracy paradox. In these cases, accuracy is a misleading measure. It
may be desirable to select a less accurate model but with greater pre-
dictive power. For problems like this, additional measures are required
to evaluate a classifier such as precision 1, recall 2 and the F1 score 3.
Alternatively, the Receiver Operating Characteristic (ROC) curve graph-
ically illustrates the discriminative ability of a binary classifier.

Precision (P) is the number of true positives (Tp) over the number of
true positives plus the number of false positives (Fp).

P =
Tp

Tp + Fp
. (1)

Recall (R) is the number of true positives (Tp) over the number of
true positives plus the number of false negatives (Fn).

R =
Tp

Tp + Fn
. (2)

The F1 score is the weighted average of precision, defined as following:

F1 = 2 · P · R
P + R

. (3)

Finally, the ROC curve is created by plotting the True Positive Rate
(TPR) or recall against the False Positive Rate. The FPR is also known
as the probability of false alarm and can be calculated as (1-Specificity)
where Specificity is equal to TN

TN+FP . The higher the AUC, the better the
model is at predicting the correct label of classes.

7.2. Open and public benchmarks

The task of malware detection and classification has not received the
same attention in the research community as other applications, where
rich benchmark datasets exist. These include digit classification, image
labelling, speech recognition, etc. This situation has been exacerbated
by legal restrictions. Even though malware binaries are shared gener-
ously through web sites such as VirusShare and VX Heaven, benign
binaries are often protected by copyright laws that prevent sharing.
Nevertheless, both benign and malicious binaries may be obtained in
volume for internal use only through services such as VirusTotal, but
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subsequent sharing is prohibited. In addition, unlike other domains
where data may be labeled very quickly and in many cases by a non-
expert, determining whether a file is malicious or benign can be a time-
consuming process, even for security experts. Furthermore, services like
VirusTotal specifically restrict the public sharing of vendor antimalware
labels.

The aforementioned issues render it impossible to meaningfully
compare accuracy numbers across works, as different datasets are used
with different labeling procedures. At the present time, the only stan-
dard benchmark available to the research community regarding Win-
dows Portable Executables is the one provided by Microsoft (Ronen et
al., 2018) for the Big Data Innovators Gathering Anti-Malware Predic-
tion Challenge. The dataset is hosted on Kaggle and includes almost
half a terabyte of malware consisting of around 20 K malicious sam-
ples from nine families. Each sample is comprised of two files: (1)
the hexadecimal representation of the malware’s binary content and
(2) their corresponding disassembled file. Unfortunately, the byte code
does not include the headers and thus, it is not possible to analyze
dynamically the executables or to reproduce the disassembly process.
In consequence, researchers are constrained to using only the provided
byte code and disassembly files (generated with the IDA Pro disassem-
bler).

7.3. Concept drift

In the machine learning literature, the term “concept drift” has been
used to describe the problem of the changing underlying relationships
in the data. Supervised learning is the machine learning task of learn-
ing a function that maps an input to an output based on a set of input-
output samples. Technically speaking, it is the problem of approximat-
ing a mapping function (f) given input data (x) to predict an output
value (y), y = f(x). Traditional machine learning applications such as
digit classification, text categorization or speech recognition, assume
that training data is sampled from a stationary population. In other
words, they assume that the mapping learning from historical data will
be valid for new data in the future and that the relationships between
input and output do not change over time. This is not true for the prob-
lem of malware detection and classification.

Software applications, including malware, naturally evolve over
time due to changes resulting from adding features, fixing bugs, port-
ing to new environments and platforms (Lehman, 1996). These changes
are expected to be introduced relatively infrequently. Additionally, suc-
cessive versions of the software are expected to be highly similar to
previous versions, with few exceptions such as when the code base
undergoes significant refactoring and there are changes in the compil-
ers or libraries linked to the software. Moreover, the similarity between
previous and future versions is expected to degrade slowly over time.
In consequence, the prediction quality decays over time as malware
evolves and new variants and families appear (Jordaney et al., 2017).
Thus, in order to build high-quality models for malware detection and
classification, it is important to identify when the model shows signs
of degradation and thereby it fails to recognize new malware. Existing
solutions (Kantchelian et al., 2013; Gama et al., 2014) aim at periodi-
cally retrain the model with the hope that it will automatically adapt
to changes in malware over time. The process of retraining the model
can be done from scratch, partially and incrementally, were incremen-
tal retraining refers to the process of retraining a given model with new
labeled malware samples and all previous training samples without for-
getting the knowledge obtained from prior datasets.

7.4. Adversarial learning

Malware is pushed to evolve in order to survive and operate. That is,
malicious software has to constantly evolve to avoid detection by anti-
malware engines. In consequence, malware writers are well-motivated
to intentionally seek evasion by employing a wide range of obfuscation

techniques (You et al., 2010; OKane et al., 2011).
To put it in the machine learning context, an attacker’s aim is to fool

the machine learning detector by camouflaging a piece of malware in
feature space by inducing a feature representation highly correlated to
benign behavior. The ability of the attacker to bypass machine learn-
ing solutions is related to their knowledge about features and machine
learning models to target. For instance, consider a machine learning
approach that relies on the program’s invocations of API functions or
the DLLs dynamically loaded by the executable. An attacker might use
this information to conceal the usage of any suspicious API function by
packing the executable and leaving only the stub of the import table or
perhaps even no import table at all. These modifications to the feature
space can be manually performed or not.

Adversarial machine learning (Huang et al., 2011) is a technique
employed to attempt to fool machine learning by automatically craft-
ing adversarial examples. That is, samples with small, intentional fea-
ture perturbations that cause a machine learning model to make an
incorrect prediction. Machine learning-based detectors are vulnerable
to adversarial examples, and the application of machine learning to the
cybersecurity domain does not constitute an exception. For a detailed
overview of the evolution of adversarial machnine learning over the
past decade we refer to Biggio and Roli (2018). They reviewed the work
done in the context of various applications, including computer security
and its notion of arms race and proposed a comprehensive threat model
that accounts for the presence of the attacker during the system design.
Recent classifiers proposed for malware detection, have indeed shown
to be easily fooled by well-crafted adversarial manipulations (Demetrio
et al., 2019; Chen et al., 2017; Huang et al., 2018; Suciu et al., 2018;
Maiorca et al., 2019). Chen et al. (2017) explored adversarial machine
learning to attack a malware detector based on the input of Windows
Application Programming Interface (API) calls extracted from the PE
files.

Suciu et al. (2018) analyzed various append-based strategies to gen-
erate adversarial examples to conceal malware and bypass the MalConv
(Raff et al., 2018a) model.

Furthermore, Demetrio et al. (2019) proposed a novel attack algo-
rithm to generate adversarial malware binaries which only change a
few tens of bytes of the file header. Their algorithm was evaluated
against MalConv. They found that MalConv learns discriminative fea-
tures mostly from the characteristics of the file header and used their
findings to exploit and bypass the model. Contrarily, Maiorca et al.
(2019) explored the types of adversarial attacks that have exploited the
vulnerabilities of the components of PDFs to bypass malware detectors,
including JavaScript-based attacks, ActionScript-based attacks and file
embedding-based attacks.

7.5. Interpretability of the models

The interpretation of machine learning models is a new and open
challenge (Shirataki and Yamaguchi, 2017; Gilpin et al., 2018). Most
of the models used at the present time are treated as a black box.
This black box is given an input X and it produces an output Y
through a sequence of operations hardly understandable to a human.
This could pose a problem in cybersecurity applications when a false
alarm occurs as analysts would like to understand why it happened.
The interpretability of the model determines how easily the analysts
can manage and assess the quality and correct the operation of a given
model. For this reason, cybersecurity analysts have preferred solutions
that are more interpretable and understandable such as rule-based and
signature-based systems rather than neural-based methods because they
are easier to tune and optimize to mitigate and control the effect of false
positives and false negatives. However, there is no work in the litera-
ture that investigates the interpretability of machine learning models
for malware detection and classification.
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8. Conclusions

This paper presents a systematic review of malware detection and
classification approaches using machine learning. To sum up, a total
of 67 research papers for tackling the problem of malware detection
and classification on the Windows platform are reviewed. The reviewed
papers are compared and analyzed according to various essential fac-
tors including the input features, the classification algorithm, the char-
acteristics of the dataset and the objective task. There are four main
contributions of our work.

First, we provide a detailed description of the methods and fea-
tures in a traditional machine learning workflow, from the feature
extraction, selection and reduction steps to classification. The tradi-
tional approaches are classified into three main categories: (1) static-
based and (2) dynamic-based approaches and (3) hybrid approaches.
On the one hand, static-based approaches extract features derived from
a piece of program without involving its execution. On the other hand,
dynamic-based approaches include those approaches that extract fea-
tures from the execution of malware during runtime. Lastly, hybrid
approaches are those that combine static and dynamic analysis to
extract features.

Second, it arranges the existing literature on malware detection
through deep learning and provides a comparative analysis of the
approaches based on the network architecture and its input. Deep learn-
ing approaches are grouped considering the type of input of the net-
works: (1) methods that perform feature engineering to extract a fea-
ture vector representing the executable; (2) methods that take the gray
scale representation of an executable as input; (3) methods that are fed
with the sequence of API function invocations; (4) methods that model
a program as a sequence of instructions; (5) methods that represent a
computer program as a sequence of bytes; and (6) methods that aim to
classify a program from its network traffic.

Third, it introduces new directions of research and present classi-
fiers that rely on more than one type of feature or modality of data to
detect malware. It organizes multimodal approaches into three groups,
depending on how the different modalities of data are fused: (i) early-
fusion methods create a joint representation of the unimodal feature
vectors; (ii) late-fusion methods train one model per modality and fuses
the output decision values; and (iii) intermediate-fusion methods con-
struct a shared representation by merging the intermediate features
obtained by separate models.

Fourth, it discusses the most important research issues and chal-
lenges faced by researchers. Special emphasis is placed on the problem
of concept drift and the challenges of adversarial learning. Furthermore,
it examines the status of the benchmarks used by the scientific com-
munity to evaluate the performance of their methods and reviews the
problem of class imbalance.
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Chapter 6

Using Convolutional Neural
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Table 6.1: Journal metrics corresponding to the Journal of Computer Virology and
Hacking Techniques for the year 2019.

Journal Metric Value
Citescore Not applicable
Impact Factor 1.79
SNIP Not applicable
SJR 0.439

In the article ”Using Convolutional Neural Networks for Classification of Mal-
ware Represented as Images” [32] malicious software is visualized as gray scale im-
ages [59] since they capture minor changes while retaining the global structure of
the executable helping to detect variations. To visualize a malware sample as an
image, every byte has to be interpreted as one pixel in an image. Then, the resulting
array has to be organized as a 2-D array and visualized as a gray scale image.

Figure 6.1 shows the representation of samples of malware belonging to nine
different families as gray scale images. It can be observed that images of software
executables from a given family are similar visually while distinct from those be-
longing to a different family. The main benefit of visualizing a malicious executable
as an image is that the different sections of a binary can be easily differentiated. In
addition, malware authors only used to change a small part of the code to produce
new variants. Thus, if old malware is re-used to create new binaries the resulting
ones would be very similar. Additionally, by representing malware as an image it is
possible to detect the small changes while retaining the global structure of samples
belonging to the same family. Thus, this research article proposes a file agnostic
deep learning approach for malware categorization to efficiently group malicious
software into families based on a set of discriminant patterns extracted from their
visualization as gray scale images.
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Figure 6.1: Gray scale images of malicious software belonging to various families.
Note that the images of malware belonging to the same family are similar while
distinct from the images of malware from the rest of families.
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Abstract
The number of malicious files detected every year are counted by millions. One of the main reasons for these high volumes
of different files is the fact that, in order to evade detection, malware authors add mutation. This means that malicious
files belonging to the same family, with the same malicious behavior, are constantly modified or obfuscated using several
techniques, in such a way that they look like different files. In order to be effective in analyzing and classifying such large
amounts of files, we need to be able to categorize them into groups and identify their respective families on the basis of their
behavior. In this paper, malicious software is visualized as gray scale images since its ability to capture minor changes while
retaining the global structure helps to detect variations. Motivated by the visual similarity between malware samples of the
same family, we propose a file agnostic deep learning approach for malware categorization to efficiently group malicious
software into families based on a set of discriminant patterns extracted from their visualization as images. The suitability of
our approach is evaluated against two benchmarks: the MalImg dataset and the Microsoft Malware Classification Challenge
dataset. Experimental comparison demonstrates its superior performance with respect to state-of-the-art techniques.

Keywords Malware visualization · Malware classification · Convolutional neural network · Deep learning

1 Introduction

Malware, short for malicious software, refers to software
programs designed to perform any kind of unwanted or harm-
ful action on a computer system. This actions are targeted
towards spying and stealing sensitive and critical information
or damaging or modifying a compromised system. Nowa-
days, malware is a mature and growing business involving
networks of developers and criminal organizations. It is a
global industry worth millions of dollars that grows every
year. According toMcAfee [16] more than 600 million mali-
cious programs were detected during the first quarter of
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2017. However, the majority of new malware samples are
deployed as variants of previously known samples. As a
result, malicious software can be grouped together into fam-
ilies with each family originating from a single source base
and exhibiting a set of consistent behaviors. In consequence,
these shared characteristics between samples belonging to
the same family might be used for detection and classifica-
tion of unseen programs.

As the complexity and distribution of malware rises, the
techniques used by malware developers to hide their mali-
cious intent have improved. On the one hand, polymorphic
malware uses a polymorphic engine to mutate the code while
keeping the original functionality intact. Packing and encryp-
tion are the twomost commonways to hide code.On the other
hand, metamorphic malware rewrites its code every time it is
propagated to an equivalent one. Traditionally, antivirus solu-
tions relied on signature-based and heuristic-based methods.
A signature is an algorithm or hash that uniquely identi-
fies a specific malware. Given an unknown file, this method
looks for anymatch between existing signatures in a database
and the generated signature of the unknown file. Signatures
are sensitive even to small program variations. On the con-
trary, heuristics are a set of rules determined by experts after

123

GOING DEEP INTO THE CAT AND THE MOUSE GAME: DEEP LEARNING
FOR MALWARE CLASSIFICATION

110



16 D. Gibert et al.

analyzing the behavior of malware. The main drawback of
both approaches is that the malware has to be analyzed prior
to the creation of these rules and heuristics. Unfortunately,
such systems fail to predict new unseen malware and it is
unfeasible to analyze manually every sample received. Thus,
techniques to automatically categorize malware are required.

The main contributions of this paper are the following:

– The development of the first, to our knowledge, file
agnostic deep learning system that learns visual features
from executable files to classify malware into families.
This is achieved by training a convolutional neural net-
work on the representation of malware’s binary content
as gray scale images.Malware executables are visualized
as gray scale images because its ability to capture minor
changes while retaining the global structure is useful for
detecting variations in samples.

– An extensive assessment of our technique using standard
evaluation metrics (e.g. accuracy, precision, recall, F1-
score) on two publicly available datasets, the MalIMG
and the Microsoft Malware Classification Challenge
datasets, one containing 9458 samples of 25 different
malware families and a second containing 10868 sam-
ples of 9 different families, respectively.

– A comparative study of image-based machine learning
techniques for malware classification. The experiments
show that our model is capable of classifying samples
from both datasets with 98.48% and 97.49% of accuracy,
respectively, outperforming state-of-the-art methods in
the literature.

The rest of the paper is organized as follows: Section 2 dis-
cusses the related research and describes the insights from
representing malicious software as gray scale images. Sec-
tion 3 introduces our deep learning approach for malware
classification. Section 4 evaluates the performance of our
method. Finally, Section 5 concludes with our remarks and
future work suggestions.

2 Background

This section provides an overview of the types of analysis for
determining the purpose and functionality of a givenmalware
sample. Afterwards, it is provided a description of features
and machine learning algorithms for addressing the problem
of malware detection and classification.

2.1 Malware analysis

Malware analysis involves mainly two techniques: static
analysis and dynamic analysis. Static analysis consists of
examining the code or structure of a program without exe-

cuting it. This kind of analysis can confirm whether a file
is malicious, provide information about its functionality and
can also be used to produce a simple set of signatures. The
most common static analysis approaches are:

– Finding sequences of characters or strings. Searching
through the strings of a program is themost simpleway to
obtain hints about its functionality. For instance, you can
find strings related to printed messages, URLs accessed
by the program, the location of files modified by the exe-
cutable and names of common Windows dynamic link
libraries (DLLs).

– Analysis of the Portable Executable File Format. The
Portable Executable(PE) file format is used by Windows
executables, object code and DLLs. Among the informa-
tion it includes, the most useful pieces of information are
the linked libraries and functions as well as the metadata
about the file included in the headers.

– Searching for packed/encrypted code. Malware writers
usually use packing and encryption to make their files
more difficult to analyze. Software programs that have
been packedor encrypted usually contain very few strings
and higher entropy compared to legitimate programs.

– Disassembling the program, i.e. recovering the symbolic
representation from the machine code instructions.

Dynamic analysis involves executing the program and
monitoring its behavior on the system. Unlike static anal-
ysis, dynamic analysis allows to observe the actual actions
executed by the a program. It is typically performed when
static analysis has reached a dead end, either due to obfusca-
tion and packing, or by having exhausted the available static
analysis techniques. A survey on automated dynamic analy-
sis techniques and tools is found in M. Egele et al [6]. Some
techniques are:

– Function Call Monitoring. The behavior of the program
is analyzed by using the traces containing the sequence
of functions invoked by the executable under analysis.

– Function Parameter Analysis. Consists of tracking the
values of parameters and function return values.

– Information Flow Tracking. Analyze how a program
processes data and how data is propagated through the
system.

– Instruction Trace. Analysis of the complete sequence of
machine instructions executed by the program.

Bothmethods have its own advantages and disadvantages.
On the one hand, static analysis is faster but suffers from code
obfuscation, techniques used by malware authors to conceal
the malicious purpose of the program. On the other hand,
code obfuscation techniques and polymorphic malware fails
at dynamic analysis because it analyses the runtime behavior
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of a program by monitoring it while in execution. However,
each malware sample must be executed in a safe environ-
ment for a specific time for monitoring its behavior, which is
a very time consuming process. In addition, the environment
might be quite different from the real runtime environment
and malware may behave in different ways in the two envi-
ronments, and under some conditions the actions of malware
might not be triggered and thus, not logged.

2.2 Machine learning techniques for malware
detection and classification

The use of machine learning algorithms to address the
problem of malicious software detection and classification
has increased during the last decade. The success of these
approaches has increased thanks to: (1) the rise of commer-
cial feeds of malware; (2) the reduction in cost of computing
power; and (3) the advances made in the machine learning
field. Several methods have been applied based on features
extracted fromboth static anddynamic analysis.Anoverview
is provided in Ranvee and Hiray [23] and Gandotra et al. [7].
Instead of directly dealing with rawmalware, machine learn-
ing solutions first extract features that provide an abstract
view of the software program. Then the features extracted
are used to train a model. The type of features can be broadly
divided into two groups: (1) static features and (2) dynamic
features.

Static features are those extracted from the binary of the
malware without executing it. One of the most common
types of features is byte n-grams. An n-gram is a contiguous
sequence of n items fromagiven sequence of text. In thework
of Tesauro et al. [29] they extracted a list of byte-sequence
trigrams and used an artificial neural network to classify
malware. Similar to byte-sequence n-grams, approaches in
the literature have used opcodes n-grams [4,25]. An opcode
(abbreviated from operation code) is the portion of machine
language instruction that specifies the operation to be per-
formed. In particular, D. Yuxin et al. [32] used deep belief
networks as a feature extractor to generate deep features to
represent executables from their opcodes sequences. In addi-
tion, D. Gibert et al. [9] presented a convolutional neural
network architecture to learn a set of discriminative subse-
quences from assembly language instructions. Features can
also be extracted from the Portable Executable (PE) Header.
The PE Header contains information about the files them-
selves such as the associated dynamically linked libraries
and the sections of the program and their sizes. For instance,
Ravi and Manoharan et al. [5] proposed a malware detection
system based on Windows API call sequences. In addition,
entropy has proven to be an effective feature to detect mal-
ware. The entropy of a program, refers to the amount of
disorder (uncertainty) or its statistical variation. Entropy has
commonly been used to detect encrypted and packed exe-

cutables because these programs often have higher entropy.
For example, in the dataset studied by Lydia et al. [17],
native executables had an average entropy of 5.099 while
packed and encrypted executables had an average entropy
of 6.801, 7.175, respectively. Moreover, Bat-Erdene et al.
[3] used entropy analysis to classify packing algorithms of
given unknown packed executables.

Furthermore, dynamic features are those extracted by exe-
cuting and observing the behavior of malware. Malware API
calls have been used to model the behavior of malware. In
[24], Z. Salehi et al. constructed dynamic features based on
the name of API calls and each argument and return value
recorded in a controlled environment during runtime.M.Ghi-
asi et al. [8] presented a framework for malware detection
based on the changes in register contents. In [28], C.Storlie
et al. presented a spine logistic regression model for malware
detection, trained on the instruction traces extracted dynami-
cally from computer programs. Additionally, B.Anderson [2]
constructed graphs from the instruction traces of executables
and applied graph kernels to create and compare similarity
matrices of different computer programs.

Besides, several visualization techniques have been pro-
posed in the literature to helpmalware analysis. Sorokin et al.
[26] visualized a given executable using its structural entropy,
obtained by dividing a binary into non-overlapping chunks
and computing the entropy for each chunk. This represen-
tation was exploited by M. Wojnowicz et al. [31] and D.
Gibert et al. [10] for detecting and categorizing malware,
respectively. Lastly, Nataraj et al. [20] used image process-
ing techniques to classify malicious software according to
its visualization as gray scale images. In their work, they
extractedGIST features from themalware images and trained
a k-nearest neighbour for classification. The approach pre-
sented in this paper ismotivatedby the experiments ofNataraj
et al. and in its visualization of the malware’s binary content.
Next, it is provided a detailed description of the visualization
technique.

2.3 Visualizingmalware as an image

To visualize a malware sample as an image, every byte has
to be interpreted as one pixel in an image. Then, the resulting
array has to be organized as a 2-D array and visualized as a
gray scale image. Values are in the range [0,255] (0:black,
255:white).

Fig. 1 shows the representation of samples of malware
belonging to nine different families as gray scale images. It
can be observed that images of software executables from a
given family are similar visually while distinct from those
belonging to a different family. The main benefit of visual-
izing a malicious executable as an image is that the different
sections of a binary can be easily differentiated. In addition,
malware authors only used to change a small part of the code
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Fig. 1 Gray scale images of malicious software belonging to various
families. Note that the images of malware belonging to the same family
are similar while distinct from the images of malware from the rest of
families

to produce new variants. Thus, if old malware is re-used to
create new binaries the resulting ones would be very similar.
Additionally, by representing malware as an image it is pos-
sible to detect the small changes while retaining the global
structure of samples belonging to the same family.

In most cases, when observed in detail, one can notice
several sections in the program, which usually have dis-
tinct feature patterns. Furthermore, the images stored in the
resources section (.rsrc) of the PE file are also displayed
(See Fig. 2). In addition, with this representation you can
detect where zero-padding has been applied. Zero-padding
is mainly used for block alignment but malware authors also
use it to reduce the overall entropy of an executable.

2.4 Texture analysis and feature extraction

Traditional recognition approaches are composed of two
stages: (1) feature extraction, transforming an observed sig-
nal into a robust representation, and (2) classification to

Fig. 2 Gray scale image representation of amalware sample containing
a logo on their resources section

model decision-making. Consequently, their performance
relies heavily on the discriminative power of the fea-
tures extracted.Hand-engineered feature extractors [1,19,20]
gather relevant information about an input and eliminate
irrelevant variabilities. In summary, Nataraj et al. [20] and
Narayanan et al. [19] extracted GIST and PCA features,
respectively, and Ahmadi et al. [1] extracted both Haralick
and local binary pattern features. Below is a brief description
of the aforesaid methods.

GIST descriptors [22]. Given an image, the process to
compute a GIST descriptor is as follows. First, the image
is convolved with 32 Gabor filters with 8 orientations and 4
scales. Second, each featuremap is divided into 16 regions of
4× 4 values, and then the feature values are averaged within
each region. Last, the 16 averaged values of all feature maps
are concatenated.

PCA [12] features. Principal ComponentAnalysis is a sta-
tistical procedure used for dimensionality reduction. It uses
an orthogonal transformation to convert a set of observations
of n possible correlated variables into a set of values with m
linearly uncorrelated variables named principal components,
where n ≤ m.

Haralick [11] features have been used for image classifi-
cation for years. The features are calculated by constructing a
co-occurrence matrix, and computed by using the equations
defined byHaralick such as the angular second-moment, con-
trast, correlation, etc.

Local binary pattern [21] features. The local binary pat-
tern (LBP) feature of a given pixel is computed as follows.
First, an 8 bit binary array is initialized as 0. Then, each pixel
is compared with its neighboring pixels in clockwise direc-
tion. If the value of the neighboring pixel is greater or equal
to 1 is assigned to its corresponding position. This gives an
8 bit binary array with zeros and ones. The 8-bit binary pat-
tern is converted to a decimal number and is stored in the
corresponding pixel location in the LBP mask. This process
is applied to all pixels in an image. Once all LBP values
have been calculated, the mask is normalized, resulting in
256 features.
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3 Convolutional neural networks for
malware classification

Convolutional neural networks (CNNs) [15] are a type of arti-
ficial neural network inspired by the mammals visual cortex
[13], whose receptive field comprises sub-regions layered
over each other to cover the entire visual field. This type of
networks has long been used in visual recognition tasks such
as image classification or object detection due to its ability
to automatically extract discriminant and local features from
images.

The core of a convolutional neural network consists of one
ormore convolutional layers and one ormore fully connected
layers. In particular, convolutional layers act as detection fil-
ters for the presence of specific features or patterns present in
the data. The first layers detect lower level features whereas
later layers detect increasingly high level features. On the
contrary, fully connected layers are used at the end of a CNN
to combine all the specific features detected by the previ-
ous layers and determine a specific target output. Figure 3
presents an overview of our CNN architecture. The hyper-
parameters of the network had been selected using a grid
search. The search was performed over the learning rate, the
number of convolutional and fully-connected layers, and the
size and number of kernels. The network architecture pre-
sented in this section correspond to the one that achieved
better results during the evaluation.

The input of the network is an executable represented as a
grayscale image xw,h,d , wherew and h are the width and the
height of the image, respectively, and d is the depth (d = 1).
Notice that in thework ofNataraj et al. [20] gray scale images
had distinct widths and heights. This is because the size of
each sample is different and with their preprocessing the
width of the image was based on visual experiments and
the height varied according to the file size. Thus, images had
to be rescaled previously to feeding the convolutional neural
network. The size of the resulting images has been adapted
for every dataset during the experimentation in order to pro-
vide the best trade-off between accuracy and computational
resources usage. Nevertheless, images have been resampled
using the Lanzcos filter [30] as it provides the best compro-
mise among several filters for multivariate interpolation.

The proposed neural network architecture has an input
layer and three 4-stage feature extractors which learn hierar-
chical features through convolution, activation, pooling and
normalization layers, as follows:

Convolution is an operation that takes an input signal of
size w × h × d and a filter of size k × k × d, where
k ≤ w, h, and produces one output signal. The kernel
slides over each value of the input signal, multiplies the
corresponding entries of the input signal and the kernel
and adds them up. Figure 4 presents three of the filters

Fig. 3 Convolutional neural network for classification of malware rep-
resented as gray-scale images. It is composed by 3 convolutional layers
followed by one fully-connected layer. The input of the network is a
malicious program represented as a gray-scale image. The output of the
network is the predicted class of the malware sample

learned in the first convolutional layer. It can be observed
that the features these kernels detect are high changes
in the pixels intensities. In particular, the convolutional
layers are composed of 50, 70 and 70 filters of size 5 ×
5× 1, 3× 3× 50 and 3× 3× 70 for the first, second and
third convolutional layers, respectively.
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Fig. 4 Images of 3 filters randomly selected from the first convolutional
layer

The activation function is used to signal distinct identifi-
cation of likely features. Specifically, we used the ReLU
[18] non-linear function, y(x) = max(x, 0), in all acti-
vation layers.
The pooling operation reduces the spatial size of the fea-
tures and provides some sort of robustness against noise
and distortion. We applied max-pooling with filters of
size 2× 2× 1 with stride 1, which reduces the input sig-
nal by half, i.e. if the input signal’s size is 128×128×1,
the output of applying max-pooling is an output signal of
size 64 × 64 × 1.
Normalization. The input values for different neurons in
the layer are normalized using local response normaliza-
tion [14] to inhibit and boost the neurons with relatively
larger activations.

At the end of the extractor, the feature maps are flat-
tened and combined to be used as input of the following
fully-connected layer composed of 256 neurons. Afterwards,
the output of the aforementioned layer is multiplied by the
neurons of the output layer. Then, it is applied the softmax
function to classify the binary program into its corresponding
family. Notice that the number of neurons in the output layer
depends on the number of families to classify: (i) the convo-
lutional neural network trained to classify malware samples
of the MalIMG dataset has 25 output neurons; (ii) the net-
work trained to classify malicious software of the Microsoft
Malware Classification Challenge dataset has 9 output neu-
rons. In addition to normalization, to prevent overfitting we
employed dropout [27], a regularization mechanism which
randomly drops a proportion of p units during forward prop-
agation and prevents the co-adaptation between neurons.

4 Evaluation

This section presents an empirical evaluation of the results
obtained by our method in two datasets: the MalImg dataset
[20], and the dataset provided by Microsoft for the Big Data
Innovators Gathering Anti-Malware Prediction Challenge.

4.1 Experimental setup

The experiments were run on a single computer with the
following hardware specifications:

– CPU: Intel i7-7700K
– Memory: 32 GB RAM
– GPU: Nvidia GTX 1080 Ti

To estimate the generalization performance of our approach
we used K-fold cross validation. The dataset is divided into
K equal size folds. Of the K subsamples, a single subsample
is retained as the validation data for testing the model and the
remaining subsamples are used as training data. This proce-
dure is repeated as many times as there are folds, with each
of the K folds used exactly once as the validation data.

Furthermore, to select the best model, additional evalua-
tion metrics have been used: precision, recall and F1 score.
This is because accuracy can be amisleadingmeasure. Some-
times it may be desirable to select a model with a lower
accuracy but with a greater predictive power on the problem
(a.k.a. accuracy paradox). This occurs when there is as large
class imbalance, where a model can predict the value of the
majority class for all predictions and achieve a high classi-
fication accuracy while making mistakes on the minority or
critical classes.

Precision (P) is the number of true positives (Tp) over the
number of true positives plus the number of false positives
(Fp).

P = Tp

Tp + Fp
.

Recall (R) is the number of true positives (Tp) over the
number of true positives plus the number of false negatives
(Fn).

R = Tp

Tp + Fn
.

The F1 score is the weighted average of precision, defined
as following:

F1 = 2 · P · R
P + R

.

Since our target task is a multi-class classification prob-
lem, we used an adapted version of the F1 score named
macro-averaged F1 score, defined as the average of the indi-
vidual F1 scores obtained for each class.

macro_F1 = 1

q

q∑

i=1

Fi
1
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Table 1 MalImg: Distribution of Samples

Family Class ID #samples

Adialer.C 1 125

Agent.FYI 2 116

Allaple.A 3 2949

Allaple.L 4 1591

Allueron.gen!J 5 198

Autorun.K 6 106

C2Lop.P 7 146

C2Lop.gen!g 8 200

Dialplatform.B 9 177

Dontovo.A 10 162

Fakerean 11 381

Instantaccess 12 431

Lolyda.AA1 13 213

Lolyda.AA2 14 184

Lolyda.AA3 15 123

Lolyda.AT 16 159

Malex.gen!J 17 136

Obfuscator.AD 18 142

Rbot!gen 19 158

Skintrim.N 20 80

Swizzor.gen!E 21 128

Swizzor.gen!I 22 132

VB.AT 23 408

Wintrim.BX 24 97

Yuner.A 25 800

where q is the number of classes in the dataset and Fi
1 is the

F1 score of class i . Macroaveraging gives equal weight to
each class. Thus, large classes will not dominate over small
classes.

4.2 MalImg dataset

The MalImg dataset was provided by Nataraj et al. [20]
and consists of 9342 gray scale images of 25 malware
families. It contains samples of malicious software packed
with UPX from different families such as Yuner.A, VB.AT,
Malex.gen!J, Autorun.K and Rbot!gen. Additionally, there
are images of family variants like the C2Lop.p and the
C2Lop.gen!g or the Swizzor.gen!I and the Swizzor.gen!E.
For more details, see Table 1.

4.2.1 Results

In order to train the network we downsampled the images
to a fixed size. The width and height of the new images
were set to 256. A lower value did not retain all the impor-
tant information (i.e. lost discriminative information about a

family) while higher values only increased the computational
time without increasing the overall accuracy. For instance, if
images were downsampled to 28 × 28 pixels, samples from
the Yuner.A and the Autorun.K families became indistin-
guishable from one another and the model failed to classify
correctly any sample belonging to the Autorun.K family. On
the contrary, if images were downsampled to 128 × 128
pixels, the model classified correctly 42.45% of samples
belonging to the Autorun.K family. Finally, if images are
downsampled to 256 × 256 pixels, the percentage of cor-
rectly classified samples belonging to the Autorun.K family
increased to 80.02%. In consequence, the macro-averaged
F1 score increased from 0.948 to 0.958. See Tables 2 and 3
for more information.

Theoverall classification accuracy achievedbyourmethod
for the 25 malware families is higher than the approach of
Nataraj et al., 0.9848 and 0.9718, respectively. As can be
observed in Table 3, therewere twomajor sources ofmisclas-
sifications. On the one hand, the model classified incorrectly
21 samples of the Autorun.K family as belonging to the
Yuner. That is because both families are compressed with
UPX and their corresponding executables visualized as gray
scale images only differ in the .rsrc section. As can be seen
in Fig. 5, samples from the Autorun.K and Yuner.A fam-
ilies are indistinguishable to the human eye. On the other
hand, the model had problems classifying samples belong-
ing to variants of the same family, such as Swizzer.gen!E and
Swizzer.gen!I. In particular, it only classified correctly 71%
and 62% of their samples. If family variants are combined as
one, the overall accuracy and F1 score is increased to 0.993
and 0.984, respectively. Specifically, the following families
were grouped in one.

– Allaple.A and Allaple.L as Allaple.
– C2Lop.P and C2Lop.gen!g as C2Lop.
– Lolyda.AA1, Lolyda.AA2, Lolyda.AA3 and Lolyda.AT
as Lolyda.

– Swizzor.gen!E and Swizzor.gen!I as Swizzor.

As observed in Table 4, by grouping the samples of fam-
ily variants into a single family, the number of samples
incorrectly classified was reduced. In particular, the samples
misclassified belonging to variants of the Swizzor familywas
reduced from 87 to 26.

The main advantage of our approach with respect to the
method of Ahmadi et al. [20] is two fold. First, our clas-
sification time is not penalized by the size of the training
set, as it is the k-nearest neighbor algorithm; i.e. k-nn is
a non-parametric, lazy learning algorithm and it does not
learn a discriminative function from the training data but
it “memorizes” the training data instead. In consequence,
when a new file is received it goes through all training
instances. Second, as GIST extracted features are based on
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Fig. 5 Autorun.K and Yuner.A samples downsampled to 256 × 256
pixels. The left image corresponds to the gray-scale visualization of a
malware sample belonging to the Autorun.K family while the image
in the right belongs to the Yuner.A family. Notice that both images are
indistinguishable to the human eye

Table 5 BIG 2015: Distribution of Samples

Family Class ID #samples

Ramnit 1 1541

Lollipop 2 2478

Kelihos_ver3 3 2942

Vundo 4 475

Simda 5 42

Tracur 6 751

Kelihos_ver1 7 398

Obfuscator.ACY 8 1228

Gatak 9 1013

the global structure of an image if an adversary knows the
technique it could avoid detection by reallocating different
parts of the code. On the contrary, the changes produced
by the code reallocation technique might not produce such
undesired effects in our approach because convolutional net-
works are able to learn features invariant to translation, i.e.
detect patterns which may be displaced in space, through the
convolution and max-pooling operations. The convolution
operation provides equivariance to translation. Afterwards,

the max-pooling operation returns the largest value in its
receptive field. In consequence, if the location of this value
is still within the receptive field, the output of the pooling
operation would not be altered. As a result, the combination
of both operations together provide invariance to translation.

4.3 Microsoft malware classification challenge

Microsoft provided a dataset composed of 21741 samples for
theBigData InnovatorsGathering (BIG2015)Anti-Malware
Prediction Challenge, 10868 for training and 10873 for test-
ing. Every program in the dataset has a file containing the
hexadecimal representation of the malware’s binary content
and its corresponding assembly file. However, only the label
for the samples belonging to the training dataset is provided.
Table 5 shows the distribution of malware programs present
in the training dataset.

4.3.1 Results

Similar to the MalImg dataset, we downsampled the gray
scale images. In particular, images from theBIG dataset were
downsampled to 128×128 pixels because greater width and
height did not improve the performance of the classifier. In
addition, we performed 5-fold and 10-fold cross validation to
evaluate our model. Tables 6 and 7 show the confusionmatri-
ces obtained for 5-fold cross validation and 10-fold cross
validation.

Table 8 presents the results obtained by state-of-the-art
approaches in the literature that had extracted image-based
features to classify malware from the BIG dataset. To sum
up, Narayanan et al. [19] used PCA to extract the first 10,
12 and 52 principal components and classify malware using
different machine learning classification algorithms. More-
over, Ahmadi et al. [1] extracted Haralick and local binary
pattern features from images and trained an ensemble of trees
for classification. Their approaches were evaluated using 5-
fold and 10-fold cross validation, respectively. As can be
observed, our method outperformed the rest of approaches in

Table 6 BIG 2015 dataset
confusion matrix for 5-fold
validation using images of
128 × 128 pixels

Family 1 2 3 4 5 6 7 8 9 Accuracy

1 1492 7 0 2 2 11 3 19 5 0.968

2 6 2424 0 1 3 10 0 3 31 0.978

3 1 0 2937 0 0 0 4 0 0 0.998

4 2 1 2 461 2 2 1 2 2 0.971

5 3 3 0 4 25 1 0 6 0 0.595

6 10 5 1 3 1 701 1 18 11 0.933

7 2 0 1 0 0 0 392 0 3 0.985

8 36 4 1 13 2 19 5 1144 4 0.932

9 2 6 0 1 0 2 2 2 998 0.985
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Table 7 BIG 2015 dataset
confusion matrix for 10-fold
validation using images of
128 × 128 pixels

Family 1 2 3 4 5 6 7 8 9 Accuracy

1 1490 4 2 2 2 9 1 28 3 0.967

2 6 2440 0 0 1 7 0 8 16 0.985

3 0 1 2938 1 0 0 2 0 0 0.999

4 3 0 2 461 2 1 1 3 2 0.971

5 3 2 0 1 29 2 0 5 0 0.690

6 8 6 1 2 0 713 2 10 9 0.948

7 1 0 5 1 0 0 391 0 0 0.982

8 44 4 2 8 2 17 5 1138 8 0.923

9 2 2 0 0 0 6 2 5 996 0.983

Table 8 Performance
comparison of various methods
for classification of BIG 2015
training dataset. 1-nearest
neighbor (1-NN). Support
vector machines (SVM). Static
feed-forward network (SFN1 &
SFN2). Dynamic feed-forward
network (DFN)

Method 5-fold accuracy Macro-averaged F1 Score

Haralick features + XGBoost 0.955 –

LBP features + XGBoost 0.951 –

CNN 0.973 0.927

10-fold accuracy

12 PCA features + 1-NN 0.966 0.910

10 PCA features + SVM 0.946 0.864

52 PCA features + SFN1 0.956 0.884

52 PCA features + SFN2 0.942 0.849

52 PCA features + DFN 0.955 0.889

CNN 0.975 0.940

Fig. 6 The required time of feature extraction from the grayscale repre-
sentation for each method. The time in brackets shows the total time of
extraction for all training samples. LBP stands for local binary patterns.
IMG denotes how much time it takes to transform a binary executable

into a gray-scale image. PCA 10, PCA 12 and PCA 52 refer to the num-
ber of principal components used. CNN A refers to the time needed to
extract the features by the convolutional network and CNN B refers to
the time the networks needs to extract features and classify a sample

the literature, achieving 0.973 and 0.975 accuracy, for 5-fold
and 10-fold cross validation, respectively. Furthermore, the
average classification time of our approach is 0,001 seconds.
Fig. 6 shows the computational time for every feature extrac-
tion method evaluated. The improvement of our method is
equal to 99.98%, 98.47% and 96.06% with respect to the
computational time needed to extract GIST, Haralick and
local binary pattern features. Additionally, our method is

67.35%, 68.29% and 83.13% faster than the calculation of
the 10, 12 and 52 principal components.

5 Conclusions

This paper presents a novel file agnostic deep learning sys-
tem for classification ofmalware based on its visualization as
gray-scale images. As far as we know, it is the first approach
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to apply deep learning to find patterns frommalware’s binary
content represented as images. The proposed solution has a
number of advantages that allow malicious programs to be
detected in a real-time environment. Firstly, it is file agnos-
tic and is based solely on the binary code of an executable.
Secondly, the transformation of an executable into a gray-
scale image is inexpensive. Thirdly, the prediction time is
lower than the rest of approaches. Fourthly, it obtainedgreater
classification accuracy than all previous methods in the lit-
erature that were based on the representation of malware as
gray-scale images.

5.1 Limitations and future work

Despite the fact that our approach was able to outperform
state-of-the-art methods in terms of accuracy and classi-
fication time, it has some issues that are directly related
to the visualization of malware as grayscale images. Even
though it can be seen that the visualization of malware pro-
grams belonging to the same family has similar patterns,
this approach has problems with some samples that have
been compressed or encrypted, whichmay have a completely
different overall structure. For instance, the visualization of
samples from theAutorun.K andYuner.A families are almost
equal. To deal with such cases, we suggest combining the
features extracted by the convolutional neural network with
hand-designed features as input to a machine learning model
based on distinct types of file features [1].
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Chapter 7

A Computer-Implemented
Method, a System And a
Computer Program For
Identifying a Malicious File

The following invention, whose co-ownership belongs to Leap in Value, S.L and the
University of Lleida, is part of a patent application currently under revision and not
published (changes might occur during the revision process).

The full list of co-authors are: Daniel Solis, Gerard Cervelló, Àngel Puigventós,
Daniel Gibert, Teresa Alsinet, Jordi Planes and Carles Mateu.

The present invention relates to a computer-implemented method, system and
computer program for identifying a malicious file that combines different types of
analysis, processes and procedures that allow detecting and classifying malicious
files.
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A computer-implemented method, a system and a computer program for

identifying a malicious file 

Field of the Invention 

The present invention relates to a computer-implemented method, system and

computer  program  for  identifying  a  malicious  file  that  combines  different  types  of

analysis, processes and procedures that allow detecting and classifying malicious files.

Background of the Invention

In the last few years, machine learning has been applied successfully to the task

of  malware detection  and classification.  One of  the most  used techniques  is  neural

networks. Algorithms based on neural networks have recently achieved state-of-the-art

results in a wide range of tasks. Examples of proposals based on neural networks can

be found in the following patents: US9690938B1, US9705904B1 and US9495633B2.

However, the main limitation of neural networks is that it is difficult to obtain a

rational explanation about the decisions they make.

A method for identifying malware file using multiple classifiers is known by US

patent application, US2010192222A1. However, such method uses multiple classifiers

including static and dynamic classifiers, and thus is unable to identify malware based

only on static analysis.

Besides  the  above  solutions,  the  patent  EP2882159  discloses  a  computer

implemented method of profiling cyber threats detected in a target environment,  that

comprises receiving, from a Security Information and Event Manager (SIEM) monitoring

the target environment,  alerts triggered by a detected potential cyber threat,  and, for

each alert: retrieving captured packet data related to the alert; extracting data pertaining

to a set of attributes from captured packet data triggering the alert; applying fuzzy logic

to data pertaining to one or more of the attributes to determine values for one or more

output variables indicative of a level of an aspect of risk attributable to the cyber threat.

Apart  from  that,  following  the  General  Data  Protection  Regulation  (GDPR)

(Regulation (EU) 2016/679),  automated individual  decision-making,  including profiling

(Article 22) is contestable, similarly to the Data Protection Directive (Article 15). Citizens

have rights to question and fight significant decisions that affect them that have been

made  on  a  solely  algorithmic  basis.  In  traditional  deep  learning  (neural  networks)

systems, this right cannot be given.

New  improved  methods,  systems  and  computer  programs  for  identifying  a

malicious file are therefore needed.
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Brief Description of the Invention

To that end, the present invention relates, in accordance with a first aspect, to a

computer-implemented method for identifying a malicious file. The method comprises:

- performing a static analysis  of  a potentially  malicious  file  to obtain a set  of

features that provide an abstract view of the malicious file (i.e. a view that reflects the

obtained features from different points of view);

- performing a static machine learning classification process using as inputs said

set of features, to obtain a preliminary classification output (i.e. a score); and

-  performing  a  fuzzy  inference  procedure  based  on  possibilistic  logic,  for

reasoning under possibilistic uncertainty and disjunctive vague knowledge, for example

originated  by  the  rules  created  either  by  the  system or  by  experts,  using  as  input

variables said set of features and said preliminary classification output, to generate an

enhanced classification output that identifies the potentially malicious file as a malicious

file or a benign file.

For an embodiment, the method comprises:

- performing several static analyses of different types of said potentially malicious

file to obtain corresponding sets of features that provide abstract views of the malicious

file;

- performing said static machine learning classification process using as inputs

said sets of features, to obtain said preliminary classification output; and

- performing said fuzzy inference procedure based on possibilistic logic using as

input variables said sets of features and the preliminary classification output.

For an alternative embodiment, the method comprises:

- performing several static analyses of different types of said potentially malicious

file to obtain corresponding sets of features that provide abstract views of the malicious

file;

- performing several static machine learning classification processes, each using

as inputs at least one respective of said sets of features, to obtain corresponding several

preliminary classification outputs (i.e. scores); and

- performing said fuzzy inference procedure based on possibilistic logic using as

input variables said sets of features and said preliminary classification outputs.

 According to an implementation  of  said  alternative  embodiment,  the method

comprises performing a further static machine learning classification process, using as

inputs several or all of the above mentioned sets of features, to obtain a corresponding

further preliminary classification output; and
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- performing said fuzzy inference procedure based on possibilistic logic using as

input variable also said further preliminary classification output.

For an embodiment, the above mentioned fuzzy inference procedure comprises

a fuzzification process that converts the input variables into fuzzy variables.

For an implementation of said embodiment, the fuzzification process comprises

deriving membership functions relating the input variables with output variables through

membership  degrees  of  values  of  the  input  variables  in  predefined  fuzzy  sets,  and

representing said membership functions with linguistic variables, said linguistic variables

being said fuzzy variables.

In addition to the fuzzification process, according to an embodiment, the fuzzy

inference procedure further comprises an inference decision-making process comprising

firing  fuzzy  possibilistic  rules  with  values  of  said  linguistic  variables  for  said  input

variables,  to  generate  a  fuzzy  output  that  identifies  the  degree  of  belief  that  the

potentially malicious file has to be a malicious file or a benign file.

Additionally,  for an embodiment,  the method of the first aspect of the present

invention  further  comprises  selecting  which  fuzzy  possibilistic  rules  to  fire  in  said

inference  decision-making  process,  based  on  at  least  said  values  of  the  linguistic

variables for the input variables.

According to an embodiment,  in  addition  to the fuzzification  process and the

inference decision-making process, the fuzzy inference procedure based on possibilistic

logic  further  comprises a  defuzzification  process that  converts  the above mentioned

fuzzy possibilistic output into a crisp output, wherein said crisp output constitutes the

above mentioned enhanced classification output.

Depending on the embodiment, the above mentioned set or sets of features may

comprise:

 the frequency of  use of  Application  Programming Interfaces (API)  and

their function calls;

 the representation of an executable file as a stream of entropy values,

where each value describes the amount of entropy over a small chunk of

code in a specific location of the potentially malicious file;

 the sequence of assembly language instructions executed by a software

program  constituting  the  potentially  malicious  file,  in  particular,  the

operational codes of the machine language instructions;

 the  representation  of  an  executable  file,  constituting  the  potentially

malicious file, as an image, where every byte is interpreted as one pixel
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in the image, wherein the resulting array is organized as a 2-D array and

visualized as a gray scale image; and/or

 applicable  program  characteristics,  at  least  including  alphanumeric

strings  occurring  in  the  body of  the  software program constituting  the

potentially malicious file and the fields from the header of the potentially

malicious file.

Two or more of the above indicated sets of features are comprised by the above

identified as corresponding sets of features for implementations of the above described

embodiments of the method of the first aspect of the invention for which the method

comprises performing several static analyses.

In an embodiment, the fuzzy inference procedure based on possibilistic logic is

based on a PGL+ algorithm. The proof method for PGL+ is complete and involves a

semantical  unification model of disjunctive fuzzy constants and three other inference

patterns together with a deductive mechanism based on a modus ponens style.

In a particular  embodiment,  the PGL+ algorithm can comprise applying three

algorithms sequentially:  a  first  algorithm that  extends the fuzzy possibilistic  rules by

means of implementing a first set of rules; a second algorithm that translates the fuzzy

possibilistic rules into a semantically equivalent set of 1-weighted clauses by means of

implemented a second set of rules; and a third algorithm that computes a maximum

degree  of  possibilistic  entailment  of  a  goal  from  the  equivalent  set  of  1-weighted

clauses.

In an embodiment,  the fuzzy inference procedure based on possibilistic  logic

comprises executing the following formulas in the form (A, c), where A is a Horn clause

(fact or rule) with disjunctive fuzzy constants  and c is a degree in the unit interval [0,1]

which denotes a lower bound on the belief on A in terms of necessity measures. Every

fact and rule is attached with a degree of belief or weight in the real interval [0, 1] that

denotes a lower bound on the belief on the fact and rule in terms of necessity measures.

So, those facts and rules that are demonstrated to be key for the decision system have

a higher weight, and facts and rules not so useful in the decision system have a lower

weight. The rules created by the system can have a higher degree of belief than the

rules created by a human, or vice versa. For example, the system may create rules of

the following form:

●  Rule  1:  IF  (entropy(.text)  is  “high”  OR  entropy(.text)  is  “very_high”  OR

entropy(.text)  is  “extreme”)  AND  (call(“CryptAcquireContext”)  OR call(“CryptEncrypt”)

OR call(“CryptReleaseContext”)) THEN file 100 is encrypted with a degree of belief of

1.0
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● Rule  2:  IF  entropy(file)  is  “very_high”  AND ML_score(ENTROPY)  is  “high”

THEN file 100 is encrypted with a degree of belief of at least 0.9.

Additionally,  the  facts  can have different  degrees of  belief  depending  on the

source of the information. For instance, file management API functions (e.g. CopyFile,

CreateFile,  EncryptFile,  etc.)  can have a higher  belief  degree than networking APIs

(e.g.HttpCreateServerSession,DnsAcquireContextHandle,  RpcStringBindingCompose,

etc.).

In some embodiments, the machine learning models can be enhanced by further

using  Reinforcement  Learning  methods.  Reinforcement  Learning  (RL)  is  a  set  of

techniques that allow to solve problems in highly uncertain or almost unknown domains.

The method can use machine learning to select the most relevant features, using RL

guided methods to derive the future reward (i.e. accuracy) of using such feature. After

several iterations (training process), the machine learning technique will be able to use a

Q-Table (rewards table) of the RL method to accurately predict which feature and split

set use for prediction, thus creating a quasi-optimal DT from which to derive the rules for

the system. This last module makes the system keep learning from new threats, a key

aspect when it comes to cybersecurity. 

In a second aspect, the present invention also relates to a system for identifying

a  malicious  file,  the  system comprising  one  or  more  computing  entities  adapted  to

perform  the  steps  of  the  method  of  the  first  aspect  of  the  invention  for  all  its

embodiments,  said  one  or  more  computing  entities  including  at  least  the  following

modules operatively connected to each other:

- a preprocessing computing module configured and arranged to perform a static

analysis of a potentially malicious file to obtain a set of features that provide an abstract

view of the malicious file;

-  a  machine  learning  module  configured  and  arranged  to  perform  a  static

machine learning classification process using as inputs said set of features, to obtain a

preliminary classification output; and

- a fuzzy inference module configured and arranged to perform a fuzzy inference

procedure based on possibilistic logic using as input variables said set of features and

said preliminary classification output, to generate an enhanced possibilistic classification

output that identifies the potentially malicious file as a malicious file or a benign file.

Other  embodiments  of  the  invention  that  are  disclosed  herein  also  include

software  programs  to  perform  the  method  embodiment  steps  and  operations

summarized above and disclosed in detail below. More particularly, a computer program

product is one embodiment that has a computer-readable medium including computer
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program instructions encoded thereon that when executed on at least one processor in

a computer system causes the processor to perform the operations indicated herein as

embodiments of the invention.

With  the  present  invention,  according  to  its  three  aspects,  the  limitations

mentioned above associated to the prior art methods are addressed by aggregating and

combining multiple static features and the output of preferably multiple static classifiers

to infer the maliciousness of a file based on a set of fuzzy rules. These rules might be

inferred using the knowledge of cyber security experts or using any machine learning

technique.

With the present invention, the user has access to all the decisions taken in order

to decide if a file is malicious. Additionally, an expert user can create additional rules, or

modify the ones created by the method, system or computer program of the present

invention.

Brief Description of the Figures

The previous and other advantages and features will be more fully understood

from the following detailed description of embodiments, with reference to the attached

figures, which must be considered in an illustrative and non-limiting manner, in which:

Fig. 1 schematically shows the system of the second aspect of the invention, for

an embodiment, depicting its main modules.

 Fig.  2 is  an Entropy versus Chunk diagram showing an example of  a static

analysis of the method of the first aspect of the invention to provide a set of features of

an abstract view of an executable file in the form of a stream of entropy values of a

structural  entropy,  computed  using  the  Shannon’s  formula,  of  the  executable  file,

according to an embodiment, by means of the pre-processing computing module of the

system of the second aspect of the invention.

Fig.  3  shows  gray  scale  images  constituting  sets  of  features  obtained  by

respective static analyses of the method of the first aspect of the invention, representing

abstracts views of different malware files (Rammnit, Lollipop, Kelihos_ver3), according

to corresponding embodiments, by means of the pre-processing computing module of

the system of the second aspect of the invention.

Fig. 4 schematically shows an overview of a preprocessing module of the system

of the second aspect of the present invention, decomposed into five components for

performing  five  corresponding  static  analyses,  including  those  associate  to  the

embodiments of Figures 2 and 3, to an executable file.
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Fig. 5 schematically shows the system of the second aspect of the invention, for

an embodiment  for  which the machine learning module  includes one submodule,  or

static classifier, per each set of features provided by a respective static analyser of the

pre-processing module.

Fig. 6 schematically shows the system of the second aspect of the invention, for

an embodiment for which the machine learning module includes only one static classifier

that includes as inputs all the set of features provided by all the static analysers of the

pre-processing module.

Fig. 7 schematically shows the system of the second aspect of the invention, for

an embodiment  that  differs  to that  of  Figure 5 in  that  the machine learning module

comprises, in addition, a further submodule that includes as inputs all the set of features

provided by all the static analyzers of the pre-processing module.

Fig.  8  schematically  shows  the  system of  the  second  aspect  of  the  present

invention, for an embodiment, including the preprocessing module, the machine learning

module, and a fuzzy inference module decomposed in several functional blocks.

Fig. 9 is a diagram that shows the membership function of some fuzzy subsets of

sets of features obtained with a static analyzer,  particularly of entropy values, for an

embodiment of the fuzzification process performed according to the method of the first

aspect of the invention, by means of the fuzzy inference module of the system of the

second aspect of the invention.

Fig.  10  graphically  shows  the  membership  function  of  some  fuzzy  subsets

associated to scores obtained from a machine learning process applied on the sets of

features of Figure 9, for an embodiment of the fuzzification process performed according

to the method of  the  first  aspect  of  the invention,  by means of  the  fuzzy inference

module of the system of the second aspect of the invention.

Fig. 11 is a diagram that shows membership functions of scores obtained at the

fuzzification  process,  as  part  of  a  defuzzification  process  to  obtain  crisp  values,

according to an embodiment of the method and system of the present invention.

Detailed Description of Preferred Embodiments

Fig. 1 shows an embodiment of the system of the second aspect of the present

invention.  As seen in the figure, the proposed system includes three components:  a

preprocessing module 110; a machine learning module 120 and a fuzzy interference

module 130.

The  preprocessing  module  110  is  responsible  of  the  extraction  of

features/characteristics  111  of  a  given  software  program  100  (also  termed  file  or
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executable). The machine learning module 120, which can be composed of one or more

machine  learning  modules  121,  given  one  or  more  of  said  extracted

features/characteristics  111,  can output  a  score 123 (i.e.  a  preliminary  classification

output) indicating the maliciousness of the software program 100 with respect to the

input  features  111.  The  fuzzy  inference  module  130  is  responsible  of  performing

inference upon fuzzy rules and given facts, i.e. characteristics of the software program

100 and the output scores 123 of the machine learning methods implemented by the

machine learning modules 121, to derive a reasonable output or conclusion 140 (i.e. an

enhanced classification output), that is whether a file 100 is malicious or not. Notice that

the invention might be applied to classifying malware into families without needing to

make any significant modification.

The terms “given facts” refer herein to the facts, data and input information of the

fuzzy  inference  module  130.  These  data  are  the  features  extracted  by  the  pre-

processing 110 and machine learning 120 modules.

Depending on the embodiment, the preprocessing 110 and machine learning 120

modules are independent  module or  are comprised by a common feature extraction

module.

In an embodiment of the proposed method, a file 100 is received at a client or

server computer, and then a static type of analysis of the file 100, i.e. without executing

the file, is initiated. This static analysis is performed by the preprocessing module 110,

which processes the file 100 and generates an abstract view thereof. This abstract view

might be represented by sets of features 111.

These features 111 are used as input to one or more static classifiers 122, each

implemented in one of the cited machine learning submodules 121. The output 123 of

each machine learning classifier 122 is a value in the range [0, 1]. A value close to 0

means that the executable 100 does not contain suspicious/malicious indicators with

regard  of  a  specific  group  of  features  111,  otherwise,  values  close  to  1  indicates

maliciousness. Any machine learning method can be used as classifier. For instance,

neural networks, support vector machines or decision trees.

The fuzzy inference module 130 receives as input at least one or more features

111 extracted by the preprocessing module 110 and the output 123 of one or more static

classifiers 122, and performs the inference procedure upon the rules and given facts to

derive a reasonable output or conclusion 140, that is whether a file is malicious or not.

Preprocessing module description
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The preprocessing module 110 is responsible of the feature extraction process. It

analyses the software program 100 with static techniques (i.e. the program 100 is not

executed).  It  extracts  various  characteristics  from  the  programs’  100  syntax  and

semantic.

The software program 100 can take varying formats including, but not limited to,

Portable  Executable  (PE),  Disk  Operating  System  (DOS)  executable  files,  New

Executable (NE) files,  Linear  Executable  (LE)  files,  Executable and Linkable  Format

(ELF) files, JAVA Archive (JAR) files, and SHOCKWAVE/FLASH (SWF) files.

While the present embodiments describe the application of the present invention

to Portable Executable (PE) format files, it will be appreciated that the methodologies

described herein can be applied to other types of structured files as the ones previously

mentioned.

Given a software program 100, the preprocessing module 110 extracts at least

one, but not limited to, of the following sets or subsets (groups) of features:

1. API function calls,

2. Assembly language instructions,

3. Structural entropy,

4. Image representation of the binary program,

5. Miscellaneous features.

The use of every set of features is explained in the following sections.

1. API function calls

The  frequency  of  use  of  Application  Programming  Interfaces  (API)  and  their

function calls are regarded as very important features. Literature has shown that API call

can be explored to model the program behavior.

API functions and system calls are related with services provided by operating

systems. It supports various key operations such as networks, security, system services,

file managements,  and so on.  In addition,  they include various functions for  utilizing

system resources, such as memory, file system, network or graphics.

There is no other way for software to access system resources that are managed

by operating systems without using API functions or system calls, and thus, API function

calls  can  provide  key  information  to  represent  the  behavior  of  the  software 100.  In

consequence, every API function and system call had been associated a feature. The

feature range is [0, 1]; 0 (or False) if the API function or system call hasn’t been called

by the program; 1 (or True) otherwise. Alternatively,  one can count how many times

every API function has been called during the execution of the program.
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Because many malware programs are packed, leaving only the stub of the import

table or perhaps even no import table at all, the malware classifier will search for the

name of the dynamic link library or function in the body of the suspected malware (by

disassembling the executable 100).

2. Structural entropy

An executable file 100 is represented as a stream of entropy values, where each

value describes the amount of entropy over a small chunk of code in a specific location

of the file 100. For each chunk of code, the entropy is computed using the Shannon’s

formula. There exists empirical evidence that the entropy time series from a given family

are similar and distinct from those belonging to a different family. This is the result of

reusing the code to create new malware variants. In consequence, the structural entropy

of an executable 100 can be used to detect whether it  is benign or malware and to

classify it into their corresponding family.

The diagram of  Fig.  2 shows an example of  the above mentioned computed

entropy versus chunk, for an embodiment.

3. Assembly language instructions

A software program 100 is disassembled (IDA Pro, Radare2, Capstone, etc.) and

its  sequence  of  assembly  language  instructions  is  extracted  for  further  analysis.  In

particular, the operational codes of the machine language instruction were extracted. An

operational code (opcode) is the portion of a machine language instruction that specifies

the operation  to  be  performed:  arithmetic  or  data  manipulation,  logical  operation  or

program control. Opcodes reveal significant statistical differences between malware and

legitimate software. Thus, a sequence of opcodes can be extracted and then used to

detect whether a file 100 either is benign or malware (opcodes = [mov, pop, push, add,

sub, mul, etc.]).

4. Gray scale image-based visualization of the program hexadecimal content

To  visualize  a  software  program  100  as  an  image,  every  byte  has  to  be

interpreted as one pixel in an image. Then, the resulting array has to be organized as a

2-D array and visualized as a gray scale image, as shown in Fig. 3.

The main benefit of visualizing a malicious executable 100 as an image is that

the  different  sections  of  a  binary  can  be  easily  differentiated.  In  addition,  malware

authors only used to change a small part of the code to produce new variants. Thus, if

old malware is re-used to create new binaries the resulting ones would be very similar.
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Additionally,  by representing malware as an image it  is  possible  to detect  the small

changes while retaining the global structure of samples.

This  technique  for  malware  visualization  was  first  presented  in  the  work  of

Nataraj et al. named “Malware Images. Visualization and Automatic Classification”.

5. Miscellaneous features

This group of features comprises hand-crafted features defined by cyber security

experts. For instance, the size in bytes and the entropy of the sections of the Portable

Executable file, the frequency of use of the registers, the frequency of a set of keywords

from an executable, the attributes of the headers of the Portable Executable, among

others.

Fig. 4 presents an overview of the preprocessing module 110 decomposed into

the five aforementioned components.

Machine learning module description

The use of  machine learning algorithms to address the problem of  malicious

software detection and classification has increased during the last decade. Instead of

directly  dealing  with  raw  malware,  machine  learning  solutions  first  have  to  extract

features that provide an abstract view of the software. Then the features extracted can

be used to feed one machine learning method at least.

In one embodiment,  shown in Fig. 5, the system of the second aspect of the

invention  comprises  and  uses  multiple  machine  learning  submodules  121,  each

receiving as inputs the output provided by a respective of the static classifiers of the

preprocessing module 110.

The system receives a file 100 (such as an executable file) at a client or server

computer. The preprocessing module 110 is responsible of extracting a set of features

111 from the file 100, by means of the static classifiers. These features 111 are used as

input  to  the  machine  learning  submodules  121.  The  system  has  at  least  as  many

machine learning submodules 121 as groups of features.

The output of each machine learning submodule 121 is a value in the range [0,1].

A value close to 0 means that the executable 100 do not contain suspicious/malicious

indicators with regard of a specific group of features 111, otherwise, the value will be

close to 1. Any machine learning method can be used as static classifier. For instance,

neural networks, support vector machines or decision trees.

In an embodiment, a feed-forward neural network with at least three layers: (1)

an input layer, (2) one fully-connected layer and (3) an output layer can be used. The
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input layer has size equal to the length of the feature vector. The output layer has only

one neuron and outputs  the probability  of  an  executable  of  being  malicious  or  not.

Additionally, a dropout after every fully-connected layer can be added.

Alternatively, depending on the nature of the data, i.e. images and time series, it

might be useful to use a convolutional or a recurrent neural network as a classifier. In

particular,  convolutional  neural  networks have achieved great  success in  image and

time  series  related  classification  tasks.  Convolutional  neural  networks  consist  of  a

sequence of convolutional layers, the output of which is connected only to local regions

in the input. This structure allows learning filters able to recognize specific patterns in

the input data. The convolutional network can be composed by 5 or more layers: (1) the

input layer, (2) one convolutional layer, (3) one pooling layer, (4) one fully-connected

layer and (5) the output layer.

In  particular,  the  following  embodiments  present  concrete  implementations  of

static classifiers for each group of features. 

1. Static classifier embodiment 1: API function calls.

In  some  implementations,  the  behavior  of  an  executable  file  can  be

modelled by their use of the API functions. In those implementations, the executable file

is  disassembled  to  analyze  and  extract  the  API  function  calls  it  performs.  In  some

implementations,  every  API  function  and  system call  has  associated  a  feature.  The

feature range is [0,1]; 0 (or False) if the API function or system call hasn’t been called by

the program; 1 (or True) otherwise. Alternatively, one can count how many times every

API  function  has  been  called  during  the  execution  of  the  program.  In  other

implementations,  only  a  subset  of  the  available  API  function  calls  a  program  can

execute is considered. That is because the number of API function calls a program can

execute is huge and some of them are irrelevant to model the program’s behavior. Thus,

in some implementations only a subset of the available API function calls is considered.

To  select  which  are  the  most  informative  API  function  calls  to  record,  any  feature

selection technique might be considered.

A feed-forward network can be utilized to analyze the API functions invoked by a

computer  program.  The feed-forward network  may have one or  more hidden  layers

followed by an output layer, which generates a classification for the file (e.g. malicious or

benign). The classification of the file can be provided at an output of the convolutional

neural network.

2. Static classifier embodiment 2: Structural entropy.

In some implementations, an executable file can be represented as a stream of

entropy values, where each value describes the amount of entropy over a small chunk
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of code in a specific location of the file. For each chunk of code, the entropy is computed

using the Shannon’s formula. A convolutional neural network can be utilized to analyze

the stream of entropy values by applying a plurality of kernels to detect certain patterns

in the variation between entropy values of adjacent chunks. 

The  convolutional  network  can  detect  malicious  executables  by  providing  a

classification  of  the  disassembled  binary  file  (maliciousness  score:  [0,1]).  The

convolutional neural network may include a convolutional layer, a pooling layer, a fully

connected  layer  and  an  output  layer.  The  convolutional  neural  network  can  be

configured to process streams variable in length. As such, one or more techniques can

be  applied  to  generate  fixed  length  representations  of  the  entropy values.  In  some

implementations, the first convolutional layer can be configured to process the stream of

entropy  values  by  applying  a  plurality  of  kernels  K1,1,  K1,2,...,  K1,x  to  the  entropy

values. Each kernel applied to the first convolutional layer can be configured to detect

changes  between  entropy  values  of  adjacent  chunks  in  a  file.  According  to  some

implementations, each kernel applied to the first convolutional layer can be adapted to

detect a specific sequence of entropy values, having w values.

Although the convolutional neural network has been indicated as comprising 3

convolutional layers, it should be appreciated that the convolutional neural network can

include less or more convolutional layers.

In some implementations, the pooling layer can be configured to further process

the output from a preceding convolutional layer by compressing (e.g. subsampling or

down sampling) the output from the preceding convolution layer. The pooling layer can

compress the output by applying one or more pooling functions, including for example a

maximum pooling functions.

In  some  implementations,  the  output  of  the  pooling  layer  can  be  further

processed by the one or more fully connected layers and the output layer in order to

generate a classification for the file (e.g. malicious or benign). The classification of the

file can be provided at an output of the convolutional neural network.

3. Static classifier embodiment 3: Assembly language instructions.

In some implementations, a binary file can be disassembled thereby forming a

discernible  sequence  of  instructions  having  one  or  more  identifying  features  (e.g.

instruction mnemonics). A convolutional neural network (CNN) can be utilized to analyze

the disassembled binary file by applying a plurality of kernels (filters) adapted to detect

certain sequences of instructions in the disassembled file.  The convolutional network

can  detect  malicious  executables  by  providing  a  classification  of  the  disassembled

binary file (maliciousness score: [0,1]).
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The convolutional neural network may include a convolutional layer, a pooling

layer, a fully connected layer and an output layer. The convolutional neural network can

be configured to process a sequence of instructions that are variable in length. As such,

one or more techniques can be applied to generate fixed length representations of the

instructions.  Moreover,  the fixed length of  instructions can be encoded in a way the

network understands their meaning. Remember that neural networks cannot deal with

not  numerical  features.  Thus,  mnemonics  are  encoded  using  one-hot  vector

representations. Afterwards, each one-hot vector is represented as a word embedding,

that  is  a  vector  of  real  numbers.  This  vector  representation  of  the opcodes  can be

generated during the training phase of  the convolutional  network or  using any other

approach  such  as  neural  probabilistic  language  models,  i.e.  SkipGram  model,

Word2Vec model, Recurrent Neural Network models, etc.

In  some  implementations,  the  first  convolutional  layer  can  be  configured  to

process the encoded fixed mnemonics representations by applying a plurality of kernels

K1,1,  K1,2,...  K1,x  to  the  encoded  fixed  mnemonics  representations.  Each  kernel

applied at the first convolutional layer can be configured to detect a specific sequence of

instructions.  According  to  some  implementations,  each  kernel  applied  to  the  first

convolutional  layer  can  be  adapted  to  detect  a  sequence  having  a  number  of

instructions. That is, kernels K can be adapted to detect instances where a number of

instructions  appear  in  a  certain  order.  For  example,  kernel  K1,1 can be adapted to

detect the instruction sequence [cmp, jne, dec] while  kernel K1,2 can be adapted to

detect the instruction set [dec, mov, jmp]. The size of each kernel (w, the number of

instructions) corresponds to the window size of the first convolutional layer.

In some implementations, the convolutional layer may have kernels of different

size. For instance, one kernel may be adapted to detect the instruction sequence [dec,

mov, jmp] while another kernel may be adapted to detect the instruction set [dec, mov,

jmp, pull, sub].

Although the convolutional neural network is shown to include one convolutional

layer,  it  should  be  appreciated  that  the  convolutional  neural  network  can  include  a

different number of convolutional layers. For instance, the convolutional neural network

can include more convolutional layers such as 2.

Thus, in some implementations, the kernels K2,1, K2,2, …. K,2,x applied to the

second convolutional layer can be adapted to detect specific sequences of two or more

of the sequences of instructions detected at the first convolutional layer. Consequently,

the second convolutional layer would generate increasingly abstract representations of

the sequence of instructions from the disassembled binary file.
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In some implementations, the pooling layer can be configured to further process

the output from a preceding convolutional layer by compressing (e.g. subsampling or

down sampling) the output from the preceding convolution layer. The pooling layer can

compress the output by applying one or more pooling functions, including for example a

maximum pooling functions.

In  some  implementations,  the  output  of  the  pooling  layer  can  be  further

processed by the one or more fully connected layers and the output layer in order to

generate a classification for the disassembled binary file (e.g. malicious or benign). The

classification  of  the  disassembled  binary  file  can  be  provided  at  an  output  of  the

convolutional neural network.

4.  Static  classifier  embodiment  4:  Image-based  representation  of  malware’s

hexadecimal content.

In some implementations, a software program can be visualized as an image,

where every byte interpreted as one pixel  in the image. Then, the resulting array is

organized as a 2-D array and visualized as a gray scale image. Approaches such as

convolutional neural networks can yield classifiers that can learn to extract features that

are at least as effective as human-engineered features. A convolutional neural network

implementation to extract  features can advantageously  make use of  the connectivity

structure between feature maps to extract local and invariant features from an image. A

convolutional  neural  network (CNN) can be utilized to analyze the file by applying a

plurality of kernels (filters) adapted to detect certain local and invariant patterns in the

pixels  of  the  representation  of  the  software  program  as  a  gray-scale  image.  The

convolutional network can detect malicious executables by providing a classification of

the disassembled binary file (maliciousness score: [0,1]).

The convolutional neural network at least may include a convolutional layer, a

pooling layer, a fully connected layer and an output layer. In some implementations, it

may include more than one convolutional, pooling and fully connected layers. According

to some implementations,  each kernel applied to the first  convolutional  layer can be

adapted to detect a pattern in the pixels of the image having w x h size, where w is the

width  and  h  is  the  height  of  the  kernel.  Subsequent  convolutional  layers  detect

increasingly abstract features.

In some implementations, the pooling layer can be configured to further process

the output from a preceding convolutional layer by compressing (e.g. subsampling or

down sampling) the output from the preceding convolution layer. The pooling layer can

compress the output by applying one or more pooling functions, including for example

the maximum pooling function.
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In  some  implementations,  the  output  of  the  pooling  layer  can  be  further

processed by the one or more fully connected layers and the output layer in order to

generate a classification for the file (e.g. malicious or benign). The classification of the

file can be provided at an output of the convolutional neural network.

5. Static classifier embodiment 5: Miscellaneous features.

In  any  embodiment  of  the  invention,  the  so-called  “miscellaneous”  features

include those applicable software characteristics. These characteristics at least include

the keywords occurring in the software of the program and the fields of the header of a

file in any format. Other type of features may also be used.

Next  table  illustrates the fields  of  the header  of  a  file  in  portable executable

format.  For  example,  these  fields  are:  MajorLinkedVersion,  MinorLinkerVersion,

SizeOfCode,  SizeOfInitializedData,  etc.  Shown  is  relevant  information  that  contains

suitable  characteristics  to  use  as  features.  These  characteristics  are  specific  to

information of  a Portable Executable file  header,  but  other file types will  have other

relevant header information and characteristics.

Feature Name Feature Value Feature Name Feature Value
MajorLinkerVersion  The  linker  minor

version number.

MajorLinkerVersion  The  linker  minor

version number.
MinorLinkerVersion  The  linker  minor

version number.

MinorLinkerVersion  The  linker  minor

version number.
SizeOfCode  The  size  of  the  code  (text)

section, or the sum of all

SizeOfCode  The  size  of  the  code  (text)

section, or the sum of all
SizeOfInitializedData The size of the initialized data section, or

the sum of all  such sections if  there are

multiple data sections.
SizeOfUninitializedData The size of  the uninitialized data section

(BSS), or the sum of all  such sections if

there are multiple BSS sections

In  another  embodiment,  shown  in  Fig.  6,  the  preprocessing  module  110  is

responsible  of  extracting  a set  of  informative  features  111 from the file  100.  These

features 111 are then aggregated and fed as input to a common static classifier 122,

which will  determine whether the file 100 is malicious or not.  The input of the static

classifier 123 is the features 111 from the distinct groups extracted by the preprocessing

module 110. The output 123 of the static classifier 122 is a value in the range [0,1]. A

value close to 0 means that the executable 100 does not contain suspicious/malicious

indicators with regard to the features 111, otherwise, the value will be close to 1. Any
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machine  learning  method  can  be  used  as  classifier.  For  instance,  neural  networks,

support vector machines or decision trees.

In  another  embodiment,  showed  in  Fig.  7,  the  preprocessing  module  110  is

responsible  of  extracting  a set  of  informative  features  111 from the file  100.  These

features 111 are used as input  to  static  classifiers.  The system has as many static

classifiers as set of features and, in contrast to the embodiment of Fig. 5, a further static

classifier that would aggregate and use the features of all groups as input. The output

123 of each machine learning classifier 122 is a value in the range [0, 1]. A value close

to 0 means that the executable 100 do not contain suspicious/malicious indicators with

regard of a specific group of features 111, otherwise, the value will be close to 1. Any

machine  learning  method  can  be  used  as  classifier.  For  instance,  neural  networks,

support vector machines or decision trees.

Fuzzy inference module description

The  last  component  of  the  malware  detection  system is  the  fuzzy  inference

engine 130. Its aim is to define a set of fuzzy rules of whether an executable is malicious

based on the output of the machine learning methods and the features extracted by the

preprocessing module.

This component 130 performs the following steps:

● receives one or more input  values and generates an array of  values each

representing a membership degree of a respective input value in a predefined fuzzy set

(fuzzification);

● combines the membership values on the premise part to get firing strength

(degree of fulfilment) of each rule;

● generates the qualified consequent  part  (either fuzzy or  crisp) of  each rule

depending on the firing strength;

●  aggregates  the  qualified  consequent  part  to  produce  a  crisp  output

(defuzzification).

The fuzzy inference module 130 can be decomposed into functional blocks, as

depicted in Fig. 8, and described below in detail.

A/ Fuzzification:

First, the input values of the system have to be converted to fuzzy variables. This

process is named fuzzification 131. Fuzzification 131 involves two processes: derive the

membership functions for input and output variables, and represent them with linguistic
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variables. (Given two inputs, x1 and y1, determine the degree to which input variables

belong to each of the appropriate fuzzy sets.)

The input values are two-fold: a feature vector of program characteristics named

F, of size |F|, where Fi  ∈ F corresponds to the value of the i-th feature of the program

100. This feature vector is extracted by the preprocessing module 110; and a score

vector containing the output scores 123 of the machine learning algorithms named S of

size |S|, where |S| is equal to the number of distinct algorithms that have been applied to

predict  the maliciousness of  the program based on distinct  groups of  features.  This

score vector is generated by the machine learning module 120.

To  illustrate  the  process  of  fuzzification  131,  a  vector  of  only  two  features

containing the entropy of the .text section of a Portable Executable 100 and the score

123 generated by a machine learning algorithm will be considered as input.

The entropy of a bytes sequence refers to the amount of disorder (uncertainty) or

its statistical variation. The entropy value ranges from 0 to 8. If occurrences of all values

are the same, the entropy will be largest. On the contrary, if certain byte values occur

with  high  probabilities,  the  entropy  value  will  be  smaller.  According  to  studies,  the

entropy  of  plain  text,  native  executables,  packed  executables  and  encrypted

executables tend to differ greatly. In consequence, the [0,8] range can be further divided

into at least six sub-ranges or subsets, which are:

● VERY LOW: From 0 to 4.328 entropy

● LOW: From 4.066 to 5.030 entropy

● MEDIUM: From 4.629 to 6.369 entropy

● HIGH: From 6.219 to 7.267 entropy

● VERY HIGH: From 6.838 to 7.312

● EXTREME: From 7.215 to 8.0

The membership function of these subsets is shown in Fig. 9. To make thing

simple,  a  trapezoidal  waveform is  utilized  for  this  type of  membership  function.  For

instance, 4.0 entropy will belong to “very low” to 0.6 degree and to “low” to 0.4 degree.

The score 123 of a given machine learning classifier 122 is a value in the range

[0,  1].  A  value  close  to  0  means  that  the  executable  100  do  not  contain

suspicious/malicious indicators with regard of a specific group of features 111, and it is a

low threat, otherwise, the value will be close to 1. This score 123 can be further divided

into at least three sub-ranges or subsets which are:

● LOW: From 0.0 to 0.5

● MEDIUM: From 0.2 to 0.75

● HIGH: From 5.0 to 1.0
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The membership function of these subsets is shown in Fig. 10. For example, 0.4

score belongs to “LOW” to 0.38 degree and to “MEDIUM” to 1.0 degree.

In the implementation of the current subject matter, the fuzzy sets corresponding

to all machine learning classifiers 122 are defined using the same membership functions

for simplicity purposes. However, this is not a constraint and they might be defined with

different membership functions and fuzzy sets.

B/ Knowledge Base:

The rule base and the database of the invention are jointly referred to as the

knowledge base 132. The knowledge base 132 comprises:

● a rules base 133 containing a number of fuzzy IF-THEN rules. These IF-THEN

rules lead to what action or actions should be taken in terms of the currently observed

information. A fuzzy rule associates a condition described using linguistic variables and

fuzzy sets to an output or a conclusion. The IF part is mainly used to capture knowledge

and the THEN part can be utilized to give the conclusion or output in linguistic variable

form. IF-THEN rules are widely used by the inference engine to compute the degree to

which the input data matches the condition of a rule.

● a database 134 which defines the membership functions of the fuzzy sets.

Fuzzy sets are sets whose elements have degrees of membership. Fuzzy set theory

permits  the  gradual  assessment  of  the  membership  of  elements  in  a  set;  this  is

described with the aid of a membership function valued in the real unit interval [0,1]. The

membership function represents the degree of truth. The system has associated one

fuzzy set to every input feature. See the membership functions of features “entropy” and

“machine learning score” previously presented.

The IF-THEN rules and the membership functions of the fuzzy sets might be

defined by experts in the field or by exploiting approximation techniques from neural

networks.  On  the  one  hand,  experts  extract  comprehensible  rules  from  their  vast

knowledge of the field. These rules are fine-tuned using the available input-output data.

On the other hand, neural network techniques are used to automatically derive rules

from the data.

Every rule is attached with a degree of belief or weight in the real interval (0, 1]

that denotes a lower bound on the belief on the rule in terms of necessity measures. So,

that rules that are demonstrated to be key for the decision system have a higher weight,

and rules not so useful in the decision system have a lower weight. The rules created by

the system may have a higher degree of belief than the rules created by a human, or

vice versa.
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For example, the system may create rules of the following form:

●  Rule  1:  IF  (entropy(.text)  is  “high”  OR  entropy(.text)  is  “very_high”  OR

entropy(.text)  is  “extreme”)  AND  (call(“CryptAcquireContext”)  OR

call(“CryptEncrypt”)  OR  call(“CryptReleaseContext”))  THEN  file  100  is

encrypted with a degree of belief of 1.0

● Rule 2: IF entropy(file)  is “very_high” AND ML_score(ENTROPY) is “high”

THEN file 100 is encrypted with a degree of belief of at least 0.9

● Rule  3:  IF has_section(UPX0)  OR has_section(UPX1)  or  has_section(“X”)

THEN file 100 is compressed with a degree of belief of at least 0.9

●  Rule  4:  IF  file  100  is  encrypted  AND  ML_score(API)  is  “low”  and

ML_score(Opcodes) is “low” THEN file 100 is benign with a degree of belief

of at least 0.7

●  Rule  5:  IF  file  100  is  encrypted  AND  ML_score(API)  is  “medium”  and

ML_score(Opcodes) is “medium” THEN file 100 is suspicious with a degree

of belief of at least 0.8

●  Rule  6:  IF  file  100  is  encrypted  AND  (ML_score(API)  is  “high”  OR

ML_score(Opcodes) is “high” THEN file 100 is malicious with a degree of

belief of at least 0.9

●  Rule  7:  IF  file  100  is  compressed  AND  ML_score(ENT)  is  “high”  AND

(ML_score(API) is “medium” OR ML_score(Opcodes) is “medium” THEN file

100 is malicious with a degree of belief of at least 0.8

● Rule 8: IF file 100 is compressed AND ML_score(ENT) is “medium” or “low”

AND ML_score(API) is “low” AND ML_score(Opcodes) is “low” THEN file

100 is benign with a degree of belief of at least 0.8

Due to the complexity and number of rules, in this implementation of the system

only few rules related to very few fuzzy sets (entropy and ML scores) were presented.

Notice  that  some  of  the  conditions  of  rules  are  crisp  values.  For  instance

call(“CryptAcquireContext”) is TRUE if the executable calls “CryptAcquireContext” and

FALSE otherwise.

C/ Inference Engine

The decision-making unit (Inference Engine) 135 is the inference procedure upon

the fuzzy rules and given facts to derive a reasonable output or conclusion 140. Even

that any fuzzy inference system could be used, e.g. Mandani Fuzzy Models, Sugeno

Fuzzy Models, Tsukamoto Fuzzy Models, etc., in the current embodiment, the inference

engine  is  based  on  the  PGL+  reasoning  system,  for  reasoning  under  possibilistic

5

10

15

20

25

30

35

GOING DEEP INTO THE CAT AND THE MOUSE GAME: DEEP LEARNING
FOR MALWARE CLASSIFICATION

144



21

uncertainty and disjunctive vague knowledge. PGL+ is a possibilistic logic programming

framework with fuzzy constants based on the Horn-rule fragment of  Gödel  infinitely-

valued logic with an efficient proof algorithm based on a complete calculus and oriented

to  goals  (conclusions).  Fuzzy  constants  are  interpreted  as  disjunctive  imprecise

knowledge and the partial matching between them is computed by means of a fuzzy

unification mechanism based on a necessity-like measure.

For instance, if the entropy of the “.text” section is 7.2, the score returned by a

given machine learning model trained on the structural entropy of the executable is 0.65

and the executable calls the functions “CryptAcquireContext” and “CryptEncrypt”, then

rules 1 and 2 are fired.

Rules fired:

●  Rule  1:  IF  (entropy(.text)  is  “high”  OR  entropy(.text)  is  “very_high”  OR

entropy(.text)  is  “extreme”)  AND  (call(“CryptAcquireContext”)  OR call(“CryptEncrypt”)

OR call(“CryptReleaseContext”)) THEN file 100 is encrypted with a degree of belief of

1.0

●  Rule  2:  IF  entropy(file)  is  “very_high”  AND ML_score(ENTROPY)  is  “high”

THEN file 100 is encrypted with a degree of belief of at least 0.9

To  aggregate  the  output,  it  is  used  the  minimum  as  defined  by  the  PGL+

reasoning system.

● File 100 is encrypted with a degree of belief >= min(degree of belief of rule 1,

degree of belief of rule 2) == file 100 is encrypted with a degree of belief >= min(1.0, 0.9)

== file 100 is encrypted with a degree of belief >= 0.9

Considering  that  the  ML_score(API)=0.21  and  the  ML_score(Opcodes)=0.15

then, if rule 1 or rule 2 are activated, consequently rule 4, 5 and 6 are fired but only rule

4 is satisfied

●  Rule  4:  IF  file  100  is  encrypted  AND  ML_score(API)  is  “low”  and

ML_score(Opcodes) is “low” THEN file 100 is benign with a degree of belief of at least

0.7

As a result, the output of the inference engine 135 is: file 100 is benign with a

degree of belief >= min(0.7, min(degree of belief of rule 1, degree of belief of rule 2)) ->

file 100 is benign with a degree of belief >= min(0.7, min(1.0, 0.9)) ->“file 100 is benign

with a degree of belief >= 0.7”

D/ Defuzzification.

The output of the Inference Engine 135 is a conclusion involving fuzzy constants

together with the degree on the belief on the conclusion. The belief degree to classify
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the file 100 as malware is used, and fuzzy constants are transformed into crisp values

using  membership  functions  analogous  to  the  ones  used  by  the  fuzzifier  131.  The

invention may use, but not limited to, one of the following defuzzification 136 methods:

1. Centroid of Area (COA)

2. Bisector of Area (BOA)

3. Mean of Maximum (MOM)

4. Smallest of Maximum (SOM)

5. Largest of Maximum (LOM)

In the current embodiment, the output fuzzy set might be decomposed into at

least three sub-ranges or subsets, which are represented as membership functions in

Fig. 11:

● BENIGN: from 0 to 0.4

● SUSPICIOUS: from 0.2 to 0.8

● MALICIOUS: from 0.5 to 1.0

Given the degree of fulfilment and the degree of belief of the consequent part of

each fired rule, the fuzzy output is converted to a crisp output using, but not limited to,

any  of  the  aforementioned  defuzzification  methods  136.  For  instance,  following  the

example presented in C/, if the output of the fuzzy inference engine is “file 100 is benign

with a degree of  belief  >= 0.7”  and the defuzzification method 136 is  the “Mean of

Maximum(MOM)”, then the crisp value of the fuzzy set using MOM is y* = (a + b) / 2,

where a is the minimum highest value of the membership function “benign”, aka 0, and b

is the maximum highest value of the membership function, aka 0.2. In consequence y* =

(0 +0.2) / 2 = 0.1.

Use Case

The steps for predicting the maliciousness of a previously unseen executable

100 in a concrete implementation of the system of the second aspect of the present

invention  are  described  below.  Due  to  its  complexity,  in  this  implementation  of  the

system only a reduced subset of features 111 are extracted. Therefore, the number of

machine learning methods and fuzzy rules and fuzzy sets has been reduced accordingly

to fit the needs of this concrete implementation.

Steps:

1.  An unseen executable (XXXXXXXXXXXX.exe)  100 is  passed as input  to the

system. The preprocessing module 110 extracts a subset of features 111 that
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provides an abstract view of the program. In particular, the preprocessing module

110 extracts at least the following features 111:

a. File entropy: 7.2

b. Windows API function calls: {“CryptAcquireContext”: True, “CryptEncrypt”:

True, “CreateFile“: True, “CopyFile”: False, …}

c.  Sequence  of  assembly  language  instructions:  [“inc  eax”,  “call  Clrsc”,

“jump L1”, “add ebx, eax”, ...]

d. Structural entropy

2. The aforementioned data is passed as input to some machine learning methods

to calculate a maliciousness score 123 based on a particular feature or subset of

features 111.

a. Machine learning model 1 outputs a maliciousness score 123 equal to

0.65  with  respect  to  the  structural  entropy  of  the  executable  100.  (A

machine  learning  model  is  defined  as  the  output  generated  when  a

machine learning algorithm is trained with your training data).

b. Machine learning model 2 outputs a maliciousness score 123 equal to

0.15 with respect to the sequence of instructions of the executable 100.

c. Machine learning model 3 outputs a maliciousness score 123 equal to

0.21 with respect to the imported Windows API functions.

3. Next, the features 111 and M.L. scores 123 are passed as input to the fuzzy

inference  module  130  to  calculate  the  final  maliciousness  score  140  of  the

executable 100. Considering a rule base consisting of the following rules:

a. Rule 1: IF (entropy(.text) is “high” OR entropy(.text) is “very_high” OR

entropy(.text)  is  “extreme”)  AND  (call(“CryptAcquireContext”)  OR

call(“CryptEncrypt”)  OR  call(“CryptReleaseContext”))  THEN  file  100  is

encrypted with a degree of belief of 1.0

b. Rule 2: IF entropy(file) is “very_high” AND ML_score(ENTROPY) is “high”

THEN file 100 is encrypted with a degree of belief of at least 0.9

c. Rule 3: IF has_section(UPX0) OR has_section(UPX1) or has_section(“X”)

THEN file 100 is compressed with a degree of belief of at least 0.9

d.  Rule  4:  IF  file  100  is  encrypted  AND  ML_score(API)  is  “low”  and

ML_score(Opcodes) is “low” THEN file 100 is benign with a degree of

belief of at least 0.7

e.  Rule 5:  IF file 100 is encrypted AND ML_score(API)  is  “medium” and

ML_score(Opcodes)  is  “medium”  THEN  file  100  is  suspicious  with  a

degree of belief of at least 0.8
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f.  Rule  6:  IF  file  100  is  encrypted  AND  (ML_score(API)  is  “high”  OR

ML_score(Opcodes) is “high” THEN file 100 is malicious with a degree of

belief of at least 0.9

g. Rule 7: IF file 100 is compressed AND ML_score(ENT) is “high” AND

(ML_score(API) is “medium” OR ML_score(Opcodes) is “medium” THEN

file 100 is malicious with a degree of belief of at least 0.8

h. Rule 8: IF file 100 is compressed AND ML_score(ENT) is “medium” or

“low”  AND  ML_score(API)  is  “low”  AND  ML_score(Opcodes)  is  “low”

THEN file 100 is benign with a degree of belief of at least 0.8

If  the entropy of the “.text”  section is 7.2, the score 123 returned by a given

machine learning module 121 trained on the structural entropy of executables is 0.65

and  the executable  invokes  the  functions  “CryptAcquireContext”  and  “CryptEncrypt”,

then rules 1 and 2 are fired.

Rules fired:

●  Rule  1:  IF  (entropy(.text)  is  “high”  OR  entropy(.text)  is  “very_high”  OR

entropy(.text)  is  “extreme”)  AND  (call(“CryptAcquireContext”)  OR

call(“CryptEncrypt”)  OR  call(“CryptReleaseContext”))  THEN  file  100  is

encrypted with a degree of belief of 1.0

● Rule 2: IF entropy(file) is “very_high” AND ML_score(ENTROPY) is “high” THEN

file 100 is encrypted with a degree of belief of at least 0.9

To aggregate the output 140,  it  is  used the minimum as defined by the PGL+

reasoning system.

● file 100 is encrypted with a degree of belief >= min(degree of belief of rule 1,

degree of belief of rule 2) == file 100 is encrypted with a degree of belief >=

min(1.0, 0.9) == file 100 is encrypted with a degree of belief >= 0.9

Considering that the ML_score(API)=0.21 and the ML_score(Opcodes)=0.15 then,

if rule 1 or rule 2 are activated, consequently rule 4, 5 and 6 are fired but only rule 4 is

satisfied.

●  Rule  4:  IF  file  100  is  encrypted  AND  ML_score(API)  is  “low”  and

ML_score(Opcodes) is “low” THEN file 100 is benign with a degree of belief of

at least 0.7

As a result, the output of the inference engine 133 is: file 100 is benign with a

degree of belief >= min(0.7, min(degree of belief of rule 1, degree of belief of rule 2)) ->
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file 100 is benign with a degree of belief >= min(0.7, min(1.0, 0.9)) ->“file 100 is benign

with a degree of belief >= 0.7”.

Afterwards the output of the fuzzy inference engine 133 (“file 100 is benign with a

degree  of  belief  >=  0.7”)  is  defuzzified  136  using  the  “Mean  of  Maximum(MOM”)

defuzzification method. In consequence, the resulting crisp value returned by the system

is calculated using the formula: y* = (a + b) / 2, where a is the minimum highest value of

the membership function “benign”, i.e. 0, and b is the maximum highest value of the

membership function, i.e. 0.2. In consequence y* = (0 +0.2) / 2 = 0.1.

In  an  embodiment,  the  PGL+  involves  a  semantical  unification  model  of

disjunctive fuzzy constants and three other inference patterns together with a deductive

mechanism based on a modus ponens style. The PGL+ system allows expressing both

ill-defined properties and weights with which properties and patterns can be attached

with. For instance, suppose that the problem observation corresponds to the following

statement “it is almost sure that the entropy file is around_20”. This statement can be

represented in the proposed system with the formula: 

(entropy (around_20), 0.9),

where entropy(.) is a  classical predicate expressing the entropy property of the problem

domain; around_20 is a fuzzy constant;  and the degree 0.9 expresses how much is

believed the formula entropy(around_20) in terms of a necessity measure.

In  case  around_20  denotes  a  crisp  interval  of  entropy  values,  the  formula

(entropy (around_20), 0.9) is interpreted as the sentence “exists x in around_20 such

that entropy(x)” being certain with a necessity of at least 0.9. So, fuzzy constants can be

seen as (flexible) restrictions on an existential quantifier. Moreover, suppose the fuzzy

pattern “we are more or less sure that the file is encrypted when its entropy is high” is

considered. This pattern can be represented in the proposed system with the formula: 

(entropy (high) -> encrypted, 0.7),

where high is a fuzzy constant and the degree 0.7 expresses how much is believed the

file is encrypted since entropy is high.

From knowledge {(entropy(around_20), 0.9), (entropy(high) -> encrypted, 0.7)},

the PGL+ system computes  the degree of  belief  of  the crisp property  encrypted by

conveniently combining the degrees of belief 0.9 and 0.7 together with the degree of

partial matching between both fuzzy constants high and around_20.

In another embodiment, the inference procedure based on the PGL+ reasoning

system is divided in three algorithms which are applied sequentially. First, a completion

algorithm, which extends the set of rules and facts with all valid clauses by means of the

following Generalized Resolution and Fusion inference rules:
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Generalized resolution:

Fusion:

Second, a translation algorithm, which translates the completed set of rules and

facts into a semantically equivalent set of 1-weighted clauses by means of the following

inference rules:

Intersection:

Resolving uncertainty:

Semantical unification:

where => is the reciprocal of Gödel’s many-valued implication, defined as x => y

= 1 if x≤ y and x=> y = 1-x, otherwise.

Modus ponens:

And,  finally,  a  deduction  algorithm,  based  on the Semantical  unification  rule,

which  computes  the maximum degree of  possibilistic  entailment  of  a  goal  from the

equivalent set of 1-weighted facts. 

The completion  algorithm first  computes the set  of  valid  clauses that  can be

derived by applying the  Generalized resolution rule (i.e.  by chaining clauses).  Then,

from this new set of valid clauses, the algorithm computes all valid clauses that can be

derived by applying the Fusion rule (i.e. by fusing clauses). As the Fusion rule stretches
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the body of rules and the Generalized resolution rule modifies the body or the head of

rules, the chaining and fusion steps have to be performed while new valid clauses are

derived. As the chaining and fusion steps cannot produce infinite loops and each valid

clause is either an original clause or can be derived at least from two clauses, in the

worst-case each combination of clauses derives a different valid clause. Hence, as a

finite set of facts and rules N is had, in the worst-case the number of valid clauses is 

.

However, in general, only a reduce set of clauses can be combined to derive

new valid clauses. Indeed, c1, c2 and c3 can derive a new valid clause if c1 and c2, c1

and c3, or c2 and c3 derive a valid clause different to c1, c2 and c3.

The algorithm for translating a set of facts and rules into a set of 1-weighted

clauses is based on the following result: 

where, and P denotes the set of facts

and rules;  i.e.  the  maximum

degree of satisfiability of a goal q(C) can be computed from a single 1-weighted clause

(q(Dq); 1) instead of considering the entire original knowledge base P. Then, as Dq can

be determined just from Pq
+¿¿

(i.e. the clauses of P+¿¿ whose heads are q or q depends on

their heads), and each rule in  Pq
+¿¿

 can be replaced by a fact applying the Semantical

unification and Modus ponens rules: each clause

can be replaced by

At this point, Dq can be computed from this finite set of facts by applying the UN and IN

rules. As non-recursive programs are only considered, the above mechanism can be

recursively applied for determining ‖p‖ P for each predicate P such that q depends on p

in  P,  and thus,  the time complexity  of  the translation  algorithm is  linear  in  the total

number of occurrences of predicates symbols in (P)+.

Finally,  if  (q(Dq);  1)  is  the  1-weighted  clause  computed  by  the  translation

algorithm for a propositional variable q, we have that ‖q(C)‖ P = ‖q(C)‖ P = N (C|Dq )
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and thus, after applying the completion and translation algorithms, the maximum degree

of satisfiability of a goal q(C) corresponds with the maximum degree of deduction of q(C)

from  P and  can  be  computed in  a  constant  time complexity  in  the  sense that  it  is

equivalent to compute the partial matching between two fuzzy constants: 

,

where => is the reciprocal of Gödel's many-valued implication.

One important  feature of  inference procedure based on the PGL+ reasoning

system is that when extending the knowledge with new facts only the set of 1-weighted

clauses must be computed again, and thus, the set of hidden clauses, which from a

computational point of view is the hard counterpart of dealing with fuzzy constants, must

be computed again only if new rules are added to the model.

Various  aspects  of  the  proposed method may be embodied in  programming.

Program aspects  of  the  technology  may be  thought  of  as  “products”  or  “articles  of

manufacture” typically  in  the form of  executable code and/or associated data that  is

carried on or embodied in a type of machine readable medium. Tangible non-transitory

“storage”  type  media  include  any  or  all  of  the  memory  or  other  storage  for  the

computers,  processors,  or  the  like,  or  associated  modules  thereof,  such as  various

semiconductor  memories,  tape  drives,  disk  drives  and  the  like,  which  may  provide

storage at any time for the software programming. 

All or portions of the software may at times be communicated through a network

such  as  the  Internet  or  various  other  telecommunication  networks.  Such

communications, for example, may enable loading of the software from one computer or

processor into another, for example, from a management server or host computer of a

scheduling system into the hardware platform(s) of a computing environment or other

system implementing a computing environment or similar functionalities in connection

with  image  processing.  Thus,  another  type  of  media  that  may  bear  the  software

elements includes optical, electrical and electromagnetic waves, such as used across

physical interfaces between local devices, through wired and optical landline networks

and over various air-links. The physical elements that carry such waves, such as wired

or wireless links, optical links or the like, also may be considered as media bearing the

software. As used herein, unless restricted to tangible “storage” media, terms such as

computer  or  machine  “readable  medium”  refer  to  any  medium  that  participates  in

providing instructions to a processor for execution. 

A machine-readable medium may take many forms, including but not limited to, a

tangible storage medium, a carrier wave medium or physical transmission medium. Non-

volatile storage media include, for example, optical or magnetic disks, such as any of the
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storage devices in any computer(s), or the like, which may be used to implement the

system or any of its components shown in the drawings. Volatile storage media may

include  dynamic  memory,  such  as  a  main  memory  of  such  a  computer  platform.

Tangible transmission media may include coaxial cables; copper wire and fiber optics,

including the wires that form a bus within a computer system. Carrier-wave transmission

media  may take the form of  electric  or  electromagnetic  signals,  or  acoustic  or  light

waves such as  those generated during radio  frequency (RF)  and infrared (IR)  data

communications. Common forms of computer-readable media may include, for example:

a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a

CD-ROM, DVD or DVD-ROM, any other optical medium, punch cards paper tape, any

other physical storage medium with patterns of holes, a RAM, a PROM and EPROM, a

FLASH-EPROM, any other memory chip or cartridge, a carrier wave transporting data or

instructions, cables or links transporting such a carrier wave, or any other medium from

which a computer may read programming code and/or data. Many of these forms of

computer readable media may be involved in carrying one or more sequences of one or

more instructions to a physical processor for execution.

Those skilled in the art will recognize that the present teachings are amenable to

a  variety  of  modifications  and/or  enhancements.  For  example,  although  the

implementation  of  various  components  described  herein  may  be  embodied  in  a

hardware device,  it  may also  be implemented as a  software only  solution—e.g.,  an

installation on an existing server. 

The present disclosure and/or some other examples have been described in the

above. According to descriptions above, various alterations may be achieved. The topic

of the present disclosure may be achieved in various forms and embodiments, and the

present  disclosure  may  be  further  used  in  a  variety  of  application  programs.  All

applications, modifications and alterations required to be protected in the claims may be

within the protection scope of the present disclosure.

The scope of the present invention is defined in the following set of claims.
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Claims

1. A computer-implemented method for identifying a malicious file, the method

comprising:

- performing a static analysis of a potentially malicious file,  obtaining a set of

features that provide an abstract view of the malicious file;

- performing a static machine learning classification process using as inputs said

set of features, obtaining a preliminary classification output; and

-  performing  a  fuzzy  inference  procedure  based  on  possibilistic  logic,  for

reasoning  under  possibilistic  uncertainty  and  disjunctive  vague  knowledge,  using  as

input variables said set of features and said preliminary classification output, generating

an  enhanced  classification  output  that  identifies  the  potentially  malicious  file  as  a

malicious file or as a benign file.

2. A computer-implemented method according to claim 1, comprising:

- performing several static analyses of different types of the potentially malicious

file, obtaining corresponding sets of features that provide abstract views of the malicious

file;

- performing the static machine learning classification process using as inputs

said sets of features, obtaining the preliminary classification output; and

- performing the fuzzy inference procedure based on possibilistic logic using as

input variables the sets of features and the preliminary classification output.

3. A computer-implemented method according to claim 1, comprising:

- performing several static analyses of different types of the potentially malicious

file, obtaining corresponding sets of features that provide abstract views of the malicious

file;

- performing several static machine learning classification processes, each using

as inputs at least one respective of the sets of features, obtaining corresponding several

preliminary classification outputs; and

- performing the fuzzy inference procedure based on possibilistic logic using as

input variables the sets of features and the preliminary classification outputs.

 4. A computer-implemented method according to claim 3, comprising performing

a further static machine learning classification process, using as inputs several or all of

the sets of features, obtaining a corresponding further preliminary classification output;

and

- performing the fuzzy inference procedure based on possibilistic logic using as

input variable also the further preliminary classification output.
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5. A computer-implemented method according to any one of the previous claims,

wherein the fuzzy inference procedure comprises a fuzzification process that converts

the input variables into fuzzy variables.

6.  A  computer-implemented  method  according  to  claim  5,  wherein  the

fuzzification  process  comprises  deriving  membership  functions  relating  the  input

variables  with  output  variables  through  membership  degrees  of  values  of  the  input

variables  in  predefined  fuzzy  sets,  and  representing  the  membership  functions  with

linguistic variables, the linguistic variables being the fuzzy variables.

7. A computer-implemented method according to claim 5 or 6, wherein the fuzzy

inference procedure further comprises an inference decision-making process comprising

firing fuzzy possibilistic rules with values of the linguistic variables for the input variables,

generating a fuzzy output that identifies a degree of belief that the potentially malicious

file has to be a malicious file or a benign file.

8.  A  computer-implemented  method  according  to  claim  7,  further  comprising

selecting which fuzzy possibilistic rules to fire in the inference decision-making process,

based on at least  the values of the linguistic variables for the input variables.

9. A computer-implemented method according to claim 7 or 8, wherein the fuzzy

inference procedure further comprises a defuzzification process that converts said fuzzy

possibilistic  output  into  a  crisp  output,  wherein  said  crisp  output  constitutes  the

enhanced classification output.

10. A computer-implemented method according to any of the previous claims,

wherein the set or sets of features comprise at least one of the following:

 the frequency of  use of  Application  Programming Interfaces (API)  and

their function calls;

 the representation of an executable file as a stream of entropy values,

where each value describes the amount of entropy over a small chunk of

code in a specific location of the potentially malicious file;

 the sequence of assembly language instructions executed by a software

program  constituting  the  potentially  malicious  file,  in  particular,  the

operational codes of the machine language instructions;

 the  representation  of  an  executable  file,  constituting  the  potentially

malicious file, as an image, where every byte is interpreted as one pixel

in the image, wherein the resulting array is organized as a 2-D array and

visualized as a gray scale image;
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 applicable  program  characteristics,  at  least  including  alphanumeric

strings  occurring  in  the  body of  the  software program constituting  the

potentially malicious file and the fields from the header of the potentially

malicious file.

11. A computer-implemented method according to claim 10, wherein the sets of

features comprise at least two of the features sets.

12. A computer-implemented method according to any of the previous claims

wherein the fuzzy inference procedure based on possibilistic logic is based on a PGL+

algorithm. 

13. A computer-implemented method according to claim 12, wherein the PGL+

algorithm comprises applying three algorithms sequentially: a first algorithm that extends

the fuzzy possibilistic  rules by means of  implementing a first  set  of  rules;  a second

algorithm that translates the fuzzy possibilistic rules into a semantically equivalent set of

1-weighted  clauses  by  means  of  implemented  a  second  set  of  rules;  and  a  third

algorithm that computes a maximum degree of possibilistic entailment of a goal from the

equivalent set of 1-weighted clauses. 

14. A computing system for identifying a malicious file, comprising: 

- a preprocessing computing module (110), configured and arranged to perform a

static analysis of a potentially malicious file (100) to obtain a set of features that provide

an abstract view of the malicious file;

- a machine learning module (120), configured and arranged to perform a static

machine learning classification process using as inputs said set of features, to obtain a

preliminary classification output; and

- a fuzzy inference module (130), configured and arranged to perform a fuzzy

inference procedure based on possibilistic  logic  using as input  variables  said set  of

features and said preliminary classification output, to generate an enhanced possibilistic

classification  output  (140)  that  identifies  the  potentially  malicious  file  (100)  as  a

malicious file or as a benign file.

15. A system according to claim 14, wherein:

- the preprocessing computing module (110) is further configured and arranged

to perform several static analyses of different types of the potentially malicious file (100)

to obtain corresponding sets of features that provide abstract views of the malicious file;

-  the  machine  learning  module  (120)  is  further  configured  and  arranged  to

perform the static machine learning classification process using as inputs the sets of

features, to obtain the preliminary classification output; and
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- the fuzzy inference module (130) is further configured and arranged to perform

the fuzzy inference procedure based on possibilistic logic using as input variables the

sets of features and the preliminary classification output.

16. A system according to claim 14, wherein:

- the preprocessing computing module (110) is further configured and arranged

to perform several static analyses of different types of the potentially malicious file (100)

to obtain corresponding sets of features that provide abstract views of the malicious file;

-  the  machine  learning  module  (120)  is  further  configured  and  arranged  to

perform several static machine learning classification processes, each using as inputs at

least one respective of the sets of features, to obtain corresponding several preliminary

classification outputs; and

- the fuzzy inference module (130) is further configured and arranged to perform

the fuzzy inference procedure based on possibilistic logic using as input variables the

sets of features and the preliminary classification outputs.

17. A non-transitory computer program product comprising computer executable

software stored on a computer readable medium, the software being adapted to run at a

computer  or  other  processing  means  characterized  in  that  when  said  computer

executable software is loaded and read by said computer or other processing means,

said computer or other processing means is able to perform the steps of the method

according to any of claims 1-13.
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Abstract

A computer-implemented method, a system and computer programs for identifying a

malicious file are disclosed.  The method comprises performing a static analysis of a

potentially malicious file to obtain a set of features that provide an abstract view of the

file; performing a static machine learning classification process using as inputs said set

of  features,  to  obtain  a  preliminary  classification  output;  and  performing  a  fuzzy

inference procedure based on possibilistic  logic  using as input  variables  said set  of

features  and  said  preliminary  classification  output,  to  generate  an  enhanced

classification output that identifies the potentially malicious file as a malicious file or a

benign file.

5

10

GOING DEEP INTO THE CAT AND THE MOUSE GAME: DEEP LEARNING
FOR MALWARE CLASSIFICATION

158



1/6

Fig. 1
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Chapter 8

HYDRA: A Multimodal Deep
Learning Framework for Malware
Classification

This article has been published in the Journal Computers & Security (SJR:0.984),
belonging to the First Quartile (Q1) as classified by Scimago Journal Rank. See
Table 8.1.

Table 8.1: Journal metrics corresponding to the Journal Computers & Security for
the year 2019.

Journal Metric Value
Citescore 7.5
Impact Factor 3.579
SNIP 2.536
SJR 0.984

This research article HYDRA: A Multimodal Deep Learning Framework for Mal-
ware Classification [28] presents a framework for malware classification that com-
bines both hand-crafted feature engineered and end-to-end components in a wide
& deep learning architecture. The aim of this work is to combine various types of
features to discover and learn the relationships between distinct modalities and max-
imize the benefits of multiple feature types to reflect the characteristics of malware
executables. This is achieved through a modular architecture that can be broken
down into three subnetworks, according to the different types of input in the system:

• The list of Windows API function calls.

• The sequence of assembly language instructions representing malware’s assem-
bly language source code.

• The sequence of hexadecimal values representing malware’s binary content.

An extensive analysis of state-of-the-art methods on the Microsoft Malware Classifi-
cation Challenge benchmark shows that the proposed solution achieves comparable
results to gradient boosting methods in the literature and higher yield in comparison
with deep learning approaches.
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While traditional machine learning methods for malware detection largely depend on hand-designed fea- 

tures, which are based on experts’ knowledge of the domain, end-to-end learning approaches take the 

raw executable as input, and try to learn a set of descriptive features from it. Although the latter might 

behave badly in problems where there are not many data available or where the dataset is imbalanced. 

In this paper we present HYDRA, a novel framework to address the task of malware detection and classi- 

fication by combining various types of features to discover the relationships between distinct modalities. 

Our approach learns from various sources to maximize the benefits of multiple feature types to reflect 

the characteristics of malware executables. We propose a baseline system that consists of both hand- 

engineered and end-to-end components to combine the benefits of feature engineering and deep learn- 

ing so that malware characteristics are effectively represented. An extensive analysis of state-of-the-art 

methods on the Microsoft Malware Classification Challenge benchmark shows that the proposed solution 

achieves comparable results to gradient boosting methods in the literature and higher yield in compari- 

son with deep learning approaches. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent years the number, and damage, of cyberattacks has 

drastically increased, up to the point that cyberthreats are consid- 

ered among the top most notable risks for the upcoming years. 

The role cyberwarfare plays in our daily lives should not be under- 

estimated, we have recenlty seen its influence on major elections 

and on crippling businesses overnight. The most notorious cy- 

berespionage campaign against a political party took place in 2015 

and 2016, affecting the Democratic National Committee (DNC), in 

which hackers infiltrated the DNC computer network and ended 

up releasing private and confidential information in a collection in- 

cluding approximately 19,0 0 0 emails and 80 0 0 attachments from 

the DNC. Additionally, according to Symantec ( Chandrasekar et al., 

2017 ), the number of new ransomware families discovered during 

2016 tripled, and they logged a 36% growth in ransomware infec- 

tions. In 2017 two major cyberattacks, Wannacry in May, followed 

by Petya in July, held computer systems from all over the globe to 

ransom. Both malicious programs exploited a vulnerability of Mi- 

crosoft Windows OS, codenamed EternalBlue ( Vulnerabilities and 

∗ Corresponding author. 

E-mail addresses: daniel.gibert@diei.udl.cat (D. Gibert), carlesm@diei.udl.cat (C. 

Mateu), jplanes@diei.udl.cat (J. Planes). 

Exposures, 2016 ), to rapidly spread from one computer to other 

computers on the same network. 

The global malware industry is estimated to be worth millions 

or even billions of dollars, and continues to grow every year. The 

underground services market is maturing at increased rates, pro- 

viding malicious software, cyber-capabilities, and products to other 

criminals, gangs, and even nation states. It has evolved into a pow- 

erful ecosystem, built to exploit every opportunity and weakness in 

an increasingly connected world. For instance, this year malware 

developers aimed to mine cryptocurrencies by stealing users’ com- 

puting power or directly taking the credentials of their cryptocur- 

rency wallet ( Cleary et al., 2018; Daniely et al., 2018 ). 

To keep up with malware evolution and be able to reduce the 

impact of cyberattacks it is necessary to improve computer sys- 

tems’ cyber defenses. One essential defense element is endpoint 

protection. These defenses range from appropriately keeping up-to- 

date with patches, to using host-based firewalls against malware. 

Specifically, anti-malware solutions are the last layer of defense 

against a cyberattack by preventing, detecting, and removing mali- 

cious software. Malware classification approaches can be classified 

into two categories: (1) static analysis-based detection and (2) dy- 

namic analysis-based detection. On the one hand, static analysis 

examines the code of a program without executing it. On the con- 

trary, dynamic analysis monitors the behavior of the program in 

https://doi.org/10.1016/j.cose.2020.101873 

0167-4048/© 2020 Elsevier Ltd. All rights reserved. 
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the system. Afterwards, based on the information extracted from 

both static and dynamic analysis, experts manually define a set of 

rules to detect current and incoming threats. 

Decades ago the number of malware threats was relatively 

low and simple hand-crafted rules were often enough to detect 

threats. Lately, however, the massive growth of malware streams 

does not allow anti-malware solutions to rely solely on expensive 

hand-designed rules. Consequently, machine learning has become 

an appealing signature-less approach for detecting and classify- 

ing malware due to its ability to generalize in relation to never- 

before-seen malware. Traditional machine learning approaches rely 

mainly on feature engineering to extract a set of discriminative 

features that provide a feature vector representation of malware 

that a classifier uses to determine the maliciousness of an exe- 

cutable. However, these solutions depend almost entirely on the 

ability of the domain experts to extract characterizing features that 

accurately represent the malware. Nevertheless, following recent 

advances in the machine learning field, there has been a trend to- 

wards replacing traditional machine learning pipeline systems with 

an end-to-end learning algorithm. An end-to-end learning algo- 

rithm takes the raw executable as input and tries to directly recog- 

nize whether or not it is malicious, or the malware family to which 

it belongs. Despite the benefits of end-to-end learning, almost no 

preprocessing and no hand-engineered knowledge, these systems 

might behave badly in problems where there are not many data 

available or the dataset is imbalanced. 

To mitigate the limitations of end-to-end learning, in this pa- 

per we present HYDRA, a novel framework for malware classifica- 

tion using information from many sources to reflect various char- 

acteristics of malware executables. To the best of our knowledge, 

this research is the first application of multimodal deep learning 

to malware classification. The multimodal learning pipeline com- 

bines both hand-engineered and end-to-end components to build 

a robust classifier. This is achieved by means of a modular architec- 

ture that can be broken down into one or more subnetworks, de- 

pending on the different types of input of the system. Each of the 

subnetworks can be either independently trained to solve the same 

task and then combined, or jointly trained. The features learned by 

each component are gradually fused into a shared representation 

layer constructed by merging units with connections coming into 

this layer from multiple modality-specific paths. To avoid overfit- 

ting, during training we randomly drop out the information pro- 

vided by one or more modalities of information. This prevents the 

co-adaptation of the subnetworks to a specific feature type. The 

performance of our multimodal learning algorithm has been eval- 

uated on the Microsoft Malware Classification benchmark. In addi- 

tion, we provide a comparison with state-of-the-art methods in the 

literature, including gradient boosting and deep learning methods. 

The rest of the paper is organized as follows. Section 2 details 

the research in the machine learning field to address the problem 

of malware detection and classification. Section 3 introduces the 

problem of malware classification and, specifically, the task of clas- 

sifying malicious Windows executables. Section 4 provides a de- 

tailed description of the different types of features or modalities 

used in our baseline framework. Section 5 presents the architec- 

ture of the multimodal neural network and Section 6 describes the 

experimentation. Lastly, Section 7 summarizes our research and 

provides future remarks on the ongoing research trends. 

2. Related work 

Machine learning approaches for tackling the problem of mal- 

ware detection and classification can be divided into two groups: 

(1) static approaches ( Ahmadi et al., 2016; Yuxin and Siyi, 2017 ) 

and (2) dynamic approaches ( Bidoki et al., 2017; Ghiasi et al., 2015; 

Salehi et al., 2017 ). 

Static approaches extract features without involving the execu- 

tion of malware. Dynamic approaches require the program’s exe- 

cution. 

Machine learning approaches are appealing to detect and clas- 

sify malicious software because of their ability to recognize unseen 

malware by detecting patterns drawn from previous data. The ma- 

chine learning workflow involves gathering available data, clean- 

ing/preparing data, building models, validating and deploying in 

production. The data preparation process in traditional machine 

learning approaches includes preprocessing the executable, feature 

extraction, selection and reduction. Afterwards, the remaining fea- 

tures are used to train a model to solve the problem at hand, ei- 

ther to detect malware or to group malware into families. Thus, 

traditional machine learning methods rely mainly on feature engi- 

neering to extract discriminant features from a computer program 

that provide an abstract view that a classifier uses to make deci- 

sions about the inputs. On the contrary, end-to-end learning ap- 

proaches jointly perform feature extraction and classification, re- 

placing the aforementioned feature engineering process by a fully 

trainable system. An up-to-date review of machine learning ap- 

proaches applied to either the problem of malware detection and 

classification is provided in ( Souri and Hosseini, 2018; Ucci et al., 

2019 ). 

A description of the most relevant static methods in the litera- 

ture, divided by the type of input features, is provided below. 

The first machine learning classifiers were based on n-gram 

analysis. An n-gram is a contiguous sequence of n items from 

a text. In our domain, the items can be byte values ( Jain and 

Meena, 2011; Moskovitch et al., 2008 ) or assembly language in- 

structions ( Santos et al., 2013; Shabtai et al., 2012 ), depending on 

the source of information. However, dealing with long n-grams 

is computationally prohibitive, as the number of unique combi- 

nations jointly increases exponentially with N. Consequently, re- 

searchers proposed various methods to learn n-gram like sig- 

natures without having to enumerate all n-grams during train- 

ing. Gibert et al. (2017) and McLaughlin et al. (2017) pro- 

posed a shallow convolutional neural network architecture 

to extract n-gram like signatures from a sequence of op- 

codes to classify Windows and Android malware, respec- 

tively. Raff et al. (2018) and Kr ̌cál et al. (2018) designed end-to-end 

systems to learn directly from raw byte inputs, by stacking one or 

more convolutional layers to learn features from the hexadecimal 

representation of executables. 

Malware authors usually protect malicious software against re- 

verse engineering and detection by using encryption or packing 

methods to hide the malicious code. Entropy analysis has long 

been employed to detect the presence of encrypted and packed 

segments of code, as those segments tend to have higher entropy 

than native code. For instance, Lyda and Hamrock (2007) minutely 

examined a corpus of files consisting of plain text files, native, 

compressed and encrypted executables and noted that the aver- 

age entropy of the files was 4.347, 5.09, 6.80 and 7.17, respectively. 

However, malware developers employ more or less sophisticated 

techniques to bypass simple entropy filters. As a result, researchers 

started examining what is known as the structural entropy of an 

executable ( Sorokin, 2011 ). That is, an executable is split into non- 

overlapping chunks of fixed length and, for each chunk, we mea- 

sure its entropy. Thus, each file is represented as an entropy time 

series. Wojnowicz et al. (2016) developed a method to quantify 

the extent to which variations in a file’s structural entropy make 

it suspicious. In addition, Gibert et al. (2018b) proposed a convo- 

lutional neural network-based system to group malware into fami- 

lies. 

The file format of the executables is a source of interesting fea- 

tures. In particular, Portable Executable (PE) files have information 

on the associated dynamically linked libraries, the sections of the 
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program and their respective sizes, among others. More specifi- 

cally, the invocation of Application Programming Interface (API) 

functions and system calls offers information about services and 

resources provided by the OS, which can be used to model pro- 

gram behavior ( Aafer et al., 2013; Sami et al., 2010 ). 

Moreover, it is common to combine information about the API 

function calls with other types of features in order to build a more 

robust classifier ( Ahmadi et al., 2016; Hassen et al., 2017; Zhang 

et al., 2016 ). 

An interesting approach is to represent the function calls as 

a directed graph, known as Function Call Graph (CFG), where 

its vertices represent the functions a computer program com- 

prehends and the edges symbolize the function calls. For exam- 

ple, Kinable and Kostakis (2011) proposed to clusterizing malware 

based on the structural similarities between function call graphs, 

using the Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) algorithm. Hassen and Chan (2017) proposed a 

linear time function call graph vector representation for malware 

classification and showed how to successfully combine the graph 

features with other non-graph features. 

An original way to represent an executable is to reorga- 

nize its byte code as a gray scale image ( Nataraj et al., 2011 ), 

where every byte is interpreted as one pixel in the image, 

and values range from 0 to 255 (0:black, 255:white). From 

this representation, it is possible to extract features describ- 

ing the textures in an image, such as GIST ( Nataraj et al., 

2011 ), Haralick ( Ahmadi et al., 2016 ), Local Binary Pat- 

terns ( Ahmadi et al., 2016 ) and PCA ( Narayanan et al., 2016 ) 

features that a classifier can use to classify malware. Addition- 

ally, Gibert et al. (2018c) and Khan et al. (2018) evaluated the 

use of convolutional neural network architectures to detect the 

presence of specific features and patterns in the data that can be 

used to group malware into families. 

However, using only one type of features is not enough to cor- 

rectly detect or classify malware in a real-world environment as 

the obfuscation techniques employed by malware authors might 

conceal one or more features used by the machine learning model. 

Thus, effort s are being made to design algorithms that can han- 

dle multiple categories of features. Current methods can be divided 

into two groups, depending on where the features are combined. 

On the one hand, early or data-level fusion approaches involve 

the integration of multiple data sources into a single feature vec- 

tor that is used as input to a machine learning algorithm. For in- 

stance, Ahmadi et al. (2016) presented a categorization system that 

fuses multiple feature types (entropy statistics, image representa- 

tion, frequency of opcodes, registers, symbols and Windows Appli- 

cation Programming Interfaces) into a single feature vector used 

to train boosting trees. On the contrary, late or decision-level fu- 

sion approaches are those that aggregate the decisions from mul- 

tiple classifiers, each trained in separate modalities. To illustrate 

the point, Hassen et al. (2017) proposed an ensemble of individual 

malware classifiers to precisely classify malware, with a convolu- 

tional neural network to process the binary content represented as 

an image and a feedforward neural network feed with opcode n- 

gram features as input. As far as we know, there are no approaches 

in the literature that have successfully tried a deep or intermediate 

fusion strategy, where all modalities are fused into a single shared 

representation at some depth or gradually fused, for the task at 

hand. 

3. The task of malware classification 

This paper addresses the task of malware classification, which 

refers to the task of grouping or categorizing malware into fam- 

ilies based on its characteristics and behavior. Distinguishing and 

classifying different types of malware is an important task as it 

Table 1 

Class distribution in the microsoft malware classification challenge dataset. 

Family name #Samples Type 

Ramnit 1541 Worm 

Lollipop 2478 Adware 

Kelihos_ver3 2942 Backdoor 

Vundo 475 Trojan 

Simda 42 Backdoor 

Tracur 751 TrojanDownloader 

Kelihos_ver1 398 Backdoor 

Obfuscator.ACY 1228 Any kind of obfuscated malware 

Gatak 1013 Backdoor 

provides information to better understand how the malware has 

infected the computers or devices, their threat level and how to 

protect against them. Notice that the only difference between the 

malware detection and classification tasks is the output of the sys- 

tem implemented. For instance, a malware detection system would 

receive as input an executable x and would output a single value 

y = f (x ) in the range from 0 to 1, indicating the maliciousness of 

the executable. A value closer to 0 indicates that the executable is 

benign and a value closer to 1 indicates that the executable is ma- 

licious. On the contrary, a classification system outputs the prob- 

ability of a given executable belonging to each output category or 

family. Furthermore, the features extracted from a computer pro- 

gram are useful both for detecting if it is malicious and for classi- 

fying it. 

The task of malware detection and classification has not re- 

ceived the same attention in the research community as other ap- 

plications, where rich labeled datasets exist, including image clas- 

sification, speech recognition, etc. Due to legal restrictions, be- 

nign binaries are not shared, as they are often protected by copy- 

right laws and thus, researchers cannot share the binaries used in 

their research. On the other hand, malicious binaries are shared 

through web sites such as VirusShare and VXHeaven. Neverthe- 

less, unlike other domains where data may be labeled very quickly 

and in many cases by a non-expert, determining whether a file 

is malicious or its corresponding family or class can be a time- 

consuming process, even for security experts. Furthermore, ser- 

vices like VirusTotal specifically restrict sharing the vendor anti- 

malware labels to the public. Thus, for reproducibility purposes, 

we evaluated the multimodal deep learning system on the data 

provided by Microsoft for the Big Data Innovators Gathering Chal- 

lenge ( Ronen et al., 2018 ) of 2015, a high-quality public labeled 

benchmark. A complete description of the dataset is provided in 

the next section. 

3.1. The microsoft malware classification challenge 

Microsoft provided almost half a terabyte of malicious soft- 

ware for the Big Data Innovators Gathering Challenge ( Ronen et al., 

2018 ) of 2015. Nowadays, the dataset is hosted on Kaggle 1 and is 

publicly accessible. The dataset has become the standard bench- 

mark to evaluate machine learning techniques for the task of mal- 

ware classification. The set of samples represents 9 different mal- 

ware families, where each sample is identified by a hash and its 

class, an integer representing one of the 9 malware families to 

which the malware belongs: (1) Ramnit , (2) Lollipop , (3) Keli- 

hos_ver3 , (4) Vundo , (5) Simda , (6) Tracur , (7) Kelihos_ver1 , 

(8) Obfuscator.acy and (9) Gatak . Fig. 1 displays the distribution 

of classes of the training data. We can observe that the number 

of instances of some families significantly outnumbers the num- 

ber of instances of other families. There are two kinds of repre- 

1 https://www.kaggle.com/c/malware-classification/ . 
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Fig. 1. Hex view. 

sentations when speaking about binary executables. On the one 

hand, an executable can be represented as a sequence of hexadec- 

imal values for corresponding bytes of a binary file. For instance, 

approaches ( Gibert et al., 2018b; Nataraj et al., 2011; Wojnowicz 

et al., 2016 ) are based on features extracted from this hexadecimal 

representation. On the other hand, the content of a binary file can 

be reverted/translated to assembly language. This process is known 

as disassembly. Common disassemblers are IDA Pro or Radare2. 

Approaches ( Gibert et al., 2017; Kinable and Kostakis, 2011; Sami 

et al., 2010 ) illustrate this point. 

3.1.1. Hexadecimal representation 

The hex view represents the machine code as a sequence of 

hexadecimal digits. See Fig. 1 . Each line is composed of the starting 

address of the machine codes in the memory and an accumulation 

of consecutive 16 byte values. 

From this kind of representation one can extract byte n-grams, 

calculate the structural entropy of an executable, represent its bi- 

nary content as a gray scale image, etc. 

3.1.2. Assembly language source code 

The assembly language source code contains the symbolic ma- 

chine code of the executable as well as metadata information such 

as rudimentary function calls, memory allocation and variable in- 

formation. A snapshot of a piece of one assembly file is shown in 

Fig. 2 . 

Assembly language consists of three types of statements: 

1. Instructions or assembly language statements. An instruction 

defines the operation to execute. Instructions are entered one 

instruction per line. Their format is as follows: 

[label] mnemonic [operands] 

An instruction is composed of two parts: (1) the name of the 

instruction to be executed and (2) the operands or parameters 

of the command. 

INC COUNT 
MOV TOTAL, 48 

2. Assembler directives or pseudo-ops. Assembler directives are 

the commands part of the assembly syntax but not related to 

the processor instruction set. 

3. Macros. A macro is a sequence of instructions assigned by a 

name that could be used anywhere in the program. 

%macro macro_name num_params 
< macro body > 

% endmacro 

4. Modalities description 

This paper proposes a multimodal deep learning system to cat- 

egorize malware into families that involves multiple modalities of 

data: 

1. The list of Windows API functions calls. 

2. The sequence of assembly language instructions representing 

malware’s assembly language source code. 

3. The sequence of hexadecimal values representing malware’s bi- 

nary content. 

These feature types have been chosen because of their respec- 

tive advantages and limitations. A detailed description and an in- 

depth anlysis of the aforementioned modalities are provided be- 

low, together with the definition of the individual components of 

the multimodal architecture. 
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Fig. 2. Assembly view. 

4.1. Windows API function calls 

The frequency of use of Application Programming Interfaces 

(API) and their function calls are regarded as very characterizing 

features. Literature has demonstrated that API calls can be ana- 

lyzed to model the program behavior. API functions and system 

calls are related with services provided by operating systems. They 

support various key operations such as networks, security, system 

services, file management, and so on. In addition, they include var- 

ious functions to utilize system resources, such as memory, file 

system, network or graphics. There is no other way for software 

to access system resources that are managed by operating systems 

without using API functions or system calls and thus, API function 

calls can provide key information to represent the behavior of the 

software. In this work, each API function and system call is treated 

as a feature. The feature range is [0,1]; 0 (or False) if the API func- 

tion or system call hasn’t been invoked by the program; 1 (or True) 

otherwise. Alternatively, one can count how many times each API 

function has been called during the execution of the program. 

Because many malware programs are packed, leaving only the 

stub of the import table or perhaps even no import table at all, our 

approach will search for the name of the dynamic link library or 

function in the body of the suspected malware (by disassembling 

the executable). 

The number of Windows OS API functions is extremely large. 

Considering all of them would bring little or no meaningful infor- 

mation for malware classification. Consequently, the analysis was 

restricted to a subset of API functions. The complete list of Win- 

dows API functions was reduced to only those functions that were 

invoked at least thrice in our training data. The remaining func- 

tions were not considered in the analysis. Among the most used 

functions we found the following: the Sleep function, which is used 

to evade dynamic analyzers, the VirtualAlloc function, which is 

used to allocate memory to store the unpacked code in the newly 

allocated block and perform a jump to run the code from there, 

and the LoadLibraryA and GetProcAddress functions, which are both 

used to resolve the addresses of the API calls made by the program. 

The total number of functions invoked is 10670, almost equal 

to the number of training samples, which might lead to overfit- 

ting. High dimensionality results in increased cost and complex- 

ity for both feature extraction and classification. In practice, the 

algorithm might perform badly if the dimensionality is increased 

beyond a certain point when there is a finite number of training 

samples. This problem is known as the curse of dimensionality. 

Consequently, feature selection has been applied to select only a 

subset of the features. Feature selection is the process of selecting 

a subset of features that are more relevant to a predictive model- 

ing problem. 

This helps to remove unneeded, irrelevant and redundant at- 

tributes from the data that do not contribute to the accuracy of 

a predictive model. Afterwards, the subset of features is used to 

learn the predictive modeling problem. An overview of the pro- 

posed method is presented in Fig. 3 . In our specific implementa- 

tion, the classification algorithm is a feed-forward network whose 

hyper-parameters have been selected using a grid search. The ex- 

periments to select the optimal subset of features are described 

in detail in Section 6.1 . A detailed description of our feed-forward 

network architecture is introduced below. 
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Fig. 3. Traditional pipeline of an API-based malware classification system. 
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Fig. 4. API-based feed-forward network architecture. N and M are equal to 250 and 

9, respectively. 

4.1.1. API-Based feed-forward neural network 

An overview of the architecture is described in Fig. 4 . The in- 

put of the network is a vector containing the K most relevant 

API-based features according the feature selection technique of 

our choice. The output of the network is given by the function 

f (x ) = f (2) ( f (1) (x )) , where f (1) refers to the first layer or hidden 

layer of the network and f (2) refers to the output layer. The mathe- 

matical formulation of f ( i ) is f (i ) = α(W x + b) , where α represents 

the activation function, x the input of the layer and W and b the 

weights and biases, respectively. In particular, the activation func- 

tion of the hidden layer is the ELU function ( Clevert et al., 2015 ) 

while the output layer has no activation function. Instead, it calcu- 

lates the softmax function to generate the normalized output prob- 

abilities. 

4.2. Mnemonics analysis 

The most common approach to categorize a given sample of 

text in natural language processing is through n-gram analysis. N- 

gram analysis calculates the n-gram words distribution of a file 

as a means of solving a predictive modeling problem. In addi- 

tion, n-grams have been one of the most popular features used 

for malware detection or classification ( Santos et al., 2013; Shabtai 

et al., 2012 ). The simplest approach is to capture only the instruc- 

tion used as the base. On encountering the instruction mov eax, 

[esp+10h] we simply reduce it to mov . 

Specifically, mnemonic n-grams are extracted from the se- 

quence of mnemonics included in the assembly language source 

code of malware. To give a specific example of the process, the 

mnemonics sequence in Fig. 2 , from bytes 00,401,090 to 004010B0 

would have the following 2-grams: 

[[mov,mov], [mov,mov], [mov,push], 
[push,mov], 

[mov,push], [push,push], [push,push], [push, 
push], 

Fig. 5. Convolutional neural network for malware mlassification from sequences of 

mnemonics. 

[push,call], [call,add], [add,mov], 
[mov,pop], 

[pop, retn]] 
N-gram based methods construct a feature vector representa- 

tion of malware where each element in the vector indicates the 

number of appearances of a particular n-gram in the instruction 

sequence. 

The main drawback of n-gram based methods is that the num- 

ber of unique n-grams depends on n, the number of mnemon- 

ics that each n-gram will contain. Since the number of unique n- 

grams is huge, it is difficult to run machine learning algorithms on 

the original data. One solution is to perform feature selection, i.e. 

a process of identifying the best features and filtering out less im- 

portant features. Another solution was proposed by ( Gibert et al., 

2017 ), who presented an alternative to n-gram counts using con- 

volutional neural networks to automatically learn the most dis- 

criminative features from a sequence of mnemonics without hav- 

ing to apply any feature selection technique to make the problem 

tractable. 

4.2.1. Convolutional neural network as an alternative to N-grams 

The main advantage of a convolutional neural network based 

approach is that it removes the need to manually enumerate the 

large number of n-grams during training, as n-gram based ap- 

proaches do. Instead, it learns n-gram like signatures through the 

convolutional layers. The most notable implication of such an ap- 

proach is the elimination of the traditional pipeline composed of 

feature extraction, feature selection and reduction and classifica- 

tion, as both procedures are optimized together during training. 

Due to the advantages of a convolutional neural network based 

approach, the component responsible for addressing this modal- 

ity of data has been constructed considering the architecture pre- 

sented by Gibert et al. (2017) as baseline, with a few minor modifi- 

cations. The network differs on: (i) the kernel sizes, (ii) the number 

of filters per size, and (iii) the size of the input layer. In addition, 

ours also has dropout applied to the input layer. The overall archi- 

tecture is presented in Fig. 5 . It comprises the following layers: 

Input layer. The network takes as input an executable repre- 

sented as a sequence of mnemonics. As the network cannot 

be fed with text just as strings, each mnemonic is converted 

to a one-hot vector. To form a one-hot vector, we associate 

each mnemonic with a numerical ID in the range 1 to I, 

where I is the vocabulary size. A one-hot vector is a vector 

of zeros of size I, with a ’1’ in the position of the mnemon- 

ics’ ID. 

Embedding layer. One-hot vectors cannot encode semantic in- 

formation about similar operations or similar meaning. To 

address this issue, each mnemonic is represented as a low- 

dimensional vector of real values (word embedding) of size 
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M, where each value captures a dimension of the mnemon- 

ics’ meaning. 

Convolutional layer. This layer is responsible for convolving 

various filters over the mnemonic sequences and extract- 

ing the n-gram like features from it. The size of each fil- 

ter is h x k where h ∈ {3, 4, 5} and k is equal to the size 

of the mnemonic’s embedding. Consequently, filters are ap- 

plied to sequences containing from 3 to 5 mnemonics. The 

activation function adopted is the Exponential Linear Unit or 

ELU ( Clevert et al., 2015 ). Having different filter’ sizes allows 

the network to detect salient sub-sequences in the sequence 

of instructions that have variations in size. 

Global max-pooling layer. The global max-pooling is applied to 

extract the maximum activation of each of the feature map 

activations passed from the convolutional layer. 

Softmax layer. It linearly combines the features learned by the 

previous layers and applies the softmax function to output 

the normalized probability distribution over malware fami- 

lies. 

Xavier’s initialization ( Glorot and Bengio, 2010 ) has been used 

to initialize the weights of the network with the exception of the 

embedding layer, in which the initial values of the embedding had 

been initialized with random values from a uniform distribution 

ranging from -1 to 1. Additionally, dropout ( Hinton et al., 2012 ) was 

applied to the input, the convolutional and the output layers, with 

a percentage of 0.1, 0.1 and 0.5 dropped neurons. For a complete 

description of the experiments performed see Section 6.2 . 

4.3. Byte analysis 

Similar to the mnemonics analysis counterpart, there had been 

attempts in the literature ( Kr ̌cál et al., 2018; Raff et al., 2018 ) to 

build end-to-end malware detection systems from raw byte se- 

quences. These approaches take as input the raw byte sequences 

from the hexadecimal representation of the malware’s binary con- 

tent and try to identify whether or not the executable is malicious. 

The main challenges that these approaches have to deal with are: 

• The meaning of any byte is context-dependent and could en- 

code any type of information such as binary code, human- 

readable text, images, etc. In addition, the same instruction can 

be encoded using different byte codes depending on its argu- 

ments such as the cmp instruction, whose binary code can be- 

gin with 0x3C, 0x3D, 0x3A, 0x3B, 0x80, 0x81, 0x38 or 0x39 de- 

pending on the arguments given. 

• The content of a Portable Executable file exhibits various levels 

of spatial correlation. Nearby instructions in a function are spa- 

tially correlated. However, function calls and jump instructions 

produce discontinuities over code instructions and functions. 

Subsequently, these discontinuities are maintained through the 

binary content. 

• By treating an executable as a sequence of bytes, we are dealing 

with sequences of millions of time steps, becoming one of the 

most challenging sequence classification problems with regard 

to the size of the time series. 

4.3.1. State-of-the-art methods 

Raff et al. (2018) presented a shallow convolutional neural net- 

work architecture consisting of an embedding layer, followed by a 

gated convolutional layer with filters of size 500 combined with a 

stride of 500, plus a global max-pooling layer and a softmax layer. 

This architecture will be called MalConv from now on. Cf. Fig. 6 . 

Kr ̌cál et al. (2018) proposed a deeper architecture that com- 

prises an embedding layer followed by four convolutions with 

strides and max-pooling between the second and third convolu- 

tions. Afterwards, global average pooling is applied to generate the 

Fig. 6. MalConv architecture. 

Fig. 7. DeepConv architecture. 

average features in the byte sequences. Finally, the features are 

non-linearly combined through various fully-connected layers and 

lastly a softmax layer. This architecture will be called DeepConv 

from now on. Cf. Fig. 7 . 

Performing convolutions on raw byte values implies interpret- 

ing that certain byte values are intrinsically closer to each other 

than others, which is known to be false, as the meaning of a par- 

ticular byte is context-dependent. Consequently, both approaches 

represent bytes as a distributed vector representation of size K, 
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Fig. 8. Multimodal deep neural network architecture. 

where each element contributes to the definition of each byte with 

the goal of capturing the context of a byte in the executable, its se- 

mantic similarity as well as its relation with other bytes. 

The third component of the multimodal network is responsi- 

ble for extracting features from the byte sequence representation, 

which has been constructed according to the network architec- 

ture presented by Kr ̌cál et al. (2018) as it achieves better perfor- 

mance than MalConv ( Raff et al., 2018 ) in our experiments. See 

Section 6.3 . 

5. Multimodal deep learning framework 

Fig. 8 shows the architecture of HYDRA, our multimodal deep 

learning framework for malware classification. This architecture 

aims to serve as a baseline for future implementations of mal- 

ware detection systems. It only includes those feature types that 

the authors consider essential to any machine learning system for 

the task at hand. Nonetheless, new feature types can be added 

to the architecture as needed. It consists of 4 main components: 

(1) the API-based component, (2) the mnemonics-based compo- 

nent, (3) the byte-based component and (4) the feature fusion and 

classification component. The first three components are not con- 

nected to each other. Each one extracts features from a different 

abstract representation of malware (from a different data modal- 

ity). The final component is responsible for fusing the features 

learned by each component into a shared representation and for 

producing the classification predictions. This architecture consists 

of both hand-engineered and end-to-end components. On the one 

hand, the hand-engineered component learns the complex rela- 

tionships among the input API feature vector. On the contrary, the 

end-to-end components learn features from malware represented 

as a sequence of mnemonics and as a sequence of bytes. As end-to- 

end learning requires a great deal of labeled data to work properly, 

combining hand-engineered and end-to-end components helps to 

mitigate the limitations of the system and more specifically, of the 

byte-based component (See Section 6.3 ), and to build a stronger 

classifier by combining the strengths of both approaches. 

5.1. Architecture 

In this subsection, the architecture of the multimodal neural 

network is described, in particular the input layer, the three fea- 

ture components and the fusing component. 

Input layer. The dataset consists of a set of pairs x i , y i , where 

x i is an executable and y i is the category label or family to 

which it belongs. Each executable x i is represented as an n - 

tuple, where n is equal to the number of different modalities 

of data. In our case n = 3 , as each executable is represented 

as a list of API function calls x i 
A 
, a sequence of mnemonics 

x i 
M 

, and lastly a sequence of bytes x i 
B 
. 

API-based component. Let x i 
A 

∈ Z 

K be the API feature vector of 

the i th executable in the training set. Each vector consists 

of K feature values, where each feature indicates whether or 

not a particular API function has been invoked. For instance, 

if x i 
A 
( j) is equal to 1 it indicates that the i th executable has 

invocked API function j . 

The API-based component takes as input the API feature 

vector and non-linearly combines the features into a low- 

dimensional feature vector A of size 250, where A 

i = h (x i 
A 
) = 

σ (W A x 
i 
A 

+ b A ) and W A and b A denote the weights and biases 

of the fully-connected layer. 

Mnemonics-based component. Let x i 
M 

denote the sequence of 

mnemonics extracted from the assembly language source 
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code of the i th executable. As already explained in 

Section 4.2.1 , each mnemonic is mapped to a vector of real 

numbers of size 4. The mnemonics-based component out- 

puts a feature vector M of size equal to 300 consisting of the 

concatenation of the 3-gram, 4-gram and 5-gram like signa- 

tures. 

Byte-based component. Let x i 
B 

refers to the sequence of bytes 

extracted from the hexadecimal representation of the binary 

content of the i th executable. This component outputs a fea- 

ture vector B containing a low-dimensional representation of 

the malware’s binary content of size 128 (See Section 4.3.1 ). 

Intermediate fusion and classification. The learned represen- 

tations A, M and B of malware are merged iteratively across 

multiple fusion layers during training and combined into a 

shared multimodal representation. This process is known as 

intermediate fusion. First, vectors A and B are fused into vec- 

tor C of size 150. Afterwards, vectors C and M are combined 

in a 1-D vector of size 200, called P. This joint multimodal 

representation P is later used to classify a malicious exe- 

cutable into the corresponding family, as follows: 

p = sof tmax (W c P + b c ) 

where p is a vector of size C ( C = 9 ), and W c and b c are the 

weights and biases of the layer. The softmax function out- 

puts the probability of an executable belonging to any of the 

malware families in the training set. The size of vectors C 

and P were defined during the configuration of the network. 

Various values for the number of hidden units were tried 

and the ones yielding to better results were selected. In ad- 

dition, fusing all features in the same layer yield to worse 

results even if these are statistically insignificant. 

For consistency, all layers have been initialized using Xavier’s 

weight initialization ( Glorot and Bengio, 2010 ). The non-linear 

functions through all convolutional and fully connected layers are 

the ELU ( Clevert et al., 2015 ) and the SELU ( Klambauer et al., 2017 ) 

activation function. 

Two aspects have been critical for the success of our multi- 

modal setting: (1) per-modality pretraining and transfer learning, 

and (2) multimodal dropout. 

5.2. Pretraining 

In our experiments we observed that taking all modalities of 

information as input is suboptimal, since it leads to overfitting one 

subset of features belonging to one modality and underfitting the 

features belonging to the others. This issue has been addressed by 

separately pretraining each component and optimizing their hyper- 

parameters for each subtask. Consequently, we randomly split the 

training data into two sets, 80% for training and 20% for the vali- 

dation set and we trained three models to classify malware, one 

model taking one modality as input. Afterwards, the weights of 

each component in the multimodal neural network are initialized 

with the optimal pretrained weights that each network has learned 

for each task. The idea is to transfer the knowledge learned by 

each model into the multimodal neural network to save training 

time and help the network converge faster. 

5.3. Regularization mechanisms 

In a real-world scenario, although malicious and benign exe- 

cutables are given to be analyzed, it is not guaranteed that all of 

the features can be extracted from the given executables. The only 

modality that would always be available is the byte sequence. On 

the contrary, due to encryption and compression, the API function 

calls and the sequence of assembly language instructions might not 

be properly retrieved. For instance, there are some samples in the 

training set that have not been disassembled correctly or could not 

be disassembled and, consequently, their corresponding assembly 

language source file contains almost no instructions or no instruc- 

tions at all ( Hu et al., 2016 ). Thus, we have addressed this issue 

using modality dropout, which makes the network less sensitive to 

the loss of one or more channels of information. Modality dropout 

randomly drops one or more data modalities during training. Ad- 

ditionally, dropout has been applied to both fully-connected and 

convolutional layers, with a dropout rate equal to 0.5 and 0.1, re- 

spectively. 

6. Evaluation 

We deployed the proposed framework on a machine with an 

Intel Core i7-7700k CPU, 4xGeforce GTX 1080Ti GPUs and 64 Gb 

RAM. The GPUs are critical to accelerate the multimodal neural 

network algorithm. The modules of the framework and the ma- 

chine learning algorithm have been implemented in Python and 

Tensorflow ( Abadi et al., 2015 ). Due to the memory resource limi- 

tations we have reduced the mini-batch size to 8. 

The generalization performance of our approach has been esti- 

mated using 10-fold cross validation. Two baseline classifiers were 

implemented, the Random Guess classifier and the Zero Rule clas- 

sifier. The accuracy of a Random Guess classifier is calculated as 

follows: 

acc = 

∑ c 
i =1 p i n i ∑ 

n i 

where p i is the probability to say “it is in the i th class” and n i is 

the number of samples of class i . Thus, the accuracy of the Ran- 

dom Guess classifier is 0.1755. On the other hand, the Zero Rule 

classifier it simply outputs the majority class in the dataset. In par- 

ticular, the accuracy of the Zero Rule classifier is 2942 / 10 , 868 = 

0 . 2707 . 

Instead of evaluating the model with accuracy alone, we se- 

lected the best model according to the macro F1-score. This is 

because accuracy can be a misleading measure in datasets were 

there exist a large class imbalance. For instance, a model can cor- 

rectly predict the value of the majority class for all predictions and 

achieve a high classification accuracy while making mistakes on 

the minority and critical classes. The macro F1-score metric penal- 

izes this kind of behavior by calculating the metrics for each label 

and finding their unweighted mean. 

6.1. API-based component performance 

Below is an in-depth analysis of the performance of various 

baseline algorithms to classify malware based on the use of Win- 

dows API function calls found in the assembly language source 

code. In particular, Tables 2–4 provide the 10-fold cross validation 

accuracy of various algorithms for different K values, where K 

refers to the K top features selected by either the ˜ χ2 or ANOVA-F 

feature selection algorithms. The baseline algorithms used in the 

experiment are logistic regression, support vector machines with 

linear or rbf kernel, random forests and lastly, gradient boosting. 

Table 2 presents their performance using as input a feature vec- 

tor of 0s and 1s of size K, where K refers to the top K features 

according to the ˜ χ2 score and each value represents whether or 

not a particular API function has been invoked by the program. 

Table 3 shows the performance of the algorithms taking as input a 

feature vector of size K (top K features according to the ˜ χ2 score), 

where each value indicates the number of times a particular API 

function has been invoked. Table 4 presents the performance of 

the baseline algorithms taking as input a feature vector of size K, 

where K refers to the top K features according to the ANOVA-F 
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Table 2 

˜ χ2 : 10-fold cross validation accuracy of baseline methods - API function call (yes or no). 

10-fold cross validation accuracy 

K Logistic regression SVM (linear kernel) SVN (RBF kernel) Random forests Gradient boosting 

50 0.9004 0.9073 0.8989 0.9351 0.9253 

100 0.9519 0.9565 0.9348 0.9623 0.9614 

250 0.9640 0.9698 0.9404 0.9717 0.9719 

500 0.9688 0.9727 0.9409 0.9736 0.9733 

1000 0.9728 0.9746 0.9380 0.9721 0.9733 

1500 0.9757 0.9760 0.9376 0.9733 0.9721 

2000 0.9758 0.9753 0.9343 0.9741 0.9721 

2500 0.9761 0.9754 0.9314 0.9728 0.9721 

3000 0.9765 0.9758 0.9264 0.9731 0.9718 

3500 0.9776 0.9756 0.9234 0.9731 0.9722 

4000 0.9784 0.9768 0.9199 0.9723 0.9722 

4500 0.9794 0.9774 0.9173 0.9730 0.9728 

5000 0.9794 0.9774 0.9171 0.9738 0.9717 

7000 0.9785 0.9773 0.8954 0.9716 0.9707 

10,000 0.9786 0.9773 0.8750 0.9700 0.9709 

Table 3 

˜ χ2 : 10-fold cross validation accuracy of baseline methods - API function counts. 

10-fold cross validation accuracy 

K Logistic regression SVM (linear kernel) SVN (RBF kernel) Random forests Gradient boosting 

50 0.8535 0.8526 0.7649 0.9414 0.9355 

100 0.8954 0.8869 0.7740 0.9698 0.9693 

250 0.9311 0.9255 0.7405 0.9760 0.9772 

500 0.9446 0.9417 0.7152 0.9780 0.9767 

1000 0.9584 0.9602 0.6814 0.9780 0.9764 

1500 0.9678 0.9642 0.6539 0.9765 0.9774 

2000 0.9699 0.9659 0.6472 0.9772 0.9761 

2500 0.9706 0.9700 0.6227 0.9769 0.9752 

3000 0.9730 0.9720 0.6051 0.9765 0.9760 

3500 0.9727 0.9727 0.5951 0.9765 0.9759 

4000 0.9729 0.9729 0.5870 0.9774 0.9759 

4500 0.9736 0.9729 0.5791 0.9765 0.9762 

5000 0.9739 0.9722 0.5212 0.9762 0.9760 

7000 0.9737 0.9719 0.4926 0.9762 0.9748 

10,000 0.9731 0.9719 0.4554 0.9755 0.9746 

Table 4 

ANOVA-F: 10-fold cross validation accuracy of baseline methods - API function counts. 

10-fold cross validation accuracy 

K Logistic regression SVM (linear kernel) SVN (RBF kernel) Random forests Gradient boosting 

50 0.9154 0.9106 0.7780 0.9470 0.9398 

100 0.9520 0.9357 0.8114 0.9694 0.9671 

250 0.9686 0.9520 0.8155 0.9758 0.9754 

500 0.9689 0.9590 0.7386 0.9753 0.9745 

1000 0.9687 0.9634 0.6810 0.9757 0.9741 

1500 0.9692 0.9651 0.6555 0.9755 0.9743 

2000 0.9698 0.9671 0.6483 0.9761 0.9743 

2500 0.9710 0.9679 0.6247 0.9757 0.9738 

3000 0.9717 0.9681 0.6053 0.9752 0.9749 

3500 0.9741 0.9733 0.5948 0.9765 0.9761 

4000 0.9734 0.9727 0.5868 0.9761 0.9764 

4500 0.9739 0.9734 0.5790 0.9768 0.9757 

5000 0.9737 0.9728 0.5214 0.9771 0.9764 

7000 0.9734 0.9720 0.4927 0.9756 0.9755 

10,000 0.9729 0.9719 0.4554 0.9751 0.9752 

metric, and each value indicates how many times a particular API 

function has been called. 

According to the empirical observation of Tables 2–4 it can 

be stated that the ˜ χ2 feature selection metric selects better fea- 

tures than the ANOVA-F measure, as on average all baseline algo- 

rithms trained on the subset of features retrieved by the ˜ χ2 metric 

achieved higher accuracies. Additionally, it can be observed that 

the highest accuracy was reached by the logistic regression algo- 

rithm having as input the top 4500 features ranked with the ˜ χ2 

feature selection metric. Consequently, this subset has been used 

to train the component of the multimodal network responsible for 

classifying malware based on the Windows API function calls. 

The optimal architecture of the API-based component consists 

of only one hidden layer with 250 units. This configuration was 

selected according to a grid search over the hyperparameters of 

the network ( Table 5 ). All models were trained using dropout in 

both input and hidden layers of 0.1 and 0.5. We can observe that 

increasing the number of units in the hidden layers or the num- 
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Table 5 

Feed-forward neural network grid search. The architecture of a feed for- 

ward neural network is defined as follows: NN F × H 1 × H 2 , where F is 

the size of the input feature vector, H 1 and H 2 is the number of neurons 

in the first and second hidden layers, respectively. 

Algorithm Accuracy Macro F1-score 

Random guess 0.1755 –

Zero rule 0.2707 –

Logistic regression 0.9810 0.9573 

NN 4500 × 30 0.9824 0.9566 

NN 4500 × 50 0.9826 0.9570 

NN 4500 × 100 0.9829 0.9602 

NN 4500 × 250 0.9833 0.9621 

NN 4500 × 500 0.9829 0.9617 

NN 4500 × 2000 0.9828 0.9602 

NN 4500 × 2500 0.9825 0.9603 

NN 4500 × 30 × 20 0.9823 0.9612 

NN 4500 × 50 × 20 0.9822 0.9564 

NN 4500 × 50 × 30 0.9824 0.9580 

NN 4500 × 1000 × 100 0.9820 0.9603 

Fig. 9. NN 4500x250 confusion matrix. 

ber of layers does not significantly improve the performance of the 

model and in particular, the highest accuracy and macro F1-score 

was achieved by a network of only 250 units. 

Fig. 9 shows the confusion matrix of the 10-fold cross validation 

procedure. The major source of errors comes from the misclassifi- 

cation of samples belonging to the Obfuscator.acy family. In par- 

ticular, 82 out of the 1228 Obfuscator.acy samples have been in- 

correctly classified. 

6.2. Mnemonic-based component performance 

Previously to training, the vocabulary (number of distinct 

mnemonics) was reduced to only consist of those mnemonics that 

appeared in at least three different executables. Those mnemonics 

that appeared less than three times in the training set were con- 

verted to the UNK token. 

Initializing the word vectors with those vectors learned from 

an unsupervised learning model it has been a common practice 

in the literature ( Collobert et al., 2011 ), as it improves the per- 

formance in tasks where there is no large training set available. 

Consequently, we initialized the mnemonic vectors using vectors 

of dimensionality 4 trained using either CBOW or Skip-Gram ar- 

chitecture ( Mikolov et al., 2013 ). However, we did not observe any 

relevant improvement in either case. Figs. 12 and 11 show the con- 

fusion matrices for such architectures. 

Fig. 10. CNN-rand confusion matrix. 

Fig. 11. CNN-skipgram confusion matrix. 

In the next experiment, we test three different initialization 

settings for the mnemonic embeddings by computing the 10-fold 

cross validation accuracy and macro F1-score achieved by our con- 

volutional neural network. The three settings are the following: 

• CNN-rand. Baseline model where all mnemonic vectors are ran- 

domly initialized and then modified during training. See Fig. 10 . 

• CNN-skipgram. Baseline model with the mnemonic vectors ini- 

tialized using the pretrained embeddings generated using the 

Skip-gram model. See Fig. 11 . 

• CNN-cbow. Baseline model with the mnemonic vectors ini- 

tialized using the pretrained embeddings generated using the 

CBOW model. See Fig. 12 . 

According to the experiment, the model that achieved the high- 

est cross-validation accuracy and macro F1-score is the one whose 

weights were randomly initialized from a uniform distribution (See 

Table 6 ). Therefore, to construct the multimodal network we de- 

cided not to initialize the embeddings with pretrained vectors. 

Nevertheless, all models achieved comparable results. 
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Fig. 12. CNN-cbow confusion matrix. 

Fig. 13. MalConv confusion matrix. 

6.3. Byte-based component performance 

In this section we compare the performance of the MalConv 

and DeepConv’s model on the Microsoft Malware Classification 

Challenge dataset ( Ronen et al., 2018 ). Figs. 13 and 14 display the 

confusion matrices reported from 10-fold cross-validation, whose 

macro F1-score is 0.8902 and 0.9071 for the MalConv and Deep- 

Conv model’s, respectively (See Table 7 ). As a result, the byte-based 

component of our multimodal system would consist of the Deep- 

Conv architecture, given its superior performance. 

The performance of these approaches is slightly worse than 

that of the approaches based on the assembly language source 

Table 6 

Opcode-based CNN approaches comparison. 

Approach Accuracy Macro F1-score 

Random guess 0.1755 –

Zero rule 0.2707 –

CNN-rand 0.9917 0.9856 

CNN-skipgram 0.9899 0.9770 

CNN-cbow 0.9886 0.9717 

Fig. 14. DeepConv confusion matrix. 

Fig. 15. HYDRA (pretraining, modality dropout) confusion matrix. 

Table 7 

Bytes-based approaches comparison. 

Approaches Accuracy Macro F1-score 

Random guess 0.1755 –

Zero rule 0.2707 –

MalConv 0.9641 0.8902 

DeepConv 0.9756 0.9071 

code. This is partially due to the high-dimensionality of the in- 

put sequence and the reduced training set, which make byte- 

based approaches suffer severely from overfitting. However, the 

hexadecimal representation of the malware’s binary content is a 

very important source of information for any classifier as it is 

the minimal type of representation that can obtained from an ex- 

ecutable. Depending on the obfuscation techniques employed by 

malware authors, the assembly language source code might not be 

retrieved correctly. Under these circumstances, the only informa- 

tion available is provided by the hexadecimal representation of the 

malware’s binary content. Consequently, the information extracted 

from this modality of information is crucial to be able to correctly 

classify those malicious executables. 
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Table 8 

10-fold cross validation accuracy and macro F1-score comparison of 

modality-based and HYDRA models. 

Model Accuracy Macro F1-score 

API-based Feedforward Network 0.9833 0.9621 

Assembly-based Shallow CNN 0.9917 0.9856 

Bytes-based DeepConv 0.9756 0.8902 

HYDRA 0.9871 0.9695 

HYDRA (Pretraining, Modality Dropout) 0.9975 0.9954 

6.4. Effectiveness of the multimodal deep learning model 

In this section, we demonstrate the effectiveness of HYDRA by 

comparing it to the models trained on each modality indepen- 

dently. Fig. 15 shows the jointly reported accuracies of the 10-fold 

cross validation procedure to estimate the performance of HYDRA. 

The results of all models are shown in Table 8 . We can observe 

that HYDRA’s overall accuracy is 0.9975 and the macro F1-score is 

0.9954, outperforming the modality-specific model’s. Per-modality 

pretraining and multimodal dropout have been critical for the suc- 

cess of HYDRA. On the one hand, per-modality pretraining avoids 

overfitting one subset of features belonging to one modality and 

underfitting the features belonging to the others. On the other 

hand, multimodal dropout prevents the co-adaptation of the sub- 

networks to a specific feature type or modality of data. 

6.4.1. Comparison with the state-of-the-art 

To further evaluate the performance of our multimodal ap- 

proach, we compared HYDRA with state-of-the-art methods in the 

literature that have evaluated their models on the dataset provided 

for the Kaggle’s Microsoft Malware Classification Challenge. The re- 

sults are shown in Table 9 . 

Methods in the literature are divided into various groups de- 

pending on the feature types used as input for the training algo- 

rithms. The groups are as follows: 

• IMG-based approaches. This group consists of methods that 

take as input a grayscale image representing the malware’s bi- 

nary content ( Gibert et al., 2018c ) or a set of features extracted 

from it using any feature extractor technique ( Ahmadi et al., 

2016; Narayanan et al., 2016 ). 

• Entropy-based approaches ( Ahmadi et al., 2016; Gibert et al., 

2018b ) analyze the entropy and structural entropy representa- 

tion of malware. 

• Opcode-based approaches are split into two groups, (1) tradi- 

tional approaches that extract n-gram features ( Ahmadi et al., 

2016 ) and (2) deep learning approaches ( Gibert et al., 2017; 

2019; McLaughlin et al., 2017 ), that take as input a sequence of 

Table 9 

10-fold cross validation accuracy of methods evaluated on the microsoft malware classification challenge. 

Approach Feature Type Classification Algorithm Accuracy Macro F1 

Random guess – – 0.1755 –

Zero rule – – 0.2707 –

Grayscale image 

Gibert et al. (2018c) 128 × 128 Grayscale Image CNN 0.9750 0.9400 

Ahmadi et al. (2016) Haralick features XGBoost 0.9690 0.9282 

Ahmadi et al. (2016) Local Binary Pattern features XGBoost 0.9724 0.9530 

Narayanan et al. (2016) PCA features 1-NN 0.9660 0.9102 

Entropy 

Gibert et al. (2018b) Structural Entropy Dynamic Time Warping 

+ K-NN 

0.9894 0.9813 

Gibert et al. (2018b) Structural Entropy CNN 0.9828 0.9636 

Ahmadi et al. (2016) Entropy Statistical Measures XGBoost 0.9900 0.9766 

Sequence of opcodes 

Ahmadi et al. (2016) 1-Gram XGBoost 0.9929 0.9906 

McLaughlin et al. (2017) Opcode sequence CNN 0.9903 0.9743 

Gibert et al. (2019) Opcode sequence Hierarchical CNN 0.9913 0.9830 

OPCODE-based component Opcode sequence CNN 0.9917 0.9856 

Sequence of bytes 

Ahmadi et al. (2016) 1-Gram XGBoost 0.9850 0.9678 

Raff et al. (2018) Bytes sequence MalConv 0.9641 0.8894 

BYTE-based component ( Kr ̌cál et al., 

2018 ) 

Bytes sequence DeepConv 0.9756 0.9089 

Le et al. (2018) ∗ Scaled bytes sequence CNN 0.9647 0.9341 

Le et al. (2018) ∗ Scaled bytes sequence CNN + Unidirectional LSTM 0.9800 0.9577 

Le et al. (2018) ∗ Scaled bytes sequence CNN + Bidirectional LSTM 0.9814 0.9662 

Gibert et al. (2018a) Bytes sequence Denoising 

Autoencoder + Dilated 

Residual Network 

0.9861 0.9719 

Yousefi-Azar et al. (2017) 1-Gram Autoencoder + XGBoost 0.9309 0.8664 

API invocations 

Ahmadi et al. (2016) API feature vector (796) XGBoost 0.9868 0.9638 

API-based component API feature vector (4500) Feed-forward network 0.9833 0.9621 

Multiple features 

Zhang et al. (2016) Total lines of each Section, Operation Code 

Count, API Usage, Special Symbols Count, Asm 

File Pixel Intensity Feature, Bytes File Block 

Size Distribution, Bytes File N-Gram 

Ensemble Learning (XGBoost) 0.9974 0.9938 

Ahmadi et al. (2016) ENT, Bytes 1-G, STR, IMG1, IMG2, MD1, MISC, 

OPC, SEC, REG, DP, API, SYM, MD2 

Ensemble Learning (XGBoost) 0.9976 0.9931 

Mays et al. (2017) IMG and Opcode N-Grams Ensemble Learning (CNN and 

NN) 

0.9724 0.9618 

HYDRA APIs, Bytes sequence, Opcode sequence Multimodal Deep Neural 

Network 

0.9975 0.9951 
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opcodes representing the malware’s assembly language source 

code. 

• Byte-based approaches are split similarly to opcode-based ap- 

proaches. On the one hand, there are those approaches that ex- 

tract n-gram features from the bytes sequence ( Ahmadi et al., 

2016 ). On the other hand, deep learning approaches jointly 

learn to extract features and classify malware during train- 

ing ( Kr ̌cál et al., 2018; Raff et al., 2018 ). Furthermore, it includes 

methods that learn an encoded representation of malware us- 

ing autoencoders ( Gibert et al., 2018a; Yousefi-Azar et al., 2017 ). 

• API-based approaches ( Ahmadi et al., 2016 ) generate a feature 

set by mining the API calls that a classifier uses to make pre- 

dictions. 

• Multimodal learning refers to those approaches that learn 

to detect malware using information from multiple modali- 

ties ( Ahmadi et al., 2016; Mays et al., 2017; Zhang et al., 2016 ). 

Furthermore, note that the most used classification algorithms 

are either neural networks or gradient boosting. On the one hand, 

neural networks and in particular convolutional neural networks 

have recently attracted the academic community due to their ad- 

vantages on processing raw data and their ability to learn features 

by themselves. On the other hand, gradient boosting and, in partic- 

ular, the XGBoost library have until recently provided unmatched 

performance in tasks that rely on feature engineering and domain- 

specific knowledge. This trend might change in the near future due 

to the availability of bigger training feeds for the research com- 

munity and developments and improvements in the multimodal 

learning field. As observed in Table 9 , HYDRA achieved comparable 

results to ( Zhang et al., 2016 ) and ( Ahmadi et al., 2016 ) with fewer 

input modalities and achieved a higher detection rate and macro 

F1-score than ( Mays et al., 2017 ) and the remaining deep learning 

and feature engineering based approaches in the literature. Thus, 

we demonstrate that end-to-end learning systems can be suc- 

cessfully complemented with hand-engineered features to achieve 

state-of-the-art results in the malware classification task, where 

domain-specific knowledge has been the way-to-go for building 

systems. 

7. Conclusions 

In this paper, we present a novel malware classification frame- 

work that combines both hand-engineered features and end-to- 

end components in a modular architecture. To the best of our 

knowledge, this research is the first application of multimodal 

deep learning for malware classification, and in particular Portable 

Executable files. The multimodal approach learns and combines 

characteristics of malware from various sources of information, 

yielding to higher classification performance than those classifiers 

that take as input only a single modality of data. Three kinds of 

modalities are extracted by analyzing the hexadecimal representa- 

tion of malware’s binary content and its disassembly counterpart, 

(1) the list of API functions invoked, (2) the sequence of mnemon- 

ics representing malware’s assembly language source code, and (3) 

the sequence of bytes representing malware’s binary content. This 

architecture can be enriched with many more feature types to ex- 

press executables’ characteristics and it serves as a baseline model 

for future improvements. Furthermore, by fusing hand-crafted fea- 

tures with the end-to-end components we are able to mix the 

strengths of both approaches, characterizing domain-specific fea- 

tures and the ability of deep learning to automatically extract a set 

of descriptive features without relying on domains’ knowledge. 

Reported results allow the effectiveness of our approach to be 

assessed with respect to state-of-the-art techniques. The detection 

accuracy and macro f1-score of our multimodal deep learning ar- 

chitecture is comparable to gradient boosting methods based on 

feature engineering, with ours only relying on three basic types 

of features from Portable Executables, and far more accurate than 

deep learning approaches in the literature. 

7.1. The problem of concept drift 

Machine learning techniques were originally designed for sta- 

tionary environments in which the training and test sets are as- 

sumed to be generated from the same statistical distribution. In a 

stationary environment, a model will approximate a mapping func- 

tion f ( x ) given input data x to predict an output value y , y = f (x ) , 

and it is assumed that the mapping learned from the data will be 

valid in the future and the relationship between input and out- 

put do not change over time. However, this assumption is not valid 

in the malware domain. Software applications, including malware, 

evolve over time due to changes resulting from adding features 

and capabilities, fixing bugs, porting to new platforms, etc. Addi- 

tionally, versions of the same software are expected to be similar 

to previous versions with few exceptions. Thus, the similarity be- 

tween previous and future versions will degrade slowly over time. 

This is known as the problem of concept drift. Concept drift is the 

problem of the changing underlying relationships in the data. This 

will result in the decay of the prediction quality of malware detec- 

tors and classifiers over time as malware evolves and new variants 

appear ( Pendlebury et al., 2019 ). 

Furthermore, malware is constantly pushed to evolve in order 

to avoid detection by anti-malware engines and be able to infect 

new hosts. Thus, malware authors are well-motivated to intention- 

ally craft adverarial examples ( Huang et al., 2011 ) using a wide 

range of obfuscation techniques ( You and Yim, 2010 ). As a result, 

the aforementioned issues have to be taken into account in the 

process of building a sustainable model for malware detection and 

classification ( Jordaney et al., 2017 ). 

7.2. Future work 

One future line of research could be the implementation of new 

architectures to detect and classify malware from their binary con- 

tent represented as a sequence of bytes, as current methods per- 

form below average in comparison with the rest of approaches in 

the literature. A second line of research could be to study the in- 

corporation of more data modalities or feature types into the cur- 

rent multimodal architecture and analyze its impact on the perfor- 

mance of the system. A third line of research could be the study 

of explainable artificial intelligence (XAI) techniques to interpret 

the results of machine learning models for malware detection and 

classification in order to help security researchers in the process of 

malware analysis. 
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Chapter 9

Discussion

This section introduces the main issues and challenges faced by security researchers.
It is structured as follows: Section 9.1 reviews the availability of public benchmarks
of malware for research. Section 9.2 presents the problem of class imbalance. Sec-
tion 9.3 presents the problem of concept drift. Section 9.4 introduces the problem of
adversarial learning and presents an exhaustive evaluation of machine learning ap-
proaches to common obfuscation techniques. Lastly, Section 9.5 gives some insights
about the interpretability of the models.

9.1 Open and Public Benchmarks

Through the development of the thesis, the performance of the approaches pre-
sented were mainly evaluated on the dataset [66] provided by Microsoft for the Big
Data Innovators Gathering Challenge. This is not a mere coincidence. The task
of malware detection and classification has not received the same attention in the
research community as other applications, where rich labeled datasets exist, includ-
ing image classification, speech recognition, etc. Due to legal restrictions, benign
binaries are not shared, as they are often protected by copyright laws and thus,
researchers cannot share the binaries used in their research. On the other hand,
malicious binaries are shared through web sites such as VirusShare. Nevertheless,
unlike other domains where data may be labeled very quickly and in many cases
by a non-expert, determining whether a file or its corresponding family or class is
malicious can be a time-consuming process, even for security experts. Furthermore,
services like VirusTotal 1 specifically restrict sharing the vendor anti-malware labels
to the public.

The aforementioned issues render it impossible to meaningfully compare accu-
racy numbers across works, as different datasets are used with different labeling
procedures. At the present time, the only standard benchmark available to the re-
search community regarding Windows Portable Executables that includes the raw
binaries is the one provided by Microsoft [66] for the Big Data Innovators Gathering
Anti-Malware Prediction Challenge. There exist other datasets such as MalIMG [59]
and EMBER [4] but none of them include the raw binaries and thus, experiments
using featureless deep-learning malware detectors are precluded.

1https://www.virustotal.com/en
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9.2 Class Imbalance

Obtaining good training data is one of the most challenging aspects of any machine
learning problem. Machine learning classifiers are only as good as the data used to
train them, and reliable labeled data are especially important for the task of malware
detection, where the process of labeling a file can be a very time-consuming process.

Additionally, there are various disciplines including fraud detection, malware
detection, malware classification, medical diagnosis, etc, where it is common to have
a disproportional number of samples per class. For instance, the number of benign
samples might not be proportionally equal to the number of malicious samples, or
the number of samples belonging to one family might far exceed the number of
samples from other families. Data with highly imbalanced class distributions are
said to suffer the class imbalance problem [42, 35]. That is, this kind of distribution,
where one class is much larger that the other(s) can lead to a model that predicts the
value of the majority classes for all predictions and still achieve high classification
accuracy while lacking predictive power. In other words, the classifier might be
biased towards the majority classes and achieve very poor classification rates in the
minority classes. It might happen that the classifier predicts everything as the major
class and ends up ignoring the minor classes. This is called the accuracy paradox.
In these cases, accuracy is a misleading measure. It may be desirable to select a less
accurate model but with greater predictive power. For problems like this, additional
measures are required to evaluate a classifier such as precision 9.1, recall 9.2 and
the F1 score 9.3. Alternatively, the Receiver Operating Characteristic (ROC) curve
graphically illustrates the discriminative ability of a binary classifier.

Precision (P ) is the number of true positives (Tp) over the number of true posi-
tives plus the number of false positives (Fp).

P =
Tp

Tp + Fp

. (9.1)

Recall (R) is the number of true positives (Tp) over the number of true positives
plus the number of false negatives (Fn).

R =
Tp

Tp + Fn

. (9.2)

The F1 score is the weighted average of precision, defined as following:

F1 = 2 · P ·R
P + R

. (9.3)

Finally, the ROC curve is created by plotting the True Positive Rate (TPR) or
recall against the False Positive Rate. The FPR is also known as the probability
of false alarm and can be calculated as (1-Specificity) where Specificity is equal to

TN
TN+FP

. The higher the AUC, the better the model is at predicting the correct label
of classes.

9.3 Concept Drift

In the machine learning literature, the term ”concept drift” has been used to de-
scribe the problem of the changing underlying relationships in the data. Supervised
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learning is the machine learning task of learning a function that maps an input to
an output based on a set of input-output samples. Technically speaking, it is the
problem of approximating a mapping function (f) given input data (x) to predict
an output value (y), y = f(x). Traditional machine learning applications such as
digit classification, text categorization or speech recognition, assume that training
data is sampled from a stationary population. In other words, they assume that the
mapping learning from historical data will be valid for new data in the future and
that the relationships between input and output do not change over time. This is
not true for the problem of malware detection and classification.

Software applications, including malware, naturally evolve over time due to
changes resulting from adding features, fixing bugs, porting to new environments
and platforms [53]. These changes are expected to be introduced relatively infre-
quently. Additionally, successive versions of the software are expected to be highly
similar to previous versions, with few exceptions such as when the code base under-
goes significant refactoring and there are changes in the compilers or libraries linked
to the software. Moreover, the similarity between previous and future versions is
expected to degrade slowly over time. Consequently, the prediction quality decays
over time as malware evolves and new variants and families appear [43]. Thus, in
order to build high-quality models for malware detection and classification, it is im-
portant to identify when the model shows signs of degradation and thereby it fails
to recognize new malware. Existing solutions [44, 22] aim at periodically retrain
the model with the hope that it will automatically adapt to changes in malware
over time. The process of retraining the model can be done from scratch, partially
and incrementally, where incremental retraining refers to the process of retraining
a given model with new labeled malware samples and all previous training samples
without forgetting the knowledge obtained from prior datasets.

9.4 Adversarial Learning

Malware is pushed to evolve in order to survive and operate. That is, malicious
software has to constantly evolve to avoid detection by anti-malware engines. Con-
sequently, malware writers are well-motivated to intentionally seek evasion by em-
ploying a wide range of obfuscation techniques [75, 60].

To put it in the machine learning context, an attacker’s aim is to fool the machine
learning detector by camouflaging a piece of malware in feature space by inducing
a feature representation highly correlated to benign behavior. The ability of the
attacker to bypass machine learning solutions is related to their knowledge about
features and machine learning models to target. For instance, consider a machine
learning approach that relies on the program’s invocations of API functions or the
DLLs dynamically loaded by the executable. An attacker might use this information
to conceal the usage of any suspicious API function by packing the executable and
leaving only the stub of the import table or perhaps even no import table at all.
These modifications to the feature space may or may not be performed manually.

Adversarial machine learning [40] is a technique employed to attempt to fool
machine learning by automatically crafting adversarial examples, that is, samples
with small, intentional feature perturbations that cause a machine learning model
to make an incorrect prediction. Machine learning-based detectors are vulnerable to
adversarial examples, and the application of machine learning to the cybersecurity
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domain does not constitute an exception. For a detailed overview of the evolution of
adversarial machine learning over the past decade we refer to [9]. They reviewed the
work done in the context of various applications, including computer security and
its arms race notion and proposed a comprehensive threat model that accounts for
the presence of the attacker during the system design. Recent classifiers proposed
for malware detection, have indeed been shown to be easily fooled by well-crafted
adversarial manipulations [17, 11, 39, 70, 55]. [11] explored adversarial machine
learning to attack a malware detector based on the input of Windows Application
Programming Interface (API) calls extracted from the PE files. [70] analyzed various
append-based strategies to generate adversarial examples to conceal malware and
bypass the MalConv [63] model. Furthermore, [17] proposed a novel attack algorithm
to generate adversarial malware binaries which only change a few tens of bytes of
the file header. Their algorithm was evaluated against MalConv. They found that
MalConv learns discriminative features mostly from the characteristics of the file
header and used their findings to exploit and bypass the model. Contrarily, [55]
explored the types of adversarial attacks that have exploited the vulnerabilities of
the components of PDFs to bypass malware detectors, including JavaScript-based
attacks, ActionScript-based attacks and file embedding-based attacks.

9.4.1 Auditing Static Machine Learning Anti-Malware Tools
against Metamorphic Attacks

However, most state-of-the-art approaches [17, 48, 70] investigated how slight per-
mutations generated by appending bytes at the end of sections or at the end of the
file can produce misclassifications. Unfortunately, these approaches are based on
modifications that only affect the structure of the Portable Executable files. None
of them modify the actual source code of the executables. Thus, they greatly dif-
fer from the modifications performed by real-word malware to generate variants of
itself.

To fill this gap, the following manuscript provides an extensive evaluation of
state-of-the-art detectors powered by machine learning (M.L.) against common ob-
fuscation techniques. More specifically, the performance of the M.L. approaches is
assessed against the modifications performed by the following metamorphic tech-
niques:

• The dead code insertion technique.

• The registers reassignment technique.

• The subroutine reordering technique.

• The code reordering through jumps technique.

The manuscript aims to address the limitations found in deep learning ap-
proaches in the literature [63, 49, 31] by proposing a shallow architecture that
improves 14.95% and 16.38% with respect to MalConv [63] and DeepConv [49] ar-
chitectures. Instead of learning complex and deep patterns, our architecture learns
N-gram like features from the malware’s binary content represented as a sequence
of bytes. This is achieved through a convolutional layer with filters of various sizes
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that act as feature extractors. Furthermore, the usage of the aforementioned meta-
moorphic techniques to augment the dataset and reduce class imbalance is investi-
gated. The generalization performance of the M.L. approaches has been evaluated
on a standard public benchmark provided by Microsoft for the Big Data Innovators
Gathering Anti-Malware Prediction Challenge [66] for reproducibility purposes.

The manuscript has been submitted to a journal belonging to the First Quartile
(Q1) as classified by Scimago Journal Rank and it is currently under revision.
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Abstract

Malicious software is one of the most serious cyber threats on the Internet today. Traditional
malware detection has proven unable to keep pace with the sheer number of malware because
of their growing complexity, new attacks and variants. Most malware implement various
metamorphic techniques in order to disguise themselves, therefore preventing successful
analysis and thwarting the detection by signature-based anti-malware engines. During the
past decade, there has been an increase in the research and deployment of anti-malware
engines powered by machine learning, and in particular deep learning, due to their ability
to handle huge volumes of malware and generalize to never-before-seen samples. However,
there is little research about the vulnerability of these models to adversarial examples. To fill
this gap, this paper presents an exhaustive evaluation of the state-of-the-art approaches for
malware classification against common metamorphic attacks. Given the limitations found
in deep learning approaches, we present a simple architecture that increases 14.95% the
classification performance with respect to MalConv’s architecture. Furthermore, the use of
the metamorphic techniques to augment the training set is investigated and results show
that it significantly improves the classification of malware belonging to families with few
samples.

Keywords: Malware Analysis, Malware Classification, Software Obfuscation, N-gram
Extraction, Machine Learning, Deep Learning

1. Introduction

In today’s ever-connected society, cyber-
attacks have been dramatically increasing
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in number and damage up to the point
that cyberthreats are ranked as a consis-
tent and persistent threat among the top
global risks1, along with weather extremes,
climate change and natural disasters. Some
estimates 2 predict that the cost of cyber-
crime to the world would be 6 trillion an-

1http://www3.weforum.org/docs/WEF_
Global_Risks_Report_2019.pdf

2https://cybersecurityventures.com/
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nually by 2021, rising from the 3 trillion in
2015. This estimate includes damage and
destruction of data, stolen money, lost pro-
ductivity, theft of personal, financial data
and intellectual property, fraud, disruption
of the normal course of business, forensic
investigation and reputational harm. Ac-
cording to MalwareBytes 3, there has been
an increase of 13% in the business threat
detections in 2019 with a dramatic spike in
detections of the malware Emotet at the be-
ginning of the year.

Malicious software is one of the most com-
mon methods employed by cybercriminals
to launch a cyberattack. Other methods in-
clude, but are not limited to, phishing, man-
in-the-middle attack, SQL injection, etc.
Every day, the AV-TEST Institute registers
over 350000 new malicious programs and
potentially unwanted applications (PUA).
In fact, the number of total malware has
more than doubled from the 470.01m in
2015 to 1065.61m in 20204. However, this
is not due to an increase in new malware
but to the reuse of well-established families
through the usage of code obfuscation tech-
niques to bypass detection engines. Thus,
to keep up with malware and be able to re-
duce its impact, it is necessary to improve
the computer systems’ cyberdefenses and in
particular, anti-malware engines, the last
layer of defense against a cyberattack and
the defensive layer responsible of prevent-
ing, detecting and removing malicious soft-
ware.

The fastest and most reliable method em-
ployed by anti-malware engines to detect

3https://resources.malwarebytes.
com/files/2020/02/2020_
State-of-Malware-Report.pdf

4https://www.av-test.org/en/statistics/
malware/

known malware is by means of unique sig-
natures. Signatures are composed by se-
quences of bytes or data, to provide an iden-
tifier for each malicious software or group
of samples with similar capabilities or be-
havior. However, signatures cannot de-
tect against unknown malware because a
new signature has to be developed previ-
ously. Consequently, signature-based detec-
tion only protects against known malware.
Another problem is that malware can al-
ter its signature to avoid detection by sim-
ply modifying the code while preserving its
functionality and behavior. Furthermore, as
new malware appears every day, it is neces-
sary to store large amounts of signatures,
demanding considerable storage, making
slow to search a particular signature, and
affecting system performance (Amro and
Alkhalifah, 2015).

Due to the sheer volumes of new mal-
ware variants being deployed every day,
anti-malware solutions that rely solely on
signatures have become obsolete. During
the past decade, there has been an increase
in the research and deployment of anti-
malware engines powered by machine learn-
ing (Gibert et al., 2020b; Ucci et al., 2019;
Souri and Hosseini, 2018) to complement
signature-based detection due to their abil-
ity to handle huge volumes of data and gen-
eralize to never-before-seen malware. This
is achieved by summarizing complex rela-
tionships among features that are discrim-
inative between malware and goodware or
between malware families, allowing the de-
tection engine to adapt to the modifica-
tions in malware’s code. However, there
is little research about the susceptibility of
these models to adversarial samples. Most
state-of-the-art approaches (Demetrio et al.,
2019; Kolosnjaji et al., 2018; Suciu et al.,
2019) investigated how slight permutations
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generated by appending bytes at the end of
sections or at the end of the file can produce
misclassifications. Unfortunately, these ap-
proaches are based on modifications that
only affect the structure of the Portable Ex-
ecutable files. None of them modify the ac-
tual source code of the executables. Thus,
they greatly differ from the modifications
performed by real-word malware to gener-
ate variants of itself.

The aim of this paper is to fill this gap.
To this end, this work provides an exten-
sive evaluation of state-of-the-art detectors
powered by machine learning (ML) against
common metamorphic techniques. More
specifically, the performance of the ML ap-
proaches is assessed against the modifica-
tions performed by the following metamor-
phic techniques:

• The dead code insertion technique.

• The registers reassignment technique.

• The subroutine reordering technique.

• The code reordering through jumps
technique.

Given the poor performance of the byte-
based deep learning approaches in the lit-
erature (Raff et al., 2018a; Krčál et al.,
2018; Gibert et al., 2018) in comparison to
the opcode-based approaches (Gibert et al.,
2017) due to their greater complexity and
the length of the input data, we propose a
shallow architecture that improves 14.95%
and 16.38% with respect to MalConv (Raff
et al., 2018a) and DeepConv (Krčál et al.,
2018) architectures. Instead of learning
complex and deep patterns, our architec-
ture learns n-gram like features from the
malware’s binary content represented as a
sequence of bytes. This is achieved through
a convolutional layer with filters of various

sizes that act as feature extractors. Fur-
thermore, we investigate the usage of the
aforementioned metamorphic techniques to
augment the dataset and reduce class im-
balance. The generalization performance
of the ML approaches has been evaluated
on a standard public benchmark provided
by Microsoft for the Big Data Innovators
Gathering Anti-Malware Prediction Chal-
lenge (Ronen et al., 2018) for reproducibil-
ity purposes.

The rest of the paper is organized as fol-
lows. Section 2 provides the background.
Section 3 introduces state-of-the-art ap-
proaches to bypass ML malware detectors.
Section 4 describes the metamorphic tech-
niques employed by malware authors to
modify the executables. Section 5 presents
the ML approaches evaluated in this work.
Section 6 presents the results of the exper-
imentation. Finally, Section 7 summarizes
the concluding remarks and presents some
future lines of research.

2. Background

This section introduces the task of mal-
ware classification, it presents an overview
of malware, the Portable Executable (PE)
file format and the methods employed by
malware authors to evolve malware.

2.1. The Task of Malware Detection and
Classification

Malware detection refers to the task of
identifying whether or not a given file is ma-
licious to a computer system. By malicious
we refer to code that is harmful to the sys-
tem. Malware might seek to invade, damage
or disable partially or completely the com-
puter system, often taking control of it. De-
pending on their purpose, malware can be
divided into various, not mutually exclusive
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general categories including, but not limited
to adware, spyware, trojans, rootkit, virus,
worms, ransomware, etc. These categories
provide a general overview of the function-
ality and behavior of malware. Typically,
malware is also identified by a family name.
A malware family refers to a collection of
malware that has been generated from the
same code base. Furthermore, malware
families are divided into variants or strains,
that is, malware built from an existing code
base that have different signatures that are
not included in the list of signatures used
by anti-malware solutions. Distinguishing
and classifying different types of malware is
known as the task of malware classification
and it provides information to better un-
derstand how the malware has infected the
computers or devices, their threat level and
how to protect against them.

2.2. The Portable Executable File Format

Malicious software targeting the Win-
dows operating system is commonly written
using the Portable Executable (PE) format,
a file format for executable, object code,
DLLs and others used in 32-bit and 64-bit
versions of the Windows operations system.
Portable Executables contain the informa-
tion necessary for the Windows operating
system to run the executable code including
dynamic library references for linking, API
export and import tables, etc. A Portable
Executable file consists of headers and sec-
tions that tell the dynamic linker how to
map the file into memory. An overview
of the PE file is shown in Figure 1. The
PE Header includes information regarding
to the number of sections, their sizes, char-
acteristics of the file, the import address ta-
ble (IAT), etc. Furthermore, the PE file is
divided into sections that contain the code

PE File

Header

Sections

MS-DOS Header

PE Header

Optional Header

Sections Table

Import/Export Address Table

.data Section

.rdata Section

.edata Section

.idata Section

.text Section

.bss Section

.reloc Section

.rsrc Section

Figure 1: Portable Executable File Format

and data of the executable, including, but
not limited to:

• the .text section. This section keeps
the actual code of the computer pro-
gram although the code can be written
in any other section.

• the .data section. This section is used
to declare initialized data or constants
that do not change at runtime.

• the .rsrc section. This section contains
all the resources of the program.

Detailed information of the PE file format
can be found in the documentation provided
by Microsoft5.

2.3. Malware Evolution
Malware is constantly evolving and seek-

ing new ways to bypass detection engines.
The proliferation of malware has increased
mainly due to the use of polymorphic and
metamorphic techniques employed by mal-
ware authors to evade detection and hide

5https://docs.microsoft.com/en-us/
windows/win32/debug/pe-format
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the true behavior of the executables. In
polymorphic malware, a polymorphic en-
gine is used to mutate the code while keep-
ing the original functionality intact. The
two most common methods to hide code are
packing and encryption. On the one hand,
packers employ one or more layers of com-
pression to hide the real code of the pro-
gram. Then, the original code is restored
into memory at runtime through the un-
packing routines and it is executed. On
the other hand, crypters encrypt malware or
part of its code to make it harder to analyze.
A crypter typically contains a stub used to
encrypt and decrypt malicious code. On the
contrary, metamorphic malware rewrites its
code to an equivalent version each time it
is propagated. Malware authors may em-
ploy various transformation techniques in-
cluding, but not limited to, register re-
naming, subroutine reordering and garbage
code insertion. Thanks to the combina-
tion of the aforementioned techniques, mal-
ware volumes rapidly grown, making foren-
sic investigations of malware cases time-
consuming, costly and difficult even for se-
curity analysts and experts.

The aforementioned circumstances force
security analysts and researchers to con-
tinually improve their cyberdefenses to
keep pace with the evolution of malware.
This caused the following problems with
traditional antivirus solutions that relied
on signature-based and heuristic/behavioral
methods. First, signatures cannot be used
to detect unknown malware variants be-
cause a new signature has to be developed
previously. Second, although behavior-
based detection is an effective approach to
analyze the file’s characteristics and behav-
ior to determine if the file is indeed mal-
ware, the scanning and analysis is very
time-consuming and can’t be applied to ev-

ery suspicious sample. Thus, researchers
started adopting machine learning to com-
plement their solutions and overcome the
prior pitfalls of traditional signature-based
engines and to provide an initial screening
of the samples that exhibit malicious traits,
as machine learning is well suited for pro-
cessing large volumes of data.

3. Related Work

Machine learning has become an appeal-
ing tool for anti-malware vendors for ei-
ther primary detection engines or as com-
plementary detection heuristics. This is
due to the ability of machine learning mod-
els to generalize to new samples, if the
models are properly regularized. Further-
more, machine learning models allow to
automatically summarize complex relation-
ships among features that are discrimina-
tive between malware and goodware or be-
tween malware families, depending on the
task, which allows the detection engine to
adapt to the modifications in the malicious
samples. For a complete review of ma-
chine learning solutions to detect and clas-
sify malware the reader is referred to the
following articles (Souri and Hosseini, 2018;
Ucci et al., 2019; Gibert et al., 2020b).

Although over the past decade there has
been an increase in the research and de-
ployment of machine learning solutions to
tackle the problem of malware detection and
classification, there is little research about
the vulnerability of these models to adver-
sarial attacks (Pitropakis et al., 2019; Mc-
graw et al., 2019). Most state-of-the-art
approaches (Demetrio et al., 2019; Kolos-
njaji et al., 2018; Suciu et al., 2019) investi-
gated how to slightly perturbate Portable
Executable files by appending carefully-
selected bytes at the end of the PE header
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or at the end of the file, to evade detec-
tion by a shallow CNN architecture based
on the raw bytes of the executable (Raff
et al., 2018b). For instance, Demetrio et al.
(2019) perturbed the bytes in the PE header
that are expected to maximally increase
the probability of evasion. On the other
hand, Kolosnjaji et al. (2018) appended
carefully-selected bytes at the end of the
file, where these bytes were selected in a
way that the resulting file minimizes the
confidence associated to the malicious class.
Unfortunately, for both approaches to work
they need to have access to the machine
learning model’s gradients, which is very
unlikely, if not impossible, to happen in a
real-world scenario. Furthermore, some ap-
proaches in the literature tried to automat-
ically learn which changes to perform to a
feature vector (Hu and Tan, 2017) or to the
actual executable (Anderson et al., 2018) in
order to bypass black-box detectors. More
specifically, Hu and Tan (2017) proposed a
GAN to generate adversarial examples by
modifying a binary feature vector, whose
features refer to the API functions added to
the import address table of the PE header of
an executable. For example, if M APIs are
used as features, an M-dimensional feature
vector is constructed, with all the features
corresponding to the imported API func-
tions set to 1, and the rest set to 0. Con-
trarily, Anderson et al. (2018) proposed a
reinforcement learning agent equipped with
a set of functionality preserving operations
like adding a function to the import address,
manipulate the names of the sections, ap-
pend bytes at the end of the file or between
sections, etc. However, these modifications
only affect the structure of the Portable Ex-
ecutables. None of them modify the actual
source code of the executables. Thus, they
greatly differ from the modifications per-

formed by real-world malware to generate
new variants of themselves.

The address the limitations of the afore-
mentioned adversarial attacks, this pa-
per performs an extensive investigation of
the vulnerability of state-of-the-art machine
learning approaches to realistic attacks al-
ready being employed by malware authors
to bypass detection. For a complete descrip-
tion of the attacks see Section 4.

4. Metamorphic Attacks

Malware authors usually employ meta-
morphic and polymorphic techniques to
change the form of each instance from gen-
eration to generation in order to evade
signature-based and pattern-matching de-
tection. On the one hand, polymorphic mal-
ware pairs with a polymorphic engine with
self-propagating code to continually change
its appearance by using encryption or pack-
aging algorithms to hide its code. On the
other hand, metamorphic malware rewrites
its code so that the newly propagated ver-
sion of itself no longer matches its previous
iterations. Metamorphic malware may use
multiple transformation techniques that in-
clude, but are not limited to, garbage code
or dead code insertion, register reassign-
ment, subroutine reordering and code re-
ordering through jumps. In this work we
focus on the transformations performed by
metamorphic techniques because they are
the ones that make alterations to the ac-
tual source code of malware. Following, the
most common metamorphic techniques are
described in more detail.

4.1. Dead Code Insertion
The insertion of dead code or do-nothing

instructions change the appearance of a
program while not affecting the execution
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of the original code. Examples of mal-
ware that added dead code instructions on
each generation are Evol and MetaPHOR.
Cf. Figure 2. Following are described the
dead code instructions implemented for our
research purposes.

• NOP. The NOP or no-op instruction
(short for no operation) is an as-
sembly language instruction that does
nothing.

• MOV Reg, Reg. The MOV instruc-
tion copies the contents of the register
referred by its second operand into the
register referred to by its firs operand.

• PUSH Reg; POP Reg. The PUSH
instruction places the register referred
to by its operand onto the top of the
stack in memory while the POP in-
struction removes the element from the
top of the stack.

• ADD Reg, 0. The ADD instruc-
tion adds the first and second operands,
storing the result in its first operand.

• SUB Reg, 0. The SUB instruction
subtracts the second operand from the
first operand and stores the result in its
first operand.

• INC Reg; DEC Reg. The INC in-
struction increments the content of the
register referred by its operand by one
while the DEC instruction decrements
the contents of the register by one.

• SHL Reg, 0. The SHL instruction
shifts the bits in its first operand’s con-
tents left, padding the resulting empty
bit positions with zero. The number of
bits to shift is specified by the second
operand.

• SHR Reg, 0. The SHR instruction
shifts the bits in its first operand’s
contents right, padding the resulting
empty bit positions with zero. The
number of bits to shift is specified by
the second operand.

Notice that the dead code instructions
PUSH Reg; POP Reg and INC Reg;
DEC Reg do not necessarily need to be
executed sequentially (one after the other).
The instructions can be alternated with
other instructions from the original code
that do not modify the same registers as
the do-nothing instructions.

Figure 2: Assembly language source code after the
insertion of a NOP instruction.

4.2. Register’s Reassignment
Register reassignment switches registers

from generation to generation while keeping
the program behavior unaltered. Cf. Fig-
ure 3. This technique was first used by
Win95/RegSwap virus. Traditional anti-
virus engines detect viruses that employ this
technique by a wildcard string search (Ször
and Ferrie, 2001). Wildcard strings allow to
skip particular bytes in regular expressions.
For instance, in "89 ?? 7C 10 4B 00", the
wildcard is indicated by ’??’.

4.3. Subroutine Reordering
The subroutine reordering technique em-

ploys permutations to reorder the subrou-
tines of a malware executable. Cf. Fig-
ure 4. With n different subroutines, this
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Figure 3: Register reassignment example. Registers ecx and ebx are switched to eax and edx, respectively.

technique can generate up to n! different
variants. The technique was initially em-
ployed by Win32/Ghost virus, which had
ten subroutines. Thus, it could generate
10! = 3, 628, 800 variants.

Figure 4: Subroutine reordering technique example.

4.4. Code Reordering through Jumps
Code reordering through jumps is based

on the insertion of conditional or uncondi-
tional jumps to split a subroutine into two
blocks of instructions. Afterwards, these
blocks generated by the branching instruc-
tion are permuted to change the control
flow. Cf. Figure 5. This technique was first
employed by Win95/ZPerm family to gen-
erate new variants jointly with the insertion
of garbage or dead code instructions.

5. Static Machine Learning Anti-
Malware Tools

There are multiple ways in which mal-
ware can be represented from a static anal-
ysis point of view. Typically, features are

Figure 5: Code reordering through jumps example.

manually-engineered to capture some spe-
cific characteristics of the executable that
can help distinguishing malware families or
malware from benign software, e.g. API
function calls, byte and opcode n-grams,
etc (Souri and Hosseini, 2018; Ucci et al.,
2019; Gibert et al., 2020b). In the present
study, the machine learning approaches are
limited to those whose performance would
be affected by the functionality-preserving
changes performed by the metamorphic at-
tacks described in Section 4. Accordingly,
the approaches assessed in this study can
be divided in two groups: (1) n-gram based
approaches or (2) deep learning approaches,
depending on whether they take as input a
feature vector containing an abstract repre-
sentation of the executable or directly raw
data.
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5.1. N-gram based Approaches
An n-gram is a contiguous sequence of

n items from a given sequence of text. N-
grams can be extracted from the hexadeci-
mal representation of malware’s binary con-
tent and from the assembly language source
code. On the one hand, the hexadecimal
representation represents the binary con-
tent of an executable as a sequence of bytes
(base-16 number representation with digits
[0-9] and [A-F]). Cf. Figure 6a. Alterna-
tively, the assembly language source code
contains the symbolic machine code of an
executable with metadata information as
function calls, memory allocation and vari-
able information. Cf. Figure 6b. In con-
sequence, byte n-grams (Zhang and Zhao,
2017; Raff and Nicholas, 2018) and opcode
n-grams (Santos et al., 2013; Hu et al., 2013)
refer to the unique combination of every n
consecutive bytes and opcodes as individual
features, respectively. An opcode refers to
the name of a specific instruction, i.e. ADD,
MUL, PUSH, etc, without its arguments.

N-gram based approaches construct a fea-
ture vector containing an abstract repre-
sentation of malware, where each element
in the vector indicates the number of ap-
pearances of a particular n-gram in the se-
quence of text. In consequence, the length
of the feature vector depends on the num-
ber of unique n-grams, which increases with
n. For instance, if we want to extract byte
n-grams with n = 3, the number of possible
n-grams is 2563 = 16.777.216. This leads to
two main problems. First, the resulting fea-
ture vector is too large to keep in memory,
even if malware n-grams do not increase ex-
ponentially with n but follow a Zipfian dis-
tribution (Raff et al., 2018c). Second, the
machine learning model will be affected by
the curse of dimensionality (Bellman, 2015;
Chen, 2009) which means that the number

of samples in the dataset that need to be ac-
cessed to estimate a function with a given
level of accuracy grows exponentially with
the underlying dimensionality. As a result,
methods in the literature reduced the high
dimensional input space using feature selec-
tion techniques (Santos et al., 2013; Zhang
and Zhao, 2017) or the hashing trick (Raff
and Nicholas, 2018; Hu et al., 2013).

1. Feature selection is the process of se-
lecting a subset of relevant features
from the initial input space for use in
model construction. A common ap-
proach is to rank the features based
on the mutual information index in
decreasing order (Santos et al., 2013;
Zhang and Zhao, 2017). Mutual infor-
mation, is an index of statistical depen-
dence between two variables (Vergara
and Estévez, 2014). In the case of a
classification task, it measures the de-
pendence between a feature X and the
target variable Y. This is done by mea-
suring how much knowing one of these
variables reduces uncertainty about the
other. The mutual information be-
tween two variables is a non-negative
value, which measures the dependency
between the variables. For two inde-
pendent variables, their mutual infor-
mation will be 0. Otherwise, for de-
pendent variables, higher mutual infor-
mation mean higher dependency.

2. Feature hashing, also known as the
hashing trick, is a method for handling
sparse, high-dimensional feature vec-
tors by using a hash function to deter-
mine the feature’s location in a lower-
dimensional vector. It can be seen as a
random projection of the input space
A ∈ Rn to a low dimensional space
B ∈ Rm, where m � n. More specif-
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(a) Hexadecimal view of a PE file. Each
line is composed of the starting address
of the machine codes in the memory and
an accumulation of consecutive 16 byte
values.

(b) Assembly view of the grayed part
in Figure 6a. The first column repre-
sents the address, the second column
the byte sequence and the third column
the mnemonics sequence.

Figure 6: Hexadecimal and assembly view of a Portable Executable file.

ically, given an array of size N that
counts the number of times each n-
gram occurred, and a hash function,
the hashing trick maps each n-gram to
a location in the lower dimensional ar-
ray.

Afterwards, the resulting low-
dimensional feature vector is used for
training a classification algorithm. In our
experiments, we extracted 3-gram features
from both the hexadecimal view and the
assembly view. The high-dimensional
feature vector was reduced using feature
selection or the hashing trick. The size
of the resulting low-dimensional vector
is set to K = 5000 (different sizes for
K ∈ [500, 2000, 5000] were tried but
K = 5000 provides the best performance).
Afterwards, we trained various classifiers,
including a logistic regression classifier and
feed-forward neural networks consisting
of 1 to 3 hidden layers. The number of
neurons in the hidden layers was set to

2048, 1024 and 512 for the first, second
and third hidden layer, respectively. The
results presented in Section 6 show the
performance of the best classifiers, which
are referred using the following notation for
the rest of the paper:

• NN opcodes (hashing trick) refers to a
neural network with two hidden layers
trained with the opcode-based feature
vector reduced with the hashing trick
technique. Cf. Figure 7.

Figure 7: NN opcodes (hashing trick) architecture.
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• LR opcodes (mutual information)
refers to a logistic regression classifier
trained with the top K opcode-based
features selected using the mutual
information index. Cf. Figure 8.

Figure 8: LR opcodes (mutual information) archi-
tecture.

• NN bytes (hashing trick) refers to a
neural network with one hidden layer
trained with the byte-based feature
vector reduced with the hashing trick
technique. Cf. Figure 9.

Figure 9: NN bytes (hashing trick) architecture.

Notice that feature selection using the
mutual information metric has been only
applied to the opcode-based 3-grams. This
is because in the dataset used for training
there are 55136 and 9514156 unique opcode
and byte 3-grams, respectively, and in con-
sequence, the memory requirements needed
for selecting 5000 byte-based 3-gram fea-
tures far exceeds the memory capacity of
our system.

Instead of taking the number of appear-
ances of n-grams as features, data normal-
ization is applied to normalize the range of
the features. The motivation behind data
normalization is that the range of values of
each feature varies widely. Machine learn-
ing models learn a mapping from input vari-
ables to an output variable. In consequence,
the scale and distribution of the data drawn
from the domain may be different for each
variable or feature. For example, the num-
ber of times the 3-gram [mov, push, mov]
or the 3-gram [pop, sub, and] may greatly
differ. These differences in the scales across
input variables may increase the difficulty of
the problem being modeled. For instance,
large input values can result in a model
that learns large weight values, which are
known to be often unstable, i.e. it may suf-
fer from poor performance during learning
and sensitivity to input values resulting in
higher generalization error. Therefore, the
features have been standarized so that they
have zero-mean and unit-variance. The for-
mula for standarization is as follows:

x
′
=
x− µ
δ

where x is the original feature vector, µ is
the mean of the feature values and δ is the
standard deviation of the feature values.
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5.2. Deep Learning Approaches
The need for manual feature engineer-

ing can be obviated by automated feature
learning. Deep learning replaces the fea-
ture engineering process by an underlying
system which typically consists of a neu-
ral network with multiple layers, that per-
forms both feature learning and classifica-
tion. With deep learning, one can start
with raw data as features will be automati-
cally created by the neural network when it
learns. The main distinction between deep
learning approaches for malware detection
and classification lean on what they use as
raw data.

5.2.1. Opcode-based Approaches
Opcode-based approaches (Gibert et al.,

2017) take as input a sequence of assem-
bly language instructions extracted from
the assembly language source code of an
executable. Gibert et al. (2017) proposed a
shallow convolutional neural network to ex-
tract n-gram like features from malware’s
instructions. This is achieved by a convolu-
tional layer with filters of various sizes. In
their work, an assembly program is repre-
sented as a concatenation of mnemonics

x1:n = x1 ⊕ x2 ⊕ · · · ⊕ xn
where n is the length of the program and
xi ∈ Rk corresponds to the i-th mnemonic
in the program. Instead of representing
the mnemonics as one-hot vectors, each
mnemonic is represented as a word embed-
ding. Following, a convolutional layer ex-
tracts n-gram like features. This is achieved
by the convolution operator, which involves
a filter w ∈ Rhk where h is the number of
mnemonics to which is applied and k is the
size of the word embedding. In particular,
filters are applied to sequences containing
from 3, 5 and 7 mnemonics. Cf. Figure A.18

5.2.2. Byte-based Approaches
Byte-based approaches (Raff et al.,

2018a; Krčál et al., 2018; Gibert et al., 2018)
are those that take as input a sequence of
bytes extracted from the hexadecimal rep-
resentation of the malware’s binary content.
Cf. Figure 6a. These approaches face the
following challenges:

• By treating an executable as a sequence
of bytes, we are dealing with sequences
of millions of time steps, which turns
the task of malware detection and clas-
sification as one of the most challenging
sequence classification problems with
regard to the size of the time series (se-
quence of bytes).

• The meaning of any byte is dependent
on its context and could encode any
type of information, from binary code
to human-readable text, images, etc.

• The same instruction could be encoded
using different bytes depending on its
arguments. For instance, the bytes se-
quence corresponding to the cmp in-
struction can begin with 0x3C, 0x3D,
0x3A, 0x3B, 0x80, 0x81, 0x38 or 0x39
depending on the arguments given.

• The content of a Portable Executable
(PE) file exhibits various levels of
spatial correlation. Nearby instruc-
tions within the same funtion are spa-
tially correlated, but function calls and
jcc instructions produce discontinuities
over the code instructions and func-
tions. As a result, this discontinuities
are maintained through the bytes se-
quences.

Following it is provided a brief description
of the architectures evaluated in the present
study:
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Raff et al. (2018a) proposed an archi-
tecture that consists of an embedding layer,
a gated convolutional layer, a global max-
pooling layer to produce its activations re-
gardless of the location of the detected fea-
tures, followed by fully-connected layers.
This architecture will be called MalConv
from now on. Cf. Figure A.19.

Krčál et al. (2018) presented a deep con-
volutional neural network architecture that
consists of an embedding layer, four con-
volutions with strides and max-pooling be-
tween the second and third convolutions.
Afterwards, it follows a global average pool-
ing layer and various fully-connected layers.
This architecture will be called DeepConv
from now on. Cf. Figure A.20.

Gibert et al. (2018) presented a convo-
lutional neural network architecture to cat-
egorize malware based on their structural
entropy. The structural entropy of an ex-
ecutable is the representation of a file as a
stream of entropy values, where each value
describes the amount of entropy over a small
chunk of code in a specific location of the
file. Additionally, they proposed a multires-
olution CNN to classify malware based on
the approximation and details coefficients
generated by the Haar wavelet transform
over the entropy time series. The archi-
tectures will be called Structural entropy
CNN and Multiresolution CNN from now
on. Cf. Figures A.21, A.22.

5.2.3. Byte-based Shallow Convolutional
Neural Network

Byte-based approaches presented in the
literature (Raff et al., 2018a; Krčál et al.,
2018; Gibert et al., 2018) tend to underper-
form in comparison to the opcode-based ap-
proaches (Gibert et al., 2017) as it can be
observed in Section 6.3. Our intuition is
that the size of their filters and the com-

plexity of the network architectures played
a deep role. To check this premise, a shal-
low convolutional neural network architec-
ture similar to the one presented by Gibert
et al. (2017) has been proposed based on the
raw byte sequences.

The architecture differs in the input of the
network and in the size of the convolutional
filters. Instead of receiving the assembly
language instructions, the network takes as
input the hexadecimal representation of the
malware’s binary content represented as a
concatenation of bytes:

x1:n = x1 ⊕ x2 ⊕ · · · ⊕ xn

where n is the length of the program and
xi ∈ Rk corresponds to the i-th byte in the
program. The overall architecture is pre-
sented in Figure 10.

The network comprises the following lay-
ers:

• Input layer. The network takes as in-
put a sequence of bytes, of size N, rep-
resenting malware’s binary content.

• Embedding layer. Rather than per-
form convolutions on the raw byte val-
ues, each byte is mapped to a fixed
length feature vector (word embed-
ding) that is learnt during training.
Take into account that using raw byte
values would imply that certain byte
values are intrinsically closer to each
other than other byte values, which is
known a priori to be false, as the mean-
ing of the byte value is dependent on
the context.

• Convolutional layer. This layer con-
volves various filters over the byte se-
quences and extracts n-gram like fea-
tures from it. A convolution operation
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Raw Bytes

4-dimensiomal EmbeddingN × 4

Conv 5 (stride 1)100Conv 3 (stride 1)100 Conv 7 (stride 1)100

Global Max Pooling100Global Max Pooling100 Global Max Pooling100

Feature Concatenation300

Softmax9

Figure 10: Convolutional neural network for malware classification from sequences of bytes.

involves a filter w ∈ Rhk where h is the
number of bytes to which is applied and
k is the size of the word embedding.
In particular, filters are applied to se-
quences containing 3,5 and 7 bytes.

A feature ci is generated from a window
of bytes xi:i+h−1 (it comprises all bytes
between position i and i + h − 1) and
is defined as follows:

ci = f(w · xi:i+h−1 + b),

where f is a rectifier linear unit (ReLU)
function and b the bias term.

• Pooling layer. Global max-pooling is
applied to extract the maximum acti-
vation of each of the feature map acti-
vations generated by the convolutional
layer.

• Softmax layer. It linearly combines
the features learned by the previous

layers and applies the softmax func-
tion to generate a vector containing
the normalized probability distribution
over malware families.

Other variants of this architecture includ-
ing dilated convolutions (Yu and Koltun,
2016) and gated linear units (Dauphin et al.,
2017) have been evaluated but as it can be
observed in Section 6.3, their performance
is slightly worse than the standard convolu-
tion. This variants are named Aatrous CNN
and CNN GLU, respectively.

6. Evaluation

This section presents an extensive eval-
uation of the robustness of state-of-the-
art detectors powered by ML against the
metamorphic techniques presented in Sec-
tion 4. The experiments are carried out us-
ing the data provided by Microsoft for the
Big Data Innovators Gathering Challenge
of 2015 (Ronen et al., 2018). Furthermore,
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we investigate the utility of the aforemen-
tioned metamorphic techniques to augment
the dataset and reduce class imbalance.

6.1. The Microsoft Malware Classification
Challenge

Unlike other applications, the task of mal-
ware detection and classification has not re-
ceived much attention in the research com-
munity and unfortunately, there are not
available rich labeled datasets. Due to le-
gal restrictions, benign binaries (e.g. exe-
cutables of common Windows applications,
utilities, etc) can not be shared, as they are
often protected by copyright laws. Contrar-
ily, there are websites such as VirusShare
and VXHeaven that share malicious exe-
cutables. However, unlike other domains
where data may be labeled very rapidly by
a non-expert, determining whether a file is
malicious and its corresponding family or
class is a very time-consuming process, even
for security experts. In consequence, for
reproducibility purposes the research con-
ducted in this paper has been evaluated
on the data provided by Microsoft for the
Big Data Innovators Gathering Challenge
of 2015 (Ronen et al., 2018), which over
the years has become the de facto bench-
mark for evaluating approaches on the task
of malware classification. Microsoft pro-
vided a high-quality public labeled bench-
mark of almost half a terabyte of mal-
ware. Nowadays, the dataset is hosted on
Kaggle 6 and is publicly accessible. The
dataset contains samples of malware rep-
resenting a mix of 9 malware families (See
Table 1): (1) Ramnit, (2) Lollipop, (3)
Kelihos_ver3, (4) Vundo, (5) Simda,

6https://www.kaggle.com/c/malware-
classification/

(6) Tracur, (7) Kelihos_ver1, (8) Ob-
fuscator.acy and (9) Gatak.

Table 1: Class distribution in the Microsoft Mal-
ware Classification Challenge dataset.

Family Name #Samples Type
Ramnit 1541 Worm
Lollipop 2478 Adware
Kelihos_ver3 2942 Backdoor
Vundo 475 Trojan
Simda 42 Backdoor
Tracur 751 TrojanDownloader
Kelihos_ver1 398 Backdoor
Obfuscator.ACY 1228 Any kind of obfuscated malware
Gatak 1013 Backdoor

6.2. Experimental Setup
The experiments have been carried out

on a machine with an Intel Core i7-7700K
CPU, 4xGeforce GTX 1080Ti and 64Gb
of RAM. All algorithms have been imple-
mented using TensorFlow (Abadi et al.,
2015).

The experimentation has been divided
into two phases. The first phase anal-
yses the individual impact of the meta-
morphic techniques on the performance of
the machine learning models. Oppositely,
the second phase analyzes the usage of the
metamorphic techniques for augmenting the
training set and boosting the performance
of the machine learning classifiers.

6.3. Analysis of the Performance of ML
Classifiers against Metamorphic Tech-
niques

To analyze the performance of the ML
classifiers, the dataset has been divided into
three sets: (1) the training set, (2) the val-
idation set and (3) the test set, containing
70%, 15% and 15% of the samples, respec-
tively.

Instead of the accuracy, the macro F1-
score has been used to evaluate the models.
This is due to the fact that accuracy alone
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can be a misleading measure, specially in
datasets with large class imbalance. For in-
stance, a machine learning model might cor-
rectly predict the value of the majority class
for all predictions and achieve a high clas-
sification accuracy while failing to correctly
predict the class of samples belonging to the
minority and critical classes. In this situa-
tion the macro F1-score metric is more ad-
equate because it penalizes this kind of be-
havior by calculating the unweighted mean
of the precision and recall for each label or
class. The mathematical formulation of the
macro f1-score is as follows:

macro f1 score =
1

q

q∑

i=1

F i
1

where F i
1 is the weighted average of preci-

sion and recall in class i.

F1 = 2 · P ·R
P +R

When evaluating the performance of the
classifiers, the test set is used to generate
three obfuscated test sets (A, B and C) and
the average macro f1-score achieved on the
three sets is provided as outcome.

6.3.1. Dead Code Insertion
To evaluate the resilience of ML mod-

els to the changes performed on the code
by the dead code insertion technique, the
test set has been obfuscated by inserting
10, 50, 100, 200 and 500 dead code in-
structions in random positions within the
assembly language source code of executa-
bles (See Section 4.1). This includes all
sections that contain assembly language in-
structions, and not only the .text section.
Given P = [0.5, 0.071, ..., 0.071] and X =
[NOP, MOV Reg Reg, ...], where |P | and
|X| equals N , P (n) is the probability to

select the X(n) element. Accordingly, the
probability to insert the NOP instruction is
0.5 while the probability to insert any other
instruction is 0.071. The probability val-
ues have been set as described above to put
more focus on the NOP instruction.

Table 2: Comparison of the macro f1-score achieved
by the ML classifiers on the test set obfuscated by
the dead code insertion technique.

Dead code insertion
Method Test Set 10 50 100 200 500

Opcode-based
(Gibert et al., 2017) 0.9852 0.9806 0.9794 0.9711 0.9672 0.8754
NN opcodes (hashing trick) 0.9765 0.9754 0.9738 0.9704 0.9458 0.7031
NN opcodes (mutual information) 0.9876 0.9873 0.9888 0.9887 0.9879 0.9728

Byte-based

MalConv (Raff et al., 2018a) 0.8480 0.8543 0.8502 0.8497 0.8300 0.8328
DeepConv (Krčál et al., 2018) 0.8376 0.8030 0.7913 0.7567 0.6944 0.6765
Structural entropy CNN (Gibert et al., 2018) 0.8809 0.8952 0.9015 0.8880 0.8348 0.7818
Multiresolution CNN (Gibert et al., 2018) 0.8972 0.9074 0.9008 0.8880 0.8297 0.7995
NN bytes (hashing trick) 0.8858 0.8863 0.8854 0.8864 0.8863 0.8861
Shallow CNN 0.9748 0.9733 0.9731 0.9694 0.9674 0.9577
Dilated CNN 0.9622 0.9369 0.9362 0.9427 0.9317 0.9280
CNN GLU 0.9627 0.9627 0.9627 0.9623 0.9606 0.9638

Figure 11: Macro f1-score of ML classifiers on the
test set obfuscated by the dead code insertion tech-
nique.

Table 2 and Figure 11 present the clas-
sification performance of the ML classifiers
against the aforementioned obfuscated test
set. It can be observed that the perfor-
mance of the opcode-based methods (Gibert
et al. (2017), NN opcodes (hashing trick))
degrade considerably when more than 200
dead code instructions are inserted per sam-
ple. On the contrary, byte-based classi-
fiers (Raff et al. (2018a); Krčál et al. (2018);
Gibert et al. (2018), NN bytes (hashing
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trick)) remain more stable to the changes
in the executable. There are two reasons
for this occurrence: (1) First, the size of
the executables significantly differ between
families (Gibert et al., 2020a). The less
opcodes has the sample the easy is to ob-
fuscate the patterns learned by the ML
model; (2) Second, samples belonging to
some families in the dataset do not contain
any NOP instruction in their assembly lan-
guage source code such as samples belong-
ing to the Kelihos_ver1 family. This have
caused the opcode-based models to learn
that if there exist a n-gram containing the
NOP instruction in the assembly language
source code, the corresponding executable
might belong to any other family but not
to Kelihos_ver1. For instance, as it can
be observed in Figure 12 the opcode-based
CNN (Gibert et al., 2017) only classified
correctly 27 out of 67 samples of the Keli-
hos_ver1 families. To check this premise, in
Section 6.5 it is augmented the training data
by using a combination of the metamorphic
techniques presented in Section 4, includ-
ing the dead code insertion technique. Re-
sults show that the degradation in the per-
formance of opcode-based classifiers is due
to data bias rather than to any weaknesses
of the opcode-based classifiers with respect
to the byte-based classifiers and could be re-
solved by augmenting the training set with
some samples of those families containing
some NOP instructions.

6.3.2. Register’s Reassignment
The second metamorphic technique eval-

uated is the register’s reassignment tech-
nique (See Section 4.2). To evaluate the
resilience of ML models against the regis-
ter’s reassignment technique, two or more
data registers (i.e. EAX, EBX, ECX, EDX )
of the samples in the test set have been

Figure 12: Opcode-based CNN confusion matrix
(500 dead code insertions).

swapped. More specifically, two experi-
ments have been performed:

• Experiment A: Swap two randomly se-
lected data registers.

• Experiment B: Swap all data registers.

Table 3: Comparison of the macro f1-score achieved
by the ML classifiers on the test set obfuscated by
the register’s reassignment technique.

Register’s Reassignment
Method Test Set A B
MalConv (Raff et al., 2018a) 0.8480 0.8465 0.8294
DeepConv citepkrcal2018deep 0.8376 0.8136 0.7768
Structural entropy CNN (Gibert et al., 2018) 0.8809 0.8850 0.8954
Multiresolution CNN (Gibert et al., 2018) 0.8972 0.8973 0.8996
NN bytes (hashing trick) 0.8858 0.8846 0.8764
Shallow CNN 0.9748 0.9708 0.9565
Dilated CNN 0.9622 0.9410 0.9308
CNN GLU 0.9627 0.9638 0.9570

Table 3 and Figure 13 present the perfor-
mance of the ML classifiers against the sam-
ples of the test set obfuscated with the reg-
ister’s reassignment technique. Notice that
opcode-based approaches are not evaluated
as they are not affected by this technique.
On the contrary, Malconv’s (Raff et al.,
2018a), DeepConv’s (Krčál et al., 2018), the
shallow CNN and the n-gram based classi-
fier’s performance degraded 2.19%, 7.26%,
1.88% and 1.06% respectively while the
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Figure 13: Macro f1-score of ML classifiers on the
test set obfuscated by the register’s reassignment
technique.

macro f1-score of the methods presented
in Gibert et al. (2018) slightly increased.
Our intuition is that both classifiers (Gib-
ert et al., 2018) as they are based on the
structural entropy of an executable, even
that the register reassignment technique re-
places some bytes in the executable, the en-
tropy time series remain mostly unaltered.
In addition, it can be observed that the per-
formance of the classifiers decreases as the
number of registers swapped augments.

6.3.3. Subroutine Reordering
To evaluate the resilience of ML models

to the modifications performed on the code
by the subroutine reordering technique, the
samples on the test set have been obfuscated
by performing 5, 10, 20 and 50 random sub-
routine permutations (See Section 4.3).

Table 4 and Figure 14 display the per-
formance of the ML models over the ob-
fuscated test set. It can be observed that
the classification performance of all mod-
els remain mostly constant. This is because
most neural network architectures evalu-
ated contain a global max-pooling (Raff
et al., 2018a; Gibert et al., 2017) or global

Table 4: Comparison of the macro f1-score achieved
by the ML classifiers on the test set obfuscated by
the subroutine reordering technique.

Subroutine reorderings
Method Test Set 5 10 20 50

Opcode-based
(Gibert et al., 2017) 0.9852 0.9807 0.9801 0.9798 0.9784
NN opcodes (hashing trick) 0.9765 0.9784 0.9781 0.9785 0.9783
NN opcodes (mutual information) 0.9876 0.9876 0.9876 0.9874 0.9874

Byte-based

MalConv (Raff et al., 2018a) 0.8480 0.8558 0.8391 0.8645 0.8552
DeepConv (Krčál et al., 2018) 0.8376 0.8025 0.8150 0.7955 0.7903
Structural entropy CNN (Gibert et al., 2018) 0.8809 0.8976 0.8929 0.9026 0.8990
Multiresolution CNN (Gibert et al., 2018) 0.8972 0.9044 0.8998 0.9013 0.9008
NN bytes (hashing trick) 0.8858 0.8859 0.8860 0.8852 0.8851
Shallow CNN 0.9748 0.9732 0.9733 0.9731 0.9734
Dilated CNN 0.9622 0.9465 0.9418 0.9474 0.9560
CNN GLU 0.9627 0.9623 0.9627 0.9626 0.9623

Figure 14: Macro f1-score of ML classifiers on the
test set obfuscated by the subroutine reordering
technique.

avg-pooling layer (Krčál et al., 2018) at
the end of the convolutional layers which
allowed the detection of patterns indepen-
dently of their position in the raw input se-
quences.

6.3.4. Code Reordering through Jumps
The resilience of the ML models against

the code reordering through jumps tech-
nique (See Section 4.4) is assessed by re-
ordering the code with the insertion of 5,
10, 20 and 50 jumps randomly within the
assembly language source code of the exe-
cutables.

Table 5 and Figure 15 present the per-
formance of the ML classifiers against the
samples of the test set obfuscated with the
code reordering through jumps technique.
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Table 5: Comparison of the macro f1-score achieved
by the ML classifiers on the test set obfuscated by
the code reordering through jumps technique.

Code reordering through jumps
Method Test Set 5 10 20 50

Opcode-based
(Gibert et al., 2017) 0.9852 0.9789 0.9776 0.9768 0.9729
NN opcodes (hashing trick) 0.9765 0.9784 0.9777 0.9765 0.9667
NN opcodes (mutual information) 0.9876 0.9874 0.9876 0.9876 0.9876

Byte-based

MalConv (Raff et al., 2018a) 0.8480 0.8482 0.8573 0.8374 0.8481
DeepConv (Krčál et al., 2018) 0.8376 0.7547 0.7243 0.7136 0.6749
Structural entropy CNN (Gibert et al., 2018) 0.8809 0.8416 0.8162 0.7671 0.7319
Multiresolution CNN (Gibert et al., 2018) 0.8972 0.8453 0.8195 0.7798 0.7457
NN bytes (hashing trick) 0.8858 0.8841 0.8954 0.8907 0.8955
Shallow CNN 0.9748 0.9732 0.9739 0.9733 0.9743
Dilated CNN 0.9622 0.9503 0.9535 0.9605 0.9609
CNN GLU 0.9627 0.9625 0.9628 0.9627 0.9607

Figure 15: Macro f1-score of ML classifiers on the
test set obfuscated by the code reordering through
jumps technique.

Results are similar to Section 6.3.3 with the
byte-based approaches performing poorly
in comparison to opcode-based approaches,
and additionally, the performance of Deep-
Conv (Krčál et al., 2018), structural entropy
and haar approximation & coefficients (Gib-
ert et al., 2018) degraded considerably from
0.8376, 0.8809, 0.8972 to 0.6749, 0.7319,
0.7457, respectively. At the present mo-
ment we don’t have an explanation for the
behavior of the aforementioned models but
it might be the case that the code reorder-
ing through jumps technique modifies the
initial byte sequences in such a way that
the resulting time series look completely
different from the non-obfuscated versions.
For instance, in Figure 16 it can be ob-

served that the structural entropy visual-
ization of the malicious sample with ID
bxED6RSpmnWV03kyMLoK diverges from
the entropy representation of the version ob-
fuscated by reordering the source code with
the random insertion of 50 jumps. Thus,
if the modifications alter the byte sequence
in a way that the patterns learned by the
ML classifiers do not occur, then the sam-
ple will be misclassified. In addition, the
higher complexity of the aforementioned ar-
chitectures have negatively affected its per-
formance. On the contrary, it can be ob-
served in Figure 15 that the shallow-based
CNN presented in Section 5.2.3 is resilient
to the changes performed by the code re-
ordering through jumps technique.

Figure 16: Structural entropy comparison
between the non-obfuscated and obfuscated
versions of the malicious sample with ID
bxED6RSpmnWV03kyMLoK.

6.3.5. Mixed Obfuscation
Finally, the samples in the test set have

been altered by various combinations of the
four metamorphic techniques to mimic the
changes performed by a metamorphic en-
gine. To this end, four experiments have
been performed:

• Experiment A: Each sample in the
test set has been modified by insert-
ing 10 dead code insertions, performing
10 subroutine reorderings, 10 code re-
orderings through jumps, and by swap-
ping all four data registers.
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• Experiment B: Each sample in the
test set has been modified by insert-
ing 50 dead code insertions, performing
20 subroutine reorderings, 20 code re-
orderings through jumps, and by swap-
ping all four data registers.

• Experiment C: Each sample in the
test set has been modified by inserting
100 dead code insertions, performing
30 subroutine reorderings, 30 code re-
orderings through jumps, and by swap-
ping all four data registers.

• Experiment D: Each sample in the
test set has been modified by inserting
200 dead code insertions, performing
40 subroutine reorderings, 40 code re-
orderings through jumps, and by swap-
ping all four data registers.

Table 6: Comparison of the macro f1-score achieved
by the ML classifiers on the test set obfuscated with
various metamorphic techniques.

Experiment
Method Test Set A B C D

Opcode-based
(Gibert et al., 2017) 0.9852 0.9754 0.9718 0.9632 0.9529
NN opcodes (hashing trick) 0.9765 0.9776 0.9756 0.9618 0.9159
NN opcodes (mutual information) 0.9876 0.9889 0.9889 0.9878 0.9821

Byte-based

MalConv (Raff et al., 2018a) 0.8480 0.8496 0.8340 0.8353 0.8323
DeepConv (Krčál et al., 2018) 0.8376 0.6981 0.6746 0.6738 0.6322
Structural entropy CNN (Gibert et al., 2018) 0.8809 0.7988 0.7674 0.7360 0.7115
Multiresolution CNN (Gibert et al., 2018) 0.8972 0.8215 0.7872 0.7533 0.7254
NN bytes (hashing trick) 0.8858 0.8715 0.8744 0.8842 0.8727
Shallow CNN 0.9748 0.9576 0.9499 0.9652 0.9461
Dilated CNN 0.9622 0.9291 0.9376 0.9331 0.9216
CNN GLU 0.9627 0.9578 0.9569 0.9567 0.9570

Table 6 and Figure 17 show the per-
formance of the ML classifiers on the ob-
fuscated test sets. Similarly to the previ-
ous experiments, opcode-based approaches
achieve better results than byte-based ap-
proaches. In addition, it can be observed
that approaches based on the manual ex-
traction of n-gram features are more re-
silient to metamorphic techniques as they
are mostly unaffected by them. On the
other hand, from those approaches based on
deep learning, the opcode-based CNN (Gib-
ert et al., 2017) is the one that achieved

Figure 17: Macro f1-score of ML classifiers on the
test set obfuscated with various metamorphic tech-
niques.

the highest macro f1-score while Deep-
Conv (Krčál et al., 2018) is the ML model
that was most negatively affected by the
modifications in the malware’s code. Our
intuition is that the size of its filters and
the complexity of the network, jointly with
the imbalanced data played a deep role.

6.4. Summary
Table 7 compares the performance of

the ML classifiers on the obfuscated test
sets. To sum up, opcode-based approaches
(Gibert et al. (2017), NN opcodes (hash-
ing trick), LR opcodes (mutual informa-
tion)) perform considerable better than
byte-based approaches (Raff et al. (2018a);
Krčál et al. (2018); Gibert et al. (2018),
NN bytes (hashing trick)), with the logis-
tic regression classifier achieving the high-
est macro f1-score in all the obfuscated sets.
The strong performance of n-gram features
have already been investigated in the lit-
erature, e.g. Zhang et al. (2016) and the
Winner’s solution of the Microsoft Malware
Classification Challenge 7, in which proved

7https://github.com/xiaozhouwang/
kaggle_Microsoft_Malware/tree/master/
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Table 7: Macro F1-score achieved by ML classifiers on the obfuscated test set.

Dead code insertion Register’s reassignment Subroutine reorderings Code reordering through jumps Mixed
Method Test Set 10 50 100 200 500 A B 5 10 20 50 5 10 20 50 A B C D

Opcode-based
(Gibert et al., 2017) 0.9852 0.9806 0.9794 0.9711 0.9672 0.8754 0.9852 0.9852 0.9807 0.9801 0.9798 0.9784 0.9789 0.9776 0.9768 0.9729 0.9754 0.9718 0.9632 0.9529
NN opcodes (hashing trick) 0.9765 0.9754 0.9738 0.9704 0.9458 0.7031 0.9765 0.9765 0.9784 0.9781 0.9785 0.9783 0.9784 0.9777 0.9765 0.9667 0.9776 0.9756 0.9618 0.9159
NN opcodes (mutual information) 0.9876 0.9873 0.9888 0.9887 0.9879 0.9728 0.9876 0.9876 0.9876 0.9876 0.9874 0.9874 0.9874 0.9876 0.9876 0.9876 0.9889 0.9889 0.9878 0.9821

Byte-based

MalConv (Raff et al., 2018a) 0.8480 0.8543 0.8502 0.8497 0.8300 0.8328 0.8465 0.8294 0.8558 0.8391 0.8645 0.8552 0.8482 0.8573 0.8374 0.8481 0.8496 0.8340 0.8353 0.8323
DeepConv (Krčál et al., 2018) 0.8376 0.8030 0.7913 0.7567 0.6944 0.6765 0.8136 0.7768 0.8025 0.8150 0.7955 0.7903 0.7547 0.7243 0.7136 0.6749 0.6981 0.6746 0.6738 0.6322
Structural entropy CNN (Gibert et al., 2018) 0.8809 0.8952 0.9015 0.8880 0.8348 0.7818 0.8850 0.8954 0.8976 0.8929 0.9026 0.8990 0.8416 0.8162 0.7671 0.7319 0.7988 0.7674 0.7360 0.7115
Multiresolution CNN (Gibert et al., 2018) 0.8972 0.9074 0.9008 0.8880 0.8297 0.7995 0.8973 0.8996 0.9044 0.8998 0.9013 0.9008 0.8453 0.8195 0.7798 0.7457 0.8215 0.7872 0.7533 0.7254
NN bytes (hashing trick) 0.8858 0.8863 0.8854 0.8864 0.8863 0.8861 0.8846 0.8764 0.8859 0.8860 0.8852 0.8851 0.8841 0.8954 0.8907 0.8955 0.8715 0.8744 0.8842 0.8727
Shallow CNN 0.9748 0.9733 0.9731 0.9694 0.9674 0.9577 0.9708 0.9565 0.9732 0.9733 0.9731 0.9734 0.9732 0.9739 0.9733 0.9743 0.9576 0.9499 0.9652 0.9461
Dilated CNN 0.9622 0.9369 0.9362 0.9427 0.9317 0.9280 0.9410 0.9308 0.9465 0.9418 0.9474 0.9560 0.9503 0.9535 0.9605 0.9609 0.9291 0.9376 0.9331 0.9216
CNN GLU 0.9627 0.9627 0.9627 0.9623 0.9606 0.9638 0.9638 0.9570 0.9623 0.9627 0.9626 0.9623 0.9625 0.9628 0.9627 0.9607 0.9579 0.9569 0.9567 0.9570

to be decisive features for the construction
of their classifier.

On the other hand, although deep learn-
ing approaches have shown great adop-
tion in recent years by the cybersecurity
industry, they are still in an early stage
and there still exist margin for improve-
ment. As observed in Table 7, the per-
formance of the deep learning approaches
varies greatly depending on the input of
the network. For instance, the opcode-
based shallow model (Gibert et al., 2017)
performance degraded considerably when
500 random dead code instructions were in-
serted within the source code of the sam-
ples in the test set mainly because some
bias in the dataset. Regarding byte-based
approaches, those that take as input the
raw byte sequences (Raff et al., 2018a;
Krčál et al., 2018) are mostly affected by
the register reassignment technique while
entropy-based approaches (Gibert et al.,
2018) demonstrated robustness against it.
Furthermore, the performance of all deep
learning approaches, indistinctly of their in-
put, show some degradation with respect
to the changes performed by the code re-
ordering through jumps technique. In ad-
dition, it can be observed that there exist
a huge gap in the performance of opcode-
based (Gibert et al., 2017) and byte-based
approaches (Raff et al., 2018a; Krčál et al.,
2018; Gibert et al., 2018) deep learning

kaggle_Microsoft_malware_full

methods in the literature, achieving a macro
f1-score on the test set equals to 0.9852,
0.8480, 0.8376, 0.8972, respectively. This
is because byte-based approaches failed to
correctly classify samples belonging to the
minority classes, e.g. Simda, Obfusca-
tor.ACY, etc. This is attributable to sev-
eral factors: (1) the complexity and depth
of the network architectures; (2) the size
of the filters and (3) class imbalance. As
it is shown in Table 7, the proposed shal-
low architecture trained on the raw bytes
sequences with filters of various sizes rang-
ing from k ∈ {3, 5, 7} achieves a macro f1-
score comparable to the opcode-based ap-
proaches and 14.95% and 16.38% higher
than MalConv’s (Raff et al., 2018a) and
DeepConv’s (Krčál et al., 2018) architec-
tures, respectively. Thus, it demonstrates
that the complexity of the network archi-
tectures played an important role in the
low output achieved by the byte-based mod-
els. In addition, the byte-based shallow
CNN architecture has shown greater robust-
ness against the dead code insertion tech-
nique than their opcode-based counterpart
although it is still affected by the register’s
reassignment technique as all byte-based
approaches.

6.5. Data Augmentation with Adversarial
Examples

Recent advances in deep learning have
been largely attributed to the quantity and
diversity of data. The more data and the
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more variation possible in the data the bet-
ter the generalization of the model will be.
However, in some cases it is not possible
to collect thousands or millions of samples.
In such cases, more data can be generated
from a given dataset. This process is known
as data augmentation. As far as we know,
no data augmentation scheme has been pro-
posed in the literature for the malware do-
main. Following, the use of metamorphic
techniques for augmenting the dataset is in-
vestigated. The main idea behind using the
aforementioned metamorphic techniques to
augment the dataset is that the modifica-
tions preserve the functionality of the ex-
ecutables and are commonly used by mal-
ware authors and thus, it may help build
robust ML models. As observed in Table 1
the training set is very imbalanced, with the
majority class (Kelihos_ver3) containing 70
times more samples than the minority class
(Simda). Subsequently, the number of sam-
ples generated for each family varied con-
siderably, with the samples of the minority
families reused more than the samples in the
majority families to expand the training set.
The total number of samples in the train-
ing set is shown in Table 8. The augmented
training set contains the original sample and
one or more obfuscated versions of it. This
obfuscated versions have been generated us-
ing the following parameters:

• A total of 10 dead code instructions
have been inserted.

• 5 subroutines have been randomly per-
muted.

• The source code has been reordered by
inserting 5 jumps to split the subrou-
tines.

• The registers of a given sample have

been randomly swapped with probabil-
ity p = 0.2.

Table 8: Class distribution in augmented training
set.

Family Name Training set Augmented training set
Ramnit 1084 3249
Lollipop 1736 3472
Kelihos_ver3 2057 4114
Vundo 327 2289
Simda 26 546
Tracur 532 2660
Kelihos_ver1 279 2511
Obfuscator.ACY 845 3380
Gatak 721 2884

Table 9 presents the performance of the
models trained using the augmented train-
ing set on the obfuscated test set. In gen-
eral, all deep learning approaches gained
some robustness against the changes per-
formed by the metamorphic techniques.
It can be observed that byte-based ap-
proaches improved considerably thanks to
the augmented training set. For instance,
MalConv’s (Raff et al., 2018a) and Deep-
Conv’s (Krčál et al., 2018) performance
improved 9.98% and 5.03%, respectively.
However, their models continue to perform
poorly in comparison to the byte-based
shallow CNN (0.9748 macro f1-score on the
test set), the dominant byte-based classi-
fier. On the other hand, the robustness
of the opcode-based CNN (Gibert et al.,
2017) improved considerably with respect
to the modifications performed by the dead
code insertion technique. The macro f1-
score achieved by the opcode-based CNN on
the test set obfuscated by inserting 500 dead
code instructions improved from 0.8754 to
0.9796, an 11.9% increase.

Notice that the macro f1-score achieved
by the shallow CNN approaches, indis-
tinctly of whether they take as input the
bytes or opcode sequences, is close to those
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Table 9: Macro F1-score achieved by ML classifiers on the obfuscated test set trained on the augmented
dataset (AD).

Dead code insertion Register’s Reassignment Subroutine reorderings Code reordering through jumps Mixed
Method Test Set 10 50 100 200 500 A B 5 10 20 50 5 10 20 50 A B C D

Opcode-based

(Gibert et al., 2017) 0.9852 0.9806 0.9794 0.9711 0.9672 0.8754 0.9852 0.9852 0.9807 0.9801 0.9798 0.9784 0.9789 0.9776 0.9768 0.9729 0.9754 0.9718 0.9632 0.9529
(Gibert et al., 2017), AD 0.9850 0.9854 0.9835 0.9855 0.9836 0.9796 0.9850 0.9850 0.9849 0.9848 0.9845 0.9850 0.9835 0.9821 0.9811 0.9781 0,9821 0,9791 0,9787 0,9767
NN opcodes (hashing trick) 0.9765 0.9754 0.9738 0.9704 0.9458 0.7031 0.9765 0.9765 0.9784 0.9781 0.9785 0.9783 0.9784 0.9777 0.9765 0.9667 0.9776 0.9756 0.9618 0.9159
NN opcodes (hashing trick, AD) 0.9862 0.9827 0.9833 0.9734 0.9298 0.7659 0.9862 0.9862 0.9862 0.9862 0.9862 0.9862 0.9859 0.9855 0.9859 0.9820 0,9857 0,9820 0,9684 0,9103
LR opcodes (mutual information) 0.9876 0.9873 0.9888 0.9887 0.9879 0.9728 0.9876 0.9876 0.9876 0.9876 0.9874 0.9874 0.9874 0.9876 0.9876 0.9876 0.9889 0.9889 0.9878 0.9821
LR opcodes (mutual information, AD) 0.9873 0.9875 0.9876 0.9852 0.9858 0.9836 0.9873 0.9873 0.9878 0.9875 0.9875 0.9880 0.9873 0.9875 0.9873 0.9870 0.9875 0,9875 0,9865 0,9865

Byte-based

MalConv (Raff et al., 2018a) 0.8480 0.8543 0.8502 0.8497 0.8300 0.8328 0.8465 0.8294 0.8558 0.8391 0.8645 0.8552 0.8482 0.8573 0.8374 0.8481 0.8496 0.8340 0.8353 0.8323
MalConv (Raff et al., 2018a), AD 0.9326 0.9483 0.9399 0.9434 0.9398 0.9422 0,9339 0.9388 0.9427 0.9415 0.9401 0.9396 0.9341 0.9387 0.9404 0.9453 0.9367 0.9346 0,9335 0.9280
DeepConv (Krčál et al., 2018) 0.8376 0.8030 0.7913 0.7567 0.6944 0.6765 0.8136 0.7768 0.8025 0.8150 0.7955 0.7903 0.7547 0.7243 0.7136 0.6749 0.6981 0.6746 0.6738 0.6322
DeepConv (Krčál et al., 2018), AD 0.8797 0.8812 0.8809 0.8680 0.8585 0.8252 0,8762 0.8712 0.8804 0.8802 0.8760 0.8741 0.8653 0.8650 0.8513 0.8523 0.8541 0,8474 0,8409 0,8388
Structural entropy CNN (Gibert et al., 2018) 0.8809 0.8952 0.9015 0.888 0.8348 0.7818 0.8850 0.8954 0.8976 0.8929 0.9026 0.8990 0.8416 0.8162 0.7671 0.7319 0.7988 0.7674 0.7360 0.7115
Structural entropy CNN (Gibert et al., 2018), AD 0.8904 0.8996 0.9022 0.8941 0.9223 0.8904 0,8988 0.8941 0.8987 0.8970 0.9012 0.9019 0.9023 0.8911 0.8796 0.8759 0.8806 0.8887 0,8744 0,8678
Multiresolution CNN (Gibert et al., 2018) 0.8972 0.9074 0.9008 0.8880 0.8297 0.7995 0.8973 0.8996 0.9044 0.8998 0.9013 0.9008 0.8453 0.8195 0.7798 0.7457 0.8215 0.7872 0.7533 0.7254
Multiresolution CNN (Gibert et al., 2018), AD 0.9261 0.9244 0.9256 0.9305 0.9286 0.8335 0,9264 0.9319 0.9241 0.9233 0.9282 0.9244 0.9182 0.9215 0.897 0.8954 0.9179 0,9052 0.8945 0.8784
NN bytes (hashing trick) 0.8858 0.8863 0.8854 0.8864 0.8863 0.8861 0.8846 0.8764 0.8859 0.8860 0.8852 0.8851 0.8841 0.8954 0.8907 0.8955 0.8715 0.8744 0.8842 0.8727
NN bytes (hashing trick, AD) 0.9539 0.9498 0.9474 0.9492 0.9492 0.9465 0,9410 0.9363 0.9491 0.9522 0.9494 0.9489 0.9491 0.9437 0.9464 0.9403 0.9439 0.9349 0.9448 0,9360
Shallow CNN 0.9748 0.9733 0.9731 0.9694 0.9674 0.9577 0.9708 0.9565 0.9732 0.9733 0.9731 0.9734 0.9732 0.9739 0.9733 0.9743 0.9576 0.9499 0.9652 0.9461
Shallow CNN, AD 0.9765 0.9762 0.9740 0.9744 0.9745 0.9609 0,9723 0.9748 0.9763 0.9762 0.9760 0.9712 0.9765 0.9769 0.976 0.9753 0.9690 0,9734 0,9718 0,9618

obtained by the n-gram based approaches.
In the case of the byte-based CNN it
achieves higher macro f1-score than the n-
gram based approach while the opcode-
based CNN macro f1-score is marginally
lower than the n-gram based counterpart.
Thus, demonstrating that deep learning ap-
proaches are a good alternative to n-gram
based approaches without the computa-
tional and memory costs of having to ex-
haustively enumerate millions of features
and manually perform feature extraction
and selection during training.

7. Conclusions & Future Work

This paper provides an exhaustive eval-
uation of the vulnerability of state-of-the-
art anti-malware engines to the changes in
the source code generated by the follow-
ing metamorphic techniques: (1) the dead
code insertion technique, (2) the register’s
reassignment technique, (3) the subroutine
reordering technique and (4) the code re-
ordering through jumps technique. Re-
sults show that byte-based approaches per-
form poorly in comparison with opcode-
based approaches and are not robust to the
changes caused by the register’s reassign-
ment technique. Their lower yield is at-
tributable to several factors: (1) the size of
the filters, (2) the complexity of the net-

work and (3) the data imbalance. On the
other hand, the shallow architecture pre-
sented in this paper has achieved an im-
provement of 14.95% and 16.38% with re-
spect to MalConv’s (Raff et al., 2018a)
and DeepConv’s (Krčál et al., 2018) ar-
chitectures, respectively, and attains simi-
lar classification performance in comparison
to opcode-based approaches (Gibert et al.,
2017). Furthermore, the usage of meta-
morphic techniques to augment the train-
ing set has been investigated. Results show
that the classification performance of deep
learning approaches improves considerably
and gain robustness against metamorphism
independently of their input data. Thus,
we demonstrate the feasibility of augment-
ing the training data, and in particular the
number of samples belonging to the minor-
ity classes, by employing metamorphic tech-
niques for the malware classification task.

A future line of research is the exploration
of encryption and compression techniques,
and the investigation of their effects in ML
classifiers.
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Appendix A. Neural Network Architectures.

Appendix A.1. Shallow CNN (Gibert et al., 2017).

Raw MnemonicsN

4-dimensiomal EmbeddingN × 4

Conv 5 (stride 1)100Conv 3 (stride 1)100 Conv 7 (stride 1)100 ReLU

Global Max Pooling100Global Max Pooling100 Global Max Pooling100

Feature Concatenation300

Softmax9

Figure A.18: Opcode-based shallow convolutional neural network (Gibert et al., 2017).
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Appendix A.2. MalConv (Raff et al., 2018a).

Raw BytesN

8-dimensiomal EmbeddingN × 8

Conv 500 (stride 500)128 Conv 500 (stride 500)128

ReLU

⊗

Global Max Pooling128

Fully Connected128

Softmax9

Figure A.19: MalConv architecture (Raff et al., 2018a).
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Appendix A.3. DeepConv (Krčál et al., 2018).

Raw BytesN

8-dimensiomal EmbeddingN × 8

Conv 32 (Stride 4)48

Conv 32 (Stride 4)96

Max Pooling 496
ReLU

Conv 16 (stride 8)128

Conv 16 (stride 8)192

Global Average Pooling192

Fully Connected192

Fully Connected160

Fully Connected128

SELU

Softmax9

Figure A.20: DeepConv architecture (Krčál et al., 2018).
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Appendix A.4. Structural entropy CNN and Multiresolution CNN (Gibert et al., 2018)

Structural EntropyN

Conv 3 (Stride 1)50

Max Pooling 250

ReLU

Conv 3 (stride 1)70

Max Pooling 270

Conv 3 (stride 1)70

Max Pooling 270

Fully Connected1000

Fully Connected300

Softmax9

Figure A.21: Structural Entropy CNN (Gibert et al., 2018).
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Haar approximationN/2 Haar detailsN/2

Conv 3x2 (Stride 1)50

Max Pooling 250

ReLU

Conv 3 (stride 1)70

Max Pooling 270

Conv 3 (stride 1)70

Max Pooling 270

Fully Connected1000

Fully Connected300

Softmax9

Figure A.22: Multiresolution CNN (Gibert et al., 2018).
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9.5 Interpretability of the Models

The interpretation of machine learning models is a new and open challenge [68, 33].
Most of the models used at the present time are treated as a black box. This black
box is given an input X and produces an output Y through a sequence of operations
hardly understandable to a human. This could pose a problem in cybersecurity
applications when a false alarm occurs as analysts would like to understand why it
happened. The interpretability of the model determines how easily the analysts can
manage and assess the quality and correct the operation of a given model. For this
reason, cybersecurity analysts have preferred solutions that are more interpretable
and understandable such as rule-based and signature-based systems rather than
neural-based methods because they are easier to tune and optimize to mitigate and
control the effect of false positives and false negatives. However, there is no work in
the literature that investigates the interpretability of machine learning models for
malware detection and classification.
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10.2 An Android Malware Detection Framework

Using Graph Embeddings and Convolutional

Neural Networks

The article An Android Malware Detection Framework Using Graph Embeddings and
Convolutional Neural Networks [25] has been published in the Proceedings of the
22nd International Conference of the Catalan Association for Artificial Intelligence
(CCIA 2019). This research article has been included in Section 10 because it
presents an approach to tackle the problem of Android malware identification and
it is out of scope of the main line of research of this dissertation.

This article proposes a novel framework to identify malware targeting the An-
droid operative system (OS) based on the function call graph representation of ap-
plications (APKs). The framework is composed by three main components: (1) the
construction of the function call graph, (2) the generation of the graph embedding
representation and (3) the extraction of patterns and the identification of malware.

1. Function call graph extraction. The first component is responsible of extract-
ing the function call graph (FCG) of a given APK. A call graph is a directed
graph G = (V, E) whose vertices V , denote the functions a program or ap-
plication is composed of, and the edges E denote the function calls be- tween
them.

2. The second component’s aim is to generate a fixed size representation for every
call graph. To do so, we represent every graph G as a sequence of random
walks. As a result, a given graph G is represented as a matrix xm,k , where m
denotes the number of random walks and k the size of each random walk.

3. Learning and Identification. After the embedding of an APK is generated,
the detection process is conducted to determine whether a given application
is malicious or not. Therefore, a convolutional neural network architecture
is presented to get as input the graph embedding and extract characterizing
patterns that are indicative of maliciousness from it. Afterwards, the model
produces the estimated label for a given application.

The presented method has been evaluated against DREBIN, a standard bench-
mark for Android malware identification and results show that the detection results
achieved by our approach slightly higher than D. Arp et al. [5] while not relying on
expertise knowledge of the domain to extract a discriminant set of features. However,
the increase in accuracy came at the expense of an increase in the overall computa-
tional time required to employ our approach in comparison to D. Arp et al. [5], as
their approach only extracts features from the manifest and the disassembled dex
code of Android applications and thus, it avoids time-consuming extraction of the
call graph. Nevertheless, our approach demonstrates that an accurate featureless
approach for Android malware detection is possible.
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An Android Malware Detection
Framework Using Graph Embeddings and

Convolutional Neural Networks

Daniel GIBERT a,1, Alba LAMAS a, Ruben MARTINS b, Carles MATEU a and
Jordi PLANES a

a University of Lleida, Spain
b Carnegie Mellon University, USA

Abstract. With the widespread use of mobile phones, the number of malware tar-
geting smart devices has increased exponentially. In particular, the number of mal-
ware targeting Android devices, as it is the most popular operative system among
smartphones. This paper proposes a novel framework for android malware detec-
tion based on the function call graph representation of an application. Our method
generates an embedding of the function call graph using random walks and then,
a convolutional neural network extracts features from their embedded matrix rep-
resentation and labels a given application as benign or malicious considering the
learned features. The method has been evaluated on a dataset of 3871 APKs and
compared against DREBIN, a baseline benchmark. Experiments show that the
method achieves competitive results without relying on the manual extraction of
features.

Keywords. malware detection, android security, graph representation, convolutional
neural networks

1. Introduction

Nowadays, Android is one of the most popular O.S. for smartphones. According to vari-
ous sources 2 3, Android has a market share of approximately 87.5% with respect to other
mobile operating systems. In consequence, the widespread adoption of Android devices
has resulted in an increase of mobile malware, more specifically, in Android malware,
as it is much more profitable than targeting any other operative system. In particular,
McAfee 4 detected an all-time high of 57.6 million new samples at the end of 2017, with
mobile malware jumping by 60% in Q3, mainly due to an increase in Android screen-
locking ransomware. In 2018 there were fewer infections due to better native Android
security protections. This resulted in a decline in drop in ”rooter” attacks, drop in ”click-
ers” and downloaders. However, the number of infections produced by most other cate-

1Corresponding Author: Daniel Gibert, University of Lleida, Spain; E-mail: daniel.gibert@diei.udl.cat
2https://www.cnbc.com/2016/11/03/google-android-hits-market-share-record-with-nearly-9-in-every-10-

smartphones-using-it.html
3https://qz.com/826672/android-goog-just-hit-a-record-88-market-share-of-all-smartphones/
4https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-dec-2017.pdf
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gories, such as ad-based malware, banking trojans and fake apps, increased. According
to Avast 5, adverstising, phishing and fake apps are expected to dominate the landscape
in the near future.

Android applications are distributed through what is known as an app store or mar-
ketplace. The largest distribution channel is the Google Play Store, but many alternatives
exist. For example, in China, Google Play is not officially available (although it can still
be reached) and users usually download applications from alternative app stores such as
Tencent’s MyApp, 360 Mobile Assistant or Baidu’s App Store. To ensure the quality of
the apps, Google Play Store removes the applications it considers violate their policies
periodically [9]. However, from time to time malicious apps pass the security filters and
become available for download.

Android’s main defense against malware is a permission-based mechanism, which
warn users about the permissions an application requires previously to its installation or
at runtime, depending on the version of the operative system. Permissions are divided
into several protection levels: normal, signature, and dangerous permissions, depending
on the risk to user’s privacy or the operation of other apps. This approach is ineffective
as it does not provide enough information to conclude whether an application is indeed
malicious. Furthermore, it requires too much technical knowledge for a standard user
to differentiate between malicious and benign applications, as most of the time these
permissions are ignored or not understood by users [5,7].

In recent years, machine learning algorithms have been used to design systems for
malware detection. The typical workflow of these systems include the following compo-
nents: (1) feature extraction, (2) feature selection/reduction, (3) model learning and (4)
deployment. More specifically, the features used for detecting Android malware range
from simple features, such as string-, permission-, opcode- or API-based features, to
more complex features based on the function call graph (FCG) representation of the ap-
plications.

In this paper we present a novel malware detection method that automatically learns
to extract discriminative features from an embedded representation of an Android ap-
plication’s function call graph using convolutional neural networks. The method can be
decomposed into three main components. First, the function call graph of the applica-
tion is extracted. Second, the call graph is embedded as a matrix using random walks.
Finally, a convolutional neural network takes as input the embedded representation of
an application and determines its maliciousness. To demonstrate the suitability of our
approach we evaluate our model on a dataset of 3871 APKs and we provide a compar-
ison with DREBIN, a baseline benchmark. Experiments show that the method achieves
competitive results without relying on the extraction of hand-engineered features.

The rest of the paper is organized as follows. Section 2 discusses past research.
Section 3 provides a description of our method. Section 4 evaluates the performance of
our approach. Finally, Section 5 concludes with our remarks and future work suggestions.

2. Related Work

Various machine learning based approaches have been proposed during the last decade
to tackle the problem of malware detection. Many of these approaches mainly rely on

5https://blog.avast.com/avast-mobile-threat-predictions
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feature engineering using either static or dynamic analysis of the APKs. These features
range from simple ones, such as string-, permission-, opcode- or API-based features, to
more complex features such as the ones extracted from the Function Call Graph or the
Inter-Component Call Graph of the applications.

The first notable Android malware detectors are based on static analysis of the DPK:
DroidAPIMiner and Drebin. DroidAPIMiner [1], a lightweight classifier based on fea-
tures extracted from the API level information within the bytecode. In particular, they
focus on critical API calls, their package level information and their parameters. After-
wards, a K-NN takes as input a subset of the top APIs to classify malware from benign
applications. Drebin [3] used static analysis to extract features from the manifest and
the disassembled code of an application such as restricted API calls, used permissions,
network addresses, etc.,and embeds them in a joint vector space to classify malware. A
linear support vector machine was considered in their work to learn a separation between
benign and malicious applications.

Two more detectors were build going beyond static analysis: Maladroid and Droid-
Sec. MaMaDROID [8] is an android malware detection system that relies on app behav-
ior to build a behavioral model, in the form of a Markov chain, from the sequence of
API calls performed by an app. Then, these API calls are used to extract features and
perform classification. Z. Yuan et al. [10] built a detection system based on more than
200 features extracted from both static and dynamic analysis of Android applications.
Then, a Deep Belief Network is trained to detect malicious applications.

We also highlight two applications which rely on a graph representation of the APK,
store graphs from malicious applications and compare them to detect the new malware.
DroidSIFT [11] is a system that constructs features from a weighted contextual API
dependency graph. Then, a graph similarity algorithm compares the graph of a given
application with those inside the graph database. Finally, Apposcopy [6] is a signature
matching algorithm that uses a combination of static taint analysis and a representation
called Inter-Component Call Graph to detect Android applications with certain malicious
control and data-flow properties.

However, all these methods rely on the extraction of hand-crafted features manually
designed by an expert in the domain. In addition, DroidSIFT and Apposcopy suffer from
heavy runtime overhead due to the need of having to measure graph and signatures sim-
ilarities among applications, respectively. Instead, our approach generates a fixed em-
bedding representation of the function call graph using random walks. This embedding
learns a mapping from a graph to a matrix space, while preserving relevant graph prop-
erties, such as neighbourhood. Afterwards, a convolutional neural network is trained to
differentiate between benign and malicious applications by automatically learning which
subsequences of API function calls are more discriminant.

3. Methodology

In this section, the details of the graph generation and malware detection system are
discussed. Cf. Figure 1. The framework is composed by three main components: (1)
Construction of the function call graph; (2) Graph embedding representation; and (3)
pattern learning and malware identification.
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Figure 1. System overview

<java.io.File: java.lang.String toString()>

<java.lang.StringBuffer:
java.lang.StringBuffer append(char)>

<com.five.feiwo.coverscreen.O:
void <clinit>()>

<com.five.feiwo.coverscreen.O:
byte[] a(java.lang.String)

<java.lang.String: char charAt(int)>

<com.five.feiwo.coverscreen.ac: void <init>()>

<com.five.feiwo.coverscreen.ad:
void <init>(com.five.feiwo.coverscreen.ac)>

Local functions

External functions

Figure 2. Function Call Graph example.

3.1. Function Call Graph Construction

The first component is responsible of extracting the function call graph (FCG) of a given
APK. A call graph is a directed graph G = (V,E) whose vertices V , denote the functions
a program or application is composed of, and the edges E denote the function calls be-
tween them. See Figure 2. Functions are classified in two types: (1) local functions and
(2) external functions. On the one hand, local functions are those written by the devel-
opers to perform a specific task. Local functions might carry different names in different
APKs even though their functionality is the same. On the other hand, external functions
are system or library functions and its name is consistent across different applications.
The FCGs of every application were generated using FlowDroid [4]. To limit the vocab-
ulary size, a policy was defined to eliminate those nodes that appeared in less than three
applications by replacing them for nodes labeled as ”UNK”. This procedure simplified
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the function call graph and allowed the learning algorithm to focus on the most relevant
nodes.

3.2. APK Embedding

The second component’s aim is to generate a fixed size representation for every call
graph. To do so, we represent every graph G as a sequence of random walks. As a result,
a given graph G is represented as a matrix xm,k, where m denotes the number of random
walks and k the size of each random walk.

A walk is a sequence of vertices v1,v2,v3, ...,vk+1 not necessarily distinct, such that
(vi,vi+1) is an edge in the graph. A random walk is a random sequence of points selected
as following: Given a graph G and a starting point or node v j, we select a neighbor of it
and move to this neighbor; then we select a neighbor of this point and move to it, etc. The
probability that it moves to a neighbor vertex vi is 1

deg(v j)
if (v j,vi) is an edge in graph

G. deg(v j) denotes the degree of vertex v j in a graph, which is the number of deg(v j)
of edges which contain v j. In a directed graph, we define the out degree of v j to be the
number deg+(v j) of v j as to be the number of edges which start at v j. In consequence,
the probability to moving to a vertex vi in a directed graph is 1

deg+(v j)
.

3.3. Learning and Classification

After the embedding of an APK is generated, the detection process is conducted to deter-
mine whether a given application is malicious or not. Therefore, our model gets the graph
embedding and learn patterns that are indicative of maliciousness. Afterwards, the model
produces the estimated label for a given application. Figure 3 shows the architecture of

Graph RespresentationM×N

32-dimensiomal EmbeddingM×N×32

Conv 1x3x32 (stride 1)32 ELU

Global Max Pooling32

Softmax2

Figure 3. Convolutional neural network for Android malware detection.

the convolutional neural network for malware detection. The architecture comprises the
following layers:
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Input layer. The network takes as input a set of pairs xi, yi, where xi is an application
and yi is its corresponding label. The label associated to benign applications is
0. Otherwise, yi = 1. Each application is represented as a sequence of random
walks, xi ∈ZM,N , where M denotes the number of random walks and N denotes the
length of each walk. As the network cannot be fed with text, each function name
is converted to a one-hot vector. A one-hot encoded vector is a vector of zeros
except for the element at the index representing the corresponding function in the
vocabulary. The output of the input layer is a 3-dimensional vector vi ∈ ZM,N,V ,
where V is the size of the vocabulary, i.e. the number of distinct function calls.

Embedding layer. As one-hot vectors cannot encode semantic information about sim-
ilar functions, each function call is represented as a distributed representation of
size E, i.e. a low-dimensional vector of real values, where each value captures a
dimension of the function meaning. Thus, the output of the embedding layer is a
3-dimensional vector ei ∈ ZM,N,E , where E represents the embedding size.

Convolutional layer. The convolutional layer consists of 32 filters of size [1,K,E],
where K determines how many nodes or function calls the filter comprises and E
is the embedding size. In our settings, K is set to 3. As a result, filters are applied
to subsequences of 3 function calls.

Global max-pooling layer. The global max-pooling is applied to extract the maximum
activation of each of the feature map activations from all random walks. In conse-
quence, its output is a feature vector of size F = 32.

Softmax layer. The resulting feature vector is passed as input to a fully-connected soft-
max layer whose output is the probability of the application of being malicious.

4. Evaluation

4.1. Dataset

Our approach has been evaluated on a dataset of 3871 Android APKs, obtained from
Androzoo [2]. Androzoo is a collection of Android applications collected from various
sources including Google’s App Store, AppChina, Anzhi App Market, among others.
Each application has been sent to VirusTotal 6, a website that aggregates over 60 an-
tivirus products from renown vendors including McAfee, Symantec, Avast, Invencea or
Kaspersky, to verify whether or not the APKs are malicious. APKs used in our experi-
ments have less than 2 Mb in size and have. APKs detected as malicious by more than 3
AV vendors are labeled as malware. On the other hand, benign APKs are those that are
not detected by any AV vendor. There are a total of 1873 and 1998 benign and malicious
APKs, respectively. Figures 4 and 5 present the distribution of nodes and edges in our
dataset, respectively. It can be observed that in average, the number of nodes and edges
of malicious applications is almost twice as bigger as those of benign applications. In
particular, the average graph size of benign applications is 342.52 while the average size
of malicious applications is 646.07.

6https://www.virustotal.com
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4.2. Experimentation

To determine the best parameters for our network we split the training data into two sets:
(1) the training set and (2) the validation set. Models were trained using the training set
and evaluated on the validation set. Table 1 shows the performance of the network on the
validation set for different values of the embedding size. Values greater than 32 did not
increase the accuracy and highly increased the training time. For this reason, we decided
to use E = 32 in our final setup.

Embedding size (E) Validation accuracy

4 0.9199
8 0.9354
16 0.9328
32 0.9419

Table 1. Validation accuracy for different embedding size values.

To estimate the generalization performance of our approach we used K-fold cross
validation, where K = 10. Table 2 presents the detection results achieved by DREBIN
on our dataset, which includes the F1-score and accuracy for each experiment. As it can

Method Accuracy F1-score

DREBIN 0.9285 0.9280
Our method 0.9406 0.9406

Table 2. The average F1-score and accuracy of DREBIN and our method.

be observed, our method achieves higher accuracy and F1-score than DREBIN, even
that it only relies on the function call graph representation of the applications. On the
other hand, DREBIN extracts hand-crafted features related to the permissions, network
addresses, restricted API calls, etc. Unfortunately, the process that extracts the call graph
is computationally intensive and took 11948 seconds to extract all call graphs of the
dataset, in comparison with the 7805 seconds needed by DREBIN to extract the features.
This is because DREBIN only extracts features from the manifest and the disassembled
dex code of the application. Figure 6 presents the overall running times for our dataset,
divided by label. You can observe that the median average extraction time for benign and
malicious applications is 2.76 and 4.67 seconds, respectively. This is because in average,
the call graphs of the malicious applications in our dataset are almost as twice as big as
the call graph size of benign applications. Cf. Figures 4 and 5.

Additionally, Table 3 presents the error matrix, also known as confusion matrix.
There are only 84 false positives and 146 false negatives. However, the number of mali-
cious applications misclassified is almost twice the number of benign samples incorrectly
classified. This might be because malicious applications usually try to hide its malicious
behavior and appear as being legitimate applications, making harder its detection.

5. Conclusions

In this paper we present a novel malware detection framework that learns features from
the embedded representation of Android’s applications function call graph. This feature
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Actual class
benign malicious

Predicted class
benign 1789 84
malicious 146 1852

Table 3. Confusion matrix.

Figure 4. Application size Figure 5. Edges per application

Figure 6. CFG extraction time

learning capability is provided by a convolutional neural network model whose filters are
able to detect discriminant subsequences of API function calls. The proposed approach
exhibits strong classification performance compared to DREBIN. This is because the
CNN model do not relies on whether or not a particular function has been invoked, but
instead, is able to focus on discriminative subsequences of function calls.

As far as we know, it is the first approach to apply deep learning to detect malware
given the function call graph of Android applications. The main idea behind the embed-
ding is to reduce the dimensionality of the input call graphs to a matrix of a fixed size,
and subsequently, be able to automatically extract features with a CNN model. The pro-
posed solution has two major advantages with respect traditional graph-based methods.
First, it does not rely on expertise knowledge of the domain as features are extracted by
the convolutional layers. Second, feature extraction and classification is performed by the
same algorithm, a convolutional neural network and thus, classification is not performed
by computing expensive graph similarity or signature-based algorithms.
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5.1. Future Work

A future direction of research is to abstract API calls to either the package name of the
call (e.g., java.lang) or its source (e.g., java, android, google). This might provide re-
silience to API changes in the Android framework. A second line of research is to ex-
plore new neural network architectures to perform classification. A third line of research
is to analyze the inter-component communication graph (ICCG) to describe the internal
control flows and inter-component communications of APKs.
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10.3 Research Stays Abroad

During the elaboration of the thesis, the candidate did two research stays:

• From September 30, 2019 to December 15, 2019 at the Carnegie Mellon Uni-
versity (CMU), United States of America, supervised by Dr. Ruben Martins
and Dr. Matt Fredrikson.

• From January 19, 2020 to April 24, 2020 at the Artificial and Natural Intel-
ligence Toulouse Institute, University of Toulouse, France, supervised by Dr.
Joao Marques-Silva.

10.4 Participation in Projects

The author of this thesis participated in the following research projects during the
doctoral program:

• Razonamiento, satisfacción y optimización: argumentación y problemas. Founded
by the Spanish Ministry of Economy, Industry and Competitiveness. Project
number: TIN2015-71799-C2-2-P.

• Sistemas de inferencia para información inconsistente: Análisis Argumenta-
tivo. Founded by the Spanish Ministry of Sciences, Innovation and Univer-
sities. Project Number: PID2019-111544GB-C22 (pending project number
confirmation)
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Chapter 11

Conclusions

The aim of this chapter is to summarize and highlight the main contributions of the
dissertation. The thesis outcome leaves scope for many open lines of research and
future developments, further explored in the last section of this chapter.

11.1 Contributions

The objective of this thesis was to investigate the limitations of n-gram methods and
develop of an efficient featureless alternative to manual feature engineering for the
task of malware detection and classification. To this end, this dissertation presents
a set of experiments designed to address the following research questions:

1. In which scenarios is end-to-end learning feasible?

2. Which deep learning architectures are most appropriate?

3. How can we fuse multiple modalities of information in a end-to-end learning
architecture?

In the following lines, additional discussion around the aforementioned research
questions are provided. To goal of this section is to understand the current trends
and recent findings with regard to each of the research questions above and to
describe how the experiments presented in this thesis contribute to the state-of-the-
art.

11.1.1 In Which Scenarios Is End-to-End Learning Feasi-
ble?

Part of the dissertation has centered around the investigation of featureless alter-
natives to manual feature engineering through deep learning. In this context, deep
learning replaces the feature engineering process by an underlying system, which
typically consists of a neural network with multiple layers, that performs both fea-
ture learning and classification. With deep learning one can start with raw data as
features will be automatically created by the network during the training procedure.
However, the success and consolidation of end-to-end learning approaches would not
have been possible without the confluence of three recent developments:
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• The first development is the increase in labeled feeds of data, e.g. malware,
meaning that, for the first time, labeled malware started to become available
not only to the security community but also to the research community. The
size of these feeds ranges from limited high-quality samples, like the ones pro-
vided by Microsoft [66] for the Big Data Innovators Gathering Anti-Malware
Prediction Challenge, to huge volumes of malware, such as theZoo [76] or
VirusShare [72]. For reproducibility purposes, the performance of all the meth-
ods presented in this dissertation has been assessed on the dataset provided by
Microsoft [66], a labeled high-quality public benchmark for malware research.

• The second development is that computational power has increased rapidly
and at the same time has become cheaper and closer to the budget of most
researchers. Consequently, it allowed researchers to speed-up the iterative
training process and fit larger and more complex models to the ever increasing
data. For instance, research GPUs and TPUs allow faster training of complex
models, in parallel if desired, given large input sequences consisting of millions
of timesteps like the byte sequences representing malware’s binary content. A
few years ago, the idea of training on such input data was inconceivable. In
fact, it was not until 2018 that the first approach to train a model using as
input the whole byte sequence was presented [63]. Due to memory limitations,
previous research focused on simplifying the byte sequences into some kind of
compressed representation before training the model [31, 26].

• The third development is that the machine learning field has evolved at an in-
creased pace during the last decade, achieving breakthrough success in terms
of accuracy and stability on a wide range of tasks, such as computer vi-
sion, speech recognition and natural language processing. In particular, this
success would not have occurred without recent advances in gradient de-
scent optimization [20, 77, 46], function activations [58, 15], network archi-
tectures [52, 36, 14, 6, 73], the availability of public frameworks to speed up
research such as TensorFlow [1] and PyTorch [62], among other relevant ad-
vances.

11.1.2 Which Deep Learning Architectures Are Most Ap-
propriate?

This section discusses the principal neural network types and their appropriateness
in the context of malware classification.

Feed-forward neural network. Fully-connected layers are an essential compo-
nent of feed-forward and convolutional neural networks. In a fully-connected
layer, all nodes in one layer connect to all nodes in the next layer. Feed-forward
networks are the simplest type of neural networks devised and are composed
by one or more fully-connected layers. In a feed-forward network, information
moves in only one direction, from the input nodes to the output nodes, passing
through one or more fully-connected layers. Treating each byte or opcode as
a unit in a sequence, we are dealing with a sequence classification problem in
the order of millions or thousands of time steps, respectively. Subsequently,
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feed-forward networks are inefficient and inappropriate for sequence classifi-
cation problems as they require a huge number of connections and network
parameters.

Convolutional neural network (CNN). Convolutional neural networks have sev-
eral types of layers:

• Convolutional layer. In a convolutional layer one or more ”filters” pass
over an N-array such as an image or a sequence of text, scanning a few
pixels or words at a time and creating one or more feature maps;

• Pooling layer. The pooling layer reduces the amount of information in
each feature map obtained in a convolutional layer while maintaining
the most important information. Common pooling operations are max-
pooling or average-pooling. A convolutional neural network usually con-
sists of several rounds of convolutional and pooling layers.

• Fully-connected layer. In a convolutional neural network, one or more
fully-connected layers are stacked together in a way that takes as input the
end result of the convolution and pooling layers (the features extracted
by the convolution/pooling process) and reaches a classification decision
(the last fully-connected layer, also known as output layer.).

Convolutional neural networks were originally designed for computer vision
tasks but have proven highly useful for natural language processing tasks as
well [45, 41] The main benefit of convolutional neural networks for malware
classification is their ability to process huge sequences of text and detect dis-
criminant patterns independently of their position in the text. This is achieved
by adding a global max pooling operation (other pooling operations might pro-
duce similar results, e.g. global average pooling) at the end of the convolutional
layers to retrieve the maximum value of each feature map [24].

Recurrent neural network (RNN). Vanilla recurrent neural networks use an
architecture similar to the traditional feed-forward network but they intro-
duce the concept of memory in the form of a different type of link. Unlike
feed-forward networks, the outputs of some layers are fed back into the in-
puts of the previous layer. This allows for the analysis of sequential data,
which feed-forward network are incapable of performing. Recurrent neural
networks are able to recognize and take advantage of the time-related context
in a time series sequence. A popular recurrent neural network is the so-called
Long-Short Term Memory Network (LSTM), which is a type of RNN capable
of learning long-term relationships. However, the suitability of RNNs for the
task of malware detection and classification is questionable for the following
reasons:

• By treating each byte as a unit in a sequence, the size of the result-
ing byte sequences could consist of several million time steps, making it
among the most challenging sequence classification problems. Diversely,
by treating each opcode as a unit in a sequence, the size of the resulting
opcode sequences would consist of thousands of time steps. In vanilla
RNNs, the more timesteps there are, the higher is the change that the
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backpropagation gradients explode or vanish. That is, the long-term
information has to sequentially travel through all cells before reaching
the present cell and, thus, the information can be easily corrupted. To
overcome this problem, Long-Short Term Memory Networks came to the
rescue. However, binary files exhibit various levels of spatial correlation.
Adjacent machine instructions tend to be correlated spatially, but, due to
jumps and function calls, this correlation might not always hold, as they
transfer the control of the program into other addresses in memory and
the execution continues from there. Consequently, these discontinuities
are maintained on the binary file and in its hexadecimal representation.
Therefore, the information provided in a byte or opcode sequence does
not move only to one direction but might jump backward and forward,
and contain cycles or loops and thus, the learning ability of recurrent
neural networks is compromised.

Therefore, during this dissertation, and through extensive experimentation, state-
of-the-art results have been achieved mainly with convolutional neural network ar-
chitectures [24, 31, 26, 32]. The methods presented in this thesis can be grouped in
two categories depending on the raw data taken as input:

• Byte-based approaches [31, 26, 32]. Byte-based approaches take as input the
raw byte sequences extracted from the hexadecimal representation of mal-
ware’s binary content.

– Section 4.3.3 presents a file agnostic deep learning approach [31] to cate-
gorize malware based on its structural entropy representation.

– Section 4.3.4 introduces an approach [26] to learn a hidden representation
of the malware’s binary content based on denoising autoencoders.

– Section 6 proposes an approach [32] to efficiently group malicious soft-
ware into families based on a set of discriminant patterns extracted from
malware’s representation as gray-scale images.

• Opcode-based approaches [24, 27]. Opcode-based approaches take as input
the raw opcode sequences extracted from the assembly language source code
of malware.

– Section 4.3.1 presents an approach [24] to extract N-gram like features
from malware’s machine instructions.

– Section 4.3.2 proposes an architecture [27] to deal with the hierarchical
information in a Portable Executable file’s assembly language source code.

However, the task of malware detection and classification is characterized as multi-
modal as it includes multiple modalities of information. By only taking as input the
raw bytes or opcodes sequence a great deal of useful information for classification is
overlooked such as structural information of the Portable Executable (PE) file, the
import address table (IAT) which is used as a lookup table when the application is
calling a function from a different module, etc. In fact, multimodal methods based
on the combination of various hand-crafted features [3, 79] remained unbeaten in
terms of classification performance and have been the way to go for detecting and
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classifying malware. This leads to the following research question: How can we fuse
multiple modalities of information in a end-to-end learning architecture?

11.1.3 How Can We Fuse Multiple Modalities Of Informa-
tion In A End-to-End Learning Architecture?

State-of-the-art multimodal approaches [3, 79] create a joint representation of the
unimodal features extracted separately from multiple modalities by concatenating
the unimodal feature vectors. Afterwards, the resulting feature vector is passed as
input to a classification algorithm (gradient boosting classifiers and Extra-Trees)
that generates the corresponding classification output. However, the end-to-end
learning approaches presented in this dissertation take as input raw data and a di-
rect concatenation of the raw byte and opcode sequences is unreasonable. To this
end, we presented Orthrus [29] and HYDRA [28], two approaches that use an inter-
mediate fusion strategy to construct a shared representation by merging the interme-
diate features extracted from the different modalities in a end-to-end architecture.
Orthus[29] combines two modalities of data: (1) the byte sequence representing
the malware’s binary content, and (2) the assembly language instructions extracted
from the assembly language source code of malware. Differently, HYDRA’s [28]
wide and deep architecture consists of both hand-engineered (API function calls)
and end-to-end components (byte and opcode sequences) to combine the benefits
of feature engineering and deep learning. Regardless of the architectural details,
per-modality pretraining and multimodal dropout have been critical for the suc-
cess of the aforementioned approaches. On the one hand, per-modality pretraining
avoids overfitting one subset of features belonging to one modality and underfitting
the features belonging to the others. On the other hand, multimodal dropout pre-
vents the co-adaptation of the sub-networks to a specific feature type or modality of
data. Furthermore, the European Patent Application EESR EP19382656, presents
a computer-implemented method, system and computer program for identifying a
malicious file that performs a fuzzy inference procedure based on fuzzy rules using
as input a set of features and the preliminary classification output produced by the
aforementioned approaches [31, 32, 24].

11.1.4 Future Work

Despite the increase in the research and deployment of anti-malware engines pow-
ered by machine learning, there is little research about the vulnerability of these
models to adversarial examples. This dissertation provides an evaluation of ma-
chine learning approaches against common metamorphic techniques such as the
dead code insertion technique, the subroutine reordering technique, etc (See Sec-
tion 9.4.1). However, malware authors also employ polymorphic techniques such as
encryption and packing to bypass detection. Consequently, a future line of research
might be the investigation of the robustness of machine learning models against the
aforementioned polymorphic techniques. In addition, malware evolves rapidly to
exploit new attack surfaces but models are built through training on older malware
samples and thus, it is hard for the machine learning models to generalize to future,
previously-unseen behaviors resulting in new malware evading detection more often
than desired. This phenomenon is known as concept drift, that is, the underlying
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relationships in the data change over time. As a result, it is of crucial importance
to identify when a model shows signs of degradation whereby it fails to recognize
new malware in order to build sustainable models for malware classification.
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[15] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accu-
rate deep network learning by exponential linear units (elus). In Yoshua Bengio
and Yann LeCun, editors, 4th International Conference on Learning Represen-
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016.

[16] Symantec Corporation. Symantec 2018 internet security threat report. Tech-
nical report, Symantec Corporation, 2018.

[17] Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, and Alessandro
Armando. Explaining vulnerabilities of deep learning to adversarial malware
binaries. CoRR, abs/1901.03583, 2019.

[18] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn
Keogh. Querying and mining of time series data: Experimental comparison of
representations and distance measures. Proc. VLDB Endow., 1(2):1542–1552,
August 2008.

[19] Jake Drew, Michael Hahsler, and Tyler Moore. Polymorphic malware detection
using sequence classification methods and ensembles. EURASIP Journal on
Information Security, 2017(1):2, 2017.

[20] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient meth-
ods for online learning and stochastic optimization. J. Mach. Learn. Res.,
12(null):2121–2159, July 2011.

[21] J. B. Fraley and J. Cannady. The promise of machine learning in cybersecurity.
In SoutheastCon 2017, pages 1–6, March 2017.

238 BIBLIOGRAPHY



BIBLIOGRAPHY
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