
 

C. Claravall, 1-3 | 08022 Barcelona | Tel. 93 602 22 00 | Fax 93 602 22 49 | info@url.edu | www.url.edu 

C
.I.

F.
 G

: 5
90

69
74

0 
  U

ni
ve

rs
ita

t R
am

on
 L

lu
ll 

Fu
nd

ac
ió

   
R

gt
re

. F
un

d.
 G

en
er

al
ita

t d
e 

C
at

al
un

ya
 n

úm
. 4

72
 (2

8-
02

-9
0)

 

 

 

 

 

Zwitterionic materials for biomedical applications 

 

Pol Cabanach Xifró 

 

 

 http://hdl.handle.net/10803/671831   

  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de 
la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials 
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual 
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En 
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la 
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació 
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc 
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant als continguts de la tesi com als seus resums i índexs. 

 

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos 
de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o 
materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la 
Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la 
persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el 
nombre y apellidos de la persona autora y el título de la tesis doctoral. No se autoriza su reproducción u otras 
formas de explotación efectuadas con fines lucrativos ni su comunicación pública desde un sitio ajeno al 
servicio TDR. Tampoco se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR 
(framing). Esta reserva de derechos afecta tanto al contenido de la tesis como a sus resúmenes e índices. 

 

WARNING. The access to the contents of this doctoral thesis and its use must respect the rights of the author. 
It can be used for reference or private study, as well as research and learning activities or materials in the 
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and 
previous authorization of the author is required for any other uses. In any case, when using its content, full 
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit 
use or public communication from outside TDX service is not allowed. Presentation of its content in a window 
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis 
and its abstracts and indexes. 

http://hdl.handle.net/10803/671831


 

C. Claravall, 1-3 | 08022 Barcelona | Tel. 93 602 22 00 | Fax 93 602 22 49 | info@url.edu | www.url.edu 

C
.I.

F.
 G

: 5
90

69
74

0 
  U

ni
ve

rs
ita

t R
am

on
 L

lu
ll 

Fu
nd

ac
ió

   
R

gt
re

. F
un

d.
 G

en
er

al
ita

t d
e 

C
at

al
un

ya
 n

úm
. 4

72
 (2

8-
02

-9
0)

 

DOCTORAL THESIS 
 
 

  
 

Title   
 
 

Zwitterionic Materials for Biomedical Applications 

Presented by   
 
 
 

Pol Cabanach Xifró 

Centre   
 
 
 

IQS School of Engineering 

Department  
 
 
 

Bioengineering 

Directed by  
 

 

Dr. Salvador Borrós Gómez 
Dr. Abdon Pena Francesch 

  
 

 





 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Als meus pares 
 

  



 
 

 

 

 

 



 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

The most exciting phrase to hear in science,  
the one that heralds new discoveries, is not “Eureka” 

 but “That’s funny...”  Isaac Asimov





 
 
 

 

I 

Agraïments – Acknowledgements 

“La vida d’un no cap en la vida d’un, sinó en la de molts.” Feliu Ventura. 

Si hagués de triar l’aspecte més positiu de realitzar aquesta tesi doctoral diria, sens dubte, 

que ha sigut poder conèixer i aprendre de tantes persones que s’han creuat en el meu camí 

durant aquests últims quatre anys. La tesi doctoral suposa el final de un llarg procés de 

formació acadèmica però, sobretot, suposa un procés de maduració personal que, en gran 

part, es deu a totes les persones que surten aquí esmentades.  

I no podria començar agraint a ningú altre que qui em va donar la oportunitat de realitzar 

aquest camí, el dr. (o millor dit, director) Salvador Borrós. Moltes gràcies per confiar en mi 

des d’un bon principi. M’has donat llibertat durant el transcurs de tota la tesi i, en comptes 

de donar-me directament solucions als problemes, m’has donat una cosa encara més 

important, les eines per trobar-les jo mateix. La teva visió de com afrontar els problemes, de 

concebre com ha de ser la ciència i la investigació i de tractar amb els teus estudiants ajuda 

molt a que tothom a GEMAT hi estigui a gust i, en conseqüència, que tothom surti content i 

agraït després de realitzar una tesi aquí. Per totes aquestes coses i moltes altres més, moltes 

gràcies Salvador! 

Abdon, ja fa dos anys que vaig aterrar a Stuttgart per primera vegada i d’aquell dinar al 

King’s Palace. Dos anys en els quals has tingut una gran presència en la meva vida com a 

mentor, però sobretot com a amic. He après tant de tu que no sé ni per on començar i ha sigut 

molt inspirador poder veure en directe tot el teu camí fins arribar a on has arribat. Gràcies 

per totes les hores de converses mentre em feies de taxi , per  introduir-me a la cultura heavy 

(“666, the number of the beast!!”), per recórrer junts tots els garitos de Stuttgart buscant les 

millors alitas i la millor cervesa i, en general, per aquest sentiment de nostàlgia que se’m 

genera sempre que penso en el meu temps a Stuttgart. Molta sort en la teva nova aventura a 

Michigan (espero que ja tinguis la ruta plantejada per quan vingui a fer alguna visita).  

I would also like to thank director Metin Sitti from the Physical Intelligence group in the 

Max Planck Institute for Intelligent Systems for allowing me to be in his group during almost 

one year and giving me the opportunity to work on the exciting  field of microrobotics.   



 
 

 

II 

També vull donar les gràcies al dr. Xavier Fernàndez Busquets i al dr. Arnau Biosca per la 

col·laboració amb el projecte de malària. Ha sigut molt interessant treballar i saber més sobre 

aquesta malaltia que encara ara causa tant patiment arreu del món.  

Gràcies Xevi per estar sempre disposat a ajudar-me en un projecte que va començar casi 

com a un “hobby”. Al final sembla que ha agafat forma... També has sigut un gran suport 

durant tota la meva època de representant dels doctorands. El teu entusiasme i suport per 

organitzar diverses activitats són molt importants pel nostre col·lectiu.  

No em vull oblidar del gran nombre de persones que m’han ajudat en els diversos projectes 

durant aquest 4 anys. Gràcies Victor Ramos per tota l’ajuda que em vas donar al principi, 

explicant-me una i altre vegada com realitzar la síntesi RAFT i també per estar sempre 

disponible per a qualsevol dubte que em sorgís. També gràcies Cristina Fornaguera per tota 

la ajuda durant la tesi, sobretot al principi, on em vas introduir en la caracterització de 

nanopartícules. Gracias Miguel Ángel por ser una ayuda constante durante todos esos años 

de síntesis. Siempre tenías una solución para todo, con una gran cantidad de truquillos que 

aún conservo. Aún recuerdo las discusiones químicas y cinematográficas que animaban los 

días más largos. I gràcies Marta Guerra per els últims mesos d’ajuda amb els in vivos. Ha sigut 

molt agradable treballar amb tu. Gràcies també al Marc, Laura i Dario per haver decidit venir 

a realitzar les vostres tesi de màster i grau en aquests projectes. El vostre esforç i les vostres 

ganes d’aprendre han sigut molt valuoses per aquesta tesi.  

I ara toca el torn de GEMAT. Compartir el dia a dia durant tants d’anys amb tots vosaltres 

ha sigut tota una aventura. Robert, crec que tu ets la essència de GEMAT. Ja no me’l sabria 

imaginar sense tu. És curiós perquè ets la persona que costa més convèncer per a fer qualsevol 

cosa, però al mateix temps deus ser amb qui he fet més coses durant la meva estada al grup. 

Potser per això ets tant especial. Jocs de taula, puros i gintònics, xerrades filosòfiques, la visita 

a Stuttgart, col·laboracions... i, sobretot, el “micro-bullying” diari. Fins i tot has tingut temps 

per “solucionar-me la p*** vida”. Són tantes les coses que hem compartit que ets de lo primer 

que em ve al cap quan penso en aquests últims 4 anys. I si això ho dic pel Robert, també ho 

podria dir per l’Anna (potser canviant els jocs de taules per nits de copes). Companya de la 

posverdad i del bacon-queso, dels jaggers a l’Arena i dels whiskies japonesos, la gran 

quantitat de moments divertits i de converses interessants són inesborrables. Gràcies per 

confiar en mi per ser el teu “delfín”, pel teu humor “incorrecte”, per lluitar per mantenir el 



 
 
 

 

III 

contacte i per estar sempre present. Joan, l’últim membre del triumvirat, tot i que ets fins i tot 

més difícil d’arrossegar que el Robert (la teva “espantada” del taxi al sopar GEMAT queda 

per la història) et fas estimar. Els cafès de després de dinar a la cantonada Tractivus no 

haguessin sigut el mateix sense els teus “speech”. Gràcies per tots els moments viscuts, per 

les leccions de “entrepreneur” al bar esmorzant i per ser el meu (i de gairebé tothom) suport 

tècnic d’Apple. Germaaaaaaan, tu representes l’alegria de la saleta. La teva positivitat es 

transmet, i feia que el dia a dia fos més divertit. M’ho he passat molt bé sent el teu compi de 

taula durant aquests anys. Gràcies per tots els moments i, també, per “el calvo de Menorca”, 

la contrasenya que obre moltes portes a la Barcelona nocturna. Laura, la única del grup amb 

qui podia rajar del Bartorossellisme, riure amb els tweets de @JaumeTorres14 o comentar 

l’actualitat basquetbolística, ha sigut molt guay compartir tota la tesi amb tu. El mateix dic 

per tu, Nunu! Has sigut la nostre font de plans hipsters i alternatius. Qui ens diria quan vam 

començar el màster ja fa gairebé 7 anys que acabaríem fent la tesi junts! Cris, empezamos 

juntos y terminamos juntos. Gracias por esa fuerza e iniciativa que tienes, por estar siempre 

dispuesta a ayudar y por todas las horas que has pasado contando colónias por mi culpa. 

Titooo, ¿que decir de ti? Has sido fuente de grandes momentos (las clases de boxeo con 

German, tu impecable negociación para comprar 20 rosas por 15 euros y muchos otros). ¡Con 

German formabais el mejor tándem de calvos nunca visto! Alba, Mire, vosotras erais la base 

de la torreta. Cuántas horas de momentos divertidos pasamos allí. Gracias por estar siempre, 

por esa alegría, ganas de hacer cosas y capacidad para convencer a los más indecisos para que 

se unieran al grupo. Vuestra presencia en el grupo hizo que hacer la tesis fuera mucho más 

divertido. Tampoc em puc oblidar de tu, Peri. Vas ser molt important al meu inici (fins i tot 

em vas ajudar a trobar pis!) i les escapades a Cal Xena per provar la millor sopa de ceba del 

món quedaran sempre al meu record. ¡Mario, el rey de los jueves por la tarde (y a veces 

noche)!. Gracias por mostrarnos dónde bailar salsa o cantar flamenquito en Barcelona. 

Siempre que apareces (aunque sea en cuentagotas) la diversión está asegurada. Tony, aunque 

empezases tímido te hemos acabado descubriendo. Tus comentarios alegraban las comidas y 

horas del café. Y Patri, gracias por ser la artista de nuestro grupo. Pau, tot i no compartir molt 

laboratori amb tu, sempre era molt interessant escoltar la teva visió de la ciència. I arriba el 

torn de la nova guardia. Coral, mi “padawan”, espero que estos polímeros no te vuelvan loca 

y que no me eches en cara todos los marrones en los que te he metido. Roberta y Elena, aunque 

no hayamos podido coincidir mucho tiempo juntos, gracias por vuestro trato amable siempre 

que hemos coincidido en la salita. I Glòria, Laura i Mònica, les recents incorporacions, molta 



 
 

 

IV 

sort en el que us queda per endavant. Gràcies Irene i Elena, per oferir-vos a donar un cop de 

mà sempre que ho necessitava. I, finalment, gràcies Núria i Marina. Sou l’engranatge que fa 

que tot funcioni. Gràcies per la vostre ajuda i el vostre bon tracte cap a mi! 

I would also like to thank all the people from the Physical Intelligence group of the MPI. 

You integrated me in the group since the first day and I felt really comfortable in it. First of 

all, thanks to Ugur, Devin and Oncay for being part of the project. I think we made an 

amazing team together. You always offered your help when we needed it and you were 

indispensable for the final success of the project. I enjoyed a lot working and learning with 

you, guys! Thank you Hamed and Amir for all the lunches, tea times, bowling games and 

many more plans we did together. You always counted on me for everything, and I really 

appreciate that. Utku, despite at the start you don’t wanted me in the office, I think that at the 

end you enjoyed it. It was really fun to discover your sense of humour. I passed a lot of good 

and funny moments with you in that office. Donghoon, Martin, Yunusa and Berk, it was fun 

to discover the Stuttgart nightlife with you. You showed me a lot of cool places where we 

enjoyed good moments together. Ville, Josh, Varun and Jack, colleagues of the “Chicken 

Thursday”, thanks for all the interesting talks during lunchtimes. And Dirk, thank you for 

your kindness, for inviting me to your house and, the most important, to show me how a true 

Schwabavian serves the Hefeweisen. Thanks Alp, Birgul, and Ceren for being always so kind 

to me! And also thanks Nagarash and Anita for all the help you gave me in the Nanoscribe. 

Gaurav (or Garup?) what should I say about you? Thank you for all the nights in the PhD 

room watching movies or playing boardgames, all the Ping Pong games and, in summary, to 

be always available to pass time with me. Gonçalo, I still remember the Insektburger of the 

first time we met in the Guesthouse, or the visit with Gaurav to the Hohenzollern Castle (or 

should I say Winterfell castle?). Pietro and Mateo, the Italian twins. Together with Gaurav 

and Gonçalo you were the hard core of the group. We passed a lot of good moments together 

that I will always remember. Also thank you Lina, Efe, Charlotte and Karla. A lot of good 

memories come to my mind when I remember the time spent with you in that PhD room.  

Wiltons, encara que fora del lloc de treball heu sigut vitals en aquests darrers 4 anys. Munic, 

Manchester, Colònia i Stuttgart (menció especial al porter del Schoken) han sigut pit-stops 

necessaris que m’ajudaven a recargar energies i tornar amb més ganes (tot i que els dilluns 



 
 
 

 

V 

post-viatge eren durets...). Gràcies per la vostre amistat i per estar sempre allà. I Mireia, 

Ramon, Judit, Iker i Alberto, gràcies també per la vostre amistat i per tots els moments viscuts.  

Pascu, són ja 10 anys a IQS, i sobretot aquest dos últims han sigut intensos. A principi d’any 

vam viure “els millors moments de la nostre vida” junts fins que el virus ens va retirar. Però 

en quin moment estàvem! Gràcies per la infinitat de moments viscuts, per les converses on 

salvàvem el Barça o Catalunya (en 20 anys ja parlem per presentar-nos a algo), per ser un 

digne rival del FIFA i per ensenyar-me el camí a través del gurú General Fórceps.    

I acabo amb el cercle més pròxim. Papes, gràcies per el suport incondicional, per deixar-me 

fer sempre el que m’ha semblat i per la educació que m’heu donat, sense la qual segur que no 

hagués arribat on sóc ara mateix. Gràcies també Marta, veure’t forta en les situacions que t’ha 

tocat viure ha sigut també una font d’inspiració per lluitar per aquesta tesi. I Mireia, què puc 

dir que no sàpigues? Gràcies per aguantar-me quatre anys més, per aportar-me alegria dia 

rere dia i, en definitiva, per ser com ets i estimar-me tal com sóc.  

 

 

 

 

Pol Cabanach Xifró, 3 de Març de 2021 

 

 

,  

 

 

 



 
 
 

 

  



 
 
 

 

 

This thesis has been done thanks to the fellowship grant of personal novice investigator (FI) 

SUR funded by the DEC of the Government of Catalonia and the European Social Fund. 

Credentials: 

2017 FI_B 00642 

2018 FI_B1 00172 

2019 FI_B2 00165 

 

  

  

 

This thesis has also received fund from Max Planck Gesellschaft Stipend. 

 

 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

IX 

Abstract 

Body response to biomaterials suppose a major roadblock for the effectiveness of multiple 

biomaterial-based therapies. Via unspecific absorption of biomolecules, barriers such as 

immune system or mucosal surfaces clear foreign materials from the body, preventing them 

to reach their target and perform their function. Zwitterionic materials have emerged in the 

last years as promising antifouling materials to overcome the mentioned barriers. Although 

many systems have used zwitterionic materials as coatings, the unique properties of 

superhydrophilicity and chemical versatility suggest multiple benefits of using zwitterionic 

polymers as bulk materials.  

Here, two different systems based on zwitterionic materials are presented. In first place, an 

antifouling drug delivery platform based on zwitterionic amphiphilic polymers (ABC) is 

developed. Zwitterionic ABCs are synthetized and optimized to self-assemble in zwitterionic 

nanoparticles. The antifouling properties of zwitterionic nanoparticles are proved, together 

with their potential to become an oral drug delivery system. Next, the system is used as a 

drug carrier for antimalarial and anticancer drugs. Nanoparticles show internalization in 

Plasmodium infected erythrocytes, and curcumin-loaded nanoparticles prove their 

antimalarial efficacy in vitro. Oral absorption of polymer and curcumin is also observed in 

vivo using mice model, indicating the potential of this system to become oral therapy against 

malaria. When optimizing the system for anticancer therapy, Paclitaxel-loaded nanoparticles 

exhibit anticancer activity in in vitro cancer cell models.     

Second, non-immunogenic stealth zwitterionic microrobots that avoid recognition from 

immune cells are introduced. Zwitterionic photoresist are developed for the 3D microprinting 

of zwitterionic hydrogel microrobots through 2-photon polymerization with ample 

functionalization: tunable mechanical properties, anti-biofouling and non-immunogenic 

properties, functionalization for magnetic actuation, encapsulation of biomolecules, and 

surface functionalization for drug delivery. Stealth microrobots avoid detection by 

macrophage cells of the innate immune system after exhaustive inspection (> 90 h), which has 

not been achieved in any microrobotic platform to date. These versatile zwitterionic materials 

eliminate a major roadblock in the development of biocompatible microrobots, and will serve 

as a toolbox of non-immunogenic materials for medical microrobot and other device 

technologies for bioengineering and biomedical applications. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

 

XI 

Table of Contents 

Agraïments – Acknowledgements ....................................................................... I 

Abstract ........................................................................................................... IX 

Table of Contents ............................................................................................. XI 

List of Figures .................................................................................................. XV 

List of Tables .................................................................................................. XIX 

Table of Abbreviations .................................................................................... XXI 

Chapter 1: Motivation and Aims ........................................................................ 3 

Chapter 2: Synthesis and Characterization of Zwitterionic Amphiphilic Polymers

 .......................................................................................................................... 13 

2.1. Introduction ...................................................................................................... 13 

2.2. Results and Discussion ...................................................................................... 21 
2.2.1. Selection of the Synthesis pathway ............................................................................... 21 
2.2.2. Synthesis of PBMA-b-PSBMA copolymers ..................................................................... 25 
2.2.3. Characterization of the ability of PBMA-b-PSBMA to form Amphiphilic Nanoparticles: 

UCST and Salt Responsiveness. ................................................................................................... 28 
2.2.4. Overcoming the UCST: Synthesis and characterization of PBMA-b-PMESBMA polymers

 .................................................................................................................................................... 39 
2.2.5. Synthesis and Characterization of PBMA-b-PCBMA polymers ...................................... 47 

2.3. Concluding Remarks ......................................................................................... 52 

Chapter 3: Applications of Zwitterionic Amphiphilic Block Copolymers ............. 55 

3.1. Introduction ...................................................................................................... 55 

3.2. Results and Discussion ...................................................................................... 60 
3.2.1. Characterization of the interaction between BSA and zwitterionic nanoparticles ........ 60 
3.2.2. Internalization of the zwitterionic nanoparticles in a gastrointestinal epithelium model

 .................................................................................................................................................... 63 
3.2.3. Capacity of zwitterionic nanoparticles to pass through the mucus ............................... 66 



 
 

 

XII 

3.2.4. Curcumin encapsulation for antimalarial applications .................................................. 68 
3.2.5. Antimalarial characterization of curcumin-loaded zwitterionic nanoparticles ............. 73 
3.2.6. Zwitterionic nanoparticles against cancer ..................................................................... 83 

3.3. Concluding Remarks ......................................................................................... 90 

Chapter 4: Zwitterionic Stealth Microrobots .................................................... 95 

4.1. Introduction ..................................................................................................... 95 

4.2. Results and Discussion ...................................................................................... 99 
4.2.1. Development of a zwitterionic photoresist ................................................................... 99 
4.2.2. 2-Photon Polymerization 3D microprinting of zwitterionic photoresists .................... 102 
4.2.3. Bio-adhesion characterization of the zwitterionic microrobots .................................. 106 
4.2.4. Zwitterionic non-immunogenic microrobots ............................................................... 109 
4.2.5. Magnetically actuated zwitterionic microrobots ......................................................... 114 
4.2.6. Biomolecule encapsulation .......................................................................................... 116 
4.2.7. Surface functionalization of the zwitterionic microrobots .......................................... 118 

4.3. Concluding Remarks ........................................................................................ 121 

Chapter 5: Conclusions ................................................................................... 125 

Chapter 6: Materials and Methods ................................................................ 131 

6.1. Methods of Chapter 2 ...................................................................................... 131 
6.1.1. Synthesis of Poly(Butyl methacrylate-b-sulfobetaine methacrylate) (PBMA-b-SBMA) 131 
6.1.2. Synthesis of Poly(Butyl methacrylate-b-sulfobetainized morpholinoethyl methacrylate) 

(PBMA-b-MESBMA) .................................................................................................................. 131 
6.1.3. Synthesis of Poly(Butyl methacrylate-b-carboxybetaine methacrylate) (PBMA-b-CBMA)

 .................................................................................................................................................. 132 
6.1.4. Formation of zwitterionic nanoparticles ..................................................................... 132 
6.1.5. DLS Characterization .................................................................................................... 132 
6.1.6. Cryogenic Transmission Electron Microscopy (Cryo-TEM) analysis ............................. 133 

6.2. Methods of Chapter 3 ...................................................................................... 133 
6.2.1. Differential Scanning Calorimetry (DSC) analysis ........................................................ 133 
6.2.2. Modification of Zwitterionic polymers with Cy3 ......................................................... 133 
6.2.3. Caco-2 cell culture ....................................................................................................... 134 
6.2.4. Caco-2 internalization experiment .............................................................................. 134 
6.2.5. Multiple particle tracking (MPT) analysis .................................................................... 134 



 
 
 

 

XIII 

6.2.6. Curcumin encapsulation .............................................................................................. 136 
6.2.7. P. falciparum cultures and in vitro growth inhibition assays ....................................... 136 
6.2.8. Targeting analysis ........................................................................................................ 137 
6.2.9. Body weight loss analysis ............................................................................................. 137 
6.2.10. Hemolysis tests .......................................................................................................... 138 
6.2.11. In vivo antimalarial assays ......................................................................................... 138 
6.2.12. In vivo determination of polymers in pRBCs after oral administration ..................... 138 
6.2.13. Paclitaxel (PTX) encapsulation ................................................................................... 139 
6.2.14. HeLa cell line culture .................................................................................................. 139 
6.2.15. Incucyte ® live-cell analysis ........................................................................................ 139 
6.2.16. MTT toxicity assay ...................................................................................................... 140 
6.2.17. Introduction of S12 targetting peptide ...................................................................... 140 
6.2.18. U87 cell culture .......................................................................................................... 140 
6.2.19. S12 targetting evaluation .......................................................................................... 141 

6.3. Methods of Chapter 4 ..................................................................................... 141 
6.3.1. Synthesis of carboxybetaine methacrylate (CB) .......................................................... 141 
6.3.2. Synthesis of sulfobetaine methacrylate (SB) ............................................................... 141 
6.3.3. Synthesis of carboxybetaine dimethacrylate (CBX) ..................................................... 141 
6.3.4. Synthesis of sulfobetaine dimethacrylate (SBX) .......................................................... 142 
6.3.5. UV photopolymerization of zwitterionic photoresists ................................................. 143 
6.3.6. 3D microprinting (two-photon polymerization) .......................................................... 143 
6.3.7. J774A.1 and THP-1 cell culture conditions ................................................................... 144 
6.3.8. J774A.1 Cell Culture ..................................................................................................... 144 
6.3.9. THP-1 Cell Culture ........................................................................................................ 144 
6.3.10. Murine Spleen Isolation/Harvest ............................................................................... 144 
6.3.11. Cell viability of ZW hydrogels ..................................................................................... 145 
6.3.12. Cell adhesion on ZW hydrogels .................................................................................. 146 
6.3.13. Protein adsorption on ZW microrobots ..................................................................... 146 
6.3.14. Cell inspection of microrobots ................................................................................... 146 
6.3.15. Scanning Electron Microscopy ................................................................................... 147 
6.3.16. Magnetic actuation of microrobots ........................................................................... 147 
6.3.17. Biomolecule encapsulation in 3D-printed zwitterionic microstructures ................... 147 
6.3.18. Microrobot functionalization for light-triggered controlled drug release ................. 148 

Chapter 7: Bibliography ................................................................................. 151 



 
 
 

 



 
 
 

 

XV 

List of Figures 

Figure 1.1 Schematic of the stages of Foreign Body Response (FBR) for nano-micro scale materials 

and macroscale. .................................................................................................................................... 5 
Figure 1.2 Natural zwitterions and zwitterionic polymers .................................................................... 8 
Figure 2.1. Self-assembly of Amphiphilic polymers.. ........................................................................... 14 
Figure 2.2 (a) Chemical structure of Chain Transfer Agent (CTA), (b) reversible 

addition/fragmentation Transfer of the CTA, (c) Chain equilibration/propagation in RAFT 

polymerization and (c) creation of block copolymers by the reactivation of the macro-CTA and 

addition of new monomers. ................................................................................................................ 19 
Figure 2.3 Synthesis route of Zwitterionic Amphiphilic Block Copolymers. ......................................... 22 
Figure 2.4 H1- NMR of (a) PBMA (in CdCl3), (b) PBMA-b-PDMAEMA (in CdCl3) and (c) PBMA-b-PSBMA 

(in TFA-d). ............................................................................................................................................ 26 
Figure 2.5 Antipolyelectrolyte effect in polyzwitterions. ..................................................................... 29 
Figure 2.6 Translucid aspect of SB1.1 polymer (0.8 mg/ml) after 12h of steering in NaCl 1M. .......... 30 
Figure 2.7  Extrusion process to produce nanoparticles. ..................................................................... 31 
Figure 2.8 Graphical representation of the Table 2.2  data (n=3). ...................................................... 32 
Figure 2.9  Stability measurements of SB1 (n=3). ............................................................................... 35 
Figure 2.10 Cryo-TEM images of SB1 nanoparticles and histogram of the size count. Histograms have 

been made by counting 100 nanoparticles. ........................................................................................ 36 
Figure 2.11 Cryo-TEM images of Poly(ethylene glycol)-co-poly(butadiene) polymersomes [91] in 

which it can be clearly observed the polymer bilayer of the polymersomes. ...................................... 37 
Figure 2.12 Our hypothesis about he nanoparticle type of SB1. Before extrusion, we have aggregated 

micelles (due to antipolyelectrolyte effect). After extrusion, these aggregates are broken, forming 

smaller aggregated micelles of nanometer size. ................................................................................. 38 
Figure 2.13 Study of Laschewsky and coworkers on the UCST of different sulfobetaine homopolymers 

[85]. ..................................................................................................................................................... 40 
Figure 2.14  Introduction of a voluminous pendant group in the quaternary amine in order to avoid 

collapse. .............................................................................................................................................. 41 
Figure 2.15 H1- NMR of (a) PBMA (in CdCl3), (b) PBMA-b-PMEMA (in CdCl3) and (c) PBMA-b-

PMESBMA (in CdCl3). ........................................................................................................................... 42 
Figure 2.16 Z-Potential of the different PBMA-b-PMESBMA nanoparticles (n=3). ............................. 46 
Figure 2.17 Cryo-TEM analysis of the three PBMA-b-PMESBMA samples. Histograms have been done 

by counting 100 nanoparticles. ........................................................................................................... 47 
Figure 2.18 Synthesis of PBMA-b-PCBMA polymers. .......................................................................... 48 



 
 

 

XVI 

Figure 2.19 H1-NMR spectra of (a) PBMA (in CdCl3), (b) PBMA-b-PDMAEMA (in CdCl3) and (c) PBMA-

b-PCBMA (in CdCl3), the different steps in the synthesis of PBMA-b-PCBMA. .................................... 49 
Figure 2.20 Z-Potential of PBMA-b-PCBMA nanoparticles (n=3). ....................................................... 51 
Figure 3.1 Role of nanoparticle's surface chemistry in the interaction with the mucus. .................... 57 
Figure 3.2 DSC thermograms used to characterize the interaction between nanoparticles and BSA. 61 
Figure 3.3 Trithiocarbonate aminolysis used to include the Cy3 fluorophore molecule to the polymers 

produced. ............................................................................................................................................ 64 
Figure 3.4 Fluorescence microscopy images of Caco-2 cells incubated 6 hours with the different 

zwitterionic nanoparticles (488/532 laser line.) .................................................................................. 65 
Figure 3.5 MPT analysis of the different zwitterionic nanoparticles in mucus.. .................................. 67 
Figure 3.6 Curcumin encapsulation in the different zwitterionic nanoparticles. ................................ 70 
Figure 3.7 Encapsulation of Curcumin.. .............................................................................................. 72 
Figure 3.8 Flow citometry analysis of the interaction between Cy3-labeled zwitterionic nanoparticles 

and pRBC (which DNA was labeled with Hoescht). ............................................................................. 74 
Figure 3.9 Confocal Microscopy of the samples containing pRBC and Cy3-labeled zwitterionic 

nanoparticles. (A) Images of the different microscopy lines for 2 positions of each polymer. (B) time-

lapse of S1 polymer. ............................................................................................................................ 75 
Figure 3.10 Cytometry assay of the curcumin-loaded zwitterionic particles in contact with pRBCs. .. 77 
Figure 3.11 P. falciparum Growth Inhibition Assay (GIA) of curcumin-loaded zwitterionic polymers. 78 
Figure 3.12 Body weight change of mice injected with different sulfobetaine nanoparticles. (n=4) .. 79 
Figure 3.13 Hemolysis test for the different sulfobetaine polymers (n=3). ......................................... 80 
Figure 3.14  Survival of the different groups of P. yoelii-infected mice after the administration of 

curcumin (n=4). ................................................................................................................................... 81 
Figure 3.15  Confocal fluorescence microscopy analysis of the presence of orally administered Cy3-

PBMA-MESBMA in pRBCs of a P. yoelii-infected mouse. .................................................................... 82 
Figure 3.16 Characterization of the antitumoral activity of PTX-loaded zwitterionic nanoparticles 

using Incucyte® Live cell analysis.. ...................................................................................................... 85 
Figure 3.17 MTT of HeLa cells treated with PTX-loaded NPs .............................................................. 87 
Figure 3.18 Targetting of C1 nanoparticles. (A) introduction of the targetting moiety by NHS/EDC 

coupling of the carboxilic group from the carboxybetaine. (B) Evaluation of the targetting capacity of 

the modified NPs using U87 cell line. .................................................................................................. 89 
Figure 4.1 (A) Challenges for Medical microrobots [178] and (B) some strategies of locomotion and 

control [162]. ...................................................................................................................................... 96 
Figure 4.2 Synthesis of (A) Zwitterionic monomers and (B) crosslinkers. (C) H1-NMR of the CB and SB 

monomers. (D) H1-NMR of CBX and SBX crosslinkers. ....................................................................... 100 
Figure 4.3 Photorheological characterization of the polymerization of the different photoresists. . 101 



 
 
 

 

XVII 

Figure 4.4 Difference in the printing area between 1-photon polymerization and 2-photon 

polymerization (absorption image was obtained from www.microlight.fr). .................................... 103 
Figure 4.5 2PP printing of the Zwitterionic photoresists. .................................................................. 105 
Figure 4.6 Viability assay performed with the different zwitterionic photoresists (n=3). (A) WST-8 

assay (B) Live/Dead staining and J774A.1 murine macrophages. ..................................................... 106 
Figure 4.7 J774A.1 murine macrophage adhesion to zwitterionic photoresists. .............................. 107 
Figure 4.8 Fluorescence microscope images of the different microrobots incubated with Cy5-BSA. 108 
Figure 4.9 Zwitterionic Stealth Microrobots. .................................................................................... 110 
Figure 4.10 SEM images of the interaction between macrophages and the S30 and PEG microrobots.

 .......................................................................................................................................................... 111 
Figure 4.11 SEM images of (a) LPS-stimulated macrophages and (b) non-stimulated macrophages.

 .......................................................................................................................................................... 112 
Figure 4.12 S30 microrobot arrays co-cultured with macrophages, monocytes and splenocytes for 

24h. ................................................................................................................................................... 113 
Figure 4.13 Magnetic actuation of the zwitterionic helical microrobots. ......................................... 115 
Figure 4.14 Drug and biomolecule encapsulation in zwitterionic 3D printed microhyrogels. 117 
Figure 4.15 Fluorescence microscope images of Cy5-amine modified C30 microrobots and bare C30 

microrobots. ...................................................................................................................................... 118 
Figure 4.16 On-demand light-triggered release of Doxorubicin. ...................................................... 119 
 

 



 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

 

XIX 

List of Tables 

Table 2.1 PBMA-b-PSBMA polymers synthetized. .............................................................................. 27 
Table 2.2 Results of DLS of the samples prepared by extruding the dispersed polymer solutions 

through a filter of 200 µm (n=3). ........................................................................................................ 32 
Table 2.3 PBMA-b-PMESBMA polymers synthetized. ......................................................................... 43 
Table 2.4 Results of DLS of the samples prepared by different methods (n=3). Centrifugation of M1 

sample was performed at 6000 g and extrusion was performed with a pore size of 100 µm. ........... 44 
Table 2.5 PBMA-b-PCBMA synthetized. .............................................................................................. 50 
Table 2.6 Hydrodynamic Size of PBMA-b-PCBMA nanoparticles (n=3). .............................................. 50 
Table 3.1 Tm of BSA in a native form and in contact with the two nanoparticles tested (with 

zwitterionic and cationic surface). ...................................................................................................... 63 
Table 3.2 Data from the MPT analysis. ............................................................................................... 67 
Table 3.3 Data of the curcumin encapsulation in the different zwitterionic nanoparticles produced. 

(native curcumin solubility in PBS is taken from [144]). ...................................................................... 71 
Table 3.4 Encapsulation of PTX in the different zwitterionic nanoparticles (*[Polymer] =10 mg/ml). 84 

 



 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

 

XXI 

Table of Abbreviations 

  

(H1)-NMR (proton) Nuclear Magnetic Resonance 

1,3-PS 1,3-PropaneSultone 

2PA 2-Photon Absorption 

2PP 2-Photon Polymerization 

ABC Amphiphilic Block Copolymer 

ATRP Atom Transfer Radical Polymerization 

BMA Butyl MethaAcrylate 

BSA Bovine Serum Albumin 

C-6 Coumarin-6 

CB CarboxyBetaine 
CBMA CarboxyBetaine MethAcrylate  

CMC Critical Micelle Concentration 

CRP Controlled Radical Polymerizations 

CTA Chain Transfer Agent 

DDS Drug Delivery System(s) 

DLS Dynamic Light Scattering 
DMAEMA N,N-DiMethyl(AminoEthyl) MethAcrylate 

DOX DOXorubicin 

DSC Differential Scanning Calorimetry 

EPR Enhanced Permeability and Retention 

EPR Enhanced Permeation and Retention 

FDA Food and Drug Administration 
GB Glycine Betaine 

GIA Growth Inhibition Assay 

GIT GastroIntestinal Tract 

HFIP HexaFluoroIsoPropanol 

LAP Lithium phenyl-2,4,6-trimethylbenzoylphosphinate 

MESBMA Morpholino Ethyl Sulfobetaine Methacrylate 
MPC 2-Methacryloyloxyethyl PhosphorylCholine 

MPS Mononuclear Phagocyte System 



 
 

 

XXII 

MPT Multiple Particle Tracking 

MSD Mean Square Displacement 

MTT 
3-(4,5-diMethylThiazol-2-yl)-2,5-
diphenylTetrazolium bromide 

NMP Nitroxide-Mediated radical Polymerization 

NP NanoParticle 

P-NIPAAm Poly-N-IsopropylAcrylAmide 

PBS Phosphate Buffer Saline 

PEG Poly(Ethylene Glycol) 

PEGDA Poly(Ethylene Glycol) DiAcrylate 
PMPC Poly(2-Methacryloyloxyethyl PhosphorylCholine) 

pRBC Parasitized Red Blood Cell(s) 

PTX PacliTaXel 

QDMAEMA Quaternized DiMethyl(AminoEthyl) MethAcrylate 

RAFT Reversible Addition-Fragmentation Transfer 

SB SulfoBetaine 

SBMA SulfoBetaine MethAcrylate 

SPION Small Paramagnetic Iron Oxide Nanoparticle 

TEM Transmission Electron Microscopy 
 TFA TriFluoroAcetic acid 

TFE TriFluoroEthanol 

Tm Thermal Transition Midpoint 
TMAO TriMethylAmine N-Oxide 

UCST Upper Critical Solution Temperature 
  



 
 
 

 

 

 

 

 

 

 

Chapter 1: Motivation and Aims 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

 

3 

Chapter 1: Motivation and Aims 

The use of materials for medical applications has been present through all humankind 

history. It began in ancient times, with the use of natural materials such as wood to replace 

injured parts of the body and evolved in the 1940s, when pioneer physicians started using 

non-medical oriented synthetic materials that replaced the natural ones. That brought 

scientists to ask themselves if  the physical and chemical properties of these materials 

determined the body response to them, which led to the birth of Biomaterial Science in 1970s 

[1–3]. Since then, the biomaterials field has experienced an exponential growth, converging 

with other disciplines such as engineering, physics, molecular biology or genomics  to become 

a +$300-billion market that saves thousands of lives every year and improves our quality of 

live [4,5].  

The biomaterials field has been characterized for having a high scientific output over all its 

history (nowadays, more than 10,000 publications are published every year and a high 

number of patents are requested [3]). All this research resulted in an evolution of biomaterial’s 

designs, functions and applications. The first biomaterials were designed to be bioinert (not 

interact with body tissues) and to have a mechanical function (i.e. knee/hip prothesis). But, 

with the molecular biology revolution in 1970s and genomics/proteomics in 1990s, a second 

generation of bioactive materials appeared, in which the paradigm changed and materials 

were designed to interact with the body in order to induce a therapeutic effect. Drug eluting 

medical devices, drug delivery systems and biodegradable implants were developed during 

this second generation of biomaterials, enabling a wide spectrum of applications for treating 

diseases that were uncurable until then. And recently, a third generation of biomaterials is 

arising, trying to develop materials that, when placed in the body, interact with the 

surrounding tissue and recruit cells to perform an active function in our body. If achieved, 

these materials would suppose a revolution in the medical field.   

Although one could think that this evolution would have an immediate effect on the impact 

of biomaterials in clinics, the reality is that we are still far from this scenario. Most of the 

current biomaterials used in medicine are not so different to the ones created in the 1970s [5], 

meaning that all the work and money comprised in the hundreds of thousands of publications 

during the last decades has a limited impact in the current standards of clinical medicine.  
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Although there are multiple logistic factors that have influence on the inability of medical 

devices to reach the market (a strong regulation on medical devices and drugs, the absence 

of proper disease models or the lack of communication between scientists and doctors), the 

body response to external materials supposes a major scientific challenge to solve in order to 

achieve a better translation of biomaterials from the laboratory to clinics. This body response, 

normally produced due to the stimulation of the immune system of our body by the 

biomaterial, supposes the fall of a large number of biomaterials in the clinical trials in which 

they are neutralized and loss their efficiency or produce immune reactions. Therefore, the 

study of the body response to biomaterials and the development of immune evasive materials 

is crucial to overcome this major roadblock of the biomaterials field.   

During millions of years of evolution, mammals have developed a complex immune system 

optimized to identify and destroy any harmful organism/cell/material present inside their 

body. This immune system is also helped by different barriers such as epithelia, 

gastrointestinal mucus barrier or blood brain barrier that prevents the pass of potentially 

harmful materials to different sensible parts of it [6]. All these defenses sort the harmful 

materials from the non-dangerous ones by surface effects. When a material is placed in the 

body, a layer of proteins is formed instantly in the surface of it, producing the so-called 

protein corona [6–8]. The corona is formed due to interactions between the material’s surface 

and the proteins found in plasma and, therefore, the chemistry on the surface of the materials 

will determine the size and composition of it. Macrophages, immune system cells specialized 

to remove harmful materials from the body, can recognize the protein’s corona composition 

and, if detected as dangerous (proteins are denaturalized or strongly attached), they proceed 

to phagocytize the material [9]. When the material is small enough (e.g. nanoparticles, 

microparticles), the macrophage phagocytize it and the material is removed from blood and 

eliminated [10]. But if the macrophages cannot phagocytize a material due of its size, a 

capsule surrounding the material is formed, isolating it from the tissues. This phenomena is 

called the foreign body response (FBR, Figure 1.1) [8].  

In the first generation of biomaterials (in which a mechanical function and bioinert 

properties were desired), the recognition of biomaterials by the immune system was not seen 

as a problem but as something positive. The formation of FBR was considered a favorable 

reaction, because the existence of the capsule prevented possible toxicity or reverse effects of 
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the materials to the surrounding tissues. But with the appearance of biomaterials with more 

complex functions (second and third generation), the interaction of the biomaterial with cells 

and/or environment is needed. And this interaction cannot occur if the material is neutralized 

by the immune system. This fact explains the problems that complex biomaterials such as 

drug delivery systems, biosensors or cardiovascular implants are experiencing to reach the 

clinical use. 

 

Figure 1.1 Schematic of the stages of Foreign Body Response (FBR) for nano-micro scale materials and 

macroscale.  

For all the reasons commented above, scientists have focused on the design of materials 

that can bypass the immune system and, therefore, perform complex functions in the body. 

And the main strategy that has been used to prevent the neutralization of a material by the 

immune system has been to avoid the immune detection. Thus, antifouling materials with the 

capacity to resist the protein absorption and consequently the immune detection have drawn 

the attention of the biomedical field during the past decades [2,3,11]. 

The first antifouling materials were found through an experimental observation, by trial 

and error or serendipity. But a systematic analysis was necessary to understand how 

materials interacted with proteins. This analysis was performed by Whitesides’ group in 2001 
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[12], when they analyzed up to 60 known non-fouling surfaces and determined 3 common 

properties that all the antifouling materials shared: (i) they were hydrophilic (polar), (ii) they 

had zero net-charge and (iii) they contained H-bond acceptors groups but not H-bond donor 

groups .  

With these three rules, some light was shed on the interaction protein-material. If the 

material presents a hydrophobic surface, host proteins denaturalize and aggregate in the 

surface due to hydrophobic effect [13]. If the surface is charged, there are interactions with 

oppositely charged regions of proteins [14]. Then, an antifouling surface has to be hydrophilic 

and neutrally charged to avoid interactions with proteins. But other than only the surface 

properties, Whitesides empathized in the interactions with the material surface and water 

(the rule about the H-bonds). The more water interacts with the surface of the material, less 

proteins will be absorbed into it.  

Among all the surfaces studied in Whitesides’ work, poly(ethylene glycol) (PEG) outshined 

as the most promising antifouling. The non-fouling properties of this polymer were 

discovered in 1983 [15,16] and gained great notoriety in the field in 1990, when the first 

PEGylated protein (Pegadamase) for the treatment of severe combined immune-deficiency 

(SCID) was developed [17].  In 1995, the interest for these polymers increased even more 

when it was used in the first FDA approved Drug Delivery System, Doxil® (Doxorubicin 

loaded PEGylated liposomes for the treatment of Kaposi’s Sarcoma) [18]. Since then, 

PEGylation has been the “gold standard” to provide non-fouling properties to surfaces and 

avoiding its immunogenicity [19–22].  

PEG’s antifouling properties comes from its non-charged hydrophilic nature and the 

presence of repetitive ether bonds (H-bond acceptors) that generate a stable hydration layer 

around the polymer. Also, it has been proved that part of the antifouling of PEG comes from 

the mobility of their chains, that prevents the approximation of biomolecules to the surface 

and increases its hydration [23]. However, in the last years there have appeared some 

drawbacks regarding PEGylation in clinics. Although early preliminary results showed the 

absence of immune response to PEGylated drugs, PEG-induced immune response and anti-

PEG antibodies have been reported in the last years [24–28]. These results can be explained 

by the recent claims that PEG is not a hydrophilic polymer but an amphiphilic one (they have 
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repeated units of an hydrophilic ether group and two hydrophobic methylene groups), 

proved by its solubility on organic solvents such as acetonitrile or chloroform apart from 

water [24,29]. The amphiphilicity of PEG also generates problems in the stability of the 

systems, such as the decrease of activity of some PEGylated proteins [30] and the 

destabilization of liposomes [31].  

These evidences make necessary the search for new antifouling surfaces with a better 

performance of PEG, as they are needed not only to bring new therapeutics and medical 

devices to clinics, but also they may be needed in the near future for these approved 

PEGylated therapies in case that more issues with PEG allergies appear. In this scenario, 

zwitterionic polymers have emerged as one of the most promising strategies to become the 

substitute of PEG as gold standard for antifouling surfaces [32]. These polymers consist in 

polymer chains that contain both positive and negative charges at equal ratio. By having these 

repeated charges, the polymer has a high charge density, but at the same time they do not 

present net charge. This fact is important because they can strongly interact with water, as 

the ion-dipole interaction is stronger than the dipole-dipole interaction (they show a 8-fold 

increase in the water molecules bonded in comparation to PEG [33,34]). But they are at the 

same time neutral, preventing possible interactions with charged host proteins.  

Zwitterions are abundantly present in nature, normally having functions related to 

proteins. Amino acids, the building block of proteins, are zwitterionic molecules at neutral 

pH, as they have a positive charge in the amine and a negative in the carboxylic acid. Simple 

zwitterionic molecules such as glycine betaine (GB) and Trimethylamine N-oxide (TMAO) 

(Figure 1.2) are present in plants and animals acting as osmolytes. Their function is to regulate 

osmotic pressure and to avoid protein denaturalization due to extreme conditions in heat, salt 

concentration or pressure [35,36]. For example, TMAO is used by different organisms to 

counteract the effect of urea in the denaturalization of proteins [37]. It has also been proved 

that the exposed residues of proteins have a high abundancy of lysin, glutamate and 

aspartate, generating a pseudo-zwitterionic surface with equal positive and negative charges 

on it. These amino acids are more present in chaperones and blood proteins, which are 

characterized by being in protein-rich environment, where they have to avoid aggregation 

and denaturalization (in the case of chaperones, their function is to refold misfolded proteins) 

[38,39]. Finally, phosphocholine groups are present in the cell membrane of animals. All the 
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functions of these natural zwitterions show how they have an active role in avoiding protein 

denaturalization and, therefore, that zwitterionic polymers are interesting candidates for 

generating bioinspired antifouling materials.  

 

Figure 1.2 Natural zwitterions and zwitterionic polymers 

  It has been proved that zwitterionic polymers can avoid protein absorption, achieving  <0.3 

ng/cm2  of protein adhesion in single protein solution and complex media [40–42]. And some 

zwitterionic polymers have showed the same capacity that osmolytes for stabilization of 

proteins and prevention of aggregation [43,44]. 

The first synthetic zwitterionic polymer used in the biomedical field was Poly(2-

methacryloyloxyethyl phosphorylcholine) (Poly(MPC)), synthetized by Nakabayashi’s group 
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in 1976 [45]. Back then, the term “zwitterionic polymer” was not invented yet. By observing 

the cell membrane, Nakabayashi though that if a non-thrombogenic material was desired, the 

surface of the material should be as similar as possible to cell membranes. They synthetized 

a polymerizable monomer mimicking the phosphocholine group of cell membranes. During 

a decade, the synthesis of MPC was not efficient enough to fully test its performance as non-

fouling material.  In 1990, Ishihara and Nakabayashi optimized the synthesis [46] and allowed 

the scalation to industrial production in Japan in 1999.  Nowadays the factory is still working, 

producing 40 tons of MPC every year that are being used in cardiovascular and 

ophthalmological devices [47]. 

Since then, the interest in zwitterionic polymers have increased and new zwitterionic 

polymers have been described. Together with MPC, two other groups have become the most 

used zwitterions in the recent years. Their development was motivated by the difficult and 

expensive synthesis of MPC and for the search of other functionalities [48]. These two 

zwitterionic groups are sulfobetaine and carboxybetaine (Figure 1.2). Sulfobetaines are 

zwitterions not present in nature, and are composed of a quaternary ammonium cation and 

a sulfonate anion.  They have been proved to be more stable than the phosphocholine and 

carboxybetaine group [48]. Polysulfobetaines have also attracted attention by their upper 

critical solution temperature (UCST) around physiological temperature (35-45 ºC), which 

makes them attractive for designing temperature responsive materials. On the other hand, 

polycarboxybetaines are inspired in glycine betaine, and have a quaternary ammonium as 

cation and a carboxylic acid as anion. They are the most hydrophilic zwitterion and has the 

advantage that can be easily to functionalize through activation of the carboxylic acid [42]. 

Also, in the last year, a new type of zwitterionic polymers inspired in TMAO has been 

developed by Jiang’s group, and its antifouling and biocompatibility properties have been 

proved [49]. 

This development of new zwitterionic polymers together with the understanding of their 

mechanism has resulted in a growing interest in these polymers for biomedical applications. 

They are being used as antifouling materials in multiple cases, such as  medical device 

coatings, biosensors, drug delivery systems or soft tissue implants [32,50]. In the vast majority 

of these applications, zwitterionic polymers are used as coatings. They are synthetized in a 

way that they can be attached (covalently or physically) to a biomaterial to form a zwitterionic 
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layer in its surface. This layer prevents the protein absorption and, therefore, the immune 

response generated by the biomaterial. Although this technology is widely used, it presents 

some drawbacks that prevents their use in some other applications. It supposes an extra step 

in the development of the material, it needs to be uniform in all the material surface and it 

can be degraded or damaged during its use, among others.  

Trying to enlarge the range of application of zwitterionic polymers, in this thesis we want 

to provide of zwitterionic bulk biomaterials to the biomedical field. These materials would 

have an intrinsically antifouling properties, without the need of coatings or other treatments, 

fact that would make them suitable to a bigger number of applications. Specifically, in this 

thesis we have focused on two fields in which their antifouling properties are strongly 

demanded: the drug delivery field and the microrobotics field. Then, the objectives that we 

have set for this thesis are the following: 

• To synthetize zwitterionic block copolymers and evaluate their capacity to form self-

assembled nanoparticles to become a zwitterionic drug delivery platform (Chapter 

2). 

 

• To evaluate the antifouling properties of the different drug delivery systems 

produced and optimize them to cross the gastrointestinal barrier and to encapsulate 

hydrophobic drugs in order to create antimalarial and anticancer therapies (Chapter 

3).  

 

• To develop a zwitterionic photoresist suitable for advanced microprinting 

manufacturing of “stealth” non-immunogenic zwitterionic microrobots with 

multiple functionalities (Chapter 4).  
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Chapter 2: Synthesis and Characterization of 

Zwitterionic Amphiphilic Polymers 

2.1. Introduction  

The majority of biomedical applications require of antifouling and immune-evasive 

materials. Among them, the development of drug delivery systems (DDS) with antifouling 

surface arouses special interest, since the immune system is still an unsurmountable barrier 

for this type of systems. In this chapter we have addressed this problem by using antifouling 

zwitterionic materials to create zwitterionic DDS based on amphiphilic block copolymers.  

Amphiphilic block polymers have attracted the attention of the drug delivery field during 

the last three decades for their ability to self-assemble in aqueous solution similarly as 

surfactants do [51–53]. They present a unique structure, in which at least two blocks with 

different chemical properties (hydrophilic and hydrophobic) are bonded covalently, creating 

a resulting molecule composed of regions with different affinity to water (Figure 2.1a). The 

composition of these regions, as well as their length and the proportion between themselves, 

give to ABCs a structural versatility that is translated to a capacity to form different structures 

when dispersed in water, such as micelles and polymersomes, with different properties and 

potential applications.  

Block copolymer micelles are formed by the agglomeration of the hydrophobic part of the 

ABC in the center, with the hydrophilic part forming a hydrated corona in contact with the 

aqueous media (Figure 2.1b). Depending on the ABC composition, micelles can show 

different thermodynamical behavior, being classified in two subtypes: dynamic micelles 

(Figure 2.1d), in which ABCs are in an equilibrium between their unimer state (in solution) 

and micelle state and frozen micelles (Figure 2.1e), in which this equilibrium does not exist 

and the micelle formation is not thermodynamically reversible. The structure of the micelles 

allows them to solubilize hydrophobic drugs (in the hydrophobic region of the micelle), 

protecting them from enzymatic degradation. And their chemical versatility make them 

tunable in terms of morphology, biological activity and stability, allowing the design of 

multiple systems with different features [54,55]. For these reasons, micelles are one of the 

most widely used drug delivery systems for hydrophobic drug delivery.  
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Figure 2.1. Self-assembly of Amphiphilic polymers. (a) amphiphilic polymers can self-assemble in (b) micelles 

or (c) polymersomes. Micelles are classified as (d) dynamic micelles or (e) frozen micelles depending if there exist 

a thermodynamic equilibrium between unimers and micelles. 

On the other side, polymersomes are hollow vesicles formed by a bilayer of amphiphilic 

polymer (Figure 2.1c) with a similar structure than liposomes, but that outperform them in 

terms of stability and chemical versatility. They are interesting due to their capability of not 

only incorporate hydrophobic molecules in the membrane, but also hydrophilic molecules 

can be placed in the aqueous environment in the center of the polymersome, protecting them 

from the biological environment [56,57].  
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Apart from modulating the self-assembly of the ABCs, the control of the chemical 

properties of each block allows the introduction of multiple functionalities to this type of 

polymers. Some examples are the use of thermo-responsible (or pH-responsible) blocks that 

can be used for on-demand release of drugs [58–60] or the introduction of antibodies or other 

targeting molecules to target specific cells [61,62].   

As any other drug delivery system, the objective of ABCs is to deliver a therapeutic cargo 

(small molecule, protein, genetic material, etc.) to a specific site. To perform this function, the 

DDS has to be stable until it reaches the desired site. Moreover, in the case of cancer treatment 

(the disease for which more DDS are designed), a long stability of the nanoparticle also 

enhances the therapy efficacy due to the Enhanced Permeation and Retention effect (EPR 

effect). This effect is derived from the need of vascularization of solid tumors, that generate 

abnormal blood vessels that are more permeable and that lack of lymphatic drainage. These 

two factors combined produce that nanoparticles can permeate in the tumor regions and be 

retained there, increasing the concentration of drug in the tumor with respect to the rest of 

the body [63]. Thus, if the blood residence time of the DDS allows the pass of nanoparticles 

trough the tumor site multiple times, this effect is maximized [64].  

The time that ABC nanoparticles can remain in blood without losing its drug load is 

determined by multiple factors, being the physical/chemical stability and the interaction with 

the immune system the two main factors. When the nanoparticles enter in the body 

fluid/tissue, they face a sharp change of conditions that compromises their stability. The body 

is at a certain temperature and salt concentration and it contains different host biomolecules 

such as proteins, lipids and hormones. If the nanoparticles were sensible to these conditions, 

their effectivity would be compromised. Therefore, when designing a DDS, it is important to 

assure that the system is stable at body’s temperature and salinity, as well as avoiding 

aggregation and interaction with the host biomolecules. In the case of dynamic micelles, the 

final concentration of the polymers in the body is also critical, as above a Critical Micelle 

Concentration (CMC) the equilibrium is displaced to the unimer form, resulting in the 

disassembly of the micelles and the release of the payload [65].  

Although these many factors affecting the stability of the nanoparticles, DDSs that are stable 

inside the body have been developed in the last years. But the design of systems that can 
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completely avoid the immune system response is still a challenge that has not been solved.  

As has been commented in Chapter I, when a material (in this case, nanomaterial) is 

introduced in the body/bloodstream, protein opsonization occurs, creating a layer of proteins 

called protein corona. These absorbed proteins are recognized by macrophages, immune cells 

present in all body tissues (and specially in the lung and spleen) that are in lookout for 

pathogens. When recognized as a foreign treat, the macrophages phagocyte the nanoparticles 

removing them from the bloodstream, preventing its capability to deliver the drug to the 

target site [66–68]. The immune detection of the nanoparticles starts with the protein 

absorption (that is later detected by the macrophages). This protein absorption depends on 

the chemical and physical properties of the nanoparticles’ surface. Therefore, the engineering 

of the surface of the nanoparticles to avoid the protein absorption that leads to the immune 

clearance is still a big topic in the drug delivery field.  

The search for polymers that can avoid the undesired protein absorption (antifouling 

polymers) has been the main strategy to create long-circulating drug delivery systems. It has 

been explored in multiple drug delivery system types, including the amphiphilic block 

copolymers. As in the majority of biomaterials, the introduction of poly(ethylene glycol) 

(PEG), the current antifouling “gold” standard, has been a widely used strategy for ABCs. Its 

first use was in 1989 by Kabanov et. al. [69], when amphiphilic Poly(ethylene glycol)-co-

poly(propylene glycol)-co-poly(ethylene glycol), referred with the commercial name of 

Pluronic®, was used to encapsulate haloperidol (a neuroleptic agent). And, since then, a big 

number of DDS have been developed using PEG as the hydrophilic part of amphiphilic 

polymers [20]. In all these cases, when the nanoparticles are formed, it is produced a PEG 

corona in contact with water, reducing protein adsorption. 

But the appearance of cases of hypersensitivity and immunological response to PEG is 

compromising the effectiveness of PEGylated therapies [25,26,28,70] and generate concern 

about their use as the benchmark antifouling polymer for drug delivery systems. These 

problems have motivated scientist to search for other hydrophilic polymers to be used in 

ABCs [71], such as poly-oxazolines [72,73] or Poly(hydroxypropyl methacrylate) [74] among 

others. But, although multiple systems have been developed, there is still not a clear 

substitute to PEG in amphiphilic block copolymer-based drug delivery systems.  
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By using zwitterionic polymers as the hydrophilic part of ABCs, in this thesis we want to 

translate the unique properties of these polymers to the field. As has been commented in 

Chapter I, the two principal features of zwitterionic polymers are its superhydrophilicity and 

antifouling behavior. By being superhydrophilic, when introduced in an ABC the change of 

polarity between the hydrophilic part and the hydrophobic part is bigger than the ones 

containing PEG or other hydrophilic polymers. This change of polarity is the driving force 

that produces the self-assembly to form nanoparticles and, if it is bigger, the resulting 

nanoparticle will be more stable. Also, in these self-assembled structures, the zwitterionic 

moieties are found in the surface, giving antifouling and anti-immunogenic properties to the 

system. These two properties combined make zwitterionic polymers promising for 

overcoming the barriers that prevent a long circulation of ABC nanoparticles and produce 

DDS with more therapeutic efficiency that current ones. And, for this reason, in this chapter, 

we broach the synthesis and characterization of amphiphilic block copolymers containing a 

zwitterionic block.  

The strategy we have followed to obtain these polymers is to synthetize them by Reversible 

Addition-Fragmentation Transfer (RAFT) Polymerization. RAFT polymerization is a type of 

radical polymerization encompassed in the family of living radical polymerizations (or 

controlled radical polymerizations (CRP)). This type of polymerizations, in which they are 

also found the Atom Transfer Radical Polymerization (ATRP) and the Nitroxide-Mediated 

radical Polymerization (NMP), are polymerizations that pursue a high control over the 

polymerizing chains. This degree of control is achieved by three factors: all chains are initiated 

at the start of the reaction (i); the growth of the chains is homogenous (ii); and 

transfer/termination reactions are avoided (iii) [75].  

The mechanism of RAFT polymerization is based on the presence of one compound, named 

RAFT agent or Chain Transfer Agent (CTA) (Figure 2.2a) that has a thiocarbonylthio group 

(such as dithioesters, dithiocarbamates and xanthates) capable of reversibly deactivate the 

propagating chains. This fact produces a situation in which most of the living chains are in a 

dormant form and only few of them are active. There is a rapid equilibrium between the active 

form and the dormant form, resulting in a similar propagation of all the chains. This 

equilibrium (Figure 2.2b) takes place due to the capability of the reactive double bond (C=S) 

to react with a radical (R’•) producing a stable free radical in the dithiocarbamates structure. 
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Due to this radical formation, a weak double bond (S-R) can be homolytically cleaved 

producing the radical R•. As is shown in Figure 2.2a, the selection of the CTA (R and Z 

groups) has importance in the constants of this equilibrium and, therefore, in the final result 

of the controlled polymerization. The R group has to be stable enough to favor the transfer of 

the CTA to an active chain but also unstable enough to react with a monomer to start a new 

active chain (R-M•). On the other side, the Z group has influence on the stability of the CTA 

agent and the CTA-Polymer. So, it will determine the transfer rate of the CTA from one 

polymer chain to another polymer chain.   

To perform the RAFT polymerization, we will need the CTA together with the two typical 

elements of any radical polymerization (the initiator (I) and the monomer (M). The 

polymerization starts as any other radical polymerization: a radical in the initiator (I•) is 

formed due to an external input (normally temperature). These radicals start propagating by 

adding monomer units and forming growing chains (I• à IMMM• à Pm•). And, at some 

point, they add a CTA instead of a Monomer. When this happens, the growing chain becomes 

dormant, and the R unit of the CTA is released as a radical (R•) and starts forming a growing 

chain (R• àRMMM•à Pn•). Due to the reversible character of all these reactions, the RAFT 

polymerization enters in an equilibrium phase (called chain equilibration/propagation) 

(Figure 2.2c) in which the CTA jumps from a growing chain to another, activating and 

deactivating these chains.  

The ratio of growing/dormant chains can be adapted depending on the proportion of 

CTA/M/I added in the reaction, and, normally, it is selected to be a low ratio of growing chains 

to dormant chains. So, the majority of chains are in a dormant state, while few are actively 

growing. But, at the same time, the kinetics of the CTA transfer from a chain to another chain 

are fast. The combination of the low number of active chains and the fast transfer of CTA from 

one chain to another chain produces that active chains only adds few monomers before being 

deactivated. This feature of RAFT polymerization is important because it prevents the 

excessive growing of some chains, consuming the totality of the monomer in the solution and 

stopping the polymerization with a big dispersity of chain lengths (phenomenon occurred in 

the simple radical polymerization). Therefore, in RAFT polymerization all chains grow at the 

same rate, creating a population with low polydispersity. 



Chapter 2: Synthesis and Characterization of Zwitterionic Amphiphilic Polymers 

 
 
 

 

19 

This low ratio of growing/dormant chains also produces that, when monomer 

concentration starts to fall, there is a low number of dead chains (chains that have lost the 

radical). This is a key fact for our purpose of producing ABCs, as it allows to reinitiate the 

polymerization by adding more monomer and initiator and create a block copolymer (Figure 

2.2d). 

 

Figure 2.2 (a) Chemical structure of Chain Transfer Agent (CTA), (b) reversible addition/fragmentation 

Transfer of the CTA, (c) Chain equilibration/propagation in RAFT polymerization and (c) creation of block 

copolymers by the reactivation of the macro-CTA and addition of new monomers.  

And also, the fact that the R group and the thiocarbonylthio groups in the edges of the 

polymer allows the post-polymerization modification of the polymers produced [76–79]. This 

possibility has important utility for the application of ABCs in drug delivery, as by these post-

polymerization modifications of the polymers there can be added different functional groups 

to add functionalities (such as targeting or on-demand delivery) to the system.  



Chapter 2: Synthesis and Characterization of Zwitterionic Amphiphilic Polymers 

20 
 
 

 

Knowing the potential of the zwitterionic polymers as antifouling polymers and the 

advantages that RAFT polymerization offers to produce amphiphilic block copolymers, in 

this Chapter we have developed zwitterionic amphiphilic block copolymers. With them, we 

want to provide alternatives to the current PEG-based antifouling drug delivery systems, that 

have been recently proved to generate immune response and that have limitations of chemical 

versatility and stability.  

We have used RAFT polymerization, to produce well-defined zwitterionic block 

copolymers. Thanks to the control over the polymer structure that this polymerization offers, 

we have been able to explore the influence of different factors such as the zwitterionic type 

or polymer architecture in their self-assembly of the polymers produced. And we have also 

determined which advantages and drawbacks do these polymers present as possible drug 

delivery systems, in order to be able to rationally design optimized zwitterionic ABCs for 

possible future applications, that will be explained in next Chapters.  

.  

  



Chapter 2: Synthesis and Characterization of Zwitterionic Amphiphilic Polymers 

 
 
 

 

21 

2.2. Results and Discussion 

 RAFT polymerization offers a high degree of control over the structure of the polymer. By 

using this type of polymerization, we can choose the chemical nature of each block as well as 

the length of the block, factor that will also determine the proportion between blocks in case 

of diblock copolymers. All these variables offer the possibility to create a broad spectrum of 

polymers sharing some similarities but also with small structural differences that can suppose 

an important change in their behavior as drug delivery systems.  

Since the objective of this part of the thesis was more focused in developing zwitterionic 

DDS than in exploring all the possible combinations of block types and length, we followed 

the strategy of starting from few initial polymers and then, after characterizing them, redesign 

the design of the polymers in order to improve their performance as DDS. So, we explain the 

results of this chapter in a chronological way, in order to make easier to understand the 

selection of the polymers used.  

2.2.1. Selection of the Synthesis pathway 

Poly(butyl methacrylate)-b-Poly(Sulfobetaine methacrylate) (PBMA-b-PSBMA) was the 

first amphiphilic block copolymer that we decided to produce. We selected PBMA as the 

hydrophobic block as it is a highly used monomer in biomedical applications due to its 

availability, chemical stability and versatility. As has been previously commented, the 

hydrophobic block of the ABC will try to hide from the water, producing the self-assembly in 

core-shell structures (micelles) or in polymeric bilayer (polymersomes). Thus, the PBMA 

block will influence in the stability, formation and self-assembly of the structure, but will not 

determine the interaction of the DDS with the environment.  

This is the function of the hydrophilic block, for which we selected PSBMA. This type of 

zwitterionic polymer is one of the most widely used zwitterionic polymer (together with 

poly(carboxybetaine methacrylate) (PCBMA) and poly(2-Methacryloyloxyethyl 

phosphorylcholine) (PMPC)), and stands out in terms of pH stability and synthesis 

conditions.  
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In order to synthetize the desired ABCs, first we had to design a polymerization and 

purification route. And, due to the special solubilization properties of ABCs, doing such 

experimental design forced us to resolve two challenges (Figure 2.3a).  

 

Figure 2.3 Synthesis route of Zwitterionic Amphiphilic Block Copolymers. (a) Schematic representation of the 

experimental procedure to produce the polymers, indicating its two main challenges. (b) Schematic 

representation of the two synthesis routes to produce a zwitterionic amphiphilic block copolymer. These routes 

are: (c) synthesis of a zwitterionic polymer via a post-polymerization modification of a precursor block. (d) direct 

polymerization of a zwitterionic block using zwitterionic monomers.  
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The first challenge consisted in solubilizing all the precursors of the polymerization (CTA, 

initiator and monomer) in a common solvent. We solved this problem in the synthesis of the 

first block of the ABC by selecting an initiator and RAFT agent with similar polarity than the 

monomer. But we had to deal with solubility problems when synthetizing the second block. 

One of the precursors was the macro-CTA (the first block), and the other precursor (apart 

from the initiator) was the precursor of the second block. By definition, an ABC contains two 

(or more blocks) with a sharp change of polarity. Therefore, we had to find a solvent in which 

the hydrophobic block and hydrophilic monomer (or vice versa) were soluble. This challenge 

was even harder in the case of zwitterionic ABCs due to their insolubility in the vast majority 

of organic solvents.  

If a common solvent cannot be found, there is the alternative of performing an emulsion 

RAFT polymerization. In this type of the polymerization, an emulsion between two solvents 

(one of the solvents may be the monomer itself) is formed, and the chain growth takes place 

in the interface between the two phases [80,81]. Although this type of polymerization has 

been done successfully many times, it needs very controlled conditions, and only some 

monomers, CTA and initiators can be used. So, we though that this loss of versatility would 

not be desirable for our design and, therefore, we preferred to avoid this type of 

polymerization. Therefore, we needed to achieve polymerization conditions in which all the 

precursors were soluble in the reaction solvent.  

We had to deal with the second challenge in the purification step. In there, we had an 

amphiphilic polymer soluble in a cosolvent (a solvent that can solubilize both blocks). But 

also, there were unreacted monomers of the first block, dead polymeric chains, unreacted 

initiator and other impurities that have to be removed before having the final ABC. 

Precipitation into a non-solvent (a solvent in which the desired specie is not soluble) is 

typically the preferred form of purification because it is a facile and fast process. But, in our 

case, a solvent in which the final ABC was insoluble, but the precursors were soluble had to 

be found. Due to the special solubility properties of zwitterionic ABCs, this step was not 

trivial. Moreover, this process could be affected by the block ratio of the polymer, as it defines 

its hydrophilic/hydrophobic ratio, which has a high influence in the solubility properties of 

the ABC.  



Chapter 2: Synthesis and Characterization of Zwitterionic Amphiphilic Polymers 

24 
 
 

 

Trying to overcome these challenges, we came up with two possible ways to synthetize this 

first zwitterionic ABC (Figure 2.3b). In both pathways, we decided to synthetize first the 

hydrophobic block (PBMA) for then adding the zwitterionic block to produce the final 

copolymer. One of the possibilities (Figure 2.3c) consisted in polymerizing a block from a 

monomer that could be modified after the polymerization to become a zwitterionic block. 

This zwitterionic precursor is N,N-dimethyl(aminoethyl) methacrylate (DMAEMA), and had 

the advantage that, although having some degree of hydrophilicity, is soluble in most of the 

organic solvents, even once polymerized. Then, we would perform the polymerization and 

purification of PBMA-b-DMAEMA and then modify it with the quaternizing agent 1,3-

Propanesultone (1,3-PS), that would create the sulfobetaine. The purification of the unreacted 

1,3-PS would be simple due to the insolubility of the sulfobetaine block in organic solvents. 

The second possible strategy that we evaluated to produce PBMA-b-PSBMA was the direct 

polymerization of SBMA monomer to create the PSBMA block (Figure 2.3d). In there, we 

would polymerize the PBMA macro-CTA and the SBMA monomer in a fluorinated solvent, 

like trifluoroethanol (TFE) or hexafluoroisopropanol (HFIP), that are the only organic solvent 

that can solubilize the zwitterionic blocks. 

The first strategy (polymerization of the precursor and modification) had the drawback of 

a possible incomplete sulfobetainization, resulting in the presence of some free tertiary 

amines in the polymer. In contrast, the second strategy had the problem of the purification 

step, as it was difficult to remove the unreacted SBMA monomers from the sulfobetainized 

polymer. We decided to first explore the strategy consisting in the synthesis of PBMA-b-

PDMAEMA and then the post-polymerization modification to PBMA-b-PSBMA (Figure 2.3c). 

The selection was based in the fact that both PBMA and PDMAEMA are polymers widely 

used in RAFT polymerization. Therefore, we reduced the risk of problems during the 

polymerization, characterization and purification, having then the only critical step of the 

post-polymerization modification. We assumed the possible risk of a non-complete 

modification, knowing that the reaction between the PDMAEMA and 1,3-PS has been 

performed previously in other studies without compromising the antifouling properties of 

the zwitterionic polymers [82,83]. On another hand, performing the direct polymerization of 

PBMA-b-PSBMA (Figure 2.3d) would force us to design a method of purification and 

characterization of the polymer, without having too much information in the literature and, 

therefore, taking more time than the other option.  
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2.2.2. Synthesis of PBMA-b-PSBMA copolymers  

Once decided the polymerization route that we had to do to produce PBMA-b-PSBMA, the 

polymerizations were performed. We started with low molecular weight polymers (30-60 

monomers), easier to handle.  

As shown in Figure 2.3c, the steps to produce the final polymer are: i) RAFT polymerization 

of PBMA, ii) reinitiaton of the RAFT polymerization with DMAEMA to produce PBMA-b-

PDMAEMA and iii) post-polymerization modification of the PDMAEMA block into PSBMA 

block. The characterization of the different polymerization steps was performed by H1-NMR 

(proton nuclear magnetic resonance) analysis (Figure 2.4 shows an example of H1-NMR 

characterization of a polymer comprised of 25 monomers of PBMA and 35 monomers of 

PSBMA). 

Analyzing the PBMA block NMR (Figure 2.4a) we could determine the success in the 

polymerization and purification (absence of the methacrylate signals at 5.5-6.0 ppm). Due to 

the small size of the polymers produced (less than 100 monomers), we could determine the 

polymer length by comparing the signals of the 8 methylene groups of the RAFT agent (at 

1.25 nm; a-methylene and b-methylene of the trithiocarbonate group are not included in this 

signal) with the signal corresponding to the methylene group of the ester bond of each BMA 

moiety (appearing around 4.1-4.2 nm) (Figure 2.4). 

 

Equation 2.1 Determination of the block length of PBMA. 

In the NMR of PBMA-b-DMAEMA (Figure 2.4b) we also saw the absence of the 

methacrylate signals (confirming successful polymerization and purification). We also could 

determine the length of the second block by comparing the signals of the methylene groups 

connected to the ester (Equation 2.2). 
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Figure 2.4 H1- NMR of (a) PBMA (in CdCl3), (b) PBMA-b-PDMAEMA (in CdCl3) and (c) PBMA-b-

PSBMA (in TFA-d). 
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Equation 2.2 Determination of the block length of PDMAEMA. 

Finally, in the analysis of PBMA-b-SBMA (Figure 2.4c) we were not analyzing a 

polymerization step but a derivatization step. We had to use a different solvent (deutered 

TFA) due to the solubilization problems of the zwitterionic amphiphilic polymer (producing 

some shifts in the signals). Although this fact, we could check the success on the 

derivatization of the tertiary amine by the shift of the signals of the two methyls bonded to 

the amine. The singlet on 2.2 ppm in Figure 2.4b disappears in Figure 2.4c, but it appears 

another singlet at 3.5 ppm. This shift corresponds to the quaternization of the amine, 

confirming a successful reaction.   

Aside from the NMR, another fact that indicated the success of the reaction is the 

precipitation of the polymer (that is soluble on THF before of the reaction occurs) during the 

reaction, converting the reaction solution in a gel. 

 length PBMA length PSBMA Ratio PBMA/PSBMA MW (KDa) 

S1 25 35 0.71 13.6 

S2 18 25 0.72 9.8 

S3 18 12 1.5 6.4 

S4 20 21 0.95 9.0 

Table 2.1 PBMA-b-PSBMA polymers synthetized. 

We decided to produce different types of PBMA-b-PSBMA polymers using this procedure 

(summarized in Table 2.1). We selected this polymer structures, in first place, because they 

were short length polymers and, as has been commented, they have an easy polymerization 

and characterization by NMR. Then, we decided to produce polymers with a different 

PBMA/PSBMA ratio and with different Molecular Weight, trying to check if one of the 

conditions had a better performance than the others.  



Chapter 2: Synthesis and Characterization of Zwitterionic Amphiphilic Polymers 

28 
 
 

 

2.2.3. Characterization of the ability of PBMA-b-PSBMA to 

form Amphiphilic Nanoparticles: UCST and Salt 

Responsiveness.  

Once the zwitterionic amphiphilic polymers were produced, we started the optimization of 

the process to produce zwitterionic amphiphilic nanoparticles out of them. There are many 

methods described in the bibliography to produce nanoparticles with ABCs [51], being the 

most common the thin film rehydration and the nanoprecipitation. For both of these 

techniques, the selection of an organic solvent in which the amphiphilic is soluble into is really 

important, and, in the case of PBMA-b-PSBMA, the only organic solvents in which we could 

dissolve them was TFE and HFIP. We tried both techniques, characterizing the results using 

Dynamic Light Scattering (DLS) to know the hydrodynamical size and the polydispersity of 

the nanoparticles produced.  

Although both techniques typically work in most of amphiphilic copolymer systems, we 

could not obtain self-assembled nanoparticles using PBMA-b-PSBMA. These results were 

surprising, as our system was formed by two blocks with a sharper change of polarity than 

most of the ABCs, fact that should induce to the formation of stable self-assembled 

nanoparticles. We found a possible explanation of this phenomenon in the 

Antipolyelectrolyte effect (Figure 2.5).  This effect receives the name from the polyelectrolyte 

effect, an effect for which charged polymers (polyelectrolytes) collapse due to the addition of 

salts (ions) in the system [84]. Polysulfobetaines show the opposite behaviour: in absence of 

a counterion and below a determined temperature (Upper Critical Solution Temperature 

(UCST)), their charges collapse and became insoluble [48,85–87]. This phenomenon only 

occurs in polysulfobetaine homopolymers of more than 50 monomers (our system has less). 

Therefore, the presence of the hydrophobic block affects this phenomenon. At the time this 

thesis is written, this phenomenon has still not been fully characterized  by the scientific 

community [88–90]. 
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Figure 2.5 Antipolyelectrolyte effect in polyzwitterions. 

Although the observed phenomenon would be interesting for future studies, we prioritized 

to continue with our efforts to produce zwitterionic amphiphilic nanoparticles. Thus, we had 

to find a way in which the self-assembly of the zwitterionic ABCs could be possible. We knew 

that temperature and salt concentration had influence on the hydrophilicity of sulfobetaines. 

But if these nanoparticles had to be used for real therapies, the temperature and salt 

conditions should be the ones in the body (around 37 ºC and around 150 mM of salt in the 

blood).  

Working at 37ºC during all the production process would suppose a challenge and would 

difficult the production and storage in a real scenario. Thus, we decided to fix the temperature 

at room temperature and try to determine if the change of salt molarity would affect the self-

assembly of our system. To do so, we chose the conditions 1M NaCl and Phosphate Buffer 

Saline (PBS). The condition of 1M of NaCl, although being much higher than the 

concentration in blood, would be useful to know if we could produce nanoparticles out of a 

certain polymer. And, with the condition of PBS, we would know which nanoparticles were 

stable at the salt concentration of the body.  
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We tried nanoprecipitation and thin film rehydration techniques with the synthetized 

polymers using 1M NaCl and PBS as the aqueous phase. The DLS results showed how the 

samples were not in the nanometre size but, by looking to the samples, we observed a 

significant difference. While in the first case (water) we obtained a non-translucid solution 

with observable aggregates, in the case of 1M NaCl and PBS samples (of some of the 

polymers) we observed how the solution started becoming more translucid with the pass of 

the time, and no aggregates were observed.  Although this solution was not a dispersion of 

nanoparticles (DLS results showed a population higher of 1 µm), this behaviour in the salt 

solutions conduced us to think that our hypothesis was correct and was a difference in the 

hydration of the sulfobetaine block. 

 At this point, we hypothesized that the hydration process of the sulfobetaine block was 

time dependent and, therefore, that more time of hydration was needed in order to obtain the 

nanoparticles. To check if the time was an important variable to produce nanoparticles, we 

directly dispersed polymer powder on NaCl 1M and PBS (with a polymer concentration of 

0.8 mg/ml) and left the solution steering overnight. So, the samples were being hydrated 

during more than 12 h. After this time, the solution presented the same translucid aspect 

(Figure 2.6) than in the case of thin film rehydration.  

 

Figure 2.6 Translucid aspect of SB1.1 polymer (0.8 mg/ml) after 12h of steering in NaCl 1M. 

These results proved that the sulfobetaine nanoparticles did not form spontaneously 

nanoparticles at any of the tested conditions. Therefore, we needed a method in which we 

gave energy to the system to form the nanoparticles. We decided that this method would be 

extrusion process (Figure 2.7). 
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Figure 2.7  Extrusion process to produce nanoparticles.  

The method consists in repeatedly passing the polymer solution through a filter with a 

nanometric pore size that forces it to self-assembly in a nanometre size structure. This is a 

method mostly used to produce liposomes, as it converts big multilamellar phospholipid 

structures in unilammellar liposomes. So, we though that, as liposomes are also amphiphilic 

molecules, it could exist some analogy that could make extrusion a valid method for 

producing our zwitterionic ABC nanoparticles. We used this method with all the polymer 

produced dispersed in solutions of NaCl 1M and PBS, and we observed how, in some 

compositions, we finally could obtain samples with a population of nanoparticles (Table 2.2 

and Figure 2.8). 

DLS results showed the successful production of zwitterionic amphiphilic nanoparticles 

using the extrusion method. They also showed different behaviours of the different polymers 

produced (meaning that the block size had influence in the self-assembly of the polymers).  
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 Solution Hydration Time Size (Mean ± SD) PDI (Mean ± SD) 

S1 

NaCl 1M 
6h 211 ± 2 0.317 ± 0.005 
24h 221 ± 6 0.18 ± 0.04 

PBS 
6h >1000 1.0 
24h 184 ± 3 0.18 ± 0.02 

S2 Nanoparticles could not be obtained in any condition 

S3 
NaCl 1M 

6h >1000 1.0 

24h 212 ± 28 0.25 ± 0.06 

PBS 6h >1000 1.0 
24h 495 ± 56 0.45 ± 0.11 

S4 Nanoparticles could not be obtained in any condition 

Table 2.2 Results of DLS of the samples prepared by extruding the dispersed polymer solutions through a filter 

of 200 µm (n=3). 

 

 

Figure 2.8 Graphical representation of the Table 2.2  data (n=3).  

 

SB1 SB3
0

100

200

300

400

500

600

700

800

900

1000

0.0

0.5

1.0

Si
ze

PBS (6h)

PBS (24h)

NaCl (6h)

NaCl (24h) PdI



Chapter 2: Synthesis and Characterization of Zwitterionic Amphiphilic Polymers 

 
 
 

 

33 

SB1 and SB3 polymers formed nanoparticles, while SB2 and SB4 polymers did not. 

Comparing SB1 and SB2 polymers, we saw that the ratio PBMA/PSBMA was the same. 

Therefore, the polymer length was a factor in the self-assembly of the polymer. But SB3, a 

polymer with lower chain length but a lower PBMA/PSBMA ratio did also form nanoparticles 

(indicating that the ratio hydrophobicity/hydrophilicity was also influencing the process). 

These non-intuitive results indicated that, although in some polymers the addition of salts 

solved the problem, the antipolyelectrolyte effect was not completely avoided in all the 

polymers tested. 

To have more information about the influence of the antipolyelectrolyte effect in the 

produced polymers, we compared the two polymers forming nanoparticles (Figure 2.8). 

There were some differences between SB1 and SB3 polymers depending on the conditions. In 

the case of SB1 polymers, we could clearly see the relation between the salt concentration and 

the hydration time needed. When using 1M NaCl (a highly concentrated salt solution), the 

hydration of the hydrophilic part takes place faster. Therefore, with this concentration we 

could produce nanoparticles with only 6 h of hydration (the time starts at the time that the 

polymer powder is added to the solution). On the other hand, when using PBS (a solution 

with a lower salt concentration, that corresponds to the salinity of the body), we could not 

produce nanoparticles when we extruded the sample after 6 hours of incubation. But, when 

we did the same process after 24 hours of incubation, we obtained nanoparticles with a similar 

diameter than the ones produced with 1M NaCl. Thus, with these results we could conclude 

that the salt concentration played a key role in the hydration kinetics of the sulfobetaine 

polymers. 

The same behaviour was observed for SB3 polymer. In this case, the polymer needed 24 

hours of incubation independently of the salinity of the solution. But the influence of the 

salinity on this polymer was reflected in the size and polydispersity of the samples. While in 

the case of 1M NaCl the size and polydispersity were similar to the ones on SB1 nanoparticles, 

when we dispersed the particles in PBS we obtained a higher size and PDI, indicating a more 

heterogenous and agglomerated population. Therefore, these results suggested that when 

using PBS, the salt concentration is not enough to prevent all SBMA interactions, resulting in 

the formation of aggregates that are still in the nanometre scale.  
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Finally, we tried to deduce the nanoparticle type using these results. As has been 

commented in the introduction of this chapter (Figure 2.1), there are multiple ways in which 

amphiphilic block copolymers can self-assemble. And the different structures have different 

peculiarities and also different behaviours. Therefore, to know the nanoparticle type of our 

polymers was important in order to use them in future applications. As has been also 

commented, the extrusion process is normally used to produce liposomes and, therefore, we 

first thought that the nanoparticles produced would be polymersomes (hollow vesicles). But, 

to confirm this hypothesis, we needed to perform more characterization to obtain more data 

that could support the hypothesis.  

We decided that, to continue characterizing the polymers, we would use SB1 polymer. The 

selection of this polymer over SB3 was done in basis of the formation of nanoparticles in the 

PBS medium. As has been commented, PBS is a medium with approximately the same salinity 

than the blood and, therefore, if the nanoparticles were stable in this solution, the salinity 

would not be a destabilizing factor for the nanoparticles in in vitro and in vivo experiments. 

We can see in Figure 2.8 how, in PBS, the nanoparticles produced by SB3 polymer have a 

bigger size and higher PdI than in NaCl 1M, indicating a relation between the nanoparticle 

morphology and the salt concentration. And, therefore, this could affect its performance in 

future applications.  

The next step in the characterization process was to know the stability of the nanoparticles 

over time. And we used DLS technique to do so. Nanoparticle size and polydispersity were 

analysed in different times after the extrusion process. We obtained positive results out of 

this experiment (Figure 2.9). We saw how nanoparticles were stable up to 89 hours after 

extrusion (no size nor PDI change was observed). Therefore, nanoparticles had the potential 

to be prepared up to 4 days before their final use and still remain in the same conditions than 

they were after the extrusion. 
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Figure 2.9  Stability measurements of SB1 (n=3). 

We then decided to perform a Cryo- Transmission Electron Microscopy (Cryo-TEM) 

analysis of SB1 nanoparticles to have more information about their morphology. As has been 

commented, the nanoparticle size was first characterized by DLS. With this technique, we 

could rapidly and easily analyse a sample with a high count (statistically representative). But 

it has the drawbacks that it cannot detect multiple populations in a same sample and that it 

does not indicate the morphology of the sample. Also, the technique gives a hydrodynamic 

diameter, formed by the nanoparticle and all the water molecules that interact with it. By 

Cryo-TEM, although not being able to analyse a big number of nanoparticle (and, therefore, 

taking the risk of analysing a region of the sample that is not statistically representative), we 

can observe the nanoparticle morphology and, in the case that two or more populations were 

present in a sample, we can observe and differentiate them.  

The first conclusion that we could make after observing the images in  Figure 2.10 was that 

SB1 nanoparticles presented a spherical morphology. We also determined the presence of one 

single population of nanoparticles with a mean size of 110 nm (as shown in the histogram in  

Figure 2.10d, obtained by manually measuring the size of each nanoparticle in the images). 

This size did not match with the nanoparticle size obtained by DLS (184 nm on the solution 
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of PBS, the same solution used to produce the nanoparticles that were characterized with 

Cryo-TEM).  

 

 Figure 2.10 Cryo-TEM images of SB1 nanoparticles and histogram of the size count. Histograms have been 

made by counting 100 nanoparticles. 

The difference between the Cryo-TEM analysis and DLS analysis can be explained by the 

hydration layer. DLS measures the hydrodynamical radius of the nanoparticles (the 

nanoparticle with the water molecules that also moves when the nanoparticle moves). While 

in the Cryo-TEM it is only observed the nanoparticle itself (without the water molecules). We 
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know that PSBMA is a superhydrophilic polymer, forming a big hydration layer. Therefore, 

this decrease of size observed was not considered as a strange phenomenon and we 

considered it normal.   

After analysing the size distribution and the morphology of the nanoparticles, we 

proceeded to try to deduce the nanoparticle type that SB1 polymer formed. But, in this case, 

the analysis was not obvious. First of all, the nanoparticle size indicated that the nanoparticles 

were not simple micelles. The polymer length of the polymer was small and, therefore, a 

micelle of these polymers could not have a size of more than 50 nm. 

As has been previously commented, the production procedure of the nanoparticles could 

indicate that they would be polymersomes. But, normally, when polymersomes are analysed 

by Cryo-TEM it can be observed clearly the polymer bilayer (Figure 2.11). And, when 

observing the images of Cryo-TEM in  Figure 2.10, the bilayer could not be observed in any 

nanoparticle. Moreover, we could observe, especially in  Figure 2.10c, how SB1 nanoparticles 

seemed to fuse to form bigger particles. And membrane fusion it is not a phenomenon 

normally observed in polymer bilayers.  

 

Figure 2.11 Cryo-TEM images of Poly(ethylene glycol)-co-poly(butadiene) polymersomes [91] in which it 

can be clearly observed the polymer bilayer of the polymersomes.  
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We could not validate our hypothesis with the Cryo-TEM images. Therefore, we had to 

think about another nanoparticle type that could explain a nanoparticle size bigger than a 

micelle but a structure that is not a polymersome. The explanation that we found after 

analysing all the data from DLS and Cryo-TEM was that the SB1 polymer self-assembles in 

micelles. But, due to the interactions between sulfobetaine chains, these micelles form 

aggregates bigger 1 µm (so, they cannot be analysed with DLS). After passing these micelles 

aggregates through a nanometre sized filter during the extrusion process, the big aggregates 

break creating nanometre sized aggregates, that are the ones observed in Cryo-TEM and DLS 

(Figure 2.12). These structures would explain the nanoparticle size (they are small micelles 

aggregated forming bigger structures) and also the fusion of the nanoparticles (two 

aggregates can form bigger aggregates due to the interactions of sulfobetaine chains.  

As has been commented in the previous lines, there is not too much literature about the 

behaviour of zwitterionic amphiphilic block copolymers and their behaviour when self-

assembling and forming particles. Therefore, all these phenomena should be studied deepest 

to understand with certainty which type of nanoparticles form and which behaviour these 

polymers have in solution. 

 

Figure 2.12 Our hypothesis about he nanoparticle type of SB1. Before extrusion, we have aggregated micelles 

(due to antipolyelectrolyte effect). After extrusion, these aggregates are broken, forming smaller aggregated 

micelles of nanometer size. 
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Although the analysis of this phenomenon would be interesting to better understand the 

behaviour of antipolyelectrolyte effect, we preferred to follow the objective of focusing in the 

final application (developing a drug delivery system with capability of carry different drugs 

and characterizing its behaviour in vitro and in vivo) rather than put effort in performing a 

full study of the system.  

2.2.4. Overcoming the UCST: Synthesis and characterization of 

PBMA-b-PMESBMA polymers 

With the PBMA-b-PSBMA nanoparticles produced previously, we proved that we could 

produce zwitterionic amphiphilic nanoparticles. But the antipolyelectrolyte effect could 

hinder the effectivity of these nanoparticles in certain applications. To solve this problem, we 

tried to design another zwitterionic ABC that could prevent the effect. Moreover, producing 

nanoparticles without the antipolyelectrolyte effect could also help us in understanding the 

behaviour of the PBMA-b-PSBMA nanoparticles. 

We decided that this second zwitterionic ABC type would have the same hydrophobic 

block (BMA) as it was not the source of the phenomena observed in the PBMA-b-PSBMA. 

Therefore, we had to change the zwitterionic block. We had two options to perform this 

change. The first one consisted in the use of another type of zwitterion (carboxybetaine or 

phosphocholine). And the second one consisted in the use of a sulfobetaine that did not 

present the antipolyelectrolyte effect. We decided to search for another sulfobetaine in order 

to produce a polymer as similar as possible to the one produced previously. Thus, we needed 

to find the sulfobetaine type that prevents the antipolyelectrolyte effect.  

For this search, we used a work from Laschewsky an coworkers [85] in which they studied 

the influence of the sulfobetaine type and the polymer length in the UCST of sulfobetaine 

homopolymers (Figure 2.13). They synthetized 8 sulfobetaine monomers and analysed the 

influence of polymer type and length in the UCST. Of all the sulfobetaines tested, 2, 3, 4 and 

6 presented low UCSTs.  
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Figure 2.13 Study of Laschewsky and coworkers on the UCST of different sulfobetaine homopolymers [85]. 

We decided to use Poly(sulfobetainized 2-morpholinoethyl methacrylate) (MESBMA) to 

produce our polymers. This decision was taken for two reasons: i) it was the only 

commercially available monomer and ii) the voluminous group pendant to the amine was a 

morpholino group with an oxygen, while in the other cases were hydrophobic groups. And 

we considered that a big hydrophobic group could affect the self-assembly of the resultant 

polymer. Thus, Poly(butyl methacrylate)-b-poly(sulfobetainized 2-morpholinoethyl 

methacrylate) (PBMA-PMESBMA) was the next zwitterionic ABC candidate.  

We expected that, with the change on the quaternary amine pendant group, the opposite 

charges of the sulfobetaine group would not collapse due to steric impedance Figure 2.14. 

Without this collapse, the sulfobetaine group would not loss its hydrophilicity and would not 

need the addition of salts to the system to interact with the water molecules. And all these 

facts should result in an ABC with improved tendency to form spontaneously self-assembled 

nanoparticles with a zwitterionic corona, the main objective of this Chapter.  

To synthetize the PBMA-b-PMESBMA we decided to follow the same strategy used for the 

synthesis of PBMA-b-PSBMA (showed in Figure 2.3). We first would synthetize the PBMA 

block for then synthetize the 2-morpholinoethyl methacrylate block (precursor of the 

sulfobetaine); and finally, we would add 1,3-propanesultone to the polymer to form the 

quaternary amine and the sulfonic acid. As commented above, the risk of this strategy is the 

possible incomplete derivatization of all the amines present in the polymers. And this risk 

was higher with this polymer as the 2-morpholinoethyl methacrylate amine is less accessible 
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for the 1,3-propanesultone and, therefore, the reaction takes place with slower kinetics and 

requires more energy. 

 

Figure 2.14  Introduction of a voluminous pendant group in the quaternary amine in order to avoid collapse.  

The synthesis of the polymer was done without any complication, and the characterization 

of the polymer was performed using again H1-NMR. In Figure 2.15 there is an example of the 

H1-NMR of the different steps in the PBMA-b-PMESBMA polymer synthesis. In there we 

checked that the synthesis of the MESBMA block was performed and that the length of the 

blocks was the one expected (in the case of the PBMA step, this fact was confirmed in the 

synthesis of PBMA-b-PSBMA).  

We observed how the signals of the hydrophilic block did not appear in this H1-NMR (there 

is only one signal around 4.1-4.3 ppm). This signal corresponds to the methylene group next 

to the ester and, therefore is not affected by the quaternization reaction.  

The conditions of the modification reaction were not aggressive enough to cleave an ester 

bond, thus the possible explanation that we found of this phenomenon was that, when 

dissolved in CdCl3, the polymer only exposes the hydrophobic groups to the solvent and, 

therefore, the signals corresponding to the hydrophilic groups are not showed in the spectra.  
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Figure 2.15 H1- NMR of (a) PBMA (in CdCl3), (b) PBMA-b-PMEMA (in CdCl3) and (c) PBMA-b-

PMESBMA (in CdCl3). 



Chapter 2: Synthesis and Characterization of Zwitterionic Amphiphilic Polymers 

 
 
 

 

43 

This hypothesis would also explain why, at lower ppm (0-2 ppm; corresponding to the 

hydrophobic parts of the polymer), the signals are almost identical in both spectra, while at 

higher ppm (2.2-5 ppm) the intensity of all signals decrease (except the signal corresponding 

to the methylene of the ester group of PBMA). All these H1-NMR problems were expected for 

zwitterionic ABCs, as they sharp change of polarity in the same polymer structure makes 

almost impossible to solubilize both blocks in one solvent. Therefore, the appearance of these 

problems confirmed the quaternization of the amines from PMEMA, as only a zwitterionic 

ABC could explain these solubilization problems.In the same H1-NMR, we also observed 

signals at 3.75 and 2.5 ppm. These signals could indicate that some of the PMEMA amines 

were not modified; but, due to the above-mentioned problems of this H1-NMR, this fact could 

not be characterized nor quantified. Although that there could be some of these non-

quaternized amines in the polymer, their percentage would be low (there is a big decrease in 

the intensity of these signals between Figure 2.15b and Figure 2.15c). Moreover, the 

morpholino group is basic (the pKa of the conjugated acid is 4.9 [92]) and would remain in a 

deprotonated form at physiological pH, fact that would not compromise the antifouling 

properties of the polymer. 

Following this synthesis route and characterization procedure, we developed 4 different 

PBMA-b-PMESBMA polymers with different length and block ratio (Table 2.3). The first 

polymer (M1) was selected in order to compare its behaviour with the polymer S1, 

characterized previously. And, with the polymers M2, M3 and M4 we wanted to study if the 

hydrophobic/hydrophilic ratio and the length of the hydrophilic ratio had an influence in the 

behaviour of the nanoparticle.  

 length PBMA length PMESBMA PBMA/PMESBMA Mw (KDa) 

M1 25 35 0.71 14.7 

M2 40 10 4.00 8.8 

M3 40 20 2.00 12.0 

M4 70 20 3.50 16.2 

Table 2.3 PBMA-b-PMESBMA polymers synthetized. 

To explore this self-assembly, we started using the same protocol that worked in the case 

of PBMA-b-PSBMA. We dispersed the polymer directly in MiliQ water (these polymers 
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should avoid the antipolyelectrolyte effect) and stirred overnight in order to promote the 

hydration of the sulfobetaine. We observed different behaviors depending on the polymer. In 

the case of polymer M1, the solution was almost translucid with small little white particles in 

suspension. In the case of polymers M2 and M3, the solution was completely translucid and, 

finally, in the case of M4 polymer, big aggregates could be observed in the solution, that was 

not translucid. These results indicated that we had success in overcoming the problems with 

the antipolyelectrolyte effect by adding the morpholino group. M2 and M3 samples could 

self-assemble without further processes, while M1 polymer, had a partial self-assembly, as 

some polymer aggregates could be observed in the solution. Finally, M4 polymer block ratio 

did not allow the formation of nanoparticles, possibly due to an excessive hydrophobic part 

that could not be solubilized by the zwitterionic one.  

To get more information, we proceeded to perform DLS analysis of the samples (Table 2.4). 

To be able to analyze M1 nanoparticles, we decided to remove the aggregates by 2 strategies. 

In the first one, we centrifuged the sample to remove these aggregates. And, in the second 

one, we performed the extrusion process (just like we did in PBMA-b-PSBMA polymers) to 

break these aggregates and form more nanoparticles. We can observe in Table 2.4 that we 

obtained nanoparticles using both procedures. By these two procedures we could know that, 

in first place, the major part of the polymer can self-assemble spontaneously forming 

nanoparticles and, if some energy is given to the process (extrusion), these small aggregates 

can break and form nanoparticles.  

 Preparation Size (Mean ± SD) PDI (Mean ± SD) 

M1 
Centrifugation 63 ± 6 0.295 ± 0.045 

Extrusion 88 ± 1 0.181 ± 0.005 

M2 Direct Dissolution 52 ± 1 0.216 ± 0.004 

M3 Direct Dissolution 96 ± 1 0.384 ± 0.006 

M4 Did not form nanoparticles 

Table 2.4 Results of DLS of the samples prepared by different methods (n=3). Centrifugation of M1 sample 

was performed at 6000 g and extrusion was performed with a pore size of 100 µm. 
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Analyzing M1 samples we could also determine that extrusion process generate slightly 

bigger nanoparticles with a lower PDI. This lower PDI can be explained by the 

homogenization of the population by the extrusion process. And the change in size can be 

explained by the appearance of new particles with a similar size than the pore size, increasing 

the mean size of the population. M2 and M3 polymers formed nanoparticles with different 

size and PDI. M2 nanoparticles were smaller and with a lower PDI, while M3 nanoparticles 

had a slightly bigger size and a higher PDI. The difference between both polymers was the 

length of the zwitterionic part (M2 had 10 monomers and M3 had 20). Therefore, we 

considered normal that M3 nanoparticles were bigger. With M4 polymer it was impossible to 

obtain nanoparticles by any method, indicating that the polymer composition was not 

favorable for the self-assembly.  

When preparing the different samples, we also realized that there was another important 

difference between the PBMA-b-PMESBMA samples and the PBMA-b-PSBMA samples. This 

difference consisted in the maximum polymer concentration. When we prepared samples of 

PBMA-b-PSBMA polymers, the maximum polymer concentration that allowed extrusion was 

1 mg/ml. But, when using PBMA-b-PMESBMA polymers, this concentration could be raised 

to 20 mg/ml. This 20-fold increase can be explained also by the antipolyelectrolyte effect, as 

the interaction between the polymers increase with the polymer concentration. PBMA-b-

PMESBMA samples do not show this effect and, consequently, they do not aggregate when 

the concentration increase. This difference is also important for future applications, in which 

concentrated samples may be needed in order to increase the effectivity of the DDS.  

Continuing with the characterization of this set of polymers, we analyzed the Z-potential 

of the nanoparticles. This parameter gives information about the surface charge of the 

nanoparticles in the sample. In PBMA-b-PSBMA samples we could not analyze this parameter 

due to the presence of salts in the sample (the method is incompatible with a high 

concentration of salts). But with PBMA-b-PMESBMA we did not need to use salts to produce 

nanoparticles and, therefore, we could analyze them. Z-potential results (Figure 2.16) showed 

similar behavior for all three samples. The Z-potential values were influenced by the pH, 

showing positive Z-potential at acidic pH, slightly negative Z-potential at neutral pH and a 

negative Z-potential at basic pH. This type of behavior is common in all Z-potential analysis 

[93,94] due to the interaction of the protons and hydroxides with the nanoparticle surface. 
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Finally, the neutral Z-potential at neutral pHs indicated the zwitterionic surface of the 

nanoparticles [95,96] 

 
Figure 2.16 Z-Potential of the different PBMA-b-PMESBMA nanoparticles (n=3). 

Finally, we finished our characterization of PBMA-b-PMESBMA nanoparticles with the 

analysis by Cryo-TEM (Figure 2.17). The results for M1 and M2 polymers were just like we 

expected. We observed a uniform population of nanoparticles with around 20 nm of 

diameter. Again, as happened with PBMA-b-PSBMA nanoparticles, these sizes were different 

from the ones obtained with DLS technique (due to the hydration layer). Therefore, with this 

technique we could have the certainty that these systems were micelles. 

On the other hand, M3 samples (Figure 2.17) presented an unexpected morphology. They 

presented a structure of interconnected tubular polymeric structures with some spherical 

particles on it. This structure did not match with the macroscopical aspect of the sample, as it 

should be a gel and it was a solution. Therefore, we assumed that during the sample 

preparation (cooling) the sample suffered a transformation and self-assembled in these 

structures. Although they were unexpected, having such structures could be useful in 

different applications and, therefore, it would be interesting to characterize this behavior in 

future works.  
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Figure 2.17 Cryo-TEM analysis of the three PBMA-b-PMESBMA samples. Histograms have been done by 

counting 100 nanoparticles.  

After the characterization of PBMA-b-PMESBMA polymers, they showed the capability to 

self-assemble in micelles at a high concentration (up to 20 mg/ml) regardless of salt 

concentration. These properties, together with their zwitterionic surface, converted them in 

attractive polymers to be used in different applications.  

2.2.5. Synthesis and Characterization of PBMA-b-PCBMA 

polymers 

Although PBMA-b-PMESBMA nanoparticles showed to be stable zwitterionic 

nanoparticles that could be further used, we decided to produce another type of zwitterionic 

ABCs by changing the zwitterionic type to carboxybetaine. This zwitterionic type, in contrast 

with sulfobetaines, contain a carboxylic acid instead of a sulfonic acid, changing some 

properties. This type of zwitterions are described as the ones with lower protein absorption 

[29,42,95], they do not present UCST and they are pH sensitive (carboxylic acid can be 
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protonated).  Moreover, the presence of the carboxylic group of the carboxybetaine allows the 

postpolymerization modification in order to add more functionality to the polymer. 

To synthetize this polymer, we followed the same method than the one used for 

sulfobetaines. We first synthetized the PBMA block, then the PDMAEMA block and, finally, 

we quaternized the amine with acrylic acid obtaining the quaternary amine and the 

carboxylic group (Figure 2.18). Acrylic acid was used to quaternize the amine because it is an 

accessible and easy to work reactant that is suitable for the nucleophilic attack of the amine 

(the presence of the acid in beta of the alkene increases the electrophilic behaviour of the 

alkene, allowing the reaction). 

 

Figure 2.18 Synthesis of PBMA-b-PCBMA polymers. 

And, as we did in the previous synthesis, we checked the different steps using H1-NMR 

analysis (Figure 2.19).  

The synthesis of PBMA-b-PDMAEMA had been previously done to produce PBMA-b-

PSBMA. Then, we only had to analyze the modification of the PDMAEMA block into 

PCBMA. The H1-NMR in Figure 2.19c presents the same problems previously observed for 

PBMA-b-PMESBMA: some signals corresponding to protons in the zwitterionic block do not 

appear or appear with less intensity (this behavior is, itself, a prove that the reaction has been 

produced). As has been commented, this phenomenon can be explained by the low affinity 

that the hydrophilic block has with the CdCl3 solvent and that may produce this decrease in 

the intensity of its signals. Even so, the appearance of the signal at 3.2 ppm (methyls in the 

quaternary amine) proves that the modification had been successful.  
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Figure 2.19 H1-NMR spectra of (a) PBMA (in CdCl3), (b) PBMA-b-PDMAEMA (in CdCl3) and (c) 

PBMA-b-PCBMA (in CdCl3), the different steps in the synthesis of PBMA-b-PCBMA. 
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Traces of unreacted acrylic acid (5.5-6.5 ppm) were also detected in in Figure 2.19c. Their 

presence was produced by the inability to completely eliminate the unreacted acrylic acid 

due to the complex that it forms with the betaine moiety. We decided to accept these 

impurities as they were not abundant.  

We produced 2 PBMA-b-PCBMA polymers (C1 and C2) in which we decided to maintain a 

common hydrophilic block of 20 monomers and change the hydrophobic block length (the 

hydrophobic block length has importance in the loading of hydrophobic molecules, aspect 

that will be addressed in chapter 2) (Table 2.5). These two polymers had the same block ratio 

than the PBMA-b-PMESBMA M3 and M4 (showed in Table 2.3), fact that allowed us to 

compare the influence of the zwitterionic block on the self-assembly (M3 could do 

nanoparticles, but M4 did not).  

 length PBMA length PMESBMA PBMA/PMESBMA Mw (KDa) 

C1 40 20 2 10.1 

C2 70 20 3.50 14.2 

Table 2.5 PBMA-b-PCBMA synthetized. 

When dissolving these two polymers in pure water for 24 hours, we observed how both 

polymer dispersions became completely transparent without any aggregate. We also were 

able, in the case of C1, increase the polymer concentration up to 20 mg/ml without the 

appearance of aggregates (in the case of C2, the maximum concentration was 10 mg/ml).  This 

behavior confirmed that carboxybetaines do not present UCST and, therefore, the self-

assembly of the amphiphilic polymer takes place without any problem.  

Polymer Preparation Size (Mean ± SD) PDI (Mean ± SD) 

C1 Direct Dissolution 46 ±1 0.227 ± 0.005 

C2 Direct Dissolution 97 ± 1 0.266 ± 0.007 

Table 2.6 Hydrodynamic Size of PBMA-b-PCBMA nanoparticles (n=3). 

We analyzed both samples in the DLS, obtaining the results showed in Table 2.6. The results 

obtained were similar to the ones obtained for PBMA-b-PMESBMA nanoparticles. Both C1 
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and C2 nanoparticles presented a hydrodynamical size suggesting a micelle structure. 

Therefore, we could conclude that, when we used a zwitterionic block without UCST 

behavior in an ABC, the polymer self-assembled in a structure of micelle.   

 

Figure 2.20 Z-Potential of PBMA-b-PCBMA nanoparticles (n=3). 

Finally, to end the characterization of the PBMA-b-PCBMA polymers, we performed a Z-

potential analysis of the samples (Figure 2.20). The results were similar to the ones in PBMA-

b-PMESBMA nanoparticles with a difference in the acidic pH. The PCBMA pH sensitivity 

produces that, above certain pHs, the carboxylic acid from the carboxybetaine protonates. 

This protonation produces that the carboxylic group losses its charge and the carboxybetaine 

becomes positive (it only contains the charge of the quaternary ammonium). This pH-

sensitivity of the PCBMA can be a drawback for some applications but can also be useful in 

other applications. Positively charged particles are characterized by a high cell 

internalization, as well as for good levels of DNA entrapment. Therefore, PBMA-b-PCBMA 

offers possibilities that are not possible with the sulfobetaine copolymers produced before.   

After this characterization of PBMA-b-PCBMA, we decided that we had enough versatility 

in the chemical structure of the zwitterionic amphiphilic polymers to adapt to the 

requirements of future applications. Therefore, we proceeded to start the optimization and 
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characterization of these nanoparticles for different applications in which their properties 

were demanded 

2.3. Concluding Remarks 

In this Chapter, we have developed different zwitterionic amphiphilic block copolymers 

with the intention to create drug delivery systems with antifouling surfaces. In first place, we 

have proved that RAFT polymerization followed by a post-polymerization modification is an 

effective method to produce zwitterionic amphiphilic block copolymers. Then, we have 

demonstrated the capacity of these polymers to self-assemble in stable nanoparticles, 

accomplishing the first objective of this thesis. This self-assembly can be modulated by 

changing the polymer length as well as the hydrophilic/hydrophobic ratio and zwitterionic 

polymer.  

By producing different families of polymers, we have generated ABCs with different 

properties. PBMA-b-PSBMA polymers have shown to be sensible at changes in salinity due 

to the inner interactions of their charges, fact that can compromise their future applications. 

To overcome this problem, we have generated another sulfobetaine ABC containing a 

morpholino group connected to the amine (PBMA-b-PMESBMA). These polymers have 

shown their ability to self-assemble in stable micelles in low salinity solutions. Finally, we 

have produced carboxybetaine ABCs (PBMA-b-PCBMA) that also formed stable micelles. The 

carboxybetaine moiety convert these nanoparticles into pH-sensible (their surface change 

from zwitterionic to cationic at low pHs) and also offers different possibilities of post-

polymerization modification to the systems.  

Overall, the work done in this Chapter has resulted in a catalog of different zwitterionic 

ABCs that have the ability to form nanoparticles with a zwitterionic surface but with different 

self-assembly and surface properties. Therefore, they will offer a versatile solution for the 

development of antifouling and non-immunogenic drug delivery systems, that will be 

important to achieve the different objectives set in the next Chapter.  



 
 
 

 

 

 

 

 

 

 

 

 

Chapter 3: Application of Zwitterionic 

Amphiphilic Block Copolymers 

 

 

 

 

 
Part of this chapter has been published in: 

A.Biosca*,P.Cabanach*, M. Abdulkarim, M. Gumbleton, C.Gómez-Canela, M. Ramírez, I. 
Bouzón-Arnáiz, Y. Avalos-Padilla, S. Borrós, X. Fernàndez-Busquets “Zwitterionic self-

assembled nanoparticles as carriers for Plasmodium targeting in malaria oral treatment” 
Journal of Controlled Release (2021),331,364-375. 



 
 
 

 



 
 
 

 

55 

Chapter 3: Applications of Zwitterionic 

Amphiphilic Block Copolymers 

3.1. Introduction  

In the previous Chapter, we developed different families of zwitterionic amphiphilic block 

copolymers that showed capacity to form different type of stable nanoparticles with a 

zwitterionic surface. This zwitterionic surface is interesting for its superhydrophilicity, that 

is translated in outstanding antifouling properties [32,40–42]. With these properties, the 

zwitterionic nanoparticles had potential to be used to solve different problems that are 

currently limiting the application of drug delivery systems in the clinics.  

The first of these problems, consist in the fast clearance of nanoparticles from the body. 

When injected in the blood, most of the drug delivery systems are detected by immune cells 

as a threat through the detection of protein opsonization [9,97–99]. These cells remove the 

nanoparticles from the circulation and accumulate them in the spleen, the liver, lymphatic 

nodes and the lungs, in where they are removed from the body [98]. Moreover, the adaptative 

immune system (responsible of the immune memory) generate specific antibodies and 

trained T-cells that specifically recognize the detected material. These antibodies and cells 

remain in the body for certain time, and generate a faster response to the material if it is 

administrated again [97]. This immune response to nanoparticles hinders their clinical 

application, drastically reducing its efficacy. Antifouling materials, such as zwitterionic 

polymers, have arisen as a possible solution to reduce the immune clearance by avoiding the 

absorption of proteins around the nanoparticles [100]. Therefore, in this chapter we have 

explored the capacity of the zwitterionic nanoparticles produced to avoid the protein 

opsonization and, consequently, increase the efficacy of current drug delivery systems, as has 

been stated in previous chapters. 

The second problem of drug delivery systems in which we evaluated the zwitterionic 

nanoparticles was their oral drug delivery capacity.  This is an important topic for the 

effectivity of any therapy, as oral delivery is the preferred route of drug administration. But 

many therapeutic molecules (and DDS) in the market are not suitable to be taken orally. 

Furthermore, in the recent years, the development of poorly-water-soluble molecules with 
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low bioavailability but with high potential is emerging [101]. These molecules often have 

problems of solubility, poor stability in the gastrointestinal tract (GIT) or bad permeation 

through the intestinal epithelium and have to be injected to improve their bioavailability 

[102]. This type of administration increases the effectiveness of the drug, but at the same time 

it supposes a decrease in the life quality of the patient and can lead to a disease 

mismanagement, especially in chronic patients (such as diabetic patients) [103]. For these 

reasons, the development of oral drug delivery systems would be a breakthrough in the field. 

However, the drug delivery field is struggling in developing nanomaterials that can permeate 

through the mucosa and gastrointestinal epithelium [104]. 

When a drug delivery system or a therapeutic reaches the GIT, it faces the mucosal 

membrane, one of the natural barriers that has our body. Mucosal membranes are the 

mechanism that have our body to protect from hazardous external agents. It is composed by 

mucosal epithelium cells that excrete mucus. Mucus is a viscoelastic material composed 

majorly by mucin, long flexible peptide chains densely coated with short glycans, most of 

which containing a negative charge (carboxyl or sulfate groups). These glycosylated and 

highly hydrophilic regions are separated by non-coated relatively hydrophobic regions of the 

protein that fold into somewhat hydrophobic globules or “beads”, that are stabilized by 

multiple internal disulfide bonds [105]. These long peptide chains assemble in a matrix 

optimized to allow the exchange of nutrients, water, gases, odorants, hormones, and gametes 

while preventing the pass of pathogens and other external agents, including most 

nanoparticles.  Size and chemical nature are the two main aspects that determine if a particle 

can pass through the mucus. It has been demonstrated that small particles can diffuse over 

the mucin matrix, but large particles do not [105]. In the case of the chemical nature, negative 

surfaces will be repelled by the negatively charged groups of the mucin, while positive and 

hydrophobic surfaces will stick to the negative charges and the hydrophobic domains 

respectively and will diffuse depending on their size. If their diffusion rate is not higher 

enough, the mucus will be shed before they reach the bloodstream (Figure 3.1). 

Therefore, to be able cross this barrier, particles have to avoid the repulsion by the mucus 

but, at the same time, prevent being strongly attached to it. Antifouling polymers have been 

highlighted as a possible solution to this important problem. As has been commented, their 
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surface is normally neutral and hydrophilic. Therefore, they do not interact neither with the 

negative charged mucin nor with the hydrophobic beads.  

 

Figure 3.1 Role of nanoparticle's surface chemistry in the interaction with the mucus. 

PEGylation of nanoparticles is the current procedure to design oral drug delivery systems 

(as the current “gold standard” antifouling surfaces) [106–108]. But, despite they improve the 

nanoparticle diffusion in mucus, current oral drug delivery systems don’t achieve good levels 

of absorption and biodisponibility [109]. Thus, new materials need to be found in order to 

increase these absorption values and achiever and efficient oral drug delivery system [110]. 

Olmsted et al. (2001) [111] and Saltzman et al. (1994) [112] respectively discovered how 

Norwalk virus with a size of 38 nm and human papilloma virus (HPV) with a size of 55nm 

diffused in human mucus as rapidly as they do in water. These viruses have a surface with 

positive and negative charges separated with an average of 0.5 nm. Moreover, these type of 

neutral surfaces are also present in hydrophilic proteins, such as Bovin Serum Albumin or 

antibodies, that can also diffuse through the mucus [112].  The opposite charges placed so 

close will neither be repelled nor attracted to the negatively charged glycan domains of 

mucins; and, also, prevent the interaction to the hydrophobic regions.  
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Zwitterionic surfaces mimic these hydrophilic surfaces from biomolecules, offering a 

bioinspired strategy to create oral drug delivery systems. Recent work by Cao et al. [113] 

(published during the writing of this thesis) shows the success of zwitterionic micelles in 

crossing both the mucus and the epithelium tissue. Moreover, they proved their efficacy in 

vivo using insulin loaded zwitterionic micelles to treat diabetic mice. Thus, the nanoparticles 

produced in this thesis have potential to become efficient oral drug delivery systems. 

Furthermore, their structural versatility can be an advantage in order to be adaptable to 

different therapies that require an oral administration.  

Finally, the last challenge that we addressed with the zwitterionic amphiphilic copolymers 

developed in Chapter 1 was the solubilization of hydrophobic drugs. As above-mentioned, a 

big number of hydrophobic molecules have been discovered to have promising therapeutic 

uses. But their solubility problems hinder their potential, preventing them to reach the market 

or diminishing their effectivity [101]. This problem has motivated scientists to create drug 

delivery systems with the capability solubilize them, increasing their biodisponibility [114–

117]. Block copolymer micelles are one of the best alternatives to solubilize these drugs due 

to their core-shell structure that mimics surfactants [55,116–118]. When an hydrophobic drug 

is added to a solution of a amphiphilic block copolymer, it will be encapsulated in the core of 

the micelles due to the hydrophobic effect [119]. This effect describes how systems try to 

reduce the contact between hydrophobic surfaces with water molecules, promoting the 

encapsulation of the hydrophobic molecule inside of the hydrophobic core of the nanoparticle 

(this effect is also the responsible of the self-assembly of ABCs).  

This capacity of micelles to solubilize hydrophobic drugs have motivated many scientists 

to develop different micelle systems. Efforts have been putted in optimizing micelles in order 

to increase its performance in vivo. And, of all of micelle properties, those affecting the 

distribution in the body and the drug loading have been the two that have generated more 

interest [118]. The distribution of a micelle in the body depends on two factors. In first place, 

the circulation time that the system can be in the blood without being cleared. And then, if 

the micelle has targeting properties that direct them to some tissue. Otherwise, the drug 

loading of a micelle depends on its self-assembly and the change of polarity between the 

hydrophobic and hydrophilic part.  
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The zwitterionic amphiphilic block copolymers synthetized in Chapter 2 had potential in 

both aspects. As has been broadly commented previously, the zwitterionic surface gives them 

stealth properties for long circulation time. And the polymer structure also converts these 

micelles in candidates for having good drug loading values. The superhydrophilicity of the 

zwitterionic part contrasts with the hydrophobicity of the PBMA block. And this sharp 

change of polarity promotes a strong self-assembly that, at the same time, should allow a high 

drug payload inside the micelles without destabilizing them.  

Overall, in this Chapter we explored the possibilities that the zwitterionic amphiphilic 

copolymers synthetized offer to solve these three big barriers that prevent the efficacy of the 

vast majority of drug delivery systems. Then, we optimized their design and drug loading to 

provide a long-circulating, oral administrated drug delivery system for malaria and cancer 

treatment, two of the current most devastating diseases that require of optimized systems to 

improve their current treatment.  
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3.2. Results and Discussion 

3.2.1. Characterization of the interaction between BSA and 

zwitterionic nanoparticles 

Antifouling behaviour was the first property of the zwitterionic nanoparticles that we 

characterized. As has been broadly commented, preventing the absorption and 

denaturalization of the proteins in the nanoparticle surface is a key fact to avoid immune 

response. 

We used albumin as a protein model, as it is the most abundant protein in the blood and 

one of the most important proteins of the protein corona.  Moreover, it has been recently 

discovered that its denaturation in the surface of the nanoparticles results in an increase of 

the immune response and, therefore, in the reduction of residence time in nanoparticles [120]. 

And we characterized the interaction between this protein and the zwitterionic nanoparticles 

using Differential Scanning Calorimetry (DSC). This is a technique widely used in our group 

to determine the interaction between proteins and nanoparticles. It can determine the thermal 

Transition midpoint (Tm) between different states of the protein (the temperature in which a 

protein change its state). Therefore, by using this technique, we could determine if there is a 

change in the states of the protein due to the presence of nanoparticles [121].  

We decided to use PBMA-b-PCBMA as the zwitterionic polymer model to perform this 

analysis. But we also needed a polymer without antifouling properties in order to see if there 

was a difference with the antifouling zwitterionic one. For this reason, we synthetized 

poly(butyl methacrylate)-b-poly(quaternized dimethyl aminoethyl methacrylate) (PBMA-b-

PQDMAEMA). This polymer was selected because it comes from the same precursor (PBMA-

PDMAEMA) than the zwitterionic polymers, but it has a cationic charge instead of a 

zwitterionic one.  
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Figure 3.2 DSC thermograms used to characterize the interaction between nanoparticles and BSA. (A,B) 

Thermograms of BSA,  polymer (C1 in A and QD in B) and polymer + BSA. (C,D) Deconvolution of the 

polymer +BSA peak. (E,F) Comparison between the BSA peak and the deconvoluted BSA peak from the polymer 

+ BSA sample. 



Chapter 3: Applications of Zwitterionic Amphiphilic Block Copolymers 

62 
 
 

 

The results of the DSC analysis are shown in Figure 3.2. We used the different thermograms 

obtained to compare if there was a shift in the BSA peak when it was in contact with the 

different nanoparticles. A change in the peak of the BSA would suppose a change in their 

conformational states, indicating some sort of interaction between the nanoparticle and the 

protein.  

In Figure 3.2A and Figure 3.2B there are represented the thermograms of a BSA sample, a 

polymer sample and a sample in which polymer and BSA were incubated for 1 hour. In the 

case of Figure 3.2A, we could observe how the native BSA had a Tm around 70 ºC 

(corresponding to the denaturation of the protein) while the C1 nanoparticles had a Tm 

around 76 ºC that corresponds to the change in the self-assembly of the nanoparticles. Then, 

in the case of the C1:BSA sample we saw how the peak had not a normal distribution (due to 

the presence of two species with different Tm). On the other hand, in Figure 3.2B we saw that 

the QDMAEMA nanoparticles had a Tm around 80, and that QD:BSA sample presented also 

a peak without normal distribution.  

To continue the analysis, we took the peaks of the polymer:BSA samples and deconvoluted 

them with the Multiple peak fit function of Origin® software. These results are showed in 

Figure 3.2C and Figure 3.2D. In the case of the polymer C1, we saw how this deconvolution 

gave two peaks, that we assigned to the BSA and the nanoparticles. For the polymer QD, we 

also obtained two peaks, but this time with different integrals. We assigned the bigger peak 

to the BSA and the small one to the nanoparticles.  

With the data obtained from the deconvolution, we could compare the Tm of BSA when it 

was in a native state and when it was in contact with the zwitterionic and cationic 

nanoparticles (Table 3.1). These results clearly indicated that while the BSA in contact with 

the zwitterionic nanoparticles presented almost the same Tm than in the native state (70.8 ºC 

vs 71.2 ºC), the BSA in contact with the cationic nanoparticles suffered a change in the Tm 

(70.8 ºC vs 77.6 ºC). This change in the Tm indicates a change in the conformation of the BSA 

when it is in contact with the cationic nanoparticles, possibly due to a partial denaturalization 

and absorption on the nanoparticle surface. 
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Samples Tm  

BSA (native) 70.8 ºC 

BSA (ZW surface) 71.2 ºC 

BSA (positive surface) 77.6 ºC 

Table 3.1 Tm of BSA in a native form and in contact with the two nanoparticles tested (with zwitterionic and 

cationic surface). 

These results indicated the inert effect of zwitterionic surfaces towards a the BSA protein 

model, produced by the strong hydration of such surfaces that avoid the interaction with the 

biomolecules present in the media. Although more experiments with different proteins 

would be needed to have a big picture of the protein corona around the zwitterionic 

nanoparticle, these results indicated that the most common protein in the plasma did not 

interact with the zwitterionic nanoparticles. These results were in line with the results 

published about this issue in the bibliography and were also complemented by the work 

presented in the next chapter. Therefore, these results were used to prove that the self-

assembly of the zwitterionic ABC resulted in zwitterionic nanoparticles with a zwitterionic 

surface. And that this zwitterionic surface presented antifouling properties.  

3.2.2. Internalization of the zwitterionic nanoparticles in a 

gastrointestinal epithelium model 

We continued the characterization of the nanoparticles by analysing their capacity to cross 

the gastrointestinal barrier. As has been previously commented, achieving an oral drug 

delivery system is a complicated task due to the double barrier consisting in the mucus and 

the epithelium layer. Although diffusing over the mucus has been the aspect that has 

generated more scientific interest, crossing through the epithelia is just as important. If 

nanoparticles diffuse over mucus but cannot cross the epithelia, they will be removed from 

the body and will not reach the bloodstream. For example, PEG has exhibited some diffusion 

over the mucus, but it has low internalization into the cells, compromising its performance in 

oral drug delivery systems [110].  
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We started testing the internalization of the nanoparticles into gastrointestinal epithelium 

cells. But to be to perform this analysis, we needed a way to track the polymer inside the cells. 

We decided to introduce a fluorescent molecule in the structure of our polymer using the 

trithiocarbonate end group that they had from the RAFT Agent. This trithiocarbonate group 

can be cleaved by a nucleophile attack from an amine giving a reactive free thiol. Then, this 

thiol can be modified through the different options that the thiol chemistry offers [122]. Thus, 

we cleaved the trithiocarbonate with cyclohexylamine and used a Cy3-maleimide (the 

maleimide group effectively reacts with the free thiols by the thiol-ene reaction) to attach this 

fluorophore to our polymer Figure 3.3). 

 

Figure 3.3 Trithiocarbonate aminolysis used to include the Cy3 fluorophore molecule to the polymers 

produced. 

Once we had marked the polymer, we characterized the internalization of the different 

zwitterionic nanoparticles into gastrointestinal epithelial cells. We used Caco-2 cells to 

perform this analysis, as they are a well described cell line broadly used as a gastrointestinal 

barrier model [123]. The different marked zwitterionic nanoparticles were incubated during 

6 hours with Caco-2 cells. After this time, the medium of the cells was changed and the 

fluorescence of the samples was analysed with fluorescence microscopy. Therefore, we could 

observe the fluorescence of the nanoparticles that internalized into the cells (while the non-

internalized nanoparticles were removed with the change of media).  

We observed a successful internalization of all the different nanoparticles into Caco-2 cell 

model (Figure 3.4). These results were important because, in first place, they showed the 

success of nanoparticles to cross the Caco-2 cell membrane and indicated potential to pass-
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through the gastrointestinal cell barrier. And they also showed that the internalization 

occurred with the three type of zwitterionic nanoparticles, indicating that this phenomenon 

took place due to the surface charge of the nanoparticles and not due to the surface type.  

 

Figure 3.4 Fluorescence microscopy images of Caco-2 cells incubated 6 hours with the different zwitterionic 

nanoparticles (488/532 laser line.)  

The internalization of the zwitterionic nanoparticles into Caco-2 cells was an important 

milestone to achieve our goal. A big number of mucus penetrating materials fail in crossing 

the gastrointestinal epithelium (PEG, for example [110]). Therefore, proving that zwitterionic 

polymers can internalize in Caco-2 cells shows their capability to cross this barrier. This 

capability of zwitterionic materials to internalize into Caco-2 cells have been recently 

investigated by Cao et al. [113] in a work where they showed that this internalization is due 

to the similarity of zwitterionic surfaces with betaine (an important zwitterionic osmolyte 

found in many foods). Then, the bioinspired design of zwitterionic polymers is a key fact in 

their capability to cross the gastrointestinal barrier.  
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3.2.3. Capacity of zwitterionic nanoparticles to pass through 

the mucus 

Once proved that the nanoparticles could enter into the epithelium cells, we characterized 

their capacity to penetrate through the mucus in order to prove their potential to become an 

oral drug delivery system. To do so, we performed a Multiple Particle Tracking (MPT) of the 

different samples (we performed these experiments in collaboration with Prof. Gumbleton 

group in Cardiff University). 

The MPT technique is used in multiple fields due to its ability to track fluorescent particles 

in different biofluids [124]. In our case, we tracked the marked zwitterionic particles in mucus 

in order to know their diffusion in this fluid (directly related with the interactions between 

the mucus mesh and the nanoparticles).  

We again analysed the 3 zwitterionic nanoparticles with different zwitterionic surfaces 

(sulfobetaine, sulfobetainized morpholinoethyl and carboxybetaine) in order to know if there 

were differences in the performance of the nanoparticles depending on the zwitterionic type 

(Figure 3.5 and Table 3.2) 

In Figure 3.5a there are represented diffusion distribution for the different polymers. In 

there, we observed how SB1 nanoparticles were the nanoparticles that presented a higher 

diffusion over the mucus, followed by M1 nanoparticles and finally by C1 nanoparticles. S1 

and M1 nanoparticles had similar diffusion distribution (slightly higher diffusion for S1) 

while C1 nanoparticles clearly showed less diffusion. It is also interesting the difference 

between the 10th percentile of the C1 and the rest of percentiles was bigger than for M1 and 

S1 polymers (meaning a higher degree of heterogenicity).  This difference in the diffusion is 

clearly shown in Figure 3.5b, in which we represented the mean diffusion of the three 

polymers depending on their size. This representation was important because size can have 

a role in the diffusion of the nanoparticles through the mucus (as the mucus is a mesh). We 

determined that the size was not the main factor affecting the diffusivity of the nanoparticles, 

as C1 and M1 nanoparticles showed a different size and the diffusion of M1 was 2-fold times 

the diffusion of C1. In this graph we could also clearly see the difference of diffusivity 

between the sulfobetaine and carboxybetaine zwitterionic types of nanoparticles.  
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Figure 3.5 MPT analysis of the different zwitterionic nanoparticles in mucus. (A) Heterogenicity of the 

nanoparticle movement (n=360). The percentile shows the Deff value below which a percentage of the Deff 

observations may be found. (B) Deff of the particles depending on their size. (C) Ensemble-averaged geometric 

mean squared displacement (MSD) as a function of time scale for the different zwitterionic nanoparticles.  

 
Nanoparticle 
size (nm) 

D0 water 
(cm2 x S-1 x 10-9) 

<Deff> (mucus) 
(cm2 x S-1 x 10-9) 

% Ratio 
Muc/W 

C1 46 83.4 0.026 0.0314% 

M1 63 59.8 0.093 0.1553 % 

S1 184 22.9 0.121 0.529 % 

Table 3.2 Data from the MPT analysis. 
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Finally, in Figure 3.5c it is represented the ensemble average Mean Square Displacement 

(MSD) of the different nanoparticles. With this graph we could get an idea about the 

penetration of the nanoparticles into the mucus mesh and the interaction with it. We observed 

a change in the slope of the MSD at t » 0.1 s. This change of slope can be attributed to the 

interaction of the nanoparticles with the mucus mesh. But although this interaction, the slope 

of the MSD at t > 0.1 s is still positive, indicating that the nanoparticles diffuse through the 

mucus and do not strongly attach to it.  

The Caco-2 internalization experiment together with the MPT analysis showed that the 

zwitterionic nanoparticles produced could cross both of the barriers to achieve an oral 

administration. While in the case of internalization into Caco-2 cells all nanoparticle types 

succeeded, sulfobetaine nanoparticles outperformed carboxybetaine nanoparticles in the 

diffusion over the mucus. Therefore, sulfobetaine nanoparticles proved to be the best 

candidates for oral administration.  

3.2.4. Curcumin encapsulation for antimalarial applications 

At this point of the thesis, we had characterized the antifouling properties of the 

zwitterionic nanoparticles and their capacity to pass through the gastrointestinal tract barrier. 

They had been proved to be a promising strategy for both of these big drug delivery 

challenges. Therefore, the incorporation of therapeutic molecules into them was the next 

necessary step. To become a drug delivery system, our nanoparticles had to be able to load 

drugs inside them. And as has been explained in the introduction of this chapter, we 

considered that hydrophobic drugs were the type of drugs that more fitted in our system. 

In this scenario, we decided to characterize the capacity of the zwitterionic nanoparticles to 

encapsulate the hydrophobic drug curcumin and become an antimalarial drug delivery 

system. Malaria is the most devastating parasitic disease of all humankind history. It is caused 

by a protozoan parasite of the genus Plasmodium and is transmitted by female mosquitos of 

the genus Anopheles. Nowadays, its impact is concentrated in the sub-saharian regions, 

representing an important health and economic burden for the developing of these 

underdeveloped countries [125–127]. Although in the last decades there have been many 

efforts to eradicate the disease that have resulted in the reduction of its impact (mainly 

through chemotherapy and insecticide-treated nets) [128], the appearance of drug-resistant 
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strains is a big roadblock for the eradication of the disease [129]. Therefore, new forms of 

chemotherapy are necessary to achieve this objective [130].The possibility of using curcumin 

against malaria would give a new tool, especially for the most affected zones, to fight this 

disease.  Curcumin is a polyphenolic compound that has been used as a food colorant since 

ancient times in Asia and Africa (i.e., it is a component of the curry). But in the last century 

this molecule has also generated interest for its potential therapeutic applications. It has been 

proved to be antioxidant, anti-inflammatory, anticarcinogenic and, also, antimalarial [131–

137]. Although these properties, the use of curcumin in clinics is limited due to bioavailability 

problems. Its oral absorption is poor and, if injected in blood, it is rapidly cleaned from the 

circulation [138]. Thus, multiple curcumin drug delivery strategies  have been proposed in 

the recent years [133,139–142].Following this line, we though that our zwitterionic polymeric 

nanoparticles were interesting to encapsulate this hydrophobic drug due to their potential to 

be a long-circulating system and also the possibility to administrate them orally.  

This second property is of vital importance for a successful anti-malarial treatment in the 

most affected zones. These zones are mainly underdeveloped and lack of a proper logistic 

system. And the difference of logistics needed between oral and intravenously administration 

make the first option more prone to have a success in the medication campaign than the 

second one. Curcumin is a hydrophobic drug and, therefore, its encapsulation into 

amphiphilic nanoparticles in entropically favourable (due to the hydrophobic effect). The 

encapsulation of hydrophobic drugs into amphiphilic nanoparticles is entropically 

favourable, due to the hydrophobic effect. Therefore, when added curcumin to the system, 

the system itself should tend to incorporate the curcumin into the core of the nanoparticles.  

With this hypothesis, we produced curcumin loaded nanoparticles by following the same 

procedure used in the production of non-loaded nanoparticles but adding a curcumin 

solution in DMSO at a certain moment of the process. In the case of PBMA-b-PSBMA 

nanoparticles in which an extrusion process is needed to form the nanoparticles, curcumin 

was added after the overnight stirring, followed by 30 minutes of incubation and extrusion. 

In the case of PBMA-b-PMESBMA and PBMA-b-PCBMA, curcumin was added directly after 

the overnight stirring. We observed clear differences between the curcumin samples and the 

curcumin-loaded nanoparticles (Figure 3.6).  
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Figure 3.6 Curcumin encapsulation in the different zwitterionic nanoparticles. 

When we added curcumin (dissolved in DMSO) to a water solution, a yellow precipitate 

appeared, proving the low solubility of curcumin in water. On the other hand, when we 

added curcumin to a solution containing the zwitterionic amphiphilic copolymers, we 

observed a complete dissolution of the curcumin, without forming any type of precipitate.  

In order to determine the maximum amount of curcumin that we could load in our 

nanoparticles, we gradually increased the curcumin added until a non-transparent solution 

was obtained (meaning that there was unencapsulated curcumin). The results of maximum 

curcumin concentration are showed in  Table 3.3.  

With these results, we first confirmed the capacity of our nanoparticles to encapsulate a 

hydrophobic drug. Moreover, the curcumin concentrations and the drug loading efficiency 

that the zwitterionic nanoparticles showed (specially the PBMA-b-PMESBMA and PBMA-b-

PCBMA polymers) had a similar efficiency or even outperformed the different curcumin 

nanoformulations [143]. Therefore, the prediction done at the start of this thesis was correct 

(the sharp change of polarity of the polymers enhances the encapsulation of the 

nanoparticles). 
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PBMA-

ZW block 
[Polymer] 
(mg/ml) 

[Curcumin] 
(mg/ml) 

Solubility 
increase [144] 

Drug loading 
(w C / w Total) 

S1 25-35 0.6  0.04  20-fold 6.3 % 

M1 25-35 10.0  1.5  750-fold 13.0 % 

M2 40-10 10.0  3.0  1500-fold 23.1 % 

M3 40-20 10.0  3.0  1500-fold 23.1 % 

C1 40-20 10.0  4.0  2000-fold 28.6 % 

C2 70-20 10.0  5.0  2500-fold 33.3 % 

 Table 3.3 Data of the curcumin encapsulation in the different zwitterionic nanoparticles produced. (native 

curcumin solubility in PBS is taken from [144]). 

These results also showed that polymers with a higher proportion of hydrophobicity had 

better drug loading (M2, M3, C1 and C2 polymers). In the case of S1 polymer we supposed 

that the UCST problems that this polymer presented, and that limited the maximum polymer 

concentration, hindered the encapsulation of curcumin in the hydrophobic parts, resulting in 

a limited encapsulation. 

After proving the encapsulation of curcumin in the nanoparticles, we characterized the size 

of these nanoparticles to see if there was a difference between the empty nanoparticles and 

the curcumin-loaded ones. We performed DLS analysis of the different curcumin-loaded 

nanoparticles (Figure 3.7A) and we obtained similar size results than the ones of empty 

nanoparticles.  We also performed Cryo-TEM images of S1, M1 and M3 nanoparticles (Figure 

3.7B, Figure 3.7C and Figure 3.7D). In these images, we saw some interesting phenomena. In 

first place, in S1 polymer we could see the presence of two populations. One of 200 nm 

approximately (in the Cryo-TEM images of empty nanoparticles, the size of the particles was 

around 100 nm (Figure 2.10)) and another smaller population around 50 nm). This 

phenomenon is interesting, as it seems to show the formation of small micelles but also bigger 

aggregates (further characterization on the interaction of an hydrophobic molecule in the 

UCST of these polymers would be interesting). In the case of M1 polymer, there was not 

change between the empty and loaded nanoparticles (as the polymer directly formed micelles 

without a hydrophobic drug).  
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Figure 3.7 Encapsulation of Curcumin. (A) DLS measured size of curcumin-loaded NPs compared to Empty 

NPs (n=3). (B,C,D) Cryo-TEM images of curcumin-loaded S1 (B), M1 (C) and M2 (D) polymers. 

Finally, in M3 nanoparticles we observed a complete change of morphology. While in the 

empty nanoparticles (Figure 2.17) we observed nanotubular structures, in the curcumin-

loaded the structure was spherical. We could also observe the interaction between these 

nanoparticles, as there were multiple particles with fused membranes in the images. This 

change of morphology produced by curcumin could be explained by the enhancement of the 

micellar self-assembly produced by hydrophobic molecules. By the hydrophobic effect, the 

hydrophobic molecule tends to move to the most hydrophobic environment (where the 

contact with water is minimum). And when interacting with the hydrophobic segments of 

the polymer, it can change its conformation. As has been commented in the previous chapter, 
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this behavior is interesting for further investigation (but in the case of this thesis, we preferred 

to continue with our main objective rather than focusing at this part).  

3.2.5. Antimalarial characterization of curcumin-loaded 

zwitterionic nanoparticles 

At this point, we had proved that our zwitterionic nanoparticles could encapsulate a 

hydrophobic drug model (curcumin) with high levels of drug loading and achieving 

concentrations up to 5 mg/ml. This encapsulation values were enough to start characterizing 

the effect that these nanoparticles had in malaria models. We collaborated with the 

Nanomalaria group from the IBEC/ISGlobal (directed by Dr. Xavier Fernàndez-Busquets) to 

perform the characterization of the curcumin-loaded nanoparticles in malaria models.  

We first tried to evaluate the capacity of our sulfobetaine nanoparticles to interact with P. 

falciparum parasitized red blood cells (pRBC). To perform this evaluation, we used the 

previously produced Cy3-labeled sulfobetaine polymers (S1 and M1) and we added them to 

a culture of infected blood in which the DNA of the P. falciparum was labeled with Hoescht 

33342 (RBC do not have DNA, so they are not labeled). Then, we analyzed the samples using 

flow cytometry (Figure 3.8) and confocal microscopy (Figure 3.9). For flow cytometry assay, 

samples were analyzed directly (without washing) and after a washing in cell culture media. 

The results of this analysis were promising, as we observed accumulation of the nanoparticles 

in the intraerythrocytic form of the plasmodium falciparum while there was not observed any 

accumulation in the non-infected RBC (<0.8 %). We observed a slightly better performance of 

the M1 polymer compared to the S1 polymer, especially after the washing (74.8% over 41.2%). 

While the percentage of the pRBC containing M1 nanoparticles do not change with the 

washing, in the S1 polymer there is a decrease of 36.7 % of pRBC with nanoparticles. This 

decrease could be derived from the washing of loosely bound nanoparticles. 

Complementary to the flow cytometry assay, we decided to perform confocal microscopy 

to have a more visual idea of the interaction of the zwitterionic nanoparticles and the pRBC 

(Figure 3.9).  
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Figure 3.8 Flow citometry analysis of the interaction between Cy3-labeled zwitterionic nanoparticles and 

pRBC (which DNA was labeled with Hoescht). 
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Figure 3.9 Confocal Microscopy of the samples containing pRBC and Cy3-labeled zwitterionic nanoparticles. 

(A) Images of the different microscopy lines for 2 positions of each polymer. (B) time-lapse of S1 polymer. 
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In Figure 3.9A there are showed the different excitation lines (and the merge of the different 

lines) for a same image (2 images for M1 and 2 images for S1). In there, we could see the total 

colocalization of polymer signals with the parasite signal for both polymers. This fact is really 

interesting, because even in the pRBCs, the polymer is only found inside the parasite and not 

in the cytosol of the pRBC. The polymers used had not any active targeting to the parasite. 

Thus, to explain the accumulation of the nanoparticles in the parasite we hypothesized that 

the nanoparticles could diffuse over the erythrocyte and parasite membranes freely but, once 

they enter in the parasite, they interacted with it and loss their ability to diffuse again.  

Another interesting fact that we observed in these images was that the polymer could enter 

in all the stages of the parasite, even in the ring stages (typically the most inaccessible stage 

of the parasite life-circle). By entering to the different stages of the parasite, the zwitterionic 

nanoparticles became more interesting for the malaria treatment, as they had the potential to 

deliver drug to all the parasites of a patient and, therefore, they could eliminate a big number 

of pRBCs. 

In Figure 3.9B it is showed a time-lapse experiment that we performed to know how the 

system evolved when nanoparticles were added to it. In there, we saw that in few minutes 

(10 minutes) the polymer started concentrating in the parasite, reaching a maximum signal at 

40 minutes. Then, the signal started to decrease (possibly due to the degradation of the 

fluorophore by the parasite metabolism). With these results we confirmed the affinity that 

our polymers had for the parasite. We also could know that the internalization occurred in 

few minutes, fact that could be important in a in vivo experiment (if the particles can 

accumulate fast into the parasite, the circulation time would not be a critical factor).  

Once proved the excellent performance of the zwitterionic nanoparticles when placed in 

contact with pRBCs, we characterized by flow cytometry the performance of the curcumin-

loaded nanoparticles (Figure 3.10). 
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 Figure 3.10 Cytometry assay of the curcumin-loaded zwitterionic particles in contact with pRBCs. 

Curcumin-loaded nanoparticles presented an improved internalization into the pRBCs 

compared with the empty nanoparticles. This improvement could be explained by the 

stabilization of the nanoparticle for the curcumin load, that leads to a better performance. We 

also observed the same tendency than observed in the previous experiment. While the 

internalization of M1 nanoparticles was not heavily affected by the washing step, the S1 

nanoparticles suffered an important reduction of the internalization after this step.  

These results showed that the addition of curcumin into the nanoparticles did not only not 

reduce the internalization of the nanoparticles but slightly increase it. Thus, we were ready 

to characterize the antimalarial activity of these nanoparticles. This evaluation was performed 

by adding different amounts of curcumin-loaded nanoparticles (and curcumin as a control) 

and observing the decrease in the pRBC population of the samples (Figure 3.11). 
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Figure 3.11 P. falciparum Growth Inhibition Assay (GIA) of curcumin-loaded zwitterionic polymers.  

The results of the Growth Inhibition Assay (GIA) showed a similar behavior of the 

curcumin loaded nanoparticles versus curcumin free drug. Although there was not an 

improvement in the antimalarial effect of curcumin, neither was a decrease. The antimalarial 

activity of curcumin has been vastly proved, and to have this activity has to enter into the 

parasite. Thus, the limited current use of curcumin as antimalarial is not limited by its 

capacity to enter into the parasite but for its low solubility, low bioavailability and fast 

metabolization. These results showed that the curcumin-loaded nanoparticles did not loss the 

antimalarial activity while being inside a polymeric nanoparticle. And the loading of 

curcumin in the nanoparticles increase dramatically its solubility (as shown in Table 3.3) and 

should also increase its bioavailability while decreasing its metabolization.  

For all these reasons, the results obtained from the GIA were also promising. Thus, the next 

steps for testing the antimalarial activity was to try their performance in vivo. But before, we 

had to determine the possible toxicity of the samples. 

To determine the possible toxic effects of the zwitterionic nanoparticles in vivo, we 

performed two type of analysis. In first place, we injected the different concentrations of the 

polymers to mice and monitored its weight over days (Figure 3.12). The body weight loss is 

one of the most obvious symptoms of a toxic treatment. Thus, if this phenomenon was 

observed would have indicated that the nanoparticles were toxic.  
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Figure 3.12 Body weight change of mice injected with different sulfobetaine nanoparticles. (n=4)  

The results showed that even at high concentrations of polymer (1 mg/ml) there was not 

any decrease in the body weight of the mice. Therefore, we did not observe any toxicity in 

this experiment. We also checked the hemolysis produced for the polymers. In this case, fresh 

harvested mice blood was added to the polymer solutions to see if there was a lysis in the 

RBC. We did not observe any toxic effect of any nanoparticle at any concentration (Figure 

3.13). Even the higher concentrations of M1 polymer (10mg/ml) and S1 polymer (1 mg/ml) 

did not produce any level of hemolysis. With these two results, we knew that the toxicity 

levels of our sulfobetaine nanoparticles were low and, therefore, that they could be used in 

vivo to test their antimalarial effect.  

After the in vitro characterization, we knew that the different zwitterionic nanoparticles 

could encapsulate curcumin with high efficiency, drastically increasing its solubility in 

aqueous media. Moreover, we proved that these nanoparticles not only could enter to the 

infected RBC but that there was occurring some sort of passive targeting inside the parasites. 

And finally, we proved that the antimalarial efficacy of curcumin-loaded nanoparticles was 

not reduced in comparation to free curcumin. 
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Figure 3.13 Hemolysis test for the different sulfobetaine polymers (n=3). 

These exceptional results of the zwitterionic nanoparticles encouraged us to evaluate if the 

use of curcumin-loaded nanoparticles could improve enough the bioavailability of curcumin 

(when administrated orally) to become a viable strategy for an antimalarial treatment.   

To do this evaluation, we performed an in vivo with P. yoelii-infected mice. Infected mice 

were orally administered free curcumin and curcumin-loaded M1 nanoparticles at a 

curcumin dose of 100 mg/Kg. We used only M1 nanoparticles due to their capability to 

encapsulate higher quantities of curcumin. It is also important to remark that in the case of 

curcumin, it is administrated as a suspension (due to its low solubility in water). The results 

of the in vivo (Figure 3.14)  did not show an improvement of the survival of infected mice with 

the curcumin-loaded nanoparticles. The blood curcumin concentration achieved was not 

enough to kill the parasites in the mouse blood and improve its survival. These results could 

be explained by different factors: (i) a low permeation of the nanoparticles trough the mucus 

and epithelial barrier, (ii) the loss of the curcumin payload and the rapid metabolization of it 

or (ii) the elimination of the nanoparticles of the body before they could reach the infected 

erythrocytes. 
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Figure 3.14  Survival of the different groups of P. yoelii-infected mice after the administration of curcumin 

(n=4). 

The results of the in vivo did not show an improvement of the survival of infected mice with 

the curcumin-loaded nanoparticles. The blood curcumin concentration achieved was not 

enough to kill the parasites in the mouse blood and improve its survival. These results could 

be explained by different factors: (i) a low permeation of the nanoparticles trough the mucus 

and epithelial barrier, (ii) the loss of the curcumin payload and the rapid metabolization of it 

or (ii) the elimination of the nanoparticles of the body before they could reach the infected 

erythrocytes. 

Then, to obtain more information about the capability of the nanoparticles to be 

administrated orally, we performed another in vivo in which, instead of evaluating the 

survival of infected mice, we used marked nanoparticles and tracked them inside the blood 

of infected mice using confocal microscopy (Figure 3.15) 
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Figure 3.15  Confocal fluorescence microscopy analysis of the presence of orally administered Cy3-PBMA-

MESBMA in pRBCs of a P. yoelii-infected mouse. After blood removal at the indicated times, Plasmodium 

nuclei were stained with Hoechst 33342 before proceeding to microscopic observation. The negative control was 

a blood sample taken just before polymer administration. DIC: differential interference contrast. Scale bar: 10 

µm. 

In the confocal images we observed the appearance of fluorescence corresponding to 

PBMA-PMESBMA 1 hour after the oral administration. Moreover, these nanoparticles 

accumulated in the infected erythrocytes, as we also observed in the in vitro experiments. 

These results indicated that the nanoparticles could cross the mucus and epithelial barrier 

and reach the bloodstream. Then, the results in Figure 3.14 (in which there was not observed 

any increase in the survival of the infected mice when treated with curcumin-loaded 

nanoparticles) are not consequence of a bad permeation of the nanoparticles in the 

gastrointestinal barrier but due to the insufficient amount of curcumin that reaches the 

malaria parasites. This problem can be addressed in the future by changing the antimalarial 
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drug to another with more toxicity towards the parasite (curcumin IC50 for Plasmodium is 5-

20µM [145]) or by increasing the drug dosage. Overall, zwitterionic nanoparticles have been 

proved to have potential to serve for a future oral therapy against malaria, as they can reach 

the bloodstream and accumulate in the parasites after being orally administrated.  

3.2.6. Zwitterionic nanoparticles against cancer 

The results of encapsulation of curcumin in zwitterionic nanoparticles motivated us to 

research for other hydrophobic molecules that had therapeutic interest for other diseases. In 

this search we came up with paclitaxel (PTX), one of the most used molecules to fight cancer.  

Paclitaxel is a hydrophobic drug (with a solubility around 1 µg/ml) approved by the FDA 

for the treatment of ovarian, breast and lung cancer as well as Kaposi’s sarcoma, and it is also 

used off-label for gastroesophageal, endometrial, cervical, prostate, and head and neck 

cancers, in addition to sarcoma, lymphoma, and leukaemia. It was discovered in 1971 [146] 

during a program of the National Cancer Institute to find possible anticancer candidates and 

got the scientific community attention due to its impressive antitumoral activity [147,148].  

And was after the success of its chemical synthesis in 1994 [149–151] and its FDA approval in 

1993, that the paclitaxel use grew exponentially, creating a 1.5$ billion dollar market in 2000. 

Although its proven efficacy, it faces problems in the clinics due to its insolubility. 

Excipients have to be used in order to improve its solubility. Currently, the use of 

Cremophore EL to solubilize paclitaxel (having only 1% paclitaxel) is the standard for its 

clinical use (Taxol®), with some associated drawbacks such as side effects or bad 

pharmacokinetics [152,153].  

Recently, a formulation that uses albumin to solubilize paclitaxel (Abraxane®) has 

improved the solubility of paclitaxel to reach a 10% drug content [154]. But there is still a 

considerable room for improvement. Achieving systems in which paclitaxel can be 

solubilized, protected from the immune system removal and directed to the cancer therapy 

has been a big goal for the nanomedicine field [155]. Thus, trying to encapsulate PTX in the 

zwitterionic nanoparticles could fit all the previously commented demands.  
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To encapsulate PTX, we used the same procedure that the one used with curcumin. 

Paclitaxel was dissolved in DMSO and added to the nanoparticle solution, that spontaneously 

encapsulate the hydrophobic drug due to the hydrophobic effect.  

 
Hydrophobic- 

ZW block 
[PTX]  

(mg/ml) 
Increase respect 

native PTX  
Drug loading  

(w PTX / w Total)* 

M1 25-35 1.0  1000-fold 9.1 % 

M2 40-10 2.0  2000-fold 16.6 % 

M3 40-20 2.0  2000-fold 16.6 % 

C1 40-20 2.0  2000-fold 16.6 % 

C2 70-20 3.0  3000-fold 23.1 % 

Table 3.4 Encapsulation of PTX in the different zwitterionic nanoparticles (*[Polymer] =10 mg/ml). 

The encapsulation of PTX into the zwitterionic nanoparticles was slightly smaller than in 

the case of curcumin (Table 3.4), possibly to the lower water solubility of paclitaxel. But the 

results were also promising. The encapsulation levels of paclitaxel were up to 23.1 % w/w, 

outperforming the currently used systems. These encapsulation results also proved the 

versatility of our nanoparticles, that were able to encapsulate different hydrophobic drugs 

with similar efficiencies.   

Once proved the encapsulation of the PTX inside the zwitterionic nanoparticles, we tested 

if the encapsulated PTX had the same antitumoral activity than the free drug.  Incucyte® Live-

Cell Analysis platform was used to evaluate the antitumoral activity of PBMA-b-PMESBMA 

polymer. With this platform, we analysed the cell death using the cell morphology (the cells 

change from an elongated morphology to a round morphology when they die), with the 

advantage of being able of monitoring it in a live mode. We used HeLa cell line as a cancer 

cell model, and we monitored its growth when the different PTX formulation were added.  
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Figure 3.16 Characterization of the antitumoral activity of PTX-loaded zwitterionic nanoparticles using 

Incucyte® Live cell analysis. (A) Monitoring of the morphology change of the cells. (B) Example of images taken 

by Incucyte® at different times of the treatment with PTX. (C) Comparation of PTX-loaded nanoparticles with 

free PTX. (D) Toxicity of polymers.  

When we compared the antitumoral effect of the PTX-loaded nanoparticles with the free 

PTX (Figure 3.16C), we saw a slight decrease in the activity. While PTX at a concentration of 

2 mM completely flattened the growth curve, PTX-loaded NPs at a PTX concentration of 2.34 

nM did not completely stop the cell growth. It was needed a PTX concentration of 5.85 nM to 
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achieve this complete inhibition. This small change in the antitumoral activity can be 

produced by many factors, such a progressive or non-complete release of the drug. But as it 

did not change dramatically the activity (less than 1 order of magnitude) we did not 

considered it as a major concern.  

We also used the Incucyte® technology to know the effect of the polymer concentration in 

the growth of the cells (Figure 3.16D). We saw that polymer did not have any effect in the 

growth of cells up to 1 µg/ml (higher concentrations than the ones used in the previous 

experiment). Therefore, we determined that the antitumoral activity observed in the PTX-

loaded NPs was completely produced by the drug and not by the polymer.   

We also characterized the antitumoral effect of the PTX-loaded PBMA-b-PCBMA 

nanoparticles using the MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) method. HeLa cells were incubated with the PTX-loaded nanoparticles and the 

mitochondrial activity was measured using MTT. These results were similar to the ones 

obtained using Incucyte® and PBMA-b-PMESBMA nanoparticles. The antitumoral activity of 

PTX was slightly lower when encapsulated, especially if the samples were not washed. In the 

case of the samples washed (the media is changed at 4h after the addition of the drug), the 

results were almost identical. This difference between washed and non-washed samples 

could be produced by difference in the kinetics of internalization and release of the drug in 

its free state or encapsulated in the zwitterionic nanoparticles.  

Both experiments (Incucyte® and MTT) confirmed that PTX could be encapsulated into the 

zwitterionic nanoparticles without compromising its efficacy in vitro. These results, together 

with the experiments done with curcumin, indicated that the nanoparticles produced during 

this thesis were suitable for encapsulating hydrophobic molecules and dramatically increase 

its solubility while not affecting its efficacy. In the case of PTX and cancer, the high solubility 

of PTX achieved using these nanoparticles outperforms the currently used technologies. 

Moreover, the stealth effect of these nanoparticles should also improve its pharmacokinetics 

in vivo. 
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Figure 3.17 MTT of HeLa cells treated with PTX-loaded NPs 

To further improve the efficacy of the nanoparticles developed, we decided to include an 

active targeting to the PBMA-b-CBMA nanoparticles. One of the advantages of CBMA 

zwitterionic polymer is its capacity to be modified in an easy way (it contains a carboxylic 

group that can be modified through an EDC/NHS coupling to produce an amide with any 

free amine) (Figure 3.18A). This modification does not need organic solvents or extreme 

conditions. Therefore, the modification can be done directly to the nanoparticle in mild 

conditions.  

Introducing targeting moieties in the zwitterionic nanoparticles was interesting for various 

reasons. In first place, due to the antifouling properties of the zwitterionic surface, any 

targeting molecule introduced should have improved performance than if used in fouling 

surfaces. By avoiding the absorption of proteins, the zwitterionic surface allows the total 

exposure of the targeting moieties, increasing its detection by the targeted biomolecule [156].  

Moreover, including active targeting to the zwitterionic nanoparticles would be interesting 

due to their long circulation lifetime. The antifouling properties of the zwitterionic surface 

prevents its rapid clearance, increasing the time that the nanoparticles are ‘operative’. 
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Therefore, if the nanoparticles include a targeting, it will have more time to interact with the 

target, increasing its effectivity if compared with other nanoparticle types.  

We modified the C1 nanoparticles with a targeting peptide widely used in our group (S12 

peptide) that has been proved to increase the accumulation of nanoparticles in glioblastoma 

models.   

We coupled the peptide in our nanoparticle by using a terminal cysteine, that was modified 

with N-(2-aminoethyl)maleimide to introduce a free amine that then was bonded to the 

carboxybetaine carboxylic acid through EDC/NHS coupling. Then we tested the 

internalization of the nanoparticles in the glioblastoma human cell model U87 (Figure 3.18B). 

We used Coumarin-6 ((C-6) a hydrophobic fluorophore) and Cy3 modified polymer to be 

able to track the drug-payload and the polymer. 

 We observed that the non-modified polymer could internalize inside the U87 cells, slightly 

increasing the drug concentration compared to the free drug. But, when the nanoparticles 

were modified, the internalization was even higher as can be observed in the Coumarin-6 and 

Cy3 lines. In the bright field images, we also observed that the cells treated with S12 modified 

NPs had a different morphology than the ones treated with C-6 and un-modified 

nanoparticles. This change of the morphology, consisting in the appearance of vesicles 

around the cells, could be induced by the S12 peptide and be the responsible of the higher 

internalization of the modified nanoparticles.  

With these results we knew that the unmodified nanoparticles have the ability to internalize 

in this hard-to-penetrate cell line. And that if these nanoparticles are modified, their 

internalization ratio increases, proving the effectiveness of the modification of the polymer 

and the targeting efficiency of the S12 peptide. Therefore, we had proved that the zwitterionic 

PBMA-b-PCBMA nanoparticles are suitable for the inclusion of targeting moieties in an easy 

process. This property can be useful in multiple applications, increasing the potential of this 

type of nanoparticles for the use in drug delivery therapies.  
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Figure 3.18 Targetting of C1 nanoparticles. (A) introduction of the targetting moiety by NHS/EDC coupling 

of the carboxilic group from the carboxybetaine. (B) Evaluation of the targetting capacity of the modified NPs 

using U87 cell line. 
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3.3. Concluding Remarks  

In this chapter we have evaluated and optimized the zwitterionic polymers previously 

synthetized to convert them drug delivery systems with the potential overcome some of the 

current roadblocks of the field. First, we have proved the antifouling surface of the 

zwitterionic amphiphilic nanoparticles using BSA as a protein model. These antifouling 

properties suggest a “stealth” and anti-immunogenic behaviour in future in vitro and in vivo 

applications (as will be shown in the next chapter), one of the objectives set in this thesis. We 

have also proved the capability of the zwitterionic nanoparticles to internalize in epithelial 

gastrointestinal cell model and show levels of diffusion in mucus comparable to the current 

“state of the art” oral drug delivery systems, another of the objectives of this chapter.  

Finally, to prove their potential for the use in different treatments, we have encapsulated 

curcumin and paclitaxel with high efficiency, outperforming the current formulations for the 

use of these drugs. The curcumin-loaded nanoparticles have been tested in malaria in vitro 

models, showing a passive targeting to infected erythrocytes that results in antimalarial 

activity. The in vivo experiments have shown polymers in the mice blood after oral 

administration, proving the capacity of the polymers to pass through the gastrointestinal 

barrier. Although there has not been an increase in the survival of infected mice, these results 

suggest that, with more optimization, it is possible to obtain an efficient oral drug delivery 

system for malaria treatment. Paclitaxel-loaded nanoparticles have shown anticancer activity 

in cancer cell model, and the successful modification of the nanoparticle surface to introduce 

targeting moieties have been also proved.  

On balance, after the work performed on this chapter (and Chapter I), we have 

accomplished the objective to create different zwitterionic drug delivery systems based in 

zwitterionic amphiphilic block copolymers. The superhydrophilic character of zwitterionic 

polymers allow the encapsulation of hydrophobic drugs with high encapsulation efficiency, 

while providing the necessary antifouling and “stealth” properties that are demanded to 

reach the clinics. For all these reasons, these drug delivery systems contain potential to be 

used in multiple fields in which the encapsulation of hydrophobic drugs are needed.
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Chapter 4: Zwitterionic Stealth Microrobots 

4.1. Introduction  

After developing zwitterionic-based drug delivery systems and exploring their potential in 

different applications, we had the opportunity to use zwitterionic materials in another field 

in which the antifouling properties of these materials are of special interest: the microrobotics 

field.  

Robotic systems were primarily used in industry to automate routine and dangerous 

manufacturing tasks. But with the advances in motors, control theory, materials and medical 

imaging, as well as the patient/surgeon acceptance, they started to be used in medical 

applications [157–159]. This transition required the miniaturization of parts and the inclusion 

of smart materials for complex and precise operations in the human body. These medical 

robotic systems have decreased the degree of invasiveness of some surgeries, reducing the 

appearance of complications during the surgery and accelerating the recovery of the patient. 

Some examples are the Da Vinci Surgical System [160] or robotic capsules for gastrointestinal 

endoscopies [161], among others. However, although they offer solutions to perform some 

minimally invasive surgeries, the size of current medical robots is a problem for a wide 

spectrum of applications, in which the robot should pass through narrow conducts into hard-

to-reach zones of the body. For this reason, the use of robots in the micrometer size that could 

reach this zones would be a breakthrough solution for non-invasive procedures of surgery, 

diagnosis or drug delivery [159,162–164].  

The advances in nanotechnology and materials science, together with the demands of the 

biomedical community, have pushed scientists to research in this direction. And the idea of 

having a microrobot that could enter inside our body and perform medical operations is no 

longer a sci-fi movie plot, but a real goal for the scientific community.  

Many challenges appear when designing an untethered (wireless) microscale robot for 

medical applications (Figure 4.1A). Locomotion and control represent the first challenge. In 

the miniaturization of a robot to the microscale, traditional power supplies (like batteries) 

cannot be incorporated, neither control systems, due to the impossibility to fabricate these 
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components in such a small size. Therefore, the microrobotics community put many efforts 

in designing locomotion and control systems in the microscale. A myriad of microscale 

mobile robots has been developed in recent years, with different actuation strategies, 

including magnetic [165,166], electric [167], acoustic [168,169], photo [170,171], thermal  

[172,173], biological [174], and chemical [173,175–177] actuation (Figure 4.1B). 

 

Figure 4.1 (A) Challenges for Medical microrobots [178] and (B) some strategies of locomotion and control 

[162]. 

Functionality has been also another aspect in which there has been an evolution in the 

recent years. Macroscale sized robots normally have multiple components in which each 

component performs a function. But when designing a microscale robot, the incorporation of 

multiple components becomes a challenge due to the reduced space. Then, functionality has 

to be included in the robot body itself, together with the control and the locomotion. Drug 

loading (inserting a drug payload inside the robot), remote sensing (robot functionalization 

with bioreceptors) and minimally invasive surgery (drilling and gripping functions) have 

been some of the medical functionalities successfully incorporated in microscale robots 

[162,178]. 

Although the advances in locomotion, control and functionality of the microrobots, there is 

still a long way to go until such technologies reach clinical applications. Improved locomotion 
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in biological fluids, penetration of biological barriers, biocompatibility or biodegradation are 

some of the challenges that the field is facing nowadays. Among them, the interaction of the 

robot with the immune system remains a big concern poorly addressed. As any other 

biomaterial, microrobots will have to face the immune system when introduced in the body 

and, if detected as harmful, will be neutralized. Therefore, this is a crucial problem to be 

solved before the application of these promising technologies in the clinics. 

As has been commented in the previous chapters, when the microrobot (as any other 

material) is placed inside the body, it will be rapidly coated by a surrounding layer of proteins 

via nonspecific adsorption [3,8,179,180]. This protein absorption will trigger the response of 

macrophages, that are on the lookout for pathogens and recognize these nonspecifically 

protein-coated materials as foreign threats [3]. Then, as the microrobots are in the microscale 

range, they will phagocytose them and eliminate them from the system (disabling their 

functions and eventually digesting them) [9,181,182]. Therefore, the immune system is the 

first barrier to entry and a major roadblock to developing functional micro/nanorobots that 

can operate in the body. 

Compared to nanoparticles, microrobots have a bigger size (10-200 µm) and a diversity of 

shapes. But although it has been showed that the size and shape of microparticles [183–185] 

and microrobots [186] have a role in the kinetics of its internalization by the macrophages, 

this influence comes from the difficulty of macrophages to engulf the particle and not from 

an non-detection of the particle. If, for example, we have a long and narrow particle, the 

macrophage will have more difficulty to phagocyte it than a round shape; but in both cases 

the macrophage will detect the material and try to phagocyte it. This detection is a problem 

for a future use of the robots in vivo. Even if these robots are not phagocyted, the macrophages 

will attach to it, changing its form and making impossible its locomotion and control.   

Therefore, microrobots that can pass under the radar of macrophages and avoid any type 

of recognition are needed to reach the clinic. And, to achieve this objective, microrobot 

materials are of crucial importance. There has been small research in the use of antifouling 

materials for microrobots. The production of microrobots is challenging, as it requires precise 

microfabrication normally by 3D printing. And only few materials have been optimized for 

these procedures. PEG, the current “Gold Standard” in antifouling materials, requires the 
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mobility of chains in order to be antifouling. And this chain mobility can only be obtained by 

surface coating. This process is not suitable for most of the current robots, as they are made 

of non-functionalizable materials. Moreover, the recent concerns about PEG immunogenicity 

[25,27] could also affect the efficacy of the robots in vivo.  

Differently to PEG, that has an antifouling behavior due to its chain mobility, zwitterionic 

materials are intrinsically antifouling due to their superhydrophilicity. They also have shown 

better immune-evasive behavior, as well as more chemical versatility. All these properties 

make zwitterionic materials good candidates to become materials for the fabrication of 

microrobots. But although all these advantages, they are still not used in the microrobotics 

field.  

Trying to develop the first zwitterionic microrobots, in this chapter we collaborated with 

prof. Metin Sitti, director of the Max Planck Institute for Intelligent Systems of Stuttgart, and 

prof. Abdon Pena-Francesch (former postdoc in the same group and now professor in 

University of Michigan) to design a zwitterionic photoresist suitable for the fabrication of 

zwitterionic microrobots. By using this strategy, the zwitterionic material would be the robot 

material itself, resulting in a full zwitterionic microrobot that would be completely 

antifouling. Moreover, the development of a zwitterionic photoresist suitable for 

microfabrication would serve as a toolbox of non-immunogenic materials for medical 

microrobot and other device technologies for bioengineering and biomedical applications. 
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4.2. Results and Discussion 

4.2.1. Development of a zwitterionic photoresist 

As has been commented in previous lines, the strategy that we took to fabricate zwitterionic 

microrobots was to develop a zwitterionic photoresist suitable for microfabrication. We 

decided that this photoresist would be composed of acrylic monomers and crosslinkers.  

In the previous chapters, we synthetized zwitterionic nanoparticles via post-

polymerization modification (Figure 2.3b). But to produce this photoresist we decided to use 

directly the zwitterionic acrylates and diacrylates. This decision was made in order to directly 

obtain a zwitterionic material after printing, avoiding further steps and achieving a 100% 

presence of zwitterionic groups in the robot. Therefore, we had to produce the zwitterionic 

monomers and crosslinkers. We used sulfobetaine (SB) and carboxybetaine (CB) zwitterions 

to produce the photoresists. This decision was taken because they are two of the most used 

zwitterionic moieties (with low non-specific protein adsorption from blood serum and 

plasma [187]), as well as for their described and accessible monomer and crosslinker 

synthesis.  

We synthetized both SB and CB monomers using DMAEMA as precursor. In the case of SB 

monomer, the synthesis is described elsewhere using 1,3-propanesultone as precursor. For 

CB, we used acrylic acid as precursor, as described in the work of Jiang et al. [188] (Figure 

4.2a) Both monomers were obtained without important impurities, as shown in Figure 4.2c. 

For the synthesis of CBX and SBX, we adapted the protocols of Lacík et al. [189] and Jiang et 

al. [190] respectively (Figure 4.2b). We used diethanolamine as the starting material, followed 

by an esterification using methacrylic acid under acid catalysis. Then, to produce the SBX, we 

modified the difunctional tertiary amine with propanesultone, generating the sulfobetaine. 

And in the case of CBX, we quaternized the amine using a protected bromoacetic acid 

followed by an acid deprotection to obtain the final difunctional carboxybetaine. We followed 

the different steps using H1-NMR and we confirmed the structure and purity of the 

zwitterionic crosslinkers (Figure 4.2d). 
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Figure 4.2 Synthesis of (A) Zwitterionic monomers and (B) crosslinkers. (C) H1-NMR of the CB and SB 

monomers. (D) H1-NMR of CBX and SBX crosslinkers. 

Having both zwitterionic monomers (CB & SB) and zwitterionic crosslinkers (CBX & SBX) 

allowed us to formulate hydrogel photoresists with varying crosslinking ratios without losing 

the zwitterionic properties (all-zwitterionic hydrogels), which gave us a broad design space 

for tuning the mechanical properties and photopolymerization kinetics of our materials. 

Then, we performed a photopolymerization characterization using rheology in order to 

determine the influence of the photoresist composition in its photopolymerization kinetics 

(Figure 4.3a). 
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Figure 4.3 Photorheological characterization of the polymerization of the different photoresists. (A) The 

different photoresists were placed in a rheometer equiped with a UV light. (B) Example of a photorheological 

graph. (C) Shear modulus depending on the crosslinking ratio of SB and CB photoresists. (D) Polymerization 

kinetics depending on the crosslinking ratio of SB and CB photoresists.  

We analyzed CB-based and SB-based photoresists with crosslinking ratios from 5% to 100% 

(CBX and SBX, respectively) by photorheological characterization (Figure 4.3b). Due to the 

superhydrophilic nature of the zwitterionic monomers and crosslinkers and their high 

solubility in water, we achieved high concentrations (up to 70% w/w) in our water-based 

zwitterionic photoresists that are not possible in other water-based photoresists due to their 

low solubility limits. We performed the analysis using pure SB and CB photoresists (for 

further works, they could be formulated using mixtures of SB and CB) and using Igracure 

2959, a widely used water-soluble photoinitiator, as photoinitiator.  
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By adjusting the crosslinking ratio and concentration, we could tailor the elastic moduli of 

CB- and SB-based hydrogels from soft (0.1 kPa) to hard (10 MPa) (Figure 4.3c), matching the 

moduli of a wide range of biological tissues. We also observed faster polymerization with 

increasing crosslinking ratio and overall concentration, which is expected due to a higher 

concentration of methacrylate reactive groups (Figure 4.3d). We note that these data are in 

situ shear measurements during photopolymerization, and might slightly differ from other 

reports on crosslinked hydrogel moduli measured a posteriori by other methods [190]. 

4.2.2. 2-Photon Polymerization 3D microprinting of 

zwitterionic photoresists 

With the photorheological characterization, we proved that the photoresists developed 

were suitable for 3D polymerization and versatile in terms of physical properties. But to be 

able to produce microrobots, we had to optimize the zwitterionic photoresist for 3D 

microprinting.  

We decided to use the 2-photon polymerization (2PP) technique as the 3D microprinting 

technique to produce the microrobots. This is an emerging nanofabrication technique that 

enables 3D complex polymeric structures with down to 100 nm resolution and has found 

broad applications in fabricating photonic crystals, metamaterials, cell scaffolds, microfluidic 

devices, and microrobots [165,191,192]. It is based in the 2 Photon Absorption (2PA), 

phenomena predicted in theory by Goeppert– Mayer in the 1930s and demonstrated in 

experiment by Kaiser in 1961 after the invention of the laser. The phenomenon consists in the 

absorption of two photons by a molecule to reach its excited state. It scales with the square of 

incident light intensity and the maximum absorption occurs at the focal point of light (more 

information about this phenomenon can be found in [193–196]). 

2-photon polymerization introduces initiators that present 2PA in the photoresist. Then, 

this photoresist is illuminated with focused femtosecond laser pulses with a wavelength two 

times the excitation wavelength of the initiator. Through the 2PA phenomenon, in the focal 

point of the laser pulses (and only in the focal point) the initiator will absorb 2 photons from 

the laser and generate the radical that will start the polymerization. Therefore, the 

polymerization only occurs on the confined nanoscale voxel illuminated by the focal point of 

the laser pulses (Figure 4.4). Then, by moving the focal point of the laser pulses following 
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complex computer-aided design (CAD) files, photopolymerized nanoscale complex 3D 

structures can be produced [197]. 

 

Figure 4.4 Difference in the printing area between 1-photon polymerization and 2-photon polymerization 

(absorption image was obtained from www.microlight.fr). 

Current commercially available photoresists for 2PP lack chemical versatility, and 

significant research efforts are being made in the development of new functional photoresists 

[191,192]. Our zwitterionic photoresists presented multiple advantages over the state-of-the-

art natural and synthetic materials for 2PP: (i) CB, SB, SBX, and CBX are highly soluble in 

water, and therefore, they do not require organic solvents and can be polymerized with 

water-soluble photoinitiators, which are less toxic [192]. Furthermore, water-only-compatible 

materials, such as biomolecules or cells, can be integrated into a single printing step. (ii) 

Natural polymers, including gelatin, chitosan, hyaluronic acid, alginate, etc., have limited 

methacrylation of functional groups (adjusted by reaction time), which restricts the 

crosslinking density available to such hydrogels. On the other hand, zwitterionic photoresists 

have a high density of methacrylate groups, which offers tunable control over the hydrogel 

chemistry and network density, tunable mechanical properties (from soft to hard), and 

enhanced printing resolution (hydrogels are more stable and preserve their shape, allowing 

for smaller structural features). (iii) Synthetic hydrogels typically use PEG-based or 

bisacrylamide-based crosslinkers that have limited solubility in water, and therefore restrict 

the crosslinking density and the hydrogel mechanical properties. In contrast, CBX and SBX 

crosslinkers have high solubility in water, which allows for high crosslinking ratios and 

fabrication of stiffer hydrogels without compromising the zwitterionic properties. (iv) CB and 

CBX are directly functionalizable through their carboxylic groups which, together with their 
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(v) non-fouling properties, make them a superior alternative to natural and synthetic 

materials for bioengineering applications, such as drug functionalization and specific 

targeting.  

We adapted the previously formulated zwitterionic photoresists (Figure 4.3) for 2PP by 

changing the Igracure 2959 initiator for Lithium phenyl-2,4,6-trimethylbenzoylphosphinate 

(LAP), a 2PP suitable initiator. Both photoresists formulated (SB and CB) could be printed (at 

certain concentration and crosslink percentage) with 2PP, becoming the first reported 

zwitterionic materials printed using this method. Moreover, the resolution of the printed 

structures had a high degree of accuracy (Figure 4.5a, Movie S1). The prove that zwitterionic 

materials can be printed through 2PP opens new doors in the application of zwitterionic 

materials in fields such as microrobotics or microfluidics. Producing microscale 3D structures 

with their antifouling and superhydrophilic properties may be useful in a wide range of 

applications.     

In order to further characterize the printing properties of the photoresists, we analyzed a 

range of concentrations and crosslinking ratios of the photoresist, generating a matrix 

indicating at which concentrations and crosslink percentages there was obtained a high-

resolution printing (Figure 4.5b). We achieved high printing resolution and full structural 

reproducibility from CAD files at high concentrations and crosslinking ratios due to an 

increase concentration of reactive species (methacrylate groups) and faster polymerization 

kinetics, while less concentrated and crosslinked photoresists exhibited lower resolution and 

structural stability or even the absence of printing.  

As has been commented in previous lines, this was the first reported 2PP printing of 

zwitterionic materials. Therefore, we focused on proving the printability of the zwitterionic 

photoresists and the generation of zwitterionic microrobots. However, it could be further 

modified by incorporating high molecular weight zwitterionic prepolymers, thickeners, 

fillers, other photoinitiators, and different laser parameters (power, scan speed, etc.) in order 

to reduce the concentration of the photoresists. 
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Figure 4.5 2PP printing of the Zwitterionic photoresists. (a) Zwitterionic photoresists (containing 

zwitterionic monomers, zwitterionic crosslinkers, and photoinitiators) were printed into 3D complex. 

microstructures (including helical microrobots) via two-photon polymerization (2PP). (b) Printing diagram for 

optimized resolution as a function of concentration and crosslink ratio. Insets show printed microstructures with 

sub-optimal resolution (left, red) and optimal resolution for full structural reproducibility (right, green). 

Different structures were printed using the zwitterionic photoresists (see Max Planck 

Institute Minerva symbol and helical microrobot in Figure 4.5). Of all of them, we focused on 

the printing resolution of helical microrobots as it was the microrobot chosen to be used in all 

further experiments. Helical microrobot design inspired in the flagella of E.coli was developed 

by Nelson’s group in 2007  and it is one of the most used designs for microrobots and is widely 

characterized [198,199]. This deep understanding of how the helical microrobot works made 

us chose it, as were not focused on improving any microrobot type, but in produce a new 

biomaterial with which anti-immunogenic robots could be printed. The zwitterionic 

photoresists developed presented a high degree of resolution and high structural 

reproducibility (Figure 4.5a). Thus, we had proved that they were suitable for 2-photon 
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polymerization, becoming the first reported zwitterionic material printed using this 

advanced manufacturing technique. We then moved to the next step of the characterization 

of the zwitterionic printed materials, consisting in the analysis of their interaction with 

proteins and cells.  

4.2.3. Bio-adhesion characterization of the zwitterionic 

microrobots 

To characterize the biological properties of the zwitterionic microrobots produced, we first 

had to select at which crosslink percentage de we wanted to work. As shown in Figure 4.3, 

there was a big difference between the mechanical properties of different crosslink 

concentrations. And these mechanical properties could also have a role in the biological 

properties of the material. We chose to work with a crosslink concentration of 30% and 100% 

(referred as S30/C30 and S100/C100). We chose the 100% concentration because is the stiffer 

one, while 30% was an intermediate crosslink concentration. We also selected Poly(ethylene 

glycol) diacrylate (PEGDA) as the control material to compare our zwitterionic ones.  

   

Figure 4.6 Viability assay performed with the different zwitterionic photoresists (n=3). (A) WST-8 assay (B) 

Live/Dead staining and J774A.1 murine macrophages. 

We first wanted to characterize the toxicity of the printed structures. Depending on the 

photoresist composition and the printing parameters, there could be a leakage of precursors 

that led to cell death. We printed 5 mm disks with the different zwitterionic photoresists, 

washed them and incubated with cells, performing a live/dead staining and a WST-8 viability 
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assay to determine the possible toxicity (Figure 4.6). In all the samples there was not observed 

any anomalous behavior or cell death, confirming that the printed zwitterionic structures 

were biocompatible and non-toxic. Therefore, they were suitable to be used with cellular 

cultures.  

Then, we performed a cell-adhesion analysis by culturing macrophages in the top of the 

different hydrogel disks (Figure 4.7). Cells did not attach in the S30, S100 and C30 samples, 

while they did in the C100 samples and the PEGDA control. In here, we saw the first 

difference between the PEGDA control and the zwitterionic photoresists. The zwitterionic 

hydrogels have an antifouling surface, that prevents the adhesion of the macrophages. But 

these attach in the PEGDA sample, as their surface is not antifouling enough. The only 

zwitterionic sample that showed some cell adhesion was C100. There was not a rational 

explanation about this phenomenon, as cells did not attach to S100 and C30 samples, with the 

same degree of crosslink and the same zwitterion type respectively. Therefore, some 

phenomenon was happening at high degrees of crosslink of carboxybetaine hydrogels.  

 

Figure 4.7 J774A.1 murine macrophage adhesion to zwitterionic photoresists. 

We further characterized the antifouling behavior of the zwitterionic printed structures 

using BSA as a model. As has been commented in the previous chapter, BSA is the most 

abundant protein in the blood [200] and one of the main components of the protein corona. 

We printed microrobots using 2PP with the different zwitterionic photoresists and also with 
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PEGDA and IP-S (a commercial photoresist from the 2PP equipment supplier recommended 

for biological use). Then, we incubated the different microrobots with a fluorescent-labeled 

BSA solution, washed them and observed the fluorescence of the sample using fluorescence 

microscopy (Figure 4.8). 

We observed that PEGDA and IP-S had a high fluorescence intensity, while there was no 

visible fluorescence in the zwitterionic microrobots. These results were in the line with the 

results of cell adhesion showed in Figure 4.7. Again, the antifouling behavior of the 

zwitterionic materials was proved, as they prevented proteins to attach in their surface. On 

the other hand, the two controls presented fluorescence corresponding to absorbed protein. 

C100 samples did not present protein absorption, in contrast with the cell adhesion 

experiments.  

 

Figure 4.8 Fluorescence microscope images of the different microrobots incubated with Cy5-BSA. 

These two results proved that the zwitterionic photoresists developed in this chapter 

outperformed the current commercial photoresist for biological applications, as well as the 

“gold standard” in terms of antifouling. Thus, they confirmed the advantages of working 

with our zwitterionic photoresists over the currently used ones.  
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4.2.4. Zwitterionic non-immunogenic microrobots 

To characterize the interaction between the zwitterionic microrobots and the immune 

system, we started analyzing the response of macrophages to the zwitterionic materials. They 

are the main component of the mononuclear phagocyte system (MPS), which belongs to the 

innate immune system (non-specific), and is responsible for the recognition and clearance of 

the foreign materials from the body [21,180,201,202]. Macrophages are present in almost all 

body tissues and especially in lungs, liver and spleen. They are activated when they detect a 

material as a foreign body, mainly through the identification of adsorbed proteins on the 

material surface [9,203] and proceed to eliminate the foreign material by phagocytosis. They 

also perform two additional functions when they recognize and phagocytose a foreign body: 

the secretion of cytokines (regulators of the immune system) and the presentation of antigens 

(small peptides of the phagocytosed material that will be used by the adaptative immune 

system to generate an immune memory). For these reasons, there have been many efforts to 

characterize and modulate the interaction between macrophages and biomaterials 

[8,180,186,203–209], and also why we firstly focused in them.  

We cultured macrophages with the zwitterionic and control microrobots, and monitored 

their interaction using microscopy (Figure 4.9, Movie S2). PEG-based microrobots (current 

anti-biofouling benchmark) were immediately recognized and phagocyted as soon as the 

macrophages came in contact with them. In contrast, zwitterionic stealth microrobots were 

not phagocyted after exhaustive inspection (cells probe, manipulate, and move the robots) 

and they were released back (Figure 4.9 and Figure 4.9b). To have a more quantitative result, 

we printed different matrix of microrobots and monitored all the microrobot-cell interaction, 

determining if this interaction led to a capture and phagocytosis or a release (Figure 4.9c). 

PEG microrobots showed ~100% phagocytosis rate, meaning that every time that a cell 

detected a robot, it ended phagocytizing it. In contrast, of all the interactions between the 

macrophages and the S30, S100 and C30 microrobots only < 2% ended in phagocytosis, while 

the big majority of the microrobots were released (Figure 4.9d). C100 zwitterionic microrobots 

showed some phagocytosis rate ~20%. A different behavior of C100 samples was also 

observed in the cell adhesion experiments, results that could also be related with these ones. 

Although this fact, the C100 microrobots still outperformed the current state-of-the-art 

antifouling and biocompatible material (PEG).  
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Figure 4.9 Zwitterionic Stealth Microrobots. (a) Schematic of cell-robot interaction. (b) Cell-robot 

interaction for PEG microrobots and S30 microrobots. (c) Phagocytosis rate for different types of microrobots 

(normalized by cell-robot interactions). (d) Time-lapse of a 7x7 S30 microrobots matrix in contact with 

macrophages.  



Chapter 4: Zwitterionic Stealth Microrobots 

 
 
 

 

111 

 

Figure 4.10 SEM images of the interaction between macrophages and the S30 and PEG microrobots.  

For a critical evaluation of immunogenicity, these experiments were performed on free-

floating robots for several reasons: (i) cells can freely probe and move the robots for intensive 

inspection, (ii) free-floating robots are most vulnerable to capture by immune cells (as 

opposed to constrained robots, which can block phagocytosis due to adhesion to the 
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substrate), and (iii) non-actuated robots (for example, static robots when they have reached 

their target destination) represent the most vulnerable scenario for capture (as opposed to 

fast-swimming robots, which can be faster than migrating macrophages).  As can be observed 

in Figure 4.9d, zwitterionic microrobots could be detached from the surface by the 

microrobots, moving them freely. We observed that PEG microrobots could not be detached 

from the glass surface by macrophages. Therefore, we physically detached them before 

performing the phagocytosis experiment.    

We further investigated the non-immunogenic properties by analyzing the morphology of 

macrophages interacting with non-stealth PEG microrobots and stealth zwitterionic 

microrobots at the early stages of inspection (Figure 4.10). Macrophages inspecting PEG 

microrobots exhibited a more aggressive morphology, suggested by distinct surface features 

(extension of filopodia towards the microrobot and presentation of dorsal ruffles on the cell 

surface, typically observed in activated macrophages, Figure 4.11a) [210]. In contrast, 

macrophages inspecting zwitterionic microrobots presented smoother cell surfaces with few 

or no filopodia trying to engulf the robot. This morphology was more similar to the one of 

unstimulated macrophages (Figure 4.11b). 

 

Figure 4.11 SEM images of (a) LPS-stimulated macrophages and (b) non-stimulated macrophages. 

Both phagocytosis analysis (Figure 4.9) and morphology analysis (Figure 4.10) showed 

clearly the stealth behavior of the zwitterionic robots. Moreover, the zwitterionic robots 

outperformed the current “gold standard” of antifouling polymers (PEG). The almost 0% 

phagocytosis rate observed for zwitterionic microrobots, together with the unstimulated 

morphology of the macrophages in contact with them proved that macrophages are not 
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activated or aggressive towards zwitterionic microrobots, as they are not recognized as a 

foreign threat.  

 

Figure 4.12 S30 microrobot arrays co-cultured with macrophages, monocytes and splenocytes for 24h. 

To provide a more comprehensive analysis of the stealth properties and to better evaluate 

the non-immunogenicity of our microrobots, we also analyzed the response of other type of 
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immune cells towards our microrobots. As has been previously commented, macrophages 

are the main cell type responsible to remove the foreign threats by phagocytosis. But there 

are other cells in the immune systems that can phagocytize foreign materials. Other than 

macrophages, we used monocytes (macrophage precursors that are found in the 

bloodstream) and splenocytes, which consist of a diverse collection of immune cells present 

in the spleen, including T-lymphocytes, B-lymphocytes, dendritic cells, and macrophages 

(Figure 4.12, Movie S2).   

After exhaustive inspection, robots were probed and moved around by cells, but we did 

not observe phagocytosis: stealth robots were released and remained free after inspection. 

Therefore, the zwitterionic microrobots proved their anti-immunogenicity against the 

different immune system cells.  The stealth behavior was consistent after numerous cell-robot 

interactions (even with multiple cells repeatedly inspecting the same robot) for prolonged 

times (up to 90 hours). Therefore, zwitterionic photoresists offer a versatile platform for 

microfabrication to overcome limitations in microrobot design without compromising stealth 

functionalities. We observed that C30, S30, and S100 microrobots presented similar stealth 

behavior, indicating that both CB-based and SB-based photoresists are effective against 

macrophage recognition even with different mechanical properties (low and high 

crosslinking ratios). Overall, these results highlight the biocompatibility, anti-biofouling, and 

stealth properties of our custom zwitterionic photoresists, which outperform state-of-the-art 

materials for microrobot fabrication including commercially available photoresists and PEG-

based materials, the current “gold standard” in terms of anti-biofouling and stealth behavior.  

4.2.5. Magnetically actuated zwitterionic microrobots 

Other than their anti-biofouling and stealth behavior, the zwitterionic microhydrogels 

printed with the zwitterionic photoresist presented multiple opportunities for 

functionalization, both pre-printing and post-printing.  

We firstly focused on the introduction of magnetic materials before the printing step in 

order to remote control the printed structures. We mixed Small Paramagnetic Iron Oxide 

Nanoparticles (SPIONs) with the zwitterionic photoresists to create a nanocomposite 

photoresist that created magnetic zwitterionic microhydrogels with a single 3D-printing step 

(Figure 4.13a). We printed the helical microrobot structure out of the nanocomposite using 
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the 2PP 3D-printing.  The printing was not affected by the introduction of SPIONS in 

concentrations up to 10 mg/ml. Once printed, we actuated the zwitterionic magnetic 

microrobots using magnetic torque actuation (more efficient than magnetic gradient pulling 

at the microscale) [211], which is one of the most common strategies for swimming at the low 

Reynolds number regime in synthetic microrobots [165,212,213]. We used external rotating 

magnetic fields (10 mT) at specific frequencies (ω) to induce spinning torque on the 

microrobots and propel them through an aqueous solution (Figure 4.13b, Movie S3). 

 

Figure 4.13 Magnetic actuation of the zwitterionic helical microrobots. a) Addition of SPIONs in the 

zwitterionic photoresist to achieve magnetic actuation. b) Velocity and drift angle as a function of spinning 

frequency showed rolling, corkscrew, and step-out regimes. c) Rolling locomotion of microrobots (ω = 3 Hz). d) 

Corkscrew locomotion of microrobots (ω = 13 Hz). e) Microrobot rolling locomotion along a programmed square 

trajectory. 

At lower frequencies (ω < 10 Hz), we observed rolling-type locomotion increasing linearly 

with actuation frequency and at a drift angle θ ~45° (between magnetic actuation axis and 

microrobot locomotion axis) caused by friction with the substrate (wall effect) (Figure 4.13c). 
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At the optimum frequency range 10 < ω < 13 Hz, the magnetic torque overcomes the substrate 

friction and we achieved corkscrew-type locomotion through the fluid with zero drift (Figure 

4.13d). At higher frequencies (ω > 14 Hz, step-out frequency), the microrobot cannot catch up 

with the actuation frequency and the locomotion was defective (low velocity and moving in 

random directions). We achieved maximum velocities of 14.3 ± 1.1 µm/s (0.8 ± 0.1 body 

lengths per second), which is an acceptable swimming performance for a soft magnetic 

composite microrobot[166,213,214]. Better performance for specific tasks could be achieved 

by increasing the concentration of magnetic particles in the photoresist, which involves 

colloidal stability problems, aligning the particles to create anisotropy, or using stronger 

magnetic materials. SPIONs are biocompatible, but other stronger magnetic nanomaterials 

typically present toxicity problems[215]. However, the current approach already 

demonstrates the compatibility of our zwitterionic materials with state-of-the-art methods of 

microscale robot actuation, allowing for locomotion through pre-programmed trajectories 

(Figure 4.13e), and provides with a new biocompatible, non-immunogenic material platform 

for magnetic microrobot designs. 

4.2.6. Biomolecule encapsulation 

After proving that inorganic magnetic nanoparticles could be introduced in the zwitterionic 

3D printed structures, we evaluated their capacity to encapsulate small molecules and 

biomolecules. As above-mentioned, the zwitterionic photoresists developed were water-

based due to the outstanding water solubility of the zwitterionic monomers and crosslinkers 

(up to 70% w/w). This property made the zwitterionic photoresists suitable for introduction 

of a wide range of biomolecules and small molecules that are only soluble/stable in water 

(Figure 4.14a).  

We entrapped BSA (protein model) and Doxorubicin (DOX, small molecule drug model) 

into the zwitterionic photoresists, proving their capacity to encapsulate both big biomolecule 

and small molecule (Figure 4.14b). Furthermore, we proved that the encapsulated molecules 

remained entrapped into the microhydrogel matrix over long periods of time (24h) without 

the observation of any leakage (Figure 4.14b).. Current water-soluble resists derived from 

natural polymers, as their low degree of methacrylation results in porous materials that 

cannot trap biomolecules. In contrast, we can control the methacrylation degree of the 
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zwitterionic microhydrogels by changing their crosslink percentage (Figure 4.3), being able 

to modulate the entrapment of such molecules.  

This versatile approach for encapsulation of biomolecules makes zwitterionic photoresists 

attractive for a wide range of biomedical applications for 3D-printed microrobotics, such as 

targeted drug/gene delivery, imaging, biosensing, enzyme therapy, etc. Moreover, it makes 

them suitable for incorporating biomolecules for other types of locomotion such as chemical 

locomotion or enzyme propelled locomotion.  

 

 

Figure 4.14 Drug and biomolecule encapsulation in zwitterionic 3D printed microhyrogels. a) Biomolecules 

were encapsulated by adding them before the printing step. b) Encapsulation of BSA and Doxorubicin (DOX). 

c) BSA and DOX remained encapsulated after 24 hours of incubation in aqueous media.  
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4.2.7. Surface functionalization of the zwitterionic microrobots 

Finally, in order to introduce more functionalities to the zwitterionic microrobots, we 

explored the possibility to modify their surface. As commented in other chapters, one of the 

advantages of the use of zwitterionic polymers over other type of antifouling polymers such 

as PEG is the presence of modifiable groups in some of the zwitterion types (carboxybetaines).  

We modified microrobots printed with the carboxybetaine resist using the EDC/NHS 

coupling chemistry to create an amide bond between the carboxylic acid of the 

carboxybetaine moiety with any free amine in the media. In first place, and to prove the 

possibility to perform this type of chemistry, we used a fluorescent probe (Figure 4.15). 

Images from fluorescence microscopy proved the surface modification of the C30 

microrobots, confirming the possibility to perform this type of chemistry to include any 

aminated molecule.  

 

Figure 4.15 Fluorescence microscope images of Cy5-amine modified C30 microrobots and bare C30 

microrobots. 
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We then decided to use this feature of the carboxybetaine microrobots to introduce an on-

demand delivery of Doxorubicin through a photo-cleavable linker [166]. Briefly, we bonded 

a diamine to the carboxylic acid group via EDC/NHS coupling, added a photocleavable linker 

(o-nitrobenzyl group with terminal amine-reactive and alkyne groups), and terminated with 

azide-modified DOX via click chemistry (azide-alkyne click reaction) (Figure 4.16a). 

 

Figure 4.16 On-demand light-triggered release of Doxorubicin. a) schematic of the surface modification. b) 

Fluorescence microscopy of the Dox-functionalized microrobots before and after light triggered cleavage of the 

photo-cleavable linker. 
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DOX-functionalized microrobots showed stable fluorescence over time, but upon exposure 

to 365 nm light, the DOX molecules were released to the media due to the photocleavage of 

the linker molecules (Figure 4.16b). This functionalization strategy is particularly useful for 

on-demand light-triggered drug delivery, however, UV light poses challenges in direct 

translation into biomedical applications due to limited skin/blood/tissue penetration. Recent 

advances in optical upconversion of NIR to UV light could be used to enhance penetration 

depth [216], or the linker could be replaced by other photo-cleavable molecules that are 

responsive to different wavelengths.  

One could argue that extreme functionalization of the microrobot surface might come at the 

cost of reducing the zwitterionic properties. Since this modification can only be performed in 

carboxybetaine but not sulfobetaine groups, photoresist formulations with tunable SB/CB 

composition can be designed to control the surface chemistry and introduce surface 

modification while preserving a sulfobetaine-dominated zwitterionic surface.  

The versatile surface functionalization of zwitterionic microrobots can easily be extended 

to other drugs, antibodies, signaling moieties, or biomolecules for chemical sensing. 

Moreover, the anti-biofouling properties of zwitterionic surfaces avoid non-specific 

adsorption of proteins, which improves the efficiency of targeting, signaling, or sensing of the 

attached biomolecules [67], making zwitterionic microrobots very attractive for targeted 

therapy and biosensing applications. Other than microrobotics, other fields could also benefit 

from these properties. The capacity of having anti-fouling surfaces in the microscale with the 

capacity to modify their structure to introduce desired molecules would be of high interest 

for fields such as tissue engineering, diagnosis, among others.  
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4.3. Concluding Remarks 

In this Chapter we have addressed a critical roadblock that is preventing microrobots to 

reach the clinics. We have developed a zwitterionic photoresist that has been printed using 

2-photon polymerization, being the first time that zwitterionic materials have been printed 

using this high-precision micro-manufacturing. We have printed zwitterionic microrobots 

that have been proved to resist macrophage detection after exhaustive inspection (>90h), 

which has not been previously been described in any microrobotics system. By avoiding 

macrophage detection, this microrobots can avoid their neutralization by the immune-system 

and, therefore, operate in the human body without triggering an immune response. 

Furthermore, the zwitterionic materials developed here outperform state-of-the-art and 

commercially available photoresists, and offer broad tailoring and functionalization for robot 

locomotion, imaging, and drug release strategies. 

Although there are still many challenges in the path of the microrobots to the clinics, such 

as faster robots for locomotion in non-Newtonian biofluids, synthesis of dynamic photoresists 

for controlled degradation, and in vivo demonstrations, this work overcome a challenge that 

necessarily had to be bypassed but had not been exhaustively addressed before. Therefore, 

we envision the zwitterionic photoresists developed as an antifouling material toolbox for the 

design of future microrobots (with other locomotion, control and functions) performing 

medical functions. 

Moreover, the high-resolution microstructures provided with the proved antifouling 

properties, together with their multifunctionality, can be useful in a wide variety of fields in 

which the unique properties of zwitterionic polymers are needed in the microscale.  
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Chapter 5: Conclusions 

In this thesis, we have focused on develop zwitterionic materials for the applications of 

drug delivery and microrobotics. Regarding the objective to create a platform of zwitterionic 

amphiphilic block copolymers that can self-assemble in zwitterionic nanoparticles, we have 

concluded that: 

• RAFT polymerization followed by post-polymerization modification is an effective 

manufacturing method for the synthesis of zwitterionic amphiphilic copolymers. The 

resulting zwitterionic amphiphilic copolymers have shown to self-assemble in 

zwitterionic nanoparticles depending on the zwitterion type and the 

hydrophilic/hydrophobic ratio. 

 

• Amphiphilic block copolymers containing poly(sulfobetaine methacrylate) as 

zwitterionic block present a salt-dependent self-assembly in water due to the 

antipolyelectrolyte effect. This problem can be solved by adding a voluminous 

morpholino group to the quaternary amine of the sulfobetaine, that sterically 

prevents the interaction between the opposite charges of the moiety. On the other 

hand, polymers containing poly(carboxybetaine) instead of poly(sulfobetaine) do not 

present problems in the self-assembly in water. These polymers present a pH-

dependent protonation of the carboxylic acid that can be interesting for different 

applications.  

Then, evaluating their antifouling properties and their capacity to become an oral drug 

delivery system against malaria and cancer, we have concluded that: 

• Sulfobetaine nanoparticles have better performance than carboxybetaine 

nanoparticles in diffusing through the mucus. They are also effective in internalizing 

in gastrointestinal Caco-2 cell model, indicating their potential to pass through the 

mucus and crossing the gastrointestinal epithelium, the two barriers that block the 

oral administration of drug delivery systems.  
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• All zwitterionic nanoparticles except sulfobetaine ones (due to the anti-

polyelectrolyte effect) have proved high levels of curcumin (antimalarial) and 

paclitaxel (anticancer) drug loading, up to 10 mg/ml. The drug-loaded nanoparticles 

have been proved to be effective in malarial and cancer in vitro models. This is an 

important feature of the zwitterionic nanoparticles that make them attractive for the 

drug delivery of hydrophobic drugs.  

 

• Sulfobetaine nanoparticles passively target Plasmodium infected erythrocytes, 

possibly to their disruption when they enter in the Plasmodium parasite. This property 

is interesting, since few drug delivery systems can enter into the parasite.  Although 

in vivo experiments with infected mice have not shown increase in survival, the 

presence of fluorescently marked polymer in the mice bloodstream indicate the oral 

absorption of zwitterionic nanoparticles and, therefore, their potential to become an 

oral antimalarial treatment.  

Finally, in respect of the objective of developing a zwitterionic photoresist for 

microfabrication of zwitterionic microrobots, we have concluded that: 

• Zwitterionic photoresists formulated with the synthetized zwitterionic monomers 

and crosslinkers can be microprinted using 2-photon polymerization at high 

concentrations. The physical properties of the resulting microhydrogels can be tuned 

by changing the monomer/crosslink ratio. This zwitterionic microscopical structures 

can be useful in multiple fields such as biosensing or microrobotics.  

 

• Zwitterionic printed structures show antifouling effect when tested against BSA and 

avoid the adherence of cells. Zwitterionic microrobots outperform current robots in 

terms of immune-system avoidance, remaining undetected over more than 90 hours 

of exhaustive examination by macrophages. SEM images of macrophages in contact 

with zwitterionic microrobots and PEG microrobots (current “state of the art” 

antifouling polymer) show a difference in the morphology of the cells. While, in 

contact with PEG microrobots, macrophages show a more aggressive morphology, 

when in contact with zwitterionic microrobots they present a passive morphology.  
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• The easy functionalization of microrobots surface, as well as their capacity to 

encapsulate different biomolecules, provide to zwitterionic photoresists a great 

versatility to be used in multiple microrobots with different control, actuation and 

function strategies.  
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Chapter 6: Materials and Methods 

6.1. Methods of Chapter 2 

6.1.1. Synthesis of Poly(Butyl methacrylate-b-sulfobetaine 

methacrylate) (PBMA-b-SBMA) 

Polymers were prepared by RAFT polymerization followed by post-polymerization 

modification of PDMAEMA. Briefly, to produce PBMA25-SBMA35, BMA (1.0 g; 7.03 mmol) 

was added to the chain transfer agent (CTA) 2-cyano-2-propyl dodecyl trithiocarbonate (97.2 

mg; 0.28 mmol) followed by AIBN (4.6 mg; 0.028 mmol), resulting in a molar ratio 

BMA:CTA:AIBN of 25:1:0.1. 1 ml of dioxane was further added to the reaction. Oxygen in the 

solution was removed by three freezing/vacuum/thawing cycles, finally introducing an argon 

atmosphere. The solution was stirred at 70 °C and terminated after 16 h by exposing it to the 

room atmosphere. The resulting PBMA was precipitated in methanol and dried over vacuum, 

obtaining a yellow polymer. Then, DMAEMA (397 mg; 2.52 mmol) was added to PBMA25-

CTA (394 mg; 0.10 mmol) followed by AIBN (4.9 mg; 0.03 mmol) and 1 ml of dioxane for a 

molar proportion DMAEMA:PBMA25-CTA:AIBN of 35:1:0.3. Oxygen was removed by three 

freezing/vacuum/thawing cycles and after 16 h an argon atmosphere was applied. The 

solution was stirred at 70 °C and terminated by exposing it to the room atmosphere. The 

resulting PBMA25-DMAEMA35 was precipitated in hexane and dried over vacuum, obtaining 

a pale yellow polymer. In the case of PBMA12-DMAEMA18, the precipitation was done with 

methanol/H2O 80:20. For the sulfobetainization, PBMA25-DMAEMA35 (292 mg; 0.032 mmol) 

was dissolved in 5 ml of tetrahydrofuran (THF) and 1,3-propanesultone (5.1 mg; 0.038 mmol) 

was added. The reaction was stirred for 16 h at room temperature to obtain a gel. The product 

was washed with cold THF and dried over vacuum to obtain PBMA-SBMA as a powder. 

6.1.2. Synthesis of Poly(Butyl methacrylate-b-sulfobetainized 

morpholinoethyl methacrylate) (PBMA-b-MESBMA) 

The same synthesis as that used in PBMA-DMAEMA was performed to produce PBMA-

MEMA. Sulfobetainization was performed using a 2:1 ratio of propanesultone/MEMA in THF 
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for 7 days in reflux and was washed with cold THF to obtain PBMA-MESBMA, whose aspect 

depended on the length of the blocks. 

6.1.3. Synthesis of Poly(Butyl methacrylate-b-carboxybetaine 

methacrylate) (PBMA-b-CBMA) 

Production of PBMA-DMAEMA was performed as described previously. Derivatization of 

DMAEMA was performed with Acrylic Acid. Briefly, PBMA40-DMAEMA20 (500 mg; 0.057 

mmol) was dissolved in 5 ml of tetrahydrofuran (THF). Acrylic Acid (11.2 mg; 0.11 mmol) 

was added and the solution was stirred at room temperature for 16 hours. Solvent was 

removed using rotary evaporation and solid precipitate was cleaned with Hexane and Ethyl 

ether to remove the unreacted acrylic acid.  

6.1.4. Formation of zwitterionic nanoparticles  

Nanoparticles were formed by direct dissolution of the amphiphilic nanoparticles in 

aqueous media and stirring for 16 h. Concentrations up to 0.8 mg/ml in PBS and NaCl 1M 

were used for PBMA-b-SBMA polymers. Concentrations up to 20 mg/ml in MiliQ water and 

PBS were used for the rest of the zwitterionic ABCs.  

For PBMA-b-SBMA polymers, an extrusion processes using Miniextruder® (Avanti Polar 

Lipids, Inc.; Alabaster, IL, USA) was needed. Briefly, nanoparticles were passed through a 200 nm 

filter 21 times.  

For PBMA-b-MESBMA and PBMA-b-CBMA polymers, nanoparticles were directly formed 

without the need of further processes.  

6.1.5. DLS Characterization 

Hydrodynamical size and Zeta potential were measured using Dynamic Light Scattering 

(Malvern Zetasizer NanoZS instrument; Malvern Instruments, UK). Nanoparticle 

concentration was adjusted for each experiment in order to obtain good quality results 

(concentrations from 0.5 mg/ml to 10 mg/ml). For the Zeta-potential analysis, same equipment 

was used. pH of samples was adjusted using HCl 0.1M and NaOH 0.1M.  
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6.1.6. Cryogenic Transmission Electron Microscopy (Cryo-

TEM) analysis  

The preparation of frozen samples was performed in a EM-CPC vitrification system with 

controlled environment (Leica Microsystems, Germany). A 4 µl sample drop was placed on 

a copper grid coated with a perforated polymer film. The sample excess was removed by 

blotting with filter paper. Right after this, the grid was plunged into liquid ethane held at a 

temperature just above its freezing point (94 °K). The vitrified sample was transferred to the 

microscope for analysis. The images were obtained with a JEOL JEM-2011 microscopy (JEOL 

LTD, Tokio, Japan) operating at 120 kV. To prevent sample perturbation and the formation 

of crystals, the specimens were kept cool (77 °K) during the transfer and the viewing 

procedure. Histograms were performed by counting a population of 100 nanoparticles using 

ImageJ software.  

6.2. Methods of Chapter 3 

6.2.1. Differential Scanning Calorimetry (DSC) analysis 

DSC analysis was performed using Malvern MicroCal VP-DSC equipment (Malvern 

Instruments, UK). C1 nanoparticles at a concentration of 1 mg/ml in PBS were incubated with 

10 mg/ml of BSA for 1 h at 37 ºC. After the incubation, the samples were introduced in the 

DSC cell and analyzed by performing three temperatures cycles between 25 and 98 ºC. The 

baseline was obtained subtracting each third cycle from the respective first one using Origin® 

software.  

6.2.2. Modification of Zwitterionic polymers with Cy3 

Cy3-maleimide (1.13 mg) was dissolved in 1 ml of THF and added to a solution of 13.2 mg 

of PBMA25-DMAEMA35 dissolved in 1 ml of THF in a sealed vial. The resulting solution was 

degassed with a N2 stream. Cyclohexylamine (8.5 µl) was then added to the vial. The reaction 

was stirred in the dark for 16 h under N2 atmosphere. Then, THF was evaporated with a N2 

flow and, to remove cyclohexylamine, the product was washed twice with cold hexane to 

obtain a red precipitate, which was dissolved with 200 µl of THF before adding a solution of 
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12 mg of 1,3-propanesultone in 200 µl of THF. The reaction was stirred for 16 h at room 

temperature. The reaction turned into a red gel that was washed 3 times with cold THF, and 

the product was finally dried under vacuum to obtain the final PBMA25-SBMA35-Cy3 with 

a yield of 37.5 % (7.7 mg). For the synthesis of PBMA25-MESBMA35-Cy3, the same procedure 

was carried out. 

6.2.3. Caco-2 cell culture 

Caco-2 cells were purchased from ATCC (Manassas, VA). Cells were seeded at 4.5·103 

cells/cm2 and subcultured at 50% of confluence (5.4·104 cells/cm2) for 10 passages, changing 

the medium (complete DMEM medium containing 10% heat inactivated Fetal Bovine Serum, 

100 units/ml penicillin, 100 ug/mL streptomycin, 0.1 mM MEM Non-Essential Amino Acids 

(NEAA), 2 mM L-glutamine (Gibco)) every two days. A large stock of LD cells was produced 

and stored at -150 ºC. Cells were routinely maintained at 37 C in a 5% CO2 atmosphere in 

complete medium. 

6.2.4. Caco-2 internalization experiment 

Caco-2 aliquots were thawed and subcultured for 2 passages in complete DMEM medium.  

To perform the experiment, cells were seeded at 20% confluence and nanoparticles were 

added when they reached 60% confluence. Fluorescence images of the samples were taken 

using a fluorescence microscope (Zeiss Axiovert 200M) with the 488 nm laser line 24 hours 

after the addition of the nanoparticles.  

6.2.5. Multiple particle tracking (MPT) analysis 

NP diffusion through intestinal mucus was assessed by MPT technique using previously 

described mathematical approaches [107,217]. Samples (0.5 g) of porcine intestinal mucus 

were incubated in glass-bottom MatTek imaging dishes at 37 C. The fluorescently labelled 

NPs were inoculated into each 0.5 g mucussample in a 25 µl aliquot at a suspension 

concentration of 0.002% NPs, a dilution confirmed to reproducibly avoid particle aggregation 

at the point of inoculation into the mucus sample. To ensure effective particle distribution 

following inoculation within the mucus a 2 h period of equilibration was adopted prior to 

beginning video microscopy capture of NP movements. Video capture involved 2-
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dimensional imaging on a Leica DM IRB wide-field epifluorescence microscope (63 

magnification oil immersion lens) using a high speed camera (Allied Vision Technologies, 

UK) running at a frame rate of 33 ms i.e. capturing 30 frames s1; each completed video film 

comprised 300 frames. For each 0.5 g mucus sample approximately 120 NPs were 

simultaneously tracked and their movements captured. For any distinct NP species, e.g. a 

particular polyelectrolyte mass ratio, a minimum of three distinct mucus samples were 

analysed, i.e. minimum of 360 individual NP trajectories assessed. The tracking (over a 

maximum of 10 s) of fully intact discrete particles was confirmed by microscopic criteria, and 

particle size and zeta potential stability over 2 h. Videos were imported into Fiji ImageJ 

software to convert the movement of each NP into individual NP trajectories across the full 

duration of the 10 s videos. However, for the analysis of particle diffusion only a 30 frame 

video period (1 s) was used, with the criterion that any individual particle tracked must 

display a continuous presence in the X–Y plane throughout the respective 30 sequential 

frames. Limiting the period of analysis to 30 frames minimized the impact of mucin 

movement upon the particle diffusion calculations The individual particle trajectories were 

converted into numeric pixel data (Mosaic Particle Tracker within Fiji ImageJ) which, based 

on the microscope and video capture settings, were converted into metric distance. The 

distances moved by every individual particle over a selected time interval (Dt) in the X–Y 

trajectory were then expressed as a squared displacement (SD). The mean square 

displacement (MSD) of any single particle (n) represents the geometric mean of that particle’s 

squared displacements throughout its entire 30-frame trajectory. 

MSD was determined as follows [218]: 

 

In any single mucus sample experiment an MSD was calculated for at least each of 120 

individual particles (i.e. 120 MSD calculations) with the experiment replicated a further two 

times for any particle type, i.e. at least 360 particles studied in total. For each NP type under 

study, an ‘‘ensemble mean square displacement’’ (defined by áMSDñ) was then determined 

for each of the three replicate studies. The Effective Diffusion Coefficient (áDeffñ) for a 

particular NP type was then calculated by: 
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where 4 is a constant relating to the 2-dimensional mode of video capture and Dt is the 

selected time interval.  

Heterogeneity in particle diffusion: Profiling the diffusive properties of each particle within 

an entire population provides information on the heterogeneity of particle movement and the 

presence of outlier sub-populations that may follow distinct pathways of diffusion through 

the matrix. Here the Effective Diffusion Coefficient for each individual particle (Deff) was 

calculated at the time interval (Dt) of 1 s, and for any NP type all 360DeffDt=1s were then ranked 

to allow comparison of the highest (90th) and lowest (10th) percentiles, where for example 

the 90th percentile is the Deff value below which 90% of the Deff observations maybe found. 

6.2.6.  Curcumin encapsulation 

The encapsulation of curcumin in PBMA-SBMA nanoparticles was performed by adding 

different volumes of a solution of curcumin (50 mg/ml) in DMSO before the extrusion step, 

with an incubation time of 30 min. In the case of PBMA-PMESBMA and PBMA-PCBMA 

nanoparticles, the loading was performed by adding curcumin directly to the micelles and 

vortexing until the solution became transparent again. Finally, the samples were centrifuged 

(7,400 ×g, 5 min) to remove any unloaded curcumin. Maximum loading of curcumin was 

determined as the maximum concentration added into the system that did not present any 

pellet after the centrifugation (indicating full solubilization of the hydrophobic molecule).  

6.2.7. P. falciparum cultures and in vitro growth inhibition 

assays 

P. falciparum 3D7 was grown in vitro in human RBCs of blood group type B prepared as 

described elsewhere [219], using previously established conditions [220]. Briefly, parasites 

(thawed from glycerol stocks) were cultured at 37 °C in T25 flasks (SPL Life Sciences) in 

Roswell Park Memorial Institute (RPMI) complete medium (containing 5 g/l Albumax II and 

supplemented with 2 mM glutamine) under a gas mixture of 92% N2, 5% CO2, and 3% O2. 

Synchronized ring stage cultures were obtained by 5% sorbitol lysis [221], and the medium 

was changed every 2 days maintaining 3% hematocrit. For culture maintenance, parasitemia 
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was kept below 5% late forms by dilution with RBCs. These Plasmodium cultures (200 µl) 

were plated in 96-well plates and incubated for 48 h at 37 °C in the presence of free curcumin 

and polymer-curcumin conjugates dissolved in RPMI. Parasitemia was determined by 

microscopic counting of blood smears or by flow cytometry as previously described [222]. 

6.2.8. Targeting analysis 

Living P. falciparum cultures were incubated in complete RPMI at 37 °C for 90 min with 

gentle stirring in the presence of 0.6 mg/ml (or 0.15 mg/ml for time-lapse microscopy) of Cy3-

labeled PBMA-PSBMA and PBMA-PMESBMA polymers. After 80 min, Hoechst 33342 

nuclear stain was added at a final concentration of 2 µg/ml and cells were further incubated 

for another 10 min. For fluorescence microscopy, cells were washed twice with RPMI, diluted 

20 times in RPMI to reach 0.15% hematocrit and transferred into a Lab-Tek®II chambered 

coverglass (Nunc, Thermo Fisher Scientific; catalog number 155409). Preparations were then 

analyzed by laser scanning confocal microscopy in either a Leica TCS SP5 microscope (63× 

immersion oil objective with 1.4 numerical aperture), or a ZEISS LSM 800 microscope (100× 

immersion oil objective). Hoechst 33342 and Cy3 were detected by excitation with 405 nm 

and 514 or 561 nm lasers, respectively. Emission was collected between 415 nm and 500 nm 

for Hoechst 33342, and between 580 nm and 680 nm for Cy3. Time-lapse images were taken 

every 8 s during 55 min. For flow cytometry, cells were either washed twice with RPMI or left 

without washing before being diluted with PBS to reach a final hematocrit of 0.03%. 

Preparations were then analyzed using a LSRFortessaTM flow cytometer instrument (BD 

Biosciences) set up with the 5 lasers, 20 parameters standard configuration. The single-cell 

population was selected on a forward-side scatter scattergram. Cy3 was excited using a 

yellow-green laser (561 nm), and its fluorescence collected through a 610/20-600 nm LP filter. 

Hoechst 33342 was excited with a UV laser (350 nm), and its fluorescence collected using a 

450/50 nm filter. 

6.2.9. Body weight loss analysis 

Six-week old BALB/c mice were separated in 5 groups (n = 4) and administered 

intravenously with the different nanoparticle preparations in PBS. The weight of each mouse 

was determined every day, and they were observed carefully for sings of toxicity. Mice were 

euthanized at day 3 of the nanoparticle treatment. 
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6.2.10. Hemolysis tests 

Mice blood samples were collected from six-week old BALB/c mice and collected in 

heparinized tubes (1000 U heparin/ml). The fresh blood samples were centrifuged at 867 ×g 

for 10 min at 4 °C and supernatant was discarded. The pellet was washed in PBS and 

centrifuged again to remove traces of plasma, and finally taken up in PBS and cell 

concentration was determined with a hemocytometer to adjust RBC concentration at 8 × 109 

cells/ml. 10 µl of this erythrocyte suspension was added to 100 µl of each polymer sample in 

PBS and incubated for 10 min at 37 °C. Samples were then centrifuged, the supernatant was 

collected, and its absorbance was measured at 540 nm with a Tecan Infinity M Plex microplate 

reader (Tecan Group Ltd., Switzerland). Milli-Q® water and PBS were used as positive and 

negative controls respectively. 

6.2.11.  In vivo antimalarial assays 

To test the antimalarial activity of free and encapsulated curcumin, a 4-day blood 

suppressive test was performed as previously described [223]. Briefly, BALB/c mice were 

inoculated 2 × 107 red blood cells from Plasmodium yoelii yoelii 17XL-infected mice by 

intraperitoneal injection and the survival of mice was assayed for 16 days. In order to test the 

prophylactic activity of curcumin, treatment started 1 day before infection (day ‒1), and 

consisted of a dose of 100 mg kg−1 day−1 curcumin administered by oral delivery of 200 µl of 

a 10 mg/ml curcumin solution (in free form or incorporated in PBMA-PMESBMA 

nanoparticles) followed by identical dose administration for the next 3 days. The samples 

were prepared at appropriate concentrations in water and the control groups received PBS. 

6.2.12. In vivo determination of polymers in pRBCs after oral 

administration 

A BALB/c mouse was inoculated intraperitoneally with 100 µl of a P. yoelii yoelii 17XL 

(PyL) MRA-267 frozen stock, and after 4 days blood was extracted from the tail and the 

parasitemia was checked by Giemsa staining. The infected mouse was anesthetized and total 

blood was obtained with an intracardiac puncture in the presence of ca. 10% EDTA (w/v). 

Blood was washed (sterile PBS, 500 ×g, 10 min), reconstituted in PBS, and 100 µl of this 
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reconstituted blood were used to inoculate intraperitoneally BALB/c mice with ca. 2 × 106 

RBCs from the infected mouse. Five days post-infection, 200 µl of 1.5 mg/ml Cy3-PBMA-

SBMA or 10 mg/ml Cy3-PBMA-MESBMA polymers (dissolved in PBS and Milli-Q® H2O, 

respectively) were administered by oral gavage, and blood samples were taken from the tail 

20 min and 1, 2, and 4 h post-administration. A control blood sample was also removed just 

before administration. Samples were preserved at 4 °C in sterile PBS containing 1% EDTA 

(w/v) until their microscopic analysis, for which they were diluted 1:40 in 1× PBS containing 

2 µg/ml Hoechst 33342. Images were collected with a Leica TCS SP5 fluorescence confocal 

microscope (Mannheim, Germany) using a 63× oil immersion objective. Cy3 was excited with 

a 514 nm line of an Argon laser and Hoechst 33342 with a 405 nm line of a diode laser. To 

avoid crosstalk between the different fluorescence signals, a sequential scanning was 

performed. 

6.2.13. Paclitaxel (PTX) encapsulation 

PTX was encapsulated in PBMA-PMESBMA and PBMA-PCBMA nanoaparticles using the 

same procedure used for curcumin. A 50 mg/ml PTX solution was prepared in DMSO and 

added directly to the micelle solution. The samples were vortexed until the solutions became 

transparent. Finally, the samples were centrifuged (7,400 ×g, 5 min) to remove any unloaded 

PTX. Maximum PTX concentration was determined as the concentration in which pellet was 

not observed after centrifugation.  

6.2.14. HeLa cell line culture 

HeLa cells were purchased from ATCC (Manassas, VA). Cells were seeded at 20% 

confluence and passages were performed when confluence reached 80%. Medium  (complete 

DMEM medium containing 10% heat inactivated Fetal Bovine Serum, 100 units/ml penicillin, 

100 ug/mL streptomycin, 0.1 mM MEM Non-Essential Amino Acids (NEAA), 2 mM L-

glutamine (Gibco)) was changed every two days. 

6.2.15. Incucyte ® live-cell analysis 

HeLa cells were seeded at 30 % confluence in complete medium. After 24 hours, the 

different samples were added to the cells and they were incubated in the Incucyte® live-cell 
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analysis incubator (Sartorius, Germany). Images of cells were taken with a frequency of 1 

hour. The images were analyzed using Incucyte® live analysis software to determine the % 

confluence at each time-point.  

6.2.16. MTT toxicity assay 

PTX loaded PBMA-PMESBMA and PBMA-CBMA nanoparticles antitumoral activity was 

measured using MTT assay (Sigma-Aldrich) at 24 hours after incubation. MTT assay 

measures the activity of living cells via mitochondrial dehydrogenase activity. Briefly, MTT 

stock solution (5 mg/mL) was added to each culture well, being assayed to equal one-tenth of 

the original culture volume and incubated for 3 h. After that, DMSO was added in an amount 

equal to the original culture volume. Finally, the cell viability was determined by measuring 

the absorbance at 570 nm using a microplate reader (Elx808 Biotek Instrument Ltd, USA). Cell 

viability was expressed as a relative percentage compared with untreated cells. 

6.2.17. Introduction of S12 targetting peptide  

We used EDC/NHS coupling to modify nanoparticle surface of C1. To a solution of C1 

nanoparticles 10/mg/ml in MES buffer 20 mM (pH=5.4), there were added 2 µl of a 1 µg/ml 

solution of NHS in water  and 3.6 µl of a 1 µg/ml solution of EDC in water. The samples were 

incubated during 6 hours at room temperature. Then, PBS 10X was added to the solution to 

change the pH to 7.8. 5.8 µl of a 1 µg/ml solution of N-(2-aminoethyl) maleimide 

trifluoroacetate salt in water was added to the sample, that was incubated during 2 hours. 

Finally, Cys-terminated S12 peptide was added to the solution in a concentration of 2.9 µg/ml 

and incubated for 16 hours. The modified samples were used directly after this step.  

6.2.18. U87 cell culture 

U87 glioblastoma cells were purchased from ATCC (Manassas, VA). Cells were seeded at 

20% confluence and passages were performed when confluence reached 80%. Medium  

(complete DMEM medium containing 10% heat inactivated Fetal Bovine Serum, 100 units/ml 

penicillin, 100 ug/mL streptomycin, 0.1 mM MEM Non-Essential Amino Acids (NEAA), 2 

mM L-glutamine (Gibco)) was changed every two days.  
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6.2.19. S12 targetting evaluation 

Coumarin-6 was used as a fluorescent probe to determine nanoparticle internalization. 20µl 

of a solution of coumarin in ethanol (0.5 mg/ml) was added to the previous prepared samples. 

U87 cells were seeded at 30% confluence and, after incubating 24 hours, the different samples 

were added to the cells. Medium was changed 6 hours after the addition of the samples and 

the fluorescence of coumarin was determined using a fluorescence microscope (Zeiss 

Axiovert 200M) with the 405 nm laser line. 

6.3. Methods of Chapter 4 

6.3.1. Synthesis of carboxybetaine methacrylate (CB) 

The synthesis of carboxybetaine methacrylate (CB) was adapted from elsewhere[188]. 

Briefly, 140 mL of acrylic acid (AA) were added to 170 mL of N,N-dimethyl(aminoethyl) 

methacrylate (DMAEMA) in an ice bath. The solution was stirred for 30 min at 0 ºC and 4 

hours at room temperature. 100 mL of ethanol were added to the reaction and the solution 

was stirred at room temperature for 12 hours. Ethanol was removed at reduced pressure and 

the resulting liquid was added to a 1 L solution of diethyl ether/trimethylamine (8:2). A white 

solid precipitated, it was filtered and then cleaned with ethyl ether. The resulting white solid 

was dried under vacuum (85 g, 35% yield).  

6.3.2. Synthesis of sulfobetaine methacrylate (SB) 

50 mL of DMAEMA were added to 250 mL of tetrahydrofuran (THF). 44 g of 

propanesultone were dissolved in 250 mL of THF and then were added to the solution in an 

ice bath. The solution was stirred overnight. A white solid precipitated from the reaction, it 

was filtered, cleaned with THF, and dried under vacuum (56 g, 73% yield).  

6.3.3. Synthesis of carboxybetaine dimethacrylate (CBX) 

The synthesis of carboxybetaine dimethacrylate (CBX) was adapted from a protocol 

developed in Jiang’s lab [224] in which they synthesized a carboxybetaine moiety with two 

methacrylate groups. First, 11.9 g of N-methyldiethanolamine, 100 mL of toluene, 21.5 g of 
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methacrylic acid and 2 g of hydroquinone were added to a 500 mL reaction flask fitted with 

a stirrer, condenser, and Dean-Star trap. 14.4 g of methanesulfonic acid were added and the 

mixture was heated to reflux. After 6 hours, the solution was cooled to room temperature. 

The mixture was neutralized with aqueous sodium hydroxide and the aqueous phase was 

removed in a decantation funnel. The organic phase was washed with 10% brine solution and 

it was dried with anhydrous magnesium sulphate. Alumina free base was added to the 

solution and filtered. Toluene was removed under vacuum to obtain N-

methyldiethanolamine dimethacrylate (Figure S3) as a colorless liquid with a yield of 65% 

(16.5 g). Next, 16.5 g of N-methyldiethanolamine dimethacrylate were dissolved in 150 mL of 

acetonitrile in a 500 mL round flask. The solution was purged with nitrogen for 20 min and 

15.2 g of t-butyl bromoacetate were added to the solution. The solution was purged again 

with nitrogen during 10 min and the solution was stirred during 48 h at 60 ºC. The solvent 

was removed under vacuum and the resulting liquid was added to 500 mL of diethyl ether, 

in which a white solid precipitates. This solid (N-Methyl-N-di(2-methacryloyloxy-ethyl)-N-1-

(t-butyloxycarbonylmethyl) is cleaned with 250 mL of diethyl ether and dried under vacuum. 

The yield of this step is 86% (25.0 g). Finally, the tert-butyl protecting group was removed by 

adding 60 mL of trifluoroacetic acid and 240 mL of dichloromethane to 20 g of N-Methyl-N-

di(2-methacryloyloxy-ethyl)-N-1-(t-butyloxycarbonylmethyl). The reaction was stirred for 40 

hours at room temperature and then the solvent was evaporated under vacuum. 200 mL of 

acetonitrile were added to the remaining liquid and Amberlite® IRN 78 free base was added 

to the solution to neutralize it. Acetonitrile was removed under vacuum and the resulting 

liquid was precipitated in diethyl ether to obtain a white solid. This solid (Figure S5) was 

cleaned with diethyl ether and was dried in vacuum. The yield of this step was 51% (7.1 g).  

6.3.4. Synthesis of sulfobetaine dimethacrylate (SBX) 

The synthesis of SBX was adapted from elsewhere [189], starting from N-

methyldiethanolamine dimethacrylate, a mid-product of CBX synthesis. 10 g of N-

methyldiethanolamine dimethacrylate were dissolved in 50 mL of anhydrous acetone. 5.75 g 

of propanesultone were dissolved in 25 mL of anhydrous acetone and were added to the 

previous solution. The reaction was stirred for 5 hours at 60 ºC, and a white solid appeared. 

The solid was filtered, cleaned with anhydrous acetone, and dried in vacuum. The yield was 

64% (10.0 g).  
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6.3.5. UV photopolymerization of zwitterionic photoresists 

Photoresists formulations of CB/CBX and SB/SBX in deionized water with concentrations 

of 10%, 17%, 40%, and 60% (w/w) and variable crosslinking ratio were prepared and 

investigated. Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) photoinitiator was 

added to the formulation to a 4.3% (w/w) to monomer content. In situ photopolymerization 

was analyzed in a TA Instruments Discovery HR-2 rheometer with a photorheology accessory 

and an external UV light source (Omnicure series 2000 UV lamp, broadband 320–500 nm). 

Photorheology measurements were performed at 0.1% strain and a frequency of 10 rad/s. 

6.3.6. 3D microprinting (two-photon polymerization) 

Helical microrobots (single helix, 20 µm long, 5 µm in diameter, 2 µm in thread diameter, 7 

µm in pitch) were designed in Solidworks, and CAD files were prepared for printing using 

Describe software (Nanoscribe GmbH). Water-based zwitterionic photoresists were prepared 

at the desired crosslinking ratio and concentration, with 4.3 % (w/w) LAP photoinitiator. For 

example, C100 at 60 % (w/w) photoresists were prepared by dissolving 30 mg of CBX and 

1.35 mg of LAP in 20 µL of deionized water and sonicated for 5 min. The photoresist was then 

placed on a glass slide and transferred for 3D-printing via two-photon polymerization in a 

Photonic Professional system (Nanoscribe GmbH) with a 63x oil-immersion objective (NA 

1.4). For better printing results, printing parameters were optimized to a laser power of 20 

mW and scanning speed of 104 µm/s. The photoresist concentration and crosslinking ratio 

were optimized for optimal resolution, reproducibility, and microstructure stability. The 

approximated printing time for a single helical microrobot was 20 seconds. To print magnetic 

microrobots, dextran-coated 50 nm iron oxide magnetic nanoparticles (Chemicell GmbH) 

were added to the photoresist formulation prior to printing at a concentration of 12.5 mg/mL 

and were printed using the same parameters. PEG-based microrobots were printed with 

poly(ethylene glycol) diacrylate (PEGDA, Mn ≈ 250) containing 3% (w/v) Irgacure 369 

photoinitiator. 27.5 mW laser power ad scanning speed of 1.16·104 µm/s were used for all 

printings. The overall printing rate was measured as approximately 10 s for a single helical 

microrobot. 
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6.3.7. J774A.1 and THP-1 cell culture conditions 

All cell culture was performed in sterile conditions under or within a biosafety cabinet. The 

cell culture medium used for each cell line was prepared as DMEM (Dulbecco’s Essential 

Medium) (Gibco) supplemented with 10% HI-FBS (heat-inactivated Fetal Bovine Serum) 

(Gibco) with 1% Penicillin & Streptomycin (Gibco). All cells were stored under standard cell 

culture conditions, 5% CO2, 80% humidity, and 37°C.  

6.3.8. J774A.1 Cell Culture 

Murine macrophage cells (J774A.1) were purchased from ATCC. The cells were 

characterized by surface markers (CD11b, CD80, CD206), morphology, and ability to 

phagocyte. The cells were thawed from cryopreservation at passage 3. The cellular passages 

for the experiments was between passages 5 up to passage 25. J774A cells were allowed to 

reach ~80% confluence, observed by microscopy. The cellular removal procedure was 

performed by rinsing with DPBS without Ca2+ and Mg2+ for 5 min. After aspiration of DPBS, 

a fresh addition of medium was added. The cells were then removed from the flask by cell 

scraper and counted with a hemocytometer. A cell suspension of 5·104 cells per mL was 

created. 

6.3.9. THP-1 Cell Culture 

Human monocyte non-adherent cell line THP-1 cells were purchased from ATCC. The cell 

culture medium was also DMEM. The cells were thawed from cryopreservation at passage 2.  

Due to the non-adherent nature of the THP-1 cells, the passage procedure is centrifugation at 

400 x g for 5 min. Then the cells were resuspended to a density of 5·104 cells per mL in DMEM. 

The final volume of media and cells added to microrobots was 1·106 cells in 2 mL of DMEM. 

6.3.10. Murine Spleen Isolation/Harvest 

Mouse spleen was provided by the Facility for Animal Welfare, Veterinary Service and 

Laboratory Animal Science at the Eberhard Karls Universität Tübingen. Immediately after 

sacrificing, the spleen was removed and kept in PBS without Ca2+/Mg2+ at 4°C. The time 

between harvest and isolation step was ~2 hours. The spleen was passed through a 70 µm cell 
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strainer (Corning®) containing Roswell Park Memorial Institute (RPMI) 1640 medium in a 50 

mL conical tube. This suspension was centrifuged at 800 x g for 5 min. The supernatant was 

aspirated off and the pellet of cells was resuspended in 1 mL of (ACK) Ammonium-Chloride-

Potassium Lysing Buffer for the lysis of red blood cells. This suspension was kept at room 

temperature for 5 min. The cell suspension was then diluted with 9 mL of RPMI 1640 and 

centrifuged again. The cells were then resuspended with fresh RPMI 1640 and counted. The 

cell density was calculated and prepared as a 1 million cell suspension in 2 mL of RPMI 1640 

which was added to the microrobots. 

6.3.11. Cell viability of ZW hydrogels 

J774A.1 cells were allowed to reach ~80% confluence. The cellular removal procedure was 

performed by rinsing with Dulbecco’s phosphate-buffered saline (DPBS) without Ca+ and 

Mg+ for 5 min. After aspiration of DPBS a fresh addition of medium was added. The cells 

were then removed from the flask by cell scraper and counted by hemocytometer. A cell 

suspension of 5·104 cells per mL was created. The samples were placed within trans-well 

inserts of 6.5 mm diameter with 8.0 µm pore size. After mixing, the cell suspension was added 

to the wells of the plate containing samples at 5·104 per well. After attachment, the media was 

aspirated and replaced with 800 µL of media placed into the bottom of the well, 200 µL of 

media placed into the top compartment of the trans-well insert already containing the sample. 

The plates were placed into standard culture conditions and incubated for 24 hours of 

exposure time. Following the 24 hours exposure time, the plates were removed and visually 

observed. The media was collected and stored at 4°C until analyzed for other markers. A 

batch of 10% water-soluble tetrazolium salt (WST-8) into cell culture media was prepared. 

Approximately 200 µL of the WST-8 dilution was placed into the wells containing cells. This 

was incubated at standard culture conditions for ~1 hour before the media was removed and 

placed into a 96-well plate. This was measured at 450 nm on a spectrophotometer. After the 

removal of the WST-8 the wells were rinsed with DPBS and a Live/Dead stain was added to 

the well. This Live/Dead stain was incubated at room temperature for 20 min before being 

observed by a fluorescence microscope (Nikon Eclipse Ti-E, Tokyo, Japan). The live cells were 

imaged at 494/518 nm, while the dead cells were imaged at 528/617 nm. Images were analyzed 

with Fiji software (ImageJ version 1.52g). 
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6.3.12. Cell adhesion on ZW hydrogels 

J774A.1 cell suspension of 5·104 cells per mL was prepared as described above and added 

to the 24-well cell culture plates containing samples at 5·104 per well. After a 24 hour exposure 

time the plates were removed and observed by microscopy. The initial 24 hour images were 

then taken at 10x magnification at the bottom of the plate and the surface of the samples. A 

subsequent 24 hours were allowed to pass and the samples were immersed in DPBS and 

moved gently to ensure a full rinse. The samples were then placed into fresh medium. The 

final images were taken at 48 h post cell culture addition and after DPBS rinsing.  

6.3.13. Protein adsorption on ZW microrobots 

Microrobot arrays were printed from PEGDA, IP-S (commercial photoresist, Nanoscribe 

GmbH), S30, C30, S100, and C100 photoresists. Microrobots were immersed in 10 µg/mL 

albumin from bovine serum (BSA), Alexa Fluor® 647 conjugate in PBS for 2 hours, and were 

then rinsed with DI water. 

6.3.14. Cell inspection of microrobots 

Cell suspensions were prepared as described above for each cell type. Cell suspension were 

added to a petri dish containing 3D-printed microrobots. The samples cultured with J774A.1 

were kept at standard culture conditions for 1 hour to allow attachment. Then the samples 

were moved to the incubation chamber of the Nikon Spinning Disk microscope and a time-

lapse recording was initiated with images taken every 5 min. The samples cultured with THP-

1 or splenocytes were moved to microscope enclosure at standard culture conditions 

immediately following seeding. The interaction between microrobots and immune cells was 

monitored, analyzing every contact interaction and whether the microrobots were detected 

and phagocyted or not detected and released. Arrays of 7x7 microrobots were analyzed in 

triplicates (at least 147 microrobots for every material formulation). As a representative figure 

of merit, the number of phagocyted robots was normalized by the number of contact 

interactions. 
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6.3.15. Scanning Electron Microscopy 

Samples with cells were fixed with 2.5% (v/v) glutaraldehyde in 1x PBS for 30 min at 4°C 

and then rinsed 3 times with 1x PBS. After that, they were dehydrated in a series of increasing 

aqueous ethanol concentrations (20%, 40%, 60%, 80%, and 100%) for 3 min in each solution. 

Then, the samples were dried using a CO2 critical point dryer (Leica EM CPD300, Leica 

Microsystems, Wetzlar, Germany) and coated with 10 nm gold using a spin coater (Leica EM 

ACE600, Leica Microsystems, Wetzlar, Germany). Finally, they were examined with a Zeiss 

Ultra 550 Gemini scanning electron microscope (Carl Zeiss Inc., Oberkochen, Germany) using 

an accelerating voltage of 5 keV. 

6.3.16. Magnetic actuation of microrobots 

Although the magnetic nanoparticles in the photoresist were homogeneously distributed, 

the microrobots were actuated via magnetic torque due to the anisotropic geometry of the 

microstructures. Magnetic microrobots were actuated using a custom-built five-

electromagnetic coil system (5-coil setup: 4 x-y coils and 1 z coil, each 1.6 cm in diameter and 

3.5 cm long) mounted on an inverted microscope that generated variable magnetic fields 

(5x5x1 mm3 of workspace, field range of 0-10 mT, and current range of +/- 10 A). Electric 

currents through the coils were calculated to minimize magnetic field spatial gradients. 

Rotating 10 mT magnetic fields at variable frequency and orientation were used to induce 

torque to propel and steer the microrobots along programmable trajectories. 

6.3.17. Biomolecule encapsulation in 3D-printed zwitterionic 

microstructures 

FITC-labeled BSA (Sigma Aldrich), AlexaFluor®647-labeled BSA (AlexaFluor), and DOX 

(LifeTein LLC) were simultaneously added to the photoresist formulation to a concentration 

of 1 mg/mL each. The photoresists were directly transferred to printing with the previous 

printing parameters without any additional step. The printed microstructures were 

thoroughly rinsed to remove non-polymerized photoresist and were imaged in a Nikon Ti-E 

fluorescence microscope. 
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6.3.18. Microrobot functionalization for light-triggered 

controlled drug release 

Microrobots were printed with CB30 (i.e., 70 % CB, 30 % CBX) and further functionalized 

with DOX molecules through a photocleavable linker. First, free amine groups were 

introduced to the surface of microrobots via EDC/NHS coupling to the carboxybetaine 

carboxylic groups. Microrobots were incubated for 4 hours in 10 mM of 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide and 20 mM of N-hydroxysuccinimide in a 0.1 M MES 

buffer (pH=5.5). Microrobots were then rinsed with PBS and incubated in 0.1 M of 

butyldiamine in PBS overnight, and were then rinsed with DI water and dimethyl sulfoxide. 

Next, microrobots were incubated in a solution containing 2.5 mM of 1-(5-methoxy-2-nitro-4-

prop-2-ynyloxyphenyl)ethyl N-succinimidyl carbonate (a photocleavable o-nitrobenzyl 

linker, LifeTein LLC, Somerset, NJ) for 3 hours, and then rinsed with DMSO. Last, copper (I) 

catalyzed azide-alkyne click chemistry was performed to bond an azide-modified DOX 

(LifeTein LLC) with the alkyne end of the photocleavable linker. A 50 mM of azide-DOX, 100 

µM CuSO4, 5 mM sodium ascorbate, and 500 µM tris(3-hydroxypropyltriazolylmethyl)amine 

solution was prepared and microrobots were incubated in it during 2 hours. Samples were 

rinsed with DI water to remove excess DOX. Light-triggered DOX release from the 

functionalized microrobots was performed using a 365 nm UV external light source (55 

mW/cm2) source. Drug release from the microswimmers was measured using an inverted 

fluorescence microscope (Nikon Eclipse Ti-E, Tokyo, Japan).  
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