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... "El viaje no acaba nunca. Sólo los viajeros

acaban. E incluso éstos pueden prolongarse

en memoria, en recuerdo, en relatos...

El objetivo de un viaje es sólo el inicio de

otro."

José Saramago.
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Abstract

A pervasive amount of real systems can, in a broad sense, be said to be complex, i.e.,

they are made of a large number of interacting components, and display collective be-

havior that can not be inferred from the behaviors of the individual parts. A particular

approach to study them is to consider them as networks, with its components repre-

sented as nodes and the interactions between them as links. Systems like the financial

market, the brain, and the Internet are frequently studied as complex networks. Un-

der this view, we find a large body of research focused on putting to light the interplay

between structure and dynamics: exploring how the dynamical behavior of a complex

network is constrained by the nature of the interactions between its elements, as well

as by the topology of such interactions. These analyses are usually performed at three

different scales: the microscale based on single node properties, the macroscale that ex-

plores global properties of the whole network, and the mesoscale based on the properties

of groups of nodes. Nonetheless, most studies so far have focused exclusively on either

of them, despite the increasing evidence suggesting that networks often exhibit struc-

tures at several scales of organization. Thus, understanding the interrelations between

the macro- and mesoscale structures represents a major challenge.

In this thesis, we apply structural network analysis to a variety of synthetic and em-

pirical systems at meso- and macroscale. The thesis organizes in three main parts:

In the first part (Chapter 1), we provide a brief introduction to complex networks, its

origins, and significant breakthroughs. We introduce the associated literature focused

on the study of nested (at macroscale), and modular, and in-block nested structural

arrangements (at mesoscale), its definitions, dynamical implications, metrics, etc.

In the second part, we focus on an examination of the structural properties of the in-

block nestedness and its relationship with nestedness and modularity. We start with an

empirical, analytical, and numerical exploration, proving that the in-block nestedness

objective function lacks a resolution limit (Chapter 2). Then, in Chapter 3, we disen-

tangle the effects that nestedness, modularity, and in- block nestedness, impose on each

other, in uni- and bipartite settings. Through an analytical, numerical, and empirical

study, we show that purely structural constraints forbid interactions to be completely

modular and completely nested at the same time, with ample room, however, for a wide

range of intermediate possibilities.
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We devote part three of the thesis to perform a combination of empirical work and

theoretical modeling that will help us to better understand some of the mechanisms

that enable the emergence of nested, modular, or in-block nested patterns. Specifically,

in Chapter 4, we analyze the patterns of interaction between the developers and files

than compose a set of open-source projects (OSS) aiming to identify their relevance in

the OSS communities. These analyses show that indeed the interaction patterns of the

projects evolve into internally organized blocks. Moreover, the sizes of those blocks are

bounded, and such size is compatible with the Dunbar number, regardless of the total

size of the projects. Finally, in Chapter 5, we introduce an ecology-inspired modeling

framework that explains the structural transitions between the observed nestedness and

modularity in real information ecosystems. The model builds on the idea that the net-

work structure is driven by an optimization process, aiming at maximizing the visibility

of the involved actors. In addition, we present evidence that these systems exhibit a

remarkable structural resilience or elasticity to environmental changes.

We complete the thesis in Chapter 6, where we offer the main conclusions derived

from the realization of this work and a discussion about possible directions for future

works.



Resumen

Una gran cantidad de sistemas tales como el mercado financiero, el cerebro y el Inter-

net son, en un sentido amplio, sistemas complejos. Es decir, están formados por una gran

cantidad de elementos que interactúan entre sí, y exhiben un comportamiento colectivo

que no puede ser inferido partir de las propiedades de sus elementos aislados. Éstos

sistemas suelen estudiarse representándolos como redes, donde los elementos que los

componen constituyen sus nodos, y las interacciones entre ellos constituyen los enlaces.
La investigación en redes, se enfoca principalmente en el estudio de sus propiedades

dinámicas y topológicas. Especificamente, en explorar cómo el comportamiento dinámico

de una red está influenciado por la naturaleza de las interacciones entre sus elementos,

y por la topología de las mismas. Estos análisis son usualmente realizados a tres escalas:

la microescala, basada en las propiedades de los nodos individuales, la macroescala que

explora las propiedades globales de toda la red y la mesoescala basada en las propiedades

de grupos de nodos. Sin embargo, la mayoría de los estudios se centran en una escala

a la vez, a pesar de la creciente evidencia que sugiere que las redes a menudo exhiben

estructura a múltiples escalas de organización.

En esta tesis, estudiamos las propiedades estructurales de redes, sintéticas y empirí-

cas a escala múltiple. La tesis está organizada en tres partes:

En la primera parte (Capítulo 1), presentamos una breve introducción al campo de

las redes complejas. En particular, repasaremos la literatura enfocada al estudio de

patrones estructurales anidados (o nested), en la macroescala, y patrones modulares y

anidados en bloque (in-block nested), en la mesoescala.

En la segunda parte, nos enfocaremos en estudiar a profundidad las propiedades

estructurales de los patrones in-block nested y su relación con los patrones anidados

y modulares. Empezamos el Capítulo2 con una demostración empiríca, numérica y

analítica de que la función objetivo para la caracterización de patrones in-block nested

carece de un límite de resolución similar al observado en funciones objetivo similares.

Luego, en el Capítulo 3, mediante un estudio analítico, numérico y empírico, aplicado

tanto a redes unipartitas como a bipartitas, demostramos que existen restricciones in-

herentes que prohíben que, a nivel general, los patrones de interacción en redes sean

completamente modulares y completamente anidados al mismo tiempo, dejando espa-

cio para un amplio rango de configuraciones intermedias.
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viii RESUMEN

Dedicamos la tercera parte de la tesis a realizar una combinación de trabajo empírico

y de modelado teórico para explorar en detalle algunos de los mecanismos que permiten

la emergencia de patrones estructurales. Específicamente, en el Capítulo 4, analizamos

los patrones de interacción entre los desarrolladores y los archivos que componen di-

versos proyectos de software de código abierto. Mediante estos análisis demostramos

que, los patrones de interacción de los proyectos evolucionan hacia una estructura de

bloques, que están organizados internamente de forma jerárquica. A su vez, probamos

que los tamaños de los subgrupos están delimitados, independientemente del tamaño

total de los proyectos. Dicho tamaño es compatible con el número de Dunbar, reportado

en diversos entornos sociales. Finalmente, en el Capítulo 5, introducimos un modelo

dinámico que adapta una serie de conceptos ampliamente usados en ecología, para ex-

plicar como se llevan a cabo las diversas transiciones entre los patrones anidados y mod-

ulares, observadas en redes de información reales. Presentamos evidencia de que dichos

patrones son estructuralmente resilientes y elásticos ante perturbaciones del entorno.

Finalmente el Capítulo 6, contiene las Conclusiones en las cuales se discuten los

resultados obtenidos en esta Tesis y se plantean diversos problemas que quedan abiertos

para estudio futuro.



Resum

Una gran quantitat de sistemes com el mercat financer, el cervell, i nternet són, en un

sentit ampli, sistemes complexos. És a dir, estan format per una gran quantitat d’elements

que interactuen entre sí, i exhibeixen un comportament col·lectiu que no es pot inferir

des de les propietats del seus elements aillats. Sovint, aquests sistemes s’estudien mit-

jançant xarxes, on els elements constituents són els nodes, i les interaccions entre ells es

representen amb enllaços. La recerca en xarxes, s’enfoca principalment en l’estudi de les

seves propietats dinàmiques i topològiques. Especialment, en explorar com el comporta-

ment dinàmic d’una xarxa està definit per la naturalesa de les interaccions entre el seus

elements, i per la topologia de les mateixes. Aquest anàlisis sovint es fan en tres escales:

la microescala, que es basa en les propietats de els nodes individuals, la macroescala

que explora les propietats globals de tota la xarxa i la mesoescala que es basa en les

propietats de grups de nodes. No obstant això, la majoria dels estudis es centren només

en una escala, tot i la creixen evidencia que suggereix que les xarxes sovint exhibeixen

estructura a múltiples escales d’organització.

En aquesta tesis, estudiarem les propietats estructurals de les xarxes, sintètiques i

empíriques, a escala múltiple. La tesi s’organitza en tres parts: En la primera part (Capí-

tol 1), es presenta una breu introducció al camp de les xarxes complexes. En particular,

repassarem la literatura enfocada a l’estudi dels patrons estructurals anidats (o nested en

anglès), a la macroescala, modulars i anidats a blocs (in-block nested), a la mesoescala.

La segona part, es centra en estudiar en profunditat les propietats estructurals dels

patrons in-block nested i la seva relació amb els patrons anidats i modulars. Començaren

el Capítol 2 amb una demostració empírica, numèrica i analítica de com la funció objec-

tiu, emprada per a la caracterització de patrons in-block nested manca d’un límit de res-

olució similar a l’observat en altres funcions objectiu similars. Després, en el Capítol 3,

mitjançant un estudi analític, numèric i empíric, aplicat tant a xarxes unipartitas com

a bipartitas, demostrarem que existeixen restriccions inherents que prohibeixen que, a

nivell general, els patrons d’interacció en xarxes siguin completament modulars i com-

pletament nested a el mateix temps, deixant espai per a un ample rang de configuracions

intermèdies.

Dediquem la tercera part de la tesi a realitzar una combinació de treball empíric

i de modelatge teòric per explorar en detall alguns dels mecanismes que permeten
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l’emergència de aquests patrons estructurals. Específicament, en el Capítol 4, anal-

itzarem els patrons d’interacció entre desenvolupadors de software i els fitxers que

componen diversos projectes de software de codi lliure. Mitjançant aquests anàlisis

demostrarem que, els patrons d’interacció dels projectes evolucionen cap a una estruc-

tura de blocs, que estan organitzats internament de forma jeràrquica. Al mateix temps,

trobem que les mides dels subgrups estan delimitades, independentment de la mida

total dels projectes. Aquesta mida és compatible amb el nombre de Dunbar, reportat en

diversos entorns socials. Finalment, en el Capítol 5, introduïm un model dinàmic que

adapta una sèrie de conceptes àmpliament usats en ecologia, per explicar com es duen a

terme les diverses transicions entre els patrons anidats i modulars, observats en xarxes

de informació reals. Presentem evidències que aquests patrons son estructuralment

robustos i elàstics davant pertorbacions de l’entorn.

Finalment, el Capítol 6 conté les conclusions en les quals es discuteixen els resultats

obtinguts en aquesta Tesis y es plantegen divers problemes que queden oberts per a

estudis futurs.
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Chapter 1
Complex networks: micro-, meso- and

macroscale structure.

1.1 Introduction to complex networks

What do neurons interacting inside our brain, people moving around a city, birds

flocking during migration, and proteins interacting inside cells have in common? They

all can be seen as systems composed of several elements, which behavior cannot be fully

understood without considering the interactions of its constituent parts, and whose pat-

terns of connection are neither regular nor random. Complexity science is an interdis-

ciplinary field that aims to understand the structural and dynamical properties of such

systems: how they arise, how they evolve over time, and how the dynamics that take

place on these systems operate. For example, by studying how their connectivity pat-

terns influences the emergence of collective behaviors, such as synchronization [1], or

its effect in other processes like epidemic spreading [2], to name a few. In the study

of complex systems, networks play a central role: many complex systems can be repre-

sented as networks in which a node represents an entity (e.g., a person, a protein), and a

link represents an interaction between these two entities (e.g., a friendship or a physio-

chemical interaction). At the same time, the many types of interactions that take place

in a complex system (e.g. time-changing, stochastic, or nonlinear), can all be described

within a network formalism [3–6].

The study of networks dates back to the 18th century with the development of graph

theory, a branch of discrete mathematics initiated by the work of Leonhard Euler on

the solution to the Königsberg bridge problem. Euler proved that the problem had no

solution and laid the foundations of graph theory. Regular graphs were deeply used

since then, and it was not until the late 1950’s, when Paul Erdös and Alfréd Rényi,

combined concepts of graph theory and probability theory to describe networks with

complex topology as random graphs [7–9], triggering an intensive amount of studies
3
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focusing on them [10–12].

Later on, in 1998 Watts and Strogatz, inspired by the work of the psychologist Stan-

ley Milgram [13, 14], who introduced the concept of small-world, found that many real

networks–social, biological or technological– were characterized by a low characteris-

tic path length, but also by a high clustering coefficient that could not be captured by

traditional approximations based on regular or random graphs. They defined the net-

works with this mixed properties as small-world networks, and introduced a model that

recovers such properties [15]. Shortly after, in 1999, Barabási-Albert discovered that

the distribution on the number of links of a network’s nodes is highly heterogeneous

or scale-free, following a power law [16]. They proposed a model to generate networks

with such type of degree distribution by recurring to preferential attachment processes,

where nodes are sequentially added to the network, attaching them to the existing nodes

with a probability proportional to their number of connections. The development of the

models introduced in these two papers, along with the increased power of modern com-

puters, the availability of large datasets, and the development of powerful data analysis

tools, have marked the beginning of modern network theory. From that moment, we

have witnessed the evolution of the field, and ever since, many other contributions have

increased our understanding of networked systems.

Roughly speaking, a network can be characterized at three different scales: micro-

(at the level of single nodes or links), meso- (groups of few nodes), and macro-scale (the

network as a whole). Many different metrics have been proposed for each one of these

scales, and all of them have proven to be essential to determine many network proper-

ties such as robustness [17] and resilience to attacks [18], and dynamical processes like

information spreading [19, 20]. In the ecological literature for example, macro-scale fea-

tures such as gradient [21], spatial turnover [22], checkerboard [23, 24], and segregation

[25] patterns have been deeply explored. At the meso-scale, core-periphery [26, 27] or

combined [21] structures have also attracted the focus of researchers.

But undoubtedly, two particular patterns have concentrated special attention of the

researchers, especially within the ecological context: nestedness and modularity. Modu-

larity [28–32], a meso-scale pattern [33, 34], that considers the organization of species as

a set of cohesive subgroups. It assumes that the species within the group interact among

them with larger frequency than with species belonging to other groups [35], and is a

widespread organizational structure [36–40]. Nestedness [41, 42], a prominent macro-

scale pattern, that was first described by ecologists, and that quantifies to what extent

specialists nodes (low connectivity nodes) interact with proper subset of those nodes

interacting with generalists nodes (high connectivity nodes) [43, 44]. It stands as a fre-

quent emergent structural arrangement, that has also been observed in Ecology [41, 45],

in Economy [46–48] and information systems [49]. For this reason, these two patterns–

nestedness and modularity– will be explored in depth in Sections 1.4.3 and 1.5.1, re-

spectively.
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Not less important, the presence of compound modular-nested –or in-block nested–

structures on empirical networks has also been assessed [21, 50–53]. The evidence from

these studies suggests that, since a system can integrate properties from distinct orga-

nizations at different scales, in-block nested patterns may play a prominent role in the

dynamical processes of many systems. However, a full understanding of the conditions

for the emergence of in-block nested patterns, and its relationship with nestedness and

modularity remains unstudied, and is one of the problems that will be addressed in

this thesis. Unraveling the relationships between these patterns may shed light on the

dynamical trade-offs that either arrangement can facilitate.

This thesis aims to explore the relationship between nested, modular and in-block

nested organizational patterns, i.e, how they affect each other. We will investigate how

the transitions between nested and modular structural configurations occur, and to what

extent this hybrid in-block nested pattern is indeed a transitional organization between

them. Last but not least, we will perform extensive structural analysis at multiple scales,

to a variety of empirical networks coming from different domains, with a particular

focus on co-evolutive networks.

The rest of the Chapter will be devoted to present a primer of the minimal aspects

that will be used throughout the thesis. Thus an extensive summary of the advances

of the field during the last two decades could be useful for a full understanding of the

remaining chapters, that goes beyond the scope of this thesis. For extensive reviews and

books focusing on the structure and dynamics of complex networks, we refer the reader

to [4, 54–56].

1.2 Graphs

Formally, networks are usually represented as graphs Fig. 1.1, composed of nodes

(vertices) connected by links (edges) that represent an interaction between the nodes. A

graph G(M,L) consists of a pair of sets M and L, where M = {m1,m2,m3 . . .mN } is the

set of nodes and L = {l1, l2, l3 . . . lK } is the set of links that represent the relations of a

particular type between pair of nodes. If the links have a direction, pointing from one

vertex to another, we say that the graph is directed. Additionally, in some situations, the

edges among the nodes can have different strengths, in such case, we say that the graph

is weighted. Moreover, if the graph contains links connecting the same pair of nodes,

we have a multigraph (this type of graph will not be considered in this thesis). The two

nodes that identify a link are the endpoints of the link, and these two nodes are said

to be adjacent or neighbors. For undirected graphs, the number of nodes N is the order

of the graph, and the number of links K ranges from zero to N (N − 1)/2. The graph

size if given by the total number of edges, and can be considered sparse if K≪ N2, or

considered dense if K = O(N2). If K = N (N − 1)/2, i.e., all vertices are connected to one

another by one link, the graph is complete, denoted by KN .
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Figure 1.1: Graphical representation of a undirected (left) and a directed (right) graph
[56].

1.2.1 Adjacency Matrix of a Graph

All the information of a graphG = (M,L) can be represented by the adjacency matrix

A, which is an N ×N square matrix with elements Aij = 1 when there is a link between

nodes i and j, and zero otherwise. The matrix fill is equal to the total sum of the links in

the graph, and its connectance is the number of actual edges expressed as a proportion

of the total number of possible edges. For the case of weighted graphs, the adjacency

matrix W, is an N ×N matrix whose entry ωij indicate the weight of the link connecting

nodes i and j. As an example, the adjacency matrix of the network in the figure below is

given by Eq. 1.1

A =



0 1 0 0 1 0
1 0 1 1 0 0
0 1 0 1 1 1
0 1 1 0 0 0
1 0 1 0 0 0
0 0 1 0 0 0


, (1.1)

1.2.2 Bipartite Graphs

Another important type of graphs (or networks) are bipartite graphs. A graph G is

bipartite if the node set M is composed of two disjoint subsets M1 and M2, each link

represents the interaction of a node ofM1 with a node ofM2 and interactions between

nodes of the same subset are not allowed see Fig. 1.2. The graphs composed of only one

set of nodes are called unipartite.

Figure 1.2: Graph representation of a bipartite network [56].
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The adjacency matrix of a bipartite graphs with nodes of types r and b, has a block

off-diagonal form of

A =

 Or×r Ãr×b
(ÃT )b×r Ob×b,

 (1.2)

where O is the all-zero matrix, and Ã is the incidence matrix. During this thesis, part

of our attention will be devoted to the characterization of the structural pattern of these

type of networks.

1.3 Microscale characterization of complex networks

The description and characterization of complex networks can be performed at dif-

ferent scales. The lower level, the microscale, regards study of the role and properties of

the network’s nodes. For this, different measures can be considered: the node degree and

the betweenness, to name a few [56]. In this section, we will review some of these micro

and macroscale measures. The higher and middle levels of description, respectively, the

macro- and mesoscales, will be covered in the following sections.

1.3.1 Node degree

One of the simplest centrality measures is the node degree. The degree ki of a node i

is defined as the number of links that the node is connected to:

ki =
n∑
j=1

Aij . (1.3)

In directed graphs, the node has two types of degree: the number of links that start at

node i or out-degree kini and the number of links that end at i or in-degree of the node

kouti ; then, the total degree is defined as ki = kouti + kini . The degree sequence is a list of

the node degrees of the graph.

In weighted networks, the degree ki of a node i is generalized to the notion of

strength. The strength of the node combines the information regarding the number and

weights of links incident in such node and is defined as

si =
∑
j∈M

ωij . (1.4)

Although simple, this centrality measure, can be useful to identify the presence of

the influential nodes–or hubs- in a netwok, e.g., the nodes with high connectivity.

1.3.2 Betweenness

One of the most significant node centrality measures is the betweenness centrality.

Proposed by Freeman [57], betweenness centrality was first introduced in the context

of social networks and measures the relevance of a given node by counting the number

of shortest paths between other pairs of nodes that go through it. The shortest path



8 CHAPTER 1. COMPLEX NETWORKS

between pair of nodes is simply the shortest route that connects them when moving

along the links.

The betweenness of a node i is measured as the fraction of shortest paths passing

through the node, and is defined according to the equation:

B(i) =
∑

j,k∈M,j,k

njk(i)

njk
, (1.5)

where njk is the total number of shortest paths connecting nodes j and k, and njk(i)

is the number of shortest paths connecting nodes j and k that pass through node i.

Commonly, betweenness is normalized by dividing it through some factor, that depends

on the total number of nodes, usually (N − 1)(N − 2)/2, N2 or simply N .

1.3.3 Assortativity

Another interesting property that can be useful to characterize networks is the as-

sortativity. This property is assessed by considering the correlations between two nodes

connected by a link. A common way to determine such degree correlation is by com-

puting the Pearson coefficient r of the degrees at both ends of the links [58]. Then, a

network is said to be assortative if r > 0 and disassortative if r < 0; when there is no

correlation between node links we should expect a coefficient r = 0. The assortativity

of networks depends on its type, for example, social networks are usually assortative,

while biological networks tend to be disassortative.

1.4 Macroscale characterization of complex networks

The higher level of description, the macroscale, can be represented by the statistical

properties of the networks. For example, by studying average quantities like the mean

degree, the degree distribution, or by the identification of macroscale connectivity pat-

terns, like nested and core-periphery patterns. Some of these macroscale pattern are

described in more detail below:

1.4.1 Degree distribution.

The degree distribution of a graph P (k) is defined as the fraction of nodes in the

graph that have a degree k. In directed graphs, we have two distributions, P (kin) and

P (kout). Another way of obtaining information on how the degree is distributed among

the nodes of a network is by the calculation of the n-moments of the distribution:

〈
kn

〉
=

∑
k

knP (k), (1.6)

where the first moment 〈k〉 is the average degree of the graph G. Similarly, for

weighted graphs we can obtain its strength distribution P (s) and the average strength

〈s〉.
The degree distribution is one of the most fundamental network properties since it

provides us with some insights about the network structure. For example, in a random
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graph with edge probability p the degree ki of a node i follows a binomial distribtu-

tion (Poisson, for large N ), which is very different from the degree distributions often

observed in real networks.

1.4.2 Core-Periphery Structure

A relveant macroscale pattern found in real networks [59–61] is the Core-Periphery

structure (CP). The idea that networks can present a core and a periphery was first dis-

cussed by the end of the 70’s. Nevertheless, it was not until 1999, when Borgatti and

Everett [26], formally introduced the concept of CP structure in networks. In a CP struc-

ture, some nodes are part of a highly connected core and the others are part of a sparsely

connected periphery. The nodes from the core are well-connected to nodes from the

periphery, but the peripheral nodes are not connected to each other see Fig. 1.3.

Figure 1.3: Graph representation (left) and adjacency matrix (right) of networks with
core-periphery structure [62].

In [26], the authors quantify the level of CP structure of a network by comparing it

to a model that consists of a perfect CP matrix. Such as:

ρ =
∑
ij

Aijδij

δij =

1, if ci = core or cj = core,

0, otherwise.

(1.7)

After the work of Borgatti and Everett, different methods for detecting CP structures

have been developed [27, 62, 63]. For example, Zhang et al. [63], introduced a method

for detecting core-periphery structures based on methods of statistical inference. The

method aimed to find the parameters of a stochastic block model that produce the best fit

with respect to the real data using a combination of expectation-maximization and belief

propagation algorithms. Additionally, Rombach et al. [27], based on the formulation of

[26], developed a method for studying core-periphery structure in weighted networks.
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1.4.3 Nested Structure

An important structural pattern that has been found in biological [41, 45], econom-

ical [46, 47] and social [49] systems is a nested pattern. The concept of nestedness was

first introduced by ecologists, as a way to describe the structured patterns of distribu-

tion of species in different types of landscapes [43] and was brought in to the context of

complex networks over a decade ago [45]. In structural terms, a perfect nested pattern is

observed when the set of neighbours nodes with low number of interactions (specialists

nodes) are a subset of those with larger degree (generalists nodes), see Fig. 1.4.

Figure 1.4: Representation of the adjacency matrix of a network with perfect nested
structure. Rows and columns have been rearranged to highlight the nested property
with all the interactions lying above the curve of perfect nestedness (black solid line).

The widespread observation of nestedness in a variety of systems, has triggered a

large amount of research trying to unveil the mechanisms behind its emergence, its rela-

tionship with other network properties, its implications in the system’s dynamics and its

relationship to other commonly observed network properties. On one side, it has been

suggested that nested arrangements promote the persistence of mutualistic ecological

systems, i.e. increase in abundances [64–66]; but, at the same time, it minimises the

system’s local asymptotic stability [66–68]. Moreover, it has been shown that nested-

ness emerges as a result of an individual’s fitness optimization process [66], while other

works suggest that nestedness is a consequence of the assemblage rules of the systems

[69, 70]. On another note, scholars have explored the relation between nestedness and

other network properties. For example, nestedness and disassortativity have been found

to be correlated [71], and this degree heterogeneity have been identifed as a determinant

factor of nestedness [71, 72]. Exploring some of the mechanisms for the emergence of

nested patterns constitutes part of the focus of this thesis, see Chapter 5.

1.4.4 Metrics to quantify nestedness

Among the all the research studies devoted to nested patterns, many efforts have

also been devoted to the technical aspect, i.e, developing appropriate methods to mea-

sure the level of nestedness of a given system [41, 53, 68, 73], and how to properly
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assess its statistical significance [23, 72, 74]. From an algebraic perspective, the spec-

tral properties of perfect nested graphs have been studied by mathematicians [75–77],

which later facilitated the proposal of a robust detection method [68], in which Stan-

iczenko et al. quantified nestedness with respect to the maximum eigenvalue of binary

and weighted graphs’ adjacency matrices. In a different tradition, ecologists have also

dedicated many efforts to quantify nested structures in real systems. In first place, there

are measures based on counting misplaced relations to complete a perfect upper trian-

gular nested structure in the adjacency matrix, such as the Nested Temperature (NT)

measure, introduced by Atmar and Patterson [41]. To overcome some pitfalls around

placement-based measures, Almeida-Neto et al. [73] developed overlap metrics, like

the Node Overlap and Decreasing Fill (NODF), which considers the amount of common

neighbors between every two pair of nodes in matrix A, alongside with its weighted ver-

sion [78–80], or different extentions of NODF overlap metric, like the global nestedness

fitness N , introduced by Solé-Ribalta et al.[53]. In the following, we provide a brief de-

scription of some of the measures developed for the characterization of nested patterns.

For an extensive review on the literature covering nestedness, see [42].

1. The nestedness temperature T : the first, and one of the most popular metrics for

quantifying nestedness, introduced by Atmar and Patterson [41]. To compute this

measure, the calculator performs a three steps process: in first place, an isocline

of perfect nestedness is calculated for the matrix, a curve drawn from the lower-

left corner of the matrix to the upper-right, with a curvature defined by matrix

fill, see Fig 1.4. Then, the rows and columns of the matrix are reordered by their

marginal totals in a way that minimizes its temperature. Finally, For all the missing

interactions above the isocline or all the observed interactions below the isocline,

a global distance to the isocline is computed, and all the values are averaged. The

final temperature of the matrix will be the sum of these distances. The score should

be zero for a highly nested matrix and 100 for a non-nested one. It should be stress

here, that this type of placement-based measures, are sensitive to the algorithms

employed to ordering the nodes of the matrices and to determine the line of perfect

nestedness.

2. Node overlap and decreasing fill (NODF): introduced by Almeida-Neto et al. [73],

this measure is independent of row and column order. The NODF is calculated in

the following way: for a matrix with N rows and M columns, for any pair of row

(i, j) or column nodes (l,m), the number of common interactions (overlap) between

them in the adjacency matrix is computed as Oij =
∑
kAijAik . Finally, the NODF

of the whole matrix is:

NODF =
1
K


N∑
ij

[
Oij
kj

Θ(ki − kj )
]

+
M∑
lm

[
Olm
km

Θ(kl − km)
] , (1.8)
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where K = [N (N−1)+M(M−1)]/2 is a normalization over the number of all possible

pairs, Θ(·) stands for the Heaviside step function1; and is used to encapsulate the

decreasing fill condition.

3. Spectral radius: recently, Staniczenko et al. [68] stated that the level of nestedness

of a network could be given by the spectral radius ρ(A) of the adjacency matrix of

the network, i.e., the largest eigenvalue of the matrix. To demonstrate such claim,

the authors built a set of bipartite binary matrices with fixed size and number of in-

teractions, and considered all the possible permutations of such interactions along

each matrix. Then, they computed the spectral radius for the set and reported that

those matrices with perfectly nested distribution of the interactions had a higher

spectral radius than most other matrices, see Fig 1.5.

Figure 1.5: Spectral radius (ρ(A), largest eigenvalue) distribution for several bipartite
matrices with different internal organization. There are six perfectly nested matrices
(orange solid squares) that have higher spectral radius than most other matrices. The
maximum spectral radius is found for matrix N , and all matrices with spectral radius
greater than that of matrix A are either perfectly nested or very close to being perfectly
nested (bottom series). Matrices with the lowest spectral radius depart most severely
from perfect nestedness (top series) [68].

4. Global nestedness fitness N : is a NODF-like descriptor introduced by Solé-Ribalta

1which is zero when its argument is negative, and 1 otherwise
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et al [53] that takes into account a null model correction, and is defined as:

N =
2

N +M


N∑
ij

[
Oij − 〈Oij〉
kj (N − 1)

Θ(ki − kj )
]

+
M∑
lm

[
Olm − 〈Olm〉
km(M − 1)

Θ(kl − km)
] , (1.9)

in a similar way as in the NODF metric, here,Oij =
∑
kAikAjk (orOlm) accounts for

the amount of commonly shared neighbours between row or column node pairs

(a.k.a overlap); ki =
∑
kAik corresponds to the degree of node i (and simililarly for

node j); and Θ(·) is the Heaviside step function, that ensures that Oij is only con-

sidered when ki ≥ kj . Additionally, Oij is conveniently corrected by a null model

that discounts the expected change of each node have to share a neighbour [53],

namely, the expected overlap 〈Oij〉. Assuming no correlation between neighbour-

ing nodes of i and j the probability of sharing a particular neighbour only depends

on the degree of i and j and on size of the network, (kikj )/N2. Hence, the average

overlap is 〈Oij〉 =
∑N
k=1(kikj )/N2 = (kikj )/N . The presence of a null model term

enforcesN ∈ [0,1). Note that Eq. 1.9 follows closely the NODF metric with the ex-

ception that this metric includes a null model term, 〈Oij〉, and the normalization

term weights the contribution of rows and columns nodes in a linear way (instead

of a quadratic form as in NODF ). This equation is equally valid for unipartite net-

works, simply imposing that the sets of rows and columns nodes are equal. This

nestedness metric will be employed when needed throughout this thesis.

1.4.5 Statistical significance of nestednes: null models

Last but not least, the debate regarding which one is the appropriate null model to as-

sess nestedness statistical significance has not been less intense, mostly in the ecological

community, where the study of nested was mostly performed over bipartite networks.

When randomizing a bipartite network, one has not only to be careful on the level

of restriction of the constraints one wants to preserve, but also that such choice can be

made independently for rows and columns nodes. Among the different possible options,

one can choose between: exactly preserving the selected constraint, e.g., the nodes’ de-

grees, or preserving it on average. The selection of which is the appropriate constraint,

is context depending, and not a trivial task. Particularly concerning the risk of having

false positives, or false negatives, if the employed null models are too loose or too re-

strictive [81–83]. For example, if the randomization is performed considering that all

the interactions are equiprobable without considering the nodes’ degrees [23, 74], or if

they exactly preserved the rows and columns nodes degrees in the network [81].

Another disadvantage results in the dependence on the number of randomizations

performed. Many randomizations might make the results more robust, but will increase

the computational cost. To overcome some of these limitations, in recent years, a statis-

tical physics framework that allows us to analytically compute the expected properties

of networks that have been introduced [72, 84]. The expected values and the standard
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deviation of the network properties are calculated by finding a probability distribution

over an ensemble of networks, that maximizes the entropy of the network. Below, we

review a couple of null models that have been introduced/employed to assess the statis-

tical significance of nested patterns. We focus only on those that preserve, on average,

the nodes’ degree.

1. Type II probabilistic model: in this model, the interactions between a pair of nodes

are set with a probability proportional to both nodes’ degrees as follows [45],

pij =
1
2

(
ki
N

+
kj
M

)
, (1.10)

where N stands for the total number of rows, and M for the number of columns,

ki and ki correspond to the degree of nodes i and j, respectively. This model has

been a popular choice for the generation of the random ensemble of networks,

which allows assessing the significance of nested patterns by the computation of

z-scores.

2. Maximum-entropy models: Under this framework [72, 84], one can calculate the ex-

pected values of the network properties, e.g., the nestedness [72] over a maximun

entropy ensemble of uni- and bipartite graphs. Particularly, with this approach,

one aims to find a probability distribution P (G) over the ensemble of graphs G,

withG∗ the graph corresponding to the real network, that maximizes the Shannon-

Gibbs entropy S = −
∑
G P (G) lnP (G), and that keeps the average nodes’ degree

fixed. This maximization has a solution given by the canonical distribution,

P (G) =
e−H(G,θ)

Z(θ)
, (1.11)

where Z is the partition function, H(G,θ) = θ ·C(G) is the graph Hamiltonian,

and θ is a vector of Lagrange multipliers resulting from the maximization of the

Shannon-Gibbs entropy, under the chosen constraints C, e.g., the graph average

degrees. The next step is to calculate the exact values of the Lagrange multipliers.

Following the approach presented in [84], these multipliers are determined by im-

posing that the chosen constraints of the network are found in the ensemble with

maximum probability. This is achieved by rewriting the log-likelihood of observ-

ing the real network as L(θ) = −H(G∗,θ) − lnZ(θ) and maximizing this quantity

in order to find the optimal variables θ∗ that define the ensemble. Once the pa-

rameters θ∗ are found, one can build the matrix containing the average probability

of interaction corresponding to our empirical network 〈A∗〉. Finally, it is possible

to derive an analytical expression of the first and second moments of the desired

network property.
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1.5 Mesoscale characterization of complex networks

The mesoscale is understood as substructures (or subgraphs) with distinctive inter-

action patterns that involve particular subsets of nodes. This section offers a brief de-

scription of some structural patterns identified in complex networks at the mesoscale

level.

A rather ubiquitous type of mesoscale structure that has received most of the atten-

tion is community structure [36, 38–40, 85–87], where nodes organize forming groups,

having many links among nodes of the same group and fewer links between nodes of dif-

ferent groups [35]. A typical example are social networks, where some individuals can

be part of tightly connected groups, and some others can act as bridges between these

groups. This simple intuition hides behind an NP-problem, provided that the number

of possible ways to partition a graph scales faster than polynomial with respect to the

network size: even for really small graphs, an exhaustive assessment of every partition’s

fitness becomes unfeasible.

In spite of its technical and inherent limitations, detecting community structure

plays a fundamental role in deciphering the dynamical behaviour of many empirical

systems. Among others, the role of community structure in the stability and biodi-

versity of mutualistic and competitive ecological systems has been a subject of study

during the last decade [65, 86, 88, 89]. Outside ecology, scholars have investigated the

role of communities in information diffusion and epidemic spreading [19, 20, 90, 91].

In parallel, some efforts have been devoted to exploring the possible co-existence be-

tween community structure and nestedness [51–53]. Although, the co-existence of com-

munity structure with other arrangements, like core-periphery patterns, has also been

considered [92]. The latest aspect concerning the possible relation and/or combination

of community structure with other architectural patterns will be explored in-depth in

Chapter 3.

Thereby, the network science community has developed a rich collection of algo-

rithms and methodologies to infer these communities from relational data. Hereafter,

we present a brief review of some methods for community detection. For extensive re-

views see [40, 93].

1. Hierarchical clustering: In some cases, the graphs may display groups of nodes at

different levels, with small groups included in larger groups, i.e., a hierarchical

structure. Therefore, in order to identify the multilevel community structure of

the graph, the use of hierarchical clustering algorithms is useful [94]. Hierarchi-

cal clustering starts by defining and computing a similarity measure between pair

of nodes and aims to identify groups of nodes with similarity according to two

categories: agglomerative algorithms, in which the groups of nodes are iteratively

merged if their similarity is high; and divisive algorithms, in which the groups are

iteratively split by eliminating the links that connect nodes with low similarity.
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One main advantage of the hierarchical clustering algorithms is that they do not

require preliminary knowledge of the number and size of the clusters. Nonethe-

less, it lacks a way to discriminate between the different partitions obtained by

the procedure, and the results are dependant on the specific similarity measure

adopted.

2. Graph spectral clustering: generally speaking, spectral clustering includes all meth-

ods and techniques that partition the graph nodes by using the spectral properties

of the graph [95]. Specifically, the main idea is to perform the clustering based

on the eigenvalue spectrum of a Laplacian matrix2. The first step consists of com-

puting the eigenvectors corresponding to the lowest eigenvalues of the Laplacian

matrix. Then, all data points are projected to the eigen-space, and can be grouped

in clusters by using standard partitional clustering techniques like k-means clus-

tering [96]. This change of representation induced by the eigenvectors can make

the cluster properties of the initial graph more distint in this eigenvector space, so

that clusters can be more easily detected in this new representation.

3. Methods based on statistical inference: aimed at fitting a generative model to the

network data. The advantage of these type of generative models is that can also

be used to generalize the data and predict the occurrence of missing or spurious

links in the network [97], and the capacity to inherently address issues of statistical

significance. The stochastic block model (SBM) is by far the most used generative

model of graphs with communities [97–100]. Starting from a set ofN disconnected

nodes, divided into B blocks, where gi is the group to which node i belongs, the

links between pairs of nodes are randomly placed, with a probability ωrs that de-

pends only on the groups r and s to which they belong. Thus, one can define B×B
matrix Φ of parameters ωrs that determine the probabilities of having links within

and between every pair of groups. Then, the hypothesis is that the observed net-

work was generated from the SBM, and the idea is to find the values of the model

parameters that have been used in the generation. Thefore, in order to find the

optimal division into communities, the aim is to discover a matrix Φ and the set of

group memberships (g), which maximize the likelihood of generating the observed

network.

4. Methods based on using a quality function: in order to distinguish between “good"

and “bad" clusterings, it is useful to require that the partitions satisfy some basic

properties. Therefore, is covenient to have a quantitative criterion to assess the

goodness of a graph partition. A quality function is a function that assigns a num-

ber to each partition of a graph. In this way, one can rank partitions based on the

2For undirected unweighter graph is defined as L = D − A, where A is the adjacency matrix and D is a
diagonal matrix whose diagonal elements are equal to the degrees of each node.
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score given by the quality function, after applying an heuristic method for its max-

imization. Examples of such functions are the map equation, introduced in [101]

and the Girvan and Newman modularity [33].

Modularity is by far the most popular and studied quality function. Additionally,

modularity optimization itself is nowadays one of the most popular methods for com-

munity detection, with plenty of literature available focusing on upgrading the compu-

tational time required for its optimization [29, 31], discussing its properties and limi-

tations [102], exploring its relationship with other community detection methods, like

SBM [100] and introducing different extensions of it [28, 30, 103, 104].

1.5.1 Modularity

Newman and Girvan modularity [33] was initially described for unipartite networks;

and implies that nodes within a module (or block), are more likely to interact among

themselves than across the rest of the network; Fig. 1.6. It is based on the idea that a

randomly connected network is not expected to have a modular structure, so we can say

that a group of nodes form a community if the number of links between them is higher

than the expected number of links that the same group of nodes would have if the nodes

in the network were at random (null model). Notwithstanding, it is important to point

out that random networks can exhibit relatively high values of modularity, due to fluctu-

ations in the establishment of links [105], and the statistical significance of modularity

in a real network needs to be assessed.

The modularity measure can be written as

Q =
1

2L

∑
ij

(
Aij − Pij

)
δ(hi ,hj ), (1.12)

where Aij is the adjacency matrix of the network, L is the matrix fill, δ(hi ,hj ) is the

Kronecker delta function that will be equal to one when nodes i and j belong to the

same module (i.e. they have the same label) and zero otherwise. One of the strong points

of Modularity is that by definition, it relies on the concept of null model, the term Pij
represents the expected number of links between nodes i and j in such null model. The

null model proposed by Newman and Girvan consists of a randomized version of the

original graph, where the links are rewired at random, but keeping the expected degree

of each node as in the original graph as Pij =
kikj
2L .

The fitness function in Eq. 1.12 can be rewritten in terms of the total contribution

per community as

Q =
B∑
c=1

 lcL −
(
dc
2L

)2 (1.13)

where B is the number of communities, lc is the total number of links in community c,

and dc is the sum of the degrees of all nodes in such community.
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Figure 1.6: Graph (left) and adjacency matrix (right) representation of networks with
community structure [93].

Furthermore, Eq. 1.12 and 1.13 can be adapted to account for the underlying nature

of the network (weighted [28], signed [103], multilayer [104], etc.). Another interesting

alternative, that will be employed along this thesis is the expression of modularity for

bipartite graphs suggested by Barber [30]. This expression, addresses the specificities of

bipartite networks, in which relations between pairs of nodes in the same set or guild are

forbidden. For this, Barber took the adjacency matrix A of the bipartite graph (Eq. 1.2)

and considered a null model matrix P, which has a block off-diagonal form

P =

 Or×r P̃r×b
(P̃T )b×r Ob×b,

 (1.14)

where O is the all-zero matrix and P̃ = krkb/L. Then, the bipartite modularity matrix can

be computed by B̃ = Ã− P̃, and Eq. 1.12 can be rewritten in its bipartite form as

Q =
1
L

N∑
i=1

M∑
j=1

(
Ãij − P̃ij

)
δ(αNi ,α

M
j ), (1.15)

Finally, when expressed in terms of the sum over the number of modules, the bipartite

modularity takes the form

Q =
B∑
d=1

[
ld
L
−
(
krdk

c
d

L2

)]
(1.16)

1.5.2 Modularity Optimization

As mentioned above, the modularity measure is one of the most popular methods to

evaluate a network partition. The main problem is that a complete search over all the

possible configurations having particularly high modularity values is usually unfeasible.

As a result, several algorithms based on heuristic optimization methods have been intro-

duced, such as greedy algorithms [31], simulated annealing methods [105], or extremal
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optimization techniques [29]. Here, we briefly outline these approaches for optimizing

modularity.

1. Greedy algorithms: The first attempt at optimising Q directly was through a a

greedy optimization (hill climbing) approach introduced by Newman [106]. It is

an agglomerative algorithm, where nodes are successively joined, and the change

in Q as result of the merge is calculated. The algorithm keep the partition produc-

ing the largest change in Q, and the process is repated until a maximum value of

Q is found. Another popular agglomerative greedy approach is the one introduced

by Blondel et al. [31]. The algorithm consist of two main step, the main steps op-

erates in a similar manner as the Newman algorithm. The second step consists of

building a graph in which nodes are the communities that were found in the pre-

vious step, and two nodes of the new graph are connected if there is a least a link

between nodes of the corresponding communities. The two steps of the algorithm

are then repeated, until, modularity cannot increase any more.

2. Simulated annealing method: is a probabilistic approach for approximating the

global optimum of a given function. First employed for modularity optimization

by Guimerà et al. [105]. The algorithm performs an exploration of a space of possi-

ble states, looking for the global optimum of a function, modularity in this case. It

relies on a temperature parameter τ , which decreases after each iteration by a fac-

tor c. At each time step, the algorithm randomly selects a configuration, which is

accepted with probability 1 if Q increases after the change, otherwise with a prob-

ability exp(∆QT ), where ∆Q is the change on modularity. This small probability

reduces the risk that the system gets trapped in local optima.

3. Extremal Optimization (EO): An heuristic search proposed by Boettcher and Percus

[107] and used for modularity optimization by Duch and Arenas [29]. It consists

of a divisive algorithm based on the optimization of a global variable by improving

extremal local variables. In this case, the global variable to optimize is Q. Hence,

the local variables should be related to the contribution of the individual nodes

to the summation of Q. Starting from a random partition of the network into two

groups with the same number of nodes. At each step, a local contribution to the

total modularity for each node is calculated. The node with the lowest contribution

is moved to the other partition. Each movement implies a change in the partition,

and a recalculation of the fitness is computed. The process is repeated until the

global modularityQ can no longer be improved. Then, each partition is considered

as a graph on its own, and the procedure is repeated for each one, as long as Q

increases with the new subdivisions. The algorithm represents a good tradeoff
between accuracy and speed and will be employed and extended throughout this

thesis.
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1.5.3 Modularity’s resolution limit

As described in the former section, the problem of community detection via modu-

larity optimization is particularly tricky and has been the subject of discussion in various

disciplines. Parallel to the constraints of the algorithmic strategies, the formulation of

Q has an inherent limitation itself, which impedes to detect blocks that are smaller than√
L. Intuitively, for the modularity function, this limit can be understood using a toy

network formed by a set of cliques placed on a ring, where each pair of adjacent cliques

is connected by a single inter-clique link, see Figure 1.7 (top left and middle left pan-

els). This is the most modular connected network [102]. In this setting, one can show

that the modularity has a scale detection problem. Even if the network has more cliques

than B ≥
√
L, the modularity function will favor partitions where B blocks are detected.

This somehow imposes a detection scale which can be intuitively understood by notic-

ing that the expected number of edges between two blocks α and β is, approximately,

Pαβ = kαkβ/(2L), where kα =
∑
s∈i ks denotes the total degree of block α. When both kα

and kβ are of order
√
L or smaller, Pαβ becomes of order one or smaller, meaning that

even a single link between blocks α and β is interpreted by the modularity function as a

non-random connection, thereby favoring their merging into a single block [93].

Figure 1.7: Representation of a ring of cliques (green circles) connected by a single link.
If the number of cliques is larger than the modularity’s intrinsic scale

√
L, modularity

optimization would lead to a wrong partition, obtained by merging pairs of adjacent
cliques (indicated by the dotted lines) [102].

In the maximally-modular network above, an alternative demonstration of the res-

olution limit can be obtained by comparing the modularity of the correct partition of

the nodes into cliques, Qsingle, against the modularity of the (wrong) partition obtained

by merging pairs of adjacent cliques, Qpairs. It turns out that ∆Q := Qsingle −Qpairs > 0

if and only if N <
√
L. If we gradually increase N by adding new cliques, as soon as
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N becomes larger than the modularity’s intrinsic scale
√
L, the modularity of the wrong

partition, Qpairs, exceeds the modularity of the correct partition, Qsingle (∆Q < 0). Al-

ternative examples can be drawn to further prove the modularity’s resolution limit in

various scenarios [102].

1.5.4 Compound structures: Macroscale patterns at the mesoscale

Although the possibility of simultaneously looking for the presence of combined

structural patterns in a network (e.g., communities with internal structures) has been

previously suggested [21], the studies that take into account such type of structures are

still scarce [51–53, 92, 108]. In the next sections, we will briefly introduce a couple of

examples of such types of combined architectures.

1. Multiple Core-periphery: from the different works focusing on the characteriza-

tion of core-periphery structure, the possibility that the networks may be better re-

garded as a collection of multiple core-periphery pairs has been suggested, but not

explored in depth. Mainly because of the lack of the appropriate tools to perform

such analysis. It was not until 2017, where Kojaku and Masuda [92] introduced a

novel method to detect multiple groups of core-periphery structure networks (e.g.,

communities with core-periphery structures as in Fig 1.8). The authors extended

the idealized core-periphery structure introduced in [26] to the case of multiple

core-periphery pairs by defining an idealized matrix with N nodes:

Bij (c,x) =

δci ,cj xi = 1 or xj = 1and i , j,

0, otherwise.
(1.17)

where x = (x1,x2, . . . ,xN ), is a vector of length N , where xi = 0 if node i is a periph-

eral node, and xi = 1 if node i is a classified as a core node. c = (c1, c2, . . . , cN ) is

also a vector of length N , where ci ∈ {1,2, . . . ,C} is the index of the core-periphery

pair to which node i belongs, and C is the number of core-periphery pairs, δ is the

Kronecker delta. Afterward, they looked for a (c,x) that makes B(c,x) the closest

to the adjacency matrix of the network by maximizing a modularity-like quality

function.



22 CHAPTER 1. COMPLEX NETWORKS

Figure 1.8: Example of an adjacency matrix with perfect Modular-Core-periphery [92].

Finally, they tested the performance of the methods on different types of synthetic

and empirical networks by assessing the statistical of the significance of the de-

tected structures. They started by analyzing a, is a political blog networks con-

taining N = 1222 nodes and L = 16714 links. Each node in the networks corre-

sponded to blogs for the U.S. presidential election of 2004, and two blogs were

said to be connected if one blog cited the other blog on its front page. Each blog

was labeled by their political leaning, liberal or conservative. Their method coul

detect two core-periphery groups, each group comprising the blogs with the same

political leaning Fig. 1.9 (left). Furthermore, they analyzed an airport network

with N = 2939 nodes and L = 15677, each node represented an airport, and they

were said to be connected if there was a direct commercial flight between them.

Their method detected 10 geographically concentrated core-periphery pairs and

the overall result indicated that hub metropolitan airports were not necessarily

core airports Fig. 1.9 (right). Moreover, while this quality function is able to detect

multiple core-periphery structures in a network, it inherits from the modularity

function a similar resolution limit [109], which has motivated the introduction of

a multiscale variant of the original algorithm [110], and the development of alter-

natives methods for the detection of multiple core-periphery pairs in real networks

[111, 112].
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Figure 1.9: Empirical networks with Modular-Core-periphery structure. A political blog
network (left) and an airport nework (right) [92].

2. Modular-Nested structure: Nestedness and modularity are emergent properties

in many systems, but it is rare to find them in the same system. This apparent

incompatibility has been noticed and it might be explained by different evolutive

pressures: certain mechanisms favor the emergence of blocks, while others favor

the emergence of nested patterns. Following this logic, if two such mechanisms

are concurrent, then hybrid modular-nested or in-block nested (IBN) arrangements

may appear. This type of hybrid or “compound" architectures were first described

in Lewinsohn et al.[21], see Fig. 1.10.

Figure 1.10: Graph (left) and adjacency matrix (right) representation of networks with
in-block nested structure [21].

Subsequently, Flores et al. [51] reported the presence of combined nested-modular

structure in an infection network. In their work, the authors performed a multi-

scale analysis of phage-bacteria infection networks composed of 286 bacteria

strains and 215 phage strains with 1332 positive infection outcomes. They found

that the infection network was significantly modular and that such modules had a
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nested organization, see Fig. 1.11.

Figure 1.11: A phage-bacteria infection network with inblock-Nested structures ana-
lyzed in [51]. The authors detected 49 modules (red rectangles)[52].

The debate over the possible co-occurrence of nestedness and a modularity, in a single

network has been covered for over a decade [113, 114], and the possibility of combina-

tion of both structures in the same network has been not left out of the debate [21, 50,

51, 53, 108]. The evidence from these works suggests that the emergent interactions,

resulting from the dynamical processes in these networks, take place at different scales.

Characterizing a network as purely modular or purely nested may be too simplistic;

rather, it may integrate both properties reflecting that the system has evolved under dif-

ferent dynamical pressures. And yet, we are missing a systematic approach that tackles

the plausible co-existence or combination of nested and modular patterns.

Among the objectives of this thesis, we aim to unravel the dynamical mechanisms

that enable the emergence of in-block nested structures, and his role as bridging pattern

in systems where a modular-to-nested topological transition have been reported [49].

Thereby, in the later section we will further expose some additional aspects regarding

the identification in-block nested patterns.
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1.6 Nestedness at the mesoscale: detection of in-block nested

patterns

The above section discussed previous work on which the presence of communities

with an internal nested organization was reported in empirical systems. The approach

followed by the authors to detect such arrangements started first optimizing modularity

and subsequently computing the level of nestedness within the detected communities.

Although this sequential procedure may deliver good results in some situations (since,

often, detected modules gather nodes with degree heterogeneity [98]), to correctly iden-

tify this type of pattern, the development of specialized tools is essential. The next sec-

tions aim at introducing what is, to the extent of our knowledge, the first methodological

framework that jointly considers both patterns.

1.6.1 A new benchmark graph model

The use of a suitable benchmark is crucial to evaluate if measuring modularity and

nestedness as two independent network properties, is the appropriate scheme to unveil

the existence of IBN structures. In this regard, Solé-Ribalta et al. [53] introduced a prob-

abilistic benchmark graph model that is able to generate structures that smoothly inter-

polate between purely nested, modular and in-block nested patterns. The model pivots

on four parameters: the number of modules B ∈ [1,∞], noise regarding the existence of

interactions outside species communities µ ∈ [0,1], (inter-block noise), noise regarding

interactions outside a perfect nested structure p ∈ [0,1] (intra-block noise), and a shape

parameter for the generation of the nested structure ξ ∈ [1,∞] which controls the slim-

ness of the nested structure. Although ξ affects the overall network connectance (total

number of existing species interactions), it does not determine it: for example, for a net-

work with a single block (B = 1) and ξ = 1, the matrix fill is 50%. For the same ξ = 1,

with B = 2, the fill is 25%. On the other hand, p and µ do not alter the density of the

network. A formal proof of this aspect is available at [53].

For a network with N nodes, the model allows generating networks with fractional

communities. Starting off with B (a real-valued number) blocks, they built bBc blocks of

size bN/Bc and another with the remaining N − bN/Bc nodes. b.c stands for the integer

part function, forming a block diagonal matrix. In this way, the network communities

that are produced have some level of heterogeneity.

Considering the described parameters, they derived the independent probability ex-

pressions for having an interaction between species i and j within community c as:

P (Acij ) = [(1− p+ ppr )Θ(jN − fn(iN ))

+ pr (1−Θ(jN − fn(iN ))](1− pµ),
(1.18)

where the term fn corresponds to the p-norm ball curve, drawn for a given ξ value, and

employed to generarte the perfect nested structure. Equation 1.18 implicitly models a

two-step process:
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• (T 1) by which we first remove from the ideal nested structure the interactions that

will be considered as noise, and then,

• (T 2) these interactions are randomly distributed over the set of remaining non-

existing interactions.

The term within square brackets differentiates between the probability of having an

interaction within the nested part and outside the nested part inside the community.

These two components are separated by the Heaviside function Θ. Having an interaction

within the nested part implies either the interaction has not been removed in T 1, (1−p),

or that have been removed in T 1 then recovered in T 2, ppr . The probability of recovering

the interaction pr is proportional to number of interactions that have been removed in

T 1, pL, and inversely proportional to the number of non-existing interactions in the

network, N − L + pL. That is, pr = pL(N − L + pL)−1, where L is the total number of

interactions within the network. The rest of Eq. 1.18, pr corresponds to the probability

of having a link outside the initially nested part. Finally, the term (1− pµ) stands for the

probability of not removing the link in the process of generating inter-block noise and

pµ = µ(B− 1)/B. Finally, the probability of an inter-block link, between especies i and j

belonging to different communities is given by

P (Aoij ) =
2Lpµ

2(B− 1)N2 =
µL

N2B
(1.19)

where the numerator corresponds to the number of removed interactions within com-

munities in T 1, and the denominator corresponds to the possible places where each of

those links can be relocated in step T 2.

Figure 1.12 shows some synthetic networks the model is able to generate. The first

row of the figure shows perfectly nested networks generated with B = 1, varying val-

ues of ξ and fixing p = µ = 0. The second row shows perfect in-block nested networks

obtained with the same settings B > 1 and p = µ = 0. Finally, the third row shows in-

termediate scenarios varying p and µ for a fixed ξ value. The left example shows an

ideal modular network (in terms of modularity), i.e. with no links between communities

(bottom-left); and the right example a purely random Erdős-Rényi networks, regardless

of B (bottom-right).

1.6.2 An objective function for in-block nestedness

Inspired by the NODF and modularity optimization, Solé-Ribalta et al. [53] devel-

oped an objective function to quantify in-block nestedness, and proved that it overcomes

the limitations of the previous approach, employing the benchmark model described

above (we will deepen on this demonstration in the following section). The in-block

nestedness quality function I naturally embeds a suitable null model to discount the

expected overlap between pairs of nodes, that can be ascribed to randomness,
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Figure 1.12: Examples of synthetic network generation with the model introduced in
[53]. The top and middle rows show the effects of the shape parameter ξ and the number
of blocks B, respectively, in a noiseless scenario (p = µ = 0). The bottom row provides
some examples of the effect of the noise parameters p and µ for a fixed ξ.

I =
2

N +M


N∑
i,j

[
Oi,j − 〈Oi,j〉
kj (Ci − 1)

Θ(ki − kj )δ(αi ,αj )
]

+
M∑
l,m

[
Ol,m − 〈Ol,m〉
km(Cl − 1)

Θ(kl − km)δ(αl ,αm)
] ,

(1.20)

where Oi,j and Ol,m measure the degree of overlap between node pairs i and j (or l and

m) as in the NODF, ki corresponds to the degree of the element i; Θ(·) is the Heaviside

step function that ensures that the only terms that contribute to the sum are those in

which the outer index has larger degree than the inner. 〈Oi,j〉 represents the expected

number of links between nodes i and j in the null model as in modularity. Finally,

δ(αi ,αj ) is the Kronecker delta function that is equal to one when nodes i and j belong

to the same module (i.e. they have the same label) and zero otherwise. The expression

is valid for unipartite networks, if we consider that the two sets of nodes are identical.

Note that, by definition, I reduces toN when the number of blocks is 1. As in the case of

modularity, in-block nestedness detection is a hard computational problem and the use

of heuristic algorithms is mandatory. Other methodologies that may detect communities

with similar structural arrangements within modules, e.g. core-periphery [115], exist,

but there is no guarantee that the detected communities have nested properties. In the

remaining chapters of this thesis, we will perform the in-block nested characterization

in networks through the use of the I objective function.
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1.6.3 In-block nestedness and modularity in synthetic networks

By means of the benchmark graph model presented earlier on this chapter, the au-

thors generated 3 × 104 noiseless unipartite networks (p = µ = 0), with varying number

of blocks and nested shapes ξ and tested the performance of a modularity optimiza-

tion algorithm in reconstructing the planted IBN structures by measuring the normal-

ized variation of information (NVI) [116] between the modules detected by modularity

optimization and the planted blocks. They found that the modules detected by the Q-

maximization were very different from the planted modules, see Fig. 1.13(b), especially

in dense nested networks with few blocks, lower left region in panel (b), or in general,

when the network is sparse, upper region Fig. 1.13(b). This result indicates that mod-

ularity optimization is only reliable in the limit of a large number of blocks and dense

networks (lower-right corner of Fig. 1.13(b)). When looking at the values of Q, unsur-

prisingly, these values increase as the number of blocks increases Fig 1.13(a).

Figure 1.13: Behavior of modularity Q in noiseless IBN synthetic networks with varying
values of B and ξ. Panel (a) illustrates how modularity Q increases with the number of
blocks in a network. Panel (b) shows the normalized variation of information between
the modules detected by modularity optimization and planted blocks [53].

Furthermore, the authors performed an exhaustive exploration of the (p,µ) param-

eter space for a couple of values of ξ and showed that under this scenario the limita-

tions became more noticeable. They separately measured the NVI between the planted

partitions versus the partitions obtained after maximizing I and Q, see Fig. 1.14. The

found that modularity recovers the planted partition in the full range of p values as long

as µ remained low. In contrast, they observed that I optimization allows us to unveil

the planted partition for a region along the µ axis, as long as p remained low, showing

that the Q-detected partitions were particularly unreliable when a clear internal nested

structure with a significant number of interblock links is present. This weakness became
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Figure 1.14: Results for synthetic IBN networks with varying values of p and µ. Panels
(a) and (b) show the results of NVI between planted partitions αo and the I -optimized
(αI ) and Q-optimized (αQ) partitions, respectively [53].

more evident for highly stylized nested shapes (higher values of ξ), where the sparsity

of the network itself, distorted even the almost perfectly modular partitions.

1.6.4 Detecting in-block nestedness in real networks

Besides demonstrating that computing modularity and nestedness independently is

not the correct approach to unveil IBN structure for a large set of synthetic networks,

the authors performed the Q and I analysis to more than 300 empirical networks. They

considered 57 unipartite and 277 bipartite networks which are known to display some

level of nested organization, coming from ecology [117], online platforms [49, 118] and

social networks [119–121]. An example of the analysis for a pollination mutualistic

network is shown in figure 1.15. Once again, their results pointed out that, even though

modularity optimization may sometimes provide partitions with some amount of IBN

organization, most of the time it fails to detect the IBN structure in most real-world

networks, see Figure 1.15(bottom).

1.6.5 Limitations of in-block nestedness

Beyond assessing how common IBN arrangements appears in real systems, and

demonstrating the robustness of the I objective function, it is important to analyze in-

depth the possible shortcomings of such formulation. A relevant aspect to look at, is the

possible existence of a resolution limit in I , along the lines of the well-known resolution

limit inherent to modularity [102] that was discussed in section 1.5.3. Although, in [53]

the authors provided some preliminary numerical exploration on this matter, a deeper

analysis accompanied by an analytical account of such resolution limit was left as an

open problem. Tackling the latter subject is one of the focus of this thesis, and it will be
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Figure 1.15: Modularity and in empirical networks. Top: Interaction matrix for a pol-
lination mutualistic bipartite network in Cordón del Cepo, Chile. Rows and columns
have been arranged to highlight the different arrangements. Bottom: Comparison of in-
block nestedness value obtained optimising modularity versus the values obtained by
optimizing I , left panel corresponds to unipartite networks and right panel to bipartite
networks [53].

explored in detail Chapter 2.



This part of the thesis will be devoted to the examination of the struc-

tural properties of the in-block nestedness function, and how it inter-

relates with the nestedness and modularity, from a strictly analytical

and numerical point of view. In particular, we will explore the pos-

sible existence of a resolution limit of the in-block nestedness quality

function, and will examine the structural constraints that these three

measures impose on each other.

Part II

Structural properties of nestedness,

modularity and in-block nestedness
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Chapter 2
Absence of a resolution limit in in-block

nestedness

In-block nestedness (IBN) has emerged as an interesting pattern in complex net-

works. Initially proposed merely as a hypothetical configuration [21], the idea of hybrid

nested-modular structures has gained interest after empirical evidence has shown that

such arrangements may play a prominent role in many systems, natural [50–52, 108]

and artificial [118].

These findings have shifted the focus from the measurement of nestedness as a global

property (macro level), to the detection of blocks (meso level) that internally exhibit a

high degree of nestedness. This change of focus is supported by the existence of var-

ious kinds of constraints that operate in real-world systems, which naturally delimit

the breadth of interactions [21]. And yet, the availability of methods to properly de-

tect in-block nested partitions are still scarce. As explained in the previous Chapter, in

most studies that focus on the identification of such compound structures a sequential

approach is applied: after the identification of a network partition (usually in terms

of modularity [33]), nestedness (usually in terms of NODF [73] or nestedness tempera-

ture [41]) is computed locally for each block.

Recently, the in-block nestedness quality function I has been proposed [53] and has

proven to be a suitable method to correctly identify IBN patterns. Similarly to the pop-

ular Newman-Girvan’s modularity Q, the optimization of the IBN quality function I is

an NP problem. Nonetheless, while it is well known that Newman-Girvan’s modular-

ity, notoriously suffers from a resolution limit that impairs their ability to detect blocks

smaller than a given scale [102], and that resolution limits can arise when optimizing a

quality function different than modularity [122], the potential existence of such resolu-

tion limits for in-block nestedness remains unknown.

In this Chapter, we will examine whether the in-block nestedness function exhibits

33
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a resolution limit, similar to the one found for the modularity function [102]–presented

in Chapter 1, Section 1.5.3–. The existence of such a limit would imply the impossibility

to detect interaction blocks smaller than a given scale [102], potentially making the in-

terpretation of the detected nested blocks ambiguous [93]. After briefly providing some

definitions (Section 2.1) that are relevant to our empirical and analytical explorations,

we demonstrate empirically, analytically and numerically, the absence of a resolution

limit for the in-block nestedness objective function.

2.1 Definitions: Weak and strong communities

An interesting property, that if often observed in real of networks at the mesoscale,

is their heterogeneity: the distribution of its edges is not only globally, but also locally

inhomogeneous, with high concentrations of edges within groups of nodes, and low con-

centrations between these groups [40].

Such feature of real networks –community structure– can be translated to a quantita-

tive criterion. Radicchi et al. [35] propose the following: a block (also called community,

module, compartment, or cluster depending on the research field [42]) constitutes a weak
community if and only if its internal degree exceeds its external degree (i.e., the total de-

gree of its nodes by only considering links with nodes that do not belong to the block).

Conversely, a block constitutes a strong community if and only if, for each of its nodes,

the node’s internal degree is larger than the node’s external degree.

2.2 Empirical insights: preliminary intuitions on Q and I resolution

limit

To test whether there is a resolution limit for the in-block nestedness, we first per-

form, following the approach described in [102], an empirical exploration for some real

networks. From this analysis, we should render some intuitions before the strictly for-

mal approach that we will present in the following sections. Hopefully, by the end of this

initial exercise we will get a glimpse on whether a resolution limit for in-block nested-

ness exists, or not, and how severe it is –if it does exist–, when compared to the resolution

limit of modularity.

We collected a set of 82 real networks, from two different domains: ecological in

most cases [117], with some collaboration networks taken from socio-technological sys-

tems [118, 123], and restricted the size of these networks in the range [50,103] nodes.

The empirical ecological networks analyzed here represent bipartite mutualistic and

competitive systems, including macroscopic and microscopic environments. Network

data can be downloaded from [117] in different formats, and can be filtered depending

on the type of interaction of the system (e.g. plant-pollinator, host-parasite) and the type

of data, e.g. binary or weighted. In this work, we have analyzed a total of 52 of these

networks, all of them in their binary form. Thus, this kind of networks are represented

as a rectangular N ×M matrix, where rows and columns refer to interacting species. An
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entry in the matrix aij = 1 if species i of one guild interacts with a species j of the other

guild at least once, and 0 otherwise.

On the other hand, for the collaboration networks we collected data from open source

software projects through GitHub [123], a social coding platform that provides source

code management and collaboration features. Similar to the ecological networks de-

scribed above, for each project (30 in total) we build a bipartite unweighted network

as a rectangular N ×M matrix, where rows and columns refer to the contributors and

source files of each open source software project, respectively. An entry in the matrix

aij = 1 if a contributor i have edited a file j at least once, and 0 otherwise. More details

on this dataset can be found in [118] and in Chapter 4, Section 4.2.

For each network, and following the exercise proposed in [102], we proceed as fol-

lows: Initially, for a given network, the quality functions of interest–modularity Q and

in-block nestedness I– are maximized by means of an optimization strategy (extremal

optimization [29], in our case). See Chapter 1, Section 1.5.2). In each case, a partition

PQ and PI are obtained as a result. Then, all the links between the detected blocks are

removed, and the optimization algorithms are applied again to the resulting network,

obtaining now new partitions P ′Q and P ′I . With two partitions for each optimization strat-

egy, at hand, we compute the Jaccard index to measure how similar they are, JPQ ,P ′Q and

JPI ,P ′I , respectively. We iterate this procedure –remove links between communities and

optimize the quality functions–, until the Jaccard index between consecutive partition

vectors JP ,P ′ > τ , i.e. the similarity between consecutive partitions is at least τ . Note

that if we set τ = 1, it implies that the algorithm is no longer able to split the current

partition into one with higher score: both P and P ′ are identical. Along this process, we

keep track of the number of iterative steps needed to reach JP ,P ′ > τ .

If I suffers from a resolution limit like Q does, we hypothesize that the number of

iterative steps needed to reach JP ,P ′ > τ will be similar for both I and Q. If the number

of steps needed for I is larger than those needed forQ, this result would suggest that I ’s

resolution limit is more severe than Q’s. Finally, if the number of steps for I is smaller

than Q’s, the conclusion would be that I is mildly affected (or not at all) by a resolution

limit. Note that, ideally, if I lacks a resolution limit (and assuming that the heuristics

can reach the optimal partition), one should expect that after the initial optimization

step, the algorithm should not be able to further split the detected blocks into smaller

ones, i.e. JP ,P ′ = 1 after the first step.

The dataset with the OSS projects and the corresponding software codes for modu-

larity and in-block nestedness optimization (for uni- and bipartite cases), can be down-

loaded from the web page http://cosin3.rdi.uoc.edu/, under the Resources section.

The result of this experiment is summarized in Figure 2.1. Setting τ = 1, the left

panel shows a scatter plot of the number of attempts needed to reach the stopping con-

dition JP ,P ′ > τ , after the maximization of Q, plotted against the corresponding number

of attempts needed for in-block nestedness, for each network. The size of the points in

http://cosin3.rdi.uoc.edu/
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(a) (b)

Figure 2.1: Comparing the resolution limit of modularity and in-block nestedness in
empirical data. Scatter plots of the number of attempts needed to reach τ = 1 (left) and
τ = 0.95 (right) for modularity and in-block nestedness. Marginal box plots show the
distribution of the number of attempts needed for each network. The size of the points
in the scatter plot is proportional to the total number of nodes of each network.

the scatter plot is proportional to the size of each network. Note that the plot is in log

scale. To ease comparison, the number of attempts for Q and I have been plotted in

the same scale (log-log), the function y = x is plotted as a dashed black line as a visual

aid. Marginal box plots show the distribution of the number of attempts needed for each

network, for bothQ and I . Without exception, the number of iterations needed to reach

the stopping condition is substantially larger for modularity.

Taken strictly, this result can be interpreted as informal evidence of a milder ef-

fect of the resolution limit for in-block nestedness (compared to Q). At the same time,

this result is not a formal proof that the resolution limit is entirely absent: if the res-

olution limit is absent, the additional optimization steps could be due to the fact that

the extremal optimization algorithm is unable to reach the optimal partition in each

step. Relaxing the conditions for the stopping criteria, e.g. J > τ , with τ ∈ [0.95,0.99],

strengthens this informal evidence: the number of attempts needed to reach J > τ for I
drops to 1 for many networks, while the number of attempts forQ remains large in most

cases: see Figure 2.1 (right panel), which shows this for τ = 0.95.

2.3 Absence of resolution limit in I : analytic approach

In this Section, we aim to provide an analytic explanation for the previous empirical

intuitions, in an idealized family of synthetic networks. For the sake of analytic tractabil-

ity, we consider a ring of interconnected blocks of equal size C, where each block has

internally a stepwise structure. That is, the degrees of subsequent rows (columns) of the

adjacency matrix differ by one (see Fig. 2.2, bottom-left panel). Additionally, contiguous

blocks are interconnected by one single link, ` = 1, that connects the two generalists1 (or

1the node with the largest degree as to the block’shuborgeneralist
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hubs) or specialists2 of each block –in total, there are B inter-block links that connect the

B generalists (specialists). Our strategy to perform the calculation is to first compute in-

block nestedness I0 of a perfectly in-block nested network composed of B disconnected

blocks, and then add to I0 the terms due to the interactions between the generalist (or

specialists) nodes.

Figure 2.2: Illustration of a ring of weakly-interconnected blocks. Central row: Rep-
resentation of a ring of sub-graphs (blue circles) connected by a single link (left) ` = 1
and connected through several links (right) ` = 5. The subgraphs, represented as blue
circles, can take the form of identical cliques or perfect nested blocks. A matrix repre-
sentation of these cases is shown in top (identical cliques) and bottom (identical perfect
nested blocks) rows, respectively. Each adjacency matrix represents a different type of
connectivity between communities: random, generalist oriented and specialist oriented.

2.3.1 Derivation of the in-block nestedness of a set of disconnected

stepwise blocks

In order to compute I0, it is sufficient to derive the nestedness of a single stepwise

block. Starting from the expression of the unipartite, and in the same way as in modu-

larity, one can rewrite the expression for I as a sum over the network’s blocks:

I =
B∑
α=1

Nα , (2.1)

where B denotes the total number of blocks and

Nα =
2
N

1
Cα − 1

∑
s,t∈α

Ostkt − ksN
Θ(ks − kt), (2.2)

2 a node with the smallest number of connections
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can be interpreted as the level of block α’s internal nestedness. Since each block has an

internally nested structure, by definition, Ost = kt if kt < ks. Therefore, Eq. (2.2) becomes

Nα =
2f (k(α))
N (Cα − 1)

, (2.3)

where f (k(α)) =
∑
s∈α

(
1− ksN

)∑
t∈αΘ(ks − kt).

In general, the function f (k(α)) depends on the perfectly-nested block’s inter-

nal shape or, equivalently, on the density of the perfectly-nested block. The factor∑
t∈αΘ(ks − kt) represents the number of nodes with degree strictly smaller than ks. As

we are considering stepwise perfectly nested networks, we have
∑
t∈αΘ(ks − kt) = ks − 1.

Hence, after rearranging some terms,

f (k(α)) :=

1 +
1
N

∑
s∈α

ks −
1
N

∑
s∈α

k2
s −Cα . (2.4)

Subsequently, for stepwise perfectly-nested networks, the following identities hold:

∑
s∈α

ks =
Cα∑
s=1

ks =
Cα∑
s=1

s =
Cα (Cα + 1)

2
,

∑
s∈α

k2
s =

Cα∑
s=1

k2
s =

Cα∑
s=1

s2 =
Cα (Cα + 1)(2Cα + 1)

6
.

(2.5)

By replacing (2.5) into (2.4), and after that into (2.3), and rearranging some terms,

Eq. (2.2) becomes

Nα =
Cα
N
− 2

3N2 Cα (Cα + 1). (2.6)

This represents the nestedness of a stepwise block α composed of Cα nodes.

Now the in-block nestedness, I0 of a (disconnected) network composed of a set of

disconnected stepwise blocks is obtained by summing the contributions Nα – given by

Eq. (2.6) – over all the blocks that compose the network

I0 = 1− 2
3N
− 2

3N2

∑
α

C2
α , (2.7)

then for the case of equally-sized blocks, Cα = C =N/B, I0 is equal to

I0 = 1− 2
3N
− 2

3B
. (2.8)

2.3.2 Derivation of the in-block nestedness of a ring of weakly-connected

stepwise blocks

In order to prove the absence of a resolution limit, we need to calculate Isingle and

Ipairs, and evaluate their difference. To calculate Isingle, we alter the perfectly in-block

nested structure described above by connecting all the generalists (or specialists) nodes

of the B blocks; each generalist (or specialist) will now be connected with two other gen-

eralists (or specialists), with B inter-block links, in total, see Fig. 2.2 for an illustration.
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1. Generalist-based strategy: We start with the derivation of Isingle, altering the

perfectly in-block nested structures by connecting the generalists nodes, i.e.,

generalist-based strategy. In this case, because of their links with the hubs of the

two adjacent blocks, each generalist node have degree Cα + 2. For simplicity, we

assume that the blocks have the same size C = N/B; the hubs’ degree is therefore

C + 2 =N/B+ 2, and the Ost/kt term remains always equal to one if ks > kt because

internally, the blocks remain perfectly nested. The negative term receives now, for

each block, an additional contribution given by the two extra link of each hub.

Therefore, the in-block nestedness of the network, Isingle, can be expressed as

Isingle = I0 + Iint , where Iint is the "interaction" term that results from the edges

that connect the hubs. Overall, this extra term is

Iint = − 2
N

B∑
α=1

1
Cα − 1

∑
t∈α

2
N

Θ(C + 2− kt) = −4B
N2 , (2.9)

where we used the fact that there are Cα − 1 nodes of degree smaller than C + 2 in

each block (all the non-hub nodes, simply). Therefore, we obtain

Isingle = 1− 2
3N
− 2

3B
− 4B
N2 . (2.10)

2. Specialist-based strategy: We calculate here the ISpsingle for a network composed of

specialist-connected stepwise blocks, and we assume C ≥ 4. To compute ISpsingle,

we evaluate the consequences of adding inter-block links among the specialists

on the in-block nestedness I0 of a perfectly in-block nested network. There are

two consequences: first, the degree of the specialist increases from 1 to 3, which

affects the terms Ost/kt for ks ≥ 4, which leads to a correction I (≥4)
int ; Second, this

increase in degree affects the relative degree of the nodes with ks ≤ 3, which affects

the Heaviside functions and leads to a correction I (<4)
int . Overall, ISpsingle = I0 + Iint ,

where Iint = I (≥4)
int + I (<4)

int .

To calculate I (≥4)
int , we remove the original terms that assumed that the specialist

has degree equal to one, and add the corrected terms that assume that it has degree

equal to three. This leads to two contributions:

I (≥4)
int =

2B
N (C − 1)

− C∑
s=4

(
1− s

N

)
+

C∑
s=4

(1
3
− s
N

) (2.11)

To calculate I (<4)
int , we consider that the nodes with intra-block degree equal to 2

and 3 do not have anymore a larger degree than the specialist, and the specialist

has a larger degree than the node with intra-block degree equal to 2. This leads to

three contributions:

I (<4)
int =

2B
N (C − 1)

−(1− 3
N

)
−
(
1− 2

N

)
+
(1

2
− 3
N

). (2.12)
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By performing the sums in (2.11) and re-grouping terms, we obtain

Iint = I (≥4)
int + I (<4)

int =
2B

N (C − 1)

−2C
3

+
2
N

+
1
2

. (2.13)

By summing up expressions (2.8) and (2.13), one can calculate ISpsingle,

ISpsingle = 1− 2
3N
− 2

3B
+

2B
N (C − 1)

−2C
3

+
2
N

+
1
2

. (2.14)

Note that, differently than the interaction terms for the generalist-based strategy

Iint (Eq. 2.9), for the specialist-based strategy tends to a finite value for N → ∞
with constant C: Iint → 2(−2C/3 + 1/2)/(C (C − 1)). This limit value implies that

connecting the blocks’ specialists causes a bigger loss to the in-block nestedness

than connecting the hubs, and the contribution to the in-block nestedness from

specialist-based interactions is not negligible even in the thermodynamic limit.

2.3.3 Proving the absence of a resolution limit: generalist-based strategy

The in-block nestedness of a wrong partition, Ipairs, where pairs of contiguous

blocks, αi and αi+1 (i = 1, . . . ,B), are merged, can be calculated by adding up the contri-

butions from pairs of nodes that belong to the same block, and those from pairs of nodes

that belong to a different blocks. The contributions from pairs of nodes that belong to

the same in-block nested block f (kα1 ) are defined by Eq. (2.4). The contributions from

all pairs of nodes that belong to the merged block α12, denoted as f (kα12 ); and contri-

butions from pairs of nodes that belong to the same merged block α12, but different

in-block nested blocks α1 and α2, f12(kα12 ) are defined as follows

f (kα12 ) =
∑
s,t∈α12

Ostkt − ksN
Θ(ks − kt),

f12(kα12 ) =
∑

s∈α1,t∈α2

Ostkt − ksN
Θ(ks − kt).

(2.15)

Based on symmetry with respect to permutations of the blocks, we obtain:

Ipairs =
B
2

2
N

1
2C − 1

f (kα12 ). (2.16)

Note that the block-size normalization factor is given by 1/(2C−1) and there is an overall

factor B/2, which reflects the property that the partition comprises B/2 merged blocks

which contain 2C nodes each. For symmetry with respect to permutation of α1 and α2,

f (kα12 ) takes the form f (kα12 ) = 2f11(kα1 ) + 2f12(kα12 ), where f12(kα12 ) is equal to

f12(kα12 ) =
C−1∑
t=1

1
t
− (C − 1)(C + 2)

N
−
C−1∑
s=1

s (s − 1)
N

. (2.17)
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The first term on the r.h.s is the positive contribution that comes from the overlap be-

tween the hub of block α1 and the C − 1 non-hubs of block α2. The second term is the

negative contribution that comes from the expected overlap between the hub of block α1

(with degree C + 2)) and the C − 1 non-hubs of block α2. The third term is the negative

contribution that comes from the expected overlap between the non-hubs of block α1

and the non-hubs of block α2; note that there is no overlap between the neighborhoods

of the non-hubs of block α1 and the non-hubs of block α2. By using again the identities

(2.5) and rearranging some terms, we obtain

f12(kα12 ) =HC−1 −
g(C)
3N

, (2.18)

where HC−1 :=
∑C−1
t=1 t

−1 denotes the C −1th harmonic number, and we defined the poly-

nomial function g(C) := (C−1)(C2 +C+6). Note that the two terms in the r.h.s. represent

the contribution of the observed and expected overlap between the nodes that belong to

the two different original blocks that are joint together in the merged partition. By plug-

ging Eq. (2.18) into Eq. (2.16), we obtain

Ipairs =
1

C(2C − 1)

[
2f11(kα1 ) + 2

(
HC−1 −

g(C)
3N

)]
,

=
C − 1

2C − 1
I single +

2
C (2C − 1)

HC−1 −
g(C)
3N

. (2.19)

Finally, by putting together Eqs. 2.10 and 2.19, we obtain

∆I = Isingle −Ipairs =
C

2C − 1
Isingle −

2
C (2C − 1)

HC−1 −
g(C)
3N

. (2.20)

Numerical results in Figure 2.3 show the perfect matching between the analytical in-

sights in Eq. (2.20) (Fig. 2.3(a)), and Eqs. (2.10),(2.19) and (2.21) (Fig. 2.3(b)). For a fixed

C� 1 value, in the limit N →∞ (or equivalently, B→∞), we obtain

Ipairs→I single/2, (2.21)

confirming the numerical intutions in [53], and in accordance with Fig. 2.3(b). This im-

plies that no matter how large the network is, the in-block nestedness of the partition

with pairwise-merged blocks remains significantly smaller than the in-block nestedness

of the partition with the original blocks. The same holds true for small values of C, be-

cause the second term in the r.h.s. of Eq. (2.20) tends to be substantially smaller than

the first term. The reason is that the contribution from the null model is negligible com-

pared to the penalty due to the merging of two blocks into a single one. Therefore, in this

idealized example, the penalization for larger blocks in the in-block nestedness function

prevents the resolution limit, allowing the in-block nestedness function of the partition

composed of the individual blocks to stay always larger than the in-block nestedness of

the partition composed of pairwise-merged blocks.
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2.3.4 Proving the absence of a resolution: specialist-based strategy

To obtain ISppairs for the specialist-based strategy, we need to calculate f12(kα12 ). Fol-

lowing 2.3.3, we consider a pair of adjacent blocks, (α1,α2). The only non-zero overlap

between nodes in α1 and nodes in α2 (with the condition ks > kt) is the overlap between

α1’s hub and α2’s specialist: both nodes are indeed connected with α1’s specialist, result-

ing in a contribution foverlap = 1/3 to f12(kα12 ). To calculate the null-model contribution

to f12, it is convenient to split the null-model contribution into the contribution f
(≥4)
null

from nodes s ∈ α1 with ks ≥ 4, and the contribution f (<4)
null from nodes with s ∈ α1 with

ks < 4. Overall, f12(kα12 ) = foverlap + f (≥4)
null + f (<4)

null . We obtain:

f
(≥4)
null = −

C∑
s=4

s (s − 1)
N

= −C
3 −C − 24

3N
, (2.22)

Among the nodes s ∈ α1 with ks < 4, the only nodes that find a node in α2 with a strictly

smaller degree than them are: the node with intra-block degree equal to three and the

specialist. Both of them provide a contribution −3/N to fnull , resulting in f (<4)
null = −6/N .

Putting all together:

f12(kα12 ) =
1
3
−
f (C)
3N

(2.23)

where f (C) = C3 −C − 6. Putting together Eqs. (2.14) and (2.23), we obtain:

ISppairs =
C − 1

2C − 1
ISpsingle +

2
C (2C − 1)

1
3
−
f (C)
3N

. (2.24)

For a fixed C� 1 value, in the limit N →∞ (or equivalently, B→∞), we obtain

ISppairs '
1
2
ISpsingle +

1
3C2 +

C
3N
→ 1

2
ISpsingle +

1
3C2 '

1
2
ISpsingle, (2.25)

which proves again the absence of a resolution limit. In a similar manner as for the

generalist-based strategy, Fig. 2.3(c) shows the agreement between analytical and nu-

merical results for Eqs. (2.14) and (2.24). Gray symbols and dotted line in Fig. 2.3(d)

confirm Eq. (2.25).

2.4 Generalizing the absence of resolution limit in I : numerical

approach on benchmark graphs

Supported by the excellent agreement between analytical and numerical results in

Figure 2.3, we now carry out a numerical validation considering less idealized scenar-

ios. We do so examining numerically whether the in-block nestedness function presents

a resolution limit or not, in scenarios beyond ` = 1 where modularity does. To this end,

we analyze benchmark networks along the lines of Figure 2.2 (middle-right and bottom-

right panels), that is, building unipartite synthetic networks, composed of a growing

ring of blocks that internally exhibit a nested structure. We study a wide range of these
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(a) (b)

(c) (d)

Figure 2.3: Agreement between the analytical and numerical results. Top and bottom
left panels reports on the perfect match between of the analytical computation of ∆I =
Isingle−Ipairs (symbols) and the actual calculation performed on synthetic graphs (lines).
Similarly, the top and bottom right panels shows the agreement between analytical and
numerical results for Eqs. (2.10) and (2.19) (top right), Eqs. (2.14) and (2.24) (bottom
right). Gray symbols and dotted line in top and bottom right panels confirms Eq. (2.21)
and Eq. (2.25), respetively.

networks, modifying the number of blocks B that conform the ring, and the number of

inter-block links `. We start with a network composed of B = 3 (perfectly nested) step-

wise blocks connected as a ring, and then consider a growing number of blocks (up to

B = 200). Regarding the inter-block connectivity `, we start with ` = 1, which corre-

sponds to the analytical calculations above, up to ` = C(C − 1)/2 which corresponds to

maximum possible connectivity between contiguous blocks. The internal nested struc-

ture of the blocks is generated following the approach developed by Solé-Ribalta et al.
[53], described in Chapter 1, Section 1.6.1.

We carry out the numerical validation considering three strategies to generate inter-

block connectivity: in one of them, we consider a random strategy, where the blocks

are connected by adding a link between two randomly selected nodes from each block.

For this case, we report results for an average over 25 realizations. In the other two,

the addition of inter-block links (` ≥ 1) is deterministic. The first builds upon connect-

ing the most-generalist available nodes in each pair of adjacent communities (generalist-
based strategy). Note that, strictly speaking, this strategy is the logical generalization of
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our analytical results (where a single link was laid between adjacent blocks, connect-

ing the generalist nodes in them). The second one builds upon connecting the most-

specialist available nodes in each pair of adjacent communities (specialist-based strategy.

See Fig. 2.2 for an illustration of the different linking strategies.

For all the strategies, we compare numerically the in-block nestedness of the ground-

truth partition, Isingle, against the in-block nestedness of the wrong partition obtained

by considering pairs of adjacent blocks as a single block, Ipairs. If the in-block nested-

ness has a resolution limit beyond the scenario presented in the previous section, then

for some value of Bwe would observe a crossover from ∆I := Isingle−Ipairs > 0 to ∆I < 0,

as indeed happens with Q. All these results are shown in Figure 2.4, where first to

third rows present the results for ∆I in the random, generalist and specialist strate-

gies, respectively. The bottom row, conversely, corresponds to the results for ∆Q for the

random strategy only, since ∆Q presents a qualitatively similar behavior across all strate-

gies. For the sake of clarity, a black vertical line is drawn in each panel highlighting the

weak community criterion. Beyond this limit, no recognizable block structure is com-

patible with the definition of community, and therefore it becomes irrelevant whether

a given quality function identifies a “correct” block or not. Each column of the figure

corresponds to different block sizes C.

For the random strategy, each point in the parameter space (B,`) of the panels in

Figure 5.6 reports the average value of ∆I (top row), and ∆Q (bottom row), for 25 dif-

ferent realizations. There are at least three remarkable lessons from Figure 2.4, equally

valid for all the adopted linking strategies (generalist-based, random, specialist-based).

First, only Q shows the existence of a resolution limit consistently –no matter the num-

ber of inter-block links `, we always find a large-enough number of blocks such that

the resolution limit appears, i.e. Qpairs is larger than Qsingle. Second (a consequence of

the first), the appearance of the resolution limit for Q is independent of the criterion of

weak community: the crossover to ∆Q < 0 can occur anywhere in the ` spectrum, and it

depends on B only (i.e., on network size, in line with the analytic results in [102]). Of

course, increasing ` reduces the amount of blocks B needed to reach the crossover (note

the logarithmic scale on the B axis). Finally, the robustness of the single block as the

best partitioning scheme for in-block nestedness (i.e. ∆I > 0) is remarkably high. Note

that Isingle remains systematically larger than Ipairs until ` has almost reached the weak

community criterion. In other words, I identifies the correct block-by-block structure

up to the point where such partition (or any other one) becomes unrecognizable.

The only relevant difference between the random (first row), the generalist (second

row) and specialist (third row) linking strategies is related to `. The area of the pa-

rameter space where the in-block nestedness cannot detect the correct block partition

(∆I < 0) is substantially smaller in the generalist strategy, compared to the same area

under the random and the specialist strategies. This indicates that when inter-block

connections are preferentially established by local hubs (or generalists), in-block nest-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.4: Resolution limit in random- and generalist-connected rings of nested
blocks. The panels represent three-dimensional plots in the parameter space (B,`) show-
ing, in the z-axis (color code), the values of ∆I (first to third row panels) and ∆Q (fourth
row panel). In the random linking strategy (first and last rows), results are averaged
over 25 different realizations. The solid black line indicates the transition from weak
communities to no communities, as defined by Radicchi et al. [35].

edness can detect blocks of locally nested interactions even when these blocks are not

communities in the traditional sense. The specialist linking strategy performs similarly

to the random strategy, and in-block nested communities can be detected up to the point

where communities diffuse with the rest of the network (vertical black line on the plot).

Other than these remarks, the previous conclusion holds: I does not show a dependency

on B (and thus onN ) by which its ability to detect the right partition is affected, and thus

I appears to lack a size-related resolution limit in the traditional sense.

2.5 Summary

In this Chapter, we have verified whether the in-block nestedness function exhibits

a modularity-like resolution limit, i.e., the inability to identify blocks smaller than a

certain scale. We have approached the question of in-block nestedness’ resolution limit

as a three-step process. First, we have performed an informal test on empirical networks,
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to assess the extent to which a network can be recursively split into smaller blocks, which

may indicate the existence of a resolution limit [102]. From there, upon the intuition

that in-block nestedness lacks a resolution limit (or, at least, it is less severe than Q’s),

we provide a formal proof that I does not have a resolution limit, at least in a specific

setting –that in which different blocks are connected by a single link. Finally, we have

numerically generalized and confirmed the analytical argument, exhaustively studying

a large parameter space with varying network size and inter-block connectivity. Thus,

we have showed that our capacity to detect correct IBN partitions in networks via its

maximization may depends solely on the accuracy of the optimization algorithms.



Chapter 3
Macro and mesoscale pattern

interdependencies in complex networks

The detection and identification of emergent structural patterns constitute one of the

main focus in the development of modern network theory, with many efforts devoted to

the technical aspect, i.e., the development of appropriate metrics for its characterization

along with the exploration of the inherent limitations of such metrics. Following this

tradition, in the previous Chapter, we have shown that the in-block nestedness function

differs from the traditional community detection methods, and does not suffer from a

resolution limit.

In light of these differences, in this Chapter, we will further explore the structural

properties of the in-block nested function, and how it relates with the nestedness modu-

larity functions, for both uni- and bipartite settings. The study of nestedness and mod-

ularity has, by far, concentrated most of the attention of scholars. Such interest is not

surprising, because these arrangements had been observed in a wide variety of systems

and had shown to have important implications in its different dynamical properties. On

one side, modularity is a near ubiquitous mesoscale configuration [28–34, 36–40], that

appears to be a crucial actor in the stability of ecological systems [86, 88, 89], and in

the diffusion dynamics of social systems [20, 90]. On the other, nestedness stands as a

frequent macroscale pattern which has been observed prominently in ecology [41, 45],

but also in economy [46–48] and social systems [49], and that seems to play a key role in

the persistence and stability of mutualistic ecological systems [64–67, 124].

Overall, the knowledge acquired in the last 40 years has unveiled some of the im-

plications each of these individual organizational patterns have on a system’s dynamics.

However, we have limited knowledge on how different structural signatures may inter-

lace, or how –if ever– they affect and limit each other. A clear example, is the enduring

debate over the possible co-occurrence of nestedness and modularity in a single net-

47
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work [113, 114], or regarding the presence of intermediate nested-modular regimes, in

the form of in-block nested structures [50–53].

We will show experimentally and analytically that nestedness imposes bounds to

modularity, with exact analytical results in idealised scenarios. Furthermore, we an-

alytically evidence that in-block nestedness provides a natural combination between

nested and modular networks, taking structural properties of both. Far from a mere

theoretical exercise, understanding the boundaries that discriminate each architecture

is fundamental, to the extent that modularity and nestedness are known to place heavy

dynamical effects on processes, such as species abundances and stability in Ecology.

3.1 Structural analysis on synthetic networks

We start the analysis of the trade-offs between nestedness N , modularity Q and in-

block nestedness I by exploring a controlled synthetic setting. To this aim, we have

extended the network generative model described in Chapter 1, Section 1.6.1 [53], to

generate networks with a fixed block size and increasing number of blocks (hence, in-

creasing network size), instead of networks with fixed size. As a reminder, the model

assumes statistical independence between the existence of species interactions and piv-

ots on four parameters: the number of communities B ∈ [1,∞), noise regarding the exis-

tence of interactions outside species communities µ ∈ [0,1], noise regarding interactions

outside a perfectly nested structure p ∈ [0,1] and the shape parameter that defines the

slimness of the nested structure ξ ∈ [1,∞].

We generated a set of 2× 105 unipartite networks with varying parameters, covering

the following ranges: B ∈ [1,9]; ξ ∈ [1.5,7]; p ∈ [0,0.6]; and µ ∈ [0,0.6]. We restrict p and

µ to 0.6 to guarantee that still some identifiable pattern is still present, e.g., maintaining

the requirements of weak community structure as defined in [35], while avoiding spu-

rious outcomes [105]. See Appendix A, Section A.2 for detailed information. We have

assumed a fixed community size of NB = 50. Thus, as we add communities, network

size increases proportionally to the B parameter. The alternative process of fixing N

and reducing the size of the communities as we increase B produces equivalent results,

but difficult the analytical approach of the following sections. For modularity and in-

block nestedness maximisation, we have used the extremal optimisation algorithm [29],

adapted to the corresponding objective functions. The corresponding software codes,

both for uni- and bipartite cases, can be downloaded from the web page of the group

http://cosin3.rdi.uoc.edu/, under the Resources section.

Figure 3.1 and Figure 3.2 present the results over four ternary heat-map plots. This

is a convenient diagram, since it allows the joint assessment of the mutual relationships

between the three different structural patterns under consideration. Figure 3.1 (a) shows

a density plot, showing the structural properties of the generated networks. The colour

indicates the amount of networks in each bin of the ternary plot. As we see, the net-

work generation model does not produce a sampling homogeneously distributed over

http://cosin3.rdi.uoc.edu/
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all the domain. It is apparent that the predominant architecture is modular. This is ex-

pected, since any parameter configuration with B > 1 (more than 95% of the generated

benchmark) presents some sort of community organisation. Furthermore, modularity is

the most favoured arrangement among the three under discussion: any departure from

B = 1, and any departure from p = 0, decreases nestedness and in-block nestedness, but

leaves Q unmodified. In other words, only parameter µ affects modularity in a nega-

tive way. However, this bias in the generation process does not affect our conclusions

since we ensured that expected values for each hexagonal bin presented on the rest of

the paper contains a with a minimum sample size of 20 networks. An alternative way to

overcome this sampling problem in the non-homogeneous space may be to apply strati-

fied sampling techniques.

Panels (b), (c), and (d) of the same figure reports the average value of N , I, and Q in

each hexagonal bin of the ternary. Similarly, for panels (a)-(d) in Figure 3.2 each hexag-

onal bin of the ternary reports the average value of the parameters of the probabilistic

network generation model. A preliminary visual analysis from Fig. 3.1 shows that the

highest values of N andQ never overlap (red areas in panel (b) and (d)). In contrast, I is

able to maintain high values for networks that are either modular or nested. These are

valuable insights for the analytical results in the remainder of the Chapter: they numer-

ically confirm that networks cannot acquire properties of nestedness and modularity

simultaneously, whereas in-block nested networks might.

Another remarkable feature of results in Fig. 3.1–and Figure. 3.2– is the existence of

sharp boundaries in the ternary plots, conveniently marked in dashed pink lines. The

first boundary, F1, results from the definition of I , which generalises N . By definition

I reduces to N when B = 1. Translated to coordinates on the ternary, F1 simply re-

flects that the contribution of N is always equal or smaller than the contribution of I .

Thus, this holds also in fractions fN ≤ fI . More interesting, however, is the existence

of F2, which suggests that there is an inherent limit that constrains in-block nestedness

to dominate over Q. On close inspection to Figure 3.2, networks which map onto F2

exhibit high values of ξ, and very low values of p and µ, panels (b)-(d). We build on this

observation to elaborate on our analytical exploration below.
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(a) (b)

(c) (d)

Figure 3.1: Ternary plots showing the joint influence of the different structural pat-
terns analysed within the paper. Each axis corresponds to the fractional values of the
three structural patterns, i.e. fN = N

N+Q+I , fQ = Q
N+Q+I and fI = I

N+Q+I . The bottom
axis represents N , and its right vertex corresponds to perfectly nested networks (fN = 1).
Other values of fN are indicated by the dashed blue lines in direction↗ of the triangle.
The right axis represents fQ, and the top vertex thus corresponds to purely modular net-
works (fQ = 1). Other fQ values are indicated by horizontal dashed blue lines. Finally,
the left axis represents fI , and the left vertex corresponds to networks that are purely
in-block nested (fI = 1). Other fI values are indicated by lines in direction↘ of the tri-
angle. Additionally, the black dashed lines delimit dominance regions. Each dominance
region indicates (by pairs) which is the dominating structural pattern. For the sake of
clarity, the dominant structure is also indicated close to the plot axis. For further de-
tails on the construction and interpretation of ternary plots, see Appendix A. Panel (a)
shows the distribution of the generated networks over the ternary plot. The colour bar
indicates the amounts of networks in each bin. Panels (b), (c) and (d) show the average
values of N , I and Q, respectively.
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3.2 Structural analysis for a ring of star graphs

In this section we derive analytically the expressions forN , I andQ at the boundary

F2 represented in Figs. 3.1 and 3.2. This is possible because, as mentioned, networks

that map onto that boundary have common and very specific features: an extreme fill

parameter, ξ → ∞ (i.e. very sparse network), a perfectly nested intra-block structure

(p = 0), and minimum inter-block connectivity (µ ≈ 0); see Fig. 3.2 panels (b)-(d). Such

organisation corresponds exactly to a well-defined family of network configurations: a

ring of star graphs, G? hereafter, that reduces to a single star when B = 1, and resembles

a set of stars connected with a single link through their central nodes when B > 1 (so as

to guarantee a single giant component), see Fig. 3.3.

The exact expressions for N , I and Q for G? are the key to understand the mutual

constraints that the different network arrangements impose to each other, strictly for

such idealised case, and more loosely in general. In the following, we consider a ring of

star graphs with B communities and NB nodes per community–NBc andNBr for bipartite

networks–. For such given graph, we find the exact valuesNG? , IG? and QG? .

3.2.1 Nestedness.

We derive the analytical expression for NG? from the expression in Eq. 1.9 and its

unipartite counterpart. We start deriving the corresponding expression for the unipar-

tite case. Here, the pair overlap of a generalist node (the centre of each star subgraph), g,

with a specialist node (periphery of a star), s, is Ogs/ks = 1 if g and s belong to the same

star (and 0 otherwise). For all those pairs (regardless of the star they belong to), the null

model contribution is 〈Ogs/ks〉 = (NB + 1)/BNB. We can obtain in a similar way the terms

for the the generalist-generalist pairs between stars. Summing up all the contributions,

the final expression forNG? is:

NG? =
BN3

B −BN
2
B − 3BNB +B+ 2NB + 2

BNB
(
BN2

B +BNB −NB − 1
) . (3.1)

The corresponding expression for bipartite networks can be obtained following a

similar logic, but taking into consideration the contributions of rows and columns sepa-

rately (NBr and NBc ) to obtain:

NG? =
X c +X r

BNBcNBr (NBc + 2)(NBc +NBr )(NBr + 2)(BNBc − 1)(BNBr − 1)
, (3.2)

where the first contributor term in the numerator X c, takes the form:

X c=NBr (NBr+2)(BNBc−1)
{
B
[
(N2

Br
+NBr −3)N2

Bc
+Nc(N

2
Br

+1)−2NBr (NBr+2)+2
]
+(NBc+2)(NBc+NBr+1)

}
. The sec-

ond contributor term in the numerator X r , takes an equivalent form, but one needs to

interchange the terms NBr and NBc , accordingly.
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(a) (b)

(c) (d)

Figure 3.2: Ternary plots showing the effect of the parameters of the probabilistic
network generation model. In this case, color in each bin of the simplex indicates the
average number of blocks B (a); average shape parameter ξ (b); average intra-block noise
p (c); and finally average inter-block noise µ (d).

Figure 3.3: Design of a ring of star graphs. The star graphs are connected through their
central nodes.
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3.2.2 Modularity.

In general the optimal partition for an arbitrary network cannot be easily obtained,

except for very idealised cases such asG? , where each star in the ring forms a community

(note that G? does not suffer, like a ring of cliques, from the well-known Q’s resolution

limit [102]). On such setting, we can easily derive the contribution of each star to the

total Q following Eqs. 1.13 and 1.16. In unipartite settings, the total number of links

within communities is lc = NB − 1 and the amount of links of the network, including

links within and between communities, is L = B(NB − 1) + B = BNB. The last term, the

sum of the degrees of all the nodes in community c, corresponds to dc = 2NB. Assembling

these, we obtain the modularity of G? as

QG? = B

NB − 1
BNB

−
(

2NB
2BNB

)2 = 1− 1
NB
− 1
B
, (3.3)

which is equivalent to the general expression derived in [102].

In the bipartite counterpart, the total number of links in the networks is equal to

B(NBr +NBc +1), and the number of links per community is equal toNBr +NBc −1. Putting

all this together, we have the maximum bipartite modularity expressed as

QG? = 1− 2
NBr +NBc + 1

− 1
B
. (3.4)

3.2.3 In-block nestedness.

The derivation of IG? resembles that of NG? , with the difference that only nodes

within the same community contribute; thus, all stars have the same contribution. Fo-

cusing now on each star, we have only two contributing terms to the sum: the pair over-

lap between specialist nodes, s, and the pair overlap of the generalist node, g, with the

specialists. In both cases, the contribution is 1. For unipartite settings, the null model

corrections are 〈Ogs〉 = kgks/BNB = (NB + 1)/BNB and 〈Oss〉 = ksks/BNB = 1/BNB. Finally,

the size of the communities is Cg = Cs =NB. After taking Eq. 1.20 in its unipartite form,

and replacing all the contributions above, we obtain

IG? = 1− 3
BNB

− 2
NB

. (3.5)

For the bipartite networks (Eq. 1.20), the null modell corrections are equal to 〈Og,s〉 =

kgks/BNr,c = (NBc + 2)/BNBc = (NBr + 2)/NBr and 〈Os,s〉 = ksks/BNr,c = 1/BNBc = 1/BNBr ,

respectively. Finally, replacing all the contributions for the bipartite case, we obtain

IG? = 1− 1
BNBc

− 1
BNBr

− 2
B(NBr +NBc )

− 2
BNNrNBc

. (3.6)

In all the expressions presented above, we consider a closed ring, on which the num-

ber of inter-community links is B. For the cases B = 1 and B = 2, the number of inter-

community links is B − 1 and the degree of the generalist nodes have to be modified

accordingly. Thus, the expressions for these particular settings demand a specific treat-

ment, see Appendix A, Section A.3 for details on these cases.
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3.3 Exact constraints betweenNG? and QG?

The interdependences of Eqs. 3.1-3.6 become apparent when the number of blocks,

B, or the size of the blocks, NB, are large. For the case where NB→∞, in both unipartite

and bipartite cases, Eqs. 3.1-3.6 reduce to

lim
NB→∞

NG? =
1
B
, lim

NB→∞
QG? = 1− 1

B
= 1−NG? , lim

NB→∞
IG? = 1, (3.7)

As we see, for large G? networks, nestedness and modularity are complementary –

corroborating the empirical observations in [49]. This result shows analytically that,

in large systems with low fill, the ecosystem needs to choose (with the dynamical conse-

quences it may bear) between maximising community structure, or maximising nested

arrangements, but not both at the same time.

With respect to the case B→∞, Eqs. 3.1-3.6, in the unipartite case reduce to

lim
B→∞

NG? = 0, lim
B→∞

QG? =
NB − 1
NB

≈ 1, lim
B→∞

IG? =
NB − 2
NB

≈ 1, (3.8)

as for the bipartite case they reduce to

lim
B→∞

NG? = 0, lim
B→∞

QG? =
NBr +NBc − 1
NBr +NBc + 1

≈ 1 lim
B→∞

IG? = 1. (3.9)

In this case, the existence of many communities implies the impossibility to develop

a purely nested pattern. Indeed, the mutual bounds that NG? and QG? impose on each

other are evident, displaying a perfect anti-correlated behaviour. A plausible way to pre-

serve both nested arrangements and community structure is under the form of in-block

nestedness, which yields to the maximum possible value in both limits. Importantly,

this suggests that I doesn’t show any incompatibility with eitherN or Q.

Figure 3.4(a) illustrates these results, comparing the analytical estimation of NG? ,

QG? and IG? (Eqs. 3.1,3.3 and 3.5) against B, and the numerical results for networks

generated from different parameters. As the generated networks deviate from the ring

of stars G? (i.e. p > 0 and µ > 0), results show a worse fit to the analytical prediction, but

the overall anti-correlated pattern clearly remains. Finally, we observe that as networks

transition from a nested (B = 1) to a modular (B > 1) architecture, the values of in-block

nestedness remain very high (close to one as Eqs. 3.7, 3.8 and 3.8 indicate) and almost

constant. Fig. 3.4(b) tests the same evolution for a much denser network (50% of matrix

fill when B = 1, clearly far above most real networks). The anti-correlated behaviour of

N and Q is preserved, but the effects of the null model term are notable: the maximum

value that nestedness can take (at B = 1) isN ≈ 0.3.

3.4 Approximate constraintsN and Q (general case)

Results in Section 3.3 obtained for idealised settings (G?) point at a more general

question: can the exact constraints in Eqs. 3.7, 3.8 and 3.8 be used to understand the

co-occurrence of macro- and mesoscale patterns for the general case? Can we exploit
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(a) (b)

Figure 3.4: Analytical and numerical agreement. (a) Comparison of the analytical
(symbols; Eqs. 3.1-3.5) and numerical (lines) values of N , Q, I with respect to B. All
the calculations were performed by taking NB = 50 and ξ = 5. The values for p and µ
parameters, which increasingly depart from the ideal configuration G? , are indicated in
the plot legend. (b) Same exercise as panel (a), for a very dense network (ξ = 1). The
overall behaviour of N and Q is preserved, with monotonic decrease and increase, re-
spectively. I is closer to N initially, but quickly converges to Q thereon. Notably, the
analyticalN -Q antagonism does not hold anymore for low B, as these networks deviate
strongly from G? .

the complementarity between N and Q beyond the strict conditions of G?? This and

next Section target these questions, proposing soft bounds for Q (and for I ) in terms

of N when networks deviate from idealised scenarios. We stress the importance of this

attempt since N can be obtained for any network in polynomial time, O(N3
T ), while

the maximization of Q and I are NP problems. In this situation, these bounds offer a

valuable a priori intuition of the mesoscale organization of a network. The derivation of

these bounds for an arbitrary network G is presented below.

3.4.1 Upper bound.

The calculation of N is computationally cheap even for very large networks. Thus,

given N for a graph G, to obtain the maximum Q value compatible with such level of

nestedness, we assume G can be approximated to G? with the same number of nodes,

NT , and nestedness N . That is, G is assumed to have a relatively large ξ. The rationale

behind this mapping (G to G?) responds to the fact that, for any network with the given

N , the largest possible modularity value corresponds to a network lying on F2, i.e. the

G? graph, see Fig. 3.1(d). With this approximation, the upper bound reduces to comput-

ingQG? (Eq. 3.3) and IG? (Eq. 3.5) for aG? network compatible with the observed values

of NG? (Eqs. 3.1). To attain these, the only missing information is the number of com-

munities, B , which, for the case of G? with equally-sized modules (that is, NT = BNB),

can be obtained exploiting Eq. 3.1:

NG? (NT ,B) =
(B3 +B2(2− 3NT )−B(NT − 2)NT +N3

T )
B(NT − 1)NT (B+NT )

. (3.10)
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This polynomial equation has three possible roots, two of them being in the imaginary

domain. The upper bounds forQ and I are thus readily available, applying B to Eqs. 3.3

and 3.5. We remark that this is a heuristic approximation to Q upper bound. The con-

sideration of a more nuanced estimation, which should consider the density of G and a

non-homogeneous communities, is beyond the purpose of this work. Additionally, we

can obtain the fractional contributions of Q, I and N over the F2 boundary, f F2
Q , f F2

I ,

f F2
N (see Fig. 3.1). In particular, f F2

Q will be required to estimate the lower bound.

3.4.2 Lower bound.

We now turn our attention to the minimum value thatQ can attain, which is obtained

at the boundary F1, see Fig. 3.1(d). Heuristically, this makes sense because networks

which belong to the region along F1 are those with B = 1, see Fig. 3.2(a). To obtain the

lower bounds for Q we require to assume that N values are approximately constant

with respect to the contributions fQ. This is not a strict fact, but an observation from

Fig. 3.1(b). Additionally, at the boundary F1, we know thatN = I . Thus, with the actual

measure of N , and f F2
Q obtained though the upper bound estimation, we can obtain Q

as

f F1
Q ≈ f

F2
Q =

Q

Q+ I +N
=

Q

Q+ 2N
. (3.11)

The lower bound for I doesn’t need a heuristic estimation because, as mentioned, its

definition implies a hard lower limit when B = 1, i.e. I =N .

Figure 3.5(a) shows the values of Q as a function of N for the previous synthetic

ensemble (∼ 2× 105 networks). Q values, as obtained with the optimisation algorithm,

are plotted in grey or yellow, and the values of the theoretical upper and lower bounds

are plotted in black. The red line indicates the average values of Q for a fixed N , and

the overlaid error area represents one standard deviation above and below that average.

Our approximation of Q bounds is in good agreement with actual values obtained after

optimisation: most of the optimised Q values lie within the estimated soft bounds. De-

spite the wide range of parameters ξ, B, p and µ –far from limiting cases in most cases–,

estimated upper bounds behave like Q = 1−N almost perfectly, in accordance with our

analytical insights. While these bounds are trivial when N ≈ 0, we observe that, for

intermediate-to-high values of nestedness, these provide relevant information about the

possible mesoscale organisation of the network.

Modularity values, Q, above the upper bound correspond to networks with a single

community B = 1 and perfectly nested structure, p = 0 (see App. A, Fig. A.3). These

networks, coloured as yellow in Fig. 3.5(a) and less than 0.1% of the total, are dense

enough to allow a partition with B > 1 where the nodes of higher degree are gathered in

a block, resulting in values of Q larger than expected [53]. The small fraction of yellow

values below the lower bound approximation also corresponds to networks with B = 1,
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(a) (b)

(c) (d)

Figure 3.5: Estimated upper and lower bounds for modularity. Panel (a) shows the val-
ues of Q obtained after optimisation (grey and yellow dots), plotted against N for over
2× 105 generated networks. Yellow points correspond to networks with B = 1 (network
with a single block), for which modularity optimisation algorithms detect more than
one block, although only one planted block exists in the network. The red line in panel
(a) indicates the average values of Q for a given N , the error shaded area represents
one standard deviation above and below that average; networks with B = 1 are excluded
in this computation. Panel (b) shows the values of I obtained after optimization (grey
dots), plotted against N for the generated networks. Panel (c) shows results obtained
for the set of 57 unipartite social networks analysed in [53]; and panel (d) for the set
of bipartite social and ecological networks [117, 118]. In these two panels, dark blue
dots represent the real Q value after optimisation, and bars represent the corresponding
estimated upper and lower bounds for the same network. In all scenarios, the upper and
lower bounds of Q are marked by black dots.

but with different (ξ,p) parameters. In the same spirit, upper and lower bounds for I can

be as well approximated from the actual value of N , see Fig. 3.5(b). Remarkably, none

of the optimized values of I violates such bounds. There is no surprise with respect

to lower bounds, since the lower bound simply represents the hard limit I = N . But

even the upper bounds, which represent an estimation, are in excellent agreement with

respect to the optimized values of I . For the sake of completeness, Q-I scatter plots are

shown in Fig. A.4 of Appendix A, where we reconfirm that I andQ can coexist, i.e. there

is no clear map or mutually imposed constraints from one to the other.
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The corresponding software codes to obtain the upper and lower bounds for Q and

I are included in the package that can be downloaded from the web page of the group

(http://cosin3.rdi.uoc.edu/), under the Resources section.

3.5 Application to real networks

For the conducted experiments with synthetic networks, we have seen that N pro-

vides informative bounds to the mesoscale organisation. However, real networks differ

from idealised synthetic networks, e.g. the assumption of homogeneous sizes of com-

munities, or uncorrelated noise. To assess the accuracy that our development has in real

scenarios, we perform experiments on 347 real networks, covering several domains: 57

real unipartite networks [53] (mostly social and economic networks), and 290 bipartite

networks (ecological in most cases [117], with some social networks [118] as well).

Remarkably, for these real networks, see Figure 3.5(c) and (d), our bound estimations

also hold quite accurately. In general, we observe that for both uni- and bipartite real

networks, the limits and bounds for the bipartite case behave as expected. In general, the

larger N , the tighter are the bounds of Q, and smaller the maximum value of Q. In 45

of these networks the bounds fail: the obtained modularity is either above or below than

the upper or lower bound respectively. To ease visualization, Fig. 3.6 presents the same

results, sorted by the difference between the upper and lower bounds. Results show that

in general we have a good estimation of the bounds. For the bipartite networks results

are clearer, since higher values of nestedness produce tighter bounds. For the unipartite

case, the low values of nestedness of these networks derive wider bounds.

(a) (b)

Figure 3.6: Assessment of the accuracy of the bounds for real networks. Panel (a)
corresponds to 57 unipartite networks (see Fig. 3.5(b)), and panel (b) to 290 bipartite
networks (see Fig. 3.5(c)). In both cases networks are sorted by the difference between
the upper and lower bound.

3.6 Summary

In this chapter, we have explored the relationship between three different organi-

zational patterns: two at the mesoscale (modularity and in-block nestedness); and one

at the macroscale (nestedness). We have quantified numerically and analytically, the

http://cosin3.rdi.uoc.edu/
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interference between these three different structural organizations, in both uni- and bi-

partite settings. We show that modularity and nestedness are antagonistic architectures,

the growth of one implies the decline of the other, and this antagonism can be used to

estimate mutual bounds in synthetic and real settings. The need to preserve ingredi-

ents from both nested and modular arrangements points at the possibility of intermedi-

ate structures, which are indeed plausible with in-block nested structures. Our results

stand as a theoretical and numerical step forward to better understand past empiri-

cal evidence, which pointed at the harsh (but not impossible) coexistence of nestedness

and modularity, in Ecology and elsewhere. Notwithstanding, it is worth highlighting

that our approach takes into account solely the structural aspect of the problem, with-

out considering a plausible dynamic co-emergence of both patterns [52, 125], which we

foresee as the next relevant problem.





For this part of the thesis, instead of adopting a purely structural ap-

proach, i.e., solely employing an analytical and numerical perspective,

towards the study of nestedness, modularity, and in-block nestedness.

Our goal here is to further explore which are some of the mechanisms

that facilitate the emergence of in-block nested arrangements. To this

aim, we will provide a combination of empirical work and theoretical

modeling with a focus on online social and socio-technological envi-

ronments.

Part III

Empirical applications and implications

to systems’ dynamics
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Chapter 4
Online division of labour: emergent

structures in Open Source Software

We start part III of the thesis with a purely empirical study. Specifically, we will focus

on the analysis of a set of open source software (OSS) projects from public the reposi-

tory platform Github. Our interest on the structural features of OSS projects departs

from some obvious, but worth highlighting, observations. In first place, open Source

Software projects strongly depend on the participation and commitment of volunteer

developers to progress on a particular task, yet, little is known on how these diverse

groups of developers self-organise to work together. Second, public repositories provide

a virtually unlimited development framework: any number of actors can potentially join

to contribute in a self-organized, decentralised, distributed, remote, and asynchronous

manner. However, it seems reasonable that some sort of hierarchy and division of labour

must be in place to meet human biological and cognitive limits, and also to achieve some

level of efficiency. Based on past evidence, we think that these latter features (hierarchy

and division of labour) should translate into detectable structural arrangements, such

like nestedness, modularity and in-block nestedness, when projects are represented as

developer-file bipartite networks.

4.1 Background in Open Source Software

Open Source Software (OSS) is a key actor in the current software market, and a

major factor in the consistent growth of the software economy. The promise of OSS is

better quality, higher reliability, more flexibility, lower cost, and an end to predatory

vendor lock-in, according to the Open Source initiative [126]. These goals are achieved

thanks to the active participation of the community [127]: indeed, OSS projects depend

on the participation and commitment of volunteer developers to progress [128, 129].

The emergence of GitHub and other platforms as prominent public repositories, to-

63
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gether with the availability of APIs to access comprehensive datasets on most projects’

history, has opened up the opportunities for more systematic and inclusive analyses of

how OSS communities operate. In the last years, research on OSS has left behind a rich

trace of facts. For example, we now know that the majority of code contributions are

highly skewed towards a small subset of projects [130, 131], with many projects quickly

losing community interest and being abandoned at very early stages [132]. Moreover,

most projects have a low truck factor, meaning that a small group of developers is re-

sponsible for a large set of code contributions [133–135]. This pushes projects to depend

more and more on their ability to attract and retain occasional contributors (also known

as “drive-by” commits [136]) that can complement the few core developers and help

them to move the project forward. Along these lines, several works have focused on

strategies to increase the on-boarding and engagement of such contributors (e.g., by us-

ing simple contribution processes [137], extensive documentation [138], gamification

techniques [139] or ad hoc on-boarding portals [140], among others [141]). Other so-

cial, economic, and geographical factors affecting the development of OSS have been

scrutinised as well, see Cosentino et al. [142] for a thorough review.

Parallel to these macroscopic observations and statistical analyses, social scientists

and complex networks researchers have focused, in relatively much fewer papers, on

analysing how a diverse group of (distributed) contributors work together, i.e. the struc-

tural features of projects. Most often, these works pivot on the interactions between de-

velopers, building explicit or implicit collaborative networks, e.g. email exchanges[143,

144] and unipartite projections from the contributors-files bipartite networks [145], re-

spectively. These developer social networks have been analysed to better understand

the hierarchies that emerge among contributors, as well as to identify topical clusters,

i.e. cohesive subgroups that manifest strongly in technical discussions. However, the

behaviour of OSS communities cannot be fully understood only accounting for the rela-

tions between project contributors, since their interactions are mostly mediated through

the edition of project files (no direct communication is present between group members).

To overcome this limitation, here we focus on studying the structural organisation of

OSS projects as contributor-file bipartite graphs. On top of technical and methodolog-

ical adaptations, the consideration of these two elements composing the OSS system

allows retaining valuable information (as opposed to collapsing it on a unipartite net-

work) and, above all, recognising both classes as co-evolutionary units that place mutual

constraints on each other.

As it was briefly mentioned above, public collaborative repositories place no limits,

in principle, to the number of developers (and files) that a project should host. In this

sense, platforms like GitHub resemble online social networks (e.g. Twitter or Facebook),

in which the number of allowed connections is virtually unbounded. However, we know

that other factors –biological, cognitive– set well-defined limits to the amount of active

social connections an individual can have [146], also online [147]. But, do these limits
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apply in collaborative networks, where contributors work remotely and asynchronously?

Does a division of labour arise, even when interaction among developers is mostly indi-

rect (that is, via the files that they edit in common)? And, even if specialised subgroups

emerge (as some evidence already suggests, at least in developer social networks [145]),

do these exhibit some sort of internal organisation?

We aim to answer these questions, by placing the accent on the analysis on of nest-

edness modularity and in-block nestedness as key structural signatures. The first one,

nestedness, is a suitable measure to quantify and visualise how the mentioned low truck

factor, and the existence of core/drive-by developers [115], translates into a project’s

network structure. As for modularity, it provides a natural way to check whether OSS

projects split in identifiable compartments, suggesting specialisation, and whether such

compartments are subject to size limitations, along the mentioned bio-cognitive limits.

Finally, since modularity and nestedness are, to some extent, incompatible in the same

network –as shown in Chapter 3–, in-block nestedness (or the lack of it) can help to

determine how projects solve the tension between the emergence of nested (hierarchy,

asymmetry) and modular (specialisation, division of labour, bounds to social connec-

tions) patterns.

4.2 Data and methods

Our open source projects dataset was collected from GitHub [123], a social coding

platform which provides source code management and collaboration features such as

bug tracking, feature requests, tasks management and wiki for every project. Given

that GitHub users can star a project (to show interest in its development and follow its

advances), we chose to measure the popularity of a GitHub project in terms of its number

of stars (i.e. the more stars the more popular the project is considered) and selected the

100 most popular projects. This criterium mainly responds to two arguments: maturity

and success. That is, here we purposefully pay attention to projects which have reached

a reasonable degree of evolution, regardless of the absence (or presence) of any given

structural organisation at the initial stages. Other possible criteria –number of forks,

open issues, watchers, commits and branches– are positively correlated with stars [142],

and so our proxy to mature, successful and active projects probably overlaps with other

sampling procedures.

4.2.1 Collection and pruning

The collection and cleaning of the dataset involved three phases, namely: (1) cloning,

(2) import, and (3) enrichment.

1. Cloning and import. After collecting the list of 100 most popular projects in

GitHub (at the moment of collecting the data) via its API [148], we cloned them

to collect 100 Git repositories. We analysed the cloned repositories and discarded

those ones not involving the development of a software artifact (e.g. collection of
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links or questions), rejecting 15 projects out of the initial 100. We then imported

the remaining Git repositories into a relational database using the Gitana [149]

tool to facilitate the query and exploration of the projects for further analysis. In

the Gitana database, Git repositories are represented in terms of users (i.e. con-

tributors with a name and an email); files; commits (i.e. changes performed to the

files); references (i.e. branches and tags); and file modifications. For two projects,

the import process failed to complete due missing or corrupted information in the

source GitHub repository.

2. Enrichment. Our analysis needs a clear identification of the author of each com-

mit so that we can properly link contributors and files they have modified. Un-

fortunately, Git does not control the name and email contributors indicate when

pushing commits resulting on clashing and duplicate problems in the data. Clash-

ing appears when two or more contributors have set the same name value (in Git

the contributor name is manually configured), resulting in commits actually com-

ing from different contributors appearing with the same commit name (e.g., often

when using common names such as “mike”). In addition, duplicity appears when

a contributor has several emails, thus there are commits that come from the same

person, but are linked to different emails suggesting different contributors. We

found that, on average, around 60% of the commits in each project were modified

by contributors that involved a clashing/duplicity problem (and affecting a similar

number of files). To address this problem, we relied on data provided by GitHub

for each project (in particular, GitHub usernames, which are unique). By linking

commits to unique usernames, we could disambiguate the contributors behind the

commits. Thus, we enriched our repository data by querying GitHub API to dis-

cover the actual username for each commit in our repository, and relied on those

instead on the information provided as part of the Git commit metadata. This

method only failed for commits without a GitHub username associated (e.g. when

the user that made that commit was no longer existing in GitHub). In those cases

we stick to the email in Git commit as contributor identifier. We reduced consid-

erably the clashing/duplicity problem in our dataset. The percentage of commits

modified by contributors that may involve a clashing/duplicity problem was re-

duced to 0.004% on average (σ = 0.011), and the percentage of files affected was

reduced to 0.020% (σ = 0.042).

At the end of this process, we had successfully collected a total number of 83 projects,

adding up to 48,015 contributors, 668,283 files and 912,766 commits. 18 more projects

were rejected due to other limitations. On one hand, after exploring the relationship

between the number of files and contributors within the projects –Pearson coefficient

r = 0.34–, we discarded some projects that presented very strong divergence between

the two sets, e.g. projects with a very large number of files but very few contributors. In
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these cases, althoughN ,Q, and I can be quantified, the outcome is hardly interpretable.

An example of this is the project material-designs-icons, with 15 contributors involved in

the development of 12,651 files. Finally, we considered only projects with a bipartite

network size within the range 101 ≤ S ≤ 104, as the computational costs to optimise in-

block nestedness and modularity for larger sizes were too severe. After this, we ended

up retaining 65 projects to perform the structural analysis. Nonetheless, as can be seen

in Table 5.1, we have a sufficiently broad distribution of project sizes and age. Note

also that popularity (number of stars) is not necessarily related to their size (Pearson

coefficient r = −0.03) nor age (r = −0.1). The complete dataset with the final 65 projects

is available at http://cosin3.rdi.uoc.edu, under the Resources section.

contributors files commits stars Project age
Largest project 1,061 12,321 75,757 27,500 4 years 11 months
Smallest project 55 27 444 36,900 5 years 6 months

Average 422 3,247 33,936 46,334 4 years 9 months
Most popular project 516 2,833 34,666 293,000 2 years 10 months
Least popular project 117 103 4,057 21,700 5 years 5 months

Oldest project 1,434 10,413 174,452 35,000 11 years 3 months
Youngest project 43 51 210 31,600 0 years 3 months

Table 4.1: Statistics of our dataset.

4.2.2 Matrix generation.

We build a bipartite unweighted network as a rectangular N ×M matrix, where rows

and columns refer to contributors and source files of an OSS project, respectively, and

total size S = N +M. Cells therefore represent links in the bipartite network, i.e. if the

cell aij has a value of 1, it represents that the contributor i has modified the file j at least

once, otherwise aij is set to 0.

We are aware that an unweighted scheme may be discarding important information,

i.e. the heterogeneity of time and effort that developers devote to files. We stress that

including weights in our analysis can introduce ambiguities in our results. In the Github

environment, the size of a contribution could be regarded either as the number of times

a developer commits to a file, or as the number of lines of code (LOC) that a developer

modified when updating the file. Indeed, both could represent additional dimensions to

our study. Furthermore, at least for the first (number of commits), it is readily available

from the data collection methods. However, weighting the links of the network by the

number of commits is risky. Consider for example a contributor who, after hours or days

of coding and testing, performs a commit that substantially changes a file in a project.

On the other side, consider a contributor who is simply documenting some code, thus

committing many times small comments to an existing software –without changing the

internal logic of it. There is no simple way to distinguish these cases.

The consideration of the second item (number of LOC modified) could be a proxy to

http://cosin3.rdi.uoc.edu
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such distinction, but this is information is not realistically accessible given the current

limitations to data collection. Getting a precise number of LOCs requires a deeper anal-

ysis of the Git repository associated to the GitHub project, parsing the commit change

information one by one –an unfeasible task if we aim at analysing a large set of projects.

The same scalability issue would appear if we rely on the GitHub API to get this infor-

mation, which additionally would involve quota problems with such API.

One might consider even a third argument: not every programming language

“weighs” contributions in the same way. Many lines of HTML code may have a small

effect on the actual advancement of a project, while two brief lines in C may completely

change a whole algorithm. In conclusion, we believe there is no generic solution that

allows to assess the importance of a LOC variation in a contribution. This will depend

first on the kind of file, then on the programming style of each project and finally on

an individual analysis of each change. Thus, adding informative and reliable weights

to the network is semantically unclear (how should we interpret those weights?) and

operationally out of reach.

4.3 Preliminary observations: Developers implicit degree

Before we focus on the structural arrangements of interest (nestedness, modularity,

in-block nestedness), we explore whether a potentially unbounded interaction capability

is mirrored in actual OSS projects across 4 orders of magnitude in size. To do so, we work

on the projected contributor-contributor network, to measure the developer’s implicit

average degree 〈k〉, i.e. the average amount of contributors with whom an individual

shares at least one file. Figure 4.1(a) shows a scatter plot of 〈k〉 against S (note the semi-

log scaling). Panels (b) and (c) in Fig. 4.1 shows the scatter plots of 〈k〉 against N and M,

respectively. Despite the changes in the x−axis scale (which affects the order in which

projects are represented), there are no significant differences in the results. Such results

indicate that, besides the initial fluctuating pattern, 〈k〉 presents an almost flat trajectory

suggesting that, on average, a contributor indirectly interacts with ∼ 70 peers, regardless

of the size of the project. As visual aid, we have added a vertical red line in panel (b)

at N = 70, to differentiate those networks with N < 70 and for which it is not possible

to exhibit 〈k〉 ≈ 70. The stable behaviour of this average was statistically validated with

the Augmented Dickey-Fuller (ADF) test for stationarity of time series [150]. The idea

of stationarity on a time series implies that summary statistics of the data, like the mean

or variance, are approximately constant when measured from any two starting points

in series (different project sizes in our case). Typically, statistical stationarity tests are

done by checking for the presence (or absence) of a unit root on the time series1 (null

hypothesis). The results of the analysis indicate that, since the test statistic is less than

the critical value at 5% significance level, then, the null hypothesis is rejected, and we

1A time series is said to have a unit root if we can write it as yt = anyt−n +
∑
i εt−ia

i , where a = 1 and ε is
an error term.
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can conclude that the data series is stationary.

(a) (b)

(c)

Figure 4.1: Contributor-contributor network. Scatter plots of the developers implicit
average degree 〈k〉 against project size S = N +M (panel (a)), number of contributors
(panel (b)) and number of files (panel (c)). The shadowed grey area represents one stan-
dard deviation above and below the average, while circles represent each individual
project. The red line in panel (b) indicates N = 70 contributors. Inset tables in all panels
show the results of the ADF stationarity test. All plots are presented in semi-log axes.

The stationary pattern for the developers implicit average degree in Figure 4.1 is

interesting in two aspects. First, it points to an inherent limitation to the number of

connections (even indirect ones) that a contributor to a project can sustain. Notably,

such limitation is below (but not far) from the Dunbar number (somewhere between

100 and 300), which is echoed as well in digital environments [147]. Second, the result

is an indication of the existence of some sort of mesoscale organisation in the projects.

In Bird et al. [144], the authors find that developers in the same community have more

files in common than pairs of developers from different communities. Reversing the

argument, one may say that relatively small contributor neighbourhoods are indicative,

though not a guarantee, of the presence of well-defined subgroups in OSS projects.

4.4 Strcutural analysis: mesoscale patterns

From the previous encouraging result, we move on to the analysis of a comprehen-

sive view of projects. The specificities of the methods to calculate nestedness N , and

to optimise modularity Q and in-block nestedness I are detailed in the Materials and

Methods section. For the sake of illustration, Figure 4.2 (top row) shows adjacency ma-

trices of three projects with high values of each structural measure. In this Figure, rows

and columns have been rearranged to highlight the different properties.

We start out with a general overview of the results for the three measures of interest.

Figure 4.3 plots the obtained values for N , Q, and I over all the projects considered

in this work. To ease visualisation, and considering that nestedness and modularity are

antagonistic organisations [151], projects are sorted to maximise the difference between
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Figure 4.2: Interaction matrices for three projects with high values for each one the
structural patterns of interest. Left: Nestedness N , middle: Modularity Q, right: In-
block nestedness I .

N and Q. In general, nestedness is the lowest of the three values at stake, and in-block

nestedness is, more often than not, the highest. It can be safely said, thus, that a tendency

to self-organise as a block structure is present: 90% of the projects exhibit either Q

or I above 0.4, and values beyond 0.5 are not rare. This evidence is compatible with

previous results regarding the division of labour: indeed, be them modular or in-block

nested, most projects can be splitted into communities of developers and files, forming

subgroups around product-related activities [144].
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Figure 4.3: N , Q, and I obtained values, for each project of our dataset. The projects
were sorted to maximise the difference betweenN and Q.

Just like there is virtually no technical limit to the overall size of a project, there is

not either an explicit bound to the size that a sub-group should have. And yet, previous

theory and evidence suggests that larger communities come at an efficiency cost: the dy-

namics of a group change fundamentally when they exceed the Dunbar number, which

is estimated around 150. While most often the number refers to personal acquaintances,

it has been (and still is) applied in the industrial sphere [152]. Applied to the OSS en-

vironment, exceedingly small working sub-groups might hamper a project’s advance;
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while too many contributors may not allow the group to converge towards a solution

[153, 154]. We explore whether, indeed, size limitations arise in developers sub-groups,

as they emerge from either Q or I optimization procedures. Although partitions are

hybrid, i.e. a community has both developers and files, in the following, we will report

the community sizes in terms of developers.

Figure 4.4 provides a global overview of the 65 projects studied here, with the dis-

tribution of their largest subgroup sizes as they are identified via Q (panel (a)) or I
(panel (b)). In both cases the average (dashed orange vertical line) is below 200, and

the histogram is evenly distributed around 100: most communities belong in the range

from 80 to 200. Given the obvious similarity between both distributions, we perform

a Mann-Whitney U test, so as to find out whether these two distributions are actually

compatible (the null hypothesis cannot be rejected, p-value = 0.3). In other words, block

sizes are independent from the optimization strategy adopted. Indeed, the test indicates

that both size distributions can be regarded as drawn from populations having the same

distribution, and the combined distribution is shown in panel (c). The solid red line

represents a log-normal fit (notice the logarithmic scale in the x-axis), and the insets in

all panels show the QQ plots, to compare both theoretical and empirical distributions

revealing that the fit is accurate.
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Figure 4.4: Frequency distribution of the largest community size for each project.
Values obtained after optimization of modularity (panel a) and in-block nestedness
(panel b). The distribution of largest community size when combining both opmtimiza-
tion strategies is shown in panel c. In the three panels, the solid red line corresponds to
the log-normal fit performed to each distribution, which are centred around 100. The
dashed orange line indicates the average values of our dataset, and inset panels show the
QQ plots of the empirical versus theoretical quantiles from the log-normal distribution
fit.

Although Figure 4.4(c) evidences, on average, a well-defined maximum community

size (at 169.7 users, and 95% confidence interval [139.4,206.7] as measured for log-

normal distributions [155]), we must ensure that the size of the largest communities

detected for each project is independent of the size of the project, in order to validate
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Figure 4.5: Evolution of the average community size as a function of S: for Q- and
I -optimised partitions (panels (a) and (b), respectively). Regarding the size, average
Q-communities are in general larger than I -communities. Furthermore, the scaling be-
haviour is also different: an average community size for Q-optimised partitions moder-
ately grows with S, while it remains almost constant for I beyond S > 2000. Turning
from average to maximum community size, Q- and I -optimised partitions (panels (c)
and (d), respectively) present very similar bounds, from 30 to 300 contributors. Again,
the largest Q-community slightly tends to grow with S, while this size stabilises around
100 for the case of I . Inset tables in all panels show the results of the ADF stationar-
ity test, confirming the presence of bounded values for the maximum subgroup sizes
(panels (c) and (d), respectively). Note semi-log scaling.

such organizational limit. That is, we need to test that the largest blocks (far right in

panel (c)) do not necessarily correspond to the largest projects. To do so, we go down to

the project level. Figure 4.5 reports average (panels (a) and (b)) and maximum (panels

(c) and (d)) subgroup sizes for both community identification strategies, as a function

of the project size S. In general, results point at the existence of upper bounds to com-

munity size. This impression is confirmed statistically, as the ADF test for stationarity

indicates (see p-values in insets) that subgroup sizes, after a fluctuating behaviour when

S < 2000, remain stable across S in panels (b) to (d). This is not so in panel (a): aver-

age Q-communities exhibit a subtle growth with respect to project size, and the ADF

test signals such non-stationarity. Nonetheless, it is apparent that in all cases –even in

panel (a), despite its increasing trend– the size of communities is compatible with the
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limits described by Dunbar’s number: in panel(c), largest community size is slightly

above 200. In panel (d), even the largest projects reflect that the maximum size of a

community is between 100 and 200.

These results are surprising, since such trend towards the compartmentalization of

the workload is not only decentralised, in the sense that it does not emerge from a pre-

defined plan, but also implicit, because the interaction between developers is most often

indirect.

4.5 Co-existing architectures and project maturity

As it has been suggested [151], empirical evidence indicates that more than one struc-

tural pattern may concur within a network, each evincing different properties of the sys-

tem. We take the same stance here: a network is not regarded, for example, as completely

modular or completely nested; rather, it may combine structural features that reflect the

evolutionary history of the system, or the fact that the system evolves under different

dynamical pressures that favour competing arrangements.

A convenient way to grasp this mixture is a ternary plot (or simplex), see Figure 4.6.

In the ternary plot, each project is located with three coordinates fN , fQ and fI , which

are simply calculated from the original scores, e.g. fN = N /(N +Q + I ) (note that the

three quantities are, by definition, in the [0,1) range). The simplex can be partitioned

according to “dominance regions”, bounded by the three angle bisectors. These regions

intuitively tell us which of the three patterns is more prominent for any given project.

Figure 4.6 reveals that most projects lie in the nested regions, while the predomi-

nantly modular region is relatively empty. Note that certain areas of the simplex (in

grey in Figure 4.6) are necessarily empty. In particular, the right half of the ternary, i.e.,

fI ≥ fN , is empty since, by definition, I reduces to N when the number of blocks is 1,

hence, the contribution of N is always equal or smaller than the contribution of I . On

the other hand, as explained in Chapter 3, an in-block nested structure exhibits neces-

sarily some level of modularity, but not the other way around. This explains why the

lower-left area of the simplex in Figure 4.6 is empty as well.

Together with their dominant architecture, points in Figure 4.6 are colour-coded ac-

cording to the total number of commits that each project has received. We take this

number as a proxy to the level of development or maturity of the project (note that a

project’s age may be misleading due to periods of inactivity). The distribution of colour

on the simplex suggests that more mature projects tend to exhibit nested or in-block

nested structures, whereas predominantly modular projects appear to be relatively im-

mature (with exceptions, admittedly). Such result is resonant to the fact that topical

conversations in online social networks (“information ecosystems") evolve through dif-

ferent stages –modular when the discussion is still brewing in a scattered way; nested

when the discussion becomes mainstream to the group of interest [49]. More relevant

to OSS development, Figure 4.6 reconciles the idea of workload compartmentalization
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Figure 4.6: Distribution of the three architectural patterns for each the projects across
a ternary plot. The colourbar indicates the number of commits received by each project,
normalized by the size of it.

(sub-communities forming around product-related activities) [144], and the emergence

of hierarchies [133] or a rich club [143] of developers, at least in well-developed projects.

This partial picture is however complemented by the fact that hierarchies emerge as well

on the code class: the presence of generalists and specialists applies to both developers

and files in a nested or in-block nested scenario.

4.6 Summary

In this Chapter we have analysed a set of popular open source projects from GitHub,

placing the accent on nestedness, modularity and in-block nestedness –which typify

the emergence of heterogeneities among contributors, the emergence of communities of

developers working on specific subgroups of files, and a mixture of the two previous, re-

spectively. Our analyses have shown that indeed projects evolve into a relatively narrow

set of structural arrangements. At the mesoscale, we have observed that projects tend to

form blocks, a fact that can be related to the need of contributors to distribute coding

efforts, allowing a project to develop steadily and in a balanced way. Focusing on the file

class, the emergence of blocks is interesting as well, since a modular architecture (under-

stood now as a software design principle) is a desired feature in any complex software

project. Furthermore, those blocks or subgroups have a relatively stable size no matter

how large a project is. Remarkably, such size is compatible with the Dunbar number.
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Our results create a link between bio-cognitive constraints, group formation and on-

line working environments, opening up a rich scenario for future research on (online)

work team assembly (e.g. size, composition, and formation). From a complex network

perspective, our results pave the way for the study of time-resolved datasets, and the

design of suitable models that can mimic the growth and evolution of OSS projects.





Chapter 5
Structural Elasticity in Online

Communication Networks: an ecological

approach

In previous Chapters, we have shown that different structural architectures can co-

exist in a system, and had introduced a discussion on how the presence of combined

patterns or transitional states within a system could appear as the system’s response

when facing two driving forces at the same. It’s is not surprising then that one of the

most repeated mantras in the study of complex systems refers to the intertwined nature

of structure and dynamics: different structural arrangements place distinct constraints

to the dynamics on that structure, while the dynamics modify the structure that sup-

ports it. With this in mind, the design of mathematical models that mimic the observed

changes in network topology seems like a suitable approach to bring to light the under-

lying mechanisms behind their emergence.

This Chapter is focused to the development of a dynamical model to study these

type of structural connectivity patterns, which have been observed in online communi-

cation networks. First, we report evidence that these information networks, in resem-

blance to natural ecosystems, show remarkable structural resilience to environmental

changes and, secondly, we provide an ecology-inspired theoretical model that explains

the dynamical reorganization observed in the data. We adopt a novel perspective on

the dynamics of information networks, in which co-adaptation and surrounding condi-

tions are naturally inserted. Our proposal builds on the idea that the network structure

between users and memes is the result of a local optimization process [66], i.e. the in-

dividual maximization of visibility, and that the nature of the interactions is mutually

beneficial,i.e., mutualistic.

77
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5.1 An ecological approach to model information ecosystems

Perceptual and cognitive human capabilities are limited resources [156–158]. How-

ever, their finiteness had not generally emerged in day-to-day communication processes:

not in the pre-industrial era, where a physical (face-to-face) or low-bandwidth interac-

tion governed the slow change in public opinion; nor during the dominance of the media

when exposure to an oligopolistic media environment puts little pressure on the audi-

ence’s attention resources. In both cases, the public sphere was hierarchically structured

and framed by the operations of few actors on a rather slow time scale. On the contrary,

the paradigm of online communication is characterized by the fragmentation of the pub-

lic sphere [159], in which elite and non-elite actors behave as sources and receivers of

information on the virtual stage. Only in this new scenario, attention, memory and

processing time suddenly become critical assets to compete for [147, 160–162]: their

scarcity has been exposed.

Complementary to direct competition (among actors), interaction with other units

in the system is often mutualistic. For the same reason that two actors compete with

each other, they establish cooperative relationships with the memes (keywords, hash-

tags). These “information chunks” may –if correctly chosen– optimally spread informa-

tion and consolidate the visibility they strive for. Hence, for example, the (ab)use of

hyper-emotional language that we suffer in nowadays politics, as an arms race to impact

optimization.

Of course, the choice of a meme is context-dependent (“past performance is no guar-

antee of future results”), and thus the interactions between actors and memes are adap-

tative and extremely sensitive to changes in the communication environment –breaking

news, fads and rumours, celebrity gatherings, etc–. In turn, changes in the surrounding

conditions tend to be ephemeral although frequent, in the more open and fluid access to

many digital sources.

Under the light of these four drivers –competition, mutualism, adaptation, and

environment–, online communication systems and natural mutualistic assemblages

become special cases of a broader class of mutualistic bipartite systems, i.e. those

dominated by intra-class competition and inter-class mutually beneficial interactions,

although clearly functioning at very different spatial and temporal scales. Our failure

to realize this in the past is due to several factors. Previous approaches to an “info-

ecological” understanding of online communication dynamics typically focused on one

of the dimensions of the problem actors [147, 160–162] or memes [163]), missing the

co-evolutionary interplay of topologies and states in the network [164–167]. This pic-

ture changes dramatically if the focus is shifted from the relatively stable peer-to-peer

network to the fluid information bipartite network, that is, ad hoc groups of users,

which loosely gather around and engage in shared memes [168], operating in a hyper-

competitive environment [169]. Other approaches, which did include the bipartite

perspective, were limited to a qualitative discussion as a result of empirical observa-
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tions on a single dataset [49], failing to identify the mechanisms that drive the whole

system.

A picture that embraces the mentioned ingredients opens new promising possibili-

ties to analyse and model online social networks, if we consider that Ecology is rich in

theoretical frameworks where the co-evolutive coupling between structure and dynam-

ics is studied [66, 125, 170]. Moreover, while testing these theories empirically in natu-

ral ecosystems is difficult –mainly because of the resource-intensive demands to collect

data [171]–, digital streams from social interactions are abundant on several spatial and

temporal scales, and precise knowledge about the environmental (external) conditions

–related to specific information flows– can also be collected.

The first problem to address under this information ecosystems framework is the

network’s structural volatility, which is coupled to the fluctuating nature of the envi-

ronment. Online communication is heavily driven by the events surrounding it, which

constantly trigger attention shifts that modify the behaviour of otherwise loosely linked

assemblages of individuals and groups [169]. It is precisely this hectic, information-

dense environment that dictates the emergence and fall of ephemeral synchronized at-

tention episodes, which translate in fast structural changes.

Here, we provide evidence that information ecosystems exhibit a remarkable struc-

tural elasticity to environmental changes , recovering its original architecture in the

aftermath of an external event affecting it. To do so, we first report on theory-free, em-

pirical observations of the characteristic dynamical re-organisation in communication

networks, as they react to environmental “shocks”. Analyzing the response of the Twit-

ter ecosystem to different types of external events, we quantify how collective attention

episodes reshape the user-hashtag information network, from a modular [33, 40] to a

nested [45, 72] architecture, and back. The emergence of these structural signatures is,

remarkably, consistent across different topics and time scales. Next, we propose a the-

oretical framework that explains the emergence of the patterns observed in real data

streams, as a result of an adaptive mechanism. The model builds on the idea that the

user-meme network structure is effectively driven by an optimisation process [66], aim-

ing at the maximization of visibility, and that the nature of the user-meme interactions is

mutualistic, i.e., beneficial for both. Furthermore, through our modeling framework we

predict that the users’ struggle for visibility in any context facilitates the emergence of

nested arrangements at multiple scales: either mesoscale (in-block) nestedness [21, 53]

during the compartmentalized stages, or macroscale nestedness in exceptional global at-

tention episodes. These predictions are supported by the data. Finally, we present some

results that link our observations with the model at the microscale, which suggest that

environmental shocks may leave a trace, if not at the structural level, at the dynamical

one.
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5.2 Data and Methods

5.2.1 Datasets

Biased as it may be [172], Twitter is without a doubt a sensitive platform that mirrors,

practically without delay, exogenous events occurring in offline environments. In this

sense, Twitter data constitute a rich stream, providing a public and machine-readable

reflection of the real world. Therefore, the empirical data employed in this work was

collected from the online platform www.twitter.com.

Following the analogy with interactions in ecological systems, two types of species

are considered: users and hashtags (memes). For each tweet on the different datasets, we

only extracted the user’s name, the hashtags in the tweets, and the time at which they

were posted.

We considered two events of different nature: the Spanish general elections april

2019 (28A), the 2015 Nepal earthquakes. The dataset corresponding to the 2015 Nepal

earthquakes was collected in [173].

1. Spanish general Elections (April 2019): The April 2019 Spanish general elections

were held on Sunday, 28 April 2019, to elect the 13th bicameral legislative cham-

bers of the Kingdom of Spain, the 350 seats in the Congress of Deputies and 208

out of 266 seats in the Senate. The observation period started at the beginning

of the electoral campaign, on the 12th of April and lasted until the 6th of May,

a few days before the beginning of the electoral campaign for the election of the

54 Spanish members of the European Parliament. Hence, the observation period

was marked by intense political activity. For this event, we collected a dataset

composed of 3,0107,629 unique tweets containing at least one hashtag, with a to-

tal 124,062 unique hashtags and 1,883,468 users. The dataset was collected by

selecting all the tweets containing at least one of a total set composed of 300 rele-

vant keywords that could be either user names or hashtags related to the electoral

process, i.e, names of candidates, electoral actvities (debates, meetings) and name

of the parties involved, etc.

2. Nepal Earthquake (April-May 2015): The next dataset taken into consideration

for analysis corresponds to an unexpected event, specifically, a series of earth-

quakes registered in Nepal in 2015. The first earthquake occurred on the 25 of

April 2015, registering around 9000 casualties. This event was followed by sev-

eral continued aftershocks, with a major aftershock of similar magnitude of the

first quake, registered on May 12th. Given the unpredictable nature of this type

of event, we have focused on the study of the second major earthquake. The ob-

servation period covers a total of six days, from 8 to 14 of May, a few days after

the second aftershock. The dataset contains 1,918,045 unique tweets containing

at least one hashtag, with a total 35,795 unique hashtags and 810,744 users. The

www.twitter.com
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dataset was collected by selecting all the tweets containing at least one of the fol-

lowing hashtags or keywords: nepal, earthquake, #nepalearthquake.

Table 5.1: Summary of the datasets

Dataset Data length
Total
days Tweets Users Hashtags

2019 Spanish
general elections April 12 - May 6 24 30,107,629 1,883,468 124,062

2015 Nepal
Earthquake May 8-14 6 1,918,045 810,744 35,795

5.2.2 Matrix construction

Prior the construction of the interaction matrices, we performed a selection criteria

that allowed us to capture the structural changes of the data in a smooth way, and, at the

same time, reducing the computational cost.

For each dataset, we split the timestream into chunks according to non-overlapping

time windows with three hours of duration ω = 3h, Fig. 5.1 top row. For each chunk, we

built matrices a(t)
uh containing the 2000 most active unique users and a variable number

of hashtags, depending on the amount produced by those 2000 users [49]. Each cell

in the matrices a(t)
uh is equal to 1 if user u has posted a message containing the hashtag

h at least once, and 0 otherwise. Note that each matrix will have a different duration,

spanning from a few minutes during the times of high activity (when an event is taking

place), to the total duration of the time window. For each one of these 3-hour chunks,

we select the matrices that are closer to the middle of the time window, e.g., a(t≈ω/2) to

perform the structural analysis. Around the periods of high activity –on the onset of the

events– the procedure is repeated considering time windows of 15 minutes of duration.

It is also important to highlight that the a(t)
uh matrices may not contain the same nodes

across t: as time advances, users join (disappear) as they start (cease) to show activity;

the same applies for hashtags, which might or might not be in the focus of attention

of users. This volatile situation is quite normal in time-resolved ecology field studies

[174–176], where the accent is placed on the system’s dynamics –rather than individual

species.

5.2.3 Structural measures.

We have explored the structural evolution of the network by means of three arrange-

ments, one at the macroscale (nestedness [41, 43]), and two at the mesoscale (modularity

[33], in-block nestedness [21, 53, 151]). We focus our attention on modular, nested and

in-block nested patterns since all of them have been observed prominently in ecology

[50, 65, 113, 114] and in information systems [49, 53]. We quantify the amount of nest-

edness by means of a global nestedness fitness N , introduced by Solé-Ribalta et al. [53],

an overlap measure [73] that includes a suitable null model. We follow this work as
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Figure 5.1: Schematic representation of the implemented methodology in the analy-
sis of empirical data. The applied methodology comprises three steps: Selection and
construction of the adjacency matrices (top and middle rows) , structural analysis of the
selected matrices by means of nestedness, modularity and in-block nestedness (bottom
row).

well for the definition and optimization strategy of in-block nestedness I. With respect

to community analysis, we apply a variant of the extremal optimisation algorithm [29],

adapted [151] to maximize Barber’s bipartite modularity [30].

5.3 Structural elasticity in information systems

Despite the highly fluctuating nature of the timestream datasets, some reliable pat-

terns emerge from its apparently hectic activity. For now, we focus on two of them:

modularity [33, 40] (Q) and nestedness [41, 43, 45] (N ). High levels of modularity cor-

respond to a fragmented attention scenario, and can be considered as the resting state of

the system. In this stage, users mostly focus on their own topics of interest, i.e. a certain

subset of memes, facilitating the emergence of identifiable blocks. High values of nest-

edness, on the other hand, reflect an extraordinary (and, thus, ephemeral) stage in which

the system self-organizes to attend one or few topics. In these cases, the discussion re-

volves around a small set of generalist memes (hashtags used virtually by everybody)

and users (highly active individuals participating in many facets of the discussion).
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Figure 5.2: Structural measures over time for two datasets: Twitter streams covering
two different topics, i.e. Spanish general election of 2019 (panel (a)) and 2015 Nepal
earthquake (panel (b)). Spanning different time ranges and attracting varying levels of
attention (see tweet volume in top panels), the information ecosystems self-organise in
similar ways: a block organization dominates the system (positive modularity Q̂), re-
flecting the separate interests of users, until external events induce large-scale attention
shifts, which rearrange completely the network connectivity towards a nested architec-
ture (high N̂ ). For a closer view, we highlight specific time windows in each dataset
with some identifiable events happening in them (lower panels). In each plot, measures
of modularity and nestedness are shifted from their initial values (Q0 and N0, respec-
tively). The panels corresponding to NB(I) highlight the nested self-similar arrange-
ments at different scales, which is discussed later on.
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Figure 5.2 presents the evolution of Q and N for the two datasets described above

(several more are shown in Appendix B, Section B.2, with similar insights). For exam-

ple, Fig. 5.2 (a) corresponds to a period of over 20 days around the local elections in

Spain (April-May 2019). For this dataset, the evolution of Q and N shows a remark-

able anti-correlated behaviour, that was statistically validated by computing the Peason

coefficient, see Section B.5, Table S2 in Appendix B. Such behaviour can be explained

by the mutual structural constraints that these two arrangements impose on each other

[151]. Remarkably, however, the significant growth of nestedness is not caused by a

decrease in modularity of the system, but, on the contrary, tightly linked to external

events: see for instance the sudden changes in the structure on specific dates, shadowed

in grey in the figure (debate and polling day, respectively). These extraordinary events

are accompanied, unsurprisingly, by an increased volume of messages (top panel) and

connectance. Despite previous research [177], neither volume nor connectance can ex-

plain, per se, the rapid surge of nestedness. We discuss this aspect in more detail in

Appendix B, Section B.7. The figure, at the scale of days, is complemented with high-

resolution monitoring of portions of these exceptional events (bottom panel). Finally,

the most outstanding feature highlighted by the figure is the elasticity of the network:

no matter how abrupt and large the excursion to a nested arrangement is, the system

bounces back to its “ground” –predominantly modular– state soon after, when the in-

terest in the breaking news fades out. The observed elasticity can be considered as an

aspect of the network’s structural resilience. System resilience or stability is defined

in different ways in ecology and environmental science [178–180], but can generally be

thought as the ability of the system to recover the original system’s state after a pertur-

bation of the model state variables [181, 182] or parameters [183, 184]. Specifically, in

the case of structural elasticity, the system state is not given by the nodes’ configuration

(e.g. the abundance of each species), but by the overall network architecture (i.e. modu-

lar, nested), which is perturbed by the external event.

This behaviour is stable across different types of event. Figure 5.2b shows an equiv-

alent behaviour for the reaction after the Nepal earthquake in 2015 [173]. Unlike a

political debate or an election date, this example is inherently unexpected and unpre-

dictable –an important fact, attending the taxonomy of collective attention described in

Lehmann et al. [185]. As in Fig. 5.2 (a), the coarse grain scale of days and weeks in

Fig. 5.2 (b) is complemented with high-resolution monitoring a portion of exceptional

events.

These analyses suggest that there is a tight logic underlying the structural fluctua-

tions of the information network: the level of fragmentation of collective attention maps

onto specific network arrangements, and is independent of the particular contents of

the data stream. Online activity on different topics translates to comparable changes in

the resulting patterns, no matter the semantics of the underlying discussion. The ob-

served differences in the emergence, magnitude and persistence of structural changes
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are directly related to the predictability, intensity and duration of the exogenous events

(i.e. related to the environmental conditions), and therefore cannot be explained as in-

trinsic to the communication system itself. The question remains, however, how a net-

worked system can fluctuate so fast between two states which have often been consid-

ered incompatible [65, 114, 151]. The key to this puzzle is in-block nestedness, a hybrid

modular-nested architecture that bridges the apparent antagonism between nestedness

and modularity [151].

5.4 Theoretical Framework

To understand the mechanisms that govern the observed elasticity, and, at the same

time, to solve the puzzle around the network’s nested-modular oscillations, we propose

a model founded on the ecological drivers introduced above: competition, mutualism,

adaptation and environment. The model builds on the simple idea that the network

architecture between users and memes is the result of several local optimization pro-

cesses, i.e. each individual’s maximisation of visibility, and that such process operates

on top of attentional dynamics. To do so, we generalize the ecological adaptive modeling

proposed by Suweis et al. [66, 125], in which the system’s actors (plant and pollinator

species) strive for larger individual abundance, rewiring their interactions accordingly.

5.4.1 Niche Model.

The synthetic information network model is developed for a bipartite network that

comprises a total of N interacting “species” or nodes (NU users and NH hashtags or

memes). Each species i has an associated niche [186] which, in the context of an infor-

mation ecosystem, represents their topical domain (i.e. the topic to which a user attends

preferentially, and, conversely, the semantic space where a meme belongs to). For the

sake of simplicity, each species’ niche is represented as a Gaussian distribution Gi(s)

with a given standard deviation σi [125]. Both users and memes niches center positions

si are anchored around T different points in the range [0,1], to express different topic

preferences (users), and semantic domain (memes). To model the inherent diversity of

users and memes within their topic, their position over the line is perturbed by a small

amount, randomly sampled from a uniform distribution.

Competition occurs between species of the same class (or guild), whereas mutualistic

interactions couple the dynamics of abundance of users and memes. Following the pro-

posal of Cai et al. [125], the strength of the competitive interactions between a pair of

users (memes) is tuned by a fixed parameter (Ωc) scaled by a quantity that depends on

the niche overlap Gij between them. Similarly, the strength of the mutualistic interac-

tions between a pair user-meme results from a fixed parameter (Ωm) scaled by the niche

overlap between the pair user-meme –i.e. the similarity between the user’s topic prefer-

ence and the adequacy of the meme within this topic–, and constrained to the existence

of a link between them. Then, we define the niche overlap Gij of a pair of nodes i and j

as:
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G
gg ′

ij =
∫
G
g
i (s)Gg

′

j (s)ds, (5.1)

with g and g ′ denoting the guild of the considered species, either users or hashtags.

Following this, we define the mutualistic interaction matrix as:

Mutualism: γUHik = Ωm ·θik ·GUHik , (5.2)

where θik is the adjacency matrix, with entries equal to 1 if i and k interact, and 0

otherwise.

With respect to the competitive interactions, we distinguish two levels of competi-

tion. At the local level, users (hashtags) in the same topic compete to gain visibility

among those with related interests (meaning). At the aggregate level, a given topic

strives to prevail among other topics. In order to capture this double competition as

a trade off between both tendencies in our model, we define the competitive interaction

matrix as:

Competition: βUij =

1 if i = j

Ωc

[
λ(1−GUUij ) + (1−λ)GUUij

]
, otherwise,

(5.3)

where λ ∈ [0,1] is the inter-intra topic competition parameter, the same definition ap-

plies to the competitive interactions among hashtags. For the case λ = 1, the competitive

matrix neglects the competition among users belonging to the same topic. The case

when λ = 0 corresponds to the original formulation [125].

Figure 5.3a summarises the ingredients of the model. We note that, in contrast to

natural ecosystems, memes are an infinite resource –which explains why user-user com-

petition does not grow with the amount of shared memes.

5.4.2 Population dynamics and optimization process

On the dynamical side, the species abundances evolve according to a set of Lotka-

Volterra equations with Holling-Type II mutualistic functional response with handling

time h:

dnUi
dt

= nUi

ρUi −∑
j

βUij n
U
j +

∑
k γ

UH
ik nHk

1 + h
∑
k θ

UH
ik nHk


dnHi
dt

= nHi

ρHi −∑
j

βHij n
H
j +

∑
k γ

HU
ik nUk

1 + h
∑
k θ

HU
ik nUk

 .
(5.4)

Within the information ecosystem context, these equations represent a phenomeno-

logical way to describe the evolution of the nodes visibility as a function of their in-

teraction. In particular, nUi may represent the number of instances in which user i is

present in other users’ screens, while nHj may quantify the popularity of a given hash-

tag j. Assuming that preferential attachment mechanisms of various type affect the
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nodes visibility, ρUi and ρHi model the associated exponential growth (if they are posi-

tive). The handling time h effectively models the constraint that users cannot interact

with a very large number of hashtags due both to time and character constraints. Due

to these limitations, the benefit obtained through mutualistic interactions does not grow

monotonically with the number of partners.

Next, we cintroduce in the model a rewiring adaptation process that follows the ap-

proaches in [66, 125]. Each user attempts to change its mutualistic partners (memes) in

order to maximize the benefit obtained from their use in the following way:

1. Rewiring: At each time step t =mT (m is a positive integer and T is the integration

time), a random species U , with a least one link, is selected and rewired to a ran-

domly selected species H ′ , removing one of its previous links H , with probability

pUH ∝ 1 − k−1
H . The rewiring probability is defined in such a way that the larger

the species’ degree is, the more prone to losing links. Once the rewiring is com-

pleted, we recalculate the mutualistic interaction factor of the new pair of nodes

γij ′ = Ωm ·θij ′Gij ′ and integrate the dynamics according to Eq. 5.4, until the abun-

dances of all species reach an equilibrium (integration time T is set sufficiently

large).

2. Link recovery: At the end of each time step t, we compare the actual abundance

of species U with its previous value. If the current abundance is greater than

the previous value, the current (new) link is kept; otherwise, the previous one is

recovered. Note that, in the case of abundance loss, only the connections are rolled

back to the situation in t − 1; however, the vectors of abundances continue from

their current state, ~nU (t) and ~nH (t).

This optimization principle may then be interpreted within an adaptive frame-

work, in which users incrementally enhance their visibility by choosing the appropriate

memes, and memes are created so as to maximize their diffusive capacity, see Fig-

ure 5.3b. In summary, both classes optimize the efficiency of resource usage, decreasing

their chances of becoming extinct due to stochastic perturbations [161]. Within the

model, this translates into reiterative rewiring interactions of randomly drawn users so

as to increase their visibility –“abundance” in the ecological jargon.

5.4.3 Introduction of external events

At last, since our primary objective is to reproduce structural changes under the ir-

ruption of external events, the dynamical model includes as well a mechanism to intro-

duce exogenous events in the environment. These can be understood as transitory shifts

in the users’ attentional niches, which are tantamount to (typically short-lived) changes

in their interests (Figure 5.3c). In this altered environment, users temporarily engage

with new kinds of hashtags, different from those they usually interact with.
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b) Link rewiring mechanism
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Figure 5.3: Schematic representation of the visibility optimization model. (a) Users and
memes are represented as points in the range [0,1] in a niche axis. We modeled each
niche as a Gaussian curve with standard deviation σ . Topics are modelled as clusters of
users (memes), i.e. T = 4. The coupling matrices β and γ , that define the competitive
(within guilds) and mutualistic interactions, are define to be proportional to the niche
overlap between pair of species. (b) At each time-step, species rewire their connections
trying to optimise their abundance (popularity). If the rewiring leads to a larger popular-
ity the connection is kept, otherwise the change is reverted. (c) Initially, the interactions
are laid at random, and the rewiring proccess takes place. When the system reaches an
evolved steady state, an external event enters the system. Users’ niches are temporarily
focused on a single common topic and the rewiring proccess continues while the effect
of the event decays over time. As the event fades out, all species return to their original
niche.

We modelled this situation as the change of every user’s niche center towards a single

common topic for a limited period of time. After that period of time, users were slowly

moved back to their original niche centers, i.e. back to their respective topics.

An event modifies each users’ niche in the following way:

GEi (s) = [1− f (tE)]Gi(s) + f (tE)GE
′
(s), (5.5)

That is, a user’s niche is now the composition of two Gaussian niches: one corresponding

to the general event E (defined as a new niche profile GE
′
(s) centered at sE and width

σE), and the original one corresponding to the user’s intrinsic interests Gi(s). In this

formulation, f (tE) is the function that governs the growth and decay of the external

event, depending on the time tE since its onset. We modelled two profiles, see Fig. 5.4,

along the lines of Lehmann et al. [185].
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1. Sudden event The first event considered for study was modelled as a sudden and

unexpected one. In this case f (tE) takes the form

f (tE) = e−αtE , (5.6)

where α is the decay constant. Note that, at the onset of the event (tE = 0), all users

are focused on the same topic, and their niche overlap will be maximum. For suf-

ficiently large tE , namely tE � α−1, the influence of the event becomes negligible.

2. Expected event In second place, we considered an expected event. In this case, the

attention of users will slowly moves towards the one of the event, that is expected

to happen at a specific time, in which the user’s attention will be maximal. Here,

f (tE) has the form

f (tE) =
1(

1 +
(
tE−to
α

)2a
) , (5.7)

where a and α are the parameters that regulate the width of the function and the

duration of the plateu, while to specifies the location of the function peak, note that

at tE = to the users niche overlap will be maximum. Again, we modelled the event

such that for sufficiently large tE , the influence of the event becomes negligible.

(a) (b)

Figure 5.4: Representation of the two different type of events included in our model.
Panel (a) shows the results a sudden and unexpected event, while panel (b) correspond
to an expected event. To ease comparison with real scenarios, in both cases, f (tE)
was shifted in order to align with the maximum and baseline activity of two empiri-
cal datasets (shadowed gray areas).

5.5 Numerical results

To avoid excessive computational costs, we consider small synthetic networks of

NU = 100 users and NH = 100 hashtags with random connections across guilds, and

density (connectance) C ∼ 10−2. We do so to match the same order of magnitude of em-

pirical networks when we take NU = 100, see Appendix B, Section B.3. We assign the

same initial abundance n0 = 0.2 to all the users and hashtags, the same intrinsic growth
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rates ρU = ρH = 1 and handling time equals to h = 0.1. All the results presented below

correspond to an average over 10 different realizations.

5.5.1 Species survival

Before exploring whether the observed structural elasticity can be reproduced within

theoretical framework, we want to pay attention to the abundances of individual species

over the mutualistic-competitive parameter space (Ωm,Ωc). Particularly, we want to

characterize the regions over the (Ωm,Ωc) space where extinctions may occur, in order

to guarentee the maximal survival species in the system prior to the introduction of

the events. To this aim, we perform controlled numerical experiments at the stable

stationary state on the (Ωm,Ωc) parameter space, for different values of the inter-intra

competition parameter λ. We set both Ωm and Ωc in the interval [0.1,0.4] and perform

simulations for 1200 different combinations of these parameters, for each value of λ. We

consider that a species goes extinct if its abundance falls below 10−4.

(a) (b)

(c)

Figure 5.5: Survival rate at the pre-event steady state: two-dimensional plots in the
Ωm−Ωc parameter space showing steady survival rate of the species for different values
of the inter-intra competition parameter.

Fig. 5.5 shows the fraction of especies survival in the two dimensional plot in the

Ωm −Ωc parameter space. For all the cases, we observe that as Ωm and Ωc increase,

extinctions start to occur, even for favorable configurations of the system in which Ωm >

Ωc. As expected, for low values of the inter-intra competition parameter λ = 0 and
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λ = 0.3 the region in which extinction do not occur is wider. Under this configuration,

the species compete more strongly within their topics, which correspond to just a frac-

tion of all the species on the system. On the contrary, as we increase λ, the region of

extinctions may increase, since now each specie starts to compete with a higher fraction

of the system, making the system more susceptible to the values Ωm,Ωc. To guarantee

the maximal survival of species before introducing the events, we will restrict the rest

of our exploration on the Ωm −Ωc space to the interval [0.01,0.1]. On the other hand,

since we know that the inter-intra competition λ parameter helps to balance the com-

petition between the species, once the introduction of event take place, see Appendix B,

Section B.4.1, from now on we will keep a fixed value of the inter-intra competition pa-

rameter. We fix the value of the inter-intra parameter λ = 0.6 since it offers a better

trade off between the two competitive tendencies of our model –inter and intra topics

competion–, maximizing the survival of the species (Figure B.3, in Appendix B).

5.5.2 Structural evolution.

(a) (b)

(c) (d)

Figure 5.6: Structural measures before and after the introduction of a sudden external
event: two-dimensional plots in the Ωm −Ωc parameter space showing the evolutionN
and Q before (panels (a) and (b)) and after (panels (c) and (d)) the external event, for
λ = 0.6. No and Qo, correspond to the values at the beginning of the simulation.

In an unperturbed simulated environment, the observed structural arrangement

mimics the prescribed organisation of niches in topical blocks. A modular architecture

arises from the random initial one, while nestedness remain low, for a wide region of
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the Ωm −Ωc space, see Figure 5.6(a) and (b). Note that each point within the plots is

shifted by Q0, i.e. modularity value once the system has stabilized its architecture. This

is in line with the resting state observed in the datasets (Figure 5.2), where users are

focused on their own topics of interest. It is important to underline that the emergence

of a modular architecture is not an artefact of the model: users (memes) do not rewire

because of similarity reasons; it is the search for an improvement in their individual

visibility that naturally drives to the consolidation of those new connections. Also note

that, in empirical settings, the random initial stage is impossible to observe since the

network already has a modular organization from the very beginning.

A change in the environment –e.g. breaking news– alters this scenario. The systems

reacts with a decrease inQ, and an increase in the amount ofN in the system, Figure 5.6

(c) and (d). To better visualize such transitions, Figure 5.7 shows the evolution of Q and

N over the entire simulation time for a fixed combination of the (Ωm,Ωc) parameters

Ωc = Ωc = 0.07. Panel (a) in Figure 5.7 models the increase, sustainment and decay of

attention in programmed events (e.g. election day), while panel (b), mimics the arrival

of an unexpected event. Note that if the simulation refers to an abrupt event (Fig. 5.7

(b)), the decrease in Q is sharp and almost immediate. If the simulation refers to a pre-

dictable event, (Fig. 5.7 (a)), the collapse of Q is smoother, and the emergence of N is

slightly delayed. Indeed, in this situation we recover the results in Suweis et al. [66] –the

emergence of global nestedness–, because the existence of attentional niches becomes ir-

relevant when all niches are equally centred, at least on the users’ side. In this sense, our

niche-based population dynamics is a generalisation of Suweis and co-authors’ model.

As the environmental shock fades out, the network architecture tends to recover the

general layout presented before the event was introduced. The elasticity of empirical

information ecosystems is thus replicated here, and explained as a consequence of the

adaptation to contextual changes –while the species’ local strategies remain constant.

5.5.3 Nestedness reframed: meso- and macroscale analysis.

Beyond examining the evolution ofQ andN , we now take a look at the intra-modular

organization of connections during the fragmentary stage of the system (t < 3×104). For

visualization purposes, the rows and columns of the adjacency matrices in the top-left

part of Figures 5.7 (a) and 5.7 (b) have been arranged to highlight the block structure

resulting from the modularity optimization. Additionally, rows and columns inside

modules were sorted, in the bottom-left part, to highlight the possible nested struc-

ture within them [50, 51]. Clear to the naked eye, each compartment presents an in-

ternal nested architecture. This is a natural consequence of the node-level visibility-

maximization strategy as it adapts to system-wide environmental conditions: as long as

these conditions are stable around weakly connected topics, nestedness emerges in those

relatively isolated subsystems. As soon as the boundaries across subsystems are blurred

(t > 3× 104, top-right of Figures 5.7 (a) and 5.7(b), global nestedness prevails.
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(a)

(b)

Figure 5.7: Structural evolution in the visibility optimization model: numerical ex-
periments with fixed number of species NU = NH = 100, connectance C ∼ 10−2, initial
abundance n0 = 0.2, intrinsic growth rates ρU = ρH = 1, inter-intra competition param-
eter λ = 0.6, number of topics T = 4 (as in Figure 5.3), and mutualistic and competitive
interaction factors Ωc = Ωc = 0.07. Initially, links between users and hashtags are laid
at random. Panel (a) models the increase, sustainment and decay of attention in pro-
grammed events (yellow shade). Panel (b), mimics the arrival of an unexpected event
(yellow shade). In the absence of external events, the system organises in a clear block
structure. Once the external events enters, the system evolves from a modular towards a
hierarchical, nested configuration. After the effects of the shock fade, the network slowly
recovers its baseline modular configuration. The adjacency matrices surrounding the
plots show the block and in-block nested structure of the bipartite network immediately
before (top- and bottom-left panels, respectively) the onset of the perturbation, and the
nested and in-block nested arrangement some time after (top- and bottom-right panels,
respectively).
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This subtle insight, which stems from the model, reframes the empirical findings

presented above. Indeed, the information network is not swapping between two radi-

cally different architectures –often even antagonistic [65, 151]–, but rather fluctuating

from mesoscale to macroscale nested arrangements. To quantify them, N is not a suit-

able tool, because it is designed to capture nestedness at the global scale only. For this

reason, we resort to in-block nestedness I [53, 118, 151], which generalizes N . On the

one hand, when nestedness emerges at the global scale (one block, B = 1), then we have

that I =N . On the other hand, when the network presents several blocks (B > 1), each

one arranged in a nested manner, then I >N .

It makes sense now to revisit the previous numerical and empirical results, now

through the lens of in-block nestedness. Figure 5.2 (second panels in (a) and (b)), and

Figure 5.7 (bottom panels in (a) and (b)) monitor the relative size of the largest (NB1
/N )

and second largest (NB2
/N ) nested blocks. In both empirical and numerical cases, we ob-

serve that nearly-perfect consensus is reached at different moments (NB1
/N ≈ 1), while

a fragmented public sphere dominates most of the time. The relative size of the second

largest nested block (NB2
/N ) allows for an easier interpretation of the level of consen-

sus reached at each time. The general character of this fluctuating nested multiscale

organization over the Ωm −Ωc is confirmed in Appendix B, Section B.4.2.

Our framework allows to explain the puzzling transition between partial and global

consensus. A fast re-organization from modular (nested) to nested (modular) architec-

tures seems paradoxical and hard to achieve. Nevertheless, the system can swiftly adapt

to any state of collective attention through an intermediary arrangement that combines

the structural signature of visibility maximization with the existence of a fragmented

public sphere.

5.6 Effects at the microscopic level

Untill now, we have shown that the proposed model is able to reproduce the struc-

tural macro- and mesoscale fluctuations observed in the empirical data. In this sec-

tion, we want to connect our empirical observations with the model at the microscopic

level. Specifically, we attempt to perform a comparison –even if qualitative– between

the model and the data, by exploiting the concept of abundance. As mentioned above,

the translation of the concept of abundance to the online communication context can be

thought of as the number of times an item is present on screens. With a language abuse,

this is tantamount to the number of individuals (e.g. hashtag instances) that build up

the species (e.g. the hashtag). Following this line of reasoning, for the empirical data on

the hashtags’ side, we can track the hashtag usage frequency over time, as a proxy for

hashtag abundance from the model.

We compare the evolution of such abundance in the model and the data (Spanish and

Nepal datasets). Top-left plot of Figure 5.8 shows, from our numerical simulations, the

changes in abundances of the hashtags over time, identifying with a colour the topic they
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(a) (b)

(c) (d)

Figure 5.8: Evolution of abundances for a 4-topic information ecosystem. Plots in the
top row correspond to synthetic (a) and empirical (b) expected events. For the numer-
ical simulations, hashtags in T3 (purple) begin a smooth increase in abundance at the
event onset, which becomes steeper as the peak of the event approaches. Hashtags in
other topics (blue, orange, fuchsia) experiment a slow decline. The same happens for
the Spanish election day to the right, although admittedly with fluctuations. In this
case, each colour corresponds to different communities, as detected from the networks
maximising Q. Plots in the bottom row correspond to synthetic (c) and empirical (d)
unexpected events. Except for the abruptness in the increase of the purple hashtags in
the Nepal dataset (much faster than its synthetic counterpart), the similarities are clear
to the naked eye. Remarkably, all four panels evidence that, at the microscale, a suffi-
ciently strong perturbation impedes the system to recover the pre-event state, i.e. the
system has achieved a new stable state. This result contrasts with the structural elastic-
ity observed at the meso- and macroscale, in which the system remains within a narrow
set of possible arrangements.

are ascribed to. We observe that, prior to the event, the abundances of the hashtags are

distributed rather uniformly within a narrow range. After the onset of the expected

event, however, the abundance of the hashtags in topic T 3 (the one to which users’

attention is shifted to) begins to increase. In the time range 3 × 104 < t < 5.5 × 104

we observe a clear separation between the hashtags from T 3 with respect to the ones

from the other topics. In the simulations mimicking expected events, the artificial shock

peaks at t = 5.5×104. Slightly before that time, hashtags in T 3 witness an even stronger

increase up to t = 6×104 (that is, beyond the peak time). After that, the system stabilises
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and appears to be unable to bounce back to the original, quite uniform abundances.

The top-right plot of Fig. 5.8 shows the usage frequency of actual hashtags over time

in the Spanish dataset, where events are known in advance (in this case, election day on

April 28). Adapting the logic of the model to empirical data, we show the trajectories

of a group of hashtags which belong to 4 different communities, the largest ones shortly

before (light blue, orange, fuchsia) and at the time the ballots were closed (violet). As

in its model counterpart, the vertical lines show the buildup of conversations ahead of

the results (around 4pm, “event onset” tag), and the electoral schools closing time (8pm,

“event peak” tag). Overall, we observe a striking qualitative agreement between the

simulated hashtags abundance (model) and the hashtag frequencies (data). Until 4pm,

all 4 communities present a rather flat and uniform activity (note the logarithmic scale:

apparently large fluctuations, e.g. between 12pm and 2pm, imply frequency changes

below 10). In the period 4pm-6pm, the behaviour of the violet subset of hashtags re-

sembles that of the hashtags of T3 when the event occurs (slow but steady separation

from the other hashtags, with a frequency increase between 101 and 102); and also a

more pronounced boost in the period 6pm-10pm (i.e. 2 hours before and after the event

peak). The violet subset of hashtags clearly dominates the scenario even at midnight,

and starts an expected decline as conversations mostly halt during the late night period.

On the other hand, the subset of hashtags from the pre-debate stage (following T1, T2,

T4 in the model) present moderate decreases before 4pm, and losses are stronger after

that time (especially light blue and orange topics).

For a complete picture we study as well an unexpected event. The bottom panels of

Fig. 5.8 represent the evolution of abundances in an artificial setting with an unexpected

event happening at t = 3 × 104 (left); and the evolution of hashtag frequencies around

the time of Nepal’s earthquake main aftershock (May 12, around 5pm). Similar to its

“expected” counterpart, our numerical experiments on the left show a separation of the

violet hashtags in T3, with slight decreases of the other topics T1, T2 and T4. The system

also appears to be unable to return to the pre-event stage, and so the only obvious dif-

ference is that the separation occurs in an abrupt way. On the right, we see the evolution

of the frequencies of hashtags that belong to four of the largest communities detected

in the data, slightly before (light blue, orange, fuchsia) and right after the aftershock

(violet). Clearly, hashtags in the violet community present a sudden increase, followed

by a very slow decrease resembling the one observed for t > 6 × 104 in the left panel.

Given the international impact of the earthquake in Nepal, there is not a decay during

the night period.

These two examples extend the meso- and macroscale connections between data and

model to the microscale. Furthermore, they provide a different perspective of our ap-

proach with regard to the memory of the system, and the trace that exceptional events

leave behind. From the meso- and macroscale, it is still valid to say that the system

is trapped in a narrow set of structural configurations (namely, nested arrangements
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with only one or several blocks): this explains our use of the term “elastic”. And yet,

structural elasticity does not imply that the dynamical states of the system remain the

same. Strong enough perturbations push the system away from its present stable state

towards a new one. This apparent contradiction –structural persistence against dynam-

ical variation– is intriguing, and demands further investigation.

5.7 Summary

The transit from a secular hierarchical management of public information to a de-

centralised and fragmentary scenario calls for a new vision in which the relevant drivers

are identified: competition for cognitive resources, mutualistic exploitation of content,

co-adaptation of users’ and memes’ visibility, and environmental conditions. So far,

incursions in such ecological mindset have been sparse [49, 160, 161, 163]. In this

Chapter, going beyond a simple metaphoric interpretation, we prove that an ecologi-

cal framework –with explicit use of competitive and mutualistic interactions as drivers

of information dynamics– is a powerful tool to describe the evolution of information

ecosystems. Indeed, although simple neutral models may account for emergent patterns

in the popularity distribution [160, 161], we show that our non-neutral, niche-based

population dynamics model can successfully explain the complex interplay between

users-memes interactions, attentional niches and environmental shocks. In particular,

we show in spite all this complexity, the underlying architecture of the users-memes

interaction in information ecosystems, apparently frenetic and noisy, actually evolves

towards emergent patterns, reminiscent of those found in natural ecosystems [86, 187].

In addition, we show that the such systems are strucurally elastic, i.e., fluctuating from

modular to nested architecture as a response to environmental perturbations (e.g. ex-

traordinary events) [49]. Furthermore, our model predicts –and the data confirm– that

the users’ struggle for visibility induces a re-equilibration of the network towards a very

constrained organization: the emergence of meso- and macroscale nested arrangements.

Finally, we provide some results connecting the empirical and numerical observations

at the microscale, that suggests that environmental shocks may leave a trace on the dy-

namical states of the system.
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Conclusion and future directions
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Chapter 6
Conclusions and future work

The thesis provides a combination of empirical work, analytical development, and

mathematical modeling to shed light on the intertwined nature between structure and

dynamics in complex networks. The main research focus was to perform structural net-

work analysis to a variety of systems, at different scales of organization. Our goal was to

explore the relationship between multiple architectural arrangements, to unravel which

are the mechanisms that allow the emergence of certain architectural patterns, and to

explore how the transitions between these structural configurations occur. Concretely,

we performed a mixture of empirical, numerical, and analytical work, along with theo-

retical modeling, to the study of nestedness, modularity, and in-block nestedness.

6.1 Summary of contributions

We can summarize the results presented in this thesis by grouping them according

to the two central parts that composed this work, and that we employed to address our

research objectives:

1. The second part of the thesis was dedicated to the development of a coherent

methodology that tackles the plausible co-existence or combination of nested and

modular patterns within the same system, from a purely structural point of view,

i.e., by adopting a strictly analytical and numerical approach. After the recent in-

troduction of a dedicated measure for the detection of in-block nested patterns, we

first performed an in-depth examination of the inherent limitations of this mea-

sure, before disentangling how it relates with nestedness and modularity mea-

sures. We started our work in Chapter 2, by providing empirical, analytical, and

numerical evidence that the in-block nestedness function lacks a modularity-like

resolution limit. We have performed an empirical exploration, following a similar

approach to the one in [102], that allowed us to assess to what extent the net-

works could be recursively split into smaller and smaller blocks. The results from
101
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this exploration served as informal evidence that if the in-block nestedness func-

tion exhibits a resolution limit, the effect is milder when compared to modularity.

Next, we provided analytical proof that, at least in an idealized setting in which the

different blocks are connected through a single link, the in-block nestedness func-

tion does not have a modularity-like resolution limit. We concluded the Chapter

with a numerical study over a large parameter space with varying network size

and inter-block connectivity, that generalizes and confirms our analytical insights.

Moving on, in Chapter 3 we have quantified, empirically numerically and analyti-

cally, the relationship between nestedness (at the macroscale), and modularity and

in-block nestedness (at the mesoscale) structural organizations. We first performed

extensive numerical experiments over a rich ensemble of synthetic unipartite net-

works covering a wide range of parameters from our network generation model.

Our results showed that high values of modularity and nestedness never overlap.

In fact, we observe that, as one growth the other one declines, while in-block nest-

edness is able to maintain high values for networks that either highly modular or

highly nested. Afterward, we demonstrated analytically that nestedness imposes

bounds on modularity, with exact results in idealized scenarios, in both uni- and

bipartite configurations. Specifically, we showed that nestedness and modular-

ity are antagonistic architectures in certain settings. Furthermore, we analytically

proved that in-block nestedness provides a natural combination between nested

and modular networks, taking structural properties of both. This results offer an

explanation to the inconclusiveness of past empirical studies regarding the coex-

istence of nestedness and modularity within a single network. Our findings pave

the way to future research that aims to clarify, from a richer perspective, the role

of one or more structural patterns in the assembly and evolution of networked

systems.

2. In the third part of the thesis, on the other hand, we shifted our focus towards the

investigation of some of the possible mechanisms that enable the emergence of in-

block nested patterns, and the transitions from modular to nested arrangements,

observed in multiple real systems, by performing extensive empirical analysis and

dynamical modeling. We began this examination in Chapter 4 by analyzing a

set of popular open-source projects from GitHub, through the characterization of

nestedness, that allowed us to quantify and visualize the emergence of hierarchy

among contributors; modularity that provided us with a way to verify to what ex-

tent a division of labor arise on the projects, and in-block nestedness that can help

us to determine how projects solve the tension between these two driving forces.

Our analyses have unveiled that, in general, mature OSS projects evolve evolve

into internally organised blocks. Thus, the presence of workload compartmental-

isation is compatible with the emergence of hierarchies, with generalists and spe-
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cialists throughout a project. Furthermore, we found that the distribution of sizes

of such blocks is bounded, connecting our results to the celebrated Dunbar num-

ber both in off- and on-line environments. Notwithstanding, a more evolved and

structured architecture does not imply better overall performance, the nested ar-

rangement inside blocks can hamper a project’s progress, since the occasional and

least committed contributors (those acting upon a small part of the code) tend to

edit precisely the most generalist files, neglecting the least developed ones –a fact

that has been observed from very different methodologies. Our results contribute

to an understanding of how successful projects self-organise towards a modular ar-

chitecture: large and complex tasks, involving hundreds (and even thousands) of

files appear to be broken down, presumably for the sake of efficiency and task spe-

cialization (division of labour). Within this compartmentalization, mature projects

exhibit even further organization, arranging the internal structure of subgroups in

a nested way –something that is not grasped by modularity optimization only.

Finally, in Chapter 5 we showed that the architecture of the user-meme interac-

tions in information ecosystems evolves towards a set of structural patterns that

are similar those found in natural ecosystems. Particularly, we showed, through

the analysis of empirical Twitter data streams, that communication networks are

structurally elastic, i.e. they transition from a modular to a nested architecture,

and back, as a response to environmental shocks. We then introduced an ecology-

inspired modeling framework, bringing to light the precise mechanisms causing

the observed dynamical reorganization. The model is founded on four ecologi-

cal drivers: competition, mutualism, adaptation and enviromental conditions. We

generalized an ecological optimization process in which the system’s actor aim at

maximizing their individual visibility, by rewiring their interactions accordingly,

and included a mechanism to introduce exogenous events in the enviroment. Fur-

thermore, our modeling framework predicts that, as a consequence of the users’

struggle for visibility, the information network fluctuates across nested arrange-

ments at different scales. The system is not oscillating between two antagonistic

architectures, but rather adapting to different states of collective attention through

an intermediary arrangement that combines, the existence of a fragmented atten-

tion scenario with the individual visibility maximization strategy that is charac-

terized by the emergence of a global nested architecture. Finally, we performed

a qualitative comparison between model and data ath the microscale level, by ex-

ploiting the concept of abundance, and our results suggests that exceptional event

may leave a trace behind, that affects the dynamical states of the system.

6.2 Perspectives for future work

In this thesis, we have numerically and empirically studied, from macro and

mesoscales perspectives, some relevant structural patterns that emerge in complex
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networks. From these studies, here we identify several interesting research open ques-

tions that deserve to be addressed. Once again, we group this contributions according

to the two main perspectives or objectives that were covered along this work:

1. From the first part, in which we undertook our analyses from a purely structural

point of view, our results from the study of the pattern interdependencies in com-

plex networks performed Chapter 3 open the door for two direct lines of devel-

opment: one, aiming at analytical results for a more general family of networks,

particularly for networks with higher connectance (lower shape parameter ξ of

the probabilistic network generation model) and the inclusion of more realistic

settings, such as heterogeneous community size distributions. Secondly, in-depth

evaluation of the dynamical properties of in-block nested structures is needed,

following the trail of works that have studied ecologically relevant processes, e.g.

feasibility and local stability, which are two fundamental properties behind the

persistence of an ecosystem. As mentioned previously in this document, much in-

terest was devoted to investigating the effects of the network architecture on local

stability in ecological systems [65, 67, 68, 86, 88, 89, 124]. Specifically, there is

some evidence pointing at the fact that nested networks are less likely to be sta-

ble [67, 68]. Contrary to the stabilizing effects, that have been associated with

modular configurations [86, 88, 89]. Notwithstanding, the effects of the network

structure on feasibility have been largely overlooked. To the best of our knowl-

edge, there only one study that suggests that nestedness is positively correlated

with feasibility, but it refers to communities with a small number of species [188].

This result highlights that the simultaneous fulfillment of stability and feasibility

is deeply linked to the interplay between nestedness and modularity, and points

out at in-block nested structures as the optimal pattern to ensure the persistence

of ecosystems.

2. Regarding part three of the thesis, our future research will expand across two

dimensions: (1) to encompass richer types of empirical data, and (2) to expand

our modeling framework to fully understand the conditions for the emergence

in-block nested patterns in a broader type of systems. Precisely, the analysis

from Chapter 4, could be complemented with weighted information. Initially,

this is within reach –one should just adapt the techniques and measurements

to a weighted scenario. However, the problem is not so much methodological,

but semantic: the number of times that a contributor interacts with a file is not

necessarily an accurate measure of the amount of information allocated in the

file. Further, future research should tackle a larger and more heterogeneous set of

projects, and even across different platforms. Other sampling criteria should be

discussed and considered in the future, to ensure richer and more diverse project

collection. Finally, two obvious lines of research are related to time-resolved
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datasets, and the design of a mathematical model that can mimic the growth and

evolution of the OSS projects. Regarding a temporal account of OSS projects, some

challenges emerge due to the bursty development of projects in git-like environ-

ments. For example, a fixed sliding-window scheme would probably harm, rather

than improve, possible insights into software development. On the modeling side,

further empirical knowledge is needed to better grasp the cooperative-competitive

interactions within these type of projects, which in turn determine the dynamical

rules for both contributors and files.

With respect to the modeling framework introduce in Chapter 5, our findings

open up an ambitious research alley along the lines of computational human ecol-

ogy. In the shorter term, future efforts should attempt to better reproduce – at a

more quantitave level– the microscopic dynamics of users and memes abundances

before and after breaking events. These cannot be explained without including

death-birth and invasion processes, which are in turn necessary to understand

how influential users and viral contents emerge. Similarly, this initial proposal

rules out “cultural drift"–the slower changes in the users’ topical preferences–,

which leads to persistent structures and shapes communication flows. Reaching

further, the tradition in theoretical ecology aimed at understanding and prevent-

ing the collapse of ecosystems can be adopted to decipher how social media and

information bubbles shape our thinking, or, in the opposite direction to disrupt

and break misinformation dynamics and polarization. Related to this, we foresee

as well a connection between the extensive research on stability and resilience in

natural ecosystems, and their informational counterparts. In this sense, we are

convinced that such interchange of techniques and models could be beneficial for

theoretical ecology too as it will allow to test theories and methodologies in a more

controlled, data-rich environment with faster time scale at play.





Appendix A
Additional results: Macro- and

mesoscale pattern interdependencies in

complex networks

The appendix provides a detailed explanation regarding the construction and read-

ing of the ternary plots, a complementary formulation for the two particular cases of the

ring of star graphs G? when B = 1 and B = 2 along with some additional results explor-

ing the effect of noise parameters of the probabilistic network generation model, and

some complementary plots that help to strengthen the main conclusions obtained from

the results presented in Section 3.4 of Chapter 3.

A.1 Ternary plot: Dominance regions

A ternary plot is a three-variable diagram on which each point represents the propor-

tions between three variables. Given the values of the variables,N , I andQ, the propor-

tions that are eventually represented in the plot are obtained as fN = N −1(N + I +Q),

fI = I−1(N + I +Q) and fQ = Q−1(N + I +Q). In Fig. A.1 the bottom axis represents N
and its rigth vertex perfectly nested networks (fN = 1). Other values of fN are indicated

by the dashed blue lines in direction ↗ of the triangle. Rigth axis represents fQ and

the top vertex purely modular networks (fQ = 1). Other fQ values correspond to hori-

zontal dashed blue lines. Finally, the left axis represents fI and the left vertex networks

that are purely nested (fI = 1). Other fN values are indicated by lines in direction ↘
of the triangle. Additionally, the black dashed lines delimit dominance regions, which

are highlighted in different grey tones for variable pairs in panel a-c and in triads for

in panel d. Each dominance region spots (by pairs) which is the dominating structural

pattern. For ease of identification the dominant structure is also indicated close to the

plot axis. Points over the line of dominance equilibrium in panels a to c correspond to

107
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(a) (b)

(c) (d)

Figure A.1: Representation of the three variables in the ternary plot showing exemplar
points with different proportions and evincing the dominance regions. Panel (a) to (c)
delimit the dominance regions (in pairs) between nestedness, modularity and in-block
nestedness structures. Panel (d) delimits these regions jointly considering all the vari-
ables.

points where the contribution of the two contrasted variables is equivalent.

A.2 Noise sensitivy test for weak communities

Figure A.2 explains the decision, stated in Section 3.1 of Chapter 3, to restrict the lev-

els of intra- and inter-block noise (i.e. p ≤ 0.6, µ ≤ 0.6) in the synthetic benchmark. We

wanted to introduce a considerable level of noise while guaranteeing that some iden-

tifiable pattern was still present. To this aim, we have followed the concept of weak

modularity as introduced in Radicchi et al. (ref. [15] of the main text). In that work,

authors define weak modularity as a network partition in which modules have more in-

ternal than external links, but that is not true for each and every node in those modules.

This informal notion guided our limitation of µ noise: we stop generating networks be-

yond µ = 0.6 because the imposed community structure does not even comply with the
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weak modularity condition (and thus an algorithm could hardly detect it). To prove this

point, we show in Fig. A.2 that, for µ = 0.55, still ∼ 65% of the generated networks are

weakly modular; by the time µ = 0.6, only 40% of them fulfils the condition.

It should also be noted that, even completely random networks exhibit a remarkable

level of modularity Q [105]. Since, by definition, I = N = 0 in such situation, any

completely random realisation of the benchmark will induce a (false) modular-dominant

network in the ternary plot –as, indeed, it already happens for high levels of p and µ, see

the corresponding panels in Fig. 3.2.

Figure A.2: Noise sensitivity test: Rate of networks that fulfill the condition for weak
communities for different combinations of the noise parameters p and µ.

A.3 Analytic expression forNG? ,QG? , IG? along F2 for the cases B = 1

and B = 2

A.3.1 Nestedness: NG? for B = 1 and B = 2

The computation of the pair overlap for the evaluation of nestedness when B = 1

requires only the following terms: the pair overlap of a generalist node (the center of

each star subgraph), g, with the specialist nodes s which is Ogs/ks = 0; and the pair

overlap between all the specialists nodes Oss/ks = 1, the degree of the generalist node

is kg = NB − 1 and the null model corrections 〈Ogs〉 = kgks/BNB = (NB − 1)/BNB and

〈Oss〉 = ksks/BNB = 1/BNB.

Furthermore, for the case B = 2 we have to take into account the change on the degree

of the generalist node kg =NB and additional terms such as: the pair overlap between the

two generalists Ogg /kg , the pair overlap between a generalist with the specialist from the

other community Ogsout /ks, and the pair overlap between a specialist with the specialists

from the other communityOssout /ks.

B = 1 B = 2

NG? =
(NB − 2)(NB − 1)

N2
B

− 2(NB − 1)2

N2
B (NB − 1)

(A.1) NG? =
BN3

B −BN
2
B − 6N2

B + 8NB − 3

BN2
B (BNB − 1)

(A.2)
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A.3.2 Modularity: QG? for B = 1 and B = 2

Starting from the equation for modularity expressed as sum over the communities

(Eq. 1.13), we obtain the total number of links in the network and the number of links

per community for a single star graph NB−1, and the sum of the degrees of the nodes in

the community dc = 2(NB − 1).

Moreover, when B = 2 the total number of links changes to L = B(NB − 1) + 1 and the

sum of the degrees of the nodes in the community is dc = 2(NB − 1) + 1. So we obtain

B = 1 B = 2

QG? = B

 (NB − 1)
(NB − 1)

−
(

2(NB − 1)
2(NB − 1)

)2 = 0, (A.3) QG? =
[

(2NB − 2)
2NB − 1

− 1
2

]
. (A.4)

A.3.3 In-block nestedness: IG? for B = 1 and B = 2

Once again, we know that for B = 1, we will have only two contributing terms to our

sum; the pair overlap between specialists (s) nodes and the pair overlap of the generalist

(g) node with the specialists. Additionally, we know that for this case the degree of the

generalist node is kG = NB − 1 and the rest of the terms are: the number of specialists

nodes Ns = (NB − 1), the null model corrections 〈Og,s〉 = kgkg /BNB = (NB − 1)/BNB and

〈Os,s〉 = ksks/BNB = 1/BNB, an the size of the communities is C =NB.

Finally, for B = 2 we have that the degree of the generalist node is kG = NB. Substi-

tuting this term for each specific case, we obtain

B = 1 B = 2

IG? =
2
NB

{[
− (NB − 1)

NB

]
+
[

(NB − 1)(NB − 2)
2NB

]}
,

(A.5)
IG? =

2
NB

{[
− 1
NB

]
+
[

(2NB − 1)(NB − 2)
4NB

]}
. (A.6)

A.4 Complementary figures: Approximate constraintsN , Q and I
Figure A.3 shows the values of Q plotted against N , for the all the generated syn-

thetic networks (∼ 2 × 105). The corresponding upper and lower bounds were plotted

on top. The color bar, in each case, indicates the values of the respective parameters

of the probabilistic network generation model (number of blocks (B), shape parameter

(ξ), intra-block (p) and inter-block noise (µ), respectively). We observe that the modular-

ity values, Q, above the upper bound correspond to networks with a single community

B = 1 and perfectly nested structure, p = 0.

Fig. A.4 shows the values of Q against I . As stated in Chapter 3, Section 3.4 the

results from this figure corroborate that Q and I can coexist, i.e., there is no clear map

between them.
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(a) (b)

(c) (d)

Figure A.3: Optimized values of Q plotted against N , for the generated networks. The
values of the corresponding upper and lower bounds were plotted on top (black dots).
The color bar indicates the value of the respective parameters of the probabilistic net-
work generation model (number of blocks (B), shape parameter (ξ), intra-block (p) and
inter-block noise (µ), respectively).
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(a) (b)

(c) (d)

Figure A.4: Optimized values of Q plotted against the optimized values of I , for the
generated networks. The color bar indicates the value of the respective parameters of
the probabilistic network generation model. Panel (a) shows the results with respect to
the number of blocks. Panel (b) corresponds to the shape parameter ξ. Panels (c) and (d)
corresponds to the noise parameters p and µ, respectively.



Appendix B
Additional results. Structural Elasticity

in Online Communication Networks: an

ecological approach

In this Appendix we provide additional details and results for other four Twitter

datasets, along with some complementary results exploring the link density of the em-

pirical data and extra numerical results.

B.1 Additional datasets

We considered four additional events of different nature: the 2012 UEFA European

Football Championship, the 2014 Catalan self-determination referendum, the 2015

Charlie Hebdo Shooting and the 2014 Hong Kong streets protests. All the datasets

excepting the ones from the Spanish general elections, presented in Chapter 5, and the

Catalan self-determination referendum were collected by Zubiaga A. in [173].

1. Catalan self-determination referendum (Nov 2014): This dataset corresponds to

the Citizen’s Participation Process on the Political Future of Catalonia, a popu-

lar consultation about the process of independence of Catalonia from the Span-

ish Kingdom. The consultation was held on Sunday, 9 November 2014, after the

approval decree was signed by the president of Catalonia on September 27 of

the same year. The dataset contains 220,364 unique tweets containing at least

one hashtag, with a total 18,116 unique hashtags and 78,270 users, ranging from

September 1st to November 13 of 2014. Similarly to the Spanish election dataset,

this dataset was collected by selecting all the tweets containing at least one of a

preselected set of ≈ 70 hashtags and ≈ 50 Twitter accounts related to the referen-

dum process and the Catalan independence movement.

2. European football championship (2012): Afterward, we considered the 2012
113
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UEFA Football Championship, an European championship for men’s national foot-

ball teams. The tournament was held between 2 June and 1 July of 2012, and

co-hosted by Poland and Ukraine. The observation period started a day before of

the quarter-finals, on 19 June and lasted until the 4th of July, right after the final

game. It contains 3,907,418 unique tweets containing at least one hashtag, with a

total 147,646 unique hashtags and 1,325,631 users. This dataset was collected by

selecting all the tweets containing the hashtag #euro2012.

3. Hong Kong protests (Sept-Oct 2014): Another dataset considered in our stude

corresponds to a series of streets protests that took place in Hong Kong from

September to December 2014. The protests, are often referred to as the Umbrella

Movement or Occupy movement. The protests were initiated after a proposal from

the Standing Committee of the National People’s Congress to reform the electoral

law. The dataset contains 826,194 unique tweets containing at least one hashtag,

with a total 30,105 unique hashtags and 239,432 users. The observation period

started on 27th of September, right after the protests escalated, resulting in several

people detained, until October 10. The dataset was collected by selecting all the

tweets containing at least one of the following hashtags or keywords: #hongkong,

#umbrellamovement, #occupycentral, #hongkongprotests, #occupyhongkong.

4. Charlie Hebdo Shooting (Jan 2015): The last dataset considered for analysis also

corresponds to an unexpected event, specifically, the shooting perpetrated at the

offices of the french magazine Charlie Hebdo, on January 7 2015. On the morn-

ing of January 7 of 2015, two heavily armed brothers forced their entry into the

magazine offices, killing 12 people and injuring 11 more. The dataset contains

6,002,087 unique tweets containing at least one hashtag, with a total of 102,799

unique hashtags and 2,001,826 users. The observation period started on the 8th

of January, right after the shooting took place and lasted until the 10th of January,

after the two main suspects were killed. The dataset was collected by selecting all

the tweets containing at least one of the following hashtags or keywords: #jesuis-
charlie, #charliehebdo, charlie hebdo paris.

Table B.1: Summary of the additional datasets analyzed.

Dataset Data length
Total
days Tweets Users Hashtags

2014 Catalan
referendum Sep 2 - Nov 12 10 220,364 78,270 18,116

2012 UEFA
championship Jun 19 - July 4 15 3,907,418 1,325,631 147,646

2014 Hong Kong
protests Sep 27 - Oct 7 10 826,194 239,432 30,105

2015 Charlie
Hebdo shooting Jan 8-9 2 6,002,087 2,001,826 102,799
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B.2 Complementary empirical results

In this section we present the results of the temporal structural analysis of the four

additional additional empirical datasets. For the sake of consistency, once again, we

analyse these datasets monitoring the system’s modularity [33] (Q), nestedness [41, 43,

45] (N ) and in-block nestedness (I ) [53].

Figure B.1 shows the evolution of Q and N for the Catalan self-determination ref-

erendum from 2014, the 2012 European football championship, the 2014 Hong Kong

street protests and the 2015 Charlie Hebdo Magazine shooting. The duration of the

snapshot was adjusted to provide a better visualization of the structural transitions dur-

ing the different events, and highlighted the location of the events in the main panels of

each plot. Some of these events are pointed out in the pair of insets in each figure.

Overall, we observe that for all different datasets the behaviour is in qualitative

agreement with the ones presented in Chapter 5. First, the anticorrelated behaviour

between global nestedness and modularity is preserved. Further, in each case, regard-

less the nature of the different datasets, we observe a smooth transition into self-similar

nested arrangements, which develop in accordance to the level of fragmentation of the

surrounding conditions, i.e this transition is linked to external events (second row in

all panels). The different datasets, regardless of their nature, lie along the lines of the

different classes of collective attention described in Lehmann et al. [185]. The highly

fluctuating pattern in Fig. B.1(b), corresponding to the UEFA championship, is due to

the periodicity in which football games happen throughout the competition, with a slow-

down by the end of the period when only the semifinal and final game are left.

Although mentioned in Section B.1, it worth highlighting that different data acqui-

sition procedures employed to build the analysed datasets. The Spanish elections and

Catalan referendum datasets were collected from a rich collection of hashtags and key-

words that were manually chosen following the evolution of the event, even introducing

new hashtags –or keywords– as the event unfolded. In contrast, the rest of the datasets

were collected from a small set of hashtags (often just one) [173], resulting in the pres-

ence of “super"-generalist memes during all the stages of the discussion. Regardless of

the possible biases induced by the presence of these “super"-generalist memes in some

of the datasets, many (possibly most) important hashtags emerging at later stages are

captured as well, since they tend to co-occur with the original chosen keyword. Thus,

we were able to capture the different states of collective attention, from fragmented to

global stages of public consensus.
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days

(d)

Figure B.1: Structural measures over time for four different datasets. Panel (a) corre-
sponds to the 2014 Catalan self-determination referendum, panel (b) corresponds to the
2012 UEFA Football Championship, panel (c) corresponds to a series of streets protests
that took place in Hong Kong in 2014. Finally, panel (d) correspond to the Charlie Hebdo
shooting on 2015. In accordance with empirical results presented in Chapter 5, here we
observe how a block organization dominates the system, reflecting the separate interests
of users, until external events induce large-scale attention shifts, which rearrange com-
pletely the observed architecture towards a macroscale nested pattern. Once again, we
highlight specific time windows in each dataset with some identifiable event happening
in them.
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B.3 Connectance of empirical networks

The connectance C of a network, is the percentage of existing interactions over all

possible ones (NU · NH ). In our model, we wanted to build synthetic networks with

approximately the same connectance of those emprirical ones –in order of magnitude–

. Figure B.2, shows the values of network connectivity as a function of the number of

nodes (NU +NH , in our case), for empirical matrices created applying the construction

process described in Chapter 5, Section 5.2.2, at different NU thresholds. All the results

presented in Chapter 5 were obtained for connectance C ∝ 10−2, which provided a better

match with the empirical connectance for network with NU = 100, see blue triangles in

Fig. B.2.

Figure B.2: Connectivity as a function of the number of species (NU +NH ) for the empir-
ical networks, at different NU thresholds. Note the log-log scale.

B.4 Complementary figures:

B.4.1 Post- external event species survival

Here, we present the results for the survival rate of species after the introduction of

an sudden external event.

As shown in Fig. B.3, for λ = 0 a considerable number of especies goes extinct by

the end of the simulation time. This results is not surprising, since at the onset of the

event the single topic configuration increases the competition among species. The λ

parameter helps to balance the intense competition between the species, therefore, we

observe a decrese on the amount of extinctions as λ goes higher.

B.4.2 Meso- and macroscale nested arrangements

At last, we explored the structural evolution of the system by means of the in-block

nestedness function I [53]. This exploration confirms the general character of the fluc-

tuating meso to macroscale nested organization described in Chapter 5, Section 5.5.3.

Figure B.4 shows the relative size of the largest nested blocks NB1
(I )/N , before (panel

(a)) and after (panel (b)) the introduction of a sudden external event. Before the event,
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we observe that in general, for all the parameter space, the size of the largest nested block

constitutes a 25% of the whole network, approximately, i.e, the user are evenly aligned

over the four predefined topics. After the event, we observed how a state of global con-

sensus is emerging, as NB1
/N increases over all the parameter space, representing more

than 50% of the size of the network in most of the cases.

(a) (b)

(c)

Figure B.3: Survival rate at t > tE : two-dimensional plots in the Ωm−Ωc parameter space
showing survival rate of the species at the end of the simulation, for different values of
the inter-intra competition parameter λ.

B.5 Anti-correlated behaviour between Q andN
In this section, we discuss in depth the observed anti-correlated behaviour between

nestedness and modularity, for both the empirical data and the model’s outcome.

We know from the results presented in Chapter 3, that there exists an upper bound

for the co-existence of nested and modular structures, regardless of the size or the den-

sity of the network at stake. This bound implies that a highly modular structure can

only “afford" a non-nested structure, and the other way around, which helps to explain

the observed anti-correlated behaviour betweenQ andN . Here, we statistically confirm

such anti-correlated behaviour between Q andN by computing the Pearson correlation

between both measures across time, see Table B.2. For the synthetic cases (last two rows),

it is measured from t = 1.5× 104 onwards, to avoid the initial random fluctuations. For
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(a) (b)

Figure B.4: Relative size of the largest nested block (NB1
/N ) before and after the exter-

nal event: two-dimensional plots in the Ωm −Ωc parameter space showing the relative
size of the largest nested block before (panel (a)) and after (panel (b)) the external event
with λ = 0.6.

smoother comparisons, correlation is measured over the whole period covered for the

datasets, but also before/during/after the main events that we identify in Fig. 5.2, and

Fig. B.1, respectively. Except for the Catalan dataset, the matching between empirical

and synthetic results is remarkable, not only in the periods where the correlation is

strong, but also during the pre-event stages, where, in most cases, both correlations are

irrelevant, despite their opposed signs.

The mismatch in the Catalan dataset, can also be explained in terms of the upper

bound described above, since such bound does not rule out other possible regimes. For

example, it is quite common for both Q andN values in a network to be extremely low;

or that both have intermediate values, which typically signals the presence of in-block

nestedness. The Catalan political conflict has an associated extremely high polariza-

tion: the dataset contains both users in favour of and against a referendum, and a large

fraction of Spanish users who think that a referendum should not even be discussed at

all. As a consequence, the polling day, for example, contains not only tweets paying

attention to the results of the (illegalised) referendum, but also many messages calling

for political and legal action against the organizers, or simply appealing to political dia-

logue between the parts. In structural terms, all of this translates into an in-block nested

structure, suggesting a sort of “partial consensus" among the different sides that partic-

ipate in the conversation. Therefore, for this case, we can obtain intermediate values of

both quantities ( Q and N ), which explains the weak anti-correlation observed that day

(r = −0.3079).

B.6 Statistical significance of Q andN
To further strengthen the validity of our results, we now are focused on exploring a

possible lack of statistical significance of the reported patternsQ andN , which has been

and is a controversial issue for these descriptors. Before explaining the randomization
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Table B.2: Pearson coefficients for Q and N at different times, for both, the model and
the data.

Data type Dataset
Whole
period Pre event Event Post event

Empirical

2019 Spanish
general elections -0.8264 -0.2914

Debate:
-0.9094
Polling:
-0.7178

-0.8467

2015 Nepal
Earthquake -0.7337 -0.26566 -0.9358 -0.74138

2014 Catalan
referendum -0.1490 -0.1036

Diada:
-0.21326
Polling:
-0.3079

-0.7234

2012 UEFA
football

championship
-0.7930 -0.42895

Semis:
-0.8675
Finals :
-0.7545

-0.8827

2014 Hong Kong
Protests -0.5774 0.0034

Occupy
central:
-0.6194

-0.6180

2015 Charlie
Hebdo shooting -0.9180 -0.4496 -0.8979 -0.8240

Numerical “expected event" -0.743 0.1625 -0.7611 -0.8641
“sudden event" -0.6651 -0.0558 -0.7390 -0.8533

procedure employed to assess the statistical significance of Q and N , we want to stress

here that, by definition, both descriptors incorporate a null model term. While this is

not new for Q, whose quantification has always been in reference to a null term, it is so

for the definition ofN that we employ along this thesis, which differs from the classical

ones (e.g. NODF [73]), that do not include a random expectation term; see eq. 1.9.

For the sake of simplicity, and due to computational limitations, we only perform

the statistical test for the Spanish dataset. For each one of the matrices of the Spanish

dataset and the synthetic matrices under the expected event, we have generated 150 ran-

domizations in which we preserve the link density. This form of randomization amounts

to considering that the overall system’s activity is kept, but users lack a preference for

one or another meme for communication purposes. Figure B.5 shows the results of the

z-scores of the two descriptors against the ensemble of randomized matrices. The black

solid lines in the plots corresponds to a z = 2. The dotted lines show the actual Q andN
values on the real matrices, that are indicated by the secondary y−axis in both panels.

From Fig. B.5 (a), we observe that during the debate the measured values forQ are no

longer statistically significant at the selected confidence interval. For the second event

(polling), we observe an abrupt decrease in the z-scores for the measured Q, although

it is still significant under the considered threshold. In the case of N , we observe that
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(a) (b)

Figure B.5: z-scores for modularity and nestedness, against an ensemble of 150 ran-
domizations: for the empirical case (panel (a)) and for the model’s numerical simulation
(panel (b)).

its values remain statistically significant for the whole dataset. Nonetheless, we find

evident variances between their statistical significance during the crucial periods. In

general, the z-scores for N are extremely high during the extreme event, despite low

values (compared to the peak) outside the exogenous events. Pursuing stronger connec-

tions between findings in the data and the model, we have also analyzed, under the same

scope, the outcome of our model. Results over the synthetic networks (Fig. B.5 (b)), show

the same observed behaviour: during the artificially introduced event, the z-scores for

Q fall below statistical significance; whileN is significant overall the period, but with a

marked surge after the exogenous introduction of an event at t = 3 × 104, proving that,

in general, the changes in Q and N are beyond reasonable expectation, and are thus

statistically robust.

B.7 Disentangling the effects of a change in the activity

In this section, we explore in detail the effects of the activity changes on the system’s

properties. Our main interest in exploring this particular aspect is to avoid a possible

confounding factor: the false impression that changes in activity can, on their own, ex-

plain the reported structural shifts from (to) modular to (from) nested arrangements. In

other words, we intend to discard the idea that changes in the network’s topology are

simple by-products of changes in the activity.

Examining this aspect in more detail, we can observe that most of the increased ac-

tivity during extraordinary events is due to new users entering the topic (Fig. B.6 top

panel), and that these produce a very large amount of hashtags as well (Fig. B.6 bottom

panel). Results from Fig. B.6 may be interpreted as a proof that the model cannot mimic

the observed behaviour in the data, e.g. the number of user and hashtags is highly fluc-

tuating in the data, while it remains constant in the model. In the following, however,

we explore whether other system’s quantities, such like the users’ average activity or the

amount of effective hashtags, are also affected by activity increases.
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Figure B.6: Evolution of the number of users (top) and the the number of hashtags dur-
ing the Spanish election cycle. Both quantities show remarkable increases during the
identified exceptional events (debate, polling day).

B.7.1 Effects of activity increase on the users’ and hashtags average

quantities:

We start this section by exploring the effect of an activity increase from the users’ per-

spective. Specifically, we tracked the users’ average activity, i.e., the number of hashtags

per user, 〈h〉, over time (Fig. B.7 (a)). We can observe that, even during an exceptional

event, 〈h〉 remains relatively constant, this means that when the users’ attention profiles

are shifted, these do not significantly increase their activity (in terms of hashtag usage)

on average, but rather start switching towards the topic on which that same activity is

devoted. This finding provides a stronger link between actual data and the model for

which 〈h〉 is constant by design, as can be seen from Fig. B.7 (b).

(a) (b)

Figure B.7: Average number of hashtags per user 〈h〉: for the Spanish dataset (panel
(a)), and for the model’s numerical simulation (panel (b)).

Moving on, we have also explored the effects of an activity increase from the hash-

tags’ side. Notably, from Fig. B.6 (bottom panel), it is clear that the absolute number

of unique hashtags increases during the highlighted events, debate, and polling day,

respectively. Nonetheless, when we try to quantify the minimum amount of hashtags

needed to account for a large fraction of the users (99% of the users, in our case) in each

time window, i.e. the diversity of the hashtags in terms of a cover set, we see that 99%

of the users can be accounted for with no more than 400 hashtags, and with 100 hash-

tags or less during intense attention episodes. This behavior is qualitatively mimicked

as well by the model, see panel (b) from Fig. B.8. We have computed this “hashtag cov-

erset” by applying the following iterative scheme: we count (and remove) all users who

tweeted the most frequent hashtag; then we count (and remove) all users who used the
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second most frequent hashtag; and so on, until we reach the desired threshold (99% of

the users). Counted in this way, the hashtag coverset represents to what extent users are

focused on only a few items, despite the presence of many more memes in the informa-

tion system that may (or probably may not) get anyone’s attention. Last but not least,

these results show that, even though the model does not take into account the fluctuat-

ing behaviour of users and hashtags observed in the data, which cannot be incorporated

without considering birth/invasion processes, it is still able to reproduce the evolution

of effective hashtags in the system.

(a) (b)

Figure B.8: Hashtag coverset at the 99% threshold : for the Spanish dataset (panel (a)),
and for the model’s numerical simulation (panel (b)).

B.7.2 Activity increase as a driver for nestedness and/or modularity:

We now want to investigate if an increase in activity can be a driving mechanism

of the different structural transitions observed in the data. As explained in Chapter 3,

given the mutual constraints that Q and N impose on each other, the growth of one

implies the decline of the other. Nonetheless, the opposite is not necessarily true: a

reduction in Q (due, for example, to larger density in the network) does not guarantee

at all an automatic increase of nestedness. Conversely, a reduction in N will not imply,

necessarily, a larger Q. Since we know a priori that an increase in activity may lead to

a growth in network density, here, we want to fully address if such increment could be

responsible for the increase in nestedness/decrease in modularity observed in the model

and data.

We start our examination providing a simple example from the Spanish dataset: we

take a snapshot of the system right before a large event occurs (debate), in which the

system is clearly organized as a modular network and have a connectance (density) C =

0.003. Then, we start simulating an increase in activity (which translates to an increase

in density), taking the system from the initial connectance to a final one of 0.005. We

choose this network density, as this is precisely the connectance in the empirical data by

the time we observe a maximum in nestedness (during the debate).

Figure B.9 summarises the results from the experiment. In the left panel, we see the

network at its “starting point": Q takes a high value (0.677) while nestedness is neg-

ligible (0.058). Adding activity at random, up to C = 0.005, does not lead to a nested

architecture. On the contrary, the process of adding links to the network has deterio-

rated bothQ andN . The second panel of Fig. B.9 shows the evolution of both quantities
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Figure B.9: Expected effects of random increased activity in empirical data: the sys-
tem, organized in a modular pattern initially (left) transitions to a highly nested one
(right); however, randomly increasing connectance (activity) does not imply per se in-
creases in the values of nestedness (middle panels).

as links are added, and the third panel shows the resulting network. For the sake of

comparison, the panel to the right shows the actual (empirical) network at the end of

the process, in which nestedness peaks at 0.58 –an order of magnitude above what one

would observe if activity is increased at random. We can observe that increased activity

does not render, per se, any gains in N –rather, nestedness stays negligible to a value of

in the order of 10−2. To better grasp this relevant point, we further extend our experi-

ment from Fig. B.9 to more general scenarios, employing a synthetic benchmark.

Starting from an initially modular, an initially nested, and an initially in-block nested

network, each one of size Ncol =Nrow = 150 nodes, we randomly increase their densities,

as a null model of activity growth, i.e., users are linking to more and more hashtags at

random. Figure B.10 below shows the results from this study. Each point of the plot

corresponds to an increase of 5% in the amount of links. From the initially modular

network (top row), we observe that, as we move along the x-axis (added links), increas-

ing activity at random decreases the modularity, and yet nestedness remains in the ex-

tremely low values that it showed initially. For the initially nested (middle row), and

initially in-block nested (bottom row) networks, the results are very similar: no growth

of the complementary pattern is observed at all.

Ultimately, it is clear that a sole increase in activity (in any situation) is not neces-

sarily related to an implicit increment of any of the measures used in our study. In fact,

nestedness for example, may emerge without a remarkable increase in activity: see pan-

els (a), (c) and (d) of Fig. B.1. Shifts to nestedness in these cases are not directly related

to increase in activity. Although we are aware that this result clashes with the idea that

connectance underlies the emergence of nestedness [177], we want to stress that such in-

creases in nestedness related to increases in connectance are usually quantified through

the use of descriptors that does not discount the amount of overlap that two species may

have due to random fluctuations, e.g., Almeida-Neto’s NODF [73]. All in all, our results

seem to indicate that, for all the three measures, it is required that some explicit driver

on the network constituents and their interactions guides the changes at the macroscopic

or mesoscopic levels.
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Figure B.10: Effects of randomly increasing density on synthetic networks with purely
modular (top), nested (middle) and in-block nested (bottom) organizations. Random
link addition harms the idealised initial structures, while it has no positive effects on
the other descriptors.
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