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Abstract

This PhD thesis dissertation reports new insights for the Brassinosteroid

signaling in the root stem cell niche of Arabidopsis thaliana.

Brassisnosteroids are the plant steroid hormones that play important roles

in plant growth and development. In the Arabidopsis root, they are in-

volved in the stem cell niche maintenance. Stem cells are the more un-

differentiated cells that divide and differentiate to give rise to the distinct

cell types of the root. Stem cells are located in the stem cell niche, a spe-

cific environment tightly controlled by internal and external factors. The

low number each stem cell population makes it difficult to study them

individually, therefore, recent advances in cell-type and single-cell specific

approaches are starting to be used to understand this rare population. In

this PhD thesis, we used an interdisciplinary approach, including genet-

ics, transcriptomics analysis and mathematical modelling, to decipher the

molecular signatures of the root stem cells and specifically in the role of

Brassinosteroids in those cells.

Defects in growth and development processes is often reflected in abnor-

mal primary root growth. In this PhD dissertation, we describe the de-

velopment of MyROOT software for the accurate measurements of plant

ii



primary root length, which is crucial for plant development studies. In

addition, the results presented in this thesis uncover the role of BRs in

the stem cell niche. A systems biology approach revealed a role of the

BR-mediated BRAVO transcription factor together with WOX5 in overall

root growth and development. Moreover, cell-type specific transcriptomic

analysis uncover the transcriptional response mediated by BRAVO in the

QC and adjacent vascular stem cells. Finally, single-cell RNAseq were

used to generate a transcriptomic atlas of the stem cell niche that allowed

to characterize the molecular signatures of the stem cells and to find novel

stem cell populations within the BRAVO expression domain.

Overall, the present PhD thesis advances in the understanding of stem

cells in plants and expose the necessity of multidisciplinary approaches to

uncover fundamental biological questions in plant development.
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3 General Introduction

General Introduction

1.1 The Arabidopsis root as a model for plant

development studies

Plants are sessile organisms that evolved unique mechanisms enabling

them to grow, develop and react to changing environmental conditions.

The plant root is an essential organ that provides the necessary structural

and functional support for the incorporation of water and nutrients from

the soil. Given its importance, the study of molecular processes involved

in root growth and development is key to understand plant plasticity. Not

only that, but the agricultural application of the gained academic knowl-

edge could lead to the generation of more tolerant crops to the future

climate change conditions (Gupta et al., 2020).

Most of our current understanding of plant growth and development was

derived from studies on the model species Arabidopsis thaliana (Arabidop-

sis). Characteristics as its fast life cycle or the simple requirements for its

growth in in vitro conditions, make it ideal for experimental research. Due

to its thin radial morphology and transparency, the Arabidopsis primary

root is highly amenable for microscopy studies. In the same manner, its
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small and well characterized genome has accelerated the implementation

of molecular genetics and computational approaches for the study of plant

development.

1.2 The Arabidopsis root organization

The Arabidopsis root system consists in a primary root that emerges from

the seed and that can develop several postembryonic lateral roots. The

development of primary and lateral roots is hormonal and environmentally

controlled and shapes the plant root system architecture. This branching

is important for root functions in water uptake and soil anchoring as it

increases the surface area of the root (Smith and De Smet, 2012; Motte

et al., 2019).

The Arabidopsis primary root has a well-defined structure that serves as

an excellent model to study root physiology. It is formed by several cell

files arranged as concentric circles, with the stem cell niche (SCN) located

at the inner site of the root apex (Figure 1.1 A, Dolan et al. (1993)).

The four outer layers are the epidermis, cortex, endodermis and pericycle

which surround the vascular tissues inside (Figure 1.1 A). The epidermis

is organized in two different cell files starting from 16 initial cells. Upon

maturation, the epidermis is formed by two types of cells, the hair cells

(called trichoblasts) and the non-hair cells (called atrichoblasts; Dolan

et al. (1993); Balcerowicz et al. (2015)). The cortex and the endodermis

are formed by one cell type. The pericycle cells can initiate the formation

of lateral roots, but only the cells overlying the xylem pole (Laskowski

et al., 1995). In the inner cell layers, the vascular tissues have a bilateral

symmetry in which a central xylem axis is flanked by two phloem poles



5 General Introduction

(Figure 1.1 B). Xylem and phloem transport water and solutes, respec-

tively, through the plant. The stem cell niche is protected from the soil

by several layers of cells at the root tip which form the root cap, including

the central columella root cap and the peripheral lateral root cap. Col-

umella cells are gravity-sensing cells that contain statoliths (starch filled

plastids).

Along the longitudinal axis, three zones can be clearly identified in the

root: meristematic (MZ), elongation (EZ) and differentiation (DZ). Stem

cells originating from the MZ will differentiate into diverse cell lineages and

divide in this region. In the EZ, cells elongate and gradually differentiate

without further cell division. As they enter the DZ, cells are already

mature and no longer elongate. They present secondary structures, such

as root hairs and fully differentiated xylem. A fourth region known as

the transition zone (TZ) could also be classified between the MZ and the

EZ, where cells start increasing in length and width by endoreplication

processes (Dolan et al., 1993; Ishikawa and Evans, 1995; Beemster et al.,

2003; Verbelen et al., 2006; Takatsuka and Umeda, 2014).

Altogether, the Arabidopsis root provides a versatile model for the study

of plant development in a spatiotemporal context, as root growth and

development occur both in the radial and longitudinal axes throughout the

life of the plant. Remarkably, spatiotemporal root development happens

due to a tight regulation of stem cell division in the root stem cell niche.
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A

B

Figure 1.1: The Arabidopsis root.
Schematic representation of a 6-day-old Arabidopsis thaliana primary root. Cell
types are highlighted in different colors. A) Longitudinal section indicating the
meristematic (MZ), transition (TZ), elongation (EZ) and differentiation (DZ)
zones. B) Transverse section.
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1.3 The root stem cell niche

The primary root arises from the activity of a group of stem cells located

in the root apical meristem (RAM), which is essential for root growth,

development and regeneration. Stem cells are undifferentiated cells that

have the capacity to produce differentiated daughter cells and to renew

themselves to retain their stem cell identity (Cheung and Rando, 2013).

Not only in the root, the development of all tissues and organs in plants

occur after seed germination due to the function of both shoot and root

meristems (Heidstra and Sabatini, 2014). Stem cells are maintained in

special microenvironments called stem cell niches where local signals from

an organizer act to maintain the adjacent stem cells.

The RAM is characterized by the presence of tissue-specific stem cells;

different stem cell groups are committed to develop into different tissues

of the root. These stem cells known as the root initials are located in the

stem cell niche (SCN) of the root meristem where they are surrounding

the quiescent center (QC, van den Berg et al. (1997); Figure 1.2). The

QC is a group of few cells that show a lower mitotic activity and control

the fate of the stem cells by the release of short-range signals that prevent

their differentiation. Proximally to the QC, the vascular stem cells (also

called vascular initials (VI)) give rise to functional procambial, xylem and

phloem tissues (De Rybel et al., 2016). Distally to the QC, the columella

stem cells (CSC) give rise to the columella cells (González-Garćıa et al.

(2011); Stahl et al. (2009)). Adjacent to the QC, the cortex and endoder-

mis initials (CEI) give rise to the cortex and endodermis cell layers (Figure

1.2).
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Figure 1.2: The Arabidopsis root stem cell niche.
Schematic representation of a medial longitudinal view of the 6-day-old Arabidop-
sis thaliana primary root apex. The stem cell niche is formed by the quiescent
center and the surrounding stem cells, which are highlighted in different colors.

1.4 Factors regulating QC division and stem cell

niche maintenance

The regulation of stem cell divisions and the balance between self-renewal

and differentiation processes is crucial to the maintenance of tissue home-

ostasis during the lifetime of an organism. An asymmetric cell division

regulates stem cell-fate decisions and it is essential for the conservation of

the stem cell compartment as one daughter cell remains as a stem cell and

the other enters the differentiation path. The proper balance among them

is maintained by both intrinsic programs and environmental regulatory

signals (Li and Xie, 2005).

Plants cannot escape environmental hazards such as drought or toxic com-

pounds which can cause oxidative stress or DNA damage that could be

fixed as mutations. The plant stem cells are the precursors of tissues
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during the whole life of the plant, so the protection from DNA damage

is especially important within the stem cell niche. It was also proposed

that the QC in Arabidopsis acts as a reservoir to replace stem cells in

the root in the presence of a cellular damage (van den Berg et al., 1997;

Xu et al., 2006). The response to DNA damage in plants is mediated

by ATAXIA-TELANGIECTASIA MUTATED (ATM) and ATM/RAD3-

RELATED (ATR) protein kinases and mainly causes a cell cycle arrest,

transcriptional activation of genes involved in DNA metabolism, repair

and chromosome structure (Hu et al., 2016). When errors cannot be re-

paired, cell death is promoted exclude hazardous mutations. Mammalian

cells trigger programmed cell death (PCD) mainly by the p53 effector, and

although non-apoptotic PCD was already known to be present in plants, it

has recently been shown in Arabidopsis that SOG1 might induce a similar

effect (Fulcher and Sablowski, 2009; Yoshiyama et al., 2014). Treatment

of Arabidopsis root tips with genotoxic factors, even with reduced levels of

DNA damage, promotes PCD in a meristem cell-type dependent manner.

This process is triggered both by ATM and ATR kinases, as the atm-1 and

atr-2 mutants could not induce cell death (Fulcher and Sablowski, 2009).

In particular, stem cells and vascular initial cells appear to be more suscep-

tible to DNA damage than QC cells, since the latter remained alive after

radiomimetic drug bleomycin treatment (Fulcher and Sablowski, 2009).

The preponderance of PCD in this region over cell cycle arrest could be

beneficial for plants, since fast-growing and diving regions cannot afford

to spend too much time on cell-by-cell DNA damage repair.

Stem cells are maintained in an undifferentiated state due to the signals

released by the QC. In Arabidopsis there are two genetic pathways that are

involved in stem cell specification: the PLETHORA (PLT) pathway and
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the SHORT ROOT (SHR)/SCARECROW (SCR) pathway (Aida et al.,

2004; Helariutta et al., 2000).

PLT genes are induced by the auxin response regulators MONOPTEROS

(MP) and BODENLOS (BDL) that are active at auxin peak levels and are

proposed to function in establishing the QC in the root tip (Aida et al.,

2004). The highest levels of PTL proteins are found in the stem cell area

and the regulation of these levels determine the stem cell maintenance or

differentiation (Galinha et al., 2007).

SHR and SCR are two members of the plant-specific GRAS transcription

factor family (Benfey et al., 1993). SHR moves from the stele into the adja-

cent cell layers to activate SCR transcription. SCR is expressed in the QC

where it maintains QC identity in a cell-autonomous way. SCR is enough

to maintain the stem cell niche (Sabatini et al., 2003), since it specifically

represses ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) auxin

regulator specifically in the QC where cytokinin-dependent cell differen-

tiation is repressed and therefore the stem cell niche activity is sustained

(Moubayidin et al., 2013). The SCR protein is also important in main-

taining RAM initial cells by regulating in a non-cell-autonomous way the

RETINOBLASTOMA-RELATED PROTEIN (RBR) pathway. The RBR

is a key point of entry into the G1 phase of the cell cycle, controlling

the level of stem cells versus differentiated cell populations to maintain

functional RAM (Wildwater et al., 2005). Likewise, SHR and SCR con-

trol periclinal division of the CEI through the regulation of CYCD6;1 and

the BIRD family members MAGPIE (MGP) and NUTCRACKER (NUT;

Levesque et al. (2006); Cui et al. (2007); Welch et al. (2007); Sozzani et al.

(2010); Cruz-Ramı́rez et al. (2012)).
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Another key transcription factor related with the QC identity is WUSCHEL-

RELATED HOMEOBOX 5 (WOX5). Its expression depends on the in-

duction in the root pole by MP-mediated auxin signalling and on SHR/SCR

activity, and it is specific to the QC (Sarkar et al., 2007). WOX5 has been

suggested as one of the short-range signals in the QC that prevent stem

cell differentiation from the QC. WOX5 acts in restraining cell division in

the QC cells by excluding CDKA/CYCLIN D complex (CYCD) activity

from those cells and thus establishing the quiescence (Forzani et al., 2014;

Pi et al., 2015). The specific expression of WOX5 in the QC is controlled

by CLAVATA3/ESR-RELATED 40 (CLE40). This peptide acts through

the receptor-like kinase ARABIDOPSIS CRINKLY4 (ACR4) to exclude

WOX5 expression outside of the QC and promotes differentiation of col-

umella cells, partly by restricting expression of WOX5 (Stahl et al., 2009).

AUXIN RESPONSE FACTOR 10 (ARF10) is a transcription factor that

is also involved in restricting the WOX5 domain and in promoting col-

umella cell differentiation. Its expression is specific to the root cap and

is dependent on auxin levels (Wang et al., 2005; Ding and Friml, 2010).

The REPRESSOR OF WUS1 (ROW1) is a PHD-containing protein also

required to maintain QC identity and stem cell niche development. It

binds to the WOX5 promoter and represses its transcription. This al-

lows normal proximal meristem cell differentiation and elongation in the

maturation zone (Zhang et al., 2015).

An additional level of regulation of the stem cell niche is the movement of

some of the aforementioned transcription factors from one cell to another.

This movement occurs through the plasmodesmata, which are membrane-

lined channels that allow symplastic movement of molecules between cells

(Vatén et al., 2011). SHR moves from the stele into the neighboring endo-
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dermis where it serves as an activator of endodermal cell fate (Nakajima

et al., 2001; Vatén et al., 2011). The WOX5 protein also moves from the

QC to the CSC, where it directly represses the transcription factor CY-

CLIN DOF FACTOR 4 (CDF4) that promotes differentiation (Pi et al.,

2015).

1.5 Hormonal regulation in the stem cell niche:

the case of brassinosteroids

Plant hormones are key elements involved in specification, development

and maintenance of the RAM. They regulate the expression of core genes

and their interplay is necessary for integrating external and internal signals

into those processes.

Auxin gradients in the root peak at the QC. This gradient is formed by

local biosynthesis and polar auxin transport along the root through com-

plex regulations between PINFORMED (PIN) auxin efflux carriers and

PLT proteins (Aida et al., 2004; Blilou et al., 2005; Petersson et al., 2009;

Mähönen et al., 2014). Auxins also induce WOX5 expression which, in

turn, allows maintenance of the auxin maximum (Gonzali et al., 2005).

Cytokinins act antagonistically to auxins. They repress WOX5 expres-

sion by modulating the auxin flux in the root and promote cell divi-

sions in the QC (Zhang et al., 2013a), and they also influence auxin

accumulation in the QC through SCR suppression of cytokinin signal-

ing (Moubayidin et al., 2013). Similarly, ethylene also induces QC divi-

sions (Ortega-Mart́ınez et al., 2007), and jasmonate reduces RAM activity,

leading to defects in QC division and CSC differentiation through MYC2-
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mediated repression of PLT expression (Chen et al., 2011). ABA promotes

QC quiescence and suppresses the differentiation of stem cells and their

daughters in root meristems (Zhang et al., 2010).

Brassinosteroids (BR(s)) are a group of polyhydroxylated compounds that

control growth and development processes (Planas-Riverola et al., 2019;

Nolan et al., 2020). BR are perceived in the plasma membrane by the ex-

tracellular domain of the Leucine-Rich-Repeat-Receptor-Like-Kinase (LRR-

RLK) proteins (Kinoshita et al., 2005; Wang et al., 2001). The first BR

receptor identified was BR-INSENSITIVE-1 (BRI1; Li and Chory (1997))

which is ubiquitously expressed and upon BR activation, it recruits BAK1

co-receptor kinase and initiates a signaling cascade that ends with the in-

activation of the phosphatase BIN2 and the dephosphorylation of BES1

(BRI1 EMS SUPPRESOR 1) and BZR1 (BRASSINAZOLE RESISTANT

1) transcription factors (Li et al., 2002; Nam and Li, 2002; He et al.,

2005; Li et al., 2001; Russinova et al., 2004). This active form of BES1

and BZR1 in the nucleus bind to the BR respond elements (BREEs) and

E-boxes of their target genes and regulate their expression (Sun et al.,

2010; Yu et al., 2011). In addition to BRI1, in Arabidopsis there are two

other functional receptors called BRI1-LIKE 1 (BRL1) and BRI1-LIKE

3 (BRL3) with enriched expression in the vascular tissues (Caño-Delgado

et al., 2004; Fàbregas et al., 2013; Salazar-Henao et al., 2016) where they

are involved in vascular development and fine tune plant responses to

stress (Lozano-Elena et al., 2018).

Brassinosteroids control primary root growth and promote cell division in

the meristem (González-Garćıa et al., 2011). In the SCN, BRs play a key

role in maintaining the identity and stemness of QC cells. BR signaling

modulates BRAVO (BRASSINOSTEROIDS AT VASCULAR AND OR-
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GANIZING CENTER) transcription factor, also called MYB56 that be-

longs to the R2R3-MYB family. BRs downregulate BRAVO expression in

the QC and vascular initial cells, where it is specifically expressed. BRAVO

inhibition occurs through its heterodimerization with BES1-D, the active

dephosphorylated form of BES1 BR downstream effector. BRAVO and

BES1 interact at the transcriptional and protein levels forming a signaling

module that defines the BR-mediated regulation of stem cell quiescence.

BRAVO represses QC division and upon BR signaling, it is sequestered

by BES1, which inhibits its action and promotes the division of the QC

cells (Vilarrasa-Blasi et al., 2014). Another transcription factor, TOP-

LESS (TPL) binds via BES1 to the promoter of BRAVO to suppress its

expression. TPL directly interacts with BES1 via its ERF-associated am-

phiphilic repression (EAR) motif (Espinosa-Ruiz et al., 2017). Another

BR-regulated transcription factor involved in QC division is ETHYLENE

RESPONSE FACTOR 115 (ERF115). ERF115 regulates the expression

of PHYTOSULFOKINES 5 (PSK5), a peptide hormone that enhances

the frequency of QC divisions (Heyman et al., 2013, 2016), and it is in-

duced by BRs. Altogether, BR signaling represses BRAVO activity and

activates ERF115 to promote QC divisions when needed. A case in which

BR signaling is activated and QC division is promoted is after a genotoxic

stress, which causes cell death in the stele and induce the division of the

QC to replenish the damaged ones (Vilarrasa-Blasi et al., 2014). In this

response, a steroid paracrine signal is locally perceived by the BRI1 re-

ceptor and transduced downstream BES1 from the dead cells to the QC

(Lozano-Elena et al., 2018).

In the SCN, BRs promote the expression of WOX5 (González-Garćıa et al.,

2011), a transcription factor expressed specifically in the QC cells where it
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inhibits their division and promote the differentiation of the CSCs (Sarkar

et al., 2007). In addition, BRs also promote the differentiation of columella

stem cells in a BR concentration-dependent and a signaling molecule-

dependent manner (González-Garćıa et al., 2011; Lee et al., 2015).

Regarding the regulation of the vascular initial cells, BRs are known to

repress periclinal cell division, as BL-treated plants show thinner stele

width (González-Garćıa et al., 2011; Fàbregas et al., 2013). Interestingly,

triple mutant brl1brl3bak1-3 shows hypersensitivity to BRs in the stele

when compared with bak1 or brl1 brl3 mutants, indicating a concerted

action of BR receptors in the provascular cells (Fàbregas et al., 2013).

However, little is known about the specific role of BRs in the stele and

in the VI cells, neither about the role of BRI1 or BRL1/3 receptors that

show different patterns of expression throughout the root (Fàbregas et al.,

2013).

Altogether, BRs play important roles in stem cell division and mainte-

nance which affect proper root growth and development. However, several

fundamental questions regarding their mechanism of action or their role in

certain stem cell populations remain unanswered. Technical issues such as

the capacity to study molecular processes at a cell-type specific level might

have hampered the molecular understanding with cell-specific resolution,

and the advances made along this PhD thesis represent a breakthrough in

this direction.



General Introduction 16

1.6 Cell-type specific transcriptomics in the Ara-

bidopsis roots

Plant growth and development comprises complex processes that depend

on the coordination between single cell, cell types and time. When study-

ing those processes at the whole-organ level, most of the cell-type specific

information is lost. Several disciplines have been developed to understand

molecular processes with cell type resolution. Some examples are the local

expression of signaling components (Marquès-Bueno et al., 2016) or the vi-

sualization of cell-specific protein-protein interactions (Long et al., 2017).

Moreover, novel CRISPR-Cas9 based methods such as gene inducible sys-

tems (Siligato et al., 2016; Wang et al., 2020) and techniques for efficient

mutagenesis in specific cell types are available (Decaestecker et al., 2019).

CRISPR-Cas9 technology is a newly established gene editing tool that al-

lows editing multiple loci simultaneously via single transformation events

(Ma et al., 2015).

Genome-wide transcriptomics experiments enable to address the function

of molecular components from specific signaling pathways through the

analysis of the regulated genes in the desired experimental conditions. If

they are performed with tissue specificity, genome-wide information can

be obtained from a certain cell type. Some of the key points for cell-type-

specific transcriptomics experiments are the isolation of the individual

cells, which is usually done by enzymatic digestion of the cell walls, and the

availability of cell-type-specific markers for fluorescent labelling of certain

cell types.

Different methods were developed for the isolation of specific cells in
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plants: (i) laser capture microdissection (LCM, Kerk et al. (2003)), (ii)

protoplasting coupled to fluorescent activated cell sorting (FACS, Birn-

baum et al. (2005)) and (iii) isolation of nuclei tagged in specific cell types

(INTACT, Deal and Henikoff (2011)). The LCM consists in the isolation

of the desired cells with a laser beam while observing them under the

microscope. The FACS procedure consists in the generation of lines ex-

pressing green fluorescent protein (GFP) in the cell type of interest, the

separation of individual cells by digesting their cell walls creating proto-

plasts, and the isolation of GFP-positive cells using FACS. The INTACT

method requires the creation of transgenic plants expressing a biotinylated

nuclear envelope protein in the cell type of interest, and it is based in the

isolation and purification of those nuclei using streptavidin-coated mag-

netic beads. The last two methods require the generation of transgenic

lines with specific promoters which are markers of the cell type of interest.

Therefore, they are limited to the cell types in which markers have been

identified.

To investigate cell-type specific responses in Arabidopsis, FACS has been

the most used technology as this plant is easily transformed and grown on a

large scale. Specifically, the Arabidopsis root, due to its well-characterized

and defined tissue distribution, is a widely used model organ for this type

of studies. The first transcriptomic-based expression map of the Arabidop-

sis root cell type was presented in Brady et al. (2007) where they started

to elucidate the complex transcriptional network that underlies root spa-

tiotemporal development. Since then, other studies have been done such

as the one by Dinneny et al. (2008), describing that a combination of envi-

ronmental stimuli enables the identification of a core of genes that stably

determines cell identity. Regarding hormonal regulation, the role of aux-
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ins or brassinosteroids was also evaluated at the cell-type level (Bargmann

et al., 2013; Vragović et al., 2015).

The use of these technologies allows the generation of high-resolution tran-

scriptional profiles of individual cell types and different developmental

stages that are crucial for the understanding of cell-type specific processes

involved in growth and development (Brady et al., 2007). FACS was suc-

cessfully implemented in other plant tissues such as the shoot apical meris-

tem stem cell niche (Yadav et al., 2009). It also allows the isolation of cell

populations for metabolomic analysis (Moussaieff et al., 2013).

1.7 Single-cell transcriptomic technologies in plants

Most of the processes involved in plant organ growth and development

are a result of the interplay between specific functions of the different cell

types forming it (Brady et al., 2007). The advent of novel techniques that

enable a higher resolution for understanding the molecular processes at

tissue specific or single cell (SC) level opens new possibilities to investigate

these fundamental questions. A recent approach in this direction is the

development of single-cell RNAseq (scRNAseq) technologies that allow the

identification of the transcriptional profile of individual cells. scRNAseq

has already been used in animal systems for the discovery of new cell

types and new molecular processes (Consortium, 2020; Cao et al., 2017;

Karaiskos et al., 2017).

Single-cell technology in plants is emerging very fast, and it has been

widely studied in recent years (Efroni and Birnbaum, 2016; Rodriguez-

Villalon and Brady, 2019; Rich-Griffin et al., 2020; Iqbal et al., 2020;
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Birnbaum, 2018). The main aspects of single cell technology in plants are

reviewed in the following sections, focusing in the Arabidopsis root and

in relevant aspects of the methodology, data analysis and recent findings

regarding plant development.

Single-cell transcriptomic data generation

A comparison between the single-cell and the common bulk RNAseq method-

ologies is shown in Figure 1.3. The first step for both bulk and single-cell

experiments is the breaking up of the root cells and the selection of the

GFP marked cells through FACS. Remarkably, the use of single cell does

not require the use of a reporter line and FACS, but they can be used

depending on the objective of the research for the enrichment of a certain

stem cell population. For bulk RNAseq, the sorted cells are collected to-

gether as a unique cell population, whereas in the SC, each cell is collected

individually and treated as a single sample. In SC, the transcriptional pro-

file of individual cells is obtained and, due to the unknown identity of each

of them, the analysis is done in a unsupervised manner, so the identifi-

cation of the different cell populations is based only in the similarities

between their gene expression profiles. This aspect makes SC RNAseq

suitable for the discovery of rare cell populations. On the other hand,

in bulk RNAseqs, cell populations are well defined by the marker used

for the experiment, and the comparisons or findings that can be done are

always supervised by the user and previously defined. As an example,

the use of a hormone treatment or a mutant background with the same

GFP marker would allow the identification of the genes regulated in that

specific experiment in the marked cells (Figure 1.3).
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Single-cell RNAseq Bulk RNAseq

Protoplasting

Individual cell collection

FACS

+

Whole population collection

RNA extraction from individual cells RNA extraction from whole population

RNA sequencing RNA sequencing

Supervised comparisons
(e.g. +/- BL)

Unsupervised clustering
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GFP marked cells
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Figure 1.3: Comparison between single-cell and bulk RNAseq
methodologies.
Scheme indicating the different steps of a single-cell (left) and bulk (right)
RNAseq experiment starting from the isolation of a specific cell population in
the SCN. The main differences are the collection of individual cells for the identi-
fication of novel cell population using the single-cell methodology (left), and the
collection of a whole population for the analysis of differential expression analysis
in the bulk methodology (rigth).
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A number of different methods are currently available for the obtention of

individual cells: plate-based and droplet-based methods. In plate-based

methods, cells are sorted individually into microwell plates where the next

steps of lysis and reverse transcription are performed. Droplet-based meth-

ods are more automatized and employ microfluidics that encapsulate in-

dividual cells in droplets containing the reagents for reverse transcription

inside each droplet. These two methods have been successfully imple-

mented, and the choice of one or the other is decided based on the aim

of the experiment. Plate-based methods resulted in higher sensitivity in

terms of number of detectable mRNAs per cell, but lower throughput in

terms of number of cells. Plate-based methods are usually coupled with a

previous step of FACS that allows the enrichment of a fluorescent-tagged

cell population. Droplet-based methods, on the other hand, have lower

cell capture rates, making them less appropriate for the discovery of rare

cell populations; whereas a much larger number of cells can be processed.

A novel method called single-cell combinatorial indexing RNA sequencing

allows the molecular reactions to occur inside each cell (Cao et al., 2017).

Once the individual cells are isolated, a crucial step is the amplification

and labeling of the mRNA from each cell. This happens due to the addi-

tion of unique barcodes for the cDNA synthesis and library preparation.

Single-cell transcriptomic data analysis

There are different methods and tools designed for single cell data analysis,

which could be consulted in a scRNA-tools database (Zappia et al., 2018).

Luecken and Theis (2019) review discussed the existing methods for the

single cell data analysis, including Seurat, one of the most used R software

packages for single-cell data analysis (Butler et al., 2018).
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The basic workflow for the transcriptomic data analysis is the same for

bulk and SC in the initial steps. First, the reads are mapped to the

genome of reference, the sequences of the adapters are removed, and the

gene quantification is performed. Next, a matrix with the gene counts per

cell is obtained, that will be the base for the subsequent analysis, revealing

the answer for a specific biological question (Figure 1.4).

Preprocessing steps of the data include the removal of lowly-expressed

transcripts or empty droplets, which are quite common in droplet-based

methods. The presence of many unmapped genes is also common mainly

due to the low gene expression levels or low method sensitivity. Neverthe-

less, single-cell data analysis tools can process them or even replace them

with estimations (Peng et al., 2019).

Once high-quality cells have been selected, data is normalized and scaled

so the variability between different cells is corrected. Then, the highly

variable genes among the dataset are identified. These genes are used for

the subsequent analysis as they include most of the variability of the data.

Next step is dimensionality reduction for proper visualization and data

summarization (Figure 1.4).

Linear dimensional reduction of the data is done with Principal component

analysis (PCA) and non-linear dimensional reduction with t-distributed

Stochastic Neighbourhood Embedding (tSNE) or Uniform Manifold Ap-

proximation and Projection (UMAP). These analyses are done to visualize

the data in two dimension plots and have been specifically developed to vi-

sualize such complex high-dimensional data as scRNAseq counts (van der

Maaten and Hinton, 2008; McInnes et al., 2020).

Clustering analysis consists of grouping the cells based on gene expression
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Figure 1.4: Single-cell RNAseq methodology and data analysis.
Scheme indicating the different steps of a single-cell RNAseq experiment from
the isolation of individual cells to the data analysis.



General Introduction 24

profiles similarity. Therefore, it allows the identification of biologically sig-

nificant cell groups that correspond to different cell populations that might

be cell types. There are different clustering algorithms such as k-means

or graph-based approaches (extensively described in Jain et al. (1999);

Rodriguez et al. (2019)). Clustering analysis is usually represented over

the tSNE or UMAP graph and the position of the different populations

can be an indicator of similarities between them, as groups that are closer

might be more similar.

To give identity to the identified clusters, supervised and unsupervised

approaches have been stablished. Supervised approaches require knowl-

edge of cell type specific genes previously reported (Brady et al., 2007;

Birnbaum et al., 2003) and the evaluation of their expression levels in the

dataset. One of these methods allows the use of informative markers sets,

which are required to be uniquely expressed in a single cell type and for

assigning cell type identity based on the levels of several marker genes

(Efroni et al., 2015). The unsupervised approaches consist of the identifi-

cation of putative marker genes which are the ones defining each cluster.

This analysis can be performed with the Seurat software (Butler et al.,

2018) and further functional analysis of those marker genes might give

information about the nature of the clustered cells. These unsupervised

approaches would allow, not only to annotate one cluster identity, but also

the discovery of new cell-type markers (Denyer et al., 2019).

One of the main objectives of genome-wide transcriptional experiments is

the comparison between two experimental conditions (such as a hormone

treatment or a mutant background) in differential expression (DE) anal-

ysis. This can also be applied to single-cell RNAseq data. Interestingly,

this type of data allows the comparison within a specific cell population as
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it can be done in each cluster separately. This allows the characterization

of the response of individual cell identities to the experimental condition

(Figure 1.4). On the other hand, in bulk RNAseq data, DE can only be

evaluated as a whole population.

Comprehensive studies conclude that DE analysis methods developed for

bulk RNAseq are equally suitable as those developed specifically for SC

data (Soneson and Robinson, 2018). The special characteristics that SC

DE methods take into account are the low library sizes, high noise levels

and ’dropout’ phenomena, in which a gene is observed at a low or mod-

erate expression level in one cell but is not detected in another cell of

the same cell type (Soneson and Robinson, 2018; Qiu, 2020). One of the

key parameters for DE analysis and for the relevant application of these

methods is the sample size, as results are more reliable when the sample

is bigger (Soneson and Robinson, 2018).

As root development is a dynamic process, computational models can be

applied to organize root cells based on gene expression patterns similarity

along a trajectory. The modeling of these trajectory inference methods is

also called pseudotime analysis (Figure 1.4). The pseudotime variable is

related to transcriptional distances from a root cell and it is often inter-

preted as developmental time (Trapnell, 2015; Cannoodt et al., 2016; Moon

et al., 2018). Pseudotime method was first introduced by the R software

package Monocle (Trapnell et al., 2014). Currently, more than 70 tools are

available which differ mainly in their underlying algorithm, required input

information and produced outputs. Two important parameters are the

capacity of the tools to fix the topology of the trajectory and the type of

graph topologies they can detect (Saelens et al., 2019). Potential benefits

of these methods are the identification of the transcriptional changes that
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accompany developmental processes; the construction of gene regulatory

networks (Moignard et al., 2015); the identification of the cell types at the

beginning, intermediate and end states of the trajectory; and the identi-

fication of branching points in the trajectory which may be indicators of

cellular decision points (Haghverdi et al., 2016). Comprehensive studies of

the comparison between different trajectory inference methods conclude

that the use of different tools can be complementary, and the method

choice should be based on the dataset characteristics and purpose of the

experiment. Generally, any inferred trajectory should be confirmed with

an alternative method. Saelens et al. (2019) reviews this topic extensively.

Another important aspect of single-cell RNAseq analysis is visualization

of the results. Some of the most important outputs are the expression

levels of specific genes in certain cluster. Software is available for the

visualization in SC datasets in a fast and user-friendly manner, such as

EFP browser (http://bar.utoronto.ca/), PscB (Ma et al., 2020), Arabidop-

sis Root Cell Atlas (http://wanglab.sippe.ac.cn/rootatlas/, Zhang et al.

(2019)) or Plant SC atlas (https://bioit3.irc.ugent.be/plant-sc-atlas/, Wen-

drich et al. (2020)). Recent versions of Monocle also allow the visualiza-

tion of clustering or trajectory analysis in 3D graphs and even Stein et al.

(2020) developed software for visualization in virtual reality.

Importantly, for single cell data analysis there is not a standardized method,

and these analyses are usually done several times changing different pa-

rameters such as the number of highly variable genes, principal compo-

nents and cell type markers. The selection of one or other tool or param-

eter should be based on the results and their agreement with the biology

that is known at that time.

http://bar.utoronto.ca/
http://wanglab.sippe.ac.cn/rootatlas/
https://bioit3.irc.ugent.be/plant-sc-atlas/
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Application of single-cell technology in plant development

Recent studies successfully applied single cell technologies to plant sys-

tems. Most of them were performed in the Arabidopsis root using the

droplet-based platforms and correspond to the first transcriptomic land-

scape of a plant organ with single cell resolution (Ryu et al., 2019; Shulse

et al., 2019; Denyer et al., 2019; Zhang et al., 2019; Jean-Baptiste et al.,

2019; Shahan et al., 2020; Wendrich et al., 2020). These studies have sim-

ilar objectives and methodology, as they sequence cells from whole roots

for the characterization of novel cell types identities, cell specific marker

genes and developmental trajectories.

The basic pipeline incorporates the use of Seurat package (Butler et al.,

2018; Stuart et al., 2019) or similar single-cell specific software packages for

the analysis of the scRNA-seq datasets. By using the most variable genes,

clustering analysis is performed to combine root cells in groups based

on their gene expression similarity. Then, previously described marker

genes for specific cell types are used to assign the identity of the different

clusters (Ryu et al., 2019; Shulse et al., 2019; Denyer et al., 2019; Zhang

et al., 2019; Jean-Baptiste et al., 2019; Shahan et al., 2020; Wendrich

et al., 2020). Some of the studies use unsupervised approaches for the

identification of new marker genes (Denyer et al., 2019; Jean-Baptiste

et al., 2019; Wendrich et al., 2020) which can be experimentally validated

(Denyer et al., 2019) or perform subclustering analysis to assign molecular

features inside the same cell type (Denyer et al., 2019; Wendrich et al.,

2020).

The root atlas datasets contain between 3000 and 15000 individual cells,

except one of the most recent studies that includes more than 110000,
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making it a powerful resource for further SC studies (Shahan et al., 2020).

This dataset combines data from Ryu et al. (2019) and Denyer et al. (2019)

to include experimental variability.

In the Arabidopsis primary root there are low differentiated cells (the stem

cells) and fully differentiated cells (in the mature tissues). Single cell data

allows the organization of those cells following a trajectory based on their

developmental stage and the corresponding transcriptional changes anal-

ysis along it. The Pseudotime analysis has been used for the study of

specific cell type development, such as endodermis (Shulse et al., 2019),

hair cells, cortex cells (Jean-Baptiste et al., 2019), epidermal cells (Ryu

et al., 2019), root cap and proximal meristem cells (Zhang et al., 2019).

Denyer et al. (2019) organized all cells from meristematic cells to mature

tissues and found that the meristematic cells cluster together according

to their less differentiated state. In Wendrich2020 they obtained develop-

mental trajectories for all the root tissues (xylem, phloem, procambium,

pericycle, endodermis, cortex, epidermis, lateral root cap and columella).

The identification of transcriptional profiles with single cell resolution al-

lows the study of molecular processes at individual cell levels. Few studies

compare single-cell data throughout different conditions and treatments

to advance in the understanding of certain processes. Ryu et al. (2019)

analyzed two root epidermis mutants (rhd6 and gl2 ), and found that these

mutations prevent the transition from one epidermal cell type to another.

Shahan et al. (2020) generated single cell resolution atlas of shortroot and

scarecrow mutants and found an alternative pathway acting in mature

cells to specify endodermal identity.

Jean-Baptiste et al. (2019) applied heat stress to Arabidopsis roots and
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through scRNAseq they found subtle but significant gene expression differ-

ences among different cell types, advancing in the understanding of stress

responses with single-cell resolution. Studies from Shulse et al. (2019)

evaluated sucrose effects at single-cell level and found that plants grown

with sucrose present altered proportions of mature cell populations.

Wendrich et al. (2020) used SC datasets to find the role of TMO5/LHW

vascular complex in the regulation of root hair development. They found

that cytokinin signaling linked root hair responses in the epidermis to

perception of phosphate depletion in the vascular cells.

SC analysis were also used for the identification of the transcriptome of

regenerating cells that mimic those of the of embryonic roots (Efroni et al.,

2016) and for the characterization of VND7-mediated xylem differentiation

in the root (Turco et al., 2019). Using previously published datasets, Torii

et al. (2020) reanalyzed Ryu et al. (2019) SC data to construct trajectories

based on the cell cycle progression to identify genes expressed in specific

phases of the cell cycle.

It is noteworthy that, in previous studies, information obtained from apical

meristem stem cells is scarce. Regarding the identification of rare cell types

such as the QC, only Ryu et al. (2019), Denyer et al. (2019) and Wendrich

et al. (2020) were able to identify 2, 36 and 37 QC cells respectively. In

most recent studies, more QC cells have been detected and used as the

starting stage for developmental trajectory analysis (Shahan et al., 2020;

Wendrich et al., 2020), although little specific information about their

molecular features in the surrounding initial cells was revealed. Previous

studies lack information about the surrounding stem cells such as VI, CSC

or CEI and they often refer to the SCN a unique cell type. These facts
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support the use of single cell technologies for the identification of very

small populations such as the QC, but also highlights the importance of

combining it with other methodologies, such as FACS, for the enrichment

in rare cell populations before scRNAseq. In this regard, Efroni et al.

(2015) used FACS with pWOX5:GFP expressing roots for the isolation of

QC cells.

Regarding other Arabidopsis tissues, leaves have been used in SC analysis

for Kim et al. (2020) and Lopez-Anido et al. (2020). Kim et al. (2020) gen-

erated a SC transcriptome atlas of the leaf vasculature, revealing distinct

features of the different vascular cell types. Lopez-Anido et al. (2020) gen-

erated a SC population enriched in epidermal cells to evaluate the dynamic

developmental states of the stomatal lineage.

This technology has potential application in other plant species with agri-

cultural value, such as Sorghum (Martignago et al., 2019), maize (Nelms

and Walbot, 2019) and soybean (Hossain et al., 2017). In this direction,

the transcriptional landscape of the maize shoot stem-cell niche and its

differentiating cellular descendants (Satterlee et al., 2020) and a high-

resolution atlas of the tomato shoot apical meristem (Tian et al., 2020)

have been characterized. Cell wall digestion and the lack of genomic re-

sources for the description of cell type specific genes are challenges yet to

overcome. Future implementation of single cell analysis of crops certainly

opens yet unexplored opportunities for modern breeding.
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1.8 Multidisciplinary approaches support exper-

imental analysis in plant development studies

The increasing in knowledge of biological networks, the growing capacity

of data processing and modeling, combined with the interplay between

biology, physics, mathematics and computation, are redirecting the aim

of research to plant development as a whole. Together with computa-

tional analysis, several disciplines can complement biological studies such

as mathematical modeling or software engineering.

Root growth and development is a complex process orchestrated by the

interplay between different signaling networks. The development of math-

ematical modeling can help to address fundamental questions cannot be

easily approached experimentally. Developed models can be used to ex-

plain empirical data and to make predictions that can be tested experi-

mentally, which can result in a more robust theory (Shou et al., 2015).

Examples of the combination of mathematical modeling and experimental

biology are found in studies regarding the root stem cell niche due to its

unique properties for studying cell identity, division and differentiation in

an isolated environment. Vilarrasa-Blasi et al. (2014) used experimen-

tal data to understand the BR-mediated regulation of BRAVO through

the construction of a mathematical model that predicts the creation of

a molecular switch between BRAVO and BES1 to regulate QC divisions.

More recently, the combination of cell-type-specific transcriptomics and

mathematical modeling allowed to predict a stem cell regulatory network

for the identification of the stem-cell-ubiquitous TCX2 gene that regulates

stem cell division (Clark et al., 2019). The role of SHR and SCR in the

CEI and QC cells was also approached theoretically and experimentally in
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Clark et al. (2020) where they predicted how SHR-SCR complex expres-

sion levels and complex stoichiometries regulate the timing of the division

of both cell types. Garćıa-Gómez et al. (2020) predicted how SHR is key

for cell fate transition from QC to columella.

The need for combining biology with other technologies is not exclusive for

genetic studies, it is also present in the field of phenotyping. The develop-

ment of gene editing techniques (such as CRISPR-Cas9) and the need of

agriculture to evaluate roots, demanded automatic and high-throughput

methods that allow to process large amounts of plant material and the

evaluation of a wide range of root traits. Softwares such as BRAT (Slovak

et al., 2014) and EZ-Rhizo (Armengaud et al., 2009) permit the automa-

tization of the phenotyping process in Arabidopsis roots growing in agar

plates. The implementation of complex systems that combine software

and hardware has begun. Xiang et al. (2020) developed an automated

robotic imaging system to accurately determine BR-mediated responses

through the evaluation of morphological and growth-related traits in the

shoot.

1.9 Conclusions and perspectives

The Arabidopsis primary root is an ideal model to study cell-type spe-

cific responses due to its physiological and genetic characteristics, and the

constant development of technology, resources and knowledge for the un-

derstanding of growth and development molecular processes. The root

stem cell niche is crucial for those processes, but its unique characteristics

difficult its study compared to other cell types.
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Previous studies in the laboratory of Dr. Caño-Delgado enlighten the

molecular understanding of hormone signaling in stem cell development

in the Arabidopsis primary root through system biology approaches. The

discovery of novel components of the BR pathway at stem cells such as

the BRAVO defined a novel mechanism for maintaining stem cell quies-

cence (Vilarrasa-Blasi et al., 2014). Additionally, studies of BR receptors

highlighted the importance of cell type specific responses for growth, devel-

opment and stress responses (Fàbregas et al., 2013; Salazar-Henao et al.,

2016; Lozano-Elena et al., 2018; Fàbregas et al., 2018). However, spe-

cific signatures of the stem cells and the response mediated by BRs and

BRAVO in those cells remains unknown. Together, these findings provide

fundamental understanding of plant growth and development that may

have potential applications for agriculture improvement in the future.



Objectives

The general objective of this PhD thesis was to investigate the roles of

brassinosteroids in the stem cell niche, focusing in the vascular stem cells,

in the plant model Arabidopsis thaliana.

In particular, the following specific objectives have been accomplished:

1. Develop a software tool for the automatic measurement of plant

primary root length.

2. Characterize the role of BRAVO and WOX5 in the stem cell niche.

3. Investigate the transcriptional roles of BRAVO in the root quiescent

center and vascular stem cells.

4. Identify the molecular signatures of the stem cell niche with single-

cell resolution.
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Chapter 2

MyROOT software for plant

root length analysis

Part of this chapter was published as:

MyROOT: a method and software for the semiautomatic measure-

ment of primary root length in Arabidopsis seedlings. Betegón-Putze,

I.*, González, A.*, Sevillano, X., Blasco-Escámez, D. and Caño-Delgado, A.I.

(2019) The Plant Journal, 98, 1145-1156.

MyROOT 2.0: An automatic tool for high throughput and accurate

primary root length measurement. González, A., Sevillano, X., Betegón-

Putze, I., Blasco-Escámez, D., Ferrer, M. and Caño-Delgado, A.I. (2020) Com-

puters and Electronics in Agriculture, 168, 105125.





37 MyROOT software for plant root length analysis

MyROOT software for plant
root length analysis

2.1 Introduction

The root is an essential organ for overall plant growth and development.

The characterization of different root traits is therefore important not

only for understanding organ growth, but also for evaluating the impact

of roots in agriculture (Kuijken et al., 2015). As such, generating tools for

precise, high-throughput phenotyping and imaging of the root is essential

for plant research and agriculture. Even phenotyping facilities such as the

ones available in the European Plant Phenotypic Network (http://www.

plant-phenotyping-network.eu/) have started to implement tools for

the massive screening of roots.

Roots provide the necessary structural and functional support for the in-

corporation of nutrients and water from the soil. In Arabidopsis, the pri-

mary root has a very simplified anatomy that makes it very amenable for

genetic and microscopic analyses (Dolan et al., 1993; Ishikawa and Evans,

1995; Iyer-Pascuzzi et al., 2009). Different root cell lineages are derived

from the activity of the stem cells that occasionally divide asymmetrically

http://www.plant-phenotyping-network.eu/
http://www.plant-phenotyping-network.eu/


MyROOT software for plant root length analysis 38

to renew themselves and to form daughter stem cells. From the root apex,

these cells actively divide in the meristematic zone, and before exiting the

cell cycle in the transition zone, continue to elongate and differentiate in

spatially separated regions of the root. In this way, primary root growth is

determined by the balance between cell division and cell elongation within

the different zones of the root (van den Berg et al., 1997; Beemster and

Baskin, 1998; Verbelen et al., 2006; Takatsuka and Umeda, 2014).

The most straightforward symptom of abnormal root growth or develop-

ment can be identified by examining the length of the primary root in

seedlings. Abnormalities in length can usually be observed and measured

just five to six days after germination (DAG), where still reflect their em-

bryonic origin (Jürgens et al., 1995). Growth defects in the primary root

of seedlings are not only consistent with overall growth defects, but also

persistent along the entire plant life cycle (Benfey et al., 1993; González-

Garćıa et al., 2011; Potuschak et al., 2003). Indeed, Arabidopsis root

analyses were the foundations for multiple genetic screens that ultimately

led to the identification of several key regulators of plant growth and de-

velopment (Benfey et al., 1993; Hauser et al., 1995; Caño-Delgado et al.,

2000; Mouchel et al., 2004; Ubeda-Tomás et al., 2008).

Root analysis of young seedlings offers direct information regarding overall

plant growth and viability. Despite important advances in plant imaging

techniques such as microscopic visualization (Pfister et al., 2014; González-

Garćıa et al., 2015; Lobet, 2017), the root length of seedlings growing in

agar plates is generally measured by manually indicating the position of

each seedling or manually tracking each root using the ImageJ software

(https://imagej.nih.gov/ij/). For this reason, the development and

use of methods that enable the automatic and accurate analysis of a large

https://imagej.nih.gov/ij/
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number of roots represents a step forward for high-throughput root anal-

ysis. Automatic analysis of root system architecture is just beginning to

be implemented, and novel methods based on acquiring, processing, and

obtaining quantitative data from root images are now available.

There are several root analysis softwares available that are designed for

different purposes. Some of them are applied to crops phenotyping and

are more focus in traits related to root architecture such as branching or

biomass (Le Bot et al., 2010; Lobet et al., 2011; Nagel et al., 2012; Pound

et al., 2013; Pace et al., 2014; Kuijken et al., 2015; Wu et al., 2018).

On the other hand, other root image analysis softwares are oriented for

the analysis of plant model species as Arabidopsis (Armengaud et al.,

2009; French et al., 2009; Yazdanbakhsh and Fisahn, 2012; Slovak et al.,

2014). Most of them can reliably measure different root traits (primary

root length, lateral roots, etc; Arsenault et al. (1995); Le Bot et al. (2010);

Clark et al. (2013); Ristova et al. (2013); Slovak et al. (2014); Cai et al.

(2015)). The analysis usually requires intensive user intervention to set the

optimal parameters for the root detection and to identify the individual

roots (Armengaud et al., 2009; French et al., 2009; Clark et al., 2013).

Despite the time-consuming manual tracking of each single root, ImageJ

is often used as a tool for primary root length quantification. A summary

of the existing softwares for root analysis and their main features are

summarized in Table 2.1.

Despite the numerous tools for root analysis, those lack the capability of

precisely measure primary root length of seedlings, which is key for the

genetic, physiological and developmental studies in the plant model Ara-

bidopsis and it is often done manually. Here, we present MyROOT, a

software capable of semi-automatically calculating primary root length in
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a fast and user-friendly manner, able to adapt to different imaging and

experimental conditions. By automatically identifying the scale and pre-

cisely detecting all individual roots and hypocotyls growing on an agar

plate from a JPEG image, this software simplifies and minimizes user

intervention during the calculation of root length. MyROOT merely re-

quires the user to define the region in which the seedlings are placed on the

plate, and then subsequently operates in a semi-automatic fashion. We

show that MyROOT can be used both in low scale and high throughput

experiments due to the incorporation of a batch processing option for the

automatic processing of several images without losing its accuracy.

2.2 MyROOT is a software for high-throughput

analysis of root length

MyROOT method is based on pictures of whole agar plates on which young

seedlings are growing vertically on the surface and implements novel algo-

rithms capable of separately detecting the root and the hypocotyl of each

individual seedling. MyROOT detects and measures root length by follow-

ing a series of steps that can be easily performed in the software graphical

interface (Figure 2.1 A). First, a digital image of the plate containing the

growing seedlings is taken and used for the analysis. The image has to

include a ruler (at least 1 cm long) placed on top of the plate (Figure

2.1 B). From the JPEG image, the software: (i) detects 1 cm of the ruler

to automatically compute the scale and calculate the equivalence between

pixels and millimeters (Figure 2.1 C); (ii) generates a binary mask from the

manually selected area that allows for root segmentation (this separates

those pixels that belong to a root from those of the background (Figure 2.1
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Table 2.1: Comparison of available semi-automatic softwares for
quantification of root traits.
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D)); (iii) measures the length of the roots through a root-tracking process

(Figure 2.1 E); (iv) computes a regression curve based on the detection

of the hypocotyls to identify the starting point of each root (Figure 2.1

F); (v) measures the root length again from the root tip to the end of

the hypocotyl (Figure 2.1 G); and (vi) exports the measurements and the

generated masks to a new folder. Finally, the results are saved in: (i) a

Microsoft Excel spreadsheet or a .txt file in which each root is identified

by an ID tag, length value and a descriptive text label introduced by the

user; (ii) an image showing the detected and measured roots; (iii) MAT-

LAB variables including the intermediate data such as hypocotyl position

and the detection curve that was generated while quantifying root length

and (iv) a RSML file so the images can be analyzed with other compatible

softwares (Lobet et al., 2015).

One of the advantages of MyROOT is that it allows the user to supervise

the different steps of the process as the results of each step are displayed

before executing the following one. This feature enables the user to mod-

ify the different parameters (e.g., segmentation thresholds for ruler and

root detection, and model for hypocotyl detection, etc.) at any point in

the process to take into account different image conditions. Nonetheless,

default parameter values have been set for satisfactory operation on a wide

range of images for pre-defined acquisition conditions (see Material and

Methods). Furthermore, the position of any hypocotyl that is not auto-

matically detected can be manually indicated, and undesired roots can be

manually removed from the results before saving. These manual features

help the user to finely select the seedlings for the analysis, thus increasing

the accuracy of the final results.

In addition, to reduce the time required for root measurement, MyROOT
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incorporates a batch processing option for an automatic high-throughput

analysis of several images. In this case, the different parameters are set for

the first image from a specific folder and they are automatically applied

to the rest of them.

In summary, by determining the pixel-millimeter equivalence and detect-

ing seedling morphology (roots and hypocotyls) from an image of a seedling-

containing agar plate, MyROOT offers a valuable analytical tool for pre-

cisely measuring root growth in a semi-automatic and non-invasive man-

ner. As such, this software clearly provides a solution to the timely task of

manually quantifying root length. As a proof of concept, MyROOT soft-

ware was used for root length measurement of Arabidopsis wild type and

BR-signaling mutants grown in control, exogenous BR hormones treat-

ment and plants grown un under osmotic stress conditions (Fàbregas et al.,

2018). MyROOT software is available at https://www.cragenomica.es/

research-groups/brassinosteroid-signaling-in-plant-development/

software.

2.3 MyROOT workflow and implementation

MyROOT has been developed for the high-throughput, accurate, and non-

invasive measurement of root length from seedlings growing in agar plates.

In this respect, the three most crucial steps are to precisely determine the

scale, identify the roots, and measure their length. The scale information is

obtained from a piece of measuring tape that is placed on the surface of the

Petri dish. This allows the measurements to be completely independent

from the specific characteristics of the image capture system. For this

study, the images of the plates were taken with a standard camera situated

https://www.cragenomica.es/research-groups/brassinosteroid-signaling-in-plant-development/software
https://www.cragenomica.es/research-groups/brassinosteroid-signaling-in-plant-development/software
https://www.cragenomica.es/research-groups/brassinosteroid-signaling-in-plant-development/software
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Figure 2.1: The graphical interface and steps of MyROOT.
A) The graphical user interface of MyROOT is organized into seven sections: 1.
Input image information, 2. Root extraction parameters, 3. Hypocotyl detection
parameters, 4. Manual removal of roots, 5. Visualization of the image and the
different detection steps, 6. Saving parameters, and 7. Batch processing. B) The
input image required for analysis is a picture of the square plate in which the
aligned seedlings are growing. By using information from this image, MyROOT
performs the following steps: C) Identification of the ruler to determine the
scale (i.e., the equivalence between pixels and millimeters), D) Root segmentation
to identify the seedlings, E) Root tracking to measure the roots, F) Hypocotyl
detection to identify the hypocotyls and separate them from the roots, and G)
Root measurement to quantify the length of individual seedlings (i.e., the distance
from the root tip to the end of the hypocotyl).
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Figure 2.2: Laboratory setup for taking the pictures of the
plates.
The image shows the position of the lights, the camera and the plate to be
analyzed, all positioned over a black surface.

over the plate (Figure 2.2). The first step for detecting the ruler is based

on its color contrast with the background. By computing the vertical and

horizontal profiles of the image, the algorithm is designed to explore the

entire image in search of a white patch (Figure 2.3). As the border of the

plate has a similar color contrast with the background, a median filter is

applied to reduce the border effect. The maximum values in the filtered

profiles define the image area where the white patch is present. Next, the

resulting area is further cropped and processed. By applying a threshold

based on Otsu’s algorithm (Otsu, 1979), the black lines representing cm

and mm marks are not filtered out. Finally, a horizontal profile of this

binary image is generated in which the pixel-mm equivalence is defined

as the difference between consecutive local maxima. In case that there is

not ruler tape in the image to analyze, MyROOT includes the option of

manually indicating the correspondence between pixels and millimeters.
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The automatic detection of the scale was validated by compating the corre-

spondence between pixels and millimeters measured by MyROOT and by

Image J (measured by three different plants scientists). It was measured

over twenty different plate images that have different image characteris-

tics such as different scales, illumination conditions or placement, size and

orientation of the measuring tape to test the robustness of the method.

The correlation between the correspondence with both methods was pos-

itive (R2 = 0.998, Pearson’s r = 0.9990), therefore confirming that the

algorithm implemented in MyROOT can accurately determine the scale

from a plate image (Figure 2.3).

The core of the whole method is the root extraction and measurement

process. In order to extract roots, the user must first manually define

the area in which roots are present (only one row of seedlings should be

included when defining the area). Then, with just a few mouse clicks

from the user, a binary mask is generated that allows root segmentation.

This later leads to the identification of individual roots through a root

tracking process, and finally allows the individually identified roots to be

measured (Figure 2.4). The root segmentation process can be divided

into four main steps: i) color normalization, ii) ridge detection, iii) root

tracking, and iv) root identification. During the color normalization step,

the image is processed and a global working framework is set (i.e., all

images going through this process become color-balanced and have the

same lower and higher white values). This allows the user to manage

different initial conditions (illumination, color, and saturation, etc.) while

continuing with the same subsequent steps of the pipeline (Figure 2.4 A).

In the next step, a ridge (i.e., white contrasted area) detector identifies

roots based on their contrast with the background (for this, the level of
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Figure 2.3: The ruler identification process.
A) MyROOT computes the vertical and horizontal profiles of the image to look
for a white patch. B) The ruler is identified. C) The area corresponding to
the ruler is then segmented into light and dark areas (binarization), for which
black lines (dark areas) are identified with high values and white areas with lower
values. D) A profile is generated in which black lines are identified as peaks. E) By
using the distance between peaks, the equivalence between pixels and millimeters
is calculated. F) Correlation of pixels-millimeter correspondence measurements
using MyROOT (y-axis) and ImageJ (x-axis). The value in ImageJ is the average
of three different measurements done by three different plant scientist. Each point
corresponds to a different plate (n=20).
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A B

C D

Figure 2.4: Root extraction method.
A) Colors are normalized in the area where roots are present, and white roots
are detected. B) Segmentation is performed by applying a ridge detector. C)
Starting at the root tip, the roots are tracked using a bottom-up approach. D)
Each root is measured using its historical recorded tracking, and root length is
calculated by taking into account the pixel-millimeter equivalence.

whiteness is irrelevant) (Figure 2.4 B). After the detection step, a final

mask is generated for tracking the roots. Due to the linear disposition of

the roots in the plate, we employed a bottom-up tracking approach. As

such, tracking starts at the end point of each root and continues upward,

row by row, until the hypocotyl detection curve is found (Figure 2.4 C).

Finally, the tracking of each root makes it possible to identify which pixels

correspond to which root (Figure 2.4 D).

Once the root tracking process has been completed, each individual root

is measured based on previous positions saved in the historical record.

Specifically, root length is calculated in pixels by adding the distances be-

tween previous consecutive points and then applying the previously calcu-

lated pixel-mm equivalence. Next, a refinement process is applied in which

very short roots, which are often associated with noise, are discarded. By

default, MyROOT discards any root measurement shorter than 30% of
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the longest one. However, this percentage can be manually chosen by the

user if need be. A second filter is then applied in order to keep those

roots that terminate close to the previously calculated hypocotyl curve.

If a root surpasses the hypocotyl curve, it is cut at this level. Finally, a

unique numeric identifier (ID) is assigned to all roots that are not filtered

out during processing.

As two roots can be located so close to one another that they cannot

be detected as individual roots, MyROOT was trained with the following

characteristics: (i) when a split occurs and a current root matches more

than one detection (blue circle in Figure 2.4), a new root sharing the same

historical record is created, and (ii) when a fusion occurs and two roots

match a single detection (yellow circle in Figure 2.4), the shortest root is

eliminated from the root set and added as a sub-root of the longest one;

therefore indicating the root length of the primary root which is longer

than the lateral roots.

2.4 Validation of root length measurements

To validate MyROOT software, we compared root length measurements

obtained using MyROOT with manual measurements performed using

ImageJ. We compared the root length values of different experiments.

First, 6-days-old seedlings of wild type and BR-related mutants grown

in control and in osmotic stress conditions (data published in Fàbregas

et al. (2018), n > 600, Figure 2.5), and second, the same seedlings over

6 consecutive days (from three to eight DAG; n > 116). We obtained a

positive correlation between the measurements with both methods (R2 =

0.997, Pearson’s r = 0.9985). These results indicated that measurements
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Figure 2.5: Validation of root length measurements.
Correlation of root length measurements using MyROOT (y-axis) and ImageJ
(x-axis). Each point corresponds to a different experiment (n>20 in each one):
time course data from 3 DAG to 8 DAG seedlings (grey) and BR-related mutants
in control and osmotic stress conditions (black, Fàbregas et al. (2018)). Errors
bars indicate the standard error. For the time course experiment, seedlings that
were not measured by MyROOT in at least 4 time points were discarded.

made using our software coincided with manual measurements, thereby

supporting the use of MyROOT for root length analysis in seedlings in

different growth stages and experimental conditions.

We also evaluated the time required by MyROOT to determine root

lengths, and compared it with the time needed for manual measurements

using ImageJ, as it is widely used for the analysis of a low number of

plates as a routine task in many plant biology laboratories. Importantly,

we found that MyROOT reduces the time required to measure one plate

by approximately half (Figure 2.6).

When using MyROOT for high-throughput experiments, the analysis of

a batch of images can be done automatically after setting the optimal
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Figure 2.6: Evaluation of the time required to measure root
length.
Time (in seconds) required for three different scientists to measure the root length
of two different plates containing one and two rows of seedlings respectively. The
measurements were done with MyROOT and ImageJ. Error bars indicate the
standard error.

parameters for adapting to the imaging conditions of the experiment. The

time required for the analysis of one row of seedlings of different plates

was evaluated. MyROOT spends approximately 1 min per image when

the hypocotyl detection is not performed and 1 min more if it is performed.

Importantly, this process is completely automatic and does not require the

user intervention. The accuracy of the batch processing was evaluated by

comparing the results of the analysis of 10 different plates using MyROOT

by single upload followed by individual setting of the optimal parameters

and using MyROOT for a batch analysis of all of them automatically

(Figure 2.7). The correlation obtained between both methods was positive

(R2 = 0.996, Pearson’s r = 0.9981), therefore confirming that the batch

processing option can be performed without losing accuracy in the final

measurements.
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Figure 2.7: Validation of MyROOT batch analysis processing.
Correlation of root length measurements using MyROOT by single upload (y-
axis) and MyROOT by batch upload of the images (x-axis). Each point corre-
sponds to a different experiment (n>12 in each one). Error bars indicate the
standard error.
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2.5 Hypocotyl detection method

One of the main advantages of MyROOT is its ability to identify hypocotyls

of growing seedlings. This characteristic is important for accurately de-

termining the start point of each root. The hypocotyl detection process

is based on visual features (appearance and color) extracted from the

image. These features were used to generate a hypocotyl model by intro-

ducing 1259 hypocotyls of seedlings of different ages and characteristics

and 7915 samples with background information (see Experimental proce-

dures). The learned model is able to determine whether a given sample

is a hypocotyl or not. To extract visual features, we implemented the

histogram of oriented gradient (HOG, Dalal and Triggs (2005)) method.

The HOG method is based on the orientation of the contours in the im-

age, and generates a histogram that represents the appearance/shape of

the sample. For extracting color features, color distribution histograms

representing the amount of color in a given sample area are used (Figure

2.8 A). To train the model, we implemented a linear support vector ma-

chine classifier that uses appearance and color features from the hypocotyl

images. This classifier generates the best hyperplane that classifies sam-

ples as positive (hypocotyls) and negative (no hypocotyls) examples. Dur-

ing the hypocotyl detection stage, the sliding window approach (Glumov

et al., 1995) is used to perform an exhaustive search for hypocotyls. Fi-

nally, by keeping the highest scored windows as true positives, polynomial

regression is used to define a curve that passes through all the detected

hypocotyls. Although the user can manually insert the location of the

hypocotyls, this curve enables the position of undetected hypocotyls to

be estimated, and therefore corrects the curve tracing. The intersection

between the hypocotyl detection curve and each root is used to define the
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root start point.

We first evaluated our hypocotyl detection process in terms of different

hypocotyl detection models. Both the precision-recall curve (Figure 2.8

B) and the number of false positives per image (FPPI; Figure 2.8 C) were

calculated for three different models that differ in the type of feature they

use for describing hypocotyls: only color information, only appearance

information (via HOG features), or both types of information (HOG +

color).

Upon analyzing the precision-recall curve of each model, we found the

HOG + color model to be the most robust (Figure 2.8 B). In the case of

FPPI, the lowest miss rate was also found when using the HOG + color

model (Figure 2.8 C). These results indicated that when considering both

color and appearance (i.e., the HOG + color model), a higher number

of hypocotyls were identified than when using only one of the features.

Therefore, this validates our MyROOT method because it incorporates

both HOG and color information.

Next, we evaluated the influence of different regression curve models on

the root measurement refinement used to set up the limits of individual

roots (Figure 2.8 D). To create these curves, a regression upon the de-

tected hypocotyls was performed. To define which regression model gives

the better fit, we tested different polynomial models that were evaluated

in terms of the average distance (in pixels) between the real hypocotyl

position and the point of intersection between the root and the regression

curve (Figure 2.8 D). The results indicated that when using a hypocotyl

regression curve of order 4, a good balance between accuracy and flexibility

that is able to account for small changes in hypocotyl position is reached.
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Therefore, we chose to employ this regression curve in our software.

The use of the hypocotyl detection method permits the fine identification

of the starting point of the root (Figure 2.9). However, depending on

the user judgement, this option can be skipped, therefore reducing the

time of the measurement process but losing accuracy in the final root

length results (Figure 2.9). We compared the root length measurements

of two plates, one containing seedlings with standard hypocotyls (Col-0

wild type plants) and other with shorter hypocotyls and roots (Col-0 wild

type in osmotic stress conditions), using and skipping the hypocotyl de-

tection step (Figure 2.9). In both plates, when using the method, only

the primary root is measured (Figure 2.9 A and C), whereas when it is

not used, some parts of the hypocotyl are measured too (Figure 2.9 B and

D). When not using the hypocotyl detection method, we only found sta-

tistically significant differences in the root length of the shorter seedlings,

as the proportion of hypocotyl length measured significantly increased the

overall root length measurement (Figure 2.9 E, n > 30). These results

highlighted the importance of the hypocotyl detection process for accu-

rately measuring the root length, but also point to just using it when the

experiment requires high precision.

2.6 Comparison with similar tools

The choice of software is usually based in a balance between the appropri-

ateness of the characteristics of the software to the experimental design,

the accuracy of the measurements obtained and the time required for the

analysis (Table 2.1). We compared the accuracy and the time spent by

MyROOT with BRAT and EZ-Rhizo, the two most similar software tools,
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Figure 2.8: Hypoctyl detection method and validation.
A) Scheme of the hypocotyl detection method. A candidate window is defined as a
square area inside the image. In order to describe a candidate, appearance/shape
(HOG) and color information are extracted. Appearance information is extracted
to calculate the gradient of the image (i.e., the direction of the contours within
the image at each pixel). Histograms of Oriented Gradient (HOG) and the his-
tograms of color are calculated over regular spaced, non-overlapping cells inside
the candidate window (forming the block descriptor). Finally, all color/HOG
cell histograms are concatenated to obtain the candidate window description. B)
Precision-Recall curve for three different models of hypocotyl detection (HOG,
Color and HOG+Color). The curve is obtained by changing the threshold that
defines the frontier between positive and negative samples. For each threshold,
the precision (well classified ratio) and the recall (poor classified ratio) were cal-
culated. The area under the curve represents the robustness of the classifier,
with a higher value indicating greater robustness (a higher well classified ratio
to poor classified ratio over the entire range of the classifier). C) False Positives
Per Image (FPPI) curve for three different models of hypocotyl detection (HOG,
Color and HOG+Color). The curve plots the miss rate against the FPPI. In this
way, the average miss rate over a specific FPPI range (1 to 10) represents the sen-
sitivity of the classifier to not miss good samples and keep the false positive ratio
low. D) The average distance in pixels between the real hypocotyl position and
the point of intersection between the root and the polynomial regression curves,
for polynomial regression curves of orders 1 to 6 and an extra model including a
sine component. Error bars indicate the standard error.
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Figure 2.9: Evaluation of hypocotyl detection method for the
root length measurements using MyROOT.
A-D) Qualitative analysis of the hypocotyl detection method in two different
images. E) Root length measurement of seedling grown in two different plates
(shown in (A-D)) using and not using the hypocotyl detection method. Differ-
ent letters indicate statistically significant differences (*p<0.05; Student’s t-test,
n>30).

in the quantification of primary root length of two independent plates

containing Arabidopsis seedlings (Figure 2.10 and Table 2.2).

We first compared the root length obtained with the three softwares with

the ImageJ results. The absolute difference of mean root length between

the measurements obtained with the softwares and with ImageJ show that

MyROOT differs 1.39 mm and 0.22 mm for plates 1 and 2 respectively.

With regard to this parameter, our results indicated the better perfor-

mance of MyROOT in comparison with BRAT (15.08 mm and 1.77 mm)

and to EZ-Rhizo (2.67 mm and 2.42 mm) (Table 2.2).

Root detection on the plate was similar between MyROOT (> 90%) and

EZ-Rhizo (> 96%), yet MyROOT provided more accurate measurements

(Figure 2.10 and Table 2.2). In addition, due to the incorporation of the

hypocotyl detection method, MyROOT requires less user intervention to

clearly indicate the roots, this is reflected in a reduction in the time spent
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for the analysis. We spent around 3 min to analyze each plate when using

MyROOT, 0.5 min with BRAT and 15 min with EZ-Rhizo (Table 2.2).

Some seedlings on the plates analyzed had overlapping hypocotyls. We

found that MyROOT was able to identify these and correctly indicate

the shoot-root junction in cases with higher precision than EZ-Rhizo and

BRAT, which presented a more basic algorithm for the hypocotyl detection

based only on color and shoot border curvature information, respectively.

These observations highlight the utility and importance of the hypocotyl

detection method incorporated in MyROOT and its capacity to identify

the individual seedlings and the precise starting point of each root.

Overall, MyROOT fills a specific gap in root phenotyping by allowing a

precise, fast and semi-automatic quantification of primary root length of

seedlings on a plate and a batch of plates.

Table 2.2: Comparison of MyROOT, BRAT and EZ-Rhizo soft-
wares.
Results of the measurements done by the three softwares over the two plates
shown in Figure 2.10 indicating the time required for each plate.

Plate Software Number
of de-
tected
roots

Percentage
of detected
roots

Mean
root
length
(mm)∗

Root
length
differ-
ence
(mm)∗∗

Time
(min)

1 MyROOT 54 90 16.81 ±
0.50

1.39 3

1 BRAT 1 1.7 3.44 15.08 0.5

1 EZ-Rhizo 57 95 18.09 ±
0.64

2.67 15

2 MyROOT 55 96.5 10.61 ±
0.43

0.22 3

2 BRAT 14 24.6 8.62±1.18 1.77 0.5

2 EZ-Rhizo 57 100 12.82 ±
0.49

2.42 15

∗The mean length is indicated with the standard error.
∗∗Absolute difference of mean root length between the softwares and with measurement

obtained with the softwares and with the manual measurements done with ImageJ.
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Figure 2.10: Comparison of MyROOT, BRAT and EZ-Rhizo
softwares.
Results displayed by MyROOT, BRAT and EZ-Rhizo softwares for the analysis of
two different agar plates containing Arabidopsis seedlings. Colored roots are the
ones detected and measured. Plate 1 contains 60 seedlings and plate 2 contains
57 seedlings.
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2.7 MyROOT 2.0 version includes an increase in

automation

MyROOT is an ongoing project. The original version of the softwre that is

described in the previous sections succesfully substitutes the most common

tools used until now for the analysis of plant root length. Whereas, in our

aim to completely automatize this task, we have developed a new version

(named MyROOT 2.0) that incorporates important improvements that

allow less user intervention throughout the process. The aspects that

were improved in MyROOT 2.0 include the automation of the detection

of the area containing the seedlings and the simplification of the scale

information introduction. Importantly, the incorporation of these two

features does not make the use of the tool more complex neither reduce

the accuracy of the final measurements, as the core of the algorithms is not

changed from the original version (Figure 2.11, González et al. (2020)).

In MyROOT software, the area containing the seedlings was indicated by

manually pointing the region. In this way, we assured a precise selection

of the roots to analyze, but requiring the user intervention. In the batch

processing mode, it demanded that the seedlings were growing in the same

position in the different plates, so the area indicated in the first image was

the same in the following ones. To solve this limitation, in MyROOT 2.0,

this process can be done completely automatically due to the incorporation

of algorithms that detect the rows of seedlings present in the plate.

In MyROOT 2.0 the root segmentation process starts by detecting the

seedling rows in the plate. The roots of each seedling row are considered

to belong to a root region of interest (ROI). Thus, the detection of root
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Figure 2.11: The graphical interface of MyROOT 2.0.
The graphical interface of MyROOT 2.0 has the same structure as MyROOT
but incorporating the option of automatic or manual detection of the region
containing the seeds (highlited in orange).
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Figure 2.12: Root ROI detection
In MyROOT 2.0 the detection of the area containing the seedling is automatic.
The steps for this process are: hypocotyl detection (A), longest root detection
(B) and root ROI generation (C).

ROI consists of two main steps: the detection of seedling rows, and the

determination of each root ROI bounding box (Figure 2.12). To detect

seedling rows, the inner plate region is first automatically cropped by

detecting plate borders. Then, the resulting image is segmented in the

RGB space to detect the green leaves of the seedlings, considering as leaf

pixels all those in which the green channel takes the highest value (Figure

2.12 A). This information is used to determine the number of seedling rows

and to define the upper and lateral edges of the bounding box enclosing the

seedlings. Lastly, those edges are used to obtain subimages corresponding

to each root ROI. In those subimages, Otsu’s method is applied to perform

a preliminary detection of the roots; which allows to find the longest one

(Figure 2.12 B) to define the bottom edge of the bounding box (Figure

2.12 C). As a result, MyROOT 2.0 presents the input image with the

detected bounding boxes superimposed.
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In this version 2.0, there is the possibility of processing several rows of

seedlings at the same time, thus reducing the user intervention time during

the process. Importantly, the vertices of the bounding boxes are draggable,

so the user can modify the detected root ROI. Moreover, it is also possible

to add a new root ROI in an entirely manual manner if necessary.

The second aspect improved in MyROOT 2.0 is the removal of the need

to place a piece of measuring tape on the plate lid in all the images to

analyze. Many image capture systems (e.g. fixed camera setups or flatbed

scanners) used by plant scientist allow plant scientists to know the exact

equivalence between pixels and centimeters. For this reason, we facilitated

the introduction of this data manually through MyROOT 2.0 graphical

user interface. In addition, when using the batch processing mode, the

scale information has to be included (manually or automatically identified)

only in the first image and it will be used for the rest of the analysis.

2.8 Future Perspectives

In this chapter we demonstrated that MyROOT software is accurate and

fast for determining primary root length in Arabidopsis seedlings. How-

ever, we have detected some aspects that can be improved in coming

versions to be used for a wider plant scientist community:

• Plant root phenotyping is usually performed by quantifying several

root architecture parameters such us branching, curvature, biomass

or shape (Grabov et al., 2005). The incorporation of methods for the

measurement of these parameters would allow to do a more complete

analysis of the root plant system.
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• Several plant development studies include the phenotypic analysis

of hypocotyls through the quantification of its length, area or color.

We would like to incorporate these features in our software, as there

is not any capable of automatically quantified both shoot and root

parameters from young seedlings.

• Current versions of MyROOT are only compatible to Windows and

Linux computers. We aim to make it compatible with other opera-

tive systems or even with smartphones.

• The automatic detection of hypocotyls was only developed for Ara-

bidopsis. The development of algorithms for the identification of

hypocotyls from other plant species would increase the applicability

of our tool with other plant species such as tomato or sorghum.

• Currently, the main limitation in the use of plant phenotyping soft-

wares is their capacity to adapt to different imaging and plant grow-

ing conditions, which complicates the proper identification of the

root over the plates. To overcome this, MyROOT incorporates ma-

chine learning for the automatic detection of hypocotyls based on its

training with pre-acquired images. Recent softwares allow the user

to train it with their images so it is able to perfectly adapt to their

conditions. This is already incorporated in software for the analysis

of hypocotyls (Dobos et al., 2019) whereas in roots has not been

incorporated yet.



Chapter 3

BRAVO and WOX5 control

quiescence in the

Arabidopsis root stem cell

niche

Part of this chapter was published as:

Precise transcriptional control of cellular quiescence by BRAVO/WOX5

complex in Arabidopsis roots. Betegón-Putze, I.*, Mercadal, J.*, Bosch,
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BRAVO and WOX5 control
quiescence in the Arabidop-
sis root stem cell niche

3.1 Introduction

Roots are indispensable organs to preserve plant life and terrestrial ecosys-

tems under normal and adverse environmental conditions. In Arabidopsis,

the primary root derives from the activity of the stem cells located at the

base of the meristem in the root apex (Dolan et al., 1993; van den Berg

et al., 1995). The root stem cell niche (SCN) is composed of a set of prolif-

erative stem cells that surround the mitotically less active cells, named the

quiescent centre (QC; Scheres (2007)). Proximally to the QC, the vascular

stem cells (VSC, also called vascular initial cells) give rise to functional

procambial, xylem and phloem conductive vessels in the plant (De Rybel

et al., 2016). Distally to the QC, the columella stem cells (CSC) give

rise to the columella cells (Figure 1.2, González-Garćıa et al. (2011); Stahl

et al. (2009)). The QC prevents differentiation of the surrounding stem

cells (van den Berg et al., 1997), and its low proliferation rate provides a

way to preserve the genome from replication errors. It also acts as a root
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stem cells reservoir, having the ability of promoting its own division rate

to replenish the stem cells when they are damaged (Fulcher and Sablowski,

2009; Lozano-Elena et al., 2018).

BRASSINOSTEROIDS AT VASCULAR AND ORGANIZING CENTER

(BRAVO) and WUSCHEL RELATED HOMEOBOX 5 (WOX5) are two

transcription factors (TF(s)) that are expressed in the QC and control

its quiescence, as mutation of either BRAVO or WOX5 promotes QC cell

division (Forzani et al., 2014; Pi et al., 2015; Vilarrasa-Blasi et al., 2014).

BRAVO is an R2R3-MYB transcription factor and besides being expressed

at the QC, it is also present at the vascular initials (Vilarrasa-Blasi et al.,

2014). It was identified as a target of Brassinosteroid (BR) signaling,

being directly repressed by BRI1-EMS-SUPPRESSOR 1 (BES1), one of

the main effectors of the BR signaling pathway, altogether with its co-

repressor TOPLESS (TPL) (Espinosa-Ruiz et al., 2017; Vilarrasa-Blasi

et al., 2014). WOX5 is a member of the WUSCHEL homeodomain tran-

scription factor family which is localized mainly at the QC and to a lesser

extent at the surrounding CSC and vascular initials (Pi et al., 2015; Sarkar

et al., 2007). WOX5 can repress QC divisions by repressing CYCLIN D3;3

(Forzani et al., 2014), and in contrast with BRAVO, is also involved in

CSC differentiation, as in the wox5 mutant CSC differentiate prematurely

(Sarkar et al., 2007).

Although BRAVO and WOX5 are well-studied plant cell-specific repres-

sors of QC division, their molecular connection and the biological relevance

in SCN proper functioning has not yet been established. In this study, we

set the regulatory and molecular interactions between BRAVO and WOX5

at the SCN and disclose a common role as regulators of primary and lat-

eral root growth and development. Our results show that BRAVO and
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WOX5 promote each other expressions and can directly bind to form a

protein regulatory complex. BRAVO/WOX5 protein interaction underlies

its functions as QC repressors to maintain stem cell development, which

is essential for root growth and adaptation to the environment.

3.2 BRAVO and WOX5 control QC division

In order to understand the role of BRAVO and WOX5 in the QC, where

both transcription factors are expressed, we evaluated the QC phenotypes

of bravo and wox5 mutants. It has been previously shown that bravo mu-

tants have a phenotype of increased divisions at the QC compared to the

wild-type (WT, Vilarrasa-Blasi et al. (2014), Figure 3.1 A, B), which re-

sembles the one described for wox5 mutants (Bennett et al. (2014); Forzani

et al. (2014); Sarkar et al. (2007), Figure 3.1 C). To address BRAVO and

WOX5 interplay at repressing QC divisions, we generated the double bravo

wox5 mutant and analysed the frequency of QC division. We found that

bravo wox5 mutants also exhibited increased cell division compared to the

WT (89% of QC division in bravo wox5 vs 39% in the WT; Figure 3.1

A, D) and that the frequency of divided QC was similar to that of bravo

and wox5 single mutants (87% in bravo and 81% in wox5 ; Figure 3.1 E).

The mutual epistatic effect of these mutations suggests that BRAVO and

WOX5 function interdependently at the WT primary root apex to supress

QC divisions.

Previous studies proposed that WOX5 represses CSC differentiation in a

non-cell autonomous manner (Bennett et al., 2014; Sarkar et al., 2007),

whereas no link was reported between this process and BRAVO, since the

bravo mutants are not defective in CSC differentiation (Figure 3.1 A, B, F).
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Figure 3.1: BRAVO and WOX5 are required for QC identity
and stem cells maintenance.
A-D) Confocal images of mPS-PI stained 6-day-old seedlings of WT (A), bravo-2
(B), wox5-1 (C) and bravo-2 wox5-1 (D) mutants. Left black arrows indicate QC
cells and right white arrows indicate CSC. Scale bar: 50 µm. E) Quantification of
the QC divisions in 6–day-old roots expressed in percentage (n>50, 3 replicates).
D: QC divided; ND: QC non divided. F) Quantification of CSC layers in 6-day-
old roots expressed in percentage (n>50, 3 replicates).
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Genetic analysis showed that bravo wox5 mutants display the same CSC

differentiation as wox5 single mutant (Figure 3.1 C, D, F), corroborating

that BRAVO does not control CSC differentiation (Vilarrasa-Blasi et al.,

2014).

3.3 BRAVO and WOX5 control overall root growth

To address whether these stem cell-specific defects account for overall al-

terations in root growth and development, we analyzed root architecture

in bravo and wox5 mutants (Figure 3.2). We first analyzed root length

in 6-day-old seedings. The bravo wox5 double mutant shows slightly but

significantly shorter roots than the WT (Figure 3.2). This difference was

also observed and more exaggerated after a Brasinolide (BL) treatment

that negatively affects root growth (González-Garćıa et al., 2011). These

results suggest that BRAVO and WOX5 interplay have a role in root

growth.

As stem cells are also found in lateral roots (LRs), we evaluated the lat-

eral root (LR) density in the different mutants at 7 and 10 days after ger-

mination (Figure 3.3). 7-day-old bravo, wox5 and bravo wox5 seedlings

have fewer lateral root density than the WT. They show the same phe-

notype between them (Figure 3.3), in agreement with previous reports

for wox5 (Tian et al., 2014). We found that lateral root density defects

become more exaggerated in the bravo wox5 double mutant in 10-day-old

seedlings (Figure 3.3) where the LR density is lower than the WT and the

single mutants. These findings support the joint contributions of these

two transcription factors to overall root growth and architecture.
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Figure 3.2: BRAVO and WOX5 promote primary root growth.
Root length of 6-day-old WT and bravo-2 wox5-1 mutants in control and after BL
treatment (n>30, 3 replicates). Different letters indicate statistically significant
differences (p-value < 0.05 Student’s t-test).
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Figure 3.3: BRAVO and WOX5 promote lateral root develop-
ment.
Lateral root density (number of lateral roots per mm of root length) of 7-day-
old (7d) and 10-day-old (10d) WT, bravo-2, wox5-1 and bravo-2 wox5-1 mutants
(n>40, 2 replicates 7d and 3 replicates 10d). Different letters indicate statistically
significant differences vs WT in the same conditions. (p-value < 0.05 Student’s
t-test).
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3.4 BRAVO and WOX5 reinforce each other at

the root stem cell niche

The QC division phenotype of the double bravo wox5 mutant suggests

an interplay between BRAVO and WOX5 at regulating QC divisions.

Such interplay may take place through cross-regulation of their expres-

sions. Indeed, it was previously shown that WOX5 expression is reduced

in the bravo mutant (Vilarrasa-Blasi et al., 2014), indicating that BRAVO

regulates WOX5 expression. To gain insight on the mutual regulatory

activity of these two transcription factors, we thoroughly investigated

BRAVO and WOX5 expressions at the SCN in the single mutant and in

the double bravo wox5 mutant backgrounds. For that aim we generated

pBRAVO:GFP and pWOX5:GFP lines in WT, bravo, wox5 and bravo

wox5 backgrounds and evaluated the promoters expression in the confo-

cal microscope. We quantified the GFP intensity in the SCN area with

a manually selected ROI for pBRAVO:GFP and pWOX5:GFP lines sep-

arately (Figure 3.4). We also analysed their expression in inducible lines

35S:BRAVO-Ei and 35S:WOX5-GR through confocal microscopy and RT-

qPCR.

In the WT primary root, BRAVO expression, reported by the pBRAVO:GFP

line, is specifically located in the QC and the vascular initials (Figure 3.5

A, Vilarrasa-Blasi et al. (2014)). The pBRAVO signal was increased in

the bravo mutant (Figure 3.5 B, D), suggesting that BRAVO negatively

regulates its own expression. In contrast, in the wox5 mutant, pBRAVO

expression was strongly reduced, suggesting that WOX5 promotes BRAVO

expression (Figure 3.5 C, D).
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A B

Figure 3.4: ROIs used for GFP quantification.
Confocal images of pBRAVO:GFP (A) and pWOX5:GFP (B) PI-stained 6-day-
old roots. GFP-tagged expression is shown in green. Insets show the GFP chan-
nels that were used for the quantification. Only the area inside the yellow circle
was used for GFP quantification.
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Figure 6: BRAVO expression in the root stem cell niche.

A-C) Confocal images of PI-stained 6-day-old roots. GFP-tagged expression is shown in green. A-C)
pBRAVO:GFP in WT (A), bravo-2 (B) and wox5-1 (C) knockout backgrounds. Scale bar: 50 µm.

D) Quantification of the GFP fluorescent signal of the roots in A-C. Boxplot indicating the average pixel intensity
of the GFP in the stem cell niche. (n>25, 3 biological replicates, *p-value < 0.05 Student´s t-test for each genotype
versus the WT in the same condition).

pBRAVO:GFP 

Figure 3.5: BRAVO expression in the root stem cell niche.
A-C) Confocal images of PI-stained 6-day-old roots. GFP-tagged expression is
shown in green. A-C) pBRAVO:GFP in WT (A), bravo-2 (B) and wox5-1 (C)
knockout backgrounds. Scale bar: 50 µm. D) Quantification of the GFP fluores-
cent signal of the roots in A-C. Boxplot indicating the average pixel intensity of
the GFP in the stem cell niche. (n>25, 3 biological replicates, *p-value < 0.05
Student’s t-test for each genotype versus the WT in the same condition).
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Figure 3.6: BRAVO expression is increased in the WOX5 in-
ducible line.
Bars show the relative expression of BRAVO and WOX5 in 35S:WOX5-GR lines
when induced with 1 µM Dexamethasone for 24 hours. Values in control condi-
tions are not represented as are 1. Asterisks indicate significant differences versus
values in control conditions (* p-value < 0.05, *** p-value < 0.001 Student’s t-
test, 2 biological replicates).

The expression of BRAVO was also evaluated by RT-qPCR of root tips

in the inducible line 35S:WOX5-GR (Figure 3.6). BRAVO expression was

increased in this overexpressor plants, supporting that WOX5 activates

BRAVO expression. The fact that the increase is not as strong as the fold-

induction of WOX5, suggests that WOX5 induces BRAVO only within the

BRAVO native domain.

Moreover, pBRAVO expression was equally reduced in the double bravo

wox5 mutant (Figure 3.7), as in the wox5 mutant (Figure 3.5), suggesting

that BRAVO regulates its own expression aside the induction by WOX5.

In the primary root, WOX5 expression reported by the pWOX5:GFP

line, is known to be mainly restricted to the QC, yet some expression is

detected in the vascular initials (Figure 3.8 A, Pi et al. (2015)). We found
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Figure 3.7: BRAVO expression in the bravo wox5 mutant back-
ground.
A-D) Confocal images of PI-stained 6-day-old roots. GFP-tagged expression is
shown in green. pBRAVO:GFP in WT and bravo-2 wox5-1 background in control
(A, C) and after BL treatment (B, D). Scale bar: 50 µm. E) Quantification of the
GFP fluorescent signal of the roots in A-D in the stem cell niche. Different letters
indicate statistically significant differences (p-value < 0.05 Student’s t-test, n>25,
3 biological replicates).
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that bravo mutant displayed a significant reduction of WOX5 expression

(Figure 3.8) B), supporting that BRAVO in turn induces expression of the

WOX5 gene.

Further analysis of WOX5 expression upon overexpressing BRAVO under

an inducible 35S promoter (35S:BRAVO-Ei) showed that when BRAVO

levels were induced, pWOX5 levels remained similar to the WT, indicating

that BRAVO is not able in its own to induce WOX5 (Figure 3.9). To-

gether, these results support that BRAVO is necessary to maintain proper

WOX5 levels in the QC but does not induce them.

Subsequently, an increased pWOX5:GFP expression towards the provas-

cular cells was observed in the bravo wox5 double mutant (Figure 3.8 D,

E), similar to wox5 mutant (Figure 3.8 C, E). These findings suggest that

WOX5 restricts its own expression to the QC, while BRAVO-dependent

activation of WOX5 acts upstream such WOX5 autoregulation.

Brassinolide (BL) is the most active BR hormone compound. BL treat-

ment is known to modify BRAVO and WOX5 expression, by reduc-

ing the first and increasing the second of these genes (Figures 3.7, 3.10,

3.11; González-Garćıa et al. (2011); Vilarrasa-Blasi et al. (2014)). When

seedlings were grown in BL, pBRAVO expression was extremely low. How-

ever, we still observed a small increase in the GFP expression in bravo

background, similar trend to that observed in untreated conditions (Fig-

ure 3.10 A, B, D, E, G). In the case BL-treated pBRAVO:GFP plants in

wox5 and bravo wox5 mutants, GFP expression is hardly detected (Fig-

ures 3.7 D and 3.10 F). Quantification in the SCN reveals we reduction

in the GFP expression, being only significant in the case of the double

mutant background (Figures 3.7 and 3.10).
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Figure 9: WOX5 expression in the root stem cell niche.

A-D) pWOX5:GFP in the WT (A), bravo-2 (B), wox5-1 (C) and bravo-2 wox5-1 (D) knockout backgrounds. Scale
bar: 50 µm.

E) Quantification of the GFP fluorescent signal of the roots in A-D. Boxplot indicating the average pixel intensity
of the GFP in the stem cell niche. (n>25, 3 biological replicates, *p-value < 0.05 Student´s t-test for each genotype
versus the WT in the same condition).
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Figure 3.8: WOX5 expression in the root stem cell niche.
A-D) Confocal images of PI-stained 6-day-old roots. GFP-tagged expression is
shown in green. pWOX5:GFP in the WT (A), bravo-2 (B), wox5-1 (C) and
bravo-2 wox5-1 (D) knockout backgrounds. Scale bar: 50 µm. E) Quantification
of the GFP fluorescent signal of the roots in A-D. Boxplot indicating the average
pixel intensity of the GFP in the stem cell niche (n>25, 3 biological replicates,
*p-value < 0.05 Student’s t-test for each genotype versus the WT in the same
condition).
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Figure 3.9: WOX5 expression is not altered in BRAVO inducible
line.
A-D) Confocal images of PI-stained 6-day-old roots. GFP-tagged expression is
shown in green. pWOX5:GFP in WT and 35S:BRAVO-Ei background in control
(A, C) and after 6 days 30 µM β-estradiol induction (B, D). Scale bar: 50 µm.
E) Quantification of the GFP fluorescent signal of the roots in A-D. Boxplot in-
dicating the average pixel intensity of the GFP in the stem cell niche. Different
letters indicate statistical significant differences (p-value < 0.05 Student’s t-test,
n>29, 3 biological replicates). F) Bars show the relative expression of BRAVO
and WOX5 in 35S:BRAVO-Ei lines when induced with 30 µM β-estradiol for 24
hours. Values in control conditions are not represented as are 1. Asterisks indi-
cate significant differences versus values in control conditions (** p-value<0.01
Student’s t-test, 3 biological replicates).
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Figure 3.10: BRAVO expression is BL regulated.
A-F) Confocal images of PI-stained 6-day-old roots. GFP-tagged expression is
shown in green. pBRAVO:GFP in WT, bravo-2 and wox5-1 knockout back-
grounds in CTL (A-C) and after 48h 4nM BL treatment (D-F). Images in con-
trol conditions are the same that are shown in Figure 3.5. Scale bar: 50 µm.
G) Quantification of the GFP fluorescent signal of the roots in A-F. Boxplot
indicating the average pixel intensity of the GFP in the stem cell niche (n>25,
3 biological replicates, *p-value < 0.05 Student’s t-test for each genotype versus
the WT in the same conditions). Quantification of lines in control conditions are
the same that are shown in Figure 3.5.
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In the case of pWOX5 expression after BL treatment, we observed an

increase in its expression and a shift towards the stele cells (Figure 3.11).

Quantification of the GFP intensity indicates an increase in wox5 and

bravo wox5 mutant (Figure 3.11 C, D, G, H, I), and similar levels in bravo

mutant background compared to the WT (Figure 3.11 B, F, I).

Altogether, we found that when roots were grown on BL, the changes in

BRAVO and WOX5 expressions in bravo, wox5 and bravo wox5 double

mutant respect to the WT exhibited very similar trends as when plants

were grown in control media without BL (Figures 3.7, 3.10, 3.11). These

results suggest that the mutual regulation of BRAVO and WOX5, as well

as their autoregulation, is not significantly altered by BL treatment.

3.5 WOX5 induces BRAVO, which alleviates WOX5

self-inhibition

To provide a comprehensive scheme of BRAVO and WOX5 cross-regulation

in the SCN able to account for the changes in expression levels observed

in the various mutant backgrounds, we turned into mathematical model-

ing. Because BRAVO is induced in the WOX5 overexpression line (Figure

3.6) and BRAVO expression decreases in the wox5 mutant (Figure 3.5),

the model considered that WOX5 induces (either directly and/or through

intermediate molecules) the expression of BRAVO (Figure 3.12 A). To

account for the increase in pBRAVO expression in the bravo background

(Figure 3.5), the model assumed that BRAVO drives an effective inhibi-

tion on its own expression (Figure 3.12 A), probably in an indirect man-

ner. The model indicates that these two regulations can drive a decrease
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Figure 3.11: WOX5 expression is BL regulated.
A-H) Confocal images of PI-stained 6-day-old roots. GFP-tagged expression
is shown in green. pWOX5:GFP in WT, bravo-2, wox5-1 and bravo-2 wox5-1
knockout backgrounds in CTL (A-D) and after 48h 4 nM BL treatment (E-H).
Images in control conditions are the same that are shown in Figure 3.8. Scale
bar: 50 µm. I) Quantification of the GFP fluorescent signal of the roots in A-
H. Boxplot indicating the average pixel intensity of the GFP in the stem cell
niche (n>25, 3 biological replicates, *p-value < 0.05 Student’s t-test for each
genotype versus the WT in the same conditions). Quantification of lines in control
conditions are the same that are shown in Figure 3.8.
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in BRAVO expression in the bravo wox5 double mutant (Figure 3.12 B),

as found by the GFP expression data (Figure 3.7). Therefore, the model

indicates that these two regulations on BRAVO are sufficient to account

for its levels of expression in the single and double mutants (Figure 3.12

B).

Because pWOX5 expression in the SCN increases in the wox5 mutant

(Figure 3.8), the model considered that WOX5 represses (directly or indi-

rectly) its own promoter activity (Figure 3.12 A). In addition, the model

assumed that BRAVO inhibits partially this repression (Figure 3.12 A).

With these regulations, the model accounts for the increase of WOX5

expression in the bravo mutant, as well as for the WOX5 decreased ex-

pression in the wox5 and bravo wox5 mutants (Figure 3.12 B), as we

found in the GFP expression studies (Figure 3.8). Therefore, the model

proposes that BRAVO promotes WOX5 expression by alleviating WOX5

self-inhibition.

With these interactions, the model precisely captures all changes in BRAVO

and WOX5 expression in the bravo, wox5 and bravo wox5 mutants (Fig-

ure 3.12 B, C). In the model, parameter values were adjusted such that the

fold-changes between promoter activities in the single mutants compared

to the WT matched the fold-changes in GFP expressions of our empiri-

cal data (Figure 3.12 C). In addition, these values were restricted so that

under control conditions pBRAVO expression is lower than pWOX5 ex-

pression in the WT (Figure 3.12 B), as suggested by GFP expression and

RNAseq of the root tip (Clark et al., 2019).

The model indicates that the trends in the changes of expression levels

between each mutant and the WT are maintained when the rate of BRAVO
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Figure 3.12: WOX5 activates BRAVO which in turn alleviates
WOX5 self-inhibition in the stem cell niche.
A) Schematic representation of the effective regulations in the SCN between BRAVO
and WOX5 : BRAVO feeds back on its own activity by reducing it and is activated by
WOX5. WOX5 also feeds back on its own activity by reducing it, a regulation that
becomes partially impaired by BRAVO. Additional factors x can be regulating both
BRAVO and WOX5 or either one. We exemplify one such a factor that regulates
both, by downregulating BRAVO and upregulating WOX5. x can be understood as BR
signaling. Arrows denote activation and bar-ended lines denote inhibition. B) Model
solutions for the temporal evolution of expression and promoter activities for the WT
and mutants using as initial condition all activities set to zero (B(t = 0) = 0,W (t = 0) =
0) and parameter values as in Table 6.5). This time-evolution does not intend to mimic
any data but is only shown to depict the changes in the stationary levels between WT
and each mutant. Manifest in the panels are the fold-changes in stationary promoter
activities in the mutant compared to the WT (σ). C) Fold-changes in promoter activity
(σ) in the mutant compared to the WT predicted by the mathematical model as a
function of the control parameter x. This control parameter increases WOX5 and
reduces BRAVO promoter activities (blue and red triangles; according to α=0.3/x,
γ=250x/(x+9)). x=1 corresponds to the CTL condition, while x > 1 can mimic BL
condition (green shaded area). The experimentally observed values in CTL conditions
(computed as ratios of the median GFP) are drawn as black markers (see legend).
The experimental fold-changes corresponding to the double mutants are not shown, as
are assumed to be equal to the single mutants within the confidence interval of the
experiments (σ††exp

B = σ†exp
B andσ††exp

W = σ†exp
W ). Error bars of these data (which can

span ranges ± σ) are not depicted for clarity. The experimentally measured fold-change
values for the bravo wox5 double mutants are similar to those measured in the wox5
mutant. In the plot, the region of fold change FC < 1 (i.e. the promoter activity is
reduced in the mutant) is shaded in gray to visually distinguish it from the region where
FC > 1 (i.e. the promoter activity is increased in the mutant).
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promoter activity decreases and/or the rate of WOX5 promoter activity is

increased (Figure 3.12 C). This is in agreement with the results obtained

upon BL treatment (Figures 3.7, 3.5 and 3.8), which reduces BRAVO

expression whereas it increases WOX5 expression.

3.6 BRAVO and WOX5 directly interact into a

transcriptional complex

Our results so far support that BRAVO and WOX5 reinforce each other at

the SCN. To further decipher BRAVO and WOX5 interplay, we next eval-

uated the possible physical interaction between the BRAVO and WOX5

proteins. Using Förster resonance energy transfer measured by fluores-

cence lifetime microscopy (FRET-FLIM, Figure 3.13 A-K) and yeast two-

hybrid assays (Figure 3.13 L) we observed that BRAVO can directly in-

teract with WOX5 (Figure 3.13 B, G, K, L), which indicates that BRAVO

and WOX5 form a transcriptional complex.

It was previously demonstrated that the BR-regulated BES1/TPL com-

plex acts as a transcriptional repressor of BRAVO transcription (Espinosa-

Ruiz et al., 2017; Vilarrasa-Blasi et al., 2014), that BES1 directly inter-

acts with BRAVO (Vilarrasa-Blasi et al., 2014), and that TPL interacts

with WOX5 (Pi et al., 2015). We further investigated the binding of

BRAVO and WOX5 to these transcriptional regulators. We found that

both BRAVO and WOX5 physically interact with BES1, and this interac-

tion was stronger for the active BES1-D protein (Figure 3.13 C, D, H, I, K;

(Yin et al., 2002)), consistent with previous findings which showed that the

BES1 EAR domain is necessary for BES1/BRAVO interaction (Vilarrasa-
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Figure 3.13: BRAVO interacts with WOX5.
A-J) Interaction of BRAVO with WOX5 (B), BES1 (C), BES1D (D) and TPL
(E); and interaction of WOX5 with BRAVO (G), BES1 (H), BES1D (I) and
TPL (J) measured by FRET-FLIM. GFP fluorescence lifetime τ [ns] was mea-
sured in transiently expressing Nicotiana benthamiana leaf epidermal cells. GFP
fluorescence lifetime fitted pixel-wise with a mono-exponential model of BRAVO
and WOX5 interactions. mV, mVenus; mCh, mCherry. Scale bar: 5 µm. K)
Fluorescence-weighted average lifetimes of BRAVO and WOX5 interactions fitted
with a double-exponential model of the indicated samples are summarized in box
plots. Statistical significance was tested by one-way ANOVA with a Sidakholm
post-hoc test. Different letters indicate statistically significant differences (p-
value < 0.01; n>20). L) Yeast two-hybrid assay showing BRAVO interacting
with WOX5, BES1 and TPL in vitro. In the left column yeast cells were grown
on control media, and in the right column yeast cells were grown on control media
lacking Leu, Trp and His, indicating interaction between the proteins.
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Blasi et al., 2014). Our analysis shows that BES1 binds to WOX5 (Figure

3.13 H, I, K, L) with an equivalent affinity as to BRAVO (Figure 3.13

K, L), and that this interaction is stronger with BES1-D (Figure 3.13 K).

Moreover, both BRAVO and WOX5 were also observed to interact with

the co-repressor TPL (Figure 3.13 E, J, K, L). Collectively, these data

show that BRAVO and WOX5 directly interact to form a transcriptional

complex, and that each can bind active BES1 and TPL, suggesting these

proteins are able to compete for their mutual binding.

3.7 BRAVO-WOX5 complex is relevant for the

control of QC divisions

The equal divided QCs in the double bravo wox5 mutant compared to

the single mutants (Figure 3.1) suggests that BRAVO and WOX5 inter-

play at repressing QC divisions. We found two ways for this interplay

to take place: through mutual regulation of their expressions (Figure 3.5,

3.6, 3.7, 3.8, 3.9, 3.12) and through the formation of a protein BRAVO-

WOX5 complex (Figure 3.13). We turned into mathematical modeling to

assess the contribution of each of these regulations to the phenotype of

divided QCs. We set a regulatory function for the frequency of divided

QCs that explicitly incorporates the individual contributions mediated by

BRAVO (TB) and by WOX5 (TW ) and the jointly mediated contribution

by both BRAVO and WOX5 together (hereafter named “joint contribu-

tion”, TBW ). In this regulatory function, the joint contribution (TBW ) is

the one that takes into consideration the existence of the BRAVO-WOX5

complex. In contrast, the mutual regulations of BRAVO and WOX5 ex-

pressions act independently from the joint contribution and are only in-
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cluded in the individual contributions (i.e. TB and TW ). Specifically, since

WOX5 expression decreases in the bravo mutant (Figure 3.8), we reasoned

that individual WOX5 repression of QC divisions is attenuated by a factor

qBm
W < 1 in the bravo mutant compared to the WT). Similarly, to take

into account the regulation that WOX5 makes on BRAVO expression, we

considered that the individual contribution by BRAVO was attenuated by

a factor qWm
B in the wox5 mutant compared to that in the WT (qWm

B < 1).

Because the extent of these attenuations and hence the values of qBm
W and

qWm
B (which range from 0 to 1) cannot be measured, we estimated them

through the fold-changes in expression in the mutants as follows. We used

qBm
W = 0.8, which is similar to the fold-change of WOX5 expression in

the bravo mutant compared to the WT (Figure 3.8, 3.12). The fact that

wox5 exhibits phenotypes that are absent in the bravo mutant, such as

CSC differentiation, also suggests that qBm
W is not too small. The estimate

for qWm
B based on the fold-change of BRAVO expression in the wox5 mu-

tant is qWm
B = 0.5 (Figure 3.5, 3.12). Yet, from the root phenotypes of

the mutants we cannot exclude other, e.g. smaller, values. Therefore we

evaluated the model results for different values of qWm
B .

We used the experimental data on the frequency of divided QCs in the

WT, the single mutants and the double mutant (Figure 3.1), with an

estimation of their confidence intervals, to extract which are the individual

contributions (i.e. the BRAVO-mediated and the WOX5-mediated) as well

as the joint BRAVO-WOX5 contributions in the WT. For intermediate

qWm
B values (qWm

B > 0.4 upwards, being qWm
B = 0.5 the estimate from

fold-change BRAVO expression in the wox5 mutant), the model results

show that in the WT the joint contribution of BRAVO-WOX5 is the only

one relevant (Figure 3.14 A). Therefore, the analysis indicates that the
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joint BRAVO-WOX5 contribution is essential to describe the QC division

data if BRAVO and WOX5 control each other action on QC division

only partially. Individual BRAVO contribution becomes relevant only for

small qWm
B values, i.e. only if BRAVO’s role on QC division is mostly

controlled by WOX5. Yet in this scenario, which would correspond to

BRAVO acting downstream of WOX5 to repress QC divisions, the model

indicates that the joint contribution of BRAVO and WOX5 is also relevant

to the regulation of QC divisions in the WT, regardless of its specific

activatory/inhibitory role (Figure 3.14 A). Taken together, our analyses

highlight the significant contribution of the BRAVO/WOX5 heterodimeric

complex in the control of QC divisions in the stem cell niche (Figure 3.14

B), to the preservation of the normal growth and development of primary

and lateral root organs in the plant.



91 BRAVO and WOX5 control quiescence in the Arabidopsis root stem cell niche

A

B

Figure 3.14: BRAVO and WOX5 have a joint role in repressing
QC divisions.
A) Computational estimation of the contributions of BRAVO-mediated (TWT

B ),
WOX5-mediated (TWT

W ) and BRAVO-WOX5 joint (TWT
BW ) regulations of QC di-

visions in the WT, as a function of the attenuating factor of BRAVO contribution
in the wox5 mutant, qWm

B . Continuous lines represent the best estimated values,
while dashed lines are the enveloping confidence intervals (e.g. TWT

B ± δTWT
B ).

The horizontal grey dashed lines mark the zero lines. For a wide range of qWm
B

values, the joint contribution of BRAVO and WOX5 is important, while the in-
dividual contribution of BRAVO only increases for small values of qWm

B . In all
three panels, we set qBm

B = 0.8. Positive contributions correspond to repression
of QC divisions, while negative contributions correspond to activation of QC di-
visions. B) Sketch representing the spatial distribution of BRAVO, WOX5 and
their product BRAVO x WOX5, which can be interpreted as the protein complex.
Their joint interaction peaks at the QC, where repression of cell division occurs.
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A cell-type specific transcrip-
tomics approach uncovers the
role of BRAVO in root devel-
opment

4.1 Introduction

The vascular tissues are key for plant growth and development as they

provide mechanical support and the capacity to transport water, nutri-

ents, and other molecules throughout the plant. Plant vascular develop-

ment has been mostly studied in Arabidopsis and it is tightly regulated

by hormones (Caño-Delgado et al., 2010; De Rybel et al., 2016). In the

Arabidopsis roots, the vascular tissues are specified during early stages of

the embryogenesis. Auxin transport and signaling are essential for vascu-

lar patterning and differentiation, as provascular inital cells receive more

auxin than the surrounding ones (Friml et al., 2003; Reinhardt et al., 2003;

Schlereth et al., 2010; De Rybel et al., 2014). During embryo development

auxin-regulated genes such as MONOPTEROS (MP) or TARGET OF

MONOPTEROS (TMO5) play an essential role in the division of provas-

cular initial cells (De Rybel et al., 2013; Hardtke and Berleth, 1998). Cy-
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tokinins control the provascular cell division and xylem development in

the primary root. The cytokinin receptor WOODEN LEG (WOL) pro-

motes periclinal cell divisions and cytokinin signaling inhibits protoxylem

formation through the ARABIDOPSIS HISTIDINE PHOSPHOTRANS-

FER PROTEIN 6 (AHP6) cytokinin signaling inhibitor. Hence, an in-

hibitory feedback between auxin and cytokinins specifies the vascular pat-

terning in roots (Scheres et al., 1995; Mähönen et al., 2000, 2006a,b; Bish-

opp et al., 2011). The patterning of the xylem axis is also controlled by

the SHORTROOT (SHR)–miR165/166–class III HOMEODOMAIN LEU-

ZIPPER (HD-ZIPIII) pathway (De Rybel et al., 2014; Helariutta et al.,

2000; Mähönen et al., 2006a; Carlsbecker et al., 2010; Ohashi-Ito and

Bergmann, 2007; Ohashi-Ito et al., 2014; Muraro et al., 2014). Other cy-

tokinin regulated factors involved in positioning vascular boundaries are

AT-HOOK MOTIF NUCLEAR LOCALIZED 3 and 4 (AHL3 and AHL4).

They are expressed in the procambium and move towards the xylem to

regulate the boundary between both tissues (Zhou et al., 2013). Down-

stream vascular cell differentiation events are regulated through a com-

plex molecular process that ends in the formation of secondary cell walls.

VASCULAR-RELATED NAC-DOMAIN 6 (VND6) and VND7 control

metaxylem and protoxylem differentiation respectively (Kubo et al., 2005)

through regulating genes involved in programmed cell death (PCD) and

cell wall thickening (Ohashi-Ito et al., 2010; Yamaguchi et al., 2011). Other

hormones such as Strigolactones has been recently described in control-

ling PIN auxin transporter proteins, which resulted in impaired vascular

development (Zhang et al., 2020a).

Brassinosteroid hormones control several aspects of vascular development.

Initially identified to promote the differentiation of tracheary elements in
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Zinnia cell cultures (Fukuda, 1997; Yamamoto et al., 1997), later stud-

ies in Arabidopsis mutants of the BRI1-like family demonstrate their role

in xylem differentiation and vascular development (Caño-Delgado et al.,

2004; Ibañes et al., 2009). Other aspects in which BRs control vascular

development is through cell wall differentiation. It has been shown that

increased BRs promotes the transcription of xylem differentiation compo-

nents, such as the VND7 (Yamaguchi et al., 2010). In addition, mutants

in the BR synthesis genes DWARF4 and DIM1 show defects in their sec-

ondary cell wall (Choe et al., 1998; Hossain et al., 2012; Takahashi et al.,

1995). Primary cell wall deposition is also controlled by BRs also through

CELLULOSE SYNTHASE A (CESA) genes that are direct targets of

BES1 (Xie et al., 2011). Recently, the specific overexpression of BRL3 in

the vasculature was described to affect sugars and osmoprotectants trans-

port in those tissues, which generates drought resistance (Fàbregas et al.,

2018). In the root provascular tissue, little is known about the function

of BRs in controlling their meristematic activity. BRs regulate pericli-

nal cell division, as BL treated plants show thinner stele than untreated

ones (González-Garćıa et al., 2011; Fàbregas et al., 2013), whereas any

specific role has been further characterized. Overall, different roles of BR

in the vascular development and differentiation has been widely reported;

however, any comprehensive study regarding BRs in xylem and phloem

specification, differentiation and function has been yet performed.

The vasculature of the Arabidopsis primary root provides an amenable

model for studying plant gene regulatory networks with cell specific reso-

lution due to its stereotyped pattern of division and differentiation as well

as the great number of molecular genetic resources available (Birnbaum

et al., 2003; Brady et al., 2007; Lee et al., 2006; Levesque et al., 2006;
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Nawy et al., 2005). The use of cell-type specific transcriptomics has be-

come essential to decipher the spatiotemporal control of plant hormones

in developmental process (Bargmann et al., 2013; Vragović et al., 2015;

Vilarrasa-Blasi et al., 2014). Previous studies have led to the identifica-

tion of mutants with vascular defect caused by BRs (Yamaguchi et al.,

2010; Kang et al., 2017), yet little is known about the transcriptional

control of BR responses in the vascular tissues.

In the root apical meristem, BRs play important roles in stem cell mainte-

nance by controlling QC cell division through repressing the transcription

of BRAVO. BRAVO is a member of the R2R3-MYB transcription factor

family (Vilarrasa-Blasi et al., 2014). MYB proteins are characterized for

containing the MYB highly conserved DNA-binding domain. It is formed

by up to four amino acid sequence repeats of around 52 amino acids. De-

pending on the number of adjacent repeats, MYB transcription factors are

divided in different classes. Among them is the R2R3-MYB family con-

taining more than 100 transcription factors that have a structure with a N

terminal MYB DNA-binding domain and an activation or repression do-

main usually located at the C terminus (Ogata et al., 1996; Stracke et al.,

2001). This family of transcription factors has been related to important

aspects of plant development such as primary and secondary metabolism,

response to stresses or cell identity (Dubos et al., 2010). BRAVO has two

closest homologues that are MYB52 and MYB54 which are involved in

secondary cell wall biosynthesis (Zhong et al., 2008).

BRAVO is expressed in the QC and in the surrounding initial cells. In the

provascular cells, its expression is considerably higher and specially in the

vascular initial cells that are just proximally located to the QC (Figure

4.1 A). Multidisciplinary approaches revealed that BRAVO, together with
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WOX5, controls QC division and overall root growth and development

(Vilarrasa-Blasi et al., 2014; Betegón-Putze et al., 2020). However, any

role in the vascular tissues has been reported yet (Vilarrasa-Blasi et al.,

2014).

In this study, we aimed to characterize BRAVO transcriptional roles in

the QC and vascular initial cells using cell-type specific transcriptomics.

Fluorescent activated cell sorting (FACS) was used to isolate QC and VI

cells from plants expressing pWOX5:GFP and pARF7:GFP respectively.

The transcriptome of those cells was sequenced, and comparison between

wild-type, bravo-2 and BL-treated conditions revealed distinct roles of

BRs and BRAVO in both cell populations.

4.2 A cell-type specific approach to decipher the

transcriptome of BRAVO in the QC and VI

cells

Previous work in our laboratory led to the identification of BRAVO tran-

scription factor specifically localized in the QC and the VI cells of the Ara-

bidopsis root apex (Figure 4.1 A). Based on mutant phenotypic analysis,

a role of BRAVO as repressor of the QC division was reported (Vilarrasa-

Blasi et al., 2014; Betegón-Putze et al., 2020). In contrast, detailed mi-

croscopic analysis on bravo mutants failed to unveil any phenotype in the

vascular cells (Vilarrasa-Blasi et al., 2014). As BRAVO has a precise lo-

calization in the VI cells (Figure 4.1 A), we further investigated if BRAVO

plays a functional role in the vascular tissues.
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Figure 1: Cell-type specific role of BRAVO in the stem cell niche.

A) Confocal image of PI-stained 6-day-old pBRAVO:GFP root.

B, C) Confocal images of pARF7:GFP in WT (B) and bravo-2 background (C) PI-stained 5-day-old roots.

D, E) Confocal images of mPS-PI stained 6-day-old roots of WT (D) and bravo-2 (E). Red line correspond to 50 um
above the QC where stele width was measured (indicated as a yellow line).

F) Quantification of stele width in roots in D and E (n>35, 3 biological replicates). No statistically significant differences
in Student’s t-test

G) Confocal image of PI-stained 5-day-old pWOX5:GFP root. GFP-tagged expression is shown in green in A, B, C and
G. Scale bar: 50um.
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Stele width (µm)
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Figure 4.1: Cell-type specific role of BRAVO in the stem cell
niche.
A) Confocal image of PI-stained 6-day-old pBRAVO:GFP root. B, C) Confo-
cal images of pARF7:GFP in WT (B) and bravo-2 background (C) PI-stained
5-day-old roots. D, E) Confocal images of mPS-PI stained 6-day-old roots of
WT (D) and bravo-2 (E). Red line correspond to 50 µm above the QC where
stele width was measured (indicated as a yellow line). F) Quantification of stele
width in roots in D and E (n>35, 3 biological replicates). No statistically signif-
icant differences in Student’s t-test. G) Confocal image of PI-stained 5-day-old
pWOX5:GFP root. GFP-tagged expression is shown in green in A, B, C and G.
Scale bar: 50 µm.
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The expression pARF7:GFP as a marker of the vascular initial cells and

the phenotype of stele width were used as an indicator of vascular initial

cell division in WT and bravo mutants (Figure 4.1 B, D, E, F; Rademacher

et al. (2011)). The expression of pARF7:GFP is restricted to the vascu-

lar initial cells, showing higher intensity in the first layer just above the

QC and lower expression in the following vascular stem cells (Rademacher

et al., 2011). Five-day-old seedlings revealed similar expression of pARF7:GFP

marker levels and patterns when comparing the expression in WT and

bravo mutant plants (Figure 4.1 B, C). The comparison between the stele

width 50 µm above the QC of WT and bravo mutant seedlings did not

show any differences (Figure 4.1 D, E, F), similar to what was reported

previously (Vilarrasa-Blasi et al., 2014). In despite of the absence of phe-

notypes, we used these genetic crosses to investigate whether BRAVO

modulates differential responses in the QC and VI cells at the transcrip-

tional level using cell-type transcriptomics by combining FACS with bulk

RNAseq analysis (Figure 1.3). Thus, the primary roots of 5-day-old

seedlings expressing pWOX5:GFP and pARF7:GFP (as markers of QC

and VI respectively) were used to sort cells from the QC and VI domains

(Figure 4.1 G, B; Sarkar et al. (2007); Rademacher et al. (2011)). The

RNAseq experiment was done in roots of WT and bravo-2 backgrounds,

as well as in WT treated with 10 nM BL for 2 hours.
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4.3 Differential transcriptional responses are mod-

ulated by BRs and BRAVO in the quiescent

center and vascular initial cells of the root

apex

RNAseq of the sorted cells lead to identify QC and VI cell transcriptomes

in WT and bravo seedlings, as well to physiological BL treated ones. To

evaluate the main sources of variation between the QC and VI transcrip-

tomes, a principal component analysis (PCA) with all the RNAseq sam-

ples was done (Figure 4.2). The three replicates of each condition were

found to group together, thus validating our experiment. A clear sepa-

ration between QC and VI samples was also observed, which indicates

different transcriptional profiles between both cell types. In addition, the

separation between BL-treated and bravo mutant samples in both cell

type populations indicates that BRs and BRAVO regulate the QC and

VI transcriptomes in different ways, suggesting that the set of genes that

are regulated by BRs and BRAVO are different in the QC and VI cells,

pointing to different roles in the distinct cell populations.

Next, the number of deregulated genes (q-value < 0.05, Fold change (FC)

> 1) in each cell type, genotype and treatment was evaluated, separat-

ing between up and downregulated genes (Figure 4.3). The comparisons

including BL-treated samples were done by calculating the ratio between

BL treated samples over the untreated ones (named “BL reg”). BRAVO

regulated genes were calculated with the ratio between WT samples over

bravo mutant ones (named ”BRAVO reg”). Thus, upregulated genes are

more expressed in the WT than in the bravo mutant and therefore they
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Figure 2: PCA analysis of QV and VI cell-type specific RNAseqs.

PCA analysis of all RNAseqs reveals a clear separation between QC (red) and VI (blue) transcriptomes.

Figure 4.2: PCA analysis of QV and VI cell-type specific
RNAseqs.
PCA analysis of all RNAseqs reveals a clear separation between QC (red) and
VI (blue) transcriptomes.
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will be positively regulated by BRAVO in WT conditions. On the con-

trary, if genes are described as downregulated, it indicates that these genes

will be repressed by BRAVO in WT conditions, as they show increased

level of expression in the bravo mutant than in the wild type.

In the QC cells, the number of BL-upregulated and downregulated genes

was similar (2273 and 2694 respectively). In contrast, in the VI cells the

number of BL-downregulated genes was significantly higher than the up-

regulated ones (2009 and 609 respectively; Figure 4.3 A) pointing diverse

transcriptional control of BRs in these two adjacent cell types. Regarding

BRAVO-regulated genes, in the QC there are more genes that are posi-

tively regulated by BRAVO (1841 up and 11 downregulated; Figure 4.3

A) and in the VI there are more that are negatively regulated by BRAVO

(821 up and 3074 downregulated; Figure 4.3 A). In addition, the same

trend of up and downregulation was found when evaluating the number

of transcription factors in each BL and BRAVO comparisons (Figure 4.3

B), also pointing to separate roles for BRs and BRAVO transcriptional

control of QC and VI transcriptomes.

In general terms, that data shows: (i) BRs control the transcription of

4967 genes in the QC, approximately the double of the number in the VI

(2618; Figure 4.3 C, D). (ii) BRAVO transcriptional regulation in the VI

affects 3895 genes, the double of BRAVO in the QC where it affects the

transcription of 1852 genes (Figure 4.3 C, D). Altogether, BRs appear to

exert a wider transcriptional response in the QC, whereas BRAVO seems

to be acting more in the transcriptional response in the VI cells.

The RNAseq data points to preferential roles for BRAVO in transcrip-

tional activation in the QC and in transcriptional repression in the VI. In
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Figure 3: Number and overlap of BL and BRAVO regulated genes in the QC and VI cells.

A, B) Number of genes (A) and transcription factors (B) regulated by BL and BRAVO in the QC and VI (q-value
< 0.05 and fold change > 1). Upregulated (red) and downregulated (blue) are shown separately. The comparisons
done are: BL vs CTL and WT vs bravo. C, D) Area-proportional Venn diagram showing the overlap between BL
and bravo regulated genes in the QC (C) and VI (D). E) Number of BL and BRAVO regulated genes in the QC in
different scenarios: BL upregulated, BL upregulated BRAVO independent, BL downregulated, BL downregulated
BRAVO independent, BRAVO regulated, BRAVO regulated BL independent and BRAVO and BL regulated.
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Figure 4.3: Number and overlap of BL and BRAVO regulated
genes in the QC and VI cells.
A, B) Number of genes (A) and transcription factors (B) regulated by BL and
BRAVO in the QC and VI (q-value < 0.05 and fold change > 1). Upregulated
(red) and downregulated (blue) are shown separately. The comparisons done are:
BL vs CTL and WT vs bravo. C, D) Area-proportional Venn diagram showing
the overlap between BL and bravo regulated genes in the QC (C) and VI (D).
E) Number of BL and BRAVO regulated genes in the QC in different scenarios:
BL upregulated, BL upregulated BRAVO independent, BL downregulated, BL
downregulated BRAVO independent, BRAVO regulated, BRAVO regulated BL
independent and BRAVO and BL regulated.
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this line, PCA shows different transcriptomic profiles between the QC and

VI cells in BL-treated and bravo root cells (Figure 4.2).

4.4 Transcriptional profiling of QC cells in bravo

mutant and upon BL treatment

The transcriptomic datasets of BL and BRAVO regulated genes in the

QC was analyzed first. We distinguished different scenarios in terms of

BL and BRAVO regulation: (i) genes that are regulated by BRs, (ii)

genes that are regulated by BRAVO, and (iii) genes co-regulated both by

BRs and BRAVO, i.e. the fraction of BRAVO regulated genes that acts

downstream of BR signaling (Figure 4.3 E).

The different scenarios were defined to evaluate which fraction of BRAVO

response depends on BRs. To this aim, the number of regulated genes

in the different BL and BRAVO datasets was analyzed (Figure 4.3 E and

4.4). For BR-regulated genes, distinction between up and downregulation

was done; whereas for BRAVO regulated genes, as there is a clear predomi-

nance of BRAVO upregulated genes (Figure 4.3 A), no distinction between

up and downregulation was done (Figure 4.3 E). To better understand the

processes in which BRs and BRAVO are involved, Gene Ontology (GO)

enrichment analysis of the different BL and BRAVO regulated set of genes

was also performed (Figure 4.4). The set of genes that were analyzed are

described in Table 4.1.
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Figure 5: GO enrichment analysis of BL and BRAVO regulated genes in the QC

A) GO enrichment analysis of BL and BRAVO regulated genes in the QC. Same separation in groups as shown in Fig 8B. GO
enrichment performed in Araport thalemine, selected categories with pvalue < 0.05 in HolmBonferroni test. Category
reduncancy was reduced with REVIGO and selected categories were manually curated. Darker red correspond to lower
pvalue in GO enrichment analysis.

Figure 4.4: GO enrichment analysis of BL and BRAVO regulated
genes in the QC.
GO enrichment analysis of BL and BRAVO regulated genes in the QC. Same
separation in groups as shown in Figure 4.3 E. GO enrichment performed in
Araport thalemine, selected categories with pvalue < 0.05 in HolmBonferroni
test. Category reduncancy was reduced with REVIGO and selected categories
were manually curated. Darker red correspond to lower pvalue in GO enrichment
analysis.
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Table 4.1: Groups of genes based on their regulation by BRs and
BRAVO in the QC. The group of genes considered for each scenario are
indicated with the symbols: + if the condition was happening in all the
genes in the group, ? if the condition was not taking into account to create
the group, and - if the condition was not happening in any gene in the
group. As an example, in the first category, all genes are BR upregulated
and no distinction was done if they are BRAVO regulated or not.

Scenario BR up-
regulated

BR down-
regulated

BRAVO
regulated

Number
of genes

BL Up all + - ? 2273
BL Up no-
BRAVO

+ - - 1960

BL Down
all

- + ? 2694

BL Down
noBRAVO

- + - 2176

BRAVOreg ? ? + 1852
BRAVOreg
noBL

- - + 1021

BRAVO BL
reg

+ + + 519

4.4.1 BR regulated genes in the QC

From the total 4967 BR- regulated genes in the QC, there are 2273 upreg-

ulated and 2694 downregulated genes. Of those, more that 80% (1960 up

and 2176 downregulated genes) appeared not to be deregulated in bravo

mutants (Figure 4.3 E). The GO enrichment analysis of these gene list

is shown in Figure 4.4. For the 2273 BR-upregulated genes, a significant

GO enrichment in “response to chemical” GO category was found, with

458 genes. Additional GO categories such as “response to abiotic stim-

ulus” and “response to oxidative stress” are also significantly enriched.

BRs has been involved in controlling the balance between growth and re-

sistance against stresses which includes the regulation of stress-responsive

pathways, the activation of antioxidant components or the promotion of
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osmoprotectants (Ye et al., 2017; Lima and Lobato, 2017; Tunc-Ozdemir

and Jones, 2017; Xia et al., 2009; Zou et al., 2018; Fàbregas et al., 2018;

Planas-Riverola et al., 2019). These findings point to a role of BRs in

maintaining the homeostasis of the QC as it is a specialized environment

tightly controlled in terms of cell division and stress responses. Focusing

in GO category “response to oxidative stress”, a number of 93 genes of

the 2273 (4%) was found in this category, from which 40 genes have a FC

higher than 2. These 40 genes are shown in Figure 4.5 A.

Reactive oxygen species (ROS) are products of normal metabolism of the

plant, but several stresses can contribute to an overproduction of these

products, which can cause oxidative stress (Huang et al., 2019). Apart

from their toxicity, they can also act as signaling molecules or in defense

against pathogens. In this category, some of the most BL upregulated

genes are SULFURTRANSFERASE 15 (STR15), KUNITZ TRYPSIN

INHIBITOR 1 (KTI1), PEROXIDASE 38 (PER38), GLUTATHIONE

S-TRANSFERASE 6 (GSTF6), WRKY DNA-BINDING PROTEIN 8

(WRKY8), PEROXIDASE 46 (PER46) and ALKENAL REDUCTASE

(AER). STR15 (SEN1) has been linked to plant defense and senescence

responses (Schenk et al., 2005). KTI1 encodes a serine protease inhibitor

involved in plant cell death (Li et al., 2008). GSTF6 is an uncharacter-

ized glutation transferase. WRKY8 transcription factor involved in basal

defense in Arabidopsis (Chen et al., 2010). AER is involved in the detoxifi-

cation of reactive oxygen species (Islam et al., 2016). Several peroxidases,

that are proteins with no catalytic activity that are crucial to maintain

redox homeostasis, also appear in the list. Interestingly, among the genes

in this GO category, only PEROXIDASE 45 (PER45) and METHION-

INE SULFOXIDE REDUCTASE B9 (MSRB9) appeared upregulated by
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Figure 6. BL regulated genes in the QC from selected GO categories.

Genes included in GO category “response to oxidative stress” (A ), “ribosome biogenesis” (B) and “cell division” (C) from
heatmap in Fig 8. Only genes with FC > 2 in BL regulated dataset are shown. Left column in the heatmap shows expression
in BL-treated vs untreated comparisons. Right column in the heatmap shows expression in WT vs bravo comparisons. Color
bar: log2 of the fold change. White color in the right column indicates no significant fold change for that gene in WT vs
bravo comparison.

Figure 4.5: BL regulated genes in the QC from selected GO
categories.
Genes included in GO category “response to oxidative stress” (A), “ribosome
biogenesis” (B) and “cell division” (C) from heatmap in Figure 4.4. Only genes
with FC > 2 in BL regulated dataset are shown. Left column in the heatmap
shows expression in BL-treated vs untreated comparisons. Right column in the
heatmap shows expression in WT vs bravo comparisons. Color bar: log2 of the
fold change. White color in the right column indicates no significant fold change
for that gene in WT vs bravo comparison.
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BRAVO too. Together, our results support that BR signaling modulate

ROS metabolism involved in stress responses at the QC cells.

Regarding the set of 2694 genes transcriptionally repressed by BRs in the

QC, the highest significant enrichment was found in “ribosome biogenesis”

and “cell division” GO categories (Figure 4.4). A total of 125 genes ap-

peared in “ribosome biogenesis” GO category that are involved in different

aspects such as rRNA maturation, processing and ribosome assembly. Of

those, 42 genes BL-downregulated have FC higher than 2 (shown in figure

4.4 B). GO enrichment in this category was previously described in other

BL-treated datasets of Arabidopsis root tips, therefore linking this GO

process to BRs before (Chaiwanon and Wang, 2015).

The most BR-downregulated genes that were found in the GO category

“ribosome biogenesis” are POLYRIBONUCLEOTIDE NUCLEOTIDYL-

TRANSFERASE 2 (PNP2), ATP-BINDING CASSETTE E1 (ABCE1)

and RIBONUCLEASE E/G-LIKE (RNE). PNP2 is a putative and not

characterized polyribonucleotide nucleotidyltransferase. ABCE1 is a RNA

silencing suppressor (Kärblane et al., 2015). RNE is a ribonuclease in-

volved in the processing of plastid ribonucleic acids (Stoppel et al., 2012).

Ribosomes are ribonucleoprotein complexes that are responsible for cat-

alyzing the translation process. Ribosome biogenesis includes different

steps of ribosome maturation such as pre-rRNA processing, modifica-

tion, folding and the incorporation of ribosomal proteins (Palm et al.,

2016).These ribosome-related categories are typical of cells with active

transcriptional machinery, probably related to cell division processes, as

defects in ribosomal biogenesis has been linked to defects in cell divi-

sion (Shi et al., 2005; Griffith et al., 2007). BRs regulate QC division

(González-Garćıa et al., 2011; Vilarrasa-Blasi et al., 2014), however if this
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is due to the BR regulation of the ribosomal machinery in those cells re-

main unknown. Further experimental validation of genes in this category

might help to understand whether ribosome biogenesis in the QC is key

for the low rate of cell division.

The second enriched GO category in which BL downregulated genes are

involved is “cell division” (Figure 4.4), in agreement with previous findings

showing that exogenous BRs promote the division of QC cells (González-

Garćıa et al., 2011; Hacham et al., 2011). In these cells, BRs promote

cell division by repressing BRAVO (Vilarrasa-Blasi et al., 2014). We

found 93 genes within “cell division” GO category, from which 58 have

a fold change higher than 2 (shown in Figure 4.5 C). Supporting previ-

ous results (Vilarrasa-Blasi et al., 2014), one of the downregulated gene

in response to BRs is BRAVO (MYB56) indicating that RNAseq experi-

ment was successful. We found that BRs downregulate the expression of

TOO MANY MOUTHS (TMM), TARGETING PROTEIN FOR XKLP2

(TPX2) and CELLULOSE SYNTHASE-LIKE D5 (CSLD5) genes. TMM

is a LRR receptor-like protein that controls stomatal production and pat-

terning (Bhave et al., 2009). It has been related to BR signaling before

in hypocotyls (Wang et al., 2015). TPX2 is a protein important for mi-

crotubule nucleation and mitotic spindle assembly (Dvořák Tomašt́ıková

et al., 2020). CSLD5 encodes cellulose synthase like 5 involved in cell

plate formation (Gu et al., 2016). In the set of BR regulated genes in

the QC we also found significant downregulation of cyclins and cyclin-

dependent kinases that are key elements of cell-cycle progression (Gutier-

rez, 2009) (Figure 4.5 C). According to the results obtained with eFP

browser (https://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi, these cyclins (CYCB2;4,

CYCB2;2, CYCB1;4, CYCD3;3, CYCA1;1, CYCB2;3, CYCB1;3, CYCB1;2

https://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
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and CYCB1;1) are expressed in several root cell types including the QC.

Only one cyclin was regulated by BRAVO too. It is CYCU4.3 and any

role in the QC has been described yet.

Taken together, the transcriptome of QC cells in response to BRs identify

genes involved in different processes like cyclins and cyclin-dependent ki-

nases and components of the last stages of spindle and cell plate formation.

In addition, it can be that repression of cell division causes the repres-

sion of translational machinery such as ribosome biogenesis. For example,

SLOW WALKER1 (SWA1) gene appears in both categories “ribosome

biogenesis” and “cell division”. SWA1 plays a role in rRNA biogenesis

which is required for the progression of the mitotic division cycles during

gametogenesis (Shi et al., 2005). Remarkably, the BL regulation of those

response to stresses, ribosome biogenesis and cell division categories seems

to be independent of BRAVO, as there is not enrichment when analyzing

BRAVO regulated genes. In addition, very few genes involved in those

categories were found to be BRAVO regulated (Figure 4.5). Regarding

cell division, BRAVO is known to repress QC division downstream BL,

so further analysis of BRAVO regulated genes will help to elucidate its

mechanism of action.

4.4.2 BRAVO regulated genes in the QC

A total number of 1852 genes were found to be BRAVO regulated, i.e.,

genes that require BRAVO function to transcribe properly, and therefore

appear deregulated in WT with respect to bravo mutant cells . Of those,

1021 are BRAVO specific and did not appear to modify their transcrip-

tion in the BL-treated plants (Figure 4.5 B). This indicates that a 55% of
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BRAVO transcriptional response is BRAVO specific and not necessarily

downstream BRs. In order to decipher the role of BRAVO in the QC,

GO enrichment analysis within the groups containing the BRAVO regu-

lated genes was performed (Figure 4.4). Regarding all BRAVO regulated

genes, there is higher enrichment in “cell maturation”, “cell wall organiza-

tion or biogenesis”, “plant epidermis development” and “transmembrane

transport” categories. When separating BRAVO-regulated genes in inde-

pendent and downstream of BL, we observe enrichment in similar GO cat-

egories. Remarkably, in BRAVO regulated genes downstream BL, there is

a high enrichment in “trichoblast differentiation”. Trichoblasts are epider-

mal root hair cells. These results point to a role of BRAVO in controlling

root hair development through the upregulation of genes involved in this

process from the QC , both mediated by and independent of BRs. The

role of BRAVO in trichoblast development can be due to the expression

of those genes in the QC and not exclusively in the epidermal cells.

In the epidermis, only trichoblast cells form root hairs. Root hairs are

single cell tubular extensions of root epidermal cells that support the func-

tions of the primary root by increasing their absorptive surface (Vissenberg

et al., 2020). Determination of trichoblast or atrichoblast identity depends

on the signal from the cortex cells (Ishida et al., 2008; Grebe, 2012). Root

hair development is controlled by different hormones and internal and ex-

ternal stimulus (Vissenberg et al., 2020). Regarding BRs in the root, they

are essential for position-dependent epidermal cell fate specification (Wei

and Li, 2016). Experimentally, it was found that BR signaling-enhanced

plants have lower hair numbers compared to the WT (Cheng et al., 2014),

yet this has been proposed to be modulated on a cell-autonomous bases.

To narrow down BRAVO-regulated genes involved in cell differentiation,
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a total of 49 genes in this category genes present in “cell maturation” GO

category were analyzed (Figure 4.6 A). Of those, the AT5G61350 (CAP1)

and the yet uncharacterized AT3G01730 are the most deregulated ones.

We found that BRAVO expression is required to maintain CAP1 levels,

a gene that participate maintaining root hairs polar growth (Bai et al.,

2014). Another gene in the list is COBRA-LIKE 9 (COBL9) involved in

tip growth in root hairs (Parker et al., 2000). In agreement with the role

of those genes in root hair development, analysis of the tissue-enriched

expression of genes using TOTEM in that GO category indicates a higher

enrichment in hair cell specific genes (Figure 4.6 B). These findings indi-

cate a non-autonomous action of BRAVO at the QC cells as an activator of

root-hair (trichoblast) cell differentiation, and encourage the phenotypic

characterization of root hairs in bravo mutants.

A significantly enriched GO category in BRAVO-regulated genes is “trans-

membrane transport” (Figure 4.4), composed of 123 genes, from which 59

have FC > 2 (Figure 4.7 A). The most deregulated genes are AT5G18840,

DTX42 (AT1G51340, MATE), POTASSIUM TRANSPORTER 5 (POT5),

PLASMA MEMBRANE INTRINSIC PROTEIN 2-8 (PIP2-8) and ABC

TRANSPORTER B FAMILY MEMBER 5 (ABCB5). AT5G18840 is an

uncharacterized sugar transporter. DTX42 (MATE) encodes a Citrate

transporter involved in aluminum tolerance (Liu et al., 2009). POT5

(HAK5) is a potassium transporter (Lara et al., 2020). PIP2-8 is a prob-

able aquaporin. ABCB5 is a glycoprotein that belongs to the ABC trans-

porter family. There are also several TONOPLAST INTRINSIC PRO-

TEIN (TIP) genes which are aquaporins, proteins that facilitate water

movement along the plant (Quigley et al., 2002). Together, the majority

of these genes encode for transporter proteins that are required for main-
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Figure 7: BRAVO regulated genes in the QC are involved in trichoblast differentiation.

A) Genes included in GO category “cell maturation” from heatmap in Fig 8. Left column in the heatmap shows
expression in BL-treated vs untreated comparisons. Right column in the heatmap shows expression in WT vs
bravo comparisons. Color bar: log2 of the fold change. White color in the left column indicates no significant fold
change for that gene in BL vs CTL comparison. B) Arabidopsis root tissue enrichment for genes showed in A
obtained with TOTEM software. Coloured arrows indicate genes specific from hair cells (red), maturing xylem
(green) and protophloem (yellow) from Brady et al., 2007.

QC - BRAVO regulated

genes de GO cell maturation

A GO Cell maturation B

Figure 4.6: BRAVO regulated genes in the QC are involved in
trichoblast differentiation.
A) Genes included in GO category “cell maturation” from heatmap in Figure
4.4. Left column in the heatmap shows expression in BL-treated vs untreated
comparisons. Right column in the heatmap shows expression in WT vs bravo
comparisons. Color bar: log2 of the fold change. White color in the left column
indicates no significant fold change for that gene in BL vs CTL comparison. B)
Arabidopsis root tissue enrichment for genes showed in A obtained with TOTEM
software. Coloured arrows indicate genes specific from hair cells (red), maturing
xylem (green) and protophloem (yellow) from Brady et al. (2007).
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taining the tissues homeostasis by facilitating the movement of nutrients

and water in the plant (Chrispeels et al., 1999).

4.4.3 BRAVO regulated genes acting downstream brassi-

nosteroids in the QC

In this section we present the analysis of BRAVO-regulated genes acting

downstream BRs in the QC cells of the root apex (Figure ?? A). We found

a total of 519 genes to be both regulated by BL treatment and BRAVO.

In this case, only genes in two scenarios were included: (i) genes down-

regulated by BRs and upregulated by BRAVO, and (ii) genes upregulated

by BRs and downregulated by BRAVO. As BL treatment downregulates

BRAVO levels, genes in those scenarios are the ones showing the same

expression pattern in BL and BRAVO datasets.

A GO category significantly enriched in both BRAVO and BR-regulated

genes is “cell wall organization”, were we found 40 genes with FC > 1

(Figure 4.7 B). The most deregulated gene is the transcription factor

DOF3.4 (OBF BINDING PROTEIN 1, OBP1). DOF3.4 is described

to affect growth by targeting the expression of genes encoding for cell

wall loosening enzymes (Skirycz et al., 2008). DOF3.4 is also involved

in cell division, and more precisely in cell cycle re-entry, operating as

a transcriptional regulator of key cell cycle genes (Skirycz et al., 2008).

There are also a number of XYLOGLUCAN ENDOTRANSGLYCOSY-

LASE/HYDROLASE (XTH) genes and two LRR-EXTENSINS LRX1 and

LRX2 that are involved in cell wall formation during root hair develop-

ment (Baumberger et al., 2003). CASPARIAN STRIP MEMBRANE DO-

MAIN PROTEIN 1, 2 and 3 (CASP1, CASP2 and CASP3) are involved
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Figure 8. BRAVO regulated genes in the QC from selected GO categories.

Genes included in GO category “transmembrane transport” (A ) and “cell wall organization or biogenesis” (B) from
heatmap in Fig 8. In A only genes with FC > 2 in BRAVO regulated dataset are shown. Left column in the heatmap shows
expression in BL-treated vs untreated comparisons. Right column in the heatmap shows expression in WT vs bravo

comparisons. Color bar: log2 of the fold change. White color in the left column indicates no significant fold change for that
gene in BL vs CTL comparison.

Figure 4.7: BRAVO regulated genes in the QC from selected
GO categories.
Genes included in GO category “transmembrane transport” (A) and “cell wall
organization or biogenesis” (B) from heatmap in Figure 4.4. In A only genes with
FC > 2 in BRAVO regulated dataset are shown. Left column in the heatmap
shows expression in BL-treated vs untreated comparisons. Right column in the
heatmap shows expression in WT vs bravo comparisons. Color bar: log2 of the
fold change. White color in the left column indicates no significant fold change
for that gene in BL vs CTL comparison.
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in Casparian strip development (Roppolo et al., 2011). The lignin-based

Casparian strip is in the endodermis and represents a selective filter for

nutrient and water transport. There are several factors involved in the for-

mation of that strip such as CASPs, peroxidases or TFs (Kamiya et al.,

2015). Overall, BRAVO seems to be mostly regulating the expression of

genes reported to play a role in outer layers outside the QC, such as in

epidermis or endodermis cells, all suggesting that BRAVO acts mostly in

a non-cell autonomous manner.

Next, we investigated BRAVO transcriptional network to better under-

stand the role of BRAVO in the QC. The analysis was focused on the tran-

scription factors functioning downstream BRAVO. As BRAVO is known

to be a direct target of BES1 and BZR1 (Vilarrasa-Blasi et al., 2014), if

this TFs are their targets was also evaluated, so they are more likely to be

acting together (Figure 4.8). A total of 22 transcription factors appeared

in the analysis with FC > 1, being 21 positively regulated and only one

(DOF3.4) downregulated by BRAVO. BRAVO levels itself appeared down-

regulated by BRs, thus validating our experiment. We found DOF3.4 the

most deregulated TF, which could indicate that DOF3.4 is involved in the

control of QC divisions downstream both BRs and BRAVO. Interestingly,

DOF3.4 is a regulator of cell division genes (Skirycz et al., 2008) and a

high fidelity direct target of BZR1 (Figure 4.8; He et al. (2005)).

The rest of TFs appear upregulated by BRAVO and have been related

to different biological processes. Some of them are involved in response

to different biotic and abiotic stresses such as RELATED TO AP2 11

(RAP2.11; Kim et al. (2012)), TGACG (TGA) MOTIF-BINDING PRO-

TEIN 9 (TGA9; Wang et al. (2020)) and NAC DOMAIN CONTAINING

PROTEIN 102 (NAC102; D’Alessandro et al. (2018)) to ROS, WRKY47
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Figure 9. BRAVO downstream TFs in the QC.

Common BL and BRAVO regulated transcription factors in the QC. Left column in the heatmap shows
expression in BL-treated vs untreated comparisons. Right column in the heatmap shows expression in WT vs
bravo comparisons. Color bar: log2 of the fold change. Red squares indicate TFs as direct targets of BES1 and
BZR1.

RAP2-11

DOF3.4
BRAVO
AT4G00130
PDF2
DOF5.1
KNU
MYB49
IDD5
AIL7
ARF6
HHO1
AT2G33710
AT2G38090

MYB12
MGP

STOP1
ANAC102
AtbZIP3
WRKY47
SMZ
TGA9
RAP2-11

QC - BRAVO and BL regulated TFs

Figure 4.8: BRAVO downstream TFs in the QC.
Common BL and BRAVO regulated transcription factors in the QC. Left column
in the heatmap shows expression in BL-treated vs untreated comparisons. Right
column in the heatmap shows expression in WT vs bravo comparisons. Color
bar: log2 of the fold change. Red squares indicate TFs as direct targets of BES1
and BZR1.
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(Li et al., 2019) to aluminum, BASIC LEUCINE-ZIPPER 3 (bZIP3; Sanagi

et al. (2018)) to sugars, SENSITIVE TO PROTON RHIZOTOXICITY

1 (STOP1) to acid soils (Balzergue et al., 2017), MYB49 (Zhang et al.,

2020b) to salt and AT3G25790 (HHO1) to nitrogen starvation (Kiba et al.,

2018). In the shoot, SCHLAFMUTZE (SMZ) represses flowering (Mathieu

et al., 2009) and PREFOLDIN 2 (PDF2) cooperates for normal develop-

ment of the floral organs (Kamata et al., 2013). INDETERMINATE(ID)-

DOMAIN 5 (IDD5) is a positive regulator of starch granule formation in

leaves (Ingkasuwan et al., 2012). AUXIN RESPONSE FACTOR 6 (ARF6)

is positive regulator of adventitious root initiation (Lakehal et al., 2019)

and MYB DOMAIN PROTEIN 12 (MYB12) mediates GA-regulated root

growth via flavonols (Tan et al., 2019). This indicates that BRAVO ac-

tion in the QC is required for both development and stress responses.

This data support previous hypotheses considering the QC as a reservoir

of cells to replenish the damaged ones after being damaged (van den Berg

et al., 1997; Xu et al., 2006). Future characterization of these TFs could

shed light on the role of BRAVO not only in root development, but also

in root adaptation to stress.

Interestingly, some TFs have been related to stem cells and cell division

before, whereas no relation with BRs has been proposed. For example,

MAGPIE (MGP, IDD3) regulates tissue boundaries and asymmetric cell

division and can control SHR and SCR activity (Welch et al., 2007). AIL7

(PLT7) is crucial for meristematic gene activation during lateral root for-

mation (Du and Scheres, 2017). KNUCKLES (KNU) acts as a repressor

of WUSCHEL which is essential for stem cell maintenance in the floral

meristems (Sun et al., 2019). PEAR2 promote transcription of their in-

hibitory HD-ZIP III genes to demark the zone of cell division for radial
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growth (Miyashima et al., 2019). Among them, MGP and PEAR2 are

BZR1 direct targets. Other TFs have not been characterized (AT2G38090,

AT2G33710 and AT4G00130) and are potential candidates to investigate

their role in the BRAVO mediated pathway, specially AT2G33710 which

is a high fidelity BZR1 direct target.

Altogether, our cell-type-specific transcriptomics approach developed in

this PhD thesis led to the identification of putative genes regulated by

BRAVO in the QC. The functional analysis of those genes indicates the

biological functions in which they might be involved, so further experimen-

tal validation of those genes and functions will reveal novel components of

BRAVO mediated pathway in the QC. Most of these TFs were not asso-

ciated to QC function before, so this analysis advances in the redefinition

of their function in root development.

We found that BR response mediated by BRAVO is mostly affecting genes

outside the QC, especially in the root hair cells where it regulates their

differentiation and cell wall properties. According to that, other TFs were

found to regulate cell wall properties from other cell types, for example

MYB36 regulates Casparian strip formation and it is also expressed in cell

types different to the endodermis (Kamiya et al., 2015). Recently, it was

shown that TMO5/LHW heterodimer from the vascular tissues mediates

root hair responses in the epidermis (Wendrich et al., 2020).



A cell-type specific transcriptomics approach uncovers the role of BRAVO in root
development 122

4.5 Transcriptional profiling of VI cells in bravo

mutant and upon BL treatment

The present section deals with the characterization of the transcriptional

responses meditated by BRAVO in the VI cells (Figure 4.1 A). These spe-

cific cell population was also isolated and sequenced in WT, bravo mutant

background and upon BL treatment. Analysis of their transcriptomes

revealed BRAVO acting mostly as a repressor of transcription (Figure

4.3) and regulating a higher number of genes than in the QC. Neverthe-

less, these transcriptomic results might support a role of BRAVO in those

cells, where pBRAVO:GFP also appear to show higher (brighter) expres-

sion than in the QC (Figure 4.3).

For the RNAseq analysis of VI sorted cells, similar to that of the QC cells,

BL and BRAVO regulated genes were grouped based on their regulation in

the different datasets (Figure 4.9). In light of the results, three different

scenarios were defined: (i) genes that are regulated by BRs, (ii) genes

that are regulated by BRAVO, and (iii) genes that are both regulated by

BRs and BRAVO. In this case, up and downregulated genes in both BL

and bravo datasets were separated, as the number of genes in all cases

was remarkable (Figure 4.3 A). To further characterize the role of those

regulated genes, GO enrichment analysis of the different set of genes was

performed (Figure 4.10). The set of genes that were analyzed are described

in Table 4.2.
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Figure 10: Number of BL and BRAVO regulated genes in the VI

A) Area-proportional Venn diagram showing the overlap between BL and bravo regulated genes in the VI (same
as in Fig 6D).

B) Number of BL and BRAVO regulated genes in the VI in different scenarios: BL upregulated, BL upregulated
BRAVO independent, BL downregulated, BL downregulated BRAVO independent, BRAVO upregulated,
BRAVO upregulated BL independent, BRAVO upregulated BL downregulated, BRAVO downregulated, BRAVO
downregulated BL independent and BRAVO downregulated BL upregulated.

Figure 4.9: Number of BL and BRAVO regulated genes in the
VI.
A) Area-proportional Venn diagram showing the overlap between BL and bravo
regulated genes in the VI (same as in Figure 4.3 D). B) Number of BL and
BRAVO regulated genes in the VI in different scenarios: BL upregulated,
BL upregulated BRAVO independent, BL downregulated, BL downregulated
BRAVO independent, BRAVO upregulated, BRAVO upregulated BL indepen-
dent, BRAVO upregulated BL downregulated, BRAVO downregulated, BRAVO
downregulated BL independent and BRAVO downregulated BL upregulated.
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Figure 11: GO enrichment analysis of BL and BRAVO regulated genes in the VI.

A) GO enrichment analysis of BL and BRAVO regulated genes in the VI. Same separation in groups as shown in Fig 13B.
GO enrichment performed in Araport thalemine, selected categories with pvalue < 0.05 in HolmBonferroni test. Category
reduncancy was reduced with REVIGO and selected categories were manually curated.

Figure 4.10: GO enrichment analysis of BL and BRAVO regu-
lated genes in the QC.
GO enrichment analysis of BL and BRAVO regulated genes in the QC. Same
separation in groups as shown in Figure 4.9 B. GO enrichment performed in
Araport thalemine, selected categories with pvalue < 0.05 in HolmBonferroni
test. Category reduncancy was reduced with REVIGO and selected categories
were manually curated. Darker red correspond to lower pvalue in GO enrichment
analysis.
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4.5.1 BR regulated genes in the VI

The number of BR-regulated genes in the VI was first evaluated. A number

of 609 were found to be upregulated and 2009 downregulated. Of those,

more than 65% for up and 84% for downregulated genes (395 and 1687

respectively) appeared not to be deregulated in bravo mutants (Figure 4.9

B). GO enrichment of those genes was performed to analyze the molecular

function in with they are involved (Figure 4.10).

First, the analysis of the BR-upregulated genes revealed higher enrichment

in “response to chemical”, “response to stimulus” and “photosynthesis”

GO categories (Figure 4.10).

“Response to chemical” category was also found for BL upregulated genes

in the QC. This category is very broad and include genes related to many

stress responses both biotic and abiotic, in which BRs are involved. There-

fore, this type of responses might not be unique for each cell type. So

further analysis were focused in categories unique for the VI cells com-

pared to the QC. Within “photosynthesis” category, which is unique for

BL upregulated genes, there are 22 genes (Figure 4.11 A). Among the

most upregulated genes there are several from the same family LHC that

correspond to light harvesting complex proteins, which are regulated by

multiple environmental and developmental cues (Xu et al., 2012); among

them, BRs are known to regulate the thylakoid membrane architecture

and the photosystem II function (Krumova et al., 2013). It was described

that BR treatment can compensate a decreased photosynthetic rate under

stresses through increasing carboxylation efficiency and enhanced antiox-

idant systems (Hasan et al., 2011). These findings indicate that BRs

control genes involved in the photosynthesis. However, it is possible that
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GO photosynthesis

BL up

GO phenylpropanoid met. Pro.

BL down

Figure 12: BL regulated genes in the VI.

Genes included in GO category “photosynthesis” (A) and “phenylpropanoid metabolic process” (B) from heatmap
in Fig 14.. Left column in the heatmap shows expression in BL-treated vs untreated comparisons. Right column in
the heatmap shows expression in WT vs bravo comparisons. Color bar: log2 of the fold change. White color in the
right column indicates no significant fold change for that gene in WT vs bravo comparison.

A BGO Photosynthesis GO Phenylpropanoid
metabolic process

Figure 4.11: BL regulated genes in the VI from selected GO
categories.
Genes included in GO category “photosynthesis” (A) and “phenylpropanoid
metabolic process” (B) from heatmap in Figure 4.10. Left column in the heatmap
shows expression in BL-treated vs untreated comparisons. Right column in the
heatmap shows expression in WT vs bravo comparisons. Color bar: log2 of the
fold change. White color in the right column indicates no significant fold change
for that gene in WT vs bravo comparison.

these genes have a different role in the VI cells that has not discovered

yet, so experimental analysis regarding the role of these genes would be

needed to address that.

BRs play important role in in cell expansion and differentiation by con-

trolling the deposition of primary and secondary cell wall components

((Xie et al., 2011; Wolf et al., 2012, 2014; Sánchez-Rodŕıguez et al., 2017).

Our analysis uncovers that in the case of BL downregulated genes, there

is higher enrichment in “phenylpropanoid metabolic process” and “lignin

metabolic process” GO categories (Figure 4.10). Phenylpropanoids are
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plant secondary metabolites contribute to cell growth and differentia-

tion as well as in the response to different stresses (Deng and Lu, 2017).

Lignin is synthesized through phenylpropanoid metabolism, so both cate-

gories are related. There are 32 genes within “phenylpropanoid metabolic

process” category (Figure 4.11 B). Among these genes, PHENYLALA-

NINE AMMONIA-LYASE 1, 2 and 4 (PAL1, PAL2 and PAL4) are related

with tissue-specific lignin synthesis, and PAL1 and PAL2 also have func-

tional specialization in abiotic environmental-triggered flavonoid synthesis

(Olsen et al., 2008). LAC genes are lacases involved in lignin biosynthesis.

4CL3 coumarate:CoA ligases involved general phenylpropanoid pathway.

NAC012 (NST3) and NAC043 (NST1) redundantly regulate the secondary

wall thickenings in interfascicular fiber of inflorescence stems and sec-

ondary xylem of hypocotyls in Arabidopsis. Mutants of these genes have

defects in cellulose and lignin production (Mitsuda et al., 2007). DIM1 es

DWARF1 involved in BR synthesis and in lignin metabolism for cell wall

formation (Hossain et al., 2012).

Overall, these results support a role of BRs in cell wall differentiation by

controlling the expression of genes that are involved in secondary cell wall

composition and homeostasis processes already at the vascular initial cells.

4.5.2 BRAVO regulated genes in the VI

Here, BRAVO regulated genes in the VI cells were analyzed. A total of

821 genes were found to be upregulated and 3074 genes downregulated by

BRAVO. From them, 618 and 2641 are not regulated by BRs respectively.

This represents the 75% and 86% of the BRAVO-mediated response to

be BR independent for BRAVO up and downregulated genes respectively
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(Figure 4.9 B).

For the BRAVO upregulated genes, there was higher enrichment in “Golgi

vesicle transport” GO category (Figure 4.10). The Golgi apparatus is

an organelle functioning in polysaccharide and glycolipid synthesis, pro-

tein glycosylation and protein sorting towards various cellular compart-

ments (Neumann et al., 2003). Among the most deregulates genes in this

category are AT5G24350 (MAG2-INTERACTING PROTEIN 2, MIP2),

AT5G16300 (CONSERVED OLIGOMERIC GOLGI COMPLEX SUB-

UNIT 1, COG1) and the uncharacterized SEC16B (AT5G47490) (Figure

4.12 A). This points a role for BRAVO on the feedback for protein traffick-

ing from the Golgi to the plasma membrane. MIP2 knockout mutants have

defects in ER-Golgi vesicle transport and in the response to the environ-

ment (Li et al., 2013; Zhao et al., 2018). ARF GUANINE-NUCLEOTIDE

EXCHANGE FACTOR GNL1 (GNL1) is also upregulated. GNL1 has a

role in endoplasmic reticulum (ER)–Golgi trafficking and GNL1/GNOM-

mediated early secretory pathway selectively regulates PIN1 basal polarity

establishment in a manner essential for normal plant development (Doyle

et al., 2015). These genes are positively regulated by BRAVO in the VI

cells but not regulated by BL (Figure 4.12 A).

Overall, this analysis revealed a role of BRAVO in regulating genes in-

volved in Golgi vesicle transport. These processes have not yet been stud-

ied in the root stem cells and its impact in overall root development remain

unknown. This lack of knowledge might be due to the complexity of ex-

perimentally observe the vesicles in these small and innermost located

cells.

For BRAVO downregulated genes, GO enrichment analysis revealed cat-
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GO Golgi vesicle transport

BRAVO up
GO Response to oxygen levels
De120 a 58 con fc2

BRAVO down

Figure 13. BRAVO regulated genes in the VI from selected GO categories.

Genes included in GO category “Golgi vesicle transport” (A ) and “response to oxygen levels” (B) from heatmap in Fig 14.
In B only genes with FC > 2 in BRAVO regulated dataset are shown. Left column in the heatmap shows expression in BL-
treated vs untreated comparisons. Right column in the heatmap shows expression in WT vs bravo comparisons. Color bar:
log2 of the fold change. White color in the left column indicates no significant fold change for that gene in BL vs CTL
comparison.

A BGO Golgi vesicle
transport

GO Response to oxygen
levels

Figure 4.12: BRAVO regulated genes in the VI from selected
GO categories.
Genes included in GO category “Golgi vesicle transport” (A) and “response to
oxygen levels” (B) from heatmap in Figure 4.10. In B only genes with FC >
2 in BRAVO regulated dataset are shown. Left column in the heatmap shows
expression in BL-treated vs untreated comparisons. Right column in the heatmap
shows expression in WT vs bravo comparisons. Color bar: log2 of the fold change.
White color in the left column indicates no significant fold change for that gene
in BL vs CTL comparison.
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egories related to response to chemical and other stresses as the most

enriched ones (Figure 4.10). Focusing on the genes in “response to oxy-

gen levels” category, there are 120 genes in this category (with FC higher

than 1). To narrow down the number of genes, we get the 58 ones with

FC higher than 2 (Figure 4.12 B). The most deregulated ones are PER4,

PER5 and AT2G32200 (CYSTM5). PER4 and PER5 are peroxidases.

PER4 has a role in lignification (Fernández-Pérez et al., 2015). CYSTM5

has been reported as induced by environmental stresses, whereas no spe-

cific function was known (Xu et al., 2018).

Most of these genes does not appear as BL regulated (Figure 4.12 B),

contrary to what was observed in the QC where BL regulates a big group

of genes involved in ROS responses (Figure 4.8 A). This indicates that

redox homeostasis in the QC and VI is differently regulated, and that

BRAVO is more involved in this process in the VI cells. Further analysis

dissecting ROS responses in the QC and VI separately would be required

to better understand the differences between both cell types and their

possible implications in development and stress responses.

4.5.3 BRAVO regulated genes acting downstream brassi-

nosteroids in the VI

For BL and BRAVO downstream genes, we found 170 BRAVO upreg-

ulated and BL downregulated, and 181 BRAVO downregulated and BL

upregulated (Figure 4.9 B).

To better understand the role of BRAVO in the VI, we focus our analysis

in the transcription factors downstream BRAVO, as they might be form-
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Figure 14. BRAVO downstream TFs in the VI.

Common BL and BRAVO regulated transcription factors in the VI. Left column in the heatmap shows
expression in BL-treated vs untreated comparisons. Right column in the heatmap shows expression in WT vs
bravo comparisons. Color bar: log2 of the fold change. Red squares indicate TFs as direct targets of BES1
and BZR1.

RAP2.9

ALC

ZAT6

GATA11

WRKY59

GATA20

WRKY23

WRKY8

KNAT1

LOL1

BEE1

BHLH103

TCP3

PRE6

AT5G28300

ELF6

NLP1

BRAVO

VI - BRAVO and BL regulated TFs

Figure 4.13: BRAVO downstream TFs in the VI.
Common BL and BRAVO regulated transcription factors in the VI. Left column
in the heatmap shows expression in BL-treated vs untreated comparisons. Right
column in the heatmap shows expression in WT vs bravo comparisons. Color
bar: log2 of the fold change. Red squares indicate TFs as direct targets of BES1
and BZR1.

ing part of BRAVO transcriptional complex. We found 18 transcription

factors (Figure 4.13), one of them is BRAVO, finding that validates our

experiment.

Among the TFs, two of them are linked to BR signaling: EARLY FLOW-

ERING 6 (ELF6) plays a role in BRs signaling affecting histone methy-

lation in the promoters of BR-responsive genes (Yu et al., 2008) and BR

ENHANCED EXPRESSION 1 (BEE1) acts downstream of BES1 and

is a positive regulator of photoperiodic flowering (Wang et al., 2019a).

Related to response to stresses, we found WRKY8 involved in basal de-

fense in Arabidopsis (Chen2010), AT5G28300 (GT2L) in plant responses
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to cold and salt stresses (Xi2012) and ZINC FINGER OF ARABIDOP-

SIS 6 (ZAT6) involved in salt, cadmium and phosphate stress responses

(Liu et al., 2013; Chen et al., 2016; Devaiah et al., 2007). NITRILASE-

LIKE PROTEIN 1 (NLP1) involved in the biosynthesis of polyamines

(Piotrowski et al., 2003). ALC involved in fruit development (Groszmann

et al., 2011). PRE6 (KIDARI, KDR) is involved in light signaling (Hyun

and Lee, 2006). LSD ONE LIKE 1 (LOL1) acts as a positive regulator of

cell death (Epple et al., 2003). KNAT1 (BP, BREVIPEDICELLUS) in-

volved in growth and cell differentiation of the inflorescence stems (Venglat

et al., 2002) and in secondary growth (Liebsch et al., 2014; Woerlen et al.,

2017). WRKY23 involved in stem cell specification and in auxin dis-

tribution patterns through control of flavonol biosynthesis (Grunewald

et al., 2012, 2013). TCP3 transcription factor is involved in flavonoid

production, which further negatively modulates the auxin response (Li

and Zachgo, 2013). The rest of them have not been characterized yet:

BHLH103 (B70), GATA20 (HANL1), WRKY59, GATA11 and RAP2.9

(DEAR5).

Interestingly, two of the TFs, WRKY23 and TCP3, are related to flavonol

biosynthesis influencing auxin signaling. Flavonoids are derived from

phenylpropanoid metabolism are act as ROS-scavenging compounds which

accumulate and affect root growth and development (Sanz et al., 2014). In

this aspect, BRs were reported to regulated flavonoid biosynthesis to medi-

ate growth and stress responses under changing UV-B conditions (Liang

et al., 2020), and several R2R3-MYBs are involved in the regulation of

flavonoid biosynthesis too (Dubos et al., 2010).



133
A cell-type specific transcriptomics approach uncovers the role of BRAVO in root

development

4.6 Transcriptional regulation by BRAVO and

WOX5 in the QC

We showed in chapter 3 that there is a mutual regulation between BRAVO

and the QC specific transcription factor WOX5 and that their interaction

is relevant for overall root growth and development. To further understand

this connection, WOX5 regulated genes in the QC were evaluated using

a similar FACS based approach as used for BRAVO. pWOX5:GFP plants

were used to isolate QC specific cells in WT and wox5-1 mutants, and

their transcriptome was compared (Clark et al., 2020).

In the QC, WOX5 regulates 1365 genes, from which 579 are up and 786

downregulated. Comparisons were done WT over wox5 mutant, so upreg-

ulated genes are more expressed in WT than in wox5, and the opposite for

downregulated genes (Figure 4.14 A). The transcriptional response medi-

ated by WOX5 was compared to the one mediated by BRAVO in the QC

(Figure 4.14 B), to identify their action together in those cells, where they

are controlling cell division. Overlap between WOX5 and BRAVO regu-

lated genes indicates that 985 are WOX5 regulated and independent of

BRAVO, and 380 are common between BRAVO and WOX5 (Figure 4.14

B).

Focusing in the 985 genes that are only WOX5 regulated, GO enrichment

analysis indicates that they are mostly related to biological processes in-

cluding response to stresses, chemical or hypoxia (Figure 4.14 C). Next,

the common BRAVO and WOX5 regulated genes were evaluated. We

found 380 BRAVO and WOX5 common deregulated genes (Figure 4.14

B). GO enrichment analysis of those genes indicates trichoblast differenti-



A cell-type specific transcriptomics approach uncovers the role of BRAVO in root
development 134

bravo reg.

wox5 reg.

B

C

Downregulated

Upregulated

A

D
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Figure 15: wox5 regulated genes in the QC.

A) Number of genes regulated by WOX5 in the QC (q-value < 0.05 and fold change > 1). Upregulated (red) and
downregulated (blue) are shown separately. The comparisons done are WT vs wox5. B) Area-proportional Venn
diagram showing the overlap between bravo and wox5 regulated genes in the QC.

Figure 4.14: WOX5 regulated genes in the QC.
A) Number of genes regulated by WOX5 in the QC (q-value < 0.05 and FC >
1). Upregulated (red) and downregulated (blue) are shown separately. The com-
parisons done are WT vs wox5. B) Area-proportional Venn diagram showing the
overlap between BRAVO and WOX5 regulated genes in the QC. C) GO enrich-
ment analysis of WOX5 regulated genes in the QC. D) GO enrichment analysis
of common BRAVO and WOX5 regulated genes. GO enrichments in C and D
were performed in Araport thalemine, selected categories with pvalue < 0.05 in
HolmBonferroni test and category redundancy was reduced with REVIGO.
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ation and cell wall organization as the most enriched ones (Figure 4.14 D).

This is in agreement with the significant number of BRAVO upregulated

genes in the QC involved in root hair cell development (Figure 4.6).

This data was used to evaluate if the BRAVO WOX5 complex is having

a role in transcription in the QC. For that we analyzed the genes that

are similarly regulated by both TFs, as it can mean that are regulated by

the complex. To deeper understand the behavior commonly deregulated

genes in bravo and wox5 mutants, cluster analysis was done based on their

expression fold change in both mutants (Figure 4.15 A). There is a set of

53 genes with a similar expression pattern of upregulation (orange square

in Figure 4.15 A), which might be regulated by the complex, or at least,

they are regulated by BRAVO and WOX5 in the same manner. These

findings suggest a minor role of BRAVO and WOX5 joint function in the

regulation of transcription in the QC, as the number of regulated genes is

low. GO enrichment analysis does not gives any significant category.

Among those genes we found BRAVO. In agreement with our previous re-

sults (Figure 3.8), WT plants have a higher BRAVO expression compared

to wox5 mutants. Regarding the rest of genes, some of them has been

previously characterized. Some examples are Cysteine endopeptidase 2

(CEP2), which is involved in PCD expressed in the root tip (Helm et al.,

2008), AT4G30520 is SENESCENCE-ASSOCIATED RECEPTOR-LIKE

KINASE (SARK) that regulates leaf senescence (Xu et al., 2011), and

QUASIMODO2 LIKE 2 (QUL2) is involved in environmental-dependent

stem and vascular development (Fuentes et al., 2010).

Among the common TFs regulated by BRAVO and WOX5, there are

ERF055, BHLH83 which is ROOT HAIR DEFECTIVE 6 involved in root
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BRAVO and WOX5 regulated genes in the QC – 380 genes

A B

Figure 16: BRAVO and WOX5 regulated genes in the QC.

A)

B)

C)

Figure 4.15: BRAVO and WOX5 regulated genes in the QC.
A) Expression of the 380 common BRAVO and WOX5 regulated genes from
Figure 4.14 B. Yellow square delimits the genes with similar expression pattern
in both conditions. B) Expression of the 53 genes from que yellow square in A.
Left column in the heatmap shows expression WT vs bravo comparisons. Right
column in the heatmap shows expression in WT vs wox5 comparisons. Color
bar: log2 of the fold change
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hair initiation (Mendoza and Alvarez-Buylla, 2000), WRKY38 related to

basal defense (Kim et al., 2008) or ARABIDOPSIS ZINC-FINGER PRO-

TEIN 1 (AZF1) acts as a transcriptional repressors involved in the inhibi-

tion of plant growth under abiotic stress conditions (Kodaira et al., 2011).

These TFs are possible interactors of BRAVO and WOX5 participating

in the same transcriptional complex. Many of the common deregulated

genes are uncharacterized, such as AT4G35200, AT2G17680, AT4G35200,

AT2G19970, AT4G22214 and AT4G23670.

Taking into account tissue specificity of those genes, only AT1G29980 and

BRAVO show enriched expression in the QC. AT1G29980 has unknown

function and belongs to the DUF642 family which is related to cell wall

development (Cruz-Valderrama et al., 2019). Therefore, these genes is a

candidate for further study in relation to the role of BRAVO and WOX5

together specifically in the QC cells.

Comparing WOX5 with BRAVO regulated genes (Figures 4.4 and 4.14

C), we observed that WOX5 is mostly involved in stem cell homeostasis

and BRAVO in more differentiation processes, indicating that they play

different roles and that their interaction is not essential for their function.

As we showed in chapter 4, BRAVO and WOX5 form part of the same

transcriptional complex. The comparison between BRAVO and WOX5

regulated genes revealed a group of 53 genes that are regulated by both

TFs, pointing them to be acting downstream BRAVO/WOX5 complex.

Remarkably, any of those genes has been related to QC identity or function

before, so experimental characterization of them would permit to identify

new roles in root stem cell development.

To conclude, the cell-type specific approach described in this PhD thesis
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allowed the identification of BRs and BRAVO transcriptional responses in

the QC and VI cells separately. We found that BRs and BRAVO regulate

different transcriptomes in both cell types. Enrichment in genes anno-

tated in stress responses appeared in the QC and VI datasets upon BL

treatment, however, the genes were different, pointing to cell-type specific

mechanisms regarding stem cell homeostasis. This approach also allowed

to decipher a role of BRAVO in the QC acting non-cell autonomously

in cell differentiation processes, and a role of BRAVO in the VI cells in

flavonol metabolism. Finally, several candidate genes were described as

targets of future research for uncovering BRAVO-mediated cell-type spe-

cific responses in the stem cells in root development and stress adaptation.
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Table 4.2: Groups of genes based on their regulation by BRs and
BRAVO in the VI. The group of genes considered for each scenario are
indicated with the symbols: + if the condition was happening in all the
genes in the group, ? if the condition was not taking into account to create
the group, and - if the condition was not happening in any gene in the
group. As an example, in the first category, all genes are BR upregulated
and no distinction was done if they are BRAVO regulated or not.

Scenario BR
upregu-
lated

BR
down-
regu-
lated

BRAVO
upregu-
lated

BRAVO
down-
regu-
lated

Number
of genes

BL Up all + - ? ? 609
BL Up no-
BRAVO

+ - - - 395

BL Down
all

- + ? ? 2009

BL Down
noBRAVO

- + - - 1587

BRAVO
Up all

? ? + - 821

BRAVO
Up noBL

- - + - 618

BRAVO
Up BL Down

- + + - 170

BRAVO
Down all

? ? - + 3074

BRAVO
Down noBL

- - - + 2641

BRAVO
Down BL Up

+ - - + 181
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A single-cell transcriptomic map
of the stem cell niche

5.1 Introduction

The stem cell niche is formed by distinct cell types with different degree

of stemness. The QC is in the most undifferentiated state and it divides

to originate the rest of cell types (VI, CSC and CEI), which will differen-

tiate to form the mature tissues. There are cell-type specific mechanisms

that regulate the maintenance of the different cell populations (Kajala

et al., 2020). Therefore, the use of cell-type specific approaches is key to

understand certain processes affecting each individual cell type.

The study of the stem cells has been mostly approached with the use of

FACS coupled to microarray or bulk RNAseqs, thus allowing the isolation

of certain cell types for which reporter lines has been previously created.

These approaches allowed to decipher fundamental molecular processes

affecting stem cell development (Brady et al., 2007; Clark et al., 2019,

2020). However, the use of markers limits the analysis to populations that

have already been described. In this aspect, single-cell technologies have

demonstrated the potential to discriminate cell populations without the
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need of reporter lines.

In the case of the Arabidopsis root, single-cell RNAseq was successfully

applied for the isolation of root cells comprising all root tissues including

stem cells. These studies generated a complete single-cell transcriptomic

map of the root (Ryu et al., 2019; Shulse et al., 2019; Denyer et al., 2019;

Zhang et al., 2019; Jean-Baptiste et al., 2019; Shahan et al., 2020; Wen-

drich et al., 2020). However, the information about the stem cells is still

limited, probably due to the relative low number of stem cells compared to

the rest of tissues. In addition, the expression signatures that are related

to cell fate are known to be lower than the ones defining stem cell identity

(Denyer et al., 2019), which might difficult the separation of distinct stem

cell populations. In this aspect, we wanted to delve into the molecular

signatures that define the stem cell niche with single cell resolution.

In this chapter we used single-cell RNAseq technology to explore the differ-

ent stem cell populations in the root apex, and to further understand the

role of BRAVO in these cells. We generated a single-cell RNA expression

atlas of the Arabidopsis root specifically enriched in stem cell niche cells.

We combined available datasets of cells from whole root tissues (Denyer

et al., 2019; Jean-Baptiste et al., 2019) with those of cells from the SCN

expressing pBRAVO:GFP. Those SCN cells were obtaining by FACS. All

this data was used to define different stem cell populations based on gene

expression profiles. We found that cells in the SCN can be separated in

different populations, including subpopulations in the VI cells.
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5.2 BRAVO and SUC2 markers allow the isola-

tion of individual stem and phloem cells of

the Arabidopsis root apex

In order to generate a single-cell RNA expression atlas of the stem cell

niche, we first isolated individual root cells expressing pBRAVO:GFP in

the root tip through FACS. Then, individual cells were sequenced. The

whole experiment consisted in the use of plants expressing pBRAVO:GFP

in WT and bravo-2 mutant backgrounds (Figure 5.1A), and plants pSUC2:BRL3:GFP

in WT and brl3-2 backgrounds (Figure 5.1B). In this last case, the ex-

pression of BRL3 was driven to the phloem companion cells by using the

pSUC2 promoter (Imlau et al., 1999). The line containing only pSUC2

promoter fused to GFP was not used because of its broader expression in

the root tips where the GFP is unloaded from the phloem (Imlau et al.,

1999). The expression of pSUC2:BRL3:GFP was confirmed to be ex-

pressed specifically in phloem cells (Figure 5.1 B). The comparison be-

tween WT and mutant backgrounds allowed us to further investigate the

role of BRAVO in the SCN and the role of BRL3 in phloem cells. For the

isolation of the individual cells, root tips of 5-day-old Arabidopsis plants

were enzymatically digested to break up the cells and to generate indi-

vidual protoplasts. The GFP positive cells were selected using FACS and

were placed in 96-well-plates, placing only one cell per well. The RNA of

those cells was extracted, cDNA was synthetized and single-cell RNAseq

was performed (Figure 1.4).

A total number of 660 cells were sequenced including pBRAVO:GFP in

WT and in bravo-2 backgrounds, and pSUC2:BRL3:GFP in WT and brl3-
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Figure 1. Isolation of individual stem and phloem cells of the Arabidopsis root apex.

A-B) Stem cell niche (A) and phloem (B) marker lines used for the single-cell RNAseq experiment. 
Confocal images of PI-stained 6-day-old pBRAVO:GFP (A) and pSUC2:BRL3:GFP (B) roots. GFP-
tagged expression is shown in green. Scale bar: 50um. Image A is the same showed in 
Figure_pBRAVO_chapterQCVI

pBRAVO:GFP

A B

pSUC2:BRL3:GFP

Figure 5.1: Markers used for the isolation of individual stem and
phloem cells of the Arabidopsis root apex.
A-B) Stem cell niche (A) and phloem (B) marker lines used for the single-cell
RNAseq experiment. Confocal images of PI-stained 6-day-old pBRAVO:GFP
(A) and pSUC2:BRL3:GFP (B) roots. GFP-tagged expression is shown in green.
Scale bar: 50 µm. Image A is the same showed in FigurepBRAVOchapterQCVI.
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2 backgrounds. Subsequent bioinformatic analysis of the scRNAseqs was

done using Seurat package available in R studio (Butler et al., 2018; Stuart

et al., 2019). After filtering, 228 cells were selected for further analysis:

43 pBRAVO:GFP, 125 pBRAVO:GFP;bravo-2, 9 pSUC2:BRL3:GFP and

51 pSUC2:BRL3:GFP;brl3-2 cells.

PCA analysis was used to explore primary sources of variation between

the different cells (Figure 5.2 A). This analysis showed clear separation

in two cell groups, corresponding mostly to the stem cell niche and the

phloem. This result indicates that the difference between both cell pop-

ulations is the highest source of heterogeneity in the data, pointing to

higher transcriptional differences between both cell tissues than between

WT and the different mutants (Figure 5.2 A).

Subsequently, a non-linear dimensional reduction (UMAP) and clustering

analysis was performed to identify different cell populations within the

sequenced cells (Figure 5.2 B). Similarly to the PCA, a clear separation

between the stem and the phloem cells was observed with UMAP (Figure

5.2 B). The identity of these was evaluated with the expression of stem

cell and phloem specific genes, BRAVO and SUC2 respectively (Figure 5.2

C, D). BRAVO was expressed in the largest group of cells (Figure 5.2 C)

and SUC2 in the smallest one (Figure 5.2 D). Clustering analysis revealed

the division of the stem cells in three different populations (Figure 5.2

B). However, when analyzing the number of cluster marker genes (the

genes that differentiate one cluster from the others), we found that it

was exceptionally low in some of them (94 for cluster 0, 16 for cluster 1,

299 for 2 and 352 for 3). This suggests a lack of differences between the

four groups. This result might be consequence of the low number of cells

and the high similarity between them. Therefore, we decided to integrate
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Figure 2. PCA and UMAP visualization of single stem and phloem cells.

A) PCA analysis of the 228 scRNAseqs used for the analysis. Different colors indicate cells from 
different marker lines. BRAVO_b: pBRAVO:GFP;bravo, BRAVO_WT: pBRAVO:GFP, SUC2_b: 
pSUC2:BRL3:GFP;brl3, SUC2_WT: pSUC2:BRL3:GFP
B) UMAP plot of the 228 stem and phloem cells. Different colors and numbers indicate different 
clusters.
C, D) Expression of BRAVO (C) and SUC2 (D) across cells in the UMAP in B.
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Figure 5.2: PCA and UMAP visualization of single stem and
phloem cells.
A) PCA analysis of the 228 scRNAseqs used for the analysis. Different col-
ors indicate cells from different marker lines. BRAVO b: pBRAVO:GFP;bravo,
BRAVO WT: pBRAVO:GFP, SUC2 b: pSUC2:BRL3:GFP;brl3, SUC2 WT:
pSUC2:BRL3:GFP. B) UMAP plot of the 228 stem and phloem cells. Differ-
ent colors and numbers indicate different clusters. C, D) Expression of BRAVO
(C) and SUC2 (D) across cells in the UMAP in B.
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our results with bigger single-cell datasets in order to find transcriptional

differences inside the stem cell niche.

Our analysis did not show differences between cells from bravo mutant

and WT plants; which suggests that the effect of BRAVO is negligible in

the transcriptional profile of those cells, which is in agreement with our

previous analysis of BRAVO bulk RNAseqs (Figure 4.2).

We were able to isolate and sequence individual cells of the SCN and

phloem tissue in the root apex. Unfortunately, the number of cells ob-

tained was too low to characterize the BRL3 mediated transcriptional

response in those cells. However, we used these cells as a negative control

for subsequent analysis of the stem cell niche, which we obtained by the

same experimental and computational procedures.

5.3 Generation of a single-cell RNA expression

atlas of the Arabidopsis root

To increase the resolution of existing single-cell atlas in the SCN, two

complete published datasets containing cells from whole root tissues were

integrated with our dataset. The first one is described in Denyer et al.

(2019) containing 4727 single-cell transcriptomes and the second one de-

scribed in Jean-Baptiste et al. (2019) containing 3121. In both cases they

reported the presence of cells corresponding to all major root cell types.

The integration of the three datasets was done with the Seurat R package

(Butler et al., 2018; Stuart et al., 2019), and resulted in data from 8076

cells. UMAP visualization of the integrated dataset showed homogeneous
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distribution of cells corresponding to the different datasets (Figure 5.3 A).

As expected, cells from our dataset are concentrated in specific positions

of the UMAP plot, as they only represent specific cell types, i.e. the stem

cell niche and phloem (Figure 5.3 A). In our original dataset, we observed

the SCN and the phloem cells grouped in two different cell populations

(Figure 5.3 B), which is in agreement with our previous analysis where

we clearly observed transcriptional differences between both types of cells

(Figure 5.2).

To identify the distinct cell populations, an unbiased clustering analysis

based on the gene expression profiles of the 8076 cells was performed

(Figure 5.4). A number of 23 different clusters were identified (Figure

5.4). The cells from the two published datasets were scattered among all

23 clusters (Table 5.1), suggesting that the experimental differences from

their respective sources have no effect in their distribution. In contrast,

our data from pBRAVO:GFP cells were grouped in clusters 2, 8, 10, 19,

and 21; and pSUC2:BRL3:GFP cells in clusters 2, 5, 8, 11, and 21 (Figure

5.4; 5.1).

To assign cell identities to the different clusters, the expression of known

cell-type specific genes in the 23 identified clusters was evaluated (Figure

5.5). Marker genes were obtained from several transcriptomic datasets

and were used to define cell identities in the single-cell datasets used in

this study (Denyer et al., 2019; Jean-Baptiste et al., 2019). These markers

showed expression in specific clusters and allowed us to attribute identities

to most of the clusters and to identify all principal root tissues (Figure

5.5). Altogether, we generated a single-cell RNA atlas of the Arabidopsis

root with over 8000 individual cells in which we successfully integrated

our high resolution single cell transcriptomic analysis of the root stem cell
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Figure 3. UMAP visualization of the integrated dataset.

A) UMAP plot of the 8076 cells in the integrated dataset. Different colors indicate different origin of the 
datasets. Denyer2019: \cite {Denyer2019}, JeanBaptiste2019: \cite{JeanBaptiste2019}, Original: our 
experiment.
B) Inset of the part of the UMAP including the cells from our experiment. Different colors indicate cells 
from different marker lines. BRAVO_b: pBRAVO:GFP;bravo, BRAVO_WT: pBRAVO:GFP, SUC2_b: 
pSUC2:BRL3:GFP;brl3, SUC2_WT: pSUC2:BRL3:GFP.

A

B

BRAVO_b
BRAVO_WT
SUC2_b
SUC2_WT

Denyer2019
JeanBaptiste2019
Original

Figure 5.3: UMAP visualization of the integrated dataset.
A) UMAP plot of the 8076 cells in the integrated dataset. Different colors in-
dicate different origin of the datasets. Denyer2019: Denyer et al. (2019), Jean-
Baptiste2019: Jean-Baptiste et al. (2019), Original: our experiment. B) Inset of
the part of the UMAP including the cells from our experiment. Different col-
ors indicate cells from different marker lines. BRAVO b: pBRAVO:GFP;bravo,
BRAVO WT: pBRAVO:GFP, SUC2 b: pSUC2:BRL3:GFP;brl3, SUC2 WT:
pSUC2:BRL3:GFP.



151 A single-cell transcriptomic map of the stem cell niche

Figure 4. Single-cell RNA expression atlas of the Arabidopsis root.

UMAP plot of the integrated dataset. Different colors indicate different clusters. Clusters corresponding 
to the distinct root cell types are indicated. 

Figure 5.4: Single-cell RNA expression atlas of the Arabidopsis
root.
UMAP plot of the integrated dataset. Different colors indicate different clusters.
Clusters corresponding to the distinct root cell types are indicated.
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Table 5.1: Number of cells per cluster. Number of cells correspond-
ing to different experiments in each cluster of the integrated dataset. Clus-
ters containing the majority of stem and phloem cells from our experiment
are highlighted in bold. pB: pBRAVO:GFP; pB;b: pBRAVO:GFP;bravo;
pS: pSUC2:BRL3:GFP; pS;b: pSUC2:BRL3:GFP;brl3 ; Denyer: Denyer
et al. (2019); JeanB.: Jean-Baptiste et al. (2019)

Cluster pB pB;b pS pS;b Denyer JeanB.
1 0 0 0 0 587 111
2 4 34 1 6 422 142
3 0 0 0 0 256 350
4 0 0 0 0 144 340
5 0 0 0 11 221 214
6 1 0 0 0 270 166
7 0 0 0 0 129 280
8 0 23 0 1 313 12
9 0 0 0 2 133 210
10 9 23 0 0 219 65
11 0 0 6 28 93 140
12 0 0 0 0 82 138
13 0 0 0 0 145 62
14 0 0 0 0 35 146
15 0 0 0 0 57 104
16 0 0 0 0 65 84
17 0 0 0 0 35 106
18 1 1 1 1 92 45
19 4 3 0 0 73 53
20 1 0 0 0 21 65
21 24 42 1 1 7 6
22 0 0 0 0 9 19

niche in already existing whole-root single-cell datasets (Figure 5.4).

In the integrated single-cell atlas, distinct particularities can be observed

between the different clusters related to their tissue identity. (i) Some

clusters showed a clear separation from the others, such as clusters 7 and

9, from endodermis and cortex respectively (Figure 5.4). This suggests

high transcriptional differences of these cells compared to the rest. (ii)

Other clusters share tissue identity, such as 16 that has both phloem and
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pericycle, possibly corresponding to phloem pole pericycle cells (Figure

5.4). (iii) Some root tissues like trichoblasts and atrichoblasts are divided

in several clusters. This can reflect the presence of different cell types or

developmental stages from the meristem to the differentiation zone, thus

allowing the identification of young and mature differentiations states of

the same cell type. (iv) Finally, some clusters containing a small number of

cells lack a clear identity, such as clusters 17, 20 and 22, as any evaluated

marker gene showed specific expression in that cell group (Figure 5.4).

Further analysis of these clusters could allow the discovery of new cell

populations, as they have molecular signatured that differ from the rest

of cells. These results support the use of single-cell technology for the

discovery of small or rare cell populations.

Stem cell niche and stele tissue can be divided in several populations

(clusters 2, 6, 8, 10, 19 and 21; Figure 5.5). We hypothesize that this is

due to the presence of multiple stem cell populations (QC, CEI, VI, CSC).

Clusters 6, 8 and 19 contain some columella cells, and clusters 2, 8, 10 and

21 contain mostly cells from the QC and surrounding stele cells (Figure

5.5).

One mayor advantage of the Arabidopsis root is its stereotypical orga-

nization comprising cells in all developmental stages, from stem cells to

differentiated tissues from mature root cell types. This makes single-cell

root isolation and analysis a powerful approach to study developmental

trajectories through Pseudotime analysis. In order to understand the de-

velopmental progression of the identified clusters in the root atlas, pseudo-

time analysis was performed to all cells in our integrated dataset (Figure

5.6 A). The QC is formed by the less differentiated cells in the root, as they

originate the rest of cells in the root (Heyman et al., 2014). Therefore,
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Figure 5. Expression of selected marker genes in the integrated dataset.

Expression of marker genes for cell type annotation of the single-cell RNA expression atlas of the 
Arabidopsis root shown in Figure 4. Representative selection of gene markers used for cell type 
annotation and their expression levels in the 23 clusters of the integrated dataset. Each dot corresponds to 
an individual cell. Right labels indicate the gene and the cell type in which it is expressed.

COBL9
trichoblast

GL2
atrichoblast

AT1G62510
cortex

AT2G48130
endodermis

AT1G49200
pericycle

SUC2
phloem

MYB83
xylem

ATL63
columella

Clusters

Ex
pr

es
si

on
le

ve
l

1 2 3 4 5 6 7 8 9 10 110 12 13 14 15 16 17 18 19 20 21 22

PLT1
SCN, columella

Figure 5.5: Expression of selected marker genes in the integrated
dataset.
Expression of marker genes for cell type annotation of the single-cell RNA expres-
sion atlas of the Arabidopsis root shown in Figure 5.4. Representative selection
of gene markers used for cell type annotation and their expression levels in the
23 clusters of the integrated dataset. Each dot corresponds to an individual cell.
Right labels indicate the gene and the cell type in which it is expressed.



155 A single-cell transcriptomic map of the stem cell niche

the QC cells were selected as Pseudotime 0 for the analysis. The selection

of QC cells was done by identifying the cells expressing WOX5 and PAN,

two QC-specific genes (Sarkar et al., 2007; de Luis Balaguer et al., 2017),

which were enriched in cluster 8 (Figure 5.6 B, C). Pseudotime analysis

revealed a group of less differentiated cells corresponding with the SCN

and stele cell clusters mostly, supporting the annotation of this group.

In agreement with Denyer et al. (2019), meristematic cells are grouped

together independently of the cell type that they are going to originate.

In conclusion, the integration of published single-cell datasets with our

scRNAseqs of the stem and phloem cells allowed us to generate a whole

root dataset containing all root cell types with specific enrichment in stem

cells.

5.4 The stem cell niche can be separated in four

different stem cell populations

To study the transcriptional profile of the stem cells, we enriched the root

atlas dataset with our data from cells expressing pBRAVO:GFP. BRAVO

is expressed in the SCN, and specifically in the QC and the VI cells (Figure

5.7 A). In bravo-2 mutant, the expression of pBRAVO:GFP increased and

shifted to more stele cells and to the cortex and endodermis initials (Figure

5.7 B).

We first evaluated BRAVO expression in the integrated dataset, based on

the assumption that clusters expressing BRAVO corresponded to the stem

cell niche. Most of the cells expressing BRAVO were found in clusters 2,

8, 10 and 21 (Figure 5.7 C), which supports our previous result of these
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Figure 6. Pseudotime analysis of the integrated dataset.

A) Pseudotime analysis of the 8076 root cells. SCN and stele clusters correspond with cells positioned 
early in the pseudotime trajectory.
B, C) WOX5 (B) and PAN (C) expression in the cells was used to specify stem cells as pseudotime 0.  

CB WOX5 PAN

A

Figure 5.6: Pseudotime analysis of the integrated dataset.
A) Pseudotime analysis of the 8076 root cells. SCN and stele clusters correspond
with cells positioned early in the pseudotime trajectory. B, C) WOX5 (B) and
PAN (C) expression in the cells was used to specify stem cells as pseudotime 0.
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Figure 7. BRAVO is expressed in different stem cell populations.
A, B) Confocal images of PI-stained 6-day-old pBRAVO:GFP (A) and pBRAVO:GFP;bravo (B) roots. 
GFP-tagged expression is shown in green. Scale bar: 50um. Images are the same showed in 
Figure_pBRAVO_chapterbravowox5.
C) Expression of BRAVO in individual cells of the different clusters in the integrated dataset. 
D) Inset of Figure 4 indicating clusters 2, 8,10 and 21 where BRAVO is expressed that correspond to 
stem cell populations.

C BRAVO

D

bravo-2;pBRAVO:GFPpBRAVO:GFP

A B

Clusters

Figure 5.7: BRAVO is expressed in different stem cell popula-
tions.
A, B) Confocal images of PI-stained 6-day-old pBRAVO:GFP (A) and
pBRAVO:GFP;bravo (B) roots. GFP-tagged expression is shown in green. Scale
bar: 50µm. Images are the same showed in 3.5. C) Expression of BRAVO in
individual cells of the different clusters in the integrated dataset. D) Inset of
Figure 5.4 indicating clusters 2, 8,10 and 21 where BRAVO is expressed that
correspond to stem cell populations.
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clusters containing most of the cells expressing pBRAVO:GFP, annotated

as SCN and stele in the root atlas (Table 5.1, Figure 5.3). Altogether,

we concluded that pBRAVO domain can be separated in 4 different cell

populations corresponding to clusters 2, 8, 10 and 21 (Figure 5.7 D).

To further characterize and assign identity to the 4 SCN populations iden-

tified, we evaluated the expression of QC and VI specific genes, the expres-

sion of cell division genes, and the defining genes of each cluster through

GO enrichment analysis.

In order to identify QC and stele cells, the expression of known QC and

stele genes was assessed (Denyer et al., 2019; Jean-Baptiste et al., 2019).

For the QC, BRAVO, WOX5, AGL42, SCR, PAN, RGF8, TEL1, BBM

and DUF9 gene expression was evaluated (Figure 5.8). For the stele,

BRAVO, AHP6, ATHB15, SHR, WOL, ARF7, ROW1 and PHB gene ex-

pression was evaluated (Figure 5.9). QC genes were expressed mainly in

clusters 8 and 10 (Figure 5.8), while stele genes were mostly observed

in clusters 2 and 21 (Figure 5.9). Remarkably, in all clusters there was

some expression of the other cell type marker genes, which indicated the

presence of both cell types, whereas there is a clear predominant one.

Although these results indicate differences between QC and stele cell pop-

ulations, these differences are not sufficient to separate between clusters,

thus suggesting that there might be some differences, as for example in

developmental processes such as cell division.

The stem cell niche is characterized by the high mitotic rate of their cells,

except the QC cells, which are the ones with the lowest rate that remain

quiescent (Heyman et al., 2014). To further understand the cell division

status of the 4 stem cell populations identified, we evaluated the expression
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Figure 8. Clusters 8 and 10 have more QC identity.

Expression of genes expressed in the QC in individual cells of the different clusters in the integrated 
dataset. 
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Figure 5.8: Clusters 8 and 10 have more QC identity.
Expression of genes expressed in the QC in individual cells of the different clusters
in the integrated dataset.
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Figure 9. Clusters 9 and 21 have more stele identity.

Expression of genes expressed in the stele in individual cells of the different clusters in the integrated 
dataset. 

Figure 5.9: Clusters 9 and 21 have more stele identity.
Expression of genes expressed in the stele in individual cells of the different clus-
ters in the integrated dataset.



161 A single-cell transcriptomic map of the stem cell niche

of cell cycle related genes (Torii et al. (2020), Figure 5.10). The cell

cycle can be divided in different stages: G1 corresponding to the gap

between mitosis and DNA replication, S to the DNA replication, G2 to

the gap between DNA replication and mitosis, and M to the mitosis and

cytokinesis (Gutierrez, 2009).

The analysis of stage-specific gene expression in the integrated dataset

revealed a clear enrichment of genes related to G2 and M phases in cluster

10 cells (Figure 5.10 A). The higher levels of expression of S phase genes

was found in cells from clusters 21, 2 and 10 (Figure 5.10 B). As for G1

phase, any cluster with higher expression of those genes was found (Figure

5.10 C). These results highlight the molecular signature of the stem cells

in terms of cell division genes, as cell cycle genes are more express in stem

cells than in the rest of root cells (Figure 5.10). Our analysis indicates that

cluster 2 contains cells in S phase, cluster 10 in G2/M and S phases, and

cluster 21 in S phase of the cell cycle. Clusters 2 and 21 showed mainly

VI identity (Figure 5.8), although cluster 21 presented higher expression

of G2/M and G1 phase genes than cluster 2 (Figure 5.10).

To finely differentiate the four stem cell populations, we analyzed the genes

that distinguish one population from the others (called marker genes). We

first compared each cluster to the whole root atlas and we found 878 genes

marker genes for cluster 2, 1007 for cluster 8, 1061 for cluster 10 and 1708

for cluster 21 (Figure 5.11 A). To focus on the stem cell niche, we also

compared each cluster against the other three and we found 163 marker

genes for cluster 2, 441 for cluster 8, 171 for cluster 10 and 995 for cluster 21

(Figure 5.11 B). This indicated that clusters 8 and specially 21 presented

a more unique transcriptional profile, as the number of marker genes was

higher.
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Figure 10. Expression of cell cycle stage-specific genes in the integrated dataset.

Expression of cell cycle stage-specific genes from Torii2020 in the different clusters of the integrated 
dataset. Dot diameter indicates the proportion of cluster cells expressing a given gene, and color indicates 
the mean expression across cells in that cluster. 
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Figure 5.10: Expression of cell cycle stage-specific genes in the
integrated dataset.
Expression of cell cycle stage-specific genes from Torii et al. (2020) in the different
clusters of the integrated dataset. Dot diameter indicates the proportion of cluster
cells expressing a given gene, and color indicates the mean expression across cells
in that cluster.
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Figure 11. Cluster marker gene number and GO analysis of the stem cell populations.

A, B) Number of cluster marker genes for clusters 2, 8, 10 and 21 from the integrated dataset calculated 
against rest of cells of all tissues (A) and against rest of SCN cells (B).  
C – F) GO enrichment analysis of cluster marker genes for cluster 2 (C), 8 (D), 10 (E) and 21 (F) against 
rest of SCN clusters. GO enrichment performed in Araport thalemine, selected categories with pvalue < 
0.05 in HolmBonferroni test. Category redundancy was reduced with REVIGO 0.5.

A

C Cluster 2 – 163 genes Cluster 8 – 441 genes

Cluster 10 – 171 genes Cluster 21 – 995 genes 

D

E F

Clusters Clusters
2 8 10 21 2 8 10 21

BCluster markers against all root cells Cluster markers against SCN cells

Figure 5.11: Cluster marker gene number and GO analysis of
the different stem cell populations.
A, B) Number of cluster marker genes for clusters 2, 8, 10 and 21 from the
integrated dataset calculated against rest of cells of all tissues (A) and against
rest of SCN cells (B). C – F) GO enrichment analysis of cluster marker genes
for cluster 2 (C), 8 (D), 10 (E) and 21 (F) against rest of SCN clusters. GO
enrichment performed in Araport thalemine, selected categories with pvalue <
0.05 in Holm-Bonferroni test. Category redundancy was reduced with REVIGO
0.5.
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To find out the molecular process that characterize each population, GO

enrichment analysis of the marker genes that distinguish each popula-

tion in the stem cell niche was performed (Figure 5.11 C-F). Each cluster

showed enrichment in categories related to different processes: cluster 2

related to protein processes such as protein folding and nucleosome assem-

bly (Figure 5.11 C), cluster 8 related to different stresses response (Figure

5.11 D), cluster 10 related to cell cycle and cell division (Figure 5.11 E),

and cluster 21 related to cell division and meristem development (Fig-

ure 5.11 F). These results highlight the differences between the 4 stem

cell populations, as their cluster marker genes were involved in distinct

molecular processes.

Overall, our computational approach permitted the identification of four

different stem cell populations with unique molecular characteristics:

(i) Cluster 2 cells showed higher stele identity, expression of cell cycle genes

from phase S and enrichment in protein synthesis GO categories. This

suggested that they were mostly stele cells that activate the machinery

required for division (in phase S of the cell cycle).

(ii) Cluster 8 corresponded mostly to QC cells and showed enrichment in

genes involved in response to different stimulus. Cluster markers of this

population failed to show enrichment in any cell cycle stage. These results

suggest that cluster 8 cells were in a quiescent state ready to divide if some

stimulus appears.

(iii) Cluster 10 cells have both QC and stele identity, and they show high

expression of cell division genes mostly involved in G2/M phase of the

cell cycle. This suggest that these cells are probably dividing and stating

to differentiate from QC to vascular initial cells and from vascular initial
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cells to vascular cells.

(iv) Cluster 21 contained mainly stele cells expressing cell cycle genes from

S phase. Their distinctive genes were involved in several processes such

as cell division, chromosome segregation and meristem development; and

the number of those distinctive genes is the highest. These results pointed

to a unique population of stele cells with well-defined molecular features

different from the rest of stem cells.

Clustering analysis and functional annotation of the transcriptional profile

of stem cells allowed us to identify different stem cell populations, mainly

through their cell type and cell division status. We proposed that cluster 8

were undivided QC, cluster 10 were divided QC or newly formed VI cells,

and cluster 21 and 2 were more differentiated VI cells. These populations

might be representative of different stages of stem cell development, from

more quiescent to more mature stem cells.

Overall, we were able to identify quiescent QC (cluster 8) cells, mitotic QC

and stele cells (cluster 10) and phase-S stele cells with abundant protein

synthesis processes (cluster 2). Interestingly, cluster 21 presented unique

characteristics both in the cell cycle state and in the molecular processes

in which their genes were involved, so we decided to further investigate

this specific population.
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5.5 Identification of a novel vascular stem cell

population

To further investigate the molecular signatures of the identified stem cell

populations, the tissue-specificity the cluster marker genes was evaluated.

TOTEM tool was used to calculate if the markers identified as distinc-

tive of the SCN populations are enriched in any tissue of the Arabidopsis

root (Lozano-Elena et al., unpublished). This tool incorporates cell-type

specific datasets from both radial and longitudinal sections (Brady et al.,

2007) and allows the inference of enrichment in particular tissues and

developmental stages of the root. The obtained results informed about

specific tissues that are more abundant in each cluster (Figure 5.12).

Tissue-enrichment analysis revealed that marker genes from cluster 2 were

enriched in the provascular and epidermis tissues (Figure 5.12 A), from

cluster 8 in the QC and columella (Figure 5.12 B), and from cluster 10

in the vascular initials (Figure 5.12 C). These findings were in agreement

with the previously assigned QC and stele identity of clusters 2, 8 and 10

cells, based on the expression of QC and stele markers (Figures 5.8 and

5.9). Interestingly, cluster 21 cells presented enrichment in the VI area,

specifically in the central section, that is unique in comparison to clusters 2

and 10 (Figure 5.12 D). Also, the cluster 21 tissue-enrichment analysis did

not show a clear enrichment in any specific cell type, even when several

of them were represented, especially phloem and xylem related tissues

(Figure 5.12 D). These results might indicate that cluster 21 cells were

in an undifferentiated state, or that their marker genes have not been

associated to a known cell type yet.
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Figure 12. Tissue-specific enrichment of cluster marker genes.

Results from TOTEM software indicating tissue-specific enrichment for cluster 2 (A), 8 (B), 10 (C) and 
21 (D) against rest of SCN clusters. AGL42: Quiescent center, APL: Phloem + companion cells, COBL9:
Root hair cells, CORTEX: Cortex, GL2: non-hair cells, J2261: Pericycle, JO121: Xylem
pole pericycle, LRC: Laterac root cap, PET111: Columella, RM1000: Lateral root primordia,
S17: Phloem pole pericycle, S18: Maturing xylem, S32: Protophloem, S4: Developing xylem,
SCR5: Endodermis, SUC2: phloem companion cells.

A BCluster 2 C DCluster 8 Cluster 10 Cluster 21

Figure 5.12: Tissue-specific enrichment of cluster marker genes.
Results from TOTEM software indicating tissue-specific enrichment for cluster 2
(A), 8 (B), 10 (C) and 21 (D) against rest of SCN clusters. AGL42: Quiescent
center, APL: Phloem + companion cells, COBL9: Root hair cells, CORTEX:
Cortex, GL2: non-hair cells, J2261: Pericycle, JO121: Xylem pole pericycle,
LRC: Laterac root cap, PET111: Columella, RM1000: Lateral root primordia,
S17: Phloem pole pericycle, S18: Maturing xylem, S32: Protophloem, S4: De-
veloping xylem, SCR5: Endodermis, SUC2: phloem companion cells.
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Figure 13. Expression of cluster 21 marker genes.

Expression of the 107 marker genes that show more unique expression in cluster 21 compared to the 
rest of clusters. Dot diameter indicates the proportion of cluster cells expressing a given gene, and 
color indicates the mean expression across cells in that cluster. 

Figure 5.13: Expression of cluster 21 marker genes.
Expression of the 107 marker genes that show more unique expression in cluster
21 compared to the rest of clusters. Dot diameter indicates the proportion of
cluster cells expressing a given gene, and color indicates the mean expression
across cells in that cluster.

Due to the unique features of cluster 21 cells, we decided to investi-

gate the marker genes that differentiate this population from the oth-

ers. To achieve this, genes that were more expressed in cluster 21 cells

than in other clusters were manually selected. A total number of 107

genes were found to be clearly enriched in this cluster (Figure 5.13),

some of which have already been characterized, for example BODEN-

LOS (BDL), DNA-DAMAGE-REPAIR/TOLERATION PROTEIN 112

(DRT112), SIN3-LIKE 3 (SNL3), SABRE (SAB), KNOTTED-LIKE HOME-

OBOX OF ARABIDOPSIS THALIANA 7 (KNAT7), UB-LIKE PRO-

TEASE 1A (ULP1A), DOF TRANSCRIPTION FACTOR 6 (DOF6), TI-

TAN 1 (TTN1), CELL CYCLE SWITCH PROTEIN 52 A2 (CCS52A2),

AMINE OXIDASE1 (AO1) and PIN2 PROMOTER BINDING PROTEIN

1 (PPP1).

BDL is involved in cell specification and organogenesis (Hamann1999, Wei-

jers et al., 2006, De Smet et al., 2010). DRT112 (PETE2) encodes a

plastocyanin that functions in copper homeostasis (Abdel-Ghany, 2009).
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SNL3 is involved in the regulation of transcription and genome stability

(Bowen et al., 2010). SAB is involved for cortical microtubule orienta-

tion during cell elongation and polarity (Pietra et al., 2013) and in root

epidermal hair cell patterning (Pietra et al., 2015). KNAT7 is a regu-

lator of secondary wall biosynthesis (Li et al., 2012). ULP1A encodes

a SUMO protease (Srivastava et al., 2020). DOF6 is involved in radial

growth (Miyashima et al., 2019). TTN1 is related to cytoskeleton organi-

zation (Liu and Meinke, 1998). CCS52A2 (FZR1) is required for meristem

organization and stem cell maintenance (Vanstraelen et al., 2009). AO1

encodes an amine oxidase involved in protoxylem differentiation (Ghuge

et al., 2015). PPP1 is a regulator of PIN expression (Benjamins et al.,

2016). The rest of the genes have not been characterized yet but have

research potential as they show preferential expression in a very specific

vascular stem cell population.

Analysis of the function of the 107 cluster 21 marker genes through GO

enrichment analysis did not reveal any enrichment. However, the described

function of the characterized genes suggests functions such as stem cell

development, cell polarity, radial growth and vascular development. These

processes are related to the nature of the provascular cells, as they divide

anticlinaly and periclinaly and differentiate to form the vascular tissues

(Scheres et al., 1995; Mähönen et al., 2000; Bishopp et al., 2011).

In conclusion, we propose that cluster 21 cells are a novel cell type corre-

sponding to the vascular stem cells located just above the QC and in the

middle section of the root, based on the following criteria:

(i) Cluster 21 was enriched in pBRAVO:GFP cells (Table 5.1). We used

FACS for the isolation of specific cells, so the stem cells showing GFP
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expression were selected in the cytometer. As shown in figure 5.5, the

GFP expression in the SCN was higher in the cell located in the center of

the VI just above the QC. When performing FACS, it is more probable to

select these cells due to its higher GFP intensity, which explains the high

number of these cells we found. In Denyer et al. (2019) and Jean-Baptiste

et al. (2019), the population of this cell type was too small, so it was not

recognized as one individual cluster.

(ii) Cluster 21 corresponded to stele cells because it expressed genes pre-

viously described as stele specific (Figure 5.9) and some of their marker

genes were vascular specific such as BDL, KNAT7 and DOF6 (Figure

5.13).

(iii) Cluster 21 showed expression of genes involved in cell cycle in all

stages, indicating that this population had molecular signatures different

than cell cycle status that make them unique.

5.6 Deciphering the role of BRAVO in the stem

cell niche with single-cell resolution

Our approach allowed the identification of different stem cell populations

within the BRAVO expression domain. In addition, our experimental set

up also included cells in WT and bravo mutant background with the ob-

jective of identifying the role of BRAVO in those different populations. To

characterize the role of BRAVO, differential expression analysis between

WT and bravo RNAseqs were performed in the distinct clusters of the

integrated dataset containing SCN cells (2, 8, 10 and 21).
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Our differential expression analysis yielded a low number of significant

deregulated genes, probably due to the low cell number we obtained in

each cluster, as sample size has been described as a key factor in this

analysis (Soneson and Robinson, 2018). The gene expression analysis to

compare bravo to WT cells, from either our data or published datasets,

did not show differential expression in any of the analyzed cluster, except

for 6 genes from cluster 21 (Table 5.2). In this case, cluster 21 showed

the highest number of WT and bravo cells from our experiment: 42 and

24 cells respectively, and 13 WT cells from Denyer et al. (2019) and Jean-

Baptiste et al. (2019) datasets.

Table 5.2: BRAVO regulated genes in cluster 21.

ATG Name LogFC bravo
against WT

Adjusted
p-value

AT2G02910 - -0.30 0.0071
AT1G68310 AE7 0.26 0.0099
AT4G23540 - 0.64 0.0149
AT5G52810 SARD4 0.29 0.0213
AT1G76510 ARID4 0.25 0.0214
AT5G11380 DXS3 -0.88 0.0223

The 6 genes that were differentially expressed between bravo and WT cells

are AT2G02910, AT1G68310 (AE7), AT4G23540, AT5G52810 (SARD4),

AT1G76510 (ARID4) and AT5G11380 (DXS3) (Table 5.2). The genes

more expressed in bravo were AE7, AT4G23540, SARD4 and ARID4,

while the less expressed were AT2G02910 and DXPS3. The function of

these six genes has been previously described: AE7 has been involved

in nuclear genome integrity (Luo et al., 2012); SARD4 in Pipecolic acid

biosynthesis for defense responses (Ding et al., 2016); DXPS3 was de-

scribed as a putative 1-deoxy-D-xylulose 5-phosphate synthase (Carretero-

Paulet et al., 2013); and AT4G23540, ARID4, and AT2G02910 remain
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uncharacterized.

Altogether, we have found BRAVO regulated genes in the stem cell popu-

lation of cluster 21 with single-cell resolution. Interestingly, among these

genes is AE7 that have been involved in genome integrity, a key function

of vascular initial cells for the arrest of cell cycle after damage stress (Luo

et al., 2012). This might indicate a role of BRAVO in damage responses

processes in the VI cells (Vilarrasa-Blasi et al., 2014). Unfortunately, we

were unable to identify BRAVO regulated genes in other cell populations

due to the low number of sequenced cells.

5.7 Future perspectives

In this chapter we generated a single-cell RNAseq atlas of the stem cell

niche. Further analysis would help to elucidate the molecular signatures

of the stem cells and the role of BRAVO in the different populations. To

continue with this analysis, the following approaches are proposed:

• To increase the number of WT and bravo cells to identify differen-

tially expressed genes in the different SCN subpopulations identified

in this chapter.

• To perform Pseudotime analysis to identify possible developmental

branches within the stem cells.

• To complete the integrated dataset with the use of published datasets

containing more root cells data. Recently, in Wendrich et al. (2020)

a complete atlas with data from more than 15000 cells was pub-

lished, including a high number of initial cells. This study indicates
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the separation of the initials based on the tissue that are going to

develop, hence combining this data with ours might allow us to sep-

arate initial cell populations based on their cell type.

• To increase the number of pSUC2:BRL3:GFP and pSUC2:BRL3:GFP;brl3-

2 cells for the analysis to investigate the role of BRL3 in the phloem

with single cell resolution.

• To validate experimentally our computational analysis in order to

identify key molecular components of the stem cell niche involved in

stem cell division and differentiation.



Chapter 6

General Discussion
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General Discussion

The root stem cell niche is essential for plant growth and development.

In the last years, several studies in the plant model Arabidopsis have

started to shed light on the molecular mechanisms for stem cell division,

differentiation and the maintenance of stem cell pools both in roots and

shoots. Those advances are mostly linked to the development of new

technologies that allow precise analysis of small cell populations. The

present PhD dissertation advances in the molecular understanding of stem

cell development in plants by focusing on the study of BRAVO, a root

stem-cell specific transcription factor.

In chapter 2, we presented MyROOT software for the semiautomatic quan-

tification of plant root length. In chapter 3, we used multidisciplinary

approaches to unveil the role for BRAVO and WOX5 together in root

growth and development. In chapter 4, we evaluated the transcriptomic

impact of BRs and BRAVO in the QC and VI cells with cell-type resolu-

tions. In chapter 5, we described the use of single-cell technology for the

characterization of the root stem cell niche populations.



177 General Discussion

6.1 MyROOT software facilitates Arabidopsis pri-

mary root length measurements

Despite the existence of several softwares (Table 2.1), MyROOT covers a

gap for the analysis of Arabidopsis seedling that was not addressed be-

fore. The determination of root length in such accuracy is key in the

study of plant growth and developmental processes, where small root dif-

ference can lead to the identification of important genes (Benfey et al.,

1993; Li et al., 2001; Mouchel et al., 2004; Rodrigues et al., 2009). We

found that the implementation of primary root phenotyping algorithms

in a platform independent, semi-automatic and user-friendly software to

accurately measure root length achieved by using MyROOT will replace

the so far used manual and time-consuming tools such as ImageJ.

MyROOT operates fast without losing accuracy in the final

results

We confirmed that MyROOT gives the most precise root length mea-

surements when compared with the more similar softwares BRAT and

EZ-Rhizo (Table 2.2 and Figure 2.10). Remarkably, the accuracy is main-

tained both in the manual and in the batch processing mode of My-

ROOT (Figure 2.5 and 2.7), being therefore suitable for low-scale and

high throughput experiments. The time required for this task is consid-

erably reduced when using MyROOT compared to most of the softwares

evaluated (Figure 2.6 and Table 2.2). In our experimental conditions,

only BRAT operates in a faster manner, whereas the final results are less

accurate (Table 2.2 and Figure 2.10). This can be explained because of
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the limited control that BRAT offers for the adjustment of its internal

parameters by the users to adapt to different imaging conditions, which

may result in low root detection rates (Table 2.2). On the other hand,

MyROOT easily allows the modification of different thresholds (scale and

root mask threshold and hypocotyl detection method) to define the opti-

mal parameters for the analysis.

MyROOT workflow allows adaptability to different experi-

mental conditions

One of the main limitation of existing softwares is the adaptability to

different experimental conditions, which limits the use of current tools.

This fact explains the use of ImageJ, which is simple and easy to implement

in any type of plant images. With this in mind, MyROOT was developed

to adapt to several conditions in terms of scale, seedlings and hypocotyls

detection.

A novel feature of MyROOT compared to existing softwares is the ability

to automatically identify the scale by detecting a ruler over the imaged

plate (Figure 2.3); thus being able to automatically adapt to different

imaging conditions and settings; and therefore being able to work inde-

pendently from specific hardware set ups (Table 2.1).

MyROOT2, the updated version of MyROOT, allows the manual and

automatic identification of the seedlings over the plate (Figure 2.11). This

feature enables the analysis of images with seedling located all over the

plate, which might be relevant in different experimental set ups.

MyROOT software uses machine learning based algorithms to identify
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Arabidopsis hypocotyls, which allows its identification in different mutants

and experimental conditions even when they are overlapped or present

different morphologies (Figure 2.9). In exceptional cases in which the

hypocotyls are not automatically identified, or in the case that the soft-

ware is used for the analysis of other plant species, they can be manually

indicated by simply pointing over them. Machine learning has been re-

cently started to be implemented in plant image analysis softwares as it

allows precise identification of the plant over the image. This methodol-

ogy has been already included in tools for the analyssis of complex root

architecture systems and hypocotyls (Yasrab et al., 2019; Dobos et al.,

2019).

In addition to the automatic processing of several images, MyROOT allows

the user supervision during all the process. It displays intermediate results

during the analysis and allows the modification of different parameters to

get the optimal results. Despite that MyROOT only indicates the primary

root length, the output is also saved in RSML format which allows its

compatibility with other softwares that can determine other aspects of

root architecture such as curvature or branching (Lobet et al., 2015).

Overall, we advanced the utility of MyROOT for the determination of Ara-

bidopsis root length in a precise, fast and simple manner. It incorporates

powerful algorithms for the identification of the scale and the seedlings

over standard images of agar plates. They are incorporated in a user-

friendly graphical interface that allows its supervision and manipulation

during the different steps of the analysis.

Finally, MyROOT is a modularly designed software consisting of a group

of specialized algorithms able to detect and analyze the measuring tape,
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detect the roots, track the roots in a bottom-up fashion, and detect the

hypocotyls. Therefore, any improvement to any of these components,

or new algorithms for the determination of other features, can be eas-

ily included in subsequent versions of MyROOT. Examples of future im-

provements that could be included are the development of daily growth-

monitoring algorithms that permit the detection of abnormal root growth

patterns, the analysis of root system architecture beyond the primary

root, and the identification of hypocotyls from other plant species. In the

future, upgraded versions of our software could consist of a completely

automatic operation connected to high-throughput facilities for massive

characterization of root traits.

6.2 BRAVO and WOX5 interplay in the stem cell

niche controls quiescence

In the Arabidopsis primary root apex, BRAVO and WOX5 are two tran-

scription factors whose expressions co-localize mostly at the QC cells where

they repress their divisions (Vilarrasa-Blasi et al., 2014; Forzani et al.,

2014). In chapter 3, we used a multidisciplinary approach combining ex-

perimental data with mathematical modeling to show that BRAVO and

WOX5 interplay at different levels to repress QC divisions. In addition,

we show that the joint action of these cell-specific transcription factors

promotes overall root growth and development.
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BRAVO and WOX5 expression are mutually regulated

Our results indicate that BRAVO and WOX5 mutually promote each other

expression. In WOX5 mutant and overexpressor plants, BRAVO expres-

sion is decreased and enhanced, respectively, compared to WT plants (Fig-

ures 3.5 and 3.6); supporting that WOX5 activates BRAVO expression.

In BRAVO overexpression and loss-of-function mutant plants, WOX5 ex-

pression is decreased and unaltered, respectively (Figures 3.8 and 3.9).

These observations denote that neither of both TFs is downstream the

other, as their mutual regulations are very distinct. We also found that

BRAVO and WOX5 have a self-regulation as their expression levels are

higher in their own mutant background (Figures 3.5 and 3.8). Altogether,

we can infer that while WOX5 is able to induce BRAVO, BRAVO does

not directly induce WOX5 expression, but it drives partial inhibition of

WOX5 self-regulation. These different regulatory mechanisms and the

quantitative changes in gene expression they drive, suggest that the effect

of WOX5 on BRAVO and thereby on BRAVO-mediated regulation can

be more relevant than the effect BRAVO has upon WOX5 and WOX5-

mediated action.

BRAVO and WOX5 interact

Another important molecular link between BRAVO and WOX5 as re-

vealed by our data is their physical protein-protein interaction (3.13).

Major co-localization of BRAVO and WOX5 transcription factors in the

QC suggest that they act as co-partners of a single complex particularly

in the QC, where they converge. These confirmed protein interactions,

together with the expression data, can be used to propose the mechanism
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driving BRAVO and WOX5 circuit.

The mutual regulation between BRAVO and WOX5 involves WOX5 self-

inhibition while it induces the expression of BRAVO, which in turn re-

verses WOX5 self-repression. Based on our data, it can be suggested that

WOX5 self-inhibition is through WOX5 bound to TPL and that BRAVO

attenuates it by competing with TPL for binding WOX5. Moreover,

BRAVO is found to ultimately down-regulate its own expression, although

this probably occurs through other intermediate molecules, as BRAVO

has been shown to activate itself by directly binding its own promoter

(Vilarrasa-Blasi et al., 2014). By evaluating expression changes between

the WT and the mutants we gained information on the overall BRAVO-

WOX5 regulatory system. Its regulation results from the direct binding

of these proteins to their promoters and from the transcriptional control

driven by them, as far as these proteins bind each other and to additional

regulators. Hence, interactions here described are effective since that they

are the result of multiple, direct and indirect, regulatory mechanisms.

For instance, WOX5 self-repression can also involve a negative feedback

where WOX5 activates a repressor or represses an activator, among other

possibilities. In this context, control of auxin-ARF and auxin-IAA (Tian

et al., 2014) as well as the PLETHORA genes (Burkart et al., 2019) were

all shown to involve negative feedbacks with WOX5. WOX5 induction

of BRAVO expression could be as well through a downstream target of

WOX5.
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Relevance of BRAVO and WOX5 molecular circuit in root

growth and development

Both BRAVO and WOX5 transcription factors are repressors of QC divi-

sions (Vilarrasa-Blasi et al., 2014; Forzani et al., 2014). We found similar

phenotypes of higher percentage of divided QC cells in all bravo, wox5 and

bravo wox5 double mutants, thus pointing to an interdependently func-

tion in this process (Figure 3.1). The finding that the effect of WOX5

on BRAVO is more relevant than the effect of BRAVO upon WOX5 is

consistent with the known SCN phenotypes of bravo and wox5 mutants

(Bennett et al., 2014; Forzani et al., 2014; Pi et al., 2015; Sarkar et al.,

2007; Vilarrasa-Blasi et al., 2014), where wox5 exhibits, besides a sim-

ilar increased QC division phenotype as bravo, an overall distorted and

disorganized SCN morphology and CSC premature differentiation that is

absent in the bravo mutant (Figure 3.1).

Our analysis supports that QC division is controlled via BRAVO-WOX5

joint regulation, besides an additional regulation individually mediated

by BRAVO. This joint regulation is expected to be mediated by BRAVO-

WOX5 physical interaction. This scenario explains the phenotype of in-

creased divisions at the QC upon BL treatment (González-Garćıa et al.,

2011), by the response of BRAVO and WOX5 to this treatment and their

respective roles as repressors of QC divisions. Actually, although the in-

tensity and domain of expression of WOX5 increases in roots grown in BL

medium, at the same time the BL treatment strongly represses BRAVO

(Vilarrasa-Blasi et al., 2014). Hence, in the absence of its partner BRAVO,

WOX5 no longer represses QC divisions in roots grown on BL. At a mecha-

nistic level, the BRAVO-WOX5 protein complex may bind CYCLIN-D3:3,
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as shown to occur for WOX5 (Forzani et al., 2014).

Interestingly, we also described that BRAVO and WOX5 promote root

growth and lateral root development (Figures 3.2 and 3.3). We found

that double mutant bravo wox5 have a more exaggerated reduction in

LR(s) density than the single mutants, which also have lower values of

this parameter compared to the WT (Figure 3.3). In LR development,

the formation of the organizing center and the stem cell niche occurs after

LR initiation (Banda et al., 2019). A high number of genes are commonly

expressed at the SCN of primary and LRs, such as WOX5, PLT, SHR,

SCR or TCP (Goh et al., 2016; Shimotohno et al., 2018). Loss-of func-

tion of these genes leads to an increased number of aberrant lateral roots

and reduced levels of WOX5 (Shimotohno et al., 2018), and thus it is

possible that BRAVO/WOX5 complex not only controls stem cell niche

maintenance in the primary root, but also in the LRs. The consistent and

overlapping role of BRAVO and WOX5 at promoting lateral root devel-

opment also points to a relevant role of the BRAVO-WOX5 complex for

this function.

Our study also sets a framework for future studies on the interplay between

WOX5 and BR signaling in the control of CSC differentiation. WOX5 is

known to repress CSC differentiation (Pi et al., 2015; Sarkar et al., 2007).

However, upon BL treatment, and in bes1-D gain of function mutants,

CSC differentiate prematurely (González-Garćıa et al., 2011) in apparent

contradiction with the inhibitory role associated with WOX5, and its in-

duced expression in these roots. One option comes from assuming that

BL-induced CSC differentiation is independent from WOX5 and overrides

WOX5-mediated repression. In this case, a tug-of-war between WOX5-

mediated repression and BL-dependent activation of CSC differentiation
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would tip the balance in favor of BR-action. Another possibility is that BR

downstream effectors such as BES1-D inactivate WOX5 and/or impede its

function. An increase of BES1-D by BL may boost WOX5 sequestration

into WOX5-BES1-D complexes, since we showed that WOX5 and BES1-D

physically interact. Assuming these complexes inactivate WOX5 function,

CSC differentiation would no longer be repressed by WOX5 in the presence

of BL. Moreover, the fact that BES1-D directly interacts with TOPLESS,

and this co-repressor is also recruited by WOX5 to the inhibition of CSC

differentiation (Pi et al., 2015), suggest that in plants treated with BL

WOX5 function may further be impaired by most of TPL being bound to

BES1-D.

To conclude, understanding of signaling networks operating in stem cell

development is becoming essential to decipher plant growth and adap-

tation to the environment. Systems biology approaches provide a closer

picture to reality unveiling how complex and dynamics network of cell-

specific transcription factors act to preserve stem cell function in plants.

Here, untapping the action of two main regulators of quiescent cell divi-

sion, BRAVO and WOX5, not only discloses that these factors operate as a

transcriptional complex in preserving stem cell function, but also unravels

their joint roles in primary and lateral root development.
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6.3 BRAVO mediates different transcriptomic re-

sponses in the quiescent center and vascular

initial cells

In the QC BRAVO regulates genes involved in root hair

development

Our transcriptomic analysis described in Chapter 4 revealed different role

of BRAVO in both cell types, indicating BRAVO functioning in regulating

different aspects of plant development depending on the tissue in which it

is expressed. In agreement with this observation, BRAVO is expressed in

seeds where it affects seed development by controlling cell wall metabolism

such as cell division and expansion (Zhang et al., 2013b). BRAVO is

expressed in the Arabidopsis flowers and it acts as a negative regulator of

flowering (Chen et al., 2014).

We unveiled novel roles in which BRAVO might be involved, being root

hair development the most remarkable one, as higher enrichment was

found in the BRAVO regulated genes in the QC (Figure 4.6). Interestingly,

other R2R3-MYB proteins were found to be involved in this process too.

One is WEREWOLF (WER) which is responsible for generating the pat-

tern of root-hair and non-hair cell types during root development (Wang

et al., 2019b). Other one is MEMBRANE-ANCHORED MYB (maMYB)

which participates in root hair elongation in Arabidopsis (Slabaugh et al.,

2011). Both genes are expressed in several tissues along the root. In the

case of BRAVO, we found that it might be acting non-cell autonomously

as the genes were found to be regulated from the QC.
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Root hair development has two phases: determination of root hair identity

and root hair elongation. If BRAVO impacts in one or the other phase

would be interesting to address, as BRAVO might be acting as a regu-

lator of cell fate or as a regulator of cell elongation. Our transcriptomic

results revealing genes involved in ROS, cytoskeleton and cell wall related

processes (Figure 4.4), together with the role of other MYBs transcription

factor in cell wall processes, might point out BRAVO involved mostly root

hair elongation, as the mentioned processes are key for proper elongation

(Jones et al., 2006). Nevertheless, experimental validation is essential to

confirm our findings.

In the VI BRAVO mediates flavonoid and ROS responses

A cell-type approach was used to decipher the role of BRAVO in the QC

and VI separately. Our results indicate BRAVO is mediating different

transcriptomic responses in both cell types. In the VI, BRAVO regulates

a high number of genes cells and acts mostly as a repressor of transcription

(Figure 4.3). On the other hand, any phenotype was found in the vascu-

lar initial cells in bravo mutant (Figure 4.1, Vilarrasa-Blasi et al. (2014).

These findings can be explained with the presence of BRAVO homologs

regulating similar responses in those tissues. For example, MYB52 and

MYB54 are BRAVO closest homologs and they are expressed in the root

vascular tissues (Zhong et al., 2008; Dubos et al., 2010).

In the vascular initial cells, one of the processes in which BRAVO seems to

be involved is related to flavonoid biosynthesis. We found some genes that

are also BL regulated (Figure 4.11), and TFs downstream BRAVO and BL

implicated in these processes (Figure 4.13). In agreement with previous



General Discussion 188

studies, BRAVO regulates the accumulation of anthocyanins and flavonols

in the root, as bravo mutants show reduced levels of both compounds

(Jeong et al., 2018). Moreover, other R2R3-MYB transcription factors,

MYB11, MYB12 and MUB111 are also regulating flavonol biosynthesis

(Tan et al., 2019). Flavonols are a class of phenylpropanoids that act as

scavengers of ROS (Agati et al., 2007; Agati and Tattini, 2010; Peer et al.,

2013). They are synthesized in the endopasmic reticulum and transported

to different organelles (Agati et al., 2012). In addition to their role in ROS

homeostasis, they also contribute to the regulation of signaling cascades

involved in cell growth and differentiation. For example, flavonols regulate

auxin transport through impacting in the localization of PIN proteins

(Peer and Murphy, 2007; Michniewicz et al., 2007; Adamowski and Friml,

2015). However, the significance of flavonols in auxin signaling and its

interplay with ROS responses has not been elucidated yet (Jansen et al.,

2001; Peer et al., 2011, 2013; Pollastri and Tattini, 2011; Zhang and Peer,

2017). The biosynthesis of flavonols is also promoted by ABA (Berli et al.,

2010, 2011). Altogether, we suggest BRAVO to be regulating flavonoid

metabolism. In agreement with that, we found BRAVO regulating an

enriched group of genes related to ROS responses (Figure 4.12 A and B).

If there is a direct link between BRAVO, ROS and flavonols is not known,

neither what is the relevance of this in the vascular initial cells or whether

it has an impact in root developmental responses.

Further studies regarding if this relation is mediating stress responses or

developmental signaling cascades can be performed. Flavonoid biosynthe-

sis is promoted by several abiotic stresses (Pollastri and Tattini, 2011),

and some MYBs transcription factors have already been linked to these

responses (Tan et al., 2019). BRs are perceived in the plasma membrane
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by different receptors. BRI1 which shows ubiquitous expression and BRL1

and BRL3 which are enriched in the SCN and vascular tissues. It is pro-

posed that BRI1 mediates responses that drive root growth and devel-

opment, whereas BRL1/BRL3 are more involved in stress responses and

adaptation (Planas-Riverola et al., 2019). If BRAVO role is acting down-

stream BRI1 or BRL1/BRL3 remains unknown, so further investigation

in this aspect would indicate if it is mediating stress responses.

Identification of BRs and BRAVO downstream components

The overlap between BL and BRAVO datasets reveals that more than

55% and 75% of the BRAVO regulated genes are not downstream BL

pathway in the QC and VI respectively. This accounts for other signaling

pathways different to BRs controlling BRAVO expression in the stem cell

niche. In agreement to that, BRAVO expression is induced in seedlings

after sucrose treatment and after ethylene (Jeong et al., 2018). Moreover,

to ensure stem cell niche homeostasis, it is controlled by several signaling

pathways (Aida et al., 2004; Helariutta et al., 2000; Sabatini et al., 2003;

Sarkar et al., 2007).

Our transcriptomic analysis combining BL and BRAVO regulated datasets

allowed the identification of the TFs mediating BRAVO response down-

stream BR signaling pathway. It helped to redefine the function of several

TFs in stem cell activity, as most of them have not been associated to

the root apex before. These TFs can be used for the identification of the

transcriptional network in the QC and VI. Those TFs might be forming

part of the same transcription factor complex together with BRAVO. Our

experimental conditions consisted in growing the plants for 2 hours in a
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BL supplemented media. The BR-mediated response changes along time

(Vilarrasa-Blasi et al., 2014), so further experimental data including time

series of BL treatments would permit to create spatiotemporal networks

orchestrated by BRs and BRAVO in the stem cell niche.

BRAVO is directly regulated by BES1, so some of the identified TFs might

be direct targets too. We found a low number of those TFs being BES1 or

BZR1 direct targets, as described in Yu et al. (2011) and He et al. (2005).

However, the absence of a confirmed interaction can be due to the exper-

imental procedures. Experiments to confirm possible direct interactions

between BES1, BZR1 and the identified TFs might help to understand if

they are forming part of the same transcriptional complex.

6.4 Analysis of the stem cells transcriptome with

single-cell resolution

The use of single cell technologies in plants has been applied mostly to

whole-root studies in which complete root transcriptomic atlas were gen-

erated (Ryu et al., 2019; Shulse et al., 2019; Denyer et al., 2019; Zhang

et al., 2019; Jean-Baptiste et al., 2019; Shahan et al., 2020; Wendrich et al.,

2020). These resources are incredible valuable for plant development stud-

ies as they include the molecular signatures of each major root cell type.

Nevertheless, there is usually little information regarding stem cells, which

are mostly treated as a whole population. The lack of information about

stem cell can be due to the low number of cells compared to the rest of

tissues, which makes them more difficult approachable.

To fill this gap, we decided to enrich the transcriptomic maps with high-
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resolution information about the stem cells. For that, we used FACS in

pBRAVO:GFP expressing roots to isolate only those cells corresponding to

the stem cell niche. Our original transcriptomes from stem cells were then

integrated with available whole-root datasets (Denyer et al., 2019; Jean-

Baptiste et al., 2019). Altogether, we generated a high-resolution dataset

to study molecular signatures of the stem cells. Single-cell methodology

was used because it allows to identify rare cell populations and to perform

Pseudotime analysis to analyze developmental trajectories.

Identification of four cell populations in the stem cell niche

Root stem cells are located in a very specific microenvironment in the root

apical meristem. They have unique characteristics that make them remain

in a low differentiated state able to divide and develop the mature tissues.

The SCN is formed by the QC located in the center and surrounded by

the initials (Figure 1.2). The QC has the lower division rate which is

maintained due to the action of internal and external factors (Aida et al.,

2004; Helariutta et al., 2000; Sabatini et al., 2003; Sarkar et al., 2007).

However, some questions remain open regarding the transcriptomic signa-

tures of the different stem cell populations. Here, we generated a single

cell transcriptomic map of the stem cell niche to evaluate the different

stem cell populations.

Our analysis indicated the stem cell niche to be divided in four distinct

populations. Two populations of cells were found to be mostly QC cells.

The first one is cluster 8 which correspond to the undivided QC. It re-

mains in a more quiescent state and it is characterized by the presence of

genes involved in response to different stimulus. Supporting our findings,
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when analyzing WOX5 regulated genes in the QC (Figure 4.14), we found

enrichment in similar categories than the ones in cluster 8 marker genes

(Figure 5.11). WOX5 acts in maintaining the QC in a quiescent state

(Sarkar et al., 2007).

The second QC populations is cluster 10 which corresponds to actively

dividing QC cells, as they show enrichment in G2/M phase cell cycle genes

(Figure 5.10 A). QC cells remain in a quiescent state to be able to divide

when a stimulus occur, for example, after genotoxic damage (Lozano-Elena

et al., 2018). This agrees with our findings of enriched set of genes involved

in response to stresses. Overall, we were able to separate QC cells based

on their cell division status. This can help to understand the molecular

signatures that maintain the QC in an undifferentiated state and allows

the study of the influence of certain genes or conditions in those cells in

both developmental stages.

Other two populations were found to be mostly VI cells. The first one

is cluster 2 showing enrichment in protein-related processes (Figure 5.11

C). The other one is cluster 21 showing enrichment in several processes

such as “meristem development” or “cell cycle”. This can be explained

because of the nature of the stem cells being actively dividing and starting

to differentiate in the vascular tissues (van den Berg et al., 1997).

Importantly, when giving identity to the different clusters, all of them

seem to have expression of both QC and stele markers, suggesting that

separation between both cell types was not complete. Clusters 2 and

10 were the ones showing less differences respect to the other clusters

in the SCN (Figure 5.11 B), so increasing the number of cells for the

analysis would help to identify the signatures of those populations with



193 General Discussion

more accuracy. We cannot discard the option of cluster 10 containing

also the newly formed VI cell which also shows high mitotic activity. In

agreement to that, TOTEM results showed preferential tissue enrichment

of cluster 10 marker genes in the vascular initial cells (Figure 5.12 C).

Altogether, we identified four populations of stem cells with the BRAVO

expression domain and highlighted the molecular processes that distin-

guish them compared to the rest of stem cells. Further characterization

of the genes enriched in each population would help to understand their

function in root growth and development.

New molecular insights of the vascular initial cells

Vascular initial cells are little studied, so their specific characteristics and

role for root growth and development remains unknown. In this thesis we

provide new insights in the transcriptomic signatures of this cell popula-

tion using FACS and cell-type and single-cell transcriptomic analysis.

In chapter 5, the identification of a novel VI population was described. It is

cluster 21 which correspond mostly to cells obtained in our original single-

cell experiment of isolating pBRAVO:GFP expressing cells (Table 5.1).

This observation, together with the higher intensity of pBRAVO:GFP in

the VI cells just above the QC (Figure 3.5), pointed us to assign this

cluster 21 features to those cells.

Deeper analysis of cluster 21 marker genes was done to analyze the func-

tion of those genes. Remarkably, a very low number of them were already

characterized. We found some genes involved mainly in cell division and

vascular development processes, which agrees with the nature of those
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cells. One of the genes is DOF6 that has been involved in radial growth

(Miyashima et al., 2019). Therefore, a complete analysis of these genes,

and specifically the ones involved in cell division, would reveal genes in-

volved both in periclinal and anticlinal divisions, being both types required

for vascular development (De Rybel et al., 2013; Hardtke and Berleth,

1998). Most of the marker genes remain uncharacterized and their analy-

sis would help to decipher this cell type characteristics.

In agreement with the lack of knowledge in the vascular initial cells, lowest

enrichments were found when using TOTEM software and analyzing clus-

ter 21 population that correspond mostly to VI cells (Figure 5.12 C). This

can be due to the low number of genes identified as VI specific in Brady

et al. (2007) experiments, but it can also indicate that those cells have

unique molecular signatures that does not coincide with the ones from

other cell types, further supporting the identity of a novel cell population.

One of the processes that is overrepresented in the VI cells is related to

protein metabolism (Figure 5.11 C). Interestingly, we found BRAVO to be

regulating genes in these processes too (Figure 4.10), suggesting a relevant

role for BRAVO in these cells. Unfortunately, due to the low number of

cells, we were not able to find the BRAVO-regulated genes specifically in

cluster 2 cells. Experiments in this line would allow to decipher the role

of BRAVO and its impact for plant development. Protein metabolism

can be related to cell cycle and to other processes such as cell elongation

or cell wall differentiation which are essential for vascular development

(Ohashi-Ito et al., 2010; Yamaguchi et al., 2011).

Overall, our FACS coupled to scRNAseq approach allowed to identify

four stem cell populations in the root apex. In addition, our single-cell
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transcriptomic root atlas enriched in stem cells can also serve as resource

for future studies regarding root stem cells. We have demonstrated the

stem cell identity of our cells, and the utility of integrating several available

scRNAseq datasets to strengthen other analysis.

After our analysis, some questions remain unknown and there were not

addressed in this thesis. More insights in the differentiation process of

the QC to the VI cells and the mature vascular tissues could be ana-

lyzed. Single-cell methodology allows Pseudotime analysis in which tran-

scriptomic along a developmental trajectory changes can be evaluated. A

more precise Pseudotime analysis can be performed regarding the stem

cell niche, trying to decipher if different VI population give rise to dif-

ferent mature tissues, or if there is a certain point in which xylem and

phloem formation diverges from the previous stem cell. These questions

were not approached as the number of cells for the analysis were not high

enough for this analysis.

In addition to stem cells, phloem cells were also isolated and sequenced,

but they were not used to further analysis. The number of individual cells

obtained was very low, only 9 in WT conditions. This was probably due

to the low expression of the marker used in the meristematic zone and

the fact that phloem cells are in the inner region of the root, which dif-

ficulties its isolation as protoplast with the cell wall enzymatic digestion.

The information available about the phloem tissue with single-cell resolu-

tion is still scarce, as comprehensive studies regarding this tissue and the

transcriptomic changes along its differentiation process are yet lacking.
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6.5 Future perspectives

Mechanisms regulating stem cell maintenance and differentiation remain

unknown. This thesis reveals new insights in the role of brassinosteroids

and BRAVO transcription factor in the stem cell niche. For example, it

is described how BRAVO interacts with WOX5 to regulate root growth.

In addition, its role in other developmental processes such as hair cell

development and cell wall biosynthesis was proposed. However, most of

the results of chapters 4 and 5 were found computationally, and further

experimental validation is required.

In chapters 3 and 4, the role of BRAVO in the stem cell niche was eval-

uated. Phenotypic characterization of bravo mutant revealed only defects

in QC division in normal conditions. If BRAVO is involved in stress re-

sponses remain unknown. In this line, studies linking BRAVO with BRI1

or BRL1/BRL3 pathways are required, as BRL1/BRL3 have been linked

to stress response and adaptation (Planas-Riverola et al., 2019). Experi-

ments to address the redundancy of MYB transcription factors in the stem

cells would also be relevant to characterize the role of BRAVO in those

cells.

In chapter 5, single-cell transcriptomics were used to generate an atlas of

the root stem cell niche. This resource can be used to unveil fundamental

questions such as the presence of branches in the differentiation of the

vascular cells. However, the low number of cells in our experiments did

not allow to answer them. Further analysis comparing WT with bravo

cells would be key to decipher the role of BRAVO in each cell population.

Finally, experimental validation regarding the characterization of the four



populations found in the stem cell niche would be essential to validate

our findings. The expression in seedlings of the cluster 21 marker genes

could be evaluated, and analysis of mutant and overexpressor lines of those

genes would help to understand the function of that population for root

development.
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Conclusions

1. MyROOT software permits accurate high-throughput Ara-

bidopsis root length measurements while saving labor and

time.

2. The use of machine learning technology enables the devel-

opment of convenient tools for high-throughput analysis of

plant root traits.

3. At the root stem cell niche BRAVO and WOX5 operate as

a transcriptional complex in preserving stem cell function

and overall root growth and development.

i. BRAVO and WOX5 have an epistatic effect in QC division.

ii. BRAVO and WOX5 directly interact and the complex is rele-

vant to control QC divisions.

iii. There is a mutual regulation between BRAVO and WOX5 ex-

pression in the stem cell niche.

iv. BRAVO and WOX5 interplay impacts in primary root length

and lateral root development.
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4. Multidisciplinary approaches combining genetics, biochem-

istry and mathematical modeling are a powerful approach

to unravel complex mechanisms involved in root develop-

ment.

5. BRAVO drives cell-type specific transcriptional responses

in the quiescent center and vascular stem cells.

i. BRAVO exerts a wider transcriptional response in the VI than

in the QC cells.

ii. BRAVO acts mostly as a transcriptional activator in the QC

and a repressor in the VI cells.

iii. BRAVO in the QC regulates transcription mostly in a non-

cell autonomous manner, as there is enrichment in BRAVO-

regulated genes that are reported to play a role in root outer

cell layers.

iv. Brassinosteroids regulate the transcription of cell-wall differen-

tiation already at the vascular initial cells of the Arabidopsis

primary root.

6. Single-cell RNAseq allows the identification of different stem

cell populations within the stem cell niche of Arabidopsis.

i. The vascular initial cells can be separated in two populations

with different transcriptomic profiles.

ii. Quiescent stem cells have unique molecular signatures that cor-

respond to an enrichment in response to stress genes.
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Material and methods

Plant material and growth conditions

Arabidopsis seeds were surface sterilized with 35% sodium hypochlorite

followed by 5 washes with distilled sterile water. To synchronize germina-

tion, seeds were vernalized for 2 to 3 days at 4oC in darkness. Seeds were

grown in vertically oriented 120x120 mm plates containing half-strength

Murashige and Skoog (MS) medium without sucrose, supplemented with

vitamins (0.5MS-) and 0.8% plant agar. Plates were sealed with Micropore

tape (https://www.3m.com). Seeds were grown under long day conditions

(16 hours light and 8 hours dark) at 22oC and 60% relative humidity for

all the experiments.

After 5 to 7 days of growth in sterile conditions, seedlings were transferred

to pots containing soil (composed by a mixture of soil:perlite:vermiculite

at a proportion of 7:1:1). Plants were grown in long day conditions at

22oC and 60% relative humidity until desired. The Arabidopsis lines used

in this thesis are summarized in Table 6.1.

https://www.3m.com
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Table 6.1: Arabidopsis plant lines used in this thesis.

Name Genes Description Reference Chapter

Col-0 (WT) - Wild type, ecotype

Columbia-0

- 3, 4, 5

bravo-2 BRAVO T-DNA insertion mu-

tant

Vilarrasa-Blasi

et al. (2014)

3

wox5-1 WOX5 T-DNA insertion mu-

tant

Sarkar et al.

(2007)

3

bravo-2 wox5-1 BRAVO,

WOX5

Double knockout mu-

tant

Betegón-Putze

et al. (2020)

3

pBRAVO:GFP BRAVO Transcriptional fusion Vilarrasa-Blasi

et al. (2014)

3, 5

pBRAVO:GFP;

bravo-2

BRAVO Transcriptional fusion

in BRAVO knockout

mutant

Vilarrasa-Blasi

et al. (2014)

3, 5

pBRAVO:GFP;

wox5-1

BRAVO,

WOX5

Transcriptional fusion

in WOX5 knockout

mutant

Betegón-Putze

et al. (2020)

3

pBRAVO:GFP;

bravo-2 wox5-1

BRAVO,

WOX5

Transcriptional fusion

in BRAVO and WOX5

knockout mutant

Betegón-Putze

et al. (2020)

3

pWOX5:GFP WOX5 Transcriptional fusion Vilarrasa-Blasi

et al. (2014)

3, 4

pWOX5:GFP;

bravo-2

WOX5,

BRAVO

Transcriptional fusion

in BRAVO knockout

mutant

Vilarrasa-Blasi

et al. (2014)

3, 4

pWOX5:GFP;

wox5-1

WOX5 Transcriptional fusion

in WOX5 knockout

mutant

Betegón-Putze

et al. (2020)

3

pWOX5:GFP;

bravo-2 wox5-1

BRAVO,

WOX5

Transcriptional fusion

in BRAVO and WOX5

knockout mutant

Betegón-Putze

et al. (2020)

3
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Name Genes Description Reference Chapter

35S:BRAVO:Ei BRAVO BRAVO overexpressor

mutant

Vilarrasa-Blasi

et al. (2014)

3

35S:BRAVO:Ei;

pWOX5:GFP

BRAVO,

WOX5

Transcriptional fusion

in BRAVO overexpres-

sor mutant

Betegón-Putze

et al. (2020)

3

35S:WOX5:GR WOX5 WOX5 overexpressor

mutant

Sarkar et al.

(2007)

3

pARF7:GFP ARF7 Transcriptional fusion Rademacher

et al. (2011)

4

pARF7:GFP;

bravo-2

ARF7,

BRAVO

Transcriptional fusion

in BRAVO knockout

mutant

Vilarrasa-Blasi

et al. (2014)

4

pSUC2:BRL3-

GFP

SUC2,

BRL3

BRL3 overexpression in

the phloem

Ana Caño lab 5

pSUC2:BRL3-

GFP;brl3-2

SUC2,

BRL3

BRL3 overexpression in

the phloem in BRL3

knockout mutant

Ana Caño lab 5

For the validation experiments of MyROOT software described in chapter

2, a set of BR-signaling mutant and overexpressor lines grown in control

and osmotic stress conditions (240 nM sorbitol treatment for 4 days) were

used (previously described in Fàbregas et al. (2018)). For the hypocotyl

detection method, MyROOT was trained to identify hypocotyls by using

1259 positive examples (hypocotyls) and 7915 background and negative

examples (parts of the image that did not contain hypocotyls). The posi-

tive samples corresponded to Col-0 wild-type, bri1-116, and a transgenic

line overexpressing BRI1-GFP (35S:BRI1-GFP), which have morphologi-

cally different hypocotyls as shown in González-Garćıa et al. (2011).
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Methods in plant physiology

Root length measurements

Root length from plate images was measured with ImageJ (http://imagej.

nih.gov/ij/) and MyROOT (Betegon-Putze et al., 2019) softwares. In

ImageJ, manual measurements were made using the Segmented line op-

tion. Each root was tracked by clicking several times from the starting

point of the root to the root tip. Then, the length of the segmented line

was measured and ImageJ obtained the root length in millimeters using

the scale previously set.

The comparison between the root length measurements using MyROOT

and ImageJ was evaluated by performing a regression curve and calculat-

ing the Pearson correlation coefficient. The comparison between the root

length measurements using and not using the hypocotyl detection method

was evaluated using Student’s t-test. This test was selected due to the

unequal number of seedlings detected under each condition.

MyROOT and ImageJ were run in an Intel CoreTM i7-6700 CPU com-

puter.

Hormone and drug treatments

For brassinolide (BL) treatments, BL (Wako, Osaka, Japan) diluted in

DMSO was added to 0.5MS- plates at a final concentration of 4nM. 4-

day-old seedlings were transferred to 4nM BL plates for 48 hours before

analysis.

http://imagej.nih.gov/ij/
http://imagej.nih.gov/ij/
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For β-estradiol treatments, β-estradiol (Sigma) diluted in DMSO was

added to 0.5MS- plates at a final concentration of 30 µM. To induce

BRAVO expression, seedlings were grown in that media for 6 days. For

dexamethasone treatments, dexamethasone (Sigma) diluted in EtOH was

added to 0.5MS- plates at a final concentration of 1 µM. To induce WOX5

expression, seedlings were grown in that media for 6 days. For RT-qPCR

experiments β-estradiol and dexamethasone treatments were applied for

24 hours.

Propidium Iodide staining

Propidium Iodide for in vivo visualization was performed by staining the

6-day-old seedlings with 10 µg/ml PI for 1-2 minutes.

To visualize propidium iodide staining in fixed roots, a modified version of

the protocol modified Pseudo Schiff - Propidum Iodide (mPS-PI) staining

was used (Truernit et al., 2008). 6 day old seedlings were incubated in

50% methanol and 10% acetic acid solution at 4oC overnight (or longer

if needed), rinsed twice with milli-Q water (5 minutes each), incubated

in 1% periodic acid for 30 minutes, rinsed twice with milli-Q water (5

minutes each) and incubated in Schiff reagent with propidium iodide (100

mM sodium metabisulphite and 0.15 N HCl; propidium iodide to a final

concentration of 100 µg/ml is freshly added) for 2 hours. The slides for

microscopy were prepared by adding several drops of Hoyer’s solution (30g

gum Arabic, 200g chloral hydrate, 20g glycerol and 50 ml water) over

the slides, laying the seedlings with tweezers and placing a coverslide on

the top. They were let to dry in the dark for at least three days before

microscopic analysis. For phloem morphology analysis, seedlings were
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incubated in chloral hydrate solution (4g chloral hydrate, 1 mL glycerol

and 2 mL water) overnight and the excess chloral hydrate was removed

before preparing the slides with the Hoyer’s solution.

Confocal images were taken with the 60X water-submerged objective.

mPS-PI stained roots were used to evaluate QC division, CSC differenti-

ation and stele width.

For QC division, roots were clasified as QC divided (D) if at least one of

the QC cells showed a division plane and non-divided (ND) if none of the

QC cells showed a division plane.

For columella stem cell differentiation, the number of columella stem cells

(revealed by the absence of starch granules that are present and PI-stained

in the columella cells) was scored.

Stele width was measured 50 µm away from the QC.

Lateral root analysis

Lateral root density was calculated by dividing the total number of emerged

lateral roots (Malamy and Benfey, 1997) of individual seedlings by the

mean of the root length of those seedling.

Lateral root analysis of 10 day-old plants was carried out by Ainoa Planas-

Riverola in Dr. Caño-Delgado laboratory.
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Imaging

Plant imaging

For the development of MyROOT software described in chapter 2, the

pre-defined image acquisition conditions consist of placing the camera 50

cm above the plate with an illuminated support and the following set-

tings:aperture 13, shutter speed 10, ISO 100 and Zoom 935 magnification.

The plates were placed face down on a black surface and with a ruler (at

least 1 cm long) horizontally positioned on top. The images were saved

in JPEG format (size between 2.5 and 2.7 MB per image). Images were

taken with a D7000 Nikon camera.

Confocal microscopy

Confocal imaging was performed on a FV 1000 confocal microscope (Olym-

pus, Tokyo, Japan). Excitation and emission spectra were 484 nm and

489–505 nm for GFP, 561 nm and 600–650 nm for propidium iodide.

Samples were visualized with the confocal microscope with 20X and 60X

water-submerged objectives. Images were processed with the Olympus FV

(Olympus, Tokio, Japan) and ImageJ software.

Confocal imaging shown in chapter 4 was performed on a LSM 710 confocal

microscope (Zeiss, Jena, Germany).

For GFP quantification in chapter 3, images were taken in the middle

plane of 6-day-old roots. The fluorescence intensity was quantified with

ImageJ using the Integrated Density value obtained from individual plants.

The quantified area was selected with a ROI that contained the SCN
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(Figure 3.4). The laser settings for pBRAVO:GFP and pWOX5:GFP are

different, as WOX5 has a stronger expression than BRAVO. The analysis

of pBRAVO:GFP in bravo wox5 double mutant background was done with

different confocal settings.

Methods in molecular biology

DNA extraction

For genotyping plants, DNA was extracted from Arabidopsis leaves ac-

cording to the following rapid extraction protocol: a piece of leave was

collected in a tube with 2 glass beads. Tissue was grinded in the Tissuel-

yser (Quiagen) for 1 min at 300 rev. Then, 400 µl of extraction buffer

(0.4 M NaCl, 10 mM Tris-HCl pH8.0, 2 mM EDTA pH8.0 and 2% (v/v)

SDS) were added to each sample and agitated with a vortex for 5 sec-

onds. Samples were centrifuged for 5 min at 13000 rpm. 300 µl of the

supernatant were transferred to a new tube and 300 µl of isopropanol were

added to precipitate the DNA. Tubes were inverted 5 times to allow so-

lutions to mix. Samples were incubated 5 min at room temperature and

centrifuged 10 min at 13000 rpm. The supernatant was discarded and 500

µl of 70% ethanol were added to clean the pellet. Samples were centrifuged

10 min at 13000 rpm and the supernatant was discarded. Tubes were kept

overnigth to dry at root temperature. DNA was resuspended in 50 µl of

sterile-distilled water. DNA concentration and purity was then assessed

with a Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific). The

different mutants described in this thesis were genotyped to select the ho-

mocygous plants. The sequences of the primers used for genotyping are
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described in Table 6.2.

Table 6.2: Primers used for genotyping.

Primer Sequence 5’-3’ Use
bravo-2 F TCCCTTAATCCCTAAACCCAGC Genotype bravo-2

mutant
bravo-2 R CCTGATGCAAGGGTACTATCG Genotype bravo-2

mutant
wox5-1 F ATCTCATAAACCATGCATCGG Genotype wox5-1

mutant
wox5-1 R TCGCTGGTTCCGATATACAAC Genotype wox5-1

mutant
brl3-2 F TTTATCGAACACTTTGTGGGC Genotype brl3-2

mutant
brl3-2 R CCAGTGAACTCGTTTGAGCTC Genotype brl3-2

mutant
LBb1.3 ATTTTGCCGATTTCGGAAC Genotype T-DNA

insertion mutants

RNA extraction

RNA was extracted from root tip tissue with the Maxwell R©RSC Plant

RNA Kit (Promega) using the Maxwell R©RSC instrument (Promega) ac-

cording to the manufacturer’s recommendations, and concentrations were

checked using NanoDrop 1000 spectrophotometer (Thermo Fisher Scien-

tific).

Real time quantitative PCRs

Real time quantitative PCRs were carried out by Ainoa Planas-Riverola

in Dr. Caño-Delgado laboratory.

cDNA was obtained from RNA samples by using the NZY First-Strand

cDNA Synthesis Kit (NZYtech) according to the manufacturer’s recom-
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mendations. RT-qPCR amplifications were performed from 10ng of cDNA

using SYBR Green I master mix (Roche) in 96-well plates according to

the manufacturer’s recommendations. The RT-qPCR was performed on

a LightCycler 480 System (Roche). ACTIN2 (AT3G18780) was used as

housekeeping gene for relativizing expression. Primers used for real time

qPCR are described in Table 6.3.

Table 6.3: Primers used for real time qPCR.

Primer Sequence 5’-3’ Use
RT-
BRAVO
F

TGTTAGCAGCTCATCGAGCCT BRAVO RT-
qPCR forward
primer

RT-
BRAVO
R

GATGACGTGCCAATGGTTCTT BRAVO RT-
qPCR reverse
primer

RT-WOX5
F

TGATCTGTTTCGAGCCGGTC WOX5 RT-
qPCR forward
primer

RT-WOX5
R

AAACATTCTTGCTCTCTATCTTGCC WOX5 RT-
qPCR reverse
primer

RT-
ACTIN2
F

CTGGATCGGTGGTTCCATTC ACTIN2 RT-
qPCR forward
primer

RT-
ACTIN2
R

CCTGGACCTGCCTCATCATAC ACTIN2 RT-
qPCR reverse
primer

Methods in biochemistry

Yeast two-hybrid assay

Yeast two-hybrid experiments were carried out by Nadja Bosch in Dr.

Caño-Delgado laboratory.
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Yeast two-hybrid assays were performed by the Matchmarker GAL4-based

two-hybrid System (Clontech). Constructs were co-transformed into the

yeast strain AH109 by the lithium acetate method (Gietz and Woods,

2002). The presence of the transgenes was confirmed by growth on SD-

LW plates, and protein interaction was assessed by selection on SD-LWH

plates. Interactions were observed after 4 days of incubation at 30oC.

FRET-FLIM assays

FRET-FLIM experiments were carried out by Dr. Yvonne Stahl and

Rebecca Corinna Burkart in the Institute for Developmental Genetics,

Heinrich-Heine University, Düsseldorf, Germany.

FLIM data acquisition was carried out using a confocal laser scanning

microscope (LSM780 inverted microscope, Zeiss) equipped additionally

with a time-correlated single-photon counting device with picosecond time

resolution (Hydra Harp 400, PicoQuant). mVenus was excited at 485 nm

with a pulsed (32 MHz) diode laser at 1.2 µW at the objective (40 x

water immersion, C-Apochromat, NA 1.2, Zeiss). The emitted light was

collected through the same objective and detected by SPAD detectors

(PicoQuant) using a narrow range bandpass filter (534/35, AHF). Images

were taken at 12.5 µs pixel time and a resolution of 138 nm/pixel in a

256x256 pixel image. A series of 40 frames was merged into one image

and analysed using the Symphotime software package (PicoQuant).

The fluorescent lifetime of the collected photons in each merged image

was analysed using the Symphotime software (PicoQuant). For this, a

ROI covering the whole nucleus was created to reduce background flu-

orescence. All photons in this ROI were used to build a histogram of
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the fluorescence decay. A double-exponential fit model was used to ap-

proximate the intensity-weighted average fluorescence lifetime [ns] of all

photons of the ROI. The instrument response function was measured with

KI-quenched erythrosine and used for reconvolution in the fitting process

(Weidtkamp-Peters and Stahl, 2017). The data from replicate measure-

ments was summarized in box plots created in R software (R Development

Core Team, 2008). Statistical significance was tested by one-way ANOVA

with a Sidakholm post-hoc test. Different letters indicate statistically sig-

nificant differences (p < 0.01). For the creation of FLIM images, photons

from individual pixels of a merged image were analysed for fluorescent life-

time using the Symphotime software (PicoQuant). A mono-exponential

fit model was used, as the photon number in each pixel was too low for a

double-exponential model (Stahl et al., 2013). The individual pixels are

colour-coded according to their fluorescence lifetime.

Genome-wide transcriptomic experiments

Quiescent center and vascular initial bulk RNAseqs

These experiments were performed in the laboratory of Dr. Rosangela

Sozzani the in North Carolina State University, Raleigh, USA 1.

The protocol used for these RNAseq experiments shown in chapter 4 is

described in Clark et al. (2018).

For growing the plants, 400 mg of seeds were sterilized in a 50 ml conical

tube. 50 ml of 50% bleach and 15 µl of 10% Tween were added, the tubes

1https://harvest.cals.ncsu.edu/sozzani-lab/

https://harvest.cals.ncsu.edu/sozzani-lab/
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were shaken to disperse the seeds, shaked for 10 min at 110 rpm on orbital

shaker and centrifuged to settle down the seeds. In a sterile hood, bleach

was poured out and 45 ml of 100% ethanol were added, the tubes were

shaken and centrifuged. The ethanol was poured out and 45 ml of sterile

water was added, the tubes were shaken and centrifuged. The water wash

step was repeated 8 times. The tubes were stored in dark at 4oC for two

days for vernalization. Seeds were plated in MS0.5- square plates over

mesh and grown for 5 days in the growth chamber. For BL treated plats,

seedlings were transfered to MS0.5- plates supplemented with 10 nM BL

for 2 hours. Three biological replicates were performed for each line and

condition.

For protoplasting, root tips were cut and put in a petri dish over a 70 µm

cell strainer in solution B and shaked at 85 rpm for 60 minutes stiring the

roots after 20, 30 and 10 minutes. The liquid was transfered to a 15 ml

conical tube and spin for 6 min at 200g. The supernatant was removed and

the pellet resuspended in 350 µl of solution A. The resuspended solution

was transferred to a 50 ml conical tube through a 70 µm strainer, the

15ml conical tube was rinsed again with another 350 µl of solution A

and transferred to the 50 ml tube through the 70 µm strainer. All the

liquid was then transferred to another 50 ml conical tube through a 40

µm strainer, and then to a polystyrene tube. Solution A was prepared by

adding 50 mL of deionized water, 5.465 g of mannitol, 0.05 g of 0.01% BSA,

500 µl of 0.2 M Magnesium chloride, 500 µl of 0.2 M calcium chloride, 500

µl of 1 M MES and 500 µl of 1 M potassium chloride. Soluton B was

prepared by adding 0.45 g cellulase and 0.03 g pectolyase to 30 ml aliquot

of solution A.

For FACS, protoplasts were run through a high speed cell sorter using
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Figure XX: Fluorescence gates used for collecting GFP positive cells.

A) Forward scatter (FSC) width vs FSC area. R5 gate is set to exclude doublets. B) Side scatter (SSC) vs fluorescence
(GFP) of R5 cells. Cell with higher GFP fluorescence value are selected in R2. C) Count histogram of the R2 gate.
Only the brightest cells within R2 are selected in R4. The final population of sorted cells are in R4.

A B

C

Figure 6.1: Fluorescence gates used for collecting GFP positive
cells.
A Forward scatter (FSC) width vs FSC area. R5 gate is set to exclude doublets.
B) Side scatter (SSC) vs fluorescence (GFP) of R5 cells. Cell with higher GFP
fluorescence value are selected in R2. C) Count histogram of the R2 gate. Only
the brightest cells within R2 are selected in R4. The final population of sorted
cells are in R4.

a 100 µm flow tip at a pressure of 20 PSI. Wild type protoplasts were

used to set a gate of GFP-negative cells. GFP positive samples were

run and a gate to obtain positive cells was set (Figure 6.1). Sorted cells

were collected in 300 µl RLT Buffer with 3uL β-mercaptoethanol in 5ml

polystyrene round bottom tubes and stored at -80 oC.

For RNA extraction, columns and buffers provided in the QIAGEN RNeasy

Micro Kit were used. Sorted cells were thawed in hands, 300 µl 70% cold

ethanol was added and vortexed for 2 seconds. 600 µl of the mixture was

applied to the pink MiniElute column, spin at 1000 g for 1 min, then at
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10000 g for 30 seconds, the flow-thorugh was reapplied to the column and

spin at 10000 g for 30 seconds. 700 µl RW1 buffer were added to the col-

umn and spun at 10000 g for 30 seconds. 500 µl RPE buffer were added

to the column and spun at 10000 g for 30 seconds. 500 µl of 80% ethanol

were added and spun at 10000 g for 2 minutes. Columns were spun with

open cap 5 minutes at max speed. The column was eluted with 12 µl

nuclease free water, spun at 1000 g for 1 minute and 16000 g for 1 minute.

The flow-thorugh was reapplied to the column and spun at 16000 g for 1

minute at 4oC. RNA was analyzed in the Bioanalyzer and optimal RNA

quality was defined as RIN > 7.

cDNA libraries were prepared from the extracted RNA using the SMART-

Seq v4 Ultra Low Input RNA Kit for Sequencing (Takara) and Low Input

Library Preparation Kit (Clontech laboratories). Libraries size and quality

was checked on a DNA High Sensitivity Bioanalyzer chip (Agilent).

RNAseq was performed using the HiSeq system (Illumina), 100 bp, single

end reads.

Stem cell niche and phloem single-cell RNAseqs

These experiments were performed in the laboratory of Dr. Idan Efroni

in the Hebrew University of Jerusalem, Rehovot, Israel 2.

For single-cell experiments described in Chapter 5, the protocol followed

was adapted from Bagnoli et al. (2018).

For protoplasting, roots from pSUC2:BRL3:GFP expressing plants were

cut and shaken in protoplasting solution for 20 minutes to separate the

2https://idanef.wixsite.com/efronilab

https://idanef.wixsite.com/efronilab
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meristems. The meristems were transfered to another well containing 50µl

of protoplasting solution and shaken for 1 hour. For pBRAVO:GFP roots,

root tips were collected directly by cutting the seedlings growing in the

agar plates and were shaken for 1 hour and 20 minutes in the protoplasting

solution. The plant material was then filtered using a 40 µm strainer.

The protoplasting solution was preparated by adding 1.5% Cellulase, 0.5%

Macerozyme, 0.4M Mannitol, 20.48 mM Mes and 0.02M KCl; adjusting

pH to 5.7; heating to 55 oC and cooling to room temperature; and adding

0.2% BSA and 0.02M CaCl2.

For FACS, protoplasts were run through a high speed cell sorter. Wild

type protoplasts were used to set a gate of GFP-negative cells. GFP

positive samples were run and a gate to obtain positive cells was set. Sin-

gle cells (’3 drops’ purity mode) were sorted into 96-well DNA LoBind

plates (Eppendorf) containing 5 µl of lysis buffer. The lysis buffer con-

sisted of a 1:500 dilution of Phusion HF buffer (New England Biolabs),

1.25 µg/µl Proteinase K (Clontech) and 0.4 µM barcoded oligo-dT primer

(E3V6NEXT, IDT). After sorting, plates were immediately spun down

and frozen at -80oC.

For cDNA synthesis, the 96-well plates were incubated at 50oC for 10 min-

utes for digesting the proteins. Proteinase K was then heat-inactivated for

10 minutes at 80oC. 5 µl reverse transcription master mix consisting of 20

units Maxima H- enzyme (Thermo Fisher), 2x Maxima H- Buffer (Thermo

Fisher), 2 mM each dNTPs (Thermo Fisher), 4 µM template-switching

oligo (IDT) and 15% PEG 8000 (Sigma-Aldrich) was dispensed per well.

cDNA synthesis and template-switching was performed for 90 minutes at

42oC. Barcoded cDNA was then pooled in 2 ml DNA LoBind tubes (Ep-

pendorf) and cleaned-up using SPRI beads (following the manufacturer



Material and methods 220

instructions at a ratio of 1:1.8 ((µLsample:µLbeads)). Purified cDNA was

eluted in 17 µl and residual primers digested with 0.5 µl Exonuclease I

(Thermo Fisher) for 15 min at 37oC. After heat-inactivation for 15 min at

80oC, 30 µl PCR master mix consisting of 1.25 U Terra direct polymerase

(Clontech), 1.66x Terra direct buffer and 0.33 µM SINGV6 primer (IDT)

was added for amplification by PCR. The PCR progamm used was 3 min

at 98oC for initial denaturation followed by 15 cycles of 15 sec at 98oC,

30 sec at 65oC and 4 min at 68oC. Final elongation was performed for

10 min at 72oC. All samples were purified using SPRI beads (following

the manufacturer’s instructions at a ratio of 1:1) with a final elution in

10 µL of nuclease free water (Invitrogen). Quality control was performed

by PCR using SINGV6 primer. PCRBIO HS Taq Mix Red mix (PCR

Biosystems) was used for the PCR following manufacturer’s instructions.

PCR programm was run with 56oC as Tm for 30 cycles. The cDNA was

then quantified using the Quant-iT PicoGreen dsDNA Assay Kit (Thermo

Fisher).

Library preparation was then done using Nextera XT DNA Library Prep

kit (Illumina) following the manufacturer instructions with few modifica-

tions: starting from 1 ng of preamplified cDNA, reducing all the reagent

volumen by half and increasing the number of PCR cycles to 15. The

library was prepared using 5µM P5 primer (P5NEXTPT5, IDT) and 1

µM i7 primers. The i7 primer used was Nextera (XT) N7xx and the dif-

ferent adapters for each sample are described in table 6.4. library size and

quality was checked on a DNA High Sensitivity Bioanalyzer chip (Agilent)

and libraries were quantified using Quant-iT PicoGreen dsDNA Assay Kit

(Thermo Fisher). Libraries were pooled for equimolarity, taking into ac-

count only the main peak. Selection of the main peak was done by running
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the pooled library in a 1% agarose gel, and cutting out the band leaving

out the primer concatamers (with size around 150bp). DNA from the band

was extracted using the MinElute Kit (Qiagen) following manufacturer’s

recommendations. Final library size and quality was checked on a DNA

High Sensitivity Bioanalyzer chip (Agilent) and quantified using Quant-iT

PicoGreen dsDNA Assay Kit (Thermo Fisher).

Table 6.4: Samples and i7 adapters used for library preparation.
pB: pBRAVO:GFP; pBb: pBRAVO:GFP;bravo; pS: pSUC2:BRL3:GFP;
pSb: pSUC2:BRL3:GFP;brl3. Each sample corresponds to a 96-well plate.

Sample Description Adapter code and sequence
1 pS, pSb A701 ATCACGAC
2 pS A703 CAGATCCA
3 pB A704 ACAAACGG
4 pBb A706 AACCCCTC
5 pBb A707 CCCAACCT
6 pB A708 CACCACAC
7 pBb A710 TGTGACCA
8 pB A711 AGGGTCAA
9 pBb A712 AGGAGTGG
10 pS, pSb N704 GCTCAGGA
11 pSb N707 GTAGAGAG
12 pSb, pBb N708 CAGAGAGG

Libraries were paired-end sequenced on high output flow cells of an Illu-

mina HiSeq 1500 instrument.
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Bioinformatics

Bulk RNAseqs analysis

RNAseqs raw data analysis was performed in the laboratory of Dr. Ana

Conesa in the University of Florida, Gainesville, USA 3.

QC and VI bulk RNAseqs described in chapter 4 were analyzed by pro-

graming in bash and R studio (R Development Core Team, 2008). Quality

control was done with FastQC (available at https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/). The adaptor sequences were removed

using cutadapt command. The mapping of the reads to the genome was

done with STAR (Dobin et al., 2013) and the quantification of the reads

with RSEM (Li and Dewey, 2011). Araport11 were used as transcripts

of reference and TAIR10 as reference genome. In R studio, genes with 0

counts in all samples were removed. NOIseq was used for the bias detec-

tion, correction and normalization (Tarazona et al., 2015). ARSyNseq was

used for batch effect correction as the sorting was detected as a confounded

factor (Nueda et al., 2012). Genes with low number of counts (cpm < 4)

were filtered. NOISeqBIO was used for analysis of differential expression

between the different conditions (Tarazona et al., 2015). Regulated genes

were selected with q value < 0.05 and Fold change > 1.

Gene Ontology enrichment analysis was done in Araport thalemine (Kr-

ishnakumar et al., 2014) selecting only significant categories (p-value <

0.05 in Holm-Bonferroni test). REVIGO small 0.5 was used to reduce

redundancy after GO enrichment analysis (Supek et al., 2011). GO rep-

resentations were done in R studio using heatmap.2 function from gplots

3http://conesalab.org/

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://conesalab.org/
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package.

Venn diagrams were performed with BioVenn (Hulsen et al. (2008), https://

www.biovenn.nl/) and InteractiVenn tools (Heberle et al. (2015), http://

www.interactivenn.net/).

Root tissue enrichments were performed with TOTEM software available

at https://bioinformatics.cragenomica.es/totem/select.

Transcription factors were obtained from the Arabidpsis Transciption Fac-

tor Database (AtTFDB) available at AGRIS website (Davuluri et al.,

2003). BES1 and BZR1 direct targets were obtained from Yu et al. (2011)

and He et al. (2005)

Single-cell RNAseqs analysis

For SCN and phloem single-cell RNAseqs analysis described in chapter

5, raw data processing was performed by Dr. Idan Efroni. Following

sequencing, FASTQ files were filtered for poly-A reads using a custom

script and aligned to the TAIR10 genome using STAR 2.7.1. Read calling

was performed using the zUMI pipeline (Parekh et al., 2018).

Subsequent bioinformatic analysis were performed in R studio (version

3.6.3) using Seurat package (version 3.1.5; Butler et al. (2018); Stuart

et al. (2019)). SCN and phloem cells to use for further analysis were fil-

tered based in different arguments: only cells with unique features higher

than 400 and less than 7500, and only cells that have number of total

molecules lower than 100000. The data was then normalized using the

“LogNormalize” method. The 800 features that have high cell-to-cell vari-

https://www.biovenn.nl/
https://www.biovenn.nl/
http://www.interactivenn.net/
http://www.interactivenn.net/
https://bioinformatics.cragenomica.es/totem/select
https://agris-knowledgebase.org/AtTFDB/
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ation in the datasets were extracted to be used in downstream analysis.

The data was then scaled so all the genes have the same importance in the

analysis. PCA analysis was performed using the variable genes as input.

15 PCs were selected for clustering the cells and as input for UMAP reduc-

tion for visualization. A resolution value of 0.8 was used in all clustering

analyses.

Our dataset was integrated with available whole-root datasets from Denyer

et al. (2019) and Jean-Baptiste et al. (2019). Integration of the three

datasets were performed with IntegrateData function. 20 PCs were se-

lected for clustering and UMAP reduction.

Cluster marker genes were identified with the FindMarker function se-

lecting only positives markers at a minimum percentage of 25 %. For

the identification of marker genes compared to specific clusters, selected

clusters were specified in ident.2 parameter. Only genes with adjusted p

value < 0.05 were selected. For cluster annotation, cell-type specific genes

described in Denyer et al. (2019) and Jean-Baptiste et al. (2019) were

used.

For pseudotime analysis, Monocle 3 (version 0.2.1; Trapnell et al. (2014))

was used. Transference of Seurat object to Monocle object was done with

SeuratWrappers package (version 0.2.0).

Gene Ontology enrichment analysis was done in Araport thalemine (Kr-

ishnakumar et al., 2014) selecting only significant categories (p-value <

0.05 in Holm-Bonferroni test). REVIGO small 0.5 was used to reduce

redundancy after GO enrichment analysis (Supek et al., 2011). GO rep-

resentations were done in R studio using heatmap.2 function from gplots

package.
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For the analysis of stage-specific cell cycle genes, genes described in Torii

et al. (2020) were used.

Root tissue enrichments were performed with TOTEM software available

at https://bioinformatics.cragenomica.es/totem/select.

Visualization of gene expression plots was generated with VlnPlot and

DotPlot functions included in Seurat package.

Mathematical modeling

Mathematical modeling was carried out by Dr. Marta Ibañes and Josep

Mercadal in the University of Barcelona, Spain.

A complete description of the methods related to mathematical modeling

can be found in Betegón-Putze et al. (2020).

Parameter values for the BRAVO and WOX5 model used to generate data

in Figure 3.12 are shown in Table 6.5.

MyROOT algorithms development

Algorithms included in MyROOT software were developped and imple-

mented by Dr. Xavier Sevillano and Dr. Alejandro González from La

Salle, Ramón LLull University, Barcelona, Spain.

MyROOT has been developed in MATLAB (version 8.3.0.532. Natick,

Massachusetts: The MathWorks Inc., 2014). A complete description of

the algorithms can be found in Betegon-Putze et al. (2019) and González

https://bioinformatics.cragenomica.es/totem/select
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Table 6.5: Parameter values for the model of BRAVO and
WOX5. Parameters used to generate the data in Figure 3.12. Parameter
values used to perform the numerical simulations. All are in arbitrary
units. The right-most column indicates the concentration and time scales
in which these values could be meaningful in a biological context.

Parameter Value Units
α 0.3 nM/min
γ 25 nM/min
KM 0.02 nM−1

KW 0.01 nM−1

εM 0.2 -
εW 4 -
W0 1.6 -
M0 30 nM/min
W1 0.001 nM−1

dM 0.01 min−1

DW 0.01 min−1

et al. (2020).

MyROOT software installation and user guide

Installation guide for MyROOT software

1. Execute MyAppInstaller mcr.exe.

2. In the Root Analysis Installer window press the Next button.

3. In the Installation Options window select the folder where you wish

to install the software. By default, the selected folder is C:\Program

Files\La Salle – Universidad Ramon Llull\Root Analysis.

4. Mark the option Add a shortcut to the desktop.

5. Press the Next button.
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6. In the Required Software window select the installation folder for the

MATLAB Runtime (by default C:\Program Files\MATLAB\MATLAB

Runtime).

7. Press the Next button.

8. In the License Agreement window mark the option Yes.

9. Press the Next button

10. In the Confirmation window press the Install button

11. Copy the HypocotylDetection folder to the Desktop (this folder is

in the same folder as the .exe file used for the installation).

12. Open the software by pressing in the MyROOT Desktop icon.

Brief user guide for individual plates analysis using My-

ROOT software

1. Open the software in a PC.

2. Select and load the image to process by pressing the LOAD IMG

button. Enter an image resize factor between 0 and 1 in the Scale

edit box to reduce the size of the image and speed up the processing

of high-resolution images.

3. Obtain the pixels-to-millimeters scale factor by pressing the Ruler

ID button. If needed, edit the Ruler Threshold value to modify

the sensitivity of the ruler detector and repeat step 3. If there is

no ruler in the image, insert the correspondence between pixels and

millimeters manually in the 10 mm equivalence box.
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4. Start the root segmentation process by pressing the Root Mask but-

ton. Select the area where the roots are present by clicking in the

image. Double click in one of the vertex to start generating the

mask. In case the result is not satisfactory (e.g., over-segmented

roots), modify the sensitivity factor in the Root Threshold edit box

and repeat step 4.

5. Enter a value in the Root Length Threshold box to indicate the min-

imum percentage with respect to the longest root to be measured.

6. Start the root tracking and measurement process by pressing the

Root Detection button.

7. Enter the path of the files containing the pre-trained hypocotyl de-

tection models in the Hypocotyl Model Path edit box.

8. Optionally, to perform hypocotyl detection based on color descrip-

tors only, check the Only Color checkbox, and to conduct a channel-

wise color normalization process check the Norm Color checkbox.

9. Optionally, modify the threshold of the linSVM classifier by modify-

ing the value in the edit box located next to the Hypocotyl Detection

button.

10. Start the hypocotyl detection process by pressing the Hypocotyl De-

tection button.

11. If some of the hypocotyls were undetected, insert them manually

by using the Add button. Press the Enter key and press the Root

Refinement button to update root length measurements.

12. Remove the undesired roots from the measurement by typing the

root identifier in the ID edit box and pressing the Remove button.
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Press the Visualize button to refresh the image presented on My-

ROOT’s visualization canvas.

13. Enter the path where you would like the results to be stored in the

Results Path edit box.

14. Choose the type of data you want to save by checking the corre-

sponding checkboxes.

15. Optionally, type an identification suffix that will be appended to the

stored file names via the Root Label edit box.

16. Save the results by pressing the SAVE button

Brief user guide for batch processing using MyROOT soft-

ware

1. Load one of the image of the folder to process and select the optimal

parameters for the analysis (steps 2 to 9 in the previous user guide).

2. Enter the path where you would like the results to be stored in the

Results Path edit box.

3. Choose the type of data you want to save by checking the corre-

sponding checkboxes.

4. Optionally, type an identification suffix that will be appended to the

stored file names via the Root Label edit box.

5. Indicate the name of the folder with the images to process (Name\)

in the Folder Path box.

6. Press the Process button to start the analysis.
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7. Select if using the hypocotyl detection method by clicking in the Yes

or No button in the box that appears.

Availability of data and materials

MyROOT software versions, extended user manuals, a demo video and

example images are available to the plant science community through

the CRAG website (https://www.cragenomica.es/research-groups/

brassinosteroid-signaling-in-plant-development/software and the

Plant Image Analysis website (https://www.plant-image-analysis.org/;

(Lobet et al., 2013). The executable application together with the datasets

generated during the current study (from Figures 2.5, 2.7 and 2.9) are

available in the [Zenodo] repository, [https://doi.org/10.5281/zenodo.

2552250].

https://www.cragenomica.es/research-groups/brassinosteroid-signaling-in-plant-development/software
https://www.cragenomica.es/research-groups/brassinosteroid-signaling-in-plant-development/software
https://www.plant-image-analysis.org/
https://doi.org/10.5281/zenodo.2552250
https://doi.org/10.5281/zenodo.2552250
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M. G., Möller, B. K., Weijers, D., Lohmann, J. U., Williams, C.,

Lorenzo, O., and Sozzani, R. (2017). Predicting gene regulatory net-

works by combining spatial and temporal gene expression data in ,

javax.xml.bind.jaxbelement@774712e3, root stem cells. Proceedings of

the National Academy of Sciences of the United States of America,



Bibliography 240

114:E7632–E7640.

De Rybel, B., Adibi, M., Breda, A. S., Wendrich, J. R., Smit, M. E.,

Novák, O., Yamaguchi, N., Yoshida, S., Van Isterdael, G., Palovaara,

J., Nijsse, B., Boekschoten, M. V., Hooiveld, G., Beeckman, T., Wagner,

D., Ljung, K., Fleck, C., and Weijers, D. (2014). Plant development.

integration of growth and patterning during vascular tissue formation

in arabidopsis. Science, 345:1255215.

De Rybel, B., Mähönen, A. P., Helariutta, Y., and Weijers, D. (2016).

Plant vascular development: from early specification to differentiation.

Nature reviews. Molecular cell biology, 17:30–40.
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A system-level mechanistic explanation for asymmetric stem cell fates:

Arabidopsis thaliana root niche as a study system. Scientific reports,

10:3525.

Ghuge, S. A., Carucci, A., Rodrigues-Pousada, R. A., Tisi, A., Franchi,

S., Tavladoraki, P., Angelini, R., and Cona, A. (2015). The apoplas-

tic copper amine oxidase1 mediates jasmonic acid-induced protoxylem

differentiation in arabidopsis roots. Plant physiology, 168:690–707.

Gietz, R. D. and Woods, R. A. (2002). Transformation of yeast by lithium

acetate/single-stranded carrier dna/polyethylene glycol method. Meth-

ods in enzymology, 350:87–96.

Glumov, N. I., Kolomiez, E. I., and Sergeev, V. V. (1995). Detection of

the objects on the image using a sliding window mode. Optics and Laser

Technology, 27(4):241–250.

Goh, T., Toyokura, K., Wells, D. M., Swarup, K., Yamamoto, M., Mimura,

T., Weijers, D., Fukaki, H., Laplaze, L., Bennett, M. J., and Guy-

omarc’h, S. (2016). Quiescent center initiation in the arabidopsis lat-



245 Bibliography

eral root primordia is dependent on the scarecrow transcription factor.

Development, 143:3363–3371.

Gonzali, S., Novi, G., Loreti, E., Paolicchi, F., Poggi, A., Alpi, A., and

Perata, P. (2005). A turanose-insensitive mutant suggests a role for

wox5 in auxin homeostasis in arabidopsis thaliana. The Plant journal,

44:633–645.
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Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F., and Theis, F. J.



247 Bibliography

(2016). Diffusion pseudotime robustly reconstructs lineage branching.

Nature methods, 13:845–848.

Hardtke, C. S. and Berleth, T. (1998). The arabidopsis gene monopteros

encodes a transcription factor mediating embryo axis formation and

vascular development. The EMBO journal, 17:1405–1411.

Hasan, S. A., Hayat, S., and Ahmad, A. (2011). Brassinosteroids protect

photosynthetic machinery against the cadmium induced oxidative stress

in two tomato cultivars. Chemosphere, 84:1446–1451.

Hauser, M. T., Morikami, A., and Benfey, P. N. (1995). Conditional root

expansion mutants of arabidopsis. Development, 121:1237–1252.

He, J.-X., Gendron, J. M., Sun, Y., Gampala, S. S. L., Gendron, N., Sun,

C. Q., and Wang, Z.-Y. (2005). Bzr1 is a transcriptional repressor with

dual roles in brassinosteroid homeostasis and growth responses. Science,

307:1634–1638.

Heberle, H., Meirelles, G. V., da Silva, F. R., Telles, G. P., and Minghim,

R. (2015). Interactivenn: a web-based tool for the analysis of sets

through venn diagrams. BMC bioinformatics, 16:169.

Heidstra, R. and Sabatini, S. (2014). Plant and animal stem cells: similar

yet different. Nature reviews. Molecular cell biology, 15:301–312.

Helariutta, Y., Fukaki, H., Wysocka-Diller, J., Nakajima, K., Jung, J.,

Sena, G., Hauser, M. T., and Benfey, P. N. (2000). The short-root

gene controls radial patterning of the arabidopsis root through radial

signaling. Cell, 101:555–567.

Helm, M., Schmid, M., Hierl, G., Terneus, K., Tan, L., Lottspeich, F.,

Kieliszewski, M. J., and Gietl, C. (2008). Kdel-tailed cysteine endopepti-

dases involved in programmed cell death, intercalation of new cells, and

dismantling of extensin scaffolds. American journal of botany, 95:1049–

1062.



Bibliography 248

Heyman, J., Cools, T., Canher, B., Shavialenka, S., Traas, J., Vercauteren,

I., Van den Daele, H., Persiau, G., De Jaeger, G., Sugimoto, K., and

De Veylder, L. (2016). The heterodimeric transcription factor complex

erf115-pat1 grants regeneration competence. Nature plants, 2:16165.

Heyman, J., Cools, T., Vandenbussche, F., Heyndrickx, K. S., Van Leene,

J., Vercauteren, I., Vanderauwera, S., Vandepoele, K., De Jaeger, G.,

Van Der Straeten, D., and De Veylder, L. (2013). Erf115 controls root

quiescent center cell division and stem cell replenishment. Science,

342:860–863.

Heyman, J., Kumpf, R. P., and De Veylder, L. (2014). A quiescent path

to plant longevity. Trends in cell biology, 24:443–448.

Hossain, M. S., Kawakatsu, T., Kim, K. D., Zhang, N., Nguyen, C. T.,

Khan, S. M., Batek, J. M., Joshi, T., Schmutz, J., Grimwood, J.,

Schmitz, R. J., Xu, D., Jackson, S. A., Ecker, J. R., and Stacey, G.

(2017). Divergent cytosine dna methylation patterns in single-cell, soy-

bean root hairs. The New phytologist, 214:808–819.

Hossain, Z., McGarvey, B., Amyot, L., Gruber, M., Jung, J., and Hanno-

ufa, A. (2012). Diminuto 1 affects the lignin profile and secondary cell

wall formation in arabidopsis. Planta, 235:485–498.

Hu, Z., Cools, T., and De Veylder, L. (2016). Mechanisms used by plants

to cope with dna damage. Annual review of plant biology, 67:439–462.

Huang, H., Ullah, F., Zhou, D.-X., Yi, M., and Zhao, Y. (2019). Mecha-

nisms of ros regulation of plant development and stress responses. Fron-

tiers in plant science, 10:800.

Hulsen, T., de Vlieg, J., and Alkema, W. (2008). Biovenn - a web ap-

plication for the comparison and visualization of biological lists using

area-proportional venn diagrams. BMC genomics, 9:488.

Hyun, Y. and Lee, I. (2006). Kidari, encoding a non-dna binding bhlh



249 Bibliography

protein, represses light signal transduction in arabidopsis thaliana. Plant

molecular biology, 61:283–296.
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K., Törmäkangas, K., Ikeda, Y., Oka, A., Kakimoto, T., and Helariutta,

Y. (2006a). Cytokinin signaling and its inhibitor ahp6 regulate cell fate

during vascular development. Science, 311:94–98.

Mähönen, A. P., Bonke, M., Kauppinen, L., Riikonen, M., Benfey, P. N.,

and Helariutta, Y. (2000). A novel two-component hybrid molecule

regulates vascular morphogenesis of the arabidopsis root. Genes & de-

velopment, 14:2938–2943.
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Kwaśniewski, M., Zanor, M.-I., Lohmann, J. U., De Veylder, L., Witt,

I., and Mueller-Roeber, B. (2008). The dof transcription factor obp1

is involved in cell cycle regulation in arabidopsis thaliana. The Plant

journal, 56:779–792.

Slabaugh, E., Held, M., and Brandizzi, F. (2011). Control of root hair

development in arabidopsis thaliana by an endoplasmic reticulum an-

chored member of the r2r3-myb transcription factor family. The Plant

journal, 67:395–405.
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K., Harter, K., Zipfel, C., and Höfte, H. (2014). A receptor-like protein

mediates the response to pectin modification by activating brassinos-

teroid signaling. Proceedings of the National Academy of Sciences of

the United States of America, 111:15261–15266.

Wu, J., Wu, Q., Pagès, L., Yuan, Y., Zhang, X., Du, M., Tian, X., and

Li, Z. (2018). Rhizochamber-monitor: a robotic platform and software

enabling characterization of root growth. Plant methods, 14:44.

Xia, X.-J., Huang, L.-F., Zhou, Y.-H., Mao, W.-H., Shi, K., Wu, J.-X.,



Bibliography 276

Asami, T., Chen, Z., and Yu, J.-Q. (2009). Brassinosteroids promote

photosynthesis and growth by enhancing activation of rubisco and ex-

pression of photosynthetic genes in cucumis sativus. Planta, 230:1185–

1196.

Xiang, L., Nolan, T. M., Bao, Y., Elmore, M., Tuel, T., Gai, J., Shah, D.,

Huser, N. M., Hurd, A. M., McLaughlin, S. A., Howell, S. H., Walley,

J. W., Yin, Y., and Tang, L. (2020). Robotic assay for drought (road):

An automated phenotyping system for brassinosteroid and drought re-

sponse. bioRxiv.

Xie, L., Yang, C., and Wang, X. (2011). Brassinosteroids can regulate

cellulose biosynthesis by controlling the expression of cesa genes in ara-

bidopsis. Journal of experimental botany, 62:4495–4506.

Xu, F., Meng, T., Li, P., Yu, Y., Cui, Y., Wang, Y., Gong, Q., and Wang,

N. N. (2011). A soybean dual-specificity kinase, gmsark, and its ara-

bidopsis homolog, atsark, regulate leaf senescence through synergistic

actions of auxin and ethylene. Plant physiology, 157:2131–2153.

Xu, J., Hofhuis, H., Heidstra, R., Sauer, M., Friml, J., and Scheres, B.

(2006). A molecular framework for plant regeneration. Science, 311:385–

388.

Xu, Y., Yu, Z., Zhang, D., Huang, J., Wu, C., Yang, G., Yan, K., Zhang,

S., and Zheng, C. (2018). Cystm, a novel non-secreted cysteine-rich pep-

tide family, involved in environmental stresses in arabidopsis thaliana.

Plant & cell physiology, 59:423–438.

Xu, Y.-H., Liu, R., Yan, L., Liu, Z.-Q., Jiang, S.-C., Shen, Y.-Y., Wang,

X.-F., and Zhang, D.-P. (2012). Light-harvesting chlorophyll a/b-

binding proteins are required for stomatal response to abscisic acid in

arabidopsis. Journal of experimental botany, 63:1095–1106.

Yadav, R. K., Girke, T., Pasala, S., Xie, M., and Reddy, G. V. (2009).



277 Bibliography

Gene expression map of the arabidopsis shoot apical meristem stem cell

niche. Proceedings of the National Academy of Sciences of the United

States of America, 106:4941–4946.
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SUMMARY

Root analysis is essential for both academic and agricultural research. Despite the great advances in root

phenotyping and imaging, calculating root length is still performed manually and involves considerable

amounts of labor and time. To overcome these limitations, we developed MyROOT, a software for the semi-

automatic quantification of root growth of seedlings growing directly on agar plates. Our method automati-

cally determines the scale from the image of the plate, and subsequently measures the root length of the

individual plants. To this aim, MyROOT combines a bottom-up root tracking approach with a hypocotyl

detection algorithm. At the same time as providing accurate root measurements, MyROOT also significantly

minimizes the user intervention required during the process. Using Arabidopsis, we tested MyROOT with

seedlings from different growth stages and experimental conditions. When comparing the data obtained

from this software with that of manual root measurements, we found a high correlation between both

methods (R2 = 0.997). When compared with previous developed software with similar features (BRAT and

EZ-Rhizo), MyROOT offered an improved accuracy for root length measurements. Therefore, MyROOT will

be of great use to the plant science community by permitting high-throughput root length measurements

while saving both labor and time.

Keywords: root length, software, root phenotyping, high-throughput image analysis, Arabidopsis thaliana,

technical advance.

INTRODUCTION

The root, responsible for anchoring the plant to the soil, is

an essential organ for overall plant growth and develop-

ment. Characterization of different root traits is therefore

important not only for understanding organ growth, but also

for evaluating the impact of roots in agriculture (Kuijken

et al., 2015). As such, generating tools for precise, high-

throughput phenotyping and imaging of roots is essential

for plant research and agriculture. Phenotyping facilities,

such as the ones available in the European Plant Phenotypic

Network (http://www.plant-phenotyping-network.eu/), have

started to implement tools for mass screening of roots.

Roots provide necessary structural and functional sup-

port for incorporation of nutrients and water from soil. In

Arabidopsis thaliana (Arabidopsis), the primary root has a

simplified anatomy that makes it very amenable for genetic

and microscopic analysis (Dolan et al., 1993; Ishikawa and

Evans, 1995; Iyer-Pascuzzi et al., 2009). Different root cell

lineages are derived from a group of stem cells located at

the root apex. Here, the stem cell niche is formed by a few

(three to seven) quiescent center cells that occasionally

divide asymmetrically to renew themselves and to form

daughter stem cells. From the root apex, these cells

actively divide in the meristematic zone and, before exiting

the cell cycle in the transition zone, continue to elongate

and differentiate in spatially separated regions of the root.

In this way, primary root growth is determined by the

© 2019 The Authors.
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License,
which permits use, distribution and reproduction in any medium, provided the original work is properly cited and
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balance between cell division and cell elongation within

the different zones of the root (van den Berg et al., 1997;

Beemster and Baskin, 1998; Verbelen et al., 2006; Takat-

suka and Umeda, 2014).

Themost straightforward symptomof abnormal root growth

or development can be identified by examining the length of

the primary root in seedlings. Abnormalities in length can usu-

ally be observed andmeasured just 5–6 days after germination

(DAG), which still reflect their embryonic origin (J€urgens et al.,

1995). Growth defects in the primary root of seedlings are not

only consistent with overall growth defects, but also persistent

along the entire plant life cycle (Benfey et al., 1993; Potuschak

et al., 2003; Gonz�alez-Garcia et al., 2011). Indeed, Arabidopsis

root analyseswere the foundations formultiple genetic screens

that ultimately led to the identification of several key regulators

of plant growth and development (Benfey et al., 1993; Hauser

et al., 1995; Ca~no-Delgado et al., 2000; Mouchel et al., 2004;

Ubeda-Tomas et al., 2008).

Root analysis of young seedlings offers direct information

regarding overall plant growth and viability. Despite impor-

tant advances in plant imaging techniques such as micro-

scopic visualization (Pfister et al., 2014; Gonz�alez-Garcia

et al., 2015; Lobet, 2017), the root length of seedlings grow-

ing in agar plates is generallymeasured bymanually indicat-

ing the position of each seedling or manually tracking each

root using the ImageJ software (https://imagej.nih.gov/ij/).

For this reason, the development and use of methods that

enable automatic and accurate analysis of a large number of

roots represents a step forward for high-throughput root

analysis. Automatic analysis of root system architecture is

just beginning to be implemented, and novelmethods based

on acquiring, processing, and obtaining quantitative data

from root images are now available.

The available root softwares are designed for different

purposes. Some of these are applied to crop phenotyping

and are mainly focused on traits related to root architecture

such as branching or biomass (Le Bot et al., 2010; Lobet

et al., 2011; Nagel et al., 2012; Pound et al., 2013; Pace

et al., 2014; Kuijken et al., 2015; Wu et al., 2018). Con-

versely, other root softwares are oriented for the analysis of

plant model species as Arabidopsis (Armengaud et al.,

2009; French et al., 2009; Yazdanbakhsh and Fisahn, 2012;

Slovak et al., 2014). Most of these can reliably measure dif-

ferent root traits (primary root length, lateral roots, etc.)

(Arsenault et al., 1995; Le Bot et al., 2010; Clark et al., 2013;

Ristova et al., 2013; Slovak et al., 2014; Cai et al., 2015). The

analysis usually requires intensive user intervention to set

the optimal parameters for root detection and to identify

the individual roots (Armengaud et al., 2009; French et al.,

2009; Clark et al., 2013). Despite time-consuming manual

tracking of each single root, ImageJ is often used as a tool

for primary root length quantification. A summary of the

existing softwares for root analysis and its main features is

given in Table S1.

Despite the numerous tools for root analysis, these lack

the capability to precisely measure the primary root length

of seedlings. This approach is key for genetic, physiologi-

cal and developmental studies in the plant model Ara-

bidopsis and is often done manually. Here, we present

MyROOT, a software capable of semiautomatically calcu-

lating primary root length in a fast and user-friendly man-

ner, and that is able to adapt to different imaging and

experimental conditions. By automatically identifying the

scale and precisely detecting all individual roots and hypo-

cotyls growing on an agar plate from a JPEG image, this

software simplifies and minimizes user intervention during

the calculation of root length. MyROOT merely requires

the user to define the region in which the seedlings are

placed on the plate, and then subsequently operates in a

semiautomatic fashion. We show that MyROOT can be

used both in low-scale and high-throughput experiments

due to the incorporation of a batch-processing option for

automatic processing of several images without losing its

accuracy.

As a proof of concept, MyROOT software was used for

root length measurement of Arabidopsis wild-type and

brassinosteroid (BR)-signaling mutants grown under con-

trol conditions, exogenous BR hormones treatment and for

plants grown under osmotic stress conditions (Fabregas

et al., 2018). MyROOT software is available at https://

www.cragenomica.es/research-groups/brassinosteroid-

signaling-in-plant-development.

RESULTS

MyROOT is a software for high-throughput analysis of

root length

Most root studies begin with an overall determination of

root growth as estimated by manual, laborious and time-

consuming measurements. To address this limitation, we

developed a semiautomatic and non-invasive software for

the high-throughput measurement of root length. This

method is implemented in MATLAB as an automatic tool

named MyROOT (Figure 1a). It is based on pictures of

whole agar plates on which young seedlings are growing

vertically on the surface, and implements novel algorithms

capable of separately detecting the root and the hypocotyl

of each individual seedling and estimating a hypocotyl

curve based on the detection of some hypocotyls

(Figure 1b–g).
MyROOT detects and measures root length by following

a series of steps (Figure 1b–g, Box 1–3 and Video S1). First,

a digital image of the plate containing the growing seed-

lings is taken and used for the analysis (Figures 1b and

S1). The image has to include a ruler (at least 1 cm long)

placed on top of the plate. From the JPEG image, the soft-

ware: (i) detects 1 cm of the ruler to automatically compute

the scale and calculate the equivalence between pixels and

© 2019 The Authors.
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,
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millimeters (mm; Figure 1c); (ii) generates a binary mask

from the manually selected area that allows for root seg-

mentation (this separates those pixels that belong to a root

from those of the background) (Figure 1d); (iii) measures

the length of the roots through a root-tracking process

(Figure 1e); (iv) computes a regression curve based on the

detection of the hypocotyls to identify the starting point of

each root (Figure 1f); (v) measures the root length again

from the root tip to the end of the hypocotyl (Figure 1g);

and (vi) exports the measurements and the generated

masks to a new folder. Finally, the results are saved in: (i) a

Microsoft Excel spreadsheet or a .txt file in which each root

is identified by an ID tag, length value and a descriptive

text label introduced by the user; (ii) an image showing the

detected and measured roots; (iii) MATLAB variables

including the intermediate data such as hypocotyl position

and the detection curve that was generated while quantify-

ing root length and (iv) a RSML file so the images can be

analyzed with other compatible softwares (Lobet et al.,

2015).

One of the advantages of MyROOT is that it allows the

user to supervise the different steps of the process as the

results of each step are displayed before executing the fol-

lowing one. This feature enables the user to modify the

different parameters (e.g., segmentation thresholds for

ruler and root detection, and model for hypocotyl detec-

tion, etc.) at any point in the process to take into account

different image conditions. Nonetheless, default parame-

ter values have been set for satisfactory operation on a

wide range of images for pre-defined acquisition condi-

tions (see Experimental procedures). Furthermore, the

position of any hypocotyl that is not automatically

detected can be manually indicated, and undesired roots

can be manually removed from the results before saving.

In addition, MyROOT incorporates a batch processing

option for an automatic high-throughput analysis in which

the different parameters are set for the first image from a

specific folder and automatically applied in the rest of

these.

In summary, by determining the pixel-millimeter equiva-

lence and detecting seedling morphology (roots and hypo-

cotyls) from an image of a seedling-containing agar plate,

MyROOT offers a valuable analytical tool for precisely

measuring root growth in a semi-automatic manner. As

such, this software clearly provides a solution to the timely

task of manually quantifying root length.

Root detection and measurement process

MyROOT has been developed for the high-throughput,

accurate, and non-invasive measurement of root length

from seedlings growing in agar plates. In this respect, the

three most crucial steps are to precisely determine the

scale, identify the roots, and measure their length. The

scale information is obtained from a piece of measuring

tape that is placed on the surface of the Petri dish. This

allows the measurements to be completely independent

from the specific characteristics of the image capture sys-

tem. The first step for detecting the ruler is based on its

color contrast with the background. By computing the ver-

tical and horizontal profiles of the image, the algorithm is

designed to explore the entire image in search of a white

patch (Figure S2a). As the border of the plate has a similar

color contrast with the background, a median filter is

applied to reduce the border effect. The maximum values

in the filtered profiles define the image area where the

white patch is present. Next, the resulting area is further

cropped (Figure S2b) and processed (Figure S2c–e). By

applying a threshold based on Otsu’s algorithm (Otsu,

1979), the black lines representing cm and mm marks are

not filtered out (Figure S2b). Finally, a horizontal profile of

this binary image is generated (Figure S2d) in which the

pixel-mm equivalence is defined as the difference between

consecutive local maxima (Figure S2e). In case that there

is not ruler tape in the image to analyze, MyROOT includes

the option of manually indicating the correspondence

between pixels and millimeters.

The core of the whole method is the root extraction

and measurement process. To extract roots, the user

must first manually define the area in which roots are

present (note: only one row of seedlings should be

included when defining the area). Then, with just a few

mouse clicks from the user, a binary mask is generated

that allows root segmentation. This later leads to the

identification of individual roots through a root tracking

process, and finally allows the individually identified

roots to be measured (Figure 2). The root segmentation

process can be divided into four main steps: (i) color nor-

malization (Figure 2a), (ii) ridge detection (Figure 2b), (iii)

root tracking (Figure 2c), and (iv) root identification (Fig-

ure 2d). During the color normalization step, the image is

processed and a global working framework is set (i.e., all

images going through this process become color-

balanced and have the same lower and higher white val-

ues; Figure 2a). This allows the user to manage different

initial conditions (illumination, color, and saturation, etc.)

while continuing with the same subsequent steps of the

pipeline. In the next step, a ridge (i.e., white contrasted

area) detector identifies roots based on their contrast

with the background (for this, the level of whiteness is

irrelevant; Figure 2b). After the detection step, a final

mask is generated for tracking the roots. Due to the lin-

ear disposition of the roots in the plate, we employed a

bottom-up tracking approach. As such, tracking starts at

the end point of each root and continues upward, row by

row, until the hypocotyl detection curve is found (Fig-

ure 2c). Finally, the tracking of each root makes it possi-

ble to identify which pixels correspond to which root

(Figure 2d).

© 2019 The Authors.
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(b)

(c)

(e)

(d)

(f)

(g)

(a)

Figure 1. The graphical interface and steps of MyROOT.

(a) The graphical user interface of MyROOT is organized into seven sections: 1. Input image information, 2. Root extraction parameters, 3. Hypocotyl detection

parameters, 4. Manual removal of roots, 5. Visualization of the image and the different detection steps, 6. Saving parameters, and 7. Batch processing (b) The

input image required for analysis is a picture of the square plate in which the aligned seedlings are growing. By using information from this image, MyROOT

performs the following steps: (c) Identification of the ruler to determine the scale (i.e., the equivalence between pixels and millimeters). (d) Root segmentation

to identify the seedlings. (e) Root tracking to measure the roots. (f) Hypocotyl detection to identify the hypocotyls and separate them from the roots. (g) Root

measurement to quantify the length of individual seedlings (i.e., the distance from the root tip to the end of the hypocotyl).

© 2019 The Authors.
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Once the root tracking process has been completed,

each individual root is measured based on previous posi-

tions saved in the historical record. Specifically, root length

is calculated in pixels by adding the distances between

previous consecutive points and then applying the previ-

ously calculated pixel-mm equivalence. Next, a refinement

process is applied in which the shortest roots, which are

often associated with noise, are discarded. By default,

MyROOT discards any root measurement shorter than 30%

of the longest one. However, this percentage can be manu-

ally chosen by the user if need be. A second filter is then

applied to keep those roots that terminate close to the pre-

viously calculated hypocotyl curve. If a root surpasses the

hypocotyl curve, it is cut at this level. Finally, unique

numeric identifiers (ID) are assigned to all roots that are

not filtered out during processing.

As two roots can be located so close to one another that

they cannot be detected as individual roots, MyROOT was

trained with the following characteristics: (i) when a split

occurs and a current root matches more than one detec-

tion (blue circle in Figure 2c), a new root sharing the same

historical record is created, and (ii) when a fusion occurs

and two roots match a single detection (yellow circle in

Figure 2c), the shortest root is eliminated from the root set

and added as a sub-root of the longest one; therefore indi-

cating the root length of the primary root which is longer

than the lateral roots.

To validate our software, we compared root length mea-

surements obtained using MyROOT with manual measure-

ments performed using ImageJ. We compared the root

length values of different experiments. First, 6-days-old

seedlings of wild type and BR-related mutants grown in

control and in osmotic stress conditions (data published in

Fabregas et al. (2018), n > 600, Figure 3), and second, the

same seedlings over 6 consecutive days (from three to

eight DAG; n > 116). We obtained a positive correlation

between the measurements with both methods

(R2 = 0.997, Pearson’s r = 0.9985). These results indicated

that measurements made using our software coincided

with manual measurements, thereby supporting the use of

MyROOT for root length analysis in seedlings in different

growth stages and experimental conditions.

We also evaluated the time required by MyROOT to

determine root lengths, and compared it with the time

needed for manual measurements using ImageJ, as it is

widely used for the analysis of a low number of plates as a

routine task in many plant biology laboratories. Impor-

tantly, we found that MyROOT reduces the time required

to measure one plate by approximately half (Figure S3).

When using MyROOT for high-throughput experiments,

the analysis of a batch of images can be done automati-

cally after setting the optimal parameters for adapting to

the imaging conditions of the experiment. The time

required for the analysis of one row of seedlings of differ-

ent plates was evaluated. MyROOT spends approximately

1 min per image when the hypocotyl detection is not per-

formed and 1 min more if it is performed. Importantly, this

process is completely automatic and does not require the

user intervention. The accuracy of the batch processing

was evaluated by comparing the results of the analysis of

10 different plates using MyROOT by single upload fol-

lowed by individual setting of the optimal parameters and

using MyROOT for a batch analysis of all of them automat-

ically (Figure S4). The correlation obtained between both

methods was positive (R2 = 0.996, Pearson’s r = 0.9981),

therefore confirming that the batch processing option can

be performed without losing accuracy in the final measure-

ments.

Hypocotyl detection

One of the main advantages of MyROOT is its ability to

identify hypocotyls of growing seedlings. This characteris-

tic is important for accurately determining the start point

of each root. The hypocotyl detection process is based on

visual features extracted (appearance and color) from the

image. These features were used to generate a hypocotyl

model by introducing 1259 hypocotyls of seedlings of dif-

ferent ages and characteristics and 7915 samples with

(b)(a)

(d)(c)

Figure 2. Root extraction method.

(a) Colors are normalized in the area where roots

are present, and white roots are detected. (b) Seg-

mentation is performed by applying a ridge detec-

tor. (c) Starting at the root tip, the roots are tracked

using a bottom-up approach. (d) Each root is mea-

sured using its historical recorded tracking, and

root length is calculated by taking into account the

pixel-millimeter equivalence.

© 2019 The Authors.
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background information (see Experimental procedures).

The learned model is able to determine whether a given

sample is a hypocotyl or not. To extract visual features, we

implemented the histogram of oriented gradient (HOG)

(Dalal and Triggs, 2005) method. The HOG method is

based on the orientation of the contours in the image, and

generates a histogram that represents the appearance/

shape of the sample. For extracting color features, color

distribution histograms representing the amount of color

in a given sample area are used (Figure 4a). To train the

model, we implemented a linear support vector machine

classifier that uses appearance and color features from the

hypocotyl images. This classifier generates the best hyper-

plane that classifies samples as positive (hypocotyls) and

negative (no hypocotyls) examples. During the hypocotyl

detection stage, the sliding window approach (Glumov

et al., 1995) is used to perform an exhaustive search for

hypocotyls. Finally, by keeping the highest scored win-

dows as true positives, polynomial regression is used to

define a curve that passes through all the detected hypoco-

tyls. Although the user can manually insert the location of

the hypocotyls, this curve enables the position of unde-

tected hypocotyls to be estimated, and therefore corrects

the curve tracing. The intersection between the hypocotyl

detection curve and each root is used to define the root

start point.

We first evaluated our hypocotyl detection process in

terms of different hypocotyl detection models. Both the

precision-recall curve (Figure 4b) and the number of false

positives per image (FPPI; Figure 4c) were calculated for

three different models that differ in the type of feature they

use for describing hypocotyls: only color information, only

appearance information (via HOG features), or both types

of information (HOG + color).

Upon analyzing the precision-recall curve of each model,

we found the HOG + color model to be the most robust

(Figure 4b). In the case of FPPI, the lowest miss rate was

also found when using the HOG + color model (Figure 4c).

These results indicated that when considering both color

and appearance (i.e., the HOG + color model), a higher

number of hypocotyls were identified than when using

only one of the features. Therefore, this validates our

MyROOT method because it incorporates both HOG and

color information.

Next, we evaluated the influence of different regression

curve models on the root measurement refinement used to

set up the limits of individual roots (Figure 4d). To create

these curves, a regression upon the detected hypocotyls

was performed. To define which regression model gives

the better fit, we tested different polynomial models that

were evaluated in terms of the average distance (in pixels)

between the real hypocotyl position and the point of inter-

section between the root and the regression curve (Fig-

ure 4d). The results indicated that when using a hypocotyl

regression curve of order 4, a good balance between accu-

racy and flexibility that is able to account for small changes

in hypocotyl position is reached. Therefore, we chose to

employ this regression curve in our software.

The use of the hypocotyl detection method permits the

fine identification of the starting point of the root (Fig-

ure 5a–d). Whereas, depending on the user judgement,

this option can be skipped, therefore reducing the time of

the measurement process but losing accuracy in the final

root length results (Figure 5e). We compared the root

length measurements of two plates, one containing seed-

lings with standard hypocotyls (Col-0 wild type plants) and

other with shorter hypocotyls and roots (Col-0 wild type in

osmotic stress conditions), using and skipping the hypoco-

tyl detection step (Figure 5a–d). In both plates, when using

the method, only the primary root is measured (Figure 5a,

c), whereas when it is not used, some parts of the hypoco-

tyl are measured too (Figure 5b,d). When not using the

hypocotyl detection method, we only found statistically

significant differences in the root length of the shorter

seedlings, as the proportion of hypocotyl length measured

significantly increased the overall root length measure-

ment (Figure 5e, n > 30). These results highlighted the

importance of the hypocotyl detection process for accu-

rately measuring the root length, but also point to just

using it when the experiment requires high precision.

Comparison of MyROOT with available root softwares

The choice of software is usually based in a balance

between the appropriateness of the characteristics of the
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Figure 3. Validation of root length measurements.

Correlation of root length measurements using MyROOT (y axis) and Ima-

geJ (x axis). Each point corresponds to a different experiment (n > 20 in

each one): time course data from 3 DAG to 8 DAG seedlings (grey) and BR-

related mutants in control and osmotic stress conditions (black, Fabregas

et al., 2018). Errors bars indicate the standard error. For the time course

experiment, seedlings that were not measured by MyROOT in at least four

time points were discarded.

© 2019 The Authors.
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,

The Plant Journal, (2019), 98, 1145–1156

1150 Beteg�on-Putze et al.



software to the experimental design, the accuracy of the

measurements obtained and the time required for the anal-

ysis (Table S1). We compared the accuracy and the time

spent by MyROOT with BRAT and EZ-Rhizo, the two most

similar software tools, in the quantification of primary root

length of two independent plates containing Arabidopsis

seedlings (Figure S4 and Table S2).

We first compared the root length obtained with the

three softwares with the ImageJ results. The absolute dif-

ference of mean root length between the measurements

obtained with the softwares and with ImageJ show that

MyROOT differs 1.39 mm and 0.22 mm for plates 1 and 2

respectively. With regard to this parameter, our results

indicated the better performance of MyROOT in

comparison with BRAT (15.08 mm and 1.77 mm) and to

EZ-Rhizo (2.67 mm and 2.42 mm) (Table S2).

Root detection on the plate was similar between

MyROOT (> 90%) and EZ-Rhizo (> 96%), yet MyROOT pro-

vided more accurate measurements (Figure S5 and

Table S2). In addition, due to the incorporation of the

hypocotyl detection method, MyROOT requires less user

intervention to clearly indicate the roots, this is reflected in

a reduction in the time spent for the analysis. We spent

around 3 min to analyze each plate when using MyROOT,

0.5 min with BRAT and 15 min with EZ-Rhizo (Table S2).

Some seedlings on the plates analyzed had overlapping

hypocotyls. We found that MyROOT was able to identify

these and correctly indicate the shoot�root junction in
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Figure 4. Hypocotyl detection method and validation.

(a) Scheme of the hypocotyl detection method. A candidate window is defined as a square area inside the image. To describe a candidate, appearance/shape

(HOG) and color information are extracted. Appearance information is extracted to calculate the gradient of the image (i.e., the direction of the contours within

the image at each pixel). Histograms of Oriented Gradient (HOG) and the histograms of color are calculated over regular spaced, non-overlapping cells inside

the candidate window (forming the block descriptor). Finally, all color/HOG cell histograms are concatenated to obtain the candidate window description. (b)

Precision-Recall curve for three different models of hypocotyl detection (HOG, Color and HOG + Color). The curve is obtained by changing the threshold that

defines the frontier between positive and negative samples. For each threshold, the precision (well classified ratio) and the recall (poor classified ratio) were cal-

culated. The area under the curve represents the robustness of the classifier, with a higher value indicating greater robustness (a higher well classified ratio to

poor classified ratio over the entire range of the classifier). (c) False Positives Per Image (FPPI) curve for three different models of hypocotyl detection (HOG,

Color and HOG+Color). The curve plots the miss rate against the FPPI. In this way, the average miss rate over a specific FPPI range (1–10) represents the sensitiv-

ity of the classifier to not miss good samples and keep the false positive ratio low. (d) The average distance in pixels between the real hypocotyl position and

the point of intersection between the root and the polynomial regression curves, for polynomial regression curves of orders 1–6 and an extra model including a

sine component. Error bars indicate the standard error.
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cases with higher precision than EZ-Rhizo and BRAT,

which presented a more basic algorithm for the hypocotyl

detection based only on color and shoot border curvature

information, respectively. These observations highlight the

utility and importance of the hypocotyl detection method

incorporated in MyROOT and its capacity to identify the

individual seedlings and the precise starting point of each

root.

Overall, MyROOT fills a specific gap in root phenotyping

by allowing a precise, fast and semi-automatic quantifica-

tion of primary root length of seedlings on a plate and a

batch of plates.

DISCUSSION

In this study, we presented MyROOT software for the

quantification of plant root length. Despite the existence of

other software (Table S1), MyROOT covers a gap in analy-

sis of Arabidopsis seedling not previously addressed. The

determination of root length in such accuracy is key in the

study of plant growth and developmental processes, in

which small root differences can lead to the identification

of important genes (Benfey et al., 1993; Li et al., 2001;

Mouchel et al., 2004; Rodrigues et al., 2009). We found that

the implementation of primary root phenotyping algo-

rithms in a platform using independent, semi-automatic

and user-friendly software to accurately measure root

length achieved by using MyROOT will replace the current

manual and time-consuming tools such as ImageJ.

MyROOT gives the most precise root length measure-

ments when compared with similar software BRAT and EZ-

Rhizo (Figure S5 and Table S2). Importantly, the accuracy

is maintained both in the manual and in the batch process-

ing mode of MyROOT (Figures 3 and S4), being therefore

suitable for high-throughput experiments. Under our

experimental conditions, only BRAT operates in a faster

manner, whereas the final results are less accurate

(Figure S5 and Table S2). This can be explained because

of the limited control that BRAT offers for the adjustment

of its internal parameters by the users to adapt to different

imaging conditions, which may result in low root detection

rates (Table S2). Conversely, MyROOT easily allows the

modification of different thresholds (scale and root mask

threshold and hypocotyl detection method) to define the

optimal parameters for the analysis.

Another novel feature of MyROOT compared with exist-

ing softwares is the ability to automatically identify the

scale by detecting a ruler over the imaged plate; therefore

being able to automatically adapt to different imaging con-

ditions and settings; and therefore being able to work inde-

pendently from specific hardware set ups (Table S1).

Importantly, MyROOT is the only software that uses

machine learning-based algorithms to identify Arabidopsis

hypocotyls, which allows its identification in different

mutants and experimental conditions even when they are

overlapped or present different morphologies. In excep-

tional cases in which the hypocotyls are not automatically

identified, or when the software is used for the analysis of

other plant species, they can be manually indicated by sim-

ply pointing over them.

In addition to the automatic processing of several

images, MyROOT allows the user supervision during all

the process. It displays intermediate results during the

analysis and allows the modification of different parame-

ters to get the optimal results. Despite that MyROOT only

indicates the primary root length, the output is also saved

in rsml software that allows its compatibility with other

software that can determine other aspects of root architec-

ture such as curvature or branching.

Overall, this article advances the utility of MyROOT for

determination of Arabidopsis root length in a precise, fast

and simple manner. It incorporates powerful algorithms to

identify scale and seedlings over standard images of agar

(a)

(c) (d)

(b)
(e)

Figure 5. Evaluation of hypocotyl detection method for the root length measurements using MyROOT.

(a–d) Qualitative analysis of the hypocotyl detection method in two different images. (e) Root length measurement of seedling grown in two different plates

(showed in (a–d)) using and not using the hypocotyl detection method. Different letters indicate statistically significant differences (P-value <0.05; Student’s
t-test, n > 30).
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plates. These are incorporated in a user-friendly graphical

interface that allows supervision and manipulation during

the different steps of the analysis.

Finally, MyROOT is a modularly designed software con-

sisting of a group of specialized algorithms able to detect

and analyze measuring tape, detect roots, track roots in a

bottom-up fashion and detect hypocotyls. Therefore, any

improvement to any of these components, or new algo-

rithms to determine other features, can be easily included

in subsequent versions of MyROOT. Examples of future

improvements that could be included are the development

of daily growth-monitoring algorithms that permit the

detection of abnormal root growth patterns, analysis of root

system architecture beyond the primary root, and identifica-

tion of hypocotyls from other plant species. In the future,

upgraded versions of our software could consist of a com-

pletely automatic operation connected to high-throughput

facilities for large-scale characterization of root traits.

CONCLUSION

MyROOT is a software capable of semiautomatically mea-

suring the length of the primary root of Arabidopsis seed-

lings. It automatically recognizes the scale of the image,

and detects the hypocotyls and root tips from young seed-

lings growing vertically in agar plates. This information is

then used to accurately calculate the root length of each

individual plant. This software was designed in such a way

that only a simple image of the plate is required for analy-

sis. Importantly, MyROOT is even able to recognize hypo-

cotyls of different ages and morphologies, and can

therefore be applied in a large range of experiments.

Here, our validation experiments demonstrated the high

precision of measurements made with MyROOT, thereby

proving that this software can be used within the research

community to perform high-throughput experiments in a

less time-consuming manner.

EXPERIMENTAL PROCEDURES

Plant material and growth conditions

Arabidopsis thaliana Col-0 seeds were surface sterilized with a 5-
min incubation in 1.5% sodium hypochlorite, followed by five
washes in distilled sterile water. Seeds were stratified for 48 h at
4°C in the dark to synchronize germination. Seeds were sown in
12 9 12-cm plates containing half-strength Murashige and Skoog
(½MS) medium without sucrose and supplemented with vitamins.
Seeds were distributed individually in the plate in two rows with
around 15 seeds per row. The plates were incubated for 3–8 days
vertically oriented under long day conditions (16 h of light and 8 h
of dark) at 22°C and 60% relative humidity.

Statistical analysis

The comparison between the root length measurements using
MyROOT and ImageJ was evaluated by performing a regression
curve and calculating the Pearson correlation coefficient. The com-
parison between the root length measurements using and not
using the hypocotyl detection method was evaluated using Stu-
dent’s t-test. This test was selected due to the unequal number of
seedlings detected under each condition.

Plant Imaging and computer settings

Images were taken with a D7000 Nikon camera. The pre-defined
image acquisition conditions consist of placing the camera 50 cm
above the plate with an illuminated support and the following set-
tings: aperture 13, shutter speed 10, ISO 100 and Zoom 935 mag-
nification. The plates were placed face down on a black surface
and with a ruler (at least 1 cm long) horizontally positioned on top
(Figure S1). The images were saved in JPEG format (size between
2.5 and 2.7 MB per image). MyROOT and ImageJ were run in an
Intel� CoreTM i7-6700 CPU computer.

Box 1 Installation guide for MyROOT software

1 Execute MyAppInstaller_mcr.exe.

2 In the Root Analysis Installer window click the Next button.

3 In the Installation Options window select the folder where you wish to install the software. By default, the selected

folder is C:\Program Files\La Salle – Universidad Ramon Llull\Root_Analysis.

4 Mark the option Add a shortcut to the desktop.

5 Click the Next button.

6 In the Required Software window select the installation folder for the MATLAB Runtime (by default C:\Program Files

\MATLAB\MATLAB Runtime).

7 Click the Next button.

8 In the License Agreement window mark the option Yes.

9 Click the Next button.

10 In the Confirmation window click the Install button.

11 Copy the HypocotylDetection folder to the desktop (this folder is in the same folder as the .exe file used for the

installation).

12 Open the software by clicking in the MyROOT desktop icon.
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Hypocotyl detection model

The software was trained to identify hypocotyls by using 1259
positive examples (hypocotyls) and 7915 background and negative
examples (parts of the image that did not contain hypocotyls).
The positive samples corresponded to Col-0 wild-type, bri1-116,
and a transgenic line overexpressing BRI1-GFP, which have mor-
phologically different hypocotyls as shown in Gonz�alez-Garcia
et al. (2011).

Availability of data and materials

MyROOT has been developed in MATLAB (version 8.3.0.532.
Natick, Massachusetts: The MathWorks Inc., 2014). It will be
made available to the plant sciences community through the
Plant Image Analysis website (plant-image-analysis.org; Lobet
et al., 2013) as a standalone executable application. The exe-
cutable application together with the datasets generated dur-
ing the current study (from Figures 3, 5 and S4) are available

Box 3 Brief user guide for batch processing using MyROOT software

1 Load one of the image of the folder to process and select the optimal parameters for the analysis (steps 2 to 9 in

BOX 2).

2 Enter the path where you would like the results to be stored in the Results Path edit box.

3 Choose the type of data you want to save by checking the corresponding checkboxes.

4 Optionally, type an identification suffix that will be appended to the stored file names via the Root Label edit box.

5 Indicate the name of the folder with the images to process (Name\) in the Folder Path box.

6 Click the Process button to start the analysis.

7 Select if using the hypocotyl detection method by clicking in the Yes or No button in the box that appears.

Box 2 Brief user guide for individual plates analysis using MyROOT software

1 Open the software in a PC.

2 Select and load the image to process by pressing the LOAD IMG button. Enter an image resize factor between 0 and

1 in the Scale edit box to reduce the size of the image and speed up the processing of high-resolution images.

3 Obtain the pixels-to-millimeters scale factor by clicking the Ruler ID button. If needed, edit the Ruler Threshold value

to modify the sensitivity of the ruler detector and repeat step 3. If there is no ruler in the image, insert the correspon-

dence between pixels and millimeters manually in the 10 mm equivalence box.

4 Start the root segmentation process by clicking the Root Mask button. Select the area where the roots are present by

clicking in the image. Double click in one of the vertex to start generating the mask. In case the result is not satisfac-

tory (e.g. oversegmented roots), modify the sensitivity factor in the Root Threshold edit box and repeat step 4.

5 Enter a value in the Root Length Threshold box to indicate the minimum percentage with respect to the longest root

to be measured.

6 Start the root tracking and measurement process by clicking the Root Detection button.

7 Enter the path of the files containing the pre-trained hypocotyl detection models in the Hypocotyl Model Path edit

box.

8 Optionally, to perform hypocotyl detection based on color descriptors only, check the Only Color checkbox, and to

conduct a channel-wise color normalization process check the Norm Color checkbox.

9 Optionally, modify the threshold of the linSVM classifier by modifying the value in the edit box located next to the

Hypocotyl Detection button.

10 Start the hypocotyl detection process by clicking the Hypocotyl Detection button.

11 If some of the hypocotyls were undetected, insert them manually by using the Add button. Click the Enter key and

click the Root Refinement button to update root length measurements.

12 Remove the undesired roots from the measurement by typing the root identifier in the ID edit box and clicking the

Remove button. Click the Visualize button to refresh the image presented on MyROOT’s visualization canvas.

13 Enter the path where you would like the results to be stored in the Results Path edit box.

14 Choose the type of data you want to save by checking the corresponding checkboxes.

15 Optionally, type an identification suffix that will be appended to the stored file names via the Root Label edit box.

16 Save the results by clicking the SAVE button.
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in the [Zenodo] repository, [https://doi.org/10.5281/zenodo.
2552250].
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