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Abstract

Viscoelastic fluids are a type of non-Newtonian fluids which are formed by complex internal
structures and high-molecular-weight, whose typical examples are the polymer solutions
and molten polymers. Also, the viscoleastic fluid flow presents a combination of two fluid
properties: viscosity and elasticity. The main characteristic regarding the behavior of these
flows is the strong dependence of the stresses on the flow history. Due to this complexity,
computing the viscoelastic fluid flow involves a wide range of difficulties, in particular
when elasticity becomes dominant, i.e., when the dimensionless Weissenberg number is
high. These difficulties are considered one of the biggest challenges in computational
rheology; this is known as the High Weissenberg Number Problem (HWNP).

This study presents different strategies to deal with the numerical shortcomings that
appear when the viscoelastic fluid is particularly elastic. These strategies are carried out
in the Finite Element (FE) framework and by using the Variational Multiscale (VMS)
formulation as stabilization approach. A term-by-term is also design.

The cornerstone of this work is the application of a reformulation of the equations
associated to the standard formulation, namely, the logarithmic reformulation, which per-
mits simulating more elastic flows due to the fact that it eliminates the exponential stress
profiles in the vicinity of stress singularities.

Another topic addressed in this work is the study of the effect of temperature in
viscoelastic fluid flow, where a two-way strategy is considered: the viscoelastic properties
have now a dependence with the temperature, and the energy equation takes into account
has to consider the viscous dissipation. That study is particularly interesting due to the
fact that non-isothermal flow in many industrial applications.

On the other hand, the incorporation of time-dependent subscales for solving the vis-
coelastic fluid flow problem is crucial to address two issues: the first one related with
the instability produced when solving anisotropic space-time discretizations, and the sec-
ond, the already mentioned exponential growth typical in viscoelastic flows with high
Weissenberg number. In this work, time-dependent subgrid-scales are presented for both
formulations: standard and logarithmic.

Finally, as the logarithmic formulation is particularly expensive, above all when the
scheme considered is monolithic, a fractional step for this formulation is designed, in which
the system of equations is defined in a fully decoupled manner. This algorithm is especially
useful when purely elastic instabilities need to be captured. These instabilities lead in some
cases to elastic turbulence: a physical phenomenon in which the fluid flow becomes chaotic
even for low Reynolds numbers.
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Resumen

Los fluidos viscoelásticos son un tipo específico de fluidos no Newtonianos formados por
una estructura interna muy compleja con alto peso molecular. Los ejemplos típicos de este
tipo de fluidos son las soluciones y líquidos poliméricos. Además, los fluidos viscoelásticos
presentan la combinación de dos propiedades específicas de los fluidos: viscosidad y elas-
ticidad. Sin embargo, la principal característica relacionada con el comportamiento para
estos flujos es la dependencia de la tensiones a la historia del fluido. Debido a su estruc-
tura y la complejidad de su comportamiento, resolver el problema de flujo viscoelástico
se convierte en algo bastande difícil de abordar, en particular cuando el flujo es elástico,
o en otras palabras, cuando el número adimensional Weissenberg es alto. Afrontar estas
dificultades se considerada uno de los mayores retos de la reología computacional, y es
conocido como el Problema de Alto Número de Weissenberg (HWNP).

Este estudio presenta diferentes estrategias con el fin de evitar las dificultades numéri-
cas que aparecen en estos casos, en que la componente elástica del fluido es muy dominante.
Estas estrategias se abordan desde el marco de los Elementos Finitos cuyo método de es-
tabilización será el de Subscalas Variacionales (VMS). Además, se diseña la estabilización
término a término basada en estos métodos, que se aplicará a las formulaciones desarro-
lladas.

Sin embargo, la piedra angular de este trabajo es la aplicación de una reformulación
de las ecuaciones que describen el flujo viscoelástico, llamada formulación logaritmica, y
que permite la simulación de casos más elásticos debido a que, básicamente, elimina el
crecimiento exponencial de las tensiones cerca de singularidades.

Otro tema que se trata en este trabajo es el efecto de la temperatura en los flujos
viscoelásticos, donde se considerará un acople bidireccional con el problema térmico. Por
un lado, ahora las propiedades del fluido dependen de la temperatura, y por otro, en la
ecuación de energía tenemos que considerar la disipación viscosa como fuente térmica.
Este estudio es interesante debido a que los fluidos viscoelásticos son sometidos a altas
temperaturas en muchas aplicaciones industriales.

Por otra parte, también se explora la incorporación de subescalas dependientes del
tiempo en el método de estabilización. Este cambio será crucial para paliar dos tipos de
problemas: el primero relacionado con la inestabilidad que se produce cuando resolvemos
discretizaciones anisotropicas espacio-tiempo, y la segunda para tratar con el mencionado
crecimiento exponencial que aparece cuando los flujos viscoelásticos tienen alto número de
Weissenberg. Esta estrategia se aplica tanto a la formulación estándar de las ecuaciones
como a la logaritmica.

Finalmente, como la computación de la formulación logaritmica es cara computacio-
nalmente, sobre todo cuando el esquema es de tipo monolítico, se ha diseñado un esquema
de paso fraccionado en que el sistema de ecuaciones para esta formulación se desacopla.
Este algoritmo resulta especialemnte útil para capturar inestabilidades púramente elásti-
cas. Estas inestabilidades pueden desembocar en turbulencia elástica, que es un fenómeno
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físico en que el flujo se vuelve caótico a pesar de contar con un bajo número de Reynolds.
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Chapter 1

Introduction

1.1 Motivation

Viscoelastic fluids are widely employed in a large variety of engineering, medical and nat-
ural science applications, such as safety devices capable of absorbing impacts (bulletproof
vests, shoe insoles...), some plastics, blood pumps or micro pumps. Moreover, these fluids
display distinct features to those shown by pure viscous fluids, for instance turbulent drag
reduction [75] or elastic turbulence at low Reynolds number [77]. On the other hand, the
production process of polymers is mostly non-isothermal in nature. Since flow properties
are strongly dependent both upon rheology and temperature, it is of high interest to un-
derstand and make predictions of such type of flows. The combination of high viscosities of
polymeric melts and high deformation rates results in the transformation of large amounts
of mechanical energy into heat; and consequently in a rising of the material temperature.
As remarked in [55], also, non-isothermal nonlinear flow is very relevant in many applica-
tions since it is the basis of many complex flow problems with viscoelastic and multiphase
fluids. Air flow inside a combustion engine or polymer flow in an injection molding, or
fluid flow in a heat exchange are only a few examples of viscous fluids where temperature
is an important unknown.

Due to the increment of interest for these fluids and the notable relevance in the in-
dustry in recent years and also the particular properties of viscoelastic fluids, the study of
numerical tools for the computation of this kind of flows is valuable both from the funda-
mental and the practical perspectives. This is therefore the motivation of the numerical
and mathematical analysis of the governing equations.

Moreover, the computation of this flow leads to several difficulties both numerically
and mathematically, above all when elasticity becomes dominant in the fluid. In fact,
solving the viscoelastic fluid flow problem for high elasticity (or equivalently, when the
dimensionless Weissenberg number is pronounced) is one of the biggest challenges in com-
putational rheology since the 1970s. It is commonly called the High Weissenberg Number
Problem (HWNP) [127]. It is defined as a numerical phenomenon that causes the iterative
computations to breakdown for relatively low Weissenberg numbers, and normally it is
expressed as a lack of convergence in the iterative method due to the hyperbolic nature
of the differential constitutive equations. In literature some strategies are presented to
deal with all these troubles, although the number of works addressing the HWNP is scarce
even nowadays. That fact is also a motivation to apply cutting edge methodologies in the
computation of the viscoelastic fluid flow and make new contributions in this field.

1
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1.2 Overview

First of all, it is crucial to understand that a viscoelastic fluid - the fluid that will be
considered along this work - is a specific type of non-Newtonian fluid. But, what is exactly
a non-Newtonian fluid? In nature, most of the fluids can be modelled using the well-known
Navier Stokes equations for Newtonian fluids, such as for example water or air. However,
these equations are not capable of predicting the behaviour of all fluids, as occurs in the
case of non-Newtonian fluids. In those cases, fluid does not follow the law of Newton of
viscosity, which means that viscosity is dependent of stresses, and consequently a nonlinear
constitutive law equation must be added to the classical Navier-Stokes equations. Also,
viscosity can change the fluid behavior to a solid one under certain forces, due to its
dependence on the rate of strain, apart from the state variables. Many salt solutions and
molten polymers are non-Newtonian fluids, as are many commonly found substances such
as honey, toothpaste, corn starch, paint, blood, melted butter or shampoo.

Particularly, viscoelastic fluids are a type of non-Newtonian fluids that mainly exhibits
a combination of two main properties. The first one is the viscosity, which is related
with the loss of memory, the irreversibility of the state of the fluid and the friction. The
second one is the elasticity, which implies that the fluid has memory; this means that the
state of stresses will depend of the deformation history. In addition, elasticity implies the
production of internal energy storage.

The particular combination of properties is explained by the complex internal structure
and high-molecular-weight that these fluids present, whose typical examples are polymer
solutions and molten polymers. The main characteristic of polymeric fluids is the presence
of macroscopic chains of molecules which will be stretched to out by the drag forces [143].
Moreover the natural tendency of the molecule to retract for this stretched configuration
generates an elastic force which contributes to the macroscopic stress tensor. Therefore,
whereas viscous materials resist shear flow and strain linearly with time when a stress is
applied, elastic materials strain when stretched and immediately return to their original
state once the stress is removed.

Also, remarkable effects are triggered by viscoelastic fluid flows when they are stirred,
vibrated or given sudden external forces. An example of this is the well-known "rod
climbing" effect which appears in some industrial processes [22].

Due to the observation of these effects, Poisson, Maxwell and Boltzman argued that
that apart from the viscosity property, these fluids have an instantaneous elasticity. The
elasticity "memorizes" all past states of stress. This time scale of all memorized stresses
is called relaxation time [96]. In 1929, a constitutive law was written one by Jeffrey which
considers both properties, and in 1950, Oldroyd [123] presented another one separating
the retardation time from the viscous part and the relaxation time from the polymer
part. Nowadays, this model is the simplest and one of the most popular in the literature,
employed to test several benchmarks, methods, formulations, etc. In this work, this con-
stitutive law will be the considered in general in all our computations. Giesekus, in 1982
proposed a generalization of the original model written by Jeffrey in which the constitutive
equation has an additional nonlinear term [72]. In the literature, other constitutive models
can be found, but all of them belong to the same family and present a similar structure, for
example the UCM (Upper Convective Maxwell) [125], FENE (Finite Extensible Nonlinear
Elastic) [141] and PTT models (Phan-Thien-Tanner) [133].

One of the first attempts to compute numerically a viscoelastic fluid flow in a planar
contraction is the work of Crochet and Bezy [54], where problems were reported in the
Galerkin formulation when the Weissenberg number increases, in other words, when the
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elasticity becomes relevant.
In this sense, the finite element approximation of the flow of viscoelastic fluids presents

many difficulties: on the one hand we have to deal with the problem associated to the
Navier-Stokes equations, such as the treatment of the convective term or the compatibility
of the velocity-pressure approximations. Now the constitutive equation is also highly non-
linear, with the own convective term that triggers a large number of instabilities. Also,
even for smooth solutions, additional compatibility conditions must be considered velocity
and stress interpolations to control velocity gradients.

In the case of Newtonian fluid flows, numerical instabilities occur when the Reynolds
number (that measures the relation between convective and inertial forces) is high, and
the solution creates boundary layers for problems where non-slip conditions are applied
(for example in channels). In comparison, viscoelastic fluid flows create boundary layers
due to the high value of the stresses. It is a direct consequence of the hyperbolic nature
of the constitutive equation.

Therefore, the numerical computation of viscoelastic fluid flow is considered a challeng-
ing problem even for low Weissenberg numbers. When the Weissenberg number increases
the number of difficulties make the problem almost unaffordable (that is the well-known
High Weissenberg Number Problem previously mentioned). Some strategies have been used
in the literature in order to increase the Weissenberg number of numerical simulations and,
one of them is a reformulation of the equations proposed by Hulsen, Fattal and Kupfer-
man [63, 64], known as the logarithm conformation reformulation. It basically consists in
a change of variables to avoid the exponential growth of the stresses when the Weissenberg
number is high. This idea will be employed and studied in this work.

1.3 Goals

The aim of this study is the design and development of new numerical schemes, formu-
lations and techniques to solve viscoelastic fluid flows when the Weissenberg number is
high, with the objective of simulating the purely elastic instability, as well as exploring
thermal-coupling effects. These numerical schemes are all based on the Finite Element
framework, and the stabilization technique employed is developed in the context of the
Variational Multi-Scale (VMS) method, which allows the use of the same interpolation for
the three-fields whose variables are velocity, pressure and stresses. In addition, this for-
mulation is implemented in the in-house code FEMUSS, a High Performance Computing
Environment (HPCE).

FEMUSS is an object-oriented finite element code developed in Fortran and able of
solving three-dimensional fluid dynamics (incompressible and compressible), solid mechan-
ics, fluid-structure interaction problems or coupled thermal problems among others, in a
high performance environment. That allows to compute problems with a large number of
elements and solving real problems. It uses PETSC [11], that is a suite of data routines for
the scalable (parallel) solution of applications modeled by partial differential equations,
including several solvers (iterative and direct type). Among its strengths are the thorough
implementation of the generalized theory and the straightforward organization and accessi-
bility of the code, which facilitates the introduction of new models and tools. Nevertheless,
since FEMUSS is mostly research-oriented and in constant development, the implemen-
tation of new constitutive formulations requires additional changes and improvements to
reach the goals of the work.

In order to compute viscoelastic fluid flow problems for high elasticity, we will apply
the log-conformation reformulation mentioned previously. It is a reformulation of the
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traditional constitutive equations of viscoelastic fluids, which eliminates the instability
and linearizes the exponential stress profiles near the stress singularities. Therefore, the
formulation seeks to treat the exponential growth of the elastic stresses, allowing to extend
the range of Weissenberg numbers for which a numerical solution can be obtained. This
reformulation is carried out through a change of variables in function of the conformation
tensor which indicates the macromolecular configuration of the polymeric chains.

Thermal coupling with the viscoelastic fluid flow is also a relevant topic in many
industrial processes. In comparison with Newtonian cases, now we will need to consider a
dependence of temperature in the viscoelastic properties. On the other hand, the study of
the effect of viscous dissipation will be particularly interesting, due to the fact that fluids
reach higher temperatures caused by the internal work. This effect is displayed as a term
in the energy equation which accounts for the mechanical part of the viscoelastic fluid that
is transformed into heat, i.e., Joule’s effect. To address the coupled problem we have to
consider an iterative algorithm which updates the parameters needed at each time step,
due to the four variables being strongly coupled.

Recent studies indicate that classical residual-based stabilized methods for unsteady
incompressible flows may experience difficulties when the time step is small relative to the
spatial grid size. These problems can happen, for instance, when small time steps result
from the necessity of accuracy to solve transient problems due to the presence of non-linear
terms in the differential equations, a very common issue in viscoelastic flow formulations.
The approximations used in Variational Multiscale (VMS) methods usually neglect the
time derivative of the sub-grid scales, consequently, anisotropic space-time discretizations
cannot guarantee stability. We propose the design of stabilization techniques that allow one
to compute time-dependent viscoelastic flow problems with high elasticity (or Weissenberg
number) and with an anisotropic space-time discretization.

The flow patterns in viscoelastic fluids can be highly dynamic and in some cases chaotic,
due to the elastic component of the fluid and the convective nature of the constitutive
equation, even in quasi non-inertial flows, where non-linear rheological effects can manifest
through the generation of large normal stresses which result in complex flow phenomena
causing a purely elastic instability, and in some cases producing elastic instability. In our
work, problems which exhibit the purely elastic instability phenomena have been studied,
and different tools have been employed to obtain an accurate and efficient solution.

Finally, an important topic in numerical analysis is the study of stability and conver-
gence of the applied methods, such a the logarithmic reformulation stabilized using subgrid
scales. Due to the fact that a complete analysis of the non-linear problem requires more
exhaustive and deep study, in this work we restrict ourselves to analyze the linearized
problem.

In view of the above, the aim of this study is divided into the following objectives, each
of which corresponds to a chapter in this dissertation:

• Development and implementation of the logarithmic reformulation for the viscoelas-
tic fluid flow problem.

• Study of the thermal coupling, in particular putting the focus in the effect of viscous
dissipation.

• Implementation of the dynamic sub-grid scales in order to simulate problems with a
smaller time-step in relation with the mesh.

• Study of the purely elastic instabilities.
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• Numerical analysis of stability and convergence of the developed methods.

The computational implementation and validation of the models require numerical
improvements in areas of the code such as FE formulation, integration scheme, loading
configurations and pre- and post-processor interfaces.

1.4 Outline

The work has been organized as follows:

Chapter 2 The log-conformation reformulation is applied to the standard viscoelastic
fluid flow formulation with the aim of simulating flows with a higher Weissenberg number.
However, a slightly different formulation is proposed to the log-conformation formulation in
contrast with the original one, which is non-singular when the Weissenberg number is close
to zero. Moreover different stabilization schemes are presented based on VMS: two residual
based ones, and one of a term-by-term type. Some numerical examples demonstrate the
benefits of the reformulation, validating solutions with benchmarks found in the literature.

Chapter 3 The thermal coupling with the viscoelastic fluid flow is implemented and stud-
ied using a split stabilization. Both formulations, the standard and the logarithmic one
are used in this Chapter. Temperature dependence of viscoelastic properties is established
using two different models, and also viscous dissipation term is added to the energy equa-
tion. We explore the effects in the behavior of the temperature in viscoelastic fluids using
two different benchmarks to validate the iterative scheme.

Chapter 4 In this Chapter we design stabilization techniques that allow one to compute
time-dependent viscoelastic flow problems with high elasticity (or Weissenberg number)
and with an anisotropic space-time discretization. Yet, there is also an obvious link be-
tween the possibility to treat high Weissenberg numbers and the VMS method we propose,
since small time steps are required in complex flow cases. Since the logarithmic formula-
tion and the term-by-term formulation are independent, along this Chapter both standard
and logarithmic formulations are considered, compared and validated in some numerical
examples. Moreover, the numerical analysis of the stability in the linearized problem is
studied.

Chapter 5 Purely elastic instability is produced at relative low Reynolds number but
for a high Weissenberg number. For studying this physical phenomenon, a fractional step
scheme for the logarithmic formulation has been designed in order to save in computa-
tional cost. The stabilization considered in this scheme is term-by-term for the momentum
equation, and also the time-dependent sub-grid scales are considered. The scheme is tested
in different benchmarks, and finally employed to reproduce the purely elastic instability.

Chapter 6 In this Chapter we analyze a linearization of the logarithmic reformulation
of the problem. In order to be able to use the same interpolation for all the unknowns
(velocity, pressure and logarithm of the conformation tensor), we employ a stabilized fi-
nite element formulation based on the VMS concept developed in previous Chapters. The
study of the linearized problem already serves to show why the logarithmic reformulation
performs better than the standard one for high Weissenberg numbers; this is reflected in
the stability and error estimates that we provide in this Chapter.
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Chapter 7 Finally, the achievements of this study are summed up, final conclusions are
drawn and future work lines are outlined.

Note that a Chapter in which the state of the art is reviewed is not included at the
beginning of the work. The self-contained nature of each Chapter lends to include specific
literature reviews in each Chapter. Likewise, conclusions related to the specific content of
each Chapter are pointed out at the end of the same.

1.5 Research dissemination

The work included in this dissertation has resulted in the following scientific publications:

Chapter 2

Moreno L., Codina R., Baiges J. & Castillo E. (2019). Logarithmic conformation reformu-
lation in viscoelastic flow problems approximated by a VMS-type stabilized finite element
formulation. Computer Methods in Applied Mechanics and Engineering, 354, 706-731.

Chapter 3

Moreno L., Codina R. & Baiges J. (2021). Numerical simulation of non-isothermal vis-
coelastic fluid flows using a VMS stabilized Finite Element formulation. Journal of Non-
Newtonian Fluid Mechanics, Submitted.

Chapter 4

Moreno L., Codina R. & Baiges J. (2020). Solution of transient viscoelastic flow problems
approximated by a term-by-term VMS stabilized finite element formulation using time-
dependent subgrid-scales. Computer Methods in Applied Mechanics and Engineering, 367,
113074.

Chapter 6

Codina, R., & Moreno, L. (2021). Analysis of a stabilized finite element approximation
for a linearized logarithmic reformulation of the viscoelastic flow problem. ESAIM. Math-
ematical Modelling and Numerical Analysis, 55, 279.

Also part of the work, in particular some contents of Chapter 2 and Chapter 6 are included
in the next publication:

Castillo, E., Moreno, L., Baiges, J., & Codina, R. (2021). Stabilised Variational Multi-
Scale Finite Element Formulations for Viscoelastic Fluids. Archives of Computational
Methods in Engineering, 1-33.
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In addition, part of the work was presented at the following conferences:

Unpublished Conference Presentations

Moreno L., Codina R. & Baiges J. Thermal coupling simulations with a viscoelastic fluid
flow, IX International Conference on Computational Methods for Coupled Problems in
Science and Engineering. Virtual Congress. 14-16 June 2021.

Moreno L., Codina R. & Baiges J. Solution of transient viscoelastic flow problems approx-
imated by a VMS stabilized finite element formulation using time-dependent subrid-scales,
14th World Congress on Computational Mechanics (WCCM) ECCOMAS Congress 2020,
Virtual Congress, 11-15 January 2021.

Moreno L., Codina R. & Baiges J. Simulation of non-isothermal viscoelastic fluid flow
problem using a VMS stabilized Formulation, VIII International Conference on Coupled
Problems in Science and Engineering, Sitges (Barcelona), 3-5 June 2019.





Chapter 2

Logarithmic conformation
reformulation

This chapter is based on the publication:

Moreno L., Codina R., Baiges J. & Castillo E. (2019). Logarithmic conformation re-
formulation in viscoelastic flow problems approximated by a VMS-type stabilized finite
element formulation. Computer Methods in Applied Mechanics and Engineering, 354, 706-
731.

2.1 Abstract

In this chapter, the log-conformation reformulation originally proposed by Fattal and
Kupferman [63] is presented. This formulation allows computing incompressible viscoelas-
tic problems with high Weissenberg numbers which are impossible to solve with the typ-
ical three-field formulation. By following this approach, in this work we develop a new
stabilized finite element formulation based on the logarithmic reformulation using the
Variational Multiscale (VMS) method as stabilization technique, together with a modified
log-conformation formulation. Our approach follows the term-by-term stabilization pro-
posed by Castillo and Codina [26] for the standard formulation, which is more effective
when there are stress singularities. The formulation can be used when the relaxation pa-
rameter is set to zero, and permits a direct steady numerical resolution. The formulation
is validated in the classical benchmark flow past a cylinder and in the well-known planar
contraction 4:1, achieving very accurate, stable and mesh independent results for highly
elastic fluids.

2.2 Background

The main characteristic about the behavior of viscoelastic materials is that stresses do
not just depend on current deformation rates, but also on the deformation history. Due
to this, time is a crucial element to take into account, because viscoelastic fluids have
different responses depending on the time-scales of the deformation.

As it was explained in the Introduction (Chapter 1), computing the flow of these kind
of fluids leads to several difficulties, in particular when elasticity becomes dominant, i.e.
the dimensionless number known as Weissenberg number is high. This number is defined
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10 Chapter 2. Logarithmic conformation reformulation

as We = λu/L, where λ is the characteristic relaxation time of the material u is the
characteristic velocity of the flow, and L is the characteristic length of the domain. In some
articles, another dimensionless number is used for flows with non-constant deformation
rate, the Deborah number, De = λ/tc written in terms of the relaxation time and the
time-scale of observation tc. In [56] an extensive discussion is done about the suitable uses
of each number.

These difficulties in numerically simulating high Weissenberg numbers flows are one
of the biggest challenges in computational rheology, commonly named the High Weis-
senberg Number Problem (HWNP) [127]. It is understood as a numerical phenomenon
that causes the iterative computations to breakdown for relatively low Weissenberg num-
bers. Normally, that is expressed as a lack of convergence in the iterative method due
to the hyperbolic nature of the differential constitutive equations. The breakdown oc-
curs for a critical value of the Weissenberg number, but it is specific to each particular
problem, the spatial discretization and the numerical algorithm. The numerical instability
is brought about by the failure of the proper balance of the deformation rate and the
convection, and it was identified and discussed by Fattal and Kupferman [64]. It is a fun-
damental instability, present in all constitutive models and standard numerical methods.
Nevertheless, it is demonstrated that constitutive methods can predict other instabilities
of mathematical character [105, 107], referred to as constitutive instabilities, which can be
classified in two: the Hadamard instability, associated with the non-linear fast response
of constitutive equations, and the dissipative instability, related to the formulation of the
dissipative behavior of viscoelastic models.

The source of the HWNP has thus been identified: on the one hand the loss of positive-
definiteness of the conformation tensor, an internal variable which should be symmetric
positive-definite to be physically admissible [63, 91]; on the other hand, the large stress
gradients, regions with particular high deformation rate, or near stagnation points favor
the breakdown of the numerical method, as explained in Fattal and Kupferman in [63, 64].
They describe the cause for this phenomena to be caused by the use of inapropriate
approximations to represent the stress tensor, remarking the importance of preserving its
positivity. By following these ideas, a new formulation was proposed by Fattal and Kupfer-
man [63]: the log-conformation representation (denoted by LCR), a reformulation of the
traditional equations of viscoelastic fluids, which eliminates the instability and linearizes
the exponential stress profiles near the stress singularities. Therefore, the formulation
seeks to treat the exponential growth of the elastic stresses, allowing to extend the range
of Weissenberg numbers for which a numerical solution can be obtained.

However, alternative schemes have been proposed in other works. For example, Vaithi-
anathan and Collins [159] presented two matrix decomposition schemes in order to con-
struct the positive definite conformation tensor, employing the FENE-P model. Balci et
al. [12] proposed a square root conformation representation. Afonso et al. [3], developed
several matrix kernel-transformation families which can be applied to the conformation
tensor equation. Nevertheless, although there are a variety of proposals to deal with the
lack of positive-definiteness in the conformation tensor, the logarithm representation is the
uniquely capable of linearizing the exponential stress profile.

Since the logarithmic formulation was presented, a great number of works have been
written following this novel strategy, applying different methodologies and schemes, in
finite volume and finite element (FE) codes. The next first work published applying the log-
conformation reformulation is due to Hulsen et al. [92] using the DEVSS/DG formulation
for the discretization and a first-order upwind scheme in a FE implementation. Later,
Coronado et al. [52] proposed a “simple alternate” form of the log-conformation formulation
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implemented in the DEVSS-TG/SUPG FE method, and in comparison with the previous
work, fewer code modifications with respect to the standard formulation were required.
An analysis between the two previous publications and two new implementations was
presented by Kane et al. [97], remarking particularly the treatment of the advective term of
the constitutive equation. The final conclusion is that all four formulations are very similar,
except the one described by Coronado et al. [52], that is a little less robust due to the linear
interpolation of the convective term. Damanik et al. [55] defined a fully coupled monolithic
FE approach, using the edge-oriented FE stabilization for the convective term. Saramito
[147] and Knechtges [100] recently derived fully implicit versions of the log-conformation
formulation that do not involve an algebraic decomposition of the velocity gradient tensor,
and which can be linearized and solved by the Newton-Raphson method. Afonso et al.
[1, 2] investigated the performance of the log-conformation reformulation using the finite
volume method framework in both works, although the second is more interesting because
it seeks to predict the rich dynamical transitions in the 4:1 contraction planar benchmark,
whereas the first one solves the flow around a cylinder, a problem without singularities.
Comminal et al. [50, 51], simulated incompressible viscoelastic flows and the stream-log-
conformation methodology, a combination between the log-conformation with the stream
function flow formulation (see [102]) that is beneficial for the accuracy and stability of
the numerical algorithm. One of the most recent publications belongs to Pimenta et al.
[137], who increased the robustness and accuracy of the viscoelastic solver in OpenFoam,
implementing there the log-conformation methodology.

Concerning this chapter, we propose a slightly different formulation to the log-confor-
mation formulation. Our formulation is non-singular when the Weissenberg number is
close to zero, while the original one proposed by Fattal and Kupferman [63] presents some
problems because of the inverse of the relaxation time in the equations. The same idea
was followed by Saramito [147]; both formulations can be reduced to the Navier-Stokes
equations when the Weissenberg number is set to zero. Due to this, continuation methods
can be successfully employed to get the optimal convergence in the validated problems.
Also, we have to remark that the steady problem can be solved directly, while in most of
the references the logarithmic formulation shows a strong time-dependency. As Saramito
[147] pointed out, the reason can be that previous methods relied on some finite difference
methods for computing the Jacobian matrix and strong non-linearities were considered
non-differentiable (see, for example, [55]). Let us stress again the theoretical contribution
presented in [147], where the main properties of the typical operators of the formulation
are proved.

In this chapter, we apply the efficient logarithmic reformulation to solve the viscoelas-
tic problem with the goal of simulating flows with a high Weissenberg number, using a
stabilized formulation based on the Variational Multiscale (VMS) method. This stabi-
lized formulation has its beginnings in the methods introduced by Hughes et al. [90] for
the scalar convection-diffusion-reaction problem, and later extended to the Navier-Stokes
problem by Codina [38, 40, 41], where the space of the sub-grid scales was taken as or-
thogonal to the FE space. This idea was adapted to the three-field Navier-Stokes problem
in [25] and later to the viscoelastic flow problem in [26].

The mathematical analysis of the formulation can be found in [15, 29]. Other papers
can be found concerning the VMS framework for viscoelastic regimes, such as [103, 104],
where an Oldroyd-B fluid is considered. By following the same steps, the purpose of
this chapter is the design of stabilized formulations which allow computing viscoelastic
problems with a high Weissenberg number using the logarithmic reformulation, and testing
them for numerical examples where both elastic stress gradients and numerical singularities
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are the main features. This chapter is organized as follows: Section 2.3 explains in detail
the log-conformation reformulation and the modifications considered; later we report the
steps to obtain the strong formulation, the variational equations and consequently the
Galerkin FE discretization. Once the main equations are defined, Section 2.4 presents the
stabilized FE approach based on the VMS approach; the linearization of the problem is
also extensively discussed.

As for the numerical results, they are presented in Section 2.5. First, in Section 2.5.1,
a study of the h convergence of the formulations is described for a stationary Oldroyd-B
flow, where a manufactured solution is considered. Secondly, in Section 2.5.2, the flow
past a cylinder is tested for an Oldroyd-B fluid, comparing the solution obtained for
Weissenberg numbers 0.6, 0.7 and 0.9 with other published solutions. The drag force on
the cylinder is also contrasted for higher Weissenberg numbers. Then, the well-known 4:1
planar contraction benchmark is elaborated in Section 2.5.3. It is studied for two different
Reynolds number values. Finally, we present a three dimensional example in Section
2.5.4, with the aim of showing that the formulation works well in 3D cases. Conclusions
are drawn in the last section of the chapter, Section 2.6.

2.3 The modified log-conformation formulation problem

2.3.1 Standard formulation for the viscoelastic flow problem

Let us start presenting the standard equations associated to the viscoelastic flow problem.
Let us consider a viscoelastic fluid moving in a domain Ω of Rd (d=2 or 3) during the time
interval [0,T ] and let ∂Ω be the boundary. Assuming the flow to be incompressible and
isothermal, the governing equations are the conservation of momentum and mass, which
can be expressed as follows:

ρ
∂u

∂t
+ ρu · ∇u−∇ ·T +∇p = f in Ω, t ∈ (0,T ), (2.1)

∇ · u = 0 in Ω, t ∈ (0,T ), (2.2)

where ρ denotes the constant density, p : Ω × (0,T ) → R is the pressure field, u : Ω ×
(0,T )→ Rd is the velocity field, f : Ω× (0,T )→ Rd is the force field and T : Ω× (0,T )→
Rd⊗Rd is the deviatoric extra stress tensor. In general, T is defined in terms of a viscous
and a viscoelastic contribution as

T = 2ηs∇su+ σ,

where ηs represents the effective viscosity (or solvent viscosity), ∇su is the symmetrical
part of the velocity gradient and σ is the viscoelastic or the elastic stress tensor.

Finally, the constitutive equation for the viscoelastic stress tensor must be defined
to close the problem. Even if there is a wide range of different models, we consider the
Oldroyd-B model in this work, which is the model of a Newtonian stress supplemented
with an extra-stress that satisfies the upper-convected Maxwell equation, and it reads as

1

2ηp
σ −∇su+

λ

2ηp

(
∂σ

∂t
+ u · ∇σ − σ · ∇u− (∇u)T · σ

)
= 0, in Ω, t ∈ (0,T ), (2.3)

where λ is the relaxation time and ηp represents the polymeric viscosity. Each term of the
equation has a particular meaning: ∇su is the source, λ

2ηp
u ·∇σ represents the convective

term and λ
2ηp

(
σ · ∇u+ (∇uT ) · σ

)
are the rotational terms. Note that from this point
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we write the polymeric and the effective viscosity in function of the total viscosity η0. For
that, an additional parameter β ∈ [0, 1] is introduced, so that ηs = βη0 and ηp = (1−β)η0.

Calling U = [u, p,σ], F std = [f , 0, 0] and defining

Dstd(U) :=


ρ
∂u

∂t
0

λ

2ηp

∂σ

∂t

 ,

Lstd(û;U) :=


−∇ · σ − 2ηs∇ · (∇su) + ρû · ∇u+∇p

∇ · u
1

2ηp
σ −∇su+

λ

2ηp

(
û · ∇σ − σ · ∇û− (∇û)T · σ

)
 , (2.4)

we may write (2.1), (2.2) and (2.3), considering Dt = Dstd, L = Lstd and F = F std, as

Dt(U) + L(u;U) = F . (2.5)

2.3.2 The log-conformation reformulation

Departing from the standard formulation, the logarithmic reformulation will be exposed,
and later applied to the standard equations. This model has an interpretation in terms of
statistical mechanics, which involves a statistical average of dyadic vector products. First,
the conformation tensor is defined, taking into account that it must, by definition, be
symmetric and positive-definite to be physically-admissible, because this internal variable
represents the macromolecular configuration of the polymer chains. It is defined as

τ =
λσ

ηp
+ I.

Consequently, the stress tensor can be expressed as a function of the conformation tensor
as σ =

ηp
λ

(τ − I). Then, replacing σ in the constitutive equation (2.3) with τ , we can
rewrite the Oldroyd-B model in terms of the conformation tensor τ as

1

2λ
(τ − I)−∇su+

1

2

(
∂τ

∂t
+ u · ∇τ − τ · ∇u− (∇u)T · τ

)
= 0. (2.6)

However, in the chapter, we have considered a modification when the conformation tensor
is defined, with the aim of allowing λ = 0, i.e., the Newtonian behavior. To this end, we
introduce the relaxation-time parameter λ0(λ) linearly dependent with λ, which could be
defined as λ0 = max{kλ,λ0,min}, k being a constant and λ0,min a given threshold. So, if
k = 1 and λ0,min = 0, the original change of variables proposed by Fattal and Kupferman
[63] is recovered; however, if k is taken equal to zero, then the three-field Navier-Stokes
problem for Newtonian fluids is obtained. It is worth to remark that in the numerical
experiments we have found useful to take k small, so that λ0 < λ; this has allowed us to
obtain converged solutions that we have not been able to get for k = 1.

Thus, we define

τ =
λ0(λ)σ

ηp
+ I.

From this point we use λ0 instead of λ0(λ) to simplify the notation. The constitutive
equation (2.3) can be rewritten by following the proposed modification as

1

2λ0
(τ − I)−∇su+

λ

2λ0

(
∂τ

∂t
+ u · ∇τ − τ · ∇u− (∇u)T · τ + 2∇su

)
= 0. (2.7)
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The log-conformation reformulation basically consists of a change of variables in terms
of the matrix-logarithm of the conformation tensor, that is to say, the conformation tensor
is replaced by a new variable ψ = log(τ ). This can be calculated through eigenvalue
computation that rotates the τ tensor into its main principle axes and can be expressed
as ψ = R log(Λ)RT because τ is a symmetric positive definite tensor (for k ≤ 1) and
therefore it can always be diagonalized. In the expression introduced, Λ is a diagonal
matrix with the eigenvalues of τ , and R is the orthogonal matrix of the eigenvectors of τ .

To sum up, in order to obtain the new formulation the stress tensor must be replaced
by σ =

ηp
λ0

(τ −I), and in turn, the conformation tensor τ must be written as τ = exp(ψ)

in the standard viscoelastic formulation detailed above, (2.1), (2.2) and (2.3). The new
equations of the log-conformation formulation are now expressed as follows:

ρ
∂u

∂t
− ηp
λ0
∇ · exp(ψ)− 2ηs∇ · (∇su) + ρu · ∇u+∇p = f , (2.8)

∇ · u = 0, (2.9)
1

2λ0
(exp(ψ)− I)−∇su+

λ

2λ0

(∂ exp(ψ)

∂t
+ u · ∇ exp (ψ)

− exp (ψ) · ∇u− (∇u)T · exp (ψ) + 2∇su
)

= 0, (2.10)

where the unknowns are the velocity, the pressure, and tensor ψ, which depends directly
on the viscoelastic stress tensor σ.

This logarithm reformulation employed reminds of the formulation used by Coronado et
al. in [52], although there the conformation tensor was simply replaced by exp(ψ). Another
change was introduced in [52] with respect to the original log-conformation reformulation:
the decomposition of the gradient of the velocity into three different tensors. However,
this has not been taken into account in our formulation. In this sense, the modified log-
conformation formulation proposed by Saramito [147] is very similar to our formulation.

Let us introduce some notation, useful in the next subsections. Calling now U =
[u, p,ψ] and F log = [f , 0, 1

2λ0
I] and defining

Dlog(U) :=


ρ
∂u

∂t
0

λ

2λ0

∂ exp(ψ)

∂t

 , (2.11)

Llog(û;U) :=


− ηp
λ0
∇ · (exp(ψ))− 2ηs∇ · (∇su) + ρû · ∇u+∇p

∇ · u
1

2λ0
exp(ψ)−∇su+

λ

2λ0
(û · ∇ (exp(ψ))

− exp(ψ) · ∇û− (∇û)T · exp(ψ) + 2∇su
)

 , (2.12)

we may write (2.8)-(2.10) as

Dt(U) + L(u;U) = F , (2.13)

considering Dt = Dlog, L = Llog and F = F log. The notation û in (2.12) is used to
distinguish the different arguments in which the velocity appears. These equations need
to be complemented with initial and boundary conditions to close the problem. For the
sake of simplicity, in the exposition we only consider the simplest boundary condition
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u = 0 on ∂Ω for all time. Boundary conditions for the ψ tensor will be similar to those
for the elastic stresses σ in the standard formulation: they do not need to be prescribed,
but imposing them can suppose a significant computational save. We will indicate in our
examples where the boundary condition are prescribed.

The problem is completely defined by the initial conditions for the velocity and the
new variable ψ, which are denoted by u = u0, and ψ = ψ0 at time t = 0, with u0and ψ0

functions defined on the whole domain Ω.

2.3.3 Variational formulation

In order to write the weak form of the problem, let us introduce some notation. The
space of square integrable functions in a domain ω is denoted by L2(ω), and the space of
functions whose distributional derivatives of order up to m ≥ 0 (integer) belong to L2(ω)
is denoted by Hm(ω).

The space H1
0 (ω) is made up of functions in H1(ω) vanishing on ∂ω. The topological

dual of H1
0 (ω) is denoted by H−1(Ω), the duality pairing being 〈·, ·〉. The L2 inner product

in ω (for scalars, vectors and tensors) is denoted by (·, ·)ω and the integral over ω of the
product of two general functions is written as 〈·, ·〉ω, the subscript being omitted when
ω = Ω. The norm in a space X is denoted by ‖ · ‖X , except in the case X = L2(Ω), case
in which the subscript is omitted.

Using this notation, velocity and pressure FE spaces for the continuous problem are
V 0 = H1

0 (Ω)d and Q = L2(Ω)/R, and the space for the tensor ψ is denoted by Υ for each
fixed time t, where an appropriate regularity is assumed. The weak form of the problem
consists in finding U = [u, p,ψ] : (0,T ) −→ X := V 0 × Q × Υ, such that the initial
conditions are satisfied and:(

ρ
∂u

∂t
,v

)
+
ηp
λ0

(exp(ψ),∇sv) + 2(ηs∇su,∇sv)

+〈ρu · ∇u,v〉 − (p,∇ · v) = 〈f ,v〉, (2.14)
(q,∇ · u) = 0, (2.15)(

1

2λ0
exp(ψ)−∇su,χ

)
+

λ

2λ0

(
∂ exp(ψ)

∂t
,χ

)
+

λ

2λ0
(u · ∇ exp(ψ)− exp(ψ) · ∇u,χ)

+
λ

2λ0

(
−(∇u)T · exp(ψ) + 2∇su,χ

)
=

1

2λ0
〈I,χ〉, (2.16)

for all V = [v, q,χ] ∈ X , where it is assumed that f is such that 〈f ,v〉 is well defined. In
compact form, the problem can be written as:

(Dt(U),V ) +B(u;U ,V ) = L(V ), (2.17)

where

(Dt(U),V ) =

(
ρ
∂u

∂t
,v

)
+

λ

2λ0

(
∂ exp(ψ)

∂t
,χ

)
, (2.18)

B(û;U ,V ) =
ηp
λ0

(exp(ψ),∇sv) + 2(ηs∇su,∇sv) + 〈ρû · ∇u,v〉

− (p,∇ · v) + (∇ · u, q) +
1

2λ0
(exp(ψ),χ)− (∇su,χ)
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+
λ

2λ0

(
û · ∇ exp(ψ)− exp(ψ) · ∇û− (∇û)T · exp(ψ) + 2∇su,χ

)
. (2.19)

L(V ) = 〈f ,v〉+
1

2λ0
〈I,χ〉. (2.20)

Note that the test function χ is, from the physical point of view, a stress, whereas
ψ is the logarithm of the conformation tensor (and thus, dimensionless). We could also
have used a test function for the constitutive equation of the form ηp

λ0
exp(χ), where now

χ would be dimensionless. This would simplify the analysis (some stability would follow
taking χ = ψ), but complicate significantly the finite element approximations described
below.

2.3.4 Linearization of the exponential

Apart from the typical non-linearities associated with the standard viscoelastic problem
such as convective or stretching terms, now we have to consider how to process the expo-
nential function of the tensor ψ. It has been treated as follows:

exp(ψ) = exp(ψ̂ + δψ) = exp(ψ̂) · exp(δψ),

where δψ = ψ − ψ̂ is considered as the incremental part and ψ̂ is a known tensor, which
will be calculated at the previous iteration in the linearization scheme. The term exp(δψ)
has been linearized in turn through a Taylor expansion with a truncation error of order
(δψ)2. Therefore the approximation is defined as

exp(δψ) ≈ I + δψ.

Consequently,

exp(ψ) ≈ exp(ψ̂) · (I + δψ) = exp(ψ̂) ·ψ + exp(ψ̂) · (I − ψ̂). (2.21)

So, inserting the approximation into the system (2.8) - (2.10), the system is linearized
around ψ̂ as follows

ρ
∂u

∂t
− ηp
λ0
∇ · (exp(ψ̂) ·ψ)− 2ηs∇ · (∇su) + ρu · ∇u+∇p

= f +
ηp
λ0
∇ · (− exp(ψ̂) · ψ̂ + exp(ψ̂)), (2.22)

∇ · u = 0, (2.23)

1

2λ0
exp(ψ̂) ·ψ −∇su+

λ

2λ0

(∂(exp(ψ̂) ·ψ)

∂t
+ 2∇su

+u · ∇
(

exp(ψ̂) ·ψ − exp(ψ̂) · ψ̂ + exp(ψ̂)
)

−
(

exp(ψ̂) ·ψ − exp(ψ̂) · ψ̂ + exp(ψ̂)
)
· ∇u

−(∇u)T ·
(

exp(ψ̂) ·ψ − exp(ψ̂) · ψ̂ + exp(ψ̂)
))

=
1

2λ0
(I − exp(ψ̂) + exp(ψ̂) · ψ̂) +

λ

2λ0

(
∂(exp(ψ̂) · ψ̂)

∂t
−∂ exp(ψ̂)

∂t

)
. (2.24)

The variational formulation of this problem is straightforward.
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2.3.5 Galerkin finite element discretization

The standard Galerkin approximation for the variational problem, which has been estab-
lished in (2.17), is described next. Let Th = {K} be a FE partition of the domain Ω.
The diameter of an element K ∈ Th is denoted by hK and the diameter of the partition
is defined as h = max{hK |K ∈ Th}. From Th we may construct conforming FE spaces for
the velocity, the pressure and the elastic stress, Vh ⊂ V , Qh ⊂ Q, Υh ⊂ Υ, respectively.
Calling X h := Vh ×Qh ×Υh, the Galerkin FE approximation of the problem consists in
finding Uh : (0,T ) −→ X h, such that:

(Dt(Uh),V h) +B(uh;Uh,V h) = L(V h),

for all V h = [vh, qh,χh] ∈ X h, and satisfying the appropriate initial conditions.

2.3.6 Monolithic time discretization

For the time discretization, we have used a monolithic approach, although it would also be
possible to employ a fractional step technique, as in [27]. There are a lot of possibilities for
the discretization in time, but we will restrict ourselves to the classical backward difference
(BDF) approximations.

Consider a partition of the interval [0,T ] into m subintervals of constant size δt, and
let f(t) be a generic time-dependent function. We will denote as fn the approximation to
f(tn), with tn = nδt, n = 0, 1, 2, . . . ,m. A BDF approximation to the time derivative of
the function f order k = 1, 2, . . . , is given by δkf

n+1

δt , where δkfn+1 is defined as

δkf
n+1 =

1

γk

(
fn+1 −

k−1∑
i=0

ϕikf
n−i

)
, (2.25)

and where γk and ϕik are parameters. In particular, since the time evolution is not the
main emphasis of this work, in the numerical examples we have used the simplest BDF1
scheme (in fact, as a means to reach the stationary solution):

δ1f
n+1

δt
=
fn+1 − fn

δt
=
∂f

∂t

∣∣∣∣
tn+1

+O(δt).

A remark is needed for the time derivative of the exponential. Using approximation
(2.21), it is easily shown that the operations “linearization” and “time approximation”
commute if we identify ψ̂

n
= ψn. Indeed, in both cases we obtain:

∂ exp(ψ)

∂t

∣∣∣∣
tn+1

=
1

δt

[
exp(ψ̂

n+1
) ·ψn+1 + exp(ψ̂

n+1
)− exp(ψ̂

n+1
) · ψ̂n+1

− exp(ψn)
]

+O(δt) +O((δψn+1)2). (2.26)

where ψ̂
n+1

stands for a previous guess of ψn+1 that depends on the linearization
scheme and δψn+1 = ψn+1 − ψ̂n+1

.

2.4 Design of a stable finite element formulation

2.4.1 Residual based stabilized finite element method

We present in this section two stabilized finite element formulations for computing vis-
coelastic flows using the logarithm constitutive reformulation, in particular applied to the
Oldroyd-B constitutive model.
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VMS methods consist in the splitting of the unknown U in a component Uh, which
can be resolved by the FE space, and the remainder Ũ , that will be called sub-grid scale.
The framework is based on the work by Hughes et al. [90]. In the context of a three
field formulation for flow problems, see [42] and [26]. The sub-grid scale needs to be
approximated in a simple manner, with the goal of capturing its effect and yielding a
stable formulation. The final number of degrees of freedom is the same as the Galerkin
method. Different approaches can be followed to approximate the sub-scale and to choose
the space where it is defined.

The problem we wish to approximate is (2.13) in differential form and (2.17) in varia-
tional form. Suppose for the moment that L(û; ·) is a linear operator (for û given). After
introducing the subscales decomposition and integrating by parts, the VMS method leads
to the problem of finding Uh : (0,T ) −→ X h such that

(Dt(Uh),V h) +B(uh;Uh,V h) +
∑
K

〈Ũ ,L∗(uh;V h)〉K = L(V h), (2.27)

for all V h ∈ X h, where L∗(û; ·) is the formal adjoint operator of L(û; ·) and Ũ is the
sub-grid scale, which needs to be approximated, without considering boundary conditions.

Let us remark that two different schemes can be followed at this point to get the
stabilized problem:

1. Since operator L(û; ·) in (2.13) is in fact non-linear because of the exponential of ψ,
the VMS strategy needs to be applied to a certain linearization. The one described
previously could be used, but other options are also possible.

2. The alternative is to work with the standard form of the problem (2.5) (depending on
the elastic stress σ), in which operator Lstd(û; ·) is linear, design the stabilized FE
problem based on the VMS concept (involving operator L∗std(û; ·)) and then change
variables to obtain a log-conformation formulation.

Both cases give us different stabilized formulations, although for simplicity only the second
one has been considered in this work. Therefore, the adjoint operator we need to consider is

L∗std(û;U) :=


∇ · χ− 2ηs∇ · (∇sv)− ρû · ∇v −∇q

−∇ · v
1

2ηp
χ+∇sv − λ

2ηp

(
û · ∇χ+ χ · (∇û)T +∇û · χ

)
 . (2.28)

Taking P̃ as the L2 projection onto the space of sub-grid scales, the approximation we
consider for the sub-grid scales within each element is

Ũ = αP̃ [F −Dt(Uh)− L(uh;Uh)], (2.29)

where the operators Dt and L were defined previously for logarithmic formulation. More-
over, α is a diagonal matrix α = diag(α1Id,α2,α3Id×d) with Id the identity on vectors
of Rd, Id×d the identity on second order tensor and the parameters αi, i = 1, 2, 3 are
computed as

α1 =

[
c1
η0

h2
1

+ c2
ρ|uh|
h2

]−1

, (2.30)

α2 =
h2

1

c1α1
, (2.31)
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α3 =

[
c3

1

2ηp
+ c4

(
λ

2ηp

|uh|
h2

+
λ

ηp
|∇uh|

)]−1

, (2.32)

where h1 corresponds to a characteristic element length calculated in the two-dimensional
case as the square root of the element area, and in three-dimensional case as the cubic
root of the element volume, whereas h2 represents the characteristic length associated to
the element length in the streamline direction (see [45] for more details). On the other
side, |uh| is the Euclidean norm of the velocity while |∇uh| is calculated by means of the
Frobenious norm. The dimensionless constants ci, i = 1, .., 4 are algorithmic parameters
in the formulation, and the values adopted in this work are c1 = 4.0, c2 = 2.0, c3 = 4.0,
c4 = 0.25 for linear elements. Numerical analysis indicates that they have to be of order
one [42], and that c4 < 1. Moreover, c1 = 4.0, c2 = 2.0 are the optimal values for the
approximation of the one-dimensional convection-diffusion equation. Note that the values
for these constants are the same as those used for the standard formulation [26].

Inserting (2.29) in (2.27), with α given above and using the adjoint operator (2.28),
we obtain the following problem: find Uh ∈ X h such that

(Dt(Uh),V h) +B(uh;Uh,V h) + S1(uh;Uh,V h) + S2(Uh,V h) + S3(uh;Uh,V h)

= L(V h) +R1(uh;V h) +R3(uh;V h), (2.33)

for all V h ∈ X h, where

S1(ûh;Uh,V h) =
∑
K

α1

〈
P̃
[
ρ
∂uh
∂t
− ηp
λ0
∇ · exp(ψh)− 2ηs∇ · (∇suh)

+ ρûh · ∇uh +∇ph
]
,

−∇ · χh + 2ηs∇ · (∇svh) + ρûh · ∇vh +∇qh
〉
K

, (2.34)

S2(Uh,V h) =
∑
K

α2

〈
P̃ [∇ · uh],∇ · vh

〉
K

, (2.35)

S3(ûh;Uh,V h) =
∑
K

α3

〈
P̃
[ 1

2λ0
exp(ψh)−∇suh

+
λ

2λ0

(∂ exp(ψh)

∂t
+ ûh · ∇ exp(ψh)

)
− exp(ψh) · ∇ûh − (∇ûh)T · exp(ψh) + 2∇suh

]
,

− 1

2ηp
χh −∇svh

+
λ

2ηp

(
ûh · ∇χh + χh · (∇ûh)T +∇ûh · χh

) 〉
K

, (2.36)

R1(ûh;V h) =
∑
K

α1

〈
P̃
[
f
]
,−∇ · χh + 2ηs∇ · (∇svh) + ρûh · ∇vh +∇qh

〉
K

, (2.37)

R3(ûh;V h) =
∑
K

α3

〈
P̃
[ 1

2λ0
I
]
,− 1

2ηp
χh −∇svh,

+
λ

2ηp

(
ûh · ∇χh + χh · (∇ûh)T +∇ûh · χh

) 〉
K

. (2.38)

In these equations, P̃ is the projection restricted to the appropriate components of the
FE residual Rh := F − L(uh;Uh) onto the space of sub-grid scales. It remains only
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to define the projection, for which we consider two possibilities. If we consider P̃ = I
(identity), then the method is called Algebraic Sub-Grid Scales (ASGS). In the case that
P̃ = P⊥h = I − Ph (where Ph is the L2 projection onto the appropriate finite element
space), the name of the method is Orthogonal Sub-Grid Scales (OSS). Independently of
the choice of the projection P̃ , method (2.33) is consistent, since the terms added to the
Galerkin ones are proportional to the FE residual Rh.

2.4.2 Split-OSS

Method (2.33) is stable for smooth solutions, and displays the appropriate order of conver-
gence, both for P̃ = I and for P̃ = P⊥h . As it is indicated in [26], the OSGS method seems
in general more accurate, whereas ASGS is cheaper because projections are not needed
and it is more robust.

If we consider the case P̃ = P⊥h , from (2.33) we can design a simplified method, which
consists in neglecting the cross local inner-product terms, as well as some other terms that
do not contribute to stability.

Following the considerations made in [28] for the construction of the Split OSGS sta-
bilization for the traditional viscoelastic formulation, the modified method we propose for
the log-conformation reformulation is: find Uh : (0,T ) −→ X h satisfying the appropriate
initial conditions and such that

(Dt(Uh),V h) +B(uh,ψh;Uh,V h) + S⊥1 (uh;Uh,V h) + S⊥2 (Uh,V h)

+ S⊥3 (uh;Uh,V h) = L(V h), (2.39)

for all V h ∈ X h, where

S⊥1 (ûh;Uh,V h) =
∑
K

α1

〈
P⊥h

[
− ηp
λ0
∇ · exp(ψ)

]
,−∇ · χh

〉
K

+
∑
K

α1

〈
P⊥h

[
∇ph

]
,∇qh

〉
K

+
∑
K

α1

〈
P
[
ρûh · ∇uh

]
, ρûh · ∇vh

〉
K

(2.40)

S⊥2 (Uh,V h) =
∑
K

α2

〈
P⊥h [∇ · uh],∇ · vh

〉
K

, (2.41)

S⊥3 (ûh;Uh,V h) =
∑
K

α3

〈
P⊥h [∇suh],∇svh

〉
K

+
λ2

4λ0ηp

∑
α3

〈
P⊥h [ûh · ∇ exp(ψh)], ûh · ∇χh

〉
K

+
λ2

4λ0ηp

∑
K

α3

〈
P⊥h [− exp(ψh) · ∇ûh

− (∇ûh)T · exp(ψh) + 2∇suh)], (χh · (∇ûh)T +∇ûh · χh)
〉
K

. (2.42)

Method (2.39) is not just a simplification of (2.33). For smooth solutions, both have
an optimal convergence rate in h. However, in problems where the solution has strong
gradients, we have found (2.39) more robust, similarly to what it is explained in [28].
Therefore, we will refer to S-ASGS when P̃ = I in (2.36), and S-OSGS for the case
P̃ = P⊥h = I − Ph. However note that in both cases (2.40) and (2.41) have been used
instead of (2.34) and (2.35), respectively. Note that the last term in (2.42) is unnecessary
for stability and could be omitted. We have to remark as the expression (2.42), where
the cross local inner-products have been neglected for the the stabilization terms of the
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constitutive equation, could lead a lack of convergence in the iterative method. This
is extensively justified in Chapter 4, in particular in Section 4.4.2 where an example of
convergence failure is exposed to justify that, in our computations, the fully residual is
considered in all cases. In other words, S3(ûh;Uh,V h) in (2.36) is employed instead of
S⊥3 (ûh;Uh,V h) in (2.42).

2.4.3 Linearized problem and algorithm

The equations for incompressible viscoelastic flows have a high number of non-linear terms,
in particular in the momentum and the constitutive equation. Obviously, these are main-
tained with the logarithmic reformulation, and furthermore, new non-linearities arising
from the exponential function appear, as it has been exposed in Section 2.3.2.

For the convective term of the momentum equation we can use a fixed point scheme or
Newton-Raphson’s scheme. However, for the non-linear terms in the constitutive equation,
we have used a Newton-Raphson linearization always, and it has been decisive to be able
to compute some high Weissenberg cases and get the optimal convergence of the method.
At each iteration of each time step, the equations written in Algorithm 1 are computed.

Let us make the following remarks about the algorithm used:

• The nonlinear term in the momentum equation can be linearized with the fixed
point scheme or with Newton-Raphson’s method, but in the algorithm presented the
method used is the second.

• The exponential terms that appear both in the momentum equation and in the
constitutive equation have been linearized using (2.21), taking the tensor ψ̂ as the
one obtained from the previous iteration of the current time step.

• The computation of the exponential function, the gradient and the divergence of the
exponential function of the variable ψh at the previous iteration must be calculated
at each iteration.

• All non-linear terms belonging to the constitutive equation, both in the Galerkin
terms and in the stabilization, have been linearized using Newton-Raphson’s method.

• Stabilization parameters are computed with the values of the unknowns at the pre-
vious iterations.

• The iterative treatment of the orthogonal projection is coupled to the linearization
of the total system. Specifically, the orthogonal projection of any function f has
been approximated as P⊥h [f i] ≈ f i − Ph[f i−1], the superscript being the iteration
counter.

• Note that the ASGS method associated to the constitutive equation is considered
when P̃ = I, while the OSS is applied when P̃ = P⊥h .

Apart from the linearization carried out in some terms just explained, we have found ex-
tremely useful the application of other techniques that lead to a better convergence. One
of them is the under-relaxation scheme, taking as a relaxation parameter ε = 0.5, which
has been found effective in most of the cases; the second tool employed is the continuation
method in terms of the relaxation time λ, which consists in Nλ continuation steps of equal
size δλ = λ/Nλ. Note that continuation techniques can be employed because of the mod-
ification of the log-conformation formulation; if the original logarithmic formulation had
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been taken, they could not be used. Besides, the continuation loop and the linearization
loop are coupled in the algorithm used.

In the equations displayed in the Algorithm 1 variables uj+1,i
h , pj+1,i

h ,ψj+1,i
h corre-

sponding to the (j + 1) time step are denoted by uih, pih,ψih for simplicity. Regarding the
temporal terms, the notation introduced in Section 2.3.6 is employed here.

The equations considered in Algorithm 1 are solved inside of a general algorithm,
presented in Algorithm 2, where all considerations made are taken into account.

Algorithm 1 Logarithmic conformation reformulation. Fully discrete and linearized
problem at each iteration.

Given ui−1
h , pi−1

h , ψi−1
h (i ≥ 1), solve uih, p

i
h and ψih from:(

ρ
δku

i
h

δt
,vh

)
+
ηp
λ0

(exp(ψi−1
h ) ·ψih,∇svh) + 2(ηs∇suih,∇svh) + 〈ρui−1

h · ∇uih,vh〉

+ 〈ρuih · ∇ui−1
h ,vh〉 − (pih,∇ · vh) + (∇ · uih, qh) +

1

2λ0
(exp(ψi−1

h ) ·ψih,χh)

− (∇suih,χh) +
λ

2λ0

(
δk
δt

(exp(ψi−1
h ) ·ψih) + (ui−1

h · ∇(exp(ψi−1
h ) ·ψih),χh

)
+

λ

2λ0

(
uih · ∇

(
exp(ψi−1

h )
)
− exp(ψi−1

h ) ·ψih · ∇ui−1
h − exp(ψi−1

h ) · ∇uih,χh
)

− λ

2λ0

(
(∇ui−1

h )T · exp(ψi−1
h ) ·ψih + (∇uih)T · exp(ψi−1

h ),χh
)

+
λ

2λ0
(2∇suih,χh)

)
+
∑
K

αi−1
1

〈
− ηp
λ0
∇ · (exp(ψi−1

h ) ·ψih),−∇ · χh
〉
K

+
∑
K

αi−1
1

〈
∇pih,∇qh

〉
K

+
∑
K

αi−1
1

〈
ρui−1

h · ∇uih + ρuih · ∇ui−1
h , ρui−1

h · ∇vh
〉
K

+
∑
K

αi−1
2

〈
∇ · uih,∇ · vh

〉
K

+
∑
K

αi−1
3

〈
P̃
[ 1

2λ0
exp(ψi−1

h ) ·ψih −∇suih

+
λ

2λ0

(δk
δt

(exp(ψi−1
h ) ·ψih) + ui−1

h · ∇(exp(ψi−1
h ) ·ψih) + uih · ∇(exp(ψi−1

h )

− (exp(ψi−1
h ) ·ψih) · ∇ui−1

h − exp(ψi−1
h ) · ∇uih − (∇ui−1

h )T · (exp(ψi−1
h ) ·ψih)

− (∇ui)T · exp(ψi−1
h ) + 2∇suih

)]
,− 1

2ηp
χh −∇svh

+
λ

2ηp

(
ui−1
h · ∇χh − χh · (∇ui−1

h )T −∇ui−1
h · χh

) 〉
K

= 〈f ,vh〉+
ηp
λ0

(exp(ψi−1
h ) ·ψi−1

h − exp(ψi−1
h ),∇svh)

+ 〈ρui−1
h · ∇ui−1

h ,vh〉+
1

2λ0

(
I − exp(ψi−1

h ) + exp(ψi−1
h ) ·ψi−1

h ,χh
)

+
λ

2λ0

(
δk
δt

(
exp(ψi−1

h ) ·ψi−1
h − exp(ψi−1

h )
)

+ ui−1
h · ∇(exp(ψi−1

h ) ·ψi−1
h ),χh

)
+

λ

2λ0

(
− exp(ψi−1

h ) ·ψi−1
h ) · ∇ui−1

h − (∇ui−1
h )T · (exp(ψi−1

h ) ·ψi−1
h ,χh)

)
+
∑
K

αi−1
1

〈
− ηp
λ0
∇ · (exp(ψi−1

h ) ·ψi−1
h + exp(ψi−1

h )),−∇ · χh
〉
K

+
∑
K

αi−1
1

〈
ρui−1

h · ∇ui−1
h , ρui−1

h · ∇vh
〉
K

+
∑
K

αi−1
1

〈
Ph

[
− ηp
λ0
∇ · (exp(ψi−1

h ))
]
,−∇ · χh

〉
K
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+
∑
K

αi−1
1

〈
Ph

[
ρui−1

h · ∇ui−1
h

]
, ρui−1

h · ∇vh
〉
K

+
∑
K

αi−1
1

〈
Ph

[
∇pi−1

h

]
,∇qh

〉
K

+
∑
K

α2

〈
Ph[∇ · ui−1

h ],∇ · vh
〉
K

+
∑
K

αi−1
3

〈
P̃
[ 1

2λ0
(I − exp(ψi−1

h ) + exp(ψi−1
h ) ·ψi−1

h )

+
λ

2λ0

(δk
δt

(
exp(ψi−1

h ) ·ψi−1
h ) + exp(ψi−1

h )
)

− ui−1
h · ∇(exp(ψi−1

h ) ·ψi−1
h − exp(ψi−1

h ))

−
(
exp(ψi−1

h ) ·ψi−1
h − exp(ψi−1

h )
)
· ∇ui−1

h

− (∇ui−1
h )T · (exp(ψi−1

h ) ·ψi−1
h − exp(ψi−1

h )
)]

,− 1

2ηp
χh

−∇svh +
λ

2ηp

(
ui−1
h · ∇χh − χh · (∇ui−1

h )T −∇ui−1
h · χh

) 〉
K

2.5 Numerical results

In this section we will show some numerical examples where the benefits of the stabi-
lized formulations applied to the logarithmic formulation will be demonstrated. As it
is remarked in Section 2.3.6, most of the results shown have been obtained solving the
steady problem directly, although many references and previous approaches with the log-
conformation were time-dependent.

The first result presented in Section 2.5.1 is a convergence test that will show the
accuracy of the formulation. It is useful to show that it is optimally convergent for smooth
solutions. Secondly, in Section 2.5.2, the well-known benchmark flow past a cylinder is
tested to compare different quantities, such as the stress tensor around and downstream
of the cylinder or the drag coefficient, with the values published in the literature. In
Section 2.5.3 we present the classical 4:1 planar contraction flow problem for two different
Reynolds numbers, Re = 1.0 and Re = 0.0, with the purpose of validating the results with
a number of references. Finally, the last example in Section 2.5.4 is a three dimensional
problem, designed as an extension of the two dimensional 4:1 contraction benchmark.

2.5.1 Convergence test

This first numerical results belong to the convergence study of the stabilized formulations
employed for the log-conformation problem. The exact solution will be defined by the next
set of functions:

ux(x, y) = 2x2y(x− 1)2(y − 1)(2y − 1),

uy(x, y) = −2xy2(x− 1)(y − 1)2(2x− 1),

p(x, y) = sin(2πx)sin(2πy),

σxx(x, y) = 5sin(2πx)sin(2πy),

σyy(x, y) = −5sin(2πx)sin(2πy),

σxy(x, y) = sin(2πx)sin(2πy),

where the x and y components of the velocity and the stress tensor have been indicated
with a subscript.
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Algorithm 2 Logarithmic conformation reformulation. General algorithm.

read initial condition u0
h

set p0
h = 0, ψ0

h = 0

set λ0=0

for j = 0, ...,m− 1 do (Temporal loop)

set i=0

set uj+1,0
h = ujh, p

j+1,0
h = pjh, ψ

j+1,0
h = ψjh

set the relaxation time to λj+1 = min(λj + λ/Nλ,λ)

while not converged do

i← i+ 1

compute exponentials:

exp(ψj+1,i−1), ∇ · exp(ψj+1,i−1) and ∇(exp(ψj+1,i−1))

compute projections:

Ph

[
− ηp
λ0
∇ · exp(ψj+1,i−1)

]
, Ph

[
∇pj+1,i−1

h

]
,

Ph

[
ρuj+1,i−1

h · ∇uj+1,i−1
h

]
and Ph

[
∇ · uj+1,i−1

h

]
if P̃ = P⊥h in the constitutive equation then

compute projection

Ph

[ 1

2λ0
exp(ψj+1,i−1

h )−∇suj+1,i−1
h +

λ

2λ0

(
uj+1,i−1
h · ∇ exp(ψj+1,i−1

h )

+ δk
δt (exp(ψj+1,i−1

h ))− exp(ψj+1,i−1
h ) · ∇uj+1,i−1

h

−(∇uj+1,i−1
h )T · exp(ψj+1,i−1

h ) + 2∇suj+1,i−1
h

)]
end if

compute stabilization parameters:

αj+1,i−1
1 , αj+1,i−1

2 and αj+1,i−1
3 with U j+1,i−1

solve equations from Algorithm 1 for uj+1,i
h , pj+1,i

h and ψj+1,i
h

update unknows:

uj+1,i
h ← εuj+1,i

h + (1− ε)uj+1,i−1
h

pj+1,i
h ← εpj+1,i

h + (1− ε)pj+1,i−1
h

ψj+1,i
h ← εψj+1,i

h + (1− ε)ψj+1,i−1
h

check convergence

end while

set converged values

uj+1
h = uj+1,i

h

pj+1
h = pj+1,i

h

ψj+1
h = ψj+1,i

h

end for(End temporal loop)
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In order to satisfy the constitutive equation (2.10) with the velocity and the tensor ψ,
we have to add the forcing term

f c =
1

2λ0
(exp(ψ)− I)−∇su

+
λ

2λ0

(
u · ∇ exp (ψ)− exp (ψ) · ∇u− (∇u)T · exp (ψ) + 2∇su

)
to the right-hand-side of the constitutive equation, with u and ψ being the given manufac-
tured solution. Note that tensor ψ is obtained analytically from the stress tensor through
the relation defined in Section 2.3.2.

The computational domain is the unit square, discretized using uniform structured
meshes of bilinear (Q1) and biquadratic (Q2) quadrilateral elements. The range of element
sizes employed in this study ranges between h = 0.003125 and h = 0.0125 for Q1 elements,
and between h = 0.00625 and h = 0.025 for Q2 elements.

We have considered three different Weissenberg numbers for every mesh, We = 0.0,
We = 0.5 and We = 1.0. These quantities have been calculated with the maximum velocity
value as characteristic velocity and the side of the square as characteristic length, taking
into account that the expression of the dimensionless number is We = λU

L .
Regarding the optimal convergence rate expected, when the mesh is composed of linear

elements, it is 2 in velocity and 1 in pressure and ψ for the L2 -norm, but using quadratic
elements it is 3 in velocity and 2 in pressure and ψ.

For both formulations, S-OSGS and S-ASGS, results are extremely close, so we have
only represented the S-ASGS results in Fig. 2.1.

2.5.2 Viscoelastic fluid flow past a cylinder in a channel

In the literature, we can find that this problem has been worked out using both formula-
tions, the log-conformation one and the standard one. The most relevant results obtained
with the standard formulation belong to Fan et al. [62] and Alves et al. [5]. In both works
results are highly accurate, although their schemes failed for a Weissenberg number around
1. Other authors, who have published results with diverse techniques for the standard for-
mulation, have obtained similar results regarding the numerical breakdown at relatively
moderate Weissenberg numbers with an Oldroyd-B fluid, such as Caola et al. [24], Owens
et al. [126], or Castillo et al. [26]. Nevertheless, the logarithmic reformulation of the
equations allows us to get solutions for higher Weissenberg numbers. We will compare our
results with the solutions found in the literature.

Set up

The geometry of a viscoelastic fluid flow past a confined cylinder in a channel considered
in this section is depicted in Fig. 2.2. Note that only the half domain has been taken, for
symmetry reasons.

Let us describe the boundary conditions of the problem, following the notation included
in the sketch of the geometry. For the velocity, we will impose non-slip conditions on the
top wall y = 2R, Γwall, and on the cylinder boundary Γcyl, while symmetry conditions are
prescribed along the axis y = 0, denoted by Γsym. In our case, these last conditions are
applied imposing the component y of the velocity to be zero. On the other hand, a fully
developed parabolic velocity profile and the associated elastic stress profile are imposed at
the inlet Γin:
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Figure 2.1: Convergence test. Discrete L2-errors for velocity, pressure and ψ fields us-
ing a manufactured solution in quadrilateral elements (Q1 and Q2) with S-ASGS as the
stabilization method.

Figure 2.2: Flow past a cylinder. Geometry and computational boundaries.
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Figure 2.3: Flow past a cylinder. Computational mesh.

Mesh Nodes Elements hmin

M1 38 469 71980 0.005
M2 84 378 156 959 0.002
M3 179 645 336 106 0.001

Table 2.1: Flow past a cylinder. Main characteristics of the computational meshes.

ux = 3Q
4R

(
1− y2

(2R)²

)
, uy = 0,

σxx = 2ληp

(
∂ux
∂y

)2
, σxy = ηp

(
∂ux
∂y

)
, σyy = 0,

where Q is the flow rate and R is the radius of the cylinder. Note that the stress conditions
will be defined over the inflow boundary using the new variable ψ, taking into account
the already mentioned relation ψ = log

(
λ0σ
ηp

)
in Section 2.3.2. Moreover, the horizontal

velocity is left free, the vertical one is set to zero and the pressure is prescribed to zero
on the outlet boundary Γout. The values for the parameters used along all this study are
Q = 1, η0 = 1, β = 0.59.

We have solved the benchmark for different Weissenberg numbers We = λU
L0

, where the
characteristic velocity in this problem is U = 3Q

4R , and the characteristic length is L0 = R.
Furthermore, in all our calculations the convective term of the momentum equation is
neglected, as it is customary of this problem.

In order to check the independence of the mesh in the results we have employed three
different meshes, with a similar structure. In Fig. 2.3 one of them is displayed, where we
can observe its unstructured nature, composed of linear triangles. We have to stand out
the refinement of the mesh in the region around the cylinder and downstream, where the
maximum values of the stress are achieved. More details about these are found in Table
2.1, which contains the number of nodes, elements and the minimum element size hmin for
each mesh.

Drag coefficient results

Although convergence for the dimensionless drag coefficient is a good indicator to check
a method, in the literature some discrepancies exist when a moderately high Weissenberg
number is considered (We ≥ 0.7). Moreover, as the drag coefficient is an integrated
quantity over a cylinder, accuracy in the whole of the domain cannot be ensured if this
drag coefficient is not adequately reproduced.

Some drag coefficients for different Weissenberg numbers are presented numerically in
Table 2.2 and graphically in Fig. 2.4, where our own results (labelled P.S.) are compared to
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We Hulsen M4 [92] Afonso M30 [2] Damanik [55] P.S.

0.1 130.363 - 130.366 130.30
0.2 126.626 - 126.628 126.58
0.3 123.193 - 123.194 123.16
0.4 120.596 - 120.593 120.57
0.5 118.936 118.781 118.828 118.82

0.6 117.792 117.778 117.779 117.80
0.7 117.340 117.350 117.321 117.38
0.8 117.373 117.380 117.347 117.47
0.9 117.787 117.797 117.762 118.01
1.0 118.501 118.662 118.574 118.88

1.1 119.466 119.740 119.657 119.89
1.2 120.650 120.985 120.919 121.14
1.3 - - 123.350 122.57
1.4 123.587 124.124 123.936 124.14
1.5 - 126.022 125.665 125.85

1.6 127.172 127.759 127.523 127.66
1.7 - 130.012 129.494 129.57
1.8 131.285 132.024 131.578 131.53
1.9 - 134.188 133.754 133.51
2.0 135.839 136.580 136.039 135.53

2.1 not solved - 138.438 137.57
2.2 not solved 141.801 not solved 139.62
2.3 not solved - not solved 141.67
2.4 not solved 146.730 not solved 143.66
2.5 not solved 149.112 not solved not solved

Table 2.2: Flow past a cylinder. Comparison of drag force coefficient.

those of other authors, who also have applied the log-conformation reformulation, such as
Hulsen et al. [92], Afonso et al. [2] or Damanik et al. [55]. Particularly, Hulsen et al. [92]
indicate that from a certain Weissenberg value, the solution shows time-dependency and
computations do not break down, although some fluctuations are detected when We = 2.0
is reached. However, in our calculations, fluctuations have not been detected and a steady
flow has been obtained.

The agreement is acceptable with other publications where the logarithmic reformula-
tion has been made, although from values higher than 1.2 slight discrepancies are detected.

The advantages of using this formulation are notorious: while computations reported
in the literature using the standard formulation break down around a Weissenberg number
of 0.9, the logarithmic formulation shows good stability for higher values. In our case, we
have been capable of simulating fluids with Weissenberg number equal to 2.4.

Stress convergence

As we have commented above, the drag coefficient study is not enough to prove the accu-
racy of the formulation. Therefore, we have displayed the component x of the stress on
the cylinder wall and along the downstream center line with the purpose of contrasting
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Figure 2.4: Flow past a cylinder. Comparison of drag force coefficient.

our results with those reported by different authors.
Regarding stress convergence when the mesh is refined, as some authors have remarked

(Afonso et al. [2], Coronado et al.[52]), there are a lot of discrepancies, particularly when
the Weissenberg number begins to increase (We ≥ 0.7). It occurs especially for the maxi-
mum peak of stresses situated in the rear wake. Some authors, in spite of using extremely
refined meshes and high order methods, cannot be conclusive about the converged results.

A comparison of the first component of the elastic stress profile along the cylinder and
downstream at the center line of the domain is shown in Figures 2.5, 2.6 and 2.7; our
results are compared with other published results.

We are in agreement with results found in the literature for Weissenberg number equal
to 0.6, particularly with Hulsen et al. [92] and Damanik et al. [55], whereas the values
shows by Afonso et al. [2] are slightly greater, as it is displayed in Fig. 2.5. Only
the result of the thickest mesh (M1) is included here because the values obtained are
practically identical for the three meshes, and therefore we can affirm a complete solution
independence with respect the mesh used.

However, for the figure presented associated with a Weissenberg number equal to 0.7
(Fig. 2.6), the discrepancies among authors start mainly in the rear wake, in spite of mesh
convergence. As it has been commented previously, although this case has been computed
by a wide number of authors, high order methods are not conclusive. Regarding our
results, these are in agreement with the values reached in the rear wake by Hulsen et al.
[92] and Afonso et al. [2] when the finest mesh is employed, although the maximum peak
over the cylinder is higher than that plotted by Afonso et al. [2]; in turn, these maximum
values are very close to those of the rest of authors compared. Mesh dependency needs
to be highlighted for this Weissenberg number at this point, and it is shown in Fig. 2.6
(right), where we can see differences between meshes, especially along the centerline in the
wake of the cylinder.

In Fig. 2.7 the results for Weissenberg 0.9 are displayed. As we have remarked be-
fore, this solution does not have mesh convergence; this phenomenon has already been
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Figure 2.5: Flow past a cylinder. Profile of the first component stress σxx along cylinder
and downstream for We = 0.6.

Figure 2.6: Flow past a cylinder. Profile of the first component stress σxx along cylinder
and downstream for We = 0.7.



2.5. Numerical results 31

Figure 2.7: Flow past a cylinder. Profile of the first component stress σxx along cylinder
and downstream for We = 0.9.

reported in the literature by some researchers [2, 52, 92]. To show this effect clearly, we
have plotted in Fig. 2.7 the values obtained with two different meshes (M1 and M2), so the
lack of convergence is demonstrated, because whenever the mesh is refined the maximum
values reached along the centerline downstream show a significant increment. The authors
referenced above relate this to the behavior of the constitutive model, which models an
unlimited extension of the fluid at finite extension rates. For this reason, numerous dis-
crepancies are found between works published when the stress values along the rear wake
are plotted, for example between Alves et al. [5], Coronado et al.[52], Afonso et al. [2],
and our own results. Nevertheless, the values in points situated around the cylinder are
very close in all quoted references.

Finally, we have illustrated results using mesh M2, with the aim of showing that smooth
solutions have been achieved even in more elastic cases. Analogously to the graphs dis-
played for Weissenberg 0.6, 0.7 and 0.9, in Fig. 2.8 we show the creeping flow around and
past the cylinder for greater elasticity values. We are aware of simulations with a Weis-
senberg number equal o grater than 0.9 do not show mesh-convergence at the rear wake.
However, depite of that a significant increasing of the maximum value when Weissenberg
number is enlarging can be observed, while the stresses around the wall of the cylinder
stay very similar, quasi independent of the elasticity of the fluid.

2.5.3 Contraction 4:1

The next benchmark presented is the well-known 4:1 planar contraction problem in the
two dimensional version. This is a suitable example because it is more stringent than
other benchmarks when highly elastic problems are studied, due to the singularity which
is situated in the corner.

Set up

First of all, we describe the main characteristics of this case. Since the problem is sym-
metric, we have just considered half of the domain, as it is shown in Fig. 2.10. Moreover,
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Figure 2.8: Flow past a cylinder. Profile of the first component stress σxx for high Weis-
senberg numbers (We=1.0, 1.3, 1.8).

the main characteristic lengths have been already detailed in the figure, taking H1 = 4
and H2 = 1, together with the corner vortex length definition denoted by XR and the lip
vortex XL. These quantities are useful to compare our results with those of other authors.

Let us describe the boundary conditions associated with this problem. On the solid
walls Γwall, non-slip conditions are imposed for the velocity field and on symmetric bound-
aries Γsym , the component y of the velocity is set to zero. Moreover, on the inlet boundary
Γin a fully parabolic velocity profile and stress profile are prescribed:

ux = 3Q
4H1

(
1− y2

H2
1

)
, uy = 0,

σxx = 2ληp

(
∂ux
∂y

)2

, σxy = −ηp
(
∂ux
∂y

)
, σyy = 0,

where Q is the flow rate, set to 1. In this case the characteristic length is H2 = 1,
which is the length of the inlet channel, and the characteristic velocity is the mean outflow
velocity, ū2 = 1. Note that the stress conditions will be imposed to the new variable ψ,
easily computed from the defined stress functions; these are required in order to avoid the
need of using a too large computational domain.

For the outlet boundary Γout, the x-component of the velocity is left free, and the
y-component is set to zero. In addition, the x-component of the normal component of
the total Cauchy stress tensor is set to zero. The remaining parameters are η0 = 1 and
β = 1/9.

With the characteristic values chosen, We = λu2
H2

and the Reynolds number is

Re =
ρu2H2

η0
,

where parameter ρ is the fluid’s density.



2.5. Numerical results 33

(a) First component of the stresses σxx

(b) Component xy of the stresses σxy

(c) First component of the velocity

(d) Pressure

Figure 2.9: Flow past a cylinder. Contours near the cylinder.
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Figure 2.10: Contraction 4:1. Geometry and computational boundaries.

Mesh Nodes Elements ∆xmin = ∆ymin

M1 10 316 19 770 0.04
M2 12 880 24 712 0.02
M3 20 441 39 242 0.01
M4 28 713 55 693 0.0075
M5 36 513 70 818 0.005

Table 2.3: Contraction 4:1. Main characteristics of the meshes employed.

The main characteristics of the different size meshes used are detailed in Table 2.3.
The structure is shared by all of them, although only one is shown in Fig. 2.11. The
notation ∆xmin = ∆ymin indicates the minimum element sizes in the x and y directions.
We have to remark the structured character of the mesh employed near to the contraction,
while it is unstructured in the rest of the domain. The results displayed in Section 2.5.3
correspond to mesh M3, while in Section 2.5.3 various mesh sizes are used.

Oldroyd-B flow at Re = 1

In this subsection we will study the problem taking into consideration the inertial effects,
in other words, without neglecting the convective term of the momentum equation. So,
in order to be capable of comparing our results with others, we have chosen the Reynolds
number to be equal to 1. All the authors found in the literature have solved this exact
case employing the standard formulation. A wide range of techniques have been carried
out to solve this problem: Sato and Richardson [148] and Phillips and Williams et al.
[135] describe a semi-Lagrangian finite volume scheme, Nithiarasu et al. [121] propose an
explicit characteristic based split (CBS) scheme, whereas Li et al [109] present a mixed
finite element scheme, utilizing the DEVSS method for stress stabilization. Castillo et al.
[26] proposed a stabilized method using the VMS method with a discontinuity capturing
technique which allows to deal with local discontinuities.

In our case, the maximumWeissenberg number achieved by the present scheme is about
We = 9.0. This value is smaller than the Weissenberg value that we have been capable
of simulating when the Reynolds number is set to zero. This effect is in agreement with
the authors quoted before, and is produced by the relevance of the non-linear convective
term of the momentum equation. As it is commented before, we have not come upon
this problem solved with the logarithmic reformulation in the literature, but the benefits
of this formulation are clear in comparison with the standard formulation, allowing us to
solve the problem for fluids with much higher elasticity. For example, one of the highest
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x

y

z

Figure 2.11: Contraction 4:1. Computational mesh.

values reached for the standard formulation is We = 5.0 in the work written by Castillo
et al. [26], where it is explained that for We = 5.5 some instabilities appeared, and the
scheme is incapable of solving the problem for We = 6.0.

Next, we will present some results, starting with the distribution of streamlines near the
contraction for some of Weissenberg numbers, shown in Fig. 2.12. As in other works, the
vortex in the corner decreases when We increases, while the lip vortex grows progressively
for increasing Weissenberg numbers. This secondary vortex starts to emerge for We ≥ 1.0
(see [26, 109, 121] for discussion). Lip vortices start to merge with the corner vortices at
We = 5.5 approximately, but two different centers of rotation are clearly defined. The
two centers merge at about We = 6.0. The resulting corner, in some works as [50], is
referred as the third vortex. So, when the Weissenberg number increases, we observe a
divergence of the streamlines upstream of the contraction. The relationship between the
corner vortex length (denoted by XR in Fig. 2.10) and the Weissenberg number is shown
in in Fig. 2.13 together with the results of other works in the literature. We have to
remark that although the corner vortex sizes are consistent with results published, lip
vortex sizes are notably higher than the ones reported in the literature. However, it
seems a logical behavior that contributes to the final merge between the two vortices.
Both graphs are plotted up to Weissenberg 5.0 because above this value the third vortex
appears, annihilating the previous vortices. This phenomenon is clearly visible in Fig.
2.12. A pressure plotting is shown along a cut line near the contraction problem in Fig.
2.14a, where the singularity at the corner is easily identified at x = 20. A decreasing of the
maximum pressure values is observed whenever the Weissenberg number grows. On the
other side, the first elastic stress distribution (σxx) along y = −H2 is given in Fig. 2.14b
for various Weissenberg values using mesh M3. The singularity (at the corner) is located
at x = 20.0. We can observe that the peak values of the viscoelastic stresses increase with
elasticity. We have found differences between the maximum peaks obtained and the results
presented in [26], where the standard formulation is employed. Nevertheless, our solution
is very close to the distribution shown in the work of Afonso et al. [1], where a study
comparing both formulation is developed and where a distribution of the elastic stress
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(a) We = 0.0 (b) We = 0.5 (c) We = 1.0

(d) We = 2.0 (e) We = 3.0 (f) We = 4.0

(g) We = 5.0 (h) We = 6.0 (i) We = 7.0

Figure 2.12: Contraction 4:1. Streamlines patterns for different Weissenberg number and
Re = 1.0.

Figure 2.13: Contraction 4:1. Corner length comparison for Re = 1.0, We ≤ 5.0.
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(a) (b)

Figure 2.14: Contraction 4:1. Pressure and first elastic stress tensor component in a cut
line along y = −H2 near the contraction corner for Re = 1.0, We ≤ 2.5.

along the centerline y = 0 (symmetry axis), where the solution is smoother, is plotted. By
following the same idea, Fig. 2.15 compares solutions in both formulations; we have not
found large discrepancies between them, except in the maximum values, where a slight
variation is observed when elasticity grows. Moreover, in [1] it is described how these
differences are more perceptible from We = 2.5, because with the logarithmic formulation
the flow becomes unsteady, while with the standard one it diverges at We = 3.0. The
contours of the extra stresses and pressure provided by the proposed formulation for We=
1.0, 3.0, 5.0 ant 7.0 are displayed in Figs. 2.16 - 2.19. The patterns of the corresponding
results are smooth and similar to the ones shown in the literature [26, 109, 121] although
there are some differences near to the contraction in the distribution of the component

Figure 2.15: Contraction 4:1. First elastic stress component along y = 0, Re = 1.0.
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(a) We = 1.0 (b) We = 3.0

(c) We = 5.0 (d) We = 7.0

Figure 2.16: Contraction 4:1. Pressure contours around the contraction corner for different
Weissenberg numbers and Re=1.0.

σyy (Fig. 2.18) and σxy (Fig. 2.19) when the fluid is more elastic (We=3.0 and 5.0, for
example). These differences in the distribution of the shear stress could be the cause of
the unusual growth and the size of the lip vortex, already explained and shown in Fig.
2.12. On the other side, we can observe that the gradients of the elastic stresses near
the contraction corner and the maximum stress value are higher when the Weissenberg
number is increased.

Oldroyd-B flow at Re = 0.01

There are studies, such as Sato and Richardson [148] and Matallah et al. [116], which
indicate that solutions for the Oldroyd-B flow with a Reynolds number Re ≤ 0.01 are
almost identical to those for the Oldroyd-B flow with Re = 0.0, in other words, those of
creeping flow. For this reason, the solutions for Re = 0.01 given by the proposed scheme
can be compared with studies of creeping flow published in the literature. Recall that in
our case Re = ρu2H2

η0
.

Many references with different numerical schemes present results for the problem con-
sidered. For example, Alves et al. [4], analyze the dispersion and the vortex length using
several methods, and Kim et al. [99] employ a transient finite element method based on a
fractional step scheme and stabilization techniques. Authors quoted in previous sections,
as [26, 121], also validate their schemes for Re = 0.01; these are included in our compar-
isons. All the mentioned articles use the standard formulation; however, we have come
upon some relevant analysis where a log-conformation reformulation is employed to solve
the contraction problem, such as the work by Afonso et al. [1], where a dynamic evaluation
of the behavior and the fluctuation of flow at high Weissenberg number is studied, Com-
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(a) We = 1.0 (b) We = 3.0

(c) We = 5.0 (d) We = 7.0

Figure 2.17: Contraction 4:1. Distribution of component xx of the normal elastic stresses
at Re=1.0.

(a) We = 1.0 (b) We = 3.0

(c) We = 5.0 (d) We = 7.0

Figure 2.18: Contraction 4:1. Distribution of component yy of the normal elastic stresses
at Re=1.0.
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(a) We = 1.0 (b) We = 3.0

(c) We = 5.0 (d) We = 7.0

Figure 2.19: Contraction 4:1. Distribution of component xy of the normal elastic stresses
at Re=1.0.

minal et al. [50], which presents a numerical solution for a Weissenberg number up to 20
with a streamfunction-log-conformation methodology, and Pimenta et al. [137], the most
recent study, in which the typical solver available in the OpenFOAM toolbox is modified
to get second-order accuracy. All these works consider We ≤ 12.

We have illustrated streamlines in Fig. 2.20 for various Weissenberg numbers up to
7.0. The maximum Weissenberg number reached in our case is 15.0 in stationary regime
and using the coarsest mesh. We are aware of the lack of accuracy of the results of the
highest we reached, because in references [1, 50] the existence of large fluctuations are
described for high Weissenberg numbers, whereas we obtain a stable stationary solution.
Note that the aim of this work is to validate the formulation, therefore transient terms
have just been added to achieve stationary solutions and not to perform truly transient
calculations.

The behavior of the vortex is very close to the one described for the Re = 1.0 case.
Fig. 2.21 shows the evolution of the corner vortex and later the third vortex size when the
Weissenberg number is increased for the three finest meshes. Just as it is exposed in the
work of Pimenta et al. [137], the growth of the lip vortex size is shown to be significantly
dependent on the mesh resolution, where finer meshes lead to a smaller lip vortex and,
consequently, it affects the merge between two vortices and thus to the growth and size of
the third vortex.

In Fig. 2.22, the comparison with the literature (references [1, 50]) of the corner size in
terms of the Weissenberg number is shown. A survey of the numerical results presented in
the literature reveals large discrepancies between the results of the different studies. Our
results are in very good agreement with the solutions of Kim et al. [99] for values up to
We = 3.0.
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(a) We = 0.0 (b) We = 0.5 (c) We = 1.0

(d) We = 2.0 (e) We = 3.0 (f) We = 4.0

(g) We = 5.0 (h) We = 6.0 (i) We = 7.0

Figure 2.20: Contraction 4:1. Streamlines patterns in the contraction planar for different
Weissenberg number for Re = 0.01.

Figure 2.21: Contraction 4:1. Corner vortex length comparison between meshes for
Re=0.01.
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Figure 2.22: Contraction 4:1. Corner vortex length comparison for Re=0.01.

We ∆p (Re=1.0) ∆p (Re=0.01) We ∆p (Re=1.0) ∆p (Re=0.01)
0.0 64.79 62.95 6.0 33.78 32.96
1.0 58.99 58.38 7.0 30.56 29.85
2.0 53.24 52.43 8.0 29.26 27.48
3.0 47.49 46.60 9.0 - 25.11
4.0 42.30 41.33 10.0 - 23.09
5.0 37.76 36.80 11.0 - 21.42

Table 2.4: Contraction 4:1. Pressure drop for different Weissenberg and Reynolds numbers.

Pressure drop

Finally, a global study has been performed to validate the formulation. As done in Castillo
et al. [26], pressure drop for some Weissenberg numbers are included in Fig. 2.4. It is
calculated as ∆p = pinlet − poutlet, that is, as the difference between the pressure at the
inlet and pressure at the outlet. In both cases, inertial and non-inertial, the same effect
occurs: the pressure drop decreases when the elasticity of the fluid is increased, as it is
expected from the physical point of view.

2.5.4 Three dimensional case

As a last example, we are going to show a 4:1 contraction problem in its three dimensional
version, in order to proof that the proposed formulation is ready for 3D problems. Measures
and conditions considered are similar to those in [26].

Set up

The geometry is illustrated in Fig. 2.23 together with some measures. Since the problem
is symmetric for low Weissenberg numbers, we have just considered a fourth of the total
domain. In [1], the full domain was used in order to be able to capture flow asymmetries
or instabilities when the Weissenberg number grows. Both inlet and outlet lengths are
the same as in the two dimensional case, long enough for getting a full flow development.
Moreover, the characteristic length we have chosen is H2 = 1, which is half of the channel
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Figure 2.23: Contraction 4:1. Three dimensional geometry and computational boundary.

width of the narrowest part, and the average velocity in the outlet of the channel ū2 = 1
has been chosen as characteristic velocity.

The boundary conditions are an extension from the two dimensional case, but now the
domain has two symmetry boundaries instead of one. The symmetry planes are y = 0
and z = 0 , and the normal velocity to each plane is set to zero. In this problem we
have just considered a Weissenberg number of We = 1.0 and the inertial effects have been
minimized, taking Re = 0.01.

Higher values of the Weissenberg number would require finer meshes in order to be
capable to capture the lip vortex. Nevertheless, we are now trying to study the behavior
of the highest Weissenberg number in a three dimensional geometry, as it is done in [26].
The mesh used is formed by 476 852 unstructured tetrahedra and 86 856 nodes.

Some results

Only a few pictures of results will be presented, intending to give an idea of the flow. On the
one side, streamlines are shown in Fig. 2.24, where these are plotted on two perpendicular
planes. Particularly, in Fig. 2.24b the main corner vortex is clearly appreciated, and
also the lip vortex starts to emerge. The similarities with the two dimensional case are
remarkable, in spite of the minimum mesh size being notably finer in that problem. In
Fig. 2.24c the symmetry with respect to plane y = z of the streamlines can be observed.

Displaying the distribution of the pressure near the contraction is interesting, due to
this is one of the most difficult fields to capture suitably geometry presents an abrupt
change. The contour lines of this field around the corner are plotted in Fig. 2.25. In Fig.
2.26a a cut line along the contraction is shown, where it is proved as the pressure peak
is well captured. Also, in Figure Fig. 2.26b the first component of the elastic stresses is
displayed to reinforce the idea of good performance of the simulation capturing the peak
produced in the corner. We have to stand out that the results presented in this section
pretend to make a qualitative study of the three dimensional problem, neither comparing
the results obtained with other publications nor establishing a rigorous analysis of the
differences between them.

2.6 Conclusions

In this chapter a FE method has been designed for the log-conformation formulation of
Fattal and Kupferman [63], considering a modification with respect to the original formu-
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(a) Streamlines in the 3D geometry.

(b) Cut with the plane y = 0. (c) Cut plane a x = cte near
to the contraction plane.

Figure 2.24: Contraction 4:1. Streamlines in the three dimensional model in three different
views.

Figure 2.25: Contraction 4:1. Contour lines of the pressure in the three dimensional model.
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(a) (b)

Figure 2.26: Contraction 4:1. Pressure and normal elastic stresses component σxx near
the corner.

lation which is non-singular with respect to the relaxation time parameter and, moreover,
that allows a direct steady numerical computation. The spatial approximation is carried
out using a stabilized FE method based on the VMS framework. Firstly, a residual-based
formulation of the equations is presented, and later the Split-OSS method is developed
for the momentum and continuity equations, whereas the constitutive equation can be
stabilized using the classical residual-based stabilization, following the steps of [26]. The
linearization of the problem has been presented in detail, emphasizing the treatment of the
exponential function. The convergence of the proposed method has a strong dependency
on this treatment.

The resulting method allows one to obtain globally stable solutions, and has been
validated in different benchmarks for high Weissenberg numbers, showing accuracy, opti-
mal convergence for smooth solutions, and robustness even in steady-state computations,
reaching accurate results in comparison with other methods reported in the literature.
Moreover, the formulation also performs well in the three-dimensional case, with good
results from a qualitative point of view.





Chapter 3

Thermal Coupling

This chapter is based on the publication:

Moreno L., Codina R. & Baiges J. (2021). Numerical simulation of non-isothermal
viscoelastic fluid flows using a VMS stabilized Finite Element formulation. Journal of
Non-Newtonian Fluid Mechanics, Submitted.

3.1 Abstract

In this chapter the effect of temperature in viscoelastic fluid flows is studied applying a
stabilized finite element formulation based on both a standard and a log-conformation
reformulation (LCR), and the Variational Multiscale (VMS) method as stabilization tech-
nique. The log-conformation reformulation turns out to be crucial to solve the cases with a
high Weissenberg number. Regarding temperature coupling, a two-way coupling strategy
is employed: on the one hand, the dependence of viscoelastic fluid parameters on tem-
perature is established, together with the addition of a new term to the energy equation
which takes into account the stress work. The formulations and the iterative algorithms
are validated in the well-known flow past a cylinder benchmark. Besides, the extension
1:3 case is studied, in which several scenarios are explored varying the values of the main
dimensionless numbers that characterize the problem to see how the flow pattern and
temperature distribution change along the channel.

3.2 Background

As it was advanced in the Introduction (Chapter 1), the processes in which polymers are
involved are mostly non-isothermal in nature. Flow properties are strongly dependent
both on rheology and temperature, therefore there is a high interest to understand the
behavior of such type of flows. The combination of high viscosities of polymeric melts
and high deformation rates results in the transformation of large amounts of mechanical
energy into heat, and consequently in a rising of the material temperature. As remarked in
[55], the non-isothermal nonlinear flow is also particularly relevant in many applications,
since it is the basis of many complex flow problems with viscoelastic and multiphase fluids.
Airflow inside a combustion engine, polymer flow in injection molding, or fluid flow in heat
exchange problems, are only a few examples of viscous fluids where the temperature is an
important unknown. Concerning viscoelastic materials, stresses now play an important

47
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role on the temperature and temperature history and not only on the deformation (and
deformation history). Consequently, the temperature should be an independent variable
in the constitutive equations for the stress tensor, as Peters et al. [132] explain in their
work. Moreover, the temperature dependence of the linear viscoelastic properties (such
as the relaxation time λ) is described by the principle of time-temperature superposition.
This principle states that all characteristic times of the material depend on temperature
similarly and therefore this relation can be described through a function of the tempera-
ture. In literature, we have found two main models [67]: the Williams-Landel-Ferry (WLF)
function [167] which is widely employed or the Arrhenius relationship [18] (see [112] for a
discussion between these two methods). Also, the time-temperature superposition principle
holds for rheological properties at different constant temperatures, however, it does not
describe the consequences of temperature changes in time and space. As it is explained
in [132], another difficulty for solving non-isothermal viscoelastic flows comes from the
energy equation. Usually, it is assumed that the internal energy of fluids is a function of
the temperature uniquely, however, this is not a proper assumption for viscoelastic fluids.

Besides, the energy equation needs to be reconsidered to specify which part of the
mechanical power is dissipated and which part is accumulated as elastic energy. One needs
to take into account that the deformation of elastic materials is a reversible process since
mechanical energy can be stored and released as mechanical energy again. Nevertheless, for
purely viscous materials, the deformation is irreversible, due to mechanical energy being
completely dissipated. On the contrary, for viscoelastic materials, mechanical energy will
be partially stored as elastic energy and partly dissipated. This is taken into account
by the stress work in the energy equation, which is computed as the product between
stresses and the velocity gradient. For Newtonian fluids it is called viscous dissipation, as
it is always positive. For viscoelastic fluids we will call it also viscous dissipation if it is
positive and this property is exploited.

In literature different works can be found which study the forced convection in pipes
and channels using diverse techniques, as [48, 132, 138], and more recent papers as [93]
which simulate a 3D viscoelastic flow in a rectangular duct, or [83], where the applica-
tion to axisymmetric 4:1 contraction flows is developed for non-isothermal flows. Also,
the recirculation and thermal regions of viscoelastic flow in the symmetric planar prob-
lem for different expansion angles is studied in [149]. Moreover, the optimal control of
non-isothermal viscoelastic fluids to minimize vortices and controlling the heat flux is in-
vestigated in [101] using finite differences, and also in [53], although in this case using a
Newtonian flow but employing the finite element (FE) method. More recently, we found
the work [155], where a 3D transient non-isothermal simulation is performed to predict the
extrudate shape of viscoelastic fluids emerging from an asymmetric keyhole shaped die.

Regarding free convection examples, numerical experiments can be found in the liter-
ature that include these effects, apart from considering the contribution of the stress work
into the energy equation, such as Peres et al. [130]. This work explores the significant
enhancement of the convection coefficient with respect to the corresponding Newtonian
fluid flow, demonstrated experimentally by Hartnett and Kostic [85]. In this case, the
variation of the fluid density with temperature is dealt with in a classical way, employing
the well-known Boussinesq approximation. Following similar assumptions, in [150], heat
transfer is studied in a heated square cavity under the effect of thermal radiation, and [55],
where the MIT benchmark 2001 [37] is carried out.

One of the main issues of such simulations, besides robustness and efficiency, is the
reliability of the numerical solution. The price to be paid for enhancing the accuracy and
robustness properties of such fully coupled approaches is the more expensive solution of
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the resulting coupled nonlinear discrete schemes.
In this chapter, we employ two different models to define the constitutive models, both

rather similar between them. On the one hand, the Phan-Thien-Tanner (PTT) [133, 134]
which is widely employed in non-isothermal fluid flows. The Oldroyd-B model is also used
in this work. Also, apart from the standard viscoelastic fluid flow equations, the coupled
problem is considered using the log-conformation reformulation introduced first by Fattal
and Kupferman in [63, 64], and applied to a FE framework using sub-grid scales in [119],
Chapter 2. In the literature, [108] employs the log-conformation reformulation coupled
with temperature to study the heat transfer enhancement by elastic turbulence in a curvy
channel. Also in [55], the thermal coupling is studied employing the log-conformation
reformulation using the FE method.

The Variational Multi-scale Method has been employed to stabilize both, viscoelastic
fluid flow and temperature problems, such as it is done in Chapter 2. This stabilized for-
mulation has its beginnings in the methods introduced by Hughes et al. [90] for the scalar
convection-diffusion-reaction problem and later extended to the Navier-Stokes problem in
[38, 40, 41], where the space of the sub-grid scales was taken as orthogonal to the FE
space. This idea was adapted to the three-field Navier-Stokes problem in [25] and later to
the viscoelastic flow problem in [26].

Concerning the algorithm employed, it is iterative and non-monolithic, executed in a
partitioned manner. This means that in each iteration (or each time-step in the case of a
time-dependent simulation) both parameters dependent of temperature in the constitutive
and momentum equation and the stress work term in the energy equation are updated.

The purpose of this chapter is to study numerically the effect of the temperature in the
viscoelastic fluid flow in two different examples using both the standard and logarithmic
reformulation and a term-by-term stabilization scheme. The first example is done to
validate the model in the flow past a cylinder. The second one is the 1:3 expansion, an
interesting case in which the stationary solution could be asymmetric while the domain
is symmetric when the Reynolds number is high enough. In the case of the patterns of
viscoelastic fluids other instabilities can be activated because of the elastic component
of the fluid, even in flows with low Reynolds number, resulting in a chaotic flow called
elastic turbulence [77, 154, 166]. In particular, in [153], the effect in a square-square three-
dimensional contraction is studied, obtaining asymmetric flows in a symmetric problem
when elasticity grows. Also, in [106] the instabilities and the symmetry of the flow in a
symmetric domain are analyzed for flows with high elasticity.

This chapter is structured as follows. In Section 3.3 we present the initial and boundary
problem statement, the variational form adopted, the Galerkin FE approximation, and the
time discretization. Section 3.5 details the stabilized formulation employed for the thermal
coupling. Finally, in Section 3.6 we present the benchmarks computed to validate the code
and to explore the effect of temperature in viscoelastic fluid flows. Finally, the conclusions
are summarized in Section 3.7.

3.3 Thermally coupled viscoelastic fluid flows

In this section, the equations that involve the coupled problem are presented, taking into
account the proper modifications for both the viscoelastic fluid flow problem and the
temperature problem.
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3.3.1 Initial and boundary value problem

First of all we present briefly the standard equations that describe the viscoelastic fluid flow
problem considering that now the different fluid parameters such as relaxation time λ and
the total viscosity η0 have a dependency with the temperature unknown. We consider the
fluid moving in a domain denoted by Ω ⊂ Rd, taking d = 2 or 3 depending on whether the
problem is two or three dimensional. The flow takes place during the time interval [0,T ].
The momentum, continuity, constitutive and energy equations are written as follows:

ρ
∂u

∂t
+ ρu · ∇u−∇ · (2ηs(ϑ)∇su)−∇ · σ +∇p = f in Ω, t ∈]0,T [, (3.1)

∇ · u = 0 in Ω, t ∈]0,T [, (3.2)
1

2ηp(ϑ)
(I + h(σ)) · σ −∇su+

λ(ϑ)

2ηp(ϑ)

(
∂σ

∂t
+ u · ∇σ

)
− λ(ϑ)

2ηp(ϑ)

(
σ · ∇u+ (∇u)T · σ

)
= 0, in Ω, t ∈]0,T [, (3.3)

ρCp

(
∂ϑ

∂t
+ u · ∇ϑ

)
− k∆ϑ− σ : ∇su = 0, in Ω, t ∈]0,T [ (3.4)

where ρ denotes the constant density, p : Ω×]0,T [→ R is the pressure field, u : Ω×]0,T [→
Rd is the velocity field, ϑ : Ω×]0,T [→ R is the temperature field, σ : Ω×]0,T [→ Rd ⊗ Rd
is the viscoelastic or elastic stress tensor, f : Ω×]0,T [→ Rd is the force field.Note that the
third and fourth terms in the left-hand-side of equation (3.1) correspond to the divergence
of the deviatoric extra stress tensor, T : Ω×]0,T [→ Rd ⊗ Rd, defined in terms of the
viscous and the viscoelastic contribution as T = 2ηs∇su+ σ.

In the energy equation (3.4), Cp denotes the specific heat and k is the thermal con-
ductivity, considered constant.

With reference to the constitutive equation (3.3), ηs represents the effective viscosity
(or solvent viscosity), ∇su is the symmetrical part of the velocity gradient and λ is the
relaxation time and ηp represents the polymeric viscosity. Note that equations (3.1)-(3.3)
are written for the isothermal case in the Section 2.3.1 in the Chapter 2, with the difference
that now ηp, ηs and λ are allowed to depend on the temperature ϑ, although λ and ηp must
scale in the same way with respect to it and therefore its quotient can be evaluated with
a reference temperature ϑ0 (see below). In Section 2.3.1 also the meaning of each term of
the constitutive equation is explained, together with the relation between total viscosity
η0 and effective (or solvent) and polymeric viscosity. Nevertheless the relation will be
recalled here. For that, an additional parameter β ∈ [0, 1] is introduced, so that ηs = βη0

and ηp = (1− β)η0. Finally, h(σ) is a tensor that adopts different expressions depending
on the constitutive equation considered. In the case of the Oldroyd-B model, tensor h(σ)
is taken as a null tensor; however for the Giesekus model [72] this tensor is equal to ελ

ηp
σ,

where ε is the constant called mobility factor, and is related to the elongational behavior
of the fluids and considered to be positive. Similarly, for the Phan-Thien-Tanner (PTT)
model [133] the tensor adopts the form ελ

ηp
tr (σ) I, where tr(σ) is the trace of the stress

tensor. Note that when ε = 0 the two models reduce to the Oldroyd-B rheological model.
Also, we have to remark that, in the Giesekus and PTT models, another non-linearity
is considered in the constitutive equation, defined by the product h(σ) · σ. This term
enables a simple qualitative description of several well-known properties of viscoelastic
fluids, namely, shear-thinning, the non-zero second normal stress coefficient and the stress
overshoot in transient shear flows [120]. The PTT model is one of the most used approaches
in the literature when non-isothermal viscoelastic fluid flow problems are addressed, and
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Figure 3.1: Comparison between different models for the temperature dependence for the
viscoelastic fluid flow parameters considering ϑ0 = 462 K.

we will also consider it for some numerical computations. In [101], it is argued that the
motivation of using the linearized PTT mode instead of the Oldroyd-B model is that it
avoids some shortcomings when the Weissenberg number increases, due to the non-linear
term discussed and a positive parameter related to the elongational behavior of the fluid
which tends to lower the stresses resulting from the computations.

As it was explained in the background (Section 3.2 of this chapter), the temperature
dependence of the viscoelastic properties is defined by the principle of time-temperature
superposition, in which that dependence is established through temperature functions.
There are different functions to define accurately this relation, although the most used
ones are those presented next. The first one is the Williams-Landel-Ferry (WLF) function
[167], defined as follows:

gwlf(ϑ) = exp

[
− ca(ϑ− ϑ0)

cb + (ϑ− ϑ0)

]
where ϑ0 is the reference temperature and ca and cb are constants. Typical extreme
sets of WLF parameters (ca, cb) are (5, 150) for temperatures relatively far from the
glass transition temperature ϑg, leading to thermorheological coupling, and (15, 50) for
temperatures relatively close to ϑg. The second one employed in this work is the Arrhenius
function, it is given by

ga(ϑ) = exp

[
cr

(
1

ϑ
− 1

ϑ0

)]
where in this case cr is a constant parameter and ϑ0 is the reference temperature given
in Kelvin. The constant cr is considered 1720 K, as done in [122, 149]. In Figure 3.1 the
two extreme set of parameters for the Williams-Landel-Ferry function, and the Arrhenius
function considering cr = 1720 K have been plot. In both functions, the temperature of
reference has been fixed to 462 K to compare the shape of the curves. Note that for the
WLF function, if ϑ0 is near the glass transition temperature; viscosity and relaxation time
vary significantly with ϑ, as it can be observed in the plots. As it was advanced in the
introduction, in the work of Lomellini [112], an extensive discussion is presented about
which of the two methods (WLF or Arrhenius) is more accurate, the conclusion being
that the WLF approach is quite general as it applies to a lot of materials as polymer melt
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solutions and organic and inorganic glass-forming liquids when the temperature approaches
the glass transition. However, an Arrhenius behavior is reported to better fit polyolefins
and polycaprolactam liquids. To sum up, the conclusion is that the WLF model is the
best representation of the data over the whole temperature range. Finally, the relation
between temperature and viscoelastic properties is established as follows:

λ(ϑ) = λ(ϑ0)g(ϑ)

η0(ϑ) = η0(ϑ0)g(ϑ)

where g is the shift factor that will be equal to gwlf or ga depending on the considered
model, and λ(ϑ0) and η0(ϑ0) are known values for the reference temperature ϑ0. Note that
considering the previous expressions, in equation (3.3) the quotient λ(ϑ)

η0(ϑ) is a constant.

Therefore, from this point we define Λ(ϑ0) as Λ(ϑ0) = λ(ϑ0)
η0(ϑ0) .

In the case of taking into account free convection, the Boussinesq approximation will
be considered, adding a body force term in the momentum equation (3.1):

γg(ϑ− ϑ0)

where γ is the thermal expansion coefficient and g is the gravity acceleration vector.
Now, a remark about the modification in the energy equation (3.4) must be done.

Following the work of Peters and Baaijens [132] two additional terms are considered in the
energy equations when the PTT model is considered as the constitutive equation. The
energy balance equation is in this case as follows:

ρCp

(
∂ϑ

∂t
+ u · ∇ϑ

)
− k∆ϑ = ασ : ∇su+ (1− α)

tr(σ)

2λ̄
, in Ω, t ∈]0,T [

where α is a constant, and λ̄ = λ

(
1 +

λεtr(σ)

ηp

)−1

. Note that the two last terms on the

right-hand side have been added to the classical energy equation, although for the case
α = 1 the standard expression would be recovered. The first term is the contribution of
the entropy elasticity and the second expresses the contribution of the energy elasticity. In
[132] it is argued that there are two extreme cases: α = 1 that corresponds with the case
of pure entropy elasticity and α = 0 that is the case of pure energy elasticity. In the same
work, the authors demonstrate that the effect of the parameter α is very small because
with a fully-developed shear flow there will be no internal energy storage, and only stress
work matters. Therefore, as it remarked in [130] the two α terms will cancel up and the
final result will be mathematically equivalent to setting α = 1, which is also argued in
other works [47, 164]. Following the same arguments, in this work we will suppose that the
parameter α is 1 in all cases. Therefore, the considered energy equation is (3.4). Note that
in the case of coupling with an Oldroyd-B fluid, the expression for the energy equation
would also be (3.4). The heat source term is thus the classical one, i.e. the product
between stresses and the symmetric gradient of velocities and represents the internal heat
produced by internal work.

Therefore the differential equations of the initial and boundary value problem for the
standard formulation are (3.1)-(3.4).

From this point, in order to distinguish operators between standard and log-conformation
reformulations, we will employ the subscripts “std” and “log”, respectively. Let us define
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U = [u, p,σ,ϑ], F std = [f , 0, 0, 0],

Lstd(Û ;U) :=


−∇ · σ −∇ · (2ηs(ϑ̂)∇su) + ρû · ∇u+∇p

∇ · u
1

2ηp(ϑ̂)
(I + h(σ̂)) · σ −∇su+ Λ(ϑ0) (gstd(û,σ))

ρCpû · ∇ϑ− k∆ϑ− σ̂ : ∇sû

 (3.5)

and

Dstd

(
ϑ̂;U

)
:=


ρ
∂u

∂t
0

Λ(ϑ0)
∂σ

∂t

ρCp
∂ϑ

∂t

 ,

where gstd(û,σ) = û · ∇σ − σ · ∇û − (∇û)T · σ are the convective and the rotational
terms. Equations (3.1), (3.2) and (3.3) can be rewritten, considering Dt = Dstd, L = Lstd
and F = F std, as:

Dt(ϑ;U) + L(U ;U) = F . (3.6)

These equations need to be completed with initial and boundary conditions to close the
problem. For simplicity, we suppose the boundary condition for the velocity u = 0 on
∂Ω for all time. Elastic stress conditions do not need to be prescribed. Finally, for the
temperature, similarly to the velocity, we suppose ϑ = 0 on ∂Ω, in other words, we assume
homogeneous Dirichlet boundary conditions for both velocity and temperature. This will
allow us to simplify the writing, for example because unknowns and test functions of the
variational form of the problem will belong to the same space. However, in the numerical
examples we shall use non-homogeneous boundary conditions that can be implemented as
usual by shifting the unknowns with the boundary-value functions. Regarding the initial
conditions, we will set velocity, stresses and temperature to u = u0, σ = σ0 and ϑ = ϑ0

at time t = 0 where u0, σ0 and ϑ0 are functions defined on the whole domain Ω.
Now, we will define the set of equations in strong form for the log-conformation reformu-

lation (see [119], or the Chapter 2 for more details), taking into account the modifications
considered above regarding the viscoelastic parameters and the additional term for the
energy equation. The reformulation is derived basically from a change of variables, where
the stress tensor is replaced by σ =

ηp
λ0

(τ − I), and in turn, the conformation tensor τ is

written as τ = exp(ψ) in (3.1), (3.2) and (3.3). Particularly, λ0 is linearly dependent with
λ and is defined as λ0 = max {kλ,λ0,min}, being k a constant and λ0,min a given threshold.
As it is detailed in [119], in the numerical experiments we have found useful to take k
small, so that λ0 < λ; this has allowed us to obtain converged solutions that we have not
been able to get for k = 1. Clearly, for k ≤ 1 we can ensure that the conformation tensor
is always symmetric and positive. In the case of thermal coupling, λ0 also depends on the
temperature through the dependence with λ. Therefore, the strong form of the problem
consists in finding u, p, ψ, ϑ solving the next set of equations over the domain Ω and in
the interval [0,T ]:

ρ
∂u

∂t
−∇ · ηp(ϑ)

λ0(ϑ)
exp(ψ)−∇ · 2ηs(ϑ)∇su+ ρu · ∇u+∇p = f , (3.7)

∇ · u = 0, (3.8)
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1

2λ0(ϑ)
(exp(ψ)− I) · (h(exp(ψ)) + I)−∇su+

λ(ϑ)

2λ0(ϑ)

(∂ exp(ψ)

∂t

+u · ∇ exp (ψ)− exp (ψ) · ∇u− (∇u)T · exp (ψ) + 2∇su
)

= 0, (3.9)

ρCp

(
∂ϑ

∂t
+ u · ∇ϑ

)
− k∆ϑ−

(
ηp(ϑ)

λ0(ϑ)
exp(ψ)− I

)
: ∇su = 0. (3.10)

Considering again the expressions of viscoelastic parameters, we can define Υ1(ϑ0) =
ηp(ϑ0)
λ0(ϑ0)

and Υ2(ϑ0) = λ(ϑ0)
2λ0(ϑ0) . Analogously to what was done for the standard formulation, calling

U = [u, p,ψ,ϑ] and F log = [f , 0, 0, 0], the differential equation of the problem can be
written as Dlog(ϑ;U) + Llog(U ;U) = F log, where

Llog(Û ;U) :=


−∇ ·Υ1(ϑ0) exp(ψ)−∇ · 2ηs(ϑ̂)∇su+ ρû · ∇u+∇p

∇ · u
1

2λ0(ϑ̂)

(
exp(ψ̂)− I

)
· (h(exp(ψ)) + I)−∇su+ Υ2(ϑ0)glog(û;u,ψ)

ρCp (û · ∇ϑ)− k∆ϑ−
(

Υ1(ϑ0) exp(ψ̂)− I
)

: ∇sû


(3.11)

and

Dlog(U) :=


ρ
∂u

∂t
0

Υ2(ϑ0)
∂ exp(ψ)

∂t

ρCp
∂ϑ

∂t

 ,

where glog(û;u,ψ) = û · ∇ (exp(ψ)) − exp(ψ) · ∇û − (∇û)T · exp(ψ) + 2∇su are the
convective and rotational terms.

In this case the boundary and initial conditions are similar to the ones described
above, but now instead of σ we have the dimensionless tensor ψ, which will adopt the
value ψ = ψ0 at time t = 0.

3.3.2 Variational form

The notation employed for the spaces and that is important for defining the variational
form of the problem is properly indicated in Section 2.3.3 of the Chapter 2. Using this
notation, velocity, pressure and stress FE spaces for the continuous problem are: V 0 =
H1

0 (Ω)d for the velocity, Q = L2(Ω)/R for the pressure, Υ = H1(Ω)d×dsym for the stresses
in the standard formulation (the subscript standing for symmetric tensors), and for the
temperature T = H1

0 (Ω) for each fixed time t. Therefore, the weak form of the coupled
for the standard formulation problem consists in finding U = [u, p,σ,ϑ] :]0,T [−→ X :=
V 0 ×Q×Υ× T , such that the initial conditions are satisfied and:(

ρ
∂u

∂t
,v

)
+ (σ,∇sv) + 2(ηs(ϑ)∇su,∇sv) + 〈ρu · ∇u,v〉 − (p,∇ · v) = 〈f ,v〉,

(q,∇ · u) = 0,(
1

2ηp(ϑ)
(I + h(σ)) · σ,χ

)
− (∇su,χ) + Λ(ϑ0)

(
∂σ

∂t
+ u · ∇σ,χ

)
−Λ(ϑ0)

(
σ · ∇u+ (∇u)T · σ,χ

)
= 0,
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ρCp

(
∂ϑ

∂t
+ u · ∇ϑ, ξ

)
+ (k∇ϑ,∇ξ)− (σ : ∇su, ξ) = 0,

for all V = [v, q,χ, ξ] ∈ X . In compact form, the problem can be written as:

Gstd(ϑ;U ,V ) +Bstd(U ;U ,V ) = Lstd(V ), (3.12)

for all V ∈ X , where

Gstd(U ,V ) =

(
ρ
∂u

∂t
,v

)
+ Λ(ϑ0)

(
∂σ

∂t
,χ

)
+ ρCp

(
∂ϑ

∂t
, ξ

)
, (3.13)

Bstd(Û ;U ,V ) =2(ηs(ϑ̂)∇su,∇sv) + 〈ρû · ∇u,v〉+ (σ,∇sv)

− (p,∇ · v) + (q,∇ · u) +

(
1

2ηp(ϑ̂)
(I + h(σ̂)) · σ,χ

)
− (∇su,χ) + Λ(ϑ0)

(
û · ∇σ − σ · ∇û− (∇û)T · σ,χ

)
+ ρCp (û · ∇ϑ, ξ) + (k∇ϑ,∇ξ)− (σ̂ : ∇sû, ξ) , (3.14)

Lstd(V ) = 〈f ,v〉. (3.15)

Analogously, considering now the logarithmic reformulation of the viscoelastic flow
problem, the spaces for the velocity, pressure and temperature for the continuous problems
are the ones defined above for the standard formulation. However, now the space for tensor
ψ is denoted by Ῡ for each fixed time t, where an appropriate regularity is assumed (see
[119]). So, in this case the weak form of the problem consists in finding U = [u, p,ψ,ϑ] :
]0,T [−→ X̄ := V 0 ×Q× Ῡ× T , such that the initial conditions are satisfied and for all
V = [v, q,χ, ξ] ∈ X ,

Glog(ϑ;U ,V ) +Blog(U ;U ,V ) = Llog(ϑ;V ), (3.16)

where each term is defined as

Glog(ϑ̂;U ,V ) =

(
ρ
∂u

∂t
,v

)
+

(
Υ2(ϑ0)

∂ exp(ψ)

∂t
,χ

)
+ ρCp

(
∂ϑ

∂t
, ξ

)
, (3.17)

Blog(Û ;U ,V ) = (Υ1(ϑ0) exp(ψ),∇sv) + 2(ηs(ϑ̂)∇su,∇sv) + 〈ρû · ∇u,v〉

− (p,∇ · v) + (∇ · u, q) +

(
1

2λ0(ϑ̂)
(exp(ψ − I)) ·

(
h(exp(ψ̂)) + I

)
,χ

)
− (∇su,χ) + (Υ2(ϑ0) (û · ∇ exp(ψ)− exp(ψ) · ∇û) ,χ)

−
(
Υ2(ϑ0)

(
(∇û)T · exp(ψ)− 2∇su

)
,χ
)

+ ρCp (û · ∇ϑ, ξ) + (k∇ϑ,∇ξ)−
(

Υ1(ϑ0)
(

exp(ψ̂)− I : ∇sû
)

, ξ
)

,

(3.18)

Llog(ϑ̂;V ) = 〈f ,v〉. (3.19)

Note that the space of the test functions is the same as for the standard formulation, i.e.,
the change of variables is made for the stress unknown, but not for the stress test function
as it was indicated in the Section 2.3.3 of the Chapter 2.

For the coupled problem, we have to consider several dimensionless numbers to char-
acterize the problem. On the one hand, we have the Reynolds number, which comes from
the Navier-Stokes equations and relates inertial and viscous forces. Secondly, we have the



56 Chapter 3. Thermal Coupling

Weissenberg number, a dimensionless number essential to characterize viscoelastic fluid
flow problems. This, as it was already defined, indicates the relevance of the elastic terms
of the constitutive equation, and compares elastic forces with viscous forces. Regarding the
dimensionless number associated with the energy equation, we have selected the Prandtl
number, which relates transport with thermal diffusivity. Finally, we need a global di-
mensionless number able to describe how strong is the coupling between the fluid flow
and the temperature model. With this finality, we consider the Brinkman number, which
compares the inertial power with the heat conduction. Therefore we have a total of four
dimensionless number to define each coupled problem:

Reynolds number: Re =
ρLU

η0
, Prandtl number: Pr =

η0Cp
kf

,

Weissenberg number: We =
λU

L
, Brinkman number: Br =

η0U
2

kf (ϑw − ϑi)
,

where L is the characteristic length, U the characteristic velocity of the problem, ϑw is the
temperature on a reference wall and ϑi is the temperature at the inflow. The remaining
parameters that appear in the previous expressions are properties that correspond to the
viscoelastic fluid flow problem or the temperature problem, and which are explained in
the previous sections.

3.4 Galerkin finite element discretization and time discretiza-
tion

Once the variational problems for both formulations (3.12) and (3.16) have been defined,
the Galerkin approximation can be established. The FE partition of the domain Ω is
denoted by Ph = {K}. Likewise, the diameter of an element K ∈ Ph is denoted by hK
and the diameter of the partition is defined as h = max{hK |K ∈ Ph}.

So, for the standard formulation, from Ph we may construct conforming FE spaces
for the velocity, the pressure, the elastic stress and the temperature, Vh ⊂ V , Qh ⊂ Q,
Υh ⊂ Υ and Th ⊂ T , respectively. Calling X h := Vh ×Qh ×Υh × Th, the Galerkin FE
approximation of the problem consists in finding Uh :]0,T [−→ X h, such that:

Gstd(ϑh;Uh,V h) +Bstd(Uh;Uh,V h) = Lstd(V h),

for all V h = [vh, qh,χh, ξh] ∈ X h, and satisfying the appropriate initial conditions.
Now, for the logarithmic conformation reformulation, from Th we construct the FE

space for the new variable ψ, Ῡh ⊂ Ῡ. X̄ h := Vh × Qh × Ῡh × Th is the Galerkin FE
space now, and the Galerkin approximation consists in finding Uh :]0,T [−→ X̄ h, such
that

Glog(ϑh;Uh,V h) +Blog(Uh;Uh,V h) = Llog(ϑh;V h),

for all V h = [vh, qh,χh, ξh] ∈ X h. We have to remark that the Galerkin approximation
is not enough to obtain a stable formulation unless convective terms are not relevant
and the appropriate compatibility conditions on the FE spaces hold. Therefore, the next
section presents a stable formulation. Regarding the time discretization in this chapter the
backward differencing (BDF) scheme is considered, in particular BDF1. The first order
scheme is not the best discretization to capture time-dependent responses. However, the
numerical examples presented in this chapter have a steady-state solution, and therefore a
BDF1 scheme with a uniform partition of size δt will be suitable in these cases. The time
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step level will be denoted with a superscript. In Section 2.3.6 the BDF approximation is
properly defined. Moreover, for the log-conformation reformulation we need to obtain the
linearized expression for the time derivative of the exponential, such as it was explained
the Chapter 2.

3.5 Stabilized finite element formulation

In this section, we will describe briefly the stabilized formulation employed for the thermal
coupling. For both formulations, standard and logarithmic, the stabilization used departs
from the Variational Multi-Scale (VMS) method, widely described in [90]. This method
was already described briefly in Section 2.4 of Chapter 2. The method consists in splitting
the unknowns U into two different parts: the component that is computed by the FE
space, denoted by Uh and the part that cannot be solved by the FE space, called sub-
grid scale and which is denoted by Ũ . The stabilized method employed in this chapter is
analogous to the one presented in [25] for the standard formulation and the one presented
in Chapter 2 for the log-conformation reformulation for the viscoelastic fluid flow. As
the main ideas of the stabilization method have been already presented previously, in this
section we restrict us to the extension to the thermal coupling.

3.5.1 Residual-based VMS methods

Firstly, we present the case of the standard formulation. Suppose that Lstd(Û ; ·) is a
linear operator for a given Û = [û, p̂, σ̂, ϑ̂] known. Introducing the sub-grid scale, and
integrating by parts, the method consists in finding Uh :]0,T [−→ X h, such that

Gstd(ϑh;Uh,V h) +Bstd(Uh;Uh,V h) +
∑
K

〈Ũ ,L∗(Uh;V h)〉K = Lstd(V h), (3.20)

for all V h ∈ X h, where L∗(Û ; ·) is the formal adjoint of Lstd(Û ; ·), typically without
considering boundary conditions, Ũ is the sub-grid scale, which needs to be approximated
and has components Ũ=

[
ũ, p̃, σ̃, ϑ̃

]
. All approximations have been considered continu-

ous; in this case expression (3.20) is justified in [44]. Similarly, for the log-conformation
reformulation, we have to find Uh :]0,T [−→ X̄ h such that

Glog(ϑh;Uh,V h) +Blog(Uh;Uh,V h) +
∑
K

〈Ũ ,L∗(Uh;V h)〉K = Llog(ϑh;V h), (3.21)

for all V h ∈ X h. Let us remark that for both formulations (standard and logarithmic)
the same operator L∗

(
Û ;V

)
is used:

L∗(Û ;V ) :=


∇ · χ−∇ · (2ηs(ϑ̂)∇sv)− ρû · ∇v −∇q

−∇ · v
1

2ηp(ϑ̂)
(I + h(σ̂)) · χ+∇sv − Λ(ϑ0) (û · ∇χ+ g∗(û,χ))

ρCpû · ∇ξ − k∆ξ

 , (3.22)

where in this case g∗(û,χ) = χ · (∇û)T +χ ·∇û. As the operators Dt and L were defined
previously for both formulations, the sub-grid scales can be written in terms of the finite
element component:

Ũ = αP̃ [F −Dt(ϑh;Uh)− L(Uh;Uh)], (3.23)
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where we denote as P̃ the L2 projection onto the space of sub-grid scales. The ASGS
(Algebraic Sub-Grid Scales) method is recovered if P̃ is the projection onto the space of
FE residuals; however if P̃ is taken as the orthogonal projection to the FE space, P⊥, then
the OSGS (Orthogonal Sub-Grid Scales) method would be recovered.

Regarding matrix α that appears in expression (3.23), it is the diagonal matrix of
stabilization terms, α = diag(α1Id,α2,α3Id×d,α4) with Id the identity on vectors of Rd,
Id×d the identity on second order tensors and the parameters αi, i = 1, 2, 3, 4 are computed
as

α1 =

[
c1
η0(ϑh)

h2
1

+ c2
ρ|uh|
h2

]−1

, (3.24)

α2 =
h2

1

c1α1
, (3.25)

α3 =

[
c3

1

2ηp(ϑh)
+ c4Λ(ϑ0)

(
|uh|
h2

+ |∇uh|
)]−1

, (3.26)

α4 =

[
c5
k

h2
1

+ c6
ρCp|uh|
h2

]−1

, (3.27)

where ci with i = 1, .., 6 are constants, h1 is the characteristic length computed as the
square root of the element area or the cubic root of the element volume depending on the
dimension of the case, and h2 is another characteristic length computed as the element
length in the streamline direction (see [45] for more details). The constants ci, i = 1, .., 6
are algorithmic parameters in the formulation. The values employed in this chapter for
the numerical simulations are: c1 = 4.0, c2 = 1.0, c3 = 4.0, c4 = 0.25, c5 = 12.0 and
c6 = 2.0. We keep these values constants for all flows.

Inserting (3.23) in (3.20) for the standard formulation, with α given above and using
the adjoint operator (3.22), we obtain the following problem: find Uh :]0,T [−→ X h such
that

(Gstd(ϑh;Uh),V h) +Bstd(Uh;Uh,V h) + S1,std(uh,ϑh;Uh,V h) + S2(Uh,V h)

+ S3,std(Uh;Uh,V h) + S4,std(uh,σh;Uh,V h) = Lstd(V h) +R1,std (uh,ϑh;V h) ,
(3.28)

for all V h ∈ X h. The details of each stabilized term can be found in the work of Castillo
and Codina [25], with exception of the expression S4,std, which corresponds to stabilization
terms of the energy equation. These terms are:

S1,std

(
ûh, ϑ̂h;Uh,V h

)
=
∑
K

α1

〈
P̃

[
ρ
∂uh
∂t
−∇ · σh −∇ · 2ηs(ϑ̂h)∇suh

+ρûh · ∇uh +∇ph] ,

−∇ · χh +∇ · 2ηs(ϑ̂h)∇svh + ρûh · ∇vh +∇qh
〉
K

, (3.29)

S2 (Uh,V h) =
∑
K

α2

〈
P̃ [∇ · uh] ,∇ · vh

〉
K

, (3.30)

S3,std

(
Ûh;Uh,V h

)
=
∑
K

α3

〈
P̃

[
1

2ηp(ϑ̂h)
(I + h(σ̂h))σh −∇suh

+Λ(ϑ0)

(
∂σh
∂t

+ gstd(ûh;σh)

)]
,
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− 1

2ηp(ϑ̂h)
(I + h(σ̂h)) · χh −∇svh

+Λ(ϑ0) (ûh · ∇χh + g∗(ûh,χh))〉K , (3.31)

S4,std (ûh, σ̂h;Uh,V h) =
∑
K

α4

〈
P̃

[
ρCp

(
∂ϑh
∂t

+ ûh · ∇ϑh
)
− k∆ϑh − σ̂h : ∇sûh

]
,

−ρCpûh · ∇ξh + k∆ξh〉K , (3.32)

R1,std

(
ûh, ϑ̂h;V h

)
=
∑
K

α1

〈
P̃ [f ] ,−∇ · χh +∇ · 2ηs(ϑ̂h)∇svh

+ρûh · ∇vh +∇qh〉K . (3.33)

Recall that if P̃ = I we obtain the ASGS method, and if P̃ = P⊥h = I − Ph the we would
be considering the OSGS method.

Analogously, in the case of the stabilization formulation for the logarithmic case, in-
serting (3.23) in (3.21) and using the adjoint operator defined in (3.22), we obtain the
following problem: find Uh :]0,T [−→ X h such that

(Glog(ϑh;Uh),V h) +Blog(Uh;Uh,V h) + S1,log(uh,ϑh;Uh,V h) + S2(Uh,V h)

+ S3,log(Uh;Uh,V h) + S4,log(Uh;Uh,V h) = Llog(V h) +R1,log (uh,ϑh;V h) . (3.34)

In this case, Si,log, with i = 1, 2, 3 and Rj,log with j = 1, 3 are detailed in [119] and the only
difference is that now we have to consider the temperature-dependence of the viscoelastic
variables. These terms are

S1,log(ûh, ϑ̂h;Uh,V h) =
∑
K

α1

〈
P̃
[
ρ
∂uh
∂t
−∇ · (Υ1(ϑ0) exp(ψh))−∇ · (2ηs(ϑ̂)∇suh)

+ ρûh · ∇uh +∇ph
]
,

−∇ · χh +∇ · (2ηs(ϑ̂h)∇svh) + ρûh · ∇vh +∇qh
〉
K

, (3.35)

S2,log(Uh,V h) =
∑
K

α2

〈
P̃ [∇ · uh],∇ · vh

〉
K

, (3.36)

S3,log(ûh, ϑ̂h;Uh,V h) =
∑
K

α3

〈
P̃
[ 1

2λ0(ϑ̂h)
(exp(ψh)− I) · (h(exp(ψh)) + I)−∇suh

+ Υ2(ϑ0)
(∂ exp(ψh)

∂t
+ glog(ûh;uh,ψh)

)]
,

− 1

2ηp(ϑ̂h)
χh −∇svh + Λ(ϑ0)(ϑ0) (ûh · ∇χh + g∗(ûh,χh))

〉
K

,

(3.37)

R1,log(ûh, ϑ̂h;V h) =
∑
K

α1

〈
P̃
[
f
]
,−∇ · χh +∇ · (2ηs(ϑ̂h)∇svh) + ρûh · ∇vh +∇qh

〉
K

.

(3.38)

Regarding S4,log, it is as follows:

S4,log

(
Ûh;Uh,V h

)
=
∑
K

α4

〈
P̃ [ρCpûh · ∇ϑh − k∆ϑh,

−
(

Υ1(ϑ0) exp(ψ̂h)− I
)

: ∇sûh
]

,−ρCpûh · ∇ξh + k∆ξh

〉
K

, (3.39)

The same considerations made for the standard formulation about the projections and the
different stabilization methods carry over to the log-conformation reformulation.
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3.5.2 Split-OSS stabilization

This stabilization method comes from considering two assumptions in the residual-based
VMS methods. The first one is that the projection considered is P̃ = P⊥h , and the second
one is to neglect the cross local inner-product terms together with other terms that do not
contribute to stability. The result is a simplified method that is not consistent but whose
convergence rate in h is optimal, as explained in [25]. The split strategy is only considered
over the stabilization terms of the momentum equation, and the reason for this is detailed
in [118]. If the split term-by-term in the constitutive equation is done, convergence for the
non-linear iterations turns out to be very difficult to attain.

Therefore for the standard formulation, the stabilization considered finally consists in
finding Uh :]0,T [−→ X h such that

(Gstd(ϑh;Uh),V h) +Bstd(Uh;Uh,V h) + S⊥1,std(uh;Uh,V h) + S⊥2 (Uh,V h)

+ S⊥3,std(Uh;Uh,V h) + S⊥4,std(uh,σh;Uh,V h) = Lstd(V h). (3.40)

for all V h ∈ X h. For S⊥i,std with i = 2, 3, 4 we consider the same expression detailed in
(3.30), (3.31) and (3.32) for Si,std, but now taking into account that P̃ = P⊥h as it has
been specified above. The expression of S⊥1,std in (3.28) is now as follows:

S⊥1,std (ûh;Uh,V h) =
∑
K

α1

〈
P⊥h [∇ · σh] ,∇ · χh

〉
K

+
∑
K

α1

〈
P⊥h [∇ph] , qh

〉
K

+
∑
K

α1

〈
P⊥h [∇ρûh · ∇uh] , ρûh · ∇vh

〉
K

. (3.41)

For the log-conformation reformulation we have the following stabilized form: find
Uh :]0,T [−→ X h such that

(Glog(ϑh;Uh),V h) +Blog(Uh;Uh,V h) + S⊥1,log(uh,ϑh;Uh,V h) + S⊥2 (Uh,V h)

+ S⊥3,log(Uh;Uh,V h) + S⊥4,log(Uh;Uh,V h) = Llog(V h), (3.42)

for all V h ∈ X h. As in the standard formulation, for the terms S⊥i,log with i = 2, 3, 4,
we can consider the expressions detailed in (3.36), (3.37), (3.39) taking P̃ = P⊥h . The
expression of S⊥1,log in (3.42) is now as follows:

S⊥1,log(ûh, ϑ̂h;Uh,V h) =
∑
K

α1

〈
P⊥h

[
∇ · (Υ1(ϑ0) exp(ψh))

]
,∇ · χh

〉
K

+
∑
K

α1

〈
P⊥h

[
∇ph

]
,∇qh

〉
K

+
∑
K

α1

〈
P⊥h

[
ρûh · ∇uh

]
, ρûh · ∇vh

〉
K

.

There are many benefits associated to the use a split term-by-term stabilization instead
of a residual-based one: the first one is the simplicity, since some cross-local products have
been neglected, the second one is that some negative terms that do not contribute to
stability have been deleted, therefore the scheme is more stable. Moreover, the scheme
has turned out to be more efficient in solving problems with high gradients and when
the Weissenberg number is relatively high in viscoelastic fluid flow problems [31, 119].
Furthermore, cumbersome elementwise terms of the form ∇ · η∇svh, with η a variable
function depending on temperature, do not need to be evaluated. Note that for the
stabilization terms associated to the constitutive equation, S⊥3,log, we are not neglected the
inner products, and the reason is justified in Chapter 4, Section 4.4.2.
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3.5.3 Linearization and algorithm

The set of equations of the thermally coupled problem with incompressible viscoelastic
flows presents a high number of non-linear terms, in particular in the momentum and in
the constitutive equation. Regarding the algorithm employed, it is displayed in Algorithm
3 (only considering the standard formulation, however for the log-conformation reformu-
lation the algorithm would be analogous). Apart from the points enumerated in Section
2.4.3 that are considered also in that case, we have to make the the following remarks
about the algorithm used:

• It is iterative for the coupling, but monolithic for the fluid flow problem. It means
that in each time-step the parameters dependent on temperature for solving the
viscoelastic fluid flow problem and the stress work for the temperature problem are
continuously updated.

• The nonlinear term in the momentum equation can be linearized with a fixed point
scheme or with Newton-Raphson’s method.

• In the case of the log-conformation reformulation, the exponential terms that appear
both in the momentum equation and in the constitutive equation have been linearized
using a Taylor development (see Chapter 2), taking the tensor ψ̂ as the one obtained
from the previous iteration of the current time step.

3.6 Numerical results

In this section several numerical examples are presented. Firstly, the flow past a cylinder is
studied, using the standard formulation together with the PTT constitutive equation, and
taking the Williams-Landel-Ferry function to establish the relations between temperature
and viscoelastic parameters. The second example is the extension 1:3, where the log-
conformation reformulation is employed and the Arrhenius function is used, instead of
the WLF, as dependence method between temperature and viscoelastic properties. All
computations have been performed using the Split-OSS stabilization explained in Section
3.5.2. Likewise, for each case the formulation chosen corresponds to that of the reference
of comparison, when possible.

3.6.1 Flow around a cylinder

The first example is the well-known flow past a cylinder, a typical benchmark to check
formulations for simulating viscoelastic fluid flows. This has been extensively studied by
Peters and Baaijens [7] to evaluate the performance of constitutive equations for both
polymer solutions and melts, although supposing an isothermal flow. Moreover, these au-
thors also explore the non-isothermal case in [132]. There, the numerical result is obtained
using a stabilized discontinuous Galerkin method for the viscoelastic equations, and a reg-
ular Galerkin method employing a bi-quadratic interpolation of the temperature to solve
the temperature equation. Coupling is carried out using a fixed point iteration. The au-
thors also discuss the differences in the stress field between isothermal and non-isothermal
problems, as we will do.
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Algorithm 3 General algorithm for thermal coupling using VMS.
read initial condition u0

h and ϑ0h
set p0h = 0, ψ0

h = 0

for j = 0, ...,m− 1 do (Temporal loop)
set k=0
set uj+1,0

h = ujh, p
j+1,0
h = pjh, σ

j+1,0
h = σjh

while not converged do (Coupling loop)
k ← k + 1

set i = 0

set uj+1,k,0
h = uj,kh , pj+1,k,0

h = pj,kh , σj+1,k,0
h = σj,kh

set λj+1,k = λ(ϑj+1,k−1
h ) and ηj+1,k

0 = η0(ϑj+1,k−1
h )

while not converged do
i← i+ 1

compute “residuals”: Ru1, Ru2, Ru3, Rσ

compute projections: Ph [Ru1], Ph [Ru2], Ph [Ru3], Ph [Rσ]

compute stabilization parameters:
αj+1,k,i−1
1 , αj+1,k,i−1

2 and αj+1,k,i−1
3 with U j+1,k,i−1

solve viscoelastic fluid flow equations for uj+1,k,i
h , pj+1,k,i

h and σj+1,k,i
h

check convergence
end while
set converged values
uj+1,k
h = uj+1,k,i

h

pj+1,k
h = pj+1,k,i

h

σj+1,k
h = σj+1,k,i

h

set the stress work as σj+1,k
h : ∇uj+1,k

h

set i = 0

set ϑj+1,k,0
h = ϑj,kh

compute stabilization parameter αj+1,k,i−1
4 with uj+1,k

h

while not converged do
i← i+ 1

compute “residual” Rϑ

compute projection Ph [Rϑ]

solve the energy equation for ϑj+1,k,i
h considering the stress work

check convergence
end while
set converged values
ϑj+1,k
h = ϑj+1,k,i

h

end while(End coupling loop)
set converged values
uj+1
h = uj+1,k

h

pj+1
h = pj+1,k

h

σj+1
h = σj+1,k

h

ϑj+1
h = ϑj+1,k

h

end for(End temporal loop)
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Figure 3.2: Non-isothermal flow past a cylinder. Geometry and computational boundaries.

Setup

The computational domain extends 12 times the length of the radius upstream of the
cylinder centre and 18 times downstream, as shown in Figure 3.2.

First, we define the parameters of the non-isothermal viscoelastic fluid flow problem.
The relaxation time for the reference temperature λ(ϑ0) is 0.1 s, the total viscosity for the
reference temperature is η0(ϑ0) = 1.0 × 104 Pa · s and the parameter β is set to 0.5. As
it has been explained, the total viscosity and relaxation time are temperature-dependent,
and this relation is defined by the WLF function gwlf , defined in Section 3.3.1. In this
case the constants c1 and c2 of this function are set as 4.54 and 150.36, respectively. The
mobility parameter ε of the PTT constitutive model is 0.1. The density is ρ = 921 kg·m−3,
the specific heat is Cp = 1.5 kJ ·kg ·K−1 and the conductivity k is fixed to 0.17 W ·m ·K−1.
The reference temperature ϑ0 is set to 462 K.

Regarding the boundary conditions of the problem, for the velocity no-slip conditions
are imposed on the top wall Γwall and the cylinder surface Γcyl, and symmetry conditions
are prescribed along the axis Γsym. On the other hand, a fully developed parabolic velocity
profile and the associated elastic stress are prescribed at the inlet Γin. These are given by:

ux =
3Q

8R

(
1− y2

(2R)2

)
, uy = 0,

σxx = 2λ(ϑ0)(1− β)η0(ϑ0)

(
∂ux
∂y

)2

, σxy = (1− β)η0(ϑ0)

(
∂ux
∂y

)
, σyy = 0,

where Q is the flow rate, and R is the cylinder radius. Note that stresses are prescribed
using the Oldroyd-B model and with the only purpose of accelerating convergence. For
the outlet Γout, the horizontal velocity is left free, the vertical velocity is taken equal to
zero and the pressure is prescribed to zero. On the other hand, regarding the temperature
boundary conditions, the reference temperature ϑ0 is imposed at the inlet Γin and on the
top wall Γwall as 462 K.

We will compute the problem for different Weissenberg numbers (already defined in
Section 3.3.2) We = λU/R where U is the characteristic velocity, written as a function
of the flow rate as U = 3Q/8R; R is the cylinder radius defined above. As considered
in reference [132], the convective term of the momentum equation is neglected in all the
computations.

About the FE discretization considered, the mesh has 58591 linear elements and 36174
nodes. We have to remark that the refinement around the cylinder wall is significant, as
shown in Figure 3.3, where the mesh is partially shown. Although all simulations have a
steady-state solution, all of them have been computed using a temporal discretization to
facilitate the convergence of the iterative algorithm. For all the cases, the scheme used is
BDF1 (as explained in Section 3.4), and the time step is fixed to δt = 5× 10−5 s.
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Figure 3.3: Non-isothermal flow past a cylinder. Zoom of computational mesh employed.

Results

Results of the simulation for We = 4.0 are shown in Figures 3.4 and 3.5. In particular,
Figure 3.4 shows the distribution of the temperature in the vicinity of the cylinder while
Figure 3.5 displays the distribution of the stresses in the same location.

• For the distribution of the temperature, this field rises significantly downstream,
reaching the maximum temperature at 474.42 K. The difference of temperature be-
tween the initial or the temperature fixed on the walls at 462 K and the maximum
temperature reached is the consequence of the stress work, represented by the term
added to the energy equation, expressed as the product between the stresses and
the symmetric gradient of the velocity field. In comparison with the typical models
associated with Newtonian fluid flows, the viscoelastic fluid flow has a new source
of heat, which is represented in the Figure 3.4. On the other hand, in comparison
with [132], the maximum value reached is slightly smaller, although the general dis-
tribution of the temperature field is similar to the one obtained by the authors of
this reference.

• Regarding the distribution of the stresses in Figure 3.5 near the cylinder, the max-
imum values are reached in two significant locations: one in the top of the wall of
the cylinder, and another one at a point downstream, located in the centerline (or
symmetric boundary) of the domain.

The temperature effect over the stress field can be shown in Figure 3.6, where the
isothermal case is compared with the non-isothermal case, and both cases considering
We = 4.0. As this figure shows, a significant reduction in stresses is found when the
temperature coupling is considered. That reduction is located both over the wall of the
cylinder and downstream. In [132], the reduction reached in the stresses is over 40%
comparing two cases. Although in our computations this difference is not so pronounced
as in the reference work, the reduction is equally considerable, over the 30%.

In Figure 3.7, a comparison between the difference of temperatures is performed be-
tween the viscoelastic case for We = 4 and the Newtonian viscous case. At first sight, the
major difference is that the viscoelastic case reaches higher temperatures than the Newto-
nian case; however, the temperature distribution on the cylinder and downstream is also
significantly different. While in the viscoelastic case the maximum peak of temperature
is reached downstream, in the Newtonian case it is reached on the cylinder. On the other
hand, computations were executed for some Weissenberg numbers to study the differences
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Figure 3.4: Non-isothermal flow past a cylinder. Distribution of temperature ϑ around
the cylinder. We = 4.

Figure 3.5: Non-isothermal flow past a cylinder. Distribution of stresses. Above: com-
ponent σxx, middle: component σyy , and below: component σxy around the cylinder.
We = 4.
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Figure 3.6: Non-isothermal past flow a cylinder. Stress component σxx around and down-
stream of cylinder in isothermal and non-isothermal cases.

between temperatures. The parameter ∆ϑ = ϑ − ϑ0 (difference between reference tem-
perature and temperature distribution), around the cylinder is plotted in Figure 3.8. The
results in these last figures seem to be coherent: while the Weissenberg number increases,
the stresses also do, and therefore by the definition of viscous dissipation the internal work
is more relevant, causing an increase of the temperature around the cylinder and down-
stream. Results are in agreement with the graph shown in [132] from a qualitative point
of view. Quantitatively, the comparison is not meaningful, as we have not performed mesh
convergence studies and these are not presented in [132], either.

3.6.2 1:3 Expansion

In this section, the case of the 1:3 expansion is simulated. This benchmark is motivated by
the work of Shahbani-Zahiri et al. [149], where a complete study is done of this problem,
exploring the solution for different expansion angles. That is an important example due
to the formation and growth of symmetric and asymmetric regions that play an important
role in the viscous dissipation, temperature distribution, and heat transfer rate. Following
ideas similar to those exposed in the cited paper, we study the temperature effect over the
patterns. On the one hand, both the fluid inertia and elasticity have a significant effect
on the flow pattern of non-isothermal viscoelastic fluids, and therefore, the research of the
effects of elastic properties and inertial force on the heat transfer is relevant and worth. In
the literature, more papers treat this problem for a low Reynolds (when bifurcation effects
are not present) than for a relatively high Reynolds number. When the Reynolds number
is around 50 or 100 the flow of Newtonian fluids is known to give rise to an asymmetric
pattern: larger and smaller recirculation zones appear behind the step change. This
phenomenon is characteristic in planar expansions, and it is suggested in [124] that this
could be explained by the Coanda effect. This effect explains that any perturbation of
the flow field, pushing the main flow to one of the sides of the expansion, gives rise to
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Figure 3.7: Non-isothermal flow past a cylinder. Increase of temperatures around the
cylinder and downstream for Newtonian fluid and a viscoelastic fluid, We = 4.

Figure 3.8: Non-isothermal flow past a cylinder. Increase of temperatures around the
cylinder and downstream for several Weissenberg numbers.
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Mesh NY ∆ymin NX1 NX2 ∆xmin Nodes Elements

M1 20 0.0050 140 400 0.0072 11 781 11 200
M3 52 0.0019 358 1024 0.0027 72 384 73 829

Table 3.1: 1:3 expansion. Main characteristics of the meshes employed.

larger velocities and lower pressures. Consequently, the asymmetry will naturally tend
to be accentuated. This example has an additional peculiarity: the asymmetry of the
steady-state solution if the Reynolds number is greater or equal than 40 or/and if the
Elasticity number El = We/Re is greater than 0.1, even if the geometry is symmetrical.
This asymmetry was accurately studied in the literature, under theoretical, experimental,
and numerical works with Newtonian fluids, such as [65], [58], or the work developed by
Hawa et al. [87], where a bifurcation analysis and linear stability study is carried out.
Additionally we have to remark the works [144] and [124]. In [124], Oliveira studies the
bifurcation in different isothermal scenarios that include Newtonian and viscoelastic fluid
flows, simulating the problem with a finite volume method for a FENE type constitutive
model.

In [149] the constitutive model employed is the so called exponential Phan Thien-
Tanner (EPTT) model, similar to the PTT model explained in this chapter, with the
difference that the exponential of h(σ) is considered, using the notation introduced in
Section 3.3.1. In our computations, the Oldroyd-B constitutive model is employed, but
instead of the standard formulation, the log-conformation approach is used. This formu-
lation seems to be more adequate than the standard one due to the high Weissenberg
number reached in some computations.

In this section, apart from studying the thermal coupling, we will explore also the effect
of the four dimensionless numbers that characterize the problem; how the flow pattern,
and the temperature distribution change as the Weissenberg number (elasticity) increases
or the Prandtl and the Brinkman number vary. Note that in the reference work [149] only
the inertial and the elasticity influence are reported.

Setup

The computational geometry for this problem is represented in Figure 3.9a. In this case,
the parameters of the model are as follows: h = 0.1 m (not to be confused with the mesh
size), H = 0.3 m, θ = 60◦. Regarding the lengths of the three parts of the duct, these
are set as: L1 = 60h m, L3 = 120h m and L2 is calculated taking into account the angle
of the expansion, therefore it is set as L2 = 1

5
√

3
m. Regarding the computational mesh,

different grids have been employed for the computations, but all of them considering Q1
(bilinear) elements, following the structure displayed in Figure 3.9b. The characteristics
of the meshes are detailed in Table 3.1 where NY1 indicates the number of the mesh cells
in the y-direction of the channel. Moreover, NX1 and NX2 are the number of mesh cells
for the first and second sections of the channel in the x-direction.

The Reynolds number can be computed using the maximum inlet velocity (from this
point it will be indicated as Remax = ρUmaxL/η0) or using the average of the incoming
velocity (denoted by Reavg = ρUavgL/η0 to avoid future confusions). The characteristic
length is taken as h (height of the small channel). The remaining fluid parameters are:
η0 = 4.07 Pa · s, ρ = 1226 kg ·m−3, and β = 0.5 (recall that ηs = βη0, ηp = (1 − β)η0).
For the Arrhenius function, the constant cr is 1720 K. Regarding the temperature param-
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(a)

(b)

Figure 3.9: 1:3 expansion. Computational geometry and scheme of vortices (a) and com-
putational mesh (b).

eters, these are the specific heat Cp and conductivity k, computed using the Brinkman
number and the Prandtl number, which are suitably defined at the end of Section 3.3.2.
The reference temperature ϑ0 is set to 463.5 K. Now we define the boundary conditions.
For the velocity, no-slip conditions are imposed on the walls of the channel Γwall and a
fully developed parabolic velocity profile together with the associated elastic stress are
prescribed at the inlet Γin. These are given by:

ux =
3Q

4h

(
1− y

h2

)
, uy = 0,

σxx = 2λ(ϑ0)(1− β)η0(ϑ0)

(
∂ux
∂y

)2

, σxy = (1− β)η0(ϑ0)

(
∂ux
∂uy

)
, σyy = 0,

where Q is the flow rate, and h is the height of the small channel. For the outlet Γout, the
horizontal velocity is left free, the vertical velocity is taken equal to zero and the pressure
is prescribed to zero, constant. On the other hand, regarding the temperature boundary
conditions, the reference temperature ϑ0 is imposed at the inlet Γin and on the top wall
Γwall to 563.15 K. Note that the inlet fluid is 100 K colder than the temperature of the
walls.

Newtonian case. Validation

The Newtonian case is computed for the isothermal case first for validations, as this case
is widely reported in the literature. Later the results will be compared with the thermal-
coupling case. Very similar results are obtained for meshes M1 and M3, showing that
the results obtained can be used for comparison with the literature. In particular, this
comparison is done using the results of mesh M3, although mesh M1 is employed to study
the trend of the vortices when different dimensionless numbers are changed. As it is
explained in [124], in most earlier calculations of the phenomenon, the asymmetric flow
was usually triggered by introducing a slight geometrical asymmetry in the symmetric
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Authors Critical Reynolds

Oliveira et. al [124] 54.0
Fearn et al. [65] 53.9
Drikakis et al. [58] 53.3
Hawa and Rusak [87] 53.8
Mishra and Jayaraman [117] 53.0
Present Study 53.5

Table 3.2: 1:3 expansion. Comparison of critical Reynolds in literature for the pitchfork
bifurcation.

configuration or by adding a small perturbation to the velocity profile imposed at the inlet
or to the whole initial velocity field (see, for example, [58, 60, 65, 87, 117]). In our case,
as happened in the work of Oliveira et al. [124], no artificial devices have been required if
the ASGS stabilization is employed. However, if the stabilization is of split-type and the
Reynolds number is low, the bifurcation must be triggered using a bifurcation produced
by a higher Reynolds number as an initial solution, for example. In the case of Newtonian
fluid considering the isothermal case, the critical Reynolds number at which bifurcation
occurs found for our computations is Rec = 53.5. Comparing with the literature, this
approach is rather accurate, considering that different methods have been applied in each
case. For example, in the work of Oliveira et al. [124] the critical value is Rec = 54
using a finite volume method; for Fearn et al. [65] it was Rec = 53.9 using in that case
a FE framework. We can find also the work of Drikakis [58] which uses a fourth-order
finite-difference method and the critical Reynolds value is Rec = 53.3. In the literature,
we find also other examples such as the work of Hawa and Rusak [87], which employ a
stream function finite-difference formulation and where the critical Reynolds number is
Rec = 53.8. In Table 3.2, this comparison is summarized. The goal of this study is not to
be accurate in the exact location of this critical number, but to validate the algorithm and
check the thermal coupling for considering later the viscoelastic case from a qualitative
point of view.

For the coupling with the temperature, we consider a Weissenberg number equal to zero
to study the differences with the isothermal case. On the other hand, we fix the Prandtl
number to 1 and the Brinkman number also to 1. The Reynolds and the Weissenberg
numbers are computed taking the average of the fluid velocity at the channel inlet. The
parameters of the problem are determined according to the values of these dimensionless
numbers.

In Figures 3.10 and 3.11 several plots of the stationary solution have been taken for dif-
ferent Reynolds numbers to show some aspects of this problem: the streamlines in each case
and the distribution of the temperatures. All the plots correspond to the non-isothermal
Newtonian case, although the pattern of vortices is similar in all the computation cases.

• It can be observed in Figure 3.10 that for Re = 10 and Re = 30 the solution
is symmetric, although we can see as the length of the vortices is higher as the
Reynolds number increases. For Re = 50 the solution has bifurcated and presents
an asymmetry: now the vortex on the top is smaller than the vortex in the bottom.
Finally, for Re = 100 we can see that apart from the non-symmetric solution, a new
vortex has emerged on the top, although displaced downstream. In other words,
when the inertial forces are more dominant in comparison with the viscous forces,
the fluid flow becomes unstable and the asymmetry appears.
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• Regarding the contours of temperature, we can see graphically the effect of the
viscous dissipation. As it was specified in the Setup section of the problem, the
temperature at the inlet of the channel is 100 K lower than on the walls. Despite this
fact, viscous dissipation generates energy in the flowing fluid, reaching the maximum
peak when the fluid flow does the transition from the small part of the channel
to the wider part. This effect is due to the formation of symmetric recirculation
regions, causing a displacement of the maximum peak of heat in the central zone.
Moreover, we have to stand out that the maximum value of temperature is moved
into the channel when the Reynolds number increases. When Re grows and there
is a formation of asymmetric vortices, the location of the maximum temperature
zone slightly diverges to the wall where the smaller vortices are formed. Therefore,
the maximum temperature zone is generated in the vicinity of the largest vortex
and close to its center. These results are in agreement with the results reported by
Shahbani-Zahiri [149].

In Figure 3.11 we plot also streamlines and temperature contours for a higher Reynolds
number.

• For Re = 150 we can remark that the vortices have been enlarged in comparison
with the case Re = 100, and how the vortex on the top starts to split into two
separated vortices. For Re = 200, the plot of streamlines shows the appearance of
a new vortex near the bottom wall, apart from the evident enlargement of some of
the other vortices.

• The distribution of temperature displays a pronounced gradient of temperatures, and
note that the small channel transports a cold flux. In this case, it seems clear that
the advection velocity in the energy equation has an important role in this change of
temperature distribution. Even the maximum peak of temperatures is not located
now at the center of the channel, it can be found in one of the asymmetric vortices.

Now, we will compare the length of the vortices between different cases (isothermal
and non-isothermal). Note that in Figure 3.9a a general scheme of the vortices is plotted
in the domain, apart from the general notation to describe this domain. This comparison
is displayed in Figure 3.12, considering both cases: the isothermal (plotted in blue) and
the non-isothermal (plotted in red) cases for the Newtonian fluid flow.

• At the first sight, the length of the vortices in the non-isothermal case is higher
than in the isothermal scenario, but that is not the only difference, also the critical
Reynolds number where the bifurcation occurs has changed significantly. As we
have analyzed previously, while the first bifurcation occurs for a critical Reynolds
around 53-54 for the isothermal case, if the thermal coupling is considered, that first
bifurcation is found around a Rec = 30.

• The difference between Reynolds numbers is even more pronounced for the second
bifurcation: while in the isothermal case the critical Reynolds is 117 (from this point
a third vortex emerges in the same side of the channel than the smaller vortex, as
represented in Figure 3.9a), in the non-isothermal case the critical number is around
60. In this last case, the third vortex grows significantly, even overtaking in length
vortex Xr1 (that occurs for Re = 150, for example).
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Figure 3.10: Streamlines and temperature contours for Re = 10, 30, 50 and 100.
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Figure 3.11: 1:3 expansion. Streamlines and temperature contours for Re = 150 and
Re = 200.

Figure 3.12: 1:3 expansion. Length of vortices versus the Reynolds number for the New-
tonian fluid flow.
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Weissenberg number study

As it was commented previously, for non-Newtonian viscoelastic flows the number of in-
dependent parameters that can be varied increments significantly. We can now modify
the Weissenberg number or the β (that measures the balance between polymeric and sol-
vent viscosity) parameters, for example, apart from the Reynolds number. We have to
remark that the log-conformation reformulation to solve the problem in the case of high
Weissenberg numbers has been crucial to obtaining solutions, despite the increment of the
computational cost associated with that formulation [119].

In this study, the main results will put the focus on how viscoelasticity influences the
variation of upper and lower vortices in the example we are analyzing. In this sense, we
can observe the plots in Figure 3.13, where a comparison of the length of vortices for
varying Reynolds numbers is displayed. The bifurcation plot for the viscoelastic liquid
for different Weissenberg numbers is compared with that of the Newtonian case. As it is
concluded in Oliveira et al. [124], two main conclusions can be drawn:

• The first one is the fact that the critical Reynolds number in which the bifurcation
(transition between symmetric and asymmetric solution) is produced is delayed to
higher values. For the Newtonian case, that number is around 53.3, and in our
computations, for We = 1 it is around 60, and for We = 2 the critical number is
around 67. Therefore, we can conclude that viscoelasticity is a stabilizing factor,
retarding the appearance of the asymmetric solution. In terms of the elastic forces,
we can conclude that when these are more relevant in relation with viscous forces,
then the fluid flow is more stable.

• The second one is the size of the vortices. In general, for viscoelastic cases, the size is
smaller when it is compared with the Newtonian case (see Figure 3.13a), in particular
for the higher vortex Xr1. For the smaller vortex, a contrary effect occurs: the size
is higher. Therefore, we can conclude that the difference between vortices is lower in
the presence of elasticity. That occurs clearly in a Reynolds number range between
0 and 100; when the Reynolds number is more relevant, the effect of viscoelasticity
is not that remarkable in this aspect.

• In Figure 3.13b we compare the size of the vortices with the Weissenberg number,
with a range of We from 0 to 2. This plot reinforces the previous idea: that elasticity
is a stabilizing factor of the bifurcation. The difference between vortices is smaller
(the smaller vortex increases while the larger vortex decreases) when the Weissenberg
number increases, until the symmetry of the solution is recovered for a We = 2.

In Figure 3.14, the effect of temperature is analyzed in the viscoelastic case, in par-
ticular taking We = 1. A similar effect as the one reported in the Newtonian case is
reproduced here: an increase of vortex length and the asymmetry appearing at a low
Reynolds number for the non-isothermal case.Also, a comparison between non-isothermal
cases considering different Weissenberg numbers (We = 1, 2, 3) together with the Newto-
nian case was carried out; however, no significant differences were found referring to the
vortex length or the Reynolds number where the asymmetry occurs. The reason seems to
be that the length of the vortices is dominated mainly by the Prandtl number when the
coupling is considered.

Despite the length of the vortex not being affected by elasticity, in Figure 3.15 the max-
imum temperature peaks are plotted in both cases: the Newtonian one and the viscoelastic
case considering We = 1. As in the previous benchmark, an increase of temperature is
noticed when the viscoelastic fluid flow is contemplated.
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(a) (b)

Figure 3.13: 1:3 expansion. Length of vortices versus the Reynolds number (a), and length
of vortices versus the Weissenberg number for Reynolds 66.67 (b).

Figure 3.14: 1:3 expansion. Viscoelastic fluid flow considering the coupling for temperature
with Pr = 1, Br = 1.
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Figure 3.15: 1:3 expansion. Maximum peaks of temperatures with Pr = 1, Br = 1.

Prandtl number study

The influence of the Prandtl number on the temperature and on the vortices length is
investigated to see how the flow pattern changes when it is increased. In Figure 3.16 we
can observe with more detail that effect.

• Firstly, in Figure 3.16a we compare the vortices for three different Prandtl number,
varying the Reynolds number. Apart from the fact that the vortices are smaller in
general when the Prandtl number is greater, also the critical Reynolds where the
bifurcation occurs changes. While for Pr = 1 and Pr = 100 the first bifurcation is
situated at Re = 30 approximately, for Pr = 250 it is located at Re = 40. The second
bifurcation suffers a more pronounced displacement regarding Reynolds number: for
Pr = 1 it is located at Re = 60 but for Pr = 100 it is at Re = 80 and for Pr = 250
at Re = 100.

• Second, fixing the Reynolds number to 40 and varying the Prandtl number (see Fig-
ure 3.16b) we obtain a reduction of the length of the vortices, reaching a symmetrical
solution for Pr = 250. However, for a smaller Prandtl, the solution is asymmetric.
In this aspect, the effect is similar to the Weissenberg number influence: the increase
of Pr gives a more stable solution. In terms of the heat convection forces in relation
with the diffusivity, we can state that the flow pattern is more stable when the heat
convection forces are significantly higher than the heat diffusion.

The temperature contours can be observed in Figure 3.17 for two different Prandtl
numbers considering in both cases Re = 40, Br = 1 and We = 0.1. Two main comments
can be done about the distribution of this field.

• The temperature contours are significantly different between the two cases. When
the Prandtl number is small (Pr = 1), the thermal diffusivity is dominant compared
to the convective term, and despite the inlet temperature being colder than on
the walls, that fact does not affect the temperature distribution. In that case, the
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(a) (b)

Figure 3.16: 1:3 expansion. Effect of Prandtl number on vortex length, We = 0.1, Br = 1.
Length of vortices versus the Reynolds number (a), and length of vortices versus the
Prandtl number for Re = 40 (b).

temperature is higher at the center of the duct, due to the effect of the viscous
dissipation.

• However, in the case of Pr = 100, the convective term is now dominant, and therefore
the cold inlet flow is distributed along the whole duct. For this reason, the gradient
of the temperature is more pronounced in a channel cross-section (varying between
463.27 K to 570 K), and the maximum of temperatures induced by the internal
work of the elastic fluid concentrates in the vortices. That effect is similar to the
one reported in the case Pr = 1 and high Reynolds number (see Figure 3.11). In
that case, the convective forces were also dominant but induced by a high advection
velocity instead of a high heat capacity in comparison with the conductivity of the
fluid flow.

Brinkman number study

Until this point, the effect of the Reynolds, Weissenberg, and Prandtl dimensionless num-
bers has been studied and characterized. In all the previous cases we have considered the
Brinkman number as 1, as it was considered in the reference work [149]. y studying the
influence for the four dimensionless numbers characteristics of the problem, we will see
also how the Brinkman number affects the flow pattern. Note that this number compares
the inertial power with the heat conduction, as explained previously. This dimensionless
number can be understood as a global number that measures the coupling between flow
and temperature. Therefore, following the same procedure as for the other dimensionless
numbers studies, we display two different plots, represented in Figure 3.18.

• The first one (Figure 3.18a) represents the comparison of the vortex length for a
range of Reynolds numbers and three Brinkman numbers: 1, 50, and 100. Note
that for clarity, the same color is employed for representing the vortices of the same
Brinkman number; nevertheless, different linestyles have been used to distinguish
more clearly the length of each vortex and compare them. Let us remark that for
computations where the Brinkman number is high, such as Br = 50 or Br = 100,
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(a) Pr=1

(b) Pr=100

Figure 3.17: 1:3 expansion. Distribution of temperature in the domain considering We =
0.1, Br = 1 and Re = 40 for two different Prandtl numbers: Pr = 1 (a) and Pr = 100 (b).

new vortices emerge for low Reynolds number, also the size of the vortices is larger
than in the case of Br = 1. Regarding the asymmetry, it occurs for a lower Reynolds
number, (Re = 20) for Br = 50 and Br = 100, and also three vortices of different size
appear simultaneously. For low Brinkman number, until Re = 66 the third vortex
does not appear, while for Br = 50, it occurs for approximately Re = 30. The fourth
vortex emerges also for a low Reynolds number (Re = 45 in the case of Br = 100)
in contrast with the low Brinkman number case, in which it is located at Re = 200
(see Figure 3.11).

• In Figure 3.18b, the lengths of the vortices are represented, fixing the Re = 40,
We = 0.1 and Pr = 1. In this plot, the Brinkman effect can be observed with major
clarity. For a decreasing Br the flow is stabilized until a stable symmetrical state is
reached. In other words, the asymmetry is reduced and it is completely attenuated
when the Brinkman number is 1. Otherwise, as the Brinkman number increases the
flux becomes more unstable.

3.7 Conclusions

Throughout this work, the effect of the temperature coupling with viscoelastic fluid flows
has been studied and analyzed. First of all, sub-grid scale VMS-stabilization methods have
been proposed to obtain an accurate solution for high elastic flows. In this concern, two
different formulations have been employed: both the standard and the log-conformation
reformulation have been coupled with temperature. The log-conformation reformulation
has been crucial for solving simulations with a high Weissenberg number, for which it is
otherwise impossible to obtain converged solutions. Referring to the coupling, it is carried
out in two different ways: on the one hand, viscoelastic properties are now temperature-
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(a) (b)

Figure 3.18: 1:3 expansion. Effect of Brinkman number in vortex length, We = 0.1,
Pr = 1. Length of vortices versus the Reynolds number (a), and length of vortices versus
the Brinkman number for Re = 30 (b).

dependent through defined functions. On the other, the energy equation has to consider
the mechanical part of the elastic flow which is transformed into heat.

Regarding the numerical simulations, of the observed effects, two are the most remark-
able: the first one is the increase of temperatures when the Weissenberg number increases,
and the second one is a stress reduction in comparison with isothermal cases. However, in
the particular case of the 1:3 expansion, also a thermal coupling effect to the flow pattern
in the channel is found. In that case, we can observe that the asymmetric solution appears
for lower Reynolds number in comparison with the isothermal case or a higher size of the
vortices that emerge in both sides of the channel is observed. Moreover, the flow pattern
is strongly influenced by the parameters that define the problem and for this reason, that
influence has been explored varying the Prandtl number and the Brinkman number apart
from the Reynolds and Weissenberg numbers. As a general trend and for the models
considered herein, the flow is more stable for low Re, high We, low Br and high Pr.





Chapter 4

Time-dependent subgrid-scales

This chapter is based on the publication:

Moreno L., Codina R. & Baiges J. (2020). Solution of transient viscoelastic flow prob-
lems approximated by a term-by-term VMS stabilized finite element formulation using
time-dependent subgrid-scales. Computer Methods in Applied Mechanics and Engineer-
ing, 367, 113074.

4.1 Abstract

In this chapter, some finite element stabilized formulations for transient viscoelastic flow
problems are presented. These are based on the Variational Multiscale (VMS) method,
following the approach introduced in Castillo and Codina, Comput. Meth. Appl. Mech.
Eng., vol. 349, pp. 701 - 721 (2019), for the Navier-Stokes problem, the main feature
of the method being that the time derivative term in the subgrid-scales is not neglected.
The main advantage of considering time-dependent sub-grid scales is that stable solutions
for anisotropic space-time discretizations are obtained; however other benefits related with
elastic problems are found along this study. Additionally, a split term-by-term stabilization
method is discussed and redesigned, where only the momentum equation is approached
using a term-by-term methodology, and which turns out to be much more efficient than
other residual-based formulations. The proposed methods are designed for the standard
and logarithmic formulations in order to deal with high Weissenberg number problems
in addition to anisotropic space-time discretizations, ensuring stability in all cases. The
proposed formulations are validated in several benchmarks such as the flow over a cylin-
der problem and the lid-driven cavity problem, obtaining stable and accurate results. A
comparison between formulations and stabilization techniques is done to demonstrate the
efficiency of time-dependent sub-grid scales and the term-by-term methodologies.

4.2 Background

Recent studies indicate that classical residual-based stabilized methods for unsteady in-
compressible flows may experience difficulties when the time step is small relative to the
spatial grid size. For example, Bochev et al. [20] argue that spatial stabilization in con-
junction with finite differencing in time implies destabilizing terms and that δt > Ch2 is a
sufficient condition to avoid instabilities (where δt is the time step size, C a positive con-
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stant and h the spatial grid size), although they are not conclusive about the necessity of
this condition. Nevertheless, for anisotropic space-time discretizations (partitions in which
h and δt are independently refined), this inequality is not necessarily satisfied [9], and in
fact complications in residual-based stabilized methods are reported. These problems can
happen, for instance, when small time steps result from the necessity of accuracy to solve
transient problems due to the presence of non-linear terms in the differential equations, a
very common issue in viscoelastic flow formulations. The results presented by Bochev et
al. [19] explain why fully discrete formulations experience problems when δt→ 0, putting
the focus on the coercivity of the stabilized variational equation. These instabilities are
encountered particularly in early stages of the time integration.

In particular, the approximations used in Variational Multiscale (VMS) methods [90]
usually neglect the time derivative of the sub-grid scales, resulting in the inequality
δt > Ch2 being required to obtain stable solutions. Consequently, anisotropic space-
time discretizations cannot guarantee stability, as it is argued by Codina et al. [46]. The
sub-grid scales obtained neglecting the time derivative are denoted in [40] with the term
quasi-static. In this sense, the work [46] results crucial, because the authors explore all the
properties of the discrete formulation that is obtained when the temporal dependency of
subgrid scales is accounted for. This idea, which is widely developed in the quoted paper,
avoids some inconsistencies, allowing to solve turbulent flows accurately [49]. In addi-
tion, the computational effort is reduced significantly due to the reduction of non-linear
iterations needed to solve at each time step.

In a more recent publication [30], the authors present the benefits of the tracking of sub-
grid scales in time for the Navier-Stokes incompressible problem using various stabilized
methods, including a residual-based VMS method and a method whose structure is split
term-by-term, where the use of orthogonal projections results in an optimal order non-
consistent method. This work demonstrates that, considering dynamic sub-grid scales,
the anisotropic time-space discretization is completely stable, i.e. the inequality δt > Ch2

does not need to be satisfied. By following these ideas, the present chapter pursues to
expand transient subgrid-scale methods to the viscoelastic flow problem. The interest of
a term-by-term stabilization in the stationary viscoelastic problem was identified in [28],
where it is shown that some terms of standard residual-based formulations that do not
contribute to stability may in fact lead to wrong localization of peaks of pressure and
stress.

The computation of viscoelastic flows leads to its own difficulties, as it was explained
in Chapter 2, especially when elasticity becomes dominant, i.e., when the dimensionless
number known as the Weissenberg number is high. In these cases, the numerical instability
is caused by the lack of balance between deformation rate and convection, as identified
by Fattal and Kupferman [64]. The source of the so called High Weissenberg Number
Problem (HWNP) is associated with the loss of positive-definiteness of the conformation
tensor [63, 90], and the existence of large stress gradients and regions with high deformation
rate that cause the numerical methods to fail. A new formulation was proposed by Fattal
and Kupferman [63, 64] in order to deal with these shortcomings: the so called Logarithmic
Conformation Representation. This formulation arises from the traditional equations of
viscoelastic fluids together with a change of variables, with the objective of eliminating
instabilities, allowing to extend the range of Weissenberg numbers which can be computed.
In this sense, in Chapter 2 this reformulation is applied using a stabilized formulation
based on the VMS method, which will be the basis of some of the stabilized formulations
employed here.

Although it is not the objective of this chapter to discuss complex applications of the
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logarithmic formulation, let us mention that it has opened the door to approximate com-
plex viscoelastic flow problems, as the droplet formation in [113] (using a finite volume
method) or the simulation of centrifugal ventricular assist devices in [86], where the log-
arithm of a shape tensor entering the viscoelastic model is taken (and, as in our case, a
VMS formulation is employed).

To sum up, the purpose of the present chapter is the design of stabilization techniques
that allow one to compute time-dependent viscoelastic flow problems with high elasticity
(or Weissenberg number) and with an anisotropic space-time discretization. High elastici-
ties are expected to be achieved by the use of the logarithmic formulation of the problem,
whereas the anisotropic space-time discretization will be possible because of the term-by-
term VMS method with transient subgrid scales we present. Yet, there is also an obvious
link between the possibility to treat high Weissenberg numbers and the VMS method we
propose, since small time steps are required in complex flow cases. Since the logarithmic
formulation and the term-by-term formulation are independent, along this chapter both
standard and logarithmic formulations are considered, compared and validated in some
numerical examples.

The structure of the chapter is as follows: Section 4.3 explains the main features
of the standard and logarithmic formulations in the strong and variational form for an
Oldroyd-B fluid. At the end of this section, the Galerkin finite element (FE) and the time
discretization are described. Once the main equations are set, Section 4.4 exposes the
stabilized FE approach based on the VMS method considering the dynamic sub-grid scales
through two different forms: the residual-based stabilization and the split term-by-term
stabilization, where the particularities of the formulation design are discussed numerically.
In Section 4.5 the stability analysis of the formulation is presented. The numerical results
are exposed in Section 4.6, where three different benchmarks are computed and analysed
to validate the formulations. Finally, conclusions are collected in the last section of the
chapter, Section 4.7.

4.3 Viscoelastic flow problem

4.3.1 Strong form

The definition of the viscoelastic flow problem understood as a boundary problem written
in both, standard and logarithmic formulation is performed in Chapter 2, in particular
in Section 2.3. Therefore, see this section to see more details. The notation of the main
operators of the problem will be the same as the one detailed there.

4.3.2 Variational form

In contrast with the analogous section in Chapter 2, the variational form of the standard
and the logarithmic formulations is also detailed. The notation followed for the spaces in
this section is the same as in the firsts paragraphs of Section 2.3.3. Using that notation,
the spaces for continuous standard problem can be taken as: Υ = H1(Ω)d×dsym (symmetric
second order tensor with components in H1(Ω)) for the stress field, V 0 = H1

0 (Ω)d for the
velocity field and Q = L2(Ω)/R for the pressure for each fixed time t (the regularity for
the stress space could be relaxed).

The weak form of the problem consists in finding U = [u, p,σ] :]0,T [−→ X := V 0 ×
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Q×Υ, such that the initial conditions are satisfied and:(
ρ
∂u

∂t
,v

)
+ (σ,∇sv) + 2(ηs∇su,∇sv) + 〈ρu · ∇u,v〉 − (p,∇ · v) = 〈f ,v〉,

(q,∇ · u) = 0,

1

2ηp
(σ,χ)− (∇su,χ) +

λ

2ηp

(
∂σ

∂t
+ u · ∇σ − σ · ∇u− (∇u)T · σ,χ

)
= 0,

for all V = [v, q,χ] ∈ X , where it is assumed that f is such that 〈f ,v〉 is well defined. In
compact form, the problem can be written as:

Gstd(U ,V ) +Bstd(u;U ,V ) = Lstd(V ), (4.1)

for all V ∈ X , where

Gstd(U ,V ) =

(
ρ
∂u

∂t
,v

)
+

λ

2η0

(
∂σ

∂t
,χ

)
, (4.2)

Bstd(û;U ,V ) = 2(ηs∇su,∇sv) + 〈ρû · ∇u,v〉+ (σ,∇sv)

− (p,∇ · v) + (q,∇ · u) +
1

2ηp
(σ,χ)− (∇su,χ)

+
λ

2ηp

(
û · ∇σ − σ · ∇û− (∇û)T · σ,χ

)
, (4.3)

Lstd(V ) = 〈f ,v〉. (4.4)

Considering now the logarithmic reformulation of the viscoelastic flow problem, the
spaces for the velocity and pressure for the continuous problems are the ones defined
above for the standard formulation, and now, the space for tensor ψ is denoted by Ῡ
for each fixed time t, where an appropriate regularity is assumed, such as it is expressed
in Section 2.3.3 in Chapter 2. The weak form of the problem consists in finding U =
[u, p,ψ] :]0,T [−→ X̄ := V 0 × Q × Ῡ, such that the initial conditions are satisfied and
(2.14) - (2.16) hold for all V = [v, q,χ] ∈ X . Again taking into account the new definition
of U for this formulation, the problem can be written as:

Glog(U ,V ) +Blog(u;U ,V ) = Llog(V ), (4.5)

where each term is defined as

Glog(U ,V ) =

(
ρ
∂u

∂t
,v

)
+

λ

2λ0

(
∂ exp(ψ)

∂t
,χ

)
, (4.6)

Blog(û;U ,V ) =
ηp
λ0

(exp(ψ),∇sv) + 2(ηs∇su,∇sv) + 〈ρû · ∇u,v〉 − (p,∇ · v)

+ (∇ · u, q) +
1

2λ0
(exp(ψ),χ)− (∇su,χ)

+
λ

2λ0

(
u · ∇ exp(ψ)− exp(ψ) · ∇u− (∇u)T · exp(ψ) + 2∇su,χ

)
, (4.7)

Llog(V ) = 〈f ,v〉+
1

2λ0
〈I,χ〉. (4.8)

4.3.3 Galerkin finite element discretization and time discretization

First, the Galerkin approximation for the variational problems, which have been estab-
lished in (4.1) and (4.5), will be described for both formulations. Let start defining the
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notation which we will employ in this section. The finite element partition of the domain
Ω is Th = {K}. Likewise, the diameter of an element K ∈ Th is denoted by hK and the
diameter of the partition is defined as h = max{hK |K ∈ Th}.

In the particular case of the standard formulation, from Th we may construct conform-
ing finite element spaces for the velocity, the pressure and the elastic stress, Vh ⊂ V ,
Qh ⊂ Q, Υh ⊂ Υ, respectively. So, calling X h := Vh × Qh × Υh, the Galerkin FE
approximation of the standard problem consists in finding Uh :]0,T [−→ X h, such that:

Gstd(Uh,V h) +Bstd(uh;Uh,V h) = F std(V h),

for all V h = [vh, qh,χh] ∈ X h, and satisfying the appropriate initial conditions.
On the other hand, for the logarithmic conformation reformulation, from Th we con-

struct the finite element space for the new variable ψ, Ῡh ⊂ Ῡ. So, X̄ h := Vh×Qh× Ῡh

is the Galerkin FE now, and the Galerkin approximation consists in finding Uh :]0,T [−→
X̄ h, such that

Glog(Uh,V h) +Blog(uh;Uh,V h) = F log(V h),

for all V h = [vh, qh,χh] ∈ X h.
It is well known that the Gakerkin approximation is unstable unless convective terms

are not relevant and appropriate compatibility conditions between Qh and Vh, on the
one hand, and between Vh and Υh, on the other hand, are met (see for example [26]
and references therein). In the next section we will present a stable formulation, able in
particular to deal with continuous approximations for all fields, which is the situation we
shall consider.

We define now the discretization in time as a backward differencing (BDF) scheme as
it was defined in expression (2.25) in Section 2.3.6, using the same notation. Particularly,
first and second order backward differencing schemes (respectively referenced as BDF1
and BDF2) have been implemented in this work, based on the approximations:

δ1f
n+1

δt
=
fn+1 − fn

δt
=
∂f

∂t

∣∣∣∣
tn+1

+O(δt),

δ2f
n+1

δt
=

3fn+1 − 4fn + fn−1

2δt
=
∂f

∂t

∣∣∣∣
tn+1

+O(δt2).

In any case, the stabilized finite element method which will be exposed is independent of
the time scheme used.

4.4 Stabilized finite element formulation

In this section, two different stabilized finite element methods for computing viscoelastic
flows will be presented: the first is purely based on the finite element residual, and the
second one is a term-by-term method. However, both depart from the framework described
in [90], and already described in Chapter 2. For more details about this development,
see [25]. Additionally, we will develop these methods for the two different formulations
considered in this chapter: the well-known standard viscoelastic formulation and for the
logarithmic reformulation. Note that the stabilization methods proposed are suitable for
the three field Newtonian problem too, which is recovered by considering the parameter λ
equal to zero.
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4.4.1 Residual-based VMS methods

The problem that we pretend to approximate is (3.6) in strong form for both standard
(2.17) and logarithmic (4.5) formulations.

Firstly, we will deal with the standard formulation. Let us suppose that Lstd(û; ·) is a
linear operator for a given û. Introducing the sub-grid scale decomposition and integrating
by parts, the method leads to find Uh :]0,T [−→ X h such that

Gstd(Uh,V h) +Bstd(uh;Uh,V h) +
∑
K

〈Ũ ,L∗(uh;V h)〉K = Lstd(V h), (4.9)

for all V h ∈ X h, where L∗(uh;V h) is the formal adjoint of the operator of Lstd (û; ·),
typically without considering boundary conditions, Ũ is the sub-grid scale, which needs
to be approximated and has components Ũ=[ũ, p̃, σ̃]. To justify (4.9), see e.g. [44], and
recall that we are considering all approximations continuous. In fact, the sub-grid scales
can also be approximated using bubble functions, as in [104].

Analogously, for the logarithmic formulation, method leads to find Uh :]0,T [−→ X̄ h

such that

Glog(Uh,V h) +Blog(uh;Uh,V h) +
∑
K

〈Ũ ,L∗(uh;V h)〉K = Llog(V h), (4.10)

for all V h ∈ X h. Let us remark that for both formulations (standard and logarithmic)
the same operator L∗ (û; ·) will be employed, following the process described in [119]:

L∗(û;V ) :=


∇ · χ− 2ηs∇ · (∇sv)− ρû · ∇v −∇q

−∇ · v
1

2ηp
χ+∇sv − λ

2ηp

(
û · ∇χ+ χ · (∇û)T +∇û · χ

)
 .

This is due to the fact that we have not changed variables in the stress test function.
Once operators Dt and L are defined for both formulations, the sub-grid scales can be

written in terms of the finite element component as

∂Ũ

∂t
+α−1Ũ = P̃ [F −Dt(Uh)− L(uh;Uh)], (4.11)

where we denote P̃ as the L2 projection onto the space of sub-grid scales.
Note that the most classical approach, the Algebraic Sub-Grid Scale (ASGS) method

is recovered if P̃ is the projection onto the space of FE residuals. On the contrary, if P̃ is
taken as the orthogonal projection to the FE space, the Orthogonal Sub-Scale Stabilization
(OSGS) method [39] is recovered. On the other hand, α is taken as a diagonal matrix of
stabilization parameters, α = diag (α1Id,α2,α3Id×d), with Id the identity on vectors of
Rd, Id×d the identity on second order tensors, and parameters αi, i = 1, 2, 3, being defined
as in expressions (2.30)-(2.32), and originally in [26].

Now, inserting the solution of (4.11) with α given by (2.30)-(2.32) into (4.9), we obtain
the following residual-based stabilization method: find Uh :]0,T [−→ X h such that

Gstd(Uh,V h) +Bstd(uh;Uh,V h) +
∑
K

〈p̃,−∇ · vh〉K

+
∑
K

〈ũ,∇ · χh − 2ηs∇ · (∇svh)− ρuh · ∇vh −∇qh〉K
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+
∑
K

〈
σ̃,

1

2ηp
χh +∇svh −

λ

2ηp

(
uh · ∇χh + χh · (∇uh)T +∇uh · χh

)〉
K

= 〈f ,vh〉, (4.12)

where ũ, p̃ and σ̃ are the sub-grid scales of the momentum, the continuity and the con-
stitutive equation, respectively, and Bstd(ûh;Uh,V h) is given in (4.3).

The sub-grid scales are the solution to the problem:

ρ
∂ũ

∂t
+ α−1

1 ũ =P̃

[
f −

(
ρ
∂uh
∂t
−∇ · σh − 2ηs∇ · (∇suh) + ρuh · ∇uh +∇ph

)]
,

(4.13)

α−1
2 p̃ =− P̃ [∇ · uh] , (4.14)

λ

2ηp

∂σ̃

∂t
+ α−1

3 σ̃ =P̃

[
− 1

2ηp
σh +∇suh

]
+P̃

[
− λ

2ηp

(
∂σh
∂t

+ uh · ∇σh − σh · ∇uh − (∇uh)T · σh
)]

. (4.15)

Note that the stabilization terms added to the Galerkin method in (4.12) are propor-
tional to the finite element residuals of the momentum, the continuity and the constitu-
tive equation. Due to this, the stabilized method defined by (4.12) will be denoted as a
residual-based VMS method. Furthermore the prefix orthogonal will be added if P̃ = P⊥h .

On the other hand, if the time derivatives of the velocity sub-grid scale (in equation
(4.13)) and the stress sub-grid scale (in equation (4.15)) are neglected, the method is
usually called quasi-static, otherwise it will be denoted as dynamic. Particularly, when
P̃ = P⊥h , two additional simplifications can be done:

1. P⊥h
[
∂uh
∂t

]
= 0 and P⊥h

[
∂σh
∂t

]
= 0.

2. P⊥h [f ] ≈ 0.

If these approximations are adopted, a weakly consistent method is obtained, although if
f is a finite element function, full consistency is recovered. The initial condition for the
velocity and stress sub-grid scales in (4.13) and (4.15) can be taken as zero [10].

For the logarithmic reformulation, equation (4.10), considering the expression of the
sub-grid scales (4.11) it can be expressed as

Glog(Uh,V h) +Blog(uh;Uh,V h)

+
∑
K

〈ũ,∇ · χh − 2ηs∇ · (∇svh)− ρuh · ∇vh −∇qh〉K

+
∑
K

〈p̃,−∇ · vh〉K +
∑
K

〈
σ̃,

1

2ηp
χh +∇svh

〉
K

+
∑
K

〈
σ̃,− λ

2ηp

(
χh · (∇uh)T +∇uh · χh

)〉
K

= 〈f ,vh〉+
1

2λ0
〈I,χ〉,

where ũ, p̃ and ψ̃ are the sub-grid scales of the momentum, the continuity and the con-
stitutive equation respectively, and Blog is the bilinear form of the problem when the
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logarithmic formulation is considered. We have to remark that the sub-grid scale of the
constitutive equation, for simplicity, has also been computed as σ̃ in the logarithmic case,
considering σ̃ =

ηp
λ0

(
exp

(
ψ̃
)
− I
)
. As a residual-based VMS method is applied, sub-grid

scales are defined as follows:

ρ
∂ũ

∂t
+ α−1

1 ũ = P̃

[
f −

(
ρ
∂uh
∂t
− ηp
λ0
∇ · exp(ψh)

)]
+ P̃ [−2ηs∇ · (∇suh) + ρuh · ∇uh +∇ph] , (4.16)

α−1
2 p̃ = P̃ [−∇ · uh] , (4.17)

λ

2ηp

∂σ̃

∂t
+ α−1

3 σ̃ = P̃

[
− 1

2λ0
exp(ψh) +∇suh

]
− P̃

[
λ

2λ0

(
∂ exp(ψh)

∂t
+ uh · ∇ exp(ψh)

)]
+ P̃

[
λ

2λ0

(
exp(ψh) · ∇uh + (∇uh)T · exp(ψh)− 2∇suh

)]
(4.18)

Note that the stabilized parameters α are the same as those defined by the standard
formulation (2.30)-(2.32).

4.4.2 Term-by-term stabilized formulation

Motivation

The method proposed here has been motivated by the fact that not all the terms of the
product of ∇ ·χh − 2ηs∇ · (∇svh)− ρuh · ∇vh −∇qh, and the terms that contribute to ũ
in (4.12) provide stability. Likewise, the same occurs for the constitutive equation adjoint,

1

2ηp
χh +∇svh −

λ

2ηp

(
uh · ∇χh + χh · (∇uh)T +∇uh · χh

)
,

and terms of σ̃. Therefore, some of these terms can be neglected without loss of stability.
This is the key idea in term-by-term stabilization methods (developed, for example in
[25, 38, 142]). For the stationary viscoelastic problem, the convenience of using this split
stabilization for the momentum equation was identified in [28].

Let us consider the expressions (4.13) and (4.15), taking into account that P̃ = P⊥h ,
P⊥h [f ] ≈ 0, P⊥h

[
∂uh
∂t

]
= 0 and P⊥h

[
∂σh
∂t

]
= 0. Therefore we can rewrite them as follows:

ρ
∂ũ

∂t
+ α−1

1 ũ = P⊥h [∇ · σh] + P⊥h [2ηs∇ · (∇suh)]− P⊥h [ρuh · ∇uh]− P⊥h [∇ph] ,

(4.19)
λ

2ηp

∂σ̃

∂t
+ α−1

3 σ̃ = −P⊥h
[

1

2ηp
σh

]
+ P⊥h [∇suh]

− P⊥h
[
λ

2ηp
uh · ∇σh

]
+ P⊥h

[
λ

2ηp

(
σh · ∇uh + (∇uh)T · σh

)]
. (4.20)

The key ingredient that allows to consider any of these terms instead the residual based
VMS is the orthogonal projection P⊥h . The right-hand-side (RHS) of (4.19) and (4.20) is
not zero when the FE solution is replaced by the continuous solution, and consequently
the method is not consistent. Nevertheless, the consistency error is optimal [41].
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Figure 4.1: Contraction 4:1. Domain and boundary conditions for the fail test.

Additionally, some of the terms in the RHS of (4.19) and (4.20) can be neglected,
like the second term of (4.19), because they do not contribute to stability. The three
remaining terms help to improve stability, the first one giving control of the divergence of
the viscoelastic stresses, the third one on the convective term and the fourth one on the
pressure gradient. Similar considerations can be applied to modify equation (4.20), now
considering that P⊥h [σh] = 0.

As explained earlier, the previous splitting and simplification technique results in an
a priori weakly consistent method. However, when the splitting approach is used in the
constitutive equation (4.20) the method fails to converge when applied to simple numerical
tests. This convergence failure is independent of the approximation properties (stability
and accuracy) of the method, but clearly limits its applicability. This breakdown is pro-
duced by the fact that the full residual (the sum of all terms) is usually small whereas
each separate term is large (considering absolute terms). Consequently, in numerical so-
lutions, the split term-by-term method for the constitutive equation is not as efficient as
the residual-based one. It is remarkable that this phenomenon occurs also in simple sta-
tionary problems, as shown in the next example. Yet, it has to be stressed that this is a
phenomenon encountered in practice that we have never observed when the term-by-term
formulation for the momentum equation is used. From the computational point of view,
it would be desirable to employ it also for the constitutive equation, but the following
example explains why it is not possible.

Example of convergence failure of the term-by-term stabilization of the con-
stitutive equation

In this subsection, we will briefly describe the numerical example and the results obtained
when the lack of convergence for the term-by-term stabilization occurs. We have consid-
ered the well-known 4:1 contraction benchmark (see Figure 4.1) in a stationary version,
with a Weissenberg number equal to 4.0 and Reynolds number equal to 0.01, as it is con-
sidered in Section 2.5.3 of the Chapter 2, considering the same boundary conditions. The
space discretization consists of 7784 nodes and 14793 triangular elements, whose minimum
element size is hmin = 0.05, as it is plotted in Figure 2.11.

In Table 4.1, the different values for the terms of the constitutive equation residual are
plotted for a numerical integration point situated approximately at coordinates (17.5,−3.5)
and for each component together with the total residual, indicated in the last row. Other
points have also been checked, and the same effect is observed in all of them. The values
represented in Table 4.1 correspond to inner-iteration 20. A continuation iterative scheme
in terms of the relaxation time λ has been employed, using 15 continuation steps. Within
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Residual terms comp xx comp yy comp xy

1

2ηp
σh 0.82002 0.68599 0.80990

−∇suh 0.35160 -0.41654 -0.44841
λ

2ηp
ûh · ∇σh 2.89475 -1.30149 0.74938

− λ

2ηp

(
σh · ∇ûh + (∇ûh)T · σh

)
-4.29379 -0.59164 -2.14322

Full residual -0.22741 -1.62369 -1.03234

Table 4.1: Values adopted by each term using the term-by-term stabilization in the con-
stitutive equation for each tensor component for the contraction 4:1 benchmark. Inner-
iteration 20.

each of them, a fixed point iterative scheme has been employed, so that ûh in Table 4.1 is
the velocity at the previous iteration of the one considered.

As it can be observed, in components xx and xy of the residual, the full residual has
a smaller value than other terms such as the rotational or the convective terms separately
(in absolute value). When this effect happens, the iterative scheme for the term-by-term
formulation fails. Note that this occurs when the Weissenberg number is significant; if it
is low, convergence does not experiment this kind of problems.

Final design

In view of the previous discussion, the method must be designed carefully. For this reason,
along the present chapter the method denoted as term-by-term (S-OSS) will be built as a
split term-by-term for the momentum equation, and the full residual-based VMS, explained
in subsection 4.4.1, for the constitutive equation.

Under the described circumstances and following this splitting approach, we can split
ũ = ũ1+ũ2+ũ3, while the stress sub-grid scale remains as σ̃. Therefore, the term-by-term
finite element formulation proposed consists in finding Uh = [uh, ph,σh] : (0,T ) −→ X h

such that

Gstd(Uh,V h) +Bstd(uh;Uh,V h) +
∑
K

〈ũ1,−ρuh · ∇vh〉K

+
∑
K

〈ũ2,−∇qh〉K +
∑
K

〈ũ3,∇ · χh〉K +
∑
K

〈p̃,−∇ · vh〉K

+
∑
K

〈
σ̃,

1

2ηp
χh +∇sv − λ

2ηp

(
uh · ∇χh + χh · (∇uh)T +∇uh · χh

)〉
K

= 〈f ,vh〉,

for all [vh, qh,σh] ∈ X h, where Bstd is the bilinear form defined in (4.3), and the sub-grid
scales ũ1, ũ2, ũ3, p̃, are the solution of the evolution problems:

ρ
∂ũ1

∂t
+ α−1

1 ũ1 = −P⊥h [ρuh · ∇uh] , (4.21)

ρ
∂ũ2

∂t
+ α−1

1 ũ2 = −P⊥h [∇ph] , (4.22)

ρ
∂ũ3

∂t
+ α−1

1 ũ3 = P⊥h [∇ · σh] , (4.23)
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α−1
2 p̃ = −P⊥h [∇ · uh] , (4.24)

while the sub-grid scale σ̃ is the solution of (4.15), defined in the previous section. Pa-
rameters αi, i = 1, 2, 3 are the stabilization terms, already defined in (2.30)-(2.32). The
proposed method is not residual-based, and therefore, is not consistent in the sense used
in the finite element context, although it has an optimal consistency error.

Finally, the term-by-term stabilization proposed for the log-conformation formulation
consists in finding Uh = [uh, ph,ψh] : (0,T ) −→ X̄ h such that

Glog(Uh,V h) +Blog(uh;Uh,V h) +
∑
K

〈ũ1,−ρuh · ∇vh〉K

+
∑
K

〈ũ2,−∇qh〉K +
∑
K

〈ũ3,∇ · χh〉K +
∑
K

〈p̃,−∇ · vh〉K

+
∑
K

〈
σ̃,

1

2ηp
χh +∇sv − λ

2ηp

(
uh · ∇χh + χh · (∇uh)T +∇uh · χh

)〉
K

= 〈f ,vh〉,

for all [vh, qh,χh] ∈ X h, where Blog is the bilinear form defined in (4.7), the sub-grid scale
ũ3, is now defined as the solution of:

ρ
∂ũ3

∂t
+ α−1

1 ũ3 = P⊥h

[
ηp
λ0
∇ · exp(ψh)

]
. (4.25)

The sub-grid scales ũ1, ũ2, and p̃ are solutions of (4.21), (4.22), (4.24), respectively, and
the sub-grid scale σ̃ is the solution of (4.18). Additionally, the parameters αi, i = 1, 2, 3
are defined in (2.30)-(2.32).

4.4.3 Discretization of the equations for the sub-grid scales

The time dependent behavior of the sub-grid scales is widely analyzed in [9, 46], although
in this subsection we try to describe the main ideas for the two methods presented in this
chapter: the residual-based method and the term-by-term one. For both, we have used
the BDF1 scheme to discretize the defined sub-grid scales. Particularly, in the case of
the split stabilization method, sub-grid scales (4.21) -(4.23) and the elastic stress sub-grid
scale (4.15) can be written as

ũn+1
1 =

(
ρ

1

δt
+

1

αn+1
1

)−1(
ρ

1

δt
ũn1 − ρP⊥h

[
un+1
h · ∇un+1

h

])
,

ũn+1
2 =

(
ρ

1

δt
+

1

αn+1
1

)−1(
ρ

1

δt
ũn2 − P⊥h

[
∇pn+1

h

])
,

ũn+1
3 =

(
ρ

1

δt
+

1

αn+1
1

)−1(
ρ

1

δt
ũn3 + P⊥h

[
∇ · σn+1

h

])
,

σ̃n+1 =

(
λ

2ηp

1

δt
+

1

αn+1
3

)−1( λ

2ηp

1

δt
σ̃n + P̃

[
− 1

2ηp
σn+1
h +∇sun+1

h

− λ

2ηp

(
δσn+1

h

δt
+ un+1

h · ∇σn+1
h − σn+1

h · ∇un+1
h − (∇un+1

h )T · σn+1
h

)])
.

From these expressions, we can conclude that the sub-grid scales depend directly on

α1dyn =
(
ρ 1
δt + 1

α1

)−1
and α3dyn =

(
λ

2ηp
1
δt + 1

α3

)−1
, where α1dyn and α3dyn redefine the
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classical stabilitation parameters and now depend on the time-step size. The procedure
is analogous for the logarithmic formulation, now considering (4.21), (4.22) and (4.25) for
ũn+1

1 , ũn+1
2 and ũn+1

3 , respectively, and (4.18) for σ̃n+1; the same expressions for α1dyn
and α3dyn are used.

Concerning the new definition of the stabilization parameters, an extremely relevant
study about the instability that appears when the ASGS method and the quasi-static sub-
grid scales are employed is developed by Bochev et al. in [19]. They relate this instability to
the reduction of δt if h (element size of mesh) remains fixed, i.e. for anisotropic space-time
discretizations. However, the instability described disappears automatically if δt ≥ Cαn+1

1 ,
where C is a positive constant. Therefore it seems clear that the stabilization parameter
and the time step size must be related in the quasi-static stabilized finite element methods.
This question is justified in [30], remarking that when this inequality holds, it will be
unnecessary to use dynamic sub-grid scales.

Furthermore, we can observe that for the viscoelastic flow problem parameter α3 is
also modified, but no references exist about the possible effects that this change could
produce. This question will be explored and discussed along the numerical examples, in
the Section 4.6.

Finally, let us remark that aspects related to the treatment of the logarithm of the
conformation tensor can be found in Chapter 2 and references therein (see also [100] for a
non-standard implementation of this approach).

4.4.4 Linearization and algorithm

As we have seen, the equations for incompressible viscoelastic flows have a high number
of non-linear terms which must be treated.

The algorithm employed in the time-dependent subscales problem is similar to the one
detailed in Algorithm 1, although we have to remark some differences:

• The linearization of the convective term of the momentum equation is done using
the Newton-Raphson scheme.

• Stabilization parameters are computed with the values of the unknowns at the pre-
vious iterations and the time step size (δt).

• Dynamic subgrid-scales are computed each time-step, using the subgrid-scale of the
previous time step j, the orthogonal projection of the "residual", the time step size
δt and the stabilization parameters that now are dynamics.

In the equations displayed in Algorithm 4 variables uj+1,i
h , pj+1,i

h ,ψj+1,i
h corresponding to

the j + 1 time step are denoted by uih, pih,ψih for simplicity. Moreover, the subscales ũj1,
ũj2, ũ

j
3, σ̃

j corresponding with the previous time step j are denoted here as ũ1, ũ2, ũ3, σ̃,
omitting the superscript. In addition, we have defined E = exp(ψj+1,i−1) as the exponen-
tial of the variable ψ computed in the previous iteration and R = exp(ψj+1,i−1)ψj+1,i−1−
exp(ψj+1,i−1) for clarity. Note that in Algorithms 4 and 5 the Split-OSS stabilization is
considered. Lastly, we define the next expressions using known fields from the previous
iteration:

Ru1 = ρuj+1,i−1
h · ∇uj+1,i−1

h

Ru2 = ∇pj+1,i−1
h

Ru3 = − ηp
λ0
∇ ·E
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Rψ =
1

2λ0
E −∇suj+1,i−1

h +
λ

2λ0

(
uj+1,i−1
h · ∇E

−E · ∇uj+1,i−1
h − (∇uj+1,i−1

h )T ·E + 2∇suj+1,i−1
h

)
Regarding the temporal terms, the notation introduced in Section 2.3.6 and Section 4.3.3
is employed here. The equations considered in Algorithm 4 are solved inside a general
algorithm, presented in Algorithm 5, where all considerations made are taken into account.

Algorithm 4 Logarithmic conformation reformulation using time-dependet subscales.
Fully discrete and linearized problem at each iteration.

Given ui−1
h , pi−1

h , ψi−1
h (i ≥ 1), ũ1, ũ2, ũ3 and σ̃ solve for uih, p

i
h and ψih from:(

ρ
δku

i
h

δt
,vh

)
+
ηp
λ0

(E ·ψih,∇svh) + 2(ηs∇suih,∇svh) + 〈ρui−1
h · ∇uih,vh〉

+ 〈ρuih · ∇ui−1
h ,vh〉 − (pih,∇ · vh) + (∇ · uih, qh) +

1

2λ0
(E ·ψih,χh)

− (∇suih,χh) +
λ

2λ0

(
δk
δt

(E ·ψih) + (ui−1
h · ∇(E ·ψih),χh

)
+

λ

2λ0

(
uih · ∇E −E ·ψ

i
h · ∇ui−1

h −E · ∇uih,χh
)

− λ

2λ0

(
(∇ui−1

h )T ·E ·ψih + (∇uih)T ·E,χh
)

+
λ

2λ0
(2∇suih,χh)

)
+
∑
K

αi−1
1dyn

〈
− ηp
λ0
∇ · (E ·ψih),−∇ · χh

〉
K

+
∑
K

αi−1
1dyn

〈
∇pih,∇qh

〉
K

+
∑
K

αi−1
2dyn

〈
∇ · uih,∇ · vh

〉
K

+
∑
K

αi−1
1dyn

〈
ρui−1

h · ∇uih + ρuih · ∇ui−1
h , ρui−1

h · ∇vh
〉
K

+
∑
K

αi−1
3dyn

〈 1

2λ0
E ·ψih −∇suih +

λ

2λ0

(δk
δt

(E ·ψih) + ui−1
h · ∇(E ·ψih)

+ uih · ∇E − (E ·ψih) · ∇ui−1
h −E · ∇uih − (∇ui−1

h )T · (E ·ψih)

− (∇ui)T ·E + 2∇suih
)

,− 1

2ηp
χh −∇svh

+
λ

2ηp

(
ui−1
h · ∇χh − χh · (∇ui−1

h )T −∇ui−1
h · χh

) 〉
K

= 〈f ,vh〉+
ηp
λ0

(R,∇svh) + 〈ρui−1
h · ∇ui−1

h ,vh〉+
1

2λ0

(
I −R+

λ

2λ0

δk
δt
R,χh

)
+

λ

2λ0

(
ui−1
h · ∇(E ·ψi−1

h )−
(
E ·ψi−1

h

)
· ∇ui−1

h − (∇ui−1
h )T · (E ·ψi−1

h ),χh
)

+
∑
K

αi−1
1dyn

〈
− ηp
λ0
∇ ·R,−∇ · χh

〉
K

+
∑
K

αi−1
1dyn

〈
ρui−1

h · ∇ui−1
h , ρui−1

h · ∇vh
〉
K

+
∑
K

αi−1
1dyn

〈 ρ
δt
ũ1 + Ph [Ru1] , ρui−1

h · ∇vh
〉
K

+
∑
K

αi−1
1dyn

〈 ρ
δt
ũ2 + Ph [Ru2] ,∇qh

〉
K

+
∑
K

α2

〈
Ph[∇ · ui−1

h ],∇ · vh
〉
K

+
∑
K

αi−1
1dyn

〈 ρ
δt
ũ3 + Ph [Ru3] ,−∇ · χh

〉
K
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+
∑
K

αi−1
3dyn

〈 1

2λ0
(I −R) +

λ

2λ0

(δk
δt
R− ui−1

h · ∇
(
E ·ψi−1

h

)
−
(
E ·ψi−1

h

)
· ∇ui−1

h − (∇ui−1
h )T ·

(
E ·ψi−1

h

)
,− 1

2ηp
χh −∇svh

+
λ

2ηp

(
ui−1
h · ∇χh − χh · (∇ui−1

h )T −∇ui−1
h · χh

) 〉
K

+
∑
K

αi−1
3dyn

〈 λ

2ηp

1

δt
σ̃ + Ph [Rψ] ,− 1

2ηp
χh −∇svh

+
λ

2ηp

(
ui−1
h · ∇χh − χh · (∇ui−1

h )T −∇ui−1
h · χh

) 〉
K

Algorithm 5 Logarithmic conformation reformulation using time-dependent subscales.
General algorithm for Split-OSS stabilization.

read initial condition u0
h (or compute u0

h=Ph
[
u0
h

]
)

set p0
h = 0, ψ0

h = 0 (or compute p0
h=Ph

[
p0
h

]
,ψ0

h=Ph
[
ψ0
h

]
) for j=0,...,m-

1 do(Temporal loop)

set i=0

set uj+1,0
h = ujh, p

j+1,0
h = pjh, ψ

j+1,0
h = ψjh

while not converged do

i← i+ 1

compute exponentials: E, ∇ ·E and ∇E
compute "residuals": Ru1, Ru2, Ru3, Rψ

compute projections: Ph [Ru1], Ph [Ru2], Ph [Ru3], Ph [Rψ]

compute stabilization parameters:

αj+1,i−1
1dyn , αj+1,i−1

2 and αj+1,i−1
3dyn with U j+1,i−1 and δt

solve equations in Algorithm 4 for uj+1,i
h , pj+1,i

h and ψj+1,i
h

check convergence

end while

compute dynamic subscales

ũj+1
1 = αj+1,i

1dyn

( ρ
δt
ũj1 − (Ru1 − Ph [Ru1])

)
ũj+1

2 = αj+1,i
1dyn

( ρ
δt
ũj2 − (Ru2 − Ph [Ru2])

)
ũj+1

3 = αj+1,i
1dyn

( ρ
δt
ũj3 − (Ru3 − Ph [Ru3])

)
σ̃j+1 = αj+1,i

3dyn

(
λ

2ηp

1

δt
σ̃j − (Rψ − Ph [Rψ])

)
set converged values

uj+1
h = uj+1,i

h

pj+1
h = pj+1,i

h

ψj+1
h = ψj+1,i

h

(End temporal loop)
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4.5 Analysis of stability

In this section the numerical analysis of the formulation considering time-dependent sub-
grid scales is presented, although restricted to the linearized problem. For this reason,
we will consider the advection velocity as a constant field a, and, in the constitutive
equation, the gradient of velocities ∇a also known. For the logarithmic formulation,
the exponential is considered linearized, as follows: if we consider exp(ψ̂) and ψ̂ known,
we can denote these tensors as E = exp(ψ̂) and S = ψ̂, respectively, and introduce
R = E ·S −E. Note that the Backward Euler scheme has been adopted for the whole of
temporal discretizations. The present analysis follows the same lines on the one presented
in [46], developed for the stabilized finite element approximation for the incompressible
flow problems, where the sub-grid scales are considered time-dependent. In particular, the
work [30] presents a term-by-term stabilization approach using orthogonal sub-grid scales,
which is also analyzed following the same ideas. The analysis developed in this section
aims at emphasizing the effect of tracking the sub-scales in time for the viscoelastic fluid
flow problem from the analytical perspective.

4.5.1 Preliminaries

First of all, let us introduce some additional notation, required for the development of the
numerical analysis:

1. Consider a sequence F = {fn}, with index n with range from 1 to n = N , the
number of time intervals of the partition in time. Then for 1 ≤ p < ∞ we can say
that F ∈ `p (X) if

∑N
n=1 δt ‖fn‖

p
X ≤ C <∞, and F ∈ `∞ (X) if maxn=1,...,N ‖fn‖ ≤

C <∞, where C denotes a generic constant.

2. Given two sequences of functions defined in Ω, F = {fn}, and G = {gn}, with f0 and
g0 also given, we will make use of the following discrete version of the integration-
by-parts formula:

N−1∑
n=0

〈
δfn, gn+1〉 = −

N−1∑
n=0

〈fn, δgn〉+
〈
fN , gN

〉
−
〈
f0, g0

〉
, (4.26)

where δfn = fn+1 − fn.

3. On the other hand, a useful tool will be the classical inverse estimate, which holds for
quasi-uniform finite element partitions as those we are using: given a finite element
function fh, there exists a constant Cinv such that

‖∇fh‖ ≤
Cinv

h
‖fh‖ (4.27)

4. We will remark the assumptions we will need on the data. We will consider that
u0 ∈ L2 (Ω) and σ0 ∈ L2 (Ω)d×dsym , and therefore

∥∥u0
h

∥∥, ∥∥σ0
h

∥∥, ∥∥ũ0
∥∥and ∥∥σ̃0

∥∥ will be
bounded uniformly in h.

5. In the case of the log-formulation, we also considerψ0
h ∈ L2 (Ω)d×dsym , and

∥∥Ph (E ·ψ0
h

)∥∥
bounded uniformly in h.

6. Concerning the force term, the assumption of f ∈ L2
(
0,T ;L2 (Ω)

)
leads to stability.

We consider T fixed and bounded. For the time discrete problem, the counterpart
of f ∈ L2

(
0,T ;L2 (Ω)

)
is {fn} ∈ `2

(
L2 (Ω)

)
.
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4.5.2 Linearized problems

In this analysis, the space of subscales is taken orthogonal to the finite element space.
Moreover, we will consider that P⊥h [f ] = 0. For simplicity p̃ will be fixed to zero. Although
all these assumptions are not crucial, they permit to simplify the analysis. The problem
to be solved in the standard formulation is as follows: Given unh and σnh, find u

n+1
h , σn+1

h ,
ũn+1

1 , ũn+1
2 , ũn+1

3 , σ̃n+1 and pn+1
h such that

(ρδunh,vh) +

(
λ

2ηp
δσnh,χh

)
+ δt

(
σn+1
h + 2ηs∇sun+1

h ,∇svh
)

+ δt
(
ρa · ∇un+1

h ,vh
)

− δt
(
pn+1
h ,∇ · vh

)
+ δt

(
∇ · un+1

h , qh
)

+ δt

(
1

2ηp
σn+1
h −∇sun+1

h ,χh

)
+ δt

λ

2ηp

(
a · ∇σn+1

h − σn+1
h · ∇a− (∇a)T · σn+1

h ,χh
)
− δt

(
ũn+1

1 , ρa · ∇vh
)

− δt
(
ũn+1

2 ,∇qh
)

+ δt
(
ũn+1

3 ,∇ · χh
)
− δt

(
p̃n+1,∇ · vh

)
+ δt

(
σ̃n+1,

1

2ηp
χh +∇svh −

λ

2ηp

(
a · ∇χh + χh · (∇a)T +∇a · χh

))
− δt

〈
fn+1,vh

〉
= 0, (4.28)

ρδũn1 + δtα−1
1 ũn+1

1 = −δtP⊥h [ρa · ∇un+1
h ], (4.29)

ρδũn2 + δtα−1
1 ũn+1

2 = −δtP⊥h [∇pn+1
h ], (4.30)

ρδũn3 + δtα−1
1 ũn+1

3 = δtP⊥h [∇ · σn+1
h ], (4.31)

δtα−1
2 p̃n+1 = −δtP⊥h [∇ · un+1

h ], (4.32)
λ

2ηp
δσ̃n + δtα−1

3 σ̃n+1 = δtP̃

[
− 1

2ηp
σn+1
h +∇sun+1

h

− λ

2ηp

(
δσnh
δt

+ a · ∇σn+1
h − σn+1

h · ∇a− (∇a)T · σn+1
h

)]
. (4.33)

Now, we will define the problem to solve for the logarithmic formulation. For simplicity,
the superscript n+1 is omitted for tensors R, E described at the beginning of the section.
Therefore, the linearized equations in variational form of the log-conformation formulation
are expressed as: Given unh and σnh, find u

n+1
h , ψn+1

h , ũn+1
1 , ũn+1

2 , ũn+1
3 , σ̃n+1 and pn+1

h

such that

(ρδunh,vh) +

(
λ

2λ0
δPh [E ·ψnh] ,χh

)
+ δt

(
ηp
λ0
Ph
[
E ·ψn+1

h

]
+ 2ηs∇sun+1

h ,∇svh
)

+ δt
(
ρa · ∇un+1

h ,vh
)
− δt

(
pn+1
h ,∇ · vh

)
+ δt

(
∇ · un+1

h , qh
)

+ δt

(
1

2λ0
Ph
[
E ·ψn+1

h

]
−∇sun+1

h ,χh

)
+ δt

(
λ

2λ0

(
2∇sun+1

h + a · ∇Ph
[
E ·ψn+1

h

])
,χh

)
+ δt

λ

2λ0

(
−Ph

[
E ·ψn+1

h

]
· ∇a− (∇a)T · Ph

[
E ·ψn+1

h

]
,χh

)
− δt

(
ũn+1

1 , ρa · ∇vh
)
− δt

(
ũn+1

2 ,∇qh
)

+ δt
(
ũn+1

3 ,∇ · χh
)

+ δt

(
σ̃n+1,

1

2ηp
χh +∇svh −

λ

2ηp

(
a · ∇χh + χh · (∇a)T +∇a · χh

))
− δt

(
p̃n+1,∇ · vh

)
− δt

〈
fn+1
u ,vh

〉
− δt

〈
fn+1
ψ ,χh

〉
= 0 (4.34)
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ρδũn1 +δtα−1
1 ũn+1

1 = −δtP⊥h
[
ρa · ∇un+1

h

]
, (4.35)

ρδũn2 +δtα−1
1 ũn+1

2 = −δtP⊥h
[
∇pn+1

h

]
, (4.36)

ρδũn3 +δtα−1
1 ũn+1

3 = δtP⊥h

[
ηp
λ0
∇ · Ph

[
E ·ψn+1

h

]]
, (4.37)

δtα−1
2 p̃n+1 = −δtP⊥h

[
∇ · un+1

h

]
,

λ

2ηp
δσ̃n+δtα−1

3 σ̃n+1 = δtP⊥h

[
− 1

2λ0
Ph
[
E ·ψn+1

h

]
+∇un+1

h

− λ

2λ0

(
a · ∇Ph

[
E ·ψn+1

h

]
− Ph

[
E ·ψn+1

h

]
· ∇a

)
− λ

2λ0
(∇a)T · Ph

[
E ·ψn+1

h

]
− 2∇suh

)]
, (4.38)

where:

fn+1
u := fn+1 − ηp

λ0
∇ ·R,

fn+1
ψ :=

1

2λ0
(I +R) +

λ

2λ0

(
a · ∇R−R · ∇a− (∇a)T ·R

)
.

As it has been said, we will take p̃ = 0, i. e., α2 = 0.

4.5.3 Stability analysis of the linearized problems

The first result we will prove is the classical stability, in which only velocity and stresses are
implied but not the pressure. In particular, for the standard formulation, the components
involved are the finite element component of the velocity and stresses and the sub-grid
scales of the velocity and the stresses (Theorem 4.1). In the case of the logarithmic
formulation, the analogous result is proved in Theorem 4.2.

The stability obtained for ũn+1 and σ̃n+1 will be proved in terms of un+1, σn+1 and
pn+1 (and in terms of un+1, ψn+1 and pn+1 in case of the logarithmic formulation) using
dual norms (Theorems 4.3, 4.4, 4.5). Finally, the previous results can be proved for a
natural norm, under the condition of stabilization parameters α1 and α3 depending on the
time step size (Theorem 4.6).

Theorem 4.1 (Stability bounds for the standard formulation). Let un+1
h , pn+1

h and σn+1
h

be the solution of (4.28) and ũn+1
1 , ũn+1

2 , ũn+1
3 , σ̃n+1 solutions of (4.29), (4.30), (4.31)

and (4.33) respectively. Suppose that a is known, ∇·a = 0, n ·a = 0 on ∂Ω, and ∇a have
components in L∞. The following stability bounds hold for all δt > 0 and λ small enough:

max
n=0,...,N−1

{
ρ
∥∥un+1

h

∥∥2
+

λ

2ηp

∥∥σn+1
h

∥∥2
+ ρ

(∥∥ũn+1
1

∥∥2
+
∥∥ũn+1

2

∥∥2
+
∥∥ũn+1

3

∥∥2
)

+
λ

2ηp

∥∥σ̃n+1
∥∥2
}

+

N−1∑
n=0

δt2ηs
∥∥∇un+1

h

∥∥2

+

N−1∑
n=0

δt
1

2ηp

∥∥σn+1
h

∥∥2
+

N−1∑
n=0

δt
∥∥α−1/2

3 σ̃n+1
∥∥2

+

N−1∑
n=0

δt
(∥∥α−1/2

1 ũn+1
1

∥∥2
+
∥∥α−1/2

1 ũn+1
2

∥∥2
+
∥∥α−1/2

1 ũn+1
3

∥∥2
)
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.C
N−1∑
n=0

δt
λ

ρ

∥∥fn+1
∥∥2

+ ρ
∥∥u0

h

∥∥2
+

λ

2ηp

∥∥σ0
h

∥∥2

Therefore, if {fn} ∈ `2(L2(Ω)), u0 ∈ L2(Ω), and σ0 ∈ L2(Ω)d×dsym we have that

{unh} ∈ `∞
(
L2(Ω)

)
∩ `2

(
H1(Ω)

)
; {ũn1}, {ũn2}, {ũn3} ∈ `∞

(
L2(Ω)

)
;

{α−1/2
1 ũn1}, {α

−1/2
1 ũn2}, {α

−1/2
1 ũn3} ∈ `2

(
L2(Ω)

)
;

{σnh}, {σ̃n} ∈ `∞
(
L2(Ω)d×dsym

)
; {α−1/2

3 σ̃n} ∈ `2
(
L2(Ω)d×d

sym

)
.

Proof. In order to obtain stability bounds for the finite element solution, first of all we test
(4.28) by vh = un+1

h , qh = pn+1
h and χh = σn+1

h . Under the suppositions of the Theorem,
we have

(
a · ∇un+1

h ,un+1
h

)
= 0 and

(
a · ∇σn+1

h ,σn+1
h

)
= 0.

ρ
(
δunh,un+1

h

)︸ ︷︷ ︸
(1)

+
λ

2ηp

(
δσnh,σn+1

h

)
︸ ︷︷ ︸

(2)

+δt
(
σn+1
h ,∇sun+1

h

)

+ δt2ηs
(
∇sun+1

h ,∇sun+1
h

)
+ δt

(
a · ∇un+1

h ,un+1
h

)
− δt

(
pn+1
h ,∇ · un+1

h

)
+ δt

(
∇ · un+1

h , pn+1
h

)
+ δt

1

2ηp

(
σn+1
h ,σn+1

h

)
− δt

(
∇sun+1

h ,σn+1
h

)
+ δt

λ

2ηp

(
a · ∇σn+1

h ,σn+1
h

)
+ δt

λ

2ηp

(
−σn+1

h · ∇a− (∇a)T · σn+1
h ,σn+1

h

)
︸ ︷︷ ︸

(3)

−
∑
K

δt
(
ũn+1

1 , ρa · ∇un+1
h

)
K
−
∑
K

δt
(
ũn+1

2 ,∇pn+1
h

)
+
∑
K

δt
(
ũn+1

3 ,∇ · σn+1
h

)
K

+
∑
K

δt

(
σ̃n+1,

1

2ηp
σn+1
h +∇sun+1

h

)
K

−
∑
K

δt

(
σ̃n+1,

λ

2ηp

(
a · ∇σn+1

h + σn+1
h · (∇a)T +∇a · σn+1

h

))
K

= δt
(
fn+1,un+1

h

)︸ ︷︷ ︸
(4)

.

Now, we can add up the resulting equalities from n = 0 to an arbitrary time level M and
consider the equality

(a, a− b) =
1

2
a²− 1

2
b2 +

1

2
(a− b)2 .

In particular, if a and b are consecutive terms of a series, the term
1

2
a²− 1

2
b2 would be a

telescoping series. Therefore, the following equality is employed adding up the resulting
equalities from n = 0 to an arbitrary time level M :

M∑
n=0

(
un+1 − un

)
= uM − u0.

Therefore, for any sequence {un}:

(1) =
M∑
n=0

ρ
(
δunh,un+1

h

)
=

1

2

M∑
n=0

ρ ‖δunh‖
2 +

1

2
ρ
∥∥∥uM+1

h

∥∥∥2
− 1

2
ρ
∥∥u0

h

∥∥2
,
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(2) =

M∑
n=0

λ

2ηp

(
δσnh,σn+1

h

)
=

1

2

M∑
n=0

λ

2ηp
‖δσnh‖

2 +
1

2

λ

2ηp

∥∥∥σM+1
h

∥∥∥2
− 1

2

λ

2ηp

∥∥σ0
h

∥∥2
,

(3) =−
M∑
n=0

δt
λ

2ηp

(
σn+1
h · ∇a+ (∇a)T · σn+1

h ,σn+1
h

)
≥ −

M∑
n=0

δt
λ

ηp
‖∇a‖L∞(Ω)

∥∥σn+1
h

∥∥2
.

Also considering the inequality
(
fn+1,un+1

h

)
≤ γ

2

∥∥fn+1
∥∥2

+ 1
2γ

∥∥un+1
h

∥∥2 ∀γ > 0, and

taking the constant γ as γ =
λε0

ρ
:

(4) =
M∑
n=0

δt
(
fn+1,un+1

h

)
≤

M∑
n=0

δt
λε0

2ρ

∥∥fn+1
∥∥2

+
M∑
n=0

δt
ρ

2λε0

∥∥un+1
h

∥∥2
.

The last term is absorbed by the LHS using the discrete Gronwall Lemma (see [88]) with
γ > 1. To sum up, we obtain the follow expression:

1

2
ρ
∥∥∥uM+1

h

∥∥∥2
+

1

2

M∑
n=0

ρ ‖δunh‖
2 +

1

2

λ

2ηp

∥∥∥σM+1
h

∥∥∥2
+

1

2

M∑
n=0

λ

2ηp
‖δσnh‖

2

+

M∑
n=0

δt2ηs
∥∥∇sun+1

h

∥∥2
+

M∑
n=0

δt

(
1

2ηp
− λ

ηp
‖∇a‖L∞(Ω)

)∥∥σn+1
h

∥∥2

−
M∑
n=0

δt
(
ũn+1

1 , ρa · ∇un+1
h

)
−

M∑
n=0

δt
(
ũn+1

2 ,∇pn+1
h

)
+

M∑
n=0

δt
(
ũn+1

3 ,∇ · σn+1
h

)
+

M∑
n=0

δt

(
σ̃n+1,

1

2ηp
σn+1
h +∇sun+1

h

)

−
M∑
n=0

δt

(
σ̃n+1,

λ

2ηp

(
a · ∇σn+1

h + σn+1
h · (∇a)T +∇a · σn+1

h

))

≤ C

(
M∑
n=0

δt
λε0

2ρ

∥∥fn+1
∥∥2

+ ρ
∥∥Ph[u0]

∥∥2
+

λ

2ηp

∥∥Ph[σ0]
∥∥2

)
. (4.39)

Now, multiplying (4.29) by ũn+1
1 , integrating over the whole domain and adding up the

result from n = 0 to n = M , we get

ρ
∥∥ũM+1

1

∥∥2
+

M∑
n=0

ρ
∥∥δũn1∥∥2

+
M∑
n=0

δt
∥∥α−1/2

1 ũn+1
1

∥∥2

= −
M∑
n=0

δt
(
ũn+1

1 ,P⊥h
[
ρa · ∇un+1

h

])
+ ρ
∥∥ũ0

1

∥∥2
. (4.40)

Proceeding analogously for the remaining subgrid-scale expressions, (4.30) is multiplied
by ũn+1

2 , (4.31) by ũn+1
3 and (4.33) by σ̃n+1:

ρ
∥∥ũM+1

2

∥∥2
+

M∑
n=0

ρ
∥∥δũn2∥∥2

+
M∑
n=0

δt
∥∥α−1/2

1 ũn+1
2

∥∥2

= −
M∑
n=0

δt
(
ũn+1

2 ,P⊥h
[
∇pn+1

h

])
+ ρ
∥∥ũ0

2

∥∥2
, (4.41)
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ρ
∥∥ũM+1

3

∥∥2
+

M∑
n=0

ρ
∥∥δũn3∥∥2

+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
3

∥∥2

=
M∑
n=0

δt
(
ũn+1

3 ,P⊥h
[
∇ · σn+1

h

])
+ ρ
∥∥ũ0

3

∥∥2
, (4.42)

λ

2ηp

∥∥σ̃M+1
∥∥2

+
M∑
n=0

λ

2ηp

∥∥δσ̃n∥∥2
+

M∑
n=0

δt
∥∥α−1/2

3 σ̃n+1
∥∥2

=
M∑
n=0

δt

(
σ̃n+1, P̃

[
− 1

2ηp
σn+1
h +∇sun+1

h

− λ

2ηp

(
a · ∇σn+1

h − σn+1
h · ∇a− (∇a)T · σn+1

h

)])

+
λ

2ηp

∥∥σ̃0
∥∥2

. (4.43)

Finally, adding up equations (4.39)-(4.43) some terms are cancelled. Note that for any
L2(Ω)-vector function v we have

(
ũn+1,v

)
=
(
ũn+1,P⊥h [v]

)
and for any L2(Ω)d×d-tensor(

σ̃n+1,χ
)

=
(
σ̃n+1, P̃ [χ]

)
. Moreover, once the equations are added we obtain among

others the following terms that also must be bounded before writing the final equality:

M∑
n=0

δt

σ̃n+1,
1

ηp
σn+1
h︸ ︷︷ ︸

(1)

− λ

ηp

(
σn+1
h · ∇a+ (∇a)T · σn+1

h

)
︸ ︷︷ ︸

(2)

 (4.44)

(1) =
M∑
n=0

δt

(
σ̃n+1,

1

ηp
σn+1
h

)

≥−
M∑
n=0

δt
1

ηp

[
ε1

2

∥∥σ̃n+1
∥∥2

+
1

2ε1

∥∥σn+1
h

∥∥2
]

,

(2) =−
M∑
n=0

δt

(
σ̃n+1,

λ

ηp

(
σn+1
h · ∇a+ (∇a)T · σn+1

h

))

≥−
M∑
n=0

δt
λ

ηp
‖∇a‖L∞Ω)

[
ε2

2

∥∥σ̃n+1
∥∥2

+
1

2ε2

∥∥σn+1
h

∥∥2
]

.

Note that for adequate ε1 and ε2 these terms are absorbed by λ
2ηp

∥∥∥σM+1
h

∥∥∥2
and λ

2ηp

∥∥σ̃M+1
∥∥2

respectively, applying the discrete Gronwall Lemma. Therefore, the final inequality is as
follows:

ρ
∥∥∥uM+1

h

∥∥∥2
+

λ

2ηp

∥∥∥σM+1
h

∥∥∥2
+ ρ
∥∥ũM+1

1

∥∥2
+ ρ
∥∥ũM+1

2

∥∥2
+ ρ
∥∥ũM+1

3

∥∥2
+

λ

2ηp

∥∥σ̃M+1
∥∥2

+ ρ
M∑
n=0

‖δunh‖
2 +

M∑
n=0

λ

2ηp
‖δσnh‖

2 + ρ

(
M∑
n=0

∥∥δũn1∥∥2
+

M∑
n=0

∥∥δũn2∥∥2
+

M∑
n=0

∥∥δũn3∥∥2

)

+
M∑
n=0

λ

2ηp

∥∥δσ̃n∥∥2
+

M∑
n=0

δt2ηs
∥∥∇sun+1

h

∥∥2
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+

M∑
n=0

δt
1

2ηp

(
1− λ ‖∇a‖L∞(Ω) −

1

ε1
− λ

ε2
‖∇a‖L∞(Ω)

)∥∥σn+1
h

∥∥2

+
M∑
n=0

δt
∥∥α−1/2

1 ũn+1
1

∥∥2
+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
2

∥∥2
+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
3

∥∥2

+
M∑
n=0

δt
∥∥α−1/2

3 σ̃n+1
∥∥2

. C
M∑
n=0

δt
λε0

2ρ

∥∥fn+1
∥∥2

+ ρ
∥∥Ph[u0]

∥∥2
+ ρ

(∥∥ũ0
1

∥∥2
+
∥∥ũ0

2

∥∥2
+
∥∥ũ0

3

∥∥2
)

+
λ

2ηp

∥∥Ph[σ0]
∥∥2

+
λ

2ηp

∥∥σ̃0
∥∥2

,

from where the theorem follows for λ small enough.

Theorem 4.2 (Stability bounds for the logarithmic formulation). Let un+1
h , pn+1

h and
ψn+1
h be the solution of (4.34) and ũn+1

1 , ũn+1
2 , ũn+1

3 , σ̃n+1 solutions of (4.35), (4.36),
(4.37) and (4.38) respectively. The following stability bounds hold for all δt > 0 and the λ
small enough and cosidering that the assumptions of Theorem 4.1 holds:

max
n=0,...,N−1

{
ρ
∥∥un+1

h

∥∥2
+

λ

2λ0

ηp
λ0

∥∥Ph [E ·ψn+1
h

]∥∥2
+ ρ
∥∥ũn+1

1

∥∥2
+ ρ
∥∥ũn+1

2

∥∥2

+ρ
∥∥ũn+1

3

∥∥2
+

λ

2ηp

∥∥σ̃n+1
∥∥2
}

+
N−1∑
n=0

δt2ηs
∥∥∇un+1

h

∥∥ 2

+
N−1∑
n=0

δt
ηp
λ2

0

∥∥Ph [E ·ψn+1
h

]∥∥2
+
N−1∑
n=0

δt
∥∥α−1/2

3 σ̃n+1
∥∥2

+
N−1∑
n=0

δt
(∥∥α−1/2

1 ũn+1
1

∥∥2
+
∥∥α−1/2

1 ũn+1
2

∥∥2
+
∥∥α−1/2

1 ũn+1
3

∥∥2
)

.
M∑
n=0

λ

2ρ
δt
∥∥fn+1

u

∥∥2
+

M∑
n=0

λ

2

ηp
λ0
δt
∥∥∥fn+1

ψ

∥∥∥2

+ ρ
∥∥u0

∥∥2
+

λ

2λ0

ηp
λ0

∥∥Ph [E ·ψ0
h

]∥∥2
.

Therefore, if {fnu}, {fnψ} ∈ `2(L2(Ω)), u0
h ∈ L

2(Ω), and Ph
[
E ·ψ0

h

]
∈ L2(Ω)d×dsym we have

that

{unh} ∈ `∞
(
L2(Ω)

)
∩ `2

(
H1(Ω)

)
; {ũn1}, {ũn2}, {ũn3} ∈ `∞

(
L2(Ω)

)
;

{α−1/2
1 ũn1}, {α

−1/2
1 ũn2}, {α

−1/2
1 ũn3} ∈ `2

(
L2(Ω)

)
;

{σ̃n}, {Ph [E ·ψnh]} ∈ `∞
(
L2(Ω)d×dsym

)
; {α−1/2

3 σ̃n} ∈ `2
(
L2(Ω)d×d

sym

)
.

Proof. In order to obtain stability bounds for the finite element solution, first of all we
test (4.34) by vh = un+1

h , qh = pn+1
h and χh =

ηp
λ0
Ph
[
E ·ψn+1

h

]
. Using the assumptions

of Theorem 4.1, we have
(
a · ∇un+1

h ,un+1
h

)
= 0 and(

a · ∇Ph
[
E ·ψn+1

h

]
,
ηp
λ0
Ph
[
E ·ψn+1

h

])
= 0.
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Again, for simplicity, p̃ will be fixed equal to zero along the analysis. We have that

ρ
(
δunh,un+1

h

)︸ ︷︷ ︸
(1)

+
λ

2λ0

ηp
λ0

(
δPh [E ·ψnh] ,Ph

[
E ·ψn+1

h

])
︸ ︷︷ ︸

(2)

+δt2ηs
(
∇sun+1

h ,∇sun+1
h

)

+
ηp
λ0
δt
(
Ph
[
E ·ψn+1

h

]
,∇sun+1

h

)
︸ ︷︷ ︸

(3)

+δt
〈
a · ∇un+1

h ,un+1
h

〉
−δt

(
pn+1
h ,∇ · un+1

h

)
+ δt

(
∇ · un+1

h , pn+1
h

)
+ δt

1

2λ0

ηp
λ0

(
Ph
[
E ·ψn+1

h

]
,Ph

[
E ·ψn+1

h

])
− ηp
λ0
δt
(
∇sun+1

h ,Ph
[
E ·ψn+1

h

])
︸ ︷︷ ︸

(3)

+ δt
λ

2λ0

ηp
λ0

(
a · ∇Ph

[
E ·ψn+1

h

]
,Ph

[
E ·ψn+1

h

])
+

λ

2λ0

ηp
λ0
δt
(
2∇sun+1

h ,Ph
[
E ·ψn+1

h

])
︸ ︷︷ ︸

(3)

− δt λ
2λ0

ηp
λ0

(
Ph
[
E ·ψn+1

h

]
· ∇a+ (∇a)T · Ph

[
E ·ψn+1

h

]
,Ph

[
E ·ψn+1

h

])
︸ ︷︷ ︸

(4)

−
∑
K

δt
(
∇ · un+1

h , p̃n+1
)
K
−
∑
K

δt
(
ũn+1

1 , ρa · ∇un+1
h

)
K

−
∑
K

δt
(
ũn+1

2 ,∇pn+1
h

)
K

+
∑
K

ηp
λ0
δt
(
ũn+1

3 ,Ph
[
E ·ψn+1

h

])
K

+
∑
K

δt

(
σ̃n+1,

1

2λ0
Ph
[
E ·ψn+1

h

]
+∇sun+1

h

)
K

+
∑
K

δt

(
σ̃n+1,− λ

2λ0

(
a · ∇Ph

[
E ·ψn+1

h

]
+Ph

[
E ·ψn+1

h

]
· (∇a)T +∇a · Ph

[
E ·ψn+1

h

]))
K

= δt
(
fn+1
u ,un+1

h

)︸ ︷︷ ︸
(5)

+ δt

(
fn+1
ψ ,

ηp
λ0
Ph
[
E ·ψn+1

h

])
︸ ︷︷ ︸

(6)

.

Following the same strategy that in the proof of Theorem 4.1:

(1) =

M∑
n=0

ρ
(
δunh,un+1

h

)
=

1

2

M∑
n=0

ρ (δunh)2 +
1

2
ρ
∥∥∥uM+1

h

∥∥∥2
− 1

2
ρ
∥∥u0

h

∥∥2
,

(2) =

M∑
n=0

λ

2λ0

ηp
λ0

(
δPh [E ·ψnh] ,Ph

[
E ·ψn+1

h

])
=

1

2

M∑
n=0

λ

2λ0

ηp
λ0
‖δPh [E ·ψnh]‖2 +

1

2

λ

2λ0

ηp
λ0

∥∥∥Ph [E ·ψM+1
h

]∥∥∥2

− 1

2

λ

2λ0

ηp
λ0

∥∥Ph [E ·ψ0
h

]∥∥2
,
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(3) =

M∑
n=0

λ

λ0

ηp
λ0
δt
(
∇sun+1

h ,Ph
[
E ·ψn+1

h

])
≥ −

M∑
n=0

ηp
λ

λ0
δt

[
1

2ε0λ2
0

∥∥Ph [E ·ψn+1
h

]∥∥2
+
ε0

2

∥∥∇sun+1
h

∥∥2
]

,

(4) = −
M∑
n=0

δt
λ

2λ0

ηp
λ0

(
Ph
[
E ·ψn+1

h

]
· ∇a+ (∇a)T · Ph

[
E ·ψn+1

h

]
,Ph

[
E ·ψn+1

h

])
≥ −

M∑
n=0

δt
λ

2λ0

ηp
λ0
‖∇a‖L∞(Ω)

∥∥Ph [E ·ψn+1
h

]∥∥2
.

Considering the inequality
(
fn+1,un+1

h

)
≤ γ

2

∥∥fn+1
∥∥2

+ 1
2γ

∥∥un+1
h

∥∥2
,∀γ > 0, and taking

the constant γ as γ =
λε1

ρ
, ε1 > 0 and supposing

∥∥fn+1
u

∥∥ bounded.

(5) =

M∑
n=0

δt
(
fn+1
u ,un+1

h

)
≤

M∑
n=0

λε1

2ρ
δt
∥∥fn+1

u

∥∥2
+

M∑
n=0

ρ

2λε1
δt
∥∥un+1

h

∥∥2
. (4.45)

Analogously, applying the same strategy that for expression (4.45) and supposing
∥∥∥fn+1

ψ

∥∥∥
bounded, considering ε2 > 0 and taking the constant γ as γ = λε2 in Young’s inequality:

(6) =
M∑
n=0

δt

(
fn+1
ψ ,

ηp
λ0
Ph
[
E ·ψn+1

h

])

≤
M∑
n=0

δt
ηp
λ0

λε2

2

∥∥∥fn+1
ψ

∥∥∥2
+

M∑
n=0

δt
ηp
λ0

1

2λε2

∥∥Ph [E ·ψn+1
h

]∥∥2
.

The last term is absorbed by the LHS due to the discrete Gronwall Lemma with α > 1.
To sum up we obtain the following expression:

1

2
ρ
∥∥∥uM+1

h

∥∥∥2
+

1

2

M∑
n=0

ρ ‖δunh‖+
1

2

λ

2λ0

ηp
λ0

∥∥∥Ph [E ·ψM+1
h

]∥∥∥2

+
1

2

M∑
n=0

λ

2λ0

ηp
λ0
‖δPh [E ·ψnh]‖2 +

M∑
n=0

δt

(
2ηs − ηp

ε0

2

λ

λ0

)∥∥∇sun+1
h

∥∥2

+
M∑
n=0

δt
ηp
λ0

(
1

2λ0
− λ

2ε0λ2
0

− λ

λ0
‖∇a‖L∞(Ω)

)∥∥Ph [E ·ψn+1
h

]∥∥2

−
M∑
n=0

δt
(
ũn+1

1 , ρa · ∇un+1
h

)
−

M∑
n=0

δt
(
ũn+1

2 ,∇pn+1
h

)
+

M∑
n=0

δt
ηp
λ0

(
ũn+1

3 ,∇ · Ph
[
E ·ψn+1

h

])
+

M∑
n=0

δt

(
σ̃n+1,

1

2λ0
Ph
[
E ·ψn+1

h

]
+∇sun+1

h − λ

2λ0

(
a · ∇Ph

[
E ·ψn+1

h

]
+Ph

[
E ·ψn+1

h

]
· (∇a)T +∇a · Ph

[
E ·ψn+1

h

]))
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.
M∑
n=0

λε1

2ρ
δt
∥∥fn+1

u

∥∥2
+

M∑
n=0

λε2

2

ηp
λ0
δt
∥∥∥fn+1

ψ

∥∥∥2
+ ρ

∥∥Ph(u0)
∥∥2

+
λ

2λ0

ηp
λ0

∥∥Ph [E ·ψ0
h

]∥∥2
, (4.46)

taking the εi i = 0, 1, 2 suitable.
Now, we multiply (4.35) by ũn+1

1 , integrate over the whole domain and add up the result
from n = 0 to n = M :

ρ
∥∥ũM+1

1

∥∥2
+

M∑
n=0

ρ
∥∥δũn1∥∥2

+
M∑
n=0

δt
∥∥α−1/2

1 ũn+1
1

∥∥2

= −
M∑
n=0

δt
(
ũn+1

1 ,P⊥h
[
ρa · ∇un+1

h

])
+ ρ
∥∥ũ0

1

∥∥2
, (4.47)

Analogously, we multiply (4.36) by ũn+1
2 , (4.37) by ũn+1

3 and (4.38) by σ̃n+1, to obtain:

ρ
∥∥ũM+1

2

∥∥2
+

M∑
n=0

ρ
∥∥δũn2∥∥2

+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
2

∥∥2

= −
M∑
n=0

δt
(
ũn+1

2 ,P⊥h
[
∇pn+1

h

])
+ ρ
∥∥ũ0

2

∥∥2
, (4.48)

ρ
∥∥ũM+1

3

∥∥2
+

M∑
n=0

ρ
∥∥δũn3∥∥2

+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
3

∥∥2

=
M∑
n=0

δt
ηp
λ0

(
ũn+1

3 ,P⊥h
[
∇ · Ph

[
E ·ψn+1

h

]])
+ ρ
∥∥ũ0

3

∥∥2
, (4.49)

λ

2ηp

∥∥σ̃M+1
∥∥2

+
M∑
n=0

λ

2ηp

∥∥δσ̃n∥∥2
+

M∑
n=0

δt
∥∥α−1/2

3 σ̃n+1
∥∥2

=
M∑
n=0

δt

(
σ̃n+1, P̃

[
− 1

2λ0
Ph
[
E ·ψn+1

h

]
+∇sun+1

h − λ

λ0
∇sun+1

h

− λ

2λ0

(
a · ∇Ph

[
E ·ψn+1

h

]
− Ph

[
E ·ψn+1

h

]
· (∇a)T

−∇a · Ph
[
E ·ψn+1

h

])])
+

λ

2ηp

∥∥σ̃0
∥∥2

. (4.50)

Adding equations (4.46)-(4.50), some terms are cancelled. The next terms must be
bounded considering that for any L2(Ω)-vector function v we have

(
ũn+1,v

)
=
(
ũn+1,P⊥h [v]

)
and for any L2(Ω)d×d-tensor

(
σ̃n+1,χ

)
=
(
σ̃n+1, P̃ [χ]

)
:

M∑
n=0

δt
(
σ̃n+1,

1

λ0
Ph
[
E ·ψn+1

h

]
︸ ︷︷ ︸

(1)

+
λ

λ0
∇sun+1

h︸ ︷︷ ︸
(2)

+
λ

λ0

(
−Ph

[
E ·ψn+1

h

]
· (∇a)T −∇a · Ph

[
E ·ψn+1

h

])
︸ ︷︷ ︸

(3)

)
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(1) =

M∑
n=0

δt

(
σ̃n+1,

1

λ0

∥∥Ph [E ·ψn+1
h

]∥∥) = 0,

(2) =
M∑
n=0

δt

(
σ̃n+1,

λ

λ0
∇sun+1

h

)

≥ −
M∑
n=0

δt
λ

λ0

1

ηp

[
1

2ε4

∥∥σ̃n+1
∥∥2

+ η2
p

ε4

2

∥∥∇sun+1
h

∥∥2
]

,

(3) =
M∑
n=0

δt

(
σ̃n+1,− λ

λ0
Ph
[
E ·ψn+1

h

]
· (∇a)T − λ

λ0
∇a · Ph

[
E ·ψn+1

h

])

≥ −
M∑
n=0

δt
λ

ηp
‖∇a‖L∞(Ω)

[
1

2ε5

∥∥σ̃n+1
∥∥2

+
ε5

2

η2
p

λ2
0

∥∥Ph [E ·ψn+1
h

]∥∥2

]
.

Moreover, the discrete Gronwall Lemma can be employed in the last terms. Finally, we
obtain the next inequality:

ρ
∥∥∥uM+1

h

∥∥∥2
+

λ

2λ0

ηp
λ0

∥∥∥Ph [E ·ψM+1
h

]∥∥∥2
+ ρ
∥∥ũM+1

1

∥∥2
+ ρ
∥∥ũM+1

2

∥∥2

+ ρ
∥∥ũM+1

3

∥∥2
+

λ

2λ0

∥∥σ̃M+1
∥∥2

+ ρ
M∑
n=0

‖δunh‖
2 +

M∑
n=0

λ

2λ0
‖δPh [E ·ψnh]‖2

+ ρ
M∑
n=0

∥∥δũn1∥∥2
+ ρ

M∑
n=0

∥∥δũn2∥∥2
+ ρ

M∑
n=0

∥∥δũn3∥∥2
+

M∑
n=0

λ

2ηp

∥∥δσ̃n∥∥2

+
M∑
n=0

δt

(
2ηs − ηp

ε0

2

λ

λ0
− ηp

ε4

2

λ

λ0

)∥∥∇sun+1
h

∥∥2

+
M∑
n=0

δt
ηp
λ0

(
1

2λ0
− λ

2ε0λ2
0

−
(

λ

2λ0
+
ε5λ

2λ0

)
‖∇a‖L∞(Ω)

)∥∥Ph [E ·ψn+1
h

]∥∥2

+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
1

∥∥2
+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
2

∥∥2
+

M∑
n=0

δt
∥∥α−1/2

1 ũn+1
3

∥∥2

+

M∑
n=0

δt
∥∥α−1/2

3 σ̃n+1
∥∥2

. C

M∑
n=0

λε1

2ρ
δt
∥∥fn+1

u

∥∥2
+

M∑
n=0

λε2

2

ηp
λ0
δt
∥∥∥fn+1

ψ

∥∥∥2
+ ρ

∥∥Ph(u0)
∥∥2

+
λ

2λ0

ηp
λ0

∥∥Ph [E ·ψ0
h

]∥∥2
+ ρ
∥∥ũ0

1

∥∥2
+ ρ
∥∥ũ0

2

∥∥2
+ ρ
∥∥ũ0

3

∥∥2
+

λ

2ηp

∥∥σ̃0
∥∥2

from where the theorem follows for λ small enough.

The result obtained from Theorem 4.1 gives stability for {unh}, {ũn}, {σnh} and {σ̃n},
and Theorem 4.2 for {Ph [E ·ψn]} instead for {σnh}. However we are interested uniquely
in the stability of the finite element solution. As it happens in stabilized finite element
methods for problems which use quasi-static subscales, we pretend to prove that the next
terms gain stability too:

mn
1 := ρa · ∇unh, (4.51)
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mn
2 := ∇pnh, (4.52)

mn
3 := −∇ · σnh, (4.53)

mn
4 :=

1

2ηp
σnh −∇sunh +

λ

2ηp

(
a · ∇σnh − σnh · ∇a− (∇a)T · σnh

)
,

for n = 1, ...,N . In case of the logarithmic formulation mn
1 and mn

2 are defined as in the
standard formulation, however mn

3 and mn
4 must be redefined:

mn
3 := − ηp

λ0
∇ · Ph [E ·ψnh] , (4.54)

mn
4 :=

1

2λ0
Ph [E ·ψnh]−∇sunh +

λ

2λ0
(2∇sunh + a · ∇Ph [E ·ψnh]

−Ph [E ·ψnh] · ∇a− (∇a)T · Ph [E ·ψnh]
)

. (4.55)

The term mn
1 provides control on the convective derivative, mn

2 over the gradient of
the pressure, mn

3 on the divergence of the stress tensor and mn
4 on some terms of the

constitutive equation. On the other hand, we will want to have control over the orthogonal
component of the three terms mn

1 , mn
2 and mn

3 . However, we do not have control over
these components separately, as explained in [41]. Moreover also the control over the term
mn

4 will be pursued.
We will follow the same procedure presented as in [46]. As indicated there, in the

general situation without imposing any condition on δt, α1 or α3, we will prove stability
in a rather weak dual norm. However if we assume a condition between α1 and α3, and
δt it is possible to improve this stability for the classical one of stabilized finite element
methods.

Given a sequence F = {fn}, of scalar or vector functions defined on Ω, we define the
following norms:

‖F‖Xi
:=

(
N∑
n=0

δt ‖fn‖2
)1/2

+
N−1∑
n=0

δt
∥∥∥α1/2

i δtf
n
∥∥∥+ max

n=0,...,N

{
α

1/2
i ‖fn‖

}
, (4.56)

with i = 1, 3. These norms endow the spaces of sequences

Xi =
{
F = {fn} | F ∈ `2

(
L2 (Ω)

)
,
{
α

1/2
i δtf

n
}
∈ `1

(
L2 (Ω)

)
,{

α
1/2
i fn

}
∈ `∞

(
L2 (Ω)

)}
of a Banach structure. Note that {δtfn} ∈ `1

(
L2 (Ω)

)
and F ∈ `∞

(
L2 (Ω)

)
certainly de-

fine strong topologies, but the factors α1/2
1 and α1/2

3 prevent from any comparison between
the different terms. Let now X ′i be the dual space of Xi, the duality pairing being

〈F ,G〉Xi×X′i
:=

N∑
n=1

δt 〈fn, gn〉 ,

with F = {fn} ∈ Xi, G = {gn} ∈ X ′i. The norm in X ′i is given by

‖G‖X′i := sup
F∈X,F 6=0

〈F ,G〉Xi×X′i
‖F‖Xi

. (4.57)
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Theorem 4.3 (Stability in the dual norm X
′
1 for the momentum equation terms). Un-

der assumptions of Theorem 4.1 and 2c3 ≤ c1, where c1 and c3 are the constants of the
stabilization terms α1 and α3 respectively, there is a constant C such that∥∥∥{α1/2

1 P⊥h [mn
1 ]
}∥∥∥

X′1
+
∥∥∥{α1/2

1 P⊥h [mn
2 ]
}∥∥∥

X′1
+
∥∥∥{α1/2

1 P⊥h [mn
3 ]
}∥∥∥

X′1

+
∥∥∥{α1/2

1 Ph [mn
1 +mn

2 +mn
3 ]
}∥∥∥

X′1
≤ C

Proof. Let {vn} ∈ X be arbitrary sequences, which can be split as vn = vnh + ṽn with
vnh = Ph (vn). On the one hand we can write equations (4.29)-(4.31) as

ρδũni + δtα−1
1 ũn+1

i = −δtP⊥h
[
mn+1

i

]
, i = 1, 2, 3

Multiplying each equation by α1/2
1 ṽn+1, integrating over Ω, and adding up the result from

n = 0 to N − 1, integrating by parts using the discrete integrator formula and using the
Cauchy-Schwartz inequality, we have

N−1∑
n=0

δtα
1/2
1

(
P⊥h

[
mn+1

i

]
, ṽn+1

)
=−

N−1∑
n=0

ρα
1/2
1

(
δũni , ṽn+1

)
−
N−1∑
n=0

δtα
−1/2
1

(
ũn+1
i , ṽn+1

)
=
N−1∑
n=0

ρα
1/2
1 (ũni , δṽn)− ρα1/2

1

(
ũNi , ṽN

)
+ ρα

1/2
1

(
ũ0
i , ṽ

0
)

−
N−1∑
n=0

δtα
−1/2
1

(
ũn+1
i , ṽn+1

)
.ρ max

n=0,...,N−1
{‖ũni ‖}

N−1∑
n=0

δtα
1/2
1 ‖δtṽn‖ (4.58)

+ 2ρ max
n=0,...,N−1

{‖ũni ‖}α
1/2
1 max

n=0,..,N
{‖ṽn‖}

+

(
N−1∑
n=0

δt
∥∥∥α−1/2

1 ũn+1
i

∥∥∥2
)1/2(N−1∑

n=0

δt
∥∥ṽn+1

∥∥2

)1/2

. (4.59)

Now, using Theorem 4.1 and the definition of norm X1 (4.56), we can conclude that

〈
{vn} ,α

1/2
1

{
P⊥h [mn

i ]
}〉

X1×X′1
=

N−1∑
n=0

δtα
1/2
1

(
P⊥h

[
mn+1

i

]
, ṽn+1

)
. C ‖{vn}‖X1

.

Consequently, adding the three inequalities for i = 1, 2, 3 we have bounded∥∥∥{α1/2
1 P⊥h [mn

1 ]
}∥∥∥

X′1
+
∥∥∥{α1/2

1 P⊥h [mn
2 ]
}∥∥∥

X′1
+
∥∥∥{α1/2

1 P⊥h [mn
3 ]
}∥∥∥

X′1
≤ C (4.60)

The next step is to control the finite element component, that is, to say, the term

Ph [mn
1 +mn

2 +mn
3 ] .
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Let us define, for simplicity, the sequence mn
s =

∑3
i=1m

n
i . For this, we take equation

(4.28), considering qh = 0 and χh = 0, and vh as defined at the beginning of the proof.
Therefore, employing similar arguments to the previous development, we have that

N−1∑
n=0

δtα
1/2
1

(
Ph
[
mn+1

s

]
,vn+1

h

)
=
N−1∑
n=0

δtα
1/2
1

(
a · ∇un+1

h +∇pn+1
h −∇ · σn+1

h ,vn+1
h

)
=
N−1∑
n=0

δtα
1/2
1

〈
fn+1,vn+1

h

〉
−
N−1∑
n=0

α
1/2
1

(
δunh,vn+1

h

)
−
N−1∑
n=0

2ηsδtα
1/2
1

(
∇sun+1

h ,∇svn+1
h

)
+
N−1∑
n=0

δtα
1/2
1

(
ũn+1

1 ,a · ∇vn+1
h

)
−
N−1∑
n=0

δtα
1/2
1

(
σ̃n+1,∇svn+1

h

)
.α1/2

1 max
n=1,...,N

{‖vnh‖}
N−1∑
n=0

δt
∥∥fn+1

∥∥+ max
n=1,...,N

{‖unh‖}
N−1∑
n=0

δtα
1/2
1 ‖δtvnh‖

+ 2 max
n=0,...,N

{‖unh‖}α
1/2
1 max

n=1,...,N
{‖vnh‖}+

N−1∑
n=0

δt2η1/2
s

∥∥∇sun+1
h

∥∥∥∥vn+1
h

∥∥
+
N−1∑
n=0

δtα1
−1/2

∥∥ũn+1
1

∥∥∥∥vn+1
h

∥∥+
N−1∑
n=0

δtα
−1/2
3

∥∥σ̃n+1
∥∥∥∥vn+1

h

∥∥ . (4.61)

In particular, the three last terms have been obtained using the inverse estimate (4.27)
together with the definition of α1 and α3, which in particular imply:

η0

h
α

1/2
1 ≤ Cη1/2

0 ,
|a|
h
≤ α−1

1 ,
α

1/2
1

h
≤ α−1/2

3 .

The last inequality holds under the condition 2c3 ≤ c1, being c1 and c3 the constants of
the stabilization parameters α1 and α3. Using now the assumptions on the data, Cauchy’s
inequality for the last three terms of (4.61) and finally using Theorem 4.1, it follows that

〈
{vn} ,α

1/2
1 {Ph [mn

s ]}
〉
X1×X′1

=

N−1∑
n=0

δtα
1/2
1

(
Ph
[
mn+1

s

]
,vn+1

h

)
. C ‖{vn}‖X1

.

Therefore ∥∥∥{α1/2
1 Ph [mn

1 +mn
2 +mn

3 ]
}∥∥∥

X′1
≤ C (4.62)

The theorem follows from the addition of (4.60) and (4.62).
This result is analogous for the logarithmic formulation case, considering (4.54) and re-
placing ∇ · σn+1

h by
ηp
λ0
∇ · Ph

[
E ·ψn+1

h

]
in (4.61).

Theorem 4.4 (Stability in the dual norm X
′
3 for the constitutive equation). Under the

assumptions of the Theorem 4.1, assume also 2c3 ≤ c1, where c1 and c3 are the constants
of the stabilization terms α1 and α3 respectively. Then, there is a constant C such that∥∥∥{α1/2

3 mn
4

}∥∥∥
X′3
≤ C
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Proof. Let {τn} ∈ X be an arbitrary sequence, which can be split on τn = τnh + τ̃n, with
τnh = Ph [τn]. We can write (4.33) as

λ

2ηp
δσ̃n + δtα−1

3 σ̃n+1 = −δtP⊥h
[
mn+1

4

]
Now, we follow the same procedure as in Theorem 4.3: multiplying by α1/2

3 χn+1
h , integrat-

ing over Ω and adding up the result from n = 0 to N − 1, integrating by parts using the
discrete integration formula and using the Cauchy-Schwartz inequality, we have

N−1∑
n=0

δtα
1/2
3

(
P⊥h

[
mn+1

4

]
, χ̃n+1

)
=−

N−1∑
n=0

λ

2ηp
α

1/2
3

(
δσ̃n, χ̃n+1

)
−
N−1∑
n=0

δtα
−1/2
3

(
σ̃n+1, χ̃n+1

)
=

N−1∑
n=0

λ

2ηp
α

1/2
3 (σ̃n, δχ̃n)− λ

2ηp
α

1/2
3

(
σ̃N , χ̃N

)
+

λ

2ηp
α

1/2
3

(
σ̃0, χ̃0

)
−
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.

λ
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δtα
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λ
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+
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)1/2(N−1∑
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δt
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. (4.63)

Therefore, using Theorem 4.1 and the definition of the norm in X3 (4.56), we can conclude
that 〈

{χn} ,α
1/2
3

{
P⊥h [mn

4 ]
}〉

X3×X′3
=

N−1∑
n=0

δtα
1/2
3

(
P⊥h

[
mn+1

4

]
, χ̃n+1

)
. C ‖{χnh}‖X3

. (4.64)

The next step is to control the finite element component, that is, Ph [mn
4 ]. Now, we

use equation (4.28), considering qh = 0 and vh = 0, and χh as defined at the beginning of
the proof. Therefore, employing similar arguments to the previous development, we have
that

N−1∑
n=0

δtα
1/2
3

(
Ph
[
mn+1

4

]
,χn+1

h

)
=
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3

(
1

2ηp
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h −∇sun+1

h ,χn+1
h

)

+
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n=0

δtα
1/2
3

λ

2ηp

(
a · ∇σn+1

h − σn+1
h · ∇a− (∇a)T · σn+1

h ,χn+1
h

)
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=−
N−1∑
n=0
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2ηp
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h
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∥∥ . (4.65)

In particular, the two last terms have been obtained using the inverse estimate (4.27)
together with the definition of α1 and α3, which in particular implies:

C

2η0
≤ α−1

3 ,
λ

2η0

|a|
h
≤ α−1

3 ,
λ

2η0
|∇a| ≤ α−1

3 ,
α

1/2
3

h
≤ α−1/2

1 .

As in Theorem 4.3, the last inequality holds under the assumption 2c3 ≤ c1, being c1

and c3 the constants of the stabilization parameters α1 and α3.
Using the assumptions on the data, Cauchy’s inequality for the last two terms of (4.65)

and finally using Theorem 4.1, it follows that

〈
{χn} ,α

1/2
3 {Ph [mn

4 ]}
〉
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=
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4
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. ‖{χnh}‖X3

. (4.66)

The theorem follows from (4.64) and (4.66). For the logarithmic formulation, there are
slight differences in the for part of the proof appear. In that case we have to consider the
expression ofmn

4 (4.55). So, in the step where the finite element component is controlled,
we will use equation (4.34), considering qh = 0 and vh = 0, and χh as defined above.
Therefore, we have that
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+ 2
λ

2λ0
max

n=0,...,N
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N−1∑
n=0

δtα3
−1/2

∥∥σ̃n+1
∥∥∥∥χn+1

h

∥∥+ C

N−1∑
n=0

δtα
−1/2
1

∥∥ũn+1
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and this result will be analogous to the one obtained for the standard formulation.

Following the same structure as in the analysis done in [46], we include another theo-
rem, which is easily obtained from Theorem 4.3 and Theorem 4.4. For the proof, the case
of the backward Euler time integration must be considered in all this section. Therefore
the next inequalities will be taken into account; both used, in the proof of Theorems 4.1
and 4.2:

ρ

M∑
n=0

‖δunh‖
2 + ρ

(
M∑
n=0

∥∥δũn1∥∥2
+

M∑
n=0

∥∥δũn2∥∥2
+

M∑
n=0

∥∥δũn3∥∥2

)
≤ C, (4.67)

M∑
n=0

λ

2ηp
‖δσnh‖

2 +

M∑
n=0

λ

2ηp

∥∥δσ̃n∥∥2 ≤ C. (4.68)

For the logarithmic formulation, the inequality to consider would be:

M∑
n=0

λ

2λ0
‖δPh [E ·ψnh]‖2 +

M∑
n=0

λ

2ηp

∥∥δσ̃n∥∥2 ≤ C. (4.69)

Now we will define the following norm, that will replace norm ‖·‖Xi
(4.56):

‖F‖Yi :=

(
N∑
n=0

max {δt,αi} ‖fn‖2
)1/2

. (4.70)

Theorem 4.5 (Stability in the dual norm Y
′). Under the assumptions of Theorems 4.3

and 4.4, assume also that {fn} ∈ `2(L2(Ω)), u0
h ∈ L

2(Ω) and σ0
h ∈ L

2(Ω). Then there
are constants C1 and C2 such that
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1 Ph (mn
1 +mn

2 +mn
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Y ′1
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∥∥∥{α1/2

3 mn
4

}∥∥∥
Y ′3
≤ C2.

Proof. For the terms of the momentum equation, a), the only difference with Theorem 4.4
is that the following terms must be bounded as follows:

N−1∑
n=0

ρα
1/2
1
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δũni , ṽn+1

)
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, (4.71)
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. (4.72)
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The first expression would be employed in step (4.59), where the sub-grid scales are
bounded, and the second expression would be used in step (4.61). In this last case the
fields in the finite element space are bounded. Using the properties defined previously,
(4.71) and (4.72) will be bounded finally by C ‖vn‖Y , from where the result a) follow as
in Theorem 4.3.

Now in order to bound the terms corresponding to the constitutive equation, b), the
inequality used is:

N−1∑
n=0

λ

2ηp
α

1/2
3

(
δσ̃n, χ̃n+1

)
≤

(
N−1∑
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λ
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)1/2

. (4.73)

Employing, again, the properties defined previously(4.68), we can bound (4.73) by C ‖χn‖Y ,
from where the result b) follows analogously as in Theorem 4.4.

For the logarithmic formulation the arguments would be analogous for a) and b). The
only difference is that in b) the inequality for bounding the finite element space component
is the next one:
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λ

2λ0
α

1/2
3

(
δPh [E ·ψnh] ,χn+1

h

)
≤

(
N−1∑
n=0

λ

2λ0
‖δPh [E ·ψnh]‖2

)1/2(N−1∑
n=0

λ

2λ0
α3 ‖χnh‖

2

)1/2

.

(4.74)

And finally using (4.69), the expression above would be bounded by C ‖χnh‖Y .

From the last Theorem 4.5 the next result is straightforward to prove the next result,
which holds the inequality δt ≥ Cαi for i = 1, 3 is satisfied.

Theorem 4.6 (Stability in the natural norm). Under the assumptions of Theorem 4.5,
assume also that the stabilization parameters satisfy α1 ≤ Cδt and α3 ≤ Cδt as h → 0
and δt → 0, and suppose that {fn} ∈ `2

(
L2(Ω)

)
, u0

h ∈ L
2(Ω) and σ0

h ∈ L
2(Ω). Then,

there are constants C1 and C2 such that
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4
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Proof. If inequalities α1 ≤ Cδt and α3 ≤ Cδt hold, it is immediately proved from the
definition of expression (4.70) that Y = `2

(
L2(Ω)

)
. As this space is reflexive, this implies

that Y = Y ′. Therefore this theorem is proved through the Theorem 4.5 directly.

To sum up, this numerical analysis shows that the use of time-dependent sub-grid
scales in a viscoelastic fluid flow formulation is a stable method. In this section a simple
linearized problem has been analyzed. In comparison with other works where the Navier-
Stokes equations are considered, apart from giving stability for velocity and pressure, also
stability for stresses in the case of the standard formulation and for the tensor ψ in the case
of the logarithmic formulation have been proved. In addition, we have proved control over
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the divergence of stresses, apart from the convective derivative and the pressure gradient,
and for the constitutive equation, gaining stability over all of these terms. Also observe
the constants in the stability estimates do not depend on the coefficients of the equation;
therefore, they do not blow up as η0 → 0 or λ→ 0.

4.6 Numerical results

This section aims to show the importance of dynamic sub-grid scales to solve viscoelastic
problems, and particularly the suitability of the term-by-term stabilization method de-
scribed along the chapter for both possible formulations, standard and logarithmic. First
of all, in Section 4.6.1, a convergence analysis for several discretization schemes is per-
formed. Secondly, in Section 4.6.2, we display the typical flow over a cylinder problem
for Re = 100, where the different formulations proposed are compared for several Weis-
senberg numbers and time steps δt. Thirdly, a dynamic lid-driven cavity flow problem is
presented in Section 4.6.3 in order to discuss the efficiency and stability of the dynamics
sub-grid scales in a more complex benchmark for two different cases: a stationary one with
Re = 0, and a dynamic forced regime with Re = 100. Finally the formulation is tested in a
three-dimensional lid driven cavity in Section 4.6.4 as an extension of the two-dimensional
dynamic version.

4.6.1 Convergence test

This numerical example is done with the goal of studying the convergence of the temporal
schemes using time-dependent sub-grid scales. This convergence study has been carried
out for both, standard and logarithmic formulations. As it was detailed in Section 2.5.1,
the domain is a unit square, in this case discretized by 256 elements Q1. Regarding the
boundary and the initial conditions are prescribed following the time-dependent analytical
solutionfor the standard formulation:

ux(x, y) = (4x+ 6)f(t), σxx(x, y) = (2x+ 3)f(t),

uy(x, y) = −(4y − 6)f(t), σyy(x, y) = (2y + 3)f(t),

p(x, y) = xf(t), σxy(x, y) = (x+ y)f(t),

where the x and y components of the velocity and the stress tensor have been indicated
with a subscript, and f(t) = cos(4πt) exp(−t). These velocity, pressure and elastic stress
fields do not satisfy the momentum or constitutive equation. On the other hand, for the
logarithmic formulation instead of stresses we define the solution over the variable ψ and
therefore the analytical solution will be:

ux(x, y) = (4x+ 6)f(t), ψxx(x, y) = (2x+ 3)f(t),

uy(x, y) = −(4y − 6)f(t), ψyy(x, y) = (2y + 3)f(t),

p(x, y) = xf(t), ψxy(x, y) = (x+ y)f(t),

Therefore we have to add a some forcing terms in the equations in the domain Ω. For the
standard case these are as follows:

fmom = ρ
∂u

∂t
+ ρu · ∇u−∇ · (2ηs∇su+ σ) +∇p

fcont = ∇ · u
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Rate of convergence

Scheme u p σ or ψ

BDF1 1 0 1
BDF2 2 1 2
BDF3 3 2 3
CN 2 1 2

Table 4.2: Convergence test. Rate of convergence expected.

f cons =
1

2ηp
σ −∇su+

λ

2ηp

(
∂σ

∂t
+ u · ∇σ − σ · ∇u− (∇u)T · σ

)
Analogously, for the logarithmic formulation, the force terms are:

fmom = ρ
∂u

∂t
− ηp
λ0
∇ · exp(ψ)− 2ηs∇ · (∇su) + ρu · ∇u+∇p

fcont = ∇ · u

f cons =
1

2λ0
(exp(ψ)− I)−∇su+

λ

2λ0

(∂ exp(ψ)

∂t

+ u · ∇ exp (ψ)− exp (ψ) · ∇u− (∇u)T · exp (ψ) + 2∇su
)

The stabilized finite element formulation employed in this test is the Split-OSS, tested
for a stationary problem in Section 2.5.1 (Chapter 2). In this case the error is measured
in different norms, `∞

(
L2 (Ω)

)
which is the maximum of the sequence of spatial L2-norms

of the solution and `2
(
H1 (Ω)

)
, which is the `2-norm of the sequence of spatial H1-norms

of the solution. The convergence has been checked for four different temporal schemes:
BDF1, BDF2, BDF3 and Crank-Nicolson (CN). The Weissenberg numbers considered
are We = 0.25, We = 0.5 and We = 1 (considering the Weissenberg number as the
dimensionless number defined by this expression We = λU

L ). The optimal convergence rate
expected is presented in Table 4.2. Results for the standard formulation are presented in
Figure 4.2, and for the logarithmic formulation in Figure 4.3. The pressure field has not
been plotted in none of these figures, although the convergence is optimal as for the other
unknowns.

4.6.2 Flow over a cylinder

In this subsection, the well-known flow over a cylinder problem is used to achieve several
objectives: firstly, to compare the various stabilization methods proposed (dynamic and
quasi-static formulations) in terms of stability when the time step is small, and when
the Weissenberg number increases. Secondly, the solution obtained with the proposed
formulations when using rather coarse meshes is compared with the one obtained with a
fine mesh, assessing the suitability of the methods when using coarse meshes. Lastly, the
behavior of velocity sub-grid scales is studied comparing the results of the residual-based
and the term-by-term formulations.

Setup

The computational domain is defined as a rectangle of length 16 and width 8, with a
unitary cylinder centered at point (4,0), as it is plotted in Figure 4.4.
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Figure 4.2: Convergence test. Discrete `∞(L2(Ω))-errors for velocity and stress fields using
BDF1, BDF2, CN and BDF3 schemes for standard formulation.
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Figure 4.3: Convergence test. Discrete `∞(L2(Ω))-errors for velocity and ψ fields using
BDF1, BDF2, CN and BDF3 schemes for logarithmic formulation.
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Figure 4.4: Flow over an unconfined cylinder. Domain and computational boundaries.

Figure 4.5: Flow over an unconfined cylinder. Computational mesh.

The boundary conditions of the problem are as follows. The inflow velocity of the
problem is prescribed in Γin as ux = 1 and uy = 0, while Γtop and Γbottom are considered
fictitious walls where uy = 0 and ux is left free. For the outflow boundary Γout the
velocity is left free in both components, and finally, for the wall of the cylinder Γcyl non-
slip conditions are set, that is, velocity is set to zero. Note that the stress components
have been let free in all boundaries.

The benchmark has been computed for different Weissenberg numbers, defined by
We = λU

L , where U and L are the characteristic velocity and length respectively, and
the Reynolds number, defined by Re = ρUL

η0
, has been set to 100. The viscoelastic fluid

parameters are: ρ = 1, β = 0.5 and η0 = 0.01.
The mesh used to compute this numerical example is rather coarse, due to the fact

that we aim to check that our methods do not need to fulfill the δt ≥ Ch2 inequality in
order to obtain stable solutions. In other words, we show that the formulation proposed
is independent of the space-time discretization, without looking for an accurate result. In
particular, the mesh employed is unstructured, with an element size around the cylinder
of hmin = 0.01, and coarser at the rest of the domain (maximum element size hmax = 0.4).
For the computation of this benchmark a BDF1 time discretization scheme has been used;
the time step considered will be indicated in each case.

Stability study

First of all, we pretend to show the stability of the proposed formulation employing the
time-dependent sub-grid scales explained in previous subsections, in comparison with the
quasi-static formulation. We have considered the orthogonal residual based VMS formu-
lation (see [26]) and the term-by-term stabilization in the standard formulation. Also, a
wide range of time step sizes have been contemplated to show numerically that the dy-
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P1 elements Time step (δt)
Method 0.050 0.0250 3.125× 10−3 1.562× 10−3

Static-OSS Solved Failed - -
Dyn-OSS Solved Solved Solved Solved
Static-SOSS Solved Solved Solved Failed
Dyn-SOSS Solved Solved Solved Solved

Table 4.3: Flow over an unconfined cylinder. Stability study: solved and failed cases for
We = 0.125, α1,min ≈ 1.156× 10−3 using P1 elements.

P2 elements Time step (δt)
Method 0.025 0.0125 3.906× 10−4 1.953× 10−4

Static-OSS Solved Failed - -
Dyn-OSS Solved Solved Solved Solved
Static-SOSS Solved Solved Solved Failed
Dyn-SOSS Solved Solved Solved Solved

Table 4.4: Flow over an unconfined cylinder. Stability study: solved and failed cases
We = 0.125, α1,min ≈ 7.4× 10−5 using P2 elements.

namic formulation is more stable than the quasi-static one, in particular for time steps up
to δt ≈ α1,min (minimum of the first stabilization parameter) for linear (P1) and quadratic
(P2) elements.

Regarding the space discretization, Figure 4.5 has been employed to elaborate this
comparative, resulting in α1,min ≈ 1.156× 10−3 when P1 elements are considered. For P2
elements the minimum stabilization parameter is α1,min ≈ 7.4×10−5. Note that α1,min is a
value obtained from each problem, and depends directly on the h (element size) magnitude.

In all these cases, the Weissenberg number has been fixed to 0.125, that is a low value,
in order to avoid failures associated with a high elasticity.

Results are summarized in Table 4.3, where the suffix Static indicates the cases solved
through a quasi-static method, whereas Dyn refers to the dynamic sub-grid scale methods.
On the other hand, the term-by-term stabilization method is denoted by SOSS and OSS is
labeled for the residual-based orthogonal VMS method. In both cases, linear and quadratic
elements, the dynamic method is the most efficient, as it has been argued in the preceding
section. In both cases (P1 and P2 elements), the most unstable stabilization method is the
quasi-static formulation together with the residual-based stabilization, which is not able to
solve the problem for δt / 21α1,min for linear elements. The quasi-static formulation using
a split stabilization is particularly stable in comparison with the residual based. In this
case, for both types of elements, the scheme presents instabilities approximately when δt ≈
α1,min. For smaller time steps, only the dynamic stabilization methods achieve convergence
of the problem. Note that the instability in principle appears when the inequality δt ≥
Cαn+1

1 is not fulfilled.
A second comparative study has been carried out. In this case, the high Weissenberg

number instability has been tested, solving the flow past a cylinder problem for several
Weissenberg numbers. Let us recall that this dimensionless number represents the elasticity
in the flow, therefore when elasticity is high the computation of the flow leads to several
difficulties, among them, the exponential growth of the elastic stresses. In Table 4.5,
the dynamic formulation of the residual-based and the term-by-term stabilization for the
standard formulation and the logarithmic formulation are tested for different Weissenberg
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Weissenberg (We)
Formulation 0.125 0.25 0.375 0.5
Std-OSS Solved Failed - -
Std-SOSS Solved Solved Solved Failed
Log-OSS Solved Solved Failed -
Log-SOSS Solved Solved Solved Solved

Table 4.5: Flow over an unconfined cylinder. Stability study: solved and failed cases for
the two dynamic formulations (Std: Standard and Log: Logarithmic), δt = 0.1.

Weissenberg (We)
Formulation 0.125 0.165 0.25 0.5
Std-Static Solved Failed - -
Std-Dyn Solved Solved Solved Failed
Log-Static Solved Solved Failed -
Log-Dyn Solved Solved Solved Solved

Table 4.6: Flow over an unconfined cylinder. Stability study: solved and failed cases for
S-OSS formulations, using dynamic and quasi-static sub-grid scales, δt = 0.1.

numbers. In all cases, the time step is fixed at δt = 0.1, and continuation techniques have
not been employed.

Residual-based methods are the less stable ones and they fail for Weissenberg numbers
equal to 0.25 and 0.375, for standard and logarithmic formulations, respectively. It is
remarkable that the split term-by-term stabilization methods show a suitable robustness
in spite of using the standard formulation, as it can be observed in Table 4.5 for We = 0.375.
Nevertheless, the logarithmic formulation together with the dynamic sub-grid scales is the
most effective method: while the other methods are not able to converge for We = 0.5,
the dynamic logarithmic formulation is capable of converging in this case.

The conclusion is that for problems with a δt sufficiently small such that the inequality
δt ≥ Cαn+1

1 is not satisfied (at a certain time step n), and whose Weissenberg number is
particularly high, only a dynamic term-by-term logarithmic formulation will be effective.
We have tested numerically that if, for instance, δt = 1.562 × 10−3 for P1 elements is
used, only the dynamic term-by-term stabilization is stable (see Table 4.3). However, if
we contemplate a flow with a Weissenberg number equal to 0.5, this model would not be
able to converge unless a logarithmic formulation is used.

Finally, a study has been performed, putting the focus on the Split-OSS methods
and how the dynamic formulation can affect stability not only when the time step is
small, but also in terms of elasticity. In Table 4.6 the most significant results have been
summarized, the conclusion being that dynamic formulations are more efficient avoiding
elastic instabilities, permitting the computation of fluid flows with a higher Weissenberg
number. For example, for the logarithmic conformation formulation, α1,min ≈ α1dyn,min ≈
0.119× 10−2, i.e., the stabilization parameter of the momentum equation remains similar
in both problems, dynamic and quasi-static, while the constitutive stabilization parameter
differs significantly (α3,min ≈ 0.335 × 10−2 and α3dyn,min ≈ 0.562 × 10−4). This is due to
the structure of the dynamic parameter, which apart from depending on time step size also
depends on the parameter λ, directly related with the dimensionless Weissenberg number.

It is clear that the logarithmic formulation is more expensive than the standard one
due to the computations of the exponential of the variable ψ, among others [119]; this
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Weissenberg

Figure 4.6: A general scheme of S-OSS formulations (standard and logarithmic) and meth-
ods (quasistatic or dynamic sub-grid scales) for solving viscoelastic transient problems
depending of the characteristics of the problem.

needs to be taken into account when selecting the proper formulation and stabilization
method for a given problem. In Figure 4.6 a general scheme has been displayed for the
Split-OSS formulations, where the characteristics of the problem determine the use of
dynamic/quasi-static sub-grid scales and logarithmic/standard formulations. The vertical
axis represents the Weissenberg number magnitude, and the horizontal axis corresponds
the size of the time step. In this case, labels “big” and “small” refer to magnitudes in
comparison with the stabilization parameter α1,min and the quoted inequality δt ≥ Cαn+1

1
for all n. Note that the thresholds are not sharp, due to the fact that the dynamic
stabilization is also useful to deal with some high Weissenberg problems and it could avoid
the need of using the logarithmic formulation to solve them, which is much more expensive
from the computational point of view. Obviously, the dynamic stabilization can also be
used in the case of large time steps, although in this case the quasi-static version might
also work and it is cheaper; the important point is that the dynamic formulation must be
used for small time steps (small in the sense explained above).

Comparison between methods

In this subsection we compare the solution obtained by using the proposed methods con-
sidering a low Weissenberg value, set to 0.125.

Firstly, in Figure 4.7, pressure, velocity and stress have been plotted for the solution
obtained with the dynamic term-by-term formulation, considering a time step δt = 0.1,
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(a) P1 elements (b) P2 elements

(c) P1 elements (d) P2 elements

(e) P1 elements (f) P2 elements

Figure 4.7: Flow over an unconfined cylinder. Contours of the pressure, velocity and
component xx of the elastic stress, δt = 0.1.
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for linear (left) and quadratic (right) elements. The differences found between the results
obtained with P1 and P2 elements are due to the coarse discretization used; due to this,
solutions obtained using P2 elements are more accurate and less mesh-dependent. Note
that for higher Weissenberg numbers, the results are very similar qualitatively, with the
exception of the elastic stress tensor, whose maximum values increase significantly on the
wall of the cylinder.

The evolution of the main fields in a downstream point situated at (6, 0) is displayed
in order to compare the solution between stabilization methods in Figure 4.8. The graphs
show curves along time when oscillatory solutions are achieved for the second component of
the velocity, the pressure and the xx component of the stresses. Also, results are depicted
for different time step sizes: for δt = 0.1 and for δt = 1.5625 × 10−3, in other words,
δt ≈ α1,min. For the smaller time step, only the dynamic methods are stable, as detailed
in Table 4.3, for this reason only OSS and S-OSS dynamic cases are taken into account.

As explained in [30], the instability derived from the space-time discretization restric-
tion can be identified in the evolution of pressure, as shown in Figure 4.8c when the static
OSS stabilization method is used.

On the other hand, in Figure 4.8a we can observe that the quasi-static sub-grid scales
together with the residual-based stabilization is the less dissipative one, followed by the
dynamic sub-grid scales version. In comparison, the term-by-term formulation is more
diffusive than the orthogonal residual-based methods. Additionally, the dynamic formu-
lation is also more dissipative than the quasi-static version. We need to remark that the
differences between the residual-based and the term-by-term formulations appreciated in
Figure 4.8 are caused directly by the coarse mesh employed, since for finer discretizations
no significant differences are found. This figure helps to understand why the dynamic
formulation for the term-by-term formulation is in general more stable, and this is be-
cause when the approximation is not fine enough, it tends to be more diffusive than the
quasi-static and residual-based counterpart.

The next figures show an interesting result. In Figures 4.9 and 4.10 the components
x and y of the sub-grid scales are plotted for both dynamic formulations utilized: the
orthogonal residual, denoted by ũ, and the split term-by-term, denoted in Figures 4.9 and
4.10 as ũ1, ũ2 and ũ3. At first sight, the sub-grid scales obtained by the split formulation
are very different to the ones of the orthogonal residual method. The existence of a dif-
ference between both methods is evident, because while in the term-by-term formulation
only local inner products of the convective term, the pressure gradient and the divergence
of the stress are considered, the residual stabilization takes into account all of the cross
product terms of these operators applied to the unknowns and the test functions. Further-
more, the sub-grid scales of the velocity are not similar in both methods. However, when
the three sub-grid scales are added (denoted by

∑3
i=1 ũi), the result is very similar to the

sub-grid scales obtained with the residual based formulation, as illustrated in Figures 4.9
and 4.10. This effect has already been reported for the Navier-Stokes problem in [30]. The
results for quadratic elements are shown in Figure 4.10. The general trend is similar too,
although the presence of the Laplacian term in the residual-based formulation is probably
the cause for the observed differences. These figures serve to justify the splitting of the
velocity sub-grid scales that we have assumed to motivate the method proposed in this
chapter (see the second paragraph on Section 4.4.2)

In this case, the solutions obtained with the logarithmic formulations are identical to
the standard formulation. For this reason, the type of formulation (standard or logarithmic
reformulation) has not been specified in this comparative.
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(a) δt = 0.1 (b) δt = 1.5625× 10−3

(c) δt = 0.1 (d) δt = 1.5625× 10−3

(e) δt = 0.1 (f) δt = 1.5625× 10−3

Figure 4.8: Flow over an unconfined cylinder. Comparison of the evolution of the fields
between the different stabilization methods for δt = 0.1 (left) and δt = 0.0015625 (right)
at the point downstream (6,0).
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Figure 4.9: Flow over an unconfined cylinder. Comparison of evolution of the sub-grid
scales at δt = 0.1 using P1 elements at the point downstream (6,0).

Figure 4.10: Flow over an unconfined cylinder. Comparison of the evolution of the sub-grid
scales at δt = 0.1 using P2 elements at the point downstream (6,0).
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(a) (b)

Figure 4.11: Lid-driven cavity. Schematic representation of computational boundaries (a)
and computational mesh (b).

4.6.3 Lid-driven cavity flow problem

The lid-driven cavity flow is a good example to illustrate the differences that can be gener-
ated by the viscoelastic contribution in the fluid, due to the elastic stresses dependence on
the previous deformation history. In this case, we have solved it to prove that the dynamic
term-by-term formulation is also efficient.

Steady-state case at Re = 0

A fluid confined in the unit square is considered, whose boundaries are solid walls except
the top boundary, which has a prescribed velocity in the x direction, as shown in Figure
4.11a. Because the viscoelastic fluid cannot sustain deformation at a stagnation point,
the motion of the lid must be smooth and the gradient of the velocity should be zero at
corners. For this reason, on the boundary Γtop the horizontal velocity has been chosen as
follows:

ux(x, 1, t) = 8

[
1 + tanh

(
8

(
t− 1

2

))]
x2(1− x)2,

uy(x, 1, t) = 0,

where the function 1 + tanh
(
8
(
t− 1

2

))
has a smooth transition, being zero at t = 0; ux

attains the maximum value (u = 1) when t > 1
2 at the center, x = 1

2 . In Γwall, velocity
is set to zero in both components. The inflow boundary conditions for the elastic stress
tensor are not needed since there is no inflow boundary in this problem. As characteristic
velocity, the maximum lid velocity has been taken to compute the dimensionless num-
bers, and the characteristic length is 1, the size of each square’s side. The considered
Weissenberg number is We = 1.0, and the Reynolds number Re = 0. Referring to the
spatial discretization, a structured mesh composed by 10 000 bilinear Q1 elements is used
(see Figure 4.11b) and the time step considered is δt = 0.0025. Concerning to the time
discretization scheme, a BDF1 scheme has been used.

This test is carried out with the aim of comparing the accuracy of the dynamic and
the quasi-static stabilization methods in a stationary problem, comparing the results with
other authors [27, 51, 64, 147]. In our case neither continuation iterative methods to treat
the convergence, nor additional sub-relaxation schemes have been employed.

In Table 4.7 we show that the problem is solved successfully only for the combination
of the logarithmic formulation and the dynamic sub-grid scale stabilization. The steady
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Stabilization S-OSS
Formulation Quasi-static Dynamic
Standard Failed - time step 265 Failed - time step 1316
Logarithmic Failed - time step 240 Solved

Table 4.7: Lid-driven cavity. Comparison between different formulations with We = 1.0,
Re = 0, δt = 0.0025. The time step at which convergence fails is indicated in each case

state tolerance is 10−5, and for each time step three non-linear Newton-Raphson iterations
are employed. As in the cylinder example, α1,min ≈ 0.83 × 10−5 ≈ α1dyn,min, therefore
the dynamic sub-grid scales for the momentum equations are not peremptory because the
instability is not originated by a small time step. In this case, the high Weissenberg number
is the main problem. If we compare the stabilization methods, we see that α3,min ≈ 0.25,
whereas α3dyn,min ≈ 0.239 × 10−2. This notable difference is due to the structure of
parameter α3dyn,min, which depends directly on the magnitude of λ. This structure of the
parameter combined with the log-conformation formulation allows to properly solve this
problem. It can be observed that while the quasi-static options fail early in the simulation,
even in the log-conformation reformulation, the dynamic stabilization is, from this point
of view, much more efficient for high Weissenberg numbers.

It must be remarked that although in [27], convergence was achieved with a quasi-
static and standard formulation, a fractional step scheme was used to solve it, together
with some continuation and sub-relaxation methods to help convergence, while in our case
only a monolithic method with a fixed point iterative scheme without extra sub-relaxation
artifacts is considered.

In Figure 4.12, cuts of the velocity components have been displayed, whereas in Figure
4.13 cuts of the components of ψ are plotted with the aim of comparing the results with
other works such as [51, 64, 84]. The results are extremely similar to those by Fattal and
Kupferman. For the component ψyy, the solution is compared with the results in [51]. The
small differences found between our work and other publications probably are due to the
differences with the mesh used. For example, in [51] the mesh employed is extremely fine
near the boundaries in contrast with the uniform relatively coarse mesh used in our case.

Dynamic case at Re = 100

In this case the boundary conditions are similar to the steady-state case, with the exception
of the condition imposed over the boundary Γtop, where now the horizontal velocity has
been selected as:

ux(x, 1, t) = 16x2(1− x)2 sin(πt),

uy(x, 1, t) = 0.

The sin(πt) term has been added to force the lid velocity to be time dependent and
dynamic. Additionally, the Reynolds number (Re = ρUL

η0
) will be considered equal to 100.

The mesh and time-step size considered are the ones defined in the stationary case, but
in this occasion the time discretization scheme is BDF2. We will show the results obtained
under the assumptions commented, and these will be compared with the solution shown
in [27], where the authors studied the same benchmark in the quasi-static case employing
a fractional step method developed in the same work.

If the time step is small, the quasi-static method is incapable of solving the dynamic
problem, considering that now the stabilization parameter is α1,min ≈ 4.1×10−4. In Figure
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Fattal & Kupferman (2005)

Present Study

Fattal & Kupferman (2005)

Figure 4.12: Lid-driven cavity. Results at time t = 8, for We = 1 and Re = 0. Velocity
profiles along the lines x = 1/2 and y = 3/4.

4.14, streamlines are displayed for two different time steps, t = 1.5 and t = 2.0, and in
Figure 4.15 the component σxy of the stress has been plotted. These results are shown
in order to do a qualitative study, similar snapshots are presented in [30]. In addition, in
Figure 4.15 the isolines that correspond to the component xy of the stress sub-grid scale
have been presented as isocontours. The same case has been checked for the dynamic
logarithmic formulation, obtaining similar results.

4.6.4 Three-dimensional case

In order to check that the proposed stabilization method works well also in the three-
dimensional case, we have simulated the lid driven cavity problem in the 3D case. The
problem is just an extension of the two-dimensional case developed in subsection 4.6.3.

Setup

The three-dimensional lid driven cavity problem is solved for an unit cube, as displayed
in Figure 4.16a. On the top of the lid (denoted by Γtop in the scheme) the components of
the velocity are prescribed to:

ux(x, y, 1, t) = 256x2(1− x)2y2(1− y)2 sin(πt),

uy(x, y, 1, t) = 0,

uz(x, y, 1, t) = 0,

and velocity is fixed to zero at the rest of boundaries (Γwall). Similar to Subsection
4.6.3, the boundary condition imposed on the top is due to two reasons: on the one
hand the necessity of imposing a smooth condition at the corners, and on the other hand
the necessity of a time-dependent boundary to make the problem dynamic. As in the
two-dimensional case, no boundary conditions are required for the stresses. The physical
properties considered for the problem are a Weissenberg number of 0.5 and a Reynolds
number equal to 100.
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Figure 4.13: Lid-driven cavity. Results at time t = 8, for We = 1 and Re = 0. ψ profiles
along the lines x = 1/2 and y = 3/4.
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(a) t = 1.5 (b) t = 2.0

Figure 4.14: Lid-driven cavity. Streamlines using the dynamic Split-OSS method for
We = 1 and Re = 100.

(a) t = 1.5 (b) t = 2.0

(c) t = 1.5 (d) t = 2.0

Figure 4.15: Lid-driven cavity. Contours of the component xy of the stresses (top), and
of the sub-grid scale (bottom), using the Split OSS method for We = 1 and Re = 100.
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(a) (b)

Figure 4.16: Lid-driven cavity. Schematic representation 3D and computational bound-
aries (a) and computational mesh (b).

The numerical spatial discretization consists in 15625 trilinear Q1 hexaedral elements,
and 17 576 nodes, plotted in Figure 4.16b. Finally, referring to the time discretization, a
BDF1 time integrator is employed together with a time step size of δt = 0.01 and a time
interval from 0 to 2 seconds.

Results

The aim of this problem is to demonstrate that the dynamic sub-grid scale formulation
is able to solve three-dimensional cases; we do not have any reference to compare the
accuracy of our results, although the mesh employed can be considered coarse for the
problem being solved. No significant differences have been found between our results and
those reported in [27].

In Figure 4.17 we have plotted isolines of some relevant fields in cuts defined by planes
x = 0.5, y = 0.5 and z = 0.5, at time t = 1.5. In particular, Figure 4.17a shows the
distribution of the pressure, Figure 4.17b the first component of the velocity, and finally,
Figures 4.17c and 4.17d display the distribution of the component xy of the stresses and the
sub-grid scales of the stresses, respectively. The problem has been run using the dynamic
term-by-term standard and logarithmic formulations, obtaining very similar results.

Streamlines in the cut-plane y = 0.5 and for two different times (t = 1.5 and t = 2.0)
are shown in Figure 4.18.

4.7 Conclusions

Along this chapter, various dynamic sub-grid scales VMS-stabilization methods have been
proposed with the goal of solving viscoelastic flow problems. The main ideas have been
applied to the log-conformation reformulation [63] of the viscoelastic equations, originally
proposed in [119]. For both formulations (standard and logarithmic), two different stabi-
lization methods have been designed: one based on the residual of the equations, and the
second one based on a split term-by-term stabilization for the momentum equation. The
stabilized methods defined in this chapter allow to solve time-dependent problems typically
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(a) (b)

(c) (d)

Figure 4.17: Lid-driven cavity. Contours in some cuts for different fields in the 3D domain
at t = 1.5.
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(a) t = 1.5 (b) t = 2.0

Figure 4.18: Lid-driven cavity. Streamlines in a cut-plane y = 0.5 of the three dimensional
domain.

where two different sources of instability can appear simultaneously: the one originated by
anisotropic space-time refinement when the time step is small and the well-known stress
exponential growth typical of high Weissenberg numbers of viscoelastic problems. More-
over, the numerical analysis of stability for both formulations considering time-dependent
sub-grid scales has been developed for the term-by-term stabilization approach. We can
conclude that the method is stable from the analysis point of view, considering a simple
setting.

The proposed methods have been analyzed extensively in several benchmarks, us-
ing linear and quadratic elements, structured and unstructured meshes, doing different
comparatives between the quasi-static and dynamic stabilization methods to show the
efficiency and robustness of the new strategies. The results obtained are particularly re-
markable due to the high Weissenberg number reached with the dynamic formulation,
which remains stable even if the standard formulation is considered, apart from evident
benefits in anisotropic space-time discretizations when the time step is small. In all our
numerical experiments, we have found the term-by-term stabilization for the momentum
equation more robust than the residual-based one, and the dynamic version of the sub-grid
scales more robust than the quasi-static one. This is independent of whether the standard
or the logarithmic formulations are employed, the latter being obviously more successful
than the former in reaching high Weissenberg numbers. Therefore, the combination of
dynamic sub-grid scales in the term-by-term stabilization and the logarithmic formulation
of the equations is capable of solving problems with higher elasticity than all the other
options.



Chapter 5

The purely elastic instability

5.1 Abstract

The aim of this chapter is to reproduce problems which show the purely elastic phenomena.
For this, different tools have been employed to obtain an accurate and efficient solution.
First, the logarithmic formulation is crucial to deal with the high Weissenberg number
problems and to obtain converged solutions. Second, we have included time-dependent
sub-grid scales in our finite element term-by-term stabilization approach, based on the
variational multiscale (VMS) method, in order to obtain stable solutions. This allows
us to avoid instabilities related with small time step in relation with the spatial grid
discretization, a common issue in viscoelastic flow formulations. Third, the problem has
been implemented using a fractional step scheme to reduce an expensive computational
cost, and important savings are shown in this respect. The numerical scheme has been
tested using some numerical examples, and finally, a case which shows the purely elastic
instability has been computed.

5.2 Background

The flow patterns in viscoelastic fluids can be highly dynamic and, in some cases, chaotic
due to the elastic component of the fluid and the convective nature of the constitutive
equation. That behavior is common even in quasi non-inertial flows [57]. In these cases
non-linear rheological effects can manifest through the generation of large normal stresses
which result in complex flow phenomena causing elastic turbulence [154]. Elastic turbu-
lence was experimentally observed first by Steinberg and Groisman [77], and although
there is no common agreement on the definition of “turbulence”, the term is employed in
this context due to the fact that this phenomenon showing many characteristics similar to
inertial turbulence: the flow exhibits an increment in resistance and fluid elasticity, inten-
sified mixing of mass and a wide range of activated temporal and spatial frequencies. The
dominant process depends strongly on the values of the Weissenberg number, and occurs
for relatively low Reynolds numbers. In [79] it is shown that elasticity-induced turbulence
can be obtained through a moderate increase in the We number. In these conditions, the
features of the flow are comparable to those observed in hydrodynamic turbulence for high
Reynolds number.

This flow regime is found in applications such as microfluids and the addition of poly-
mers to the fluid can be employed to accelerate the phenomena, for example in mixing [78],
emulsification and heat transfer [158]. The study of the dynamics of microscopic objects
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in fluctuating flows is also an application of these kind of solutions [111]. Moreover, other
typical situations where this physical phenomenon can be observed are the flow in micro-
channels or cross-flows, where the increment in normal stresses promotes the generation
of boundary layers with patterns similar to those of viscous turbulence [59, 140].

Regarding numerical simulation, elastic turbulence is especially challenging due to
several reasons, such as those specified in [82]. On the one hand the constitutive models
of viscoelastic fluids are based on rudimentary approximations and do not put the focus
on relevant aspects of polymer dynamics. On the other hand, advanced techniques and
schemes are required to deal with sharp gradients, a typical ingredient in the polymer
stress field [94, 139]. Lastly, the required time step is small, as a consequence of the high
viscosity of the fluid [168]. In [153], the effect of the contraction ratio in the dynamic
response of the flow in a square-square three-dimensional contractions is analysed using
experimental and numerical results, where asymmetric flows in a symmetric problem are
created increasing the elasticity of the flow. In [106], the instabilities and the asymmetry
of the flow in a symmetric domain are analysed for flows with high Weissenberg number
using the Leonov constitutive model.

The usual constitutive models that modelize viscoelastic fluid flow, such as the Oldroyd-
B and the FENE-P models, are coupled systems of partial differential equations for the
velocity, the pressure and the polymer stress tensor. This last one is by nature positive
definite, and it has been proved that the loss of this property leads to several instabilities
[96]. In the literature, we can find a wide number of numerical tools to deal with this prob-
lem. One of the most popular ones is to include global artificial diffusivity in the model, in
other words, add a Laplacian term to the evolution equation for the polymer stress. The
numerical simulations which have employed this technique are in qualitative agreement
with experiments. However, as indicated in [82], the values of diffusivity are required to
be three to six orders of magnitude greater than those appropriate for real polymers [160].
Other numerical schemes have been proposed in order to avoid using artificial diffusiv-
ity, such as the logarithmic conformation reformulation, proposed originally by Fattal and
Kupferman [63] and employed in this work. These numerical schemes have been compared
with simulations using artificial diffusivity at high or moderate Reynolds numbers, and
quantative discrepancies have emerged. For these reasons, alternative methods should be
preferred to the use of artificial diffusivity. On the contrary, in the case of low Reynolds
numbers, several studies on elastic turbulence have employed artificial diffusivity, and the
work of Gupta et al. [82] demonstrates that there exist particular cases in which the effect
of artificial diffusivity is especially adverse.

Elastic turbulence has been proposed as an efficient technique for mixing in very low
Reynolds flows, such as in microchannel flows [6], and as indicated in [17]. Despite the great
technological interest, this phenomenon is still only partially understood from the theo-
retical point of view. Laboratory experiments in curvilinear channels have demonstrated
that very viscous polymer solutions in the elastic turbulence regime are very efficient for
small-scale mixing [78]. In the literature we found different works that investigate elas-
tic turbulence under this perspective, using numerical simulation. In the work written by
Berti et al. [17] the phenomenon is investigated for polymer solutions in a two-dimensional
Kolmogorov shear flow. The results obtained are in agreement with experimental obser-
vations. Recently, numerical and analytical investigations have been used to obtain the
instability diagram as a function of the Weissenberg and the Reynolds number as done in
[21].

Two dimensional elastic turbulence has also been explored for Taylor-Couette flows by
some authors from several perspectives: theoretical [69, 128], in several experiments [129]
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and lastly in the numerical simulations by Buel et al. [161]. In the problem in which geom-
etry is restricted to the axisymmetric flow, the transition is coupled with an increment of
the velocity fluctuations. Transition to a wave pattern beyond a critical Weissenberg num-
ber occurs via a supercritical Hopf bifurcation, although the most unstable modes occur
for the non-axisymetric case and bifurcation diagrams were obtained using the Oldroyd-B
model. However, in [161], the flow of a viscoelastic fluid in a 2D Taylor Couette is repro-
duced, using a micron scale, and the turbulence which is observed is only produced by the
elastic component of the fluid. In this letter, simulations are performed using OpenFOAM
and employing the log-conformation tensor method to stabilize the formulation.

On the other hand, we have to remark that in elastic turbulence, the characteristic
power-law dependence between the kinetic energy E and the frequency f is E(f) ∼ f−α

in the power spectra of the fluctuating velocity field is different to the usual turbulence.
The exponent α shows non-monotonic behaviour as a function of the radial position.
In [161] the authors indicate that in constrast wih the 3D elastic turbulence where the
characteristic exponent is typically α > 3, in the numerical 2D experiment the exponent
is α > 2, attributing this change to the smaller spatial dimension. In the experiments
performed by Groisman and Steinberg [77] the power law scaling is α = 3.5, and the more
recent theories are in agreement with these exponents. In this sense, we found especially
relevant the work developed by Fouxon and Lebedev [69]. In this chapter, the authors
established a power-law spectrum for the velocity, which is not associated with a flux
of a conserved quantity. The elastic turbulence case with Re << 1 and We > 1, some
simplifications are considered in the mathematical development. Finally, the inequality
α > 3 is proved.

In this work the logarithmic formulation is employed, it is crucial to treat the high
Weissenberg number problem and obtain converged solutions. The formulation employed
in this chapter has been already specified in Chapter 2. Moreover, time-dependent subgrid-
scales are included in the finite element term-by-term stabilization approach, based on
the Variational Multiscale (VMS) method [90] to obtain stable solutions. This allows
us to avoid instabilities related with a small time step in relation with the spatial grid
discretization, a common issue in viscoelastic flow formulations (see Chapter 4 for more
details).

As a novelty, in this chapter fractional step schemes are designed and implemented to
reduce the computational cost of solving the logarithmic formulation using a monolithic
scheme. Equations are solved in a uncoupled way and using correction steps. Fractional
step methods introduce an additional temporal error, that has to be at least of the order
of the time integration scheme used to approximate time derivatives if this order is to be
preserved.

The interest in fractional step methods applied to incompressible flows started with
the works of Chorin [36] and Temam [157], who introduced fractional step methods at
the continous level. However, in this chapter, fractional step methods are introduced
at the purely algebraic level, when the equations have already been discretized in space
and in time. In [8] and [80] we can find overviews of these strategies for the case of the
incompressible Navier-Stokes equations for Newtonian fluids can be found. In the case of
viscoelastic flows, the main difficulty is the appearance of the stress, a new variable that
evolves in time. The uncoupling will need to satisfy two conditions: on the one hand the
stability of the time discretization must be preserved together with the accuracy order.
We have to stand out the work of Castillo et al. [27], which proposes a fractional step
method following the option of the purely algebraic approach. In this case, apart from
uncoupling the velocity from the pressure in the momentum equation, it is necessary to
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uncoupled the elastic stress. In the literature, other fractional schemes have been reported
for solving viscoelastic fluid flows, the most popular is the one known as the Θ-method,
proposed first for Newtonian fluids in [74] and later extended to the viscoelastic fluid flow
problem in [151] and [146].

This chapter will follow similar steps to the ones detailed in [27] for the standard
formulation, but now applied to the logarithmic formulation, presenting two fractional
step methods with first and second order splitting errors. In both cases, the first step is
the momentum equation to compute an intermediate velocity that will be corrected later.
However, while for the first order scheme the intermediate velocity is calculated without
considering the pressure and the variable ψ, for the second order scheme extrapolated
values for the pressure and the ψ variable are taken into account with the aim of improv-
ing the approximation of the intermediate velocity. With the second step we obtain the
intermediate ψ values employing the intermediate velocity computed in the previous step.
The third step has the structure of a discrete pressure Poisson equation, and the fourth
and fifth steps correspond to the velocity and ψ correction step, respectively. Another
interesting algebraic approach in fractional step methods is the interpretation of fractional
step methods as an inexact LU factorization of the main matrix of the system, when this
system has already been discretized. Some high order algebraic pressure segregation al-
gorithms also could be designed following this point of view. In the literature we found
[71], where the Navier-Stokes problem is solved applying this approach. This idea is also
developed for the standard formulation of the viscoelastic problem in [27].

To summarize, the goal of this study is twofold: on the one hand, it is the design and
implementation of a fractional step method with the aim of reducing the computational
cost of the logarithmic formulation computations. In this sense, two different fractional
methods are designed for the logarithmic formulation. The first order scheme is obtained
from a straightforward segregation of the pressure and the variable ψ in the momentum
equation. That is the main difference with the second order scheme, case in which a first
order extrapolation of these variables is employed. The second objective is the computa-
tion of the purely elastic instabilities in the viscoelastic fluid flow by using all the tools
presented.

This chapter is divided into different sections: The viscoelastic fluid flow written in
the logarithmic formulation is introduced in Section 5.3. In Section 5.4 we detail the
numerical approximation considered; Section 5.5 exposes the fractional step algorithm
designed and Section 5.6 shows the final algebraic formulation including the stabilization.
Some remarks concerning the linearized problem are presented in Section 5.7. Finally,
in Section 5.8 the numerical results obtained are explained. The main conclusions of the
chapter are discussed in Section 5.9.

5.3 The viscoelastic flow problem

5.3.1 Strong form

In this section, the viscoelastic fluid flow problem written in the logarithmic formulation
is presented. As the contents are similar to those presented in section 2.3 in Chapter
2, only the most relevant aspects will be briefly summarized. Note that the logarithmic
formulation one proposed there is slightly different to the one proposed originally by Fattal
and Kupferman [63], and that the modification allows one to take λ = 0. Finally the strong
form is defined by the system of equations (2.8)-(2.10), which can be found in Section 2.3.2.
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5.3.2 Variational form

The variational form of the problem is explained in Section 2.3.3. Note that the definition
of the main spaces and notation is established there. To indicate again the main operators
of the problem, the weak form will be explicitly written again. Therefore, the weak form
of the problem consists in finding U = [u, p,ψ] : (0,T ) −→ X := V 0 ×Q×Υ, such that
the initial conditions are satisfied and:

Dt(U ,V ) +B(u;U ,V ) = L(V ), (5.1)

where each term is defined as

Dt(U ,V ) =

(
ρ
∂u

∂t
,v

)
+

λ

2λ0

(
∂ exp(ψ)

∂t
,χ

)
, (5.2)

B(û;U ,V ) =
ηp
λ0

(exp(ψ),∇sv) + 2(ηs∇su,∇sv) + 〈ρû · ∇u,v〉 − (p,∇ · v)

+ (∇ · u, q) +
1

2λ0
(exp(ψ),χ)− (∇su,χ)

+
λ

2λ0

(
u · ∇ exp(ψ)− exp(ψ) · ∇u− (∇u)T · exp(ψ) + 2∇su,χ

)
, (5.3)

L(V ) = 〈f ,v〉+
1

2λ0
〈I,χ〉. (5.4)

for all V = [v, q,χ] ∈ X .

5.4 Numerical approximation

5.4.1 Galerkin finite element discretization

Let Th = {K} be a FE partition of the domain Ω. The diameter of an element K ∈ Th
is denoted by hK and the diameter of the partition is defined as h = max{hK |K ∈ Th}.
From Th we may construct conforming FE spaces for the velocity, the pressure and the
elastic stress, Vh ⊂ V , Qh ⊂ Q, Υh ⊂ Υ, respectively. Calling X h := Vh×Qh×Υh, the
Galerkin FE approximation of the problem consists in finding Uh : (0,T ) −→ X h, such
that:

(Dt(Uh),V h) +B(uh;Uh,V h) = L(V h), (5.5)

for all V h = [vh, qh,χh] ∈ X h, and satisfying the appropriate initial conditions.

5.4.2 Monolithic time discretization

First of all we will detail the time discretization of problem (5.5) using a monolithic ap-
proach, that is to say, when all the components of Uh are solved at the same time. For the
time discretization, we will employ classical backward difference (BDF) approximations.
The details of the general scheme definition can be found in Section 2.3.6 in Chapter 2.

In the present section only the cases considered will be specified, i. e., k = 1 and 2.
The BDF formulas re:

δ1f
n+1

δt
=
fn+1 − fn

δt
=
∂f

∂t

∣∣∣∣
tn+1

+O(δt).

δ2f
n+1

δt
=

3

2

(
fn+1 − 4

3f
n + 1

3f
n−1

δt

)
=
∂f

∂t

∣∣∣∣
tn+1

+O(δt2).
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In the case of the time-derivative of the exponential, considering the Taylor development
for the following approximation (2.21), we obtain the approximation:

∂ exp(ψ)

∂t

∣∣∣∣
tn+1

=
1

δt

[
exp(ψ̂

n+1
) ·ψn+1 + exp(ψ̂

n+1
)− exp(ψ̂

n+1
) · ψ̂n+1

− exp(ψn)
]

+O(δt) +O((δψn+1)2). (5.6)

Analogously, for BDF2:

∂ exp(ψ)

∂t

∣∣∣∣
tn+1

=
3

2

1

δt

[
exp(ψ̂

n+1
) ·ψn+1 + exp(ψ̂

n+1
)− exp(ψ̂

n+1
) · ψ̂n+1

− 4

3
exp(ψn) +

1

3
exp(ψn−1)

]
+O(δt2) +O((δψn+1)2). (5.7)

where ψ̂
n+1

stands for a previous guess of ψn+1 that depends on the linearization scheme
and δψn+1 = ψn+1 − ψ̂n+1

. We will also use the extrapolation operators of order k,
defined as f̂n+1

k = fn+1 +O(δtk), which for k = 1 and 2 are given by

f̂n+1
1 = fn (5.8)

f̂n+1
2 = 2fn − fn−1. (5.9)

Therefore, using BDF schemes, the time discretization of (5.5) can be written in expanded
form as follows: for n = 1, 2, ..., find [un+1

h , pn+1
h ,ψn+1

h ] ∈ X h, such that(
ρ
δku

n+1
h

δt
,vh

)
+
ηp
λ0

(exp(ψn+1
h ),∇svh) + 2(ηs∇sun+1

h ,∇svh)

+〈ρun+1
h · ∇un+1

h ,vh〉 − (pn+1
h ,∇ · vh) = 〈fn+1

h ,vh〉, (5.10)

(qh,∇ · un+1
h ) = 0, (5.11)(

1

2λ0
exp(ψh)−∇sun+1

h ,χh

)
+

λ

2λ0

(
δk exp(ψh)

δt
,χh

)
+

λ

2λ0

(
un+1
h · ∇ exp(ψn+1

h )− exp(ψn+1
h ) · ∇un+1

h ,χh
)

+
λ

2λ0

(
−(∇un+1

h )T · exp(ψn+1
h ) + 2∇sun+1

h ,χh
)

=
1

2λ0
〈I,χh〉, (5.12)

for all [vh, qh,χh] ∈ X h.

5.4.3 Algebraic system

The problem defined by (5.10)-(5.12) is an algebraic system, considering the nodal un-
knowns of the finite element functions [un+1

h , pn+1
h ,ψn+1

h ] ∈ X h. Regarding the algebraic
notation, the arrays of the nodal unknowns are expressed by upright case symbols: in bold
case for the velocity uh and the variable ψh and in light case for the pressure ph. In the
case of the tensor ψ we will use the well-known Voigt notation. Therefore the components
of ψh at a node a will be written as Ψa

i , where i runs from 1 to 3 in a two-dimensional
case and from 1 to 6 in a three-dimensional case. The superscript E in some matrices
indicates that exp(ψ) computed in the previous iteration is employed for their calculation.
The dependence of matrices Ku and Kψ on U will be explicitly expressed. Taking into
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account these considerations about notation, the algebraic structure of problem defined
by equations (5.10)-(5.12) is as follows:

Mu
δk
δt

Un+1 +Ku
(
Un+1

)
Un+1 +GPn+1 −DE

ψΨn+1 = FE
u, (5.13)

DUn+1 = 0, (5.14)

ME
ψ

δk
δt

Ψn+1 +KE
ψ

(
Un+1

)
Ψn+1 − SUn+1 = FE

ψ. (5.15)

Lastly, the identification of the different terms in (5.10)-(5.12) that contribute to the
matrices is straightforward. Moreover, system (5.13)-(5.15) can be written as follows:A11 A12 A13

A21 A22 0
A31 0 0

Un+1

Ψn+1

Pn+1

 =

Fn+1
1

Fn+1
2

Fn+1
3

 (5.16)

where
A11 =

1

γkδt
Mu +Ku

(
Un+1

)
, A12 = −DE

ψ,

A21 = −S, A22 =
1

γkδK
ME
ψ +KE

ψ(U)n+1,

A13 = G, A31 = D,

F1 = FE
u +

1

δtγk

(∑k−1
i=0 ϕ

i
kU

n−i
)
, F3 = 0,

F2 = FE
ψ +

1

δtγk

(∑k−1
i=0 ϕ

i
kΨ

n−i
)
.

5.5 Fractional step method

In this section, we propose two fractional step methods following an extension of the
schemes developed for the standard formulation of the viscoelastic fluid flow problem in
[27]. At the same time, these methods can be understood as pressure-correction schemes
applied to the viscoelastic fluid flow problem. In this case, we need a guess for the variable
ψ, apart from a guess for the pressure. After computing these fields, we will need to
correct the velocity. Such as it is explained in [27], the main ideas could be used to design
velocity-correction-type methods or momentum-pressure Poisson equation formulations,
as in references [8, 43].

The approach explained here consists in the splitting at the pure algebraic level, as
was explained in the background of this Chapter (see also [131]). In particular we only
present the extrapolation point of view: the main ideas referred to the inexact factorization
are widely explained for the viscoelastic fluid flow problem in [27]. For the logarithmic
formulation the methodology would be analogous.

The method presented here is a fractional step method using the extrapolation of the
variables. The unknowns need to be segregated from an equation and then corrected. For
the standard formulation, the variables to be extrapolated are the velocity and the stress
in the momentum equation, to compute a velocity guess. In the logarithmic case, the
variables extrapolated are also velocity, and now the variable ψ to obtain that velocity
guess. The other variables are computed using this velocity guess and, at the end, we have
to correct the velocity. Now, we will write the algebraic system defined in (5.13)-(5.15) in
this equivalent form:

Mu
δk
δt

Ũ
n+1

+Ku

(
Ũ
n+1
)

Ũ
n+1

+GP̂n+1
k′−1 −DE

ψΨ̂
n+1
k′−1 = FE

u, (5.17)
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Mu
δk
δt

(
Un+1 − Ũ

n+1
)

+Nu +G
(
Pn+1 − P̂n+1

k′−1

)
−DE

ψ

(
Ψn+1 − Ψ̂

n+1
k′−1

)
= 0, (5.18)

ME
ψ

δk
δt

Ψ̃
n+1

+KE
ψ

(
Ũ
n+1
)

Ψ̃
n+1 − SŨ

n+1
= FE

ψ, (5.19)

ME
ψ

δk
δt

(
Ψn+1 − Ψ̃

n+1
)

+ Nn+1
ψ − S

(
Un+1 − Ũ

n+1
)

= 0, (5.20)

−DŨ
n+1

+ γkδtDM
−1
u Nn+1

u + γkδtDM
−1
u G

(
Pn+1 − P̂n+1

k′−1

)
−γkδtDM−1

u DE
ψ

(
Ψn+1 − Ψ̂

n+1
k′−1

)
= 0, (5.21)

where

Nn+1
u = Ku

(
Un+1

)
Un+1 −Ku

(
Ũ
n+1
)

Ũ
n+1

,

Nn+1
ψ = KE

ψ

(
Un+1

)
Ψn+1 −KE

ψ

(
Ũ
n+1
)

Ψ̃
n+1

.

In this set of equations, we have denoted Ũ
n+1

and Ψ̃
n+1

as the auxiliary variables, in
other words, the guess variables that later must be corrected. On the other hand we
have denoted by ĝn+1

k′−1 the extrapolated variables, where the order of the extrapolation is
indicated by the subscript k′− 1 at time tn+1 of the function g (explained in Section 5.4.2
for the cases k′ − 1 = 1, 2). In the case k′ − 1 = 0, ĝn+1

0 = 0 is taken. Moreover, the
difference δkg̃n+1 is calculated using g̃n+1 and gm for time steps m previous to n+1, g now
being either U or Ψ. Equivalently to the scheme for the standard formulation developed
in [27], we have now that adding up (5.17) and (5.18) we recover (5.13); also, adding
up (5.19) and (5.20) we also recover (5.15). Finally equation (5.21) is recover multiplying
(5.18) by γkδtDM−1

u and using (5.14). Observe that the last equation (5.21) can be seen as
a Poisson-type equation for the pressure. Note the difference between k and k′: while the
first indicates the order of the time integration, k′ determines the order of the uncoupling
of the variables that are extrapolated. The choice of these can be done independently,
although a proper balance between them is required to achieve a certain order of the final
approximation is needed. In our case we take k′ = k, and the steps that we consider will
be the following:

1. Compute Ũ
n+1

from (5.17).

2. Compute Ψ̃
n+1

from (5.19).

3. Compute an approximation to Pn+1 by solving (5.21), but neglecting the term Nn+1
u

and replacing Ψn+1 by Ψ̃
n+1

.

4. Compute an approximation to Un+1 from (5.18) but neglecting Nn+1
u .

5. Compute an approximation to Ψn+1 from (5.20) but neglecting Nn+1
ψ .

Following these steps, we obtain the fractional step method that allows us to uncouple the
calculation of each variable. The following remarks are similar to the ones done for the
standard formulation in [27], and briefly summarized here. On the one hand the matrix
DM−1

u G that appears in the equation (5.21) is approximated by the matrix resulting from
the direct approximation of the Laplacian. Regarding the order of the scheme, it is of
O(δtk) for a given spatial discretization. If we assume that this is true up to time n and
that the scheme is stable, and the approximation defined by (5.17)-(5.21), it follows that it
is also true at time step n+ 1. Note that if the order of extrapolation is higher than k− 1
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(k′ > k), then the order of the error would be dominated by the time integration scheme.
Also note that the scheme is stable for k′ = 1, 2; in the case k′ = 3 (not considered here)
we would obtain P̂n+1

2 = 2Pn − Pn−1 that is known to give an unstable scheme (for more
details see [8], for example). On the other hand, while for k = 1 we obtain an extension
to viscoelastic flows of the classical first order fractional step method, for k = 2 we obtain
an extension of second order scheme that keeps the pressure gradient at the previous
time step in the momentum equation. Lastly, as it was advanced, for the fractional step
scheme of the logarithmic formulation we will need to do some remarks. Superscript E in
matrices ME

ψ , K
E
ψ, D

E
ψ indicates that the computation of the exponential of variable ψ at

the previous iteration is required. Also, we have to consider the right-hand-side matrices
FE
u and FE

ψ that are computed to obtain the linearization of the exponential considered
(see Section 2.4.3 for more details). In Algorithm 6, the schemes of first and second order
are presented. Note that the sixth step is not necessary. It is written only with the aim
of observing how the scheme can be understood as a inexact block LU -decomposition.

Algorithm 6 First and second order fractional schemes (k = 1, 2) for the logarithmic
formulation.

1. Compute the intermediate velocity using pressure and ψ variable values ex-
trapolated.

Mu
δk
δt

Ũ
n+1

+Ku

(
Ũ
n+1
)

Ũ
n+1

+GP̂n+1
k′−1 −DE

ψΨ̂
n+1
k′−1 = FE

u −→ Ũ
n+1

2. Compute the intermediate ψ using the intermediate velocity computed in the
previous step.

ME
ψ

δk
δt

Ψ̃
n+1

+KE
ψ

(
Ũ
n+1
)

Ψ̃
n+1 − SŨ

n+1
= FE

ψ −→ Ψ̃
n+1

3. Compute the intermediate pressure using both intermediate velocities and ψ
computed in the two previous steps:

−DŨ
n+1

+ γkδtDM
−1
u Nn+1

u + γkδtDM
−1
u G

(
P̃
n+1 − P̂n+1

k′−1

)
−γkδtDM−1

u DE
ψ

(
Ψ̃
n+1 − Ψ̂

n+1
k′−1

)
= 0 −→ P̃

n+1

4. Compute the velocity correction:

Mu
δk
δt

(
Un+1 − Ũ

n+1
)

+ Nn+1
u +G

(
P̃
n+1 − P̂n+1

k′−1

)
−DE

ψ

(
Ψ̃
n+1 − Ψ̂

n+1
k′−1

)
= 0 −→ Un+1

5. Compute the ψ correction:

ME
ψ

δk
δt

(
Ψn+1 − Ψ̃

n+1
)

+ Nn+1
ψ − S

(
Un+1 − Ũ

n+1
)

= 0 −→ Ψn+1

6. Pressure correction: Pn+1 = P̃n+1 −→ Pn+1
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5.6 Stabilized finite element formulation

In this section we present the stabilization employed, based on the Variational Multiscale
(VMS) methods. That is explained in Section 2.4. Two different considerations must be
remarked about the stabilization considered for solving the cases included in this chapter.

The first one is that the stabilization considered for implementing the fractional scheme
is of term-by-term type, which is described in Section 2.4.2. As it is explained there, this
stabilization is not consistent but being shows optimal convergence in h. Apart from
having a simpler stabilization due to the fact that there are less terms implied, it is proved
in Chapter 2 that it is more robust solving problems with high stress gradients.

The second consideration is that also the dynamic subscales have been introduced in
this approach, such as developed in Section 4.4.2 of Chapter 4. That allow us to face
anisotropic space-time discretizations and also permits to solve more elastic problems as
explained in Chapter 4. Therefore, in this section the stabilized finite element formulation
will be briefly described, and solely the discrete equations will be written. Then, we will
discuss the changes in the algebraic structure for the fractional step method.

5.6.1 Stabilized monolithic formulation

In general stabilized finite element methods consist in modifying the Galerkin discrete for-
mulation by adding additional terms designed to enhance stability. The method proposed
in this case replaces the finite element problem (5.5) by the following problem. The term-
by-term stabilization proposed for the log-conformation formulation consists in finding
Uh = [uh, ph,ψh] : (0,T ) −→ X̄ h such that

(Dt(Uh),V h) +B(uh;Uh,V h) +
∑
K

〈ũ1,−ρuh · ∇vh〉K

+
∑
K

〈ũ2,−∇qh〉K +
∑
K

〈ũ3,∇ · χh〉K +
∑
K

〈p̃,−∇ · vh〉K

+
∑
K

〈
σ̃,

1

2ηp
χh +∇svh −

λ

2ηp

(
uh · ∇χh + χh · (∇uh)T +∇uh · χh

)〉
K

= 〈f ,vh〉, (5.22)

for all [vh, qh,σh] ∈ X h, where Dt is the operator which involves the time-dependent
terms, defined in (5.2) and B is the form of the logarithm problem defined in (5.3). A
term-by-term stabilization has several advantages in comparison with residual-type ones,
for example it is more effective achieving converged solutions in the presence of strong
gradients, an it is definitely more robust due to the fact that terms that do not give stability
are neglected. Although this method is not consistent, it has an optimal convergence rate,
as it was advanced previously.

In addition, an important remark is needed. For the fractional step methods described
here, the Split-OSS method has been implemented for both, quasistatic and dynamic
subscales. The time-dependent subscales or dynamic subscales applied to the viscoelastic
fluid flow problem have been properly discussed and developed in Chapter 4, where the
main advantages were enumerated.

Therefore, for expression (5.22) the sub-grid scales ũ1, ũ2, ũ3, p̃ and σ̃ are computed
in a different manner depending on whether they are time-dependent or not. In the case
of considering dynamic subscales, they are the solution of the next evolution problems;
however if the quasistatic approach is considered, the computation is straightforward,
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neglecting the time-derivative of the subgrid-scales in each equation (5.23)-(5.27):

ρ
∂ũ1

∂t
+ α−1

1 ũ1 = −P⊥h [ρuh · ∇uh] , (5.23)

ρ
∂ũ2

∂t
+ α−1

1 ũ2 = −P⊥h [∇ph] , (5.24)

ρ
∂ũ3

∂t
+ α−1

1 ũ3 = P⊥h

[
ηp
λ0
∇ · exp(ψh)

]
. (5.25)

α−1
2 p̃ = −P⊥h [∇ · uh] , (5.26)

λ

2ηp

∂σ̃

∂t
+ α−1

3 σ̃ = P⊥h

[
− 1

2λ0
exp(ψh) +∇suh

− λ

2λ0

(
∂ exp(ψh)

∂t
+ uh · ∇ exp(ψh)

)
+

λ

2λ0

(
exp(ψh) · ∇uh + (∇uh)T · exp(ψh)− 2∇suh

)]
(5.27)

Parameters αi, i = 1, 2, 3 are the stabilization terms, already defined in (2.30)-(2.32).
Note that Ph denotes the L2 projection onto the appropriate finite element space, without
considering boundary conditions. Also P⊥h = I − Ph is the orthogonal projection, where
I is the identity. Regarding the discretization of the equations of the dynamic sub-grid
scales, a BDF1 scheme is employed as follows (see Section 4.4.3 for more details):

ũn+1
1 =

(
ρ

1

δt
+

1

αn+1
1

)−1(
ρ

1

δt
ũn1 − ρP⊥h

[
un+1
h · ∇un+1

h

])
,

ũn+1
2 =

(
ρ

1

δt
+

1

αn+1
1

)−1(
ρ

1

δt
ũn2 − P⊥h

[
∇pn+1

h

])
,

ũn+1
3 =

(
ρ

1

δt
+

1

αn+1
1

)−1(
ρ

1

δt
ũn3 + P⊥h

[
ηp
λ0
∇ · exp(ψn+1

h )

])
,

σ̃n+1 =

(
λ

2ηp

1

δt
+

1

αn+1
3

)−1( λ

2ηp

1

δt
σ̃n + P⊥h

[
− 1

2λ0
exp(ψn+1

h ) +∇sun+1
h

− λ

2λ0

(
δk exp(ψn+1

h )

δt
+ un+1

h · ∇ exp(ψn+1
h )

)

+
λ

2λ0

(
exp(ψn+1

h ) · ∇un+1
h + (∇un+1

h )T · exp(ψn+1
h )− 2∇sun+1

h

)])
.

From these expressions, we can conclude that the sub-grid scales depend directly on

α1dyn =
(
ρ 1
δt + 1

α1

)−1
and α3dyn =

(
λ

2ηp
1
δt + 1

α3

)−1
, where α1dyn and α3dyn redefine the

classical stabilitation parameters and now depend on the time-step size. The time dis-
cretization of (5.22) can be performed as for the Galerkin method, in other words, using
BDF schemes of order k, partial time derivatives have to be replaced by δk/δt and all
unknowns need to be evaluated at time step n+ 1.
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5.6.2 Algebraic formulation and fractional step scheme

From the expression (5.22), we can now define the algebraic system to solve at each time
step considering the stabilization term as:As,11 As,12 A13

As,21 As,22 0
A31 0 As,33

Un+1

Ψn+1

Pn+1

 =

Fn+1
s,1

Fn+1
s,2

Fn+1
s,3

 (5.28)

The subscript s indicates the matrices that have contributions from the stabilization terms.
Also, note that if time-dependent subscales are considered we have to include the contri-
bution of the subgrid-scale of the previous time step that comes from the BDF1 scheme
employed for the discretization of the equations of the dynamic sub-grid scales. Compar-
ing this expression (5.28) with the algebraic structure of the Galerkin approach (5.16), we
can find the presence of the term As,33, which comes from the stabilization term of the
pressure introduced by the expression given by ũ2,

∑
K α1

〈
P⊥h [∇ph] , qh

〉
. Regarding ma-

trices A13 and A31 of the Galerkin method; they remain unaltered due to the term-by-term
stabilization chosen and the use of orthogonal projections.

On the other hand, neither the time derivative of the velocity nor the time derivative
of exp(ψ) appear in the stabilization terms; therefore matrices Mu and Mψ, which are
symmetric and positive definite, are the only matrices is multiplied by 1/δt in (5.28).
However, if the time-dependent sub-grid scales are employed, then the factor 1/δt also
appears in the computation of the stabilization parameters, and in the right-hand-side of
the system due to the discretization of the subscales.

The fractional step methods proposed for the Galerkin method can be easily extended
to the stabilized finite element method. The major difference is that now the matrices
have contributions of the stabilization terms and the contribution to the discrete equation
for the pressure.

Algorithm 7 First and second order fractional schemes (k = 1, 2) for the logarithmic
formulation with dynamic subscales.

1. Compute the intermediate velocity using pressure and ψ variable values ex-
trapolated.

Mu
δk
δt

Ũ
n+1

+Ks,u

(
Ũ
n+1
)

Ũ
n+1

+GP̂n+1
k′−1 −DE

s,ψΨ̂
n+1
k′−1 = FE

s,u + F̃u

−→ Ũ
n+1

2. Compute the intermediate ψ using the intermediate velocity computed in the
previous step.

ME
ψ

δk
δt

Ψ̃
n+1

+KE
s,ψ

(
Ũ
n+1
)

Ψ̃
n+1 − SsŨ

n+1
= FE

s,ψ + F̃ψ −→ Ψ̃
n+1

3. Compute the intermediate pressure using both intermediate velocities and ψ
computed in the two previous steps:

−DŨ
n+1

+ L⊥s P̃ + γkδtDM
−1
u Nn+1

u + γkδtDM
−1
u G

(
P̃
n+1 − P̂n+1

k′−1

)
− γkδtDM−1

u DE
ψ

(
Ψ̃
n+1 − Ψ̂

n+1
k′−1

)
= 0 −→ P̃

n+1
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4. Compute the velocity correction:

Mu
δk
δt

(
Un+1 − Ũ

n+1
)

+ Nn+1
u +G

(
P̃
n+1 − P̂n+1

k′−1

)
−DE

ψ

(
Ψ̃
n+1 − Ψ̂

n+1
k′−1

)
= 0 −→ Un+1

5. Compute the ψ correction:

ME
ψ

δk
δt

(
Ψn+1 − Ψ̃

n+1
)

+ Nn+1
ψ − S

(
Un+1 − Ũ

n+1
)

= 0 −→ Ψn+1

6. Pressure correction: Pn+1 = P̃n+1 −→ Pn+1

5.7 Linearized problem

As the equations to be solved are strongly nonlinear, an iterative scheme is required to
deal with these non-linearities. Moreover, it is important to remark the treatment made
for the orthogonal projections P⊥h :

• A fixed-point-type method is employed to evaluate the stabilization terms. They
are calculated using a known velocity uh for the convective terms and ψh for the
exponential terms. Those variables are taken either from the previous iteration of
the iterative scheme (in case of computing the intermediate or the final steps) or
directly from the previous time step. Note that that does not affect the order of
convergence.

• The non-linearity in Ks,u

(
Ũ
n+1
)

Ũ
n+1

can be treated using either a fixed-point or
a Newton-Raphson scheme. Due to the fact that the δt must be taken small for
fractional step schemes in comparison with the monolithic ones, few iterations are
needed to converge. Note also that term KE

s,ψ

(
Ũ
n+1
)

Ψ̃
n+1

does not need to be
linearized with respect to the velocity variable, due to the fact that the intermediate
velocity being known from the first step.

• Regarding the exponential terms, note that the linearization based in Taylor’s ex-
pansion is considered (see Section 2.3.4). The terms −DE

s,ψΨ̂
n+1
k′−1 and FE

s,u located

on the first step do not need to be linearized since in that case the variable Ψ̂
n+1
k′−1

being extrapolated and, therefore, it is a known value. Also, the terms computed
in the second step that involve KE

s,ψ

(
Ũ
n+1
)

Ψ̃
n+1

and FE
s,ψ, are computed using a

fixed point scheme method.

• Also, the treatment of the orthogonal projection P⊥h must be detailed. For a function
f , we compute P⊥h (f) = f − Ph(f), and the matrices resulting from the orthogonal
projection of the unknowns have a "wider stencil", when compared with that of the
Galerkin method. To avoid that, the i-th iteration of n-th time step can be approx-
imated as P⊥h (f) ≈ fn,i − Ph

(
fn,i−1

)
(evaluating the projection in the unknown

function f in the previous iteration) or P⊥h (f) ≈ fn,i − Ph
(
fn,i−1

)
(evaluating the

projection in f at the previous time step).
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5.8 Numerical results

Some numerical examples will be presented in this section where the fractional step method
for the logarithmic formulation is applied. First we test the scheme to validate the effec-
tiveness. Then we apply the fractional scheme to study the pure elastic instability. The
first result presented in Section 5.8.1 is a convergence test that will show the accuracy of
the formulation for the two different schemes. It is important to show that the designed
scheme is optimally convergent for smooth solutions. In the second example, developed in
Section 5.8.2, the benefits of the fractional step in comparison with a monolithic scheme
are explored for a case with a high elasticity. In that case we consider the lid-driven cavity
problem presented in Chapter 4. The main objective is to check solutions using different
schemes and time rates employed. In Section 5.8.3 the array of cylinders case is studied,
where the flow has a temporal response when the Weissenberg number is high enough.
This instability, as reported in the introduction of this chapter, is known as the pure elas-
tic instability. For a certain Weissenberg number, the fluid flow can become chaotic, the
phenomenon known as elastic turbulence.

5.8.1 Convergence test

This convergence study has been carried out for the logarithmic formulation to test the
designed and implemented fractional step scheme. The domain considered is a unit square,
using a uniform structured mesh discretized by 625 bilinear elements. Regarding the
boundary and the initial conditions, they are prescribed according to the time-dependent
analytical solution:

ux(x, y) = (4x+ 6)f(t), ψxx(x, y) = (2x+ 3)f(t),

uy(x, y) = −(4y − 6)f(t), ψyy(x, y) = (2y + 3)f(t),

p(x, y) = xf(t), ψxy(x, y) = (x+ y)f(t),

where the x and y components of the velocity and the stress tensor have been indicated
with a subscript, and f(t) = cos(4πt) exp(−t). Note that this manufactured solution
belongs to the finite element space, therefore the spatial error is negligible; thus the error
measured corresponds uniquely to the temporal scheme. These velocity, pressure and ψ
fields do not satisfy the momentum and constitutive equation. Therefore we have to add
a some forcing terms in the equations in the domain Ω:

fmom = ρ
∂u

∂t
− ηp
λ0
∇ · exp(ψ)− 2ηs∇ · (∇su) + ρu · ∇u+∇p

f cont = ∇ · u

f cons =
1

2λ0
(exp(ψ)− I)−∇su+

λ

2λ0

(∂ exp(ψ)

∂t

+ u · ∇ exp (ψ)− exp (ψ) · ∇u− (∇u)T · exp (ψ) + 2∇su
)

The BDF1 and BDF2 schemes are selected for time integration, using time-dependent sub-
grid scales and the Split-OSS stabilized formulation. The results are plotted in Figure 5.1,
in which the first column shows the results using BDF1 for each variable of the problem
and in the second column the errors corresponding to the BDF2 scheme are displayed.
The time step size for BDF1 ranges from δt = 1.6 · 10−4 to δt = 2.5 · 10−3; for BDF2, the
time step size goes from δt = 6.25 ·10−4 to δt = 10−2. Concerning the optimal convergence
rate expected it is, in the case of a first order scheme, of 1 in velocity and ψ and 0 for
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pressures; in case of the second order scheme. These optimal convergence rates is 2 for the
velocity and ψ, and 1 for the pressure field. That optimal convergence rates are displayed
together with the different `∞(L2(Ω))-errors for each time step size in the graphs shown
in Figure 5.1. In all cases the optimal convergence is reached.

5.8.2 Lid-driven cavity flow problem

The lid-driven cavity flow problem is a good example to show the performance and benefits
of the fractional step scheme in contrast with a monolithic iterative scheme. Moreover, the
benefits of using the dynamic sub-grid scales in the fractional step case will be highlighted.

Setup

The problem consists in a fluid confined in a unit square. Two different cases will be tested
in this section: the first one is considering Re = 0, whose solution is stationary, and the
second is a forced dynamic case with Re = 100. All the boundaries are considered solid
walls with exception of the top boundary (see the scheme of Figure 5.2). For the case with
Re = 0, the velocity will be prescribed in the boundary (Γtop), as:

ux(x, 1, t) = 8

[
1 + tanh

(
8

(
t− 1

2

))]
x2(1− x)2,

uy(x, 1, t) = 0,

The hyperbolic tangent permits a smooth transition from 0 at t = 0 to, 1 for t > 1
2 at

x = 1
2 . In the Γwall the velocity is fixed to zero in both components. Concerning the elastic

stress tensor conditions, they do not need to be prescribed in this case. For the dynamic
case with Re = 100, in the boundary (Γtop) the horizontal velocity is chosen as:

ux(x, 1, t) = 16x2(1− x)2 sin(πt),

uy(x, 1, t) = 0.

Note that the sin function forces a time-dependent solution. In both cases, the character-
istic velocity to compute the dimensionless numbers is taken as the maximum lid velocity,
and the characteristic length is set to 1, which is the length of each side of the square. The
Weissenberg numbers studied are We = 0.5 and We = 1. The spatial discretization consid-
ered is formed by 10 000 bilinear Q1 elements for the finest mesh (100×100) and 1225 for
the coarse mesh (35×35). In all the cases the time discretization employed is the BDF2,
scheme and the time step considered is δt = 0.0025. Moreover, the Split-OSS together
with the use of dynamic sub-grid scales is used as stabilization for all the computations.

Comparing monolithic and fractional step schemes

The finality of this case is the study of the solution using both schemes: the monolithic one
and the fractional step scheme to compare robustness, accuracy, computational times and
number of internal iterations. Firstly the solution of the static case (Re = 0.0) is analysed.
Observe that in our computation neither continuation iterative methods nor additional
sub-relaxation schemes have been used to improve the convergence of the scheme. The
robustness of the methods using different scenarios are analyzed in Table 5.1, on the
one hand using monolithic or fractional step schemes, secondly using the standard or the
logarithmic formulation and thirdly considering dynamic or quasistatic sub-grid scales.
All these cases have been analyzed for a coarse mesh and We = 0.5. As shown in Chapter



148 Chapter 5. The purely elastic instability

Figure 5.1: Convergence test. Discrete `∞(L2(Ω))-errors for velocity, pressure and ψ fields
using BDF1 and BDF2 schemes for the fractional step using the logarithmic formulation.
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(a) (b)

Figure 5.2: Lid-driven cavity. Schematic representation of computational boundaries (a)
and computational mesh (b).

Stabilization S-OSS
Scheme Formulation Quasi-static Dynamic
Monolithic Standard Failed - time step 310 Failed - time step 1840
Monolithic Logarithmic Failed - time step 450 Solved
Fractional Step Standard Failed - time step 692 Failed - time step 1781
Fractional Step Logarithmic Failed - time step 593 Solved

Table 5.1: Lid-driven cavity. Comparison between different formulations and schemes with
We = 0.5, Re = 0, δt = 0.0025 considering a mesh of 35×35. The time step at which
convergence fails is indicated in each case.

4, the combination between logarithmic and time-dependent sub-grid scales is the only
combination which permits to obtain a converged solutions and that is achieved in both
monolithic and fractional step schemes. In all cases the tolerance to reach to the steady
state is 10−5. The remaining combinations suffer a breakdown in a particular time step,
which is indicated also in the table. This instability is not originated by a small time step
in relation with the mesh used; only the elasticity (translated to the Weissenberg number)
is the unique cause that produces this breakdown.

In Figure 5.3, cuts in y = 3/4 for the second component of the velocity (a) and for ψxy
(b) are displayed with the objective of comparing results obtained using the two schemes
for We = 0.5 and We = 1.0 considering the stationary solution when Re = 0.0. In
addition, a comparison with other works as [64] was carried out for We = 1.0. Results are
very close, almost identical, between the two schemes although some little discrepancy is
found in comparison with the literature. Another comparison between the two schemes
is performed in Figure 5.4 in this case the evolution in time of two different points close
to the top boundary, in particular Point 1 which has coordinates (0.12, 0.98) and Point 2
(0.87, 0.98). In both points the evolution in time of the module of the components of the
variable ψ is potted. Again, we can observe as the same tracking evolution is recorded for
both schemes, ensuring good accuracy of the fractional step scheme.

Now, a table comparing the monolithic time integrator against the fractional step
scheme will be presented for two different cases studied in this section. This is shown in
Table 5.2. The quotient between the CPU time using the fractional step scheme over the
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Fractional Step We=0.5

Monolithic We=0.5

Fractional Step We=1

Monolithic We=1

Fattal & Kupferman (2005)

(a)

Fractional Step We=0.5

Monolithic We=0.5

Fractional Step We=1

Monolithic We=1

Fattal & Kupferman (2005)

(b)

Figure 5.3: Lid-driven cavity. Result at time t = 8, Re = 0.0, We = 1 along the line
y = 3/4.

Fractional Step Point 1

Monolithic Point 1

Fractional Step Point 2

Monolithic Point 2

Figure 5.4: Lid-driven cavity. Evolution in time for the ψ field in two different points.
Point 1=(0.12 , 0.98); Point 2=(0.87 , 0.98). Re = 100, We = 1.
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Case Total time ratio Solver time ratio
We=0.5, Re=0.0 0.48 0.10
We=1.0, Re=100 0.49 0.07

Table 5.2: Lid-driven cavity. Ratio CPU time. Computational mesh 100×100.

Monolithic Fractional Step
Case nni / nsi nniu / nsiu nniψ / nsiψ nsip

We=0.5, Re=0.0 7 / 31 8 / 14 2 / 3 98
We=1.0, Re=100 4 / 28 4 / 5 2 / 2 91

Table 5.3: Lid-driven cavity. Average of number of iterations of the monolithic and frac-
tional step algorithms. Computational mesh 100×100.

CPU time spent in the monolithic approach is calculated, to determine the computational
savings. Note that for the comparison, a sequential implementation has been used in all
cases to avoid discrepancies derived from a parallel computation. Results presented in
this table have two columns: on the one hand we show the total CPU time needed by the
algorithm and on the other, the time employed by the solver to obtain the solution once
the system is built. The savings in CPU time are remarkable, achieving an approximately
reduction of 50% of the total time and around 90-93% in the solver time for the cases
explored.

In Table 5.3 the number of iterations required in each case is summarized: on the one
hand the number of iterations required by the solver to obtain the solution of the system
and, on the other, the number of nonlinear internal iterations to obtain converged results.
We denote by nni the average number of nonlinear iterations to reach convergence and nsi
the average number of iterations required by the solver. In these examples, the number of
iterations needed in the monolithic case is greater for the linear solver. The subsystems
for each step in case of the fractional step scheme are smaller and better conditioned,
and consequently it is translated into a reduction of the number of iterations required. In
our examples we have used the same solver for all subsystems. Also, the solver iterations
in momentum and constitutive equations is significantly smaller than for the pressure
equation. That is a general trend in Newtonian flows and not specific of our problem.

5.8.3 Array of cylinders

The array of cylinders problem has been reported in the literature to present a elastic
instability from a critical Weissenberg number. However, it has also received considerable
attention since some years ago [70, 98] due to the wide range of engineering applications of
polymeric flow in a porous media. The physical experiments which use the periodic array
demonstrated an increment of the flow resistance derived from the presence of polymer
[35, 163]. Furthermore, the flow through that array is well-known as a complex problem,
since it involves a mixture of elongational and shear flow behavior. The first studies
considered an infinite array in both the lateral and axial directions in order to do the
wall effects negligible. The viscoelastic case [95] considered the channel obstructed by two
rows of cylinders, proving that the resistance of the flow monotonically decreased with
the flow rate. In the work of Skarsis et al. [152] the Deborah number is defined based on
the shear-rate-dependent relaxation time and the average flow rate across the minimum
gap. Due to the Reynolds number being significant small (of order of 10−10), the increased
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Figure 5.5: Array of cylinders. Schematic representation of the geometry.

pressure drop was only a consequence of the elasticity of the fluid. Moreover, in the work
of Chmielewski et al. [33, 34] shown as the pressure fluctuations at some critical De were
observed. That indicated the presence of a flow instability, and confirmed the development
of unsteady flow patterns. Finally, it was concluded that the increase in the flow resistance
corresponds to the amplitude in the time-dependence and asymmetry in the solution.

In this section three different works will be taken as reference. The first one is that
corresponding to Liu et al. [110], in which the problem in widely studied using three
different models: Giesekus, FENE-P and Chilcott-Rallison (CR), although the flow and
stress fields predicted by the three constitutive models are similar. In this chapter, several
situations are considered, as different separation length between cylinders, and different
Weissenberg numbers. The distribution of the main fields and the values adopted by the
drag force were studied. This work will be useful to validate the algorithm proposed.

The second and third are the works papers of Grilli et al. [76] and [162], in which the
transition to the elastic instability is investigated. In these two papers, the Lagrangian
framework is used, in particular the Smoothed Particle Hydrodynamics (SPH) method
[73], which is a meshless technique where a set of ordinary differential equations are solved
for discrete elements of fluid (particles). This example is studied using the Oldoyd-B
constitutive equation, the same that we will employ in this work.

Setup

The computational geometry in this case is reported in Figure 5.5, where the radius of
each cylinder is Rc = 1, and is placed on the center line of a two-dimensional channel with
half-height Hc = 2. The fluid that flows between the channel is driven by a constant body
force F . The spatial period considered between cylinders is taken as Lc = 6 and Lc = 2.5.
Concerning the computational mesh, it is unstructured, composed by Q1 elements, with
a refinement close to the cylinder, as it is shown in Figure 5.6. The mesh is composed by
12006 nodes and 11462 elements.

Now we will define the boundary conditions considered. On the one hand, no-slip veloc-
ity boundary conditions are applied to the solid channel walls and on the cylinder surface.
On the other hand, periodic boundary conditions are considered along the streamwise di-
rection, and therefore, reproducing a periodic array structure of cylinders. The Reynolds
number considered to rule out the effect of inertia is Re = ρRc〈u〉/η0 = 2.4× 10−2, where
〈u〉 is the average of velocity. The total viscosity η0 involves two contributions: the poly-
meric viscosity and the solvent viscosity (as it was explained previously). For this problem,
the solvent viscosity is ηs = 24.58 and the polymeric viscosity ηp = 17.08, and therefore,
the factor β is 0.59. On the other hand, the Weissenberg number is calculated in this case
as We = λ〈u〉/Rc, and in particular in this problem, the Weissenberg numbers adopted
are in the interval [0 : 1.6].
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(a) (b)

Figure 5.6: Array of cylinders. Meshes employed.

Validation with Lc = 6

First of all we validate with the literature the results in the case in which the distance
between cylinders is 6. The case is tested using different meshes. In this case, the presence
of other cylinders does not affect appreciably the Stokes flow kinematics. The main change
(and it is rather subtle) is that the gradient of pressure decreases, as it is reported in [110].
The effect of increasing We on the velocity field can be seen in Figure 5.7a. One of
the effects that must be highlighted is how axial velocity on the centerline, next to the
downstream stagnation point, increases when We does. For x > 1.5 the velocity decreases
relative to the less elastic solution (We=0.2). This result is specially interesting due to the
proximity of the cylinders, the effect on the velocity field is that this downstream shift is
convected increasingly as We is increased. Therefore the velocity upstream of the following
cylinder also shows a decrease with respect to a Newtonian flow. Figure 5.7b shows a cross
sectional plot of the component vx of the velocities along the periodic boundary at x = 3,
where a local minimum can be observed, located on the centerline. These results have
been validated with the work of Liu et al. [110].

Elastic instability with Lc = 2.5

We have to stand out that, contrary to the case Lc = 6, the Newtonian flow in the space
between cylinders is characterized by the presence of two rotating vortices, as it is described
in [162], making the fluid motion shear dominated instead of elongation dominated (see
the Figure 5.8d). As Vazquez-Quesada et al. pointed out, there is no existence of a strong
elongational flow in the wake stagnation line due to the closely placed cylinders. The
problem, in this case, is characterized by a flow regime where local numerical convergence
was already achieved. Therefore, fluctuations in the flow quantities come from a physical
origin. In the contour stresses that are shown in Figure 5.8, the maximum peaks of stresses
remain at the solid boundaries, in particular on the cylinder. In contrast with a larger
cylinder spacing, the polymer molecules along the centerline are at equilibrium due to the
recirculation. As explained in [110], the stagnation points where the recirculation region is
produced do not appear to produce a lot of molecular extension, in other words, molecules
are not relaxed when they go along the streamlines near the boundary of the separated
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(a) (b)

Figure 5.7: Array of cylinders with Lc = 6. (a) Profile of vx along the symmetry line y = 0
and (b) across the periodic boundary x = 3 for different Weissenberg numbers.

flow. As a result there is a region of "high molecular extension" away from the cylinder
surface and upstream from x = 0. The distribution of the stresses can be compared
with the one shown in [110], although in this case the stresses have been normalized if the
model employed is the Chilcott-Rallison (CR) one. On the other hand, in the literature it is
reported an increment of the flow resistance in the viscoelastic flow through a porous media
and confined arrays for some experiments, but not reproduced numerically. In [156] a wide
range of steady simulations around a periodic array were studied using several constitutive
models, presenting different behaviors; although in all the cases similar qualitative results
were obtained. For example the initial drag reduction, and then an significant increment is
reported from We=1. In [162] it is reported that the instability of the previous numerical
methods to capture the elastic instability driving the flow towards a more dissipative flow
regime could be a possible cause of the discrepancies. Vazquez-Quesada et al. [162] argue
that if the transition towards the inestability could be described as a Hopf bifurcation of
the mathematical solution, the standard numerical computations will follow the steady
branch, while the flow reported is clearly time-dependent. As it is explained in [162], the
experimental observation supporting the idea of elastic instability is that an increment in
fluctuations of the flow quantities is reported as the We number increase. In Figure 5.9,
this effect can be observed: oscillations reported increase as one Weissenberg number does.
Moreover, the instability is activated before when the Weissenberg number is higher. In
our computations the fluctuations appear for We = 1.3. For smaller Weissenberg numbers,
the simulations remains stationary in our case. We have to remark several difficulties to
achieve a converged solution. For that, the time step employed was δt = 0.0025.

In Figure 5.10 the point with coordinates (0, 1.1), located downstream of the cylinder,
is tracked for the pressure field. We have to remark that several points around the cylinder
were tracked to study the evolution in time of the different fields, although the fluctuations
reported are similar in all of them. The first graph, Fig. 5.10a, the oscillations captured
along 150 seconds are shown. It is the period of time in which the instability becomes
more relevant until it reaches a regular and stable oscillations. The second plot, Fig. 5.10b
is only a "zoom" of Fig. 5.10a, in which only 20 seconds of oscillations are represented.
Finally, in Figure 5.10c the Fourier Transform (FFT) is computed in order to study the
frequencies. This plot shows two main modes: one of frequency 1 Hz and another of 0.5
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(a) (b)

(c) (d)

Figure 5.8: Array of cylinders: Contours of stresses and streamlines for We=0.5.
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Figure 5.9: Array of cylinders. Tracking of the point (0, 1.1) for different Weissenberg
numbers.

Hz approximately.
Although elastic turbulence has not been reported in our examples, clearly a bifurcation

has been detected, related with the purely elastic inestability.

5.9 Conclusions

In this chapter, fractional step methods for the logarithmic conformation reformulation
have been designed for the first and the second order schemes using a pure algebraic
approach. In this fractional scheme, also the time-dependent sub-grid scales are contem-
plated, allowing to compute anisotropic spatial-time discretizations. In addition, for the
viscoelastic case, that implementation permits to compute more elastic cases. Moreover,
the use of fractional step schemes implies important savings in computational cost, as it
has been highlighted in the cavity benchmark included in the numerical results. Also the
fractional step algorithm is validated for an analytical solution, showing an optimal rate
of convergence in time for the three variables which are involved.

Finally, using these tools, an elastic instability has been reproduced in the case of
the array of cylinders, showing a time-dependent behavior in the solution when the Weis-
senberg number is high enough, even considering a Reynolds number very low, whose order
is 10−2.
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Figure 5.10: Array of cylinders. Tracking of the point (0, 1.1) of the pressure field in
the time interval [0,400] (a), and in the time interval [380-400] (b). Fourier transform is
plotted in (c).





Chapter 6

Analysis of stability and convergence

This chapter is based on the publication:

Codina, R., & Moreno, L. (2021). Analysis of a stabilized finite element approxima-
tion for a linearized logarithmic reformulation of the viscoelastic flow problem. ESAIM.
Mathematical Modelling and Numerical Analysis, 55, 279.

6.1 Abstract

In this chapter the numerical analysis of a finite element method is presented for a lin-
earized viscoelastic flow problem. In particular, we analyze a linearization of the logarith-
mic reformulation of the problem, which in particular should be able to produce results
for Weissenberg numbers higher than the standard one. In order to be able to use the
same interpolation for all the unknowns (velocity, pressure and logarithm of the confor-
mation tensor), we employ a stabilized finite element formulation based on the Variational
Multi-Scale concept. The study of the linearized problem already serves to show why the
logarithmic reformulation performs better than the standard one for high Weissenberg
numbers; this is reflected in the stability and error estimates that we provide in this
chapter.

6.2 Background

Computing viscoelastic fluid flows when the fluid presents a dominant elastic behavior is
one of the biggest challenges of the computational rheology field nowadays. The equations
that model the viscoelastic fluid flow problem present several instabilities which have been
studied for example in [66, 143]. These instabilities become important when elasticity be-
comes dominant, in other words, when the Weissenberg number is high as it was mentioned
in previous chapters. The numerical instability was studied by Fattal and Kupferman [63],
who explained that it is present in the constitutive models and the standard numerical
methods. Constitutive equations could present also other type of instabilities from a math-
ematical point of view, referred to as constitutive instabilities [105, 107]. These can be
classified in two: the Hadamard instability, which is a consequence of the non-linear fast
response of the constitutive equation, and the dissipative instability, related to the dissi-
pative behavior of viscoelastic models. However, the reasons for the HWNP are different:
one is the loss of positive-definiteness of the conformation tensor, which is an internal

159



160 Chapter 6. Analysis of stability and convergence

variable that must be positive-definite to be physically admissible [63, 91], and the second
is the appearance of regions with large strain gradients. From the numerical point of view,
Fattal and Kupferman [63, 64] focussed the origin of the problem in the inappropriate
approximations to represent the stress tensor, standing out the necessity of preserving the
positivity of the conformation tensor. By following these ideas the logarithmic conforma-
tion reformulation was proposed in [63] as a formulation of the equations which overcomes
the instability and linearizes the exponential stress profiles near the stress singularities.
The formulation treats the exponential growth of the elastic stresses, allowing to extend
the usual range of Weissenberg numbers which can be considered to simulate viscoelastic
fluid flows. In this chapter we will use the logarithmic reformulation developed in Chapter
2. In contrast with the original one, our change of variables will be non-singular when
the Weissenberg number is close to zero and the flow is Newtonian; a similar idea was
presented in [147].

In addition to the instabilities mentioned, viscoelastic fluid flows present some com-
patibility restrictions when the Galerkin finite element (FE) approximation is undertaken.
First, velocity and pressure FE spaces must satisfy the well known inf-sup condition for
incompressible flows [23] and, secondly, there is another inf-sup condition that needs to be
satisfied between stresses and velocities [145]. This is studied for example for the Navier-
Stokes problem in [16, 42]; the same requirements are met in the viscoelastic case. Stable
interpolations are proposed in [115], whose analysis can be found in [68]. At the continuous
level, these inf-sup conditions are satisfied and the problem can be shown to have a unique
solution in the slow viscoelastic case [66, 143]; see also [81, 89] for some results concerning
strong solutions.

Referring to the FE approximation, there are several works which analyze the station-
ary Oldroyd-B problem and present optimal error estimates. For instance, [13] is one of the
first works that shows the existence of FE approximations assuming that the continuous
problem admits sufficiently smooth and sufficiently small solution; bounds for the error
are also provided. In [136], the authors establish the existence and a priori error estimates
using the EVSS (Elastic Viscous Split Stress) method, aimed to circumvent the inf-sup
condition between velocities and stresses. More recently, in [114] the authors present an
error analysis of a particular Oldroyd-B model with the limiting Weissenberg number going
to infinity, assuming a suitable regularity of the exact solution for FE and finite volume
methods. The time-dependent Oldroyd-B problem has also been studied, for example in
[61], using the SUPG method, aimed to circumvent convection instabilities.

In this chapter, the log-conformation reformulation is applied together with a stabi-
lized FE formulation based on the Variational Multi-Scale (VMS) method which aims at
circumventing the inf-sup conditions and dealing with convection dominated flows at the
same time, as it was considered in the previous chapters. The VMS concept was presented
first by Hughes et al. [90] for the convection-diffusion-reaction problem. These ideas were
applied and extended in [38, 40–42] for the Navier-Stokes problem and the three-field
Stokes problem considering the space of the sub-grid scales orthogonal to the FE space.
The viscoelastic fluid flow problem was stabilized following a VMS framework in [28, 29]
and in the logarithmic formulation the method was tested in Chapter 2 for some numerical
examples in which the Weissenberg number is relevant. This type of stabilization is also
applied in [103, 104].

The present chapter can be considered a continuation of the work presented in [29, 42].
In [42] a VMS formulation for the three-field Stokes problem was presented and analyzed.
The same approach was followed in [29], in this case applied to a linearized version of
the stationary standard formulation of the viscoelastic flow problem, using the Oldroyd-B
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model. The linearization is based on considering given the advection velocity and the
velocity gradient in the rotational terms of the constitutive equation. The purpose of
this chapter is to extend this analysis to the logarithmic reformulation of the viscoelastic
problem. This analysis will serve to explain its improved performance with respect to
the standard formulation when the Weissenberg number is high. This would be difficult
to observe in the full nonlinear problem, since conditions to ensure existence of solutions
and their finite element approximation pose stringent requirements on the Reynolds and
Weissenberg numbers of the problem, even in the time dependent case; for the standard
formulation and using a similar approach as the one we follow here, this analysis can be
found in [14].

This chapter is organized as follows: In Section 6.3, the logarithmic formulation is
described, starting from the standard viscoelastic Oldoryd-B fluid flow equations; Section
6.4 presents the FE method employed, based on the VMS approach. In Section 6.5 the
numerical analysis is developed; in particular, in Section 6.5.2 stability and convergence
are proved for a mesh dependent norm, while in Section 6.5.3 results are obtained for
natural norms. Finally, conclusions are drawn in Section 6.6.

6.3 The stationary logarithmic linearized viscoelastic prob-
lem

In this section the linearized boundary value problem will be defined for the viscoelas-
tic fluid flow equations written in the logarithmic conformation reformulation. All of
the details concerning the reformulation of the standard equations into this logarithmic
formulation are explained in Chapter 2.

6.3.1 Linearized boundary value problem

To motivate the linearized problem to be analyzed, let us consider a Newton-Raphson
linearization such as it is explained in the Section 2.3.4. Since we consider exp(ψ̂) and
ψ̂ known, we can denote these tensors as E = exp(ψ̂) and S = ψ̂, respectively, and
introduce R = E · S − E. The linearized equations of the log-conformation formulation
are now expressed as follows:

− ηp
λ0
∇ · (E ·ψ −R)− 2ηs∇ · (∇su) + ρa · ∇u+∇p = f , (6.1)

∇ · u = 0, (6.2)
1

2λ0
(E ·ψ −R− I)−∇su+

λ

2λ0
(a · ∇ (E ·ψ −R)

− (E ·ψ −R) · ∇a− (∇a)T · (E ·ψ −R) + 2∇su
)

= 0, (6.3)

where the unknowns are the velocity, the pressure, and tensor ψ. Note the presence of the
last term 2∇su, which will have a crucial role in the dependence of the error estimate to
be obtained with the Weissenberg number.

Let us introduce some notation, useful in the next subsections. In this case, calling
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U = [u, p,ψ], the main linearized operator is defined as

L(U) :=


− ηp
λ0
∇ · (E ·ψ)− 2ηs∇ · (∇su) + ρa · ∇u+∇p

∇ · u
1

2λ0
E ·ψ −∇su+

λ

2λ0
(a · ∇ (E ·ψ)

− (E ·ψ) · ∇a− (∇a)T · (E ·ψ) + 2∇su
)

 , (6.4)

If we also introduce

F :=


f − ηp

λ0
∇ ·R

0
1

2λ0
(I +R) +

λ

2λ0
(a · ∇R−R · ∇a −(∇a)T ·R

)
 =:

 fu
0
fψ

 , (6.5)

we may write (2.8)-(2.10) as

L(U) = F , (6.6)

which again needs to be supplied with the boundary condition u = 0 on ∂Ω.

6.3.2 Variational formulation

Considering the notation defined in Section 2.3.3, this weak form consists in finding U =
[u, p,ψ] ∈ X := V ×Q×Υ such that

ηp
λ0

(E ·ψ,∇sv) + 2(ηs∇su,∇sv) + 〈ρa · ∇u,v〉 − (p,∇ · v)

= 〈f ,v〉+
ηp
λ0

(R,∇sv), (6.7)

(q,∇ · u) = 0, (6.8)
1

2λ0
(E ·ψ,χ)− (∇su,χ) +

λ

2λ0
(a · ∇ (E ·ψ)−E ·ψ · ∇a

−(∇a)T ·E ·ψ + 2∇su,χ
)

=
1

2λ0
(I +R,χ)

+
λ

2λ0
(a · ∇R,χ) +

λ

2λ0

(
−R · ∇a− (∇a)T ·R,χ

)
, (6.9)

for all V = [v, q,χ] ∈ X , where it is assumed that f , R and E are such that the known
terms are well defined. In compact form, the problem can be written as:

B(U ,V ) = L(V ), (6.10)

where

B(U ,V ) =
ηp
λ0

(E ·ψ,∇sv) + 2(ηs∇su,∇sv) + 〈ρa · ∇u,v〉 − (p,∇ · v)

+ (∇ · u, q) +
1

2λ0
(E ·ψ,χ)− (∇su,χ)

+
λ

2λ0

(
a · ∇ (E ·ψ)−E ·ψ · ∇a− (∇a)T ·E ·ψ + 2∇su,χ

)
, (6.11)

L(V ) = 〈f ,v〉+
ηp
λ0

(R,∇sv) +
1

2λ0
(I +R,χ) +

λ

2λ0
(a · ∇R,χ)
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+
λ

2λ0

(
−R · ∇a− (∇a)T ·R,χ

)
. (6.12)

As it is explained in Section 2.3.3, test function χ is a stress, whereas the dimension-
less unknown ψ is the logarithm of the conformation tensor. We could also have used
a test function for the constitutive equation of the form ηp

λ0
exp(χ), where now χ would

be dimensionless. This would simplify the analysis (some stability would follow taking
χ = ψ), but complicate significantly the FE approximations described below. Note that,
strictly speaking, the space of stress test functions could be taken as the L2 projection
onto L2(Ω)d×d of functions of the form E ·ϕ properly scaled, for example by a factor ηp

λ0
,

with ϕ belonging to the space of trial solutions.

We will not analyze the continuous problem (6.10), but simply assume that there exists
a solution that is smooth enough. As for the standard formulation, this requires λ to be
small enough and, in the case of the linearization we consider, the following condition on
the velocity a which will also be needed in the discrete problem:

Assumption H1 a ∈ C0(Ω̄)d, ∇ · a = 0, a and ∇a have components in L∞(Ω).

E and R have components in L∞(Ω).

E is invertible with a bounded inverse.

6.3.3 Stability of the Galerkin finite element discretization

The standard Galerkin approximation for the variational problem, which has been es-
tablished in (6.10), is described next. The notation employed is that defined in Section
2.3.5.

Although any conforming approximation could be considered using the approach to be
described, and this means that pressures and stresses could be discontinuous (see [29]), for
conciseness we will restrict to continuous interpolations for these fields.

The condition that the convective derivative of the stress be square integrable will follow
from H1 and choosing the stresses continuous, for example. Calling X h := Vh×Qh×Υh,
the Galerkin FE approximation of the problem consists in finding Uh ∈ X h, such that:

Bψ(Uh,V h) = L(V h), (6.13)

for all V h = [vh, qh,χh] ∈ X h, where Bψ is obtained from B given in (6.11) replacing
E ·ψh by Pψ(E ·ψh), where Pψ is the L2 projection onto Υh.

As in the standard formulation, problem (6.13) lacks stability unless appropriate inf-
sup conditions hold. Likewise, convective terms are not bounded, and these may dominate
those that can be controlled.

6.4 Stabilized finite element method

The numerical method analysed is a non-residual type stabilization. This method has
been detailed extensively in Section 2.4.2.

Following the considerations made in [28] for the construction of the Split-OSS method
for the traditional viscoelastic formulation, the modified method we propose for the log-
conformation reformulation is: find Uh ∈ X h such that

Bstab(Uh,V h) = Bψ(Uh,V h) +B∗(Uh,V h) = L(V h) (6.14)
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for all V h ∈ X h, where B∗(Uh,V h) represents the stabilizing part of the model, defined
as

B∗(Uh,V h) = S⊥1 (Uh,V h) + S⊥2 (Uh,V h) + S⊥3 (uh;Uh,V h), (6.15)

where

S⊥1 (Uh,V h) =
∑
K

α1

〈
P⊥u

[
− ηp
λ0
∇ · Pψ[E ·ψh]

]
,−∇ · χh

〉
K

+
∑
K

α1

〈
P⊥u [∇ph],∇qh

〉
K

+
∑
K

α1

〈
P⊥u [ρa · ∇uh], ρa · ∇vh

〉
K

, (6.16)

S⊥2 (Uh,V h) =
∑
K

α2

〈
P⊥p [∇ · uh],∇ · vh

〉
K

, (6.17)

S⊥3 (Uh,V h) =
∑
K

α3

〈
P⊥ψ [Rψ],

−∇svh +
λ

2ηp

(
a · ∇χh + χh · (∇a)T +∇a · χh

)〉
K

, (6.18)

and where Rψ is the residual of the constitutive equation

Rψ =−∇suh +
λ

2λ0
(a · ∇Pψ[E ·ψh]− Pψ[E ·ψh] · ∇a

−(∇a)T · Pψ[E ·ψh] + 2∇suh
)

. (6.19)

The L2 projections onto the FE spaces for velocity (without boundary conditions), pressure
and stress have respectively been denoted by Pu, Pp and, as already mentioned, Pψ. The
projection onto the velocity space with boundary conditions will be denoted Pu,0.

The method is a mix of an orthogonal term-by-term formulation for the momentum
equation and continuity equation and a residual-based formulation for the constitutive
equation. For smooth solutions, both have an optimal convergence rate in h. However,
in problems where the solution has strong gradients, we have found (6.15) more robust,
similarly to what it is explained in [28]. For a detailed motivation and numerical experi-
mentation using this method, see [119].

In the numerical analysis below we will also use the notation

Pψ[E ·ψh] · ∇a+ (∇a)T · Pψ[E ·ψh] = ψ̇
∗
h + ψ̇

∗∗
h ,

and
Pψ[E ·ψh] · (∇a)T +∇a · Pψ[E ·ψh] = ψ̇

∗
h − ψ̇

∗
h,

where ψ̇
∗
h = Pψ[E·ψh]·∇sa+∇sa·Pψ[E·ψh] and ψ̇

∗∗
h = Pψ[E·ψh]·∇asa−∇asa·Pψ[E·ψh].

In these expressions, ∇asa represents the skew-symmetric part of the velocity gradient,
given by

∇asa =
1

2

[
∇a− (∇a)T

]
.

6.5 Numerical analysis

6.5.1 Preliminaries

We assume that there is a constant cinv, independent of the mesh size h, such that

‖∇vh‖K ≤ cinvh
−1 ‖vh‖K , (6.20)
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for all FE functions vh defined on K ∈ Th, which can be either scalars, vectors or tensors.
We will also make use of Korn’s inequality, which holds for the conforming approximation
that we consider:

‖vh‖2H1(Ω) ≤ cL ‖∇
svh‖2 with vh = 0 on ∂Ω,

cL > 0 being a constant. As usual, C will denote a generic positive constant, possibly
different at different occurrences. A fixed constant will be identified with a subscript.

We will need a condition on the interpolating spaces that holds in the case of equal
order interpolations, and that can be written as [29, 42]:

Assumption H2 Given a,vh ∈ Vh, qh ∈ Qh,ψh ∈ Υh and
zh := ρa · ∇vh +∇qh −∇ · Pψ[E ·ψh],

there holds ‖zh‖ ≤ cm

(
‖Pu,0 [zh]‖+

∥∥∥P⊥u [zh]
∥∥∥) , for a constant

cm > 0.

For a piecewise linear velocity a this assumption is known to hold; here we assume that a
is such that it is satisfied.

6.5.2 Stability and convergence in a mesh-dependent norm

The norm in which the results will be first presented is

‖V h‖2W = 2ηs ‖∇svh‖2 +
ηp
λ2

0

‖Pψ[E ·ϕh]‖2

+
∑
K

αu

∥∥∥∥ρa · ∇vh +∇qh −
ηp
λ0
∇ · Pψ[E ·ϕh]

∥∥∥∥2

K

+
∑
K

αu

∥∥∥P⊥u [ρa · ∇vh]
∥∥∥2

K
+
∑
K

αu

∥∥∥P⊥u [∇qh]
∥∥∥2

K

+
∑
K

αu

∥∥∥∥P⊥u [ ηpλ0
∇ · Pψ[E ·ϕh]

]∥∥∥∥2

K

+
∑
K

αp ‖∇ · vh‖2K +
∑
K

αψ

∥∥∥∥ λ

2λ0
(a · ∇Pψ[E ·ϕh]− ϕ̇∗∗h )

∥∥∥∥2

K

, (6.21)

considering V h = [vh, qh,ϕh] ∈ X h (note again that ϕh is dimensionless). This is clearly
homogeneous velocity boundary conditions considered, since if ‖V h‖=0, vh = 0 because
of the first term (using Körn’s inequality), Pψ [E ·ϕh] = 0 for ηp > 0 because of the second
term (and, in fact, ϕh = 0 because of Assumption H3 stated later), and, finally, qh = 0
because of the thirs term and the definition of Q.

To simplify the analysis, we shall consider that the stabilization parameters are con-
stant, computed with the L∞(Ω) norm of the advection velocity and its gradient. The
analysis of variable stabilization parameters, including non-uniform meshes, can be done
using the techniques in [41].

The main stability result, which implies existence and uniqueness of discrete solutions,
is the following:

Theorem 6.1 (Stability). Suppose that H1 and H2 hold. For λ small enough, there is a
constant C > 0 such that

inf
Uh∈Xh

sup
V h∈Xh

Bstab(Uh,V h)

‖Uh‖W ‖V h‖W
≥ C,
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provided the constants ci, i = 1, .., 4 defined in (2.30)-(2.32) are large enough.

Proof. Given Uh ∈ X h, consider Uh1 =
[
λ∗uh,λ∗ph,

ηp
λ0
Pψ[E ·ψh]

]
, where λ∗ = λ−λ0

λ0
>

0. We assume that λ > λ0,min, since the case of very small elasticity is easier to prove and
it is not our focus. Now, using skew symmetry of the convective terms (from assumption
H1), we obtain:

Bstab(Uh,Uh1) =

=Bψ(Uh,Uh1) +B∗(Uh,Uh1)

=
ηp
λ0
λ∗ (Pψ[E ·ψh],∇suh)︸ ︷︷ ︸

(1)

+2ηsλ
∗(∇suh,∇suh)

+
1

2λ0

ηp
λ0

(Pψ[E ·ψh],Pψ[E ·ψh])

− ηp
λ0

(∇suh,Pψ[E ·ψh])︸ ︷︷ ︸
(1)

− λ

2λ0

ηp
λ0

(Pψ[E ·ψh] · ∇a,Pψ[E ·ψh])︸ ︷︷ ︸
(2)

− λ

2λ0

ηp
λ0

(
(∇a)T · Pψ[E ·ψh],Pψ[E ·ψh]

)︸ ︷︷ ︸
(2)

+
λ

2λ0

ηp
λ0

(2∇suh,Pψ[E ·ψh])︸ ︷︷ ︸
(1)

+
∑
K

αu

〈
P⊥u

[
ηp
λ0
∇ · Pψ[E ·ψh]

]
,
ηp
λ0
∇ · Pψ[E ·ψh]

〉
+
∑
K

αuλ
∗
〈
P⊥u [∇ph],∇ph

〉
+
∑
K

αuλ
∗
〈
P⊥u [ρa · ∇uh], ρa · ∇uh

〉
+
∑
K

αpλ
∗
〈
P⊥p [∇ · uh],∇ · uh

〉
+
∑
K

αψ

〈
P⊥ψ

[
λ∗∇suh +

λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇∗h − ψ̇

∗∗
h

)]
,

−λ∗∇suh +
λ

2λ0

(
a · ∇Pψ[E ·ψh] + ψ̇

∗
h − ψ̇

∗∗
h

)〉
︸ ︷︷ ︸

(3)

.

Let us bound the terms in this expression. From now on, ε with a subscript will denote
a constant resulting from Young’s inequality, which will be repeatedly used together with
Schwarz’s inequality, one can easily obtain:

(1) ≥ −2ηpλ
∗
[

1

2ε0λ2
0

‖Pψ[E ·ψh]‖2 +
ε0

2
‖∇suh‖2

]
,

(2) ≥ −ληp
λ2

0

‖∇a‖L∞(Ω) ‖Pψ[E ·ψh]‖2 ,

(3) ≥ −(λ∗)2
∑
K

αψ ‖∇suh‖2K
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+
∑
K

αψ

(
λ

2λ0

)2 ∥∥∥P⊥ψ [a · ∇Pψ[E ·ψh]− ψ̇∗∗h
]∥∥∥2

K

−
∑
K

αψ

(
λ

2λ0

)2

4 ‖∇sa‖2L∞(K) ‖Pψ[E ·ψh]‖2K ,

from where

Bstab(Uh,Uh1) ≥
∑
K

(
2ηsλ

∗ − ηpλ∗ε0 − (λ∗)2αψ
)
‖∇suh‖2K

+
∑
K

[
ηp
λ2

0

(
1− λ∗

ε0
− λ ‖∇a‖L∞(K)

)

−αψ
(

λ

2λ0

)2

4 ‖∇sa‖2L∞(K)

]
‖Pψ[E ·ψh]‖2K

+
∑
K

αu

∥∥∥∥P⊥u [ ηpλ0
∇ · Pψ[E ·ψh]

]∥∥∥∥2

K

+
∑
K

αu

∥∥∥P⊥u [λ∗∇ph]
∥∥∥2

K

+
∑
K

αu

∥∥∥P⊥u [λ∗ρa · ∇uh]
∥∥∥2

K
+
∑
K

αp

∥∥∥P⊥p [λ∗∇ · uh]
∥∥∥2

K

+
∑
K

αψ

(
λ

2λ0

)2 ∥∥∥∥P⊥ψ [ λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇∗∗h

)]∥∥∥∥2

K

. (6.22)

Even if αu = αp = αψ = 0, this estimate yields some stability provided λ is small enough.
In fact, this would be the estimate for the Galerkin method, which is the same as for the
continuous problem. For the latter it would be possible to obtain pressure stability and
stability for the velocity gradient through the use of appropriate inf-sup conditions. In the
discrete case, we will not use these, but we will see how the stabilization terms allow us
to prove the theorem.

Let us introduce v1 ≡ Pu,0(ρa · ∇uh +∇ph − ηp
λ0
∇ · Pψ[E · ψh]) and consider V h1 =

αuλ
∗ [v1, 0, 0]. Taking this test function, using Schwarz’s and Young’s inequalities and the

inverse estimate (6.20) we get

Bstab(Uh,V h1) = Bψ(Uh,V h1) +B∗(Uh,V h1)

= B∗(Uh,V h1) +
∑
K

αuλ
∗
〈
ηp
λ0
Pψ[E ·ψh],∇sv1

〉
K

+
∑
K

αuλ
∗ 〈ρa · ∇uh,v1〉K −

∑
K

αuλ
∗ 〈ph,∇ · v1〉K

−
∑
K

αuλ
∗
[
ε1

2
‖v1‖2K +

1

2ε1
(2ηs)

2 c
2
inv
h2
‖∇suh‖2K

]
.

The last term is obtained from the next inequality, by using the Young’s inequality and
the inverse estimate (6.20):∑

K

αuλ
∗2ηs (∇suh,∇sv1) ≥ −

∑
K

αuλ
∗
[
ε1

2
‖v1‖2K +

1

2ε1
(2ηs)

2 c
2
inv
h2
‖∇suh‖2K

]
Integrating by parts the second and fourth terms, using the continuity assumed for the
interpolation and the advection velocity, we get

Bstab(Uh,V h1) ≥ B∗(Uh,V h1) +
(

1− ε1

2

)∑
K

αuλ
∗ ‖v1‖2K
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− 1

2ε1
(2ηs)

2 c
2
inv
h2

∑
K

αuλ
∗‖∇suh‖2K . (6.23)

Now we need to bound the stabilizing terms:

B∗(Uh,V h1) =
∑
K

α2
uλ
∗
〈
P⊥u [ρa · ∇uh] , ρa · ∇v1

〉
︸ ︷︷ ︸

(1)

+
∑
K

αuαpλ
∗
〈
P⊥p [∇ · uh] ,∇ · v1

〉
︸ ︷︷ ︸

(2)

+
∑
K

αuαψλ
∗
〈
P⊥ψ

[
−∇suh +

λ

2λ0
a · ∇Ph [E ·ψh]

]
,−∇sv1

〉
+
∑
K

αuαψλ
∗
〈
P⊥ψ

[
λ

2λ0

(
−Ph [E ·ψh] · ∇a− (∇a)t · Ph [E ·ψh] + 2∇suh

)]
,−∇sv1

〉
︸ ︷︷ ︸

(3)

(6.24)

Repeated application of Schwarz’s, Young’s and the inequality ‖a + b + c‖2 ≤ 4 ‖a‖2 +
4 ‖b‖2 + 2 ‖c‖2 and the inverse estimate (6.20) allow us to bound the stabilizing terms:

(1) ≥ −
∑
K

α2
uλ
∗ ‖a‖K

ρ

h

(
1

2ε2

∥∥∥P⊥u [ρa · ∇uh]
∥∥∥2

K
+
ε2

2
c2
inv ‖v1‖2K

)
(2) ≥ −

∑
K

αpλ
∗
(

1

2ε3

∥∥∥P⊥p (∇ · uh)
∥∥∥2

K
+
ε3

2

c2
inv
h2

α2
u ‖v1‖2K

)
(3) ≥ −2

1

2ε4
λ∗
∑
K

αψ (λ∗)2 ‖∇suh‖2K

−4
1

2ε4
λ∗
∑
K

αψ

∥∥∥∥P⊥ψ ( λ

2λ0
(a · ∇Ph (E ·ψh)−ψ∗∗h )

)∥∥∥∥2

K

−4
1

2ε4
λ∗
∑
K

αψ

(
λ

2λ0

)2

4 ‖∇sa‖2L∞(K) ‖Ph (E ·ψh)‖2K

−ε4

2
λ∗
∑
K

α2
uαψ

c2
inv
h2
‖v1‖2K

Finally, the next expression is obtained:

Bstab(Uh,V h1) ≥ λ∗
∑
K

αuCu‖v1‖2K

− λ∗
∑
K

αu

(
1

ε1
2η2
sαu

c2
inv
h2

+
1

ε4
αψ (λ∗)2

)
‖∇suh‖2K

− 1

2ε2
λ∗
∑
K

α2
u ‖a‖L∞(K)

ρ

h

∥∥∥P⊥u [ρa · ∇uh]
∥∥∥2

K
− 1

2ε3
λ∗
∑
K

αp

∥∥∥P⊥p [∇ · uh]
∥∥∥2

K

− 4
1

2ε4
λ∗
∑
K

αψ

∥∥∥∥P⊥ψ [ λ

2λ0
(a · ∇Pψ[E ·ψh]−ψ∗∗h )

]∥∥∥∥2

K
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− 4
1

2ε4
λ∗
∑
K

αψ

(
λ

2λ0

)2

4 ‖∇sa‖2L∞(K) ‖Pψ[E ·ψh]‖2K , (6.25)

where
Cu := 1− ε1

2
− c2

invαu

[ε2

2
‖a‖L∞(K)

ρ

h
+
ε3

2

αp
h2

+
ε4

2

αψαu
h2

]
, (6.26)

and εi, i = 2, 3, 4 come again from different instances of the application of Young’s in-
equality.

Let us consider now the test function V h2 = αpλ
∗ [0, q2, 0], with q2 ≡ Pp[∇ · uh].

Bstab (Uh,V h2) = λ∗
∑
K

αp (∇ · uh, q2)︸ ︷︷ ︸
(1)

+λ∗
∑
K

αuαp

〈
P⊥u [∇ph] ,∇q2

〉
︸ ︷︷ ︸

(2)

Using the same tools as above we get

(1) = λ∗
∑
K

αp ‖Pp [∇ · uh]‖2K

(2) ≥ −λ∗
∑
K

αu

(
ε5

2

∥∥∥P⊥u [∇ph]
∥∥∥2

K
+

1

2ε5
α2
p

c2
inv
h2
‖Pp [∇ · uh]‖2K

)
Therefore, the final inequality is:

Bstab (Uh,V h2) ≥ λ∗
∑
K

αpCp ‖Pp[∇ · uh]‖2K − λ
∗
∑
K

αu
ε5

2

∥∥∥P⊥u [∇ph]
∥∥∥2

K
, (6.27)

where

Cp := 1− 1

2ε5
αpαu

c2
inv
h2

. (6.28)

The next step is to consider the test function V h3 = αψ [0, 0,ψ3], with

ψ3 := Pψ

(
λ∗∇suh +

λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇∗h − ψ̇

∗∗
h

))
.

The process of bounding Bstab(Uh,V h3) is similar to that of bounding Bstab(Uh,V h1).
Again, one has to apply repeatedly the same inequalities as before. Bounding first the
Galerkin terms one gets:

Bstab(Uh,V h3) =B(Uh,V h3) +B∗(Uh,V h3)

=B∗(Uh,V h3) +
∑
K

αψ
1

2λ0
(Ph [E ·ψh] ,ψ3)︸ ︷︷ ︸

(1)

+
∑
K

αψ

(
λ∗∇suh +

λ

2λ0

(
a · ∇Ph [E ·ψh]− ψ̇∗h − ψ̇

∗∗
h

)
,ψ3

)
︸ ︷︷ ︸

(2)

Using the equality (a+ b− c)2 = a2 + b2 + c2 + 2ab− 2ac− 2bc for (2):

(1) ≥ −
∑
K

αψ

[
1

2ε6

1

2λ2
0

‖Ph [E ·ψh]‖2K +
ε6

2
‖ψ3‖

2
K

]
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(2) ≥
∑
K

αψ ‖Pψ [λ∗∇suh]‖2K +
∑
K

αψ

∥∥∥∥Pψ [ λ

2λ0
ψ̇
∗
h

]∥∥∥∥2

K

+
∑
K

αψ

∥∥∥∥Pψ [ λ

2λ0

(
a · ∇Ph [E ·ψh]− ψ̇∗∗h

)]∥∥∥∥2

K

+2
∑
K

αψ

〈
Pψ [λ∗∇suh] ,Pψ

[
λ

2λ0

(
a · ∇Ph [E ·ψh]− ψ̇∗∗h

)]〉
K︸ ︷︷ ︸

(a)

−2
∑
K

αψ

〈
Pψ [λ∗∇suh] ,Pψ

[
λ

2λ0
ψ̇
∗
h

]〉
K︸ ︷︷ ︸

(b)

−2
∑
K

αψ

〈
Pψ

[
λ

2λ0

(
a · ∇Ph [E ·ψh]− ψ̇∗∗h

)]
,Pψ

[
λ

2λ0
ψ̇
∗
h

]〉
K︸ ︷︷ ︸

(c)

.

The terms denoted by (a), (b) and (c) are bounded as follows:

(a) ≥ −2
∑
K

αψ

[
1

2ε7
‖Pψ [λ∗∇suh]‖2K +

ε7

2

∥∥∥∥Pψ [ λ

2λ0

(
a · ∇Ph (E ·ψh)− ψ̇∗∗h

)]∥∥∥∥2

K

]

(b) ≥ −2
∑
K

αψ

[
1

2ε8
‖Pψ [λ∗∇suh]‖2K +

ε8

2

∥∥∥∥Pψ [ λ

2λ0
ψ̇
∗
h

]∥∥∥∥2

K

]

(c) ≥ −2
∑
K

αψ

[
1

2ε9

∥∥∥∥Pψ [ λ

2λ0

(
a · ∇Ph (E ·ψh)− ψ̇∗∗h

)]∥∥∥∥2

K

+
ε9

2

∥∥∥∥Pψ [ λ

2λ0
ψ̇
∗
h

]∥∥∥∥2

K

]
And finally once the Galerkin terms are bounded gets:

Bstab(Uh,V h3) ≥ B∗(Uh,V h3)− 1

2λ2
0

∑
K

1

2ε6
‖Pψ[E ·ψh]‖2K

− 1

2λ2
0

∑ ε6

2
αψ‖ψ3‖

2
K +

∑
K

αψ

(
1− 1

ε7
− 1

ε8

)
‖Pψ[λ∗∇suh]‖2K

+
∑
K

αψ (1− ε8 − ε9)

∥∥∥∥Pψ [ λ

2λ0
ψ̇
∗
h

]∥∥∥∥2

K

+
∑
K

αψ

(
1− ε7 −

1

ε9

)∥∥∥∥Pψ [ λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇∗∗h

)]∥∥∥∥2

K

, (6.29)

whereas for the stabilization terms one can get

B∗(Uh,V h3) =
∑
K

αuαψ

〈
P⊥u

[
ηp
λ0
∇ · Ph [E ·ψh]

]
,∇ ·ψ3

〉
︸ ︷︷ ︸

(1)

+
∑
K

α2
ψ

〈
P⊥ψ

[
λ∗∇suh +

λ

2λ0

(
a · ∇Ph [E ·ψh]− ψ̇∗∗h − ψ̇

∗
h

)]
,

λ

2ηp

(
a · ∇ψ3 +ψ3 · (∇a)T +∇a ·ψ3

)〉
︸ ︷︷ ︸

(2)
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Using inequality −‖a+ b+ c‖ ≥ −4 ‖a‖2 − 4 ‖b‖2 − 2 ‖c‖2 for (2):

(1) ≥ −
∑
K

αu

[
1

2ε10

(
ηp
λ0

)2 ∥∥∥P⊥u [∇ · Ph [E ·ψh]]
∥∥∥2

+
ε10

2

c2
inv
h2

α2
ψ ‖ψ3‖

2
K

]

(2) ≥ −2
1

2ε11

∑
K

αψ

∥∥∥P⊥ψ (λ∗∇suh)
∥∥∥2

K

−4
1

2ε11

∑
K

αψ

∥∥∥∥P⊥ψ [ λ

2λ0

(
a · ∇Ph [E ·ψh]− ψ̇∗∗h

)]∥∥∥∥2

K

−4
1

2ε11

∑
K

αψ

∥∥∥∥P⊥ψ [ λ

2λ0
ψ̇
∗
h

]∥∥∥∥2

K

− ε11

2

∑
K

αψ

[
4α2

ψ

(
λ

2ηp

‖a‖K
h

)2

+4α2
ψ

(
λ

2ηp
‖∇sa‖L∞(K)

)2

+ 2α2
ψ

(
λ

2ηp
‖∇asa‖K

)2
]
‖ψ3‖

2
K .

Therefore the stabilization terms are bounded as:

B∗(Uh,V h3) ≥ −
∑
K

αu

(
ηp
λ0

)2 [ 1

2ε10

∥∥∥P⊥u [∇ · Pψ[E ·ψh]]
∥∥∥2

K

]
− 2

1

2ε11

∑
K

αψ

∥∥∥P⊥ψ [λ∗∇suh]
∥∥∥2

K

− 4
1

2ε11

∑
K

αψ

∥∥∥∥P⊥ψ [ λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇∗∗h

)]∥∥∥∥2

K

− 4
1

2ε11

∑
K

αψ

∥∥∥∥P⊥ψ [ λ

2λ0
ψ̇
∗
h

]∥∥∥∥2

K

−
∑
K

αψ

ε10

2

c2
inv
h2

αψαu +
ε11

2

{
4α2

ψ

(
λ

2ηp

‖a‖L∞(K)

h

)2

+4α2
ψ

(
λ

2ηp
‖∇sa‖L∞(K)

)2

+ 2α2
ψ

(
λ

2ηp
‖∇asa‖L∞(K)

)2
}]
‖ψ3‖

2
K . (6.30)

Let us introduce the constant

Cψ :=
1

2ηp

ε6

2
αψ +

ε10

2

c2
inv
h2

αψαu +
ε11

2

{
4α2

ψ

(
λ

2ηp

‖a‖L∞(K)

h

)2

+ 4α2
ψ

(
λ

2ηp
‖∇sa‖L∞(K)

)2

+ 2α2
ψ

(
λ

2ηp
‖∇asa‖L∞(K)

)2
}

(6.31)

and consider the inequality

‖ψ3‖
2
K ≥ −2 ‖Pψ[λ∗∇suh]‖2 − 4

∥∥∥Pψ [ λ
2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇∗∗h

)]∥∥∥2

−4
∥∥∥Pψ [ λ

2λ0
ψ̇
∗
h

]∥∥∥2
.

Now using (6.30) in (6.29) we obtain:

Bstab(Uh,V h3) ≥ − 1

2λ0

∑
K

αψ
1

2ε6
‖Pψ[E ·ψh]‖2K
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+
∑
K

αψ

(
1− 1

ε7
− 1

ε8
− 2Cψ

)
‖Pψ[λ∗∇suh]‖2K

+
∑
K

αψ (1− ε8 − ε9 − 4Cψ)

∥∥∥∥Pψ [ λ

2λ0
ψ̇
∗
h

]∥∥∥∥2

K

+
∑
K

αψ

(
1− ε7 −

1

ε9
− 4Cψ

)∥∥∥∥Pψ [ λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇∗∗h

)]∥∥∥∥2

K

− 1

2ε10

∑
K

αu

(
ηp
λ0

)2 ∥∥∥P⊥u [∇ · Pψ[E ·ψh]]
∥∥∥2

K

− 2
1

2ε11

∑
K

αψ

∥∥∥P⊥ψ [λ∗∇suh]
∥∥∥2

K

− 4
1

2ε11

∑
K

αψ

∥∥∥∥P⊥ψ [ λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇∗∗h

)]∥∥∥∥2

K

− 4
1

2ε11

(
λ

2λ0

)2∑
K

αψ4 ‖∇sa‖2L∞(K) ‖Pψ[E ·ψh]‖2K . (6.32)

It can be checked that the constants εi, i = 1, .., 11 arising from Young’s inequality
can be taken such that

Cu > 0, Cp > 0, Cψ > 0,

where Cu, Cp and Cψ are given in (6.26), (6.28) and (6.31), respectively.
Lastly, let us consider V h = Uh1 + θ1 V h1 + θ2 V h2 + θ3 V h3. The parameters θi can

be chosen small enough so as to obtain, from (6.25), (6.27) and (6.32):

Bstab(Uh,V h) ≥ 2ηs
∑
K

C1 ‖∇suh‖2K +
ηp
λ2

0

∑
K

C2 ‖Pψ[E ·ψh]‖2K

+
∑
K

αuC3

∥∥∥∥Pu,0

[
ρa · ∇uh + Pψ −

ηp
λ0
∇ · Pψ[E ·ψh]

]∥∥∥∥2

K

+
∑
K

αuC4

∥∥∥∥P⊥u [ ηpλ0
∇ · Pψ[E ·ψh]

]∥∥∥∥2

K

+
∑
K

αuC5

∥∥∥P⊥u [∇ph]
∥∥∥2

K

+
∑
K

αuC6

∥∥∥P⊥u [ρa · ∇uh]
∥∥∥

+
∑
K

αpC7

∥∥∥P⊥p [∇ · uh]
∥∥∥2

K
+
∑
K

αpC8 ‖Pp[∇ · uh]‖2

+
∑
K

αψC9

∥∥∥∥P⊥ψ [ λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇∗∗h

)]∥∥∥∥2

K

+
∑
K

αψC10

∥∥∥∥Pψ [ λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇∗∗h

)]∥∥∥∥2

K

+
∑
K

αψC11 ‖Pψ[∇suh]‖2K +
∑
K

αψC12

∥∥∥∥Pψ [ λ

2λ0
ψ̇
∗
h

]∥∥∥∥2

K

, (6.33)

with the various constants appearing in this expression given by

C1 = λ∗ − ηpε0λ
∗

2ηs
−

(λ∗)2αψ
2ηs

− θ1λ
∗αu

2ηs

(
1

2ε1
(2ηs)

2 αu
c2
inv
h2

+ 2
1

2ε4
(λ∗)2 αψ

)
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−
θ3αψ
2ηs

2
ηp
λ0

1

2ε11
(λ∗)2 ,

C2 =

(
1− λ∗

ε0
− λ

λ0
‖∇a‖L∞(K)

)
− λ2

0

ηp
αψ

(
λ

2λ0

)2

4 ‖∇sa‖2L∞(K)

(
1− θ14

1

2ε4
λ∗
)

− θ3
λ2

0

ηp

(
1

2λ0

1

2ε6
+ 4

1

2ε11

(
λ

2λ0

)2

αψ4 ‖∇sa‖2L∞(K)

)
,

C3 = λ∗θ1Cu = λ∗θ1

(
1− ε1

2
− c2

invαu

[ε2

2
‖a‖L∞(K)

ρ

h
+
ε3

2

αp
h2

+
ε4

2

αψ
h2
αu

])
,

C4 = 1− θ3
1

2ε10
,

C5 = λ∗
(

1− ε5

2
θ2

)
,

C6 = (λ∗)2

(
1− λ∗θ1

1

2ε2
αu ‖a‖L∞(K)

ρ

h

)
,

C7 = λ∗
(
λ∗ − θ1

1

2ε3

)
,

C8 = λ∗θ2Cp = λ∗θ2

(
1− 1

2ε5
αpαu

c2
inv
h2

)
,

C9 = 1− 4
1

2ε4
λ∗ − θ34

1

2ε11
,

C10 = θ3

(
1− ε7 −

1

ε9
− 4Cψ

)
,

C11 = θ3

(
1− 1

ε7
− 1

ε8
− 2Cψ

)
,

C12 = θ3 (1− ε8 − ε9 − 4Cψ) ,

all positive for λ small enough and the constants ci of the stability parameters large enough,
and bounded by virtue of Assumption H2. Note that these constants will be larger for
smaller values of λ, and the constants C in the inf-sup condition stated by the Theorem
will also be larger. There is a tradeoff between the smallness of λ and that of C when the
velocity or its gradients are large (or viscosities are small).

Comparing the terms in the right-hand-side of (6.33) and the definition (6.21), it is
seen that the former bounds

∥∥∥Pu,0

[
ρa · ∇uh +∇ph − ηp

λ0
∇ · Pψ[E ·ψh]

]∥∥∥ and∥∥∥P⊥u [ρa · ∇uh +∇ph − ηp
λ0
∇ · Pψ[E ·ψh]

]∥∥∥. Assumption H2 allows us to guarantee that

it also bounds
∥∥∥ρa · ∇uh +∇ph − ηp

λ0
∇ · Pψ[E ·ψh]

∥∥∥. Therefore, for each Uh we have
found V h such that

Bstab(Uh,V h) ≥ C ‖Uh‖2W .

In fact, it is seen from (6.33) that we could have included term αψC12

∥∥∥Pψ [ λ
2λ0
ψ̇
∗
h

]∥∥∥2
in the

working norm, which gives control on the FE part of Pψ[E ·ψh]·∇sa+∇sa·Pψ[E ·ψh]. On
the other hand, it is easily checked that ‖V h‖W ≤ C ‖Uh‖W ; we will omit the immediate
proof. Using this fact we have shown that for each Uh ∈ X h there exist V h ∈ X h such
that

Bstab(Uh,V h) ≥ C ‖Uh‖W ‖V h‖W ,

from where theorem follows.
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Now, we will define the error function of the method. Let us consider a FE space
Wh, made of piecewise continuous polynomial functions of degree kv. Given a function
v ∈ Hk′v+1(Ω), for i = 0, 1 the interpolation errors εi(v) are defined as

inf
vh∈Wh

∑
K

‖v − vh‖Hi(K) ≤ Ch
k′′v +1−i

∑
K

‖v‖
Hk
′′
v +1(K)

=:
∑
K

εi,K(v) =: εi(v),

where k′′v = min(kv, k
′
v). We will denote from this point by ṽh the best approximation

of v in Wh. Note that ε0(v) = hε1(v). In the case of v = ψ, it is understood that
εi(ψ) := infψh∈Υh

∑
K ‖E ·ψ −E ·ψh‖Hi(K).

The objective of what follows is to show that the error function of the method we
propose is:

E(h) :=
√
η0ε1(u) +

√
η0

∑
K

√
ReKε1,K(u)

+

√
η0

λ0
ε0(ψ) +

√
η0

λ0

∑
K

√
WeKε0,K(ψ) +

1
√
η0
ε0(p), (6.34)

where

ReK :=
ρ ‖a‖L∞(K) h

η0
, WeK :=

λ ‖a‖L∞(K)

h

are the element (or cell) Reynolds and Weissenberg numbers, respectively.
At this point, a very important remark is needed. In [29] it is proved that the FE

method proposed for the standard formulation of the viscoelastic flow problem is stable
and has an error function similar to (6.34) but with a major difference: while in the
standard case the factor multiplying the term with ε0(σ) is of the order of WeK , now the
factor multiplying the second term with ε0(ψ) is of the order of

√
WeK and, moreover,

with the factor λ−1
0 in front. This is a very important improvement, as the growth of the

error with the elasticity of the flow will be significantly reduced in the log-conformation
formulation with respect to the standard one. In the linearized problem we consider, the
reason for the improvement can be traced back to the last term 2∇su that appears in
(2.10). Obviously, the growth of the error with the element Reynolds number is the same.

Lemma 6.2 (Consistency). Let U ∈ X be the solution of the continuous problem and
Uh ∈ X h the FE solution. If f ∈ Vh and U is regular enough, so that Bstab(U ,V h) is
well defined, then

Bstab(U −Uh,V h) ≤ CE(h) ‖V h‖W , (6.35)

for all V h ∈ X h, where E(h) is defined by (6.34).

Proof. Galerkin terms do not contribute to the consistency error. In addition, the con-
tribution of the constitutive and the continuity equations in the stabilization terms are
residual based, therefore the consistency is satisfied by construction. Therefore we only
have to show as S⊥1 has consistency error bounded as the Lemma indicates. This is proved
from the fact that the orthogonal projection P⊥ onto an appropriate FE space satisfies∥∥P⊥(v)

∥∥ ≤ Cε0(v) for any function v. Details are omitted.

To show that the interpolation error is also E(h) we require a technical assumption
that states that any element χh ∈ Υh, E · χh is close to a finite element function and
its derivatives are close to the derivatives of a finite element function. Note that if χh is
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a stress, we may scale it by λ0
ηp

to make it dimensionless. The condition we need may be
expressed as follows:

Assumption H3 For all χh ∈ Υh ifM is a bounded linear operator of χh and
∇χh and there holds
‖M (χh,∇χh)‖ ≤ C ‖M (Pψ [E · χh] ,∇Pψ [E · χh])‖

Lemma 6.3 (Interpolation error). Let U ∈ X be the solution of the continuous problem,
assumed to be regular enough, and Ũh ∈ X h its best FE approximation. Then, under
assumption H3, the following estimates hold:

Bstab(U − Ũh,V h) ≤ CE(h)‖V h‖W , (6.36)

‖U − Ũh‖W ≤ CE(h). (6.37)

Proof. Set eu = u − ũh; ep = p − p̃h and eψ = ψ − ψ̃h. Firstly we will prove inequality
(6.37): ∥∥∥U − Ũh

∥∥∥2

W
= 2ηs ‖∇seu‖2 +

ηp
λ2

0

‖Pψ[E · eψ]‖2

+
∑
K

αu

∥∥∥∥ρa · ∇eu +∇ep −
ηp
λ0
∇ · Pψ[E · eψ]

∥∥∥∥2

K︸ ︷︷ ︸
(1)

+
∑
K

αu

∥∥∥P⊥u [ρa · ∇eu]
∥∥∥2

K︸ ︷︷ ︸
(2)

+
∑
K

αu

∥∥∥P⊥u [∇ep]
∥∥∥2

K︸ ︷︷ ︸
(3)

+
∑
K

αu

∥∥∥∥P⊥u [ ηpλ0
∇ · Pψ[E · eψ]

]∥∥∥∥2

K︸ ︷︷ ︸
(4)

+
∑
K

αp ‖∇ · eu‖2K︸ ︷︷ ︸
(5)

+
∑
K

αψ

∥∥∥∥ λ

2λ0

(
a · ∇Pψ[E · eψ]− ė∗∗ψ

)∥∥∥∥2

K︸ ︷︷ ︸
(6)

,

where

(1) ≤
∑
K

αu

(
2 ‖ρa · ∇eu‖2K + 2 ‖∇ep‖2K +

∥∥∥∥ ηpλ0
∇ · Pψ[E · eψ]

∥∥∥∥2

K

)

≤
∑
K

αu

(
2ρ2 ‖a‖2L∞(K) ε

2
1(u) +

2

h2
ε2

0 (p) +
1

h2

η2
p

λ2
0

ε2
0(ψ)

)
,

(2) ≤
∑
K

αuρ
2 ‖a‖2L∞(K) ε

2
1(u),

(3) ≤
∑
K

αu
1

h2
ε2

0 (p) ,

(4) ≤
∑
K

αu
1

h2

η2
p

λ2
0

ε2
0(ψ),
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(5) ≤
∑
K

αpε
2
1(u),

(6) ≤
∑
K

αψ

((
λ

2λ0

)2

‖a‖2L∞(K)

1

h2
ε2

0(ψ) +

(
λ

2λ0

)2

2 ‖∇asa‖2L∞(K) ε
2
0(ψ)

)
.

Therefore:∥∥∥U − Ũh

∥∥∥2

W
≤
∑
K

(
2ηs + 3ρ2 ‖a‖2K + αp

)
ε2

1(u) +
∑
K

(
2

h2
+
αu
h2

)
ε2

0 (p)

+
∑
K

(
ηp
λ2

0

+
2

h2

η2
p

λ2
0

αu + αψ

(
λ

2λ0

)2
[
‖a‖2K
h2

+ 2 ‖∇asa‖2K

])
ε2

0(ψ)

Now reorganizing the terms and taking into account that ηs = η0β and ηp = η0(1− β):∥∥∥U − Ũh

∥∥∥2

W
≤ η0

∑
K

(
2β +

αp
η0

)
ε2

1,K(u) + η0

∑
K

ρ
‖a‖K h
η0

(
ρ
‖a‖K
h

)
ε2

1,K(u)

+
1

η0

∑
K

(
2η0

h2
+
αuη0

h2

)
ε2

0,K (p)

+
η0

λ2
0

∑
K

(1− β)

(
1 +

2

h2
η0(1− β)αu + αψ

λ2

4

1

η0(1− β)
‖∇asa‖2K

)
ε2

0,K(ψ)

+
η0

λ2
0

∑
K

λ ‖a‖K
h

(
λ

4

1

η0

‖a‖K
h

)
ε2

0,K(ψ)

≤ CE2(h)

Estimate (6.37) follows form the definitions of the error function and the expression of
the stabilization parameters.

Now we will prove (6.36). Taking V h = [vh, qh,χh], we get:

Bstab

(
U − Ũh,V h

)
=
ηp
λ0

(Pψ[E · eψ],∇svh) + 2ηs (∇seu,∇svh)

+ 〈ρa · ∇eu,vh〉 − (ep,∇ · vh)

+ (∇ · eu, qh) +
1

2λ0
(Pψ[E · eψ],χh)− (∇seu,χh)

+
λ

2λ0
(a · ∇Pψ[E · eψ] + 2∇seu,χh)

+
λ

2λ0

(
−Pψ[E · eψ] · ∇a− (∇a)T · Pψ[E · eψ],χh

)
+
∑
K

αu

〈
P⊥u

[
− ηp
λ0
∇ · Pψ[E · eψ]

]
,−∇ · χh

〉
K

+
∑
K

αu

〈
P⊥u [∇ep] ,∇qh

〉
K

+
∑
K

αu

〈
P⊥u [ρa · ∇eu] , ρa · ∇vh

〉
K

+
∑
K

αp

〈
P⊥p [∇ · eu],∇ · vh

〉
K

+
∑
K

αψ

〈
P⊥ψ

[
∇seu +

λ

2λ0
(a · ∇Pψ[E · eψ]

−Pψ[E · eψ] · ∇a− (∇a)T · Pψ[E · eψ]
)]

,
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−∇svh +
λ

2ηp

(
a · ∇χh + χh · (∇a)T +∇a · χh

)〉
K

.

Using Schwarz’s inequality, integrating by parts the convective term and the continuity
equation and using the inverse estimate (6.20) and under the assumption H3:

• ‖χh‖ ≤ C ‖Pψ (E · χh)‖

• ‖∇ · χh‖ ≤ C ‖∇ · Pψ (E · χh)‖

•
∥∥∥a · ∇χh + χh · (∇a)T +∇a · χh

∥∥∥ ≤∥∥∥(a · ∇Pψ [E · χh] + Pψ [E · χh] · (∇a)T +∇a · Pψ [E · χh]
)∥∥∥

• ‖ρa · ∇vh +∇qh −∇ · χh‖ ≤ ‖ρa · ∇vh +∇qh −∇ · Pψ [E · χh]‖

we get:

Bstab(U − Ũh,V h) ≤ ηp
λ0
ε0(ψ) ‖∇svh‖+ 2ηsε1 (u) ‖∇svh‖+ ε0(p) ‖∇ · vh‖

+ hε1 (u) ‖ρa · ∇vh +∇qh −∇ · Pψ [E · χh]‖

+

(
1

2λ0
ε0(ψ) + 2ε1(u)

)
‖Pψ [E · χh]‖

+
ηp
λ0
ε0(ψ)

∥∥∥∥ λ

2ηp

(
a · ∇Pψ [E · χh] + Pψ [E · χh] · (∇a)T +∇a · Pψ [E · χh]

)∥∥∥∥
K

+
∑
K

αu
ηp
λ0

1

h
ε0 (ψ)

∥∥∥P⊥u [∇ · Pψ [E · χh]]
∥∥∥
K

+
∑
K

αu
1

h
ε0 (p)

∥∥∥P⊥u [∇qh]
∥∥∥
K

+
∑
K

αuρ ‖a‖L∞(K) ε1 (u)
∥∥∥P⊥u [ρa · ∇vh]

∥∥∥
K

+
∑
K

αpε1 (u) ‖∇ · vh‖K +
∑
K

αψε1(u) ‖∇svh‖K

+
∑
K

αψε1(u)

∥∥∥∥ λ

2ηp

(
a · ∇Pψ [E · χh] + Pψ [E · χh] · (∇a)T +∇a · Pψ [E · χh]

)∥∥∥∥
K

+
∑
K

αψε0(ψ)
λ

2λ0

(
‖a‖L∞(K)

h
+ 2 ‖∇a‖L∞(K)

)
(
‖∇svh‖K +

∥∥∥∥ λ

2ηp

(
a · ∇Pψ [E · χh] + Pψ [E · χh] · (∇a)T +∇a · Pψ [E · χh]

)∥∥∥∥
K

)
.

Lastly, reorganizing the terms and replacing ηs = η0β: and ηp = η0(1− β)

Bstab(U − Ũh,V h)

≤ √η0ε1(u)

(
2β
√
η0 ‖∇svh‖+

h
√
η0
‖ρa · ∇vh +∇qh −∇ · Pψ [E · χh]‖

)
+
√
η0ε1(u)

∑
K

(
αu√
η0
ρ ‖a‖L∞(K)

∥∥∥P⊥u [ρa · ∇vh]
∥∥∥
K

+
αp√
η0
‖∇ · vh‖K +

αψ√
η0
‖∇svh‖K

)
+
√
η0ε1(u)

∑
K

αψ√
η0

∥∥∥∥ λ

2η0(1− β)
a · ∇Pψ [E · χh]
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+
λ

2η0(1− β)

(
Pψ [E · χh] · (∇a)T +∇a · Pψ [E · χh]

)∥∥∥∥
K

+
1
√
η0
ε0(p)

√
η0

(
‖∇ · vh‖+

∑
K

αu
h

∥∥∥P⊥u [∇qh]
∥∥∥
K

)

+

√
η0

λ0
ε0 (ψ)

√
η0(1− β)

(
‖∇svh‖+

1

2η0(1− β)
‖Pψ [E · χh]‖

)
+

√
η0

λ0
ε0(ψ)

√
η0(1− β)

∥∥∥∥ λ

η0(1− β)
a · ∇Pψ [E · χh]

+
λ

η0(1− β)

(
Pψ [E · χh] · (∇a)T +∇a · Pψ [E · χh]

)∥∥∥∥
K

+

√
η0

λ0
ε0 (ψ)

∑
K

αu
h

√
η0(1− β) ‖∇ · Pψ [E · χh]‖K

+

√
η0

λ0
ε0 (ψ)

∑
K

αψ√
η0

λ

2

(
‖a‖L∞(K)

h
+ 2 ‖∇a‖L∞(K)

)
(
‖∇svh‖K +

∥∥∥∥ λ

2η0(1− β)
a · ∇Pψ [E · χh]

+
λ

2η0(1− β)

(
Pψ [E · χh] · (∇a)T +∇a · Pψ [E · χh]

)∥∥∥∥
K

)
≤ CE(h) ‖V h‖W .

Theorem 6.4 (Convergence). Let U = [u, p,ψ] ∈ X be the solution of the continuous
problem, and suppose that the assumptions of Theorem 1 hold. Then there exist a constant
C > 0 such that

‖U −Uh‖W ≤ CE(h).

Proof. The proof is standard, the only particular point being the weak consistency of the
method (see, e.g.,[29]). However, let us include it here. Consider the finite element function
Ũh − Uh ∈ X h , where as Lemma 2, Ũh ∈ X h is the best finite element approximation
to U . Starting from the inf-sup condition, it follows that there exists V h ∈ X h such that

C
∥∥∥Ũh −Uh

∥∥∥
W
‖V h‖W ≤ Bstab

(
Ũh −Uh,V h

)
= Bstab

(
Ũh −U ,V h

)
︸ ︷︷ ︸

Lemma 6.3 a)

+Bstab (U −Uh,V h)︸ ︷︷ ︸
Lemma 6.2

≤ CE(h) ‖V h‖W
using Lemma 6.2 and Lemma 6.3, in particular inequality (6.36), from where we obtain∥∥∥Uh − Ũh

∥∥∥
W
≤ CE(h).

Finally, using the triangle inequality

‖U −Uh‖W ≤
∥∥∥U − Ũh

∥∥∥
W︸ ︷︷ ︸

Lemma 6.3 b)

+
∥∥∥Ũh −Uh

∥∥∥
W

.

Theorem follows using Lemma 6.3 inequality (6.37).
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6.5.3 Stability and convergence in natural norms

The next results search prove stability and convergence in a natural norm, in other words,
in the norm of the space of the continuous problem, which is not a mesh dependent norm.
Since this natural norm does not include any control on the convective terms, stability and
convergence in this norm is only meaningful in the case of small cell Reynolds numbers and
Weissenberg numbers. In the following, and the contrary to what we have been considering
up to his point, generic constants C may depend on these numbers and explode as they
increase.

Theorem 6.5 (Stability and convergence in natural norms). Suppose that the assumptions
of Theorem 6.1 hold and the cell Reynolds numbers and cell Weissenberg numbers are small.
Then, the solution of the discrete problem Uh = [uh, ph,ψh] ∈ X h can be bounded as

√
η0 ‖uh‖H¹(Ω) +

√
η0

λ0
‖Pψ[E ·ψh]‖+

1
√
η0
‖ph‖

≤ C
(

1
√
η0
‖fu‖H−1(Ω) +

λ0√
η0

∥∥fψ∥∥) . (6.38)

Moreover, if the solution of the continuous problem U = [u, p,ψ] ∈ X is regular enough ,
the following error estimate holds:

√
η0 ‖u− uh‖H¹(Ω) +

√
η0

λ0
‖E ·ψ − Pψ[E ·ψh]‖+

1
√
η0
‖p− ph‖ ≤ CE(h). (6.39)

Proof. Firstly we will prove (6.38). We have that

Bstab (Uh,V h) = 〈fu,vh〉+
〈
fψ,χh

〉
≤ C

(
1
√
η0
‖fu‖H−1(Ω)

√
η0 ‖vh‖H¹(Ω) +

√
η0

∥∥fψ∥∥ √η0

λ0

∥∥∥∥Pψ [λ0

η0
E · χh

]∥∥∥∥)
≤ C

(
1
√
η0
‖fu‖H−1(Ω) +

√
η0

∥∥fψ∥∥) ‖V h‖W ,

where V h = [vh, qh,χh] is arbitrary. Therefore, from the inf-sup condition proved in
Theorem 6.1 we have

C ‖Uh‖W ‖V h‖W ≤ Bstab (Uh,V h) ≤ C
(

1
√
η0
‖fu‖H−1(Ω) +

√
η0

∥∥fψ∥∥) ‖V h‖W ,

and this implies that

‖Uh‖W ≤ C
(

1
√
η0
‖fu‖H−1(Ω) +

√
η0

∥∥fψ∥∥) .

Therefore:

‖Uh‖2W = 2ηs ‖∇suh‖2K +
ηp
λ2

0

‖Pψ[E ·ψh]‖2K

+
∑
K

αu

∥∥∥∥ρa · ∇uh +∇ph −
ηp
λ0
∇ · Pψ[E ·ψh]

∥∥∥∥2

K

+
∑
K

αu

∥∥∥P⊥u [ρa · ∇uh]
∥∥∥2

K
+
∑
K

αu

∥∥∥P⊥u [∇ph]
∥∥∥2

K
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+
∑
K

αu

∥∥∥∥P⊥u [ ηpλ0
∇ · Pψ[E ·ψh]

]∥∥∥∥2

K

+
∑
K

αp ‖∇ · uh‖2K +
∑
K

αψ

∥∥∥∥ λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇∗∗h

)∥∥∥∥2

K

≤ C
(

1
√
η0
‖fu‖H−1(Ω) +

√
η0

∥∥fψ∥∥)2

. (6.40)

Now, using the inverse inequality, we can write:∑
K

αu ‖ρa · ∇uh +∇ph‖2K ≤
∑
K

αu

∥∥∥∥ρa · ∇uh +∇ph −
ηp
λ0
∇ · Pψ[E ·ψh]

∥∥∥∥2

K

+
∑
K

αu
cinvη0

λ0

(
(1− β)

h

)2 η0

λ0
‖Pψ[E ·ψh]‖2K .

In this expression we only have control on ρa · ∇uh + ∇ph. There is the possibility of
bounding the pressure gradient making use of the control over the viscous term, since

∑
K

αu ‖∇ph‖2K ≤
∑
K

αu ‖ρa · ∇uh +∇ph‖2K +
∑
K

αu
η0

h2

(
ρ ‖a‖L∞(K) h

η0

)2

‖∇uh‖2K .

Note that this expression explodes with the cell Reynolds number ReK . Then, from
inequality (6.40), and using Korn’s inequality, the expression of αu and taking into account
that 0 < β < 1, we obtain:

η0 ‖uh‖2H1(Ω) +
η0

λ2
0

‖Pψ[E ·ψh]‖2 +
h2

η0

∑
K

‖∇ph‖2K

≤ C
(

1
√
η0
‖fu‖H−1(Ω) +

√
η0

∥∥fψ∥∥)2

.

For the L2 stability for the pressure we rely on the inf-sup condition between the velocity
and pressure spaces that holds for the continuous problem. See the details in [42].

Now we will prove (6.39). Theorem 6.4 implies that ‖U −Uh‖W ≤ CE(h), and con-
sequently we have that

η0 ‖u− uh‖2H1(Ω) +
η0

λ2
0

‖E ·ψ − Pψ[E ·ψh]‖2

+
∑
K

αu ‖ρa · ∇ (u− uh) +∇ (p− ph)

− ηp
λ0
∇ · (E ·ψ − Pψ[E ·ψh])

∥∥∥∥2

K

≤ E2(h).

Now we will follow the same procedure as the used to prove stability; assuming the cell
Reynolds number to be small, we get∑

K

αu ‖ρa · ∇ (u− uh) +∇ (p− ph)‖2K

≤
∑
K

αu ‖ρa · ∇ (u− uh) +∇ (p− ph)
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− ηp
λ0
∇ · (E ·ψ − Pψ[E ·ψh])

∥∥∥∥2

K

+
∑
K

αu
η0

λ2
0

(
1− β
h

)2

η0ε
2
0,K(ψ),

and following the same reasoning∑
K

αu ‖∇ (p− ph)‖2K

≤
∑
K

αu ‖ρa · ∇ (u− uh) +∇ (p− ph)‖2K +
∑
K

αu
η0

h2

(
ρ ‖a‖L∞(K) h

η0

)2

ε2
1,K(u).

So, we obtain

η0 ‖u− uh‖2H1(Ω) +
η0

λ2
0

‖E ·ψ − Pψ[E ·ψh]‖2

+
h2

η0

∑
K

‖∇ (p− ph)‖2K ≤ CE
2(h).

The error estimate to include the L2 norm of the pressure error can be obtained following
the reasoning indicated in [42].

Theorem 6.6 (L2 error estimate for the velocity). Suppose that the hypothesis of Theorem
6.5 holds and the continuous problem satisfies the elliptic regularity condition

√
η0 ‖u‖H2(Ω) +

√
η0

λ0
‖E ·ψ‖H1(Ω) +

1
√
η0
‖p‖H1(Ω) ≤ C

1
√
η0
‖fu‖ . (6.41)

Then
√
η0 ‖u− uh‖ ≤ Ch

(√
η0 ‖u− uh‖H¹(Ω)

+

√
η0

λ0
‖E ·ψ − Pψ[E ·ψh]‖+

1
√
η0
‖p− ph‖

)

Proof. Let [ω,π,S] ∈ X be the solution of the following adjoint problem:

∇ · S − 2ηs∆ω − ρa · ∇ω −∇π =
η0

`2
(u− uh) , (6.42)

−∇ · ω = 0, (6.43)
1

2ηp
S +∇sω − λ

2ηp

(
a · ∇S + S · (∇a)T +∇a · S

)
= 0, (6.44)

with ω = 0 on ∂Ω and where ` is a characteristic length scale of the problem that has only
been introduced to keep the dimensionality. Let also [ω̃h, π̃h, S̃h] be the best approximation
to [ω,π,S] in X h. Testing (6.42) with u−uh, (6.43) with p− ph and (6.44) with ψ−ψh,
we can obtain the next expression:

η0

`2
‖u− uh‖2 = Bψ ([u− uh, p− ph,ψ −ψh], [ω,π,S])

= Bstab ([u− uh, p− ph,ψ −ψh], [ω,π,S])
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−
∑
K

αu

〈
P⊥u

[
− ηp
λ0
∇ · Pψ [E ·ψ −E ·ψh]

]
,P⊥u [−∇ · S]

〉
K

−
∑
K

αu

〈
P⊥u [∇ (p− ph)] ,P⊥u [∇π]

〉
K

−
∑
K

〈
P⊥u [ρa · ∇ (u− uh)] ,P⊥u [ρa · ∇ω]

〉
K

−
∑
K

αp

〈
P⊥p [∇ · (u− uh)] ,P⊥p [∇ · ω]

〉
K

−
∑
K

αψ

〈
−∇s (u− uh) +

λ

2λ0
(a · ∇Pψ [E ·ψ −E ·ψh]

− Pψ [E ·ψ −E ·ψh] · ∇a

− (∇a)T · Pψ [E ·ψ −E ·ψh]
)

,

−∇sω +
λ

2ηp

(
a · ∇S + S · (∇a)T +∇a · S

)〉
K

, (6.45)

where we have used the definition of Bstab in (6.14). The fifth and sixth terms of (6.45)
are zero because of (6.43) and (6.44), respectively. Therefore only four terms need to be
bounded. Considering (2.40), these can be written as follows

η0

`2
‖u− uh‖2 = Bstab ([u− uh, p− ph,ψ −ψh], [ω,π,S])

−
∑
K

αu

〈
P⊥u

[
− ηp
λ0
∇ · Pψ [E ·ψ −E ·ψh]

]
,P⊥u [−∇ · S]

〉
K

−
∑
K

αu

〈
P⊥u [∇ (p− ph)] ,P⊥u [∇π]

〉
K

−
∑
K

〈
P⊥u [ρa · ∇ (u− uh)] ,P⊥u [ρa · ∇ω]

〉
K

(6.46)

Using the interpolation properties and the shift assumption (6.41) it follows that

‖ω − ω̃h‖H¹(Ω) ≤ Ch ‖ω‖H2(Ω) ≤ Ch
1

`2
‖u− uh‖ ,∥∥∥S − S̃h∥∥∥ ≤ Ch ‖S‖H1(Ω) ≤ Ch

η0

`2
‖u− uh‖ ,

‖π − π̃h‖ ≤ Ch ‖π‖H1(Ω) ≤ Ch
η0

`2
‖u− uh‖ .

From these expressions we obtain

Bstab ([u− uh, p− ph,ψ −ψh], [ω,π,S])

= Bstab

(
[u− uh, p− ph,ψ −ψh], [ω − ω̃h,π − π̃h,S − S̃h]

)
−
∑
K

αu

〈
P⊥u

[
− ηp
λ0
∇ · Pψ [E ·ψ −E ·ψh]

]
,P⊥u

[
−∇ ·

(
S − S̃h

)]〉
K︸ ︷︷ ︸

(2)

−
∑
K

αu

〈
P⊥u [∇ (p− ph)] ,P⊥u [∇ (π − π̃h)]

〉
K︸ ︷︷ ︸

(3)
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−
∑
K

〈
P⊥u [a · ∇ (u− uh)] ,P⊥u [a · ∇ (ω − ω̃h)]

〉
K︸ ︷︷ ︸

(4)

. (6.47)

Considering these inequalities we can bound terms (2)-(4) easily:

(2) ≤
∑
K

αu
ηp
λ0

1

h
‖Pψ [E ·ψ −E ·ψh]‖K

η0

`2
‖u− uh‖K

≤
∑
K

αu
ηp
λ0

1

h
‖E ·ψ − Pψ[E ·ψh]‖K

η0

`2
‖u− uh‖K ,

(3) ≤
∑
K

αu
1

h
‖p− ph‖K

η0

`2
‖u− uh‖K ,

(4) ≤
∑
K

αu

(
ρ ‖a‖L∞(K)

)2 h

`2
‖u− uh‖K ‖u− uh‖H1(Ω) .

We have to bound the terms of

Bstab

(
[u− uh, p− ph,ψ −ψh], [ω − ω̃h,π − π̃h,S − S̃h]

)
for which similar techniques to those used before. Finally we have to combine this bounds
in (6.47) and in (6.46) to obtain the next expression:

η0

l2
‖u− uh‖2 ≤ h

√
η0

`2
‖u− uh‖

(√
η0 ‖u− uh‖H1(Ω)

+
∑
K

(
ρ ‖a‖L∞(K)

η0

)
√
η0 ‖u− uh‖H1(K)

+

√
η0

λ0
‖E ·ψ − Pψ[E ·ψh]‖K

+

√
η0

λ0

∑
K

(
λ ‖a‖L∞(K)

h

)
‖E ·ψ − Pψ[E ·ψh]‖K

+
1
√
η0
‖p− ph‖K

)
and theorem follows. Note that the bound obtained explodes with the cell Reynolds and
the cell Weissenberg numbers.

6.6 Conclusions

In this chapter we have analyzed the finite element formulation proposed in [119] applied
to a linearized form of the logarithmic reformulation of the viscoelastic flow problem. A
similar analysis was done in [29] for the standard formulation, and thus the present chap-
ter can be considered a follow-up of the latter. Despite the linearization and the various
assumptions that have been needed in our analysis, it serves to draw two main conclu-
sions. The first is that the finite element formulation proposed is effective as stabilization
technique, as it allows one to use arbitrary interpolations for all variables in play (we
have considered for simplicity the case of continuous interpolations) and yields optimal
error estimates, both in the stabilized norm and in the natural norm of the problem, in
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the spaces in which the continuous problem is posed. The second conclusion is that the
logarithmic reformulation has a significantly better behavior in terms of the Weissenberg
number than the standard one, with an error estimate that deteriorates much more slowly
when this number increases; this provides some theoretical foundation to justify the use
of the logarithmic reformulation to attempt the HWNP, at least using the FE formulation
we have introduced.



Chapter 7

Conclusions

In this last chapter the main achievements and conclusions of the work are presented.
Moreover, some of the future research lines are enumerated.

7.1 Achievements and concluding remarks

The general aim of this study was the design and implementation of different tools to
address the viscoelastic fluid flow problem with a high Weissenberg number, in a stabi-
lized finite element method framework. The main technique implemented, exploited and
analyzed in all the chapters, is the called logarithmic conformation reformulation [63].
That formulation is implemented using the in-house finite element code FEMUSS, and
stabilized using the Variational Sub-grid Scales method (VMS).

In Chapter 2, the logarithmic formulation is developed for the finite element frame-
work, considering a modification with respect to the original one proposed by Fattal and
Kupferman [63], which is non-singular in terms of the relaxation time parameter. Two
different stabilized formulations are proposed using that approach: residual-based one
and a term-by-term one. Both formulations have optimal convergence order for linear and
quadratic elements. The linearization of the problem is particulary detailed in this chapter,
emphasizing the treatment of the exponential function. The convergence of the proposed
method has a strong dependency on this treatment. Lastly, several numerical results are
presented to test the effectiveness of the formulation when elasticity is particularly high
and the standard formulation is unable to obtain a converged solution. Therefore, the
proposed methods allows to obtain and globally stable solutions, showing accuracy, opti-
mal convergence for smooth solutions, reaching accurate results in comparison with other
methods reported in the literature.

The thermal coupling with the viscoelastic fluid flow is investigated in Chapter 3. Also
the logarithmic formulation together with the standard one is employed to simulate the
cases with high elasticity. The designed algorithm is iterative and non-monolithic, therefore
the variables are updated at each iteration. The coupling is established in two directions:
viscoelastic parameters are now temperature-dependent, and the energy equation has a
term known as viscous dissipation. The main effects of that coupling in the viscoelastic
fluid flow are studied through two benchmarks, achieving a several conclusions, such as the
reduction of stresses when temperature is considered and a higher temperature when the
Weissenberg number increases. Also, the flow pattern can be influenced by the parameters
that define the problem and for this reason, that influence has been explored varying the
Prandtl number and the Brinkman number, apart from the Reynolds and Weissenberg
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numbers, as it is proved for the expansion 1:3 benchmark. The conclusion is that the flow
is more stable for low Re, high We, low Br and high Pr.

In Chapter 4 the time-dependent sub-grid scales for the viscoelastic fluid-flow problem
are developed for both formulations (standard and logarithmic). Again, two different
stabilization methods have been designed: one based on the residual of the equations, and
the second one based on a split term-by-term stabilization for the momentum equation.
The stabilized methods defined allow to solve time-dependent problems in which two
different sources of instability can appear simultaneously: the one originated by anisotropic
space-time refinement when the time step is small and the well-known stress exponential
growth typical of high Weissenberg numbers of viscoelastic problems. The results obtained
are particularly remarkable due to the high Weissenberg number reached with the dynamic
formulation, which remains stable even if the standard formulation is considered, apart
from evident benefits in anisotropic space-time discretizations when the time step is small.
Therefore, the combination of dynamic sub-grid scales in the term-by-term stabilization
and the logarithmic formulation of the equations is capable of solving problems with higher
elasticity than all the other options. Moreover, the numerical analysis in the case of the
linearized problem is performed, proving stability for both formulations.

The purely elastic instability is addressed in Chapter 5, where a well documented re-
view is stated. Also, the design of a fractional step scheme for the logarithmic formulation
is proposed and validated. The new scheme, in comparison with the monolithic one, al-
lows important savings concerning the computational cost. The fractional step scheme is
designed considering a term-by-term stabilization and the time-dependent subgrid scales,
allowing the simulation of high Weissenberg problems and anisotropic time-space dis-
cretizations. These discretizations are relevant for capturing the purely elastic instability,
due to the small time step required in order to capture the physical effect.

In Chapter 6 the finite element formulation proposed in Chapter 2 for the logarithmic
formulation is analyzed mathematically, considering the linearized form. Despite the lin-
earization and some hypothesis that have been needed to carry out our analysis, we can
arrive to two main conclusions. The first is that the finite element formulation proposed
is effective as stabilization technique, as it allows one to use arbitrary interpolations for
all variables in play and yields optimal error estimates, both in the stabilized norm and in
the natural norm of the problem, in the spaces in which the continuous problem is posed.
The second is that the logarithmic reformulation has a significantly better behavior in
terms of the Weissenberg number than the standard one, with an error estimate that de-
teriorates much more slowly when this number increases. Therefore, this provides some
theoretical foundation to justify the use of the logarithmic reformulation to attempt the
High Weissenberg Number Problem (HWNP).

To sum up, new stabilization techniques have been developed in order to address the
well-known High Weissenberg Number Problem, with interesting and robust results.

7.2 Future work

The framework built for the logarithmic formulation along this study is an excellent basis
for future developments which involve elastic fluid flows. Apart from the inherent indus-
trial interest, that could be useful to explore deeplier the elastic instabilities.

Fluid-Structure-Interaction with viscoelastic fluid flows
Fluid-structure interaction (FSI) is frequently found in several applications, in particular in
biomedical research. For example, the blood flow in arteries and veins, where information



7.2. Future work 187

generated by investigation of blood vessel-wall interaction is useful for medical evaluation.
In these cases fluids usually have non-Newtonian fluid properties and, in particular, vis-
coelastic behavior. For such viscoelastic fluid-structure interaction (VFSI) problems the
effect of viscoelasticity may play a crucial role when it is comparable to dominant inertial
effects and this is the line that could be explored. One of the main difficulties to afford this
problem is the stability problem, when elasticity of the fluid is dominant. For example, in
[32] the authors investigate this interaction with detail, showing the differences in the FSI
if the fluids are viscoelastic instead of purely viscous.

Thermal coupling together with elastic turbulence
One interesting topic is the study of how the heat transfer performance is affected by the
elastic turbulence. Heat transfer enhancement is actually a straightforward result from
efficient mixing, however, only few works investigated the heat transfer enhancement by
elastic turbulence. The evaluations are still confined to the statistical characteristics and
they still lack detailed information on how the elastic turbulent flow acts on the heat
transfer process. The difficulty to experimentally obtain information such as flow patterns
in cross Sections or features of stretched polymers and some insights of the heat convection
by the disordered fluid motion and the effect of temperature or velocity fields, have seri-
ously limited our understanding. For these reasons, a possible research line is the thermal
coupling for elastic turbulence regimes. An interesting benchmark is the one presented
in [108], where a three-dimensional curvy channel is simulated for different Weissenberg
numbers.

Further Fractional Step Schemes
Fractional schemes for viscoelastic fluid flows can be further investigated. The one studied
in Chapter 5 are based on the pressure extrapolation algorithm. There is another family
of fractional step schemes that can be designed using the velocity segregation approach.
These have a discrete pressure Poisson equation as starting point, and in that case veloc-
ities and stresses are extrapolated. That approach permits a second order extrapolation
of the velocity and avoids the unstable pressure extrapolations. In the work of Badia and
Codina [8] a review of this type of fractional step schemes can be found for Newtonian
fluid flows.

Mesh adaptivity
In this dissertation, all the numerical examples are computed using a convenient mesh
able to capture suitably the peak of stresses or the large gradients. However for solving
problems that exhibit singularities a mesh adaptive refinement method could be employed.
In this concern, we found for example the work [165], where an adaptive hp-finite element
method is used to solve differential viscoelastic flow problems. In this case, an a posteriori
error estimator is employed and the approximation error is reduced to a given level of
accuracy with a minimal set of additional degrees of freedom. The derivation of an a
posteriori error estimator for the formulation we have proposed would be the first step in
this line.
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