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List of acronyms in order of appearance  

• MEMS: Microelectromechanical Systems 

• MOX: Metal Oxide 

• TMDC: Transition Metal Dichalcogenide 

• UV: Ultraviolet 

• LED: Light-Emitting Diode 

• RT: Room Temperature 

• DWT: Discrete Wavelet Transform 

• FFT: Fast Fourier Transform 

• PCA: Principal Component Analysis 

• DFA: Discriminant Factor Analysis 

• PLS: Partial Least Square 

• DC: Direct Current 

• PC: Principal Component 

• RMSE: Root Mean Square Error 

• RH: Relative Humidity 

• PCR: Principal Component Regression 

• FC: Frequency Component 

• CNT: Carbon Nanotube 

• WHO: World Health Organization 

• PAHO: Pan American Health Organization 

• AQM: Air Quality Monitoring 

• WSN: Wireless Sensor Network 

• HVAC: Heating, Ventilation, and Air Conditioning control 

systems 

• IoT: Internet of Things 

• PM: Particulate Matter 

• LoRa: Long-Range 

• GSM: Global System for Mobile Communications 

• GPRS: General Packet Radio Service 

• TCP/IP: Transmission Control Protocol/Internet Protocol 
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1. Introduction 

The present thesis project is focused in two different yet related research 

lines. The first one addresses the development of a pulsed light-based 

chemiresistive sensor modulation methodology for transient 

information extraction. The second research line developed deals with 

the implementation of a LoRa-based portable, low-cost, and low power 

WSN for AQM and gas leakage events detection. This document is 

structured in four Chapters organized as follows: Chapter 1 presents 

the state of the art, an introduction to sensing performance 

enhancement and transient data extraction methods, as well as an 

introduction to the implementation of WSN for AQM; Chapter 2 is 

composed of the two published paper related to the pulsed light 

modulation methodology for transient information extraction; 

Chapter 3 presents the published paper related to the implementation 

of a LoRa-based WSN for AQM; Chapter 4 states the conclusions 

derived from the results obtained during this thesis project and the 

recommendations for the future work associated to the continuity of this 

thesis findings. 

1.1. State of the art 

About 1 out of 8 yearly death are attributed to diseases related to air 

pollution worldwide [1,2]. Having gas sensors available to monitor 

pollutant gases is mandatory to establish control strategies to reduce air 

pollution. Since 90 % of the world population is exposed to air pollution 

levels that provoke a significant health impact the society needs to have 

available environmental monitoring systems worldwide. Although 

most of the diseases caused by air pollution exposition are related to 

particulate matter, some researchers have reported a positive 
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correlation between these compounds and gaseous pollutants 

concentration variations. This is due to the fact these pollutants have 

similar origin [3,4]. Low-cost and portable sensors’ technologies are 

needed to develop monitoring solutions with enough spatial resolution. 

Nevertheless, gas sensing systems based on the most accurate operating 

principle such as spectroscopy analysis and gas chromatography 

normally present high cost and difficulty for their miniaturization [5]. 

Moreover, some of these techniques require laboratory analysis of a 

previously acquired sample, which is a limitation for the scalability of 

monitoring systems and the data availability. On the other hand, other 

gas sensors with operating principle based on optical, acoustic, or 

electrical properties variation have been used in the development of gas 

sensing systems [5–10]. Non-dispersive infrared and resonant acoustic 

wave gas sensors have been designed obtaining small size and MEMS 

sensors which can be used in portable systems [7,11,12]. Although these 

techniques provide long lifetime sensors with good sensitivity, the 

fabrication process require the use of expensive techniques which 

influence in the sensor cost. In addition, other technologies, such as 

electrochemical and chemiresistive sensors have been studied because 

these can be employed to develop portable and low dimensions 

analysers due to its relatively simple miniaturization, which can be 

endowed with low power consumption and communication 

capabilities, thus making possible the development of monitor gas 

sensing systems remotely. In this sense,  chemiresistive sensors, such as 

MOX, perovskite oxide, TMDC, and carbon nanomaterials sensors have 

been used to develop portable and even wearable gas sensing systems 

due to their simple preparation, low cost, simplicity of measurement 

systems, and relatively high performance [13–21]. Chemiresistive 

sensors operating principle is based on the variation of their electrical 

resistance in presence of target analytes in the surrounding 

environment.  
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1.2. Sensing performance enhancement and transient data extraction  

During the last past decades, many researchers have reported the use of 

chemiresistive sensors in gas sensing applications [22–25]. Among 

these, the metal oxide semiconductors have been one of the most 

studied materials due to its relative low cost and easy synthesis 

processes, good sensitivity, and versatility to be employed in different 

gas applications [26–29]. Nevertheless, despite these advantages, the 

standard method to activate the sensing layer and promote redox 

reactions in MOX sensors require operating temperatures of up to 

500 ºC [30–32]. Thus, generating high power consumption in non-

MEMS sensors (from hundreds of milliwatts to few Watts) and tens of 

milliwatts for MEMS sensors [33,34]. The use of light activation and 

thermal or light modulation, or even a combination of these techniques 

allow not only the reduction of the response time, baseline recovery 

time, and power consumption in gas sensing applications but also 

improve the sensors selectivity and provide relevant information from 

the signal transient of the sensors. 

1.2.1. Light activation 

In the last decades researchers have studied the chemiresistive gas 

sensor light activation using light sources with wavelength from the UV 

to the visible spectrum. The light irradiation on the sensor surface 

creates photogenerated pairs electron-hole which increase the number 

of charge carriers participating in the current conduction and promote 

the desorption of the species absorbed on the sensor surface. Many gas 

sensors based on MOX semiconductor such as WO3, TiO2, ZnO, and 

SnO2, among others, have been used in gas sensing application under 

light activation [35–41]. The light activation allows to reduce the 

response and recovery time regarding RT measurements in dark 

condition, while suppose a power consumption reduction since energy 

used to power up light sources (e.g., UV or visible LEDs) is lower than 

the one needed in high temperature operated sensors. This is true at 

least in non-MEMS sensors. Moreover, the application of light 

irradiation at certain wavelength generates results with sensing 

characteristics equivalent to the application of medium temperatures. In 

[38], Chao Zhang et al. report that the sensing characteristics of the WO3 
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used sensor under blue light activation at RT are comparable to that 

operated at 200 ºC. 

In [35], Elisabetta Comini et al. present the study of the UV light 

activation of a SnO2-based sensor for NO2 sensing at low temperature. 

The influence of a high-power density UV lamp on the response time 

and resistance baseline recovery time is analysed when the sensor 

works at RT and different temperature values from 50 to 300 ºC. The 

authors demonstrate the enhancement of the sensor performance 

working under UV activation as the response and recovery time 

decrease regarding to the dark conditions and the poisoning effect of 

gas exposure is eliminated (baseline resistance is totally recovered). The 

combination of UV activation and low temperature (50 ºC) also provide 

promising results. In the same way, Shunping Zhang et al. show the 

results of the UV light activation of a TiO2 sensor for formaldehyde gas 

sensor in [37]. In this work, authors demonstrate how the combined use 

of UV light and low temperature to activate the sensing layer of the 

sensor allows to have good sensitivity and fast baseline recovery time, 

while reduces the humidity influence on the sensor response.  

Nevertheless, some authors have used the UV light activation as a 

resistance baseline recovery method using it to desorb the gas species 

from the sensor surface [42,43]. In this case, the UV light is applied just 

during the recovery period, shortening the time needed to fully recover 

the baseline regarding the dark conditions, while avoiding the sensor 

surface poisoning. In [43], S. Trocino et al. conclude that the intermittent 

UV light irradiation makes a strong contribution to the optimization of 

the sensing performance. 

1.2.2. Thermal modulation 

The thermal modulation has been the most used method to extract 

features from the sensor signal transient. This method consists of the 

temperature modulation of the sensor heater through the heating 

waveform, frequency, duty cycle, amplitude, or a combination of these 

parameters. The variation of the sensor surface temperature results in a 

modulation of the kinetics of the redox reactions that take place between 

the sensor surface and the oxidizing or reducing species present in the 
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surroundings. Hence, the sensor response can be used to identify certain 

gas exposition by mean of the graphical characteristics of the transients 

induced by the temperature modulation.  

In [44], Xingjiu Huang et al. present a gas sensing application using a 

single tin dioxide (SnO2) sensor and a temperature modulation 

mechanism carried out by controlling the heating waveform and 

frequency of the heater voltage. Authors reported that changing the 

waveform and frequency of the voltage signal applied to the sensor 

heater result in a modulation of the sensor surface temperature, and 

thus, the surface absorption-desorption mechanism is also modulated. 

The sensor response transient characteristics results having unique 

features that allow to distinguish among different gases. Moreover, 

authors report a considerable reduction in power consumption 

compared with the sensor heating at a static temperature. 

On the other hand, some numerical and statistical methods applied to 

the modulated sensor signal, as discrete wavelet transform (DWT), Fast 

Fourier Transform (FFT) [45,46], Principal Component Analysis (PCA) 

[47,48], Discriminant Factor Analysis (DFA) [49], and linear regression 

methods [45,50–53], among others,  have been employed to discriminate 

among different gas exposition and quantify the target gas 

concentration. This have promoted the development of e-nose that 

allow the detection of multiple species using sensor arrays. 

The application of an FFT analysis to the sensor response under 

temperature modulation allow to stablish a good selective criterion for 

the detection of different gases. The polar plot of phase and angle of the 

harmonics related to the temperature modulation frequency is found to 

be useful to separate different gases observations and also 

concentrations of a single gas [54].  

In [49], Radu Ionescu et al. present a high sensitivity and selectivity WO3 

sensor operated in thermally modulated dynamic mode. The mentioned 

MOX sensor was operated in dynamic mode variating its operating 

temperature between 150 and 250 ºC at a constant frequency. FFT and 

DWT analysis were employed to extract coefficients related to the 

resistance changes generated by the temperature modulation. 
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Qualitative information (different species identification) from the tested 

gases was extracted using the FFT and DWT coefficient as input of 

pattern recognition methods (PCA, DFA) and neural network. The 

methods used allow to stablish a linear separation between the 

observations of different tested gases, even in the presence of cross-

contamination. Partial Least Square algorithm was used to build 

predictive model that permit the calculation of the studied gases 

concentrations. 

In [46], Lukasz Wozniak et al. present an ammonia concentration 

prediction method using temperature modulation on a commercial 

semiconductor sensor and FFT analysis under humidity interference. 

Authors used a sinusoidal voltage signal at a frequency of 25 mHz to 

modulate the sensor temperature between 300 and 500 ºC. Different 

combinations of ammonia concentration and relative humidity 

percentage were used to extract information from the sensor response 

transients. Information from the DC sensor signal and magnitude from 

the frequency components extracted from the FFT are used to build the 

calibration and validation sets used to perform the PCA. PCA scores 

plot using the first two PC allow to group observation of each 

concentration independently of the humidity value. PLS algorithm was 

used to perform a concentration prediction method, obtaining RMSE 

values which represents about 14 % of the total concentration range 

measured.  

1.2.3. Light modulation 

During the last few years, the light modulation has emerged as a new 

technique to perform features extraction from the sensor response 

transients in gas sensing applications [17,55,56]. The practical behaviour 

of this method is a combination of the previously described light 

activation and thermal modulation methods. The UV or visible light 

source is periodically switched ON and OFF with a determined duty 

cycle to modulate the absorption and desorption mechanism kinetic on 

the sensor surface. This process generates a sensor resistance 

modulation which consist of ripple superimposed on the sensor signal 

response related to the interaction with the exposed gas molecules. 

Figure 1 depicts the resistance transients generated by the pulsed light 
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activation. The response transients generated may be used to perform a 

quantitative analysis of the gas concentration. Analogous to the thermal 

modulation, numerical and statistical multivariate methods can be used 

to perform a concentration prediction. Datasets built using information 

from the sensor resistance transients are used as input of the prediction 

methods. 

 

Figure 1. Pulsed light activation effect on the sensor resistance. 

In [57], Oriol González et al. operate an indium oxide sensor using the 

combination of mild heating and pulsed UV light for NO2 sensing. In 

this work, authors analyse the evolution of the reduction rate (local 

derivative of the resistance change during the semi-period when the UV 

light is ON) and oxidation rate (local derivative of the resistance change 

during the semi-period when the UV light is OFF) to check its 

relationship with the gas concentration. For each light pulse a 

summatory of the reduction and summatory rates is done. The authors 

found that the maximum value of the compiled summatory is related to 

the gas concentration. The response time of the sensor is taken as the 

period between the start of a gas exposition cycle and the moment when 

maximum value of the summatory is reached. A similar methodology 

is applied by Oriol González et al. in [58], using a WO3 for NO2 gas 

sensing. This time, authors use just the oxidation rate to stablish a gas 

concentration relation with. The response time of the sensor is reduced 

10-fold respect the traditional method where the sensor resistance needs 

to reach the steady state. This methodology is suitable to be applied at 

RT, although the sensor sensitivity increases when a mild heating is 
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used in combination with the pulsed light. In addition, the effect of the 

humidity on the sensor response is quite low, as the sensitivity increases 

just a 10 % when the RH variate from 25 to 50 %. The pulsed light 

activation method at RT and low temperature allows to develop 

portable gas sensing system with low- power consumption [17]. 

On the other hand, the application of quantitative methods that permit 

to determine the concentration of tested gases haven’t been further 

studied. The information extraction methods presented in Section 1.2.2 

which have been widely applied on thermally modulated sensors 

response, represent useful tools to be employed on the quantification of 

gas concentration for sensors working under pulsed light activation 

mechanism. One of the two principal research line of this thesis was 

focused on the development of a concentration quantification 

methodology based on the pulsed light activation mechanism presented 

in the present section and the use of numerical method to perform the 

prediction models. First, an FFT analysis is performed on the time 

domain sensor signal. It is found that fundamental frequency from the 

light switching and its even order harmonics have a relevant magnitude 

in the FFT spectrum. This frequency components are used to build the 

matrix used to do a PCA. The matrix size depends on the number of 

different concentrations tested and the number of cycles included in the 

analysis. Figure 2 depicts the distribution of a generic matrix. Principal 

Components scores and loadings obtained in the PCA are used to carry 

out both qualitative and quantitative analysis of the tested gases. The 

PCA scores plot have been used to identify different gases since 

observation from different species are spatially separated in clusters. 

PCA scores and loadings biplots have been used to optimize the number 

of frequency component used to perform the linear regression 

mechanisms. Furthermore, linear regression methods (PCR and PLSR) 

are employed to quantify the gas concentration.  

The methodology developed in this thesis allow not only to accurately 

quantify oxidizing and reducing gas concentrations and identify the 

exposition to different gases but also suppose a reduction in power 

consumption of about 90 % regarding the standard heating operation of 

metal oxide sensors for non-MEMS sensors. It is expected that the 
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proper selections of light sources allow to reduce the power 

consumption even in MEMS sensors. 

 

Figure 2. Frequency components matrix used to perform the PCA. FCs are 

different frequency components extracted after the FFT analysis performed to 

the time domain sensor signal. 

 

Figure 3. Representative diagram of the experimental setup used to carry out 

gas sensing measurements using the pulsed light modulation mechanism. 

The pulsed light modulation methodology developed during the 

present thesis was tested on different n-type and p-type materials, such 
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as WO3, SrTiO3@WO3, WS2, and CNT. The gas classification and 

prediction models’ performance were tested toward oxidizing and 

reducing gases. The gas sensing experiments were carried out inside a 

Teflon chamber with and inner volume of about 21 cm3. A mass-flows 

controller system was used to establish the gas concentration set during 

the measurements, mixing flows coming from cylinders of calibrated 

gas balanced in air and synthetic air. The LEDs activation was controlled 

using a microcontroller system and an electronic system was designed 

to control the LEDs forward current. Figure 3 depicts a schema of the 

gas measurement system. 

Research papers published during this thesis development that are 

related to the pulsed light modulation methodology are presented in 

Chapter 2. 
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1.3. Wireless Sensor Network for Air Quality Monitoring  

According to the World Health Organization indoor and outdoor air 

pollution are among the leading avoidable causes of disease and death 

globally. Every year 4.3 million people die from diseases related to 

household (indoor) air pollution exposure and 3.7 million of death are 

related to ambient (outdoor) air pollution [59]. Hence, having systems 

to monitor the sources of human exposure to air pollution is an 

important fact in the road map traced by the WHO and PAHO to 

mitigate the damage caused by air pollution to human health and health 

systems [59,60]. Conventional air quality monitoring (AQM) stations 

offer highly accurate gas and particulate matter concentration in 

ambient. However, these systems do not represent a scalable solution 

due to its high cost (tens to hundreds of dollars) and size. Moreover, 

some technics need trained personnel to be operated locally or perform 

laboratory test or calibrations [6,61,62]. Low-cost and potable air quality 

monitoring systems are required to develop solutions with enough 

spatial resolution to monitor household and ambient air. Wireless 

Sensor Networks (WSN) have become an important solution to cover 

environmental monitoring and safety applications. Moreover, sensor 

networks are used to control automated heating, ventilation, and air 

conditioning (HVAC) control systems where activation mechanisms 

depend on the gas concentration [10,63,64]. WSN are composed of a 

group of spatially distributed nodes with sensing capabilities and 

wirelessly connected to a central location where the sensor data is 

collected. The increasing number of Internet of Things applications for 

AQM have boosted the development of WSN connected to Internet or 

cloud servers, thus making the sensor data available at any time from 

everywhere.  

Figure 4 depicts the overview of a generic AQM system based on WSN 

and IoT. Different gas sensors as NO2, CO, SO2, H2S, CO2 and O3 sensors, 

among others, and particulate matter sensors PM10 and PM2.5 may be 

included in nodes located at indoor environments (house and office 

building) and outdoors (urban areas’ streets, industry) [14,62,65–71]. 

Nodes are generally connected to an internet gateway through a 

wireless technology as Zigbee, Wi-Fi, Bluetooth, LoRa, GSM, and GPRS 
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[64,67,69,72–76]. The internet gateway works as a bridge between nodes 

and a remote server where the sensor data can be stored, processed, and 

monitor through web services which users can access to.  

  

Figure 4. Overview of an AQM system based on WSN and IoT. 

Some research and conference papers present the development of a 

WSN for AQM based on the Waspmote board from Libellium, which is 

an open source wireless sensor platform [65,71,77,78]. Systems 

developed on this platform integrate commercial sensors that are 

controlled using functions inherent to Waspmote. The platform also 

provides sockets to connect different wireless technology modems. In 

[65], Al Rasyid et all present a CO and CO2 pollution monitoring system 

based on this platform. The system developed includes the CO 

(TGS2442) MOX sensor and the CO2 (TGS4161) electrochemical sensor. 

Sensor nodes are provisioned with a Xbee module used to send the 

sensor data wirelessly to a Meshlium Xbee to Ethernet router which 

send the data to a computer used as server. The existing sensor data is 

accessible through a web application. 

On the other hand, other research have used Arduino as microcontroller 

unit to control the sensor performance and the wireless communication 
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[72,79–81]. In [69], Maboruki J. et all develop a weather and AQM 

system based on Arduino platform. The monitoring system includes a 

temperature and humidity DHT22 sensor, as well as H2 (MQ136), O3 

(MQ131), and CO (MQ7) commercial MOX gas sensors. The wireless 

sensor data transmission is carried out using the Wi-Fi module ESP8266. 

The sensor data is sent to a remote server through a Wi-Fi router since 

the module includes the TCP/IP stack. The information stored in the 

server is accessible via a web service that includes an email alert system 

as well.  

During this thesis development a LoRa-based gas sensor network for 

AQM and gas leakage detection was designed and implemented. The 

system is composed of low-cost and low-power LoRa nodes with 

sensing capabilities (temperature, humidity, and oxidizing and 

reducing gases), and a LoRa internet gateway. The sensor data 

management was also implemented (data transmission, storage, 

monitoring).  The sensor data is sent periodically to a cloud server 

where the data is stored and replicated to a local server. The data 

monitoring system was developed using a web service developed using 

open-source software and hosted in a Raspberry Pi. 

Contrasting with most of the AQM systems development reported in 

the literature, where sensing nodes are built using commercial sensors, 

the system presented in this work combines both commercial and lab 

synthesized sensors. The implementation of a resistance measurement 

channel allows employing the sensing nodes for different gas sensing 

application by selecting the material of the synthesized chemiresistive 

sensor (e.g., carbon nanomaterials, metal oxides, among others). It is 

worth making clear that the sensor connector is meant to be used for 

commercial large alumina substrates from CeramTec GmbH. The 

sensor network is highly scalable since new sensing nodes can be added 

by just generating their authentication data at the cloud server. 

The research paper published during this thesis development that are 

related to the implementation of Wireless Sensor Network for Air 

Quality Monitoring and gas leakage events detection is presented in 

Chapter 3. 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



1.4 References 

[1] World Health Organization. World Health Organization - Air 

pollution n.d. https://www.who.int/data/gho/data/themes/theme-

details/GHO/air-pollution (accessed April 30, 2021). 

[2] How many people die and how many are born each year? - Our World 

in Data n.d. https://ourworldindata.org/births-and-deaths (accessed 

April 30, 2021). 

[3] Huang K, Zhuang G, Lin Y, Fu JS, Wang Q, Liu T, et al. Typical types 

and formation mechanisms of haze in an Eastern Asia megacity, 

Shanghai. Atmos Chem Phys 2012;12:105–24. 

https://doi.org/10.5194/acp-12-105-2012. 

[4] Li R, Cui L, Li J, Zhao A, Fu H, Wu Y, et al. Spatial and temporal 

variation of particulate matter and gaseous pollutants in China during 

2014–2016. Atmos Environ 2017;161:235–46. 

https://doi.org/10.1016/j.atmosenv.2017.05.008. 

[5] Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H, et al. A Survey on Gas 

Sensing Technology. Sensors 2012;12:9635–65. 

https://doi.org/10.3390/s120709635. 

[6] Yi WY, Lo KM, Mak T, Leung KS, Leung Y, Meng ML. A survey of 

wireless sensor network based air pollution monitoring systems. vol. 

15. 2015. https://doi.org/10.3390/s151229859. 

[7] Carron C, Getz P, Heinrich SM, Josse F, Brand O. Cantilever-based 

resonant microsensors with integrated temperature modulation for 

transient chemical analysis. 2015 Transducers - 2015 18th Int Conf 

Solid-State Sensors, Actuators Microsystems, TRANSDUCERS 2015 

2015:1511–4. https://doi.org/10.1109/TRANSDUCERS.2015.7181223. 

[8] Penza M. Low-cost sensors for outdoor air quality monitoring. In: 

Llobet E, editor. Adv. Nanomater. Inexpensive Gas Microsens. Synth. 

Integr. Appl., Elsevier Inc.; 2020, p. 235–88. 

https://doi.org/10.1016/B978-0-12-814827-3.00012-8. 

[9] Khan MAH, Rao M V., Li Q. Recent advances in electrochemical 

sensors for detecting toxic gases: NO2, SO2 and H2S. Sensors 

(Switzerland) 2019;19. https://doi.org/10.3390/s19040905. 

[10] Nikolic MV, Milovanovic V, Vasiljevic ZZ, Stamenkovic Z. 

Semiconductor gas sensors: Materials, technology, design, and 

application. Sensors (Switzerland) 2020;20:1–31. 

https://doi.org/10.3390/s20226694. 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



[11] Johnson S, Shanmuganantham T. Design and Analysis of SAW Based 

MEMS Gas Sensor for the Detection of Volatile Organic Gases. J Eng 

Res Appl 2014;4:254–8. 

[12] Müller M, Graf P, Meyer J, Pentina A, Brunner D, Perez-Cruz F, et al. 

Integration and calibration of non-dispersive infrared (NDIR) CO2 

low-cost sensors and their operation in a sensor network covering 

Switzerland. Atmos Meas Tech 2020;13:3815–34. 

https://doi.org/10.5194/amt-13-3815-2020. 

[13] Rossi M, Brunelli D. Ultra low power CH4 monitoring with wireless 

sensors. Proc IEEE Sensors 2013:13–6. 

https://doi.org/10.1109/ICSENS.2013.6688354. 

[14] Kim JY, Chu CH, Shin SM. An integrated sensing systems for real-time 

indoor air quality monitoring. IEEE Sens J 2014;14:4230–44. 

https://doi.org/10.1109/JSEN.2014.2359832. 

[15] Singh E, Meyyappan M, Nalwa HS. Flexible Graphene-Based 

Wearable Gas and Chemical Sensors. ACS Appl Mater Interfaces 

2017;9:34544–86. https://doi.org/10.1021/acsami.7b07063. 

[16] Kumar S, Pavelyev V, Mishra P, Tripathi N. A review on 

сhemiresistive gas sensors based on carbon nanotubes: Device and 

technology transformation. Sensors Actuators, A Phys 2018;283:174–

86. https://doi.org/10.1016/j.sna.2018.09.061. 

[17] Su PG, Yu JH, Chen IC, Syu HC, Chiu SW, Chou TI. Detection of ppb-

level NO 2 gas using a portable gas-sensing system with a Fe 2 O 3 

/MWCNTs/WO 3 sensor using a pulsed-UV-LED. Anal Methods 

2019;11:973–9. https://doi.org/10.1039/c8ay02500b. 

[18] Palacín J, Martínez D, Clotet E, Pallejà T, Burgués J, Fonollosa J, et al. 

Application of an array of metal-oxide semiconductor gas sensors in 

an assistant personal robot for early gas leak detection. Sensors 

(Switzerland) 2019;19:1–16. https://doi.org/10.3390/s19091957. 

[19] Balamurugan C, Song SJ, Lee DW. Porous nanostructured GdFeO3 

perovskite oxides and their gas response performance to NOx. Sensors 

Actuators, B Chem 2018;272:400–14. 

https://doi.org/10.1016/j.snb.2018.05.125. 

[20] Rong Q, Zhang YM, Hu JC, Wang HP, Zhu ZQ, Zhang J, et al. A 

double perovskite LaFe1-xSnxO3 nanocomposite modified by Ag for 

fast and accurate methanol detection. Mater Res Bull 2020;132:1–11. 

https://doi.org/10.1016/j.materresbull.2020.111006. 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



[21] Guo S, Yang D, Zhang S, Dong Q, Li B, Tran N, et al. Development of a 

Cloud-Based Epidermal MoSe 2 Device for Hazardous Gas Sensing. 

Adv Funct Mater 2019;29:1–10. 

https://doi.org/10.1002/adfm.201900138. 

[22] Navarrete E, Bittencourt C, Umek P, Llobet E. AACVD and gas 

sensing properties of nickel oxide nanoparticle decorated tungsten 

oxide nanowires. J Mater Chem C 2018;6:5181–92. 

https://doi.org/10.1039/C8TC00571K. 

[23] Casanova-Cháfer J, Navarrete E, Noirfalise X, Umek P, Bittencourt C, 

Llobet E. Gas Sensing with Iridium Oxide Nanoparticle Decorated 

Carbon Nanotubes. Sensors 2018;19:113. 

https://doi.org/10.3390/s19010113. 

[24] Güell F, Martínez-Alanis PR, Khachadorian S, Zamani RR, Franke A, 

Hoffmann A, et al. Spatially controlled growth of highly crystalline 

ZnO nanowires by an inkjet-Printing catalyst-Free method. Mater Res 

Express 2016;3:0. https://doi.org/10.1088/2053-1591/3/2/025010. 

[25] Roso S, Bittencourt C, Umek P, González O, Güell F, Urakawa A, et al. 

Synthesis of single crystalline In2O3octahedra for the selective 

detection of NO2and H2at trace levels. J Mater Chem C 2016;4:9418–

27. https://doi.org/10.1039/c6tc03218d. 

[26] Korotcenkov G. Metal oxides for solid-state gas sensors: What 

determines our choice? Mater Sci Eng B Solid-State Mater Adv Technol 

2007;139:1–23. https://doi.org/10.1016/j.mseb.2007.01.044. 

[27] Gonzalez-Chavarri J, Castro-Hurtado I, Castaño E, Mandayo GG. 

High-sensitivity indoor-air-quality sensor through localized growth of 

ZnO nanostructures. Procedia Eng 2014;87:983–6. 

https://doi.org/10.1016/j.proeng.2014.11.323. 

[28] Wu X, Xiong S, Mao Z, Gong Y, Li W, Liu B, et al. In-situ deposited 

ZnO film-based sensor with controlled microstructure and exposed 

facet for high H2sensitivity. J Alloys Compd 2017;704:117–23. 

https://doi.org/10.1016/j.jallcom.2017.02.040. 

[29] Alvarado M, Navarrete È, Romero A, Ramírez J, Llobet E. Flexible Gas 

Sensors Employing Octahedral Indium Oxide Films. Sensors 

2018;18:999. https://doi.org/10.3390/s18040999. 

[30] Peng S, Ming H, Mingda L. Effects of rapid thermal annealing on the 

room-temperature NO 2-sensing properties of WO 3 thin films under 

LED radiation Related content Nano-WO 3 film modified macro-

porous silicon (MPS) gas sensor. Chinese Phys B 2013. 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



https://doi.org/10.1088/1674-1056/22/6/068204. 

[31] Vallejos S, Gràcia I, Lednický T, Vojkuvka L, Figueras E, Hubálek J, et 

al. Highly hydrogen sensitive micromachined sensors based on 

aerosol-assisted chemical vapor deposited ZnO rods. Sensors 

Actuators, B Chem 2018;268:15–21. 

https://doi.org/10.1016/j.snb.2018.04.033. 

[32] Zappa D, Galstyan V, Kaur N, Munasinghe Arachchige HMM, Sisman 

O, Comini E. Metal oxide-based heterostructures for gas sensors - A 

review. Anal Chim Acta 2018;1039:1–23. 

https://doi.org/10.1016/j.aca.2018.09.020. 

[33] Ilin A, Martyshov M, Forsh E, Forsh P, Rumyantseva M, Abakumov A. 

UV effect on NO 2 sensing properties of nanocrystalline In 2 O 3. 

Sensors Actuators B Chem 2020;231:491–6. 

https://doi.org/10.1016/j.snb.2016.03.051. 

[34] Ahmad A, Voves J. Selective sensing of volatile organic compounds 

via a temperature modulation of metal oxide gas sensors with 

principal component analysiS. NANOCON Conf Proc - Int Conf 

Nanomater 2020;2020-Octob:262–6. 

https://doi.org/10.37904/nanocon.2019.8731. 

[35] Comini E, Faglia G, Sberveglieri G. UV light activation of tin oxide 

thin films for NO2 sensing at low temperatures. Sensors Actuators, B 

Chem 2001;78:73–7. https://doi.org/10.1016/S0925-4005(01)00796-1. 

[36] Giberti A, Malagù C, Guidi V. WO 3 sensing properties enhanced by 

UV illumination : An evidence of surface effect. Sensors Actuators B 

Chem 2012;165:59–61. https://doi.org/10.1016/j.snb.2012.02.012. 

[37] Zhang S, Lei T, Li D, Zhang G, Xie C. UV light activation of TiO 2 for 

sensing formaldehyde : How to be sensitive , recovering fast , and 

humidity less sensitive. Sensors Actuators B Chem 2014;202:964–70. 

https://doi.org/10.1016/j.snb.2014.06.063. 

[38] Zhang C, Boudiba A, Bittencourt C, Snyders R, Olivier MG, Debliquy 

M. Visible light activated tungsten oxide sensors for NO2 detection at 

room temperature. Procedia Eng 2012;47:116–9. 

https://doi.org/10.1016/j.proeng.2012.09.098. 

[39] Geng Q, He Z, Chen X, Dai W, Wang X. Gas sensing property of ZnO 

under visible light irradiation at room temperature. Sensors Actuators 

B Chem 2013;188:293–7. https://doi.org/10.1016/j.snb.2013.07.001. 

[40] Nikfarjam A, Salehifar N. Visible Light Activation in TiO 2 / Pd / N / 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



Fe 2 O 3 Nanofiber Hydrogen Sensor 2015;15:5962–70. 

[41] Li J, Gu D, Yang Y, Du H, Li X. UV Light Activated SnO2/ZnO 

Nanofibers for Gas Sensing at Room Temperature. Front Mater 

2019;6:1–8. https://doi.org/10.3389/fmats.2019.00158. 

[42] Mor GK, Varghese OK, Paulose M, Grimes CA. A Self-Cleaning, 

Room-Temperature Titania-Nanotube Hydrogen Gas Sensor. Sens Lett 

2003;1:42–6. https://doi.org/10.1166/sl.2003.013. 

[43] Trocino S, Frontera P, Donato A, Busacca C, Scarpino LA, Antonucci P, 

et al. Gas sensing properties under UV radiation of In2O3 

nanostructures processed by electrospinning. Mater Chem Phys 

2014;147:35–41. https://doi.org/10.1016/j.matchemphys.2014.03.057. 

[44] Huang X, Meng F, Pi Z, Xu W, Liu J. Gas sensing behavior of a single 

tin dioxide sensor under dynamic temperature modulation. Sensors 

Actuators, B Chem 2004;99:444–50. 

https://doi.org/10.1016/j.snb.2003.12.013. 

[45] Vergara A, Llobet E, Brezmes J, Ivanov P, Cané C, Gràcia I, et al. 

Quantitative gas mixture analysis using temperature-modulated 

micro-hotplate gas sensors: Selection and validation of the optimal 

modulating frequencies. Sensors Actuators, B Chem 2007;123:1002–16. 

https://doi.org/10.1016/j.snb.2006.11.010. 

[46] Wozniak L, Kalinowski P, Jasinski G, Jasinski P. FFT analysis of 

temperature modulated semiconductor gas sensor response for the 

prediction of ammonia concentration under humidity interference. 

Microelectron Reliab 2018;84:163–9. 

https://doi.org/10.1016/j.microrel.2018.03.034. 

[47] He A, Tang Z. A novel gas identification method based on gabor 

spectrogram using self-adapted temperature modulated gas sensors. 

Proc - 2019 Int Conf Sensing, Diagnostics, Progn Control SDPC 2019 

2019:714–7. https://doi.org/10.1109/SDPC.2019.00135. 

[48] Sudarmaji A, Kitagawa A. Application of Temperature Modulation-

SDP on MOS Gas Sensors: Capturing Soil Gaseous Profile for 

Discrimination of Soil under Different Nutrient Addition. J Sensors 

2016;2016. https://doi.org/10.1155/2016/1035902. 

[49] Ionescu R, Hoel A, Granqvist C-G, Llobet E, Heszler P. Highly 

sensitive and selective WO 3 nanoparticle gas sensor operating in 

thermally modulated dynamic mode. Noise Inf Nanoelectron Sensors, 

Stand II 2004;5472:347. https://doi.org/10.1117/12.547235. 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



[50] Burgués J, Marco S. Multivariate estimation of the limit of detection by 

orthogonal partial least squares in temperature-modulated MOX 

sensors. Anal Chim Acta 2018;1019:49–64. 

https://doi.org/10.1016/j.aca.2018.03.005. 

[51] Vergara A, Martinelli E, Llobet E, D’amico A, Di Natale C. Optimized 

feature extraction for temperature-modulated gas sensors. J Sensors 

2009;2009. https://doi.org/10.1155/2009/716316. 

[52] Vergara A, Martinelli E, Llobet E, Giannini F, D’Amico A, Di Natale C. 

An alternative global feature extraction of temperature modulated 

micro-hotplate gas sensors array using an energy vector approach. 

Sensors Actuators, B Chem 2007;124:352–9. 

https://doi.org/10.1016/j.snb.2006.12.050. 

[53] Capone S, Siciliano P, Bârsan N, Weimar U, Vasanelli L. Analysis of 

CO and CH4 gas mixtures by using a micromachined sensor array. 

Sensors Actuators, B Chem 2001;78:40–8. https://doi.org/10.1016/S0925-

4005(01)00789-4. 

[54] Sears WM, Colbow K, Slamka R, Consadori F. Selective thermally 

cycled gas sensing using fast Fourier-transform techniques. Sensors 

Actuators B Chem 1990;2:283–9. https://doi.org/10.1016/0925-

4005(90)80155-S. 

[55] Chizhov AS, Rumyantseva MN, Vasiliev RB, Filatova DG, Drozdov 

KA, Krylov I V., et al. Visible light activation of room temperature 

NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe 

quantum dots. Thin Solid Films 2016;618:253–62. 

https://doi.org/10.1016/j.tsf.2016.09.029. 

[56] Gonzalez O, Welearegay T, Llobet E, Vilanova X. Pulsed UV Light 

Activated Gas Sensing in Tungsten Oxide Nanowires. Procedia Eng 

2016;168:351–4. https://doi.org/10.1016/j.proeng.2016.11.118. 

[57] Gonzalez O, Roso S, Vilanova X, Llobet E. Enhanced detection of 

nitrogen dioxide via combined heating and pulsed UV operation of 

indium oxide nano-octahedra. Beilstein J Nanotechnol 2016;7:1507–18. 

https://doi.org/10.3762/bjnano.7.144. 

[58] Gonzalez O, Welearegay TG, Vilanova X, Llobet E. Using the transient 

response of WO3 nanoneedles under pulsed uv light in the detection 

of NH3and NO2. Sensors (Switzerland) 2018;18. 

https://doi.org/10.3390/s18051346. 

[59] World Health Organization. Health and Environment: Draft road map 

for an enhanced global response to the adverse health effects of air 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



pollution A69/18. 2016. 

[60] World Health Organization, Panamerican Health Organization. PAHO 

’ s road map on a ir quality A strategic agenda to mainstream health in 

air quality management. 2018. 

[61] Idrees Z, Zheng L. Low cost air pollution monitoring systems: A 

review of protocols and enabling technologies. J Ind Inf Integr 

2020;17:100123. https://doi.org/10.1016/j.jii.2019.100123. 

[62] Patil D, Thanuja TC, Melinamath BC. Air pollution monitoring system 

using wireless sensor network (WSN). vol. 808. Springer Singapore; 

2019. https://doi.org/10.1007/978-981-13-1402-5_30. 

[63] Gomes JBA, Rodrigues JJPC, Rabêlo RAL, Kumar N, Kozlov S. IoT-

enabled gas sensors: Technologies, applications, and opportunities. J 

Sens Actuator Networks 2019;8. https://doi.org/10.3390/jsan8040057. 

[64] Catini A, Papale L, Capuano R, Pasqualetti V, Di Giuseppe D, 

Brizzolara S, et al. Development of a sensor node for remote 

monitoring of plants. Sensors (Switzerland) 2019;19. 

https://doi.org/10.3390/s19224865. 

[65] Al Rasyid MUH, Nadhori IU, Alnovinda YT. CO and CO2 pollution 

monitoring based on wireless sensor network. Proc 2015 IEEE Int Conf 

Aerosp Electron Remote Sensing, ICARES 2015 2016. 

https://doi.org/10.1109/ICARES.2015.7429818. 

[66] Rajasegarar S, Zhang P, Zhou Y, Karunasekera S, Leckie C, 

Palaniswami M. High resolution spatio-temporal monitoring of air 

pollutants using wireless sensor networks. IEEE ISSNIP 2014 - 2014 

IEEE 9th Int Conf Intell Sensors, Sens Networks Inf Process Conf Proc 

2014:21–4. https://doi.org/10.1109/ISSNIP.2014.6827607. 

[67] Rossi M, Brunelli D, Adami A, Lorenzelli L, Menna F, Remondino F. 

Gas-drone: Portable gas sensing system on UAVs for gas leakage 

localization. Proc IEEE Sensors 2014;2014-Decem:1431–4. 

https://doi.org/10.1109/ICSENS.2014.6985282. 

[68] Bart M, Williams DE, Ainslie B, McKendry I, Salmond J, Grange SK, et 

al. High density ozone monitoring using gas sensitive semi-conductor 

sensors in the lower Fraser valley, British Columbia. Environ Sci 

Technol 2014;48:3970–7. https://doi.org/10.1021/es404610t. 

[69] Mabrouki J, Azrour M, Dhiba D, Farhaoui Y, Hajjaji S El. IoT-based 

data logger for weather monitoring using arduino-based wireless 

sensor networks with remote graphical application and alerts. Big 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



Data Min Anal 2021;4:25–32. 

https://doi.org/10.26599/BDMA.2020.9020018. 

[70] Kadri A, Yaacoub E, Mushtaha M, Abu-Dayya A. Wireless sensor 

network for real-time air pollution monitoring. 2013 1st Int Conf 

Commun Signal Process Their Appl ICCSPA 2013 2013. 

https://doi.org/10.1109/ICCSPA.2013.6487323. 

[71] Mansour S, Nasser N, Karim L, Ali A. Wireless sensor network-based 

air quality monitoring system. 2014 Int Conf Comput Netw Commun 

ICNC 2014 2014:545–50. https://doi.org/10.1109/ICCNC.2014.6785394. 

[72] Marques G, Pitarma R. An indoor monitoring system for ambient 

assisted living based on internet of things architecture. Int J Environ 

Res Public Health 2016;13. https://doi.org/10.3390/ijerph13111152. 

[73] Suárez JI, Arroyo P, Lozano J, Herrero JL, Padilla M. Bluetooth gas 

sensing module combined with smartphones for air quality 

monitoring. Chemosphere 2018;205:618–26. 

https://doi.org/10.1016/j.chemosphere.2018.04.154. 

[74] Oletic D, Bilas V. Design of sensor node for air quality crowdsensing. 

SAS 2015 - 2015 IEEE Sensors Appl Symp Proc 2015:4–8. 

https://doi.org/10.1109/SAS.2015.7133628. 

[75] Pogfay T, Watthanawisuth N, Wisitsoraat A, Lomas T, Tuantranont A. 

Industrial community odor monitoring utilizing wireless electronic 

nose for human health protection. BMEiCON-2011 - 4th Biomed Eng 

Int Conf 2011:96–9. https://doi.org/10.1109/BMEiCon.2012.6172027. 

[76] Popoola OAM, Carruthers D, Lad C, Bright VB, Mead MI, Stettler MEJ, 

et al. Use of networks of low cost air quality sensors to quantify air 

quality in urban settings. Atmos Environ 2018;194:58–70. 

https://doi.org/10.1016/j.atmosenv.2018.09.030. 

[77] Brienza S, Galli A, Anastasi G, Bruschi P. A low-cost sensing system 

for cooperative air quality monitoring in urban areas. Sensors 

(Switzerland) 2015;15:12242–59. https://doi.org/10.3390/s150612242. 

[78] Alshamsi A, Anwar Y, Almulla M, Aldohoori M, Hamad N, Awad M. 

Monitoring pollution: Applying IoT to create a smart environment. 

2017 Int Conf Electr Comput Technol Appl ICECTA 2017 2017;2018-

Janua:1–4. https://doi.org/10.1109/ICECTA.2017.8251998. 

[79] Salhi L, Silverston T, Yamazaki T, Miyoshi T. Early Detection System 

for Gas Leakage and Fire in Smart Home Using Machine Learning. 

2019 IEEE Int Conf Consum Electron ICCE 2019 2019. 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



https://doi.org/10.1109/ICCE.2019.8661990. 

[80] Supriyono H, Febriyanto ED, Harismah K. Portable machine to 

machine system for monitoring temperature and flammable gas of 

outdoor environment. AIP Conf Proc 2019;2114. 

https://doi.org/10.1063/1.5112443. 

[81] Mahbub M, Rouf MA, Saym MM. Industrial Plant Environment 

Surveillance and Safety Assurance System Based on IoT. 2020 2nd Int 

Conf Sustain Technol Ind 40, STI 2020 2020;0:19–20. 

https://doi.org/10.1109/STI50764.2020.9350465. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



 

 

 

 

 

Chapter 2 

 

                    Pulsed light modulation for gas 

concentration quantification 

 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



  

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



 

 

 

 

 

Section 2.1 

 

                    A New Approach to NO2 Gas Sensing 

Based on Pulsed UV Light and FFT         

Analysis Using MOX Sensors 

 

Ernesto González, Eduard Llobet,                                                                 

Alfonso Romero, and Xavier Vilanova 

IEEE Sensors Journal, Vol. 20, No. 1, January 1, 2020 

DOI: 10.1109/JSEN.2019.2942490 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



Abstract 

Metal Oxide Semiconductor gas sensors have been recently temperature 

modulated, and UV light activated to improve their sensitivity and 

selectivity. In this work, we present the first known development of 

calibration models, using pulsed UV light modulation for WO3 based 

gas sensing. Partial Least Squares Regression (PLSR) and Principal 

Component Regression (PCR) methods have been developed using 

components from the FFT analysis of the DC resistance signal of the 

sensor. The use of pulsed UV light, combined with low-temperature 

activation allowed a significant reduction in power consumption as 

compared to the high operating temperature traditionally used with 

Metal Oxide non-MEMs based sensors. The methodology proposed in 

this study allows diminishing the time necessary to determine the 

concentration, with the reduction of the pulsed UV light period, and the 

number of pulses used for this purpose, in respect to the use of 

resistance rate analysis, as proposed by other authors. The FFT analysis 

made before performing the linear regression methods allows the 

diminution of the prediction error from the models, as compared to the 

rate analysis. These advantages present a progress over the analysis of 

the rates from the resistance signal, recently presented by other authors. 

The correct performance of the presented procedure, working with NO2 

concentrations under harmful exposure limits, opens the opportunity of 

using this methodology in real air quality applications. 

Index Terms: Calibration model, gas sensing, pulsed UV light 
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Introduction 

During the past decade, the air quality monitoring, both, in indoor and 

outdoor environment has captured the interest of many researchers, 

due to its direct influence in human health [1]–[3]. The widespread 

applications of metal oxide semiconductors for gas sensing purposes 

have led them to be some of the most used materials in the detection of 

environmental pollutants [4], [5]. Metal Oxide Semiconductor (MOX) 

gas sensors have been widely studied by decades due to their high 

sensibility and reversible absorption and desorption interactions 

between these materials and target gases [6]–[8]. The operating 

principle of MOX sensors is based on redox reactions occurring between 

the target gas and the metal oxide surface of the active layer of the 

sensor. During the redox reaction, oxygen species adsorbed on the metal 

oxide react with molecules of the target gas producing an electronic 

interchange, which is measured as a resistance change of the sensor [4]. 

For many years, MOX sensors have been typically used by applying 

operating temperatures in the range 100-500 °C to improve their 

response and sensitivity, which implies a considerable power 

consumption to heat the sensors [9]–[11]. However, a few years ago, the 

UV-irradiation of MOX sensors has been studied as an alternative to the 

more traditional thermally activated gas sensing [12]–[14]. UV light 

provokes the generation of electron/hole pairs, induced by the 

photoconductivity effect, which increases the density of charge carriers 

through the semiconducting layer, improving the 

absorption/desorption mechanism [15], [16]. The effect of constant UV 

light has been normally used for improving the sensor response at low 

or even at room temperature operation [17]–[20]. In addition, UV 

irradiation during the recovery phase only has been employed for 

decreasing the recovery time via increasing the desorption rate [21], 

[22]. Nevertheless, recently, a new pulsed UV light method has been 

developed [23], [24], and used in a portable gas sensing system [25], 

working at low or room temperature. This method allows determining 

the gas concentration by analyzing the resistance change, a ripple 

caused by the effect of the UV light being switched ON and OFF [24]. 
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On the other hand, several researchers have used mathematical data 

analysis and statistical methods to quantify the concentration of a target 

gas and determine the Limit of Detection (LOD) of MOX sensors 

[26]– 28]. The use of Principal Component Analysis (PCA), and the 

development of calibration models using Principal Component 

Regression (PCR) and Partial Least Square Regression (PLSR) have 

permitted to determine the target gas concentration in gas sensing 

applications (e.g., CO, NO2, volatile compounds, among others) 

[26]– [30]. While most of these studies have implemented the data 

analysis methods using the DC signal of the sensors working under 

temperature modulation [27], [29], [30], some researchers have reported 

the use of components from the Fast Fourier Transform (FFT) analysis 

of the resistance transients as input data for these analysis methods. This 

methodology has become an excellent tool for determining gas 

concentration and discriminating different gases [31], [32]. This work 

presents the development of calibration models of a tungsten trioxide 

(WO3) based pulsed UV light modulated gas sensor, based on the above-

mentioned research background. Combined low temperature and 

pulsed UV light configuration are used for measuring NO2 at ppb level. 

The FFT components from the analysis of the resistance signal of the 

sensors are used as input of the PCR and PLSR methods. The use of the 

FFT components instead of the resistance rate obtained from the pulsed 

UV light modulation represents an improvement of the methodology 

developed by Gonzalez et al. [24]. The results, obtained from models 

developed using FFT components, are compared with those obtained 

from the resistance rates (used by Gonzalez. et al). 

Experimental 

Sensor Fabrication 

The sensors used in this work were made following a well-known 

technique based on aerosol assisted chemical vapor deposition 

(AACVD), widely used in previous works to synthesize tungsten 

trioxide (WO3) nanoneedles or nanowires [33]–[36]. We synthesized 

WO3 nanoneedles on a commercial alumina substrate, containing 

platinum interdigitated electrodes with a 300 μm gap on the top side 

and 8 Ω heater on the bottom side, from Ceram Tech GmBH. 50 mg of 
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tungsten hexacarbonyl (W(CO)6) were dissolved in a mixture of 15 ml 

of acetone and 5 ml of methanol. Vapor from the dissolution was 

generated by means of an ultrasonic humidifier, and nitrogen was used 

as carrier gas with a flow of 200 sccm. With this approach, about 45 min 

were necessary to transport all the dissolution inside the deposition 

chamber and complete the nanoneedle growth. The temperature of the 

deposition chamber was kept at 400 °C during the deposition time and 

then naturally cooled to room temperature. Once the nanoneedles were 

grown, an annealing process was made at 500 °C during 2 h in a 

Carbolite CWF 1200 muffle furnace, in order to fully oxidize the WO3 

and remove the residual carbon from the precursor. 

Measuring System Description 

Measurements were made inside a Teflon chamber with an inner 

volume of 21.18 cm3, and capacity for measuring 4 sensors at the same 

time. The chamber has 2 holes at the top, through which the UV light 

LEDs are inserted. Inside the chamber, sensors are totally isolated from 

the ambient light. Sensor resistance was measured and recorded at a 

frequency of 1 Hz by using a Keysight 34972A LXI Data 

Acquisition/Switch Unit controlled with BenchLink Data Logger 3 from 

Agilent Technologies. 

Different gas concentrations were established by mean of a mass flow 

control system, using EL-FLOW mass flows from Bronkhorst, 

controlled using Flow View and Flow Plot software from Bronkhorst. 

This system was used to mix the gases coming from a bottle of dry, zero-

grade air, and the one coming from a bottle containing a dilution of 1 

ppm of NO2, balanced in dry air in the adequate proportion to achieve 

the desired concentration, keeping the total flow across the sensors 

chamber constant at 100 ml/min. 

Sensors were exposed, in a first stage, to NO2 concentrations in the range 

of hundreds of ppbs to validate the procedure and tens of ppbs later to 

check the viability of the system to detect NO2 below the daily limit of 

exposure established in the EU ambient air quality directives [38]. 

During the first stage, a gas exposure cycle consisted of a set of 

measurements in the 200 to 900 ppb concentration range (with an 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



increase of 100 ppb between consecutive measurements). The second set 

of measurements were performed using cycles of 37.5, 75, and 150 ppb. 

All of the measurements were made using 15 min of NO2 exposure and 

then 1 h of baseline recovery under dry air. An extra recovery time of 1 

h was set between any two consecutive cycles. 

In order to carry out this study, we used a combined configuration of 

UV pulsed light and low-temperature heating. Operating temperature 

of the sensors was set at 50 °C using the heater placed on the backside 

of the substrate. The UV LEDs used emit at a wavelength of 325 nm [39], 

which correspond to a photon energy of 3.82 eV. The UV light was 

switched ON and OFF, using periods of 60 and 30 s, in order to compare 

results when the period of UV irradiation changes. For both of the 

periods used, the duty cycle applied was 50%. 

Data Analysis Process Description 

In order to generate a model which allows us to identify the 

concentration of studied gas, mathematical and computational tools 

were used, such as, FFT, PCR, and PLSR. All data analysis sis was 

carried out by using MATLAB R2017b. Fig. 1 shows the flow diagram 

of the data analysis process. 

The purpose of this study is to find a faster way to identify and quantify 

gas concentrations in comparison to standard methods, which need the 

total saturation of the sensor response and the full recovery of its 

baseline resistance [35]–[37]. Moreover, we look for the reduction of the 

time needed to quantify a concentration proposed by other authors, 

using the same pulsed UV light mechanism [24]. On the other hand, this 

approach reduces the power consumption because of the decrease of the 

operating temperature of the sensor, which is generally set in the range 

100-500 °C when metal oxide (MOX) gas sensors are used [12]. We 

propose to apply a frequency domain analysis to the sensor signal, 

which, due to the UV modulation, shows a ripple superimposed to the 

electrical resistance change due to gas exposure. During the semi-period 

in which UV light is off, just the reaction of a target gas with the sensor 

surface material influences sensor response, while in the semi-period in 

which UV light is on, UV light influences sensor response too. Tungsten 
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trioxide is an n-type MOX, which has a bandgap of about 2.7 eV [40]. 

The photon energy of the UV LEDs we used is 3.82 eV, as we mentioned 

above, which is higher than the energy gap of the material. When UV 

light is on, this causes an interband electronic transition elevation, 

causing thus an increase in the electrical conductance. 

In order to carry out the study of this new method, we have generated 

some data sets, using information about measurements made over 7 

months. 

 

Fig. 1. Flow diagram of the data analysis process. 
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Fig. 2. Sensor signal rates ON (when the UV light is turned ON) and OFF, 

(when the UV light is turned OFF). 

1) Models Employing the Rates of Resistance Change  

First of all, the time domain sensor signal is obtained. From this signal 

we obtain sensor response for each gas cycle (Rg/Ra) and rates (taken as 

the resistance change between the moment when the UV light is turned 

on, and the moment in which it is turned off, for rate ON, and vice versa 

for the rate OFF). This is shown in Fig. 2 (following the procedure 

described by Gonzalez et al. [24]). These resistance changes appear in 

this work as rate ON and rate OFF. In our case, the models developed 

used exclusively the OFF rates, since in this semiperiod, only the 

reaction of the target gas with the active layer influences sensor 

response. Since the gas exposition time set was 15 minutes, using a UV 

light ON/OFF period of 60 s we would have 15 pulses or UV light 

periods, and ON/OFF rates. As Fig. 2 shows, the sensors present a 

different behavior in the firsts pulses of each gas exposure cycle. This is 

caused by the time needed to establish a homogeneous gas 

concentration inside the chamber after changing from exposure to 

synthetic air to a fixed gas concentration. This is why in the modelling 

process, the first six pulses are not used in the analysis, which allowed 

us to use a maximum amount of 9 pulses. Results from models obtained 

using a different number of pulses or UV light periods are compared, to 
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analyze the influence of this parameter on the calibration process, while 

reducing the time needed to determine a given gas concentration. With 

this purpose, we have developed up to three models using different 

number of UV light periods. These three models employed sets of 9 

periods (from the 7th to the 15th period), 4 periods (from 7th to 10th) 

and 2 periods (7th and 8th), respectively. Fig. 3 shows the composition 

of one of the data sets we used as training data. We built PCR and PLSR 

models using training matrices considering different number of pulses 

(2, 4 and 9). 

In order to compare the results of those models obtained employing 

different number of pulses, we took into account three parameters: 

standard deviation of each estimated concentration by the model as a 

percent of the real concentration, the root mean square error (RMSE) of 

the model, and the R-squared (R2) value. On the other hand, we 

compared these parameters for PCR and PLSR models to find the best 

modelling method. Both, PCR and PLSR methods were developed 

using only the first two principal components or latent variables, 

respectively, because these components explained over 99% of the data 

variance in all cases. The improvement in concentration prediction by 

adding further factors to the models was lower than 1%. 

As a new approach, we considered applying an FFT to the time domain 

signal, using this information to generate the models. Therefore, we 

compared the performance of both approaches, by using the parameters 

mentioned above. 

 

Fig. 3. Data set used to construct the training data in the case of rates analysis. 
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2) Models Employing the FFT 

After taking vectors from the time domain signal with 2, 4 and 9 UV 

light periods from each gas concentration response as in the previous 

case, we computed an FFT of each one in order to perform a frequency 

domain analysis. Since the sampling rate used over all of the 

measurements performed was 1 Hz, the size of the vectors used to 

develop the FFT analysis depends on the number of pulses used with 

this purpose, e.g., with a UV light period of 60 s, using 9 pulses to carry 

out the analysis, vectors contain 540 values. Although the number of 

FFT components obtained from the FFT analysis is half of the number 

values used to develop it, we did not use all of them. FFT vectors were 

manipulated in order to remove components that did not provide 

relevant information. For this purpose, we analyzed what other 

components, apart from the direct component (0 Hz), appeared in 

spectra. As Fig. 4 shows, we found that a component corresponding to 

UV light switching period (for 60 s period the corresponding frequency 

is 0.01667 Hz) and its even order harmonics appeared in the FFT 

spectrum. Therefore, we generated a new vector, which contained just 

values corresponding to the frequencies of interest (ON/OFF frequency 

and a set of its even order harmonics) in order to reduce the amount of 

data used in the modelling process and, in this way, avoid using low 

intensity frequency components that may be prone to be affected by 

noise. Finally, we used just the UV light switching frequency and its 2 

first even order harmonics as using a higher amount of FFT components 

did not improve the prediction error or the standard deviation of the 

model. We constructed a training matrix containing concatenated 

vectors for each concentration. In this matrix, rows are different 

concentrations and columns are frequency components of interest. The 

data sets of the training data were similar to those which appears in Fig. 

3, but, instead of rates, the FFT components were used. 
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Fig. 4. FFT spectrum of sensor signal taking pulses from 7 to 10 after starting 

the exposition to gas. The spectrum shows frequency components (peaks) 

belonging to the UV light ON/OFF period and its two first even order 

harmonics (from left to right). 

Results and Discussion 

The use of combined pulsed UV light and low-temperature heating as 

the activating mechanism, instead of the traditional high operating 

temperature, allowed a significant reduction in power consumption. In 

this case, we used an average power of 136 mW to heat up the sensor 

and turn the UV LEDs on, of which just 25 mW are used to power de 

LEDs on, while using an operating temperature of 250 °C, power 

consumption was 1.6 W. This means we saved more than 90% of the 

power needed to activate the sensing layer, which is quite significant 

when working with this kind of sensors, although it is less relevant in 

the case of MEMs based MOX sensors. 

We used cross validation to estimate the accuracy of the different 

models to predict NO2 concentrations. Thus, we applied a leave-one-out 

strategy. For the concentrations range 200-900 ppb, and 300-900 ppb, we 

used 8 and 4 iterations, respectively, leaving all the data about one 

concentration out of the training set, and using it as validation set each 

time. In the case of the concentration range of 37.5-150 ppb, the above-

mentioned distribution of the training and validation sets did not allow 
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the proper prediction of NO2 concentrations. This, due to in this range 

there were just three different concentrations. In this way, we used the 

leave-one-out strategy generating the training set with five cycles of 

three concentrations and leaving one cycle as validation set. We made 6 

iterations rotating the validation set to evaluate the performance of 

whole data set. 

 

Fig. 5. PLSR calibration model and cross-validation from 9 pulses a) FFT 

components and b) rates OFF. Blue boxes represent the dispersion of the 

calibration for each concentration and orange boxes represent the validation 

dispersion. Black lines are the calibration mean value for each concentration. 

The linear calibration fit and the linear validation fit are presented in blue and 

orange dashed lines, respectively. 
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The results obtained from models developed using the OFF rates, 

studied by Gonzalez et al. [24] were compared with those from models 

created using the FFT components. Fig. 5 depicts the PLSR calibration 

model and validation obtained for a) FFT components and b) OFF rates 

using 9 pulses, with a UV light period of 60 s. We can observe how 

models obtained from FFT components present more accuracy in 

prediction performance than models obtained from OFF rates. 

The use of PLSR and PCR do not result in significant differences in 

standard deviation, and RMSE and R2 values. 

In Fig. 6 we can observe how changes in the number of pulses used to 

build the training sets result in little changes in the uncertainty 

associated to the prediction of concentrations. The standard deviation 

of the model decreases when the number of pulses used in training 

matrix increases. Namely, the standard deviation of the predictions 

remains under 10 % for most of the concentrations estimated, regardless 

the number of pulses used. The estimation of low concentrations 

presents higher standard deviations, which can be attributed to higher 

errors from the mass flow controller systems at low valve openings. 

 

Fig. 6. The standard deviation of the PLSR model’s validation made from the 

rates OFF, depending on the number of pulses, working with a UV light period 

of 60 s. 
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As Fig. 7a shows, the calibration model obtained from FFT components 

has a better behavior at 200 ppb than the model obtained from the rates 

OFF. The differences in standard deviation between models from FFT 

and rates can be explained by the fact that with the FFT we obtain more 

information from the signal than with just the resistance rates. The 

RMSE values from the PLSR FFT model, shown in Fig. 7b, are lower 

than those from the rates model for all concentrations. A maximum 

difference of 13 ppb was found in the case of models obtained using 2 

signal pulses. Although the R2 values from the models have close values 

for all cases, models from FFT components always present higher 

values. 

 

Fig. 7. Comparison between PLSR models validation obtained from rates and 

FFT from 4 pulses, with a UV light ON/OFF period of 60 s, depending on a) the 

standard deviation as percent of the real concentration and b) the RMSE of 

them. 
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Results obtained for PCR and PLSR models, using both rates and FFTs, 

for a UV light ON/OFF period of 60 s, do not present notable differences. 

Nevertheless, when reducing the number of pulses analyzed, with the 

purpose of reducing the time to determine a concentration in a real 

application, the best results are obtained for models created using FFT 

components. Table I shows RMSE and R2 values for models obtained 

analyzing 4 UV light periods of the signal. 

Once we had obtained the models using an ON/OFF period of 60 s, we 

prepared some additional data sets using a period of 30 s to test the 

feasibility of the procedure developed, with the reduction of the 

identification time. This means, in turn, a reduction in the time 

necessary to determine a target gas concentration. In this part of the 

study, we applied the modelling process using the previously studied 

TABLE I 

MODELS´ RMSE AND R-SQUARED VALUES FROM 4 PULSES 

ANALYSIS FOR VALIDATION PROCESS 

Model Period [s] Range 

[ppb] 

RMSE 

[ppb] 
R2 

PCR (Rates) 60 200-900 55.2 0.9392 

PCR (FFT) 60 200-900 52.7 0.9454 

PLSR (Rates) 60 200-900 55.2 0.9394 

PLSR (FFT) 60 200-900 55.6 0.9454 

PCR (Rates) 30 300-900 73.5 0.8592 

PCR (FFT) 30 300-900 71.0 0.9035 

PLSR (Rates) 30 300-900 75.7 0.8468 

PLSR (FFT) 30 300-900 71.1 0.9033 

PCR (Rates) 30 37.5-150 23.6 0.6671 

PCR (FFT) 30 37.5-150 10.5 0.94.91 

PLSR (Rates) 30 37.5-150 21.8 0.7285 

PLSR (FFT) 30 37.5-150 10.5 0.9491 
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concentrations, and then, using a concentrations range of 37.5-150 ppb. 

It allowed us to apply this method to determine concentrations under 

the exposure limit established by the European Environment Agency 

[38]. 

 

Fig. 8. Comparison between the standard deviation of PLSR models validation 

obtained from rates and FFT from 4 pulses, with a UV light ON/OFF period of 

30 s, a) in the range 300-900 ppb and b) in the range 37.5-150 ppb. 

Working with a UV light period of 30 s, results obtained from 

calibration models made from rates and from FFT components, have 

significant differences. Fig. 8 shows the standard deviation for PLSR 

models obtained working in a concentration range of 200-900 ppb (8a) 

and 37.5-150 ppb (8b). For both concentration ranges, the standard 

deviation for almost all concentrations is lower in the case of models 

made from FFT components, even with a difference higher than 10% for 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



37.5 ppb. Results presented in Fig. 8 are supported by those shown in 

Table I. We can observe how models from FFT components have lower 

RMSE and higher R2 values than those obtained from rates, for both PCR 

and PLSR analysis and both concentration ranges. These results support 

and justify the development of this new method, combining FFT 

analysis with linear regression methods. When reducing both the 

amount of UV light pulses analyzed and the UV light period, looking 

for decreasing the time required to determine the gas concentration, we 

obtained the best results for models developed from FFT components. 

The response time of the WO3 gas sensor to NO2 concentrations in the 

range between a few ppm and hundreds of ppb is about 10 min [41], 

[42]. With a pulsed UV light period of 30 s, and using 4 pulses to develop 

the methodology presented, we determine the NO2 concentration in just 

2 min. This means we save 80% of the time needed to determine the 

target gas concentration, while the power consumption is reduced 

about a 90% as compared with high temperature heated methodologies. 

Conclusion 

We have proposed the combined use of FFT analysis and linear 

regression methods to obtain calibration models that allow us to 

determine NO2 concentrations using a WO3 based sensor. The combined 

pulsed UV light and low-temperature heating configuration used as 

activating mechanism represents a reduction in power consumption of 

about 90% as compared to the traditional heating mechanism at 250 °C. 

This approach also allows a reduction of the response time, since the 

concentration can be determined without requiring the sensor 

resistance to reach the steady state value. The calibration models 

obtained from the FFT analysis proposed in this study lead to better 

results than the ones elaborated using the rates OFF, approach 

presented by other researchers, when the pulsed UV light period is 

diminished in order to further reduce the required time to determine 

the gas concentration. Moreover, the best results are also obtained for 

models based on the FFT analysis when working with low 

concentrations, under the exposure limits defined for nitrogen dioxide. 
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The methodology presented in this work will be used with different 

active layer materials and target gases. A configuration of an array of 

sensors will be implemented to make cross sensitivity tests using this 

procedure. 
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Abstract 

This paper presents a methodology to quantify oxidizing and reducing 

gases using n-type and p-type chemiresistive sensors, respectively. Low 

temperature sensor heating with pulsed UV or visible light modulation 

is used together with the application of the fast Fourier transform (FFT) 

to extract sensor response features. These features are further processed 

via principal component analysis (PCA) and principal component 

regression (PCR) for achieving gas discrimination and building 

concentration prediction models with R2 values up to 98% and RMSE 

values as low as 5% for the total gas concentration range studied. UV 

and visible light were used to study the influence of the light 

wavelength in the prediction model performance. We demonstrate that 

n-type and p-type sensors need to be used together for achieving good 

quantification of oxidizing and re-ducing species, respectively, since the 

semiconductor type defines the prediction model's effec-tiveness 

towards an oxidizing or reducing gas. The presented method reduces 

considerably the total time needed to quantify the gas concentration 

compared with the results obtained in a pre-vious work. The use of 

visible light LEDs for performing pulsed light modulation enhances 

system performance and considerably reduces cost in comparison to 

previously reported UV light-based approaches. 

Keywords: gas sensing; pulsed light modulation; FFT; PCA; PCR; NO2; 

NH3 
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1. Introduction 

Over the past few decades, many research efforts have been directed 

towards indoor and outdoor air quality monitoring. The direct relation 

between environmental pollutants and human health has promoted the 

research on this topic. According to the World Health Organization, 

about 7 million people die every year caused by diseases related to air 

pollution [1]. Exposure to gases present in the atmosphere due to 

industrial activity, such as NH3 and NO2 can cause skin and eye damage 

and affect the respiratory and cardiovascular systems [2–4]. 

Some different operating principles such as electrochemical [5,6], 

optical [7,8], or chemiresistive have been used for gas sensing [9–12] 

related to air quality monitoring. One of the most studied approaches 

has been the use of metal oxides (MOX) chemiresistors due to their high 

sensitivity and the relatively simple associated driving and readout 

electronics, which confers them enormous versatility for being 

employed in a wide range of different applications, such as toxic and 

combustible gas detection, biosensing, environ-mental safety, and food 

quality control [13–20]. The operating principle of MOX sensors relies 

on surface redox reactions. Target gas molecules interact with oxygen 

species trapped at the sensor surface, thus, changing the electronic 

charge distribution in the sensing material, which eventually results in 

a resistance change [21–24]. 

Typically, MOX sensors have been operated highly above room 

temperature, at a few hundred degrees centigrade to enable surface 

reactions and achieve high sensitivity and baseline recovery. Heating 

supposes an important power consumption issue, especially for non-

MEMS sensors, making them not suitable for portable or low-power 

applications [25–27]. Nevertheless, some different techniques have been 

employed during the last years to solve the problem generated by 

power consumption issues. The use of thermal modulation, UV-light 

irradiation at room temperature, and UV light activation combined with 

mild temperature heating, instead of working with just thermal 

activation at high temperatures have gained prominence [16,26,28–33]. 

The photoconductivity effect caused by the UV light irradiation creates 

electron-hole pairs, which increase the density of carrier charges along 
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the semiconductor, making an acceleration of the absorption/desorption 

mechanism [34]. The use of UV light irradiation not only makes the 

sensor response of MOXs higher at low or even at room temperature 

but also shortens the time needed to reach the steady-state and to 

recover the sensor baseline [34,35]. Light enhanced gas sensing has been 

also applied on perovskite and metal transition dichalcogenides [36–39]. 

Although the light activation (constant light irradiation throughout all 

the measurement time or during the baseline recovery time) has been 

widely used for enhancing the sensing performance using light sources 

with a wavelength from the UV to the visible spectrum, only very few 

works present the study of a pulsed light mechanism. The use of UV 

light modulation with MOXs through a pulsed light activation 

mechanism has been employed to quantify gas concentration. This 

method is carried out by using the resistance changes induced by the 

pulsed light, which creates a ripple on the sensor resistance curve 

[31,40,41]. The information extracted from the resistance transients is 

used to establish a relationship with the target gas concentration. In 

addition, this method shortens response time and the humidity effect 

on sensing performance is reduced as well [40,41]. This methodology 

was also employed in the development of a portable system for the 

detection of NO2 at ppb levels [42]. 

On the other hand, some researchers have studied the quantification of 

target gas concentration and different gas discrimination using 

mathematical and statistical methods. Multivariate methods such as 

PCA, PCR, and machine learning have been employed for this purpose 

[43–47]. The combined use of electronic noses that employ arrays of 

sensors with the aforementioned methods has been applied to 

discriminate and quantify gases (e.g., NO2, ammonia, ethanol, acetone) 

[43,47–53]. Most of these works implement the mentioned data analysis 

by using sensor response feature vectors as input for the multivariate 

and machine learning approaches. Nevertheless, a few researchers have 

re-ported the use of the fast Fourier transform (FFT) components 

obtained from the sensor resistance transient as inputs for the data 

analysis strategies [54,55]. Employing this last approach, we have 

developed a methodology for quantifying NO2 using UV light 

modulation and FFT analysis of the sensor response signals from n-type 
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metal oxide sensors [56]. However, pulsed UV light, n-type metal oxide 

sensors were found to lack accuracy at quantifying reducing species 

such as ammonia. 

In this paper, we refine further and generalize our approach for 

quantifying both oxidizing and reducing species using light-pulsed 

chemiresistive sensors. For generalizing the methods, n-type (WO3 and 

SrTiO3@WO3) and p-type (WS2) sensors were synthesized and measured 

under combined low temperature and pulsed UV or visible light 

modulation. The inclusion of a p-type chemiresistor enabled the reliable 

quantification of reducing species, which had not been achieved before. 

The development of PCR models and their validation process for 

quantifying NO2 and NH3 concentration using FFT components from 

the analysis of the response transients is discussed. PCA is used to 

identify when sensors are exposed to NO2 or NH3. The refinements 

implemented enable reducing the time needed to successfully quantify 

the target gas concentration and improve model accuracy at estimating 

gas concentrations. These new findings expand the opportunities of 

using pulsed light chemisensing in different real applications. 

2. Experimental Set-Up 

2.1. Sensor Fabrication 

2.1.1. Strontium Titanate Loaded Tungsten Trioxide Sensors 

Tungsten trioxide nanoneedles (NNs) functionalized with strontium 

titanate nanoparticles were grown using a one-step process of aerosol 

assisted chemical vapor deposition (AACVD) which is a widely used 

technique for synthesizing MOX nano and microstructures [57]. 

Materials were grown on top of a commercial alumina substrate from 

Ceram Tech GmBH, with screen-printed, interdigitated platinum 

electrodes (300 m gap) on the front side and an 8 W screen-printed 

heater on the backside. In a mixture of 24 mL of acetone (CAS: 67-64-1) 

and 9 mL of methanol (CAS: 67-56-1), 50 mg of tungsten hexacarbonyl 

(W(CO)6) (purity 97%, CAS: 14040-11-0) were dissolved. Following this, 

5 mg of strontium titanate nanopowder (CAS: 12060-59-2) were 

dispersed inside the solution using an ultrasonic bath. Nitrogen (N2) 

was used as a carrier gas to transport the aerosols generated by means 
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of an ultrasonic humidifier at a flow of about 800 sccm. The total 

transport of the aerosols and the deposition process took about 40 min. 

The deposition chamber temperature was kept at 400 ºC during all the 

deposition processes and then naturally cooled down to room 

temperature. After the one-step growth in the AACVD, an annealing 

process was performed at 500 ºC for 2 h in a Carbolite CWF 1200 muffle 

furnace, to fully oxidize the WO3 and remove the residual carbon from 

the precursor. 

2.1.2. Tungsten Trioxide (WO3) 

Pure WO3 sensors were fabricated using the same procedure and 

equipment de-scribed for the case of SrTiO3@WO3 sensors, but without 

including the strontium titanate nanopowders. In this case, 50 mg of 

tungsten hexacarbonyl were dissolved in a mixture of 15 mL of acetone 

and 5 mL of methanol, and the rest of the conditions were kept equal to 

those in the previously described synthesis. 

2.1.3. Tungsten Disulphide (WS2) 

Multi-layered nanosheets of WS2 were synthesized in two steps. First, 

WO3 NNs were grown using AACVD as described above. During the 

second step of synthesis, the as-grown WO3 nanomaterial was 

sulfurized to form WS2 in a quartz tube furnace using an atmospheric 

pressure chemical vapor deposition technique (CVD) under hydrogen-

free conditions. Before the sulfurization process, the quartz tube was 

flushed with 0.5 L/min of argon gas to remove any oxygen present in 

the reactor. Two ceramic boats containing an equal amount of sulfur (S) 

powder (>99.95%, Sigma Aldrich, CAS: 7704-34-9) were placed at 

different temperature zones of the deposition furnace. Furthermore, a 

smaller semi-sealed quartz tube loaded with substrate containing 

nanoneedles of WO3 with a boat carrying S precursor was introduced 

inside the larger quartz tube, such that both the substrate and the S boat 

are positioned at the center of the deposition furnace. Afterward, a 

second boat carrying an equal amount of S powder was introduced 

inside the upstream of the bigger quartz tube. Then the furnace was 

heated from room temperature to 900 ºC with a heating rate of 40 ºC/min 

to remove the contaminants, such as water or residual organics to obtain 
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the nucleation of WS2. The growth of WS2 was kept at 900 ºC for 30 min 

under a constant flow of argon. After the growth phase, the furnace was 

cooled naturally to room temperature. 

2.2. Morphological Characterization Systems 

The different sensors were characterized via Field Emission Scanning 

Electron Microscope (FESEM), Energy-dispersive X-ray Spectroscopy 

(EDX), Raman Spectroscopy, X-ray Diffraction (XRD), X-ray 

Photoelectron Spectroscopy (XPS), and Time-of-Flight Secondary Ions 

Mass Spectrometry (ToF-SIMS). The FESEM–FIB Scios 2 from FEI 

Company was used to obtain images from the sensor surface to analyze 

nanostructure growth and distribution. Sample characterization was 

performed at high-vacuum, and the electron acceleration voltage was 

established between 2 and 5 kV. EDX incorporated in the FESEM–FIB 

Scios 2 was used to check the chemical composition of the sensors. 

An FT-IR Raman spectrometer from Renishaw and the DM2500 

confocal microscope from Leica Microsystems were used to perform the 

Raman spectroscopy analysis. Laser sources with a wavelength of 514, 

633, and 785 nm were used. The laser beam power was set at 0.1%. 

XRD measurements were made using a Siemens D5000 diffractometer 

(Bragg–Brentano parafocusing geometry and vertical θ-θ goniometer) 

fitted with a curved graph-ite diffracted-beam monochromator, 

incident and diffracted -beam Soller slits, a 0.06º receiving slit, and 

scintillation counter as a detector. The angular 2θ diffraction range was 

between 5 and 70º. The data were collected with an angular step of 0.05º 

at 3 s per step and sample rotation. Cukα radiation was obtained from 

a copper X-ray tube operated at 40 kV and 30 mA. 

For XPS experiments a VERSAPROBE PHI5000 spectrometer from 

Physical Electronics, equipped with a monochromatic AlK  X-Ray was 

used. The energy resolution was 0.6 eV. A dual beam charge 

neutralization composed of an electron gun (⁓1 eV) and the Argon Ion 

gun (≤10 eV) was used for compensation of charge built up on the 

sample surface during the measurements. All binding energies were 

calibrated to the C 1s peak at 284.6 eV. The CASA XPS software was 

used for spectra analysis. 
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The ToF-SIMS experiments were conducted on a TOF-SIMS IV 

instrument from ION-TOF GmbH (Münster, Germany). Prior to the 

analysis, the sample surface (600x600 µm) was sputter cleaned using O2 

ions accelerated at 1 kV, for 120 s. For recording the m/z spectra, a 

pulsed 25 kV Bi1+ ion beam rastered during 300 s over an area of 

100x100 µm2, was used. The total ion fluence was kept under 1012 ions 

per cm2 in order to assure static conditions. The secondary ions were 

extracted at a 2 kV acceleration voltage. Positive spectra were calibrated 

to the H+, C+, CH+, CH2+, CH3+, C2H3+, and C2H5+ peaks. 

2.3. Gas Measuring System Description 

Measurements were made inside a Teflon chamber with an inner 

volume of about 21 cm3. The chamber is totally isolated from the 

ambient light and has the capacity to hold up to four sensors at the same 

time, which allows the use of the three types of sensors synthesized at 

the same time. LEDs are inserted in the chamber top through two air-

tight connection joints, staying at about 7.5 mm from the sensor surface, 

which allows homogeneous irradiation. Connectors in the back side of 

the chamber allow control of the sensors operating temperature and 

measure the resistance of the sensing layers. Sensor resistance is 

measured and recorded every 1 s by using a Keysight 34972A LXI Data 

Acquisition/Switch Unit controlled with BenchLink Data Logger 3 from 

Agilent Technologies. 

Gas concentrations established to test the sensors were set by mean of a 

mass-flow controller system (EL-FLOW®) from Bronkhorst, using Flow 

View and Flow Plot software from the same company. NO2 and NH3 

flows coming from calibrated cylinders with 1 ppb and 100 ppm 

respectively (balanced in synthetic air) were mixed in adequate 

proportions with a synthetic air flow coming from a zero-grade air 

cylinder. The total flow across the chamber was kept at 100 mL/min 

during all the measurements. 

To build and validate the models presented in this work, sensors were 

exposed to NO2 concentrations of 250, 500, and 750 ppb, and NH3 

concentrations of 25, 50, and 75 ppm. Gas concentrations were selected 

to be under the exposure limits established by the Occupational Safety 
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and Health Administration (OSHA) permissible exposure limit (PEL), 

and the National Institute for Occupational Safety and Health (NIOSH) 

recommended exposure limit (REL), from the United States. Every gas 

cycle made was com-posed of 3 different NO2 or NH3 concentrations, 

using 15 min of gas exposure and then 1 h of baseline recovery under 

synthetic air. Figure S1 in the SI shows a schema of the gas measurement 

system used. 

2.4. Light Pulse Generation 

UV and visible light modulations were carried out using LEDs with an 

emission wavelength of 365 (MT3650W3-UV from Marktech 

Optoelectronics) nm and 410 nm (OSV5HA5A32A from Optosupply), 

respectively.  An electronic circuit was designed and implemented to 

control the forward current of the LEDs. To power up the control circuit 

and set the activation and deactivation periods of the LEDs, an Arduino 

Mega 2560 from Arduino was used. Digital outputs and timers from the 

Arduino were used for this purpose. 

2.5. Data Analysis Process Description 

In order to generate a quick pathway to quantify both oxidizing and 

reducing gases concentration some mathematical and computational 

tools such as fast Fourier transform (FFT), PCA, and PCR have been 

used. The data analysis process implemented to quantify the gas 

concentrations was carried out using Matlab R2020a. 

 

Figure 1. Data analysis process flow diagram. 
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In contrast to traditional methods to characterize chemiresistive gas 

sensors and quantify gas concentrations, where the steady-state 

response of the sensor resistance and then the full baseline recovery is 

needed, the methodology presented in this work requires just a few 

minutes to accurately quantify the studied gas concentration. Figure 1 

depicts the flow diagram from the data analysis process. 

Similar to the methodology presented in [56], a frequency domain 

analysis is per-formed to the sensor signal, which shows a ripple, due 

to the exposure to a visible or UV light modulation, on top of the 

resistance changes related to the sensor interaction with gases. During 

the semi-period where the modulating light is off, just the reaction of 

the sensing material with the target gas takes place at the sensor surface, 

while in the semi-period where the light is on, photons from the light 

create electron-hole pairs which participate in the current conduction, 

and in addition, they promote the desorption of surface adsorbed 

species, thus, modulating the resistance from the sensing material. 

Tungsten trioxide is an n-type MOX, which has a bandgap of about 2.7 

eV [58]. Strontium titanate is an n-type perovskite oxide with a bandgap 

of about 3.2 eV [59]. Tungsten di-sulphide is a p-type semiconductor 

that has a bandgap of about 1.3 eV [60,61]. The photon energies of the 

used purple (visible) and UV LEDs are 3.02 eV and 3.40 eV, respectively. 

Regarding the SrTiO3@WO3 sensor, an equilibrium between the Fermi 

levels takes place due to the formation of a heterojunction at the 

interface. Thus, even though the creation of electron-hole pairs is not 

promoted in the SrTiO3 by visible light due to the photon energy be 

lower than its bandgap, it acts as a catalyst to promote the separation of 

the electron-hole pairs, which provides redox reaction sites [59]. 

2.5.1. Models based on FFT Components 

Based on the results obtained in [56] the pulsed light ON/OFF period 

was set to 20 s to have a higher number of light pulses within the 

analyzed time. In order to shorten the number of samples used in the 

analysis, a period of 2 min from the time domain signal was selected to 

perform the FFT (shown in Figure 2a). Thus, having a sampling rate of 

1 Hz, vectors used to perform the FFT have 120 values, which is 

equivalent to six light ON/OFF pulses. Due to the time needed to 
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establish a homogeneous gas concentration in-side the chamber, the 

first 6 min of each gas pulse is not used in the analysis. Hence, the 7th 

and 8th minutes (counted from the gas cycle start) of each gas pulse are 

used to create the vectors employed to perform de FFT analysis. After 

carrying out the FFT analysis, vector size is halved. Hence, the 

frequency components vector obtained (related to each gas cycle) has 

half of the size with respect to the time domain signal vector. However, 

not all the frequency components are used to build the training matrix 

used to develop the PCR calibration models. FFT vectors are 

manipulated to use just the components which give relevant 

information from the sensor signal. As Figure 2b shows, the switching 

frequency of the pulsed light (0.05 Hz for an ON/OFF period of 20 s) and 

its even order harmonics appear in the frequency spectrum. Hence, to 

reduce the number of components used to build the training matrix and 

eliminate low-intensity frequency components, which can be affected 

by noise, just frequency components with a relevant magnitude are 

taken. The training matrix is built by concatenating the new vectors 

related to each concentration. Rows (observations) represent different 

concentrations, and columns (variables) are each of the frequency 

components used. The training matrix built with the frequency 

components is used to perform the PCA and the principal components 

(PC) obtained in this pro-cess are used to perform the PCR calibration 

models. In addition, it is possible to build the training matrix using 

frequency components related to more than one sensor or including 

observations from different gases. Hence, the scores and loadings plots 

obtained from the PCA are useful to identify different gases and 

distinguish the contribution of each PC to the discrimination 

performance. The accuracy of both n-type (WO3 and SrTiO3@WO3) and 

p-type (WS2) sensors to quantify oxidizing (NO2) and reducing (NH3) 

gases was tested by performing calibration models and these were 

cross-validated, with the combined use of low operating temperature 

(50 ºC) and light modulation. In addition, the effect of applying light 

modulation, exciting the sensor surface with LEDs having wavelengths 

in the ultra-violet and visible spectrum was evaluated. Results from the 

prediction model accuracies are evaluated through the R-squared (R2) 

and Root Mean Square Error (RMSE) values. 
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Figure 2. a) Time-domain data extraction from the sensor response to a gas 

pulse to perform the FFT, 2 min (6 light pulses) of signal are used. b) Frequency 

domain obtained after applying the FFT. The light switching frequency and its 

even order harmonics are specified. 

Cross-validation methods are used to do the validation process and 

evaluate the model's accuracy to predict the target gas concentration. 

Hence, a leave-one-out strategy is applied cyclically. First, the data 

related to one of the cycles of 3 concentrations is left out of the training 

matrix, and the PCR is performed with the rest of the data. Then, the 

beta values obtained from the PCR are used with the new data (left out 

data) to identify the gas concentration and validate the methods. Once 

the strategy is applied to all the data, the validation model is obtained 

by concatenating each set of data identified.   

3. Results and Discussion 

3.1. Morphological Characterization 

Figure 3 depicts typical FESEM images from pure WO3 NNs at 2 

different magnification values. The EDX spectrum (see Figure S2a in the 

SI) shows that the WO3 NNs are composed of tungsten and oxygen, 

being the sample free of any contaminant. Raman spectroscopy was also 

employed. From the Raman spectrum (shown in Figure 4), the position 

and intensity of the bands at 807, 717, 325, and 274 cm-1 are typical from 

the mono-clinic phase of WO3 [62–64]. XRD analysis results (see Figure 

S3a in the SI), also confirm the presence of the monoclinic phase of WO3. 
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Figure 3. Tungsten trioxide nanoneedles, a) 6500x of magnification and b) 

37400x of magnification. Working with an electron beam acceleration voltage 

of 5 kV. 

 

Figure 4. Raman spectrum from the WO3 sensor measured using 633 nm 

excitation. 

Figure 5 shows typical FESEM images where the morphology of the 

nanoneedles for strontium titanate loaded WO3 is revealed. The tips of 

loaded NWs present a granular morphology. EDX analysis does not 

show the presence of Sr or Ti in loaded samples. In fact, the EDX 

spectrum for strontium titanate loaded WO3 is identical to the one 

shown in Figure S2a in the SI for the pristine WO3 material, so it can be 

concluded that the granular morphology at the tips of NWs corresponds 

also to WO3. Raman spectroscopy and XRD were also performed and 

neither the spectrogram nor the diffractogram show peaks that indicate 

the presence of SrTiO3. After these analyses, it was possible only to 

confirm the presence of WO3 in its monoclinic phase. XPS and ToF-SIMS 
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were also used to evaluate the surface composition. The XPS spectrum 

recorded on the SrTiO3@WO3 sample is shown in Figure S4 in the SI, the 

peaks generated by photoelectrons emitted from W, O, and C atoms are 

clearly recognized. The relative amount of each observed element was 

O 24% at., W 70% at., and C 6% at., the detailed analysis of the W 4f 

indicates that the oxidation state of the W atoms is +6. XPS did not detect 

the presence of SrTiO3 at the sample surface. Finally, ToF-SIMS was 

considered for investigating the presence of strontium titanate in loaded 

WO3 samples, due to the higher sensitivity of this technique to detect 

trace elements in comparison to any of the previously used ones. The 

ToF-SIMS spectra (see Figure S5 in SI) confirm the presence of Sr and Ti. 

It is therefore concluded that loaded samples contain strontium titanate, 

on the surface of WO3 but at low concentrations (i.e., below the detection 

threshold of XRD and XPS). 

 

Figure 5. SrTiO3@WO3 sensor surface, a) 41000x magnification with an electron 

beam acceleration voltage of 2 kV, and b) 150000x magnification and an 

electron beam acceleration voltage of 5 kV. 

 

Figure 6. FESEM image depicting nanoflakes of WS2 assembled to form 

nanoflowers. Magnification of a) 25000x and b) 65000x. The electron beam 

acceleration voltage was set at 5 kV. 
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Figure 7. Raman spectrum from the WS2 sensor. 

The as-grown nanofilms of WS2 were strongly adherent to the substrate 

with dark black color. The results obtained revealed that the WO3 NNs 

morphology changed completely to form nanoflakes of WS2, which can 

be well-identified in Figure 6. Furthermore, it can be seen that these 

nanoflakes are assembled in a 3D topology and appear as nanoflowers. 

From the EDX spectrum shown in Figure S2b in the SI, it is confirmed 

that the composition of the as-grown nanoflakes of WS2 consists of 

sulfur and tungsten. No oxygen peak is identified in the EDX spectrum, 

which apparently confirms the development of a high-yield WS2 phase, 

free from oxide content. Also, the grown material was characterized 

using Raman spectroscopy to confirm its purity. From the Raman 

spectrum (shown in Figure 7), 2 important Raman peaks, characteristic 

of 2H-WS2 were observed at 348 and 414 cm-1.  Additionally, two broad 

peaks with very low intensity were also detected at 701 and 804 cm-1, 

indicating the presence of some WO3 impurities that could be present in 

the bulk of the grown material [65].  

XPS was used to evaluate the formation of W-S bonds. The peaks shown 

in Figure S6a, corresponding to the S 2p1/2 and S 2p3/2 orbital of 

divalent sulfide ions, are observed at 163.3 and 162.1 eV. The W peaks 

shown in Figure S6b located at 38.3, 34.7, and 32.5 eV correspond to W 

5p3/2, W 4f5/2, and W 4f7/2, respectively. The energy positions of these 

peaks indicate a W valence of +4, which is in accordance with the 

previous reports. The other doublet with components at W 4f5/2, and W 
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4f7/2 respectively at 30.8 and 35.8 eV indicates the presence of W-O in 

WO3. The Raman spectroscopy, EDX, and XRD results (Figures S2b and 

S3b) did not indicate the presence of tungsten oxide. As XPS is sensitive 

to the near surface region, while the other techniques probe much 

deeper below the sur-face, the comparison of the results of these 

different techniques indicate that the oxide is mainly located near the 

surface. 

In summary, the sulfurization process conducted on WO3 NNs yields a 

3D assembly of WS2 nanoflakes with a small amount of WO3 impurities, 

as revealed by Raman and XPS. 

3.2. Gas Sensing Characterization 

3.2.1. Standard Operation 

After the morphological and compositional characterization of the 

synthesized materials, sensors were tested for gas sensing. In the first 

stage, the sensors were activated by heating their active films and 

without light modulation. Using the procedures described before, the 

gas sensing properties were investigated at the operating temperatures 

of 50, 100, and 150 ºC. When the n-type sensors (WO3 and SrTiO3@WO3) 

were exposed to an oxidizing gas (NO2) and the p-type sensor (WS2) to 

a reducing species (NH3), their response monotonically increased as the 

temperature was raised. Thus, the highest responses were obtained 

when the operating temperature was set at 150 ºC. Figure S7 in the 

supporting information summarizes these results. In contrast, n-type 

sensors presented a poor response reproducibility towards NH3 for all 

the operating temperatures tested. Similarly, the p-type sensor 

presented also reproducibility issues when exposed to NO2. In 

conclusion, for the range of operating temperatures studied, WO3 and 

SrTiO3@WO3 sensors are more suited for detecting nitrogen dioxide, 

while WS2 is more suited for detecting ammonia. 

3.2.2. Pulsed Light Modulation 

The input of each frequency component to the gas identification process 

was evaluated through biplots performed with the scores and loadings 

from the PCA. The analysis of the frequency components selection for 
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performing the target gas identification is presented in Figures S8 and 

S9 in the SI. Results from this analysis show that using just the ON/OFF 

frequency related to the SrTiO3@WO3 sensor and its first even order 

harmonic contains enough information for discriminating between the 

two species considered. This is true for visible and UV light excitation. 

Furthermore, using these two frequency components it is possible to 

separate observations related to different NO2 concentrations in the 

scores plot. In the same way, frequency components (ON/OFF and its 

first even order harmonic) extracted from the WS2 sensor allow 

separating NH3 concentrations in different groups in the scores plot. 

Thus, all the training matrices used to obtain the PCA scores plots 

presented in Figure 8 were built using just the light switching frequency 

and its first even order harmonic. If the WO3 pristine sensor is used to 

perform the same analysis, the PCA scores plot allows to discriminate 

between NH3 and NO2 observations, but when the sensor works under 

UV light modulation the ability to separate each gas concentration 

worsens. 

Figure 8a and b show the PCA scores plot obtained from a training 

matrix built using observations from both NO2 and NH3 and frequency 

components related to the SrTiO3@WO3 sensor, under visible and UV 

light modulation, respectively. It is clear that NH3 and NO2 observations 

can be separated into different clusters according to the PC1. In a 

supposed real application, this would allow the identification of the 

target gas for using the proper model to quantify the gas concentration. 

Different NO2 concentrations can be also identified in clusters separated 

according to PC1.  
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Figure 8. PCA scores plot for a, c, e) visible light modulation and b, d, f) UV 

light modulation using two frequency components from WS2 or SrTiO3@WO3 

sensors. PCA from a and b were performed using observations of NO2 and 

NH3 to construct the training matrix and frequency components from the 

SrTiO3@WO3 sensor, while c, d, and e, f belong to PCA developed with 

observations of just NO2 and just NH3, and frequency components from the 

SrTiO3@WO3 sensor and the WS2 sensor, respectively. In the figure, circles 

represent NH3 observations and diamonds represent NO2 observations. The 

first two PCs explain over 99% of data variance.
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Figure 8c and d depict the PCA scores plots obtained when the training 

matrix is made using just NO2 observations and frequency components 

from the SrTiO3@WO3 sensor, working under visible and UV light 

modulation, respectively. In both cases, the different gas concentrations 

can be grouped and separated according to the PC1, which al-lows to 

perform a qualitative identification of the concentration. Figure 8e and 

f show the PCA scores plot obtained from a training matrix built with 

just observations of NH3 and frequency components from the WS2 

sensor when it works under visible and UV light modulation, 

respectively. In this case, when the WS2 sensor works under visible light 

it is possible to identify different clusters for each concentration 

organized according to the PC1, although higher concentration clusters 

are close together. When the WS2 sensor is operated under UV light 

modulation, the clusters corresponding to different concentrations can 

be separated as well, although some of the 50 and 75 ppm observations 

are overlapped. In this case, the cluster orientation is diagonal due to a 

different distribution of the variance explained by each principal 

component with respect to when the sensor is operated under visible 

light modulation.  

From these results, it is deduced that under light pulse modulation n-

type sensors are useful for quantifying oxidizing species (NO2) and p-

type sensors are suitable for quantifying reducing species (NH3). PCR 

models built for predicting concentration are discussed below. 

According to the results obtained with the principal component 

analysis, the PCR calibration models, and cross-validation results 

presented in Figures 9 and 10 were obtained using scores and loadings 

data from 1st and 2nd principal components obtained from the PCA 

developed using just two frequency components (light switching 

frequency and its first even order harmonic). These two PCs explain 

over 99% of the data variance. PCR models related to the WO3 pristine 

sensors are presented in Figure S10 in the SI. 
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Figure 9. PCR calibration model and cross-validation for the a) WS2 sensor 

towards NH3 concentrations and b) SrTiO3@WO3 sensor towards NO2 

concentrations. The operating temperature was 50 ºC and the light modulation 

was done with UV LEDs. Blue boxes represent the calibration model dispersion 

for each concentration and green boxes the validation dispersion. The 

horizontal black line represents the mean value for the validation process. The 

validation linear fit is shown with the green dashed line, and the blue dashed 

line represents a unitary slope line. R-squared and RMSE values belong to the 

calibration model. 

 

Figure 10. PCR calibration model and cross-validation for the a) WS2 sensor 

towards NH3 concentrations and b) SrTiO3@WO3 sensor towards NO2 

concentrations. The operating temperature was 50 ºC and the light modulation 

was done with purple visible light LEDs. Blue boxes represent the calibration 

model dispersion for each concentration and green boxes the validation 

dispersion. The horizontal black line represents the mean value for the 

validation process. The validation linear fit is shown with the green dashed 

line, and the blue dashed line represents a unitary slope line. R-squared and 

RMSE values belong to the calibration model. 
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Figure 9a, b illustrates the WS2 and SrTiO3@WO3 sensors results for NH3 

and NO2, respectively, under UV light modulation. WS2 sensor model 

presents an R2 value of about 0.90 and its RMSE value is about 13% for 

the total measured concentration range. On the other hand, the 

SrTiO3@WO3 sensor model presents an R2 value near 0.97 and its RMSE 

value represents just 7.44% of the total measured concentration 

variation. Results obtained make the models suitable for quantifying 

and predicting the target gas concentrations. 

Figure 10 shows how, for the two sensor types, R2 values are higher than 

0.92 and RMSE values represent near or less than 10% for the 

concentration measured range. Results obtained when the sensors are 

working under visible light modulation are better than those when UV 

light is used. The model obtained with the SrTiO3@WO3 sensor reaches 

almost 0.98 of R2 and has an RMSE value that represents just about 5% 

of the total measured concentration range. The performance of all 

sensors when quantifying gas concentrations is better under visible 

light modulation than under UV modulation. From the results obtained 

it may be deduced that the SrTiO3 loading gives more stability to sensor 

response and makes this hybrid more suitable for being used to predict 

NO2 concentrations than using pure WO3 sensors. 

To further support these conclusions, PCR models were also built and 

validated for n-type sensors to quantify ammonia and for p-type sensors 

to quantify nitrogen dioxide (see Figure S11 in the SI) achieving bad 

performance, as foreseen. 

Moreover, the system performance towards gas mixtures was tested. 

The tests consisted of keeping the NH3 concentration fixed while 

variating the NO2 concentration (250, 500, and 750 ppb) using the gas 

cycles and baseline recovery time exposed in Section 2.3. This set was 

repeated twice, working at two different NH3 concentrations (4 and 15 

ppm). The PCA scores from the results of these tests allow 

discrimination between observations when the presence of single gases 

is detected (just NO2, just NH3) and when a mixture of these gases is 

present. PCR models developed for single gas concentration 

quantification were not accurate to quantify gas mixtures. Further study 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



is needed to quantify the gas concentration in presence of gas mixtures 

using multivariate analysis methods. 

The methods implemented here suppose a reduction in the time needed 

to identify the gas concentration in comparison to the process presented 

by Gonzalez et al. in [31], and even an improvement of the results 

obtained in [56]. Also, the combined use of low temperature and light 

modulation allows a power consumption reduction of about 90% as 

compared to the traditional thermal activation of MOX sensors (using 

the same substrates as in the present work), where operating 

temperatures of 100 – 500 ºC are used. Moreover, sensors were operated 

under pulsed light modulation for over one month and the morphology 

of nanomaterials remained unchanged and so was their response to the 

species tested. In addition, the cost of visible-light LEDs is 10 times 

lower than that of UV light LEDs used here, and 250 times lower than 

the cost of the UV light LEDs used in [56]. 

4. Conclusions 

In this paper, WO3 and SrTiO3@WO3 (n-type) and WS2 (p-type) sensors 

were synthesized and characterized. The combination of UV or visible 

pulsed light modulation with low temperature was employed to 

modulate the resistance of sensors in a background of oxidizing or 

reducing species. The use of pulsed light modulation, FFT analysis, 

PCA, and linear regression techniques for building predictive models to 

identify and quantify gases has been implemented. PCA scores enable 

the discrimination between the two different target gases (NO2 and 

NH3). Prediction models with up to 0.98 of R-square value and RMSE 

value lower than 10% over the total concentration range measured were 

obtained. The sensing layer activation mechanism applied enables a 

power consumption reduction of more than 90% in comparison to the 

one of traditional high temperature operated MOX non-MEMS sensors. 

Moreover, the sensor signal period used to quantify target gases was 

reduced with respect to previously published results, thus shortening 

the time needed for quantification. Using visible light (410 nm) led to 

better results than using UV light (365 nm). On the other hand, it was 

demonstrated that p-type sensors achieved better performance to 

quantify reducing gases, while it was confirmed that n-type sensors 
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exhibit higher efficacy to quantify oxidizing gases. The loading of 

SrTiO3 nanoparticles to WO3 led to better results both in the 

discrimination between gases and the quantification of oxidizing 

species. The methodology presented in this work opens an opportunity 

to use non-MEMS MOX sensors in real gas sensing applications, since 

reducing and oxidizing gas concentrations can be accurately quantified 

using a short period of sensor signal and thus, saving a considerable 

amount of power. 

Supplementary Materials: The following are available online at 

http://www.mdpi.com/article/10.3390/s21113736/s1, Figure S1: 

Experimental setup used to carry out gas sensing measurements; Figure 

S2: EDX analysis spectra from (a) WO3 pristine sensor and (b) WS2 

sensor; Figure S3: XRD pattern from (a) WO3 pristine sensor and (b) WS2 

sensor; Figure S4: (a) SrTiO3@WO3 sample XPS survey spectrum, (b) XPS 

spectrum recorded in the W 4f binding energy region; Figure S5: ToF-

SIMS analysis spectrum from the SrTiO3@WO3 sensor; Figure S6: (a) XPS 

spectrum recorded in the S 2p binding energy region, (b) XPS spectrum 

recorded in the W 4f binding energy region; Figure S7: Sensors’ 

response working under standard heating activation at 150 ºC; Figure 

S8: PCA biplot analysis for the FFT component discrimination for the 

target gas identification and NO2 concentration determination; Figure 

S9: PCA biplot analysis for the FFT component discrimination for the 

identification of different NH3 concentrations; Figure S10: PCR 

calibration model and cross-validation for the SrTiO3 doped WO3 sensor 

towards NO2 concentrations under (a) visible light modulation and (b) 

UV light modulation; Figure S11: PCR calibration model for the (a) WS2 

sensor towards NO2 concentrations, (b) SrTiO3@WO3 sensor towards 

NH3 concentrations and (c) WO3 sensor towards NH3 concentrations. 
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Supplementary Materials 

1. Experimental setup 

 

Figure 1. Gas measurement system used to perform the presented pulsed light 

modulated gas sensing methodology. 

2. EDX and XRD results 

EDX spectrum from Figure S2a confirms that the WO3 pristine sensor 

composition is just tungsten and oxygen, being the sample free of any 

contaminant. In addition, diffraction peaks from the XRD spectrum in 

Figure S3a correspond to the monoclinic phase of the WO3 (ICDD 43-

1035). 
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On the other hand, the EDX spectrum shown in Figure S2b shows that 

the composition of the WS2 nanoflakes consists of tungsten and sulfur, 

free of oxygen content. From the XRD spectrum in Figure S3b, many 

reflection peaks are related to the hexagonal P63/mmc space group, 

which confirm the presence of the 2H phase of the WS2. Moreover, some 

of the peaks present in the spectrum belong to the alumina substrate. 

No peak in the spectrum is related to WO3 impurities. 

 

Figure 2. EDX analysis spectra from a) WO3 pristine sensor and b) WS2 sensor. 

 

Figure 3. XRD pattern from a) WO3 pristine sensor and b) WS2 sensor. 
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Figure 4. (a) SrTiO3@WO3 sample XPS survey spectrum. The relative 

concentration of the identified elements (O 24% at., W 70% at. and C 6% at.). 

(b) XPS spectrum recorded in the W 4f binding energy region. The doublet with 

the W 4f7/2 component centered at 35.5 eV and the W 4f5/2 at 37.7 eV, is 

generated by photoelectrons emitted from W atoms with oxidation state + 6 

(WO3). 

 

Figure 5. ToF-SIMS analysis spectrum from the SrTiO3@WO3 sensor. 

 

Figure 6. (a) XPS spectrum recorded in the S 2p binding energy region. The 

peaks related to the S 2p1/2 and S 2p3/2 orbital of divalent sulfide ions are 

observed at 163.3 and 162.1 eV. (b) XPS spectrum recorded in the W 4f binding 

energy region. The peaks located at 38.3, 34.7, and 32.5 eV correspond to W 

5p3/2, W4f5/2, and W 4f7/2, respectively. The energy positions of these peaks 

indicate a W valence of +4, which is in accordance with the previous reports. 
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The other doublet with components at W4f5/2, and W 4f7/2 respectively at 30.8 

and 35.8 eV indicates the presence of W-O in WO3. 

3. Standard measurements 

The different sensors were characterized for gas sensing using the 

traditional heating activation mechanism. Measurements were done 

using the same gas sensing system presented in the manuscript. The 

operating temperatures tested were 50, 100, and 150 ºC. The three 

sensors were exposed at 25, 50, and 75 ppm of NH3, and 250, 500, and 

750 ppb of NO2 to check the sensing performance towards reducing and 

oxidizing gases. Figure S7 shows the sensors’ response at 150 ºC when 

the WS2 (p-type) sensor is exposed to NH3 (reducing gas) and WO3 and 

SrTiO3 doped WO3 (n-type) sensors are exposed to NO2 (oxidizing gas). 

Although the WO3 sensor presents the higher response its standard 

deviation represents about 30% of the mean value for each 

concentration. On the other hand, WS2 and SrTiO3 doped sensors 

present a lower response but the standard deviation is lower than 2% of 

the average value for most of the measured concentrations. 

Measurement at 150 ºC present a higher response and lower standard 

deviation than those when the operating temperature was set at 50 and 

150 ºC. 

Measurements performed using the p-type sensor towards the 

oxidizing gas and n-type sensors towards the reducing gas presented 

either almost no response or an unusual behavior where sensor 

response highest values were obtained for the lower concentrations 

measured. 

 

Figure 7. Sensors’ response working under standard heating activation at 150 

ºC. a) WS2 response for NH3. b) SrTiO3@WO3 response for NO2. c) WO3 

response for NO2. 
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4. Principal component analysis for gas identification 

The target gas identification process was performed creating training 

matrixes including NO2 and NH3 observations and using frequency 

components from the three synthesized sensors. The sensor's 

performance when these are operated under both, visible and UV light 

modulation was analyzed. PCA scores and loadings from the PC1 and 

PC2 were used to create biplots that allow discrimination between the 

sensors and frequency components which better fit the gas 

identification. Figures S8a and b depict the PCA scores and loadings 

biplots from principal components analysis carried out building the 

training matrix using frequency components related to the three 

synthesized sensors and observations from NO2 and NH3 when sensors 

work under visible and UV light modulation. Under visible light 

modulation (Figure S8a), the loadings related to the light switching 

frequency from the WO3 pristine sensor and the SrTiO3@WO3 sensor are 

well correlated and appear oriented in the direction of the PC1. For its 

part, loading related to its respective even order harmonics are not 

likely to be correlated with the switching frequency components, as 

their loading are orthogonal (appear at 90º across the center). NO2 and 

NH3 observations are separated in clusters according to the PC1 and the 

NO2 different concentrations are also separated in clusters according to 

the same direction. Moreover, loadings from the WS2 sensor related to 

the light switching frequency and its even order harmonics are oriented 

in the PC2 direction and too close to the origin, which means that the 

information from these components are less relevant in the gas 

identification. Under UV light modulation (Figure S8b), the loadings 

from the WS2 sensor related to all the frequencies are also oriented in 

the PC2 direction and too close to the origin. On the other hand, 

loadings related to the switching frequency from the WO3 and 

SrTiO3@WO3 sensors are not likely to be correlated, since these are 

orthogonal. The two loadings have an important weight on the PC1. 

Loadings from these two sensors related to the even order harmonics 

have a positive correlation with their light switching frequencies. In this 

case, the NO2 and NH3 observations are also separated according to the 

PC1, allowing to clearly identify the gas to which the sensors are 

exposed. Focusing on the clusters formed by the different NO2 
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concentrations, these are oriented perpendicular to the SrTiO3@WO3 

switching frequency loading direction. Following this direction, it is 

also possible to separate clusters of different NO2 observations. In order 

to support and clarify this result, PCA biplots were developed using 

two different training matrixes. Both matrixes use observations of NO2 

and NH3, but one includes just frequency components related to the 

WO3 sensor (Figure S8 c and d) and the other includes just frequency 

components related to the SrTiO3@WO3 sensor (Figure S8e and f). 

Results obtained show how under UV light modulation, it is possible to 

separate different NO2 concentration observations using the 

SrTiO3@WO3 sensor, while using the WO3 all the observations appear 

together in one cluster. This makes the SrTiO3@WO3 more suitable to be 

used in the gas identification process since it is not only suitable to 

identify observations from NO2 and NH3, but it also allows to separate 

NO2 concentrations under both visible and UV light modulation. 

On the other hand, with the purpose of focusing just on the NH3 

different concentrations distribution, new training matrixes were built 

using just observation of this gas. The matrixes were made of four 

frequency components of the three synthesized sensors. The PCA 

biplots (shown in Figure S9) for the modulation under both, visible and 

UV light were evaluated, and frequency component loadings show the 

same behavior.  The loading related to the light switching frequency and 

its even order harmonics for the WS2 sensor are well correlated and are 

oriented in the direction of the PC2. Loadings related to the switching 

frequency for the SrTiO3@WO3 and the WO3 sensors are not likely to be 

correlated with the one related to the same frequency for the WS2 sensor, 

since they meet each other at about 90 º. The loadings related to the even 

order harmonics from these sensors are located near the origin, so the 

information they give to the discrimination process is not relevant. In 

addition, NH3 different concentration observations appear to be 

organized according to the PC2. Hence, the classification of the different 

NH3 concentrations is related to the frequency components from the 

WS2 sensor. Since the loadings related to the even harmonics from the 

WS2 sensor are located very close one each other, it is possible to use just 

the switching frequency and its first even order harmonic to quantify 

the different NH3 concentrations. 
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Figure 8. PCA performed with observations related to NO2 and NH3. PCA 

biplots from the left column belong to visible light modulation and those from 

right column to UV light modulation. Subplots a and b were obtained using a 

training matrix made of four frequency components from each of the three 

synthesized sensors. Subplots c and d be-long to training matrix built with 

frequency components from the WO3 pristine sensor, while e and f use 

frequency components from the SrTiO3@WO3 sensor. Loadings identified with 

the letter ‘b’ are related to frequency components from the SrTiO3 sensor, while 

the letter ‘c’ identifies the loadings related to frequency components from WO3 

sensor. 
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Figure 9. PCA performed using observations of just NH3 concentrations and 

four frequency components of each of the three synthesized sensors. Frequency 

components identified with the letter ‘a’ are related to the WS2 sensor, the letter 

‘b’ identifies the frequency components related to the SrTiO3@WO3 sensor, and 

letter ‘c’ the WO3 pristine sensor. Red markers identify the 25 ppm 

observations, green markers the 50 ppm observations, and blue markers the 75 

ppm observations. 

5. PCR calibration models 

The WO3 sensor PCR model results for NO2 are shown in Figure S10. In 

this case, when visible light modulation is applied the R2 value is about 

0.97, and the RMSE value is about 7% of the total measured 

concentration range, which makes the model accurate to predict NO2 

gas concentrations. On the other hand, when the light modulation is 

per-formed using UV LEDs the model presents an R2 value of 0.84 and 

its RMSE value represents more than 16 % of the total concentration 

variation in the set of measurements. This shows the same behavior as 

the WS2 and SrTiO3@WO3 sensors, where the concentration prediction 

performance is better when sensors work under visible light 

modulation. 

The efficacy of n-type sensors and p-type sensors to respectively 

quantify reducing and oxidizing gases was also estimated. In this case, 

as the previous results obtained, where just temperature was applied to 

activate the sensing layer, were unsatisfactory to accomplish the goal of 

the present work, models were performed using the maximum possible 

number of frequency components and principal components. Thus, to 

get the best R2 and RMSE values from the models. From the results 
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presented in Figure S11, it is evident that n-type sensors and p-type 

sensors are not useful for predicting reducing and oxidizing gases using 

the methodology presented in this work. Hence, being that also 

consequent with the results obtained when sensors are operated at just 

a relatively low temperature without light modulation. 

 

Figure 10. PCR calibration model and cross-validation for the SrTiO3 doped 

WO3 sensor towards NO2 concentrations under a) visible light modulation and 

b) UV light modulation. Blue boxed represents the calibration model dispersion 

for each concentration and green boxes the validation dispersion. The 

horizontal black line represents the mean value for the validation process. The 

validation linear fit is shown with the green dashed line, and the blue dashed 

line rep-resents a unitary slope line. R-squared and RMSE values belong to the 

calibration model. 

 

Figure 11. PCR calibration model for the a) WS2 sensor towards NO2 

concentrations, b) SrTiO3@WO3 sensor towards NH3 concentrations and c) 

WO3 sensor towards NH3 concentrations. The operating temperature was 50 

ºC and the light modulation was done with purple visible light LEDs. Blue 

boxed represents the calibration model dispersion for each concentration. The 

horizontal black line represents the mean value for the validation process. The 
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calibration linear fit is shown with the blue dashed line, and the orange dashed 

line represents a unitary slope line. 
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Abstract 

During the few last years, indoor and outdoor Air Quality Monitoring 

(AQM) has gained a lot of interest among the scientific community due 

to its direct relation with human health. The Internet of Things (IoT) 

and, especially, Wireless Sensor Networks (WSN) have given rise to the 

development of wireless AQM portable systems. This paper presents 

the development of a LoRa (short for long-range) based sensor network 

for AQM and gas leakage events detection. The combination of both, a 

commercial gas sensor and a resistance measurement channel for 

graphene chemoresistive sensors allows both the calculation of an Air 

Quality Index based on the concentration of reducing species such as 

volatile organic compounds (VOCs) and CO, and makes possible the 

detection of NO2, which is an important air pollutant. The graphene 

sensor tested with the LoRa nodes developed allows the detection of 

NO2 pollution in just 5 min, as well as enables monitoring sudden 

changes in the background level of this pollutant in the atmosphere. The 

capability of the system of detecting both reducing and oxidizing 

pollutant agents, its low-cost, low-power and real-time monitoring 

features, make this a solution suitable to be used in wireless AQM and 

early warning systems. 

Keywords: AQM; IoT; LoRa; WSN; graphene. 
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1. Introduction 

According to the World Health Organisation, in 2016, household and 

ambient air pollution were responsible for 7 million deaths [1]. During 

the last decade, many researchers have investigated both, indoor and 

outdoor air quality monitoring systems because of air quality being 

intrinsically linked to human health [2–6] and the occurrence of 

premature deaths [7–10]. Therefore, having widespread, unattended 

portable and connected devices and networks for air quality monitoring 

and pollutant detection would be a decisive step forward for decreasing 

the prevalence of lethal diseases such as ischemic heart disease, stroke, 

chronic obstructive pulmonary disease, or even lung cancer [11–13]. 

According to the United States Environmental Protection Agency, 

people spend 90%, or even more of their time in indoor environments, 

on average. Indoors, the concentration of some air pollutants can often 

be 2 to 5 times higher than the concentrations found outdoors [14]. 

Combustion of fossil fuels, gas stoves, tobacco smoke, water heating 

systems that burn natural gas, cleaning supplies, paints, insecticides, 

among others, are the principal sources of pollutant gases present 

indoors such as NOX, CO, and VOCs [14–17]. Outdoor air pollutants 

entering the buildings and those generated indoors are directly affecting 

human health since these can cause headache, hypoxia, or problems in 

vital systems such as the respiratory, cardiovascular or central nervous 

[16–18]. Thus, indoor air quality monitoring is an important factor in 

enhancing the quality of health and comfort.  

The conventional and most common techniques for air quality 

monitoring, consist of stationary stations equipped with different 

instrumental techniques or manual sampling at different locations 

followed by analysis in specialised laboratories. These techniques can 

be very accurate but require the use of bulky, power-hungry and 

expensive instruments [19,20]. Thus, these approaches do not provide a 

scalable solution for monitoring with enough spatial resolution air 

pollution events related to automotive combustion or burning fuels for 

cooking in urban scenarios [20–23]. Furthermore, these technologies 

demand trained personnel to operate with complex equipment and, 

obviously, cannot be implemented in portable, low-cost and low-power 
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devices. Different sensors employing diverse operating principles, such 

as electrochemical [4,24], non-dispersive infra-red [25,26], and 

chemoresistive have been considered for devising air quality 

monitoring systems at lower costs [27,28]. These can be employed to 

develop portable analysers, which can be endowed with low-power (at 

least in comparison to bulky instrumental techniques), communication 

ability with local or cloud servers, and the capability to detect alarm 

situations locally. Among inexpensive sensors, metal oxide (MOX) 

chemoresistors have the advantage of being easily miniaturised and 

exhibiting high sensitivity in the detection of air pollutants such as 

VOCs, NOx or CO.  However, MOXs show significant cross-sensitivity 

issues, and generally require being operated at high temperatures (up 

to 500 ºC) which compromise their usefulness in portable applications, 

where low-power consumption features are needed [19,29,30]. 

Conversely, chemoresistors employing carbon nanomaterials 

(graphene and carbon nanotubes) have been suggested as an alternative 

to detect low concentrations of some air pollutants at ppb to ppm levels. 

These nanomaterials present favourable electronic properties and can 

be easily modified or functionalized to reach remarkable sensitivity and 

acceptable selectivity towards air pollutants [31–33]. In addition, carbon 

nanomaterial chemoresistors can be operated slightly above or even at 

room temperature, which allows reducing power consumption in 

portable solutions, leading to low-power devices [32,34]. 

In the last few years, several authors have reported the use of Wireless 

Sensor Networks (WSNs) for air quality monitoring systems [20,22]. In 

that sense, some decision-making systems have been designed using 

both Local Area Networks (LANs) for monitoring of local air quality or 

generating an alarm while under a gas pollution event [35,36] and Wide 

Area Networks (WANs) for remote control and monitoring [37–39]. 

Many WSNs have been deployed to cover a broad range of applications 

such as precision agriculture [40–42], healthcare [43–45], military 

industry [46–48], and air quality monitoring [22,24,25]. The application 

fields for WSNs are becoming wider every day. The development of the 

Internet of Things (IoT) paradigm has fuelled the implementation of 

WSNs connected to cloud server services with monitoring, data analysis 

or data processing capabilities [39,49–51]. The IoT encompasses smart 
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devices and sensors that are able to communicate with one each other, 

being accessible at any moment, everywhere. The connectivity is the 

main requirement for IoT, and its applications support a varied set of 

devices and communication protocols, from sensors to powerful back-

end servers with data processing capabilities [52,53]. Many IoT systems 

and WSNs deployed during the last few years have employed some 

well-known devices and communication protocols as, radiofrequency 

[49,54], Global System for Mobile Communications (GSM) [20,55], Wi-

Fi [39,56], or ZigBee[57]. However, most of these technologies present 

some disadvantages under certain conditions, including large power 

usage, limitations in transmission distance or security issues. To 

overcome the limitations presented by the above-mentioned wireless 

technologies, low-power wide area networks (LPWANs) have emerged 

allowing long-range wireless communications at low bit rate using low-

power consumption [39,50,58,59]. Figure S1 in the supporting 

information shows the growth of the research areas for which this paper 

is relevant, reflected as the number of publications appearing in Scopus 

between years 2010 and 2020 related to IoT, LoRa, and air quality 

monitoring. 

Among the promising technologies used in the LPWAN space are 

Narrowband Internet of Things (NB-IoT), Sigfox from Sigfox, Labège, 

France, and LoRa. While NB-IoT presents the largest data rate and 

payload size of these three technologies, it operates in licensed Long-

Term Evolution (LTE) frequency bands. Thus, the use of NB-IoT was 

not considered to keep costs low. The Sigfox presents a higher 

transmission range than LoRa (3-10 km for Sigfox and 2-5 km for LoRa, 

in urban areas), but Sigfox is deployed by network operators, so users 

need to pay subscription charges for every node installed. Moreover, 

Sigfox transmits messages multiple times to improve reliability, 

resulting in high energy consumption. Hence, LoRa and LoRaWAN 

protocol were selected to develop the network [39,50,58,59].  

LoRa is a spread spectrum modulation technique derived from chirp 

spread spectrum (CSS) technology. This physical layer technology 

works in the unlicensed sub-GHz industrial, scientific, and medical 

(ISM) band. Depending on the spreading factor (SF) and the channel 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



bandwidth (BW) settings, the data rate supported by LoRa varies from 

300 bps to 50 kbps. The transmission power (TP), SF, coding rate (CR), 

and preamble length define the signal airtime and power consumption 

[59]. 

LoRaWAN is a media access control (MAC) protocol for wide area 

networks designed to allow low-powered devices to communicate with 

Internet-connected applications over long-range wireless connections. 

Innovative LoRaWAN features include support for redundant 

operation, geolocation, low-cost, and low-power applications. Devices 

can even run on energy harvesting technologies (i.e., means of collecting 

energy from the environment used to power devices or to extend the 

system battery lifetime) enabling the mobility and ease use of IoT. 

LoRaWAN protocol provides origin authentication, integrity 

protection, replay protection and full end-to-end encryption [59,60]. The 

use of LoRa for the design of the nodes and the network communication 

allows to develop low-power nodes with long data transmission 

distance. The LoRaWAN protocol ensures the security of the data by the 

authentication process between nodes and the network server, and the 

end-to-end messaging encryption. 

The aim of the present paper is to discuss the development of an IoT 

implementation for inexpensive indoor air quality monitoring (e.g., at 

train, bus stations, shopping centres, or theatres) and real-time pollutant 

detection. This consists of a wireless sensing network in which its 

sensing nodes include both commercial and lab-made (presented in 

Section 3) chemoresistive sensors. The network was deployed at the 

University of Tarragona science campus for testing and validation 

purposes. Within a sensing node, the commercially available sensor 

allows estimating an air quality index, which relates to the 

concentration of total VOCs present in the node environment. The lab-

synthesized sensor enables the detection of a pollutant, nitrogen dioxide 

(NO2), released to the atmosphere mainly from automotive exhausts 

[61] and uses graphene nanoplatelets as gas-sensitive material. Previous 

works have already demonstrated the usefulness of graphene for 

detecting NO2 at trace levels [62,63]. Furthermore, their capability for 

being operated at room temperature makes graphene sensors very 
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attractive for developing low-power applications. This sensor network 

is meant to be used indoors to monitor air quality and identify sudden 

changes in the background concentration of some target pollutant 

species, raising an alarm. While the case of nitrogen dioxide is discussed 

here, the system is flexible enough to use sensors employing different 

gas sensitive materials and, thus, can be adapted easily to the 

monitoring of different targets. 

2. System design and implementation 

2.1. Network deployment 

A LoRa-based, robust, low-power, and scalable wireless sensor network 

for air quality monitoring and pollutant detection is presented. This 

sensor network is physically composed by two main elements: the 

gateway, and the end nodes, which have the sensors on them. 

Moreover, the network uses a cloud server for storing the data from the 

sensors, and the processing or visualization of the data is made through 

a local server, a PC, or a mobile phone accessing a front-end application. 

The network deployment was carried out as follows: The indoor LoRa 

gateway was placed in a location where it was able to access the Internet 

through a Wi-Fi connection. Once connected to The Things Network 

(TTN) cloud server, the gateway was ready to forward the uplink and 

downlink messages sent from the nodes to the server and vice versa. 

Nodes perform measurements, codify the information, and send the 

data at every sampling period and then go to deep sleep mode. The data 

received in the cloud server is processed and stored for later 

visualization. Front-end web and desktop applications were developed 

to access and visualize the data stored in the cloud server. Figure 1 

depicts a scheme of the sensor network developed. 
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Figure 1. LoRa sensor network operation scheme. 

2.2. Gateway 

The sensor network is devised for monitoring indoor air quality (nodes 

were distributed in different locations at the University campus), the 

gateway selected was The Things Indoor Gateway (TTIG) from The 

Things Industries. TTIG is a low-cost, fully compliant LoRaWAN 

gateway, which uses Wi-Fi as backhaul. It has a Semtech SX1308 LoRa 

chipset from Semtech Corporation, Irvine CA, USA, which presents a 

receiver sensitivity of −140 dBm and uses the 868 MHz frequency band 

(in the European Union). This indoor gateway has an integrated 

antenna and presents the Federal Communication Commission (FCC) 

and European Economic Area (CE) certifications. The software running 

on the gateway makes it act as a bridge between the LoRa nodes and 

TTN cloud server. 

2.3. End Nodes design and programming 

2.3.1 Hardware 

LoRa nodes (Figure 2b) developed in this project were conceived in two 

different but similar versions. Although both have sensing capabilities 

and are connected to the cloud server through the TTIG, one of those 

give the capacity of local visualization of an air quality index through a 

display. This last was used for debugging and test purposes to compare 

the local data with the cloud data. End nodes built are formed by: (i) a 

LoRa development board, which includes the microcontroller unit and 
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the LoRa module, (ii) the sensing board, (iii) a 2 dBi omnidirectional 

antenna, and (iv) a 3D designed and 3-D printed package. 

The sensing board (Figure 2a) developed includes: (i) a connector for the 

LoRa development board, (ii) a 4 in 1 sensor BME680 from Bosch 

GmbH, Gerlingen, Germany, (iii) a connector for the lab-developed 

graphene sensor, (iv) a conditioning circuit for the readout of the 

graphene sensor, which consists of the voltage divider configuration 

shown in Figure 3, (v) a micro-SD card socket (for storing BME680 

sensor state, LoRa activation keys and sensor measurements locally) 

and (vi) a general purpose serial connector (not used in this application). 

 

Figure 2. (a) Sensing board built for LoRa nodes development and (b) end node 

without the front cover. 

 

Figure 3. Voltage divider configuration used to measure the lab-made sensor 

resistance. Rsens represents the sensor resistance, which varies with the 

concentration of the target gas. R1, R2, and Rn are resistances with different 

and known values and are selected through the multiplexer (MUX) to keep the 

voltage measured by the analog-to-digital converter (ADC) in the maximum 

accuracy range. 
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The BME680 is a 4-in-1 digital low-power gas, pressure, temperature 

and humidity sensor, which with the proper configuration and software 

libraries, presents a direct index for air quality (IAQ) output. The sensor 

has a VDD main supply voltage that ranges from 1.2 V to 3.6 V, which 

matches with the supply voltage of the microcontroller used. The IAQ 

value calculated using this sensor and the Bosch Sensortec 

Environmental Cluster (BSEC) library gives an indication of the total 

amount of VOCs and other reducing gases such as CO present in the 

studied atmosphere. The output is based on an intelligent algorithm 

that includes, not only the resistance value of the metal oxide sensor the 

BME680 includes, but also humidity, temperature and the measurement 

history values stored in the sensor state. The sensor state is stored after 

each measurement to be used in the sensor calibration for later IAQ 

value calculations. The sensor calibration typically encompasses up to 4 

days of measurements. This index ranges between 0 and 500 (0 

corresponds to the highest air quality and 500 to the worst air quality 

index) [64]. Some proceedings and conference papers have described 

the use of the BME680 for the development of indoor air quality 

monitoring portable and low-cost devices [65–68]. The measurement 

channel for the lab-made sensors is able to measure resistance values 

from few Ohms to approximately 3 MOhm, although this range could 

be easily adapted by changing the resistance values of the voltage 

divider configuration in the conditioning circuit. Although the 

performance of the resistance measurement is tested with the graphene 

sensor presented in section 3, by selecting the sensors to be included in 

the node the system can be used to cover different applications where 

the detection of a gas leakage is crucial. To help meet the low-power 

consumption features of the network, lab-made sensors are operated at 

room temperature. The nodes and gateway cost are shown in the 

supporting information.  

2.3.2 Software 

The program running on the LoRa nodes was developed using C 

language in Arduino IDE from Arduino, Somerville, US. Once the nodes 

are powered up, reset, or wake up from deep sleep mode, the first step 

is to initialize the BME680 sensor and the ADC channel for the resistance 
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measurements of the lab-made sensor. If the microcontroller unit 

(MCU) is reset or just powered up, the second step is to perform a 

measurement with the sensors. On the other hand, if the MCU wakes 

up from deep sleep mode, the previous state (see Figure 4 and hardware 

description section) of the BME680 sensor should be obtained from the 

real-time clock (RTC) memory or the SD card, because it will be used for 

the proper calculation of the IAQ value. When the initialization of the 

BME680 sensor is finished, the measurements are performed. Once a 

measurement is completed, the third step is to initialize the LoRa 

module with the proper spreading factor and the transmission power to 

enable the network communication. The fourth step is to establish the 

connection with the server to send the data. If the node is connected for 

the first time to the server (after being powered up or reset) it performs 

a join procedure with the network cloud server through an Over the Air 

Activation, where a device address is assigned dynamically and 

security keys (Network Session Key and Application Session Key) are 

negotiated. After establishing the connection with the server, the device 

address and the security keys are stored for using them in further 

connections. Differently, if the MCU awakens from a deep sleep mode, 

an Activation by Personalization is performed, using the authentication 

data stored in memory. In the fifth step, after establishing the 

connection, sensor data is codified in order to minimize the number of 

bytes uploaded to the server and then sent to the cloud server. In the 

sixth step the BME680 sensor sate is saved in memory. Finally, in the 

seventh step the node goes to deep sleep mode until the next sensor 

measurements. Figure 4 shows the flow diagram of the software 

running on the nodes. 
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Figure 4. Flow diagram from the program running in the nodes. 

2.4. TTN application server 

Every uplink message that arrives to the TTN application server passes 

through a payload function in order to decode the data coming from the 

nodes. After the decoding, the sensor data is set in JSON format to 

match the requirements of the front-end application. The sensor data is 

stored through the Data Storage integration where is kept available for 

7 days to be downloaded through a Hypertext Transfer Protocol (HTTP) 

request. 
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2.5. Front-end application 

For developing the front-end application, a set of Open-Source Software 

(OSS) was used. Thus, saving money from the overall cost of the 

solution by avoiding licensing and software maintenance fees. The 

visualization data solution presented in this section consists of a local 

server that stores the sensor data locally and makes it available to be 

visualized in a web service accessible from any device having internet 

access. The server could be deployed in any system running a Linux 

distribution (Ubuntu, Debian, or even Raspbian when running on a 

Raspberry Pi). Telegraf (from InfluxData Inc., San Francisco, US) is a 

server agent used to collect sensor data arriving to the TTN Message 

Queue Telemetry Transport (MQTT) broker through an MQTT 

consumer. With this purpose, a Mosquitto (from Eclipse Fundation, 

Ottawa, Canada) client is set to connect with the TTN broker. The data 

collected by the Telegraf instance is stored in InfluxDB (from 

InfluxData), which is a time series database. For the visualization of the 

data the Grafana was selected, which is an analytics and monitoring 

solution from Grafana Labs, New York, US. Figure 5 depicts the sensor 

data path from the TTN Cloud Server to the front-end application. 

 

Figure 5. Sensor data path from TTN Cloud Server to the front-end application. 
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3. Graphene Sensor 

3.1. Sensor Fabrication 

A graphene-based gas sensor was fabricated by preparing a solution 

with 1 mg of graphene nanoplatelets from Strem Chemicals, Inc., 

Newburyport, US, dispersed in 10 mL of toluene. Afterwards, graphene 

nanoplatelets were exfoliated during one hour at high frequency (35 

kHz) by using an ultrasonic bath (from Bandelin electronic GmbH, 

Berlin, Germany). Then, the solution was deposited onto the screen-

printed platinum electrode area of an alumina substrate by spray 

coating technique. During this deposition, the substrate was placed in a 

hotplate at 125 °C in order to obtain a more homogeneous sensitive 

layer. Finally, the sensor was dried in an oven at 130 °C to ensure the 

complete removal of the solvent. A picture of the coated alumina 

substrate is shown in the supporting information (Figure S2). 

3.2. Characterization Techniques 

The graphene used was characterized by several techniques, such as 

Raman spectroscopy, X-Ray photoelectron spectroscopy (XPS), field-

effect scanning electron microscope (FESEM) and high-resolution 

transmission electron microscopy (HR-TEM).  

The graphene crystallinity was evaluated using a Raman spectrometer 

from Renishaw, plc. (Wotton-under-Edge, UK) coupled to a confocal 

Leica DM2500 microscope from Leica Microsystems GmbH, Wetzlar, 

germany. The laser employed had a wavelength of 514 nm. The 

chemical composition of graphene was obtained by using an XPS 

spectrometer from SPECS GmbH, Berlin, Germany equipped with a 

non-monochromatic X-ray source (Al). Graphene morphology was 

studied using a FESEM and HR-TEM. In particular, graphene porosity 

and layer homogeneity were studied using a FESEM from Carl Zeiss 

AG, Oberkochen, Germany, meanwhile, graphene sheet sizes were 

observed via HR-TEM from Jeol Ltd., Tokyo, Japan. 

3.3. Graphene Characterization 

According to the graphene manufacturer, this nanomaterial has a 

surface area of 750m2/g and electrical conductivity of 107 and 102 S/m 
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(parallel and perpendicular to its surface, respectively). Regarding the 

lateral size, different graphene nanoplatelets are stacked with an 

interplanar distance of 3.35Å, while the overall graphene nanoplatelet 

aggregates have a thickness of a few nanometers. 

A Raman analysis was conducted in order to study the graphene 

crystallinity. Figure 6a shows a significant D band at 1342 cm-1, which 

indicates the presence of defects (e.g. broken sp2 bonds, carbonaceous 

impurities or amorphous carbon) in the crystalline structure. 

Conversely, G band located at 1572 cm-1 reveals the stretching of C-C 

bonds, related to in-plane oscillations of sp2 configuration [69]. In 

consequence, the intensity ratio ID/IG is commonly used as an indicator 

of the crystallinity in carbon nanomaterials [70]. In that sense, a value 

close to 0 reveals an insignificant number of defects (absence of ID 

peak), being translated in highly crystalline graphene [71]. However, 

experimental data obtained from Figure 6a reveal an ID/IG ratio of 0.79, 

indicating a moderate graphene crystallinity. However, this fact is 

interesting from the gas sensing point of view, due to these defects 

usually act as active sites for gas interaction and are also useful for 

further graphene functionalization. 

Additionally, an XPS was performed to obtain the elemental 

quantification. Regarding this, the graphene employed presents an 

89.99, 9.46 and 0.55% of carbon, oxygen and nitrogen, respectively. The 

fitting analysis of the C1s peak, centred at 284.4 eV, is represented in 

Figure 6b. This deconvolution shows a predominant peak at 284.2 eV, 

corresponding to the characteristic photoelectrons emitted from the 

graphitic-like carbon atoms. In other words, this peak reveals the 

predominance of sp2 carbon configuration. Nevertheless, according to 

the low crystallinity registered in the Raman analysis, a significant peak 

related to amorphous carbon or sp3 configuration can be found at 285.1 

eV [72]. Furthermore, the inset shows three components associated with 

the presence of oxygen functional groups. Thus, the carbon-oxygen 

bonds observed at 286.1, 288.1 and 289.2 eV correspond to the C-O, C=O 

and –COOH species, respectively [73], meanwhile, the peak at 282.8 

reveal structural graphene defects related with carbon vacancies [74]. 

Finally, the residual amount of nitrogen detected during the element 
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quantification can be attributed to the presence of imine (NH) and 

amine (NH2) functional groups grafted at the graphene surface. 

 

Figure 6. Raman spectra for the bare graphene (a). Deconvolution of the C1s 

core level peak for graphene (b). The inset shows the peaks related to oxygen 

functional groups. 

Images obtained by Field-Effect Scanning Electron Microscope (FESEM) 

show a high porosity at the graphene surface (Figure 7a), which is 

helpful for gas sensing. Besides, the inset image (obtained at lower 

magnification) confirms that homogeneous layers can be obtained by 

using the spray coating technique. A High-Resolution Transmission 

Electron Microscopy (HR-TEM) analysis was also conducted (Figure 

7b), showing graphene layers with diameters up to a hundred of 

nanometers. 

 

Figure 7. FESEM image showing the graphene sensor surface (a). HR-TEM 

image showing an example about the graphene layers size (b). 
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3.4 Gas sensing system 

The characterization of the gas sensing properties for the graphene 

sensor was performed in two different tests. First, laboratory conditions 

were set to test the sensor performance under fully controlled 

conditions, and next, real conditions were simulated to check its 

reliability for real life applications. Results obtained from sensor 

characterization tests run under laboratory conditions can be found in 

the supporting information. 

The tests performed under close to real conditions were implemented 

using the graphene sensor connected to the LoRa node resistance 

measurement channel, and this placed in an acrylic chamber with an 

inner volume of about 4900 cm3. NO2 and CO calibrated cylinders of 1 

ppm and 100 ppm, respectively (balanced in synthetic air), mixed with 

ambient air were used to set the desired gas concentrations. Gas flows 

were set by using a mass-flow controller system (EL-FLOW®) from 

Bronkhorst High-Tech, Ruurlo, Netherlands, and Flow View and Flow 

Plot software from the same company were employed, while a 

rotameter was used to control the ambient air flow. A total flow of 600 

ml/min was kept across the chamber. The flow established was selected 

to simulate a gas diffusion process through the chamber avoiding the 

direct flow incidence on the sensors, which can influence the 

measurements. According to the inner volume of the acrylic chamber 

and the total flow through it, the time needed to renovate completely 

the atmosphere inside the chamber was about 8 min. Hence, the gas 

pulses implemented were programmed with a separation significantly 

higher than 8 min. Results from this test are shown and discussed in 

Section 4.2. 

3.5. Gas Sensing Mechanisms 

Pristine graphene, with their characteristic sp2 carbon configuration, is 

usually reported as a material with very poor sensitivity [75]. However, 

this limited responsiveness can be enhanced with further graphene 

functionalization. In our case, Raman and X-Ray spectroscopy studies 

reveal a significant content of sp3 carbon configuration and oxygen 

functional groups. Thus, graphene nanoplatelets show significant 
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sensitivity to nitrogen dioxide (NO2) [76]. This gas mainly interacts with 

the carbon lattice defects and oxygenated functional groups such as 

carbonyl or hydroxyl that act as reactive sites for adsorption of gases 

[77]. Therefore, gas molecules induce changes in the local carrier 

concentration when they are adsorbed on the graphene surface. In this 

regard, when a mild p-type semiconductor such as a graphene 

nanoflakes film is exposed to NO2 (an electron-withdrawing specie), a 

decrease in the film resistance is recorded due to the increased 

concentration of positive charge carriers. 

                  NO2 (gas) + e- (surface) → NO2- (ads)  (1) 

 

Considering the room temperature working conditions, the sensing 

mechanisms are probably ruled by the physisorption of gas molecules 

involving small charge transfers between nitrogen dioxide and the 

sensor surface. However, the slow baseline recovery indicates that 

chemisorption of NO2 cannot be completely ruled out, which involves 

the exchange of higher amounts of charge between adsorbed gas species 

and the sensor surface (see supporting information). 

In this regard, physisorption of molecular oxygen (O2) due to the 

exposure of the sensitive film to air should be considered. Adsorbed 

atmospheric oxygen could eventually withdraw free electrons from the 

conduction band of graphene, resulting in an electron depleted surface 

layer and the chemisorption of oxygen species [78]. Even, isolated 

hydroxyl ions can be found at the sensor surface [76]. Thus, 

chemisorbed oxygen species can act as intermediate agents, catalysing 

the charge transfer processes between the sensor surface and gas 

molecules. Adsorbed oxygen species or isolated hydroxyl ions can be 

reactive with incoming oxidizing agents such as NO2 [63,79]: 

NO2 (gas) + O2- (ads) + 2e- (surface) → NO2- (ads) + 2O- (ads), (2) 

Conversely, CO measurements reveal a lack of sensitivity for the bare 

graphene sensor. This agrees with theoretical calculations that report 

higher charge transfer (Q) upon adsorption for NO2 (0.19|e|) than for 

CO (0.01|e|) [80]. Nitrogen dioxide also shows higher adsorption 
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energy (0.48 eV) in comparison to CO (0.12 eV) [81]. However, it is 

worth noting another additional effect, which is the essential role of the 

ambient moisture in the gas sensing performance. When both 

molecules, NO2 and H2O are simultaneously present, an additive effect 

is shown due to their electron-withdrawing behaviour over a mild p-

type semiconductor such as graphene [82]. In other words, the NO2 

response in humid atmosphere induces a larger increase in the 

conductivity. This fact is derived first from the charge transfer from 

graphene to water molecules when they are adsorbed in the sensor 

surface. Then, subsequent water-mediated adsorption of NO2 can occur, 

further increasing the conductance change. This mechanism is 

especially worthy in measurements at room temperature. Indeed, Hall 

measurements have revealed that water molecules act as electron-

withdrawing agents at room temperature [83], while CO behaves as an 

electron-donor gas. Hence, the opposite effects caused by H2O and CO 

molecules could significantly reduce the conductance changes recorded 

when these two analytes are present simultaneously. Nevertheless, the 

integration and combination of graphene sensors with other 

chemoresistive sensors such as metal oxides offer a great opportunity 

for better discriminating between electron donor and withdrawing 

gases. 

4. Discussion 

4.1 Network performance 

The LoRa sensor network was deployed in different locations at the 

University Campus with the purpose of testing the communication 

performance between different nodes and gateway configurations. 

Thus, the indoor gateway position was set in one location, while nodes 

were placed at different distances from the gateway, using different 

transmission powers. For all the combinations used the rest of the 

network configuration parameters, namely carrier frequency (CF), BW, 

SF, CR, and preamble length were set fixed. The CF used was 868 MHz, 

which is one of the two license-free sub-gigahertz radio frequency 

bands for Europe. The bandwidth was stablished in 125 kHz, thus 

ensuring enough bitrate and sensitivity for the detection of the signal. 

The spreading factor value of 7, which is the lowest possible, linked to 
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a coding of 4/5 allow the minimum time on air of the signal, and 

consequently a lower power consumption. The preamble length was 

also selected as the lowest possible value to guarantee the lowest power 

consumption. Table 1 depicts the Received Signal Strength Indicator 

(RSSI) and package loss rate. This last parameter was calculated as a rate 

between the number of received packages in the TTN cloud storage 

service and the theoretical amount of data sent by the nodes during 24 h. 

During the test period (around 2 weeks for each pair TP and distance) 

the weather conditions were changing, and this is reflected in the 

package loss percentage shown in Table 1. Data from days with worst 

atmospheric conditions were not included in the package loss 

percentage calculation, as these values were far from the mean value. In 

cloudy, rainy, or stormy weather the package lost rate reached between 

14% and 25%. 

Table 1. Node communication performance. RSSI and package loss values 

according to nodes transmission power and distance between node and indoor 

gateway. 

 

Locations were selected according to two different scenarios. In the first 

one, the nodes were placed near the gateway, separated one from each 

other by several offices inside the same building. This configuration 

allows to avoid interferences provoked by unfavourable weather 

conditions, while the transmission power used can remain low. Thus, 

saving power without affecting the network performance. In the second 

location the nodes were placed at 115-130 m away from the gateway (in 

different buildings), with non-straight sight and structural obstacles 

between them. This ensures the analysis of the network performance 

TP [dB] Distance [m] RSSI [dBm] Package loss [%] 

   Min. Av. Max. 

12 10 -68 0 0 0 

12 20 -84 0 0.34 0.68 

12 115 -103 4.45 6.95 9.59 

14 115 -101 3.82 5.09 6.6 

20 130 -106 0.34 3.47 6.16 
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when conditions are not the most favourable for the communication. 

The transmission power was set at 12 dB, 14 dB and 20 dB to compare 

the RSSI and package loss values obtained when TP increases. Figure 8 

depicts the location of gateway and nodes at the University Campus for 

the second configuration. 

 

Figure 8. Location of the (1) gateway and (2-3) nodes in the second 

configuration. Gateway was placed at an office behind the metallic wall 

appearing in point 1 at ground level, while nodes were located at offices at 

points 2 (115 m from the gateway) and 3 (130 m from the gateway) in the third 

floor. Image taken from Google Earth. 

All RSSI values obtained for the pairs distance-transmission power were 

higher than the sensitivity of the gateway. For nodes placed in the same 

building, the package loss rate was less than 1% using a TP of 12 dB. 

This means just 1 or 2 packages loss during 24 h of measurements in the 

worst case. For longer distances, the TP was increased from 12 dB to 20 

dB (which is the maximum possible) to compare the performance of the 

network. Referring to Figure 8, the node located in point 2 was set with 

TP values of 12 dB and 14 dB. The RSSI and package loss values slightly 

improved when transmission power increased. At position 3, nodes 

were deployed with a TP value of 20 dB to test the performance, when 

this is the maximum power value for the LoRa transceiver, and the 

location is the less favourable for the communication. In this case the 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



RSSI value slightly worsened while the package loss percentage 

improved a bit.  

Although nodes have been powered up through a standard wall socket, 

all the design and configuration characteristics were considered to use 

the nodes in a low-power mode. This enables powering up the nodes 

employing batteries. Using a TP of 12 dB and the rest of transmission 

parameters as mentioned above, the average power consumption for 1 

h is about 1 mA. Thus, considering the use of a 2200 mAh battery, and 

assuming a total discharge of 85%, the estimated battery lifetime would 

be about 75 days.  

The network is fully scalable (i.e., new nodes can be added) without the 

need of modifying any parameter on the gateway side. Thus, after the 

first deployment, the gateway can run continuously and just each new 

node should be registered on the cloud server in order to assign the 

unique authentication parameters it needs to become part of the 

network. This allows to enlarge the number of nodes at any time 

without affecting the global network performance. 

4.2 Gas sensing performance 

Both, commercial (BME680) and lab-made (graphene) sensors were 

placed in the LoRa node and exposed to gas pulses of CO or NO2 at 

concentrations near the threshold limit value (TLV). With that, it was 

possible to simulate events of gas leakage or sudden increases in 

concentration when concentration changes from background level of 

target species in the atmosphere to values above the TLV established by 

the European US agencies [84,85]. For this purpose, during the CO 

pulses, the concentrations were set at 35 ppm and 50 ppm, while the 

NO2 concentration was set at 200 ppb. Pulse duration randomly variated 

between 5 min and 15 min. As measurements were performed under 

real conditions, the relative humidity (RH) and temperature were 

variable during the test period, with average values about 50% and 

30ºC, respectively. 

Figures 9b and 9c show the responses from both, commercial and lab-

made sensors towards CO concentration changes during the simulation 

of gas leakage events and/or sudden increases in gas concentration. The 
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index of air quality (IAQ) value was calculated by means of the BSEC 

software library provided by the manufacturer of the BME680 

multisensor is shown in Figure 9a. 

 

Figure 9. Sensor response to CO. a) IAQ value calculated by means of the 

BME680 using the BSEC software library, b) BME680 MOX sensor resistance, 

and c) graphene sensor resistance. Right y-axes of graphs b and c show the CO 

concentration during the gas exposure. 

Results obtained for exposures to CO at 35 ppm and 50 ppm during 

periods between 10 and 15 min show how the BME680 MOX sensor 

resistance and IAQ value follow the changes in gas concentration. In the 

same way, after every gas pulse the BME680 sensor resistance start 

recovering its initial value.  

On the other hand, the graphene lab-made sensor resistance does not 

experience a significant variation during the exposures to CO. This does 

not mean that the sensor resistance remains constant but the resolution 

of the resistance measurement channel, given by the ADC resolution, is 

not high enough for detecting the very small resistance variations 

suffered by the graphene sensors in the presence of CO at the 

concentrations and pulse durations tested.  

Figure 10a shows the IAQ value obtained during the sensor response to 

NO2 pulses of 200 ppb applied during periods of 5, 10, and 15 min. 
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Figure 10. Sensor response to NO2. a) IAQ value calculated by means of the 

BSEC software library using the BME680 sensors exclusively, b) BME680 MOX 

sensor resistance, and c) graphene sensor resistance. Right y-axes of graphs b 

and c show the NO2 concentration during the gas exposure. 

Results presented in Figure 10 show how although the BME680 sensor 

resistance slightly varies when the concentration of NO2 changes, the 

IAQ value does not reflect this variation, or even worst, decreases in the 

presence of this pollutant gas. This is an expected result as the BME680 

is meant to be used for detecting VOCs and CO, which are reducing 

gases, while NO2 is an oxidizing gas. 

Conversely, the graphene lab-made sensor response to NO2 pulses is 

fully detectable by the readout circuitry implemented in the nodes. 

Resistance variations produced during the gas exposure have values of 

about 30 Ω for a 5 min exposure period. This variation is at least 3-times 

the noise background level and resistance drift, when the sensor is 

exposed to the background air. This result makes the system suitable for 

the detection of a sudden increase in NO2 concentration. 

The BME680 sensor is used as a general-purpose gas sensor through the 

IAQ value, with poor selectivity, and the IAQ value calculated is just 

negatively affected by reducing gases. The additional resistance 

measurement channel designed allows using a wide range of gas 

sensitive materials, thus giving selectivity and widening the set of target 

gases and applications where the sensor network can be applied. 
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Further gas sensing response results can be found in Figure S3 

(supporting information). 

For longer exposure time analysis, the graphene sensor was left for 

about 1 day connected to the LoRa node (placed indoors) reacting with 

the NO2 background level present in the atmosphere. The sensor 

response was compared with the historical data registered by the 

automatic stations from the Network for the Surveillance and Forecast 

of Atmospheric Pollution in Catalonia obtained from [86]. Figure 11 

shows the graphene sensor response towards the NO2 background level 

and the NO2 concentration registered every 1 h by the nearest air quality 

station to this node in Tarragona. The evolution of ambient humidity 

and temperature during this test is shown in Figure S4 (supporting 

information). This figure clearly shows that the changes experienced in 

humidity and temperature during this experiment did not affect the 

response of the graphene sensor. Two additional stations in Tarragona 

followed the same concentration trend during the same period 

analyzed. Figure S5 in the supporting information shows the NO2 

concentration data obtained from these stations. Finally, a 36 h 

continuous measurement experiment was conducted one month later 

than the one shown in Figure 11 and the response of the graphene 

sensor was compared again to the publicly available data for NO2 levels 

in the Tarragona area. These results are sown in Figure S8 (supporting 

information) and fully support the claim that the graphene sensor 

clearly indicates the episodes of high NO2 concentration in the ambient. 

 

Figure 11. a) Graphene sensor response during about 1 day of exposure to 

background level of NO2 present in ambient atmosphere, and b) NO2 

concentration registered by an automatic air quality station in Tarragona. 
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Despite the poor baseline recovery of graphene sensor due to the room 

temperature working conditions, it is worth noting that this gas sensor 

registered successive variations in its resistance when operated under 

real conditions experiments. These variations (registered indoors) 

correlate very well with episodes in which the outdoor NO2 

concentration increased in the Tarragona area (as revealed by the data 

shown in Figures 11 and S5). Therefore, in front of a sudden increase in 

the NO2 concentration level above the TLV, our system could easily 

detect it and raise an alarm.  

If a quantitative rather than a qualitative analysis of nitrogen dioxide 

would be envisaged using the graphene sensor and the wireless 

network discussed here, the use of heating for periodically restoring the 

sensor surface and recovering its baseline would be needed. In addition, 

performing a calibration procedure would be needed as well. Figure S6 

(supporting information) shows that the baseline recovery process for 

the graphene sensor is possible. In addition, Figure S7 (supporting 

information) shows a preliminary calibration curve towards NO2 in the 

range from 50 to 250 ppb obtained for the graphene sensor. These results 

indicate that our system shows potential for performing a quantitative 

analysis but further work beyond the scope of this paper is necessary. 

5. Conclusion 

This work presents the development of a LoRa based, scalable, low-cost, 

and low-power sensor network for air quality monitoring and gas 

leakage events detection in real time. The ability of the network of hot-

plugging nodes allows the continuous operation and its easy scalability 

by just registering nodes on the cloud server application.  

The commercial gas sensor used enables the detection of reducing gases 

such as VOCs and CO, and the calculation of an Index for Air Quality 

according to the total concentration of these pollutant species in the 

surroundings. However, this sensor is not able to give a proper IAQ 

value in the presence of oxidizing pollutant gases, as the IAQ value 

decreases when the sensor reacts with NO2 (a decrease in the IAQ value 

is indicative of a better air quality and, obviously this is not the case if 

the concentration of nitrogen dioxide increases). The limitations 
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associated to the use of the IAQ value when an oxidizing gas is present 

can be overcome using the lab-made graphene sensor. Graphene and 

commercial sensors used in the sensor nodes development allow to 

identify the presence of pollutant reducing and oxidizing gases through 

the IAQ value variation, and the qualitative information obtained from 

the resistance variation of the graphene sensor, respectively. The 

graphene sensor developed not only enables the detection of sudden 

increases in NO2 concentrations, but also makes the system suitable to 

follow the surrounding NO2 concentration trend in ambient air. The 

possibility of functionalizing the graphene sensor presented here, or the 

use of other gas sensitive materials can help modifying selectivity to 

different target gases, making this system suitable for being deployed 

in different application scenarios. 

Despite the use of an inexpensive indoor gateway and 2 dBi 

omnidirectional antennas at the nodes, and having placed the nodes and 

gateway at different locations and distances, the RSSI values obtained 

were always above the sensitivity level, and the package lost rate was 

under 7% for every configuration tested. 

The user-friendly web service developed for accessing the data remotely 

not only allows checking the values of the IAQ and the NO2 

concentrations variation in a qualitative way, but also shows the 

evolution of ambient humidity and temperature. 

Further graphene functionalization (e.g., nanoparticle decoration) is 

possible to enhance the results presented here. And, not limited to this, 

different gas sensing materials (e.g., MOXs or dichalcogenides) can be 

also adapted to the sensing nodes when other requirements are needed. 

This means that our sensing nodes present many possibilities to be 

improved and high versatility for being employed in different 

applications. 

Future work will be focused on the quantitation of the target gases 

measured with chemoresistive sensors integrated in the sensing nodes. 

For example, by using heating for periodically restoring the sensor 

surface and recovering the baseline and by employing a calibration 
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procedure, the graphene sensor could be used for quantitatively 

determining NO2 concentration. 

Supplementary Materials: The following are available online at 

http://www.mdpi.com/1424-8220/20/21/6225/s1, Figure S1: Yearly 

number of publications related to (a) IoT, (b) IoT for air quality 

monitoring, (c) IoT using LoRa as wireless technology and (d) air quality 

monitoring; Figure S2: Coated alumina substrate; Figure S3: Graphene 

sensor response for NO2 and CO; Figure S4: Graphic interface of the web 

service for monitoring sensor data; Figure S5: Graphene sensor response 

during about 1 day of exposure to background level of NO2 present in 

ambient atmosphere, and NO2 concentration registered by 3 automatic 

air quality stations in Tarragona; Figure S6: Graphene sensor resistance 

baseline recovery process performed using temperature pulses; Figure 

S7: Calibration curve for the graphene sensor response at room 

temperature; Figure S8: Graphene sensor response during 36 h of 

exposure to background level of NO2 present in ambient atmosphere 

(upper panel) and NO2 concentration registered by four automatic air 

quality stations in the Tarragona area. 
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Supplementary Materials 

Figure S1 shows the growth of the research areas for which this paper is 

relevant, reflected as the number of publications appearing in Scopus 

between years 2010 and 2020 related to IoT, LoRa, and air quality 

monitoring. 

 

Figure S1. Yearly number of publications related to (a) IoT, (b) IoT for air 

quality monitoring, (c) IoT using LoRa as wireless technology and (d) air 

quality monitoring. Source: Scopus. 

1. Graphene sensor 

 

Figure S2. Alumina substrate. Top side (left) with graphene nanoplatelets 

deposited on the interdigitated electrodes. Bottom side (right) with a platinum 

screen printed heater. 
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2. Graphene sensor performance 

In order to test the in-lab performance of the graphene sensor towards 

CO and NO2, preliminary measurements were done under controlled 

atmosphere. During the laboratory conditions test sensors were placed 

in a Teflon chamber with an inner volume of about 22 cm3. NO2 and CO 

calibrated cylinders of 1 ppm and 100 ppm respectively (balanced in 

synthetic air), and synthetic air cylinders were used to set the desired 

gas concentrations by using a mass-flow controller system (EL-FLOW®) 

from Bronkhorst, and Flow View and Flow Plot software from the same 

company were employed. The total flow across the sensor chamber was 

kept at 100 ml/min. As the resistance measurements channel was meant 

to be used to detect resistance changes provoked by gas leakage events 

and sudden increases in gas concentrations, sensors were tested with 

two different experiments. First, a gas leakage event was simulated 

(Figure S3(a) and S3(c)) by exposing the sensor to a period under 

synthetic air and then a short exposure of 15 min under gas 

concentration above the Threshold Limit Value (TLV). On the other 

hand, for simulating sudden increases in gas concentration sensors were 

exposed to low concentrations of target gases (below the TLV) and then 

to a period of 15 min of concentrations above the TLV (Figure S3(b) and 

S3(d)). Gas concentrations used were 35 ppm and 200 ppb for CO and 

NO2, respectively. These concentrations were selected according to the 

exposure limits for 1 h stablished by the European Environment Agency 

and the National Ambient Air Quality Standards from the United States 

Environmental Protection Agency. Figure S3 shows the response of the 

graphene sensor during the test above mentioned. 
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Figure S3. Graphene sensor response for (a) 15 min of 200 ppb of NO2 and then 

synthetic air, (b) baseline NO2 level of 50 ppb (below the TLV) and sudden 

increase to 200 ppb during 15 minutes (overpassing the TLV), (c) 35 ppm of CO 

and then a period under  synthetic air, and (d) baseline CO level of 5 ppm and 

sudden increase to 35 ppm during 15 min. (a) and (c) correspond to the 

simulation of a gas leakage event where gas concentrations variate from 0 to 

values above the TLV, while (b) and (d) simulate a sudden increase in gas 

concentration from values below the TLV to values over this. 

To accomplish the purpose of detecting gas leakage events or sudden 

increases in gas concentrations, the resistance measurement channel 

must be able to detect the resistance variation (decrease for NO2 and 

increase for CO) caused by the sensor response towards the interaction 

with gases. Since the nodes are configured to perform the resistance 

calculation using a 12-bit analog-to-digital converter (ADC), and the 

Vdd of the system is 3.3 V, the resolution is 8.0566 x10-4 V. Thus, any 

change in resistance that provokes a voltage variation higher than this 

value would be detected by the system. Considering that the resistance 

variation results presented in Figure S3a,b,c provoked by the interaction 

of both, NO2 and CO with the sensor generate a voltage variation higher 

than the ADC resolution, the resistance measurement channel is able to 

operate in these scenarios. On the other hand, when CO concentration 

goes from 5 ppm to 35 ppm, represented in Figure S3d, resistance 

variation corresponds to a voltage change lower than the ADC 

resolution. Hence, this increase in resistance is not detectable by the 

system. 
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Therefore, a sudden increase (from a background level to a value above 

the TLV) in CO concentration would not probably be detected. Besides, 

despite the theoretical detection of CO in gas leakage events (Figure S3c) 

in-lab conditions, the graphene sensor is not able to detect this variation 

from 0 to 35 ppm of CO during ambient monitoring as Figure 9c shows 

in the manuscript. Probably the reason is based on the ambient moisture 

conditions. In other words, while Figure S3 shows in-lab measurement 

under dry conditions, Figure 9 in the manuscript represents the real 

time-monitoring, in which the atmosphere contains a significant level of 

relative humidity. In consequence, as the gas sensing mechanisms 

explained in the manuscript, the electron-withdrawing behaviour of 

water molecules could underestimate the CO response, being almost 

impossible to detect this analyte even in gas leakage events. 

3. Nodes and Gateway Cost 

As the total cost of the network depends on the number of nodes 

deployed, the cost presented here is just related to one gateway and one 

node. The price of the TTIG (gateway) at the moment of starting the 

project was 69 euros. Nodes parts and components have a price of 39.43 

euros including the LoRa development board and 2 dBi omnidirectional 

antenna, BME680 4-in-1 sensor, PCB and electronic components and 3D 

printed package. 
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4. Qualitative background NO2 concentration variation measurement 

 

Figure S4. Graphic interface of the web service for monitoring sensor data. IAQ 

value calculated from the BME680 sensor (top-left), temperature (top-right), 

humidity (top-right), BME680 sensor resistance (bottom-left), and graphene 

lab-synthesized sensor resistance (bottom-right). The figure shows the same 

time period than Figure 11 in the manuscript. 

As Figure S4 shows while the BME680 sensor resistance somehow 

follows the temperature and humidity changes, the graphene lab-

synthesized sensor resistance does not show the same behavior. Thus, 

it can be deduced that the graphene sensor resistance is just being 

affected by the background NO2 concentration. This supports the results 

presented in Figure 11 in section 4.2. Gas sensing performance. The peak 

appearing in the IAQ value chart is related to a small pulse of 35 ppm 

of CO applied before letting the sensor to react just with the ambient air. 
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Figure S5. Graphene sensor response during about 1 day of exposure to 

background level of NO2 present in ambient atmosphere, and NO2 

concentration registered by 3 automatic air quality stations in Tarragona. 

Distance from the stations to the sensor nodes location was about 1.75 km (Parc 

de la ciutat), 4.7 km (Bonavista), and 2.9 km (Sant Salvador). The information 

related to the spacetime in which Sant Salvador plot appears with a red dotted 

line is not available in the web service form the Generalitat de Catalunya. 

Figure S5 depicts how although the NO2 concentration along the 3 

automatic stations have different levels, the concentration trend is the 

same. This supports the results presented in Figure 11 in the 

manuscript. 
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5. Baseline recovery and sensor calibration 

 

Figure S6. Graphene sensor resistance baseline recovery process performed 

using temperature pulses. 

Figure S6 depicts the baseline recovery process for the graphene sensor 

resistance. This test was performed by applying 250 ppb NO2 pulses 

during about 10 min, after which the sensor is exposed to synthetic air. 

After being 5 min under synthetic air, a temperature pulse of 50ºC is 

applied for 5 min under synthetic air to restore the sensor surface. After 

the final NO2 pulse the temperature pulse is not applied to show how 

the resistance baseline is not recovered at room temperature even after 

1 h. 

Additional in-lab measurements have been carried out by using the 

graphene sensor to assess the sensing performance to NO2. Therefore, 

calibrated gas bottles and a mass flow system were used to apply 

successive concentrations of NO2 for 5 minutes, followed by 15 minutes 

of synthetic dry air between the different gas exposures, in order to 

desorb the NO2 molecules and recover the resistance baseline (flow rate: 

400 sccm). Figure S7 shows the calibration curve obtained for a range of 

NO2 concentrations from 50 ppb to 250 ppb. A quite linear gas sensor 

response was obtained, as well as high measurement repeatability. 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



 

Figure S7. Calibration curve for the graphene sensor response at room 

temperature. 

 

Figure S8. Graphene sensor response during 36 h of exposure to background 

level of NO2 present in ambient atmosphere (upper panel) and NO2 

concentration registered by four automatic air quality stations in the Tarragona 

area. 

This experiment further confirms that the graphene sensor is able to 

clearly follow and indicate the episodes in which the background 

ambient levels of nitrogen dioxide increase. 
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Chapter 4 

 

                    Conclusions and future perspectives 
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4.1 Conclusions 

During the last decades MOX semiconductors have been employed in 

the development of commercial gas sensors although the performance 

of these materials in gas sensing applications depends on high 

temperatures activation or miniaturization processes which make their 

fabrication more expensive and hinders its utilization in portable 

systems. In this thesis we have developed a new approach to 

discriminate between different gas exposition and quantify gas 

concentration based on the combined use of low temperature activation 

and light modulation of chemiresistive sensors. The methodology 

developed uses sensor response transients as input of the mathematical 

analysis employed in the discrimination and quantification process, 

hence making possible the reduction of the system response time since 

there is no need of reaching the steady state of the sensor resistance for 

carrying out the procedure. 

The pulsed light modulation methodology was applied on different n-

type and p-type chemiresistive sensors, using different materials, 

specifically MOX (WO3), metal transition dichalcogenides (WS2), 

perovskite oxide (SrTiO3@WO3), and carbon nanomaterials (Au@CNT). 

It was demonstrated that using n-type sensor led to obtain better 

quantification performance towards oxidizing gases, while p-type 

exhibit higher accuracy to quantify reducing gases.  

The influence of certain variables of the pulsed light methodology on 

the quantification process as the light source wavelength, the pulses 

duration or the signal time used to perform the quantification models 

were studied. It has emerged that the light switching period or light 

pulse duration do not suppose an important factor for the model’s 

performance since similar results were obtained when the period suffers 

a decrease of about a half. It was found that the prediction performance 

is related to the sensor signal period used to perform the models 

although the performance improvement generated by increasing the 

signal period in not significant. Light sources with wavelength from the 

UV to the visible spectrum (325, 365, and 410 nm) were used to activate 

the sensing layer of the sensors employed, obtaining better performance 

of the prediction models when the system operates under visible light 
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modulation. This suppose an improvement in the system cost and 

power consumption since generally UV light sources are more 

expensive and power consumer than visible one. 

The sensor surface activation mechanism used in this thesis represents 

a reduction in power consumption of about 90 % as compared with the 

traditional heating mechanism working at an operating temperature of 

250 ºC. This power reduction is applicable to sensors developed on the 

commercial alumina sensors used in this work. For MEMS based MOX 

sensors the power consumption reduction would not be as high as 90 % 

since normally this kind of sensors use tens of milliwatts to heat up the 

sensors. Even though, the overall power consumption of the MEMS 

based sensors shall be reduced using this combined low temperature 

heating and pulsed light modulation mechanism. 

Models developed using frequency components extracted from the FFT 

analysis performed on the rippled sensor signal were compared with 

models obtained using resistance oxidation rates (resistance variation 

during the semi period where the light is OFF) previously used by other 

authors to establish a relationship with the gas concentration. Models 

developed using FFT analysis, PCA and linear regression techniques 

present high prediction performance with R-squared values up to 0.98 

and RMSE values lower than 10 % of the total concentration range 

measured. These results open an opportunity for using non-MEMS 

chemiresistive sensors in real gas sensing applications, being part of 

low-cost, low-power, and portable monitoring systems. 

During the progress of this thesis, it was also developed a LoRa based, 

low-cost, low-power, and scalable sensor network for air quality 

monitoring and gas leakage events detection. The inclusion of 

commercial and lab-synthesized sensors allowed to properly detect 

oxidizing and reducing gases. Having a resistance measurement 

channel to monitor the lab-synthesized sensor behaviour opens the 

opportunity of using this system in a wide range of applications where 

leakage of pollutant or hazardous gases are prone to occur by selecting 

the sensing material according to the target gas monitored. The sensing 

nodes present hot-plug capabilities in the network since these only need 

to be registered on the cloud server, which favors the scalability of the 
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sensor network. Hence, this WSN structure can be used for AQM 

purpose in crowded places as airports or train stations where air 

pollution control or even the prevention of chemical threats can save 

lots of human lives. 

The commercial gas sensor used enables the calculation of an IAQ based 

on the total concentration of reducing gases as VOCs and CO present in 

the surroundings. However, the IAQ calculation is affected by the 

presence of pollutant oxidizing gases since its value decreases (this 

suppose an air quality improvement) when the sensor is exposed to NO2 

increasing concentration which should be interpreted as an air quality 

worsening. This limitation was overcome by using the lab-synthesized 

graphene sensor, which detects oxidizing species at room temperature 

and is not affected by reducing gases. The graphene sensor used to test 

the sensing nodes not only allows the detection of a sudden increase in 

NO2 concentration but also follows the background concentration of this 

gas in the atmosphere. The NO2 concentration variation registered with 

the graphene sensor was correlated with the concentration fluctuations 

registered in four different air quality monitoring stations in Tarragona. 

The network performance was tested using an indoor LoRa gateway 

and 2 dBi omnidirectional antennas at the nodes. Even with 

interferences in the straight view of the gateway and sensing nodes and 

distances up to 130 m, the RSSI values were always above the sensitivity 

level, and the package lost rate was under 7 % under normal weather 

conditions. 

The user-friendly web application hosted in a Raspberry Pi and 

developed using OSS for accessing the data remotely not only allows 

checking the values of the IAQ and the NO2 concentration variation, but 

also shows the evolution of ambient humidity and temperature. 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-POWER TECHNIQUES FOR WIRELESS GAS SENSING NETWORK APPLICATIONS: PULSED LIGHT 
EXCITATION WITH DATA EXTRACTION STRATEGIES 
Ernesto González Fernández 



4.2 Future perspectives 

After finishing this thesis some questions remain open and further 

analysis is needed to solve them. The application of the pulsed light 

modulation on miniaturized chemiresistive sensor should be tested 

since reduction in sensors dimension (with a direct influence in surface 

reactions kinetic) shall allow an important decrease in the light pulses 

period, thus leading to gas identification and concentration 

quantification process in just few seconds. The miniaturization of 

sensors also promotes the use of low dimension and ultra-low power 

LEDs which consume just few milliwatts. The variation of the pulsed 

light duty cycle should be studied since its reduction can lead to power 

consumption reduction. The control of this parameter together with the 

light pulse duration can be employed to implement a closed loop system 

where these variables may be useful to quantify gas concentration. 

Regarding the implementation of the WSN, the use of energy harvester 

technologies (solar energy, electromagnetic waves, or vibration of 

railways) should be studied to deploy very low-power nodes in places 

where electrical grid infrastructures are not available. As a matter of 

fact, it was planned to perform these analyses during this thesis 

development but the Covid 19 lockdown blocked the opportunities to 

make a stay in a partner facility to implement this task. 

Last but not least, the pulsed light modulation mechanism use in this 

thesis should be implemented as part of the designed WSN in order to 

use MOX sensors at room temperature thus widening the applications 

of this system. Also, the functionalization of the graphene sensor used 

to test the WSN will allow to develop more sensitive and selective 

systems for being deployed in different application scenarios. 
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