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Abstract 

In the last decades, the development trends of high efficiency and compact electric drives on the motor 

side focused on Permanent Magnet Synchronous Machines (PMSMs) equipped with magnets based on the 

rare-earth elements. The permanent magnet components, however, dramatically impact the overall bill of 

materials of motor construction. This aspect has become even more critical due to the price instability of 

the rare-earth elements. This is why the Permanent Magnet Assisted Synchronous Reluctance Motor 

(PMaSynRM) concept was brought to the spotlight as it gives comparable torque density and similar 

efficiencies as PMSM although at a lower price accredited for the use of magnets built with ferrite 

composites. Despite these advantages, PMaSynRM drive design is much more challenging because of non-

linear inductances resulting from deep cross saturation effects. 

It is also true for multi-phase PMSM motors that have gained a lot of attention as they proportionally 

split power by the increased number of phases. Furthermore, they offer fault-tolerant operation while one 

or more phases are down due to machine, inverter, or sensor fault. The number of phases further increases 

the overall complexity for modeling and control design. It is clear then that a combination of multi-phase 

with PMaSynRM concept brings potential benefits but confronts standard modeling methods and drive 

development techniques. 

This Thesis consists of detailed modeling, control design, and implementation of a five-phase 

PMaSynRM drive for normal healthy and open phase fault-tolerant applications. Special emphasis is put 

on motor modeling that comprises saturation and space harmonics together with axial asymmetry 

introduced by rotor skewing. Control strategies focused on high efficiency are developed and the position 

estimation based on the observer technique is derived. The proposed models are validated through Finite 

Element Analysis (FEA) and experimental campaign. The results show the effectiveness of the elaborated 

algorithms and methods that are viable for further industrialization in PMaSynRM drives with fault-tolerant 

capabilities. 

 

 

 

Keywords - Permanent Magnet Machines (PMSM), Permanent Magnet Assisted Synchronous Reluctance 
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Resumen 

En últimas décadas, las tendencias de desarrollo de accionamientos eléctricos compactos y de alta 

eficiencia en el lado del motor se centraron en las maquinas síncronas de imanes permanentes (PMSM) 

equipadas con imanes basados en elementos de tierras raras. Sin embargo, los componentes de imán 

permanente impactan dramáticamente en el coste de construcción del motor. Este aspecto se ha vuelto aún 

más crítico debido a la inestabilidad de precios de los elementos de tierras raras. Esta es la razón por la que 

el concepto de motor de reluctancia síncrona asistido por imán permanente (PMaSynRM) se ha tomado en 

consideración, ya que ofrece una densidad de par comparable y eficiencias similares a las de PMSM, aunque 

a un precio más bajo acreditado para el uso de imanes construidos con compuestos de ferritas. A pesar de 

estas ventajas, el diseño del drive PMaSynRM resulta muy complejo debido a las inductancias no lineales 

que resultan de los efectos de saturación cruzada profunda. 

Esto también es cierto para los motores PMSM polifásicos que han ganado mucha atención en los 

últimos años, en los que se divide proporcionalmente la potencia por el mayor número de fases. Además, 

ofrecen operación tolerante a fallas mientras una o más fases están inactivas debido a fallas en la máquina, 

el inversor o el sensor. Sin embargo, el número de fases aumenta aún más la complejidad general del diseño 

de modelado y control. Está claro entonces que una combinación de multifase con el concepto PMaSynRM 

tiene beneficios potenciales, pero dificulta los métodos de modelado estándar y las técnicas de desarrollo 

del sistema de accionamiento. 

Esta tesis consiste en el modelado detallado, el diseño de control y la implementación de un drive 

PMaSynRM de cinco fases para aplicaciones normales en buen estado y tolerantes a fallas de fase abierta. 

Se pone especial énfasis en el modelado del motor que comprende la saturación y los armónicos espaciales 

junto con la asimetría axial introducida por la inclinación del rotor. Se desarrollan estrategias de control 

enfocadas a la alta eficiencia y se deriva la estimación de posición basada en la técnica del observador. Los 

modelos propuestos se validan mediante Análisis de Elementos Finitos (FEA) y resultados experimentales. 

Los resultados muestran la efectividad de los algoritmos y métodos elaborados, que resultan viables para 

la industrialización de unidades PMaSynRM con capacidades tolerantes a fallas. 

 

 

Palabras clave - Máquinas de imán permanente (PMSM), Máquinas de reluctancia síncrona asistidas por 

imán permanente (PMaSynRM), Análisis de elementos finitos (FEA), saturación cruzada, armónicos 

espaciales, sesgo, máquinas polifásicas, control vectorial, tolerancia a fallas 
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J Moment of inertia 2kgm  

B Friction factor (viscous) - 

stackl  Active stack length mm 

soD  Stator outer diameter mm 

roD  Rotor outer diameter mm 

gapd  Airgap length mm 

N Number of slots - 

b  Skew angle rad 

Â  Magnetic reluctance -1H  

F  Magneto-motive force A 

dnÂ  d-axis virtual reluctance of the n-th harmonic -1H  
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qnÂ  q-axis virtual reluctance of the n-th harmonic -1H  

xÂ  x-th phase virtual reluctance -1H  
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1. Introduction 

This chapter outlines the main content of the thesis. The research topic is introduced, the research 

problem is formulated and the hypotheses are stated. Consequently, the research objectives are identified, 

followed by the thesis outline with a summary of each chapter. 

 

 

CONTENTS: 

1.1 Research topic 

1.2 Research problem 

1.3 Hypotheses 

1.4 Aim and objectives 

1.5 Thesis outline 
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1.1. Research topic 

Permanent Magnet Synchronous Machines (PMSM) have become predominant in many branches of 

the industry in the early 21st century [3]. The trends of sustainable and environmentally friendly growth 

reinforced the need for very high efficiency and compact electro-mechanical conversion systems [4]. 

PMSMs offer high efficiency, high torque and energy density, and reliability. Due to these appealing 

features, they have been gaining volumes in propulsion systems such as in electric traction and electric 

vehicles (EV) drives [5]–[7], renewable energy (RE) sources, household appliances, power tools, to 

mention just a few of vast application types with PMSM motors. 

The use of magnets based on rare-earth elements strongly impacts the overall bill of materials [16]. It 

is caused by the global price instability of these components. Followed by concerns about the shortage of 

supply, a Permanent Magnet Assisted Synchronous Reluctance Motor (PMaSynRM) has been put into the 

spotlight [17], [18]. It offers similar characteristics in terms of efficiency and energy density. PMaSynRMs 

are essentially rare-earth-free motors equipped with magnets based on ferrite composites [19]. Because of 

the wide availability of these resources the risks concerning supply chains can be mitigated [10]. However, 

PMaSynRM is much more challenging in terms of control algorithm development due to cross saturations. 

In some high power systems, such as in ship propulsion or aerospace applications the reliability of drive 

becomes even more critical [8], [9]. Furthermore, the employment of three-phase PMSM machines is 

limited due to constraints arising from operating voltages and currents of power electronic switches [15]. 

This restriction was a motivating factor for the multi-phase motor to be invented [11]. In this kind of 

machine, power is split between a higher number of phases [12]. Additionally, the electromagnetic torque 

can be still generated even with some failures in the drive chain that lead to single or multiple open phase 

operations [13], [14]. 

This thesis presents the research about problems that emerged from the implementation of PMaSynRM 

motors in multi-phase drive systems. The motor modeling is studied, the issues arising from the non-linear 

aspects of cross saturation and space harmonics are addressed for three-phase and extended to five-phase 

PMaSynRM. A novel model, that comprises the aforementioned phenomena together with axial asymmetry 

introduced by skewing, is proposed, implemented, and developed. Then, high-efficiency control strategies 

considering Maximum Torque Per Ampere (MTPA) are derived. The effectiveness of the proposed 

techniques is verified versus Finite Element Analysis (FEA) and experimental tests with a prototype 

machine in healthy and open phase conditions. The fault tolerance is considered also regarding position 

sensor malfunctioning. Thus, an approach for position estimation is mathematically elaborated leading to 

sensorless control. The next sections present in detail the research stages carried out during the development 

of this thesis.  
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1.2. Research problem 

Permanent Magnet Assisted Synchronous Reluctance Motor (PMaSynRM) has been initially proposed 

as Interior Permanent Magnet Synchronous Motor (IPMSM) with a transversally laminated rotor [20] and 

it has become very attractive in the last years because of high efficiencies, compactness, reliability, and its 

low cost [16]–[18]. Hence, PMaSynRMs in many applications are considered as a replacement for more 

expensive PMSM constructions [17], [19]. These motors, however, intrinsically exhibit anisotropy in the 

rotor due to the introduction of flux barriers and additional magnets saturate iron bridges. Because of the 

substantial armature reaction, they suffer from deep saturation [20]. These phenomena result very 

challenging to be included in analytical modeling for control algorithm design and drive development.  

The conventional d-q model, well known in the literature, is valid for motors with constant inductances 

and PM flux only [1],[2]. Finite Element Analysis is widely adopted for geometrical optimization and 

performance prediction [36], [16]. While it requires a high computational burden, other fast and precise 

models were reported. For instance, Magnetic Equivalent Circuits (MECs) are an interesting option 

although for simple rotor structures only [21]–[24]. There are approaches based on variable inductance 

estimations [25] or modified d-q two-axis model [26]–[28] that considers nonlinear inductances. To date, 

the inverted flux map nonlinear model has become the state of the art for three-phase PMSM motors [29]–

[31]. It requires identification of current dependent flux maps that are consequently inverted and projected 

in the motor model.  

The multi-phase motors offer clear benefits in terms of power division [11] and fault-tolerant capability 

[8],[9]. There are solutions of Variable Speed Drives (VSD) established with vector control of polyphase 

PMSMs with respective multi-phase modulation techniques based on multiple d-q spaces concept [32], 

[33]. Multi-phase motors bring additional complexity caused by the decoupling of multiple air-gap field 

harmonics [8]. Regulation of individual MMF harmonics is possible for multiphase motors with constant 

inductances [34], [35] but was not yet addressed for multiple cross saturating motors such as PMaSynRM. 

It is recognized that before-mentioned flux map inversion is feasible in 2D or 3D d-q models however it is 

not viable for a higher number of dimensions that are intrinsically present in multi-phase machines.  

The purpose of this thesis is to study the combination of PMaSynRM motor and multi-phase drive 

concept on a five-phase PMaSynRM prototype comprising modeling and implementation. The motor 

behavior with space harmonics, saturation phenomena, and axial asymmetry introduced by rotor skewing 

are in the focus of this research. It will propose a new high fidelity rapid models in 5D and 6D that are 

practically feasible and do not require flux map inversion. The model will be extended from three to five-

phase motor and applied for control in healthy and open phase conditions. Maximum Torque Per Ampere 
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(MTPA) control is derived based on these models. Further, the effectiveness of a sensorless application will 

be discussed.  
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1.3.  Hypotheses 

Regarding the previous discussion, the general hypothesis is that the PMaSynRM motor can be 

considered as a replacement for classical PMSM in many multiphase electric drive applications due to 

power density, efficiency, and cost advantages. However, the implementation of multiphase PMaSynRM 

induces a new research topic that requires exploration of a novel solution. Following this rationale, the 

hypotheses have been formulated as: 

• Development of PMaSynRM precise model comprising cross-saturations is crucial for the 

derivation of optimal control strategies towards high efficiency in a wide speed range. 

• Incorporation of nonlinear cross-saturation in multi-phase PMaSynRM machine modeling is 

essential to determine the Maximum Torque per Ampere (MTPA) control approach. 

• Multiphase detailed drive behavior in healthy and open phase conditions requires a high fidelity 

model that includes saturations, space harmonics, and skewing, when applicable. 

• Vector control and sensorless multiphase PMaSynRM drive can be studied in transient and 

steady-state regimes provided analytical model accuracy with close to Finite Element Analysis 

(FEM) precision. 

In consequence, 

A novel, fast nonlinear model for multi-phase PMasynRM, that includes space harmonics and cross 

saturations, will improve multiphase healthy and faulty drive analysis and lead to high-efficiency drive 

development. 
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1.4. Aim and objectives 

To provide an assessment of the research problem and address the research hypotheses, the main aim 

of this thesis is to design and develop high efficiency five-phase PMaSynRM drive and evaluate its behavior 

in static and dynamic conditions within healthy and faulty scenarios. 

The drive analysis has to be performed under a solid analytical model basis that will offer the best 

compromise between precision (thus reflecting the prototype motor behavior in the most accurate way 

possible) and computational load. Then, rapid control analysis and development can be realized without 

precision loss. 

Then, to accomplish the purpose of this thesis, the specific objectives are formulated: 

a) First, the analysis of the conventional three-phase PMaSynRM model with constant inductances 

and permanent magnet flux linkage. The objective includes the revision of classic Field 

Oriented Control (FOC) with linear PI regulators and MTPA control strategy derived from the 

constant parameter model. 

b) Compose a model of a five-phase PMaSynRM with constant parameters established for the first 

and third harmonic air-gap field decoupling, close control loops for both harmonics, and apply 

state of the art Pulse Width Modulation (PWM) technique for a five-phase inverter. 

c) Build up a model of three-phase PMaSynRM with saturation and space harmonics based on 2D 

and 3D flux map extraction via Finite Element Analysis (FEA) identification and mathematical 

post inversion. Verify feasibility and apply this concept for the five-phase PMaSynRM with 4D 

and 5D maps. Propose methodology to correct maps and demonstrate the effectiveness of the 

proposed method with simulation and experimental tests. Compute high-efficiency control 

trajectories and apply them to the developed drive. 

d) Derive a 6D flux map model that is able to accurately predict five-phase PMaSynRM motor 

behavior under single open phase and double open phase (adjacent and non-adjacent) scenarios. 

Run test campaign for experimental validation. 

e) Develop a new fast and precise model that avoids flux map inversion by the transformation of 

flux maps to “virtual reluctance” maps. Corroborate simulation waveforms against FEA and 

test bench results. 

f) Analyze the effectiveness of the developed models to define precise MTPA control, even in 
sensorless operation.  
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1.5. Thesis outline 

To cover the defined objectives and properly assess the formulated hypotheses, the thesis will be 

organized as follows: 

Chapter 2 shows a description of the three-phase and five-phase PMaSynRM drive, motor model with 

constant inductances, its advantages, and drawbacks. It also presents the design and implementation of 

the FOC control with conventional state of the art PWM technique. 

Chapter 3 consists of the derivation of high accuracy flux map models of three-phase and five-phase 

PMaSynRM comprising cross saturations, space harmonics, and cogging torque. It shows hot to identify 

the maps and implement them in the analytical model. The concept is realized in multi-two-axes planes and 

natural stator phase reference for healthy and faulty motor analysis respectively. Finally, FEA validation is 

provided for both healthy and open phase conditions. Vector control with a high-efficiency MTPA control 

strategy is developed and implemented. 

Chapter 4 deals with flux map correction due to axial asymmetry introduced by rotor skewing. Two 

methods are proposed to account for segmented rotor construction in the multi-plane and natural reference 

frame models. The simulation results are corroborated with FEA and with experimental tests performed in 

the test bench with the manufactured five-phase PMaSynRM prototype. 

Chapter 5 presents a novel model established with the transformation of the flux maps to “virtual 

reluctance” maps. The techniques to avoid singularities and achieve stable simulations are discussed. The 

performance of the proposed model is evaluated with FEA and experimental analysis is provided. 

Chapter 6 introduces a sensorless PMaSynRM drive design that is constructed with a rotor position 

and velocity observer based on the Kalman Filter structure developed on the model with constant 

parameters. Then, the projection on the saturating PMaSynRM model is implemented followed by a 

discussion of the parameter sensitivity. 

Chapter 7 contains conclusions drawn from the thesis and future work initiated by this research. 

Chapter 8 informs about thesis dissemination, published papers, and collaboration in public and private 

research projects in the scope of the thesis. 

 



2 
 

2. Conventional modeling and control of multiphase PMaSynRM 
motor 

This chapter constitutes simulations of a three-phase and five-phase PMaSynRM drive, setup motor 

models established with constant inductances, and constant flux generated by permanent magnets. Then, 

FOC control is implemented with MTPA control strategy, linear current control, and classical PWM 

modulation technique. The advantages and limitations of this approach are discussed. 

 

 

CONTENTS: 

2.1 Review of electrical drive technologies 

2.2 Two axis three-phase PMaSynRM model with constant parameters 

2.3 Three-phase PMaSynRM FOC control 

2.4 Multi-plane five-phase PMaSynRM model with constant parameters 

2.5 Five-phase PMaSynRM FOC control of first and third harmonic 

2.6 Conclusions 
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2.1. Review of electrical drive technologies 

The electrical drives are the systems of electrical machines and other electric and electronic devices 

that permit to control the speed of rotation. A drive consists of a source, power converter, motor, load, 

sensors, and control and command units. The AC motor is the actuator of the electrical drive and its 

performance plays important role in the overall drive operation. Fig. 2.1 shows the general classification of 

the AC motors and an example of a special classification concerning EV application, it is clear that a variety 

of motor types can be employed. From the note of the history first drives were built with DC motors. Their 

main advantage is that they are practically the simplest ones to construct although poor efficiency and short 

period maintenance are practically disadvantageous. The modern control methods are to some extent 

equivalent to DC motor control [2]. 

 

However, induction machines (IMs) have become more important because of the reliability and 

inexpensive bill of materials in comparison to other units. These motors are simple in construction, robust, 

and able to operate in harsh conditions (pollution, explosive) contrary to DC machines. The absence of 

commutator and brushes makes the maintenance very low and the lifetime longer. This is why IM became 

replacing DC motors. However, at low loads, the power factor and efficiency are very low. There are some 

studies on control to improve IM efficiency [37], [38]. The other disadvantage is the small starting torque. 

The soft-start methods and first vector control were developed for induction machines in 1971 by Hasse 

and Blaschke [39] resulting in a very good performance. 

Synchronous Machines (SM) and especially PMSMs with permanent magnets (no excitation field 

winding and no use of slip rings) are very efficient. PMSM motors have become extremely important in 

the industry in the last few decades. Their success is accounted mainly for high efficiency, high torque 

density, and reliability [1]–[3]. They are found to be implemented in versatile applications such as 

renewable energy (RE) power generation, hybrid electric vehicle (HEVs), power tools, household 

appliances, and heavy propulsion systems [4], [5], to mention a few. 

a) b) 
 

 
Figure 2.1.  Classification of AC machines, a) general, b) with respect to EV application 
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2.1.1. PMaSynRM technology in motor classification 

PMSMs of three or more phases are divided into surface mounted (SPMSM) and interior (IPMSM) 

types. IPMSMs have a smaller effective air-gap and the armature reaction effect is stronger, which makes 

them easier to operate in the field weakening region up to high speeds 80[40]. The price of rare earth 

magnets is a disadvantage [41]. The other important drawback is the temperature limitation of neodymium 

magnets i.e. they undergo demagnetization at around 90º C [42]. Therefore, an SRM motor gained a lot of 

interest. This is a simple and robust construction without rare-earth magnets so the higher temperature is 

allowable [43] but lower torque densities and higher ripples are observed.  Some examples of PMSM cross-

sections in the background of other motor types are depicted in Fig. 2.2. 

 

SPMSM can generate electromagnetic torque while IPMSM develops the extra reluctance torque 

component due to magnetic asymmetry in the rotor construction. In this context, PMaSynRM belongs to 

the PMSM family, however with the main reluctance torque due to rotor anisotropy and an auxiliary torque 

originating from magnets installed in the rotor magnetic paths. Essentially, PMaSynRM may also be 

interpreted as a hybrid concept of PMSM and SRM combination. Usually, PMaSynRM is a rare-earth-less 

motor in which expensive Neodymium or Samarium-Cobalt magnets were replaced by less costly ferrite 

ones [44], [45]. The reluctance torque is dominant and it is improved by a higher saliency ratio obtained by 

the introduction of additional flux barriers in the low permeance axis [46], [47]. The magnets are mounted 

radially [48] or perpendicularly [49] and are magnetized in a positive or negative direction [50] as shown 

in Fig. 2.3. 

 

 
 

Figure 2.2.  Cross section of selected motor types, from left: IM, SPMSM, IPMSM, SRM 

 
 

Figure 2.3.  Rotor layout of PMaSynRM with several magnet arrangements [50] 
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Several pieces of researches have demonstrated PMaSynRM can achieve performance good enough to be 

considered as a real alternative for PMSM machines for electric traction [51], [52]. In summary, it offers 

the best compromise considering the performance to cost ratio [53]. 

2.2. Two axis three-phase PMaSynRM model with constant parameters 

The conventional two-axis model for three-phase machines based on the Clarke-Park transforms is well 

known in the literature [1]–[3]. This analytical model was developed with some simplifying assumptions: 

• permeability of iron is infinite i.e. saturation is neglected 

• distribution of the air-gap flux density is sinusoidal 

• constant inductances and permanent magnet flux (constant parameters) 

• cogging torque (variation of magnetic co-energy) is negligible 

• eddy currents and hysteresis losses are negligible 

• there is no field current dynamics 

 

 

In the basis of the considered classic model is the stator voltage equation. The analytical derivation starts 

from the formulation in the vector/matrix form considering AC quantities in abc phases of a three-phase 

motor. Then with the help of Clarke-Park transform the equations are converted to the dq rotor reference 

frame [1]–[3], in which AC magnitudes become DC “signals”. The stator voltage equation of PMaSynRM 

is given in (2.1): 

d
d s d r q

d
U R i

dt

y
w y= + -

 

q
q s q r d

d
U R i

dt

y
w y= + +

 

(2.1) 

 
 

Figure 2.4.  Classic two-axis phasor diagram of a three-phase PMaSynRM 
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where sR is the stator resistance, dU and qU  denote stator d and q axes voltages, di  and qi  correspond to d 

and q axes currents, dy  and
qy  stand for d and q axes flux linkages and rw  is  the rotor angular electrical 

velocity. The flux linkages contain stator current and permanent magnet flux contributions (2.2): 

d d dL iy = ⋅  

q q q PMqL iy y= ⋅ -  
(2.2) 

where dL  and qL  are stator d and q axes inductances and PMqy is the permanent magnet flux component. 

The nomenclature of SRM is used [50] i.e. the low reluctance path is manifested by the d axis and the high 

reluctance by the q axis and the magnets act in the negative q axis direction as depicted in Fig. 2.4. Note 

that PM could theoretically also be placed in the d axis simultaneously however for simplicity this 

constellation is omitted. The electromechanical conversion generates torque obtained as a cross product of 

the fluxes and currents: 

( )3

2e d q q dT p i iy y= -  (2.3) 

where p stands for the number of pole pairs. The torque can be as well calculated from (2.4): 

( )( )3

2e d q d q PM qT p L L i i iy= - +  (2.4) 

In this form, the magnetic alignment torque is separated from the reluctance torque and the cogging torque 

(also referred to as detent torque) is not considered.  

 

The mechanical system is modeled as first order type considering the viscous friction factor B and moment 

of inertia J: 

 
 

Figure 2.5.  Classic three-phase PMaSynRM model in dq reference frame 
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m
e L m

d
T T B J

dt

w
w= + +  (2.5) 

where LT denotes load torque and mw rotor mechanical speed. Finally, the voltage model (2.1) is rearranged 

in such a way that the currents are calculated from the integration of the rate of change of fluxes divided by 

corresponding inductances as depicted in the complete conventional model in Fig. 2.5. 

It needs to be recognized, that the model presented in this chapter is simplified and cannot predict motor 

behavior precisely. The phase inductances depend sinusoidally on the rotor position, thus all field ripples 

are neglected. Nevertheless, it is very fast and has become an industry standard for vector control algorithm 

implementations. Although, it has been recognized that it is inaccurate especially under saturation and 

particularly disadvantageous for the MTPA control strategy [29]–[31]. 

2.3. Three-phase PMaSynRM FOC control 

The Field Oriented Control of a three-phase PMaSyRM is recapitulated in this section. It is 

implemented on a motor which parameters are given in Table 2.1. The saliency ratio is approximately equal 

to 4, which is achieved by a rotor design with several flux barriers that effectively impede flux distribution 

in the q axis direction. Additionally, permanent magnet flux saturates ribs between flux barriers.  

 

The three-phase PMASynRM vector control is depicted in Fig. 2.6. Currents are measured in two phases 

(the third phase is calculated from the rest because of motor winding star connection) and then transformed 

Table 2.1.  Three-phase PMaSynRM technical data 
 

Quantity Symbol Unit Value 

Number of phases m - 3 

Rated torque 
nT  Nm 3.4 

Base speed 
nn  r/min 5000 

Rated power 
nP  kW 2.25 

Peak current 
maxI  A 10 

Rated current 
nI  A 4.5 

Stator resistance 
sR  Ω 2.2 

DC-link voltage 
dcV  V 320 

D-axis inductance 
dL  mH 28.1 

Q-axis inductance 
qL  mH 6.92 

Permanent magnet flux 
PMy  mWb 38 
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from the natural abc system to first the αβ stationary reference frame and then to synchronously rotating dq 

rotor frame. Rotor position rq and angular velocity rw are obtained by the adequate sensor (resolver, 

incremental or absolute encoder, etc.). The outer speed loop is regulated by the PI controller which corrects 

the error of rw by a command torque. The reference torque and the actual speed are injected into the MTPA-

MTPV which generates reference current in the d and q axes. The conventional control strategy to obtain 

optimum current references is derived from the motor equations and minimization of the voltage and current 

constraints [1], [2], [20]. 

 

The currents in the d and q axes are as well controlled by the PI type compensators that generate voltage 

references in the d and q axes. The cross-coupling of the EMF terms (2.6) is performed in the decoupling 

block that compensates for self-induced voltages. 

** *
d d r qU U w y= -  

** *
q q r dU U w y= -  

(2.6) 

where *
dU  and *

qU  denote voltage command from the PI outputs and **
dU , **

qU  stand for the corrected 

reference voltages considering back-EMF in the motor terminals. The coupling flux linkages in (2.6) are 

calculated via (2.2). Then, the d and q axes reference voltages are transformed to stationary αβ references 

which are then synthesized in the modulation block. Standard modulation techniques include PWM, SVM,  

and the third harmonic injection [1], [2], [20]. Such a closed-loop system is able to correctly track reference 

signals provided the bandwidth is high enough to reject disturbances. In Fig. 2.7 the current response is 

shown. Fast and stable operation in d and q axes is obtained by correct tuning of the PI controllers (e.g. by 

 
 

Figure 2.6.  Field Oriented Control of a three-phase PMaSynRM 
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pole placement or frequency response method). The final goal is achievable as long as motor inductance 

and PM flux are constant parameters (saturation is not considered).  

2.4. Multi-plane five-phase PMaSynRM model with constant parameters 

The introduction of a higher number of phases implies higher degrees of freedom in terms of motor 

modeling [11]. In the five-phase motor configuration, currents may flow not only of the 1st but also of the 

3rd harmonic. Therefore, they should be controlled and two cases may arise, namely the presence or absence 

of the 3rd harmonic in the air-gap field. In the first case, the 3rd harmonic current can interact with the 

corresponding field harmonic and enhance the electromagnetic torque production, while in the second case 

the 3rd harmonic current should be controlled to avoid unnecessary losses [8], [14], [15]. When the motor 

parameters (inductances and PM fluxes) are constant, then the two harmonic fields can be decoupled and 

treated separately as two stand-alone motors rotating with synchronous and triple synchronous speed as it 

is illustrated in Fig. 2.8. 

 

The stator voltage equations (2.1) are valid only for the 1st harmonic, thus another set of equations according 

to Fig. 2.8 is needed. It is important to mention that the equations for the 3rd harmonic are completely 

decoupled from the 1st harmonic. 

 
 

Figure 2.7.  Current tracking in FOC of a three-phase PMaSynRM with constant parameters 

 
 

Figure 2.8.  Decoupled phasor diagram of a five-phase PMaSynRM 
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1
1 1 1

d
d s d r q

d
U R i

dt
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w y= + -  
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q
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(2.7) 

where 1dy  and
1qy are the d and q flux linkages in first harmonic, 3dy and 

3qy  dq flux linkages in third 

harmonic, 1dU , 
1qU , 3dU and 

3qU  denote dq voltages in first and third harmonics and 1di , 
1qi , 3di , 

3qi

correspond to respective axis currents. The flux linkages can be calculated from constant inductances: 

1 1 1d d dL iy = ⋅  

1 1 1 1q q q PMqL iy y= ⋅ -  

3 3 3d d dL iy = ⋅  

3 3 3 3q q q PMqL iy y= ⋅ -  

(2.8) 

where 1dL , 1qL , 3dL , 3qL  are stator d and q axes inductances of the first and third harmonic and 1PMqy , 

3PMqy  correspond to the permanent magnet fluxes of respective harmonics. The electromagnetic torque is a 

sum of torques generated separately by the 1st and 3rd harmonic: 

1 3e e eT T T= +  

( )1 1 1 1 1

5

2e d q q dT p i iy y= -  

( )3 3 3 3 3

5

2e d q q dT p i iy y= -  

(2.9) 

Similarly, as in (2.3), each torque component can be further decomposed to the current generated MMF 

field interaction and the anisotropic contribution due to reluctance: 

( )( )1 1 1 1 1 1 1

5

2e d q d q PM qT p L L i i iy= - +  

( )( )3 3 3 3 3 3 3

5

2e d q d q PM qT p L L i i iy= - +  

(2.10) 
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Again torque ripple due to higher field harmonics is omitted and cogging torque is not considered either. 

The mechanical system is described with equation (2.5). 

2.5. Five-phase PMaSynRM FOC control of first and third harmonic 

The Field Oriented Control of a five-phase PMaSyRM is outlined in this section. It is implemented on 

a motor which parameters are given in Table 2.2. The inductances were identified by FEM analysis and are 

considered to be constant for any current excitation, thus there are no saturation phenomena. However, it 

is not the case of the prototype machine further studied in this thesis. The geometry and the cross-section 

of this motor will be given in the following chapter. At the moment it is considered to have constant 

parameters. 

 

 

Table 2.2.  Five-phase PMaSynRM parameters 
 

Quantity Symbol Unit Value 

D1-axis inductance 
1dL  mH 26 

Q1-axis inductance 
1qL  mH 6.92 

D3-axis inductance 
3dL  mH  

Q3-axis inductance 
3qL  mH  

First harmonic PM flux 
1PMy  mWb 38 

Third harmonic PM flux 
3PMy  mWb  

 

 
 

Figure 2.9.  Classic Field Oriented Control of a five-phase PMaSynRM 
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The five-phase PMASynRM control is depicted in Fig. 2.9. It essentially is a vector control of two 

decoupled motors. Currents are measured in four phases (the fifth phase is derived from summation on the 

account of five-phase star connected system) and then transformed from the natural abcde system to two 

rotating frames of synchronous (dq1) and triple synchronous (dq3) angular velocity. Then, similarly to its 

three-phase counterpart, the outer speed loop is PI regulated. There are four currents in the inner loop that 

are as well compensated by voltages produced by linear PIs. However, each harmonic contains its cross-

coupling term that introduces nonlinearity to the system, therefore the command voltages need to be 

corrected in the de-coupling block that implements (2.11), 

** *
1 1 1d d r qU U w y= -  

** *
1 1 1q q r dU U w y= -  

** *
3 3 33d d r qU U w y= -  

** *
3 3 33q q r dU U w y= -  

(2.11) 

where magnitudes denoted with * stand for PI reference voltages and with ** correspond to the EMF 

corrected references that are transformed back to the stationary reference frame and injected into the 

modulation block. The flux linkages in (2.11) are calculated from (2.8) with constant inductances and PM 

fluxes as given in Table 2.2. A train of pulses is obtained through one of the selected modulation techniques. 

They are broadly described in the literature e.g. a linear five-phase PWM [54], SVM based on multiple dq 

spaces concept [32], or other multi-phase approaches [55], [56]. 

 

 
 

Figure 2.10.  Current tracking in FOC of a five-phase PMaSynRM with constant parameters 



 

High Efficiency Sensorless Fault Tolerant Control of Permanent Magnet             19 
Assisted Synchronous Reluctance Motor 

 

The PI regulators, when properly tuned taking into account parameters from Table 2.2, are able to track 

reference currents in very fast settling time. The responses of the 1st (dq1) and 3rd (dq3) harmonic currents 

are depicted in Fig. 2.10, while Fig. 2.11 shows the phase currents and corresponding apparent phase 

inductances. The waveforms contain two discussed harmonics that are integral for this model with constant 

inductances. The saturation phenomena are not included and there are no higher order harmonics that 

originate from the field distortions. 

2.6. Conclusions 

In this chapter, a review of the state of the art PMaSynRM drive based on FOC control was given first 

for the classic three-phase motor and then for the five-phase one. The conventional modeling and 

development of the control system were recapitulated. In summary, these methods provide a very good 

response and can be applied to motors designed to work in linear magnetization zone before saturation. 

Moreover, the simplification does not account for the field’s higher harmonics and distortion of voltage and 

current waveforms that impact the overall drive performance. The models with constant parameters are 

intrinsically limited and become erroneous especially when considering PMaSynRM in which cross 

saturation is a built-in feature of the motor. 

 

 
 

Figure 2.11.  Phase current (top) and apparent phase inductance (bottom) in FOC of a five-phase PMaSynRM with 
constant parameters 



3 
 

3. Multiphase PMaSynRM flux map model with cross saturations and 
space harmonics 

The previous chapter reviewed classic drive development with a conventional motor model. In this 

chapter, an improved model comprising cross saturations, space harmonics, and cogging torque is proposed. 

It is established on inverted flux maps with detailing of the selected nonlinear phenomena originated from 

three-phase and five-phase PMaSynRM. The concept is realized for healthy motors, three-phase 

PMaSynRM in the dq reference frame, and in the dq1dq3 frame for a five-phase PMaSynRM as well as in 

natural stator phase variables for conditions with single open and double open phases. The models are 

contrasted with FEA analysis and a new improved FOC control is discussed. 

 

 

CONTENTS: 

3.1 Cross saturating 2D three-phase PMaSynRM model in dq rotor reference frame 

3.2 Space harmonics 3D three-phase PMaSynRM model in dq rotor reference frame 

3.3 Cross-wise saturating 4D five-phase PMaSynRM model in dq1dq3 reference frames 

3.4 Space harmonics 5D five-phase PMaSynRM model in dq1dq3 reference frame 

3.5 Open phase cross saturating and space harmonic 6D five-phase PMaSynRM model in abcde frame 

3.6 Comparative study of five-phase PMaSynRM models 

3.7 FOC control of five-phase saturating PMaSynRM 

3.8 Conclusions 
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3.1. Cross saturating 2D three-phase PMaSynRM model in dq rotor reference 

frame 

In chapter 2 the standard model of three and five-phase PMaSynRM motor was presented. They 

consider neither space harmonics nor saturation and will be referred to as 0D models further on. The 

inductances are constant values and flux trajectories without power converter are circular in the steady-

state regime. These are the fastest models to identify being inherently the least precise. 

At first, the saturation will be considered in the motor model. The soft magnetic materials increase their 

magnetization in a non-linear fashion. The first segment of the B(H) characteristics is approximately linear 

while further increase in the magnetic field intensity does not substantially increase magnetization B. The 

saturation mechanism exists in all types of machines and is observed as no increment in the flux linkage of 

the associated phase at adequately high current excitations (see Fig. 3.1). It is analogously revealed in the 

decrease of the corresponding phase inductance, Fig. 3.2. Usually, to avoid excessive losses, the motors are 

designed to operate out of the saturation region. However, for a PMaSynRM it is already considered in the 

design stage for sake of the saliency ratio (between d and q inductances) as it is the major torque producing 

component. A drop in inductance may decrease the saliency ratio and imply lower torque performance. 

 

 

 
a) b) 

 
Figure 3.1.  Three-phase PMaSynRM flux linkage map a) dy , b) qy  
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Figure 3.2.  Three-phase PMaSynRM inductance map a) dL , b) qL  
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In the two-axis dq modeling, the inductances dL  and qL  can be analytically determined with help of 

the Winding Function Theory (WFT) [57], [58]. The other approach is to compute them with FEA analysis 

by flux linkage calculation at unitary current for d or q axis-aligned rotor [59]. Experimental evaluation is 

also possible in the locked rotor conditions by a measure of the first-order response time constant [60], [61]. 

These methods explain how to determine constant inductances. However, flux linkages and inductances of 

PMaSynRM vary according to stator current excitation in such a way that the d-axis flux linkage dy  is 

saturated not only by the d-axis current di  but also by the q-axis current qi . This is the so-called cross-

coupling saturation [26]–[28] (and is analogically present in the q-axis). It can be perceived in Fig. 3.1 and 

3.2. Because the flux linkages (and inductances) depend on two axis currents the model described in this 

section will be referred to as 2D saturation. 

3.1.1. Inverted flux map model 

The motor voltage equations in (2.1) are still valid and form the basis of the 2D model as well. However, 

instead of using inductances and PM flux, it is possible to operate on the flux linkages only. 

( ),d d d qf i iy =  

( ),q q d qf i iy =  
(3.1) 

where d and q axis flux linkages dy , qy  are functions of both d and q axis currents. Therefore, the nonlinear 

effect of saturation is included in the flux linkage functions. These functions (3.1) are acquired via FEM 

analysis through multi-static simulation sweep with current excitations combinations covering all operating 

conditions and they are either fitted to compound mathematical functions (exponential-polynomial) either 

stored as look-up tables (LUTs). In Fig. 3.1 the co-ordinate grid of currents was established to be <-10,10> 

for di and <0,10> for qi  with a step of 1A. In total there are 231 static FEM simulations performed. The 

negative d-axis current values may be omitted provided motor works close to the MTPA region. In the 

discussed model, the flux linkages are calculated by integration resulting from the voltage model (2.1), that 

gives: 

( )d d s d r qU R iy w y= - +ò  

( ) ( )0q q s q r d PMU R iy w y y q= - - +ò  

(3.2) 

where 0q  stands for the initial rotor position and PMy  is the PM flux. It is assumed that at the initial 

condition there is no current flowing in the bobbins and therefore the only flux is thrown by the permanent 

magnets and actually it is already saved in the q-axis flux linkage map with coordinates (0,0). Once the flux 
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linkages are calculated the current should be determined. To accomplish this, the flux linkage functions 

(3.1) needs to be inverted: 

( )1 ,d d d qi f y y-=  

( )1 ,q q d qi f y y-=  
(3.3) 

It is a 2D inversed problem that can be solved with mathematical techniques such as the inverse grid 

intersection [31]. The other option is to iteratively search for the minimum error between a seed and an 

interpolated map value. The 2D map inversion of the pre-calculated flux linkage dataset is an additional 

operation. The model schematic is depicted in Fig. 3.3 and the inverted flux maps are illustrated in Fig. 3.4. 

It is seen that the edges fall out from the flux domain, however, they are present in the coordinate vectors. 

Therefore, in these areas, the maps are extrapolated from available data. This operation is performed to 

complete the dataset and has no impact on the model performance provided the current-flux domain is not 

crossed. The electromagnetic torque is computed with (2.3). 

 

 

 
 

Figure 3.3. Three phase PMaSynRM 2D saturated model based on inverted flux maps 

+

-
+

1/ s

+

-
-

1/ s
+
-

( )1 ,d d d qi f y y-=

( )1 ,q q d qi f y y-=

(2.3)
eT

di

qi

dy

qy

( )0PMy q

dU

di

rw

qy

qU

qi

rw

dy

sR

sR

 

  
a) b) 

 
Figure 3.4.  Three-phase PMaSynRM current (inverted flux) map a) di , b) qi  
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3.1.1. Apparent inductance model 

Instead of using (and to avoid computing) inverted flux maps (3.3) to calculate currents, it is possible 

to operate on d and q axis inductance maps (see Fig. 3.2) and permanent magnet flux map. To obtain them, 

the flux maps (3.1) resulting from FEM are necessary. First, to acquire the d axis inductance map each 

element of the d axis flux map is divided only by the d axis current from all currents provoking it. Permanent 

magnet flux PMy  map is cut out from the q axis flux linkage map with zero q axis current excitation and 

( ) ( )d d
d s d r q q PM

d L i
U R i L i

dt
w y= + - -  

( )q q PM

q s q r d d

d L i
U R i L i

dt

y
w

-
= + +  

(3.4) 

then it is subtracted from every element of q axis flux linkage map, and the result is divided by the q axis 

current to obtain q axis inductance map. In the nonlinear context of the flux linkages, the equation (2.2) can 

only be satisfied virtually i.e. it is impossible to separate PM flux from the phase fluxes induced in self 

inductances. In other words, the PM flux also changes when the winding is current excited. Although it is 

possible to work with the pre-calculated inductance maps. To avoid infinite inductances, the resolution in 

the vicinity of zero current excitation may be higher and the infinite inductance is replaced by its neighbor 

element. Numerical singularity problems may appear. Because inductances are dependent on both currents 

(and therefore time), they should not be taken outside derivation as shown in (3.4). Furthermore, the change 

of flux from permanent magnets also contributes to the derivation of the self-induced voltage term and it 

can be assumed to be dependent on counter axis di  current as in Fig. 3.5, although, in reality, it may depend 

on both axes currents (however in most designs the q-axis is low permeant and self-axis  current does not 

disrupt the field provoked by magnets). In summary, the variable parameters are obtained as below: 

( ),d
d Ld d q

d

L f i i
i

y
= =  

( ),q PM
q Lq d q

q

L f i i
i

y y-
= =  

( ) ( ),0PM q d PM di f iy y= =  

(3.5) 

In any case, it is possible to further simplify the model so it works with the DC value of PM flux and 

projects its saturated fluctuation voltage into the self-induced ones. To do this, select a constant value for 

the magnet flux and subtract it from every element of the flux linkage map and then perform division as in 

(3.5). The constant value of PMy should be selected with special care so that resulting dL  and qL   do not 

cross the zero plane, so there are no negative inductance elements. It should be noted that these new 
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inductances and magnet flux are abstract values i.e. they do not mean physical machine quantities any 

longer. A sum of their effects represents the real flux linkage. This simplification (3.6) is made to virtually 

satisfy the superposition theorem for the flux linkages. It makes the voltage model consistent and in terms 

of the electrical magnitudes equivalent and realistic. This model is depicted in Fig. 3.6 and similarly to the 

previous one, it needs to be provided with the initial condition. The negative sign of ( )0PMy q  comes from 

the colocation of magnets on the negative q axes. The flux linkages are computed as in (3.2) and then 

divided by corresponding inductances to obtain dq currents. Electromagnetic torque can be calculated with 

(2.3) or equally as in (2.4). 

( ),q PMnew
q Lqnew d q

q

L f i i
i

y y-
= =  

.PMnew consty =  

(3.6) 

 

 

 
 

 Figure 3.5. Permanent Magnet Flux due to saturation 
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Figure 3.6. Three phase PMaSynRM 2D saturated model based on apparent inductances 
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In total two 2D inductance maps and one 1D permanent magnet flux map are required to run this model in 

the first embodiment while in the second it is reduced to the inductance maps only since PM flux is a 

constant value.  

3.2. Space harmonics 3D three-phase PMaSynRM model in dq rotor reference 

frame 

The flux maps in (3.1) depend on both d and q axes currents thus they reflect saturation as shown in 

Fig. 3.1. In reality, fluxes change according to the rotor position due to local permeance variation originated 

from the alternation of slots and teeth in the stator construction together with non-sinusoidal field 

distribution created by rotor magnets. These features distort the flux linkages and generate space harmonics. 

One can extend the flux maps (3.1) with additional sweep along rotor mechanical angle: 

( ), ,d d d q rf i iy q=  

( ), ,q q d q rf i iy q=  

(3.7) 

This operation is a fundamental contribution to reflect not only the space harmonics but the saturation 

phenomena in combination with the space harmonics. In fact, the resultant distorted air-gap field is further 

affected by the local saturations that change reluctance in the iron paths (for example tooth tips). 

Accordingly, a 3D flux map inversion needs to be performed to obtain current maps: 

( )1 , ,d d d q ri f y y q-=  

( )1 , ,q q d q ri f y y q-=  
(3.8) 

Then, the motor model is implemented as in Fig. 3.3 with respective current maps defined in (3.3). During 

FEM scan to obtain flux maps, it is also possible to extract torque for each current and rotor position and 

store it as a fitted function or a LUT: 

 

  
a) b) 

 
Figure 3.7.  Three-phase PMaSynRM flux linkage 3D map  a) dy at 0di = , b) qy  at 0qi =  
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( ), ,e T d q rT f y y q=  (3.9) 

This approach is more precise than using equation (2.3) because torque ripple is a consequence of not only 

distorted field and currents but also the variation of the magnetic co-energy. The latter component is also 

referred to as cogging or detent torque and is included in (3.4). A piece of a torque map is illustrated in Fig. 

3.8, where the oscillation due to all aforementioned effects can be perceived. 

 

3.3. Cross-wise saturating 4D five-phase PMaSynRM model in dq1dq3 reference 

frames 

The model of five-phase PMaSynRM with constant parameters was given in chapter 2.4. There are two 

planes fixed to the first and third harmonics of the rotating field. Conceptually, the 2D saturating flux map 

model for a three-phase motor can be applied for two rotating harmonics of a five-phase motor separately, 

to obtain a 4D model This will be demonstrated in this section. The model is elaborated on the five-phase 

60-slot, 6-pole PMaSynRM prototype machine with parameters defined in Table 3.3, and the cross-section 

and stator and rotor assemblies are shown in Fig. 3.9. It can be applied with any rotor layout of PMaSynRM 

motors. The motor model (voltage equations) is described by equation (2.7). The dq fluxes of the 1st and 

3rd harmonic depend on all harmonic currents. It means that additionally to cross-coupling between d and 

q axes there is also cross harmonic coupling i.e. the third harmonic currents may saturate the first harmonic 

 
 

Figure 3.8.  Three-phase PMaSynRM torque 3D map 
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Figure 3.9.  Five-phase PMaSynRM prototype a) cross section, b) assembled stator, c) rotor layout 
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fluxes and vice versa. An example of how currents from the dq3 plane alter magnetic flux lines distribution 

is illustrated in Fig. 3.10, where different density in teeth due to third harmonic currents is evident. 

 

Thus, the flux linkage maps and their inverse function for all axes may be written as: 

( )
( )

( )
( )

1
1 1 3 3 1 1 3 3

1
1 1 3 3 1 1 3 3

, , , , , , ,

, , , , , , ,

dn dn d q d q dn dn d q d q

qn qn d q d q qn qn d q d q

f i i i i i f

f i i i i i f

y y y y y

y y y y y

-

-

= =


= =
 (3.10) 

Table 3.1.  Five-phase PMaSynRM prototype machine specification 
 

Quantity Symbol Unit Value 

Number of phases m  - 5 

Rated torque 
NT  r/min 6.8 

Base speed 
Nn  kW 5000 

Rated power 
NP  A 3.5 

Peak current 
maxI  A 10 

Rated current 
NI  A 4.5 

Stator resistance 
sR  Ω 2.2 

Number of pole pairs p  - 6 

Number of slots N  - 60 

Active stack length 
stackl  mm 26 

Stator outer diameter 
soD  mm 148 

Rotor outer diameter 
roD  mm 114 

Airgap length 
gapd  mm 6 

 

 
a) b) 

 
Figure 3.10.  Magnetic flux densities of five-phase PMaSynRM with constant first harmonic current and a) no third 
harmonic, b) constant third harmonic excitation 
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The flux functions (3.10) are established by FEM, conducting multi-static currents sweep comprising all 

working conditions. In the case of the prototype machine the ranges in this study for 1 ,di  1qi  are of 

10,10-  A, for 3 ,di  3qi  are of 3,3-  A. Thanks to the small amplitude of dq3 magnitudes, the span for 

this plane is substantially lower, which is beneficial in terms of a reduced dataset. It contains 21609 steps 

but on the cost of loss of space harmonics information. Therefore, the air-gap flux is sinusoidal and just the 

saturation phenomena are included and will be reflected with non-linear inductances 

3.4. Space harmonics 5D five-phase PMaSynRM model in dq1dq3 reference frame 

The main drawback of the model presented in section 3.3 is the lack of space harmonics. As already 

discussed for the three-phase motor, the field distortions can be stored in the flux maps provided they are 

identified for the complete rotor revolution. This is the case when the 4D model with cross-harmonic 

saturations is extended to 5D including space harmonics. For the sake of clarity, the voltage equation for a 

five-phase system is the same and repeated below in a compact form: 

dn
dn s dn r qn

d
U R i n

dt

y
w y= + -  

qn
qn s qn r dn

d
U R i n

dt

y
w y= + +  

( )1 1 3 3, , , ,dn dn d q d q rf i i i iy q=  

( )1 1 3 3, , , ,qn qn d q d q rf i i i iy q=  

(3.11) 

 

 

(3.12) 

where n denotes first (n=1) or third (n=3) harmonic space, dn, qn axes flux linkages dny , qny  are functions 

of all d1, q1, d3, q3 currents and the rotor position  as well (3.12). Additional rotor angle rq sweep for the 

 

 
 

Figure 3.11.  Five-phase PMaSynRM 5D model in dq1dq3 reference frames 
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prototype machine is performed in the range of 180 ,180-   . Altogether there are 672525 steps to be 

simulated in the static FEM to fully identify this model. The torque in each plane can be computed as a 

cross vector product of corresponding fluxes and currents and then torque components from the 1st and 3rd 

harmonics are added. However, such approach does not account for the cogging ripple, therefore, to include 

this effect, it can be directly extracted from FEM and stored in the same way as flux linkages as a function 

(or LUT) of all currents and rotor position rq : 

( )1 1 3 3, , , ,e T d q d q rT f i i i i q=  (3.13) 

The flux linkages from dq1dq3 planes are calculated by integrals resulting from the voltage model (3.11) 

as follows: 

( )

( ) ( )0

dn dn s dn r qn

qn qn s qn r dn PMqn

U R i n

U R i n

y w y

y w y y q

= - +

= - - +

ò
ò

 (3.14) 

where n subscript denotes first or third harmonic. Concerning startup modeling, these integrals are supplied 

with the initial condition that is the flux linkage state at zero time. For no currents, it depends just on the 

position of the rotor rq  and results from permanent magnets ( )0PMqny q . In the case of the studied machine, 

the PM flux acts only in the q axes. This data is already collected in (3.12). Still, the inverse functions of 

those in (3.12) are required to determine dq1dq3 currents from dq1dq3 flux linkages: 

( )
( )

1
1 1 3 3

1
1 1 3 3

, , , ,

, , , ,

dn dn d q d q r

qn qn d q d q r

i f

i f

y y y y q

y y y y q

-

-

=

=
 (3.15) 

In general, it is a complex (N-1)D (because rotor angles can be handled independently) inverse problem to 

solve. There are methods reported in the literature such as error minimization or inverse grid intersection 
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that can be employed. The calculation of current maps takes about 11 hours on parallel local 8 worker 

cluster. 

The model schematic is shown in Fig. 3.10. It is based on (3.11). The flux linkages are calculated with 

(3.14), the currents and the torque are obtained from functions/maps of (3.15) and (3.13) respectively. The 

flux map (3.12) examples concerning one axis current and mechanical angle are shown in Fig. 3.12. The 

initial condition from permanent magnets with no current excitation is explicitly shown in Fig. 2 and is 

determined from the function/map of (2). In sum, one 1D and five 5D maps are required to run the five-

phase model. 

3.5. Open phase saturating and space harmonic 6D five-phase PMaSynRM model 

in abcde frame 

The previous 4D and 5D models were developed in the dq1dq3 reference frames. The latter one is the 

most precise so far, as it contains saturation, field harmonics, and cogging torque. The Clarke-Park 

reference frame transformations assume symmetrical star connection. In the case of a single or double open 

phase fault, the system is not symmetric any longer, thus the models described in previous sections are not 

valid for such conditions. A new 6D model is proposed hereafter, it is implemented in the natural abcde 

reference frame. It also contains the slotting and winding distribution nonlinear effects together with local 

saturations as the fluxes in each phase depend on currents from all phases (mutual saturation effect). 

Moreover, the 6D model can reflect these phenomena in adjacent and non-adjacent open phase states. The 

voltage equation valid for each of the phases is given as: 

x
x s x

d
U R i

dt

y
= +  (3.16) 

where x denotes one of the five phases (a, b, c, d or e). The flux linkages ay , by , cy , dy , ey  are functions 

 

 
a) b) 

 
Figure 3.13.  Five-phase PMaSynRM 6D map fragments  a) flux linkage ay and by  , b) electromagnetic torque 
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of all a, b, c, d and e currents, and the rotor position rq  as well: 

( ), , , , ,x x a b c d e rf i i i i iy q=  (3.17) 

Respectively, the geometry induced and saturation induced harmonics are included in the flux linkage 

functions. The flux functions (3.17) are also identified by FEM analysis performing multi-static 

simulations. In the case of the analyzed prototype machine, the ranges for currents are of 6,6-  A, and the 

rotor position is 180 ,180-   .This is an extremely large LUT of more than 3M elements of flux linkages 

in total. In each FEM static calculation step, the torque is also computed in the same way: 

( ), , , , ,e T a b c d e rT f i i i i i q=  (3.18) 

Segments of the 6D phase flux linkage map and torque map are depicted in Fig. 3.13. Then, the model 

calculates flux linkages from the input voltages and resistive voltage drops: 

( ) ( )0x x s x PMxU R iy y q= - +ò  (3.19) 

where x subscript denotes one of the five phases. In every phase, the flux linkage is fed with the initial 

condition that is for example during the start-up phase the currents in all phases are null, therefore the flux 

present is only due to permanent magnet interactions. It can be read from the maps (3.17) with all currents 

set to 0. Further, the resulting currents are obtained from inversed abcde flux maps: 

( )1 , , , , ,x x a b c d e ri f y y y y y q-=  (3.20) 

The 6D inversion requires a very long computation time, which can be accelerated by parallel computing 

methods. The model schematic is shown in Fig. 3.14, where phase A is explicitly depicted. The flux linkages 

 
 

Figure 3.14.  Five-phase PMaSynRM 6D model in natural phase abcde reference frame 
 

eT

+

-

aU

ai
sR

1/ s
ay+

( )0PMay q
-

a

b

( )1 ,a a ri f y q-=


( )1 ,e e ri f y q-=


( ),e T rT f i q=


rq

rq

[ ], , , ,a b c d ei i i i i
e

( )1 ,b b ri f y q-=


( )1 ,c c ri f y q-=


( )1 ,d d ri f y q-=


c
d

by

cy

dy

ey



 

High Efficiency Sensorless Fault Tolerant Control of Permanent Magnet             33 
Assisted Synchronous Reluctance Motor 

are calculated with (3.19) and the initial conditions are injected for integration in each phase. In total, five 

1D (flux initial conditions) and six 6D (inverted flux) maps are needed to construct this model. 

3.6. Comparative study of five-phase PMaSynRM models 

The flux map database was acquired in Altair Flux 12.3 FEA package on 8 parallel workers with 2D 

static simulations. Then, the dynamic analytical models 0D, 4D, 5D, and 6D were built in Matlab 2019a 

environment. To complete the scope of comparison of the 6D model versus the others, a validation with 

transient FEM 2D was performed. Because the dataset rises exponentially when the fine resolution of the 

coordinate currents and rotor position is selected, therefore a reasonably high step is recommended. After 

 
Table 3.2.  Computation dataset comparison of PMaSynRM models 

 

  0D 4D 5D 6D 

No. of steps  2 11025 672525 3601989 

Current step A - 1 1 1.5 

Angle step elec° - - 1 1 

Static FEM solution* days - 0.02 1 6 

FEM post-processing h - 0.013 0.78 25 

FEM data extraction h - 0.05 3 96 

* cluster of 8 parallel workers 

 

 
a) b) 

 

 
c) 
 

Figure 3.15.  Open circuit voltage of five-phase PMaSynRM n-D vs FEM models, a) phase A, b) FFT of phase A c) 
dq1dq3 



 

High Efficiency Sensorless Fault Tolerant Control of Permanent Magnet             34 
Assisted Synchronous Reluctance Motor 

FEM identification, the maps are post-processed with off-line interpolations to virtually increase the 

resolution of extracted maps. In Table 3.2 a comparison of the computational load is shown for each model 

with distinction to FEM problem solving, results post-processing, and data extraction. The higher number 

of dimensions the larger the dataset is and more memory resources are needed.  

3.6.1. Generator mode 

First, the open phase condition was assessed in the models in Matlab 2019a. The rotor was accelerated 

to 200 rpm and the speed was maintained constant. The back-EMF measured in terminals of phase A and 

its FFT are depicted in Fig. 3.15 a) and b) respectively and in (c) the transformed dq1dq3 voltages are 

shown. The 0D and 4D models overestimate 1st and 3rd harmonics and do not contain the 7th and the 9th 

ones, neither the higher-order harmonics are present. The results of 5D and 6D models match very well 

with FEM predictions. The 6D model is even closer to FEM simulations as it exhibits 5th and 15th harmonics 

which is not reflected in the 5D model. Thus, the 6D model is considered to be the most precise. Then, the 

motor terminals were shorted and again the motor was accelerated from standstill to a settled speed of 200 

rpm. The dynamic short circuit scenario takes into account the initial condition, transient and steady-state 

responses. The current distorted shape is depicted in Fig. 3.16 a). Very good agreement is demonstrated 

between FEM and 5D and 6D models, while 4D and 0D again overestimate the 1st and 3rd harmonics (Fig. 

3.16 b)) and do not show the higher-order ones. 

3.6.2. Motor mode 

To each model, a control algorithm in Matlab 2019a was hooked (id1ref=2, iq1ref=6, id3ref=1, iq3ref=0.5), 

however with an ideal power converter to focus just on machine imposed harmonics (geometry and 

saturation). The resulting command voltages are composed as inputs and shown in Fig. 3.17 a) together 

with one phase current response in time and frequency domain. The models are in close agreement, as 

expected the higher harmonic (9th and 11th) content is observed in 5D and 6D models. Torque ripple is not 

caught by the 0D and 4D models (Fig. 3.17 b)), moreover the 0D model substantially overestimates the 

 

 
a) b) 

 
Figure 3.16.  Short circuit current of five-phase PMaSynRM n-D vs FEM models, a) phase A, b) FFT of phase A 
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electromagnetic torque. This is a consequence of torque for this model not extracted from the FEM map. 

In Fig. 3.18 a), the flux linkages in stator reference planes of the 6D model are shown and in Fig. 3.18 b) 

there is a comparison of flux trajectories between all models. The 0D and 4D models exhibit circular paths 

of the flux linkages in the 1st and 3rd harmonic plane whereas distortions are observed in 5D and 6D models. 

The inductances in dq1dq3 are depicted in Fig 3.19 a) and in b) a one phase inductance is illustrated. The 

phase inductances were derived either directly from models either calculated with help of corresponding 

 
a) b) 

 
Figure 3.17.  Five-five PMasynRM in current control mode a) Applied phase voltage (left), current response (top 
right) and its FFT print (bottom right), b) Dq1dq3 current in 6D model (top) and comparison of generated torque 
(bottom) 

 

 

  
a)  b)  

 
Figure 3.18.  Five-five PMasynRM in current control mode, a) αβ1αβ3 flux linkage waveform in 6D model, b) 
comparison of flux linkage trajectories 

 

  
a) b) 

 
Figure 3.19.  Comparison of a) dq1dq3 inductances and b) phase inductaces of a five-phase PMAsynRM 
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rotators (for 1st and 3rd harmonic plane). Sinusoidal inductances from dq1 and dq3 frame result in a not 

distorted sum (as in 0D and 4D model). It is confirmed that the impact of higher harmonics is only preserved 

by 5D and 6D models. 

3.6.3 Open phase mode 

The same open-circuit test with the shaft speed of 200rpm was set for the motor with additional open 

phase faults. The single-phase, double adjacent, and double non-adjacent phase open were considered. The 

current waveforms for each case are depicted in Fig. 3.20. Excellent accordance is concluded between 

transient FEM and the 6D model. The models with high detailing described in the previous section, 

especially 4D and 5D, are valid only in healthy motor operation. Therefore, the main advantage of the 6D 

model is the prediction of the motor behavior under faults comprising saturation, winding distribution, 

slotting effects, and torque ripple. 

 

3.7. FOC control of five-phase saturating PMaSynRM 

The vector control algorithm of five-phase PMaSynRM with constant inductances and PM flux was 

presented in chapter 2.5. Two decoupled planes represent the motor’s first and third harmonic in space 

vector quantities. This decoupling enables the application of standard FOC control for the two planes treated 

separately [34]. In the case of the constant parameter motor, the control strategies of Maximum Torque per 

 
a) b) 

 

 
c) 
 

Figure 3.20.  Five-phase PMaSynRM under faulty conditions, current waveforms of the 6D model vs FEM, a) B 
phase open, b) BC phases open c) BD phases open 
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Ampere (MTPA) and Flux Weakening (FW) are derived directly from the motor equations (2.7) with 

voltage and current constraints [35]. However, when the parameters are variable (cross-coupling saturation) 

the inductances depend on all dq1dq3 stator currents. In this section, a full vector control of cross-wise 

saturating five-phase prototype PMaSynRM will be presented. 

3.7.1. Control strategy 

The simplest MTPA approach is derived straight forward for machines with surface mounted magnets 

where torque decoupling enables the analogical strategy to DC motor control. The outset for synchronous 

reluctance motor is different since there is an optimal current angle that in the case of the magnet assisted 

motor is altered by PM flux and cross-saturation makes its identification even more complex. Current 

trajectories can be calculated from motor behavior maps that are derived from motor voltage equations in 

combination with voltage and current constraints [62]. This method is effective in implementation for three-

phase motors. However, the five-phase PMaSynRM naturally exhibits more degrees of freedom which 

implies the search for the optimum trajectory more complex. This inspection can be made through an off-

line scan of the torque-speed grid seeking the optimum current references in all working conditions. First, 

the voltage and current limit are set. The maximum RMS current results from the thermal limit and for the 

five-phase PMaSynRM it is compound by the 1st and 3rd harmonics: 

2 2 2 222
1 1 3 331

max 2 2 2 2
d q d q

RMS

i i i iII
I

+ +
= + = +  (3.21) 

where 1I  and 3I  stand for the amplitude of the first and third current harmonics respectively. The prototype 

machine was designed for a maximum RMS current of 7A and a maximum DC-link voltage of 320V. The 

voltage constraint is defined as follows: 

2 2 2
1max 1 1

2 2 2
3max 3 3

d q

d q

U u u

U u u

= +

= +
 (3.22) 

Where 1U  and 3U  stand for the voltage amplitude of the first and third harmonic. The limits of each harmonic 

depend on the modulation technique[54]–[56]. It may be assumed that the 1st harmonic is limited to 0.6155 

of the DC-link, while the 3rd to 0.1453 provided decoupled multiple plane space vector modulation is 

employed and the phase shift angle between these harmonics is close to π what is equivalent to flat top 

voltage waveform [32]. In general, the maximum DC-link voltage utilization in a five-phase inverter drive 

depends also on the power factor. When the constraints are established the torque-speed mesh is generated 

for torques from 0.1 to 4.8 at the step of 0.1 and the range for angular velocity starts from 125 and ends at 

8000 with a step of 100. Then, the iteration of the current sweep is selected. The scan is performed on the 

cross-saturating flux maps (3.10). These maps are pre-interpolated to achieve a very high resolution 
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adequate for the evaluation of all current combinations of each torque-speed point. In the procedure, the 

optimum currents which correspond to the torque point and satisfy the current constraint (3.21) are selected. 

Then, these candidate currents together with their associated flux linkages (3.10) and torque are evaluated 

against voltage constraint. The voltages are calculated as in (2.7) but with derivative terms disregarded. 

The voltage limit (3.22) is checked and if the candidate currents are inside of the boundary then they are 

saved and may only be overwritten in another iteration with a lower RMS value. During this procedure, the 

maximum torque for each speed is obtained and stored in a 1D table. In the speed loop, it will be used to 

limit the command torque to maximum permissible speed that eventually depends on the DC-link voltage 

and motor behavior map. The optimum currents are saved in four (d1, q1, d3, q3) 2D maps with reference 

torque and actual speed as inputs provided in the control algorithm. The voltage amplitude of the 1st and 3rd 

harmonic is illustrated on the torque-speed grid in Fig. 3.21. The third harmonic injection does not have to 

be necessary in some of the operation regions, however, in such cases, these 3rd harmonics need to be 

compensated by the control algorithm by imposing 3rd harmonic voltages that accordingly rise with the 

rotor angular velocity speed-up due to increment of the third harmonic back-electromotive forces which 

are decoupled in (2.11). So far, the described method to derive motor maps does not consider losses in the 

iron elements. These losses due to hysteresis and eddy currents take a part of currents in each axis. Their 

estimation involves further FEM analysis.   

3.7.2. Control algorithm 

The motor with all non-linearities covered in Chapter 3.4 and its model depicted in Fig. 3.11 is 

employed as a plant of the control system. The control scheme is illustrated in Fig. 3.21. Currents are 

measured in four phases (the fifth results from star connection of the motor winding) and transformed to 

two stationary planes αβ1 and αβ3 and then to rotary planes dq1 and dq3 correspondingly fixed to the 1st 

and 3rd harmonics. The outer speed loop is classically controlled by linear PI which is however saturated 

against the wind-up mechanism. The saturation of the maximum torque available for current rotor speed is 

fed back from the control strategy block that derives permissible torque from torque-speed characteristics. 

 

 
a) b) 

 
Figure 3.21.  Voltage map of the five-phase PMaSynRM, a) 1st harmonic, b) 3rd harmonic 
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In the same block, the optimum currents provided by the implemented control strategy are calculated. The 

reference currents are cross-related, each of them contributes to the torque production (no as in S-PMSM). 

Both dq currents in each harmonic plane are as well regulated with PI controllers that generate a set of 

 

 
 

Figure 3.22.  FOC control of cross saturating five-phase PMaSynRM 
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a) c) 

 

 
b) d) 

 
Figure 3.23.  Five-phase PMaSynRM control, a), c) velocity, rotor angle, torque and currents, b), d) voltages in abcde 
and dq1dq3 frames, flux linkages and current waveforms, a), b) ideal power converter, c), d) switched power 
converter  
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command voltages that compensate current errors. These voltages need to be corrected with cross-coupling 

terms as in (2.11), however, the equation for the flux linages (2.8) does not hold any longer due to saturated 

conditions. Therefore, the flux linkages need to be obtained in the new flux estimator block that implements 

functions or maps (3.12). The adjusted voltages are ready to be synthesized in the modulator block as in 

Chapter 2.5. 

The entire algorithm was implemented in 4D cross saturation mode i.e. all cross saturations are taken 

into account. The space harmonics, as discussed in detailed modeling, are present in the machine however 

they are not compensated by the control algorithm. Several scenarios have been considered. First, a 

simplified simulation was performed with an ideal power converter and a 5D saturating motor model. The 

additional harmonic content forced by the power electronic commutation is not present in the ideal 

converter case, however, the voltages must be distorted due to saturation and space harmonics given in the 

machine (back-EMF coupling and ripple). The motor was accelerated from standstill to 300 rpm with an 

applied load of 2 Nm. To accelerate mechanical response time, only the rotor inertia was considered. The 

same scenario was reproduced with the switched power converter and the switching frequency was set to 

20kHz. In Fig. 3.23 the motor response with ideal power converter versus switched mode is shown. The 

graphs show rotor position, angular velocity, electromagnetic torque, voltage, and current waveforms. 

Current diagrams show oscillation caused by saturation phenomena and non-ideal field distribution in the 

airgap. These oscillations are translated to torque ripples. In the case of the ideal converter, the reference 

voltages are imposed directly on the motor terminals by controlled voltage sources. As expected, the voltage 

waveforms are as well distorted. The additional ripple provoked by the pulse train in the commutating 

power inverter is evident in the switched waveforms and more oscillations are perceived in current 

waveforms. Next, the response in wide speed was observed, the motor was accelerated from standstill to 

7000 rpm. In Fig. 3.24 the speed, torque, currents, and modulation index are depicted for the ideal power 

converter (a) and the switched-mode (b). With the proposed algorithm the torque reference is followed in 

 

 
a) b) 

 
Figure 3.24.  Five-phase PMaSynRM control in wide-speed range, torque, speed, current and modulation index, a) 
ideal power converter, b) switched power converter  
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the low and high-speed range provided the bandwidth of the PI regulators is high enough. The maximum 

torque from the torque-speed map is achieved in all working conditions.  

3.8. Conclusions 

New type of modeling of PMaSynRM motors was described in this chapter. The cross saturation 2D 

and space harmonics 3D were first implemented in the three-phase motor model. Then, the concept was 

extended to five-phase PMasynRM, which 4D model includes not only the classical cross-coupling but also 

traverse coupling between 1st and 3rd harmonic spaces. The inclusion of the field harmonics requires 

increment of dimension to 5D with the benefit of the non-sinusoidal winding distribution and cogging 

torque prediction. 

A new 6D model with saturation induced and airgap field harmonics was elaborated in the stator phase 

description i.e. abcde phase quantities. It also covers iron saturations since flux linkages of each phase 

depend on currents from all phases, thus mutual saturation is reflected in the model.  A comparison between 

previous models – 0D with constant parameters, 4D with cross harmonic saturations, 5D with additional 

space harmonics, and the 6D against transient FEM was performed. The non-sinusoidal winding 

distribution and the cogging torque may only be included when the flux linkages are obtained in function 

of the rotor position. The initial flux linkage also depends on the rotor angle. Higher the number of 

dimensions invokes longer computational time and exponentially more memory resources. The 6D model 

gives the best accuracy and offers additional benefit of the open phase faulty scenarios, which is impossible 

to predict by lower order models. The 5D model can be considered as a good compromise between precision 

and size.  

Lastly, a control algorithm for a cross saturating five-phase PMaSynRM was implemented. The control 

strategy was developed from the motor behavior map computed from the flux maps established from the 

FEM analysis. It has been demonstrated that the control algorithm guarantees excellent tracking of the 

reference values in a wide speed range. The feasibility of the proposed algorithm was shown in a study with 

the ideal and switched-mode power converter. 

 



4 
 

4. Axial skew interface in PMaSynRM model 

This chapter discusses methods to correct flux maps due to axial asymmetry provoked by rotor skewing. 

Two methods are proposed to account for the sliced rotor layout in the multi-plane and natural reference 

frame models. The experimental evaluation is carried on the test bench with a manufactured five-phase 

PMaSynRM prototype. 
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4.1. Introduction 

The PMaSynRM machines exhibit three types of torque components, namely the field alignment, 

reluctance, and cogging torque. Field alignment is due to the interaction of magnets and stator MMF 

produced by currents flowing in the winding. Reluctance originates from the saliency in the rotor structure 

and this component is dominant in PMaSynRM. The cogging torque can be also attributed to local 

reluctance change and field attraction to the alternating detent and slotted iron structure. Additionally, the 

non-sinusoidal winding distribution and non-sinusoidal field in the airgap appear in the high harmonic 

content of the back EMF waveforms and thus provoke torque ripples. Additional higher-order harmonics 

are introduced by switching in the power electronic converter. The cogging component sums up to the 

electromagnetic torque and results in undesired vibrations and noise emission [63]. To minimize torque 

ripples the stator winding distribution may be optimized [64]. More sinusoidal distribution results in smooth 

torque generation. Another measure to minimize airgap field harmonics is well accepted in the industry and 

it is based on the introduction of axial skewing in stator or rotor mechanical design [65]. Usually, for the 

sake of lower production costs, the segmented step skewing is selected [66]. The rotor skewing is preferred 

also for simplicity and cost reduction. The rare-earth free five-phase PMaSynRM technology may be also 

equipped with the skewing segments. Nevertheless, the axial asymmetry makes the modeling even more 

challenging. The best precision is offered by 3D FEM analysis. However, the geometry of the sliced rotor 

is complex and the computation load is very high [67]. A common approach is to use the so-called 2D 

multi-slice FEA technique [68], [69]. In this method, the motor cross-section layout is replicated n times 

along the axial length. Each replica represents one skew segment of length l/n where l is the stack length. 

Every segment is shifted by the skew angle β. The finite element models are coupled electrically. Although 

2D multi-slice is simplified it remains computationally intensive, especially with a higher number of 

segments [70].   

So far, as described in Chapter 3 the flux map extraction from 2D FEM and consequent inversion to 

obtain current maps has become a very interesting option as it offers the best compromise between precision 

and computation time. The introduction of the skewing concept however makes the multidimensional 

modeling described in Chapter 3 even more complex since all approaches are valid only to the axially 

symmetric motor and do not include skewing. The analytic correction factor accounting for skewing was 

proposed in [71] and [72], however, the axial steps in saturation due to segmentation were neglected. A 

method to comprise axial saturation was proposed in [73] for a three-phase IPMSM motor resulting in good 

performance prediction close to 2D multi-slice FEM. In this chapter, a new model of the five-phase 

PMaSynRM accounting for skewing in the combination of cross-saturations and nonlinear field spectrum 

will be elaborated. 
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4.2. Skewing in 5D multi-plane maps of healthy motor 

In Chapter 3 the investigated motor was axially symmetric. The flux map derived from 2D static FEM 

will be used to calculate flux linkages of the 1st and 3rd harmonic in all n skewing segments. To achieve 

axial permeability distribution in discrete steps, the appropriate harmonic rotators will be applied. The 

validity of the proposed method will be contrasted vs the 3D FEM model and checked in the experimental 

setup. The model is elaborated on the prototype five-phase PMaSynRM motor with parameters from Table 

3.1 and skew angle β of 6 mechanical degrees. In Fig. 3.9 the cross-section, stator assembly, and rotor 

layout are depicted and in Fig. 3.24 the actual rotor with two segments is shown. They are perforated and 

assembled by three soft magnetic screws. The skewing results in different flux density distribution in each 

segment as illustrated in  Fig. 4.2, where besides a shift, a soft fringing transition between two slices is 

observed. The flux curvature is neglected so in this analysis the flux distribution is uniform in every 

segment. 

The modeling starting point is the axially symmetric 5D model based on flux map inversion described 

with the voltage equation (3.11), 5D flux maps (3.12) and 5D torque (3.13) acquired from the FEM scan of 

the 2D geometry with active stack length equal to total motor length divided by 2 (no. of skew segments). 

The model is depicted in Fig. 3.11. It should be recognized that the flux and torque maps (3.12) and (3.13) 

actually need to be replaced by corrected maps that comprise the skewing effect. The maps of (3.12) and 

(3.13) were calculated with defined coordinate space vectors of the 1st and 3rd harmonic plane 1dqI


and 3dqI


These ranges should be extended to cover rotating currents in both slices: 

 

 
 
Figure 4.1.  Skewed rotor with 2 segments of the five-phase PMaSynRM motor  

 

     
 
Figure 4.2.  3D FEM diagram of flux density distribution in the five-phase prototype motor  
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1(11) 1 1
jp

dq dq dqI I I e b-= È
  

,  3
3(11) 3 3

jp
dq dq dqI I I e b-= È
  

 (4.1) 

where I


denotes the space vector of the 1st or 3rd harmonic plane and (xx) subscript the first digit stands for 

“of the x-th” slice and the second digit “seen by the x-th slice”. Therefore, the FEM scan to obtain flux 

maps of the first segment 1(11)dqy


and 3(11)dqy


 (and torque (11)eT ) is performed on the extended coordinate 

vectors in order to cover primary current vectors seen by the next slice. These current references (4.1) of 

the first segment are transformed with the rotator operation to attain the same current but seen by the second 

segment: 

1(12) 1(11)
jp

dq dqI I e b-=
 

,  3
3(12) 3(11)

jp
dq dqI I e b-=
 

 (4.2) 

It should be noted that for the second segment the current vector of the 1st harmonic is electrically rotated 

with the angle pβ while the shift of the 3rd harmonic is 3pβ. Now it is possible to calculate the flux linkages 

of the second segment 1( 22 )dqy


 and 3( 22 )dqy


which are interpolated from the first segment maps 1(11)dqy


, 

3(11)dqy


with query points of the currents in the second segment (4.2) and appropriately shifted rotor angle 

rq  (accordingly to the segment number and harmonic index). The torque of the second slice (22)eT  is 

obtained analogically. Now the flux linkages of the second segment can be rotated back to the first segment: 

1( 21) 1( 22 )
jp

dq dq e by y=
 

,  3
3( 21) 3( 22 )

jp
dq dq e by y=
 

 (4.3) 

This operation is needed to get all flux linkages referred to the first segment so it is possible to sum them 

and get the total flux linkages of the skewed motor: 

1 1(11) 1( 21)dq dq dqy y y= +
  

,  3 3(11) 3( 21)dq dq dqy y y= +
  

 (4.4) 

The resultant electromagnetic torque is also equal to the sum of the torque generated by each slice: 

 

 
a) b) 

 
Figure 4.3.  Five-phase PMaSynRM flux linkage 5D map with skewing  a) 1dy at 1 5di = , 3 3 0d qi i= =  , b) 3qy  at 

1 0.5di =  1 4.5qi =  
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(11) (22)e e eT T T= +  (4.5) 

The flux linkages of the 1st and 3rd harmonics (4.4) and the torque (4.5) are stored as 5D function or LUT 

in the same way as (3.12) and (3.13). However, the maps of (4.4) and (4.5) account for not only the space 

harmonics and saturation but also skewing in the rotor and its impact on the PMaSynRM nonlinear 

parameters. The flux map sections depicted in the function of current and mechanical angle are shown in 

Fig. 4.3. The original maps (not comprising skewing) are contrasted with the new maps corrected by the 

described procedure for the prototype five-phase PMaSynRM with two rotor segments. 

One can note that the global zero electrical position of the skewed motor does not necessarily coincide 

with the first skew segment zero position. For example, a two-stepped rotor of the prototype machine 

represent such a case and ideally, the zero position falls in the geometrical mean between the zeros of each 

slice. Some 3D effects (the end winding and segment transitions) can slightly move it from the symmetrical 

mean. Such a shift can be predicted by the 3D FEM only. The flux maps from the 3D FEM, however, are 

out of scope because of the computational load and the zero angle shift is minor. In general, the reference 

flux maps can be calculated with dq1dq3 currents referred to the real zero position of the skewed prototype 

motor. In this case, the procedure is a bit more complex as it requires a projection of the current vectors to 

the first segment (with angles –pβ/2 and –3pβ/2) and the second segment (with angles +pβ/2 and +3pβ/2). 

The described procedure can be adjusted and applied to multi-phase PMaSynRM (or IPMSM) motors with 

any rotor layout and an unrestricted number of skewing sliced N. 

4.2.1. FEM comparison 

The model schematic is shown in Fig. 3.10. It is based on (3.11) and the flux linkages are calculated 

with (4.4) and consequently inverted and the torque map (4.5) is implemented. The FEM model was created 

in Altair Flux 12.3 and the 5D skewed model was built in Matlab 2019a environment. The motor 

back-EMF was captured at a constant rotor velocity of 200rpm. Its waveform and FFT transform is shown 

in Fig. 4.4 (compare with Fig. 3.15). There is a very good agreement between multi-slice 2D FEM, 3D 

 

 
a) b) 

 
Figure 4.4.  Phase A back-EMF of the prototype skewed PMaSynRM, a) waveform b) FFT 
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FEM, and the skewed 5D map model. Especially, a very close response is observed between skewed 5D 

and multi-slice 2D FEM, which is logical for the sake of the flux map extraction from a single slice 2D 

FEM. Thus this result is considered to be very precise. 

4.2.2. Experimental validation 

In the experimental setup, the five-phase PMaSynRM prototype machine was mounted on the test 

bench. The drive consists of Siemens SC 120 Control with Smart and Single Motor Modules. The currents 

are measured in five phases by LEM IT 65-S and the voltages are monitored by CV3-1000 sensors. All 

signals are captured by analog inputs NI9234 connected to the NIcRIO real-time controller. The rotor angle 

is measured with Hengstler RI76TD 9000 lines/rev encoder. All measurement data is synchronously 

sampled using embedded LX50FPGA resources. The measurements are saved in binary files ready for 

importation and post-processing in the Matlab environment. The experimental drive bench is depicted in 

Fig. 4.5. 

The motor was accelerated from a standstill in the short-circuit condition. The reference speed was 

adjusted by the commercial controller to 200rpm. The target of this test was to include the initial condition, 

transient response, and the steady-state behavior of the motor in certain operation modes and then compare 

 

   
 
 

Figure 4.5.  Experimental test bench: prototype machine, signal monitoring and conditioning, and acquisition box  
 

 

 
a) b) 

 
Figure 4.6.  Comparison of experimental and 5D skewed model predicted currents at 200rpm, a) phase currents b) 
dq1dq3 currents 
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the experimental results with those predicted by the 5D model elaborated in this investigation. The 

measured and simulated results of the current waveforms are depicted in Fig. 4.6. The waveforms are shown 

in stator phase and dq1dq3 reference frame and they match very well, what proves the fidelity of the skewed 

5D modeling combined with space harmonics and cross saturations. Another scenario with the rotor 

accelerated to 2000 rpm is depicted in Fig. 4.7. Higher speed imposes higher current and thus lower 

permeability. The waveform change is observed accordingly in the motor response in the experimental 

setup as well as in the 5D skewed modeling. There is very little disparity perhaps due to interpolations that 

potentially could be further reduced with higher flux map step size. Another source of divergence comes 

from the prototype manufacturing tolerances (mechanical pieces, B(H) curve and, magnet remanent 

magnetization) and defects such as eccentricities and phases not perfectly balanced. Nevertheless, these 

imperfections in the prototype do not discard the validity of the model.  

4.3. Skewing in 6D healthy and open phase faulty motor 

The model developed in Section 4.2 is a skewed counterpart of the model in Section 3.4 and the latter 

one does not include the skewing. As already stated, the modeling in dq1dq3 reference frames has resulted 

in very close to FEM precision, however only for the healthy motor conditions. For this reason, the model 

in natural abcde reference of the five-phase PMaSynRM was introduced in Section 3.5. This model 

accounts for the nonlinear air-gap field, slotting harmonics, and mutual saturations possible to predict in 

open-phase conditions. However, the skewing is not considered. In this section, the 6D model flux maps 

will be corrected to add axial asymmetry originated from skewing. Thus, it will be possible to evaluate the 

prototype skewed motor in single and double open phase scenarios with no loss of the nonlinear effects.  

The cross-section, stator assembly, and rotor layout are depicted in Fig. 3.9 while in Fig. 4.1 the rotor 

with two segments is shown. This is the prototype motor of this study and the flux density of its rotor is 

illustrated in Fig. 4.2, where the flux distribution is axially non-uniform. The axially symmetric 6D model 

 

 
a) b) 

 
Figure 4.7.  Comparison of experimental and 5D skewed model predicted currents at 2000rpm, a) phase currents b) 
dq1dq3 currents 
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based on the flux map inversion is used for the 6D modeling with skew. The model is described with the 

voltage equation (3.16) and 6D flux linkage maps (3.17) and 6D torque map (3.18) calculated in 2D FEM. 

To complete the model, the flux maps are inverted to obtain 6D current maps (3.20). The model scheme is 

depicted in Fig. 3.14. Until now, this approach can be implemented within the symmetrical flux distribution. 

To cover skewing in multiple-segmented rotor or stator, the flux maps (3.17) and the torque map (3.18) 

should be modified to include axial asymmetry. Since the prototype five-phase PMaSynRM motor contains 

a rotor with two segments, the procedure to include skewing will be shown in its example, however, it 

generally can be applied to any number of skewing segments. In terms of modeling, the motor discrete 

(segmented) skewing can be represented as several motors connected in series. Therefore, for every phase, 

the resultant total motor phase flux linkage can be calculated as a sum of the fluxes of each slice. The flux 

linkages and torque 6D maps are identified through the 2D FEM scan for the first slice (axially symmetric) 

and are referred to as (1)xy  and (1)T  respectively. For the sake of simplicity, the first slice is assumed to be 

located at the rotor angle 0rq = . The second slice is displaced with respect to the first slice by the angle 

of mechanical shift β (electrically pβ) equal to 6 deg. Therefore, the fluxes of the second slice (2)xy and its 

torque ( 2)T  can be read out from the 6D maps of the first slice (1)xy  and (1)T with the appropriate angle 

r pq b+ . This process is repeated for the complete rotor turn and the fluxes and torques of the two segments 

can be added to get new total fluxes and torque of the skewed motor: 

(1) (2)

(1) (2)

x new x x

newT T T

y y y- = +

= +
 (4.6) 

These new maps replace maps of (3.17) and (3.18). The new 6D current maps are obtained through the 6D 

inverse of the flux maps and then they are embedded in the model of Fig. 3.14.  

4.3.1. Experimental validation 

The experimental setup motor and measuring devices are described in Section 4.2.2. The same scenario 

with the motor speed settled at 200rpm was reproduced in the test bench with single and double open phase 

fault. The same conditions were simulated with the 6D skewed motor model and its maps derived as in 

(4.6). In Fig. 4.8 a comparison between 6D-skewed model predicted waveforms and experimental 

measurements is shown in scenarios of single open phase, two adjacent, and two non-adjacent. The 

simulated waveforms, considering so many non-linear components, match very well the monitored signal 

in the test bench. Further in Fig. 4.9, the phase currents in the BD open scenario are depicted in the 

frequency domain. Surprisingly, the first harmonic in measured waveforms is slightly higher than in the 

simulated model. Nevertheless, the spectrum of the simulated model very well reflects the reality from the 

measurements. The same higher-order harmonics are visible in Fig. 4.9. It shows how the skewing changes 
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the dynamic behavior of the motor (see Fig. 3.20). The imperfections in the model originate from the 

discretized flux maps and interpolations between points. On the other hand, the prototype motor may have 

slightly different parameters than the FEM based model used for the flux map extraction due to: 

• B(H) characteristics of the laminated stator (only first saturation curve considered in the model) 

• Eddy currents in iron and magnets are not considered in the model 

• Mechanical tolerances, displacement in collocation of magnets, and skew segments 

• Eccentricity in the rotor shaft assembly 

  
a) b) 

 

 
c) 
 

Figure 4.8.  Five-phase PMaSynRM under faulty conditions, current waveforms of the 6D skewed model vs 
measurement, a) B phase open, b) BC phases open c) BD phases open 

 

 

 
 

Figure 4.9.  Five phase PMaSynRM current waveforms in frequency domain in non-adjacent phases open scenario 
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4.4. Conclusions 

In this chapter new models of skewed five-phase Permanent Magnet Assisted Synchronous Reluctance 

Motor were derived. The first 5D one is developed in rotating reference frames fixed with the first and third 

harmonic components of the air-gap field, and the second 6D one is described in the natural stator phase 

quantities. Both modeling approaches comprise cross-saturation effects, air-gap field distortions, slotting 

effects (and discrete winding distribution) together with discrete axial skewing. The original flux maps are 

calculated in FEM for one skewing segment and then accordingly contribution of the consecutive segments 

is computed and projected to the new adjusted flux maps accounting for the full skewing. In the corrected 

5D model both rotators of the 1st and 3rd harmonics need to be considered. In the 6D, model the shift of 

fluxes is derived from the rotor angle dependence. The modeling has been verified by transient FEA and 

experimental measurements. Very good agreement is observed for transient behavior with both models 

while the 6D can also predict open phase scenarios. 



5 
 

5. Multiphase PMaSynRM model with “Virtual Reluctance” map 

This chapter introduces a novel PMaSynRM model established with the conversion of the flux maps to 

“virtual reluctance” maps. A discussion of the model sensitivity and singularities is provided. The 

performance of the proposed model is contrasted with the previous ones and evaluated with FEA and 

experimental test campaign. Finally, the advantages of the new model over the inverted flux maps are 

highlighted. 

 

 

CONTENTS: 

5.1. Virtual reluctance 5D multi-plane healthy PMaSynRM motor model 

5.2. Virtual reluctance 6D healthy and open phase faulty PMaSynRM motor model 

5.3. Models validation 

5.4. Conclusions 
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5.1. Virtual reluctance 5D multi-plane healthy PMaSynRM motor model 

The models developed in Chapters 3 and 4 are proved to be credible along with FEA and experimental 

validation. However, they rely on the precise flux map inversion. The inversion itself is a cumbersome 

process for several reasons. Firstly, the inverted function may not exist due to the lack of bijection of the 

flux map. Secondly, the inversion of higher-order maps carries an accuracy shift which increases with 

dimension number more than 3, and thirdly the methods to invert flux maps require very long computational 

time. These were the motivating factors to propose a novel modeling method that would avoid the flux map 

inversion. Thus, the virtual reluctance concept was elaborated. It offers very high accuracy, does not suffer 

from residual flux drift and its pre-calculation is very fast. In this section, the concept will be developed for 

a five-phase PMasynRM model in dq1dq3 reference frames i.e. 5D approach. 

To characterize the virtual reluctance concept, first the magnetic reluctance Â is defines as: 

F

y
Â =  (5.1) 

Where F stands for the magnetomotive force (MMF) and y is the flux flowing through the reluctance 

component. The MMF results from the effective ampere-turns and is a magnetic voltage. Actually, within 

one coil turn, the reluctance as defined in (5.1) is reciprocal to inductance. Therefore, it should be possible 

to mathematically describe motor equations with help of reluctances as inverted apparent inductances such 

as described in Section 3.1.1. This method results valid for a three-phase motor in which apparent 

inductances can be found to be always positive with proper fixation of the permanent magnet flux. 

However, for a five-phase PMasynRM, the separation of the permanent magnet flux in the 1st and 3rd 

harmonic cannot suffice for the apparent inductances to be strictly positive. Thus, with the apparent 

inductance approach, the model will suffer from singularities at some points of operation. To overcome this 

problem, virtual reluctance is proposed and defines as: 

1

2

i k

ky
+

Â =
+

 (5.2) 

where the coefficients 1k  and 2k stand for the translation of the current vector and flux map respectively. 

The virtual reluctance can be calculated for every current flux pair that was used for the primary flux map 

extraction (3.12). The virtual reluctances for the 5D model are computed accordingly: 

( )
1

1 1 3 3 2, , , ,
dn dn

dn

dn d q d q r dn

i k

f i i i i kq
+

Â =
+

 (5.3) 
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( )
1

1 1 3 3 2, , , ,

qn qn
qn

qn d q d q r qn

i k

f i i i i kq

+
Â =

+
 

where dni and qni  stand for the self-exciting currents of the corresponding virtual reluctance in the d and q 

axis for each harmonic. The flux linkage functions dnf  and qnf  are calculated through multi-static FEM 

analysis as in (3.12), and they depend on all currents and the rotor position. Therefore, the cross saturations 

and space harmonic content is preserved in the virtual reluctance maps. An example of translation is 

depicted in Fig. 5.1 where the original flux map is illustrated together with its translation. It is shown that 

the shifted map is above the ZO plane so there are no negative elements. This is essential to avoid 

singularities in the time-stepping simulation. The coefficient 2k must satisfy the condition of being higher 

than the absolute of the minimum value of the whole flux map. On the other hand, 1k moves the self-current 

coordinate to the positive side, thus together with properly selected 2k , it guarantees the resultant 

reluctances (5.3) to be always positive. The 2k , therefore, needs to reach the value of the absolute of the 

lowest current coordinate in the whole flux linkage map. The corresponding example of the virtual 

reluctance map to the flux map in Fig. 5.1 is depicted in Fig. 5.2. Once the flux maps are obtained, the 

 
 

Figure 5.1.  Primary and translated d1 flux map at id3=0 A, iq3 =0 A and rotor position =0 rad. 
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Figure 5.2.  Virtual reluctance map in d1 axis at id3=0 A, iq3 =0 A and rotor position =0 rad. 
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computation of virtual reluctances is virtually instant. The motor model (3.11-3.12) based on inverted flux 

maps is reconstructed, the inverted flux maps are replaced by the current calculation from the virtual 

reluctance maps: 

( )

( )

2 1

2 1

dn dn s dn r qn dn dn dn

qn qn s qn r dn qn qn qn

i U R i n dt k k

i U R i n dt k k

w y

w y

é ù= - + + ⋅Â -ê úë û
é ù= - - + ⋅Â -ê úë û

ò

ò
 (5.4) 

The coefficient 2k is decoupled to offset the flux linkage calculated from the voltage integral and then the 

1k  compensates the offset of the resulting current. This way is numerically stable, the singularities are 

avoided and the algebraic loop can be easily handled by the state-of-the-art solvers (e.g. used in Matlab 

Simulink). The model is depicted in Fig. 5.3 with separated flux linkage computation and current 

calculation from the obtained fluxes. 

5.1.2. Implantation of skewing in harmonic fixed frames 

In Chapter 4 the axial skew interface was introduced to correct the flux maps and account for magnetic 

axial asymmetry introduced by segmented rotor construction. The same procedure can be used before the 

virtual reluctances are calculated. Therefore, the virtual reluctance as well may additionally include the 

skewing effect. In Fig. 5.4 a diagram of the algorithm to include two-segmented skew is illustrated. The 

inputs are the vector coordinates for which the flux maps were extracted 1 1 3 3, , , ,d a d q ri i i i qé ùê úë û . These coordinates 

are projected in two local coordinates of each segment using Concordia transformation:  

( )
( )

xnjp

dqn x dqnk k e
b-

=
 

 (5.5) 

where k represents the space vector of the n-th harmonic plane, (x) stands for the skewing segment, and β 

is the skewing mechanical angle. Then, the flux maps of each segment are interpolated from the primary 

 

 
 

Figure 5.3.  PMaSynRM model based on virtual reluctance map in rotating reference frames. 
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axially symmetric map with the local current coordinates and the shifted rotor angle. Eventually, the local 

flux linkages are rotated back and summed to give the full flux linkage of the skewed motor: 

( )
( )

( )
( )1 2

1 2

njp njp

dqn dqn dqnk k e k e
b b

= +
  

 (5.6) 

Finally, the 5D skewed flux map is used to calculate reluctance map such as in (5.3), however this time the 

reluctances account for the discrete skewing effect. An example of the skewed VR map is given in Fig. 5.5. 

 

5.2. Virtual reluctance 6D healthy and open phase faulty PMaSynRM motor model 

The 6D flux map inversion is even more prone to accuracy errors, takes a much longer time to calculate, 

and may be indefinite. The concept of the virtual reluctance proposed in Section 5.1 can be adapted to be 

 
 

Figure 5.4.  Algorithm to calculate 5D skewed virtual reluctance maps 
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Figure 5.5.  Example of un-skewed and skewed 5D virtual reluctance map 
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implemented within the motor description in natural phase quantities. Thus, every phase of the five-phase 

PMaSynRM has its associated virtual reluctance calculated as following: 

( )
1

2, , , , ,
x x

x
x a b c d e r x

i k

f i i i i i kq
+

Â =
+

 (5.7) 

where xf is an x-phase flux linkage function dependent on all currents and rotor position, the coefficients 

2 xk  and 1xk stand for the translation vector components (similarly as in the 5D case). The primary and 

shifted flux map example is depicted in Fig. 5.6 a) while its interrelated virtual reluctance map is shown in 

b). The electromagnetic torque is interpolated from the FEA extracted torque map (3.18). Then, the 

mechanical system is modeled along with the II Newton principle: 

e L r
r

r

T T D
dt

J

w
w

- -
= ò  (5.7) 

where LT stands for the load torque, rJ is the rotor and load inertia, and D represents the viscous friction 

factor proportional to the angular velocity. The motor model schematic is depicted in Fig. 5.7.  

 

  
 

a) b) 
 

Figure 5.6.  Primary and translated a) a-phase flux map and b) virtual reluctance map at ia= ic = id = ie =-3 A. and 
rotor position =0 rad. 
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Figure 5.7.  PMaSynRM model based on virtual reluctance map in abcde natural reference. 
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5.2.1. Skewing in natural reference frame 

As was discussed in Section 5.1, the skewing technique is widely adopted in the motor design to reduce 

torque ripples. The VR map in the 6D model can as well be corrected to contemplate the skewing effect. 

Similarly, to the 5D approach, first, the flux map is corrected and then the virtual reluctances are calculated. 

The original 6D flux map is derived as in (3.17). Consequently, the flux linkages of each segment are 

interpolated from the original flux map. The flux linkages differ for all coordinates by the 

rotor position shift only. This is because the currents do not undergo a transformation and are virtually the 

same for each skewing segment since electrically the segments are connected in series and see the same 

current excitation. The algorithm for the VR map skewing correction is depicted in Fig. 5.8. There are 

current coordinates inputs [ ], , , ,a b c d ei i i i i  and rotor angle of each slice correspondingly shifted by ( )xpb  

electrical skewing angle of the slice. With these inputs the flux linkages contributed by each skewing slice 

are interpolated and then summed to obtain the global skewed motor flux linkage. Finally, the VR map is 

computed as defined in (5.7). 

5.3. Models validation 

5.3.1. Finite Element Validation 

The 5D and 6D flux maps were established by post-processing of the 2D static Finite Element Model 

of the prototype motor (Fig. 3.9). The model was built in Altair Flux 2019 and the flux map calculation was 

performed using 8 parallel workers. In the next step, the flux map inversion was obtained through an 

iterative process, and then the inverted flux map model was completed as described in Chapter 3. In the 

next step, the virtual reluctances for the 5D and 6D maps were calculated as explained in this chapter. The 

FEM validation is performed without skew since the FEM model is axially symmetric and the asymmetry 

imposed by the skewing effect would have to be simulated in 3D FEM requiring enormous calculation time. 

The inverted map and virtual reluctance map models were constructed in Matlab Simulink 2020a package. 

 

 
 

Figure 5.8.  Algorithm to calculate 6D skewed virtual reluctance maps 
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Provided the initial conditions for currents and flux linkages are introduced in the model, the algebraic 

loops get resolved by the Simulink solvers without issues. Apart, the discrete model was added as a 

standalone C function. The virtual test bench is composed of field-oriented current control (FOC) drive 

with current and rotor angle measurement and feedback to the control algorithm, ideal power converter 

imposing ideal voltage commanded by the control algorithm sampled at 10kHz. The same algorithm was 

run in the coupled Simulink-FEM transient simulation. Thus, the same scenario was reproduced for the 

inverted flux map, virtual reluctance map, and transient FEM models, and the motor responses were 

captured and superimposed in Fig. 5.9, where the currents are compared. Already in healthy operation, the 

5D model shows some deviation that could be considered as a cliff point because in the 6D the discrepancy 

is observable and not acceptable for the motor simulation. At the same time, the virtual reluctance models 

give results very close to transient FEM. This is observed for healthy and open phase conditions. 

5.3.2. Experimental Validation 

Since the motor prototype possesses two skewed segments in the rotor construction as captured in Fig. 

4.1, the experimental validation of the motor models based on the virtual reluctance concept can only be 

   
 

a) b) 
 

Figure 5.9.  Comparison of five-phase PMasynRM motor model responses in a) healthy and b) open phase 
conditions. 
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Figure 5.10.  Experimental five phase PMaSynRM drive and monitoring system 
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validated with the skewing component incorporated in the VR maps. This was achieved following the 

methodology for skewing correction described in this chapter. The experimental setup of the test drive is 

depicted in Fig. 5.10. It is built with the prototype motor drive bench, load drive based on Siemens SC120 

Control with Smart and Single Motor Modules. The voltages and currents are measured for the monitoring 

system with LEM IT 65-S and CV3-1000 sensors respectively and the signals are captured by the NIcRIO 

real-time controller through NI9345 analog inputs. Position and velocity are calculated synchronously from 

the Hengstler RI76TD 9000 lines/rev encoder using embedded LX50 FPGA. Data is saved in binary files 

for further post-processing. The closed-loop current control is implemented in F28335 DSC from Texas 

Instruments. The control cycle and switching frequency are set to 10kHz. The measured phase to neutral 

voltages are filtered and saved to be injected in the virtual reluctance motor model. In such a way, the 

experimental scenario is one to one reproduced in the simulation environment. Then the measured real 

currents are compared to those predicted by the skewed VR motor model. In Fig. 5.11 and 5.12 the 

measured currents, together with predicted by the virtual reluctance 6D skewed motor model, are depicted. 

In all example scenarios, the predicted currents closely match those observed in the experimental 

monitoring system. Thus, the skewed VR motor model gives waveforms in close correlation to the real 

ones proving the validity of the VR concept.  

 

   
 

a) b) 
 

Figure 5.11.  Experimental and skewed VR map motor model response a) B-phase open, b) BC-phases open 
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Figure 5.12.  Experimental and skewed VR map motor model response a) BD phases open 
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5.4. Conclusions 

Novel modeling of five-phase PMaSynRM based on the virtual reluctance concept was introduced in 

this chapter. The method can be applied to PMSMs of three or more phases, including IPMSM as well. All 

of the nonlinear phenomena included in the FEM extracted flux maps are captured in the virtual reluctances. 

Therefore, the cross and phase to phase saturations, field space harmonics, and axial asymmetry imposed 

by skewing are taken into account in the proposed modeling technique. After flux map identification the 

virtual reluctances are calculated straight forward and there is no need for cumbersome and not always 

definite flux map inversion. Finite Element and experimental verification were performed to validate the 

concept of VR. It has been proved to be effective, accurate, and outperforming models based on 

multidimensional inversion. The new concept contributes to accurate motor modeling for simulation and 

implantation in rapid prototyping platforms such as SIL and HIL.  

 



6 
 

6. Sensorless control of saturating PMaSynRM 

This chapter describes a sensorless PMaSynRM drive implementation based on the observer method. 

The Kalman Filter topology is derived for the motor model with constant parameters. The same approach 

is examined for the cross saturating PMaSynRM. The application is followed by a discussion of the 

parameter sensitivity. 
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6.1 Observer design with constant PMaSynRM motor parameters 

The vector control algorithm with speed and torque control of PMaSynRM was described in Chapter 

2.3. The rotor position measurement is required to perform effective current control. This information is 

usually obtained through sensors mounted on the rotor shaft such as resolvers or incremental encoders. One 

of the faulty scenarios considered in this study accounts for the position sensor malfunction. In this case, 

the rotor angle rq is no longer available in the feedback loop and thus the drive train is not possible to 

continue its operation. In other applications, especially where a high safety level is required, the 

measurement is redundantly performed by hardware and software estimation hybrid solutions. In any case, 

the sensorless position estimation needs to be implemented. The three-phase motors, especially PMSM 

machines were thoroughly investigated in terms of their sensorless capabilities. Methods for the rotor 

position reconstruction include back-EMF techniques, high-frequency signals injection, or observer 

implementation. The latter could be in the framework of Extended Luenberger Observer (ELO) or Extended 

Kalman Filter (EKF) for nonlinear systems. As an example, a PI compensated error between the real and 

virtual reference frame was introduced in [74]. The rotor angle can be also derived from the stator flux 

linkage estimation [75]. The back-EMF observer is documented in [76], [77]. Some advanced methods 

based on adaptive input-output feedback linearization were implemented in [78]. These methods were 

chronologically first developed for the three-phase synchronous machines and then adapted to their five-

phase cousins. In both cases, the application in motors with constant parameters was performed. Thus, 

sensorless control for variable parameters PMaSynRM motor is still a subject of investigation. The 

Extended Kalman Filter allows correcting for the so-called “system noise” [79], therefore to some extent 

the non-linearities in the inductances could be filtered out in the observing scheme. In this chapter, first, 

the Kalman filter structure will be derived and then applied to saturating PMaSynRM. The predicted and 

corrected estimation of the state vector will be injected into the control algorithm.  

The objective of the EKF is to estimate values of the system states which are not measured, by 

measurement of other states and statistics in the measurement, system, and the state vector. This observer 

technique requires special care in tuning covariance matrices. 

6.1.1. Continuous State Space Model 

The model of a three-phase PMaSynRM was given in Chapter 2.2 and its cross-saturating counterpart 

in Chapter 3.1. Provided constant inductances, the derivatives of the motor currents are linearly related to 

both axes currents and applied voltages. Moreover, the dynamic state-space model of the motor is derived 

with the assumption of infinite inertia which is equal to cancel the acceleration part. A state-space model is 

given in the matrix form as:  
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where [ , , , ]d q r rx i i w q=  is the stator vector, [ , ]y i ia b=  is the output vector and [ , ]u U Ua b=  the input vector. 
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The whole system depicted in Fig. 6.1 is not linear since the output matrix C  contains a sub-matrix that 

transforms stator currents components from the stationary reference frame to the rotor reference frame. 

Besides, the state matrix A  contains the time-variant rotor angular velocity component. 

6.1.2. Discrete model 

The EKF digital implementation requires discretization of the state space model. The time-discrete 

state-space model is obtained in the following form: 

( ) ( )
( ) ( ) ( )
( 1) ( ) ud d

d

x k A x k B k k

y k C k x k

ìï + = +ïíï =ïî
 (6.3) 

Where k  is the sampling interval (100 sm ) and dA , dB  and dC  are discretized system matrix, input matrix, 

and transformation matrix respectively and they are defined as: 
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Where I  denotes the identity matrix and T  the sampling time. In form (6.3) the EKF is an ideal 

deterministic time discrete model. However, the state vector is disturbed by the noise vector v  (system 

 

 
 

Figure 6.1.  Block diagram of the time domain state-space model of PMaSynRM (no cross saturations) 
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noise vector) and the output vector (measured vector) is disturbed by the noise vector w  (measurement 

noise). They are added to the discretized state-space model to be more realistic (stochastic model): 

( ) ( ) ( )
( ) ( ) ( ) ( )
( 1) ( ) ud d

d

x k A x k B k k v k

y k C k x k w k

ìï + = + +ïíï = +ïî
 (6.5) 

The system noise vector v  and the measurement noise vector w  can be assumed to be zero-mean white 

Gaussian noises and they have covariance matrices denoted as Q  and R  respectively. The discrete state, 

input, and transformation matrices (6.4) result to have the following form: 
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To complete the mathematical apparatus, the Jacobian matrices are introduced: 
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For the sake of simplicity a notation of priori (first) X  and posteriori (second) X̂  is used, where X  

denotes every matrix and vector (or variable) used in the algorithm.  

 

 
 

Figure 6.2.  Block diagram of the discretized stochastic state-space model of PMaSynRM 
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The EKF contains two general steps i.e. prediction and correction (also termed as innovation). During the 

prediction step, the next predicted values of the state vector ( )1~ +kx  , state covariance matrix ( )1
~ +kP , and 

output currents ( )1~ +ky  are obtained. In the innovation step, the predicted values are corrected with a 

product of Kalman gain K , and the error of measured values ( ) ( )1~1 +−+ kyky  is minimized. The corrected 

values are then fed back to the execution of the next sampling interval. The complete procedure is 

summarized below: 

• Priori state vector estimation (prediction) 

( ) ( ) ( ) ( )ˆ1 ( )d dx k A k x k B k u k+ = +  (6.9) 

• Output current estimation (prediction) 

( ) ( )1 ( 1)dy k C k x k+ = +   (6.10) 

• Priori state error covariance matrix estimation (prediction) 

( ) ( ) ( ) ( )ˆ1 1 1TP k G k P k G k Q+ = + + +  (6.11) 

• Kalman gain computation (innovation) 

( ) ( ) ( ) ( ) ( ) ( )
1

1 1 1 1 1 1T TK k P k H k H k P k H k R
-é ù+ = + + + + + +ê úë û

   (6.12) 

• Posteriori state vector estimation (innovation) 

 
 

Figure 6.3.  Complete structure of the EKF applied to PMaSynRM 
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( ) ( ) ( ) ( ) ( )ˆ 1 1 1 1 1x k x k K k y k y ké ù+ = + + + + - +ë û   (6.13) 

• Posteriori state error covariance estimation (innovation) 

( ) ( ) ( ) ( ) ( )ˆ 1 1 1 1 1P k P k K k H k P k+ = + - + + +   (6.14) 

The complete structure of the motor model with disturbance and the EKF algorithm is depicted in Fig. 6.3. 

It can be seen that actually, the observer implements a replica of the plant (PMaSynRM motor) and controls 

the error between estimated and measured currents. Once the error is compensated, the estimated currents 

and other estimated variables in the state vector (position and velocity) can be considered as real values.  

6.2. Kalman Filter projection on saturating PMaSynRM 

The sensorless control scheme is shown in Figure 6.3. The position sensor is replaced by the estimator 

block. The input signals come from the sensed currents and reference voltages (so there is no need to 

measure the rotor position and motor terminal voltages). The covariance matrices P , Q , and R  tuning is 

crucial to achieving filter convergence and stability of tracking. The initial approach assumes a constant 

diagonal unitary matrix [80], often a trial and error approach is recommended to search for the stable values 

[81]. The model described by (6.5)-(6.8) is valid for the PMaSynRM motor with constant inductances. 

However, the intrinsic characteristic of the EKF observer is to cope with disturbances also in the state 

matrix, thus saturation is considered as a disturbance that could be filtered out. In this sense, the EKF filter 

is implemented and evaluated in cross-saturating PMaSynRM with a non-linear flux map identified in 

Chapter 3 i.e. the motor model is cross-saturating but the Kalman Filter matrices A, B, C, G, and H are fed 

with initial constant inductances only. Several scenarios have been performed. From Fig. 6.5, where EKF 

was applied on a three-phase real prototype motor, it can be observed that the initial convergence is more 

 
 

Figure 6.4.  PMaSynRM sensorless FOC scheme based on EKF 
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difficult when the motor is loaded during the startup condition. Nevertheless, the measured speed is well 

estimated by the EKF algorithm. Stable speed tracking is achieved and maintained within the load profile 

imposed on the machine shaft. Thus, it can be concluded that the initial convergence is critical for the 

observer’s performance. 

Next, the EKF observer was applied to an unsaturated (0D) five-phase PMaSynRM which currents of 

the third harmonic plane were compensated and the torque controlled through the first harmonic only. In 

 

 
a) b) 

 
Figure 6.5.  Sensorless control of three-phase PMaSynRM, estimated and measured speed and estimated torque a) 
no-load condition, b) variable load  
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Figure 6.6.  EKF velocity and rotor angle tracking of un-saturated five-phase PMaSynRM with torque and current 
response 
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Fig. 6.6 the performance during a loaded motor startup is depicted. The estimated rotor position initially 

carries a phase lag which is corrected after four electrical cycles. The convergence of the angle and speed 

may be accelerated by the adjustment of the system covariance matrix. The same scenario was evaluated 

with saturating PMaSynRM model (4D) and the corresponding results are shown in Fig. 6.7. It should be 

noted that in this case, the EKF needs to correct for the saturating inductances uncertainties in the system 

matrix. Initial convergence is achieved after 4 electric cycles as well, but consequent tracking is noticeable 

with higher error and the speed is overestimated in the steady-state regime. Potentially to improve this 

response the covariance matrices could be incremented or the system matrix could take into account the 

nonlinear inductances, which is foreseen in future work. It can be concluded that saturating PMaSynRM 

models developed in this thesis could be used in sensorless systems EKF-based with adjustments in the 

system matrix, to reconstruct the unmeasured mechanical magnitudes. 

6.3. Conclusions 

In this chapter, an implementation of the observer method for the rotor position and speed 

reconstruction was analyzed and projected at cross-saturating PMaSynRM. The results show that the EKF 

structure copes well and corrects disturbances in the state vector provoked by saturating motor nature.  

 

 

 
Figure 6.7.  EKF velocity and rotor angle tracking of 4D saturated five-phase PMaSynRM with torque and current 
response 
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7. Overall conclusions and future work 

In this section, the general conclusions drawn from the thesis are presented concerning defined research 

problems, hypotheses, and objectives. In addition, the future work initiated by this research is proposed. 
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7.1. Thesis conclusions 

At the end of the conduct of this research project, regarding the proposed methods and techniques 

supported by the experimental results, the global conclusions are drawn: 

• The state-of-the-art regarding PMSM and PMaSynRM drive control was revised for three and five-

phase motors. The conventional modeling is based on the assumptions of linear magnetic behavior 

and suffices provided motor works only in the unsaturated zone. The approaches to control the 1st 

and 3rd harmonics are widely described in the literature and recapitulated in this thesis. 

• The inclusion of cross saturation effects in rotating field and mutual saturation in natural stator 

phase quantities was derived upon the basis of FEA extracted flux maps, posteriori inverted for 

implementation in the time-stepping simulation. This technique was successfully implemented in 

the motor drive enabling high accuracy virtual bench replica of the experimental setup. 

• In the next stage, space harmonics were included by adding one dimension of the flux function 

with respect to rotor angle. It has been shown that motor healthy and open phase faulty behavior is 

accurately predicted by the elaborated models in generator and motor mode. 

• Additional complexity in the magnetic flux distribution introduced by skewing was tackled by 

correction of the single slice flux map with contribution from each skewing segment. Thus, the 

model was proved to handle this phenomenon as well. 

• A novel method for PMaSynRM and PMSM motor modeling based on the virtual reluctance (VR) 

concept was proposed, implemented, applied, and verified by FEA and experimental results. The 

main advantage of this new technique is the avoidance of the flux map inversion calculation, which 

is encumbered by large errors when performed on multi-dimension problems. The VR maps are 

always definite and free of these accumulated residual errors, and they offer extremely fast pre-

calculation time.  

• The derived models are applicable for the fault-tolerant and sensorless approaches, especially 

where high motor model accuracy is of great concern, that is for motors intrinsically saturating 

such as PMaSynRM of three or more phases. 
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7.3. Future work 

High fidelity models of three and five-phase cross saturating PMaSynRM have been developed with 

field space harmonics and axial asymmetry provoked by skewing. The research lines parting from the 

conclusions of this thesis groundwork can be formulated as follows: 

• Further improve and optimize the control trajectories based on the flux maps. Especially, 

higher efficiency may be achieved upon the inclusion of the iron losses in the soft magnetic 

parts of the stator and rotor construction. The higher efficiency aspect is very promising in 

terms of battery range e.g. in the automotive and battery-powered industrial sectors. 

• Analyze and enhance drives with fault-tolerant capabilities considering nonlinearities 

discussed in this research work. 

• Implement derived models in fast prototyping platforms comprising SIL or/and HIL setup in 

sense of virtual prototyping before timely and costly hardware implementation. 

• Upgrade algorithms for rotor position and speed estimation based on motor models such as 

observers. Include, saturation effects in the sensorless scheme.  

• Apply the proposed models to the new types of PMaSynRM which adopt different shapes of 

magnets and new typologies resulting in completely filled flux barriers with a mix of magnetic 

material and a polymer binder.  
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8. Thesis results dissemination 

This chapter shows the list of papers of international journals and conferences that were published in 

the scope of this thesis. Next, additional publications arisen from collaboration related to the thesis study 

are registered. Further, this thesis work resulted in principal research in public research projects and lead 

engineering in private development projects, that are listed consequently. Finally, the short info about R&D 

scientific and industrial conducts accomplished during thesis development is summarized. 
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