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Abstract
Computer-generated crowds are becoming more and more frequent in
films, video games and safety assessment applications. Many crowd sim-
ulation algorithms exist to address the needs of this diverse range of in-
dustries. Even though the underlying principles are similar, there are large
differences between the resulting synthetic trajectories. Each algorithm
has strengths and weaknesses that need to be weighted, and appropriate
parameter values for them must be selected as well. These are not easy
tasks and Machine Learning algorithms are often used to guide these de-
cisions. In this work we study three of these tasks: parameter tuning, tra-
jectory evaluation, and character policy selection and adaptation. Our re-
sults show the usefulness of the proposed methods to evaluate previously
unseen synthetic trajectories to find appropriate parameter values for the
algorithms without directly relying on real data. Moreover, by classify-
ing the context of characters, we propose a policy adaptation strategy to
improve crowd simulations.

Resum
Les multituds simulades per ordinador són cada cop més habituals en
cinema, vı́deo jocs i en aplicacions relacionades amb la seguretat. Ex-
isteixen molts algoritmes per simular multituds per adreçar tal varietat
d’indústries. Tot i que els principis subjacents són similars, hi ha diferències
entre les simulacions resultants. Cada algoritme té avantatges i incon-
venients que s’han de valorar i, a més a més, cal trobar valors pels seus
paràmetres. Aquestes no són tasques senzilles i, sovint, es fan servir algo-
ritmes d’aprenentatge automàtic per guiar aquestes decisions. Estudiem
tres d’aquestes tasques: donar valor als paràmetres, avaluar trajectòries, i
adaptar les polı́tiques. Els resultats demostren la utilitat dels mètodes pro-
posats per avaluar trajectòries noves per tal de trobar valors apropiats pels
paràmetres dels algorismes sense fer servir dades reals directament. A
més a més, proposem una estratègia per adaptar la polı́tica de cada agent
a través del reconeixement del context, millorant les simulacions.
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Chapter 1

INTRODUCTION

Crowd simulation is a very active research field, with several applications
in different industries ranging from entertainment to safety assessment.

Computer-generated crowds are becoming more and more frequent in
film making. They can be employed to generate dynamic scenes with
believable crowds, hence improving the realism of a take in movies or
television shows such as The Lord of the Rings, Game of Thrones, or
The King. Another use of crowd simulation in the movie industry is to
capture shots that would require a large number of extras and/or putting
real people in danger. Battle scenes involving large armies are an example
of this. The ability to manipulate the results is a fundamental feature of
crowd simulators in both cases. The artist must have an extensive control
over the simulation to adjust the crowd’s behaviour to recreate a certain
behaviour.

Crowd simulators in video games are responsible for steering dynamic
non-player characters (NPC). From pedestrians walking down the street
to warriors in a battle scene, the goal is to populate the interactive environ-
ment with plausible crowds. An example of this are the large crowds in
Assassin’s Creed Unity. As opposed to the film industry, where the time
to generate the crowd can be relatively long, interactive experiences (in
this case, video games) must simulate NPCs in real time. In addition, just
as in film making, a high amount of control over the outcome is needed,
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together with a sufficient level of trajectory believability.

Crowd simulation is also used in the field of safety assessment in order
to study and prevent dangerous situations involving thousands of people.
An example of this is the Astroworld Festival crowd crush (November
2021). For instance, without putting real people’s lives in danger, crowd
simulations can be used to analyze a fire drill. Using this approach, emer-
gency evacuations can be assessed, problematic areas can be accurately
identified, and appropriate decisions can be made in order to create safe
environments and contingency plans. Furthermore, crowd simulation can
be utilized to examine pedestrian behavior from a high level perspective.
This is extremely helpful in determining the relationship between the en-
vironment (e.g., topography) and the navigation patterns of a significant
number of people. Based on this knowledge, it is then possible to design
safe and ergonomic public areas using this information.

The purpose of a crowd simulator is to synthesize the motion of nu-
merous agents, based on a defined model of the crowd motion. Many
crowd simulation algorithms have been designed to address the needs
of such a diverse range of applications and industries. The expectations
about simulation results generally include a set of conditions such as the
absence of collisions and of unnatural movements, yet models are typ-
ically developed for a specific purpose and the results differ. For in-
stance, the Optimal Reciprocal Collision Avoidance approach (ORCA)
by van den Berg et al. [2011] is designed to control mobile robots with-
out communication among them. ORCA is very common and it’s often
considered a standard for video games too. Nevertheless, for applications
where human pedestrians need to be simulated realistically, other mo-
tion characteristics need then to be considered, such as the fundamental
diagram (that relates the flow of characters with respect to the density)
[Jelić et al., 2012; Chattaraj et al., 2009], visual information [Dutra et al.,
2017b], or the perception of motion artifacts in 3D visualisations [Kulpa
et al., 2011; Molina et al., 2021; Hoyet et al., 2016]. Each approach has
advantages and disadvantages that must be considered and weighted for
each particular task or application, which makes proposing generic solu-
tions to simulate pedestrians extremely challenging.
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1.1 Problem

It has long been established that the simulation algorithms and their pa-
rameters have a direct impact on the resulting quality of animations. It is
also known that using appropriate parameter values for a specific scenario
can improve performance. It’s difficult to figure out what parameters val-
ues to use, though, even by hand. Furthermore, comparing algorithms
is difficult due to the various manners in which they are implemented.
To simplify this process, we unified the implementations of a number of
well known motion algorithms and created a common interface to test and
experiment on them.

Measuring the performance of motion algorithms is usually performed
by evaluating the resulting trajectories but assessing the performance of
a steering algorithm or parameter values is difficult itself. Data-based
approaches face the challenge of finding similarities between simulations
and recorded motions. Characters do not learn how to move, but to imitate
pre-recorded motions. Other approaches, measure performance according
to some metrics. What trajectory characteristics are visually relevant?
To what degree a metric based on such characteristics is correlated with
human perception? How do we study the admissible value range for these
characteristics without using real data directly (would limit the flexibility
and range of application)?

Usually, steering algorithms are used from the beginning to the end of
a simulation. The question of what steering algorithm is preferable (e.g.,
does replicate a real trajectory better) appears. Nevertheless, as a char-
acter moves, its context changes. How can the context of a character be
described? How can we adapt the policy to the context? Can simulations
benefit from adapting the characters’ motion to their current context?

As the number of published steering algorithms and techniques con-
tinues increasing, so does the difficulty of comparing their performances.
The most difficult for a non-expert user is to decide what character pol-
icy to obtain certain results. Thus, a major objective of this thesis is to
propose generic solutions to interconnect the aforementioned process in
order to automatize (or to support better informed) decision making.
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1.2 Approach

1.2.1 Considered crowd simulation algorithms

Simulators are based on several classes of algorithms, which are intended
to generate believable (or, in some cases, realistic) trajectories of the
agents in a crowd. Various approaches to this problem have been pro-
posed. We provide next an overview of our approach to crowd simulation.

Macroscopic approaches consider crowds as a whole, modeling it as
a single continuous moving matter [Hughes, 2003; Treuille et al., 2006].
On the other hand, microscopic crowd simulation algorithms set the prin-
ciples by which agents move individually and global crowd motion ef-
fects are expected to emerge from the interactions between agents. The
seminal work of [Reynolds, 1987] explored how to control boids by each
following the mean velocity field generated by neighbors. The number of
categories of simulation algorithms rapidly grew with force-based mod-
els [Helbing and Molnár, 1995; Karamouzas et al., 2014], velocity-based
models [Paris et al., 2007; van den Berg et al., 2008; Karamouzas et al.,
2009], vision-based models [Ondřej et al., 2010; Dutra et al., 2017a], or
data-driven models [Lerner et al., 2007; Charalambous and Chrysanthou,
2014a]. These are few examples of a large body of literature. Many
variants specialize their basic algorithms to extend the range of scenar-
ios they can handle. Nevertheless, each category of algorithms will instil
one single way to move and interact in agents - a function of the state
of the surrounding agents and of the environment - and agents never de-
viate from this principle. Nevertheless, each algorithm is designed for
relatively specific situations, and in spite of the efforts to always increase
their validity range, each of them only captures a portion of all behaviours
human exhibit in crowds. This can result in lack of realism of the simu-
lated crowds.

In this work, we focus on the microscopic crowd simulation class,
where algorithms express models of how each character moves and in-
teracts with its surrounding environment. A detailed explanation of the
implementation some algorithms mentioned here is given in Section 2.4.
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1.2.2 Evaluation of synthetic trajectories
There are many available microscopic crowd simulation algorithms. Even
though the underlying principles are similar, there are large differences
between the resulting synthetic trajectories. Each algorithm has strengths
and weaknesses and people wishing to simulate a crowd need to decide
which to use in each context. Moreover, together with the selection of the
algorithm, appropriate parameter values must be selected as well. These
are not easy tasks and machine learning algorithms are often used to guide
these decisions. Chapter 2 discusses the learning framework that we use
throughout this work.

This learning can be done by evaluating the resulting trajectories as a
measure of the fitness of a parameter value set. A group of approaches
uses paths of real crowds, and evaluate the ability of simulators to repro-
duce them. The question of comparison metrics is central, and several
solutions have been proposed: Guy et al. [2012]; Wolinski et al. [2014a];
Charalambous et al. [2014a], for instance. However, there are drawbacks
associated with the use of reference data, e.g., over-fitting due to the lim-
ited sample of pedestrian trajectories available. In Chapter 3, we discuss
an approach to evaluation which overcomes this problem. The proposed
approach served as a first step to automatise the selection of steering al-
gorithms and parameter values.

1.2.3 Generating heterogeneous and dynamic crowds
There is a growing body of literature that recognises the different per-
formance of steering algorithms in different scenarios e.g., van Toll and
Pettré [2021]; Yang et al. [2020]. Numerous studies try to find the best
parameters for existing steering algorithms, often comparing the results
using data-based performance metrics [Guy et al., 2012]. The objective
of these works is to aid the selection of policies in order to improve the
trajectories resulting from simulation. Karamouzas et al. [2018a] com-
pare the performance of steering algorithms (using default parameters) in
terms of distance-to-real-data in different scenarios. They compute how
closely each steering algorithm is able to replicate specific real crowd tra-
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jectories e.g., which steering algorithm (out of 6) works best in a medium
density area when entering a bottleneck corridor. This opens the door to
simulating heterogeneous crowds, where the rules governing the motion
of each character might be different. Some authors have even proposed
strategies to profit from two steering strategies so that characters can adapt
to dynamic conditions such as changes in density. van Toll et al. [2020a]
combine agent-based (the Social Forces model) and particle-based ap-
proaches (Smoothed Hydrodynamic Particles) through abstraction layers
in order to improve the behaviour in high density regions, hence making
their policy dynamic.

Chapter 4 describes how we identify, for an heterogeneous crowd,
the context of each character at each time step. Moreover, we discuss
an strategy to pick the optimal steering algorithm for each context and
to dynamically adapt the policy of each character, hence improving the
simulation quality.

1.3 Contributions
The contributions presented in this thesis can be summarized as follows:

Models as costs. Local navigation algorithms describe how characters
move based on their surroundings. Many algorithms have been proposed,
each using different principles and implementation details, so that they
are difficult to compare with each other. Section 2.4 describes a novel
framework that implements local agent navigation as a cost optimisation
in a Velocity Space. We showed that many state-of-the-art algorithms,
whose implementation is not always available, can be translated to this
framework. This software is used to experiment with different algorithms
and parameter values through a unified interface. Moreover, this approach
helps understanding the differences between navigation methods and en-
ables objective comparisons and combinations between them.

Citation: Wouter van Toll, Fabien Grzeskowiak, Axel López Gandı́a,
Javad Amirian, Florian Berton, Julien Bruneau, Beatriz Cabrero Daniel,
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Alberto Jovane, and Julien Pettré (2020b). Generalized microscropic
crowd simulation using costs in velocity space. In Symposium on Interac-
tive 3D Graphics and Games, I3D ’20, NewYork, NY, USA. Association
for Computing Machinery. DOI: 10.1145/3384382.3384532

Quality function. We integrate two strategies study the relation be-
tween parametric values for simulation techniques and the quality of the
resulting trajectories, which had previously been studied, namely, either
through perceptual experiments or by comparison with real crowd trajec-
tories. As discussed in Chapter 3, a quality metric, QF , was proposed to
abstract from reference data while capturing the most salient features that
affect the perception of trajectory realism. QF weights and combines cost
functions that are based on several individual, local and global properties
of trajectories. These trajectory features were selected from the literature
and from interviews with experts. To validate the capacity of QF to cap-
ture perceived trajectory quality, we conducted an online experiment that
demonstrated the high agreement between the automatic quality score and
non-expert users. To further demonstrate the usefulness of QF , we used
it in a data-free parameter tuning application able to tune any parametric
microscopic crowd simulation model that outputs independent trajectories
for characters. The learnt parameters for the tuned crowd motion model
maintained the influence of the reference data which was used to weight
the terms of QF .

Citation: Beatriz Cabrero Daniel, Ricardo Marques, Ludovic Hoyet,
Julien Pettré, and Josep Blat (2021). A perceptually-validated metric for
crowd trajectory quality evaluation. Proc. ACM Comput. Graph. Inter-
act. Tech., 4(3). DOI: 10.1145/3480136

Coverage of models. We address the question of choosing the right
crowd simulation algorithm with the right parameter values. This is of
crucial importance given the large impact on the quality of results. In
Chapter 4 we discuss how these two concepts were combined in order to
achieve an autonomous and informed mapping from context, representing
the environment of a character, to best-performing policy (i.e., simulation
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algorithm and its parameters). We study the performance of a number of
steering policies in a variety of contexts, resorting to the proposed qual-
ity function, QF . This analysis allows us to map contexts to the per-
formance of steering policies. Based on this mapping, we demonstrate
that distributing the best performing policies among characters improves
the resulting simulations. Furthermore, we also propose a solution to dy-
namically adjust the policies, for each agent independently and while the
simulation is running, based on the local context each agent is currently
in. We demonstrate significant improvements of simulation results com-
pared to previous work that would optimize parameters once for the whole
simulation, or pick an optimized, but unique and static, policy for a given
global simulation context.

Citation: Beatriz Cabrero Daniel, Ricardo Marques, Ludovic Hoyet,
Julien Pettré, and Josep Blat (2022). Dynamic Combination of Crowd
Steering Policies Based on Context. Submitted to Eurographics’2022.

All this was integrated in a framework for crowd simulation whose
objective is the analysis and synthesis of crowd motions so that the gen-
erated trajectories of agents exhibit desired properties. We present a full
framework architecture which, unlike previous works, can operate with-
out any real-world measured data. This is achieved through a random
scenario generator coupled with a trajectory quality evaluation i.e. QF .
As discussed in Section 2.4, the key to this approach lies in the ability
of the quality function to approximate trajectory quality. The use of syn-
thetic data instead of real-world data allows to easily change and extend
the variety of training situations, as well as to study in-depth the influence
of scenario features on the characters’ behaviour.

Limitations of these approaches are discussed and suggestions for fu-
ture work are given. Moreover, Chapter 5 lists a number of unanswered
research questions that we feel are important issues for future research.
For instance, to widen the applicability range of QF , additional studies
about perceptual realism in different situations will be needed. There is
also abundant room for further progress in creating the context-to-policy
mapping, especially in the variety of contexts used. Further studies, which
take these comments into account, are therefore recommended.
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Chapter 2

THE LEARNING CROWDS
FRAMEWORK

Crowd simulation algorithms determine the way agents move by resorting
to a set of rules or by defining steering functions. While the used parame-
ters values for each algorithm affect the way agents move, the underlying
principle ruling the agents’ movement for each algorithm is “ad hoc” and
remains immutable. Moreover, there is a set of open questions when us-
ing microscopic approaches: which is the validity range of the rules and
steering functions used? How do they compare to each other? How to
set simulation parameters in a principled and robust manner for general
scenarios? How can the values of the parameters adapt to the situation the
agents are in?

These questions have been addressed in previous work mainly by
comparing simulation results against reference data, based on dedicated
comparison metrics Guy et al. [2012]; Charalambous et al. [2014b], as
well as automatic parameter evaluation techniques Wolinski et al. [2014b].
These approaches have two main limitations: (i) the need for reference
data (i.e., real world observations); and (ii) the restriction to parameter
tuning only, which prevents exploring new policies out of the commonly
used steering functions. To enable the study of these and other ques-
tions in a flexible way, while overcoming the limitation of data-based ap-
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proaches, we built a proof-of-concept machine learning framework based
on Genetic Algorithms. A scenario generator in the framework can re-
produce a large set of simulation cases, where features such as the density
of agents in the environment or the number of crowd flow directions can
be controlled. The learning process and its fitness function, that, permits
to evaluate the suitability of the trajectories generated, are discussed in
detail in Chapter 3.

2.1 State of the art

The crowd simulation research field is concerned with reproducing, pre-
dicting and understanding the motion of real human crowds. Generally
speaking, the purpose of crowd simulation is thus to compute the motion
of a large number of characters (also called agents) in the same space and
time. Various approaches to this problem have been proposed. One class
of them are called microscopic approaches. Algorithms belonging to this
class compute the motion for each character independently, in contrast
with macroscopic approaches, which consider a crowd as a continuous
moving matter [Hughes, 2003; Treuille et al., 2006]. In our work, we are
mostly interested in the former kind of approaches.

To palliate the lack of variety and realism in the simulated behaviours,
several works take the approach of steering agents using pre-recorded ex-
amples of motions [Lee et al., 2007; Lerner et al., 2007; Charalambous
and Chrysanthou, 2014b]. These approaches face the challenge of pro-
cessing a high-dimensional database to efficiently search it, and find sim-
ilarities between simulation agents’ state and recorded motions. Agents
do not actually learn how to move, but imitate motions that already ex-
isted. As an alternative, Wolinski et al. [2014b] try to get microscopic
crowd simulators as close as possible to real crowds of reference, by op-
timizing simulation parameters. Zhao et al. [2017] steer agents to imitate
the specific patterns learned in a given environment. Our work consid-
ers applying machine learning to train agents how to move e.g., how to
reach their goal while avoiding collisions. A major difference with re-
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spect to previous work in this direction is that we do not use real crowd
motion data for training. Instead, we propose using a quality function that
measures how ‘well’ agents move and interact.

The idea of learning by experience and interaction is not new; many
previous works have already applied reinforcement learning for better
agents’ steering. Efforts typically deal with finding policies that are state-
to-action mappings for one or many agents [E. Hart et al., 1972]. These
approaches, however, are hindered by the computational complexity of
such systems, due to the curse of dimensionality [Todorov, 2009; Thalmeier
et al., 2017]. That is why optimal control approximation and inference,
along with sampling techniques, are emerging as interesting alternatives
in this field [Kappen and Ruiz, 2016; Todorov, 2006]. Finding the ex-
pected reward for each possible next state and using that information to
choose which action to take, has already been applied in multi-agent sys-
tems to simulate pedestrians by Martinez-Gil et al. [2014]. These ap-
proaches, though, usually deal with discrete state spaces, discrete agent
actions, or very few agents. We learn general behaviours instead: the
policy is defined as a parameter vector that controls how much each state
feature affects the motion. By doing this, we learn the best parameter
values to optimize the expected simulation quality and generate good tra-
jectories according to the aforementioned fitness metric. Unlike our syn-
thetic data-based approach, Wolinski et al. [2014b] rely on real world
data, hence limiting the flexibility and range of application of their pro-
posed framework.

2.2 Overview

The framework we propose is composed of two main building blocks
(Figure 2.1): the optimizer, and the simulation sampler. Briefly speak-
ing, learning within our framework is performed in an iterative process,
looping between simulation and optimization until the fitness of the model
parameters found is considered satisfactory. This process is described in
Section 2.3.
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Figure 2.1: Schematic overview of the framework. The simulator sampler
(left, orange) tests the parameter values proposed by the optimizer (right,
blue) that, in turn, tries to maximise the fitness function score.

On the one hand, the simulation sampler receives a set of parameters,
θ, and outputs a set ofN simulations S S = {si}Ni=1, whereN is the num-
ber of samples used by the learning algorithm, as discussed below. Each
simulation, si, corresponds to a crowd trajectory, the set of all character
trajectories of a crowd. Every character has a trajectory in the studied
time window that refers to the sequence of 2D positions of one charac-
ter together with information about its state at every time step. In order
to simulate crowds, we can use the original algorithms’ implementation
(provided by the respective authors) or the UMANS software, which is ex-
plained in Section 2.4. The scenarios used for this work are generated on
the fly in order to test the model parameters in a variety of different situ-
ations. On the other hand, the optimizer receives a simulation set, S, and
studies and returns the average fitness over the trajectories in S. Then,
it proposes, as discussed in Section 2.3.2, new parameter values to test
using the simulation sampler.
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2.3 Iterative learning of parameter values

We endow the framework with a machine learning module that actively
seeks the parameters which maximize motion quality, as defined by the
quality function.

2.3.1 Simulation sampling

The simulation sampler (left block in Figure 4.1) receives a set of parame-
ters θ and outputs a set of simulations S = {s1, . . . , sn}. Each simulation
si corresponds to the characters’ trajectories generated using θ on a given
scenario. The simulation sampler has two components: (i) the scenario
generator generates a set Γ = {γ1, . . . , γn} of n random scenarios on
which the parameters are tested; on the other hand, (ii) the crowd simu-
lator takes as input the model parameters θ and uses them to perform an
end-to-end simulation on each of the scenarios γi ∈ Γ, yielding S.

Scenario generator

We consider a scenario γi to be a set of initial positions and goals for
each character in a two-dimensional world. Ideally, the simulation vec-
tor, S, would contain simulation results using the parameter set θ over the
space G of all possible scenarios. However, such an approach is infeasi-
ble. To overcome this problem, we resort to a random scenario generator
which draws sample scenarios from G. To guarantee an efficient learning
process, care must be taken to ensure that the random scenarios provide
appropriate conditions for the agents’ learning e.g., the existence of col-
lisions. We refer to the space of scenarios where learning is likely to
happen as Gl ∈ G. The set of scenarios that is useful greatly depends on
the parameters that one intends to learn. For instance, as will be shown
later, low density scenarios are not as useful to learn collision avoidance
behaviours as densely populated ones. This is because if agents do not
experience collisions in the training scenarios, they cannot learn from ex-
perience the proper values for collision-avoidance related parameters.
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The scenario generator aims at randomly generating sets of sample
scenarios Γ ∈ Gl, given a fixed number of agents. It assigns an initial
position and a goal to each agent. In our implementation, the scenarios
generated are square-shaped. Moreover, to avoid introducing border arti-
facts, we consider a periodic world in which agents leaving the area limits
re-enter through the other extremity. The area of the scenarios is a random
variable a ∼ U(am, aM), where am and aM correspond to the minimum
and maximum scenario area, respectively, that are user provided parame-
ters. The area size a implicitly controls the density of agents, which is a
very interesting scenario feature with direct impact on the learned model
parameters, as shown by our results.

Crowd simulator

This module can use the implementation of steering algorithms as Veloc-
ity Space costs, as discussed in 2.4 or the original algorithm implementa-
tion. Each steering algorithm receives a parameter value set, θ, provided
by the optimizer. Given a sample scenario λi ∈ Λ and θ, a steering algo-
rithm produces the corresponding simulation si. Each simulation si is a
sequence of positions and velocities of each agent for a number of time-
steps t = [1, . . . , T ], such that si = {s0

i , s
1
i , . . . , s

T
i }. To compute each

simulation frame st+1
i , the previous time-step sti and the model parameters

θ are passed as argument to the motion model, yielding:

st+1
i = m(sti, θ) , (2.1)

where m represents the steering algorithm, implemented as a Velocity
Space cost, used. Performing the simulation for a set Λ of n random
scenarios sampled by the scenario generator yields the simulation set
S = {s1, . . . , sn}, which is then passed to the evaluator. Any motion
model capable of fulfilling this specification is a valid model for being
used within our framework.
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2.3.2 Parameter optimizer
The optimizer (right block in Figure 4.1) receives a simulation set S, pro-
duced by the simulation sampler. First, the trajectory evaluator resorts to
a quality function, QF , which returns a scalar c representing the average
fitness over the trajectories in S. Then, the parameter updater proposes a
new parameter set to use in the next iteration, based on the performance
of θ.

Trajectory evaluator

The evaluator is a key component since it should quantify how “good”
a set of parameters proposed by the parameter updater is. For this we
specify a simple fitness function, that measures the performance of a pa-
rameter set, θ, given by the sum of the quality over all simulations, si ∈ S:

F(S) =
∑
i

QF (si) . (2.2)

This is performed by resorting to a quality function, QF , whose input
are each of the trajectories in the simulation set S produced by the simu-
lation sampler. Chapter 3 moves to discuss the quality function, QF , that
is learnt using real data but does not rely on it in order to evaluate previ-
ously unseen trajectories. Such a function is thus crucial to the learning
framework. It evaluates the values of specific trajectory features in each
individual simulation si ∈ S.

With this, the problem of finding the optimal parameters, θ∗, which
maximise the fitness function, F , can be stated as:

θ∗ = arg max
θ∈Θ

F(S) . (2.3)

Parameter updater

At each iteration i, the parameter updater proposes a new parameter value
set θi that will be tested using the simulation sampler block. The goal of
the parameter updater is to iteratively change the values of θ in order to
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progressively converge to θ∗ that minimises F . In this work, parameters
values are mutated using a Genetic Algorithm. When a new parameter
set is proposed for evaluation, the parameter optimizer uses the quality
score given by the trajectory evaluator to decide which individuals of the
population to keep in order for them to be parents of a new population.
This parameter value learning process is discussed in detail in Chapter 3.

2.4 Unified Microscopic Agent Navigation Sim-
ulator

The purpose of a local steering algorithm is to compute how a character,
ci, at time t should update its velocity for the upcoming simulation step,
st+1. The general idea is that a character should stay close to its preferred
velocity, vpref ∈ R2, while respecting local rules such as collision avoid-
ance with nearby obstacles and other agents. Steering algorithms also
receive a set of parameter values, θ, that affect the how the velocity for
the subsequent time-step, v′, is selected.

We presented, together with van Toll et al. [2020b], a novel technique
to describe local steering algorithms as cost functions that can be min-
imised in order to select v′. These implementations are gathered in a
crowd simulation engine called Unified Microscopic Agent Navigation
Simulator (UMANS). This software unifies the implementations of a num-
ber of well known microscopic motion algorithms whose implementation
is not provided by authors and allows to experiment with them through a
common interface.

2.4.1 Steering algorithms as Velocity Space costs
Let the Velocity Space, V ⊆ R2, be the set of all possible velocities
a character can have. V can be thought of a disk around a character,
ci, with a radius equal to its maximum speed, smax. We can translate
existing steering algorithms into Velocity Space costs, C, that assign to
each possible velocity v′ ∈ V a scalar cost C(v′). A Velocity Space cost
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can therefore be thought of as the ‘attractiveness’ of choosing v′ as the
agent’s next velocity. In this setting, updating the velocity of a character
is done by finding which v′ minimises a defined cost.

The cost of a velocity v′ for character ci can be based on various kinds
of information, including its current position, velocity, preferred velocity
or goal position; the distance between neighbouring characters; the time
to collision (TTC) assuming that a collision is expected if ci uses v′ and
all neighbours maintain their current velocity; the distance to collision
(DC), used if a collision is predicted under the same assumptions; the
time to closest approach (TTCA), that is the same as TTC if a collision
is expected; and the distance at closest approach (DCA), the distance be-
tween them after TTCA seconds. As an example, the Reciprocal Velocity
Obstacles (RVO) algorithm uses TTC to evaluate each possible new ve-
locity v′:

C(v′) =
w

TTC
+ ||vpref − v′||

where w is the weight of the cost function, whose value is determined
by the parameter updater, and TTC depends on the position at time t of
character ci, its radius, and v′. We consider vpref to be the velocity that
would move ci directly to its goal at a preferred speed spref = ||vpref ||.

It is worth noting that costs,C, are not necessarily smooth and a global
optimization might not be able to find an analytical solution. For exam-
ple, if C uses TTC, the costs of two similar velocities v′ and v′′ can be
very different if one velocity causes a collision while the other avoids it.
Some implementations, therefore, approximate the optimal velocity by
sampling multiple ‘candidate’ velocities and choosing the one with the
lowest cost.

2.4.2 Crowd simulation loop

We use a simulation loop with frames of a fixed length ∆t and N charac-
ters simulated simultaneously. At the beginning of the simulation, a spa-
tial hash for character positions is created to facilitate nearest-neighbor
computations. Then, for each step, st, and character, ci:
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1. All neighbours within r meters of ci are found, where r is defined
in θ. These are the characters that might affect the local navigation
of ci.

2. The preferred velocity, vpref , for ci is computed.

3. The key step in this loop is computing a new velocity vector v′ for
ci in the next simulation step, st+1. Each agent can use its own local
navigation algorithm, as discussed next.

4. Finally, the velocity v and position p are updated.

This is an independent process that is executed per agent. Therefore,
to decrease the simulation’s computation time, the work inside these steps
can be performed simultaneously for N different characters on parallel
threads.

2.4.3 Integration with the framework

Each cost function is a subclass of the abstract class CostFunction, and
it is used to compute three things: the cost C(v′) for a velocity v′, the
gradient ∇C(v′), and the velocity with minimal cost, v∗. A cost func-
tion is accompanied by a set of default or specific parameter values. The
cost functions, parameter values and velocity selection method can be
specified through XML files. The individual start and goal positions of
characters, as well as other internal properties, can also be initialised.
This set-up allows to easily test ‘variants’ of an algorithm in a number of
predefined scenarios.

A total of ten different algorithms are described by van Toll et al.
[2020b]. The code in UMANS, freely available 1, rends similar results to
the original implementation (for algorithms whose original implementa-
tion is available) or the results described in the original publications [van
Toll et al., 2020b].

1https://gitlab.inria.fr/OCSR/UMANS
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The aforementioned cost functions and optimisation methods are writ-
ten in platform-independent C++11. This is used by the crowd simula-
tor in our framework (see Figure 2.1), as a standalone library controlled
through a Python interface. The framework can also use the original code
provided by the authors of the steering algorithms, as an external library,
whenever it is available.

2.5 Discussion

Previous agent-based techniques have suggested plenty of variables pos-
sibly influencing behaviours. With our system, it is possible to determine
which model fits better a scenario, or even to simulate higher quality tra-
jectories by combining several approaches. There have been various met-
rics to evaluate crowds against empirical data Guy et al. [2012]. These
measurements are analysed and discussed in Chapter 3, where a perceptu-
ally validated quality function is proposed to automatically find parameter
values for the steering algorithms.

If characters share their policy (the steering algorithm and parameter
values), θ is simply a vector of parameter values. On the other hand, these
parameters can constitute a very high dimensional space when different
policies for each agent are used for the parameter set θ is then an m×N
matrix where m is the number of parameters of the steering, and N is the
number of agents. This distinction, together with more details about the
learning process, is discussed in Chapter 3 and a solution to simplify this
task is proposed in Chapter 4.

We also find that being able to adapt the policy of every agent dy-
namically -that is, somewhere in the middle of the simulation- to be able
to better steer agents that pass through different scenarios -for instance,
different densities- is an interesting improvement with respect to current
approaches. For this, equipping the agents with the ability to determine
the situation they are in will be very important to switch between policies.
This is discussed in Chapter 4. Moreover, being able to group agents, ac-
cording to the behaviour (policy) or the situation they are in, could be the
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key to dramatically reduce the computational complexity of the task since
policies could be shared among characters.

2.6 Conclusions
We proposed a synthetic data-based machine learning approach to train
crowd simulation agents. Using our proposed framework, we automati-
cally find an interesting set of policies (crowd simulation algorithms along
with their corresponding learnt parameters) that enable a crowd simulator
to meet specific objectives as described by a simulation quality function,
described in detail in Chapter 3.

One of the interests of our approach resides on using machine learn-
ing without requiring real-world motion-data. Instead, we use a synthetic
data-based approach coupled with user-defined simulation quality func-
tions with are used to generate a large variety of training cases and to
evaluate the agents behaviour, respectively. We believe that our approach
presents many advantages.

An interesting line of work could be using weighted trajectory fea-
tures alone in order to adapt the motion of agents, reaching an almost
model free stage. Examples of these state features could be distance to
closest approach, density in the neighbourhood, the context of movement
(whether agents are rushing or strolling), etc.
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Chapter 3

CROWD TRAJECTORY
QUALITY EVALUATION

It has long been established that crowd navigation algorithms and their
parameters have a direct impact on the resulting quality of animations.
This makes the decision of what model to use and how to pick parameter
values difficult. To assist designers in their task, we explore the issue of
automatically evaluating the quality of character trajectories in a crowd,
and the effect of parameters values. Two paradigms confront each other,
each with its advantages and weaknesses:

On the one hand, methods of comparison with real data allow ad-
justing the parameters to each case, but data is required and the question
of comparison criteria arises. Note that the comparison of data also re-
quires objective metrics to measure how distant simulations are from real
trajectories. Many metrics have been proposed, but their links with the
perceived quality of animations have not been clearly established yet.

On the other hand, perception studies allow to directly judge the qual-
ity of animations as perceived by spectators, and therefore perfectly fulfill
the objective, but are carried out in long cycles and only allow to estimate
parameters that are fixed in advance.

We address the problem of evaluating the quality of crowd simula-
tions by exploring a new method that gathers the advantages of these 2
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paradigms. Our approach is to first establish a list of crowd trajectory
features which are likely to impact the quality of crowd animations. They
are established in discussion with crowd animations experts and concern
individual, interaction or global crowd motion features. In a second step,
we build a so-called Quality Function QF which maps those features to
a single quality score. This function has parameters, the value of which
is established from our experts’ feedback or estimated from real data. Fi-
nally, we perform a perception study with naive users so as to demonstrate
that our quality function returns values that correlate with the perceived
quality of crowd animations. We demonstrate our approach on the case of
ambient crowds that can be loosely described as trajectories of heteroge-
neous pedestrians in the street without any specific behaviour other than
walking to their goal (no queuing, no running, no grouping, etc.). For
this case, we learn value ranges for each term of QF from real data, we
establish a relationship between model parameters and perceived quality,
and automatize evaluation to autonomously find parameters for models.

Figure 3.1: Quality function creation overview. The quality function,
designed with the help of experts and through the analysis of real data, is
validated through a user experiment. The quality function is used in the
Learning Crowds framework, represented by the blue boxes.

3.1 State of the art
Crowd simulations result in large sets of individual animation trajecto-
ries. Their quality depend on a number of rules by which agents move
(simulation models), as well as parameter values to control the simula-
tion. They are not intuitive nor easy to tune and often depend on context.
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Our objective is to propose a method to evaluate these simulation results,
regardless of the method by which they are generated. We focus on the
visual realism of a crowd, i.e. the judgement from spectators of whether
a simulation seems real. We can distinguish various approaches to the
evaluation of crowd simulations.

The first uses paths of real crowds, to evaluate the ability of simula-
tors to reproduce them. The question of comparison metrics is central,
and several adapted solutions have been proposed, for instance Guy et al.
[2012], Wolinski et al. [2014a], and Charalambous et al. [2014a]. These
metrics consider crowd movement at different scales and take into ac-
count the variability of behaviors. However, there are drawbacks asso-
ciated with the use of reference data, e.g., over-fitting due to the limited
sample of pedestrian trajectories available. A broader perspective has
been adopted by some authors that, instead of focusing on agent trajecto-
ries, measure crowd motion characteristics such as the ratio between the
density and the average speed in different cultures like Jelić et al. [2012]
and Chattaraj et al. [2009].

To overcome the problems related to the availability of crowd data,
some authors study properties that trajectories should exhibit. For in-
stance, Berseth et al. [2016], use a combination of measurements (e.g.,
path length, failure rate, similarity to ground truth) to automatically tune
simulation and/or decide what tuned motion model fits a situation better.
Kapadia et al. [2009] propose objective measurable features to compare
crowd simulations to real data and detect unrealistic patterns. Another
strategy consists in proposing representative scenarios as a benchmark
and studying the coverage of different motion models (scenarios they can
handle) [Kapadia et al., 2011]. A second category of approach, rather than
looking for criteria or data capable of determining the level of realism of
a simulation, is to directly evaluate the perceived realism through percep-
tion. For instance, McDonnell et al. [2008] and McDonnell et al. [2009]
explore the impact of character appearance and motion variations on the
perception of crowd heterogeneity, while Turnwald et al. [2015] propose
a metric to reproduce the human perception of motion differences. The
perception of human motion animation in relation with collisions, that
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are trajectory events, has also been studied by Hoyet et al. [2016], Molina
et al. [2021] and Kulpa et al. [2011]. However, to the best of the authors
knowledge, there is no proven link between autonomous quality evalua-
tion methods and human perception of trajectory quality.

Finally, one should notice the recent evolution of simulation tech-
niques towards data-driven models. Recent approaches based on deep
learning such as Social-LSTM or Social-GAN and consors, like those by
Alahi et al. [2016] or by Gupta et al. [2018], make an implicit evaluation
of the generated trajectories (through the loss function, or the discrimina-
tor component of a GAN). These methods are rather used to solve trajec-
tory prediction problems, but their use can be adapted to the synthesis of
crowd trajectories [Amirian et al., 2019].

Our approach integrates the two first types of approaches for trajectory
evaluation, and is designed to preserve the advantages of each: anchoring
in objective reference data like data-driven methods, generalising with
the help of experts the concept of realism through measurable trajectory
features, and linking the evaluations with spectators through a perceptual
study. With this approach, evaluations are fast to compute and provide
intuitive results, which is very useful to computer animators, while still
retaining the information from real data. We demonstrate its usefulness
to determine simulation parameter values.

3.2 Overview

The objective of this work is to propose a metric to evaluate the quality
of a set of 2D trajectories resulting from crowd simulation. Through the
following of this chapter, we call this metric the Quality Function (QF ),
where by quality we mean the level of perceived realism of a given trajec-
tory according to general users. However, since determining the relevant
trajectory features for estimating such a quality is not straightforward, we
propose to rely on a 2-step process. In a first step, we select relevant mo-
tion characteristics with the help of experts in the fields of Crowd Sim-
ulation and Human Animation. Then, in a second step, the selection is
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Table 3.1: Trajectory features discussed with experts (Section 3.3) and
used in the quality function (Section 3.4), referred throughout the chapter
using the associated 3-letter codes.

Individual features (Code)

Average walking speed (AWS) Difference to goal direction (DGD) Inertia (INE)
Flickering in direction (FDR) Flickering in speed (FSP) Goal reaching (GLR)
Difference to comfort speed (DCS) Angular velocity (AVL) Trajectory length (LEN)

Interaction features (Code)

Environment-based density (EDN) Number of collisions (COL) Local density (LDN)
Distance to other agents (DTA) Time to collision (TTC) Interaction strength (IST)
Time to closest approach (TCA) Personal space overlap (OVP)
Interaction anticipation (IAN) Distance at closest approach (DCA)

Global features (Code)

Fundamental diagram (FDG) Feature values variety (VAR) Path length (LEN)

validated through a questionnaire that a different set of experts are asked
to fill. This feature selection process, together with the features’ impact on
quality perception according to experts, is detailed in Section 3.3. Once
these expert-based relevant features are selected, we measure them in real
data and propose a novel quality metric, the Quality Function QF , as de-
scribed in Section 3.4. In Section 3.5.1, through a perceptual experiment,
we show that the proposed metric is able to capture the human percep-
tion of trajectory quality. Moreover, Section 3.5.2 illustrates a practical
application for automatically determining the parameters of a crowd sim-
ulation model by maximising QF . Finally, we present our conclusions in
Section 3.7.

3.3 Trajectory features selection

The first step in the development of the QF is to determine what crowd
motion characteristics affect the perception of quality. On the one hand,
there is an important body of literature providing metrics to evaluate and
compare steering algorithms, e.g., absolute difference to ground truth
Wolinski et al. [2014a], coverage Berseth et al. [2014], etc. These stud-
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ies provide insights into what is desirable in a crowd motion. Metrics
extracted from related literature, though, are numerous and their defini-
tions often overlap. To only keep trajectory features that have an impact
on trajectory quality and are not redundant, we conducted face-to-face
interviews with 6 professionals (6+ years of experience) from different
leading international animation and crowd simulation companies. The
second step is to understand how important each characteristic is and how
it can be measured in 2D reference data and synthetic trajectories. To this
end, a different set of 9 experts were consulted to validate the features
importance and discuss their admissible value ranges.

3.3.1 Face-to-face interviews with experts

To identify trajectory characteristics of crowd motions that are relevant to
measure quality, 6 experts were interviewed. Prior to the interview, they
received a general explanation of the project. Then, the interviewees se-
lected a number of trajectory features to discuss which they believed to
affect perceived realism of a simulated crowd, and which can be classified
into three groups (see Table 3.1): (i) individual trajectory features, which
measure the trajectory of a single agent independently, e.g. difference
between walking and comfort speed; in contrast; (ii) interaction features
that deal with measures taking into account any pair of agents; the last
group is for (iii) global trajectory features aggregate these measurements
and study their distribution among the crowd or study the relation be-
tween one or more trajectory features. These features were discussed to
understand their impact on the perceived quality of crowd motion. Ex-
perts were also asked about admissible value ranges for the discussed
features and sufficient conditions to consider a crowd trajectory to be of
low quality. Some higher-level properties such as coherence in time, the
animation layer and scene decorations were also discussed with experts
but are not included in this work as they were considered to be outside the
scope of “simulating ambient crowds”. Note that some of the proposed
features are interrelated, e.g., fundamental diagrams, the relation between
a crowd’s flow speed and density, depends on the values of two features.
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This is very important for there are behaviours that are undesirable even
if some features are individually inside their acceptable value range, but
their interrelation in the context of ambient crowds is not.

3.3.2 Questionnaire for experts

Following the interviews, we created an online questionnaire for experts
in the fields of crowd simulation and character animation, including ques-
tions about all the features that had been deemed to be important. The
objective was to obtain qualitative and quantitative information about tra-
jectory features in each group, as well as to ask for additional details, e.g.
about their relative importance.

After providing information about their background and occupation,
participants then answered questions about the trajectory features listed in
Table 3.1. Questions about each trajectory feature were grouped and dis-
played on the same page, beginning with relevant descriptions and video
examples. As can be read in Appendix A, in each page of the question-
naire, experts were asked a number of questions about the related fea-
tures, providing their answer using a 7-point scale, ranging from “totally
disagree” to “totally agree”. Experts were asked about the features’ im-
portance under different conditions. Note that the formulation of the ques-
tions varied slightly to adapt to the feature definitions and units. The goal
was to gain a more detailed understanding of how different features and
feature values would impact the perceived quality. Moreover, a couple of
open answer questions were asked in each page of the questionnaire for
experts to give their general opinion about the proposed trajectory fea-
tures, including their opinion about values, related features, etc. After
the feature-specific questions, the experts then answered questions about
the general appearance of the crowd, e.g. heterogeneity, as well as to the
relative importance of trajectory features. Questions about the impact of
trajectory features and of specific values of the features were answered us-
ing the following scale: “not important at all”, “of very little importance”,
“of little importance”, “of average importance”, “important”, “very im-
portant”, and “absolutely essential”. A different set of experts (9) partic-
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Table 3.2: Reported expertise (from 1 to 5) on Human Animation and
Crowd Simulation of the 9 participants.

Participant Field Reported expertise in
of Expertise Human Animation Crowd Simulation

Crowd Simulation Research (3) {4, 4, 5} {4, 5, 5}
Video-Game Industry (3) {2, 4, 5} {2, 3, 4}
Movie Industry (3) {3, 4, 4} {2, 4, 5}

ipated in the survey. Table 3.2 reports their expertise, showing that most
respondents worked in the industry (6).

3.3.3 Discussion of expert opinion and of feature selec-
tion

Replies were used to validate the selection of trajectory features. Experts
overall agreed with the feature definitions and importance. In particular,
Figure 3.2 (top) shows on the vertical axis the agreement of experts on
a scale from 1 to 7 when questioned about each feature on the horizon-
tal axis. It can be, therefore, said that participants in the survey agreed
with the definition of all the selected trajectory features (definitions in
Appendix A and in Table 3.4), and that the example videos were repre-
sentative of the trajectory features in question. This means that the con-
cept of features used for trajectory evaluation was understood and that
the mathematical definition of the features is in line with the behaviours
and artifacts shown in the videos. Moreover, the survey also validated the
use of ChAOS 1 to showcase desired undesired trajectory feature values
in human trajectories.

Figure 3.2 (bottom) illustrates the experts’ opinion on the importance
of features. Experts were also asked whether particular values for the
trajectory features affected the perceived quality. A minority of experts

1https://gitlab.inria.fr/OCSR/chaos
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Figure 3.2: Agreement of experts with the statements about feature def-
initions (top, brown), video examples (top, pink), values (bottom, blue),
and importance (bottom, grey). Labels in the horizontal axis correspond
to the 3-letter codes in Table 3.1. Boxes represents the central 50% of the
answers and whiskers, the remaining 50%. Orange bars represents the
median value. The absence of a box means that there was no question in
the survey about the definition, video, or importance of that feature.

indicated that some trajectory features were “of little” or “of very little”
importance for perceived quality of trajectories. However, all features
were on average considered of being at least “of average importance”
(values over 4 on the vertical axis), and some “very important”. Their
opinion on feature value impact (blue) suggests that values outside the
admissible range for any of the selected features negatively affect the per-
ceived quality. With this, we conclude that all the features contribute to
some degree to the perceptual quality of trajectories, and should therefore
be used in the evaluation of crowd trajectory quality.

Answers to the open questions also provided us with valuable infor-
mation. For instance, E1 highlighted the importance of the available ani-
mation system in handling collisions. In his point of view, collisions are
“not particularly important if the animations are appropriate for both char-
acters.” E2 also reported on this effect by reminding that it is common to
“keep agents that intersect slightly because our eye assumes they are not
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colliding, (as) the human eye often does not register collisions.” Such
comments are in agreement with previous works on this topic Hoyet et al.
[2016] and suggest a difference between intersections (personal space
overlap) and actual perceivable collisions (collisions), and as reported
by E4 “collisions do happen in real life, so some tolerance is required”.
However, when such animations are not available, or if the system is not
dealing with collisions, “the collision then should be avoided all together,
and having a high TTC value would be better” (E1). In this work we focus
on trajectories, without making assumptions about the animation system
used to visualise characters on such trajectories. Together, these com-
ments highlight the importance of preventing collisions when evaluating
trajectories.

However, the importance of avoiding collisions might be mitigated by
other factors, as E2 also emphasized the importance of avoiding sharp
changes in direction (i.e., high angular velocity values), by commenting
that “it is better to collide than to have an abrupt change of direction.”
E1 also mentioned that it is preferable to avoid sharp changes in velocity,
unless “we have captured animations for this and can play those anima-
tions appropriately.” Similarly, E3 reported that “animation plays a big
part” when a collision is imminent (small TTC) and that “sidestepping is
perceived as more realistic than turning completely 90 degrees to avoid
the collision.” Another expert, E5, also commented that “abrupt turns are
not found in real trajectories”, and that “there is a maximum turning an-
gle to avoid obstacles, the primary reaction is always slowing down.” In
his point of view “humans have an anticipation of about 30 meters from
their surroundings”, which could provide an estimate of the distance up
to which an agent can be affected by its neighbours.

Experts also commented on the actual trajectory lengths and direc-
tions to reach a goal. In particular, according to E2 “limiting travel time
to a specific duration makes the resulting simulation look artificial”, for
it would penalise trajectories going around obstacles and favouring the
shortest path and higher walking speeds, which is not necessarily close to
that of a real human. E4 also mentioned that “unnecessarily large desired
direction differences might work just as well.” These comments suggest
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that trajectory lengths need to be varied enough to avoid impairing re-
alism, and not moving towards the goal at all times might be preferable
in some contexts. Of course, travel time is also affected by the walking
speed of characters, which experts agreed should be within an admissible
range. In particular, they voiced their concerns about displaying walk-
ing characters moving very slowly or very fast, as “changing the speed of
the animation does affect visual quality” (E1) and “animations cannot be
re-timed to change the speed because of motion dynamics” (E2).

Interestingly, experts were unanimous about environment/based den-
sity: the distribution of inter-pedestrian distances has an impact on real-
ism since an uniformly distributed crowd is not believable. Many partici-
pants voiced their concerns about distances among groups of pedestrians
as well. E2 said that people might move in groups and that, depending on
the context, “local density among grouping agents might be high, and the
closest distance very small.” Another expert (E4) suggested that density
should be computed as “the ratio of flesh per square meter to account for
children”, while also highlighting that there are many types of pedestri-
ans for which different state feature values are expected such as “children,
disabled people, inebriated people, or people queueing” (E5 adds “men-
acing people” and “elderlies” to the list). Similarly, E4 pointed out that
“fundamental diagram is also a cultural trait”, highlighting that cultural
differences might also play a role in evaluating trajectory features. Such
comments highlight the importance of individual differences, even though
we focus (as a first step) on ambient crowds of similar-sized adults with-
out any specific behaviour or cultural traits.

3.4 Quality Function

Our goal is to propose a function for an autonomous quantitative eval-
uation of crowd trajectory quality. In this context, every character in a
crowd has a trajectory in the studied time window, i.e., the length of the
reference video or the simulation length, and the term character trajec-
tory is used here to refer to the sequence of 2D positions of one character
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together with information about its state at every time step. The term
crowd trajectory is then used to refer to the set of all character trajectories
of a crowd. The work presented in Section 3.3 provides us with a set of
trajectory features, the relevance of which for assessing the believability
of a crowd trajectory has been validated by experts. These are the basic
building blocks with which to construct our quality function. However,
to effectively build it, the trajectory features need to be measured, ranked
and combined to create the quality function.

Constructing QF is a three-fold process. First, metrics for quantita-
tive evaluation for each of the trajectory features are proposed, and real
data is studied to obtain reference values for the features. These refer-
ence values are treated as a golden set, used to inform the quality function
about typical and expected values. With this information, a cost to pe-
nalise deviations between the golden set and the features of the evaluated
trajectory is proposed. Finally, these independent feature costs are then
combined through a weighted sum to determine the quality of the evalu-
ated trajectory.

3.4.1 QF definition
The quality function,QF , is defined as one minus a weighted sum of costs
(Ci), where the subscript i indicates the index of the trajectory feature. Ci
depends on the distribution of feature values in ground truth data, ri, and
in the trajectory being evaluated, si. QF is therefore defined as:

QF = 1−
∑
i

ωiCi(si|ri), (3.1)

where i ∈ [1, . . . , I] is the trajectory feature index, I is the number of
features (I=21 in our examples), and ωi is the weight associated with
the feature i. The ωi values are automatically learnt as discussed in the
following sections. As identified in Table 3.1, trajectory features can be
classified into three categories: individual, interaction and global. Indi-
vidual and interaction features take different values for each character and
time-step of the trajectory while global features take different values only
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for each time-step of the trajectory. For those trajectory features with val-
ues changing for each character, n, and time-step, t, we compute the cost
as follows:

Ci(si|ri) =
∑
n

∑
t

(
1− e−(sn,t

i −µi)
2/2σ2

i

)
/(NT ), (3.2)

where N is the number of characters in the crowd, T is the length of the
simulated trajectory, and µi and σi are the average and standard deviation
of the trajectory feature values found in real data ri. For trajectory features
computed across characters at each time-step, t, we compute:

Ci(si|ri) =
1

T

∑
t

(
1− e−(sti−µi)2/2σ2

i

)
. (3.3)

The trajectory feature values for si and ri are determined prior to evaluat-
ing trajectories using QF . For this, we assume future linear motion of all
the characters in the crowd. We move on to discuss the feature values and
the distributions found in reference trajectories.

3.4.2 Trajectory feature values
The values of the features in the evaluated trajectory, si, are obtained
using the state properties of all the characters. Moreover, the trajectory
feature values are compared in the cost functions Ci to a gold distribu-
tion, ri, which we compute in practice from a set of reference data. The
dataset used in this work is pending publication; meanwhile, it is available
on demand. Following Eq. (3.2), we are interested in the average value,
µi, and standard deviation, σi, for each of the trajectory features in real
trajectories.

Character properties can be classified in: static, individual and state
properties. Properties like agent radius and mass are static: unchanging
and shared by all agents. Individual properties, such as goal position or
preferred speed, are different for each character in the crowd but remain
constant throughout the trajectory. Lastly, state properties refer to the
properties of a character that change at every time-step of a trajectory,
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Table 3.3: Common terms for the equations in Table 3.4.

Term Definition

si Values of feature i in the studied trajectory
ri Values of feature i in reference data
T Total number of time steps in the studied time window
t Current time step
N Total number of characters in the crowd
n Index for the current characters

e.g. current speed, direction, position, etc. Static, individual and state
motion properties are used to compute the values of trajectory features.
Each feature value set si will be the result of measuring the values of a
particular trajectory feature, fi, at each time-step, t, and for each character
in the crowd, n, if appropriate:

si = {fi(n, t)}n∈[0···N ],t (3.4)

Note that the values of si change at every time step as characters move
and interact. The time window is not specified in Eq. (3.2) and greatly
depends on the application as will be discussed in Section 3.5.1. A de-
tailed account of how the values for each trajectory feature are computed
is given by the mathematical definitions provided in Table 3.4.

Walking speed is an important term of the quality metric and is used
here to illustrate the analysis of feature value distribution. The velocity
of the characters of the crowd, the output of the motion model, is ob-
servable at every time-step of the simulation, and we can therefore use
the values of the walking speed for all characters for all the time-steps
of the trajectory. Figure 3.3a shows the distribution of walking speed
values in reference data (blue bars), as well as the normal distribution
fitted to this data (red line); the corresponding mean (µws) and standard
deviation (σws) of this distribution will be used to compute the cost for
walking speed C(sws|rws). Figure 3.3b shows the distribution of walking
speed values found in a sampled synthetic crowd trajectory (blue bars),
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(a) Real data (reference). (b) Synthetic data.

Figure 3.3: Blue: walking speed distribution in reference data (a) and in
a synthetic trajectory (b). Red: normal distribution fitted to the reference
data (a), and the trajectory cost assigned to each value (b).

as well as the cost assigned to each feature value according to Eq. (3.2)
(red curve). Intuitively, the larger the difference between the feature dis-
tribution in the simulation and in the reference data, the higher the cost in
Eq. (3.2).

Analysis of the feature values in reference data ri revealed distribu-
tions close to that of a normal distribution (example in Figure 3.3), such
that ri = N (µi, σi). In some cases the feature values exhibit a multi-
modal shape which would be better explained with a Gaussian mixture,
but upon inspection these trajectories were identified to be outside the
scope of this project e.g., trajectories with moving and standing agents.

3.4.3 Quality function weights

The weight ωi of each cost in Eq. (3.1) is related to the influence of each
trajectory feature on the quality of crowd trajectories. These weights are
learnt using an evolutionary approach that leads to a single set of weights
used in QF . Different learning strategies can be used to give values to
the QF weights, but Genetic Algorithms (GA) are not prone to be stuck
in local minima and provided stable results in our experiments. GA are
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able to explore new weight value sets and exploit the solutions found in
previous iterations through mutation and crossover strategies.

In this work, the performance of characters is measured on a given
training set. The training set consists of two types of trajectories: (i) ref-
erence data, that receive a score equal to 1, and (ii) unrealistic trajectories,
according to experts, that are given a low score. For instance, trajectories
generated without avoidance maneuvers are studied and the correspond-
ing feature values are used as predictors and assigned 0 as target value
in the training set. Moreover, undesired feature value combinations (dis-
cussed in Section 3.3) are also given a 0 target score. In this step we
use different scenarios: crossing flows, circle crossing and random. The
consistency of the learnt weights across scenarios is discussed in Sec-
tion 3.5.1.

The average difference between the given quality score, SR, and the
prediction, SQF , is used as the fitness of each individual of the popula-
tion. For information, the weights learnt for each trajectory feature are
reported in Table 3.5; where we see that some features have a more direct
impact on the overall evaluation. Nevertheless, all features contribute to
the quality score in a significant way, allowing it to detect artifacts that
simpler metrics such as the Least Effort Function Guy et al. [2010] could
not e.g. unrealistic combinations of speed and density or the apparition of
flickering in some interactions.

The quality score SQF obtained with these measurements can be com-
pared to existing metrics in the literature. Since QF shares some of the
evaluation principles, the trajectory features, with these metrics, we ex-
pect a certain correlation between the values. Nevertheless, QF aggre-
gates multiple numerical values that, according to experts agreed are im-
portant to evaluate perceived realism. We can compare, for instance, QF
to the Effort Measure Guy et al. [2010] and we obtain a Pearson corre-
lation of around r = 0.3489. This is due to QF being based, among
other things, on the deviation to the desired velocity of movement through
DCS and DGD. Figure 3.4 represents the evaluation of both metrics to-
gether with a trend line, which clearly shows the relation between the
values. Nevertheless, this figure proves that many trajectories are over
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Figure 3.4: Scores (brown), for the same collision-free trajectories, by
QF and the Effort Measure (normalised). The trend line (black) shows
the relation between the two.

or underrated by the Effort Measure, while QF bases the evaluation on
many other feature values. Points under the trend line represent trajecto-
ries where QF detects artifacts in some trajectory feature that is not used
to compute the Effort. Similarly, points over the trend line represent tra-
jectories where the deviation from desired velocity is due to global feature
values e.g. high densities. A discussion on the relationship between these
metrics using specific examples can be found in Section 3.5.2.

Correlations between features were also studied prior to learning the
weights, to avoid highly correlated features to impair learning, but that
none had a correlation coefficient greater than 0.8. All the features were
therefore included to be potential predictor variables. We would like to
point out that the Distance To Obstacles (DTO) feature was selected by
experts (Table 3.1) but was not used in our experiments because relevant
information was not available in our reference dataset (our reference tra-
jectories did not include obstacles other than neighbouring characters).
Nevertheless, weights for such features can be learned in the future if a
different dataset including the relevant information is made available.
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Table 3.5: Weights for Eq. (3.2) costs, that depend on the feature values
in synthetic and reference data.

Trajectory feature weights

Individual Local Global

AWS 0.1995 DTA 0.0586 FDG 0.0515
DCS 0.0258 EDN 0.0087 LEN 0.0587
FDR 0.0590 IST 0.0163 VAR 0.0224
DGD 0.0072 TTC 0.0441
GLR 0.0074 COL 0.0949
FSP 0.1054 IAN 0.0085
INE 0.0275 TCA 0.0698
AVL 0.0800 DCA 0.0068
LDN 0.0381 OVP 0.0096

3.4.4 Consistency check with real data
Once the weights are learnt, crowd trajectories are given a quality score
using Eq. (3.1). The quality score obtained in real trajectories is studied
using cross-validation. This test confirms that previously unseen real tra-
jectories receive scores higher than synthetic data, SQF ∼ N (0.9160, 0.0817).
Whilst this alone is not enough to confirm the correctness of the quality
function, it partially substantiates its usefulness. The following parts of
this chapter, Section 3.5.1 and Section 3.5.2, describe in greater detail the
validation and applications of the proposed quality function.

3.5 Validation

3.5.1 User study
To the best of the authors knowledge, none of the existing data-driven
metrics for trajectory quality is proven to accurately characterize human
perception of trajectories. In the previous sections, a new quality met-
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ric QF was proposed, its weights were learnt using reference data and
used to assign scores to new trajectories. In this section, we are inter-
ested in whether the obtained score correlates with human evaluations of
trajectory quality. To answer this question, we conducted an online exper-
iment, where participants were shown pairs of videos and asked to select
the more realistic one.

Experiment design

Sixty-six participants took part in our perceptual experiment. All partic-
ipants (26F/39M/1N; age: 30±9, min=16, max=61) were non-experts in
crowd simulation or related fields, and were naive to the purpose of the
study. Participants were only informed at the beginning of the experiment
that it was about trajectory realism and that data would be treated anony-
mously. The experiment was conducted through an ad hoc responsive
website and the replies were collected on a private server.

Figure 3.5 illustrates the interface shown to users participating in the
experiment. Two simulations of the same context (density, scenario, etc.)
are shown side by side. Users are asked which looks more realistic. Once
a user selects one of the two options, the “Next” button becomes clickable,
forcing the participants to choose.

The experiment consisted in showing to participants a number of pairs
of videos, presented side by side. The focus of this work is the “realism”
of trajectories, not of the animation of characters. To help participants fo-
cus on the trajectories, animations therefore had to be believable without
masking the underlying trajectory artifacts. Following recommendations
on variety in crowds McDonnell et al. [2009], trajectories were animated
with a set of 20 male and 20 female characters, with 6 textural variations
per character.

There are factors that can influence the perception of quality. For in-
stance, different motion models generate different types of trajectories,
with different motion characteristics. Therefore, in order to make the
experiment robust, we selected three representative models to generate
the experiment videos: (i) a representative of force-based models, Social
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Figure 3.5: User experiment interface with “Left” selected.

Forces; (ii) a representative of velocity-based approaches, RVO; (iii) and
a linear prediction-based model, Dutra-Marques. Density can also im-
pact the perception of artifacts so crowds were generated at two density
levels: high (more than 3p/m2) and low (less than 1p/m2). To study a
wider range of interactions, three generic scenarios were also selected:
a random one, and two crossing flows at 90º and 135º, respectively (see
Figure 3.6). Furthermore, previous work has focused on determining the
influence of the point of view on the perception of realism; to ensure the
camera position did not affect the results, we therefore chose two points
of view (see Figure 3.6): a canonical eye-level camera and a top view.

Trajectories used in this experiment obtain QF scores in the [0, 0.9)
range. To study the perception of trajectory visual quality, the videos were
classified into quartiles (Q1=lowest quality quartile, Q4=highest quality
quartile). As we were interested in evaluating perceptual differences be-
tween the quartiles, we included in our experiment comparisons between
all quartiles (6 combinations). All combinations between these factors
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Figure 3.6: Scenarios and point of views used in our experiment. From
top to bottom: 2-flows 90º crossing, 2-flows 135º crossing and random
scenarios, displayed from top (left column) and eye level (right column)
point of views.
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were taken into account to create the stimuli, resulting in 288 videos (5
seconds, 960 × 1080 pixels) created using ChAOS: 4 quality levels × 3
scenarios × 3 motion models × 2 densities × 2 POV × 2 repetitions.

The experiment was divided into three blocks (one for each scenario).
Each participant performed a single block of the experiment, and was
shown a random subset of 72 video pairs for this specific scenario (a total
of 144 good and bad quality trajectories). Each pair of videos showed
crowd motions with different quality scores Qi and Qj, but generated
with the same motion model, scenario, density level, and point of view.
In the following, such a comparison is referred to as QiQj. The left/right
position of the videos on the screen was randomly assigned for each trial.
There was no time limit for completion of the experiment, and the critical
time of this experiment, i.e. the minimum time needed for users to watch
each pair at least once, is 12 minutes. After watching each video in a pair,
participants were asked “Which one looks more realistic to you?”, and
answered by clicking with the mouse on a button to select a video of the
pair. The mouse position was reset to the center of the screen between
each trial by pressing a ’Next’ button, to avoid any left/right selection
bias.

Once a participant completed the experiment, a table was stored on
the server-side containing, for each trial, the ids of the videos shown, the
participant answer, as well as the side of the screen the selected video
was shown on (left/right). For each participant, the time for experiment
completion was also stored, together with the age and gender, asked at
the end of the experiment. Replies were then aggregated to study cor-
relations between the participant choices and the quality function score.
Out of 66 participants, 24 performed the random scenario, 22 performed
the 90º crossing flows scenario, and 20 performed the 135º crossing flows
scenario.

Statistical analysis

To analyse participants’ results, we first determine True Positive (TP) an-
swers, i.e., participant selects the video with the highest QF score. With
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this information, user accuracy is computed as the percentage of TP for
each user, and used to evaluate the level of agreement of users with QF .

To check for statistical differences in user accuracy, we performed on
each within-subject factor (QiQj Comparisons, Motion Models, Densi-
ties, POV) a separate 2-way mixed-design repeated measures Analysis
of Variance (ANOVA) with between-subject factor Scenario. A full fac-
torial analysis was however not possible as participants were presented
with a random subset of 72 video-pair comparisons. Normality was as-
sessed using a Kolmogorov-Smirnov test. All effects were reported at
p¡0.05. When we found effects, we further explored the cause of these
effects using Bonferroni post-hoc tests for pairwise comparisons. As we
did not find any interaction effect of Scenario and Motion Model on user
accuracy, these are omitted in the following of the section.

QiQj Comparisons. We first looked at statistical differences between
the QiQj comparisons, to evaluate effects of quality comparisons on user
accuracy. Results showed a main effect of QiQj (F5,300 = 10.551, p ≈ 0).
Actual accuracy values per QiQj comparisons are reported in Table 3.6.
Post-hoc analysis showed that all QiQj comparisons were perceived on
average with a similar accuracy, except for Q1Q2 for which participants
demonstrated a significantly lower accuracy. This result suggests that par-
ticipants had more difficulties in differentiating between videos of the Q1
and Q2 quartiles, but that they were more accurate for comparisons be-
tween other quartiles, reaching a 75% accuracy for comparisons between
Q1 and Q4. Single t-tests on accuracy were also significantly higher than
50% for each QiQj comparison (all p < 0.05), showing that user accu-
racy was in all cases significantly above chance level.

To better understand the relationship between user preference and
quality, we averaged accuracy over trials with the same quartile differ-
ence. We organised the data in three Quality Difference levels: QD1
(over Q1Q2, Q2Q3, Q3Q4), QD2 (over Q1Q3, Q2Q4) and QD3 (Q1Q4).
A repeated measures Analysis of Variance (ANOVA) with within-subject
factor QD showed a main effect of QD on user accuracy (F2,120 = 25.253,
p ≈ 0). As quality differences are directly related to our QF scores,
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Figure 3.7: Effect of quality difference on user accuracy. Error bars depict
the standard deviation.

Table 3.6: User accuracy detailed per quartile-to-quartile comparisons.
The quality bins in the rows are preferred over the quality bins in the
columns.

Q1 Q2 Q3 Q4

Q1
Q2 55±20%
Q3 68±16% 63±14%
Q4 75±15% 68±15% 67±17%

this result demonstrates that users were more likely to correctly identify
the highest QF quality videos when the QF quality difference between
videos increased (Figure 3.7), and therefore to agree with the QF scores.

Discussion

The results of the user evaluation demonstrated that viewers consider, on
average, videos with a higher QF score to be more realistic than videos
with a lower QF score, therefore showing their general agreement with
the quality function. This agreement can be observed in the QiQj com-
parisons (Figure 3.7, left), where accuracy was significantly above chance
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level in all cases, and up to 75% accuracy on the higher quality differ-
ences. We also observed that accuracy significantly increased depending
on the difference in QF scores between the presented videos. Overall,
these results validate that the output of our data-driven QF and the per-
ception of human trajectory quality are in agreement.

However, the user evaluation also demonstrated that other factors can
influence the perception of the visual realism of trajectories. Such fac-
tors include elements that are not captured by QF and are depending on
application choices, such as the point of view. For instance, an eye-level
point of view seems to enable users to more accurately perceive visual ar-
tifacts in character trajectories, while a top-down viewpoint might render
perceiving such artifacts more difficult. We believe this is because users
are able to assess the quality of trajectories from a more “natural” point
of view, closer to the one we are used to experience as humans. The top
view, on the other hand, somewhat masks the artifacts in the trajectories,
making it more difficult to evaluate the crowd motion. Such results are
therefore complementary to the work of [Kulpa et al., 2011], who showed
that collisions are more easily spotted by viewers from a top point of
view. Nevertheless, other factors also seem to influence the perception of
trajectory features. For instance, the results show that users more easily
perceived quality differences for higher density scenarios. Such a dif-
ference could be due to several possibilities, such as higher numbers of
collisions in higher density scenarios, possibly leading to more sudden
direction and velocity changes in low quality trajectories, etc., and should
therefore be explored in future studies. Similarly, the range of tested sce-
narios did not allow us to evaluate the effect of all the trajectory features,
since the study was limited to ambient crowds. For instance, the goal
to reach was not displayed, which is however a feature influencing SQF
score. It is thus unknown whether or to what extend such features affect
the perception of trajectory quality.
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3.5.2 Applications
In this section, we illustrate one of the possible applications of the pro-
posed metric: tuning parameters of crowd motion models without direct
comparisons to real trajectories, i.e., using the pre-trained QF . The goal
is therefore to find a parameter set, popt, of a crowd motion model that
maximises the QF score for a generated trajectory or for a set of trajec-
tories. Resorting to QF (which can be seen as a fit-function) instead of
directly fitting the model to real trajectories has several advantages. First,
in this work, the information in the reference data is transformed into ab-
stract trajectory features selected by experts. This makes the learning pro-
cess focus only on properties that affect the perception of crowd motion
quality instead of simply trying to replicate real trajectories which are, in
fact, difficult to gather. Second, over-fitting is a recurrent problem when
learning crowd motion model parameters. Models usually describe a lim-
ited set of interactions and learning the parameters to replicate real data
usually leads to ad hoc solutions. In this work, we propose an abstraction
from real data so that the algorithm does not replicate actual trajectories,
but instead mimics the values of several abstract properties.

Parameter tuning

QF depends on a number of crowd property values which are initialized
using real data (see Section 3.4.3). Theoretically, parameters for any mi-
croscopic crowd motion model can be learnt using QF , by evaluating the
feature values in the simulated trajectories. The learning algorithm would
then attempt to maximise QF by changing the model parameters. In this
work, we propose a learning process with a decreasing exploration rate
to find parameters, in order to explore a wide parameter domain while
still ensuring convergence. Algorithm 1 summarises the learning strategy
used to find parameters for the motion model.

Other global optimization techniques can be applied to maximise QF
for any trajectory. Finding the most adequate method is, in itself, an inter-
esting topic but out of the scope of this work. It is important to note that,
when using different parameter value sets for each agent in the crowd,
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Algorithm 1: Parameter tuning
Result: parameter set, popt

create initial generation of parameters for chosen crowd motion
model;

while fitness criteria do
simulate N crowds with each individual in the generation;
compute average SQF of trajectories generated with each
individual;

select and crossover the fittest individuals;
mutate children and create new generation of parameters;

end
select fittest individual from last population;

the complexity of the optimization explodes due to the large number of
parameters to learn, because of the typically large number of characters.

Learning process

There are two possible goals of the learning process: (i) finding popt for
a particular initialization in a given scenario; (ii) finding a generic popt

which can be used for any ambient crowd scenario. In the former goal, a
single initialisation (specifying a scenario, a simulation algorithm and the
internal characteristics of characters, e.g., initial position, comfort speed,
goal direction) is used for tuning the model using QF . In this case, the
resulting popt might not be useful with another crowd initialisation. In
the latter goal, the objective is to find a scenario-independent popt for a
selected simulation algorithm, instead of focusing on a particular initial-
ization. During training, multiple crowds are simulated at every iteration
to evaluate the performance of each parameter set. The evolutionary pro-
cess, represented in Figure 3.8, ends when the stop criteria are met. In this
case, the genetic algorithm stops iterating if it has reached a user-defined
maximum number of iterations, if the fitness increase is below a threshold
for several iterations, or if the quality reaches the maximum score.
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Figure 3.8: Evolution of the average simulation quality SQF with the
number of generations. For each generation, a number of trajectories, si,
are simulated and the average QF score is computed using Equation 3.1.

Results

Figure 3.9 shows an example of the learning process at different stages
using the Dutra-Marques model in a circular scenario (characters initially
positioned on a circle and assigned the goal of reaching the diametrically
opposite position). In this example, characters share parameter values.
Four steps of the learning process are shown (one per column), with in-
creasing quality scores from left to right (each column illustrates a quality
quartile Q1-Q4, as in Section 3.5.1). The resulting trajectories, all of the
same time length, are shown in the top row, while radar-plots showing
the difference to ideal feature values are shown below. At the beginning
of the training, the pool of parameters is unlikely to contain parameter
values leading to good quality simulations. In Figure 3.9 (top, left), pa-
rameters related to goal attraction are not good to guide agents towards
their goal, on the other side of the circle. The corresponding radar plot
shows that the trajectory features are very different to those found in real
data which results in a low QF score for this trajectory (SQF = 0.22).
QF is specially affected by the number of local features like overlaps and
interaction strength (see Table 3.5). As training progresses and the pool of
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Figure 3.9: Relation between the values of trajectory features in four sam-
ple trajectories (from the learning process) and the expected values (rel-
ative to those found in real data) expressed in standard deviations. Note
that the distance to obstacles features (DTO) feature is always set to 0 for
these example trajectories do not contain obstacles other than agents.

parameters evolves, the resulting simulations improve with respect to QF
and characters progressively learning to balance between avoiding colli-
sions, attempting to reach their goal, and satisfying the other conditions,
e.g., acceptable walking speed, jerkiness. As a result, the right-most plot
(SQF = 0.79) shows a trajectory created with parameters that balance
these implicit rules.

Four examples of circle crossing trajectories with different quality
scores are represented in the top row of Figure 3.10. The collisions in
the two top, left plots are not represented to facilitate the understanding
of the figure but, as can be seen in the corresponding radar plots, collisions
are present in the trajectories, affecting the quality score. These four tra-
jectories are, in fact, taken from a parameter tuning process for the Social
Forces model. In the beginning of the learning, parameters values are
chosen randomly, without any prior information. The first plot, therefore,
shows a trajectory with low quality, for characters reach a “deadlock” and
slow down for a long while at the center of the circle. This problem is
reflected on the corresponding radar plot (bottom) where we can see that
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trajectory features do not resemble the reference values. In this exam-
ple, metrics such as the effort measurement proposed by Guy et al. Guy
et al. [2010], would also determine this is not a high quality trajectory
for the velocity of the characters deviate from their desired one. Berseth
et al. Berseth et al. [2014] also propose a number of metrics to evaluate
the comparative performance of tuned models such as “failure rate”, “dis-
tance quality” or “time quality”. These measures are directly related to
one or more trajectory features used in QF . The parameter values are
progressively refined in order to improve the quality score of the resulting
trajectories. The second column shows an example of this: characters do
not stop at the center of the crossing but collisions keep happening and
characters create unrealistic paths instead of taking a shorter, smoother
route. After a number of iterations, parameter values improve until a so-
lution like the one found in the last column is reached. In this example,
all characters reach their goal positions at the other side of the circle and
have smoother trajectories. In this case, the effort metric by Berseth et
al. Berseth et al. [2014] might give this trajectory a good quality score.
Nevertheless, QF receives information about features such as the inter-
action anticipation time, distance between characters, variability, etc. and
gives this trajectory a quality score of SQF = 0.75 (lowest Q4 score). It
is important to note that, the chosen learning algorithm chooses a random
pool of parameters as the original parents. For some models, the first pool
of parameters might only contain parameter values that lead to quality
scores of the second, third and fourth quartiles, SQF >= 0.25.

Figure 3.11 shows Reciprocal Velocity Obstacle (RVO) trajectories.
In this example, the plots represent a square region of an infinite world
where the number of agents is always the same. Characters are initialised
belonging to one of two flows that cross: from bottom to top and from
left to right. The four columns in this figure are samples taken at different
stages of the RVO parameter tuning process. In the left-most figure, we
can see one of the first iterations where agents move in a straight line,
not avoiding their neighbours. Collisions (black dots) are penalised so
this trajectory obtains a very low score. The second column represents
a Q2 trajectory. In the top row we can see that an important percentage
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Figure 3.10: Illustration of different trajectories generated with the Social
Forces model. Each column corresponds to a quality level and the radar
plot in the bottom row show the relationship between the feature values
in the trajectories and the reference data used to train QF.

of characters move diagonally as a result of non satisfactory avoidance
maneuvers. Since not moving in the desired direction lowers the overall
quality, the parameters are changed with generations to avoid this artifact.
As a result, trajectories like the one in the third column are preferred.
Nevertheless, some residual problems are still present in the simulated
crowd: shaky trajectories for some agents (bottom right corner) that are
penalised by QF . At the end of the learning process, a parameter set
for RVO is chosen, the resulting trajectories receive high quality scores
(greater than 0.75). The last column is a sample generated with the learnt
parameters. We can see that no collisions are present, agents generally
move in their goal direction, there are no shaky trails due to avoidance
maneuvers, and all characters move approximately at their comfort speed.

We can also track, as represented in Figures 3.12 and 3.13, indepen-
dent feature costs. In this case, we study the deviation between the differ-
ence to comfort speed (DCS) and the number of collisions (COL). As we
can see, in the beginning of the learning process, the the walking speed,
wn,t, and comfort speed, w∗n, are the same but collisions are present in the
crowd trajectories. Motion parameters are iteratively improved until good
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Figure 3.11: Sample 10 second trajectories generated with the RVO
model for a crossing flows scenario (2 flows, 90 degrees) in a infinite
world (only showing 10x10m region).

trajectories are simulated, according to QF. In the left-most plots, both
in Figure 3.12 and Figure 3.13, we can see that no collisions are present
(they are heavily penalised in QF and that the the difference to comfort
speed is not very high (characters avoid each other by slightly changing
their direction and walking speed).

(a) 1st iteration (b) 20th iteration (c) 75th iteration (d) 100th it.

Figure 3.12: Crowd simulation samples, with agents steered using RVO,
at various iterations of the learning process. Black dots represent colli-
sions of agents.

53



(a) 1st iteration (b) 200th iteration (c) 800th iteration (d) 1000th it.

Figure 3.13: Simulation of two flows (25 RVO agents in total) in the flows
crossing scenario at different stages of the learning process.

3.6 Discussion

The scenario generator of our framework can reproduce a large set of
simulation cases, where features such as the density of agents in the en-
vironment or the number of crowd flow directions can be controlled. Its
simulation quality function permits to evaluate the suitability of the tra-
jectories generated, based on a parametric policy that can combine sev-
eral pedestrian motion models. The possibility of studying the optimal
parameters and optimal models in different scenarios is only one of the
applications of the framework.

Unlike previous works, our framework can operate exclusively on
synthetic data, hence overcoming the typical problems of real data-based
approaches, such as acquisition, labelling or lack of variety. Based on a
random scenario generator coupled with a trajectory quality function, we
are able to train virtual agents in a large variety of situations.

Instead, we propose using a fitness function that defines how ‘well’
agents move and interact. A major difference with the evaluation frame-
work of Wolinski et al. [2014a] is that we do not restrict ourselves to the
variation of parameters of existing simulation techniques, although both
works have in common that they try to find the main principle by which
each agent should move (a steering function), so as to improve simulation
results (according to a fitness function).
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3.7 Conclusions

We presented a new perceptually-validated quality metric to automati-
cally evaluate crowd trajectories. The proposed evaluation is designed
with the help of experts and abstracts from real data. A number of tra-
jectory features, deemed relevant to capture perception of trajectory qual-
ity, were selected with the support of experts. Then, measurements were
proposed to learn the typical feature values in real data. These features
were then combined in the so-called quality function, QF , which returns
a score from 0 to 1 for any 2D ambient crowd trajectory. To validate
QF we conducted a web-based experiment with non-expert users and
we show that there is a high agreement between viewers’ perceptions of
visual quality and QF scores. Finally, we demonstrate a practical appli-
cation for tuning parameters of crowd simulation models using QF .

Real trajectory data is only required when training QF . Once this is
done,QF can be independently used to evaluate new trajectories, leverag-
ing the feature information previously captured using real data. Besides,
our feature-based approach allows avoiding over-fitting the parameters to
a specific scenario or dataset by not using reference data directly. With
this work, we provide a fully-functional, pre-trained, QF which is ready
to use by the scientific community. Note however that the provided set of
feature weights can be easily re-targeted to accommodate other use cases.
Examples of these use cases could be to include reactions to obstacles,
or specific behaviours such as queuing, which were not available in our
training dataset. It it also important to point out that specific feature value
ranges and weights can be manually adjusted while training QF , which
opens the door to automatic generation of, e.g., non-realistic animations
requiring overly-smooth trajectories, or simulating a marathon requiring
specific speed ranges.

Once the weights are established, QF can be used to train crowd sim-
ulation models without further requiring any real data. This is one of
the main advantages of our approach, as it facilitates parameter tuning for
crowd simulation models. Consequently, training the crowd simulation
parameters is, in our approach, data-free, while they are strongly influ-
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enced by the real data features captured by QF .
However, training a crowd simulation model using QF also has lim-

itations. The main one is the ability of a simulation model to express a
large variety of agent interactions. The learning algorithm might output
parameter values leading to low SQF values if it is unable to improve
the quality score for a maximum number of iterations. For example, in
Figure 3.9(bottom, right-most), some trajectory feature values differ from
those found in reference data, e.g., average walking speed (faster) and
Distance at Closest Approach (smaller). However, in the corresponding
trajectories (top row), we see that the learnt parameters led to collision-
free, smooth trajectories. This means that the genetic algorithm was able
to find a parameter set popt to maximise QF but, due to the limitations of
the model, the parameter sharing, and the symmetry of the scenario, the
quality could not be further improved.

Nevertheless, QF has been proved to capture the main characteris-
tics which affect human perception of trajectory quality. Nevertheless, a
more complex combination of features could be explored to be able to
evaluate other scenarios and behaviours (e.g., different types of agents,
grouping, queuing), even though the combination of the features might
be application dependent. As an alternative to tuning motion models di-
rectly, the more intuitive QF can be manually tuned by artists to fit a
particular scene, such as for further penalizing collisions, or enforcing the
importance for agents to reach their goal.

We have discussed how QF is useful for ambient crowds, which do
not cover all possible crowd compositions or behaviours. Moreover, there
is a significant body of work that has shown that not all pedestrians use
the same steering strategies in all scenarios (it depends on factors such
as age, abilities, cultural differences, etc.). In order to deal with diver-
sity in complex scenarios, future research could focus on a QF -based
policy adaption strategy dependent on character properties and their envi-
ronment. For instance, this could enable characters in low density areas
to use simpler motion models, while characters in higher density areas
would use more complex models. In order to do this, it might be inter-
esting to model the feature costs as a sum of Gaussian curves, a Gaussian
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mixture model, instead. Another approach could be to derive a crowd
motion model that, in order to compute the optimal velocity at each time
step, maximises QF .

For the longer term, we could study more interesting scenarios that
are difficult to study or from which data is scarce. With an appropriate
quality function, it might be possible to simulate and analyse situations
were agents have a complex internal state. With this, we could aim at
studying -for instance- groups of pedestrians in extreme situations such
as evacuations or how emotions, such as panic, are spread depending on
the characteristics of a crowd.
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Chapter 4

DYNAMIC COMBINATION
OF CROWD STEERING
POLICIES BASED ON
CONTEXT

While the used simulation parameters drive the way agents move, the un-
derlying principle ruling the agents’ movement for each algorithm is “ad
hoc” and remains immutable. It has long been established that the simula-
tion algorithms and their parameters have a direct impact on the resulting
quality of animations. Extensive research has shown that each algorithm
performs well in a limited range of scenarios, e.g., some perform better
in high density cases than others. It is also known that using appropriate
parameter values for a specific scenario can improve performance.

Nevertheless, as the number of published steering algorithms and tech-
niques continues increasing, so does the difficulty of comparing their per-
formances. This difficulty gave rise to a number of works exploring the
questions of evaluating scenario coverage Kapadia et al. [2016], setting
simulation parameters Wolinski et al. [2014b] and picking the best per-
forming algorithm Karamouzas et al. [2018b]. Previous work, though,
generally considered scenarios in a global manner (e.g., an evacuation, a
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narrow corridor, or a complex pedestrian crossing) and usually propose a
unique technique for setting up a simulation (e.g., an algorithm and pa-
rameter values to best simulate a scenario).

However, the question of mixing multiple steering algorithms and of
dynamically adjusting parameters during simulation has been quite un-
explored. There is a set of open questions when using microscopic ap-
proaches: which is the validity range of the rules and steering functions
used? How do they compare to each other? How to set simulation param-
eters in a principled and robust manner for general scenarios? How can
the values of the parameters adapt to the situation the agents are in?

The objective of our work is to evaluate the benefit of dynamically
adjusting characters’ steering policy (i.e., the pair of a specific algorithm
and a specific parameter setting) at run time to adjust behaviour of char-
acters to their local situation, a region of a scenario that we call context.
We consider a simple context definition, based on local density and the
directions of the main flows of agents in a uniform region of the scenario.
As an example, being part of a dense flow of people crossing another
flow would define a context. Initially, we study the quality performance
of various steering algorithms on a sample of the context space, at each
one separately. To measure, we evaluate the simulated trajectories with a
quality metric. At a final stage, we show that quality is further increased
when characters periodically estimate their local context and pick one
of the best steering policies, effectively adapting their behaviour to local
context.

By doing this, we find that being able to adapt the policy of every
agent dynamically -that is, somewhere in the middle of the simulation-
to be able to better steer agents that pass through different scenarios -
for instance, different densities- would be a very interesting improvement
with respect to current approaches. Therefore, equipping the agents with
the ability to determine the situation they are in will be very important to
switch between policies. Our contributions are:

• A definition of a local context for crowd simulation agents based
on density and main directions of local flows.
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• A demonstration that this context definition is enough to discrimi-
nate the performance of various steering policies.

• A mapping from context to best performing steering policy.

• A mechanism to switch between different policies, and demonstrate
the benefit of using multiple policies in a single simulation.

4.1 State of the art

This paper proposes novel ways in which traditional crowd steering al-
gorithms can be used to improve the resulting simulations. We discuss
here a number of relevant previous works related to traditional steering
algorithms, the evaluation of trajectories created by such algorithms, how
this information can be used to refine crowd simulations, etc.

4.1.1 Steering algorithms

The crowd simulation research field is concerned with understanding, pre-
dicting and reproducing the motion of real human crowds. Crowd sim-
ulators are based on several classes of algorithms which are designed to
generate realistic trajectories of numerous moving characters. Various ap-
proaches to this problem have been proposed. Macroscopic approaches
consider crowds as a whole, modeling it as a single continuous moving
matter Hughes [2003]; Treuille et al. [2006]. Microscopic crowd simu-
lation algorithms set the principles by which agents move individually
and global crowd motion effects are expected to emerge from the inter-
actions between agents. In Reynolds [1987] seminal work each boid fol-
lowed the mean velocity field generated by neighbors. The number of
categories of simulation algorithms rapidly grew with force-based mod-
els Helbing and Molnár [1995]; Karamouzas et al. [2014], velocity-based
models Paris et al. [2007]; van den Berg et al. [2008]; Karamouzas et al.
[2009], vision-based models Ondřej et al. [2010]; Dutra et al. [2017a], or
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data-driven models Lerner et al. [2007]; Charalambous and Chrysanthou
[2014a]. These are few examples of a large body of literature.

Existing state-of-the-art steering algorithms are difficult to test and
compare due to their very different strategies and implementations. To
propose a standardisation for such algorithms, van Toll et al. [2020b] pro-
pose a holistic interpretation by transforming them into parametric cost
functions in velocity space. The behaviours obtained with the algorithms
in velocity space are very close to those obtained with the original algo-
rithms. In this paper, the steering algorithms use the implementation in
van Toll et al. [2020b].

There is a growing body of literature that recognises the different per-
formance of steering algorithms in different scenarios van Toll and Pettré
[2021]; Yang et al. [2020]. Numerous studies try to find the best param-
eters for existing steering algorithms, often comparing the results using
data-based performance metrics Guy et al. [2012]. The objective of these
works is to aid the selection of policies in order to improve the trajectories
resulting from simulation. Some authors have even proposed strategies to
profit from two steering strategies. For instance, van Toll et al. [2020a]
combine agent-based (the Social Forces model) and particle-based ap-
proaches (Smoothed Hydrodynamic Particles) through abstraction layers
in order to improve the behaviour in high density scenarios.

4.1.2 Quality metrics

Crowd simulations result in large sets of individual animation trajectories.
Their quality depends on a number of rules by which agents move (sim-
ulation models), as well as parameter values to control the simulation.
They are not intuitive nor easy to tune and often depend on the scenario
to be simulated. Our objective is to propose a method to evaluate these
simulation results, regardless of the method by which they are generated.
We can distinguish various approaches to the evaluation of crowd simula-
tions. A group of approaches uses paths of real crowds, and evaluate the
ability of simulators to reproduce them. The question of comparison met-
rics is central, and several solutions have been proposed Guy et al. [2012];
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Wolinski et al. [2014a]; Charalambous et al. [2014a]: these metrics con-
sider crowd movement at different scales and take into account the vari-
ability of behaviors. However, there are drawbacks associated with the
use of reference data, e.g., the ability of steering algorithms to replicate
some patterns existing in real trajectory data and the limited amount of
pedestrian trajectories available, which can lead to over-fitted results.

Research on policy selection (per-scenario or per-character) has been
mostly restricted to limited comparisons between synthetic trajectories
and real data. A broader perspective has been adopted by some authors
that, instead of focusing on agent trajectories, measure crowd motion
characteristics such as the ratio between the density and the average speed
in different cultures Jelić et al. [2012]; Chattaraj et al. [2009]; Kapadia
et al. [2011]. In this work, we use the perceptually validated quality func-
tion proposed in Cabrero Daniel et al. [2021] to evaluate the simulation
results. This metric abstracts from real data by studying the distribution
of a number of motion features and then penalising character motions
deviating from what is found to be expected in real human pedestrian tra-
jectories. By using the proposed quality function we remove the need of
directly relying in real data to evaluate synthetic trajectories and we can
evaluate previously unseen interaction types, always in the scope of ambi-
ent crowds (groups of pedestrians that do not show any specific behaviour
other than walking to their goal and avoidance maneuvers). The benefit of
this approach is that no real trajectory data needs to be gathered in order
to evaluate synthetic trajectories. Moreover, the simulated trajectories do
not need to resemble the ones found in the original data-sets.

4.1.3 Policy assignations

Closest to our approach is the work of Karamouzas et al. [2018a], which
compares the performance of steering algorithms (using default parame-
ters) in terms of distance-to-real-data in different scenarios. They com-
pute how closely each steering algorithm is able to replicate the real tra-
jectory of that character. This gives an insight of which algorithm (out
of 6) works best in a type of scenario, e.g. a medium density area when
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entering a bottleneck corridor. The main difference with our approach
is that they pick the best steering algorithm for a previously unseen sce-
nario by studying the initial positions of characters and predicting what
type of scenario it is – out of the data sets they use – and then select-
ing the steering algorithm with higher likely accuracy. Instead, we iden-
tify the context of each character at each time step and pick the optimal
steering algorithm for the context, obtaining better quality simulations.
To evaluate trajectories, the authors of Karamouzas et al. [2018a] pro-
pose a simulation accuracy metric, based on the Entropy metric by Guy
et al. [2012], that measures the ability of a steering algorithm to create
a trajectory similar to that found in real data. Instead, we rely on the
metric proposed by Cabrero Daniel et al. [2021] that abstracts from real
data. Moreover, the characterisation of characters’ contexts, a key point
in this work, is different from that of Karamouzas et al. [2018a]. Its au-
thors derive a compact and continuous representation of pedestrian inter-
actions directly from data based on per-agent minimal predicted distances
(MPD). Instead, we model the context as the description of the dynamics
in a neighbourhood of the agent, at each time, and we expect to cover a
wide variety of different local interactions.

4.2 Overview

The objective of this work is to propose and compare a number of crowd
simulation strategies, including a dynamic adaptation of characters’ pol-
icy to their local context. We propose a policy adaptation technique to
improve the overall quality of crowd trajectories simulated with tradi-
tional steering algorithms. Through the rest of this paper, we discuss and
prove how the quality of simulations can be improved by increasing the
adaptability of the characters to their surrounding environment.

We demonstrate the usefulness of our approach in the scope of ambi-
ent crowds, which are defined as groups of pedestrians that do not show
any specific behaviour such as, e.g., queuing. The characters which com-
pose the crowd are both homogeneous in the sense that the crowd is com-
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posed of similar-sized adults, and heterogeneous because each agent has
its own attributes and objectives. Other types of contexts, for specific sce-
narios or applications, could be defined and evaluated in a similar way,
and is further discussed in Section 4.5.

In this work, we analyse the performance of different navigation strate-
gies using an existing quality metric QF Cabrero Daniel et al. [2021] that
evaluates the quality of trajectories (orange boxes in Figure 4.1). Then,
we propose a context recogniser which allows agents to adapt their navi-
gation strategy depending on their local context (blue loop in Figure 4.1).

With all this information, we evaluate the relative performance of four
crowd simulation strategies: (i) all characters in the crowd sharing the
steering policy (baseline); (ii) optimising the steering policy for each char-
acter (to maximize the simulation quality); (iii) dynamically adjusting the
policy of each character to its current context; and (iv) assigning policies,
also according to context, following a probability distribution.

Figure 4.1: Overview figure for context to policy mapping (orange), pol-
icy distribution among characters, and the context-adaptation loop (blue).
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4.3 Methods
The following part of this paper describes in detail the creation a context-
to-model map through the evaluation of the resulting trajectories. The
analysis is made by studying the quality performance of steering algo-
rithms in a variety of contexts (orange boxes in Figure 4.1). Section 4.3.1
presents the concept of context and details which types of contexts will
be used in the paper. A number of steering algorithms is evaluated in
each context of Table 4.1. The experimental setup for this analysis is then
presented in Section 4.3.2, together with the results.

F0 F10 F50 F90 F130 F170 BF0 BF10 BF50 BF90 FN

Table 4.1: Representative contexts defined in this work, where a context
is defined by the local density and the directions of the main flows of
neighbouring agents. Density increases with rows. F stands for Uniform
Flow, BF for Bidirectional Flow, and FN for unstructured scenarios (N
directions).

4.3.1 Contexts
Evidence from several studies suggests that the performance of different
steering algorithms varies depending on the type of simulation they are
used for. Crowds can be simulated in a variety of 2D scenarios, the lat-
ter being defined as a set of N agents together with their initial positions
and internal properties (e.g., comfort speed, maximum acceleration, goal
direction, radius, etc.). These scenarios can be arbitrarily complex and
include a wide range of character interactions such as crossings, bottle-
necks, etc. Within a given scenario, different zones can exhibit different
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interaction features at different points in time. Therefore, we could po-
tentially identify several different contexts within the same scenario at a
given simulation step. We define contexts as uniform spatial regions to
which we associate a characterization of its trajectories based on the local
density and the directions of the main flows of neighbouring agents.

To evaluate the performance of different algorithms in different con-
texts, we discretize the continuous context space into a representative sub-
set of common pedestrian interactions. To this end, we consider three
classes of contexts: (i) crossing of two unidirectional flows (F) of agents;
(ii) crossing of two bidirectional flows (BF) of agents, where each bidi-
rectional flow contains agents going along the flow in opposite directions;
(iii) and unstructured contexts (FN). The crossing contexts are character-
ized by a bearing angle, which measures the angle at which the two flows
cross each other. In order to cover a variety of interaction types, we have
defined a total of 6 bearing angles for unidirectional flows crossing (rang-
ing from 0 to 170°), and 4 bearing angles for bidirectional flows crossing
(ranging from 0 to 90°). Moreover, we consider three levels of density
of agents (low, medium and high) for each context, making a total of 33
representative contexts (11 per density level). The 11 contexts for each
density level are shown in Table 4.1.

4.3.2 Context to policy performance map

This section discusses the performance of the navigation policies (i.e., a
steering algorithm and its parameters) in each of the 33 different contexts
considered in this work.

We decided to evaluate the performance of the following set of repre-
sentative crowd simulation algorithms for all the contexts defined in the
previous section. Each of these algorithms (in ascending order of com-
putational complexity) is implemented in velocity space van Toll et al.
[2020b], and will be tuned for each context based on the procedure de-
scribed in the next section:

• Universal Power Law (PL) Karamouzas et al. [2014]
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• Optimal Reciprocal Collision Avoidance (ORCA) van den Berg
et al. [2011]

• TtcaDca (TTCA), based on the vision-based algorithm by Dutra
et al. [2017a]

• Social Forces (SF) Helbing and Molnár [1995]

• Moussaid (Mou) Moussaı̈d et al. [2011]

• PLEdestrians (PLE) Guy et al. [2010]

• Reciprocal Velocity Obstacles (RVO) van den Berg et al. [2008]

• Karamouzas (Kar) Karamouzas and Overmars [2011]

• Paris (Par) Paris et al. [2007]

The best parameter setting for each of the considered steering algo-
rithms and for each context is found by maximizing the quality func-
tion QF through the iterative process described in Cabrero Daniel et al.
[2021]. During this optimization process, the algorithm parameters are
not constrained, meaning that we compare algorithms at the “best of their
abilities”. The performance of each algorithm in each is stored and rep-
resented as “score maps” which are summarised in Table 4.2. This map
only needs to be computed once and can easily be updated to introduce
new steering algorithms.

In order to learn the parameters for each algorithm, we simulated
crowds in toric worlds: finite planes where the movement is “wrapped
around” i.e. if a character leaves the plane on one side, it appears on the
other (and interactions in boundary areas are controlled). We use toric
worlds in order to simulate continuous flows and uniform density crowds.
In this work, we use 10x10 meter toric world simulations, where the num-
ber of characters depends on the density of the respective context (first
column in Table 4.2). To find the best parameters for a specific steering
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algorithm and a specific context, a genetic algorithm is used. In the learn-
ing process, each simulation run is initialized with some random varia-
tions in the initial character positions, to provide some slight variations of
the simulated context. Moreover, the initial seconds of each simulation
are discarded in our measurements, as they might contain small artifacts
which are not representative of the actual context, e.g. the initial position
of characters might lead to strange avoidance maneuvers at the start of the
simulation.

To measure the performance of a policy in a context, we study the
QF score of 300 seconds of trajectories simulated in each context. Per-
formances for each context and steering algorithm are summarized in Ta-
ble 4.2, which is one of the core contributions of this work.

All policies using a sampling method to find the next velocity for
characters (i.e., ORCA, Moussaid, PLEdestrians, Paris, Karamouzas, and
RVO) use a relaxation time equal to 0.5. Unless stated otherwise, the
neighbour interaction range for all the algorithms is 3.5 meters. Charac-
ters farther than this value will not be taken into account in to compute
the next velocity, v′, for characters. None of the policies used in this work
take into account the contact forces (the coefficient is equal to zero) that
apply when characters collide into each other.

In the event that two algorithms have similar average quality for a
given context, the algorithm with less computational complexity is pre-
ferred. An example of this is a unidirectional flow with low density where
the Universal Power Law (PL) is preferred. Similarly, ORCA is often cho-
sen over RVO for being more time efficient. It is interesting to note that
ORCA and RVO outperform other algorithms in high density scenarios.
On the other hand vision based models, like Moussaı̈d et al. [2011], tend
to work better in more complex scenarios, like unstructured crossings. As
shown in the following section, this information can be used in a crowd
simulation, to adapt the characters’ policy mid-simulation and hence in-
crease the quality of the final result.
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4.4 Results

Our goal in this section is to demonstrate that it is possible to improve
the quality of crowd simulations in any scenario, i.e., beyond one unique
context. In Section 4.4.1, we propose a direct application of the context-
to-policy map for this. This technique is based on automatically detecting
the local agent context and assigning the agent the respective optimal pol-
icy. Then, we study whether we can further improve the results of the
optimal policy per context found in Table 4.2. To this end, instead of
using a single policy for all agents in a context, we assign the agents a
mix of the two best policies found for each context (Section 4.4.2). The
relative evaluation of these strategies, over a set of benchmark scenarios,
is discussed in Section 4.4.3.

4.4.1 Dynamic context adaptation

When simulating a crowd in a given scenario, it is likely that several dif-
ferent types of interactions between agents will emerge in different sub-
regions of the scenario and at different points in time. Therefore, from the
perspective of an agent, the context (i.e., the other agents’ motion features
in a sub-region around the agent) is likely to be dynamic and to change
several times during the simulation. We will refer to the dynamic context
around a specific character as local context. To illustrate this from the
perspective of an agent, let us focus, for example, on Figure 4.2. In this
scenario we have two flows crossing at a 90-degree angle and the charac-
ters’ “local context” changes from a single flow “context” to a crossing
flows at 90 degrees “context” and back to the single flow “context”. This
observation, coupled with the results presented in Table 4.2 which show
that the optimal policy is context-dependent, motivates our goal of detect-
ing the agents’ context during the simulation and, subsequently, to use
this information to dynamically adapt the agents’ steering policy. Our
approach to this problem is described in the following sections.
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Context detection

Our approach to the problem of run-time detection of the local context
around each agent is: (i) first, we detect the type of motion on a small
circular region around the agent of interest; (ii) then, we use this informa-
tion to map the local context to one of the 33 studied contexts presented in
Section 4.3. The relevant features required to perform this mapping oper-
ation are the local density and the local distribution of walking directions.
The local density is computed by defining a radius r around the current
agent, and determining the ratio between the number of agents inside that
area and the area of the circle. We have experimentally found that using
r = 4m leads to good results. The local distribution of walking directions
is determined by considering the walking direction of agents inside the
circular area, filtered over a window of 1 second. Then we extract the
main flows resulting from this set of directions by analytically studying
the histogram, extracting the main modes. Once we obtain the main di-
rections of the flows, we classify the context depending on the number
of flows present (e.g., 1 for F0, 2 for other unidirectional flow crossings,
and 4 for bidirectional flow crossings). Then, in the case of unidirectional
and bidirectional flow crossing contexts, we compute the bearing angle
between the two flows. The density and angle between character flows
the local context is classified into one of the previously defined context
bins. One more step is performed before selecting the policy to use in
the current step, πs: voting the most often recognised context among the
characters inside a sub-region around a given character. The mode for the
contexts is then used to select the best policy for the local context of each
character.

Smooth policy transition

Changing the policy of a character c, in the middle of the simulation de-
pending on its local context, lcc, is prone to cause artifacts. This is be-
cause two steering algorithms, for very similar situations in consecutive
time steps, might compute very different next velocities, v′1 and v′2. This
could lead to sharp changes in the direction of characters when they en-
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ter a new context (related to flickering in direction). In order to ease the
transition between algorithms we propose a transition strategy based on
overlapping segments and algorithm combination in cost space.

The framework presented in van Toll et al. [2020b] uses combinable
cost functions (in velocity space) to reproduce a number of steering al-
gorithms, including those listed in Section 4.3.2. This way, characters
transitioning from one context to another can progressively use less an
algorithm and more another algorithm and compute the next velocity, v′.
The weights for this transition are given by:

ω(t) = (1 + e−kt)−1

v′ ← ω(t)π1 + (1− ω(t))π2

(4.1)

where t stands for the percentage of completion of the transition (mapped
from -0.5 to 0.5) and k is the steepness of the transition. In our work,
we experimentally found that k = 9 results in smooth transitions between
algorithms, as can be seen in the Supplementary Videos. The selected v′

for a character corresponds to an admissible velocity that minimises the
combined costs of the two algorithms in velocity space.

Nevertheless, some steering algorithms might not be directly compat-
ible for they can return opposite next velocities for the same character
state, e.g., avoiding maneuvers turning right or left. A typical example
of this is combining a velocity-based model like RVO with a force-based
model like Social Forces. Figure 4.3 illustrates this problem, where col-
ored areas represent a simplification of the regions in velocity space where
values of the costs functions are minimal. In this example, combining the
two policies directly, would not necessarily make sense: the selected v′,
optimal for both algorithms (the v′ with lowest overall cost), could mean
“not turning” (which could lead to a collision) or even reducing the walk-
ing speed to a stop.

Instead of directly combining the steering algorithms, we study the
predicted next velocity for both algorithms separately and look for incon-
sistencies in the outputs of the two algorithms (i.e., if the angle between
v1 and v2 is greater than a threshold, th). If the two steering algorithms
return opposing solutions, the next velocity is selected among the two by
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studying whether they are consistent with the previous motion and de-
pending on the value of t. If no inconsistencies are present, the velocities
computed by the two algorithms are combined using Eq. (4.1).

Simulation loop

Our simulation loop with dynamic context-based policy adaptation is shown
in Algorithm 2. The time window (measured in simulation steps) in which
the same policy is applied is given by tw. The algorithm starts by delim-
iting the circular area A with radius r centered on the position p of the
current agent (line 1). Then, in lines 2 to 5, the local context of the N
agents within the areaA is detected, based on the motion features of each
area An centered on each of the agents n. Note that this includes the cur-
rent agent for which we want to adapt the policy. A voting step follows,
in which the final local context C of the current agent is chosen based on
the set of contexts {c1, . . . , cN} detected for all agents within the area A
(line 6). This context is then used to determine the new motion policy π
(line 7), using the context to policy map P described in Section 4.3. In
lines 9 to 15, the transition between the previous policy π̂ and the new pol-
icy π is smoothed out during ts steps, in case strong motion discrepancies
are detected, hence avoiding undesired discontinuities in the simulation.
Finally, the remaining simulation steps within the time window tw are per-
formed using the context-adapted policy π (lines 16 to 19). This process
is represented with blue boxes in Figure 4.1.

Results

To present the results of our approach, we first illustrate them with the
specific case of a two-flow crossing (from left to right and from bottom
to top), simulated either with PL, RVO, or our approach (see Figure 4.2).
In Figure 4.2a, we can see that the PL method struggles in regions where
the two flows cross, making the characters move diagonally. This is pe-
nalised by QF because characters deviate from their desired direction for
too long, even excessively moving away from their goal. On the other
hand, in Figure 4.2b using RVO we can see that even if the flows are
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Algorithm 2: Policy adaptation algorithm for a given agent.
Input : P: context to policy map

π̂: policy in previous time window
p: agent position
r: radius of circular area defining local context
tw: number of simulation steps to be performed
ts: number of simulation steps for policy transition

1 A ← getSubRegion(p, r)

2 for each agent n ∈ A do
3 An ← getSubRegion(n, r)
4 cn ← detectLocalConext(An)

5 end

6 C ← voteContext({c1, . . . , cN})
7 π ← P(C)
8 tt ← 1

9 if π 6= π̂ then
10 for t in [1, ts] do
11 v′ ← smoothVelocity(π̂, π, t)
12 simulate(t,v′)

13 end
14 tt ← tt + ts
15 end

16 for t in [tt, tw] do
17 v′ ← getVelocity(π, t)
18 simulate(t,v′)

19 end
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able to cross each other, characters tend to move apart too much from
each other (larger spread of characters across the two flows). Finally, Fig-
ure 4.2c shows an example of our policy switching based on the “score
map” presented in Table 4.2, where PL is used in low density, unidirec-
tional contexts, and RVO is used in low density, 90 degrees crossings.
Overall, Figure 4.2c shows that characters do not deviate too much from
their goal direction and switch back to PL as soon as they exit the crossing
area, as the majority of characters around them now lead to a change in
the distribution of directions (leading to a change of context). This also
enables characters to switch back to the less computationally complex PL
method, that works well for unidirectional flows.

We can interpret policy adaptation in two ways: (i) changing the steer-
ing policy to be able to deal with complex interactions or (ii) “relaxing”
the algorithm when the scenario does not require a more time consuming
algorithm to correctly solve the interactions. In an extreme case, when
distances between neighbours are acceptable (an interaction range of 3
meters is commonly used in the literature) and all agents have the same
comfort speed one could use a goal reaching force (without avoidance ma-
neuvers) because there would be no predicted collisions nor unreasonable
values for other features.

4.4.2 Mapping context to a distribution of policies

If the steering algorithm and its parameter values are not shared among
all characters, the crowd is heterogeneous and characters exhibit different
behaviours, typically leading to better simulation results Wolinski et al.
[2014b]; Guy et al. [2012]. The following sections are concerned with
producing heterogeneous crowds within each context using the informa-
tion contained in Table 4.2. In particular, Table 4.2 can be used to map
contexts to a distribution of policies, instead of mapping a context to a
single (optimal) policy as described in the previous sections.

We propose and evaluate two strategies to assign different policies to
agents in a context. In the first strategy, presented in Section 4.4.2, we
randomly assign each agent one of the two best policies learnt for each
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context. In the second strategy, presented in Section 4.4.2, we replace
the random assignment of policy to each agent by an optimization pro-
cess which determines to which particular agents should each of the two
policies be assigned, so as to maximize the QF score.

Random selection of agent policies

To determine to which extent it is beneficial to combine different poli-
cies within the same context we have measured the simulation quality per
context using a combination of two policies: the optimal policy p∗ for the
context, and the second best policy p′∗ found for the same context accord-
ing to Table 4.2. Each agent randomly picks one of these two policies
following a probability distribution aimed at keeping the ratio between p∗

and p′∗ at a desired level.
Figure 4.4 (blue colored bars) shows the average quality across all

contexts of crowd trajectories where characters randomly pick among p∗

and p′∗ following a probability distribution. The results have been gen-
erated considering different ratios between p∗ and p′∗, ranging from all
agents choosing policy p∗ to all agents choosing policy p′∗. The blue bars
show that the average QF score is higher when characters share the same
policy, compared to the case where characters with different policies co-
exist in the same context. Contrary to expectations, no significant increase
in the quality score, SQF , was found compared with using a single policy
optimised for a specific context.

Optimized selection of agent policies

Further statistical tests revealed that the average crowd trajectory qual-
ity across contexts could be improved by distributing the policies among
characters in an informed way. The goal of this learning process is to
maximise the quality of the resulting trajectories while maintaining the
proportion of characters using each of the two best performing steering
algorithms. The relation between the proportion of characters using each
of the two best performing steering algorithms and the resulting aver-
age quality is represented in Figure 4.4 (orange colored bars). We can
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therefore conclude that, in contrast to a random assignation of steering
algorithms, an informed distribution of the two bests algorithms for each
context leads to an improvement in quality. The proportion of charac-
ters using a “complimentary” steering algorithm for a particular scenario
seems to affect the resulting trajectories’ quality. An explanation for this
improvement could be that the crowd simulator avoids some artifacts by
changing the steering policy of some of the characters.

We can therefore conclude that the quality of trajectories simulated
in a specific context can be further improved when different characters
use different policies, even if only a small percentage of characters use a
different steering algorithm. Nevertheless, the small increase in SQF is
likely to be related to the optimisation of the policies per-context which
is done in homogeneous contexts where all agents shared the same pol-
icy. There is a risk that the used policies are not well adapted to contexts
where characters use different steering strategies, such as in the experi-
ments conducted in this section. As discussed in Section 4.5, the quality
might be further improved if instead of using the policies tuned in Sec-
tion 4.3.2, a mixture-of-policies for each context was learnt instead.

4.4.3 Strategy comparison
To quantitatively assess the effectiveness of the different motion strategies
proposed in our paper we have evaluated their performance in a variety
of scenarios. This quantitative evaluation of relies on the quality function
QF , and on the following benchmark scenarios:

• Two groups of characters moving in opposite directions and cross-
ing in the center. When the groups overlap, the density increases;
after crossing, the density returns to the original value.

• Four groups of characters move towards the opposite side of the
world, passing through the center. In the crossing, the local context
of characters is a bidirectional flows crossing.

• Circle crossing: characters are disposed in a circle around the center
of the world; their goal is to reach the opposite side.
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• Two unidirectional flows move in the same direction and overlap.
Characters in one of the flows have a higher desired speed.

• Random scenarios where every character in the crowd has its own
initial position, desired direction and comfort speed.

For each scenario, several evaluations with different initial agent positions
are made. The tested motion strategies are:

• S0, where all characters use the same policy during all the simula-
tion. This strategy should be seen as a baseline strategy;

• S1, where each character has its own policy which is kept constant
throughout the simulation; the algorithm and parameter values are
optimised per character withQF as individual fitness measurement.

• S2, which corresponds to the case where agents can dynamically
switch policies during the simulation based on the context to policy
map, as described in Section 4.4.1 and Algorithm 2;

• S3, which corresponds to the case where agents can dynamically
switch policies during the simulation but, in contrast with S2, each
context is mapped to a distribution of policies (instead of being
mapped to a single policy), as described in Section 4.4.2.

The results for these four strategies are presented in Table 4.3. They show
that, compared to the baseline method (S0), the simulation quality can be
improved by an average of 28% by simply tuning the policy so as to fit the
current scenario, even if all agents use the same policy (S1). This is in-
line with the findings reported by previous works such as Wolinski et al.
[2014b] or Karamouzas et al. [2018a]. Moreover, Table 4.3 also confirms
the significant benefit brought by dynamically adapting the agents’ policy
based on their local context (S3 and S4). Such strategy, which advances
the state-of-the-art by exploring an alternative way to describe the agents’
local context and using QF to perform calibration, brings improvements
of up to 46% in terms of average simulation quality with respect to the
base-line method.
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4.5 Limitations and future work
Context. The motion of a crowd can always be decomposed into a num-
ber of flows. Following this idea, we introduce a definition of context
which is based on few main properties of these flows: their density and
relative angle. Through the study of a discrete set of contexts, we demon-
strate that those properties indeed discriminate various algorithms in their
capacity of handling them correctly. We however left for future work a
number of other context features that are likely to also influence simula-
tion quality, such as flow rate or non-uniform distributions of flows. We
could also have considered other features like the presence of groups or a
higher heterogeneity in agents behaviors, etc. Notwithstanding their rel-
atively simple characterisation, this work offers a proof of concept for a
dynamic adaptation of steering policies based on local contexts.

Trajectory Evaluation. Not using data (as is the case of our proposed
approach) has many advantages such as, for example, not having to col-
lect and process real trajectory data, or not risking over-fitting to a par-
ticular data set. However the chosen trajectory evaluation metric (QF
Cabrero Daniel et al. [2021]) limits the scope of evaluation to ambient
crowds. The approach that we propose might thus be less suited for
specific contexts or behaviours not considered in Cabrero Daniel et al.
[2021]. Nevertheless, the role of QF is a modular one, and, depending on
cases, more appropriate evaluation techniques (already explored in previ-
ous work) might be easily considered.

Algorithms. In this paper, we study a variety of crowd steering algo-
rithms, all implemented within the framework of van Toll et al. [2020b].
Some categories of approaches, such as data-driven or reinforcement learn-
ing ones, are not covered in this framework and were not considered.
This type of approach do not exactly follow similar parameter tuning
and evaluation procedure since results more depend on training or exam-
ple datasets. Data-driven techniques implicitly generate, at some scale,
human-like trajectories. Future work is required to adjust our method to
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these categories of simulation techniques, however, our results offer an
insight for improving their design. For example, it may be useful to de-
compose policies, training or datasets according to contexts.

Policy switching. One could think about many techniques to switch, or
even mix, navigation policies. We here prove that a simple method to
switch policies is already effective, but many more could be explored,
e.g. using multiple tuning policies at all times and voting the next veloc-
ity, v′, for each character. Moreover, the transition between policies are
synchronized for they happen every tw seconds. A strategy where char-
acters would recognise the context for every time step in the simulation
would avoid potential artifacts due to characters switching their policy
simultaneously.

Policy optimisation. We optimized each policy independently to each
context. At the same time, we show that mixing policies may further im-
prove results. The natural following step would be to jointly optimize a
mixture of policies, i.e., further refine parameters of a mixture of poli-
cies to context. It is also probable that good combinations of policies is
something existing. At least, we may find something that can be observed
in real humans who adjust their navigation to the one of their neighbors,
e.g., being more careful among inattentive people, or conversely.

4.6 Conclusions

In summary, we have proposed a framework to dynamically adapt the
motion policy of characters when simulating large virtual crowds. Our
approach is based on a context to policy map which shows for the agents’
local context to a set of optimized policies, that are learnt once and for
all in a previous step without requiring any real motion data. To this
end, we have proposed a discretization of the full context space into a
subset of 33 representative contexts and learned the optimal performing
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policies for each of the contexts. During the simulation, the agents’ con-
text is automatically detected and mapped to an optimized policy, which
results in a crowd where characters dynamically adapt their motion strat-
egy depending on their situation. Our results demonstrate the benefits
of our approach for the crowd simulation quality, exhibiting a significant
crowd quality improvement both visually and in terms of a quantitative
perceptually-based quality function. Furthermore, the data-independence
of our approach opens the path to easily build on and extend our frame-
work to other contexts and policies, which can potentially trigger future
research.
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Steering Algorithm
Density Flow PL ORCA TTCA SF Mou PLE RVO Kar Par

0.5 F0 94 94 89 93 94 86 93 91 86
0.5 F10 92 92 89 91 92 85 92 93 86
0.5 F50 90 91 85 87 91 88 91 88 85
0.5 F90 91 90 89 90 91 87 92 89 85
0.5 F130 90 90 88 90 91 87 91 88 84
0.5 F170 90 90 86 88 91 87 90 87 82
0.5 BF0 91 92 88 88 91 88 93 88 85
0.5 BF10 87 89 83 84 90 85 88 85 81
0.5 BF50 84 86 79 78 87 81 85 82 76
0.5 BF90 88 87 82 90 88 85 88 83 82
0.5 FN 85 85 77 80 86 83 85 81 78
1.0 F0 90 92 80 79 91 87 93 86 81
1.0 F10 90 93 83 87 92 88 91 88 85
1.0 F50 88 89 75 82 89 86 88 90 84
1.0 F90 87 90 72 77 89 84 89 91 82
1.0 F130 87 88 76 81 88 85 88 89 83
1.0 F170 85 89 73 78 88 85 86 81 80
1.0 BF0 86 91 69 73 88 86 89 82 80
1.0 BF10 83 85 74 80 84 82 83 79 80
1.0 BF50 76 77 64 71 78 76 77 72 73
1.0 BF90 77 78 59 66 79 76 77 73 71
1.0 FN 79 82 72 71 81 78 80 76 76
2.0 F0 87 93 76 78 92 88 91 84 84
2.0 F10 82 91 71 70 90 84 92 81 76
2.0 F50 82 84 74 75 84 80 85 79 78
2.0 F90 77 81 68 66 80 76 79 74 72
2.0 F130 73 79 63 53 77 73 77 71 68
2.0 F170 76 78 67 70 77 74 76 72 71
2.0 BF0 76 81 66 64 80 76 79 73 71
2.0 BF10 69 73 61 49 73 67 74 68 64
2.0 BF50 62 70 64 72 71 68 70 64 54
2.0 BF90 61 64 71 72 61 66 69 58 53
2.0 FN 54 55 75 50 53 52 75 44 58

Table 4.2: Context to the performance of each steering algorithm with
appropriate parameters. The best performing algorithm is used to map
each context to a steering policy. he score in each cell is computed using
the quality function QF proposed in Cabrero Daniel et al. [2021].
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(a) Universal Power Law
(SQF = 67)

(b) RVO only (SQF =
84)

(c) PL and RVO (SQF =
92)

Figure 4.2: Crowd simulation of two flows of agents crossing at 90º using
three different motion strategies, and their respective score SQF accord-
ing to a quality function. At the left (4.2a), agents are steered using the
Power Law model (PL, blue). Note that some agents are dragged along a
diagonal towards the up-right direction, hence deviating them from their
goal. At the center (4.2b) trajectories are generated using the Recipro-
cal Velocity Obstacles (RVO, orange). Note that, in this case, characters
tend to move apart too much from each other. At the right, trajectories
are generated with our approach, where characters dynamically switch
motion policy depending on their local context, hence overcoming the
motion artifacts of 4.2a and 4.2b. In this example, characters use the PL
model, but switch to RVO when in the 90º crossing context. The agents’
color encodes their current policy. Our dynamic adaptation results in an
increase of the overall quality score, SQF .
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Figure 4.3: Representation of the issues with selecting the next velocity
v′i for character ci when using motion combination in velocity space. The
best region in velocity space for the first algorithm (blue) slightly over-
laps the best region in velocity space for the second algorithm (orange).
Nevertheless, the velocities lying in the overlapping area (best for both
steering algorithms at once) lead to a collision with cj .

Figure 4.4: Average quality (across all contexts) depending on the pro-
portion of characters using the best performing steering algorithm and the
second best performing algorithm.
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Strategy Mean Variance
Policy sharing (S0) 0.61 0.09
Policy per-character (S1) 0.78 (+28%) 0.06
Switching algorithms (S2) 0.87 (+43%) 0.06
Switching distr. (S3) 0.89 (+46%) 0.13

Table 4.3: Average quality of the trajectories resulting from using each
of the studied strategies. The percentages in-between brackets for S1, S2

and S3 show the improvement brought by these strategies with respect to
the base-line strategy S0.
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Chapter 5

CONCLUSIONS AND
FUTURE WORK

Computer-simulated crowds are becoming increasingly common in the
film and video gaming industries. Crowd simulation is also used in the
field of safety assessment to study and prevent potentially hazardous sce-
narios e.g. in stadium evacuations or fire drills in office buildings. Exist-
ing crowd motion models used to simulate crowds are highly diverse, and
no general solutions exist. The results of such simulations are difficult to
compare, making it difficult to pick the best suited crowd motion model.

In this work, we looked at how to make decisions about crowd simu-
lation from the perspective of autonomous results evaluation. We’ve fo-
cused on the necessity to assess the performance of various crowd motion
models without directly depending on real-world data, which is difficult
to gather. Eventually, we linked contexts, previously defined, to appropri-
ate policies. This information can be used to guide the policy selection
or even allow the characters in the simulated crowd to adapt their steering
strategy dynamically.

Figure 5.1 illustrates the interrelation between the topics and contri-
butions discussed in this thesis. The Learning Crowds framework (blue
boxes), described in Chapter 2, uses a fitness function in order to itera-
tively improve the resulting trajectories. As discussed in Section 2.4, an
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external module, UMANS, is used to generate trajectories for the charac-
ters in the crowd and test the performance of a particular parameter value
set for a particular steering algorithm. The trajectory evaluation, is done
through the Quality Function represented by a green box in Figure 5.1.
The Quality Function, QF , is described and validated in Chapter 3. The
orange boxes in Figure 5.1 represent the policy to context adaptation loop
presented in Chapter 4.

Figure 5.1: Overview of the covered topics and contributions.

5.1 Contributions

Uniform motion algorithm representation (UMANS). To simulate
the low-level microscopic behavior of human crowds, a local navigation
algorithm describes how characters move based on their surroundings.
Many algorithms for this purpose have been proposed, each using differ-
ent principles and implementation details that are difficult to compare.
We first focused on designing a novel framework that describes local
agent navigation generically as optimizing a cost function in a velocity
space. We showed that many state-of-the-art algorithms can be translated
to this framework. This software enables easy experimentation with dif-
ferent algorithms and parameters. This approach helps understand the
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differences between navigation methods and enable honest comparisons
between them.

Automatic trajectory quality evaluation. The study of the relation be-
tween parametric values for simulation techniques and the quality of the
resulting trajectories had previously been studied either through percep-
tual experiments or by comparison with real crowd trajectories: we in-
tegrated both strategies. A quality metric, QF , was proposed to abstract
from reference data while capturing the most salient features that affect
the perception of trajectory realism. QF weights and combines cost func-
tions that are based on several individual, local and global properties of
trajectories. These trajectory features are selected from the literature and
from interviews with experts. To validate the capacity of QF to cap-
ture perceived trajectory quality, we conducted an online experiment that
demonstrated the high agreement between the automatic quality score and
non-expert users. To further demonstrate the usefulness of QF , we used
it in a data-free parameter tuning application able to tune any parametric
microscopic crowd simulation model that outputs independent trajectories
for characters. The learnt parameters for the tuned crowd motion model
maintained the influence of the reference data which was used to weight
the terms of QF .

Context to policy dynamic adaptation. The question of choosing the
right crowd simulation algorithm with the right parameter values is of
crucial importance given the large impact on the quality of results. We
combined the two previous concepts in order to achieve an autonomous
and informed mapping from context, representing the environment of a
character, to best-performing policy (i.e., simulation algorithm and its pa-
rameters). We study the performance of a number of steering policies in a
variety of contexts, resorting to the proposed quality function, QF . This
analysis allows us to map contexts to the performance of steering poli-
cies. Based on this mapping, we demonstrate that distributing the best
performing policies among characters improves the resulting simulations.
Furthermore, we also propose a solution to dynamically adjust the poli-
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cies, for each agent independently and while the simulation is running,
based on the local context each agent is currently in. We demonstrate sig-
nificant improvements of simulation results compared to previous work
that would optimize parameters once for the whole simulation, or pick
an optimized, but unique and static, policy for a given global simulation
context.

Learning Crowds framework. All this was integrated in a framework
for crowd simulation whose objective is the analysis and synthesis of
crowd motions so that the generated trajectories of agents exhibit desired
properties. We presented a full framework architecture which, unlike pre-
vious works, can operate without any real-world measured data. This is
achieved through a random scenario generator coupled with a trajectory
quality evaluation i.e. QF . The use of synthetic data instead of real-world
data allows to easily change and extend the variety of training situations,
as well as to study in-depth the influence of scenario features on the char-
acters’ behaviour.

5.2 Future Work

Not using data (as is the case of our proposed approach) has many advan-
tages such as, for example, not having to collect and process real trajec-
tory data, or not risking over-fitting to a particular data set. However the
chosen trajectory evaluation metric, QF , limits the scope of evaluation to
ambient crowds. Nevertheless, as discussed in Chapter 2, the framework
is modular; this allows for other, potentially more appropriate, evaluation
techniques to be used instead.

On the one hand, more complex trajectory quality evaluation func-
tions (e.g. based on mixture of Gaussian curves) could be used to detect
specific behaviour patterns in character trajectories. Also, a polynomial
quality function combining trajectory features, could be proposed. These
might lead to better results in terms of performance measurement and
therefore improve the parameter tuning results. On the other hand, dif-
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ferent trajectory features, currently not considered in Chapter 3, could be
added to QF e.g. individual character properties like personality [Du-
rupinar et al., 2011], local crowd properties such as emotion contagion
[Alemi et al., 2015], or even global characteristics based on path plan-
ning information [Van Toll et al., 2012]. New features might allow the
evaluation of trajectories that are not inside the scope of ambient crowds.

A wider range of contexts could have been taken into account in order
to perform per-character policy switching i.e. learn a larger context to
policy map. The main goal would be to study contexts outside the scope
of ambient crowds, the scope of QF as discussed in Chapter 3. Since QF
is not, in principle, suited for those specific contexts and behaviours, a
different trajectory evaluation function would need to be proposed.

5.3 Summary
In this work we discuss three of these techniques to advance the field of
Crowd Simulation. The proposed methods, automatize crowd simulation-
related tasks (i.e., parameter tuning, trajectory evaluation, and charac-
ter policy selection and adaptation) without relying on real data directly.
First, a novel holistic approach to implement crowd simulation algorithms
as combinable cost functions. Second, a character trajectory evaluation
function that, once trained, can be used to assess the plausibility of tra-
jectories without requiring them to be compared to real data, which is
difficult to gather. Third, a method for making informed decisions about
crowd simulation algorithms. Nonetheless, despite these promising re-
sults, there is still much room for improvement both in the number of
steering algorithms used and the range of pedestrian interactions covered.
In order to further automatize Crowd Simulation-related decisions, addi-
tional studies will need to be undertaken.
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Appendix A

QUESTIONNAIRE FOR
EXPERTS

The survey for experts, aimed at selecting and understanding important
trajectory features to evaluate crowd realism, was composed of a rela-
tively long list of questions which, for the sake of space, we only include
here. All the questions in the survey for experts can be found in the fol-
lowing lists.

Walking and comfort speed Walking speed is an individual property
of an agent. Walking speed is the speed at which agents are moving at
a particular time-step. Questions asked about this feature: “I agree with
this definition of walking speed.”, “The video is showing agents moving
at different walking speeds.”, “In general, walking speed is related to the
perceived quality of animation trajectories.”, “The agents should present
a variety of walking speeds in an unconstrained context where no col-
lision avoidance is required (comfort speed).”, “The walking speed can
change because of the environment.”, “If you do not agree that this fea-
ture is related to perceived quality, please indicate why.”, and “Do you
have anything to add on this feature?”
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Flickering in direction and speed Flickering in a trajectory is present
when an agent exhibits many sharp changes of walking speed and/or di-
rection in a short period of time. Questions asked about these features: “I
agree with this definition of flickering.”, “The first video displays flick-
ering in direction.”, “The second video displays flickering in walking
speed.”, “Visible flickering in direction negatively affects the perceived
quality of trajectories.”, “Visible flickering in speed negatively affects the
perceived quality of trajectories.”, “In an unconstrained scenario (no col-
lision avoidance), flickering is always perceived as unrealistic.”, “Is there
any scenario in which flickering is not perceived as unrealistic? Which
and why?”, “If you do not agree that flickering is related to the quality
of agent trajectories, please indicate why.”, and “Do you have anything to
add on this feature?”

Inertia Inertia is the resistance of any moving or non-moving object to
change its velocity (related to their mass and the forces applied to them).
Questions asked about this feature: “I agree with the proposed definition
for inertia.”, “In this video, the agent at the top shows inertia.”, “In this
video, the agent at the bottom shows inertia.”, “Lack of inertia negatively
affects the perceived quality of agent trajectories.”, “Humans have a re-
stricted range of admissible acceleration values.”, “If you do not agree
that displaying inertia is related to the perceived quality of animation tra-
jectories, please explain why.”, “If you do not agree that lack of inertia is
related to too much acceleration, please explain why.”, and “Do you have
anything to add on this feature?”

Turning speed, also called angular velocity, is measured in radians
(or degrees) per second and is used to measure the change in direction
of an agent. Questions asked about this feature: “I agree with the defini-
tion of turning speed.”, “The video is showing different turning speeds for
agents.”, “Turning speed is related to the perceived quality of animation
trajectories.”, “There is a maximum turning speed for human walkers.”,
“As the walking speed of agents increases, their turning capability de-
creases.”, “Changes in direction outside the admissible range of turning
angles negatively affect the perceived quality.”, “If you do not agree that
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angular velocity affects the perceived quality of animation trajectories,
please specify why.”, and “Do you have anything to add on this feature?”

Goal attraction The direction of movement of an agent is the current
direction an agent is moving in. The goal direction can be the direction
to a point in space or a desired direction depending on the position of the
agent. Questions asked about these features: I agree with the proposed
definition for the direction of movement.”, “I agree with the proposed
definition for the goal direction.”, “The agent at the top (unconstrained)
is always moving towards its goal.”, “The agent at the bottom (uncon-
strained) is always moving towards its goal.”, “The difference between
direction of movement and goal direction negatively affects the quality
of agent trajectories.”, “Agents walk in a straight line in a free environ-
ment.”, “There is a trade-off between avoidance maneuvers and moving
towards the goal.”, “The goal direction of an agent can always be inferred
from the motion.”, “If you do not agree that the direction of movement
affects the quality of agent trajectories, please specify why.”, “If you do
not agree that quality depends on the difference between the direction of
movement and the goal direction, please specify why.”, and “Do you have
anything to add on this feature?”

Reaching the goal means being very close to a particular position at
the end of the trajectory of an agent. Questions asked about this feature:
“I agree with this definition of goal reaching.”, “This video shows an ex-
ample of goal reaching.”, “It is always possible for an agent to reach its
goal.”, “Not reaching the goal negatively affects the perceived quality of
agent trajectories.”, “Goal reaching is relevant for the measurement of
the quality of the agent trajectory.”, “Checking if the goal was reached
is needed for the measurement of quality.”, “If you do not agree that not
reaching the goal negatively affects the perceived quality of trajectories,
please indicate why.”, and “Do you have anything to add on this feature?”

Density Local density refers to the density (persons per square meter)
around an agent. For instance, inside a circle centered at the agent. Ques-
tions asked about this feature: “I agree with this definition of local den-
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sity.”, “This video shows a representation of local density.”, “Local den-
sity is related to the perceived quality of the agent trajectories.”, “Agents
avoid high density areas when possible.”, and “High local density nega-
tively affects the perceived quality of trajectories.”

Environment-based density is the density at subdivisions of the world.
Questions asked about this feature: “I agree with this definition of environment-
based density.”, “If you do not agree that local density affects the per-
ceived quality of animation trajectories, please indicate why.”, “Do you
have anything to add on local density?”, “This video shows a representa-
tion of environment-based density in different areas of the environment.”,
“The distribution of the environment-based density affects the quality of
animation trajectories.”, “People positions are generally not uniformly
distributed in their environment.”, “If you do not agree that density affects
the perceived quality of animation trajectories, please indicate why.”, and
“Is there something you would like to add about density?”

The pairwise distance between agents is the distance between a pair of
pedestrians Questions asked about these features: “I agree with the pro-
posed definition for distance between agents.”, “This video shows the evo-
lution of distance between two agents.”, “Close distances to other agents
can negatively affect the quality of a trajectory.”, “There is a minimum
distance to other agents that is considered acceptable.”, “The minimum
acceptable distance is reduced when local density increases.”, “The min-
imum acceptable distance to other agents decreases when relative speed
increases.”, “If you do not agree that distance to other agents affects the
perceived quality of the trajectories, please explain why.”, “Do you have
anything to add on this feature?”, “I understand what the distance to ob-
stacles refers to.”, “When unconstrained, staying far from obstacles is
expected in a high quality trajectory.”, “There is a minimum distance to
obstacles that is considered desirable.”, “The minimum desired distance
to obstacles varies depending on local density.”, “The minimum desired
distance to obstacles varies depending on walking speed.”, and “Do you
have any comments on distance to obstacles?”
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Trajectory length The travel time is the total elapsed time (seconds)
from the beginning of the motion until the agent stops, reaches its goal,
exits the world, or the end of the trajectory is reached. The total length of
a trajectory is the distance (meters) walked by an agent in the same travel
time span. Questions asked about these features: “I agree with this defini-
tion of travel time.”, “I agree with this definition of trajectory length.”, “In
the video, we can see an example of different travel time.”, “In the video,
we can see an example of different trajectory length.”, “The travel time
is related to the perceived quality.”, “Trajectories longer than the short-
est path in an unconstrained environment (straight line) are perceived as
less believable.”, “Collision avoidance might make trajectories longer.”,
“When performing collision avoidance, unnecessarily longer trajectories
are perceived as less believable.”, and “Do you have any comments on
travel time and trajectory lengths?”

Avoidance patterns Interaction strength is the amplitude of the accel-
eration or deceleration caused by collision avoidance. Anticipation is the
distance (in time-steps or in meters) at which agents adapt their motion to
avoid the collision. Questions asked about these features: “I agree with
the definition of interaction strength.”, “I agree with this definition for
anticipation.”, “In the videos, we can see different interaction strengths
for collision avoidance.”, “In the videos, we can see different anticipation
times for collision avoidance.”, “The strength of the interactions is related
to the perceived quality of trajectories.”, “The anticipation of agents is re-
lated to the perceived quality of the trajectories.”, “The interaction will be
stronger if a collision is imminent.”, “If you do not think the interaction
strength is related to perceived quality, please explain why.”, and “Do you
have anything to add on this feature?”

The Time To Collision (TTC) is the predicted time until a collision
happens. Questions asked about this feature: “I agree with the proposed
definition for Time To Collision.”, “This video displays the Time To Colli-
sion (TTC).”, “Low TTC values negatively affect the perception of quality
of agent trajectories.”, “Low TTC values do not negatively affect the per-
ception of quality, only actual collisions do.”, “If you do not agree that
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the Time To Collision (TTC) is related to the perceived quality of agent
trajectories, please indicate why.”, and “Do you have anything to add on
this feature?”

The Time To Closest Approach is the time until two agents are as
close as they would be if they kept their velocities constant. On the other
hand, the Distance at Closest Approach (DCA) is the minimum distance
at which two agents would cross each other if they would keep their ve-
locities constant. Questions asked about these features: “I agree with this
definition of Time To Closest Approach (TTCA).”, “I agree with this defi-
nition of Distance at Closest Approach (DCA).”, “This video shows some
examples of TTCA and DCA combinations.”, “Low Time To Closest Ap-
proach (TTCA) values negatively affect the perceived quality of trajec-
tories.”, “Small Distance at Closest Approach (DCA) values negatively
affects the perceived quality of trajectories.”, “I agree that TTCA values
are not informative on their own, DCA is needed to interpret if a collision
will happen in the near future or not.”, “Across DCA and TTCA com-
binations, only low TTCA combined with low DCA values negatively
affect the perceived quality of agent trajectories.”, “If you do not agree
that combinations of Time To Closest Approach (TTCA) and Distance at
Closest Approach (DCA) are related to the perceived quality of animation
trajectories, please specify why.”, and “Do you have anything to add on
this feature?”

Collisions A collision happens when the distance between two agents is
smaller than the sum of their radius. Questions asked about this feature:
“I agree with this definition of what is a collision.”, “This video shows
the number of collisions at each time-step.”, “The number of collisions
negatively affects the perceived quality of trajectories.”, “If you do not
agree that the number of collisions is related to quality of agent trajec-
tories, please indicate why.”, and “Do you have anything to add on this
feature?”

Agents have a personal space that can overlap with that of other agents.
Questions asked about this feature: “I agree with the definition of per-
sonal space overlap.”, “This video shows personal space overlaps.”, “The

100



perceived quality is more negatively affected if the overlap between two
agents is bigger.”, “The perceived quality is more negatively affected if an
overlap lasts longer in time.”, “The perceived quality is more negatively
affected if the “perception” of the collision is bigger (e.g. depending on
the bearing angle).”, “If the personal space of two agents is overlapping
during the whole trajectory, it means they are part of a group.”, “The
overlap area of agents of a group does not necessarily negatively affect
the perceived quality of agent trajectories.”, “If you do not agree that per-
sonal space overlap negatively affects the perceived quality of trajectories,
please specify why.”, and “Do you have anything to add on this feature?”

Distributions of feature values A Fundamental Diagram is a figure
showing the relation between the average walking speed of agents and
the density based on experimental data. Questions asked about this fea-
ture: “I agree with the proposed definition for Fundamental Diagrams.”,
“The range of admissible walking speed values for an agent is affected
by the local density around them.”, “For a crowd motion to be perceived
as of good quality, average walking speed should follow the fundamental
diagram (the denser the slower).”, “If you do not agree that the relation-
ship between density and average walking speed should be the same as
in reality for a trajectory to be believable, please explain why.”, and “Do
you have anything to add on this feature?”

The distribution of trajectory lengths represents the variation in tra-
jectory lengths from agents to walk from their origin position to the final
position. Questions asked about this feature: “I agree with the definition
for distribution of trajectory lengths.”, “The plot shows the difference in
length of a number of trajectories with the same origin and goal posi-
tion.”, “Different lengths of trajectories from the same origin point to the
same final position positively affect the perceived quality of the crowd
motion.”, “If you do not agree that the distribution of trajectory lengths
(compared to the one of real humans) is important, please tell us why.”,
and “Do you have anything to add on this feature?”
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Extra questions about variety and heterogeneity as well as relative
importance “I agree that variety in the values of the state features (e.g.
comfort speed, goal position, acceptable TTC values) is related to the het-
erogeneity of the crowd.”, “The video shows a heterogeneous crowd with
different values for the walking speed state feature.”, “The video shows
two agents behaving differently to avoid each other.”, “Variety improves
the perceived quality of the trajectories.”, “The environment can affect
the walking strategy of an agent (e.g. admissible TTC values, distance
to the goal, local density, etc.).”, “Homogeneity negatively affect the per-
ceived quality of the trajectories.”, “A crowd with variety implies that
agents exhibit a behaviour that is different from the majority.”, “Agents
with uncommon trajectories are allowed in some cases to show specific
behaviours.”, “Do you have any comments on variety?”, “What do you
think about coherence within a trajectory?”, and “On a scale from 1 to 7,
what is the impact on the following state features in perceived quality of
the trajectories of the agents of the crowds: [...]?”
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Appendix B

SUPPLEMENTARY VIDEOS

An overview of the Learning Crowds modules, presented in Chapter 2,
can be found in [Cabrero-Daniel, 2021a]. The information pipeline is
also briefly discussed in the video. To know more about microscopic
crowd simulation using costs in Velocity Space, you can watch [Pettre,
2020]. You can hear a detailed explanation about the Quality Function,
QF , and its usage in the learning process in [Cabrero-Daniel, 2021b],
together with some illustrative examples that accompany those in Chap-
ter 3. These videos, that show the limitations of some steering algorithms
in some scenarios, are good motivational examples for the work explained
in Chapter 4. Finally, video examples of policy comparisons and sequen-
tial policy combinations are available at [Cabrero-Daniel, 2021c].
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Ondřej, J., Pettré, J., Olivier, A.-H., and Donikian, S. (2010). A synthetic-
vision based steering approach for crowd simulation. ACM Transac-
tions on Graphics, 29(4):123.

Paris, S., Pettré, J., and Donikian, S. (2007). Pedestrian reactive navi-
gation for crowd simulation: a predictive approach abstract. Comput.
Graph. Forum, 26:665–674.

Pettre, J. (2020). Generalized microscropic crowd simulationusing costs
in velocity space. https://youtu.be/5JkwWQeoJno.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behav-
ioral model. SIGGRAPH Comput. Graph., 21(4):25–34.
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eralized microscropic crowd simulation using costs in velocity space.
In Symposium on Interactive 3D Graphics and Games, I3D ’20, New
York, NY, USA. Association for Computing Machinery.
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