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Dr. Glòria Sala

Co-advisor:

Dr. Jordi José
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velocity, radius and luminosity ratio Γ. Points marked with up or down tri-
angles (4/5) correspond to “thin” solutions and to non-stationary solutions,
respectively. Points marked with filled circles (•) are self-consistent solution
candidates, the × mark denotes no solutions found for the given boundary
conditions. Fully colored area marks solutions whose wind base is compatible
with possible neutron star radii (7− 20 km), and white diamonds inside of it
(�) mark selected solutions plotted in Figure 2.1. . . . . . . . . . . . . . . . . 16

2.3 Same as Figure 2.2, but for values at the critical (sonic) point, with the
exception of the velocity plot that has been replaced by an effective optical
depth τ∗ = κρr plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Same as Figure 2.2, but for values of temperature, density, radius, and char-
acteristic time ∆t at the wind base. Self-consistent solutions outside the area
of compatibility with neutron stars are not colored here in order to better
resolve values in the area of interest. . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Distribution of photospheric luminosity ratio Γ across acceptable solutions
with varying values of model parameters. . . . . . . . . . . . . . . . . . . . . 19

2.6 Opacity profiles vs. temperature. Wind solutions obtained in this work (con-
tinuous lines) with wind base at RNS = 13 km and different values of log Ṁ .
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Chapter 1

Introduction

1.1 X-ray bursts

X-ray bursts (XRBs) were discovered in the mid 1970s independently by Babushkina
et al. (1975); Belian et al. (1976); Grindlay et al. (1976). Most of them are characterized by
bright and sudden spikes in the X-ray band of the electromagnetic spectrum, starting with
a quick and sharp luminosity rise, in about 1 – 10 s, followed by a much slower decay tail
ranging from ∼ 10 to 100 s, and recurrence periods from hours to days. The luminosity
can sometimes rise up to a thousandfold the persistent (normal) luminosity of the source,
although the typical increase is in the hundreds, reaching values of the order of 1038 erg/s,
with a total energy output of about 1039 erg. An odd exception was soon found with the
discovery of the Rapid Burster MXB 1738-335 (see Lewin et al. 1976), which exhibited much
quicker sequences of short lived bursts with no tail, recurring every ∼ 10 s, as well as some
of the other normal bursts. XRBs were then classified into type I,[1] for the most commonly
observed ones, and type II for quicker ones in the Rapid Burster.[2]

The spatial distribution of most of the XRB sources observed matches that of low-mass
X-ray binaries (LMXB)[3] around the galactic center. Globular clusters contain a significant
portion of these bursting sources, suggesting a connection with old population stars (see
Lewin et al. 1993). More recently, extragalactic XRB sources have been discovered in globular
clusters around the Andromeda galaxy (see Pietsch & Haberl 2005). As of today, more than
a hundred type I XRB sources have been identified,[4] constituting the most frequent type
of explosive event in the galaxy, and ranking third in terms of total energy output after
supernova and classical novae.

Several mechanisms have been proposed to explain the origin of XRBs. Following pio-
neering work by Hansen & van Horn (1975), two independent works suggested that either

[1] See Page 2 for a modern classification of type I XRBs based on their duration and recurrence times.
[2] Only one other source was found to date exhibiting type II XRBs: the bursting pulsar GRO J1744-28

(see Finger et al. 1996; Kouveliotou et al. 1996).
[3] LMXBs are bright X-ray emitting binary systems composed of a massive compact object (neutron star

or black hole), and a less massive main sequence star, red giant, or sometimes a white dwarf. The X-rays
originate in the hot plasma at the inner parts of the accretion disk that forms around the compact object,
made of material stolen from the companion star (see further ahead).

[4] See http://www.sron.nl/~jeanz/bursterlist.html for an updated list of known galactic type I XRB
systems.

http://www.sron.nl/~jeanz/bursterlist.html
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the hydrogen-rich material (Woosley & Taam 1976) or helium-rich material (Maraschi &
Cavaliere 1977), accreted onto a compact object like a neutron star and undergoing thermal
instabilities under high electron degeneracy, could erupt in thermonuclear flashes powering
the burst episodes. A first evidence supporting the thermonuclear origin of XRBs is the ratio
between time-integrated persistent and burst energy fluxes, α, observed to lie typically in the
range ∼ 40 – 100. This is in close correspondence with the ratio between the gravitational
potential energy released by matter falling onto the neutron star (NS) during the accretion
stage (GMNS/RNS ∼ 200 MeV per nucleon) and the nuclear energy generated in the burst
(about 5 MeV per nucleon, for a solar mixture burned all the way up to the Fe-group nuclei).
However, the features of type II XRBs were better associated with accretion instabilities
(see Hoffman et al. 1978), as follows. A magnetized NS could temporarily hold off the ma-
terial spiraling in from the accretion disk, which then accumulates on the magnetosphere.
Eventually, a fraction of this material pushes through, generating a spike of X-rays from the
conversion of its gravitational energy, with no tail, as expected for type II XRBs. In turn,
this mechanism also suggests that sources exclusively exhibiting type I XRBs lack a strong
enough magnetic field (< 1011 G) to generate these accretion instabilities.[5]

Early semi-analytical models portraying a NS as the host for type I XRBs were developed
by Joss (1977), and Lamb & Lamb (1978). Later, Joss (1978) performed the first numerical
simulations, showing that unstable helium burning can explain their main observational
features like light curves, total energy, recurrence times and spectral features. Several studies
followed during the 1980s, improving in different aspects and studying the influence of several
parameters such as NS masses and radii, central temperatures, magnetic fields, accretion
rates and metallicity of the accreted material (see, e.g., Joss & Li 1980; Ayasli & Joss 1982;
Paczyński 1983). One key limiting aspect in the progression of numerical models was the
available computational power, which restricted their complexity in terms of input physics
and level of detail attained. For instance, during the 1980s, models were restricted to reduced
nuclear reaction networks, or to a single burst.

Modern numerical models couple 1-dimensional hydrodynamic simulations to larger nu-
clear reaction networks, containing hundreds of isotopes linked by thousands of possible
reactions (see Woosley et al. 2004; Tan et al. 2007; Fisker et al. 2008; José et al. 2010).
They are also capable of simulating several consecutive bursts, which provides information
about the long-term evolution of these systems, a relevant issue since the properties of every
subsequent burst may be affected by the initial conditions set by previous ones. Particularly,
the thermal and compositional inertia determines the energy and fuel availability for follow-
ing bursts, which in turn affects features like their nuclear burning regimes (stable/unstable
H/He burning, C burning), ignition depth, or cooling timescales. In close relation to this,
observations have also revealed some bursts characterized by longer duration and recur-
rence time, and larger energy output. These have opened a subtype classification of type I
XRBs into Normal bursts (for the most common ones described before), Intermediate bursts
(with durations in 15 − 40 min, recurrences times of tens of days, and energy outputs in
1040−41 erg), and Superbursts (lasting ∼ 1 day, recurring every 1−2 yr, and as energetic as
1042 erg). Their mechanisms are similar in essence, and their difference is thought to derive
mainly from higher ignition depths, which delays cooling timescales, and different nuclear
burning regimes: He-accretion in ultra compact X-ray binaries or ashes accumulated from
previous hydrogen bursts for Intermediate bursts, and carbon burning for Superbursts (see,

[5] See, however, Bult et al. (2019) for a recent detection of type I XRBs in a pulsar, and Goodwin et al.
(2021) for a model of type I XRB including the effect of accretion hot-spots caused by NS magnetic fields.
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e.g., Keek & in’t Zand 2008, and references therein).
Today, the general picture for the scenario and basic mechanism behind the most common

XRBs is well accepted in the scientific community. Type I XRBs are highly energetic and
recurrent thermonuclear events occurring on the envelope of accreting neutron stars in binary
systems where the secondary star is usually a main sequence star or red giant. Most observed
XRBs have short orbital periods, in the range 0.2–15 hr.[6] As a result, the secondary star
overfills its Roche lobe and mass-transfer ensues through the inner Lagrangian point (L1) of
the system. The material stripped from the secondary has angular momentum, such that
it forms an accretion disk around the NS. Viscous forces then progressively remove angular
momentum from the disk forcing the material to spiral in and pile up on top of the NS. The
accreted material accumulates under mildly degenerate conditions, driving a temperature
increase and the onset of nuclear reactions. As a result, a thermonuclear runaway occurs,
generating a massive luminosity increase as well as nucleosynthesis of heavier elements,
mostly around A = 64 (see, e.g., José et al. 2010; Fisker et al. 2008; Woosley et al. 2004). The
presence of heavy elements can, in principle, be detected (see Weinberg et al. 2006; Chang
et al. 2005, 2006; Bildsten et al. 2003) in the form of absorption features in the spectrum,
which mostly lies in the X-ray range. For further information on XRBs see Strohmayer &
Bildsten (2006); Keek & in’t Zand (2008); Galloway et al. (2008); José (2016).

The mechanism powering XRBs bears a clear resemblance with that for classical no-
vae (hosted by white dwarfs instead), but unlike them, the high surface gravity of the NS
prevents, in principle, the explosive ejection of material. A typical NS (MNS ∼ 1.4 M�,
RNS ∼ 10 km) has an escape velocity of vesc ∼ 2c/3, allowing only a limited envelope ex-
pansion before the nuclear fuel is consumed. However, for some values of accretion rate, a
considerable photospheric radius expansion (PRE) takes place. In these cases, the luminosity
can approach or even exceed the Eddington limit in some of the outer layers of the expanded
envelope, which may lead to the ejection of some material through a radiation-driven wind.

1.2 Stellar winds

Stellar winds have been studied in different scenarios throughout most part of 20th cen-
tury, and in a variety of forms (see Parker 1965; Żytkow 1972; Castor et al. 1975). The
simplest models assume spherical symmetry and stationary wind and can be broadly classi-
fied according to the main driving mechanism into gas pressure-driven or radiation-driven,
although magnetic fields can also play an important role. For a wind to be radiatively driven,
high luminosity and high opacity must be present.

In the framework of neutron stars, several studies of radiation-driven winds have been
performed since the early 1980s, with varying hypotheses, approximations and calculation
techniques. Ebisuzaki et al. (1983), Kato (1983), Quinn & Paczyński (1985) and Joss &
Melia (1987) all used non-relativistic models with an approximated formula for opacity as
a function of temperature. The models adopted different boundary conditions both at the
photosphere and at the base of the wind envelope, as well as different treatments of the
sonic point singularity (see Chapter 2). Studies based on general relativistic models were
performed by Turolla et al. (1986), and Paczyński & Prószyński (1986). In a more recent
work Yu & Weinberg (2018) used MESA code (see Paxton et al. 2011) to perform a time-
dependent hydrodynamic simulation of the wind envelope following a hydrostatic burst rise.

[6] Exceptions include GX 13+1 (592.8 hr), Cir X-1 (398.4 hr), and Cyg X-2 (236.2 hr).
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As this thesis was being written, Guichandut et al. (2021) published a study including an
analysis of the transition from static expanded envelopes to radiatively-driven stellar wind
and discuss the applicability of steady-state models during it.

1.3 Motivation and objectives

Advances in computational power and numerical techniques have allowed several studies
since the 2000s to perform hydrodynamic simulations of XRBs with extended nuclear reaction
networks (see Fisker et al. 2008; Woosley et al. 2004; José et al. 2010). These studies have
shown that XRBs synthesize a large variety of proton-rich nuclei. The potential impact of
XRBs on galactic abundances is still a matter of debate and relies on the high overproduction
of some particular isotopes, but also on the ejection of material during the burst. It has
been suggested that if a tiny fraction of the accreted envelope is ejected through radiation-
driven winds, XRBs may potentially be the source of some light p-nuclei, such as 92,94Mo
and 96,98Ru (see Schatz et al. 1998, 2001), which are systematically under-produced in all
canonical scenarios proposed to date for the synthesis of such species. However, it is still not
clear whether XRBs contribute to the galactic abundances, since the strong gravitational
pull of the NS prevents the direct ejection of matter, only potentially viable through a
radiation-driven wind.

Additionally, the study of XRBs wind can lead to a more accurate determination of
neutron stars radii, and help constrain the equation of state (EoS) of neutron star matter
(see Özel et al. 2010; Steiner et al. 2010). Several theoretical models for the state of matter
inside neutron stars have been proposed, resulting in a variety of possible EoS (see Lattimer
& Prakash 2006). When modeling a NS interior structure, a given choice of EoS determines
a specific mass-radius relation. Thus, accurate measurements of NS masses and radii, taken
independently, are needed to test the validity of these theoretical models. Neutron star
masses, for instance, can be determined from bolometric luminosities during XRBs with
significant envelope expansion (assuming the maximum corresponds to the Eddington limit).
The radius is more difficult to measure, and methods proposed carry a varied sensitivity to
systematic errors (see Damen et al. 1990; Steiner et al. 2010; Güver et al. 2012; Sala et al.
2012). A detailed study of the NS envelope evolution during XRBs, that includes stellar
wind features, can bring more light into this matter.

Motivated by the aforementioned unanswered questions and by the new possibilities
brought by the recent technical advancements, the interest of the scientific community in
stellar winds in the context of XRBs has been renewed. For this reason, we proceeded
to reanalyze these wind mechanisms, trying to improve on some aspects of input physics
(like updated opacity), numerical techniques (critical point treatment), and deepening the
analysis of solutions, the exploration of parameter space and characterization of observable
magnitudes in the context of neutron stars. Once this is achieved, the final objective is
to apply the stellar wind model, with the aforementioned improvements (and implemented
through a simulation code entirely developed in this work), to the physical conditions of
type I XRBs. We proceed towards this goal by matching numerical solutions of the stellar
wind model, to a set of XRB hydrodynamic models developed by other members in our
research group. This way, we could obtain physical predictions about the evolution of the
entire neutron star atmosphere, including both the nuclear burning shells and the expanded
wind envelope. On one hand, this allows us to study the evolution of observable magnitudes
in more realistic conditions, and their relation to parameters such as NS mass and radius,
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potentially leading to the development of better measuring techniques. And on the other
hand, we can obtain the composition of the envelope layers blown by the wind, given by the
isotopes synthesized in the nuclear reactions simulated in the XRB models. This allows us
to study the possible contribution of XRBs to galactic abundances, with special interest in
the aforementioned light proton-rich species.

This thesis is organized as follows. The basic stellar wind model, input physics and sim-
ulations setup are described in Chapter 2, with some mathematical aspects and details of
the computation methods explained in Appendix A, and further details on input physics in
Appendix B. Results from our simulations of radiative winds applied to a generic NS sce-
nario, are presented in Section 2.4. There, the focus is set on the exploration of parameter
space, the characterization of different types of solution and their self-consistency with model
hypotheses, and analysis of possible predictions related to observable variables, paving the
road to the application of the wind models to a more complex XRB scenario. This work has
been published in Astronomy & Astrophysics (Herrera et al. 2020). Chapter 3 is dedicated
to the application of our stellar wind simulations to the XRB scenario described by the
hydrodynamic simulations performed by José et al. (2010), which includes a thermonuclear
reaction network with over 300 isotopes and more than a thousand possible reactions. There,
a summarized description of their XRB hydrodynamic models is followed by an account of
the methods employed to match both the stellar wind and XRB hydrodynamic simulations,
and an analysis of the results obtained, including the wind-related mass-loss and its contri-
bution of key isotope species to galactic abundances, as well as the impact on observable
features. Several bursts were analyzed; results from the best matching model are presented
in Chapter 3, and additional models are described in Appendix C. Finally, the significance
of our results and our main conclusions are summarized in Chapter 4.





Chapter 2

Stellar wind model

Stellar winds are a common feature found in luminous stars. They affect the physics
of stellar atmospheres, regarding density stratification and energy transfer, through the ap-
pearance of transonic velocity fields in macroscopic scale. They also influence the evolution
of their host stars through mass-loss and the consequent modification of their surface abun-
dances and chemical profiles. This in turn affects the galactic dynamic, depositing energy
and momentum, but also heavy elements byproduct of nuleosynthesis, into the interstellar
medium.

The first theoretical model of stellar winds was published by Parker (1965). It was used
to describe the solar wind, with a constant temperature profile, driven purely by a gas
pressure gradient. This simple model has analytical solutions. Since then, numerous devel-
opments followed, rising in complexity and including different driving mechanisms resulting
from microscopic interactions between photons and atoms, molecules or dust present in the
atmosphere.

Without any prior assumption on the temperature profile throughout the envelope, the
spherically symmetric stationary wind equations constitute a set of nonlinear coupled dif-
ferential equations. The boundary conditions are often given at more than one point and
with implicit expressions. Another common feature is the appearance of a singular point
where the wind becomes supersonic (see Section 2.2.2). Different approaches have been im-
plemented to deal with the numerical difficulties involved in solving the equations close to
this singular point (see, e.g., Żytkow 1972; Joss & Melia 1987; Paczyński & Prószyński 1986).

In this chapter we present a new implementation of a radiatively-driven stellar wind
model, commonly employed in compact star scenarios. We describe its main features and
equations in Section 2.1. The choice of boundary conditions from different prescriptions
available in literature is discussed in Section 2.2. An outline of the calculation method is
explained in Section 2.3, with additional details in Appendix A. This model was successfully
implemented in a generic NS scenario and the results are shown in Section 2.4, with further
analysis and discussion in Section 2.5.

2.1 Radiative stellar wind equations

The simulations reported in this work rely on a stationary, nonrelativistic wind model
with spherical symmetry. Neutron stars have a typical radius of a few times their Schwarz-
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schild radius, and so while general relativity corrections on gravity could be of importance
close to its surface, they diminish rapidly in a wind envelope that extends hundreds of
kilometers. Paczyński & Prószyński (1986) showed that the main effects of general relativity
on the wind structure can be relevant for solutions with lower mass outflows (< 5×1017 g/s),
resulting in a more extended (up to a factor of 4) and cooler envelope. However, they rapidly
become less significant for higher mass outflows, giving corrections of only a few percent. We
therefore leave the effects of general relativity for a follow-up work and study the Newtonian
approach here as a stepping stone. The radiation-driven wind, treated as a fully ionized
perfect gas, is assumed to be optically thick and in local thermal equilibrium (LTE) with
radiation. For a more detailed treatment of the optically thin regions and their impact on
observables, see for example Joss & Melia (1987) (non-relativistic model) or, more recently
Guichandut et al. (2021) (relativistic model).

In this framework, the basic hydrodynamic equations for mass (2.1), energy (2.2), mo-
mentum conservation (2.3), and radiative energy transport (2.4) become:[1]

Ṁ = 4πr2ρv (2.1)

Ė = Ṁ

(
v2

2
− GM

r
+ h

)
+ LR (2.2)

0 = v
dv

dr
+
GM

r2
+

1

ρ

dP

dr
(2.3)

dT

dr
= − 3κρLR

16πcar2T 3
, (2.4)

where the variables r, T, v, ρ, LR stand for the radial coordinate, temperature, wind veloc-
ity, gas density, and radiative luminosity, respectively. The total pressure P , and specific
enthalpy h, include the contributions of gas and radiation, in the form:

P (ρ, T ) =
ρkT

µmA
+
aT 4

3
and h(ρ, T ) =

5

2

kT

µmA
+

4

3

aT 4

ρ
. (2.5)

The opacity κ(T, ρ) must be provided externally either from a radiation transport theo-
retical model, phenomenological relations, or experimental values. Opacity can have different
sources depending on the microscopic processes involved; in general, these depend on photon
frequency. The tables calculated by OPAL (Iglesias & Rogers 1996) take these aspects into
account to give a Rosseland mean opacity as a function of temperature, density, and com-
position of the gas only. These tables have become the standard source for stellar opacity
in recent decades and were used in the present work to obtain the first preliminary results
for Section 2.4. Later, they had to be replaced by similar tables from The Opacity Project
(Seaton et al. 1994), that allow changes in gas composition more conveniently, which was
necessary for Chapter 3. More details about the opacity tables, and how they are employed,
can be found in Appendix Section B.2.

The total mass and energy outflows (Ṁ, Ė) arise as integration constants from the mass
and energy conservation laws and can be determined by imposing extra conditions at the
base of the wind. Therefore, Ṁ and Ė can be considered free model parameters. During
an XRB these will vary in time but, in a quasi-stationary approach, are assumed to be

[1] See, for instance, Shore (1992) for a derivation from fundamental fluid equations, and other simpler
models with analytical solutions.
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approximately constant across the wind for a fixed time. The mass of the neutron star
core, M , is another model parameter, considered fixed in this work, and constitutes the only
relevant source of gravity (the contribution of the envelope mass can be neglected). Lastly
the mean molecular mass µ is a function of the mass fractions Xi of the different species
present in the envelope (see Appendix Section B.1). The rest of the symbols have their
usual meaning: G for gravitational constant, c for speed of light, k for Boltzmann constant,
a = 4σ

c for radiation energy density constant (σ is the Stefan-Boltzmann constant) and mA

for atomic mass unit.
By differentiating the mass conservation equation 2.1, for a constant Ṁ , one can obtain:

0 = 2
dr

r
+

dρ

ρ
+

dv

v
. (2.6)

One can also calculate, from equation 2.5, the pressure differential appearing as the last term
in the momentum equation 2.3:

dP

ρ
=

kT

µmA

(
dT

T
+

dρ

ρ

)
+

4

3

aT 4

ρ

dT

T
, (2.7)

and by using equation 2.6 to replace the density differential:

dP

ρ
= − kT

µmA

(
2dr

r
+

dv

v

)
+

(
kT

µmA
+

4

3

aT 4

ρ

)
dT

T
. (2.8)

After some regrouping, both differential equations 2.3 and 2.4 can be put in the form:(
v2 − kT

µmA

)
dv

v
+

(
kT

µmA
+

4

3

aT 4

ρ

)
dT

T
+

(
GM

r
− 2

kT

µmA

)
dr

r
= 0 (2.9)(

4

3

aT 4

ρ

)
dT

T
+

(
GM

r
Γ

)
dr

r
= 0, (2.10)

where we introduced the luminosity ratio Γ = LR/LEdd = κLR

4πcGM (LEdd is the local Eddington
luminosity). The density and radiative luminosity can be obtained using the mass and energy
conservation equations 2.1 and 2.2:

ρ =
Ṁ

4πr2v
(2.11)

LR = Ė − Ṁ
(
v2

2
− GM

r
+

5

2

kT

µmA
+

4

3

aT 4

ρ

)
. (2.12)

These constitute a system of four equations, two algebraic (2.11 and 2.12) and two first-order
ordinary differential equations (2.9 and 2.10) that can be solved for v, T, ρ, LR as functions
of the independent variable r.

2.2 Boundary conditions

Two boundary conditions are required to solve the system of two first-order differential
equations 2.9 and 2.10. These are normally given at the photosphere (usual for any stellar
envelope, but with a slight difference for winds), and a critical point (for stellar wind solutions
with non zero velocity at large radii). Additionally, an extra set of conditions can be set to
fix the value of the free model parameters Ṁ and Ė which, in reality, are the integration
constants of the original differential equations of mass and energy conservation.
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2.2.1 Photosphere

The first condition is given by the definition of the photosphere, where the gas tempera-
ture is equal to the effective temperature Teff, and can be written as:

Tph = Teff =

(
LR,ph

πacr2
ph

) 1
4

, (2.13)

which shall be referred to as “temperature condition”. Hereafter, sub-index “ph” denotes
evaluation at the photosphere.

The location of the photosphere in radius is not known a priori so this adds an extra
unknown parameter. This is usually given by the point at which the optical depth is about
unity,[2] which would require the integration of the atmosphere above the photospheric sur-
face. In the case of an extended atmosphere it is usual to take a locally defined effective
optical depth τ∗ = κρr that takes a minimum at the photosphere with an approximate
value of τ∗ph ' 3 (see Kovetz 1998). Kato & Hachisu (1994) showed, in a semi-analytical
approximation, that this minimum usually corresponds to the point where this effective op-
tical depth takes a value closer to τ∗ph & 8/3. Accordingly, we adopt the following “optical
condition”:

τ∗ph =
8

3
' 2.67, (2.14)

which constitutes a reasonable approximation that allows us to avoid the integration of the
optically-thin upper atmosphere.[3] These conditions, 2.13 and 2.14, when replaced in the
radiation diffusion equation 2.4 give rise to a condition for the temperature gradient at the
photosphere:

d log T

d log r

∣∣∣∣
ph

= −3κρr

16

LR
πacr2T 4

∣∣∣∣
ph

' −1

2
, (2.15)

which can be used alternatively instead of either the optical or temperature conditions.

2.2.2 Critical point

The second boundary condition arises from the analysis of the topology of solutions to
the momentum equation. From equation 2.9, the wind velocity gradient can be expressed
as:

r

v

dv

dr
= −

(
kT
µmA

+ 4
3
aT 4

ρ

)
r
T

dT
dr +

(
GM
r − 2 kT

µmA

)
(
v2 − kT

µmA

) , (2.16)

[2] This is true in the plane-parallel atmosphere approximation, which is only reasonable for a thin envelope
(small extension compared to star radius), but is no longer valid in extended atmospheres, like the ones
expected here.

[3] A variety of choices for this τ∗ value and other approaches have been adopted for this condition by
different authors. The advantages of each choice, or the significance of their impact on results, do not appear
to be a settled matter, or a very relevant one (see Guichandut et al. 2021).
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from where it is clear that the momentum equation presents a singularity when:

v2 =
kT

µmA
, (2.17)

that is, when the wind velocity is equal to the local isothermal sound speed (hereafter,
singularity condition). If the conditions were such that this singular value was encountered,
in order to have a nonsingular physical value for the velocity gradient we must simultaneously
require the following “regularity condition”:(

kT

µmA
+

4

3

aT 4

ρ

)
r

T

dT

dr
+

(
GM

r
− 2

kT

µmA

)
= 0, (2.18)

so that the quotient is finite. A solution may or may not pass through this “critical point” a
priori, but the only physically acceptable solution with a wind velocity that approaches zero
towards the bottom of the envelope and always increases outwards is the one that indeed
does pass through this point. Furthermore, the wind becomes supersonic above this critical
point (also known as the sonic point). It is not known a priori where this critical point will
lie, but together Equations 2.17 and 2.18 provide both the extra condition needed to locate
it and the second boundary condition for the integration constant. We will use the subscript
“cr” to refer to variables evaluated at the critical sonic point.

We therefore have four unknown parameters vcr, rcr, Tph, rph with four conditions to solve
them: two at the photosphere (temperature and optical conditions) and two at the critical
point (singularity and regularity conditions). The system constitutes a two-point boundary-
value problem with nonlinear first-order differential equations. Standard numerical methods
for dealing with them are the relaxation method and the shooting method (see Appendix
Section A.3).

2.2.3 Wind base

If the model parameters Ṁ and Ė are free, the resulting solutions may not always reach
physical values compatible with those of a neutron star at the wind base. For instance, a
high temperature may be found at radii much larger than those of typical neutron stars; on
the other hand, velocity may not be realistically low enough (or temperature/density high
enough) when reaching a typical neutron star radius. Previous works relied on simplified
assumptions for the wind base conditions, such as for example a fixed value of density or
temperature, or an energy generation rate given by integration of simple nuclear models.
We find that these choices for a wind base may not always be compatible with some of the
recent and more realistic hydrodynamic simulations for X-ray bursts (see José et al. 2010).

In order to accurately determine the conditions at the wind base, hydrodynamic simula-
tions of the nuclear burning layers are clearly required. Matching stellar wind solutions to
the boundary conditions set by XRB hydrodynamic models is a key task in this thesis and
the main topic of Chapter 3, where it will be discussed in detail. For now, and as a stepping
stone, we search for a condition for the wind base that is still realistic enough for a neutron
star undergoing an X-ray burst, while at the same time leave some margin for the natural
variability of the physical conditions. This necessary previous step can provide some insight
on the possible solutions we can expect and their features, by exploring possible model pa-
rameter configurations, and at the same time help fine-tune the required computational tools
developed to obtain them, among other things. The choice of this boundary condition will
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be explained here, and a full study of the preliminary solutions obtained with it will follow
in Section 2.4.

Setting a typical range of values for all the physical variables seems like a good approach at
first, but the choice of several restriction values seems arbitrary and turned out to not always
be compatible with self-consistent solutions. For instance, a particular choice of maximum
velocity and minimum temperature at the wind base sometimes ended up giving solutions
that were not deemed stationary (according to the characteristic time criterion explained
in Sect. 2.3). Instead, we chose a criterion that is physically based, gives similar wind
structure for all solutions, and reduces the amount of variables to be restricted, thus reducing
arbitrariness, while at the same time still being compatible with the expected conditions for
X-ray bursts. We set the wind base at the innermost point where the radiation pressure
gradient becomes larger than the gas pressure gradient, that is where:

∇PR ≥ ∇Pg or
dPg

dPR

≤ 1. (2.19)

Above this point, radiation pressure becomes more important than gas pressure as the driving
mechanism. Furthermore, in all solutions explored, the velocity gradient term v dvdr in the
momentum conservation equation 2.3 is still negligible where the equality in equation 2.19
is met, and so the physical conditions can be considered to approximately match those of a
static envelope. It can also be shown that at this point Γ ' 1

2 .
For the preliminary study in Section 2.4, solutions that meet the wind base condition in

Eq. 2.19 at radii compatible with possible neutron stars (7 − 20 km) are then selected and
considered as possible candidates for further study. In sections 2.4.1 and 2.4.2 we discuss
the validity of these solutions for describing XRBs.

2.3 Numerical procedure

Solving the system of differential equations for stellar wind with analytical methods is
only possible in very few cases, with quite restrictive conditions (isothermal or adiabatic
wind, for instance) that are unrealistic for NS scenarios. A numerical approach is necessary,
and it was implemented through a variety of computational algorithms explained in detail
in Appendix A, and outlined here.

For a fixed set of wind model parameters (Ṁ, Ė,M,Xi), a solution must satisfy all
boundary conditions at the critical point and the photosphere. The integration method used
to solve the differential equations is the adaptive-step Runge-Kutta (RK45) (see Appendix
Section A.1). In order to deal with the two-point boundary-value problem (photosphere and
critical point) we use the shooting method (see Appendix Section A.3) as follows. Integration
starts at a critical point with radius rcr and velocity vcr satisfying both singularity and
regularity conditions for a temporarily assumed Tcr. Integration proceeds outwards until the
optical photospheric condition is met (κρr ' 8/3). There we parametrize a distance to the
photospheric temperature condition with a value φ:

φ =
T − Teff

T + Teff
, (2.20)

and then use a suitable root-finding method for φ in terms of the chosen starting value for Tcr

(see Appendix Section A.4). The numerical difficulties of starting the integration from the
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critical point were solved through a change of variables that cancels the singular denominator
in the velocity gradient (see Appendix Section A.2). The integration from the critical point to
the photosphere corresponds to the region where the wind is supersonic. Once a supersonic
profile is found, we go back to the critical point and proceed integrating inwards. The
integration is stopped either when the temperature exceeds a given limit (T > 1010 K) or
the Schwarzschild radius is reached. Although these stopping point values are outside the
region of validity of some of our model hypothesis (ideal gas and non-relativistic regime,
respectively), they are only intended to give some margin of exploration for imposing extra
boundary conditions at the wind base, as it will become necessary later in Chapter 3.

The solutions are checked for consistency and classified accordingly, in a similar fashion
to that in Quinn & Paczyński (1985), as follows. In order for the wind to be considered thick,
most of the acceleration must happen at high optical depth. It is enough to require that
the sonic point lies at τ >> 1. Solutions for which the effective optical depth of the critical
point is too small (τ∗c < 10) are deemed as optically “thin”. The stationary hypothesis is also
checked by comparing the dynamical characteristic times ∆t above and below the critical
point, where

∆t =

∫ r2

r1

dr

v
, (2.21)

which is an estimate of the travel time of a fluid element between arbitrary radii r1 and r2.

For the solutions to be considered stationary, ∆tabove << ∆tbelow, which by use of mass
conservation translates into the ∆mabove << ∆mbelow requirement for the envelope mass.
Solutions with ∆mabove > 0.1 ∆mbelow were considered to be non-stationary. We note that
the value of ∆mbelow depends on the choice of the inner boundary for the wind base, and the
classification of a particular solution may change with a different cut-off for the integration
inwards or when imposing the nuclear burning shell conditions.[4] In every solution found,
the photospheric velocity never exceeded a few percent of the speed of light (vph . 0.03 c),
and so the special relativistic corrections are not needed. The hypothesis consistency criteria
mentioned above are fairly common and can be found in several other works (see Joss &
Melia 1987; Kato & Hachisu 1994).

The whole process can be repeated for different values of freely chosen model parameters
(Ṁ, Ė,M,Xi). However, as it quickly became clear, not every combination of model param-
eters admits a solution. Some other combinations do admit numerical solutions, but they
are not acceptable from a physical point of view and need to be further analyzed. Others
may give solutions that comply with the main physical hypotheses but do not always adjust
to NS scenarios. In fact, the same wind model equations, with similar boundary conditions
but different computation methods and micro-physics input, were employed in the context
of white dwarfs (see Kato & Hachisu 1994; Kovetz 1998). Even for a fixed stellar mass,
M , and envelope composition, Xi, the remaining pair of mass and energy outflows (Ṁ, Ė)
span a parameter space where all of the above cases are still possible. The region with valid
solutions, in this 2-dimensional parameter space, also depends on the envelope composition
(especially XH) and the mass of the NS, and therefore is not known a priori. Section 2.4
sheds some light on these issues and helps to test the basic simulation code functionality.

[4] However, in Section 3.3.1, we implemented a different prescription for the calculation of characteristic
time, following Guichandut et al. (2021).
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2.4 Simulations results

Simulations were run for a wide range of values in the wind parameter space (Ṁ, Ė),
exploring over 1000 points.[5] In all the simulations reported in this chapter, a neutron star
mass of M = 1.4 M� has been adopted, together with an envelope of solar composition
given by X = 0, Y = 0.9, Z = 0.1. These trial values for composition were the ones with
the highest metallicity available in the opacity tables by OPAL that were employed for this
preliminary study. We normalized the energy output Ė in terms of a constant Eddington
luminosity

Lo =
4πcGM

κo(1 +XH)
, (2.22)

where κo = 0.2 cm2g−1 is the electron scattering opacity, and XH is the hydrogen abundance.
For a neutron star with M = 1.4 M� and no hydrogen in the wind envelope, Lo ' 3.51 ×
1038 erg s−1 ' 9× 104 L�.

2.4.1 Wind profiles

A suite of different wind profiles is displayed in Figure 2.1. Each plot presents a selection
of solutions that have a wind base compatible with a neutron star radius of RNS = 13 km.
The first two plots in Figure 2.1 are solutions for velocity and temperature, respectively.
The third plot is a profile of characteristic time ∆t, which is the time it takes for a fluid
element to reach the photosphere from a given radius. The bottom plot is the luminosity
ratio Γ = LR/LEdd (where LEdd is the local Eddington luminosity).[6]

The general pattern observed is that solutions with smaller energy outflows are charac-
terized by larger radii, but also a higher mass output and longer characteristic timescales.
This is due to the fact that a fluid element requires longer distances to accelerate to a suffi-
ciently high velocity when its mass is larger or the available energy is smaller. Profiles with
higher mass outflow (lower energy outflow) may not be suitable for describing short XRBs,
since the total characteristic time (from wind base to photosphere) would be larger than the
typical burst duration.[7]

Another significant behavior is that the radiative luminosity starts very low in comparison
with the local Eddington limit at low radii, suggesting that the wind is driven by gas pressure
rather than radiation in the inner regions. The luminosity ratio Γ = LR/LEdd then rises
sharply, before reaching the critical point and flattens very close to unity after that, remaining
flat for the rest of the supersonic profile, except for some minor bumps ( about 3% maximum
excess) in some models close to the photosphere.

2.4.2 Parameter space exploration

Figures 2.2 to 2.4 show photospheric, critical point and wind base values, respectively, as a
function of model parameters (Ṁ, Ė). Temperature and radius are plotted in all three figures.

[5] This large resolution was necessary to resolve a sequence of points in parameter space corresponding to
solutions meeting wind base condition (Equation 2.19) at a desired RNS = 13 km (see Section 2.4.2).

[6] Unlike Lo, defined in Equation 2.22, Local Eddington luminosity, LEdd = 4πcGM
κ(ρ,T,Xi)

, is not constant.

In some texts it is referred to as critical luminosity.
[7] This classification changes when using the different prescription for characteristic time we later imple-

mented in Section 3.3.1, after Guichandut et al. (2021).
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Figure 2.1: Wind profile solutions compatible with a neutron star radius of 13 km (vertical
dashed line), with different values of parameters (Ṁ, Ė). Values of mass outflow Ṁ are indi-
cated by the line color, and values of energy outflow Ė, in units of Lo (see text), are indicated
with labels next to a black circle (•), which marks the location of the critical sonic point in
each curve. Top to bottom: Velocity, temperature, characteristic time, and luminosity ratio Γ,
all presented as a function of radius. All curves end at the photosphere.

Luminosity ratio Γ is plotted in photosphere and critical point figures (Γwb ' 0.5 is constant,
where “wb” stands for wind base). Wind velocity is only shown for the photosphere, because
at the critical point, v2

cr ∼ Tcr, and wind base values are negligible with values smaller than
a few centimeters per second. Other relevant plots presented are effective optical depth τ∗

for critical point only, and wind base density and characteristic time. All figures show both
the acceptable (self-consistent) solutions and those discarded for being either optically thin
or non-stationary solutions, according to the criteria explained in Section 2.3. The subset
of acceptable solutions that are compatible with possible neutron stars is also indicated, as
well as the solutions plotted in Figure 2.1. We note that the criterion for stationary wind
depends on the ratio of envelope mass above and below the critical point, and thus the choice
of the wind base affects this classification.

We observe a clear pattern: as energy output Ė increases and mass output Ṁ decreases,
photospheric temperature rises, in the exact opposite fashion to the photospheric radius,
which decreases. We study this correlation further below in Section 2.4.3. The photospheric
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Figure 2.2: Wind parameter space sweep. Color coded values of photospheric magnitudes
for different values of parameters (Ṁ, Ė). In reading order: temperature, velocity, radius and
luminosity ratio Γ. Points marked with up or down triangles (4/5) correspond to “thin”
solutions and to non-stationary solutions, respectively. Points marked with filled circles (•)
are self-consistent solution candidates, the × mark denotes no solutions found for the given
boundary conditions. Fully colored area marks solutions whose wind base is compatible with
possible neutron star radii (7 − 20 km), and white diamonds inside of it (�) mark selected
solutions plotted in Figure 2.1.

wind velocity gradient with respect to parameters seems to be roughly orthogonal to that of
temperature or radius, only achieving a few percent of speed of light, and peaking outside
the self-consistent solutions zone. The photospheric radiative luminosity is very close to
local Eddington luminosity, as shown by the Γ plot, except for low-energy and high-mass
outflows, where it peaks at up to a 3% excess. This is due to a small bump in opacity tables
that lowers the local Eddington luminosity.

As for the critical point (Figure 2.3), no obvious relationship between temperature and
radius appears. The change in critical radius seems to go mostly inversely with Ė, while
the change in critical temperature seems to have a bigger component in the Ṁ direction,
especially at high Ė. By definition of critical point, a critical velocity plot would give the
same information as the temperature one, instead we show a plot for effective optical depth.
The critical point lies at higher optical depth with bigger mass outflow, hinting at a stretching
of the envelope as mentioned above. The radiative luminosity is always close to the local
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Figure 2.3: Same as Figure 2.2, but for values at the critical (sonic) point, with the exception
of the velocity plot that has been replaced by an effective optical depth τ∗ = κρr plot.

Eddington limit, but just slightly lower, by no more than ∼ 0.1%.
The temperature and density values at the wind base (as defined by equation 2.19) are

shown in Figure 2.4. Their values are in a reasonable range for XRBs conditions (see José
et al. 2010; Fisker et al. 2008; Woosley et al. 2004) in the area of radial compatibility with
neutron stars. However, not all of the models in this area have wind base characteristic
times (i.e. the time required for a fluid element to reach the photosphere from the wind
base) that are well suited for describing short XRBs, whose duration is of the order of
few hundreds of seconds. These models could still represent winds in long-duration XRBs.
Nevertheless, it is possible that the high values of ∆t found are a result of the choice of the
inner boundary condition, as mentioned in Section 2.3. In the profiles shown in Figure 2.1,
the velocities quickly go to zero at the wind base, and therefore wind material spends nearly
all its outflow time just above the wind base. This is probably an artifact of the time-
independent treatment, which may no longer be accurate close to the inner boundary.

2.4.3 Photospheric correlations

A close correlation was found between several photospheric magnitudes across solutions.
First, for most profiles, the photospheric luminosity was found to be almost equal to the local
Eddington luminosity, as can be seen in Figure 2.5 where the distribution peaks sharply
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Figure 2.4: Same as Figure 2.2, but for values of temperature, density, radius, and character-
istic time ∆t at the wind base. Self-consistent solutions outside the area of compatibility with
neutron stars are not colored here in order to better resolve values in the area of interest.

around Γph = 1, and the values expressed in terms of mean and standard deviation are:
Γph = 1.0018± 0.0055. This can also be seen in the color maps of the wind parameter space
in Figure 2.2, where the coloring for photospheric Γ is mostly homogeneous, except for a small
rise in the low-energy and high-mass outflows region where a bump in opacity table causes
the local Eddington luminosity value to drop a little. The value of radiative luminosity (and
therefore also opacity) at the photosphere also shows little variation across models, with the
mean and standard deviation being: LR,ph/Lo = 1.025± 0.022 and κph/κo = 0.981± 0.024.

As both photospheric κ and LR show very little variation, two correlations arise from the
photospheric boundary conditions. Assuming a fairly constant LR, the effective temperature
condition gives:

r2
phT

4
ph ' const =⇒ Tph ∼ rph

−1/2. (2.23)

Similarly, for the optical depth condition and κph ' const,

rph ρph ' const =⇒ ρph ∼ rph
−1. (2.24)

Furthermore, by using both photospheric conditions, the equations for conservation of
mass and energy, and assuming that the radiative luminosity is close to the Eddington limit,
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Figure 2.5: Distribution of photospheric luminosity ratio Γ across acceptable solutions with
varying values of model parameters.

we can arrive at the following expression, which relates observable photospheric magnitudes
with wind model parameters.

8

3

vph

c
=
GM

rph

Ṁ

LR,ph
' Ė

LR,ph
− 1. (2.25)

Such correlations can be derived considering the following. First, using mass conservation
to replace Ṁ , and assuming LR = LEdd = 4πcGM

κ , it is easy to see that:

Ṁ

LR

GM

r
= 4πr2ρv

GM

r
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4πcGM
= κρr

v

c
. (2.26)

This relationship is valid whenever the luminosity is equal to the local Eddington limit.
Further, particularly at the photosphere, using the optical condition, we have:

Ṁ

LR,ph

GM

rph
=

8

3

vph

c
. (2.27)

This accounts for the first equality of expression 2.25.
Now let us take the energy conservation equation and rewrite it in the form:

Ė

LR
− 1 =

Ṁ

LR

GM

r

(
v2

u2
+

5s2

u2
+

8

3

aT 4

ρu2
− 1

)
, (2.28)

where we have introduced the notation s2 = kT
µmA

for local sound speed and u2 = 2GM
r

for escape velocity. For the wind to be optically thick, the critical point must lie at much
greater optical depth than the photosphere. Since the critical point is the place where the
wind becomes supersonic, this often translates into having v2 >> s2 at the photosphere.
Lastly, in almost every solution obtained here, photospheric escape velocity is still around
one order of magnitude above wind velocity, which means s2 << v2 << u2. The last relation
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is relaxed as Ṁ increases and Ė decreases. So far, neglecting the corresponding terms we
have at the photosphere:

Ė

LR
− 1 =

Ṁ

LR

GM

r

(
8

3

aT 4

ρu2
− 1

)
. (2.29)

If we now use the photospheric boundary conditions rewritten in a convenient form:

ar2T 4 =
LR

πc
and

8

3

1

ρr
= κ, (2.30)

by taking the product of both and dividing by 4GM , we get:
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, (2.31)

and if again LR = LEdd, we get at the photosphere:

8

3

aT 4

ρu2
= 2. (2.32)

By replacing this value in equation 2.29 we arrive finally at the relation

Ė

LR,ph
− 1 ' Ṁ

LR,ph

GM

rph
, (2.33)

which is the second equality in expression 2.25.
For solutions for which the approximation v2 << u2 weakens, one should add the term

corresponding to wind kinetic energy Ṁv2

2LR,ph
:

Ė
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vph
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+

Ṁc2
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(vph

c

)2

, (2.34)

where we used relation 2.27 to write the equation in terms of v/c. As v << c, and photo-
spheric luminosity varies weakly across solutions (LR,ph ∼ Lo), the correction term will only

become relevant for relatively high values of Ṁ , that is, if:

8

3
∼ Ṁcvph

2LR,ph
. (2.35)

2.5 Summary and discussion

In the previous section, we present several results, including a set of wind profiles (so-
lutions for the wind model), a high-resolution parameter space exploration characterizing
different physical magnitudes at points of interest, and several correlations found for photo-
spheric (observable) values.

The wind profiles found in this work (Sect. 2.4.1 and Fig. 2.1) are qualitatively similar to
those found in previous works (see, e.g., Quinn & Paczyński 1985). These previous studies
frequently relied on an approximated expression for the opacity, in the form:

κ(T ) = κes(1 +X)
[
1 + (αT )ξ

]−1
(2.36)
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where κes = 0.2 cm2g−1 is the electron-scattering opacity, X is the hydrogen mass fraction,
α−1 = 4.5 × 108 K, and ξ is a parameter for which different values haven been adopted:
ξ = 1 (by Kato 1983; Ebisuzaki et al. 1983), ξ = 0.86 (by Quinn & Paczyński 1985). Figure
2.6 shows a comparison of the opacity profiles obtained for several solutions reported in this
work with values obtained through the approximate Eq. 2.36 in some of the aforementioned
previous studies. Equation 2.36 neither takes into account the expected density dependence
nor metallicity effects.[8] According to more recent studies, a high concentration of heavy
elements is expected in the envelope after XRBs (see, for example, José et al. 2010; Woosley
et al. 2004; Fisker et al. 2008), and therefore high opacity. The inclusion of updated opacity
tables was a necessary improvement in this regard.

At sufficiently high temperatures (close to the wind base), opacity drops considerably in
all prescriptions, making the contribution of radiation to wind acceleration less important,
while favoring the effect of gas pressure. As temperature and density drop outwards, the
gas pressure gradient diminishes, while the opacity increases, lowering the local Eddington
limit. As a result, the wind is further accelerated and sustained by radiation. This increase
in opacity is higher close to the photosphere with opacity tables than those reported in
previous studies, even for the trial Z = 0.1 used in this work. The differences may seem
relatively small here, namely on the order of a few percent, but they are expected to rise even
more for higher metallicity. As we plan to study stellar winds with higher metallicities and
different mixtures of heavy elements given by XRBs simulations in Chapter 3, we consider
the inclusion of opacity tables to be an important step towards that goal.

With regard to the parameter space exploration presented in this work (Sect. 2.4.2, Figs.
2.2 to 2.4), it served two purposes. The first was to find the regions for which acceptable
solutions exist for the wind model used, by testing part of the assumed hypothesis (i.e.,
optically thick and stationary wind), in a similar way to Quinn & Paczyński (1985). The
main improvement in this regard is the number of solutions obtained in the present work
with respect to these latter authors. This allows for a higher resolution, which helps, for
instance, to better determine these regions. The other purpose of the parameter space
exploration was the characterization of physical magnitudes at points of interest, especially
at the photosphere (high resolution enabled this too). The dependence of these photospheric
values on the wind parameters serves as a link between the physics of the layers close to the
base of the envelope and observable magnitudes at the photosphere in the following way:
The parameters explored, namely mass and energy outflow (Ṁ, Ė), are fully determined
when imposing suitable boundary conditions for all physical variables at the base of the wind
envelope. To this end, we would need to rely on hydrodynamic XRB models of the underlying
layers, where nuclear reactions take place. This is presented in Chapter 3. In order for the
current wind model to be applied safely and consistently, the boundary conditions provided
by a given XRB model should result in mass and energy outflows that lie in the acceptable
region. Once the parameters are fixed at the base by the XRB model, the corresponding
wind solution gives the values of each observable magnitude at the photosphere. However,
each value of a single photospheric magnitude taken separately does not uniquely determine
the (Ṁ, Ė) pair.

The correlations found in Section 2.4.3 (Equation 2.25) relate the photospheric magni-
tudes (that can either be directly observed or calculated from observable ones) with model
parameters (Ṁ, Ė) in a more direct and unique way. For instance, the radiative luminosity

[8]See, however, Joss & Melia (1987); Paczyński (1983), for other density-dependent prescriptions which
still do not include metallicity effects.
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Figure 2.6: Opacity profiles vs. temperature. Wind solutions obtained in this work (contin-
uous lines) with wind base at RNS = 13 km and different values of log Ṁ . Other prescriptions
adopted in previous studies (dashed lines) with different values of ξ (see text), are also shown
for comparison. Opacity is normalized to κes = 0.2 cm2/g.

LR can be estimated if the distance to the XRB source is known, while wind velocity v could
be estimated from the Doppler shift in spectral absorption lines during the XRB. With both
velocity and luminosity, one could calculate the total energy outflow Ė by means of Eq. 2.25.
An estimate of photospheric temperature (e.g., by fitting a blackbody frequency distribu-
tion for the spectrum), can be used to calculate the photospheric radius by means of the
r ∼ T−2 photospheric correlation or directly through the definition of effective temperature
(Eq. 2.13). Once we have r, v, and LR at the photosphere, calculation of the mass outflow Ṁ
is possible through Eq. 2.27, or from the mass conservation (Eq. 2.1) with the density given
by the ρ ∼ r−1 photospheric correlation. Furthermore, since nuclear reactions in XRBs take
place at the interface of the envelope with the neutron star core, these correlations could
provide a technique for determining the radius of the neutron star indirectly by observation
of the photospheric magnitudes alone.

In summary, here we explore the possible solutions of a nonrelativistic radiative wind
model in a typical XRB scenario at high resolution in the parameter space (Ṁ, Ė). The wind
profiles suggest a transition from gas pressure (in the inner regions) to radiation pressure
(as the wind becomes supersonic) as the main driving mechanism. The inclusion of updated
micro-physics data with higher metallicities and higher opacities, is important here because
it reinforces the role of radiation in the wind acceleration, facilitating the above-mentioned
transition. Radiative luminosity was found to remain very close to the local Eddington
limit in this regime, and at the photosphere in particular. A high correlation was found
between different observable (photospheric) magnitudes and the model parameters. These
correlations can be used to link observational data to the physical conditions of the underlying
layers where nuclear reactions take place. However, given some of the simplifying hypothesis
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of the model (non-relativistic regime, optically thick wind, LTE, etc.), it remains to be
determined whether or not these correlations hold once more complex studies are performed.
Hydrodynamic models of XRBs with nuclear reactions are required to impose boundary
conditions at the base of the wind envelope and will determine the model parameters. This
is the main topic of the next chapter.





Chapter 3

Matching stellar winds with
XRB hydrodynamic simulations

The stellar wind models presented so far have free parameters that can be adjusted to
different physical situations. In the previous chapter we explored a subset of possible wind
solutions that are compatible with a very general boundary condition expected at the base
of the envelope (Eq. 2.19), for neutron stars with radius lying within a wide possible range
(7 − 20 km). We found that, for a particular neutron star radius of 13 km, a sequence
of solutions aligned in the parameters space, with correlated energy and mass outflows.
Although these values were within the expected ranges for an XRB, no specification was
made on whether these solutions corresponded to actual XRB conditions or how do they
evolve in time. In this chapter we connect the stellar wind models to a more realistic burst
scenario as described through the XRB hydrodynamic models developed in previous studies
by other members of this group. These XRB hydrodynamic models simulate the nuclear
reactions and more complicated hydrodynamical processes, undergone by the continuously
accreted material, that take place at the innermost parts of the envelope, close to the neutron
star crust.

The objective is to determine if the physical conditions given by the XRB hydrodynamic
models are suitable for a stellar wind to appear at some point during the evolution of the
burst. In other words, we want to find if there is a compatible match between the possible
wind profiles, obtained as solutions of the model developed in the previous chapters, and the
boundary values given as a result from the XRB hydrodynamic models. These extra bound-
ary conditions will constrain the free parameters in the wind model, and could determine a
unique wind profile at each time, in case a solution exists. If successful, the ultimate goal
is to study the consequent mass-loss and predicted observable magnitudes. Our particular
interest is set towards determining whether this potential mass-loss has an impact on the
galactic abundances of the light p-nuclei isotopes mentioned in the introduction (Sect. 1.3),
namely 92,94Mo and 96,98Ru.

We are going to work under the assumption that the chemical composition of the wind
envelope will be determined by the XRB hydrodynamic models at each matching point, and it
does not change across the wind profile for a fixed time. Since each matching point candidate
has different composition, often reaching high metallicity values, the opacity tables provided
by OPAL, with fixed abundances and limited to low metalicity, are no longer useful. Instead,
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our stellar wind code had to be modified to use tables provided by The Opacity Project (See
App. B.2), which allows us to change the composition rapidly. Another aspect to take into
consideration is the fact that the wind and XRB models differ in some key features and
basic hypotheses. For instance, the wind model describes a stationary regime, while XRB
models are time dependent. However, if the evolution of XRB conditions is slow enough,
under some criteria, a matching sequence of steady wind solutions could still be considered
as a good quasi-stationary approximation. Convective energy transport, degenerate matter
contributions to the equation of state, and energy generation are also only contemplated in
the XRB hydrodynamic models, since they were not necessary for wind models. These issues
will be taken into consideration when assessing the validity of the match.

This chapter is organized as follows. An overview of the XRB hydrodynamic models is
presented in Sect 3.1, summarizing the most relevant features and results in relation to our
objective. Section 3.2 contains a description of the method developed to match wind model
solutions to XRB hydrodynamic simulations data. An analysis of the match results, their
validity and consequences regarding observational features, mass-loss and contribution to
the galactic medium of the isotopic abundances of interest follows in Sect. 3.3.

3.1 X-ray bursts hydrodynamic models

The XRB hydrodynamic models analyzed in this work were developed by José et al.
(2010). They perform a series of simulations of XRB evolution by coupling a nuclear reaction
network, that includes 324-isotopes linked by 1392 possible reactions, into a modified version
of the SHIVA hydrodynamic evolution code (see José & Hernanz 1998; José 2016). The code
uses Lagrangian formulation (i.e., the computational grid is attached to the moving fluid),
as opposed to the Eulerian formulation used in the stellar wind model, where the coordinate
system is fixed relative to the neutron star. The main features and hypotheses of these models
are: spherical symmetry, Newtonian gravity, and energy transport by radiative diffusion and
convection. Equation of state includes contributions from the electron gas (with different
degrees of degeneracy), the ion plasma, and radiation; Coulomb corrections to the electronic
pressure are also taken into account. Energy generation rates consider both the input from
the aforementioned nuclear reaction network, and losses due to neutrino emissions.

The XRB models present the evolution of physical data in a discrete grid of equal mass
shells, and time-steps of varying duration. Variables reported in each (shell,time-step) grid
point include (see Fig. 3.1): radial coordinate of the shell’s mid-point, temperature, den-
sity, total luminosity (including all energy outflow contributions), fluid velocity, and mass
fractions for the 324 isotopes. They computed several models, varying parameters such as:
neutron star mass MNS (and its corresponding radius, RNS, according to most accepted
equation of state models), metallicity of the accreted material, Z, and grid resolution. All
XRB models features are summarized in Table 3.1.

In the present work we will focus on two different models including a total of five bursts:
four consecutive bursts of a 55-shells model (model # 1 in Table 3.1), which we will refer
to as XRB-1 to XRB-4, and one burst corresponding to the 200-shells model # 2 (which we
will call XRB-A). The rest of parameters are equal in both models, namely: MNS = 1.4 M�,
RNS = 13.1 km, accreted material of solar composition with metallicity Z = 0.02 and an
accretion rate of 1.75 × 10−9 M�/yr (that is 1.1 × 1017 g/s). The models also differ in
the resulting time-step resolution, with above 20000 steps for the 200-shells burst, and an
average of about 8000 steps per burst for the 55-shells model. This implies an almost ten-fold



3.1 X-ray bursts hydrodynamic models 27

increase in grid-points resolution in favor of model XRB-A.

Model input parameters Resulting burst features
# Shells MNS

(M�)
RNS

(km)
Z τrec

(hr)
τ0.01

(s)
Tpk

(109K)
Lpk

(105L�)
α

1 55 1.4 13.1 0.02 5.9 75.8 1.06 0.97 60
6.4 62.3 1.15 1.7 40
4.9 55.4 1.26 2.1 34
5.1 75.7 1.12 1.2 36

2 200 1.4 13.1 0.02 5.9 59.2 1.05 0.9 62
4.6 73.9 1.20 1.5 31

3 55 1.4 13.1 10−3 18.1 423 1.40 1.0 34
9.4 296 1.39 1.1 24
8.9 281 1.32 0.98 24
8.9 252 1.30 1.0 27
8.8 250 1.26 1.0 30

4 55 1.8 17.0 0.02 9.3 62.3 1.03 1.7 77
8.5 46.3 1.08 2.6 46
8.9 59.5 1.1 2.1 45

Table 3.1: Main features of the XRB hydrodynamic models published by José et al. (2010).
Model input parameters indicated once per model (left side) are: model original number de-
nomination, shell grid resolution, neutron star mass and radius, and metallicity of the accreted
material (all models have an accretion rate of 1.75× 10−9 M�/yr). Resulting features for each
subsequent burst (right side): recurrence time (τrec), burst duration (τ0.01), peak temperature,
peak luminosity, and burst over persistent luminosity ratio (α).

Both models studied here also show similar resulting features: burst recurrence times
ranging in about 5 − 6.5 hr, burst durations of 55 − 75 s, peak luminosities within ∼
[1− 2]× 105L�, and peak temperatures in [1− 1.25]× 109 K. They also report qualitatively
similar light curves and, with few exceptions, a good agreement in terms of nucleosynthesis.
Therefore, they concluded that a resolution of 55 shells was appropriate to describe the XRB
evolution, in agreement with other related studies (Fisker et al. 2008; Woosley et al. 2004).
However, a high resolution in the XRB becomes important when trying to match stellar
wind solutions, as it will become clear in our analysis throughout the rest of this chapter.

Other model variants they reported include: a five-bursts model (# 3) with low metallic-
ity accreted matter (Z ∼ 10−3), and another three-bursts model (# 4), back with Z = 0.02,
but occurring on a more massive and bigger neutron star (MNS = 1.8 M�, RNS = 17 km).
Both these models were computed with a 55-shells grid resolution. When compared to the
first two models, the low metallicity model # 3 was characterized by longer burst dura-
tions, within ∼ 250 − 300 s (except the first burst, which lasted over 400 s), and longer
recurrence periods of around 9 hr (18 hr, for the first). Peak temperatures were slightly
higher, 1.26− 1.4× 109 K, while peak luminosities varied little around 105L�. On the other
hand, model # 4 with the more massive neutron star also showed burst durations of about
1 min, as in the other models with Z = 0.02, but with long recurrence times of ∼ 9 hr, as
in the lower metallicity one. Its peak temperatures were back to the slightly lower range of
1− 1.1× 109 K, but their peak luminosities were closer to 2× 105L�.
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Figure 3.1: Time evolution of the first burst in the 200-shells model # 2 (XRB-A), published
by José et al. (2010). Shell number is indicated by dot color. Panels in reading order are:
radius, temperature, density, total energy outflow, Ė, in terms of Eddington luminosity Lo =
3.52× 1038 erg/s, and absolute value of velocity. Time coordinate origin corresponds to peak
radial expansion.
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Upon comparison with other similar studies, they concluded that the burst properties
depend weakly on the neutron star mass. In contrast, the role played by metallicity of
the accreted material is significantly stronger, resulting in longer recurrence and decline
times, lower peak luminosities, higher peak temperatures, and smaller burst over persistent
luminosity ratio, α, when the accreted material has lower metallicity.

Despite the high resolution employed (for the computational power available when these
models were developed), some of the variables exhibit significant fluctuation. Sometimes
this “noise” can spread considerably apart from the average value evolving in each shell,
with several out-laying points even orders of magnitude away. The two main problematic
magnitudes in this regard are fluid velocity and total luminosity (see Fig. 3.1 bottom panels).

Figure 3.2: Time evolution of smoothed data (model XRB-A). Left: Energy outflow Ė in
terms of Eddington luminosity Lo = 3.52 × 1038 erg/s; and right: velocity. Shell number is
indicated by dot color. Time coordinate origin corresponds to peak radial expansion.

A smoothing process, relying on local regression, was applied for the affected variables
and is explained in Appendix A.6. Figure 3.2 shows an example of the smoothed variables.
For each smoothed variable, the root mean squared deviation of the original values with
respect to their smoothed counterparts was computed. Its ratio to the overall average of the
smoothed value was considered as a measure of the original data noise. For total luminosity,
Ė, this noise ratio was relatively small, giving ∼ 0.02 for XRB-A, and between ∼ 0.02 and
∼ 0.07 for bursts in the lower resolution model. However, for the velocity, this noise ratio
was considerably larger: 0.2 for XRB-A, and between ∼ 0.45 and ∼ 2.33 for the other bursts.
This makes the velocity data unreliable and practically useless for our analysis in the search
for stellar wind, especially in the lower resolution models. The lower noise ratios of the
higher resolution model XRB-A, makes it our favorite candidate for seeking a match with
wind profiles. We will focus the search on this burst in particular for the rest of this chapter.
The lower resolution bursts, XRB-1 to XRB-4, corresponding to the similar model # 1, will
be analyzed in Appendix C. Models # 3 and # 4 will remain for future work.

3.2 Wind-burst matching method

In order to determine whether any of the XRB hydrodynamic models may lead to a
stellar wind, we need to find if the physical conditions at any point are compatible with
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both the XRB and the wind models. Ideally, at a given matching point, all relevant physical
variables should be continuous functions. However, given that both models have different
hypotheses corresponding to different physical regimes (and therefore have differing terms
in their equations) the ideal match may not always be sensible or possible. For instance, we
can not expect a realistic match whenever degenerate gas pressure or convection are relevant
terms in the equations of XRB hydrodynamic models, given that they are not present in
the wind models. Nevertheless, whenever the conditions are such that these terms can be
neglected, we could expect to find a valid match.

Another aspect to take into consideration is whether energy or mass outflows, Ė and
Ṁ , resulting from the conditions in the XRB hydrodynamic model, lie in the region of the
wind parameter space where solutions can be found and are consistent with the wind model
hypotheses. In this regard, the study of the wind parameter space discussed in the previous
chapter resulted of great significance. It is worth keeping in mind, though, that the location
and shape of this region also depends on the abundances of elements present in the envelope,
especially hydrogen, and on the mass of the neutron star. The latter is fixed for the subset
of XRB hydrodynamic models considered in this work, but the former changes dynamically
within the evolution of each XRB and across its shells.

As it was seen in Section 2.4, the shape of the wind profiles (and therefore the possible
values of every variable at the desired matching radius) depends on the wind parameters
mentioned before. For some cases, the wind solution may not even reach the desired ra-
dius without quickly rising in temperature above physically reasonable values. Conversely,
imposing an additional boundary condition at a desired radius (for instance a given value
of temperature), restricts the possible solutions in the parameter space.[1] In the aforemen-
tioned study we did a similar thing by demanding an approximate value for ∇Pg/∇PR ' 1.
In order to successfully match a sequence of steady wind profiles to a particular XRB evo-
lution, we would then have to explore any possible free parameter in search for a matching
boundary condition at each time step. For fixed element abundances Xi and neutron star
mass M , the remaining free parameters are the energy and mass outflows, Ė and Ṁ , which
can be uniquely determined by imposing two additional boundary conditions, for instance
the temperature and density, at a particular radius.

The energy outflow Ė and the elements abundances Xi are determined by the XRB
hydrodynamic models at each point of their shell/time-step grids. So are the temperature
and density, which will be used as target boundary conditions. However, given that the
velocity data showed high fluctuation (see Section 3.1), it can not be relied on. For this
reason, the mass outflow Ṁ , which depends on the velocity through the mass conservation
equation 2.1, will be considered as a free parameter. As seen in Section 3.1, the energy
outflow Ė varies with radius, so the other free parameter will be the matching radius, since
the envelope in the XRB hydrodynamic models extends over a few meters above the neutron
star core. In practice, finding the matching radius translates into finding which shell has a
better match.

The general idea for the matching procedure employed is as follows. For a given XRB
hydrodynamic simulation, we explore the shell/time-step grid, focusing first on every point
with an energy outflow Ė that lies within the range of acceptable wind solutions in the
parameter space. Since this range depends on the current element abundances and its exact
extension is not known a priori, a typically safe and reduced region is chosen in terms of the
ratio Ė/LX , for a first of several grid sweeps. In each sweep, every selected grid point is

[1] This is analogous to the energy values becoming discrete in a bound quantum harmonic oscillator.
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tested for a possible match by trying different wind profiles with varying mass outflows Ṁ ,
while the rest of the wind parameters (Ė,Xi) is fixed to those given by the current XRB
simulation grid point, until we find the one that matches one of the boundary conditions.
For this step (let us call it “first” match) we chose a match in density.[2] That is, we use a
suitable root-finding method to find zeros of the following δρ function that parametrizes the
match relative error as a function of the mass outflow:

δρ(Ṁ) =
ρW (Ṁ)

ρB
− 1 (3.1)

where the subindices W and B stand for “wind” and “burst” (i.e., from the hydrodynamic
simulation) values at the matching radius, respectively. Grid points where δρ < 0.01 are
considered successful first matches or “hits”.

The valid domain for Ṁ is not known a priori. Root-finding methods like the commonly
used Newton-Raphson are not well suited for the task since they not only may wander
outside any initial guess of a valid domain, but they also require finding the derivative of
the δρ function, which demands calculating additional wind model solutions at each step. A
custom root-finding algorithm (dubbed IRIS ), based on the safer (but often slower) bisection
method, was developed for dealing with this problem, and it is described in Appendix A.4.

After the first sweep is completed, the exploration is sequentially extended to previously
unexplored grid points that lie adjacent to those for which a “hit” was found, by means of
a battleship-like algorithm explained in Appendix A.5. The whole process is repeated until
no further hits are found. The aim is to avoid missing out possible hits outside the first
guessed safe region, while at the same time preventing the exploration to waste efforts (and
computing time) by unnecessarily testing points with parameters outside the wind model
acceptable region.

At each point, we also compute a “second” matching error for temperature, δT , with an
expression analogous to Eq. 3.1, in order to construct the total matching error:

δ =
√
δ2
ρ + δ2

T . (3.2)

Grid points where this match error was δ < 0.01, are then considered to be successful
XRB-wind matches. Matching points are tested for hypothesis consistency in both XRB
hydrodynamic and wind models.

One could argue that a second root-finding algorithm could be employed instead, in
order to determine a more precise matching radius in each time-step. First, that would
require the interpolation of all physical variables between shells (including the more than 300
isotope abundances). And secondly, it also requires performing one additional root-finding
in the first matching variable for each of the intermediate steps of the second root-finding.
Furthermore, we could even use a 2-dimensional root-finding method to tackle both matching
variables at the same time. The problem is that commonly used N-dimensional root-finding
methods also suffer from the same inadequacies as the 1-dimensional Newton-Raphson and
similar methods explained before. In order to be successfully applied to this case, a 2-
dimensional root-finding method would need similar characteristics as the aforementioned

[2] Several pairs of matching variables could be used here ((ρ, T ), (PR, Pg), etc), and in any order. Which
variable is chosen for the first match will affect the precision requirement of the root-finding employed, as
well as the overall error obtained for the second match. After trying several combinations, we found that the
best results for the method employed, in terms of number of matches, speed and matching errors, is obtained
with the ordered pair (ρ, T ).
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IRIS algorithm. That is, we would need a generalization of a bisection-based method to two
dimensions which, as far as we know, does not exist. Nevertheless, we managed to develop a
method with such features, called SiSect, which is described in Appendix A.4. This was the
first method we tried in order to find the matching wind solutions more precisely, before we
decided to switch to the method described in the previous paragraphs. After a few trials,
we concluded that the resulting improvement in precision was not worth the required extra
computing time and effort in tunning the method’s parameters. However, with further study
and some improvements, we believe that the SiSect method can become a powerful tool with
numerous applications, and it was worth including in this work.

3.3 Results analysis

The search for XRB-wind model matching points was successful for some of the XRB
hydrodynamic simulations studied. This means that, under the considered hypotheses and
approximations, these XRB hydrodynamic models give way to a brief stellar wind and the
consequent mass-loss. Results for the 200-shells model XRB-A will be analyzed here, while
the 55-shells models, XRB-1 to XRB-4, will be described in Appendix C.

3.3.1 Wind-burst matching solutions

The wind-burst matching analysis of the 200-shells hydrodynamic burst model, XRB-
A, resulted in the sequence of matching points shown in Fig. 3.3. It shows a very well
defined progression from the inner (hotter and denser) layers to the outer (cooler and less
dense) ones and allows us to reconstruct a continuous evolution of all physical variables,
if needed. The matching error (Eq. 3.2) for these points was significantly low: δ < 0.01.
The resulting mass outflow, Ṁ , color-coded in Fig. 3.3, evolves from higher values at the
inner matching layers, diminishing as the match moves outwards, until no further match
was found. Matching points for deeper layers (and earlier time) than the ones shown can
be found in practice, with the same method. However, in that direction, the XRB models
enter a region of temperature and density where the effects from electron degeneracy and
energy generation from nuclear reactions become significant. Convective energy transport
also becomes relevant in deeper layers. Wind model does not contemplate these effects,
therefore possible matches towards deeper layers were not explored further.

The distribution of matching solutions in the wind parameter space is shown in Fig. 3.4.
At a first glance, the sequence of matching points display a similar distribution in parameter
space to the one found in Sect 2.4.2 (see, for instance, Fig. 2.4 bottom-left panel), but
the overall energy outflow is slightly higher here. Wind parameters are now normalized
in terms of a non-constant Eddington luminosity corresponding to electron-scattering, LX ,
which depends on local hydrogen mass fraction, X, as:

LX =
4πcGM

κo(1 +X)
' 3.52× 1038

(1 +X)
erg s−1 (3.3)

with κo = 0.2 cm2g−1, as opposed to Chapter 2 whereX = 0 and normalization was therefore
constant. Otherwise, each of the matching points would deviate slightly from the observed
aligned disposition, according to their corresponding hydrogen abundance. We can also
follow the time evolution of the parameters now, given by the color scale. Wind total energy
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Figure 3.3: Wind matching points during XRB evolution (model XRB-A). Grey dotted lines
show the radial expansion of each XRB model shell as a function of time. Points for which
matching wind solutions were found (δ < 0.01, see text) are marked with colored circles. Color
indicates mass outflow Ṁ of the matching wind solution.

outflow evolves from lower to higher values, as opposed to mass outflow. The matching point
time progression in the parameter space is slower for earlier times and speeds up considerably
in the final few seconds.

A selection of radial profiles, for some of the matching wind solutions, is shown in Fig.
3.5. Again, the time progression is indicated with the color scale. The profiles show similar
features to the ones reported in Sect. 2.4.1. The main difference is that the overall radial
extension of the wind profiles shown here is smaller, which is characteristic of wind solutions
with higher energy outflows. The radial extension of the wind envelope shrinks with time,
as it is made evident by the position of the critical (sonic) point and photosphere, indicated
in each profile. This is expected for the final part of the wind evolution, where the expanded
wind envelope should recede and finally meet the original boundaries reported by the XRB
hydrodynamic models, as the wind stops.

Values of wind velocity at the photosphere and critical point do not vary much (vph ∼
10−2c, vcr ∼ 10−3c) for most of the duration of the wind, in a similar way to the solutions
reported in the previous chapter (See Fig. 2.1). Temperature values at these points are
also similar (log Tph(K) ∼ 6.5 − 7, log Tcr(K) ∼ 7.5), minding the fact that now the profiles
extend only to about 500 km, corresponding to log r(km) ' 2.7 in Fig 2.4.1. The radiative
luminosity ratio profiles, Γ = LR/LEdd, also exhibit a similar behavior to the ones reported
in the previous chapter. They all show a sharp rise close to the envelope base, quickly
stabilizing outwards around a value of Γ ∼ 1, with tiny variations of about 10−3. This is
also a sign of a quick change from gas pressure-driven to radiation-driven wind.

A characteristic time plot is also shown. This time we employed a different prescription
for calculating it. In Section 2.4.1 we showed a characteristic time plot (Figure 2.1 bottom
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Figure 3.4: Evolution of Wind-Burst matching points in parameter space (for model XRB-A).
Colored dots represent matching points with relative error δ < 0.01. Color scale corresponds to
time since burst peak expansion. Both energy outflow, Ė, and mass outflow, Ṁ , are normalized
in terms of Eddington luminosity in the electron scattering case, LX (see text). A reference
value for Ṁ = 1018 g/s is indicated by a vertical dashed red line.

left panel), following the prescription used by Quinn & Paczyński (1985) and expressed in
Equation 2.21. However, according to Guichandut et al. (2021), this flow time is not a
good measure of the feasibility of the quasi-stationary approach. They stated the problem
is that it is highly dominated by the very slow wind velocity at the wind base. Instead,
they proposed a combined characteristic time using the much higher sound speed for the
subsonic part, and the regular wind speed for the supersonic part, giving a much smaller
characteristic time than the typical wind duration. That is:

∆td =

∫ rcr

rwb

dr

cs
+

∫ rph

rcr

dr

v
(3.4)

where ∆td is this new dynamic time, cs is the sound speed, and the other symbols have the
usual meaning. The reasoning behind this choice can be understood as follows. A small
change in physical conditions at the base can be thought of as a perturbation from the
stationary regime solution. This perturbation will travel at the speed of sound as long as the
flow is subsonic, readjusting the profile in its way up, and will travel with the flow velocity
when it is supersonic. This effectively means that ∆td is associated to the propagation speed
of information through the wind envelope. As long as this information travel time is small
enough compared to the duration of the wind, we can consider the quasi-stationary regime as
a good approximation. Given the fact that ∆td < 0.5 s in all profiles, and that the duration
is above 30 s, we can safely conclude that the quasi-stationary hypothesis holds.

A detailed view of the match between temperature profiles from wind and XRB hydro-
dynamic models is displayed in Fig. 3.6. There, one can graphically appreciate not only
the precise match in temperature at different times, but also the fact that the temperature
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Figure 3.5: Wind profiles obtained (for model XRB-A). Time evolution is indicated by line
color. Locations of the critical sonic point (�) and photosphere (◦) are indicated in each curve.
Panels in reading order are: velocity, temperature, characteristic time, and luminosity ratio Γ,
all plotted as a function of radius. Neutron star radius is 13.1 km (vertical dashed line).

gradient in both models has a similarly continuous value. This feature is expected if convec-
tion is negligible, making diffusion the only relevant term in the energy transport equation.
However, the same can not be said for the density match. Despite the match in density being
more accurate in most cases, the density gradient is not continuous. A density gradient ap-
pears in the mass conservation equation, and this discontinuity may originate in a significant
contribution to integrated mass outflow from the time-dependent term. Alternatively, it may
derive from the different choice of photospheric boundary conditions in XRB hydrodynamic
models, P = PRad, T = Teff, usual for non-expanded static envelopes, and the fact they
do not admit mass-loss. These conditions can shape radial profiles differently, especially in
upper shells close to the boundary, where the jump in density gradient seems to be more
prominent.

3.3.2 Mass-loss and contribution to galactic abundances

Now that a sequence of matching points has been found, we can take a look at the
chemical composition present at those points. This will be, under our working hypothesis,
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Figure 3.6: Detailed match of temperature (left) and density (right) radial profiles between
wind and hydrodynamic model XRB-A. Each wind profile is indicated with a continuous colored
line, while dashed colored lines indicate their matching counterparts in the XRB model. Burst-
Wind profiles matching points are indicated with big circles. Color scale indicates the time
since burst peak expansion. Gray dots indicate the rest of unmatched XRB points.

the composition of the wind envelope. Every isotope present in it would ride this wind and
escape the neutron star gravitational potential into the interstellar medium.

Our especial interest is on some p-nuclei mentioned before (92,94Mo, 96,98Ru). However,
there are other unstable isotopes also produced during the XRB that eventually decay into
the ones we are interested in. In this regard, the unstable isotopes with the most significant
production are 92Pd, 94Ag, and, 98In.

In order to calculate the total mass-loss for each species, ∆mi, we need to integrate the
mass outflow rate of every isotope, ṁi(t), with respect to time, and over the duration of the
wind. That is, for every isotope denoted with subindex i, we would like to obtain a numerical
approximation of the following integral:

∆mi =

∫ tf

to

ṁi(t) dt =

∫ tf

to

Ṁ(t)Xi(t) dt (3.5)

where Ṁ(t) is the total mass outflow as a function of time, which corresponds to each wind
solution obtained matching parameter, and to and tf are the initial and final times of the
wind.

Although the accuracy of the match was relatively high in model XRB-A, with a sig-
nificantly low matching error of δ < 0.01, the matching points still show some degree of
fluctuation in most physical variables and irregularity in time distribution (see Fig 3.7, for
instance). In some of the time-steps, more than one matching point from neighboring shells
was found within the allowed matching error. For other times none was found, even in-
between others with a match, where a continuous evolution is expected. This represents an
inconvenience when trying to numerically integrate eq. 3.5. Such irregularities may happen
when the matching point moves between shells that involve an abrupt enough change of
physical conditions, to which the match is very sensitive. Points around where this occurs
give larger matching error and the candidate shells are left out, while points with a smoother
change give multiple nearby shells as acceptable matching solutions. Decreasing the accu-
racy requirement of the matching method populates both empty time-steps and the ones
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with multiple matching shells at the same time. The study on the lower resolution models
(App. C), showed that this issue is worsened. An even higher grid resolution, which could
better resolve the changes in physical conditions to which the match is very sensitive and
allow using a smaller δ threshold, may help to improve on this issue in the future.

Figure 3.7: Time evolution of mass outflow, Ṁ (left), and energy outflow, Ė (right), in model
XRB-A, and predictive curves using smoothing-interpolating technique (see text). Wind-burst
matching data points are indicated with dots, and predicted values with a line. Color scale
indicates the matching error obtained (dots) or expected (lines), respectively.

In order to overcome this inconvenience with the data available in the present work, we
performed the following results post-processing. A smoothing technique using local regres-
sion (see App. A.6) is applied, similarly to the one employed to treat the noisy variables
from the original XRB hydrodynamic simulations in Section 3.1. This time, though, we can
use the matching error as a weight factor in the form ω = δ−2, so that the smoothing favors
points with smaller error. This fixes the fluctuation in densely populated time intervals.
Then, a smooth interpolation was used to reconstruct a curve. This serves two purposes:
first, it fills up time gaps where sequences of potential matching points would lie in-between
shells; and secondly, to get a large enough amount of equally distributed points to better
approximate the integral in equation 3.5. Figure 3.7 shows both the matching point data
and this smooth-interpolating predictive curve, for the mass outflow, Ṁ , and total energy
outflow, Ė. The matching error for the interpolated points was also predicted using the same
method and is color-coded in the predictive curves.

The same technique was applied to every physical variable and all isotopic abundances.
Here we will focus on the latter and leave the analysis of the rest of physical variables
for the following Section 3.3.3. Figure 3.8 shows both the predicted time-evolution curves
and matching data points of mass outflow rates for the species of interest, and their time-
integrated ejected mass. It is worth mentioning here that, although the matching technique
could still be applied to find earlier matching points (this was dismissed due to hypothesis
inconsistency between models, see Sect. 3.3.1), the mass outflow rate for each of the isotopes
seems to drop a few orders of magnitude in that direction, as shown in the left panel of Fig.
3.8. Consequently, the contribution of earlier matching points may be of little significance
for the time-integrated ejected mass of these isotopes. The same cannot be said for the
total mass outflow, whose value seems to slightly increase backwards in time. However, it
is expected to go back down by the time of the wind actual onset (compare with the lower
resolution models analyzed in Appendix Section C.2). The total mass yield obtained is
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Figure 3.8: Left: Time evolution of mass outflow (Ṁ) for some species of interest (see
text) and total mass outflow. Wind-Burst model matching points are indicated with dots, the
predictive curve (dashed line) is also shown for each of them. Right: Time-integrated ejected
mass (∆m) for the same isotopes. Both panels correspond to model XRB-A.

∆m = 6.16 × 1019 g = 3.1 × 10−14 M�, for the time interval analyzed.[3] Considering that
model XRB-A has a recurrence time of 5.9 hr, and assuming no period of inactivity (i.e.,
an upper limit to its real contribution), this implies a yearly output of 4.6 × 10−11 M�/yr,
that is 2.6% of the mass-accretion rate.

Figure 3.9 shows the total mass yield of every isotope produced in the XRB and ejected by
the stellar wind. Mass yield is color-coded only for species with a mass output ∆mi > 1010 g.
Values for the top ten mass-yielding isotopes are shown in Table 3.2 (left panel). Most of
the isotopes produced in the XRB are unstable and will eventually decay (mainly through
β process) into stable ones. The final resulting stable isotopes were also computed, by
simply adding the mass of each progenitor species. Almost 90% of the total expelled mass
is constituted by the first four isotopes listed in the table: 60Ni, 64Zn, 68Ge, 56Ni, as seen in
the right panel of Table 3.2. All ten species shown in the table account for over 97% of the
overall mass ejected.

The mass yields of all the final stable isotopes are shown in Fig 3.10, with the p-nuclei
species of our concern highlighted. Their mass yields were: ∆m92Mo = 1.57 × 1016 g,
∆m96Ru = 5.75 × 1015 g, and ∆m98Ru = 4.72 × 1015 g, for the duration of the wind,
which corresponds to mass fractions of: XMo92 = 2.57 × 10−4, XRu96 = 9.33 × 10−5, and
XRu98 = 7.67 × 10−5, with respect to the total XRB mass-loss. With a burst recurrence
time of τrec = 5.9 hr, this gives annual yields of: 1.18× 10−14 M�/yr, 4.29× 10−15 M�/yr,
and 3.53× 10−15 M�/yr, respectively.

The remaining question is how significant is the XRB wind contribution we found for
the observed Galactic abundance of these light p-nuclei species. Current measurements in
primitive meteorites (see Lodders et al. 2009, and references therein) report the following
abundances: XSol

Mo92 = 9.27 × 10−10, XSol
Ru96 = 2.59 × 10−10, and XSol

Ru98 = 8.80 × 10−11.
For an estimation of the XRB wind contribution to the Galactic abundances, the total net
mass of each element ejected by the XRB winds must be compared to the total mass of that

[3] Without considering any contribution from possible earlier matching point. In that case, bearing in
mind the analogous results found in Appendix Section C.2, a quick extrapolation for the estimated mass
yield could be twice as much.
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Figure 3.9: Mass ejected per isotope for the overall duration of the wind, from model XRB-
A. The atomic number, Z, is indicated in the horizontal axis, while the neutron number,
N = A − Z, is indicated in the vertical axis. Color scale indicates the mass ejected only for
isotopes for which log ∆m > 10, the rest is gray. Some species of interest are also marked.

Produced isotopes

Sym Z A Mass (g) Fraction

Zn 30 60 2.71× 1019 4.39× 10−1

Ge 32 64 1.70× 1019 2.76× 10−1

Se 34 68 6.99× 1018 1.13× 10−1

Ni 28 56 4.20× 1018 6.82× 10−2

He 2 4 1.47× 1018 2.38× 10−2

Kr 36 72 1.42× 1018 2.31× 10−2

H 1 1 1.29× 1018 2.09× 10−2

Sr 38 76 4.04× 1017 6.56× 10−3

Zn 30 59 2.11× 1017 3.43× 10−3

Ge 32 63 1.48× 1017 2.40× 10−3

Final stable isotopes

Sym Z A Mass (g) Fraction

Ni 28 60 2.71× 1019 4.39× 10−1

Zn 30 64 1.70× 1019 2.76× 10−1

Ge 32 68 6.99× 1018 1.13× 10−1

Ni 28 56 4.20× 1018 6.82× 10−2

He 2 4 1.47× 1018 2.38× 10−2

Se 34 72 1.42× 1018 2.31× 10−2

H 1 1 1.29× 1018 2.09× 10−2

Kr 36 76 4.04× 1017 6.56× 10−3

Ni 28 59 2.11× 1017 3.43× 10−3

Cu 29 63 1.48× 1017 2.41× 10−3

Table 3.2: Top ten isotopes by mass yield, from stellar wind in model XRB-A. Left panel:
isotopes directly produced in XRB nuclear reactions. Right panel: final stable isotopes after
radioactive decay. All 10 isotopes shown account for ∼ 97.6% of the total mass-loss, of which
the top 5 constitute ∼ 92%.
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Figure 3.10: Stable isotopes mass yield from stellar wind in model XRB-A. This corresponds
to the final products from radioactive decay of the unstable isotopes shown in Fig 3.9.

Isotope 92Mo 96Ru 98Ru
XRB-A wind mass yield per burst (g) 1.57 · 1016 5.75 · 1015 4.73 · 1015

XRB-A annual yield (M�/yr) 1.18 · 10−14 4.29 · 10−15 3.53 · 10−15

XRB-A wind mass fraction Xi 2.57 · 10−04 9.33 · 10−05 7.67 · 10−05

XRB-A life-time contribution (M�) 5.88 · 10−05 2.15 · 10−05 1.76 · 10−05

Solar system Xi 9.27 · 10−10 2.59 · 10−10 8.80 · 10−11

Isotope mass presence in MW (M�) 1.85 · 1002 5.17 · 1001 1.76 · 1001

Sources like XRB-A required to match 3.15 · 1006 2.41 · 1006 9.98 · 1005

Table 3.3: Estimates of light p-nuclei isotopes contribution from XRB-A wind to the galactic
abundances. XRB-A is considered to be active through all the galactic age (13.5 × 109 yr).
Total galactic mass used for calculations is 2× 1011 M� (see text).
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element present in the Galaxy. A raw estimate can be obtained in the following way (results
are summarized in Table 3.3). The total observable mass of the Milky Way is believed to lie
in the range of [100 − 400] × 109 M�.[4] Assuming a value of 200 × 109 M�, and the mass
fractions inferred from meteoritic samples in our solar system, we get the following estimates
for the amount of those p-nuclei present in our Galaxy: ∆mMW

92Mo = 185 M�, ∆mMW
96Ru =

51.7 M�, and ∆mMW
98Ru = 17.6 M�, where the “MW” supraindex stands for Milky Way.

Now, assuming that all XRB sources contribute with a similar chemical abundance pattern
than Model XRB-A, and assuming no periods of inactivity (i.e., all sources experience one
burst after 5.9 hr, continuously throughout their entire lifetime), we can get an estimate of the
overall mass contribution for each species to the galactic abundance, by simply multiplying
the annual yields by the estimated lifetime of X-ray binaries (5 Gyr).[5] This results in:
∆mXRB

92Mo = 1.59×10−4 M�, ∆mXRB
96Ru = 5.8×10−5 M�, and ∆mXRB

98Ru = 4.76×10−5 M�. The
ratio between the amount of each species in the Galaxy and the amount ejected by all XRB
sources in the overall duration of the Galaxy (i.e. ∆mMW

i /∆m
XRB
i ) yields an estimate of the

number of XRB sources similar to XRB-A needed to account for the origin of these p-nuclei.
This ratio gives different results for each isotope. Between a few hundred thousand to over a
million sources like XRB-A are needed to match. In contrast, the total number of identified
XRB sources so far is around one hundred.[6] That is, assuming that XRBs are the only
source for these species and that our XRB-A is a representative case, then 103 − 104 times
more sources than the ones already discovered would be needed to explain the observed mass
abundances of these light p-nuclei. This suggests that the origin of these light p-nuclei in
XRBs (as their major contributors) is unlikely.

3.3.3 Observables, correlations and other physical magnitudes

Another important aspect we would like to analyze from the XRB-wind matching re-
sults is the evolution of observable features and how they relate to other predicted physical
variables. Since the study of model XRB-A does not show the complete wind evolution
(due to some mismatch between the XRB hydrodynamic and wind models hypothesis ex-
plained in Sect. 3.3.1), the analysis of lower resolution models, XRB-1 to 4, in Appendix
C can supplement it and help build a more complete picture. In this regard, the results
post-processing employed for calculating the mass-loss in Section 3.3.2 was extremely useful
in order to extract a likely prediction from the less accurate matches in the lower resolution
models. All plots displayed in this section will show dots for the actual values corresponding
to matching wind profiles, and lines for the predicted curves using this previously mentioned
smoothing-interpolating technique.

Time-evolution of photospheric magnitudes is shown in Fig. 3.11. Photospheric radial
expansion is receding from over 600 km, steadily for most of the time interval displayed,
and drops rapidly in the last few seconds, seemingly towards the final XRB-wind matching
radius (∼ 13.17 km), close to the NS core surface. Effective temperature appears to evolve
in an exactly inverse manner, rising from around 4 × 106 K in the earlier moments where

[4] Here, we consider only baryonic matter, no dark matter estimate is included.
[5] This is a traditionally assumed value for X-ray binaries lifetime, but it is currently not very well

constrained. More recent works suggest much shorter lifetimes, by even 3 orders of magnitude (see Iben et al.
1995; Podsiad lowski et al. 2002; Pfahl et al. 2003). In such case, our final conclusion (see further ahead) is
strengthened, since even more XRB sources would be needed to explain the observed mass abundances.

[6] See http://www.sron.nl/~jeanz/bursterlist.html for an updated list of known galactic type I XRB
systems.

http://www.sron.nl/~jeanz/bursterlist.html
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Figure 3.11: Time evolution of photospheric magnitudes, in model XRB-A. In reading order,
radius, temperature, wind velocity, density, radiative luminosity and its ratio to local Edding-
ton luminosity. Values corresponding to matching wind profiles are indicated with dots, and
predicted values (using smoothing-interpolating technique) with a line. Color scale indicates
the matching error obtained (dots) or expected (lines), respectively.
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the wind atmosphere is most expanded, and ending in a quick spike (> 1.6 × 107 K) that
seems to sharply rise up towards the much higher photospheric temperature (∼ 5×108 K) of
the envelope after the wind phase (See Fig. 3.1 panel 3). Wind velocity at the photosphere
varies little around ∼ 0.01 c for the most part, and drops abruptly by the end. Density shows
an almost identical behavior to temperature.

Photospheric luminosity rises slowly through most of the wind and spikes towards the
end, in a similar way to temperature. Furthermore, analysis of the full wind evolution from
the lower resolution models shown in App. C.3, shows that this rise may in fact be the
recovery part of an overall dip in luminosity around the burst peak expansion. At a first
glance, this behavior seems to be at odds with the expected overall sharp rise and slow
decline observed in a typical XRB light curve. However, upon a closer look, this change in
photospheric luminosity represents quite a small fraction (∼ 5−6%) of the average luminosity
value while the wind is active (∼ Lo = 3.52×1038 erg/s ∼ 9×104 L�), and it is a few orders
of magnitude smaller when compared to the overall typical burst luminosity rise (10 − 100
times the persistent luminosity). Nevertheless, this average photospheric luminosity in the
wind profiles is often lower than the peak luminosity reported in the XRB models, remaining
very close to the local Eddington value.[7] This drop of luminosity around the peak radial
expansion could, in principle, be observed as a flattening of the luminosity peak for the
duration of the wind or, if the dip is significant in magnitude with respect to the wind-
less envelope luminosity, as a double peak. The onset of the stellar wind is expanding the
envelope further, cooling it down towards the photosphere. This in turn rises opacity and
allows for the absorption of more radiative energy into the gas that is transformed into
kinetic energy, making the photosphere dimmer. From the observational point of view, such
a feature, could be a clear signal of the presence of a stellar wind.

Figure 3.12: Correlated photospheric magnitudes in XRB-A wind profiles. Left panel indi-
cates an approximate T 2

ph ∼ r−1
ph relation. Right panel similarly implies ρph ∼ r−1

ph .

We noted the similarity between photospheric temperature and density time evolution
curves, and their apparent inverse relation to photospheric radius. The actual linear cor-
relation can be appreciated in Fig. 3.12. In the characterization study shown in previous
chapter (Sect. 2.4.3) we found similar correlations (Eq. 2.23 and 2.24), due to the fact that

[7] Especially in models XRB-1 to 4. Compare peak values in Table 3.1 with photospheric luminosity curves
here and in Appendix Section C.3.
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Regression Model a c Correlation
log Tph = c + a log rph −0.503 10.45 0.9999
log ρph = c + a log rph −1.013 1.22 0.9999

8

3

vph

c
= c + a

Ṁ

LR,ph

GM

rph
0.997 5.5× 10−5 0.9999

Ė

LR,ph
− 1 = c + a

Ṁ

LR,ph

GM

rph
0.992 3.6× 10−4 0.9994

Table 3.4: Regression results from correlations among observable variables and wind param-
eters in model XRB-A.

photospheric luminosity was close to Eddington luminosity. Now we are able to confirm
that these correlations hold for the more realistic scenario studied here. Equation 2.25 also
stated the correlation between observable features, such as photospheric luminosity and wind
velocity, and wind parameters determined by physical conditions of the inner parts of the
envelope. These correlations were also found in all XRB hydrodynamic models studied. The
regression results are shown in Table 3.4. The derivation of these correlations was treated
in Section 2.4.3, and their importance was already discussed in Section 2.5.

Finally, and for the sake of completeness, Figures 3.13 and 3.14 show the time evolution
of physical magnitudes at the critical point and wind base (XRB model matching point),
respectively. The critical point remains much closer to the base, extending only a few times
the NS radius, and receding at a somewhat uniform rate. Temperature, velocity and density
at the critical point evolve in the opposite direction, slowly growing, with an overall smaller
change of velocity around vcr ∼ 10−3c, but with an abrupt drop right before the end of
the wind. Luminosity stays very close below the local Eddington luminosity. The effective
optical depth of the critical point stays always higher than the required threshold of 10,
needed to consider the wind optically thick, but it seems to drop very quickly by the end of
the wind. This may hint that there could be a continuation of the wind with an optically
thin regime, which our wind simulation code does not contemplate. However, the XRB-to-
wind matching point moves quickly towards the outermost shells of the XRB hydrodynamic
model where the boundary condition Pg = 0 was set, making the appearance of a thin wind
unlikely and, in practice, impossible to search further matches, even if the wind code was
capable of dealing with an optically-thin wind.

Physical magnitudes at the wind base (XRB-wind matching points) were discussed in
previous Section 3.3.1, but there are a few things we can add. Most notably, the ratio of gas
pressure gradient to radiation pressure gradient at the wind base (last panel of Figure 3.14)
shows values very close to unity. This result rests in good agreement with the very “generic”
boundary condition assumed in Section 2.2.3 and used for the characterization study from
Section 2.4. It does not come as a surprise, since the previously assumed boundary condition
was inspired by (and is a necessary condition for) a situation in which wind velocity can be
neglected and radiation pressure is not dominant, both of which correspond to a transition
region between stellar wind and static envelope. These turned to be good approximations
to physical conditions in all XRB hydrodynamic models studied, as can be seen for current
model XRB-A (Figure 3.14, last three panels): wind velocity is smaller than 1 cm/s (∼
0.33×10−10c), and radiative luminosity is about one half of the local Eddington limit needed
to accelerate the wind; the remainder half of the driving force is provided by gas pressure
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Figure 3.13: Time evolution of physical magnitudes at the critical point, in model XRB-A.
In reading order, radius, temperature, density, radiative-to-Eddington luminosity ratio, and
effective optical depth. Wind-burst matching points are indicated with dots, and predicted
values (using smoothing-interpolating technique) with a line. Color scale indicates the matching
error obtained (dots) or expected (lines), respectively.
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Figure 3.14: Time evolution of physical magnitudes at the wind base, in model XRB-A. In
reading order, radius, temperature, density, velocity luminosity ratio Γ, and gas-to-radiation
pressure gradient ratio. Wind-burst matching points are indicated with dots, and predicted
values (using smoothing-interpolating technique) with a line. Color scale indicates the matching
error obtained (dots) or expected (lines), respectively.
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gradient, due to the abrupt temperature and density changes.

3.4 Summary

In this chapter, the possibility of stellar winds appearing from a more realistic burst
scenario, as described by XRB hydrodynamic models, was studied. In order to do so, a data
smoothing technique had to be applied to some of the XRB models results. A series of novel
methods and algorithms were then developed for matching the stellar wind model solutions
to the physical conditions given by the XRB hydrodynamic simulations.

After finding the matching solution candidates and analyzing their consistency, we con-
cluded that a stellar wind appears for each burst studied here. A quantification of the
consequent mass-loss was pursued for every isotope species produced in the XRB model,
with particular interest in the light p-nuclei: 92,94Mo and 96,98Ru. For this objective, fur-
ther post-processing was required to compensate for some irregularity in the distribution of
matching points and, in the case of lower resolution XRB models, to extract some useful
information from matches with higher error. A crude estimate of the possible contribution of
XRBs to the synthesis of light p-nuclei resulted only in a small fraction (10−5−10−6) of their
galactic abundances. An unrealistically large number of XRB sources would be required to
account for their origin.

Finally, an analysis of the time evolution and correlation of observables and other phys-
ical magnitudes was performed. All of the correlations found in the preliminary study in
Section 2.4.3, were found to hold. Their significance regarding observational applications
was already discussed in Section 2.5.





Chapter 4

Summary and conclusions

The study of stellar winds in the context of XRBs performed in this thesis had two main
motivating issues. These are open questions from branches of physics as seemingly unrelated
as nucleosynthesis and the study of degenerate matter. The first question is whether or not
the heavy elements produced from nucleosynthesis in XRBs can escape NS gravity through
the stellar wind and contribute significantly to Galactic abundances. The special interest
is set on some light p-nuclei that are underproduced in every other astrophysical scenario,
with respect to inferred abundances. The second question relates to the determination of the
equation of state (EoS) of neutron-degenerate matter. Independent measurements of NS radii
and masses are required to constrain available EoS theoretical models. Therefore, predictions
of observable features in NS expanded envelopes during stellar winds are important in this
regard.

A non-relativistic stellar wind model was successfully implemented in Chapter 2. The
model introduced some improvements with respect to previous works in literature, like the
inclusion of modern opacity tables from OPAL and The Opacity Project (see Appendix B.2),
and treatment of the critical point (Appendix A.2). Its implementation also required the
development of novel numerical methods and other useful algorithms (Appendices A.4 and
A.5). In Section 2.4, the stellar wind model was applied to a generic NS scenario, as a
way to test its implementation, characterize possible solutions and explore the parameter
space. In order to simulate this generic scenario, a rather flexible but sensible choice of
inner boundary condition at the wind base was imposed (see Section 2.2.3). This restricts
the region of compatible solutions in the parameter space (Ṁ, Ė). Even with such a generic
choice of inner boundary conditions, the simulations showed some remarkable features and
common patterns. The results from these simulations are compatible with other similar
studies (Kato 1983; Joss & Melia 1987; Quinn & Paczyński 1985).

The resulting wind profiles were all observed to transition from a gas pressure-driven
regime at the inner parts, where opacity is low, into a full radiatively-driven wind in the
outer parts. Most notably, some photospheric magnitudes showed a high correlation (see
Section 2.4.3), namely rph ∼ T−2

ph ∼ ρ−1
ph , independently of the NS radii at which the afore-

mentioned wind base condition was imposed. These correlations are apparently independent
from model parameters (Ṁ, Ė) too, so they are expected to appear in every scenario. They
seem to derive from the choice of boundary conditions at the photosphere (see Section 2.2.1),
and the fact that photospheric luminosity takes on values very close to Eddington luminosity
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Lo = 4πcGM
κo

, for every choice of parameters (Ṁ, Ė).

Another set of correlations found involves parameters (Ṁ, Ė) as well as photospheric
magnitudes (see Equation 2.25). Since wind parameters are determined upon imposing con-
ditions for all physical variables at the wind base, these correlations effectively link observable
magnitudes to the physics of the innermost parts of the envelope, close to its interface with
the NS core. This could lead to a technique that allows to indirectly determine the ra-
dius of the NS, independently from its mass, from photospheric magnitudes, as outlined in
Section 2.5. However, a study in a more realistic XRB scenario was required first, before
jumping to this conclusion.

In Chapter 3, we linked the stellar wind model to a series of XRB hydrodynamic models
by José et al. (2010). There, we developed a technique that successfully matched different
wind profiles to the boundary conditions given at different points during the evolution of
each burst, with a quasi-stationary approach. This allowed us to construct a time evolution
of wind profiles and to quantify the mass-loss of each isotope produced by nucleosynthesis
in the XRB. The overall ejected mass varied between the XRBs analyzed, ranging from
∼ 6× 1019 g in the high resolution model XRB-A, studied in Section 3.3, to smaller values
in the range of ∼ 2× 1017− 7× 1018 g in the lower resolution models shown in Appendix C.
The ejected material contained a small fraction of our light p-nuclei of interest. The species
with the highest amount across all models was 92Mo, with ∼ 1.5 × 1016 g in XRB-A, and
within 1012 − 1013 g in the other models. However, an estimation of their significance
regarding Galactic abundances showed that an unreasonable number of XRB sources like
the one analyzed (corresponding to a typical X-Ray Burst episode) was required to account
for the observed abundances of each isotope. Therefore, we concluded that XRB sources
are unlikely to constitute the sole explanation of their origin. Nevertheless, given that the
models analyzed showed a large difference in the ejected mass of these p-nuclei (three orders
of magnitude), we cannot assure that a future study on XRB hydrodynamic models with
overall larger metallicity, will not show a more significant contribution.

Upon analyzing the photospheric magnitudes during the wind phase, the correlations
previously discussed in Section 2.4.3, were found to hold. This is a promising result regard-
ing the issue of NS radii determination. Nevertheless, further study is required to determine
whether these results are affected by the inclusion of more complex input physics, like rela-
tivistic wind models, or a more detailed treatment of radiative transfer.



Appendix A

Computational and
mathematical techniques

In this Appendix we include descriptions of the most relevant algorithms and techniques
employed throughout this work. In some occasions, we could apply commonly used tools in
numerical analysis, adapted to the particular problems we encountered. But for some others,
novel techniques had to be developed from scratch.

Stellar wind equations described in Section 2.1 require numerical calculations to be solved.
The set of differential equations was integrated using an adaptive step Runge-Kutta method
described in Section A.1. Two-point boundary-value problems, like the one we have, require
techniques like the shooting method (Section A.3). Since the stellar wind equations present a
singularity (see Section 2.2.2), a variable substitution was introduced to overcome the prob-
lems of numerical calculations related to it, explained in Section A.2. Data smoothing using
a local regression technique was required for Chapter 3, and it is described in Section A.6.
Novel techniques we developed include robust root-finding algorithms (Section A.4) and a
grid search optimization algorithm (Section A.5), that were used in a variety of situations.

A.1 Adaptive step Runge-Kutta method

In general, a set of ordinary differential equations (ODE) of any order can be expressed
as a set of N first-order ODEs as:

dyi(x)

dx
= fi(x, y1, ..., yN ), with i = 1, ..., N (A.1)

where yi(x) are unknown functions of the independent variable x, and fi are known functions
expressed in terms of them. In addition a set of boundary conditions have to be provided
to uniquely determine all integration constants. These can be given all at one point, xo,
in which case we have an initial value problem, or at more than one point, which is called
two-point boundary-value problem. Several iterative methods exist for solving initial value
problems numerically. They usually consist in advancing the solution from xo, where function
values yi(xo) satisfy the boundary conditions, taking discrete small steps of size h towards
the desired stopping point. Each step accumulates error, which in the simplest case (Euler’s
method) is of order h2.
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The Runge-Kutta methods reduce the error in each step by taking one or several inter-
mediate steps. Each extra intermediate step can reduce the error of the full step by one
order, when combined with the right weight coefficients. For instance, when advancing the
integration of one equation (N = 1) from step n to n+ 1, a fifth-order Runge-Kutta method
(RK5) formula takes the form:

k1 = hf(xn, yn)

k2 = hf(xn + a2h, yn + b21k1)

...

k6 = hf(xn + a6h, yn + b61k1 · · ·+ b65k5)

yn+1 = yn + c1k1 · · ·+ c6k6 +O(h6)

(A.2)

where {ki} are approximated increments of y(x) at each intermediate step, and the coeffi-
cients {ai, bij , ci} are different weights that vary across members of the Runge-Kutta family
(see Press et al. 1992) and references therein.

Additionally, the step size h can be adjusted dynamically at each step: reducing it to
meet an accuracy requirement where error is large, or increasing it where error is small to
save computing time. The method developed by Cash & Karp (1990), based on the original
idea by Fehlberg (1970), combines a Runge-Kutta method of order 5 (Equation A.2) with a
different choice of the same amount of intermediate steps that results in a formula of order
4:

y∗n+1 = yn + c∗1k1 · · ·+ c∗6k6 +O(h5). (A.3)

This mixed fourth and fifth orders Runge-Kutta method (RK45) allows us to obtain the
following estimate of the fourth order truncation error:

∆ = yn+1 − y∗n+1 =

6∑
i=1

(ci − c∗i ) ki(h) ∼ O(h5) (A.4)

This way, the step size h can be adjusted to meet a certain value of ∆. When trying a step
with size h1, if the error obtained ∆1 is larger than the desired ∆o, the step can be retried
with a smaller step estimate:

ho = h1

∣∣∣∣∆o

∆1

∣∣∣∣1/5 . (A.5)

The same can be applied in reverse if the error obtained is much smaller than the required
one, to allow a larger next step try.

The adaptive size Runge-Kutta method outlined here (RK45) was adopted to integrate
the wind model equations (2.9 and 2.10). A suite of Fortran procedures, provided in Press
et al. (1996), was implemented for this task. Some necessary modifications were in order,
though, to accommodate for some of the special features of our problem.

A.2 Critical point substitution

In order to avoid the numerical difficulties involved in calculating the velocity gradient
at the critical point we used a substitution. The velocity gradient in the wind equations is
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expressed in the form of a ratio:

r

v

dv

dr
=
N(r, T, v)

D(T, v)
(A.6)

with N,D being the numerator and denominator which should both become zero at the
critical point in order to have a regular solution. Explicitly, the singularity condition is
given by D(T, v) = v2 − kT

µmA
= 0. Hereafter, the local isothermal sound speed will be

denoted by s, where s2 = kT
µmA

.
Consider the following function and its derivative:

y(x) =
1

2

(
x+

1

x

)
=
x2 + 1

2x
(A.7)

y′(x) =
1

2

(
1− 1

x2

)
=
x2 − 1

2x2
(A.8)

In differential form we get:

dy

y
=
y′

y
dx =

x2 − 1

x2 + 1

dx

x

If we now set x2 = v2

s2 , then dx
x = dv

v −
1
2
dT
T and it can be easily found that:

dy

y
=

v2

s2 − 1
v2

s2 + 1

dx

x
=

D(T,v)

v2 + s2

(
dv

v
− 1

2

dT

T

)
The radial gradient of this new variable y then satisfies:

r

y

dy

dr
=

D(T,v)

v2 + s2

(
r

v

dv

dr
− 1

2

r

T

dT

dr

)
(A.9)

and replacing expression A.6 for the velocity gradient, the denominator D is canceled, giving:

r

y

dy

dr
=

1

v2 + s2

(
N(r,T,v) −

D(T,v)

2

r

T

dT

dr

)
This derivative does not present a singularity anymore and can be integrated instead of the
momentum equation for the new variable y.

There is one inconvenient, though, when transforming back to v. The function y(x) has
one global minimum at x = 1 with ymin = 1, which corresponds to the critical point (where
v = s). From there, y increases monotonically towards both x = 0 and x −→ ∞ (see Fig.
A.1). Its inverse function therefore has two branches:

x± = y ±
√
y2 − 1 (A.10)

with the following properties for all y:

x+ ≥ 1 x− ≤ 1 x−x+ = 1 x+ + x− = 2y

Care must be taken about which of the branches is followed. It is not known a priori if at
a certain point the wind should be supersonic (x+) or subsonic (x−), unless integration is
started from the critical sonic point in a particular direction. When integrating away from it,
the value of y must increase, so it must be ensured that the radial gradient takes a positive
value for r & rcr and negative value for r . rcr and prevent any numerical error near the
critical point that may give a different result.
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Figure A.1: Variable substitution for critical point. Change of variables y(x), in red, used to
integrate close to the critical point (x, y) = (1, 1), and the two branches of its inverse function
(green and blue).

A.3 Shooting method

In a two-point boundary problem, the boundary conditions are given at more than one
point.[1] When starting numerical integration with iterative algorithms like RK-45 from one
of these points, we will have insufficient boundary conditions to uniquely determine every
variable starting value. This gives multiple possible solutions, most of which will not satisfy
the rest of boundary conditions at the end point (see Figure A.2). The shooting method is
usually employed to find a solution that does. The basic idea behind it resembles any game
of projectile shooting, like bow and arrow, perfecting our aim to hit a target. It consists
in trying several solution candidates (the shots), temporarily guessing a set of values that
complies with boundary conditions at the starting point. The deficit in starting boundary
conditions gives us a number of free variables to choose (aiming parameters), equal to the
number of remaining boundary conditions at the end point. When integration arrives at
the end point, the values obtained for all variables are tested against the rest of boundary
conditions (the target). These end point values we obtain depend on the starting aiming
parameters and will often fail to satisfy the boundary conditions at the end point (miss the
target) in the first few guesses. The objective (hit the target, of course) is to find the starting
aiming parameters that give solutions satisfying the boundary conditions at the end point.
We can construct a function that measures how far off from target our shot landed (target
function), which will depend on our aiming parameters, and then employ a suitable root
finding method to find zeros of that target function (see next Section A.4).

In the stellar wind model we have a system of two ODEs (momentum conservation equa-
tion 2.9 and radiative diffusion equation 2.10), for which we need two integration constants. A
total of four boundary conditions are given at the critical point and the photosphere; but their

[1] In our case we have two boundaries, critical point and photosphere. But, in general, conditions can be
given at more than two points (see Press et al. 1992).
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location is not given explicitly, adding two extra undetermined parameters.[2] This results in
four total parameters, {Tcr, rcr, Tph, rph}, with two boundary conditions at each point (see
sections 2.2.1 and 2.2.2). At first sight, this looks like a two-dimensional root-finding problem

for which we would need to find roots of a vector target function ~f = (f1(Tcr, rcr); f2(Tcr, rcr)),
with f1 and f2 being scalar target functions associated to each of the photospheric boundary
conditions. Multidimensional root-finding algorithms suggested in literature involve calcu-
lation of derivatives, like Newton-Raphson. They are inadequate in this case for reasons
exposed in Appendix Section A.4, and we would like to avoid them. For one-dimensional
problems, the alternatives are bracketing methods, but no generalization to more dimensions
exists, that we know of.

Figure A.2: Two-point boundary problem with the stellar wind model. Different solution
candidates (dotted lines in color scale) are obtained when integrating outwards from critical
points (blue circles) with varying Tcr, while disregarding photospheric boundary conditions
(resulting in missed shots). Color scale represents the value of the target function employed
with the shooting method. The actual solution found with the shooting method (plotted in
green), satisfying all boundary conditions, is also integrated inwards into its subsonic region.

However, with deeper analysis, the problem can be turned into a one-dimensional shoot-
ing. Since two of the four parameters are related to the positions of the boundaries, {rcr, rph},
they are only necessary to determine the integration starting and stopping points. Starting
at the critical point, we have two equations (singularity condition 2.17 and regularity con-
dition 2.18) to determine the three initial values needed to start integration {rcr, Tcr, vcr}.
That leaves us with only one free choice, for instance Tcr, to work as aiming parameter. As
the integration advances, we can decide to stop it whenever either one of the photospheric
conditions is met (we chose the optical condition 2.14), which decides rph.[3] We are left with
the one remaining photospheric condition (temperature condition 2.13) to construct our now

[2] This is like shooting arrows to a moving target while riding a horse, which is extremely difficult. Unless,
of course, you are... the Mongols.

[3] In some cases, this condition was never met and the integrations were set to stop at a certain high
radius or maximum allowed steps. In Figure A.2, this was the case of profiles extending towards high radii,
settling at approximately constant T values, which gave high target function values.
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scalar target function, and proceed with the one-dimensional shooting as it was outlined in
Section 2.3. The application of a bracketing method is now possible, with some safeguards
(see Section A.4).

A.4 Root finding algorithms

In various occasions throughout this work, a root-finding algorithm with special require-
ments was needed. The shooting method described in Section A.3, and the XRB-wind
matching method in Section 3.2 are the most relevant of such occasions. The two main
special features in these cases are: first, the functions that need to be zeroed are somewhat
expensive to evaluate in terms of computational time (one or several integrations of an ODE
problem in each evaluation); and second, but more important, the function domain depends
on several varying parameters in a way we do not know a priori.[4]

Conventional and fast-converging methods like Newton-Raphson, which depend on the
derivative of the function, present some issues that render their application inviable for the
cases at hand. The first of these issues is the very need for calculating the derivative of the
function. Since we lack analytical expressions of our functions, a numerical approximation
of the derivative must be calculated instead. This requires additional evaluations of the
function at nearby points, which multiply the already considerable computation time of each
step. In some cases, this extra time may be compensated by the faster convergence of these
methods, which require fewer steps. However, computational speed is not the only concern
with methods that involve derivatives.[5] A more important matter is their possibility of
failing to converge in certain cases. Stationary points, cyclic iteration points, overshooting,
and discontinuous derivatives are some of the common pathological cases. Other related
methods deal with some of these issues with different techniques, but they are hardly fool-
proof, and our functions sometimes may present several of the aforementioned pathologies.

Bracketing methods, on the other hand, suffer from fewer issues. Among them, the
bisection method, while being among the slowest, is the simplest and most robust. The only
requisite is that we need to provide a starting interval where our function is continuous and
changes sign. This still presents the problem of the unknown valid domain where to choose
the starting interval. However, this issue is less problematic now since, once inside the valid
domain, bracketing methods will not overshoot outside of it like derivative-based ones may
(see the case of x5 in Figure A.3). In order to overcome this problem the following technique
was developed.

A.4.1 Increasing Resolution Interval Search

For a given function y(x), we usually want to find a value xo, such that y(xo) = yo, for
a given target value yo. That is, we need to find roots for the function:

f(x) = y(x)− yo (A.11)

[4] In the shooting method used for solving the stellar wind equations (see Section 2.3, and Appendix
Section A.3), the range of candidate Tcr, for which physically valid ODE solutions are found, changes with
model parameters (Ṁ, Ė). Similarly, in the XRB-wind matching method (Section 3.2), the first matching
variable Ṁ , has a range of acceptable solutions that depends on Ė and abundances Xi.

[5] Quasi-Newton methods and other modifications can be used when derivatives are unavailable or ex-
pensive to calculate. However they still give some approximation of derivative, suffering from the same
ailments.
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We search for an interval [xa, xb] where our target function f(x) is: well defined, contin-
uous, and changes sign (i.e., f(xa)f(xb) < 0), so that we can safely apply bisection (or other
bracketing method of choice). Suggested methods in literature (see Press et al. 1992) involve
partitioning a given big interval [x0, xN ] into an arbitrary amount of smaller intervals, N ,
by evaluating the target function at a sequence of intermediate points, {xi; i = 1, ..., N −1},
and then checking which consecutive pair of points [xi, xi+1] gives the desired sign change
in f(x). There are three problems with this scheme. We will describe them and explain the
solution we implemented, with an illustrative example in Figure A.3.

Figure A.3: IRIS method illustration. Modified target function f̃ , normalized to magic
number A, is plotted in red. Interval [xa, xb] marks the valid domain of the original target

function f , with the desired root xr inside. Purple line is the tangent to f̃ at x5, illustrating
a point where derivative-based methods would overshoot outside the valid domain and fail to
converge (so would they at x3 and x4). IRIS candidate points for function evaluation {xi}i=0,...,8

are also shown, with their evaluation order (numbered circles) at each step of the algorithm
displayed below. Empty circles mark evaluations skipped due to additional time-saving criteria
(see text).

Problem 1: valid domain. We may be surely evaluating the target function several times
outside its valid domain. For this, it is customary to redefine the target function by assigning
a magic number whenever this happens. In order to avoid choosing a magic number that
could naturally occur in the target function, we use an alternative target function in the
form:

f̃(x) =

{
A tanh [k f(x)] x ∈ Dom(f)

±A x /∈ Dom(f)
(A.12)

with arbitrary constants A, k. This new function f̃ shares the same roots as the original
f and behaves similarly in their vicinity, preserving sign change. Additionally, |f̃(x)| < A
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inside Dom(f) and approaches ±A asymptotically for large |f(x)|. This allows us to chose
any value of A (for instance A = 1) as a magic number. The value of k, determines the slope

of f̃ close to the root, and can be adjusted freely to regulate the sensitivity of the method
(since ∆f̃ ∼ Ak∆f close to the roots). For instance, if we set k = 1/2, with f(x) = y(x)−yo;
y(x) = lnT (x); and yo = lnTeff; it can be easily found that:[6]

f̃ =
T (x)− Teff

T (x) + Teff
(A.13)

inside the valid domain, which corresponds to the target function φ employed with the
shooting method (see Section 2.3), where T depends on the shooting parameter x = Tcr. In
Equation A.12, the “±” sign outside Dom(f) can be manually chosen to match the sign of
f at the nearest valid point, if we know it. If we do not, we can choose “+” both above
and below Dom(f) and an artificial discontinuity will appear at the border of Dom(f) where
f(x) < 0 (the case of xb in Figure A.3). Which leads us to Problem 2.

Problem 2: continuity. This is a requisite that cannot be guaranteed a priori. Whether
the discontinuity arises artificially (for instance, from the solution to the previous problem)
or it is naturally occurring in our target function, and we are unlucky enough for the discon-
tinuous jump to change sign in f(x), the bisection method will then be fooled into converging
on it. We are left with few options, none of them certain, except checking a posteriori if the
bisection resulted in a root false positive. But, in the case of the artificial false root, there is
a workaround related to the solution of Problem 3.

Problem 3: computing time. We do not know how many intermediate points will suffice
to find the desired interval, and we would prefer not to evaluate the already expensive target
function unnecessarily, to avoid the extra computing time. In this regard, the technique
developed here presents a substantial improvement. Instead of dividing the original interval
into many small pieces and evaluating the target function in all and every intermediate
point upfront, we proceed progressively (see evaluation order in Figure A.3). Starting with
the original interval ([x0, x8] in the example), we evaluate at both extremes (step 0) and
in the middle-point (x4) (step 1). If either of the two resulting sub-intervals is suitable
for bisection, we proceed with it. If none is, we iterate recursively, halving each new sub-
interval and evaluating at the new middle-points, while book-keeping the values of f̃(xi)
at each previously evaluated point for subsequent iteration steps, until any of them results
in a successful bisection. Each iteration step doubles the resolution, and we can stop the
process at a desired maximum allowed resolution (= 8 in the example). That is, taking n
steps, would imply 2n target function evaluations (plus the 2 at the extremes of the initial
interval). At first sight, reaching this maximum resolution may involve evaluating the target
function at as many intermediate points as the originally suggested method. But more often
than not, a bisection-suitable interval is found much earlier. In Figure A.3 this happens
in step 2, with the fifth evaluation at x6. We will rarely be that lucky, so a fourth step
is shown to illustrate the following additional time-saving criteria that we added in each
interval assessment to avoid further unnecessary evaluations in subsequent iteration steps:

[6] Here we used the identity tanh(z) =
e2z − 1

e2z + 1
.
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• After a minimum safe resolution is achieved, intervals with magic numbers at both
extremes are likely to be outside Dom(f) and can be skipped. This is the case of
[x0, x2], which prevented evaluation at x1. We introduce this minimum resolution to
avoid falling for [x0, x8], for instance, and other cases where the valid domain [xa, xb]
could be much smaller than the starting interval.

• This is also useful to avoid an interval containing the artificial discontinuity (xb), which
is characterized by having only one extreme with magic number A, and a different value
with opposite sign on the other, at the risk of missing out on additional true roots that
lie very close to this border of Dom(f). In the example, such an interval is [x6, x8], thus
avoiding x7.

• The same can be applied for intervals, that may lie entirely or partially inside Dom(f),
for which we sensibly suspect they are far away from the root, giving similar high
values at both extremes (e.g. f̃(xi) ' f̃(xi+1) & 0.8A or . −0.8A). This happens
with [x2, x4] allowing us to skip x3.

This method, dubbed IRIS (an acronym of this subsection’s title), was successfully ap-
plied in our simulations, both for finding wind profiles with the shooting method, and for
later matching them with XRB models. The illustrative example in Figure A.3, though hand-
drawn, synthesizes the essence of the situations encountered while applying the method in
Section A.3 and Section 3.2. In most cases, a root was quickly found after few iterations,
reaching low resolutions of 4 or 8 intervals (2 or 3 iteration steps, 8 or fewer function eval-
uations), and saving a lot of computing time. In a few cases, more were needed, requiring
resolutions of 256 or 512 to find a root (8 or 9 steps, and up to 512 evaluations). If we
had chosen a fixed amount of subintervals, as the originally suggested method requires, for
instance 100 intervals, it would have taken much longer to find a root due to the extra unnec-
essary upfront evaluations when compared to our quick findings at low resolution (100/22−3

times longer). On the other hand, we also would have missed the roots for the cases that
required a higher resolution. The only case in which IRIS would not introduce an improve-
ment in speed, is when there is no actual root in the interval; and even then it may still save
us from reaching maximum resolution through one of the interval skipping criteria, once the
minimum resolution is achieved. Developing such a robust algorithm that could overcome
the aforementioned problems and adapt to this variety of situations, while at the same time
optimizing computing efforts, was a key element in the present work.

A.4.2 Simplisection : a multidimensional bisection?

In Section 3.2, we found yet another situation in which we needed a special root-finding
method, but this time for an apparently unavoidably two-dimensional problem. Multidimen-
sional root finding methods commonly found in literature are all derivative-based, or rely on
calculating some numerical approximation of derivatives. This makes them suffer from the
same inadequacies, previously explained throughout this section, when trying to apply them
to our particular problem at hand (especially overshooting). To our knowledge, no practical
generalization of bracketing methods exist for multidimensional root-finding problems. In an
ambitious move, we attempted to develop such a method, ending in a bitter-sweet outcome.

Inspired by our slow but trusty work-horse, bisection, we tried to formulate an algorithm
that catches its spirit and expands it to higher dimensions. At each step, bisection takes a
segment [an, bn], divides it in two, evaluating our function at the middle-point an+bn

2 , and
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checks which half contains the root by looking for opposing signs in function values at each
end of a particular interval. So, we need a generalization of segments to more dimensions, a
way to divide them into smaller similar elements, and a way to decide if and where the root
lies within one of these partition sub-elements, hopefully with only a few function evaluations
per step.

The generalization of a segment to more dimensions is the simplex, the simplest polytope
in an n-dimensional space.[7] Therefore, we name our method Simplisection (dubbed SiSec,
for short). In two dimensions, a simplex is a triangle; in three, a tetrahedron, and so on. In
N dimensions, a simplex is the region inside the convex hull determined by N + 1 affinely
independent vertices.[8] We will postpone the generalization to larger dimensions for a future
study and consider first the two-dimensional case we need, that means: triangles.

Figure A.4: Simplisection illustration of root location cases.

Let n be any step in our iterative algorithm. In general, unless we are quite unlucky,
applying a function f : IR2 → IR2 to the three vertices of a triangle, denoted by vectors
{~an,~bn,~cn}, will also result in three points, {~αn, ~βn, ~γn} respectively, that determine a dif-
ferent triangle in the arrival space. Here we need to remark that this new triangle in the
arrival space is not the image through f of the original triangle. Vertices aside, a non-linear
function[9] will deform the straight sides of the original triangle into curve segments. The
extent to which the new triangle and the actual image differ will depend on how far from
linear our function is. That is, the smaller the second and higher order terms in its series
expansion are, the better this triangle approximates the actual image. Unless the root co-
incides with any extremum,[10] terms higher than linear order usually become smaller the
closer we are to the root.

[7] A polytope is the generalization to any number of dimensions of the three-dimensional polyhedron.
[8] Meaning that no lower dimension sub-space can contain all vertices at once.
[9] Like the one we are dealing with surely is. Otherwise roots are easily found by diagonalizing a matrix.

[10] Here the relevant terms are second order. Bisection would also a fail in this situation.
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We would like to determine if the zero in the arrival space lies within this triangle, rising
our chances that the root lies inside the original triangle as well. If so, we would further
subdivide it in following steps, and iterate. One way to do this is by calculating the sum of
all angles between vector pairs among {~αn, ~βn, ~γn} (see Figure A.4). That is, we want:

θn = arccos(α̂n · β̂n) + arccos(β̂n · γ̂n) + arccos(γ̂n · α̂n) (A.14)

where the hat denotes normalized vectors (e.g. α̂n = ||αn||−1~αn). We will distinguish three
possible cases, illustrated in Figure A.4 by evaluating three different functions, {f, g, h}. If
θn = 2π, then the zero lies within the arrival triangle (f case), and the chances are high
that the root also belongs inside the original one. We will keep this original triangle. If
θn � 2π, then it lies far outside (g case), and our chances are slim. We would surely discard
this triangle. But we should not rush to discard it in a case like h, where it lies in the
vicinity, giving a θn . 2π. In this case the zero may still lie inside the actual image of
the original triangle. We can specify a small threshold difference ε for cases like these such
that, if 2π − θn < ε, we allow it to survive for further analysis in following steps. It is clear
now that the question of a given triangle containing a root is not one with a binary answer,
but a fuzzy matter that depends on θn. The decision to further divide and analyze one of
them, discard it completely, or maybe save it for a later low priority search, can be made
accordingly, by adapting the ε parameter to each case.

Figure A.5: Simplisection partition and function evaluation possibilities for advancing steps.

We now need to specify a way to partition a good triangle into new smaller triangles to
be assessed in step n + 1. We would like to make as few evaluations as possible too. The
cheapest option is to evaluate one new point at each step. Following bisection spirit, we could

choose the geometric middle point ~an+~bn+~cn
3 . This divides the original triangle into three

new triangles (a tri-section), a third of the area each. With f being non-linear, the image of
this geometric middle-point will surely not correspond to its counterpart in the arrival space
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triangle, i.e. f
(
~an+~bn+~cn

3

)
6= ~αn+~βn+~γn

3 , but it will have good chances of being somewhere

inside of it (see Figure A.5 top case). The problem with this choice is that, if the root lies
close to one of the edges, in subsequent partitions like this, this edge’s vertices could remain
unchanged, resulting in increasingly thiner triangles. Fearing this could present convergence
problems, this option was not explored further.

The second partition possibility explored is to bisect each triangle edge, requiring three
new function evaluations at each step. Now the original triangle is divided in four smaller
triangles (a tetra-section), all equivalent in shape to the original one (bottom case of Fig-
ure A.5). Again, the images of these three new points will not correspond to the edge

mid-points in the arrival triangle, e.g. f(~an+~bn
2 ) 6= ~γn+~βn

2 , and so on. However, since they
may lie outside, they can catch an outlying zero close to the edge. The algorithm would
then proceed at each step as follows:

1. Evaluate the function at vertices {~an,~bn,~cn}, obtaining the image values, {~αn, ~βn, ~γn}

2. Check if any of the vertices corresponds to a root, e.g. ||~αn|| < δ, for a given tolerance
δ. If so, we can stop now, or continue to search for more roots.

3. Check the resulting points angle sum θn (Equation A.14) and decide: If 2π − θn < ε,
then divide into sub-triangles (tetra-section or other choice) and add them to a waiting
list for analysis in subsequent steps. Otherwise, discard it. We can also discard triangles
for which a maximum precision has been achieved (vertices too close), without finding
a root (this safety measure would certainly fail for long thin triangles resulting from
tri-section).

4. Load the next triangle in the list, and iterate until either no triangles remain in the
list, or a maximum number of steps has been reached.

This algorithm was tested with several trial functions giving promising results, converging
on multiple roots, even for classic examples of functions and starting positions for which
derivative-based method would clearly fail. However, when applied to the original problem
it was intended for, the XRB-wind profile match (Section 3.2), time costs made it impractical
for a full scale exploration of an entire XRB model data set. This is the main reason it was
set aside in favor of the method explained in Section 3.2, combining IRIS with Battleship.

Aside of the intrinsic cost of calculating a single wind profile, the overall large time cost
may have had another contributing factor: the extra cost of evaluating the functions three
times in each step (for tetra-section). A step is reducing the area to 1/4 of the original, at
best. Since area scales as the square of the distance between vertices, that means distances
are only halved, so we get to only double the precision at each step. The precision gain per
function evaluation is only a factor 2/3. By comparison, bisection has a precision gain per
function evaluation of 2. If tri-section could be worked out, with 1/3 area and one point per
step, it would mean a gain per evaluation of

√
3 ' 1.73. Better, but not certain it is feasible.

A hybrid option could be tried, evaluating at only one of the tetra-section edge mid-points
per step, dividing the original triangle in two, halving the area, and obtaining a

√
2 ' 1.41

gain ratio.
Although the Simplisection implementation explained here was impractical for the rather

complicated case at hand, it still proved useful for test cases where other methods would cer-
tainly fail. An interesting possibility is its potential generalization to n-dimensions. Further
study is needed to achieve this, and explore possible improvements.



A.5 Grid search optimization: a game of Battleship 63

A.5 Grid search optimization: a game of Battleship

Many times across the present work, we needed to explore a parameter space (or a given
data set), usually in the form of a two-dimensional grid, in search for a region in that space
(or a subset of data points) for which a certain set of desired conditions is met. The extent
and shape of that desired region was a priori unknown and changed in relation to other
varying parameters (or between datasets). Each point in the grid required time-consuming
calculations to determine its compliance with the desired conditions. Quite often, the most
expensive points to evaluate were the ones that did not meet the required conditions, lying
outside the desired region, and making their calculation a fool’s errand.

In order to avoid exploring the entire grid blindly, wasting computing efforts, we imple-
mented an algorithm inspired by the board game Battleship. In the game, each player tries
to sink a fleet of warships, laid by the opponent in an unknown distribution over a grid. The
player guesses grid points to shoot at, to which the opponent must truthfully answer “hit”
or “miss”. Since most of the ships span across several contiguous grid points, once a player
hits one of such points, a sensible strategy is to subsequently shoot at the adjacent points,
trying to quickly sink one entire ship, rather than to keep shooting randomly. This is the
key point of the algorithm we implemented: once we found a favorable grid point (a hit), we
continue the search analyzing (shooting at) points around it.

Illustrated in Figure A.6, the algorithm proceeds as follows. For the first step, we provide
a rather small subset of points as first guesses to shoot at. In practice, if we can apply some
physics insight, we may have an approximate idea of the desired region shape and location,
or at least where we will surely not find it.[11] If this is not the case, we can always choose a
few equidistant points to start with, which is equivalent to performing a much cheaper low
resolution sweep of the grid. After this relatively inexpensive first salvo round is depleted, we
account for the hits and target their first neighbors for the next barrage. In other words, every
point in the grid that has at least one adjacent hit, and has not been targeted in a previous
step, is marked for analysis in the following step. Iteration of this process progressively
expands the area of favorable points found in each step, growing in an organic-looking manner
from a first few seed hits. The iteration stops when no further target candidates are found
for a subsequent step. Although the idea is very simple, the improvement in speed due to
computational effort saving in our problems cannot be overstated, as it will become clear
soon.[12]

The first situation in which this algorithm was applied in our work was the exploration
of wind model parameter space (Ṁ, Ė) in Section 2.4.2. There, we wanted to find a region
of solutions that were compatible with a RNS in a typical range (fully colored area in Figures
2.2 to 2.4).[13] This region needed to be explored in high resolution in order to find a decent
amount of solutions with RNS = 13 km. Indeed, the colored area is, in reality, composed by
a few thousand hits from this search, with an original grid of 128× 128 points (that would
mean trying over 16 thousand wind model solutions). In this case, we knew exactly where
to shoot first, not by physical insight, but because we already had a 32× 32 grid exploration
to guide us (the bigger points also shown outside this desired area). This lower resolution
sweep was previously done to find the region of acceptable (hypothesis consistent) solutions,

[11] The same way we will not find ships on dry land or very shallow waters.
[12] In addition, its beneficial side effect is to minimize chances of suffering the impatience, and possible

pain and frustration, from long-running simulations crashing or being useless due to bad set-up.
[13] That is, solutions that met wind base boundary condition, explained in Section 2.2.3, at the given radii.
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Figure A.6: Battleship algorithm illustration. Numbers represent the iteration step in which
grid locations are evaluated. Step 1 targets equally spaced points, manually indicated as
first guesses. Subsequent steps expand the search by targeting points that are adjacent to a
previous hit (green), while points with only misses (red) around are not considered as targets
for following steps. Empty locations are never targeted by the algorithm.

prior to the development of the Battleship algorithm. This is why Figures 2.2 to 2.4 present
many misses where no solution was found.[14]

The other important application of Battleship was sweeping the XRB models (time-
step,shell) grid in order to find XRB-wind matching points in Section 3.2. Here, the requisite
for a hit was the success in finding a wind profile with a density ρWB matching the XRB
model density ρBS at that grid point, with given radius and energy outflow. For this, several
wind model solutions were tried at each grid point, employing IRIS root finding method,
with varying Ṁ . This potentially squares the computing time of each point with respect
to the previous example, which required computing only one wind profile per point.[15]

Additionally, the grid resolution was fixed by the XRB model data. In most XRB models
analyzed, this grid contained around 4× 105 points, while the high resolution model XRB-
A contained over 4 × 106 points. A titanic task, at first sight. Nevertheless, we do not
have to explore the whole grid, since we can apply the physical insight obtained from the
previous study in Section 2.4. For instance, from the parameter space exploration, we can
expect points with normalized energy outflows further than a few percent above or below
Ė/Lo = 1.05 to likely admit no compatible wind solution at all. In addition, points with
physical conditions outside the region of validity of the wind model hypothesis would have
to be skipped. This reduced the candidate grid points to a few hundred in low resolution
models, and a few thousand in the 200-shell model. With computational cost per point

[14] Later on, we repeated the study with other parameters and scenarios (including different envelope
compositions, NS radii and masses, and even white dwarves) using Battleship with an equidistant point
subset as first guess. Sadly, since time was short, their analysis will be postponed for future work.
[15] Yes, this implies using two nested IRIS root-finding at each XRB grid point: one in the shooting method

for calculating each candidate wind profile with different Ṁ , and a second one to find that particular Ṁ that
makes the wind base density match with that of the XRB.
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being squared with respect to the previous application, this is still quite a feat, equivalent
to sweeping a wind parameter space grid of a few 104 − 106 points.

Enter parallelization, divide and conquer. We can always partition the original data set
and feed each resulting subset to independent instances of our algorithm. Each instance can
run on a different processor core of a multi-core machine, or in several machines at once. One
way to implement this is to directly divide the grid into different quadrants. However, there
is a better way in our case. Since we also want to evaluate a second match in temperature
afterwards, not every hit in density we find will ultimately be useful.[16] Instead we performed
a low resolution first run, with one in every eight points of the grid and skipping the rest.
This gave us an insight on where the actual useful hits were. With this information we could
reduce the target area of first guesses to a few tens or hundred points (tenfold reduction),
avoiding points that were far from temperature match, for subsequent runs. We then ran
seven more times at 1/8 resolution, in this reduced target area, in parallel, and shifting the
positions by one point in each of them to complete the full set.

The computational time saved, when sweeping a grid with Battleship, is not always in
direct proportion to the ratio of hits to unexplored points (e.g., avoiding half the points,
does not mean halving the computing time). As stated before, the speed improvement
can be much better. For instance, in parameter space exploration, the points with no wind
solution usually take the longest to resolve, due to the exhaustive maximum resolution search
performed by the IRIS root-finding within the shooting method (see Section A.4.1). For each
of such points, the average calculation can take up to 2m−k times longer than the average hit
points, where m is the maximum steps allowed (which IRIS depletes before giving up), and
k is the average steps needed by IRIS to resolve a hit. In our study, we used up to m = 9 in
some cases, while hits took a varying number of steps, normally in the range of k = 3 − 5,
giving 2m−k = 24 − 26; i.e., misses cost 16 − 64 times more than hits. If Battleship only
explored a fraction of points β of the entire grid, leaving 1−β unexplored, then by weighting
each grid point evaluation with its corresponding cost, we get that the computing time can
be reduced down to a fraction:[17]

θ =
Battleship time

full grid time
&

β2k

β2k + (1− β)2m
=

(
1 +

(
1− β
β

)
2m−k

)−1

(A.15)

of the original cost of exploring the full grid. If, for instance, Battleship hits a third of the
grid points, β = 1/3, then with our values of m and k, we get lower bounds for θ between 1

33
and 1

129 . That is, in the worst of cases, sweeping the entire original grid blindly could have
taken between approximately 30 to over 100 times longer. With such a simple idea inspired
on children entertainment, playing a game of Battleship is not a waste of time, but quite the
opposite.

[16] The reason why we do not require this extra condition upfront for a hit is because the final matching
points did not always lie adjacent to each other, making Battleship miss on many.
[17] In reality, we should weight misses at the perimeter of the hit area with the corresponding maximum
IRIS steps factor, 2m. But this is a second order correction most of the time since, in high resolution, the
number of perimeter points usually scales with the square root of the number of points in the hit area (at
least for single convex area shapes), and can be neglected. An exception is the hit area being small compared
to the grid (β << 1), in which case its perimeter would be comparable in size, but also small when compared
to the full grid, still saving a lot of computing time. If the resolution is not high, then the grid size itself is
not that big, in which case there is practically not much motivation to apply the algorithm in the first place.



66 A Computational and mathematical techniques

A.6 Data smoothing with local regression

During our study in Chapter 3, we had to extract useful information from noisy or
otherwise inaccurate data sets. Data smoothing techniques help us create an approximate
representation of the general behavior in the original data, while leaving out noise and other
rapidly fluctuating details. Among them, local regression (Cleveland 1979) is especially
useful for situations where we do not want to impose any global modeling function to fit
the data to.[18] Instead, it only fits simple models, usually a polynomial with degree ≤ 2, to
subsets of the data localized around each fitting point. The main drawback of the method,
thought, is its high demand in terms of computational time compared to other methods,
especially when applied in higher dimensions or to large data sets.

Its most common implementation is the Locally Weighted Scatter-plot Smoothing, or
LOWESS (see Cleveland & Loader 1996) which, as the name suggests, preforms a weighted
regression that gives more importance to data points the closer they are to the fitting point.
At each fitting point, its nearest neighbor data points are selected to perform the weighted
polynomial regression. This local polynomial is then evaluated at the fitting point to obtained
the new smoothed value. The process is repeated for every point of the data set.

The amount of data points selected for the local fit is controlled through a smoothing
parameter α, either provided as a fraction of the data points or as a maximum distance to
the fitting point. Large values of α produce smoother curves, but may miss some important
rapidly-varying detail. Smaller values, on the other hand, conform better to the original
data, but may catch some of the undesired noise. The weighting function can also be chosen
manually. The default choice is the tri-cube weight function:

ω(x) = (1− d3)3, (A.16)

where d = |x− xo| is the distance from data point x to the fitting point xo, but others can
be picked. Alternatively, if our data points have associated errors δ(x), we can use them to
favor points with smaller error, by choosing ω(x) = δ(x)−2.

In our work, we employed the lowess function provided in basic statistics packages within
R scripting language, in two occasions. The first one was to perform a two-dimensional
smoothing of some variables in the XRB models data (Section 3.1). For these, the default
tri-cube weight function was used, since we had no error data. The large amount of data
points, allowed us to choose relatively small smoothing parameter values, α = 0.05 − 0.2
(default choice is 0.2), which were manually explored to balance noise reduction against
the loss of significant physical features.[19] The second application was on the sequence of
matching points between XRB and wind profiles (see Section 3.3.2).[20] In this case, we
had fewer points per data set, making it necessary to pick higher smoothing parameters
α = 0.3 − 0.7. However, this time we had the matching error δ to use as weights, making
the smoothed curve follow the more accurate matches.

[18] Although, much earlier, Savitzky & Golay (1964) developed a method of similar characteristics.
[19] For instance, choosing an excessively large α could flatten the XRB luminosity spike.
[20] We also performed an interpolation with the predict.loess function.
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Input micro-physics

In the stellar wind model we implemented (Section 2.1), the set of dynamic equations
(2.1 to 2.4) must be supplemented with constitutive relations that express the total pressure
P , specific enthalpy h, and opacity κ, as functions of density ρ, temperature T , and mass
abundances Xi, where subindex i denotes the different elements present in the envelope.
Pressure and specific enthalpy are determined by the equation of state for the given gas
mixture and radiation, as described in Section B.1. Opacity is obtained from interpolation
or extrapolation of two different set of tables, and is discussed in Section B.2.

B.1 Equation of state

Specific enthalpy can be expressed in terms of pressure and internal energy density u as:

h =
P + u

ρ
, (B.1)

where the contributions from both gas and radiation have to be considered. As in most stars,
the contribution from radiation follows a black-body law, then:

Prad =
urad

3
=
aT 4

3
. (B.2)

where a = 4σ
c = 7.565× 10−15erg cm−3 K−4 is the radiation constant. For the range of high

pressures and temperatures present in NS expanded envelopes, the gas can be considered to
be a non-degenerate, non-relativistic, fully ionized ideal gas:[1]

Pgas =
2

3
ugas =

ρkT

µmA
(B.3)

where k = 1.380649 × 10−16 erg K−1 is the Boltzmann constant, and mA = 1.6605391 ×
10−24 g is the atomic mass unit. The mean mass per particle µ, in units of mA, depends on

[1] However, for temperatures above 109K, effects from electron degeneracy starts to become noticeable (see
Blinnikov et al. 1996).
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the gas composition given by mass abundances Xi or number fractions Yi, and counts ions
and electrons as separate particles. The resulting constitutive relations are:

P (ρ, T,Xi) = Pgas + Prad =
ρkT

µ(Xi)mA
+
aT 4

3
(B.4)

h(ρ, T,Xi) = hgas + hrad =
5

2

kT

µ(Xi)mA
+

4aT 4

3ρ
(B.5)

The aforementioned relationship between µ and the elements mass abundances Xi, or
number fractions Yi, can be derived as follows. For a given species with atomic mass Ai
(in mA units), electric charge Zi (in electron charge units), if Ni and mi are the number
of particles and the mass of that species in a certain volume, respectively, then the number
fraction Yi, and the mass abundance Xi are, by definition:

Yi =
Ni
NT

=
Ni∑
iNi

(B.6)

Xi =
mi

mT
=

AiNi∑
iAiNi

(B.7)

where mT =
∑
imi and NT =

∑
iNi account for the total aggregated mass and number

of particles of all elements, in the same volume, respectively. It is easily seen that they are
normalized:

∑
i Yi =

∑
iXi = 1. In general the mean mass per particle µ, is defined as:

µ =
mT

NT
=

∑
iAiNi∑
iNi

(B.8)

but, for a fully ionized gas, the electrons and ions count separately for particle number, and
the mass of the former can be neglected, that is mT ' mions, so:

µ =
mT

Ne− +Nions
=

∑
iAiNi∑

iNi(Zi + 1)
(B.9)

since each species contributes with Zi electrons plus 1 ion per atom. If we replace definitions
B.6 and B.7 into Equation B.9, we get the desired functions:

µ(Yi) =

∑
iAiYi∑

i Yi(Zi + 1)
(B.10)

µ−1(Xi) =
∑
i

Xi

Ai
(Zi + 1) (B.11)

where we divided both denominator and numerator in Equation B.9 by NT to obtain B.10.
If we also define the mean charge per ion (or average number of electrons per atom) as:

ζ =
Ne−

Nions
=

∑
i ZiNi∑
iNi

=
∑
i

ZiYi (B.12)

we can write the following useful relations:

µ(Yi) =

∑
iAiYi
ζ + 1

(B.13)

µ−1(Xi) = (ζ + 1)
∑
i

Xi

Ai
(B.14)
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where Equation B.13 comes from distributing the parenthesis in the denominator of Equa-
tion B.10, and then using B.12 and normalization relation

∑
i Yi = 1. Meanwhile, Equa-

tion B.14 is obtained similarly from B.9, but previously dividing its denominator and numer-
ator by NT . Alternatively, from Equation B.9, multiplying both denominator and numerator
by AiNi and

∑
iNi, and regrouping factors:

µ =

∑
iAiNi
AiNi

AiNi∑
iNi

∑
iNi∑

iNi(Zi + 1)

= X−1
i AiYi (ζ + 1)−1

That is:

Xi =
AiYi

µ(1 + ζ)
(B.15)

which allows us to quickly switch from number fractions to mass abundances of each element
separately.

B.2 Opacity

Two different sets of opacity tables have been used in this thesis: the ones by OPAL
(Iglesias & Rogers 1996), and The Opacity Project (or TOP) (Seaton et al. 1994). Both
projects provide a set of tabulated logarithms of Rosseland mean opacities, log κ, as a func-
tion of (log T, logR), where R = ρ (T/106)−3, for different values of hydrogen mass fraction
X and metallicity Z. They also provide a set of Fortran subroutines to process the tables
and interpolate for values in between the tabulated ones for all variables.

In the case of OPAL tables, the relative abundances of the 22 allowed chemical elements
is fixed for most elements heavier than helium, allowing the variation of only two of them at
a time beyond the value included in the metallicity. This makes it necessary to request the
OPAL website to generate a new table set for other desired compositions. In comparison,
TOP gives you the option to download a package with all necessary monochromatic opacity
tables and subroutines to build your own set of Rosseland mean opacity tables locally, for
any arbitrary composition, but only 17 elements are allowed in the mixture. The generation
of such sets of opacity tables, for a given custom mix, demands a short extra computing time.
So does the pre-loading of the up to 2 gigabytes of monochromatic opacity data, which is
required to remain in the main memory for generating new mixture tables. This preparation
takes a few extra minutes at the beginning of every wind simulation.

The opacity tables provided by OPAL cover a wider domain in temperature and density,
but the metallicity is limited to Z = 0.1 in most cases. For the first group of simulations
described in Section 2.4, the opacity tables from OPAL have been used. For the simulations
that required higher metallicity, such as the ones performed for Chapter 3, The Opacity
Project packages were used. It is worth mentioning, though, that since these tables al-
low fewer elements than the ones contemplated in XRB hydrodynamic models studied in
Chapter 3, the composition used for calculating the opacities through TOP had to be ap-
proximated. The abundances of elements heavier than Ni were added to it, which is the
heaviest one that TOP allows. This is a limitation that cannot be resolved at present time,
until opacity tables with heavier elements become available.
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In order to obtain opacities outside the available temperature and density domain from
OPAL or TOP, different methods were employed depending on which set of tables was
being used and which region of the (log T, logR) space was considered. Given the typical
temperature and density values expected for the wind models in the XRB scenario, the
regions for logR > 0, and log T < 5 are not of concern, and there’s no need to extrapolate in
these directions. However, the high temperatures reached by XRBs are outside the available
domains, and so is the small density (and R) at a typical wind photosphere.

At low density the opacity is expected to be dominated by Thompson electron scattering,
κes = 0.2 cm2g−1. As temperature escalates, opacity drops due to electron-positron pair
creations. Buchler & Yueh (1976) have calculated opacity values in this regime, and the
formula proposed by Paczyński (1983):

κP = κes (1 +X)
[
1 + (αT )ξ

]−1
, (B.16)

with ξ = 0.86 and α−1 = 4.5×108K, approximates these values very well for a non-degenerate
gas, and also approaches Thompson scattering value as T drops.

Formula B.16 was used for temperatures above the respective maximum, and R values
below the respective minimum, of each table sets (OPAL or TOP). However, this formula
does not match continuously with TOP values at its reduced domain borders. This repre-
sents a potential problem since it translates into a discontinuity of the derivatives in the wind
model equations, making the numerical integration algorithms behave erratically. The fol-
lowing blend scheme was employed to overcome this issue. For any two functions f(x), g(x)
overlapping in 0 ≤ x ≤ 1, consider the blend function:

F (x) = b(x)f(x) + (1− b(x)) g(x) (B.17)

with b(x) =
1

2
− 1

2
cos(πx) (B.18)

where x is a parameter that measures the distance to a given border of TOP domains. By
setting f to be the interpolated TOP opacities and g the extrapolation Equation B.16, for
instance, we obtain a smooth transition with continuous derivatives.



Appendix C

Additional XRB wind solutions

In Chapter 3 we have obtained stellar wind solutions matching the conditions of XRB-A,
that is, the 200-shell XRB hydrodynamic model by José et al. (2010). Here we will present
the analogous results for the remaining 55-shell bursts we were able to analyze, XRB-1 to
XRB-4, all corresponding to Model #1 from Table 3.1. We will comment on some of the
figures shown and their features, only when remarkable differences are found with respect to
the higher resolution model, especially if they are significant for the main results description
in Section 3.3.

C.1 Wind-Burst matching solutions

Since bursts XRB-1 to XRB-4 present a lower shell resolution, the jump of physical
values between shells is considerably larger. This makes it more difficult for the algorithm
described in Section 3.2 to find a match within such a low matching error tolerance, δ < 0.01,
as was used for the higher resolution model XRB-A. Although matching points were actually
found, with a slightly higher but still low δ < 0.05, in some models they were not enough to
reconstruct a decent time evolution. For these models, even larger δ thresholds were chosen,
keeping in mind their low accuracy. This is later partially compensated when performing the
matching points smoothing and interpolation (described in Section 3.3.2), by the fact we are
using the same matching errors as inverse weights, in the form ω = δ−2, to get a curve that
sticks closer to the most accurate matches where possible, while still being able to connect
the missing dots with the help of the less accurate ones. This way a more complete, but less
detailed picture can be obtained.

Figure C.1 shows the matching points obtained in each of the burst evolutions, along
with the δ threshold employed. The first difference with XRB-A arises here. In some of
these bursts an almost complete evolution is observed. A characteristic U-shaped path of
matching points is observed around the peak radial expansion in models XRB-1 and XRB-3.
The match is located at relatively shallow shells by the onset of the wind, then it travels
to deeper shells, and finally rises again towards the end. This does not seem to be the case
with XRB-2, which shows matching points starting at deeper layers, rising slowly in the
beginning, and more rapidly towards outer shells by the end, in a way that qualitatively
resembles that of XRB-A. Even though we observe the full evolution of the wind phase, the
overall duration is shorter than that of XRB-A. All of them lasting less than 10 s, while
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Figure C.1: Wind matching points during XRB evolution. Analog to Fig 3.3 but for models
XRB-1 to XRB-4, in reading order.

XRB-A wind duration was approximately 30 s.
The evolution of matching points in the wind parameter space is shown in Figure C.2.

In all of the bursts analyzed, they appear along the same curve. The initial matching points
show higher energy outflows, Ė/LX ' 1.075, and lower mass outflows, Ṁ < 1017g/s, that
is the top left corner of the plot. They evolve towards lower Ė/LX ∼ 1.05 and higher
Ṁ ∼ 1018g/s, by the middle of their evolution (bottom right corner), and go back along the
same curve to the starting position in later times. By contrast XRB-A showed only the last
half of this behavior, starting from the bottom right corner.

C.2 Mass-loss

Figure C.3 shows the application of the smoothing-interpolation technique, described in
Section 3.3.2, to the mass outflow of matching points in bursts XRB-1 to XRB-4. Again, this
allows us to reconstruct the time evolution necessary to calculate the mass-loss. Although
the matching points show significantly larger error with respect to XRB-A (as shown with
the color scale), the curve reconstructed with this technique follows those points with smaller
error. The curve color also gives an estimate of the matching error expected for it at each
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Figure C.2: Evolution of Wind-Burst matching points in parameter space. Analog to Fig
3.4, but for models XRB-1 to XRB-4, in reading order.

time. In most cases, this expected error is still quite small, in the range of δ ∼ 0.01−0.03. The
exception is XRB-4, which shows considerably larger errors, δ > 0.15. Very few matching
points were found below such large error threshold, making it difficult to reconstruct an
accurate evolution. This may imply that XRB-4 is not a good candidate for a wind to
appear.

The time-integrated expelled masses for each burst are: ∆m = 2.21×1017 g from XRB-1,
∆m = 7.58×1018 g from XRB-2, ∆m = 2.18×1018 g from XRB-3, and ∆m = 1.04×1018 g

from XRB-4. These values are all at least an order of magnitude smaller than in XRB-A,
where ∆m = 6.16× 1019g.

By applying the same smoothing technique to the mass abundances of every isotope, we
are able to reconstruct their time evolution and integrate the total masses expelled (Equa-
tion 3.5) for each of them. The results are shown in Figure C.4, for the unstable isotopes
directly produced and expelled during XRB winds, and in Figure C.5 for their final stable
counterparts. XRB-1 shows significantly lower expelled quantities of the heaviest elements
allowed in the XRB models. This heavy elements expulsion becomes more important in the
subsequent bursts. This may have two contributing factors. The first is the fact that the
wind matching points occur at deeper shells, where the presence of heavy elements is more
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Figure C.3: Time evolution of mass outflow, Ṁ , reconstructed with smoothing technique
from matching points with higher error. Analog to Fig 3.7, but for bursts XRB-1 to XRB-4,
in reading order.

prominent. This is the case of XRB-2 (see Figure C.1). The second factor is related to
the overall availability of heavy elements in the envelope. With every bursting episode, new
ashes of nuclear burning accumulate in every shell. This may well be the case of and XRB-3
and XRB-4, showing high quantities of heavy elements expelled even when the matching
points occur within in the top ∼ 5− 15 shells, as in XRB-1.

Only very small quantities of light p-nuclei are expelled in these cases. The most signif-
icant is 92Mo with: 4.41 × 1012 g in XRB-2, 8.95 × 1012 g in XRB-3, and 3.6 × 1013 g in
XRB-4. These are thousands of times smaller than in XRB-A. Their contribution to Galactic
abundances is therefore even more insignificant.

C.3 Observable magnitudes

Lastly, we would like to compare the evolution of photospheric magnitudes in the lower
resolution bursts to the similar results obtained for XRB-A. Figures C.6 to C.9, show the
evolution of photospheric radius, temperature, density, and radiative luminosity, for each
burst.

In all four bursts, the photospheric radius plots (top left panel in each figure) show almost
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Figure C.4: Mass yield per isotope for the duration of the wind. Same as Fig 3.9, but for
bursts XRB-1 to XRB-4, in reading order.

the full cycle of expansion and recession of the envelope due to the wind. In most of them, it
starts very close to the NS surface (marked by a gray dashed line), it expands to a maximum
radius, and recedes back to the original radius. The maximum photospheric expansion varies
in each case. XRB-1 reaches a maximum of only ∼ 35 km. The most expanded one is XRB-2,
with ∼ 300 km, followed by XRB-3, at ∼ 120 km, and finally XRB-4, expanding to ∼ 80 km.

Photospheric temperature and density show the opposite behavior, starting at higher
values, going down and then rising again. This behavior is in complete agreement with the
rph ∼ T−2

ph ∼ ρ−1
ph correlations found in Section 2.4.3 and Section 3.3.3. Luminosity plots

show the small dip mentioned in Section 3.3.3. Their minima are only a few percent below
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Figure C.5: Stable isotopes yield (for models XRB-1 to XRB-4). Final products from ra-
dioactive decay of the unstable isotopes shown in Fig C.4.

the starting and ending values (5 − 6%). Nevertheless, the overall photopheric luminosity
is much lower than the peak luminosities reported in the XRB models without wind (see
Table 3.1). The reasons behind this difference and its implications were already discussed in
the aforementioned subsection in Chapter 3.
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Figure C.6: Time evolution of observable (photospheric) magnitudes, in model XRB-1. In
reading order, radius, temperature, wind velocity, and radiative luminosity. Analog to Fig 3.11,
but for model XRB-1.
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Figure C.7: Same as Fig C.6, but for model XRB-2.
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Figure C.8: Same as Fig C.6, but for model XRB-3.
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Figure C.9: Same as Fig C.6, but for model XRB-4.
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