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Abstract

In a large number of geo-environmental applications, it is essential to model coupled
processes that depend on several design parameters such as material properties and
geometrical features. Thermo-hydro-mechanical (THM) processes are, among others,
key effects to consider in critical applications such as deep geological repository of
hazardous waste. This thesis proposes novel model order reduction strategies to
evaluate the thermo-hydro-mechanical response of the material, taking into account
the complexities involved in the coupled processes for such applications.

To include variability of some design parameters, an a-posteriori model order re-
duction approach with reduced basis methods is applied to solve the high-dimensional
parametric THM system. The reduction is based on an offline-online stage strategy.
In the offline stage, reduced subspaces are constructed by a greedy adaptive procedure
and in the online stage, multi-subspace projection is performed to quickly obtain
the coupled THM response at any value of the design parameter. At the core of the
greedy adaptive strategy is a goal-oriented error estimator that guides the selection
of optimal design parameters where snapshots are evaluated. To tackle nonlinearity
in the form of elasto-plastic material behaviour, the multi-subspace reduced basis
method is combined with sub-structuring by domain decomposition.

The effectiveness of the model reduction strategies are demonstrated on inverse
problems involving large-scale geomodels that depict the coupled response of host rocks
in potential deep geological repository sites. Two types of scenarios are considered: (i)
the host rock undergoing geomorphological process is investigated as glacier advances
over it for a period lasting over thousands of years and (ii) the clay response of an
underground research laboratory is modelled numerically to support and validate
in-situ heating experiments.
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2 Chapter 1. Introduction

1 Background and Motivation

Characterizing the coupled processes in geological porous media plays a very important
role for many geo-environmental applications including carbon dioxide sequestration
[124, 132, 133], geothermal resource extraction �[43, 47, 84], frictional heating in earth-
quake slip �[2, 80, 117], freezing and thawing in soils �[55, 88, 135] and deep geological
repository for nuclear waste isolation �[70, 93, 95, 120, 136]. The present challenges in
dealing with time scales, spatial configuration and performance requirements of these
engineered underground systems are becoming more and more demanding. In most
cases, it is imperative that computational methods are employed in order to fully
tackle the scope and complexity of these geo-environmental engineering problems.

Particularly for nuclear waste isolation projects where the deep geological reposi-
tory is expected to confine radioactive waste over a long period of time, it is necessary
to accurately predict the mechanical, thermal, hydrologic and chemical processes
that influence the overall performance of the structure. These coupled processes are
governed by changing conditions inside the disposal system – evolving from open-drift
to saturation period and eventually, through the entire heating and cooling cycle of
the decaying radioactive waste. Varying external conditions such as geomorphological
processes (e.g. due to glaciation or erosion) to which the structure might be subjected
will also contribute to the evolution of the coupled processes within the system. The
structure which is typically designed as a multi-barrier system requires these basic
functions: (i) the combination of engineered and natural barriers should structurally
hold the radioactive waste canisters in place while preventing excavation collapse,
(ii) the multi-barrier system should provide a very high level of water tightness to
avoid radionuclide migration to the geosphere, (iii) during the operational phase, the
high temperature and hydraulic pressure in the near field should not severely impact
the the previous functions and (iv) the geological repository must remain stable
while accounting for geomorphological processes over time scales of several thousands
of years. Having little to no obligation passed onto future generations to actively
maintain the facility, most countries including Argentina, Australia, Belgium, Canada,
Czech Republic, Finland, France, Japan, the Netherlands, Republic of Korea, Russia,
Spain, Sweden, Switzerland, the UK, and the USA prefer deep geological disposal to
isolate nuclear waste from the biosphere [152]. With several countries studying the
feasibility of operating a nuclear waste repository in the last decades, the repository
site in the Olkiluoto bedrock (Finland) will be the first licensed deep geological
disposal facility which is expected to start storing fuel-packed copper canisters in
2023 [68, 139].

Due to very long time scales involved in nuclear waste disposal, the safety and
performance analysis of the repository must be carried out by combining experimen-
tal studies with numerical simulations. Experiments are performed in laboratory
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Fig. 1.1 Interaction of coupled thermo-hydro-mechanical-chemical (THMC) processes
and its effects in rock mass behavior.

and in-situ to obtain information crucial to refining the numerical models used in
performance assessment. There are numerous long-term laboratory tests and in-situ
tests performed to investigate the interactions of coupled processes in near-field
systems of different host rocks [6, 17, 19, 111]. To support these laboratory and
in-situ tests validation, numerical models and computer codes have been developed
(e..g ROCKMAS, FRACON, MOTIF, THAMES, RF/ RM, CAST3M, CHEF/HY-
DREF/VIPLEF, TOUGH2/JAS3D) [4, 89, 95, 120, 121]. Most of these modelling
approaches are based on finite element (FE) analysis for which high-dimensionality,
due to nonlinearity, complex discretization, numerous uncertain parameters and
prolonged time evolution, becomes an unavoidable issue. Computational efficiency for
the FE-based modelling of coupled systems has been typically addressed by different
high performance computing strategies (e.g. using parallel solvers [99, 138, 144, 149],
implementing object-oriented programming paradigm [148], devising algebraic multi-
grid methods [150, 151], applying staggered Newton schemes [99, 131]) to alleviate
the computational burden.

In such applications where numerical simulations are combined with experimental
studies, the existence of uncertainties in model parameters is a critical aspect of
the problem. By treating the problem as a parametrized system, using robust
tools for inverse modelling techniques can effectively identify uncertain parameters
based on partial information and in-situ measurements. Describing the problem in
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Fig. 1.2 Deep geological repository structure (left) and and schematic view of the
multi-barrier system where radioactive waste is stored. Image taken from [13].

a parametric setting also allows for investigating the key consequences of variation
in system parameters with respect to the coupled processes behavior in the deep
geological repository. Within the framework of parametrized systems, a common
requirement is the need for cheap and efficient simulation tools enabling fast and
frequent solving of a set of problems that are similar to each other. For instance, the
same problem needs to be solved many times by modifying one or several parameters
in inverse modelling techniques. Having the set of problems share a common structure
and form, reduced order modelling (ROM) techniques are crucial to efficiently solve
the family of problems describing the parametrized system.

The purpose of ROM is to provide an accurate representation of generalized
solutions using a so-called surrogate model. When compared to the full order
approximation of the high-dimensional model, the reduced order model is obtained
with a significant reduction of computational resources, associated with much fewer
terms of the basis (number of degrees of freedom or modes) required to approximate
the solution. The overall computational cost of ROM techniques depends on two
phases:

(i) Offline Stage: An expensive procedure that involves construction of the
reduced basis. This is done only once for a fixed range of parameters.

(ii) Online Stage: A much cheaper procedure than full order approximation
where evaluation of the reduced model is done using the previously constructed
reduced basis. This phase is performed every time a solution at a desired
parameter value is evaluated. It is expected to produce ‘real-time’ response.

Model reduction techniques are typically classified based on how the reduced basis is
constructed. Construction techniques of ROM can be classified either as a-posteriori
or a-priori.
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The a-posteriori approach is fundamentally based on preliminary solutions of the
original problem evaluated at some selected points within the parametric space or
the so-called ‘snapshots’. Among a-posteriori approaches, the Proper Orthogonal
Decomposition (POD) is one of the most widely used method [15, 27, 76, 85]. POD
computes the optimal reduced basis using singular value decomposition (SVD) of the
snapshots [42, 143]. The weakness of the method is related to the computational
cost involved when dealing with large snapshot data. Other a-posteriori methods
aim at reducing the number of snapshots or avoiding SVD computations which can
result to loss of optimality in the reduced basis. A popular alternative to POD
computation is applying greedy algorithm to smartly select the snapshots which refers
to reduced basis (RB) method [97, 112]. The RB method performs the selection
of optimal snapshots by implementing an adaptive strategy which is driven by a
problem-dependent error estimator and greedy algorithm [11, 20, 61]. Other studies
subsequently combined POD and greedy algorithm to build a more efficient reduced
basis [86, 113].

The a-priori approach iteratively constructs the low-dimensional reduced basis
that solves the high dimensional problem on the fly. Such methods do not involve
using snapshots or SVD evaluations. The online stage for this approach does not need
to solve any system which proves to be advantageous when dealing with real-time
simulations as the solutions are always immediately available, regardless of the size
of the reduced basis [31, 33, 98]. In a-posteriori approaches, the computational
cost is pre-dominantly affected by the reduced basis dimension and the number of
evaluations required – each evaluation entails projection of the original problem onto
the reduced basis.

Despite being widely used in many engineering fields for several years, there
are very few studies that explored model order reduction applications to coupled
geomechanical problems (e.g. [22, 50, 87]). Due to the nature of model order
reduction where applicability is problem-dependent such that an effective technique
for one specific problem is not necessarily guaranteed to work for another problem,
development of model reduction techniques that tackle time-dependent and nonlinear
coupled systems is particularly challenging. Specifically for coupled processes in deep
geological repository application, using model order reduction techniques is a fairly
new research topic to be explored.
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2 Scope and Objectives

In light of the challenges related to modelling of coupled geomechanical processes that
are previously presented, the main objective pursued in the work presented in this
thesis revolves around developing model order reduction strategies tailored to deep
geological repository applications. To adequately tackle this objective, a two-fold
approach needs to be considered. One aspect is focused on addressing the complexity
of the physics that represents the coupled processes in the repository and the other
aspect is focused on exploring model order reduction techniques. Each aspect belongs
to a field of study which can be very broad to navigate hence, the scope of this thesis
is limited to the following subject areas.

• The coupled processes are described by a thermo-hydro-mechanical (THM)
system where uni-directional coupling is assumed with respect to the thermal
process. Chemical, gas or biological impacts are considered insignificant in the
types of applications presented in this study.

• The non-linearity investigated in the coupled THM system only occurs in the
mechanical aspect – related to the elasto-plastic behavior of the porous material.
The remaining aspects are described by a linear system.

• Snapshot-based (a-posteriori) reduced order modelling techniques are pursued
in this study. To be more specific, Proper Orthogonal Decomposition and
Reduced Basis methods are the main techniques explored for deep geological
repository applications.

• The developed model reduction techniques address the complexity in the coupled
system specific to the problem presented. Since ROM methods are known to
be problem-dependent, it is not guaranteed that the techniques developed in
this study will have the same effectiveness when applied to problems defined
differently.

Furthermore, the direction of this thesis is guided by the topics stemming from
the main objective and aiming to thoroughly answer the following research questions.

• Is it possible to carry out efficient (fast and accurate) computations for linear
coupled THM systems using snapshot-based model reduction in direct query
types of problem?

• How to extend and implement the previous approach to evaluate generalized
solutions for multiple query problems that include variability of some model
parameters?
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• In the context of parametrized problems and a-posteriori model reduction, how
can the offline stage be performed efficiently? In particular, how to optimally
select the snapshots by minimizing the size of snapshot data that yields highly
accurate reduced basis?

• How does the previously developed snapshot-based model reduction technique
cope with non-linearity introduced in the coupled THM system by elasto-plastic
constitutive laws?

• In real applications, how do the strategies developed in this study perform? Is
the computational gain significant enough to solve inverse problems that are
rather impractical in the context of full order finite element approximation? Is
the ROM approximation accurate enough to support and validate real in-situ
experiments?
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3 Major Contributions

In order to accomplish the objectives defined previously, the following novelties are
presented which constitute the main contributions of the thesis.

• A multi-subspace projection strategy is developed in the framework of snapshot-
based model order reduction to tackle the coupled processes in the THM system.
By doing so, the stability condition of the high dimensional reference model is
inherited by the ROM.

• A goal-oriented a-posteriori error estimator is developed specifically for transient
THM parametric systems. The error estimator involves solving an auxiliary
adjoint problem that evolves backwards in time.

• Reduced bases for the coupled fields are constructed from a greedy adaptive
procedure which is guided by the developed goal-oriented error estimator.
The greedy adaptive procedure progressively constructs the reduced bases by
selecting optimal snapshot points within the given parametric space. Driven
by the goal-oriented error estimator, the adaptive procedure ensures that the
resulting reduced basis is certified.

• A non-linear model reduction strategy that combines RB method and sub-
structuring via domain decomposition is devised to tackle elasto-plasticity in
the THM system.

• The developed framework is applied to large-scale geo-environmental problems
describing the coupled processes in deep geological repository. Model order
reduction is used to effectively investigate granite rock mass behavior undergoing
geomorphological process (e.g. glacial advance) and to validate clay response
subjected to in-situ heating based on real experiments.

• The above ROM features and careful implementation yield significant computa-
tional gain while maintaining highly accurate approximation of the solution.
The work presented in this thesis illustrates how these aspects are extremely
advantageous in fast and multiple query types of problems.
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4 Structure of the Thesis

The main contributions of the thesis pursuing drastic reduction in computational cost
for parametric THM systems are presented in three main parts. The methodology
for solving linear THM systems by reduced basis model order reduction framework
is introduced in Chapter 2. The multi-subspace projection, greedy-adaptive basis
generation and goal-oriented error estimation are developed and implemented on a
large-scale problem involving a 3D rock mass subjected to an advancing glacier. The
ideas presented in the chapter are centred on developing a ROM that significantly
yields computational speed up while accurately preserving the physics of the transient
coupled system.

The methodology is further extended in Chapter 3, in order to handle more
complex problems based on real in-situ heating experiments conducted at HADES
undergound laboratory in Mol, Belgium. Some of the main challenges addressed are
linearizing the system involving temperature-dependent hydro-mechanical parameters,
dealing with 3D heterogeneous domain, including initial geostatic stresses, hydrostatic
fluid pressure and temperature distribution, adapting the greedy adaptive strategy
and error estimation technique to tackle the above complexities, and matching the
numerical model as close as possible to experiment observations. The chapter focuses
on effectively implementing the methodology for parametrized problems, specifically
for inverse parameter identification where real sensor measurement data collected
from in-situ experiments are used. The ROM is employed as a surrogate to replace the
traditionally used FE model, which is proven impractical in optimization algorithms
for large-scale parameter identification problems.

In Chapter 4, it is aimed to develop a model reduction strategy that deals with
non-linear THM systems described by elato-plastic material behaviour. A new
approach is developed where sub-structuring via domain composition and multi-
subspace projection are combined to combat the expensive multi-level iterative
procedure involved in solving the nonlinear system. The methodology is validated on
parametrized problems where the effectiveness of the ROM is demonstrated in the
framework of inverse modelling.

The closing chapter expounds the main findings and conclusions of the work
presented in the thesis. It also discusses the drawbacks and challenges to overcome
related to the current methodology. Moreover, the next directions are suggested for
further improvement of the work presented in the thesis.
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1 Introduction

Numerous studies have been conducted on coupled THM systems related to the
behavior of geological formations for investigating the safety, performance and design
optimization of underground nuclear waste repositories [10, 39, 40, 41, 70, 140, 141].
Over the years, some approaches started focusing on developing numerical mod-
els addressing these processes to support laboratory and in-situ tests validation
[1, 26, 32, 34, 51, 100, 101, 142]. These large-scale numerical models face the chal-
lenge of dealing with systems of high dimensionality related to large and complex
geometrical discretizations, nonlinearity, a number of uncertain field parameters and
prolonged time evolution. This issue becomes even more critical for certain types of
problems requiring fast and multiple queries, for instance inverse identification prob-
lems. The standard finite element based solvers are computationally demanding and
consequently, different high performance computing strategies are used to alleviate
the computational burden [3, 73, 99].

Despite being widely used in many engineering fields for several years, there
are very few studies that explored model order reduction applications to coupled
geomechanical problems [22, 50, 87]. Model reduction techniques aim at reducing
the dimensionality of a system by projecting the reference full order model to a
low-dimensional subspace while preserving key information up to an acceptable level
of accuracy. In the present contribution, we focus our attention on the reduced basis
(RB) method - an enrichment-based class of model order reduction that requires
an adaptive strategy to construct a low-dimensional subspace spanning solutions of
a system under parametric variation. Given a training sample that describes the
parametric variation, it is desired to accurately approximate the reference solution
at a much lower computational cost for any parameter inside the training set. The
construction of this low-dimensional subspace mainly involves the assembly and
post-processing of so-called ‘snapshots’ that refer to full order solutions evaluated at
specific parameter values in the training sample.

An efficient a-posteriori error estimator is crucial to optimally select snapshots
inside the parametric training sample. The efficiency of an error estimator is charac-
terized by its rigor, sharpness and computational cost. Many of the error estimation
techniques exploit the relationship between the residual and the error approximation
of the system. This class of techniques is based on the post-processing of the resid-
ual, which can be done either explicitly by integration of residuals, or implicitly by
solving local problems using residuals as source terms [71]. In recent years, several
research efforts have been devoted to residual-based a-posteriori error estimators
in the context of reduced basis applications for different types of PDE problems
[62, 63, 65, 92, 112, 155].
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In this contribution, we develop a goal-oriented a-posteriori error estimator for
time-dependent coupled THM systems which assesses the error in specific features
of the solution, termed as ‘Quantity of Interest’ (QoI). The time-dependence of the
coupled THM system poses an additional complexity as it involves the computation
of the auxiliary adjoint problem evolving backwards in time. Various implementations
of goal-oriented error estimation for time-dependent problems have been investigated
in [16, 44, 53, 90, 106, 130, 145, 154]. Similar to the methodology presented in [44,
90, 106], the error estimates for the coupled THM system are derived based on
the explicitly-computed weak residual of the primal problem and on the implicitly-
computed adjoint solution associated with the QoI. The error estimates are fed to
the greedy-based adaptive strategy to optimally select the snapshots and certify
the RB-projected solutions. For computational efficiency, the implicitly-computed
adjoint is evaluated only once and reused to obtain the error estimates for the entire
parametric training sample.

The rest of the chapter is organized as follows. In Section 2, we describe the model
problem governing equations and present the notations for the discretized coupled
THM system in full order and in reduced order form. In Section 3, a greedy adaptive
strategy is proposed to optimally select the snapshot set used in the construction of
the low-dimensional RB subspace. We derive the formulation of the backward-in-time
evolving dual problem corresponding to the coupled THM system and develop the
goal-oriented error estimation scheme in Section 4. Finally in Section 5, numerical
examples for a regional model of glacier advance in 2D and 3D are presented in
order to demonstrate the accuracy of the optimally built RB-approximation and the
computational gain achieved with the proposed methodology.
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2 Problem Definition: Linear Isotropic THM Sys-
tem

2.1 Governing Equations and Full Order Discretization

The coupled system for a fully-saturated porous geomaterial includes the three
equations describing the deformation of the linearly-elastic body, the flow of the
fluid phase and the heat conduction. The mechanical behavior is governed by
poroelastic constitutive equations, while the hydraulic and thermal responses are
governed by Darcy’s law and Fourier’s law, respectively. The classical conservation
laws together with the constitutive relationships yield the governing equations for
the time-dependent coupled THM system [93], resulting in an initial boundary value
problem that reads: find temperature T (x, t), displacement u(x, t) and pressure p(x, t)
with x ∈ Ω̄ ⊂ Rd and t ∈ (0, tf ] such that

kc∇2T − ρcpṪ +Q = 0

GD∇ · (∇u) + (GD + λ)∇(∇ · u)
−α∇p− 3KDαs∇T = 0

− k

µf

∇ · (∇p) + α∇ · u̇+
1

M
ṗ

−[φ3αf + (α− φ)3αs]Ṫ = 0

in Ω× (0, tf ]
(2.1)

with Neumann boundary conditions,

−kc∇nT = gN

σijnj = τNi

k

µf

∇np = υN

on ∂ΓN × (0, tf ] (2.2)

Dirichlet boundary conditions,

T = TD

u = uD

p = pD

on ∂ΓD × (0, tf ] (2.3)

and initial conditions
T = T0

u = u0

p = p0

in Ω× {t = 0} (2.4)
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where the notation of physical parameters in the system of equations are listed in
Table 2.1.

Table 2.1 Notation of physical parameters of the coupled THM system

Parameters
KD bulk modulus of drained rock
GD shear modulus of the drained rock
λ Lamé constants
α Biot-Willis coefficient
M constrained specific storage coeffi-

cient
µf viscosity
k permeability
φ porosity
αs thermal expansion coefficient in

the solid phase
αf thermal expansion coefficient in

the fluid phase
cp specific heat
kc thermal conductivity
Q heat source
ρ solid density
ρf fluid density
σ traction

We approximate the solution to the problem in (2.1)-(2.4) by the standard
finite element (FE) method. The system is spatially discretized by associating the
approximation to a mesh of characteristic size H in the functional space ZH ⊂ H1

0(Ω),
WH ⊂ H1

0(Ω), QH ⊂ H1
0(Ω):

T (x, t) ≈ TH(x, t) =
nnodes∑︂
i=1

Ti(t)Ni(x) = NTT

u(x, t) ≈ uH(x, t) =
nnodes∑︂
i=1

ui(t)Ni(x) = Ñ
TU

p(x, t) ≈ pH(x, t) =
nnodes∑︂
i=1

pi(t)Ni(x) = NTp

(2.5)

where U ∈ Rd×nnodes , nnodes is the number of nodes discretizing the field in Ω, while
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N and Ñ are compact support shape functions. In the case of a 2D domain, N and
Ñ are expressed as N := [N1(x) N2(x) ...Nnnodes(x)]T and

Ñ :=

[︃
N1(x) 0 N2(x) 0 ... Nnnodes(x) 0

0 N1(x) 0 N2(x) ... 0 Nnnodes(x)

]︃
.

For further use, we write the weak form of the problem (2.1) -(2.4) in a compact
form as

B(T,u, p; z,w, q) = L(z,w, q)
∀z ∈ ZH ,w ∈ WH , q ∈ QH

(2.6)

where

B(T,u, p; z,w, q) =
∫︂
Ω

∂z

∂xj
kc
∂T

∂xj
dΩ +

∫︂
Ω

zρcp
∂T

∂t
dΩ

+

∫︂
Ω

∂w
∂xj

G
∂ui

∂xj
dΩ

+

∫︂
Ω

∂w
∂xi

(G+ λ)
∂uj

∂xj
dΩ

−
∫︂
Ω

wα ∂p
∂xi

dΩ

− 3

∫︂
Ω

wKDαs
∂T

∂xi
dΩ

−
∫︂
Ω

∂q

∂xj

k

µf

∂p

∂xj
dΩ

+

∫︂
Ω

q
1

M

∂p

∂t
dΩ

+

∫︂
Ω

qα
∂

∂t
(
∂ui
∂xi

)dΩ

−
∫︂
Ω

q[φ3αf + (α− φ)3αs]
∂T

∂t
dΩ

(2.7)

for i, j = 1, 2, 3 and

L(z,w, q) =
∫︂
Γ

zgNdΓN +

∫︂
Γ

wτNi
dΓN −

∫︂
Γ

qυNdΓN . (2.8)
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The substitution of the approximation (2.5) in the weak form (2.6) leads to the
discrete matrix form,

K U+ C U̇ = F (2.9)

⎡⎣KH 0 0
KT KU CP

0 0 KP

⎤⎦
⏞ ⏟⏟ ⏞

K

⎡⎣ T
U
p

⎤⎦
⏞ ⏟⏟ ⏞

U

+

⎡⎣CH 0 0
0 0 0
CT CT

P CM

⎤⎦
⏞ ⏟⏟ ⏞

C

⎡⎣ Ṫ
U̇
ṗ

⎤⎦
⏞ ⏟⏟ ⏞

U̇

=

⎡⎣ FT

Fu

Fp

⎤⎦
⏞ ⏟⏟ ⏞

F

(2.10)

where K contains the stiffness and conductivity matrices, C contains the capac-
ity (time-dependent) matrices and F contains the corresponding vectors to L(·).

For the time discretization, a time-discrete framework in the interval I ≡ (0, tf ] is
considered such that the subintervals are denoted as {0 = t0 < t1 < ... < tl < .... < tL

= tf} for l = 1, 2, ...,L. For notation purposes, let ∆tl be the characteristic time step
of the time-discrete framework, measured as ∆tl = tl − tl−1. To perform the time
integration, an Euler-Backward scheme is used and the space-time discrete problem
is written as

∆tlKU l + C U l = C U l−1 +∆tlF l

∀l ∈ 1, 2, ...,L
(2.11)

Due to a lack of inf-sup condition, the coupled THM system can show oscillating
solution patterns when temperature, displacement and pore pressure are approximated
by the same set of basis functions [8, 12, 21]. We therefore use Taylor-Hood finite
element spaces, assigning quadratic basis functions for displacement and linear basis
functions for pore pressure and temperature, to avoid instability in the coupled THM
system [83, 93, 157].

2.2 Reduced Order Model (ROM)

Considering the physical parameter constants of the coupled THM system appear-
ing in (2.1), we assume that the material properties depend on a set of parameter
µ = (µ1, ..., µnpar.) ∈ P ⊂ RP , npar. ≥ 1. The system unknowns are then de-
noted with an additional dependency on a set of material parameter (T (x, t,µ),
u(x, t,µ), p(x, t,µ)). Note that in the next part, we simplify the field notations by
writing them as (T (µ),u(µ), p(µ)) instead of the full form. The problem in the
parametric form is expressed as follows: find (T (µ),u(µ), p(µ)) ∈ ZH ×WH ×QH

such that
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B(T (µ),u(µ), p(µ); z,w, q) = L(z,w, q) (2.12)

where

B(· ; ·) =
∫︂
Ω

∂z

∂xj
kc(µ)

∂T

∂xj
dΩ +

∫︂
Ω

zρcp(µ)
∂T

∂t
dΩ

+

∫︂
Ω

∂w
∂xj

G(µ)
∂ui

∂xj
dΩ +

∫︂
Ω

∂w
∂xi

(G(µ)

+ λ(µ))
∂uj

∂xj
dΩ−

∫︂
Ω

wα(µ) ∂p
∂xi

dΩ

− 3

∫︂
Ω

wKDαs(µ)
∂T

∂xi
dΩ

−
∫︂
Ω

∂q

∂xj

k(µ)

µ(µ)f

∂p

∂xj
dΩ

+

∫︂
Ω

q
1

M(µ)

∂p

∂t
dΩ

+

∫︂
Ω

qα(µ)
∂

∂t
(
∂ui

∂xi
)dΩ

−
∫︂
Ω

q[φ(µ)3αf (µ) + (α(µ)

− φ(µ))3αs(µ)]
∂T

∂t
dΩ

(2.13)

for i, j = 1, 2, 3. The approximate solution of the ROM is based on a standard
Galerkin projection of the full order FE model to the global approximation spaces
generated from well-chosen solutions (snapshots) evaluated at specific parameter and
time values. Given a set of parameter valuesM = {µ1, ...,µN}, the snapshots contain
the corresponding solutions SN = {T (µ1),u(µ1), p(µ1), . . . , T (µN),u(µN), p(µN)}
where N is much smaller than the characteristic size of the reference full order model.

It is critical that the ROM inherits the crucial properties of the reference full order
model − particularly, maintaining the numerical stability of the model to guarantee
the accuracy and convergence of the ROM. There are numerous works dedicated to
the stability of ROM, proposing strategies to develop stability preserving models for
specific types of problem [5, 75, 116, 119]. In general however, ensuring the numerical
stability in model reduction is still an open issue. The numerical stability of the
reduced coupled THM model is tackled similarly as in the FE context [8, 12, 21], by
using different basis functions to approximate the displacement, pore pressure and
temperature fields. Snapshot solutions are also orthonormalized to ensure algebraic
stability for each basis.
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We define the global approximation (RB) spaces separately for each of the field
variable as follows:

ZH
N = span{T (µn), 1 ≤ n ≤ nsnapshots} ⊂ ZH

WH
N = span{u(µn), 1 ≤ n ≤ nsnapshots} ⊂ WH

QH
N = span{p(µn), 1 ≤ n ≤ nsnapshots} ⊂ QH .

(2.14)

To project the FE model to the set of RB spaces, the coupled system is ‘decoupled’
such that elements of the stiffness, conductivity and capacity matrices are extracted
and grouped into blocks based on the field variable that it interacts with (2.15). Let
Z,W and Q denote the RB matrices for temperature, displacement and pressure,
respectively. Each block is projected accordingly onto its corresponding basis, i.e.,
KT interacts with temperature and displacement fields, therefore it is projected to
the RB space from temperature (ZH

N ) and displacement (WH
N ) snapshots. Meanwhile,

KP that solely interacts with pore pressure is projected only to the RB space from
pressure snapshots (QH

N). These projected blocks are then reassembled in the same
way as the FE coupled system as seen in (2.15) and (2.16), but the resulting blocks
will have a much smaller characteristic size of order N .⎡⎣KHN 0 0

KTN KUN CPN

0 0 KPN

⎤⎦⎡⎣ TN

UN

pN

⎤⎦
+

⎡⎣CHN 0 0
0 0 0

CTN CT
PN CMN

⎤⎦⎡⎣ ṪN

U̇N

ṗN

⎤⎦ =

⎡⎣ FTN

FuN

FpN

⎤⎦ (2.15)

KHN = ZT KH Z KTN = WT KT Z
KUN = WT KU W CPN = WT CP Q
KPN = QT KP Q CHN = ZT CH Z
CTN = QT CT Z CT

PN = QT CT
P W

CMN = QT CM Q FTN = ZT FT

FuN = WT Fu FpN = QT Fp

TN = ZT T UN = WT U
pN = QT p

(2.16)

Given µ ∈ P , the approximated solutions belonging to the RB spaces (TN(µ) ∈ ZH
N ,

uN(µ) ∈ WH
N , pN(µ) ∈ QH

N) are obtained by solving

B(TN(µ),uN(µ), pN(µ); z,w, q) = L(z,w, q)
∀z ∈ ZH

N , w ∈ WH
N , q ∈ QH

N

(2.17)

where the dimensionality of the system corresponding to the left hand side B( · ) and
right hand side L( · ) terms, as described in (2.15) and (2.16), is much lower than the
full order FE model.
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3 Generation of the Reduced Basis

The computational procedure involved in generating the reduced basis is explained
in this section. The RB is built from an assembly of snapshot solutions of the full
order model evaluated within a parametric training sample. Optimally selecting the
parameters where such snapshots are evaluated is evidently critical for efficiently
building the RB. It is desired that the selected snapshots give the most accurate
approximation while keeping the number of snapshots to a minimum. In order to
satisfy this requirement, we pursue an adaptive strategy in which the criterion to
select the snapshots is driven by an a-posteriori error estimator. In turn, this error
estimator also provides certification to the RB-approximated solution. The error
estimator developed for the coupled THM system is discussed thoroughly in Section
4.

The adaptive strategy is implemented in a greedy-based sampling framework to
build hierarchical RB approximation spaces [62, 63, 87, 107], in which the basis is
enriched by appending new snapshot solutions at every enrichment step. The greedy
adaptive strategy is explained by the schematic procedure below.

Given a parametric training sampling space discretization Ξtrain ⊂ nsample, with
Ξtrain = span {µ1, µ2. . . , µnsample}, a stopping tolerance for estimated error ϵ, and a
maximum number of enrichment steps Nmax, initiate the greedy strategy at N = 0
with empty snapshot matrices SN

T , S
N
u , S

N
p and a pre-selected initial parameter value

µ∗ = µn

Algorithm 2.1 Greedy basis generation

1: while N < Nmax and δN > ϵ
2: N ← N + 1
3: [T,u, p] = FE(µ∗)
4: SN

T = [SN−1
T ; T ], SN

u = [SN−1
u ; u], SN

p = [SN−1
p ; p]

5: VT = POD(SN
T ), Vu = POD(SN

u ), Vp = POD(SN
p )

6: for µ ∈ Ξtrain

7: ∆(µ) = ERROR ESTIMATE(VT ,Vu,Vp,µ)
8: end for
9: µ∗ = arg max

µ⊂Ξtrain

∆(µ)

10: δN = max
µ⊂Ξtrain

∆(µ)

11: end while
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In the first enrichment step, a full order space-time FE solution is evaluated at
a pre-selected parameter value and denoted as a snapshot. To construct the basis
for each field, the snapshot is separated (SN

T , S
N
u , S

N
p ) and orthonormalized with the

Proper Orthogonal Decomposition (POD) technique. The modes are truncated by
prescribing a tolerance that corresponds to their energy contribution relative to the
contribution of the first mode. The same tolerance level is prescribed for temperature,
displacement and pore pressure fields, which results in a number of truncated modes
that can vary accordingly, reflecting the different features of each snapshot field (see
Figure 2.6).Using the truncated and orthonormalized matrices as projection bases,
the error estimator selects the point in the training sample which gives the worst
(least accurate) approximation in the current RB space. The next step is to generate
snapshot solutions at this worst point and append it to the RB space to improve its
approximation. The enrichment procedure is repeated until the stopping criteria are
satisfied.

The most critical ingredient in the RB generation strategy is to ensure that
the error estimator gives a good approximation of the exact error, while being
computationally inexpensive. Particularly for cases where the training sample is very
large, estimating the error at every set of parameter value is an exhaustive procedure.
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4 Goal-Oriented Error Estimation

4.1 Error-Residual Representation

Residual-based a-posteriori error estimators are typically employed to certify reduced
order models built from projection-based techniques. In goal-oriented error estimation,
we focus on specific features of the solution (QoI) and assess the error in these
features. The error in the QoI is estimated by relating the primal residual to an
appropriate adjoint solution of a dual problem [16, 44, 145, 154]. The ideas introduced
in [44, 90, 106], in which an implicitly-solved adjoint is directly injected into the
weak primal residual of a parabolic PDE, are followed to develop an a-posteriori
goal-oriented error estimator for the coupled THM system.

We represent the error in the the temperature, displacement and pore pressure
fields between the reference FE and RB-projected solution as

e = (eT , eu, ep) = (T − TN ,u− uN , p− pN). (2.18)

Recalling the weak form of the model problem (2.6) we define the residual as

R(z,w, q) = B(eT , eu, ep; z,w, q)
= L(z,w, q)−B(TN ,uN , pN ; z,w, q)

∀z ∈ ZH ,w ∈ WH , q ∈ QH .

(2.19)

Denoting the QoI as J(·), we introduce a corresponding dual problem. Let
Tadj ∈ ZH , uadj ∈ WH , padj ∈ QH be the set of adjoint solutions to the dual problem
such that

B( · ;Tadj,uadj, padj) = J( · ). (2.20)

It is aimed to evaluate the QoI, J(T,u, p), without having to explicitly compute
the primal solution (T,u, p). The QoI is estimated by relating the source term of the
primal problem to the adjoint solution of the dual problem.

J(T,u, p) = L(Tadj,uadj, padj) (2.21)

and consequently, we can write the error in the QoI as an adjoint-residual representa-
tion

J(eT , eu, ep) = R(Tadj,uadj, padj)

= L(Tadj,uadj, padj)

−B(TN ,uN , pN ;Tadj,uadj, padj).

(2.22)
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The implementation of adjoint-residual error representation is simple once the
adjoint solution and weak residuals are computed − the adjoint solution is directly
plugged in to the residual at every time step, adapting the space-time grid. Particularly
for weak residuals R(·) which are explicitly evaluated, the computational cost is
minimal even if solved for each parameter value in the training sample. In contrast,
computing the backward-in-time-evolving adjoint solution of the dual problem is
more involved and computationally expensive.

4.2 Backward-in-Time Evolving Adjoint Solution of a Dual
Problem

For the QoI, we consider a general functional output that accounts for the behavior
of the solution evolving over time

J(T,u, p) =
∫︂ tf

0

∫︂
Ω

f̄T (x, t)TdΩ dt+

∫︂ tf

0

∫︂
Ω

f̄u(x, t)udΩ dt+

∫︂ tf

0

∫︂
Ω

f̄p(x, t)pdΩ dt

(2.23)

For the sake of simplicity, we normalize the terms to have consistent units with
contributions from the temperature, displacement and pore pressure fields resulting
to a scalar QoI bearing the unit of the chosen field. By choosing the QoI to have the
unit of displacement field, we introduce the following characteristic factors derived
from norms of a previously solved primal problem

γ̂ = ∥u∥/∥T∥; T̂ = γ̂T (2.24)
δ̂ = ∥f̄u∥/∥f̄T∥; fT̂ = δ̂f̄T (2.25)
α̂ = ∥u∥/∥p∥; p̂ = α̂p (2.26)
β̂ = ∥f̄u∥/∥f̄p∥; fp̂ = β̂f̄p. (2.27)

Making use of arbitrary characteristic factors, the QoI in (2.23) is expressed as

Ĵ(T,u, p) = γ̂

∫︂ tf

0

∫︂
Ω

f̄T (x, t)T dΩ dt+

∫︂ tf

0

∫︂
Ω

f̄u(x, t)u dΩ dt

+ α̂

∫︂ tf

0

∫︂
Ω

f̄p(x, t)p dΩ dt.

(2.28)

Recalling the dual problem associated with the coupled THM system,

B(z,w, q;Tadj,uadj, padj) = J(z,w, q)
∀z ∈ ZH ,w ∈ WH , q ∈ QH

(2.29)
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it is observed that due to the coupling terms in the system of equations, the ensemble
of units in the left hand side B( · ) is only compatible with the right hand side of
the primal problem L( · ), and not with J(z,w, q). It becomes critical to express the
left hand side of the dual problem (2.29) with normalized units in order to satisfy
compatibility with the right hand side vector of the QoI. The dual problem bearing
compatible units is therefore written as:

B̂(z,w, q;Tadj,uadj, padj) = J(z,w, q) (2.30)

where

B̂(· ; ·) = δ̂

γ̂

∫︂ T

0

∫︂
Ω

∂Tadj
∂x

kc
∂z

∂x
dΩdt+

∫︂ T

0

∫︂
Ω

∂uadj

∂x
G
∂w
∂x

dΩdt

+

∫︂ T

0

∫︂
Ω

∂uadj

∂x
(G+ λ)

∂w
∂x

dΩdt− 1

α̂

∫︂ T

0

∫︂
Ω

∂padj
∂x

αwdΩdt

− 1

γ̂

∫︂ T

0

∫︂
Ω

Tadj 3KDαs
∂w
∂x

dΩdt− β̂

α̂

∫︂ T

0

∫︂
Ω

∂padj
∂x

κ
∂q

∂x
dΩdt

+
δ̂

γ̂

∫︂
Ω

Tadj(t = T )ρcpzdΩ−
δ̂

γ̂

∫︂ T

0

∫︂
Ω

zρcp
∂Tadj
∂t

dΩdt

+
β̂

α̂

∫︂
Ω

padj(t = T )
1

M
qdΩ− β̂

α̂

∫︂ T

0

∫︂
Ω

q
1

M

∂padj
∂t

dΩdt

+ β̂

∫︂
Ω

uadj(t = T )α
∂q

∂x
dΩ− β̂

∫︂ T

0

∫︂
Ω

∂q

∂x
α
∂uadj

∂t
dΩdt

+
β̂

γ̂

∫︂
Ω

Tadj(t = T )[φ3αf + (α− φ)3αs]qdΩ

− β̂

γ̂

∫︂ T

0

∫︂
Ω

q[φ3αf + (α− φ)3αs]
∂Tadj
∂t

dΩdt.

(2.31)

In strong compact form, the dual problem is thus written as:

δ̂

γ̂
kc∇2Tadj +

δ̂

γ̂
ρcpṪ adj = f̄T

GD∇ · (∇uadj) + (GD + λ)∇(∇ · uadj)

− 1

α̂
α∇padj −

1

γ̂
3KDαs∇Tadj = f̄u

− β̂
α̂

k

µf

∇ · (∇padj)− β̂α∇ · u̇adj

− β̂
α̂

1

M
ṗadj +

β̂

γ̂
[φ3αf + (α− φ)3αs]Ṫ adj = f̄p

in Ω× (0, tf ]

(2.32)
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with Neumann boundary conditions,

−kc∇nTadj = 0

σij,adjnj = 0

k

µf

∇npadj = 0

on ∂ΓN × (0, tf ] (2.33)

Dirichlet boundary conditions,

Tadj = 0

uadj = 0

padj = 0

on ∂ΓD × (0, tf ] (2.34)

and initial conditions
Tadj = 0

uadj = 0

padj = 0

in Ω× {t = tf}. (2.35)

Note that the adjoint solution of each field (Tadj,uadj, padj) bears the same units
arising from the characteristic factors (γ̂, δ̂, α̂, β̂) introduced in the coupled system
of equations. This allows for the adjoint to be injected into the residual in a
straightforward procedure that yields the error estimate in the QoI,

Ĵ(eT , eu, ep) = R̂(Tadj,uadj, padj) (2.36)

where R̂ contains the residuals from the temperature, displacement and pore pressure
fields normalized to have consistent units.

The strong form of the dual problem is very similar to the primal problem differing
only by the time-dependent terms that have opposite signs − reflecting the backward
in time propagation of the adjoint solution. Evidently, the computational cost of
solving the dual problem is the same as solving the primal problem.

In this methodology, note that only one adjoint solution is needed to represent
the entire parametric training sample. Further details on this assumption will be
explained in section 5.1.4.
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5 Numerical Examples

5.1 2D Advancing Glacier Problem

As a first illustrative application, we consider a homogeneous region for a fully-
saturated rock mass in a 2D domain, see Figure 2.1. A 22000m by 1700m rock mass is
subjected to a glacier with non-uniform thickness advancing along the upper surface
ΓTOP. The thickness variation of the glacier is described by the function H(x, t) as
inspired by reference [136],

H(x, t) = 21/8Hmax

(︃
L−X + v t

L

)︃1/2

. (2.37)

where Hmax = 3200m is the maximum height of the glacier, L = 1329870m is the
distance from the center to the glacier front, X is the distance from the center of
the glacier (the datum point) which is related to the coordinate system of the model
domain by X = x+1333029m, v is velocity of the glacier specified as 1.27 m per year.
At t = 0, the glacier thickness function H(X) satisfies H(0) = Hmax and H(L) = 0.
For an observation period of 6000 years, the glacier thus moves 7620m on top of the
upper surface ΓTOP of the rock mass. The loading effects of glacier are treated as

ΓB

ΓTOP

ΓE ΓE

z-axis

x-axis

ADVANCING
GLACIER

Fig. 2.1 Homogeneous rock mass subjected to glacier loading

boundary conditions for the governing equations of the system. These effects are
applied as traction (σN) in the mechanical system, and as prescribed pore pressure
(pD) and temperature (TD) on the upper surface. Additional Neumann and Dirichlet
boundary conditions are imposed on the lower surface and edges of the rock mass,
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leading to

σzz(x, t) = σN = −ρfgH(x, t)

T (x, t) = TD = Tmax
H(x, t)

Hmax

p(x.t) = pD = ρfgH(x, t)

on ∂ΓTOP (2.38)

�

uz = 0;
∂p

∂z
= 0;

∂T

∂z
= 0 on ∂ΓB (2.39)

�

un = 0;
∂p

∂n
= 0;

∂T

∂n
= 0 on ∂ΓE. (2.40)

In this illustrative application, only changes in the rock mass response due to
small glacier advances are investigated. Furthermore, the problem is assumed to be
linear and that the initial fields at the onset of advancing glacier (i.e. stresses due to
the weight of the glacier at its initial position, geostatic stresses, hydrostatic fluid
pressure, temperature distribution from geo-thermal heat flux, etc.) can be ignored.
Zero initial conditions are therefore imposed on the system.

5.1.1 Primal Problem

The FE solution to the coupled THM problem (2.1-2.4) subjected to the glacier
loading with the physical properties described in Table 2.2 is obtained from solving
the discrete problem in (2.11). For spatial discretization, Taylor-Hood P2 − P1

elements on triangles are used - quadratic interpolation for displacements and linear
interpolation for pore pressure and temperature. There are 4398 degrees of freedom
(DOF) in total and the time grid is spaced by 100 logarithmically increasing timesteps.

The behavior of the coupled THM system at t = tf , as obtained by a direct FE
simulation, is described in Figure 2.2. The pore pressure distribution is maximal
closer to the glacier front’s initial location as expected. The vertical displacement
of the rock mass is negative under the glacier (compression) but exhibits positive
values outside the glacier, indicating heaving which is typically observed with glacial
loading [50]. The non-uniform temperature distribution under the glacier indicates
that steady-state condition is not yet reached after 6000 years.
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(c) FE Pore Pressure, p (Pa)

Fig. 2.2 Evolution of thermo-hydro-mechanical fields after 6000 years
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Fig. 2.3 Error map of FE and RB-projected coupled THM solution. Error is expressed
relative to the maximum field value of the FE solution.
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Table 2.2 Physical parameters describing the homogeneous rock mass

KD 2× 1010 Pa
GD 1.2× 1010 Pa
α 0.70
M 3.08× 1010 Pa
µf 1× 10−3 Pa·s
k 1.55× 10−19 m2

φ 0.05
αs 8.3× 10−6 ◦C−1

αf 6.9× 10−7 ◦C−1

cp 1.83× 106 N m2 ·K
kc 3.66 W/ m ·K

5.1.2 Dual Problem

For the setup of the dual problem, we consider the QoI as the average pressure in
the domain Ω combined with the average vertical displacement in the upper surface
ΓTOP over time t = (0, tf ],

Ĵ(T,u, p) = 1

|ΓTOP|

∫︂ tf

0

∫︂
ΓT

u dΓT dt

+ α̂
1

|Ω|

∫︂ tf

0

∫︂
Ω

p dΩ dt.

(2.41)

Applying the formulation for the backward-in-time evolving dual problem (2.32-2.35),
we obtain the adjoint solution corresponding to the temperature, displacement and
pressure fields. The dual problem is solved with the same spatial and time discretiza-
tion as the primal problem. Figure 2.4 shows the backward propagation of the adjoint
for the vertical displacement in the upper surface with zero initial condition imposed
at the final time.

The adjoint solution is verified by showing that the QoI estimated by relating
the source term and adjoint (2.21) holds. Figure 2.5 shows the accuracy of the
source term-adjoint estimate with respect to the spatial and time discretization
refinement. It is observed that the time discretization of the dual problem affects the
QoI estimate convergence more dominantly than the spatial discretization refinement
in this particular case where the QoI is chosen as a functional of field solutions in the
entire time span t : (0, tf ].
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5.1.3 Reduced Basis Generation

This 2D coupled THM problem is parametrized by varying some of the parameters
related to material properties. The elastic modulus and permeability corresponding
to the mechanical and hydraulic properties are selected to vary within a range of
realistic values for a granitic type of rock; elastic modulus µ1 : [1.5× 1010, 4.4× 1010]
Pa and permeability µ2 : [1× 10−24, 1× 10−18] m2. The parametric training sample
is discretized with 1050 parameter sets (nµ1 ×nµ2 = 35× 30), where each set contains
the 2 material properties µn = (µ1, µ2).

The formulation of the error in the QoI at a certain parameter set is equivalent to
the product of the residual and the adjoint solution evaluated in that parameter set.
Recalling that the computational cost involved in the solution of the dual problem
is the same as in the primal problem, if the adjoint solution is evaluated for each
parameter set in the training sample, (Tadj(µn), uadj(µn), padj(µn)), it is equivalent
to solving the full order (FE) model 1050 times at each enrichment step.

Ĵ(eT (µ), eu(µ), ep(µ)) : = R̂(Tadj(µ),uadj(µ), padj(µ))

= ∆(µ)
(2.42)

To avoid this extremely expensive procedure, we impose a condition based on the
assumption that the adjoint solution is not very sensitive with respect to parametric
variations. We therefore solve the dual problem only once in a selected parameter set
(µ0); and this adjoint solution is assumed to be sufficient to be reused for evaluating
the error estimate in the entire training sample. The enrichment procedure is stopped
once the normalized estimated error in QoI is below the prescribed tolerance level of
10−4.

In the present case, the greedy adaptive procedure required 9 enrichment steps
to reach the error level below 10−4. The corresponding number of POD modes at a
truncation tolerance of 10−5 on their relative amplitude after each enrichment step is
shown in Figure 2.6.

The accuracy of the projected RB solution with respect to the FE model is
qualitatively assessed in Figure 2.3. The evolution of the temperature, displacement
and pore pressure fields after 6000 years is accurately depicted as shown in the error
map distribution of the THM fields in the domain. The accuracy is quantitatively
assessed in the entire parametric training sample by looking at the global error norm
in the domain in Table 2.3. The error norm is computed at every parameter set in
the training sample and plotted in Figure 2.7. With a maximum error on the order
of 10−7 for temperature, and 10−3 for displacement and pore pressure, the projected
RB solution is in good agreement with the reference FE solution.



34 Chapter 2. Certified Reduced Basis Approximation of Linear THM Systems

Table 2.3 Maximum error level in the entire parametric training sample

max [ eT (µ)
T (µ)

] max [ eu(µ)
u(µ)

] max [ ep(µ)

p(µ)
]

1.8 ×10−7 1.1 ×10−3 7.8 ×10−3

5.1.4 Efficiency of the Goal Oriented Error Estimator

To assess the efficiency of the goal-oriented error estimator, the effectivity index
describing the rigor and sharpness of the estimate is measured. The effectivity index
is computed as

η(µ) =
J(e(µ))

∆(µ)
(2.43)

where ∆(µ) is the estimated error and J(e(µ)) is the exact error evaluated in the
QoI. Ideally, it is desired to have η ≡ 1 to obtain a sharp bound for the error.

By first evaluating the effectivity index in the parameter, µ0, where the adjoint
is computed (Figure 2.8), it is shown that the error estimator indeed yields a sharp
bound with an index value of 1.05 for the given spatial and time discretization (Table
2.4).

To investigate the effect of solving the adjoint only in one parameter set and
reusing it for the entire training sample, the sensitivity of the adjoint is evaluated by
computing the effectivity indices at different points in the training sample (Figure
2.9). The corresponding effectivity indices at these points are reported in Table 2.4.
The error estimator performs well with the maximum underestimation index less than
5 (η(µf ) = 3.83) for the parameter sets tested. As expected, the effectivity index
gets worse when the parameter set is further from the reference adjoint parameter µ0.
There is no conclusive observation when an overestimation or an underestimation
occurs (i.e. the error is overestimated in both cases where the permeability is lower
(µg) and higher (µb) than the adjoint’s permeability).

5.2 3D Advancing Glacier Problem

To illustrate more quantitatively the computational gain that can be expected from
the proposed methodology, the 2D homogeneous rock mass subjected to an advancing
glacier model is now extended to a more realistic 3D problem.
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Table 2.4 Effectivity index of error estimator within the parameteric training sample

Point J(e(µ)) ∆(µ) η(µ)

µ0 3.4 ×10−3 3.2 ×10−3 1.05
µa 1.37 ×10−2 1.17 ×10−1 0.12
µb 1.35 ×10−2 1.16 ×10−1 0.12
µc 1.34 ×10−2 1.15 ×10−1 0.12
µd 3.2 ×10−3 3.7 ×10−3 0.87
µe 3.4 ×10−3 3.0 ×10−3 1.13
µf 6.44 ×10−5 1.68 ×10−5 3.83
µg 2.48 ×10−6 3.28 ×10−6 0.75
µh 1.75 ×10−5 2.08 ×10−5 0.84

The geometry of the 3D homogeneous rock mass (Figure 2.10) is taken from
the topography of a valley located in southern Andes. For the FE model, 27-node
hexahedral elements are used to interpolate the solution with quadratic shape functions
for displacement and linear shape functions for pore pressure and temperature fields
to ensure the stability of the coupled system. The 3D domain is a 22000m by 10200m
region with non-uniform thickness characterizing the valley with a maximum elevation
of +1341m and a minimum elevation of -3985m. The discretized domain consists of
3774 hexahedral elements, 34125 nodes and 115833 DOF. The time discretization
is kept the same as in the 2D case with 100 time steps for an observation period of
6000 years.

The QoI is taken as the average of the pressure in the whole domain and the
average of the vertical displacement along the upper surface. The glacier advance
on the upper surface is described by the same function as in the 2D problem (2.37),
imposed at zero-elevation. The elevation profile of the glacier is extruded along the
lateral direction and enforced to conform to the rock mass elevation (i.e., when the
effective glacier thickness is lower than the rock mass elevation at a specific point, no
loading is applied).

To build the reduced basis, the coupled system is parametrized as in the 2D case.
The ranges of values for the elastic modulus µ1 and the permeability µ2 are varied
and discretized to 70 sets (nµ1 × nµ2 = 10 × 7), defining the parametric training
sample. Implementing the greedy adaptive strategy, it took 8 enrichment steps to
reach the tolerance level below 10−4. The reduced basis after enrichment contains
306 POD modes in total, resulting in RB spaces with characteristic size of 48, 79 and
179 modes for temperature, displacement and pore pressure, respectively.

The dimensionality of the coupled THM system is thus significantly reduced −
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having only 306 DOF instead of 115833 DOF to solve the primal problem. Comparing
the computational costs, the FE model solution with 115833 DOF requires 17683
seconds (4.6 hours) in MATLAB implementation while the RB-projected system takes
35 seconds to run which yields a computational gain of 505x speed up, see Table
2.5. Note that with even more realistic (i.e. larger) problems and involving more
parameters, the expected speed up is even higher.

Table 2.5 Computational gain with RB model in 3D application

FE Model RB Model Gain
DOF 115 833 306 378:1

CPU Time 17 683s 35s 505xspeed up

The accuracy of the RB-projected solution is assessed by comparing it to the
FE model solution evaluated for a reference parameter set value presented in [136]
(3 × 1010 Pa, 1.55 × 10−19 m2), which is not used as a snapshot point to build the
RB. Figure 2.11 and Figure 2.12 show that the temperature, displacement and pore
pressure field distributions in the domain after 6000 years are recovered well by the
RB model. The relative error norms in the QoI at 6000 years are 4.3× 10−4 for pore
pressure and 2.6 × 10−5 for displacement which gives a good level of accuracy for
the RB approximation. Further comparison of RB-projected solutions to FE model
solutions (Table ??) is performed for different parameter set values chosen by varying
parameter µ1 or µ2 with respect to the reference parameter set which is useful for
sensitivity analysis of the parametric system.

Table 2.6 Relative error in the pore pressure and displacement fields evaluated in
the QoI domain (temperature field is unaffected by µ1 and µ2)

µ1(Pa) µ2(m2)
∥e∗p∥
∥p∗∥

∥e∗u∥
∥u∗∥

3.0× 1010 1.55× 10−19 4.3× 10−4 2.6× 10−5

3.0× 1010 6.00× 10−18 9.3× 10−3 4.4× 10−4

2.4× 1010 1.55× 10−19 3.3× 10−4 1.6× 10−5

3.5× 1010 1.55× 10−19 4.1× 10−4 2.5× 10−5

3.0× 1010 1.00× 10−21 3.8× 10−4 1.5× 10−5

∗ evaluated in the QoI, at time=6000 years
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�

Fig. 2.10 Homegeneous rock mass valley with non-uniform top elevation taken from
a region in southern Andes
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(a) FE Temperature, T (◦C)

(b) FE z-Displacement, uz (m)

(c) FE Pore Pressure, p (Pa)

Fig. 2.11 3D Evolution of thermo-hydro-mechanical properties after 6000 years



42 Chapter 2. Certified Reduced Basis Approximation of Linear THM Systems

(a) |T−TN |
∥T∥max

(b) |uz−uzN |
∥uz∥max

(c) |p−pN |
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Fig. 2.12 Error map of FE and RB-projected coupled THM solution. Error is
expressed relative to the maximum field value of the FE solution.
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6 Summary and Findings

We presented a strategy to solve transient coupled THM systems in the framework of
reduced basis approximation. To preserve the stability properties of the reference FE
model, the same interpolation principle is applied in the RB projection by using three
separate bases - each basis corresponding respectively to temperature, displacement
and pore pressure fields. The greedy adaptive strategy, employed to optimally enrich
the bases, strongly relies on the error estimator that provides the criterion to select
the next snapshots and certifies the RB-projected solutions.

We developed an efficient a-posteriori error estimator for the coupled THM system
which evaluates the error in specific quantities of interest. The strength of this
goal-oriented scheme lies in the combination of implicit and explicit error assessment
approaches - first, assessing the error implicitly in the dual problem and then injecting
it to the explicitly evaluated primal residual. Particularly for a time-dependent
system, this error assessment enables a simplified implementation that adapts the
space-time grid such that at every time step, the adjoint is simply plugged in to
the weak residual. For computational efficiency, it was proven for the application
examples that solving the adjoint only once and reusing it for error evaluation in the
entire training sample is effective as evident in the sharp error estimates.

The numerical examples demonstrated the ability of the RB strategy to accurately
approximate the reference FE solutions of the coupled THM system with a significant
reduction in computational costs. Furthermore, higher computational gain is foreseen
for more complex and realistic problems that feature non-linearity, heterogeneity and
higher-dimensional parametric space. For problems that deal with much larger sets
of uncertain parameters, it is worth investigating in future works whether the scheme
of solving the dual problem only at one parameter set can provide sufficiently sharp
error estimates. Potential strategies (e.g., interpolation and iterative optimization
procedures) that tackle such issue are to be explored.
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Chapter 3. Parametrized THM Problems: RB Surrogate Modelling and Inverse

Identification for ATLAS III Experiment

1 Introduction

In Belgium, an underground research facility (URF) named HADES (High Activity
Disposal Experimental Site) was constructed in the Boom Clay layer to investigate
the safety and feasibility of deep geological disposal for high level radioactive wastes
(HLW), Figure 3.1. The thermo-hydro-mechanical (THM) perturbation of the Boom
Clay in response to the heat-emitting HLW has been studied in HADES URF through
in-situ heating tests at different scales including a small-scale ATLAS heater test
that ran in four phases (ATLAS I, II, III, and IV) between 1993 and 2012. These
tests are performed to confirm and refine the THM material properties obtained from
previous laboratory experiments.

Fig. 3.1 HADES URF in Mol, Belgium

For deep geological disposal, performance assessment of the host formation focused
on isolating the HLW from the biosphere requires that in-situ experiments are
complemented by numerical simulations to allow predictions of THM behaviour for
extended periods of time [7, 29, 37, 51, 134], or to allow investigating the effect of
host rock degradation due to excavation [96, 104, 109, 122]. Mathematical models for
such coupled geomechanical systems are often characterized by high dimensionality in
which the associated computational cost becomes critical when dealing with inverse
problems. In previous studies related to this application, the identification of THM
parameters in large-scale models was most often restricted to a trial and error approach
by manually calibrating the model until experimentally measured data are reproduced
[18, 29, 67, 94, 120, 123].

Most computationally intensive inverse identification procedures rely on using
surrogates as a substitute to high fidelity forward models with the aim to imple-
ment optimization procedures more efficiently. Surrogate models are approximation
models built based on repeated forward model simulations probed in a parametric
space. The parameters or inputs (e.g. thermal conductivity, hydraulic permeability)
configure a particular behaviour of solutions or outputs (e.g. heat flux, flow rates)
in the constitutive model. Surrogate modelling techniques can be classified to two
different types: physics-based and non-physics based models [48]. Data-fit models are
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constructed by non-physics-based approximation through interpolation or regression
of input-output data resulting in a black box modelling approach. On the other
hand, physics-based hierarchical models are constructed from either defining coarser
discretization, simplifying physical assumptions or relaxing convergence tolerances.
Reduced order models can be regarded as a class of hierarchical surrogates as evident
from its physics-dependent projection framework. Aimed at reducing the dimension-
ality of the system, the high-fidelity forward model is projected to a low dimensional
subspace. The subspace is defined by basis functions that are typically constructed
using a set of so-called ‘snapshots’ referring to high-fidelity solutions for specific
values of the physical parameters. Numerous studies have implemented reduced order
modelling in the framework of inverse problems for different types of applications
[14, 52, 102, 110, 147].

We focus our attention on the reduced basis (RB) method - an enrichment-based
class of model order reduction that requires an adaptive strategy to construct a low
dimensional subspace spanning solutions of a system under parametric variation. At
the core of this enrichment procedure, an ‘a posteriori error indicator’ drives the
optimal selection of snapshots used to build the low dimensional subspace underlying
the surrogate model. A similar goal-oriented error estimation technique was developed
for time-dependent coupled THM systems in [81]. The error indicator, derived based
on the explicitly-solved weak residual of the primal problem and on the implicitly-
solved adjoint of the dual problem, is extended for the case where some hydro-
mechanical parameters are temperature-dependent.

In the present work, a reduced basis method is used to generate surrogate models
for solving inverse problems related to coupled processes in ATLAS III Heater test
performed in HADES URF [29]. A two-step parameter identification procedure is
performed by first identifying the unknown thermal parameters which are subsequently
used as inputs to the coupled THM model, followed by identifying the unknown
hydro-mechanical parameters in the second stage. The effectiveness of the proposed
methodology is demonstrated through a parameter identification procedure using
synthetically manufactured data. Furthermore, the feasibility of this approach in real
applications is demonstrated by using real sensor measurement data from an in-situ
experiment conducted in an underground laboratory.

The chapter is organized as follows. In Section 2, we describe the governing
equations for the time-dependent coupled THM system and their discretized forms
in both full order and reduced order. In Section 3, we outline the greedy-based
adaptive strategy and error estimation used to optimally select the snapshot set
during the construction of the low dimensional RB subspace. In Section 4, the
parameter identification strategy and the underlying optimization techniques are
detailed. Application of the reduced basis generation strategy and inverse problems
related to the in-situ experiment are presented in Section 5.



48
Chapter 3. Parametrized THM Problems: RB Surrogate Modelling and Inverse

Identification for ATLAS III Experiment

2 Problem Definition: Linear Anisotropic THM
System

2.1 Governing Equations and Full Order Discretization

We consider a time-dependent coupled THM system involving a fully-saturated linear
poroelastic material. The equations governing the THM system take the form,

kc∇2T − ρcpṪ +Q = 0
⎫⎬⎭∇ · (C : ∇u)− α∇p−Θ∇T = 0

− k

µf (T )
∇ · (∇p) + α∇ · u̇+

1

M
ṗ− [φ3αf + (α− φ)3αs]Ṫ = 0

in Ω× (0, tf ]

(3.1)

with Neumann boundary conditions

ψ · n = gN
⎫⎬⎭σ · n = σN

Υ · n = pN

on ∂ΓN × (0, tf ], (3.2)

Dirichlet boundary conditions

T = TD
⎫⎬⎭u = uD

p = pD

on ∂ΓD × (0, tf ], (3.3)

and initial condition
T = T0

⎫⎬⎭u = u0

p = p0

in Ω× {t = 0}, (3.4)

where T,u and p are the field variables corresponding to temperature, displacement
and pore water pressure. The liquid dynamic viscosity is temperature-dependent,
obeying the empirical function [56, 146],

µf (T ) = 2.1× 10−12 exp

(︃
1808.5

273.15 + T

)︃
(3.5)

where µf is in MPa · s and T is in Celsius. Assuming cross-anisotropic condition
with the horizontal bedding plane and its perpendicular vertical plane denoted by
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(h) and (v) subscripts respectively, the fourth order elasticity tensor (3.6) contains
five independent coefficients [24, 60]. The physical parameters used in the system of
equations are listed in Table 3.1.

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Eh(1−νhh)
(1+νhh)(1−2νhh)

Ehνhh
(1+νhh)(1−2νhh)

Ehνvh
(1+νhh)(1−2νhh)

0 0 0
Ehνhh

(1+νhh)(1−2νhh)
Eh(1−νhh)

(1+νhh)(1−2νhh)
Ehνvh

(1+νhh)(1−2νhh)
0 0 0

Ehνvh
(1+νhh)(1−2νhh)

Ehνvh
(1+νhh)(1−2νhh)

Ev(1−νhh)
(1+νhh)(1−2νhh)

0 0 0

0 0 0 Gvh 0 0
0 0 0 0 Gvh 0
0 0 0 0 0 Eh

2(1+νhh)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.6)

Table 3.1 Physical parameters of the THM system

Parameters
G shear modulus
E Young’s modulus
ν Poisson’s ratio
α Biot-Willis coefficient
M constrained specific storage coefficient
µf viscosity
k permeability
φ porosity
Θ thermal expansion factor
αs thermal expansion coefficient in the solid

phase
αf thermal expansion coefficient in the fluid

phase
cp bulk specific heat
cp,s solid specific heat
kc thermal conductivity
Q heat source
ψ thermal flux
σ traction
Υ fluid velocity

The solution to (3.1) -(3.4) is approximated with the finite element (FE) method
by discretizing the domain Ω using a mesh of characteristic size H in the functional
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space ZH ⊂ H1
0(Ω), WH ⊂ [H1

0(Ω)]
2, QH ⊂ H1

0(Ω):

T (x, t) ≈ TH(x, t) =
nnodes∑︂
i=1

Ti(t)Ni(x) = NTT

u(x, t) ≈ uH(x, t) =
nnodes∑︂
i=1

ui(t)Ñ i(x) = Ñ
TU

p(x, t) ≈ pH(x, t) =
nnodes∑︂
i=1

pi(t)Ni(x) = NTp

(3.7)

where U ∈ Rd×nnodes , nnodes is the number of nodes discretizing the field in Ω, while N
and Ñ are compact support shape functions. The weak form is written in a compact
format as

B(T,u, p; z,w, q) = L(z,w, q) ∀z ∈ ZH ,w ∈WH , q ∈ QH (3.8)

where

B(T,u, p; z,w, q) =
∫︂
Ω

kc
∂z

∂xj

∂T

∂xj
dΩ +

∫︂
Ω

zρcp
∂T

∂t
dΩ

+

∫︂
Ω

Cijkl
∂wi

∂xj

∂uk

∂xl
dΩ−

∫︂
Ω

wiα
∂p

∂xi
dΩ

−
∫︂
Ω

wiΘ
∂T

∂xi
dΩ

−
∫︂
Ω

k

µf

∂q

∂xj

∂p

∂xj
dΩ +

∫︂
Ω

q
1

M

∂p

∂t
dΩ +

∫︂
Ω

qα
∂

∂t
(
∂ui

∂xi
)dΩ

−
∫︂
Ω

q[φ3αf + (α− φ)3αs]
∂T

∂t
dΩ

(3.9)

for i, j, k, l = 1, 2, 3 and

L(z,w, q) =
∫︂
Γ

zgNdΓ +

∫︂
Γ

wσNdΓ−
∫︂
Γ

qpNdΓ. (3.10)

The substitution of the approximation (3.7) in the weak form (3.8) leads to the
discrete matrix form,

K U+ C U̇ = F (3.11)
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⎡⎣KH 0 0
KT KU CP

0 0 KP

⎤⎦
⏞ ⏟⏟ ⏞

K

⎡⎣ T
U
p

⎤⎦
⏞ ⏟⏟ ⏞

U

+

⎡⎣CH 0 0
0 0 0
CT CT

P CM

⎤⎦
⏞ ⏟⏟ ⏞

C

⎡⎣ Ṫ
U̇
ṗ

⎤⎦
⏞ ⏟⏟ ⏞

U̇

=

⎡⎣ FT

Fu

Fp

⎤⎦
⏞ ⏟⏟ ⏞

F

(3.12)

where K contains the stiffness and conductivity matrices, C contains the capacity
(time-dependent) matrices and F contains the vectors corresponding to L(·).

For the time discretization, one considers a time-discrete framework in the interval
I ≡ (0, tf ] such that the subintervals are denoted as {0 = t0 < t1 < ... < tl < ....
< tL = tf} for l = 1, 2, ...,L. For notation purposes, let ∆tl be the characteristic
time step of the time-discrete framework, measured as ∆tl = tl − tl−1. To perform
the time integration, an Euler-Backward scheme is used and the space-time discrete
problem is written as

∆tlKU l + C U l = C U l−1 +∆tlF l ∀l ∈ 1, 2, ...,L (3.13)

In this study, the effect of the hydro-mechanical processes on the thermal aspect
can be neglected due to the low permeability and small deformation of the Boom Clay.
This unidirectional coupling permits separation of the thermal balance equation from
the monolithic system (3.11). In the case of temperature-dependent viscosity, this
separation allows preserving the linearity in the system of equations since temperature
will be obtained independently of the hydro-mechanical system. The non-monolithic
system that involves a two-step solving procedure: first, solving the thermal balance
equation and then using the temperature solution as input variable for the hydro-
mechanical system, is expressed as

KH T +CH Ṫ = FT (3.14)

[︃
KU CP

0 KP

]︃ [︃
U
p

]︃
+

[︃
0 0
CT

P CM

]︃ [︃
U̇
ṗ

]︃
=

[︃
Fu −KTT
Fp −CTṪ

]︃
. (3.15)

To avoid instability in the system, Taylor-Hood finite element spaces are defined
by assigning quadratic basis functions for displacement and linear basis functions
for pore pressure and temperature [83, 93, 157]. The ‘high fidelity full order model’
referred to in the next sections is described by the finite element approximation in
(3.14 - 3.15).
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2.2 Reduced Order Model Form

For a set of parameter values M = {µ1, ...,µN}, the snapshots are denoted as the
corresponding solutions SN = {(T (µ1),u(µ1), p(µ1)), ..., (T (µN),u(µN), p(µN))}
where N is typically much smaller than the characteristic size of the reference full
order model. To inherit the stability condition of the reference full order model, the
global approximation spaces are defined separately for each field variable:

ZH
N = span{T (µn), 1 ≤ n ≤ nsnapshots} ⊂ ZH

WH
N = span{u(µn), 1 ≤ n ≤ nsnapshots} ⊂WH

QH
N = span{p(µn), 1 ≤ n ≤ nsnapshots} ⊂ QH

(3.16)

The Galerkin projection of the reference model to global approximation (RB)
spaces starts by decoupling the system. In the discrete form, elements of stiffness,
conductivity and capacity matrices are extracted and grouped into blocks based on
the field variable it interacts with (3.17). With Z,W and Q denoting the RB matrices
for temperature, displacement and pore pressure respectively, each block is projected
to its corresponding bases and assembled similar to the reference FE matrix system.
The resulting blocks are described by a much smaller characteristic size of order N .

⎡⎣KHN 0 0
KTN KUN CPN

0 0 KPN

⎤⎦⎡⎣ TN

UN

pN

⎤⎦+

⎡⎣CHN 0 0
0 0 0

CTN CT
PN CMN

⎤⎦⎡⎣ ṪN

U̇N

ṗN

⎤⎦ =

⎡⎣ FTN

FuN

FpN

⎤⎦
(3.17)

KHN = ZT KH Z KTN = WT KT Z KUN = WT KU W
CPN = WT CP Q KPN = QT KP Q CHN = ZT CH Z
CTN = QT CT Z CT

PN = QT CT
P W CMN = QT CM Q

FTN = ZT FT FuN = WT Fu FpN = QT Fp

TN = ZT T UN = WT U pN = QT p

(3.18)

For a specific value of each, physical parameter, µ ∈ P , the approximated solution
belonging to the RB spaces (TN(µ) ∈ ZH

N , uN(µ) ∈ WH
N , pN(µ) ∈ QH

N) is obtained
by solving

B(TN(µ),uN(µ), pN(µ); z,w, q) = L(z,w, q) ∀z ∈ ZH
N , w ∈ WH

N , q ∈ QH
N (3.19)

where the dimensionality of the system corresponding to the left hand side B( · ) and
right hand side L( · ) terms, as described in (3.9) and (3.10), is much lower than the
reference full order model. In the subsequent sections, we will denote the reduced
variables (3.17) with the subscript N .
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3 Reduced Basis Surrogate Model

3.1 Reduced Basis Generation

The reduced basis is built from an assembly of optimally selected snapshots evaluated
within a given parametric training sample defined by specific values of the physical
properties in Table 3.1. It is desired that the selected snapshots yield the most accurate
reduced basis approximation, while keeping the number of snapshots minimal. An
adaptive strategy driven by an a-posteriori error estimator is used to efficiently
carry out the snapshot selection procedure. In turn, the error estimator provides
certification to the RB-approximated solutions.

For the adaptive strategy, hierarchical RB approximation spaces are constructed
from a greedy-based sampling framework [62, 63, 87, 107]. An enrichment procedure
is implemented in which newly-selected snapshots are appended to enrich the reduced
basis at every step (Algorithm 2.1).

At every enrichment step, a full order solution is evaluated at the optimally
selected parameter value µ∗ and denoted as the optimal snapshot. Three bases are
constructed for each field variable by decoupling (SM

T , S
M
u , SM

p ) and orthonormalizing
the optimal snapshot with the Proper Orthogonal Decomposition (POD) technique.
POD modes are truncated based on a prescribed tolerance value corresponding to
the desired level of accuracy. Using the truncated and orthonormalized modes as
projection bases, the worst point in the training sample is located by finding the
parameter values in which the largest error estimate occurs for the current RB space.
A new snapshot solution is then generated at this worst point and appended to
the current RB space to improve its approximation. The enrichment procedure is
repeated until the stopping criteria are satisfied.

As the main driver of the greedy adaptive strategy, it is critical to ensure that
the error estimates give a good approximation of the exact error while being com-
putationally inexpensive. For cases where the training sample is very large indeed,
estimating the error at every set of parameters in the sampling space is an exhaustive
and expensive procedure.

3.2 Goal-Oriented Error Estimate

Goal-oriented error estimation provides a very effective tool for numerical simulations
where one is particularly interested in specific features of the solution as it selectively
gives information about a more relevant error in the quantity of interest (QoI) instead
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of error estimates derived from energy norms. The error in the QoI is estimated by a
dual weighted residual which relates the primal residual to an appropriate adjoint
solution of a dual problem. Following the methodologies developed in [81], we obtain
the error estimates for the coupled THM system by directly injecting the adjoint to
the weak primal residual

Ĵ(eT , eu, ep) = R̂(Tadj,uadj, padj) (3.20)

(eT , eu, ep) = (T − TN ,u− uN , p− pN) (3.21)

where (Tadj,uadj, padj) are adjoint solutions, J(·) is a linear functional describing the
QoI, R(·) contains the residuals from the temperature, displacement and pore pressure
fields and the [ˆ] superscript denotes vectors normalized to obtain consistent units.
Recalling the weak form of the THM model, the residual is defined as

R(z,w, q) = B(eT , eu, ep; z,w, q)
= L(z,w, q)−B(TN ,uN , pN ; z,w, q) ∀z ∈ ZH ,w ∈ WH , q ∈ QH .

(3.22)

Consider a quantity of interest described by the functional (fT̄ , fū, fp̄) for tempera-
ture, displacement and pore pressure, the dual problem for the coupled THM system
is derived in strong compact form as:

δ̂

γ̂
kc∇2Tadj +

δ̂

γ̂
ρcpṪ adj = f̄T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∇ · (C : ∇uadj)−
1

α̂
α∇padj −

1

γ̂
Θ∇Tadj = fū

− β̂
α̂

k

µf (T )
∇ · (∇padj)− β̂α∇ · u̇adj −

β̂

α̂

1

M
ṗadj

+
β̂

γ̂
[φ3αf + (α− φ)3αs]Ṫ adj = f̄p

in Ω× (0, tf ] (3.23)

with zero flux Neumann boundary conditions in ∂ΓN , zero valued Dirichlet boundary
conditions in ∂ΓD and zero final conditions imposed at t = tf . The dual problem
formulation is very similar to the primal problem differing only by the time-dependent
terms bearing opposite signs which reflects the backward in time propagation of the
adjoint solution. Characteristic factors (α̂, β̂, γ̂) derived from norms of previously
solved primal problem are also introduced to ensure compatibility of variables within
the dual problem. Assuming that the adjoint sensitivity with respect to variation of
material properties in the THM system is low, only one adjoint solution is needed to
be computed to represent the entire parametric training sample [81].
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4 Inverse Analysis: Two-Step Parameter Identifi-
cation

Exploiting the unidirectional coupling of the thermal system, it is possible to separate
the THM system into two systems (thermal, hydro-mechanical) and solve them
sequentially(3.14-3.15). In the context of parameter identification where one is
interested in identifying material parameters in both separated systems, this entails
devising a two-step parameter identification procedure. In the first step, thermal
parameters are sought to match a given measurement data. The temperature evolution
generated from the identified parameters will be used as input to compute the necessary
temperature-dependent material properties to build the hydro-mechanical model. In
the second step, material parameters related to hydro-mechanical system are identified
based on another set of measurement data.

Intial Param-
eter Values

Simulator
RB Model
(Surrogate)

Simulated Data Sensor Data

Equal

Optimize

Identified
Parameter Values

Yes

No

Fig. 3.2 Parameter identification procedure

The identification procedure is further explained by the flowchart depicted in
Figure 3.2. Given an initial guess of parameter values, a forward model is run on a
‘simulator’ to generate simulated field data. The simulated data is then compared to
sensor measurement data such that if the difference between the two is above a certain
threshold, it detects that the previous guess of the parameter values is incorrect and
requires to be adjusted. The goal of the identification procedure is to find the correct
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parameter values that will match the simulated and sensor measurement data. The
set up can be thought of as a function minimization problem where one must converge
to the point where the difference between the simulated and sensor measurement data
is minimum. To perform the function minimization efficiently, a suitable optimization
technique needs to be employed. In the methodology proposed here, the ‘simulator’
is replaced by a reduced basis surrogate model built in Section 3.

In this work, we implemented two optimization algorithms in the parameter iden-
tification procedure. The Nelder-Mead simplex algorithm [91], one of the most widely
used direct search methods designed to solve classical unconstrained optimization, is
employed when tackling simple cases where the search space is not very large. It is
advantageous in the context of multiple parameter realizations as it typically requires
only one or two function evaluations at every iteration. To deal with more complex
optimization problems, a stochastic global search method is employed. Based on
natural evolutionary processes, the genetic algorithm (GA) identifies the optimal
parameter values by submitting a group of individuals (population) to the principle
of natural selection. By creating randomly sampled individuals and subjecting them
to fitness tests for which only outstanding individuals are allowed to carry on to the
next generation, this process leads to the evolution of individuals better suited to
the studied problem than the initially created individuals [59, 82, 103, 105, 115, 129].
Relative to Nelder-Mead simplex algorithm, GA requires more function evaluation
throughout the entire evolutionary process.
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5 Application to ATLAS III Heater Test

In this section, we consider a problem describing the coupled THM processes in an
in-situ ATLAS III Heater test conducted in HADES URF. The heating test was
performed to characterize the thermo-hydro-mechanical behaviour of the Boom Clay
when subjected to transient thermal loads.

The schematic view of ATLAS III Heater test is presented in Figure 3.3. The
original test set-up for ATLAS Heater test was established in 1992 by SCK CEN
within the framework of the European project Interclay II (1990-1994) [79]. The
ATLAS Heater test had run in three phases between 1993 and 2008. During the first
two phases (1993-1997), the test set-up consisted of one heater borehole (TD89E) and
two horizontal observation boreholes (TD85E and TD93E). The set-up was extended
in 2006 by drilling one inclined downward observation borehole TD97E and one
horizontal borehole TD98E. The heater was switched on from April 2007 to April
2008 with a stepwise power increase followed by an instantaneous shut down. This
phase is called ATLAS III Heater test.

The central heater borehole TD89E has a drilling depth of 19 m and a drilling
diameter of 230 mm. The heated section depth runs from 11 m to 19 m. The
borehole is cased with a stainless tube having an external diameter of 190 mm and an
internal diameter of 160 mm. The initial gap between the tube and the surrounding
Boom Clay closed within a few months due to soil convergence. The two observation
boreholes were installed in both sides of the central heater borehole – with TD85E
1.5 m to the left and TD93E 1.3 m to the right. At the end of both boreholes, sensors
were installed in the same depth (∼15 m) as the centre of the heater to measure
the temperature and pore pressure. Borehole TD97E has a depth of 21 m with a
downward inclination of 10◦ and a horizontal deviation (to the left) of 10◦. TD97E is
equipped with 12 temperature sensors that are evenly distributed along the depth of
10 to 21 m. There are no pore pressure sensors in borehole TD97E. Borehole TD98E
is located about 2.7 m away from the central borehole, with a length of 20 m. TD98E
is equipped with 10 temperature sensors distributed along the depth of 9 to 20 m. It
is instrumented by three pore pressure sensors with respective depth of 11, 15 and 19
m.

For ATLAS III, the heater was re-activated on April 2, 2007 with the power being
increased to 400 W within 4 days. The heating power increased from 400 W to 900
W on May 25, 2007 within 5 days, and finally increased from 900 W to 1400 W on
August 3, 2007 within 5 days. On April 17, 2008, the heater was shut off. Figure 3.4
sketches the stepwise increase of the total heater power applied. The measurement
data covering a 381-day heating phase and a 519-day cooling phase are used for the
inverse analysis.
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(a) Top View

(b) Front View

Fig. 3.3 ATLAS III in-situ test set-up and instrumentation
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Fig. 3.4 ATLAS III heating power
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The coupled THM processes in the ATLAS III Heater test is modelled numerically
assuming full saturation conditions. Analysis in [29] indicates that the plasticity
is very limited in the Boom Clay and elasticity plays a dominant role in the test
responses. Therefore, the Boom Clay is assumed to be linearly poroelastic. Cross-
anisotropy is considered for the properties of all three physics involved - thermal
conductivity, permeability and elasticity. The THM behaviour is isotropic in the
sub-horizontal bedding (x-y plane) and anisotropic with respect to the perpendicular
vertical plane (along z-axis). The governing equations presented in (3.1)-(3.4) are
applied to cross-anisotropic cases and the Boom Clay material properties are presented
in Table 3.3 [17, 29, 37, 70, 153]. The steel casing material properties are presented
in Table 3.2. Note that some of these material property values will be modified in
the case where they will be selected as the parameters to be identified in the inverse
analysis.

Table 3.2 Material parameters describing the steel casing

E 210 GPa
v 0.20
G 88 GPa
cp 460 J/ (kg ·K)
kc 15 W/ (m ·K)

Table 3.3 Material parameters describing the Boom Clay

Eh 1400 MPa
Ev 700 MPa
vhh 0.25
vvh 0.125
Gvh 280 MPa
α 1
M 5698 MPa
kh 4× 10−19 m2

kv 2× 10−19 m2

φ 0.39
αs 1× 10−5 ◦C−1

3αf 2.8× 10−4 ◦C−1

cp,s 740 J/ (kg ·K)
kch 1.65 W/ (m ·K)
kcv 1.31 W/ (m ·K)

h and v subscripts refer to the orientation of cross-anisotropic variables
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5.1 Thermal Analysis

This section deals with the first step of the THM analysis for ATLAS III Heater test
which is a purely thermal analysis.

5.1.1 Full Order Model (FOM)

Figure 3.5 illustrates the 3D geometry and the corresponding mesh developed for the
thermal model, covering a computational domain of 100 m-radius in the x-z plane
and 119 m-length in the direction parallel to y-axis. The domain consists of two
regions: a 15 mm-thick, 19 m-long steel casing and the Boom Clay for the rest of
the domain. The resulting mesh discretization contains 36 489 nodes and 33 024
linearly interpolated 8-noded hexahedral elements. To model the thermal loading, a
homogeneously distributed heat flux is prescribed on the intrados of the steel casing
which runs from 11 m to 19 m along the y axis. The remaining boundaries are defined
as adiabatic. An initial temperature of 16.5◦C is prescribed in the whole domain.

In the modelling, the influence of the Test Drift boundary conditions on the
Boom Clay THM responses is considered negligible. This assumption primarily takes
into account the Test Drift excavation (in 1987) which happened 20 years before
ATLAS III started. Moreover, the ATLAS III heater was installed 11 m from the Test
Drift and previously conducted sensitivity analysis indicated that heating-induced
disturbance does not reach the Test Drift during a one-year heating phase. In 1992,
the central heater borehole AT89E was drilled and cased with a steel tube resulting in
a 20 mm thick overdrill. Further 15 years had passed and quasi-equilibrium conditions
prevailed which makes is acceptable to assume a homogeneous Boom Clay in the test
domain.

After implementing the FE model with the assumptions described, the temperature
evolution corresponding to reference material properties (Table 3.2 and 3.3) at sensor
locations are shown in Figure 3.7.

5.1.2 Reduced Order Model (ROM)

The thermal system is parametrized by varying several material properties within
a wide range of values well beyond expected for the Boom Clay [54]. The cross-
anisotropic thermal conductivities (kch, kcv) are selected to vary between [1, 3]W/(m·K),
while the solid phase specific heat coefficient (cp,s) varies between [500, 1200]J/(kg ·K).
The parametric training sample is discretized by uniformly sampling kch, kcv and
cp,s with 12 points resulting in 1728 (12 × 12 × 12) parameter sets where each set
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Fig. 3.5 3D mesh of the thermal model
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contains 3 thermal property values, µ = (kch, kcv, cp,s).

We define the quantity of interest (QoI) as the average temperature over time in
regions surrounding the thermocouple sensors. The error in the QoI is estimated by
relating the weak residual to the adjoint solution (3.20). The parameter set defined
in the reference FOM is used to formulate the dual problem which will represent
the adjoint for the entire parametric training sample. With these assumptions, the
enrichment procedure described in Section 3 and detailed in [81] is performed and
stopped once the normalized estimated error in the QoI is below the 10−4 tolerance.

It took five enrichment steps to build the reduced basis for the parametrized
system. In the final enrichment step, the modes are truncated to 19 modes which
correspond to the 10−5 tolerance prescribed for the POD technique in the greedy
basis generation algorithm. A significant size reduction relative to the reference FOM
(36 489 free degrees of freedom) is observed in the system, yielding a reduction ratio
of 1:1920.

To validate the accuracy of the reduced basis approximation, the temperature
evolution at different sensor locations obtained by the full order FE model are
compared against the RB-projected solutions (Figure 3.7) for the material properties
given in Table 3.3. In addition to this validation on the reference FOM, random
parameter values within the training sample are also used as comparison points. A
quantitative measure of accuracy is formulated as ē = ∥FOM−ROM∥2

∥FOM∥2 , taking the norms
of temperature discrepancies between the FE and RB-projected solutions (Table 3.4).

5.1.3 Thermal Properties Identification

As previously mentioned, specific heat and thermal conductivity are chosen as the
unknown thermal properties to be identified. The objective function describing the
relative difference between measured and simulated temperature data is evaluated as:

χ =
1

nsensor

nsensor∑︂
i=1

∫︂
∥ Tsensor − Tsurr ∥2

∥ Tsensor ∥2
dt (3.24)

where Tsensor is the sensor measurement data, Tsurr is the simulated data from the
surrogate model and nsensor is the total number of sensors considered. The integral
over time imposes a weight effect to avoid biasing and favouring periods where more
frequent measurements are taken. The resulting relative norms are averaged over the
total number of sensors.

With only three unknown thermal properties to identify and 24 sensor measurement
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Fig. 3.6 Convergence of the greedy-based procedure to the prescribed error level and
the number of corresponding POD modes at each enrichment step - thermal analysis

data, a local search method, Nelder-Mead simplex algorithm, is chosen to perform
the optimization. The entire measurement taken from day 0 to 900 is considered for
the time period in the objective function.

Table 3.4 Relative error norm (ē) of thermal RB-projected solutions at random
parameter values (kch, kcv, cp,s)

Parameter
Values

TH-TD85E
TH-TD93E

TC-TD97E TC-TD98E

1.65, 1.31, 740 8.3× 10−5 5.2× 10−5 3.5× 10−5

2.00, 2.00, 850 3.3× 10−5 3.2× 10−5 2.3× 10−5

1.00, 3.00, 1200 3.7× 10−5 3.1× 10−5 1.8× 10−5

1.15, 2.55 1100 4.1× 10−5 4.8× 10−5 3.5× 10−5

2.50, 2.80 600 2.6× 10−5 2.1× 10−5 1.5× 10−5

Synthetic Data

To verify the ability of the ROM to replace FOM acting as surrogate in the inverse
analysis, we first consider an identification problem using synthetically manufac-
tured data. This eliminates possible sensor data-related errors such as measurement
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Fig. 3.7 Evolution of temperature in sensor locations: reduced order model versus
full order model solutions at µref = (1.65, 1.31, 740)
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(c) 10 sensors in TH-TD98E

Fig. 3.7 Evolution of temperature in sensor locations: reduced order model versus
full order model solutions at µref = (1.65, 1.31, 740)

noise effects. The synthetic data used is obtained from the reference FOM where
temperature solutions at 24 sensor locations from day 0 to 900 are taken.

Convergence point in the optimization is attained with χ = 2.2 × 10−9 after
132 iterations and 265 objective functions evaluated. The identified parameters
µopt = (1.648, 1.312, 738) are very close to the target parameter values µref = (1.65,
1.31, 740) used in the reference FOM, see Figure 3.8. It is expected that there is a
shift in the minimum of the optimization search space since the surrogate model is
not exactly the same as the reference FOM that generated the synthetic data.

For comparison purposes, we also performed the same identification procedure
while using a FOM simulator (direct FE approach) in place of the surrogate model.
The identified parameters converged to the exact values as expected. However, a
significantly longer run time is expected where it took 29 hours to finish the identi-
fication procedure compared to less than 500 sec. using a surrogate model despite
having almost the same number of iterations (Figure 3.9).
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Real Measurement Data

The in-situ measured data from 24 thermocouple sensors are simplified to some
extent for this inverse problem application.

Using a similar configuration with the synthetic case, we now define Tsensor as
the real measurement from sensors. The objective function is slightly modified by
introducing additional weight factors wi =

|dmax−di|∑︁
|dmax−di| where d pertains to the distance

of the sensor from the heater. If sensors are installed far the from the heater, it is
expected that less thermal effect is experienced in such regions. Sensors closer to the
heater are favoured by applying higher weights as their temperature profiles are more
significant in describing the temperature evolution of the system.

χ =
1

nsensor

nsensor∑︂
i=1

wi

∫︂
∥ Tsensor − Tsurr ∥2

∥ Tsensor ∥2
dt (3.25)

Using Nelder-Mead simplex algorithm, the unknown parameters are identified after
evaluating 224 objective functions in 102 iterations. Contrary to the synthetic case,
no target values are available to compare with the identified values since we intend
to derive unknown thermal properties. To measure the accuracy of the identified
values, their corresponding simulated temperatures are fitted over the sensor data
(Figure 3.10). It is observed that majority of the sensor data fit well to the numerical
model solution using the identified parameters. However there are some sensors
(TC-TD97E1-6) wherein discrepancies are apparent. Some experimental factors may
affect the parameter identification, such as the sensor location uncertainty, heater
power uncertainty, temperature measurement precision or theoretical assumptions
used in the numerical model development. It is important to emphasize that the
main objective of this study is not to interpret the test results but to demonstrate
the efficiency and accuracy of the presented ROM in the in-situ test inverse analysis
Therefore, further investigation on these factors is not explored here. The identified
thermal parameters, µopt = (1.80, 1.17, 835), are used to build the coupled THM
system described in the subsequent sections.

5.2 Thermo-Hydro-Mechanical (THM) Analysis

This section deals with the second step of the THM analysis for the ATLAS III Heater
test, in which the independently solved temperature is mapped to the HM system.
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5.2.1 Full Order Model

A 3D geometry similar to the thermal model is considered for the HM model, consisting
of a heterogeneous domain but with a smaller Boom Clay region covering only 30
m of radius in the x-z plane and 49 m of length in the y-axis. Comparing to the
thermal model, a smaller geometrical domain is considered as hydro-mechanical
effects far from the heat source are found to be insignificant in characterizing the
coupled processes. The discretized mesh contains 60 509 nodes and 13 760 quadratic
(20-noded hexahedral) elements.

The hydraulic boundary conditions include a 2.25 MPa pore water pressure
imposed on ABFE and BCF surfaces while the remaining surfaces are impervious
(Figure 3.11). For the mechanical boundary conditions, displacements are fixed in
the normal direction for surface ABCD, CDEF and ADE. Normal boundary stress is
applied on surface BCF (3.825 MPa) and ABFE (4.5 MPa in z-direction, 3.825 MPa
in x-direction). The HM model is described with 2.25 MPa initial pore water pressure
and initial stress conditions of 4.5 MPa and 3.825 MPa in the vertical and horizontal
direction, respectively. To establish the initial conditions, an offset period before the
start of heating is introduced in the model for which very high permeability values
are temporarily assigned to the system in order to reach the desired equilibrium state.
The aforementioned HM boundary conditions are imposed while no thermal load is
applied during the offset period.



5. Application to ATLAS III Heater Test 71

Fig. 3.11 3D mesh of the coupled THM model

The temperature change is the main loading that affects the hydro-mechanical
processes. The varying temperature in the domain is primarily reflected on the
temperature-dependent viscosity defined in (3.5). For this numerical model, the
volumetric thermal expansion coefficient is assumed to be independent of temperature
with a constant value of 2.8 × 10−4 ◦C−1 corresponding to the average coefficient
value between 16◦C and 40◦C based on the in-situ environment.

5.2.2 Reduced Order Model

Five material properties corresponding to cross-anisotropic Young’s modulus (Eh, Ev),
cross-anisotropic permeability (kh, kv) and shear modulus (Gvh) are varied to define
the parametrized coupled system. The solution of the parametrized system belongs to
a 5-dimensional space corresponding to the five material parameters: Eh ∈ (200, 2000),
Ev ∈ (100, 1600), kh ∈ (2×10−19, 8×10−19), kv ∈ (1×10−19, 5×10−19), Gvh ∈ (50, 1000).
The parametric training sample is discretized to 1425 parameter sets µ = (Eh, Ev, kh, kv,
Gvh) – each material parameter is uniformly sampled with 5 discrete points and sets
containing Eh < Ev and kh < kv are excluded from the training sample.

We define the QoI as the average pore water pressure over time in regions
surrounding the piezometer filters. Similar to the thermal system, the adjoint solution
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Fig. 3.12 Convergence of the greedy-based procedure to the prescribed error level
and the number of corresponding POD modes at each enrichment step - THM system

to the dual problem of the HM system (??) is weighted to the weak residual to
obtain error estimates in the QoI. The offset period introduced to establish the initial
conditions is disregarded in the residuals since we are only interested in the solutions
after the initial conditions are reached. Moreover, the offset period does not affect
the dual problem formulation and the adjoint solution.

The adaptive greedy procedure in Section 3 is followed to generate an enriched
reduced basis. In comparison with the full order HM model containing 183 387 free
degrees of freedom, the constructed RB contains only 162 modes (with 10−5 truncation
tolerance) after a total of 16 enrichment steps. A reduction ratio of 1:1130 is achieved.
To validate the accuracy of the reduced basis approximation, full order pore water
pressure solutions at different sensor locations are compared to RB-projected pore
water pressure solutions for the material properties reported in Table 3.3. Random
parameter values within the training sample are also used as additional comparison
points. The relative norms of pore water pressure discrepancies between the full order
and RB-projected solutions are less than 5.6× 10−3 as shown in Table 3.5).

Figure 3.13 compares the ROM pore pressure changes at the five sensor locations
with those by FOM using material parameter set µ = (1000, 500, 3.5×10−19, 3×10−19,
600), from which an excellent agreement can be observed. It is remarkable that the
reduced order model was able to capture the temporary pore pressure decrease (or
increase) after power increase (or cooling) due to mechanical anisotropy [29].
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Fig. 3.13 Evolution of pore pressure change at 5 sensor locations (PP-TD85E, PP-
TD93E, PP-TD98E1, PP-TD98E2, PP-TD98E3): reduced order model versus full
order model solutions at µ = (1000, 500, 3.5× 10−19, 3× 10−19, 600)
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Table 3.5 Relative error norm (ē) of RB-projected pore water pressure at random
parameter values (Eh, Ev, kh, kv, Gvh)

Parameter
Values

PP-TD
85E

PP-TD
93E

PP-TD
98E1

PP-TD
98E2

PP-TD
98E3

1400, 700,

4× 10−19,

2× 10−19,
280

1.6×10−3 1.6×10−3 1.3×10−3 1.1×10−3 6.6×10−4

1700, 850,

5× 10−19,

1× 10−19,
350

1.4×10−3 1.3×10−3 1.1×10−3 9.5×10−4 7.5×10−4

1000, 500,

3.5× 10−19,

3× 10−19,
600

1.6×10−3 1.6×10−3 1.3×10−3 1.1×10−3 6.6×10−4

650, 450,

4× 10−19,

4× 10−19,
200

1.8×10−3 1.9×10−3 1.1×10−3 1.4×10−3 5.6×10−3

400, 400,

3× 10−19,

3× 10−19,
150

2.3×10−3 2.5×10−3 1.4×10−3 1.8×10−3 1.3×10−3

800, 600,

6× 10−19,

5× 10−19,
400

1.3×10−3 1.1×10−3 1.0×10−3 9.1×10−4 3.9×10−4

5.2.3 Hydro-mechanical Properties Identification

Pore water pressure measurements taken at five sensor locations (PP-TD85E, PP-
TD93E, PP-TD98E1, PP-TD98E2, PP-TDT98E3) for a duration of 900 days are
used in the inverse analysis. The hydro-mechanical properties to be identified are
selected to be the same five independent parameters (Eh, Ev, kh, kv, Gvh) varied when
building the reduced basis.

With five material properties to identify and having limited measurement data
to fully describe the coupled processes, using a local search method (Nelder-Mead
simplex algorithm) did not yield desirable results as it often converged to local minima
instead of identifying the target values. A global search method (genetic algorithm),
which is known to perform better in tackling more complex optimization problems,
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Fig. 3.13 Evolution of pore pressure change at 5 sensor locations (PP-TD85E, PP-
TD93E, PP-TD98E1, PP-TD98E2, PP-TD98E3): reduced order model versus full
order model solutions at µ = (1000, 500, 3.5× 10−19, 3× 10−19, 600)

is therefore employed to perform the following identification procedure. The fitness
function describing the discrepancy between in-situ measured and simulated pore
water pressure data is formulated as:

χ =
1

nsensor

nsensor∑︂
i=1

∫︂
∥ psensor − psurr ∥2

∥ psensor ∥2
dt (3.26)

where psensor is the measured sensor data, psurr is the simulated data from the
surrogate model and nsensor is the total number of sensors considered. The resulting
relative norms are averaged over the total number of sensors. Since the five sensors are
located close to one another, a weight factor reflecting their distances from the heater
is deemed unnecessary. The optimization is constrained by imposing that elastic
moduli and permeabilities are always higher in the horizontal direction. We limit
the number of population per generation to 50 individuals as parameter realizations
which require evaluation of the surrogate model to compute the fitness value dominate
the genetic algorithm computational cost.

Synthetic Data To verify the surrogate-based inverse analysis method described
above, we start with the identification of hydro-mechanical properties using syntheti-
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Fig. 3.14 Genetic algorithm fitness function convergence (synthetic data)

cally generated data from the reference FOM. To converge to the identified values, a
total of 12500 individuals were subjected to fitness test over 250 generations (Figure
3.14). The identified parameters µopt = (1381, 707, 4× 10−19, 2× 10−19, 269) are very
close to the target parameter values µref = (1400, 700, 4× 10−19, 2× 10−19, 280) with
a 4% maximum discrepancy occurring in the shear modulus Gvh, see Figure 3.15. As
discussed in the thermal case, it is expected that there is a shift in the minimum of
the optimization search space, resulting from the synthetic data generated from FOM
instead of ROM, which explains the optimization’s inability to converge perfectly to
the target parameter values.

Real Measurement Data

In place of synthetically generated data, we use real pore water pressure measurements
at PD-TD85E, PD-TD93E, PD-TD98E1, PD-TD98E2, PD-TD98E3 and set up the
inverse problem using the same genetic algorithm configuration. There are 261 gener-
ations and 13 050 fitness tests evaluated before convergence is achieved. The linear
constraints are defined more rigidly for elastic moduli (1.8 < Eh

Ev
< 2.2), (Gvh

Eh
< 0.4)

and permeabilities (1.8 < kh
kv

< 2.2). To investigate the quality of the identified
parameter values, µopt = (1061, 483, 3.3× 10−19, 1.8× 10−19, 422), its corresponding
RB-projected solution is fitted over the measured pore water pressure sensor data.
Figure 3.16 illustrates that the surrogate model reproduces the measured pressure val-
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Fig. 3.15 Unknown HM properties convergence to identified values (synthetic data)
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Fig. 3.15 Unknown HM properties convergence to identified values (synthetic data)
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ues reasonably well, except for sensor PP-TD98E3 in which the discrepancy between
simulated and measured values is significantly larger than in other sensors starting
from time, t = 300 days.

As previously mentioned, the aim of this study is not to further interpret the
in-situ experiment results. We focus our attention instead on the computational
gain demonstrated in the solution of the inverse problem. Each of the 13 050 fitness
tests is carried out more efficiently due to the significantly reduced system size of
the surrogate model with a 1:1130 degrees of freedom reduction. The RB-projected
solution for one parameter realization is obtained in less than 40 sec., which is several
orders of magnitude faster than using a standard FE code (approximately 11 hours).
Thus for a single inverse problem with thousands of parameter realizations, it is
still much cheaper to use a RB surrogate model even if the offline RB generation
cost is added. It would take approximately 6000 days using the direct FE approach
to evaluate 13 050 parameter realizations compared to 22 days (16 days offline RB
generation, 6 days online parameter realizations) using the methodology presented
here.

The actual inverse analysis simulations were executed on 10 cores of CPU with 3.2
GHz processor that allowed parallel fitness test evaluations for individuals belonging
to the same generation. This reduced the total run time of the parameter identification
procedure to less than 18 hours. It is worth noting that for the direct FE approach,
even if parallel computing is implemented, solving an identification problem of
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Fig. 3.16 Comparison of measured pore water pressure with modelled pore water
pressure using identified parameters

Table 3.6 Computational time of inverse analysis using real sensor data

ROM FOM
OFFLINE 16 days –

ONLINE: 1-Core CPU 6 days 6000 days*
ONLINE: 10-Core CPU 18 hrs 600 days*

*expected run time based on extrapolation of FE simulation time

this scale for hundreds of days becomes impractical. Table 3.6 summarizes the
computational time of inverse analysis using real measurement data.
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6 Summary and Findings

In this work, we address a coupled THM problem described as a parametrized system
where variation of material properties is of special interest. We tackle the typical
difficulties that come with high dimensional systems by building a reduced basis
certified with goal-oriented error estimators.

The illustrative THM problem for waste repository applications demonstrated
the capabilities of carefully constructed reduced order models to act as surrogates
to replace full order models in inverse analysis. The accuracy of reduced models is
validated by comparing its generated solutions against full order solutions. Synthetic
sensor data are used to show that unknown THM properties can be identified very
close to the target values using the proposed methodology. With real sensor data,
good agreement between simulated solutions from identified parameters and in-situ
measurements is observed. Both of the reduced models built for thermal and coupled
THM system have greater than 1:1000 degrees of freedom reduction ratio which
allowed reaching practical identification costs. Such computational gain is critical
when multiple parameter realizations are involved where it becomes impractical for
direct FE simulations to perform inverse analysis. Aside from parameter identifi-
cation, the methodology presented here can be used to analyze the sensitivity of
the coupled processes and investigate predictive modelling scenarios without the
expensive computational costs typically attached to full order model simulations.
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1 Introduction

The modelling of coupled thermo-hydro-mechanical (THM) systems is extensively
required in various areas of geomechanics due to the multiphase nature of geomaterials.
For many geo-environmental applications such as nuclear waste repository, geo-thermal
energy extraction and reservoir engineering, the coupled THM model that describes
the geological material response is observed to exhibit a highly nonlinear behaviour
particularly in the mechanical aspect. Studying the numerical difficulties arising
from the typically large and complex coupled systems and developing modeling
solutions have been the focus of several research efforts. Performance of standard
finite element (FE) modelling schemes are often improved either by using parallel
solvers [99, 138, 144, 149], implementing object-oriented programming paradigms [148],
devising algebraic multi-grid methods [150, 151] or applying staggered Newton schemes
[99, 131]. So far, very few research studies have however focused on developing model
order reduction techniques specifically tailored to THM systems in a geomechanical
context [22, 81].

When dealing with nonlinear systems, the computational gain achieved from
model order reduction techniques are often limited. Reduced order modelling schemes
are typically formulated with offline and online stage procedures, wherein expensive
system matrices are pre-computed and stored during the offline stage, resulting in
lower computation times during the online stage. This holds valid for linear systems
in which matrices can be computed independently of intermediate solutions, with
online calculation costs that can be liberated from discretization dependency. For
systems involving path-dependent constitutive models, the assembly of the reduced
problem has to be embodied online. As new system matrices are updated in the
nonlinear iteration, the constitutive law needs to be evaluated at each integration
point regardless of the reduced subspace dimension. Consequently, many of the
established model order reduction techniques fail to reduce the computational cost of
nonlinear systems effectively [28].

A class of techniques called ‘hyper-reduction’ was therefore developed to accelerate
the evaluation of the nonlinearity in the field of model reduction. One of the most
commonly used techniques is discrete empirical interpolation method (DEIM), which
uses linear combinations of collateral basis functions to approximate the nonlinear
contributions. The coefficients are obtained from interpolation based on nonlinear
functions sampled at a much smaller number of points [28, 61]. Gappy Proper
Orthogonal Decomposition (POD) is implemented using a similar approach to DEIM
and differs mainly by replacing the interpolation procedure with linear regression [49].
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A modified version of Gappy POD that uses Petrov-Galerkin projection to improve
the stability of reduced order models [23] is referred to as Gauss-Newton Approxi-
mated Tensors (GNAT) method. Reduced Integration Domain (RID) [125, 126] is a
hyper-reduction technique that defines test functions with support confined to the
reduced domain. The resulting hyper-reduced equations constitute a Petrov-Galerkin
formulation of the balance equations which allows for model reduction while keeping
the constitutive model equations unchanged.

We now shift the attention to model order reduction of nonlinear systems in which
nonlinearity more particularly arises from plastic behaviour of materials. Several
intrusive approaches have been proposed in which modifications of the high fidelity or
full order (e.g. finite element) model code are required. The study presented in [77]
combined RID hyper-reduction with POD and augmented Newton-Krylov algorithms
to solve highly nonlinear mechanical problems. The local dependency in elasto-plastic
models was tackled in [127, 128] through multi-level RID hyper-reduction, and [155]
extended the technique to handle thermo-elasto-plastic models. In [69], Empirical
Cubature hyper-reduction method was used for the model reduction of elasto-plastic
composite plates. Such hyper-reduction methods are however found to be susceptible
to robustness deficiencies, in addition to being highly problem-dependent which
limits their effectiveness for complex nonlinear problems. Conversely, more versatile
non-intrusive methods have also been proposed which involve a more general ap-
proach in modelling nonlinear constitutive laws through a ‘black-box’ model. A study
tackled elasto-plasticity in tunnel engineering problems using a multi-grid strategy
[25], involving the computation of less expensive and less accurate FE approxima-
tions during the online stage and an improvement of those solutions using a reduced
basis-based rectification method. In [64], Gaussian process regression was used to
ensure a full decoupling between offline and online stages: projection coefficients
are generated with supervised learning in the offline stage, and are subsequently
combined with scalar parameter values to rapidly predict the reduced basis solution
during the online stage. Similarly, a purely data-driven approach using forward
feed neural networks training was proposed in [118] for laminated composites, while
[58] proposed a recurrent neural network surrogate to simulate history-dependent
material models for quasi-brittle failure analysis. Black-box models are known to
have limited extrapolation capabilities which poses a risk when using them away
from their training sets. Furthermore, the physical information of the problem is
not directly preserved in the black box model, which can lead to high errors and
nonsensical predictions if inadequate data are trained.
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In this contribution, we propose an intrusive approach that combines traditional
Galerkin reduced basis (RB) projection and sub-structuring by domain decomposition
to effectively reduce the computational cost involved in solving nonlinear elasto-plastic
THM systems. The sub-structuring strategy stems from the early works on component
mode synthesis [36, 72] which were then further extended for various elasto-plastic
problems [35, 114, 156]. The occurrence of plasticity in specific zones of the models
(e.g. around cavities and galleries in underground storage facilities) is then exploited
by defining sub-domains corresponding to elastic, plastic and interface regions and
by constructing localized reduced subspaces to perform multi-level reduced basis
projection [66, 108]. We focus our study on extending these strategies for coupled
THM systems in geo-environmental applications with the nonlinearity originating
from the mechanical response. Therefore, the paper is organized as follows: in Section
2, we define the formulation of the coupled THM system along with the considered
nonlinear elasto-plastic constitutive laws in the full order and reduced order model
forms. The sub-structuring methodology combined with model order reduction is
explained in Section 3. Numerical examples describing a model for an in-situ heat-
ing test for nuclear waste repository applications are presented in Section 4. An
inverse identification procedure is also implemented to further illustrate the expected
computational speed up that can be attained with the proposed methodology in a
multi-query problem setting. Conclusions are finally drawn in Section 5.
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2 Problem Definition: Nonlinear Elasto-plastic THM
System

2.1 Governing Equations and Full Order Discretization

The coupled THM system for a fully-saturated porous geomaterial is described by a
set of three equations characterizing the deformation of the elasto-plastic body, the
flow of the fluid phase and the heat conduction. The mechanical behaviour is governed
by an elasto-plastic constitutive law while the hydraulic and thermal responses are
governed by Darcy’s law and Fourier’s law, respectively. The time-dependent coupled
THM system takes the strong form,

kc∇2T − ρcpṪ +Q = 0
⎫⎬⎭∇ · (C : (ϵ(u)− ϵp(u)))− α∇p−Θ∇T = 0

− k

µf (T )
∇ · (∇p) + α∇ · u̇+

1

M
ṗ− [φ3αf + (α− φ)3αs]Ṫ = 0

in Ω× (0, tf ]

(4.1)

with Neumann boundary conditions

ψ · n = gN
⎫⎬⎭σ · n = σN

Υ · n = pN

on ∂ΓN × (0, tf ], (4.2)

Dirichlet boundary conditions

T = TD
⎫⎬⎭u = uD

p = pD

on ∂ΓD × (0, tf ], (4.3)

and initial conditions

T = T0
⎫⎬⎭u = u0

p = p0

in Ω× {t = 0}, (4.4)

where T,u and p are the field variables corresponding to temperature, displacement
and pore water pressure. The thermal expansion coefficient in the fluid phase (Figure
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4.1) is assumed to be temperature-dependent [9, 38, 57]. The liquid dynamic viscosity
is also temperature-dependent, obeying the empirical function [56, 146]

µf (T ) = 2.1× 10−12 exp

(︃
1808.5

273.15 + T

)︃
(4.5)

where µf is in MPa · s and T is expressed in Celsius. Assuming isotropic conditions for
a 2D plane-strain analysis, the elasticity tensor contains two independent coefficients
as described in (4.6). The notation for the physical parameters used in the system of
equations is given in Table 4.1.

10 20 30 40 50 60 70 80 90 100

Temperature (°C)

0

1

2

3

4

5

6

7

8

V
o

lu
m

e
tr

ic
 T

h
e

rm
a

l 
E

x
p

a
n

s
io

n
 C

o
e

ff
ic

ie
n

t,
 

f (
1

/°
C

)

10
-4

Fig. 4.1 Temperature-dependent thermal expansion coefficient in the fluid phase

C =

⎡⎢⎣
E(1−ν)

(1+ν)(1−2ν)
Eν

(1+ν)(1−2ν)
0

Eν
(1+ν)(1−2ν)

E(1−ν)
(1+ν)(1−2ν)

0

0 0 E
2(1+ν)

⎤⎥⎦ (4.6)

The solution of the problems defined by (4.1)-(4.4) is approximated with the finite
element (FE) method by discretizing the domain Ω using a mesh of characteristic
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Table 4.1 Physical parameters of the THM system

Parameters
E Young’s modulus
ν Poisson’s ratio
α Biot-Willis coefficient
M constrained specific storage coefficient
µf viscosity
k permeability
φ porosity
Θ thermal expansion factor
αs thermal expansion coefficient in the solid phase
αf thermal expansion coefficient in the fluid phase
cp bulk specific heat
cp,s solid specific heat
kc thermal conductivity
Q heat source
ψ thermal flux
σ traction
Υ fluid velocity

size H in the functional space ZH ⊂ H1
0(Ω), WH ⊂ [H1

0(Ω)]
2, QH ⊂ H1

0(Ω):

T (x, t) ≈ TH(x, t) =
nnodes∑︂
i=1

Ti(t)Ni(x) = NTT

u(x, t) ≈ uH(x, t) =
nnodes∑︂
i=1

ui(t)Ñ i(x) = Ñ
TU

p(x, t) ≈ pH(x, t) =
nnodes∑︂
i=1

pi(t)Ni(x) = NTp

(4.7)

where U ∈ Rd×nnodes , with nnodes the number of nodes discretizing the field in Ω,
while N and Ñ are compact support shape functions. For simplicity, a time-discrete
framework is considered directly for the interval I ≡ (0, tf ] such that the subintervals
are denoted as {t0 < t1 < ... < tl < .... < tL = tf} for l = 1, 2, ...,L. For notation
purposes, let ∆tl be the characteristic time step of the time-discrete framework,
measured as ∆tl = tl − tl−1.

Considering the elasto-plastic system, the weak form is written in a compact
format by separating the nonlinear term (Ap) containing the plastic strain (ϵp) as
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follows:

∆tlA (T (µ, tl),u(µ, tl), p(µ, tl); z,w, q)−∆tlAp (ϵp(u(µ, tl);w)

+M (T (µ, tl),u(µ, tl), p(µ, tl); z,w, q)
= M (T (µ, tl−1),u(µ, tl−1), p(µ, tl−1); z,w, q) + ∆tlL (z, w, q; tl)

(4.8)

where

A (T (·),u(·), p(·); z,w, q) =
∫︂
Ω

kc
∂z

∂xj

∂T

∂xj
dΩ +

∫︂
Ω

ϵ(u) : C : ϵ(w)dΩ

−
∫︂
Ω

wiα
∂p

∂xi
dΩ−

∫︂
Ω

wiΘ
∂T

∂xi
dΩ−

∫︂
Ω

k

µf

∂q

∂xj

∂p

∂xj
dΩ

(4.9)

Ap (ϵp(u(·);w) =

∫︂
Ω

ϵp(u) : C : ϵ(w)dΩ (4.10)

M (T (·),u(·), p(·); z,w, q) =
∫︂
Ω

zρcpTdΩ +

∫︂
Ω

q
1

M
pdΩ

+

∫︂
Ω

qα(
∂ui

∂xi
)dΩ−

∫︂
Ω

q[φ3αf + (α− φ)3αs]TdΩ

(4.11)

for i, j = 1, 2 and

L(z,w, q) =
∫︂
Γ

zgNdΓ +

∫︂
Γ

wσNdΓ−
∫︂
Γ

qpNdΓ. (4.12)

The substitution of the approximation (4.7) in the weak form (4.8) leads to the
discrete matrix form,

K U+ C U̇ = F (4.13)

⎡⎣KH 0 0
KT KU CP

0 0 KP

⎤⎦
⏞ ⏟⏟ ⏞

K

⎡⎣ T
U
p

⎤⎦
⏞ ⏟⏟ ⏞

U

+

⎡⎣CH 0 0
0 0 0
CT CT

P CM

⎤⎦
⏞ ⏟⏟ ⏞

C

⎡⎣ Ṫ
U̇
ṗ

⎤⎦
⏞ ⏟⏟ ⏞

U̇

=

⎡⎣ FT

Fu

Fp

⎤⎦
⏞ ⏟⏟ ⏞

F

(4.14)
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where K contains the stiffness and conductivity matrices, C contains the capacity (time-
dependent) matrices and F contains the load vectors corresponding to L(·). For the
case in which uni-directional coupling is observed due to hydro-mechanical processes
having no direct effect on the thermal process, the thermal balance equation can be
separated from the monolithic system (4.13). Such non-monolithic system permits
linear solving approach even with the presence of temperature-dependent parameters
(µf , αf ) in the hydro-mechanical system as the thermal system is separately solved
prior to the HM system.

KH T +CH Ṫ = FT (4.15)

[︃
KU CP

0 KP

]︃ [︃
U
p

]︃
+

[︃
0 0
CT

P CM

]︃ [︃
U̇
ṗ

]︃
=

[︃
Fu −KTT
Fp −CTṪ

]︃
=

[︃
Fū

Fp̄

]︃
(4.16)

In general, the nonlinear components in equation (4.16) reflecting the elasto-
plastic constitutive law is solved by Newton-Raphson algorithm which results in the
linearized form

K̄U(Uk
l ) ∆Ul = −G(Uk

l ) (4.17)

at each time step l and iteration step k. The residual vector G denotes the difference
between the internal and external forces. The tangential stiffness matrix is defined as
K̄U(Uk

l ) =
∂G(Ul

∂Ul
|Uk

l
while the displacement vector is updated with Uk+1

l = Uk
l +∆Ul.

2.2 Reduced Order Discrete System

We now consider a parametrized system defined by a set of parameter values
M = {µ1, ...,µN} with the corresponding solutions SN = {(T (µ1),u(µ1), p(µ1)), ...,
(T (µN),u(µN), p(µN))} denoted as snapshots, where N is typically much smaller
than the characteristic size of the reference full order finite element model. To inherit
the stability condition of the reference full order model, the global approximation
spaces are defined separately for each field variable:

ZH
N = span{T (µn), 1 ≤ n ≤ nsnapshots} ⊂ ZH

WH
N = span{u(µn), 1 ≤ n ≤ nsnapshots} ⊂WH

QH
N = span{p(µn), 1 ≤ n ≤ nsnapshots} ⊂ QH

(4.18)
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The RB projection matrices are obtained by subjecting each snapshots separately
to a Proper Orthogonal Decomposition (POD) technique [27]. POD modes are
truncated based on a prescribed tolerance value corresponding to the desired level
of accuracy. The orthonormalized and truncated modes denote the RB projection
matrices (Z,W and Q) for temperature, displacement and pore pressure respectively.
To project the reference model onto global approximation RB spaces, the full system
is decoupled and grouped into blocks based on the field variable it interacts with.
Each block is projected onto its corresponding bases (4.21) and assembled similar
to the non-monolithic FE matrix system (4.16). The resulting reduced order blocks
(4.20) are described by a much smaller characteristic size of order N .

KHN TN +CHN TN
̇ = FTN (4.19)

[︃
KUN CPN

0 KPN

]︃ [︃
UN

pN

]︃
+

[︃
0 0

CT
PN CMN

]︃ [︃
U̇N

ṗN

]︃
=

[︃
FuN

FpN

]︃
(4.20)

KHN = ZT KH Z CHN = ZT CH Z FTN = ZT FT

KUN = WT KU W CPN = WT CP Q KPN = QT KP Q
CT

PN = QT CT
P W CMN = QT CM Q FuN = WT Fū

FpN = QT Fp̄ UN = WT U pN = QT p
TN = ZT T TN

̇ = ZT Ṫ UN
̇ = WT U̇

(4.21)

The re-assembled discrete matrix system is solved the same way as the full order
finite element model. In the subsequent sections, we will denote all reduced field
variables with the subscript N .
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3 Nonlinear Model Order Reduction Strategy

The nonlinear system described in (4.8) is classically solved in finite element analysis
by the iterative procedure outlined in Algorithm 4.1, giving extra attention to the
mechanical aspect containing the nonlinear contribution of the elasto-plastic material
behaviour. Note that some notations are further simplified for better readability, i.e.
(u(µ, tl)→ ul). The constitutive model describing the mechanical system is governed
by a non-associated elasto-plastic law. In particular, we consider the Drucker-Prager
criterion [46], with a yield surface expressed as,

f(σ) ≡ J ′
2

1
2 − 2 sinϕ√

3(3− sinϕ)
(J1 +

3c

tanϕ
)− κ(λ) = 0 (4.22)

where J ′
2 is the second invariant of the deviatoric stress tensor, J1 is the first stress

invariant, ϕ is the friction angle in compression and c is the cohesion of the soil.
A non-associated flow is considered by using a slightly different plastic potential
function defined as

g(σ) ≡ J ′
2

1
2 − 2 sinψ√

3(3− sinψ)
(J1 +

3c

tanϕ
)− κ(λ) = 0 (4.23)

where ψ is the angle of dilatancy. Isotropic hardening is considered for the yield
surface as defined by

κ(λ) ≡ Hλnx (4.24)

where λ is the plastic multiplier while H and nx are generic hardening function
coefficients.

In general, the incremental iterative procedure used to deal with the material
nonlinearity is organized in two levels: global and local iterations. The global level
iteration checks equilibrium (i.e. such that balance of forces is achieved by comparing
internal forces with external loads). A local level iterative procedure is used to
solve the constitutive model equations, where the stresses and internal variables
are iteratively sought based on a total strain state furnished by the equilibrium
iteration until convergence is reached. In Algorithm 4.1, the global iteration is
implemented inside the while loop (line 4-22). The local iteration involved in finding
the plastic state variables is implemented inside a nested loop (line 13-15). Although
the local level constitutive model integration could also be performed explicitly, an
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implicit technique is used in this study. This is achieved using a ‘return mapping’
algorithm, which first integrates the elastic equations with total strain increments in
the prediction stage and later relaxes the elastically predicted stresses onto the yield
surface by iteratively correcting the plastic strain increments [137].

Algorithm 4.1 Elasto-plastic THM system iterative solver
Initialization l = 0, tl = 0, ϵ0p = 0, σ0 = 0
for l = 1 to L → tl

L(z,w, q)← L(z,w, q; tl)
while k < Nitermax and error > tol

k← k+ 1
Compute (T l,k, ul,k pl,k) such that
∆tl,kA(T l,k,ul,k, pl,k; z,w, q) + M(T l,ul,k, pl,k; z,w, q)

−∆tlAp(ϵp(ul,k−1;w) =M (T l−1,ul−1, pl−1; z,w, q)
+ ∆tlL (z, w, q)

Compute σ̂k = C : ϵ(ul,k)
for all elements, xΩ = 1 : Nelem

for all integration points, xp = 1 : nintp
if f(σ̂k(xp)) > 0 then
Plastic State: λk = f(σ̂k)

∂f(σ̂k)
∂σ

:C:
∂g(σ̂k)

∂σ

ϵp(ul,k) = λk
∂f
∂σ
(σk−1)

σk = σ̂k −C : ϵkp
else
Elastic State: σk = σ̂k and ϵp(ul,k) = ϵp(ul,k−1)

end for
end for
error = ∆tlA(T l,k,ul,k, pl,k; z,w, q) +M(T l,k,ul,k, pl,k; z,w, q)

− ∆tlAp(ϵp(ul,k;w)−M (T l−1,ul−1, pl−1; z,w, q)
− ∆tlL (z, w, q)

end while
ul ← ul,k, σl ← σk, ϵlp ← ϵl,kp
T l ← T l,k, pl ← pl,k

end for

In the context of model order reduction, efficiency mainly relies on liberating the
computational cost from the discretization dependency, and on smartly implementing
the offline-online stage solving procedure. For the reduced basis (RB) method, the
low dimensional subspace is built from snapshots [27] and the system of equations is
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affinely decomposed such that parameter-independent matrices can be pre-computed
and stored during the offline stage. The pre-computed matrices are reused during
the online stage when system matrices are assembled prior to projection onto the
low dimensional subspace [61, 107]. In the case of elasto-plastic materials, the affine
decomposition procedure is not fully applicable since path-dependent constitutive
models do not allow the extraction of parameter-independent matrices during the
offline stage. Thus, the system matrices need to be generated and assembled at every
iteration which can be extremely expensive to implement. Furthermore, it is worth
noting that the constitutive model describing the nonlinear elasto-plastic behaviour
cannot be liberated from the discretized space as the plastic constitutive law has to
be treated locally at the integration points level.

The strategy proposed here takes advantage of the typical scenario for coupled
THM problems in geomechanics, where the occurrence of plasticity is restricted to
specific regions of small size with respect to the model size [29, 30, 45]. We divide
the full domain into two sub-domains: an elastic region governed by linear THM
equations and a plastic region governed by the nonlinear elasto-plastic constitutive
law. We exploit these sub-domains by confining the time-consuming procedures in
the plastic region while exploiting the full advantage of model order reduction for
linear systems in the elastic region. The following sections further explain the three
step strategy – decomposition, reduction and re-assembly to form a reduced order
model representing the original full order model in the best possible way.

3.1 Domain Decomposition

Ω1

Ω1 Ω1

Ω2
Ω2Ω2

Γi

Fig. 4.2 Decomposed sub-domains connected by a fictitious interface

The central idea of the model reduction strategy for coupled THM models with
locally increasing plasticification revolves around decomposing the entire domain
(Ω) into plastic (Ω1) and elastic(Ω2) sub-domains. Figure 4.2 shows an illustration
of the decomposition where the sub-domains are connected by fictitious interface.
The hypothesis of displacement continuity between these identified decomposed
sub-domains is enforced with a linear elastic relationship between tractions and
displacement jump [35, 114]. In terms of nodal solutions, the displacement is separated
into three parts,
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U =

⎡⎣ UΩ1

UΓi

UΩ2

⎤⎦ (4.25)

in which boundary nodes lying on the interface are separated from their previously
containing sub-domain. A Boolean matrix is used to identify the pairing of the degrees
of freedom (DoF) at the interface. The separated parts constitute the degrees of
freedom of the plastic(UΩ1), interface(UΓi

) and elastic(UΩ2) domains. Consequently,
the relevant matrices to the elasto-plastic constitutive law (4.16) are sub-structured
in the form of
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FūΩ1

FūΓi

FūΩ2

Fp̄

⎤⎥⎥⎦ .

(4.26)

With this sub-structuring approach, it is possible to affinely decompose the elastic
sub-domain (KUΩ2

) and store a set of parameter-independent matrices during the
offline stage. In this case, only the plastic sub-domain (KUΩ1

) needs to be explicitly
computed at every global iteration in the online stage. The local return mapping
iterative procedure, performed locally at every integration point to integrate the elasto-
plastic constitutive law, is still fully evaluated but only in the plastic sub-domain
Ω1.

3.2 Order Reduction and Assembly

The reduced basis subspace established in previous sections is altered to conform with
the proposed sub-structuring strategy. The displacement snapshot Su = {(u(µ1),
u(µ2), ...,u(µN)} is decomposed to three parts that correspond to the degrees of
freedom of the plastic, interface and elastic sub-domains. Consequently, the RB
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matrices for the displacement subspace are now denoted as WΩ1 ,WΓi
and WΩ2 after

post-processing the decomposed snaphsots to obtain the orthonormalized bases in
Algorithm 4.2. On the other hand, the reduced basis space defined for the pore
pressure Q in (4.18) remains unchanged.

UN =

⎡⎣ UΩ1N

UΓiN

UΩ2N

⎤⎦ =

⎡⎣ WT
Ω1

UΩ1

WT
Γi

UΓi

WT
Ω2

UΩ2

⎤⎦ (4.27)

To reduce the order of the sub-structured model, we perform a multi-level Galerkin
projection of the decomposed domain onto their respective RB subspaces separately.
In comparison to earlier studies on model reduction in plasticity where only a portion
of the subdomain is reduced [114] we also perform model order reduction on the
interface degrees of freedom[74, 78]. The projection procedure performed in (4.21) is
extended for the decomposed displacement degrees of freedom as shown in (4.28).

Algorithm 4.2 OFFLINE Stage: Sub-structured RB construction by POD algorithm
Input: Training sampleM, Tolerance εPOD,

Boolean matrix sub-domain DOF extractor XΩ1 ,XΓi
,XΩ2

Output: WΩ1 ,WΓi
,WΩ2 ,Q

1: for µ ∈M
2: [u, p] = SolveFE(µ)
3: Su ← [Su, u], Sp ← [Sp, p]
4: end for
5: SuΩ1 = XΩ1Su, SuΓi

= XΓi
Su, SuΩ2 = XΩ2Su

6: WΩ1 = POD(SuΩ1 , εPOD),WΓi
= POD(SuΓi

, εPOD),WΩ2 = POD(SuΩ2 , εPOD)
7: Q = POD(Sp, εPOD)

The characteristic size of the reduced system is described by the total sum of
sub-structured RB modes (N = nmodes,WΩ1

+ nmodes,WΓi
+ nmodes,WΩ2

+ nmodes,Q). The
nonlinear discrete matrix system is solved following the iterative procedure explained
in Algorithm 4.1. For the proposed model order reduction strategy, the computational
time is significantly reduced due to two contributions of the reduction: (1) the faster
assembly with the pre-computed system matrices in the elastic sub-domain, and (2)
the much smaller system solved as a result of projection onto low dimensional RB
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spaces for all subdomains.
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4 Numerical Examples

4.1 Boom Clay In-situ Heating Test

Ω1

Ω2

Γi

A D

F E

I

Boom Clay

100 m

0.95 m

1
0
0
m

Fig. 4.3 2D plane-strain model domain and decomposed sub-domains

We now turn to a particular numerical example on coupled THM processes in a sim-
plified in-situ heating test model relevant to nuclear waste repository applications. A
2D plane-strain model characterizing the properties of Boom clay material is shown in
Figure 4.3. The coupled processes in the domain Ω ≡ {[0, 100]× [0, 100]}\{(r = 0.95)}
are described by the underlying partial differential equations in (4.1–4.4). By assum-
ing uni-directional coupling, the thermal process is modelled independently from the
hydro-mechanical process by prescribing uniformly an increasing temperature from
16◦C to 120◦C on boundary IA over the course of 300 days. The hydro-mechanical
process is started from an initial 2.25 MPa pore pressure and an initial 4.5MPa triaxial
stress conditions. It is subsequently driven by the temperature change resulting from
the thermal process. Fixed normal displacements and impervious conditions are
assumed on boundaries IF, AD and IA while the outer boundaries ED and EF are
prescribed with the corresponding initial hydro-mechanical conditions. The physical
values of the thermo-hydro-mechanical parameters used in the reference model are
given in Table 4.2. It must be noted that the values of some material parameters
may change in the subsequent sections, specifically when they are selected as varying
properties in the parametrized problem.

As explained in the previous section, the computational gain from the model order
reduction technique presented here heavily relies on the extent of the plastic region.
In this context, the number of elements visited during evaluation of elasto-plastic
constitutive law (in Ω1) with respect to the total number of elements in the entire
domain (Ω) plays an important role in achieving a significant computational speed
up in the reduced order model. To further illustrate this, we consider two different
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Table 4.2 Material parameters describing the Boom Clay

E 1700 MPa cp,s 740 J/ (kg ·K)
k 2× 10−19 m2 kc 1.65 W/ (m ·K)
v 0.15 c 0.3 MPa
α 1 ϕ 10◦

M 5698 MPa ψ 0◦

φ 0.39 H 0.30 MPa
αs 1× 10−5 ◦C−1 nx 0.80

discretizations in the domain. Figure 4.4a depicts a coarse discretized mesh with finer
concentration of elements closer to IA where the input heat originates. Figure 4.4b
on the other hand depicts the domain discretized finely with a more uniform mesh
distribution throughout the entire domain. The concentrated coarse mesh consisting
of 994 elements results to a high plastic element ratio Ω1 : Ω ∼= 1 : 5 as compared to
1 : 75 for the uniform fine mesh consisting of 23 672 elements. The region defining
the plastic sub-domain (Ω1) is determined by running a finite element (FE) model
simulation for the fixed values of the parameters given in Table 4.2 and observing at
which integration points and elements plasticity occurred. In both discretizations,
the plastic region locally occurred within 8m to 10m radially from the origin.

The decomposition-reduction-assembly procedure is followed to implement the
model reduction and sub-structuring strategy. For the coarse mesh, this involved
decomposing the displacement field degrees of freedom (DoF) into three parts with
(nDoF,Ω1 = 738, nDoF,Γi

= 32, nDoF,Ω2 = 3200). For the fine mesh, it corresponds to a de-
composition of the displacement field to (nDoF,Ω1 = 1260, nDoF,Γi

= 82, nDoF,Ω2 = 94260).
In the reduction phase, we considered constructing the reduced basis (Algorithm
4.2) using only one snapshot solution [u, p] = SolveFE(µref ) at this stage. The mode
numbers in the RB subspace are (nmodes,WΩ1

= 14, nmodes,WΓi
= 13, nmodes,WΩ2

= 10,
nmodes,Q = 17) for the coarse mesh and (nmodes,WΩ1

= 23, nmodes,WΓi
= 20, nmodes,WΩ2

= 20,
nmodes,Q = 24) for the fine mesh. Once the RB spaces are constructed, the sub-
structured system matrices are projected to their appropriate bases. These matrices
are then assembled similar to the coupled THM FE system, only differing by the signifi-
cantly smaller size of the projected matrices. Such DoF reduction, in combination with
the optimized offline-online stage calculation that isolates the expensive procedure to
the plastic sub-domain (Ω1), yield significant computational savings. Figure 4.5 and
Figure 4.6 illustrate the pore pressure distribution and deformation (horizontal and
vertical displacements) in the vicinity of the heat source (boundary IA) after 300 days,
along with the error map with respect to the RB-approximated solution. It must be
noted that the figures are zoomed up to the region Ω ≡ {[0, 20]× [0, 20]} where THM
responses are prominent, instead of illustrating the full domain Ω ≡ {[0, 100]×[0, 100]}
as THM responses are very small farther from the heat source at IA .
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To further investigate the computational gain of the proposed strategy, it is
compared with the traditional model reduction approach involving Galerkin projection
but without sub-structuring of the domain. In this case, system matrices are updated
and assembled at every iteration in solving the nonlinear system and the only gain
stems from the reduced size of the system to be solved at each iteration. The RB is
constructed by subjecting the snapshot solution (u, p) to POD directly, which resulted
to 31 modes for the coarse mesh and 46 modes for the fine mesh in total. It can be
observed that the computation time compared to the FE model simulation was not
reduced significantly using the traditional RB-projection approach with only 1.2x
faster computation for the coarse and fine mesh. With the proposed model reduction
and sub-structuring strategy, a speed up of 3.7x is observed in the coarse mesh, while
a significantly faster 20x speed up was achieved in the fine mesh. There was no trade
off in the accuracy of the approximation as evident in the similar magnitudes of error
between the traditional RB and the proposed strategy as presented in Table 4.3.

(a) Coarse mesh (b) Fine mesh

Fig. 4.4 Domain discretization and plastic zone at time = 300 days, corresponding
to material parameters in Table 4.2

4.2 Model Order Reduction of a Parametrized System

The following section deals with the same coupled THM processes in the in-situ
heating test model problem and we proceed using the fine mesh discretization to
further illustrate the advantages of the proposed model reduction strategy in a
parametric problem setting. We aim to construct a reduced basis that can approx-
imate solutions of the THM system at any point within a pre-defined space under
parametric variation. The material properties relating to the mechanical (elastic
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(a) FE Pore Pressure (MPa) (b) |RB-projected – FE Pore Pressure| (MPa)

(c) FE Horizontal Displacement (m) (d) |RB-projected – FE Hor. Displacement| (m)

(e) FE Vertical Displacement (m) (f) |RB-projected – FE Ver. Displacement| (m)

Fig. 4.5 Hydro-mechanical solution at t=300 days, coarse mesh
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(a) FE Pore Pressure (MPa) (b) |RB-projected – FE Pore Pressure| (MPa)

(c) FE Horizontal Displacement (m) (d) |RB-projected – FE Hor. Displacement| (m)

(e) FE Vertical Displacement (m) (f) |RB-projected – FE Ver. Displacement| (m)

Fig. 4.6 Hydro-mechanical solution at t=300 days, fine mesh
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Table 4.3 RB-approximation of the reference in-situ heating test model

RB-Projection
Coarse Mesh

RB-Projection
Fine Mesh

Sub-structured
RB-projection
Coarse Mesh

Sub-structured
RB-projection
Fine Mesh

Relative error,u 2.× 10−4 3.9× 10−6 1.9× 10−4 1.6× 10−5

Relative error, p 8.4× 10−4 1.2× 10−5 8.4× 10−4 1.3× 10−5

DoF reduction 1:145 1:2315 1:85 1:1225

RB Run time 60 s 2310 s 19 s 137 s

FE Run Time 70 s 2835 s 70 s 2835 s

modulus, E) and hydraulic system (permeability, k) are now considered as varying
parameters. The training sample is defined by the space depicted in Figure 4.7
which contains parametric combinations in the sets E = [300, 500, 700, 900, 1100]
MPa and k = [2× 10−19, 3.5× 10−19, 5× 10−19, 7× 10−19] m2. In total, the snapshots
collected are from 20 different parametric combinations. Subjecting the snapshot
solutions to the procedure in Algorithm 4.2 leads to 1:410 DoF reduction containing
(nmodes,WΩ1

= 128, nmodes,WΓi
= 27, nmodes,WΩ2

= 23, nmodes,Q = 96) in the sub-structured
domains. The same sub-structured domains illustrated in Figure 4.4b are pre-selected
for the parametric problem. It must be noted that for all parametric combinations
within the training space, it has to be ensured that the plastic sub-domain will always
be inside the pre-selected Ω1. For this reason, the elastic modulus in the training
sample is selected to be much lower than the reference material property value in
Table 4.2. If this condition is violated, the reduced model can not fully capture the
plastic behaviour in the appropriate regions and could result in convergence issues.

In Table 4.4, the performance of the RB subspace constructed from the proposed
model reduction and sub-structuring strategy is reported. The RB subspace is tested
at selected parameter values used to generate the snapshots and at random non-
snapshot parameter values to check its ability to approximate any solution within
the defined parametric space. All tested samples resulted to low approximation error
below the order of 10−5 (Table 4.4). The simulation time varied depending on the
tested parameter values which reflects the extent of the plastic region where the
elasto-plastic constitutive law is evaluated in each case. For instance, a low elastic
modulus generally guarantees a smaller plastic region and faster simulation as it
entails less time spent on performing the local-iterative ‘return mapping’ procedure.
Overall, the constructed RB for the coupled THM system has shown accurate RB-
approximation within the defined parametric space at significantly reduced costs,
ranging from 15x to 18x faster than standard FE model simulations. In the next
section, the effectiveness of this RB is further put into test by using it to solve a
multiple-query type of problem.



4. Numerical Examples 105

200 400 600 800 1000 1200

E (MPa)

1

2

3

4

5

6

7

8

k
 (

m
2
)

10
-19

Training sample

Tested sample

Fig. 4.7 Reduced basis parametric space and training samples

4.3 Application to an Inverse Parameter Identification Prob-
lem

To have a more realistic view of the computational gain that can be achieved from
the proposed model reduction strategy, we set up a multiple query problem in the
form of inverse parameter identification. In this particular problem, we are interested
in identifying two independent parameters relating to material properties of the
model, elastic modulus (E) and permeability (k). These are the same parameters
selected to vary when constructing the reduced basis in the previous section. To
carry out the inverse parameter identification, an optimization algorithm minimizing
a suitable objective function is implemented. We define the objective function to
describe the relative difference between measured and simulated pore pressure at
specific measurement locations,

β =
1

nsensor

nsensor∑︂
i=1

∫︂ tf

0

∥ pm − ps ∥2
∥ ps ∥2

dt (4.29)

where pm corresponds to the observed measurement data, ps is the simulated data
coming from the numerical model and nsensor is the total number of points considered
as measurement locations in the domain. The measurement data is synthetically
generated by solving a standard FE model evaluated at the parameter values to be
identified. The measurement locations are selected to be within the sub-domain where
plasticity is expected to occur (Figure 4.8). For the sake of simplicity, the sensor
locations are randomly selected and should not necessarily be expected to represent
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Table 4.4 Accuracy of the reduced model with respect to varying parameter values
within the sampling space

Elastic Modulus, E Permeability, k Relative error,u Relative error, p Run time

300 MPa 5.0× 10−19 m2 2.9× 10−7 2.2× 10−8 118 s

500 MPa 3.5× 10−19 m2 1.2× 10−7 1.0× 10−8 122 s

700 MPa 3.5× 10−19 m2 5.5× 10−8 1.2× 10−8 124 s

900 MPa 7.0× 10−19 m2 1.0× 10−7 1.1× 10−8 135 s

1100 MPa 2.0× 10−19 m2 5.1× 10−8 1.3× 10−8 137 s

400 MPa 6.0× 10−19 m2 1.7× 10−7 7.1× 10−8 122 s

600 MPa 3.0× 10−19 m2 5.4× 10−6 5.7× 10−7 128 s

800 MPa 4.0× 10−19 m2 1.7× 10−5 1.2× 10−6 128 s

1000 MPa 2.5× 10−19 m2 1.3× 10−5 1.6× 10−6 130 s

550 MPa 5.5× 10−19 m2 3.8× 10−6 7.7× 10−7 120 s

real experiments. The main focus in this numerical example is to demonstrate the
ability of the reduced model to adequately substitute the FE model in general inverse
problems. Having only two unknown parameters to identify and ample synthetic
data to characterize the inverse problem, a local search method, Nelder-Mead simplex
algorithm, is found to be appropriate to perform an unconstrained optimization
procedure.

The unknown parameters to be targeted are selected as µtarget : [E = 800 MPa,
k = 4×10−19 m2]. The synthetic measurement data include the pore pressure evolution
p(µtarget;xΩ1, t) from day 0 to 300 in the plastic sub-domain. When the inverse
problem is solved using the standard FE model simulation tool, ps = SolveFE(µ), the
identified parameters converged to the target values µ : [800 MPa, 4.0 × 10−19 m2]
at β = 2.6 × 10−13 after 83 iterations with 156 functions evaluated. It took 60
hours to complete the optimization procedure (Figure 4.9a). In comparison, the RB-
approximation driven inverse problem was also successful in identifying the unknown
parameters converging at µ : [799.9998 MPa, 3.9997 × 10−19 m2], β = 4.3 × 10−6

after 77 iterations and 151 functions evaluated (Figure 4.9b). The run time is 4.8
hours which is significantly shorter than the FE-driven optimization. A small shift in
the minimum is expected for the RB-approximation driven optimization since the
synthetically generated measurement data is obtained from the FE model which does
not yield exactly the same solution as that obtained from the surrogate reduced order
model. It is observed that for this particular inverse identification problem, 12x faster
computation is achieved by using the surrogate model built from the proposed model
reduction and sub-structuring strategy.
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Fig. 4.8 Location of sensor points considered in the manufactured measurement data
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Fig. 4.9 Parameter convergence plots (E and k) using Nelder-Mead simplex algorithm
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5 Summary and Findings

In this work, we presented a model order reduction strategy that combines the
traditional reduced basis projection and sub-structuring by domain decomposition to
tackle nonlinear elasto-plasticity in coupled THM systems for possible nuclear waste
repository applications. The proposed strategy takes advantage of the occurrence of
plasticity in restricted zones of coupled THM models, which allows defining separated
elastic and plastic sub-domains easily. This method offers simplicity in implementation
where expensive computational efforts (e.g. nonlinear iterative procedure) during
the online stage are only evaluated in the plastic sub-domain which constitutes a
small region in the entire domain. The main limitation, on the other hand, relates
to the efficiency level of the model reduction depending on how small or large the
plastic sub-domain is. For scenarios in which the entire domain is in the plastic state,
no additional speed up can be expected more than the traditional fully projected
RB-approximation method. It would be recommended to explore other techniques
that treat the model reduction globally in the entire domain such as hyper-reduction,
if the plastic region is not restricted in small zones over the observed period of interest.

For an in-situ heating test, the plastic region is typically expected to cover only
a small region in the vicinity of the heat source. Such problem set-up provided a
good demonstration of the computational gain that can be achieved in the proposed
model reduction strategy. The accuracy of the reduced model is shown to be in line
with the traditional reduced basis projection technique while obtaining a significantly
faster speed up in computation time (up to 20x faster). The effectiveness of the
reduced order model is further validated in the context of parametrized systems
that culminated in a manufactured inverse problem which successfully identified
unknown parameters in the coupled THM system at a much faster rate (12x faster
than FE-driven optimization).

The parametric problem presented here is rather idealized, having a pre-defined
space that can be uniformly sampled easily. For future work, it is suggested to
formulate a smarter snapshot sampling strategy to construct the reduced basis in
cases where the parametric space to consider is very large. This issue becomes highly
relevant in more realistic parameter identification problems in coupled THM systems
where a handful of uncertain parameters are to be identified. Another area worth
exploring in future works is the idea of further reducing the computational effort
spent in the plastic sub-domain by applying an additional nonlinear model reduction
technique to remove the discretization dependency of the elasto-plastic constitutive
law.
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1 Summary of Results

This thesis deals with developing a-posteriori model order reduction strategies tailored
to parametric THM systems. It is aimed to build accurate ROMs that are extremely
fast to solve and use them as surrogates replacing the traditionally expensive FE
models in the framework of multi-query problems. Within the scope and objectives
defined, the research questions stated in Chapter 1 are sufficiently answered as demon-
strated in numerical examples pertaining to deep geological repository applications.
A synthesis that highlights the main results are elaborated in the discussion below.

To tackle the coupling aspect of the transient THM system, a multi-subspace
projection approach is pursued such that the thermal, hydrologic and mechanical
reduced bases are individually constructed from separated snapshot fields (e.g. tem-
perature, pore pressure, displacements). To efficiently construct the reduced basis,
an error estimator guiding the greedy adaptive strategy is devised which in turn,
provides certification that the constructed bases always approximate solutions at a
certain level of accuracy. An a-posteriori goal-oriented error estimator is formulated
particularly for the parabolic PDE describing the transient coupled system. The
formulation combines implicit and explicit methods – easily adapting to the space
time grid by injecting the implicitly solved adjoint to the explicitly evaluated weak
residual. Its capability to estimate the true error value is rigorously investigated and
shown to be highly effective despite using only one adjoint solution to represent the
dual problem in the entire parametric space. In a large-scale model describing a rock
mass under glacial advance, up to 500x faster computational speed up is observed.

The model order reduction strategy further solved a higher dimensional parametric
system with up to five material parameters variation to support an in-situ heating
experiment. There are several uncertain parameters (THM material properties) to
be identified based on partial information and in-situe measurements. With real site
measurements to match, the numerical model assumptions are defined as close as
possible to the observed geological conditions of the underground laboratory. The
thermal aspect is decoupled from the THM system to accommodate temperature-
dependent hydro-mechanical material properties while preserving linearity in the
system. In the context of inverse parameter identification, this entails a two-step
identification. Uncertain thermal parameters are first identified by constructing a
RB-based surrogate model of the thermal system and implementing optimization
algorithms to automatically identify material property values that correspond to the
observed measurement data. The identified thermal parameters are then used to build
the hydro-mechanical model in which another RB-based surrogate is constructed
to efficiently carry out the inverse hydro-mechanical parameter identification. The
surrogate model used in the optimization procedure is demonstrated to be very
efficient with the ability to successfully identify the material parameters up to 800x
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faster than the FE-driven procedure. In contrast, the time it would take to solve
such multi-query problems is known to be impractical using FE models which could
reach up to several hundreds of days.

To include the complexity arising from nonlinear systems, a novel strategy is
developed to deal with the elasto-plastic behaviour of geomaterials. The nonlinearity
originating from the history-dependent constitutive law requires a two-level iteration
procedure which is very costly to implement in FE models. The presented model order
reduction strategy alleviates the involved computational burden by sub-structuring
the domain and confining the expensive procedures in the plastic region. This strategy
does not free the computation fully from online procedures as the system matrices
must still be updated online at every iteration in the plastic region. When the reduced
model is used as a surrogate in a multi-query problem, up to 12x faster computation
time is observed compared to FE-driven simulations.

With the numerical examples depicting different scenarios in deep geological
repository, the proposed strategies demonstrated significant advantages to replace
the traditionally expensive FE model of coupled THM systems in parametrized
problems. The need for reliable error estimation is crucial for snapshot-based model
order reduction – particularly, when dealing with high dimensional systems as the
parametric space grows exponentially with every additional parameter of interest
considered. In linear THM systems, the computational gain primarily comes from
the matrix system size reduction which drastically offloads the system solver (i.e.
from solving systems of 105 DoF to 102 DoF). The linearity also permits affinely
decomposing the system and therefore allowing seamless implementation of the offline-
online stage procedures. In the case of nonlinear systems where affine decomposition
is not fully applicable, the computational gain from reduced subspace projection alone
becomes insignificant as the cost of generating system matrices at every iteration
dominates the simulation. The strategy presented takes advantage of the plasticity
occurring in a small confined region which permits implementing linear model order
reduction in the elastic region.

Overall, it is observed that the initial cost related to offline stage procedures
becomes marginal compared to the computational savings and flexibility that ROM
offers. For instance, ROM can be used to accurately substitute FE models in
performing inverse analysis, real-time simulations, generating parametric maps and
sensitivity analysis at a much faster rate. The strategies presented here are rather
intrusive which may not be easily adaptable for all types of problems. However, using
intrusive approaches is favourable in preserving the physics presented in the original
problem which is critical for model order reduction of coupled multi-physics systems.
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2 Future Developments

The work presented in this thesis successfully fulfilled the research objectives within
the defined scope of study. In future works, it is recommended to further investigate
and explore the following issues and topics that are either not previously attempted
or arose from findings of the current research work.

• Physical laws. Considering more complex physical laws for numerical
modelling of deep geological repository represents an interesting challenge. For
instance, material nonlinearity and multi-phase flow of partially saturated
soils are vital in particular studies. The effects of chemical processes (e.g.
radionuclide transport) can also be significant in characterizing the behaviour
of the geological host in specific repository sites.

• Complex geometrical domain. In many subsurface applications, large-
scale geomodels are characterized by complex networks of fractures that alter
groundwater flow, affect mass transport and modify the pore pressure generation
of the geological mass. Modelling of fracture zones in the framework of model
order reduction could be an interesting topic to explore.

• Pre-operational phase of deep geological repository. In this work, the
time scales investigated for the coupled THM behaviour is limited to the
operational phase of the repository. It is also critical to study the processes
during the construction phase of the multi-barrier concrete system. Building a
reduced order model that captures the pre-operational phase could be useful in
safety assessment of the structure.

• Snapshot selection with respect to time. In the methodology presented,
each snapshot contains the solution evaluated in the entire time period. Instead
of only parametrizing the snapshot with respect to the material parameter, it
can also be parametrized with respect to time. This strategy reduces the size of
snapshots and possibly the number of POD modes by taking fewer solutions at
selected time steps. In effect, an additional optimality selection criterion needs
to be formulated for the greedy adaptive procedure.

• Representative adjoint solution. With the assumption that a single adjoint
solution is sufficient to represent the entire parametric space, it is worth exploring
in much higher dimensional parametric space if this still holds. For instance,
it might be of interest to evaluate more adjoint solutions and devise a smart
selection procedure that creates a rigorous representation of the dual problem
in the parametric space.
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• Greedy adaptive procedure and nonlinear elasto-plasticity. Following
the greedy procedure for linear THM systems, it is useful to develop a similar
framework for the nonlinear elasto-plastic system in order to optimally select
snapshots that construct the reduced basis. It is particularly challenging to
devise an efficient error estimator that incorporates the history-dependent
constitutive law of the material.

• Discretization-dependency of elasto-plastic constitutive laws. One of
the hurdles in nonlinear model order reduction which was not addressed in this
work is freeing the plastic computation from spatial discretization. The plastic
constitutive law is still evaluated at every integration point in the plastic domain
at every iteration. Some techniques such as hyper-reduction and data-driven
non-intrusive methods can be explored to address this condition.

• Using ROM in other practical investigations. In further assessment of
potential site of deep geological repository, other types of parametrized problems
might be of strong interest. Aside from parameter identification, the reduced
model can be used as a surrogate for sensitivity analysis, generating parametric
maps and fast direct-query simulations.



Appendices

A POD in Parametrized Systems

Proper orthogonal decomposition (POD) is a data analysis technique that aims
at obtaining low-dimensional approximations of high-dimensional processes. Also
known as Principal Component Analysis or Karhunen-Loéve Decomposition, the
POD method transforms the original variables into a new set of uncorrelated variables
(e.g. POD modes or principal components) where most of the energy or dominant
model features is retained in the first few modes. Data analysis using POD often
extracts basis functions from collected data, either by experiments or high-dimensional
system simulations, for a Galerkin projection procedure that yields a representative
low-dimensional system.

In the context of model order reduction of parametrized systems, we consider a
set of parameter samples Ξtrain = span{µ1, µ2, ..., µnsample} and the corresponding set
of snapshots (e.g. solutions of the high-dimensional system). The snapshot matrix
U ∈ RH×nsample as

U = [u(µ1) u(µ2) ... u(µnsample)] (A.1)

From singular value decomposition of the snapshot matrix,

U = XΣYT (A.2)

where X = [ζ1 ζ2... ζH ] ∈ RH×H and Y = [Ψ1 Ψ2 ...Ψnsample ] ∈ Rnsample×nsample are
orthogonal matrices, and Σ = diag(σ1, σ2, ... , σr), with r ≤ min(H, nsample) denoting
the rank of U. Equivalently, the following eigenvalue relationships are written as:

UΨi = σiζi and UTΨi = σiΨi, i = 1, ..., r (A.3)
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UTUΨi = σ2
iΨi and UUTΨi = σ2

i ζi, i = 1, ..., r (A.4)

The orthonormal POD basis V of dimension nmodes defining the first nmodes left
singular vectors [ζ1 ζ2 ... ζnmodes ] of U, minimizes the least squares error of snapshot
reconstruction

min
V∈RH×nmodes

∥ U− VVTU ∥2F= min
V∈RH×nmodes

nsample∑︂
i=1

∥ u(µi)− VVTu(µi) ∥22=
nsample∑︂
i=r+1

σ2
i (A.5)

It follows that the error in the POD basis is equal to the sum of the squares of the
singular values corresponding to the neglected POD modes. A suitable criterion can
be deduced to select the minimal POD dimension nmodes ≤ r such that the projection
error is smaller than the desired tolerance (A.6).

E(nmodes) =

∑︁nmodes
i=1 σ2

i∑︁r
i=1 σ

2
i

≥ 1− tol2 (A.6)
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B Affine Decomposition: Anisotropic Coupled THM
System

In the framework of offline–online stage procedures, the reduced basis approximation is
implemented starting from the weak formulation (3.8-3.10). For a parametric system
that depends on variation of material parameters µ, the bilinear form B(T,u, p; z,w, q)
= L(z,w, q) admits an affine expansion. Following the non-monolithic approach, for
the cross-anisotropic system with heterogeneous domains describing the steel casing
(Ω1) and Boom Clay (Ω2) material,

B(T,u, p; z,w, q) =
Πa∑︂
π=1

θπa (µ)aπ(T,u, p; z,w, q) +
Πm∑︂
π=1

θπm(µ)mπ(T,u, p; z,w, q)

(B.1)

L(z,w, q) =
Πf∑︂
π=1

θπf (µ)fπ(z,w, q) (B.2)

where θπa (µ), θπm(µ) and θπf (µ) are the varying parameters of interest, aπ, mπ and fπ
are the decomposed parameter-independent terms. The terms m relates to the time
dependent terms of the bilinear term in the left hand side of the weak form while
f denotes the right hand side term. Taking into account all the possible parameter
variation in the defined THM system, Πa = 11, Πm = 2, Πf = 3, ×2 domains (Ω1,Ω2).
The number of affine terms (Π = Πa +Πm +Πf ) can be reduced depending on the
number of material parameter variation considered in the problem (i.e. a system
varying permeability (k) and elastic modulus (E) involves only two affine terms).

For the cross-anisotropic material properties in the mechanical system, we in-
troduce arbitrary variables (ωhh, ωhv, ωvh, λh, λv) to express the elasticity tensor in
separable form

C =

⎡⎢⎢⎢⎢⎢⎢⎣
λh − ωhh ωhh ωhv 0 0 0
ωhh λh − ωhh ωhv 0 0 0
ωhv ωhv λv − ωvh 0 0 0
0 0 0 Gvh 0 0
0 0 0 0 Gvh 0
0 0 0 0 0 Ghh

⎤⎥⎥⎥⎥⎥⎥⎦ (B.3)
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where ωhh = Ehvhh
(1+vhh)(1−2vhh)

, ωhv =
Ehvhv

(1+vhh)(1−2vhh)
, ωvh = Evvhh

(1+vhh)(1−2vhh)
, λh = Eh

(1+vhh)(1−2vhh)

and λv = Ev

(1+vhh)(1−2vhh)
. With these arbitrary variables introduced and shear moduli

(Gvh, Ghh), the elastic tensor can be expressed in 7 components independent with
respect to each variables.

C = C1 +C2 +C3 +C4 +C5 +C6 +C7 (B.4)

C1 = ωhh

⎡⎢⎢⎢⎢⎢⎢⎣
−1 1 0 0 0 0
1 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , C2 = ωhv

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 1 0 0 0
0 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

C3 = ωvh

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , C4 = λh

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

C5 = λv

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , C6 = Gvh

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

C7 = Ghh

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
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The parameter-independent terms are then defined as:

a1 =

∫︂
Ω

∂wi

∂xj
C1

∂uk

∂xl
dΩ (B.5)

a2 =

∫︂
Ω

∂wi

∂xj
C2

∂uk

∂xl
dΩ (B.6)

a3 =

∫︂
Ω

∂wi

∂xj
C3

∂uk

∂xl
dΩ (B.7)

a4 =

∫︂
Ω

∂wi

∂xj
C4

∂uk

∂xl
dΩ (B.8)

a5 =

∫︂
Ω

∂wi

∂xj
C5

∂uk

∂xl
dΩ (B.9)

a6 =

∫︂
Ω

∂wi

∂xj
C6

∂uk

∂xl
dΩ (B.10)

a7 =

∫︂
Ω

∂wi

∂xj
C7

∂uk

∂xl
dΩ (B.11)

a8 =

∫︂
Ω

1

µf (T )

∂q

∂x1

∂p

∂x1
dΩ (B.12)

a9 =

∫︂
Ω

1

µf (T )

∂q

∂x2

∂p

∂x2
dΩ (B.13)

a10 =

∫︂
Ω

1

µf (T )

∂q

∂x3

∂p

∂x3
dΩ (B.14)

a11 =

∫︂
Ω

wi
∂p

∂xi
dΩ (B.15)

m1 =

∫︂
Ω

q
∂p

∂t
dΩ (B.16)
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m2 =

∫︂
Ω

q
∂

∂t
(
∂ui

∂xi
)dΩ (B.17)

f1 =

∫︂
Ω

wiΘ
∂T

∂xi
dΩ (B.18)

f2 =

∫︂
Ω

q
∂T

∂t
dΩ (B.19)

f3 =

∫︂
Ω

3αf (T )q
∂T

∂t
dΩ (B.20)

with their corresponding parameters:

θ1a(µ) = ωhh (B.21)

θ2a(µ) = ωhv (B.22)

θ3a(µ) = ωvh (B.23)

θ4a(µ) = λh (B.24)

θ5a(µ) = λv (B.25)

θ6a(µ) = Gvh (B.26)

θ7a(µ) = Ghh (B.27)

θ8a(µ) = kh (B.28)
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θ9a(µ) = kh (B.29)

θ1a0(µ) = kv (B.30)

θ1a1(µ) = α (B.31)

θ1m(µ) =
1

M
(B.32)

θ2m(µ) = α (B.33)

θ1f (µ) = Θ (B.34)

θ2f (µ) = 3αs(α− φ) (B.35)

θ3f (µ) = φ (B.36)
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