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“Nothing is invented, for it is written in nature first.”

Antonio Gaud́ı





Abstract

Ever-increasing energy consumption, the depletion of non-renewable resources, the cli-

mate impact associated with energy generation, and finite energy-production capacity

are important concerns worldwide that drive the urgent creation of new energy manage-

ment and consumption schemes. In this regard, by leveraging the massive connectivity

provided by emerging communications such as the 5G systems, this thesis proposes a long-

term sustainable Demand-Response solution for the adaptive and efficient management

of available energy consumption for Internet of Things (IoT) infrastructures, in which

energy utilization is optimized based on the available supply. In the proposed approach,

energy management focuses on consumer devices (e.g., appliances such as a light bulb

or a screen). In this regard, by proposing that each consumer device be part of an IoT

infrastructure, it is feasible to control its respective consumption.

The proposal includes an architecture that uses Network Functions Virtualization (NFV)

and Software Defined Networking technologies as enablers to promote the primary use

of energy from renewable sources. Associated with architecture, this thesis presents a

novel consumption model conditioned on availability in which consumers are part of the

management process. To efficiently use the energy from renewable and non-renewable

sources, several management strategies are herein proposed, such as the prioritization of

the energy supply, workload scheduling using time-shifting capabilities, and quality degra-

dation to decrease the power demanded by consumers if needed. The adaptive energy

management solution is modeled as an Integer Linear Programming, and its complexity

has been identified to be NP-Hard. To verify the improvements in energy utilization, an

optimal algorithmic solution based on a brute force search has been implemented and

evaluated.

Because the hardness of the adaptive energy management problem and the non-polynomial

growth of its optimal solution, which is limited to energy management for a small number

of energy demands (e.g., 10 energy demands) and small values of management mecha-

nisms, several faster suboptimal algorithmic strategies have been proposed and imple-

mented. In this context, at the first stage, we implemented three heuristic strategies:

a greedy strategy (GreedyTs), a genetic-algorithm-based solution (GATs), and a dy-

namic programming approach (DPTs). Then, we incorporated into both the optimal

and heuristic strategies a prepartitioning method in which the total set of analyzed ser-

vices is divided into subsets of smaller size and complexity that are solved iteratively. As

a result of the adaptive energy management in this thesis, we present eight strategies,
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one optimal and seven heuristic, that when deployed in communications infrastructures

such as the NFV domain, seek the best possible scheduling of demands, which lead to

efficient energy utilization. The performance of the algorithmic strategies has been val-

idated through extensive simulations in several scenarios, demonstrating improvements

in energy consumption and the processing of energy demands. Additionally, the simula-

tion results revealed that the heuristic approaches produce high-quality solutions close to

the optimal while executing among two and seven orders of magnitude faster and with

applicability to scenarios with thousands and hundreds of thousands of energy demands.

This thesis also explores possible application scenarios of both the proposed architecture

for adaptive energy management and algorithmic strategies. In this regard, we present

some examples, including adaptive energy management in-home systems and 5G networks

slicing, energy-aware management solutions for unmanned aerial vehicles, also known as

drones, and applicability for the efficient allocation of spectrum in flex-grid optical net-

works. Finally, this thesis presents open research problems and discusses other application

scenarios and future work.
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Chapter 1

Introduction

This chapter presents a brief introduction of this Ph.D. thesis, pointing out the mo-
tivation, objectives, and main scientific contributions of our research work. More-
over, this chapter presents the outline of this dissertation.

1.1 Introduction and Motivation

Traditionally, worldwide energy provisioning has been dominated by fossil fuels such as
petroleum, coal, and natural gas, resulting in an increase in CO2 emissions and global
warming [1]. In the near future, this dependence could potentially lead to an energy
crisis due to the risk of depleting fossil fuels, the infeasibility of meeting the ever-growing
energy demand, the increased cost of energy production, and the high impact on climate
and the environment. To ensure human society’s development, a zero-carbon alternative
is the use of green energy from renewable energy sources, like solar or wind, into the
world energy matrix, which can meet current and future energy demands [2]. It is conjec-
tured that more than 50% of projected global energy needs can be satisfied by utilizing
the Earth’s green energy [3]. Then, the evolution toward ecosystems completely powered
by renewable energy is seen as a very promising approach to tackle sustainability issues
and reduce the carbon footprint. In this context, major IT providers, including Google
[4], Microsoft[5], and Apple [6], as well as mobile network operators [7], are already pro-
moting all computing and networking infrastructure being fully supported by renewable
energy. Despite the multiple benefits that green sources can offer, their intermittent be-
havior (which may cause instability when they are integrated into conventional energy
sources [2]), added to the inefficient use of the generated energy (also from non-renewable
sources), requires the development of consumption management solutions to maintain
power reliability, continuity, and quality. In this regard, consumer-side participation and
Demand-Response (DR) schemes are effective solutions to adapt the energy consump-
tion patterns to energy supply dynamically. Adaptive DR schemes or programs based
on agreements between the Energy Supplier (ES) and the Energy Consumers (ECs) pro-
mote the exchange of indications and requests between parties to adapt consumption in

1
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response to changes in energy generation with the motivation of energy bill reduction
and/or free usage periods for end users [8].

Technically, an adaptive, environmentally friendly DR energy management system needs
robust and scalable Information and Communications Technologies (ICT) both to facili-
tate the interaction between the ES and the ECs and to deploy the management strategies
that lead to efficient energy utilization [9]. In this regard, modern energy systems (e.g.,
smart grids) can incorporate diverse ICT and Internet of Things (IoT) technologies to
improve control, management, and monitoring tasks and to extend energy management
to the end user. Currently, there is an important proliferation of Internet connectivity
worldwide, and some studies estimate that by 2022 the number of IoT devices (energy
consumers) will surpass 28.5 billion (i.e., 10 billion more devices than in 2017) [10]. This
fact reveals both the feasibility of implementing efficient energy management solutions
with consumer-side participation and the application scope (e.g., energy management
in homes, in buildings, in starships, or even for entire countries). Fig. 1.11 summarizes
the main energy concerns and alternatives or solutions proposed for achieving adaptive
energy management in the context of this Ph.D. thesis.

Figure 1.1: Summary of concerns and solutions related to the development of this
Ph.D. thesis.

A critical feature of adaptive energy consumption systems is the computational capacity
(mainly in terms of memory and processing power) needed to execute the management
strategies (carried out through algorithmic solutions), which promote the interaction be-
tween generation and consumption sides and optimize the use of available energy either
from renewable or non-renewable sources. Traditionally, the ES has used operations cen-
ters and, recently, Data Centers (DCs) infrastructures in which a variety of management

1The author has created all the figures in this thesis. In needed, additional images, as shown in
Fig. 1.1, are under the creative commons licenses.
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policies have been implemented [11]. However, the dynamic behavior of the generation
and consumption ecosystem has prompted these DCs to evolve to cloud computing in-
frastructures in which sophisticated technologies such as Network Function Virtualization
(NFV) can be deployed [9]. A technological solution such as NFV can provide to energy
management systems programmability, by facilitating the deployment of different man-
agement strategies through virtual components, and the Management and Orchestration
(MANO) entities to coordinate all actions between the ES and the ECs and the underlying
network (e.g., a Software Defined Networking (SDN) solution). Thus, an ICT-based ap-
proach (e.g., based on NFV technology) can manage computational resources on-demand,
allowing adaptive energy management to be scalable and carried out in reduced execu-
tion times, especially for delay-sensitive applications. Likewise, the massive connectivity,
with low latency and high bandwidth, available to end-users due to the proliferation of
IoT technologies and development of network systems, such as 5G, makes it possible for
potential energy consumers (i.e., devices, appliances, or, in general, IoT infrastructures)
to participate in the energy management process [12].

Although an ICT-enabled energy management solution (e.g., based on an NFV approach),
deployed on cloud computing infrastructures, can offer programmability, scalability, and
high computational capacity, the inherent complexity of the algorithmic management so-
lutions to enable adaptive consumption is still an important, open issue. Existing litera-
ture shows that optimal or exact algorithmic solutions for energy management considering
features such as the dynamic nature of renewable energy generation [13], added to man-
agement mechanisms such as prioritization in energy provisioning if needed, time-shifting
capabilities, and quality degradation (i.e., a decrease of power consumption) to adapt the
workloads to energy availability, present a complexity NP-Hard [9]. This complexity level
imposes limits on the applicability of consumption management to small-scale scenarios
(e.g., for units of energy demands) and small values or ranges of management strategies
(e.g., using units of time-shifting slots) [14]. Therefore, faster and less complex adap-
tive energy management approaches (also known as approximate/suboptimal solutions
or heuristic) are essential. A variety of techniques or methods, such as greedy strategies
and genetic algorithm-based solutions, can be implemented to meet these requirements.
In addition, both optimal and heuristic algorithmic strategies need to be evaluated con-
sidering a variety of consumption and generation profiles in small and large-scale scenarios
(e.g., with thousands of energy demands) to verify their effectiveness in energy utilization
and consumption. Apart from demonstrating improvements in energy management of
available supply, the suboptimal or heuristic strategies must deliver high-quality solutions
(compared to the optimal), feasible running times (e.g., several order of magnitude faster
than optimal solutions), and a suitable computational resource usage, that allow their
potential deployment not only on cloud computing infrastructures but also on edge or fog
computing infrastructures, and even on Home Energy Management Systems (HEMS).

Considering that an ICT-enabled and environmentally friendly energy management solu-
tion is a feasible alternative that can offer sustainability for human development, increase
in overall energy utilization, and prevention of energy outages while producing cost re-
ductions for the ES and ECs, developing an architectural framework and the algorithmic
strategies (both optimal and heuristic) that enable adaptive energy consumption is of
the utmost importance. This is the main objective of this Ph.D. thesis. Specifically, this
thesis proposes an architecture that enabled by modern ICT solutions (such as NFV,
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SDN, and IoT) and carry out through algorithmic strategies (optimal and heuristic) en-
ables optimized use of available supply obtained mainly obtained from renewable energy
sources and with applicability to small and large-scale IoT infrastructures. In the pro-
posed approach, energy management focuses on consumer devices (e.g., appliances such
as a light bulb or a screen). In this regard, by proposing that each consumer device be
part of an IoT infrastructure, it is feasible to control its respective consumption. The
proposed management solution represents a feasible and promising move to future energy
systems, currently referred to as the Internet of Energy (IoE) [15].

1.2 Objectives

The main objective of this Ph.D. thesis is to contribute to the study of the energy efficiency
problem by proposing a Demand-Response ecosystem, that based on modern technologies
such as SDN and NFV, provides an adaptive energy consumption with applicability to
small and large-scale IoT scenarios. In this approach, energy management focuses on
consumer devices (e.g., appliances such as a light bulb or a screen). In this regard, by
proposing that each consumer device be part of an IoT infrastructure, it is feasible to
control its respective consumption. To this end, we have identified a set of objectives
that must be achieved and listed below.

• Identify the problem of lack of synchronization of energy generation and consump-
tion (which causes scarcity or waste of energy) and explore the benefits and oppor-
tunities of implementing DR systems for adaptive consumption.

• Review research work about ICT-based solutions and customer-side participation
for energy management, including the approaches that consider the participation of
renewable energy sources. This, as a starting point, to detect possible technologies,
mechanisms, schemas, and procedures to be used in the proposed adaptive energy
management solution.

• Identify the management mechanisms to be applied on energy demands (e.g., time-
shifting capabilities or quality degradation) to adapt the consumption patterns to
availability (whether renewable or not).

• Analyze the implications of applying the selected management mechanisms in pro-
cessing energy demands (e.g., delayed or anticipated execution of demands or rejec-
tion). Moreover, analyze the complexity that these management mechanisms can
contribute to the overall energy management proposal.

proposal in order to present a robust architectural framework for the efficient man-
agement of energy consumption.

• Analyze the ICT requirements for the deployment of the adaptive energy manage-
ment solution and appropriate architectural framework. Considering the compu-
tational capacity needed for the deployment of management strategies (which are
implemented through algorithmic approaches) and the infrastructure to coordinate
the notifications, requests, and actions between the ES and the ECs.
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• Propose an architecture based on advanced ICT technologies (e.g., NFV and SDN)
that enables adapting the consumption patterns to available supply either from
renewable and now renewable sources. The architecture proposal must include
describing the stakeholders involved, their features, and the interaction level to
continuously adapt consumption to generation.

• Characterize the ES and the ECs mathematically, taking into account features such
as the type of energy sources (i.e., renewable and non-renewable) and the use of
management mechanisms (e.g., time-shifting capabilities), respectively.

• Formulate the energy model mathematically for adaptive consumption (e.g., through
an Integer Linear Programming (ILP) formulation), defining the objective function
to be optimized and the constraints related, and considering finite energy supply
and the application of management mechanisms on energy demands.

• Analyze the complexity level of the adaptive energy management model to deter-
mine its classification (e.g., a knapsack-like problem) and the possible strategies or
methods to solve it.

• Define performance metrics to determine the utilization of energy capacity, improve-
ments of energy consumption, and increase of processing if energy demands, which
in normal conditions (i.e., without the application of management mechanisms)
would be rejected.

• Design an algorithmic strategy for solving the energy model for adaptive consump-
tion optimally (e.g., a solution base on a brute-force method). This implementation
allows to determine all concerns regarding the adaptive energy management model
and can be used as a baseline to compare the performance of suboptimal approaches.

• Analyze the growth rate of the optimal solution to determine its application scope,
its limitations, and the possible strategies to tackle the complexity issues, mainly
for large-scale scenarios (e.g., for thousands or services) and/or for large values of
management mechanisms (e.g., energy management using a 10-time slot for time-
shifting).

• Analyze some heuristic strategies in the scope of the problem of adaptive energy
management.

• Design faster and heuristic strategies that solve the adaptive energy management
model in reduced running times (e.g., several order of magnitude faster), with re-
duced computational capacity usage (mainly defined in terms of RAM and CPU),
with applicability to thousand or hundred of thousands of energy demands, and
producing high-quality solutions compared to the optimal values.

• Evaluate the proposed algorithmic strategies, both optimal and heuristic, through
extensive simulations in diverse scenarios and for different generation and consump-
tion conditions. The results must be analyzed considering as baseline the no applica-
tion of management mechanisms. Moreover, the heuristic strategies can be analyzed
in offline and online approaches, and their solutions can be compared with the exact
results and with solutions of existing related approaches in the literature to validate
their effectiveness and benefits in adaptive energy management.
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• Identify potential application scenarios in which the proposed architecture or the
algorithmic strategies can be used to efficiently manage resources not only for energy
but also for other parameters such as the available spectrum.

1.3 Summary of Contributions

The main contributions of this thesis following the proposed objectives are listed below:

• An architecture proposal that, based on modern communications technologies such
as 5G, NFV, and SDN, can perform efficient and adaptive management of available
energy, whether 100% renewable or not, for IoT infrastructures.

• A novel consumption model subject to availability in which the IoT-enabled con-
sumers (i.e., devices or appliances) are part of the energy management process.

• Several management strategies for the efficient consumption of energy produced by
a combination of renewable and non-renewable sources. These include prioritizing
energy supply, time-shifting capabilities, quality of degradation, and rejection of
energy demands, to adapt the consumption pattern to the available supply.

• The mathematical characterization of ES and ECs considering the nature of energy
provisioning (renewable or not) and the management mechanisms that can affect
energy demands.

• The mathematical model of adaptive energy consumption based on an ILP formu-
lation and considering finite energy provisioning and the management mechanisms
on energy demands.

• The computational complexity estimation of adaptive energy management model.

• An optimal brute-force-search-based algorithmic strategy defined as OptTsCost
to solve the ILP optimally.

• Definition of performance metrics such as residual power, energy utilization, accep-
tance ratio, and missing power to verify the improvements in energy utilization and
consumption achieved with the proposed adaptive energy model and algorithmic
strategies implemented.

• Discussion of possible algorithms to tackle the hardness of the ILP and the compu-
tational complexity of OptTs.

• Three heuristic strategies identified as GreedyTs, GATs, and DPTs to solve
the adaptive energy management problem in reduced running time compared to
the optimal solution, OptTsCost, and with applicability to IoT scenarios with
thousands or hundreds of thousands of energy demands.

• Comparison of the solutions delivered by heuristic strategies with the exact results
produced by the optimal algorithmic strategy OptTs.
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• The application of a pre-partitioning method inspired in divide-and-conquer ap-
proach to scale up the operation of both optimal and heuristic strategies to IoT-
enabled scenarios with thousands and hundreds of thousands of energy demands.

• The evaluation of optimal and heuristic strategies in terms of performance metrics,
through extensive simulations in different scenarios to confirm the improvements in
the management of energy consumption and demand processing.

• The evaluation of optimal and heuristic strategies according to the usage of com-
putational capacity, in terms of Random Access Memory (RAM) and Central Pro-
cessing Unit (CPU).

• Discussion of open research challenges and possible application scenarios in the
context of adaptive energy management.

• Application scenarios in which both the proposed architecture and the algorith-
mic strategies developed are used to efficiently manage available resources, mainly
concerning energy consumption. These application scenarios include: (i) adaptive
energy management in HEMS, in which particularly the proposed heuristic strategy
denoted as PHRASE is evaluated in offline and online approaches, and their results
are compared with the optimal solution and with existing approaches; (ii) adaptive
energy management applied to 5G network slicing, in which the architecture and
energy model is adapted to the requirements and characteristics of modern mobile
communications systems; (iii) energy-aware management in the field of Unmanned
Aerial Vehicles (UAVs), in which an optimal solution and a proposed heuristic
denoted as BETA are developed to optimize service availability and efficient use
of UAVs; and (ii) optimized spectrum utilization in flex-grid optical networks, in
which the proposed architecture and prepartitioning method is adapted to improve
the allocation of available spectrum.

1.4 Related Publications

In this section, we list the result of the publication of the research done during this thesis.
Fig. 1.2 summarizes the development of this Ph.D. thesis according to contributions made
and the published and submitted content. As shown in Fig. 1.2, some contributions
include a repository with the code used for simulations to facilitate reproducibility of the
algorithmic strategies and corresponding results. Most of the contents of this dissertation
have been published in the following journals and conferences:

Journal Publications:

J1 Christian Tipantuña, Xavier Hesselbach, Victor Sánchez-Aguero, Francisco Valera,
Iván Vidal, and Borja Nogales. An NFV-based energy scheduling algorithm for a
5G enabled fleet of programmable unmanned aerial vehicles.Wireless Communica-
tions and Mobile Computing, 2019. ISSN:1530-8677. Impact factor 2019: 2.336, Q3
[16].
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J2 Christian Tipantuña and Xavier Hesselbach. NFV/SDN enabled architecture
for efficient adaptive management of renewable and non-renewable energy. IEEE
Open Journal of the Communications Society, 1:357–380, 2020. ISSN:2644-125X
(new journal since 2020, no impact factor available yet) [9].

J3 Victor Sánchez-Aguero, Francisco Valera, Ivan Vidal, Christian Tipantuña, and
Xavier Hesselbach. Energy-aware management in multi-uav deployments: Mod-
elling and strategies. Sensors, 20(10):2791, 2020. ISSN:1424-8220. Impact factor
2020: 3.576, Q1 [17].

J4 Christian Tipantuña and Xavier Hesselbach. Adaptive energy management in 5G
network slicing: Requirements, architecture, and strategies. Energies, 13(15):3984,
2020. ISSN:1996-1073. Impact factor 2020: 3.004, Q3 [18].

J5 Christian Tipantuña and Xavier Hesselbach. NFV-enabled efficient renewable
and non-renewable energy management: Requirements and algorithms. Future In-
ternet, 12(10):171, 2020. ISSN:1999-5903. CiteScore 2020: 4.1, Q3 [19].

J6 Christian Tipantuña and Xavier Hesselbach. IoT-enabled proposal for adap-
tive self-powered renewable energy management in home systems. IEEE Access,
9:64808–64827, 2021. doi: 10.1109/ACCESS.2021.3073638. ISSN:2169-3536. Im-
pact factor 2020: 3.671, Q1 [20].

J7 Christian Tipantuña, Xavier Hesselbach, and Walter Unger. Heuristic Strategies
for NFV-Enabled Renewable and Non-renewable Energy Management in the Future
IoT World. doi: 10.1109/ACCESS.2021.3110246. Impact factor 2020: 3.671, Q1
[21].

J8 Christian Tipantuña and Xavier Hesselbach. Network Technologies for Future
Green Energy Management: A Comprehensive Survey. To be submitted to Elsevier
Renewable and Sustainable Energy Transition. In preparation.

Conference Publications:

C1 Christian Tipantuña and Paúl Yanchapaxi. Network Functions Virtualization:
An Overview and Open-Source Projects. In2017 IEEE Second Ecuador Technical
Chapters Meeting (ETCM), pages 1–6, Salinas, Ecuador, 2017. ISBN 9781538638941.
doi: 10.1109/ETCM.2017.8247541 [22].

C2 Christian Tipantuña, Carla Parra, Jorge Carvajal, and Ricardo Llugsi. SDN:
Layers, architecture and perspectives of a key technology for the future Internet. XII
Jornadas en Ingenieŕıa Eléctrica y Electrónica, FIEE, Escuela Politécnica Nacional,
Quito, Ecuador, 2018 [23].

C3 Christian Tipantuña and Xavier Hesselbach. Demand-Response power Manage-
ment Strategy Using Time Shifting Capabilities. In ACM Proceedings of the Ninth
International Conference on Future Energy Systems, pages 480–485. ACM, 2018.
ISBN 9781450357678. doi: 10.1145/3208903.3213519 [14].
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C4 Christian Tipantuña and Xavier Hesselbach. NFV-enabled optimal spectrum
allocation in flex-grid optical networks. In 2020 22nd International Conference on
Transparent Optical Networks (ICTON), pages 1–7, 2020. ISBN 9781728184234.
doi: 10.1109/ICTON 51198.2020.9203329 [24].

Research projects:

The research work in this thesis has been done within the framework of several research
projects, which are listed below.

• Project 5G-City (2017-2019), TEC2016-76795-C6-1-R and AEI/FEDER, UE, funded
by the Ministerio de Economı́a y Competitividad of the Spanish Government.

• Project SGR under Grant 2017 SGR 397 from the Generalitat de Catalunya.

• Project TRUE5G (2020-2023), PID2019-108713RB-C51/AEI/10.13039/501100011033,
funded by the Agencia Estatal de Investigación of Spain.

1.5 Outline of this Thesis

This thesis is organized into seven chapters, as summarized in Fig. 1.3 and described
below.

Chapter 2: Background Technologies
This chapter introduces the main concepts and ICT enabling technologies involved
in the proposal for adaptive energy management, including a brief overview of 5G
systems. In particular, the operational features and architectural frameworks of
SDN and NFV technologies are presented in this chapter. At the end of this chapter,
a brief description of DR schemas is also introduced.

Chapter 3: Problem Statement and Literature Review
This chapter describes the problem of inefficient use of available supply and desyn-
chronization with the demand, which causes scarcity or waste of energy and extra
production and pollution-related. In addition, this chapter discusses related work
regarding the use of ICT technologies for energy management, including IoT and
NFV technologies, and the transition to sustainable systems powered entirely or
primarily by green energy.

Chapter 4: NFV/SDN Enabled Architecture for Adaptive Energy Man-
agement in IoT Scenarios
This chapter describes the architecture proposal for adaptive energy management,
including the stakeholders, the global NFV-enabled ecosystem, the consumption
model, the management strategies to adapt consumption to available generation,
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and the mathematical characterization of the ES and the ECs. The proposed ar-
chitecture considers the capabilities of current consumers (massive connectivity),
advanced existing communications technologies such as SDN and NFV (that are
enablers of 5G systems), and a finite capacity for energy production.

Github repository

Conference

Journal

J2, J5

C1, C2

NFV/SDN architecture 
for energy management 

Renewable and non-renewable
energy sources

SDN and NFV

IoT-enabled energy consumers

Optimal strategy for 
energy management 
OptTs based on brute-force

search method and nested sorting

C3

Collaborative work with RWTH Aachen University

Optimal and heuristics
strategies for energy management 

OptTsCost evolution of OptTs and 
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Heuristics: GreedyTs, DPTs, GATs

Heuristics: OptTsCostPart, 
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Optimal solution based on a 
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Figure 1.2: Thesis overview according the published and submitter content.
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Figure 1.3: Thesis organization.

Chapter 5: Algorithmic Strategies for Adaptive Energy Management
This chapter presents the mathematical model related to adaptive energy consump-
tion using an ILP formulation. The mathematical model defines the objective func-
tion and constraints related and considers finite available supply and management
mechanisms such as prioritization of energy provisioning, time-shifting capabili-
ties, quality degradation, and possible rejection of energy demands. To solve the
ILP model, this chapter describes algorithmic strategies, optimal and heuristic,
that, when deployed in ICT infrastructures enabled by modern technologies such
as NFV, allow adaptive consumption constrained to availability. The optimal al-
gorithmic strategy is defined as OptTsCost and is based of a brute-force search
method. Instead, the heuristic solutions denoted as GreedyTs, GATs, and DPTs
are based on a constructive algorithm, a genetic algorithm-based method, and a dy-
namic programming approach, respectively. To further scale up the operation of
both the optimal and heuristic strategies, this chapter also presents a prepartitioning
strategy based on a divide-and-conquer method. When it is adapted to algorithmic
strategies, it enables adaptive energy management to be applied to thousands or
hundreds of thousands of energy demands. The performance evaluation of the algo-
rithmic solutions is carried out through extensive simulations in several scenarios,
and the simulation results demonstrate that applying the adaptive energy man-
agement model through the proposed algorithmic strategies (optimal and heuris-
tics) produces an improved overall performance of the generation and consumption
ecosystem, and leads to efficient utilization of available power.

Chapter 6: Application Scenarios
This chapter discusses possible application scenarios of both the proposed architec-
ture and algorithmic strategies developed, including adaptive energy management
in home energy systems, 5G network sling, and in the field UAVs, also known as
drones. The application for efficient spectrum allocation in flex-grid optical net-
works is also explored a the end of this chapter.
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Chapter 7: Conclusions and future work
This chapter draws conclusions, describes possible improvements in the proposed
architecture, adaptive energy model, and algorithmic strategies. Moreover, this
chapter discusses other possible application scenarios and future work.



Chapter 2

Background Technologies

This chapter presents the background technologies involved in the design of the
proposed architecture for adaptive energy management. This chapter also includes
a brief overview of 5G systems and the general characteristics of DR schemas to
promote the adaptation of consumption to availability.

The topics that are covered in this chapter are as follows:

• 5G technology description.

• SDN and NFV fundamentals and architectural frameworks.

• An overview of DR schemas for energy management.

This chapter is based on:

C1 Christian Tipantuña and Paúl Yanchapaxi. Network Functions Virtualiza-
tion: An Overview and Open-Source Projects. In2017 IEEE Second Ecuador
Technical Chapters Meeting (ETCM), pages 1–6, Salinas, Ecuador, 2017.

C2 Christian Tipantuña, Carla Parra, Jorge Carvajal, and Ricardo Llugsi.
SDN: Layers, architecture and perspectives of a key technology for the future
Internet. XII Jornadas en Ingenieŕıa Eléctrica y Electrónica, FIEE, Escuela
Politécnica Nacional, Quito, Ecuador, 2018.

C3 Christian Tipantuña and Xavier Hesselbach. Demand-Response power
Management Strategy Using Time Shifting Capabilities. In ACM Proceed-
ings of the Ninth International Conference on Future Energy Systems, pages
480–485. ACM, 2018.

13
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2.1 5G Systems

Because 5G networks can be seen as a potential enabling technology for deploying dif-
ferent applications or verticals, this section describes the most relevant aspects of this
technology.

The global deployment and adoption of Long Term Evolution (LTE) technology have
promulgated mobile data with a high data rate and low latency. This trend, as well as
the massive proliferation of mobile devices connected to the Internet [25], have contributed
to the growth of connectivity and traffic volume, thus, to meet the current and future
requirements, due to the emergence of new services and applications, several organizations
and standardization bodies have conceived the development of a new architecture for
mobile networks. This new generation of mobile networks, the fifth (5G), brings together
the best advances in communications and network systems and has been conceived as a
technology to mainly provide: (i) high data rate expected to be like around 5Gbps (fiber-
like access data rate); (ii) a low latency user experience (latency less than 1 milliseconds);
(iii) connectivity for more than 100 billion devices, (iv) improvements of energy, spectrum
and cost efficiency; (v) faster response time and high capacity of the system; (vii) more
software options to upgrade or evolve; (viii) and more data rate at cell edges [26]. To
achieve these requirements, a set of technologies are focused on the different portions of
the network; the main enabling technologies are briefly described below [27].

• Millimeters wave communications : Use of high-frequency spectrum, with a higher
channel bandwidth of 1 to 2 GHz.

• Multiple access schemes (links): Use of different schemas to increase the data rate,
such as Sparse Code Multiple Access (SCMA), Non-Orthogonal Multiple Access
(NOMA), and Orthogonal Frequency Division Multiplexing Access (OFDMA).

• Massive MIMO : Increase in the number of transmissions using massive MIMO or
Multi-user MIMO (MU-MIMO) schemes.

• Heterogeneous networks (HetNets): Networks comprised of different types of cells
such as femtocells, picocells, metro cells, microcells, macrocells, relays, or enterprise
cells. These cells should support 3G, 4G, and Wi-Fi traffic.

• SDN and NFV : These technologies can provide dynamic network behavior, agility,
and flexibility in deploying network services and applications.

5G networks are expected to provide network solutions for various public and private
sectors, such as energy, agriculture, city management, health care, manufacturing, and
transport. Apart from the enormous number of connections and the deployment of IoT
applications, some application scenarios and use cases include: Mobile Internet with
ultra-high traffic volume and mobility, ultra-high-definition multimedia augmented real-
ity, virtual reality, 3D video, mobile health, desktop cloud, online gaming, deployment of
vehicular networks, interconnection in smart homes, and improved smart grids [27].
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2.2 Software Defined Networking

SDN refers to a networking technology that provides an abstraction of physical resources
and network programmability by separating the control plane and the data plane, en-
abling innovation and simplified network management. This technology has revolution-
ized the world of networked systems, has become an important networking research topic
in academia and industry during the past couple of years, and nowadays is considered as
a key technology for the deployment of current and future communication systems and
as an enabler for the future Internet. In this regard, this section addresses the concepts,
fundamentals, the architectural framework, as defined by the Internet Research Task
Force (IRTF) in the RFC7426, and the advantages of the SDN paradigm over traditional
network infrastructures.

2.2.1 Introduction to Software Defined Networking

The networking technology used in our world is mostly built on the concepts introduced
by the first networking research projects, such as the Advanced Research Projects Agency
Network (ARPANET) [28]. Over the years, it is evident that the evolution of computer
networks has been a great success, starting from a research project to exchange informa-
tion between universities and becoming a global communications infrastructure, which
serves more and more users and increases in size and complexity. Although the network
technologies used in these decades (traditional technologies) have been beneficial and
have worked properly, the techniques, requirements, and demands from both industry
and users and the hardware and the software have evolved. Thus, for computer networks
to fit current and future needs, innovations have been developed mainly in the upper
layers of the underlying network and the end devices. However, network architecture has
been the same over the years. Originally, computer networks were designed to provide
interconnection between network devices considering principles such as heterogeneity, in-
terconnection, and sharing. Still, other aspects such as availability, mobility, scaling,
security, quality of service (QoS), quality of experience (QoE), and QoX (where X stands
for service, network economics, energy, etc.), among other features, have been left out,
because they were not important in the era that technology was born and because nobody
thought the impact that would have the computer networks in our current society.

Vendors and operators have developed networking solutions, and although these solutions
have allowed global connectivity, they have certain features that have not given way to
a more rapid technological evolution. The operation of a network device is closely linked
to the design and degree of innovation of vendors (i.e., it is a closed device or a black
box). Every vendor has its own software solution, which is included in the hardware and
specific network interfaces, protocols, and management systems. Nowadays, managing a
multi-vendor network is challenging and complex, not to mention a slow standardization
of protocols and delay in introducing new features. Moreover, the current networks
must transfer an increasingly large amount of information (big data) [25]. To cope with
the aforementioned challenges, meet the requirements of the new services, and promote
innovation and open ecosystems (white-box devices), both the academy and industry
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have considered upgrading or redesign the network architecture. These changes have not
been taken at random, on the contrary, they have been the result of decades of research
and a collaborative effort of many institutions and organizations [29]. A key point in the
evolution of networked systems is the advent of virtualization technologies because they
have changed the landscape in the compute domain. The idea of abstracting the software
from the underlying hardware and the capacity to produce changes in the behavior of a
system (virtual machine) based on changes in software components was the starting point
to the development of programmable networks, and later the birth of SDN technology
[30].

2.2.2 Traditional Networks

A traditional network device or a network element has three well-defined planes: data,
control, and management planes [31], as shown in Fig.2.1.These planes are described as
follows.

Control Plane
Configuration, Rules, Functions

Data Plane
Forwarding data

Management Plane
Device OS

Network Device

Figure 2.1: Data, control, and management planes in a non-SDN network device.

• Data Plane: The data plane is also called the data path or the forwarding plane.
The data plane processes traffic or data streams (data packets); it is responsible
for handling and applying actions to them based on programmed rules into lookup
tables (forwarding tables). Examples of protocols in this plane are Ethernet and
MPLS.

• Control Plane: The control plane is connected to the data plane to update the
logic that should be implemented on the data streams. This plane is tasked with
calculating and programming actions for the data plane, i.e., how and where to send
the network traffic. The control plane is where the forwarding decisions are made
and where other functions such as QoS, Virtual Local Area Networks (VLANs),
etc., are implemented. Examples of protocols in this plane are OSPF, IS-IS, and
BGP.

• Management Plane: The management plane is where it is possible to configure and
monitor the network device (switch or router) through a command prompt (shell)
or a web interface. The management plane usually runs on the same processor as
the control plane.
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Fig.2.2 shows a traditional communications network composed of network devices and
physical and logical connections. Every network element contains the management, con-
trol, and data planes. However, the software is tied to the hardware where it runs, and
the control and modification of the data (which is forwarding across the network) work
within a proprietary framework (which means that the user is directly and indirectly
linked to the solutions provided by the vendor). As a result, adopting a new solution,
protocol or feature can be difficult, expensive, or take a long time.

Control Plane

Data Plane

Management Plane
Network Device

Control Plane

Data Plane

Management Plane
Network Device

Control Plane

Data Plane

Management Plane
Network Device

Control Plane

Data Plane

Management Plane
Network Device

Control Plane

Data Plane

Management Plane
Network Device

Control Plane

Data Plane

Management Plane
Network Device

Figure 2.2: Traditional network topology.

The control plane within each device fulfills functions such as network device configu-
ration, management and exchange of routing information tables, and collection of infor-
mation about network topologies and status. The information used by the control plane
to make decisions about where to send the traffic can be learned through the use of
static routing or the use distributed routing protocols (e.g., OSPF, IS-IS, BGP). Routing
techniques allow any router to exchange information with each other device within the
network (distributed algorithms running between neighbors) to build routing tables used
by the data plane. Then, based on the status of the network topology, the information
of all devices is updated in a distributed manner, and any device can take decisions or
perform actions depending on the requirements or goals to be achieved. However, because
all devices have the same level, it is not easy to understand their state, history and decide
which decision or action is best and who should execute it. Moreover, in the traditional
network approach, the distributed routing protocols, in many cases, do not take optimal
decisions because all devices have the same perspective and no device has a complete
view of the network; this lack of information does not allow to take end-to-end optimal
decisions. For solving the aforementioned drawbacks, SDN technology has emerged.

2.2.3 SDN Networks

SDN decouples control and forwarding functions by separating the control and data
plane [30]. The separation of planes allows that the control plane becomes directly
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programmable and accessible by an application layer through an application program
interface. As a result, the underlying network layer can be abstracted from application
and network services. Thus, SDN technology changes the paradigm of networks, unifying
the behavior of network devices (routers and switches) and turning them into generic
forwarding devices (SDN switches or white boxes), which can be implemented using open
standards and vendor-neutral solutions. The functionality of the entire network can be
programmed rather than individual devices because the application is independent of
the underlying hardware. The programmability offered by the SDN technology makes it
possible to make changes in the network, ranging from tasks related to the routing or
even a complete change in the behavior of the network. All kinds of network applications
can now be programmed, for instance: change the configuration of network devices, give
priorities to network traffic flow, give access or permission to the network properties, etc.
Definitely, the programmability of the network introduced by an SDN enables innova-
tion and accelerates the introduction of new features and services. SDN transforms the
network perspective from specialized hardware with protocols and applications imple-
mented for each network device (switch, router) to an open ecosystem that promotes an
independent evolution of hardware and software solutions.

2.2.3.1 Abstractions in SDN

One of the most important characteristics of SDN technology is the abstraction levels.
The application does not send codes directly to the network devices; instead, it commu-
nicates with the controller, and thanks to the abstraction, the network infrastructure is
transparent to the application. The main levels of abstractions in an SDN network are
listed below.

• Network abstractions: A global view of the network is available from the controller.
The behavior of the entire network based on the requirements of the applications
and the decisions and actions are taken by the controller.

• Control plane abstractions: The controller must be compatible with any hardware
and software solution that is part of the infrastructure layer. The controller makes
decisions based on requests by the applications and considers the network status
and topology.

• Data plane abstractions: The network infrastructure is independent of software and
hardware solutions. The configuration of the network devices can be based on flows,
as proposed by the OpenFlow protocol [32], i.e., the traffic of the data will be based
on flow-based forwarding instead of destination-based forwarding. In this context,
a flow is a set of packet field values acting as a match rule and a set of actions to
operate on all packets belonging to the same flow.

2.2.3.2 Elements of an SDN Network

To understand the changes in the network architecture, the features, and the advantages
that could bring the adoption of SDN technology, it is suitable to analyze the structure
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and operation of the SDN-compatible network devices. Fig.2.3 shows the structure of
SDN devices (a controller and a switch). Unlike a traditional network element where
the control and data planes are implemented in the hardware platform as an integrated
system, see Fig.2.1, in an SDN network, there is a separation between the control and the
data planes, which is given by using an SDN controller and an SDN switch, respectively.
Although these devices have different functionality than traditional ones, this does not
limit that the network devices can be upgraded and compatible with SDN networks. There
are currently network devices that can work in conventional and SDN environments. In
addition to the SDN controller and the SDN switch, another component that the SDN
architecture introduces is the network applications (services), as shown in Fig.2.4. A
description of the main features of the application, the controller and the switch is given
below.

Control Plane
Configuration, 

Rules, Functions

Management 
Plane

Device OS

Controller

Device abstraction layer

Data Plane
Forwarding data

SDN Network Device

Figure 2.3: SDN network devices: controller and switch.

• SDN switch: The switch can be physical or virtual (network device) and does not
have to implement all protocols or features, it has an abstraction layer, which allows
performing minimum control and management functionalities, and which will be
used in the communication with the controller through the southbound interface,
namely using a control-switch protocol, such as OpenFlow [32]. The control and
management functionalities in the switch are also needed for cold-start operation
and configuration. The SDN switches are also called white boxes because they can
be developed based on open-source standards and solutions.

• SDN controller: The decisions are made in the control plane, which is part of the
controller, which offers central management of all devices within the network and
which has an entire view of the network, as shown in Fig.2.4. The SDN network
controller hides the network complexity and understands the constraints in the net-
work. The controller software communicates with both the network application and
the underlying network through interfaces, northbound and southbound interfaces.
When the control plane is separated from individual network devices (network in-
frastructure), and it is centralized in a single device (SDN controller), it can perform
better management of multiple network elements (SDN devices), and it can provide
underlying network abstraction, which facilitates the deployment of network appli-
cations (programmability). The SDN controller has the following characteristics:
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Figure 2.4: An SDN network with one controller and multiple SDN-switches.

– Logically centralized software platform. It offers a unique abstract view of the
network state (e.g., topology).

– The SDN controller is sometimes referred to as the Network Operating System
(NOS) [33], because it acts as such. Network applications run on the SDN
controller, similar to computer applications running on a computer operating
system.

– For scalability and reliability (e.g., to support very large and complex net-
works), the controller can be distributed in different servers.

– There are commercial and open-source solutions. Examples of open-source con-
trollers are Beacon, Floodlight, Trema, NOX, POX, Ryu, and OpenDaylight
[34], the latter being one of the most relevant projects today. The controller
should truly interoperable and multivendor, and its operation cannot be tied
to a specific network element.

– The controller can dynamically adapt the data flows.

– The controller has APIs (open) to interact with both applications and the data
plane.

• Network applications: The network applications running on the controller can be
diverse and can range from routing tasks to the implementation of network services
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such as network access control, load balancers, firewalls, etc. The application com-
municates with the controller using the northbound interface; REST API and Java
API are examples of this interface.

2.2.3.3 SDN Benefits

There are significant benefits related to SDN technology; among the most important
ones are abstraction capability and programmability. The control plane becomes directly
programmable through APIs, and the underlying network can be abstracted from appli-
cations and network services, allowing a programmatically control of network resources.
Other benefits of SDN technology include:

• Dynamic network behavior and a central view for running network services and
applications.

• Better utilization of network resources (physical or virtual).

• Improvements in network performance, making the network more manageable, cost-
effective, and adaptable to ongoing dynamic requirements.

2.2.4 SDN Architecture

The Open Networking Foundation (ONF) was founded in 2011 to promote SDN by de-
veloping open standards, such as OpenFlow. Moreover, ONF provides an architectural
framework [35], defining the roles of application, control, and data planes and the inter-
faces to interconnect them. Although in [35] the description of the layers is presented in a
friendly way, over time and with the increasing popularity of SDN, a bit of confusion was
created regarding the layers, interfaces, and the architecture itself, so that in 2015 as a
response to clarify the SDN concepts and terminology, the Internet Research Task Force
(IRTF) through its Software-Defined Networking Research Group worked intensively in
a proposal, resulting in the RFC7426 [36], which defines in a more detailed way the SDN
layers and architecture. Fig.2.5 depicts the architectural framework defined by the IRTF.

The SDN architecture gives the applications information about the state of the entire net-
work from the controller instead of traditional networks where the network is application-
aware. In addition, the SDN architecture is: (i) directly programmable, because of for-
warding functions decoupling; (ii) agile, due to the abstraction that lets networks ad-
ministrators dynamically adjust network-wide traffic flow to meet changing needs; (iii)
centrally managed given that the controllers maintain a global view of the network; (iv)
and open standards-based and vendor-neutral because instructions are provided by SDN
controllers instead of multiple, vendor-specific devices and protocols. A description of
the planes, the interfaces, and the abstraction layers that make up the architecture are
presented below.
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Figure 2.5: SDN architecture, adapted from [36].

• Application plane: This plane represents the applications and network services.
SDN Applications are programs that communicate behaviors and needed resources
to the SDN Controller via APIs. The applications can build an abstracted view
of the network, and they interact with the controller collecting information and
requesting certain requirements for decision-making purposes. Network applications
can be very varied, and they could include networking management, analytics, or
business applications.

• Network services abstraction layer: This layer provides access to services of the
control and management planes to other services and applications.

• Northbound interface: Also called service interfaces is a set of APIs available to
network administrators (application developers), for example, CLI (Command Line
Interface), GUI (Graphical User Interface) REST API, and JAVA API, which offer
the ability to pragmatically shape traffic and launch services. These APIs can be
used to facilitate innovation and enable efficient orchestration and automation of
the network. The northbound interface is used to communicate between the SDN
Controller and the services and applications running over the network; this interface
abstracts the low-level instructions to program forwarding devices needed to develop
the network applications.

• Control plane: The control plane is composed of the controller, which acts as the
brain of the network and provides an entire view of the network, allowing network
administrators to instruct network devices (switches and routers) on how the net-
work traffic should be forwarded. The controller is a logical entity that retransmits
the instructions and requirements received from the applications to the underlying
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network. The information communicated to the applications includes statistics and
events about what is happening within the network.

– Control abstraction Layer: Abstracts the control plane southbound interface
and DAL from the applications and services of the control plane.

• Management plane: The management plane is in charge of monitoring, configura-
tion, and maintenance of network devices. This plane interacts mostly with the
operational plane than with the forwarding plane.

– Management abstraction layer: Abstracts the management plane southbound
interface and the Device and Resource Abstraction Layer (DAL) from the
applications and services of the management plane.

• Southbound interface: The southbound interface allows the controller to communi-
cate with the connectivity devices (data plane). This interface facilitates efficient
control over the network, enabling the SDN controller to dynamically make changes
according to real-time requirements, demands, and needs. The southbound APIs
can be open or proprietary. The most well-known open-source southbound interface
is OpenFlow (promoted by the ONF) and recently the P4 programming language
[37], which is widely spread for this organization.

• Device and resource abstraction layer (DAL): Abstracts the resources of forwarding
and operational planes of the device to the control and management planes. The
services that the rest of the planes provide depend on this abstraction layer.

• Forwarding plane: Also known as the infrastructure layer or data plane, it is com-
posed of connectivity devices, physical or virtual. This plane is responsible for han-
dling data packets according to the instructions provided by the controller. Some
actions that are performed in this plane are forwarding and dropping packets.

• Operational plane: This plane manages the operational state of the network device,
i.e., the activity or inactivity, the status and number of ports, the computational
capacity (processor and memory), among others parameters.

2.2.5 SDN Perspectives

There is a large number of fields and applications where SDN technology can be developed
and applied. Some prominent areas and topics are:

1. Open-source solutions and ecosystems : Since its conception, SDN has promoted the
development and the use of open-source interfaces and ecosystems. There is a large
number of active projects, as classification is available at [22].

2. NFV : SDN may provide a dynamic network behavior and ensure the delivery and
quality of the network traffic between virtualized functions [38].
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3. 5G networks : SDN is considered a key enabler for deploying 5G networks and
working together with NFV; these technologies can offer dynamic network behavior,
agility, and flexibility in deploying network services and applications [39].

4. Transport networks : Used in transport networks, SDN offers full-fledged virtual
networks to the customers. An example is the first SDN WAN implementation
deployed by Google in 2013 [40].

5. IoT : SDN is considered a promising architecture to meet the scalability and het-
erogeneity demanded by IoT devices and services [41].

6. Smart grids : SDN provides the power grids with better network monitoring and
improved network management and programmability, which allows the evolution of
energy systems and sectors [42].

2.3 Network Functions Virtualization

NFV has emerged as a networking technology from the telecom industry to provide agility
and flexibility in the deployment of network services and to reduce the Capital Expen-
ditures (CAPEX) and the Operating Expenses (OPEX) by leveraging virtualization and
cloud technologies. NFV decouples the software implementation of network functions
from the underlying hardware. It provides an abstraction of network functions such as
firewalls, deep packet inspectors, load balancers, among others, via software components
that can run on general-purpose devices that can be located in a variety of telecom infras-
tructure, including data centers, network nodes, and end-user facilities. These Virtual
Network Functions (VNFs) can easily be created, moved, or migrated from one equipment
to another without installing new specialized hardware, allowing faster deployment of the
services and providing innovation and a great number of opportunities for the world of
networked systems. This section presents an overview of NFV technology, describing its
characteristics, enabling technologies, benefits, and architectural framework.

2.3.1 Introduction to Network Functions Virtualization

Currently, networking technology is experiencing a software revolution; the network func-
tions and services are moving from hardware mode to software mode, providing the op-
portunity to have programmable networks and services [43]. Telecoms networks contain
an increasing variety of proprietary hardware appliances. To launch a new network service
is required not only for another appliance but also space, power consumption, technical
skills, and a big effort to integrate and deploy the service [43]. The challenges experienced
by operators include: shorter life-cycle of devices, the software bundled with hardware,
vendor-specific interfaces, slow protocol standardization, a long delay in introducing new
features, long and complex upgrade cycle, complex configurations in some cases, services
are mostly static and dedicated management systems. Networks operators are addressing
with increases in CAPEX (investment needed, e.g., dedicated and expensive proprietary
hardware) and OPEX (costs of operation and maintenance, e.g., high maintenance cost,
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power consumption, training), and they are facing a reduction in the return on investment
and constraints on innovation [44]. The network operators noticed that the market re-
quirements would not be achieved in the long term due to network capabilities. For these
reasons and those mentioned above, and to deal with current and new services, capacity,
and functionality requirements, NFV technology has been conceived. NFV faces these
problems by implementing network functions in software, i.e., moving network functions
to software, by leveraging standard IT virtualization and cloud technology, consolidating
many network equipment (functions) onto industry standard high volume servers [44].

NFV is focused on virtualizing network functions such as proxies, load balancers, fire-
walls, gateways, i.e., any network function, running in specialized hardware and migrating
them to software-based devices running on virtual machines (VMs). These VMs (VNFs)
can run in general purposes servers, and all hardware resources (servers, storage, and
networking devices) are managed as a common resource pool. Thus, they can be moved
or instantiated in various locations in the network as required without installing new
equipment. Fig.2.6 shows a pictorial representation of the NFV vision. NFV separates
functionality from capacity, i.e., it decouples network services from the hardware that de-
livers them; as shown in Fig.2.7, this decoupling increases network elasticity and promotes
heterogeneity.

A VNF itself does not provide a service to the end customer; to create a service, it is
used the Service Chain concept, a concept created by the European Telecommunications
Standards Institute (ETSI) [46]. The Service Chain (SC), also known as Service Chaining
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or Service Function Chaining (SFC), is a sequence of multiple VNFs executed in a given
order to deliver a service, a service in the NFV realm is formed by a chain of VNFs.
Fig.2.8 shows an example of a security system composed of three VNFs, which can be
deployed in one or more VMs. In NFV, network services are built by chaining a set of
VNFs that must be allocated on top of the physical network infrastructure (commodity
hardware); this problem is the so-called resource allocation, placement, or embedding
problem [47].

2.3.2 NFV Enablers

The main enabling technologies for the development of NFV are virtualization, cloud
technologies, and the rising economy of scales related to the production of standard
servers [43]. Network virtualization technology creates an abstracted virtual network on
top of a physical network, allowing many multi-tenant networks to run over a physical
network. The services associated with the deployment of these virtual networks can be
executed in multiple racks in DCs, in telecommunication nodes also known as Point of
Presence (PoP), or even near the user location if necessary. In the first attempts to
deploy VNFs, it was conceived that each VNF would require a different server, i.e., one
server per VNF. Still, this approach was envisioned as unfruitful because of the excess of
unneeded resources, and thanks to the use of virtualization technologies, the VNFS can
run on VMs, and hardware resources can be managed as a common resource through the
use of a hypervisor layer (i.e., maximizing the use of hardware resources).

The virtualization technology and cloud computing principles provide NFV technology a
dynamic operation and on-demand deployment of services. Furthermore, leveraging the
economies of scale of the IT industry, specifically with the industry of standard servers,
has helped to change the mentality of the networked systems, moving from expensive
proprietary purpose-built platforms to low-cost generic platforms. While the technologies
described above are essential, it should be remembered that many services could not be
implemented without the improved Internet connection speeds provided by ISPs.
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2.3.3 SDN and NFV

NFV separates capacity (hardware) and functionality (software); meanwhile, SDN pro-
vides programmability to the network, separating the control and data plane. SDN
focuses on the virtualization of network devices, and NFV aims to enable the virtualiza-
tion of network functions and services. Also, SDN is promoted by the Open Networking
Foundation (ONF), and NFV is promoted mainly by ETSI and recently by the Inter-
net Engineering Task Force (IETF). SDN and NFV are totally independent technologies.
Network functions can be virtualized and deployed without SDN. Likewise, the separa-
tion of the control and data plane in SDN can be performed without NFV. Still, these
technologies are inherently complementary; in fact, the research in networked systems has
allowed the existence of these technologies, foreseeing that working together can provide
many benefits and developments in the telecommunications realm. NFV may improve
the efficiency and flexibility of SDN control plane services, and SDN may ensure the de-
livery and quality of the network traffic between NFV’s virtualized functions. SDN can
play a significant role in the orchestration of the NFV infrastructure resources enabling
features such as provisioning and configuration of network connectivity and bandwidth,
automation of operations, security, and policy control. The SDN controller can be viewed
as a component of the NFV infrastructure, and as such, can efficiently work with orches-
tration systems and control both physical and virtual resources. On the other hand, the
SDN controller could be part of a service chain and other VNFs.

Because the goals of SDN and NFV are similar, i.e., to reduce equipment costs and de-
crease time to market while attaining scalability, elasticity, and a strong ecosystem, since
2014, the ONF has considered has a part of the SDN architecture the NFV technology
[38]. A pictorial representation of this architecture is shown in Fig. 2.9, in which NFV
depicts the application layer while SDN provides the underlying layers that facilitate the
deployment of network services.

The deployment of NFV through their VNFs (such as firewalls, deep packet inspec-
tors, load balancers, etc.) requires large-scale dynamic network connectivity both in the
physical and virtual layers to interconnect VNFs endpoints. An SDN solution (e.g., an
Openflow or P4 approach) can provide this connectivity level. To summarize, NFV and
SDN are deeply related; together, they can offer a great opportunity to change how to
conceive and build networks, increasing profits and reducing complexity, and changing
paradigms of traditional networks.

2.3.4 NFV Benefits, use cases, and challenges

2.3.4.1 Benefits

The main benefits that NFV technology brings are reduction in CAPEX and OPEX
through reducing equipment costs and related power consumption, reduced time-to-
market to deploy new network services and improved return on investment from new
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services, greater flexibility to scale up, scale down or evolve network services, and oppor-
tunities to deploy new innovative services at lower risk [43]. Below is a list of the NFV
benefits related to the reduction in CAPEX and OPEX.

• Reduced CAPEX

– Leveraging Commercial Off the Shelf (COTS) hardware.

– Changing from proprietary purpose-built platforms.

• Reduced OPEX

– Less variety and few numbers of appliances to deploy and maintain.

– Faster upgrade cycles, both hardware and software components.

– Faster time to market, enabling service innovation.

– Adoption of open-source solutions.

– Support of multi-tenancy, tenants coexisting on the same hardware.

2.3.4.2 Use cases

NFV technology can be applied in various scenarios and in fixed and mobile networks;
some examples of use cases are listed below [46].

• Switching elements: Routers, broadband network gateways, etc.



Chapter 2. Background Technologies 29

• Mobile network nodes: IP multimedia subsystem, home location register, radio
network controller, node B, eNode B, etc.

• Tunneling gateway elements: IPSec/SSL virtual private network gateways.

• Traffic analysis: Deep packet inspectors, QoS, Quality of Experience (QoE) mea-
surements, traffic monitoring and Service Level Agreement (SLA) monitoring.

• NGN signalling: Session border controller, signalling gateways, etc.

• Application-level: Content delivery networks, cache servers, load balancers, and
application accelerators.

• Security functions: Firewalls, virus scanners, intrusion detection systems, etc.

• Virtualization of home devices: Set top boxes, home routers and switches.

2.3.4.3 NFV Challenges

Despite the multiple benefits that NFV provides, some challenges have to be taken into
account and addressed for the deployment of network services [48]. These challenges are
listed below.

• Management: Perfect integration with different hardware vendors, end-to-end au-
tomation and orchestration, virtualized network platforms will be simpler to operate
than those that exist today.

• Performance: Comparable performance with Physical Network Functions (PNFs),
i.e., with traditional network functions.

• Reliability and stability: Availability of services in carrier-grade networked systems.
The stability of the network must not be affected when managing and orchestrating
a large number of VNFs from different hardware vendors and hypervisors.

• Security and resilience: Suitable agreements between multiple tenants and network
operators to manage and control the physical and the virtual infrastructure and
the automation and orchestration processes, a VNF should be as secure as a PNF.
Also, VNFs must be recreated on-demand after a failure.

• Portability/Interoperability: Ability to load and execute VNFs in different but stan-
dardized data center environments provided by different vendors and different op-
erators.

• Migration and co-existence with legacy platforms: NFV must work in a hybrid
network composed of classical PNFs and VNFs.

• Management, orchestration, and automation: A consistent management and orches-
tration architecture is required to leverage the flexibility of VNFs in a virtualization
environment.
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Figure 2.10: NFV architecture, adapted from [44].

• Minimizing energy consumption: Minimization of energy consumption through con-
solidation, shifting, or migration techniques.

• Standardization: Analyze requirements for technical specifications and standards.

2.3.5 NFV ETSI

ETSI NFV is an initiative started in October 2012 when a group of vendors and operators
created a new Industry Specification Group (NFV ISG) and published a white paper
describing the objectives, the motivations, and the use cases [43]. Nowadays, there exists
substantial literature about NFV on the Internet, like the one available at https://www.
etsi.org/technologies/nfv.

2.3.5.1 NFV Architecture

NFV architecture comprises three main components: VNFs, VNF Infrastructure (VNFI),
and Management and Orchestration (MANO), as depicted in Fig.2.10.These components
are described below.

• Virtualized Network Functions (VNFs): A VNF is a software implementation of
a network function that is capable of running over the NFVI. A VNF can run on

https://www.etsi.org/technologies/nfv
https://www.etsi.org/technologies/nfv
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one or more VMs, and it is managed by an Element Management System (EMS),
which responsible for its creation, configuration, monitoring, performance, and se-
curity. The EMS provides fundamental information required by Operations Support
System (OSS) in the environment of a service provider. The EMS performs man-
agement functionalities for one or several VNFs.

• Network Functions Virtualization Infrastructure (NFVI): Physical and software re-
sources, and the virtualization layer, on top of which VNFs are executed. The
NFVI-PoPs include processing, storage, and networking resources. The NFVI is
implemented as a distributed set of NFVI nodes deployed in various NFVI PoPs as
required to support the locality and latency objectives of the different use cases and
fields of application. Virtualization is an important element in the NFVI domain
because it abstracts the hardware resources and decouples the VNF software from
the underlying hardware, thus ensuring a hardware-independent lifecycle of VNFs.

• Management and Orchestration (MANO): MANO includes all the management
and orchestration functions (management of physical and/or software resources)
required for managing the lifecycle of VNFs on top of the NFVI. In addition, the
NFV MANO also interacts with the (NFV external) OSS/BSS landscape, allow-
ing NFV to be integrated into an existing network-wide management landscape.
The NFV MANO is composed of three key functional blocks: NFV Orchestrator
(NFVO), VNF Manager (VNFM), and Virtualized Infrastructure Manager (VIM).

– NFV Orchestrator (NFVO): Performs orchestration functions of NFVI re-
sources across multiple VIMs, instantiates VNF Managers and performs the
lifecycle management of network services. The NFVO interacts with the OS-
S/BSS for provisioning, configuration, capacity management, and policy-based
management. NFVO also manages the network service deployment templates
and VNF packages. There is usually only one orchestrator that oversees the
creation of a network service.

– VNF Manager (VNFM): Performs orchestration and management functions
of VNFs. The VNFM interacts with the EMS and the VNF for provisioning,
configuration, and fault and alarm management. The VNFM is in charge
of managing the lifecycle of VNF instances, it is responsible for: initialize,
update, query, scale and terminate VNF instances. Each VNF instance must
be associated exclusively with a VNFM.

– Virtualized Infrastructure Manager (VIM): Performs orchestration and man-
agement functions of NFVI resources. The VIM is responsible for controlling
and managing the NFVI resources, including compute, storage, and network
resources. VIM provides functionalities for allocating, upgrading, and releasing
NFVI resources, and it manages the association of the virtualized resources. In
addition, it is in charge of managing VNF Forwarding Graphs (service chains)
to create and maintain virtual links, virtual networks, subnet, and ports. Mul-
tiple VIMs instances may be deployed in a communications network.

• Operations Support System (OSS) and Business Support Systems (BSS): OSS is
the general management system that, together with BSS, helps providers to deploy
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and manage various end-to-end telecommunications services (such as orders, billing,
troubleshooting, etc.). OSS deals with: network, fault, configuration, service, and
element management; meanwhile, BSS deals with: customer, operations, order,
billing, and revenue management.

2.3.6 NFV projects and research

There are a large numbers of open-source solutions, not only for NFV but also for SDN,
among the most well know are: Openflow [32], Mininet [49], OpenDaylight [34], Open-
Stack [50], OpenMano [51], Open Source Mano (OSM) [52] and Open Platform for NFV
(OPNFV)[53]. A classification of more than 170 open-source SDN/NFV projects is avail-
able in [22]. Regarding the research in the NFV domain, there are various research areas
that can be explored; some examples are listed below.

• Service chaining algorithms.

• NFV orchestration algorithms.

• Abstractions for carrier-grade networks and services.

• Performance studies: scheduling, optimization, portability, and reliability.

• Security of NFV infrastructure.

• Impacts of data plane workloads on computer systems architectures.

• Performance monitoring and reliability of network services.

• Energy-efficient NFV architectures.

• New network topologies and architectures.

• Tools and simulation platforms.

2.4 Demand Response Systems

Nowadays, modern power grids or smart grids are becoming critical infrastructures that
require a stable state/equilibrium (in energy terms) to allow the coexistence of different
energy providers or suppliers, consumers, and storage systems. However, with the in-
crease of energy consumed, the proliferation and adoption of renewable energy sources, a
challenge that is insight is to keep stable the performance of the power grids despite the
weather conditions or the fluctuations of the energy demands. A perfect match between
power generation and the power consumed by the users is a goal to be achieved. Under
this approach, DR mechanisms have been proposed [54].

The DR schemes, mechanisms, or programs consist of a set of requests and actions ex-
changed between the ES and the ECs with the aim of promoting consumer participation
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in energy management by allowing the modification of consumption according to energy
provisioning [8]. The conventional strategies in power grids ensure their performance
and reliability through the generation of an excess of power. Modern systems that use
DR technology instead provide a solution in which the ECs play a significant and active
role in energy management by modifying their consumption levels, i.e., by increasing,
reducing, or shifting their energy usage, according to the amount of available energy and
the operating conditions of the system [8]. There are several benefits associated with
DR technology, some include: increased system stability and efficiency, reduced CAPEX
and OPEX for peak load demand, reduced average power generation costs and lower
electricity tariffs for customers [55].

The DR schemes seek to adapt the consumption profile to energy generation conditions
through voluntary collaboration between the ES and the ECs. This collaboration can be
carried out based on agreements or contracts. Methods of engaging users in DR initiatives
can be given in terms of time (free periods) or price agreements (reduced electricity
bills), being the latter the most adopted option [54]. Besides, other kind schemes can be
considered, for instance, initiatives based on auctions, or programs that stipulate penalties
if one of the parties does not cooperate with the other [56]. An example of contractual
terms and agreements between energy suppliers and consumers is available in [11]. In
the DR scope, the price of the electricity is not fixed, on the contrary, the tariffs are
flexible, and they change over time according to the availability of energy in a given time.
Depending on the agreement or contract between the supplier and the consumer and the
amount of energy, different strategies, and management mechanisms can be implemented.
For instance, if the energy supplier has a surplus of energy, it can stimulate consumption
(e.g., execution of tasks or jobs in advance, the execution of concurrent/parallel tasks,
maintenance jobs, or offer a better quality/performance for services and applications) by
offering low-price energy. On the other hand, if the energy supplier experiences an energy
shortage, it can motivate deferral energy consumption, the no execution of services, or
higher-price energy.

The DR programs can be implemented using ICT infrastructures, such as DCs [57]. Then,
these ICT-based infrastructures, as part of DR and acting as an Energy Manager (EM)
entity, can execute strategies such as workload scheduling to coordinate and adjust en-
ergy provisioning and consumption. Moreover, ICT-based infrastructures can be enabled
by sophisticated communications technologies, such as NFV [43] and then offer smarter
programmable energy management solutions. Based on all the aforementioned character-
istics, the DR approach has been used as the basis for the development of our proposal
for adaptive energy management.



Chapter 3

Problem Statement and Literature
Review

This chapter describes the problem of the lack of synchronization between energy
consumption and generation, which causes energy scarcity, waste, or inefficient
utilization. Research work related to energy management through the use of ICT-
enabled solutions is also discussed in this chapter. The topics that are covered in
this chapter are as follows:

• Description of the problem of inefficient use of available supply and desyn-
chronization with the demand.

• Research work related regarding the use of ICT technologies for energy man-
agement.
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3.1 Problem Statement

Because the energy production is finite and the power demanded by the users is not al-
ways synchronized with the power generated (a condition presented in conventional power
grids), two situations occur periodically: (i) the energy is wasted because it cannot be
consumed or stored (i.e., periods of energy surplus), and (ii) the demands of users cannot
be processed due to lack of energy (i.e., periods of energy scarcity). This inefficient use
of available energy translates in turn into partial or total energy shortage during certain
periods (peak load hours) or, in certain places, an increase in tariffs for consumers, among
others. Moreover, the inherent operation condition of conventional energy systems is af-
fected by the proliferation of non-traditional renewable energy sources such as solar, wind,
which, when integrated into energy systems, deliver an intermittent resource conditioned
by geographical position or environmental conditions. Likewise, customer-side renew-
able energy generation (e.g., through photovoltaic installations) increases the difficulty
(complexity) in managing demand and distributing the available energy resource.

To face the shortage or lack of energy, a possible solution is to use a greater amount of
energy resources (i.e., extra energy generation). However, this solution is not sustainable
since the resources (such as gas, fuel, or coal) used in energy production are limited,
non-renewable, and produce pollution when processed (i.e., they directly increase the
carbon footprint). In fact, the design and operation of current energy systems does not
guarantee universal energy access. A study carried out in 2016 [58] reported that nearly
one-fifth of the world population (7.2 billion in 2016) is deprived of electricity. This
situation will be of even more critical concern in the near future due to the increasing
number of users, devices, and services. In addition, higher energy production requires
additional investment in infrastructure for the conversion and distribution of this resource
to consumers, which directly impacts investment and maintenance costs and tariffs for
end-users.

On the other hand, to solve the problem of energy waste, an alternative is using storage el-
ements such as battery units. Unfortunately, the amount of energy stored in these devices
is small compared to the energy resource produced or wasted. Although the technology
for manufacturing batteries has evolved in recent years, mainly due to the development
of electric vehicles [59], their lifetime is limited (e.g., a couple of years), their replacement
is mandatory, and, once they have reached their lifetime, these elements can be sources
of pollution (e.g., the release of heavy metals or chemicals into the water) [60]. For these
reasons, massive energy storage to avoid energy misuse and waste is not a viable solution.
Currently, energy storage solutions such as battery units are only used as backup units
(e.g., for a few minutes) in the event of energy shortage periods or as elements that help
the transition to other energy sources (e.g., during the activation of diesel generators to
power cellular stations after an energy outage). In addition, nowadays, several initia-
tives promote the minimum or zero use of batteries in communication systems, such as
battery-free IoT networks [61].

Because extra energy production to cope with scarcity or massive storage to deal with
the abundance or energy waste are unsustainable and inefficient alternatives, there is a
pressing need to develop new supply and consumption management solutions. In response



Chapter 3. Problem Statement and Literature Review 36

to these limitations presented by traditional energy systems (in terms of energy manage-
ment), adaptive management or consumption systems emerge (through DR schemes) as
prominent solutions, allowing interaction between the supplier and consumer to adapt
the consumption patterns to the available supply [? ]. In this context, this research
work aims to propose an adaptive energy management solution focused on the efficient
(optimal) consumption of available power, whether or not it is renewable. In summary,
the proposed solution encompasses: (i) an ICT-enabled architecture that based on ad-
vanced technologies such as SDN and NFV allows the interaction between the supplier
and consumers (i.e., consumer-sider participation) and offers the computational capacity
needed to deploy adaptive energy management strategies; and (ii) different management
mechanisms (e.g., workload scheduling using time-shifting capabilities) that implemented
as algorithmic solutions and running on ICT infrastructures leads to efficient (optimal)
adaptation of consumption patterns to available generation profiles. The proposed solu-
tion can prioritize the use of green energy and the distribution of the available supply.
Moreover, it can work in offline and online approaches, can be used to improve (optimize)
energy planning (e.g., avoiding power peaks) and management, and can be applied to a
wide range of IoT-enabled infrastructures such as HEMS, UAVs, electric vehicles, build-
ing, neighborhoods, small cities or locations, starships, among other application fields.

3.2 Literature Review

This section reviews the related work. Section 3.2.1 describes the ICT participation in en-
ergy management systems, including IoT and NFV-based approaches. Then, Section 3.2.2
summarizes the key features and contributions of our proposal and differentiators with
existing approaches.

3.2.1 ICT-Based Energy Management Systems

In the last decades, with the deployment of smart grids, several proposals have analyzed
the impact on energy use and consumption when communications systems work together
with energy systems [62]. From this perspective, the technological term of the IoE has
been introduced to refer to a complex and sophisticated Internet-type network for the next
generation of power grids [15, 63]. The IoE paradigm promises robustness and reliability
in energy systems and is the result of the integration of advanced ICT infrastructures
(e.g. IoT) into the power grids to carry out automation, monitoring, and management
tasks, taking in to account generation, distribution, storage, and consumption factors[63].
Unfortunately, the existing energy infrastructure is not immediately ready to offer an
IoE, and several operational changes and functionalities must be introduced in current
energy systems. The most relevant requirements for the deployment of IoE solutions are
presented in what follows [15, 62, 63].

• ICT infrastructures between the ES and the ECs: A robust and scalable communi-
cations infrastructure to support the bidirectional information flow between the ES
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and the ECs for energy management is an essential requirement for implementing
the IoE. In this regard, the ICT infrastructure deployed must allow a hierarchical
and scalable operation if necessary, in order to guarantee optimum performance
of the energy system and use of resources (communications and energy). From
the consumer side, the deployed IoT infrastructures are seen as key participants
in future energy management systems. In addition, because future energy systems
will consist of a tremendous amount of interconnected components in generation
(distributed power plants, substations, energy storage components, and metering
systems) and consumption (ECs with different requirements), it is necessary that the
ICT infrastructure used for the IoE have high-performance computing capacity/re-
sources to carry out all monitoring and management processes for the stakeholders
(specially for ECs). Then, with the information of generation and consumption,
different analytics can be performed and planning or forecasting actions [63].

• Demand side management and efficient use of produced energy: Traditionally, all
energy management actions are carried out only on the ES premises. Modern
power grids require the participation of the ECs in the energy management process.
Enabled by ICT infrastructures (e.g., IoT deployments), the ECs can, for example
take part in DR programs through an intermediary or directly with the energy
utility, with the objective of effectively managing load peaks, load reduction, and the
fluctuation of energy generation from renewable sources [15]. The interoperability
between the ES and the ECs and the actions carried out by the latter can lead to
efficient energy utilization, with reduced or minimal waste, which is of paramount
importance for future energy systems [64].

• Use of renewable energy sources and transition to systems powered entirely with
green energy: A important requirement for a sustainable energy ecosystem is the
continuous penetration of renewable energy. Future energy systems will aim to op-
erate primarily with renewable energy sources and with the capability of managing
distributed energy production from ECs (e.g., energy generated by photovoltaic
installations in household) [62, 65]. Thus, IoE architectures must be designed to
operate partially or completely with green energy sources [15].

• Flexibility and adaptability in energy management: Future energy systems will de-
mand flexibility and adaptability in operation and pricing. Regarding the operation,
IoE architectures require that modifications of functionalities or incorporation of
new features be quickly introduced and deployed throughout the entire power grid.
As for tariff systems, the active participation of ECs and adaptive consumption
leads to new dynamic and variable payment schemes for energy use (e.g., payment
incentives, or penalties), which can be modified in time, even in real-time, according
to generation conditions and agreements/negotiations established between parties
[63].

• Regulation and standardization: The progression towards smart and efficient energy
systems involves a discussion on regulation and standardization of operational and
economic aspects of both the energy and ICT sectors, to guarantee a consistent
evolution of the energy ecosystem and the correct interoperability of the involved
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stakeholders. For the successful development of future energy systems, a stan-
dardization of protocols and interfaces is needed, which can be based on existing
standards, or might require the creation of new platforms or procedures [62].

In the literature there exist several architectural candidates for the IoE. An example is
shown in [3], where Huang et al. propose an architecture for using distributed renewable
energy and distributed energy storage devices at the residential and industrial levels. In
this approach, produced green energy is integrated into the power grid to meet power
demands. The proposed system considers the integration and participation of consumers
(devices) through a simplified communication network, that is composed of energy routers
integrated into the power grid to manage the energy flows. The proposal promotes the
need for a communications infrastructure, but it does not provide detailed information
about communication protocols/technologies nor energy management strategies, and the
analysis is mostly done from the supplier side.

Regarding the use of advanced ICT solutions, some research works analyze the potential
of different technologies such as IoT, NFV or SDN integrated into energy systems. For
example, in [66], the authors present a substation network architecture enabled by SDN
that provides simplified management and reliable communication between the intelligent
electronic devices used to monitor the state of the electricity infrastructure. The authors
also analyze the virtualization of some components of the power grid and the incorporation
of ICT infrastructure to deploy improved management mechanisms. A discussion of some
IoT and NFV-based approaches for energy management is presented in Section 3.2.1.1
and Section 3.2.1.2, respectively.

3.2.1.1 IoT-Based Energy Management Approaches

Many studies have analyzed energy efficiency in IoT systems from different points of view,
but the integration of IoT infrastructures in the operation of energy systems is still under
development and it is a hot research topic at this time [12]. Moreover, the literature
reveals that IoT technologies are seen as essential enablers in modern energy systems
(such as the IoE approaches) by offering improvements in monitoring, control, manage-
ment, and automation processes [62]. In this context, several research works have been
proposed to encourage the use of ICT-based architectures, mechanisms, and strategies
in energy systems. For instance, in [12], the authors survey the features, specifications,
communications interfaces, and challenges in the design and deployment of IoT-based
systems for energy management purposes in different application environments, such as
smart homes, smart power grids, and smart cities.

Other studies have demonstrated that ICT infrastructures, such as IoT and DCs, can be
considered as potential enablers for the development of DR programs. For example, in
[67], Wei et al. propose an IoT-based common information model and communication
framework with existing ICT protocols (e.g., Ethernet, IP, and IoT protocols), to deploy
an DR energy management system for industrial consumers. The proposal mostly an-
alyzes the operation from the facility side (i.e., from the ECs side), and experimental
results demonstrate that the interoperability of entities in industrial facilities, enabled by
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ICT systems, allows for the rapid and low-cost implementation of an integrated manage-
ment system for controlling electrical loads depending on the generation sources, which
not only produces improvements in energy efficiency, but also a reduction in the energy
cost for the consumer side.

Because demand-side management is an important concern in energy systems and because
IoT infrastructures and technologies are already deployed in homes as part of automated
systems, DR schemes have been proposed for these kinds of environments [65]. In [64],
the authors present an intelligent home energy management system, which uses sensors,
actuators, smart meters, and devices connected through a wireless local area network us-
ing standard communications protocols e.g., Ethernet, IP, TCP. The system integrates
local renewable-energy production (from photovoltaic panels) and includes a central hub
for monitoring energy consumption and executing the DR strategies (there is no details
about the implementation) for controlling of loads. The results show that the integra-
tion of IoT technologies and renewable energy in the housing sector optimizes energy
performance but is also a sustainable practice to reduce carbon emission.

Regarding algorithmic strategies for adaptive energy consumption (e.g., in HEMS), ex-
isting research works have mainly focused on PAR reduction (by reshaping the demand
profile) [68], user utility maximization [69], consumption cost minimization [70], and in-
corporation of renewable energy [71]. Energy management problems are modeled through
optimization techniques such as ILP [72], or other approaches, such as game theory [68].
Offline [73] and online [74] algorithms are used to solve these models. Also, heuristic
solutions for rapid convergence and simple steps are proposed to reach efficient energy
management [71]. For instance, in [72], the authors propose an ILP model that allows
maximizing consumer utility (or minimizing energy cost) by adjusting the hourly load
level of a given consumer in response to hourly electricity prices. The approach shown
in [72] is centralized, and all the decisions are taken entirely by the ES. Due to the com-
plexity of centralized schemes (especially if they produce optimal solutions), distributed
models are also proposed. In [68], for instance, the authors propose a demand-side man-
agement algorithm using a game-theoretical approach in which each user (player) tries to
minimize their consumption.

Due to the complexity of optimal algorithmic strategies for adaptive energy management,
identified as non-polynomial, some researchers focus exclusively on heuristic approaches.
In [70], for instance, Chavali et al. propose an approximate greedy algorithm, in which
each EC schedules the consumption of appliances in response to varying electricity prices.
The optimization model in [70] is based on minimizing cost functions for each EC. These
functions consider the constraints of the appliances and user preferences in the starting
consumption time. The results in [70] show that efficient load scheduling results in lower
cost for the ECS and the ES, and reduced PAR and load fluctuations. In [73], instead,
the authors propose a strategy that computes load scheduling considering photovoltaic
availability. The optimization problem is targeted at minimizing the cost of energy and
time-based discomfort. Also, an inclining block rate scheme (i.e., a higher rate for each
incremental block of consumption) is incorporated into the model to reduce the PAR.
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3.2.1.2 Use of NFV Technology for Energy Management

NFV technology has been shown to be an effective platform for deploying management
applications, optimization models (mainly based on heuristic approaches), and network
services to meet the diverse requirements of customers and vertical markets [75]. Based on
network parameters (e.g., traffic load, energy consumption estimations, or active users),
the NFV architectural framework can be set to perform actions such as optimized rout-
ing of traffic flows, activation of devices, and allocation of resources (both physical and
virtual) to achieve desired performance metrics or functionalities (e.g., low-latency re-
quirements [76]). Regarding energy consumption and management in the NFV realm,
many studies have focused on the energy-aware operation of VNFs and SFCs, such as in
[77] and [78]. Other studies have explored the potential of NFV for resource and energy
management in IoT-enabled environments outside the NFV infrastructure. For instance,
in [79], Wantamanee et al. present an NFV framework that executes an application for
real-time synchronization of machine-to-machine sensors nodes, enabling the deployment
of a building energy management system.

In mobile communications landscape, NFV-based solutions for energy management have
also been analyzed. In these cases, the authors exploit the virtualization and manage-
ment capabilities of NFV to minimize the energy footprint in different portions of the
5G network infrastructure (i.e., access, transport, and core networks). To achieve energy
efficiency, the authors propose linear programming models and optimization algorithms
to improve resource utilization in terms of both cost and performance, as shown in [80].
To deal with complexity issues and for real-time applications, the authors also present
heuristic strategies (e.g., genetic-based algorithms) as indicated in [81]. The energy man-
agement applicability for particular 5G use cases also has been investigated. For instance,
in [16], the authors propose an NFV-enabled energy management scheme for a drone fleet
with 5G connectivity based on an optimal scheduling algorithm that aims to ensure a
given level of service availability.

Considering that NFV-based management policies can be implemented into DCs (cloud
computing infrastructures) belonging to the energy utilities [82], the evolution of NFV-
based schemes for energy management seems to be a natural process in smart grids.
Initial studies demonstrate that NFV technology can be used to virtualize components of
power grids (e.g., advanced metering infrastructure), as shown in [83], producing better
performance in exchanging information on energy production and consumption. Recent
works, instead, analyze the use of NFV and ICT technologies to improve communications
among the components of smart grids [84]. For instance, in [85], Yang et al. present
an NFV/SDN-based model that slices the resources in core networks and coordinates the
activation of SFCs to meet end-to-end low latency requirements for mission-critical energy
services. Meanwhile, in [86], the authors present an SDN/NFV-based infrastructure that
offers optimal placement and dynamic resource allocation of middleboxes, enabling them
to meet both cyber-security and low-latency communication requirements in smart grids.
The works reviewed in this section demonstrate that NFV is a suitable environment for
deploying management solutions in different domains (e.g., 5G networks and power grids).
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3.2.2 Contribution, Features, and Differentiators of Our Pro-
posal

Our proposal for adaptive energy management based on NFV and IoT technologies is a
feasible alternative and is aligned with the requirements of future energy systems [62].
Even our proposal could be considered as an architecture (solution) on the road to the IoE.
This is because of the following features: (i) use of advanced ICT infrastructures (IoT,
SND, and NFV) in the energy management process (algorithmic management strategies
deployed at NFV domain); (ii) customer-side participation and use of renewable energy
sources (the proposed energy management model considers the parameters of IoT-enabled
ECs and prioritizes the use of green energy); and (iii) adaptive energy consumption ad-
justed to the generation (achieved by diverse management mechanisms in the algorithmic
strategies). Also, the proposed algorithmic strategies can be applied to scenarios with
thousands or hundreds of thousands of energy demands in contrast to most of the exist-
ing approaches which, are limited to small-scale scenarios (e.g., in HEMS with up to 10
demands [68] or at most up to 100 demands [70] if heuristic methods are used).

Most studies address energy management and efficiency by minimizing consumption or
encouraging energy savings, as shown in [77]. Our proposal instead leverages the dynamic,
programmable, and scalable features offered by ICT technologies (such as the NFV tech-
nology) to deploy an adaptive energy management solution conditioned on availability
(whether renewable or not) and carried out through algorithmic strategies (using optimal
but mainly heuristic approaches). The proposed solution also exploits the manageability
of the ECs enabled through massive connectivity and IoT technologies for energy man-
agement. In this regard, considering that the IoT already connects billions of devices
and keeps growing exponentially (e.g., 28.5 billion IoT devices estimated in 2022 [10]),
the proposed model and strategies in this thesis could potentially be applied to manage
a plethora of IoT-enabled ECs.

To efficiently use the available energy, the proposed solution (architecture) establishes a
collaborative energy management environment between the ECs and the ES that is car-
ried out using advanced 5G technologies (NFV and SDN) and aims to adapt consumption
according to generation. Unlike existing management approaches, in our proposal, the
ECs (devices or services with connectivity capacity and manageable), traditionally seen
as an inactive entity, actively participate in negotiating their consumption with the ES.
For this, a new consumption model is proposed, in which, before using energy, a two-
way handshake is established between the parties. During this process, the ECs send
the parameters of services or power demands (e.g., duration, power demanded, priority
and initial time) to the ES. Then, this latter using management strategies such as pri-
oritization in energy supply or time-shifting applied to the service execution, send the
consumption conditions to the ECs (i.e., the service(s) to be processed and the corre-
sponding execution time).

Our proposed solution (architecture for energy management) is not solely approached
from the supplier side, as described in [66], or solely from the customer side, as discussed
in [67], or is it exclusively focused on a specific infrastructure (e.g., network resource), as
shown in [80], nor is it exclusively focused on the development of algorithmic solutions,
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as shown in [87]. On the contrary, our proposal presents a complete system for the ef-
ficient adaptive management of energy consumption. This proposal presents a complete
vision of the architecture, stakeholders, mathematical models related to generation and
consumption, and it discusses the complexity associated with the optimal management of
the available supply for later present an appropriate architectural framework. In addition,
the mathematical model associated with optimal energy use is presented, performance
metrics are defined, and an algorithmic solutions (optimal and heuristics) and its numer-
ical evaluation is introduced. The works reviewed in the literature lack the description
of any or several of these elements. All information related to our proposal for adaptive
energy management constrained to availability is described in detail to motivate future
work in this field.

In the proposed solution for adaptive energy consumption, a reliable and scalable com-
munications infrastructure between the ES and the ECs is an essential requirement for
efficient energy management. This is vital for realizing the proposal; otherwise, the man-
agement of IoT devices (from the view of their activation and consumption) could not
be carried out. In addition, the architecture requires robust computational resources on
the ES side for the execution of the different management strategies, algorithms, and cal-
culations involved in the optimal utilization of the energy resource. In this context, our
proposal uses sophisticated communications technologies such as NFV, SDN and 5G as
enablers. Specifically, SDN [30] provides the reliable, dynamic and programmable connec-
tivity necessary for the exchange of information (parameters and consumption conditions)
between the ES and the ECs, whereas NFV, deployed in cloud computing infrastructures
(i.e., at the DC level), is responsible for the execution of workload scheduling strategies
for the adaptation of consumption according to the available energy. In addition, NFV
also provides the management entities (management and orchestration functionalities),
so all the components of the energy generation and consumption ecosystem (actions and
resources between ES and ECs) work in an orchestrated manner [43]. Thus, SDN and
NFV are indispensable technologies in the proposed architecture that offer a flexible and
scalable ICT infrastructure that can grow proportionally (increase in computing, storage
and networking resources) according to the varied requirements of the ECs. These tech-
nologies enable efficient, automated, agile, dynamically reconfigurable, and programmable
energy management for varied IoT infrastructures.
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NFV/SDN Enabled Architecture for
Adaptive Energy Management in
IoT Scenarios

This chapter presents our NFV/SDN-enabled architecture proposal for adaptive
energy management.

The topics that are covered in this chapter are as follows:

• Overview of the proposed architecture by describing its components and man-
agement mechanisms for achieving adaptive energy consumption.

• Consumption model and the complexity of the proposal.

• Description of the proposed architectural framework.

• List of open research challenges and potential application fields.
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4.1 Adaptive Energy Management Architecture Pro-

posal

This section presents an overview of an NFV- and IoT-enabled ecosystem for achieving
adaptive energy management constrained to availability. Section 4.1.1 describes the enti-
ties that compose the energy provisioning and consumption ecosystem. Section 4.1.2
presents the management mechanisms to adapt consumption patterns to availability.
Then, Section 4.1.3 presents the mathematical models of generation and consumption
sides. Whereas Section 4.1.4 describes the consumption model in the proposed archi-
tecture. Section 4.1.5 describes both the computational complexity of the proposal for
adaptive energy consumption and the computation capacity needed to deploy the pro-
posal. Finally, Section 4.1.6 presents the proposed architectural framework.

4.1.1 Architecture Proposal Description

The proposed architecture follows the general structure of a DR system and is com-
posed of three entities:(i) an ES, that provides energy from renewable and non-renewable
sources; (ii) an NFV-enabled Energy Manager (EM) that is part of the ES and disposes
of all ICT infrastructures (e.g., DCs or cloud computing infrastructures) for executing
the management strategies (optimal or heuristic algorithms) through diverse manage-
ment mechanisms (e.g., prioritization of energy supply and workload scheduling using
time-shifting capabilities) to adapt consumption (consumption of all services or power
demands) to available generation; and (iii) ECs, that represent the end users (i.e., IoT
infrastructures) that demand energy. Fig. 4.1 shows a pictorial representation of the pro-
posed architecture for adaptive energy management, and its entities are detailed below.
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Figure 4.1: High-level architectural framework of the proposal for adaptive energy
management in IoT-enabled environments.
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4.1.1.1 Energy Supplier (ES)

The ES has advanced control, measurement, monitoring, and communications systems,
supplies energy (from renewable and nonrenewable sources) to the entire ecosystem and
performs energy-mixing process1. Different suppliers or sub-suppliers can integrate the
ES. However, for analytical simplicity in the proposed energy management model, the ES
is regarded as a single entity.

According to the amount of power supplied (PES) and power demanded (PD), three
different operation states are presented on a periodic basis: normal, shortage and surplus.
The normal operation state or the regular state refers to a power level in which all the
generated power is consumed; i.e., in this state, the power demanded by the ECs is equal
to the power supplied by the ES, PES = PD. In this condition, there is no wasted energy
and all services are processed. The normal operation state is an ideal scenario; however,
the behavior of the ES and the ECs is not flat but it changes over time, which causes
shortage or surplus periods. These power levels within the ecosystem are called shortage
operation state and surplus operation state. Thus, a shortage operation state represents a
scarcity of available power [11], and it can originate from a low supply level (low or zero
power generation) or a high demand (demand increase). The ratio between PES and PD

in a shortage operation state can be defined as:

0 ≤ PES

PD

< 1 (4.1)

During a shortage operation state the available power is insufficient to meet all demands
(i.e., PES < PD). By contrast, the surplus operation state is defined by an abundance
of available power (finite power level) [11]. This state originates from a high supply (for
instance, from renewable energy sources) or from a low demand (demand decrease). The
ratio between PES and PD in a surplus operation state is given by:

PES

PD

> 1 (4.2)

In a surplus operation state, the ES fosters energy consumption, because the available
power is greater than the power demanded (i.e., PES > PD). If after processing all
the demands, the system still has energy (i.e., (PES − PD) > 0), this amount of energy
can be stored in battery units for later use. Periodically, changes in generation and
consumption cause a transition between the different energy states. This transition goes
from a shortage operation state to a surplus operation state and vice versa, always going
through the normal operation state, as illustrated in Fig. 4.2.

1Process to obtain energy for direct use, combining different primary energy sources [88].
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Figure 4.2: Interaction between energy operation states.

4.1.1.2 Energy Consumers (ECs)

The ECs are the IoT infrastructures that demand energy to execute tasks, jobs, applica-
tions or processes. They have computational resources and are equipped with communi-
cations (e.g., SDN-compatible connections), energy (power grid connections), control (in-
tegrated or external systems for activation/deactivation of consumption), and even mea-
surement interfaces. Different communications protocols or interfaces (e.g., Ethernet, IP,
TCP, SDN, and IoT protocols) can be used by the ECs to exchange energy-management
data with the ES (demand-side management). In the energy management process, the
ECs are aware and tolerant of the configuration performed by the ES—specifically in
the Energy Manager (EM)—to optimize the consumption of available supply. Then, the
ECs can activate, deactivate, or modify their energy consumption (e.g., increase or de-
crease energy use within the minimum and maximum thresholds) based on the conditions
established by the ES (workload scheduling). The interaction between the ES and the
ECs may be fully automated, or it may include end-user participation, depending on the
applicability environment (e.g., HEMS, industrial facilities, or public infrastructures).

The use of IoT technology in the proposed management solution is an ideal alternative
because it allows for the use of existing protocols, interfaces, and frameworks (e.g., Eth-
ernet, IP, TCP, SDN, and IoT protocols) used in the exchange of energy-related data
(collected from ECs) and for the control of energy resources needed in efficient energy
management [15, 64]. In this regard, an environment in which all devices (services and
applications) have a communications interface to exchange information (consumption and
related parameters) and interact with the rest of the architecture is a completely feasible
scenario and not very distant because a growing number of devices are manufactured with
embedded communication systems, especially with the proliferation of massive connec-
tivity driven by technologies such as 5G [89]. Moreover, today, there are very affordable
platforms (e.g., Arduino or Raspberry platforms) that can be integrated into any de-
vice to offer connectivity, management, and control capabilities, converting a traditional
device into a smart device (e.g., smart dishwasher).

4.1.1.3 Energy Manager (EM)

The EM is part of the energy utility, and it corresponds to the ICT infrastructure (e.g.,
cloud computing facilities) in which the NFV technology is deployed. It provides the
control, management, and orchestration functions of energy resources and demands. The
NFV paradigm gives the EM: (i) reconfigurable behavior by activating or creating VNFs
(or complete SFCs) according to the algorithmic management strategy to be implemented
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and the applicability environment; (ii) scalability, due to the on-demand use of compu-
tational capacity; and (iii) the MANO entities (NFV Orchestrator, VNF manager, and
Virtualized Infrastructure Manager) so that ES, EC, and the underlying communications
systems (e.g., an SDN network) work in an orchestrated manner. These features create
a robust energy management solution that can be applied to different scenarios (e.g.,
HEMs or smart cities).

The EM enables two-way interaction between the ES and the ECs, governs the actions
of the two subsystems, ES-EM and EM-ECs, simultaneously. It is responsible for adapt-
ing the energy demands to the capacities of the ES (e.g., normal, surplus, or shortage
energy states). The cooperation between parties (i.e., ES and ECs) can be supported by
contracts or agreements in which technical and economic terms are defined [11]. Tech-
nically, through a handshake process, the ECs notify the ES (technically to the EM) of
their demands. Then, with the generation and consumption information, the EM runs
the management algorithmic strategies (through mechanisms such as time-shifting imple-
mented as VNFs in the NFV domain) to determine the consumption conditions. Specif-
ically, the EM delivers the ECs an optimal (or suboptimal) power scheduling scheme
that enables them to adapt the consumption patterns to available supply (i.e., the EM
performs adaptive energy management). Thus, the EM can be considered the brain of
the architecture, because its operation decides how and when the available power is used.
Different communications systems can provide scalable, secure, and reliable connectivity
to exchange data on energy management (e.g., parameters of demands and instructions
of consumption) between the ES and the ECs. However, SDN technology is one of the
best alternatives due to its compatibility with NFV and IoT [90].

4.1.2 Management Mechanisms for Achieving Adaptive Con-
sumption

This section presents different management mechanisms that enable adaptive energy man-
agement when incorporated in the algorithmic strategies deployed in the EM (i.e., in the
NFV domain). Fig. 4.3 shows an example of the application of these mechanisms, and
their description is presented below.

4.1.2.1 Processing of Energy Demands without Management Mechanisms

If the available energy is sufficient to meet all consumption from ECs, which occurs in the
normal or surplus power states (i.e., if PES ≥ PD), all energy demands can be processed
in their required execution time without being affected by any management mechanism
(e.g., displacement in execution due to the application of a time-shifting interval).

4.1.2.2 Use of Time-shifting Capabilities

The time-shifting denoted as u (or Ts) is the finite displacement (forward or backward)
on the execution time of an energy demand [14]. This mechanism allows the ES (through
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Figure 4.3: Example of application of the management strategies for efficient energy
consumption [9].

the EM) to increase or decrease consumption by anticipating or delaying the execution of
energy demands during periods of energy surplus or energy shortage, respectively. The
ES can encourage the ECs to advance or delay their demands by offering a set of reduced
energy tariffs depending on the time-shifting performed.

4.1.2.3 Prioritization of Energy Supply

The ES (technically the EM) can use a prioritization scheme to differentiate the energy
resource allocation and the application of management mechanisms such as time-shifting
and rejection (no energy allocation) on energy demands. The number of priority levels,
the priority level for each energy demand, the actions per each priority, and the limits
of each management mechanism (e.g., maximum time-shifting interval) are agreed upon
between the EM and the ECs (through contracts) [9].

Considering that energy demands correspond to IoT devices’ consumption and that these
IoT infrastructures offer a service for end-users, hereinafter, the energy demands will be
referred to as ”services” in the proposed management model. In this regard, the ECs can
produce services with multiple priority levels (a service with a single level of priority).
According to their priority levels, these services can be categorized into Critical Services
(CS) or Non-critical Services (NCS), as described below.

1. Critical Services (CS): The CS have the highest priority level, denoted as j = 1,
with j ∈ {1, . . . , L}, in the proposed energy management model. CS cannot be
interrupted or shifted to earlier or later periods, and they cannot be rejected. The
ES prioritizes the allocation of the energy resource available to CS. The services
in emergency scenarios (e.g., life support devices) and natural disasters (e.g., for
search and rescue operations) are examples of CS.

2. Non-critical services (NCS): The NCS are shiftable (advanced or delayed exe-
cution). However, once operation begins, they cannot be interrupted until the
operation completes. Multiple priority levels can be used for the NCS ( e.g.,
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j ∈ {2, . . . , L}). Thus, after energy allocation for CS, the remaining supply is
distributed to the NCS based on their priority level (from j = 2 up to j = L). The
use of different priority levels for NCS seeks the best energy utilization and optimal
comfort for the ECS. Examples of services (IoT infrastructures and applications)
within this category include entertainment services (non-essential audio and video
systems), dishwashers, washing machines, water pumps, water, heaters, and fans.

4.1.2.4 Rejection of Energy Demands

Services are rejected when the available supply is insufficient to cover all demand (due
to energy shortage or high load) or when the service(s) cannot be adapted to the energy
profile even if time-shifting is used [9]. The rejection criteria are based on the priority
level of NCS. Thus, services with a lower priority level (e.g., l = L) during periods of
energy scarcity are more likely to be rejected.

If all NCS have equal priority, the algorithmic strategies executed by the EM allocate
available supply to services whose execution maximizes energy utilization (i.e., minimizes
energy waste). Also, the algorithmic strategies are responsible for finding the best man-
agement mechanism for each energy demand (i.e., optimal service scheduling) so that
executing simultaneous services yields optimal energy consumption.

4.1.2.5 Other Strategies

There are different actions on energy demands that can be incorporated into the proposed
architecture and complement the operation of the aforementioned mechanisms. Examples
of these mechanisms are consumption variation (e.g., degradation of quality) and energy
storage. Regarding the former, in order to adapt PD to the PES in both surplus or shortage
operation states, a possible strategy, that enables the PES is not wasted and a greater
amount of services can be executed is the variation of power consumption proportional to
the PES value (e.g., a decrease in the brightness level screens of devices, when PES < PD).
The candidates for performing these strategies are the NCS and the ranges of variation
are conditioned to the features of each device and the agreements between the ES and
the ECs.

Regarding energy storage, although the proposal mainly focuses on the optimal use of
available energy and not on its storage, the architecture can leverage the energy storage
infrastructure (i.e., the battery units) that is part of the renewable-energy generation, for
storing the surplus energy that, if not used, would potentially be wasted. Then, the stored
energy could be used to partially or totally meet the demands from ECs. In this context,
an important aspect to be addressed in future work is the sizing of storage devices, to
ensure, for a finite period of time, the execution of CS, if PES is insufficient to meet all
these demands.



Chapter 4. NFV/SDN Enabled Architecture for Adaptive Energy Management in IoT
Scenarios 50

4.1.2.6 Promotion of the Use of Renewable Energy

The architecture encourages the use of renewable energy as a primary source and allows
its gradual contribution in the total energy supplied. In this regard, the architecture has
an adaptive consumption capacity conditioned to PES, which is obtained by exploiting
the time-shifting capabilities of the services and the optimal service scheduling performed
by the ES (EM). In this way, consumption can be adapted to the time intervals where
there is an excess of renewable energy. In addition, renewable energy can be stored in
battery units and subsequently used for the execution of services, mainly for CS, as shown
in the example of Fig. 4.3.

4.1.3 Mathematical Models of Energy Generation and Consump-
tion

This section presents the mathematical representation of the ES and the ECs, considering
green energy and management mechanisms in Section 4.1.2.

4.1.3.1 Energy Supplier Modeling

In the proposed energy management model, the ES is characterized by a total power sup-
ply capacity denoted as PES. It is de facto the power received at the point of consumption
(regardless of losses). The PES has an initial time defined as T PES

init and a finite duration
denoted as m. It is equal to the sum of power coming from renewable (e.g., solar, wind,
or hydroelectric) and non-renewable (e.g., coal or natural gas) energy sources, defined as
PR and PNR. Considering that ES can prioritize green energy use, a weight wR ∈ [0, 1] is
included in the PES to control the provisioning capacity from non-renewable sources. For
sustainable reasons and as a requirement for future energy systems [12], the participation
of the PNR in the PES is expected to be minimal and in the best scenario equal to zero
(i.e., when wR = 1). The mathematical expressions that represent the PES, the PR, and
the PNR, are shown in Eq. 4.3, Eq. 4.4, and Eq. 4.5, respectively.

PES = PR + PNR (4.3)

PR = PEs · wR (4.4)

PNR = PEs · (1− wR) (4.5)

4.1.3.2 Energy Consumers Modeling

In the proposed energy management model, the ECs are characterized by their consump-
tion capacity and the management mechanisms applied to the energy demands. Different
ECs with different demands can be considered; however, for analytical simplicity, the
model considers only an EC that can produce several services with different consumption
parameters. The number of services belonging to an EC can range from units to thou-
sands and hundreds of thousands of services (corresponding to small-and large-scale IoT
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scenarios). In this regard, the EM must determine the appropriate strategy (optimal or
heuristic) to be applied in each scenario.

The consumption model considers a total of N energy demands or services. Each service
i, with i ∈ {1, . . . , N} is identified as Si. It has an initial time, an interruptible duration,
and a fixed power level denoted as ti, di, and pi, respectively. The power demanded or
consumed by all services for which the ES (technically the EM) can allocate energy is
denoted as PD. This value represents the total power consumption. Also, each service Si

has a priority level identified as qi that can be affected by a time-shifting value (in the
case of the NCS) denoted as ui. The time-shifting can be backward (i.e., when ti−ui) for
the anticipated execution of a service Si, equal to zero (i.e., ui = 0 or not time-shifting
applied) for the normal processing of a service Si, or forward (i.e., when ti + ui) for
the delayed execution of a service Si. Normally a service Si cannot only use a specific
value of ui but move in an interval {ti − ui, . . . , ti, . . . , ti + ui}. Table 6.2 summarizes
the parameters related to the services. An example of these parameters is illustrated in
Fig. 4.4.

Table 4.1: Parameters of services or energy demands in the proposed adaptive energy
management model.

Parameter Description Unit/Comment

N Total number of services Integer number
i Service identifier i ∈ {1, . . . , N}
L Number of priority levels of services Integer number
j Priority level identifier j ∈ {1, . . . , L}
ti Starting time of service Si Time units
di Duration of service Si Time units
pi Power demanded of service Si Power units
qi Priority level of service Si Integer number
ui Time shifting value of service Si Time units
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4.1.4 Consumption Model in the Proposed Architecture

In the proposed architecture, the implementation of management mechanisms is comple-
mented by a consumption model that requires the active participation of the ECs. This
section describes the energy negotiation and adaptation between the ES and ECs to use
the available power efficiently.

4.1.4.1 Description of the Energy Consumption Model

In contrast to traditional energy systems in which the user is not aware of consumption
and immediately uses energy through the activation of services, our proposal establishes
a two-way handshake between the ECs and the ES prior to the use of energy. This pro-
cedure can be summarized in the following steps: (i) the ECs (devices with connectivity
capacity and manageable) send the information about the services (e.g., priority level,
duration, power level, possibility or percentage of rejection) to the ES, through a com-
munication network (e.g., SDN); (ii) the ES (specifically the EM) with the information
about PES and the services calculates (through the execution of algorithms) the opti-
mal/efficient scheduling of the services, using management strategies deployed at NFV
domain, which enable the efficient energy utilization (i.e., the maximization in the use of
the available energy); (iii) the ES (specifically the EM) sends the consumption parameters
(services that can be executed and execution times) to the ECs; (iv) the ECs confirm
the consumption conditions and request energy for services to be processed; and (v) the
energy is allocated, the devices are activated and the ES supplies the demanded energy
(PD) for service execution. Fig. 4.5 shows a general representation of the bidirectional
dialog between ES and ECs to enable efficient energy consumption; instead, Fig. 4.6
presents this level of interaction considering the stakeholders and enabling technologies
of the proposed architecture.

4.1.4.2 Energy Adaptation

In the previous section, the interaction between ES and EC is summarized. This section
presents a brief description of the energy adaptation process (energy consumption model)
considering the participation of the three stakeholders. The actions involved in the energy
adaptation process are related to the procedures performed in the two subsystems ES-
EM and EM-ECs. Fig. 4.7 shows a summary of actions/processes (handshake) carry out
between the three stakeholders to offer an efficient energy management solution. In short,
whenever there is an energy demand from the ECs, the following processes/actions are
performed:

• The ECs enquire the EM if the system has available energy to execute their services.
Because the EM is a management entity and not an energy supplier, it sends this
inquiry to the ES. When the EM has the information about the status of the ES,
it reports to the ECs the amount of available energy (PES). At this point, the EM
cannot specify to the ECs how many demands are going to be accepted, shifted in
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time, or rejected because the EM has not yet implemented any strategy (workload
scheduling).
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• Subsequently, the ECs formally initiate the energy request by sending the different
parameters of the services to be processed (see Table 6.2).

• At this stage, the EM knows the total number of services (N) and the aggregated
power demanded (PD). Thus, the EM proceeds to communicate this requirement
to the ES, and, in a bidirectional data flow exchanged between the ES and the EM
(GreenSDAs), the ES-EM subsystem chooses the working energy state, which can
be either normal, shortage or surplus. Depending on the energy state, the ES can
foster energy consumption, deferral in service execution, or service degradation on
the basis of actions and indications that the EM gives to the ECs.

• Once the energy state has been established, the EM can use the information about
PES, PD, and the parameters of the services as input in algorithms (NFV-Based
scheduling strategies) to compute the optimal (or near-optimal) energy allocation.
This information allows the EM to know which demands are going to be processed
and their respective execution times. The workload distribution enables the efficient
use of the PES at each time.

• The scheduling of the demands is communicated to the ECs. Then, thanks to
the cooperation established between the EM and the ECs in the subsystem EM-
EC (GreenSLAs), the ECs accept the distribution of the tasks performed by the
architecture (EM). In this sense, and if the energy is insufficient, the ECs accept that
their demands may or may not be processed. As aforementioned, the architecture
can prioritize the energy supply for CS execution.

• Finally, on the basis of the information about the services (e.g., services without
time-shifting and services with time-shifting), the EM requests from the ES the
corresponding amount of energy. Then, the EM sends the activation instructions
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to the ECs (devices) and performs the allocation of energy resources. Finally, the
ES supplies energy to ECs.

4.1.5 Complexity of the Proposal and Related Processing Re-
quirements

Before formally presenting the architectural framework of our proposal, in this section, we
discuss the computational complexity and processing requirements related to the efficient
management of available power consumption. In addition, we analyze the technology
enablers that allow us to meet the architecture requirements to demonstrate that our
envisioned energy management solution is entirely achievable with existing technologies.

4.1.5.1 Complexity of the Proposal

In our proposal, a key aspect to efficiently use PES is the (optimal) workload scheduling by
exploiting management mechanisms such as time-shifting capabilities of services. Math-
ematically the process of selecting the services to be processed (considering those subject
to management mechanisms) with the aim of efficiently using a finite PES is analogous to
the objective of the 1/0 Knapsack Problem of placing the most valuable or useful items
without overloading the knapsack [91]. In this regard, the literature has proven that
this kind of problem has complexity NP-hard [91]. For solving the problem optimally
(i.e., optimal energy utilization in the context of our proposal) there are several options,
and one of the best-known strategies is the exhaustive search based on the combinatorial
analysis of all possible solutions. Translated into the scope of our problem, the exhaus-
tive or brute-force search consists of analyzing all possible combinations of N services
considering all possible management mechanisms (e.g., analysis within all time-shifting
intervals) to which a service may be subject. In this regard, an optimal algorithmic so-
lution (based on combinatorial analysis) for efficient energy management in the context
of DCs has been validated in previous work [14]. Then, the analysis of the algorithmic
strategy (optimal or exact) reveals that this method has exponential complexity with a
growth rate that depends on the values of services to be processed (i.e., N) and the values
of the management mechanisms (e.g., the value or interval of ui (Ts)). Fig. 4.8 shows an
evaluation example of grow rate of the problem (optimal service scheduling) according to
the increase of the number of processed services (energy demands).

The example in Fig. 4.8 indicates that an increase in N , ui, or both lead to an increase in
the size of the problem (i.e., in the size of the search space to find the optimal solution),
which can potentially demand a greater amount of computational resources and runtime.
For example, with N = 9 and ui = 3 the number of combinations to be processed is over
40 million. For a computer equipped with a 3.33 GHz x 12 cores Intel Core i7 Extreme
processor and 12 GB RAM, the total running time needed to obtain the optimal solution
(optimal workload scheduling) is about 90 hours, which can be an expensive computing
time especially considering the density of current IoT deployments and the low latency
required by modern networks [92].
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In summary, the problem of the optimal management of available energy consumption
presents a hardness NP-hard and its optimal solution has an exponential complexity. This
information reveals the drawbacks and needs of the proposed architecture, in terms of
computational resources (processing and memory) for calculations and the development
of faster algorithmic solutions (e.g. based on heuristic methods). The following discusses
the requirements and enabling technologies to address computational complexity related
to the execution of management strategies.
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Figure 4.8: Example of growth rate associated with the problem of optimal scheduling
of services. Growth rate based on N and ui(Ts).

Parameters: N = { 1, · · · , 10 },max { ui = Ts } = {0, · · · , 3}.

4.1.5.2 Processing Requirements

Based on the analysis in Section 4.1.5.1, we highlight two relevant aspects that must be
considered in the deployment of the architecture: (i) establishment of maximum values of
management mechanisms (e.g., maximum values of ui) in the agreements between the ECs
and the ES, and (ii) use of sophisticated computational resources to execute management
strategies. Regarding the first point, although we do not address the contractual terms
between ES and ECs, an important parameter that must be considered is the value or
ranges of management mechanisms (e.g., the maximum time windows of services) because,
as demonstrated in the growth rate in Fig. 4.8 an indiscriminate increase or selection of the
parameters has a direct impact on the complexity. As for the second point, the complexity
related to calculations for efficient energy utilization reveals the need for a sophisticated
infrastructure both for the processing of services (high computational capabilities) and
for the interaction of the components in the architecture (efficient network infrastructure)
especially for delay-sensitive applications.

In addition, the fact that several algorithmic solutions of different complexity and char-
acteristics (optimal or heuristics) can be executed to meet the varied requirements of
services and scenarios, demands that the proposed architecture (specifically in the EM)
has reconfigurability and/or programmability capabilities, as well as being agile enough
to execute changes on the fly without affecting or degrading the performance of any stake-
holder involved in energy management. Related to this requirement, an important aspect
is the scalability to cover the dynamic increase/decrease of ECs; so, the architecture
must have the capacity to be deployed using hierarchical or distributed infrastructures
according to the requirements of the ECs. Other relevant requirements in the proposal
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are the abstractions between the components through a separation in layers or domains
(to promote the transparent evolution of ES, EM, and ECs) and the unified management
of the whole architecture.

In summary, the architecture for an efficient use of PES presents the following require-
ments:(i) high performance computing infrastructures for management calculations, con-
sidering PES and PD information, (ii) reliable, flexible and scalable communications net-
work to exchange the management information and instructions between the ES and ECs,
(iii) agile deployment of management strategies and reconfigurability and programmabil-
ity capabilities to implement diverse algorithmic solutions, and (iiii) unified orchestration
(coordination and interaction) of all stakeholders to ensure an efficient energy manage-
ment in scenarios of varied sizes (from residential users to clients that may be companies,
populations, smart cities or even countries) and features.

4.1.5.3 Enabling Technologies

The structure of the proposed architecture, as shown in Fig. 4.1 allows for the adoption of
different technological enablers for each stakeholder. Existing protocols, interfaces, and
mechanisms developed for power grids, DR systems, and IoT infrastructures can be used
and adapted to the context of the proposal. For example, the communications network
necessary for the exchange of indications, and instructions between ES and ECs could
be facilitated by technologies such as OpendADR [93], Supervisory Control And Data
Acquisition (SCADA), or Power Line Communications (PLC) [15]. In the proposed en-
ergy management solution, however, we have decided to use NFV and SDN technologies
to carry out the proposal, because they perfectly meet the functional requirements de-
scribed in Section 4.1.5.2. In addition, NFV and SDN are already key participants in
modern communications systems, such as 5G [89], which facilitates the deployment of
the proposed energy management solution. In this context, the architecture presented is
open to include new technological enablers as the ICT and energy systems evolve.

In the architecture, NFV deployed at DC level or in general in a cloud computing envi-
ronment disposes of all the computational resources needed to execute the management
strategies (e.g., workload scheduling) and perform all necessary calculations to efficiently
adapt the power consumption demanded (PD) to the availability (PES). This technology
also provides the architecture the management entities so that all components work or-
chestrated, which is essential to ensure that both the processes of the calculations and the
communications and notifications between the stakeholders have a very low latency as-
sociated. In the NFV scope, the energy management strategies are represented by VNFs
forming SFCs. Then, these VNFs can be created, modified or upgraded, even on the
fly, according to the desired functionalities and objectives, which provides programma-
bility and reconfigurability to the proposed architecture. In addition, thanks to NFV
technology, the management of the ECS and the underlying network (SDN) is separated
(abstracted) from the functionality (i.e., management strategies), a feature that enable
the proposal to be applied in different scenarios, such as small households, intelligent
transportation systems, and smart cities.



Chapter 4. NFV/SDN Enabled Architecture for Adaptive Energy Management in IoT
Scenarios 58

The SDN technology instead provides the architecture reliable, secure, and scalable con-
nectivity necessary for the dynamic interaction and the exchange of information between
components (ES-EM-ECs), mainly between the ES and the ECs (parameters and con-
sumption conditions). This technology is also scalable enough to allow the management
(connectivity) of both a small and massive number of devices, and agile and flexible
enough to allow rapid deployment of indications and changes necessary for energy man-
agement. SDN can easily adapt the network infrastructure (underlying network) to the re-
quirements from the EM (NFV realm and management strategies implemented as SFCs).

Regarding the operational and ownership aspects of the ICT systems (i.e., the NFV-
enabled EM and the underlying SDN network) needed to carry out the proposal, in the
first instance, the ES could lease these infrastructures to ICT and telecom providers,
and multiple interoperability and negotiation schemes (contracts) that are outside the
scope of this paper could be considered. It is expected, however, that, following the
guidelines for future energy systems as described in Section 3.2.1, the energy sector will
invest in and incorporate sophisticated communications systems into the power grids in
the coming years. A scenario that is very feasible to be achieved, because currently the
energy providers/distributors have large operation centers, to monitor and manage energy
production and consumption and where NFV can be easily deployed, and also have optical
transport networks (e.g., using optical ground wire technology) for data exchange. Then,
these infrastructures could serve as a baseline for the deployment of our architecture.

In summary, NFV and SDN are scalable architectures that can grow proportionally (in-
creased use of servers, controllers or switches) according to need and are able to work
in distributed environments (e.g., multiple SDN controllers may be used to manage a
massive number of ECs), enabling an automated, agile, flexible, scalable, dynamically
reconfigurable, and programmable energy management for IoT devices, services, and ap-
plications with different requirements. The NFV and SDN technologies can fully interact
with power grids networks [94], allowing DR systems to be easily deployable and they
can be successfully integrated into a unified architectural framework for the deployment
of agile, flexible and scalable services as demonstrated by the European Telecommunica-
tions Standards Institute (ETSI) [90]. In this regard, our proposal can be seen as an NFV
use case (an energy management optimizer) [43], of rapid deployment that is capable of
introducing new features and functionalities in an agile manner as the services and the
energy market evolve.

4.1.6 Architectural Framework Proposal

As seen in the previous section the computational complexity of the proposal requires
flexible and powerful architecture. Then, the enabling technologies to carry out the
efficient management of PES are NFV and SDN technologies not only because they are
inherently complementary, but also because when they work together they can offer great
capabilities and benefits in the deployment of applications and services [38, 90]. In our
proposal, the NFV/SDN integration adapted to the concept of DR systems gives rise to
a robust and sophisticated energy management system that can be used in a wide range
of IoT implementations. This solution, as a modular and open ecosystem divided into
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layers or domains, corresponding to ECs, SDN, NFV and the ES, allows the adoption of
technological solutions for each domain (the domains can be developed independently),
which can potentially improve the performance of the entire architecture. For example,
in our proposal we have considered the possible inclusion of Fog Computing (FC) (see
Fig. 4.9). FC is a technology that allows to extend the functionality of cloud computing
(processing resources) close to the end user [95]. Thus, in the architecture, FC is seen as an
alternative domain to bring the NFV functionality (computations for service scheduling)
closer to the ECs. Several studies shown that NFV capabilities placed at the network
edge can result in a more efficient network-wide resource utilization, bandwidth, low
latency, mobility and heterogeneity [96]. The proposed architecture for efficient energy
management is show Fig. 4.1, and its low-level representation including all domains and
FC technology is illustrated in Fig. 4.9. The description of the different architectural
domains is presented below.

4.1.6.1 Energy Supplier Domain

The ES belongs to this domain and is responsible for feeding the entire ecosystem using
renewable and non-renewable energy sources, which have been categorized as primary
and secondary sources, respectively. This categorization has been adopted because the
proposal has as a collateral objective to promote the majority use of renewable sources be-
cause their adoption is envisioned as a promising long-term and environmentally friendly
alternative.

4.1.6.2 NFV Domain

NFV, operating at cloud computing level (or alternatively at fog or edge computing lev-
els) and applied within the context of a DR system, is the domain responsible for making
decisions/actions to manage the power demands. In the NFV domain, the strategies or al-
gorithms that enable the workload distribution according the availability are implemented
through one or more VNFs, as shown in the generic example of Fig. 4.9. These VNFs,
running on the NFV Infrastructure (NFVI), i.e., on generic general-purpose servers with
processing, storage and networking capabilities, form an SFC and, in turn, a network
service, which is intended to optimize the energy consumption. The NFV domain in the
scope of the proposal comprises: (i) VNFs that corresponds to the algorithms or subrou-
tines deployed to perform the energy management of services (scheduling strategies); (ii)
the NFVI that consists of all hardware and software resources to host and connect VNFs
and the entire infrastructure that enable the energy provision, energy management, and
connectivity of ECs; and (iii) the Management and Orchestration (MANO) framework
that coordinates the necessary resources (resource allocation), tasks, and actions between
the three different domains (energy, NFV and SDN) to setup and implement the NFV
functionalities.
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Figure 4.9: Low-level schematic representation of the proposed architecture.



Chapter 4. NFV/SDN Enabled Architecture for Adaptive Energy Management in IoT
Scenarios 61

From the information of energy provisioning (from ES through the Virtualized Infrastruc-
ture Manager (VIM)) and the users demands (from the ECs through the VIM), the NFV
Orchestrator (NFVO) determines the allocation of energy resources for those demands
that can be processed. The process of resource allocation is made based on calcula-
tions and service scheduling algorithms implemented as VNFs and forming SFCs, which
are executed in the NFVO and managed by a VNF Manager (VNFM). In this context,
the NFVO can decide the number and sequence of activation of the VNFs, it can also
determine the use or not of a set of VNFs in order to change the behavior of the en-
ergy management on the fly, if necessary. Thus, the NFVO functionality is divided into
resource orchestration (NFVI) and service orchestration (VNFs).

The processing of energy demands (from VIM to NFVO) and the allocation of resources
(from NFVO to VIM) is constantly carried out, the architecture, therefore, must be
able to send the information through its different domains in order to guarantee an
efficient management of energy at all times. In summary, once the computation of the
energy allocations has been performed, the NFVO uses the VIM entity to notify the
ECs (NFVI) of the consumption conditions, i.e., the services that can be processed and
their respective execution time. At all times, the energy consumption from the ECs is
restricted to the actions performed by the NFVO (energy allocation procedure) and the
amount of available energy in the architecture (PES).

4.1.6.3 SDN Domain

The NFV and Energy domains assume that all necessary connectivity can be dynamically
established. To this end, SDN has been considered since it makes it possible to directly
program, manage, and orchestrate the network infrastructure (ECs). The SDN paradigm
facilitates delivery and operation of notifications and actions/instructions from ES, EM
and ECs through the interaction between the NFVO and the VIM entities. In this regard,
all changes made by NFV (algorithms executed in the NFVO) are transparently adopted
by the underlying infrastructure (ICT infrastructures or power grids infrastructures [66]).

The SDN within the architecture is mainly responsible for two functions: (i) the dy-
namic connectivity of devices (ECs) and (ii) the energy management tasks. In the first
case, the SDN network allows communication between the devices and components of
the ecosystem (even the connectivity required for communicating VNFs inside the EM
if needed). By means of a controller or group of controllers, which can be managed by
the MANO component through the VIM as shown in Fig. 4.9, the SDN-compatible de-
vices (ECs) receive the forwarding (energy consumption) instructions. Thus, the SDN
controller interfacing with the device management agents is able to carry out the monitor-
ing, configuration, and control functions of network resources as needed for the provision
of data services. Depending on the size of the network (ECs to be managed) the ecosys-
tem can be nested in different levels of controllers and SDN switches. Regarding the
second case (the energy flow management), the controller receives the messages from the
VIM and notifies the devices to modify their power usage condition, i.e., whether or not
to execute their services. In a similar procedure, the controller sends the power requests
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to the NFVO through the VIM. In this way, the VIM, the SDN controller, and the under-
lying connectivity infrastructure form a hierarchy for delivering the energy management
service throughout the architecture.

Once the architectural framework of the proposal and its respective domains have been
described, its most relevant properties are presented below:

• Stability : The DR operation enables constant maintenance of the balance between
energy provisioning (PES) and consumption (PD).

• Environmentally friendly energy management : The architecture has been designed
to be powered by renewable (PR) and non-renewable (PNR) energy sources. In a
particular case (wR = 1), the system could be powered only by green energy.

• Scalability and dynamic operation: The architecture can scale its performance based
on the requirements from ECs and the network conditions. The dynamic manage-
ment of resources (virtual or physical) can also be exploited to achieve additional
energy efficiency through consolidation, migration, or the on-demand utilization of
resources, for example within the EM.

• Flexibility and agility : The architecture allows that the VNFs associated with a SFC
can be executed without being linked to a specialized hardware and in cloud, edge
or FC infrastructures. Additionally, the independence of software and hardware
promotes a suitable space for the integration of solutions (hardware or software)
from different manufacturers and providers.

• Programmability : The energy management functionalities of the architecture can
change on the fly. The EM can decide the execution of a specific SFC (algorithms)
to address the needs or requirements of a particular scenario, and all changes are
transparently adopted by ECs.

• Simplified and improved system management : The management entities of NFV
(NFVO, VNFM and VIM) and of SDN (control plane) by working together en-
sure a consistent control and management to deploy the scheduling strategies and
allocation of resources for different IoT devices services, and applications.

• Open ecosystem: The proposed solution, based on open architectures (NFV and
SDN), can adopt open-source interfaces and solutions developed from different play-
ers. For example, the Openflow protocol [30] to provide an SDN southbound in-
terface and the OpenDaylight SDN controller [30] with the OpenStack [50] project
as NFVI. The architecture could be even implemented using sophisticated projects,
such as Open Source Mano (OSM) [52], or Open Platform for NFV (OPNFV) [53].

• Critical services guarantees : The dynamic generation-consumption operation of the
architecture enables the distribution/reduction of consumption in order to guarantee
the provision of energy for the execution of CS in accordance with the terms agreed
between ES and ECs.
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4.2 Open Research Challenges of the Proposed Ar-

chitecture

This section summarizes open research issues intending to motivate future work in this
field.

4.2.1 Complexity and Scalability

Our proposed architecture aims to be flexible and scalable enough to be applied from
small scenarios with few services (devices), as is the case of domestic environments, to
very large scenarios that can cover entire cities. Regarding the algorithmic solution for
small-scale scenarios, possible alternatives are the optimal or exact strategies. However,
to meet the very low latency requirements of modern networks that are in the order of
milliseconds [97] and to deal with the billions of devices that are connected to the Internet
[25], it is necessary to develop strategies that require a low running time, demand low
computational resources, and produce high-quality solutions. In this regard, there are
a number of heuristic and metaheuristic techniques and methods. However, considering
that the PRES minimization problem falls into the category of a 1/0 Knapsack Problem
and based on the literature reviewed, we indicate the following methods as promising
solutions: (i) a prepartitioning strategy based on a divide-and-conquer approach, (ii) a
genetic-algorithm-based solution, and (iii) a dynamic-programming-based approach. For
the development and evaluation of these strategies, the parameters, mechanisms, and
results obtained with the exact method can be taken as a baseline.

4.2.2 Energy Storage Management

The integration into the architecture of an element that stores the energy produced by
renewable and non-renewable sources (e.g., battery units) is expected to contribute to
better use of energy because this component can act as a buffer to store or deliver energy
according to the conditions of generation and consumption (energy states). The battery
unit can potentially improve the overall performance of the architecture, but its prime
benefit would be to contribute to the execution of CS. Among the different topics that
can be addressed in future work are mathematical modeling and sizing, optimal location
within the architecture, and coordination with other domains.

Another important aspect to analyze is the management of energy produced and stored
by users. Traditionally, energy is used by the owner of the generation system, but in
a more ambitious approach, under the coordination of the proposed architecture, this
generated/stored energy could be distributed to other users or locations. This process
would increase complexity in management, since continuous monitoring and coordination
of potential energy consumers/producers (a.k.a., prosumers) would be necessary, but in
turn, it would improve the use of all produced energy.
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4.2.3 Security and Privacy

The security concerns have been addressed in different studies for SDN [98], NFV [99]
and smart grids [100] independently. However, for the proposed architecture, a security
framework that cover services such as integrity, authentication, privacy, and availability
must be developed, which could be a very challenging task since each domain has different
characteristics and requirements. Among the different aspects of security to consider,
privacy and data integrity should be highlighted. The architecture must guarantee the
anonymization of ECs in order to avoid targeted attacks, especially on CS. With respect
to data integrity, the DR system must provide reliable transmission and processing to
avoid alteration in control and management information and bill modifications.

4.2.4 Data Analytics

The information about the ECs and the network resources used is constantly sent to the
EM. This information can be stored and used not only for billing, but also for moni-
toring of service quality, network utilization, and for obtaining performance indicators.
Also, the stored data can be exploited to discover patterns or predict trends through the
use of machine learning techniques, with the objective of performing accurate resource
allocations and offering personalized services.

4.3 Potential Application Fields of the Proposal

In this section, we briefly describe potential application scenarios.

4.3.1 Management of the Public Infrastructures Energy Con-
sumption and Provisioning

The proposed architecture can be applied to perform tasks of monitoring, management
and control of energy resources in cities, municipalities, neighborhoods, and other lo-
cations. In these environments, the architecture can collect energy demands through a
centralized or distributed implementation and perform an efficient energy allocation for a
specific place, group of services or users according to resource availability. For example,
our architecture can interact with ICT infrastructures of municipalities or local govern-
ments to manage and control smart power grids, intelligent transport systems, street
lighting, controllers and other public infrastructures.

4.3.2 Energy Management of Electric Vehicles

Preliminary studies have demonstrated the application of NFV concepts in the field of
electric vehicles [101]. In this regard, our proposal can replace, complement or improve
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the energy management tasks traditionally performed by traffic controllers or intelli-
gent transportation systems. Through communications systems (mainly based on SDN),
the architecture could monitor available energy, charging points, and consumption levels
(battery levels). Thus, based on the information gathered, the DR architecture (NFV
domain) could indicate to users the periods during the day for the use of vehicles or bat-
tery recharging. In addition, information on energy resources and consumption can be
used to carry out weekly or monthly planning of energy distribution to avoid shortages
or possible collapses of the electrical grid.

4.3.3 Ecosystems Powered by Renewable Energy Sources

The DR architecture has the capacity to efficiently manage the gradual contribution of
renewable sources, being able to work entirely with green energies (wR = 1 in Eq. 4.4
and Eq. 4.5) if necessary. It is expected that a greater contribution of renewable en-
ergy, mainly from sources such as solar and wind, will demand greater dynamics in the
generation-consumption ecosystem in order to take special advantage of periods of sur-
plus. Our approach responds to these requirements and can be envisioned as a promising
alternative toward the deployment of high performance zero-emissions ICTs or power grid
infrastructures.

4.4 Conclusions

This chapter presents architecture proposal for the adaptive consumption of available
energy, whether 100% renewable or not, for IoT infrastructures, and it is envisioned as a
candidate for the deployment of the IoE. The proposal covers the description and inter-
action of the stakeholders (ES, EM, and ECs), several management strategies, including
service scheduling using time-shifting capabilities and prioritization of the energy supply,
and a consumption model where consumers are an active part of the energy management
process.

The complexity analysis has demonstrated that the proposed energy management solu-
tion has a hardness NP-hard and requires sophisticated ICT infrastructures for its oper-
ation. These requirements in the architecture are met by NFV and SDN technologies.
Specifically, all the management strategies and calculation, such as workload scheduling,
needed to adapt PD to PES are carried out by NFV, whereas all connectivity for data ex-
change corresponding to instructions and notifications between ES and ECs is provided
by SDN. Thus, NFV and SDN, both key participants in 5G, enable automated, agile,
flexible, scalable, dynamically reconfigurable, and programmable energy management for
IoT implementations with varied requirements.



Chapter 5

Algorithmic Strategies for Adaptive
Energy Management

This chapter presents the mathematical model of adaptive energy consumption and
the algorithmic strategies to solve this model. The topics that are covered in this
chapter are as follows:

• Energy management model for adaptive energy consumption based on an ILP
formulation.

• Optimal algorithmic strategy to solve the adaptive energy management
model.

• Heuristic algorithmic strategies to solve the adaptive energy management
model and to tackle the complexity of the optimal solution.

• Evaluation of the algorithmic strategies, optimal and heuristics, for different
energy provisioning and consumption profiles and in various scenarios.

This chapter is based on:

J2 Christian Tipantuña and Xavier Hesselbach. NFV/SDN enabled archi-
tecture for efficient adaptive management of renewable and non-renewable
energy. IEEE Open Journal of the Communications Society, 1:357–380, 2020.

J5 Christian Tipantuña and Xavier Hesselbach. NFV-enabled efficient renew-
able and non-renewable energy management: Requirements and algorithms.
Future Internet, 12(10):171, 2020.

J7 Christian Tipantuña, Xavier Hesselbach, and Walter Unger. Heuristic
Strategies for NFV-Enabled Renewable and Non-renewable Energy Man-
agement in the Future IoT World. IEEE Access. doi: 10.1109/AC-
CESS.2021.3110246.
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5.1 Energy Management Model

The energy model for adaptive energy consumption is illustrated in Fig. 5.1. This section
presents the related mathematical formulation. Section 5.1.1 describes the assumptions
considered in the proposed model. Section 5.1.2 presents the ILP formulation for adaptive
energy management, while Section 5.1.2 analyzes its complexity.

Inputs Mathematical
formulation

Algorithms for solving
the ILP 

Outputs

Objective function 
minimize{Residual power}

Operating information 
of consumers (demands)
- Services parameters

Constraints

Optimal solution:
OptTsCost

Heuristic stratetegies:
- GreedyTs
- GATs
- DPTs

Power supply modeling
-Energy supplier

Total amount of power used

Operations conditions of 
services

(service scheduling)

Performance metrics

Final performance metrics
- Residual power
- Acceptance ratio
- Missing power

Power consumption 
Modeling

- ServicesOperating information 
on energy provisioning
Power suply by:
- Renewable sources
- Non-renewable sources

Figure 5.1: Schematic of the management model for adaptive energy consumption.

5.1.1 Assumptions Related to the Energy Management Model

To provide a reasonable implementation of the proposed adaptive energy management
model, the following assumptions (simplifications) have been considered:

• The use of a discretized time model in which each time slot k has an equal duration
within a maximum time horizon denoted as W (i.e., k ∈ {0, . . . ,W}). In this time
model, the size of time slots can be customized to different time units (e.g., unit of
seconds, minutes, or hours) depending on the application scenario.

• The use of integer discrete values for the parameters di, pi, and ui for each service
Si, with i ∈ {1, . . . , N}. This operation condition allows maintaining the linearity of
the energy management model and makes implementing the algorithmic strategies
feasible.

• The energy is allocated for the execution of complete services. Fractional service
scheduling is not allowed in the proposed algorithmic strategies. In this regard, the
partial consumption of services can be addressed in future work.
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5.1.2 ILP Problem Formulation for Adaptive Energy Manage-
ment

5.1.2.1 Prioritization in the Use of Green Energy

Before discussing the objective function to optimize, this section presents the mathe-
matical expression to prioritize green energy use for scenarios in which this process is
applicable. Different approaches can be used to promote renewable sources; however, a
simple solution is to establish a cost function related to power consumption, as shown in
Eq. 5.1. The general cost function in Eq. 5.1, defined as CostPD, comprises individual
costs associated with the consumption of renewable and non-renewable power, denoted
as CostPR

and CostPNR
, respectively. The ES can tune the CostPD

by modifying the
weights w1 and w2 in the range [0,1] according to some operating parameters (e.g., PR

available). In this context, to promote the use of green energy, the CostPR
can be set to

a minimum value (i.e., if w1 � w2) or zero (i.e., if w1 = 0 or CostPR
= 0), in such a way

that the total cost only depends of the use of PNR.

The CostPNR
can be defined as a value proportional to the amount of the PNR consumed,

as shown in Eq. 5.2. In this regard, the task of the ES (technically the EM) is to find
the best supply-consumption conditions (e.g., encouraging consumption during a surplus
of wind or solar energy) to obtain a minimum value of the CostPNR

(Eq. 5.3). Thus, the
minimization of CostPNR

is equivalent to the minimization of PNR (as shown in Eq. 5.4)
or the prioritization of the consumption of PR.

CostPD
= w1 × CostPR

+ w2 × CostPNR
(5.1)

CostPNR
=

{
0 if PES = PR,∑n
i=1 pi, n ⊂ N if PES = PNR.

(5.2)

minimize {CostPNR
} (5.3)

minimize {PNR} (5.4)

5.1.2.2 Objective Function

Adaptive energy management is achieved by adapting consumption to generation and
aims at the optimal use or consumption of the available supply (whether renewable or
not). In this proposal, the optimal adaptive consumption is obtained by minimizing the
wasted or unused available power, which is mathematically expressed as the difference
between the PES and the PD, as shown in Eq 5.5. Considering the analysis for each time
slot k, Eq 5.5 becomes Eq 5.6. In addition, for simplicity the difference between PES and
PD is referred to as residual power and is denoted as PRES. Thus, the objective function
(linear function) in the proposed adaptive energy management model is summarized in
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the minimization of the PRES, respecting the constraints shown in Section 5.1.2.3.

minimize {PES − PD} (5.5)

∀k ∈ W : minimize

{
W∑
k=1

(PES[k]− PD[k])

}
(5.6)

5.1.2.3 Constraints

The constraints are divided into capacity and domain constraints and time constraints,
as detailed below.

• Capacity and domain constraints: The non-negative value of the PES and the PRES

is ensured by C1 and C2, respectively. C3.1 guarantees the assignment of a single
priority for each service. The variable yij takes on a value of 1 if and only if the
priority qi = j for service Si exists, as shown in C3.2.

C4 limits the maximum consumption capacity. In C4, the decision variable shown
in constraints C5.1 and C5.2 ensures the processing of the service Si with a single
time-shifting value ui. This is because among all possible time-shifting values (i.e.,
{−ui, . . . , 0, . . . ,+ui}) only one value must be chosen to avoid multiple copies of the
same service. In this regard, the application of time-shifting to N services produces
N mutually disjoint classes V1, . . . , VN of services. Each class Vi is composed of the
shifted versions of the service Si considering the interval {ti−ui, . . . , ti, . . . , ti +ui}.
Hereinafter, for convenience, the shifted versions of the service Si are also referred
to as variations of the service Si, and each variation of Si is denoted as V arSi

r (e.g.,
V arS1

1 ).

Considering that each variation r, with r ∈ Vi, demands a certain amount of power
during a finite interval and at a given starting time, the problem of the adaptive
energy management using the time-shifting mechanism consists of choosing the best
variations per class Vi (i.e., if xir takes on a value of 1), such that utilization of the
available supply PES is maximized (minimization of the PRES). In this context,
the set of N or n (with n ⊂ N) variations analyzed is defined as a combination of
variations or simply a combination and is denoted as Combf (e.g., Comb1). The
algorithmic strategies (optimal or heuristics) have the task of finding the best com-
bination among all possible combinations denoted as AllComb (Combf ∈ AllComb)
produced due to different variations per class Vi. The selection of the best combi-
nation is explained in Section 5.1.2.5.

• Time constraints: The time horizon of analysis is fixed in the range from 0 up to
W and is ensured by C6, C7, and C8. In addition, the temporal constraints for the
ES are guranteed by C9 and C10.
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C1 : PES[k] ≥ 0 (5.7)

C2 : (PES[k]− PD[k]) ≥ 0 (5.8)

C3.1 :
L∑

j=1

yij = 1, i ∈ {1, . . . , N} (5.9)

C3.2 : yij ∈ {0, 1}, i ∈ {1, . . . , N}, j ∈ L (5.10)

C4 :
N∑
i=1

∑
r∈Vi

pir[k]× xir ≤ PES[k] (5.11)

C5.1 :
∑
r∈Vi

xir = 1, i ∈ {1, . . . , N} (5.12)

C5.2 : xir ∈ {0, 1}, i ∈ {1, . . . , N}, r ∈ Vi (5.13)

C6 : ti ≥ 0 (5.14)

C7 : {ti − ui} ≥ 0 (5.15)

C8 : W ≥ max{ti + di + ui} (5.16)

C9 : T PES
init ≥ 0 (5.17)

C10 : W ≥ {T PES
init +m} (5.18)

5.1.2.4 Metrics to Evaluate the Combination of Variations

To quantitatively evaluate which combination or individual variation (if the algorithmic
strategy works only with variations) produces the minimum value of the PRES while
maintaining the best comfort level of ECs (as far as possible processing of all N services
with ui = 0,∀i ∈ N), three performance metrics are required and are defined as follows.

• Standard deviation of residual power (σPRES
): This metric measures the amount of

the PRES of a combination. A lower σPRES
means better use of the PES, and the

best value is σPRES=0 if PES = PD. The expression of σPRES
within m is given by:

σPRESf
=

√∑
(PREScombf )2

m
(5.19)

• Acceptance ratio (AR): This metric indicates the percentage of variations (services)
that have been processed (i.e., services for which power has been allocated). The
selection of unprocessed or rejected variations (services) denoted as RejServ, so
that PRES ≥ 0 (constraint C2), is carried out by algorithmic strategies (optimal
and heuristics). The criterion for the rejection of variation(s) is given first as a
function of priority level (analysis in descending order of priorities from j = 1
down to j = L) and secondly by selecting those variations whose rejection allows
minimizing the PRES (i.e., selection of variations whose execution maximizes the use
of available supply). Considering a total of RejServ rejected variations (services),
the AR can be expressed as:
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ARf =
N −RejServ

N
× 100 % (5.20)

To evaluate the missing amount of power (if PES < PD or the services cannot
be moved to use the energy profile) to reach an AR = 100%, the metric PLACK

or PLACK(AR=100%) is additionally defined. This metric is not used to select the
best combination. However, it is used in the algorithmic strategies to verify how
efficiently the available energy is used by the combination analyzed (combination
produced by algorithmic strategies). An adaptive energy management solution
aims to deliver the lowest value of the PLACK (with the best value if PLACK = 0)
produced if the available supply is optimally consumed. The PLACK mathematically
is expressed as:

PLACKf
=

{
|PES − PDCombf | if PES < PDCombf ,
0 otherwise.

(5.21)

In addition, with the mean value of the PES, the estimation of the interval m to
promote an AR = 100% (if consumption can be adapted to the energy profile) is
given by Eq. 5.22.

m '
∑N

i=1 pi × di
PES

(5.22)

• Standard deviation of time shifting (σTs): This metric measures the cumulative
time-shifting in a combination of variations. A lower σTs stands for lower application
of the time-shifting on variations, and the best value is σTs = 0. The expression of
σTs is given by:

σTsf =

√
(
∑
∀i∈N ui)

2

N
(5.23)

5.1.2.5 Adaptive Energy Management Based on a Cost Function

The selection of the best combination of variations (i.e., the combination that produces
the minimization of the PRES) can be established based on the best result of one (mainly
based on the values of σPRESf

) or all metrics in Section 5.1.2.4. Nevertheless, to obtain the

optimal allocation of energy resources and the corresponding optimal consumption, all
the metrics and parameters related to adaptive energy management must be considered
together. To this end, a possible mechanism shown in [14] is to perform a nested sorting
to the set of all combinations AllComb based on an increasing value of σPRESf

and σTsf

and a decreasing value of σTsf . As a result of this process, the first combination in the
sorted list represents the optimal service scheduling that enables the minimization of the
PRES. Although the nested sorting method delivers the best combination of variations, it
is limited to a small number of metrics because each new metric increases the complexity
of the process by a factor equal to the size of the set AllComb; also, this method does
not incorporate priority information. To overcome these limitations, in the proposed
energy management model, the selection of the best combination is carried out in a single
sorting step using the cost function shown in Eq. 5.24, which allows incorporating different
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parameters (more than three metrics) to cope with the specific requirements of the ES
or the ECs.

The cost function in Eq. 5.24 is composed of individual costs related to σPRES
, AR, σTs,

and the cumulative value of priorities of the variations in the combination, which are
denoted as CostPRESf

, CostARf
, CostUf

, and CostQf
and are given by Eq. 5.25, Eq. 5.26,

Eq. 5.27, and Eq. 5.28, respectively. In addition, the values of the costs in Eq. 5.24 can
be tuned by the EM according to the preference for some parameter(s) using the weights
α, β, γ, and δ in the range [0,1]. For analytical simplicity, these weights are set to one.

Costcombf = α× CostPRESf
+ β × CostARf

+ γ × CostQf
+ δ × CostUf (5.24)

CostPRESf
=

{
σPRESf

× ε if ARf = 100%,

σPRESf
otherwise.

(5.25)

CostARf
=

{
0 if ARf = 100%,
RejServ ×M otherwise.

(5.26)

CostUf
=

{
0 if ∀V arSi

r : uir = 0,∑n
i=1

∑
r∈Vi

uir otherwise.
(5.27)

CostQf
=

{
0 if ∀V arSi

r : qir = j,∑n
i=1

∑
r∈Vi

qir otherwise.
(5.28)

In Eq. 5.25, the parameter ε can be set in the range [0,1] (ε = 0.5) and can be used
to differentiate the CostPRESf

of the different combinations of variations if PRES > 0.

In Eq. 5.26, instead, the parameter M represents a big value (e.g., M = 1000) and is
used to penalize those combinations that deliver more rejected variations. In addition,
Eq. 5.26 can include the cumulative value of priorities of variations (i.e.,

∑
i∈RejServ qi) to

penalize those combinations that produce higher priority rejected services.

The corresponding cost function is calculated for each combination of variations f , pro-
ducing a list of costs denoted as AllCost. From this list, the best cost (OptCost) is the
one with the lowest value, as shown in Eq. 5.29, and corresponds to the best combinations
of variations (OptComb, with OptComb ∈ AllComb) that enable adaptive management
through the minimization of the PRES.

OptCost = argmin{Costcombf}, Costcombf ∈ AllCost (5.29)

5.1.3 Hardness of the problem

The objective of adaptive energy management in our proposal consists of maximizing
the use of the available energy supply (minimization of the PRES) through the execution
(selection) of the best variations of services (one variation per class Vi, with i ∈ N).
This process is analogous to the objective of the multi-dimensional multi-choice knapsack
problem (MMKP) of choosing the most valuable items of a set of classes (one item per
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class) without overloading the knapsack [102], which has been demonstrated to be NP-
hard [102]. Based on this analogy, we can then conclude that the proposed energy model
falls in the MMKP classification and presents a complexity that is NP-hard.

5.2 Optimal solution: OptTsCost

To optimally solve the ILP model in Section 5.1.2, different approaches can be used. This
section presents an exact or optimal algorithmic strategy defined as OptTsCost based
on a brute-force exhaustive search paradigm in which the entire search space is explored
to find the optimal solution. The algorithm is explained in Fig. 5.2 and starts with
the computation of the variations of the services considering all values within the time-
shifting interval (i.e., {ti−ui, . . . , ti, . . . , ti+ui}). With the information on variations, the
algorithm builds all possible combinations of variations. It then computes the metrics and
cost function for each combination. Later, it selects the best combination based on the
minimum value of the Costcombf . This process is carried out iteratively for each priority
level, and at the end the strategy OptTsCost delivers the optimal service scheduling
that produces the minimization of the PRES. Figure 5.3 shows a summarized example of
the application of strategy OptTsCost for N = 4 services.

Start

Computation of variations ∀𝑆!, 𝑖 ∈ 1,⋯ , 𝑁 with 
	𝑞!= 𝑗 within the interval 𝑡!−	𝑢! ,⋯ , 𝑡!, ⋯ , 𝑡! +	𝑢!

Computation of combination of variations: 𝐶𝑜𝑚𝑏!
All possible combinations: AllComb, 𝐶𝑜𝑚𝑏! ∈ AllComb

For each 𝐶𝑜𝑚𝑏"	 ∈ AllComb computation of:
Power demandedof combination: 𝑃$"#$%&
Residual power of combination: 𝑃%&'"#$%&

Metrics of combination: 𝜎("#$% , 𝐴𝑅",	𝑃)*+,%, 𝜎-.%

Sorting of cost functions, selection of OptCost and 
OptComb, and energy allocation forvariations (services)

End

Input parameters: 𝑃&' , 𝑇!/!0(&', m, W, 𝑁,
L,	𝑆! , 𝑡!, 	𝑑!, 	𝑝!, 	𝑞!,	𝑢!, j=1

Final metrics: PRES , AR, PLACK

All L priorities or
PRES ≤ 0 

Yes

No

j = j + 1
𝑃&' update
(𝑃'( = PRES )For each 𝐶𝑜𝑚𝑏! ∈ AllComb	computation of cost functions:

	𝐶𝑜𝑠𝑡&'()!= α×𝐶𝑜𝑠𝑡*"#$! + 𝛽×𝐶𝑜𝑠𝑡+,! + 𝛾×𝐶𝑜𝑠𝑡-! + 𝛿×𝐶𝑜𝑠𝑡.!

Figure 5.2: Flow chart of OptTsCost.
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Figure 5.3: Example of application of the strategy OptTsCost.
In this example, the optimal service scheduling that produces the minimization of the
PRES is achieved if S1 is executed one slot in delay, S2 is processed in its original

execution time, S3 is executed one slot in advance, and S4 is rejected.
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The complexity in OptTsCost depends on the steps carried out. Considering for analyt-
ical simplicity the same value for the time-shifting backward and forward (ui), the growth
rate of OptTsCost as a function of N , ui, and L can be summarized in Eq. 5.30. The
terms that comprise this expression correspond to the number of services, variations, and
combinations processed for each priority level. Of all the terms in Eq. 5.30, the most dom-
inant is the third, which reveals that OptTsCost presents an exponential growth rate
with an order of growth O(2N) (according to Big-O notation) that depends on the max-
imum values of N and ui. This condition imposes the applicability of the OptTsCost
to small-scale scenarios. For instance, using only N = 10 services and ui = 4 time slots
the algorithm has to produce and later analyze over three billion combinations to find
the best service scheduling.

f(L,N, ui) = N +
(
(2×N × ui +N) + (2× ui + 1)N

)
× L (5.30)

As an example of the deployment of management strategies as SFCs in the NFV do-
main, Fig. 5.4 illustrates the strategy OptTsCost decomposed into VNFs. These VNFs
correspond to the different steps carried out by the algorithm to minimize the PRES,
can be deployed on virtual machines or containers, and can use on-demand computation
resources according to the needs of the ES and the ECS.

VNF1
Energy supplier

monitoring

Data IN
Information

from ES and ECs

VNF4
Combinations
of variations

VNF5
Computation of metrics

and cost functions

VNF7
Scheduling

decision

Data OUT
Information
towards ECs

VIRTUALIZED 
INFRASTRUCTURE

MANAGER (VIM)

NFV 
ORCHESTRATOR

(NFVO)

VNF 
MANAGER

(VNFM)

VNF2
Energy

consumer status

VNF3
Variations
of services

VNF6
Consolidation of partial

results per priority

Compute, storage, and 
networking resources

NFV Infrastructure

Algorithmic strategy OptTsCost as a SFC decomposed into VNFs

MANO

VNF Forwarding Graph (VNF-FG)

Figure 5.4: Example of the deployment of OptTsCost as a SFC
in the NFV-enabled EM.

5.3 Heuristic strategies

Although the strategy OptTsCost is a powerful approach for finding optimal consump-
tion conditions, evaluating all possible combinations of variations is computationally de-
manding and intractable for values of N > 10 services or u1 > 4 time slots [14]. These
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operating conditions motivate the development of less complex approaches in which the
optimal results can be relaxed to obtain reduced running time and lower utilization of
computational capacity. In addition, a reduction of complexity can enable adaptive en-
ergy management in large-scale scenarios (e.g., for N = 100 services or ui = 10 time
slots).

Considering that the proposed energy management model is categorized as an MMKP,
different existing techniques and strategies can be adapted to the context of adaptive en-
ergy management. In this regard, to tackle the exponential complexity of OptTsCost
and to cover as far as possible the main categories of methods or techniques for effi-
ciently solving the MMKP (in our proposal, the PRES minimization problem) [103], three
heuristic algorithmic strategies have been proposed: (i) a greedy strategy, (ii) a genetic
algorithm-based solution, and (iii) a strategy based on a dynamic programming method.
These strategies are described below.

5.3.0.1 Greedy Strategy: GreedyTs

Greedy algorithms are simple schemes intended to produce feasible solutions quickly.
These algorithms are iterative and constructive in the sense that starting with an empty
solution, in every iteration part of the solution is obtained (never changed later) so in
the last iteration the complete solution is created. The decision in each iteration is
made in an attempt to optimize a performance metric or maximize an immediate benefit
(e.g., taking first the most valuable item and then the next most valuable in the 1/0
knapsack problem) [104]. In the context of adaptive energy management, the proposed
greedy strategy defined as GreedyTs iteratively builds the optimal service scheduling
that produces the minimization of the PRES. The algorithmic strategy GreedyTs is
explained in Fig. 5.5, the main steps carried out are summarized below.

1. Analysis of services: Unlike strategy OptTsCost, the algorithm GreedyTs
works with the variations of services instead of combinations. This feature re-
laxes the complexity in adaptive energy management and reduces the analysis to
an iterative search for the best variation per service, such that the best variations
together produce the optimal service scheduling. Thus, for each priority level, as a
first step the algorithm sorts the services according to the decreasing value of the
σPRES

of service (denoted as σPresi) and ti. This criterion aims to maximize the
number of services that can be processed. If the available supply is first allocated
to small energy demands with earlier starting times, there is a greater amount of
PRES that can be used effectively by a greater number of services.

2. Analysis of variations: The services in the sorted list are analyzed iteratively until
all N services are covered. For each service Si, the corresponding variations are
computed within the respective time-shifting interval. Next, two parameters are
computed for each variation V arSi

r obtained: (i) the cost function (CostV arir
) com-

posed of the cost related to the residual power of variation (CostPresir
) and the cost

related to the time-shifting (CostU i
r
), and (ii) the gradient related to the residual

power of variation (∇Presir
). Subsequently, the variation that produces the lowest
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cost CostV arir
and the highest gradient ∇Presir

is selected, and the corresponding
energy is allocated. A lower cost means better use of the available energy, and a
higher gradient indicates a greater energy resource for the next service. Once all
L priority levels have been explored, the algorithm delivers the metrics PRES, AR,
and PLACK , applied to the set of variations (services) processed.

Start

For each 𝑆!, 𝑖 ∈ 1,⋯ ,𝑁 , of	𝑞!= 𝑗 computation of: 
Residual power of service 𝑆!: 𝑃𝑟𝑒𝑠 !,  and

𝜎"!"# of service 𝑆!: 𝜎"#$%$

Computation of variations for service 𝑆! with ID a
within the interval 𝑡!−	𝑢!,⋯ , 𝑡! ,⋯ , 𝑡! +	𝑢!

For each variation r of service 𝑆! computation of:
Residual power of variation: 𝑃𝑟𝑒𝑠#!

𝜎""#$ of variation: 𝜎!"#$%&
	𝐶𝑜𝑠𝑡&'#%$	= 𝛼#×𝐶𝑜𝑠𝑡"#$%%$ + 𝛿#×𝐶𝑜𝑠𝑡(%$

Gradient of residual power of variation: ∇"#$%%$

Nested sorting of variations according to increasing
value of	𝐶𝑜𝑠𝑡'()%$ and decreasing value of ∇"#$%%$

Selection of the best variation 𝑂𝑝𝑡𝑉𝑎𝑟)! energy allocation 
for variation 𝑉𝑎𝑟)

*$ (service 𝑆!)

Input parameters: 𝑃)* , 𝑇!+!,")*, m, W, 𝑁,
L,	𝑆! , 𝑡!, 	𝑑!, 	𝑝!, 	𝑞!,	𝑢!, j=1

All N services or
PRES ≤ 0 

Yes

No

a = a + 1
𝑃)* update
(𝑃+* = PRES )

j = j + 1
𝑃)* update
(𝑃+* = PRES )

Nested sorting of services according to the
decreasing value of: 1) 𝜎"#$%$, 2) 𝑡!

Identifier in the sorted list: 𝑎 ∈ 1,⋯ ,𝑁 , a=1

End

Final metrics: PRES , AR, PLACK

All L priorities or
PRES ≤ 0 

Yes

No

Figure 5.5: Flow chart of GreedyTs.

The complexity of GreedyTs is summarized in Eq. 5.31. In this expression, the second
term is dominant and reveals that the growth rate of the algorithm is polynomial and
depends on the maximum values of N and ui. However, if one of the parameters remains
constant (whether N or ui), the growth rate of GreedyTs can become linear.

f(L,N, ui) = N + (2×N × ui +N)× L (5.31)
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5.3.0.2 Genetic Algorithm Based Strategy: GATs

Genetic algorithms belong to the class of evolutionary algorithms and are search tech-
niques used to generate near-optimal solutions in varied optimization problems [105].
These algorithms are inspired by the biological evolution of the species over generations
and by the process of natural selection of the fittest. Regarding the implementation,
genetic algorithms follow principles of natural genetics and rely on operators such as
reproduction, mutation, crossover, and selection [104].

The evolution process starts with a population of possible solutions to an optimization
problem created using a random or greedy method. In this population, each candidate
solution is called a chromosome or individual (in our problem, combination of variations),
is composed of genes (in our problem variations of services), and can be affected by muta-
tion and crossover operators. For each chromosome in the population, a fitness function
is computed, which is commonly related to the objective function (e.g., minimization of
the PRES) of the optimization problem to be solved. If within the initial population there
is at least one chromosome that meets the desired value of the fitness function (e.g., a
combination that produces the optimal PRES), the algorithm could terminate its execu-
tion; otherwise, iteratively, the population continues to evolve towards better solutions.
In genetic algorithms, each iteration emulates a generation.

In each generation, the algorithm selects a set of chromosomes (denoted as parents) from
the current population for reproduction. The selection of parents can be based on a
random process or can be related to the value of the fitness function (e.g., roulette wheel
selection or elitist selection). From the set of parents, couples (pairs) are created that,
using a crossover operator (e.g., one-point operator), produce an offspring (child solutions)
that inherits characteristics from both progenitors. The algorithm can let a parent be
chosen more than once to form a couple. Commonly, the fitter the chromosome (better
solution), the more times it is likely to be selected to reproduce. The number of couples
and children created in a generation determines the size of the offspring, which usually
is a percentage (e.g., 50%) of the current population. In addition, to increase diversity,
a fraction of the offspring solutions can be affected by mutation operators (e.g., swap
mutation), that is, the chromosomes can be slightly and randomly changed to emulate
mutations. Finally, the natural selection process of creating a new generation is carried
out by replacing the worst chromosomes of the current population with the best offspring
solutions, usually keeping the initial population size. The execution of the algorithm is
carried out iteratively, selecting the best solutions in each generation (iteration) until any
stop criterion is met, for instance, a maximum number of generations or a given level of
the fitness function.

In the context of adaptive energy management, the proposed genetic-based strategy de-
fined as GATs iteratively creates a set of combinations of variations and selects the ones
with the best PRES values for the next generation. In the end, the algorithm delivers the
best possible combination that leads to the minimization of the PRES. The algorithmic
strategy is explained in Fig. 5.6, and the main steps carried out are summarized below.



Chapter 5. Algorithmic Strategies for Adaptive Energy Management 79
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Figure 5.6: Flow chart of GATs.
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1. Coding the solution: In the genetic algorithms and adaptive energy management
scope, a chromosome represents a combination of variations, and each gene repre-
sents a variation of service.

2. Validation of variations: For each priority level, in this step those variations that
individually produce a negative residual power (Presir) are eliminated. This pro-
cedure allows reducing the number of combinations with a PREScomb < 0 and
avoiding the analysis for the rejection of the corresponding service(s).

3. Initial population: It is recommended that the population (denoted as PGA) has
hundreds or thousands of chromosomes to guarantee diversity in solutions [104]. In
this regard, a preliminary analysis in [14] has demonstrated that if the number of
combinations is lower than or equal to 2401 (a situation that occurs when ui = 3
and N = 4), the exploration of the entire search space can be performed in less
running time (e.g., units of seconds or less). Based on this reference and after
preliminary tests (tests applied to set other parameters of the algorithm) on the
quality of the solutions produced, the initial population size has been set at a
maximum of 1500 non-repeated combinations, which are generated by randomly
choosing the variations (valid) of each class Vi. In the case that the theoretical
number of combinations

(
(2×ui+1)N

)
is lower than 1500, all possible combinations

are used in the population. The population size remains constant for the rest of the
algorithm steps.

4. Evaluation of fitness function: The fitness function in the adaptive energy man-
agement is represented by the cost function Costcombf , which is computed for all
combinations in the population. If within the initial population there are combi-
nations that produce a desired performance metric or threshold (e.g., PRES = 0 or
a given Costcombf ), the combination with the best value (e.g., minimum Costcombf )
is chosen, and immediately the energy is allocated to the respective variations.
Otherwise, the algorithm continues to iteratively create and analyze generations of
combinations to obtain better values of Costcombf .

5. Reproduction and offspring generation: For reproduction, 70% of the population
(ensuring an even number of combinations) with the minimum cost function values
(Costcombf ) is chosen to create the parent set (i.e., following an elitist approach).
The combinations in this set are randomly selected to form pairs. At this point,
the number of pairs is half the number of combinations of the paternal set because
a parent can only participate in one pair at a time. Each pair produces two child
solutions created by mixing the variation of progenitors and randomly using one
of the three established crossover operators (one-point, multipoint, and uniform
crossover operators). Figure 5.7 shows an example of obtaining offspring and the
application of crossover operators.

Twenty percent of the offspring obtained are affected by the mutation process. A
mutation operator is applied to each solution (combination) of this group, which
that affects approximately 20% (genes) of the variations. Usually, the mutation op-
erator randomly exchanges/flips some genes in the analyzed chromosome. However,
in the context of the proposal this procedure is performed by selecting a different
variation from the one analyzed in the class Vi; an example is shown in Figure 5.7.
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Throughout generating offspring and applying genetic operators, the created and
mutated solutions (children) are conditioned to be different from the combinations
of the current population (parents) to guarantee diversity in the search space.
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Figure 5.7: Example of crossover and mutation operators in
the Genetic Algorithm for N = 8 services.

6. Survival of the fittest: Following an elitist approach, the combinations with the
minimum Costcombf s values from the parent and offspring sets are selected to build
the next generation of individuals (of the same size as the current population PGA).
The algorithm then continues the iterative process until any of the following stop
conditions is met: (i) reach the maximum number of generations Gmax, which in
the strategy is fixed to 20 generations based on previous validation of solutions,
(ii) obtain at least a combination with PREScomb = 0 (i.e., ensure the utilization of
all available supply), or (iii) obtain a relative change in the value of the PREScomb

lower than the tolerance function, which has been set as 1% of the PREScomb of the
previous generation.
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The complexity of GATs depends on the number of variations analyzed and the combi-
nations explored over generations, as summarized in Eq. 5.32. The process of exploration
of combinations is dominant in Eq. 5.32 and reveals that the growth rate of the algo-
rithmic strategy can be: (i) exponential for values of N and ui that produce a number
of combinations smaller than 1500 (e.g., for N = 4 and ui = 2) or (ii) polynomial if
the population remains constant (1500 combinations) and there are variations (increases)
in the number of generations used to reach feasible solutions. In a particular case, the
growth rate of GATs can be linear if the number of generations remains constant as
analyzed services increase.

f(L,N, ui) = N +
(
(2×N × ui +N) + PGA × Gmax

)
× L (5.32)

5.3.0.3 Dynamic Programming Strategy: DPTs

Dynamic programming (DP) is a mathematical technique that solves a complex problem
optimally or sub-optimally by breaking it into simpler subproblems. Then, each of those
subproblems is solved (optimally) just once, and their solutions are stored (in a data
structure, e.g., an array) so that they can be used (repeatedly if necessary) to solve the
original problem. DP can be applied when a solution to a problem can be recursively
described in terms of solutions to subproblems (i.e., when the subproblems overlap) [106].
For instance, in a naive recurrent Fibonacci computation, the same values are computed
repeatedly for each new number. A simple computation for the second and third Fi-
bonacci numbers requires the computation of the first Fibonacci number twice (one for
the second and one for the third). DP solves this issue by storing the already computed
values so that the second time they are needed, they can be obtained immediately. In
addition, since the subproblems are interrelated, the final solution can be obtained easily
using a traceback process through the partial solutions. A variety of computational and
optimization problems can be addressed using DP approaches, including solving MMKP
[107].

The storage of partial solutions in DP provides high-quality results (optimal or subop-
timal) and reduced time (complexity) compared to other methods such as brute force
strategies [106]. There are two ways to store the partial solutions so that these values can
be reused: (i) a bottom-down approach, also known as tabulation, that iteratively solves
all subproblems and uses their solutions to fill up a table (a data structure whereby start-
ing from the first entry, all entries are filled one by one), then, the stored results in the
table are used to compute the solution to the original problem (or bigger subproblems);
and (ii) a top-down approach, also known as memoization, that also uses a tabular form
to store partial solutions but differs from the tabulation approach because the table is
filled on-demand. Before solving a subproblem in the top-down approach, the algorithm
will search for its solution in the lookup table. If the solution has been stored, this result
can be directly used; otherwise, the problem is solved, and its solution is stored in the
table so that it can be used later.

The computational implementation of tabulation is based on an iterative method; in-
stead, memoization exploits recursivity. If a certain problem requires all subproblems to
be solved (as in the case of adaptive energy management, in which all services (variations)
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must be analyzed to determine the set of N services that minimize PRES), tabulation usu-
ally outperforms memoization. This is because the former has no overhead for recursion,
and the required solutions can be directly retrieved from values in the table. Moreover,
tabulation has been proven to be an effective DP method for solving knapsack prob-
lems [108]. Based on this information, a tabulation-based approach has been chosen for
implementing the proposed DP algorithmic strategy.

In the context of adaptive energy management, the DP-based strategy, defined as DPTs
progressively analyses variations, and by means of a tabulation approach, it selects the
ones that enable PRES minimization while maximizing the AR. The algorithmic strategy
is explained in Fig. 5.8, and the main steps carried out are summarized below.

1. Analysis of services and variations: Like the GreedyTs approach, the strategy
DPTs focused on the analysis of variations (instead of combinations) for each pri-
ority level. As the first step, the algorithm computes the variations of services
within the corresponding time-shifting intervals. Then, the variations that individ-
ually produce a negative residual power (Presir) are eliminated. This procedure,
by reducing the search space for the best variations, contributes to speeding up the
execution of the algorithm.

Once the variations are validated, the algorithm sorts them based on the increasing
value of the starting time (ti). This criterion aims to maximize energy use and
considers the time evolution of the available energy resource (i.e., T PES

init and m).
Thus, an efficient allocation in the first (earlier) services will promote a greater
remaining available power (more freedom to select variations that minimize the
PRES) for the subsequent services. At this point, the strategy DPTs selects the
variation with the lowest starting time (i.e., the first one) from the sorted list
sortedV arList and processes all concurrent/simultaneous variations (DPV ar). A
variation is considered concurrent if executed (coexits) within the lifetime (di) of
the variation under analysis. The idea is to analyze a set of concurrent variations
instead of individual variations and solve them using a DP method in the next step
of the algorithm. Given that the DPTs algorithmic strategy progressively analyzes
groups of simultaneous variations instead of all possible variations for practicality
and to reduce the complexity of the associated search, the solution produced by
the strategy is not optimal. However, studies prove that DP applied to MMKP
can deliver high-quality approximate or suboptimal solutions reasonably quickly
(compared to other methods such as brute-force) [109].

2. Dynamic programming tabulation and the selection of processed variations: In this
step, the algorithm applies DP to the concurrent variations to select the ones whose
execution optimizes PRES and maximizes AR. For the implementation of DP, the
algorithm uses a tabulation method and considers the energy resource that coexists
with the time slots of variations analyzed. Figure 5.9 shows an example of the
application of DP for a set of seven variations that belong to four services.
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Figure 5.8: Flow chart of DPTs.

To carry out DP on variations, the algorithm starts by creating a table with a
number of rows equal to the energy capacity per time slot K plus one unit (e.g.,
PES[k] + 1 = 3 + 1 for time slot 10 in Fig. 5.9) and with a number of columns
equal to the number of concurrent variations plus one unit (e.g., n +1 = 4 +1 in
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Fig. 5.9). A rigorous implementation of the energy model described in Section 5.1.2
requires that the algorithm performs the DP method for each slot k. In this case, the
algorithm determines the processed variations based on the results obtained during
all time slots analyzed. A variation is considered as processed if the algorithm
(using a DP method) can allocate energy for all time slots in which it exists (i.e.,
for di). Moreover, for a more exhaustive assessment of processed variations, the
algorithm DPTs can include a simple greedy-based method that verifies the power
demanded by each processed variation and the remaining available power. In the
event that the level of PES remains constant during all time slots analyzed (as shown
in Fig. 5.9), the algorithm could simplify the DP analysis to the first time slot (time
slot 10 in the example), which can speed up the exploration of optimal variations
of services. In any of the cases, before carrying out the DP, the algorithm evaluates
the generation and consumption conditions for the set of variations analyzed.

In the created DP table, the rows with identifier a represent all possible values of
available power (i.e., 0 ≤ a ≤ PES). In contrast, the columns with identifier b
correspond to the individual information of variations (i.e., 0 ≤ b ≤ n ), including
the information when no variation is selected (the first column). Based on the
adaptation of the DP method to solve MMKP [107], the entries in the table of
strategy DPTs correspond to the cumulative optimal value or profit due to the
selection of variation(s) respecting the maximum energy capacity. The individual
value linked to each variation (service) is identified as vb, and the entry stored in
the table in row a and column b is denoted as V [a, b]. The value vb in the proposed
strategy DPTs is assigned according to the priority level of the variation in analysis
so that a higher value is assigned to a higher priority (e.g., vb = L if qb = 1). If all
the concurrent variations have the same priority level, the value vb is unique and
is set to one (i.e., vb = 1∀b ∈ n, as shown in Fig. 5.9). An alternative criterion
to establish the vb value could be based on a cost function or metric (e.g., PRES)
that indicates the impact on energy use due to the selection (processing) of certain
service(s).

The strategy DPTs systematically fills up the table colum by colum (i.e., one service
at a time, from 0 up to n). For each column b, the algorithm progresively analyses
each row a (from 0 up to PES) and assesses the selection (or not) of the variation
with identifier b so that the value of the entry V [a, b] corresponding to the selected
variation(s) n̂, with n̂ ⊂ n (i.e., V [a, b] =

∑
b∈n̂ vb) is maximized (optimal). In each

row a, the algorithm verifies that the power demanded by the selected variation(s)
fits the available energy capacity. Moreover, in each column and corresponding row,
the algorithm verifies if the value for the entry V [a, b] has been already computed
in the previous column to avoid recomputation of the same value (i.e., using stored
values to solve greater subproblems). This condition gives the bottom-up approach
to the tabulation method and makes the space memory and running time rather
efficient. In summary, the computation of any entry V [a, b] depends on the power
demanded and values of the variations in column b, and values in the previous
column of the table, as established by Bellman’s equation [106], that adapted to
the context of the strategy DPTs is shown in Eq. 5.33.

At the end, of the exploration of all entries, the best possible cumulative value is
stored at the bottom right corner of the table (i.e., at V [ath, bth]). In the example in
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Fig. 5.9, the best value is equal to three, which indicates that three variations (ser-
vices) have been processed, and in this particular case, they use the PES optimally.
To identify the variations that have been selected (processed), the algorithm uses
a traceback method, in which, one by one, the columns (variations) are analyzed.
The process starts with the value at entry V [ath, bth]; this value is compared to the
value at entry V [ath, bth−1]. If these values are different, the algorithm has selected
the variation in column bth. Then, the next entry analyzed is V [(ath−pbth , bth−1], and
the value in this entry is compared with the one of the previous column (same row).
The process continues progressively until the algorithm reaches the beginning of the
table (i.e., the upper left corner). In the example, in Fig. 5.9, the services S1, S3,
and S4 are processed.

V [a, b] =


0 if n = 0 or PES = 0,
max

{
vb−1+V [a−pb−1, b−1],V [a, b−1]

}
if pb−1 < a,

V [a, b− 1] otherwise.

(5.33)
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Figure 5.9: Example of application of the Dynamic Programming Algorithm
for N = 4 services.

3. Service scheduling: The selected variations and all others beloging to the processed
services (because a service can produce several variations) are removed from the
sortedV arList. Then, the algorithm proceeds to reorder the remaining variations
based on the increasing value of ti. The selection of variations through PD is
executed progressively until the energy resource is not available or until all variations
and levels of priority have been explored. At the end the algorithm presents the
metrics PRES, AR, and PLACK .
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The literature has demonstrated that a tabulation-based DP can solve an MMKP in
pseudopolynomial time because a solution boils down to filling in values in the DP table
(using two nested for loops) and each row is typically computed in constant time. Even
DP for MMKP can deliver a polynomial time if the number of items to be packed into the
knapsack is small [110]. Consequently, the complexity in the proposed strategy DPTs
is pseudopolynomial. Specifically, the growth rate of DPTs depends on the maximum
values of N , ui, and mainly on the progressive DP analysis of the set of concurrent
variations DPV ar, as shown in Eq. 5.34.

f(L,N, ui) = N + ((2×N × ui +N) +N ×DPV ar)× L (5.34)

5.3.0.4 Prepartitioning Strategy

Preliminary tests on the heuristic strategies (which are discussed in detail in Section 5.4)
have demonstrated high-quality results in energy use and reduced running time com-
pared to OptTsCost (optimal solution) with applicability to scenarios in the range of
thousands of energy demands. However, to further scale up the applicability of energy
management to IoT scenarios with dozens or hundreds of thousands of services in this
section, we propose a complementary method that could be applied to OptTsCost,
as well as to GreedyTs, GATs, and DPTs to improve their performance in terms of
scalability. The proposed idea is the application of a prepartitioning method on services.
Inspired by a divide-and-conquer approach, a well-known design technique proven to pro-
duce efficient solutions with little or no loss of accuracy [111], the proposed prepartitioning
method aims to iteratively analyze smaller subsets of simultaneous services instead of the
original set of energy demands. These subsets are then solved using algorithmic strate-
gies (optimal or heuristics), and their partial solutions are combined to obtain adaptive
energy management for the original problem.

The prepartitioning method applied to the proposed algorithmic strategies is explained
in Fig. 5.10. In this method, the total number of partitions is denoted as NumPart
(1 < NumPart ≤ N), partitionz (subset of services, partitionz ⊂ N), which has a length
lenPartz. This length can be the same (or approximately the same) for all partitions, or
it can be different for each partition depending on factors such as the priority of services,
application scenario, or other specific objectives required in energy management. In any
case, the reduction of search space in the partition domain contributes to reducing the
complexity of the original strategy, either optimal or heuristic. Iteratively, each partitionz

is solved by the selected algorithmic strategy. All partitions are resolved by the same
algorithm, although a hybrid strategy (e.g., the joint application of DP and GATs) may
be considered in future work. Once all the partitions have been solved, or the PES has
been allocated, the prepartitioning method delivers the scheduling (suboptimal) for all
N services and the metrics PRES, AR, and PLACK . In summary, the application of
the prepartitioning method on OptTsCost, GreedyTs, GATs, and DPTs originates
four additional heuristic strategies that are identified in this paper as OptTsCostPart,
GreedyTsPart, GATsPart, and DPTsPart, respectively. Regarding the complexity,
Eq. 5.35 summarizes the growth rate related to the application of the prepartitioning
method. In this expression, the third term is dominant and represents the cumulative
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complexity of solving all NumPart partitions by the selected strategy.

f(L,N, ui) = N + (2×N × ui +N)× L+
NumPart∑

z=1

StratPartz (5.35)

Selection of the algorithmic strategy:
OptTs / DPTs / GATs / DPTs

(same algorithm for all partitions )

Merging of partial results: The best combination of 
variations that produce the minimization of the PRES

Start

Sorting of services based on	𝑞!, from j =1 up to j=L
Computation of variations ∀𝑆!, 𝑖 ∈ 1,⋯ , 𝑁 within 

the interval {𝑡! −	𝑢!,⋯, 𝑡!, ⋯, 𝑡! +	𝑢!}
Validation of variations with non-negative 	𝑃"#$s

End

Input parameters: 𝑃#$, 𝑇!%!&'#$, m, W, 𝑁,
L,	𝑆!, 𝑡!, 	𝑑!, 	𝑝!, 	𝑞!,	𝑢!, j=1

partitionz , lenPartz , numPart, z = 1 

Final metrics: PRES , AR, PLACK

All partitions or
PRES ≤ 0

Yes

No

z = z + 1
𝑃#$ update
(𝑃!" = PRES )

Analysis of partitionz:
Selection of services (variations) of partitionz

Energy allocation for services (variations) of 
partitionz

Computation of PRES

Figure 5.10: Flow chart of the prepartitioning method applied to
the algorithmic strategies.

5.3.0.5 Adaptation of Algorithmic Strategies for Online Scenarios

Adaptive energy management can be implemented for offline or online approaches. In the
offline approach, the service scheduling strategies, as shown in Section 5.2, Section 5.3.0.1,
Section 5.3.0.2, and Section 5.3.0.3, know in advance all generation and consumption
parameters, and they are capable of performing both backward and forward time-shifting
on services. The offline approach can be used to plan the distribution of energy resources,
reshape the load profile (e.g., reduce peak loads), and prioritize the use of renewable
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energy sources, which can produce a reduction of overall operational cost and carbon
emission levels and promote sustainability in the generation and consumption ecosystem
[9]. Instead, in the online approach, the service scheduling algorithmic strategies have
no future information about generation and consumption; the services are processed as
time evolves, and only the forward time-shifting can be applied to services. The online
approach represents the real-time dynamic of provisioning and consumption in which
adaptive energy management must be performed. In this regard, this section presents the
online version of the proposed service scheduling strategies, including the prepartitioning
method. Fig. 5.11 explains the generic algorithm for adapting the developed service
scheduling strategies (optimal and heuristics) for online applications. The main steps
and additional features performed are described below.

1. Initial analysis of services: The online implementation of service scheduling strate-
gies starts with the differentiation of the energy resources for the processing of CS
(PCS) and NCS (PNCS). The proposed strategy assumes that once the service is
accepted (in its first slot), there is PES for its completion (the model does not accept
fractional processing, as discussed in Section 5.1.1). An additional feature for the
online approach is the inclusion of a list named waitingList, which stores informa-
tion on the variations of services that were not processed in their original starting
time (ti). This is due to energy allocation to higher-priority service(s).

2. Analysis for CS: If service Si at time slot k is identified as a CS, the strategy
allocates the demanded energy resource. Later, the strategy updates the PCS for
the rest of CS.

3. Analysis for NCS: If service Si at time slot k is identified as an NCS, the strategy
performs a similar analysis as for the offline approach, considering the variation
at time slot k, the simultaneous variations with the variation in analysis, and the
variations in waitingList. In this regard, a variation is considered simultaneously
if it exists within the lifetime (di) of the analyzed variation (service) at time slot k.
Once the strategy selects the best combination/variation, the energy allocation is
made, and the energy resources for subsequent NCS are updated.

4. Final metrics: After analyzing all services at the time horizon W , the strategy
delivers the performance metrics.

5.4 Evaluation

This section evaluates the performance of both the energy model and the proposed algo-
rithmic strategies through extensive simulations. Different generation and consumption
profiles and several scenarios have been used to show the benefits of energy use in terms
of proposed metrics and the applicability of developed algorithmic strategies.
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Figure 5.11: Flow chart of the adaptation of the service scheduling strategies
for an online approach.

5.4.0.1 Simulation setup

The algorithmic strategies have been implemented on Matlab R2018b and running on a
machine with a 3.33 GHz ×12 cores Intel Core i7 Extreme processor and 24 GB RAM.
The simulations leverage parallel processing with the concurrent use of up to 6 cores. The



Chapter 5. Algorithmic Strategies for Adaptive Energy Management 91

results obtained of metrics PRES, AR, and PLACK are compared to the benchmark scenario
in which no management mechanism is applied (i.e., no time-shifting, prioritization, or
rejection) [112].

5.4.0.2 Description of Generation and Consumption Profiles for Simulated
Scenarios

• Generation and consumption profiles: To analyze the performance of the proposed
algorithmic strategies in different generation and consumption conditions, four pro-
files have been considered. In these profiles, the total available energy is equal to
the total energy demand. The profiles are summarized in Fig. 5.12 and Fig. 5.13a
and are described below.

– Profile I: This profile allows the analysis of the performance of service schedul-
ing strategies in total desynchronization periods of energy supply and con-
sumption (i.e., during periods of scarcity and abundance of power), as shown
in Fig. 5.12a. In this case, the PES is consumed only if time-shifting is ap-
plied to services. Moreover, in Profile I and Profile II, a flat-supply profile
(representing a realistic generation scenario, as studied in [113]) has been cho-
sen for simplicity in the analysis. However, the algorithmic strategies have no
restrictions working with any demand and supply profile if needed.

– Profile II: This profile simulates a peak demand due to high load, as shown in
Fig. 5.12b. Moreover, in this profile, services with random values of pi and di
have been considered to simulate a more realistic consumption scenario.

– Profile III: This profile allows for the analysis of the performance of scheduling
strategies in a futuristic environment 100% powered by green energy sources.
This is a very promising approach to tackle sustainability issues, increasing
carbon emissions due to generation and cosumption of non-renable energy
sources, and is an important requirement for deploying the IoE [12]. In this
profile, as shown in Fig. 5.12c, the services have random values of pi and di
and are partially desynchronized with the PES. Moreover, the supply follows
a Gaussian distribution to simulate the renewable generation patterns (e.g.,
through photovoltaic panels), as shown in [114].

– Profile IV: This profile allows for the analysis of the application of the heuris-
tic scheduling strategies in a HEMS. Figure 5.13a shows the supply and con-
sumption profiles for the simulated HEMS. The consumption of 20 services
(appliances) is adapted from [115], constrasted with the data in [116], and
summarized in Table 5.1.

• Scenario description: Using the profiles described above, seven application sce-
narios have been analyzed, summarized in Table 5.2. According to N , because this
parameter is directly related to consumption and has a direct impact on complexity,
as analyzed in Section 5.2 (Eq. 5.30), the scenarios are grouped in three categories:
(i) small-scale scenarios, for N ≤ 20 services in which both optimal and heuristic
strategies have been analyzed, except for the HEMS in which only heuristics are
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Table 5.1: Description of consumption for a HEMS scenario.

Load description Quantity pi[W] ti[Hour] di[Hour] qi

Freezer 1 210 0 24 1
Refrigerator 1 650 0 24 1

Oven 1 1800 16 3 3
Lighting 9 25 17 7 1

TV 1 140 18 5 1
Laptop 1 90 17 5 1

PC 1 140 18 6 1
Vacuum Cleaner 1 600 19 3 1

Water Heater 1 2000 17 6 2
Air-Conditioner 1 1280 14 7 2

Washing Machine 1 1350 19 3 3
Dishwasher 1 1250 18 3 3
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Figure 5.12: Power supply and consumption profiles for simulated scenarios of service
scheduling strategies.

applied; (ii) large-scale scenarios for 20 ≤ N ≤ 104 services in which only heuristics
are evaluated, including a online scenario for N = 102 services (i.e., other scenarios
in Table 5.2 are offline); and (iii) very large-scale scenarios for 104 ≤ N ≤ 106

services in which only the prepartitioned versions of GreedyTs and DPTs are ana-
lyzed. In all scenarios, the generation conditions are adapted to the consumption of
N services (PES ≥ PD). Moreover, in scenarios in which random values (e.g., pi and
di) or conditions (e.g., in GATs) are used, the simulations have been repeated 20
or 50 times considering a confidence interval of 95%, to ensure stability of results.

5.4.0.3 Analysis of Results in Small-scale Scenarios

This section presents the evaluation of the algorithmic scheduling strategies, both opti-
mal and heuristics, in small-scale scenarios (first four scenarios in Table 5.2) based on
the results of performance metrics (mainly AR), running time, and RAM and CPU us-
age in the simulation domain. To obtain the prepartitioned version of OptTsCost,
GreedyTs, GATs, and DPTs (e.g., OptTsCostPart or GreedyTsPart) two par-
titions have used. Moreover, the results from heuristics are compared with the optimal
bounds deliver by OptTsCost.
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Figure 5.13: Profile IV: Power supply and consumption profiles in the HEMS.
Parameters: According to Table 5.1

Table 5.2: Summary of simulation parameters.

Scenario W N Size Profile di pi qi max{ui}

I 12 8 Small I 1-3 ∀Si 1 ∀Si 1 ∀Si ±6 ∀Si

II 12 6 Small II
Uniform distribut.

random value[1-3], ∀Si

Uniform distribut.
random value[1-3], ∀Si

1 ∀Si ±4∀Si

III 14 8 Small III
Uniform distribut.

random value[1-3], ∀Si

Uniform distribut.
random value[1-3], ∀Si

1 ∀Si ±4∀Si

IV
(HEMS)

24 20 Small IV According to Table 5.1

V 24
102

103

104

Large
III

adapted to
N and W

Uniform distribut.
random value[1-3], ∀Si

Uniform distribut.
random value[1-3], ∀Si

1 ∀Si ±10∀Si

VI
(Online)

24 102 Large
III

adapted to
N and W

Uniform distribut.
random value[1-3], ∀Si

Uniform distribut.
random value[1-3], ∀Si

1 ∀Si +10∀Si

VII 24
105

106

Very
Large

III
adapted to
N and W

Uniform distribut.
random value[1-3], ∀Si

Uniform distribut.
random value[1-3], ∀Si

1 ∀Si ±10∀Si

Figure 5.14 and Table 5.3 show the simulation results deliver by optimal and heuristics
strategies in Scenario I. While, Fig. 5.15, Fig. 5.16, and Fig. 5.18 present the evaluation of
OptTsCost, GreedyTs, GATs, and DPTs in Scenarios II, III and IV, respectively.
The simulation results report that as the value of ui increases, decreases the values of
PRES (e.g., in Fig. 5.14a) and PLACK (e.g., in Fig. 5.14c) and increases the value of
AR (e.g., in Fig. 5.14b). These values indicate that through the use of management
mechanisms such as time-shifting, the algorithmic strategies can adapt energy demands
to availability, being able to make an optimal use/consumption (e.g., 100% in Scenario I)
of the energy produced (i.e., PRES minimization) while allowing the processing of services
(ECs) that under normal conditions (i.e., without management mechanisms) would be
rejected. Consequently, the simulation results indicate that applying the proposed energy
model through the algorithmic strategies such as OptTsCost promotes better use and
distribution of PES, and potential reduction in peak consumption and energy costs.

Because the metric AR is a direct indicator of energy utilization and service processing,
and for practicality in the presentation of results, only the maximum value of this metric
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(i.e., using the max{ui}, e.g., max{ui} = 4 in Scenario II) is presented for strategies with
prepartitioning. Table 5.4 summarizes the values of AR for all optimal and heuristics
strategies in small-scale scenarios. The maximum AR values (Final AR) obtained by the
algorithmic strategies in all scenarios show improvements (AR Gain) over 15% (i.e., 15%
more services processed) compared to the baseline case (if ui = 0). Depending on the
scenario and the strategy used, the improvements can reach 100%, such as in DPTs in
Scenario I. Table 5.4 reports that the heuristic strategy that delivers the best AR gains in
all scenarios is GATs (using in all cases a number less than 10 generations), with values
that are the same or very similar to those obtained with OptTsCost (whose results are
optimal). Moreover, Table 5.4 shows a minimum difference between the values of AR
produced by the original strategies and their version with prepartitioning; in the worst
case for GATsPart in Scenario II, this difference with GATs is less than 11%.

For the evaluation in a HEMS, only heuristic approaches have been considered due to
the complexity of OptTsCost for values of N > 8 services or of ui > 6 time slots. This
scenario also allows us to analyze the performance of the heuristic strategies for energy
demands with different priority levels, as shown in Table 5.1. Regarding the AR value
reached in this scenario, although the percentage of improvement is lower than the rest of
the scenarios in Table 5.4 (between 15% to 20%), the adaptation of consumption patterns
to PES, by the heuristic strategies, allows a reduction of peak power by more than 55%
(from 8000W down to 3500 W, as shown in Fig. 5.13b) and obtain an AR = 100% such
as reported the results for GATs.
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(c) Scenario I: PLACK OptTsCost.

Figure 5.14: Performance evaluation of OptTsCost in Scenario I.
Parameters: According to Table 5.2.
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Table 5.3: Performance evaluation of optimal and heuristic strategies in Scenario I.

Metric ui
di = 1 di = 2 di = 3

OptTsCost GreedyTs GATs DPTs OptTsCost GreedyTs GATs DPTs OptTsCost GreedyTs GATs DPTs

PRES

0 1 1 1 1 1 1 1 1 1 1 1 1
1 0.50 0.50 0.50 0.50 1 1 1 1 1 1 1 1
2 0 0 0 0 0.50 0.50 0.50 0.50 1 1 1 1
3 0 0 0 0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
4 0 0 0 0 0 0 0 0 0.50 0.50 0.50 0.50
5 0 0 0 0 0 0 0 0 0.50 0.50 0.50 0.50
6 0 0 0 0 0 0 0 0 0 0 0 0

AR

0 0 0 0 0 0 0 0 0 0 0 0 0
1 50 50 50 50 0 0 0 0 0 0 0 0
2 100 100 100 100 50 50 50 50 0 0 0 0
3 100 100 100 100 50 50 50 50 50 50 50 50
4 100 100 100 100 100 100 100 100 50 50 50 50
5 100 100 100 100 100 100 100 100 50 50 50 50
6 100 100 100 100 100 100 100 100 100 100 100 100

PLACK

0 1 1 1 1 1 1 1 1 1 1 1 1
1 0.50 0.50 0.50 0.50 1 1 1 1 1 1 1 1
2 0 0 0 0 0.50 0.50 0.50 0.50 1 1 1 1
3 0 0 0 0 0.50 0.25 0.50 0.25 0.50 0.50 0.50 0.50
4 0 0 0 0 0 0 0 0 0.50 0.33 0.50 0.33
5 0 0 0 0 0 0 0 0 0.50 0.17 0.50 0.17
6 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 5.15: Performance evaluation of optimal and heuristic strategies
in Scenario II. Parameters: According to Table 5.2.
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Figure 5.16: Performance evaluation of optimal and heuristic strategies
in Scenario III. Parameters: According to Table 5.2.

To quantitatively evaluate the difference, in terms of AR, between the optimal strat-
egy and the heuristics, the criterion of approximation ratio (ρ) has been adopted [117].
This parameter estimates how many times bigger the approximate result is compared to
the optimal solution. Adapted to the conditions of the proposed energy model, the ρ
parameter is defined by:

ρ = 1− 1

max{ui}

max{ui}∑
b=1

|Optb − SubOptb|
disOptb

(5.36)

disOptb =

{
1 if Optb = Opt0,
|Optb −Opt0| if Optb 6= Opt0.

(5.37)

where, the first term in Eq. 5.36 represents the optimal solution, while the second term
corresponds to the mean absolute error of all time-shifting values, except for ui = 0. In
Eq. 5.36, each absolute error b is weighted to the disOptb parameter (Eq. 5.37), which
represents the maximum distance between the optimal value (Optb) and the baseline
value (Opt0, when ui = 0), to obtain the proportional error of each time-shifting b. The ρ
parameter ranges from 0 to 1, and this latter is produced if the optimal and suboptimal
values are equal. An intermediate ρ value represents the similarity or closeness factor to
the optimal solution (e.g., DPTs = OptTsCost × ρ). For a better understanding
of ρ factor, Fig. 5.17 presents an example for DPTs in Scenario II. Eq. 5.38, shows the
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analytical computation.
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Figure 5.17: Difference of AR values of OptTsCost and DPTs in Scenario II.

ρAR = 1− 1
4
×
(

77−67.3
77−55

+ 90−80.3
90−55

+ 94.6−88.3
94.6−55

+ 95.3−92
95.3−55

)
= 0.76 (5.38)

The result in Eq. 5.38 shows that DPTs is similar to OptTsCost in a factor equal to 0.76
(76% similarity), or that DPTs is able to produce a solution that is within ∼ 1.3× the
optimal result. Table 5.5 summarizes the ρ factors for small - scale scenarios and reveal
that the heuristics strategies produces near-optimal or optimal solutions and a stable
performance. In the worst case (ρAR = 0.70 for DPTs in Scenario II), the heurisctic
strategy is within only ∼ 1.4× the optimal solution.
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(b) Scenario IV (HEMS): AR
heuristics.
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Figure 5.18: Performance evaluation of optimal and heuristic strategies
in Scenario IV. Parameters: According to Table 5.2.



Chapter 5. Algorithmic Strategies for Adaptive Energy Management 98

Table 5.4: Maximum value of AR achieved by algorithmic strategies in small-case
scenarios.

No Strategy OptTsCost OptTsCostPart GreedyTs GreedyTsPart GATs GATsPart DPTs DPTs Part

Scenario Initial
AR

Final
AR

AR
Gain

Final
AR

AR
Gain

Final
AR

AR
Gain

Final
AR

AR
Gain

Final
AR

AR
Gain

Final
AR

AR
Gain

Final
AR

AR
Gain

Final
AR

AR
Gain

I 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
II 55 95.33 40.33 94 39 89 34 88.66 33.66 95.33 40.33 91 36 92 37 89.66 34.66
III 14.25 71.5 57.25 71.5 57.25 66.50 52.25 66.50 52.25 71.25 57 70 55.75 61.75 47.5 61.75 47.5
IV 80 - - - - 95 15 95 15 100 20 95 15 95 15 95 15

Table 5.5: Approximation ratio of heuristic strategies in small-scale scenarios.

Strategy
Scenario I Scenario II Scenario III

d1 d2 d3 di, pi di, pi

GreedyTs 1 1 1 0.72 0.90
GATs 1 1 1 0.97 1
DPTs 1 1 1 0.76 0.88

OptTsCostPart 1 1 1 0.97 1
GreedyTsPart 1 1 1 0.71 0.90

GATsPart 1 1 1 0.76 0.99
DPTsPart 1 1 1 0.70 0.87

Regarding the running time, the evaluation results for the original strategies and those
adapted to the prepartitioning method are summarized in Table 5.6 and Table 5.7, re-
spectively. The results in Table 5.6 and Table 5.7 report that the heuristic strategies are
executed (with a relative gain in time GR) between two and seven orders of magnitude
faster than OptTsCost. Moreover, the running time of the prepartitioned versions are
slightly higher than the original verisons (i.e., of GreedyTs, GATs, and DPTs), this
due to the iterative process of the partitions and the subsequent union of partial solu-
tions. This condition indicates that for small-scale scenarios, in terms of running time,
it is preferable to apply the original heuristic strategies instead of their versions with
prepartitioning.

To better describe the difference in running time and computational resources used by op-
timal and heuristics strategies, we have performed the analysis for Scenario I considering
only the maximum value of time-shifting (i.e., ui = 6∀Si) and varying the services (i.e.,
1 ≤ N ≤ 8). The evaluation results in Fig. 5.19 for a sigle iteration report that: (i) the
running time of the heuristics is at least two orders of magnitude less than OptTsCost
(see Fig. 5.19a, as indicated in Table 5.6 and Table 5.7, (ii) that the use of the RAM of
the heuristic strategies is between 2% and 3% of the amount used by OptTsCost (see
Fig. 5.19b), and (ii) that the CPU usage of the heuristics is between 4% and 40% of the
resource used by OptTsCost (see Fig. 5.19c).

In summary, the simulation results in this section report that the original and prepar-
titioned heuristic strategies produce high-quality solutions that outperform the optimal
solution in terms of running time, and RAM and CPU usage. This features enable that
heuristic strategies when deployed in NFV domain (or a similar computing facility e.g.,
a HEMS or a fog computing domain) can be applied for adaptive energy management in
small-scale scenarios.
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Table 5.6: Running time in seconds of algorithmic strategies and GR of heuristics
concerning OptTsCost in small-case scenarios.

Scenario
OptTsCost GreedyTs GATs DPTs

Running time Running time GR Running time GR Running time GR

I 1.88× 106 2.37× 10−1 ∼ 7.93× 106x 8.10× 100 ∼ 1.33× 105x 1.69× 10−1 ∼ 1.11× 107x
II,

50 iterations
2.89× 104 8.72× 100 ∼ 3.31× 103x 1.93× 102 ∼ 1.50× 102x 8.82× 100 ∼ 3.27× 103x

III,
50 iterations

1.41× 106 7.39× 100 ∼ 1.90× 105x 2.07× 102 ∼ 6.81× 103x 7.17× 100 ∼ 1.97× 105x

IV (HEMS) — 2.96× 10−1 — 2.10× 101 — 9.69× 10−1 —

Table 5.7: Running time in seconds of algorithmic strategies considering prepartition-
ing and GR concerning OptTsCost in small-case scenarios.

Scenario
OptTsCost OptTsCostPart GreedyTsPart GATsPart DPTsPart

Running time Running time GR Running time GR Running time GR Running time GR

I 1.88 · 106 3.76 · 101 ∼ 5.00 · 104x 8.62 · 10−1 ∼ 2.18 · 106x 4.28 · 101 ∼ 4.39 · 104x 8.74 · 10−1 ∼ 2.15 · 106x
II,

50 iterations
2.89 · 104 2.15 · 101 ∼ 1.34 · 103x 1.14 · 101 ∼ 2.54 · 103x 8.82 · 100 ∼ 3.27 · 103x 1.42 · 101 ∼ 2.04 · 103x

III,
50 iterations

1.41 · 106 1.74 · 102 ∼ 8.10 · 103x 1.04 · 101 ∼ 1.36 · 105x 7.17 · 100 ∼ 1.97 · 105x 1.09 · 101 ∼ 1.29 · 105x

IV (HEMS) — — — 3.38 · 10−1 — 9.69 · 10−1 — 5.94 · 10−1 —
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(a) Running time of algorithmic strategies
in Scenario I, for ui = 6 ∀Si, varying N ,

and using a single core.

1 2 3 4 5 6 7 8

Number of services

0

10

20

30

40

50

60

R
A

M
 (

%
)

4 5 6 7 8

1.2

1.3

1.4

1.5

1.6

(b) RAM usage of algorithmic strategies in
Scenario I, for ui = 6 ∀Si, varying N , and
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(c) CPU usage of algorithmic strategies in
Scenario I, for ui = 6 ∀Si, varying N , and

using a single core.

Figure 5.19: Example of performance evaluation of algorithmic strategies according
to the running time and RAM and CPU usage (single core) in small-scale scenarios.
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5.4.0.4 Analysis of Results in Large and Very-large Scenarios

This section presents the evaluation of the heuristic strategies in large-scale and very-
large-scale scenarios (scenarios V, VI, and VII in Table 5.2) based on the results of per-
formance metrics (mainly AR), running time, and RAM and CPU usage in the simulation
domain. To obtain the prepartitioned versions of heuristic strategies, the number of par-
titions in each scenario and for each value of N is such that the length of each partition
is equal to 10 services (e.g., for DPTsPart with N = 104 services, the NumPart = 103

partitions). This length has been chosen to produce equal-sized partitions (i.e., all par-
titions of 10 services). Moreover, based on results in small-scale scenarios, partitions of
this length (e.g., in Scenario IV) have demonstrated to produce high-quality solutions.
For practicality in the presentation of results, this section only shows the evaluation of
the metrics PRES, AR, and PLACK for a single value of N in each scenario (e.g., N = 104

for Scenario V, N = 103 for Scenario VI, and N = 106 for Scenario VII). However, a
summary of the evaluation of heuristics for all cases (i.e., all values of N), in terms of
AR, running time, and computational capacity usage, is presented in the corresponding
figures and tables. Fig. 5.20, Fig. 5.21, Fig. 5.22, Table 5.8, and Table 5.9 show the
simulation results produced by heuristics strategies in large-scale scenarios. Particularly,
the results in Fig. 5.20, Fig. 5.21, and Fig. 5.22 report that as the value of ui increases,
decreases the values of the values of PRES (see Fig. 5.20a) and PLACK (see Fig. 5.20c)
and increases the value of AR (see Fig. 5.20b). These values indicate that the proposed
energy model enables efficient adaptive energy management in large-scale scenarios.
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(a) Scenario V: PRES heuristics, for N =
104.
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(b) Scenario V: AR heuristics, for N =
104.
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(c) Scenario V: PLACK heuristics, for N =
104.

Figure 5.20: Example of performance evaluation of heuristic strategies for Scenario
V (large-scale) according to PRES , AR, and PLACK .
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(a) Running time of heuristic strategies
in Scenario V, for ui = 10∀Si, varying N ,
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(b) RAM usage of heuristic strategies in
Scenario V, for ui = 10∀Si, varying N ,

and using a single core.
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(c) CPU usage of heuristic strategies in
Scenario V, for ui = 10∀Si, varying N ,

and using a single core.

Figure 5.21: Example of performance evaluation of heuristic strategies for Scenario
V (large-scale) according to Running time, RAM Usage, and CPU Usage.

Table 5.8 summarizes the values of AR and AR gain achieved by heuristics strategies,
both the original and prepartitioned versions. These results demonstrate that heuristics
deliver improvements in services processing (energy use) ranging from 31% (e.g., GATs
in Scenario V for N = 104) up to 79% (e.g, GreedyTs in Scenario V for N = 104). The
best values of AR in Table 5.8 are obtained by strategies GreedyTs and DPTs, while
GATs produces the smallest improvements in all cases. Unlike the near-optimal solutions
generated by GATs in small-scale scenarios, in large-scale scenarios, this strategy in its
original version has a degraded performance due to the small size of the population
(PGA = 1500 chromosomes for all scenarios), compared to problem size (especially if
N ≥ 103). This shortcoming can be solved by proportionally increasing the PGA, although
this modification would cause an increase in complexity, as well as of running time and
computational capacity demanded. According to the simulation results in Table 5.8,
we observe that the low performance of GATs, in terms of AR, is overcomed if the
prepartitioning method is applied to the strategy (i.e., GATsPart produces better values
of AR than GATs). This is because at the particion domain a greater search space
is available for obtaining better combinations and consequenlty better quality solutions.
The values of AR in Table 5.8 (for offline approaches) show that GATsPart outperforms
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GATs by an average of 35%. Whereas the partitioned versions of GreedyTs and DPTs
produce values of AR very similar and even the same as their original versions (e.g.,
AR = 98.01 for DPTs and DPTsPart in Scenario V for N = 104).

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

(a) Scenario VI (online): PRES heuristics,
offline and online approaches for N = 102.
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(b) Scenario VI (online): AR heuristics, offline
and online approaches for N = 102.
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(c) Scenario VI (online): PLACK heuristics,
offline and online approaches for N = 102.

Figure 5.22: Example of performance evaluation of heuristic strategies
for Scenario VI (large-scale).

The results of metrics PRES (Fig. 5.22a), AR (Fig. 5.22b), and PLACK (Fig. 5.22c) in
Scenario VI reveal that heuristic strategies can be applied for adaptive energy manage-
ment in online approaches. In this scenario, the improvements obtained, in terms of AR
as shown in Table 5.8, are on average approximately 30% and these values, as expected,
are lower than those obtained in the offline approach (approximately half), because the
algorithms are limited to the use of forward time-shifting. In this scenario, the perfor-
mance of all the strategies including the prepartitioned ones is similar, the best values of
AR are obtained by GreedyTs and DPTs while the worst AR metric is generated by
GATsPart, although the difference in the results is less than 1% (eg., AR = 34.60% for
DPTs and AR = 33.96% for GATsPart). A feature that can be analyzed in future work
is the incorporation of forecasting methods of energy supply in the algorithmic strategies
to improve the service scheduling and, consequently, the AR metric.

Table 5.9 shows that the running time of the heuristic strategies and the GR computed
from the ratio between the heuristics and their prepartitioned versions. These results
report that the partitioned strategies are executed in less time than the original versions
with a difference of up to three orders of magnitude (e.g., DPTsPart in Scenario V
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for N = 104). The lowest running time values are obtained by GreedyTsPart and
DPTsPart, which reveals their potential applicability to larger scenarios (i.e., for N >
104). To better describe the difference in running time and computational resources
used by heuristics strategies, we present the analysis for Scenario V considering only
the maximum value of time-shifting (i.e., ui = 10 ∀Si) and varying the services (i.e.,
102 ≤ N ≤ 104). The evaluation results in Fig. 5.21a, Fig. 5.21b, and Fig. 5.21c for a sigle
iteration report that: (i) the strategies with prepartitioning are executed in lower running
time and use less RAM and CPU capacity than the original version of heuristics; (ii) the
application of GATs, GATsPart, GreedyTs, and DPTs is limited to a maximum of
N = 103 services, because for larger scenarios (e.g., for N = 104) the running time is
around units of hours; (iii) the computational capacity used by the heuristcis is between
3% and 11% for RAM (see Fig. 5.21b), and between 4% and 40% for CPU (see Fig. 5.21c);
and (iv) the evaluation in terms of running time, RAM and CPU usage, demonstrate that
the best strategies for large-scale scenarios are GreedyTsPart and DPTsPart.

Simulations in large-scale scenarios verify the validity of the proposed energy management
model and heuristic strategies developed. Particularly, evaluation results demonstrate
that the prepartitioning method improve the operation of heuristics in terms of running
time, and RAM and CPU usage, which makes these strategies (e.g., GreedyTsPart)
have applicability to larger scenarios (N > 104). Moreover, the performance metrics
values indicate that the prepartitioning method can extend the scalability of heuristics
and improve the inner operation of the proposed algorithms as in the case of GATs for
which its prepartitioned version (i.e., GATsPart) produce better values of AR.

Table 5.8: Maximum value of AR achieved by heuristic strategies in large-case sce-
narios.

No Strategy GreedyTs GreedyTsPart GATs GATsPart DPTs DPTsPart

Scenario Initial
AR

Final
AR

AR
Gain

Final
AR

AR
Gain

Final
AR

AR
Gain

Final
AR

AR
Gain

Final
AR

AR
Gain

Final
AR

AR
Gain

V, N = 102 18.60 95.96 77.36 95.96 77.36 71.64 53.04 97.44 78.84 97.06 78.46 97.06 78.46
VI, N = 102,

online approach
18.60 53.20 34.60 53.16 34.56 52.58 33.98 52.56 33.96 53.20 34.60 53.12 34.52

V, N = 103 19.40 98.40 79.00 98.37 78.97 60.51 41.11 98.24 78.84 98.01 78.61 98.01 78.61
V, N = 104 23.49 98.39 74.90 98.39 74.90 55.43 31.94 99.07 75.58 98.33 74.84 98.33 74.84

Table 5.9: Running time in seconds of heuristic strategies and GR of pre-partitioned
versions concerning the original version of heuristics in large-scale scenarios.

Scenario
GreedyTs GreedyTsPart GATs GATsPart DPTs DPTsPart

Running Time Running Time GR Running Time Running Time GR Running Time Running Time GR

V, N = 102,
50 iterations

1.99× 101 1.76× 101 ∼ 1.13× 100x 4.51× 103 4.46× 103 ∼ 1.01× 100x 5.57× 101 2.13× 101 ∼ 2.62× 100x

VI, N = 102

online,
50 iterations

1.30× 101 1.58× 101 ∼ 1.22× 100x 3.77× 103 3.71× 103 ∼ 1.02× 100x 1.65× 101 1.61× 101 ∼ 1.02× 100x

V, N = 103,
50 iterations

1.95× 103 6.89× 101 ∼ 2.83× 101x 5.44× 104 4.11× 104 ∼ 1.32× 100x 2.14× 103 1.09× 102 ∼ 1.96× 101x

V, N = 104,
20 iterations

8.55× 104 2.26× 102 ∼ 3.78× 102x 7.83× 105 1.59× 105 ∼ 4.92× 100x 5.64× 105 3.64× 102 ∼ 1.55× 103x

For the evaluation in very-large-scale scenarios, GreedyTsPart and DPTsPart have
been chosen, due to their computational capacity usage (less than 9% of RAM and 29% of
CPU) and running time (less than 11 seconds) delivered in large-scale scenarios. Fig. 5.23,
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Fig. 5.24, Table 5.10, and Table 5.11 summarize the simulation results produced by these
heuristics. Like the results obtained in smaller scenarios, for 105 ≤ N ≤ 106, the values of
metrics PRES (Fig. 5.23a), AR (Fig. 5.23b), and PLACK (Fig. 5.23c) verify the effectiveness
of GreedyTsPart and DPTsPart to adapt consumption to the availability, which
results in minimization of PRES. As indicated in Table 5.10, the improvements, in terms
of AR, achieved by the two heuristics are very similar to each other and are around
74%; although their running times differ as indicated in Table 5.11 and reveal that the
application of DPTsPart is limited to scenarios with N < 106.

To better differentiate the performance of GreedyTsPart and DPTsPart in very-
large-scale scenarios, we have analyzed Scenario VII considering the maximum value of
time-shifting (i.e., ui = 10∀Si) and varying N , as shown in Fig. 5.24. Simulations results
in Fig. 5.24a, Fig. 5.24b, and Fig. 5.24c show that in terms of running time and use
of RAM and CPU, GreedyTsPart presents a better performance than DPTsPart.
Specifically, the running time of DPTsPart for N = 106 in order of tens of hours,
confirm its applicabibility for scenarios with N ≤ 105. Regarding the computational
capacity usage, Fig. 5.24b and Fig. 5.24c report that the heuristic strategies consume
between 3% and 12% of RAM, and between 11% and 32% of CPU, respectively. These
values and the results of the running-time demonstrate feasibility of adaptive energy
management in scenarios with hundreds of thousands or even millions of services.
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(a) Scenario VII: PRES heuristics,
for N = 106 and with NumPart = 105.
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(b) Scenario VII: AR heuristics,
for N = 106 and NumPart = 105.
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(c) Scenario VII: PLACK , for N = 106

and with NumPart = 105.

Figure 5.23: Example of performance evaluation of GreedyTsPart and DPTsPart
for very-large-scale scenarios according to PRES , AR, and PLACK .
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(a) Running time of heuristic strategies in
Scenario VII, for ui = 10 ∀Si, varying N ,

and using a single core.

10
2

10
3

10
4

10
5

10
6

Number of services

2

4

6

8

10

12

R
A

M
 (

%
)

(b) RAM usage of heuristic strategies in
Scenario VII, for ui = 10 ∀Si, varying N ,

and using a single core.

10
2

10
3

10
4

10
5

10
6

Number of services

10

15

20

25

30

35

C
P

U
 (

%
)

(c) CPU usage of heuristic strategies in
Scenario VII, for ui = 10 ∀Si, varying N ,

and using a single core..

Figure 5.24: Example of performance evaluation of GreedyTsPart and DPTsPart
for very-large-scale scenarios according to Running time, RAM Usage, and CPU usage.

Table 5.10: Maximum value of AR achieved by the heuristic strategies in very-large-
scale scenarios.

No Strategy GreedyTsPart DPTsPart

Scenario Initial
AR

Final
AR

AR
Gain

Final
AR

AR
Gain

N = 105 19.40 98.40 79.00 98.37 78.97
N = 106 23.49 98.39 74.90 98.39 74.90

Table 5.11: Running time in seconds of prepartitioned heuristic strategies in very-
large-scale scenarios.

Scenario
GreedyTsPart DPTsPart

Running Time Running Time

N = 105, 1 iteration 6.89× 101 1.09× 102

N = 106, 1 iteration 2.26× 102 5.64× 105
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The simulations in large-scale and very large-scale demonstrate that the heuristics strate-
gies, when deployed in the NFV domain (or a similar ICT infrastructure), can enable
efficient adaptive energy management within reasonable running time and use of compu-
tational capacity (mainly in terms of RAM and CPU). Table 5.12 summarizes the main
operating features, the mean values of AR and computation capacity used (considering
the evaluation in small-scale scenarios for a fair comparison), and the applicability of the
proposed service scheduling strategies (both optimal and heuristic).

Table 5.12: Summary of features, mean values of metrics, and applicability of service
scheduling algorithmic strategies.

Strategy Version

Performance metrics
small-scale scenarios

Application scope

AR
gain
(%)

RAM
usage (%)
single core

CPU
usage (%)
single core

Small-scale
scenarios
N ≤ 20

Large-scale
scenarios

20 < N ≤ 104

Very
large-scale
scenarios

104 < N ≤ 106

Optimal
approach

OptTsCost 65.86 29.34 35.04
Yes

constrained to
N ≤ 10

No No

OptTsCostPart 65.42 1.16 5.68 Yes
Yes

constrained to
N ≤ 103

No

Greedy
approach

GreedyTs 62.08 1.46 2.26 Yes
Yes

but suggested
up to N = 103

No

GreedyTsPart 61.97 1.28 1.38 Yes Yes Yes

Genetic
algorithm

GATs 65.77 1.49 20.91 Yes
Yes

but suggested
up to N = 103

No

GaTsPart
63.92 1.32 18.03 Yes

Yes
but suggested
up to N = 103

No

Dynamic
programming

DPTs 61.50 1.56 10.42 Yes
Yes

but suggested
up to N = 103

No

DPTsPart
60.72 1.40 7.11 Yes Yes

Yes
but suggested
up to N = 105

5.5 Conclusions

This chapter provides insight into optimal and heuristic strategies that can be deployed in
the NFV domain (or a similar ICT infrastructure) for achieving adaptive energy manage-
ment, either renewable or not, in small, large, or very large-scale IoT-enabled scenarios. In
this context, this chapter starts by describing the mathematical model related to adap-
tive consumption and an algorithmic strategy based on brute-force search, denoted as



Chapter 5. Algorithmic Strategies for Adaptive Energy Management 107

OptTsCost, to solve the energy management model optimally. The optimal strategy
allows us to identify all concerns related to the algorithmic implementation of adaptive
energy management.

Given the NP-Hard nature of adaptive energy management and the exponential growth of
OptTsCost (which depends on the values of N and ui as shown in Eq. 5.30), we propose
three heuristic strategies identified as GreedyTs, GATs, and DPTs, which are based
on a greedy approach, an evolutionary algorithm, and dynamic programming method,
respectively. To scale up the applicability of adaptive energy management to scenarios
with thousands and hundreds of thousands of energy demands, we have incorporated a
prepartitioning method for both the optimal strategy and the heuristics. As a result of
the prepartitioning method, four additional heuristics were created and are denoted as
OptTsCostPat, GreedyTsPart, GATsPart, and DPTsPart.

The optimal and heuristic strategies are evaluated through intense simulations in various
scenarios with different values of N and ui, using different generation and consumption
profiles and offline and online approaches. The evaluation also includes a HEMS scenario
in which real-world consumption data is used. The simulation results in all scenarios
demonstrating the effectiveness of the proposed adaptive energy management model,
which, implemented through the algorithmic strategies, offers improvements in energy
use (i.e., more appliances consuming in the same period or the execution of services
which would otherwise be rejected without a management mechanism) and reduction of
peak demands. The values of performance metrics PRES, AR, and PLACK show that as
the time-shifting value increases, the energy model better adapt the PD to the PES, which
is reflected in a progressive increasing of AR and a decrease of PREs and PLACK . The
simulation results also reveal that the proposed strategies in this paper can be a useful
tool for the planning of energy consumption and distribution or for real-time load control
and optimization of energy use in IoT-enabled environments. These tools can, in turn,
offer operational (e.g., the reduction of energy outage preventions) or economic benefits
(e.g., reduced energy tariffs) for the ES and the ECs, and the overall improvement of the
stability and reliability of the energy ecosystem.

In terms of quality and complexity of solutions, simulation results indicate that the heuris-
tic strategies, both the originals and the versions with prepartitioning, produce high-
quality solutions while performing between two and six orders of magnitude faster than
the optimal approach OptTsCost (as shown in Table 5.6). Regarding the computa-
tional power demanded by the heuristics, the evaluation of heuristics indicates that these
strategies only use a fraction of RAM and CPU capacity used by OptTsCost (as shown
in Fig 5.19). In the worst case scenario for RAM usage, DPTs uses approximatly 5%
of capacity used by OptTsCost, and in the worst case scenario for CPU usage, GATs
uses approximatly 60% of capacity used by OptTsCost. Therefore, reduced running-
time and computational capacity usage make possible the implementation of heuristics
on advanced NFV-enabled infrastructures or on embedded systems in homes (e.g., on a
Raspberry Pi platform) for adaptive energy management in IoT-enabled scenarios with
hundreds or thousands of services. Likewise, the application of the prepartitioning method
allows the energy model to extend the potentialities of the heuristics to IoT-enabled en-
vironments with hundreds of thousand of energy demands (as in the current and future
communications infrastructures) or as future initiatives of the IoE.



Chapter 6

Application Scenarios

This chapter presents several application scenarios in which the proposed archi-
tecture (Chapter 4) or the developed algorithmic strategies (Chapter 5) can be
applied for efficient resource management, including energy and spectrum.

This chapter is based on:

J1 Christian Tipantuña, Xavier Hesselbach, Victor Sánchez-Aguero, Fran-
cisco Valera, Iván Vidal, and Borja Nogales. An NFV-based energy schedul-
ing algorithm for a 5G enabled fleet of programmable unmanned aerial vehi-
cles.Wireless Communications and Mobile Computing, 2019.

J3 Victor Sánchez-Aguero, Francisco Valera, Ivan Vidal, Christian Tipantuña,
and Xavier Hesselbach. Energy-aware management in multi-uav deployments:
Modelling and strategies. Sensors, 20(10):2791, 2020.

J4 Christian Tipantuña and Xavier Hesselbach. Adaptive energy manage-
ment in 5G network slicing: Requirements, architecture, and strategies. En-
ergies, 13(15):3984, 2020.

J6 Christian Tipantuña and Xavier Hesselbach. IoT-enabled proposal for
adaptive self-powered renewable energy management in home systems. IEEE
Access, 9:64808–64827, 2021. doi: 10.1109/ACCESS.2021.3073638.

C4 Christian Tipantuña and Xavier Hesselbach. NFV-enabled optimal spec-
trum allocation in flex-grid optical networks. In 2020 22nd International
Conference on Transparent Optical Networks (ICTON), pages 1–7, 2020.
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In a wide variety of scenarios, performing adaptive energy management can be essential
due to the limited energy capacity o because of the dynamic generation and consumption
nature of the environment under analysis. In this context, this chapter presents several
examples in which the proposed architecture, algorithmic strategies, and the adaptive en-
ergy model can be applied entirely or partly. Section 6.1 describes the application of the
architecture, management model, and the prepartitioning method for adaptive energy
management in a HEMS. Section 6.2 instead presents applying the proposed adaptive
energy management concepts into the 5G network slicing landscape. Section 6.3 presents
adaptive energy management for a UAV-enabled communications system using an op-
timal strategy in a single service region where total battery consumption is considered
for replacement. Section 6.4 instead describes the energy management in a multi-UAVs
enabled communications environment where (through heuristic strategies) multiple ser-
vice regions are covered, and the battery replacement is not constrained to the total
consumption. Although in the examples in Section 6.3 and Section 6.4, the architecture,
strategies, and consumption model are not applied directly (as in the case of the exam-
ples in Section 6.1 and Section 6.2), the concepts and ideas developed for adaptive energy
management are adapted to achieve efficient management of available energy obtained
form batteries of drones. This condition indicates that the knowledge acquired in this
thesis has a great potential for direct or indirect application in various fields, such as in
communications enabled by UAVs. As examples of other application fields for adaptive
energy management, we can mention energy management in spacecraft in which the only
supply comes from the sun or in electric vehicles in which adequate energy management
would improve the performance of the vehicle, the distribution and operation of charging
points, as well as the duration and life of the battery.

Likewise, to demonstrate that the algorithmic strategies proposed in this thesis (Chap-
ter 4) can be applied beyond the energy field, Section 6.5 presents an optimal spectrum
allocation scheme in DWDM flex-grid optical networks. In this case, adaptive manage-
ment concepts are applied to efficient management of available spectrum by proposing
an ILP model, which is solved by an exact method and a heuristic method based on a
prepartitioning strategy.

We also state that the application scenarios of Section 6.3 and Section 6.4 have been joint
work with Universidad Carlos III de Madrid. In this regard, we indicate that from the
UPC we have collaborated with the proposal and development of the research, which has
resulted in publications J1 and J3 (see Section 1.4). We have decided to include all the
corresponding text of the proposals to explain the problems addressed comprehensively,
the algorithmic solutions developed and the results obtained within the scope of the
scenarios considered.

6.1 Adaptive Energy Management in Home Energy

Systems

The new generation of communication networks can provide massive connectivity of de-
vices, extremely low latency, higher capacity, and increased bandwidth. These features
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enable the deployment of management systems in different sectors such as energy and in
a wide variety of environments such as agriculture, surveillance or home systems. In this
regard, this section proposes a self-powered adaptive and automated home energy control
system enabled by the IoT technologies. The system aims to adapt the consumption pat-
terns to the availability of self-generated renewable energy (produced from solar panels,
wind-mills, etc.). As part of the proposal, this section presents the consumption nego-
tiation scheme for IoT devices, the management mechanisms to optimize the use of the
available energy, and the related model. Given the complexity of the adaptive manage-
ment process, the proposal also presents a heuristic strategy based on a prepartitioning
method to obtain feasible solutions in a reasonable running time. The simulation results
for offline and online scenarios validate the advantages of the proposed strategy, and the
numerical improvements are presented.

6.1.1 Introduction

As ICT become more reliable, cheap, accessible, and are able to provide lower latency and
higher bandwidth, a wide range of IoT devices are being extensively deployed worldwide.
According to some studies [118], it is estimated that by 2022 the number of IoT devices will
exceed 28.5 billion. This large number of devices, together with modern communications
networks such as 5G and beyond, represents an essential component in our current digital
society, which can be used in various vertical applications for different sectors, such as
agriculture, transportation and energy. Specifically, in energy systems, the incorporation
of ICT and IoT technologies has enabled the improvement of control, monitoring, and
management operations and the deployment of DR schemes [62].

A prominent scope of application of DR systems is in domestic environments (including
homes and buildings), which are active players in the energy sector and responsible for
around 40% of the consumption of the total energy generated [119]. Considering the
penetration of connectivity through access networks (such as Wi-Fi) in households and
the automation and communication infrastructure available on modern appliances (e.g.,
a smart tv), implementing an IoT-enabled energy consumption solution in domestic envi-
ronments is a feasible alternative with current technologies. This kind of approach in the
literature is referred to as HEMS and mainly aims to reduce consumption and improve
energy efficiency [119].

Given that a reduction or efficient use of the available supply (mainly provided and
distributed by the energy utility company) is not sufficient to address the ever-increasing
demand, solutions such as integrating renewable energy sources (also referred to as green
energy) into energy systems are envisioned as a sustainable alternative, in the road to
replace completely the non-renewable sources. The energy obtained from sources such as
sun or wind is practically an inexhaustible resource that generates a lower environmental
impact than fuel or carbon-based energy and can be used to meet partial or total consumer
requirements. In this regard, some research has analyzed the primary and exclusive use
of green energy. For instance, major IT providers such as Google [4] and Microsoft
[5] are already promoting networking infrastructures fully powered by renewable energy.
For domestic environments, the use of self-generated renewable energy from solar panels
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or wind stations has also been recently promoted [120]. This trend has changed the
traditional role of the end-user from consumer to energy producer; the term ”prosumer”
has even been coined to indicate the dual behavior of generation and consumption.

Energy production on the consumer side avoids extra generation by the ES (which can
produce pollution) while contributing to a better distribution of the generated energy
resource. However, considering that green sources have stochastic behavior and their
production is affected by environmental conditions or geographical location, the available
supply is frequently underused or wasted because it cannot be consumed or stored in mass
amounts. Therefore, an adaptive HEMS focused on optimized utilization of self-generated
green energy is essential because it has implications for the consumer side (lower tariffs
and supplier independence), on the supplier side (lower level of production and reduction
of power peaks), and on the environment (lower utilization of fossil fuel-based energy).

6.1.2 Related Work

This section discusses research work related to ICT- and IoT-enabled customer-side energy
management, including the HEMS.

6.1.2.1 ICT- and IoT-enabled Customer-side Energy Management

ICT and IoT technologies enable robust automation, control, monitoring, management
processes, the enhanced inclusion of new power plants (mainly based on green sources),
and bidirectional communication between ES and EC [62]. This latter feature is of
paramount importance in current energy systems because it allows EC to participate
in DR programs actively and make decisions to adapt consumption to availability. The
adaptive customer-side management helps energy providers flatten the demand curve by
allowing EC to schedule power usage from peak to off-peak periods [68, 121], for instance
adapting the charge of the electric car at home [122]. These actions result in increased
stability and sustainability of the energy system, reduced carbon emissions levels due
to lower production and energy usage, and reduced overall operational cost through the
optimization of available resources. In addition, EC can be motivated to participate in
DR adaptive schemes by the variation of energy prices over time, incentives related to
energy use, or when the energy system requires reliable and efficient operation.

To implement DR schemas, various mathematical models and strategies (algorithms)
have been proposed in the literature focused on different requirements and objectives
to be achieved. In this regard, adaptive consumption has been modeled through the
operational features of ES and EC, including in some cases price information, energy
storage units participation [121], and green energy provisioning [71]. To mathematically
formulate appropriated models, optimization methods such as integer linear programming
(ILP) [72] and mixed-integer linear programming [114] have been used. In addition,
different objective functions have been established for these models, such as minimization
of power consumption (reshaping the peak demand) [68], maximization of user utility [69],
and minimization of costs for the ES, EC, or both [121]. To solve the adaptive energy
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management problem (energy model), offline [73] and online [74] approaches have been
analyzed in research works. For offline approaches the algorithmic strategy has complete
knowledge of supply and demand during the time horizon of analysis to manage energy.
For online approaches the algorithmic strategy has no future information about ES and
EC, and decisions on loads are restricted as energy resources and demands evolve.

The offline and online approaches can be addressed by optimal or suboptimal methods.
The optimal or exact strategies allow the best allocation of energy recourse through
the optimal scheduling of loads [74]. However, these methods present an exponential
complexity that grows as customers and management techniques (e.g., time-shifting and
prioritization) increase; also, they are computationally expensive and time-consuming
[14]. To overcome complexity limitation and for practical applications, some research work
has focused on deploying sub-optimal and faster methods based on heuristics strategies
[13]. For instance, for customer-side DR energy management Logenthiran et al. in [13]
propose a heuristic strategy based on evolutionary algorithms for minimizing peak load
demands; this strategy is tested for different types of loads in residential, commercial,
and industrial service areas.

6.1.2.2 IoT-enabled HEMS

Communications systems such as Wi-Fi access networks and IoT infrastructures (includ-
ing smart sensors, devices, appliances, and virtual assistants) allow home automation, as
well as the control of loads. Regarding energy management, the ICT and IoT technolo-
gies facilitate the deployment of different schemes [64]. The proposed approaches can be
limited to manual or partially automated control of consumption (through the activation
or deactivation of appliances) or can comprise entire HEMS, in which a smart entity (i.e.,
software or hardware platforms) efficiently schedules the consumption of loads. The en-
ergy demands can be scheduled according to multiple criteria, including the consumption
optimization, costs minimization, or ensuring certain comfort levels for customers. The
HEMS can also operate in different application scopes (e.g., residential or professional)
considering weather conditions, load and supply profiles, energy storage capability, green
energy mixing, and interaction with other energy systems such as smart grids [123].

Many architectures, software and hardware tools, platforms, and tesbeds have been pro-
posed for implementing HEMS [124]. These approaches are based on existing commu-
nications networks, either wired (e.g., SDN [9] or power line communications [125]) or
wireless (e.g., Wi-Fi [126]), and the vast range of IoT technologies and protocols (e.g.,
machine-to-machine communications protocols [127]) that are included or that can be
easily incorporated into domestic appliances. Some approaches also exploit cloud com-
puting solutions such as Thingspeak [128] and data analytics [129]. In addition, using
renewable energy in HEMS is an important feature addressed in the literature to deliver
an environmental friendly and cost-effective solution. For more than 15 years, studies
have analyzed the possibility of using exclusively renewable energy in households [120].
In this regard, different renewable sources have been evaluated; however, due to the ease
of installation (e.g., rooftop photovoltaic units [130]), accessibility in the market (easy
installation kits [131]), and production capacity (e.g., 7000 [W] [131]), the use of solar
energy (photovoltaic energy) has been analyzed in many research works.
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Some studies describe entire HEMS while others focus mainly on the development of
strategies (including DR schemes). For instance, AlFaris et al. in [64] present a HEMS
that, using IoT-enabled appliances, sensors, actuators, smart meters, and a central hub
(in which DR schemas are executed) wirelessly interconnected, performs consumption
management of supply generated by photovoltaic panels. Regarding strategies, a variety
of mathematical models and algorithms are proposed for HEMS by researchers (in a sim-
ilar way to the customer-side management approaches in Section 6.1.2.1). The proposed
models are based on optimization techniques such as linear programming [71] and stochas-
tic programming [130] and solved by optimal [69] or heuristic algorithms (e.g., based on
evolutionary algorithms [132]). These latter are used for dealing with the complexity
issues.

In summary, existing works show that ICT and IoT are key enablers for deploying
customer-side management and HEMS. Most of the proposals analyze the HEMS as
an extension of smart grids and as a component that can be managed to reduce the
load of ES. In many proposals, HEMS are targeting the minimization of total energy
consumption. In contrast, the proposal of this section is focused mainly on the domestic
environment. The proposed HEMS aims to optimize the utilization of available supply,
primarily produced from green sources, through efficient scheduling of IoT-enabled con-
sumers. In addition, the proposed solution, which maximizes the utilization of available
supply at all times, allows the implementation of a battery-free HEMS system, which is in
line with the recent concept of battery-free IoT networks [61]. The battery-free paradigm
seeks to address the problems related to energy storage, such as limited storage capacity
and lifetime of battery units, mandatory replacement, and pollution produced [60].

6.1.3 Proposal for Adaptive Energy Management in HEMS

6.1.3.1 Problem Description

The concept of adaptive energy management (through DR schemes) applied to the do-
mestic environment and deployed in a HEMS, allows optimizing the use of self-generated
energy (mainly from green sources), avoiding wasted supply and reverse power flow if
generation is sent to the power grid (substation) in an uncontrolled manner [133]. In this
regard, adaptive energy management can impact in the ES and distributors to change
the exclusive centralized control and generation ecosystem to a paradigm in which the
customer can autonomously manage the energy demands according to the self-generation.
Furthermore, enabled by IoT, a HEMS can not only perform real-time monitoring and
smart energy management of domestic appliances but also optimize energy utilization,
by controlling the individual consumption of devices, specially on peak times [124].

6.1.3.2 IoT-enabled Architecture Proposal

Figure 6.1 shows the proposed HEMS architecture; the components are described below.
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• Communications technologies: Communication systems are a fundamental compo-
nent in modern energy systems because they allow bidirectional communications
between generation and consumption. In HEMS, two communications systems can
be identified: (i) the backbone network or Wide Area Network (WAN), which ex-
changes energy-related data (instructions and notifications) with the ES needed
for DR programs (consumer-side participation) and (ii) the ICT in the premises of
the end-user that allows the creation of a Home Area Network (HAN) in a domes-
tic environment, a Building Area Network (BAN) in a building, and an Industrial
Area Network (IAN) in industrial facilities to control, monitor, and manage loads.
A variety of wired and wireless standards and communications technologies can
be used according to the requirements and needs of control applications and cus-
tomers. Different factors such as data rate, latency, power consumption, topology,
network size (number of devices being controlled), reliability level, operating fre-
quency, range of coverage, security level, and implementation costs can determine
the choice communication systems [123]. For instance, for the WAN between HEMS
and ES, a possible alternative is Power Line Communications (PLC) or synchronous
digital hierarchy, which can use an optical power ground wire. For HAN (BAN or
IAN), Wi-Fi is widely used, although other technologies can provide connectivity
in HEMS. Table 6.1 shows a summary of possible ICT for deploying a HAN.

Schedulable and non-schedulable 
IoT devices IoT devices (EC)

Primary Secondary

Energy Supplier

Renewable Non-Renewable

Green Energy Manager
(e.g., a Raspberry Pi platform)

Functionalities:
- Management (scheduling strategies)
- Monitoring and control
- Customer profiles (catergories)
- Power and load forecast
- Analytics, machine learning techniques

Home energy
storage system Sensor/controller

e.g., an SDN Network 
based solution

Private/Prublic (Internet)
ICT infrastructures

Wired communications (using a physical medium
of copper, fiber or radio )
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Wireless Local Area Network (Wi-Fi)

Smart grid communications (e.g., PLC, SDH)  
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Smart meter
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Wi-Fi (e.g., IEEE 802.11ac)

ICT facilities

Figure 6.1: IoT-enabled HEMS architecture proposal.

Depending on the application scope of the HEMS and customer requirements, more
specific analysis such as channel modeling can be carried out to estimate operation
limits of a particular technology for deploying a HAN, as in the case of PLC studied
in [134]. Other factors that can influence the selection of the technology for imple-
menting a HAN are pace of technology innovation, upgradability, device ownership
(e.g., smart meters from the utility company), interoperability (i.e., availability of
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compatible appliances or interfaces) [135], self-managiability, maintainability, and
resiliency [136]. Because secure management in a HEMS is a relevant aspect that
avoids compromising EC and ES operation, requirements such as client (device)
authentication, integrity, and confidentiality of energy-related data must also be
met by the selected HAN technology [137].

In addition, communication protocols compatible with wired and wireless technolo-
gies can be used to implement energy management applications. The proposed
HEMS has no special constraints regarding the protocols architecture, it can use
the Internet TCP/IP suite, a generic protocol stack in which physical, network, and
application layers are defined, as discussed in [138], or even other radically different
approaches, such as RINA [139].

The physical and data-link layer in HEMS are mostly defined by Ethernet, Wi-Fi
or PLC protocols. For the network layer, IPv6 is preferred to IPv4, regarding the
capacity to handle overcrowded scenarios with millions of IoT devices. About the
transport layer, TCP is in favor of reliability and UDP for real-time operation. In
upper layers, customized solutions can be implemented (e.g., a web server running
the management application), or existing protocols such as COAP and MQTT [140]
can be adapted to the application scope or need of EC.

Table 6.1: Comparison of different communications and networking technologies for
HEMS, based on [124] and [12].

Connectivity Technology Standard Data rate Range

Wired

Ethernet IEEE 802.3 10-1000 Mbps 100 m
X10 X10 standard 50-60 Kbps 300 m

HomePlug IEEE P1901 14-200 Mbps 300 m
Insteon X10 standard 1.2 Kbps 3 Km

ITU G.hn ITU G.hn Up to 2 Gbps 500 m

Wireless

Wi-Fi IEEE 802.11 54 Mbps at 2.4 GHz, 5 Gbps at 5 GHz 100 m
Zigbee IEEE 802.15.4 40 Kbps at 915 MHz, 250 Kbps at 2.4 GHz 100 m
Thread IEEE 802.15.4 250 Kbps at 2.4 GHz 30 m

Bluetooth IEEE 802.15.1 1 Mbps at 2.4 GHz 10 m
Z-wave Zensys, IEEE 802.15.4 40 Kbps 30 m

6LowPAN IEEE 802.15.4
20 Kbps at 868 MHz, 40 Kbps at 915 MHz,

250 Kbps at 868 MHz
75 m

ONE-NET Open source 38.4 - 230 Kbps 70 m
EnOcean EnOcean standard 120 Kbps 30 m

LoRa LoRa 10 Kbps at 863 MHz, 100 Kbps at 915 MHz 10 Km
Sigfox Sigfox 10 Kbps at 863 MHz, 100 Kbps at 915 MHz 10 Km

• Smart meters: The smart meters in HEMS are used to establish two-way commu-
nication with the utility company. They are responsible for sending consumption
data, receiving signals (e.g., about energy pricing information) for participation in
DR programs, and requesting energy resources if the self-generated renewable en-
ergy fails or becomes insufficient for the demand. Smart meters can display energy
usage patterns to end-users and are coordinated by Green Energy Manager (GEM),
which is the main controller in HEMS.

• IoT devices: IoT devices are home appliances (e.g., a Smart TV) and other devices
(e.g., access points) that participate in energy management process. They are



Chapter 6. Application Scenarios 116

connected, coordinated, and controlled by GEM. Each IoT device requires a unique
identification (e.g., an IPv6 address) to send consumption information (periodically,
when activation is needed, by polling, or others) and receive operating instructions
(e.g., to change to an activation or deactivation state). IoT devices can incorporate
sensors and actuators to perform measurement, monitoring, and control tasks. In
the proposed model, their operation is uninterruptible. In addition, these devices
can be fully automated (e.g., washing machines, dishwashers, and air conditioners)
or can require manual operation by the end-users (e.g., computer, television, and
vacuum cleaner).

• Renewable power: Renewable power coming from green sources is the primary sup-
ply in the proposed HEMS. The distribution of this available supply is controlled
and managed by GEM. DC/AC, AC/DC, or DC/DC converters can be used option-
ally into green energy generation to match different load requirements. Moreover,
renewable energy production systems can incorporate battery units to ensure stable
transitions between energy sources (either green or not). Battery units in a HEMS
can also act as energy buffers, storing energy during surplus periods or releasing
the stored capacity according the requirements of consumers (always under the co-
ordination of GEM). In the context of a HEMS, the battery units already included
in the structure of green sources (e.g., photovoltaic panels) can be used for these
purposes. However, a more interesting approach (also part of smart cities) is the
use of electric vehicles. Specifically, the battery units in modern electric vehicles
can store the surplus energy generated, which can then be used when necessary
by a single household, several households, or an entire building in a neighborhood,
and can even be distributed to other locations in smart cities through coordinated
actions between the HEMS and the ES. Since energy storage can improve HEMS
performance, an analysis of battery sizing and characterization can be considered
for future research.

In the proposed HEMS model, the exceeding renewable energy self-generated can
be incorporated to the general power grid. The management and control actions
are performed by GEM and smart meter. On the contrary, if the available green
energy is insufficient to meet all the demands, GEM and smart meter can execute
actions to request extra energy from the ES.

• Green energy manager: GEM is a software and hardware platform with two main
responsibilities: (i) creation and management of the HAN (or BAN or IAN) and (ii)
control, monitoring, and energy consumption control. Once the network is created
by the GEM, each IoT device must be associated. In this process, the device is
authenticated, identified, registered, and assigned an IP address.

To allow interaction with the end-user, GEM has an interface able to display in-
formation about the consumption (e.g., through a dashboard) and allows input of
data related to the appliances and requirements. In general, the end-user provides
parameters (such as the type of device, average consumption level, priority level,
and possible operation intervals). If the user does not have information about the
power demanded by the home appliance, GEM can use data stored in its database.
Once integrated into the HAN, the IoT device can report real consumption data to
GEM. To facilitate, GEM can provide the user with pre-defined profiles, (including
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parameters of the mechanisms such as time-shifting or quality degradation) or can
be customized on basis of consumer preference. GEM can use different technologies
to manage and control the consumers (e.g., SDN technology).

The adaptive management of GEM, is summarized in the following three steps:
(i) reception of information about the consumption of appliances, level of available
supply (self-generated and coming from the ES), and data provided by end-user;
(ii) execution of appropriate scheduling strategies; and (iii) transmission of orders
to the appliances in order to handle the degree of energy consumption. GEM can
include features such as logging for users, alarm reporting, and fault detection.
In addition, through the smart meter or home gateway (e.g., access point), GEM
can interact with external networks and allow remote monitoring and management
(e.g., through web applications). In the latter case, the application of security
mechanisms (e.g., encryption and hashing) is essential to guarantee user privacy
and non-corruption of the energy management data. GEM could also incorporate
other types of management strategies based on data analytic (e.g., generation and
consumption forecasting) or machine learning techniques.

6.1.3.3 Management Mechanisms to Adapt Consumption to the Available
Supply in HEMS

The proposed HEMS considers a prioritization scheme defined by the end-user that differ-
entiates the applicability of the management mechanisms upon the energy loads. Several
priority levels can be created according to the preferences and needs of end-users; however,
for practicality, these levels can be grouped into CS and NCS. CS includes appliances that
are considered essential for the end-user. GEM must ensure the energy allocation (even
if it comes from the ES) for their execution. In contrast, NCS covers appliances whose
operation is secondary and subject to modification according to the strategies used.

The mechanisms applied to NCS are: (i) the time-shifting capability (backward or for-
ward) to adapt consumption (flattened, smoothed) to the shape of the available supply so
improving energy efficiency; (ii) the rejection of services (i.e., not allocation of energy by
GEM); and (iii) a quality degradation level, in addition to the mechanisms described in
Chapter 4 (Section 4.1.2), this mechanism allows to reduce the power consumption of an
appliance, to the cost of degradation in quality. The degradation can be unappreciated
in many devices with a minimum and maximum operating thresholds. Selecting the min-
imum threshold would cause less power to be assigned to a device, allowing adaptation
of the demand to the current supply and potentially reserving power to execute another
device. Fig. 6.2 illustrates both the normal operation and the application of management
mechanisms on appliances in HEMS, considering mainly auto-generated green energy.

As mentioned above, in a HEMS, there may be several levels of priority according to
user requirements and the complexity of the desired management system. For instance,
for a HEMS with three priorities, the first priority level would correspond to CS, and
no management mechanism would affect appliances in this category. An example of
service (appliance) in this category could be the operation of a refrigerator. For the
second priority level, only time-shifting would be used with values established according
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to the interests of the end-user. An example of a service in this category would be
the operation of a washing machine. For the third priority level, both time-shifting
and quality degradation could be used; charging a laptop battery can be included in
this category. In any case, the users could configure as many levels as they consider
appropriate and establish the management mechanisms and their respective ranges for
each priority according to their preferences. It is the task of GEM and specifically of load
scheduling strategies to determine the best actions for each appliance.
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Figure 6.2: Example of the application of management mechanisms to achieve adap-
tive energy consumption in HEMS.

Figure 6.3 summarizes the communication dialog or signaling between the appliances and
the GEM in the HEMS. This is a particular application of the scheme shown in Fig. 4.5
(Section 4.1.4). In this negotiation, the existing supply, the parameters of the appliances
(i.e., consumption, starting time, and duration), and the information provided by the
end-user (priority levels and values of the management mechanisms) are considered. The
GEM computes and notifies the appliances through the HAN, about the consumption
conditions. This is basically the start time and the consumption levels (including degra-
dation, if applicable). Subsequently, the appliance activates its operation using actuators
or control circuits. Different communication schemes can be used to establish commu-
nication between the GEM and the appliances. A simple implementation can be based
on a client-server architecture using a Wi-Fi access network and the classical Internet
protocols to exchange operation conditions and consumption instructions, as exemplified
in Fig. 6.3.

6.1.3.4 Adaptive Energy Management Model

The management model in Section 5.1 has been adapted to the scope of the proposed
HEMS. In this context, the total available power in the HEMS is identified as PA and
is composed, primarily, by the self-generated green energy that is denoted as PR and,
secondly, by the supply offered by the ES defined as PES, as shown in Eq. 6.1.

PA = PR + PES (6.1)
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The self-generated energy available in the HEMS can be composed of different green
sources, such as sun or wind, as shown in Eq. 6.2; while, the energy supplied by ES can
come from renewable (PR

ES) and non-renewable (PNR
ES ) sources, as indicated in Eq. 6.3. If

necessary, the HEMS (GEM) can request power from the ES, indicating the preference
for green sources in the DR negotiation.

Power network (power flow)

Parameters: priority_level, starting_time,
service_duration, power_demanded, 

time_shifing_interval, quality_degradation_range

IoT – Devices
HEMS

Server Client
Energy management

Network creation
Energy consumption
Network Association

Priority levels and values 
of management mechanisms 

Message Format

Network association (communication establishment)

HAN based on wireless communication (e.g., Wi-Fi)

Server activation
Status UP

Name of the network (SSID)
Password
Association

e.g., IP: 192.168.4.1:5560

Access granted: IP address and port number e.g., IP: 192.168.4.1:5560

Connection acknowledgement

e.g., UDPT or TCP connectionEnergy management
Consumption request

Adaptive energy management
- Load scheduling algorithms

Server activation
Status UP

Consumption reply
Consumption conditions: starting_time,

service_duration, power_demanded
Message Format

Energy 
Consumption

Figure 6.3: Summarized energy consumption negotiation process between the GEM
and the IoT-enabled devices.

PR = +Psolar + Pwind (6.2)

PES = +PNR
ES + PR

ES (6.3)

To guarantee the primary use of self-generated energy, the provisioning selection pro-
cess by the GEM is based on a cost function. The generalized form of this function is
presented in Eq. 6.4. This expression is composed of the costs associated with PR and
PES and is affected by the weights w1 and w2 that can be set in the interval [0,1], if
applicable. Considering the preference for PR, its associated cost would be zero; in this
case, the expression in Eq. 6.4 would be simplified as indicated in Eq. 6.5. The value of
CostPES

would be proportional to the amount of resource demanded (used). Therefore,
the prioritization of the self-generated supply would be given by minimizing CostPES

(i.e.,
minimization in the use of PES), as shown in Eq. 6.6.

CostPA
= w1 × CostPR

+ w2× CostPES
(6.4)

CostPA
= CostPES

(6.5)

minimize{CostPES
} (6.6)
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In the proposed energy management model, the appliances are characterized by their
operation, considering the respective management mechanisms. In the context of adap-
tive energy management in HEMS a service i is identified as Si and is defined by the
parameters in Table 6.2.

Table 6.2: Parameters of a service.

Parameter Description Unit/Comment

N Set of services N = {1, . . . , N}, integer number
i Service identifier i ∈ N
L Set of priority levels L = {1, . . . , L}, integer number
j Priority level identifier j ∈ L, j = 1 for CS, and j = {2, . . . , L} for NCS
Q Set of quality degradation levels Q = {1, . . . , Q} integers related to a multiplication factor
k Quality level identifier k ∈ Q
ti Starting time of service Si Time units (e.g., units of minutes or hours)
di Duration of service Si Time units (e.g., units of minutes or hours)
pi Power demanded of service Si Power units (e.g., units watts or kilowatts)
li Priority level of service Si Integer number
qi Quality level of service Si Integer number related to a multiplication factor to decrease

consumption (e.g., for qi = 2, pi × 0.75)
Tsi Time-shifting value of service Si Time units, +Tsi forward, -Tsi backward

In the energy management model, each service Si has independent operation parameters
ti, pi, and di, and belongs to a certain priority level li that defines the actions that affect
the service. For instance, a service Si can be subject to a forward time-shifting (i.e.,
when ti + Tsi) for delayed execution or a backward time-shifting (i.e., when ti − Tsi) for
anticipated execution. If the service Si runs at its original time, then Tsi = 0. In any
case, the service Si can be analyzed by the GEM (scheduling strategy) in the interval
{ti − Tsi, . . . , ti, . . . , ti + Tsi}. Analogously, the quality degradation qi can affect the
normal consumption pi of the service Si. It is the responsibility of the GEM to find the
best action (i.e., values of the management mechanisms) for each service, so that the
available energy supply is used optimally. In the worst case (the offline approach), the
GEM must simultaneously perform the analysis for all N services. In this case, the total
amount of power demanded denoted as PD is equal to the sum of the contributions of
each service, as indicated in Eq.6.7.

PD =
N∑
i=1

pi (6.7)

Therefore, the objective of optimizing the available power consumption can be expressed
as the difference between PA and PD (i.e., the PRES) , and, specifically, as the minimiza-
tion of this difference, as indicated in Eq. 6.8.

minimize {PA − PD} (6.8)

The objective of minimizing the PRES in the proposed HEMS considers the assumptions
in Section 5.1.1 and can be expressed as indicated in Eq. 6.9.In this model, the initial
time of appliances or of PA (denoted as Tinit

PA) can vary from zero to the maximum
time horizon W (equally discretized in time slots w), which usually is set to 24 hours. In
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addition, the size of the time slots can be configured based on the application scope and
requirements of each end-user. For instance, a time slot w could represent 10 minutes or
1 hour.

∀w ∈ W : minimize

{
W∑
w=1

(PA[w]− PD[w])

}
(6.9)

The objective function in Eq. 6.9 considers the following constraints.

C1 : PA[w] ≥ 0 (6.10)

C2 : (PA[w]− PD[w]) ≥ 0 (6.11)

C3.1 :
L∑

j=1

yij = 1, i ∈ {1, . . . , N} (6.12)

C3.2 : yij ∈ {0, 1}, i ∈ {1, . . . , N}, j ∈ L (6.13)

C4 : ti ≥ 0 (6.14)

C5 : {ti − Tsi} ≥ 0 (6.15)

C6 : W ≥ max{ti + di + Tsi} (6.16)

C7 : T PA
init ≥ 0 (6.17)

C8 :

Q∑
k=1

N∑
i=1

∑
e∈Gi

(pkie × qkie)[w]× xkie ≤ PA[w] (6.18)

C9.1 :
∑
e∈Gi

xkie = 1, k ∈ {1, . . . , Q}, i ∈ {1, . . . , N} (6.19)

C9.2 : xkie ∈ {0, 1}, k ∈ {1, . . . , Q}, i ∈ {1, . . . , N}, e ∈ Gi (6.20)

C1 and C2, ensure a positive value for PA and PRES, respectively. C3.1 guarantees the
assignment of a unique priority level for the service Si. The variable yij is set to 1 if the
priority li = j of Si exists, as shown in C3.2. The temporal constraints in the energy
model are ensured by C4, C5, C6, and C7.

C8 constraints the maximum consumption capacity in the energy model. In C8, the
decision variable shown in C9.1 and C9.2 guarantees the processing of the service Si with
unique values of time-shifting and quality degradation. The variable xkie is set to 1 if the
service Si with priority li = j and quality degradation level qi = k exists, as shown in
C9.2. This limitation avoids the processing (energy allocation) of multiple copies of the
same service Si.

The application of time-shifting and/or quality degradation mechanisms on a service Si

produces different versions of the service Si, which we define as variations of the service
Si. To know the dynamics of these variations in the proposed model, first, the impact of
the time-shifting, and then the quality degradation on the N services, are analyzed. The
use of the time-shifting mechanism on N services produces N mutually disjointed classes
G1, . . . , GN of services. Each class Gi is composed of the shifted versions (variations) of
the service Si considering the complete time-shifting interval (i.e., including the original
version of services, when Tsi = 0). Once the shifted versions (variations) of the services
have been obtained, including the original versions, we proceed to analyze the application
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of the quality degradation mechanism on them. As for the time-shifting mechanism, in
the case of quality degradation, all possible values are considered. This procedure causes
Q mutually disjointed classes H1, . . . , HQ of variations to be created. Each class Hk is
composed of the degraded versions of the shifted variations of the service Si (i.e., variations
first affected by time-shifting and then affected by quality degradation).

Considering that the application of management mechanisms produces many variations,
the adaptive energy management problem is summarized by choosing the best possible
variations of services (i.e., for which xkie takes on a value of 1), such that the utilization
of PA is maximized (and PRES is minimized). In this context, the set of N or n (with
n ⊂ N) variations simultaneously analyzed is defined as a combination of variations or
combination, denoted as Combf (e.g., Comb1).Then, the objective of the load scheduling
strategies (optimal or heuristics algorithms) is to find the best combination among all
possible combinations (denoted as AllComb, with Combf ∈ AllComb) produced due to
different variations of services.

Since adaptive management of consumption is summarized in finding the best combi-
nation of services (joint action of energy demands that minimize PRES) through load
scheduling strategies optimal (e.g., brute force methods) or approximate (e.g., heuristic
methods), it is necessary to establish the criteria that allow: (i) assessment of the im-
provement in energy use, and (ii) selection of the most suitable combination among all
possibilities. To meet these criteria, the metrics in Section 5.1.2.4 are considered, includ-
ing an additional metric defined as Energy Utilization (EAU

). This metric is expressed as
indicated in Eq. 6.21 and measures the amount of energy allocated to processed services
(appliances) concerning available energy (EAU

= 100%, if PD = PA).

EAU
=

∑Q
k=1

∑N
i=1

∑
e∈Gi

pkie × qkie × dkie
PA ×W

× 100% (6.21)

The proposed energy model establishes a cost function to evaluate the quality of the
combination of variations (Combf ) to be selected, i.e., the one that optimizes the use of
PRES) while maximizing the comfort level of the end-user. Specifically, the combination
with the lowest cost represents the scheduling of services that optimizes use of PA (i.e.,
adaptive energy management). The cost function denoted as Costcombf considers infor-
mation from the metric AR (CostARf

, with M a big value, e.g., M = 1000) and the
cumulative value of parameters li (CostLf

), qi (CostQf
), and Tsi (CostTsf ) of variations

(services) in the combination f . Equation 6.22 defines Costcombf , while the individual
costs that are part of this expression are defined in Eq. 6.23, Eq. 6.24, Eq. 6.25, and
Eq. 6.26. If necessary, the values of cost functions in Eq. 6.22 can be modified by GEM
based on the preferences of the end-user, using the weights α, β, γ, and δ in the range
[0,1]. For analytical simplicity, these weights are set to one in the proposed model. The
cost function is computed for each Combf ∈ AllComb. From this list, the best cost
identified as OptCost has the lowest value, as shown in Eq. 6.27, and represents the opti-
mal scheduling of services that achieves adaptive energy consumption. In case there are
several optimum costs, the selection can be made randomly.
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The objective of adaptive energy management in our proposal consists of maximizing the
use of the available energy supply (mainly from green sources) through the execution
(selection) of the best possible variations of services (i.e., for which xkie takes on a value
of 1 in Eq. 6.18). As described in Section 5.1.3, this process is analogous to the objective
of the 1/0 Knapsack problem of selecting the most valuable items without overloading the
knapsack; in consequence, the proposal for adaptive energy management has a complexity
level of NP-hard [102].

Costcombf = α× CostARf
+ β × CostLf

+ γ × CostQf
+ δ × CostTsf (6.22)

CostARf
=

{
0 if ARf = 100%,
RejServ ×M× priRejServ otherwise.

(6.23)

CostLf
=

{
0 if all services have j = 1,∑N

i=1 li otherwise.
(6.24)

CostQf
=

{
0 if all services have j = 1,∑N

i=1 qi otherwise.
(6.25)

CostTsf =

{
0 if all services have j = 1,∑N

i=1 Tsi otherwise.
(6.26)

OptCost =Costcombf
∈AllCost Costcombf (6.27)

6.1.4 Heuristic Algorithmic Strategies

Adaptive energy management constrained to the available supply through management
mechanisms, such as time-shifting and quality degradation, can be categorized as a 1/0
knapsack problem and specifically in the multidimensional multiple-choice knapsack prob-
lem (MMKP) category [102]. In the proposed energy model, the multidimensional prop-
erty includes/refers to the magnitude and temporality of the supply and energy demands.
Simultaneously, the multiple-choice characteristic refers to a time-shifting and/or qual-
ity degradation level applied while selecting an energy demand. In this context, we can
conclude that the proposed adaptive consumption model has at least the computational
complexity of an MMKP problem, proven to be NP-Hard. Since previous work [14]
showed that the exact (optimal) method requires excessive execution (over 90 hours),
large computational capacity, and has limited practical application (e.g., for N > 9,
Tsi > 4, or qi > 1), we present a heuristic algorithm strategy to solve the adaptive
management problem within a reasonable running time in this section.

6.1.4.1 Prepartitioning-based Strategy: PHRASE

The proposed strategy named Prepartitioning Home eneRgy mAnagement SystEm (PHRASE)
is inspired by a divide-and-conquer approach. Instead of performing combinatorial anal-
ysis of energy allocation for the entire set of existing services as would be done in the
optimal (exact) method, the suboptimal (approximate) PHRASE strategy iteratively an-
alyzes subsets of services. Each subset z is denoted as a partitionz (partitionz ⊂ N ) and
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has a length lenPartz that can be different for each partition, although previous work [9]
demonstrated that equal size partitions produce better-quality results. The total number
of partitions is identified as NumPart. For each partitionz (i.e., services belonging to the
partition), the strategy PHRASE analyses the application of management mechanisms
(time-shifting and quality degradation) to produce variations, compute combinations,
and obtain partial solutions. Later, PHRASE merges these solutions to obtain the total
allocation of energy resources and the corresponding scheduling of services that enables
adaptive energy management. The PHRASE algorithmic strategy for both the offline and
online approaches is explained in Fig. 6.4 and Fig. 6.5, respectively. The implementation
of PHRASE for the offline approach is summarized as follows:

Start

Sorting of services based on	𝑙!, from j =1 up to j=L
Computation of variations per service (VarServ):

For each	𝑞! in {𝑞"!#,⋯ ,𝑞"$%}
For each	𝑇𝑠! in {𝑡! −	𝑇𝑠!,⋯, 𝑡!,⋯, 𝑡! +	𝑇𝑠!}

Validation of variations with non-negative 	𝑃&'(
s

For each 𝐶𝑜𝑚𝑏)	 ∈ AllComb computationof:
Power demandedof combination: 𝑃+!"#$%

Residual power of combination: 𝑃&'(!"#$%

Acceptanceratio of combination: 𝐴𝑅)

Sorting of cost functions, selection of OptCost and
OptComb, and energy allocation for variations

Computation of PRES

End

Input parameters: 𝑃& , 𝑃'(, 𝑃, , 𝒩, ℒ ,𝒬,W
	𝑆!, 𝑡!,	𝑑!, 	𝑝!, 	𝑙!,	𝑞!, ±	𝑇𝑠&, partitionz , 

lenPartz , numPart, z = 1 

Final metrics: 𝐸,!, AR, PRES , PLACK

All partitions or
PRES ≤ 0

Yes

No

z = z + 1
𝑃, update
(𝑃' = PRES )

For each 𝐶𝑜𝑚𝑏) ∈ AllComb	computation of 
cost functions:

	𝐶𝑜𝑠𝑡-."/%= α×𝐶𝑜𝑠𝑡,&%+ 𝛽×𝐶𝑜𝑠𝑡0% +
𝛾×𝐶𝑜𝑠𝑡1%+ 𝛿×𝐶𝑜𝑠𝑡23%

Analysis of partition z:
Selection of services (variations) of partition z

Computation of combination of variations: 𝐶𝑜𝑚𝑏"
All possible combinations: AllComb, 𝐶𝑜𝑚𝑏( ∈ AllComb

Figure 6.4: Flow chart PHRASE offline approach.
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1. Sorting of services and computation of variations: As a first step, the algorithm
sorts the services according to their li (from j = 1 to j = L) to ensure the energy
allocation for CS. Then the algorithm computes the variations of services consider-
ing all the values of time-shifting and quality degradation. Furthermore, to reduce
possible invalid combinations (with PRES < 0), the algorithm eliminates variations
whose isolated execution produces PRES < 0. This procedure improves algorithm
performance in terms of running time by reducing the size of the search space for
the best combination per partition.

2. Analysis of partitions and combination of variations: The algorithm performs com-
binatorial analysis of variations belonging to each partition to obtain combinations.
These combinations are made up of different variations of services. Regarding the
complexity of PHRASE, we indicate that combinatorial analysis is dominant be-
cause as the values of Tsi or qi increases (and in the worst case both), the number
of variations increases, and the generation of combinations increase exponentially
[14].

3. Selection of best combination and final performance metrics: Once the algorithm
obtains all the cost functions, it sorts them in increasing order (e.g., through a
quicksort method) and selects the first cost in the sorted list (i.e., cost function
with the lowest value). This function represents the best combination of services,
which allows for optimal service scheduling in the HEMS. The process continues
iteratively until all partitions are analyzed. Finally, the algorithm computes the
performance metrics.

The implementation of PHRASE for the online approach is summarized as follows:

1. Initial analysis of services: Given that for the online approach, the dynamics in
terms of demand and energy resources evolve as a function of time slots, the ap-
plication of the prepartitioning strategy in this environment needs some modifi-
cations and additional procedures regarding the offline approach implementation.
The first difference is the limited application of forward time-shifting, due to rea-
sons of causality. In this context, the performance for the online approach, in terms
of energy utilization, is expected to be lower than the achieved for the offline ap-
proach, at most the same (never better). The second change is the differentiation
of resources and processing for CS (PCS) and NCS (PNCS) services to ensure CS ex-
ecution. In this regard, the algorithm assumes that once the service is accepted (in
its first slot), there is sufficient energy for its completion (the model does not accept
partial processing). The last difference is the inclusion of a list named waitingList,
which store information on the variations of services that were not processed in
their natural starting time (ti) due to lack of power or because the allocation was
performed to higher-priority service.

2. Analysis for CS: If service Si at time slot w is identified as a CS, the algorithm
allocates the corresponding energy resource. Then, the algorithm updates the PCS

for the remaining services with this priority level.
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Start

Analysis of unprocessed services with 𝑡! ≥ 𝑤:
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Figure 6.5: Flow chart PHRASE online approach.
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3. Analysis for NCS: If service Si at time slot w is identified as a NCS, the algo-
rithm performs a similar analysis to carried out for the offline approach, consider-
ing the simulated services with the analyzed service and the services (variations) in
waitingList. Once the algorithm selects the best combination, the energy allocation
is made, and the energy resources for subsequent NCS are updated.

4. Final metrics: Once the analysis of all the services in the time horizon W has been
carried out, the algorithm calculates the performance metrics.

6.1.4.2 Complexity Analysis of PHRASE

The complexity of PHRASE depends on the total number of analyzed combinations in the
explored partitions. The most computationally demanding case arises when the approach
is offline. Therefore, Eq. 6.28 expresses the complexity of PHRASE as a function of the
number of services, the total number of quality degradation levels (Q), and the maximum
forward and backward time-shifting value (Ts). In Eq. 6.28, the terms correspond to the
original information of the services, the production of variations, and the generation of
combinations of services in each partition, respectively. In Eq. 6.28, the last term is
dominant and indicates that the growth rate of PHRASE is non-polynomial. However, as
evidenced in previous studies [9], the number and size of partitions can be configured (e.g.,
lenPartz = 5 services) such that complexity becomes tractable (i.e., feasible running time
and usage of computational capacity) and hundreds or thousands of times smaller than
the strategy without considering prepartitioning (i.e., when the exact method is applied).

f(N,Q, Ts) = N +Q× (2×N × Ts+N) +Q×

(
NumPart∑

z=1

(2× Ts+ 1)lenPartz

)
(6.28)

6.1.5 Evaluation

In this section, the proposed strategy will be validated and evaluated using a data set
from real scenarios in order to show the benefits in terms of the metrics defined, spe-
cially regarding the capacity to accept more appliances consuming in the period, while
smoothing the peaks of power consumed. In addition, to demonstrate the performance of
PHRASE, this section presents a comparison with the optimal solution (i.e., without con-
sidering the prepartitioning method) and other similar strategies from the literature. The
performance of the proposed heuristic strategies is evaluated according to the simulation
setting indicated in Section 5.4.0.1. The results of metrics EAU

, AR, PRES, and PLACK

are compared to the baseline scenario, which has no management mechanism. Regarding
the number of partitions, they are limited in PHRASE to five because, in previous work
[9], this value has demonstrated to offer a trade-off in the running time and the accuracy
of the results.
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6.1.5.1 Scenario Description

Three scenarios have been considered for the evaluation of PHRASE. The first scenario
aims to compare the performance of PHASE with the optimal solution that is obtained
when no partitions are used (i.e., when a brute-force search method is implemented).
Previous studies [14] have demonstrated that the optimal solution is limited to a small
number of services and time-shifting values (e.g., N < 9 and Tsi < 6). Consequently, this
scenario has been limited to N = 8 services (i.e., a small-scale scenario) and Tsi = 5 ∀ Si.
Fig. 6.6 summarizes the generation and consumption (load distribution) profiles used to
evaluate the optimal solution and the proposed heuristic.
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Figure 6.6: Power supply and consumption profiles on a small-scale in HEMS.

The second scenario corresponds to a real domestic environment in which the impact of
PHRASE on adaptive energy consumption is exhaustively analyzed. For the evaluation
of PHRASE in a domestic environment, a data set of real consumption over 24 hours
obtained from the model provided in [116] is used as a reference. The consumption
information has been adapted to the scope of the proposed adaptive model regarding the
customized information of priority, time-shifting, and quality degradation, as summarized
in Table 6.3. To simulate renewable energy generation (PR) in a household, a generation
profile following a Gaussian distribution has been used. In this profile, the total available
energy is equal to the total energy demanded, and the peak value is approximately 6300
watts. This value is within the range of production of real renewable energy systems
for domestic environments, as exemplified in [131]. Besides, to simulate the eventual
contribution of the energy utility company to the total available supply (PA), in the
proposed scenario, the use of a small fraction of renewable energy PR

ES is considered
(although it may also be PNR

ES ) to ensure the execution of services with the highest level
of priority (j = 1).
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Table 6.3: Description of the main HEMS scenario.

Load description Quantity pi [W] ti [Hour] di [Hour] li Tsi [Hour] qi

Fridge Freezer 1 190 00:00 24 1 0 1
Answer Machine 1 1 00:00 24 1 0 1

CD Player/Radio 1 1 17 06:00 3 1 0 1
CD Player/Radio 2 1 17 15:00 4 1 0 1

Clock 1 2 00:00 24 1 0 1
Phone 1 1 00:00 24 1 0 1
HiFi 1 109 18:00 5 3 0 2 (×0.75)
TV 1 1 127 12:00 2 3 0 2 (×0.75)
TV 2 1 127 18:00 5 3 0 2 (×0.75)

VCR DVD 1 36 20:00 3 3 0 2 (×0.75)
Laptop (charger) 1 146 09:00 8 2 ±2 1

Hob 1 1 2401 08:00 1 2 ±3 2 (×0.75)
Hob 2 1 2401 18:00 2 2 ±3 2 (×0.75)
Oven 1 1 2128 08:00 2 2 ±3 1
Oven 2 1 2128 16:00 3 2 ±3 1

Microwave 1 1 1252 09:00 1 2 0 2 (×0.75)
Microwave 2 1 1252 13:00 1 2 0 2 (×0.75)
Microwave 3 1 1252 19:00 1 2 0 2 (×0.75)

Kettle 1 1 2001 10:00 1 2 ±1 1
Kettle 2 1 2001 15:00 1 2 ±1 1

Small Cooking 1 1002 11:00 2 1 0 1
Tumble Dryer 1 2501 08:00 2 2 +8 1

Washing Machine 1 407 17:00 3 2 −8/+4 1
Dish Washer 1 1131 09:00 2 2 ±8 1
Lighting 1 2 50 06:00 2 1 0 1
Lighting 2 2 50 17:00 7 1 0 1

Lighting 3 (not indispensable) 5 50 06:00 2 4 0 3 (×0.5)
Lighting 4 (not indispensable) 5 50 17:00 7 4 0 3 (×0.5)

In the last scenario, a brief comparison of the results delivered by PHRASE with other
similar approaches in the literature is carried out. To this end, the consumption data
in [132] and summarized in Table 6.4 have been used. In this case, all services are NCS
with a li = 2. Moreover, the results of adaptive consumption (reduction of peak power)
of PHASE for offline and online approaches are compared with the results obtained with
other three evolutionary algorithms-based in [132], that are denoted as Cuckoo (cuckoo
search), GA (genetic algorithm), and BPSO (binary particle swarm optimization).

6.1.5.2 Numerical Results

In the small-scale scenario, the evaluation of PHRASE demonstrates that the proposed
adaptive model leads to optimized energy consumption, which is reflected in an increase
in EAU

and AR and a decrease in PRES and PLACK as time-shifting increases, as shown in
Fig. 6.7a, Fig. 6.7b, Fig. 6.7c, and Fig. 6.7d, respectively. Particularly, in this scenario, the
evaluation of PHRASE confirms that this strategy produces adaptive consumption and
high-quality results compared to those obtained with optimal strategy. In the analyzed
scenario, the suboptimal results (from heuristic) are identical to those obtained with the
optimal solution with a reduced running time and less computational capacity, as shown
in Fig. 6.8.
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Table 6.4: Description of the HEMS scenario for comparison of results (from [132]).

Load description pi [KW] ti [Hour] di [Hour] Tsi [Hour] qi

Washing machine 1 1 01:00 1 ±5 3 (×0.5)
Washing machine 2 1 13:00 2 ±5 3 (×0.5)

Cloth dryer 1 4 01:00 4 ±5 3 (×0.5)
Cloth dryer 2 4 09:00 2 ±5 3 (×0.5)
Cloth dryer 3 4 19:00 2 ±5 3 (×0.5)

Electric vehicle 1 3 05:00 2 ±5 3 (×0.5)
Electric vehicle 2 3 09:00 1 ±5 3 (×0.5)
Electric vehicle 3 3 20:00 4 ±5 3 (×0.5)
Water heater 1 4.5 01:00 1 ±5 3 (×0.5)
Water heater 2 4.5 04:00 1 ±5 3 (×0.5)
Water heater 3 4.5 07:00 2 ±5 3 (×0.5)
Water heater 4 4.5 17:00 5 ±5 3 (×0.5)

Refrigerator 1 00:00 24 ±5 3 (×0.5)
Lights 1.5 00:00 24 ±5 3 (×0.5)
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Figure 6.7: Summary of performance metrics obtained by optimal solution and
PHRASE strategy in the online and online approaches considering the maximum quality

degradation level qi = 3 (×0.5) and two partitions.

Although in diverse scenarios, the performance of PHRASE may be lower than that of
the optimal solution, its lower complexity (adjustable by varying the number of cabinets)
makes it a feasible solution in a variety of application environments such as the HEMS.
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As an example of comparison, Fig. 6.8a reports that PHRASE (for the offline approach)
runs over 90 times faster than the optimal solution. Partitions make it possible to exceed
the limits imposed on the optimal solution regarding the number of services.
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Figure 6.8: Running time and computational capacity used by the optimal solution
and PHRASE strategy in the offline and online approaches considering a maximum

quality degradation level qi = 3 and a single core.

For the HEMS scenario in Table 6.3, the simulation results show that the proposed
adaptive model and the PHASE strategy lead to optimized green energy consumption.
As time-shifting and quality degradation levels increase, the algorithmic strategy improves
the ability to allocate the consumption demands, preventing unnecessary energy waste.
For practicality, Fig. 6.9 only shows the simultaneous action of time-shifting and quality
degradation mechanisms for the offline approach. Fig. 6.9a, Fig. 6.9b, Fig. 6.9c and
Fig. 6.9d show an increase in EAU

and AR values and a decrease in PRES and PLACK ,
respectively, indicating that the PA utilization improves with an increase in time-shifting
and/or quality degradation value. The consumption profiles before (baseline scenario)
and after the application of PHRASE is shown in Fig. 6.10a and Fig. 6.10b, respectively.

To compare the operation in offline and online approaches, the analysis of PHRASE is
carried out for the maximum level of quality degradation (i.e., qi = 3∀i ∈ N ) and consid-
ering a variation in time-shifting (from 0 to 5 hours), as shown in Fig. 6.11. Simulation
results for these conditions report that PHRASE achieves better metric values in the
offline approach, as shown in Fig. 6.11a Fig. 6.11b, Fig. 6.11c, and Fig. 6.11d. This
difference in the online approach obeys the limited use of forward-time shifting because
of the causal principle and the lower amount of simultaneous variations analyzed. The
metric results, specifically the AR, show the limitation of the PHRASE strategy, as the
scenario conditions are designed to reach an optimal solution (AR = 100%). A more so-
phisticated method might achieve an optimal solution. Therefore, future research could
address the development and evaluation of adaptive solutions based on genetic algorithms
or dynamic programming.

The metrics EAU
and AR summarize the effectiveness of PHRASE in energy consump-

tion. Fig. 6.11a indicates that the EAU
metric shows a 44.17% improvement (from 43.71%

to 87.88%) and 30.3% improvement (from 43.71% to 74.01%) for offline and online ap-
proaches, respectively. The AR metric improves by 18.42% (from 71.05% to 89.47%) and
15.79% (from 71.05% to 86.84%) for offline and online approaches, respectively, as seen in
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Fig. 6.11b. Although the improvement in AR does not appear to be significant because
it is produced by the rejection of several small energy demands (with the lowest priority),
the real operation of PHRASE is supported by the value of the EAU

metric. Regarding
the reduction of power peaks, Fig. 6.10b shows that PHRASE produces a reduction of
25.58% and 15.3% for offline and online approaches, respectively.
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Figure 6.9: Performance evaluation of PHRASE for the domestic scenario described
in Table 6.3 and metrics obtained of the offline approach.

The simulation of PHRASE in the offline approach exploits parallel processing, and the
total running time for all values of Tsi and qi is 352.57 seconds.
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plication of the PHRASE strategy.

0 2 4 6 8 10 12 14 16 18 20 22 24

Time [Hours]

0

2000

4000

6000

8000

P
o

w
e
r 

[W
]

(b) Supply and consumption profiles after the ap-
plication of the PHRASE strategy.

Figure 6.10: Comparison between the baseline scenario and PHRASE application in
offline and online scenarios considering the maximum values of Tsi and qi.

On the other hand, Fig. 6.12 reports that PHRASE solves the most demanding case
(Tsi = 5 and qi = 3) with a running time of 165.31 seconds in the offline approach
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with the maximum usage of 4.69% RAM and 18.16% CPU. For the online scenario, the
maximum running time is approximately 1 second using a maximum of 4.38% of RAM and
16.01% of CPU. The results in Fig. 6.12a, Fig. 6.12b, and Fig. 6.12c show that PHRASE
can be executed with a reasonable running time using a small amount of computational
capacity. Thus, this strategy can be applied to plan renewable and non-renewable energy
consumption or energy management in real-time scenarios. Furthermore, the strategy
could be deployed into an embedded device with limited computational resources such as
a Raspberry Pi 3 Model B platform [141].
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Figure 6.11: Summary of performance metrics obtained by the PHRASE strategy in
the online and online approaches considering the maximum quality degradation level

qi = 3 (×0.5).
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Figure 6.12: Running time and computational capacity used by the PHRASE strategy
in the offline and online approaches considering a maximum quality degradation level

qi = 3 and a single core.
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Regarding the comparison with existing strategies in the literature, the results of the
third scenario in Fig. 6.13 report that PHRASE produces solutions similar to more so-
phisticated approaches such as those based on evolutionary algorithms [132]. The results
in this scenario show that even though the structure of PHRASE is simple (based on
prepartitioning), its internal management mechanisms (mainly time-shifting and quality
degradation) allow obtaining an efficient adaptive consumption for offline (Fig. 6.13a)
and online (Fig. 6.13b) approaches. Specifically, the results in Fig. 6.13 indicate that
PHRASE, like the existing strategies (Cuckoo, GA, and BPSO), enables peaks power
reduction. Even as shown in Fig. 6.13a and Fig. 6.13b, the proposed heuristic compared
to the others strategies analyzed offers a lower level of power peaks (lower than 7[KW])
and a consumption conditioned to availability (PA) throughout the time horizon. More-
over, PHRASE produces an improvement in service processing (use of PA) of 42.86%
(from AR = 57, 14% up to AR = 100%) for the offline approach and 35.72% (from
AR = 57, 14% up to AR = 92.86%) for the online approach, verifying the validity of the
model in terms of adaptive consumption conditional on availability.
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Figure 6.13: Performance evaluation of PHRASE for the scenario described in Ta-
ble 6.4 considering two partitions and comparison with similar approaches in [132].

6.1.6 Conclusions

This section proposes an IoT-enabled automated and adaptive HEMS that optimizes
self-generated renewable energy utilization, which can use as a secondary source the
provisioning from the energy utility company if necessary. The proposal includes a de-
scription of the architecture, the negotiation scheme for the consumption of IoT devices,
and management mechanisms, such as time-shifting and quality degradation, to adapt
the demand to the available power while maximizing its utilization. This section also pro-
vides the mathematical formulation associated with the adaptive consumption model. To
solve the energy model, a heuristic called PHRASE is provided, which bases its operation
on a divide and conquer approach.

To verify the validity of the proposed system and the operation of PHRASE, a simulation
is carried out in a domestic environment based on real consumption data generated from
[116]. The results of the metrics EAU

, AR, PRES, and PLACK in the simulation performed
reveal that the proposed energy model and algorithmic strategy deliver improvements
in a way that available energy is used compared to the baseline scenario in which no
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management strategies are applied. Particularly, if PHRASE uses the maximum values
of Tsi and qi = 3 (i.e., Tsi = 5 and qi = 3), EAU

improves by 44.17% and AR by 18.42%,
and the peak power is reduced by 25.58% for the offline scenario. In the online scenario,
the improvement in EAU

is 30.30% and AR is 15.79%, while the power peak is reduced
by 15.30%.

Regarding the running time of the algorithmic strategy and computational resources used,
the results of the simulations indicate that for the offline scenario, the maximum running
time reached is 165.31 seconds (for Tsi = 5 and qi = 3) using a maximum of 4.69% of
RAM and 18.16% of CPU. For the online scenario, the maximum execution time (for
Tsi = 5 and qi = 3) is approximately 1 second using a maximum of 4.38% of RAM
and 16.01% of CPU. The online scenario results demonstrate the feasibility of PHRASE
in real-time applications and the possible deployment in current embedded devices of
limited computational capacity. Therefore, it can be implemented in low cost devices,
and attached to the smart meter.

Although the PHRASE algorithm produces improvements in renewable energy consump-
tion in a reasonable running time, other strategies, such as genetic algorithms or dynamic
programming, could be evaluated in future work. Furthermore, since the online operation
of PHRASE is limited to the use of forward time-shifting, a prediction mechanism of the
generated supply could be included in the adaptive model to potentially expect better
energy allocation and demand processing. To this end, different techniques could be used,
among which we can mention supervised learning techniques such as random forest or
artificial neural networks, which are pretty popular today. Also, despite the proposed
system encouraging battery-free adaptive management, a battery unit’s possible inclu-
sion could serve to store energy in periods of abundance and provide energy if the PR is
not sufficient to meet all demands. This would not only improve system performance but
also reduce dependence on energy utility provisioning.
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6.2 Adaptive Energy Management in 5G Network

Slicing

Energy consumption is a critical issue for the communications network operators, im-
pacting deeply the cost of the services, as well as the ecological footprint. Network slicing
architecture for 5G mobile communications enables multiple independent virtual net-
works to be created on top of a common shared physical infrastructure. Each network
slice needs different types of resources, including energy, to fulfill the demands requested
by each application, operator, or vertical market. The existing literature on network slic-
ing is mainly targeted at the partition of network resources; however, the corresponding
management of energy consumption is an unconsidered critical concern. This section an-
alyzes the requirements for an energy-aware 5G network slicing provisioning according to
the 3GPP specifications, proposes an architecture, and studies the mechanisms to provide
efficient energy consumption in terms of renewable and non-renewable sources. NFV and
SDN technologies are the essential enablers and leverage the IoT connectivity provided
by 5G networks. This section also presents the technical 5G technology documentation
related to the proposal, the requirements for adaptive energy management, and the ILP
formulation of the energy management model. To validate the improvements, an exact
optimal algorithmic solution is presented.

6.2.1 Introduction

6.2.1.1 Background and Motivation

The deployment of 5G mobile networks introduces new services and applications to fa-
cilitate a wide range of end user demands. However, before these innovations can be
made available to customers and vertical markets, some challenges need to be addressed,
such as the efficient management of network resources, multi-tenancy approaches, and
the management of energy consumption [142, 143]. Regarding the first two points, net-
work slicing architecture has emerged as a means to efficiently support dynamic resource
management in a multi-tenant environment [144]. Specifically, network slicing for 5G
mobile communications leverages on the concepts of NFV and SDN to implement multi-
ple virtual and independent logical networks, referred to as network slices, on a common
shared physical network infrastructure [145, 146]. In network slicing, each slice (virtual
network) is an isolated amount of end-to-end network resources and functions with dif-
ferent requirements, including energy, and with independent management and control,
tailored to fulfill the diverse demands requested by a particular operator, application,
service, customer, or vertical market [147].

The Mobile Network Operator (MNO) can configure and manage the control plane and
user plane network functions and the corresponding resources (e.g., access, transport, and
core networks) to support various Slice/Service Types (SST) [148]. These SST can be
grouped according to their different requirements in functionality (e.g., priority, charging,
security, and mobility), on performance requirements (e.g., reliability, latency, mobility,
and data rate), or they can be targeted to specific users (e.g., public safety users, corporate
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customers, or virtual operators) [143]. In the technical specification TS 23.501 v16.4.0
(issued in March 2020), the 3rd Generation Partnership Project (3GPP) provides a stan-
dardized classification that groups different services, such as enhanced Mobile Broadband
(eMBB) services, Ultra-Reliable Low-Latency Communications (URLLC) services, mas-
sive Internet of Things (IoT) services (MIoT), and Vehicular-to-everything communica-
tions (V2X, where the X means vehicle, infrastructure, pedestrians, etc.), within four
SST categories [142], as shown in Table 6.5. This classification can be used as a baseline
or template to implement network slices for most customer requirements. In addition,
the TS 23.501 v16.4.0 does not limit the creation of other categories if necessary, and the
assigned SST values do not give priority to one category over the others.

Table 6.5: Standardized SST values and examples [142].

Slice/Service type SST value Characteristics Examples of services

eMBB 1
Slice suitable for the han-
dling of 5G enhanced
Mobile Broadband

4K/8K UHD, hologram, aug-
mented/virtual reality

URLLC 2

Slice suitable for the han-
dling of ultra reliable low
latency (e.g., 1 ms) com-
munications

High-accuracy positioning
systems, motion control, au-
tonomous driving, automated
factory, smart-grid service,
augmented/virtual reality

MIoT 3
Slice suitable for the han-
dling of massive IoT

Sensor-network services (e.g., me-
tering, agriculture, building, lo-
gistics, cite, home, etc.)

V2X 4
Slice suitable for the han-
dling of V2X services

Vehicular communications sys-
tems (e.g.,vehicle-to-vehicle,
vehicle-to-infrastructure, , etc.)

Regarding energy consumption management, this feature is a key factor in the deploy-
ment and evolution of mobile networks [149], and it is also a crucial consideration for the
following reasons: (i) constant growth in energy consumption because of the increasing
number of devices connected to mobile networks and the corresponding network densi-
fication from the deployment of a high number base stations and related infrastructures
(legacy networks 2G, 3G, and 4G must coexist with 5G and beyond networks) [150]; (ii)
increased traffic demand and heterogeneity of services with different requirements (e.g.,
high data rate, low latency, wide bandwidth, a high operating frequency of up to 60 GHz,
reliability, or connectivity) [151]; (iii) increase in the OPEX for the MNO, because, more
energy consumption means more costs of energy supply, which can produce an impact on
tariffs for consumers or less margins for the operators [149]; and (iv) sustainability issues,
which call for new energy generation and consumption principles [151].

Historically, the evolution of mobile networks has implied an increase in energy consump-
tion. However, this current reality needs to change due to sustainability considerations,
the increase in CO2 emissions, and the impact on climate change caused by the use of
fossil fuels for energy production (e.g., electricity) [152]. To guarantee energy sustainabil-
ity and efficiency for mobile communications, there are different solutions that fall into



Chapter 6. Application Scenarios 138

two major groups: (i) increasing the use of renewable energy sources; and (ii) optimizing
energy consumption (e.g., using energy saving mechanisms) [153].

The use of renewable energy sources (e.g., solar and wind), also known as green energy,
to power ICT systems such as 5G networks, is a promising alternative that can reduce
energy bills for the MNO and customers, the exclusive dependence on power grids, and is
an opportunity to deliver a cleaner and more sustainable mobile communications ecosys-
tem [151]. For instance, green energy can allow the deployment of base stations in remote
areas where power grids are not available (e.g., photovoltaic installations), and it may be
a choice to compensate the lack of energy capacity from the supplier. In addition, the
adoption of renewable energy sources allows changing the traditional centralized energy
supply scheme to distributed power grid architectures in which the energy harvesting pro-
cesses can be used to improve energy distribution, as it has been demonstrated for mobile
access networks [154]. For all these reasons, the use of green energy emerges as a feasible
solution to deal with the ever-rising energy demand and sustainability requirements [153].

There are multiple benefits of using energy from renewable sources, but their intermit-
tent nature may affect the continuity of services and the reliability of mobile networks.
In addition, the use of green energy alone is not enough to make mobile networks more
sustainable; they need to consume better and less. Consequently, there is a need to in-
corporate new methods for adaptive energy management consumption (i.e., mechanisms
to adapt consumption to availability) [142]. In this regard, different strategies have been
analyzed such as activation of network infrastructures on demand, the total or partial
deactivation of services or devices (e.g., deactivation of sectors in base stations), peri-
odical activation or deactivation of consumption (e.g., by using sleep or idle modes),
degradation in the quality of service (e.g., decrease in transmitting power), or scale the
energy consumption to the traffic dynamicity [155, 156]. These strategies can be applied
to specific segments (e.g., to access networks) or to the whole system, and they can be
performed through the ICT infrastructures of mobile networks [155]. In 5G, for example,
the enabling technologies NFV and SDN can be used to deploy an energy management
framework [157, 158], which offers high computing capabilities (data centers or cloud
computing infrastructures), flexibility, and agility for executing management strategies
(NFV benefits) [146], as well as the separation of control and data planes (SDN benefits)
[30], and they can be applied for energy managing for different customers and scenar-
ios transparently. Moreover, an NFV/SDN-based energy management architecture can
potentially be used for managing virtual resources and networks [157, 158], a capability
that can enable energy management in 5G network slicing.

In summary, new services and applications demanded by customers impose that the cur-
rent and future mobile networks have sophisticated energy management and consumption
schemes. These energy management approaches must be adapted to finite energy produc-
tion and the dynamic generation–consumption conditions. Natively, mobile networks lack
an efficient energy management scheme for the whole system. In addition, the redundant
design of mobile networks (e.g., duplication of access, transport, or core devices) for keep-
ing the reliability and performance in communications has produced a constant increase
in energy consumption (mainly for non-renewable sources) and carbon footprint related.
To promote sustainable and environmentally friendly development of mobile networks,
the traditional network design and operation must incorporate efficient management of
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energy consumption and prioritize the use of renewable energy sources. In this regard,
the evolution to 5G and specifically to network slicing is an opportunity to develop a
sustainable and adaptive energy management ecosystem that is capable of working in
a multi-tenant approach, encourages the use of green energy, and optimize the energy
consumption.

6.2.1.2 Contributions

This section proposes an energy management solution applicable to 5G network slicing
in which the service processing (i.e., the creation of network slices and corresponding
services) is aware of the energy supply with the aim of optimizing power consumption,
specifically by minimizing the power consumption from non-renewable energy sources.
The proposal considers renewable energy sources, but non-renewable sources can also be
used when extra energy is required. Efficient energy management involves minimizing
consumption, achieving a specific reduction in consumption (e.g., 20% energy saving), or
optimizing the available power consumption (utilization). In this work, we chose the last
option, anticipating a future in which the penetration of green energy allows meeting all
energy demand and requires adaptive mechanisms to leverages its generation. Moreover,
we validated this approach in [9]. The considerations of the architectural framework
and the enabling technologies needed for energy management, as well as the interaction
between generation and consumption sides presented in [9], are taken as a baseline for
the adaptive energy management solution presented in this section. In this regard, this
section represents an evolution of the work in [9] towards an efficient and environmentally
friendly energy-management for mobile networks.

The proposal in this section includes: (i) an architecture for adaptive energy management
that considers provisioning from renewable and non-renewable sources, which is developed
based on NFV and SDN technologies, and leverages the IoT massive connectivity provided
by modern mobile networks; and (ii) various management mechanisms at service level
such as an intra-slice prioritization scheme, service rejection, time shifting in service
execution, and degradation in service quality (i.e., decrease in energy demand), all to
optimize the available power consumption. In addition, this section provides modeling
of the stakeholders involved in energy management and consumption (i.e., the MNO
and consumers), and the ILP formulation corresponding to the problem of the adaptive
energy management. To find the exact optimal solution, a brute-force search algorithmic
strategy (OptTsNS) is proposed. Simulation results demonstrate that the proposed
energy management solution allows for efficient energy consumption in the different slices
and corresponding services in accordance with the available energy resources and customer
requirements, thereby realizing feasible and efficient energy management for 5G networks.

6.2.2 Related Work

This section presents related work that addresses the two main areas of the proposal, i.e.,
the energy efficiency and energy management in 5G networks, and the use of network
slicing architecture for resource management, including energy.
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6.2.2.1 Energy Efficiency and Energy Management in 5G Networks

Improving energy efficiency has become a key pillar in the design of 5G networks due to
economic and operational considerations, as well as environmental concerns [159]. In this
regard, different solutions have been proposed to optimize or reduce energy consump-
tion, which can be grouped under following broad categories: (i) resource allocation; (ii)
network planning and deployment; (iii) activation of resources on-demand depending on
traffic dynamic; (iv) hardware design; (v) improvements in the system operation (e.g.,
techniques to reduce interference); (vi) active user cooperation; and (vii) use of green
energy complemented with energy-harvesting mechanisms (which can also be used to col-
lect energy from radio signals over the air) [159]. Of these approaches, the use of green
energy has gained momentum in recent years, and it represents a feasible and sustain-
able alternative to power mobile networks partially or even totally [160]. In this respect,
different models have been proposed to characterize the production of renewable energy
and the operation in the mobile networks. Even the possible interactions with smart
grids to deliver demand-response schemas have been analyzed. Additionally, the need
for management strategies in mobile networks to enhance integration and use of green
energy has been evidenced [160], an issue that is solved with our proposal.

Regarding energy management within the 5G ecosystem, the literature shows that the
enabling technologies NFV and SDN can be used as a platform to deploy optimization
models (mainly based on heuristic approaches) and management applications targeting
cost-efficient resource and energy usage [161]. Based on energy consumption estimations
or network parameters information (e.g., traffic load, radio coverage, equipment activation
intervals, or active users), the NFV/SDN architectural framework can carry out actions
such as optimized routing of traffic flows or allocation of physical (networking, computing,
and storage) and/or virtual (e.g., virtual machines) resources with the aim of achieving
energy savings and an overall reduction of consumption in the mobile network [80, 81]. In
addition, NFV technology facilitates in 5G networks that the VNFs can be dynamically
scale-in/out to meet the desired performance level, a dynamic behavior, or to be adjusted
to system capacity. These features can potentially reduce energy consumption, operating
cost, and latency. In this regard, some adaptive and dynamic VNF scaling algorithmic
strategies have been proposed in the literature [80, 81]. Although these procedures can
reduce the energy footprint of 5G networks, they operate primarily on the network infras-
tructure and do not constitute an adaptive energy management system. Furthermore,
these solutions do not consider the available energy supply for service processing or a
multi-client approach, aspects which are considered in our proposal.

6.2.2.2 Use of Network Slicing Architecture for Resource Management

The network slicing architecture supported by NFV and SDN has demonstrated to be an
effective solution for implementing resource allocation schemes and algorithms to meet the
diverse and simultaneous demands of consumers and vertical markets [75]. For instance,
network slicing can be used as a management solution to enhance the network resources
sharing required for the dynamic operation of massive IoT infrastructures such as wearable
devices [162]. The network slicing paradigm can be used to define entire network slices to
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cover the elastic demand for network resources through the day and according to different
operating and customer requirements such as bandwidth or a desired reliability level for
the customers [163]. The reconfiguration, scaling, and migration of virtual resources (e.g.,
VMs) needed for the dynamic operation of mobile networks corresponding to customer-
specific workloads are considerations that can also be addressed efficiently (e.g., in terms
of bandwidth and latency constraints) with network slicing technology [164]. In addition,
the network slicing architectural framework is flexible enough to allow discrimination in
network resources allocation among slices, customers, or services according to specific
operational requirements; a feature can be exploited in different scenarios and for various
purposes. In [165], for example, the authors proposed a two-level prioritization scheme
(inter-slice and intra-slice) to implement a heuristic-based admission control mechanism
able to dynamically allocate network resources to different slices customers needs and
traffic loads. In our proposal, we also use an intra-slice scheme but focused on prioritizing
the consumption of certain services if the energy supply is not enough to meet all demand.

The potential of network slicing for energy management has also been explored. In [166],
Xiao et al. introduced a dynamic network slicing solution for large-scale energy-harvesting
fog computing networks. In the proposed architecture, a regional orchestrator coordinates
workload distribution among local fog nodes, providing slices of energy and computational
resources to support various types of service requested by end users. The use of network
slicing in this use case shows a maximization of the utilization of available resources,
dynamic resource allocation according to service demands, and balance of workloads
among fog nodes. This information provides insight into the possible improvements in
energy efficiency that can be obtained with network slicing in 5G networks.

6.2.3 Energy Management Proposal for 5G Network Slicing

Section 6.2.3.1 describes the requirements for energy management in the context of 5G
network slicing. Section 6.2.3.2 discusses the management mechanisms for adaptive en-
ergy consumption. Finally, Section 6.2.3.3 presents an overview of the proposed architec-
ture and its operation.

6.2.3.1 Requirements for the Energy Management in 5G Network Slicing

To present a feasible proposal aligned with the needs of current and future mobile net-
works, we surveyed the main technical specifications and recommendations issued by the
most representative standardization bodies in the mobile networks landscape: the 3GPP,
the European Telecommunications Standards Institute (ETSI), and the Telecommuni-
cation standardization sector of the International Telecommunication Union (ITU-T).
Table 6.6 shows the latest version of the technical specifications and reports reviewed
related to the proposal. Regarding the proposed energy management approach, Table 6.7
summarizes the requirements and possible solutions for adaptive consumption in 5G net-
work slicing.
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Table 6.6: Technical documentation related to the proposal.

Area
Institution or
organization

Documentation Description

Requirements and
features of 5G

3GPP

Technical specification
TS 23.501, release 16

System architecture for the 5G Sys-
tem [143]

Technical specification
TS 22.261, release 17

Service requirements for the 5G
system [142]

Network Slicing

3GPP

Technical specification
TS 28.530, release 16

Management and orchestration;
Concepts, use cases and require-
ments [144]

Technical specification
TS 28.531, release 16

Management and orchestration;
Provisioning [145]

Technical report
TR 28.801, release 15

Study on management and orches-
tration of net. slicing for next gen-
eration network [147]

Technical report
TR 28.804, release 16

Study on tenancy concept in 5G
networks and network slicing man-
agement [148]

ETSI
Technical report
GR NFV-EVE 012

Report on Network Slicing Sup-
port with ETSI NFV Architecture
Framework [146]

Energy efficiency,
management, and
renewable energy

sources

3GPP

Technical specification
TS 28.310, release 16

Energy efficiency of 5G [149]

Technical report
TR 32.972, release 16

Study on system and functional as-
pects of energy efficiency in 5G net-
works [150]

ITU-T

Recommendation
L.1210

Sustainable power-feeding solu-
tions for 5G networks [151]

Recommendation
L.1310

Study on methods and metrics to
evaluate energy efficiency for future
5G systems [153]

Recommendation
L.1315

Standardization terms and trends
in energy efficiency [155]

Recommendation
L.1331

Assessment of mobile network en-
ergy efficiency [156]

Recommendation
L.1360

Energy control for the software-
defined networking architecture
[157]

Recommendation
L.1361

Measurement method for energy ef-
ficiency of network functions virtu-
alization [158]
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Table 6.7: Requirements and proposed solutions for adaptive energy management in
5G Network Slicing.
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The structure of the proposed architecture and the energy management model described
in Section 6.2.3.3 allow satisfying Requirements R1, R2, R3, and R4. The management
strategies presented in Section 6.2.3.2 meet the need for adaptive consumption of available
energy described in Requirements R5 and R6. Instead, the performance metrics to assess
the optimization in energy consumption described in Requirement R7 are presented in
Section 6.2.5.

6.2.3.2 Energy Management Mechanisms for Adaptive Consumption

To carry out adaptive energy management in 5G network slicing, five mechanisms have
been considered. They have been previously presented in Section 4.1.2 and Section 6.1.3.3
and are adapted to the context of network slicing. These mechanisms are executed by
the MNO, are implemented through algorithmic solutions, and they seek offer energy
efficiency to the 5G mobile networks through optimization of power consumption (i.e.,
less and better energy use), while promoting the reduction of OPEX and related en-
vironmental impacts. In the energy management process, the customers are aware of
the configuration of network slices and/or services performed by the MNO to optimize
the consumption, and they are tolerant of the possible modifications/actions on network
slices or services. Figure 6.14 shows an example of the implementation of the proposed
strategies and the corresponding description is shown below.

• Prioritization of services in network slices: In the energy management proposal, the
MNO can establish priority levels to differentiate the services, as shown in Fig. 6.14a.
With this information, the MNO can prioritize the resource allocation (e.g., energy)
for the configuration of a service or a set of services. The prioritization schema can
be established automatically by the MNO or can be agreed with customers through
contractual terms, and it may depend on several factors such as: (i) environment
of applicability of services (e.g., allocation of a higher level for emergency services,
services associated with search and rescue operations in disaster, or services for
public safety); (ii) characteristics of the services (e.g., the number of end-users,
location, average consumption, etc.); or (iii) specific requirements from customers.

• Use of time shifting capability for service execution: To efficiently use the energy
resource and adapt consumption to generation, different strategies can be applied
optionally to services belonging to a network slice. The application of the strategies
on services can seek several objectives such as: (i) maximization in energy uti-
lization, as shown in Fig. 6.14a; (ii) maximization in service processing (acceptance
rate); (iii) multi-metric objectives, e.g., maximize consumption and also service pro-
cessing; or (iv) it may be linked to a scheme that prioritizes the processing of one
type of service over others. These objectives, as well as priority in network slices,
can be established automatically by the MNO or can be defined in contractual
agreements with consumers.
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Figure 6.14: Example of application of the management strategies for adaptive energy
management in 5G network slicing.

In the context of energy efficiency, a strategy that adapts consumption to existing
supply is the temporal displacement in the service execution time [14]. Thus, the
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time shifting is helpfu to encourage the anticipated consumption or a deferral in
the use of energy for service execution within a finite time horizon and according
to the energy availability, as shown in Fig. 6.14b for service S1. In the proposed
management model, the time shifting strategy, similar to the others described in
this section, can be implemented because the service processing (and correspond-
ing energy consumption) is not carried out immediately upon customer requests,
but rather there exists a calculation process executed by the MNO (specifically at
network slice management and orchestration domain), in which the configuration
of network slices and services is performed by applying management strategies and
considering energy generation and consumption conditions. This procedure enables
the MNO to find the efficient distribution of services (service scheduling) that op-
timizes energy consumption, as shown in the example in Fig. 6.14a.

• Degradation in service quality: If the available power level is not sufficient to satisfy
the power demanded by a certain service (or services), the MNO may choose to apply
a quality degradation to that service, i.e., allocate a lower amount of energy than
requested, as observed for the service S4 in Fig. 6.14b, in which the assigned power
level is half of the demanded. This strategy allows reducing consumption to a level
tolerable by the service, which allows maintaining its functionality. Another possible
action that the MNO can execute on the services consists in the implementation
of a combined strategy, in which time shifting and quality degradation are applied
to the service simultaneously, as shown in the example in Fig. 6.14b for service
S2. On the other hand, considering that generation and consumption fluctuate
constantly, during periods of energy surplus (due to high generation or low demand),
one strategy that could be adopted is the increase in quality (i.e., deliver more
energy of the demanded). Thus, the implementation of this strategy on services
that tolerate the increase in energy supply would prevent the energy produced from
being wasted if it is not consumed.

• Normal Processing of Services: Although the normal processing of a service (i.e.,
execution without modifications or actions on it) is not a management strategy
as such, it is an alternative configuration mode. If there is the availability of the
supply, the analyzed service can be processed in its natural execution time and with
its power level demanded, as shown in Fig. 6.14b for service S3.

• Service Rejection: If the energy supply is not sufficient to guarantee the execution of
a service, either due to an energy shortage or because the energy has already been
allocated to another service, and also the application of the strategies described
above (i.e., time shifting or quality degradation) does not allow its processing, the
service in the admission stage is not processed, as shown in Fig. 6.14b for service S5.
The criteria for service rejection may be established by the MNO and in agreement
with the customer.

In the example in Fig. 6.14, each energy management strategy acts on a specific
service. However, in a real implementation, the MNO with information of the
services (required execution time, duration, and power demanded) and considering
the use of the different management strategies described above, must be able to
apply the best strategy for each service. This process is performed with the aim
that the total or aggregate power of all services optimizes the use of the available
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supply. To this end, the MNO executes service scheduling algorithms, which allows
achieving the energy efficiency required by 5G networks in a network slicing context.

6.2.3.3 Architecture for Adaptive Energy Management

This section presents an architecture for adaptive energy management in 5G network slic-
ing based on the established management and orchestration framework by the 3GPP and
ETSI [146, 147, 150]. This architecture is composed of two stakeholders, the customers
and the MNO, as shown in Fig. 6.15. The architectural framework is focused on the
efficient energy resource management from renewable and non-renewable energy sources
for the creation, configuration, and deployment of network slices and the corresponding
services on the mobile network infrastructure.

The architecture leverages the concepts of NFV and SDN as well as the IoT connectivity
of customers to carry out the energy-aware realization of 5G network slices. From the op-
erational perspective, the network slicing architecture can be considered to be comprised
of two main blocks: (i) the first block is integrated with the NFV MANO framework
and by 3GPP Network Slice Management framework, as shown in Fig. 6.15a, dedicated
to the network slices management and configuration considering energy management re-
quirements (optimization of power consumption); and (ii) the second block is composed
by the NFV and SDN frameworks as well as by the underlying network resources dedi-
cated to the network slice implementation.

In the first block (MANO), with the information on customers (e.g., number of network
slices and services, the power consumption of services, SST values, etc.) and the condi-
tions on power generation (available from non-renewable and renewable energy sources),
the MNO proceeds to create the network slice(s), starting from a base template, similar
to the example shown in [167], or selecting a network slice profile from a network service
catalog [148]. This template can be then customized to meet the specific requirement
of the end users. To carry out the network slice(s) creation (by choosing any of the
above methods) on the MANO framework, the MNO first analyzes the amount power
demanded (consumed) for service processing (execution), considering the consumption
in all segments of the mobile network (i.e., the power consumed in the core, transport,
and access networks). This consumption estimation procedure can be performed using
historical data or predictive models. The consumption estimation process is carried out
for all services and for all network slices. It has two objectives: (i) estimate/verify if
the available power (managed by the MNO) is sufficient to allow the processing of all
services in all network slices; and (ii) establish the actions to be performed by the MNO
to optimize power consumption (optimize the service processing).

Traditionally, the increase in energy demand has been faced with the contracting or pro-
duction of additional energy. However, this alternative involves an increase in OPEX
and possible environmental impacts, and it is not a sustainable solution. In this regard,
modern management systems demand adaptive consumption schemes restricted to avail-
ability and that prioritize the use of renewable energy, as described in Requirements R1,
R4, and R5 in Section 6.2.3.1.
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Figure 6.15: Overview of the architecture for adaptive energy management in 5G
Network Slicing.

Therefore, in the proposed architecture, the network slice process is aware of an available
energy resource (i.e., services/slices and power supply considered jointly). The MNO if
needed can apply various management mechanisms on services, which are deployed as al-
gorithmic solutions on the Network Slice MANO (see Fig. 6.15b) to adapt consumption to
availability, optimize power consumption (avoiding peaks loads or energy shortage), and
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reduce dependence on non-renewable energy as much as possible. As a result of the anal-
ysis of service parameters (customer information), the available supply, and the possible
management mechanisms at the service level (network slices), the MNO obtains the opti-
mal service scheduling (number of processed services, service execution time, and power
consumption levels) in each network slice that leads the optimization of power consump-
tion (minimization of power from renewable energy consumption) and the energy-efficient
network slice creation and configuration. A summary of the energy-aware creation and
configuration of network slices in the proposed architecture is shown in Fig. 6.16.

3
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services 

Information on energy 
provisioning by the MNO 
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slices and services

Model of energy 
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Figure 6.16: Description of the energy-aware network slice creation in the adaptive
energy management architecture. The network slices and corresponding services are
configured to achieve energy efficiency, considering a finite energy provisioning and
the optimization of power consumption, specifically through the minimization of the

consumption of non-renewable energy sources.

Once the general structure of the network slicing (network slice profile) has been se-
lected, the MNO can deploy in the network slice MANO entity (at core network) the
corresponding network slice instance, which refers to a set of network function instances
(physical or VNFs, e.g., belonging access, transport, and core networks), the connectiv-
ity between them, and the required resources (e.g., compute, storage, and networking
resources) that form a deployed network slice [148]. Typically, a network slice instance
is designed (preparation phase), then it is instantiated (instantiation, configuration, and
activation phase), later it is operated (run time phase), and finally it may be decommis-
sioned (decommissioning phase) when the slice is no longer needed [142]. The complete
NSI lifecycle is managed by the MNO, specifically by the network slice MANO. In the
process of configuring and deploying network slices, the MNO sends the NSI information
to the second block of the architecture, specifically to the NFVO, which is in charge
of coordinating with the VNFM and with the VIM the creation of VNFs (that provide
specific network capabilities to support and realize the particular service(s)) and virtual
networks (access, transport, and core) need for the deployment of network slices. Then,
the requests from the VIM entity are sent to the SDN controllers (access, transport, and
core controllers), which coordinate with the NFVI the creation of network slices on the
underlying network infrastructure (physical network resources). At this point, all created
slices compose a single (end-to-end) network slice for specific customers. All of the net-
work slices are managed and orchestrated first by an NFVO and in an upper level by the
NFV and 3GPP MANO frameworks.
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• Customers (Network Slices) Modeling: In the proposed architecture, the customers
correspond to the network slices owners. They have connectivity capabilities and
demand from the MNO all network resources (virtual, physical, and energy) to
carry out the services, applications, or verticals. In the context of the adaptive en-
ergy management model, a service is characterized by its power consumption (i.e.,
by the amount of power that is used in the core, transport, and access network
when the service is in execution), and it is tolerant to the possible actions (man-
agement mechanisms) that the MNO can execute on it to carry out the adaptive
energy management. Considering the parameters related to power consumption
and the management mechanisms described in Section 6.2.3.2, a service k, with
k ∈ {1, . . . , N} of priority level j, with j ∈ {1, . . . ,M} belonging to the network
slice i, with i ∈ {1, . . . , L}, denoted as Si

k,j is fully characterized by the parameters
of Table 6.8. Figure 6.17 depicts an example of a service and its corresponding
parameters.

Table 6.8: Parameters of network slices and services.

Parameter Description Unit/Comment

L Number of network slices Integer number
i Network slice identifier i ∈ {1, . . . , L}
M Number of priority levels of services Integer number
j Priority level identifier j ∈ {1, . . . ,M}
N Total number of services in the system Integer number
k Service identifier k ∈ {1, . . . , N}
Q Number of quality degradation levels Integer number
tik,j Starting time of service Si

k,j Time units
dik,j Duration of service Si

k,j Time units
pik,j Power demanded of service Si

k,j Power units
qik,j Quality level of service Si

k,j Discrete values (e.g., [qik,j min = 0.1, . . ., qik,j max = 1])
uik,j Time shifting value of service Si

k,j Time units (backward :tik,j−uik,j, or forward : tik,j+u
i
k,j)

vik Priority level of service k belonging to
network slice i

Integer number
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Figure 6.17: Graphical representation of the characterization of a service that is part
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In terms of power consumption, the total or aggregated power demanded by all
network slices and corresponding services (PD) can be expressed as:

∀i ∈ L, ∀j ∈M, ∀k ∈ N : PD =
L∑
i=1

M∑
j=1

N∑
k=1

pik,j × qik,j (6.29)

• Mobile Network Operator (MNO) Modeling: The MNO in the network slicing ar-
chitecture is the entity that provides network resources (physical and virtual), is
responsible for the creation, modification, and deletion of network slices, and is
in charge of managing the energy resource for the operation of the entire mobile
network. In this context, the total available power (PA) in the mobile network
ecosystem comes from the contribution of energy from renewable and non-renewable
energy. The MNO is then able to control the contribution of one source over an-
other, and particularly can promote the primary or majority use of green energy.
The mathematical model of PA in the proposed network management model is given
by:

PA = PR + PNR (6.30)

where PR represents the power obtained from renewable energy sources, while PNR

stands for the power from non-renewable energy sources. These parameters are
given by:

PR = PA × wR (6.31)

PNR = PA × (1− wR) (6.32)

where the factor wR ∈ [0, 1] denotes the weight related to the contribution of re-
newable energy in the total generated power PA, which can be controlled by the
MNO according to the green energy availability and the application scenario.

6.2.4 Energy Management Model Mathematical Formulation

This section presents the mathematical formulation of the proposed energy management
solution. Section 6.2.4.1 describes the assumptions considered in the proposed model,
while Section 6.2.4.2 presents the ILP formulation of the proposal.

6.2.4.1 Assumptions Related to the Energy Management Model

The proposed adaptive energy management model is summarized in Fig. 6.18. To pro-
vide a practical implementation of this proposal, the assumptions (simplifications) in
Section 5.1.1 have been considered, including the following ones:

1. Use of discrete values for service quality degradation. To provide a feasible en-
ergy management model and maintain the linear condition of the problem, in the
proposal, the values of degradation, also called levels of degradation that can be
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applied to a service, are restricted to a finite set of possibilities. Analogously to
the time shifting value, this sequence of values should be small (e.g., up to three
or four degradation levels) because an increase in levels corresponds to a non-linear
increase in the complexity associated with optimal energy management.

2. In 5G network slicing, a customer (user equipment) may be served by at most eight
network slices at a time [142]. However, in our proposal for simplicity, a customer
can only belong to one network slice. Moreover, the customers in each network
slice are different from each other (i.e., different network slices specified to different
customers).

3. If needed, the MNO can deploy multiple network slices of the same slice/service
type (e.g., eMBB with the same features but for different groups of customers). In
this case, the MNO is able to differentiate the slices according to the network slice
identifier, as shown in the example in Fig. 6.14a.

Inputs Mathematical
formulation

Algorithms for solving
the ILP 

Outputs

Objective function 
optimize{Power consumption}

Operating information of 
customers (verticals)

- Network Slices
- Services per Network Slice

Linear constraints

Optimal solution:
OptTsNS

Alternatively:
Implemnetation of 
heuristic strategies

Amount of power used per 
network slices  

Power supply modeling Total amount of power used

Operations conditions network 
slices (service scheduling)

Performance metrics

Performance metrics

Power consumption 
Modeling

- Slice and servicesOperating information of 
MNO (energy availability)
Power suply by:
- Renewable sources
- Non-renewable sources

Figure 6.18: Schematic of the adaptive energy management model for 5G Network
Slicing.

6.2.4.2 ILP Problem Formulation: OptTsNS

• Objective function: In our proposal, the creation and configuration of network slices
and associated services is energy-aware. Thereby, the proposed management model
seeks to improve energy efficiency through the optimal use of the available supply
and specifically through the minimization of power consumption. Technically, this
objective is expressed as indicated in Eq. 6.33. Nevertheless, considering that an
important requirement in an energy management system for mobile networks is
the promotion and use of green energy (as mentioned in Requirement R4 in Sec-
tion 6.2.3.1 and as shown in the energy provision model in Eq. 6.30), the objective
of the proposed energy model should be focused on minimizing the consumption
of energy from non-renewable sources. To this end, we have established a cost
function associated with consumption in the 5G ecosystem from renewable and
non-renewable sources as shown in Eq. 6.34, where w1 and w2 can be in the range
[0,1] and represent the weights associated with the individual cost functions that
are proportional to renewable (cPR

) and non-renewable (cPNR
) energy consumption,

respectively.
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To promote the primary utilization of renewable energy, the cost associated with
the consumption of this kind of energy in Eq. 6.34 can be set to a minimal value
(w1 � w2) and even to zero. In this model, we chose the second option (i.e., w1 = 0)
with the aim of moving toward a green mobile network ecosystem. Therefore, the
objective function of minimizing power consumption in Eq. 6.33 considering the
cost function in Eq. 6.34 translates into the minimization of the cost associated
with non-renewable energy consumption as indicated in Eq. 6.35, which in turn
is equivalent to the objective of minimizing the PNR in the total PA as shown
in Eq. 6.36. This objective function must respect the available energy resources,
consider the parameters of the services, the management mechanisms described in
Section 6.2.3.1, and the constraints presented below.

minimize {PD} (6.33)

CostPD = w1 × CostPR
+ w2 × CostPNR

(6.34)

minimize {CostPNR
} (6.35)

minimize {PNR} (6.36)

• Constraints: The following constraints are linked to the proposed adaptive energy
management model.

C1 : PA[t] ≥ 0 (6.37)

C2 : (PA[t]− PD[t]) ≥ 0 (6.38)

C3 :
L∑
i=1

M∑
j=1

N∑
k=1

(
pk,ji × q

k,j
i

)
× xijk[t] ≤ PA[t], xijk ∈ {0, 1} (6.39)

C4 : tik,j ≥ 0 (6.40)

C5 : {tik,j − u
j,k
i } ≥ 0 (6.41)

C6 : W ≥ max{tik,j + dik,j + uk,ji } (6.42)

– Domain constraints: The energy supply by the MNO for service processing is
assured by C1. Instead, C2 guarantees a non-negative difference between the
power demanded and power provisioning. In Constraints C1, C2, and C3, the
power variables are specified at time slot t, because the energy provisioning and
consumption may vary at each time slot. Thus, the objective of the proposed
model is the minimization of power consumption (from non-renewable sources)
during all time slots within a finite time horizon W .

– Capacity Constraint: In the mobile communication system, the maximum en-
ergy capacity is limited by C3, in which the decision variable xijk stands for the
allocation of energy resources for the processing of the service Si

k,j, as shown
in Eq. 6.43.

xijk[t] =


1 if the service k belonging to the network slice j with

priority level j (Si
k,j) is processed at time slot t,

0 otherwise.
(6.43)
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The correspondence between the service, its priority level, and the network
slice to which it belongs is validated by Eq. 6.44.

pik,j =


Power demanded by service k
with priority j and within the
network slice i

if service k with priority level j
belonging to a network slice i ex-
ists,

0 otherwise.
(6.44)

– Time constraints: C4 and C5 ensure a non-negative starting time for the en-
tire system (t = 0). C6 guarantees a finite time horizon for the analysis of
services. The linear condition of the objective function, the constraints, and
the decision variable deliver the linear nature to the problem.

• Adaptive Management of Network Slices and Services: Taking into account that the
energy provisioning (mainly from renewable sources) in the mobile network is finite,
the consumption demanded for service execution must be adapted to availability as
defined in Requirement R5 in Section 6.2.3.1. Depending on the amount of energy
available and demanded (e.g., PD > PA) and the features of customers, the MNO
has the possibility of executing different management mechanisms on the services
such as intra-slice priority scheme, service rejection, degradation in service quality,
and use of time shifting in service execution, as indicated in Section 6.2.3.2. The
execution of these strategies allows the MNO to establish an access control to the
energy resources associated with the creation of the network slices and configuration
of corresponding services.

To find the optimal allocation of energy resources for service execution, the MNO
must analyze the action of the different strategies on the services, considering the
particularities of each service and/or network slice. This procedure is carried out
through algorithms implemented in the core network, as shown in Fig. 6.15b, and
can be computationally very demanding. At the end of this analysis, the MNO
obtains the optimal scheduling for the set ofN services. Through optimal scheduling
of the set of N services (set defined in the proposal as combination of services, comb)
the MNO tries to process as many services as possible (in the worst case the services
with lower priority can be rejected if PD > PA) and with the minimum impact on the
requirements from customers (respecting as much as possible the original execution
time and power level demanded by services). In our proposed model, the adaptive
energy consumption is represented by a cost function, as shown Eq. 6.45. In this
equation, α, β, γ, and δ can be in the range [0,1] and correspond to the weights
of the individual cost functions related to the management mechanisms, which are
listed as follows:

Costi,j,kcomb = α×CostARcomb
+β×Costpricomb

+ γ×Costucomb
+ δ×Costqcomb

(6.45)

– CostARcomb
: Cost function related to the processing of services and defined by

Eq. 6.46.

– Costpricomb
: Cost function related to the priority level of services and defined

by Eq. 6.47.
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– Costucomb
: Cost function related to the time shifting application in service

execution and defined by Eq. 6.48.

– Costqcomb
: Cost function related to the quality degradation of services and

defined by Eq. 6.49.

CostARcomb
=

{
0 if all services are processed,
Total rejected services otherwise.

(6.46)

Costpricomb
=

{
0 if all services have the maximum priority level,∑L

i=1

∑N
k=1 v

i
k otherwise.

(6.47)

Costucomb
=

{
0 if all services are processed without time shifting,∑L

i=1

∑M
j=2

∑N
k=1 u

i
k,j otherwise.

(6.48)

Costqcomb
=

{
0 if all services have no quality degradation,∑L

i=1

∑M
j=2

∑N
k=1 q

i
k,j otherwise.

(6.49)

In Eq. 6.45, the weights of individual cost functions can be set based on specific require-
ments from the MNO and/or from the customer. However, a possible configuration can
be α > β > γ > δ, because this relationship promotes the processing of a higher number
of services and the minimum impact on services due to the application of time shifting in
service execution or degradation in service quality. In addition, the optimal scheduling of
N services (i.e., the optimal combination of services) that leads to optimal energy con-
sumption is given by the minimum value of cost function (minimum value in Eq. 6.45).
Thus, the objective of the proposed energy management solution is to minimize the total
cost function, as shown in Eq. 6.50. For the implementation of the adaptive energy man-
agement model represented by its cost function in Eq. 6.50 there are a number of different
possible algorithmic solutions (optimal and sub-optimal). In this section, we present an
exact or optimal algorithmic strategy, which is described in detail in Section 6.2.5.

∀i ∈ L, ∀j ∈M, ∀k ∈ N : minimize{Costj,j,kcomb} (6.50)

The energy-aware resource allocation for service processing in the context of 5G network
slicing, considering the finite energy supply, an intra-slice priority scheme, and different
management strategies with the aim of minimizing energy consumption through optimal
energy utilization is equivalent to the objective of multi-dimensional multi-choice knap-
sack problem of choosing the most valuable items of a set of classes (one item per class)
without overloading the knapsack [102]. The literature has proven that the complexity
linked to this kind of problem is NP-hard. Establishing an analogy with our proposal,
the multidimensional behavior is given by the power and time parameters of services,
and the multiple-choice feature corresponds to the selection of a specific time shifting
value and/or quality degradation level from a possible set of options. Thus, we can con-
clude that the optimal adaptive energy management in 5G network slicing falls into the
NP-hard classification.



Chapter 6. Application Scenarios 156

6.2.5 Evaluation

To validate the operation of the proposed adaptive energy management model, in this sec-
tion, we present an optimal service scheduling algorithmic strategy denoted as OptTsNS.
The objective of OptTsNS is to minimize power consumption from non-renewable
sources considering finite energy provisioning and the management mechanisms described
in Section 6.2.3.2. Concerning the optimization of power consumption, the task of
OptTsNS is to find the best actions (strategies) for each service in such a way that
the processed services (i.e., the combination of services that demands PD) enable the
efficient use of the available energy. The proposed algorithmic strategy, described in
Section 6.2.5.1, bases its operation on an exhaustive search method. In this brute-force
method, all possible combinations of N services, executed simultaneously, are explored
considering all possible values of degradation and time shifting in service execution. To
choose the best combination of services (i.e., the optimal distribution of services in time,
with a PD (PDcomb) that produces minimization of PNR and, consequently, the optimal
use of PR), the cost functions are used. Specifically, the optimal solution delivered by
OptTsNS corresponds to the combination of services that produces the minimum cost
function, as shown in Eq. 6.50. To quantitatively verify the improvements obtained with
OptTsNS, several performance metrics are used and a numerical analysis is performed
on a particular case study. In this context, an analysis in different scenarios, as well as
the online version of OptTsNS and the development of more sophisticated and efficient
methods (that use as the optimal solutions as upper bounds), could be addressed in future
work.

The performance metrics that allow meeting Requirement R7 are the acceptance ratio
AR, available energy utilization (EAU

), and missing power (PLACK), which have been
previously defined in Section 5.1.2.4 and in Eq. 6.21.

6.2.5.1 Optimal Algorithmic Strategy: OptTsNS

Figure 6.19 explains the proposed algorithmic strategy OptTsNS and the main steps
carried out are summarized below.

• Variations per service (V arServ): A variation of a service is the result of the
application of a specific discrete time shifting value to the tik,j and/or the application
of a specific quality degradation level to the pik,j of a service Si

k,j. The analysis of
all N services for each value of time shifting and for each quality degradation level
produces a total number of variations AllV arServ. Considering that, for simplicity,
the time shifting forward and backward have the same value, this number is given
by:

AllV arServ = Q× (2×N ×max{uik,j}+N) (6.51)

• Combinations of services (CombServ) and computation of cost functions: In the al-
gorithmic strategy, the set of N different variations of services (V arServ) is named
as a combination of services (Combserv). Each Combserv has specific characteris-
tics and requires a certain power level PDcomb. The algorithmic strategy evaluates
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the cost functions for each CombServ. Regarding the AR metric, the algorithm
prioritizes the execution of the highest priority services (with j = 1 the highest
priority level). If the services have the same priority level, the algorithm selects the
set of services that produce an optimization in the consumption of available power
(maximization of energy use). The combinatorial analysis of all (V arServ) delivers
a total number of combinations of services AllCombServ, which is given by:

AllCombServ = Q× (2×max{uik,j}+ 1)N (6.52)

The computation of combinations of services (variations) contributes largely to the
growth of complexity of the problem. For instance, N = 10, max{uik,j} = 4, and
Q = 3 produce over 10 billion combinations. If a computer is able to process one
Combserv each millisecond, it would need over 2900 hours to explore the complete
search space.

• Sorting of combinations and selection of the best combination: In this step, a quick-
sort method is applied to all combinations, according to the descending value of
Costi,j,kcomb. Then, the best combination (which is the first in the sorted list) is cho-
sen. Finally, the energy is allocated to the services that can be processed, and the
performance metrics are computed.

• Complexity Analysis of OptTsNS: The complexity of the exact solution is condi-
tioned to the processing of AllV arServ and AllCombServ. As a function of N , the
growth rate can be expressed as:

f(N) = N +Q× (2×N ×max{uik,j}+N) +Q× (2×max{uik,j}+ 1)N (6.53)

where the third term in Eq. 6.53 is dominant and represents the size of the search
space that must be explored to find the optimal combination of services (V arServ)
that lead to the minimization of power consumption (optimal power consumption).
Therefore, the complexity the algorithmic strategy OptTsNS is exponential with
an order of growth O(2N) that depends on the selected values of N , Ts, max{uik,j},
and Q.

6.2.5.2 Numerical Results

• Simulation Setting: The simulation conditions for OptTsNS is detailed in Sec-
tion 5.4.0.1. The evaluation of the optimal solution is given in terms of metrics
AR, EAU

, and PLACK . The results obtained are compared with a traditional sce-
nario in which no management strategy is applied (i.e., when vik = 1, qik,j = 1,
uik,j = 0, ∀i ∈ L, ∀j ∈ M , ∀k ∈ N). The total execution time for the simulation
was approximately 90 min.
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Energy allocation for service processing
Computation of metrics: AR, 𝐸./ , PLACK

Figure 6.19: Flow chart of the exact algorithm strategy OptTsNS.

• Case Study: Figure 6.20 shows the scenario that has been considered for the quan-
titative evaluation of OptTsNS. This scenario allows the analysis of the different
management strategies during states of shortage (high load) and surplus of energy
produced by the lack of synchronization between energy generation and consump-
tion. In this particular case, we also analyze the minimization of power consumption
by considering a 100% green energy supply (i.e., promoting the use of energy from
renewable sources). Due to the high computational requirements for the execution
of OptTsNS, the simulation was limited to N = 8 services, max{uik,j} = 4 time
slots (backward and forward), and Q = 3 quality degradation levels; the rest of
parameter used are detailed in Table 6.9 and Fig. 6.20. To simplify the analysis,
services with equal duration and a flat energy profile and were selected. However,
this does not mean a limitation for the developed algorithm, which can work with
any profile of energy generation and consumption if needed.
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Figure 6.20: Energy provisioning and consumption profiles of the case study, and
optimal energy allocation obtained with OptTsNS.

Parameters: According to Table 6.9.

Table 6.9: Parameters of OptTsNS and values regarding the case study.

Parameter L M N W tik,j dik,j max{uik,j} pik,j Q qik,j

Value 4 4 8 10 4 ∀k 2 ∀k 4, see Fig. 6.20 [1-4], see Fig. 6.20 3 [1, 0.75, 0.5], see Fig. 6.20

• Results and Discussion: The simulation results in Fig. 6.21 confirm the effective-
ness of OptTsNS to improve power consumption, as reported in values of metrics
AR, EAU

, and PLACK in Fig. 6.21a–c, respectively. As the time shifting value in-
creases (from 0 to 4) and as the quality degradation level decrease (from 1 to 0.5),
OptTsNS has the ability to distribute the services in time and minimize the power
consumption, which consequently leads to efficient use all PA. In this regard, the
algorithmic strategy enables reducing the peak loads (i.e., the peaks of power con-
sumption) and obtain a flat consumption profile, which can be better adapted to
energy generation. Thus, the use of management strategies enables the process-
ing of services that, in normal conditions (i.e., without a management mechanism)
would be inevitably rejected. For instance, in Fig. 6.20, only services S2

3,1 and S3
5,1

could be processed, which corresponds to an AR = 25%, in this case the most
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of the energy produced could not be used and would be wasted. In addition, the
simulation of OptTsNS shows that, when this algorithmic solution is deployed at
the mobile network MANO entities, as shown in Fig. 6.15, it can offer efficient and
adaptive energy management for 5G systems, considering the context of network
slicing and with the ability to manage and exploit renewable energy generation.
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Figure 6.21: Performance evaluation of OptTsNS for case study of Fig ??.
Parameters: According Table 6.9.

For the analyzed use case, the improvements obtained with the algorithmic strategy
are given in terms of energy utilization (as shown in Fig. 6.21b), increased service
processing (from AR = 25% until reaching an AR = 100%, as shown in Fig. 6.21a),
and in reducing the use of energy from non-renewable sources to meet the complete
energy demand (Fig. 6.21c). The latter is of utmost importance in modern energy
management systems that aim to achieve a reduction in OPEX and with minimal
environmental impact.
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6.2.6 Conclusions

Network slicing is specified for 5G networks to provide new opportunities for service
provisioning in order to increase efficiencies and improve revenue. Regarding energy
consumption management, this feature is a key factor in the deployment and evolution
of mobile networks, and it is also a crucial consideration. This section analyzes the
requirements, proposes an architecture, and presents a feasible and efficient solution for
adaptive energy management in 5G network slicing that meets the requirements of energy
efficiency and sustainability by current and future mobile communications networks. The
proposal aims to optimize the consumption of available power, and specifically seeks for
the minimization of power consumption of non-renewable energy sources. In this regard,
our proposed energy management model prioritizes the use of renewable energy sources,
but non-renewable energy sources can be used when extra energy is required.

The architecture proposal covers the requirements for efficient, adaptive, and sustainable
energy management; the mathematical model of the stakeholders involved in energy man-
agement and consumption in the 5G ecosystem; and several management mechanisms at
service level such as an intra-slice prioritization scheme, service rejection, time-shifting
in service execution, and degradation in service quality (i.e., decrease in energy demand)
with the aim of optimizing available power consumption. The proposal also presents the
ILP formulation of the adaptive energy management model and its complexity analysis,
which has been proven to be NP-hard.

To validate the operation of the proposed adaptive energy management model an exact
optimal algorithmic strategy, OptTsNS, is presented, of exponential complexity that
depends on the values of N , uik,j, and Q, as shown in Eq. 6.53, and which reveals the
need for heuristic approaches for scalable, faster, and less computationally demanding
implementations. The evaluation of the exact solution for a particular case study allows
us to verify the improvements obtained with the proposal in power consumption and
utilization, in the increase of service processing, and in the minimization of the use of
non-renewable energy sources. This latter feature is of paramount importance because it
can potentially reduce the OPEX for the MNO and the energy footprint because of the
operation of the mobile networks.
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6.3 Adaptive Energy Management in UAV-Enabled

Communications

5G is expected to provide diverse and stringent improvements such as greater connectivity,
bandwidth, throughput, availability, improved coverage, and lower latency. Considering
this, drones or Unmanned Aerial Vehicles (UAVs) and IoT devices are perfect examples of
existing technology that can take advantage of the capabilities provided by 5G technology.
In particular, UAVs are expected to be an important component of 5G networks imple-
mentations and support different communication requirements and applications. UAVs
working together with 5G can potentially facilitate the deployment of standalone or com-
plementary communications infrastructures. Due to its rapid deployment, UAV-based
solutions are suitable candidates to provide network services in emergency scenarios, nat-
ural disasters, and search and rescue missions. An important consideration in deploying
a programmable drone fleet is to guarantee the reliability and performance of the ser-
vices through consistent monitoring, control, and management scheme. In this regard,
the NFV paradigm, a key technology within the 5G ecosystem, can perform automation,
management, and orchestration tasks. In addition, to ensure the coordination and relia-
bility in the communications systems, and considering that the UAVs have a finite lifetime
and eventually they must be replaced, a scheduling scheme is needed to guarantee the
availability of services and efficient resource utilization. To this end, this section presents
a UAV scheduling scheme that leverages the potential offered by NFV. Based on a brute-
force search combinatorial algorithm, the proposed strategy allows obtaining the optimal
scheduling of UAVs in time to deploy network services efficiently. Simulation results vali-
date the performance of the proposed strategy by providing the number of drones needed
to meet certain levels of service availability. Furthermore, the strategy allows knowing
the sequence of replacement of UAVs to ensure optimal resource utilization.

6.3.1 Introduction to UAV-Enabled Communications

Recent evolution in UAV boosted by the miniaturization of electronic and sensors have
allowed the use of UAVs in different civilian applications. Their shrinking size in com-
bination with price reductions has increased the popularity of these devices both in the
amateur community as well as in professional applications. Accordingly, we are now wit-
nessing the fast deployment of a new categorization in the UAV area: Small Unmanned
Aerial Vehicles (SUAV), commonly known as drones (that will be the preferred name
in this article), which are low-cost devices with reduced payload capacities, restricted
communication range and limited battery time, but still powerful enough so as to carry
small computers on-board.

Drone applications are spreading throughout a plethora of different fields covering from
smart agriculture scenarios to road traffic monitoring, public safety, sensor information
retrieving or even unmanned cargo. In general, these use cases are normally scheduled as
relatively fixed missions of standalone drones [168]. This section, in particular, is focused
on the energy management challenge that although is obviously present in standalone
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drone short missions, its complexity is exponentially exacerbated when dealing with multi-
drone long-term operations.

The use of multi-drone network is apparently a cost-effective solution which enables a
fast and agile deployment in hard-to-reach locations and can straightforwardly be inte-
grated into existing networks and adapt to unexpected changes. This flexibility can be
certainly improved with the usage of (NFV) 5G technology enabled drones as we have
shown in [169]. However, drones have also several challenges that should be addressed.
The weight a drone can carry determines the payload equipment and the size of the on-
board battery. In consequence, we deal with low-resource payload (e.g. Single Board
Computers) equipment and small batteries that provide limited service time. Because
of these limitations, we need multi-drone systems to cover areas of significant size and
a fleet of reserve drones for replacements in order to provide long-term services. Apart
from connectivity requirements, such as latency and bandwidth, a communication system
provided by drones needs innovative management solutions (e.g., NFV) that enable the
use of resources and energy efficiently. For this reason, this section presents a strategy for
the efficient management of resources in a communications system that provides services
or network functions through the deployment of drones. The proposed solution leverages
the potential offered by NFV and the 5G capabilities. In the context of the proposal, 5G
technology is used to meet connectivity requirements, such as very low latency and high
bandwidth in order to guarantee a correct migration procedure, and also to provide com-
munication between the different components in the system. Instead, NFV is in charge
of the management tasks in the system. Specifically, in order to carry out the manage-
ment tasks related to the replacement of drones and allocation of drones to services, a
energy-aware scheduling algorithm has been developed.

The proposed algorithm, based on a brute-force search combinatorial method, explores
all possible combination of drones and service with the aim of providing the exact or
optimal scheduling of drones to execute services. This exact allocation of drones over time
ensures the continuity of services during a finite time interval, while leads to the optimal
resource utilization. Apart from the replacement sequence the algorithm can inform the
total number of drones (or batteries) to use to reach a certain level of availability. In
addition, within an NFV scope, the drone scheduling strategy can be considered as a
network service. To validate the performance of our solution, two small-scale scenarios
have been analyzed, one generic and one realistic, whose results can be applied in the
planning a design stages in a variety of real use cases, such as: services in emergency
or natural disasters and relief services in search and rescue missions. In addition, the
information obtained with our implementation is also useful as a baseline to develop
mathematical models and faster sub-optimal or heuristics methods for real-time practical
implementations.

6.3.2 Related Work

In the last years, drone uses have evolved from the basic on-board video camera applica-
tions to a wide range of novelty functions such as drones acting as first responders in an
accident or drone swarming intelligence to provide network services. To conduct these
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assignments efficiently, on account of drones limitations, the use of 5G technologies such
as NFV or SDN seems essential as they will enable an accurate operation. In particular,
in this proposal for energy management, NFV is used to deploy the execution of the pro-
posed algorithm.. There are several examples of the use of NFV in the UAV domain in the
literature. In [170] an UAV platform provides to external controllers the opportunity to
adapt the telemetry monitoring. In [171] is presented an NFV programmable infrastruc-
ture that enables the agile unification of services and functions, which may be determined
by the operator of the UAVs at deployment time. NFV is used to decouple the drone hard-
ware infrastructure from the control layer that virtualizes the infrastructure resources for
the higher layers [172]. NFV is also used to enable multi-mission drones and supports a
flexible deployment of network services[169]. Finally, NFV allows the migration of VNFs
[170] which are the responsible units for providing the network functionality through the
software implementation. The VNF migration enables an agile and flexible execution of
the network services encompassing those VNFs that can be accommodated by the drones.
Basically, the migration of VNFs consists on moving a virtual machine from one drone
unit to another. There are different migration types: Non-live migration, where the VNF
is down and it is moved to a different compute node, and Live-migration, where the VNF
is running throughout the migration. Well-known tools that are key in the NFV frame-
work development, such as OpenStack1 or VMware2, support migration. The use of NFV
is reinforced by the appearance of multi-drone systems. Drones can run different VNFs,
endowing a huge versatility to the drone swarm. Nonetheless, virtualization is a resource
intensive process, and because of the limited on-board equipment, it is necessary to use
solutions such as LXC Linux Containers3 to provide a similar environment as a VM but
reducing the overhead that comes with running a separate kernel and simulating all the
hardware. It should be noted that the migration of container-based VNFs presents an
additional challenge since this virtualization unit is stateless and in principle, cannot be
migrated. However, there are recent works in which they aim at addressing migration
issues with containers like CRIU (A project to implement checkpoint/restore function-
ality for Linux: https://github.com/checkpoint-restore/criu). For this reason, in
this proposal, because of the selected VNFs, the migration process is not mandatory.
Routing VNFs recover their status proactively, collecting all the necessary routes in a
few seconds but, in complex network scenarios, the use of VNF migration is crucial for
correct operation.

Different alternatives for drone communication has been proposed in [173] being the
WiFi in Ad-Hoc mode one of the most popular solutions. Regarding routing strategies,
there are also several options that extend from Mobile ad-hoc networks (MANETs) and
vehicular ad-hoc networks and also some innovative proposal like SDN.

The main focus of the proposal presented in this section is set on battery power consump-
tion. All the drones are normally equipped with a Single Board Computer as payload
(Raspberry Pi 3B4 (RPi) in our case), with an autonomous battery giving rise an inde-
pendent service of the drone. In standard drone applications (drone flying as expected),
flight-engines consume most part of the energy [174] while the power consumption by

1OpenStack: https://docs.openstack.org/ocata
2VMware: https://www.vmware.com/es.html
3Linux Containers: https://linuxcontainers.org/
4Raspberry Pi 3B: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

https://github.com/checkpoint-restore/criu
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
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network services is practically negligible, so that, the service time is limited by the drone
battery time (around 20 minutes following the technical specifications5). Even so, when
a drone has a static position, it tends to land whenever possible to save energy (a drone
that is providing a WiFi access point service does not necessarily has to be flying). In this
case, service time will be limited by the SBC battery time and network services should
be taken into account and will play an important role in modeling battery consumption.

Regarding power consumption in mobile and portable devices, there are different examples
studying the impact of hardware components on the energy consumption [175][176] and
also the impact related with Wireless Communication [177]. In [178] is presented a method
for wirelessly charging the drone battery when it lands, without the need to remove it and
replace it. Ground task automation has come to the attention of researchers during the
past few years [179][180] reducing the human operators at the Ground Control Station
(GCS).

In addition, in order to efficiently manage the available resources (e.g., energy), various
techniques, mechanisms and procedures have been developed. One of the most widely
used is the combinatorial analysis, in which all possible combinations of resources to
be used are analyzed. In this proposal, this mechanism is used to analyze all possible
combinations of drones to run services. Considering a procedure similar to that described
in [14], the proposed technique, by analyzing the whole set of possible cases, ensures
the best (exact) result by providing the information of specific resources (drones and
batteries) to be used. This optimal scheduling of drones guarantees an efficient use and
management of available energy at every moment.

6.3.3 Problem Statement and System Model

In this section, first the statement of the problem is formally presented in Section 6.3.3.1.
Then, the system model and notations are described in Section 6.3.3.2 followed by the
definitions in Section 6.3.3.3 and the performance metrics in Section 6.3.3.4. Finally, the
assumptions are presented in Section 6.3.3.5.

6.3.3.1 Problem Statement

Maintaining a certain degree or level of availability can become an important and even
critical consideration in the deployment of network services. Especially in communication
systems provided by drones, whose capacities in terms of processing and energy may have
limitations, the efficient use and management of resources must be guaranteed in order to
provide or maintain a desired level of availability. Therefore, this metric is an important
factor in the design, planning and deployment phases, considering that some applications
may demand specific values for their operation.

In order to provide network services, by leveraging the connectivity capabilities offered
by 5G networks and within an NFV context, a set of programmable drones can run

5DJI Phantom 3 Pro: https://www.dji.com/es/phantom-3-pro
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VNFs, and thus, provide the required services. In this sense, a fleet of programmable
drones can offer different network services simultaneously, such as: routing tasks, Internet
connectivity, video surveillance services, telemetry, multimedia services, among others.
To ensure proper coordination and management of the devices that implement the VNFs
or services, it is necessary for an entity or component to perform the corresponding
management tasks. In this way, and in an NFV environment, the core management
entity, i.e., the orchestrator, can perform the orchestration and management of available
resources [44].

Besides, because the provision of services provided by drones is constrained to their au-
tonomy or battery duration, an efficient energy management scheme is of paramount
importance in both short and long-term applications. In this regard, a policy or scheme
that allows the coordination and replacement of drones, to keep the service in an active
state while ensuring a certain level of availability, is essential. As a result of all afore-
mentioned, this section presents a scheme or management system for the deployment and
replacement of drones, in which an optimal scheduling algorithm is implemented in order
to guarantee the continuity of services, i.e., a level of availability, during a finite time
interval.

The proposed scheme is shown in Fig. 6.22 and is composed of two components: (i) a
set of drones, which are in charge of executing the VNFs and that constitute the NFVI
and (ii) a GCS, where the elements and entities responsible for monitoring, control and
management of resources and network services are located. The latter is precisely the
component (NFV orchestrator) where the developed algorithm is intended to be executed.
In this regard, the complete system can be considered as a network service, which in an
NFV environment and using the connectivity benefits provided by 5G such as very low
latency and high bandwidth, can offer the optimal or exact drone scheduling for services
execution. In addition, because 5G is considered in the design of the system, the proposed
solution can also be categorized as a novel 5G use case.

The goal of the proposed algorithm is to carry out an optimal drone scheduling over time,
in order to maximize the use of available resources, drones, while providing a reliable
communications system guaranteeing continuity in the execution of services. In addition,
the information provided by the algorithm can be used as a toolkit in mission planning.
Apart from the replacement sequence, the algorithm can inform the services availability
level obtained with the deployment of a given number of drones, or in turn, the results
can be used to know the number of drones that must be deployed to obtain a given
service level. The proposed scheme is characterized based on two different states, which
are described below:

• Service execution state: In this state the drones, which are equipped with processing
and communication devices, execute the VNFs to provide the demanded services.
For its operation, the drones are battery powered. Therefore, the autonomy time
or drone lifetime is constrained to the capacity of the power supply, the energy
consumption of the services to be executed and the consumption of all the elements
that allow the operation of the device.
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Figure 6.22: Overview of the proposed approach for energy management in UAV-
enabled communications.

In the proposed approach, the drones can execute the VNFs or services while they
are in flight, as shown in the example of Fig. 6.22. Also, for strategic reasons and
with the aim of extending the service lifetime, it is possible to consider scenarios in
which not all drones remain in flight. For example, for certain applications, such
as the provision of connectivity services, some drones after their launch may land
on specific locations. In the latter scenario, the service provided by the drones
on the ground is not limited to the time that the drone can remain in the air.
Even in this case, it is possible to consider the use of a secondary energy source
to further lengthen the time of service provision. In any of the proposed scenar-
ios, flying drones or drones on land, the algorithm guarantees the optimal drone
scheduling overtime over time. Of course, depending on the scenario, for example
if all the drones are flying, the drone replacement procedure should be performed
more frequently.

• Replacement state: In this state the drones do not provide the services. However,
this phase is necessary to guarantee both the migration (transition) of VNFs and
the replacement or recharging of drone batteries. Since the battery duration has
a finite lifetime, it must be recharged or replaced, being the replacement a more
useful and practical option in most cases, due to the agility involved in the process.

In the proposal, the management system located at GCS has all information about avail-
able resources (drones and batteries) and service requirements (power demanded by each
service and the total required availability time) because all is provided by the users of the
system. Through the execution of a scheduling algorithm, the system is able to provide
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the optimal allocation of drones to cover the demanded services. The scheduling algo-
rithm is executed in the NFV domain, specifically in the NFV orchestrator as depicted
in Fig. 6.22.

For the computation of the optimal allocation of drones, the algorithm considers both
the consumption related to the service (service execution state) and the necessary power
to perform the replacement process (replacement state). In the proposal, these power
consumption are represented by time variables, a service time related to the service state
and a replacement time associated with the replacement state (see Fig. 6.23). Thus, a
percentage of the total battery capacity (majority) is assigned to service execution and
the rest is dedicated to the execution of the replacement tasks (service migration). The
time variables associated with the operating states of the system are described in detail in
Section 6.3.3.3. Regarding the service time, this value depends on the power demanded by
the service and can vary greatly from one service to another, for example, considering the
same battery capacity, a drone running a service that demands high power consumption
will have a shorter service time compared to another running a service whose power
consumption is lower. On the other hand, the replacement time is composed of the time
needed to perform the migration of the VNFs, from old drone (low battery level) to new
drone (high battery level), and the time associated with the round trip flight to (old
drone) and from (new drone) the GCS. Since the replacement time is not directly linked
to the execution of the service, the value of this parameter could be similar or the same
for the different services.

In order to guarantee the continuity of the services in the proposed system, the service
migration process starts when the drone that is going to be replaced is active, i.e., when it
is running the service, specifically, the migration process begins at the end of the service
time or at the beginning of the replacement time (for a better understanding see the
Fig. 6.23 and Fig. 6.25e). After the migration process has been carried out, i.e., when the
replacement time is over, the replaced drone returns to the GCS, at this time this drone
is no longer active but is still part of the system. Once the drone reaches the ground,
its battery is replaced or recharged so that according to the indications received by the
GCS, it can be assigned for the execution of another service.

According to the aforementioned, in the system, the replacement time is sufficient to
guarantee the transition of the services as well as the launching and landing of the drones.
In addition, regarding the migration process, among the important aspects to consider are
the service hand-off process, from one drone to another, and the exchange of information
associated with this procedure. Regarding the latter, in the proposal the exchange of
information is accomplished thanks to features such as high connectivity and low latency
time provided by 5G technology. Instead, the procedure related to the service transition is
a process linked to the type and features of each service. However, it is worth mentioning
that Section 6.3.5 presents the results of the application of the proposal in a real case
whose values of both the service state and the replacement state (including the migration
process) have been obtained through measurements.

At all times, the management system coordinates the resources that must be allocated
(drones to be launched from the ground), because based on the initial information of
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services and drones, as well as the computations performed by the algorithm, the sys-
tem is able to estimate the number of available drones, the status of the services, the
sequence of replacement to be performed and the availability level reached. Hence, the
characterization of the system through the service state, the replacement state and their
corresponding time variables enable the system to operate with the appropriate margins
so that the services can be executed continuously during a required time interval while
the resource utilization is optimized.

For a better description and understanding of the different states of the proposed energy
management scheme, an example is presented below. In Fig. 6.22 is considered an ap-
plication environment composed by two VNFs, which are expected to be active during
a finite time interval. To this end, the system initially uses two drones, drone 1 and
drone 2, which execute VNF1 and VNF2, respectively. As time goes by, the manage-
ment system evidences that drone 2 is draining its battery due to the consumption of
the service and the consumption related to its flight. In response to this, and before the
drone stops providing the service or in the worst case it stops working and collapses to
ground, the system coordinates the sending of another drone. In this case drone 3 is
selected, whose energy level is adequate to guarantee the execution of the VNF 2 for a
subsequent time interval. At the moment that drone 3 is located at a suitable distance
for the establishment of communication with drone 2, the migration of VNF2, from drone
2 to drone 3 is performed, so that the service is not interrupted and remains available.
Subsequently, drone 2 returns to the ground station to recharge or replace its battery, so
that it can be ready for a new allocation. Thus, drone 2 is available to run the VNF2
or a different VNF, it depends on the decision that is made by the scheduling algorithm
and the corresponding management system.

During all the time of operation of the service, all the actions both on land and in the
air are coordinated by the management and orchestration systems. In summary, the
replacement state includes the launching of the new drone (with high battery level) from
the ground station, the return of the old drone (with low battery level) to the ground
station, and the service migration process (VNF migration).

In addition, from the example described above, it can be observed that to guarantee a
continuous execution of the service and a total availability level (100%), the number of
available drones must be at least one unit greater than the number of services. In the
example it is verified that to guarantee the continuous operation of VNF1 and VNF2, it
is necessary to use 3 drones, drone 1 (VNF1), drone 2 (VNF2) and drone 3 (VNF2).

Also, as aforementioned, the replacement state may include the battery replacement or
recharge of it. In the first case, the battery replacement is a process that can generally
take less time, for example, in a search or rescue mission, it is possible to use a limited
number of drones and a large number of batteries. Meanwhile, in the second case, the
battery charging commonly is a slower process, but necessary if the drone is tampering
resistant, or if the number of available batteries is limited.

In the proposal, regarding to the replacement state, for practical reasons, has been con-
sidered the battery replacement procedure. Nonetheless, the algorithm developed has the
flexibility to considering a battery charging procedure. In fact, within the characteriza-
tion of the system, the battery charging phase could be considered as an additional state,
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the battery charging state. In summary, the proposed strategy bases its operation on a
drone scheduling algorithm, which allows to know how many drones are going to be used,
how they should be replaced and when the replacement should be made.

6.3.3.2 System Model

The drone scheduling algorithm is intended for providing the information of the optimal
drone scheduling over time. In the proposal, the time variable has been divided in time
slots of equal duration. Thus, a drone is able to run a service over time (service execution
state) during one or several slots according to its capabilities (available energy) and
the features of the services that it can run. Similarly, the drone replacement state can
last one or more time slots depending on the features of the drones (battery replacement
procedure) and the scope of application of network services. A summary of notations that
describe the drone scheduling strategy is shown in Table 6.10. Then, these parameters
are defined in Section 6.3.3.3.

Table 6.10: System parameters of the proposed approach for energy management in
UAV-enabled communications.

Parameter Description Comments/Units

TE
A Expected availability time Time units
TR
A Reached availability time Time units
Av Service availability Percentage, Av ∈ {0, ..., 100}
AvS Service availability per services Percentage, AvS ∈ {0, ..., 100}
NS Number of services (VNFs) Integer number
Sj Service indentifier j ∈ {1, ..., NS}
T j
init Initial time of service j Time units

P j
d Power demanded by the service j Power units

ND Number of available drones Integer number
Dk Drone identifier k ∈ {1, ..., ND}
Ck

B Battery capacity of drone k Power x Time units

T d,k
B (P j

d ) Battery lifetime of drone k for service j Time units

T r,k
B Battery replacement time of drone k Time units

6.3.3.3 Definitions

1. Expected availability time (TE
A ): Also defined as service availability time, it repre-

sents the time interval where the services are expected to be active/available.

2. Reached availability time (TR
A ): Time interval during which the services are ac-

tive/available.

3. Number of services (NS): The set of services or VNFs that are executed by the
drones during a certain time period.

4. Initial time of service j (T j
init): Time instant from which the service j is avail-

able/active. Initial time in which the service availability is analyzed.
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5. Power demanded by the service j (P j
d ) : Power demanded by each service j to be

executed. Each service may demand a different amount of power. In general, this
parameter represents the consumption demanded by the services, and in practical
implementations, its units can also be given in terms of electric current (e.g., [mA]).

6. Number of drones available (ND): Set of drones that are part of the system.

7. Battery capacity of drone k (Ck
B): It represents the amount of energy that can be

stored in a battery of each drone k. Moreover, in practical implementations this
capacity can be expressed in terms of electric charge, i.e., electric current per time
units (e.g., [mAh]).

8. Drone battery lifetime (T d,k
B (P j

d )): Each drone k with a battery capacity (Ck
B), can

execute a service that demands a power level (P j
d ) during a time period T d,k

B . This
relationship can be expressed as follows:

T d,k
B (P j

d ) =
Ck

B

P j
d

(6.54)

This time variable represents the time interval linked to the service execution state.

9. Battery replacement time (T r,k
B ): This time variable is linked to the replacement

state of a drone k. The (T r,k
B ) includes the time associated with the sending of the

new drone (drone with high level of energy supply), the time demanded to perform
the migration process of the services, and the time needed for the old drone (drone
with low level of energy supply) to reach the ground station (charging point).

A pictorial representation of the time variables related to the two states that char-
acterize the system is shown in Fig. 6.23.

TBd,k TBr,k

t

VNF migration
Battery

replacement/charging

Replacement state

Service execution
state

round trip flight

Figure 6.23: Time variables of the drone scheduling strategy.

6.3.3.4 Metrics

To assess the performance of the drone scheduling algorithm two metrics have been de-
fined.

1. Services availability (Av): Also defined as the total availability of services, and
expressed as a percentage, this metric shows the ratio between the time that all
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the services are available and the expected availability time. If the (TE
A ) = (TR

A ),
i.e., all the services are available during all the time required, the (Av) = 100 %,
otherwise this value will be lower. The service availability can be expressed as:

Av =
TR
A

TE
A

· 100% (6.55)

2. Services availability per services (AvS): This metric provides the information of the
mean availability value of all services. A service j can reach an availability level
equal to Av,j, if this value is small compared to the availability of the other services,
the Av value will also be small and equal to Av,j. For this reason, the (AvS) metric
is defined, because it is less restrictive and weights all availability values, in order to
provide information on the behavior of all the services that are part of the system.
As a consequence, the AvS value will always be greater or at most equal to the Av

value. The service availability per services is defined by:

AvS =

∑NS
j=1Av,j

NS
· 100% (6.56)

6.3.3.5 Assumptions

The following assumptions are made for the practical implementation of the algorithm:

1. In practical implementations each programmable drone can execute more than one
VNF concurrently. However, to simplify the analysis, in the proposed scheduling
scheme, each drone k can run only one VNF or service j. This consideration is
valid, since the execution of several services in the same drone would correspond to
the consumption of different power levels. Thus, the processing of only one VNF
and the analysis of its consumption could represent a summarized value of all the
services that are executed in the drone.

2. Similar to the previous consideration, the strategy considers that a service j can
only be executed by one drone k at the same time. This with the aim of simplifying
the analysis in the distribution of drones and services.

3. In the proposed system, any drone has the ability to execute any VNF. Likewise,
any battery can power any available drone. In this sense, all available resources,
drones and batteries, can be reused when demanded. It is clear that the services
execution is limited to the capabilities of drones and the features of services.

4. In the proposal it is considered that all services work simultaneously, i.e., all services
are available as long as the system has the resources for their execution.

5. The ND must be at least equal to NS. Although, as discussed in Section 6.3.3.1,
to ensure the execution of services without interruption, ND should be at least
greater than or equal to NS+ 1 (NS ≥ ND+ 1). If ND < NS, then Av = 0% and
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AvS = 0%. The aforementioned consideration is mandatory in the initial execu-
tion or first drone allocation process, after this stage the algorithm is continuously
evaluating the amount of available resources. Therefore, in the following allocation
processes ND could be smaller than NS, in which case the algorithm analyzes the
requirements of services to perform the corresponding allocations.

6. In the replacement state, the drone that is replaced arrives at the ground station,
with a very low battery level (fully discharged battery). For the replacement process,
a battery that has previously been charged up to 100% of its capacity is used (fully
charged battery). Similarly, if the complete drone must be replaced and not just its
battery, the device that replaces it will be equipped with a battery charged to the
maximum level. This consideration is also valid for the drones that are assigned
for the first time, i.e., the drones used in the first allocation process have their
batteries fully charged. In addition, the system has enough batteries to guarantee
the replacement process of all the drones that demand them.

7. In the proposal is assumed that communication requirements such as very low la-
tency and high bandwidth capabilities are provided by 5G technology. Moreover,
the level of connectivity provided by 5G allows for proper communication and co-
ordination between the different components within the system.

6.3.4 Drone Scheduling Strategy

In this section, first the drone scheduling procedure is presented in Section 6.3.4.1; then
the complexity of the problem is discussed in Section 6.3.4.2.

6.3.4.1 Drone Scheduling Algorithm Procedure

The drone scheduling strategy consists of systematically computing the optimal set of
available of drones to execute the services. To this end, the strategy follows the guidelines
described in the execution and replacement states. The scheduling process stars with the
individual analysis of the execution of each service for each available drone (T d,k

B (P j
d )),

then goes through the following three phases to obtain the optimal allocation of drones
to run services.

a) Computation of Combinations: In order to find the exact or optimal allocation of
drones to run services, the algorithm, based on a brute-force search combinatorial
method, explores all possible combinations of drones and services. Once all the
possible combinations are obtained the algorithm determines those that meet the
system requirements (valid combinations). Subsequently, this set of combinations
are sorted in descending order according to the Av metric. At the end of this phase,
the best combination of drones (the first combination in the list from the top) is
selected. In this context, this best combination represents the optimal set of drones
whose services execution produce the highest Av value in the system.
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b) Resource allocation and services evaluation: Once the best combination of drones
and services is obtained, the drones are allocated to their corresponding services.
Afterwards, the Av and AvS metrics are computed; specifically, the AvS metric is
computed because the Av metric was already obtained in the previous phase. If the
Av reached is equal or greater than the desired value, i.e., TR

A ≥ TE
A , the algorithm

stops its execution; otherwise it analyzes the current availability level of all services
(Av,j) and the available resources (drones that have not been used) to proceed with
the next allocations.

The analysis of the available resources is carried out in the following phase. While,
the analysis of availability per services is part of this phase and corresponds to the
services evaluation, which is a procedure performed in order to reach the highest
possible Av or TR

A value (both parameters completely equivalent), from the second
allocation process. In this regard, based on the information of the last allocation
made, the algorithm lists the services in descending order according to the Av,j

reached, so that this information can be used in the computation and subsequent
allocation of the best combination of drones. In specific, the objective of this process
is to provide additional information to the algorithm in order to allocate the drones
with the highest battery capacity to the services with the lowest current Av,j val-
ues. In summary, the services evaluation contributes that the drones are allocated
starting with the service with the lowest Av,j value. The mechanism described in
this phase ensures an increasing Av and an efficient resource utilization.

c) Verification of available resources: Throughout the scheduling process, the algo-
rithm must know the status of the executed services (TR

A ) and the information of
the resources in the system. Especially from the second allocation process, the al-
gorithm has to identify the resources used and available in order to perform the
computation of combinations and the subsequent allocation of resources. In this
regard, the algorithm has to evaluate at each time the information of the drones
in the system, considering that this information consists of: drones used, drones
that have not been used, drones that must replace their battery and drones whose
battery has been replaced and are ready for a new allocation.

In an iterative process, the algorithm follows the phases described above and continuously
calculates the best scheduling of drones to execute services. This procedure is carried out
constantly until any of the two stopping criteria is met. The first criterion is the Av

value reached, if after an allocation process the Av = 100%, the algorithm stops its
execution. The second stop criterion is related to the number of available drones in the
system, considering that this number is made up of drones that have not been used (not
allocated yet) and drones whose battery has been replaced (or charged). In the event that
the system does not have the necessary resources (drones) to perform the corresponding
allocations, the algorithm stops its execution, under this condition an Av 6= 100%
will be achieved. Finally, the algorithm provides the information of the (TR

A ), Av and
AvS reached. The developed algorithm guarantees the best drone scheduling for services
execution over time, by analyzing all possible drones-services combinations. However,
the problem tends to growth as the NS and ND increase, which can be a problem if the
capacity or processing time are constrains within the system.
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The phases discussed above are implemented in the algorithm through different steps.
The drone scheduling algorithm is explained in Fig. 6.24 and each step is described in
detail based on the example depicted in Fig. 6.25. In this example TE

A = 7 time slots,
and for simplicity, the NS and ND are limited to 2 and 4, respectively. A pictorial
representation of the required services is shown in Fig. 6.25a. Moreover, the example
considers a T r,k

B = 2 time slots, the first time slot corresponding to the VNF migration
process and the round trip time of the drone, and the second time slot referred to the
time for battery replacement. In addition, to better understand the proposed strategy
in Table 6.11 is provided a summary of parameters related to the processing of the
combinations and the analysis of the drones in the system. The different steps that are
part of the algorithm are explained as follows.

Table 6.11: Parameters related to the processing of combinations and drones in the
scheduling algorithm.

Parameter Description

PairDronServ Pair of a drone and a service. A pair is used to describe the individual analysis of the
execution of a service Sj running on a drone Dk

TotalDronServ Total number of pairs of drones and services
CombDronServ Combination of a set of drones to run a set of services. A combination of drones and services,

which is commonly referred to as a combination, is composed of different pairs of drones and
services

AllCombDronServ Set of all possible combinations of drones and services
NumAllComb Total number of all possible combinations. This number is given by Eq. 6.58
V alCombDronServ Set of valid combinations of drones and services. The V alCombDronServ is a subset of

AllCombDronServ
NumV alComb Total number of valid combinations. This number is given by Eq. 6.59
SortCombDronServIDs Sorted list of the identifiers of the analyzed combinations. To obtain this list, the combina-

tions are sorted in descending order according to the Av reached
ReplaceDrones Set of drones whose battery must be replaced
AvDrones Set of drones that has neither been used nor allocated in the system
ReadyDrones Set of drones whose battery has been replaced. These drones can be used for a new allocation

process
TotAvaDrones Total number of drones that are available in the system. This number is given by Eq. 6.62

• Input parameters: The input parameters comprise the TE
A value, and the informa-

tion of services and drones, as shown in Table 6.12a and Table 6.12b, respectively.

Table 6.12: Information of services and drones.

(a) Information of services.

Sj T j
init [Time slots] P j

d [Power units]

1 0 1

2 0 1

(b) Information of drones.

Dk Ck
B [Power × time slots] T r,k

B [Time slots]

1 4 2

1 3 2

3 3 2

4 1 2
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Figure 6.24: Energy-aware algorithm for drone scheduling.

• Computation of T d,k
B (P j

d ), per drone and per service: For the computation of these
values, Eq. 6.54 is used. The Table 6.13a presents all possible values of battery
lifetime per drones (D1, ..., D4) and per services (S1, S2).
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• Information of drone lifetime per service and per time slot: In this step is provided
the same information displayed in Table 6.13a, but disaggregated in pairs of drones
and services (PairDronServ), as shown in Table 6.13b. Further, in this step the
information of T d,k

B (P j
d ) is presented in time slots, following the discrete time model

discussed in Section 6.3.3.2. At this point, the algorithm provides the information
of all possible drone options to execute the services individually. The total number
of pairs drone-services (TotalDronSer) is given by:

TotalDronServ = NS · ND (6.57)

In the proposed example, with NS = 2 and ND = 4 the TotalDronServ = 8
pairs of drones-services, from PairDronServ 1 to PairDronServ 8, see Table 6.13b.
Therefore, in this table are represented all possible service lifetime values depend-
ing on the drones to be used. For instance, if S1 would be executed by drone D4

(PairDronServ 7) the service lifetime would be T d,4
B (P 1

d ) = 1 time slot, instead if
S1 would be run on drone D1 (PairDronServ 1) the service lifetime would sev-
eral times greater and equal to T d,1

B (P 1
d ) = 4 time slots. The information of each

PairDronServ will be used in the next step of the algorithm to analyze the joint
action of drones to run services, in order to obtain the maximum possible Av and
AvS values in every allocation process.

• Combination of drones to run the services: Since all services run simultaneously, the
different combinations of drones and services (CombDronServ) must be analyzed.
Hence, the algorithm from a group of ND drones must obtain a set of all possible
combinations of drones to run NS services (AllCombDronServ). In this context,
the total number of combinations (NumAllComb) to be processed is given by the
analysis of NS · ND pairs (TotalDronSer, see Table 6.13b) taken NS at a time,
and can be expressed as:

NumAllComb =

(
ND ·NS
NS

)
=

(NS ·ND)!

NS! · (NS ·ND −NS)!
(6.58)

The NumAllComb obtained in this step is critical, because it contributes largely
to the growth of complexity of the problem. For instance, NS = 8 and ND = 10,
produce over 28 billions of combinations to be processed.

In accordance with the criteria adopted for the drone scheduling strategy, see Sec-
tion 6.3.3.5, not all AllCombDronServ are valid. For instance, in the example (see
Table 6.13b), the combination of PairDronServ 1 (D1, S1) and PairDronServ 2
(D1, S2) is not valid, because the same drone (D1) is assigned to different services
(S1, S2) at the same time. Likewise, the combination of PairDronServ 3 (D2, S1)
and PairDronServ 5 (D3, S1) is also not valid, because the same service (S1) is
executed by two drones (D2, D3) concurrently. In contrast, the combination of
PairDronServ 1 (D1, S1) and PairDronServ 4 (D2, S2) is valid, because once se-
lected the drones D1 and D2 can be allocated to the services S1 and S2, respectively.
Considering this, the total number of valid combinations (NumV alComb) is given
by:

NumV alComb =
ND!

(ND −NS)!
(6.59)
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In the example, NS = 2 and ND = 4 produce NumAllComb = 28 combinations
and NumV alComb = 12 combinations, the latter shown in Table 6.13c.

Table 6.13: Information of drones, services and combinations.

(a) Information about battery lifetime of drones for services S1 and S2.

Dk T d,k
B (P 1

d ) [Time slots] T d,k
B (P 2

d ) [Time slots]

1 4 4

2 3 3

3 3 3

4 1 1

(b) Information of pairs of drones and services and drone lifetime per time slot.

No.Pair Dk Sj Drone per time slot

1 1 1 1 1 1 1

2 1 2 1 1 1 1

3 2 1 2 2 2 0

4 2 2 2 2 2 0

5 3 1 3 3 3 0

6 3 2 3 3 3 0

7 4 1 4 0 0 0

8 4 2 4 0 0 0

Time Slot 1 2 3 4

(c) Combinations among available drones to run the services.

No.Comb. Combination (No.Pair) Drones Services

1 1, 4 1, 2 1, 2

2 1, 6 1, 3 1, 2

3 1, 8 1, 4 1, 2

4 2, 3 1, 2 2, 1

5 2, 5 1, 3 2, 1

6 2, 7 1, 4 2, 1

7 3, 6 2, 3 1, 2

8 3, 8 2, 4 1, 2

9 4, 5 2, 3 2, 1

10 4, 7 2, 4 2, 1

11 5, 8 3, 4 1, 2

12 6, 7 3, 4 2, 1

• Computation of Av and AvS per CombDronServ: Using the information obtained
of V alCombDronServ in Table 6.13c and the T d,k

B (P j
d ) value, given in terms of

time slots, in Table 6.13b, it is possible to compute the Av and AvS metrics, for
each of the CombDronServ. The Table 6.14a shows the different Av and AvS
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values for each CombDronServ of Table 6.13c. In this table, the metrics have been
rounded to the lower bound. An example of the computation of these metrics for the
CombDronServ 1 is provided below. In the case of CombDronServ 1 (composed by
PairDronServ 1 and PairDronServ 4), D1 is allocated to S1 during T d,1

B (P 1
d ) = 4

time slots, while D2 is allocated to S2 during T d,2
B (P 2

d ) = 3 time slots.

Av Comb1 =
3 [time slots]

7 [time slots]
· 100% = 42.86% (6.60)

AvSComb1 =

4 [time slots]
7 [time slots]

+ 3 [time slots]
7 [time slots]

2
· 100% = 50% (6.61)

• Selection of the best CombDronServ: The V alCombDronServ are sorted in de-
scending order according to their Av value (see Table 6.14a), using a quick sort
method. The algorithm provides a list with these values and the combination with
the best value, the first in the list is selected. Even if there is more than one better
combination, the first one in the list is always selected. In the example, the sorted
list of all V alCombDronServ is:

SortCombDronServ IDs := {1,2,4,5,7,9,3,6,8,10,11,12}
Where, the CombDronServ 1 is the best combination, while the CombDronServ 12
has the lowest Av level. After selecting the best CombDronServ, in the example
CombDronServ 1, the algorithm proceeds to identify the drones and services be-
longing to that combination, as shown in Table 6.14b.

• Drone allocation and computation of TR
A , Av and AvS: In this step, with the in-

formation of the best combination, the algorithm allocates the drones to their cor-
responding services over time. As shown in Table 6.15a, D1 is allocated to S1 and
D2 is allocated to S2. The Fig. 6.25c illustrates this allocation procedure, and in
this figure is not only represented the execution state (T d,k

B (P j
d ), blue color), but

also the replacement state (T r,k
B , orange and green colors). Then, the performance

metrics Av and AvS are computed. In this particular example the values reached
are Av = 42% and AvS = 50%. This is the initial allocation of drones, and
since none of the stop criteria have been met, i.e., Av 6= 100% and the system
has available resources (drones D3 and D4), the algorithm continues its execution
process.

• Identification of drones to replace their battery (ReplaceDrones): The algorithm
must constantly monitor the drones used, so that when they finish their execution
(TR

A ), they have to change to the replacement state (ReplaceDrones). In the ex-
ample, in the first allocation drones D1 and D2 have been used, and as can be seen
in Fig. 6.25d, drone D2 must start its replacement process in time slot 4, instead
D1 must perform this procedure in time slot 5.
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Table 6.14: Computation of metrics for V alCombDronServ and selection of the best
combination.

(a) Computation of Av and Av for all V alCombDronServ.

No.Comb. Combination (No.Pair) Av(%) AvS(%)

1 1, 4 42 50

2 1, 6 42 50

3 1, 8 14 35

4 2, 3 42 50

5 2, 5 42 50

6 2, 7 14 35

7 3, 6 42 42

8 3, 8 14 28

9 4, 5 42 42

42 4, 7 14 28

11 5, 8 14 28

12 6, 7 14 28

(b) Information of pairs of drones and services belonging to the best combination.

No.Pair Dk Sj Drone per time slot

1 1 1 1 1 1 1

4 2 2 2 2 2 0

Time Slot 1 2 3 4

• Identification of services to be executed by the available drones (AvDrones) in the
next allocation process: To continue with the drone scheduling process, from the
first allocation, an analysis of the priority of the executed services is carried out.
This level of priority is given based on the (TR

A ) parameter of the services. Thus, a
service with a lower (TR

A ) value will have a higher priority level to be processed in
the next drone allocation step. In this way, the algorithm will allocate the drones
with the highest (T d,k

B (P j
d )) values to the services with the highest priority levels.

The priority in the execution time of the services is analyzed at the end of the first
allocation process, since the start time of all the services is the same (T j

init = 0).

The priority information of the services is used in the computation of the combina-
tions and in the selection of the best combination, from the second allocation. This
process is carried out to guarantee an efficient and uniform allocation of the drones,
otherwise a specific service could achieve a TR

A value much higher than the others.
This situation must be avoided since the services must be executed simultaneously
with the objective of always reaching an Av as large as possible. In the example
(see Fig. 6.25d), S2 (TR

A = 3 time slots) has higher priority level compared to S1

(TR
A = 4 time slots). Therefore, later in the computation of all combinations this

information will be considered so that the selection of the best combination allows
a drone allocation (AvDrones = 2, D3 and D4) that favors the execution of S2, as
shown in Fig. 6.25e.
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The priority level of services is also useful in the case that ND < NS, situation
that may occur after the first drone allocation. In this particular case, the priority
allows to know the services that must be attended, with the available resources. In
this scenario, the combinations are computed with the number of available drones.

• Identification of total available drones (TotAvaDrones): The total number of drones
available in the system include: drones that have not been used, which in the case
of the example are D3 and D4 (AvDrones), and drones whose battery has been
replaced and are ready (ReadyDrones) to be used when the system demands them.
The ReadyDrones are the ReplaceDrones that have completed the replacement
state. In the example proposed, at this point, the first drone allocation has been
performed, therefore the system does not have ReadyDrones. Under these condi-
tions, the drones available are D3 and D4. In the next stages, the algorithm could
have ReadyDrones available, once they exceed the replacement state.

The total number of available drones (TotAvaDrones) in the system can be ex-
pressed as:

TotAvaDrones = AvDrones + ReadyDrones (6.62)

• Iterative drone allocation: In an iterative process of computation of: combinations,
selection of the best combination, drone allocation, priorities of services and metrics;
the algorithm continues its execution until either of the two stopping criteria is met
(Av = 100% or TotAvaDrones = 0). Continuing with the example, in the second
iteration the algorithm allocates D3 to S2 and D4 to S1, as shown in Table 6.15b
and in Fig. 6.25e. The results after this procedure are Av = 71% and AvS = 78%.
In a similar way to the process carried out at the end of the first iteration, once the
services have been completely executed by drones D3 and D4, these devices pass to
the replacement state. Specifically, this status will be reached at time slot 5 for D4

and at time slot 6 for D3, as represented in Fig. 6.25f. For practical reasons, the
time window in proposed example has been limited to 8 time slots.

After the second iteration has been completed, the algorithm checks the total num-
ber of available drones. At this point, given that AvDrones = 0, the algorithm
checks if any of ReplaceDrones has become ReadyDrones. In the example, the
unique drone that meets this condition is D2, which after the corresponding com-
putations is allocated to S1, as shown in Table 6.15c, and in Fig. 6.25g. At the end
of the third iteration the Av = 85% and AvS = 92%. Once the third iteration is
finished, the scheduling process continues in the same way as in the previous iter-
ations and according to the steps described in the Fig. 6.24. The fourth iteration
is the last in the example. In this iteration D1, whose battery has been replaced,
is allocated to S2, as seen in Fig. 6.25h and in Table 6.15d. Resulting in the final
values: TR

A = TE
A = 7 time slots for both services (S1 and S2), Av = 100% and

AvS = 100%. Once these values are obtained, the algorithm stops its execution.

A summary of the complete drone allocation procedure is depicted in Fig. 6.25b. The
final drones sequence is: D1, D4 and D2 for S1; and D2, D3 and D1 for S2. Moreover, as
a relevant result the algorithm allows to know the number of drones (resources) needed
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to reach a certain availability level. In the example, during a time window of TE
A = 7

time slots, with 4 drones and an optimal scheduling, the system can reach an Av = 100%
in the services execution.

Table 6.15: Progressive allocation of drones to fulfill the network services.

(a) Initial drone allocation.

Sj Drone information per time slot

1 1 1 1 1 0 0 0

2 2 2 2 0 0 0 0

Time Slot 1 2 3 4 5 6 7

(b) Second drone allocation.

Sj Drone information per time slot

1 1 1 1 1 4 0 0

2 2 2 2 3 3 3 0

Time Slot 1 2 3 4 5 6 7

(c) Third drone allocation.

Sj Drone information per time slot

1 1 1 1 1 4 2 2

2 2 2 2 3 3 3 0

Time Slot 1 2 3 4 5 6 7

(d) Final drone allocation.

Sj Drone information per time slot

1 1 1 1 1 4 2 2

2 2 2 2 3 3 3 1

Time Slot 1 2 3 4 5 6 7

6.3.4.2 Complexity Analysis

The NS and ND values have an impact on the growth of complexity of the algorithm.
The growth rate of the problem is not linear, because it depends on the product of
NS · ND, as shown in Eq. 6.57 and in Table 6.13b. The steps 3 and 4 define the growth
of the algorithm. This growth rate as a function of NS and ND can be expressed as:

f(NS · ND) = NS · ND + C(NS · ND, NS) (6.63)

Where the second term is the dominant term within the expression. As described in
Section 6.3.4 it represents total set of all combinations (AllCombDronServ) that the
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algorithm must analyze in a mandatory manner in order to find the valid combinations
V alCombDronServ to be processed.
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Figure 6.25: Example of the energy-aware drone scheduling algorithm.

Thus, according the Big-O classification [91], ignoring the low-order terms, i.e., the first
term in Eq. 6.63, the order of growth of the scheduling algorithm isO(C(NS · ND, NS)).
Hence, this complexity reveals the drawbacks that the algorithm has for the selection of
NS and ND values.
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6.3.5 Performance Evaluation

To validate the resource planning algorithm proposed in the previous section, it is nec-
essary to define reasonable scenarios that can integrate all the different parameters that
should be assessed and provide the complex environment where this type of algorithms
is normally applied. The evaluation will then be carried out through extensive simula-
tions using these scenarios. Section 6.3.5.1 describes the simulation setup and the two
application scenarios and then, the evaluation results are presented and discussed in Sec-
tion 6.3.5.2.

6.3.5.1 Simulation Setup

The drone scheduling strategy is evaluated in two different application scenarios: a
Generic Scenario that uses random values for some parameters, and a Realistic Sce-
nario whose values are based on experiments and measurements, as shown in Table 6.16.
These scenarios are described in detail below, and for practical reasons, in both scenarios
the NS has been limited up to NS = 7 services. The scheduling algorithm has been
implemented using Matlab (Matlab R2017b).

The Generic Scenario has been run on a computer equipped with a 3.33 GHz x 12 cores
Intel Core i7 Extreme processor and 12 GB RAM. This simulation leverages parallel
processing and multiple CPU cores (up to 6 cores) have been used in each simulation.
In order to ensure stability of the results, each case (NS) was repeated 50 times except
for NS = 7, which was executed only once due to its excessive running time. Results
are shown, in Fig. 6.30 and in Fig. 6.30c, with a confidence interval of 95%. The total
running time for this scenario (all cases) exceeded 300 hours.

Meanwhile, the Realistic Scenario has been executed on a machine with a 3GHz x 4 cores
Intel Core i5-7400 processor and 64 GB RAM. In this case parallel processing has also
been exploited, all 4 cores have been used during the simulation. Because this scenario
is deterministic, only one simulation has been executed for each case (TE

A = 5, TE
A = 10

and TE
A = 15 hours). The execution time for this scenario is around 80 hours, and results

are shown in Fig. 6.31.

Table 6.16: Summary of simulation parameters for the drone scheduling algorithm.

Scenario TE
A NS ND T j

init Ck
B P j

d T r,k
B

Generic 10 hours 1-7 0-11 0, for all j
uniform distributed

random value
[1- 5] [Ah], for all k

uniform distributed,
random value

[1- 5] [A], for all j
10 [min], for all k

Realistic 5, 10, 15 hours 7 0-10 0, for all j 3 [Ah], for all k

S1 Router: 292.02 [mA]
S2 Router: 292.35 [mA]
S3 AP + Router: 371.82 [mA]
S4 AP + Router: 373.62 [mA]
S5 Telemetry TX: 288.76 [mA]
S6 Telemetry TX: 288.23 [mA]
S7 Flying: 9000 [mA]

10 [min], for all k
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• Generic scenario: This scenario corresponds to a very general application environ-
ment with the intention of performing an initial validation of the proposed solution.
To this end, it is assumed that the different drones can execute the services in the
air (with a much higher power consumption), a subset can land on the ground after
its launch from the ground control station, or even a hybrid situation can also be
possible (different cases are discussed in Section 6.3.3.1).

The scenario is not particularized for specific applications and it is considered that
applications can vary from the provision of video surveillance services to the provi-
sion of connectivity services, etc. (this is modeled in the scenario by considering the
power demanded by the different services P j

d to be a random value between 1 and 5
A). In addition, to provide more diversity, batteries capacities Ck

B are considered to
be different for each drone, choosing for them random values between 1 and 5 Ah.
This assumptions (see Table 6.16), will produce services with different TR

A values
(service execution state) varying from TR

A = 0.2 hours (minimum value) to TR
A = 5

hours (maximum value).

Considering the parameters described above, a T r,k
B = 10 minutes (replacement

state) and a time window of (TE
A ) = 10 hours, the algorithm has to perform many

transitions among the service execution state and the replacement state in order
to optimally allocate the available resources to the corresponding services which is
exactly the situation that is wanted to be forced in this scenario in order to test the
algorithm capabilities. The metrics achieved for the different NS and ND values,
are shown later in Section 6.3.5.2.

• Realistic scenario: The objective of this scenario is to test the algorithm under
more real conditions replacing the random values used in the Generic scenario by
some other values that may be closer to some real ones.

In particular the scenario that will be described in this section (Fig. 6.26) shows a set
of drones each one with an onboard SBC (they carry an RPi with its own battery)
linked through an ad-hoc WiFi network and using a certain FANET (Flying Adhoc
Network) routing protocol to guarantee connectivity. The drones are including
different VNFs depending on the role they are assuming (Access Point (AP), router,
or telemetry transmitter (i.e., video or sensor data).

In this scenario the energy consumption for a particular drone may depend on
many diverse factors. In first place there are two different types of batteries and
also drones that are flying and drones that are landed (so depending on the situation
the battery that limits the service maybe either one or the other). For the drones
that are not flying (the drone battery is not presenting any limitations for them and
only the RPi battery is used) the measurements must consider the different WiFi
interfaces, the WiFi communications (different traffic including Video, telemetry,
routing messages, etc.), CPU load, external hardware etc.

As it can be appreciated it is not easy in this environment to evaluate how the
energy consumption curve will perform for the different drones, how many drones
are in fact needed in order to guarantee that the service can be maintained over time
(considering a certain replacement time), etc. This is considered to be a suitable
scenario so as to validate the combinatory algorithm and the rest of the section will
provide more details on the scenario itself and about the validation methodology.
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Figure 6.26: Drone swarm providing network connectivity in a disaster situation.

A total of seven drones have been considered in this scenario that may represent
a natural disaster use case (e.g., earthquake, fire, flood) where drones can enable
communications between emergency services islands as seen in Fig. 6.26 drones
accommodate different VNFs and play different roles within the network to perform
the overall service that will be taken into account by the algorithm:

1. Optimized Link State Routing (OLSR) Router VNF: Because of the drone
network nature (e.g., node mobile, volatile network) OLSR [181] has been
selected as routing protocol. OLSR is a distributed and proactive routing
protocol used to establish connections between participant nodes in an ad-
hoc wireless network proposed for MANETs and extended for Flying Ad-hoc
Networks (FANETs). The main advantage of this type of routing protocol is
its dynamic discovery allowing state-less VNFs that prevent the costly process
of VNF migration. Drones s1 and s2 in Fig. 6.26 are OLSR routers.

2. Access Point VNF: Wireless AP VNFs are used to interconnect wireless com-
munication equipment from emergency services (end user terminals). The
selected technology has been the normal 2.4 GHz IEEE 802.11. Drones s3 and
s4 in Fig. 6.26 are APs.

3. Telemetry Transmitter VNF: Data transmission VNFs have been used in dif-
ferent drones within the network. As it can be appreciated in Fig. 6.26, two
types of data transmitters have been specified, (a) telemetry transmitter (32
Kbps flow, that can either represent GPS information or sensor data such as
temperature or humidity) and (b) video transmitter in standard quality (200
Kbps flow) that is enough to have an overview of the disaster area by the
emergency services. Drones s5 and s6 in Fig. 6.26 are telemetry transmitters.

Drones s1 to s6 are landed and the energy demanded is only related to the network
services while drone s7 is flying (Figure 6.26).

In order to validate the algorithm, it is necessary to provide as input a rough estima-
tion of the power demanded by each drone. However, in this realistic environment,
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besides user traffic (video, telemetry, etc.), numerous factors may affect battery life-
times. Parameters like the pattern of energy consumption, environmental conditions
or battery status are significant factors to take into account in real applications,
but there is extremely complex to model them in simulated environments therefore
despised. However, there is unpredictable network traffic which is considered to
measure energy consumption, such as packets re-transmission, WiFi management
packets, routing messages, etc.

The power consumption will be directly measured using a real RPi and a specific
power meter. In order to do so, it is required that the RPi resembles the real condi-
tions as stated in the scenario definition in terms of traffic, CPU load and consider
the necessary hardware to enable wireless communication since the consumption
depends heavily on these parameters.

To calculate all these values, a simulation using ns-36 network simulator has been
performed. As it can be seen in Fig. 6.26, the simulation includes the seven drones
(one of them is flying (s7) while the rest of them are landed). The drones that
accommodate the telemetry transmitter VNFs generate one flow to each one emer-
gency service involved on the scene. More details can be consulted in Table 6.17
where the simulation parameters are specified. The trajectory of the flying node
(s7) has been precalculated using Matlab and included in the simulation using traces
with the ns format.

Table 6.17: Simulation parameters for drone operation.

Parameter Values

Traffic CBR
Telemetry Transmission Rate 32 Kbps

Video Transmission Rate 200 Kbps
Network Protocol UDP
Routing Protocol OLSR
Simulation Time 3600 seconds
Number of drones 7
Mobility Model Static

After this simulation, it will be possible to calculate the traffic that will be processed
by each drone, including all the different components that have been previously
mentioned. To be able to properly analyze the traffic at each drone the following
characterization has been done for the traffic depending on the source and the
destination as represented in Fig. 6.28.

1. Transit traffic: Received traffic to be forwarded because that drone is not the
final destination of the packet. This traffic is telemetry data.

2. Sink traffic: Traffic that is consumed by that particular drone. This traffic cor-
responds to OLSR management or WiFi management packets since telemetry
data is consumed out of the analyzed network by the emergency services.

6ns-3: https://www.nsnam.org/

https://www.nsnam.org/
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3. Source traffic: Traffic that is generated at that particular drone. This traffic
can be either OLSR management, WiFi management or telemetry data.

Fig. 6.27 shows the average throughput for each drone obtained by the simulation.
These results will be replicated into real RPis in order to perform the power mea-
surements. Note that the flying node s7 transmitting video is not represented in
the figure. Flight-engines are demanding all the available energy in this drone and
power consumption due to traffic processing is negligible in comparison. No power
measurement is performed here since the battery that limits the service execution
is the one of the drone itself (in Table 6.16 this power consumption is modeled as
9000 [mA] since together with the battery capacity that is used, a 20 minutes flight
estimation is obtained which is quite normal for regular drones). In addition, as
expected the traffic consumed by drone (only OLSR management) is insignificant
compared with transit and generated traffic.
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Figure 6.27: Average throughput for realistic scenario.

As it has been mentioned, the main purpose of the simulations described in the
previous section is to estimate the different data flows (Fig. 6.27) that have to be
injected into the RPi in order to emulate the power consumption that it would have
in a real scenario.

In order to perform these measurements, the testbed depicted in Fig 6.28 has been
built. It includes three different RPis 3B and the Monsoon FTA22D Power Meter7

(which provides a robust power measurement solution for mobile devices with high
accuracy (±1)).

The RPi Source generates two flows, one of them consumed by the RPi hosting
the VNF and the second one consumed by the RPi Destination. The RPi that
accommodates the VNF is also generating another flow that is consumed by the
RPi destination. In this way, we can emulate the traffic involved with each device
on the network. To generate this traffic the Iperf8 tool.

7Monsoon FTA22D Power Meter: https://www.msoon.com/
8Iperf: https://iperf.fr/
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The RPi VNF is then powered by the Monsoon (Vout voltage of 4.2 V) main channel
and then the average power is derived from instantaneous current (Fig. 6.29) and
voltage, and divided by the duration of the sampling run (200 seconds). After
conducting the measurements, it has been verified that the power consumption is
not significantly increased unless the network interface is close to the maximum
bandwidth. The authors in [175] are finding similar results. The most relevant
power increase is due to the use of an external hardware (extra WiFi card to create
the AP) carried by drones s3 and s4.

Figure 6.28: Power consumption measurements methodology.
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Figure 6.29: Average current for realistic scenario.

6.3.5.2 Results

In both scenarios, Generic and Realistic, the optimal drone scheduling is performed. As a
result, the algorithm allows to know the level of services availability achieved when using a
given number of available drones. Seen in another way, the proposed strategy can be used
to know how many drones need to be deployed to reach a certain services availability level
(in the simulations from Av = 0% to Av = 100%). In this context, the results provided
by the drone scheduling algorithm can be used in the design, planning and deployment
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stages of network services executed by drones. Therefore, the information provided by
the scheduling strategy can be used for both performance evaluation and system sizing.
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Figure 6.30: Performance evaluation of the drone scheduling strategy in
Generic scenario.

Regarding the Generic scenario, whose results are shown in Fig. 6.30a (Av), in Fig. 6.30b
(AvS) and in Fig. 6.30c (Av = 100%), the algorithm provides the different availability
levels (metrics) for each of the services from NS = 1 up to NS = 7. As discussed above,
this information allows to know the number of drones need to reach a certain Av value,
or the Av obtained with a given amount of available resources (drones). For example,
as shown in Fig. 6.30a, with NS = 3 services are needed ND = 6 drones to reach an
Av = 100% (also AvS = 100% in this case). Similarly, if as system consists of NS = 5
services and demand an Av = 90%, the number of drones required is ND = 9 drones. In
the latter example, as shown in Fig. 6.30a, for NS = 5 there is no an exact ND value
that meets an Av = 90%, in this case the selection should be rounded the upper bound
value (ND = 9), due to the ND is an integer number. This rounding operation also
ensures that the value obtained is greater than or equal to the requested value.

Another relevant result that can be extracted from the results provided by the algorithm
(Fig. 6.30a) is ND as a function of NS to reach an Av = 100%, as shown in Fig. 6.30c
(also AvS = 100%). This summarized information represents a practical and useful tool
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that can be used in the design and planning phases of services that have as a constraint
the 100% of availability for their operation (e.g., provision of communications services in
emergency or search scenarios). For example, in the Generic scenario, it is appreciated
that for NS = 6 are needed at least ND = 10 drones to reach and Av = 100%.
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Figure 6.31: Performance evaluation of the drone scheduling strategy in a Realistic
scenario.

In addition, the results obtained help corroborate the criteria that were considered in
the design of the algorithm. For example, as discussed in Section 5.1.2.4, all AvS values
must be equal or greater than Av values. This condition is verified by establishing a
comparison between Fig. 6.30a (Av) and Fig. 6.30b (AvS) for the Generic scenario, and
between Fig. 6.31a (Av) and Fig. 6.31b (AvS) for the Realistic scenario. For example, for
the (Generic scenario), with NS = 5 services and ND = 7 services, Av = 33% instead
AvS = 38%.

In the Generic scenario in specific, the Av and AvS metrics obtained are very similar
to each other (always Av ≥ AvS). This situation obeys to one or more of the following
considerations: (i) TE

A and TR
A are large compared to the size of time slots (minimum

amount of time in the system, 10 minutes in the simulations) and (ii) in the final alloca-
tions there is not much difference between the TR

A of all services (i.e., Ck
B) and (P j

d ) have
similar values for all services). In the Realistic scenario scenario instead, Av (Fig. 6.31a)
and AvS (Fig. 6.31b) values are different from each other, mainly for TE

A = 5 [hours] and
TE
A = 10 hours, this due to the considerable difference of TR

A for all services, in particular
referred to S7, whose demanded consumption (9 [A]) is much greater than the rest of ser-
vices. In this case, the algorithm needs to allocate a greater number of drones to execute
the service, or in other words to keep the service in active mode a high replacement rate
is necessary (i.e., high transition between the service execution state and the replacement
state).

On the other hand, in Fig. 6.31a (Av) and Fig. 6.30b (AvS) are shown the performace
metrics achieved for the Realistic scenario. In this scenario, all cases (TE

A = 5, 10 and 15
[hours]) consider NS = 7 services, and as a result the evaluation, the algorithm provides
that the required ND to reach Av = 100%, which in all cases, is equal to ND = 10
drones. This value represents the minimum amount of resources (drones and batteries)
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that the system must use to face a reliable (Av = 100%) network services deployment.
In this scenario, have been considered different TE

A values, to evaluate the behavior of
the strategy in both short-term and long-term real applications. In this regard, the
scheduling algorithm performs a few number of allocation procedures when TE

A = 5 hours
and TE

A = 10 hours (only S5 needs to used different resources), instead a high transition
between service execution and state is experienced when TE

A = 15 hours.

6.3.6 Conclusions

In this section, an optimal drone scheduling algorithm is developed, which by leveraging
5G and NFV capabilities, is able perform an efficient energy-aware management of re-
sources for network services provisioning. Through this strategy, it is possible to calculate
the required number of drones for a certain degree of service, to be used in real scenarios.
The scheduling strategy, based on two states, service execution and replacement, provides
the information about the number of drones and their sequence of replacement to run
services and reach a certain availability level, during a finite time interval. Thus, the
proposed scheduling algorithm can be used as a useful tool in system sizing and mis-
sions planning tasks, in order to provide reliable and safe drone-based network services
deployments.

The porposed algorithm can perform the optimal scheduling in both short and long-term
applications, and it can be used as a resource/availability planner in a wide variety of real
scenarios, such as: emergency scenarios, relief disaster services, search and rescue tasks,
among others.

Simulations results validate the performance of the proposal and provide the metrics
achieved, as well as the amount of resources needed for the execution of services in
different scenarios. The results provided by the simulations can be used to know the
level of availability for a certain number of services and available drones. Likewise, these
results allow to know the number of drones needed to run services to guarantee 100% of
availability level.

Finally, this section presents the evaluation of the proposal for scenarios up to NS = 7
services and ND = 11 drones, limited by the complexity of the algorithm. Although
these limits can be very useful and quite adequate values in many practical scenarios
and applications, it is necessary to develop additional strategies in order to be able to
handle larger scenarios and in a faster running time. In this regard, the brute-force search
solution developed is also useful as a baseline method to design heuristics or metaheuristics
approaches.
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6.4 Adaptive Energy Management in Multi-UAV De-

ployments for Multiple Regions

Nowadays, UAVs are frequently present in the civilian environment. However, proper im-
plementations of different solutions based on these aircraft still face important challenges.
This section deals with multi-UAV systems, forming aerial networks, mainly employed
to provide Internet connectivity and a variety of network services to ground users in dif-
ferent regions. However, the mission duration (hours) is longer than the limited UAVs’
battery life-time (minutes). This section introduces the UAV replacement procedure as a
way to guarantee ground users’ connectivity over time. This section also formulates the
practical UAV replacements problem in moderately large multi-UAV swarms and proves
it to be an NP-hard problem in which an optimal solution has exponential complexity.
In this regard, the main objective of this section is to evaluate the suitability of heuristic
approaches for different scenarios. This section presents betweenness centrality heuristic
algorithm (BETA), a graph theory-based heuristic algorithm. BETA not only generates
solutions close to the optimal (even with 99% similarity to the exact result) but also
improves two ground-truth solutions, especially in low-resource scenarios.

6.4.1 Introduction

The unstoppable growth of the UAVs (commonly known as drones) ecosystem during
these last years, has been proven to be just the beginning of a near-future global phe-
nomenon. The US Federal Aviation Administration predicts [182] that UAVs providing
commercial services will triple over the next five years, and will overtake consumer off-
the-shelf UAVs by the year 2024. UAVs will grow eightfold over the next decade and will
become the largest segment of the civilian market.

The utilization of multi-UAV systems, because of their rapid deployment, mobility, and
flexibility, has recently attracted attention to support/extend the 5G in extraordinary sit-
uations (e.g., massified events, natural disasters, infrastructure failures). 5G will certainly
bring faster uploading and downloading speeds in combination with a dramatic decrease
of the network latency. However, in exceptional or emergency circumstances, the deploy-
ment of 5G terrestrial infrastructure may not be economically viable. In addition, the
deployment times of these extraordinary on-demand 5G network services should meet
the Key Performance Indicators (KPI) defined by the 5G-PPP [183], which states that
new deployments must finish within 90 minutes. Accordingly, it is here where UAVs are
expected to play a crucial role. If properly deployed and configured, UAV networks can
provide fast-ubiquitous 5G access (which is also within the 5G KPIs) employing wireless
communications solutions in a diversity of real-world scenarios.

5G UAV missions, e.g., to complement existing cellular networks in high-density environ-
ments, deliver network coverage in hard to reach rural areas (Remote Access Networks),
or in IoT scenarios, may require the management of moderately large UAV fleets. UAVs
mainly act as aerial communication platforms such as (i) aerial base stations (BS) (to
support existing 5G infrastructure in high traffic demand) [184], or (ii) aerial WiFi APs
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Figure 6.32: Typical UAV use case using the proposed methodology for covering
multiple regions.

forming a FANET (to create new networks) [185]. So that, UAV research area aims to
extend the 5G network (where it has no range) or support the existing 5G network (when
it is not enough) using radio solutions as payload [186], e.g., 5G or LTE microcells, multi-
hop solutions based on commodity WiFi. When compared to terrestrial antennas, aerial
units may have some advantages since they can change their altitude with the possibility
of avoiding obstacles, including no geographical restriction on the antenna location. How-
ever, these advantages turn into crucial design challenges, such as the optimal positioning,
the limited flight time, or the optimal trajectories calculation and network planning [187].

In particular, multi-UAV environments may give rise to long-endurance missions that
require uninterrupted service provisioning (performing UAV replacements) that are not
achievable using a single UAV due to battery capacity constraints (at most around 20
minutes flight [188]). A UAV replacement means that a UAV that is waiting in the
GCS becomes active and goes into the scenario to substitute one of the UAVs that is on
service to provide its same functionality. This is only possible providing a fleet exceeding
the number of UAVs that have to be active on service at the same time, i.e., there is a
reasonable number of fresh UAVs for replacement.

Nevertheless, developing an appropriate replacement strategy of UAVs, is one of the crit-
ical hurdles that have not yet been properly addressed by the research community. The
replacement strategy enables to optimize the cost in terms of required aerial infrastruc-
ture resources, while keeping the provided level of service. To guarantee that long term
(beyond battery life) services can be deployed, some of the UAVs that are at the GCS
must be able to successfully replace the UAVs that provide the actual service on the stage
whenever necessary (for example, when a UAV has low battery or fails). However, the
economic cost of oversizing the fleet is enormous, as these devices commonly have high
prices. For this reason, it is necessary to develop a resource optimization mechanism in
order to allow intelligent and autonomous UAV systems to be managed with the lowest
possible number of UAVs.

Figure 6.32 illustrates a representative use case of UAVs delivering network coverage. As
it can be appreciated, some UAVs provide connectivity to several end-users. A Controller
entity, located in the GCS, is in charge of scheduling when UAV replacements will take
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place. Once the replacement procedure is started for a certain UAV, that UAV directly
goes back to the GCS to change its battery 1, while another one comes back in its place
2. As soon as it has a charged battery installed, it is available again in the replacement
pool for other UAVs to be changed when required. By following this methodology, an
uninterrupted service may be provided. Reducing the UAV fleet while ensuring a rea-
sonable quality of service is not a straightforward procedure (Further details about the
methodology depicted in Fig. 6.32 can be found in Section 6.4.4, subsections 6.4.4.1 and
6.4.4.4).

6.4.2 Related Work and Background

Ubiquitous connectivity is one of the current challenges of 5G networks and beyond
5G [187]. UAVs have appeared as a promising solution to provide reliable and flexible
wireless communication services for ground users in a wide variety of scenarios [184]. The
usage of UAVs promises to provide cost-effective wireless connectivity for devices without
infrastructure coverage. Concretely, UAVs are considered as flying BSs for coverage
extension and capacity enhancement of the existing 5G cellular networks. In [189], authors
explore the use of UAV-BSs to provide coverage during natural disasters. In this work
[186], an evolved packet core (EPC) inside a UAV is introduced, to orchestrate the LTE
RAN in the presence of multiple BSs. This EPC can also interoperate with commercial
BSs as well as commodity user equipment. In [190], the authors provide an overview
of UAV-aided networks, introducing the underlying architecture and wireless channel
characteristics.

One of the most critical design challenges in multi-UAV systems is the achievement of the
all-to-all communication between UAVs, which is necessary for cooperation and collabo-
ration [191][192]. If every UAV is connected to existing network infrastructure such as a
GCS, satellite network or base stations, swarm communications can be delivered via this
infrastructure. This type of network scheme simplifies some problems that may be asso-
ciated with UAVs ad hoc networks alternatives, like routing protocols or the distributed
control of the network. However, it also brings as a consequence certain limitations such
as the expensive equipment (long-range or satellite antennas) and obviously less flexibility
since the deployment is fixed to an existing infrastructure. An alternative solution is the
usage of FANETs. In this type of systems, UAVs have several roles, not only as functional
devices to provide coverage, gathering sensor data, or video dissemination but also to be
used as network relays to connect all UAVs through the UAV network itself. Commonly,
only one (or a few) UAV (also known as backbone UAV) are required to be connected
to the fixed infrastructure (GCS). The backbone UAV is generally equipped with two
radios: (i) Low power radio (WiFi or Bluetooth, for instance) is used for communication
between the UAVs and (ii) high power long-range radio to communicate with the GCS
[193]. It is common to find quite a few examples of research works that use FANETs
to support 5G networks [194]. For instance, [185] extends a 5G network slice for video
monitoring with a FANET composed of small low-altitude UAVs with multi-access edge
computing facilities to allow high-speed transmission.
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Although the development of UAV networks is receiving significant attention by the re-
search community, some challenges must be solved before their proper deployment and
consolidation. One of them is their limited battery capacity since normally a UAV source
power mainly depends on small batteries (we are considering in this section small rotary-
wing UAVs and not big fixed-wing UAVs with fuel engines). Consequently, these SUAVs
(Small UAVs) are hardware-constrained devices that can not be too heavy or carry heavy
payloads. Besides, to the power consumption of the flight engines, it is essential to con-
sider the additional energy required by onboarded computers, that may not be carrying
their own external batteries and in case they were, extra weight would be added to the
system. As a consequence, we find that the useful lifetime of a UAV system is undoubt-
edly limited by these restrictions. Different research works propose solutions to provide
uninterrupted service on long endurance missions and overcome the reduced-battery chal-
lenge. For instance, [195] presents an algorithm to offer continuous structural inspection
services using UAVs not only through simulation results, but also using an implemen-
tation. In [196], authors consider UAV replacement (among other possible alternatives,
such as refueling [197] or recharging) to maintain total surveillance of an area perimeter.
Additionally, some articles propose the automatic batteries replacement [198][199][180].
They offer a GCS capable of swapping UAV batteries without human interaction. Ground
task automation not only reduces human interaction but also increases the multi-UAV
system operation area, improving the coverage and enabling operation in hazardous en-
vironments. This trend makes us choose battery replacement as the preferred option in
the solution proposed in this section. Battery price is considerably lower than the cost
of a UAV, and the time to replace the battery is remarkably shorter than the time to
recharge it. Moreover, thanks to these studies and their practical experimentation, we
use these results as input for our scheduling algorithms to provide accuracy to the design
of UAV replacement strategies. Diverse works attempt to solve the limited battery life
problem which is inherent to current SUAVs by proposing diverse alternatives. In [200],
it is considered that the UAVs land to provide service (if possible and secure operation).
The work in [201] summarizes different techniques to prolong the UAV operation time
from Battery dumping [202] to Photovoltaic arrays [203][204]. Some other additional
techniques have been proposed like wireless charging using lasers is in [205].

The optimization field, to improve the restricted communication performance of UAV
networks while using the minimum amount of physical resources, is also an actual discus-
sion topic in state of the art. In [206], the effective use of flight-time constrained devices is
investigated, maximizing the average data service to ground users following a fair resource
allocation policy. The solution of the cooperative allocation problem proposed in [207]
significantly improves the performance of several network parameters. In [208], the au-
thors try to minimize the number of vehicle-mounted BSs required to guarantee wireless
coverage for a group of distributed ground users. Similar work in [209] proposes a place-
ment algorithm for vehicle-mounted BSs that maximizes the number of covered ground
users using the minimum UAVs. In [210], authors investigate the UAV coverage problem
and propose a multi-UAV coverage model based on energy-efficient communication. The
work in [211][212] focuses on the application of a multi-layout multi-subpopulation genetic
algorithm achieving significantly better performance results than the other meta-heuristic
algorithms also considered to improve the coverage deployment of multi-UAV networks.
An explicit definition of the minimum-energy paths between a predefined initial and final
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Figure 6.33: Multi-UAV system during a mission for three target areas (j = 3) and
four UAVs (i = 4).

configuration of a quadrotor by solving an optimal control problem concerning the an-
gular accelerations of rotors is detailed in [213]. Their solution yielded minimum-energy
and fixed-energy paths for the aerial vehicle.

6.4.3 Problem Statement

As it has just been mentioned, one of the main challenges in multi-UAV systems is to keep
all the target geographic areas covered overtime by UAVs, since their battery lifetime is
limited (minutes) as compared to the typical mission timelines (hours). In order to face
this problem, our approach is to use a fleet with the number of UAVs that are required
to cover the whole scenario, and then maintain extra UAVs in a backup pool to serve
as replacement units (as it can be seen in Fig. 6.33). Once a replacement has been
scheduled by the GCS, a fully recharged UAV enters the scenario while the replaced UAV
goes back home to substitute its empty battery and be therefore ready to be changed by
the next active UAV that requires a replacement. However, this procedure of identifying
the minimum number of necessary (extra) UAVs and scheduling UAV replacements in
the appropriate moment (to guarantee a minimum level of service availability) resembles
a sophisticated approach and is the main problem that is treated in this section.

Figure 6.33 depicts the reference scenario considered in our analysis. In this scenario,
different colours are used to represent different geographic areas, which encompass: the
target areas where UAVs are intended to provide network coverage to end-users, the
geographic location where UAVs are directed for a battery replacement, and the specific
area where the backup pool of UAVs is kept for subsequent use. These colour patterns
have been reproduced in Fig. 6.34 to classify not only what task the UAVs are doing
at a certain moment but also to show which UAVs are covering the target areas at any
given time. The following subsection faces the practical UAV replacement problem from
an optimization viewpoint stating a simplified and manageable procedure, checking its
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Figure 6.34: Multi-UAV system states during a mission for three target areas (j = 3)
and four UAVs (i = 4).

complexity, and solving it through different approaches (optimal brute force algorithm,
heuristic algorithm).

6.4.3.1 Complexity Analysis

In this section, we prove that a simplified version of the proposed problem maps to an
NP-hard problem (bin-packing problem [214] in this particular case) so that we are able
to state its complexity. We denote a UAV using the index i and the target areas using
the index j. Each UAV i has CBi

(t) battery level at instant t and the UAV might be
in four different states: (i) battery replacement state (landed in the GCS), (ii) flying
state (towards the GCS, or towards a region where it is intended to provide a network
service), (iii) covering a region, or (iv) waiting in the reserve UAVs area to replace an
active UAV. These four states can be appreciated in Fig. 6.34. This diagram represents
a hypothetical scenario with three regions (j = 3) and 4 UAVs (i = 4), also indicating
when the replacements take place to guarantee system availability over time. Note that a
region/area indicates where a UAV has to fly. In the case (e.g., the number of users, high
volume of traffic) two UAVs have to be geographically near, we consider two different
areas. This problem statement must guarantee each region j is always covered by a UAV,
i.e.:

∑
i

xi,j(t) = 1, ∀j,∀t (6.64)

with xi,j(t) = 1 whenever UAV i covers region j. Moreover, at any time t, the battery
level of UAV i has to stay above a safe threshold aj (e.g., 20%) for each region, so as to
ensure the flight back to the GCS:

∑
j

ajxi,j(t) ≤ CBi
(t)yi(t), ∀i, ∀t (6.65)

here yi(t) = 1 whenever UAV i is not in the GCS.
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Additionally, battery levels keep on decreasing while UAV is covering a region. Otherwise,
we consider its battery levels is set to 100% once it has returned to the GCS, and the
operator has replaced the battery:

CBi
(t+ 1) = (CBi

(t)− c) yi(t) +RTd,Tr (1− yi(t)) , ∀i, ∀t (6.66)

with c the battery consumption, and RTd,Tr the average battery charge ratio during the
time spent in returning to the GCS Td, and the operator replacement task Tr. Td remains
constant in this simplified version of the problem, no matter how far a UAV i is from the
region j it was covering, to the GCS. The main goal of this problem is to minimize the
number of active UAVs over time:

min
∑
i,t

yi(t) (6.67)

This optimization problem with objective function (Eq. 6.67), and constraints (Eq. 6.64,
Eq. 6.65), maps to the bin-packing problem. Notice that this simplified problem has as
bins the drones and as items the areas. Battery levels CBi

(t) are just the bin capacities9,
and the battery threshold of each region j becomes the items’ weights. Thus, constraint
in Eq. 6.65 is just the bin-packing restriction that prevents exceeding bin capacities.
Furthermore, constraint in Eq. 6.64 imposes that all items (our regions j) are fitted
inside a bin.

Without considering Eq. 6.65, we already have an instance of the bin-packing problem.
Since this makes some instances of our problem being NP-hard, our reduced problem
automatically becomes NP-hard. Then, the next step is to generate a heuristic algorithm
that will provide a sub-optimal solution. At the same time, it is required to develop a
methodology that will enable the algorithm evaluation.

6.4.4 Methodology

This section describes the different elements depicted in Fig. 6.32 and explains the steps
to be followed by the mission planner to provide uninterrupted network services. It
first describes the parameters that UAVs must report to the GCS in order to serve as
input for the scheduler algorithms. Then, it details the diverse assumptions taken for
system modeling, that enable simulations to evaluate the preliminary proposals. Later,
it presents the metrics to assess the performance of the proposed solutions. Finally, it
describes the different strategies used in this section to schedule UAVs replacements.

9Note that having time-dependent variables correspond to have t repeated such variable multiple
times, i.e., with t = {1, 2}, yi(t) is expressed as two different variables yi,1 and yi,2.
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6.4.4.1 Reported Parameters

Current UAV systems regularly report to their control station their location (GPS co-
ordinates if the UAV incorporates this type of navigation) and the remaining battery.
However, this knowledge may not be enough to have a holistic view of the UAV network
which enables the scheduler algorithm to satisfy the objective function (Eq. 6.67) of min-
imizing the number of required UAVs to provide guaranteed service availability. This
is the list of parameters periodically reported by the UAVs to the GCS that enable the
calculation of essential inputs for the scheduler algorithms that will be defined later to
make the appropriate replacement scheduling:

• GPS coordinates : Longitude, latitude, and altitude enable the calculation of the
distance between each UAV and the GCS. Consequently, taking into account the
cruising speed of the UAV, it is possible to estimate the time, and also the required
battery, needed to complete the replacement procedure.

• Remaining battery : The current value of the available battery, in combination with
the historical battery values (last n values), allows calculating the average energy
consumption. With these values, an approximation of the UAVs’ lifetime can be
determined.

• Network neighbors : The neighboring nodes enable us to generate a graph that
represents the UAV network. With the GPS position and the theoretical wireless
range, an overview of the network topology can be obtained. However, in certain
circumstances, such as several packet collisions or high interferences, having a UAV
nearby does not guarantee to have a proper communication channel established.
Assuming that communications are bidirectional, for a network link to exist between
two UAVs, both have to report each other to the controller, i.e., UAVA reports
UAVB and UAVB reports UAVA. This functionality is deployed in the UAV payload
equipment.

• Number of connected users : If a UAV acts as a BS or AP (it can also act as relay,
video transmitter, telemetry/sensor transmitter), it must report the number of users
that it is serving. This way, it can be better determined the impact that a failure
(disconnection) of this particular UAV causes in the network.

6.4.4.2 Assumptions

Using a discrete time model and in order to provide a reasonable implementation of the
UAV replacement strategies, it is required to make some assumptions (simplifications):

1. The UAVs in the fleet are all the same model. It also implies that all batteries have
the same dimensions and therefore have the same capacity/duration. This approach
is reasonable since handling UAVs that use the same battery model reduces the
number of these in the GCS and also simplifies the battery exchange procedure.
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2. As long as there is a topological path existing between two nodes, it is assumed that
the network route is possible and it is configured, i.e., no time is needed to configure
different routes when topology modifications happen. Unquestionably, the routing
protocol used in the network may eventually affect the system but under normal
circumstances, the convergence time is negligible [171].

3. The chosen path between two network nodes (UAVs or network users) is the shortest
path based on the number of hops. A priori, this decision makes sense since taking
the shortest path minimizes the delay (and actually reducing the delay is one of
the main objectives of 5G). However, if the network has several users distributed
heterogeneously, using different paths may be interesting to balance the network
load and avoid packet collisions.

4. When a UAV is in flight, any non-flight related energy consumption (for instance
due to wireless transmissions) is negligible [174]. Furthermore, UAVs usually in-
corporate two batteries [215]. The primary battery is in charge of supplying the
flying engines while the secondary supplies the payload equipment. The secondary
battery enables a static mode of operation and, in particular situations, UAVs may
land to extend the life of the provided network service, stopping the flying engines
while keeping the payload powered with its own battery [200]. Our laboratory ex-
periments with the secondary battery (3.7 V and 3,800 mAh) result in more than
2 hours of duration, so the battery limiting the UAV operation is the primary one
in any case. Moreover, the battery consumption model is linear and the same in all
the UAVs (it does not depend on the flight conditions).

5. Because the price of batteries is remarkably lower than the cost of UAVs, it is
assumed that the number of available batteries cells is huge. This way, the GCS
never runs out of charged batteries. Batteries can also be recharged during the
mission, and some of them could be reused.

6. UAV payloads have enough computing capacity, consequently not saturated under
any conditions. In a previous work [215], experiments using Raspberry Pi 3B single
board computers are carried out to prove their correct functioning.

Although all these assumptions may affect the results of the simulations, the primary
purpose of this energy management approach in the UAV domain is not to achieve ac-
curate results but to verify that it is worth using a replacement scheduler algorithm to
manage moderately large UAV fleets. Once this hypothesis is demonstrated, the progres-
sive replacement of each simplification opens interesting future work for the evaluation
of more realistic results.

6.4.4.3 Performance metric

The average number of users connected (over time) is used as the metric to evaluate
the performance of UAV replacement strategies. Each sampling period (e.g., 5 seconds
in our simulations), this metric is examined in order to calculate the percentage of end
users connected to the GCS, which is in charge of providing Internet connectivity (i.e.
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the number of end users that through a path established across the UAVs network are
actually connected to the GCS). The average value of all the partial results during the
simulation time will be used as performance metric.

6.4.4.4 Scheduler algorithm proposals

The following subsection outlines the strategies that have been taken into account when
performing the simulations. Obtaining the optimal solution and defining a heuristic
algorithm is part of the optimization process. The optimal solution will not predictably
serve for large scenarios (in a reasonable time), but it will validate the heuristic algorithm
in small scenarios for its future application in real environments. A summary of the
parameters that describe the proposed UAV replacement strategies is shown in Table 6.18.

• Optimal algorithm: To find the optimal UAV scheduling strategy that minimizes the
number of UAVs used to cover a certain analysis region and a given number of users,
a brute-force algorithm has been proposed. This algorithm is an evolution of the
strategy developed by us and presented in [16], which has incorporated positioning
information, number of users, and specific parameters related to the displacement
between the GCS and the regions to be covered (i.e., landing time, take off time,
and cruising speed of UAVs). In this regard, the proposed algorithm can be seen
as an evolution of the approach addressed in [16]. The UAV scheduling strategy is
explained in Fig. 6.35, and its operation can be summarized in the following three
stages.

– Computation of parameters for UAV allocation: This procedure consists of
calculating the lifetime of each UAV (i.e., the battery lifetime to exclusively
provide the service in the designated region) and its corresponding replacement
time, considering the information about the locations of the GCS and the
service regions (GPS coordinates) as well as the parameters v, To and Tl. In
this step, a priority level or ranking is also assigned to each region according to
the number of users that can be affected (disconnected) directly or indirectly
if the UAV allocated to that region, and acting as an AP, suffers a failure.
Thus, a higher priority level corresponds to a region that, if is not covered (no
UAV allocated), it produces a higher number of disconnected users directly or
indirectly (AP in that location with a link or links to other locations). This
information is used in the process of allocation of UAVs to each region (next
step), and ensures that fewer users are affected if i < j at a given time.

– Optimal distribution of UAVs to cover the service regions: Through a brute-
force analysis, all possible combinations of available UAVs to cover the different
service regions are explored. The best distribution (combination) of UAVs,
which consists of those whose characteristics (battery duration) allow for the
highest service availability time, is systematically selected.
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Figure 6.35: Optimal UAV battery replacement strategy.

– Analysis of the percentage of battery charge to perform the replacement: With
the information from the previous step (UAV allocation per service region),
the algorithm analyses the optimal charge level for each UAV in which the
corresponding replacement must be performed. This procedure is carried out
by means of an exhaustive exploration of each level of charge for every UAV,
and seeks to guarantee the highest service availability time and an efficient
use of the available resources (minimization of the number of UAVs for re-
placements). In a traditional approach, as shown in Fig. 6.36a, replacement is
performed when the battery capacity reaches its minimum threshold (TB = 75
seconds in the example). Although this procedure allows the full capacity of
the battery to be used, the simultaneous discharge of several or all UAVs may
cause a greater demand of resources (UAVs) for the subsequent allocations (in
the worst case i = j) and an unavailability of one or several regions if there
are no UAVs available for replacements. On the contrary, a desynchronization
in the replacement time, as shown in Fig. 6.36b, allows not only a greater



Chapter 6. Application Scenarios 204

(a) UAV replacement considering all battery
consumption

(b) UAV replacement to offer the maximum
service availability and the highest number of

UAVs for the next allocation

Figure 6.36: Differences between the analysed scheduling procedures. Example for
j = 2 and i = 3 (2 UAVs in services and 1 UAV for replacement).

availability of services but also minimization of the number of UAVs in the
system. In the example presented in Fig. 6.36a, 4 UAVs are required (2 UAVs
in services and 2 in the reserve) to guarantee a service availability equal to
100%, whereas in Fig. 6.36b, only 3 UAVs are necessary to reach the same
availability level. Once the algorithm has determined the charge levels for
replacement that allow the maximum service availability and the maximum
number of UAVs available for the next allocation, these UAVs are allocated
to their corresponding regions. The allocation process continues iteratively
(i.e. execution of step two and step three) until reaching the maximum time
horizon Tw, as shown in the example in Fig. 6.36b with Tw = 100 seconds.

The proposed optimal strategy is an offline exhaustive search mechanism whose
complexity is given by Eq. 6.68.

f(i, j, TB, Ts) = C(i× j , j) +

(⌈
TB
Ts

⌉)j

(6.68)

where, the first term represents the combinatorial analysis for the allocation of UAVs
and the second term corresponds to the analysis of the charge levels for replace-
ments. Both terms in Eq. 6.68 are non-polynomial, the first term is the dominant
and, according to the Big-O classification [216], the order of growth of the algorithm
is O(C(ixj, j)), i.e. non-polynomial. Based on preliminary tests we can report that
if the UAVs have the same characteristics (i.e., equal battery capacity) the anal-
ysis in step three (exploration of the charge levels) is only necessary for the first
allocation process, because desynchronization is maintained all other allocations, as
shown in Fig. 6.38. While this mechanism can partially reduce the complexity of
the algorithm, obtaining an optimal solution using an exhaustive search limits it to
real-time applications and reveals the drawbacks in selecting the number of regions
and UAVs (at most i = 12 and j = 6). In this regard, this strategy can be used in
planning stages to estimate the number of UAVs needed for a mission, such as an
emergency or rescue scenario. However, in these cases a suitable alternative is the
strategy described in [16], because it is a more generic and less complex approach.

Therefore, the hardness of the problem analysed in Section 6.4.3.1 (NP-Hard) and
the complexity of the optimal solution shown in Eq. 6.68 (exponential) demonstrate
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the need for less complex heuristic mechanisms that can be used in real-time imple-
mentations. These strategies are described in the following sections and represent
the major contributions of this porposal.

• BETA: BETweenness centrality heuristic Algorithm: Heuristic algorithms are em-
ployed to solve optimization problems that are out of scope in reasonable times by
optimal algorithms. In this particular case, it is also essential that this heuristic
algorithm has a fast execution time because it must be run in real-time. BETA
schedules the replacements based on the relevance of each participant within the
network. To determine the relevance of an area in a network scenario, we ap-
ply graph theory fundamentals. Each area/UAV (an area is covered by an UAV)
would correspond to the graph vertices (also called nodes), while the links among
UAVs correspond to the graph edges (also called links or lines). One of the most
well-known metrics to identify which are the most significant vertices in a graph is
centrality, more specifically the betweenness centrality, which resembles the number
of times a vertice acts as a connection along the shortest path between two other
nodes. However, in the proposed multi UAV networks, nodes do not communicate
with other nodes randomly, since they do it with those that have Internet connec-
tivity to the public network (either the GCS or a 5G-enabled UAV), as this provides
the ground users with Internet connectivity.

To formulate this custom metric, we have divided the graph into two sub-graphs: (i)
sub-graph which is composed by those UAVs that do not have Internet connectivity
and (ii) sub-graph which is formed not only by the GCS, but also by the UAVs
that may eventually have connectivity to the core network. Therefore, due to these
specifications, the centrality metric has been calculated in the following way:

g′(v) =
∑
s 6=v
s∈A
t∈B

(
σst(v)

σst
Us), v ∈ A (6.69)

being σst(v) the number of shortest paths from UAV s to UAV t that traverse UAV
v, and σst the total number of shortest paths from UAV s to UAV t. Us is the
number of users connected to UAV Us. The amount of users is crucial since if
there are no users connected to UAV Us, there is no impact on the network. This
statement (Eq. 6.69) (which is quite versatile) despite being designed for FANETs
is also suitable for BS scenarios (where UAVs are directly connected to the core
network).

A ranking is computed using the g′(v) metric as input. In case two UAVs have the
same value g′(v) the one closer to the GCS will be above the other in the ranking
since this will minimize the total replacement procedure time, and the replaced UAV
will be active sooner to perform another UAV replacement. Now it is possible to
assume which scheduling strategy to follow. BETA attends the following strategy
(it can be appreciated in Fig. 6.37: (i) if there is any topological change or the
ground users move around the scenario, the algorithm must compute the ranking
again; (ii) whenever there is a UAV available in the reserve, the algorithm schedules
a replacement to the UAV with less remaining battery. However, this replacement
takes place only if it does not affect UAVs that have a higher position in the ranking,
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i.e., that means that the remaining lifetime of the top UAVs is shorter than the time
needed to make a UAV available again (after flying towards the GCS and battery
replacement). In the case that this UAV replacement cannot be performed, the same
analysis is repeated for the next UAV with the lower battery until the algorithm
finds a UAV to make the replacement. For this algorithm to work correctly, it has
to be executed periodically. In our case BETA runs every 5 seconds which coincides
with the sampling period.

Start

Update UAV lifetime
Based on remaining batteries and GPS

s

End

Input parameters: GPS, GCS and regions, 
connected users, j, i,	𝐶!, d, L, v, 

𝑇,	𝑇",	𝑇#,	𝑇$

Output: UAV ID, replacement time

Analysis time ≥ 𝑇!
Yes

No

Update battery ranking
Based on remaining batteries s

If Topological change:
Compute UAV ranking (based on neighbors and connected 

users)
ForUAVs battery ranking:

ifUAVs in reserve > 0 (from lowest to higher):
time = time to replaced UAV to be available again
warnings = find (time > lifetime)
if warnings < reserve UAVs:

Schedule replacement

Figure 6.37: UAV replacement methodology BETA.

6.4.5 Simulation details and Results

In order to validate the proposed algorithms we have used different scenarios with dif-
ferent properties that will be discussed in this section. The following sections detail (i)
the simulation parameters and the justification of their selection, (ii) the ground-truth
solutions with which the BETA algorithm is also compared, (iii) the simulation setup,
and finally (iv) the simulated scenarios in combination with achieved results.

6.4.5.1 Simulation parameters

This section details the parameters that have been taken into account to carry out the
simulations and the selection criteria. This data, together with the related notation, can
be appreciated in Table 6.18 and Table 6.19.
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Table 6.18: System parameters in energy-aware multi-UAV deployments.

Parameter Notation Units/Coments

Number of regions j Integer number
Number of UAVs i Integer number
Location GCS PGCS x,y coordinates
Location UAVi PUAVi

x,y coordinates
Number of users per region uj Integer number
Total number of users U Integer number
Battery replacement time Tr Time units, e.g, seconds
Battery capacity CB Electric current per time units, e.g, mAh
Device consumption d Electric current, e.g, mA
Link distance L Length units, e.g, meters
UAV cruising speed v Speed unitis, e.g, meters/seconds
Take-off time To Time units, e.g, seconds
Landing time Tl Time units, e.g, seconds
Simulation time Tw Time units, e.g, seconds
Sampling time Ts Time units, e.g, seconds

Table 6.19: Simulation parameters for algorithmic strategies in energy-aware
multi-UAV deployments.

Scenario
Parameters

j i U Tr CB d L v To Tl Tw Ts

I 6 6-12 300

180 s 2700 mAh 5670 mA 70 m 5 m/s 60 s 60 s 3600 s 5 s
II 25 25-50 250

III 25 25-50 300

IV 50 50-100 500

The time needed to perform a battery replacement is based on [195]. The battery capacity
is based on the Parrot Bebop 2 specifications [188] (It is chosen because we have performed
several tests using this model, and it is the selected unit in the technical validations we
have worked previously [215][217][218], since it has demonstrated that it is able to carry
a single board computer onboard like a Raspberry Pi for a reasonable time without
problems and a reasonable cost). To calculate the device consumption, we have assumed
that the UAV flies for 20 minutes (also specified in the technical characteristics). For
WiFi range and although the standards state that the range is quite large, in practice,
we have found that the WiFi range is relatively short for an acceptable received signal
level [219]. The cruising speed has been calculated based on its maximum speed (also on
technical specifications). Meanwhile, takeoff and landing times have also been calculated
by our own measurements since we have not found accurate information. The simulations
are iterated assuming a fixed number of areas to be served (and obviously one UAV per
area) and then increasing the number of replacement UAVs (starting by 0 and increasing
until the number of UAVs in reserve equals the number of UAVs in the scenario, which
would mean doubling the size of the fleet).
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6.4.5.2 Ground-truth solutions

To provide context to the BETA and optimal algorithms performance, they will both be
compared with two alternative solutions (with smaller complexity). The primary purpose
of this proposal is not to measure how far the heuristic solution is from the optimal
but to highlight that the use of this type of solutions is worthwhile and under which
conditions and in which scenarios. In order to do that the four scheduling techniques will
be compared (BETA, optimal, baseline and simple scheduling) and different conclusions
will be obtained

• Baseline: This is the simplest strategy. UAVs are assumed to periodically send
their current battery level and GPS position, however, no further calculations are
made from the GCS. When an active UAV reaches a minimum battery threshold,
i.e., only the required battery to return to the GCS plus a safety threshold, e.g.,
20%, a replacement is scheduled (if UAVs are available), i.e., the drained UAV
flights to the GCS, and at that moment (when the drained UAV starts flying to the
GCS), a fresh UAV takes off and flies to the uncovered target area to provide the
service. If no fresh UAVs are available, there will have no service in that area until
a UAV is ready to go and cover it again. The lack of intelligence in this baseline
solution prevents from reaching 100% service provisioning in any case because even
with infinite UAVs to serve as fresh replacements there will always be a gap without
network service corresponding to the time that passes since the drained UAV leaves
the stage towards the GCS until the moment the new UAV enters the stage and
starts operating.

• Simple scheduling: This strategy is inspired by [195]. UAVs are also assumed to
send their current battery level and GPS periodically. However, in this case, the
controller is required to estimate a battery threshold (based on battery reports and
other parameters such as the UAV speed and the takeoff and landing times) that
includes not only the minimum battery needed to return to GCS but also includes
the time needed for the fresh UAV (in case there are available units) to reach the
target area. That way the new UAV will start serving the area just after the old
one leaves and predictably, if there are enough UAVs in reserve, all the areas can
be covered for the whole mission time (or at least a high percentage of the time).
In case the active UAV reaches the threshold and there is no fresh UAV to perform
the replacement, the UAV can still continue providing service until it reaches the
battery level needed to reach the GCS enlarging the service time.

6.4.5.3 Simulation setup

A Matlab (Matlab R2017b) event-based simulator achieves all the results. To calculate
the BETA, simple scheduling, and baseline solutions in all the scenarios, a computer
equipped with a 2.6 GHz Intel Core i5 processor and 8GB RAM was used. Meanwhile,
the optimal algorithm has been run on a computer equipped with a 3.33 GHz x 12 cores
Intel Core i7 Extreme processor and 24GB RAM. If the reader is interested in reproducing
the experiment, the code is available in this repository [220].
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(a) Scenario II: UAVs as APs (b) Scenario II: UAVs as BSs

(c) Scenario III: UAVs as APs (d) Scenario III: UAVs as BSs

Figure 6.38: Proposed scenarios for algorithm performance evaluation in multi-UAV
deployments.

6.4.5.4 Validation scenarios

• Scenario I: Proof of concept: To start the analysis, we have defined a basic scenario
(it can be appreciated in Fig. 6.38a) as a proof of concept. In this stage, there are
a total of 6 coverage areas and 300 ground users heterogeneously distributed. In a
scene with these reduced dimensions, it is possible (in terms of reasonable compu-
tation time) to run the algorithm that provides the optimal solution so it will be
possible to compare all the alternatives. Fig. 6.39a depicts the average connected
users for the four algorithms when the UAVs act as a FANET which means that
UAVs onboard commodity WiFi equipment and use the created UAV WiFi adhoc
network itself to connect to the GCS (which in turn provides the Internet connec-
tivity). Therefore if one of the UAVs that is geographically closer to the GCS (and
hence connecting part of the topology to the GCS) runs out of battery and there
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is no possible UAV replacement, some parts of the network may get disconnected
even though the rest of UAVs may be successfully covering other target areas. Fol-
lowing this logic, whenever there is a failure in the backbone UAV, the system gets
completely divided. On the other hand, Fig. 6.39b depicts the average connected
users for the four algorithms when UAVs act as BSs (they are directly connected
to the public network without the need of a hop by hop network like a FANET).
These scenarios are usually employed in massified events where the existing cellular
network is operating correctly, but may be insufficient. As expected, these results
are better than the FANETs results since each UAV is only responsible for its own
end users. However these on-boarded BS solutions are usually more expensive and
it is not always viable (when the infrastructure does not exist or is temporarily
damaged for instance).

Figure 6.39a shows that both BETA and the simple scheduling strategies perform
similarly and are close to the optimal solution. To reach 100% of connected users
with the simple scheduling approach, it is required to double the UAV fleet (12
UAVs) but in any case in reduced scenarios, the simple scheduling solution is enough
to provide an adequate service. On the other hand, the baseline algorithm provides
erratic and unintuitive results considering that the performance decreases as the
fleet increases. This phenomenon happens because although the time that UAVs
are covering the target areas is higher, the network is disconnected for longer, i.e.,
having more UAVs does not guarantee overall connectivity if the backbone UAV
is not working. If there are no reserve UAVs in reserve (the fleet size is equal to
the number of target areas), the return and battery replacement process (of all
the UAVs in the scenario) is almost synchronized (and operate simultaneously).
However, if there are some UAVs in reserve, this process may be unsynchronized.
For this reason, the baseline results decrease and, in consequence, are worse and
inconstant.

The results in Fig. 6.39b (UAVs acting as BSs) are better as we commented and
again BETA and simple scheduling strategies are close to the optimal solution. The
baseline solution performance improves in this case, as the size of the fleet increases.
All the strategies in fact stabilize with a fleet of 8 UAVs, two in reserve (fleet 25%
oversize), and both BETA and simple scheduling achieve acceptable values.

In scenarios with reduced dimensions this 25% of fleet oversize (having two UAVs
in reserve) seems quite reasonable. However, in a scenario with numerous areas,
e.g., 25 areas, 50 areas, this oversize may imply a rather expensive operation. It
is then important to validate the solutions in much bigger scenarios and see the
performance of the algorithms there.

• Scenario II: Grid: Figure 6.38b shows a scenario with 25 coverage areas and 250
ground users homogeneously distributed, i.e., ten ground users per area. We have
selected a grid topology which is fail-tolerant since there are multiple alternative
paths to reach the GCS from each area. Moreover, all the areas have the same
number of users, which makes the difference in the UAV ranking insignificant in the
FANET scenario and almost nonexistent in the BSs scenario.

Figure 6.39c shows that the performance of the heuristic strategy is better than
the simple scheduling solution (when the fleet is formed by 30 UAVs, 5 UAVs in



Chapter 6. Application Scenarios 211

6 7 8 9 10 11 12

Number of UAVs

0.7

0.75

0.8

0.85

0.9

0.95

1

T
h

ro
u

g
h

p
u

t

Optimal

BETA

Simple

Baseline

(a) Scenario I: UAVs as APs
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(b) Scenario I: UAVs as BSs
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(c) Scenario II: UAVs as APs
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(d) Scenario II: UAVs as BSs
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(e) Scenario III: UAVs as APs
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(f) Scenario III: UAVs as BSs
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(g) Scenario IV: UAVs as APs
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(h) Scenario IV: UAVs as BSs

Figure 6.39: Average number of users connected in different scenarios increasing the
fleet size.
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reserve, the results improve by more than 10%). Both strategies reach acceptable
levels from 35 UAVs fleet. The heuristic solution reaches 100% of users connected
with a 38 UAVs fleet while the simple scheduling solution, as in the first scenario,
needs to double the fleet size to reach 100% of connected users. On the other
hand, the baseline solution has a similar behavior to the previous scenario. This
outcome highlights that if no strategy (however simple) is used to schedule the UAV
replacements, the results can be harmful, and even over-dimensioning the resources
does not guarantee favorable results.

Figure 6.39d presents the results of UAVs acting as BSs. In this case, the heuristic
algorithm behaves similarly to the simple scheduling solution. The heuristic algo-
rithm schedules the UAV replacements based on g′(v) metric (Eq. 6.69), which is
determined using graph theory. In this scenario, the nodes representing the UAV
network have the same g′(v) since they are all directly connected to the infras-
tructure and provide connectivity to the same ground users; therefore, all UAVs
connect the same number of users to the network. For this reason, scheduling the
UAV replacements using the heuristic strategy has no advantage other than that
they are performed as soon as there is an available fresh UAV. This phenomenon
reveals that the heuristic solution makes the difference in scenarios where UAVs
have different relevance within the network.

• Scenario III and Scenario IV: Tree: Finally, we have designed two tree-type sce-
narios with the users distributed very heterogeneously. This type of scheme makes
some UAVs much more relevant, and scheduling replacements effectively seems to
have a substantial impact on the final performance. The first scenario has 25 cov-
erage areas and 300 ground users. The second scenario has 50 coverage areas, 500
ground users. The areas and user distribution can be appreciated in Fig. 6.38c and
Fig. 6.38d.

Figure 6.39e reveals that the difference between the BETA solution and the simple
scheduling solution is significant in these scenarios. For a 30 UAVs fleet (5 UAVs
in reserve), we achieve a 20% improvement by using the heuristic scheduler, which
is an important variation when providing a network service. The heuristic strategy
obtains 100% of users connected from 36 UAVs. As in previous scenarios, the
baseline solution produces insufficient results. It is interesting to observe that as
the UAV fleet increases (which have high economic cost), the users are not connected
longer.

Similarly, when UAVs act as BSs, Fig. 6.39f, we obtain better results using the
heuristic strategy. This variation is because, in this scenario, the ground users are
heterogeneously distributed, and consequently, UAVs have different g′(v) since they
connect diverse numbers of ground users, which implies that performing the correct
replacement has more impact.

The conclusions of scenario IV are similar to the ones of scenario III, although the
performance (Fig. 6.39g and Figure 6.39h) is worse because of the greater complexity
of the UAV network topology and the greater failure possibility.
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6.4.5.5 Comparison of the UAV replacement strategies

Once the results have been obtained (Fig. 6.39) and discussed, in this section we will
perform a comparison of the results by computing: (i) for scenario I, the distance from
the optimal solution (Opt) to the suboptimal or approximate solutions (SubOpt), in order
to verify the quality of the results, and (ii) for the succeeding scenarios, the difference
between the simple scheduling and baseline approaches against the Heuristic strategy. To
this end, the criterion of approximation ratio (ρ) has been used (see Section 5.4.0.3) and
adapted to the features of this proposal. Thus, ρ in this particular case is defined as:

ρ =
1

i

∑
i

SubOpti
Opti

(6.70)

where SubOpti and Opti are the results for all the variation of UAVs in reserve (from
zero to fleet size) for the optimal and suboptimal strategies, respectively. For a better
understanding of the calculation of this parameter, Eq. 6.71 presents an example for the
simple scheduling approach of Scenario I when UAVs act as APs (Fig. 6.39a).

ρ =
1

7
×
(

72.95

74.99
+

83.38

87.51
+

99.02

100
+

99.24

100
+

99.27

100
+

99.28

100
+

100

100

)
= 0.98 (6.71)

The result of Eq. 6.71 shows that the suboptimal solution (simple scheduling approach)
is similar to the optimal solution in a factor equal to 0.98 (98% similarity between solu-
tions). The rest of the ρ factors for Scenario I (Fig. 6.39a and Fig. 6.39b) are summarized
in Fig. 6.40, while the ρ values for other scenarios are presented in Fig. 6.41. The compar-
ison between the optimal solution and the approximate solutions in Scenario I, based on
ρ factor, reveals that all the proposed strategies produce not only near-optimal solutions,
but also a stable performance (i.e., high-quality feasible solutions). In all cases, as illus-
trated in Fig. 6.39a and Fig. 6.39b and then corroborated in Fig. 6.40, the approximate
algorithms (BETA, simple scheduling and baseline) generate solutions very close to the
optimal, even with 99% similarity to the exact result (1% of error), which is achieved by
the BETA approach. Then, this strategy is used as a baseline to evaluate the performance
of the other strategies (simple scheduling and baseline) for Scenario II, Scenario III, and
Scenario IV. In summary, the average number of connected users allows us to appreciate
where one algorithm improves another, while the distance to the optimal solution com-
puted in this section allows us to quantify this variation. To provide a higher level of
detail, ρ has been analyzed by ranges depending on the fleet size (all the analysis has
been carried out by increasing the number of UAVs gradually). In addition, this value
has also been computed at a global level. The main reason is to analyse in which areas
the solution improves and quantify it. Since from a particular value, the solutions provide
similar results, computing this metric at a global level makes it difficult to recognize the
areas of improvement.

It can be seen in Fig. 6.41 that the central area of improvement is in the first two
ranges, i.e., from 25 to 35 UAVs. This result is positive because, as expected, if there
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Figure 6.40: Approximation ratio ρ: optimal strategy vs. heuristic strategies for
Scenario I
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Figure 6.41: Approximation ratio ρ: BETA vs. other suboptimal strategies.

is a reasonable amount of UAVs (with their corresponding cost), a typical solution can
perform adequately. However, in scenarios with limited resources using the heuristic
strategy improves in all cases the simple scheduling solution.

Analysing the above metrics, we can conclude that using strategies to make replacements
is worthwhile. However, the heuristic strategy designed in this proposal is considerably
aggressive since it schedules a replacement whenever UAVs are available. This strategy
can result in the number of replacements skyrocketing over time, as well as the number of
batteries to be used, which would bring a high economic cost. It should be noted that the
price of a battery is much lower than that of a UAV but in any case it is not negligible.

Figure 6.42 displays the number of UAV replacements as a function of the number of
UAVs forming the fleet and the mission time for scenario III using the BETA strategy.
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Figure 6.42: Number of UAV replacements using BETA in scenario III.

Approximately 1200 replacements are needed to provide a service of 10 hours and obtain
100% of users connected. Furthermore, due to the aggressive nature of BETA, the replace-
ment grows exponentially after reaching a fleet size that guarantees 100% of connected
users. In addition, it should be mentioned that the main advantage of small UAVs is that
deployments are generally done very quickly and very flexibly, but as we have seen it is
both economically and logistically difficult, to achieve reasonable solutions when service
time largely exceeds battery lifetime. Other alternatives should be used in these cases
like bigger UAVs with more battery capacity (or even using fuel), land the UAVs on the
ground to improve their autonomy, or even deploying of a fixed infrastructure if service
is expected to be maintained for a long.

6.4.6 Conclusions and Future work

This section states the practical UAV replacement problem, where a multi-UAV network
is expected to provide long-endurance network services (in the order of hours) using
constrained devices with limited autonomy (in the order of minutes). It is verified that
the optimal UAV scheduling to minimize the number of UAVs for replacements while
providing a guaranteed service availability, is NP-hard and that its optimal solution has
exponential complexity. In this regard, some heuristics approaches have been analysed
and evaluated.

Secondly, this section details a methodology, including the simulation environment and
the parametrization required to perform a preliminary evaluation of these heuristic strate-
gies. The simulator code is available in [220] to reproduce the experiment and evaluate
upcoming future strategies.

The section also introduces the BETA (Betweenness centrality algorithm), a heuristic
replacement strategy that performs the replacements as soon as possible based on the
relevance of each UAV within the network. BETA is presented as an example in order to
verify if it is worthwhile using a heuristic replacement approach or not. BETA is capable
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of running in real-time with a 99% similarity with the optimal solution in some simple
scenarios (scenario I). In heterogeneous scenarios, BETA improves the basic solutions,
achieving the most significant improvement in instances where the scenarios are hetero-
geneous, and the resources are limited. Furthermore, we conclude that it is far better to
have a replacement strategy (no matter how simple it is) than having no strategy at all.
BETA is compared with the optimal algorithm in order to evaluate the distance whenever
possible and with other alternatives in some other scenarios and it has been possible to
see that in some situations the advantages are not so relevant as in other ones.

This section opens several lines of future research, such as to be able to provide priority
of replacements for UAVs serving users in emergency/disaster scenarios. The applica-
tion of replacement strategies in disaster scenarios includes an uncertainty degree caused
by several factors caused by moving UAVs while they are operating (that may change
the topology), or extreme conditions that may force the engines and battery consump-
tion. Some other futures lines include the combination of FANETs and BSs in the same
scenario, to test UAVs models with different battery capacity, to model the energy con-
sumption according to more realistic consumption patterns based on experimentation, or
to schedule UAV replacements without making them through the GCS.
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6.5 Application for Optimal Spectrum Allocation in

Flex-Grid Optical Networks

This section presents an NFV-Enabled optimal spectrum allocation solution applicable
to fixed-grid and flex-grid wavelength division multiplexing (WDM) optical networks.
By exploiting the frequency shifting capability of individual lightpaths, the proposed ap-
proach aims to recalculate the initial spectrum allocation to eliminate the unusable gaps
between occupied frequency slots. The available spectrum can then be used for future
connections, which enables the maximization of spectrum utilization. In this regard, this
section describes the NFV-enabled scheme for carrying out the optimal spectrum alloca-
tion. Then, the optimization problem is formulated as an ILP model. The problem is
solved optimally using an exact brute-force search-based algorithmic strategy (OptFs).
Given the NP-hard nature of the optimization problem and the non-polynomial complex-
ity of OptFs, a suboptimal, faster heuristic strategy (FastFs), based on a pre-partition
method, is proposed. Simulation results validate the performance of the proposed opti-
mal spectrum allocation approach, and the exact and heuristic solutions, compared to
the non-application of strategies, demonstrate improvements in spectrum utilization and
better spectral efficiency while offering a dynamic network operation and higher data
rates.

6.5.1 Introduction

The exponential traffic growth in optical communications has triggered the evolution
from fixed-grid WDM networks with channels of fixed bandwidth to flex-grid systems
with channels of variable size that can adapt the bandwidth utilization to the established
demands [221]. Fixed-grid optical networks need to accommodate transmissions inside
fixed channels of 50 GHz. Depending on the bandwidth occupancy, this channel space
can be either insufficient for processing high data rates (e.g., 400 Gbps or 1 Tbps), or it
can be underused if the demands require a space smaller than (or is not an exact multiple
of) the channel size. Then, these operating conditions can produce degraded network
performance and a wasting spectrum (a resource that could be used for transmitting
additional lightpaths) [221]. These issues are solved by flex-grid technology.

Anchored to 193.1 THz and specified in the recommendation ITU-T G.694.1 flex-grid
systems addresses two main aspects: (i) finer wavelength granularity, with a channel
granularity equal to 12.5 GHz and a frequency slot granularity equal to 6.25 GHz, and
(ii) the ability to group adjacent frequency slots to form arbitrary sized channels ranging
from 12.5 GHz to 100 GHz and wider (integer multiples of 100 GHz) [222]. The potential
of flex-grid to set up the channel spacing on a link dynamically according to the specific
requirements of the network enables improving spectral efficiency and utilization, and
network capacity (higher data rates for traffic demands) [223]. Besides, it is found that
efficient spectrum utilization is essential to achieve cost and energy efficiency [224].

Despite their advantages, flex-grid optical networks impose different challenges that emerge
due to the dynamic network operation and traffic demands. For instance, constantly
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arrival and departures of optical connections (demanding a dynamic number of consec-
utive frequency slots) as the result of the operation of add/drop multiplexers and the
activation/deactivation of transponders generate that the available spectrum reaches a
fragmentation state. Specifically, the spectrum fragmentation refers to the generation
of unusable gaps between adjacent channels that lead that the spectrum is insufficient
for certain connections or simply wasted as it cannot be used. In this regard, differ-
ent schemes have been proposed to defragment the optical spectrum making empty and
adjacent spectrum slots available for future connection requests [225]. Most of the defrag-
mentation approaches are focused on the configuration of the lightpaths through dynamic
routing and spectrum allocation algorithms and avoid the use of the migration process,
because it may result in inevitable connection disruptions. Unlike existing solutions, the
proposal presented in this section by leveraging the frequency shifting capability of in-
dividual lightpaths seeks the optimal spectrum allocation that enables the maximization
of transmitted channels and the optimal spectrum utilization. The proposed solution
assumes that the frequency shifting is not an issue and can be solved by future optical
network developments and current software-based solutions such as NFV technology.

6.5.2 Optimal Spectrum Management Proposal

6.5.2.1 Proposal Description

In this section, we address the optimal spectrum allocation issue in flex-grid networks
by proposing a solution that leveraging the shifting capability on the central frequency
of transmitting channels can rearrange the bandwidth of the lightpaths and eliminate
the gaps between adjacent transmissions to optimize the available spectrum utilization.
The proposal assumes that modifying the central frequency of channels within a finite
window (i.e., towards higher of lower frequency slots) is not a constraint, and it can be
envisioned as a feasible solution in future optical communications deployments. In this
regard, current optical deployments such as multiple-line rate, bandwidth variable, and
software-defined transponders, together with wavelength selective switches, and sophisti-
cated technologies such as NFV and SDN can be seen as potential enablers towards this
evolution. The optimal spectrum allocation in our proposal is carried out through algo-
rithmic strategies deployed at the NFV domain (as shown in the example in Fig. 6.43) and
in each node in the network. The objective of these strategies, using frequency shifting if
needed, is to compute the optimal channel distribution in the frequency grid to optimize
the use of available spectrum while maximizing the number of transmitted lightpaths (i.e.,
minimizing the rejection of services if spectrum contiguity constraint is not fulfilled).

Technically the allocation process aims to concentrate the information (i.e., the bandwidth
of the channels to be transmitted) using the least amount of spectrum as possible, so
that frequency slots between consecutive channels that would be wasted if they are not
fit the requirements of transmitting lightpaths can be used for future communications.
In summary, the proposed optimal spectrum allocation can produce improved spectrum
utilization. It allows more dynamic traffic behavior able to scale the used bandwidth
constantly to maximize the number of transmitted channels and can be applied to fixed



Chapter 6. Application Scenarios 219

and flex-grid communications. Besides, it has been demonstrated that optimal spectrum
allocation leads to energy efficiency and cost reduction [226].

Frequency window B = 225 GHz
Id. Frequency slots 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Frequency grid -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

192.9875 193,1 THz (central frequency defined by ITU-T G.694.1) 193.2125

e.g., from link 1 1 2 3 4
Transmitted channels 193.0187 193.0875 193.1188 193.2000

e.g., from link 2 5 6 7 8
192.9938 193.0437 193,1062 193.1813

Optimal allocation 5 1 6 2 7 3 8 4
e.g., towards link 3 192.9938 193.0250 193.0625 193.0812 193,1062 193.1312 193.1625 193.2000
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Figure 6.43: NFV-Enabled scheme for the optimal spectrum allocation in flex-grid
optical networks.

6.5.2.2 NFV-Enabled Scheme for the Optimal Spectrum Allocation

Traditionally, the spectrum reallocation process has been avoided due to possible connec-
tion disruptions and the complexity that can be involved. In our proposal, we assume
that the disruption is not an issue and can be solved through current technologies and
software-based management schemes such as NFV and SDN. Regarding the complexity,
the optimal spectrum allocation considering frequency shifting capabilities falls in the
general category of resource-constrained knapsack problems, which have been proven to
be a computationally demanding mechanism [110]. In this context, the requirements for
sophisticated computational resources (e.g., memory and processing power) needed for
the execution of spectrum allocation algorithmic strategies, especially for services that
demand very-low end-to-end delay, is met by NFV technology. The NFV domain in the
proposal offers software-based reconfigurable behavior, the provision of on-demand re-
sources depending on the application scenario, and the management and orchestration
entities to coordinate all actions/instructions between all components in the network.
NFV, complemented with SDN, can offer a suitable environment for deploying sophisti-
cated management schemes [9], in this case, focused on the optimal spectrum allocation.
Besides, the existing literature has demonstrated that SDN is compatible with flex-gird
technology [227], and it is a feasible solution that can be deployed on network devices
(SDN-enabled) and telecommunications infrastructures (e.g., data centers or point of
presence), where the core optical equipment reside.
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Fig. 6.43 shows the schematic representation of the proposed ecosystem for managing
optimal spectrum allocation. The example in Fig. 6.43 for a specific node shows that
the proposed solution leads to the optimal spectrum utilization and the maximization in
service processing. Services that under normal conditions may be rejected due to the lack
of available spectrum continuity and the overlapping with other existing channels with
our proposal can be potentially processed. The operation of the NFV ecosystem system
complemented by SDN is summarized in three steps: (i) each node (SDN-enabled) in-
forms the spectrum distribution status to NFV domain to trigger the spectrum allocation
process, (ii) the algorithmic strategies (optimal or heuristics) are executed at core infras-
tructure, with the premise of guaranteeing the execution of as many services as possible,
and (iii) the optimal spectrum allocation result is communicated to the network devices
to perform the spectrum allocation to services that can be executed.

6.5.2.3 ILP Formulation of the Optimal Spectrum Allocation

In the spectrum allocation proposal each individual transmission, lightpath, or channel
i is characterized by: (i) a central frequency (F i

c), (ii) a finite bandwidth (bi), (iii) a
backward frequency shifting (F i

bw), (iv) and a forward frequency shifting (F i
bw). With

the information of each lightpath, the aim of the optimal spectrum allocation approach
is the optimal spectrum utilization, which is achieved through maximizing the number
of channels that can be allocated within a finite frequency horizon B considering the
possible frequency shifting of the transmitted lightpaths if needed. Mathematically, this
objective is modeled as an objective function and is conditioned by several constraints,
as indicated below.

OF : maximize

{
N∑
i=1

∑
j∈Mi

bijxij

}
(6.72)

C1 :
N∑
i=1

∑
j∈Mi

bijxij ≤ B (6.73)

C1.1 :
∑
j∈Mi

xij = 1, i ∈ {1, . . . , N}, xij ∈ {0, 1}, j ∈Mi (6.74)

C2 : B ≥ 0 (6.75)

C3 : F i
c ≥ 0 (6.76)

C4 : {F i
c − F i

bw} > 0 (6.77)

C5 : F i
c = 193.1 + a+ 0.00625 (6.78)

C6 : bi = 12.5× b (6.79)

C7 : F i
c ≥

{
bi
2

+ F<
c i− 1 +

bi−1

2

}
(6.80)

• Objective function: OF describes the objective function to be maximized. The
application of frequency shifting on central frequency of all N channels produce N
mutually disjoint classes M1, . . . ,MN of channels (later on, detonated as variations
of channels, see Section 6.5.2.6) to be allocated within a bandwidth B (i.e., within
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all available wavelength slots). Each channel (variation) j ∈ Mi has a bandwidth
bij, and the problem is to maximize the number of channels that can be allocated
within B, while, the use of this resource is optimized, respecting that exactly one
channel from each class can be chosen. In summary, Eq. 6.72 finds the optimization
of acceptance ratio.

• Capacity constraint: C1 determines the maximum capacity in the system, in which
the decision variable C1.1 takes on value 1 if and only if channel j is chosen in class
Mi.

• Domain constraints: Considering that the domain and frequency constraints are
the same for the original channels (i) as for the variations (j), we simplify the index
ij by i in these constraints if applicable. In this regard, C2, C3, and C4 guarantee
non-zero and non-negative frequencies of available spectrum and center frequencies
of channels.

• Frequency constraints: C5 ensures the nominal central frequency (in THz) allowed
for flex-grid networks, in which a is a positive or negative integer including 0, and
0.00625 (in THz) corresponds to the frequency slot granularity. C6 in turn guaran-
tees the channel bandwidth (in GHz) granularity, in which b is a positive integer.
C5 and C6 are defined in ITU-T G.694.1 [222]. The original frequency distribu-
tion of lightpaths can admit channel overlapping. However, after the application
of frequency shifting two adjacent channels should not overlap. This condition is
ensured by C7 as long as i and i− 1 are contiguous channels.

6.5.2.4 Complexity Analysis of the ILP

The process of allocating different channels, considering frequency shifting capabilities,
to efficiently use a finite bandwidth B is analogous to the objective of the multiple-choice
1/0 Knapsack Problem of selecting exactly one item out of a set of items partitioned
into classes (variations of channels due to frequency shifting application in our proposal)
without overloading the knapsack. Then, the literature has proven that the complexity
attached to this kind of problem is NP-Hard [110].

6.5.2.5 Performance Metrics for Spectrum Allocation Strategies

To solve the ILP model, we propose two spectrum allocation strategies that are described
in Section 6.5.2.6. To evaluate the effectiveness of these strategies, four metrics are
defined, which are described below.

1. Acceptance Ratio (AR): This metric measures the total number of processed chan-
nels with respect to N .

2. Spectrum Utilization (UB): This metric measures the amount of spectrum used by
the allocated or processed channels with respect to B.
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3. Number of frequency shiftings performed (NumFs): This metric measures the to-
tal number of processed channels to which a non-zero frequency shifting has been
applied.

4. Cumulative value of frequency shiftings performed (TotalFs): This metric measures
the total value to the frequency shifting performed by the processed channels.

6.5.2.6 Algorithmic Strategies: OptFs and FastFs

This section presents two algorithmic strategies to perform efficient spectrum allocation.
These strategies work in an offline approach, produce exact/optimal and suboptimal solu-
tions, and are denoted as OptTs and FastTs, respectively. The OptTs strategy bases
its operation on an exhaustive brute-force search method that performs the combinatorial
analysis for all N channels considering the application of all shifting values (backward
and forward) to which the central frequency of channels can be subject. The optimal
strategy has a non-polynomial growth of complexity that depends on the value of N
and the maximum frequency shifting interval [F i

bw, F
i
fw] selected, as shown in Eq. 6.82.

The FastTs strategy is based on a prepartitioning methodology that iteratively analyzes
the subset of channels instead of the total set N (i.e., a divide-and-conquer procedure),
which produces a reduction of complexity and running time while offers high-quality re-
sults compared to the optimal. The algorithmic strategies are explained in Fig. 6.44 (the
blocks shaded blocks correspond exclusively to the heuristic), and the main steps carried
out are summarized below.

• Variations of channels (V arCh): A variation of a channel is the product of the
application of a specific discrete frequency shifting value (backward or forward) to
the F i

c of a channel i. The algorithmic strategies analyze all possible variations
within the interval [F i

bw, . . . , 0, . . . , F
i
fw] for all N channels. Considering that, for

simplicity max{F i
bw} = max{F i

fw} = Fs, the analysis of all channels within the
frequency shifting interval produces a total number of variations equal to AllV arCh,
as shown in Eq. 6.81.

AllV arCh = 2×N × Fs+N (6.81)

• Prepartition phase: The set of N channels is divided into numPart partitions
of equal or similar size that are processed iteratively. OptTs can be seen as a
particular case of FastTs with numPart = 1.

• Computation of combinations per partition: For each partition, the algorithm per-
forms the combinatorial analysis for all N channels considering all possible of vari-
ations of channels. The set of N different variations of channels is denoted as
combinations of variations of channels (CombCh). The total number of combina-
tions is equal to AllCombCh, as shown in Eq. 6.82 and Eq. 6.82 for OptTs and
FastTs, respectively.
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AllCombCh = (2× Fs+ 1)N (6.82)

AllCombCh =
numPart∑

i=1

(2× Fs+ 1)lengthPartk (6.83)

• Computation of metrics and cost function: For each CombCh the strategies first
compute the metrics AR and NumFs to later build a total cost function Costcomb

which is composed of the cost functions CostAR and CostNumbFs
. The Costcomb

evaluates the impact on channel rejection and shifting within the combination.
This value increases as the channel rejection increase (decrease of AR) and as the
channels are shifted for being processed.

• Optimal spectrum allocation: The CombCh with the minimum Costcomb represents
the optimal allocation of services. This combination is obtained directly for OptFs,
and it is building up with the merge of partial solution for FastTs. Finally, the
algorithmic strategies compute the performance metrics in Section 6.5.2.5.

Sorting of combinations based on Costcomb
Selection of combination with minimum Costcomb

and spectrum allocation for Partitionk

Prepartitioning phase, k = 1

Merging of partial results

All partitions
Yes

No

k = k + 1
𝐵= 	𝑏!"#
𝐵 update 

Start

Variations per channel:	VarCh
Range: {𝐹𝑠$%& ,…,0,…,𝐹𝑠'%& }

Total number of variations: AllVarCh

Parameters: 𝑁,𝑏𝑖 ,B,𝐹𝑐𝑖,𝐹𝑏𝑤,
𝑖 𝐹𝑓𝑤𝑖 ,numPart

Processing of Partitionk
Combinations of variations of channels per 
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Total number of combinations: AllCombCh
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𝐶𝑜𝑠𝑡-.#$ =	 𝐶𝑜𝑠𝑡/0 	+ 𝐶𝑜𝑠𝑡12#!"

End

Final metrics: AR, UB , NumFs , TotalFs

Figure 6.44: Flowchart of spectrum allocation strategies OptFs and FastFs.
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6.5.3 Evaluation

6.5.3.1 Simulation Setting and Scenarios Description

For the simulation of the spectrum allocation strategies, a discrete frequency simulator
has been implemented using Matlab (R2017b) running on a computer with the features
described in Section 5.4.0.1. For the evaluation of OptFs and FastFs, the analysis for
a single node has been considered in two scenarios that are detailed in Table 6.20. The
simulations leverage parallel processing, and up to four cores have been used for OptFs
and FastTs in the scenario I and up to six cores for FastTs in scenario II. The total
running time in the scenario I exceeds one hundred minutes for OptTs, and it is less
than two seconds for OptTs. In scenario II, the running time for FastTs is above 4
hours, considering 50 iterations to ensure the stability of results. The simulation results
are given in terms of performance metrics in Section 6.5.2.5, they are compared to the
traditional scenario in which no frequency shifting is applied (i.e., F i

bw = F i
fw = 0), besides

for FastTs a confidence interval of 95% has been considered, as shown in Fig. 6.45 and
Fig. 6.46. If the reader is interested in reproducing the experiment, the code is available
in this repository [228].

Table 6.20: Simulation parameters.

Scenario N bi [GHz] B [GHz] F i
c [THz] max{F i

bw} = max{F i
fw}

I
Example

8
As shown in

Fig. 6.43.
B =

∑N
i=1 bi

As shown in Fig. 6.43 and
centered around 193.1 THz

(ITU-T G.694.1)

3 frequency slots for all i
(1 slot = 6.25 GHz, ITU-T G.694.1)

II
Random
Scenario

50
Random

value of set
{12.5, 25, 37.5, 50}

B =
∑N

i=1 bi

Random value uniformly
distributed within B and

centered around 193.1 THz
(ITU-T G.694.1)

8 frequency slots for all i
(1 slot = 6.25 GHz, ITU-T G.694.1)
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Figure 6.45: Performance evaluation of spectrum allocation strategies for the
proposed example. Parameters: According to scenario I in Table 6.20 and with

numPart = 2 partitions for FastTs.
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Figure 6.46: Performance evaluation of FastTs for a random scenario, N = 50
wavelengths. Parameters: According to scenario II in Table 6.20 and with numPart =

12 partitions.

6.5.3.2 Numerical Results

Simulation results demonstrate that the proposed allocation strategies lead to the max-
imization of AR and the optimization of UB at the cost of an increase of the computa-
tional complexity due to incremental use of frequency shifting, as shown in Fig. 6.45 and
Fig. 6.46. Results in Fig. 6.45 also validate that FastTs produces high-quality solutions
close to the optimal and with reduced complexity and related running time (FastTs is
3100x faster than OptFs), which enable it to be used for the analysis of scenarios with
larger values of N and Fs, as shown in Fig. 6.46. Based on experimental results, we
report that the algorithmic strategies have limits in terms of the accuracy of produced
solutions and running time. For instance, for OptTs values of N > 10 and/or Fs > 4
produce a huge number of combinations to be explored, as indicated in Eq. 6.82, which
results in excessive demand for computational resources and running time (e.g., around
of three weeks for a single simulation). On the other hand, we have verified that FastTs
has a good performance as long as the minimum length of partitions is greater or equal
than 4 channels, Fs is lower or equal than 8 slots, and the maximum N is lower or
equal than 50 channels. Otherwise, FastTs produce very small increases in AR and UB.
Thus, there exists a need for developing more sophisticated heuristics for larger scenarios
(e.g., thousands of lighpaths) and with very lower running time (especially for real-time
application). In this regard, our proposal provides the metrics and upper bounds for
performance comparison and evaluation of future developments.

6.5.4 Conclusions

The proposed solution for the optimal spectrum allocation is valid for fix-grid and flex-grid
optical networks; it follows the parameters in recommendation ITU-T G. 694.1 and lever-
ages the frequency shifting capabilities of the lightpaths to eliminate the unusable gaps
between adjacent channels, which lead to the maximization of AR and optimal spectrum
utilization. The proposed solution includes the ILP formulation related to the optimal
spectrum allocation process, two algorithmic strategies–an exact optimal OptFs and a
heuristic FastFs–for solving the ILP, and an NFV-enabled scheme in which the strate-
gies have the computational resources necessary for their execution. It is verified that
the optimal spectrum allocation considering frequency shifting capabilities is NP-Hard
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and that its optimal solution OptFs has an exponential complexity that depends on the
value of N and Fs, as shown in Eq. 6.82. In this regard, FastFs covers the requirements
for larger values of N and Fs, but it is conditioned to a maximum of N = 50 channels
and Fs = 8 slots, and a minimum length per partition numPart = 4 channels. Thus,
future work could be focused on developing faster and more scalable approaches based on
metaheuristics or machine learning techniques and taking as a baseline the metrics and
the upper bounds presented in this work. The evaluation of OptFs and FastFs allows
us to verify their operation in deterministic and random scenarios. Simulation results
in terms of performance metrics demonstrate the effectiveness of using frequency shift-
ing capabilities in the spectrum allocation and utilization and the possible implications
related to the increase of computational complexity.



Chapter 7

Conclusions and future work

7.1 Conclusions

The ever-growing worldwide energy demand, the CO2 emissions generated due to the
production and use of energy, climate change, and the depletion of natural resources have
become critical concerns that require new solutions for energy management and consump-
tion. In order to ensure ICT and energy sustainability, measures, including the use of
renewable energy sources, the deployment of adaptive energy consumption schemes, and
consumer participation, are currently envisioned as feasible and de-carbonized alterna-
tives. In this regard, this thesis proposes an adaptive energy management solution that,
by leveraging the massive connectivity offered by current IoT technologies, promotes the
participation of energy consumers and prioritizes the primary use of energy from green
sources.

The proposed solution in this thesis starts by presenting a long-term sustainable DR
architecture that, based on NFV and SDN, enables the adaptive energy consumption
of IoT infrastructures. As part of the NFV/SDN architecture, we have identified the
stakeholders that composed the adaptive energy provisioning and consumption ecosystem,
and we have also introduced a novel consumption model conditioned on availability in
which the consumers are an active part of the management process. Several management
mechanisms are proposed to efficiently use the energy mainly from renewable sources, such
as prioritizing the energy supply and service scheduling using time-shifting capabilities,
quality service degradation, and service rejection. Also, we have analyzed the complexity
related to the adaptive energy management process, and we have identified the potential
enablers and operational features to present an appropriate architectural framework.

Supported by the proposed NFV/SDN architecture, we have developed the mathematical
model related to adaptive energy management conditioned to availability. To do this, we
have characterized the ES and the ECs based on the energy capacity and consumption
parameters, respectively. Meanwhile, the modeling for adaptive energy consumption has
been based on an ILP formulation whose objective is the minimization of residual power,
which in the context of the proposal is the energy that in normal conditions (i.e., without
the use of management mechanisms such as the use of time-shifting) is wasted by the ES if

227
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not used. To solve the ILP model, we have analyzed some algorithmic strategies, and we
have decided to start with an exact or optimal method. To this end, we have developed a
brute-force-based algorithmic strategy defined as defined as OpTsCost that delivers the
optimal solutions in terms of performances metrics PRES, AR, and PLACK . With the
optimal strategy, some scenarios have been evaluated whose results have been used as
a baseline for later evaluating the quality of results delivered by heuristic near-optimal
algorithmic strategies.

Based on the information of the energy management model and the proposed optimal
solution, we have identified that the energy management problem (using management
mechanisms such as the time-shifting capability on service execution) falls into the cate-
gorization of a multidimensional-multiple choice knapsack problem proven to be NP-Hard.
Moreover, the evaluation of the optimal strategy has demonstrated that this algorithmic
solution presents an exponential complexity that depends on the values of the entire set
of services analyzed and the maximum values or intervals of the management mechanisms
chosen. In this context, we have verified that the use of optimal algorithmic solutions
is constrained to scenarios with a reduced number of services (e.g., up to ten services)
and small values of management mechanisms (e.g., time-shifting limited up to four-time
slots). To overcome this limitation and according to the literature reviewed, we have an-
alyzed some heuristics strategies to solve the multidimensional-multiple choice knapsack
problem. In the end, we have implemented and evaluated three heuristics: GreedyTs
(based on a greedy approach), GATs (based on a genetic-algorithm-based solution), and
DPTs (based on a dynamic programming approach).

The evaluation of the proposed heuristics strategies through extensive simulations consid-
ering different generation and consumption profiles in diverse scenarios has demonstrated
that these approaches are less complex and produce high-quality solutions than the op-
timal algorithmic strategy. The solutions delivered from heuristics are validated based
on the performance metrics results and the values of the approximation ratio taking as
a baseline the optimal results. The performance of the heuristics has also demonstrated
consumption of a fraction of computational capacity (in terms of CPU and RAM usage)
and a reduced running time, that is among two and seven orders of magnitude faster, in
comparison with the OptTsCost.

In order to scale up the applicability of heuristics strategies to IoT-enabled scenarios
with thousands and hundreds of thousands of energy demands, we have incorporated a
prepartitioning method to each developed algorithm (optimal and heuristics), which has
resulted in eight different algorithmic strategies. The prepartitioning scheme is inspired
by a divide-and-conquer approach and aims to process iteratively a subset of services
instead of the all energy demands in a single step. With this feature Incorporated into
the algorithmic strategies, we have verified a remarkable reduction of complexity in terms
of running time and use of computation capacity. Moreover, the results of these prepar-
titioned versions are very similar to the obtained with the original versions (i.e., without
prepartitioning), which were validated according to the performance metrics and the ap-
proximation ratio in the different simulated scenarios.
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According to the simulation results, we verify that the proposed algorithmic strategies
offer the best possible services scheduling, leading to efficient energy utilization and in-
creased service processing. Moreover, when deployed into ICT infrastructures such as
NFV or fog computing, these scheduling strategies can offer adaptive energy consump-
tion in IoT-enable environments, with the capability of prioritizing the use of green energy
sources.

In the last part of this thesis, we have presented different application scenarios that
validate both the proposed architecture applicability and the algorithmic strategies de-
veloped. We are aware that around the field of adaptive energy management, a large
number of application domains may arise due to the importance of the Internet and the
efficient use of energy in today’s society. However, for practicality, we have addressed
only a few case studies.

In the first place, we have considered a HEMS because our proposal allows consumer
participation through interaction with IoT devices and given the importance of residential
sector consumption in the global energy matrix. In this scenario, we have verified that
adaptive management in a HEMS allows the efficient management of the supply from
the ES and the self-generated energy (e.g., from solar panels) in both offline and online
approaches. Second, we have analyzed the application of adaptive management in a 5G
network slicing scenario. We have exploited the energy prioritization feature described in
our proposal (at network slice level) and the different management mechanisms to adapt
consumption to availability. The results in this second scenario validate that our proposal
effectively addresses the lack of consumption management in mobile networks and the
specific context of network slicing. Subsequently, we present two scenarios in which the
adaptive management concepts are applied to the environment of systems enabled with
UAVs, in which the adaptive management in an online approach is carried out on the
energy obtained from the batteries, guaranteeing an effective use not only of energy but
also of resources (drones) to deploy FANETs. The results in these UAV environments have
allowed us to verify the applicability of the proposal in environments beyond simulation
because the parameters and values used in the algorithms correspond to measurements
obtained from real deployments using devices (e.g., Raspberry Pi platforms and drones)
and emulators. Last but not least, we have realized that the developed algorithms can be
applied in a scope different to the energy; as a use case, we present a scenario in which the
strategy OptTsCost and the corresponding prepartitioned version have been adapted to
produce the optimal spectrum allocation in DWDM networks using flex-grid technology.

7.2 Future Work

Due to the heterogeneity of the topics presented in this thesis, this section describes future
work in the different areas addressed.
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7.2.1 Future Work Related to the Architecture for Adaptive
Energy Consumption

This thesis presents an NFV/SDN-enabled architecture for efficient adaptive manage-
ment of renewable and non-renewable energy, identifying the stakeholders involved, their
interaction, and the corresponding mathematical characterization. Moreover, we have
described the energy consumption model, the bi-directional communication that must
be established to ensure adaptive management, the complexity of the proposal, and the
technology enablers to deploy the architecture. The next step in our proposal should
focus on deploying a proof of concept. In this regard, we can mention that in preliminary
tests with Raspberry Pi platforms, we have verified the viability of our adaptive man-
agement solution in the context of a HEMS. A subsequent step may focus on making a
prototype based on commercial NFV/SDN solutions. The different steps of the proposed
algorithmic solutions can be implemented through VNFs and containers and managed
by management entities such as the NFVO. We can mention that at this point, we have
carried out preliminary tests, and we have identified the OSM, OpenStack, or Kuber-
netes projects as suitable environments for the deployment of our adaptive management
strategies.

At a later stage, we hope that our proposal will motivate research in the field of the use
of advanced network technologies for energy resource management and contribute to the
evolution of the IoE. In this sense, future work may be focused on the actual deployment
of our adaptive management solution in the facilities of energy distribution and generation
companies and seen as an evolution of smart grids. At the moment, in the energy sector,
there are ICT infrastructures for monitoring and management. In the process of natural
evolution, the adaptation of advanced technologies such as SDN, NFV, fog computing,
and IoT frameworks is imminent, which would result in an ideal environment for the
deployment of the proposal presented in this thesis.

7.2.2 Future Work Related to the Energy Management Models
and Algorithmic strategies

Future work can address a variety of aspects related to the energy management model
or the development of more sophisticated strategies. Possible improvements for the en-
ergy model include: (i) the incorporation of a parameter that enables the variation of
consumption over time, so that a service can increase or decrease consumption on avail-
ability; (ii) the possible processing of partial services, in this case, the proposed model can
be based a fractionational knapsack problem; and (iii) the incorporation of a parameter
that represents the possible storage of energy (i.e., the use of battery units in the model),
so that in energy surplus the energy can be stored and used when needed.

Concerning future algorithmic solutions, a first step might be the development of a hybrid
strategy in which, depending on the size of the scenario, the proposed algorithm selects
the appropriate strategy (e.g., use of GATs for small-scenarios, DPTs for large-scale
scenarios, and use of GreedyTsPart for very large-scale IoT environments). The use
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of machine learning techniques can be explored for adaptive energy management. For in-
stance, supervised learning can be applied to implement a prediction method of produced
energy resource or consumption, which can be used as an input to the proposed energy
model and improve its performance. The clustering of consumption patterns based on un-
supervised learning can be applied to the energy model to guarantee the energy supply for
CS. Moreover, a complete adaptive energy management model could be established using
a reinforcement learning approach, as inspired by the multi-armed bandits problem.
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