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Abstract
Fog computing is basically an extension of cloud computing where the computing

resources are located on the edge of the network, allowing for better performance

regarding latency and bandwidth. Hence, data centres (DC) being used in fog com-

puting may be far smaller and so may the number of hosts and switches in use. In

this context, the present thesis dissertation undertakes the modelling of some DC

designs for fog computing, setting the focus on just simple network topologies, even

though more complex ones might achieve better performance. Such topologies may be

modelled in different ways, exposing the minimal path, or equal-cost multiple paths,

through which a live Virtual Machine (VM) migration of computing assets may take

place from a source to a destination host. This way, a user moving throughout a

fog domain will have their computing assets following it as close as possible with a

minimal time interval, which is the key point in Internet of Things (IoT) moving

environments. It is to be stressed that the models are going to be exposed by follow-

ing an analytical approach, with the combination of different mathematical branches

to get the models ready, such as geometry and topology to obtain the appropriate

designs, arithmetic to forward the moving assets to the proper destination, logic to

implement those actions in flow charts and pseudocode, or algebra to exhibit a formal

description of the whole model. The main contribution in this thesis dissertation goes

about obtaining models of optimal paths for VM migrations in DC topologies related

to fog computing deployments by means of an abstract process algebra called Algebra

of Communicating Processes (ACP), which has been used in order to formally specify

and verify such models, as it allows to reason about process terms on an analytical

basis, getting back to basics regarding the information technology field. In summary,

regarding each topology, different models may be proposed, such as by means of flow

charts, pseudocode and a formal algebraic model, followed by the presentation of a

formal algebraic model for a whole fog/cloud system.
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Resumen
Fog computing es básicamente una extensión del cloud computing, donde los recur-

sos de computación se encuentran en el borde de la red, lo cual permite un mejor

rendimiento en cuanto a latencia y ancho de banda. Por lo tanto, los centros de datos

(DC) que se utilizan en fog computing deben ser mucho más pequeños, aśı como el

número de hosts y switches instalados. En este contexto, esta disertación de tesis

aborda el modelado de algunos diseños de DC para fog computing, poniendo el foco

solo en topoloǵıas de red simples, aunque otras más complejas puedan lograr mejor

rendimiento. Dichas topoloǵıas pueden modelarse de diferentes maneras, exponiendo

la ruta mı́nima, o rutas mı́nimas de igual costo, a través de las cuales se pueden llevar

a cabo las migraciones de recursos entre un host origen y otro destino. De esta man-

era, un usuario moviéndose por un dominio fog tendrá sus recursos de computación

asociados siguiéndole lo más cerca posible en un intervalo de tiempo mı́nimo, siendo

éste el punto clave en los entornos de movilidad IoT. Se debe destacar que los mod-

elos se van a exponer siguiendo un enfoque anaĺıtico, mediante la combinación de

diferentes ramas matemáticas para preparar los modelos de la manera más directa,

como la geometŕıa y la topoloǵıa para obtener los diseños adecuados, la aritmética

para llevar a cabo el movimiento de los recursos de computación al destino adecuado,

la lógica para implementar esas acciones en diagramas de flujo y pseudocódigo, o el

álgebra para proporcionar una descripción formal de todo el modelo. La principal

contribución en esta disertación de tesis consiste en obtener modelos de rutas óptimas

para migraciones de VM en topoloǵıas de DC relacionadas con despliegues fog com-

puting por medio de un álgebra de procesos abstracta denominada ACP, con la cual

se han especificado y verificado formalmente dichos modelos, ya que permite razonar

sobre términos de procesos de forma anaĺıtica, volviendo a los oŕıgenes en el campo

de las tecnoloǵıas de la información. En resumen, con respecto a cada topoloǵıa,

se proponen diferentes modelos, tales como diagramas de flujo, pseudocódigo y un

modelo algebraico formal, para posteriormente presentar un modelo algebraico formal

para un sistema completo de fog/cloud.
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Resum
Fog computing és bàsicament una extensió del cloud computing, on els recursos de

computació es troben al ĺımit de la xarxa, la qual cosa permet un millor rendiment

pel que fa a latència i ample de banda. Per tant, els centres de dades (DC) que

s’utilitzen en fog computing han de ser molt més petits, aix́ı com el nombre de hosts

i switches instal�lats. En aquest context, aquesta dissertació de tesi aborda el mode-

latge d’alguns dissenys de DC per fog computing, posant el focus només en topologies

de xarxa simples, encara que altres més complexes puguin aconseguir millor rendi-

ment. Aquestes topologies poden modelar-se de diferents maneres, exposant la ruta

mı́nima, o rutes mı́nimes del mateix cost, a través de les quals poden tenir lloc les

migracions de recursos entre un host origen i un altre dest́ı. Aix́ı, un usuari movent-se

per un domini fog tindrà els seus recursos de computació associats seguir-lo el més

a prop possible amb un interval de temps mı́nim, que és el punt clau en els entorns

de mobilitat IoT. S’ha de destacar que els models van a ésser exposats seguint un

enfocament anaĺıtic, mitjançant la combinació de diferents branques matemàtiques

per preparar els models, com la geometria i la topologia per obtenir els dissenys ad-

equats, l’aritmètica per dur a terme el moviment dels recursos de computació a la

destinació adequada, la lògica per implementar aquestes accions en diagrames de flux

i pseudocodi, o l’àlgebra per a proporcionar una descripció formal de tot el model. La

principal contribució en aquesta dissertació de tesi es basa en obtenir models de rutes

òptimes per a migracions de VM en topologies de DC relacionades amb desplegaments

fog computing mitjantçant un àlgebra de processos abstracta anomenada ACP, amb

la qual s’han especificat i verificat formalment aquests models, ja que permet raonar

sobre termes de processos de forma anaĺıtica, tornant als oŕıgens en el camp de les

tecnologies de la informació. En resum, pel que respecta a cada topologia, es pro-

posen diferents models, como ara diagrames de flux, pseudocodi i un model algebraic

formal, per a posteriorment presentar un model algebraic formal per a un sistema

complet de fog/cloud.
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Chapter 1

Introduction

1.1 Context

Cloud computing paradigm has been consolidated in recent years, as traditional

computing deployments are quite often being extended with the addition of extra

assets, usually off-site, those being external resources basically regarding processing

power and storage facilities, which are reached by service users through any sort of

network connection.

Cloud scenarios provide many advantages compared to on-premise scenarios, such

as ubiquitous computing, cost savings and on-demand resource flexibility. However,

cloud’s core nature may impose implicit disadvantages, such as not being appropriate

in real-time scenarios, due to the latency involved in reaching the cloud and getting

back, or otherwise, not being fit for its use in low-resource devices.

In order to cope with those limitations, fog computing paradigm represents an

extension of the cloud by bringing the computing resources to the edge of the network.

This way, latency and jitter rates get reduced and resource utilization gets decreased,

whilst keeping the advantages of remote computation.

On the other hand, IoT (Internet of Things) devices are ordinary items equipped

with computing and networking capabilities so as to get them connected in order to

achieve a more efficient performance, thus making possible the enhanced deployment

of smart cities and smart grids or the use of cyber physical systems in Industry 4.0.

1
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Those devices usually have limited resources regarding processing power, memory

allocation, storage capacity, bandwidth restrictions and low-power batteries.

IoT devices make the perfect candidates for the fog computing paradigm, and

that is why the combination of both is often referred to as IoT/fog environments.

In this context, it is to be said that such environments are usually divided into

three hierarchical layers, where in the lower one there are IoT devices like sensors,

actuators, smartphones, tablets or cars, whereas in the middle one there are fog nodes,

also known as hosts, with higher computing power than the former, thus dealing with

most of the data generated by those, whilst in the upper one there are back-end cloud

nodes so as to manage data requiring an extensive use of computing power or storage.

The most typical scenario is that of a group of IoT items, ranging from a few to a

myriad, being all connected to some central servers forming the fog layer, according

to a hub and spoke topology, where those hosts undertake most of the workload,

although they may divert some of it to a cloud backup node.

Special attention has to be paid to those IoT devices in fog environments where

they may be moving around the fog facilities, those being distributed along a limited

geographic area. In such a case, it is important that the computing resources allocated

to each user on the fog infrastructure, normally deployed as virtual instances in the

form of a VM (Virtual Machine) or a virtual container, get as close as possible to

the physical locations of their respective users, hence, latency and jitter get reduced,

whereas bandwidth needs get minimized. It is to be noted that, in the context of this

thesis, when these virtualized entities associated to users are mentioned, they will be

generically referred to as VMs, although the approach using virtual containers would

be very similar.

Additionally, when the IoT devices have mobility, the communication delay be-

tween a moving device and its associated computing assets may increase with the

distance among them, thus getting to degrade the performance as such a distance

grows. In this context, the concept of distance refers to number of links making the

path between two given source and destination entities, which depends on the network

topology of the DC (Data Centre) in use. Hence, in order to keep such a distance

within a reasonable range at all times whilst allowing the device to keep moving, it
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may be necessary to also move its related assets in some way to get them close enough

to each other.

VM migration is the mechanism for a VM to try and follow its associated user

while it moves through the fog environment. This migration takes place between the

source host where the VM is currently held to the destination host where the VM is

ready to move so as to minimise the distance towards its related user.

The migration path will try to follow the shortest available path between source

and destination hosts. There may well be redundant paths, and in such a case, load

balancing policies may be applied. Anyway, those paths definitely depend on the

topology of the fog environment, thus, they will be related to the interconnections

put in place among switches.

There are many different topologies being used in fog computing to interconnect

hosts, each of them with their own benefits and drawbacks. The ideal situation would

be a full-mesh infrastructure, where all hosts would be just one hop apart from each

other. However, as the number of hosts increases, this approach is not feasible, so

partial-mesh solutions come into play.

Among partial-mesh solutions, a distinction between hierarchical and flat views

may be noted, the former presenting more advantages as the number of hosts grow,

making tree-like designs, whereas the latter allowing for good solutions for smaller

numbers, presenting graph-like designs.

As per the tree-like category, fat tree and leaf and spine get the most referenced

instances in the literature related to fog computing, whilst regarding the graph-like

category, plain N-hypercube is a typical instance, along with a well-known extension

called folded N-hypercube.

Furthermore, hub and spoke designs are widely considered in real deployments,

where there is a central entity, called hub, which establishes a point-to-point con-

nection to each of the other entities, named spokes. Therefore, all communications

between any pair of spokes need to go through the hub.

There may be many variations in all those categories, some of them presenting

advantages on the performance side, in spite of introducing some degree of complica-

tion on the design and on the packet forwarding side. Therefore, in order to achieve
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a good trade-off between both parameters, the most basic instances are still widely

used in many fog deployments.

Regarding the IoT devices being found in a fog environment, it is to be remarked

that those IoT items are usually ordinary devices equipped with limited resource

capabilities, which bring some sensors or actuators attached, thus playing the part of

end devices for fog communications. Furthermore, the fog infrastructure is made up

of a series of hosts being located anywhere between the end devices and the cloud,

whose role is to undertake most of the computation and storage necessities of the

aforesaid IoT devices, using the cloud as a backup system.

Those hosts may be interconnected by a network of switches, which are linked

together according to a certain topology in order to allow the VM migration of a given

instance of VM from any source host to any destination host, where different topology

deployments may be put in place in relation to the needs of each fog ecosystem.

Hence, each switch joins together a bunch of hosts, resulting in only two links

between any pair of those, whereas all switches communicate to each other through a

certain topology, which determines the number of links between any pair of switches,

resulting in a variable number of links between hosts connected to different switches.

In this context, some key performance indicators, such as latency, jitter and band-

width, will depend on the precise number of such links between any couple of hosts.

Furthermore, it is to be considered that switching topologies offer scalability, re-

silience and load balancing among the diverse hosts within the fog domain, thus

making possible that the aforementioned VM migrations between any given pair of

hosts may be carried out by means of alternative paths, which may depend on the

switching topology being chosen within the fog environment.

Additionally, it is to be noted that fog environments may not contain a great

amount of hosts due to the limited geographic scope of fog domains. Therefore, the

number of necessary switches to interconnect all those hosts will not be too high,

hence, fog deployments may not need complicated topologies.

On the other hand, some complex topologies might obtain better performance

indicators that the ones presented, even though such a complexity in those designs

may make packet forwarding more difficult to be achieved. Thus, such designs may
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not be taken into account herein, so in order to keep things simple, just the aforesaid

topologies are going to be considered herein.

With that in mind, all of the moving devices within a fog environment may need its

associated computing resources to be the closest possible. This fact implies moving

those computing resources among hosts, and if those are considered as VMs, then it

may be said that live VM migrations may take place among hosts.

With respect to the minimal paths in each topology to achieve the fastest VM

migration by means of taking the shortest path between a particular pair of hosts,

it is to be said that it may be expressed by applying the appropriate mathematical

expressions, which may result in the construction of different models according to

diverse mathematical areas, such as arithmetic, logic or algebra.

In this sense, flow charts and pseudocode algorithms are presented for all topologies

selected, although special attention needs to be paid to algebraic models, specifically

designed by means of a process algebra called ACP (Algebra of Communicating Pro-

cesses), as they may be further used in order to find out whether the algebraic models

presented get verified, which basically means that the behaviour of the model pro-

posed matches that of the real system, in a way that all possible inputs in both

generate the desired outputs in both.

It is to be remarked that ACP does not take time into consideration, thus the

measurement of performance may not based on time, as it is the usual case where

performance is evaluated by means of timed process algebras, queueing networks or

timed Petri nets. Hence, the focus on performance has been swapped from time to

space, related to switching infrastructure and redundant paths, leading to distances,

and this way, performance may be evaluated by means of timeless Petri nets or

timeless process algebras, where ACP belongs to.

Regarding networking, bandwidth and latency are the key players when dealing

with performance analysis. This is usually measured in time units, even though an

alternative view may be to measure distance as a measure of time, as long as all links

within the DC have the same bandwidth and the same features, whereas their link

lengths are also the same. If that is the case, distance is directly proportional to time,

such that if distance increases, so does time. In view of that, distance is going to be
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used herein to measure performance as the number of links between any given pair of

devices because it is more intuitive and straightforward, where the shorter the better.

In this context, routing is crucial to enhance performance, as it minimizes the

number of links to forward packets between a particular source and a particular

destination within the DC. Other important parameters may also be cited, such as

the protocol being used and the link utilization due to inefficiencies of implementation

or environmental conditions, although only routing is going to be considered herein.

Therefore, the main working hypothesis of this thesis dissertation may be whether

it is possible to model the VM migration path within a given DC topology being

deployed in a fog environment by means of ACP. Furthermore, some other main

working hypotheses may be proposed, such as the construction of a generic model for

a fog ecosystem in ACP, where the DC topology is abstracted away, followed by the

built-up of a particular instance of it, being focused on linear deployments, which is

also designed with ACP. Additionally, some secondary working hypotheses may be

brought forward, such as getting such models by means of flow charts and pseudocode

algorithms, along with getting the list of devices and their appropriate ports for all

redundant minimal paths (measured in number of links) for the models in ACP, as

well as getting the appropriate verification for them.

This way, the target of this work may be seen mainly as threefold: first, to obtain

formal algebraic models of VM migration for the aforementioned topologies, then, to

achieve a formal algebraic model for any user moving around a generic fog environ-

ment, and from there on, to build up a specific scenario with a sequential layout,

which may be adapted to bring fog services throughout a trajectory.

1.2 Objectives

Therefore, the goals in this thesis are:

• To review the state of the art regarding the main pillars of this research, such as

fog computing environments, Formal Description Techniques (FDT) and net-

work topologies for DC.
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• To go over some mathematical objects to be used in the models proposed, such

as regular N -polytopes, trees, graphs and tori.

• To revise the main characteristics of the DC topologies presented.

• To obtain different mathematical models for VM migration in fog ecosystems

for such topologies, where the amount of nodes within a given topology depends

on the number of hosts needed in the fog deployment.

• To establish a generic algebraic model for a fog computing domain.

• To propose an application of such a model for a sequential deployment.

This way, the main hypotheses proposed above are going to be developed in order

to prove them right:

a ) Is it possible to model the VM migration path within a given DC topology

being deployed in a fog environment by means of ACP?

b ) Is it possible to construct a generic model for a fog ecosystem in ACP, where

the DC topology is abstracted away?

c ) Is it possible to build up a particular instance of such a general model in ACP

which is being focused on linear deployments?

Additionally, the secondary hypotheses cited above will also be developed on the

way to prove the main one quoted in the first place.

1.3 Outline

The development of this thesis involves three parts as follows:

• Part one: background. This includes a brief overview on the main pillars

sustaining this thesis. In particular, chapter 1 introduces some of the main fea-

tures of fog computing, whilst chapter 2 discusses the role of live VM migration
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in fog domains, modelling with ACP and DC topologies. Furthermore, chapter

3 goes through some mathematical foundations to be applied on the network

topology models proposed later on, whereas chapter 4 reviews some of the most

common DC topologies for fog deployments.

• Part two: contribution. It is focused on the new proposals given in this the-

sis. In this sense, chapter 5 exhibits different mathematical modellings for each

of the aforementioned topologies, including algebraic representations to be used

in the verification of such designs, whilst chapter 6 presents an algebraic model

of a generic fog environment, abstracting away from the topology being used,

and chapter 7 carries out a real-life application of such a model for sequential

deployments, which may be implemented in railways, highways or pipelines.

• Part three: conclusions. That contains the final references associated with

this thesis. Basically, chapter 8 draws the conclusions reached out of this thesis

dissertation, as long as the future work proposals. Afterwards, chapter 9 shows

the contributions achieved with this thesis, resulting in a collection of research

papers published in international conferences and journals related to the foun-

dational pillars cited above. Then, there is an appendix showing the algorithms

proposed for each topology studied above. Next, there is a section explaining

the meaning of the acronyms being used. After that, the last section displays

the bibliography being used when building up this thesis.



Chapter 2

Main pillars and related work

This work is about getting a formal algebraic modelling of a fog computing architec-

ture, which is based on some different pillars to be presented herein.

2.1 Computing, cloud and fog

First of all, it is to be noted that the world of computing undertakes significant

technological developments on a regular basis, thus enhancing the way they oper-

ate, as well as gaining compactness and efficiency, whilst reducing cost and power

consumption [143]. Therefore, each major improvement induced a new change of

paradigm when it comes to how computers work, hence, that fact brought up a new

generation of computers.

Initially, it is widely accepted that the first electronic digital computers are con-

sidered to be part of the first generation of computers appeared in the 1940s in the

context of World War II and the corresponding postwar, which were based on vacuum

tubes to process information and binary code was used to interact with hardware.

Later on, a new generation emerged in the late 1950s with the creation of the first

Operating System (OS), along with the use of transistors for information processing,

which led to the appearance of faster and more reliable computers. Besides, the use

of symbolic languages like assembly prevailed instead of binary code, and even the

first high-level programming languages were launched, such as Cobol and Fortran.

9
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Afterwards, in the middle 1960s, another generation kicked off with the use of

integrated circuits, also known as microchips, along with the appearance of the first

instances of OSs being multitask, multiuser, multiprocessor or real-time, as well as

the first computer networks, which required manual intervention to accomplish file

sharing. It is to be noted that Unix, which is the basis of most current OSs, was

designed at that time.

Later on, in the early 1970s, a new generation arose due to the invention of mi-

croprocessors, those being able to integrate much more circuits into a single chip,

which led to the development of both microcomputers and supercomputers, where

the former popularized the use of personal computers, whilst the latter were devoted

to problems needing intensive calculations. Furthermore, it is to be said that core

developments in nowadays computing systems were made in this period, such as the

creation of C programming language and the Transmission Control Protocol / In-

ternet Protocol (TCP/IP) practical model and Open Systems Interconnection (OSI)

reference model for network transmissions.

Eventually, the current generation is supposed to have been started in the middle

1980s, where diverse artificial intelligent technologies are being implemented in both

hardware and software to try to improve different problem-solving skills, with the

target of ever achieving more complex and accurate solutions. It is to be said that the

vast majority of current OSs, programming languages, services, applications, network

solutions, security designs and software developments are included therein.

Focusing on the way computers work, it is to be noted that all previous stages did

it in a centralized way, meaning that each individual computer ran its own tasks. This

fact is also known as monolithic computing, regardless whether they only support a

single user at a time or multiple users through time sharing techniques.

However, in the last stage, the continuous rising in the power of microprocessors

and the speed of Local Area Network (LAN) made possible the distributed computing,

where hardware or software components may be located in different computers being

interconnected and communication among them is undertaken by means of message

passing techniques. This way, distributed systems permit to cope with ever higher

load requirements and performances, thus outperforming centralized systems [54].
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Some of the main features of such systems are concurrency, as tasks are executed in

a simultaneous manner as opposed to a sequential one, the need of a common time for

coordination and synchronization purposes, the failure tolerance in computers related

to either its hardware, software or network components, the variability of the system

structure, which may change during the execution time, and even the incomplete view

of the whole system from each individual computer.

Different architectures are allowed in distributed systems, where maybe the most

typical one is the client-server, also known as master-slave, where a client requests

a resource or service being located on the server, which in turn provides it back to

the client through a response. Some well known protocols of this architecture may

be Hypertext Transfer Protocol (HTTP) protocol for web browsing, Simple Mail

Transfer Protocol (SMTP) and Post Office Protocol revision 3 (POP3) protocols for

email exchanging or File Transfer Protocol (FTP) protocol for file transferring.

Furthermore, peer-to-peer is also a typical architecture, where both entities estab-

lishing a communication channel may act as either a client or a server, depending

on which is the requester and which is the provider of a specific resource. Some

well-known examples of this architecture may be file sharing, Voice over IP (VoIP)

services, videoconferencing applications or virtual currencies like bitcoin.

Additionally, distributed systems may be found in most types of wired and wireless

telecommunication networks, as well as a wide range of network applications, real time

process control for industrial automation and flight control. Furthermore, parallel

computing may also be cited, where a task is divided into similar subprocesses to be

run simultaneously, whose results are combined upon completion.

In that sense, multicore and multiprocessor keep the processing within the same

computer, where the former implies a processor having more than one independent

processing unit working at a time in a single Central Processing Unit (CPU) and the

latter does more than one CPU working simultaneously.

On the contrary, cluster and grid share the processing among different computers,

where the former implies that each node is homogeneous and performs the same

task as a unique unit, whilst the latter states that all nodes may be homogeneous or

heterogeneous and performs the same of a different task.
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2.1.1 Cloud and Fog computing

A special instance of parallel computation called cloud computing needs to be cited,

also referred to as cloud [223]. It may be seen as on-demand computing resources, typ-

ically related to storage or computing power, being offered over a network connection.

This way, many services might be available such as file saving and restoring, online

application executing, remote data processing, repository managing or collaborative

environment working, all being delivered on an ad hoc basis.

Clouds may be classified into three main categories, such as public cloud, private

cloud and hybrid cloud. As per the first one, it is dedicated to anyone and it is

delivered through the Internet, which may or may not require an access fee, then, re-

garding the second one, it is restricted only to a company, being offered with different

levels of access to employees, providers and clients, and finally, with respect to the

third one, it combines both clouds in order for the companies to keep with both the

availability requirements and the data protection legislation.

It may be said that the number of as-a-service types offered are growing by the

day, even though the most well-known models of cloud are the following:

• Infrastructure as a Service (IaaS): it permits to rent tailor-made virtualized

hardware, by choosing the number of processors, Random Access Memory

(RAM) memory and storage space, as well as the OSs.

• Platform as a Service (PaaS): it permits to rent development platforms, by

choosing software development tools and data base managers, leaving out hard-

ware and software resources.

• Software as a Service (SaaS): it permits to rent a specific enterprise software

and some determined space for the data associated to it, permitting the access

through any device, regardless its type.

• IT as a Service (ITaaS): it permits to rent virtualized IT services according to

the needs and business model of each organization, chosen on demand.
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Besides, those different types of cloud services models may involve diverse concep-

tual blocks within a computing server [27], as shown in Figure 2.1.

Hardware

Virtualization

Operating System

Libraries

Software

Files & Databases

Application

Processing
Storage
Network

IaaS

PaaS
SaaS

Figure 2.1: Cloud service models.

Therefore, it may be said that cloud computing offers a new model which may be

customized for each kind of user and situation, as it allows ubiquity, different levels

of virtualization and on-demand scalability. This way, the main benefits when adopt-

ing cloud services are cost reduction, including hardware and software acquisition

and maintenance, enhanced security as cloud premises implement high-end harden-

ing measures and reliability in the event of potential shortages due to backup policies.

According to the aforementioned characteristics, it may appear that cloud comput-

ing might be an interesting candidate for providing services to low-resource computing

devices, as most of their tasks could be derived to the cloud. In this context, IoT may

be described as the aggregation and interconnection of physical objects through the

Internet by means of integrated sensors and specific software in order to forward data

on to some servers or systems. In other words, IoT may be seen as the connection of

regular objects to the Internet so as to analyze the data they provide [141].

It may be noted that basically any physical device, such as domestic, industrial or

any other kind, might be connected to the Internet, hence leading to a hyperconnected

scenario where the physical and the virtual worlds may cooperate, allowing for the

deployment of digitalization solutions or cyber physical systems. This is possible
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thanks to some recent advances in diverse technologies, such as low-cost and low-

power sensors, machine learning, data analytics, big data and artificial intelligence.

With respect to the architectures appropriate for IoT networks, it is to be consid-

ered that IoT devices have constraint features regarding processing, storage, memory,

bandwidth and power consumption. Therefore, it may seem clear that the use of

a central server in order to collect and redistribute all messages among IoT devices

might be the ideal solution, as they may minimize the amount of resources needed.

In this context, the central server, also known as broker, may register all IoT

devices, as well as it may receive all the messages sent from the source IoT devices,

and in turn, it may forward all those message on to the destination IoT devices,

according to some predefined criteria. Hence, it could be said that the broker might

act as the hub in a star topology, whereas the IoT devices might act as the spokes.

Furthermore, the main approach followed by IoT communications is called Pub-

lisher/Subscriber (Pub/Sub), where a software or hardware agent in an IoT device

called the publisher, which usually comes equipped with some kind of sensor to mea-

sure the environment, gets a measure from it and sends a message with a certain topic

to the broker, which in turn, forwards it on to the agents in all other IoT devices being

subscribed to that topic, called the subscribers, which usually come equipped with

some sort of actuator to act on the environment upon the messages received.

Moreover, there are two ways to implement the message pattern of Pub/Sub. The

first one is called message queue, where the broker creates a specific queue of messages

of each subscriber, which will be displayed when it gets connected, as it happens in

an online forum. Otherwise, the second one is called message service, where the

broker forwards messages on as they get in, hence if a subscriber is not connected, it

will not receive such a message, as it happens in an online chat. Anyway, the most

popular Pub/Sub protocol is Message Queue Telemetry Transport (MQTT), which

works according to the message service way, but having some message queue features.

Focusing on the features of IoT devices and how their communication protocols

work, it may be clear that cloud computing might not be the optimal solution, as

their resource constraints regarding bandwidth and computing power may not make

them feasible due to excessive latency and jitter issues because of the overdue time
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elapsed when sending messages to the cloud and receiving them back according to

IoT needs. Besides, the same reasoning applies to communications in real time.

However, those drawbacks associated to cloud environments might be overcome if

the remote computing facilities may get closer to the end users, as the time elapsed

may get considerably reduced. For that reason, an extension of cloud computing was

designed where the computing facilities were located just at the edge of the network,

which was called fog computing [31]. That way, each IoT device may get an associated

computing resource located on a host within the fog facility, hence accounting for very

short values of latency and jitter [197].

On the other hand, it is to be noted that many IoT devices may be moving around,

which are known as moving IoT devices. In this sense, it might be necessary to

migrate their computing resources located in a certain physical host within the fog

DC to another physical host being closer to the current location of the IoT device

[39]. If those remote computing resources are considered to be a VM for simplicity

purposes, regardless the fact that those may be a VM, a docker container or another

type, then that migration process may be called VM migration and takes place from

a source host to a destination host, where the associated VM goes through one of the

shortest internetworking paths available between both hosts.

In other words, users getting into a fog environment have some computing assets

allocated [109], which are situated within any of the hosts being part of the fog

architecture [153]. Those computing resources may usually be VMs, but may also have

other forms [14], such as containers or dockers. Additionally, it is to be mentioned that

the computer power of the asset can also be allocated in alternative fog environments,

such as Arduinos, Raspberry Pis, smartphones, tablets or computing facilities in cars.

Nevertheless, within the context of this thesis, a VM will be referred to as any

computing asset allocated within a host being part of a DC, and as such, those VMs

might be migrated from one host to another in order to keep them as close as possible

to their corresponding associated users when they move around [98].

Regarding fog computing, it may be considered as an extension of cloud computing

which brings the computer assets closer to the edge of the network [126]. It is to be

noted that cloud deployments have been around for a while and, at this stage, it
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may well be said that this technology is totally integrated into our ordinary life, as

cloud deployments account for many types of remote computing systems and storage

capacities being used by a great deal of users on a daily basis.

Likewise, it may be said that cloud computing has contributed to achieve ubiquity

related to computing assets [32], in a sense that those do not need to be next to

the end user any more, but they may be located anywhere, as long as there is a

necessary connection to get there. Some examples of popular cloud solutions regarding

computing services [55] are Amazon Web Services, Microsoft Azure or Google Cloud

Platform, whereas some instances of popular cloud storage solutions [50] are iCloud,

Dropbox or Box.

However, those advantages turn into disadvantages when dealing with some specific

conditions, such as real time scenarios or resource-limited devices [236]. The former

case involves a reduced response time [117], which may not be enough for devices

sending their requests up to the cloud and waiting to get a response back out of it

[217], depending on the distance and the available bandwidth [109].

The latter case deals with scenarios with devices having limited resources, such as

computing capacity, RAM memory scarcity, storage shortage, bandwidth insuffiency

or power undersupply [218]. The typical scenarios for this conditions may be IoT

devices, although others may also be affected.

Therefore, cloud paradigm has been extended in order to cope with the aforesaid

situations and has evolved to fog paradigm, also known as fog computing [53]. This

means that computing resources are located at the the edge of the network, thus, being

far closer to the end user [63]. Hence, fog environments permit remote computing in

the aforesaid scenarios, namely, real time implementations and IoT deployments, as it

takes far less latency, jitter and bandwidth to reach the remote computing resources

than it would if cloud facilities are used [237].

It is also to be considered that fog deployments are composed of a bunch of servers,

those being interconnected by some switches, which are organized according to a

certain topology within the fog domain [11]. Those servers are usually called hosts,

as they basically host the remote computing resources assigned to the users within

the fog environment, where those computing assets are generically called VMs, even



Chapter 2: Main pillars and related work 17

though other types may arise, as stated before [232]. Obviously, each host may keep

several VMs, depending on their sizes.

Another point to be taken into account is that fog premises are usually connected

to some cloud deployment [52], thus allowing it to be a backup system for the fog,

hence permitting a VM to be diverted into the cloud in case there are no enough

resources to allocate a certain VM in a host being part of the fog [28]. It may seem

clear that the capacity of the resources within a cloud may well be far bigger than

that of a fog, just because of its geographical scope.

Additionally, on the one hand, it is to be noted that the fog environment is usually

tied to the Open Fog Reference Architecture [142] (adopted by the Institute of Elec-

trical and Electronics Engineers (IEEE) as the official standard for fog computing),

containing many applications, such as surveillance, autonomous vehicles or smart

cities [3]. On the other hand, Multi-Access Edge Computing (MEC) is defined by the

Industry Specification Group within the European Telecommunications Standards

Institute (ETSI) [58], including many applications, such as caching scenarios, loca-

tion services or extended reality scenarios, such as Virtual Reality (VR), Augmented

Reality (AR) or Mixed Reality (MR) [239].

As a side note, it is also important to note that both MEC, which is also known as

edge computing [125], and fog may both be seen as instances of distributed resources

being located on the edge of the network [75] and being able to connect to external

cloud nodes. However, the former puts the focus on the execution of computing

processes close to end users, whilst the latter does it on the overall architecture [24].

Nonetheless, in both cases, communications between hosts and computing assets

at the edge of the network do usually take place by means of mobile and wireless com-

munications [8], which is called as Radio Access Network (RAN), whose performance

may well be enhanced by the rise of the next generation networks, such as 5th Gener-

ation of Cellular Networks (5G) and the 6th Generation of Wireless Fidelity (WiFi-6)

[146], and those being under development now, such as 6th Generation of Cellular

Networks (6G) [235] and the 7th Generation of Wireless Fidelity (WiFi-7) [110]. How-

ever, when dealing with fog, communications with cloud facilities may also involve

the use of wired communications, such as twisted pairs and mostly fiber optics.
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Moreover, it may be considered that fog does usually imply a small DC, whist MEC

might not be the case. Regarding the DCs, their size ought to be according to the

amount of users and their workloads expected within the fog domain [229]. Therefore,

the capacity of each host might not generally be as high as those implemented in

cloud deployments, and likewise, the number of them could not need to be as big

[79]. Hence, the topologies required for such DCs may well be quite simple in most

deployments, thus allowing for easier designs, although in some cases, it might be a

bit more complex, depending on expected amount of users and traffic [231].

Focusing on IoT deployments, they perfectly fit the features of fog computing [122],

where communications take place between each of those devices and a central server

called broker [221]. This entity may have enough resources to act as a hub for all

communications with all the IoT devices [199], while maintaining a register of those

being connected at any time [130].

Traditional networking protocols working with paradigms such as client-server or

peer-to-peer do not match the aforesaid behaviour, thus, the central-server paradigm

may be put in place [1]. There are different protocols working that way, most of

them employing a Pub/Sub approach [193], whilst others use a Remote Procedure

Call (RPC) methodology [64]. The main difference between them is that in the

former, the central server plays a crucial part, as it manages all of the traffic between

publishers and subscribers, whereas in the latter, its role is just to forward the flows

of traffic among end users, not to manage them.

Pub/Sub outlook is far more extended regarding IoT communication protocols,

where the most common ones are MQTT and Constrained Application Protocol

(CoAP). In this context, the former may seem to be the most popular as it brings ex-

tra features [123], such as different levels of Quality of Service (QoS) [194], the option

of allowing an Secure Sockets Layer (SSL)/Transport Layer Security (TLS) extra layer

for encrypted communications [159] and the possibility of retaining certain messages,

or even the whole thread, hence, changing the way it behaves by default [131]. As per

the latter, its use is not so widespread, although it is more lightweight and efficient,

its energy consumption is lower and its functionality is based on REST architecture

web services (RESTful) [224].
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Eventually, IoT moving devices require a special attention, as the movement of

the devices throughout the fog area implies that the remote computing assets may

end up being too far away from its associated IoT device [133]. Therefore, a VM

migration mechanism may be put in place in order for the computing resources to try

and follow as close as possible its moving user [119], thus keeping at a minimum the

values for latency, jitter and bandwidth required.

2.1.2 VM migration techniques

VM migration may be seen as the procedure to move remote computing assets,

which will be referred to a generic VM within this thesis, no matter which type it

may be, from one host to another one belonging to the same switching infrastructure

[107]. This way, in the context of this thesis, VM migration in a fog environment may

be considered as the action of migrating a VM from a source to a destination host

[62], being both interconnected by the topology belonging to a single fog domain [26].

Focusing on VM migration, three main approaches may be specified, depending on

how a VM is treated during the migration process from source host to destination host

[38]. The first option is cold migration, which is the case where a VM is shut down

prior to moving it. The second option is hot migration, where its OS is suspended

prior to moving it. The third option is called live migration, where services keep

running seamlessly throughout the whole process.

It may seem obvious that the last one accounts for the best solution. Moreover, in

summary, when dealing with live VM migration in DC premises [115], some advan-

tages may arise, such as load balancing, hardware maintenance, power management

and fault tolerance. However, it is not possible to have a VM always on service, as

there must be some time range off to bring the core features of the VM from source to

destination. This point leads to the establishment of some key parameters to obtain

the performance of a live VM migration process [85].

Three parameters are usually taken into consideration [135]. First off, the down-

time, which accounts for the amount of time that the VM is stopped during the whole

migration. Then, the total migration time, which represents the elapsing time to com-
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plete the process. Finally, the amount of dirty pages migrated, which constitutes the

data that changed during the migration due to the current use of the source VM,

which has to be sent to the destination VM.

As the third parameter is dynamic, in a way that it may not be measured before-

hand, as it depends on the workload being carried out by the source VM at migration

time, the first and second parameters are the ones to be dealt with in order to achieve

a tradeoff between them both [13]. In order to attain this target, some factors are

involved, such as connections to local devices and network interfaces, although the

key player is memory transfer, which is the one to be tackled [156].

Regarding memory transfer, it may be divided into three different stages, called

push phase, stop-and-copy phase and pull phase, which take place throughout the

whole live VM migration process [203]. The first one involves the beginning of such a

process, where source VM keeps running. The second one is the most critical, where

source VM gets halted, dirty pages are copied around, and afterwards, destination

VM is booted up. The third one requires that the destination VM is running and

source VM provides any requested new page not being copied yet.

In order to attain an efficient way to undertake the process of live VM migration, a

common approach is to focus on just one or two of the aforesaid stages. This way, some

popular implementations make use of pure demand-migration, pure stop-and-copy or

post-copy live VM migration. Nonetheless, it may appear that the technique being

the most efficient is iterative pre-copy live migration [74]. Basically, it combines a

bounded interactive push step along with a very short stop-and-copy step, considering

that several iterations may occur until all of the dirty pages are transferred [97].

Focusing on the iterative pre-copy live VM migration, it gets developed through

6 stages, where the whole VM transaction between any two given hosts takes place

[144]. The timeline of such six steps summarized in Figure 2.2.

– Stage 1 is called pre-migration, and it involves the process to select a candidate

to be the destination host which has enough resources.

– Stage 2 is named reservation, and it covers the process of allocating resources

on the destination host prior to start the migration
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Stage 3: Iterative Pre-copy

Stage 1: Pre-Migration

Stage 2: Reservation

Stage 4: Stop and Copy

Stage 5: Commitment

Stage 6: Activation

VM running on
Host A

Overhead

Downtime

VM running on
Host B

(copy of dirty pages)

(VM halted)

Figure 2.2: VM migration timeline.

– Stage 3 is called iterative pre-copy, and it includes two subphases. To start

with, the complete RAM is sent over in the first interaction, and in turn, dirty

pages get sent over in the next iterations.

– Stage 4 is named stop-and-copy, and it comprises the process where source

VM gets halted to make possible the copy of the CPU state and the rest of

inconsistent pages to the destination VM.

– Stage 5 is called commitment, and it contains the part where the destination

host acknowledges that it has already received a consistent copy of the source

VM from the source host, and this one acknowledges it back before discarding

the source VM, which is the original VM.

– Stage 6 is named activation, and it embraces the point where the destination

VM, which is the migrated VM, gets activated, and the proper device drivers

get attached to the migrated VM.

As a side note, it may be said that post-copy live VM migration undertakes a

reversal approach from the pre-copy technique [89]. The key point is that, in this

case, source VM is halted right at the beginning and a copy of the CPU state is

immediately transferred to destination, where the VM is then resumed, and in turn,

dirty pages are sent across. This may account for a shorter downtime as the CPU
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state is sent earlier, but performance may well be degraded for some time until all

dirty pages have been transferred [42].

A way to overcome this issue may be to propose a hybrid pre-copy and post-copy

technique [48], where a pre-copy phase takes place at the beginning, where the VM

working set, also called hot pages, are migrated from source to destination, then, the

CPU state gets transferred and the execution swaps from host to destination, and in

turn, the rest of pages, also called cold pages, are migrated across.

It is to be noted that the use of the post-copy fashion implies that not all dirty pages

may be in the destination VM when it boots up, bringing the possibility of having

degradation issues if some dirty pages are demanded and they have not already been

transferred. However, this issue does not apply when using the iterative pre-copy

technique described above [25].

Some other complex techniques have been proposed, such as performing the live

VM migration with a machine learning approach [103], using prediction algorithms

so as to forecast the most likely migrations [128], employing algorithms to assure

energy-efficiency and quality-aware consolidation [121], or the utilization of adaptive

algorithms to attain faster migrations [124].

Those methods might achieve better performance than the iterative pre-copy tech-

nique, although they all introduce a certain degree of complexity when dealing with

the different algorithms proposed to accelerate the live VM migration [192], which

may make them harder to follow because of the interaction of such algorithms [70].

Therefore, this point stands for the selection of the iterative pre-copy live VM migra-

tion technique to carry out the formal models to be proposed in this thesis.

2.2 Modelling with ACP

To start with, a model may be defined as an abstraction of reality according to

a certain conceptualization [84]. This way, a particular set of concepts may need to

be employed in order to obtain an abstract representation of some aspects related

to certain entities within a given domain, although selecting different concepts might

lead to attain diverse abstract representations of the same reality, hence assuming
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that a model is an instance of the conceptualization chosen. Likewise, the use of

different modelling languages might lead to obtain diverse model specifications.

In this context, it may be noted that models are always approximations of reality

[132], thus they should represent the most important features of the expected be-

haviour of reality in a predictable way, even though it may not hold for other features

not being under consideration.

Focusing on systems, it is to be said that a system model may represent the main

features of a given system and its environment, where different purposes might be

pursued, such as understanding its behaviour or its structure [111]. Besides, a key

point to be focused on when dealing with modelling is abstraction, which implies

choosing some essential characteristics, while ignoring others not so relevant, thus

allowing the design of a variety of models according to the set of parameters required

and the level of detail expected in each particular instance.

As per the language to be used in the modelling, the first point to be discussed

is related to informal and formal. The former is related to natural languages, such

as English or Spanish, where each of them have their own syntax and semantics.

Hence, it may well occur that some mismatches might be encountered among different

descriptions related to the same set of actions [113].

Therefore, in order to avoid so, the latter comes into play, being usually referred to

as FDT. Those are a group of heterogeneous tools whose target is to achieve common

descriptions for the same actions, overcoming the aforesaid issue found in natural

languages [158]. Basically, the target of those tools is to model, analyze and control

aimed at non-deterministic discrete event systems [77].

One of the most well-known modelling formalisms are Petri nets, which were first

developed by C.A. Petri back in the 1960s to describe distributed systems by means

of places and transitions, in the form of circles and bars, where arcs play the part

of joining them together, either pointing from places to transitions, or the other way

around [150]. Besides, places may contain a certain number of tokens, usually shown

as black circles, which permit the activation of a transition if all its incoming places

contain at least a token in it. Putting all toghether, Petri nets are aimed at describing

concurrency and synchronization in distributed systems.
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Apart from its ordinary behaviour, it allows for several variations, such as coloured,

probabilistic or timed, which may be applied to a wide range of areas. In this sense,

timeless Petri nets are useful when studying qualitative properties in concurrent asyn-

chronous systems, although the concept of time needs to be included when assessing

quantitative properties in concurrent synchronous systems, leading to the distinction

between Deterministic Timed Petri nets and Stochastic Timed Petri nets [228].

Furthermore, all sorts of Petri nets may be broadly classified by the content of their

places, either representing boolean values, such as those being marked by at most one

unstructured token, or representing integer values, such as those being marked by

more than one unstructured token, or even representing high-level values, such as

those being marked by a set of structured tokens [23].

A different common tool is Specification and Description Language (SDL), which

is an object-oriented language defined by International Telecommunication Union -

Telecommunication Standardization Sector (ITU-T) as recommendation Z.100, whose

development kicked off back in the 1970s. It contains a set of extended Finite State

Machines (FSM) running in parallel, consisting of different components, which are

represented as a diagram [154]. The main ones are the structure, which comprises

hierarchical levels such as system, blocks, processes and procedures, the communica-

tion, which includes asynchronous and synchronous signals along with channels, the

behaviour being described as processes with their corresponding FSM, and eventually,

different types of data.

Another widely used tool is Protocol/Process Meta Language (Promela), which is

a specification language similar to C and developed in the 1980s. It emphasizes pro-

cess synchronization and coordination by using asynchronous processes representing

entities specifying behaviour, whereas synchronous and asynchronous message chan-

nels and shared variables define the environment where processes are running [61].

Furthermore, a program in Promela may be analyzed by means of a model checker

called Simple Promela Interpreter (Spin), aimed at verifying its correctness and linear

temporal logic properties [92].

An additional popular tool is Unified Modeling Language (UML), which was first

developed back in the 1990s and it is supported by the Object Management Group. It
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is a graphical language consisting of different hierarchical diagrams, where the most

broad categories are structural and behavioural diagrams, which are broken down

into a range of subcategories [44]. It is based on object-oriented programming, as

class diagrams contain classes, where some relationships are established among them,

such as association and inheritance, thus conditioning their attributes and methods.

Besides, classes are considered as templates to create objects, whose behaviour do not

only depend on its inputs, but also on its preceding states, where all those possible

states may be included into state machine diagrams.

Moreover, queueing networks is also a very popular formalism when dealing with

stochastic models [12]. It got impulsed at the beginning of the 20th century by

the studies of Erlang related to queueing theory. Basically, it takes into account

the waiting time in order to get served, which is related to the arrival rate, and the

processing time, which is related to the service rate. Both rates are usually stochastic,

which means that the time being spent into the system regarding both tasks, also

known as sojourn time, is non-deterministic.

In order to properly describe a queueing model, some factors need to be quoted

with respect to the queueing system, such as the arrival rate, the queueing discipline,

the buffer size or the number of queues, whereas different factors need to be cited

with regards to the processing system, such as the number of servers, the capacities

of each server or the service discipline [104].

Regarding the notation of queueing networks, the one proposed by Kendall [108] is

commonly used in the literature. It has the form A/B/m/K/M, where A establishes

the arrival process, B denotes the service process, m applies for the number of servers,

K determines the capacity of the queue, and M does it for the customer population.

In this context, the first two variables account for the type of probability distribution,

which may result in M for Markovian (exponential), G for general or D for determin-

istic, whereas the rest of variables account for natural numbers or infinite. Not all

variables are used at all times, but only the minimal amount of them so as to clearly

describe the queueing network, such as M/M/1, M/M/∞, M/M/2/2 or D/G/2/4.

In summary, each of those may have different characteristics, making them more

suitable for some given conditions, even though they may not be the fittest in different
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ones [195]. In other words, there is not an optimal FDT suitable for all scenarios, but

each FDT may be more interesting in some circumstances, whereas that might not

be the case in other ones [202].

Additionally, an algebraic approach may also be included into FDT, specifically

regarding process algebras, those being a framework with diverse approaches to model

concurrent systems in a formal way [17]. There are many of them around, some being

implemented in software tools in order to automate strings of actions [82], whereas

others being thought to be used in a manual approach [100], in the same way as

traditional algebras. Also, they are usually timeless, unless a time extension is added.

Regarding these process algebras to be dealt with an analytical approach, it is

to be said that those were the pioneers. Specifically, in the early 1980s, there were

two main approaches differing in their semantics [149]. On the one hand, Commu-

nicating Sequential Processes (CSP), launched by Hoare [90], presented denotational

semantics, generally as traces. On the other hand, Calculus of Communicating Sys-

tems (CCS), promoted by Milner [129], proposed operational semantics, generally as

labelled transition systems.

Apart from their different syntax and semantics, it is to be said that both CSP

and CCS share common grounds because they both build up mathematical models of

processes, being considered as agents, which may act and interact with other agents

and their common environment [139]. Moreover, both try to find out the behaviour

of the model, even though the former does use the notion of failure equivalence if,

and only if, two trees have identical failure sets, whilst the latter does employ the

notion of observation equivalence, being defined as the smallest relations satisfying a

given set of axioms, expressed as a synchronization tree [33].

However, neither of both approaches seemed to fully permit the establishment of

an abstract and generalised system of axioms to deal with processes, and that is

why Bergstra and Klop [21] took both as a starting point and developed a brand

new approach called ACP, whose syntax is genuine, although inspired on them, and

whose semantics are axiomatic and algebraic.

It is to be noted that ACP is aimed at capturing the behaviour of concurrent

systems, such as network protocols being used in communication systems, or any
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other kinds of distributed systems [106]. ACP defines a set of axioms in order to

perform algebraic derivations on process terms, in a similar manner as other abstract

algebras do, such as group theory, ring theory or field theory [148].

Therefore, ACP may permit to specify and verify concurrent communication proto-

cols by means of a set of rules defining their behaviours [16]. It is to be reminded that

ACP abstracts away from the real nature of processes, just focusing on behavioural

equivalences, being referred to as rooted branching bisimilarity, thus making possible

to reason about relationships within distributed systems [81].

On the other hand, ACP may carry some disadvantages, mostly due to its abstract

approach, which may appear to be too generic in some cases, or otherwise, it does

not contain time variables, although some extensions does take time into account.

Nonetheless, those features enforce ACP as a convenient tool to undertake the models

proposed, as it allows to achieve simpler analytical models.

2.2.1 Using FDT modelling in cloud/fog environments

There is not a great deal of information in the literature regarding the formal

modelling of fog computing domains. However, the following papers may well be

cited as they do it by making use of the most important FDT:

Regarding Petri nets, [196] presents a model of integrated systems composed by

cloud, fog and IoT all together. Furthermore, a stochastic Petri net is proposed in

[208] to model a hybrid cloud and a fog scenario, where variables such as latency,

workload or computational capacity are used to establish under which circumstances

it is more interesting to use each scenario.

Moreover, [237] puts forward a model with further security settings for IoT devices

using high level Petri nets. Likewise, [161] shows a model with coloured Petri nets.

Besides, a dynamic resource allocation strategy for fog environments is presented

based on priced timed Petri nets in [137], as well as in [138], aiming to achieve a

higher efficiency than different static resource allocation strategies.

Focusing on SDL, [207] presents the challenges that IoT systems pose to SDL

modelling, such as signal delays, interactions with external systems and the signal
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handling to multiple recipients. On the other hand, [225] makes use of SDL to simulate

Wireless Sensor Networks (WSN) and [76] does it to simulate ubiquitous systems.

With respect to Spin/Promela, [47] depicts a model for the physical and Media

Access Control (MAC) layers according to the Zigbee standard in order to analyze

energy consumption of the radio interface. Besides, [41] proposes a model checking

utility so as to target IoT behaviour, whereas [238] presents a process mining approach

to IoT environments.

Additionally, [43] presents a formal approach using Promela and a system verifi-

cation with Spin for MQTT in the context of communicating vehicles. This method

is also employed by [226] focusing on CoAP, whereas [10] brings forward a formal

approach to QoS in MQTT. It is to be reminded that both protocols, namely CoAP

and MQTT, were specially designed for IoT scenarios with a scarcity of resources, as

exposed in [91].

Talking about UML, it is to be said that [134] exhibits a model by means of an

extension to iFogSim aiming at simulating scenarios searching for the optimization of

data placement in fog and IoT contexts. Also, [9] exhibits a model and its verification

for MQTT, whereas [73] proposes a model for predicting the power consumption in

IoT devices.

With regards to other FDT, [147] introduces a LNT model so as to verify a failure

management protocol for stateful IoT applications, specifically created for highly

distributed scenarios. Likewise, [127] presents a BRS based approach to support

interaction among IoT devices, whilst [145] presents a model verification of IoT usual

behaviour through PRISM.

Moreover, [51] shows models and verifications for MQTT and CoAP by means

of Event-B, whereas [2] presents a statistical model checking for MQTT, whilst [95]

proposes a specification and verification of MQTT by using UPPAL. Also, [216] makes

a review on different formal approaches for service composition, whereas [215] does it

for IoT applications.

Eventually, sticking to process algebras, it may appear that those are quite ad-

equate to model fog environments due to its abstraction and notation features. In

this sense, there are some contributions, such as [118], where a model for a Smart
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Emergency Evacuation System (SEES) is proposed using dT-Calculus, or [15], where

a model for MQTT is presented in TPi.

Furthermore, [213] depicts a model for a generic IoT system employing dTP-

Calculus, whereas [72] shows a similar model by means of π-Calculus, whilst [114]

does it by using CaIT, and [29] makes use of IoT-LYSA.

In conclusion, there are many process algebras around, each one with its own

characteristics. However, it may be taken into consideration that the point in this

thesis is to use an analytical approach, thus discarding automatic tools, in a way

that applying this perspective to process algebras permits to enhance the focus on

the details occurring at each step within a procedure being modelled, with different

entities taking part in an asynchronous manner. This analytical step-by-step approach

may help better understand the basics and the dynamics that are happening along the

way compared to simulation-based approaches, where some details may go unnoticed.

The procedure selected herein is the live VM migration occurring among the hosts

being part of a fog deployment. In that sense, the more abstract a process algebra is,

the better it may describe the behaviour of the system without having to deal with

the real entities involved, along with their own particular features, and that is why

ACP is chosen to undertake the models within this thesis.

2.2.2 ACP modelling

Focusing on ACP, it is to be remarked that there are some atomic actions, which

may not be divided into smaller ones, such as send and read [18]. The former may

be considered as writing a message into a communication channel, whereas the latter

may be seen as receiving a message from a communication channel.

Specifically, sending a message d through channel imay be defined as si(d), whereas

reading a message d through channel i may be stated as ri(d).

Then, some operators are defined in order to deal with those atomic actions [67].

There are some of them, although the most important ones are the following:

• Sequential operator, denoted by the · sign, meaning that the first process is exe-

cuted, and in turn, the second process will. It allows more than two arguments.



30 Chapter 2: Main pillars and related work

• Alternate operator, denoted by the + sign, meaning that either the first or the

second processes are executed. It allows more than two arguments.

• Merge operator, denoted by the || sign, meaning that the first and the second

processes are executed concurrently. It allows more than two arguments.

• Conditional operator, denoted by True � condition � False, meaning that if

the condition is met, then the left argument is executed, otherwise, the right

argument will. It allows nesting other conditional operators.

• Encapsulation operator, denoted by ∂H , meaning that only internal communi-

cations are allowed, whilst its related atomic actions go to deadlock, thus being

irrelevant. It is to be said that set H contains all internal atomic actions, which

may all be converted into deadlock after applying this operator.

• Abstraction operator, denoted by τI , meaning that only external communica-

tions are allowed, whereas internal communications go to silent step, thus being

irrelevant. It is to be noted that set I contains all internal communications,

which may all be turned into silent step after the application of this operator.

• Guarded linear recursion, meaning that a process may be described in a recursive

manner, representing its repetition in a cyclic way.

The proper way to use ACP to specify and verify concurrent systems is achieved

in three steps. First of all, a model for each relevant entity within the system is to

be made up individually [71], by means of describing what each entity does with the

help of a string of atomic actions along with its respective operators.

After that, a specification is to be built up, by connecting all those entities in

a concurrent manner [112]. To do so, the first step is to run the merge operator,

followed by executing the encapsulation operator, in order to find out which channels

result in communications and which others are irrelevant.

Finally, a verification is to be performed [68]. The right way to proceed is to

first obtain the external behaviour of the model by applying the abstraction operator

on the specification previously achieved, and in turn, the external behaviour of the
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real system by means of ACP expressions. Then, both external behaviours may be

compared, this is, that of the model and that of the real system, which may be both

manipulated by using equational logic so as to try to equate them if at all possible,

which may imply that their process graphs are both behaviourally equivalent.

After that, two conditions have to be checked, such as both external behaviours

share the same string of actions and the same branching structure, and if both points

are met, then it may be said that they are both rooted branching bisimilar [66], which

is a sufficient condition to get the model verified [65], meaning that the model presents

the desired external behaviour, where each input produces the expected output.

In this context, Figure 2.3 exhibits a simple example of a bisimulation relation

between two process terms. By comparing the labelled transition systems referred

to both expressions, it may seem clear that the same string of actions are executed

by both, as at first, they run either action x or action y, and in turn, they run

action z, which leads to a successful termination. Additionally, it may be obvious

that the same branching structure is found in both, as the layout of the actions being

run match each other. Therefore, there is a bisimulation equivalence between both

actions, which implies that a behavioural equivalence may be established between

both process terms, as the equational logic of ACP is sound and complete.

Figure 2.3: Example of bisimilarity.

On the other hand, when working with distributed systems, non-determinism may

well be expected, which might involve ever growing terms as the number of concurrent

entities gets higher, thus making harder to deal with them. However, the appropriate

terms related to a given number of concurrent entities may be easily exposed by

means of a particular expression, which permits to identify all available relationships

among those terms.
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It is to be reminded that when dealing with the concurrent operator, also known

as merge operator and denoted by the sign ||, it may be developed by means of two

equivalent operations [22]. The first one is called left merge, given by the sign �,

stating that the initial transition of the left entity is run in the first place, and then,

the behaviour of the rest is that of a merge. The second one is named communi-

cation merge, given by the sign |, stating that a communication between the initial

transitions of the entities involved are run together in the first place, and then, the

behaviour of the rest is that of a merge.

The relationship among those three operators is given by the Expansion Theorem,

by Bergstra and Klop [99], where the term X i indicates all entities involved except the

i-th one, this is, X i = {X1 || · · · || Xn}−{Xi} , and the term X i,j denotes all entities

involved except the i-th and the j-th ones, this is, X i,j = {X1 || · · · || Xn}−{Xi, Xj}.
This all is exhibited in (2.1).

(
X1 || · · · || Xn

)
=
∑

Xi�X
i +

∑(
Xi | Xj

)
�X i,j (2.1)

This expression may be tailored for any number of entities being executed in a

concurrent manner in order to obtain the behaviour of a concurrent group of ob-

jects, taking into account that the number of terms obtained for n entities is given

by the n-th triangular number, which may be obtained by the binomial coefficient(
n+1
2

)
. Hence, the overall number of terms attained grows according to an arithmetic

progression of the second order for n concurrent items.

The following examples show the expressions to be applied for a small number of

concurrent items, as seen in (2.2), (2.3),(2.4) and (2.5).

n = 2:

(
X1 || X2

)
= X1�X2 +X2�X1 +

(
X1 | X2

)
(2.2)

n = 3:

(
X1 || X2 || X3

)
=X1�

(
X2 | X3

)
+X2�

(
X1 | X3

)
+X3�

(
X1 | X2

)
+(

X1 | X2

)
�X3 +

(
X1 | X3

)
�X2 +

(
X2 | X3

)
�X1 (2.3)



Chapter 2: Main pillars and related work 33

n = 4:

(
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)
=X1�
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)
+X2�
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)
(2.4)

n = 5:

(
X1 || X2 || X3 || X4 || X5

)
=X1�

(
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)
+X2�

(
X1 | X3 | X4 | X5

)
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)
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)
(2.5)

It may seem clear that the more entities are interacting in a concurrent manner,

the more process terms are generated, hence, the more complicated get the calcula-

tions. However, the application of the encapsulation operator, over a set H containing

all internal atomic actions, cancels a great deal of such process terms, as it converts

atomic actions into communications, bringing those atomic actions to deadlock, ex-

cept for those atomic actions related to getting in and out of the system, meaning

terms coming in or going out of the system being modelled. Therefore, results are

much more manageable, even though there are many entities working concurrently,

as only a limited number of channels will be taken into account, namely, those where

communication happens, and thus, discarding the rest of them.

Furthermore, the application of the abstraction operator, over a set I containing all

internal computations and internal communications, masks all internal actions which

are irrelevant for the external behaviour of the model, thus showing such a external
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behaviour, and making possible to compare it with that of the real system. Therefore,

external behaviour of many concurrent devices making up a model, or otherwise a

real system, may well end up being portrayed by a handful of process terms, hence

making easy to deal with such models.

Additionally, the verification of a model by means of ACP has been described

above, where the focus is set on finding a rooted branching bisimulation equivalence

(which is a congruence with respect to ACP), where rooted imposes that an initial

transition may never be a silent step τ (meaning an internal action) and branching

does it for silent steps being truly silent (being irrelevant). It is to be noted that a

bisimulation equivalence is just a particular case where no silent step is involved [80].

The use of ACP to specify and verify models of network protocols or other dis-

tributed protocols related to computing issues is not very common, although some

attempts have been made, mostly with automated tools based on ACP, such as with

Alternating Bit Protocol (ABP) [82], Bounded Retransmission Protocol (BRP) [83]

or FireWire (IEEE-1394) [204]. However, it is to be reminded that an analytical

approach is being taken in this thesis, thus all specifications and verifications carried

out herein will be done that way so as to better appreciate the each step taken.

Along the preparation of this work, some papers have been written in this field,

modelling network protocols belonging to different layers within the OSI model. For

example, related to data link layer, also known as layer 2, Spanning Tree Protocol

(STP) has been modelled according to IEEE 802.1D standard [163]. The role of

STP is key to avoid logical layer-2 loops, resulting in broadcast storms and MAC

inconsistency events [152].

With regards to network layer, also known as layer 3, some protocols have been

modelled. To start with, Open Shortest Path First (OSPF) version 2, which is the

most popular routing protocol among enterprises, standarized by Internet Engineer-

ing Task Force (IETF) on some Request for Comments (RFC) and whose target is

Internet Protocol version 4 (IPv4) addressing networks [177], [179]. Likewise, En-

hanced Interior Gateway Routing Protocol (EIGRP), which used to be a proprietary

routing protocol from Cisco Systems, although it was partially released in 2013 to

other manufacturers [176]. On the other hand, Protocol Independent Multicast (PIM)
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and Internet Group Management Protocol (IGMP) protocols, which are necessary for

basic configuration of multicast, standardized by IETF by means of some RFCs [165].

With respect of application layer, also known as layer 7, some protocols have been

modelled as well. For example, FTP, which is a protocol to transfer files from a

server to a client, standarized by IETF on some RFCs [164]. Moreover, HTTP,

which is the key player protocol regarding Internet browsing and RESTful applica-

tions, standarized by IETF on some RFCs [180]. Furthermore, MQTT, which is a

message service protocol based on pub-sub paradigm, standardized by Organization

for the Advancement of Structured Information Standards (OASIS) and being the

most popular at this point for IoT devices [188].

On the other hand, ABP protocol has been extended to include some timing con-

strictions, in an attempt to study how its behaviour may vary, according to its tradi-

tional way. Besides, faulty channels have been included in both directions in order to

make it more realistic. Putting all together, manual algebraic derivations have been

performed to give a better understanding [162].

In conclusion, ACP syntax and semantics are going to be be used in this work, along

with its set of axioms, to undertake manual derivations in order to model distributed

hosts being part of a fog computing environment with a given topology, specifically

their behaviour regarding live VM migrations related to moving IoT devices.

2.3 Topologies for data centres

To begin with, it is to be said that the network topology is a key factor when

designing a DC (Data Centre), as it represents how the different switches supporting

a given topology are interconnected, which further influence how far the hosts are

located to each other.

With respect to the topology to be employed, it is to be remarked that there are

many available options, going from some quite simple to others not that much. Many

features are to be taken into account, not only the performance achieved, but also

the easiness to implement, to maintain, to forward traffic or to apply load balancing

policies. Therefore, a tradeoff may be reached among all those features.
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2.3.1 Network topologies

The target in this research work is to establish formal algebraic models for DC

topologies to be applied to a fog computing environment, where the number of nodes

may be variable, as hosts could be ranging from a few to a great deal, depending

on the geographical area or the amount of traffic expected. However, it may well

be much lower than that in a cloud computing environment [157], hence the number

of hosts may usually be small to medium-sized. This fact establishes that complex

designs for DC architecture should be discarded beforehand, as they might introduce

more drawbacks than benefits, thus, more simple designs may prevail.

Therefore, to start with the interconnection topologies, the most typical ones em-

ployed in LAN connections ought to be considered [222]. The following bullet list

shows the most popular ones, along with the main features of each type [69], where

Figure 2.4 exhibits the graphical layouts for all those topologies.

• Point to point : just two nodes are connected to each other, so it does not apply

for more than two.

• Line: a string of sequential point to point links, so if a link gets down, the rest

of nodes further that link are unreachable.

• Bus : a central bus through which all traffic is sent, thus all nodes get that

traffic, making the topology inefficient.

• Ring : a central ring through which all traffic is sent, thus each intermediate

node gets that traffic, making the topology inefficient.

• Hub and spoke: a central node manages all traffic to the end nodes, making up

for logical star topology. This fits the best so as to interconnect end devices

with little computing resources.

• Full mesh: all nodes are directly connected to each other, so the distance be-

tween any two nodes is just one hop. This is the ideal situation regarding

performance, but it is not scalable, because costs grow too much as the number

of nodes rise.
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• Partial mesh: it is like a full mesh, but not all links are available. Most of them

might be seen as a graph-like topology, although in some specific cases, they

might be viewed as a tree-like topology.

– Tree: it is a hierarchical design, allowing for better organization, making

for a clear implementation, easy maintenance and load balancing options.

They may be seen as a tree-like topology, where the costs rise with the

complexity of its design.

– Graph: it is usually a flat design, with no hierarchy, allowing for a great

degree of customization. They may be seen as a graph-like topology, where

the costs grow depending on the number of links available in the design.

Bus Star

Mixed

Ring

Double
ring

Tree Mesh
Full 
mesh

Figure 2.4: Most common network topologies.

Having a look at those topologies, it is to be noted a couple of details. To start

with, the first five topologies do not possess redundancy, which may be a must when

designing a DC, as single points of failure should be avoided at all costs. Hence, for

those topologies to be adequate for DC designs may need to double each link between

any two switches so as to provide more than one path for interswitch communications
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(where two hosts are not connected to the same switch), whereas a single link is pro-

vided between each host and its connected switch (thus intraswitch communications

only have one possible path, although it might be possible to install two network

interface cards to achieve redundant paths in this case).

Furthermore, it is to be remarked that full mesh topologies present the best per-

formance, as it offers a direct link between any pair of switches, getting multiple

redundant paths regardless the destination. However, the costs of acquiring, man-

aging and maintaining such an infrastructure are usually too high, reserving it for

just pretty small critical deployments. Hence, the topology being the most popular

in real deployments is partial mesh, as implementation costs are lower at the expense

of having a limited amount of redundant paths.

The options to be considered for partial mesh designs are usually divided into two

different categories, such as tree-like and graph-like, as shown in Figure 2.5, taking into

account that topologies should be easy to deal with. Therefore, some popular options

in real DC deployments for tree-like architectures are fat tree and leaf and spine,

whereas some well-known options for graph-like architectures are N -hypercube and

folded N -hypercube. Hence, those designs are going to be more carefully revised at a

later stage. As said before, there may be other topologies offering better performance,

but designs are not as easy, and additionally, they are harder to manage, as the degree

of difficulty in forwarding algorithms grows with the complexity of the topology.

Figure 2.5: Instances of topologies with a tree-like design and a graph-like design.



Chapter 2: Main pillars and related work 39

2.3.2 Redundant topologies proposed

Taking into account the previous statements, the topologies to be studied herein

are going to be presented in the following bullet list, comparing them to their LAN

counterparts exposed above. It is to be reminded that they are all redundant topolo-

gies for switching interconnection in a DC aimed at fog computing, which implies a

small to medium amount of hosts therein. Furthermore, simple designs are imposed

in order to facilitate the modelling of message forwarding among VMs located in dif-

ferent hosts, as those designs may obtain a convenient tradeoff between the simplicity

of forwarding algorithms and the performance achieved.

• Partial mesh: like a partial mesh LAN, which includes 4 different designs.

∗ Fat tree, leaf and spine, N-hypercube and folded N-hypercube

• Full mesh: like a full mesh LAN.

• Quasi full mesh: similar to full line LAN, even though all opposite links are

missing.

• Redundant hub and spoke: similar to a star LAN, adding up a second hub for

redundancy.

• Redundant ring : like a ring LAN, adding up redundant links.

• Toroidal ring : similar to a grid LAN, adding up extra links to join outer nodes.

Apart from those, some 6 further graph-like designs are also proposed at a later

stage because of their specific features when dealing with forwarding policies. Those

may be grouped in pairs, as each couple is closely related. In this sense, de Bruijn

graph and reverse de Bruijn graph are built up in an inverse manner, whereas binary

grid and Hamming graph are constructed in an opposite fashion, whilst Petersen

graph and Heawood graph share the same principles.

Focusing on partial mesh topologies, those are the ones being implemented the

most in production environments, as they provide an interesting tradeoff between
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redundancy and complexity. There are many different design options available, al-

though the following ones are going to be studied herein in a more detailed approach:

• tree-like designs

– fat tree

– leaf and spine

• graph-like designs

– plain N-hypercube

– folded N-hypercube

Therefore, the main characteristics of all those topologies may be exposed so as to

be able to create mathematical models based on their physical behaviour at a later

stage. However, some mathematical fundamentals need to be introduced first in order

to better understand the models proposed.

2.4 Summary

In this chapter, the main pillars upon which this thesis dissertation has been built

up are being presented. The first one is cloud and fog computing, and specifically, live

VM migration among the hosts within a fog domain, where a brief story of computing

has been cited from the initial computers back in the middle of the 20th century to

the rise of cloud computing at the beginning of the 21st century and the arrival of

fog computing nowadays, along with a literature review of those stages.

The second one is modelling, and specifically, doing it by means of a process algebra

called ACP. In this sense, the most relevant FDT have been first described, following

with the selection of process algebras for modelling communication systems, and

choosing ACP as a convenient instance due to its abstract features. Furthermore, a

review of literature regarding the application of FDT to the modelling of some aspects

of IoT/fog environments have also been exhibited.
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The third one is topologies, and specifically, those being applied to small to medium

size DC, as fog environments are not dedicated to a big amount of users and traffic

flows. The study on DC topologies is going to be completed in chapter 4 with a review

on the most common of those in fog ecosystems. However, at an earlier stage, chapter

3 introduces some mathematical foundations related to geometry, trees, graphs and

topology, which are needed in chapter 5 to construct the most appropriate models for

each of the DC topologies described in chapter 4.

Therefore, those three pillars are going to act as the building blocks to develop

this thesis dissertation.
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Chapter 3

Regular N-polytopes, trees, graphs

and tori applied to data centres

Fog deployments account for the implementation of basic DC designs, which might get

modelled by means of certain geometrical shapes. Some of them are quite straight-

forward, such as the segment, the star or the torus. However, when dealing with

any type of mesh topology, multidimensional geometry may come into play by using

specific types of convex regular N -polytopes.

Therefore, some concepts about geometry are going to be exposed, not only about

multidimensional geometry, but also regarding trees, graphs and tori shapes, in order

to get the basic foundations for presenting the models at a later stage.

3.1 N-dimensional geometry

To start with, it is to be reminded that the concept of dimension of a mathematical

object stands for the minimum number of coordinates being necessary so as to clearly

specify any of its given points.

With that in mind, in our physical world, an isolated point may be seen as an

object with no dimensions, also known as 0D. Likewise, an isolated line may be

stated as an object with only one dimension, also known as 1D. Besides, an isolated

plane may be associated as an object with just two dimensions, also known as 2D.

43
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Moreover, an isolated space may correspond to an object in three dimensions, also

known as 3D. Therefore, our physical world may be considered as three-dimensional,

because any given point therein may be fully located by quoting the measures of its

length, width and height [136].

The physical 3D space was already studied back in the ancient Greece, some

2.300 years ago, where Euclid of Alexandria wrote his book The Elements, which is

considered the cornerstone of the so-called Euclidean geometry. Basically, Euclid was

the first to assume a small system of axioms, just five of them, and from there on,

he could deduce some other propositions and theorems, hence, they may fit into a

deductive logic system, being the oldest deductive approach to Mathematics [20].

Regarding Euclid’s axioms, all of them seem to be absolute truths, and so were

any propositions and theorems being proved from them. Additionally, Euclid also

proposed a small set of postulates, just five of them, which seemed to be intuitively

obvious, where all of them were proved based on his axioms but the fifth one could

not. Basically, the fifth postulate may be stated as if there is a line and an exterior

point, there may be just one straight line passing through such a point being parallel

to such a line. Likewise, this fifth postulate may be also exposed as the sum of all

angles in any triangle is just 180◦.

However, later on in the XIX century, some mathematicians proposed other ge-

ometries where that fifth postulate did not hold, such as Gauss or Lobachevsky,

opening the door to the definition of different non-Euclidean geometries, as opposed

to Euclidean geometry, that being the one presented by Euclid.

Focusing in 2D surfaces, there may be planes with a constant value of Gaussian

curvature, or otherwise a non-constant value. If the former applies, the most well-

known case where such a value is zero stands for an Euclidean plane, thus having no

intrinsic curvature whatsoever, whereas the most typical case with a positive value

does it for an elliptic plane, where the sum of all angles of a triangle accounts for

more than 180◦, and the most representative case with a negative value does it of a

hyperbolic plane, where such a sum accounts for less than 180◦. Otherwise, if the

latter applies, Riemann manifolds apply, where all the former may also be included

as a particular subset.
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If a 3D space is considered as the intersection of two perpendicular planes, such

planes may be the same type, such a pure Euclidean, elliptic or hyperbolic spaces, or

otherwise, mixed spaces, where each of them may be of a different kind. Likewise,

the same may happen with planes with non constant value of Gaussian curvature or

anisotropic planes, where any combination is possible. Eventually, those spaces may

be extended to any given number of dimensions, where those stands for a natural

number, or even for infinite.

Focusing on Euclidean spaces, it may be said that multidimensional geometries

are the Euclidean spaces where N > 3, which may be seen as an extension of our

physical world [212]. Generically speaking, a space with any number of dimensions

may be called Euclidean space if all its dimensions meet the axioms of the Euclidean

geometry. Furthermore, every type of space may be considered to behave locally as

an Euclidean space.

3.1.1 Platonic solids

There were great mathematicians dedicated to the study of geometry back in the

ancient Greece apart from Euclid, such as Pythagoras of Samos, Thales of Miletus

or Archimedes of Syracuse. However, Plato paid special attention to a bunch of

three-dimensional shapes with some particular characteristics such as being formed

with regular polygons, thus all angles are equal and so are all sides, being congruent,

thus having the same size and shape, and with the same number of polygonal faces

meeting in every node. Those special shapes were called platonic solids and accounted

for convex regular polyhedra.

Specifically, he associated those shapes to the four classical elements in his dialogue

Timaeus, such that fire was bound to the tetrahedron, Earth was attached to the cube,

air was tied to the octahedron and water was linked to the icosahedron, whilst the

dodecahedron was used to arrange the constellations in heaven. Later on, Aristotle

considered that the fifth element was ether, postulating that heaven was made of it.

There are five convex regular polyhedra, composed by a single type of congruent

convex regular polygons as their faces, which are listed with their main features in
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Table 3.1 and are shown in Figure 3.1. Those polygons are either equilateral triangles,

squares or regular pentagons.

Table 3.1: Platonic solids.

Polyhedron Polygonal faces Faces Edges Nodes
Tetrahedron Equilateral Triangles 4 6 4
Cube Squares 6 12 8
Octahedron Equilateral Triangles 8 12 6
Dodecahedron Regular Pentagons 12 30 20
Icosahedron Equilateral Triangles 20 30 12

Figure 3.1: Platonic solids.

It is to be noted that there are two pairs of dual shapes, in a way that the number

of vertices of a polyhedron may match the number of faces of its dual, whilst having

the same number of edges. This fact may imply that the vertices of one may be right

in the centre of the faces of the other, where any of both may the inscribed one,

and the other, the circumscribed one. On the one hand, this closely related feature

happens to the cube and the octahedron, whereas on the other hand, it also occurs

to the dodecahedron and the icosahedron.

Additionally, there is also an autodual shape, such that its number of vertices and

faces are equal. This feature implies that the vertices of it may be right in the centre

of the faces of another polyhedron of the same type. This feature does only take place

in the tetrahedron.

It is also to be pointed out that those convex regular polyhedra are all homeomor-

phic to a 2-sphere, meaning a sphere in 3D. This may be proved by using Euler ’s

characteristic (χ), which works as a topological invariant for any type of geometrical

shape, thus describing the topology of a given shape. Focusing on convex regular



Chapter 3: Regular N-polytopes, trees, graphs and tori applied to data centres 47

polyhedra, it says that the addition of the number of vertices and faces along with

the subtraction of the number of edges must be equal to 2, such as in (3.1).

χ =
N−1∑
i=0

Ni
N=3−−→

2∑
i=0

Ni = Vertices – Edges + Faces = 2 (3.1)

3.1.2 Schläfli notation

The study of multidimensional geometry is understood to have started its develop-

ment in the middle of the XIX century thanks to different authors, such as Hamilton

with the quaternions, or Graves and Cayley with the octonions. However, it may

be considerd that its foundation was established by Schläfli in his masterpiece called

Theorie der vielfachen Kontinuität [200].

Unluckily, he could not publish his work, whilst Riemann introduced the concept of

N -dimensional manifolds [160] a couple of years later, thus it remains unclear whether

both works related to higher dimensional geometry took place independently, even

though both took different approaches. It is also worth to be mentioned that in

the last decades of the XIX century, different mathematicians rediscovered Schläfli’s

results in an independent way, although it is considered that Coxeter made the best

compilation of them in the middle of the XX century [46].

Regarding Schläfli’s work in multidimensional geometry, he first studied polygons

and polyhedra so as to define their extensions for higher dimensions, along with their

corresponding properties and adapting Euler’s formula to any dimension. By the way,

he originally referred to those shapes as polyschemes, although one of his rediscoverers

back in the XIX century, called Hoppe, first coined the term polytope, which is the

one being used nowadays. This way, focusing on regular polygons and platonic solids,

the generalised N -dimensional extension of them may be called regular polytopes or

regular N-polytopes.

Additionally, Schläfli came up with a special nomenclature to classify and provide

some key properties of any regular N -polytope, which is called either Schläfli notation

or Schläfli symbol. This has the form {p, q, r, · · · , y, z}, having as many variables as

N −1, where N is the dimension of the shape [214]. It is to be said that this notation
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gives information about its types of regular facets and its kinds of regular peak figures

(items incident on a facet), the former going from the (N −1)-dimensional one down-

wards and the latter does from the 0D figure upwards. Besides, all facets and peak

figures are alike everywhere in a regular N -polytope, resulting in congruent regular

facets and congruent regular peak figures for each type extracted from notation.

Therefore, if a regular polytope is defined by the Schläfli symbol {p, q, r, · · · , x, y, z},
it means that it is made up by regular {p, q, · · · , y} as (N−1)-facets, regular {p, · · · , x}
as (N − 2)-facets, and so on up to {p} as faces (2D), whilst {} stands for edges (1D),

whose type is obviously unique, whereas it shows {q, r, · · · , y, z} as its vertex figure,

{r, · · · , y, z} as its edge figure, and so on up to {z} as its (N − 3)-facet figure, whilst

{} stands for its (N − 2)-facet figure. Alternatively, it may be said that there are

z {p, q, · · · , y} (N − 1)-facets around each (N − 3)-facet of a regular N -polytope.

Furthermore, Schläfli symbol may be seen as a recursive description, as a regular

N -polytope may be built up using regular k-facets, where k = [0 · · ·N−1]. This way,

k = 0 stands for vertices, k = 1 does it for edges, k = 2 goes for faces, k = 3 means

cells, and so on. For instance, {p} defines a regular 2-polytope where obviously there

are just one face {p}, {p, q} defines a regular 3-polytope where the type of faces are

{p} and with a vertex figure {q}, {p, q, r} defines a regular 4-polytope where cells are

{p, q}, faces are {p}, edge figures are {r} and vertex figures are {q, r}, and so on.

3.1.3 Regular polygons

To start with the 1D Euclidean space, the Schläfli symbol of any segment might

be considered as an empty string enclosed into curly braces, such as {}, because that
symbol may have N − 1 variables, which happens to be 0 variables. On the other

hand, it implies that there is only one possible type of shape in 1D, which stands for

the segment, regardless its length.

Moving on to the 2D Euclidean space, the Schläfli symbol of any regular polygon

may be represented by just one variable. Regarding convex regular polygons of {p}
edges, the Schläfli symbol may be just {p}, that being a natural number going from 3

upwards so as to achieve a closed polygon. For instance, {3} represents an equilateral
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triangle, {4} does it for a square, {5} for a regular pentagon, {6} for a regular hexagon,
and so on. Basically, expression (3.2) exhibits this condition, whereas Figure 3.2 shows

some of them. Obviously, all polygons have the same number of vertices and edges.

∀p ∈ N / p ≥ 3 (3.2)

{3} {4} {5} {6} {7} {8}

Figure 3.2: Convex regular polygons.

Otherwise, with respect to star regular polygons, they have p spokes whereas the

number of times it winds around its center to built up the star is given by m, also

known as the vertex interval step to get the star done. In such cases, the Schläfli

symbol may be just {p/m} where the fraction may result in a quotient strictly higher

than two, and at the same time, it may be irreducible, meaning that both values may

be coprime. For instance, {5/2} shows for a pentagonal star, or {7/2} and {7/3}
makes it for two different sorts of heptagonal stars.

It is to be said that regular compound polygons appear when the coprime con-

dition is not fulfilled, such as in the case of a hexagonal star {6/2} or one kind of

octogonal star {8/2}, even though sometimes they are branded as ’improper’ star

regular polygons. Nonetheless, expression (3.3) exhibits the necessary conditions for

achieving a proper star regular polygon, whilst Figure 3.3 shows some of them.

⎧⎨
⎩
∀p ∈ N /

p

m
> 2

p,m coprime
(3.3)

Furthermore, if the aforesaid first condition is brought to the limit, in this case a

line segment is attained, which might be seen as a degenerated star regular polygon.

That segment line may be seen as a regular linear tiling of a 1D Euclidean space, as an

infinite number of such any segment may completely tessellate any given line, which is
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{5/2} {7/2} {7/3} {8/3}

Figure 3.3: Star regular polygons.

homeomorphic to the Euclidean space for N = 1, also known as the real number line.

Hence, expression (3.4) exhibits that condition, even though the coprime condition

does not apply, where Figure 3.4 depicts the tiling. Some examples are {4/2}, {6/3}
or {8/4}, even though any fraction {p/m} where p is twice m may be a solution.

∀p ∈ N /
p

m
= 2 (3.4)

TILE

0 +  -  

Figure 3.4: Regular tessellation of the 1D Euclidean line.

3.1.4 Regular polyhedra

Moving next to the 3D Euclidean space, the Schläfli symbol for any regular poly-

hedron may be represented by two variables. Concerning convex regular polyhedra,

which happens to be the platonic solids, variable {p} indicates the type of convex

regular polygons making for their faces, also known as 2-facets, whereas variable {q}
does for the amount of faces meeting at each vertex, or alternatively, their vertex

figure. Thus, the Schläfli symbol may be {p, q}, where both values need to be natural

numbers. However, not all combinations are allowed, as both conditions stated in

(3.5) must be met. Furthermore, Table 3.2 presents the Schläfli notation for each of

the five platonic solids.
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⎧⎪⎨
⎪⎩
1

p
+

1

q
>

1

2
, ∀p, q ∈ N

{p}, {q} ⊂ regular polygons

(3.5)

Table 3.2: Convex regular polyhedra in Schläfli notation.

Polyhedron Polygonal faces {p} {q} {p,q}
Tetrahedron Equilateral Triangles {3} {3} {3, 3}
Cube Squares {4} {3} {4, 3}
Octahedron Equilateral Triangles {3} {4} {3, 4}
Dodecahedron Regular Pentagons {5} {3} {5, 3}
Icosahedron Equilateral Triangles {3} {5} {3, 5}

Otherwise, with regards to star regular polyhedra, also known as Kepler-Poinsot

polyhedra, are obtained if either {p} or {q} are a pentagonal star, whose Schläfli

notation happens to be {5/2}, and the other value is either {3} or {5}, so as to

deal with a dodecahedron or an icosahedron. The first condition proposed for their

convex counterpart may apply, which gets restricted to expression (3.6), thus limiting

the possible combinations to four shapes, which are presented in Table 3.3 and are

depicted in Figure 3.5.

Any other star regular polygon would not meet the conditions established above,

meaning that a closed shape is not obtained by using any other values. On the other

hand, regarding the four available star regular polyhedra, {p} may represent the type

of faces, whilst {q} may show the vertex figure.

1

p
+

1

q
>

1

2
,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p = 3, 5; q = 5/2

OR

p = 5/2; q = 3, 5

(3.6)

Furthermore, those four star regular polyhedra are dual in pairs, as it may be seen

in Table 3.4, although it also may be seen in the previous table by realizing that

Schläfli symbols are the other way around when it comes to dual polyhedra.

Moreover, taking the condition for regular polyhedra to the limit, it may be pos-

sible to find the regular polygons permitting a regular plane tiling of the whole 2D
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Table 3.3: Star regular polyhedra in Schläfli notation.

Polyhedron Polygonal faces {p} {q} {p,q}
Great dodecahedron Regular Pentagons {5} {5/2} {5, 5/2}
Small stellated dodecahedron Pentagonal stars {5/2} {5} {5/2, 5}
Great icosahedron Equilateral Triangles {3} {5/2} {3, 5/2}
Great stellated dodecahedron Pentagonal stars {5/2} {3} {5/2, 3}

{5/2, 5} {5/2, 3}{3, 5/2}{5, 5/2}

Figure 3.5: Star regular polyhedra.

Table 3.4: Star regular polyhedra and their main features.

Polyhedron Euler Characteristic Faces Edges Nodes
Great dodecahedron χ = −6 12 30 12
Small stellated dodecahedron χ = −6 12 30 12
Great icosahedron χ = 2 20 30 12
Great stellated dodecahedron χ = 2 12 30 20

Euclidean plane. The condition is exhibited in (3.7), and there are only three possible

solutions, in which {p} stands for the type of face and {q} does it for the number of

such shapes surrounding each of the vertices, which may also be referred to as the

vertex figure.

The first one is {6, 3}, also known as hexagonal tiling, meaning that three regular

hexagons may meet at each vertex. The second one is {4, 4}, also known as square

tiling, where four squares meet at each vertex. And the third one is {3, 6}, also known
as triangular tiling, where six equilateral triangles meet at each vertex.
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Those regular tessellations offer both translational and rotational symmetry with

a unique regular polygon for a 2D Euclidean space. It is to be mentioned that

Penrose proposed an aperiodic tessellation mainly based on regular pentagons, offering

rotational symmetry but not translational one, like the structure of a quasicrystal [78].

However, other types of shapes had to be included in order to get the tessellation of

the whole Euclidean plane, hence, it may not be considered as a regular tiling. Thus,

Figure 3.6 shows the only regular tessellations available for the 2D Euclidean space.⎧⎪⎨
⎪⎩
1

p
+

1

q
=

1

2
, ∀p, q ∈ N

{p}, {q} ⊂ regular polygons

(3.7)

{3,6}{4,4}{6,3}

Figure 3.6: Regular tessellation of the 2D Euclidean plane.

3.1.5 Regular polychora

Moving ahead to the 4D Euclidean space, the Schläfli notation for any regular

polychoron may need to be represented by three variables. Looking at convex regular

polychora, variables {p, q} determine the kind of polyhedral cells it possess, variable

{p} indicated the sort of polygonal faces each cell is made of, variable {r} designates
the edge figure and variables {q, r} states for the vertex figure. Hence, the Schläfli

symbol may be {p, q, r}, where all values must be natural numbers, and besides, the

conditions stated in (3.8) has to be met. Additionally, Tables 3.5 and 3.6 present the

Schläfli notation for all six possible combinations.⎧⎪⎨
⎪⎩
sin

π

p
+ sin

π

r
− cos

π

q
> 0 , ∀p, q, r ∈ N

{p, q}, {q, r} ⊂ regular polyhedra

(3.8)
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Table 3.5: Convex regular polychora in Schläfli notation (I).

Name Alternative name {p,q, r}
Pentachoron 4-simplex {3, 3, 3}
Tesseract 4-hypercube {4, 3, 3}
Hexadecachoron 4-orthoplex {3, 3, 4}
Icositetrachoron 24-cell {3, 4, 3}
Hecatonicosachoron 120-cell {5, 3, 3}
Hexacosichoron 600-cell {3, 3, 5}

Table 3.6: Convex regular polychora in Schläfli notation (II).

Polychoron {p,q} {p} {r} {q, r} {p,q, r}
4-simplex {3, 3} {3} {3} {3, 3} {3, 3, 3}
4-hypercube {4, 3} {4} {3} {3, 3} {4, 3, 3}
4-orthoplex {3, 3} {3} {4} {3, 4} {3, 3, 4}
24-cell {3, 4} {3} {3} {4, 3} {3, 4, 3}
120-cell {5, 3} {5} {3} {3, 3} {5, 3, 3}
600-cell {3, 3} {3} {5} {3, 5} {3, 3, 5}

It is to be observed that a 4-simplex (also known as 5-cell) is bounded of 5 tetra-

hedral cells ({p, q}), with 3 of them joining together around each edge ({r}). With

respect to the 4-hypercube (also known as 8-cell), it is limited by 8 cubic cells, with

3 of them located around each edge. With regards to the 4-orthoplex (also known as

16-cell), it is enclosed by 16 tetrahedral cells, with 4 of them surrounding each edge.

Furthermore, a 24-cell is bounded by 24 octahedral cells, with 3 of them limiting

each of the edges, a 120-cell is limited by as many dodecahedral cells, with 3 of them

meeting at each of the edges, and a 600-cell is surrounded by as many tetrahedral

cells, with 5 of them meeting at every edge.

Otherwise, regarding star regular polychora, also known as Schläfli-Hess polychora,

they are possible only with star regular polyhedra involved, thus, the value of 5/2 may

be involved in some way, along with the values of 3 and 5, apart from the fulfillment

of the requirements given in (3.9), taken from their convex regular counterparts.

There are just 10 combinations available, even though other solutions are available,

because some of those solutions do not form a finite figure, so they have to be rejected.
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Therefore, the resulting star regular polychora are presented in Table 3.7, where the

different Schläfli symbols for each figure may be appreciated.⎧⎪⎨
⎪⎩
sin

π

p
+ sin

π

r
− cos

π

q
> 0 , ∀p, q, r ∈ 3, 5,

5

2

{p, q}, {q, r} ⊂ regular polyhedra

(3.9)

Table 3.7: Star regular polychora in Schläfli notation.

Polychoron {p,q} {p} {r} {q, r} {p,q, r}
Icosahedral 120-cell {3, 5} {3} {5/2} {5, 5/2} {3, 5, 5/2}
Small stellated 120-cell {5/2, 5} {5/2} {3} {5, 3} {5/2, 5, 3}
Great 120-cell {5, 5/2} {5} {5} {5/2, 5} {5, 5/2, 5}
Grand 120-cell {5, 3} {5} {5/2} {3, 5/2} {5, 3, 5/2}
Great stellated 120-cell {5/2, 3} {5/2} {5} {3, 5} {5/2, 3, 5}
Grand stellated 120-cell {5/2, 5} {5/2} {5/2} {5, 5/2} {5/2, 5, 5/2}
Great grand 120-cell {5, 5/2} {5} {3} {5/2, 3} {5, 5/2, 3}
Great icosahedral 120-cell {3, 5/2} {3} {5} {5/2, 5} {3, 5/2, 5}
Grand 600-cell {3, 3} {3} {5/2} {3, 5/2} {3, 3, 5/2}
Great grand stellated 120-cell {5/2, 3} {5/2} {3} {3, 3} {5/2, 3, 3}

Besides, bringing the condition for regular polychora to the limit allows to find

out the regular polyhedra necessary to achieve a regular cubic tiling of the whole 3D

Euclidean space. That condition is given in (3.10), and there is only one possible

solution, that being {4, 3, 4}. In that case, {p, q} represents the type of cell, which

happens to be a cube, and {r} does it for the number of those being around each

edge, as well as the edge figure. Moreover, Figure 3.7 shows such a cubic tessellation

for the 3D Euclidean space.⎧⎪⎨
⎪⎩
sin

π

p
+ sin

π

r
− cos

π

q
= 0 , ∀p, q, r ∈ N

{p, q}, {q, r} ⊂ regular polyhedra

(3.10)

3.1.6 Regular polytera

Moving on to the 5D Euclidean space, the Schläfli notation for any regular poly-

teron may take four variables. Putting the focus on convex regular polytera, variables
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Figure 3.7: Regular tessellation of the 3D Euclidean space.

{p, q, r} show the type of convex regular polychoron forming the shape, variables

{p, q} give for the sort of convex regular polyhedral cells making for each polychoron,

variable {p} indicates the kind of convex regular polygonal faces building up each

polyhedra, whereas variable {s} shows the face figure, variables {r, s} give the edge

figure and variables {q, r, s} indicates the vertex figure.

Therefore, the Schläfli symbol may be {p, q, r, s}, where all values must be natural

numbers, and moreover, the conditions stated in (3.11) has to be fulfilled. Addition-

ally, Table 3.8 present the Schläfli notation for the only three possible combinations,

making up for the hexateron, also known as 5-simplex, the penteract, also known as

5-hypercube, and the pentacross, also known as 5-orthoplex.

⎧⎪⎪⎨
⎪⎪⎩
cos2 π

q

sin2 π
p

+
cos2 π

r

sin2 π
s

< 1 , ∀p, q, r, s ∈ N

{p, q, r}, {q, r, s} ⊂ regular polychora

(3.11)

Table 3.8: Convex regular polytera in Schläfli notation.

Polyteron {p,q, r} {p,q} {p} {s} {r, s} {q, r, s} {p,q, r, s}
5-simplex {3, 3, 3} {3, 3} {3} {3} {3, 3} {3, 3, 3} {3, 3, 3, 3}
5-hypercube {4, 3, 3} {4, 3} {4} {3} {3, 3} {3, 3, 3} {4, 3, 3, 3}
5-orthoplex {3, 3, 3} {3, 3} {3} {4} {3, 4} {3, 3, 4} {3, 3, 3, 4}
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Otherwise, respecting star regular polytera, there are not any instance available,

in a way that no type of star regular polychora may be the foundation to build up

any such a star regular polytera. In other words, it is not possible to meet both the

conditions exposed in (3.12).

⎧⎪⎪⎨
⎪⎪⎩
cos2 π

q

sin2 π
p

+
cos2 π

r

sin2 π
s

< 1 , ∀p, q, r, s ∈ 3, 5,
5

2

{p, q, r}, {q, r, s} ⊂ regular polychora

(3.12)

Additionally, moving the condition for regular polytera to the limit may permit to

find out the regular polychora to attain a regular four-dimensional tiling of the whole

4D Euclidean space. Such a condition is given in (3.13), and there are three solutions

available, such that {4, 3, 3, 4}, {3, 3, 4, 3} and {3, 4, 3, 3}, where each of them is valid

to obtain a complete regular four-dimensional tessellation of the 4D Euclidean space.

⎧⎪⎪⎨
⎪⎪⎩
cos2 π

q

sin2 π
p

+
cos2 π

r

sin2 π
s

= 1 , ∀p, q, r, s ∈ N

{p, q, r}, {q, r, s} ⊂ regular polychora

(3.13)

3.1.7 Regular N-polytopes

Generalizing a higher-dimensional Euclidean space where N>5, it is clear that only

3 types of convex regular polytopes are possible, as no other type of shape is allowed in

the 5D Euclidean space. Therefore, the Schläfli notation for any given convex regular

polytope available for N ≥ 5 is listed in Table 3.9.

Table 3.9: Convex regular N -polytopes in Schläfli notation (N ≥ 5).

Regular N-polytope Schläfli notation
N -simplex {3, 3, · · · , 3, 3}
N -hypercube {4, 3, · · · , 3, 3}
N -orthoplex {3, 3, · · · , 3, 4}

It is to be said that N -simplices may also be called regular simplices, whereas N -

hypercubes are also known as measure polytopes, whilstN -orthoplexes are also named
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as cross polytopes. On the other hand, Schläfli symbols may give some information

about the duality of regular polytopes, in a way that two shapes are dual if their

Schläfli notations are just flipped around. Besides, it is to be reminded that the dual

of the dual is the original one.

This is the case of the measure polytope and the cross polytope of the same di-

mension, which means that one of them may has its i-dimensional facets in the same

place where its dual one has its (N − i)-dimensional facets. Otherwise, the regular

simplices are autodual or self-dual, as they are the dual of themselves, which also may

show in the Schläfli symbol being read the same way either forwards of backwards.

Additionally, regarding the Euler’s characteristic previously exposed for 3D spaces,

Schläfli got it generalized for any convex regular polytope of dimension N , which is

shown in (3.14).

χ =
N−1∑
i=0

Ni = N0 −N1 +N2 −N3 · · · = 1− (−1)N (3.14)

This expressions happens to give χ = 2 if N is odd, whereas χ = 0 if N is even,

even though it just happens with any shape being homeomorphic to a topological

(N − 1)-sphere.

Eventually, the three different kinds of mesh topologies (namely full mesh, quasi

full mesh and some types of partial mesh) are going to be related to the three convex

regular N -polytopes, showing the curious relationships among them regarding the

number of nodes and the number of links.

3.1.7.1 N-simplex: k-facets

With respect to the N -simplex, it may be said that each node has a connection to

all of the rest, regardless the dimension, as it may be shown in Figure 3.8.

On the other hand, it is to be reminded that in set theory, the set including all

faces of a given polytope also contains the polytope itself, as well as the empty set,

which is assigned a dimension of −1, just for consistency reasons. Hence, for any

N -dimensional polytope, the scope of dimensions may include all dimensions ranging
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2-simplex1-simplex 4-simplex3-simplex

Figure 3.8: N -simplex shapes for lower dimensions.

from −1 ≤ k ≤ N . Thus, the meaning of the k-facets corresponding to the lower

values of k are listed in Table 3.10.

Additionally, it is to be noted that the values of the k-facets for k = −1 and k = N

are always 1. As per the former, the boundary of a point, which is 0D, is the empty

set, which is considered as −1D, because all N -polytopes have (N − 1)-dimensional

boundaries, whereas the latter accounts for the N -polytope itself.

Table 3.10: Meaning of k-facets.

Value of k Geometrical item Dimensions of that item
−1 ∅ (empty set) –1
0 nodes 0
1 edges 1
2 faces 2
3 cells 3
4 polychora 4
5 polytera 5

Therefore, the values for the different k-facets of an N -simplex for a given dimen-

sion N are obtained by expression (3.15), through the use of combinatory calculations.(
N + 1

k + 1

)
=

(N + 1)!

(k + 1)!× (
(N + 1)− (k + 1)

)
!

(3.15)

It is to be noticed that the same result may be obtained either through the aforesaid

expression, or otherwise, by spotting the value located in the (N +1)-th row and the

(k+1)-th column of the Pascal’s Triangle [116]. Anyway, the values obtained for the

k-facets related to some N -simplex shapes are presented in Table 3.11.
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Table 3.11: Amount of k-facets present in each N -simplex.

Dim. Name k = −1 k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

N -
(
N+1
0

) (
N+1
1

) (
N+1
2

) (
N+1
3

) (
N+1
4

) (
N+1
5

) (
N+1
6

)
−1 empty set (∅) 1 N/A N/A N/A N/A N/A N/A
0 point 1 1 N/A N/A N/A N/A N/A
1 segment 1 2 1 N/A N/A N/A N/A
2 triangle 1 3 3 1 N/A N/A N/A
3 tetrahedron 1 4 6 4 1 N/A N/A
4 4-simplex 1 5 10 10 5 1 N/A
5 5-simplex 1 6 15 20 15 6 1

By looking at the results obtained, it is easy to spot that the values corresponding

to each row are just the sequence of values in the whole (N+1)-th row of the Pascal’s

Triangle, and that is because the expressions to find out both match. Otherwise, it

is easy to see that the values in a single row are palindromic, as the same sequence is

attained from left to right than from right to left, thus proving that the N -simplex is

autodual, as previously stated.

3.1.7.2 N-hypercube: k-facets

With regards to the N -hypercube, it may be said that each node has a connection

to N neighbours, each one in a different dimension, as it may be shown in Figure 3.9.

Hence, the amounts of the diverse k-facets within an N -hypercube for a particular

dimension N are given by expression (3.16) by undertaking combinatory calculations.

2N−k ×
(
N

k

)
= 2N−k × N !

k!× (N − k)!
(3.16)

As in the previous case, the combinatory calculations may be made either by using

the expression C(N, k) = N !/k!·(N−k)!, or otherwise, by looking at the proper cell in

the Pascal’s Triangle to obtain the combinatory expression. Such values obtained for

the k-facets related to some N -hypercube shapes are exhibited in Table 3.12.

By taking a look at the results, and knowing that the N -hypercube is dual with

the N -orthoplex, it may be easy to imagine the values to be obtained for it.
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1-hypercube 2-hypercube 3-hypercube 4-hypercube

Figure 3.9: N -hypercube shapes for lower dimensions.

Table 3.12: Amount of k-facets present in each N -hypercube.

Dim. Name k = −1 k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

N - 2N+1
(
N
−1
)

2N
(
N
0

)
2N−1

(
N
1

)
2N−2

(
N
2

)
2N−3

(
N
3

)
2N−4

(
N
4

)
2N−5

(
N
5

)
−1 empty set (∅) 1 N/A N/A N/A N/A N/A N/A
0 point 1 1 N/A N/A N/A N/A N/A
1 segment 1 2 1 N/A N/A N/A N/A
2 square 1 4 4 1 N/A N/A N/A
3 cube 1 8 12 6 1 N/A N/A
4 4-hypercube 1 16 32 24 8 1 N/A
5 5-hypercube 1 32 80 80 40 10 1

3.1.7.3 N-orthoplex: k-facets

Regarding the N -orthoplex, it may be said that each node has a connection to all

its neighbours, except for its opposite one, no matter the dimension, as it may be

depicted in Figure 3.10.

Thus, the values corresponding to the k-facets within an N -orthoplex for a given

dimension N are attained by expression (3.17) thanks to combinatory calculations.

2k+1 ×
(

N

k + 1

)
= 2k+1 × N !

(k + 1)!× (
N − (k + 1)

)
!

(3.17)

As stated before, the combinatory calculations may be undertaken by either of

both methods exposed in the N -hypercube. Anyway, those values attained for the

k-facets related to some N -orthoplex shapes are depicted in Table 3.13.
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2-ortoplex 3-ortoplex 4-ortoplex1-orthoplex

Figure 3.10: N -orthoplex shapes for lower dimensions.

Table 3.13: Amount of k-facets present in each N -orthoplex.

Dim. Name k = −1 k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

N - 20
(
N
0

)
21
(
N
1

)
22
(
N
2

)
23
(
N
3

)
24
(
N
4

)
25
(
N
5

)
26
(
N
6

)
−1 ∅ 1 N/A N/A N/A N/A N/A N/A
0 point 1 1 N/A N/A N/A N/A N/A
1 segment 1 2 1 N/A N/A N/A N/A
2 square 1 4 4 1 N/A N/A N/A
3 octahedron 1 6 12 8 1 N/A N/A
4 4-orthoplex 1 8 24 32 16 1 N/A
5 5-orthoplex 1 10 40 80 80 32 1

By comparing the results obtained for the N -orthoplex with those achieved for the

N -hypercube, it is clear that both shapes are the dual of each other, as the values

attained for a certain dimension in one shape are the same in the other one, but

ordered the other way around.

3.2 Tree-like data structures

Tree-like structures have many utilities in mathematics and computer science, such

as being the foundation of different applications, going from building up decision trees

in statistics and probability to designing DC architectures. Therefore, it may be useful

to review some of their main features [211].
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3.2.1 Abstract data types

Abstract Data Types (ADTs) are logical descriptions on how data are viewed,

putting the focus on what those data are representing and their sets of behaviours,

no matter how they are implemented. ADTs provide a level of abstraction around the

actual data, creating a sort of encapsulation around them, thus acting as an interface

between the user and the real data.

Furthermore, the term abstract relates to hiding low-level details by using high-

level ideas, thus providing only the essentials. To do so, an ADT defines the behaviour

of an object or entity by a set of values (attributes) and a set of operations (methods),

leaving aside the details of its physical implementation. Additionally, ADTs furnish

modularity, thus allowing the replacement of any part without affecting the rest.

Some ADTs provide linear relationships, such as stacks, queues, lists or sets, but

oftentimes more complex relationships are necessary, such as hierarchical structures

in trees or flat designs in graphs, in order to define a wide range of structures as

different as file directories, decision processes or taxonomies.

3.2.2 Vocabulary about trees

It may be necessary to define some key words regarding the use of trees:

– Node: any entity being part of the tree (also known as vertex)

– Edge: any connection between two nodes (also known as arcs or links)

– Root: the single node being the highest in the tree

– Child: a node directly connected to another one, getting away from the root

– Parent: a node directly connected to another one, getting closer to the root

– Leaf: a node without any child (also known as external node)

– Internal node: a node with children

– Sibling: a collection of nodes having the same parent
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– Common Ancestor: a common node for two other given nodes

– Path: the string of nodes to go from one initial node to one final node

– Depth: the path length from the root down to a given node

– Height: the path length from a given node up to the root

– Layer: the set of nodes being at the same depth

Regarding trees as hierarchical ADTs with no loops, the arity may be considered

as the maximum number of children allowed per node. Putting aside the 1-ary tree,

which may be seen as a degenerated tree, behaving just like a list or a daisy chain,

the simplest tree may be considered the 2-ary tree, also known as a binary tree. It

is to be said that this is the kind of tree being studied the most for its simplicity, as

trees with greater arity may be considered just as extensions of it.

There are different designs when it comes to distributing the nodes in a tree,

although the most typical one is trying to fill it up evenly throughout all layers.

However, that depends on the number of nodes available, thus, the following cases

may be observed:

- full binary trees, which are defined as the ones having just two children for every

single node, except for the leaves, which obviously have none

- complete binary trees, whose difference with the former is that all leaves hanging

out of a single node are at the same level

- full and complete binary trees, also known as perfect binary tree, whose difference

with the above is that all leaves are at the lowest depth, this is, at height zero

Therefore, full and complete binary trees are going to be the preferred choice

when deploying a tree on a resource optimization basis, meaning the allocation of the

greatest amount of nodes within the minimum amount of layers.
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3.2.3 Structural induction

Whilst mathematical induction is applied on natural numbers, it may be gener-

alized to recursively defined structures by means of structural induction [34]. Their

principles are similar, as both are based on two fundamental facts, such as an Induc-

tive Basis and an Inductive Step. However, mathematical induction is built around

the existence of an initial number 0 and a unique successor n + 1 for every single

number n, whereas structural induction is founded on a minimal element being the

initial one and a well-ordered partial order relation.

Structural induction is used to prove properties about a set of objects defined in a

recursive manner, such as a set T of trees. For that matter, the two steps cited above

apply, such as the following:

- First, show that the claim holds for the Basis Step of the definition of T

- Then, for the recursive cases of T ’s, namely Recursive Step, show that if the

claim holds for all objects being part of a new one, then it also holds for it

Therefore, a proof by structural induction requires that every member of any recur-

sively defined set has some particular property, which may be proved by first verifying

it for the simplest elements, and in turn, for each way of building up complex elements

out of simpler ones.

3.2.4 Binary trees

A set B of Binary trees may be defined in a recursive way as follows [37]:

• A tree with a single node r is inside B

• If r is a node and T1 and T2 are disjoint binary trees, this is, T1 ∈ B and T2 ∈ B,

then, the tree T = (r, T1, T2) is also a binary tree, this is, T is inside B. T may

be seen as a tree with root r, where r has the tree T1 as left child and the tree

T2 as right child
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After having defined binary trees, properties on such trees may be proofed by using

structural induction, such as following the aforementioned definition of a tree.

- Proposition P: The number of nodes |V | of a non-empty binary tree T is the

number of its edges |E| plus one, such that |V | = |E|+ 1

- Proof:

1. Basis Step: If T consists of a single root node r, then, by definition, |V | = 1

and |E| = 0, so P (r) holds

2. Recursive Step: If the vertex and edge sets of binary subtrees T1 and T2

are denoted by V1, E1, V2, E2, and assuming that both are already defined,

then P (T1) and P (T2) hold.

Therefore: |V | = |V1| + |V2| + 1 = (|E1| + 1) + (|E2| + 1) + 1 = (|E1| +
|E2|+ 2) + 1 = |E|+ 1

3. So, P (T ) holds

The aforesaid proposition proves that a given binary tree keeps all its nodes in-

terconnected, hence, there may always be an available path between one source node

and another destination node, and as a consequence, any given pair of leaves in a

binary tree will have at least one path between them.

Taking that proposition into consideration, some functions may be also defined in

order to further reason about trees and its properties, such as | · | : B → N, returning

the number of nodes being part of a binary tree, thus building up a relationship

between binary trees and natural numbers.

* Definition of | · | : B → N:

i) |r| = 1

ii) |(r, T1, T2)| = 1 + |T1|+ |T2|

Additionally, another function may be defined, such as h : B → N, giving back the

height of that tree.
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* Definition of h : B → N:

i) h(r) = 0

ii) h(r, T1, T2) = 1 + max(h(T1), h(T2))

With all that in mind, another proposition may be proofed by structural induction

relating both the number of nodes and the height of a tree. Specifically, it sets the

upper bound for the number of nodes |T | within a tree of height h(T ), which is the

case of a full and complete binary tree.

- Proposition P: ∀T ∈ B : |T | ≤ 2h(T )+1 − 1

- Proof:

1. Basis Step: If T consists of a single root node r, then, by definition, |r| = 1,

thus h(r) = 0, hence it is clear that |r| ≤ 2h(r)+1 − 1

2. Recursive Step: If T = (r, T1, T2), then T1 and T2 are both part of T , thus

it may be assumed that |T1| ≤ 2h(T1)+1 − 1 and |T2| ≤ 2h(T2)+1 − 1. Hence:

|T | = |(r, T1, T2)|
= 1 + |T1|+ |T2|
≤ 1 + 2h(T1)+1 − 1 + 2h(T2)+1 − 1

≤ 2× 2max(h(T1,h(T2))+1 − 1

= 2× 2h(T ) − 1 = 2h(T )+1 − 1

3. So, P (T ) holds

The aforesaid proposition proves that the number of nodes of a perfect binary tree

is just that amount, as it may be checked out in Figure 3.11. Otherwise, the leaf

nodes account for two to the power of the height of the whole tree, whilst the non-

leaf nodes does it for the sum of all the upper layers, as it is exhibited in Table 3.14.

Additionally, it is to be noted that the number of nodes standing in a particular layer

within the perfect binary tree may be obtained by calculating two to the power of

its corresponding height. However, it is to be reminded that binary trees might not
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always be full and perfect, and in such cases, the values obtained might differ from

the aforesaid mentioned.

Figure 3.11: Perfect binary tree with height 3.

Table 3.14: Number of nodes in a perfect binary tree of height h.

Overall nodes Leaf nodes Non-Leaf nodes

2h(T )+1 − 1 2h(T ) 2h(T ) − 1

3.2.5 M-ary trees

Taking the definition of a binary tree as a base case scenario, it may well be

extended to a set M of M -ary trees, which may also be defined recursively in the

following way [120]:

1. A tree with a single node r is inside M

2. If r is a node and {T1, T2, · · · , TM} are disjoint M -ary trees, which may be also

expressed as {T1, T2, · · · , TM} ∈ M , then, the tree T = (r, T1, T2, · · · , TM) is

also an M -ary tree, this is, T is inside M . T may be seen as a tree with root r,

where r have trees from T1 to TM as children.

M could be any natural number, such as 3-ary for trees with a maximum of three

children, which are also known as ternary, as depicted in Figure 3.12, or 4-ary for
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trees being able to hold up to four children, which are also known as quaternary, as

shown in Figure 3.13, or any other natural number.

Figure 3.12: Perfect ternary tree with height 3.

Figure 3.13: Perfect quaternary tree with height 3.

All properties previously defined for binary trees may be adapted for M -ary trees

accordingly. Some of them remain unchanged, such as definitions of full and complete,

which may be used both in binary and M -ary trees. Additionally, the functions

defined above for getting the number of nodes or the height of a binary tree may

easily be tailored to M -ary trees by just taking into account all subtrees involved.

However, the expression giving the upper bound for the number of nodes of an

M -ary tree of height h(T ) must be adjusted, as shown in (3.18). First of all, the case

where M = 1 must be distinguished from the rest of values of M > 1 / M ∈ N in

order to avoid division by zero. It is to be reminded that such a tree may be called a

degenerated tree, as it is effectively equivalent to a list or a daisy chain. With that in

mind, the upper bound for the amount of nodes within a given M -ary tree of height

h(T ) results as follows:
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- If M = 1 → ∀T ∈M : |T | = h(T ) + 1

- If M ≥ 2 → ∀T ∈M :

|T | ≤ Mh(T )+1 − 1

M − 1
(3.18)

Hence, if M = 2, the expression proved earlier for binary trees obviously apply,

where |T | ≤ 2h(T )+1 − 1.

Additionally, if M = 3, the expression obtained is |T | ≤ (3h(T )+1−1)/2, or if M = 4,

the expression attained is |T | ≤ (4h(T )+1−1)/3, and so on.

Likewise, this expression may be tailored to calculate the leaf nodes and non-leaf

nodes according in a perfect M -ary tree by extending those previously given for the

binary tree, as seen in Table 3.15.

Table 3.15: Number of nodes in a perfect M -ary tree of height h.

Overall nodes Leaf nodes Non-Leaf nodes

Mh(T )+1−1
M−1 Mh(T ) Mh(T )−1

M−1

Hence, all conclusions obtained for binary trees regarding number of nodes and

their interconnection may be extrapolated to M -ary trees.

Eventually, some topologies associated to partial mesh, along with the hub and

spoke design, are going to be related in some way to the tree-like structures presented,

showing their different behaviour according to the layer where each item is located.

3.3 Graph-like data structures

Graph theory have many applications in computer science, such as representing

communication networks, computation flows, data structures or algorithms, as well

as being a main topic within discrete mathematics. Hence, it may be interesting to

review some of its key points.
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3.3.1 Seven bridges of Königsberg

It is considered that graph theory started back in the 18th century, where Euler

was thinking in a way to walk through the seven bridges of Königsberg, a city whose

current name is Kaliningrad, crossing each one just once and coming back to the

starting point. He came up with a solution, concluding that it was not possible to do

so [6], but along the way, he set up the basics of topology and graph theory.

The former is related to the fact that he considered just the structural properties

of the objects, and not their measures or their real shapes, thus keeping apart from

geometry, whereas the latter refers to the fact that he abstracted away from the real

features of the objects, just sticking to a set of nodes being joint together by a set of

edges (both sets being obviously disjoint), where only the presence or absence of an

edge between any pair of nodes is relevant.

Euler realized that the intermediate nodes along the path must have an even

number of incident edges, being defined as degree, as it is always needed a way out

of a node whenever you get in. Furthermore, he understood that the source and

destination nodes might be allowed to have both an odd degree, but this condition

do not meet the requirement of getting back to the starting point, concluding that

such a case was not a solution for the problem proposed.

Hence, the only valid solution may be that where all nodes have an even degree.

Unluckily, the scenario proposed showed 3 nodes with degree 3, and also 1 node with

degree 5, as seen in Figure 3.14. Therefore, it is clear that the degree in all nodes is

not even, as actually none of them are, thus there was no solution.

A D

B

C

A D

B

C

Figure 3.14: Topology of the 7 bridges of Königsberg, along with its graph.
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3.3.2 Fundamentals on graphs

Basically, a graph may be seen as a diagram composed by some nodes, along with

some edges joining certain pairs among such nodes. However, a mathematical abstrac-

tion may lead to the definition of a graph G as an ordered 3-tuple (V (G), E(G), ψG),

where the first term is a nonempty set of nodes, the second one is a set of edges, being

disjoint from the former, and the third one is the incidence function that associates

each of the edges with a pair of nodes, not necessarily being distinct [30].

It is to be mentioned that a graph is connected if there is a path between every

pair of nodes, regardless how many intermediate nodes get involved in such a path.

At this point, it is important to cite the difference between directed and undirected

graphs, where the former states a direction in the edges, in a way that, given two

ending points, paths in both ways might not be reciprocal, provoking the distinction

between indegree of a node, namely the number of arriving edges, and outdegree of a

node, namely the number of departing edges.

On the contrary, this does not apply in the latter, as the direction of the edges is

irrelevant, hence, the degree of a node is the number of edges incident with it. In this

context, it is to be noted that the number of nodes of odd degree happens to be even

in every connected graph. Furthermore, it is worth saying that the sum of degrees of

all nodes is always equal to twice the number of edges, applying to all graphs.

The difference between the aforesaid kind of graphs may be appreciated in Figure

3.15. On the right-hand side, a directed graph (V1, E1) is exhibited, where V1 =

{1, 2, 3} and E1 = {(1, 2), (1, 3), (2, 3), (3, 2)}, whilst on the left-hand side, an undi-

rected graph (V2, E2) is exposed, where V2 = {1, 2, 3} and E2 = {{1, 2}, {1, 3}, {2, 3}}.
Hence, both pictures clearly represent different graphs.

1

2
3

1

2
3

Figure 3.15: Directed -vs- undirected graphs.
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On the other hand, many definitions in graph theory are related by graphical

representations, such as two nodes being incident with a common edge are called

adjacent, and so are two edges being incident with a common node, whilst an edge

having the same nodes is called loop, or otherwise, it is called link, whereas a graph is

simple if there are no loops and there are no more than one link joining together any

given pair of nodes, or otherwise, it is known as multigraph. Additionally, regarding

2D graphs, it is to be pointed out that flat graphs are those where edges intersect

only at nodes, thus meaning that all points may be embedded on the same plane.

Besides, graphs may be weighted if each edge bears a real number associated, called

its weight. This is quite common in communication graphs, where weights account

for a metric given to each edge, which leads to propose optimization problems in

order to find a subgraph with maximum or minimum weight, such as determining the

shortest path between any two given nodes. In this sense, Dijkstra algorithm does

the job in an efficient way, by needing a polynomial time related to the number of

nodes involved, as opposed to exponential [49].

Moreover, it is to be said that, while weighted graphs assign a given label to the

edges according to any particular condition, it is also possible to associate some kind

of coloring to the nodes, where the condition might be that adjacent nodes may need

different colors. In this case, a graph is called M -colorable if M -colors may be used

to paint all nodes in order not to get two adjacent nodes in the same color, where

the minimum number needed is called chromatic number, whereas its counterpart for

edges is named chromatic index. On a regular basis, it is considered that four colors

are usually enough to cover up all nodes within a graph.

3.3.3 Eulerian and Hamiltonian graphs

Anyway, in homage to Euler, a nonempty connected undirected graph where there

are no nodes with an odd degree is named Eulerian cycle, which permits to go across

a path covering all edges just once and starting and finishing at the same node,

whereas if there are just two nodes with an odd degree, it is called Eulerian path,

which removes the constraint of returning to the start node. This brings about the
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definition of Eulerian graphs as those with a Eulerian cycle, along with Semi-Eulerian

graphs as those with a Eulerian path.

Alternatively, regarding their directed counterparts, the conditions for a Eulerian

graph are that it is balanced, meaning that the indegree and outdegree values for each

node match, and additionally it is weakly connected, stating that the underlying

undirected graph is indeed connected, which in other words means that there is a

bidirectional path between any two given nodes. Likewise, the conditions for a Semi-

Eulerian graph are the same as before, but accepting at most one node where its

outdegree is a unit higher than its indegree, along with another one where its indegree

is a unit higher than its outdegree.

On the other hand, focusing on nodes instead of edges, and regardless of whether

it is directed or undirected, a nonempty connected graph where there is a path going

through all nodes just once and starting and finishing at the same node is named

Hamiltonian cycle, whilst if the restriction to return to the starting point is lifted,

then it is called Hamiltonian path. This brings around the definition of Hamiltonian

graphs as those with a Hamiltonian cycle, as well as Semi-Hamiltonian graphs as

those with a Hamiltonian path. Furthermore, it is to be reminded that the task of

testing a graph to verify whether it is Hamiltonian is an NP-Complete problem, as

there is not a general expression to do it.

3.3.4 Geometrical graphs

When it comes to choosing a graph shape to implement a graph-like topology, many

options are available, as graphs may have any type of distribution. Nevertheless, not

all of them offer the same benefits in terms of performance or easiness of traffic

forwarding, because the features of the shape selected may influence the outcome,

hence choosing an appropriate one for a particular scenario may make a difference.

A typical option is to go for regular geometrical shapes when building up undirected

graphs, as it may bring some types of symmetry, as well as some regular layout for the

nodes and edges, including its lengths and angles. For instance, focusing on all of the

regular polytopes presented above, they may do it for relatively easy implementations,
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which bring about regular graphs, as all nodes have the same degree, and they are

also cyclic graphs, as all nodes in any given plane form a cycle. In this sense, the

same geometrical pattern is repeated in all possible cycles, even though the value of

the girth (which is defined as the shortest cycle contained inside a graph) depends on

the number of sides of the regular polygon making up for their faces.

Furthermore, it is to be taken into account that all regular polytopes are considered

to be Hamiltonian graphs, as they possess several Hamiltonian cycles for each node

due to the diverse symmetries, which allows for different traffic forwarding strategies

to be selected.

As a matter of fact, N -simplex shapes account for complete graphs, as every pair

of nodes is joined by just one edge, thus all nodes are adjacents. With respect to

N -orthoplex shapes, they are not complete, as each node is adjancent with the rest

except for its opposite, as that link is missing, even though the opposite node may be

reached directly through any of its adjacent nodes. Regarding N -hypercube shapes,

each node only has as many edges as dimensions, which allows for each node to be

adjacent to just other N vertices, although there is a number of redundant paths

available to get to any other node. Therefore, these all are going to be considered as

great options for graph designs as mesh topologies. Hence, some topologies associated

to partial mesh may be referred to as graph-like structures, shaped as N -polytopes.

3.3.5 De Bruijn graphs

On the other hand, it is to be remarked the special properties of the de Bruijn

graphs, which may be used when building up some grid network architectures. De

Bruijn research was about finding the shortest circular superstring containing all

available strings of length n within a given alphabet of length k, thus accounting for

kn overall combinations, where each of them had to be included just once [151].

The solution proposed for de Bruijn was a directed graph, which is often expressed

as B(k, n), where the B is a homage to de Bruijn. One of its main uses may be DNA

shotgun sequencing, involving the reassembling of large strings, where the alphabet is

composed by k = 4 nucleotides, known as {A,T ,C,G}, although the binary alphabet
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k = 2, being {0, 1}, may be the most commonly used in a variety of tasks, such as

sequence alignment, rotating-drum angle encoding or even breaking key-lock systems.

In this context, the strings of length n may be also called n-mers, whereas any

substring of length n − 1 may be also named (n − 1)-mers. Regarding the whole

cyclic superstring, which brings embedded every single string happening just once, it

is known as de Bruijn sequence and it may have a length kn, thus being represented

as a (kn)-mer. Actually, there are a number of different de Bruijn sequences B(k, n),

depending on the values of k and n, according to the expression (k!)k
n−1

/kn, where each

one may be rotated leftwards or rightwards.

In order to build up a de Bruijn graph, the first thing to be done is to assign each

one of the possible (n− 1)-mers to a different node. Therefore, a first (n− 1)-mer is

linked to a second (n−1)-mer so as to obtain an n-mer, where its (n−1)-prefix is the

former substring and its (n−1)-suffix is the latter substring, hence the overlapping of

two n− 1 substrings give out an n string, and the same procedure goes on to achieve

each of the available strings.

This way, the edges of such a graph constitute all possible n strings, where every

node within the directed graph may be balanced, having both an indegree and an

outdegree as the size of the alphabet, and furthermore, the underlying undirected

graph is obviously connected, thus proving that such a graph is Eulerian, meaning

that all edges are crossed only once. In other words, a Eulerian cycle representing a

shortest superstring containing every n string only once is attained.

Additionally, each de Bruijn graph with length nmay be considered the line digraph

of the length n−1 by using an identical set of symbols, where the line digraph shows a

dual representation of a direct graph, meaning that the edges in the original graph are

substituted with nodes in the dual graph, and nodes in the original one are replaced

by edges in the dual one, joining together the original adjacent edges.

This equivalence between nodes and edges through building up line digraphs pro-

voke that Eulerian graphs in the original representations may be considered as Hamil-

tonian graphs in the dual representations, resulting that de Bruijn graphs are both

Eulerian and Hamiltonian [40]. Therefore, it may be said that if a sequence B(k, n)

may be generated as a Hamiltonian cycle, then a sequence B(k, n + 1) may be done
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as a Eulerian cycle, and this also applies the other way around, such that a sequence

B(k, n) created as Eulerian, induces a sequence B(k, n− 1) as Hamiltonian.

Due to its special features, the construction of de Bruijn sequences may be op-

timized by different techniques, even though some of them are only valid to binary

alphabets and others may not be totally optimal. However, Wong proposed an effi-

cient algorithm working for any type of alphabet [234], making possible to generate

such sequences in O(1)-amortized time per symbol for any k-alphabet (bit for a binary

alphabet), thus beating out the rest of generating methods described in the literature.

Focusing on binary alphabets, thus k = {0, 1}, the method is quite straighforward,

as it just involves checking whether a given string is a necklace, which may be defined

as the lexicographically smallest string in an equivalence class of strings under rotation

[198]. Hence, the expression to obtain the next string is (3.19).

f(b1b2 · · · bn) =
⎧⎨
⎩
b2b3 · · · bnb1 if b2b3 · · · bn1 is a necklace;

b2b3 · · · bnb1 otherwise.
(3.19)

Likewise, generalizing for any k-alphabet, thus k = {0 · · · k − 1}, the aforesaid

expression gets extended, where b is the highest value for a2a3 · · · anb not being a

necklace, or 0 otherwise. Hence, the expression to attain the next string is (3.20).

fk(a1a2 · · · an) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a2a3 · · · anb if a1 = k − 1;

a2a3 · · · an(a1 + 1) if a1 �= k − 1 and a2a3...an(a1 + 1) is a necklace;

a2a3 · · · ana1 otherwise.

(3.20)

As an example of generating de Bruijn graphs for binary alphabets, let us consider

the construction of de Bruijn graphs for 3-length and 4-length words in both graphical

and algorithmic ways. The graph for the former is built up in Figure 3.16, with 23 = 8

nodes, where each one is assigned a 3-length word. This way, a Hamiltonian cycle

may be achieved by picking up the value of each node, and coming back home.

If such a starting point is 000, then a de Bruijn sequence B(2, 3) may be obtained by

taking the upper path when going rightwards and the middle path when coming back

leftwards. Alternatively, a different sequence may be attained by taking the middle
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path when going rightwards and the lower path when coming back leftwards. Hence,

the amount of different sequences is 24−3 = 2 possible distinct cycles, regardless the

rotations performed in any of them.

Focusing on the first B(2, 3) sequence described above, it goes like this: 000, 001,

011, 111, 110, 101, 010, 100, 000. Leaving out the last string for being the initial

one and taking the first bit of each string, it gives the 23-superstring 00011101 by

taking the left-most bit of each string in a sequential way, which exhibits all possible

combinations of the aforementioned strings only once by selecting each bit and the

next ones in a circular way so as to form binary strings of length 3.
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Figure 3.16: De Bruijn graph: Eulerian B(2, 4) and Hamiltonian B(2, 3).

Otherwise, a Eulerian cycle may be achieved by picking up the value of each node

along with the weight of the next edge taken, and coming back to the starting point.

If such a point is 000 and the edge taken is the loop with weight 0, making up 0000,

then a de Bruijn sequence B(2, 4) may be attained by taking the upper path when

going rightwards, then getting the whole right circumference, and in turn, making

three sides of the rectangle, next visiting the middle nodes and finally coming back

home to the initial point.

Overall, there are 28−4 = 16 possible distinct cycles, regardless the rotations. A

particular B(2, 4) sequence taking 0000 as the initial point may go like this: 0000,

0001, 0011, 0111, 1111, 1110, 1101, 1011, 0110, 1100, 1001, 0010, 0101, 1010, 0100,

1000, 0000. Skipping out the last string for being the starting one and taking the

first bit of each string, it is obtained the 24-superstring 00001111011001010, which

exhibits the whole range of combinations of 4 binary strings by following the procedure

described above for the B(2, 3) case.
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Regarding the Wong algorithm, both sequences may be easily attained, considering

that the set of necklaces for 3-length strings are {000, 001, 011, 111}, as all the other

strings may be assimilated to any of those by applying rotation, whereas for 4-length

words are {0000, 0001, 0011, 0111, 1111, 0101}. It is to be noted that a necklace may be

seen as an equivalence class where bit rotation is the equivalence relation, considering

the instance with lower numerical value as the equivalence class representative.

Necklaces are also known as a fixed necklaces, which may not be confused with

free necklaces, also known as turnover necklaces or bracelets, where the strings are

equivalent under both rotation and reflection. The calculation of how many different

necklaces and bracelets are available for the strings of length n using a k-alphabet

involves the Euler’s totient function for a given integer n, expressed as ϕ(n), which

counts the positive integers lower than n being coprime with it.

Moreover, those concepts may also be applied to n circularly connected beads of

certain colours, where k accounts for the colours available. It may be said that there

are as many as (n− 1)! necklaces and (n− 1)!/2 bracelets if all beads have a different

colour, whereas those values get reduced as the range of colours at hand grows, which

may be found out through the Pólya enumeration theorem.

Therefore, Table 3.16 shows the strings achieved by means of Wong algorithm,

which are 000, 001, 011, 111, 110, 101, 010, 100, 000. Leaving out the final string

achieved for being equal to the first one, and taking the first bit of each string in a

sequential manner, the 23-superstring obtained is 00011101, which happens to be the

same as that attained by following the Hamiltonian graph B(2, 3) presented above.

The order of the strings acquired are given by the output of the Wong algorithm

for a binary alphabet (k = 2), starting with the all-zeros string of length n. Each

given sequence, expressed by quoting its bits from left to right, such as b1b2b3, is

converted into a test sequence by adding up a bit 1 as a left bit shift, resulting in

b2b31. Afterwards, if the test sequence is a necklace, then the next sequence becomes

b2b3b1, or else, the next sequence becomes b2b3b1.

Likewise, table 3.17 shows the strings obtained by the Wong algorithm, which

are 0000, 0001, 0011, 0111, 1111, 1110, 1101, 1011, 0110, 1100, 1001, 0010, 0101,

1010, 0100, 0000. Those strings are achieved following an analogous process to the
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Table 3.16: Wong algorithm to achieve de Bruijn sequence B(2, 3).

Now: b1b2b3 Test: b2b31 Necklace? Next: YES: b2b3b1 NO: b2b3b1

000 001 Yes 001
001 011 Yes 011
011 111 Yes 111
111 111 Yes 110
110 101 No 101
101 011 Yes 010
010 101 No 100
100 001 Yes 000

previous case. Putting aside the final string for being the first one again, and taking

the first bit of each string taken in an ordered manner, the 24-superstring attained

is 0000111101100101, which is just the same one obtained by following the Eulerian

graph B(2, 4) presented above.

Sticking to de Bruijn graphs for a generic k-alphabet, expressed as B(k, n), it may

be seen that each node i connects to other k nodes, which happen to be the ones

inside the range going from [k × i] mod kn, all the way to [k × i+ (k − 1)] mod kn.

Focusing on the binary alphabet (k = 2) along with an arbitrary length of strings

(n), expressed as B(2, n), each node i only gets connected to nodes 2i mod 2n and

[2i + 1] mod 2n, which effectively corresponds to apply a left bit shift to node i in

binary, as the former injects a 0 at the least significant bit of i, whilst the latter does

it with a 1.

When using binary alphabets, the forwarding path between any pair of nodes may

be considered as left shifting one bit at a time in the source node, using as many

bits as necessary to convert it into the destination node, which ensures a maximum

path length of n hops. Therefore, de Bruijn graphs may be seen as a possible routing

strategy for network communications, and in such a case, the key point may be to find

out the largest substring of rightmost bits in the source node matching the substring

of leftmost bits with the same length in the destination node, as only the remaining

bits may have to be inserted in the source node in order to reach the destination node.
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Table 3.17: Wong algorithm to achieve de Bruijn sequence B(2, 4).

b1b2b3b4 b2b3b41 Necklace? YES: b2b3b4b1 NO: b2b3b4b1

0000 0001 Yes 0001
0001 0011 Yes 0011
0011 0111 Yes 0111
0111 1111 Yes 1111
1111 1111 Yes 1110
1110 1101 No 1101
1101 1011 No 1011
1011 0111 Yes 0110
0110 1101 No 1100
1100 1001 No 1001
1001 0011 Yes 0010
0010 0101 Yes 0101
0101 1011 No 1010
1010 0101 Yes 0100
0100 1001 No 1000
1000 0001 Yes 0000

Additionally, this approach may be extended to any k-alphabet, by left shifting one

symbol (going from 0 to k − 1) at a time, thus reaching the destination node in at

most n movements.

3.4 Torus topologies

Torus are shapes with particular mathematical characteristics from the point of

view of geometry and topology, which may be applied to the design of multiprocessor

interconnections and redundant designs in DCs [35].

3.4.1 Properties of a torus

Basically, a torus may be defined as a surface of revolution obtained when revolving

a circle, also known as 1-sphere (S1), around an axis, in a way that both geometrical

figures are located in the same plane [230]. If such an axis is exterior to the circle,

the resulting shape may be called ring torus, whereas if the axis is tangent to the
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circle, the resulting shape may be known as horn torus, or if the axis is interior to

the circle, the resulting shape may be branded as spindle torus, and even if the axis

passes through the central point of the circle, the resulting shape may be labelled as

2-sphere (S2).

Among them all, the ring torus is the most usual one, that being the external

shape of a doughnut, which is depicted in Figure 3.17, where it may be appreciated

that r1 indicates the section radius, also known as minor radius, and r2 does it for

the revolution radius, also known as major radius.

Figure 3.17: Ring torus geometry.

Topologically speaking, a ring torus may be defined as a closed surface, being the

Cartesian product of two different circles, such as S1 × S1, which may be seen as a

2-manifold with genus 1 (due to having a hole in its structure). Comparing that with

a 2-sphere, both are compact and orientable, but the latter has genus 0. Hence, it

may be said that a cup of coffee and a ring torus are both homeomorphic, as so are

a convex regular polyhedra and a 2-sphere. However, a ring torus and the 2-sphere

are not homeomorphic, for having different genus, which conveys a different Euler

characteristic (χ), or neither are a cylinder and a Möbius strip, as only the former is

orientable because the latter has a half-twist, or even neither are an (N − 1)-sphere

and an R
N space, as only the former is compact (provided that N is finite).
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It is to be remarked the difference between a 1-sphere and a 2-disk (D2), as the

former is just the boundary of the latter, meaning that S1 is a curve and D2 is the

surface comprising the circle and its interior space. Likewise, the same reasoning may

apply to the difference betweeen a 2-sphere and a ball, where the former is a surface

whilst the latter is a volume. And additionally, this also applies to a torus and a solid

torus, that being built up by the expression (S1×D2), which comprises a torus and its

interior volume. Therefore, the different pairs of items quoted are not homeomorphic,

this is, they not share the same topological properties, as the envelope of a shape does

not include the inner part of it.

The concept of torus may be extended to higher dimensions, considering that

TN = S1 × S1 × · · · × S1. This means that the ring torus may be defined as the

surface T 2 = S1 × S1, whereas the lineal torus is T 1 = S1, which is basically a circle,

or the cubic torus is T 3 = S1 × S1 × S1. This approach may be useful when dealing

with torus-like designs, as those may be customizable by tailoring those compact

N -dimensional manifolds.

It is to be pointed out that a ring torus is basically a 2D Euclidean surface, in spite

of being deployed in a 3D Euclidean space. Additionally, the definition given for T 2

accounts for the Cartesian product of two 1-spheres, each of both having 2 dimensions,

which accounts for an alternative representation as a surface in a 4D Euclidean space

called the Clifford torus. However, the 3D representation may prevail, as it is far

more intuitive.

Furthermore, Figure 3.18 reinforces the idea of a ring torus being a surface, as it

shows how to convert a square whose opposite sides are glued together, also known as

square torus or flat torus, into a ring torus in two steps. First of all, that square with

identified sides gets wrapped in and a cylinder appears, getting the first circle, and

afterwards, the cylinder is wrapped around and a ring torus shows up, getting the sec-

ond circle. The inverse transformation may also be done by first unwrapping around

the torus into a cylinder, and in turn, unwrapping it out into a square with identified

sides. Hence, it is clear that a ring torus and a square torus are homeomorphic.

As a side note, squares with oriented edges are often used in topology to describe

the features of surfaces, such as a torus, a Klein bottle, a sphere or a projective plane.
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fold it
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wrap it around

Ring Torus

Cylinderwrap it in

Figure 3.18: Forming a torus from a square.

3.4.2 Toroidal network designs

Focusing on topological network designs, it may be considered that a linear torus

is equivalent to a ring network, because of its shape of a circle, getting all devices

interconnected in a circular way. It is to be reminded that there is only one dimension

available, thus the physical layout may be along a line, even though the logical layout

may look like a circle, as the last item may have a wraparound link to the first one.

Regarding its implementation, this design usually supports only a small amount of

devices, hence, it may be reserved for simple deployments.

Moving on to a ring torus, it may seem equivalent to a squared mesh [206], or a

grid, adding up further connections at the outer devices, known as wraparound paths,

linking both external devices located in the same line, thus meeting the definition of

a ring torus. Specifically, M should be a natural number being a perfect square,

so that
√
M items may be located per each side. All nodes get connected to their

horizontal and vertical neighbours in a rectilinear fashion, and additionally, there are

2
√
M wraparound connections in the outward directions of each item located on the

border, hence, all nodes have two horizontal-wise and two vertical-wise neighbours.

With respect to its implementation, this design may support around 1000 devices, so

it is recommended to put in place a higher dimension deployment for more than that.
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Moving ahead to a cubic torus, it may look like a cubic mesh [205], and attaching

extra wraparound links in order to interconnect devices being in the external positions

of any of the three dimensional lines required. Specifically, M should be a natural

number being a perfect cube, thus it is recommended to get aligned 3
√
M items in

each dimension. On the other hand, this definition may be extended to any higher

dimension, even though it might only be necessary in very large deployments.

It may seem clear that the higher the dimensions used, the benefits are better

performances in terms of higher speed and lower latency, even though the drawbacks

are the rise of costs and the complexity of interconnections and routing algorithms

[19]. Therefore, a tradeoff must be always achieved, although the key point is to

stick to the lower possible dimension. As a summary, the most basic types of toroidal

designs are exhibited in Figure 3.19.

Figure 3.19: Toroidal structures: line (along 1D) and ring (along 2D).

Eventually, toroidal grid networks may be defined as grid networks of dimension

N , with the particularity of having wraparound links for all nodes located on any

edge. In this context, some topologies associated to toroidal grid designs are going to

be proposed, such as toroidal ring and redundant ring, which are related to the torus

structures as proposed for ring torus and linear torus with double links, respectively.

With regards to cubic torus designs, those are not going to be considered herein as

the number of hosts need not be that high in the proposed DCs.



86 Chapter 3: Regular N-polytopes, trees, graphs and tori applied to data centres

3.4.3 De Bruijn torus

Regarding de Bruijn sequences, they may be considered as unidimensional, because

they are represented just by strings. However, they may be extended to two dimen-

sions, thus creating de Bruijn tori [93], which are composed by a toroidal array r× r′

with wraparound edges, having the particularity that all m ×m′ toroidal subarrays

available, formed with a particular k-alphabet, appear just once contiguously in it,

thus the nomenclature goes like this: (r, r′;m,m′)k, where the most popular condition

to achieve it is given in (3.21).

r × r′ = km×m′ (3.21)

It is to be remarked that they have interesting applications in positional encoding

and pattern location in two dimensions, thanks to the periodic perfect mapping of a

whole surface without any repetition, which allows to associate a given area with its

correspondent toroidal subarray [220].

It is to be mentioned that it may not always be possible to construct such a

shape, even though in case of a squared pattern, thus m = m′, and m being even, a

square torus always exist, such as r = r′, regardless the alphabet being employed [96],

hence becoming (r, r;m,m)k, where the aforesaid condition results in r = r′ = km2/2,

therefore (km2/2, km2/2;m,m)k. In this sense, (4, 4; 2, 2)2 is the smallest binary square

de Bruijn torus, meaning that a 4 × 4 toroidal array contains all km×m = 22×2 =

24 = 16 binary 2× 2 toroidal arrays just once, which are obtained by combining the

4 available positions in each one with the 2 binary values, as shown in Figure 3.20.

It is to be noted that the layout of 1’s within that figure reminds of the shape of

a Brigid’s cross [201]. Furthermore, this picture may be called clockwise array, and

along with its transposition, which may be obtained by matrix reflection over any

of both its axis, also called counterclockwise array, they are both the only available

representations of the smallest binary square torus, regardless of their row or column

rotations, which may act as members of the same equivalence class under rotation.

The next binary square torus may be (256, 256; 4, 4)2, which accounts for 24×4 = 216

combinations of 4× 4 toroidal arrays, whereas the following one may be (218, 218; 6, 6)2,

accounting for 26×6 = 236 combinations of 6× 6 toroidal arrays.



Chapter 3: Regular N-polytopes, trees, graphs and tori applied to data centres 87

00 0 1

00 1 0

10 1 1

01 1 1

Figure 3.20: De Bruijn binary square torus with a squared pattern: (4, 4; 2, 2)2

On the other hand, the smallest ternary square torus may be (9, 9; 2, 2)3, account-

ing for 32×2 = 34 = 81 combinations of 2× 2 toroidal arrays, whereas the smallest

quaternary square torus may be (16, 16; 2, 2)4, having 42×2 = 44 = 256 combinations

of 2× 2 toroidal arrays.

Apart from the squared de Bruijn tori with squared patterns, the aforesaid expres-

sion permits some variations, such as designing a rectangular de Bruijn torus with a

squared pattern, as (16, 32; 3, 3)2, or otherwise, attaining a squared de Bruijn torus

with a rectangular pattern, as (8, 8; 3, 2)2. Likewise, a rectangular de Bruijn torus

with a rectangular pattern is also possible, as (8, 32; 2, 4)2, or even different patterns

such as L-shaped [155].

Focusing on the smallest binary square torus, thus (4, 4; 2, 2)2, and particularly in

its clockwise version, all 2× 2 toroidal arrays may be represented as in Figure 3.21,

which exhibits a decomposition showing all 16 available combinations precisely once.

It is to be noticed that the elements located in the last row and those in the last

column form its matrices with the corresponding cells of the first row and the first

column, respectively, due to the toroidal feature, which also supports another matrix

formed by the elements located in the four corners. Besides, the 16 items in the 4× 4

representation might be spotted in the top left corner of each of the 2× 2 matrices,

which are completed with the neighbors on the right, bottom and bottom right.

It may be appreciated that each 2× 2 toroidal array has just 4 neighbours (top,

bottom, left, right), where a shift is produced to the opposite way. This is, the top row
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⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0

0 1 1 1

1 1 1 0

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

−→
map

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
0 1

0 1

] [
1 0

1 1

] [
0 0

1 1

] [
0 0

1 0

]

[
0 1

1 1

] [
1 1

1 1

] [
1 1

1 0

] [
1 0

0 1

]

[
1 1

0 0

] [
1 1

0 1

] [
1 0

1 0

] [
0 1

0 0

]

[
0 0

0 1

] [
0 1

1 0

] [
1 0

0 0

] [
0 0

0 0

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 3.21: De Bruijn torus (4, 4; 2, 2)2: squared patterns.

is shifted to bottom row in the top neighbour, whereas the bottom row is shifted to

the top row in the bottom neighbour. Likewise, the left column is shifted to the right

column in the left neighbour, whilst the right column is shifted to the left column in

the right neighbour, and that way, the toroidal shape remains.

Regarding the aforementioned mapping, it is also to be noted that the element

located in the top left corner of a given pattern is identified in the same row and

column within the de Bruijn torus as the squared pattern is located in the mapping.

Therefore, the top left item within each pattern may be referred to as its handle,

which is used to allocate such a pattern within the de Bruijn torus.

Furthermore, Figure 3.22 depicts instances of some other de Bruijn tori. Focusing

on (9, 9; 2, 2)3, the de Bruijn torus is a 9× 9 square and the pattern is a 2× 2 square

filled in with elements of a ternary alphabet, such as {0,1,2}, resulting in up to 81

unique patterns spotted with their corresponding handles, giving the distance from

the top left item of each pattern to the top left item of the whole de Bruijn torus.

Additionally, de Bruijn sequences B(k, n) may be considered as a (kn, 1;n, 1)k de

Bruijn torus, thus making for a linear torus with a linear pattern. As a side note,

Table 3.18 exhibits some particular instances of the former whose length is up to 64,

as well as its nomenclature as the latter.
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00000101
00100111
00110110
01000001
11111010
11011000
11001001
10111110

(8,8;3,2)2

0000011101010011
0011001100100110
0011001010111011
1111100100110001

(4,16;3,2)2

000100010
001221221
111121211
112002002
221201021
110210120
002012102
222022202
220110110

(9,9;2,2)3

0010001030203020
0001020301000203
0111011131213121
1011121311101213
0010001030203020
2021222321202223
0111011131213121
3031323331303233
0313031333233323
1011121311101213
0212021232223222
0001020301000203
0313031333233323
2021222321202223
0212021232223222
3031323331303233

(16,16;2,2)4(16,32;3,3)2

00000010111001011100101110010111
00010011111101001101101010000110
00000010111001011100101110010111
11101100000010110010010101111001
00000010111001011100101110010111
00010011111101001101101010000110
00110001110101101111100010100100
10001010011011010100001100011111
11111101000110100011010001101000
11101100000010110010010101111001
10101000010011110110000100111101
01000110101000011000111111010011
11111101000110100011010001101000
11101100000010110010010101111001
01100100100000111010110111110001
11011111001110000001011001001010

Figure 3.22: Various bidimensional toroidal arrays.

3.4.4 De Bruijn hypertorus

The concept of de Bruijn torus may be easily extended to higher dimensions,

hence achieving de Bruijn hypertorus. This way, such a shape of dimension N may

be defined as r = (r1 · · · rN), whereas a hypertoroidal pattern of such a dimension

may be denoted by m = (m1 · · ·mN), with ri > mi and 1 ≤ i ≤ N , which may also

be quoted as (r;m)Nk [105].

Obviously, all combinations of such a hypertoroidal pattern using an alphabet k

may be obtained exactly once within the de Bruijn hypertorus, thus attaining a kind

of a periodic hypermapping. Likewise, the most popular condition cited for de Bruijn

tori may also be extended to de Bruijn hypertori, resulting in expression (3.22), which

applies to any dimension N , even up to infinite.

N∏
i=1

ri = k
∏N

i=1 mi (3.22)

In this sense, it is possible to impose the condition that r1 = · · · = rN = r,

achieving k-ary N -cube de Bruijn hypertori, along with m1 · · ·mN = m, obtaining

k-ary N -cube patterns. In such a case, it results in r1 = · · · = rN = kmN/N , where

each particular node has up to 2 neighbors in each dimension, thus its predecessor

and successor modulo r, thus accounting for up to 2N neighbours overall.
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Table 3.18: De Bruijn sequences expressed as de Bruijn tori with length up to 64.

items B(k,n) (kn,1;n,1)k An instance of that de Bruijn Sequence
{0, 1} B(2, 2) (4, 1; 2, 1)2 0011
{0, 1} B(2, 3) (8, 1; 2, 1)2 00010111
{0, 1} B(2, 4) (16, 1; 2, 1)2 0000100110101111
{0, 1} B(2, 5) (32, 1; 2, 1)2 00001010111011000111110011010010
{0, 1} B(2, 6) (64, 1; 2, 1)2 0000001000011000101000111001001011001101001111010101110110111111

{0 · · · 2} B(3, 2) (9, 1; 2, 1)3 001122102
{0 · · · 2} B(3, 3) (27, 1; 3, 1)3 000111212220101200202102211
{0 · · · 3} B(4, 2) (16, 1; 2, 1)4 0011223302103132
{0 · · · 3} B(4, 3) (64, 1; 3, 1)4 0001110100202221211220030333232233131133013203210310231201230213

{0 · · · 4} B(5, 2) (25, 1; 2, 1)5 00102112041422430332313440
{0 · · · 5} B(6, 2) (36, 1; 2, 1)6 001020304051121314152232425334354455
{0 · · · 6} B(7, 2) (49, 1; 2, 1)7 00102112041306140315055162252353436442463326545660
{0 · · · 7} B(8, 2) (64, 1; 2, 1)8 0010203040506071121314151617223242526273343536374454647556576677

Sticking to the case where N = 3, the aforementioned expression becomes (3.23),

regardless whether the de Bruijn 3D hypertorus or the 3D hypertoroidal pattern are

cubic, where the size of all dimensions is the same, or otherwise, rectangular prism.

r1 × r2 × r3 = km1×m2×m3 (3.23)

In this sense, the smallest cubic de Bruijn hypertorus using a cubic pattern is

(256; 2)8 [94], which may also be denoted by (256, 256, 256; 2, 2, 2)8, where the afore-

said condition may get converted into (km3/3, km3/3, km3/3;m,m,m)k.

Alternatively, the smallest rectangular prism de Bruijn hypertorus using a cubic

pattern is (16, 4, 4; 2, 2, 2)2, where that pattern happens to be binary. In this context,

a b-cube may be defined as a 2× 2× 2 binary cubic hypertoroidal array, whose shape

is shown in Figure 3.23, where the element at the front, top, left is its handle, which

allows to allocate each pattern within the whole shape.

This way, a 16× 4× 4 de Bruijn hypertoroidal array formed by such b-cubes

contains each available b-cube just once, hence including only one instance of all

22×2×2 = 256 possible b-cubes. Therefore, (16, 4, 4; 2, 2, 2)2 makes for the smallest

binary three-dimensional de Bruijn hypertorus, which is exhibited in Figure 3.24.

This picture may be seen as a sequence of 16 toroidal arrays with dimensions

4 × 4 being interconnected in a circular way, which may help visualize instances
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Figure 3.23: Three-dimensional toroidal array (2× 2× 2 nodes).

Figure 3.24: Three-dimensional toroidal array (16× 4× 4 nodes).

of (16, 4, 4; 2, 2, 2)2. Hence, each of those 4 × 4 bidimensional arrays may be easily

identified from 0 all the way to 15, as depicted in Table 3.19 showing a given instance.

Focusing on that particular instance, some interesting features may be spotted

which might not necessarily be the case in all instances, such that it may be deter-

mined that each of the 16 toroidal arrays contains exactly the same number of zeros

and ones, being 8 of each kind, or otherwise, every row and every column within any

of those toroidal arrays contains one zero and three ones, or the other way around.

However, the main point of the instance proposed is the requirement to spot each

available b-cube exactly once. In this context, it is to be said that each b-cube is

being expressed as the product of its front 2× 2 matrix by its back 2× 2 matrix, thus

the handle of a b-cube is the item being on the top left corner of the front matrix.



92 Chapter 3: Regular N-polytopes, trees, graphs and tori applied to data centres

Taking just one of those 2 × 2 matrices, they are holding 4 nodes, each of them

being occupied by a binary value, thus {0, 1}, resulting in a total amount of 42 = 16

different combinations of such matrices. Furthermore, considering a b-cube as the

product of two of those matrices (the front one and the back one), then there is an

overall amount of 162 = 256 different combinations of b-cubes.

In order to better organize all those combinations, 16 groups have been built

up, each of them having one of the 16 combinations available as its front matrix.

Furthermore, there are 16 elements within each group, thus representing each one of

the combinations available for the back matrix.

In this sense, Table 3.20 exposes an instance of a 16× 4× 4 de Bruijn hypertorus

with its 256 b-cubes along with their handle, denoting the distance from that item to

the front, top, left item of the rectangular prism de Bruijn hypertorus. Besides, all

those b-cubes follow the same organization by groups and within each group [36].

Regarding the location of each b-cube, it may be said that the values of the front

matrix are found in the 4× 4 toroidal array denoted by the first value of the handle

(0 · · · 15), where its row is given by the second one and its column is stated by the

third one, both (0 · · · 3), whilst the rest of elements in the front matrix occupy the

right, bottom and bottom right positions related to the handle, and the values of the

back matrix are just behind those of the front matrix, in the successive 4× 4 array.

Additionally, it is to be noted that the 16 items within each group have their

handles in a different 4×4 array, meaning that the front top left element of each item

within a group stands in a unique array. Also, if the handle of the first group is taken

as a reference for each of the 16 arrays, it happens that each group has their handles

in a different array, but in the same relative position out of the aforesaid reference.

3.5 Summary

In this chapter, some mathematical foundations have been presented to be ap-

plied on the topology models for DC, which will be studied in the following chapter.

Regarding geometry, regular polytopes of dimension N have been inferred by start-

ing with lower dimensions and adding up more dimensions until generic results for
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Table 3.19: An instance of a 16× 4× 4 de Bruijn hypertorus.

Array ID Bidimensional Array Array ID Bidimensional Array

0

⎡
⎢⎢⎣
0 0 0 1
0 0 1 0
1 0 1 1
0 1 1 1

⎤
⎥⎥⎦ 1

⎡
⎢⎢⎣
0 0 0 1
0 0 1 0
1 0 1 1
0 1 1 1

⎤
⎥⎥⎦

2

⎡
⎢⎢⎣
1 0 0 0
0 0 0 1
1 1 0 1
1 0 1 1

⎤
⎥⎥⎦ 3

⎡
⎢⎢⎣
0 0 1 0
0 1 0 0
0 1 1 1
1 1 1 0

⎤
⎥⎥⎦

4

⎡
⎢⎢⎣
0 1 0 0
1 0 0 0
1 1 1 0
1 1 0 1

⎤
⎥⎥⎦ 5

⎡
⎢⎢⎣
1 1 0 1
0 1 0 0
1 0 0 0
1 1 1 0

⎤
⎥⎥⎦

6

⎡
⎢⎢⎣
0 1 1 1
1 1 1 0
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦ 7

⎡
⎢⎢⎣
0 0 0 1
1 1 0 1
1 0 1 1
1 0 0 0

⎤
⎥⎥⎦

8

⎡
⎢⎢⎣
0 0 0 1
0 0 1 0
1 0 1 1
0 1 1 1

⎤
⎥⎥⎦ 9

⎡
⎢⎢⎣
1 0 1 1
0 1 1 1
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦

10

⎡
⎢⎢⎣
1 0 0 0
0 0 0 1
1 1 0 1
1 0 1 1

⎤
⎥⎥⎦ 11

⎡
⎢⎢⎣
0 1 1 1
1 1 1 0
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦

12

⎡
⎢⎢⎣
0 1 0 0
1 0 0 0
1 1 1 0
1 1 0 1

⎤
⎥⎥⎦ 13

⎡
⎢⎢⎣
1 0 0 0
1 1 1 0
1 1 0 1
0 1 0 0

⎤
⎥⎥⎦

14

⎡
⎢⎢⎣
0 1 1 1
1 1 1 0
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦ 15

⎡
⎢⎢⎣
1 0 1 1
1 0 0 0
0 0 0 1
1 1 0 1

⎤
⎥⎥⎦
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Table 3.20: An instance of all unique 256 b-cubes in a 16×4×4 de Bruijn hypertorus.

b-cube handle b-cube handle b-cube handle b-cube handle[
0 0
0 0

]
×
[
0 0
0 0

]
(0,0,0)

[
0 0
0 0

]
×
[
0 0
0 1

]
(3,0,3)

[
0 0
0 0

]
×
[
0 0
1 0

]
(12,0,2)

[
0 0
0 0

]
×
[
0 0
1 1

]
(13,3,2)[

0 0
0 0

]
×
[
0 1
0 0

]
(4,0,2)

[
0 0
0 0

]
×
[
0 1
0 1

]
(15,1,1)

[
0 0
0 0

]
×
[
0 1
1 0

]
(2,0,1)

[
0 0
0 0

]
×
[
0 1
1 1

]
(11,2,3)[

0 0
0 0

]
×
[
1 0
0 0

]
(1,0,0)

[
0 0
0 0

]
×
[
1 0
0 1

]
(8,0,0)

[
0 0
0 0

]
×
[
1 0
1 0

]
(5,1,2)

[
0 0
0 0

]
×
[
1 0
1 1

]
(14,2,3)[

0 0
0 0

]
×
[
1 1
0 0

]
(7,3,1)

[
0 0
0 0

]
×
[
1 1
0 1

]
(6,2,3)

[
0 0
0 0

]
×
[
1 1
1 0

]
(9,2,0)

[
0 0
0 0

]
×
[
1 1
1 1

]
(10,0,1)[

0 0
0 1

]
×
[
0 0
0 0

]
(1,0,1)

[
0 0
0 1

]
×
[
0 0
0 1

]
(0,0,1)

[
0 0
0 1

]
×
[
0 0
1 0

]
(13,3,3)

[
0 0
0 1

]
×
[
0 0
1 1

]
(14,2,0)[

0 0
0 1

]
×
[
0 1
0 0

]
(5,1,3)

[
0 0
0 1

]
×
[
0 1
0 1

]
(12,0,3)

[
0 0
0 1

]
×
[
0 1
1 0

]
(3,0,0)

[
0 0
0 1

]
×
[
0 1
1 1

]
(8,0,1)[

0 0
0 1

]
×
[
1 0
0 0

]
(2,0,2)

[
0 0
0 1

]
×
[
1 0
0 1

]
(9,2,1)

[
0 0
0 1

]
×
[
1 0
1 0

]
(6,2,0)

[
0 0
0 1

]
×
[
1 0
1 1

]
(15,1,2)[

0 0
0 1

]
×
[
1 1
0 0

]
(4,0,3)

[
0 0
0 1

]
×
[
1 1
0 1

]
(7,3,2)

[
0 0
0 1

]
×
[
1 1
1 0

]
(10,0,2)

[
0 0
0 1

]
×
[
1 1
1 1

]
(11,2,0)[

0 0
1 0

]
×
[
0 0
0 0

]
(4,1,2)

[
0 0
1 0

]
×
[
0 0
0 1

]
(7,0,1)

[
0 0
1 0

]
×
[
0 0
1 0

]
(0,1,0)

[
0 0
1 0

]
×
[
0 0
1 1

]
(1,1,0)[

0 0
1 0

]
×
[
0 1
0 0

]
(8,1,0)

[
0 0
1 0

]
×
[
0 1
0 1

]
(3,1,3)

[
0 0
1 0

]
×
[
0 1
1 0

]
(6,3,3)

[
0 0
1 0

]
×
[
0 1
1 1

]
(15,2,1)[

0 0
1 0

]
×
[
1 0
0 0

]
(5,2,2)

[
0 0
1 0

]
×
[
1 0
0 1

]
(12,1,2)

[
0 0
1 0

]
×
[
1 0
1 0

]
(9,3,0)

[
0 0
1 0

]
×
[
1 0
1 1

]
(2,1,1)[

0 0
1 0

]
×
[
1 1
0 0

]
(11,3,3)

[
0 0
1 0

]
×
[
1 1
0 1

]
(10,1,1)

[
0 0
1 0

]
×
[
1 1
1 0

]
(13,0,2)

[
0 0
1 0

]
×
[
1 1
1 1

]
(14,3,3)[

0 0
1 1

]
×
[
0 0
0 0

]
(7,0,0)

[
0 0
1 1

]
×
[
0 0
0 1

]
(6,3,2)

[
0 0
1 1

]
×
[
0 0
1 0

]
(3,1,2)

[
0 0
1 1

]
×
[
0 0
1 1

]
(0,1,3)[

0 0
1 1

]
×
[
0 1
0 0

]
(11,3,2)

[
0 0
1 1

]
×
[
0 1
0 1

]
(2,1,0)

[
0 0
1 1

]
×
[
0 1
1 0

]
(5,2,1)

[
0 0
1 1

]
×
[
0 1
1 1

]
(14,3,2)[

0 0
1 1

]
×
[
1 0
0 0

]
(4,1,1)

[
0 0
1 1

]
×
[
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higher dimensions have been achieved, resulting in just three of those shapes, such as

N -simplex, N -hypercube and N -orthoplex.

Moreover, some background on trees has been examined, starting from binary

ones and extending them all the way to M -ary ones. Besides, graph theory has

been reviewed, pointing out the difference between directed and undirected graphs,

the importance of Hamiltonian and Eulerian cycles, the interesting features of the

geometrical graphs, along with the basics of the construction of de Bruijn graphs,

which have been carried out both graphically and algorithmically.

Furthermore, with respect to mathematical topology, toroidal surfaces have been

introduced, along with some characteristics which in turn have been associated with

network designs. Moreover, de Bruijn tori have been studied as an extension of de

Bruijn graphs in two dimensions, which have been further enlarged with an extra

dimension to form de Bruijn hypertori in three dimensions, where some instances

haven been shown in all cases.

Additionally, all these mathematical structures presented in this chapter may be

used in order to optimize the DC designs, specifically regarding the network inter-

connections among hosts. This way, each DC topology being introduced in chapter 4

is going to be related to one of the aforementioned structures, which in turn will be

used in chapter 5 to obtain models for those DC, where each one may take the most

appropriate instance out of such structures.



Chapter 4

Common network topologies for

Data Centres

Prior to obtain mathematical models for the topologies proposed, each of them is

going to be reviewed in order to present their main features, and furthermore, such

topologies may be assigned to appropriate geometrical shapes, chosen from those

described in the previous chapter, in order to better carry out the models later on.

Among those topologies, partial mesh ones are going to be studied more in depth, as

they are the most usual topologies employed in real implementations.

The hosts present in the topologies may be interconnected by a number of switches,

those being linked together according to a given topology. However, it is not the case

of one topology being the best, but the performance achieved in different circum-

stances might differ depending on the designs, as each one has its own benefits and

drawbacks. Hence, any of them might be the best option in a given situation, but

not in others.

As stated before, it is to be reminded that most of the switching interconnection

topologies being used in production networks may be classified between two broad

categories, such as tree-like and graph-like designs.

On the one hand, the former ones are hierarchical, in a sense that not all switches

play the same role, which brings different features for the switches standing in different

layers. This way, hosts are only hanging on switches being located in the lower
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layer, also being referred to as end switches, whereas the rest of the layers play

interconnection roles, along with aggregation tasks.

On the other hand, the latter ones do not have any implicit hierarchy, hence

all switches may have hosts hanging on them, meaning that all of them are end

switches. Additionally, more freedom of design is permitted, thus opening a full range

of possibilities, although geometrical shapes may be the most popular because of their

different symmetries and easy designs, even though performance may be worse.

Furthermore, as stated before, fog domains keep far less users and traffic than their

cloud counterparts, therefore, complex topological designs are going to be avoided as

the amount of resources being necessary to get them working do not compensate the

gains in performance rates. Therefore, the following topologies may be a selection

of candidate designs for implementing DCs with small to medium size aimed at fog

computing environments.

4.1 Partial mesh: tree-like designs

Regarding tree-like designs, it may be noted that back in the 50s, telephony traffic

was ever growing and the design of Clos networks was suggested so as to forward

switch telephone calls efficiently [45]. The key point was to employ equipment with

multiple interconnection stages to get the calls ready. This way, redundant paths

between source and destination devices were available, hence permitting an ongoing

phone call not to be blocked by other incoming calls.

Next, in the 90s, Ethernet switches were catching on, taking the place of hubs

and repeaters, and the idea of Clos networks was extended in order to attain cost-

effective deployments with low operational complexity [191]. Basically, the idea was

the creation of multistage topologies being built up with commodity switches, also

known as commercial-of-the-shelf (COTS) hardware, thus reducing both capital ex-

penditure (CAPEX), as acquiring switches might be cheaper, and operational expen-

diture (OPEX), as maintaining them might be easier.

Then, in the 21st century, DC facilities still keep those ideas under different ap-

proaches, such as two-stage layouts, three-stage designs, or even more, depending on
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the needs of users and throughput [209]. Cloud computing deployments may need

complex designs in order to achieve great performance with a huge amount of traffic,

although that is not the case for fog scenarios, where the throughput is far less, thus

restricting the number of switches and their interconnection topologies.

Therefore, two main topologies are going to be selected for tree-like designs, as

they are the ones being the most popular in small to medium-sized designs. One of

them is fat tree, which accounts for three layers of switches, whereas the other one is

leaf and spine, which does it for two layers of switches.

4.1.1 Fat tree

Fat tree is a tree-like design, with three layers of switches, where the lower one

is called edge, the middle one is called aggregation and the upper one is called core.

Furthermore, hosts are only connected to the lower layer, as it happens with the rest

of tree-like topologies. The reason for name of this topology is because of its design

being like an inverted tree, having a reduced number of links on the top and a great

number of them on the bottom. Besides, each top-layer item plays the role of a root

as it grows downwards, thus reinforcing the view of a tree being fat [101].

Fat tree designs are deeply influenced by parameterK, and that is why the topology

is often times called as K-ary fat tree. Parameter K is an even number and it defines

the whole structure, such as the number of ports in all switches, the number of hosts

connected to each lower layer switch, the number of pods defined, the number of

switches within each pod, the overall number of devices located at each layer and the

number of links among those devices [4].

Fat tree offers full mesh connectivity within each pod, which may be defined as a

bunch of lower layer switches and middle layer switches logically grouped, along with

the correpondant hosts being connected to those lower layer switches [210]. It is to

be noted that there are K/2 switches of each type within a pod, and as there are K/2

hosts per each lower layer switch, it accounts for an amount of K2/4 hosts per pod.

That matches with the number of ports per switch, which happens to be K, forcing

lower and middle layer switches to have half of their ports looking upwards, whereas
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the other half are looking downwards. Obviously, upper layer switches have all their

ports looking downwards, as there is no other item above them. On the other hand,

each host have just one port, which gets it connected to a lower layer switch, that

being its gateway to reach the rest of the hosts deployed within the topology.

Therefore, this design provides full mesh connectivity between hosts hanging on

different switches within the same pod, resulting in K/2 redundant paths for intrapod

commmunications. Nevertheless, hosts connected to the same switch have only 1

path, as each host is connected to a lower layer switch with just one link, hence there

is no redundancy for intraswitch commmunications.

Additionally, fat tree also offers full mesh connectivity among pods, meaning that

each pod has a path to the rest of them, as there is always an interconnection between

a given switch located in the middle layer of a certain pod and each one of the upper

layer switches, which in turn may lead to the other pods. However, this fact results in

partial mesh connectivity between any two hosts belonging to different pods, as not

all middle layer switches are linked to all upper layer switches. Anyway, the number

of redundant paths available for interpod communications grows up to (K/2)2 = K2/4.

In summary, the distance between hosts depends whether they are connected to

the same switch, being just 1 hop away, or whether they belong to the same pod,

thus being just 2 hops away, or otherwise, whether they are held in different pods,

hence being just 3 hops away.

An example of a fat tree network architecture is shown in Figure 4.1, where pa-

rameter K = 4 and oversubscription ratio is 1 : 1, meaning that all of the links being

expected in the design are available, thus none of them are left out. In this sense, it

is to be said that not all the possible links are included in some implementations in

order to save costs, and in such cases, the oversubscription ratio is the ratio between

the number of all possible links according to the topology design and the number of

links actually implemented in the deployment, which may or may not be the same.

To sum it all up, Table 4.1 shows the most relevant values for fat tree topologies, all

of them related to parameter K, whereas Table 4.2 exhibits the number of redundant

paths between hosts depending on their number of hops away, which may be found

out throughout the expression (K/2)hops−1.
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Figure 4.1: Fat tree architecture for K = 4 and oversubscription ratio 1:1.

Regarding the first table, the expressions for a generic K value are presented, as

well as the values for the most common fat tree designs, such as K = 4 and K = 8.

Table 4.1: Fat tree most relevant values.

K-ary K = 4 K = 8
Number of pods K 4 8
Number of switches in a pod K 4 8
Number of ports per switch K 4 8
Number of Hosts per edge switch K/2 2 4

Num. aggregation switches within a pod K/2 2 4
Num. edge switches within a pod K/2 2 4
Num. hosts within a pod K2/4 4 16
Number of links within a pod K2/2 8 32

Total core switches in a topology K2/4 4 16
Total aggregation switches in a topology K2/2 8 32
Total edge switches in a topology K2/2 8 32
Total switches in a topology 5K2/4 20 80
Total hosts in a topology K3/4 16 128
Total links in a topology 3K3/4 48 384

4.1.2 Leaf and spine

Leaf and spine is another tree-like design with just two layers of switches, where

the lower one is called leaf and the upper one is called spine. Furthermore, hosts are
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Table 4.2: Number of redundant paths in fat tree among hosts.

(K/2)hops−1 K = 4 K = 8
Paths between two hosts being 1-hop away (K/2)0 1 1
Paths between two hosts being 2-hop away (K/2)1 2 4
Paths between two hosts being 3-hop away (K/2)2 4 16

only connected to the lower layer, as it happens with the rest of tree-like topologies

[140]. This topology does not depend on any parameter such as K, thus the designs

have more degrees of freedom.

The main feature of leaf and spine is the full mesh connectivity between both layers

of switches, thus offering as many redundant paths between hosts located in different

switches as the number of upper layer switches [7]. In such a case, those hosts are

considered to be 2 hops away. On the other hand, hosts being connected to the same

switch just have 1 single link between them, considering them to be just 1 hop away.

This kind of topology fits better the requirements of modern DCs, such as steadier

values for latency and jitter, as the number of hops away is just 1 or 2, although the

drawback yields in scalability, as this design is not fit if the number of hosts is very

high, needing an extra third layer of switches to cope with it, called superspine [227].

Those features allow leaf and spine designs to enhance east-west traffic, meaning

data flows among devices allocated inside the DC, which is ever growing due to the

extensive use of virtualization and hyperconverged infrastructures. It is to be said

that traditional Clos-based DC was mainly focused on north-south traffic, meaning

traffic flows getting in and out of the DC looking for foreign devices. In this sense,

the term used to expand the latter is called scaling up, whilst the expansion of the

former is called scaling out.

However, as virtualization techniques were catching on, traffic within the DC sig-

nificatively increased and leaf and spine seemed the appropriate solution to deal with

it. Despite of this, it is to be reminded that fat tree may offer a more scalable solu-

tion as the number of hosts grows, even though losing out in performance as such a

number shrinks, hence a comparison may need to be undertaken to assess which one

better fits the requirements expected in each particular case.
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An example of a leaf and spine architecture is shown in Figure 4.2, with 8 switches

located in the lower layer and other 4 switches in the upper layer, all of them being

interconnected in a full mesh fashion. If all switches were to have the same number

of ports, each lower layer switch will have four ports to connect hosts, with a total of

32 hosts. However, this is not usually the case, allowing for many other possibilities

when undertaking a design of this topology.

Spine

Leaf

Figure 4.2: Leaf and spine architecture with 8 leaves and 4 spines.

4.2 Partial mesh: graph-like designs

As stated before, graphs may account for multiple types of topologies, as basically

any design may be put in place. However, focusing on network topologies, it may be

interesting to look for graphs with some specific characteristics, such as undirected,

connected and cyclic structures with symmetry, which allow for redundant paths and

easy forwarding expressions among nodes.

There may be different sort of shapes meeting these requirements, although the

ones being more appropriate are the regular geometric shapes. In this context, syn-

thetic geometry applies, as just vertices and edges of such shapes are considered,

hence not considering any characteristics out of analytic geometry because no system

of coordinates needs to be adopted.

On the other hand, trees might be considered to be graphs with further restrictions,

in a way that a tree may be seen as a specific subset of graphs with some particular

features, such as having the concept of root nodes or leaf nodes, as well as not having

cyclical links. In fact, trees may connect nodes in a hierarchical way, whereas graphs

may connect nodes in any possible way. It is to be remarked that, according to graph
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theory, a graph may be contemplated as a formal abstract way to represent a network,

thus being a collection of objects being interconnected in a certain manner.

Anyway, no matter whether a topology is tree-like or graph-like, it is clear that

any pair of hosts being connected to a topology belonging to any such categories, as

exposed herein, will get at least a continuous path from a source host to a destination

host, as all nodes are connected. Hence, communication between them both may

obviously happen, provided that their connecting links are up and running.

Focusing on interconnections, different options arise, even though partial mesh

topologies include a larger amount of options, as severe restrictions are not imposed

on designs, that being the case of full mesh or quasi full mesh topologies. However,

some degrees of symmetry may be interesting in order to achieve redundant paths with

easy path forwarding policies, which may well apply for routing in overlay networks.

Therefore, two related topologies are going to be selected for graph-like designs

regarding partial mesh, as they may perfectly fit in small to medium-sized designs,

achieving a tradeoff between complexity of the network and effectiveness in path

forwarding. First, plain N -hypercube is seen, and then, folded N -hypercube is shown.

4.2.1 N-hypercube

N -hypercube is a graph-like topology, following the shape of a hypercube of di-

mension N , also referred to as Qn or plain N -hypercube. In that graph, there is a

switch located in each vertex of the hypercube, where the interconnections among

switches are given by the edges forming the hypercube and the hosts are connected

to any of the switches involved.

The fact that this topology is a graph-like design makes all switches within the

topology work as end switches, such that all of them may carry hosts connected, thus

reducing the distance among them [87]. On the other hand, maintenance and com-

plexity may get higher than their counterparts within tree-like designs, even though

it might not be the case for small deployments.

The number of nodes and edges among them in an N -hypercube topology is given

by the dimension N , such that there must be 2N nodes being equally distributed and
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interconnected by N × 2N−1 edges [60]. Those expressions offer the same results as

those obtained back in (3.16) and in Table 3.12 for k = 0 (nodes) and k = 1 (edges).

As per the number of links from each node to directly connected nodes, there are N .

On the other hand, the number of links to directed connected hosts depend on how

many hosts hang on each switch, which depends of the implementation.

The dimension N selected may be the lowest being able to hold the number of

switches required in a given deployment, even though it is strongly recommended

that the number of nodes is a power of 2 in order to optimize the structure, thus

being able to use all potential redundant paths offered by the topology. Figure 4.3

shows pictures of N -hypercube designs for an N value ranging from 0 all the way to

4, although any higher value may also be permitted.
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Figure 4.3: N -hypercube architectures for N ∈ {0 · · · 4}.

According to that picture, every node is identified by a binary number of N bits,

where there is an initial node with all bits being 0s. Moreover, moving along a

particular i-th dimension implies swapping the i-th bit of the source identifier, which

covers the case where a message from a given node moves along to a neighbouring

node in that particular i-th dimension. It is to be noted that the N dimensions are

identified within the range going from 0 to N − 1 in decimal format.

Regarding the distance between any two different nodes, an easy way to find it out

is to apply the logical operator XOR between the binary identifiers of the source node

and the destination node, where the position of 1s found in that operation may point

out the different dimensions between source to destination dimensions, also known as

mismatching dimensions, whilst the overall amount of 1s may indicate the number
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of such mismatching dimensions between source to destination, meaning the distance

between them both, measured in nodes away.

Hence, in order to travel such a distance from source node to destination node, a

message in the source switch may move through all those dimensions to get to the

destination switch, regardless the order in which such dimensions are traversed. This

fact may allow for different redundant paths, accounting for the factorial of such a

distance, thus making possible to apply different load balancing policies.

Alternatively to the binary XOR, that distance may also be found out by working

with the decimal identifiers of source and destination nodes. This procedure relays

on extracting the value of each bit position in them both by means of the appropriate

arithmetic operations in both nodes in decimal format, and in turn, checking them

out in order to see whether the same bits within each node match or otherwise, where

the number of mismatches account for the distance between that couple of nodes.

Furthermore, the maximum distance between any pair of given nodes is N , which

accounts for the case where there is no coincidence at all between source and desti-

nation binary identifiers. This case only happens with opposite nodes, meaning that

each node only have one opposite node, being at a distance N , where the rest of the

nodes are nearer. In order to calculate the opposite node of a given node i, it may

be done by performing its 1’s complement in binary form, as well as by applying the

expression (2N − 1− i) in decimal form.

Additionally, it is possible to calculate how many nodes are at a given distance of

one particular node. To start with, there is only one node at a distance zero of node

i, which is obviously itself. Hence, the rest of the nodes may be at a variable distance

k, being greater than 0 and up to N . In this context, the number of nodes being at

a distance k is given by the value of the cell found when crossing the N -th row and

the k-th column of the Pascal’s triangle, as shown in Figure 4.4.

It is to be reminded that each value on the Pascal’s triangle may be obtained by

adding up the two values located just above, this is, the value on the N -th row and

the k-th column is the result of adding up the value on the (N − 1)-th row and the

(k − 1)-th column along with the value on the (N − 1)-th row and the k-th column,

whenever those values are depicted in the triangle. Alternatively, each value may
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Figure 4.4: Pascal’s triangle for the first rows.

also be obtained by means of applying the binomial coefficient as in (4.1), where each

value relates to the number of nodes being at a distance k.
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)
(4.1)

As an example, a node i in a square (N = 2) has 1 node at a distance zero (itself),

2 nodes at a distance one (its direct neighbours) and 1 node at a distance two (its

opposite node), whereas the sequence given by the 2nd row of Pascal’s triangle is just

1; 2; 1. Likewise, a node i in a cube (N = 3) has 1 node at a distance zero, 3 nodes

at a distance one, 3 nodes at a distance two and 1 node at a distance three, whilst

the sequence stated on the 3rd row of Pascal’s triangle is just 1; 3; 3; 1.

4.2.2 Folded N-hypercube

Folded N -hypercube is an extension of N -hypercube, also referred to as FQn,

where all opposite nodes are joint together by extra edges [240]. Opposite nodes are

easy to find out, as one is the 1’s complement of the other. Those extra links make

reduce the distance between opposite nodes to just 1, leaving the maximum distance

between any two nodes to N/2�, which accounts for the successive integer from N/2,

in case that value is not integer.

On the other hand, it is to be said that if N/2 is not an integer, then �N/2� means its

predecessor integer, whilst N/2� refers to its successor integer. In other words, under

that condition, �N/2� may be seen like asking for the integer part of N/2, whereas N/2�
may be viewed like asking for the integer part of a value, and in turn, adding up 1.
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Else, when N/2 is indeed an integer, then those three expressions match, such that

N/2 = �N/2� = N/2�.
Furthermore, x|n is the equivalent of asking for the remainder of the integer division

between x and n, just like asking for x modulo n, also known as x mod n, which

indicates the application of the arithmetic operation called congruence modulo n.

This reduction on distance among nodes, allowing also for more redundant paths

as a new route through the opposite node is available, helps improve performance,

although at the cost of adding more links and some complexity [56]. Figure 4.5

exhibits how to convert a plain N -hypercube into a folded N -hypercube, where it

may be seen a link between any pair of opposite nodes, where the different nodes

are being named according to the convention explained for the plain one, this is, in

binary format using N bits, as depicted in Figure 4.6.
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Figure 4.5: Converting a plain N -hypercube into a folded N -hypercube.
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Figure 4.6: Folded N -hypercube architectures for N ∈ {2 · · · 4}.

As a matter of fact, the number of nodes is the same as in plain N -hypercube, that

being 2N equally distributed nodes, which are now interconnected by (N +1)× 2N−1
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edges. Regarding the number of links from each node to directly connected nodes,

there are N+1, whilst the number of links to directed connected hosts depends on the

implementation. Therefore, the number of k-facets present in a folded N -hypercube

is just the same as in a plain N -hypercube, which was already exposed in Table 3.12,

except the number of edges, which now accounts for (N +1)× 2N−1 = 2N−1× (
N+1
1

)
.

With respect to the distance between any two diverse nodes, two strategies must

be confronted, such as that not using the path through the opposite node (called the

opposite link), or otherwise, using it. Hence, the proper way may be to assess the

distance with both and select the one offering a shorter path, or both in case of a tie.

In that sense, the former may be done by applying the logical operator XOR

between source and destination identifiers in binary format, where the number of

1s gives the amount of mismatching dimensions, thus making up for the distance

between them when the opposite link is not employed.

Otherwise, the latter may be done by also applying the same logical operator XOR,

where the number of 0s gives the matching dimensions, and an extra unit must be

added so as to count up for the link going to the opposite node, hence making for the

distance between them when the opposite link is indeed employed.

Anyway, it may be clear that node i has a node at a distance zero (itself), and

the rest of nodes may be at a distance in the range between 1 and N/2�. In order to

find the number of nodes being at any given distance, it may be obtained by three

different procedures.

The first method involves the value found in the cross of the N -th row and the k-th

column of the folded Pascal’s triangle, which is a variation of the Pascal’s triangle,

where the first column (k = 0) is left as it is and the right side of the triangle is bent

over the left, such that the last column (k = N) gets over the second column (k = 1).

This operation provokes that cells in the columns from k = 1 to k = �N/2� accu-
mulate two values in each one, which may be added up, resulting that column k = 1

holds the result of the addition of its own value along with the value on column k = N ,

whilst column k = 2 holds the sum of its own value and that of column k = N − 1,

and so on. However, it may be considered that if N is odd, the column N/2� is left
alone, whereas if N is even, then �N/2� = N/2� = N/2 and this issue does not happen.
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The process of folding the Pascal’s triangle is depicted in Figure 4.7, where each

cell shows either the result of its corresponding addition or its original value.
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Figure 4.7: Converting a Pascal’s triangle into a folded Pascal’s triangle.

Therefore, the number of nodes standing at a distance k of any particular node

out of N is found by looking for the value located right at the cross of the N -th row

and the k-th column, as depicted in Figure 4.8.
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Figure 4.8: Folded Pascal’s triangle for the first rows.

Regarding the features of the folded Pascal’s triangle, it is clear that it does main-

tain a sequence of 1s in its column k = 0, each cell keeps the sum of its two upper cells

and the sum of each row is still a power of 2, but it does neither contain a sequence

of natural numbers in column k = 1, such as {an = N}, nor a sequence of triangular

numbers in k = 2, such as {an = N×(N−1)/2}, nor a sequence of tetrahedral numbers

in k = 3, such as {an = N×(N+1)×(N+2)/6}, nor a sequence of Fibonacci numbers in

the diagonal sums, such as {an = an−1 + an−2}. Nonetheless, it fits the task of giving

out how many nodes stand at a distance k in a folded N -hypercube of dimension N .

As an example, a node i in a folded square (N = 2) has 1 node at a distance zero

(itself) and 3 nodes at a distance one (its direct neighbours), whilst the sequence
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given by the 2nd row of folded Pascal’s triangle is just 1; 3. Likewise, a node i in a

folded cube (N = 3) has 1 node at a distance zero, 4 nodes at a distance one and 3

nodes at a distance two, whereas the sequence stated on the 3rd row of folded Pascal’s

triangle is just 1; 4; 3.

The second method involves the use of an expression related to binomial coef-

ficients. In this context, it is to be reminded that the mathematical definition of

factorial, being n! = n×(n−1)!, may yield to (n−1)! = n!/n. Hence, it is easy to see

that 0! = 1!/1 = 1, which brings to (−1)! = 0!/0, thus resulting in an indeterminate

form in IR. It is to be said that in case the Gamma function is not applied, the former

result may not be considered, hence making possible for it to be skipped.

Additionally, a correction factor needs to be applied in rows where N is odd, as

the column k = N/2� is singled out after the triangle left bending process. Therefore,

that corrective coefficient may only be active in such cases, where just k = N −k+1,

whilst being inactive in the rest of cases. This may be achieved by dividing every

term by
⌊

i
N−i+1

+ 1
⌋
, or multiplying each term by 2−� i

N−i+1�, as both halve the result

just in the case of interest, while keeping neutral on the other cases, as shown in (4.2).
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For instance, here they are the first values obtained with the aforesaid expression,

which are just the same as those attained with the folded Pascal triangle.
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The third method involves an alternative expression, which ends up with diverse

values depending on the parity of N , and it is shown in (4.3).
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For example, here they go the first values attained with the expression exposed,

which are just the same as in the previous methods.
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Eventually, N -hypercube topology might be considered as plain N -hypercube, for

having just that shape. Then, folded N -hypercube might be considered as a variation

of it, but it is obviously not the only possible one. There are many other variations

available such as multiple twisted N -hypercube or double looped N -hypercube, al-

though just the folded one will be accounted here, as those may offer better perfor-

mances at the cost of making them harder to manage.

4.3 Comparing tree-like -vs- graph-like designs

It may be interesting to compare the number of nodes and edges for all four

topologies described above. First of all, a precondition must be established in order

to be able to compare them in a fair way, such that the number of hosts all over the

topology must be the same in all cases.

In this context, it is necessary to clarify some definitions, such as end switches

for those switches where hosts may be connected to, source switch for the particu-

lar switch connected to a source host, and destination switch for the given switch

connected to a destination host. Obviously, the concepts or node and switch are

interchangeable, as it is the case for edge and link.
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Therefore, all switches in a graph-like design are end switches, whereas only the

switches located on the lower layer in a tree-like design may be labelled this way.

The easiest way to achieve the same number of hosts within all topologies appears to

be setting the same number of end switches, where each of them may have the same

number of hosts hanging on.

However, there is an issue with fat tree, as parameter K imposes all values, includ-

ing both the number of end switches, that being K2/2, and the number of hosts per

end switch, that being K/2, making an overall amount of K3/4 hosts within the whole

topology. Hence, as fat tree is the most restrictive topology, the aforesaid values may

have to be applied to the other three topologies so as to compare them.

It is to be mentioned that leaf and spine does not have restrictions with neither the

number of end switches nor the number of hosts per switch, whereas the hypercube

topologies fix the number of end switches to a power of two, as 2N is the number of

nodes, but the number of hosts per switch is free.

Putting the focus on fat tree, it is to be remarked that the key values for K = 4,

K = 8 and generic K have already been shown back in Table 4.1. Nevertheless,

Table 4.3 exposes just the most relevant values stated above, along with the overall

amounts of items for all those K values cited.

Table 4.3: Relevant number of items for the scenarios proposed (fat tree).

Item description K-ary K = 4 K = 8
Number of hosts per switch K/2 2 4
Number of end switches K2/2 8 32
Number of hosts overall K3/4 16 128

Number of switches overall 5K2/4 20 80
Number of links overall 3K3/4 48 384

With regards to leaf and spine, it may be defined a parameter called L = log2(K)

in order to build up a leaf and spine topology being related to parameter K of fat tree

so as to achieve the same values for the number of overall hosts and number of end

switches. In that sense, the number of leaf switches may be sufficient to interconnect

all hosts, evenly distributed along all switches, and the number of spine switches may
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be enough to interconnect to all leaf switches. Table 4.4 presents the relevant number

of items for the scenarios proposed.

Table 4.4: Relevant number of items for the scenarios proposed (leaf and spine).

K-ary K = 4 K = 8
Equivalent L value respect to K L L = 2 L = 3
Number of ports per leaf switch 2L 4 8
Number of ports per spine switch 22L−1 8 32

Number of hosts per switch 2L−1 2 4
Number of hosts overall 23L−2 16 128

Number of leaf switches (end switches) 22L−1 8 32
Number of spine switches 22L−3 2 8
Number of switches overall 5× 22L−3 10 40
Number of links overall 23L−1 32 192

Referring to plain N -hypercube, parameter N is the one organizing the infrastruc-

ture, thus it may be used in order to get the same values for number of end switches

and number of hosts per end switch obtained for fat tree. Table 4.5 exhibits the

relevant number of items for the scenarios proposed.

Table 4.5: Relevant number of items for the scenarios proposed (N -hypercube).

K-ary K = 4 K = 8
Equivalent N value respect to K N N = 3 N = 5
Number of links to other switches N 3 5
Number of ports per switch 2N − 1 5 9

Number of hosts per switch N − 1 2 4
Number of hosts overall (N − 1)× 2N 16 128

Number of switches overall 2N 8 32
Number of links overall N × 2N−1 12 80

With respect to folded N -hypercube, parameter N is also the organizer of the

infrastructure, hence it happens the same as in N -hypercube because they both share

the number of nodes, in spite of having more links among them. Table 4.6 exposes

the relevant number of items for the scenarios proposed.
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Table 4.6: Relevant number of items for the scenarios proposed (folded N -Hyp).

K-ary K = 4 K = 8
Equivalent N value respect to K N N = 3 N = 5
Number of links to other switches N + 1 4 6
Number of ports per switch 2N 6 10

Number of hosts per switch N − 1 2 4
Number of hosts overall (N − 1)× 2N 16 128

Number of switches overall 2N 8 32
Number of links overall (N + 1)× 2N−1 16 96

At this point, it is important to distinguish two different distances, such as between

end switches and between hosts, where the former is given by the number of links

between two switches and the latter is achieved by adding up 2 extra units to the

distance between their corresponding end switches, being the switches where those

pair of hosts are hanging on, as an extra link is needed to interconnect each of both

hosts to their proper end switches.

Otherwise, it is to be remarked that in tree-like designs, 1-hop away implies 1

layer of switches between any two hosts, meaning that the path from source host to

destination host goes through just 1 switch in between those two hosts. Therefore,

there are 2 links between hosts being 1-hop away, one of them going from source host

to a port of that switch and another one going from destination host to another port

of such a switch.

However, 2-hops away implies 2 layers of switches, meaning that the path is com-

posed by 3 switches, such as the lower layer switch where the source host is hanging

on, the lower layer switch where the destination host is connected, and a middle layer

switch interconnecting both lower layer switches. Therefore, there are 4 links between

hosts being 2-hops away.

Likewise, 3-hops away implies 3 layers of switches, meaning that the path is com-

posed by 5 switches, following the same reasoning. This is, a lower layer switch for

source host and another lower layer switch for destination host, then, a middle layer

switch connecting to the source lower layer switch and another middle layer switch

connecting to the destination lower layer switch, and eventually, an upper layer switch
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connecting both middle layer switches. Therefore, there are 6 links between hosts be-

ing 3-hops away.

On the other hand, graph-like design paths are composed by all switches between

source switch and destination switch. This way, it may be said that there is a set of n

hops-away paths containing all available combinations of n switches forming a string

of length n, being located in a sequential order and taken through the shortest routes,

starting from the next hop off the source switch (which might differ in each string)

and finishing with the destination switch (which obviously must end each string).

Furthermore, in order to calculate the number of links between any pair of hosts,

the amount of hops between their connecting switches may be incremented by 2, so

as to consider the links going from the source switch to the source host and from the

destination switch to the destination host.

Therefore, putting together all of the above and considering the proposed topolo-

gies on tables from 4.3, 4.4, 4.5 and 4.6, it is possible to undertake some comparisons

among them all for the same number of end switches and hosts.

4.3.1 Average distance in links among hosts

The results obtained regarding the average distance are counted in number of

links (λ) among any given pair of hosts (η), which may hang on any particular pair

of end switches (σ). Those results are given for all four topologies regarding a generic

parameter, and the equivalent values forK = 4 andK = 8 in each of those topologies.

Focusing on fat tree, a given host is obviously at a distance zero of itself, whereas

it is to be reminded that there are K/2 hosts per edge switch, as well as K2/4 hosts per

pod, whilst there are K3/4 all over the topology (4.4).

���
��1 η × 0 λ+ (K/2− 1) η × 2 λ+ (K2/4− K/2) η × 4 λ+ (K3/4− K2/4) η × 6 λ

(K3/4) η
(4.4)

Focusing on leaf and spine, a particular host is clearly at a distance zero of itself,

whereas it is to be remarked that there are 2L−1 hosts per leaf switch, whilst there

are 23L−2 all over the topology (4.5).

���
��1 η × 0 λ+ (2L−1 − 1) η × 2 λ+ (23L−2 − 2L−1) η × 4 λ

23L−2 η
(4.5)
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Focusing on N-hypercube, a single host is just at a distance zero of itself, whilst it

is to be pointed out that there are N − 1 hosts per switch, with an overall amount of

2N switches, taking into account that there are as many switches at a certain distance

as stated by the coefficients of the Pascal’s triangle for row N (4.6).

(
���

��1 η × 0 λ+ (N − 2) η × 2 λ
)
× 1 σ + (N − 1) η ×

(∑N
i=1

(
N
i

)
σ × (i+ 2) λ

)

(N − 1) η × 2N σ
(4.6)

Focusing on folded N-hypercube, a given host is obviously at a distance zero of

itself, whereas it is to be said that there are N − 1 hosts per switch, with 2N overall,

and taking into consideration that there are as many switches at a certain distance

as stated by the coefficients of the folded Pascal’s triangle for row N (4.7).(
����1 η×0 λ+(N−2) η×2 λ

)
×1 σ+(N−1) η×

(
∑�N/2�

i=1

(
(Ni )+(

N
N−i+1)

)
×2−� i

N−i+1� σ×(i+2) λ

)
(N−1)η×2N σ

(4.7)

4.3.2 Average distance in links among end switches

At this point, let us remake all calculations again by moving the focus from hosts

to end switches in order to calculate the average number of links between any pair of

given end switches.

Focusing on fat tree, a given edge switch is obviously at a distance zero of itself,

whilst it is to be noted that there are K/2 edge switches per pod, as well as a total

amount of K2/2 throughout the whole topology (4.8).

���
��1 η × 0 λ+ (K/2− 1) σ × 2 λ+ (K2/2− K/2) σ × 4 λ

(K2/2) σ
(4.8)

Focusing on leaf and spine, a particular leaf switch is clearly at a distance zero of

itself, whereas it is to be reminded that there are 22L−1 leaf switches being located

all over this topology (4.9).

����
��1 σ × 0 λ+(22L−1 − 1) σ × 2 λ

22L−1 σ
(4.9)
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Focusing on N-hypercube, a single end switch is just at a distance zero of itself,

whilst there are as many switches at a certain distance as given by the coefficients of

the Pascal’s triangle for row N , where the overall amount of switches is 2N (4.10).∑N
i=0

(
N
i

)
σ × i λ

2N σ
(4.10)

Focusing on folded N-hypercube, any end switch is obviously at a distance zero of

itself, whereas the number of switches at some distance is given by the coefficients of

the folded Pascal’s triangle for row N , where 2N accounts for all switches (4.11).(∑�N/2�
i=0

((
N
i

)
+
(

N
N−i+1

))× 2−� i
N−i+1� σ × i λ

)

2N σ
(4.11)

4.3.3 Results and analysis

To sum of it all up, the aforementioned expressions have been used to calculate

the four topologies with the values quoted in tables 4.3, 4.4, 4.5 and 4.6. In fact,

Table 4.7 presents a summary of the results obtained for the average distances in

links (λ) among hosts, whereas Table 4.8 does it for the average distances in links (λ)

among end switches. This way, the number of hosts and end switches may be seen as

equivalent to those attained with a fat tree topology for K = 4 and K = 8.

Table 4.7: Average distance in links (λ) among hosts.

Fat tree Leaf & spine N-hypercube Folded N-hyp.

K = 4
5.13

(K = 4)

3.62
(L = 2)

3.38
(N = 3)

3.13
(N = 3)

K = 8
5.67

(K = 8)

3.92
(L = 3)

4.48
(N = 5)

4.05
(N = 5)

According to the data obtained in this couple of tables, it might seem that graph-

like designs perform better than tree-like designs. Likewise, within the former, folded

N -hypercube does it better than plain N -hypercube, whereas within the latter, leaf

and spine does it better than fat tree.
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Table 4.8: Average distance in links (λ) among end switches.

Fat tree Leaf & spine N-hypercube Folded N-hyp.

K = 4
3.25

(K = 4)

1.75
(L = 2)

1.50
(N = 3)

1.25
(N = 3)

K = 8
3.69

(K = 8)

1.94
(L = 3)

2.50
(N = 5)

1.59
(N = 5)

It is to be noted that the scenarios proposed were set up in order to export the

number of hosts of a fat tree architecture to the other ones, as that is the design im-

posing fixed specifications according to parameter K, and that way, the performance

for all topologies might be compared for the same number of hosts.

However, it is to be said that the number of hosts per end switch usually depends

on the deployment in all topologies, except for fat tree. Besides, such a number might

not be constant throughout all end switches. Regardless the case, any variation with

the amount of hosts may change the values shown in the aforementioned tables.

On the other hand, this factor is usually not the most important one, as some

other factors may well be taken into account. For example, the values of latency and

jitter must be steady when dealing with VoIP and video streaming, or otherwise, the

easiness of management requires an internetworking system as simple as possible, or

even scalability might be an important issue when dealing with growing workloads.

Therefore, when dealing with convergent networks, meaning those carrying data

traffic along with voice and video all together, it may be more interesting to implement

tree-like designs, as the number of hops away is steady, not being greater than 3 in

case of fat tree, or even 2 in case of leaf and spine, whereas in graph-like designs, the

number of hops away grows as it does the dimension of the topology.

Furthermore, regarding easiness of management for graph-like designs, N -hypercube

might be more interesting than folded N -hypercube, as extra links makes things

harder regarding routing, packet forwarding or managing the whole infrastructure.

As per the tree-like designs, it depends on the situation, as leaf and spine contains

less switches and links, but requires full mesh connectivity and fat tree do not.
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Eventually, with respect to scalability, graph-like designs get more complicated as

the number of switches grows. Otherwise, tree-like designs scale better, but fat tree

does it finer than leaf and spine, as the former has partial mesh interconnection, thus

maintaining the number of switches and links steadier as the network grows, whereas

the latter needs full mesh interconnection, making the number of links increase faster

as network needs grow. On the other hand, it needs to be noted that the latter displays

better performances up to a certain network size, thus being a highly interesting

option in small to medium deployments.

In summary, none of the four topologies may be considered as the best of all, be-

cause there are many factors affecting performance, which may well be a key player,

but in many occasions there may be others as important, such as the need of steady

values for latency and jitter, the easiness of management, and the possible scala-

bility issues. Hence, each implementation may have its better choice regarding the

interconnection topology depending on the required conditions.

4.4 Other mesh and star topologies

The topologies presented above do not have the shortest distances between end

switches, thus getting worse performance measurements when dealing with real time

streams. In order to cope with this, full mesh and quasi full mesh topologies come

into play, with the advantage of having much direct interconnections among switches,

but at the expense of having manageability and scalability issues, hence being a great

option for small deployments, although not so good as the number of nodes grow.

4.4.1 Full mesh

The particularity of this topology is that each node within this shape has a direct

interconnection with the rest of its counterparts, thus making the distance between

any pair of switches equal to 1 link, whilst the distance between any pair of hosts

hanging on different nodes is just 3 links. Obviously, the distance between any two

hosts tied to the same switch is 2 links, regardless the switching topology involved.
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This sort of topology may be built up with different designs for N switches, such as

an N-simplex, where all nodes are directly interconnected, also a folded N -orthoplex,

where the missing link between opposite nodes is established, or even a convex regular

n-polygon (having n sides located in 2D), where all diagonals are depicted.

The main benefit of this topology is clearly that all nodes are at the same dis-

tance, thus improving the performance, whereas the main drawback is the scalability.

Anyway, Figure 4.9 exhibits a full mesh topology with six nodes.

Switch0

Switch1

Switch2

Switch3

Switch4

Switch5

Figure 4.9: Full mesh topology.

4.4.2 Quasi full mesh

This topology is based on the N-orthoplex shape, where there is a direct link

between one node and the rest of them, except for its opposite node. This way, the

distance between any pair of switches is 1 link, except for opposite nodes, which rises

to 2 links. Therefore, when dealing with the number of links between any pair of

hosts, there may be obviously 2 if they both hang on the same switch, rising up to 3

if they both hang on different switches not being opposite, and reach up to 4 if that

condition arises.

The advantage of this design respect to the previous one is the saving of some links,

which accounts for some improvement in scalability, whilst still having all nodes at a

close distance, hence this design might be seen as a commitment between manageabil-

ity and proximity of nodes. Anyway, Figure 4.10 exposes a quasi full mesh topology

with six nodes.
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Switch0

Switch1

Switch2

Switch3

Switch4

Switch5

Figure 4.10: Quasi full mesh topology.

4.4.3 Star

This type of topology, also known as hub & spoke, may be seen on the borderline

between tree-like and graph-like designs. On the one hand, it may be considered as

a tree due to its hierarchical infrastructure, this is, the hub has a different role than

the spokes, as the latter get hosts connected and the former does not, just serving as

the interconnection among all the latter. In this sense, it might be viewed as if the

spokes had been extended all around the hub, covering the whole 360 degrees, where

this is located in the centre of the infrastructure.

On the other hand, it may be seen as a graph due to its geometric shape, which

might be seen as a wheel, where the hub is right at the centre and the spokes are

equally distributed just over the circumference, with the links just playing the part

of radius within the whole circle. Likewise, a hub and spoke topology may also be

viewed as a regular n-polygon, where n is related to the number of spokes available,

and with a single hub just in the middle of such a shape. This view may provide a

set of undirected connected cyclic graphs with some symmetry axes for all spokes, ac-

counting for multiple redundant paths between spokes, which are the ones connected

to hosts, taking into account that the hub is only connected to spokes.

Anyway, traditional star topologies, typically known as hub and spoke, usually

have one single device acting as a hub, and with as many spokes as necessary. In this

sense, if there are n spokes, it might also be associated with an n regular polygon

wheel. Figure 4.11 depicts a typical hub and spoke design with six spokes, where

all communications among them go through the central hub. It may be appreciated
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that all spokes, which are the end switches, are at a distance of 2 links of each other,

whereas any pair of hosts hanging on different switches are at a distance of 4 links.

Spoke0

Spoke1

Spoke2

Spoke3

Spoke4

Spoke5

Hub0

Figure 4.11: Hub and Spoke topology.

Regarding DC designs, where redundancy is a key factor, it is strongly recom-

mended to have a couple of hubs in order to get redundancy. This way, fault-tolerant

designs are achieved, whilst not needing a routing protocol if the network operates at

layer 2, or otherwise, using simple static routing if the network operates at layer 3.

Alternatively, it might be considered the option of having a physical device con-

nected to all spokes, having two virtual devices acting as redundant hubs. In that

case, there is no physical redundancy, although there is service redundancy, as well as

link redundancy if aggregate links are implemented and power redundancy if power

lines coming from different sources are deployed. On the other hand, the option

of using a single virtual device with a snapshot ready to load in case the hub gets

corrupted might be considered as a single hub with a fast recovery time ready to go.

However, despite of the fact that both alternative options described might do

the job of a redundant hub, it may be noted that the option with two redundant

physical devices acting as a hub brings the best performance, as it may offer better

full redundancy, and hence, that is the most safe and secure option.

The topology with two redundant hubs is a typical solution being put in place in

many production environments, as stated before, where there might be even more

than two in certain cases. There are different network protocols to deal with such a

situation, which permits two different approaches, such as active-standby and active-

active. The former allows for one device always dealing with data traffic, whereas the
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other device is just ready to go if the other one fails. Otherwise, the latter permits

both devices to deal with certain data traffic simultaneously, where diverse virtual

contexts may be assigned for each of them to deal with different types of traffic.

On the other hand, the former does not usually involve any direct link between

both hubs, as control communication between them is forwarded through the spokes,

and the lack of such messages on the other device implies that the other hub is down,

thus the role of active is assigned to the hub being up, hence needing some small time

interval to build up the forwarding table before being fully operational.

Regarding the latter, there is usually a direct link between both hubs, where control

communication between them takes place. This extra control link is used for control

messages, as well as to make backup copies on a regular basis, thus making possible a

faster recovery time in case of one hub going down. Figure 4.12 shows such a design.

Spoke0

Spoke1

Spoke2Spoke3

Spoke4

Spoke5

Hub0

Hub1

Figure 4.12: Redundant Hub and Spoke with a direct communication link.

4.5 Toroidal grid topologies

Those kinds of topologies may be embedded on an N -dimensional torus without

any crosses, meaning that the items along each particular dimension are intercon-

nected in a circular fashion. Only one and two dimensions are going to be considered,

resulting in single rings and toroidal rings, respectively, leaving aside higher dimen-

sions, as 3D hypertoroidal rings are aimed at large-sized networks, those being far

too much for the needs of small-to-medium network deployments.
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4.5.1 Redundant ring

A single ring may be seen as a toroidal grid design along just 1 dimension, where

each node has only 2 neighbours, those being its predecessor and its successor. In

other words, a single ring may be seen as a toroidal grid composed by a number of

nodes n located in only 1 circular row, whereas a peer-to-peer topology may be seen

as a single ring with only two nodes.

It is to be said that the easiest way to arrange the nodes may seem as a sequence of

natural numbers, this is, going from left to right for simplicity purposes, starting out

at zero and moving sequentially. Other node distributions may be applied, such as a

de Bruijn sequence, even though the topology remains the same in any case. Hence,

the former case has been considered.

This design is going to be presented with two redundant links in each direction,

as it is sometimes used in production environments for some critical networks with

double links between the nodes for redundancy purposes, where each node has a

double link pointing to both left and right neighbours, that being the reason why the

topology proposed is called redundant ring.

4.5.2 Toroidal ring

If the previous design is extended up to 2 dimensions, the result is a toroidal ring,

where the nodes are organized in circular rows and circular columns, respectively. The

most common arrangement has the same number of rows and columns, that being

n, resulting in a squared mesh where the items on the edges are wrapped around.

Hence, the dimensions of such a squared mesh are n× n, where each node has just 4

neighbours, those being predecessor and successor in both its row and its column.

It is to be noted that the more straightforward way to arrange the nodes may

appear to be as an incremental sequence of natural numbers for each row, from left

to right, and then, from bottom to top, for simplicity purposes. However, it is to be

reminded that other node distributions might be applied, such as a de Bruijn torus,

although the topology stays the same in all cases, where each node have four single

links pointing to its directly connected neighbours, such as up, down, left and right.
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As a side note, it is to be said that, when there are just 2 nodes per dimension in

a toroidal network, the resulting design is that of an hypercube. Specifically, if the

toroidal grid has 1 dimension, the design obtained is that of a segment, whereas if it

has 2 dimensions, a square design is attained, whilst if it has 3 dimensions, a cube

design is achieved, and so on.

4.6 Directed-graph topologies

In the context of directed graphs, two sorts of topologies are going to be built up

following the de Bruijn graphs presented before, such as that based on its original

version and a reverse one. Anyway, it is to be remarked that they are both based on

directed graphs, meaning that all edges have a unique compulsory direction.

4.6.1 De Bruijn graph

A design based on a de Bruijn graph of binary n-length words may be considered as

a deployment where the bits identifying the destination node are injected as a left bit

shifting, one at a time [233]. In this case, the destination is reached with a maximum

of n hops. The way to go through it has been described in the previous section, which

may be further clarified in Figure 4.13 for a Hamiltonian path on B(2, 3), and also in

Figure 4.14 for a Eulerian path on B(2, 4).
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Figure 4.13: Hamiltonian paths for B(2, 3).
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Figure 4.14: Eulerian path for B(2, 4).

By looking at the aforesaid binary de Bruijn graph, it may be clear that each

node only has 2 possible paths inwards and other 2 possible paths outwards, due to

the core feature as a directed graph with a binary alphabet. Therefore, the way to

traverse the graph is to get into a node through any of the permitted entry paths,

while getting off through any of the exit paths, as depicted in Figure 4.15.

XYZ

0XY

1XY

YZ0

YZ1

State n-1 State n State n+1

Z

Z

0

1

Figure 4.15: Paths in and out of a node in a binary de Bruijn graph.

The aforementioned example B(2, 3) is quite simple, as k = 2 and n = 3, but the

complexity increases as both values may rise, even though the principle of use remains

the same. For example, a ternary alphabet may be established with a word length of

2, and then, the B(3, 2) graph may be obtained, which is exhibited in Figure 4.16,

having a trefoil shape. This example may shows that the rise in k leads to much

more states, which may further complicate the graph, as both the number of nodes

increases and each node may have k entry paths and other k exit paths.

Regarding the expression to get to the next nodes in a de Bruijn graph, departing

from a particular node i, when using a binary alphabet (k = 2) with a word length

n, is given by (4.12).

(2i+ j) mod 2n, where j = {0, 1} (4.12)
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Figure 4.16: De Bruijn graph B(3,2).

On the other hand, it is pretty straightforward to adapt the aforesaid expression

for a k-ary alphabet, as it only implies to exchange the appearances of number 2 in

that expression with k, which may stand for the expression given in (4.13).

(k × i+ j) mod kn, where j = {0, 1, · · · , k − 1} (4.13)

4.6.2 De Bruijn reverse graph

The way it works the aforesaid de Bruijn design may be flipped around so as

to achieve that the bits identifying the destination node are injected as a right bit

shifting, one at a time. The result would be the de Bruijn reverse graph, shown in

Figure 4.17, which is obtained in a similar way as explained for the de Bruijn graph,

where a 3-length Hamiltonian cycle may be found straightforward by going from left

to right and coming back home, and a 4-length Eulerian cycle may be found by setting

the edge weight found when getting off a node in front of that node identifier, and in

turn, making the same path as described in the previous section.

In order not to get confused with the original de Bruijn graph B(k, n), the reverse

de Bruijn graph is going to be named B(k, n), where the underscored values in the

corresponding picture are located in a different node from where they are in the

original one, whilst the rest of nodes and all edge weights remain at the same place.
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Figure 4.17: De Bruijn reverse graph: Hamiltonian B(2, 3) and Eulerian B(2, 4).

As stated in the aforementioned case, the complexity rises as n or k grow. In this

context, the expression to get from node i to the next nodes one-hop away when using

a binary alphabet is given by (4.14).

(int(i/2) + j × 2n−1) mod 2n, where j = {0, 1} (4.14)

On the other hand, that expression may be adapted for using a k-ary alphabet by

just swapping all appearances of number 2 with k, which may result in (4.15).

(int(i/k) + j × kn−1) mod kn, where j = {0, 1, · · · , k − 1} (4.15)

4.7 Undirected-graph topologies

In the context of undirected graphs, a couple of topologies are going to be con-

structed where the edges between nodes are only present if their n-length binary

identifiers meet some specific requirements. On the one hand, a binary grid inter-

connects a node with the other nodes having just one mismatching bit between their

node identifiers. On the other hand, this behaviour may be reversed, in a way that a

link may take place when two nodes identifiers differ in just n−1 bits, and also joining

each pair of opposite nodes, which makes for a specific type of Hamming graph.

In both cases, it is to be remarked that for n even, a binary square n× n toroidal

grid is achieved, whilst if n is odd, just a binary flat representation is attained, where

the all 0s and 1s values are left alone at opposite ends, and the proper groups of n

elements are allocated in between, with their appropriate connections according to

the established conditions.

Moreover, just for clarification purposes, bit zero is the least significant bit, whereas

bit n− 1 is the most significant one, thus the bit positions grow from right to left.
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Additionally, a couple of topologies are going to be proposed related to cage graphs,

whose main features are having a specific regular degree and girth, being the designs

with the minimum amount of vertices to achieve such a girth. It is to be noted that

in those cases, nodes are named in a clockwise manner.

4.7.1 Binary grid

This topology may be seen as a deployment of kn nodes, where each one is identified

by means of a unique k-ary n-length word, where k is a binary alphabet and n is a

small natural number. When n happens to be even, it might be viewed as if those

nodes are interconnected as a grid in a toroidal array, having the shape of a k-ary

n-cube, even though it is not to be confused with neither a de Bruijn torus, because

there are no unique toroidal subarrays involved, nor a de Bruijn graph, as that is

a directed graph whilst this is an undirected one. Otherwise, when n occurs to be

odd, it might be observed a grid as a flat array, although two extra elements are left

alone located on opposite sides, those containing all equal bits, one with all zeros and

another one with all ones. In any case, the degree of each node is n, as there is just

a different flipping bit for each neighbour node.

Therefore, an edge between a pair of nodes involves only one binary symbol shifting

to get from one to the other. Figure 4.18 exhibits the relationships among all nodes

in a binary grid layout for n = 2, n = 3 and n = 4.
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Figure 4.18: Binary grid for n = 2, n = 3, n = 4.

Regarding the case when n is even, it is to be observed that all rows and columns

shown follow different definite patterns containing 0s and 1s, along with undetermined
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values expressed by x (whose value might be either 0 or 1). Therefore, this regularity

may make easy to work out an algorithm to move from a source to a destination by

just shifting the discordant bits. Furthermore, by crossing a horizontal and a vertical

patterns, any given number may be easily spotted, as well as the discordant bits

between a source node and a destination node. On the other hand, some regularity

related to the number of bits being 0 may also be established in case n is odd.

Hence, departing from a node i, the path to the destination node may be calculated

by first spotting the discordant bits j between them, meaning the different values

located in the same bit positions of both neighbour nodes. This may be done with

the help of logical operations, by applying the XOR operator to the binary identifiers

of both nodes, or otherwise, by applying an appropriate arithmetic expression to their

decimal identifiers.

Once those discordant bits have been found out, a logical approach may be used

by swapping the discordant bits j on the source node, or otherwise, an arithmetic

approach may be imposed by applying the expression given in (4.16). Anyway, each

discordant bit accounts for a movement to an intermediate node on the way towards

the destination node. Furthermore, if the count of j discordant bits is greater than

one, then every possible combinational strings using all elements of j make up for

as many redundant paths as the factorial of such a number of discordant bits, where

each path contains all of the movements, but ordered in a unique manner, making up

for as many different paths from source node to destination node.

i+
∑
j

(
(−1)int(i/2j) mod 2 × 2j

)
, where j = {discordant bits} (4.16)

Additionally, the grid may be extended to any k-alphabet, which may enlarge

the links for each single node, and in that case, the expression may be adapted by

exchanging k for the number 2 in the appropriate algorithm, and considering that j

now stands for the discordant k-ary digits. Hence, the appropriate expression may

be obtained by (4.17).

i+
∑
j

(
(−1)int(i/kj) mod k × kj

)
, where j = {discordant k − ary digits} (4.17)
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4.7.2 Hamming graph

If the concept of binary grid is flipped around, then a kind of reverse binary grid

may appear to be the topology, where there is an edge between any pair of nodes

whose distance is exactly n− 1, in a way that all bits minus one are just the binary

shifting of each other. In this context, the distance d is measured as the number of

different binary digits identifying a pair of nodes, obviously comparing the bits in the

same positions.

That case may also be viewed as a subgroup within the Hamming graphs, those

being undirected graphs where the distance between any two vertices is at least a

certain value d [57], even though other definitions may be found in the literature,

such as the distance being just one [102], which would make for the binary grid case

describe above. However, the former definition may be applied herein.

Hence, in that context, a Hamming graph may have a nomenclature such as

Hk(n, d), where k is the length of the alphabet, n is the length of the words and

d is the minimum distance between nodes. Therefore, a Hamming graph for distance

n − 1, such as Hk(n, n − 1), may connect all nodes having a distance n − 1 among

them, as well as those at a distance n, which may account for opposite nodes. Those

graphs are also known as Hamming-distance graphs and they are all Hamiltonian,

regular, simple and connected graphs [88], making them quite feasible to work with.

Figure 4.19 depicts the relationships among nodes in this particular type of Ham-

ming graph layout using a binary alphabet, such as k = 2, resulting in H2(n, n − 1)

for n = 3 and n = 4, as the picture for n = 2 remains the same as the one exhibited

for the binary grid. In any case, the degree of each node is n+1, making up for the n

neighbours at a distance n− 1 and the extra neighbour at a distance n, meaning the

opposite node. On the other hand, Hamming graphs need not to be confused with

Hamming codes, which are being used for detection and correction of errors in data

transmissions [86], even though they both share the concept of distance.

Those figures are similar to the ones obtained in the binary grid case for small nat-

ural numbers n, but the layout of the nodes and the interconnections among them are

not the same. Regarding the case where n is odd, the number of overall zeros within
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Figure 4.19: Hamming graph H2(n, n− 1) for n = 3 and n = 4.

each block does not follow the same sequence described above. Otherwise, when n is

even, a specific bit is fixed between every pair of neighbour rows or columns, being

bits 1 or 3 for the former and bits 2 or 0 for the latter, where different combinations

of bit positions for the fixed value may be taken between a source node and a des-

tination node, whilst the rest of bits are shifted. Additionally, it is to be reminded

that a direct link exists between opposite nodes, no matter the parity of n.

Therefore, departing from a node i, the path through the destination node may

be found out in two stages. As per the first round, the number of discordant bits j

are counted up so as to check whether it is equal or greater than n− 1. If that is the

case, if it is equal to n− 1, there may only be a matching bit (regardless of its value),

which may be referred to as j∗, being located in the position j∗ inside the binary

string, whilst there may be no matching bits if it is equal to n.

According to that result, the second round takes places, such that if the aforesaid

condition is met, then the destination node is a direct neighbour, or otherwise. Hence,

in the first case, the expression to get the unique path to the destination node would

be given by expression (4.18), which accounts for all discordant bits.

i+
n−1∑
j=0
j �=j∗

(−1)int(i/2j) mod 2 × 2j (4.18)

Otherwise, if there are less than n − 1 discordant bits, then there may be some

redundant paths, in a way that each path may go through an intermediate neighbour
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by fixing one of the discordant bits, where each of those paths may be calculated by

using a similar expression, but using j ∗ ∗ to express discordant bits, and dealing with

them all, such as in (4.19). Besides, if max(j ∗ ∗) = n/2, then the link to the opposite

node may also be taken into account, as being an equal distance path.

i+

max(j∗∗)∑
j∗∗

( n−1∑
j=0

j �=j∗∗

(−1)int(i/2j) mod 2 × 2j
)

(4.19)

On the other hand, if there is just one discordant bit, then the path may go through

the opposite node, where it may be calculated by means of (4.20), and then the

destination will be just a direct neighbour of the opposite node. Alternatively, an

opposite node may be found out by applying the expression 2n − 1− i.

i+
n−1∑
j=0

(−1)int(i/2j) mod 2 × 2j (4.20)

All those steps involve arithmetic operations, although they might also be per-

formed by means of logical operations, this is, by applying the XOR operator to find

out the discordant and matching bits between the binary identifiers of the source

node and the destination node, where the former yield 1 and the latter do 0 after the

XOR operation, and in turn, by swapping the discordant bits j accordingly.

Additionally, the Hamming graphs may also work with any k-alphabet, which may

allow for more links for each single node, and therefore, the expression may be adapted

by substituting k for the number 2 in the aforementioned algorithms, and taking into

account that j, j∗ and j ∗ ∗ have the same meaning as before, but the term bit may

be changed by k-ary digit or symbol.

Therefore, the appropriate expression for reaching a direct neighbour is given by

(4.21), the one to get to an intermediate neighbour is shown in (4.22) and the one

needed to achieve the opposite neighbour is provided in (4.23).
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i+
n−1∑
j=0
j �=j∗

(−1)int(i/kj) mod k × kj (4.21)

i+

max(j∗∗)∑
j∗∗

( n−1∑
j=0

j �=j∗∗

(−1)int(i/kj) mod k × kj
)

(4.22)

i+
n−1∑
j=0

(−1)int(i/kj) mod k × kj (4.23)

4.7.3 Cage graphs

A (k, g)-graph may be defined as a cage graph being k-regular, as each node has

degree k, and girth g, meaning the length of its shortest cycle. Within that type of

graphs, a (k, g)-cage is the one with the smallest possible number of nodes [59]. In

this context, if k = 2, the only available cages are the regular polygons, and g < 3

does not form a cycle, thus k ≥ 2 and g ≥ 3.

It is to be said that not all combinations of k and g make for a cage, furthermore

considering that a (k, 3)-cage makes for a complete graph, meaning a full mesh one,

and (k, 4)-cage is a complete bipartite graph, where nodes may be divided into two

groups where there is a full mesh connectivity between each node belonging to one

set and all the nodes located in the other set.

Focusing on k = 3, there have been found (3, g)-cages from 5 ≤ g ≤ 12, where

Table 4.9 shows its main features. However, values from 5 to 8 may account for the

most well-known, along with 12.

Regarding small-to-medium network deployments, the most interesting ones may

be the (3, 5)-cage and the (3, 6)-cage, namely Petersen and Heawood graph, respec-

tively, as they both assure a maximum internode distance, also known as diameter, of

2 and 3, respectively. Likewise, the former has a chromatic number of 2 and a chro-

matic index of 3, whereas the latter has 3 and 4, respectively. Neither of them offer

equal length paths to a given destination, thus redundant paths may not be equally

long, even though all links might be doubled as an alternative to achieve that.
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Table 4.9: Known (3, g)-cages.

Name of the cage graph Nomenclature Girth Nodes (Order)
Petersen (3, 5)-cage 5 10
Heawood (3, 6)-cage 6 14
McGee (3, 7)-cage 7 24
Tutte-Coxeter (3, 8)-cage 8 30
- (3, 9)-cage 9 58
- (3, 10)-cage 10 70
Balaban (3, 11)-cage 11 112
Benson (3, 12)-cage 12 126

4.7.3.1 Petersen graph

Focusing on (3, 5)-cage (Petersen graph), it may be interesting to identify the nodes

belonging to the outer circle first (going from 0 to 4), and then, those of the inner

circle (going from 5 to 9), where in both cases the lowest value is awarded to the

topmost node, and from those points on, going in a clockwise fashion. This way, the

forwarding strategy may be arranged just by distinguishing combinations between

both groups. Figure 4.20 shows an implementation of a Petersen graph.

Figure 4.20: Petersen graph.
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4.7.3.2 Heawood graph

With respect to the (3, 6)-cage (Heawood graph), it may be interesting to identify

the nodes in a clock manner as well (going from 0 to 13), assigning node 0 to the

topmost node with the middle link going clockwise. This way, all even nodes have

their middle link clockwise, whereas all odd nodes have it counterclockwise, which

may simplify the forwarding expressions. Figure 4.21 shows an implementation of a

Heawood graph.

Figure 4.21: Heawood graph.

4.8 Summary

In summary, the most relevant features of the topologies proposed are going to be

cited in Table 4.10. First of all, tree-like, graph-like or star-like designs are going to

be distinguished, and in turn, the girth is quoted, meaning the shortest cycle, where

∞ stands for no cycles, as well as the diameter, meaning the largest distance between

any pair of switches or any pair of hosts, and the degree in graphs, stating the number

of interswitch links in all switches.

On the one hand, tree-like designs have been represented by fat tree, which ac-

counts for three layers of switches, and leaf and spine, accounting for just two layers.

Otherwise, star-like designs have been exposed as a single hub and spoke and a redun-

dant hub and spoke. On the other hand, the rest of topologies shown are considered
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as graph-like designs, where all of them share some common characteristics among

them, such as being regular, connected, simple and Hamiltonian.

After having described the main characteristics of all those topologies, their cor-

responding models are going to be designed in the following chapter.

Table 4.10: Topologies proposed along with some relevant features.

Topology name Type Girth
Switch

diameter
Host

diameter
Degree

(just to switches)

Fat tree tree-like ∞ 4 4+2
end switches: K/2
other switches: K

Leaf & spine tree-like ∞ 2 2+2 up to the designer
N -hypercube graph-like 4 N N + 2 N
Folded N -hypercube graph-like 4 N/2� N/2�+ 2 N + 1
Full mesh graph-like 3 1 1+2 N
Quasi full mesh graph-like 3 2 2+2 N

Hub & Spoke star-like ∞ 2 2+2
end switches: 2

hub: 2N

Redundant Hub & Spoke star-like ∞ 2 2+2
end switches: 2
hub: N + 1

Redundant ring graph-like N N − 1 N − 1 + 2 4
Toroidal ring graph-like 4 2× �N/2� 2× �N/2�+ 2 4

De Bruijn graph graph-like 2 2N 2N + 2
indegree: N
outdegree: N

De Bruijn reverse graph graph-like 2 2N 2N + 2
indegree: N
outdegree: N

Binary grid graph-like 4 2× N/2� 2× N/2�+ 2 N

Hamming graph graph-like
N ≤ 3 = 3
N ≥ 4 = 4

N/2� N/2�+ 2 N + 1

Petersen graph graph-like 5 2 2+2 3
Heawood graph graph-like 6 3 2+2 3



Chapter 5

Modelling network Data Centre

topologies with ACP

After having presented the topologies selected for small to medium DC implementa-

tions, along with their mathematical bases, those structures are going to be modelled

with ACP. In this sense, a common structure is going to be followed in the study for

each of the models proposed:

• Preamble, where a quick description is offered.

• Layout, where nodes and edges are identified for being used in the model.

• Flow chart, where a diagram depicts how the model behaves so as to find the

paths with the minimal distance between a given pair of devices [219], where

the metric considered is the number of links between them.

• Pseudocode model, where arithmetic and logical approaches carry the behaviour.

• Algebraic model, where ACP is used to describe the behaviour.

• Redundant paths, where an algorithm is proposed to list all devices (and ports,

if at all possible) within each minimal path available.

• Verification, where an ACP verification takes place in order to verify the be-

haviour of the model proposed against that of the real system.

139
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5.1 Hosts, switches and ports

First of all, it is to be reminded that an end switch is a switch having some hosts

hanging on it, each of them holding a determined number of hosts. For simplicity

purposes, such a number has been set to M in all cases presented herein, with the

exception of fat tree, where there must be K/2 hosts per end switch. Taking that aside,

most of the designs presented admit any value of M , except for the N -hypercube and

folded N -hypercube designs herein, which in order to keep things simple, it is required

a value of M to be a power of 2, such as M = 2W , where W may be any exponent.

On the other hand, it is to be said that each end switch may have a unique

identifier in the form of a natural number i, going from left to right as a general rule,

thus starting from 0 and increasing rightwards. Likewise, the downlink ports for each

end switch will also go from port 0 to port M−1, in a way that each host is connected

to its proper end switch through the correspondant port, where a given port may be

generically named as p.

This way, each host will be uniquely identified by variable h, according to the

following expression (5.1), which depend on i, M and p.

h = i×M + p (5.1)

Therefore, the group of hosts connected to switch i will be identified within the

range from i ×M to i × (M + 1) − 1, as it may be shown in Figure 5.1. Moreover,

it has been considered that hosts only have one port, which is referred to as port 0.

Furthermore, the overall number of switches within a certain topology is denoted by

Z, where any given switch i may go from 0 to Z − 1, whose order may be adapted

through each particular design.

This way, a message may be forwarded on from a source host to a destination host

by means of the outcome of certain arithmetic operations to be calculated with the

destination host identifier, although sometimes logical operations may also apply.

To start with, source and destination switches may be determined, and in turn, all

possible paths between them, leading to the discovery of all possible switches making

up each of those ways.
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HostHostHost . . .

Switch i

0 1 M-1

0 0 0

Figure 5.1: Model for a generic switch i, with its connected hosts.

For instance, let us suppose that there is a communication where source host is

a and destination host is b, assuming that each switch have the same amount of M

hosts hanging on. In this case, the source switch may be found out by applying �a/M�,
which accounts for the result of the integer division, alternatively indicated by the

expression int(a/M). Taking that into consideration, the destination switch may be

learnt by applying �b/M�, which is obviously equivalent to int(b/M).

Besides, the port on the source switch connected to the source host is given by a|M ,

which accounts for the result of calculating a congruence modulo M , also known as the

remainder of the integer division of both variables, alternatively indicated by the ex-

pression amod M . Taking this into consideration, the port on the destination switch

where the destination host is connected is given by b|M , or alternatively, bmod M .

Otherwise, certain operations may help find the following switches available on the

way to the destination switch, depending on the topology.

To wrap it all up, Table 5.1 summarizes all of this nomenclature and the arithmetic

operations for communicating from source host a to destination host b.

5.2 Modelling hosts

Prior to undertaking the modelling of the different topologies proposed, it is neces-

sary to model the behaviour of the hosts, as they may appear in all topology models

as end devices. Therefore, after having explained how hosts are being identified, the

focus is going to be set on their real behaviour regarding communications, and in

turn, a couple of different models may be exposed to express it.
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Table 5.1: Relevant variables and operations to be applied in the models.

Item Expression
Total amount of switches Z
Range of switch identifiers [0 · · ·Z − 1]
Any given switch i
Total amount of hosts per switch M
Range of downlink ports per switch [0 · · ·M − 1]
Any given port of a switch p
Any given host h = i×M + p
Total amount of hosts overall max (h) = M × Z
Range of host identifiers [0 · · ·M × Z − 1]
Source host a
Destination host b
Source switch �a/M� ←→ int(a/M)
Destination switch �b/M� ←→ int(b/M)
Source port in the source switch a|M ←→ amod M
Destination port in the destination switch b|M ←→ bmod M

A host may behave in two ways, depending on whether a given VM associated to

a particular user u, that being expressed by VM (u), is located within that particular

host. If this is the case, then such a VM may be sent over to another host at any

time, whereas on the contrary, such a VM may be received in from another host at

any time.

As per the arguments involved in such actions, there may be three of them, such

as source host a, destination host b, and the remote computing resource being moved

VM (u), although all those arguments may also be generically expressed as just d for

simplicity purposes. In the following models, any of those solutions may be employed

indistinctly in the models being presented herein.

Therefore, the model for a given host may require to check all hosts being part

of the system, whose amount is given by max (h), identified from 0 to max (h) − 1,

and within each one, to search for all users within the system, whose amount is given

by max (u), identified from 0 to max (u) − 1, in order to inspect whether the VM

associated to each user is indeed inside that host. If that is the case, such a host

may get ready to send that VM belonging to that particular user off at any given
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time through its port 0, or otherwise, it may get ready to receive it in at any given

moment through its port 0.

Eventually, it is to be remarked that hosts are the end devices within all switching

topologies, thus from the point of view of network communication within Fog envi-

ronments, the function of hosts is merely to send a VM to the switching topology, or

otherwise, to receive a VM from the switching topology, leaving aside the comput-

ing processing being carried out on hosts. Hence, the verification of those switching

topologies may include the hosts starting and finishing the VM transactions on them.

As per the layout, every host h is supposed to have only a single port, identified

by 0, as depicted in Figure 5.2. It is to be reminded that there may be M hosts

per switch, whereas there may be max (h) = M × Z hosts, being equally distributed

through all end switches.

Host
h

0

Figure 5.2: Model for a generic host h.

Two flow charts are going to be exposed for a given host h. First, a simplified

way, supposing that there may be only one user within the system, as it is exhibited

in Figure 5.3. This case scenario may make things easier to follow.

Afterwards, a generic way, considering that many users may be within the system,

as it is depicted in Figure 5.4. This case scenario may show a more complete scenario.

Regarding the pseudocode model to express the generic behaviour of a particular

host, it is to be reminded that send and receive functions take three arguments, such

as the source host sending the VM, the destination host receiving the VM and the VM

itself, which is associated with a user u. Besides, both functions take two parameters,

such as the device identifier in action and the port being in use.

Therefore, algorithm 1 (shown in the Appendix 10.1) exhibits the pseudocode model

regarding the behaviour of a given host h for the generic way, thus considering many

users within the system. In this case, functions send and receive are expressed with
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h ← 0

VM (u) ⊂ h

Ready to Send Ready to Receive

Send(d) Receive(d)h← h+1

h < max(h)

Yes No

Yes

No No

Yes

Yes No

Figure 5.3: Flow chart for hosts, with a unique user.

their three arguments exposed before, such as source host as the first one, destination

host as the second one and the associated VM to a given user as the third one.

With respect to the algebraic model, the following recursive expression exhibits the

behaviour of a particular host by means of ACP, where the three arguments explained

above are consolidated as just one, resulting in d, such as sending is expressed as s(d)

and receiving is exhibited as r(d), whereas the empty set (∅) represents the case where
none of them occurs. On the other hand, the two parameters quoted above still apply,

such as host Hh (in order to distinguish the host identified by h, which is the one

performing a given action, such as send or receive) and its port 0 (that being the

unique port in every host). Additionally, it is to be said that sequential and alternate

operators are being used in the expression, rendered by the product and the addition

signs, respectively, whereas the guarded linear recursion implies that the action never

ends. The process described is checked out for all hosts and all users in (5.2).

Hh =

max(h)−1∑
h=0

(max(u)−1∑
u=0

(
sHh,0

(
d
)
+ rHh,0

(
d
)
+ ∅

))
·Hh (5.2)
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h ← 0

u ← 0

VM (u) ⊂ h

Ready to Send Ready to Receive

Send(d) Receive(d)u← u+1

u < max(u)
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h < max(h)
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No

Yes

No

Figure 5.4: Flow chart for hosts, with several users.

5.3 Fat tree

As stated before, fat tree has 3 layers of switches, where the switches standing on

each layer are enumerated from 0 on, starting from the left hand side and going all

the way to the right hand side, where the last member of each kind is identified by

the integer predecessor of the overall values for each layer, which have already been

stated in Table 4.1.

In this context, the lower layer switches are identified as Ei, as that layer is called

edge and i is the device identifier. Likewise, the middle layer is named as Aj, as this

layer is named aggregation and j is the item identifier. And finally, the upper layer

is referred to as Cl, as such as layer is called core and l is the object identifier.
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As per the layout, Figure 5.5 depicts the models for each type, along with their

corresponding upper and lower ports. Additionally, it is to be reminded that each

end switch, meaning the edge switches, connect to K/2 hosts, accounting for K2/4 per

pod, which makes an overall amount of K3/4 hosts included into the topology.

Ei

k/2 k-1···

0 k/2-1···

Aj

k/2 k-1···

0 k/2-1···

Cl

0 k-1···

Figure 5.5: Model for switches and their ports in fat tree.

Furthermore, Figure 5.6 exhibits the whole structure for a fat tree deployment

with K = 4 and oversubscription rate 1:1.

A0 A1

E0 E1

H0 H1 H2 H3

A2 A3

E2 E3

H4 H5 H6 H7

C3C0 C2C1

Pod 0 Pod 1 Pod 2 Pod 3

A4 A5

E4 E5

H8 H9 H10

A6 A7

E6 E7

H11 H12 H13 H14 H15

Figure 5.6: Fat tree device nomenclature for K = 4.

5.3.1 Edge switches

Basically, going along all edge switches (from 0 to K2/2), all ports are checked in

order to see if a particular VM is received, and if that is the case, it is verified whether

the destination host is hanging on that switch. If this is it, the VM is sent to the

corresponding destination host, or otherwise, that VM is sent to all upper ports, for

redundancy purposes.

The arithmetic condition to verify whether a given edge switch i is the destination

switch of a VM is given in (5.3), meaning that both integer parts are the same.
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Likewise, the condition to verify that a source and a destination hosts are hanging on

the same edge switch is given in (5.4).

On the other hand, if an edge switch happens to be the destination switch, the

way to forward a VM through the proper port to the destination host is given by the

expression (5.5).

Those expressions just take advantage of the port layout, where the lower half of

ports (from 0 to K/2− 1) look downwards to the hosts, whereas the upper half (K/2 to

K − 1) look upwards to the middle layer switches. In this sense, any of the ports are

identified by variable p, whilst just any of the upper ports are spotted by variable q.

int(i/(K/2)) = int(b/(K/2))←→
⌊

i
K/2

⌋
=

⌊
b

K/2

⌋
(5.3)

int(a/(K/2)) = int(b/(K/2))←→
⌊

a
K/2

⌋
=

⌊
b

K/2

⌋
(5.4)

b mod K/2 ←→ b modulo K/2 ←→ b|K/2 (5.5)

Considering that, Figure 5.7 exposes the flow chart explaining the behaviour of a

particular edge switch i.

Moreover, algorithm 2 (shown in the Appendix 10.2) exposes the pseudocode model

regarding the behaviour of a given edge switch i.

With respect to the algebraic model, the ACP expression representing the be-

haviour of an edge switch is exhibited in (5.6). ACP does not take time into account,

hence the first action may always be the reception of a message through any of its

ports, thus the initial conditional clause may be skipped.

Ei =

K2

2
−1∑

i=0

(
K−1∑
p=0

(
rEi,p(d) ·

(
sEi,b|K/2

(d) �

⌊
i

K/2

⌋
=

⌊
b

K/2

⌋
�

K−1∑
q=K/2

sEi,q(d)

)))
· Ei

(5.6)

5.3.2 Aggregation switches

Basically, going through all aggregation switches (from 0 to K2/2), all ports are

verified so as to find out if a given VM is received, and in that case, it is checked

whether the destination host belongs to the same pod. In case they do, that VM is
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i ← 0

Receivei,p(d)

⌊
i

K/2

⌋
=

⌊
b

K/2

⌋

Sendi,b|K/2
(d)

q ← K/2

Sendi ,q(d)

q ← q + 1

q < Ki← i+ 1

i < max(i)

Yes

No

Yes

No

No

Yes

Yes

No

Figure 5.7: Flow chart for the behaviour of an edge switch (fat tree).

forwarded to the edge switch where the destination host is hanging on, or otherwise,

that VM is forwarded through all upper ports, for redundancy purposes.

The arithmetic condition to establish whether a particular aggregation switch j

belongs to the same pod as the destination switch of a VM is given in (5.7), meaning

that both integer parts are the same. Likewise, the condition to check whether a

source and a destination hosts belong to the same pod is given in (5.8).

On the other hand, the way to forward a VM through the proper port to the edge

switch where the destination host hangs on is given by the expression (5.9).

Those expressions just take advantage of the port layout, where the lower half of

ports (from 0 to K/2 − 1) look downwards to the hosts, whereas the upper half of

ports (K/2 to K − 1) look upwards to the middle layer switches, where the whole set

of ports are identified by variable p, whilst the set of upper ports is branded as q.
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int(i/(K/2)2) = int(b/(K/2)2)←→
⌊

i

(K/2)2

⌋
=

⌊
b

(K/2)2

⌋
(5.7)

int(a/(K/2)2) = int(b/(K/2)2)←→
⌊

a

(K/2)2

⌋
=

⌊
b

(K/2)2

⌋
(5.8)

int(b/(K/2)) mod K/2 ←→
⌊

b
K/2

⌋
|K/2

(5.9)

Considering this, Figure 5.8 exposes the flow chart showing the behaviour of an

aggregation switch j.

j ← 0

Receivej,p(d)

⌊
j

(K/2)2

⌋
=

⌊
b

(K/2)2

⌋

Send
j,
⌊

b
K/2

⌋
|K/2

(d)

q ← K/2

Sendj ,q(d)

q ← q + 1

q < Kj ← j + 1

j < max(j)

Yes

No

Yes

No

No

Yes

Yes

No

Figure 5.8: Flow chart for the behaviour of an aggregation switch (fat tree).

Besides, algorithm 3 (shown in the Appendix 10.3) exhibits the pseudocode model

regarding the behaviour of a given aggregate switch j.

With respect to the algebraic model, the ACP expression representing the be-

haviour of an aggregation switch is exhibited in (5.10), where the conditional in the

receive function has been dropped as ACP does not take the time into consideration.
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Aj =

K2

2
−1∑

j=0

(
K−1∑
p=0

(
rAj ,p(d) ·

(
sAj ,� b

K/2�|K/2

(d) �

⌊
i

(K/2)2

⌋
=

⌊
b

(K/2)2

⌋
�

K−1∑
q=K/2

sAj ,q(d)

)))
· Aj

(5.10)

5.3.3 Core switches

Basically, core switches are used in order to jump from a source pod to a destination

pod, where the condition to check whether a source host and a destination host are

located in different pods is given in (5.11).

In this context, going core switch by core switch (from 0 to K2/4 − 1), if a given

port receives a VM in, then it is forwarded on to the port pointing to an aggregation

switch located within the pod where the destination host belongs to, meaning the

destination pod, and such a port is given by (5.12).

That arithmetic expression just takes advantage of the port layout, where all ports

look downwards (from 0 to K − 1), all of them being identified by variable p. It

happens that each of those ports just connects to a single aggregation switch in each

pod, where each pod identifier matches the proper port identifier in each core switch.

This way, full mesh is achieved among all pods, as any core has connections to

each pod, although partial mesh is obtained among all hosts, as all core switches do

not have connectivity with all aggregation switches, but just one in each pod.

int(a/(K/2)2) �= int(b/(K/2)2)←→
⌊

a

(K/2)2

⌋
�=
⌊

b

(K/2)2

⌋
(5.11)

int(b/(K/2)2)←→ �b/(K/2)2� (5.12)

With that in mind, Figure 5.9 exposes the flow chart exposing the behaviour of a

core switch l.

Furthermore, algorithm 4 (shown in the Appendix 10.4) exhibits the pseudocode

model regarding the behaviour of a given core switch l.

With regards to the algebraic model, the ACP expression representing the be-

haviour of a core switch is shown in (5.13), where the conditional in the receive

function has been skipped as ACP does not consider the time.
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l ← 0

Receivel,p(d)

Send
l,
⌊

b
(K/2)2

⌋(d)

l ← l + 1

l < max(l)

Yes

No

Yes

No

Figure 5.9: Flow chart for the behaviour of a core switch (fat tree).

Cl =

K2

4
−1∑

l=0

(
K−1∑
p=0

(
rCl,p(d) · sCl,

⌊
b

(K/2)2

⌋(d)
))

· Cl (5.13)

5.3.4 Consolidating fat tree

Focusing on redundant paths within the model, it may be possible to find out all

devices being within the path from source host a to destination host b by means of

applying the appropriate arithmetic expressions to both variables. Furthermore, all

relevant ports being traversed may also be found out with other arithmetic expres-

sions, thanks to the nomenclature previously assigned to both devices and ports.

Otherwise, in the cases where two different edge switches are used, those may be

identified by i the first one and i′ the second one, whereas two different aggregated

switches may be distinguished by j the first one and j′ the second one.

In order to better clarify the items and ports taking part in each communication,

the items are going to be enclosed into curly brackets, whereas the ports will be

situated facing to each other, showing an arrow between both ports. This fact forces

the inversion of the receiving end from the way it has been shown in the previous

algorithms, such that the port is shown first, whilst the device is shown afterward.

Therefore, a link between a pair of devices is expressed as in (5.14).
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{SourceItem}SourcePort �−→ DestinationPort{DestinationItem} (5.14)

This way, in the path between Hh and Ei, the communication between the source

host and the source switch is {Ha}, 0 �−→ a|K/2, {Ei}, whereas the communication

between that edge switch and the destination host is {Ei}, b|K/2 �−→ 0, {Hb}, leaving
aside the links to upper layers of switches.

It is to be reminded that, in the case that source host and destination host are

just 1 hop away, then i =
⌊

a
K/2

⌋
=

⌊
b

K/2

⌋
, as source switch and destination switch

happen to be the same item, hence there is only an edge switch, leaving the rest of

them in an idle state. Therefore, the only relevant items herein are source host, edge

switch and destination host, thus making the rest of items go deadlock.

Likewise, in the path between Ei and Aj, the communication between the source

switch and one of the aggregate switches j inside its own pod is given by the expression

{Ei}, K2 + j|K/2 �−→
⌊

a
K/2

⌋
|K/2

, {Aj}, whereas the communication between any of

those aggregation switches j and the destination switch is exposed by the expression

{Aj},
⌊

b
K/2

⌋
|K/2

�−→ K
2
+j|K/2, {Ei′}, putting aside the devices located in other layers.

It is to be considered that, in the case that source switch and destination switch

belong to the same pod, then pod =
⌊

a
(K/2)2

⌋
=
⌊

b
(K/2)2

⌋
. With regards to the source

switch, it is given by i =
⌊

a
K/2

⌋
, whereas the destination switch is attained by i′ =⌊

b
K/2

⌋
, taking the rest of edge switches to deadlock. With respect to the aggregation

switches, they are all located in the same pod where both source and destination

hosts are located, being those going from K
2
×
⌊

b
(K/2)2

⌋
to K

2
×
⌊

b
(K/2)2

⌋
+ K

2
− 1, thus

bringing the rest to deadlock.

Regarding the upper links in the edge layer, being those connecting to the aggre-

gation layer, hence going from K/2 to K−1, it is to be mentioned that all of them are

involved in communication, thus allowing the set up of K/2 redundant paths. Those

ports may be easily identified by the expression K
2
+ j|K/2, meaning that each port is

identified thanks to that expression related to the aggregation switch j being directly

connected, and that occurs in both upwards and downwards communications.

With respect to the lower links in the aggregation layer, being the ones making a

connection to the edge layer, only two ports are being used, such as the one receiving
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traffic from the source switch, which is identified by
⌊

a
K/2

⌋
|K/2

, and the one sending

traffic to the destination switch, which is identified by
⌊

b
K/2

⌋
|K/2

.

Otherwise, in the path between Aj and Cl, the communication between source

pod and destination pod goes through all core switches, where the uplink may be

expressed as {Aj}, K2 + l|K/2 �−→
⌊

a
(K/2)2

⌋
, {Cl}, considering that all ports of core

switches l communicate with aggregate switches j, as opposed to what happens in

aggregate switches, where only the upper half of the ports are used for that. On the

other hand, the downlink may be seen as {Cl},
⌊

b
(K/2)2

⌋
�−→ K

2
+ l|K/2, {Aj′}.

It is to be recalled that items belonging to other layers go deadlock, as well as

aggregation switches not belonging to source or destination pods, where the former

are those going from K
2
×
⌊

a
(K/2)2

⌋
to K

2
×
⌊

a
(K/2)2

⌋
+ K

2
− 1 and the latter are from

K
2
×

⌊
b

(K/2)2

⌋
to K

2
×

⌊
b

(K/2)2

⌋
+ K

2
− 1. Otherwise, an aggregation switch j gets

connected to K
2
core switches, being those from l = j × K

2
to l = j × K

2
+ K

2
− 1.

With regards to the ports being involved, aggregation switches uses ports from K/2

to K − 1, which may be identified with the expression K
2
+ l|K/2, which relates to the

core switch l where they connect. Referring to core switches, all of them take part in

communication, where the port receiving the traffic from the source pod is
⌊

a
(K/2)2

⌋
,

whilst the port sending the traffic to the destination pod is
⌊

b
(K/2)2

⌋
.

Therefore, following the communications between the different layers of devices, it

is possible to obtain a list of devices making up the redundant paths from source host

to destination host, where their relevant ports are also shown as well. To wrap it all

up, Table 5.2 summarizes all relevant arithmetic expression presented to build up the

list of devices and their ports for hosts being one hop away (where
⌊

a
K/2

⌋
=

⌊
b

K/2

⌋
),

whilst Table 5.3 does it for hosts being two hops away (where
⌊

a
(K/2)2

⌋
=
⌊

b
(K/2)2

⌋
) and

Table 5.4 does it for hosts being three hops away (where
⌊

a
(K/2)2

⌋
�=
⌊

b
(K/2)2

⌋
), taking

into account that switch identifiers have been substituted by their correspondent

references to source and destination hosts.

As per the results exposed in those tables, it is to be remarked that in the 1 hop

away case, there is only 1 available path, as both hosts share the same edge switch,

whereas in the 2 hops away case, there are K/2 available paths, as both hosts share
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the same pod, whilst in the 3 hops away case, there are up to (K/2)2 available paths,

as they share nothing.

Table 5.2: List of devices and ports between 1-hop away hosts in fat tree.

Communication Direction Expression
Hosts and edges Uplink {Ha}, 0 �−→ a|K/2, {E⌊

a
K/2

⌋}
Edges and hosts Downlink {E⌊

b
K/2

⌋}, b|K/2 �−→ 0, {Hb}

Table 5.3: List of devices and ports between 2-hops away hosts in fat tree.

Communication Direction Expression
Hosts and edges Uplink {Ha}, 0 �−→ a|K/2, {E⌊

a
K/2

⌋}

Edges and aggr. Uplink

∑K
2
−1

t=0

(
{E⌊

a
K/2

⌋}, (K
2
+ t) �−→

�−→
⌊

a
K/2

⌋
|K/2

, {AK
2
·
⌊

a
(K/2)2

⌋
+t
}
)

Aggr. and edges Downlink

∑K
2
−1

t=0

(
AK

2
·
⌊

b
(K/2)2

⌋
+t
},
⌊

b
K/2

⌋
|K/2

�−→
�−→ (K

2
+ t), {E⌊

b
K/2

⌋}
)

Edges and hosts Downlink {E⌊
b

K/2

⌋}, b|K/2 �−→ 0, {Hb}

Eventually, taking into consideration the ACP models for each component, and

the previous discussion about paths between neighbouring items, it may be possible

to establish a verification framework for the whole model. To start with, let us put

all devices in a concurrent manner by means of the merge operator, ‖, and in turn,

let us apply the encapsulation operator to the whole set of items, which accounts for

a combination of many terms according to expression (1), mentioned before.

The actions of the encapsulation operator are twofold. On the one hand, it com-

bines atomic actions taking place in the same internal channel, such as sending and

receiving at opposite ends of an internal link, thus allowing communication in such a

channel, whilst discarding those atomic actions. On the other hand, the atomic ac-

tions not resulting in internal communications go deadlock, hence they go discarded,

whereas atomic actions related to external actions are invariant.
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Table 5.4: List of devices and ports between 3-hops away hosts in fat tree.

Communication Direction Expression
Hosts and edges Uplink {Ha}, 0 �−→ a|K/2, {E⌊

a
K/2

⌋}

Edges and aggr. Uplink

∑K
2
−1

t=0

(
{E⌊

a
K/2

⌋}, (K
2
+ t) �−→

�−→
⌊

a
K/2

⌋
|K/2

, {AK
2
·
⌊

a
(K/2)2

⌋
+t
}
)

Aggr. and core Uplink

∑K
2
−1

t=0

(∑K
2
−1

u=0

(
{AK

2
·
⌊

a
(K/2)2

⌋
+t
}, (K

2
+ u) �−→

�−→
⌊

a
(K/2)2

⌋
, {Ct·K

2
+u}

))

Core and aggr. Downlink

∑K
2
−1

t=0

(∑K
2
−1

u=0

(
{Ct·K

2
+u},

⌊
b

(K/2)2

⌋
�−→

�−→ (K
2
+ u), {AK

2
·
⌊

b
(K/2)2

⌋
+t
}
))

Aggr. and edges Downlink

∑K
2
−1

t=0

(
AK

2
·
⌊

b
(K/2)2

⌋
+t
},
⌊

b
K/2

⌋
|K/2

�−→
�−→ (K

2
+ t), {E⌊

b
K/2

⌋}
)

Edges and hosts Downlink {E⌊
b

K/2

⌋}, b|K/2 �−→ 0, {Hb}

In other words, it might be said that only the internal communications prevail

from the application of the merge operator, whereas external atomic actions are not

affected. It is to be said that all internal atomic actions define a subset H out of

set A containing all atomic actions, and that is why the encapsulation operator on

the term (x ‖ y) is represented by ∂H(x ‖ y), which may only execute the possible

communication between them both as long as it is not deadlock (δ).

Additionally, it is to be considered that a source host a and a destination host b

are supposed to be set, making the rest of hosts inactive for that transaction, as well

as the rest of the switches not taking part in it, thus going deadlock. Therefore, the

encapsulation operator only keeps the relevant internal links for a particular commu-

nication, although not applying to atomic actions related to external communications.

In this sense, communications between hosts and edge switches are exposed in

(5.15), as well as between edge and aggregation switches in (5.16), and between

aggregation and core switches in (5.17). Besides, it is to be noted that every pair of
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non-neighbouring layers do not directly interact to each other, hence their interactions

will go deadlock, thus getting discarded (5.18).∣∣∣∣K3

4
−1

h=0

∣∣∣∣K2

2
−1

i=0
∂H(Hh ‖ Ei) =

(
c{Ha},0 	−→a|K/2,{Ei}(d)·

(
c{Ei},b|K/2 	−→0,{Hb}(d) �

⌊
i

K/2

⌋
=

⌊
b

K/2

⌋
�

K−1∑
t=K/2

sEi,t(d)
))

· (Hh ‖ Ei) (5.15)

∣∣∣∣K2

2
−1

i=0

∣∣∣∣K2

2
−1

j=0
∂H(Ei ‖ Aj) =

K
2
−1∑

t=0

(
c{Ei},K2 +t 	−→

⌊
a

K/2

⌋
|K/2

,{Aj}(d)·

(
c{Aj},

⌊
b

K/2

⌋
|K/2

	−→K
2
+t,{Ei}(d) �

⌊
i

(K/2)2

⌋
=

⌊
b

(K/2)2

⌋
�

K−1∑
u=K/2

sAj ,u(d)
))

· (Ei ‖ Aj)

(5.16)

∣∣∣∣K2

2
−1

j=0

∣∣∣∣K2

4
−1

l=0
∂H(Aj ‖ Cl) =

K
2
−1∑

u=0

(
c{Aj},K2 +u 	−→

⌊
a

(K/2)2

⌋
,{Cl}(d)·

c{Cl},
⌊

b
(K/2)2

⌋
	−→K

2
+u,{Aj}(d)

)
· (Aj ‖ Cl) (5.17)

∣∣∣∣K3

4
−1

h=0

∣∣∣∣K2

2
−1

j=0
∂H(Hh ‖ Aj) =

∣∣∣∣K3

4
−1

h=0

∣∣∣∣K2

4
−1

l=0
∂H(Hh ‖ Cl)

=
∣∣∣∣K2

2
−1

i=0

∣∣∣∣K2

4
−1

l=0
∂H(Ei ‖ Cl) = δ (5.18)

After having applied the encapsulation operator, it is the moment to apply the ab-

straction operator in order to mask internal communications, as well as silent steps,

meaning abstraction from the internal actions, whereas external communications pre-

vail. After that, the external behaviour of the model may show up, and in turn, it

may be compared to that of the real system.

It is to be said that all internal communications define a subset I out of set A

containing all atomic actions, and this is why the abstraction operator on the term

(v) is represented by τI(v), which may account for v if, and only if, v /∈ I, while going

to silent step (τ) if, and only if, v ∈ I, whereas it does not have any effect on deadlock,

such that τI(δ) = δ. Therefore, internal communications and internal actions go to

silent step, thus getting discarded, whilst external communications make it through.

At this point, two approaches may be followed, such as including the end hosts and

all the switches within the model, or otherwise, only consider the switching infrastruc-

ture, thus leaving the end hosts out of the system being modelled. The former may
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account for expression (5.19), which in fact shows the external behaviour of a closed

system, as no external communication would exist therein. Likewise, in the previous

reasoning it has been seen that all results obtained show that all communications are

internal, which will be masked by the abstraction operator, resulting in the empty set

∅, thus reiterating the fact that no external behaviour is shown. As a side note, it is

to be said that ∅ symbol has been used in conditional operators in case no statement

needs to be carried out, which is not to be confused with ∅.
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∣∣∣∣K2

2
−1

i=0

∣∣∣∣K2

2
−1

j=0
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⌋
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⌋
� ∅
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·
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⌋
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⌊
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⌊

b
K/2

⌋
� ∅

)
·
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)
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(
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(
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))
= ∅

(5.19)

However, the latter may account for expression (5.20), which actually shows the

behaviour of the switching topology being modelled, where links from and to hosts

are labelled as external communications, thus being considered as an open system.

Likewise, in the previous subsection it has been shown that communications between

hosts and edge switches are internal, whereas this case scenario may not consider

hosts within the system being modelled, but just foreign items whose target is to

interact with the system by means of a message d. Hence, such communications may

not be included now into the model, thus the abstraction operator may not affect the

links going out of the system.
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= r{Ei},a|K/2

(d) · s{Ei},b|K/2
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Ei ‖ Aj ‖ Cl
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(5.20)

On the other hand, expression (5.21) exhibits the external behaviour of the real

system X, where a message d gets out of a source host and enters into the switching

topology through a source switch i via its port p, which then forwards the message

over the appropriate links to reach a destination switch i′, which in turn delivers it

to a destination host via its port p′, thus completing the communication flow.

τI
(
X
)
= r{Ei},p

(
d
) · s{Ei′},p′

(
d
) · τI(X)

(5.21)

Therefore, it is clear that both recursive expressions are multiplied by the same

factors, considering that the entry port into the system is p = a|K/2 and the exit port

out of the system is p′ = b|K/2. This fact makes them rooted branching bisimilar,

because they both have the same string of actions, and furthermore, they both share

the same branching structure, thus allowing the application of expression (5.22).

X ←→ τI

(
∂H

(
Ei ‖ Aj ‖ Cl

))
(5.22)

In conclusion, this is a sufficient condition to get a model verified, hence, the model

proposed for a fat tree architecture has been duly verified.

5.4 Leaf and spine

After fat tree, let us go for leaf and spine. The study is going to be performed in a

similar fashion as above, as they are both tree-like designs. However, switches belong

to just 2 types, namely, lower layer switches called leaf switches (Fi), thus making

them the end switches, and upper layer switches named spine switches (Gj). Each
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category is going to be enumerated from 0 on, starting from the left and going all the

way to the right, where the last member of each kind is identified by the predecessor

of the overall values stated in Table 4.2.

In this context, variable i identifies the leaf switches and j does it for the spine

switches, where hosts are named as explained in a previous section. It is to be

reminded that the main point in a leaf & spine topology is to achieve a full mesh

connectivity among all leaf switches and all spine switches. Additionally, there is not

a parameter fixing all design details, as parameter K does it in fat tree deployments.

Therefore, there are some degrees of freedom when choosing the number of leaf

switches, as well as the number of spine switches, and their respective ports. Further-

more, the number of hosts per end switch depends on the design, although a generic

number M is going to be considered herein, as explained above.

As per the layout, Figure 5.10 exhibits the models for each type, along with their

corresponding upper and lower ports. It has been considered that variable t denotes

both the number of lower layer switches and the overall number of ports in the upper

layer switches, whereas u does it for both the number of upper layer switches and the

number of uplink ports in the lower layer switches, hence building up the full mesh

connectivity between both layers. Besides, the number of downlink ports in the lower

layer switches is given by M , as stated before, which are identified from 0 to M − 1.

This makes an overall amount of t×M hosts included in the whole topology.

0. . .
Host

h

0

Spine
j

t-1
. . .

0 M-1
. . .

M M+u-1

Gj from 0 to u-1

Leaf
i

Fi from 0 to t-1 Hh from 0 to t·M-1

Figure 5.10: Model for switches and their ports in leaf and spine.

Moreover, Figure 5.11 depicts the whole structure for a leaf and spine deployment,

with t = 8 leaf switches and u = 4 spine switches, where items on each layer are
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being sequentially identified from left to right, along with an oversubscription rate

1:1, where the full mesh topology between both layers may be observed.

F0 F1 F2 F3 F4 F5 F6 F7

G0G0 G0G1 G0G2 G0G3

Figure 5.11: Leaf and spine device nomenclature.

5.4.1 Leaf switches

Basically, the way they work is analogous to the edge switches, but taking the M

lower ports first, and then the u− 1 upper ports, whilst switches go from 0 to t− 1.

The arithmetic condition to verify whether a given leaf switch i is the destination

switch of a VM is similar to that quoted for edge switches and it is given in (5.23).

Likewise, the condition to verify that a source and a destination hosts are hanging on

the same leaf switch is given in (5.24).

Besides, if a leaf switch happens to be the destination switch, the way to forward a

VM through the proper port to the destination host is given by the expression (5.25).

Those expressions just take advantage of the port layout, where the lower half of

ports (from 0 to M − 1) look downwards to the hosts, whereas the upper half (M to

M + u − 1) look upwards to the upper layer switches, where all ports are identified

by variable p, whilst upper ports are named by variable q.

int(i/M) = int(b/M)←→
⌊

i

M

⌋
=

⌊
b

M

⌋
(5.23)

int(a/M) = int(b/M)←→
⌊ a

M

⌋
=

⌊
b

M

⌋
(5.24)

b mod M ←→ b modulo M ←→ b|M (5.25)

With this all in mind, Figure 5.12 exposes the flow chart explaining the behaviour

of an leaf switch i.
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i ← 0

Receivei,p(d)

⌊
i
M

⌋
=

⌊
b
M

⌋

Sendi ,b|M (d)

q ← M

Sendi,q(d)

q ← q + 1

q < M + ui← i+ 1

i < max(i)

Yes

No

Yes

No

No

Yes

Yes

No

Figure 5.12: Flow chart for the behaviour of an leaf switch (leaf and spine).

Moreover, algorithm 5 (shown in the Appendix 10.5) exposes the pseudocode model

regarding the behaviour of a given leaf switch i.

With regards to the algebraic model, the ACP expression representing the be-

haviour of a leaf switch is exhibited in (5.26). ACP does not take time into account,

thus the initial conditional clause may be skipped, hence the first action may always

be the reception of a message through any of its ports.

Fi =
t−1∑
i=0

(
M+u−1∑

p=0

(
rFi,p(d) ·

(
sFi,b|M (d) �

⌊
i

M

⌋
=

⌊
b

M

⌋
�

M+u−1∑
q=M

sFi,q(d)

)))
· Fi

(5.26)

5.4.2 Spine switches

Basically, the way they work is analogous to the core switches, where the condition

to check whether a source host and a destination host are hanging on different leaf

switches is given in (5.27). On the other hand, if a given port receives a VM in, then
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it is forwarded on to the port pointing to the leaf switch where the destination host

is connected to, and such a port is given by (5.28).

Those expressions just take advantage of the port layout, where all ports look

downwards (from 0 to t− 1), all of them being identified by variable p. It occurs that

each of those ports just connect to a single leaf switch, where each identifier match

the port identifier from all spine switches. Moreover, full mesh is achieved among all

leaf switches, as all of them connect to all spine switches, those going from 0 to u−1.

int(a/M) �= int(b/M)←→
⌊ a

M

⌋
�=
⌊

b

M

⌋
(5.27)

int(b/M)←→
⌊

b

M

⌋
(5.28)

With this all in mind, Figure 5.13 exhibits the flow chart showing the behaviour

of a spine switch j.

j ← 0

Receivej,p(d)

Sendj,� b
M �(d)

j ← j + 1

j < max(j)

Yes

No

Yes

No

Figure 5.13: Flow chart for the behaviour of a spine switch (leaf and spine).

Besides, algorithm 6 (shown in the Appendix 10.6) exhibits the pseudocode model

regarding the behaviour of a given spine switch j.

Concerning the algebraic model, the ACP expression representing how a spine

switch behaves is depicted in (77), where the conditional clause in the receive function

has been dropped as ACP does not consider the time.



Chapter 5: Modelling network Data Centre topologies with ACP 163

Gj =
u−1∑
j=0

(
t−1∑
p=0

(
rGj ,p(d) · sGj ,� b

M �(d)
))

·Gj (5.29)

5.4.3 Consolidating leaf and spine

Focusing on redundant paths within the model, and following the discussion un-

dertaken in the previous section regarding redundant paths, it is to be noted that the

path between Hh and Fi is analogous to that between hosts and edge switches, such

as exposed in Table 5.5 for the case where source and destination hosts are hanging

on the same end switch, thus being 1 hop away. Therefore, the arithmetic expressions

to build up the list of devices and their ports for hosts being 1-hop away in leaf and

spine may meet this requirement: i =
⌊

a
M

⌋
=
⌊

b
M

⌋
.

Table 5.5: List of devices and ports between 1-hop away hosts in leaf and spine.

Communication Direction Expression
Hosts and leaves Uplink {Ha}, 0 �−→ a|M , {F� a

M �}
Leaves and hosts Downlink {F� b

M �}, b|M �−→ 0, {Hb}

On the other hand, communication between Fi and Gj has to be full mesh between

both layers, where the uplinks may be expressed as {Fi},M + j �−→ ⌊
a
M

⌋
, {Gj}, and

the downlinks may be seen as {Gj},
⌊

b
M

⌋ �−→M + j, {Fi′}. Hence, in this case, hosts

are 2-hops away, as they are both connected to different end switches, which allow

for the establishment of u available paths, as it is shown in Table 5.6, where the

arithmetic expressions to build up the list of devices and their ports for hosts being

2-hop away in leaf and spine meet the following requirement:
⌊

a
M

⌋ �= ⌊
b
M

⌋
.

Regarding leaf switches, it is to be reminded that i =
⌊

a
M

⌋
, whereas i′ =

⌊
b
M

⌋
,

which in this case result in i �= i′. Furthermore, spine switches j go from 0 to u− 1,

as there are u overall, where the uplink ports in the leaves arriving to those spines

are identified by M + j, in a way that both are related for traffic going up and down.

Eventually, taking the discussion in the previous section regarding verification,

the same reasoning may applied herein. In that context, the encapsulation operator

is applied to communications between hosts and leaf switches, as shown in (5.30),
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Table 5.6: List of devices and ports between 2-hops away hosts in leaf and spine.

Communication Direction Expression
Hosts and leaves Uplink {Ha}, 0 �−→ a|M , {F� a

M �}

Leaves and spines Uplink

∑u−1
q=0

(
{F� a

M �}, (M + q) �−→
�−→ ⌊

a
M

⌋
, {Gq}

)

Spines and leaves Downlink

∑u−1
q=0

(
{Gq},

⌊
b
M

⌋ �−→
�−→ (M + q), {F� b

M �}
)

Leaves and hosts Downlink {F� b
M �}, b|M �−→ 0, {Hb}

whereas it is also applied to those between leaf and spine switches, as seen in (5.31).

Moreover, it is to be noted that there is not direct interaction between hosts and

spine switches, thus after applying the encapsulation operator, they go deadlock,

thus getting discarded (5.32).∣∣∣∣t×M−1
h=0

∣∣∣∣t−1
i=0

∂H(Hh ‖ Fi) =

(
c{Ha},0 	−→a|M ,{Fi}(d) ·
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c{Fi},b|M 	−→0,{Hb}(d)

�

⌊
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⌋
�

u−1∑
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sFi,q(d)
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· (Hh ‖ Fi) (5.30)
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∣∣∣∣u−1
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∂H(Fi ‖ Gj) =
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q=0

(
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M �,{Gj}(d)·

c{Gj},� b
M � 	−→M+q,{Gj}(d)

)
· (Fi ‖ Gj) (5.31)∣∣∣∣t×M−1

h=0

∣∣∣∣u−1
j=0

∂H(Hh ‖ Gj) = δ (5.32)

At this point, the abstraction operator is applied to both the whole set of switches

and hosts. Expression (5.33) proves that the whole set becomes a closed system,

as discussed in the previous section, whereas expression (5.34) states that the set

involving only the switches is an open system, thus revealing its external behaviour.∣∣∣∣t×M−1
h=0

∣∣∣∣t−1
i=0

∣∣∣∣u−1
j=0

τI
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M

⌋
� ∅
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· c{Fi},b|M 	−→0,{Hb}(d)

)
· τI

(
∂H

(
Hh ‖ Fi ‖ Gj

))
= ∅ (5.33)



Chapter 5: Modelling network Data Centre topologies with ACP 165
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· s{Fi},b|M (d)

)
· τI

(
∂H

(
Fi ‖ Gj
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= r{Fi},a|M (d) · s{Fi},b|M (d) · τI
(
∂H

(
Fi ‖ Gj

))
(5.34)

On the other hand, expression (5.35) exposes the external behaviour of the real

system X, such that a message d comes from a source host into the switching infras-

tructure through a particular source switch i via its port p, then it gets forwarded

towards the appropriate destination switch i′ throughout the switching topology, and

eventually, it goes off along port p′ to a given destination host.

τI
(
X
)
= r{Fi},p

(
d
) · s{Fi′},p′

(
d
) · τI(X)

(5.35)

Hence, it seems obvious that both recursive expressions are multiplied by the

same factors, taking into consideration that the incoming port into the system is

p = a|M and outgoing port off the system is p′ = b|M . This means that they may

both be considered as being rooted branching bisimilar, as they have the same string

of actions, and also, they share the same branching structure, hence permitting the

application of expression (5.36).

X ←→ τI

(
∂H

(
Fi ‖ Gj

))
(5.36)

In conclusion, this is a sufficient condition to get a model verified, hence, the model

proposed for a leaf and spine architecture has been duly verified.

5.5 N-hypercube

At this point, it is time to talk about N -hypercube. As said before, it is a graph-

like design, making the modelling easier, as all switches are considered to be end

switches, with hosts connected to them. Therefore, the only items to be modelled are

hosts (Hh) and end switches, also known as nodes or vertices (Vi). Additionally, the

overall figures for this topology are quoted in Table 4.3.
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First of all, an initial node is chosen, identified by 0 in decimal format, or otherwise

in binary format, with as many bits 0 as the dimensions of the N -hypercube. From

that node, if a given node has its j-th bit set to 0, it may mean that it shares the

same value for that dimension j as the initial node, whereas if that j-th bit is set to

1, its value for that dimension j may differ. This way, each node will get a unique

identifier of N bits, called NodeID .

With respect to the hosts, it is assumed that there is a number of M hosts con-

nected to each node, where such a number is a power of 2, for simplicity purposes.

That accounts for M = 2W hosts per node, where each host gets an identifier called

HostID by concatenating a NodeID with a binary string going from 0 to M − 1,

leading to a unique identifier of N +W bits. Overall, the total amount of hosts may

account for 2N+W .

Eventually, if a VM is received in a port of a given node i, it is to be checked

whether that node is the destination node, expressed by
⌊

b
M

⌋
, or likewise,

⌊
b

2W

⌋
. If

that is the case, then such a VM may be forwarded on straight to the destination host,

or otherwise, the mismatching dimensions between both nodes may be search for, and

in turn, that VM may be sent through all of them, thus covering all redundant paths.

The values for every dimension j may be compared by operating with both nodes

identifiers in decimal or in binary format. The former makes use of arithmetic op-

erations, such as applying the operator congruence modulo 2 to integer divisions,

according to expression (5.37), whereas the latter does it with the logical XOR op-

erator, where matching bits result in 0 and mismatching bits goes to 1, as shown in

expression (5.38), where the corresponding truth table may be seen.⌊
i

2j

⌋
|2
�=
⌊�b/M�

2j

⌋
|2

for j = {0 · · ·N − 1} (5.37)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 XOR 0 → 0

0 XOR 1 → 1

1 XOR 0 → 1

1 XOR 1 → 0

(5.38)

As per the layout, regarding the ports of each node, there is a total amount of

N + M ports. On the one hand, the first M ports are connecting to its hosts and
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are identified the same way as its hosts, this is, from left to right, starting by 0 and

finishing by M−1. On the other hand, the last N ports are identified by the different

dimensions where its neighbour nodes are located, such that dimension 0 is reached

through port M , dimension 1 is attached to port M + 1, all the way to dimension

N − 1, being attached to port M +N − 1. Figure 5.14 exhibits the port identifiers of

a given switch.

Vertex
i

0 1 M-1···
host 0 host 1 host M-1

dim 0

dim 1dim 2dim N-1

M
M+1M+2M+N-1 ···

Figure 5.14: Model for switches and their ports in N -hypercube.

Otherwise, with respect to the node setup, Figure 5.15 depicts the node setup in

binary format, whereas Figure 5.16 exposes its decimal counterpart.

011 010

001 000

111 110

101 100

1011 1010

1001 1000

1111 1110

1101 1100

0011 0010

0001 0000

0111 0110

0101 0100

Figure 5.15: Node nomenclature using N binary values: 3 (left) and 4 (right).

As an example, Figure 5.17 present an alternative way to setup the nodes based on

the decimal identifier, as opposed that based on the the binary identifiers. Basically,

a node 0 is located right in the origin of the Cartesian coordinates of N dimensions,

whereas the identifier of its neighbouring nodes in a certain dimension are calculated

by adding up its own identifier and 2 to the power of the predecessor of that dimension,

where that procedure is repeated until all nodes are registered.
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4 5

6 7

0 1

2 3

4 5

6 7

0 1

2 3

12 13

14 15

8 9

10 11

Figure 5.16: Node nomenclature translated into decimal values: 3 (left) and 4 (right).

Figure 5.17: Model the interconnected switches i for 3-hypercube.

Taking all that into consideration, Figure 5.18 exhibits the flow chart showing the

behaviour of a switch i.

Furthermore, the pseudocode model related to the behaviour of a given switch

i is shown in algorithm 7 (shown in the Appendix 10.7), where the mismatching

dimensions are spotted by means of arithmetic operations.

Alternatively, Table 5.7 presents the code snippet for finding out the mismatching

bits by means of logical operations, which may be compared to the else clause in the

previous algorithm.

Respecting to the algebraic model, the ACP expression to represent how a given

switch behaves is exhibited in (5.39), where the conditional clause in the receive

function has been dropped as ACP does not consider the time.
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i ← 0

Receivei,p(d)

i =
⌊

b
M

⌋

Sendj,b|M (d)

j ← 0

⌊
i
2j

⌋
|2 �=

⌊ 
b/M�
2j

⌋
|2

Sendi,M+j(d)

j ← j + 1

j < max(j)i← i+ 1

i < max(i)

Yes

No

Yes

No

Yes

No

No

Yes

Yes

No

Figure 5.18: Flow chart for the behaviour of a given switch (N -hypercube).

Table 5.7: Searching mismatching bits by arithmetic and logical means.

Mode Code snippet

Arithmetic

else
for (j = 0; j < N; j++)
if ((int(i/2j)) mod 2) �= ((int(int(b/M)/2j)) mod 2)
send NODE{i},PORT{M+j}(a,h,VM(u));

Logical

else
logicalXOR = DecimalToBinary(i) XOR DecimalToBinary(int(b/M));
for (j = 0; j < N; j++)
if (logicalXOR[j] = 1)
send NODE{i},PORT{M+j}(a,h,VM(u));
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Vi =
2N−1∑
i=0

(
M+N−1∑

p=0

(
rVi,p(d) ·

(
sVi,b|M (d) � i =

⌊
b

M

⌋
�

(N−1∑
j=0

sVi,M+j(d) �

⌊
i

2j

⌋
|2
�=
⌊�b/M�

2j

⌋
|2
� ∅)))

)
· Vi (5.39)

Focusing on redundant paths within the model, the points discussed in the previous

sections on this issue prevail, as well as the establishment of the source switch by

means of
⌊

a
M

⌋
and the destination switch by means of

⌊
b
M

⌋
. However, some redundant

paths may be available between both end switches, related to the distance between

them. Specifically, if variable f is the distance between those end switches, then there

may be up to f ! redundant paths.

Therefore, in case both end switches are the same item, the complete path is

presented in Table 5.8, such that the arithmetic expressions to build up the list

of devices and their ports for hosts being 1-hop away in N -hypercube fulfill this

requirement:
⌊

a
M

⌋
=
⌊

b
M

⌋
.

Table 5.8: List of devices and ports between 1-hop away hosts in N -hypercube.

Communication Direction Expression
Hosts and end switches Uplink {Ha}, 0 �−→ a|M , {V� a

M �}
End switches and hosts Downlink {V� b

M �}, b|M �−→ 0, {Hb}

On the other hand, a set of movements are necessary to go from the source switch

to the destination switch, which may be combined in any order to get there in f !

different ways, resulting in as many different redundant paths containing all those

movements in a unique order. It is to be noted that each movement involves a certain

dimension and a certain direction, where the former involves one of the mismatched

dimensions between both end switches and the latter points out the way to get to the

destination one.

Hence, it may be considered that variable dimension is given by x ⊂ j, where

j = {0 · · ·N − 1}, as shown in (5.40), whilst variable direction attached to dimension

x is calculated as in (5.41). Furthermore, it is to be said that each movement x

available is a combination of both variables, according to expression (5.42).
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Eventually, the expression to get from a current node to the next node is exposed in

(5.43). It is to be noted that such an expression may reveal the components of a given

path by applying all movements in a sequential manner, whereas all redundant paths

may be obtained by working out with all combinations of the available movements.

It is to be remarked that there may be up to f movements, which accounts for the

distance between source node and destination node, thus making up for f ! redundant

paths with f switch hops.

Dimension[x] = x, for mismatched dimensions x ⊂ {0 · · ·N − 1} (5.40)

Direction[x] = (−1)g, where g =

⌊�a/M�
2x

⌋
|2

for x ⊂ {0 · · ·N − 1} (5.41)

Movement[x] = Direction[x]× 2Dimension[x] for x ⊂ {0 · · ·N − 1} (5.42)

nextNode = oldNode +Movement[x] for x ⊂ {0 · · ·N − 1} (5.43)

Therefore, Table 5.9 is proposed to achieve a list of movements to go from a

given source switch to a given destination switch (supposing
⌊

a
M

⌋ �= ⌊
b
M

⌋
), where

the details of each redundant path is not going to be quoted, but just the necessary

movements to get there. In order to attain the detailed list of devices to go across

each of the redundant paths available, the different permutations of such movements

may be worked out, where each permutation results in a different combination of

the intermediate nodes being traversed in each of those paths when applying all the

movements according to the order established by such a permutation.

This is exposed by the function permutations(f,c), where f is related to the number

of movements and c does it to the identifier of each combination of those movements.

Additionally, the ports involved may be easily spotted by following the mismatching

dimension between every pair of nodes within each redundant path.

Eventually, a verification of the model proposed may be carried out. In that sense,

by applying the principles discussed in the previous sections, and taking into consid-

eration that all switches are end switches, it may seem clear that the encapsulation

operator only allows internal communications to take place, thus bringing the atomic

internal actions to deadlock, whereas atomic external actions still prevail. In this

case, it may appear that all communications within neighbouring nodes belonging
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Table 5.9: Permutations from source switch to destination switch in N -hypercube.

Code snippet
f = 0
for (j = 0; j < N; j++)
if ((int(int(a/M)/2j)) mod 2) �= ((int(int(b/M)/2j)) mod 2) {
dimension = j;

direction = (-1)(int(int(a/M)/2j)) mod 2;
movement[f] = direction × 2dimension;
f = f + 1;
}
print(”Movements: ” + f + ”, with ” + f! + ” permutations available.”);
for (c = 0; c < f!; c++){
y = permutations(f,c);
for (k = 0; k < length(y); k++)
Vnext = Vcurrent +movement[k];

}

to the hypercube structure are internal, hence they prevail, whereas communications

with non-neighbouring nodes do not take place, thus the related atomic actions may

go deadlock.

As per the expression for the application of the encapsulation operator, it is to

be said that paths between any pair of hosts in tree-like topologies are clearly stated

because of its hierarchical design. However, it does not happen with graph-like de-

signs, hence permutations may be performed including all necessary moves to get

from the source node to the destination node. Therefore, there may be not a unique

expression, but it may depend on the identifiers of source and destination nodes.

Furthermore, the abstraction operator masks internal communications, hence re-

vealing the external behaviour of the model. In this case, all communications among

nodes get masked, whilst atomic actions related to external hosts are still available,

thus being ready to receive messages from them, as well as to send messages to them.

In summary, the external behaviour of the model proposed is shown in (5.44) if end

hosts are taken into consideration, which leads to ∅ for the external behaviour of

this model, as that is a closed system, whereas in (5.45) end hosts are not taken into

account, thus leading to an expression revealing the external behaviour of that model,
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as that is an open system. Anyway, the source node may be calculated with �a/M�
and destination node may be done with �b/M�, due to the layout described above.∣∣∣∣2N+W−1

h=0

∣∣∣∣2N−1
i=0

τI

(
∂H

(
Hh ‖ Vi

))
= τI

(
c{Ha},0 	−→a|M ,{Vi}(d)·(

permutations(f,c) �

⌊
i

M

⌋
�=
⌊

b

M

⌋
� ∅

)
· c{Vi},b|M 	−→0,{Hb}(d)

)
· (Hh ‖ Vi) = ∅

(5.44)∣∣∣∣2N−1
i=0

τI

(
∂H

(
Vi

))
= r{V� a

M �},a|M (d) · s{V� b
M �},b|M (d) · τI

(
∂H

(
Vi

))
(5.45)

Otherwise, expression (5.46) exposes the external behaviour of the real system X.

τI
(
X
)
= r{Vi},p

(
d
) · s{Vi′},p′

(
d
) · τI(X)

(5.46)

Therefore, it appears to be obvious that both recursive expressions are multiplied

by the same factors, considering that the incoming port into the system is p = a|M and

outgoing port out of the system is p′ = b|M . This means that they may be considered

as rooted branching bisimilar, as they both have the same string of actions, and also,

they both share the same branching structure, hence permitting the application of

expression (5.47).

X ←→ τI

(
∂H

(
Vi

))
(5.47)

In conclusion, this is a sufficient condition to get a model verified, hence, the model

proposed for an N -hypercube architecture has been duly verified.

5.6 Folded N-hypercube

At this stage, it is time to talk about folded N -hypercube. As said before, it is an

extension of N -hypercube, where extra links are available over every pair of opposite

nodes, whereas the rest of characteristics mentioned for N -hypercube remain the

same, such as the number of nodes and faces. It is to be reminded that Table 4.4

specifies relevant data regarding this topology.

Focusing on the role of the link between opposite nodes, it permits to reach much

faster the farthest nodes, thus reducing the diameter of the switching network to only

N/2�. Therefore, when dealing with mismatching dimensions, an extra verification

may be done to check whether the opposite link provides a shorter path over an

ordinary path, or the other way around, or even a tie is reached.
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Hence, three different scenarios may arise, such as the regular path (the one not

using any opposite node to go from source to destination) is shorter than the one

using the opposite path (the one using any opposite node), or quite the contrary, or

otherwise, both alternatives account for the same length. The proper decision to be

made is to always choose the shortest path, and if both paths are just as long, then

both alternatives may be used.

Regarding the opposite node of a given node i, it is worth reminding that this may

be calculated in binary form by applying the 1′s complement to i, meaning that all

its bits will be swapped, such that all 0s will become 1s, and otherwise, all 1s will

turn into 0s. Still, the opposite node may be calculated in decimal form, by applying

the expression 2N − 1− i to the current node i.

When dealing with opposite nodes, an extra unit of length must be added up to

account for that extra link going from any node to its opposite node. This means that

if the distance through neighbouring nodes is the value of variable distance, then the

distance through an opposite node is N + 1− distance.

Therefore, the first part is to find out which path is the shortest one, this is, the

one through only regular neighbours, or otherwise, the one through an opposite link

along with regular neighbours, or even if they are both just as long, and afterwards,

take that path, or equal cost redundant paths, to get from source to destination. It is

to be remarked that regular paths make use of all mismatching dimensions, whereas

opposite paths do use of all matching dimensions along with the opposite link.

As per the layout, it is to be noted that the extra link directed to the opposite

node is identified as port M +N , this is, the last one, accounting for a total amount

of M + N + 1 ports. Specifically, the first M ports go to hosts according to the

hosts identification scheme exposed in the previous section, then, the following N

ports go to other nodes according to the different dimensions, and the last one goes

to the opposite node. Regarding the hosts, there are no changes with respect to the

hypercube design, resulting in M = 2W per node, with a total amount of 2N+W .

Putting it all together, Figure 5.19 exhibits the port identifiers of a given switch.

Likewise, Figure 5.20 exposes the node setup in binary format, whilst Figure 5.21

does it in decimal format.
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Vertex
i

0 1 M-1···
host 0 host 1 host M-1

dim 0

dim 1dim 2dim N-1

M
M+1M+2M+N-1 ···

M+NOpposite
vertex

Figure 5.19: Model for switches, along with its ports (folded N -hypercube).

011 010

001 000

111 110

101 100

1011 1010

1001 1000

1111 1110

1101 1100

0011 0010

0001 0000

0111 0110

0101 0100

Figure 5.20: Node nomenclature employing N binary values: 3 (left) and 4 (right).

Taking all that into consideration, Figure 5.22 depicts the flow chart exhibiting

the behaviour of a switch i.

Furthermore, the pseudocode model referred to the behaviour of a given switch i

is shown in algorithm 8 (shown in the Appendix 10.8), where the mismatching and

matching dimensions are found out by means of arithmetic operations.

Alternatively, Table 5.10 presents the code snippet for looking for the shortest dis-

tance and spotting the mismatching and matching bits by means of logical operations,

which happens in the else clause in the previous algorithm.

With regards to the algebraic model, the ACP expression to represent the behaviour

of a switch in presented in (5.50), where two auxiliary functions called neighboursPath

and oppositePath have been defined in order to measure the distance in switches

between the current node i and the destination node, which are shown in expressions

(5.48) and (5.49).

In both functions, the initial value of the variable for distance, called dist, is first

initialized (∼dist), and in turn, the mismatching dimensions are counted up (dist++)
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4 5

6 7

0 1

2 3

4 5

6 7

0 1

2 3

12 13

14 15

8 9

10 11

Figure 5.21: Node nomenclature converted into decimal values: 3 (left) and 4 (right).

Table 5.10: Searching the shortest path and its next hops by using of logical means.

Mode Code snippet

Logical

else
distance = 0;
logicalXOR = DecimalToBinary(i) XOR DecimalToBinary(int(b/M));
for (j = 0; j < N; j++)
if (logicalXOR[j] = 1){
index[distance] = j;
distance = distance + 1;
}
if (distance ≤ N + 1 - distance){
x = 0;
for(y=0; y < N; y++)
if(index[x] == y){
send NODE{i},PORT{M+y}(a,h,VM(u));
x = x + 1;
}

}
if (distance ≥ N + 1 - distance){
x = 0;
for(y=0; y < N; y++){
if(index[x] �= y)
send NODE{i},PORT{M+y}(a,h,VM(u));
else
x = x + 1;

}
send NODE{i},PORT{M+N}(a,h,VM(u));
}
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Figure 5.22: Flow chart for the behaviour of a given switch (folded N -hypercube).
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in the neighboursPath, whilst in the oppositePath, the matching dimensions are also

counted up, bearing in mind that an additional unit must be added up to take the

opposite link into account.

The results of both functions are being applied in the Vi model in order to select

the shortest path, and in turn, to apply the proper operations in order to send the

message through the appropriate ports. Furthermore, the conditional clause in the

receive function has been dropped as ACP does not consider the time.

neighboursPath =
(
∼dist

) · N−1∑
j=0

((
dist++

)
�

⌊
i

2j

⌋
|2
�=
⌊�b/M�

2j

⌋
|2
� ∅

)
(5.48)

oppositePath =
(
∼dist

) · N−1∑
j=0

((
dist++

)
�

⌊
i

2j

⌋
|2
=

⌊�b/M�
2j

⌋
|2
� ∅

)
· (dist++

)
(5.49)

Vi =
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i=0
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M+N∑
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b

M

⌋
�
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|2
� ∅
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·
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⌋
|2
� ∅

)
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)

� neighboursPath >= oppositePath � ∅
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· Vi (5.50)

Focusing on redundant paths within the model, the discussion for N -hypercube

regarding the redundant paths may apply in this case, even though some modifications

may be done in order to portray the selection between the only-neighbours path or

the opposite path.

First of all, Table 5.11 shows the arithmetic expressions to build up the list of

devices and their ports for hosts being 1-hop away in folded N -hypercube, resulting

in the path to be carried out to interconnect two hosts hanging on the same switch,

which is right the same as in the N -hypercube, this is, the case where
⌊

a
M

⌋
=
⌊

b
M

⌋
.

On the other hand, hosts hanging on different switches take part of the cases where⌊
a
M

⌋ �= ⌊
b
M

⌋
. In such instances, the terms explained for this type of situation in the
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Table 5.11: List of devices and ports between 1-hop away hosts in folded N -hyp.

Communication Direction Expression
Hosts and end switches Uplink {Ha}, 0 �−→ a|M , {V� a

M �}
End switches and hosts Downlink {V� b

M �}, b|M �−→ 0, {Hb}

N -hypercube applies, but adapting them to the specific features explained so far for

this topology. In this sense, Table 5.12 exhibits the necessary movements to be carried

out to get to the destination node through the shortest path.

Eventually, it is to be noted that all switches in this topology are end switches,

therefore, the verification procedure explained for the N -hypercube applies in this

case, as the extra links added up to this model are just internal to the infrastructure.

Therefore, the external behaviour of a folded N -hypercube is the same as the one

exposed for N -hypercube, thus the model proposed gets duly verified.

5.7 Full mesh

This topology may be seen as an N -simplex structure, which accounts for N + 1

nodes, where each one has N paths to the other switches. In order not to flood

the topology with an excess of redundant messages, only the source node
⌊

a
M

⌋
sends

messages to all nodes, whereas the rest just forward messages on to the destination

node
⌊

b
M

⌋
. Moreover, it is to be noted that there are (N + 1)×M hosts overall.

As per the layout, regarding the port identifiers for each switch, it is to be reminded

that the first M ports are dedicated to hosts (going from 0 to M − 1), whilst there

are N uplink ports being in use. In order to achieve easier expressions, those uplink

ports are numerated from M to M +N , according to the expression M + i, where i is

the identifier of the switch on the other end of each link, going from 0 to N . Hence,

the port related to its own i value is skipped out, as it would do a loopback link.

Figure 5.23 depicts the uplink ports of a single switch i, whereas Figure 5.24

presents the nomenclature of switches by selecting one of them as a reference, called

0, and quoting the real dimension where each switch is moved from such a reference.
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Table 5.12: Permutations from source switch to destination switch in folded N -hyp.

Code snippet
f = 0;
distance = 0;
for (j = 0; j < N; j++)
if ((int(int(a/M)/2j)) mod 2) �= ((int(int(b/M)/2j)) mod 2)
distance = distance + 1;

if (distance ≤ (N + 1 - distance)){
for (j = 0; j < N; j++)
if ((int(int(a/M)/2j)) mod 2) �= ((int(int(b/M)/2j)) mod 2){
dimension = j;

direction = (-1)(int(int(a/M)/2j)) mod 2;
movement[f] = direction × 2dimension;
f = f + 1;
}

}
if (distance ≥ (N + 1 - distance)){
for (j = 0; j < N; j++)
if ((int(int(a/M)/2j)) mod 2) = ((int(int(b/M)/2j)) mod 2){
dimension = j;

direction = (-1)(int(int(a/M)/2j)) mod 2;
movement[f] = direction × 2dimension;
f = f + 1;
}
dimension = 2N - 1 - a;
direction = (-1)(int(int(a/M))/(N/2));
movement[f] = direction × 2dimension;
f = f + 1;

}
print(”Movements: ” + f + ”, with ” + f! + ” permutations available.”);
for (c = 0; c < f!; c++){
y = permutations(f,c);
for (k = 0; k < y; k++)
Vnext = Vcurrent +movement[k];

}

With that in mind, Figure 5.25 depicts the flow chart exhibiting the behaviour of

a switch i.

Besides, the pseudocode model related to the behaviour of a given switch i is shown

in algorithm 9 (shown in the Appendix 10.9).
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. . .M

Switch i

M+1 M+NM+i

Figure 5.23: Model for the uplink ports in a full mesh switch (N -simplex).

Figure 5.24: Model for the interconnected switches in a 3-simplex.

Concerning the algebraic model, the ACP expression to represent the behaviour of

a particular switch i is given in (5.51), where the conditional clause in the receive

function has been dropped as ACP does not consider the time.

Vi =
N∑
i=0

(
M+N∑
p=0

(
rVi,p(d) ·

(
sVi,b|M (d) � i =

⌊
b

M

⌋
�

(( N∑
q=0

sVi,M+q(d) � q �= i � ∅
)
� i =

⌊ a

M

⌋
� sVi,M+
b/M�(d)

))))
· Vi (5.51)

Focusing on redundant paths within the model, it is to be said that Table 5.13

exposes the redundant paths for hosts being one switch away (where
⌊

a
M

⌋
=
⌊

b
M

⌋
), or

otherwise, Table 5.14 exhibits the those being two switches away (where
⌊

a
M

⌋ �= ⌊
b
M

⌋
).

Table 5.13: List of devices and ports between 1-hop away hosts in full mesh.

Communication Direction Expression
Hosts and end switches Uplink {Ha}, 0 �−→ a|M , {V� a

M �}
End switches and hosts Downlink {V� b

M �}, b|M �−→ 0, {Hb}
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Figure 5.25: Flow chart for the behaviour of a given switch (N -simplex).
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Table 5.14: List of devices and ports between 2-hops away hosts in full mesh.

Communication Direction Expression
Hosts and source switches Uplink {Ha}, 0 �−→ a|M , {V� a

M �}

End switches and other switches Uplink

∑
0≤q≤N
q �=i

(
{V� a

M �}, (M + q) �−→
�−→ ⌊

a
M

⌋
, {Vq}

)

Other switches and dest. switches Downlink

∑
0≤q≤N
q �=i

(
{Vq},

⌊
b
M

⌋ �−→
�−→ (M + q), {V� b

M �}
)

Dest. switches and hosts Downlink {V� b
M �}, b|M �−→ 0, {Hb}

Eventually, it is to be said that, as all switches in this topology are end switches

and all links among switches are considered to be internal communications, whereas

links going to hosts are considered to be external ones, then the verification procedure

explained for the N -hypercube applies in this case. This is, the external behaviour of

the model is rooted branching bisimilar to that of the real system, hence the model

gets duly verified.

5.8 Quasi full mesh

This topology may be seen as an N -orthoplex structure, where each individual

switch has 2× (N − 1) paths to the other switches, meaning to all the others but its

opposite one. As in the full mesh topology, in order not to flood the topology with

too many redundant messages, only the source node
⌊

a
M

⌋
sends messages to other

switches, whilst in turn, those just forward them on to the destination node
⌊

b
M

⌋
.

Also, it is to be noted that there are 2N switches overall, accounting for 2N ×M

hosts overall.

As per the layout, with respect to the port identifiers for each switch, the first M

ports are connected to hosts (going from 0 to M − 1), whilst there are up to 2(N − 1)

uplink ports being in use. In order to attain easier expressions, the numeration of

them goes from M to M + 2N − 1, according to the formula M + i, where i is the
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identifier of the switch on the other end of each link, where switches go from 0 to

2N − 1. Hence, the port related to its own i value is skipped out, as so is the port

going to its opposite node, given by the expression (i+N) mod 2N .

To round it all up, Figure 5.26 exhibits the uplink ports of a single switch i,

whilst Figure 5.27 depicts the nomenclature of switches by selecting one of them as a

reference, called 0, and then, citing the real dimension where up to N − 1 nodes are

moved from that reference, whereas at this point, adding up N to all items deployed

so far to reach their corresponding opposite nodes.

. . .M M+i

Switch i

M+1 M+(i+N mod 2N) M+2N -1. . .

Figure 5.26: Model for the uplink ports in a quasi full mesh switch (N -orthoplex).

i=2

i=0

i=1

i=3

i=5i=4

Figure 5.27: Model for the interconnected switches in a 3-orthoplex.

With that in mind, Figure 5.28 exhibits the flow chart exhibiting the behaviour of

a switch i.

Moreover, the pseudocode model referred to the behaviour of a given switch i is

shown in algorithm 10 (shown in the Appendix 10.10).

Regarding the algebraic model, the ACP expression to represent the behaviour of

a particular switch i is exposed in (5.52), where the conditional clause in the receive

function has been dropped as ACP does not consider the time.
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i ← 0

Receivei,p(d)

i =
⌊

b
M

⌋
i =

⌊
a
M

⌋

q ← 0

(q �= i) AND

(q �= (i+N)|2N )

Sendi,M+q(d)

q ← q + 1

q ≤ 2N

Sendi,b|M (d) Sendi,M+
b/M�(d)

i← i+ 1

i ≤ max(i)

Yes

No

Yes

No

Yes

No

Yes

No

No

Yes

Yes

No

Figure 5.28: Flow chart for the behaviour of a given switch (N -orthoplex).
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Vi =
2N−1∑
i=0

(
M+2N−1∑

p=0

(
rVi,p(d) ·

(
sVi,b|M (d) � i =

⌊
b

M

⌋
�

(( 2N−1∑
q=0

sVi,M+q(d) � q �= i AND q �= (i+N)|2N � ∅
)
� i =

⌊ a

M

⌋
� sVi,M+
b/M�(d)

))))
· Vi

(5.52)

Focusing on redundant paths within the model, it is to be noted that Table 5.15

shows the redundant paths for hosts being one switch away (where
⌊

a
M

⌋
=

⌊
b
M

⌋
),

whilst Table 5.16 presents those being two switches away (where
⌊

a
M

⌋ �= ⌊
b
M

⌋
).

Table 5.15: List of devices and ports between 1-hop away hosts in quasi full mesh.

Communication Direction Expression
Hosts and end switches Uplink {Ha}, 0 �−→ a|M , {V� a

M �}
End switches and hosts Downlink {V� b

M �}, b|M �−→ 0, {Hb}

Table 5.16: List of devices and ports between 2-hops away hosts in quasi full mesh.

Communication Direction Expression
Hosts and source switches Uplink {Ha}, 0 �−→ a|M , {V� a

M �}

End switches and other switches Uplink

∑
0≤q≤N
q �=i

q �=(i+N)|2N

(
{V� a

M �}, (M + q) �−→

�−→ ⌊
a
M

⌋
, {Vq}

)

Other switches and dest. switches Downlink

∑
0≤q≤N
q �=i

q �=(i+N)|2N

(
{Vq},

⌊
b
M

⌋ �−→
�−→ (M + q), {V� b

M �}
)

Dest. switches and hosts Downlink {V� b
M �}, b|M �−→ 0, {Hb}

Eventually, it is to be said that the reasoning regarding the verification of the model

is analogous to that exposed in the N -hypercube, as all switches are end switches.

5.9 Redundant star

This topology contains two hubs in order to achieve redundant connections with

all spokes. It may be implemented in different ways and running protocols, although
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that is irrelevant for this model, as it only takes into account the redundant paths. If

it is considered that there are n spokes, their disposition might be associated with an

n-wheel polygon. However, the hubs are usually located right in the middle, although

sometimes they might also be seen as the root of a tree, where the spokes are the

leaves of such a tree.

It is to be acknowledged that such a topology is quite commonly deployed in pro-

duction environments, because it avoids the use of routing protocols if implemented

as layer 2 environments, or otherwise, routing is pretty easy if done as layer 3 ones.

Any way, the distance between any pair of switches gets reduced to just 2.

As per the layout, Figure 5.29 exhibits the models for hubs and for spokes, along

with their corresponding ports. Regarding the hubs, 2 of them are considered, both

with n downlink ports going to the spokes and 1 uplink port going to the other hub,

hence accounting for n+1 ports overall. With respect to the spokes, n are considered,

all with M downlink ports going to hosts and 2 uplink port going to the hubs, thus

accounting for M +2 ports overall. Regarding hosts, there are M per switch, leading

to a total amount of M × n. It is to be noted that the link among hubs is meant for

control purposes, hence it does not take part into forwarding tasks among spokes.

0 n-1. . .

Hub

n

0 M-1. . .

M M+1

Spoke

Figure 5.29: Model for switches, along with its ports (redundant hub and spoke).

On the other hand, Figure 5.30 exposes the nomenclature used in this model for

hubs and spokes, where both types are numerated clockwise.

5.9.1 Spoke switches

To start with, Figure 5.31 exhibits the flow chart exhibiting the behaviour of a

spoke i.
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M+1Spoke 5

Spoke 4

Spoke 3

Hub 0

Hub 1

Spoke 0

Spoke 1

Spoke 2

M

M-1

0

Figure 5.30: Nomenclature of switches in redundant hub and spoke.

Moreover, algorithm 11 (shown in the Appendix 10.11) presents the pseudocode

model regarding the behaviour of a given spoke switch i.

With respect to the algebraic model, the ACP expression to represent the behaviour

of a spoke switch is exhibited in (5.53), where spokes are identified with variable C.

ACP does not take time into account, hence the initial conditional clause may be

skipped, thus the first action may always be the reception of a message through any

of its ports.

Ci =
n−1∑
i=0

(
M+1∑
p=0

(
rCi,p(d) ·

(
sCi,b|M (d) � i =

⌊
b

M

⌋
�

M+1∑
q=M

sCi,q(d)

)))
· Ci (5.53)

5.9.2 Hub switches

To begin with, Figure 5.32 depicts the flow chart exhibiting the behaviour of a

hub j.

Besides, algorithm 12 (shown in the Appendix 10.12) exhibits the pseudocode model

regarding the behaviour of a given hub switch j.

In relation to the algebraic model, the ACP expression to represent how a hub

switch behaves is presented in (5.54), where hubs are identified with variable D.

Besides, the conditional clause in the receive function has been dropped as ACP does

not consider the time.

Dj =
1∑

j=0

(
n∑

p=0

(
rDj ,p(d) · sDj ,� b

M �(d)
))

·Dj (5.54)
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i ← 0

Receivei,p(d)

i =
⌊

b
M

⌋

Sendi ,b|M (d)

q ← 0

Sendi,M+q(d)

q ← q + 1

q < 2i← i+ 1

i < max(i)

Yes

No

Yes

No

No

Yes

Yes

No

Figure 5.31: Flow chart for the behaviour of a spoke (redundant hub and spoke).

5.9.3 Consolidating hub and spoke

Focusing on redundant paths within the model, it is to be said that Table 5.17

exposes the path for hosts being one hop away (where
⌊

a
M

⌋
=

⌊
b
M

⌋
), thus hosts

hanging on the same spoke switch, whilst Table 5.18 exhibits the redundant paths

being connected to different spoke switches (where
⌊

a
M

⌋ �= ⌊
b
M

⌋
), hence being two

hops away.

Table 5.17: List of devices and ports between 1-hop away hosts in R. hub & spoke.

Communication Direction Expression
Hosts and spokes Uplink {Ha}, 0 �−→ a|M , {C� a

M �}
Spokes and hosts Downlink {C� b

M �}, b|M �−→ 0, {Hb}

Eventually, it is to be considered that the reasoning regarding the verification of

the model is analogous to that exposed in a previous section for the leaf and spine
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j ← 0

Receivej,p(d)

Sendj,
b/M�(d)

j ← j + 1

j < max(j)

Yes

No

Yes

No

Figure 5.32: Flow chart for the behaviour of a hub (redundant hub and spoke).

Table 5.18: List of devices and ports between 2-hops away hosts in R. hub & spoke.

Communication Direction Expression
Hosts and spokes Uplink {Ha}, 0 �−→ a|M , {C� a

M �}

Spokes and hubs Uplink

∑1
q=0

(
{C� a

M �}, (M + q) �−→
�−→ ⌊

a
M

⌋
, {Dq}

)

Hubs and spokes Downlink

∑1
q=0

(
{Dq},

⌊
b
M

⌋ �−→
�−→ (M + q), {C� b

M �}
)

Spoke and hosts Downlink {C� b
M �}, b|M �−→ 0, {Hb}

topology, as both might be considered to form a two-layer hierarchy. In this sense, ex-

pression (5.55) presents the encapsulation operator being applied to communications

between spokes and hubs.∣∣∣∣n−1
i=0

∣∣∣∣1
j=0

∂H(Ci ‖ Dj) =

(
r{Ci},a|M (d) ·

( 1∑
q=0

c{Ci},M+q 	−→a|M ,{Dq}(d)·

c{Dq},b|M 	−→M+q,{Ci}(d) � i �=
⌊

b

M

⌋
� ∅

)
· s{Ci},b|M (d)

)
· (Ci ‖ Dj) (5.55)

Afterwards, the abstraction operator is applied to the whole set of spokes and

hubs in expression (5.56), therefore, the switching infrastructure may get masked,

thus showing up the external behaviour of the model.
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∣∣∣∣n−1
i=0

∣∣∣∣1
j=0

τI

(
∂H

(
Ci ‖ Dj

))
= τI

(
r{Ci},a|M (d)·

( 1∑
q=0

c{Ci},M+q 	−→a|M ,{Dq}(d) · c{Dq},b|M 	−→M+q,{Ci}(d)

� i �=
⌊

b

M

⌋
� ∅

)
· s{Ci},b|M (d)

)
· τI

(
∂H

(
Ci ‖ Dj

))
=

r{Ci},a|M (d) · s{Ci},b|M (d) · τI
(
∂H

(
Ci ‖ Dj

))
(5.56)

On the other hand, expression (5.57) depicts the external behaviour of the real

system X, stating that a message d gets into the switching infrastructure through a

given source switch i, and eventually, gets off through a given destination switch i′.

τI
(
X
)
= r{Ci},p

(
d
) · s{Ci′},p′

(
d
) · τI(X)

(5.57)

Therefore, it appears to be obvious that both recursive expressions are multiplied

by the same factors, where the incoming port into the system is p = a|M and outgoing

port off the system is p′ = b|M . This means that they may be considered as rooted

branching bisimilar, as they both have the same string of actions and they both share

the same branching structure, hence allowing the application of expression (5.58).

X ←→ τI

(
∂H

(
Ci ‖ Dj

))
(5.58)

In conclusion, this is a sufficient condition to get a model verified, hence, the model

proposed for a leaf and spine architecture has been duly verified.

5.10 Redundant ring

This topology may be seen like a linear torus, where double links are deployed

for redundancy purposes. This design may be fit for critical networks such as core

interconnections. Supposing a number of n nodes, each one represented by one switch

havingM hosts hanging on, the point here is to check for the shortest path from source

node to destination node, being leftwards or rightwards, where a distance of n
2
stands

for load balancing paths in both directions, taking into account the wraparound step

if necessary.

In order to achieve that, the difference between nodes
⌊

b
M

⌋
and i is the key, such as

if that value is both lower than 0 and greater or equal than −n
2
, or otherwise, greater

than n
2
, then the resulting path is through the left neighbour, whereas if such a value
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is both greater than 0 and lower or equal than n
2
, or otherwise, lower than −n

2
, then

the resulting path is through the right neighbour.

As per the layout, regarding the n node identifiers, they go from 0 all the way to

n − 1, from left to right. With respect to the ports of each one, the M lower ports

(going from 0 to M −1) are connected to hosts, whereas ports M and M +1 point to

the node on the left hand side, whereas ports M+2 and M+3 do it to the right hand

side. Figure 5.33 exhibits the model with the port nomenclature of a given node,

whilst Figure 5.34 depicts the setup of the n nodes in a linear torus way.

Therefore, if
( − n

2
≤ (

⌊
b
M

⌋ − i) < 0
)
OR

(
(
⌊

b
M

⌋ − i) > n
2

)
, then the path

towards destination goes through the left links, being ports M and M +1, whereas if(
0 < (

⌊
b
M

⌋− i) ≤ n
2

)
OR

(
(
⌊

b
M

⌋− i) < −n
2

)
, then that path goes through the right

links, being ports M + 2 and M + 3.

0 M-1. . .

M

Node i

M+1 M+2 M+3

to hosts

to nodes

Figure 5.33: Model for switches, along with its ports (redundant ring).

Node 0 Node 1 Node n-1···

Figure 5.34: Node setup for a redundant ring topology.

Taking this into account, Figure 5.35 exposes the flow chart exhibiting the be-

haviour of a switch i.

Besides, algorithm 13 (shown in the Appendix 10.13) presents the pseudocode model

related to the behaviour of a given switch i.
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i ← 0

Receivei,p(d)

i =
⌊

b
M

⌋

Sendi,b|M (d)

−n
2
≤

(⌊
b

M

⌋
− i

)
< 0

OR(⌊
b

M

⌋
− i

)
>

n

2

q ← 0

Sendi,M+q(d)

q ← q + 1

q < 2
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(⌊

b

M

⌋
− i

)
≤ n

2
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2

>

(⌊
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M

⌋
− i

)
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Figure 5.35: Flow chart for the behaviour of a given switch (redundant ring).
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With respect to the algebraic model, the ACP expression which represents the

behaviour of an particular switch i is exhibited in (5.59). ACP does not take time

into account, hence the initial conditional clause may be skipped, thus the first action

may always be the reception of a message through any of its ports.

Vi =
n−1∑
i=0

(
M+3∑
p=0

(
rVi,p(d) ·

(
sVi,b|M (d) � i =

⌊
b

M

⌋
�

((M+1∑
q=M

sVi,M+q(d) �
(−n
2
≤ (

⌊
b

M

⌋
− i) < 0

)
OR

(
(

⌊
b

M

⌋
− i) >

n

2

)
� ∅

)
·

( M+3∑
q=M+2

sVi,M+q(d) �
(
0 < (

⌊
b

M

⌋
− i) ≤ n

2

)
OR

(−n
2

> (

⌊
b

M

⌋
− i)

)
� ∅

)))))
· Vi

(5.59)

Focusing on redundant paths within the model, it is to be reminded that graph-

like designs may exhibit a variety of them depending on the distance between end

switches, as explained for the N -hypercube case.

Eventually, it is to be reminded that this topology is a graph-like one, where all

switches are end switches. Hence, its verification procedure is analogous to that

stated for the N -hypercube scenario.

5.11 Toroidal ring

This topology may be viewed as a ring torus, in a squared setup, meaning that

nodes are connected forming a square with side n, having wraparound links between

the external nodes. This way, supposing a number of nodes n2 equally distributed in

the square, each one represented by one switch having M hosts hanging on, the point

is to check for the shortest path from source node to destination node. It is to be

considered that a distance of n
2
in a single direction may allow for 2 load balancing

paths, taking into account a wraparound step if necessary. Otherwise, if distances

occur in different directions, the permutations of all steps to reach destination may

lead to a variety of load balancing paths, growing with the number of those steps.

In order to calculate that distance between source and destination nodes, one

approach may be to spot whether they are located in different rows, which is done
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by comparing
⌊

b/M�

n

⌋
and

⌊
i
n

⌋
. Otherwise, an alternative approach may be to check

whether both nodes are in different columns, which is obtained by comparing
⌊

b
M

⌋
|n

and i|n. In case any of those apply, then the procedure to go from source to destination

may be similar to that proposed for the redundant ring case, where the path in a single

direction may not be greater than n
2
, and the maximum path length may never be

greater than n, accounting both dimensions.

That way, if source and destination nodes are in different rows (
⌊

b/M�

n

⌋
�= ⌊

i
n

⌋
),

then if
⌊

b
M

⌋
|n − i|n is both lower than 0 and greater or equal than −n

2
, or otherwise,

greater than n
2
, then the resulting path is through the neighbour below, whilst if such

a value is both greater than 0 and lower or equal than n
2
, or otherwise, lower than

−n
2
, then the resulting path is through the neighbour above.

Likewise, if source and destination are in different columns (
⌊

b
M

⌋
|n �= i|n), then if⌊


b/M�
n

⌋
−⌊

i
n

⌋
is both lower than 0 and greater or equal than −n

2
, or otherwise, greater

than n
2
, then the resulting path is through the left neighbour, whereas if such a value

is both greater than 0 and lower or equal than n
2
, or otherwise, lower than −n

2
, then

the resulting path is through the right neighbour.

As per the layout, regarding the n2 node identifiers, they go from 0 all the way to

n2−1, starting from the bottom left corner and completing each row from left to right

with n items, where the first row goes from 0 to n− 1 and the rest of rows get filled

in with the natural number sequence, such as shown in Figure 5.36. With regards to

the ports of each node, the M lower ports (going from 0 to M − 1) are connected to

hosts, whereas port M looks upwards and the rest of the ports go clockwise, thus,

port M + 1 looks rightwards, port M + 2 looks downwards, and port M + 3 looks

leftwards, as it is depicted in Figure 5.37.

Taking this into account, Figure 5.38 exhibits the flow chart showing the behaviour

of a switch i.

Furthermore, algorithm 14 (shown in the Appendix 10.14) exhibits the pseudocode

model referred to the behaviour of a given switch i.

With regards to the algebraic model, the ACP expression representing the be-

haviour of a given switch i is exhibited in (5.60). It is to be reminded that ACP does
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12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

Figure 5.36: Node setup for a toroidal ring topology for n = 4.

0 M-1
. . .

Node i
M+1

M

M+2

up

down

left right

. . .
M+3

Figure 5.37: Model for switches, along with its ports (toroidal ring).

not take time into account, thus the initial conditional clause may be skipped, hence

the first action may always be the reception of a message through any of its ports.
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Vi =
n−1∑
i=0

(
M+3∑
p=0

(
rVi,p(d) ·

(
sVi,b|M (d) � i =

⌊
b

M

⌋
�

(((
sVi,M+2(d) �

(−n
2
≤ (

⌊
b

M

⌋
|n
− i|n) < 0

)
OR

(
(

⌊
b

M

⌋
|n
− i|n) >

n

2

)
� ∅

)
·

(
sVi,M(d) �

(
0 < (

⌊
b

M

⌋
|n
− i|n) ≤ n

2

)
OR

(−n
2

> (

⌊
b

M

⌋
|n
− i|n)

)
� ∅

)

�

⌊�b/M�
n

⌋
�=
⌊
i

n

⌋
� ∅

)
·((

sVi,M+3(d) �
(−n
2
≤ (

⌊�b/M�
n

⌋
−
⌊
i

n

⌋
) < 0

)
OR

(
(

⌊�b/M�
n

⌋
−
⌊
i

n

⌋
) >

n

2

)
� ∅

)
·

(
sVi,M+1(d) �

(
0 < (

⌊�b/M�
n

⌋
−
⌊
i

n

⌋
) ≤ n

2

)
OR

(−n
2

> (

⌊�b/M�
n

⌋
−
⌊
i

n

⌋
)
)
� ∅

)

�

⌊
b

M

⌋
|n
�= i|n � ∅

)))))
· Vi

(5.60)

Focusing on redundant paths within the model, it is to be remarked that graph-like

designs may present a broad range of them, which depends on the distance between

the end switches, as exposed for the N -hypercube.

Eventually, regarding verification, it is to be recalled that this topology is a graph-

like one, meaning that all switches are end switches. Hence, its verification process

is similar to that stated for the N -hypercube.

5.12 De Bruijn graph

De Bruijn graphs are a type of directed graph, which has been studied above. Con-

sidering a generic k-alphabet, even though the binary alphabet is the most commonly

used, along with a word length n, this design may account for kn switches, where each

of those has just k inwards links and just k outwards links.

Therefore, those values may be tailored to match different requirements, where the

expressions to calculate the neighbour nodes to be visited through the outwards links

of the nodes were given in (4.12) for binary alphabets (where obviously k = 2), and

in (4.13) for generic k-ary alphabets, where the former works in bits, whilst the latter

does it in k-symbols.
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⌊

b
M

⌋
Sendi,b|M (d)

⌊ 
b/M�
n

⌋
�= ⌊
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⌋
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Figure 5.38: Flow chart for the behaviour of a given switch (toroidal ring).
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Sticking to binary digits (k = 2), it is to be reminded that each new hop is

equivalent to inserting a new bit on the right of the previous node identifier, meaning

the least significant bit, which accounts for performing a left-shifting bit in the binary

identifier of the previous node.

The way to proceed is to compare incremental groups with the rightmost bits in

the source node and the leftmost bits in the destination node, starting from just one

bit (meaning the least significant bit of the source node with the most significant bit

of the destination node), and if they match, then take a group of two bits (meaning

the two least significant bits of the former with the two most significant bits of the

latter), and in turn, going all the way until finding the minimum group length where

both groups do not match.

Getting back to a general k-alphabet, the aforesaid procedure may be done in an

arithmetic way by means of looking for a mismatch between
⌊

i
ktop−j

⌋
|k and

⌊

b/M�
kn−1−j

⌋
|k
,

where variable top grows sequentially and j loops it, until those values do not match,

and at that point, the appropriate k-symbol to be added to the right of the source

node is given by the expression
⌊


b/M�
kn−1−top

⌋
|k
. Furthermore, the outgoing port may be

M +
⌊


b/M�
kn−1−top

⌋
|k
, which joins node i with neighbour node

(
k × i+

⌊

b/M�

kn−1−top

⌋
|k

)
|kn

.

Apart from the aforesaid arithmetic way, a logical way may also be applied in this

case, which just performs bitwise operations to insert bits on the right hand side of

the source node given in binary format (considering k = 2), or alternatively k-symbols

in case of a generic k-alphabet, in order to perform the transition from such a given

source node to the expected particular destination node.

As per the layout, regarding the kn node identifiers, they are identified from 0

to kn − 1, although the setup of their interswitching links depends on the value of

variables k and n, as shown previously. On the other hand, each node has M ports

connected to hosts (going from 0 to M − 1), whereas ports from M to M + k − 1

stand for the outwards links, whilst ports from M + k to M + 2k − 1 do it for the

inwards links, as shown in Figure 5.39.

Considering this, Figure 5.40 exhibits the flow chart exposing the behaviour of a

particular switch i.
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1
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Figure 5.39: Model for a given node i in a de Bruijn graph, along with its ports.

Besides, algorithm 15 (shown in the Appendix 10.15) presents the pseudocode model

regarding the behaviour of a given switch i.

With respect to the algebraic model, the ACP expression representing the be-

haviour of a particular switch i is exposed in (5.61). ACP does not take time into

account, thus the initial conditional clause may be skipped, hence the first action may

always be the reception of a message through any of its ports.

It is to be said that all ports are waiting for the reception of any messages, even

though the outgoing ports (those going from M to M + k− 1) may never get any, as

de Bruijn graphs are directed, hence those ports may only send messages.

Additionally, variable flag is initialized by means of (∼flag) and is incremented by

one unit with (flag++), whereas variable top does it the same way. Besides, a new

variable temp is introduced to perform the role of top within the while loop, which is

incremented with a summatory from 0 to n− 1. In fact, temp acts as an incremental

upper bound for the looping variable j, such that it will get a wider range for looping

at each iteration, having the target of finding the shortest value of temp meeting the

inequality
⌊

i
ktemp−j

⌋
|k �=

⌊

b/M�
kn−1−j

⌋
|k
with any value of j, and at that point, top takes

the value of temp, which will be used to calculate the outgoing port M +
⌊


b/M�
kn−1−top

⌋
|k
.

Therefore, if source and destination nodes are not the same item, the sequence of

events states that as long as variable flag holds a zero, variable top gets incremented

following the value of variable temp if, and only if, the aforementioned inequality does

not hold. However, once it does hold, variable flag gets a one, which may avoid the

inequality to be further examined, thus preventing top from getting any other value.

Eventually, the value of top is used to obtain the outgoing port.
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Figure 5.40: Flow chart for the behaviour of a switch (de Bruijn graph).
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Vi =
kn−1∑
i=0

(
M+2k−1∑

p=0

(
rVi,p(d) ·

(
sVi,b|M (d) � i =

⌊
b

M

⌋
�

(
(∼flag) · (∼top)·

( n−1∑
temp=0

( temp∑
j=0

(
(flag++) �

⌊
i

ktemp−j

⌋
|k
�=
⌊ �b/M�
kn−1−j

⌋
|k

� ∅
))
·
(
(top++) � flag = 0 � ∅

)

� flag = 0 � ∅
)
· s

Vi,M+

⌊ 
b/M�
kn−1−top

⌋
|k

(d)

))))
· Vi

(5.61)

Focusing on redundant paths within the model, it is to be noted that graph-like

designs may present a bunch of them, depending on the distance between the end

switches, as exposed for the N -hypercube.

However, Table 5.19 presents a code snippet so as to predict the string of hops to

get from source node to destination node.

Table 5.19: Searching the hops from source to destination node (de Bruijn graph).

Mode Code snippet
NODE{ i }
top = -1;
flag = 0;
while (flag == 0) {
top = top + 1;
for (j = 0; j ≤ top; j++) {
if (

⌊
i

ktop−j

⌋
|k �=

⌊

b/M�
kn−1−j

⌋
|k
) {

flag = 1;
}
}
}
for (m = top; m < n; m++) {
NODE{

(
k · i+

⌊

b/M�

kn−1−m

⌋
|k

)
|kn
};

}

Eventually, it is to be noted that this topology is a graph-like one, as all switches

are end switches. Hence, its verification procedure is similar to that stated for the

N -hypercube scenario.
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5.13 De Bruijn reverse graph

This type of directed graph may be seen as a variation of the original de Bruijn

graphs, where all argumentation exposed therein applies. However, the key difference

herein is that each new hop is equivalent to the insertion of a new bit on the left of

the previous node (supposing k = 2), meaning the most significant bit, which may be

seen as performing a right-shifting bit in the binary identifier of the previous node.

Therefore, the approach is the opposite of that given in the previous section, taking

into account that the expressions to calculate the neighbour nodes through the out-

ward links were already given in (4.14) for binary alphabets (where obviously k = 2),

and in (4.15) for generic k-ary alphabets, where the former works in bits and the

latter does it in k -symbols.

In that sense, taking the binary case as an example (k = 2), the way to go is

to compare incremental groups with the leftmost bits in the source node and the

rightmost bits in the destination node, starting from a group of just one bit (just the

most significant bit of the source node with the least significant bit of the destination

node), and if they happen to match, then increment the size of the group to include

two bits (taking the two most significant bits of the former with the two least sig-

nificant bits of the latter), and keep incrementing the group size until spotting the

minimum group length where both groups do not occur to match.

As in the previous section, this task may be done in an arithmetic way by means of

searching for a mismatch between
⌊

i
kn−1−j

⌋
|k and

⌊

b/M�
ktop−j

⌋
|k
, where variable top grows

in a sequential manner, being looped as j in each iteration, until both values do not

match, and then, the appropriate bit to be added to the right hand side of the source

node is given by the expression
⌊

b/M�
ktop

⌋
|k
. Furthermore, the outgoing port is given by

M +
⌊

b/M�
ktop

⌋
|k
, which joins node i with neighbour node

(
i/k +

⌊

b/M�
ktop

⌋
|k
× kn−1

)
|kn

.

Apart from the aforesaid arithmetic way, a logical way may be applied in this case

as well, by performing bitwise operations to insert bits on the left hand side of the

source node, given in binary format (considering k = 2), or alternatively k-symbols

in case of a generic k-alphabet, in order to undertake the transition from the source

node to the given destination node.
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As per the layout, with regards to the de Bruijn reverse graph case, there are kn

node identifiers, going from 0 to kn−1, with the same port configuration as explained

therein and as exhibited in Figure 5.39.

Considering this, Figure 5.41 shows the flow chart exhibiting the behaviour of a

switch i.

Moreover, algorithm 16 (shown in the Appendix 10.16) presents the pseudocode

model related to the behaviour of a given switch i.

Respecting the algebraic model, the ACP expression representing the behaviour of

a particular switch i is exposed in (5.62). ACP does not take time into account, thus

the initial conditional clause may be skipped, hence the first action may always be

the reception of a message through any of its ports.

It is to be said that the explanation regarding the behaviour of the variables

involved given in the previous case applies for this case as well, even though the

expressions for the inequality terms and the outgoing port obviously differ.

Vi =
kn−1∑
i=0

(
M+2k−1∑

p=0

(
rVi,p(d) ·

(
sVi,b|M (d) � i =

⌊
b

M

⌋
�

(
(∼flag) · (∼top)·

( n−1∑
temp=0

( temp∑
j=0

(
(flag++) �

⌊
i

kn−1−j

⌋
|k
�=
⌊ �b/M�
ktemp−j

⌋
|k

� ∅
))
·
(
(top++) � flag = 0 � ∅

)

� flag = 0 � ∅
)
· s

Vi,M+

⌊ 
b/M�
ktop

⌋
|k

(d)

))))
· Vi

(5.62)

Focusing on redundant paths within the model, it is to be said that graph-like

designs may present a handful of those, depending on the distance between the end

switches, as exposed for the N -hypercube.

However, Table 5.20 presents a code snippet in order to predict the string of hops

to get from the source node to the destination node.

Eventually, it is to be considered that this topology is a graph-like one, where all

switches are end switches. Hence, its verification is similar to that stated for the

N -hypercube scenario.
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Figure 5.41: Flow chart for the behaviour of a switch (de Bruijn reverse graph).
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Table 5.20: Searching the hops from source to destination node (de Bruijn rev.).

Mode Code snippet
NODE{ i }
top = -1;
flag = 0;
while (flag = 0) {
top = top + 1;
for (j = 0; j ≤ top; j++) {
if (

⌊
i

kn−1−j

⌋
|k �=

⌊

b/M�
ktop−j

⌋
|k
) {

flag = 1;
}
}
}
for (m = top; m < n; m++) {
NODE{

(
i/k +

⌊

b/M�
km

⌋
|k

)
|kn
};

}

5.14 Binary grid

This sort of undirected graph works with node identifiers in binary form (k-ary form

for a generic k), in a way that neighbour nodes just swap one bit from one another

(supposing k = 2). Therefore, the procedure for a node i to identify a neighbour may

be comparing all bits between them both in order to spot the discordant bits. On

the other hand, the expression to calculate the possible nodes on the way through

the destination has been already cited in (4.16) for nodes identified in binary form,

whereas (4.17) extends that expression to nodes identified in a generic k -ary form,

where k may be any natural number.

It is to be noted that, although the expressions herein are cited with a generic

k, the usual way to make it work as a ”binary” grid may imply the use of binary

notation, where variable k may well be substituted with the value k = 2 on every

appearance in the following expressions.

Regarding the expressions to compare the symbols (bits if k = 2) being part of a

node identifier, it may be done by means of arithmetic of logical operations. As per
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the arithmetic way, the j -th symbol of node i is obtained by the expression
⌊

i
kj

⌋
|k,

whereas the same symbol of destination node is attained by the expression
⌊

b/M�
kj

⌋
|k
,

where variable j may go from 0 to n − 1 to go through each symbol being part of

both identifiers.

Therefore, in the cases where both expressions mismatch, then variable j portrays

a discordant bit, which may be used to get to a possible next hop on the way to

destination node. The internode port to send that message may be M + j, which

joins node i with neighbour node
(
i+ kj

)
|kn .

Alternatively, a logical way may be put in place by comparing bit by bit (supposing

k = 2, this is, identifiers are quoted in binary format) by means of XOR logical

operator, such that it gives 1 for a particular bit in case of a mismatch in the values

of that bit j, or it gives 0 otherwise, where the former triggers the forwarding through

port M + j.

As per the layout, there are kn node identifiers, those being identified from 0 to

kn − 1, following the setup exposed in Figure 4.18, where each particular node has

M ports connected to hosts (going from 0 to M − 1), whereas ports from M to

M + n− 1 are internode ports. The latter interconnect with other nodes, and it may

be interesting to assign the value of j in each M + j port to the bit being discordant

between the two nodes sharing that link. Figure 5.42 depicts the proposed port layout.

. . .

0 M-1. . .

M+0

Node i

M+1 M+n-2 M+n-1
j: discordant 

bits

to hosts

to nodes

Figure 5.42: Model for a given node i in a Binary grid, along with its ports.

With that in mind, Figure 5.43 shows the flow chart exhibiting the behaviour of

a switch i.

Besides, algorithm 17 (shown in the Appendix 10.17) exposes the pseudocode model

related to the behaviour of a given switch i.
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Figure 5.43: Flow chart for the behaviour of a given switch (binary grid).
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Concerning the algebraic model, the ACP expression representing the behaviour of

a particular switch i is exposed in (5.63). ACP does not take time into account, thus

the initial conditional clause may be skipped, hence the first action may always be

the reception of a message through any of its ports.

Vi =
kn−1∑
i=0

(
M+3∑
p=0

(
rVi,p(d) ·

(
sVi,b|M (d) � i =

⌊
b

M

⌋
�

( n−1∑
j=0

sVi,M+j(d) �

⌊
i

kj

⌋
|k
�=
⌊�b/M�

kj

⌋
|k

� ∅
))))

· Vi (5.63)

Focusing on redundant paths within the model, it is to be reminded that graph-like

designs may present a group of them, which depends on the distance between the end

switches, as exposed for the N -hypercube.

Eventually, it is to be said that this topology is a graph-like one, as all its switches

are end switches. Hence, its verification is similar to that stated for the N -hypercube.

5.15 Hamming graph

Among all possible Hamming graphs, only a particular kind is selected, such as

Hk(n, n − 1), where k is the length of the alphabet (which is binary if k = 2), n is

the length of the word and n − 1 is minimum distance between nodes. It is to be

noted that this topology may be seen as the reverse of the binary grid (if k = 2), but

including a new link for opposite nodes, this is, those being the 1’s complement of

each other.

Hence, for each node identifier of length n, cited in k-ary format, there may be a

link towards any other node whose corresponding digits has a difference of at least

n− 1 among its own identifier, thus becoming neighbour nodes. On the other hand,

the expression to calculate the possible nodes on the way to the destination has

been already cited in (4.18), (4.19) and (4.20), depending on the distance, for nodes

identified in binary form, whereas (4.21), (4.22) and (4.23) extend those expressions

to nodes identified in a generic k -ary form, where k may be any natural number.

As stated for the binary grid, it is to be noted that, although the expressions herein

are cited with a generic k, the usual way to make it work as an extension of a reverse
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”binary” grid may imply the use of binary notation, where variable k may well be

substituted with the value k = 2 on every appearance in the following expressions.

This way, Hk(n, n− 1) may be converted into H2(n, n− 1).

The way to proceed with a binary alphabet may be to first evaluate the distance

between node i and destination node �b/M�, measured in number of different binary

digits between their node identifiers, which may be referred to as variable diff . Once

that value is achieved, some possibilities arise. To start with, if all digits are discor-

dant, such that diff = n, then the link to the opposite node may be used. Likewise, if

more than half of the digits are discordant, such as diff > n/2, then only the appro-

priate links to non-opposite nodes are taken, this is, links with just one matching bit.

In case diff = n− 1, just the appropriate direct link towards that node is employed.

Otherwise, if less than half of the digits are discordant, such that diff < n/2,

then the opposite link is taken, because it makes for the shortest path in that case.

Additionally, if just half of the digits are discordant, such as diff = n/2, then all links

are used in order to take advantage of all load-balancing equal cost paths.

As in the previous section, the bit checking (supposing k=2) may be done through

arithmetic means by using the same expressions quoted above, such as
⌊

i
2j

⌋
|2 for the

node i and
⌊

b/M�
2j

⌋
|2

for the destination node in binary format. Alternatively, the

k-symbol checking may involve the use of
⌊

i
kj

⌋
|k for the node i and

⌊

b/M�
kj

⌋
|k
for the

destination node for a generic k-ary format. Additionally, that checking may also be

done through logical means by using the XOR logical operator as cited above.

As per the layout, there are kn node identifiers, going from 0 to kn − 1, according

to the setup depicted in Figure 4.19. Every particular node has M ports connecting

to hosts (those going from 0 to M − 1), whilst ports from M to M + n are internode

ports, which interconnect with other nodes. It may be interesting to assign the value

of j in each M + j port to the matching bit between the two nodes sharing that link.

This way, as each node is identified by n digits, going from 0 to n − 1, then those

may be the values for j reserved for the cases where distance is n − 1, whilst links

going to the opposite node, where distance is n, are identified by M + n. Figure 5.44

exhibits the proposed port layout.
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Figure 5.44: Model for a node i in a Hamming graph Hk(n, n− 1) and its ports.

With this in mind, Figure 5.45 shows the flow chart exhibiting the behaviour of a

switch i.

Moreover, the pseudocode model regarding the behaviour a given switch i is shown

in algorithm 18 (shown in the Appendix 10.18), where the mismatching and matching

bits are found out by means of arithmetic operations.

With regards to the algebraic model, the ACP expression representing the be-

haviour of a switch in presented in (5.65), where one auxiliary function called mis-

matchingBits has been defined in order to measure the difference in bits between the

current switch i and the destination node, which is shown in expression (5.64).

In that function, the initial value of the variable accouting for bit difference, called

diff , is first initialized (∼diff ), and in turn, the mismatching bits are counted up

(diff++) in the function mismatchingBits.

The results of this function is being applied in the Vi model to select the appropriate

option, and in turn, to apply the proper operations in order to send the message

through the proper ports. Furthermore, the conditional clause in the receive function

has been dropped as ACP does not consider the time. Additionally, it is worth

reminding that k accounts for a generic length of the alphabet being use, although

binary format (where k = 2) is the usual way to get a kind of reverse binary grid.

mismatchingBits = ∼diff ·
n−1∑
j=0

((
diff++

)
�

⌊
i

kj

⌋
|k
�=
⌊�b/M�

kj

⌋
|k

� ∅
)

(5.64)
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Figure 5.45: Flow chart for the behaviour of a switch (Hamming graph Hk(n, n−1)).
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Vi =
kn−1∑
i=0

(
M+n∑
p=0

(
rVi,p(d) ·

(
sVi,b|M (d) � i =

⌊
b

M

⌋
�

((
sVi,M+n(d) � mismatchingBits = n � ∅

)
·

(
sVi,M+n(d) � mismatchingBits <

n

2
� ∅

)
·

(( n−1∑
j=0

sVi,M+j(d) �

⌊
i

2j

⌋
|2
=

⌊�b/M�
2j

⌋
|2
� ∅

)
� mismatchingBits >

n

2
� ∅

)
·

( n∑
j=0

sVi,M+j(d) � mismatchingBits =
n

2
� ∅

)))))
· Vi (5.65)

Focusing on redundant paths within the model, it is to be noted that graph-like

designs may present some of them, which depends on the distance between the end

switches, as exposed for the N -hypercube.

Eventually, it is to be reminded that this topology is a graph-like one, meaning

that all of its switches are end switches. Hence, its verification procedure is analogous

to that cited for the N -hypercube.

5.16 Petersen graph

Regarding this kind of undirected graph, it is also known as (3, 5)-cage graph,

where its 10 nodes are equally distributed into two concentric rings. Those nodes

are identified in decimal format, where the outer ones are joined together forming a

pentagon and the inner ones are forming a star pentagon, hence the former may be

numerated clockwise from 0 to 4, and so may the latter from 5 to 9, where there are

additional connections between each pair of nodes being congruent modulo 5, such

that any node has a direct link to its modulo 5 counterpart within the opposite ring.

This distribution formed by 10 nodes and 15 edges presents a diameter of 2, hence

any pair of nodes are at most 2 hops away, as it may be appreciated in Figure 5.46.

Additionally, it may be seen that each node has degree 3, as that is the number of

links pointing towards other nodes, whereas the shortest loops need to run through

5 links around the topology.
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Figure 5.46: Node distribution in a Petersen graph.

That way, when getting from an outer node towards an inner node, it must be

checked whether the destination node
⌊

b
M

⌋
is congruent modulo 5 with the current

node i, or alternatively, with i + 2, or even with i + 3, and if that is the case, the

next hop may be towards the opposite node in the inner ring, hence adding five units.

On the other hand, the next hop may be towards the successor node modulo 5 if

the destination node is congruent modulo 5 with i + 1, or otherwise, towards the

predecessor node modulo 5 if the destination node is congruent modulo 5 with i+ 4,

where both next hops are part of the outer ring.

Moreover, when getting from an inner node towards an outer node, it must be

verified whether the destination node
⌊

b
M

⌋
is congruent modulo 5 with the current

node i, or alternatively, with i + 1, or even with i + 4, and if this is the case, the

next hop may be towards the opposite node in the outer ring, hence subtracting five

units. On the contrary, the next hop may be towards the successor node modulo 5

if the destination node is congruent modulo 5 with i + 3, or otherwise, towards the

predecessor node modulo 5 if the destination node is congruent modulo 5 with i+ 2,

where both next hops are part of the inner ring.

Besides, when going between any pair of outer nodes, it may be as easy as running

around the polygon, thus the next hop may be moving to the successor node modulo

5, or to the predecessor node modulo 5, both within the pentagon. Therefore, the

former is like adding up one unit modulo 5 if the distance modulo 5 between the



Chapter 5: Modelling network Data Centre topologies with ACP 215

destination node
⌊

b
M

⌋
and the current node i is less than N

2
, which may be expressed

by (
⌊

b
M

⌋ − i)|5 < N
2
, thus covering the case of i + 1, and in turn i + 2, or otherwise,

the latter is like subtracting one unit modulo 5 if such a distance modulo 5 is higher

than N
2
, hence covering the case of i + 4, and in turn i + 3. It is to be said that

the current node i needs to be taken as a reference for the addition or subtraction

operations described.

Furthermore, when running between any pair of inner nodes, it may be seen as

going around the star pentagon, thus the next hop may be moving to the successor

node modulo 5 with offset 5 or to the predecessor node modulo 5 with offset 5, both

within the star. Hence, the former is like adding up three units modulo 5 with offset

5 and it may be used if the destination node
⌊

b
M

⌋
has the opposite parity as the

current node i, thus covering the case of i + 3, and in turn i + 1, where the latter is

like adding up two units modulo 5 and it may be employed if the destination node

has the same parity as the current node, hence covering the case of i+2, and in turn

i+ 4. It is to be said that the current node i needs to be taken as a reference for the

parity measurements.

Eventually, it is to be noted that any node i located in the outer ring results in⌊
i
5

⌋
= 0, whereas in the inner ring does it in

⌊
i
5

⌋
= 1. Therefore, by comparing

the values of
⌊
i
5

⌋
and

⌊

b/M�

5

⌋
, it may be possible to distinguish the four scenarios

described related to movements among nodes, either being located in the outer ring

or the inner ring.

As per the layout, the 10 nodes available are identified going from 0 to 9, as stated

above. Furthermore, each given node has M ports connecting to hosts (these going

from 0 to M−1), whilst ports from M to M+2 are interconnecting with other nodes.

Specifically, port M is aimed to the predecessor node modulo 5, regardless whether

the ring referred to is the outer ring (a regular pentagon) or the inner ring (a star

pentagon), which may be calculated by adding (-1 modulo 5, which is equivalent to

+4 modulo 5) for the nodes in the outer ring, or otherwise, by adding (+2 modulo 5)

for nodes in the inner ring. Likewise, portM+1 is going to the successor node modulo

5, which may be found by adding (+1 modulo 5) for the nodes in the outer ring, or

otherwise, by adding (+3 modulo 5) for nodes in the inner ring. Furthermore, port
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M+2 is a bridge to the node being congruent modulo 5, also known as opposite node,

thus being located just the opposite within the other ring, which may be determined

by adding (+5 modulo 10) for nodes located in any of both rings.

Figure 5.47 exhibits the proposed port layout, where the three upper links are

branded as successor, predecessor and opposite.

0 M-1. . .

M M+2

Node i

M+1

To Nodes:
to the 
predecessor
node

to the 
successor
node

to the 
opposite
node

To Hosts:

Figure 5.47: Model for a given node i in a Petersen graph, along with its ports.

Taking that into consideration, Figure 5.48 shows the flow chart exhibiting the

behaviour of a switch i.

Furthermore, the pseudocode model regarding the behaviour of a given switch i is

shown in algorithm 19 (shown in the Appendix 10.19).

The ACP expression modelling the behaviour of a particular switch i is exposed in

(5.66). ACP does not take time into account, thus the initial conditional clause may

be skipped, hence the first action may always be the reception of a message through

any of its ports.
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Focusing on redundant paths within the model, it is to be reminded that graph-

like designs may present a range of them, depending on the distance between the end

switches, as exposed for the N -hypercube.

Eventually, it is to be considered that this topology is a graph-like one, meaning

that all switches are end switches. Hence, its verification procedure is similar to that

quoted for the N -hypercube.

5.17 Heawood graph

This type of undirected graph is also known as (3, 6)-cage graph, where its 14 nodes

are equally distributed along a single ring. Those nodes are identified in decimal
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Figure 5.48: Flow chart for the behaviour of a given switch (Petersen graph).
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format, where each one gets a number in a clockwise manner (from 0 to 13). Each

particular node i is linked together with its successor (i+1) and its predecessor (i−1)

along the ring, both taken in modulo 14 notation, and furthermore, with a remote

node, being the result of adding up i to the expression (−1)i×5, also taken in modulo

14 notation.

Furthermore, this distribution formed by 14 nodes and 21 edges has a diameter of

3, thus any pair of nodes are at most 3 hops away. Additionally, it is to be noted

that each node has a degree 3, as that is the number of internode links for all nodes,

whilst the shortest loops need to run through 6 links around the topology. This facts

may be appreciated in Figure 5.49.
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Figure 5.49: Node distribution in a Heawood graph.

Focusing on the link to the remote node, the aforesaid expression (i+(−1)i× 5)|14

results in any even node i having a link going to node i+ 5 modulo 14 (thus moving

up to 5 nodes clockwise), whilst any odd node i doing it to node i − 5 modulo 14

(hence moving up to 5 nodes counterclockwise).

On the other hand, if distance between the current node i and the destination

node
⌊

b
M

⌋
is defined as dist =

⌊
b
M

⌋− i, and taking into account that distances higher

than |7| (regardless the sign) may get a shorter way going the other way around

by applying the expression distance = 14 − distance (for being in a closed loop of

14 nodes, where obviously the movements i + 7 and i − 7 are equivalent), then all

case studies regarding the movement between any pair of nodes get reduced to just 5

different scenarios, where the departing point is supposed to be node i.
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On the one hand, the first one is pretty straightforward, as the movement to nodes

i + 1, i + 2 and i + 3 (all of them taken in modulo 14) only takes the successor link

in all intermediate nodes.

Likewise, the second one is also pretty clear, as the movement to nodes i− 1, i− 2

and i − 3 (all of them taken in modulo 14) only needs the predecessor link in all

intermediate nodes.

Regarding the rest of the cases, it may be interesting to distinguish between even

and odd values of i. At this point, supposing that i has an even value, then the

movement to nodes i+4, i+5, i+6 and i+7 (all of them taken in modulo 14) is done

through the remote link of i, as such a link makes the direct move to i+ 5, and from

there on, it is possible to move to i+ 4 through its predecessor link, or otherwise, it

is also possible to move to i+6 through its successor link, and from there, moving to

i+ 7 through its successor link.

However, the movement to node i−4, and then to node i−5 (both taken in modulo

14), requires to first move to i + 1 through the successor link of i, and then, to take

its remote link to reach i− 4, and from there on, it is possible to get to i− 5 through

its predecessor link.

On the other hand, the movement to node i− 6 (taken in modulo 14) requires to

first move to i − 1 through the predecessor link of i, and in turn, to take its remote

link to reach i − 6. In summary, it is possible to reach any node from a given even

node with at most three hops.

At this stage, supposing that i has an odd value, the movements are analogous to

those exposed for the previous case, but changing all signs exposed above. This way,

the move to nodes i − 4, i − 5, i − 6 and i + 7 (all of them taken in modulo 14) by

taking the remote link of i, which goes to i− 5, and from there on, the move to i− 4

is done through its successor link, or otherwise, the move to i − 6 and i + 7 is done

through its correspondent predecessor links.

Instead, the move to node i + 4, and then to node i + 5 (both taken in modulo

14), requires to first moving to i − 1 through the predecessor link of i, and in turn,

to take its remote link to reach i + 4, and from there on, to get to i + 5 through its

successor link.
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On the contrary, the movement to node i+6 (taken in modulo 14) requires to first

move to i + 1 through the successor link of i, and then, to take its remote link to

reach i+ 6. In summary, it is possible to reach any node from a particular odd node

with at most three hops.

Regarding the implementation of all those cases, it is to be noted that if i is even,

then (−1)i = +1, whereas if i is odd, then (−1)i = −1. Furthermore, it is to be

said that if i is even, then (−1)i+1 = −1, whilst if i is odd, then (−1)i+1 = +1.

These expressions may help express movements in both directions to get to the rest

of possible destination nodes from a given node i.

Besides, the port number M + 1 for even values of i may be obtained with the

expression M + (1 + (−1)i)1+(−1)i+1
, which at the same time gives port number M

for odd values of i, whereas the expression M + (1 + (−1)i+1)1+(−1)i assigns the port

number M for even values and M + 1 for odd values. Those expressions are to be

applied where distance is greater than 3 in absolute value, whilst values of shorter

distances may need the expression M + (1 + dist
|dist|)

1− dist
|dist| to relate to port M + 1

regarding positive distances and port M for negative ones.

Additionally, it is to be noted that the aforesaid movements are enough to get

to all nodes, departing from any given source node i. Nonetheless, apart for those

movements described, it is possible to establish alternative redundant paths to reach

some destinations by completing up to 3 steps in each available path. In that sense,

it is to be considered up to 4 further moves through the perimeter and other 4 further

moves through the diagonals.

With respect to the former, it is possible to go from i+ (−1)i× 4 to i+ (−1)i× 3,

from i + (−1)i+1 × 4 to i + (−1)i+1 × 3, from i + (−1)i+1 × 6 to i + (−1)i+1 × 5 or

from i+ (−1)i+1 × 6 to i+ 7, all of them applying modulo 14.

With regards to the latter, it is possible to go from i + (−1)i × 2 to i + 7, from

i+(−1)i+1×2 to i+(−1)i×3, from i+(−1)i×6 to i+(−1)i+1×3 or from i+(−1)i×4

to i+ (−1)i+1 × 5, all of them modulo 14.

However, in order to keep things as simple as possible, neither of those 8 redundant

paths are considered in the following representations, as they may only be taken if,

and only if, the number of hops away from the source node i is less than 3, which in
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some cases may only be achieved by means of an additional register to count up the

number of steps so far.

As per the layout, it is to be mentioned that every given node has M ports connect-

ing to hosts, those going from 0 to M − 1, whereas there are 3 internode ports, such

that M , M + 1 and M + 2. As stated before, port M is directed to the predecessor

node modulo 14, port M + 1 goes to the successor node modulo 14, and port M + 2

does it to a remote node, which moves 5 nodes clockwise if i is even, or otherwise, 5

nodes anticlockwise if i is odd.

Figure 5.50 exhibits the proposed port layout, where the three upper links are

branded as successor, predecessor and remote.

0 M-1. . .

M M+2

Node i

M+1

To Nodes:
to the 
predecessor
node

to the 
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node

to the 
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node

To Hosts:

Figure 5.50: Model for a given node i in a Heawood graph, along with its ports.

Taking this into account, Figure 5.51 shows the flow chart exhibiting the behaviour

of a switch i.

Moreover, the pseudocode model related to the behaviour of a given switch i is

shown in algorithm 20 (shown in the Appendix 10.20).

The ACP expression to model the behaviour of a switch in presented in (5.68),

where one auxiliary function called Distance has been defined in order to measure

the shortest distance measured in nodes away between the current switch i and the

destination node
⌊

b
M

⌋
, which is shown in expression (5.67).

In this function, the initial value of the variable citing the distance, called dist , is

first initialized (∼dist), and in turn, it is assigned to the subtraction of the destination
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node minus the current switch, which may be further adjusted so as to reflect the

circular nature of the graph, thus accounting for values not exceeding 7 in absolute

value in any case.

The result of this function needs to be applied in the Vi model to select the pertinent

option, and in turn, to apply the appropriate operators in order to send the message

through the correspondent ports. Furthermore, the conditional clause in the receive

function has been dropped as ACP does not consider the time.

Distance = ∼dist ·
(
dist =

⌊
b

M

⌋
− i

)
·(

dist = −(14− dist) � dist > 7 �
(
dist = −(−14− dist) � dist ≤ −7 � ∅

))
(5.67)
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·
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)))))
· Vi (5.68)

Focusing on redundant paths within the model, it is to be noted that graph-like

designs may present a group of them, depending on the distance between the end

switches, as exposed for the N -hypercube.

Eventually, it is to be noted that this topology is a graph-like one, meaning that

all its switches are end switches. Hence, its verification procedure is analogous to

that explained for the N -hypercube.

5.18 Summary

In this chapter, each of the 15 DC topologies presented in the previous one have

been modelled. To begin with, the nomenclature to be used herein has been depicted,
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Figure 5.51: Flow chart for the behaviour of a given switch (Heawood graph).
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as well as the model to identify each host within the topology. Afterwards, for each

of the aforementioned DC topologies, the following scheme has been applied: first of

all, a short preface has been introduced so as to explain its main features, then, the

layout of the model is exhibited with the identification of nodes and edges, next, a

flow chart stating how the model behaves is proposed, after that, a pseudocode model

based on that flow chart is referred to in the Appendix chapter.

At that point, an algebraic model by means of ACP is proposed, which is further

used to deduce the redundant paths between a given source host and a particular

destination host, and eventually, a verification of that model is performed by applying

the ACP axioms in order to obtain a rooted branching bisimulation between the

aforesaid model and the behaviour of the real system, meaning that both expressions

share the same string of actions and the same branching structure, which may imply

that the model gets verified, meaning that for any input in the model, the expected

output is achieved.

In the following chapter, the DC topology is going to be abstracted away, thus

allowing any of the aforementioned topologies to be employed, which may be part of

a generic fog environment with a cloud acting as a backup system.
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Chapter 6

Generalization of Data Centre

models with ACP

Once the different DC topology models proposed have been developed, it is time to

abstract away from them and consider the DC as a black box within a bigger system,

which is the fog environment, which may well be considered as an IoT/fog ecosystem.

Therefore, let us present the building blocks of a fog domain in order to obtain an

appropriate algebraic model.

6.1 Topology framework for a generic fog model

To start with, it is to be reminded that the scenario being modelled is a fog

computing environment, where moving IoT devices may be running around [189].

It is also to be remarked that, when an IoT device moves around, its associated

computing assets might need to be allocated in different hosts within the fog domain

being as close as possible to the position occupied by that device at any time, hence

performing a VM migration between the source host and a destination host with

enough resources, whilst having a cloud system being used as a backup solution.

The framework proposed is an informal model composed by 5 layers, where each

one has a different role within the topology, although they work all together for the

system to behave the way it is meant to be. It is to be noted that the set of all moving

227
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IoT devices are not being considered as an independent layer, because they are the

external factors triggering the different behaviours offered by the fog environment.

Figure 6.1 exhibits the organization of such layers.

C T

Q Hj

Wi

Cloud IN
Migrate IN

Init VM

Cloud OUT
Migrate OUT
Kill VM

IoT
in out

Wi : Wireless relay
Hj  : Hosts withing fog
T   : Internetworking topology
Q   : Orchestrator
C   : Cloud node

Legend:

Figure 6.1: Generic topology scheme for an IoT/fog model.

First of all, wireless layer is the lower one, and that is where each moving IoT device

gets connected to the fog environment, hence being the interface between the device

and the fog domain. Specifically, when a moving device gets into the coverage area of

a given wireless relay i and gets connected to it, being expressed as Wi, such a moving

device gets access to its associated VM through the fog infrastructure. Otherwise,

when a moving devices gets out of the coverage area of i and gets disconnected to it,

such a VM gets out of the system.

After that, orchestration layer is the key one, as its role is managing the behaviour

of the whole system, by means of selecting the host where each VM is located, where a

VM is migrated, creating a new VM, terminating an existing VM, and even interacting

with the cloud so as to use it as a backup system for VMs. In the scheme proposed

herein, only one orchestrator is assigned, which is identified by Q, although more than

one physical device may act as a virtual device by applying high availability policies.

Next, the host layer is where hosts are located, whose role is to allocate the different

associated VMs. Each host may be identified by j, being expressed as Hj. It is
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important to note that hosts are ubicated all around the coverage area of the fog

environment, even though a particular host might be the closest to a group of wireless

relays, and in such a case, it would not be necessary to carry out any migration

whatsoever when moving within the coverage areas of those wireless relays, thus the

orchestration layer may not manage any migration in those cases.

Then, the topology layer is related to the interconnection network connecting all

hosts together within a given topology in order to communicate to each other. Many

different interconnection topologies have been studied in the previous chapter, even

though in this case, an abstract topology is considered, being identified by T , as any

topology may do the job. It is to be pointed out that the migration decisions are

taken by the orchestrator, regarding the destination host and the appropriate paths

to get there from the source host, which depends on the topology considered.

Eventually, the cloud layer is used as a backup solution for the fog environment,

which is identified by C. It is to be remarked that the cloud is not managed by the

orchestrator, as that is done by a cloud service provider. This way, the orchestrator

just undertakes the transmision of VMs from fog to cloud, and the other way around,

according to the resources available in the fog, as the cloud is acting as a backup

service, which is independently run from the fog system.

On the other hand, it is important to define the communication channels among

those layers. In this sense, a specific nomenclature is used to identify those channels

and their directions, in a way that each channel may be named by the source layer,

followed by the destination layer, thus defining each channel as unidirectional. In this

context, Table 6.1 presents all communication channels being used in this model.

It is to be noted that the orchestrator is the main element, as it is the central

point of the fog system, and it makes all decisions, which in turn, are communicated

to the other layers to execute them. This way, all actions are triggered at wireless

layer, then, those actions are planned at orchestration layer, and finally, they are run

at the corresponding layers according to the orchestrator instructions.

Apart from the internal channels among these layers, which take part of the generic

fog computing environment presented herein, there are other 2 external wireless phys-

ical channels. One is labelled as in, which it is related to the way for a moving device
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to get into the fog domain by connecting through a wireless relay, whereas the other

one is labelled out, which it is referred to the way for a moving device to get out of

the fog domain by disconnecting from a wireless relay.

Table 6.1: Communication channels in the model.

Channel ID Direction Meaning
WiQ Incoming Channel from the wireless relay Wi to orchestrator Q
QWi Outgoing Channel from orchestrator Q to the wireless relay Wi

QHj Incoming Channel from orchestrator Q to the host Hj

HjQ Outgoing Channel from the host Hj to orchestrator Q
HjT Incoming Channel from the host Hj to switching topology T
THj Outgoing Channel from switching topology T to the host Hj

QC Incoming Channel from orchestrator Q to the cloud C
CQ Outgoing Channel from the cloud C to orchestrator Q
in Inwards Wireless physical channel coming into wireless relay Wi

out Outwards Wireless physical channel going out of wireless relay Wi

6.2 Modelling VM actions within a fog environ-

ment with ACP

The 6 actions occurring at wireless layer, as exhibited in the previous figure 6.1,

are all triggered when a moving IoT device comes in or goes out of a wireless relay,

this is, getting associated or dissociated to it. This kind of traffic may be related to

control actions, which belong to the control plane in a conceptual manner, as they

are related to how the VMs are managed by the fog system.

However, this type of traffic does not embrace neither the user data being forwarded

through the system, which belongs to the data plane, nor the way to access and

manage the devices being part of the system in order to configure, monitor or maintain

them, which belongs to the management plane.

Those 6 actions may be divided into two categories, hence distinguishing between

those when a moving IoT device gets associated to a particular wireless relay Wi, or

otherwise, those when a moving IoT device gets disassociated from a given wireless
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relay Wi. Looking back to the figure 6.1, the actions shown on the left hand side

belong to the former, whereas those on the right hand side belong to the latter.

Furthermore, algebraic models are being built up for each action by means of

ACP, which may eventually be verified. Regarding the switching topology, it is to

be reminded that all models presented in the previous chapter have been verified by

means of their corresponding ACP models, which implies that any of them might be

applied to this generic model, without loosing any generality related to the results

obtained in this chapter.

6.2.1 Action cloud in

It takes place when a moving IoT device gets into the fog domain through a wireless

physical channel in, coming from a cloud and getting connected to a wireless relay

Wi. In such a case, the IoT device has already an associated VM located up in the

cloud C, hence, the point is to migrate that VM allocated in the cloud domain into

one of the hosts within the fog environment, called host Hj.

The cloud where that VM is located has an identifier k, and the proper VM inside

that cloud is identified by m. Therefore, the combination of the cloud environment

(k) where the VM is ubicated at a given point and the VM itself (m) may be identified

by the expression km. Likewise, if that VM is located in a host within the fog domain

(j), that VM may be identified by jm.

First of all, an IoT device associated with a VM in the cloud gets connected to

a wireless relay Wi, which is expressed by receiving (rin) an IoT with a parameter

showing the VM identifier and the environment where it is located, which in this case

is IoT (km). Then, Wi sends a control message to the orchestrator Q so as to find a

host Hj having enough available resources and located as close as possible to Wi.

When the orchestrator Q has carried out the selection of the appropriate host

candidate Hj within the fog domain, then, it sends a control message with the host

identifier j and the associated VM identifier km straight to cloud C in order to migrate

that VM from the cloud C to the selected hostHj, which will result in that VM getting

now identified by jm.



232 Chapter 6: Generalization of Data Centre models with ACP

As per the model of this action, it is to be noted that the control message to

prepare this type of migration is labelled as ctr 1, as this action is considered as action

1. Furthermore, some internal processes are used to explain the actions taking place

in each layer within the system, such as ′Select ′ to choose host j, ′MoveOut ′ to start

the migration from cloud to fog in the former, ′CloudIn ′ to carry out the migration

from cloud to destination host within the fog environment, ′MoveIn ′ to finish that

migration from cloud to fog in the latter, ′Unbind ′ to take out the old identifier of

the associated VM in the IoT device and ′Bind ′ to include the new identifier of that

VM in the IoT device. Eventually, this is the modelling of action cloud in, where Wi

is quoted in (6.1), Q is cited in (6.2), C is referred to in (6.3) and Hj is done in (6.4).

Wi =

(
rin

(
IoT (km)

)
· sWiQ

(
ctr 1(km)

)
· rQWi

(
jm

)
· Unbind

(
IoT (km)

)
·

Bind
(
IoT (jm)

))
·Wi (6.1)

Q =

(
rWiQ

(
ctr 1(km)

)
· Select(km) · sQC

(
ctr 1(km, jm)

)
· rCQ

(
CloudIn(km, jm)

)
·

sQHj

(
CloudIn(km, jm)

)
· rHjQ

(
ACK , jm

)
· sQWi

(
jm

))
·Q (6.2)

C =

(
rCQ

(
ctr 1(km, jm)

)
·MoveOut(km, jm) · sCQ

(
CloudIn(km, jm)

))
· C (6.3)

Hj =

(
rQHj

(
CloudIn(km, jm)

)
·MoveIn(km, jm) · sHjQ

(
ACK , jm

))
·Hj (6.4)

At this stage, all processes may be run concurrently, and after applying the encap-

sulation operator, it is obtained the sequence of events in a timely manner, triggered

by the moving IoT device getting into the fog domain and asking for a cloud in action,

as shown in (6.5).

∂H

(
Wi || Q || C || Hj

)
=

(
rin

(
IoT (km)

)
· cWiQ

(
ctr 1(km)

)
· Select(km)·

cQC

(
ctr 1(km, jm)

)
·MoveOut(km, jm) · cCQ

(
CloudIn(km, jm)

)
·

cQHj

(
CloudIn(km, jm)

)
·MoveIn(km, jm) · cHjQ

(
ACK , jm

)
· cQWi

(
jm

)
·

Unbind
(
IoT (km)

)
· Bind

(
IoT (jm)

))
· ∂H

(
Wi || Q || C || Hj

)
(6.5)

Finally, the abstraction operator may be applied so as to mask both internal pro-

cesses and internal communications, hence maintaining only the external behaviour

of the model, where all layers may be included, regardless whether they take part in



Chapter 6: Generalization of Data Centre models with ACP 233

this action or otherwise, as those do not change the overall outcome. This may be

displayed in (6.6).

τI

(
∂H

(
Wi || Q || C || Hj || T

))
= rin

(
IoT (km)

)
· τI

(
∂H

(
Wi || Q || C || Hj || T

))
(6.6)

6.2.2 Action migrate in

It takes place when a moving IoT device gets connected to a wireless relay Wi

through a wireless physical channel in, even though it comes from another wireless

relayWi∗ within the fog environment. In that case, the moving IoT device has already

an associated VM located in a host Hj, hence, two options may be available, such as

either migrate that VM from its current host Hj to another one Hj′ being closer to

the moving IoT device, or otherwise, to leave that VM in the same host Hj as there

is no closer host available within the fog domain to the new wireless relay Wi.

First of all, a moving IoT device associated with a VM located in a particular host

gets to wireless relay Wi. Then, Wi sends a control message to the orchestrator Q so

as to determine whether there is an available host Hj′ with enough available resources

and being located closer than the current Hj.

When receiving that message, the orchestrator Q undertakes the processing to find

out whether there is any new host available, and if so, it is selected as the proper host

candidate j′. Thus, two things may happen: if there is a possible candidate, then

the orchestrator sends a control message to host Hj with the identifier of the VM jm,

which shows the current host where the VM is standing, and the identifier which will

brand that VM after the migration has been carried out from host j to host j′, that

being VM j′m. Otherwise, if there is no candidate, then just an acknowledge receipt

message is sent back to the IoT device, stating that no VM migration needs to be

carried out.

As per the model of this action, it is to be said that the control message to prepare

this type of migration is called ctr 2, as this action is going to be considered as action

2. In such a case, it is clear from its description that two couple of entities are

involved, this is, a pair of wireless relays Wi∗ and Wi and another pair of hosts Hj
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and Hj′ . Regarding the former pair, i represents the wireless relay where the IoT has

just arrived, whilst i∗ does the one where it came from. With respect to the latter

pair, j represents the host where the VM is located on arriving to the new wireless

relay i, whereas j′ does the possible new host if VM migration takes place. So this

model just includes Wi, Hj and Hj′ , as Wi∗ is not relevant.

As a side note, it is to be noted that migration within the fog domain may be

described from two opposite points of view, such as from the source wireless relay or

from the destination one. The former accounts for action 5, meaning the action called

migration out, whereas the latter accounts for action 2, called migration in, which is

the action currently developed.

Additionally, some processes defined for the previous action has been employed,

as well as three new ones named ′MigrateOut ′ to carry out the migration from source

host to destination host, from the point of view of the former, ′MigrateIn ′ to do

the same, but from the point of view of the latter, and ′Networking ′ to embrace the

whole set of redundant paths being available between source host and destination

host, which depend on the topology selected for the switches where hosts are hanging

on. Eventually, this is the modelling of action migrate in, such that Wi is quoted in

(6.7), Q is cited in (6.8), Hj is referred to in (6.9), H ′
j is portrayed in (6.10) and T is

specified in (6.11).

Wi =

(
rin

(
IoT (jm)

)
· sWiQ

(
ctr 2(jm)

)
·
(
rQWi

(
j′m

)
· Unbind

(
IoT (jm)

)
· Bind

(
IoT (j′m)

)
+

rQWi

(
ACK

)))
·Wi (6.7)

Q =

(
rWiQ

(
ctr 2(jm)

)
·
(
sQHj

(
ctr 2(jm, j

′
m)
)
· rHj′Q

(
ACK , j′m

)
· sQWi

(
j′m

)

� Select(jm) � sQWi

(
ACK

)))
·Q (6.8)

Hj =

(
rQHj

(
ctr 2(jm, j

′
m)
)
·MoveOut(jm, j

′
m) · sHjT

(
MigrateOut(jm, j

′
m)
))

·Hj

(6.9)

Hj′ =

(
rTHj′

(
MigrateIn(jm, j

′
m)
)
·MoveIn(jm, j

′
m) · sHj′Q

(
ACK , j′m

))
·Hj′ (6.10)
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T =

(
rHjT

(
MigrateOut(jm, j

′
m)
)
· Networking(jm, j′m) · sTHj′

(
MigrateIn(jm, j

′
m)
))

· T

(6.11)

At this point, all processes may be executed concurrently, and after applying the

encapsulation operator, it is achieved the sequence of events in a timely manner,

triggered by the moving IoT device being already into the fog environment and asking

for a migrate in action, as seen in (6.12).

∂H

(
Wi || Q || Hj || Hj′ || T

)
=

(
rin

(
IoT (jm)

)
· cWiQ

(
ctr 2(km)

)
·

(
cQHj

(
ctr 2(jm, j

′
m)
)
·MoveOut(jm, j

′
m) · cHjT

(
MigrateOut(jm, j

′
m)
)
·

Networking(jm, j
′
m) · cTHj′

(
MigrateIn(jm, j

′
m)
)
·MoveIn(jm, j

′
m) · cHj′Q

(
ACK , j′m

)
·

cQWi

(
j′m

)
· Unbind

(
IoT (jm)

)
· Bind

(
IoT (j′m)

)
� Select(jm) � cQWi

(
ACK

)))
·

∂H

(
Wi || Q || Hj || Hj′ || T

)
(6.12)

Finally, the abstraction operator may be applied in order to mask both internal

processes and internal communications, thus maintaining just the external behaviour

of the model, where all layers are to be included, considering that those not taking

part do not change the overall outcome. That may be observed in (6.13).

τI

(
∂H

(
Wi || Q || C || Hj || Hj′ || T

))
=

rin

(
IoT (jm)

)
· τI

(
∂H

(
Wi || Q || C || Hj || Hj′ || T

))
(6.13)

6.2.3 Action init VM

It takes place when a moving IoT device gets into the fog domain through a wireless

physical channel in, and it does not have any associated VM in the cloud. Hence,

it is the case of an IoT device getting first registered in the fog environment to get

its associated VM, therefore, the point is to create and initialize that VM into the

closest available host within the fog domain.

First of all, the IoT gets connected to the wireless relay Wi without any associated

VM, which is shown by the parameter −. Next, Wi sends a control message to the
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orchestrator Q in order to find a host Hj with enough resources being situated the

closest possible to Wi. After that, when Q finds out an available host Hj, then a VM

is created in there, and afterwards, the identifier is sent back to the IoT device.

Regarding the model of this action, it is to be said that the control message to

create and init that VM is called as ctr 3, as that action is considered as action 3.

Furthermore, the process ′Init ′ is defined to carry out the creation and initialization

of the VM. Eventually, this is the modelling of action init VM, where Wi is quoted

in (6.14), Q is cited in (6.15), and Hj is done in (6.16).

Wi =

(
rin

(
IoT (−)

)
· sWiQ

(
ctr 3(−)

)
· rQWi

(
jm

)
· Bind

(
IoT (jm)

))
·Wi (6.14)

Q =

(
rWiQ

(
ctr 3(−)

)
· Select(−) · sQHj

(
ctr 3(jm)

)
· rHjQ

(
ACK , jm

)
· sQWi

(
jm

))
·Q

(6.15)

Hj =

(
rQHj

(
ctr 3(jm)

)
· Init(jm) · sHjQ

(
ACK , jm

))
·Hj (6.16)

After the application of the encapsulation operator, it is attained the sequence of

events in a timely manner, triggered by the IoT device getting into the fog ecosystem

and asking for an init VM action, as shown in (6.17).

∂H

(
Wi || Q || Hj

)
=

(
rin

(
IoT (−)

)
· cWiQ

(
ctr 3(−)

)
· Select(−) · cQHj

(
ctr 3(jm)

)
·

Init(jm) · cHjQ

(
ACK , jm

)
· cQWi

(
jm

)
· Bind

(
IoT (jm)

))
· ∂H

(
Wi || Q || Hj

)
(6.17)

Finally, after applying the abstraction operator, the external behaviour of the

model prevails, as seen in (6.18).

τI

(
∂H

(
Wi || Q || C || Hj || T

))
= rin

(
IoT (−)

)
· τI

(
∂H

(
Wi || Q || C || Hj || T

))
(6.18)

6.2.4 Action cloud out

It takes place when a moving IoT device departs from the fog environment by

means of getting disconnected out of a wireless relay Wi through physical channel

out, not getting reconnected to any other one. In that case, the VM associated to

that IoT device leaves the fog domain and gets into a cloud, therefore, the point is to

migrate that VM in the fog environment, specifically into a host Hj, to a cloud one.
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This process is quite similar to the one exposed for the migration from cloud to fog,

presented in action 1 (cloud in), although the operations to be done are undertaken

the other way around. It is to be said that the process of migrating a VM to the

cloud is carried out in the first place, and when it is done, the IoT device moves out

of the fog environment.

Putting the focus on the model, it is to be noted that the control message to

prepare this type of migration is called ctr 4, because this action is considered as action

4. Additionally, the process ′Find ′ is going to be defined to perform the lookup of the

cloud identifier where the VM will be forwarded on. Eventually, this is the modelling

of action cloud out, where Wi is quoted in (6.19), Q is cited in (6.20), Hj is done in

(6.21) and C is referred to in (6.22).

Wi =

(
sWiQ

(
ctr 4(jm)

)
· rQWi

(
km

)
· Unbind

(
IoT (jm)

)
· Bind

(
IoT (km)

)
·

sout

(
IoT (km)

))
·Wi (6.19)

Q =

(
rWiQ

(
ctr 4(jm)

)
· Find(jm) · sQHj

(
ctr 4(jm, km)

)
· rHjQ

(
CloudOut(jm, km)

)
·

sQC

(
CloudOut(jm, km)

)
· rCQ

(
ACK , km

)
· sQWi

(
km

))
·Q (6.20)

Hj =

(
rQHj

(
ctr 4(jm, km)

)
·MoveOut(jm, km) · sHjQ

(
CloudOut(jm, km)

))
·Hj

(6.21)

C =

(
rQC

(
CloudOut(jm, km)

)
·MoveIn(jm, km) · sCQ

(
ACK , km

))
· C (6.22)

After the application of the encapsulation operator, it is obtained the sequence of

events in a timely manner, triggered by the IoT device getting out of the fog domain

and asking for an cloud out action, as viewed in (6.23).

∂H

(
Wi || Q || Hj || C

)
=

(
cWiQ

(
ctr 4(jm)

)
· Find(jm) · cQHj

(
ctr 4(jm, km)

)
·

MoveOut(jm, km) · cHjQ

(
CloudOut(jm, km)

)
· cQC

(
CloudOut(jm, km)

)
·

MoveIn(jm, km) · cCQ

(
ACK , km

)
· cQWi

(
km

)
· Unbind

(
IoT (jm)

)
·

Bind
(
IoT (km)

)
· sout

(
IoT (km)

))
· ∂H

(
Wi || Q || Hj || C

)
(6.23)

Finally, after applying the abstraction operator, the external behaviour of the

model is shown in (6.24).



238 Chapter 6: Generalization of Data Centre models with ACP

τI

(
∂H

(
Wi || Q || C || Hj || T

))
= sout

(
IoT (km)

)
· τI

(
∂H

(
Wi || Q || C || Hj || T

))
(6.24)

6.2.5 Action migration out

It is to be remarked that both this case, namely migration out (action 5), and

migration in (action 2) undertake a VM migration from a source host to a destination

host within the fog domain, even though this case takes the point of view of the source

wireless relay, where the IoT devices leave it, whilst the other one does it from the

destination wireless relay, where the IoT devices joins it. Hence, the same processes

exposed in action 2 apply herein.

Focusing on the model, it is to be said the control message to prepare this kind of

migration is related to as ctr 5, because this action is considered as action 5. It is to be

noted that, after an IoT device leaves the wireless relay, two options may happen, such

that there may be a VM migration, or otherwise. The former implies that there is an

available host closer to the new wireless relay where the IoT is connected to, whereas

the latter implies that there is not, hence no VM migration is needed. Eventually,

this is the modelling of action migrate out, where Wi is quoted in (6.25), Q is cited in

(6.26), Hj is related to in (6.27), H ′
j is referred to in (6.28) and T is done in (6.29).

Wi =

(
sWiQ

(
ctr 5(jm)

)
·
(
rQWi

(
j′m

)
· Unbind

(
IoT (jm)

)
· Bind

(
IoT (j′m)

)
· sout

(
IoT (j′m)

)
+

rQWi

(
ACK

)
· sout

(
IoT (jm)

)))
·Wi (6.25)

Q =

(
rWiQ

(
ctr 5(jm)

)
·
(
sQHj

(
ctr 5(jm, j

′
m)
)
· rHj′Q

(
ACK , j′m

)
· sQWi

(
j′m

)

� Select(jm) � sQWi

(
ACK

)))
·Q (6.26)

Hj =

(
rQHj

(
ctr 5(jm, j

′
m)
)
·MoveOut(jm, j

′
m) · sHjT

(
MigrateOut(jm, j

′
m)
))

·Hj

(6.27)

Hj′ =

(
rTHj′

(
MigrateIn(jm, j

′
m)
)
·MoveIn(jm, j

′
m) · sHj′Q

(
ACK , j′m

))
·Hj′ (6.28)
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T =

(
rHjT

(
MigrateOut(jm, j

′
m)
)
· Networking(jm, j′m) · sTHj′

(
MigrateIn(jm, j

′
m)
))

· T

(6.29)

After the application of the encapsulation operator, it is obtained the sequence of

events in a timely manner, triggered by the moving IoT device being already into the

fog ecosystem and asking for a migrate out action, as performed in (6.30). It is to be

noted that two possible actions may arise, depending on the result of ′Select ′ process.

∂H

(
Wi || Q || Hj || Hj′ || T

)
=

(
cWiQ

(
ctr 5(km)

)
·
(
cQHj

(
ctr 5(jm, j

′
m)
)
·MoveOut(jm, j

′
m)·

cHjT

(
MigrateOut(jm, j

′
m)
)
· Networking(jm, j′m) · cTHj′

(
MigrateIn(jm, j

′
m)
)
·

MoveIn(jm, j
′
m) · cHj′Q

(
ACK , j′m

)
· cQWi

(
j′m

)
· Unbind

(
IoT (jm)

)
·

Bind
(
IoT (j′m)

)
· sout

(
IoT (j′m)

)
� Select(jm) � cQWi

(
ACK

)
· sout

(
IoT (jm)

)))
·

∂H

(
Wi || Q || Hj || Hj′ || T

)
(6.30)

Finally, after applying the abstraction operator, the external behaviour of the

model is revealed in (6.31).

τI

(
∂H

(
Wi || Q || C || Hj || Hj′ || T

))
=(

sout

(
IoT (jm)

)
+ sout

(
IoT (j′m)

))
· τI

(
∂H

(
Wi || Q || C || Hj || Hj′ || T

))
(6.31)

6.2.6 Action kill VM

It takes place when a moving IoT device leaves the fog environment by means

of wireless physical channel out, not getting into the cloud environment. This im-

plies that the IoT device does not need its associated VM any longer, so it may be

terminated. Hence, the point is to kill that VM located into a host Hj within the fog.

This process is pretty similar to the one exposed for the creation of a VM in the

fog environment, called action 3, although the operations to be done work the other

way around. Hence, the process of killing the VM is carried out in the first place,

and when it is done, the IoT devices moves away from the fog domain.

Focusing on the model, it is to be noted the control message to prepare this sort

of migration is referred to as ctr 6, because this action is considered as action 6.
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Furthermore, the process ′Kill ′ is defined to carry out the termination of the VM.

Eventually, this is the modelling of action kill VM, where Wi is quoted in (6.32), Q

is cited in (6.33) and Hj is done in (6.34).

Wi =

(
sWiQ

(
ctr 6(jm)

)
· rQWi

(
−
)
· Unbind

(
IoT (jm)

)
· sout

(
−
))

·Wi (6.32)

Q =

(
rWiQ

(
ctr 6(jm)

)
· Find(jm) · sQHj

(
ctr 6(jm)

)
· rHjQ

(
ACK ,−

)
· sQWi

(
−
))

·Q

(6.33)

Hj =

(
rQHj

(
ctr 6(jm)

)
·Kill(jm) · sHjQ

(
ACK ,−

))
·Hj (6.34)

After the application of the encapsulation operator, it is obtained the sequence of

events in a timely manner, triggered by the IoT device getting off the fog environment

and asking for a Kill VM action, as viewed in (6.35).

∂H

(
Wi || Q || Hj

)
=

(
cWiQ

(
ctr 6(jm)

)
· Find(jm) · cQHj

(
ctr 6(jm)

)
·Kill(jm)·

cHjQ

(
ACK ,−

)
· cQWi

(
−
)
· Unbind

(
IoT (jm)

)
· sout

(
IoT ,−

))
· ∂H

(
Wi || Q || Hj

)
(6.35)

Finally, after having applied the abstraction operator, the external behaviour of

the model prevails, as shown in (6.36).

τI

(
∂H

(
Wi || Q || C || Hj || T

))
= sout

(
IoT (−)

)
· τI

(
∂H

(
Wi || Q || C || Hj || T

))
(6.36)

6.3 Verification of the models

At this point, it may be interesting to compare the results obtained for the ex-

ternal behaviour of all the six models proposed with the external behaviour of the

real systems running the same actions. The real system is being expressed as X,

which accounts for a guarded linear recursive variable. Hence, for each of the actions

described, the external behaviour of X is going to be presented in ACP notation in

order to compare it with that obtained for the corresponding model.

Action 1: cloud in

- External behaviour of the model: it has already been deduced in (6.6):

τI

(
∂H

(
Wi || Q || C || Hj || T

))
= rin

(
IoT (km)

)
· τI

(
∂H

(
Wi || Q || C || Hj || T

))
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- External behaviour of the real system: an IoT device with an associated VM in

the cloud gets into the fog domain, as in (6.37).

X = rin

(
IoT (km)

)
·X (6.37)

Action 2: migrate in

- External behaviour of the model: it has already been deduced in (6.13):

τI

(
∂H

(
Wi || Q || C || Hj || Hj′ || T

))
= rin

(
IoT (jm)

)
· τI

(
∂H

(
Wi || Q || C || Hj || Hj′ || T

))

- External behaviour of the real system: an IoT device with an associated VM

already in the fog environment gets to another wireless relay, as in (6.38).

X = rin

(
IoT (jm)

)
·X (6.38)

Action 3: init VM

- External behaviour of the model: it has already been deduced in (6.18):

τI

(
∂H

(
Wi || Q || C || Hj || T

))
= rin

(
−
)
· τI

(
∂H

(
Wi || Q || C || Hj || T

))

- External behaviour of the real system: an IoT device without any associated VM

gets into the fog ecosystem, so a new VM is assigned, as in (6.39).

X = rin

(
IoT (−)

)
·X (6.39)

Action 4: cloud out

- External behaviour of the model: it has already been deduced in (6.24):

τI

(
∂H

(
Wi || Q || C || Hj || T

))
= sout

(
IoT (km)

)
· τI

(
∂H

(
Wi || Q || C || Hj || T

))

- External behaviour of the real system: an IoT device with an associated VM in

the fog domain gets out to the cloud domain, as in (6.40).

X = sout

(
IoT (km)

)
·X (6.40)

Action 5: migrate out

- External behaviour of the model: it has already been deduced in (6.31):

τI

(
∂H

(
Wi || Q || C || Hj || Hj′ || T

))
=(

sout

(
IoT (jm)

)
+ sout

(
IoT (j′m)

))
· τI

(
∂H

(
Wi || Q || C || Hj || Hj′ || T

))
- External behaviour of the real system: an IoT device with an associated VM

already in the fog ecosystem moves to another wireless relay, so it may or may not

migrate, as in (6.41).
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X =

(
sout

(
IoT (jm)

)
+ sout

(
IoT (j′m)

))
·X (6.41)

Action 6: kill VM

- External behaviour of the model: it has already been deduced in (6.36):

τI

(
∂H

(
Wi || Q || C || Hj || T

))
= sout

(
IoT (−)

)
· τI

(
∂H

(
Wi || Q || C || Hj || T

))

- External behaviour of the real system: An IoT device with an associated VM in

the fog domain gets off and it does not go into cloud, as in (6.42).

X = sout

(
IoT (−)

)
·X (6.42)

In short, it is clear that each pair of recursive expressions are multiplied by the

same factors, hence, each pair shows rooted branching bisimilar expressions, as they

both share the same actions and they both have the same branching structure. This

a sufficient condition to get a model verified, therefore, all of the 6 models proposed

herein with ACP get duly verified.

6.4 Summary

In this chapter, a generic IoT/fog model has been introduced by considering some

essential building blocks. There are a bunch of wireless relays where IoT devices

get connected to the fog environment, being represented by a block Wi, a group of

hosts where the VM associated to those devices are stored, being rendered by a block

Hj, a blanket topology portraying the paths interconnecting all hosts within the fog

domain, being depicted by block T , an orchestrator managing all actions within the

fog ecosystem, being characterized by block Q, and a backup cloud service allowing

external VM associated to incoming devices to get into the fog system and internal

VM associated to outgoing devices getting out of it, being illustrated by block C.

The interface between such a generic system and the exterior world is a wireless

block Wi, which permits either the external IoT devices to get associated to it or

the internal IoT devices to get disassociated to it. Depending on either of both

situations, three different actions may happen, where cloud in, migrate in and init

VM go attached to the former, whereas cloud out, migration out and kill VM go tied

to the latter.
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Each of those six actions are being specified and further verified by means of ACP

by first describing the actions being carried out by each of the blocks involved in a

given action, then a specification is obtained by applying the appropriate operators,

and in turn, a verification is performed by comparing the external behaviour of the

model with such of the real system, where all of the six actions described above

achieve the verification required.

Overall, the model proposes a generic framework for describing the main parts of a

fog/cloud environment, just considering the main functions of each one from a high-

level point of view, hence not getting into practical details. This approach permits

to abstract away from the DC topology being deployed, thus making the model fit to

any of the DC designs proposed in the last chapter.

Therefore, the model presented denotes the behaviour of the main building blocks

in a generic manner, allowing to study how they work all together when representing

the main actions being carried out in a fog/cloud environment.
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Chapter 7

Use case of Data Centre models

After having presented a general algebraic model for a fog environment, composed

by some necessary building blocks, and taking into consideration that a wide range

of options have been previously defined for the DC topology, it is time to focus on a

real world implementation for this model.

The scenario selected is related to a linear deployment of sequential wireless relays,

thus offering a non-stop coverage area along a predefined path. It is to be said that,

in spite of referring to a linear deployment, such a path may not necessarily be a

straight line, as long as a trajectory between a given pair of points may be fully

included into the coverage area, which may allow the implementation of this type of

linear deployment in any type of roads, railways or pipelines, regardless those being

rectilinear or otherwise.

7.1 Sequential relay - schematic diagram

To start with, Figure 7.1 exhibits the schematic diagram for the overall topology

proposed. There is a range of sequential wireless relays, whose coverage areas overlap,

hence allowing for handover between any pair of neighbours. Then, each wireless relay

is connected to a different host, which keeps the VM associated to different users. It

is to be reminded that those users may be as close as possible to their associated VM,

although it may happen that they are not in the closest one.

245
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Furthermore, those hosts may be interconnected by means of a given topology.

Initially, any of the topologies studied in the previous section regarding DC modelling

might be used. However, fat tree has been selected for being the one with more layers

of switches, and thus, minimizing the scalability issues. Nonetheless, if any other

topology was to be selected, such as leaf and spine or any other topology, the only

thing to be done would be to substitute the fat tree model layers with those related

to the desired design, this is, just applying the corresponding expressions to such a

topology and keeping the rest of the model as it is.

Pod 

0 11d 123Cor

e A1 

goAat goAai goAan goAaE
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L4

L5
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Figure 7.1: Schematic diagram of a fat tree sequential wireless relays.

This particular instance has been considered as a representative example of a DC

model for fog environments because of its simplicity, in a way that each wireless relay

is connected to a different host, thus allowing for an easy and straightforward scheme,

whereas each IoT device may only move in a sequential fashion, hence making that

the only wireless relays to get in and out of the system are those located at both ends,

whilst the rest of them just execute roaming.

Other layouts are obviously available, leading to different sort of designs, although

this particular setup permits a clearer understanding. Some of those variations might

allow the connection of different wireless relays to the same host, the entry and exit
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operations at any wireless relay, the interconnection of wireless relays in a non linear

fashion, permitting diverse kinds of branching designs, or the selection of a different

switching topology, leading to other linking patterns among switches.

Regarding the functionality of the schematic diagram presented, the lower layer

(L1) determines the area where an IoT device may get connected to the fog domain,

that being formed by the overlapping of the coverage areas of a group of sequential

wireless relays, allowing the handover among them. The next layer (L2) keeps the

VM associated to the IoT within the fog ecosystem, meeting the requirement that

both must be as close to each other as possible. With respect to the upper layers,

they represent the switching topology interconnecting all hosts, considering that fat

tree has been selected herein, but any other might do.

7.2 Topology framework for linear deployments

Regarding the working framework, it is important to remember the key concepts

established in the previous sections, as this is a fog computing environment for mov-

ing IoT devices going around within a wireless domain, therefore, their associated

computing assets ought to follow that movement as they get about. The working

framework may be divided into layers, where the wireless layer exposes the area

where physical IoT devices are moving about, the host layer keeps the associated

VM to each moving IoT device connected into the system, and the fat tree layers are

meant to permit the live VM migrations to happen between any couple of hosts.

To begin with, the wireless layer is formed by a string of sequential wireless relays,

such that one is reached just after the previous one and just before the following one,

thus making a well-ordered set as the set of natural numbers. This layout may be

applied to an array of sequential wireless nodes, deployed in an ordered manner in

any sort of sequential structure, not necessarily linear, such as a railway lines, roads

or pipelines. Hence, IoT devices acting as end users might get into the topology only

at any end and they may leave also at any end but not at any intermediate node.

Every wireless node has an associated fog computing asset, namely a VM, which

is hosted in one of the servers being part of each of the facilities situated at the host
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layer. This way, when a new IoT user gets connected for first time into the system

through one of the wireless nodes at any of the ends, a new VM is created in a host,

and in turn, associated to that user.

Three options are to be considered herein, where the first one is to create the VM

in the host directly connected to that wireless node, which is done only if there are

available resources left in that given host, the second one is to create it in another host,

and the third one is not to create it due to lack of computing resources available, and

hence, the end user is ejected out of the system. With regards to the second option,

after trying to allocate the VM in its directly connected host unsuccessfully, the other

hosts belonging to the same pod are checked out for enough resources left, and if that

is not possible, all hosts belonging to the other pods are checked out just in case.

Afterwards, if an existing user moves to a neighbouring wireless node, a handover

takes place, and hence, its associated VM tries to move to the host directly connected

to that new access point. This migration will be done if there are available resources

in that new host, or if not, other hosts might be checked, or otherwise, migration will

not take place. Eventually, after having performed a string of wireless handovers by

an end user and its corresponding attempts of live VM migration, the end user will

get off the system through one of its ends, which will cause its associated VM to be

either terminated or migrated out to the cloud, and therefore, its computing resources

will be freed from the fog environment to be used by other moving IoT devices.

Looking back to Figure 7.1, it may be seen that an IoT device is standing at W2

and its associated VM is at H2. The following move for that end user are either going

to the left to W1 or going to the right to W3, which may try to trigger the process of

live VM migration to get its computing assets as close as possible.

Regarding the identification of the devices within this framework, that is done on

a layer basis, by taking the initial letter of the proper layer in capital letters, followed

by a natural number indicating its order in that layer, starting from zero and moving

from left to right. As per the layers, there are five of them, as it may be seen in

Figure 7.1: Wireless (W ), Host (H), Edge (E), Aggregation (A) and Core (C).

Additionally, the total amount of devices n per layer are: wireless (k3/4), hosts

(k3/4), edge (k2/2), aggregation (k2/2), core (k2/4), thus, the devices will be assigned
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a natural number going from 0 onwards up to n − 1, in order to take advantage of

congruence relation in modular arithmetic for the expressions used in the model.

On the other hand, connections between two wireless layer nodes are called paths,

which are named after its initial letter p in lower letters, followed by the number

corresponding to the node being at the right end of the path. That makes p0 for the

path coming into the system from the left border, and pk3/4 for the path going out of

the system to the right one. On the other hand, p′k3/4 stands for the path coming in

from the right boundary, and p′0 does it for the path going off to the left one.

This way, a generic IoT device standing at Wi may reach its neighbour Wi+1

through path pi+1 going to the right, whereas it may go to its neighbour Wi−1 through

path p′i going to the left. Likewise, Wi−1 may get to neighbour Wi through pi moving

rightwards, whilst Wi+1 may gain neighbour Wi through p′i+1 moving leftwards.

Furthermore, each wireless node i have an extra channel (0) to reach host i, whilst

each of those have a channel (0) looking downwards to that wireless node and a

channel (1) looking upwards to the switching topology. As per the connections in the

switching topology, they are identified by the port numbers of the topology selected.

Focusing on this particular case, Figure 5.5 depicts the model for all fat tree layers.

Putting the whole set of devices and connections together, two scenarios may

be proposed by carrying out an algebraic formal description using ACP syntax and

semantics. First of all, an ideal scenario is presented where physical paths always take

the same direction, namely coming from left to right, and storage space is unlimited,

hence a new VM may always be added. Then, a more realistic scenario is presented

where physical paths may take both directions and storage space is limited, hence

having restrictions for hosting a new VM in a particular host.

Therefore, each scenario may have its own particular expressions in order to de-

scribe the behaviour of just one moving device in both case scenarios, even though

many devices may get concurrently into the system. Therefore, the overall algebraic

expressions in both cases may be easily extended for n users, as in (7.1):∣∣∣∣
∣∣∣∣
n

u=0

(∣∣∣∣ k34 −1
i=0

∣∣∣∣ k34 −1
i′=0

∣∣∣∣ k22 −1
j=0

∣∣∣∣ k22 −1
j′=0

∣∣∣∣k−1
l=0

(
W u

i

∣∣∣∣Hu
i′
∣∣∣∣Eu

j

∣∣∣∣Au
j′
∣∣∣∣Cu

l

)) ·X (7.1)
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7.3 Scenario 1: one-way and no resource restric-

tions

This first scenario portrays physical devices moving only one way, namely from

left to right. This is, IoT devices getting into the system from wireless node 0, then,

going all the way through each wireless node i in a sequential manner, and finally,

getting out of the system through wireless node k3

4
− 1. Furthermore, there are no

storage constraints, meaning that the creation of a new VM in any host (even though

host 0 will always do it) or the performance of a live VM migration is always possible.

Therefore, the sequence of events for this case scenario is pretty straightforward,

considering that the term wireless nodeWi relates to the physical coverage area shown

as the bottom layer of the Figure 7.1, which is formed by an access point APi within

such an area. Hence, it may be said that APi creates a coverage area Wi through the

radiating power of its antennas. In summary, here they are the most relevant events.

1. Initially, a new IoT device gets into W0:

• First, it gets into the coverage area W0 of wireless relay AP0 through path

p0, either having already an associated VM up in the cloud, being described

as IoT (C), or otherwise, having no associated VM at all, being denoted

by IoT (-).

• Then, it gets associated to access point AP0, and in turn, it requests

either a VM migration onto host H0 (through function MIGRATEin), or

otherwise, the creation of a brand new VM on host H0 (through function

INIT ), where the former results in the VM migration from cloud C onto

the fog environment (through function FOGC→0), whilst the latter does it

in the setup of a new VM in the fog domain (through function FOG0).

• Next, a confirmation (0), related to where the associated VM is located, is

sent back to AP0, and in turn, it is sent over to the IoT device, which gets

bound to its VM location (through function BIND), resulting in IoT (0).

• Eventually, at some point, it will go to wireless relay W1 through path p1.
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2. At a later stage, that IoT device moves into a neighbour wireless relay Wi from

Wi−1 through path pi:

• First, it gets disassociated from access point AP i−1 (through function

¬AP i−1) and gets associated to AP i (through function AP i).

• Then, it requests its VM to be moved from the host it was on to the host

directly connected to its current wireless node (through function MOVE ,

which in this scenario always does it from host i − 1 to i), with variables

x and y holding generic destinations one way and the other, which in this

case means that the VM gets moved from host Hi−1 to host Hi, according

to the pre-copy live VM migration strategy.

• As stated before, the pre-copy technique is supposed to need just one it-

eration for simplicity purposes, thus resulting in the following sequence

of events: first off, a copy of the source VM is requested by the destina-

tion host (through function RQT (i , i − 1 )), which is replied back (through

function COPY (i − 1 , i)), following by the discard of the source VM

(through function ERASE (i , i − 1 )), and finally, activating the new one

upon confirmation (through function DONE (i − 1 , i)). It is to be noted

that i implies the current host and i− 1 refers to the previous host.

• Furthermore, it is to be said that the IoT device gets unbound from the

previous host (through function UNBIND) and rebound to the new host

(through function BIND) at the end of the migration process.

• Eventually, at a later time, it will move to wireless relay Wi+1 through

path pi+1, repeating the same pattern.

3. Finally, that IoT device will get out of the system at some point after having

reached wireless relay W k3

4
−1 through path p k3

4
−1:

• After reassociating with AP k3

4
−1 and getting its VM migrated to host

H k3

4
−1, with the corresponding bounding process, the IoT device will even-

tually get out of the system at some stage.
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• At that point, this is the sequence of events: the IoT device needs to get

unbound from that host (through function UNBIND), and then, its VM is

requested to be either erased (through functions KILL and ¬FOG k3

4
−1) or

migrated up to the cloud (through functionsMIGRATEout and ¬FOG k3

4
−1→C

).

• Once the associated VM has been terminated or it has been transferred to

the cloud, where the former is denoted by (ACK ), and the latter does it

by (C), then the IoT gets disassociated from ¬AP k3

4
−1 (through function

¬AP i−1), and eventually, leaves the system through path p k3

4

, accounting

for sp k3
4

(IoT (−)) in the former and sp k3
4

(IoT (C )) in the latter.

Regarding the messages used for live VM migration, it is considered that the trans-

fer is completed in the first iteration, for simplicity purposes. Hence, these are the

four steps to be taken for it:

• RQT : requesting an existing VM to the source.

• COPY : sending a copy of that VM to destination.

• ERASE : requesting the erasement of that VM from the source.

• DONE : sending the confirmation to destination and in turn, upon receipt,

activate that new VM.

These messages are exchanged between the host where the VM is currently located

(being the old host) and the host where that VM is going to be moved (being the

new host), taking the shortest path between them both through the fat tree switching

infrastructure. Alternatively, there may well be redundant paths between both hosts,

and in such a case, any of the available paths may be taken to get to the target, or

otherwise, a load-balancing policy may be applied by taking more than one of those

feasible paths.

As per the direction of the flow, the new host sends a request message asking for

a clone of the VM to the old host, which in turn, replies back with a copy message

containing a clone of that VM, and upon receipt, that clone is established into the
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new host. After that, an erase message is sent from the new host to the old one,

asking for the termination of the VM located at the old host, an upon receipt, the

VM is terminated from the old host, which in turn, sends back a done message to the

new host, thus confirming the success of the VM migration.

In order to keep it simple, the four messages are expressed by the generic notation

MSG(x , y) in the layers related to the interconnection topology, where x and y are,

respectively, the source and destination of the message being undertaken through the

fat tree infrastructure, no matter which layer the communication is taking place. This

generic notation may be seen as a common framework for all four types of messages,

as the path to move between two hosts is independent of the type of message involved.

Additionally, in this first case scenario, i identifies both the wireless relay where the

moving item is connected at a given moment and the host attached to that wireless

node, where the VM associated to the moving IoT is always kept. Furthermore, a and

b are the source and destination hosts for any given migration through the switching

infrastructure, which identify both ends of the fat tree communication.

Taking into consideration the special characteristics in this case scenario, VM

migration messages at the host layer needs to be undertaken between the current

host i and its predecessor (i− 1), or otherwise, with its successor (i+ 1), depending

on whether i is the source or the destination of the message being under consideration.

Moreover, it is to be reminded that the condition for two hosts to be hanging on

the same edge switch is
⌊

a
k/2

⌋
=

⌊
b

k/2

⌋
, whereas the condition for two hosts to be

part of the same pod is
⌊

a
(k/2)2

⌋
=
⌊

b
(k/2)2

⌋
. Therefore, if two hosts belong to different

pods, then
⌊

a
(k/2)2

⌋
�=

⌊
b

(k/2)2

⌋
. Therefore, those three conditions may help identify

the number of hops away between host a and host b.

Furthermore, it is to be noted that if the first condition is met in an edge switch, the

message is sent straight to the destination host, whereas otherwise, it is sent through

all aggregation switches within its own pod. Likewise, if the second condition is

fulfilled in an aggregation switch, the message is sent over to the destination switch,

whilst otherwise, it is sent through all core switches. Otherwise, if the third condition

is met, the message is forwarded on to all cores towards the destination pod.
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Here they are the algebraic expressions for all five entities described in scenario 1,

such as Wi in (7.2), Hi in (7.3), Ej in (7.4), Aj in (7.5) and Cl in (7.6).

Wi =

k3

4
−1∑

i=0

(((
rp0(IoT (−)) · AP0 · s0(INIT ) + rp0(IoT (C)) · AP0 · s0(MIGRATEin)

)
·

r0(0) · BIND(IoT (0)) · sp1(IoT (0)) ·W1

)

� i = 0 �(
rpi(IoT (i− 1)) · ¬AP i−1 · AP i · s0(MOVE (i− 1, i))·

r0(i) · UNBIND(IoT (i− 1)) · BIND(IoT (i))·((
UNBIND(IoT (i)) ·

(
s0(KILL) · r0(ACK ) · ¬AP k3

4
−1 · sp k3

4

(IoT (−))+

s0(MIGRATEout) · r0(C ) · ¬AP k3

4
−1 · sp k3

4

(IoT (C))
)

� i =
k3

4
− 1 �

(
spi+1

(IoT (i)) ·Wi+1

))))
(7.2)

Hi =

k3

4
−1∑

i=0

((
r0(INIT ) · FOG0 + r0(MIGRATEin) · FOGC→0

)
· s0(0)

� i = 0 �(((
r0(KILL) · ¬FOG k3

4
−1 + r0(MIGRATEout) · ¬FOG k3

4
−1→C

)
· s0(ACK )

)

� i =
k3

4
− 1 �(

r0(MOVE (i− 1, i)) · s1(RQT (i, i− 1)) + r1(RQT (i+ 1, i)) · s1(COPY (i, i+ 1))

+ r1(COPY (i− 1, i)) · FOG i · s1(ERASE (i, i− 1)) + r1(ERASE (i+ 1, i)) · ¬FOG i·

s1(DONE (i, i+ 1)) + r1(DONE (i− 1, i)) · s0(i)
)))

·Hi (7.3)

Ej =

k2

2
−1∑

j=0

(
K−1∑
p=0

(
rp(MSG(x, y))·

(
sb|k/2(MSG(x, y)) �

⌊
a

k/2

⌋
=

⌊
b

k/2

⌋
�
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q= k

2

sq(MSG(x, y))

)))
· Ej (7.4)
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Aj =

k2

2
−1∑

j=0

(
K−1∑
p=0

(
rp(MSG(x, y))·

(
s� b

k/2�(MSG(x, y)) �

⌊
a

(k/2)2

⌋
=

⌊
b
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⌋
�
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q= k

2

sq(MSG(x, y))

)))
· Aj

(7.5)

Cl =

k2

4
−1∑

l=0

(
k−1∑
q=0

rq(MSG(x, y)) ·
(
s⌊ b

(k/2)2

⌋(MSG(x, y))

))
· Cl (7.6)

7.4 Scenario 2: two-way and resource restrictions

This second scenario portrays physical devices going both ways, such as getting

in or out of the system at any both ends, as well as moving around to the left or

to the right at any given time. Therefore, IoT devices may get into the system or

get off it at wireless nodes located at both ends, such as 0 and k3

4
− 1, and they may

change the sense of direction at random. Furthermore, there are storage constraints,

which bring it closer to real deployments, inducing that generation and migration of

VMs may be undertaken by another host located either in the same pod or not, in

case the host directly connected to a particular relevant wireless node has not enough

available resources to do it, or otherwise, in the worst case scenario, VMs might be

neither created nor migrated if no resources are available within the whole pod.

Taking the previous model as a base case scenario, there are some changes being

introduced in order to show the characteristics of this new scenario:

• Path directions may be distinguished, hence, rpi means taking path i from left

to right, whereas rp′i means doing it the other way around, hence the model for

Wi needs to be modified to reflect each path direction, taking into consideration

that the moving item may change direction at any moment.

• VMs are located in any given host, hence, they may be considered to be in a

generic location g, and the process of binding of an IoT device with its associated

VM will be defined by IoT (g). Furthermore, if a VM is not created due to the

lack of available resources in any host, it is reflected by using NAK .
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• VM operations, established from host to host through the switching structure,

thus through the fat tree interconnections, may include a further argument at

the beginning generically called A, standing for Action, indicating whether it

is about Initializing (I), Killing (K) or Moving (M). Hence, generic messages

have the structure MSG(A, x, y), extending the one explained in scenario 1.

In order to deal with the searching for another host, either for initializing or mov-

ing actions, a general strategy may be established. To start with, the host directly

connected to the wireless node where the moving item is associated at a given time

is to be assessed, that being the ideal case. If such a host is not able to allow a new

VM inside due to the lack of available resources, the hosts connected to the same

edge switch will be checked out. Next, the hosts connected to the same pod may be

scanned, and eventually, the hosts elsewhere within the topology may be looked up.

Regarding the different kinds of VM control flow, those are the appropriate mes-

sages taking part on each one, along with their meaning:

• Initializing a VM (INITi()):

– First off, host i is checked out looking for available resources to incorporate

a new VM by using FREE i, and if that is the case, then that VM is created

by means of FOG i.

– On the contrary, if that is not the case, query messages QRY (i,d) are sent

to search for available resources in other hosts, looking for an appropriate

host d, according to the order proposed above.

– The answer for such queries are Response messages RSP(d,i), which may

have two possible answers, such as FREE d or FAIL.

– In case of the former, it implies that a distant host d meets the require-

ments, and in turn, an ASSIGN (i,d) message will be issued in order to

create the appropriate VM in that remote host d, being responsed back

with a DONE (d,i) message, meaning that the computing assets associated

with the moving device located in wireless node i are stored in host d.
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– In case of the latter, a NAK message is sent over, meaning that there are

no available resources for new VMs in the system, thus, the moving device

is kicked off the system.

– Eventually, if a VM has been created in any host within the fat tree struc-

ture, its generic host identifier g is forwarded on to the wireless node for

the moving device to get bound to it, where g accounts for the host where

the VM has been created, either i or d.

• Migrating a VM (MOVEi(g, g
′)):

– The process of searching for the closest host with available resources to

store a VM is quite similar than the one described above, in a way that,

first of all, the host i must be checked out in order to look for available

resources to undertake the migration, which is done by means of FREE i.

– If this is not the case, it is carried out the exchange of QRY (i,d) and

RSP(d,i) messages in order to look for the closest host d with enough

available resources, which is shown by FREE d, where d accounts for the

host identifier being queried upon.

– That way, if such a response is attained at any point, then a comparison

needs to be run in order to check whether the available host d is closer

from host i than the host currently keeping the VM, identified as host g.

– This action will be regarded by comparing the hop count between host i

and host g (current hop distance, expressed as HOP#i−g) with the hop

count between host i and host d (new hop distance, exposed as HOP#i−d),

and only in case the latter is lower, then VM migration will take place

between host g and host d.

– On the one hand, if VM migration needs to be performed, its related

message exchange is similar to that explained for the previous scenario,

although a new parameter is included to specify host i in order to kick off

the migration process and to get the acknowledge receipt at the end of it.
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– Furthermore, the host identifier of the new host holding the VM is for-

warded on to the wireless node for the moving device to get bound to it,

which is sent as a generic host g ′, which includes the cases where host i

or host d is the new VM destination. It is to be noted that variable g ′ in

MOVEi(g , g
′) remains empty until this point, where g ′ gets assigned.

– Therefore, these messages are analogous to those explained in the previ-

ous case scenario, such as RQTi(g
′, g), COPYi(g, g

′), ERASEi(g
′, g) and

DONEi(g, g
′), even though it may be considered that an additional mes-

sage to the local host i must be sent stating the new value of g ′, whose

value may be i or d, and such a message is RELAYi(g
′), which is used to

confirm back the operation in a successful manner.

– On the other hand, if VM migration is not carried out, then a message

with the host identifier g is forwarded on to the wireless node, meaning

that VM migration is not necessary, thus VM stays on the same host as it

is allocated at that point.

• Killing a VM (KILLi(g)):

– That process just terminates a VM standing on generic host g, which

accounts for the case where a moving device which is about to leave the

system and it does not need its VM any longer.

– Such an action is performed through a couple of messages, where the first

one is DELETEi(g) and the second one is DONEi(), followed by an ACK

message sent back to the wireless node i, causing the moving device to get

disassociated from the AP where the moving device is connected to, which

in turn, takes such a device out of the system.

• Migrate a VM in (MIGRATE INi(C, g)):

– The concept is analogous to INITi(), as both require a host with enough

available resources to allocate a VM into the system. However, in this case,

C represents a location in a cloud of the VM associated with the moving
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device entering into the system, whilst g does it for the host where that

VM may be moved in.

• Migrate a VM out (MIGRATE OUTi(g, C)):

– The concept is analogous to KILLi(g), as both require a VM to be taken

out of the system. However, in this case, g represents the host where

the VM associated with the moving device leaving the system may be

allocated, whereas C does it for a location in a cloud where that VM may

be moved out.

On a side note, it is to be noted that the general layout proposed for both scenarios

implies a fog implementation being deployed along a given trajectory, that being

rectilinear or otherwise. This fact suggests that the only gateways between the system

and the outside world are both ends of the design, meaning that the wireless relays

being located right at both ends are the only points where a moving IoT device may

get in or get off the system, whereas the rest of wireless relays just have a path to

their direct sequential neighbours along the trajectory. Hence, that original layout

might be slightly modified in order to obtain other specific features.

In that sense, there might be possible to permit moving IoT devices to join or

leave the fog domain at any wireless relay, thus making the model more suitable for

its deployment in a neighbourhood or in open field. For that matter, it might only

be necessary to extend the capabilities of the wireless relays located at both ends

to all wireless relays regardless their location, whilst the rest of the layer may not

be affected in any way. Additionally, there might also be possible to allow more

interconnections among wireless relays, thus making possible the establishment of

more directly connected neighbours. This may represent a different interconnection

outline at the wireless relay layer, even though the rest of layers may not be affected.

Anyway, here they are the algebraic expressions for the five entities described

building up scenario 2, such as Wi in (7.7), Hi in (7.8), Ej in (7.9), Aj in (7.10) and

Cl in (7.11).
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Wi =

k3

4
−1∑

i=0

(((
rp0(IoT (−)) · AP0 · s0(INIT i) + rp0(IoT (C)) · AP0·

s0(MIGRATE INi(C, g))
)
· r0(g) · BIND(IoT (g)) ·

(
sp1(IoT (g)) ·W1

+ UNBIND(IoT (g)) ·
(
s0(KILLi(g)) · r0(ACK ) · ¬AP0 · sp′0(IoT (−))+

s0(MIGRATE OUTi(g ,C )) · r0(C ) · ¬AP0 · sp′0(IoT (C))
))

+ r0(NAK ) · ¬AP0 · sp′0(IoT (−))
)

� i = 0 �(((
rp′

k3
4 −1

(IoT (−)) · AP k3

4
−1 · s0(INIT i) + rp′

k3
4 −1

(IoT (C)) · AP k3

4
−1·

s0(MIGRATE INi(C, g))
)
· r0(g) · BIND(IoT (g)) ·

(
sp′

k3
4 −1

(IoT (g)) ·W k3

4
−2

+ UNBIND(IoT (g)) ·
(
s0(KILLi(g)) · r0(ACK ) · ¬AP k3

4
−1 · sp k3

4

(IoT (−))+

s0(MIGRATE OUT (g ,C )) · r0(C ) · ¬AP k3

4
−1 · sp k3

4

(IoT (C))
))

+ r0(NAK ) · ¬AP k3

4
−1 · sp k3

4

(IoT (−))
)

� i =
k3

4
− 1 �((

rpi(IoT (g)) · ¬AP i−1 · AP i · s0(MOVEi(g, g
′))·(

ri(g
′) · UNBIND(IoT (g)) · BIND(IoT (g′)) + r0(g)

)
·((

UNBIND(IoT (g)) ·
(
s0(KILLi(g)) · r0(ACK ) · ¬AP k3

4
−1 · sp k3

4

(IoT (−))+

s0(MIGRATE OUTi(g ,C )) · r0(C ) · ¬AP k3

4
−1 · sp k3

4

(IoT (C))
)

+ sp′
k3
4 −1

(IoT (g)) ·W k3

4
−2

)

� i =
k3

4
− 1 �(

spi+1
(IoT (g)) ·Wi+1 + sp′i(IoT (g)) ·Wi−1

)))

+

(
rp′i+1(IoT (g)) · ¬AP i+1 · AP i · s0(MOVE i(g, g

′))·(
ri(g

′) · UNBIND(IoT (g)) · BIND(IoT (g′)) + r0(g)
)
·((

UNBIND(IoT (g)) ·
(
s0(KILLi(g)) · r0(ACK ) · ¬AP0 · sp′0(IoT (−))+

s0(MIGRATE OUTi(g ,C )) · r0(C ) · ¬AP0 · sp′0(IoT (C))
)

+ sp1(IoT (g)) ·W1

)
� i = 0 �

(sp′i(IoT (g)) ·Wi−1 + spi+1
(IoT (g)) ·Wi+1))

))))
(7.7)
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Hi =

k3

4
−1∑

i=0
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r0(INITi())·(

FOG i · s0(i)
� FREE i �( ((j+1)·(k/2)−1)∑

d=j·k/2
d �=i

s1(QRY (I , i , d)) ·
(
s1(ASSIGN (I , i , d)) + r1(DONE (I , d , i)) · s0(d)

� r1(RSP(I , d , i)) = FREE d �
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d=j·(k/2)2

d �=i

s1(QRY (I , i , d)) ·
(
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� r1(RSP(I , d , i)) = FREE d �
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s0(NAK)
)))))))

+ r1(ASSIGN (I , d , i)) · FOG i · s1(DONE (I , i , d))

)

+

(
r0(KILLi(g))·(
¬FOG i · s0(ACK )

� i = g �

s1(DELETE (K , i , g)) + r1(DONE (K , g , i)) · s0(ACK )
)

+ r1(DELETE (K , g , i)) · ¬FOG i · s1(DONE (K , i , g))

)



262 Chapter 7: Use case of Data Centre models

+

(
r0(MOVEi(g , g

′))(
s0(i)
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s0(g))
))))))

+ r1(RQTi(M , g , i)) · s1(COPYi(M , i , g))

+ r1(ERASEi(M , g , i)) · ¬FOG i · s1(DONEi(M , i , g))

+ r1(RQTi(M , d , g)) · s1(COPYi(M , g , d))

+ r1(ERASEi(M , d , g)) · ¬FOGg · s1(DONEi(M , g , d))

+ r1(RELAYi(M , d , i)) · s0(d)
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·Hi (7.8)
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Cl =

k2

4
−1∑

l=0

(
k−1∑
q=0

rq(MSG(A, x, y)) ·
(
s⌊ b

(k/2)2

⌋(MSG(A, x, y))

))
· Cl (7.11)

7.5 Model verification

Regarding verification of the aforesaid models, it may be performed by different

means. First of all, it is to be considered that the ordered sequence of wireless relays

proposed, which are numbered from 0 all the way to k3

4
−1, is clearly order isomorphic

to the initial segment of natural numbers up to k3

4
− 1, ordered by <, as they both

show an established total order, meaning that antisymmetry, transitivity and totality

properties apply. With that in mind, verification might be carried out using proof by

mathematical induction or proof by contradiction.

Focusing in the first case scenario, attention must be paid to what happens to

both moving devices and their associated VMs. In the former, proof by induction is

obvious, as after a moving device has visited Wn, it may only go to Wn+1, hence, an

external item may only get into the system through W0 and it only eventually get off

the system from W k3

4
−1. Otherwise, proof by contradiction is also obvious, as no item

getting into the system through W0 may stay forever therein, as it may eventually

reach the exit point W k3

4
−1, because a moving device might eventually move, as it is

not static.

Likewise, in the latter, proof by induction is clear, as the movement of a moving

item implies the migration of its associated VMs to a host with the same identifier

as the wireless relay where the moving item is connected to, because there are no

constrictions in this scenario, thus live VM migrations are always feasible. This way,

when a moving device first gets into the system at W0, its associated VM gets created
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at H0, whereas it gets terminated at H k3

4
−1 when the moving item gets out of the

system through W k3

4
−1, whilst in the meantime, if the moving item moves from Wn

to Wn+1, then its associated VM does it from Hn to Hn+1. Otherwise, proof by

contradiction is also clear, as no associated VM may always be into the system, as it

may be delete when its associated moving device leaves.

Getting down to the second case scenario, which might be seen as an extension of

the first one, attention must be also paid to what occurs with both moving devices and

their associated VMs. In the former, proof by induction is obvious as this case just

extends the first one, because an item standing at Wn may later on visit either Wn+1

or Wn−1, and this fact implies that paths to reach any of both ends and eventually

leave the system may take random walks, making a variable number of steps to do

so, but it finally happens. In that sense, proof by contradiction is also obvious as no

item may be kept forever into the system, as any item may at some stage reach out

a wireless node located in the border and eventually leave the system, although the

number of steps to do so may be undetermined, but a lower bound may be found,

which is just the first case related before.

On the other hand, in the latter, proof by induction is clear, as even though an

associated VM may be held in a host with a different identifier than the wireless relay

where the moving item is connected to, the system may try to allocate such a VM as

close as possible to its associated item whenever it moves to another wireless relay,

whilst entry and exit points for those moving devices are W0 and W k3

4
−1, respectively,

whereas H0 to H k3

4
−1 are the preferred initial hosts for their associated VMs, and

the next alternative solutions are another host hanging on the same end switch,

following by another host located in the same pod, and finally another host located

in another pod. Otherwise, proof by contradiction is also clear, as each associated

VM is terminated when its moving device gets off the system, thus, no associated

VM may be located forever into the system.

Putting the focus on ACP, an alternative verification technique may be employed

by means of comparing the external behaviour of the model with that of the real

system and studying whether they both are rooted branching bisimilar, that being a

sufficient condition for verification to be considered.
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It is to be noted that there are 5 layers involved in this model, where the upper

layers correspond to the fat tree architecture, which have already been verified in

(68), (69) and (70). Additionally, as commented before, any other type of switching

topology might have been used in this model, such as the ones presented, modelled and

verified in previous sections. Hence, the communication infrastructure may not make

any difference when dealing with the verification of alternative switching models.

Therefore, it may seem clear that the switching topology is the base of this model,

where the hosts are also included in it, as well as the wireless relays (along with its

coverage areas) hanging on each of those hosts. This way, if the model is considered

as a black box, then scenario 1 only has a way in (through the left hand side) and a

way out (through the right hand side) of every wireless node, whereas scenario 2 has

two ways in and other two ways out (through both the left hand side and the right

hand side). Both cases as depicted in Figure 7.2.

Scenario 1

way in way out

Scenario 2

way in way out

way out way in

Figure 7.2: External behaviour of scenario 1 and scenario 2.

Additionally, it may seem clear that each layer just communicates with its directly

connected layers, such as its lower and upper layers, hence, every other communication

attempt may end up going deadlock. Furthermore, all communications exposed in the

models are internal, except for the paths getting into and out of the system through

the specific wireless relays located at both ends, namely, node 0 and node k3

4
− 1.

Therefore, the encapsulation operator may convert all internal atomic actions into

internal communications, and in turn, the abstraction operator may mask all internal

atomic actions and communications, hence just revealing external atomic actions.

In this context, on the one hand, the first case scenario presents the following

expressions for the communication among wireless relays in a concurrent manner,

along with the encapsulation operator and the abstraction operator, and taking into
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account that moving devices may get into the system through path p0 with either an

associated VM located up in the cloud or without any VM whatsoever, whereas they

may also get off the system in any of both ways, through path p k3

4
−1, as in (7.12).

τI

(
∂H

(
Wi || Hi′ || Ej || Aj′ || Cl

))
=

(
rp0

(
IoT (−) + IoT (Cloud)

)
+

sp k3
4 −1

(
IoT (−) + IoT (Cloud)

))
· τI

(
∂H

(
Wi || Hi′ || Ej || Aj′ || Cl

))
(7.12)

On the other hand, the second case scenario shows the following expressions for

the communication among wireless nodes, adding up the encapsulation operator and

the abstraction operator, considering the same conditions as before, along with the

possibility of having bidirectional paths, as in (7.13).

τI

(
∂H

(
Wi || Hi′ || Ej || Aj′ || Cl

))
=

(
rp0

(
IoT (−) + IoT (Cloud)

)
+

rp′
k3
4 −1

(
IoT (−) + IoT (Cloud)

)
+ sp k3

4 −1

(
IoT (−) + IoT (Cloud)

)
+

sp′0

(
IoT (−) + IoT (Cloud)

))
· τI

(
∂H

(
Wi || Hi′ || Ej || Aj′ || Cl

))
(7.13)

Otherwise, the behaviour of the real system is described in a similar way, in both

the first and the second case scenarios, as in (7.14) and (7.15), respectively.

X1 =

(
rp0

(
IoT (−) + IoT (Cloud)

)
+ sp k3

4 −1

(
IoT (−) + IoT (Cloud)

))
·X1 (7.14)

X2 =

(
rp0

(
IoT (−) + IoT (Cloud)

)
+ rp′

k3
4 −1

(
IoT (−) + IoT (Cloud)

)
+

sp k3
4 −1

(
IoT (−) + IoT (Cloud)

)
+ sp′0

(
IoT (−) + IoT (Cloud)

))
·X2 (7.15)

Therefore, it may seem clear that the behaviour of both models and their cor-

responding real systems exhibit the same string of actions and the same branching

structure, as seen in (7.16) for the first model and in (7.17) for the second one.

τI

(
∂H

(
Wi || Hi′ || Ej || Aj′ || Cl

))
←→ X1 (7.16)

τI

(
∂H

(
Wi || Hi′ || Ej || Aj′ || Cl

))
←→ X2 (7.17)

Hence, they are obviously rooted branching bisimilar, which is a sufficient condition

for a model to get verified.
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7.6 Summary

In this chapter, a particular instance of the model presented in chapter 6 has been

put in place by supposing a linear path between any pair of successive wireless nodes,

thus provoking them to be visited on a sequential manner. This scheme may not

necessary imply the use of rectilinear trajectories to join any pair of neighbouring

wireless nodes, as any other type of trajectory may be topologically equivalent, as

long as there is no connection between any pair of non-neighbouring wireless nodes.

Moreover, each wireless node is connected to a host, which is interconnected with the

rest of hosts through a fat tree topology, even though any other may work out as well

by just adapting the network interconnections within the design.

In this context, two different scenarios have been presented. On the one hand,

the first scheme is an ideal one, where IoT devices may only move from left to right,

which implies that each of those moving devices may only get into the system through

the leftmost wireless node and may get out of the system through the rightmost one.

Furthermore, there is no resource constraints in the hosts, hence no space limitation

is set in the hosts, making possible to keep as many VM in as necessary, meaning

that they will always be available to add an extra VM.

On the other hand, the second scenario is a more realistic one, where IoT devices

may move both ways, this is, from left to right and the other way around, meaning that

both wireless ends may be the entry and the exit point, as those devices may change

direction at any time. Additionally, there are resource constrictions in the hosts when

it comes to keeping VM in, thus making possible that some VM migrations might

not be performed due to lack of availability in a given host.

Both schemes have been verified by different means, such as mathematical induc-

tion, proof by contradiction and by using ACP as described in the previous chapter,

obtaining a successful verification in all of them.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis dissertation may be based on three different pillars, such as ACP,

DC topologies and live VM migration. Regarding the first one, it is an abstract

algebra which may be applied to describe processes without taking care of their real

implementation details. Hence, it is a convenient solution for expressing the behaviour

of non-deterministic systems, as only the relevant features prevail.

ACP defines the behaviour of an entity being part of a model by means of pro-

cess terms, which are composed by atomic actions such as send or receive a message

through a given channel towards another entity within the model, or otherwise, get-

ting into the model or out of the model. In addition to it, a range of operators such

as sequential, alternate, merge or conditional may be applied to those actions so as

to describe how each entity works.

Once all entities belonging to a model are defined in algebraic terms, further op-

erators are applied to unveil the external behaviour of the model proposed, which is

in turn compared to the behaviour of the real system, and if they both run the same

string of actions and have the same branching structure, it may be said that they are

rooted branching bisimilar, which is a sufficient condition for a model to be verified.

In other words, bisimulation equivalence implies that a behavioural equivalence

may be established between the process terms being part of an equational system
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describing the model and those related to the real system, as the equational logic of

ACP is both sound and complete.

With regards to the second pillar, it is to be noted that fog environments do contain

DCs with a small to medium size, hence huge designs and complex topologies may be

discarded as a tradeoff may be necessary between efficiency and simplicity, as well as

redundancy. Taking this into account, a range of generic designs have been presented,

and in turn, proposed in order to fulfill those requirements, where special attention

have been put in partial mesh topologies, as those are the most commonly used in

production environments, although other designs have also been proposed.

It is to be reminded that ACP does not take time into consideration, which accounts

for the models obtained to be timeless. This fact implies that performance in the DC

topology models presented may not be measured in time units, as it usually happens,

although an alternative view has been taken, such as measuring distance as a measure

of time, provided that all links have the same characteristics. Hence, performance is

measured herein as the minimum number of links between a given pair of devices.

As per the third pillar, it is focused on fog computing paradigm, which is an

extension of cloud computing where the computing resources are located on the edge

of the network, thus allowing for reduced latency and bandwidth use. This sort

of cloud deployment is ideal for moving IoT devices, as those usually have limited

computing resources and capabilities, and hence, an external server being close enough

to such devices may be in charge of undertaking most of the processing whilst leaving

them only with a few essential tasks. Hence, VM migration takes place within any

couple of hosts connected by a DC topology, and that is modelled by using ACP.

Regarding the main hypotheses proposed in the Introduction section, it must be

said that all of them have been satisfied. In that sense, chapter 5 proves that it is

possible to model the VM migration path within a given DC topology being deployed

in a fog environment by means of ACP, as it has actually been carried out and verified

for all 15 DC topologies proposed. Morevoer, chapter 6 displays that it is possible

to construct a generic model for a fog ecosystem in ACP, where the DC topology is

abstracted away, as it has actually been represented and verified. Besides, chapter 7

exhibits that it is possible to build up a particular instance of such a general model in
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ACP which is being focused on linear deployments, as it has actually been designed

and verified for two different case scenarios.

With respect to the secondary hypotheses presented in the Introduction section,

it must be noted that all of them have also been met for all topologies presented,

according to the diverse subsections of chapter 5. In that sense, it is possible to

model the VM migration path within a particular DC topology being implemented in

a fog domain by using flow charts and pseudocode algorithms, whereas it is possible

to obtain the list of devices and their appropriate ports for all redundant minimal

paths for the models exposed in ACP, whilst it is possible to achieve the appropriate

verification for the models expressed in ACP.

On the other hand, considering the goals proposed in the Introduction, they have

all been met, as each of them has been developed in one of the chapters going from 2

to 7. In this sense, the review of the state of the art has been undertaken in chapter 2,

where the three pillars cited above have been studied in detail. First off, a brief history

of computing, cloud and fog has been exposed, leading to VM migration techniques.

Next, an overview on FDT to obtain models has been carried out, going around the

most commonly used, passing through process algebras and leading to ACP. Then,

an outline of topologies for DC is fulfilled, where common network topologies are

introduced and redundant topologies are exhibited.

Additionally, all those topologies have been associated with mathematical entities,

hence the foundations of them have been presented in chapter 3 in order to deduce

their main characteristics. In this sense, regular N -polytopes have been studied,

exposing the main features of N -simplex, which may relate to full mesh topologies,

followed by N -orthoplex, which may do to quasi full mesh designs, and going to

N -hypercube, which may be proposed in its ordinary way, also known as plain, or

otherwise, in its folded way, both being part of partial mesh designs.

Besides, a short introduction on trees has been exhibited, which may be seen as

the base behaviour of the pair of tree-like designs presented herein, such as fat tree,

which is a three-layer topology, or leaf and spine, which is a two-layer one. Both

designs may be seen as partial mesh, where the latter offers better performance but

it also suffers from scalability issues, whereas the former does not perform as good,
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but it is more scalable. It is also to be noted that those designs offer steady values of

latency, which is ideal for networks dealing with audio and video streaming contents,

making them the preferred solution in many real deployments.

Moreover, an overview of graph theory has also been presented, which may reveal

the basics on directed and undirected graphs, where the de Bruijn ones have been seen

as examples of the former, whilst the binary grid, a particular Hamming one and the

simplest cage ones have been viewed as instances of the latter. Also, the foundations

of toroidal structures have also been depicted in order to better understand how they

work and the way they might be applied in the field of network designs.

Furthermore, some common network topologies for data centres are reviewed in

chapter 4, paying special attention to partial mesh topologies, which are the ones

typically used in production environments. In this context, tree-like designs are ex-

posed along with a couple of instances, such as fat tree and leaf and spine, whereas

graph-like designs are exhibited along with a pair of instances, such as N -hypercube

and folded N -hypercube. Subsequently, all four designs are compared regarding the

average distances among hosts and end switches, which after a careful analysis, it was

found out that there is not a single topology being better in all situations.

Later on, other topologies are presented with a brief exposition of their main

features. Those designs are full mesh, quasi full mesh, redundant hub and spoke,

redundant ring, toroidal ring, de Bruijn graph, de Bruijn reverse graph, binary grid,

Hamming graph, Petersen graph and Heawood graph. All of them, along with the

instances of partial mesh cited above are the group of 15 topologies being put forward.

Afterwards, putting all together, each of the topologies proposed have been studied

in chapter 5 according to the following order: a short preamble so as to indicate its

core functions, a layout stating the nomenclature of its nodes, a flow chart in order to

see how the algorithms may work, a pseudo code algorithm where the proper values

are quoted, an algebraic definition where the behaviour of the model is cited by means

of ACP syntax and semantics, a section about how to calculate the redundant paths,

and eventually, a verification of the model proposed according to ACP in order to see

if the model and the real system have both the same string of actions and the same

branching structure, which is a sufficient condition to get the model verified.
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It is to be noted that tree-like designs, such as fat tree and leaf & spine, and hub

& spoke have switches with different roles, those being end switches or otherwise,

and in those cases, each different category has been studied on its own by following

the steps quoted above in a sequential order until the ACP model has been obtained.

Afterwards, when ACP models for each type have been attained, then the redundant

paths and the verification have been calculated for the whole structure. On the other

hand, all graph-like designs are composed by switches with the same role, those being

all end switches, and in such cases, they have been studied according to the steps

cited above in a sequential manner, all the way to perform the verification.

The DC topologies presented and verified with ACP are fat tree, leaf and spine, N -

hypercube, folded N -hypercube, full mesh, quasi full mesh, redundant hub & spoke,

redundant ring, toroidal ring, de Bruijn graph, reverse de Bruijn graph, binary grid,

Hamming graph, Petersen graph and Heawood graph. Moreover, the optimal VM

migration paths have been modelled by means of ACP in all those cases.

After having exposed all those topologies, a generic model for a fog environment

has been presented in chapter 6, based on a block diagram. It is to be noted that

the block corresponding to the switching topology, also known as internetworking

topology, has been abstracted away, such that it has been considered as a black box,

which only has entry and exit points. That block is used to interconnect the hosts

where the VMs being part of the fog domain are located, hence, it comprises the

whole set of channels being employed to communicate one host to the others. This

way, any of the topologies proposed above might be assimilated in the generic model,

and taking into account that all of them have been already verified, it may be said

that any of them accounts for a good switching solution for this scheme.

Apart from the internetworking topology block, other blocks have been proposed,

such as a generic wireless relay block, where the moving IoT devices get into and out

of the system, which triggers all actions available in the model. Besides, an orches-

trator takes the decision as to which host is involved with the creation, migration

or termination of a given VM associated with a particular moving IoT device. Fur-

thermore, there is a generic host block, which represents a given host within the fog

domain, considering that two of those host blocks are necessary to describe migration
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actions. Moreover, a cloud block is presented in order to denote VMs going up to the

cloud from the fog, of the other way around.

This generic model accounts for six different actions, such as cloud in, migrate in,

init, cloud out, migrate out and kill. The former three represent actions where the

moving IoT device comes into a wireless relay, such that the first one implies that the

IoT device has already a VM up in the cloud, whilst the second one denotes that it

already has a VM in a previous host within that fog domain, and the third one states

that an IoT device gets into the fog domain without any VM associated.

On the other hand, the latter three describe actions where the moving IoT device

goes out of a wireless relay, such that the first one denotes that the IoT moves out

to the cloud with its VM, whereas the second one implies that the IoT device keeps

its VM within the fog domain, and the third one determines that an IoT device gets

out of the fog domain and it does not need its associated VM any more.

It is to be said that all six actions have been expressed in ACP, revealing the

external behaviour of all six models. Also, the real behaviour of those six actions

have been expressed in ACP. Therefore, each modelled action has been compared to

its corresponding real action, resulting that in all cases, those six pairs of actions have

the same string of actions and the same branching structure, leading to the conclusion

that they are both rooted branching bisimilar, which is a sufficient condition for the

models to be verified.

Eventually, a specific instance of the aforesaid model has been proposed in chapter

7, where a linear deployment being composed of wireless relays has been designed,

considering that those have been located sequentially, which permits to identify them

in a linear manner. With that in mind, this implementation may be ideal for railways,

highways or pipelines, as the adjective linear relates to a string of wireless relays

traversed in a sequential way and not to a rectilinear implementation.

It is to be noted that each of those wireless nodes are connected to a different host,

which in turn, are hanging on an interconnection topology. It has been decided to

use fat tree, as the three layer design offers the possibility of having a good quantity

of hosts with a steady bandwidth. However, any other type of topology might have

been used and the model would have behaved in the same way.



Chapter 8: Conclusions and Future Work 275

Two case scenarios have been proposed, such that the first one is an ideal case

where all hosts have unlimited resources to keep VMs in, meaning that no request

may be rejected, and also the moving direction is only left to right, meaning that

items may only enter into the system at the left end and they may only leave it at

the right end. Otherwise, the second one is a more realistic case where hosts have

limited resources to hold VMs in and moving IoT devices may change directions at

any time, even though those items may only get into the system from any of both

ends, and that is why the target for those deployments are railways or pipelines.

In each of those cases, the model for each layer has been represented by means of

ACP, considering the layers related to wireless relays and hosts, as well as the layers

corresponding to the switching topology. Fat tree has been selected in this design,

hence its corresponding three layers have been modelled, such as edge, aggregation

and core, even though any other topology might actually have had its own layers.

Eventually, both models have been verified, each one for its specific case scenario.

In summary, all three main hypotheses have been verified, where chapters 5, 6 and

7 have been dedicated to each of them, along with all three secondary hypotheses,

which have been achieved on chapter 5 for all DC topologies presented. Additionally,

all six objectives proposed have also been met, where each chapter from 2 to 7 has

been devoted to cover one of those particular goals.

8.2 Future work

Regarding the future work and open research issues, the following points may be

taken into account.

• The addition of time to the models of the different switching structures pro-

posed, which may lead to achieve a more realistic approach, thus allowing to

calculate performance measurements in time units.

• The consideration of specific parameters in the different links within the switch-

ing topologies, apart from just routing, such as the type of protocols imple-

mented, the percentage of link usages or the rate of link delays.
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• The application of some type of artificial intelligence to the switching topologies,

by means of an orchestrator or otherwise, in order to get them adaptive to

changing conditions so as to always get the fittest solution for packet forwarding.

• The study of other switching topologies being better fit for medium to large

DCs, such as some variations of tree-like and graph-like designs, which achieve

better performances at the cost of having more complex designs.

• The expansion of the general model presented for fog computing with the ad-

dition of blocking probabilities for IoT devices to get associated with wireless

relays or for their associated VM to be migrated to hosts.

• The addition of time to the general model to make it more realistic, which also

may allow to include queueing probabilities when accessing each building block.

• The extension of the general model so as to include some specific communication

protocol for IoT devices, such as MQTT or CoAP, in order to better adapt it

to real IoT message exchange flows.

• The implementation of the linear model proposed for fog computing with differ-

ent switching topologies in order to compare the expressions obtained. A good

exercise may be to do it with all 15 topologies presented herein.

• The variation in the linear model where an IoT device may join and leave the

system at any wireless node, which basically may account for extending the

capability of the outer nodes (create, migrate, terminate VMs) to every node.

It is to be noted that, in such a case, all nodes may behave the same way, thus

permitting an IoT device not to go through all wireless nodes.

• The study of different types of interconnections among wireless nodes within the

linear model, thus obtaining a non linear design, which may permit redundant

paths to get from a given source to a given destination, as well as avoiding single

points of failure regarding wireless nodes.



Chapter 8: Conclusions and Future Work 277

All those items are out of the scope of the current research, although they might

be addressed in further research in the future.
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Chapter 10

Appendix

10.1 Algorithm for a host

1 while forever do

2 for h← 0 to M × Z − 1 do

3 foreach u in range(u) do

4 if VM(u) ⊂ h then

5 if ready to send then

6 send HOST{h},PORT{0}(h,b,VM(u))

7 end

8 else

9 if ready to receive then

10 receive HOST{h},PORT{0}(a,h,VM(u))

11 end

12 end

13 end

14 end

15 end

Algorithm 1: Host()
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10.2 Algorithm for an edge switch in fat tree

1 while forever do

2 for i← 0 to K2/2− 1 do

3 if receive SWITCH{i},PORT{p}(d) then

4 if int(i/K/2) = int(b/K/2) then

5 send SWITCH{i},PORT{b mod K/2}(d)

6 else

7 for q ← K/2 to K − 1 do

8 send SWITCH{i},PORT{q}(d)

9 end

10 end

11 end

12 end

13 end

Algorithm 2: Fat tree - edge()
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10.3 Algorithm for an aggregation switch in fat

tree

1 while forever do

2 for j ← 0 to K2/2− 1 do

3 if receive SWITCH{j},PORT{p}(d) then

4 if int(j/(K/2)2) = int(b/(K/2)2) then

5 send SWITCH{j},PORT{int(b/K/2) mod K/2}(d)

6 else

7 for q ← K/2 to K − 1 do

8 send SWITCH{j},PORT{q}(d)

9 end

10 end

11 end

12 end

13 end

Algorithm 3: Fat tree - aggregation()

10.4 Algorithm for a core switch in fat tree

1 while forever do

2 for l ← 0 to K2/4− 1 do

3 if receive SWITCH{l},PORT{p}(d) then

4 send SWITCH{l},PORT{int(b/(K/2)2)}(d)

5 end

6 end

7 end

Algorithm 4: Fat tree - core()
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10.5 Algorithm for a leaf switch in leaf and spine

1 while forever do

2 for i← 0 to t− 1 do

3 if receive SWITCH{i},PORT{p}(d) then

4 if int(i/M) = int(b/M) then

5 send SWITCH{i},PORT{b mod M}(d)

6 else

7 for q ←M to M + u− 1 do

8 send SWITCH{i},PORT{q}(d)

9 end

10 end

11 end

12 end

13 end

Algorithm 5: Leaf and spine - leaf()

10.6 Algorithm for a spine switch in leaf and spine

1 while forever do

2 for j ← 0 to u− 1 do

3 if receive SWITCH{j},PORT{p}(d) then

4 send SWITCH{j},PORT{int(b/M)}(d)

5 end

6 end

7 end

Algorithm 6: Leaf and spine - spine()
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10.7 Algorithm for an N-hypercube switch

1 while forever do

2 for i← 0 to 2N − 1 do

3 if receive SWITCH{i},PORT{p}(d) then

4 if i = int(b/M) then

5 send SWITCH{i},PORT{b mod M}(d)

6 else

7 for j ← 0 to N − 1 do

8 if ((int(i/2j))mod 2) �= ((int(int(b/M)/2j))mod 2) then

9 send SWITCH{i},PORT{M+j}(d)

10 end

11 end

12 end

13 end

14 end

15 end

Algorithm 7: N -hypercube()
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10.8 Algorithm for a folded N-hypercube switch

1 while forever do

2 for i← 0 to 2N − 1 do

3 if receive SWITCH{i},PORT{p}(d) then

4 if i = int(b/M) then

5 send SWITCH{i},PORT{b mod M}(d)

6 else

7 distance = 0

8 for j ← 0 to N − 1 do

9 if ((int(i/2j))mod 2) �= ((int(int(b/M)/2j))mod 2) then

10 distance = distance+ 1

11 end

12 end

13 if distance ≤ (N + 1− distance) then

14 for j ← 0 to N − 1 do

15 if ((int(i/2j))mod 2) �= ((int(int(b/M)/2j))mod 2) then

16 send SWITCH{i},PORT{M+j}(d)

17 end

18 end

19 end

20 if distance ≥ (N + 1− distance) then

21 for j ← 0 to N − 1 do

22 if ((int(i/2j))mod 2) = ((int(int(b/M)/2j))mod 2) then

23 send SWITCH{i},PORT{M+j}(d)

24 end

25 end

26 send SWITCH{i},PORT{M+N}(d)

27 end

28 end

29 end

30 end

31 end

Algorithm 8: Folded N -hypercube()
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10.9 Algorithm for a full mesh switch {N-simplex}

1 while forever do

2 for i← 0 to N do

3 if receive SWITCH{i},PORT{p}(d) then

4 if i = int(b/M) then

5 send SWITCH{i},PORT{b mod M}(d)

6 else

7 if i = int(a/M) then

8 for q ← 0 to N do

9 if q �= i then

10 send SWITCH{i},PORT{M+q}(d)

11 end

12 end

13 else

14 send SWITCH{i},PORT{M + int(b/M)}(d)

15 end

16 end

17 end

18 end

19 end

Algorithm 9: Full mesh() {N -simplex}
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10.10 Algorithm for a quasi full mesh switch {N-

orthoplex}

1 while forever do

2 for i← 0 to 2N − 1 do

3 if receive SWITCH{i},PORT{p}(d) then

4 if i = int(b/M) then

5 send SWITCH{i},PORT{b mod M}(d)

6 else

7 if i = int(a/M) then

8 for q ← 0 to 2N − 1 do

9 if q �= i AND q �= (i+N)mod 2N then

10 send SWITCH{i},PORT{M+q}(d)

11 end

12 end

13 else

14 send SWITCH{i},PORT{M + int(b/M)}(d)

15 end

16 end

17 end

18 end

19 end

Algorithm 10: Quasi full mesh() {N -orthoplex}
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10.11 Algorithm for a spoke switch in a redundant

star

1 while forever do

2 for i← 0 to n− 1 do

3 if receive SWITCH{i},PORT{p}(d) then

4 if i = int(b/M) then

5 send SWITCH{i},PORT{b mod M}(d)

6 else

7 for q ←M to M + 1 do

8 send SWITCH{i},PORT{q}(d)

9 end

10 end

11 end

12 end

13 end

Algorithm 11: Redundant hub and spoke - spoke()

10.12 Algorithm for a hub switch in a redundant

star

1 while forever do

2 for j ← 0 to 1 do

3 if receive SWITCH{j},PORT{p}(d) then

4 send SWITCH{j},PORT{int(b/M)}(d)

5 end

6 end

7 end

Algorithm 12: Redundant hub and spoke - hub()
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10.13 Algorithm for a redundant ring switch

1 while forever do

2 for i← 0 to n− 1 do

3 if receive SWITCH{i},PORT{p}(d) then

4 if i = int(b/M) then

5 send SWITCH{i},PORT{b mod M}(d)

6 else

7 if [-n/2 ≤ (int(b/M) - i) < 0] then

8 for q ←M to M + 1 do

9 send SWITCH{i},PORT{q}(d)

10 end

11 end

12 if (int(b/M) - i) > n/2 then

13 for q ←M to M + 1 do

14 send SWITCH{i},PORT{q}(d)

15 end

16 end

17 if [0 < (int(b/M) - i) ≤ n/2] then

18 for q ←M + 2 to M + 3 do

19 send SWITCH{i},PORT{q}(d)

20 end

21 end

22 if -n/2 > (int(b/M) - i) then

23 for q ←M + 2 to M + 3 do

24 send SWITCH{i},PORT{q}(d)

25 end

26 end

27 end

28 end

29 end

30 end

Algorithm 13: Redundant ring()
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10.14 Algorithm for a toroidal ring switch

1 while forever do

2 for i← 0 to n− 1 do

3 if receive SWITCH{i},PORT{p}(d) then

4 if i = int(b/M) then

5 send SWITCH{i},PORT{b mod M}(d)

6 else

7 if int(int(b/M)/n) �= int(i/n) then

8 if [-n/2 ≤ (int(b/M) mod n - i mod n) < 0] then

9 send SWITCH{i},PORT{M+2}(d)

10 end

11 if (int(b/M) mod n - i mod n) > n/2 then

12 send SWITCH{i},PORT{M+2}(d)

13 end

14 if [0 < (int(b/M) mod n - i mod n) ≤ n/2] then

15 send SWITCH{i},PORT{M}(d)

16 end

17 if -n/2 > (int(b/M) mod n - i mod n) then

18 send SWITCH{i},PORT{M}(d)

19 end

20 end

21 if int(b/M) mod n �= i mod n then

22 if [-n/2 ≤ (int(int(b/M)/n) - int(i/n)) < 0] then

23 send SWITCH{i},PORT{M+3}(d)

24 end

25 if (int(int(b/M)/n) - int(i/n)) > n/2 then

26 send SWITCH{i},PORT{M+3}(d)

27 end

28 if [0 < (int(int(b/M)/n) - int(i/N)) ≤ n/2] then

29 send SWITCH{i},PORT{M+1}(d)

30 end

31 if -n/2 > (int(int(b/M)/n) - int(i/n)) then

32 send SWITCH{i},PORT{M+1}(d)

33 end

34 end

35 end

36 end

37 end

38 end

Algorithm 14: Toroidal ring()
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10.15 Algorithm for a de Bruijn graph switch

1 while forever do

2 for i← 0 to kn − 1 do

3 if receive SWITCH{i},PORT{p}(d) then

4 if i = int(b/M) then

5 send SWITCH{i},PORT{b mod M}(d)

6 else

7 top ← -1

8 flag ← 0

9 while flag = 0 do

10 top ← top + 1

11 for j ← 0 to top do

12 if int(i/ktop−j)mod k �= int(int(b/M)/kn−1−j)mod k then

13 flag ← 1

14 end

15 end

16 end

17 send SWITCH{i},PORT{M + int(int(b/M)/kn-1-top) mod k}(d)

18 end

19 end

20 end

21 end

Algorithm 15: De Bruijn graph()
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10.16 Algorithm for a de Bruijn reverse graph switch

1 while forever do

2 for i← 0 to kn − 1 do

3 if receive SWITCH{i},PORT{p}(d) then

4 if i = int(b/M) then

5 send SWITCH{i},PORT{b mod M}(d)

6 else

7 top ← -1

8 flag ← 0

9 while flag = 0 do

10 top ← top + 1

11 for j ← 0 to top do

12 if int(i/kn−1−j)mod k �= int(int(b/M)/ktop−j)mod k then

13 flag ← 1

14 end

15 end

16 end

17 send SWITCH{i},PORT{M + int(int(b/M)/ktop) mod k}(d)

18 end

19 end

20 end

21 end

Algorithm 16: De Bruijn reverse graph()
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10.17 Algorithm for a binary grid switch

1 while forever do

2 for i← 0 to kn − 1 do

3 if receive SWITCH{i},PORT{p}(d) then

4 if i = int(b/M) then

5 send SWITCH{i},PORT{b mod M}(d)

6 else

7 for j ← 0 to n− 1 do

8 if int(i/kj)mod k �= int(int(b/M)/kj)mod k then

9 send SWITCH{i},PORT{M + j}(d)

10 end

11 end

12 end

13 end

14 end

15 end

Algorithm 17: Binary grid()
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10.18 Algorithm for a Hamming graph switch

1 while forever do

2 for i← 0 to kn − 1 do

3 if receive SWITCH{i},PORT{p}(d) then

4 if i = int(b/M) then

5 send SWITCH{i},PORT{b mod M}(d)

6 else

7 diff = 0

8 for j ← 0 to n− 1 do

9 if int(i/kj)mod k �= int(int(b/M)/kj)mod k then

10 diff = diff + 1

11 end

12 end

13 if diff = n then

14 send SWITCH{i},PORT{M+n}(d)

15 else if diff < n/2 then

16 send SWITCH{i},PORT{M+n}(d)

17 else if diff > n/2 then

18 for j ← 0 to n− 1 do

19 if int(i/kj)mod k = int(int(b/M)/kj)mod k then

20 send SWITCH{i},PORT{M+j}(d)

21 end

22 end

23 else /* Ifdiff = n/2 */

24 for j ← 0 to n do

25 send SWITCH{i},PORT{M+j}(d)

26 end

27 end

28 end

29 end

30 end

31 end

Algorithm 18: Hamming graph() {Hk(n, n− 1)}
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10.19 Algorithm for a Petersen graph switch

1 while forever do

2 for i← 0 to 9 do

3 if receive SWITCH{i},PORT{p}(d) then

4 if i = int(b/M) then

5 send SWITCH{i},PORT{b mod M}(d)

6 else

7 if int(i/5) < int(int(b/M)/5) then

8 if int(b/M)mod 5 ∈ {imod 5, (i+ 2)mod 5, (i+ 3)mod 5}
then

9 send SWITCH{i},PORT{M+2}(d)

10 else if int(b/M)mod 5 = (i+ 1)mod 5 then

11 send SWITCH{i},PORT{M+1}(d)

12 else /* If int(b/M)mod 5 = (i+ 4)mod 5 */

13 send SWITCH{i},PORT{M}(d)

14 end

15 else if int(i/5) > int(int(b/M)/5) then

16 if int(b/M)mod 5 ∈ {imod 5, (i+ 1)mod 5, (i+ 4)mod 5}
then

17 send SWITCH{i},PORT{M+2}(d)

18 else if int(b/M)mod 5 = (i+ 3)mod 5 then

19 send SWITCH{i},PORT{M+1}(d)

20 else /* If int(b/M)mod 5 = (i+ 4)mod 5 */

21 send SWITCH{i},PORT{M}(d)

22 end

23 else if int(i/5) = int(int(b/M)/5) = 0 then

24 if (int(b/M)− i)mod 5 < N/2 then

25 send SWITCH{i},PORT{M+1}(d)

26 else

27 send SWITCH{i},PORT{M}(d)

28 end

29 else /* Ifint(i/5) = int(int(b/M)/5) = 1 */

30 if imod 2 �= int(b/M)mod 2 then

31 send SWITCH{i},PORT{M+1}(d)

32 else

33 send SWITCH{i},PORT{M}(d)

34 end

35 end

36 end

37 end

38 end

39 end

Algorithm 19: Petersen graph()
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10.20 Algorithm for a Heawood graph switch

1 while forever do

2 for i← 0 to 13 do

3 if receive SWITCH{i},PORT{p}(d) then

4 if i = int(b/M) then

5 send SWITCH{i},PORT{b mod M}(d)

6 else

7 dist = int(b/M)− i

8 if dist > 7 then

9 dist = −(14− dist)

10 else if dist < −7 then

11 dist = −(−14− dist)

12 end

13 if dist ∈ {+1,+2,+3} then

14 send SWITCH{i},PORT{M+1}(d)

15 else if dist ∈ {−1,−2,−3} then

16 send SWITCH{i},PORT{M}(d)

17 else if i mod 2 = 0 then

18 if dist ∈ {+4,+5,+6,+7} then

19 send SWITCH{i},PORT{M+2}(d)

20 else if dist ∈ {−4,−5} then

21 send SWITCH{i},PORT{M+1}(d)

22 else /* If dist ∈ {−6} */

23 send SWITCH{i},PORT{M}(d)

24 end

25 else /* If i mod 2 = 1 */

26 if dist ∈ {−4,−5,−6,+7} then

27 send SWITCH{i},PORT{M+2}(d)

28 else if dist ∈ {+4,+5} then

29 send SWITCH{i},PORT{M}(d)

30 else /* If dist ∈ {+6} */

31 send SWITCH{i},PORT{M+1}(d)

32 end

33 end

34 end

35 end

36 end

37 end

Algorithm 20: Heawood graph()
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Acronyms

5G 5th Generation of Cellular Networks

6G 6th Generation of Cellular Networks

ABP Alternating Bit Protocol

ACP Algebra of Communicating Processes

ADTs Abstract Data Types

AR Augmented Reality

BRP Bounded Retransmission Protocol

CAPEX capital expenditure

CCS Calculus of Communicating Systems

CoAP Constrained Application Protocol

COTS commercial-of-the-shelf

CPU Central Processing Unit

CSP Communicating Sequential Processes

DC data centres

EIGRP Enhanced Interior Gateway Routing Protocol

ETSI European Telecommunications Standards Institute

303



304 Chapter 10: Appendix

FDT Formal Description Techniques

FSM Finite State Machines

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IEEE Institute of Electrical and Electronics Engineers

IEEE-1394 FireWire

IETF Internet Engineering Task Force

IGMP Internet Group Management Protocol

IoT Internet of Things

IP Internet Protocol

IPv4 Internet Protocol version 4

ITaaS IT as a Service

ITU-T International Telecommunication Union - Telecommunication Standardiza-

tion Sector

LAN Local Area Network

MAC Media Access Control

MEC Multi-Access Edge Computing

MQTT Message Queue Telemetry Transport

MR Mixed Reality

OASIS Organization for the Advancement of Structured Information Standards
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OPEX operational expenditure

OS Operating System

OSI Open Systems Interconnection

OSPF Open Shortest Path First

PaaS Platform as a Service

PIM Protocol Independent Multicast

POP3 Post Office Protocol revision 3

Promela Protocol/Process Meta Language

Pub/Sub Publisher/Subscriber

QoS Quality of Service

RAM Random Access Memory

RAN Radio Access Network

REST Representational State Transfer

RESTful based on REST architecture web services

RFC Request for Comments

RPC Remote Procedure Call

SaaS Software as a Service

SDL Specification and Description Language

SEES Smart Emergency Evacuation System

SMTP Simple Mail Transfer Protocol

Spin Simple Promela Interpreter
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SSL Secure Sockets Layer

STP Spanning Tree Protocol

TCP/IP Transmission Control Protocol / Internet Protocol

TLS Transport Layer Security

UML Unified Modeling Language

VM Virtual Machine

VoIP Voice over IP

VR Virtual Reality

WAN Wide Area Network

WiFi-6 6th Generation of Wireless Fidelity

WiFi-7 7th Generation of Wireless Fidelity

WSN Wireless Sensor Networks

XOR Exclusive OR
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