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Abstract

The explosive data traffic demand characterizing mobile communications’ evolution

towards 5G has stressed the need for a considerable network upgrade, in order to

enable the innovative services envisioned for the near future. Network operators are

trapped in a vicious cyrcle represented on one side by the physical resource constraints

(e.g., the cost of power consumption and the scarcity of spectrum resource) and,

on the other side, by insufficient financial incentives for deploying next-generation

networks. Indeed, typically, network owners are also the service providers, which

charge the end users with relatively low and flat tariffs, independently of the service

enjoyed beyond the network access. A fine-scale management of the network resources

is regarded as one of the candidate solutions, both for optimizing costs and resource

utilization, as well as for enabling new synergies among network owners and third-

parties. In particular, network operators could open their networks to third parties

by means of fine-scale sharing agreements over customized networks for enhanced

service provision, in exchange for an adequate return of investment for upgrading

their infrastructures.

The main objective of this thesis is to study the potential offered by fine-scale

resource management and sharing mechanisms for enhancing service provision

and for extending the traditional business model towards a sustainable road to

5G. More precisely, the state-of-the-art architectures and technologies for network

programmability and scalability are studied, together with a novel paradigm for

supporting service diversity and fine-scale sharing. In this direction, we review the

limits of conventional networks, we extend existing standardization efforts and define

an enhanced architecture for enabling next-generation networks’ features, which are
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based on the concepts of network-wide centralization and programmability.

The potential of the proposed architecture is assessed in terms of flexible sharing

and enhanced service provision, while the advantages of alternative business models

are studied in terms of additional profits to the network operators. We start with

the study of the data rate improvement achievable by means of spectrum and

infrastructure sharing among operators and with the evaluation of the profit increase

justified by a better service provided. In detail, we present a scheme based on

coalitional game theory for assessing the capability of accomodating more service

requests when a cooperative approach is adopted, and for studying the conditions

for beneficial sharing among coalitions of operators. Results show that collaboration

is always beneficial, also in case of unbalanced cost redistribution within coalitions

when sufficient tariffs are paid by the end users. However, coalitions of equal-sized

operators typically provide better profit opportunities and require lower tariffs.

The second kind of sharing interaction considered in this thesis is the one between

operators and third-party service providers, in the form of fine-scale provision of

customized portions of the network resources. In order to assess the potential of

the proposed architecture within this framework, we define a policy-based admission

control mechanism, whose performance is compared with reference strategies. The

proposed mechanism is based on auction theory and computes the optimal admission

policy at a reduced complexity for different traffic loads and allocation frequencies.

Because next-generation services include delay-critical services, we compare the

admission control performances of conventional approaches with the proposed one.

Results prove that the proposed approach offers near real-time service provision and

reduced complexity. Besides, it guarantees high revenues and low expenditures in

exchange for negligible losses in terms of fairness towards service providers.

To conclude this thesis, we study the case where adaptable timescales are adopted

for the policy-based admission control, in order to promptly guarantee 5G service

requirements over traffic fluctuations. In particular, in order to reduce complexity, we

consider the offline pre-computation of admission strategies with respect to reference

network conditions, then we study the extension to unexplored conditions by means

of computationally efficient methodologies. Performance is compared for different

admission strategies by means of a proof of concept on real network traces, with

particular attention for delay critical services. Results show that the proposed
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strategy provides a tradeoff in complexity and performance with respect to reference

strategies, while reducing resource utilization and requirements on network awareness.
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Chapter 1
Introduction

The global traffic is exploding both in terms of volume and services provided,

due to the growing number of heterogeneous devices connected to the Internet

(e.g., smartphones, tablets, personal computers, autonomous devices) and to the

widespread adoption of diverse and bandwidth-greedy applications. In particular,

experts foresee that the number of devices connected through the Internet protocol

(IP) will expand worldwide to somewhere between 3.9 billion in 2018 and 5.3 billion by

2023 [1], with the number of mobile devices growing by 150%, of which about the 10%

will be equipped with a 5G connection. Mobile data traffic by itself will determine a

100-fold capacity increase by the end of 2023, and the average downstream connection

speed will grow from 2.0 Mbps in 2015 to nearly 43.9 Mbps by 2023 [1,2], reaching

575 Mbps in case of 5G connections.

Huge challenges are set for 5G mobile networks in order to meet stringent requirements

of next-generation services. Besides traditional communication devices, the Internet

of Things (IoT) paradigm is expected to provide connection to almost everything,

including surveillance and medical systems, home appliances, industrial devices

and vehicles. Indeed, IoT devices are expected to be the most growing class of

devices, with an annual rate of 30%, followed by smarthpones with the 7% [1].

In addition, service requirements defined by industrial players and governmental

bodies for 5G are very strict [1, 3–6]: i) sub-millisecond latencies for delay-critical

services, ii) a 100-fold capacity increase to serve the needs of new applications and

network hyperdensification, and, iii) Quality of Service (QoS) and policy control for
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Figure 1.1: Heterogeneous cellular wireless network [7].

reliable communications. More precisely, 5G is considered the enabling technology

for three main service types: i) enhanced Mobile Broadband (eMBB) services

with high throughput and mobility demands, ii) ultra-Reliable and Low Latency

Communications (uRLLC) setting strict requirements in terms of delays and reliability,

and, iii) massive Machine-to-Machine Communications (mMTC) requiring low data

rates for massive IoT-like deployments.

The transition between successive generations of mobile communication networks

represents a challenging problem to be solved by mobile network operators (MNOs) in

terms of: i) the infrastructure upgrade needed for enhancing the QoS and supporting

new services, ii) the physical resource constraints, such as, the availability of frequency

bands, the propagation features within the available bands, the transmitted power,

the physical location of the antennas with respect to the covered area, and, iii) the

business model to adopt in order to attract (new) end users while covering deployment

costs and guaranteeing long-term revenues.

Traditionally, network densification has represented one of the main strategies for

fully exploiting the scarcity of spectrum resources. In particular, heterogeneous

networks (HetNets) have been adopted for maximizing the spatial utilization of

licensed frequency bands. Indeed, an additional layer of base stations (BSs) with
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small transmit power, that is, the small cells (SCs) layer, is deployed on top of the

conventional macro cell (MC) layer, composed by BSs providing coverage over a wide

geographic area, as represented in Figure 1.1. The small transmit power and coverage

characterizing SCs provide a very efficient way of using the spectrum resource, as a

high frequency reuse factor can be adopted1. Besides, SCs can be exploited for filling

coverage holes in the MC layer, or to provide additional capacity in high-traffic areas

(e.g., stadiums or shopping malls). HetNets have been widely deployed and, in 2015,

the 51% of total mobile data traffic was offloaded onto SC and Wi-Fi networks [2].

Thanks to enhanced interference management techniques and improved transmission

technologies (e.g., coordinated multiantenna/multipoint transmission technologies [8]),

the Shannon upper bound on spectral efficiency can be approached at the network

density level needed for 5G deployments. In addition, although communications in

the millimeter-wave (mmWave) frequencies are a well-known solution for 5G capacity

boost [9], a further extension of the available bandwidth can be achieved through

the harmonization of the licensed spectrum utilization among different MNOs, both

in time and space domains. Indeed, the traditional approach for network design is

based on the fixed fragmentation of the licensed spectrum for exclusive utilization

by different MNOs, with networks being designed for supporting overestimated

peak traffic volumes [10], which often results in a poor utilization of the spectrum

resource [11]. Because spectrum refarming would be a prohibitively expensive and

slow process, standardization bodies and manufacturers are currently very active

in Dynamic Spectrum Management (DSM) for frequency sharing. The main efforts

related to DSM are dedicated to:

� The extension of LTE-A carrier aggregation (CA) principle in the 5 GHz

unlicensed spectrum via Licensed-Assisted Access (LAA) [12]

� The aggregation of different technologies, for instance, LTE and Wi-Fi technologies

via LTE Wireless-LAN Aggregation (LWA) [13]

� The application of cognitive radio principles, for tiered dynamic spectrum

access (DSA) [14]

� The implementation of flexible and scalable network sharing solutions [15]

1A frequency reuse of one is normally used for macro and small cell network layers in long-term

evolution (LTE) networks [8].
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MNO

Users

OTT

(a)

MVNO Verticals OTT

                  Network Slice Auctioneer                                                     

Users

Transport 

owners

MNO/InPCloud 

owners
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Figure 1.2: Business model with: a) Standalone deployment of E2E infrastructure;

b) Heterogeneous ecosystem of market players.

Conventionally, long term sharing agreements are established between MNOs at

coarse granularities (i.e., months/years) [10], while fine-scale sharing mechanisms

are needed for optimizing resource usage and for supporting, at a reasonable cost,

a massive number of devices and diverse services. In conclusion, a new paradigm

for fine-scale resource sharing is needed as an alternative strategy for mitigating the

underutilization and scarcity of physical resources, as well as for making 5G networks

sustainable on the long-term. Indeed, BSs are the most expensive component of

conventional radio access network (RAN), with operating expenditures (OPEX)

representing the 60% of the Total Cost of Ownership (TCO) [16]. Therefore, the

BSs densification in future network deployments has to be complemented by the

optimization of network operations in order to both improve the energy-efficiency

and reduce costs and CO2 emissions.

In the direction of 5G, a revolutionary network upgrade is needed for providing

customized QoS support to a huge variety of heterogeneous services, while keeping

complexity low by designing a flexible architecture. However, from MNOs’ perspective,

the costs for such upgrades cannot be covered by the traditional business model.

Indeed, the standalone scenario depicted in Figure 1.2a, where a few big MNOs deploy
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Figure 1.3: Mobile service provision: trends and challenges (based on [17]).

and upgrade their own infrastructure for end-to-end (E2E) service provisioning, with

the main return of investment (ROI) represented by the relatively low-cost flat tariffs

charged to the end users [17], leads to an increasing gap in revenues, as detailed in

Figure 1.3.

New value chains have to be introduced by MNOs for addressing the increasing

gap in revenues experienced over the last decade and, in this direction, sharing

and multi-tenancy have been widely adopted over the years for improving networks

profitability. Firstly, passive sharing appeared for reducing capital expenditures

(CAPEX) by sharing passive elements (e.g., physical sites, antenna masts, cabling,

cabinets, power supply, etc.) among MNOs [18,19]. Afterwards, in order to achieve

a more efficient utilization of the licensed spectrum and for reducing OPEX, MNOs

began to perform active sharing [20], that is, to act as infrastructure providers (InPs)

and to lease part of their infrastructure and spectrum to mobile virtual network

operators (MVNOs): i) MNOs that look for coverage and/or capacity extension in a

specific geographical area, or, ii) market players willing to act as MNOs without a

stand-alone network deployment and/or a spectrum license.

An alternative business model, depicted in Fig. 1.2b, has emerged in the last decade [3,

4, 21], encouraging the cooperation among MNOs and other market players. In

particular, alternative market opportunities stem from the on-demand provision to
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third-party service providers (SPs) of customized portions of the network assets

with QoS guarantess. SPs can range from MVNOs to over-the-top (OTT) players

(e.g., streaming services), or even vertical industries (e.g., e-health, surveillance,

automotive). In order to achieve the full potential of this new business model, the

network infrastructure needs to support scalability and programmability for meeting

the heterogeneous constraints set by very different services simultaneously and in a

dynamic manner.

Network slicing is a novel paradigm for network sharing and resource provision at

fine-scale, which is expected to be one of the keystones of the 5G architectural

revolution [22]. Indeed, it foresees the dynamic isolation of QoS-tailored portions of

network resources into customized virtual networks (i.e., the network slices), leased

to third-party SPs (i.e., the slice tenants) for service provision. In other words,

the alternative business model introduced above can be extended to the fine-scale

provision of network slices, giving rise to the 5G slice market. In this particular

marketplace, network slices would be the traded commodity, whereas InPs would be

the responsible for continuous technology upgrade, and SPs the middlemen bargaining

over the network resources and providing the finished product to the end users. From

a contractual point of view, QoS requirements associated with a specific service could

be guaranteed by a service level agreements (SLA) between InP and SPs detailing

the characteristics of the slice leased (e.g., nominal throughput, maximum delay,

resource holding time, shared/exclusive access to slice resources, etc.).

The concept of slice market is expected to introduce a strong competition between

different InPs and SPs, thus oxygenating the typically closed and monolithic ecosystem

of telecommunication services and introducing the preconditions for fast innovation.

Indeed, on the one hand, InPs could better manage and monetize the utilization of

their resources and, on the other hand, any SP could possibly enter the market of

mobile communications, independently of the ownership of a network infrastructure.

1.1 Objectives and Contributions

This thesis is motivated by the incompatibility of conventional networks and business

model with 5G objectives, both in terms of flexibility for supporting next-generation

services and additional revenues for covering the costs of the network upgrade. The
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aim of this thesis is to provide a thorough analysis of architectural, technological

and methodological solutions for fine-scale slicing, the enabling framework for a

sustainable transition towards 5G networks and services. On the one hand, we

define the infrastructure upgrades needed for supporting next-generation services and

business model, and, on the other hand, we assess the financial incentives achievable

for the deployment of 5G networks. In particular, we study in detail the impact

on the value chain of different sharing interactions between MNOs and the rest

of the market ecosystem, that is, other MNOs or SPs. The global objectives and

contributions of this thesis can be categorized as follows:

� Definition of enhancements for making next-generation networks’ architecture

flexible and sustainable. The new architecture is an extension of pre-5G

standardization activities and integrates technologies that enable more agile

sharing interactions, and that support programmable policies, custom QoS and

effective service prioritization. The challenges associated with these novel

features are discussed for different network segments, besides, the recent

standardization efforts in this direction are also presented. The proposed

architecture was published in IEEE Wireless Communications Magazine (J1).

� Study of the benefits, in terms of spectrum utilization efficiency, enabled by

spectrum and infrastructure sharing. We consider the case where multiple

MNOs pool their infrastructure and licensed spectrum for sharing underutilized

resources on a fine-scale, thus improving coverage and offered data rates without

the need of purchasing extra frequency bands, or deploying new network nodes.

A cooperative approach is capable of accomodating more service requests, and

providing higher data rates. Performance, in terms of data rate increase, is

obtained through simulations and compared for the stand-alone and cooperative

approaches. The results were published at the IEEE International Conference

on Communications (C1), and in IEEE Wireless Communications Magazine

(J1).

� Study of the financial incentives offered to MNOs by spectrum and infrastructure

sharing. On the one hand, higher revenues, in terms of tariffs charged by MNOs,

are enabled and justified by a better coverage and enhanced data rates. On the

other hand, the increase in OPEX, associated with the pooling of the spectrum

in a shared infrastructure, can be redistributed in different ways among MNOs.
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A novel scheme based on coalitional game theory is developed, where user

pricing, MNOs’ characterization and coalitions’ size are used as parameters for

deciding whether to follow a cooperative or stand-alone approach. The results

were published at the IEEE International Conference on Communications (C1),

and in IEEE Wireless Communications Magazine (J1).

� Proposal of mechanisms for custom and fine-scale slice allocation to SPs, and

study of the financial incentives offered to MNOs. According to the alternative

business model, additional revenues are enabled for MNOs when acting as

InPs and charging third-party SPs for the leasing of network slices. Because

network resources are limited in relation to slice requests, mechanisms are

defined for the admission of such requests, while maximizing InPs revenues and

finding a tradeoff between resource utilization and fairness towards the SPs.

Auction theory is used for modeling the SLAs bargaining among InPs and SPs,

and admission control policies are defined and compared for on-demand and

periodic slice allocation. As far as we know, this is the first effort in comparing

on-demand and periodic slicing with respect to fairness towards SPs, resource

utilization, InP’s profit, and timeliness. The results were published in IEEE

Access (J2).

� Definition of enhanced mechanisms for timely slice allocation at reduced

complexity. Motivated by the strict and diverse requirements foreseen for

5G, network slicing represents a valid solution for QoS customization and

resource sharing in a dynamic and scalable way. The exclusive allocation

of slices to different SPs has a great potential in terms of QoS guarantees,

mostly for services with very strict requirements. On the other hand, the

high complexity typically associated with an exclusive allocation, could harm

timeliness, customization and efficiency in the resource utilization. A policy-

based admission control mechanism is defined for exclusive network slicing

at fine and adaptable timescales, while reducing complexity by offline pre-

computation of the admission strategies. In particular, optimal admission

strategies are computed by means of exhaustive search for sample network state

conditions, which are then employed for the training of a neural network in

case of unexplored state conditions, as well as for clustering operations capable

of providing network-wide solutions. Different policies and mechanisms for the

computation of the admission strategies are compared, and results are provided
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in terms of efficiency in resource utilization, fairness to the SPs, InPs’ revenue

and complexity. As far as we know, this is the first study considering a variable

timescale for improved customization in slice provision at a reduced increase in

complexity. The results were published in IEEE Access (J3).

The research activities described in this thesis have been accomplished within the

framework of EU Horizon 2020 Research and Innovation Programme “5GAuRA”

(No. 675802). The candidate carried out the first part of his PhD at the Department

of Signal Theory and Communications (TSC) with supervisors affiliated to the

Telecommunications Technological Centre of Catalonia (CTTC) and to Iquadrat

Informatica S.L., while the second part of the PhD has been accomplished at the

Department of Network Engineering (ENTEL).

1.2 Thesis Outline

With the motivations and contributions of this thesis defined, in the remainder of

this chapter we present the outline of this work.

In Chapter 2, we present the state-of-the-art (SoA) contributing to the enabling

of next-generation services and networks. In particular, we first introduce novel

architectures and technologies for network programmability and scalability. Aftwerwards,

we review the main solutions for extending these same concepts to the RAN, together

with strategies for E2E service provision at the edge of the network.

In Chapter 3, we present the roadmap for extending concepts and solutions presented

in Chapter 2 to the particular case of 5G networks. More precisely, we first present

the standardization efforts for the enabling of network sharing and multi-tenancy in

RAN and core network (CN) achitectures of pre-5G networks (i.e., those generations

of mobile networks preceding 5G). Afterwards, we study the main reasons for

the unsuitability of conventional mobile networks for QoS customization and fine-

scale sharing and present the network slicing paradigm as candidate solution. We

also review the architectural advances standardized in pre-5G networks for flexible

network sharing and QoS guarantees, thus, partially covering the lack in flexibility of

conventional networks. Then, we define the necessary technological and architectural

upgrades needed for extending the concepts of network programmability and slicing
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to 5G networks. The proposed approach includes a a new management entity for the

E2E management of the slicing process, both for efficient resource utilization and

QoS support, as well as for enabling a new framework for fine-scale network sharing.

Finally, we compare the proposed architecture with recent standardization efforts

and SoAs in network slicing for 5G.

Chapter 4 presents a novel scheme for studying the conditions for beneficial RAN

sharing among coexisting MNOs. In particular, the focus is on how QoS and MNOs’

profits can be improved thanks to a more efficient spectrum utilization. The problem

is modeled as a coalitional game and investigated for two scenarios, when different

combinations of market and spectrum share are associated to each MNO. The

conditions are studied for deciding whether cooperation is advantageous with respect

to a stand-alone approach, and for choosing them most profitable coalition.

Chapter 5 proposes a policy-based admission control mechanism for network slicing in

5G, for the case of competing SPs providing the same type of service. A benchmark

for the performance is provided with respect to reference policies when different pools

of resources, traffic loads, and slicing frequencies are considered. Two approches

are compared, that is, the one where network slices are provided to the SPs in an

on-demand manner, and that where slice allocation is performed periodically. The

performance of the proposed solution is studied in terms of revenue rates to the InPs,

resource utilization, admission rate, computational expenses and promptness of the

admission control.

Chapter 6 provides a proof of concept on real network traces for exclusive slice

allocation to SPs providing the same type of service. This work proposes a dynamic

implementation of the methodology introduced in Chapter 5, with variable timescales

suitable for 5G services. More in detail, approaches based on the offline and exhaustive

search of the optimal admission strategies are combined with machine learning

algorithms for computing near-optimal strategies in case of unexplored network

conditions, and with clustering procedures for reducing complexity at a network level.

The performance of the proposed methodology is studied in terms of the fairness

guarantees and negotiation power to the SPs, revenues and expenditure reduction to

the InPs, and computational-efficiency for selecting the admission strategies.

Chapter 7 summarizes the conclusions of this thesis and proposes future research

directions.



Chapter 2
SoA in Network Programmability

5G, the next generation of mobile networks, is still far from its maturity in terms of

deployment, however, requirements have been proposed by standardization bodies [3,

5, 6], and new technologies are being fine-tuned by the research community, while

the resulting architectures and mechanisms are being integrated into 3rd Generation

Partnership Project (3GPP) specifications. In this chapter, the principles standing

at the base of network programmability and the candidate SoA architectures and

technologies to be integrated into conventional mobile networks for an upgrade

towards 5G is reviewed. First, solutions are analyzed for network programmability

with support for QoS customization and dynamic sharing. Besides, the extensions

needed for programmable and scalable RAN/CN are introduced, together with

solutions for E2E service provision at the edge of the network.

2.1 Principles, Architectures and Technologies

The 5G Infrastructure Public Private Partnership (5G-PPP), launched by the

EU Commission with the support of industry manufacturers, telecommunications

operators, SPs, and small to medium-sized enterprises, released its plan and perspectives

for future mobile networks. By means of multiple European projects, such as METIS,

iJOIN, Mobile Cloud Networking, CROWD, and 5G-PICTURE [23], network function

virtualization (NFV) and software defined networking (SDN) have been proposed

as the key enabling technologies driving the mobile networks (r)evolution, and
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their integration as the candidate approach for E2E network programmability and

scalability [24–27]. Indeed, as introduced in Chapter 1, three-fold are the novelties

enabled by network programmability in terms of dynamic and adaptive resource

assignment: i) the efficient utilization of scarce resources based on the actual needs

(as an alternative to a static over-provisioning) [28], ii) the support for enhanced and

customized services [22], and, iii) the fostering of alternative business models and

revenue opportunities, thus accelerating innovation and rollouts for next-generation

networks [3, 4, 21].

NFV and SDN are both solutions introduced for simplifying and enhancing the

network management, with common aim of promoting innovation, creativity, openness

and competitiveness [29,30]. However, they rely on very different but complementary

approaches. Indeed, while NFV optimizes the implementation of network services

over the physical resources of a specific device, SDN focuses on the provisioning,

management, (re)configuration, and control of (virtualized) physical resources over

multiple devices. Therefore, SDN can be implemented according to the NFV

framework in order to enhance its performance, facilitate its operation and simplify

the compatibility with legacy deployments. However, the virtualization of network

functions is not bound by SDN technologies, and vice versa [31, 32]. Below, a review

of the SoA in network programmability is presented, with particular attention to

the dynamic and customized resource isolation needed for a secure and profitable

coexistance of competing SPs within the 5G slice market introduced in Chapter 1.

2.1.1 Network Function Virtualization

Service provision within the telecommunications industry has been traditionally

deployed by the same owners of the network and, typically, by means of special-

purpose proprietary equipments for each of the supply chain’s functionalities. However,

for the support of next-generation services, legacy appliances make network testing

and upgrades increasingly difficult and costly. More in detail, novel services are being

characterized by stricter and more diverse requirements, imposing the continuous

purchase, upgrade, and operation of specialized appliances, which results in high

CAPEX and OPEX [33]. As described in Chapter 1, increased users’ subscription

prices by themselves are not a viable solution for compensating the increased

investments, indeed, at the scale needed for transforming legacy infrastructures
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towards 5G, this approach would most probably lead to customer churn. Therefore,

alternative solutions have to be found for building next-generation networks while

reducing expenditures and product cycles.

NFV has been proposed for addressing these challenges, as it leverages virtualization

principles for flexibly deploying, managing and upgrading network devices [31, 32, 34,

35]. According to the definition in [36]:

Network virtualization is any form of partitioning or combining a set of network

resources, and presenting/abstracting it to users such that each user, through its

set of the partitioned or combined resources has a unique, separate view of the

network.

More into detail, NFV is based on the following principles [37–40]:

� Decoupling software from hardware: Network functionalities are separated

from underlying hardware by substituting dedicated hardware with software

instances deployed in commercial-off-the-shelf (COTS) devices. Consequently,

network functions (NFs) are substituded by virtual network functions (VNFs)

implemented in software as virtual machines (VMs) running on one or more

general purpose devices. According to this approach, hardware and software

can follow independent evolution paths, allowing for agile network deployment,

maintenance and upgrade.

� Flexible network function deployment: The same physical resources can

be shared by multiple VNFs with isolation guarantees for reliability and privacy

concerns, besides, appliances can be reconfigured on-the-fly in order to host

different VNFs over time. The set of VNFs chained together for implementing

a given service can be hosted in, and migrated to, different data centers (DCs)

deployed along the network. Hence, with respect to the server farm paradigm

commonly used for cloud services, which is based on oversized and centralized

DCs [41], multiple distributed and low capacity DCs are deployed in network

locations with very diverse space and resource constraints (e.g., street cabinets).

This approach enables new design features, for instance, placing DCs closer

to end users is expected to reduce traffic within the CN and to be one of

the enablers of uRLLCs. However, the choice on the particular set of DCs
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Figure 2.1: The concept of network virtualization [42].

to be used for implementing the VNFs of given NF instance is not a trivial

problem, and sets new network optimization domains, which have to take into

account not only QoS requirements, but also physical resources constraints.

Indeed, for a given service, sufficient communication resources need to be

guaranteed between the underlying VNFs, in order to respect the overall

timing requirements, while balancing the traffic load among DCs, guaranteeing

resiliance to network failures, and reducing power consumption.

� Dynamic scaling: The performance of a given service can be scaled on-

demand with a fine granularity. For instance, more VNFs can be instantiated

at a given time if complex operations, or massive service requests, have to be

served.

In conclusion, NFV introduces the concept of virtualization into communication

networks and, like the abstraction of information technology (IT) infrastructures into

multiple VMs, it abstracts networks nodes and communication links into multiple

virtual networks, each composed by distributed VNFs, as described in Figure 2.1.

In other words, logical network functions can be dispatched by InPs to SPs as

instances of plain software, which are deployed into appliances distributed between
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DCs, network nodes and end user premises (i.e., high volume servers, switches and

storage units). Consequently, InPs can focus in the deployment and upgrade of the

physical infrastructure, while SPs can design and deploy network services with full

abstraction with respect to hardware related concerns [42]. This novel paradigm

contributes to building the foundations for alternative business models, and will be

exploited in Chapter 4 for efficient resource utilization and sharing by InPs, and in

Chapters 5 and 6 for the proposal of admission schemes for VNFs requests by SPs.

From a technical perspective, a discussion on the challenges for the introduction of

the NFV framework in mobile networks is presented in [34,43,44], with particular

focus on customer premises equipments (CPEs) and on LTE’s CN, that is, the

evolved packet core (EPC). Conversely, from a business perspective, the European

Telecommunications Standards Institute (ETSI) has defined possible use cases and

service models (i.e., roles and interaction among players involved in the service

provision) for the application of the NFV framework to mobile networks [45].

More precisely, the service models typical of cloud computing could be adopted

through a NFV-as-a-service paradigm, where single VNFs, or entities of the standard

architecture described in Section 2.1.3, are provided on the market by InPs as

services [46].

In order to better understand the potential of NFV in terms of the economy of scale,

we briefly discuss the specific case of CPEs [34], however, similar observations can

be made for other network components. CPEs are typically made up of multiple

functional blocks (e.g., routing, switching, modem, firewall, radio, etc.), which, for the

most part, are embedded in hardware. In case a modification is needed, in the best

scenario, a firmware upgrade could be executed remotely or by the same customers.

However, whenever substantial upgrades are needed and cannot be achieved by a new

firmware release, either the intervention of a specialized technician or the substitution

of the CPE could be required for every customer. In all cases, this approach would

lead to additional expenses either for the SPs or for the end users. On the other

hand, in a NFV-based approach, a cheaper solution could be achieved by flexibly

modifying the needed VNFs at the customers’ premises, or by re-allocating part of

the CPE’s VNFs to one of the InP’s distributed DCs.
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Figure 2.2: Network’s layered view [47].

2.1.2 Software Defined Networking

Legacy networks are very prone to configuration errors and undesidered behaviours

such as packet losses, establishment of undesidered paths, or service agreement

violations [48]. Besides, as introduced in Section 2.1.1, special-purpose and proprietary

systems are typically adopted by network owners, which lead to costly upgrades

that impede innovation (e.g., the transition from IPv4 to IPv6 started 26 years ago

and still it is not fully accomplished [49]). More in detail, in order to counteract

network misconfigurations, many proprietary management devices, operating systems

and applications (e.g., firewalls and deep packet inspection tools) are typically

employed, and possibly developed by different vendors, which leads to high design

and operational complexity [50].

An additional factor contributing to the increase of complexity and to the lack of

flexibility in conventional networks is represented by the vertical integration tipically

adopted, that is, to the joint deployment of control and operational planes within

each network device, as shown in Figure 2.2 [47]. In particular, the high-level

network policies defined by the management plane are enforced by devices’ control

plane into their data plane, which, in turn, executes them as opportune forwarding

behaviour. In case of network upgrade, the control plane of each device involved

with the modification has to be manually updated (i.e., by installing new firmware
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Figure 2.3: SDN architecture [47].

or, in the worst case, upgrading the hardware), which translates into costly and very

long deployments [49]. A good example is represented by IP networks, which adopt

distributed transport protocols embedded in switches and routers through low-level

and vendor-specific control mechanisms [51]. Finally, the lack of flexibility in existing

networks is a clear impairment also in the case of faults and load changes, as no or

limited support can be implemented for dynamic reconfiguration, and because of the

local network state awareness provided by co-located control and data planes.

SDN is an alternative architecture for transport networks introduced in 2010 by

Stanford University [52], while studying a novel interface between control and data

plane (i.e., OpenFlow [52–54]), which could guarantee: i) network abstraction, ii)

flexibility, iii) reconfigurability, and iv) adaptability [47,55]. Below, we describe SDN

key principles, which give rise to the layered architecture described in Figure 2.3 [47]:

� Breaking the vertical integration by control and data plane decoupling:

The control logic is extracted from the network devices, which become generic

packet forwarding elements. To this aim, the open southbound API (e.g.,

OpenFlow [52–54]) enables a driver equivalent abstraction, which separates
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Figure 2.4: OpenFlow enabled device [47].

devices’ logics from the underlying hardware, as shown in Figure 2.3.

� Making forwarding protocols flow-based (instead of destination-

based): A flow is a sequence of packets undergoing identical service policies

from source to destination, and identified by forwarding devices via a set

of matching fields, as illustrated in Figure 2.4 [53]. This approach enables

unique flexibility, as the forwarding behavior of a given network device (e.g.,

load balancer, traffic shaper, etc.) can be defined as a set of actions (e.g.,

dropping, or forwarding instructions) over packets with the same flow identifier.

Therefore, different network components (e.g., routers, switches, firewalls) can

be implemented by integrating different packet-handling rules over a generic

forwarding device, in the form of flow tables’ pipelines [52]. For instance,

priorities and QoS customization can be expressed over different rules by

following the flow tables’ sequence number and the row order within each

table. Besides, as shown in Figure 2.4, network awareness could be gathered

by computing statistics on the matched packets, which could be used for

notification tools (e.g., state change alarms) [56].

� Centralization of the network’s control logic: The control plane is

centralized and aggregated from each device into a common SDN controller,

also known as network operating systems (NOS) [50]. The NOS provides

network abstraction at a global level, as well as resources for flexible network

programming, indeed, it is typically runned as a software platform on COTS

technology. Similarly to an operating system for IT appliances, it simplifies

the network reconfiguration and upgrade, by direct update and enforcement of

the data plane policies through the southbound API [57].
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� Enabling network programming through high-level applications:

Network applications are deployed in software on top of the NOS, which

are interpreted and enforced by the NOS over the underlying data plane

infrastructure through the open northbound API [58]. As shown in Figure 2.5,

the NOS is capable of configuring each network device’s flow tables for implementing

the forwarding behaviour required by the applications. Besides, through the

NOS, information on the global status of the data plane, as well as essential

services (e.g., device and link discovery, or topology astraction), can be accessed

by network applications developers. In conclusion, the NOS is a platform for

high-level and unified network programming, in contrast with the proprietary

and device-specific control tools tipically used in legacy networks (e.g., Cisco

IOS and Juniper JunOS). Finally, the NOS is also responsible for implementing

security mechanisms capable of guaranteeing hierarchical isolation among the

rules created by different priority applications (i.e., the rules generated by a

given application should only be able to modify those created by lower priority

applications [59,60]).

It is important to remark that a logically centralized control plane does not necessary

require a physically centralized system. Indeed, at least in big network deployments,

a single entity for managing the whole network would result in poor performance

and scalability, and it would represent a single point of failure, thus providing poor

reliability guarantees [61,62]. Consequently, a combination of physically distributed

NOS is tipically adopted [61,63,64], each managing a different portion of the network.

To this aim, north and southbound APIs are completed by east/westbound APIs,

as illustrated in Figure 2.6, for the interconnection and coordination of multiple

controllers (e.g., for exchanging controlled devices, topological information or network

status, as well as for monitoring and notification services).

With respect to the role of SDN in the realization of fully programmable networks,

the abstraction achievable through high-level network management applications is

expected to address the limitations of the low-level instruction sets typically used in

conventional networks (i.e., complex and device-specific configurations, incomplete

or conflicting forwarding rules, fault sensitivity, etc.) [60]. Indeed, the easier

(re)configuration of the forwarding devices would allow the network programmers

to focus on the development of novel and advanced functionalities [60]. More in

detail, code modularity and portability could be available for network application
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Figure 2.5: Conventional versus SDN networks [47].

Figure 2.6: Distributed control and east/westbound APIs [47].
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programmers, and integrated development environments (e.g., NetIDE [65]) are

expected to arise with the aim of speeding up applications’ lifecycle, and reducing

deployment errors [66]. Besides, software libraries could be deployed for supporting

heterogeneous scenarios with customized network applications (e.g., home and

enterprise networks, DCs, or Internet exchange points). Finally, high-level network

programs could be exploited for defining virtual network topologies, which could

be used for providing a simplified representation of the entire network, or for

implementing network sharing by splitting the physical infrastructure into multiple

virtual networks assigned to different tenants [67].

The key concepts that characterize SDN, that is, network programmability and the

centralization of the control logic, will be embedded in the architecture proposed

in Chapter 3 for E2E network programmability in 5G. The same concepts will be

adopted in Chapter 4 for the study of efficient network sharing schemes, which

provide enhanced QoS to the users subscribers and financial incentives to the MNOs.

2.1.3 Standardization and Rollouts

The ETSI NFV industry specification group (ISG) focuses on the standardization of

architectural and operational solutions for the adoption of the NFV framework in

communication networks, with focus on the management and orchestration of VNFs.

More precisely, the ETSI NFV ISG has defined the virtualization requirements [68],

as well as the management and orchestration (MANO) architecture for the NFV

framework [37], specifying its functional components, interfaces, and related application-

programming interfaces (APIs). Besides, the ETSI NFV ISG has studied performance,

reliability and security related to the NFV framework [69], and it has provided

instructions for real-life and multi-party proof of concept (PoC) implementations [70].

Below we present the ETSI MANO NFV architecture, which is composed by three

main components as depicted in Figure 2.7 [32,34,37,40]:

� NFV infrastructure (NFVI): The NFVI is the combination of the hardware

and software resources necessary for deploying VNFs (i.e., computation, storage

and DCs’ connectivity). A virtualization layer (e.g., hypervisor-based [39,71])

extracts the required resources from the underlying hardware and makes them

available for VNFs deployment in the form of VMs with custom computation,
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storage and network units [39]. When virtualization is not implemented by

design on the available hardware, a virtualization layer can be installed on top

of an operating system, or VNFs can be deployed as applications/containers [39,

72].

� Netwok Services (NS): The NS are the ordered composition of multiple

logical blocks, that is, the VNFs, each with specific functionalities (e.g.,

gateways, firewalls, traffic shapers, etc.) and with precise interfaces for

interconnection. According to a virtualized approach, VNFs can be implemented

as the chaining of multiple VMs, possibly running in different hardware devices.

VNFs are administered by element management systems (EMSs), which take

care of VNFs’ creation, configuration, monitoring, performance and security.

EMSs provide SPs with essential information and tools for deploying and

managing high-level services, with full integration with conventional network

management systems, such as the operations support system (OSS) and the

business support system (BSS).

� NFV MANO: The NFV MANO is a vertical network management tool, that

guarantees the functionalities needed for VNFs provisioning, monitoring and

adaptation, both in terms of resource lifecycle, through virtualized infrastructure

managers (VIMs), as well as at a service level, through VNF managers and

the high-level NFV orchestrator. Therefore, the NFV MANO handles all

virtualization-related tasks necessary for supporting the NFV framework,

and has a full control over the underlying infrastructure and virtualization

framework. Besides, by being interconnected with standard network management

systems (i.e., OSS and BSS) it allows the coordination with legacy equipments

and, therefore, it provides MNOs and InPs with a unified framework for the

management of their networks with full transparency with respect to the

underlying technology.

The Linux Foundation launched the open platform for NFV (OPNFV) project [40,73]

for accelerating the adoption of the NFV framework, which produced multiple novel

components for OpenStack, an open source and standard cloud computing platform.

Indeed, although many other cloud computing platforms and controllers exist in the

market (e.g., open source CloudStack and Eucalyptus, or commercial solutions such

as Microsoft Azure, Google Cloud, Amazon Web Services), OpenStack has become

the de facto technology for the VIMs due to its wide adoption by the IT industry
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Figure 2.7: Network function virtualization architecture [35].

for managing large-scale cloud deployments. In particular, OpenStack provides a

solution for Infrastructure-as-Service (IaaS), according to which it is possible the

composition of different services (e.g., for orchestration, networking, computation,

storage, etc.), each with an open API for easy integration. In the past releases,

thanks to the OPNFV efforts, OpenStack adapted some of its services for supporting

multiple features required by NFV, which have been successively included in the

ETSI NFV ISG standardization efforts [74].

As introduced in Section 2.1.2, another possible approach for the innovative deployment

of communication networks consists in principles such as the logical centralization

of the control plane, separated from the data plane, and in the programmability

of flow-based network functionalities. Although these design principles find their

roots in a series of paradigm shifts proposed in the past fourty years [50,75,76], they

gained the attention of the literature and of telecommunication industry only during

the last decade. Indeed, over time, the motivations introduced in Chapter 1 pushed

vendors and InPs towards a more competitive and profitable implementation of next-

generation networks, which began with the proposal of OpenFlow as southbound

API for SDN [40,52].
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Figure 2.8: Integrated SDN and NFV MANO architecture [39,78].

To date, multiple rollouts of SDN-based networks have been carried out. For

instance, Google has adopted SDN-based solutions for the interconnection of its

DCs with the objectives of increasing efficiency and reducing costs [63]. Besides,

many are the ongoing efforts promoted by carriers, device manufacturers, InPs and

SPs for the adoption of SDN through open standardization. For instance, Google,

Facebook, Yahoo, Microsoft, Verizon, and Deutsche Telekom formed the Open

Networking Foundation (ONF) [77], while Cisco, Ericsson, IBM, Juniper Networks,

Microsoft, NEC, Red Hat and VMware launched the OpenDaylight initiative,

hosted by the Linux Foundation [64]. Finally, ETSI proposed guidelines for the

deployment of SDN networks within the NFV framework according to the integrated

architecture represented in Fig. 2.8 [78], while the Broadband Forum (BBF) released

recommendations for the support of SDN in broadband networks [79], including

scenarios where only part of the network is equipped with SDN functionalities.

With respect to the forwarding devices, many commercial vendors included support

for the OpenFlow API (e.g., HP [80], or NEC [81]). Besides, many software-based

implementations have been proposed for Layer 2 and Layer 3 forwarding devices

both with open (e.g., Open vSwitch [82] and ONF Stratum [83]) and proprietary

implementations (e.g., Pica8 [84]). As the number of SDN-based devices increases, it is

of great importance to develop multicontroller and multidomain standard interfaces.

Therefore, configuration and communication compatibility has to be guaranteed

among different vendors’ devices [52,54,77,85], in clear contrast with the proprietary

and closed solutions typically adopted in conventional networks.



2.1 Principles, Architectures and Technologies 25

OpenFlow, managed by ONF [86], has become the de defacto standard for southbound

APIs, yet, it is worth mentioning a few protocols and plugins that have been proposed

as alternative or complementary solutions. NETCONF [87] is a configuration protocol

based on Extensible Markup Language (XML) developed and standardized by

the Internet Engineering Task Force (IETF), which allows the the installation,

manipulation, and deletion of network devices’ configurations. However, contrarily

to OpenFlow, it cannot add new forwarding functionalities. The Open vSwitch

Database (OVSDB) protocol [88] has been designed to provide advanced management

functionalities in Open vSwitches, allowing the creation of multiple virtual switches

instances within the same device, setting QoS policies on the interfaces, and managing

queues. CISCO OpFlex [89] aims at enhancing the scalability by offloading part of the

control capabilities back to the forwarding devices. Finally, the OpenDaylight project

proposed Software Defined Network interfaces (SDNis), that is, east/westbound APIs

developed as applications through the northbound API [90].

Standard northbound APIs are also fundamental for guaranteeing the portability and

interoperability of network applications across heterogeneous control systems. Many

efforts have been produced in this context, such as NOSIX [91], that introduced

the abstraction of southbound APIs as device drivers for the application layer. In

alternative, the PANE controller [92] and the ONF approach presented for Open

Network Operating System (ONOS) [40,93] foresee the employment of the northbound

APIs for the dynamic and granular control of network resouces [54,86]. Interesting are

the approaches that develop the northbound APIs by exploiting SDN programming

languages, such as, Frenetic [94]/Pyretic [60,67], Procera [95], P4 [96]. Contrarily

to the convergence described for the southbound interface, a unified northbound

interface has not been identified yet. Indeed, as very diverse requirements can

correspond to different applications, vertically oriented northbound APIs are likely

to arise as market standards [47]. As a confirmation, existing SDN controllers often

come with their own northbound APIs, which are mainly Java based, or deployed

according to REpresentational State Transfer (REST) and REST Configuration

Protocol (RESTCONF) approaches [40].

Many SDN controllers have been proposed in the past decades, each with different

approaches in terms of distribution of the control logic, south/northbound APIs,

device compabitibility and integration with the NFV framework [97, 98]. Some of

the existing NOS are proprietary, such as, the NEC’s Network Operation Engine
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(NOE) [99], Juniper’s Contrail Controller [100], and Nicira’s NOX [50], which

has been successively intergrated with VMware’s Software-Defined Wide Area

Network (SD-WAN) technology [101]. However, many other controllers have been

proposed in the literature, such as, Onix [61] and Meridian [102], while some others

have been introduced by the open community, such as, the Linux Foundation’s

OpenDayLight [64], the Big Switch Networks’ FloodLight [103], and the ONF’s

ONOS [40,93,104] controllers.

Among the proposed solutions for SDN, some adopt a centralized control plane (e.g.,

Floodlight [103]), because of the high throughput enabled in this configuration by

the high parallelism of cloud-based multicore computer architectures. Indeed, many

SDN controllers target very specific niche markets, such as enterprise networks,

cloud providers and telecommunication companies, with strict requirements in

terms of throughtput (e.g., Meridian [102], Juniper’s Contrail Controller [100], and

VMware’s SD-WAN controller [101]). On the other hand, Onix firstly introduced a

distributed control plane with east/westbound APIs [61], followed by ONOS [40,93]

and OpenDayLight [64, 105]. This design approach often results in the support of

use cases with more diverse requirements.

2.2 Programmability Extensions to Mobile Networks

As for DCs and transport networks, deploying virtualized and programmable mobile

infrastructures is a fundamental requirement for the efficient provision of enhanced

services in next-generation networks. In parallel to the advances in the NFV

framework and in the SDN architecture, many solutions have been proposed for their

integration in mobile networks. In this section, we present different building blocks

for the enabling of programmability in mobile networks from different perspectives.

On the other hand, we refer to the Chapter 3 for a holistic approach to network

programmability in 5G networks.

The concept of centralization has been firstly introduced by China Mobile in 2010 [16],

with the proposal of the Centralized-RAN architecture described in Figure 2.9a,

where BSs are split into: i) a remote radio head (RRH) responsible for analog radio

frequency functions, ii) a base-band unit (BBU) for digital base-band processing,

and, iii) a fronthaul link for the connection of the two components. Therefore, the
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Figure 2.9: Centralized and Cloud-RAN.

main difference with SDN is the physical centralization of part of the data plane’s

functional blocks, rather than a logical centralization of the control plane. However,

this approach still leads to well documented advantages that have been studied in

large-scale trials [16]. Indeed, by co-locating the BBUs of multiple RRHs CAPEX

and OPEX can be shared for multiple BSs, with a 41% power consumption reduction

demonstrated in [106] thanks to shared cooling costs.

Once the intelligence of multiple network elements (NEs) is centralized, many

extensions towards efficient network deployments and management are unlocked,

as the global view on the network state can be exploited for enabling optimized

and cheaper coordination among neighbouring BSs. For instance, mostly in dense

HetNet deployments, enhanced interference management and coordinated multi-

antenna/multi-point transmission technologies can be achieved with lower traffic

loads on the backhaul, as the management entities of different NEs are co-located.

Besides, the basic principles underpinning network programmability (cf. Section 2.1)

can be explored for an optimal utilization of physical resources, as well as for

simplifying the development of novel services and business opportunities.

Following an SDN-based approach, multiple NEs’ control plane could be logically

centralized, thus providing efficient, scalable and platform-agnostic mechanisms for,

but not limited to, seamless mobility, load balancing, radio resource allocation to

RRHs/users, QoS and access control policies [58,107]. In particular, as depicted in

Figure 2.10, the fronthaul network connecting BBU-pools to RRHs could be reliably

implemented with SDN switches managed by a common controller, capable of defining

which RRHs to support with a specific BBU-pool (i.e., defining routes, data rates,
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Figure 2.10: Fronthaul SDN implementation [111].

and delays among RRHs and associated BBU-pools), as well as optimizing inter-

BBU communications (e.g., when coordination is needed among RRHs supported by

different BBU-pools) [39, 108,109]. Finally, the network abstraction enabled by SDN

would allow the adoption of simplified topologies, as well as the implementation of

multiple virtual mobile networks within the same physical infrastructure, which could

be managed and customized through standardized APIs [39, 40]. We remark that an

SDN-based strategy is crucial mostly in the case of dense HetNet deployments, as

it could guarantee a simplified and scalable approach for counteracting, or at least

mitigating, RANs’ bottlenecks, while reducing OPEX and overheads [110].

Another important technological step enabled by centralized architectures in mobile

networks is the employment of data-centric approaches for the development of

network (data and control plane) functionalities. More in detail, the integration of

the NFV framework in next-generation networks enables the concept of Cloud-RAN

(C-RAN), according to which special-purpose and vendor-specific BBU-pools are

substituted with COTS DCs, as represented in Figure 2.9b. [112,113]. Therefore, with

respect to the Centralized-RAN architecture, base-band processing functionalities

are implemented as VNFs, enabling additional efficiency and scalability by a suitable

placement of the VNFs’ instances within the network’s DCs. For instance, the VNFs
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used for the coordination of multiple RRHs could be placed within the same DC

(e.g., user association, resource allocation, coordinated transmission, or interference

management).

In a C-RAN architecture, more flexible associations can also be implemented between

BBUs and RRHs. More precisely, a specific RRH’s BBU could be deployed over

multiple DCs, besides, specific BBU’s VNFs could be adapted as a function of the

traffic load and even shared by multiple RRHs [114–116]. For instance, the overall

network power consumption could be reduced by aggregating the BBU resources

needed for serving a low-traffic region, thus minimizing the total number of DCs

used [117,118]. We remark that adaptive strategies for the utilization of DC resources

is particularly relevant in the case of C-RAN based HetNets (H-CRANs), as the higher

OPEX required by denser deployments can be reduced by optimizing the utilization

of virtual BBU-pools’ resources [115,119]. In Chapter 4, we will demonstrate how

the efficient utilization of BBU and spectrum resources can lead to beneficial sharing

schemes among MNOs.

The deployment of data-centric technologies within telecommunication infrastructures

leads to the edge computing paradigm, depicted in Figure 2.11, which foresees the

deployment of small-scale cloud infrastructures for third-party service provision,

also known as cloudlets, in the proximity of the end users (i.e., within the RAN

or CN) [39,120]. Therefore, SPs can deploy data-centric services and delay-critical

applications (e.g., localization services, enhanced video processing, augmented reality,

IoT, e-health/telemedicine applications, etc.) at the edge of the network, with strict

guarantees in terms of E2E latencies [39]. Besides, network operators can implement

caching strategies for alleviating network congestion on the transport network by

offloading popular contents closer to the end users. On the other hand, large-scale

and centralized DCs will probably remain the reference technology for delay-tolerant,

computing-intensive tasks, and for storing less popular content.

Within the edge computing paradigm, research community, manufacturers, mobile

operators and standardization bodies proposed several alternatives for the convergence

of IT and telecommunication services, among the others, mobile edge computing

(MEC) [39,121] and fog computing [39,120,122]. One possible way of cathegorizing

different edge computing solutions takes into consideration the distance of the cloud

resources with respect to the end users, as summarized in Figure 2.12. More in detail,
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Figure 2.11: Edge Computing paradigm [120].

while fog computing is a general approach for bringing cloud computing functionalities

to the lower layers in multiple domains’ and industries’ networks, MEC focuses on

the deployment of cloudlets at the edge of the RAN in telecommunications networks.

Particularly interesting is the Fog-RAN architecture introduced in [123], which

flexibly integrates the edge computing paradigms with the C-RAN infrastructure, by

allowing the sharing of cloudlets resources by both RAN functionalities and content-

oriented SPs. An important feature enabled by the integration of network and cloud

functionalities is the possibility for SPs to exploit radio state information provided

by MNOs for the provision of innovative context/location-aware applications and

services (e.g., augmented reality, IoT, etc.) [39,124].

Independently from the exact placement of the cloudlets within the network, the edge

computing and NFV paradigms can be easily integrated by deploying at the cloudlets’

premises also the VNFs needed for the network functionalities [39,120,122]. According

to this approach, a cooperative and distributed strategy can also be implemented for

boosting communication and computation capacity by exploiting multiple cloudlets,

as well as for reducing OPEX [39, 120, 124, 125]. Indeed, VNFs workflows can be

reconfigured and scaled when necessary, in order to provide adequate services in

specific regions. For instance, in case of overloaded regions, extra cloud resources

could be provided to both NFs and resource-intensive applications through cloudlets

in the proximities [123]. Besides, in case of services with strict time requirements,
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both VNFs and cloud resources necessary for service provision could be moved closer

to the place where they are made use of [123].

In conclusion, most of the existing approaches to edge computing share the following

objectives:

� The reduction of transmission costs and improvement of QoS by avoiding

bottlenecks at the core network and at the Internet backbone (i.e., increasing

capacity, reducing service response time and limiting network congestion).

� Providing third-party application developers with real-time network state

awareness and E2E QoS provisioning capabilities.

� The extension of the value chain by attracting new vertical segments in the

market ecosystem, thanks to the rapid deployment and testing enabled for

innovative applications and services.

In Chapters 5 and 6, the concept of E2E QoS provision at the edge of the network,

and the financial incentives stemming from alternative business models, will be

exploited for deriving novel admission schemes. The timeliness and effectiveness of

these schemes will be proved for the support of delay-critical applications, and for

the optimization of InP’s profits and SPs’ competitiveness.

2.3 Summary

In this chapter, the basic principles, architectures and candidate technologies for

network programmability are reviewed, with focus on next-generation services,

sustainable network upgrades, and fast innovation. First, the adoption of a virtualization

framework and the centralization of the control logic are identified as the building

blocks for enabling programmable policies, custom QoS and dynamic resource sharing.

Standardization efforts and rollouts are then presented, together with the extensions

to mobile networks. In particular, the advantages in jointly deploying connectivity

and third-party service functionalities at the edge of the network (possibly within

the same data-centric infrastructure) are discussed in terms of network scalability

and enhanced service provision.
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Figure 2.12: Cloud computing in mobile networks: existing strategies [122].

This chapter lays the basis for a clear understanding of the architectural and

technological transition towards 5G, by introducing the necessary upgrades needed

for achieving E2E network programmability and alternative revenue opportunities,

as discussed in the following chapters. In Chapter 3, the solutions described in

Sections 2.1.1, and 2.1.2, will be integrated in a novel architecture capable of

guaranteeing fine-scale sharing and dynamic QoS, jointly over different segments of

the network (i.e., RAN, CN, transport network and cloud infrastructure), within a

unified framework for its monitoring and management. More in detail, the extensions

for mobile networks presented in Section 2.2 will be enhanced in Chapter 3 and used

in Chapter 4 for the study of beneficial sharing schemes among MNOs, exploiting

efficient BBU and spectrum resource utilization. Finally, the same concepts will

be adopted in Chapters 5 and 6 for flexible and timely admission schemes, capable

of supporting diverse service types by third-parties, especially in case of limited

resources and strict time constraints.



Chapter 3
Enhanced Architecture for E2E

Fine-Scale Sharing in 5G

Overview

The ever increasing traffic demands foreseen for the evolution to 5G has stressed the

need for increasing network capacity. As the network densification has almost reached

its limits, mobile network operators are motivated to share their network infrastructure

and the available resources through dynamic spectrum management. Although some

efforts have been made in this direction by concluding sharing agreements at a

coarse granularity (i.e., months or years), the 5G developments require fine timescale

agreements, mainly enabled by network slicing. In this chapter, taking into account

the radical changes proposed for next-generation networks, a thorough discussion is

provided on the challenges that network slicing brings at different network segments,

while introducing a new entity capable of managing slicing in the end-to-end.

Contributions

[J1] M. Vincenzi, A. Antonopoulos, E. Kartsakli, J. Vardakas, L. Alonso, and C.

Verikoukis, “Multi-tenant slicing for spectrum management on the road to 5G,”

IEEE Wireless Communications, vol. 24, no. 5, pp. 118–125, 2017. (Area:

Telecommunications; Quartile Q1; IF: 9,202).
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3.1 Related Works

As introduced in Chapter 1, over the years MNOs seeked new business models for

chasing new incomes, for reducing the costs of network ownership, and for optimizing

the resource utilization. Below, we provide a review of the main technological and

architectural upgrades introduced through different generations of pre-5G networks.

Then, we introduce the slicing paradigm as candidate solution for the support for

fine-scale sharing and QoS customization in 5G.

3.1.1 Active Sharing and Programmability in pre-5G Networks

Active RAN and CN sharing have been introduced in 3GPP Rel. 6 [126] for reducing

OPEX by jointly scheduling active elements’ resources (e.g., eNodeB antennas).

Afterwards, 3GPP Rel. 12 [127] added a more complex sharing scheme, where MNOs

act as InPs and sell their spare capacity to MVNOs looking for coverage and capacity

extension. In this direction, the reference architecture is the one presented in 3GPP

Rel. 14 [20] and illustrated in Fig. 3.1, where the master operators (MOPs) (i.e.,

the InPs and MNOs) share their RAN and/or CN with participating operators

(POPs) (i.e., the MVNOs). MNOs can act as MOP or POP depending on whether

they offer or seek coverage/capacity extension. Besides, each NE, such as eNodeBs

(eNBs), home subscriber server (HSS), serving/packet data network (PDN) gateway

(S/P-GW), mobility management entity (MME), and policy and charging rules

function (PCRF), is associated with an element manager (EM), possibly co-located

within the NEs premises. The overall network is then handled by a network manager

(NM), which, through type 2 interface (Itf-N), provides end user functions for the

management of single NEs or specific subnetworks, defined according to NEs’ vendor,

technology or employment in RAN/CN functionalities. Finally, the MOP network

manager (MOP-NM) can open RAN/CN management functionalities to the POP

network manager (POP-NM) through type 5 interface, with multi-vendor and multi-

technology support. Both EMs and MOP-NM shall adopt self-organizing network

(SON) functions for the automation of the sharing mechanisms.
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Figure 3.1: Standard Network Sharing Architecture.

Sharing among MOP and POPs is regulated by agreements on legal, financial,

technical, and operational aspects, defining shared resources, rights and duties of

each operator. These agreements normally stipulate long-term commitments, which

represent a limitation, in terms of flexibility, for pre-5G network sharing mechanism.

With respect to RAN sharing, an on-demand automated capacity brokering study

has been proposed in 3GPP Rel. 13 [127] for scenarios like periodical capacity excess

during night hours, or short-term extra capacity needs during special events (e.g.,

sports, concerts, fairs). Besides, according to 3GPP Rel. 14 [20], MOP shall optimize

network resources while respecting the agreed shares of each POP, and shall be able

to perform adequate pricing, by recording the resource usage of each POP compared

to the planned one, differentiating between downlink and uplink, and among different

QoS profile criteria.

3GPP foresees support for network programmability by securely opening network

services and capabilities to third parties, under SLAs and with abstraction from

underlying network interfaces and protocols. We remind that, according to the

architecture proposed by 3GPP Rel. 14 [20] and illustrated in Figure 3.1, each

NE is associated with a possibly co-located EM, and MOPs can manage the whole

network through their MOP-NM, which provides management functions over different

sub-networks. In LTE-A Rel. 14 [128], the MOP can open RAN/CN management

functionalities to third parties through the Service Capability Exposure Function
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(SCEF). More in detail, the interfaces among SCEF and the RAN/CN entities are

defined within the trust domain of the MNO, while open APIs could be enabled

towards the third-party OTTs/verticals. Examples of exposed services include

network access authorization, traffic prioritization, charging policies and network

statistics, among others. The PCRF is in charge of taking decisions on QoS-tailored

service requests, following the standardized SCEF signaling flow for sessions set up.

3.1.2 Network Slicing towards 5G

Mobile communication systems preceding 5G lack in flexibility, providing no support

for custom QoS provision and elastic network sharing, which in turn is expected to

be the key enabler for a sustainable road to 5G. Since Rel. 14 [129], the possibility

for SPs to dynamically provide customized services is explored by 3GPP, mainly

differentiated in three well-known use cases:

1. LTE-like telecommunication services for MNOs, MVNOs, and OTTs

2. High capacity video/audio streaming for OTTs (i.e., eMBB)

3. Massive machine-type communications and delay-critical services for verticals

and OTTs (i.e., mMTC and uRLLC)

Leveraging the solutions for network programmability introduced in Chapter 2,

network slicing has been proposed for providing both fine-scale sharing mechanisms

among InPs/MNOs and dynamic QoS to third parties (i.e., MVNOs, OTTs and

verticals) [22] and has already attracted the attention of the main standardization

bodies [39]. Through this paradigm, well-known cloud service models such as Software-

as-a-Service (SaaS) and IaaS can be extended to the network level, thus enabling the

Network-as-a-Service (NaaS) concept [22,130,131]. In particular, if SaaS and IaaS

provide third parties with software licenses (e.g., for mailing and backup applications)

and hardware resources (e.g., storage and computation resources), respectively, on a

subscription basis and with full abstraction from the underlying systems [132], NaaS

provides SPs with parallel sets of customized resources, that is, the network slices,

which are dynamically isolated from the pool of network resources.

A layered representation of a possible slicing implementation in 5G networks is
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Figure 3.2: Flexible network slicing in 5G.
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depicted in Figure 3.2, according to the use cases provided in Rel. 14 [129]. At

the bottom, the physical infrastructure, which is split among isolated slices and is

abstracted in each slice as:

1. Cloud computing resources, depicting the pool of DCs for service development

2. A virtual switch, symbolizing the E2E pool of communication resources (access,

core, and transport network) used for service delivery

The LTE-A portion of the network is highlighted in light grey color, with respect

to the overall 5G network, and its lack in flexibility and scalability is represented

by locking the support for slicing over its infrastructure. Indeed, legacy networks

are generally composed of special-purpose hardware, capable of implementing only

specific functions. Consequently, computing, storing and communication resources

cannot be flexibly customized, with no or limited support for QoS management. On

the other hand, through slicing, MNOs can extend coverage and capacity in real-time,

avoiding the traditional long-term agreements described in Chapter 1, which may

not address the actual resource requirements of the network [10]. Besides, slices can

include heterogeneous resources from the RAN, the transport network and the cloud

infrastructure.

In order to enable this holistic vision of network programmability, E2E network

management has to be performed, that is, jointly for different segments of the network

(i.e., RAN, CN and, when needed, transport network and cloud infrastructure). In

particular, for respecting both SPs requirements and 3GPP protocols constraints,

the slicing of cloud DCs and SDN-based packet data networks (PDNs) has to be

planned jointly to the orchestration of RAN resources [133,134]. Indeed, sufficient

VNFs have to be instantiated in centralized and/or edge DCs for third-party service

provision, while performing RAN operations according to standards’ constraints, such

as the hybrid automatic repeat request (HARQ) timing. Besides, the appropriate

connectivity among VNFs composing a specific service has to be guaranteed by

properly dimensioning the transport PDN, in terms of bandwidth, topology, traffic,

device CPU, and forwarding tables [47].

In conclusion, E2E slicing mechanisms need to be defined by integrating algorithms

for RAN scheduling [36] and SDN flows’ optimization (in transport and backbone
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PDNs) [47] with centralized/distributed cloud resources orchestration (for RAN/CN

NFVs and content-oriented services) [119]. On the other hand, in order to achieve

sufficient incentives for the network upgrade towards next-generation networks, InPs

need to: i) minimize the OPEX thanks to fine scale resource allocation [133], and

ii) maximize the number of profit opportunities, that is, the admission of diverse

service requests (i.e., with different QoS requirements), constrained by the resource

availability [133,135].

In 3GPP Rel. 15 [6], the RAN sharing requirements for 5G have been defined such

that a maximum and minimum allocation can be statically reserved to each POP,

over a specified period of time and/or region. On the other hand, if unplanned

additional capacity is needed by a POP, available spare capacity shall be dynamically

allocated. Besides, in the same release, 3GPP introduces an additional entity for

the exposition of management functionalities to third-paties, that is, the Service

Exposure and Enablement Support (SEES), besides, REST compliant APIs [136]

are enabled towards third-party OTTs/verticals, such as OpenAPI [137]. In Rel.

16 and 18 [6, 138], 3GPP introduced the concept of dedicated network slices for

efficient resource utilization and enhanced third-party user experience, besides, the

requirements for slicing in 5G have been defined as:

� The on-demand slice creation, allocation, modification, and deletion with

isolation guarantees

� The provision of suitable APIs to third parties for slice monitoring and

management

� The elastic adaptation, within minimum and maximum limits, of the slice

capacity

� The support for slice prioritization

� Multi-slice/multi-service support for a given user

In other words, a mechanism for fine-scale and flexible slicing orchestration is needed

for slice customization according to requirements on functionality (e.g., priority,

charging, security), performance (e.g., latency, data rates) or set of served user

equipments (UEs) (e.g., Public Safety users, corporate customers). An interesting
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approach is presented in [139], where the 5G slice broker is defined as an entity co-

located with the MOP-NM and the SCEF/SEES. This broker provides management

capabilities to third parties (through the Itf-N interface) and handles SLA negotiations

through SCEF/SEES. The necessary interface enhancements for automated slicing

management are also presented in [139], as well as a two-layer resource allocation

strategy, such that the pool of resources is first split into different slices, followed by

intra-slice resource optimization, according to the specific policies of slice tenants.

Because RAN/CN network slicing has been mainly addressed in the literature, in the

next section, we propose possible enhancements for enabling E2E slicing mechanisms

in 5G for full QoS support and fine-scale sharing, while we refer to the Section 3.3

for the latest standardization efforts in this direction.

3.2 Proposed Enhancements for E2E Slicing in 5G

In this section, architectural enhancements are proposed for enabling a holistic

approach to network programmability and sharing in 5G networks. In particular,

the building blocks introduced in Section 2.2 are composed for enabling fine-scale

multi-tenant slicing, flexible full-network sharing, and E2E QoS guarantees. First, a

brief review is provided on the technological innovations required at the data plane

for making network slicing a reality, then the enhanced control/management entities

for flexible E2E network slicing are defined, and, finally, the Network Slice Auctioneer

is introduced for E2E slicing bargaining and QoS support. The proposed architecture

is compared with conventional approaches for highlighting the importance of network

flexibility at all layers in order to enable E2E slicing support. In Fig. 3.3, data and

control/management planes of legacy and proposed 5G architecture are illustrated

(in grey light and white, respectively), where the network infrastructure is divided in

three segments: RAN/CN, transport network, and cloud infrastructure.

3.2.1 Data Plane Virtualization

With regard to the data plane (at the bottom of Fig. 3.3), the 5G infrastructure

should evolve by employing the most promising SoA technologies for network

virtualization. More precisely, according to the H-CRAN architecture introduced in

Section 2.2, eNBs are replaced with software defined RRHs in charge of analog radio
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Figure 3.3: Enhanced network sharing architecture for E2E network slicing

frequency functions, while the BBUs in charge of digital baseband functionalities are

centralized and deployed as virtual instances in a COTS small-scale DC [119]. The

H-CRAN centralized architecture enables fast and enhanced network optimization

(e.g., coordinated transmission functionalities, interference management, and energy

efficiency) with considerable CAPEX/OPEX reduction [140]. The local DCs are

connected among themselves, and to the set of available RRHs, through a software

defined wired/wireless fronthaul (cf. Section 2.1.2), which substitutes or integrates

the legacy backhaul.

The DCs deployed within the RAN/CN are exploited for implementing RAN/CN

functionalities as well as for supporting the edge computing paradigm introduced

in Section 2.2. The aforementioned elastic utilization of H-CRAN resources is

enabled by the NFV paradigm presented in Section 2.1.1, which improves scalability

by virtualizing and decomposing network services into a set of interoperating

subfunctions, that is, the VNFs, which can be migrated and instantiated in different

COTS platforms. Like fronthaul and backhaul, the legacy transport PDNs, generally

created out of special-purpose and vendor-specific hardware, are substituted with

programmable SDNs, introduced in Section 2.1.2, which interconnect different
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geographical areas and offer access to the cloud DCs. These aforementioned upgrades

improve network flexibility and enable enhanced QoS provision, with significant

impact on the value chain.

3.2.2 Control and Management Programmability

The top part of Fig. 3.3 shows the significant enhancement of the control/management

plane achievable by adopting the programmability principles defined in Section 2.1.3.

Thanks to the H-CRAN architecture, multiple standalone RAN/CN EMs can

be centralized and possibly co-located with the MOP-NM, to which they are

interconnected through software defined logical interfaces. In addition, the virtualization

paradigm enables the flexible orchestration of the control/management entities in the

form of VNFs, in such a way that prompt control/management operations can be

performed by appropriately migrating the correspondent VNFs. For instance, VNFs

with strict time requirements can be instantiated close to where they are required,

and multiple VNFs with high interconnectivity demands can be co-located in the

same DC.

In the proposed architecture, MOP-NM, SCEF/SEES, and slice broker are co-located,

as in [139], since this approach offers enormous architectural advantages. More

specifically, the slice broker can easily negotiate SLA requests and expose network

control capabilities to third-party providers through the SCEF/SEES interfaces, as

well as it can gain direct access to the RAN/CN monitoring and configuration through

the MNO-MN. Moreover, encouraged by the network virtualization technologies

proposed for next-generation infrastructures, the MOP-NM, the SCEF/SEES, and

the 5G slice broker should be integrated in software for faster negotiation and

management of network slices. The automated allocation of network resources

through the described slicing architecture enables the appropriate programmability

degree needed for flexible network adaptation to different services with diverse

requirements. Moreover, on-demand slice orchestration is expected to take place at

fine timescales, in such a way that resource usage is optimized with small granularity

while competing third parties can get sufficient NaaS opportunities.

Besides the great benefits for third parties, the integration of MOP-NM management

functions with 5G slicing orchestration also enables a new paradigm for flexible multi-

tenancy among MNOs/InPs and MVNOs. Indeed, the pre-5G long-term contractual
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mechanisms for RAN/CN sharing could be substituted by automated real-time

slicing, where MVNOs without network infrastructure can reduce CAPEX/OPEX

by avoiding the deployment of the POP-NM and negotiate slices as general third-

party service providers. Likewise, according to 3GPP Rel. 14 [20], multiple MNOs

seeking coverage/capacity extension can pool their networks into a joint-venture InP,

exploiting slicing orchestration for flexible DSM and infrastructure sharing. MNOs’

shares could be translated into a minimum reserved slice allocation, while on-demand

additional capacity can be provided through dynamic slice adjustment. This new

paradigm represents a great opportunity in terms of:

1. Cost reduction thanks to infrastructure simplification

2. Flexibility improvement thanks to fine-scale slicing

while letting operators mantain the control over the underlying network. This

evolution in mobile networks is in line with the concept of economy of scale enabled

by the business model introduced in Chapter 1, where a few big market players are

specialized in the management of the infrastructure and spectrum (i.e., the InPs)1

and rent capacity to the rest of the stakeholders, which, in turn, focus on service

provisioning (i.e., third parties).

As far as fronthaul, backhaul, and transport networks are concerned, the SDN

architecture adds scalability and programmability thanks to the available open

standard controllers and interfaces, which enable efficient VNF management as well

as network-aware applications. Indeed, the SDN controller could be integrated with

the MOP-NM for flexible interconnection among VNFs, such as for the dynamic

mapping of virtual RRHs and BBUs over the fronthaul. Furthermore, similarly

to SCEF/SEES, the SDN controller provides third parties with dynamic network

management support, by allowing them to flexibly program the control plane through

an open northbound interface. Therefore, third parties can define network slices

through the SDN controller, by isolating the required bandwidth on the network

links and by properly configuring the forwarding tables in switches and routers [54].

Besides, the proposed architecture introduces further enhancements in terms of

CAPEX/OPEX reduction. In particular, according to Fig. 3.3, multiple controllers

1For instance, the Spanish operator Telefónica has created a subsidiary company for the

management of its infrastructure on a global scale, aiming at improving the ROI through third-party

service provision [141].



44 Enhanced Architecture for E2E Fine-Scale Sharing in 5G

placed at the forwarding devices’ locations are substituted with a central controller for

scalable network configuration. Nevertheless, the network programmability features

provided by the independent adoption of a slice broker for the RAN/CN, and an

SDN controller for the fronthaul, backhaul, and transport networks, are not sufficient

to ensure full E2E QoS support.

3.2.3 E2E Network Slice Auctioneer

In the 5G market ecosystem introduced in Chapter 1, third parties set more stringent

requirements over underlying networks and demand a more active role in E2E network

customization. Albeit network management and QoS prioritization mechanisms

are partly supported by conventional networks, or foreseen for next-generation

networks, they are traditionally deployed according to proprietary policies and

mostly limited to specific network infrastructure (i.e., RAN/CN, transport network

or cloud infrastructure), which leave third parties with limited or no control over full

network optimization strategies.

According to the architectural enhancements discussed in this section, third parties

can negotiate network slices by direct communication with the 5G slicing broker for

RAN/CN slicing and with the SDN controller for the transport network slicing. On

the other hand, a unique framework for the automated orchestration of E2E network

slices might be sought by third parties, especially by those that are interested in

a high-level monitoring and control over the network under the agreed SLAs, and

willing to leave low-level optimization (e.g., resource allocation) to network owners.

To this end, we propose the introduction of a novel entity into the management plane,

that is, the E2E Network Slice Auctioneer.

As described in Figure 3.3, we envisage the deployment of the Network Slice

Auctioneer as a third-party application running in a cloud infrastructure, which

behaves as an intermediary between the InPs (i.e., the owners of RAN/CN, transport

networks and edge/centralized cloud infrastructure) and the third parties (e.g.,

MVNOs or OTT/vertical SPs), and provides the following services:

� Receiving third parties service requirements

� Bargaining SLAs with InPs (i.e., MNOs, transport network owners and cloud
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infrastructure providers) on behalf of the third parties, which compete for the

allocation of appropriate E2E network slices

� Monitoring the allocated slices through the open APIs provided by the network

programmability mechanisms defined in Sections 2.1.2 and 2.1.3

� Dynamic adaptation of the network slices to varying service requirements,

fluctuating network conditions (e.g., wireless channel state or traffic load) and

resource availability, with the level of abstraction desired by third parties

� Billing according to each InP’s SLAs, while charging third parties with for the

intermediation

� Managing the E2E slice lifecycle (e.g., releasing the corresponding resources

when slices are no longer required by third parties)

Similarly to the controllers and orchestrators studied in Sections 2.1.2 and 2.1.3,

the E2E Network Slice Auctioneer is a tool that exploits the features of network

programmability for simplifying and optimizing network design and management,

as well as for fostering innovation. However, the main difference lays in its unified

approach to E2E network abstraction and optimization. Indeed, through its integrated

interfaces with multiple controllers, domains and technologies, third parties can access

dedicated portions of both network and cloud infrastructures, designed for providing

E2E QoS guarantees. Besides, state information on RAN/CN, transport network and

cloud infrastructure can be monitored by third parties through a unique platform.

As for SDN controllers (cf. Section 2.1.2), depending on the scalability and performance

requirements of third parties, different strategies can be adopted for the implementation

of the E2E Network Slice Auctioneer. Indeed, for services with strict time constraints

or fast-fluctuating requirements, it could be implemented in the edge computing

infrastructure and act as intermediary between the 5G slice broker [139] and the edge

cloud InP, thus, providing a slicing-based extension of the Fog-RAN architecture

presented in Section 2.2. On the other hand, when service requirements undergo slow

variations and in case of, but not limited to, delay-tolerant and computing-intensive

services, a centralized approach could be adopted by deploying the E2E Network Slice

Auctioneer in the central cloud infrastructure, and adding the intermediation with the

transport networks’ InPs. Therefore, those telecommunication InPs that integrate

cloud computing capabilities in their RAN/CN could also deploy a proprietary E2E
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Network Slice Auctioneer in their edge computing infrastructure. Alternatively,

according to the new business model introduced in Chapter 1, new value chains could

be explored by SPs that decide to specialize in the deployment of (centralized/distributed)

E2E Network Slice Auctioneer services. Finally, cross-sectorial industry organizatons

could provide guidelines for the open standardization of this novel entity.

In Table 3.1, the main management entities described in this chapter are summarized,

describing their responsibilities and challenges within the flexible network slicing

paradigm described in Section 3.1.2. Most of the challenges are related with the

joint fulfillment of RAN/CN constraints and third-party service requirements, when

network virtualization technologies are employed. Indeed, although sub-millisecond

service latencies have been already demonstrated by industrial testbeds, there are

still many ongoing efforts on this topic.

Table 3.1: Orchestrators and challenges for E2E slicing in 5G

Orchestrator Responsibilities Multi-tenant slicing challenges

SON

MOP-NM

� Self-configuration

� Self-optimization

� Self-healing

� Automated setup of shared RAN/CN

(e.g., cell identity/discovery, base

station configuration)

� Joint dynamic optimization of

network resources (e.g., coordinated

transmission, interference

management, virtual BBU

optimization in C-RAN DCs)

� Automated network backup through

redundant infrastructure

SCEF/

SEES

� SLA intermediary

� Network

functionalities

exposure

Security support through:

� Slice isolation for third parties

protection

� Functionality access authorization for

MNOs/InPs safeguard
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5G slice

broker

� Flexible RAN/CN

slicing according to

SLAs

� Two level

slicing: high

priority to 3GPP

functionalities, low

to third parties

� VNFs allocation and

mobility

management

Guarantee of 3GPP time constraints

(e.g., HARQ) and service level sub-

millisecond E2E delays through:

� Cooperative distributed computing

among multiple H-CRAN DCs

� Dynamic VNFs migration among

DCs

� Dynamic management of the

RRH/BBU split of functionalities,

depending on the fronthaul

technology and the real-time

support for COTS platforms

SDN

controller

Dynamic slicing of

fronthaul, backhaul,

and transport PDNs

VNFs interconnection according to:

� Slice topology

� Service requirements

E2E

Network

Slice

Auctioneer

Dynamic real-time

E2E resource

bargaining, while:

� Optimizing

performance

� Reducing costs

Joint dynamic planning and negotiation

of network VNFs, for instance:

� Boost of delay tolerant RAN/CN

functionalities by adding extra VNFs

at the cloud infrastructure

� Delay-critical services can be moved

to the H-CRAN DC

� VNFs can be possibly shared among

more NEs for cost minimization

For instance, [142] proposed H-CRAN architecture and protocol modifications for

reducing latencies, while 3GPP Rel. 16 [143] introduced the shortening of the

hardware processing time and the provision of reduced transmission time intervals.
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Figure 3.4: 5G System architecture (3GPP Rel. 17) [138].

3.3 Recent Advances in Network Slicing for 5G

In this section, in order to provide a complete picture on E2E network slicing,

we present the most recent advances in network slicing for 5G, with focus on

standardization for E2E programmability and slice orchestration, which we briefly

compare with the approach proposed in this chapter. We refer to [39,40,144] for a

thorough discussion on recent standardization, technologies and methodologies for

E2E network slicing.

Inspired by SDN, the separation of control plane (CP) and user plane (UP) have

been standardized by 3GPP Rel. 17 [138], in order to enable scalability, flexibility

and independent deployment (e.g., according to a centralized or distributed strategy).

In addition, the minimization of dependencies between RAN and CN is promoted

and support for NFV and network slicing is enabled [138]. In particular, in RAN,

multiple logical nodes can be mapped over a single physical NE [145], while in CN

NFs can be deployed according to a distributed and scalable strategy [138]. Besides,

the modularity and reutilization in NF design and interconnection are promoted,

while, depending on service requirements on the maximum latency, UP functions

can be flexibly deployed in a central location or at the edge of the network [138].

In Figure 3.4, the standard service based architecture (SBA) provided by 3GPP Rel.
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17 is depicted, with clearly separated UP (i.e., UE, RAN, user plane function and

data nework) and CP (i.e., the rest of the NFs) NFs, and exhibited service-based

interfaces. A brief description of the main NFs is provided below:

� User Plane Function (UPF): it is a centralized entity that routes traffic

between NFs and applications. Its location and configuration can be flexibly

adjusted to the type of service required

� Data Network (DN): it represents operator services, third-party services, or

the Internet access, which, in 4G, were typically accessed through the P-GW

� Access and Mobility Management Function (AMF): it is in charge of

access control and mobility management, similarly to the MME in 4G. It also

helps in interconnecting other NFs

� Session Management Function (SMF): it is employed for creating and

managing sessions according to pre-defined policies (e.g., IP address selection

and allocation, configuration of UP traffic rules, or support to roaming),

similarly to the MME in 4G

� Policy Control Function (PCF): it provides policy rules to govern the

nework behaviour, by integrating mobility management, network slicing, and

roaming. Together with the CHarging Function (CHF), it substitutes 4G’s

PCRF

� Unified Data Management (UDM): it is used for storing subscribers’ data

and profiles, similarly to HSS in 4G

� Authentication Server Function (AUSF): it is employed for authentication

purposes, similarly to HSS in 4G

� Network Resource Function (NRF): it is a novel entity that allows NFs

functionality discovery and intercommunication via APIs, besides, it keeps

track of all NF instances’ profile

� Network Exposure Function (NEF): it is a centralized entity in charge of

the exposition of services and capabilities offered by CN’s NFs to third-parties

(see Figure 3.5), similarly to SCEF/SEES in previous releases, to MANO in

ETSI NFV architecture 2.1.3, and to the NOS in an SDN architecture 2.1.2
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Figure 3.5: NEF architectrue and AFs’ trust domain (3GPP Rel. 17) [138].

� Application Function (AF): it represents applications deployed on top of

the 5G infrastructure, which can control the traffic routing, access the NEF

by means of APIs, interact with PCF. In case of AFs trusted by the operator,

they can directly interact with the NFs within the trust domain

� Network Slice Selection Function (NSSF): it provides assistance in

the allocation of AMFs to specific users based on service requirements, and

in the selection of suitable network slice instances (NSIs), that is, a set of

NF instances and required resources (e.g., compute, storage and networking

resources) forming a network slice

� Network Slice Admission Control Function (NSACF): it supports the

monitoring and control of the number of UEs and data sessions per network

slice, together with event-based notifications and reports on slices’ status (e.g.,

to AFs). In case of reaching the maximum number of UEs, it enforces admission

control policies

In conclusion, latest 3GPP releases support many concepts introduced in Chapter 2

for network programmability, such that, the decoupling of data and control planes,
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the logical centralization of the control functions, the flexible deployment of NFs as

software instances, and according to different levels of distribution within the nework,

the exposition of NFs to third-parties. Besides, third-parties are also provided with

context awareness and notification services on the network state. Finally, 3GPP

provides support for slice paradigm and for enhanced applications (e.g., delay-critical

applications).

While the overall architecture is well defined, many open issues remain unsolved with

respect to many operation and optimization aspects. Open challenges are mainly

related with enhancements in flexibility, scalability and portability by adopting full

network virtualization, as well as with the efficient E2E resource orchestration with

isolation guarantees [39, 40, 144]. Consequently, many efforts by standardization

bodies, associations, alliances, as well as projects and PoCs by both industry and

academia are still ongoing. We refer to [39, 40, 144] for a detailed and comprehensive

review. We remark that, similarly to the E2E Network Slice Auctioneer introduced

in this chapter, many of the existing solutions converge in the vision of a unified

orchestrator capable of managing multiple domains and technologies by coordinating

multiple controllers along the service chain (i.e., for RAN/CN, transport networks

and cloud infrastructures), thus enhabling E2E network abstraction, programmability

and multi-tenancy.

3.4 Summary

In this chapter, some light has been shed on the challenges that multi-tenancy and

network slicing bring in the next generation of mobile networks, introducing the

SoA technologies and the new entities required for flexible network management. An

enhanced 5G architecture for flexible network sharing and QoS guarantees has been

proposed and compared with the legacy one for highlighting the importance of network

programmability at all layers in order to enable E2E slicing support. The main

enhancement consists in the adoption of centralized architecture, and virtualization

technologies for implementing control/management entities as co-located software

instances. In this way, a more flexible negotiation of SLAs is achieved, guaranteeing

both flexible network sharing among InPs/MNOs, and a more efficient exposure

of network control capabilities to third-party SPs. A comparison of the proposed

architecture with recent standardization efforts and SoA is also provided.
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Chapter 4
Efficient Sharing among MNOs

Overview

Facing increasing energy and traffic demands associated with 5G wireless networks,

MNOs are motivated to gradually convert conventional RAN infrastructures into

more flexible and efficient architectures, that is, dense HetNets with centralized and

programmable architectures (i.e., H-CRAN). Beside the promising benefits enabled

by programmable networks in terms of stand-alone network optimization, fine-scale

sharing of resources and network elements is also encouraged among operators. In

particular, a better utilization of the frequency resources can be achieved by MNOs,

leading to enhanced coverage and data rates. On the other hand, as BS are the most

expensive component of conventional RAN, it is fundamental to jointly optimize the

energy-efficiency of the BBU-pool. In this chapter, a novel scheme based on coalitional

game theory is introduced for identifying the potential margin for performance and

profit gains provided by flexible network sharing and joint DSM among MNOs. The

proposed scheme is capable of determining whether a spectrum and infrastructure

sharing strategy is preferable to the stand-alone case, and what would be the pricing

scheme to be adopted by MNOs, together with the financial benefits. Results in terms

of QoS and financial gains are provided for a sample scenario with three operators,

with different market and spectrum shares. More precisely, this work shows: i)

cooperation among sub-coalitions of MNOs is always beneficial, yielding both higher

revenues and enhanced QoS for the end users, and ii) the cooperation of all operators

can be preferred to smaller coalitions for specific user pricing in different scenarios.
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4.1 Related Works

As explained in Chapter 1, BSs are the most expensive component of conventional

RAN, besides, according to [146], base-band processing is the most power-consuming

element of SCs, due to the high processing complexity required compared to the

low power transmitted. Thus, in order for 5G networks to be sustainable, it is

fundamental to optimize the energy-efficiency of the SC layer.

Many works addressed power consumption minimization for conventional RAN,

mainly leveraging BS switching-off concepts [147, 148]. The main drawback of

switching-off in conventional RAN are the possible coverage holes generated, because

of the typically disjoint BSs’ service areas.

An alternative approach is the one represented by the C-RAN centralized and

programmable architecture introduced in Section 2.2 and proposed for an efficient

usage of RAN resources. Indeed, the BBU-pool, that is, the pool of the processing

resources used for VNF instances with BBU functionalities, can be jointly and

dynamically allocated to different RRHs, based on current network state.

Many papers have addressed the NP-hard problem of efficiently mapping BBUs and

RRHs while seeking objectives, such as, the minimization of the power consumption.

Among the possible strategies, [115] models the problem as a bin-packing problem,
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[116] proposes graph coloring, [149] formulates a Knapsack problem, while [150] uses

a listing algorithm.

Dealing with the volume of traffic forecasted for 5G networks, we discussed in

Chapter 1 on how network densification and the offloading of mobile data traffic to

SCs is one of the candidate strategies for tackling the scarcity of spectrum resources.

However, it is a common opinion in the literature that the UEs offloading to the SC

layer by itself will not be sufficient, and that bandwidth extension in the mmWave

frequencies will be necessary [9]. On the other hand, many works provide strategies

for improving the spectrum utilization by means of opportunistic (e.g., Cognitive

Radio) [151, 152] or cooperative spectrum sharing [153], that is, where users without

guaranteed access to the licensed spectrum (i.e., the secondary users) detect and

dynamically utilize spectrum opportunities, withouth affecting the communications

of the users with assigned portions of the licensed spectrum (i.e., the primary users).

The main difference between opportunistic and cooperative spectrum sharing is that,

in the first case, secondary users access the spectrum with minimum coordination

with primary users, while, in the second case, secondary users also help in delivering

primary users’ traffic in exchange for a shared portion of the spectrum.

Focusing in approaches for improving resource utilization efficiency, many papers have

addressed the problem for the case of conventional RAN. In particular, [154] studied

the benefits of jointly deploying a new shared network, while [147] investigated the

advantages offered by base stations switching-off.

Works concerned with C-RAN are mainly focused on the BBU optimization in the

single operator case [115,149,150]. However, in a cooperative approach, fine-scale joint

optimization of the BBU resources could better exploit the statistical multiplexing

gain over shared networks [117,118]. Indeed, as traffic typically undergoes dynamic

fluctuations in time and space domain, consisting of the of many users’ independent

flows, which can be modelled as a random process. Because different BS are exposed

to different traffic loads in time, depending on their locations, they will typically

experience load peaks at different times. Therefore, the overall traffic load over a

network can be regarded as a random fluctuation in both time and space, whose

cumulative peak at a specific time instant is smaller than the sum of each BS’s load

peaks over time. Therefore, since independent deployment of BBU resources for single

BSs requires a design dimensioned according to the peak traffic load of each base
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Figure 4.1: Scenario for spectrum and infrastructure sharing among MNOs with

H-CRAN architecture.

station, the joint deployment and management of BBU resources for multiple BSs

allows for potential cost savings. Hence, supported by the flexible architecture and

mechanisms introduced in Chapter 2 for network sharing at a fine-scale, joint BBU-

pool optimization among multiple cooperating MNOs enables power savings and QoS

improvements. [116] provides a framework for flexible BBU resources orchestration

for the case of two WiMAX operators sharing the BBU-pool. However, the possible

enhancements in QoS (i.e., coverage and data rate) offered by spectrum sharing are

not investigated.

4.2 Game theoretical Approach for Network Sharing

In this chapter, a cooperative game approach is used for the assessment of MNOs

incentives for running a shared H-CRAN (cf. Section 2.2). Given the scenario

depicted in Figure 4.1, where a set of MNOs coexist in the same area, each operator

may decide to keep running its network independently or to form a joint-venture InP.

More in detail, as we are interested in studying the potential in QoS enhancement and

efficient resource utilization offered by network densification described in Section 4.1,

we focus in this study only on the sharing of the SC layer, composed by RRHs, BBU

servers, FH and spectrum. Therefore, according to the nomenclature introduced in

Section 3.1, in this cooperative case, MNOs agree on pooling their SC layers into a

new MOP, while each member of the coalition becomes a POP with equal priority in

using the shared infrastructure and resources.
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By cooperating, operators can achieve higher data rates and extended coverage for

their UEs, which have the potential to be translated into increased revenues. On

the other hand, by sharing the costs of a larger network, it is expected that forming

a coalition is profitable only under given conditions, depending on the particular

market and spectrum share of the cooperating MNOs. To this end, the problem is

formulated as a coalitional game where MNOs are the players, and these conditions

and their physical meaning are investigated.

In this context, joint network optimization and sharing at a fine-scale is fundamental

and though not allowed by pre-5G networks, which only offer sharing agreements at

coarse granularities. Therefore, the programmable infrastructure and the enhanced

architecture introduced in Chapter 3 are adopted, which enable joint switching-off of

the BBU resources at a fine-scale, and which can flexibly sustain multi-tenant traffic

in a transparent way. In particular, applying SDN concepts to the RAN, BBU servers

can be pooled by deploying a common switch and managed by a centralized and

shared coordinator, that is, the MOP-NM. The latter is responsible for monitoring

and reporting RRHs’ state information and for performing: i) UE association, ii)

dynamic resource allocation and performance optimization with respect to MNOs’

objectives and traffic profiles, and, iii) power consumption reduction through joint

BBU optimization. Finally, in order to effectively pool spectrum at each SC premises,

RRHs need to support the CA paradigm, in such a way that the whole set of carriers

aggregated from, and shared by, multiple MNOs can be accessed by UEs compliant

with LTE-A (or beyond).

4.3 System Model for H-CRAN

A set M of mobile MNOs that deployed their own 4G HetNet in a given area A is

defined. According to Figure 4.2, for each MNO m the HetNet consists of a typical

RAN MC layer and a H-CRAN SC layer. Because in this chapter we focus only on

the sharing of the SC layers, as explained in Section 4.2, in the follwing we avoid

modeling MC’s resources and infrasture. Besides, we assume that each MNO owns

an exclusive and independent spectrum license for MC and SC layers, therefore,

interference is generated only by equipments belonging to the same layer of the same

MNO. In particular, according to the efficient usage of the spectrum resource enabled

by HetNets (cf. Chapter 1), we consider a unitary frequency reuse factor for SCs
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Figure 4.2: System model: coexisting MNOs follow a stand-alone approach, or share

their infrastructure and spectrum forming a coalition ω. Interference is represented

by the dashed lines.

over a licensed band of Bm MHz for MNO m.

Each operator m has deployed Hm SC RRHs uniformly distributed, which, according

to Fig. 4.1, are connected through a FH link to Um COTS servers used for implementing

VNF instances with BBU functionalities. BBU servers are grouped in a centralized

physical site (i.e., the BBU-pool). It is assumed that the BBU-pool is co-located

with the MC eNodeB and connected to the CN through the eNodeB. Besides, one

can consider that MNOs share eNodeB and BBU-pool site.

In the same area, it is assumed the presence of NUE UEs uniformly distributed and

with activity factor fa, which represents the probability for a UE to be active at a

given time [146]. Each MNO m owns an exclusive portion of the total subscribers,

that is, the market share µm over the total number of UEs. It is assumed best Signal-

to-Noise Ratio (SNR) association, that is, UEs associate to the BS (i.e., eNodeB or

SC) with the highest received power above sensitivity SNRmin.

At the end of the association process, on average, a portion of the user equipments

will associate to the eNodeB while a given percentage OSC
m will be offloaded to the

SC layer (i.e., OSC
m µmNUE represents the average number of subscribers offloaded

to the SC layer by MNO m). Also it is assumed proportional-fairness as scheduling

strategy, that is, each UE associated to a particular BS gets an equal amount of

resources. For each operator m, given Bm and µm, the number of the deployed



4.3 System Model for H-CRAN 59

RRHs is constrained by a minimum guaranteed DL data rate Rmin for the SC layer.

Besides, a minimum UE offloading factor OSC
min to the SC layer is set as a design

constraint, because higher data rates are assumed for the SC layer.

4.3.1 Data Rate Model

For the computation of the data rate offered by the SC layer, we assume RRHs of

height hSC[m] and UEs of height hUE[m], hence, the Signal-to-Noise-and-Interference

Ratio (SNIR) at the UE side offered by a RRH located at a distance d[m] can be

computed by adopting the path model in [149], that is, with pathloss PL[dB] =

148.1 + 37.6 log10(dLOS [Km]) +Xshad
1, where we assume that the shadowing factor

follows a lognormal distribution with zero mean and variance σshad (i.e., Xshad =

N (0, σshad)) [149]. Assuming that RRHs transmit with density power PTX[dBm/Hz]

and antenna gain gH [dBi], and that UEs’ receivers can be characterized by antenna

gain gUE[dBi], thermal noise Nt[dBm/Hz], noise figure NF [dB], the SNIR at the

receiver side can be computed according to the modified free-space propagation

model2 as SNIR[dB] = PTX + gH + gUE − PL − (N + I)), where I[dBm/Hz]

represents the interference density power from other RRHs3, while the noise density

power can be computed as N [dBm/Hz] = Nt +NF .

With respect to the data rate provided to a specific UE by MNO m, we adopt the

following model for NaxNa multiple-input and multiple-output (MIMO) scheme [146]:

RUEm [bit/s] = Na · PRBm · RPRB · (1 − θov) · θUE , where θUE is the percentage of

PRBs allocated to the considered UE at a given instant, while RPRB is the data

rate provided over a single Physical Resource Block (PRB), and θov represents a

constant percentage of the total number of PRBs spent by each RRH for physical

layer overhead (i.e., control and signaling). On the other hand, PRBm is the number

of PRBs that can be mapped over the bandwidth Bm. More precisely, considering

a modulation index i and a coding factor cF , the data rate provided over a single

PRB can be defined as RPRB = i · cF · 168/TTI, where 168 is the number of symbols

1Please note that the expression for the path loss refers to the line-of-sight (LOS) distance

between RRH and UE antennas, therefore, it can be computed taking into account that it holds

d[m] = dLOS · cos(α), with altitude angle α = arctan(
hSC−hUE

d
)

2In PL we account for obstacles between RRHs’ and UE’s antennas by adding the shadowing

factor Xshad.
3We remind that a unitary frequency reuse factor is assumed for SC layer of a given MNO.



60 Efficient Sharing among MNOs

transmitted over one PRB within a Transmission Time Interval (TTI) according to

the Orthogonal Frequency-Division Multiplexing (OFDM) scheme adopted in LTE-A,

with Frequency-division duplexing (FDD) and normal cyclic prefix. The values of

i and cF to adopt with respect to a specific Channel Quality Indicator (CQI) are

provided by 3GPP standard [155]. However, as no standardization exists of the

mapping between CQI and SNIR, we adopt the Modulation-and-Coding Scheme

(MCS) selection criterion provided by [156].

The data rate Rgm guaranteed by MNO m to its subscribers is defined as the average

data rate offered over the SC layer in the worst-case scenario, where a unitary activity

factor fa is considered, that is, Rgm =
∑µmNUE

l=1 RUE,lm /(µmNUE)4. Because reasonable

values for the activity factor are always below one (i.e., fa < 1), in general UEs are

offered with a greater data rate Roffm . Indeed, resources are shared among less UEs

within a given SC; besides, less interference is generated by RRHs to adjacent ones.

4.3.2 Power Model

According to the power model provided by the EARTH [146, 157] and iJoin [158]

projects, RAN power consumption of a generic MNO m, henceforth Pm, can be

divided into a term related to RRHs and the other to the BBU-pool: Pm = P hm +P um.

In both components, the power consumed is provided as a function of PRBus
m,n,

that is, the number of PRBs used for RRH n out of the available ones PRBm in

bandwidth Bm. Therefore, PRBus
m,n represents the total load of a generic RRH

n and can be expressed as the sum of the PRBs needed for UE communications

(i.e., PRBUE
m,n) and for the physical layer overhead (i.e., PRBov

m,n). Because equal

overhead is assumed in the RRHs, the subscript n is omitted and the physical layer

overhead of a generic RRH can be defined as PRBov
m = dθovPRBme). In conclusion,

for the total load of RRH n it holds PRBus
m,n = PRBov

m + PRBUE
m,n.

4We remind that a proportional-fairness scheduling is adopted for the resource allocation of UEs

connected to the same SC.
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4.3.2.1 RRH Power Model

For computing the power consumption of a generic RRH with index 1 ≤ n ≤ Hm,

the EARTH model [146,157] for C-RAN architectures is adopted:

P hm,n =
PTX
PRBPRB

us
m,n/ηPA +NaP

RFPRBm

(1− σDC) (1− σm)
(4.1)

where PTX
PRB is the radio frequency (RF) output power over one PRB assuming that

no power adaptation is performed, that is, can be computed from the transmit density

power PTX[mW/Hz] as PTX
PRB = PTX · Bm/PRBm. For each RRH, it is assumed

that transceivers’ power consumption scales linearly with the number of carriers,

besides, ηPA represents the power amplifier efficiency, Na is the number of antennas,

PRF is the power consumption of the RF transceiver for one PRB and σDC, σm are

the loss coefficients due to DC-DC power supply and mains supply. By explicitly

expressing PRBus
m,n as the sum of PRBov

m and PRBUE
m,n, and by isolating the static

contributions to power consumption from the power consumed for UEs’ traffic, (4.1)

can be rewritten as:

P hm,n = P h,ovm + ∆h
pPRB

UE
m,n (4.2)

where ∆h
p = PTX

PRB/[ηPA (1− σDC) (1− σm)] and P h,ovm accounting for the static RRH

power consumption components due to physical layer overhead and RF transceivers

(i.e., P h,ovm can be calculated by substituting PRBus
m,n with PRBov

m in (4.1)). Finally,

the total power consumed by all the RRHs in the network is P hm =
∑Hm

n=1 P
h
m,n.

4.3.2.2 BBU Power Model

BBU functionalities are deployed by using VNF instances in identical COTS servers

(e.g., x86) with equal processing capacity Xcap expressed in Giga Operations Per

Second (GOPS). Each BBU server is able to instantiate multiple RRHs functionalities

in the form of VNFs instances, which are soft resources that can be migrated among

BBU servers and possibly shared among RRHs. Uniform workload share is considered

among the servers and the necessary base-band computation needed for one PRB is

modeled with a constant KTX, when a specific transmission (TX) configuration is

used [157].

In the worst-case of saturated RRHs (i.e., fa = 1) the number of deployed BBU

servers Um has to be sufficient for supporting the base-band operations of the RRHs
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in the area, therefore, it is defined as Um = d(KTXHmPRBm) /Xcape. Conversely,

in case of average load, only some of the available BBU servers need to be active

Uactm for supporting the total network load, while the remaining U idm = Um − Uactm

are idle and can go into sleep mode for energy consumption optimization (i.e., only

cooling, power supply, etc. [114, 115]). As already mentioned, one possible way of

calculating the optimum BBU-RRH mapping is by solving a Knapsack problem [149];

however, in this context, the ideal minimum number of active BBU servers defined is

considered and computed as Uactm = d
(
KTX

∑Hm
n=1 PRB

us
m,n

)
/Xcape.

The power consumption of the whole BBU-pool can be expressed as the sum of a

component Uactm P ust due to functionalities that are independent from the network

load (e.g., FFT and IFFT [112]), plus U idmP
u
id accounting for idle-state BBU servers,

HmP
u,ov
m representing the power consumption due to RRHs’ overhead and, finally,

the network load ∆u
p

∑Hm
n=1 PRB

UE
m,n [157]:

P um = Uactm P ust + U idmP
u
id +HmP

u,ov
m + ∆u

p

Hm∑
n=1

PRBUE
m,n (4.3)

where P u,ovm = ∆u
pPRB

ov
m is the consumption due to overhead processing of one RRH,

and ∆u
p is the power consumed per PRB when a specific transmission configuration

and server kind are used

By defining P ovm = P h,ovm + P u,ovm and ∆p = ∆h
p + ∆u

p , the total power Pm consumed

by MNO m, considering both the RRH and BBU components defined in (4.2) and

(4.3), can be rewritten as:

Pm = Uactm P ust + U idmP
u
id +HmP

ov
m + ∆p

Hm∑
n=1

PRBUE
m,n (4.4)

4.4 Coalitional Game

For the general cooperative game (M, V ), the set of all the 2M\∅ possible coalitions

is represented with Ω, and with Vω the coalition payoff, which can be considered as

the maximum utility value that the set of players in coalition ω can jointly obtain.

Let vm be the portion of Vω assigned to player m when participating to that coalition,

named player’s payoff, then a payoff allocation v ∈ Rω is the vector representing

a possible distribution of the payoffs among the |ω| players in coalition ω. Finally,
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the core C is the set of payoff allocations such that no group of players is willing to

leave the grand coalition M, that is, the one formed by all players, for one of the

sub-coalitions.

Coalitional games are a specific class of cooperative games [159] addressing those

problems where forming coalitions is preferred by the players of the game. A particular

class of coalitional games are the canonical ones where joining the grand coalition

M represents the most convenient choice. This means that the payoff that player

m receives out of VM is at least as large as the payoff it would receive in any of

the disjoint sets of sub-coalitions Ω\M. In this terms, the core C guarantees the

stability of the grand coalition because the players have no incentive for leaving it.

Expressing the payoff allocation in the grand coalition with v ∈ VM and the one for

a subcoalition with v′ ∈ Vω, a possible definition of the core is [159]:

C = {v ∈ VM | ∀ω, @v′ ∈ Vω, s.t. v′m > vm,∀m ∈ ω} (4.5)

The core C might not exist and, in those cases, the grand coalition is considered

unstable.

The objective of this chapter is to determine under which conditions the problem of

cooperation between MNOs for sharing SC H-CRAN resources can be considered as

a canonical coalitional game, or in other terms, when the grand coalition of MNOs is

preferred to the sub-coalitions and when the opposite is true.

MNOs payoff in ω is modeled as their profit [154], defined as the difference between

revenues ρm and costs Cm, when m ∈ ω. It is assumed that the revenue of each

MNO only depends on its own UEs and is not redistributed among MNOs. On the

other hand, operators share the total H-CRAN costs Cω, and c ∈ Rω is the cost

sharing vector, which reports the portion of it that each MNO is willing to pay. The

payoff of MNO m according to c is:

vm = ρm − Cm = ρm − cmCω, m ∈ ω (4.6)

where
∑

m∈ω cm = 1, 0 ≤ cm ≤ 1. Thus, the value of the generic coalition ω can be

defined as the sum of its members’ profit:

Vω =
∑
m∈ω

vm =
∑
m∈ω

ρm − Cω (4.7)
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According to this model, the payoff allocation v among players is formed by a term

that is not transferable to other players (i.e., revenues ρm), and by a second term on

whose redistribution the coalition’s players can agree (i.e., costs Cm). MNOs’ payoffs

vm depend on the joint actions of the other players in that coalition and, depending

on whether there exist restrictions on the distribution of the coalition’s payoff Vω

among the players, the coalitional game defined in this section can be regarded as a

transferable utility (TU), or non transferable utility (NTU) game. In particular, in

NTU games, a flexible redistribution of the coalition’s cost Cω is not allowed, on the

other hand, in TU games, the players can agree on the cost sharing vector c and can

divide the coalition payoff Vω in any manner [159].

When C exists, we assume that, among all the possible cost shares c ∈ R|M|, MNOs

only accept to adopt the market share vector µ ∈ R|M| as unique and fair solution,

thus, opting for a NTU game. This means that each operator pays a portion of the

coalition cost proportional to the number of UEs it owns, as it is a rough but logical

estimation of its load and cost contribution into the shared H-CRAN (see (4.4)). In

other words, cm = µm/µω, where µω =
∑

m∈ω µm is the market share of coalition ω.

Revenues and costs for the system model introduced in Section 4.3 are now defined.

4.4.1 Revenue Model

The revenue ρm is modeled as a price proportional to the guaranteed data rate

Rgω guaranteed to the UEs when MNO m participates to coalition ω. More in

detail, according to conventional business model for mobile data traffic presented in

Chapter 1, the operator charges end users with a flat tariff τr [17], defined in this

context in monetary units per unit of data rate per month [e/Mbps/month] [154].

Considering an investment period of one year, the revenue of MNO m over this

period can be defined as below:

ρm = 12 τr R
g
ω µmNUE (4.8)
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4.4.2 Cost Model

By focusing on OPEX, the cost model reduces to the power consumption Pω of

coalition ω multiplied by a tariff applied over one year. Considering average power

consumption Pω in [W ], the total cost function Cω of coalition ω over one year is:

Cω = Pω · 10−3 · ρKWh · 24 · 365 (4.9)

where ρKWh[e/KWh] represents the price per unit of power set by energy providers

for the reference period of one hour. Finally, taking into account that operators

agree on pooling together their H-CRAN elements, Pω is calculated as in (4.4), after

substituting m with ω. Hence, the aggregated BW and the total number of PRB

in a coalition can be represented as Bω =
∑

m∈ω Bm and PRBω =
∑

m∈ω PRBm,

respectively, while the total numbers of RRHs and BBU servers in coalition ω become

Hω =
∑

m∈ωHm and Uω = d(HωPRBωKTX) /Xcape.

In Table 4.1, we summarize the notations used for the main parameters introduced

for the system model and coalitional game in Sections 4.3 and 4.4.

4.5 Results and Discussion

A custom simulator in Matlab has been implemented for estimating the number of

RRHs and BBU servers to be deployed for a given combination of market share and

available bandwidth, as well as for evaluating the offered QoS in terms of coverage

and data rate (i.e., OSC
ω , Rgω, Roffω ), together with revenues, costs and core existence

under different coalitions. In the remainder of the chapter, the network setup and

the results are presented.

4.5.1 Simulation Set Up

Adopting the system model depicted in Fig. 4.2, we study two scenarios where three

operators have deployed their networks in an area of 4Km2 with NUE = 20000

users in total. The number of MNOs considered is a typical value in most European

countries, as confirmed by [154]. Besides, the values of the considered area and

number of UEs are representative of the typical coverage area of a single macrocell,
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Table 4.1: System Model’s and Coalitional Game’s Notations for H-CRAN Sharing.5

4.3. System Model for H-CRAN

Data Rate Model

Variable Definition

A Considered area

M Set of MNOs coexisting in A
NUE Total # UEs in A
fa Activity factor of UEs

m Identifier of specific MNO

µm Market share of MNO m over NUE

Bm Bandwidth of the licensed band owned by MNO m

PRBm # of PRBs that can be mapped over the bandwidth Bm

Hm # of SC RRHs deployed by MNO m

Um # of COTS BBU servers deployed by MNO m

hSC RRHs’ height

hUE UEs’ height

d Distance between a generic RRH-UE pair

dLOS LOS distance between a generic RRH-UE pair

α Altitude angle between a generic RRH-UE pair

PL Pathloss

Xshad Shadowing factor

σshad Variance of the lognormal distribution adopted for shadowing

PTX RRHs’ transmit power in [dBm/Hz]

gH RRHs’ antenna gain in [dBi]

gUE UEs’ antenna gain in [dBi]

Nt UE’s receiver thermal noise in [dBm/Hz]

NF UE’s receiver noise figure in [dBm]

I Interference density power from other RRHs to UEs in [dBm/Hz]

N Noise density power in [dBm/Hz]

Na # of antennas used in MIMO at transmitter/receiver side

θov Percentage of PRBs spent for PHY layer overhead

θUE Percentage of PRBs allocated to a generic UE at given time

i Modulation index

5Sub/superscripts are omitted when generic parameters are considered. Sub/superscript m and

ω are interchangeable, for representing MNOs’ or coalitions (aggregate) parameters.
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cF Coding factor

RPRB Data rate provided over a single PRB with specific MCS

RUE,lm Data rate provided to UE l by MNO m

Rmin Constraint on the minimum guaranteed DL data rate used

by MNOs for SC layer’s design

Rgm Average data rate guaranteed by MNO m to its subscribers

when fa = 1

Roffm Average data rate offered by MNO m to its subscribers

when fa < 1

SNRmin UEs’ power sensitivity during association process

OSC
min Constraint on the minimum offloading factor used by MNOs

for SC layer’s design

OSC
m Average # of subscribers offloaded to the SC layer by MNO m

Power Model

Variable Definition

n Identifier of specific RRH

PRBus
m,n # of PRBs used by MNO m for RRH n

PRBUE
m,n PRBs needed for UE communications

PRBov
m,n PRBs needed for physical layer overhead

PTX
PRB RRH RF output power over one PRB without adaptation

PTX RRH transmit density power

ηPA RRH power amplifier efficiency

PRF Power consumption of the RRH RF transceiver for one PRB

σDC RRH loss coefficient due to DC-DC power supply

σm RRH loss coefficient due to mains supply

∆h
p RRH power consumption per PRB with specific TX config.

P h,ovm Static RRH power consumption due to overhead and

RF transceivers

P hm,n Power consumption of RRH n in MNO m

P hm Total RRH power consumption of MNO m

KTX BBU cloud computing requirements for base-band processing

of a single PRB

Xcap Processing capacity of a BBU server

∆u
p BBU power consumption per PRB with specific server
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and TX config.

∆p Radio and BBU power consumption per PRB with specific

server and TX config.

Uactm # of BBU servers needed for supporting traffic of MNO m

at specific time

P uid Power consumption of BBU servers in idle-state

P ust Baseline power consumption of active BBU servers

P u,ovm BBU power consumption for single RRH’s overhead

P ovm Radio and BBU power consumption due to overhead of one RRH

P um BBU-pool power consumption of MNO m

Pm RAN power consumption of MNO m

4.4. Coalitional Game

Variable Definition

µ Market share vector considereing all MNOs coexisting in A
Ω Set of all possible coalitions of MNOs

M Grand coalition (i.e., formed by all players)

C Core (i.e., payoff allocations for being M the most convenient in Ω)

ω Coalition formed by |ω| MNOs

Vω Payoff (also called profit or value) for coalition ω

vm Payoff of MNO m in ω

v Payoff allocation for MNOs in ω

τr Tariff in [e/Mbps/month] charged by MNOs to subscribers

ρm Revenues for MNO m in ω

Pω Average aggregate power consumption for MNOs in coalition ω

ρKWh Price in [e/KWh] set by energy providers

Cω Total H-CRAN costs for coalition ω

cm Percentage of Cω paid by MNO m in ω

c Sharing vector agreed by MNOs in ω for Cω

Cm Costs paid by MNO m in ω

Gωm Profit gain of MNO m in ω with respect to stand-alone approach
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Table 4.2: Scenarios for H-CRAN sharing.

Scenario A Scenario B

m 1 2 3 1 2 3

Bm[MHz] [160] 20 20 20 5 15 20

PRBm [160] 100 100 100 25 75 100

µm 1/3 1/3 1/3 0.1 0.3 0.6

Hm 247 193 200 247 234 214

Um 156 125 130 40 76 139

that is, of the SC-layer extension and of typical European population densities [154].

Below, we present the two sample scenarios described in Table 4.2:

� Scenario A: The operators have approximately the same size, equal market share

and bandwidth capabilities.

� Scenario B: The operators have different sizes, different market shares and bandwidth

capabilities proportional to their market share.

In both cases, the MNOs have deployed their network in order to satisfy the constraints

on OSC
min and Rmin defined in Section 4.3. For each operator, the number Hm of

RRHs and the guaranteed data rate Rgω are calculated in the worst-case scenario

where fa = 1. On average fa < 1 and the offered data rate Roffω is greater than the

data rate Rgω for which end users are charged. The number of RRHs Hm and of BBU

servers Um deployed by MNOs in different scenarios are provided in Table 4.2, while

the setup for remaining system parameters is summarized in Table 4.3.

4.5.2 Performance Results

In order to study the benefits in terms of QoS improvement guaranteed by cooperation

among MNOs, the average data rate Roffω offered to UEs is plotted in Fig. 4.3 for

6Computed for a system with 10 MHz [146], that is, over a reference bandwidth of 9 MHz [163]

and 50 PRBs [155].
7We define the minimum data rate according to video streaming (i.e., 4G killer application [2]),

therefore, we model Rmin as the recommended data rate for the minimim streaming resolution

considered, that is, wide 360p [164] with bitrates between 400 Kbps and and 1 Mbps [165].
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Table 4.3: System Setup for Coopeative H-CRAN Sharing.

Physical Layer Femto Cell RRH [146]

Parameters Values Parameters Values

hSC[m] 10 [161] PTX
PRB[mW ] 16

hUE[m] 1.5 ηPA 4.4%

SNRmin[dB] −4 PRF[mW ] 12

gH , gUE[dBi] 0 [146] σDC 9%

σshad 5 [149] σm 11%

Nt[dBm/Hz] −174 [149] Intel Xeon E5540 BBU [157]

NF [dB] 5 [161] Parameters Values

Na 2 [146] Xcap[GFLOPS] 324

Path loss 148.1 + 37.6 log10(d[Km]) [149] KTX 2.0978

UE, RRH uniform distribution [161] P uid[W ] 3 [114]

θov 30% P ust[W ] 120

fa 0.16 [146] ∆u
p 0.6125

Cooperative Game

Parameters Values Parameters Values

NUE 20000 [154] τr[(e/Mbps)/month] [0.1, 0.92]

A[Km2] 4 [154] ρKWh[e/KWh] 0.12 [162]

m ∈M {1, 2, 3} OSC
min 80%

Ω 2M\∅ Rmin[Mbps] 0.787

Scenario B over the percentage of UEs associated with the small cells layer (i.e.,

the offloading factor OSC)8. It can be observed that, in stand-alone scenarios, both

the offloading factor and data rate are quite low but always above the values of

OSC
min = 0.8 and Rmin = 0.78 defined in Table 4.3. However, the joint DSM of the

pooled spectrum is capable of enhancing the coverage and data rate provided with

the small cell network, with the offloading factor approaching one when |ω| increases.

In particular, by forming coalitions of two, the MNOs may significantly improve the

offered data rate and the offloading potential. Finally, the grand coalition (i.e., the

cooperation among all three operators) provides a very high offloading factor and

the highest data rate among all scenarios.

8Similar results can be obtained for Scenario A, although, with coinciding values of OSC
min and

Rmin for the cases with one and two MNOs coalitions.
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Figure 4.3: Offered data rate Roffω vs offloading factor of UEs to the SC layer OSC
ω ,

provided by individual MNOs (ω = m), sub-coaltions of MNOs (i.e., ω = m1m2), or

by the grand coalition ω = 123, according to Scenario B defined in Table 4.2.

This can be explained taking into account that by, pooling the network elements (i.e.,

RRHs and BBU servers) and aggregating the bandwidth, UEs are more likely to

be in the proximity of a SC with a wider communication bandwidth, which will be

chosen instead of the macro layer, thus increasing the offloading factor and improving

available data rates. Hence, the results confirm the expected benefits from fine-scale

sharing, thanks to a more efficient utilization of the frequency resource in the spatial

dimension. Please note that, by cooperating and without bandwidth extension in

the mmWave frequencies, the offered average data rate is already greater than the

average 6.5 Mbps estimated for 2020 in [2].

Next, in Fig. 4.4, the profit Vω is plotted for all possible stable coalitions, applying

(4.7) when the core is nonempty. For Scenario A, MNOs have similar profits when

operating individually, since they all have same market share and spectrum. On
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Figure 4.4: Coalitions payoffs Vω in stable conditions computed over one year. ω

equals the identifiers of the MNO’s participating in the coalition, that is, ω = m in

case of individual MNOs, ω = m1m2 in case of sub-coaltions, and, ω = 123 for the

grand coalition.

the other hand, in Scenario B, the MNO with highest market share (i.e., MNO3)

achieves higher profits when compared to the other operators.

It can clearly be observed that, in both scenarios, any pair of MNOs always forms a

stable sub-coalition ω = m1m2 with payoff Vm1m2 , meaning that for their members

MNOm1 and MNOm2 it is always preferable cooperating rather than working

individually (i.e., Vm1m2 > Vm). This can be explained by the fact that, when

forming a coalition, the spatial maximization of the pooled resources enable better

QoS to the UEs and increased revenues for the MNOs. Besides, as it will be better

explained below in comparison with the grand coalition, MNOs achieve higher profits

in sub-coalitions, independently of the tariff charged to end users, because the cost

increase is negligible with respect to revenues. However, not all sub-coalitions offer

the same profit to their members. This can be observed in Scenario B, where

sub-coalitions involving the largest operator (i.e., MNO3) achieve higher aggregate

profits thanks to the better QoS achieved.

As far as the grand coalition M = 123 is concerned, note that it can always provide

significantly higher profits than any subcoalition (i.e., V123 > Vm1m2 > Vm), for

both scenarios. However, it becomes stable (i.e., the core exists) only when a
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Figure 4.5: Grand coalition cost share

minimum tariff τr is reached, which equals 0.23 and 0.62 in Scenarios A and B,

respectively. This is mainly due to the additional costs associated with operation in

bigger aggregated bandwidth, which represents the price to pay for a better spectrum

utilization over the spatial dimension. Indeed, more processing power is needed at the

BBU servers, as the size of the BBU-pool Uω and the power consumed for control and

signaling depends on the total BW (see Section 4.3.2). In the case of sub-coalitions

ω, the bandwidth increase is relatively small, therefore, the extra power consumed is

negligible. However, when all resources are pooled into the grand coalition M, the

BW aggregation at all RRHs’ premises sets additional costs, which become dominant.

Hence, a minimum tariff is needed so that the revenues compensate for the increased

OPEX, leading to a stable grand coalition.

Fig. 4.5 represents the cost allocations cm for each MNOm, with the allocations c1 and

c2 represented in the x and y axis, respectively, and c3 derived as c3 = 1−c1−c2. For

each scenario, three sample tariff values are considered, starting from the minimum
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value that supports the formation of a stable grand coalition (i.e., the existence of

the core) and with a difference of approximately ten cents from each other. The

grey areas represent the possible allocations within the core in a TU game, whereas

the white star represents the point for which the cost allocations coincide with the

market share. For the minimum value of the tariff τr the only possible allocation

within the core is the allocation according to the market share (i.e., the grey area

collapses into a single point and the game is NTU), whereas for increasing tariffs

more allocations become possible within the core of a TU game (i.e., the grey area

becomes larger).

It can be observed that the market share (i.e., the white star) always belongs to the

core (i.e., the grey area). In Scenario A, where all MNOs have equal market shares,

the core of the TU game is symmetrical, whereas in Scenario B, the core moves

towards the low-left corner, as the major part of the cost is assigned to MNO3, which

holds the largest market share. Furthermore, for similar tariffs, the core dimension

is much higher in Scenario A, due to the steeper slopes of the profit curves (see

Fig. 4.4), which, in case of TU games, would enable a more flexible redistribution of

the grand coalition costs among the MNOs.

By comparing the two scenarios in Fig. 4.4 and Fig. 4.5, it can be noticed that the

minimum tariff required for a stable grand coalition in Scenario A (i.e., τr = 0.23)

is much smaller with respect to Scenario B (i.e., τr = 0.62). Indeed, as already

observed in Fig. 4.5, for low values of τr, the core coincides with the market share,

and operators are forced to adopt it as the sole stable payoff distribution. Thus,

for Scenario A, the three equal sized MNOs have the same incentive for joining the

grand coalition when the minimum tariff is charged to the end users. On the other

hand, in Scenario B, the market share is unbalanced and, as a result, the operator

with the highest market share (i.e., MNO3) must assume the greater portion of the

costs. For that reason, when low tariffs are charged to the end users, MNO3 prefers

forming sub-coalitions, where, as explained before, a better revenue can be achieved

in exchange for a negligible increase in OPEX.

Another important observation is that, in case of TU games, although for low tariffs

the MNOs only wish to share the grand coalition costs proportionally to the number

of UEs owned (i.e., according to the market share), for increasing tariffs, other payoff

distributions become feasible. Indeed, the core expands and the MNOs may reach
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Figure 4.6: Profit gain through fine-scale sharing

new agreements on how to share costs, while maintaining a better profits when

compared with a stand-alone approach. For example, as an extreme case, in Scenario

A and for τr = 0.41, two MNOs could afford to pay for the whole H-CRAN cost,

letting the third MNO operating with zero cost. In Scenario B, such configuration

is possible for a higher tariff (i.e., τr = 0.71), where MNOs could agree on a null

cost allocation for the smallest MNO (i.e., MNO1). Such agreement is justified

by the fact that MNO1’s contribution to the pooled infrastructure and resources

provides the remaining members of the grand coalition with enhanced QoS and

revenue opportunities. However, the reduced market share of MNO1 generates a

very small traffic load and resource usage over the shared network, with a negligible

impact on the total network cost.

In order to better understand the potential of a cooperative approach with a higher

number of players, an extension of Scenario A is provided for up to five MNOs.

More precisely, identical MNOs are considered with deployment equal to MNO3

in Scenario A described in Table 4.2 (i.e., Hm = 200 and Um = 130). Therefore,

coalitions ω are classified by means of their cardinality |ω|, rather than by the identity

of the participating MNOs. For the grand coalition M, it holds |M|= 5.
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Fig. 4.6 depicts the MNO profit gain over the tariff charged to the end users, for

the cooperative approach with different coalition sizes, compared with a baseline

non-cooperative scenario. The profit gain of MNOm in coalition ω as a percentage

of the profit in the stand-alone approach is defined as Gωm = 100 · (Vω/|ω|−vm) /vm,

and similar conclusions can be deduced as for Fig. 4.4 on the benefits and conditions

for the formation of coalitions of different sizes: i) coalitions with a higher number

of MNOs normally achieve higher gains due to better offered data rates, and, ii) a

minimum tariff is required for paying back the additional coalition’s costs, when

compared with the stand-alone case.

In addition, a better detail is provided with respect to Fig. 4.4 on the dependence

of the profit gain on the tariff charged to the end users, as well as on the minimum

tariff required with respect to the coalition size. More in detail, although the gains

achieved through cooperation are always enormous, their slope decreases as the tariff

charged to the end users increases. In other words, the real advantage in cooperating

comes when low tariffs are set to the end users, that is, when the revenues derive

from the boost in QoS offered by a better utilization of the frequency resource in the

spatial dimension, rather than from inflated tariffs.

As far as the minimum tariff of subcoalitions is concerned (i.e., up to |ω|= 4), bigger

coalitions are always preferable to smaller ones, as a lower minimum tariff can be

charged to the end users, while higher gains are provided. In other words, on the

one hand, MNOs could charge the end users with the same tariff while achieving

higher profits with respect to the stand-alone case. On the other hand, similar profits

could be achieved by MNOs in a cooperative approach while charging lower tariffs to

the end users, thus attracting the segment of user subscribers looking for cheaper

prices for a specific QoS. Different is the case of the grand coalition (i.e., for |ω|= 5),

which provides the highest gain only when a minimum tariff is charged in order to

compensate the additional costs of a larger network. Consequently, a coalitional

approach can provide MNOs with information on the minimum pricing to be charged

in order to maximize their profits. Alternatively, the coalitions could be chosen by

MNOs according to the tariff that they want to charge to end users, depending on

MNOs’ target segment within subscribers’ market.
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4.6 Summary

In this chapter, a novel scheme has been proposed for the assessment of potential

cooperation incentives when MNOs coexist in the same area, and it has been defined

according to a game theoretic framework. In particular, coalitional game theory has

been exploited for studying the performance and financial gains offered through fine-

scale network sharing. Different scenarios have been considered for different market

and spectrum shares in the three and five operators case. The QoS improvement is

highlighted in terms of data rate offered to the end users, and profit gains for the

operators. The minimum user pricing schemes have been obtained for the stability

of coalitions of different sizes.

The results show that, as long as the defined conditions are respected, collaborating is

more convenient with respect to the stand-alone case, providing financial incentives to

MNOs for upgrading their networks towards 5G. Besides, although the market share

represents a fair cost redistribution within coalitions, for sufficient tariffs MNOs could

agree on unbalanced cost redistributions exploiting the better revenue opportunities

offered by fine-scale network sharing with respect to the additional costs. In general,

MNOs have a higher profit margin when cooperating with equal-sized operators,

achieving higher profits with much lower tariffs. Finally, a rationale is provided to

MNOs for choosing tariff to charge and the coalition to form with respect to their

business objectives, that is, maximizing profits with respect to current market shares,

or attracting new segments of the subscribers’ market.
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Chapter 5
Fine-Scale Slice Allocation for 5G

Networks

Overview

Adapting to recent trends in mobile communications towards 5G, infrastructure owners

are gradually modifying their systems for supporting the network programmability

paradigm and for participating in the slice market (i.e., dynamic leasing of virtual

network slices to third-party service providers). Two-fold are the advantages offered

by this upgrade: i) enabling next-generation services through programmable policies

and customized QoS guarantees, and, ii) allowing new profit opportunities deriving

from sharing interactions with service providers. Many efforts exist already in the

field of admission control, resource allocation and pricing for virtualized networks.

Most of the 5G-related research efforts focus on technological enhancements for

making existing solutions compliant to the strict requirements of next-generation

networks. On the other hand, the profit opportunities associated to the slice market

also need to be reconsidered in order to assess the feasibility of this new business model.

Nonetheless, when economic aspects are studied in the literature, technical constraints

are generally oversimplified. For this reason, in this chapter, we propose an admission

control mechanism for intra-service network slicing that meets 5G timeliness while

maximizing network infrastructure providers’ revenue, reducing expenditures and

providing a fair slice provision to competing service providers. To this aim, we
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design an admission policy of reduced complexity based on bid selection, we study

the optimal strategy in different circumstances (i.e., pool size of available resources,

service providers’ strategy and traffic load), analyze the performance metrics and

compare the proposal against reference approaches. Finally, we explore the case

where infrastructure providers lease network slices either on-demand or on a periodic

time basis and provide a performance comparison between the two approaches. This

analysis shows that the proposed approach outperforms existing solutions, especially

in the case of infrastructures with large pool of resources and under intense traffic

conditions.

Contributions

[J2] M. Vincenzi, E. Lopez-Aguilera, and E. Garcia-Villegas, “Maximizing infrastructure

providers’ revenue through network slicing in 5g,” IEEE Access, vol. 7, pp. 128283–

128297, 2019. (Area: Telecommunications; Quartile Q1; IF: 3,745).

5.1 Related works

From an economic point of view, the enablers of a healthy slice market for 5G are:

i) the monetary incentives to InPs for amortizing the costs of building the next-

generation network, and ii) the fairness in the service of competing SPs. On the other

hand, from a purely technical point of view, the requirements for 5G are: i) the slice

isolation [26], ii) heterogeneous E2E QoS guarantees for 5G use cases [3–6,138,166],

and, iii) a prompt slice provision, suitable for short-lived services such as emergency

services or surveillance [5, 6].

Excluding architectural and technological aspects that have been extensively studied

in the literature, the promptness in the slice provision is mainly regulated by two

factors, that is, the communication protocol adopted between SPs and InPs, and

the mechanisms used at the InPs’ side for admission control, resource allocation

and pricing. In this context, two macro categories of slice provision approaches

exist in the literature, the on-demand and periodic slicing where, respectively, slice

allocation is enforced upon each slice request arrival (e.g., policy-based approaches)
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or periodically (e.g., auction-based approaches). In on-demand slicing, the typical

communication flow for the slice provision process consists in the uncoordinated slice

request submission by SPs, followed by the broadcasting of the admitted tenants by

InPs. On the other hand, in periodic slicing, an intrinsic latency is systematically

added by the time window used for collecting slice requests.

Within this categorization, two strategies are mainly used in the literature for resource

pricing. In on-demand slicing, prices are typically set by InPs for a given bundle of

resources. On the other hand, in periodic slicing, prices are determined in relation to

the resource availability as well as InPs’ and SPs’ strategies. Besides, a bidding model

is generally adopted where the minimum and maximum bid represent, respectively,

the reserve price (i.e., the minimum price accepted by the InPs), and the SPs’ budget

(i.e., the maximum affordable price).

Many contributions exist in the literature for admission control, resource allocation

and billing mechanisms in virtualized wireless networks [167], however, rarely both

5G requirements and the economic conditions for a healthy slice market are met.

Consequently, the discussion remains open in the scientific community with respect

to automated mechanisms for slice provision and pricing in 5G. In particular, [21]

and [168] propose, for the admission control in inter-service network slicing (i.e., slice

allocation to SPs providing different services), on-demand strategies that maximize

the InPs’ profit by means of Semi-Markov Decision Processes and optimization theory,

respectively. Moreover, [21] introduces the concepts of inelastic and elastic services,

that will be used in the following, and which are associated to SLAs characterized

by constant or average QoS requirements, respectively. However, both contributions

lack in the review of other performance metrics relevant for 5G, for instance, fairness

towards competing SPs.

On the other hand, among the proposed periodic approaches, [169, 170] employ

auction theory for the study of the single/heterogeneous resource allocation problem,

respectively, nevertheless, neither of the works puts a focus on network isolation,

QoS support or fairness. Besides, although InPs are the entities entitled to build

next-generation networks, many contributions only take into account the economic

return for SPs. For instance, this is the case of the spectrum leasing optimization

framework presented in [171], the Fisher market slice allocation approach with

strategic tenants in [172], the auction-based approach in [170] and, in general, the
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sealed-bid auctions [173]. Finally, only limited efforts have been produced in the

study of pricing schemes suitable for 5G, for instance, [174,175] propose auction-based

solutions for heterogeneous resource slicing with a per-access pricing scheme. It is

important to remark how the authors in [174] highlight the need for a pricing scheme

based on slices’ lifetime in order to account for the real resource occupation, and to

reduce the risk of exaggerated slice requests and unused resources.

In conclusion, research efforts focusing in on-demand and periodic slicing tend to

study complementary aspects related to the 5G slice market, therefore, we consider

interesting a direct comparison between the two strategies through the same analytical

framework. In this context, [176] extends the on-demand approach in [21] for the

study of InPs’ profits to the periodic case with heterogeneous resources. However,

static InP strategies are adopted with no hint on the optimal admission strategy,

nor on the fairness towards competing SPs. Reference [168] partly completes the

contribution in [176] by proposing a genetic-based algorithm for online computation

of the admission policy that maximizes InP’s profit, however, no performance metric

is provided regarding the fair treatment of differnet SPs.

5.2 Policy-Based Slicing for QoS and Profit Optimization

In this chapter, we propose a timely admission control mechanism for intra-service

network slicing (i.e., slice allocation to SPs providing the same kind of service) that

takes into account the economic conditions for a healthy slice market and addresses

the requirements of next-generation networks by maximizing InPs’ revenues, reducing

operational expenditures, and guaranteeing fairness towards SPs, slice isolation and

QoS. In this context, InPs adopt the programmable infrastructure and the enhanced

architecture introduced in Chapter 3 and have the joint objective of maximizing

the tenants’ admission rate while prioritizing the most rewarding slice requests.

Therefore, from a technological point of view, InPs have the incentive to perform

the slice allocation process as fast as possible once triggered by the arrival of a slice

request, since every request represents a potential source of revenue. On the other

hand, from a strategical point of view, the InPs have the incentive to prioritize

those slice requests with higher bids and characterized by a high ratio among arrival

and service rates. More in detail, we adopt the promptness offered by on-demand

approaches for the admission of new slices, combined with pricing features typical
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of periodic slicing, where tariffs are set depending on the resource availability, the

InPs’ strategy and SPs’ behavior. Indeed, we assume that SPs may have a different

perception of the market and, therefore, make different bids for the same kind of slice.

However, as SPs’ strategies have been abundantly studied in the literature and the

focus of this chapter remains on InPs’ perspective, we assume that SPs are irrational

entities that follow a random bidding model. Moreover, we assume that tenants pay

for the slices they use only if the associated SLA is met during their permanence in

the network, therefore, InPs can reallocate resources only after voluntary tenants’

departures.

In order to maximize the slice provision promptness and the InPs’ revenue while

reducing the computational cost associated to the admission decision, we propose

the Above Threshold (AT) policy-based approach that admits slice requests with

associated tariff-bids greater or equal than a given threshold. Such an approach is

capable of maximizing tenants’ admission rate while prioritizing the most rewarding

slice requests and, at the same time, it minimizes the admission delay as policies

can be enforced instantaneously upon each slice request arrival. In this regard,

we compare the performance of two kinds of admission strategies differing in the

admission strategy with respect to the resource utilization, named State Dependent

(SD) and State Independent (SI) policies, respectively. In particular, the former

uses admission thresholds that can adapt to the current resource utilization and

guarantees a maximum revenue for every number of instantiated slices, that is, it

depends on the available resources. On the other hand, the second adopts static

admission thresholds, thus requiring lower computational expenses and maximizing

revenues only in the long term. In this chapter, we model only SLAs associated to

inelastic services as they are the strictest class of SLAs. Either way, an extension of

this chapter to include elastic services can be achieved by following the modeling

approach in [21].

We provide a benchmark of the proposed admission control mechanism for network

slicing in 5G by comparing on-demand and periodic slicing performance (i.e., fairness

towards SPs, resource utilization, InP’s profit, and timeliness) with that of reference

strategies when different resource pool sizes, traffic loads, and slicing frequencies are

considered: i) in the on-demand case, the always-admit (AA) policy that admits

every slice request regardless of the associated bid, and, in the periodic case, ii) the

first-come-first-served (FCFS) policy that admits requests according to the order of
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Figure 5.1: System model for slice provision when one InP leases resources to multiple

SPs competing for providing service to their UEs. Colors identify the portion of

resources used (e.g., channel capacity C) and the UEs served by different slice tenants.

Rejected slice requests are marked with a red cross.

arrival (i.e., independently of the associated bids), and, iii) the best bid (BB) policy

that admits requests from the highest to the lowest bid (i.e., prioritizes SPs with

highest spending power).

5.3 System Model

In this section, we introduce the system model adopted for the analysis and, to this

aim, we refer to Fig. 5.1. In the considered scenario, multiple UEs coexist within

the coverage area of a given BS, which belongs to a given InP. The BS represents

the access point towards other network resources, such as backhaul, IP networks

and cloud infrastructures. In Fig. 5.1, the different colors identify different SPs, as

well as the UEs served by different slice tenants and the portion of InP’s resources

accessed (e.g., assigned portion of the total access link capacity C). Within this

context, different service instances of the same UE are represented as different logical

UEs (i.e., UEs can possibly access multiple service instances at a time, provided by

the same or by different SPs).

Resources are sliced independently at different BS locations and SPs are allowed

to actively request network slices on a continuous time scale, while InPs monitor

the resource availability and decide whether to admit them, either in real-time (i.e.,

on-demand slicing) or on a discrete time-scale (i.e., periodic slicing). Whenever
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InPs welcome a new SP, named slice tenant, a SLA is stipulated defining the terms

for the customization and pricing of the requested slice. In other words, each SLA

defines both the QoS to be guaranteed and the tariff βs in monetary units per second

(e.g., [euros/s]) to be paid by the SP tenant s during its permanence in the system.

Finally, the labeling s is associated with a slice requests rather than with a particular

UE or SP, indeed, in Fig. 5.1, a specific tenant can be licensee of multiple network

slices simultaneously, especially when SPs opt for serving different UEs by means of

separate slices.

In order to specify a clear model for the SLAs, we first introduce the concept of service

(or slice) class that we define as c = {rc, λc, µc, τc}. In this context, rc represents

the requirements vector, that is, the set of requirements re for each resource kind e

accessible from the considered service area, while λc and µc are the average arrival

and service rates of slice requests for the specific service class c, respectively. More

precisely, Tc = 1/µc is the average holding (or service) time for a specific class c, that

is, the average time interval during which resources are retained by SPs providing

such service. In other words, it holds Tc = E[Tc|s], where Tc|s is the holding time of

a specific SP tenant s.

The heterogeneous resource profiles of different slice classes are mapped by the InP

into a feasibility region F , whose contours are defined according to the resource pool

of the InP. In particular, the allocation state at a specific slice interval is modeled by

position vector n in a multi-dimensional space, which is defined in each dimension

by the number of slices nc currently allocated to a specific slice class c. The set of

feasible allocation states is formed by the number of slices that can be simultaneously

allocated to each class (i.e., n ∈ F), and a resource sharing vector σc is associated

to each slice class c, where sharing factor σec indicates the share over total amount

of resource e allocated to c. If we consider a policy region within F that limits

the actual number of slices that can be allocated to each class according to InP’s

prioritization of different services (similar to [135]), we can split the joint allocation

of heterogeneous slice classes into c separate allocation problems. Therefore, the

projection of the policy region over a specific dimension provides a variable maximum

number of slices Nc that can be allocated to a given slice class c at a given instant

(i.e., nc ≤ Nc).

Fixed a specific service class c, the SLA for a given SP tenant s is defined as the tuple
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Figure 5.2: Instance of the slice request, tenants’ departure and bidding processes in:

a) on-demand and b) periodic slicing, when only one service class is supported and

N = 2. Different colors identify requests and departures of different SPs, moreover,

rejected requests are marked by a red cross.

{c, βs}, where βsTc|s is the price paid to the InPs if the resource requirements are

guaranteed during the whole holding time. As introduced in Section 5.2, we examine

only the strictest kind of SLAs, that is, those associated to inelastic services [21],

characterized by constant requirements during the whole holding time. Besides,

we assume that the tariff-bid βs of a generic SP tenant s can vary within the

interval [βcm, β
c
M ], that changes for different slice classes c as they are characterized

by different associated resources and perceived value. More in detail, the extremes

of the bid interval represent, respectively, the minimum tariff accepted by the InP

(i.e., the reserve tariff βcm) and the maximum tariff that SPs can afford to pay for

the considered slice class (i.e., the tariff budget βcM ).

In this context, as we study the problem of intra-service network slicing, in the

following, we investigate the resource allocation to only one service class, reminding

that, when a policy region is enforced by InPs within the feasibility region F ,

the same methodology can be applied separately to each of the service classes.

Therefore, all SPs ask the InPs for the same requirements, and, the notation can be

simplified by omitting sub/superscript c, while SLAs of different tenants are fully

described by the corresponding bids βs. Besides, we model only access network

resources, that is, the channel capacity C of the access link to the BS, measured in

[bit/s] because, due to their scarcity they represent the bottleneck in the E2E slice

provision [J2], [177]. Hence, the service classes’ definition can be projected into a

single resource dimension, by substituting the requirements vector r with the scalar

r, that represents the aggregate nominal rate asked by tenants for the service of UEs



5.4 System Analysis for On-demand Slicing 87

in the considered coverage area (i.e., sub/superscript e is omitted)1. In this specific

case, the maximum number n of slices that can be allocated simultaneously for a

given service class and time instant is N = bσC/rc, and it holds 0 ≤ n ≤ N .

The proposed system model is valid for both on-demand and periodic slicing, that is,

when n is updated at each new admission and departure, or regularly every Tslicing

seconds. In the following, we assume that the slice request arrivals can be modeled

as a Poisson stochastic process with average rate λ, and the tenants’ departure as a

general stochastic process with average rate µ. With regards to the pricing model, we

describe different SPs’ behaviors by adopting a bidding model where βs is a random

variable following a general distribution fβ over the sample space [βm, βM ].

In Fig. 5.2, we depict an instance of the slice request, tenants’ departure and bidding

processes for both approaches. Besides, we highlight the possibility for the InP to

reject slice requests depending on the resource availability, the received bids, and

the adopted admission policy. Moreover, in the periodic case, slice requests received

during a given slicing interval can be admitted at the beginning of the next interval

only, when SLAs are enforced. In particular, tenants pay for slices only when they

utilize resources, therefore, InPs get no revenue in the time interval between tenants’

departure and following slicing interval. We remind that, as we model the problem

in function of the aggregate resource demand from the InP perspective only, multiple

slice instances can correspond to the same tenant, as represented in Fig. 5.2.

5.4 System Analysis for On-demand Slicing

In this section, we present the mathematical analysis for on-demand slice provision

mechanisms when different policies are adopted. Regardless of the policy, the

infrastructure can be represented as a cloud server farm with capacity to instantiate

N equal virtual servers (i.e., the network slices) that share a common pool of jobs to

be executed (i.e., the service requests of a given class). New jobs are characterized

by an average arrival and service rate equal to λ and µ, respectively, and the number

n of jobs executed is updated upon every new job’s arrival and completion. Besides,

1We remark that r only depends on the resource requirements of the considered slice class, while

σ at a given instant is obtained from the policy region defined by the InP and depends on the

allocation state n at the previous slice allocation interval.
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Figure 5.3: Markov chain for on-demand slicing systems, where a different number

of instantiated slices n and policy Pn is associated to each state, while transitions

are jointly represented by a transition rate ωnn+ and a reward φnn+ .

we assume that each virtual server can handle one job at a time, in order to model

the slice isolation requirement and the QoS guarantee. Therefore, thanks to the

memoryless assumption on arrivals and departures, we can model the system as a

M/G/k/k queue2. Even in cases where these assumptions do not apply (e.g., non-

Markovian behavior of SPs), discrete-time Markov chains could be applied. However,

the needed transformations lie outside the scope of this chapter.

The mathematical framework offered by continuous-time Markov chain (CTMC) can

be used for the mathematical analysis of the considered problem. We can refer to

Fig. 5.3, where each state corresponds to a different tuple (n,Pn), whose elements

describe the number of instantiated slices and the admission policy adopted at that

state, respectively. Besides, the generic transition from state n to n+ coincides either

with the admission or departure of a slice tenant, and is associated with the tuple

(ωnn+ , φnn+) representing the transition rate conditioned to the initial state and the

associated reward, respectively.

The state policy Pn represents any possible bid-based criterion for admitting or

rejecting incoming slice requests at state n and we remark that it depends on the

maximum number of slices N that can be allocated to the considered slice class at a

given instant, according to the policy region defined by the InP:

Pn =

Admit , if β ∈ Dn ∧ n < N

Reject , otherwise
(5.1)

where Dn ⊂ [βm, βM ] is the admitted bid interval at state n. Consequently, the

2It shall be noticed that, in the case of periodic slicing, the system can be modeled as a MX/G/k/k

queue, since we could consider that the slice requests received within a given slicing interval arrive

in batches at the beginning of the next interval.
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probability for a new slice request to be admitted at state n can be defined as

pn(fβ,Pn) = p{β∈Dn} =
∫
Dn fβ(β) dβ. State policies Pn can be arbitrarily chosen by

the InP when resources are available in the system, that is, for states 0 ≤ n ≤ N − 1.

On the other hand, when the system faces resource shortage (i.e., n = N), the only

applicable policy is the rejection of any slice request, that is, DN = ∅ and, thus,

pN = 0. Finally, the tuple (ωnn+ , φnn+) associated to a transition at state n can

be written as (λpn, β) in case of admission, and as (nµ, 0) in case of departure. In

conclusion, for the generic transition nn+ it holds:

ωnn+ =


λpn, if 0 ≤ n ≤ N − 1, n+ = n+ 1

nµ, if 1 ≤ n ≤ N,n+ = n− 1

0, otherwise

(5.2)

φnn+ =

β, if 0 ≤ n ≤ N − 1, n+ = n+ 1

0, otherwise
(5.3)

As introduced in Section 5.2, we assume that the InP can adopt either SD or SI

policies, which differ in the capability of adapting the admission strategy to the

number of slices isolated in the system. In particular, different or equal policies Pn
are enforced at different states n, respectively. Hence, InP’s strategy is represented

with the policy vector P = (P0, · · · , PN−1) in the SD case, while it can be fully

described by the generic state policy P when SI approaches are adopted (i.e., P = P).

5.4.1 State-Dependent policies

In CTMC, the stationary probability πn associated to the generic state n of the

system can be calculated through the following balance equations, when SD policies

are enforced:

� 0 : π0λp0 = π1µ

� 1 : π1(λp1 + µ) = π0λp0 + π22µ

� n : πn(λpn + nµ) = πn−1λpn−1 + πn+1(n+ 1)µ

� N :
∑N

n=0 πn = 1
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leading to:

π0

(λ
µ
, fβ, N,P

)
=

1

1 +
∑N

k=1(λµ)k/k!
∏k−1
l=0 pl

πn≥1

(λ
µ
, fβ, N,P

)
=

(λµ)n/n!
∏n−1
q=0 pq

1 +
∑N

k=1(λµ)k/k!
∏k−1
l=0 pl

(5.4)

Intuitively, in a low-load regime (i.e., when λ
µ → 0), the system most likely operates

in states corresponding to low values of n (i.e., π0 → 1), independently of the bidding

distribution fβ, the maximum number of slices N , and the InP’s strategy P. The

same result is obtained under high-load regime (i.e., λ
µ >> N), and when a very

conservative admission strategy is adopted by the InP (i.e., βm is increased so that

most of the bid distribution lies outside Dn). Conversely, when a more permissive

policy is used in high-load regime, the system behavior can be reversed (i.e., πN ≈ 1).

Following, we obtain the analytical expression for the performance metrics used to

measure the efficiency of such slice provision system. The admission probability can

be expressed as:

Padmit

(λ
µ
, fβ, N,P

)
=

N−1∑
n=0

πnpn (5.5)

and represents the probability for a new slice request to be admitted independently of

the number of slices already instantiated in the system. According to (5.4) and (5.5),

Padmit totally depends on the admission probability at state n = 0 in low-load regime

(i.e., Padmit → p0, when λ
µ → 0). Therefore, according to (5.1) and to pn’s definition,

the InP can improve the system’s fairness (i.e., the general satisfaction of competing

SPs) by widening the admission interval D0. More precisely, the maximum admission

probability in low-load regime can be reached when the state policy P0 admits every

request (i.e., p0 = 1) or, in other words, when the admission interval D0 includes the

entire support of fβ.

The average resource utilization U in the system is defined as the ratio between the

average and the maximum number of slices instantiated in the system:

U
(λ
µ
, fβ, N,P

)
= E[n]/N =

( N∑
n=0

n · πn
)
/N (5.6)

Subsequently, we introduce the expected tariff E[β|β ∈ Dn] paid by those slice
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tenants that are admitted at state n according to state policy Pn:

E[β|β ∈ Dn] =

∫ ∞
−∞

β p{β|β∈Dn} dβ

=
1

pn

∫
Dn
β f(β) dβ

(5.7)

where p{β|β∈Dn} = (fβ(β) · 1|β∈Dn)/pn.

The average revenue rate Rβ in [euros/s] for an InP applying a specific policy vector

P can be calculated by averaging, over all the states, the admission rate λpn in

[admissions/s], times the expected price paid by admitted tenants over the average

holding time, that is, E[β|β ∈ Dn]/µ in [euros/admission]:

Rβ

(λ
µ
, fβ, N,P

)
=
λ

µ

N−1∑
n=0

πnpnE[β|β ∈ Dn] (5.8)

5.4.2 State-Independent policies

The analytical expressions for stationary probabilities and performance metrics of

a SI system can be obtained as a particular case of the SD case. In particular,

by definition of SI policy, it holds Pn = P, Dn = D and pn = p for every state

0 ≤ n ≤ N − 1. Therefore, we can rewrite the stationary probabilities in (5.4) as:

πn

(λ
µ
, fβ, N,P

)
=

(λµp)
n/n!∑N

k=0(λµp)
k/k!

, n ≥ 0 (5.9)

Similarly, the system admission probability in (5.5) can be rewritten as:

Padmit

(λ
µ
, fβ, N,P

)
= (1− πN )p (5.10)

Finally, the definitions of U and E[β|β ∈ D] remain unchanged, while the expression

for the average revenue rate in (5.8) can be simplified as below and expressed as an

explicit function of Padmit:

Rβ

(λ
µ
, fβ, N,P

)
=
λ

µ
PadmitE[β|β ∈ D] (5.11)

A particular SI admission strategy is the AA policy introduced in Section 5.2 that

admits every slice request regardless of the associated bid (i.e., D = [βm, βM ] and

p = 1), such that, according to (5.7), E[β|β ∈ D] = E[β].
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5.4.3 Optimal policy and Complexity

In Section 5.2, we motivated the maximization of the average revenue rate as the main

InP’s objective, therefore, we seek the solution Popt
ν of the following maximization

problem:

Popt
ν = arg max

P
Rβ

(
ν, fβ,P

)
P = (P0, · · · , PN−1)

Pn see (5.1): Dn ⊂ [βm, βM ]

(5.12)

where ν = (λ/µ,N) represents the state condition, that is, the traffic load and

resource availability, of the network node considered. The problem highlights that

the InP has to compute Popt
ν offline for values of λ/µ and fβ that are representative

of SPs’ behavior in its network in order to adopt convenient strategies accordingly3.

In order to define the search space for the optimal policy, we remind that, according

to (5.1), the admission interval of a generic state policy Pn can be any subset of

the bid interval. Hence, the admission interval can be generically represented as the

composition of multiple disjoint admission intervals4. However, in order to reduce

the complexity of the problem described in (5.12), we propose the adoption of AT

policies where an admission threshold β̇n is set at state n, such that according to (5.1)

Dn = [β̇n, βM ] and β̇n ≥ βm. Accordingly, the system policy P can be fully described

by the threshold vector β̇ = (β̇0, · · · , β̇N−1) in the SD case and by the scalar β̇ in

the SI case, respectively. Thus, the search space for the optimal policy is reduced, and

the problem in (5.12) can be transformed into an N-dimensional or mono-dimensional

continuous optimization problem for SD and SI policies, respectively. On the other

hand, a reduction in the achieved revenue rate is expected when compared to the

optimal policy. However, as we demonstrate in the next section, the relative loss

remains constrained with respect to different load regimes.

For the particular case of AT policies, the performance metrics’ expressions can be

adapted as explained below. Because the InP admits slice requests at state n only

when the tariff-bid is higher than threshold β̇n, the admission probability at state n is

3The InP can estimate the SPs’ traffic patterns using network tracing, and employ traffic

forecasting mechanisms [178–180] together with machine learning tools for adapting the strategy

on-the-fly.
4i.e., Dn =

⋃
αD

α
n , with Dαn = [βαm, β

α
M ] ⊂ [βm, βM ] and Dα1

n ∩ Dα2
n = ∅, ∀α1 6= α2.
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pn(fβ, β̇n) = 1−CDF (β̇n). It is straightforward that pn is a monotonically decreasing

function of β̇n as dpn
dβ̇n

= −fβ(β) ≤ 0. Besides, for the most conservative and permissive

admission strategies it holds, respectively, pn(fβ, βm) = 1 and pn(fβ, βM ) = 0.

The admission probability Padmit, the average resource utilization U and the average

revenue rate Rβ remain unchanged. On the other hand, the expected tariff-bid

for tenants admitted at state n equals E[β|β ≥ β̇n] = 1
pn

∫ βM
β̇n

β fβ(β) dβ, that is a

non-negative function of β̇n (i.e., according to Leibniz’s integral rule dE[β|β≥β̇n]

dβ̇n
=

fβ(β)
pn

(
E[β|β ≥ β̇n] − β̇n

)
≥ β̇n

fβ(β)
pn

(
1
pn

∫ βM
β̇n

fβ(β) dβ − 1
)

= 0). For the most

conservative and permissive admission strategies it holds E[β|β ≥ βm] = E[β] and

E[β|β ≥ βM ] = βM ≥ E[β|β ≥ βm], respectively. In the particular case of uniformly

distributed bids, it holds for AT policies pn = βM−β̇n
βM−βm , E[β|β ≥ β̇n] = βM+β̇n

2 and

AA policies can be considered as a particular case of SI AT policies with threshold

β̇ = βm, that is, E[β|β ≥ β̇] = E[β] = βM+βm
2 when p = 1.

The average revenue rate for SD AT, SI AT and AA policies can be written as:

RSDβ =
1

2

λ

µ

1

βM − βm

N−1∑
n=0

πn(β2
M − β̇2

n)

RSIβ =
1

2

λ

µ
(1− πN )

β2
M − β̇2

n

βM − βm

RAAβ =
1

2

λ

µ
(1− πN )(βM + βm)

In order to further improve the tractability while conserving accuracy, we convert

the problem into a combinatorial optimization problem by discretizing the sample

space [βm, βM ] into a finite number h of intervals. Hence, the thresholds that can be

used for the state policies’ definition are:

β̇n = βm + j
(βM − βm)

h
, j = 0, . . . , h− 1 (5.13)

and the choice of a suitable value of h guarantees results’ accuracy while keeping

computational costs at acceptable levels, as it is demonstrated in the following

section. Therefore, the combinatorial version of the problem described in (5.12) can

be adapted for AT policies as described below, and, in the following, its solution will
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be referred to as optimal AT policy :

β̇optν = arg max
β̇

Rβ

(
ν, fβ, β̇

)
β̇ = (β̇0, · · · , β̇N−1)

β̇n = βm + j
(βM − βm)

h
, j = 0, . . . , h− 1

We remind that, as introduced in Section 5.2, the objective of this chapter is to

propose a prompt admission control mechanism for network slicing in 5G and to

compare its performance with that of baseline solutions. Because proposed AT

policies enable admission strategies at reduced complexity, we adopt in this chapter

an exhaustive search (ES) of the optimal policy for demonstration purposes only,

leaving for future extensions the search of a more computational efficient method.

Fixed the size of the pool of resources N , the complexity of an exhaustive search for

the optimal AT policy in SD and SI systems is polynomial (i.e., O(hN )) or linear (i.e.,

O(h)), respectively, with regards to the discretization levels h. Note that, depending

on the value of h, multiple solutions of the problem may exist, and, in those cases,

we choose the solution that maximizes Padmit; that is, the solution that minimizes

the Euclidean norm of the threshold vector (i.e., ||β̇||2 or β̇ for SD and SI systems,

respectively).

5.5 Results and Discussion

In this section, we present and compare the performance of different slice provision

mechanisms for both on-demand and periodic slicing when different policies are

employed.

5.5.1 System Setup

We examine different pool of resources and the extreme case where SPs follow

a per-UE slicing strategy. In the case of small cells, according to [181] up to 5

simultaneously active UEs can be served, hence, we assume a maximum number

of slices N = 6. For the traffic model, we consider low, medium and high arrival

rates λ, ranging from 0.5 to 100. On the other hand, we adopt only one service class
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with exponentially distributed departures and unitary average service rate µ. The

bid interval varies within the range [βm, βM ] = [0, 100] representing, respectively,

the minimum tariff accepted by the InP and the SPs’ budget. Finally, we provide

results for the case where SPs make uniform bids over the admitted interval (i.e.,

β ∼ U [βm, βM ]).

For the solution of the combinatorial problem for AT policies associated to the

problem described in (5.12), we employ a number h of discretization levels for the

bidding region that ranges from a minimum of 2 (i.e., low and high bid region) up

to a maximum of h = 10, allowing a higher precision. Besides, we develop a tool in

Matlab for the performance evaluation of the different considered mechanisms. In

particular, for the case of on-demand slicing with uniformly distributed bids, AT and

AA performance is evaluated according to the expressions introduced in Sections 5.4.2

and 5.4.1. On the other hand, for periodic slicing, a simulator generates instances

of the request arrivals, tenants’ departure and bidding processes, and enforces AT,

FCFS and BB policies accordingly for different slicing intervals. Finally, we remind

that the optimal AT policy is computed by means of exhaustive search, and, in

the periodic case, it is obtained separately for different values of the slicing interval

Tslicing.

In the remainder of this section, first we focus in on-demand slicing, computing the

optimal AT policy and comparing SD and SI approaches, when AA policy is used

as a benchmark. Lastly, for the periodic case, we study the optimal AT policy for

different slicing intervals, and we compare the performance with that of FCFS and

BB policies.

5.5.2 Performance evaluation

5.5.2.1 On-demand slicing

In Section 5.4.3, we anticipated that a reduced-complexity solution to the problem

introduced in (5.12) exists in the form of AT policy with discretized thresholds, but

this approach may suffer some penalty on the revenue. Consequently, we now study

the limits of its performance by comparing the average revenue rate of the optimal AT

policy with that of an ideal tool we named Oracle. More in detail, in this context, we

consider the most flexible type of AT policy, that is, the SD approach with maximum
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Figure 5.4: Assessment of the revenue loss for AT policy with respect to an ideal

Oracle, when SD systems are considered, N = 1, and h = 10.

definition over the bid interval (i.e., h = 10). Oracle, on the other hand, is capable

of recognizing the most rewarding bids. Oracle is applied a posteriori (i.e., once

the simulation is finished) and, therefore, it can apply admission decisions based

on its full knowledge of all the events in the simulation (i.e., slice requests, tenants’

departures and bids). Hence, Oracle is only used for benchmarking purposes as it

cannot be implemented in practice.

In Fig. 5.4, we present the average revenue rate for both optimal AT policy and

Oracle with respect to the load regime (i.e., λ/µ) in logarithmic scale. To this aim,

we study the most resource-limited case (i.e., N = 1), which leaves AT policies with

the least flexibility in terms of resource availability, for counterbalancing Oracle’s

knowledge of future events. We remind that InPs aim at the joint maximization of

admission rate and prioritization of highest bids and that, according to Section 5.4.1,

resources are exhausted (i.e., πN ≈ 1) in high-load regime (i.e., when λ
µ >> N).

Consequently, when a larger pool of slice requests is received by InPs, the latter are

motivated to adopt a more selective admission criterion by raising the bid threshold,
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which leads to a revenue enhancement at the expense of the admission probability

(i.e., according to (5.5) it holds Padmit ≈ 0). It can be observed from the figure that

both Oracle and AT policies can achieve a logarithmic increase with respect to λ
µ . On

the other hand, a loss in revenues is expected with respect to Oracle, as raising the

admission threshold translates in revenue maximization in the long term, while Oracle

is capable of selecting best bids over each realization of the slice request process. The

graph shows that the loss in revenues remains bounded for any load regimes, and, in

particular, a 14.3% loss is experienced when few revenue opportunities are available

(i.e., λ
µ → 0), it increases to 19.5% when arrivals are N times the departures (i.e.,

λ
µ ≈ N), while it reduces for high-load regimes (i.e., λ

µ >> N). For instance, AT

policies undergo a loss in revenue of 10% when λ
µ = 100. Therefore, AT policies offer

a near-optimal but viable solution to the generic optimization problem represented

in (5.12).

Before comparing the optimal strategies in SD and SI systems, we study the influence

of discretization over the complexity of the optimization problem and the accuracy

of results. In order to study the feasibility of adopting an exhaustive search for

benchmarking analysis, we provide the computation times associated to an exhaustive

search of the optimal AT policy in this system setup for an infrastructure capable

of hosting up to six slice tenants (i.e., N = 6). To this aim, we employ an Intel(R)

Core(TM) i9-7900X CPU @ 3.30GHz with 64GB of RAM, and results reveal that

when h = 4, 1.8 milliseconds are necessary for a SI system against the 4.5 milliseconds

for a SD system. Besides, when h = 10, 6.6 seconds are necessary for a SI system

against the 64.5 minutes for SD systems. Therefore, within the considered system

setup, computation times remain limited for both systems, although SI systems are

preferable when big infrastructures are being studied, and when many combinations

of λ
µ and fβ have to be considered for modeling SPs’ behavior.

Comparing the performance accuracy for SD and SI systems, we represent in Fig.

5.5 the average revenue rate offered by AT policies when different discretization levels

h are used. The figure proves that both systems react the same way to discretization,

except for some specific values of h showing very small differences in revenue due to

the lower degrees of freedom of SI systems. For instance, for N = 6 and h = 8, a

1.2% difference in revenue rate can be observed between the two systems. Besides,

a floor exists for Rβ when a minimum number of discretization levels h is used, or,

in other words, that a solution to the problem described in (5.12) can be sought in
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Figure 5.5: Average revenue rate for SD and SI AT policies with respect to the

discretization granularity h, for different values of N , and λ/µ.

the discrete domain with no significant performance loss when a suitable accuracy

is adopted. In particular, the constraint on h is approximately independent of the

size of the resource pool (i.e., N), however, it is more evident in high-load regimes,

as a better granularity allows a more rewarding bid selection over a bigger pool of

service requests. For instance, according to Fig. 5.5, InPs may decide to apply a

minimum number of discretization levels equal to h = 2 and h = 4 when λ/µ = 0.5

and λ/µ = 100, respectively, in order to jointly minimize complexity and the loss

in revenue opportunities. However, in the following, we adopt h = 10 for a better

graphical detail.

In order to study the behavior of SD and SI systems adopting AT policies under

different load regimes and systems sizes, we represent in Fig. 5.6a and 5.6b the

optimal policies for both solutions, when h = 10 discretization levels are used for

all values of N and λ/µ. When comparing the two graphs, it can be observed that,

independently of the load regime λ/µ and of the size of the resource pool N , similar

AT policies are optimal for SD and SI systems. More in detail, in low-load regime

(i.e., λ/µ = 0.5), the low arrival rate of service requests and the small holding time of
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Figure 5.6: Optimal AT policy β̇opt in a) SD and b) SI systems with different N

and λ/µ, and c) stationary probabilities πn in SD and SI systems with N = 6 and

different λ/µ. Besides, it is represented the interpolation of πn corresponding to the

average state E[n] (i.e., πE[n]). h = 10 in all the graphs.

slice tenants encourage the InPs to adopt in both systems low admission thresholds,

thus, maximizing revenues by increasing the admission probability. On the other

hand, in high-load regime (i.e., λ/µ = 100), the system is saturated (i.e., E[n] ≈ N)

and suffers from resource scarcity due to the high arrival rate of slice requests and

the big holding time of slice tenants. Hence, InPs are motivated to increase the

admission threshold in order to block the less rewarding slice requests.

In both load regimes, the higher flexibility of SD systems enables step-like policies,

where lower admission thresholds are adopted when the system is far from saturation,

while higher ones are employed when the system is about to exhaust its resources.

Moreover, with increasing size of the resource pool N , SD systems tend to be less

selective by relaxing the policy when far from saturation, in order to achieve a better

balance between admission probability and revenue rate. Despite different strategies

can be generally considered optimal for SD and SI systems, it can be noted that

the difference in the admission thresholds adopted at each state n is, at most, equal

to the discretization step (i.e., |β̇SDn − β̇SIn |≤ (βM − βm)/h, n < N). Therefore,

independently of the load regime and the pool of resources, the optimal policy for

the two approaches leads to the same system behavior, on average, that is, to the

same stationary probabilities πn, as illustrated by Fig. 5.6c for the case N = 6. This

aspect, in turn, translates into a close performance matching, as demonstrated below.

After having computed the optimal admission thresholds for on-demand AT policies,
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Figure 5.7: Performance of on-demand systems: a) admission probability, b) average

resource utilization and c) average revenue rate. SD and SI AT policies with h = 10

and AA policies are compared.

we now compare the performance of SD and SI approaches with that of an AA policy

when different load regimes and pools of resources are considered. In particular, in

Fig. 5.7, we study the admission probability Padmit, the average revenue rate Rβ and

the average resource utilization U when h = 10 bid levels are used. Firstly, it can be

observed that, by enforcing the constraint on the discretization accuracy (i.e., h ≥ 4),

a close performance match can be obtained between SD and SI approaches not only

for the average revenue rate but also for the other performance metrics. This result

holds independently of the load regime λ/µ and the size of the resource pool N .

In low-load regime (i.e., λ/µ = 0.5) it can be observed that the performance metrics of

different admission strategies (i.e., AT or AA) are very close and tend to coincide when

big resource pools are considered. Indeed, due to the limited revenue opportunities,

AT strategies imitate the behavior of the AA approach by admitting as many

requests as possible (see Fig. 5.6a and 5.6b), resulting in high admission probabilities

(Fig. 5.7a). However, in resource-limited systems (i.e., N = 2), the higher flexibility

of SD approaches is capable of guaranteeing a slightly higher admission probability

when compared to SI strategies. At the same time, due to the low rate of service

requests, the average number of instantiated slices (i.e., E[n]) remains approximately

constant, independently of the size of the pool of resources (i.e., N). Therefore,

according to (5.6), the average resource utilization decreases with respect to N

(Fig. 5.7b), while the average revenue rate does not vary (Fig. 5.7c).

In high-load regime (i.e., λ/µ = 100), the average admission probability decreases
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with respect to the low-load regime for AT policies in both SD and SI systems

(Fig. 5.7a). However, as results coincide with those for the AA policy, this is not

the consequence of the adoption of higher admission thresholds in AT policies, but

rather of the limited resources with respect to the demand. Consequently, both the

admission probability and the average operational expenditures (i.e., E[n]) increase

linearly with the size of the resource pool N , as more resources can be accessed by

competing SPs. Therefore, according to its definition in (5.6), the average resource

utilization U remains approximately constant with respect to N (Fig. 5.7b). However,

the more restrictive admission strategy of AT policies is demonstrated by a slightly

lower utilization when compared to AA policy, especially for SD systems due to their

greater flexibility. Likewise, because of the higher revenue opportunities, the revenue

rate is higher than the one achievable in low-load regime and increases linearly with

respect to the resource pool size N , as represented in Fig. 5.7c. Besides, due to the

higher admission thresholds, AT policies are capable of admitting the most rewarding

slice requests and consistently offer much higher revenue rates when compared to

the AA strategy (i.e., 68.6% improvement).

In conclusion, AT policies provide a great advantage in terms of revenue rate and

resource utilization while conserving the admission probability of less restrictive

strategies, such as the AA policy. Besides, when sufficient accuracy is adopted for

the bid interval discretization (i.e., h ≥ 4), SI AT policies are reduced complexity

solutions of the problem represented in (5.12) when compared to SD policies, at the

expense of a slightly lower admission probability for resource-limited systems.

5.5.2.2 On-demand and periodic slicing comparison

In the remainder of this section, we first compare the performance of on-demand and

periodic slicing mechanisms when AT policy is adopted. Afterwards, the comparison

is extended to reference admission control strategies (i.e., the AA policy in on-demand

case and the FCFS and BB policies in the periodic case). The analysis introduced

in Section 6.4 can be extended to the periodic case by using discrete-time Markov

chains (DTMCs), where transitions among states take place at regular time intervals.

Therefore, Padmit, U , Rβ and the optimal AT policy β̇opt become dependent on the

slicing interval Tslicing. In this context, extending the model introduced in Section 5.3,

n represents the number of slices instantiated and reserved during a given slicing
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Figure 5.8: Performance of on-demand and periodic slicing with respect to the

admission threshold β̇ when SI AT policies are adopted and: a) λ/µ = 0.5, b)

λ/µ = 100. N = 6 and h = 10 are considered in all the graphs, and, in the periodic

case, performance metrics are estimated over Nslicing = 10000 slicing intervals.

interval, considering also those tenants that fulfilled their SLA within the considered

interval (i.e., tenants leaving the system and interrupting their contribution to InPs’

revenues). Therefore, the definition of U in (5.6) takes on a connotation of average

resource reservation for periodic slicing, however, for the sake of comparability, we

maintain same name and symbol as for on-demand slicing. As shown in previous

paragraphs, both SD and SI AT strategies can be utilized for this comparison when

sufficient discretization accuracy is guaranteed, thus, in the following, we consider

only SI policies due to the lower complexity needed for computing the optimal policy.

In Section 5.2, we highlighted that, once policies are defined, the promptness

of a specific slice admission method strictly depends on the delay added by the

communication flow between SPs and InPs and the complexity for computing

the admission decision. In order to provide a complete comparison between on-

demand and periodic systems, we introduce in this context a new performance metric

measuring the delay added by the admission control mechanism. More precisely,
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we define the average waiting time τ̄ as the average time delay from service request

arrivals, up to their admission or blockage. For on-demand slicing, it holds τ̄ = 0

because, according to Section 5.2, slice requests are evaluated right upon arrival. On

the other hand, in periodic slicing, τ̄ is the average time interval between slice request

arrivals and the beginning of next slicing interval. Therefore, exploiting the properties

of Poisson processes, the instants ta corresponding to slice requests arrivals within

the i-th slicing interval are uniformly distributed (i.e., ta ∼ U [iTslicing, (i+1)Tslicing]).

Hence, τ̄ = Tslicing −E[ta] = Tslicing/2 independently of the adopted policy. With

respect to the computation of the admission decision, both AA and FCFS strategies

introduce null delay, as they only enforce the admission decision whenever resources

are available. Assuming that the optimal admission thresholds are pre-computed for

different values of λ/µ, fβ, and N , the same holds for AT policies. Finally, the BB

admission mechanism implies the implementation of sorting algorithms with higher

computational expenses than previous strategies, however, as better processors are

made available every year, we assume that the dominant component of the total

delay is τ̄ for all the analyzed strategies.

In order to compare how AT policies behave in on-demand and periodic strategies, we

analyze how the performance metrics vary with respect to the admission threshold β̇

defined in (5.13) and slicing interval Tslicing. In particular, in Fig. 5.8, we provide the

representation of the admission probability Padmit, the average resource utilization

U , revenue rate Rβ , and waiting time τ̄ for the whole range of admission thresholds

and slicing intervals defined in the system setup. On the other hand, without loss

of generality, only a fixed system dimension is considered (i.e., N = 6). Finally,

Fig. 5.8a and 5.8b illustrate the cases with low and high-load regimes (i.e., λ/µ = 0.5

and λ/µ = 100), respectively.

With respect to the system’s fairness Padmit and the utilization of resources U , it

can be observed from Fig. 5.8 that both are monotonically decreasing functions of β̇,

for every load regime and admission strategy (i.e., either on-demand or periodic).

Therefore, a global maximum exists for both performance metrics over the admitted

bid interval and it coincides with the most permissive threshold (i.e., β̇ = 0), while

they tend to decrease when less permissive strategies are enforced. Besides, periodic

slicing provides same performance as on-demand slicing when a small number of

arrivals takes place per slicing period (i.e., λTslicing = 0.5). On the other hand, when

slices are offered less frequently than the service rate (i.e., Tslicing ≥ 1/µ), the number
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Figure 5.9: Optimal threshold β̇opt for on-demand and periodic slicing when SI

AT policy is used and different values of N are considered. h = 10 is considered

in all graphs and, in the periodic case, the optimal threshold is computed over

Nslicing = 10000 slicing intervals.

of SPs competing within the same slicing interval increases, and a higher optimal

AT threshold is adopted. Accordingly, the admission probability decreases, and the

resource reservation deviates from the resource utilization of the on-demand case.

Note that for very high values of λTslicing the level of saturation is comparable to

that of on-demand slicing mechanisms in case of high-load regimes (i.e., Padmit → 0

and U → 1).

On the other hand, Rβ manifests different behavior and shows a global maximum

depending on the load regime and slicing strategy. When the number of competing

SPs is low (i.e., λ/µ = 0.5 in the case of on-demand slicing, joint to Tslicing < 1/µ

for the periodic slicing case), Rβ is a monotonically decreasing function of β̇. As

limited revenue opportunities exist, the unconditional admission (i.e., β̇ = 05)

outperforms any other admission criterion. However, when the load regime increases

in on-demand slicing, or when lower slicing frequencies are adopted in periodic

slicing (i.e., Tslicing ≥ 1/µ), the competition among SPs increases and Rβ becomes a

concave function of β̇. We remind that InPs have the joint objective of maximizing

the admission rate and the resulting revenue, hence, when slice requests exceed

the resource availability, on the one hand, revenue opportunities increase, on the

other hand, the resources tend to be exhausted. Therefore, an optimal admission

threshold exists as a tradeoff between the maximization of the admission rate and

5We highlight that, even though a null threshold is enforced, positive revenue rates are possible,

on average, as SPs’ behavior is modeled according to a uniform random bid distribution.
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Figure 5.10: Performance metrics for network slicing with respect to λTslicing when

SI AT and AA policies are adopted for on-demand approaches and AT, FCFS and

BB policies for periodic approaches. For the periodic case, the optimal threshold is

calculated for each value of λTslicing, over Nslicing = 50000 slicing intervals, besides

results are provided for: a) λ/µ = 0.5, b) λ/µ = 10 and c) λ/µ = 100. N = 6 and

h = 10 are considered in all graphs.

the prioritization of the most rewarding requests. To confirm what we just said,

independently of the load regime, the horizontal coordinate that maximizes Rβ

corresponds to a value of Padmit not too far from its maximum. Besides, the

optimal AT threshold also reduces U with respect to its maximum, thus limiting

the operational expenditures while guaranteeing maximum revenue. Finally, it is

confirmed that the average waiting time τ̄ is null for on-demand slicing, while it

increases with respect to the slicing interval for periodic slicing (i.e., τ̄ = Tslicing/2).
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After having studied how the performance metrics vary with respect to the adopted

threshold and to the enforced slicing interval, we analyze now the properties of the

optimal AT policy for on-demand and periodic cases. In particular, in Fig. 5.9, we

represent β̇opt as a function of λTslicing, while considering different resource pool

sizes (i.e., N = 2, N = 4, and N = 6), as well as low and high-load regimes

(i.e., λ/µ = 0.5 and λ/µ = 100). First, we can observe that, for small values of

λTslicing, the optimal AT policy for periodic slicing is well approximated by the one

for on-demand slicing for all pools of resources and load regimes. Indeed, the high

slicing frequency makes periodic slicing systems receive fewer slice requests per slicing

interval, thus approximating the behavior of on-demand slicing. Besides, we can

observe how, for increasing number of arrivals per slicing interval (i.e., λTslicing), the

optimal AT policy for periodic slicing becomes more selective than in the on-demand

case, tending to the maximum admitted threshold for every λ/µ and N .

In order to benchmark the optimal AT policy in both the on-demand and periodic

cases, we compare its performance with that of reference slicing mechanisms. More

in detail, in the on-demand case, we consider the AA policy that admits all slice

requests, independently of the associated bids, whenever resources are available. Note

that, in the case of inelastic slices only, AA coincides with the admission strategy

proposed in [21]. On the other hand, in the periodic case, we study the adaptation

of AA to discrete time case, which operates as a FCFS policy within a given slicing

interval. Finally, for periodic slicing we also provide comparison with the BB policy

that, within a given slicing interval, admits requests with highest bids up to resource

exhaustion. Hence, in Fig. 5.10, we represent the admission probability Padmit, the

average resource utilization U , the average revenue rate Rβ , and the average waiting

time τ̄ as a function of λTslicing. The comparison is performed over the whole range

of slicing intervals according to the system setup, while, without loss of generality,

only a fixed system dimension is adopted (i.e., N = 6). Besides, low, medium and

high-load regimes (i.e., λ/µ = 0.5, λ/µ = 10 and λ/µ = 100) are illustrated in

Fig. 5.10a, 5.10b and 5.10c, respectively.

First, it can be observed how, in on-demand slicing, AT always outperforms AA

in terms of offered revenues and resource utilization at the cost of a small loss in

admission probability. Besides, AT and AA policies for on-demand slicing act as

best-case scenario for their natural extensions to periodic slicing, that is, periodic

AT and FCFS policies, respectively. More precisely, FCFS well approximates the AA
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performance for low values of λTslicing, while it provides worse performances for less

frequent slicing (i.e., Tslicing ≥ 1/µ).

Observing into more detail the performances of different periodic slicing schemes,

periodic AT proves to be more selective and resource efficient than the other two

policies, in the sense that it is characterized by a slightly lower admission probability

and by the reservation of less resources for the revenue maximization. Besides, FCFS

represents the lower bound in terms of revenue rate with respect to periodic AT and

BB policies. Indeed, for low values of λTslicing, BB behaves like a FCFS policy, while

periodic AT improves revenues by rejecting low bids and keeping resources for future

requests with higher bids. On the other hand, when sufficient service requests are

received within a given slicing interval, BB outperforms the unconditional admission

of FCFS and tends to the revenue rate offered by the periodic AT policy. Finally,

for slicing intervals greater than one tenth of the service time (i.e., Tslicing ≥ 0.1/µ),

periodic AT and BB offer comparable revenue rates. The effectiveness of the most

rewarding policies (i.e., periodic AT and BB) is emphasized when high values of λ/µ

are explored, that is, when more revenue opportunities exist. On the other hand,

independently of the adopted policy, the admission probability decreases and the

resource utilization increases inevitably due to the limited resources with respect to

the demand. With respect to the average waiting time τ̄ , it is null for on-demand

strategies and for very frequent slicing (i.e., Tslicing ≈ 0), while it increases linearly

with Tslicing for periodic slicing (i.e., τ̄ = Tslicing/2), regardless of the analyzed

mechanism.

In conclusion, a slicing system that employs the optimal AT admission policy (with

respect to load regime, bid distribution and pool of resources) outperforms all the

considered reference mechanisms, either on-demand or periodical. Indeed, it offers

the highest revenue rate and smallest resource utilization, with a negligible loss in

terms of admission rate. Besides, on-demand slicing solutions minimize the response

time to slice requests.

5.6 Summary

In this chapter, we proposed a slice provision mechanism for enabling the slice market

envisioned for 5G. The proposed approach consists in a policy that selects the most
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rewarding bids offered by SPs and exceeding a given threshold (i.e., AT policy), and

a reduced complexity solution is provided for adapting the optimal policy to different

resource pool sizes, traffic loads and SPs behavior. We demonstrated that our

proposal enhances the slice provision promptness, with QoS guarantees and fairness

towards SPs, while guaranteeing two-fold economic incentives to InPs: revenue

maximization and reduction of operational expenditures. Besides, we presented a

comparison of the proposal’s performance with reference policies, both when enforced

upon every service request (i.e., on-demand slicing) or at regular time-intervals

(i.e., periodic slicing). In particular, we consider always-admit policy (i.e., AA) in

on-demand slicing, and first-come-first-served (i.e., FCFS) and best bid (i.e., BB)

policies in periodic slicing.

Provided that the optimal bid threshold is chosen for actual network conditions,

the proposed AT policy in on-demand slicing outperforms the other considered

mechanisms, including a best bid selection strategy for periodic slicing. Indeed, the

optimal AT policy provided in this chapter offers the highest revenue rates while

reducing operational expenditures and offering real-time slicing, in exchange for a

negligible loss in terms of fairness towards SPs. On the other hand, if only periodic

slicing is possible, AT policy still offers the same advantages, however, slice requests

experience larger response times, regardless of the adopted policy, and decreases with

the slicing frequency. Finally, the AT approach enables reduced complexity solutions

when compared to other strategies, such as the BB policy. The effectiveness in terms

of revenues is highlighted especially in systems characterized by limited resources and

high-load regimes. Because the computation at runtime of the optimal admission

strategies would result in high costs and complexity, in the next chapter, we provide

an offline implementation based on machine learning and clustering approaches.



Chapter 6
Timely Slice Allocation for 5G with

Machine Learning

Overview

After one decade since the first studies on next-generation networks, and a few years

since early regulations and rollouts, 5G deployments are entering into a more mature

phase. Indeed, if research and standardization efforts initially focused on architectures

and enabling technologies, 5G ecosystem’s drive is becoming progressively service-

oriented. On the one hand, manufacturers and network owners are willing to fully

exploit the potential of 5G’s marketplace, on the other hand, regulation authorities and

standardization bodies implement solutions for a healthy coexistence among parties.

For guaranteeing the strict requirements foreseen for 5G, network slicing has been

proposed as a dynamic and scalable mechanism for customized resource sharing among

infrastructure providers and allocation to service providers. Many solutions have been

proposed in the literature for the scenario where multiple service providers share the

same pool of resources, while the exclusive allocation to different providers is still an

open issue due to the associated complexity. In this chapter, we define a policy-based

admission mechanism for exclusive intra-service slice allocation, at fine and adaptable

timescales. In particular, we consider the case where optimal admission strategies are

pre-computed offline for network state conditions that are representative of typical

traffic loads and resource availability. This offline phase is also used to train a Machine
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learning algorithm; a neural network (NN) learns the best admission policies from a

more computationally expensive mechanism in previously studied network conditions.

Thus, the NN is used for providing near-optimal admission decisions at runtime

under network conditions for which no optimal policy has been computed. Besides,

clustering-based solutions are considered for limiting the complexity associated to the

pre-computation of the admission decisions over the whole network. The potential

of the 5G marketplace in terms of revenue and quality of service is demonstrated

for the particular case of services with strict latency constraints by means of a proof

of concept implementation tested over network traces from a real network operator.

Different strategies are compared for the computation of the admission strategies

and results are provided in terms of efficiency in resource utilization, fairness to the

service providers, network owners’ revenue and complexity. This chapter confirms the

feasibility of the policy-based approach defined in previous chapter for exclusive intra-

service resource allocation. More precisely, a computationally-efficient mechanism

for achieving near-optimal admission strategies is provided, especially in the case of

missing information about network states.

Contributions

[J3] M. Vincenzi, E. Lopez-Aguilera, and E. Garcia-Villegas, “Timely admission

control for network slicing in 5G with machine learning,” IEEE Access, vol. 9, pp.

127595–127610, 2021. (Area: Telecommunic ations; Quartile Q2; IF: 3,367).

6.1 Related works

In Chapter 5, we introduced some of the open issues related to 5G slice admission

control mechanisms with strict QoS guarantees. Indeed, one of the greatest challenges

lies in the definition of mechanisms for the management and orchestration of mobile

network slices composed of heterogeneous resources from different infrastructures (e.g.,

access and core network, transport network, cloud infrastructure), while guaranteeing,

among others: i) E2E QoS, ii) isolation from other tenants, iii) efficient resource

utilization, and, iv) timely adaptation to traffic fluctuations in time and space [3–6,38,
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138,166]. The scenario is very similar to that of cloud computing where computational,

storage, and communication resources are combined in order to abstract customized

virtual machines out of the same infrastructure. However, because of the scarcity

and high cost of access network resources, standard over-provisioning mechanisms,

typical of cloud computing, cannot be exploited for network slice allocation [182].

Two macro categories for slice allocation approaches exist, based on different InPs’

business models and target services: reservation-based and share-based, respectively [182].

The first category foresees the reservation of exclusive and customized resources for

different network slices, thus providing tenants with strict and stable QoS guarantees,

at the cost of lower efficiency in resource utilization and higher complexity, in terms

of parallel management of diverse multi-service requirements, and reconfiguration

overheads. On the other hand, in share-based allocation schemes, multiple tenants

coexist within a given slice according to prearranged shares, thus improving resource

utilization efficiency by exploiting the statistical multiplexing of tenants’ traffic across

multiple slices [118], and limiting complexity by performing joint allocation and

reconfiguration of network slices for multiple tenants. However, the sharing of slice

resources harms tenants’ isolation and provides guarantees only on a statistical basis.

If fairness is naturally guaranteed in share-based approaches by fixing prearranged

shares among tenants, admission control mechanisms are needed when adopting

reservation-based solutions, thus leading to a possible degradation in fairness. Efficient

solutions exist in the literature for share-based slice allocation, on the other hand,

the high complexity associated with reservation-based mechanisms represents an

open issue, as it could harm timeliness, customization and efficiency, thus preventing

InPs from meeting SPs’ requirements [177].

A methodology for defining a reservation-based admission strategy is provided in

Chapter 5 [J2]. A CTMC is employed for the computation for an AT policy of the

optimal admission criterion for slice requests, that is, the threshold to adopt for bids

associated with incoming requests. In case of admission, bids are registered in the

SLAs as the tariff per unit of time charged by the InP to tenants throughout their

holding time. Slice admission control is studied both at fixed timescales (i.e., periodic)

and upon each request arrival (i.e., on-demand). While on-demand approaches allow

a faster response to slice requests, thus minimizing its contribution to delay, periodic

admission control limits technological and complexity requirements. When sufficiently

small timescales (i.e., negligible with respect to the average service time) are adopted
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in a way that it is suitable for short-lived services such as emergency or surveillance

services [5,6], both schemes show very similar performance; hence, the interest of this

chapter in the timescales used for the admission process. Finally, both SI and SD

policies are studied, which foresee fixed or adaptable thresholds for different states

of the CTMC. Optimal AT admission policies for specific congestion levels (i.e., the

ratio between the arrival and departure rates with respect to available resources)

are computed according to exhaustive search. Results show that, when optimal

admission policies are computed with sufficient granularity in the search space (i.e.,

accuracy in the discretization of the bid interval), comparable results are provided

by less complex SI solutions with respect to more accurate SD alternatives. Besides,

when compared with reference approaches (i.e., on-demand AA, and, periodic FCFS

and BB admission strategies), the AT strategy is capable of providing near-optimal

revenues to InPs, reducing expenditures and providing a fair slice provision to

competing SPs.

An alternative approach is the one described in [177], where an online and reduced

complexity admission control policy is derived by means of reinforcement learning,

which is capable of maximizing InP’s revenue while reducing the penalties due to

SLAs’ violation (i.e., on rejection of slice requests) under different network conditions.

One of the key contributions of this solution is its applicability to a scenario where

slice requests are issued simultaneously over the same infrastructure for different

service types (i.e., eMBB, uRLLC, and mMTC). Three possible algorithms are

considered for the computation of the optimal admission policies (i.e., Q-Learning,

Deep Q-Learning, and Regret Matching), and performance is assessed by means of

computer simulation in terms of: i) maximization of the revenue-to-penalty ratio,

and, ii) learning ability of online and offline strategies. Despite the great flexibility

offered by online approaches in terms of capability of adapting to new network

conditions, they are typically characterized by a reduced promptness in terms of

slice provision, due to: i) the time needed by the traffic forecasting algorithm for

collecting sufficient data on the network conditions, and, ii) the execution time of

machine learning (ML) approaches for efficient enforcement of the admission strategy

at runtime (i.e., including the learning phase) [182]. In this chapter, we adopt an

offline approach in order to take prompt decisions during the slice allocation process,

besides, we employ fine and adaptable timescales in order to improve timeliness,

resource utilization efficiency and admission rate, contrarily to [177] and to most

of the solutions in the literature that perform slice allocation at fixed timescales.
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Indeed, slice allocation at timescales coinciding with the holding time specified in

SLAs is generally associated with low efficiency in resource utilization, mostly if

coarse timescales are used for slice provision [J2], [183]. A possible approach to

improve the efficiency of slice management mechanisms when fixed timescales are

used consists in the implementation resource reallocation within slices [183,184].

From a service modeling perspective, a general characterization is provided in the

literature for different service types (e.g., eMBB, mMTC and uRLLC), together

with studies on their coexistence and prioritization [135,177, 185,186]. The majority

of the solutions in the literature adopt a per-SP slicing approach, foreseeing a two

level resource allocation: i) per-SP slice allocation used by each tenant for serving

multiple customers, ii) a lower level, per-user allocation, adopting more complex

mechanisms for resource allocation within a given slice (e.g., scheduling) or across

multiple slices [182]. In addition, performance is typically assessed over constant

arrival and departure rates [J2], [177,182], with the exception of [183,185,187], which

provide results on real network traces. Finally, performance is usually provided by

aggregating results from different cells, which is a reasonable strategy in order to

provide a network representation. However, this approach hides the suitability of a

specific approach to cells with different features (e.g., coverage, pool of resources,

traffic patterns and location).

6.2 Slice Allocation with Adaptive Timescales for 5G

Services

In this chapter, we make an effort to demonstrate the feasibility of a reservation-based

slicing mechanism for services characterized by strict QoS requirements (e.g., uRRLC),

by providing a PoC on real network traces for the reservation-based slicing presented

in Chapter 5 [J2] and adapted for timescales suitable for 5G services. More into detail,

InPs adopt the programmable infrastructure and the enhanced architecture introduced

in Chapter 3 and perform intra-service slice allocation (i.e., slice allocation to SPs

providing the same kind of service), by enforcing a policy based admission control

mechanism for bid selection at fine and dynamic timescales, pursuing maximum

revenues to the InPs, while improving efficiency and guaranteeing timeliness and

fairness towards SPs. A periodic and offline schemes is used, which requires an initial
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training phase when compared with online admission control algorithms, whose

computational burden is typically justified by a better performance [177]. The

statistical nature of the CTMC-based scheme in Chapter 5 [J2] is exploited for

pre-computing, during a one-time training phase, the optimal admission strategies

for known states of InPs’ networks (e.g., obtained from historical data), which are

computed according to the following approaches: i) an exhaustive search over a

limited set of network state conditions, and, ii) by using ML mechanisms for providing

near-optimal admission strategies for untested network conditions.

We include the slicing timescale as one of the admission control parameters adapted

by the InP. Therefore, the optimal admission strategies include both the bid admission

policies and the slicing timescale. Indeed, although the highest performance in terms

of customization and efficiency is achieved by adopting the smallest timescales for

slicing [J2], [182], we propose the adoption of slicing mechanisms with adaptive

timescale with respect to network congestion. This novel approach enables: i) the

limitation of the overall computational requirements without experiencing significant

losses in performance, ii) congestion reduction and customization guarantees by

adapting the admission strategy on-the-fly with respect to SPs’ traffic fluctuations in

time and space, and, iii) performance comparable to an on-demand scheme in a cost

efficient manner. This strategy, combined with edge computing, has the potential

to provide the promptest type of slice provision to services with very strict time

constraints (e.g., uRLLC), while maintaining a good revenue.

The number and values of network conditions considered for the pre-computation of

the admission strategies sets a tradeoff between performance and complexity. In this

regard, a NN is trained with optimal decisions provided by exhaustive search (ES)

for state conditions that are representative of the system. Therefore, an efficient

solution is provided for extending the admission strategy to unexplored network

conditions (both in time and/or space), and customization is improved in exchange

for a limited complexity increase (i.e., the initial learning phase). Besides, in order to

limit the complexity needed for the network-wide pre-computation of the admission

strategies, cluster analysis is performed for grouping similar network cells together

according to their historical congestion levels. In particular, under the assumption

of a centralized network architecture, we explore the possibility of pre-computing

the aptimal admission strategies for groups of cells (i.e., the clusters), instead of

performing such operation separately for each network node. Finally, in this chapter,
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we study performance on real network traces from a real mobile operator, and we

provide a comparison for urban cells of different sizes and traffic patterns.

Performance is assessed in terms of fairness to the SPs, resource utilization efficiency,

and InP’s revenue for AT, FCFS and BB admission strategies. A comparison is

provided on network traces from a real mobile operator with respect to reference

solutions applied to urban cells of different sizes and traffic patterns. In addition,

as centralized architectures are being standardized for 5G networks based on SDN

principles (see Chapter 3), the room for a further complexity reduction is investigated

by adopting the following procedure: i) clustering cells according to available network

traces, ii) obtaining the adaptable admission strategies only for a candidate cell in

each cluster, and, iii) comparing the gap in performance when candidates’ admission

strategies are enforced to other cells within, or outside of, a given cluster. As far

as is known, this is the first study considering a variable timescale for improved

customization in slice provision at a reduced increase in complexity.

6.3 System Model

In this section, we present the system model considered for performance assessment

of policy-based slice admission control mechanisms, performed on real network traces

representing Y different network nodes. In this regard, we refer to Fig. 5.2a, where

multiple UEs subscribing services offered by different SPs coexist within a given

geographical area. SPs issue requests for QoS-tailored network slices (i.e., slice

requests) to the InP providing coverage over the area, submitting a bid βs for each

request, while the latter takes decisions on which requests to admit. From the InP’s

perspective, requests from different SPs for a specific service class c are associated

with: i) vector rc, specifying resource requirements for each resource kind e, ii)

average arrival rate λc, iii) average service (or departure) rate µc, and, iv) maximum

waiting time τc accepted, from the slice request until its provision. Every time a SP

is admitted in the network, it is regarded as a slice tenant with identifier s, with

whom the InP stipulates a SLA containing information on the slice customization

(i.e., c = {rc, λc, µc, τc}) and the agreed tariff βs in monetary units per second

(e.g., [euros/sec]). Conversely, in case of rejection, requests are dropped, and no

mechanism is implemented for recovery in successive allocation intervals. In Fig. 5.2a,

different colors are used for identifying different SPs and corresponding UEs, SLAs
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and resources allocated (e.g., assigned portion of the total access link capacity C).

According to the system model in Chapter 5, n(i) is the allocation state at the i-th

slice interval, that is, the number of slices nc currently allocated to a specific slice

class c, which can be represented as a position vector n(i) in a multi-dimensional

space. Besides, for each slice class c, a sharing factor σec(i) indicates the share over

total amount of resource e allocated at interval i, resulting in resource sharing vector

σc(i). The resource pool of the InP together with the heterogeneous resource profiles

of different slice classes define a feasibility region F and the set of feasible allocation

states such that n(i) ∈ F . Finally, assuming that the InP defines a policy region

within F that prioritizes different services by limiting the actual number of slices

that can be allocated to each class (similar to [135]), c separate allocation problems

can be solved for the resource allocation to heterogeneous slice classes, with a variable

maximum number of slices Nc that can be allocated to each slice class at a given

instant (i.e., nc(i+ 1) ≤ Nc(i+ 1)).

We remark that, according to the system model in Chapter 5 [J2], the problem is

modeled focusing on the aggregate resource demand to the InP, therefore, multiple

slices can correspond to the same tenant, or even to the same UE subscribing services

from one or multiple SPs. For a given service class, we assume that bids can vary

between a minimum and maximum tariff: βcm and βcM , respectively. Besides, as the

focus of this chapter is on the timeliness of the slice admission control process rather

than on strategic bidding, we model SPs as irrational entities following a random

bidding model. We represent with Tc = 1/µc the average holding time of slice class

c, while we employ Ts for referring to the exact time interval during which resources

are exclusively retained by a generic tenant with identifier s. In the periodic case,

we remark the difference between the holding time Ts of a generic s-th tenant and

the timescale T slicingi,c adopted by the InP for periodic slice allocation to service

class c. More precisely, Ts is the exact holding time for a generic slice tenant s,

during which the agreed tariff is applied if the SLA is respected (i.e., the total price

paid equals βsTs). On the other hand, T slicingi,c is the length of the time interval

during which InP collects slice requests for service class c, which will be admitted or

rejected at the beginning of the following allocation interval. We assume that T slicingmin

is the minimum timescale offered by InP to SPs in order to keep complexity and

overhead costs limited. A possible instance of the slice allocation process is proposed

in Fig. 5.2b for the case with a single service class.
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From the slice allocation mechanism’s perspective, time is a discrete variable

represented as a sequence of Ψ slice intervals {T slicingi,c }i=1,...,Ψ. In order to account

for InP’s capability to timely adapt the slicing timescale as a part of the admission

strategy, we adopt the following representation for the initial time instant of the i-th

interval of service class c: t0i,c = t0 +
∑i

ζ=1 T
slicing
ζ−1,c , with t0 and T slicing0,c representing,

respectively, the first time instant observed, and the first interval for slice request

collection. For a specific slice class c, we represent the ρci slice requests received

within the i-th interval with {sci,q}q=1,...,ρci
, disposed in order of arrival according

to index q. Assuming that the average arrival rate varies in time, thus identifying

periods with higher or lower load in terms of traffic, it holds E[ρci ] = λc(i)T
slicing
i .

On the other hand, we assume that departure rates for a given service class do not

vary with time. Similar to the arrival rate, we assume that resource requirements

rc(i) can also vary with time, thus accounting for QoS customization within a specific

service class. Therefore, every slice allocated for the i-th interval deduces an amount

rc(i) from the resource pool until departure.

The admission policies Pci that InPs can enforce for a specific service class c at the

end of allocation interval i, are defined below for the sequence {βsci,q}q=1,...,ρci
of bids

received within the i-th slice interval. We represent with nac (i) the number of slice

requests admitted at the beginning of current slice interval, and we remark that

policies enforced at the next interval i+ 1 depend on the maximum number of slices

Nc(i+ 1) that can be allocated to class c according to the policy region defined by

the InP.

6.3.1 First-Come-First-Served and Best Bid

FCFS and BB represent two antithetical admission strategies in terms of fairness

towards SPs and revenue to InP because, although they both maximize the number of

admissions by allowing resource exhaustion, the former admits requests according to

the order of arrival (i.e., independently of the associated bids), while the latter orders

requests from the highest to the lowest bid (i.e., prioritizes SPs with highest spending

power). In other words, FCFS applies the policy described below to incoming bids

{βsci,q} for increasing values of index q. On the other hand, BB first sorts bids values

from the greatest to the smallest according to a new listing index q̂, then, it applies
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the policy described below to {βsci,q̂} for increasing values of index q̂.

Pci (βcsi,q) =

Admit , if nc(i+ 1) ≤ Nc(i+ 1)

Reject , otherwise

FCFS: {sci,q}q=1,...,ρci

BB: {sci,q̂}q̂|βsc
i,q̂
≥βsc

i,q̂+1

(6.1)

6.3.2 Above Threshold

AT strategy represents a tradeoff between FCFS and BB solutions in terms of fairness

and revenue to the InP. Indeed, similarly to the FCFS approach, slice requests are

admitted in order of arrival, but only if associated bids are above a specific threshold

β̇ci , which can be set by the InP to any value within the interval [βcm, β
c
M ] based on

the congestion level of the network. In other words, on the one hand, it enforces a

more conservative strategy in terms of resource utilization and, on the other hand,

it can pursue the maximization of InP’s revenue by choosing a suitable admission

thresholds, or it can favour fairness by adopting thresholds closer to β̇ci = βcm (i.e.,

tending to a FCFS strategy). Consequently, AT applies to incoming bids {βsci,q} the

policy described below for increasing values of index q.

Pci (βcsi,q) =

Admit , if βsci,q ≥ β̇
c
i ∧ nc(i+ 1) ≤ Nc(i+ 1)

Reject , otherwise

{sci,q}q=1,...,ρci

(6.2)

6.4 System Analysis for Optimal and ML-based solutions

In this section, we first introduce the metrics used for performance assessment, then

we adapt and study the optimization problem introduced in Chapter 5 [J2] for

offline pre-computation of optimal admission strategies. In particular, the approach

proposed in Chapter 5 [J2] has to be implemented in parallel for each of the c

service classes supported by the InP. However, as introduced in Section 6.2, in this
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context the focus is on the timeliness of an admission control mechanism suitable for

slice classes with strict requirements in terms of latency (e.g., short-lived uRLLC).

Therefore, rather than studying the resource allocation and slice provision to different

service classes, we study and provide performance results for the slice provision to

SPs belonging to a specific service class (i.e., sub/superscript c is omitted in the

following).

In Chapter 5 [J2], we assessed the lower delays offered by on-demand slice admission

schemes with respect to a periodic approach, however, as explained in Section 6.1,

performing slice admission control at fixed timescales allows reducing technological

and complexity requirements. Besides, as studied in Section 5.5.2.2, the periodic

scheme approaches on-demand scheme’s performance when sufficiently small timescales

are adopted. For these reasons, in order to achieve a reasonable tradeoff between

complexity and promptness of the slice provision mechanisms, on the one hand,

we adopt the periodic scheme with the lowest complexity (i.e., enforcing the SI

policies introduced in Section 5.4.2 [J2]) and we perform offline pre-computation of

the optimal admission strategies and, on the other hand, we enforce the admission

policies at adaptable timescales T slicingi according to network congestion level’s

fluctuations in time and space.

With respect to the resource profile associated to this specific service class, we

study a simplified model where only access network resources are considered for

slice allocation (i.e., channel capacity C of the access link) because, due to their

scarcity, they are the most valuable asset in the slice marketplace (see Section 6.2)

and, therefore, they represent the bottleneck in the E2E slice provision [J2], [177].

For this specific case, the number n(i) of slices in the system at i-th instant can take

values between zero and N(i) = bσ(i)C/r(i)c (sub/superscript e is omitted as only

one resource kind is considered). We remark that r(i) only depends on the resource

requirements of the considered slice class, while σ(i) is obtained from the policy

region defined by the InP and depends on the allocation state n(i).

We consider the highest levels of customization and isolation, that is, per-user slice

allocation. This choice is due to two main reasons: i) we consider only access

network resources, therefore, it is possible to enforce slice allocations by means

of scheduling algorithms, thus removing the complexity deriving from a two-level

resource allocation, and, ii) we want to provide a PoC for short-lived uRLLC services
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expecting timely slice allocations, avoiding the delays related to the aggregation of

slice requests coming from multiple users.

Finally, we assume that slice requests arrivals can be modeled as a Poisson stochastic

process with average rate λ(i), and SPs’ departures as a general stochastic process

with average rate µ. With respect to the SPs’ bidding strategy, we assume that bids

βs can be modeled as a random variable following a general distribution fβ over the

sample space [βm, βM ].

6.4.1 Performance metrics

The analytical definitions provided in Chapter 5 [J2] for the performance metrics

of the on-demand case can be easily adapted to the periodic case and expressed

as a function of the system model’s variables introduced in Section 6.3. More in

detail, assuming that the admission strategy ξi enforced at the end of slice interval i

can be fully described by tuple (Pi, T slicingi+1 ), we represent with Ai+1 = na(i+ 1)/ρi

the admission ratio at the next slice interval, expressed as the ratio between slice

requests admitted and total number of arrivals. Until its departure, an admitted

slice s (received at slice interval i) implies a decrease of ri from the available capacity

C at slice interval i + 1, and a contribution to InP’s revenue equal to βsTs (paid

proportionally at each of the following slice intervals). Consequently, for a specific

service class, if we represent with Cavi the portion of network capacity available

out of σ(i)C at slice interval i, we define the percentage of resource utilization of

the service class as Ui = 1− Cavi /(σ(i)C). Finally, if Rtoti represents the aggregate

revenue paid by all tenants at a specific slice interval i, we can compute the total

revenue rate as Rtoti /T slicingi . An average or aggregate version of the same metrics

is also provided over the whole observed time interval. In particular, the average

admission rate Ā, the average percentage of resource utilization Ū , and the average

admitted bid β̄s are computed averaging over the Ψ slice intervals considered. On

the other hand, the total aggregate revenue is provided as Rtot =
∑Ψ

i=1R
tot
i . Finally,

as a measure for the timeliness of the slice admission control method, we employ the

average waiting time from the moment a slice request is received, until an admission

decision is made1, that is, τ̄i = T slicingi /2, which has to be lower than the maximum

1According to Section 5.5.2.2 [J2], the properties of Poisson processes can be exploited for

computing the average value for the arrival instant tai within the i-th slice interval, that is, E[tai ] =
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timescale τ accepted by SPs to meet latency requirements for the slice allocation.

6.4.2 Optimal Strategy and Complexity

For the pre-computation of the optimal admission strategies at specific network

conditions, we follow the approach presented in Section 5.4.3 [J2], which aims at

the maximization of InP’s revenue rate. The maximization problem extended to the

periodic and adaptive case can be defined as follows:

ξoptν = arg max
ξ
Rβ

(
ν, fβ, ξ

)
FCFS, BB: ξ≡ T slicing

AT: ξ≡ (β̇, T slicing)

T slicing ∈ [T slicingmin , τ ]

β̇ ∈ [βm, βM ]

(6.3)

where Rβ, represents the revenue rate that InP would obtain in the long term by

enforcing a given admission strategy ξ over a network node with state condition

ν = (λ/µ,N). We remind from the system model presented in Section 6.3 that the

triple (λ/µ, r, fβ) represents SPs’ model, in terms of traffic load, resource requirements

and bidding behavior. On the other hand, N is a measure of the maximum resource

availability at a specific network location with respect to SPs’ requirements at a

specific time instant. Finally, ξ represents test strategies in the search space for the

considered continuous optimization problem, which is mono-dimensional in the case

of FCFS and BB strategies, where only the slicing timescale T slicing can be tuned,

and bi-dimensional in the case of AT approach, where we can configure both slicing

timescale and admission threshold for incoming bids βs. Because we implement an

offline strategy for the pre-computation of the admission policies, the optimization

process is performed only once and its outcome can be used for building a lookup table

that will be used on-the-fly for different network nodes and time instants. Justified

by the computational power of current technologies, we explore in this chapter the

exhaustive search of the optimal strategies, and we compare its performance with

more computationally-efficient and flexible methods based on ML.

In order to limit the complexity of the offline pre-computation of optimal admission

strategies, we discretize the search space independently over its dimensions, transforming

T slicingi /2. Then, τ̄i = T slicingi −E[tai ].
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the problem in (6.3) into a combinatorial optimization problem. More into detail, we

assume that InP can arbitrarily choose for T slicing a finite number l of sample values

in [T slicingmin , τ ]. On the other hand, for bid selection in the AT strategy, a finite number

h of admission thresholds β̇ is selected uniformly within the sample space [βm, βM ],

as defined in Section 5.4.3 [J2], that is, β̇ = βm+ j(βM −βm)/h, j = 0, . . . , h−1. A

sufficient value needs to be adopted for h in order to guarantee optimal performance

to InPs and SPs while keeping computational costs limited, as studied in Section 5.5

[J2]. In conclusion, the candidate admission strategies ξ are defined over a spaceW of

cardinality |W| = l, or |W| = l · h in FCFS and BB case, or in AT case, respectively.

The discretization of the search space could lead to the curse of dimensionality,

where a higher number of sample values is translated into increased complexity,

although not necessarily associated with a better statistical significance. Therefore,

the particular choice of the sample admission strategies (considering both cardinality

|W| and selected values) could lead to very different performance and, in general, the

adoption of a decomposition algorithm is recommended for the discretization of the

sample space according to its most representative features. However, in this chapter,

we decide to limit complexity by choosing few sample strategies, while relying on

the NN for extending the admission strategies to unexplored regions of the sample

space. Indeed, the NN is trained by using the input-target pairs (ν, ξoptν ) for providing

near-optimal strategies ξ in correspondence of generic state conditions ν.

As remarked in Chapter 5 [J2], the InP is responsible for pre-computing convenient

strategies in correspondence of network conditions that are representative of real SPs’

behavior and resource availability at different nodes of the network. Therefore, InP

has to properly choose the tuples ν over the discrete sample set V to be used for the

offline solution of problem in (6.3). In order to limit complexity while improving the

versatility of pre-computed strategies, rather than solving the optimization problem

separately for all possible conditions of different nodes at different times, we select

sample state conditions that are statistically representative of the whole network

(e.g., observing historical data gathered from different locations and time instants).

Strategies need to be employed for mitigating the curse of dimensionality, which could

lead to the overfitting of the neural network if the input state conditions selected for

the initial training do not have statistical significance for all the network nodes in

different hours. In this case, we first compute the union V ′ of all the tuples (λ/µ,N)

obtained from network traces over different nodes’ location. Afterwards, we perform

an initial coarse and homogeneous sampling over V ′ and, finally, we run a fine scale
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sampling over the most occurring tuples.

We remark that, in the case of BB admission strategy2, by definition, additional

burden is required at runtime for the ordering of incoming slice requests with respect

to bid values, when compared with FCFS and AT approaches. In particular, assuming

that a quicksort algorithm is used, the average complexity associated with the BB’s

bid selection at the end of slice interval i is O(ρi).

6.4.2.1 Exhaustive search

The complexity of the offline pre-computation for a specific network condition by

means of exhaustive search is linear with respect to the cardinality |W| of the search

space for ξ (i.e., O(|W|)). The overall time required for the admission strategies’

pre-computation strictly depends on the number of samples states considered (i.e.,

on the cardinality |V| of V), which also determines the complexity of implementing

the lookup table at runtime. More in detail, for an arbitrary network condition νi

at a specific node location and time interval i, we enforce the admission strategy

ξopti corresponding to the tuple ν in V that minimizes the squared euclidean distance

d(νi, ν)2. Assuming that the minimization is performed by implementing the quicksort

algorithm over the squared euclidean distances plus the selection of the smallest value,

the average complexity is O(|V|) independently of the admission strategy considered.

InP needs to implement the runtime process described above in parallel for all the Y

network nodes, thus, with a network complexity at runtime equal to O(Y · |V|). As a

possible solution for the reduction of the complexity over the network, we consider the

approach introduced in Section 6.2, that is, performing offline clustering of network

nodes according to historical data, and applying optimal admission strategies of

few candidates (i.e., nodes corresponding to clusters’ centroids) to the rest of the

nodes in the network. In particular, we perform clustering according to k-means

implementation [188], that partitions Y nodes into k clusters based on δ-dimensional

features extracted from network traces, while considering as objective function the

global minimization of the squared euclidean distance to the clusters’ centroid.

Although clustering requires an increase in the overall computational complexity,

this process is performed only once offline, in exchange for a complexity reduction at

2BB is the most greedy and unfair strategy from the InP’s and SPs’ perspectives, respectively.
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runtime by a factor k/Y , which is the dominant component of adopting a policy-based

solution on the long-term. However, in scenarios where the network is expected to

experience drastic changes, clustering can be repeated according to a given periodicity

in order to maintain an updated and accurate representation of clusters and centroids

that fits the network.

6.4.2.2 ML-based search

As detailed in the previous subsection, the exhaustive search approach is used to

generate a discrete solution set for different network conditions. This solution set

is then used to train a neural network, which will be capable of providing effective

strategies for new network conditions, not previously explored by the exhaustive

search (i.e., ν /∈ V).

NNs are computing systems designed to model biological neural networks embedded

in animal brains, which are composed by simple processing units (i.e., the neurons)

and dense interconnections (i.e., the synapses), which, all together, allow for building

up knowledge by means of experiential learning [189]. Inspired by biological neural

networks, artificial NNs (or simply NNs) are composed by multiple layers of processing

units, representing populations of neurons, each layer transforming a set of inputs

into output signals. Neurons within a layer are interconnected by multiple links and

the output of each neuron is obtained by performing non-linear operations on the

weighted sum of its inputs. The NN as a whole is then composed by a sequence

of layers, possibly with different number of inputs and outputs, and such that one

layer’s outputs constitute the following layer’s inputs. Therefore, NN’s input signals

are transformed succesively from the input layer (i.e., the first layer) to the output

layer (i.e. the last layer) going through multiple inner layers. A learning algorithm

is then employed for the training of the NN, that is, for the modification of the

synaptic weights among neurons within a layer and between different layers according

to the objective functionality of the NN. More precisely, in a supervised learning

approach, inputs are transformed into a feature vector descriptive of the input and,

for each input vector, a target output vector is provided. For each couple of input

features and target outputs, NN’s prediction error is computed, that is, the difference

between the computed and target outputs, which is then used to adjust, according

to a specific learning rule, the NN’s weights to be used in following iterations. After
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a sufficient number of iterations, where different couples of input samples and target

outputs are used, the learning algorithm is terminated and the NN can be used for

computing outputs also in case of inputs that have not been explored during the

training phase.

This computational approach fits very well to our study case, indeeed, InPs dispose

of full access to the network’s information, therefore, sufficient sample network

conditions (i.e., ν ∈ V) can be collected as input features for the training process.

Besides, the corresponding optimal strategies ξoptν can be computed by means of

ES and used as target outputs for the training of the NN. The outputs of the

trained NN represent a near-optimal solution of the problem in (6.3) and are used for

enforcing admission strategies at runtime in correspondence of untested conditions.

We remind that the NN can be applied to any node in the network, because it is

trained with sample conditions that statistically represent behaviors that could be

observed throughout the whole network.

For optimizing the NN training, we perform K-fold cross-validation [190] over the

following hyperparameters: i) number of hidden layers nHL, ii) number of neurons

per layer sHL, and, iii) training function. Therefore, we divide the sample network

conditions V into K groups, then, for each configuration of hyperparameters, we

use K − 1 groups (i.e., the (K − 1)/K% of the sample set) for training the NN,

and the remaining group (i.e., the 1/K% of the sample set) for validating how close

the estimated strategies are to the target ones for the considered configurations of

hyperparameters. This process is repeated K times such that each subset is used

exactly once for validation. In the case of AT strategies, we compare the option where

a single NN is used for computing both admission threshold and timescale, with the

alternative approach where two parallel NNs are used for computing separately β̇i,

and T slicingi .

The complexity corresponding to the training phase of a NN depends on all the

parameters introduced above, in addition to the stop criterion adopted. Finding a

strict definition is out of the scope of this chapter because, similarly to the case of

clustering, the training of the NN is performed offline only once. Besides, justified by

the computational power offered by existing technologies, we neglect the corresponding

increase in the overall complexity count. On the other hand, the enforcement of

NN-based admission strategies at runtime at a specific node location and time interval
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i requires linear algebraic operations over the input network condition νi, whose

complexity depends only on the NN’s topology, that is, O(nHLlog(sHL)) [191]. In

this chapter, we consider NN with reduced topology, therefore, the corresponding

computational burden at runtime is expected to be lower when compared to the

implementation of a lookup table over the pre-computed |V| admission strategies as

described above (see Section 6.5.1).

In Table 6.1, we summarize the notations used for the main parameters introduced

for the system model and system analysis in Sections 6.3 and 6.4, and that will be

defined for results and discussion in Section 6.5.

6.5 Results and Discussion

In this section, we first describe the system setup, then we compare the performance

obtained when different admission strategies are adopted. Finally, we study the case

where ML strategies are employed for efficient computation of admission strategies,

as well as the possible reduction in complexity offered by the offline clustering of

network nodes.

6.5.1 System Setup

For the performance assessment, we consider the system setup described in the

following. SPs slice request arrivals are realized according to a Poisson distribution

with average arrival rate λ extracted from network traces, as explained below. On

the other hand, for departures we consider an exponential distribution, with average

service rate µ = 1/60 set according to the upper limit on the holding time at link

layer provided in [192]. SPs’ bids follow a uniform distribution within the range

[βm, βM ] = [0, 100]. Finally, both channel capacity C of the access link and resource

requirements r are extracted from network traces as explained next.

6.5.1.1 Network traces

Network traces are provided by a mobile operator for a 4G network operating in an

European city over a time interval of one week for eleven network nodes (i.e., Y = 11)
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Figure 6.1: Daily averages of network traces from a real mobile operator from 5AM

to 4:45AM of the next day: a) average number of active UEs NUE , b) maximum

throughput S of network nodes in downlink, and, c) aggregate data M sent to UEs

in downlink. Different colors are used for different cells.

at a regular periodicity, with trace intervals of size Ttrace = 900[s]. For each network

node, information is provided on the average number NUE of active UEs, maximum

throughput and aggregate amount of data exchanged with UEs. In the following, and

without loss of generality, we only consider downlink resources. We represent with

S the maximum throughput in [Mbit/s] considering all UEs, and with M the total

amount of data in [MB] sent by the network node. In Figure 6.1, we provide the

daily averages computed over the network traces, which clearly show that different

nodes support diverse volumes of traffic, although with similar patterns, as it will be

studied in detail in Section 6.5.2.

6.5.1.2 Clustering

We perform k-means clustering on the Y network nodes by considering different values

of the number of clusters k and different combinations of δ-dimensional parameters

from traces. The maximum number of iterations is set to γ = 100, and the algorithm is

run ten times with random initial centroids in the attempt to filter out the dependence

on the starting point. The highest separation in terms of squared euclidean distance

between clusters is provided when k = 2 is used, and when clustering is performed

over the average and the variance of NUE computed over the week (i.e., δ = 2),

respectively, < NUE > and V ar(NUE). This result shows a high correlation between

NUE , S and M . Resulting clusters are represented with different colors in Figure 6.2a,

with triangle and circle star markers representing, respectively, network nodes and
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Figure 6.2: k-means clustering on network nodes’ traces with k = 2: a) clustering

with respect to average and variance of NUE over the week, and, b) silhouette plot. In

a) coordinates are normalized with respect to mean and standard deviation computed

over the network. Besides, nodes of cluster 1 and 2 are represented in red and green

triangles, respectively, while a circle star marker is used for the centroids within each

cluster.

geometrical centroids for each cluster. In the following, we consider as centroids the

network nodes in each cluster that minimize the squared euclidean distance to the

geometrical centroid (i.e., Centr1 and Centr2 ). Note that the coordinates for each

node are normalized with respect to the network’s mean value and standard deviation.

We can conclude from Figure 6.2, that one particular cell in the studied data set

shows a very unique behavior and is therefore isolated in its own cluster, perhaps

corresponding to the macro cell over the considered geographical area. For cluster 1,

we also compute over its nodes the average characterization in terms of < NUE > and

V ar(NUE) and we identify the network node that minimizes the squared euclidean

distance to this coordinate (i.e., avNode1 ). Besides, we represent in Figure 6.2b the

values of the silhouette coefficients for each network node, representing the similarity

of nodes within a cluster, with respect to those in the other cluster. With a mean

silhouette value in cluster 1 equal to 0.98 we are sure that a good similarity is

achieved among nodes in that cluster, as well as an excellent separation with respect

to Centr2.
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Figure 6.3: Values of (λ/µ)/N over the weekly traces in colored lines for Centr1 and

Centr2, as well as for avNode1. As a reference, the levels of congestion studied in

Chapter 5 [J2] are also represented in dashed lines.

6.5.1.3 Adaptation of network traces to the system model

In order to adapt 4G network traces to network conditions that take into account

the high traffic demands expected for 5G networks, we introduce a scaling factor

α = 40 such that λ/µ = αNUE . Besides, for the resources available at a specific

node’s location, we assume that the channel capacity of the access link can be

approximated by C = max
t
S(t). Finally, SPs’ resource requirements in [Mbit/s] at

a specific slice interval are computed as r = 8 ·M/(NUE · Ttrace). For simplicity

and without lack of generality we assume for access network resources a sharing

factor σ(i) = 1 (i.e., N(i) = bC/r(i)c and all the capacity reserved for the considered

service class). Indeed, as introduced in Section 6.4, the focus of this chapter is in

the slice provision to SPs of the same service class, rather than between different

service classes. However, the study of the adaptability of this approach to variable

levels of resource availability is still guaranteed by the fluctuations of the resource

requirements in time, according to the model defined above.
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Table 6.1: Table of notations for Timely Slice Allocation in 5G.3

6.3. System Model

InP

Variable Definition

Y # network nodes

i Slice interval identifier from 1 up to Ψ

t0i,c Initial instant of i-th slice interval for service class c

T slicingi,c Duration of i-th slice interval for service class c

T slicingmin Min. timescale supported by InP for slicing

nc(i) # slices allocated to service class c at interval i

n(i) Vector of slice allocation to each service class at i

F Feasibility region for heterogeneous slices allocation

Nc(i) Maximum # of slices for class c at interval i

ρci # slice requests received for class c at interval i

sci,q Identifier of slice request q at interval i for class c

Pci Admission policy applied at the end of interval i for c

β̇ci Admission threshold applied by AT at the end of i for c

nac (i) # slice requests admitted at the beginning of i for c

SPs

Variable Definition

c Identifier of supported service classes

rec(i) Requirements of class c at interval i for resource e

rc(i) Resource requirements vector for class c at interval i

λc(i) Average arrival rate for class c at interval i

µc Average departure rate for class c

τc Max. waiting time (request to allocation) for class c

Ts Exclusive holding time for a generic tenant s

Tc Average holding time for class c

βcm, β
c
M Min./Max. tariff for class c

βsci,q Bid associated with slice request sci,q

σec(i) Sharing factor for class c at interval i over resource e

σc(i) Resource sharing vector for class c at interval i

3Sub/superscripts c, i, and q are omitted when a generic service class, slice interval, and/or slice

request are considered.
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6.4. System Analysis (for a generic class c)

Variable Definition

ν = (λ/µ,N) State condition at a generic instant

V Set of test state conditions ν for strategy pre-computation

V ′ Union of ν from all network nodes’ locations

ξi = (Pi, T slicingi+1 ) Admission strategy applied by InP at the end of interval i

W Search space for admission strategies ξ

ξoptν Optimal admission strategy for state condition ν

l, h # values explored for T slicing and β̇

fβ Probability density function of βs

Ai Admission ratio at the beginning of interval i

Ā Average admission rate

Cavi Portion of network capacity available at interval i

Ui Percentage of resource utilization at interval i

Ū Average percentage of resource utilization

Rtoti Aggregate revenue by all tenants at interval i

Rtot Total aggregate revenue

Rβ Long term revenue rate for specific ν and ξ

β̄s Average admitted bid

τ̄i Average waiting time from request until allocation

k, δ # clusters and features considered for nodes clustering

K Coefficient for crossfold validation of the NN

nHL, sHL # hidden layers and neurons/layer considered for the NN

6.5. Results Evaluation

Variable Definition

Ttrace Network trace interval

NUE Average # of active UEs for a specific node

S Maximum throughput of a given node considering all UEs

M Total amount of data sent through a network node

γ Maximum # iterations for clustering

α Scaling factor for adapting 4G traces to 5G requirements

In Figure 6.3, we compare the levels of congestion4 (λ/µ)/N , for network conditions

4The average traffic load λ/µ with respect to the maximum number of available slices N .
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corresponding to traces of clusters 1 and 2, with respect to the values studied in

Chapter 5 [J2]. In particular, we represent in colored lines the values of (λ/µ)/N

when α = 40, specifically, for centroids of cluster 1 and 2, as well as for the network

node with average characterization within cluster 1. On the other hand, we represent

in dashed lines the values of (λ/µ)/N ∈ {0, 0833, 1.667, 16.667} used for Figure 10

in Chapter 5 [J2], which define the higher limits for (λ/µ)/N when scaling factors

α ∈ {0.5, 10, 100} are set, respectively. Therefore, the congestion levels considered in

this chapter range between low (i.e., conventional overscaled networks) and medium

values.

For the discretization of the search space for optimal InP’s admission strategies ξoptν ,

we study and compare the performance offered by a fine, intermediate and coarse

slicing timescale. More in detail, we assume l = 3 possible values for the slice intervals

T slicing ∈ {0.1/µ, 1/µ, 3/µ}, where the extreme values represent, respectively, T slicingmin

and τ . Besides, for AT strategies, we consider h = 4 possible admission thresholds

because, according to results in Chapter 5 [J2], it is sufficient for enabling the full

potential in terms of revenue maximization for any network condition. For the

selection of the state conditions to be used for the offline solution of the problem

in (6.3), we first perform a coarse selection of 100 samples chosen homogeneously

over V ′, that is, the union of the state conditions according to network traces of

different nodes. Afterwards, we run a fine scale sampling over the most occurring

state conditions and achieve a sample set with cardinality |V|= 268.

6.5.1.4 Offline pre-computation of optimal admission strategies

For the offline pre-computation of the optimal admission strategies by means of

exhaustive search, we develop in Matlab a simulator that generates instances of

request arrivals, tenants’ departure and bidding processes, on which it enforces

FCFS, BB and AT admission strategies accordingly, making sure that at least 500

thousand arrivals are detected for each of the tested network conditions. To this

aim, we employ an Intel(R) Core(TM) i9-7900X CPU @3.30GHz with 64GB of

RAM. On the other hand, when a NN-based solution of the problem in (6.3) is

performed, we reserve 20% of pre-computed strategies for final test while, at each fold

of the K-fold cross-validation process, we use the remaining 80% of pre-computed

strategies for the optimization of the NN training over the following hyperparameters:
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i) number of hidden layers nHL ∈ {1, 2}, and, ii) number of neurons per layer

sHL ∈ {5, 10}, and when the following training functions are tested: Levenberg-

Marquardt backpropagation, Bayesian Regularization, and Bayesian Regularization.

In particular, K-fold cross-validation with K = 8 is used, therefore, as explained

introduced in Section 6.4.2.2, the 70% and 10% of the sample state conditions V is

used, at each fold, for training and validation, respectively.

In case of AT admission strategies, the outcome of cross-validation highlights that

the best performance in terms of convergence time and output to target error

minimization is obtained when two different NNs are used in parallel for computing

independently ξoptν components (i.e., β̇ and T slicing), both with nHL = 2 hidden

layers and, respectively, with sHL = 10 and 5 neurons per hidden layer. Finally,

Levenberg-Marquardt backpropagation training function is the one that provides the

best performance in terms of convergence to error ratio. Optimal T slicing provided

by the NN for AT are also applied for the cases of FCFS and BB.

6.5.1.5 Runtime enforcement

For the performance assessment, we use a simulator similar to the one described

above, with the main difference that optimal strategies are enforced this time over

dynamic network conditions obtained from real traces. Given that those traces have

a periodicity of Ttrace = 900 seconds, we assume that network conditions remain

constant within each trace interval. We remark that, due to time discretization,

an intrinsic delay is introduced when enforcing periodic admission strategies with

respect to on-demand ones. Indeed, optimal admission strategies ξopti are enforced at

allocation interval i, over the vector {βsci−1,q
} of bids received during the previous

allocation interval. Finally, because we implement slice allocation at fine timescale,

we assume that network conditions remain approximately constant within a given

slice interval, therefore, no traffic forecasting mechanisms are needed at instant t0i

(i.e., the beginning of i-th allocation interval) for guaranteeing the optimality of

admission strategies within the slice interval.
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Figure 6.4: Optimal strategies ξopti (i.e., the timescale T slicingi for slice allocation

normalized to the average service time 1/µ and, for AT strategies, admission threshold

β̇i) computed over different network nodes’ traces: a) avNode1, b) Centr1, and, c)

Centr2. Results are compared for ES and NN-based approaches in solid black line

and discontinuous blue line, respectively. The moving average over one hour is used

for a clearer representation.

6.5.2 Performance evaluation

Below, we first present the admission strategies pre-computed by means of exhaustive

search and NN-based search, as well as corresponding performance with respect

to different admission strategies. Afterwards, we compare results with the case of

admission strategies optimized on a per-node and a per-cluster basis.

6.5.2.1 Optimal strategies

In Fig. 6.4, we can observe the fluctuation of the optimal strategies ξopti in time,

expressed as: i) the timescale for slice allocation normalized to the average service

time (i.e., T slicingopt /(1/µ)), and, ii) the admission threshold for incoming bids when

AT strategies are studied (i.e., β̇opt). Optimal strategies are provided over different

network nodes’ traces: a) avNode1, b) Centr1, and, c) Centr2. The strategies

computed by means of exhaustive search and NN-based approach are provided in
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solid black line and discontinuous blue line, respectively.

We can observe in the figure how the chosen admission strategies change in presence

of different average levels of congestion, increasing from Fig. 6.4a to Fig. 6.4c. More

precisely, according to Fig. 6.4c, for high levels of congestion the recommendation to

InPs is to adopt very fine timescales (i.e., small values for T slicingi ) in such a way that

more slice requests can be served in time. Furthermore, in the case of AT strategy,

admission thresholds are set to the 25% of the bidding range for most of the time,

while it mimics the FCFS scheme (i.e., the minimum admission threshold is adopted;

β̇opt = βm) only when very low congestion levels are perceived; note that the lowest

threshold values β̇opt observed in Fig. 6.4c correspond to nightly hours, during which

the utilization of the network is low. On the other hand, according to Fig. 6.4a

and 6.4b, more relaxed strategies are preferred when congestion levels get lower.

Indeed, if arrivals are less frequent, less resolution is needed in time for serving all

incoming slice requests, consequently coarser timescales can be adopted. Besides, in

those cases, lower admission thresholds are preferred on average by the AT strategy.

Finally, we can observe that more flexible admission strategies are adopted by the

NN-based approach, indeed, intermediate admission strategies are provided in the

continuous domain for state conditions that were not explored for optimal strategy

pre-computation. This phenomenon is particularly visible in the case of low congestion

levels (see Fig. 6.4a), where coarser timescales are provided and combined, in the case

of AT strategy, with lower values of the admission thresholds. However, we can see

that NN’s recommended strategies follow quite well those found by the exhaustive

search approach. This means that the NN model is well adjusted to the training

data provided by the ES study (cf. Section 6.4.2)

6.5.2.2 Performance evaluation with exhaustive search

As we introduced in Section 6.3, a measure of the timeliness of a slice admission

control method is provided by the average waiting time τ̄i, equal to half of the

admission timescale T slicingi . Besides, we remind that the minimum timescale T slicingmin

allowed by InP is defined by technological and complexity factors, while its maximum

value τ depends on SPs’ latency constraints. In Fig. 6.4, we observed how the

optimal admission strategies tend to provide relaxed timeliness for decreasing values

of congestion level. Therefore, we remark the importance of defining in the SLA
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Figure 6.5: Performance assessed by adopting strategies ξopti computed by means of

exhaustive search over different network nodes’ traces: a) avNode1, b) Centr1, and,

c) Centr2. A comparison is provided between different admission strategies (i.e., BB,

FCFS and AT) in terms of admission ratio Ai, percentage of resource utilization Ui,

revenue rate Rtoti /T slicingi and accepted bids βs. The moving average over one hour

is used for a clearer representation.

both τ and the penalty to the InP when this condition is not met, especially in the

case of SPs with very strict requirements in terms of τ̄i and in presence of very low

congestion levels (e.g., see Fig. 6.4a).

In Fig. 6.5, performance is assessed for different admission schemes (i.e., BB, FCFS,

and AT) when strategies are computed by means of exhaustive search. In particular,

different nodes’ traces are considered: a) avNode1, b) Centr1, and, c) Centr2, and,

from left to right, we represent the results for the rest of the performance metrics

introduced in Section 6.3: i) the admission ratio Ai, ii) the percentage of resource

utilization Ui, iii) the revenue rate Rtoti /T slicingi , and, iv) the accepted bids βs. Finally,

in order to have a quantitative measure of performance over the week, we provide in
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Figure 6.6: Performance over the week when adopting different admission schemes,

with strategies computed for different network nodes by means of ES: i) average

admission rate Ā, average percentage of resource utilization Ū , and total aggregate

revenue Rtot. For Rtot, values are normalized to the maximum over the three strategies

and network nodes.

Fig. 6.6 the average admission rate Ā, the average percentage of resource utilization

Ū , and the total aggregate revenue Rtot.

It can be observed in both figures that BB and FCFS always provide the same values

for the admission rate, as they both allow slice allocation up to resource-exhaustion.

On the other hand, the AT strategy reduces utilization by rejecting bids below a given

threshold, which also corresponds to a lower admission ratio. This is particularly

evident in the case of low congestion levels (e.g., avNode1 according to Fig. 6.3),

as the relative ratio of rejections increases with respect to the number of arrivals.

Similar considerations hold for the percentage of resource utilization because, thanks

to the lower number of admissions, less resources are used on average by the AT
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strategy when compared with FCFS and BB schemes.

In terms of revenue to the InP, any strategy provides similar revenues in case of low

levels of congestion (e.g., avNode1 ). Indeed, because resources are overdimensioned

with respect to the economic opportunities, each of the considered schemes tries to

admit every incoming request. When congestion increases, the choice of the bids

to admit becomes crucial for the revenue maximization, however, only AT and BB

strategy can exploit the potential offered by the bigger number of incoming slice

requests for achieving higher revenues. Comparing into more detail the revenue

offered by different admission schemes, FCFS strategy provides the minimum revenue

at zero complexity for its enforcement at runtime (i.e., it admits every new slice

request up to resource saturation). On the other hand, BB approaches allow InPs

to always select the highest bids at the cost of higher complexity in the long term,

as explained in Section 6.4.1. Finally, AT approaches represent a tradeoff between

FCFS and BB schemes in terms of revenue and complexity. Indeed, they always

offer intermediate revenues between FCFS and BB schemes. Besides, strategies can

be computed offline only once and enforced at runtime by comparing incoming bids

with a threshold.

Together with complexity, admission rate, resource utilization and revenue, another

term of comparison for the admission strategies is represented by the admitted bids

βs, which are shown in Fig. 6.5 with respect to the order of arrival s normalized to

the total number of arrivals over the week. As explained for revenue, in case of low

congestion levels, all admission schemes admit slice requests independently of the

associated bids due to the scarcity of incoming revenue opportunities with respect to

resources available. Consequently, according to the figure, the average admitted bid

equals the mean value of βs (i.e., β̄s = (βM − βm)/2 for a uniform bid distribution).

We remark that the moving average over one hour is used for a clearer representation

in Fig. 6.5. On the other hand, when the congestion level increases, FCFS does not

change its admission strategy, while both AT and BB schemes become more selective

and admit slice requests with higher associated bids.

The admission rate together with the average value for admitted bids can be

interpreted as a measure of the fairness of InPs towards SPs accounting for: i)

InP’s greediness in resource usage for revenue maximization, and, ii) fair treatment

of SPs’ spending power, respectively. In conclusion, FCFS is the admission strategy
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Figure 6.7: Performance over the week for different network nodes and admission

schemes, with NN-based strategies. For Rtot, values are normalized to the maximum

over the three schemes and network nodes when optimal strategies are adopted.

with lower complexity and highest level of fairness, as it provides highest admission

rates and lowest average values for the admitted bids. On the other hand, BB scheme

maximizes revenues at the cost of increased complexity and lowest fairness towards

SPs’ spending power, as it sets the highest average value for the admitted bids.

Finally, AT approach represents a tradeoff between the other considered schemes, as

it provides slightly lower admission rates while requiring less resources. Besides, it is

capable of providing higher revenues than FCFS strategy and, when compared with

BB approach, it limits complexity and provides a more fair solution in terms of SPs’

spending power, by setting lower average value for the admitted bids.



140 Timely Slice Allocation for 5G with Machine Learning

6.5.2.3 Performance evaluation with ML-based strategies

In Sections 6.2 and 6.1, we introduced the possibility of adopting ML-based solutions

for providing near-optimal admission strategies for network conditions that have

not been directly explored by the InP during the pre-computation phase. More in

detail, in Section 6.4.2, the advantages in terms of computational efficiency have

been detailed for the case of a NN trained on the exhaustive search’s output, thus

providing custom admission strategies for different network nodes and congestion

levels. In Fig. 6.7, we provide the performance study when strategies are chosen

by means of a NN-based approach, which can be compared to that in Fig. 6.6 for

optimal strategies.

In the case of network nodes with low congestion levels (e.g., avNode1 ), it can be

observed that FCFS and BB strategies do not have much margin for improving the

admission rate due to the very low number of slice requests arriving. This does not

hold for the AT scheme as an increase in admission rate can still be achieved by

adopting lower admission bids (see Fig. 6.4a). On the other hand, a great benefit in

terms of revenue is offered by the adoption of a NN-based approach independently of

the admission strategy. This can be explained by the better customization achieved

in terms of admission timescales with respect to the input network conditions. The

revenue increase comes at the cost of an increase in resource utilization for all

admission schemes, which is more evident in the case of AT strategy because of

the adoption of lower admission thresholds. More precisely, BB is the strategy

experiencing the higher gain thanks to the increase in the average timescale adopted

(see Fig. 6.4a), because a better opportunity is provided for selecting the highest bids

among the arrivals. However, we remind that a more unfair behavior is experienced

by SPs with respect to their spending power (see Fig. 6.5a).

When considering network nodes with medium congestion level (e.g., Centr1 ), the

NN-based approach provides only a slight performance improvement with respect

to the exhaustive search approach, which is confirmed by the fact that very similar

strategies are adopted by the two approaches (see Fig. 6.4b). Finally, in the case of

very high congestion levels (e.g., Centr2 ), admission rate can be improved by the

better customization of admission timescales in time, although, with a slight increase

in the average timescale used (see Fig. 6.4c). Consequently, a worse timeliness is

achieved when serving incoming requests, which corresponds to a slightly lower
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resource utilization and revenues over the week.

In conclusion, the adoption of a NN-based solution for the computation of optimal

admission strategies is recommended for network nodes with low or medium congestion

levels. In particular, it can provide great gains in terms of revenue, mostly if a BB

strategy is adopted and some flexibility exists in terms of fairness towards SPs.

Besides, NN-based approaches are suitable for improving AT scheme’s admission

rate when fairness is preferred over revenue maximization. On the other hand, in

case of high congestion levels, there is no incentive in adopting NN-based strategies

due to the suboptimal nature of their solutions.

From a different perspective, the limited drop in performance when compared to

optimal strategies motivates the adoption of a NN-based approach in case of lack

of information on the precise statistics on the network conditions. Indeed, because

the NN has been trained on a collection of state conditions from different network

nodes with different congestion levels, it represents a suboptimal but more general

solution for any network node under any circumstance. Consequently, the trained NN

itself could be used by InPs as a computationally-efficient way to provide admission

strategies for newly deployed nodes, or for adapting to changes in the congestion

levels of already deployed nodes. On the other hand, it could also be used as a

tradable asset leased among InPs, or, as a possible object of standardization for

guaranteeing comparable performance across different InPs’ networks.

6.5.2.4 Performance evaluation with clustering

In Section 6.2, we discussed the possible reduction in complexity offered by clustering

solutions when performing the computation of admission strategies at a network level.

More precisely, in Section 6.5.1.2, we described the methodology for clustering network

nodes according to traces, allowing the computation of the admission strategies only

for one candidate within each cluster (i.e., the centroid of the cluster). Below, we

assess the difference in performance obtained when the optimal strategies of one

cluster’s centroid are used both for a different node within the cluster and for a

node belonging to another cluster. In Fig. 6.8, we show performance when Centr1

strategies are enforced at different network locations (i.e., avNode1 and Centr2 ),

which can be compared to that in Fig. 6.6 for optimal strategies.
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Figure 6.8: Performance over the week for different admission strategies, when

Centr1 ’s optimal strategies are applied to avNode1 and Centr2. For Rtot, values are

normalized to the maximum over the three schemes and network nodes when optimal

strategies are adopted.

When applying Centr1 ’s strategies to the network node with average characterization

within cluster 1 (i.e., avNode1 ), we can observe that the admission rate slightly

increases for FCFS and BB strategy thanks to the average decrease in the admission

timescales adopted (see Fig. 6.4a and 6.4b). This does not hold for AT approach as

the improved timeliness is counterbalanced by the choice of higher average admission

thresholds. On the other hand, resource utilization considerably decreases for all

strategies, because of the choice of strategies that are not optimal for the low

congestion levels typical of avNode1. For the same reason, a negligible reduction in

revenue is also registered. Finally, the enforcement of Centr1 ’s strategies in presence

of other clusters’ conditions (i.e., Centr2 ) provides lower admission rates, resource

utilization and revenues, as expected by observing the difference in the admission

strategies represented in Fig. 6.4b and 6.4c.
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In conclusion, adopting clustering strategies represents a valid option for reducing

the complexity associated with the enforcement at runtime of optimal strategies over

InPs’ networks with centralized architectures. Moreover, it could be used in the

case of network nodes with well-known statistics on congestion levels and uncertain

information about current states. Indeed, in both cases, instead of monitoring

and adapting optimal strategies independently for each network node, the InP can

alternatively divide network nodes into clusters and apply the strategies that are

optimal for a candidate node (e.g., Centr1 ) to the rest of the nodes within the cluster

(e.g., avNode1 ), with a negligible difference in terms of performance. Besides, if InP’s

priority is placed on the maximum reduction in complexity, the same strategies could

be also adopted for nodes belonging to other clusters (e.g., Centr2 ) with limited

decrease in performance.

6.6 Summary

In this chapter, we target the potential offered by 5G’s marketplace both to network

owners and SPs, in terms of revenue and QoS guarantees for services with strict

latency constraints (e.g., uRLLC services). In particular, an intra-service reservation-

based slicing mechanism has been defined for fine and adaptable timescales, with

optimal strategies pre-computed offline for state conditions that are representative of

both SPs’ behavior, and resource availability in the network. A PoC on real network

traces is implemented for studying and comparing complexity and performance of

three reference admission strategies (i.e., FCFS, AT, and BB), the latter expressed

in terms of efficiency in resource utilization, fairness to the SPs and InP’s revenue.

Finally, results obtained for optimal admission strategies are compared with those of

more computationally efficient solutions.

In this context, this chapter proves that FCFS and BB strategies provide the minimum

and maximum revenue to the InP, respectively, while the opposite holds true in

terms of fairness towards SPs and complexity required for enforcement. On the other

hand, the AT scheme provides a tradeoff in terms of complexity and performance,

while reducing the average resource utilization when variable timescales are used.

Furthermore, in case of low congestion levels, the improvement in terms of admission

rate and revenue has been demonstrated when using ML-based solutions, at the cost

of slightly higher resource utilization and lower fairness with respect to SPs’ spending
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power.

Results show that, if InP’s objective is a reduction in complexity, or, the computation

of near-optimal strategies in absence of full information about network conditions,

approaches based on ML and clustering are good solutions that come at the cost of a

negligible or limited decrease in performance. Finally, we remind that only approaches

based on periodic admission control are considered in this chapter. Therefore, as

discussed in previous chapter, better performance could possibly be achieved by

adopting on-demand approches, at the cost of higher complexity.



Chapter 7
Conclusions and Future Works

The heterogeneity of services foreseen for 5G use cases, together with the high number

of devices that will populate next-generation networks are expected to determine

a traffic explosion that will set huge challenges for network owners. In particular,

besides a dense network deployment for an efficient utilization of the spectrum

resource, the adoption of architectural and technological solutions capable of enabling

programmability and efficient fine-scale sharing is fundamental. E2E network slicing

has the capability to make next-generation networks attractive for SPs and profitable

for the MNOs and, in this thesis, we highlighted possible solutions for achieving the

full potential of the 5G market place, both from an architectural and methodological

perspective.

In Chapter 2, we presented the SoA architecture and technologies proposed so far

for network programmability and scalability at different segments of the network

(i.e., access, core, and transport network). In Chapter 3, we introduced the roadmap

for the deployment of 5G networks, by describing the main challenges and solutions

related to the enabling of multi-tenancy and fine-scale network slicing. More in

detail, after reviewing the main reasons for the incompatibility of conventional

networks with the network programmabilities paradigms, we introduced the concept

of network slicing for QoS customization and fine-scale sharing support. An an

enhanced architecture has been defined and compared with the conventional one and

with existing proposals by standardization bodies, and ongoing industrial/academical

projects. We highlighted the importance of adopting a centralized architecture
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together with network-wide virtualization for E2E QoS programmability, efficient

network sharing, and flexible negotiation of SLAs exposed to third-party SPs.

In Chapter 4, we proposed a novel scheme based on game theory for the assessment

of cooperation incentives for coexisting MNOs. The performance and financial gains

offered by fine-scale network sharing are studied by means of coalitional game theory,

and different scenarios have been considered in terms of number of operators, market

share, and spectrum license. The performance of a given cooperative approach is

defined in terms of the data rate enhacements for the end users, and the profit gain

to the MNOs. Besides, the tariffs charged to the end users are used as a decision

paramenter for determing the convenience of specific coalitions. Results show the

benefits achievable through collaboration, which can be considered as the financial

incentives for MNOs to upgrade their networks according to the 5G’s roadmap.

Besides, it is highlighted that unbalanced cost redistribution can be also accepted

within coalitions when additional costs are counterbalanced by higher revenue rates

with respect to the stand-alone case. However, when cooperating with equal-sized

operators, higher profit opportunities can be typically achieved by MNOs while

charging much lower tariffs to the end users. Finally, MNOs are provided with

guidelines for choosing the tariff to adopt and the coalition to form taking into

account their business models.

In Chapter 5, we defined a policy-based slice provision mechanism that prioritizes

SPs’ bids above a certain threshold and optimizes, at a reduced complexity, the

admission policy with respect to different sizes of the resource pool, traffic loads and

SPs’ behavior. Results demonstrated the enhancements provided by such approach in

terms of slice provision promptness, revenue maximization and expenditure reduction

to the InPs, while guaranteeing QoS and fairness towards SPs. The performance has

been compared for two approaches that serve slice request on-demand or at regular

time-intervals. Besides, the performance of the proposed policy is compared with

that of two reference policies, the first one admits SPs’ requests in order of arrival,

independently of the associated bids, while the second admits requests according to a

decreasing listing of the associated bids (i.e., from the highest to the lowest). Results

proved that the proposed policy offers real-time slicing with the highest revenues

and lowest expenditures to the InPs, in exchange for a negligible loss in terms of

fairness towards SPs. Finally, the proposed policy allows the achievement of high

revenues in case of regimes with scarce resource availability and high-loads, while
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keeping complexity limited when compared with the reference policies.

In Chapter 6, we demonstrated the potential of 5G’s marketplace in terms of revenues

to the network owners and QoS guarantees to the SPs, especially for services with

strict latency constraints. To this aim, we defined an exclusive allocation mechanism

for slice requests of the same kind, which is performed at fine and adaptable timescales.

Sample congestion levels are used for the offline pre-computation of optimal admission

strategies in reference state conditions, while more computationally efficient solutions

are used for the extension of the admission strategies to unexplored conditions.

Performance associated to different admission strategies (i.e., above threshold, in

order of arrival, and following a decreasing bid listing) is compared in a proof of

concept with real netowork traces, assessing the efficiency in resource utilization, the

fairness to the SPs, the InPs’ revenue and the complexity for the computation of the

admission strategies. In particular, it is proved that the admission strategies that

follow the order of arrival and the decreasing bid listing provide, respectively, the

minimum and maximum revenue to the InP, while the opposite holds true in terms

of fairness towards SPs and complexity required for the strategy enforcement. In

comparison, the proposed policy, which admits bids above a specific threshold adapted

in time with respect to the state conditions, provides a tradeoff in complexity and

performance, and reduces the average resource utilization. Finally, we demonstrated

the possible improvement achievable by means of machine learning-based solutions

in terms of admission rate and revenues. Machine learing-based solutions proved to

be particularly useful in case of low congestion levels, at the cost of slightly higher

resource utilization and lower fairness towards SPs’. On the other hand, when the

objective is the limitation of complexity, or, if there is a lack of information about the

network conditions, machine learning-based solutions and clustering methodologies

turned out to be good approaches in exchange for a negligible or limited decrease in

performance.

7.1 Future Research Directions

In this thesis, we studied possible architectural and methodological solutions for fully

exploiting the potential offered by the 5G market place, in terms of revenues provided

to the InPs for building next-generation networks, cost reduction for making future

networks sustainable, and enhanced service provision for enabling 5G services. In
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this section, we discuss some of the open issues that, in our opinion, are worth to

be validated in the future in order to continue the research presented in this thesis.

Besides, we provide a discussion on the alternative research directions explored in

the literature for E2E and elastic network sharing.

With respect to the sharing mechanisms among MNOs for QoS improvement and profit

increase to the MNOs, it would be interesting to extend the proposed coalitional game

presented in Chapter 4 to different scenarios, with different number of operators, and

combinations of market shares and spectrum licenses. Besides, a more sophisticated

model could be introduced for traffic, with different classes of services, and for

highlighting the statistical multiplexing gain achievable in a network wide perspective

thanks to resource pooling. Finally, heterogeneous resources could be considered for

end-to-end service provision, and alternative models could be considered for MNOs

revenues, taking into account the possibility of capturing other MNOs’ subscribers.

In order to improve the utilization of network resources at a fine scale while

guaranteeing custom QoS to end users with fast innovation cycles accessible to any

SP, we introduced in Chapters 5 and 6 a slice provision mechanism. The proposed

mechanism enables flexible sharing among InPs, and allows multiple tenants to

provide services over the same network without the need of owning neither spectrum

nor infrastructure. Considering the financial incentives deriving from the dynamic

lease of network slices to SPs, the defined slice provision mechanism paves the way

for future applications in multiple scenarios. However, many open directions remain

to be explored for the work presented in this thesis.

According to the main research trends in slice admission control mechanisms for

5G [193], both exclusive and shared slice allocation could be modeled for competing

SPs, while multi-queuing models could be adopted for studying the coexistence of

diverse service classes, each with different resource requirements. It would also be

worth extending the queuing model considered in this work for handling rejected

slice requests.

An extension of the proposed slice provision approach could be studied for the

case with multiple InPs composing E2E slices out of heterogeneous resources. In

particular, the distributed blockchain technology could be employed for extending

the slice bidding mechanisms described in Chapters 5 and 6 to the E2E [194]. Indeed,

the E2E network slice auctioneer introduced in Chapter 2, equipped with context-
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aware network management functionalities, could perform coordinated policy-based

admission strategies over different network segments.

From the SPs modeling perspective, the bidding model could be extended by adding

the adaptability to the market perception, thus allowing a study on the effects of

rational bidding strategies on the proposed mechanism. Indeed, SPs could react

to the fluctuations in price and admission rate by adapting their bidding strategy

in time. Finally, we foresee the implementation of the proposed methodology on

real testbeds for proving the feasibility of adopting adaptive timescales in available

technology.

Considering different approaches emerged in the literature for slice admission control,

many foresee the solution of optimization problems with different objective functions

(e.g., high InP’s revenues, low rejection rate, efficient resource utilization, low

congestion, or any combination of the above), however, the associated complexity

could prevent an efficient and real-time implementation for E2E slicing. Among

the alternative strategies surveyed in [193], many converge in the adoption of ML

approaches for keeping complexity limited, while achieving suboptimal admission

decision.

In order to optimize the target performance metrics while guaranteeing tenants’

isolation, low complexity and flexible resource utilization, our approach employs

the adaptation of the admission strategies and timescales at runtime, which are

pre-computed and enforced for exclusive slice allocation to different SPs. Therefore,

this mechanism provides a single-step framework for executing joint admission

control and resource allocation, guaranteeing isolation by performing exclusive

resource allocation (i.e., per-tenant slicing), enabling flexibility by adapting the

slicing timescales, controlling congestion by adapting the admission thresholds, and

limiting complexity by adopting ML-based solutions for the offline pre-computation

of the admission strategies. In this work, we proved the advantages in the adoption

of this approach in case of simple infrastructures managed by a unique orchestrator,

and in case of single service types, mostly those with strict time constraints.

Many of the alternative solutions existing in the literature, on the other hand,

perform slice admission control at constant and coarse timescales (i.e., in the order of

hours) [193,195], and achieve elasticity in resource allocation by adapting the resource

associated to each slice at finer timescales (i.e., in the order of minutes) [184,195].
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This two-step slice admission and resource (re)allocation approach seems to be a good

solution for supporting multiple service types with heterogeneous requirements and

in case of complex infrastructures managed by uncoordinated orchestrators. Indeed,

a single-step slice admission control as the one adopted in our solution would require

context-awareness over the whole network and, most probably, high control overheads

as well as high complexity for the offline pre-computation of network-wide admission

strategies. Contrarily, a two-step approach reduces complexity and the need of

network-wide context-awareness by first performing the admission control step at

different network segments (i.e., RAN, transport network, cloud infrastructure), while

the dynamic resource (re)allocation is employed for elasticity support and efficient

resource usage.

Although the application of our approach to E2E slicing with heterogeneous resources

and service types still has to be demonstrated, in this work, we proved its advantages

for intra-service slice allocation, that is, a resource allocation phase that could be

executed for a slice with multiple tenants with same service requirements. In this

context, the proposed approach could be integrated with two-step slice admission

strategies, by being jointly executed with scheduling algorithms and, thus, enabling

per-tenant slice allocation.
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