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Abstract

The brain, a natural adaptive system, can generate a rich dynamic repertoire of
spontaneous activity even in the absence of stimulation. The spatiotemporal pattern
of this spontaneous activity is determined by the brain state, which can range from
highly synchronized to desynchronized states. During slow wave sleep, for example,
the cortex operates in synchrony, defined by low-frequency fluctuations, known as slow
oscillations (< 1Hz). Conversely, during wakefulness, the cortex is characterized mainly
by desynchronized activity, where low-frequency fluctuations are suppressed. Thus, an
inherent property of the cerebral cortex is to transit between different states characterized
by distinct spatiotemporal complexity patterns, varying in a large spectrum between
synchronized and desynchronized activity. All these complex emergent patterns are the
product of the interaction between tens of billions of neurons endowed with diverse ionic
channels with complex biophysical properties. Nevertheless, what are the mechanisms
behind these transitions? In this thesis, we sought to understand the mechanisms and
properties behind slow oscillations, their modulation and their transitions towards
wakefulness by employing experimental data analysis and computational models. We
reveal the relevance of specific ionic channels and synaptic properties to maintaining the
cortical state and also get out of it, and its spatiotemporal dynamics. Using a mean-field

model, we also propose bridging neuronal spiking dynamics to a population description.



Resumen

El cerebro, un sistema adaptativo natural, es capaz de generar un amplio repertorio
dindmico de actividad espontdnea, incluso en ausencia de estimulos. La patrén espacio-
temporal de esta actividad espontdnea viene determinada por el estado cerebral, el cual
puede variar de estados altamente sincronizados hasta estados muy desincronizados.
Cuando en el suefio se entra en la fase de ondas lentas, por ejemplo, la corteza opera en
sincronia, cuya actividad es definida por fluctuaciones de baja frecuencia, conocidas
como oscilaciones lentas (< 1Hz). En cambio, durante la vigilia, el cértex se caracteriza
principalmente por tener una actividad desincronizada, donde las fluctuaciones de baja
frecuencia desaparecen. Por lo tanto, una propiedad inherente de la corteza cerebral es
transitar entre diferentes estados caracterizados por distintos patrones de complejidad
espacio-temporal, los cuales se sitian dentro del amplio espectro marcado por la
actividad sincronizada y la desincronizada. Estos patrones emergentes son el producto
de la interaccién entre decenas de miles de millones de neuronas dotadas de multiples y
distintos canales i6nicos con complejas propiedades biofisicas. Sin embargo, ;cuéles
son los mecanismos que regulan estas transiciones? En esta tesis tratamos de entender
los mecanismos, propiedades y sus transiciones hacia la vigilia, que estdn detras de
las oscilaciones lentas a través del uso y analisis de datos experimentales y modelos
computacionales. En ella describimos la importancia de los canales iénicos especificos y
sus propiedades sindpticas tanto para mantener el estado cortical como para salir de €I,
estudiando asi su dindmica espacio-temporal. Ademds, mediante el uso de un modelo
de campo medio, proponemos establecer un puente que pueda describir la dindmica de

disparos neuronales con una descripcién general de la poblacién neuronal.
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Chapter 1

Introduction

Synchronization is a remarkable collective phenomenon that emerges through
the interaction between components of a complex system. Remember the last time you
went to a concert or a theater. Usually, after a good performance, the audience starts to
clap incoherently, producing a noisy sound. Suddenly, it turns out to be an almost unison
phenomenon due to emergent synchronization [Néda et al., 2000]. Another example of
synchronization is the famous experiment of two pendulum clocks hanging from the
same beam that, after a while, start swinging in perfect synchrony [Strogatz and Stewart,
1993]. An essential key requirement for these kinds of phenomena is communication.
The first example is established by auditory perception, while the second is through
small forces exerted on the supporting beam. Similarly, interconnected neurons in the
human brain, which communicate through action potentials, often show the emergence
of spontaneous oscillations [Buzsaki, 2006, Wang, 2010]. Neuronal oscillations were first
observed in 1938, through measures of electrical potentials in the human scalp [Berger,
1938]. Since then, a variety of frequencies have been described in the human brain, but
not only, these periodic rhythms were also observed presently in other mammals with
the same aspects, like duration or temporal evolution [Buzsaki et al., 2013]. Even more,
different rhythms can coexist and interact with each other [Steriade et al., 2001, Buzsaki
and Draguhn, 2004].

The synchronization of neuronal networks, in the form of oscillations of different
frequencies, has been associated with different brain states, such as sleep or awake
rest, and with cognitive processes, including memory formation, attention, and the
processing of sensory stimuli (see for a review [Ward, 2003, Wang, 2010]). One striking
pattern that can be observed in physiological NREM (non-rapid eye movement) sleep is
slow oscillations (SO). This global pattern propagates through the cerebral cortex as a
traveling wave [Massimini et al., 2004]. However, this pattern is not exclusive to NREM
sleep, which is one of the most curious aspects. SO are an emergent pattern under

conditions where the cortex has been functionally disconnected, such as during deep
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anesthesia [Chauvette et al., 2011, Steriade et al., 1993c], cortical slabs [Timofeev et al.,
2000], focal brain lesions [Butz et al., 2004], or white matter lesions [Gloor et al., 1977].
More recently, SO have been detailed characterized around stroke and radio-frequency
thermocoagulation lesions done in surgery of epilepsy [Sarasso et al., 2020, Russo et al.,
2021]. Furthermore, SO are spontaneously expressed in cortical slices without any
chemical or electrical stimulation [Sanchez-Vives and McCormick, 2000]. Strikingly, slow
oscillations display similar characteristics in all these cases, expressing a multiscale
phenomenon. For these reasons, this emergent pattern has been suggested as the default
mode of activity of the cerebral cortex [Sanchez-Vives and Mattia, 2014, Sanchez-Vives

etal., 2017].
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Figure 1 — Slow oscillations at different scales. Top: electroencephalogram (EEG) during
NREM sleep (extracted from from [Brown et al., 2012]). Middle: sponta-
neous local field potentails (LFP) recorded in cortical slices (extracted from
from [Barbero-Castillo et al., 2021]). Bottom: intracellular recordings of pyra-
midal cells on auditory cortex in anesthetized rat (extracted from from [Reig
et al., 2015]).

1.1 Slow oscillations and their characterization

In 1993 Steriade and collaborators first described the slow wave activity in a
series of three articles [Steriade et al., 1993a, Steriade et al., 1993b, Steriade et al., 1993¢].
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Slow oscillations (SO) are a hallmark of unconsciousS brain states, such as deep sleep. SO
are a synchronized network phenomenon characterized by periodic, or almost periodic,
alternations between phases of neuronal depolarization (Up states) followed by phases
of neuronal hyperpolarization (Down states, also called off-periods). This Up and Down
alternation can be observed at different scales, micro (intracellular), meso (LFP), and
macro (EEG) (Fig. 1). While the Up state is mediated by a balance between excitatory and
inhibitory postsynaptic potentials [Sanchez-Vives and McCormick, 2000, Compte et al.,
2009], the Down state is characterized by almost no synaptic activity and by the presence
of afterhyperpolarization currents, such as activity-dependent slow K* current [Compte
et al., 2003, Sanchez-Vives et al., 2010].

The Up state emerges from the cerebral cortex’s recurrent connectivity [Lorente de
No, 1938], which can induce reverberating neuronal firing in the circuit [Metherate and
Ashe, 1993, Contreras et al., 1996, Sanchez-Vives and McCormick, 2000, Compte et al.,
2003, McCormick and Yuste, 2006]. More specifically, the Up state has been reported
to start in infragranular layer 5, which then propagates to deeper and more superficial
layers [Sanchez-Vives and McCormick, 2000, Chauvette et al., 2010]. The persistent
activity during the Up state is thought to depend mainly on recurrent excitatory
synaptic activity, balanced by synaptic inhibition. Excitatory synaptic potentials (EPSPs)
and inhibitory ones (IPSPs) are equally distributed during Up states [Compte et al.,
2003, Compte et al., 2009]. Indeed, it has been demonstrated that an imbalance between
excitation and inhibition has an impact on the Up state: while removal of fast inhibition
(GABA ) induces shorter Up states [Sanchez-Vives et al., 2010], removal of slow inhibition
(GABAB) induces larger Up states [Mann et al., 2009, Perez-Zabalza et al., 2020, Sanchez-
Vives et al., 2021].

A disruption in the Up state occurs when the network cannot maintain self-
sustained firing. Adaptation mechanisms are an essential mechanism for the recurrent
network to generate slow oscillations (Fig. 2A) [Mattia and Sanchez-Vives, 2012]. Within
the different potential adaptation mechanisms, slow potassium currents are thought
to play a crucial role in generating negative feedback that will overcome the positive
feedback inherent in local circuits, bringing the network to a period of almost no more
tiring, i.e., a Down state (Fig. 2B) [Sanchez-Vives and McCormick, 2000, Compte et al.,
2003]. Steriade and collaborators [Steriade et al., 1993c], in the first characterization
of cortical slow oscillations, have suggested the calcium-dependent potassium (KCa)
channel as one of the mechanisms responsible for the termination of Up states, based
upon the slow afterhyperpolarization (AHP) of the action potentials. In an experimental
work, Sanchez-Vives and McCormick have suggested that the activation of sodium-

§  We stay here with the following definition of conscious: "being conscious means that one is having
an experience — the subjective, phenomenal ‘'what it is like’ to see an image, hear a sound, think a
thought or feel an emotion."[Koch et al., 2016]
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Figure 2 — Adaptation mediates Up and Down transitions. (A) Schematic representation
of the cycle between Up and Down states where firing rate and adaptation cur-
rent are responsible for the switches between states. Extracted from [Sanchez-
Vives et al., 2017], originally adapted from [Mattia and Sanchez-Vives, 2012].
(B) A more detailed schematic representation of the cycle between Up and
Down states. Slow potassium currents (Ixca and Ixna, see text) are suggested
as the main mechanisms for the transition between Up to Down states. Ex-
tracted from [McCormick and Yuste, 2006].

dependent potassium (KNa), an AHP current, may also play a role on the termination of
Up states [Sanchez-Vives and McCormick, 2000]. Indeed both channels, KCa and KNa,
are inhibited by acetylcholine (ACh) [Schwindt et al., 1989, McCormick and Williamson,
1989]. ACh is one of the neurotransmitters responsible for wakefulness. There is a
high concentration of ACh during wakefulness states while during NREM sleep a low
concentration is observed [Jones, 2005]. Steriade and collaborators have showed that by
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stimulation of brainstem nuclei, i.e., neurons that release ACh to the cortex, induced
an state mimicking natural brain arousal through muscarinic receptors. In other words
release of ACh disrupts the Up and Down dynamics characteristic of SO [Steriade et al.,
1993a]. Another important channel that is also modulated by ACh and is known for
regulating neuronal excitability is the voltage gated K* channel (Ky7) that generates the
M-currents [Brown, 2010]. Despite the suggestions about the role of K* channels on the

termination of Up states, the role of M-current remains to be explored [Neske, 2016].

Up state |

Deterministic
Down stage

Stochastic
Down stage Up state
Down state

Figure 3 — Oscillatory cycle representation. Adapted from [Camassa et al., 2021a]. The
Down state is proposed as been an metastable state composed of a determin-
istic and stochastic phase.

When the adaptation overcomes the activation, the network falls into a period of
silence, i.e., into a Down state. Asjust discussed, a candidate mechanism for the initiation
of Down states are the slow K* channels responsible for the afterhyperpolarization
currents. Once the Down state is reached, neurons are in the refractory period, and the
AHP currents slowly decrease in amplitude. The decay time of AHP currents is suggested
to set the time scale for the reappearance of spontaneous firing that will be able to trigger
a new Up state and so are thought to be responsible for the oscillatory cycle [Compte
et al., 2003]. However, other mechanisms have been proposed to set the time scale of
slow oscillations, such as synaptic depression [Holcman and Tsodyks, 2006, Benita et al.,
2012], thalamic disfacilitation [Contreras et al., 1996], and GABAg activation [Mann
et al., 2009, Perez-Zabalza et al., 2020, Sanchez-Vives et al., 2021]. Indeed, experimental
observations have shown that, in the case of extreme long Down states, it could not be
maintained only by AHP currents due to its intrinsic time scale [Sanchez-Vives et al.,
2010]. Therefore, the duration of the Down state is not only set by the AHP’s currents

duration but also by the time it takes for the mechanisms that give rise to a new Up state
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to build up, as, for example, the summation of randomly occurring miniature synaptic
potentials, a mechanism proposed of Up state initiation in cortical slabs [Timofeev
et al., 2000]. Another intrinsic mechanism, not dependent on K*-channels, has also been
proposed to regulate the duration of Down states. Hill and Tononi, in a thalamocortical
model of sleep and wakefulness, have suggested that the removal of H-current is able to
increase the Down state duration [Hill and Tononi, 2005]. H-current is a noninactivating
hyperpolarization-activated cation current believed to be critical to the generation of
slow rhythms in the thalamocortical system [Liithi and McCormick, 1998b, Liithi and
McCormick, 1999]. Therefore, the Down state may be regulated by the participation
of many mechanisms. Indeed, recently, Camassa and collaborators have proposed a
view that summarizes this oscillatory frequency of slow oscillations [Camassa et al.,
2021a]. They have proposed that the Down state is a metastable state composed of a
deterministic and stochastic phase (Fig. 3). The deterministic phase is set by the intrinsic
currents, while the stochastic phase is where random neuronal fluctuations would be

critical to trigger a new Up state.

1.2 Brain complexity

Slow oscillations are a hallmark of physiological slow-wave sleep [Steriade,
2000, Massimini et al., 2004], but not exclusively, SO is also an emergent pattern during
pathological conditions as coma, and drug induced states as deep anesthesia [Alkire
et al., 2008, Dasilva et al., 2021a]. All these states have one thing in common, they are
indicators of unconscious states. Thus, understanding the mechanisms behind SO may
also help us to understand consciousness. One of the parameters that has been proposed
as a signature of the level of consciousness is brain complexity, which relies on the

balance between segregation and integration within a neural system [Tononi et al., 1994].

One of the existing approach to quantifying brain complexity is to induce
a perturbation of the system to investigate the causal interactions that follow. The
perturbational complexity index (PCI) [Casali et al., 2013, Comolatti et al., 2019], in
which neural activity is exogenously perturbed by means of stimulation (transcranial
magnetic stimulation or electrical stimulation) has been proposed as one such measure.
This method has been validated for different instances such as physiological brain
states [Casali et al., 2013], anesthesia levels [Sarasso et al., 2015, Dasilva et al., 2021b, Arena
et al., 2021], and disorders of consciousness [Casarotto et al., 2016, Rosanova et al., 2018].
The PCI approach presents advantages with respect to an observational one (based on
spontaneous activity') because it is less affected by noise or isolated processes, and only

t A variety of such measures exist, including Lempel-Ziv compressibility [Szczepanski et al., 2003,

Hudetz et al., 2016], Shannon entropy [Zhao et al., 2010], entropy of wave propagation [Barbero-Castillo
et al., 2019], and functional complexity [Zamora-Lépez et al., 2016], among others
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assesses information generated through deterministic interactions, which also gives
advantages that are useful clinically [Casali et al., 2013].
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Figure 4 — Calculating the Perturbational Complexity Index (PCI). Extracted
from [Sarasso et al., 2014], originally adapted from [Casali et al., 2013].
PCl is defined as the normalized Lempel-Ziv algorithmic complexity of the
binary spatiotemporal matrix of significant cortical activation measured by
EEG and triggered by exogenous stimulation (TMS). It is expected a low PCI
value when there is a disruption in the segregation and integration balance,
while it will by high when the balance is kept.

PCI consists of the estimation of the normalized Lempel-Ziv complexity [Ziv and
Lempel, 1977, Ziv and Lempel, 1978] of the spatiotemporal matrix of cortical activation
after perturbation (Fig. 4). Thus, PCI reflects cortical complexity in an index [Casali et al.,
2013]. While conscious states present high values of PCI (high complexity), unconscious
states present low values of PCI (low complexity). In these two cases, cortical responses
are totally different: while during conscious the response if more heterogeneous and
widespread, during unconscious states it is more homogeneous and local. In order to
explore the underlying cellular and network mechanisms behind cortical complexity,
D’Andola and collaborators adapted the PCI measure to in vitro slice experiments, known
as slice PCI (sPCI) [D’Andola et al., 2018]. They showed that when the local network
switched from a slow oscillatory state to a desynchronized state, the bistability of

Up/Down states was reduced and there was an increase in sPCI. In this way, the isolated
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cortical network in vitro was validated as a system which cannot only spontaneously
generate slow oscillations [Sanchez-Vives and McCormick, 2000] and mimic other brain
states [Mattia and Sanchez-Vives, 2012, Markram et al., 2015], but can also be used to
investigate the cellular mechanisms of cortical complexity [D’Andola et al., 2018].
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Figure 5 — Multiple spatiotemporal representations of the brain. Extracted from [Betzel
and Bassett, 2017].

1.3 Computational modelling of brain components

Computational models are simplified versions of an experimental system and
are ideally constrained by experimental data. However, in neuroscience, experimental
data exists at many different spatial, temporal and topological scales and so do models
(Fig. 5). Theoretical models are normally divided into two categories: biophysical and
simplified. While the former takes into account the models of ionic channels and, for
that, has a biophysical correspondence, the latter takes into account dynamical features
to generate a spike and thus has a dynamical correspondence.

Biophysical modelling is rooted in the seminal work of A. Hodgkin and A.
Huxley [Hodgkin and Huxley, 1952]. Studying the giant squid nerve fiber, they were
the first to mathematically described how action potentials are initiated and propagated

(Fig. 6). The HH (Hodgkin-Huxley) model is a four-dimensional dynamical system that
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describe in details the generation of an action potential by activation and inactivation of

sodium current (In,) and activation of potassium current (Ik). Its equation reads:

dv
Cmg = _INa_IK_IL+Isyn/ (1.1)
with
I = gimMhrN(V - V). (1.2)

V is the membrane potential and C,, is the specific capacitance of the membrane.
I; describes the voltage-dependent currents (j € [Na, K]), and I, is the leakage current.
The gating variables m and h are governed by the first-order kinetics equation dx /dt =
Plax(V)(1—=x)=Bx(V)x] = ¢p[x(V)—x]/7x(V). The original model is based only on two
voltage-depended currents and thus cannot account for the wide diversity of intrinsic
cellular properties, such as adaptation to long-lasting stimuli or the dependency of some
conductances on various ionic concentrations. However, since the proposed HH model,
plenty of ionic currents have been described and, even more, modeled using the same
general framework proposed by Hodgkin and Huxley [Gerstner et al., 2014]. Thus, an
HH model can be constructed with a variety of ion channels, each of them capable of
a wide range of behaviors, from regular spiking to bursting, for example [Koch and
Segev, 1998, Pospischil et al., 2008, Catterall et al., 2012]. Following the HH framework,
other simplified biophysical model versions have been proposed [Gerstner et al.,
2014]. One example is the Morris-Lecar model (see Sec. 3.2.2 for a mathematical
description): a two-dimensional minimal model composed of Ix and calcium current
(Ica) where the gate variables are modeled using hyperbolic functions. This model is
useful when only qualitative or semi-quantitative characterizations of an action potential
are required [Morris and Lecar, 1981, Rinzel and Ermentrout, 1998]. Variations of this
model have also been employed in the literature [Estarellas et al., 2020].

In turn, the simplified modeling approach seeks to reproduce the dynamics of an
action potential without necessarily having a biophysical correspondence. A simplified

neuron model largely used is the integrate-and-fire model. Its equation reads:

oV - F(V)+1. (1.3)
dt

In this scenario, whenever V crosses a threshold Vi, one spike is emitted and, after
a refractory period, the membrane potential (V) is reset to V;,s. 7, is the membrane
time constant of the neuron and I is the current input. This is the general form of
integrate-and-fire model. Variations of this model are made by choosing the function
f(V). For instance, if f(V) = 0 we have the perfect integrate-and-fire model. And,
if f(V)=-V+ ATexp(Vg—‘T/”’), we have the so called exponential integrate-and-fire.
These models are very useful for analyzing the behavior of the neural system once the

membrane potential is described only in terms of synaptic inputs and the injected current
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Figure 6 — First mathematical description of an action potential. Extracted from [Hodgkin
and Huxley, 1952]. Top, Hodgkin-Huxley model simulations of an action
potential. Bottom, experimental recording of an action potential.

(both are included in the I term). However, this kind of models lacks the description of
an important feature of neurons: spike-frequency adaptation. To overcome this problem

another variable is introduced into the system. Its equation reads:

Tm(fi—‘t/:f(V)—wwLI, (1.4)
where, J
w
Tw—r = gV, w). (1.5)

If f(V)=-V+ ATexp(V;—‘T/”‘) and g(V,w) = aV —w + bty 3, 6(t — t') we have the so
called adaptive exponential integrate-and-fire (AdEx) model [Brette and Gerstner, 2005].
Now, for instance, if we choose f(V) = aV? + BV +y and g(V,w) = a(bV — w) we have
the Izhikevich neuron model [Izhikevich, 2003]. Both of these models have been largely
used in computational neuroscience due its simplicity and spiking patterns versatility
through parameter tuning [Muller and Destexhe, 2012, Gollo et al., 2014, Gorski et al.,
2021, Dalla Porta et al., 2021] (see Fig. 2 in [Izhikevich, 2003] and Fig. 6.1 in [Gerstner
et al., 2014]).

Another class of simplified modelling approach was introduced by Wilson and
Cowan [Wilson and Cowan, 1972]. They described the dynamics of a population of
neurons though a well-known differential equation where the input-output gain function
is described by a sigmoid. These models are usually called “rate models” and permit a

qualitative insight into the dynamics of a population of neurons [Wilson and Cowan,
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1972, Hopfield, 1984, Sussillo and Abbott, 2009]). Moreover, a large effort has been
made to derive population descriptions from the specificity of the network model under
consideration. This bottom-up approach permits to obtain a dimensionally reduced
mean-field description of the network population dynamics in different regimes [Amit
and Brunel, 1997, van Vreeswijk and Sompolinsky, 1998, El Boustani and Destexhe,
2009, Capone et al., 2019b]. On one hand, these models permit a simpler, reduced
picture of the dynamics of a population of neurons, thus allowing to unveil mechanisms
determining specific observed phenomena [Reig et al., 2015, Jercog et al., 2017]. On
the other hand, they enable a direct comparison with experimental studies where the
spatial resolution implies that the recorded field represents the average over a large
population of neurons (i.e., a mean field) [Capone et al., 2019b, Chemla et al., 2019]. We
introduce the mean-filed formalism with more details in Sec. 3.2.3.

1.3.1 Network models for the slow oscillations

In the context of slow oscillations (SO), different models have been proposed,
from simplified to biophysical detailed models. As an example of a simplified model
of SO, Capone and collaborators reconstruct the SO dynamics observed in cortical
slices through the use of large-scale network of spiking neurons (integrate-and-fire
model) and mean-field models [Capone et al., 2019b]. By semi-quantitatively matching
their model with the measured slow oscillations, they have explored how spontaneous
activity in the form of slow oscillations is shaped by laminar structure. Their model
suggests that excitability in layers 4 and 5 together with weakly stable Down state are
ingredients for an optimal sensitivity and richness of the wave propagation. In turn,
in light of SO biophysical mechanisms, at least three models have been proposed: two
models of thalamocortical system [Bazhenov et al., 2002, Hill and Tononi, 2005], and
one of the isolated cortical network [Compte et al., 2003]. The later has been able to
predict many features of cortical slow oscillations and has been adapted, for instance, to
study of cortico-hippocampal networks [Taxidis et al., 2013] and also for the study of
endogenous electric fields [Frohlich and McCormick, 2010].

The original model, by Compte and collaborators, was built based on experi-
mental observations of the cortical slow oscillations in vitro slices [Sanchez-Vives and
McCormick, 2000, Wang et al., 2003, Compte et al., 2003]. It consists of 1024 excitatory
cells and 256 inhibitory cells modeled with detailed Hodgkin-Huxley-type channels
and interconnected through realistic synaptic dynamics. Due to its recurrent connec-
tivity and adaptation currents, mostly due to the sodium- and calcium-dependent
potassium current (Ixna and Ikca, respectively), the model is able to switch back and
forth between Up and Down states (Fig. 7). This model has been used in order to
shed light on the mechanisms of different aspects of the SO. In experiments during
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A Spatial connectivity of the model
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Figure 7 — Spontaneous slow oscillations in a cortical network model. Extracted from
from [Compte et al., 2003]. (A) Schematic representation of the spatial con-
nectivity in the network model. (B) Spontaneous network activity visualized
as multi-unit recording (grouped neighboring cells). (C) intracellular somatic
voltage and intracellular sodium concentration of 3 representative excitatory
neurons. (D) Zoom in of an Up state of the cells depicted in (C). In this model,
the only source of noise in the network comes from intrinsic parameters of
the cells that are randomly distributed and from the random connectivity.

inhibitory modulation, through the blockage of GABA receptors, the model suggests
that strong recurrent feedback and activity-dependent potassium currents are suffi-
cient to explain the typical modulations of network activity patterns [Sanchez-Vives
et al., 2010]. During the exploration of high-frequency content during Up states, the
model shows that a synaptic loop between excitatory and inhibitory neurons as well
as manipulations in the intrinsic properties of the neurons (modulation of Ixc,) can
explain the emergence of high-frequency oscillations [Compte et al., 2008]. Through
manipulation of neuronal excitability (noise levels), by manipulations of extracellular
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potassium, the model predicts a maximum collective coherence for intermediate noise
levels [Sancrist6bal et al., 2016]. The model also suggests that the precise relationship
between excitatory and inhibitory inputs depends on the structural parameters defining
the connectivity in the local cortical circuit [Compte et al., 2009]. Finally, the model is also
able to explain the differences in emergent activity observed in different cortical areas
through manipulations in the structural connectivity [Sanchez-Vives and Compte, 2005].
Thus, undoubtedly, this biologically realistic network model sets the right framework
for the study of the biophysical mechanisms, ionic or synaptic, and network topology
involved in the cortical slow oscillations. In Sec. 3.1 we describe this model in more
detail.
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Chapter 2

Objectives

The objective of this thesis is to investigate the emergence of activity generated
by the cortical network, its mechanisms and properties, by combining experiments and
a computational modelling approach. Specifically, the objectives are:

1. To implement the cortical network model of slow oscillations proposed by Compte
and collaborators [Compte et al., 2003].

2. To investigate, in vitro and in silico, the impact of calcium-dependent potassium

(KCa) channel on physiological network activity of the cerebral cortex.

3. To explore, in silico, how ionic properties of individual neurons become network

properties through synaptic recurrency.

4. To investigate, in vitro and in silico, the impact of M-current on physiological
network activity of the cerebral cortex.

5. To investigate, in vitro and in silico, the impact of H-current on physiological
network activity of the cerebral cortex.

6. To develop an in silico model for the study of perturbational complexity and explore
how synaptic mechanisms in the form of slow and fast inhibition contribute to

network complexity.

7. To develop mean-field models of complexity different networks of spiking neurons.
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Chapter 3

Models and Methods

In the following Sections we will present a detailed description of the cortical
network models employed in this Thesis as well as the methods applied. In Sec. 3.1
we describe our implementation of the biophysically inspired cortical model of slow
oscillations proposed by Compte et al. [Compte et al., 2003]. The model was adapted
through implementation of new ionic channels, synaptic models and network topology,
to address our scientific questions. In Sec. 3.2 we introduced the mean-field equations
describing population dynamics, the template to estimate the transfer function, and the
neuronal models under consideration. In Sec. 3.3 we described the experimental data
analyzed, and finally in Sec. 3.4 the methods utilized throughout this Thesis.

3.1 Cortical network model of slow oscillations

3.1.1 One-dimensional cortical network model
3.1.1.1 Neuron model

There are currently many models of neuronal dynamics, each of them accounting
for different levels of biological detail. For the purpose of this thesis, the biophysically
detailed model of slow oscillations proposed by Compte and collaborators [Compte et al.,
2003] was used. This model was introduced in 2002 in order to describe the cellular and
network mechanisms of slow oscillations observed experimentally in vitro preparations.
The original synapse model and one-dimensional network will be described in the next

sections.

The ion channel kinetics are modelled following the Hodking-Huxley formalism
[Hodgkin and Huxley, 1952]. In this formalism the gates have a probability of being
activated, usually denoted by m or 1, and a probability of being inactivated, denoted by

h. Also, some channels do not inactivated (activated) resulting in a persistent (transient)
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current. The timing-varying probabilities are given by:

6;_3: = (P[ax(v)(l - x) - ,Bx(V)x] = (P[xoo(V) — x]/Tx(V), (3.1)

where x € {m, n, h} and ¢ is the temperature factor (¢ = 1 unless otherwise stated).

Excitatory neurons

In this model, excitatory neurons are modelled as containing a somatic and a

dendritic compartment whose dynamical equations are modelled as:

av.
CmAsd_tS = _As(IL + Ing + Ix + 14 + Iks + IKNa) - Isyn,s - gsd(Vs - Vd)/ (3-2)
and
avy
CmAdW = _Ad(IL + ICa + IKCa + INaP + IAR) - Isyn,d - gsd(Vd - VS)' (3-3)

Vs and V; stand for the somatic and dendritic voltage, respectively. A; =
0.015 mm? is the soma area and A; = 0.035 mm? the dendritic one. These two com-
partments are coupled electrically with a conductance gss = 1+ 0.1 uS § ensuring a
high synchronization between them. Accordingly, Isy,,s and sy, 4 stand for the synaptic
currents impinging on the soma and dendrites. In this model the somatic compartment
receives the inhibitory synapses and the dendritic compartment the excitatory ones

from the presynaptic neurons.

The sodium current Iy, = gNamgoh(V — VNa) has a maximal conductance of
gNa = 50 mS/ cm? and a reversal potential of Vi, = 55 mV. The activation vari-

able is replaced by its steady-state 1. = amafﬁm with a, = 1—ex(1)3.[1—(})/.J1r(35)+33)] and B, =

4 exp[—ll—z(V +53.7)]. The inactivation variable is governed by aj, = 0.07 exp[—0.1(V +50)]
and B =

I +exp[—0.104(V o The delayed rectifier current Ix = ggn*(V — Vi) has a max-

imal conductance gx = 10.5 mS/cm? and a reversal potential of Vg = —100 mV. The
inactivation kinectis are set by a;, = 1_@?}')(%1_(0‘7&?"/413 ) and B, = 0.125exp(—0.04(V + 44)).

For Iy, and Ik, ¢ = 4. The passive leakage current, I;, which is carried mostly by C1~,
has a maximal conductance of g; = 0.0667 + 0.0067 mS/cm? and a reversal potential of
VL =-60.95+0.3mV.

The A-type potassium current I4 = gam3,h(V — V) has its activation variable

1 1
1+exp[—0.05(V +50)] 1+exp[(V+80)/6]

7, = 15 ms. The non-inactivating K*-channel Ixs = gxsm(V — Vi) has a maximal conduc-

and the inactivation one as ho = and

modelled as Mo =

tance of gxs = 0.576 mS/ cm? and its activation is controlled by Mo =

8
exp[—(V+55)/30]+exp[(V+55)/30]

1
Trepl=(vaaayes and

. The persistent sodium current In,p = gnap m3 (V-Vna)

Tm =

§  In the model description the + symbol is used to denote a variable that is Gaussian-distributed in the
population, where mean + SD are given.
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has a maximal conductance gn,p = 0.0686 mS/ cm? and its activation given by

Meo . The inwardly rectifying potassium current [4ag = garheo(V —VKk)

_ 1
~ 1+exp[-(V+55.7)/7.7]
has a maximal conductance g4r = 0.0257 mS/ cm? and its activation is given by

_ 1
heo = T+expl0.25(V +75)
tance gc, = 0.43 mS/ cm? and activates following me, =

7 The calcium current Ic, = gca mZ (V — V¢,) has a maximal conduc-

1
1+exp[—-(V+20)/9]"

Intracellular calcium concentration, [Ca?*], is modelled as:

d[Ca%* Ca?*
C] - —acestc, - €, (3.4)
a

with ac, = 0.005 uM(nA-ms)~! and 7¢c, = 150 mS. The intracellular sodium concentra-

tion, [Na*], is modelled as:

d[Na"]
dt

[Na+]3 [Naﬂgq }’ ( .5)

= ~aNa(AsIna + Adlnar) - R*””””{([Z\W]3 +15%)  [Na*[3, +15°

with an, = 0.01 mM(nA-ms)™, Ryump = 0.018 mMms™!, and [Na*].q = 9.5 mM.

The dynamic of the calcium-dependent (Ixc,) potassium current follows: Ixc, =
gkca{[Ca?*]/([Ca®*"] + Kp)}(V — Vi), where Kp = 30uM and gxc, = 0.57 ms/cm?. The
sodium-dependent (Ixn,) current is governed by: Ixkn, = §kNaWeo([Na*])(V — Vi), with
We([Nat]) = 0.37/[1 + (38.7/[Na*])>] and gxng = 1.33 ms/cm?.

For the two-dimensional network the leak potassium leakage (Ix; = gx.(V — Vi)

with ¢gx1 = 1.86 mS/cm?) current was also included in the somatic compartment.

Inhibitory neurons

The inhibitory neurons are modeled only with the Hodgkin-Huxley spiking
currents and with a somatic compartment. The dynamical equation governing its
dynamics is given by:

av
CmAiE = _Ai(IL +INa + IK) - Isyn,i/ (3.6)
with the neuronal area being A; = 0.02 mm?. | syn,i stands for the sum of the synaptic
currents from the presynaptic neurons. The ion channel kinetics follow the formalism

A
am""ﬁm

with @y = 2o, B = 20expl—75(V + 60)], @y = 0.35exp[-0.05(V +58)] and

described in Eq. 3.1. For the sodium current: I, = gNamgoh(V —VnNg) where me, =

. Its maximal conductance is assumed to be gn,; = 35 mS/ cm? and

Pn= T+exp[—0.1(V+28)]
its reversal potential is Vi, = 55 mV. For the potassium current: Ix = gKn4(V — V) with

ap = 1_@?}'}?5_(3 1“;‘;’;23 ) and B, = 0.625exp(—0.0125(V + 44)). Its maximal conductance is

assumed to be ¢x = 9 mS/cm? and its reversal potential is Vx = =90 mV. Finally, for the

leakage current, I; has a maximal conductance of g, = 0.1025 + 0.0025 mS/ cm? and a
reversal potential of V; = —63.8 £ 0.15 mV.
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3.1.1.2 Synapses model

The original model proposed by [Compte et al., 2003] accounts for AMPA, NMDA
and GABA-A synaptic model. Two types of excitatory synapses were considered, AMPA
and NMDA mediated:

Iampa = gamras(V — Eampa), (3.7)

and
1
1+ [Mg*]exp(-0.062V /3.57))

(3.8)

Invpa = gnmpas(V — ENmpa)

where the reversal synaptic potential is Eapmpa = Enmpa = 0 mV and the extracellular
magnesium concentration [Mg?*] = 1.0 mM. For AMPA-mediated synaptic transmission
the gating variable s(t) follows:

% = af(vpre) - %/ (3.9)
with
f(Vpre) = ! (3.10)

1+ exp(=0.5(Vpre — 20))’
where a = 3.48 and 7 = 2 ms. For NMDAR-mediated synaptic transmission, the gating

variable s(t) follows:

% = a(l-s)x — ; (3.11)
with

dx X

3 = e[ (Vore) = = (3.12)

where f(Vpre) is given by Eq. 3.10 and @ = 0.5, T = 100 ms, &y = 3.48, 7, = 2 ms.
For inhibitory synapses only GABA s-mediated synaptic transmission was con-
sidered in the one-dimensional neuronal network, described by:
IcaBa, = gGaBA,S(V — EGaBa,)- (3.13)
where s is given by Eq. 3.9, with « =1 and 7 = 10 ms and Egaga-a = =70 mV.

For the two-dimensional network (described below), apart from the original
synaptic dynamics considered by Compte et al.[Compte et al., 2003], we also implemented
GABAg-mediated synaptic transmission [Destexhe et al., 1996, Liu et al., 2019] being
described by:

4

s
IGABA; = gGABABm(V — EGaBag), (3.14)
dr
— =0.5T(1 -r) - 0.00127, (3.15)

dt
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with

d
E? = 0.187 — 0.034s. (3.16)

r and s represent the GABAp receptor and the synaptic gating variable, respectively.
The transmitter concentration T is modeled as a square pulse of 0.5 mM lasting 3 ms.
K, = 100uM?* is the dissociation constant of the binding of s on the K* channels [Destexhe
et al., 1996].

3.1.1.3 One-dimensional network topology

Spatial connectivity

0=250um

E-cell (1024) A A
-cell (256) _ @ @ o

Figure 8 — One-dimensional cortical network. Schematic representation of the spatial
connectivity. 1024 pyramidal neurons (E-cell) and 256 interneurons (I-cells)
are synaptically connected through biologically plausible synaptic dynamics.
Probability distribution of synaptic connections from one neuron at the
center to the rest of the network is illustrated for pyramidal neuron (more
globally connected) and interneuron (more locally connected). Autapses
are not allowed although multiple connections to the same target are. The
network is assumed to be 5 mm long.

The original model proposed by Compte et al. [Compte et al., 2003] introduced a
one-dimensional network model. The network model consists of a population of 1024
excitatory neurons (pyramidal cells) and 256 inhibitory neurons (interneurons), keeping
the 4 : 1 proportion as is the case reported for the mammals cerebral cortex [Hendry
et al., 1987, Markram et al., 2004]. In this network, the neurons are sparsely connected to
each other through a fixed number of connections. Excitatory and inhibitory neurons
make 20 +5 connections to excitatory and to inhibitory neurons (autapses are not allowed
although multiple contact onto the same target are). The probability that two neurons
separated by a distance x are connected is decided by a Gaussian probability distribution
centered at 0 with a defined standard deviation : P(x) = exp(—x%/20?)/ V2102, The
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network is assumed to be 5 mm long and 0,y = 500um and o0;,;, = 125um (Fig. 8). The
maximal synaptic conductance strengths are: excitatory to excitatory: gf‘ﬁ/l pa = 0415,
= 0.9 nS; excitatory to inhibitory: gl ~=2.25nS, gf]IMD 4 = 0.5nS; inhibitory

AMPA
= 0.165 nS; and inhibitory to excitatory: g =4.15nS.

EE
ENMDA

e 11l LI IE
to inhibitory: ¢, AL GABA,

3.1.1.4 M and H currents

In order to study the effects of M and H current on the slow oscillations, we
adapted the model described above to include these currents. For the M-current we
implemented the model described in [McCormick et al., 1993]: Iy = gmm(V — Vi)

with a maximal conductance of gy = 0.083 mS/cm? and a reversal potential of

Vk = —100 mV. The activation variable is controlled by me = 7 +exp[—01.l(V 35 and
T = 33 expl(VI3) /zlo(ig(ixp[_(v 3570 The M-current was included in the somatic compart-
ment [Wang, 1999].

For the H-current we implement the model described in [Hill and Tononi, 2005]:

Iy = gum(V + 45) with a maximal conductance of gy = 0.0115 mS/ cm?. The activation

1 1
1+exp[(V+75)/5.5 exp[—14.59-0.086V |+exp[-1.87+0.0701V]

H-current was included in the dendritic compartment of 30% random selected pyramidal

variable is controlled by m., = ] and 7, =

neurons [Robinson and Siegelbaum, 2003, Hill and Tononi, 2005].

To arrange the M and H currents on the model we have performed an adjustment
at the channel maximal conductances for the remaining currents (only for pyramidal
neurons) as follows: gn, = 50 mS/cm?, g = 10.5mS/cm?, g1 = 0.0667 +0.0067 mS/cm?,
gkr = 1.86 mS/cm?, g4 = 1 mS/cm?, gks = 0.576 mS/cm?, gkna = 0.65835 mS/cm?,
gnap = 0.05145 mS/cm?, gar = 0.0257 mS/cm?, ¢c, = 0.43 mS/cm? and gkc, =
0.5415 mS/cm?.

3.1.2 Two-dimensional neuronal network

The newly implemented network model in this Thesis work consists of a two-
dimensional 50 x 50 squared network of pyramidal cells (80%) and interneurons
(20%), randomly distributed and interconnected through biologically plausible synaptic
dynamics. Each cell is sparsely and locally connected to its neighbors within a square
of size L X L centered around it, where Lyyramidar = 7 and Linterneuron = 5 (Fig. 9).
The fraction of synaptic connections (outgoing synapses) is set at 50% of the total
number of neurons within the local range for pyramidal cells and 90% for interneurons,
thus imposing local connections for interneurons and more sparse connections for
pyramidal cells. The network structure is similar to that used in previous studies of
cortical oscillatory neuronal networks [Bazhenov et al., 2008, Poil et al., 2012, DALLA
PORTA and Copelli, 2019].
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Local connectivity

7 — — 5

Spatial distribution

Figure 9 — Two-dimensional cortical network. Schematic representation of the local and
spatial connectivity. The model consists of pyramidal neurons (blue) and
interneurons (red) arranged in a 50 X 50 square lattice. The excitatory neurons
may connect locally to a 50% fraction of its neighbors (gray circles) within a
7 X 7 square, while the inhibitory neurons to a 90% fraction withina 5 x 5
square, thus ensuring more sparse connections for pyramidal neurons and
more local connections for interneurons. Autapses are not allowed although
multiple connections to the same target are.

In order to arrange the neuron model in the two-dimensional network, we
performed an adjustment at the synaptic maximal conductances and channel maximal
conductances. The channel maximal conductances of pyramidal neurons were set to:
gNa = 50mS/cm?, gk = 10.5mS/cm?, g1 = 0.0667+0.0067 mS/cm?, gk, = 1.86mS/cm?,
g4 =1mS/cm?, gxs = 0.576 mS/cm?, gxng = 0.65835 mS/cm?, gngp = 0.05145 mS/cm?,
gar = 0.0257 mS/cm?, gca =043 mS/cm? and gkca = 0.5415 mS/cm?. The synaptic

maximal conductances were set to: g¢,;, = 1.96 1S, g, = 289618, gl,p, =
33.751S, gy, = 39208, g%, =6.218, ¢4, =0.6925 08, ¢, = 2.720S, and

g{f]I]\AD 4 = 0.595 nS. Additionally, all neurons receive a heterogeneous Poisson train of
excitatory, AMPA and NMDA, presynaptic potentials with a rate R = 0.5kHz [Dayan
and Abbott, 2001]. The Poisson synaptic inputs are modeled as excitatory AMPA and
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NMDA currents where the probability of a spike at one time step is given by: 1 — e~Rdt,

where dt is the time step of simulation, and R the Poisson rate.

The simulated population membrane potential (SLFP) was computed as the sum
of the absolute values of the excitatory and inhibitory synaptic currents acting on the
excitatory neurons [Sancristobal et al., 2016]. We virtually created 20 electrodes in the
model, arranged as a 5 X 4 matrix. Each electrode covered an area of 49 neurons and
were horizontally and vertically spaced by a distance of 10 neurons, thus ensuring no
overlapping between electrodes. The neurons on the border were not considered. In
order to simulate the experimental effects of GABA 4 3-Rs blockade, we progressively
reduced the GABA 5 g conductance (which, for simplicity, will be referred to as simple
concentration) in inhibitory synapses to both neurons, pyramidal and interneurons,
from 5% to 90% (disinhibited network). We proceeded in the same way to progressively
increase the GABA A conductance, increasing it from 5% to 90% (inhibited network).

3.1.3 Numerical methods and simulations

For all the simulations regarding the one-dimensional and two-dimensional
network described in Sec.3.1.1.3 and 3.1.2, simulations were performed using a fourth-
order Runge-Kutta method with a time step of 0.06 ms implemented in a C code.
Simulations were performed using the supercomputer MareNostrum from Barcelona
Supercomputing Center (BSC, https:/ /www.bsc.es/es).

3.2 Mean-field model

3.2.1  Network of spiking neurons

We considered a random directed network of N = 10* cells, where 80% are
excitatory (E) regular-spiking (RS) and 20% inhibitory (I) fast-spiking (FS) neurons. The
connectivity is set randomly between pairs of neurons with a fixed probability (P= 0.05).
Unless otherwise stated, we used the same network and synaptic constants for all the
neuronal models (Hodgkin-Huxley (HH), Adaptive Exponential Integrate-and-Fire
(AdEx), and Morris-Lecar (ML)). The dynamics of each node k follows:

axy

where x and F(x) stand for the neuronal state and dynamics. The later depending
on the specific model (see the following sections). For simplicity of notation xj is a
n—dimensional vector, depending on the dimension of each neuron model. The synaptic
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current (Is,,) impinging on the postsynaptic neuron k, is modeled as:

Isy” = (VE - vk)GSEyn + (VI - vk)Géyn/ (318)
(3.19)
where,
t—tsp(n)
Gén(H) = Qeny Y O [t —tsp(m)] e . (3.20)
n

Qe(Qg) and Vg (V1) are the excitatory (inhibitory) synaptic conductance and reversal
potential, respectively. 7 = 5 ms is the decay timescale of excitatory and inhibitory
synapses and® is the Heaviside step function and the summation runs over the overall
presynaptic spiking times t,(1). v stands for the membrane potential of neuron k. For
HH and AdEx models we use Qr = 1.5nS and Q; = 5 nS while for ML model Qr = 4 nS
and Q; = 10 nS. Furthermore, all neurons are subject to an independent noisy spike train
described by a Poisson distribution with a constant rate v 4y, = 4 Hz, unless otherwise
stated.

3.2.2 Single neuron models

We describe here the neuronal models: exponential Integrate-and-Fire, Mor-
ris—Lecar and Hodgkin—-Huxley models.
Adaptive Exponential Integrate-and-Fire model

The dynamics of each of the adaptive exponential integrate-and-fire model
(AdEx) neurons i is described by the following two-dimensional [here X = (v;; w;)]
differential equations [Brette and Gerstner, 2005]:

do; vi=ot
cmd—tZ = gr(VL —vi) + grhe & —w; + Ly, (3.21)
and
dw; w; )
dtl = _T_uj +b E Ot — tsp(i)) + a(vi — V1). (3.22)

tsp(i)

cm = 150 pF is the membrane capacitance, v; is the voltage of neuron i, and, whenever
v; > v; = =50 mV at time £;,(7), v; is reset to the resting potential v,y = —65 mV with a
refractory time T, = 5 ms. The leakage current has a maximal conductance g;, = 10 nS
with a reversal potential Vi, = —65 mV (unless otherwise states). The exponential term
has a strength of A = 2 mV and A; = 0.5 mV for excitatory and inhibitory neurons,
respectively. w mimics the dynamics of spike frequency adaptation currents. Inhibitory
neurons are modeled according to physiological insight as the fast-spiking (FS) with no
adaptation while the excitatory are modeled as regular-spiking (RS) with adaptation.
Here we consider b = 60 pA, a =4 nS, and 7, = 500 ms, unless otherwise stated.
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Hodking-Huxley model

The dynamics of Hodgkin-Huxley (HH) [Hodgkin and Huxley, 1952] is given by
the following five-dimensional system of differential equations [Pospischil et al., 2008]:

Cm% = (VL —v))+ gNamf’hi(VNa - v;) + gKn?(VK - 0;)
+ gmpi(Vk —v;) + Isyn, (3.23)
e (o)1~ ) = puloins (3.24)
% = am(v)(1 —m;) = B (vi)m;, (3.25)
T — (o)1~ i) = (o), (3:26)
% _ %, (3.27)

with the gating functions,

—0.082(v - V; — 15)

a”(v) = V}+15-v t 4
e- 5 -1
Vi+10-0v

Bn(v) =0.5e" 10,
~0.032(v — V; — 13)

am(v) = Vi +13-v
e~z -1
0.28(v — V; — 40)
Bm(v) = v—V;—40 ’
e s -1 (3.28)
Vi+17-0
ap(v) =0.128¢~ ® ,
4
Bu(0) = <
e” 5 +1
OO(U) = _ 7
P e +1
T
TP(U) = v+3:mx —0-35 *

3360 +e

v; is the voltage and (n;, m;, h;, p;) are the corresponding gating variables of the ith
neuron. The spike emission ¢, p s set for this model to time steps in which the membrane
potential v exceeded a voltage threshold of 10 mV. The membrane capacitance is set to
¢ = 200 pF/cm?. The maximal conductance for the leakage current (L), sodium current
(Na), potassium current (K) and the slow non-inactivating potassium current (M) were
set to g1 = 10 mS/cm?, gNa = 20 mS/cm?, gk =6 mS/cm? and gm = 0.03 mS/cm?
(gm = 0 mS/cm? for inhibitory neurons), with corresponding reversal potential V} =
—-65mV, Vy, =50 mV, Vx = =90 mV, and V) = Vk, respectively. The spiking threshold
issetto Vr = =53.5mV and 7,4,y = 0.4 s.
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Morris-Lecar model

The dynamics of the Morris-Lecar model is described by the system of differential
equations [Morris and Lecar, 1981]:

dv;
Cmd—tl = gL(VL - Uz’) + gCaMss(Uj)(VCa — vi) + gKNi(VK _ vi)
o *lo (3.29)
dN; _ Nss(vi) —N;
it (o) (3.30)

with the membrane capacitance c¢,, = 2uF/cm?, v; is the membrane potential in mV,
and N; and M;; are the fraction of open potassium and calcium channels, respectively.
Ip = 0.2 nA/cm? is a reference DC external current. Spiking thresholds set to V =
—53.5 mV, as in the HH model. The maximal conductances for the leakage current
(L), calcium current (Ca), and potassium current (K) were set to g = 20 mS/ cm?,
gca = 80 mS/ cm?, and gk = 160 mS/ cm?, with corresponding reversal potential
VL = -50mV (Vi = =70 mV for inhibitory neurons), V¢, = 120 mV, and Vx = -84 mV.
The quantities M;s and Ngs are modeled as:

Mes(0) = % 1+ tanh (v ‘_/2‘/1)] ) (3.31)
Nys(v) = % 1+ tanh (U ‘_/4‘/3)] , (3.32)

with
() = % [qbcosh (U ‘_/4‘/3)] , (3.33)

where Vi = -1.2mV, V, =18 mV, V3 = 2mV and V; = 30 mV are tuning parameters that
determine the half activating voltage and slope of the activation curves for calcium and
potassium conductances. Such choice of parameters was made in order the ML neuron
is te in a type II class of excitability, i.e., its response to a DC current is discontinuous

and the neuron firing increases very slowly with the injected current.

3.2.3 Mean-field formalism

Mean-field theory scales the analysis of interacting pointwise neurons to their
macroscopic, collective, dynamics based on the moment-statistics of the system, requir-
ing a self-averaging hypothesis for physical quantities. We make here an additional
hypothesis that the biological neural network is set to asynchronous dynamical regime.
The latter is chosen for its biological plausibility [Destexhe et al., 2003] as observed
in awake cortical states of adult mammalian brains. The master equation formalism

is borrowed from Ref. [El Boustani and Destexhe, 2009]. Such formalism provides us
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a system of ordinary differential equations that describe the evolution of the mean
and variance of the neuronal firing rate of excitatory and inhibitory neurons. The
main argument of this formalism is to consider the network dynamics as Markovian
on an infinitesimal (a time resolution T, typically ~ 20 ms) scale [Ohira and Cowan,
1993, Ginzburg and Sompolinsky, 1994, Buice et al., 2010]. Furthermore, this a theory is
based on the assumption that neurons emit maximum one spike over the Markovian
step T, i.e., assuming a low firing rate of neurons, lower than 1/T~ 50 Hz [El Boustani
and Destexhe, 2009], as is the case of asynchronous regimes here investigated. It is
described by the system of differential equations:

do,, - 1 d*F, 334
PRI L e e (339

dF,

dcy FA(T'=F,)
1= 5=+ (Fa — 02)(Fy — vp) + —Cu
u

T2 =
dt An N,
dF,

+ mCAH —ZC)\U, (335)

where u = E, I is the population index (excitatory or inhibitory, respectively), v, the
population firing rate, and c,, the covariance between populations A and 7. The transfer
function F, = F,(vg, v;) describes the firing rate of population u as a function of
excitatory and inhibitory inputs (with rates v and v;). In a first order approximation
the model reduces to the well known Wilson-Cowan model, with the specificity that the
function F needs to be obtained according to the specific single neuron model under
consideration. We introduce this procedure in the next subsection.

3.2.4 Transfer function estimation

The transfer function (TF) relates the firing rate of a postsynaptic neuron to
a presynaptic excitatory and inhibitory firing rates. The particular form of the TF is
related to the dynamics describing neuronal activity. Deriving an analytical expression
for the transfer function is a nontrivial endeavor due to the nonlinear character of
the dynamics, e.g., through conductance based interactions. Therefore, we use here a
semi-analytic approach to fit a family of plausible transfer functions to the data obtained
by means of numerical simulations with the desired neuron model. The method was first
developed by Zerlaut et al. [Zerlaut et al., 2016] where it was applied on experimental
data from mouse layer V pyramidal neurons. It is based on the assumption that the
transfer function depends only on the statistics of the subthreshold membrane voltage
dynamics, which is assumed to be normally distributed. These statistics are the average

membrane voltage, iy, its standard deviation o,, and autocorrelation time 7y. Under
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these assumptions the neuronal output firing rate, F,, is given by the following function:
ff
1 Vil —uy
F, = ETU(ZI’fC (M) , (3.36)

where er f ¢ stands for the Gauss error function and Vf{r / is an effective or phenomenologi-
cal threshold accounting for nonlinearities in the single-neuron dynamics. Note that when
dealing with extremely high spiking frequencies, e.g., in the case of Hodgkin—Huxley
model close to depolarization block, a multiplicative factor a can be added in front of
right-hand side of Eq. 3.36 allowing then the fitting procedure to deal with such high
frequencies. In the asynchronous dynamical regime, neurons have relatively low firing
rate (smaller than 30 Hz). Accordingly, we did not use this extension.

From input rates to subthreshold voltage moments

We start by calculating the averages (ug;,ug,;) and standard deviations (0g;,0¢;)
of the conductances given by Eq. 3.20 under the assumption that the input spike trains
follow the Poisson statistics (asynchronous regime). Thus, we obtain [Zerlaut et al.,
2018]:

tce(vE, v1) = vEKETEQE,

veKgT
16 (VE, v1) = & 2E O,
(3.37)
uc, (v, v1) = viKrQy,
1Kyt
t6,(vE, v1) = ! 21 Lo,

where Kg 1 is the average input connectivity received from the excitatory or inhibitory
population (in our cases typically Kg = 400 nad K; = 100) and in our model tg = 11 =7
(see Eq. 3.20).

The mean conductances will control the total input of the neuron p and therefore
eff.

its effective membrane time constant 7,;, * :

vy (v, vr) = pge + Uc, + 8L, (3.38)
e (v, o) = 2., (3.39)
Ua

Here we make the assumption that the subthreshold moments (uv, oy, Tv) are
not affected by the dynamics of the currents coming into play at the spiking time (e.g.,
sodium channel dynamics or the exponential term of the AdEx model). We thus consider,
for all neurons, only the leakage term and the synaptic input to estimate subthreshold

moments. Accordingly, we can write the equation for the mean subthreshold voltage as:

ucEE + ug,Er + gLEL

o (3.40)

pv(ve, vr) =
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The final equation for oy and 7y follow from calculations introduces in Ref. [Zerlaut
et al., 2018], they read:

UV(UE/VI)— \/Z Ks s (us TS)Z (3.41)

fy Ts)
s [sts(us * Ts) ] }
s Ksos (Us - Ts)z('f;iqff + 7)1 ,

tv(ve, Vi) = { (3.42)
where we defined Us = Qs(Es — {Js)}l(_;l and s =(E,I). Notice that neglecting all the
currents for the generation of action potentials (e.g., sodium current) becomes a poorer
assumption as the neuron activity increases. Although, as we show in the following
subsection, the fitting procedure will account for discrepancies in the actual evaluation

of voltage moments by permitting an accurate prediction of neuron output firing rate

From subthreshold voltage moments to the output firing rate

The quantities uy, oy, and 1y, obtained in the previous subsection, can now be
plugged into Eq. 3.37 when an additional relation is taken into account. This relation
follows from theoretical and experimental considerations [Zerlaut et al., 2016] showing
that the voltage effective threshold Vte}{r / can be expressed as a function of (uy, ov, 1v).
In Zerlaut et al. [Zerlaut et al., 2016], the phenomenological threshold was taken as a
second order polynomial in the following form:

x —x0
thr(HV,UV, ):PO+ Z Px'(W)"'
XG{HV,UV,TQI}
_ 0 _ 4,0
Y e[S (5)
) ox oy

x,ye{uy,ov, 1)}

(3.43)

where we introduced the quantity T%j = 1vGi/cm. We evaluated {P} through a fit
according to simulations on single neurons activity setting first y(‘)/ = —-60 mV, 03 =
0.004 mV, (7)) = 0.5, 6y, = 0.001 mV, 60y, = 0.006 mV, and 6(c}))° = 1. By the
fitting procedure we find the values of the P parameters for the three neuronal model
considered here (taking into account two neuronal types: excitatory regular-spiking (RS)
and inhibitory fast-spiking (FS)). We report the results in the Tables 1, 2 and 3.

3.3 Experimental methods in vitro

Cortical slices were prepared as previously described [Sanchez-Vives and Mc-
Cormick, 2000]. Briefly: adult ferrets (3 — 7 months old, either sex) were anesthetized
with sodium pentobarbital (40 mg/kg) and decapitated. The entire forebrain was rapidly
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Table 1 — Fit parameters AdEx neurons

Celltype Po Py, Py, Puy Pa Pp Po Puoy Pun Pon

RS 498 506 -234 23 -041 105 -36.6 74 1.2 -40.7
FS 498 506 -234 23 -041 105 -36.6 74 1.2 -40.7
Values are in mV. AdEX, adaptive exponential integrate-and-fire model; FS, fast-spiking; RS,
regular-spiking. See Eq. 3.43 for parameter definitions.

Table 2 — Fit parameters Hodgkin-Huxley neurons

Cell type Py P‘uv Pav PTV P#‘2/ pO’é PT‘2/ PHVGV PvaV POVTV

RS -48.1 32 109 -032 098 1.1 -1.2e-3 -14 3.9 -0.11
FS -512 18 -6.1 -086 1.6 -0.70 -11 -0.18 1.2 -1.2

Values are in mV. FS, fast-spiking; RS, regular-spiking.

Table 3 — Fit parameters Hodgkin-Huxley neurons

Celltype Po Py Ps, Py, Pp Pa Po Puoy Puey Poyry

RS -48.1 3.2 109 -032 098 11 -12e3 -14 3.9 -0.11
FS -0.615 -256 -176 -164 0.83 -55 108 -7.4 246 288

Values are in mV. FS, fast-spiking; RS, regular-spiking.

removed to oxygenated cold (4 — 10° C) bathing medium and cut in 400um thick coronal
slices from the occipital cortex containing primary and secondary visual cortical areas
(areas 17, 18, and 19). Then, slices were placed in an interface style recording chamber
(Scientific Systems Design, Inc.), and bathed for 30 minutes in an equal mixture of the
sucrose-substituted solution and ACSF (Artificial Cerebro- Spinal Fluid). Afterwards
slices were maintained 2 hours in ACSF for recovery. Finally, an in vivo like ACSF solution
was applied throughout the rest of the experiment. Electrophysiological recordings

started after allowing at least 1 hour of recovery.

Extracellular local field potential (LFP) was recorded using 16-channel multi-
electrode arrays or with 2 — 40M tungsten electrodes. Signals were amplified using a
PGA16 Multichannel System at a sampling rate of 5 or 10kHz. All experiments were
carried out in accordance with protocols approved by the Animal Ethics Committee
of the University of Barcelona, which comply with the European Union Guidelines
on Protection of Vertebrates used for Experimentation (Directive 2010/63/EU of the
European Parliament and the Council of 22 September 2010).

For the sake of clarity, none of the experimental recordings used in this thesis
were acquired by the author, who has been involved only in the post hoc analysis. All
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the experimental procedures and data acquisition were performed by qualified and
authorized members of the Sanchez-Vives lab.

3.4 Data analysis

3.4.1 Relative firing rate (LogMUA)

A good estimate of the population firing rate is given by the normalized multiunit
activity (MUA) spectrum, once the normalized Fourier components at high frequencies
have densities proportional to the spiking activity of the involved neurons [Mattia and
Del Giudice, 2002]. We followed the implementation described in [Reig et al., 2010].
Briefly, the MUA is estimated as the power change in the Fourier components of the
recorded local field potential (LFP) at high frequencies. The time-dependent MUA is
computed from the power spectrum in 50 ms windows, each frequency normalized by
the corresponding amplitude of the power spectrum computed over the whole time
series, and averaged within the 0.2 — 1.5 kHz band. MUAs were logarithmically scaled
to balance the large fluctuations of the nearby spikes and further smoothed by a moving
average with a sliding window of 80 ms. After this preprocessing with have the so called
LogMUA.

3.4.2 Experimental Up and Down states detection

Up and Down states were singled out by setting a threshold in the LogMUA
(see 3.4.1) time series. The threshold was set to 60% (adjusted when needed) of the
interval between the peaks in the bimodal distributions (typical from slow oscillations,
SO) of LogMUA corresponding to Up and Down states [Reig et al., 2010, Sanchez-Vives
et al., 2010]. From the detection of Up and Down states we estimate many parameters
reported in this thesis. We calculated the following: i) Up and Down state durations; ii)
cycle frequency (Up + Down events; UD-cycle); iii) as a measure of SO variability the
coefficients of variation (CV=SD/mean) of Up state duration, Down state duration and
UD duration; iv) the relative firing rate during Up and Down states as well UD-cycle,
defined as the mean LogMUA across time; and v) the upward (Down to Up) and
downward (Up to Down) transition slopes were the gradients of the linear fits of the
average LogMUA in the time intervals (—10, 25 ms) and (-25, 10 ms), respectively.
For the scatter plots of Up versus Down state durations, Kernel density estimation
(KDE) was used to obtain and construct univariate (1D histogram) and bivariate (2D
histogram) [Waskom, 2021]. For the dataset recorded with multielectrode array, only the

channels located at the infragranular region were considered.
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3.4.3 Up and Down durations in the cortical network model

Up state durations in the model were evaluated in two forms: i) locally, based on
the mean neuronal burst duration (also called mean network burst duration), and ii)
globally, based on the total activity of the network (a quantity similar to experimental
LogMUA). For i) we computed the spike-train autocorrelation functions (ACF) for each
neuron in the network and estimated the width of the central peak of ACF by fitting a
Gaussian function. Then, the Up state duration was defined as two standard deviations
of the Gaussian distribution (see 17). For ii) we chose arbitrarily a threshold to define

the initiation and termination of Up and Down states.

3.4.4 Spectral analysis and network synchronization

From the simulated network model we obtained from the spike-trains the
power spectrum. For each neuron in the network the spike-train power spectrum was
computed with a multi-tapper estimator (5 slepian tapers with bandwidth 0.1 Hz).
Power spectra were then averaged to obtain the network’s activity spectrum, which was
then normalized by the average firing rate to compare across simulations with different
parameter conditions. Furthermore, power spectra were smoothed by a Gaussian
kernel with prescribed standard deviation ¢ = 0.25 Hz. The software Chronux (http:
//chronux.org/) was used for such analysis.

The Kuramoto order parameter (R) was estimated as:

R(t) = % ) (3.44)

N
Z el Pk (t)
k=1

where ¢(t) is the phase vector overt time. The phase of neuron k is obtained by:

t - tk,m
—I
tk,m+1 - tk,m

dr(t) = 27 (3.45)

where ty ,, corresponds to the time of the m—th spike of neuron k (tx;, <t < ti m+1)-
R(t) varies between 0 and 1, where R = 1 stands for a fully synchronized network while
R = 0 to a fully desynchronized one [Pikovsky et al., 2002, Di Santo et al., 2018].

The synchrony measure y quantifies the normalized average voltage fluctuation.
X is defined as:

(72

2 v
X == (3.46)
N Zii U\Z/i
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where 0‘2/ =< [V(t)]* > —[< V(t) >]? is the mean variance over time of the population
average voltage:

N
V(t) = % D V(). (3.47)
k=1

o‘z/i =< [Vi(t)]*> > —[< Vi(t) >]? is the mean variance over time of the single-cell

membrane potential. y varies between 0 (asynchronous state, i.e., fully desynchronized)
and 1 (fully synchronized state) [Hansel and Sompolinsky, 1992, Golomb and Rinzel,
1993, Golomb et al., 2006, Golomb, 2007].

Pairwise spiking cross-correlation was computed as:

COZ)(S,’,S]')
CC=(——2), (3.48)
(71'(7]'

where Cov(S;, S;) is the covariance between two spikes trains S; and S;. 0(S; ;) is the
standard deviation of each spike train and <> stands for average over all the possible
neuron pairs. CC is between —1 and 1. and takes high values only for synchronous
states [Destexhe, 2009, Renart et al., 2010, Fontenele et al., 2019]

The autocorrelation firing rate function (ACF) was computed as [Harris et al.,
2020]:

SN (i < 1 >)(isem < x >)

SN - < x >)?

ACF(1) = , (3.49)
where 7 is the time lag, x is the network firing rate and <> stands for the mean over

time. The global firing rate was defined as the sum of all network spikes in time bins.

3.4.5 Perturbational complexity index (sPCI)

In order to estimate perturbational complexity in brain slices and in the model,
we used an adaptation of the PCI used in humans [Casali et al., 2013], named sPCI
[D’Andola et al., 2018]. The stimulation electrode was placed in infragranular layers.
Pulses had a duration of 0.1 ms, an intensity of 150 — 200 mA, and were applied every
10 s, with a random jitter from 0.5 — 1.5 s to avoid activity entrainment to the specific
frequency of stimulation. A binary spatiotemporal distribution of significant activity was
calculated in the multiunit activity (MUA) signal: we assessed the statistical differences
between the network activity baseline and its response to the electrical stimulation
using a bootstrap procedure as in [D’Andola et al., 2018]. The significance threshold
was estimated as the one tail (1 — a) 99th percentile of the bootstrap distribution. Also,
we first low-pass filtered (< 10 Hz) the trial average computed on the MUA signal, and
considered significant only the periods in which the activity of each channel lay above
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the significance threshold for > 50 ms. The sPCI was then defined as the normalized
Lempel-Ziv complexity of the binary matrix of significant evoked MUA spatiotemporal
patterns [D’Andola et al., 2018]. It is worthy of note that members of the Sanchez-Vives

lab developed this algorithm, and it is not a result of the present thesis.

For the stimulation procedure performed in the model, described in Sec. 3.1.2,
we depolarized all the neurons by a brief (40 ms) external stimulation current of 0.5 nA
with an interval of stimulation of 5 + 1 s (mean + SD given). The sPCI was obtained

exactly as described above for brain slices.
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Chapter 4

Results

This thesis thoroughly investigates the mechanisms and dynamics of slow
oscillations (50), an emergent pattern of activity generated by the cerebral cortex, from
a combined experimental and computational approach. SO is characterized by the
rhythmic alternations between periods of neuronal depolarization and discharge (Up
states) followed by periods of neuronal hyperpolarization and thus, silence (Down states,
also called off-periods). This pattern of activity is characteristic of slow wave sleep and
deep anesthesia but also spontaneously emerges in isolated cortical networks. Here, we
have used in vitro experimental data to shed light on the mechanisms by which SO are
maintained and thus also understand the mechanisms mediating brain transitions. Also,
we have implemented, modified and thoroughly investigated a network model of slow
oscillations. The development of these computational models is one of the central part
of this thesis, which allowed us to a directly comparison with experimental data and a
more detailed exploration of the parameter space. In the following, I will specifically
describe the results obtained in this thesis.

4.1 Role of SK calcium-activated potassium channels on cortical

slow oscillations

We first recorded from cerebral cortex slices (n1=8) that generated spontaneous
slow oscillations (SO), consisting of interspersed Up (active) and Down (silent) states. To
investigate the role of SK calcium-activated potassium channels (KCa) [Sah and Faber,
2002] on this network activity, we next applied apamin, a bee toxin that specifically
blocks this ionic current (Ixca) [Castle et al., 1989], and studied the changes in the
emergent pattern. Next, since there are experimental limitations to the understanding of
the mechanisms bridging from neuronal membrane properties to networks, we studied
the role of KCa channel in a biologically-plausible Hodgkin-Huxley model of the cerebral

cortex network.
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4.1.1 Effects of KCa channel blockade on the Up/Down state cycles
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Figure 10 — Effect of KCa channel blockage on slow oscillations of a single recording.
(A), left: Local field potential (LFP; bandpass filtering), recorded with a tung-
sten electrode, and relative firing rate (LogMUA) of the spontaneous slow
oscillations (SO). Up states were detected from the LogMUA (see Methods
Sec.3.4). Middle: histogram of the relative firing rate values illustrating the
bimodality of SO. Right: raster plot of the relative firing rate. (B), Same as in
(A) for blockade of KCa channel by bath application of apamin (200 nM).
(C), Average firing rate for Up states during the control (orange) and apamin
(purple). Dashed line illustrating the increase of the firing rate slope of
Down to Up state transition. (D), Scatter plot of Up and Down duration.
Irregular ellipses stand for the bivariate (2D) kernel density estimate (KDE;
see Methods Sec.3.4 for details).

The baseline frequency of the slow oscillations (SO) in our experimental sample
was 0.40 Hz (mean 0.40 + 0.14 Hz, n= 8), with a duration of Up/Down states of
0.82 £ 0.33 s and 2.27 + 1.53 s respectively. KCa channel antagonist, apamin 200 nM,
after applied to the bath resulted in several changes in the Up states of the cortical slices
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(see Fig. 10 for a representative slice). The two main changes that were observed were
an increase in the population firing rate during the Up state and a shortening of this
period following the blockade of KCa channel (Fig. 10A, B, C and D). In the distribution
of Up and Down states in the case illustrated in Fig. 10B and D, there is also a visible

elongation of the Down states, albeit this was not significant at the population level.

Regarding the firing rate during Up states, the raster plots displayed in Fig. 10A
and B suggest a more synchronized, higher firing rate, with a change in the firing pattern
that appears less dispersed in the presence of apamin (compare Fig. 10A right column
with 10B right column). This relevant aspect of the Up state’s firing pattern and how it
is shaped by potassium adaptation (KCa channel) was later explored in detail in the

computational model.

We investigated different properties of slow oscillations at the population level
(Fig. 11). We found both the shortening of Up states (Control: 0.82 + 0.33 s; Apamin:
0.55 + 0.23 s, p= 0.0234, n=8) and an increase in the firing rate (Control: 1.05 + 0.18
a.u.; Apamin: 1.43 + 0.37 a.u., p= 0.0156, n= 8) to be significant at the population level.
Both properties are indeed mechanistically related, since it has been proposed that
the termination mechanism of the Up state is the recruitment of adaptation, being
dependent on the firing rate during the Up states [Compte et al., 2003]. Indeed, the slope
of Up state initiation was also significantly steeper in apamin (Control: 3.53 + 2.85 s71;
Apamin: 9.75 + 4.26 s71; p= 0.0312, n=8), suggesting a link between these three features

of the oscillation that we subsequently explored in the cerebral cortex model.

Other properties (Table 4), such as the Down states duration, the frequency of the
full oscillatory cycle, or the regularity (coefficient of variation) of the Up and Down states
and oscillatory cycle, did not significantly vary when blocking KCa channel (Fig. 11).
This is highly suggestive that the impact of the KCa channel is largely on the Up states’
tiring pattern and initiation mechanisms, but less noticeable for the rest of the cycle,

even when in individual cases, the effect on the Down states is significant (Fig. 10D).

4.1.2 Impact of KCa channel on the cortical network model

To carry out a detailed, mechanistic, and quantitative exploration of the role
of KCa channel in the cortical network, we implemented a biophysically detailed
computational model of the cortical network (see Methods Sec. 3.1). The model can
reproduce many features of slow oscillations observed in in vitro [Compte et al.,
2003, Compte et al., 2008, ?]. It consists of pyramidal and inhibitory conductance-based
neurons equidistantly distributed on a line and interconnected through biologically
plausible synaptic dynamics. In the network, neurons are sparsely connected with
a probability that decays with the distance between them. This together with some

randomly distributed intrinsic parameters are the only source of noise in the model, i.e.,
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Figure 11 — Relative changes of Up and Down state properties during the blockage of
KCa channel. (A), Frequency of the Up and Down cycle (UD-cycle). (B), Up
state duration. (C), Down state duration. (D), Coefficient of variation (CV)
of UD-cycle duration. (E), CV of Up state duration. (F), CV of Down state
duration. (G), Relative firing rate of UD-cycle. (H), Relative firing during
Up states. (I), Relative firing rate during down states. (J), Transition slope
of Down to Up states . (K), Transition slope of Up to Down states. Relative
firing rate is defined as the mean LogMUA across time (see Methods Sec.3.4
for details). * stands for a p-value p<0.05 (two-sided Wilcoxon signed rank

test).

neurons do not receive any external input (see Methods Sec. 3.1).

Our computational model generated spontaneous activity in the form of Up
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Table 4 — Relative changes of Up and Down state properties during the blockage of KCa
channel. P-value of a two-sided Wilcoxon signed rank test

Parameter Control (mean+sd) Apamim (meantsd) p-value
Frequency (Hz) 0.40+0.14 0.48 +£0.18 0.19
Up state duration (s) 0.82+0.33 0.55+0.23 0.02
Down state duration (s) 2.27 +1.53 2.40 +£0.92 0.38
CV Up-Down state cycle duration 0.38 + 0.20 0.63+0.31 0.05
CV Up state duration 0.29 £ 0.07 0.35+0.16 0.25
CV Down state duration 0.26 £ 0.07 0.34 +0.16 0.31
Up-Down cycle relative firing rate  1.19 + 0.58 1.21 £0.53 1
Up state relative firing rate 1.05+0.18 1.43 £0.37 0.01
Down state relative firing rate 0.1 +0.09 0.12+0.11 0.64
Down to Up transition slope (s™!)  3.53 +2.85 9.75+4.26 0.03
Up to Down transition slope (s™!)  —12.40 + 6.63 -15.74 +7.40 0.21

(periods of persistent activity) and Down (periods of quiescence) states and the cortical
activity under blockade of KCa channels (Fig. 12A). In the model, the blockage was
performed by parametrically decreasing the maximal conductance (gkca) from 100%
to 10% of KCa current (Ixca) in the pyramidal neurons. Representative dynamics of
pyramidal cells, their intracellular calcium concentration and interneurons, under
control, and KCa channel blockade are illustrated in Fig. 12B. Even when this is the
membrane potential of individual cells, the network dynamics are determined by the
recurrent connectivity between the cells and the intrinsic excitability, in absence of
any external input. The firing rate for individual excitatory neurons displays a typical
pattern, as the one that has been reported from intracellular recordings both in in
vitro [Sanchez-Vives and McCormick, 2000, Mann et al., 2009, Sanchez-Vives, 2012] and
in in vivo [Steriade et al., 1993c, Timofeev et al., 2000, Compte et al., 2009]. During an
Up state, with each action potential, there is calcium entering the cell and increasing
intracellular calcium in the submembrane compartment, which activates KCa channel
(Fig. 12B). Fast spiking neurons (interneurons) also express slow oscillations, however,
in our mode, they do not have KCa channel (Fig. 12B, bottom). When KCa channel
is decreased in the model through the blockage of KCa current (Ixca), simulating
experimental blockade with apamin, firing rate increased during Up states (Fig. 12A)
and the network activity became more regular (Fig. 12C), as a consequence of blocking
the SK-mediated adaptation. Interestingly, not only the pyramidal cells that have the
expression of KCa channel have an increment in its firing rate (Control: 1.05 + 0.41 Hz,
90% KCa blockade: 2.41 + 0.73 Hz) as fast spiking neurons too (Control: 17.28 + 4.44 Hz,
90% KCa blockade: 26.69 + 7.78 Hz) (Fig. 13A and B). This was concurrent with a more
regular spiking pattern, revealed by the absence of intermediate ISI (interspike intervals;
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Figure 12 — Impact of KCa channel on the cortical network model. (A), Slow oscillatory
activity in the form of Up and Down states in a control network (slow
oscillations, SO). (B), Effect of KCa channel blockade (90%) on the slow
oscillatory activity. (B), Representative membrane potential of pyramidal cell
(blue) and interneuron (red) as well as the intracellular calcium concentration
of pyramidal neurons, during SO (left) and blockage of KCa channel (right).
(C), Autocorrelation function of the network firing rate depicted in (A), for
control and blockage of KCa channel, respectively.

Fig. 12B and Fig. 13C).

To better understand the relationship between the firing rate and duration
of Up states we carried out a parametric variation of the KCa channel expression
(Fig. 13). We found that there was an inverse relationship with the firing rate, such
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Figure 13 — Impact of KCa channel on the cortical network model. (A) and (B), Mean
neuronal firing rate during control (slow oscillations, SO) and blockade
of KCa channel for pyramidal cells and interneurons, respectively. (C),
Pyramidal cells mean interspike interval during control (slow oscillations,
SO) and blockage of KCa channel. (D), Up state duration and neuronal firing
rate versus blockade of KCa. The Up state duration was estimated as the
mean network burst duration, see Methods Sec. 3.4.3). (E), Pairwise spiking
correlation histogram, where mean and standard deviations are 0.89 + 0.06
and 0.97 +£0.02 for control and a blockage of 90% of KCa channel, respectively.
(F) the normalized average voltage fluctuations () order parameter as a
function of KCa channel blockage.
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Figure 14 — Intrinsic neuronal properties shape emergent cortical activity. (A), Raster plot
of a control network (slow oscillations, SO; left) and during the blockade of
KCa channel (right). (B) Firing rate of subpopulation of neurons (15 neurons
per group) during an Up state for control (left) and during blockade of KCa
channel (right). (C), Average firing rate for Up states during the control
(orange) and blockage of KCa channel (purple). Dashed line illustrating the
increase of the firing rate slope of Down to Up state transition. (D), Wave
velocity propagation dependence on the KCa channel concentration. Blue
dot represents the full presence of KCa channel and orange dot the blockage
of 90% of KCa channel. Colors in (A), (B) and (C) stand for the concentration
of KCa channel depicted in (D).

that the lower the expression, the higher the firing rate and the shorter the duration
of Up states (here estimated as the mean pyramidal burst duration over the network
(Fig. 13D; see Methods Sec. 3.4.3). This effect suggests that, together with the regularity
expressed by the firing rate autocorrelogram (ACF; Fig. 12C) and the ISI distribution
(Fig. 13C), the network activity is more synchronized during the absence of KCa
channel expression. Through the analysis of spiking correlations, we found that the
pairwise spiking correlation structure under KCa channel blockage is different from
that observed in a control situation (Fig. 13E). The mean of pairwise spiking correlation
increased (Control: 0.89, KCa blockage: 0.97) together with a decrease in the standard
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Figure 15 — Effect of KCa channel on the cortical network dynamics and the slow
oscillatory cycle mechanisms. Top: firing rate versus Up state duration for
slice data (top left) and the cortical network model (top right) show the
critical role of KCa channel on the firing pattern and Up state duration.
Bottom: schematic representation of the periods composing an oscillatory
cycle and the KCa channels role.

deviation (Control: 0.06, KCa blockage: 0.02), indicating a more synchronous regime.
Also, the absence of intermediate interspike intervals during blockage of KCa channel
suggests, that the cellular membrane fluctuations may also reflect a synchronous regime.
In order to test that we implemented an order parameter () proposed in [Golomb
et al., 2006] which quantifies the normalized average cellular membrane fluctuations.
By parametrically changing the KCa concentration, we found that, concurrent with
the network autocorrelogram (Fig. 12C), ISI distribution (Fig. 13C), and pairwise
spiking correlation (Fig. 13E), the absence of KCa introduce more regularity in the
membrane potential, i.e., a more synchronized state. Therefore, KCa has an important
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role decorrelating neuronal firing, as previously described in [Wang et al., 2003].

Also, in the model, we could detect a slight influence of KCa channel on the Down
states. However, given the time constant of the channel (150 ms; see Methods Sec. 3.1.1.1),
based on experimental data [Markram et al., 1995, Helmchen et al., 1996, Svoboda
et al., 1997, Wang, 1998] and the spikes per Up state, results on a weak influence on
the Down state which has an average duration of ~ 5 seconds. However, this does not
imply that in other situations, for example, the response of a stimulus, or a pre-epileptic
discharge [Sanchez-Vives et al., 2010] it may have a different role.

Furthermore, the increment in the network synchronization (Fig. 13E and F)
caused by the blockage of KCa channel suggests that intrinsic properties of the neurons
become network properties. To examine it, we next evaluated a population phenomenon
(group of neurons) and a network property (interaction between group of neurons),
namely the slope of Down-to-Up transition (which had a significant difference for the
experimental data, Fig. 11]), and the velocity of propagation. As discussed above a more
regular activity is achieved when KCa channel is blocked, which becomes visible in
the raster plot (Fig. 14). By grouping nearby neurons in a population (15 neurons per
group) we were able to evaluate two aspects of the network: i) the slope of the transition
between Down to Up states (Fig. 14C) which was visually steeper for blockage of KCa
channel, following the experimental data (Fig. 11]); and ii) the wave propagation velocity
that is faster with the absence of KCa channel (Fig. 14D).

Together, all the above described metrics suggest that calcium dependent potas-
sium channel has a critical role in the firing pattern during Up states and in the membrane
fluctuations. We proceed then to analyze the experimental and model data relation
between each detected Up state and its firing rate. A relationship between both is
observed in the two cases (Fig. 15), i.e., the presence of KCa regulates the firing rate of
Up states and its duration. Within this picture, we proposed a cycle between Up and
Down states based on the intrinsic properties of the cells. Specifically, increasing the
intracellular calcium concentration activates the KCa channels which in turn determines
the firing pattern and firing rate in Up states as well as its duration, however having no

significant effects on the down state duration.

4.2 Impact of KCa and KNa channels on the dynamics of the

cortical network

Our model reproduced the slow alternation between periods of active states,
(Up states) and periods of almost no firing (Down states) observed experimentally
in in vitro preparations [Sanchez-Vives and McCormick, 2000, Compte et al., 2003].

Neurons are sparsely connected forming a recurrent network and were modeled by a
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Figure 16 — Network model. (A), Schematic representation of the spatial connectivity
and the neuron model. Our network is assumed to be 5 mm long and
is composed by pyramidal cells (E-cells) and interneurons (I-cells). The
probability of connection between neurons are given by Gaussian probability
distribution with distance decay, centered at each neuron, and with a
prescribed standard deviation o (Methods Sec. 3.1.1.3). (B) Response of
a single pyramidal neuron when depolarized by a current of 0.5 nA for
0.5 s. The average firing is ~ 36 Hz. Below intrinsic conductances for
sodium dependent potassium (gkna) and calcium dependent potassium
(gkca) channels, and the intracellular concentration for sodium ([Na]') and
calcium ([Ca]!). (C) Rastergram of spontaneous network activity. Below
a representative pyramidal neuron intracellular somatic voltage and the
intrinsic conductance dynamics for gkna and gica. For the simulations in
(B-C) gkna= 1.0 mS/cm? and gkca= 0.9 mS/cm?.

variety of ionic channels (Fig. 16A; see Methods Sec. 3.1.1.1 for details). Disconnected
pyramidal neurons, when depolarized by a current of 0.5 nA during 0.5 s, fired at an
average of ~ 36 Hz followed by spike-frequency adaptation, modeled here as sodium
and calcium dependent potassium currents, KNa and KCa, which are dependent on
the intracellular concentration of sodium and calcium, respectively (Fig. 16B). When
synaptically connected, neurons fired in bursting followed by long-lasting periods of
silence, ~ 2s (Fig. 16C). These spontaneous Up and Down dynamics are guided by
recurrent excitation and slow afterhyperpolarization currents. When an adjacent group
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of neurons is together activated they trigger a cascade of recurrent excitation that brings
the network into the active state (firing regime). During this active state, slow activity-
dependent K* start to accumulate reducing the neuronal excitability and eventually
bringing the network to a down state. After a slow recovery, guided by the decay time of
KNa and KCa currents, the neuronal excitability is recovered and the neurons are able
to engage again in an active state (Fig. 16C). Notice that the contribution of KNa and
KCa currents follow different intrinsic dynamics, where the latter accumulates faster

but also decay faster when compared to the former (Fig. 16C).

We call the attention here to the fact that the main features of the model can be
qualitatively reproduced even by changing intrinsic neuronal properties [Sancristébal
etal., 2016]. However, some intrinsic parameters can directly affect the collective network
dynamics. In the next sections we explored potassium slow afterhyperpolarization
currents, namely Ixc, and Ikna, that have been suggested to be critically implicated
in the stability of Up and Down dynamic [Steriade et al., 1993a, Sanchez-Vives and
McCormick, 2000, Bhattacharjee and Kaczmarek, 2005] (for a review see [Neske, 2016]).

4.2.1 Effect of modulating Ca?*-dependent K* channel on network stability

To explore how the presence of KCa channel modulates the emergent pattern of
cortical slow oscillations, we departed from an expression in all cells and parametrically
blocked the activation of this channel on pyramidal neurons (randomly from 0% to 90%).
For each concentration of blockade, we also tested the dependence on the KCa maximal
conductance (gkca, from 0.4 to 1.2 mS/ cm?).

We first observed that blockade of KCa channel induced a more regular firing
pattern in the spontaneous network activity (Fig. 17A and B). For instance, in a control
network (with no KCa blockage), there is some spiking prior to the onset of an Up state
(Fig. 17A and B, left column), which indeed is part of the mechanism mediating the
initiation of a new Up state [Compte et al., 2003]. Conversely, when KCa channel is
blocked, fewer cells show spiking during the Down states followed by more firing rate

during Up states (Fig. 17A and B, middle and right column).

For a detailed quantification of the KCa impact on the spontaneous slow oscilla-
tions, we analyzed the Up state duration by estimating the average width of the peak of
spike-train autocorrelation function (ACF) for each neuron in the network (Fig. 17C). As
observed in the single membrane potential of the embedded neurons in the network
(Fig. 17B), when blocking the activation of KCa channel, the width of ACF becomes
narrow and high, indicating a shortening in the Up state and an increment in the
neuronal firing rate (Fig. 17C). Indeed, when we parametrically altered the blockade of
KCa, we observed that the Up state duration became shorter, reaching stable values for
a blockade greater than 50% (Fig. 18A). We also noticed that the Up state’s duration
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Figure 17 — Network activity under Ca**-dependent K* channel modulation. (A), Impact
of Ca?*-dependent K* (KCa) modulation on spontaneous network slow
oscillations (visualized as multi-unit recordings, 15 neighboring cells per
site). (B), Representative network neurons membrane potential (V). Arrow
point at —86 mV for voltage traces. (C), Spike-train autocorrelation (ACF):
solid lines represent the Gaussian fit to the autocorrelation’s central peak,
from which the Up state duration is estimated. KCa blockage in (A-C):
control 0% (left column), 40% (middle column) and 80% (right column),
respectively. Simulations in (A-C) were run with gkca= 1.1 mS/cm?.

for low blockage of KCa is larger for higher values of KCa maximal conductance (gxkca,
Fig. 18A). Furthermore, we notice how the standard variation of the Up state duration
reached low values for large values of KCa blockage, suggesting though a more regular
dynamics (Fig. 18A inset).

We next evaluated the evolution of the mean neuronal firing rate (FR). We
observed an almost li