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Abstract
The brain, a natural adaptive system, can generate a rich dynamic repertoire of

spontaneous activity even in the absence of stimulation. The spatiotemporal pattern
of this spontaneous activity is determined by the brain state, which can range from
highly synchronized to desynchronized states. During slow wave sleep, for example,
the cortex operates in synchrony, defined by low-frequency fluctuations, known as slow
oscillations (< 1Hz). Conversely, during wakefulness, the cortex is characterized mainly
by desynchronized activity, where low-frequency fluctuations are suppressed. Thus, an
inherent property of the cerebral cortex is to transit between different states characterized
by distinct spatiotemporal complexity patterns, varying in a large spectrum between
synchronized and desynchronized activity. All these complex emergent patterns are the
product of the interaction between tens of billions of neurons endowed with diverse ionic
channels with complex biophysical properties. Nevertheless, what are the mechanisms
behind these transitions? In this thesis, we sought to understand the mechanisms and
properties behind slow oscillations, their modulation and their transitions towards
wakefulness by employing experimental data analysis and computational models. We
reveal the relevance of specific ionic channels and synaptic properties to maintaining the
cortical state and also get out of it, and its spatiotemporal dynamics. Using a mean-field
model, we also propose bridging neuronal spiking dynamics to a population description.



Resumen
El cerebro, un sistema adaptativo natural, es capaz de generar un amplio repertorio
dinámico de actividad espontánea, incluso en ausencia de estímulos. La patrón espacio-
temporal de esta actividad espontánea viene determinada por el estado cerebral, el cual
puede variar de estados altamente sincronizados hasta estados muy desincronizados.
Cuando en el sueño se entra en la fase de ondas lentas, por ejemplo, la corteza opera en
sincronía, cuya actividad es definida por fluctuaciones de baja frecuencia, conocidas
como oscilaciones lentas (< 1Hz). En cambio, durante la vigilia, el córtex se caracteriza
principalmente por tener una actividad desincronizada, donde las fluctuaciones de baja
frecuencia desaparecen. Por lo tanto, una propiedad inherente de la corteza cerebral es
transitar entre diferentes estados caracterizados por distintos patrones de complejidad
espacio-temporal, los cuales se sitúan dentro del amplio espectro marcado por la
actividad sincronizada y la desincronizada. Estos patrones emergentes son el producto
de la interacción entre decenas de miles de millones de neuronas dotadas de múltiples y
distintos canales iónicos con complejas propiedades biofísicas. Sin embargo, ¿cuáles
son los mecanismos que regulan estas transiciones? En esta tesis tratamos de entender
los mecanismos, propiedades y sus transiciones hacia la vigilia, que están detrás de
las oscilaciones lentas a través del uso y análisis de datos experimentales y modelos
computacionales. En ella describimos la importancia de los canales iónicos específicos y
sus propiedades sinápticas tanto para mantener el estado cortical como para salir de él,
estudiando así su dinámica espacio-temporal. Además, mediante el uso de un modelo
de campo medio, proponemos establecer un puente que pueda describir la dinámica de
disparos neuronales con una descripción general de la población neuronal.
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Chapter 1

Introduction

Synchronization is a remarkable collective phenomenon that emerges through
the interaction between components of a complex system. Remember the last time you
went to a concert or a theater. Usually, after a good performance, the audience starts to
clap incoherently, producing a noisy sound. Suddenly, it turns out to be an almost unison
phenomenon due to emergent synchronization [Néda et al., 2000]. Another example of
synchronization is the famous experiment of two pendulum clocks hanging from the
same beam that, after a while, start swinging in perfect synchrony [Strogatz and Stewart,
1993]. An essential key requirement for these kinds of phenomena is communication.
The first example is established by auditory perception, while the second is through
small forces exerted on the supporting beam. Similarly, interconnected neurons in the
human brain, which communicate through action potentials, often show the emergence
of spontaneous oscillations [Buzsaki, 2006, Wang, 2010]. Neuronal oscillations were first
observed in 1938, through measures of electrical potentials in the human scalp [Berger,
1938]. Since then, a variety of frequencies have been described in the human brain, but
not only, these periodic rhythms were also observed presently in other mammals with
the same aspects, like duration or temporal evolution [Buzsáki et al., 2013]. Even more,
different rhythms can coexist and interact with each other [Steriade et al., 2001, Buzsaki
and Draguhn, 2004].

The synchronization of neuronal networks, in the form of oscillations of different
frequencies, has been associated with different brain states, such as sleep or awake
rest, and with cognitive processes, including memory formation, attention, and the
processing of sensory stimuli (see for a review [Ward, 2003, Wang, 2010]). One striking
pattern that can be observed in physiological NREM (non-rapid eye movement) sleep is
slow oscillations (SO). This global pattern propagates through the cerebral cortex as a
traveling wave [Massimini et al., 2004]. However, this pattern is not exclusive to NREM
sleep, which is one of the most curious aspects. SO are an emergent pattern under
conditions where the cortex has been functionally disconnected, such as during deep
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anesthesia [Chauvette et al., 2011, Steriade et al., 1993c], cortical slabs [Timofeev et al.,
2000], focal brain lesions [Butz et al., 2004], or white matter lesions [Gloor et al., 1977].
More recently, SO have been detailed characterized around stroke and radio-frequency
thermocoagulation lesions done in surgery of epilepsy [Sarasso et al., 2020, Russo et al.,
2021]. Furthermore, SO are spontaneously expressed in cortical slices without any
chemical or electrical stimulation [Sanchez-Vives and McCormick, 2000]. Strikingly, slow
oscillations display similar characteristics in all these cases, expressing a multiscale
phenomenon. For these reasons, this emergent pattern has been suggested as the default
mode of activity of the cerebral cortex [Sanchez-Vives and Mattia, 2014, Sanchez-Vives
et al., 2017].
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Figure 1 – Slow oscillations at different scales. Top: electroencephalogram (EEG) during
NREM sleep (extracted from from [Brown et al., 2012]). Middle: sponta-
neous local field potentails (LFP) recorded in cortical slices (extracted from
from [Barbero-Castillo et al., 2021]). Bottom: intracellular recordings of pyra-
midal cells on auditory cortex in anesthetized rat (extracted from from [Reig
et al., 2015]).

1.1 Slow oscillations and their characterization

In 1993 Steriade and collaborators first described the slow wave activity in a
series of three articles [Steriade et al., 1993a, Steriade et al., 1993b, Steriade et al., 1993c].
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Slow oscillations (SO) are a hallmark of unconscious§ brain states, such as deep sleep. SO
are a synchronized network phenomenon characterized by periodic, or almost periodic,
alternations between phases of neuronal depolarization (Up states) followed by phases
of neuronal hyperpolarization (Down states, also called off-periods). This Up and Down
alternation can be observed at different scales, micro (intracellular), meso (LFP), and
macro (EEG) (Fig. 1). While the Up state is mediated by a balance between excitatory and
inhibitory postsynaptic potentials [Sanchez-Vives and McCormick, 2000, Compte et al.,
2009], the Down state is characterized by almost no synaptic activity and by the presence
of afterhyperpolarization currents, such as activity-dependent slow K+ current [Compte
et al., 2003, Sanchez-Vives et al., 2010].

The Up state emerges from the cerebral cortex’s recurrent connectivity [Lorente de
No, 1938], which can induce reverberating neuronal firing in the circuit [Metherate and
Ashe, 1993, Contreras et al., 1996, Sanchez-Vives and McCormick, 2000, Compte et al.,
2003, McCormick and Yuste, 2006]. More specifically, the Up state has been reported
to start in infragranular layer 5, which then propagates to deeper and more superficial
layers [Sanchez-Vives and McCormick, 2000, Chauvette et al., 2010]. The persistent
activity during the Up state is thought to depend mainly on recurrent excitatory
synaptic activity, balanced by synaptic inhibition. Excitatory synaptic potentials (EPSPs)
and inhibitory ones (IPSPs) are equally distributed during Up states [Compte et al.,
2003, Compte et al., 2009]. Indeed, it has been demonstrated that an imbalance between
excitation and inhibition has an impact on the Up state: while removal of fast inhibition
(GABAA) induces shorter Up states [Sanchez-Vives et al., 2010], removal of slow inhibition
(GABAB) induces larger Up states [Mann et al., 2009, Perez-Zabalza et al., 2020, Sanchez-
Vives et al., 2021].

A disruption in the Up state occurs when the network cannot maintain self-
sustained firing. Adaptation mechanisms are an essential mechanism for the recurrent
network to generate slow oscillations (Fig. 2A) [Mattia and Sanchez-Vives, 2012]. Within
the different potential adaptation mechanisms, slow potassium currents are thought
to play a crucial role in generating negative feedback that will overcome the positive
feedback inherent in local circuits, bringing the network to a period of almost no more
firing, i.e., a Down state (Fig. 2B) [Sanchez-Vives and McCormick, 2000, Compte et al.,
2003]. Steriade and collaborators [Steriade et al., 1993c], in the first characterization
of cortical slow oscillations, have suggested the calcium-dependent potassium (KCa)
channel as one of the mechanisms responsible for the termination of Up states, based
upon the slow afterhyperpolarization (AHP) of the action potentials. In an experimental
work, Sanchez-Vives and McCormick have suggested that the activation of sodium-
§ We stay here with the following definition of conscious: "being conscious means that one is having

an experience — the subjective, phenomenal ’what it is like’ to see an image, hear a sound, think a
thought or feel an emotion."[Koch et al., 2016]
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Figure 2 – Adaptation mediates Up and Down transitions. (A) Schematic representation
of the cycle between Up and Down states where firing rate and adaptation cur-
rent are responsible for the switches between states. Extracted from [Sanchez-
Vives et al., 2017], originally adapted from [Mattia and Sanchez-Vives, 2012].
(B) A more detailed schematic representation of the cycle between Up and
Down states. Slow potassium currents (IKCa and IKNa, see text) are suggested
as the main mechanisms for the transition between Up to Down states. Ex-
tracted from [McCormick and Yuste, 2006].

dependent potassium (KNa), an AHP current, may also play a role on the termination of
Up states [Sanchez-Vives and McCormick, 2000]. Indeed both channels, KCa and KNa,
are inhibited by acetylcholine (ACh) [Schwindt et al., 1989, McCormick and Williamson,
1989]. ACh is one of the neurotransmitters responsible for wakefulness. There is a
high concentration of ACh during wakefulness states while during NREM sleep a low
concentration is observed [Jones, 2005]. Steriade and collaborators have showed that by
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stimulation of brainstem nuclei, i.e., neurons that release ACh to the cortex, induced
an state mimicking natural brain arousal through muscarinic receptors. In other words
release of ACh disrupts the Up and Down dynamics characteristic of SO [Steriade et al.,
1993a]. Another important channel that is also modulated by ACh and is known for
regulating neuronal excitability is the voltage gated K+ channel (Kv7) that generates the
M-currents [Brown, 2010]. Despite the suggestions about the role of K+ channels on the
termination of Up states, the role of M-current remains to be explored [Neske, 2016].

Figure 3 – Oscillatory cycle representation. Adapted from [Camassa et al., 2021a]. The
Down state is proposed as been an metastable state composed of a determin-
istic and stochastic phase.

When the adaptation overcomes the activation, the network falls into a period of
silence, i.e., into a Down state. As just discussed, a candidate mechanism for the initiation
of Down states are the slow K+ channels responsible for the afterhyperpolarization
currents. Once the Down state is reached, neurons are in the refractory period, and the
AHP currents slowly decrease in amplitude. The decay time of AHP currents is suggested
to set the time scale for the reappearance of spontaneous firing that will be able to trigger
a new Up state and so are thought to be responsible for the oscillatory cycle [Compte
et al., 2003]. However, other mechanisms have been proposed to set the time scale of
slow oscillations, such as synaptic depression [Holcman and Tsodyks, 2006, Benita et al.,
2012], thalamic disfacilitation [Contreras et al., 1996], and GABAB activation [Mann
et al., 2009, Perez-Zabalza et al., 2020, Sanchez-Vives et al., 2021]. Indeed, experimental
observations have shown that, in the case of extreme long Down states, it could not be
maintained only by AHP currents due to its intrinsic time scale [Sanchez-Vives et al.,
2010]. Therefore, the duration of the Down state is not only set by the AHP’s currents
duration but also by the time it takes for the mechanisms that give rise to a new Up state
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to build up, as, for example, the summation of randomly occurring miniature synaptic
potentials, a mechanism proposed of Up state initiation in cortical slabs [Timofeev
et al., 2000]. Another intrinsic mechanism, not dependent on K+-channels, has also been
proposed to regulate the duration of Down states. Hill and Tononi, in a thalamocortical
model of sleep and wakefulness, have suggested that the removal of H-current is able to
increase the Down state duration [Hill and Tononi, 2005]. H-current is a noninactivating
hyperpolarization-activated cation current believed to be critical to the generation of
slow rhythms in the thalamocortical system [Lüthi and McCormick, 1998b, Lüthi and
McCormick, 1999]. Therefore, the Down state may be regulated by the participation
of many mechanisms. Indeed, recently, Camassa and collaborators have proposed a
view that summarizes this oscillatory frequency of slow oscillations [Camassa et al.,
2021a]. They have proposed that the Down state is a metastable state composed of a
deterministic and stochastic phase (Fig. 3). The deterministic phase is set by the intrinsic
currents, while the stochastic phase is where random neuronal fluctuations would be
critical to trigger a new Up state.

1.2 Brain complexity

Slow oscillations are a hallmark of physiological slow-wave sleep [Steriade,
2000, Massimini et al., 2004], but not exclusively, SO is also an emergent pattern during
pathological conditions as coma, and drug induced states as deep anesthesia [Alkire
et al., 2008, Dasilva et al., 2021a]. All these states have one thing in common, they are
indicators of unconscious states. Thus, understanding the mechanisms behind SO may
also help us to understand consciousness. One of the parameters that has been proposed
as a signature of the level of consciousness is brain complexity, which relies on the
balance between segregation and integration within a neural system [Tononi et al., 1994].

One of the existing approach to quantifying brain complexity is to induce
a perturbation of the system to investigate the causal interactions that follow. The
perturbational complexity index (PCI) [Casali et al., 2013, Comolatti et al., 2019], in
which neural activity is exogenously perturbed by means of stimulation (transcranial
magnetic stimulation or electrical stimulation) has been proposed as one such measure.
This method has been validated for different instances such as physiological brain
states [Casali et al., 2013], anesthesia levels [Sarasso et al., 2015, Dasilva et al., 2021b, Arena
et al., 2021], and disorders of consciousness [Casarotto et al., 2016, Rosanova et al., 2018].
The PCI approach presents advantages with respect to an observational one (based on
spontaneous activity†) because it is less affected by noise or isolated processes, and only
† A variety of such measures exist, including Lempel–Ziv compressibility [Szczepański et al., 2003,

Hudetz et al., 2016], Shannon entropy [Zhao et al., 2010], entropy of wave propagation [Barbero-Castillo
et al., 2019], and functional complexity [Zamora-López et al., 2016], among others
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assesses information generated through deterministic interactions, which also gives
advantages that are useful clinically [Casali et al., 2013].

Figure 4 – Calculating the Perturbational Complexity Index (PCI). Extracted
from [Sarasso et al., 2014], originally adapted from [Casali et al., 2013].
PCI is defined as the normalized Lempel-Ziv algorithmic complexity of the
binary spatiotemporal matrix of significant cortical activation measured by
EEG and triggered by exogenous stimulation (TMS). It is expected a low PCI
value when there is a disruption in the segregation and integration balance,
while it will by high when the balance is kept.

PCI consists of the estimation of the normalized Lempel-Ziv complexity [Ziv and
Lempel, 1977, Ziv and Lempel, 1978] of the spatiotemporal matrix of cortical activation
after perturbation (Fig. 4). Thus, PCI reflects cortical complexity in an index [Casali et al.,
2013]. While conscious states present high values of PCI (high complexity), unconscious
states present low values of PCI (low complexity). In these two cases, cortical responses
are totally different: while during conscious the response if more heterogeneous and
widespread, during unconscious states it is more homogeneous and local. In order to
explore the underlying cellular and network mechanisms behind cortical complexity,
D’Andola and collaborators adapted the PCI measure to in vitro slice experiments, known
as slice PCI (sPCI) [D’Andola et al., 2018]. They showed that when the local network
switched from a slow oscillatory state to a desynchronized state, the bistability of
Up/Down states was reduced and there was an increase in sPCI. In this way, the isolated
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cortical network in vitro was validated as a system which cannot only spontaneously
generate slow oscillations [Sanchez-Vives and McCormick, 2000] and mimic other brain
states [Mattia and Sanchez-Vives, 2012, Markram et al., 2015], but can also be used to
investigate the cellular mechanisms of cortical complexity [D’Andola et al., 2018].

Figure 5 – Multiple spatiotemporal representations of the brain. Extracted from [Betzel
and Bassett, 2017].

1.3 Computational modelling of brain components

Computational models are simplified versions of an experimental system and
are ideally constrained by experimental data. However, in neuroscience, experimental
data exists at many different spatial, temporal and topological scales and so do models
(Fig. 5). Theoretical models are normally divided into two categories: biophysical and
simplified. While the former takes into account the models of ionic channels and, for
that, has a biophysical correspondence, the latter takes into account dynamical features
to generate a spike and thus has a dynamical correspondence.

Biophysical modelling is rooted in the seminal work of A. Hodgkin and A.
Huxley [Hodgkin and Huxley, 1952]. Studying the giant squid nerve fiber, they were
the first to mathematically described how action potentials are initiated and propagated
(Fig. 6). The HH (Hodgkin-Huxley) model is a four-dimensional dynamical system that
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describe in details the generation of an action potential by activation and inactivation of
sodium current (INa) and activation of potassium current (IK). Its equation reads:

𝐶𝑚
𝑑𝑉

𝑑𝑡
= −𝐼𝑁𝑎 − 𝐼𝐾 − 𝐼𝐿 + 𝐼𝑠𝑦𝑛 , (1.1)

with
𝐼 𝑗 = 𝑔𝑗𝑚

𝑀ℎ𝑁 (𝑉 −𝑉𝑗). (1.2)

𝑉 is the membrane potential and 𝐶𝑚 is the specific capacitance of the membrane.
𝐼 𝑗 describes the voltage-dependent currents (𝑗 ∈ [𝑁𝑎, 𝐾]), and 𝐼𝐿 is the leakage current.
The gating variables 𝑚 and ℎ are governed by the first-order kinetics equation 𝑑𝑥/𝑑𝑡 =
𝜙[𝛼𝑥(𝑉)(1−𝑥)−𝛽𝑥(𝑉)𝑥] = 𝜙[𝑥∞(𝑉)−𝑥]/𝜏𝑥(𝑉). The original model is based only on two
voltage-depended currents and thus cannot account for the wide diversity of intrinsic
cellular properties, such as adaptation to long-lasting stimuli or the dependency of some
conductances on various ionic concentrations. However, since the proposed HH model,
plenty of ionic currents have been described and, even more, modeled using the same
general framework proposed by Hodgkin and Huxley [Gerstner et al., 2014]. Thus, an
HH model can be constructed with a variety of ion channels, each of them capable of
a wide range of behaviors, from regular spiking to bursting, for example [Koch and
Segev, 1998, Pospischil et al., 2008, Catterall et al., 2012]. Following the HH framework,
other simplified biophysical model versions have been proposed [Gerstner et al.,
2014]. One example is the Morris-Lecar model (see Sec. 3.2.2 for a mathematical
description): a two-dimensional minimal model composed of IK and calcium current
(ICa) where the gate variables are modeled using hyperbolic functions. This model is
useful when only qualitative or semi-quantitative characterizations of an action potential
are required [Morris and Lecar, 1981, Rinzel and Ermentrout, 1998]. Variations of this
model have also been employed in the literature [Estarellas et al., 2020].

In turn, the simplified modeling approach seeks to reproduce the dynamics of an
action potential without necessarily having a biophysical correspondence. A simplified
neuron model largely used is the integrate-and-fire model. Its equation reads:

𝜏𝑚
𝑑𝑉

𝑑𝑡
= 𝑓 (𝑉) + 𝐼. (1.3)

In this scenario, whenever V crosses a threshold 𝑉𝑡ℎ , one spike is emitted and, after
a refractory period, the membrane potential (V) is reset to 𝑉𝑟𝑒𝑠 . 𝜏𝑚 is the membrane
time constant of the neuron and 𝐼 is the current input. This is the general form of
integrate-and-fire model. Variations of this model are made by choosing the function
𝑓 (𝑉). For instance, if 𝑓 (𝑉) = 0 we have the perfect integrate-and-fire model. And,
if 𝑓 (𝑉) = −𝑉 + Δ𝑇 𝑒𝑥𝑝(𝑉−𝑉𝑡ℎ

Δ𝑇
), we have the so called exponential integrate-and-fire.

These models are very useful for analyzing the behavior of the neural system once the
membrane potential is described only in terms of synaptic inputs and the injected current



Chapter 1. Introduction 23

Figure 6 – First mathematical description of an action potential. Extracted from [Hodgkin
and Huxley, 1952]. Top, Hodgkin-Huxley model simulations of an action
potential. Bottom, experimental recording of an action potential.

(both are included in the 𝐼 term). However, this kind of models lacks the description of
an important feature of neurons: spike-frequency adaptation. To overcome this problem
another variable is introduced into the system. Its equation reads:

𝜏𝑚
𝑑𝑉

𝑑𝑡
= 𝑓 (𝑉) − 𝑤 + 𝐼 , (1.4)

where,
𝜏𝑤
𝑑𝑤

𝑑𝑡
= 𝑔(𝑉, 𝑤). (1.5)

If 𝑓 (𝑉) = −𝑉 + Δ𝑇 𝑒𝑥𝑝(𝑉−𝑉𝑡ℎ
Δ𝑇

) and 𝑔(𝑉, 𝑤) = 𝑎𝑉 − 𝑤 + 𝑏𝜏𝑤
∑

𝛿(𝑡 − 𝑡′) we have the so
called adaptive exponential integrate-and-fire (AdEx) model [Brette and Gerstner, 2005].
Now, for instance, if we choose 𝑓 (𝑉) = 𝛼𝑉2 + 𝛽𝑉 + 𝛾 and 𝑔(𝑉, 𝑤) = 𝑎(𝑏𝑉 − 𝑤) we have
the Izhikevich neuron model [Izhikevich, 2003]. Both of these models have been largely
used in computational neuroscience due its simplicity and spiking patterns versatility
through parameter tuning [Muller and Destexhe, 2012, Gollo et al., 2014, Górski et al.,
2021, Dalla Porta et al., 2021] (see Fig. 2 in [Izhikevich, 2003] and Fig. 6.1 in [Gerstner
et al., 2014]).

Another class of simplified modelling approach was introduced by Wilson and
Cowan [Wilson and Cowan, 1972]. They described the dynamics of a population of
neurons though a well-known differential equation where the input-output gain function
is described by a sigmoid. These models are usually called ”rate models” and permit a
qualitative insight into the dynamics of a population of neurons [Wilson and Cowan,
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1972, Hopfield, 1984, Sussillo and Abbott, 2009]). Moreover, a large effort has been
made to derive population descriptions from the specificity of the network model under
consideration. This bottom-up approach permits to obtain a dimensionally reduced
mean-field description of the network population dynamics in different regimes [Amit
and Brunel, 1997, van Vreeswĳk and Sompolinsky, 1998, El Boustani and Destexhe,
2009, Capone et al., 2019b]. On one hand, these models permit a simpler, reduced
picture of the dynamics of a population of neurons, thus allowing to unveil mechanisms
determining specific observed phenomena [Reig et al., 2015, Jercog et al., 2017]. On
the other hand, they enable a direct comparison with experimental studies where the
spatial resolution implies that the recorded field represents the average over a large
population of neurons (i.e., a mean field) [Capone et al., 2019b, Chemla et al., 2019]. We
introduce the mean-filed formalism with more details in Sec. 3.2.3.

1.3.1 Network models for the slow oscillations

In the context of slow oscillations (SO), different models have been proposed,
from simplified to biophysical detailed models. As an example of a simplified model
of SO, Capone and collaborators reconstruct the SO dynamics observed in cortical
slices through the use of large-scale network of spiking neurons (integrate-and-fire
model) and mean-field models [Capone et al., 2019b]. By semi-quantitatively matching
their model with the measured slow oscillations, they have explored how spontaneous
activity in the form of slow oscillations is shaped by laminar structure. Their model
suggests that excitability in layers 4 and 5 together with weakly stable Down state are
ingredients for an optimal sensitivity and richness of the wave propagation. In turn,
in light of SO biophysical mechanisms, at least three models have been proposed: two
models of thalamocortical system [Bazhenov et al., 2002, Hill and Tononi, 2005], and
one of the isolated cortical network [Compte et al., 2003]. The later has been able to
predict many features of cortical slow oscillations and has been adapted, for instance, to
study of cortico-hippocampal networks [Taxidis et al., 2013] and also for the study of
endogenous electric fields [Fröhlich and McCormick, 2010].

The original model, by Compte and collaborators, was built based on experi-
mental observations of the cortical slow oscillations in vitro slices [Sanchez-Vives and
McCormick, 2000, Wang et al., 2003, Compte et al., 2003]. It consists of 1024 excitatory
cells and 256 inhibitory cells modeled with detailed Hodgkin–Huxley-type channels
and interconnected through realistic synaptic dynamics. Due to its recurrent connec-
tivity and adaptation currents, mostly due to the sodium- and calcium-dependent
potassium current (IKNa and IKCa, respectively), the model is able to switch back and
forth between Up and Down states (Fig. 7). This model has been used in order to
shed light on the mechanisms of different aspects of the SO. In experiments during
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Figure 7 – Spontaneous slow oscillations in a cortical network model. Extracted from
from [Compte et al., 2003]. (A) Schematic representation of the spatial con-
nectivity in the network model. (B) Spontaneous network activity visualized
as multi-unit recording (grouped neighboring cells). (C) intracellular somatic
voltage and intracellular sodium concentration of 3 representative excitatory
neurons. (D) Zoom in of an Up state of the cells depicted in (C). In this model,
the only source of noise in the network comes from intrinsic parameters of
the cells that are randomly distributed and from the random connectivity.

inhibitory modulation, through the blockage of GABAA receptors, the model suggests
that strong recurrent feedback and activity-dependent potassium currents are suffi-
cient to explain the typical modulations of network activity patterns [Sanchez-Vives
et al., 2010]. During the exploration of high-frequency content during Up states, the
model shows that a synaptic loop between excitatory and inhibitory neurons as well
as manipulations in the intrinsic properties of the neurons (modulation of IKCa) can
explain the emergence of high-frequency oscillations [Compte et al., 2008]. Through
manipulation of neuronal excitability (noise levels), by manipulations of extracellular
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potassium, the model predicts a maximum collective coherence for intermediate noise
levels [Sancristóbal et al., 2016]. The model also suggests that the precise relationship
between excitatory and inhibitory inputs depends on the structural parameters defining
the connectivity in the local cortical circuit [Compte et al., 2009]. Finally, the model is also
able to explain the differences in emergent activity observed in different cortical areas
through manipulations in the structural connectivity [Sanchez-Vives and Compte, 2005].
Thus, undoubtedly, this biologically realistic network model sets the right framework
for the study of the biophysical mechanisms, ionic or synaptic, and network topology
involved in the cortical slow oscillations. In Sec. 3.1 we describe this model in more
detail.



27

Chapter 2

Objectives

The objective of this thesis is to investigate the emergence of activity generated
by the cortical network, its mechanisms and properties, by combining experiments and
a computational modelling approach. Specifically, the objectives are:

1. To implement the cortical network model of slow oscillations proposed by Compte
and collaborators [Compte et al., 2003].

2. To investigate, in vitro and in silico, the impact of calcium-dependent potassium
(KCa) channel on physiological network activity of the cerebral cortex.

3. To explore, in silico, how ionic properties of individual neurons become network
properties through synaptic recurrency.

4. To investigate, in vitro and in silico, the impact of M-current on physiological
network activity of the cerebral cortex.

5. To investigate, in vitro and in silico, the impact of H-current on physiological
network activity of the cerebral cortex.

6. To develop an in silico model for the study of perturbational complexity and explore
how synaptic mechanisms in the form of slow and fast inhibition contribute to
network complexity.

7. To develop mean-field models of complexity different networks of spiking neurons.
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Chapter 3

Models and Methods

In the following Sections we will present a detailed description of the cortical
network models employed in this Thesis as well as the methods applied. In Sec. 3.1
we describe our implementation of the biophysically inspired cortical model of slow
oscillations proposed by Compte et al. [Compte et al., 2003]. The model was adapted
through implementation of new ionic channels, synaptic models and network topology,
to address our scientific questions. In Sec. 3.2 we introduced the mean-field equations
describing population dynamics, the template to estimate the transfer function, and the
neuronal models under consideration. In Sec. 3.3 we described the experimental data
analyzed, and finally in Sec. 3.4 the methods utilized throughout this Thesis.

3.1 Cortical network model of slow oscillations

3.1.1 One-dimensional cortical network model

3.1.1.1 Neuron model

There are currently many models of neuronal dynamics, each of them accounting
for different levels of biological detail. For the purpose of this thesis, the biophysically
detailed model of slow oscillations proposed by Compte and collaborators [Compte et al.,
2003] was used. This model was introduced in 2002 in order to describe the cellular and
network mechanisms of slow oscillations observed experimentally in vitro preparations.
The original synapse model and one-dimensional network will be described in the next
sections.

The ion channel kinetics are modelled following the Hodking-Huxley formalism
[Hodgkin and Huxley, 1952]. In this formalism the gates have a probability of being
activated, usually denoted by 𝑚 or 𝑛, and a probability of being inactivated, denoted by
ℎ. Also, some channels do not inactivated (activated) resulting in a persistent (transient)
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current. The timing-varying probabilities are given by:

𝑑𝑥

𝑑𝑡
= 𝜙[𝛼𝑥(𝑉)(1 − 𝑥) − 𝛽𝑥(𝑉)𝑥] = 𝜙[𝑥∞(𝑉) − 𝑥]/𝜏𝑥(𝑉), (3.1)

where 𝑥 ∈ {𝑚, 𝑛, ℎ} and 𝜙 is the temperature factor (𝜙 = 1 unless otherwise stated).

Excitatory neurons

In this model, excitatory neurons are modelled as containing a somatic and a
dendritic compartment whose dynamical equations are modelled as:

𝐶𝑚𝐴𝑠
𝑑𝑉𝑠

𝑑𝑡
= −𝐴𝑠(𝐼𝐿 + 𝐼𝑁𝑎 + 𝐼𝐾 + 𝐼𝐴 + 𝐼𝐾𝑆 + 𝐼𝐾𝑁𝑎) − 𝐼𝑠𝑦𝑛,𝑠 − 𝑔𝑠𝑑(𝑉𝑠 −𝑉𝑑), (3.2)

and

𝐶𝑚𝐴𝑑
𝑑𝑉𝑑
𝑑𝑡

= −𝐴𝑑(𝐼𝐿 + 𝐼𝐶𝑎 + 𝐼𝐾𝐶𝑎 + 𝐼𝑁𝑎𝑃 + 𝐼𝐴𝑅) − 𝐼𝑠𝑦𝑛,𝑑 − 𝑔𝑠𝑑(𝑉𝑑 −𝑉𝑠). (3.3)

𝑉𝑠 and 𝑉𝑑 stand for the somatic and dendritic voltage, respectively. 𝐴𝑠 =

0.015 mm2 is the soma area and 𝐴𝑑 = 0.035 mm2 the dendritic one. These two com-
partments are coupled electrically with a conductance 𝑔𝑠𝑑 = 1 ± 0.1 𝜇S § ensuring a
high synchronization between them. Accordingly, 𝐼𝑠𝑦𝑛,𝑠 and 𝐼𝑠𝑦𝑛,𝑑 stand for the synaptic
currents impinging on the soma and dendrites. In this model the somatic compartment
receives the inhibitory synapses and the dendritic compartment the excitatory ones
from the presynaptic neurons.

The sodium current 𝐼𝑁𝑎 = 𝑔𝑁𝑎𝑚
3
∞ℎ(𝑉 − 𝑉𝑁𝑎) has a maximal conductance of

𝑔𝑁𝑎 = 50 mS/cm2 and a reversal potential of 𝑉𝑁𝑎 = 55 mV. The activation vari-
able is replaced by its steady-state 𝑚∞ =

𝛼𝑚
𝛼𝑚+𝛽𝑚 with 𝛼𝑚 =

0.1(𝑉+33)
1−exp[−0.1(𝑉+33)] and 𝛽𝑚 =

4 exp[− 1
12(𝑉+53.7)]. The inactivation variable is governed by 𝛼ℎ = 0.07 exp[−0.1(𝑉+50)]

and 𝛽ℎ =
1

1+exp[−0.04(𝑉+44)] . The delayed rectifier current 𝐼𝐾 = 𝑔𝐾𝑛
4(𝑉 −𝑉𝐾) has a max-

imal conductance 𝑔𝐾 = 10.5 mS/cm2 and a reversal potential of 𝑉𝐾 = −100 mV. The
inactivation kinectis are set by 𝛼𝑛 =

0.01(𝑉+34)
1−exp[−0.1(𝑉+34)] and 𝛽𝑛 = 0.125 exp(−0.04(𝑉 + 44)).

For 𝐼𝑁𝑎 and 𝐼𝐾, 𝜙 = 4. The passive leakage current, 𝐼𝐿, which is carried mostly by Cl−,
has a maximal conductance of 𝑔𝐿 = 0.0667 ± 0.0067 mS/cm2 and a reversal potential of
𝑉𝐿 = −60.95 ± 0.3 mV.

The A-type potassium current 𝐼𝐴 = 𝑔𝐴𝑚
3
∞ℎ(𝑉 −𝑉𝐾) has its activation variable

modelled as 𝑚∞ = 1
1+exp[−0.05(𝑉+50)] and the inactivation one as ℎ∞ = 1

1+exp[(𝑉+80)/6] and
𝜏ℎ = 15 ms. The non-inactivating K+-channel 𝐼𝐾𝑆 = 𝑔𝐾𝑆𝑚(𝑉−𝑉𝐾) has a maximal conduc-
tance of 𝑔𝐾𝑆 = 0.576 mS/cm2 and its activation is controlled by𝑚∞ = 1

1+exp[−(𝑉+34)/6.5] and
𝜏𝑚 = 8

exp[−(𝑉+55)/30]+exp[(𝑉+55)/30] . The persistent sodium current 𝐼𝑁𝑎𝑃 = 𝑔𝑁𝑎𝑃𝑚
3
∞(𝑉−𝑉𝑁𝑎)

§ In the model description the ± symbol is used to denote a variable that is Gaussian-distributed in the
population, where mean ± SD are given.
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has a maximal conductance 𝑔𝑁𝑎𝑃 = 0.0686 mS/cm2 and its activation given by
𝑚∞ = 1

1+exp[−(𝑉+55.7)/7.7] . The inwardly rectifying potassium current 𝐼𝐴𝑅 = 𝑔𝐴𝑅ℎ∞(𝑉−𝑉𝐾)
has a maximal conductance 𝑔𝐴𝑅 = 0.0257 mS/cm2 and its activation is given by
ℎ∞ = 1

1+exp[0.25(𝑉+75)] . The calcium current 𝐼𝐶𝑎 = 𝑔𝐶𝑎𝑚
2
∞(𝑉 −𝑉𝐶𝑎) has a maximal conduc-

tance 𝑔𝐶𝑎 = 0.43 mS/cm2 and activates following 𝑚∞ = 1
1+exp[−(𝑉+20)/9] .

Intracellular calcium concentration, [𝐶𝑎2+], is modelled as:

𝑑[𝐶𝑎2+]
𝑑𝑡

= −𝛼𝐶𝑎𝐴𝑑𝐼𝐶𝑎 −
[𝐶𝑎2+]
𝜏𝐶𝑎

, (3.4)

with 𝛼𝐶𝑎 = 0.005 𝜇M(nA·ms)−1 and 𝜏𝐶𝑎 = 150 mS. The intracellular sodium concentra-
tion, [𝑁𝑎+], is modelled as:

𝑑[𝑁𝑎+]
𝑑𝑡

= −𝛼𝑁𝑎(𝐴𝑠 𝐼𝑁𝑎 + 𝐴𝑑𝐼𝑁𝑎𝑃) − 𝑅𝑝𝑢𝑚𝑝
{

[𝑁𝑎+]3
([𝑁𝑎+]3 + 153) −

[𝑁𝑎+]3𝑒𝑞
[𝑁𝑎+]3𝑒𝑞 + 153

}
, (3.5)

with 𝛼𝑁𝑎 = 0.01 mM(nA·ms)−1, 𝑅𝑝𝑢𝑚𝑝 = 0.018 mMms−1, and [𝑁𝑎+]𝑒𝑞 = 9.5 mM.

The dynamic of the calcium-dependent (𝐼𝐾𝐶𝑎) potassium current follows: 𝐼𝐾𝐶𝑎 =
𝑔𝐾𝐶𝑎{[𝐶𝑎2+]/([𝐶𝑎2+] + 𝐾𝐷)}(𝑉 −𝑉𝐾), where 𝐾𝐷 = 30𝜇M and 𝑔𝐾𝐶𝑎 = 0.57 ms/cm2. The
sodium-dependent (𝐼𝐾𝑁𝑎) current is governed by: 𝐼𝐾𝑁𝑎 = 𝑔𝐾𝑁𝑎𝑤∞([𝑁𝑎+])(𝑉 −𝑉𝐾), with
𝑤∞([𝑁𝑎+]) = 0.37/[1 + (38.7/[𝑁𝑎+])3.5] and 𝑔𝐾𝑁𝑎 = 1.33 ms/cm2.

For the two-dimensional network the leak potassium leakage (𝐼𝐾𝐿 = 𝑔𝐾𝐿(𝑉 −𝑉𝐾)
with 𝑔𝐾𝐿 = 1.86 mS/cm2) current was also included in the somatic compartment.

Inhibitory neurons

The inhibitory neurons are modeled only with the Hodgkin-Huxley spiking
currents and with a somatic compartment. The dynamical equation governing its
dynamics is given by:

𝐶𝑚𝐴𝑖
𝑑𝑉

𝑑𝑡
= −𝐴𝑖(𝐼𝐿 + 𝐼𝑁𝑎 + 𝐼𝐾) − 𝐼𝑠𝑦𝑛,𝑖 , (3.6)

with the neuronal area being 𝐴𝑖 = 0.02 mm2. 𝐼𝑠𝑦𝑛,𝑖 stands for the sum of the synaptic
currents from the presynaptic neurons. The ion channel kinetics follow the formalism
described in Eq. 3.1. For the sodium current: 𝐼𝑁𝑎 = 𝑔𝑁𝑎𝑚

3
∞ℎ(𝑉−𝑉𝑁𝑎) where𝑚∞ =

𝛼𝑚
𝛼𝑚+𝛽𝑚

with 𝛼𝑚 =
0.5(𝑉+35)

1−exp[−0.1(𝑉+35)] , 𝛽𝑚 = 20 exp[− 1
18(𝑉 + 60)], 𝛼ℎ = 0.35 exp[−0.05(𝑉 + 58)] and

𝛽ℎ =
5

1+exp[−0.1(𝑉+28)] . Its maximal conductance is assumed to be 𝑔𝑁𝑎 = 35 mS/cm2 and
its reversal potential is𝑉𝑁𝑎 = 55 mV. For the potassium current: 𝐼𝐾 = 𝑔𝐾𝑛

4(𝑉 −𝑉𝐾) with
𝛼𝑛 =

0.05(𝑉+34)
1−exp[−0.1(𝑉+34)] and 𝛽𝑛 = 0.625 exp(−0.0125(𝑉 + 44)). Its maximal conductance is

assumed to be 𝑔𝐾 = 9 mS/cm2 and its reversal potential is 𝑉𝐾 = −90 mV. Finally, for the
leakage current, 𝐼𝐿 has a maximal conductance of 𝑔𝐿 = 0.1025 ± 0.0025 mS/cm2 and a
reversal potential of 𝑉𝐿 = −63.8 ± 0.15 mV.
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3.1.1.2 Synapses model

The original model proposed by [Compte et al., 2003] accounts for AMPA, NMDA
and GABA-A synaptic model. Two types of excitatory synapses were considered, AMPA
and NMDA mediated:

𝐼AMPA = 𝑔AMPA𝑠(𝑉 − 𝐸AMPA), (3.7)

and

𝐼NMDA = 𝑔NMDA𝑠(𝑉 − 𝐸NMDA)
(

1
1 + [Mg2+] exp(−0.062𝑉/3.57)

)
, (3.8)

where the reversal synaptic potential is 𝐸𝐴𝑀𝑃𝐴 = 𝐸𝑁𝑀𝐷𝐴 = 0 mV and the extracellular
magnesium concentration [Mg2+] = 1.0 mM. For AMPA-mediated synaptic transmission
the gating variable 𝑠(𝑡) follows:

𝑑𝑠

𝑑𝑡
= 𝛼 𝑓 (𝑉pre) −

𝑠

𝜏
, (3.9)

with

𝑓 (𝑉pre) =
1

1 + exp(−0.5(𝑉pre − 20)) , (3.10)

where 𝛼 = 3.48 and 𝜏 = 2 ms. For NMDAR-mediated synaptic transmission, the gating
variable 𝑠(𝑡) follows:

𝑑𝑠

𝑑𝑡
= 𝛼(1 − 𝑠)𝑥 − 𝑠

𝜏
, (3.11)

with
𝑑𝑥

𝑑𝑡
= 𝛼𝑥 𝑓 (𝑉pre) −

𝑥

𝜏𝑥
, (3.12)

where 𝑓 (𝑉pre) is given by Eq. 3.10 and 𝛼 = 0.5, 𝜏 = 100 ms, 𝛼𝑥 = 3.48, 𝜏𝑥 = 2 ms.

For inhibitory synapses only GABAA-mediated synaptic transmission was con-
sidered in the one-dimensional neuronal network, described by:

𝐼GABAA = 𝑔GABAA𝑠(𝑉 − 𝐸GABAA). (3.13)

where 𝑠 is given by Eq. 3.9, with 𝛼 = 1 and 𝜏 = 10 ms and 𝐸GABA-A = −70 mV.

For the two-dimensional network (described below), apart from the original
synaptic dynamics considered by Compte et al.[Compte et al., 2003], we also implemented
GABAB-mediated synaptic transmission [Destexhe et al., 1996, Liu et al., 2019] being
described by:

𝐼GABAB = 𝑔GABAB

𝑠4

𝑠4 + 𝐾𝑔
(𝑉 − 𝐸GABAB), (3.14)

𝑑𝑟

𝑑𝑡
= 0.5𝑇(1 − 𝑟) − 0.0012𝑟, (3.15)
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with

𝑑𝑠

𝑑𝑡
= 0.18𝑟 − 0.034𝑠. (3.16)

𝑟 and 𝑠 represent the GABAB receptor and the synaptic gating variable, respectively.
The transmitter concentration 𝑇 is modeled as a square pulse of 0.5 mM lasting 3 ms.
𝐾𝑔 = 100𝜇M4 is the dissociation constant of the binding of 𝑠 on the K+ channels [Destexhe
et al., 1996].

3.1.1.3 One-dimensional network topology

Spatial connectivity

E-cell (1024)

I-cell (256)

σ=250µm

σ=125µm

L=5mm

Figure 8 – One-dimensional cortical network. Schematic representation of the spatial
connectivity. 1024 pyramidal neurons (E-cell) and 256 interneurons (I-cells)
are synaptically connected through biologically plausible synaptic dynamics.
Probability distribution of synaptic connections from one neuron at the
center to the rest of the network is illustrated for pyramidal neuron (more
globally connected) and interneuron (more locally connected). Autapses
are not allowed although multiple connections to the same target are. The
network is assumed to be 5 mm long.

The original model proposed by Compte et al. [Compte et al., 2003] introduced a
one-dimensional network model. The network model consists of a population of 1024
excitatory neurons (pyramidal cells) and 256 inhibitory neurons (interneurons), keeping
the 4 : 1 proportion as is the case reported for the mammals cerebral cortex [Hendry
et al., 1987, Markram et al., 2004]. In this network, the neurons are sparsely connected to
each other through a fixed number of connections. Excitatory and inhibitory neurons
make 20±5 connections to excitatory and to inhibitory neurons (autapses are not allowed
although multiple contact onto the same target are). The probability that two neurons
separated by a distance 𝑥 are connected is decided by a Gaussian probability distribution
centered at 0 with a defined standard deviation 𝜎: 𝑃(𝑥) = exp(−𝑥2/2𝜎2)/

√
2𝜋𝜎2. The
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network is assumed to be 5 mm long and 𝜎𝑒𝑥𝑐 = 500𝜇m and 𝜎𝑖𝑛ℎ = 125𝜇m (Fig. 8). The
maximal synaptic conductance strengths are: excitatory to excitatory: 𝑔𝐸𝐸

𝐴𝑀𝑃𝐴
= 5.4 nS,

𝑔𝐸𝐸
𝑁𝑀𝐷𝐴

= 0.9 nS; excitatory to inhibitory: 𝑔𝐸𝐼
𝐴𝑀𝑃𝐴

= 2.25 nS, 𝑔𝐸𝐼
𝑁𝑀𝐷𝐴

= 0.5 nS; inhibitory
to inhibitory: 𝑔𝐼𝐼

𝐺𝐴𝐵𝐴𝐴
= 0.165 nS; and inhibitory to excitatory: 𝑔𝐼𝐸

𝐺𝐴𝐵𝐴𝐴
= 4.15 nS.

3.1.1.4 M and H currents

In order to study the effects of M and H current on the slow oscillations, we
adapted the model described above to include these currents. For the M-current we
implemented the model described in [McCormick et al., 1993]: 𝐼𝑀 = 𝑔𝑀𝑚(𝑉 − 𝑉𝐾)
with a maximal conductance of 𝑔𝑀 = 0.083 mS/cm2 and a reversal potential of
𝑉𝐾 = −100 mV. The activation variable is controlled by 𝑚∞ = 1

1+exp[−0.1(𝑉+35)] and
𝜏𝑚 = 1000

3.3 exp[(𝑉+35)/20]+exp[−(𝑉+35)/20] . The M-current was included in the somatic compart-
ment [Wang, 1999].

For the H-current we implement the model described in [Hill and Tononi, 2005]:
𝐼𝐻 = 𝑔𝐻𝑚(𝑉 + 45) with a maximal conductance of 𝑔𝐻 = 0.0115 mS/cm2. The activation
variable is controlled by𝑚∞ = 1

1+exp[(𝑉+75)/5.5] and 𝜏𝑚 = 1
exp[−14.59−0.086𝑉]+exp[−1.87+0.0701𝑉] .

H-current was included in the dendritic compartment of 30% random selected pyramidal
neurons [Robinson and Siegelbaum, 2003, Hill and Tononi, 2005].

To arrange the M and H currents on the model we have performed an adjustment
at the channel maximal conductances for the remaining currents (only for pyramidal
neurons) as follows: 𝑔𝑁𝑎 = 50 mS/cm2, 𝑔𝐾 = 10.5 mS/cm2, 𝑔𝐿 = 0.0667±0.0067 mS/cm2,
𝑔𝐾𝐿 = 1.86 mS/cm2, 𝑔𝐴 = 1 mS/cm2, 𝑔𝐾𝑠 = 0.576 mS/cm2, 𝑔𝐾𝑁𝑎 = 0.65835 mS/cm2,
𝑔𝑁𝑎𝑃 = 0.05145 mS/cm2, 𝑔𝐴𝑅 = 0.0257 mS/cm2, 𝑔𝐶𝑎 = 0.43 mS/cm2 and 𝑔𝐾𝐶𝑎 =

0.5415 mS/cm2.

3.1.2 Two-dimensional neuronal network

The newly implemented network model in this Thesis work consists of a two-
dimensional 50 × 50 squared network of pyramidal cells (80%) and interneurons
(20%), randomly distributed and interconnected through biologically plausible synaptic
dynamics. Each cell is sparsely and locally connected to its neighbors within a square
of size 𝐿 × 𝐿 centered around it, where 𝐿𝑝𝑦𝑟𝑎𝑚𝑖𝑑𝑎𝑙 = 7 and 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑒𝑢𝑟𝑜𝑛 = 5 (Fig. 9).
The fraction of synaptic connections (outgoing synapses) is set at 50% of the total
number of neurons within the local range for pyramidal cells and 90% for interneurons,
thus imposing local connections for interneurons and more sparse connections for
pyramidal cells. The network structure is similar to that used in previous studies of
cortical oscillatory neuronal networks [Bazhenov et al., 2008, Poil et al., 2012, DALLA
PORTA and Copelli, 2019].
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E-cell I-cell

Spatial distribution

Local connectivity

Figure 9 – Two-dimensional cortical network. Schematic representation of the local and
spatial connectivity. The model consists of pyramidal neurons (blue) and
interneurons (red) arranged in a 50× 50 square lattice. The excitatory neurons
may connect locally to a 50% fraction of its neighbors (gray circles) within a
7 × 7 square, while the inhibitory neurons to a 90% fraction within a 5 × 5
square, thus ensuring more sparse connections for pyramidal neurons and
more local connections for interneurons. Autapses are not allowed although
multiple connections to the same target are.

In order to arrange the neuron model in the two-dimensional network, we
performed an adjustment at the synaptic maximal conductances and channel maximal
conductances. The channel maximal conductances of pyramidal neurons were set to:
𝑔𝑁𝑎 = 50 mS/cm2, 𝑔𝐾 = 10.5 mS/cm2, 𝑔𝐿 = 0.0667±0.0067 mS/cm2, 𝑔𝐾𝐿 = 1.86 mS/cm2,
𝑔𝐴 = 1 mS/cm2, 𝑔𝐾𝑠 = 0.576 mS/cm2, 𝑔𝐾𝑁𝑎 = 0.65835 mS/cm2, 𝑔𝑁𝑎𝑃 = 0.05145 mS/cm2,
𝑔𝐴𝑅 = 0.0257 mS/cm2, 𝑔𝐶𝑎 = 0.43 mS/cm2 and 𝑔𝐾𝐶𝑎 = 0.5415 mS/cm2. The synaptic
maximal conductances were set to: 𝑔𝐼𝐼

𝐺𝐴𝐵𝐴𝐴
= 1.96 nS, 𝑔𝐼𝐸

𝐺𝐴𝐵𝐴𝐴
= 28.96 nS, 𝑔𝐼𝐼

𝐺𝐴𝐵𝐴𝐵
=

33.75 nS, 𝑔𝐼𝐸
𝐺𝐴𝐵𝐴𝐵

= 39.2 nS, 𝑔𝐸𝐸
𝐴𝑀𝑃𝐴

= 6.2 nS, 𝑔𝐸𝐼
𝐴𝑀𝑃𝐴

= 0.6925 nS, 𝑔𝐸𝐸
𝑁𝑀𝐷𝐴

= 2.72 nS, and
𝑔𝐸𝐼
𝑁𝑀𝐷𝐴

= 0.595 nS. Additionally, all neurons receive a heterogeneous Poisson train of
excitatory, AMPA and NMDA, presynaptic potentials with a rate 𝑅 = 0.5kHz [Dayan
and Abbott, 2001]. The Poisson synaptic inputs are modeled as excitatory AMPA and
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NMDA currents where the probability of a spike at one time step is given by: 1 − 𝑒−𝑅 ¤𝑑𝑡 ,
where 𝑑𝑡 is the time step of simulation, and 𝑅 the Poisson rate.

The simulated population membrane potential (sLFP) was computed as the sum
of the absolute values of the excitatory and inhibitory synaptic currents acting on the
excitatory neurons [Sancristóbal et al., 2016]. We virtually created 20 electrodes in the
model, arranged as a 5 × 4 matrix. Each electrode covered an area of 49 neurons and
were horizontally and vertically spaced by a distance of 10 neurons, thus ensuring no
overlapping between electrodes. The neurons on the border were not considered. In
order to simulate the experimental effects of GABAA,B-Rs blockade, we progressively
reduced the GABAA,B conductance (which, for simplicity, will be referred to as simple
concentration) in inhibitory synapses to both neurons, pyramidal and interneurons,
from 5% to 90% (disinhibited network). We proceeded in the same way to progressively
increase the GABAA conductance, increasing it from 5% to 90% (inhibited network).

3.1.3 Numerical methods and simulations

For all the simulations regarding the one-dimensional and two-dimensional
network described in Sec.3.1.1.3 and 3.1.2, simulations were performed using a fourth-
order Runge-Kutta method with a time step of 0.06 ms implemented in a C code.
Simulations were performed using the supercomputer MareNostrum from Barcelona
Supercomputing Center (BSC, https://www.bsc.es/es).

3.2 Mean-field model

3.2.1 Network of spiking neurons

We considered a random directed network of 𝑁 = 104 cells, where 80% are
excitatory (E) regular-spiking (RS) and 20% inhibitory (I) fast-spiking (FS) neurons. The
connectivity is set randomly between pairs of neurons with a fixed probability (P= 0.05).
Unless otherwise stated, we used the same network and synaptic constants for all the
neuronal models (Hodgkin-Huxley (HH), Adaptive Exponential Integrate-and-Fire
(AdEx), and Morris-Lecar (ML)). The dynamics of each node 𝑘 follows:

𝑑𝑥𝑘
𝑑𝑡

= 𝐹(𝑥𝑘) + 𝐼𝑠𝑦𝑛 , (3.17)

where 𝑥 and 𝐹(𝑥) stand for the neuronal state and dynamics. The later depending
on the specific model (see the following sections). For simplicity of notation 𝑥𝑘 is a
𝑛−dimensional vector, depending on the dimension of each neuron model. The synaptic

https://www.bsc.es/es


Chapter 3. Models and Methods 36

current (𝐼𝑠𝑦𝑛) impinging on the postsynaptic neuron 𝑘, is modeled as:

𝐼𝑠𝑦𝑛 = (𝑉𝐸 − 𝑣𝑘)𝐺𝐸𝑠𝑦𝑛 + (𝑉𝐼 − 𝑣𝑘)𝐺𝑖𝑠𝑦𝑛 , (3.18)

(3.19)

where,

𝐺𝐸,𝐼𝑠𝑦𝑛(𝑡) = 𝑄(𝐸,𝐼)
∑
𝑛

Θ
[
𝑡 − 𝑡𝑠𝑝(𝑛)

]
𝑒
𝑡−𝑡𝑠𝑝 (𝑛)

𝜏 . (3.20)

𝑄𝐸(𝑄𝐼) and 𝑉𝐸 (𝑉𝐼) are the excitatory (inhibitory) synaptic conductance and reversal
potential, respectively. 𝜏 = 5 ms is the decay timescale of excitatory and inhibitory
synapses andΘ is the Heaviside step function and the summation runs over the overall
presynaptic spiking times 𝑡𝑠𝑝(𝑛). 𝑣𝑘 stands for the membrane potential of neuron 𝑘. For
HH and AdEx models we use 𝑄𝐸 = 1.5 nS and 𝑄𝐼 = 5 nS while for ML model 𝑄𝐸 = 4 nS
and𝑄𝐼 = 10 nS. Furthermore, all neurons are subject to an independent noisy spike train
described by a Poisson distribution with a constant rate 𝑣𝑑𝑟𝑖𝑣𝑒 = 4 Hz, unless otherwise
stated.

3.2.2 Single neuron models

We describe here the neuronal models: exponential Integrate-and-Fire, Mor-
ris–Lecar and Hodgkin–Huxley models.

Adaptive Exponential Integrate-and-Fire model

The dynamics of each of the adaptive exponential integrate-and-fire model
(AdEx) neurons 𝑖 is described by the following two-dimensional [here 𝑥 = (𝑣𝑖 ;𝑤𝑖)]
differential equations [Brette and Gerstner, 2005]:

𝑐𝑚
𝑑𝑣𝑖

𝑑𝑡
= 𝑔𝐿(𝑉𝐿 − 𝑣𝑖) + 𝑔𝐿Δ𝑒

𝑣𝑖−𝑣𝑡
Δ − 𝑤𝑖 + 𝐼𝑠𝑦𝑛 , (3.21)

and
𝑑𝑤𝑖

𝑑𝑡
= −𝑤𝑖

𝜏𝑤
+ 𝑏

∑
𝑡𝑠𝑝(𝑖)

𝛿(𝑡 − 𝑡𝑠𝑝(𝑖)) + 𝑎(𝑣𝑖 −𝑉𝐿). (3.22)

𝑐𝑚 = 150 pF is the membrane capacitance, 𝑣𝑖 is the voltage of neuron 𝑖, and, whenever
𝑣𝑖 > 𝑣𝑡 = −50 mV at time 𝑡𝑠𝑝(𝑖), 𝑣𝑖 is reset to the resting potential 𝑣𝑟𝑒𝑠𝑡 = −65 mV with a
refractory time 𝑇𝑟 = 5 ms. The leakage current has a maximal conductance 𝑔𝐿 = 10 nS
with a reversal potential 𝑉𝐿 = −65 mV (unless otherwise states). The exponential term
has a strength of Δ𝐸 = 2 mV and Δ𝐼 = 0.5 mV for excitatory and inhibitory neurons,
respectively. 𝑤 mimics the dynamics of spike frequency adaptation currents. Inhibitory
neurons are modeled according to physiological insight as the fast-spiking (FS) with no
adaptation while the excitatory are modeled as regular-spiking (RS) with adaptation.
Here we consider 𝑏 = 60 pA, 𝑎 = 4 nS, and 𝜏𝑤 = 500 ms, unless otherwise stated.
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Hodking-Huxley model

The dynamics of Hodgkin-Huxley (HH) [Hodgkin and Huxley, 1952] is given by
the following five-dimensional system of differential equations [Pospischil et al., 2008]:

𝑐𝑚
𝑑𝑣𝑖

𝑑𝑡
= 𝑔𝐿(𝑉𝐿 − 𝑣𝑖) + 𝑔𝑁𝑎𝑚

3
𝑖 ℎ𝑖(𝑉𝑁𝑎 − 𝑣𝑖) + 𝑔𝐾𝑛

4
𝑖 (𝑉𝐾 − 𝑣𝑖)

+ 𝑔𝑀𝑝𝑖(𝑉𝐾 − 𝑣𝑖) + 𝐼𝑠𝑦𝑛 , (3.23)
𝑑𝑛𝑖

𝑑𝑡
= 𝛼𝑛(𝑣𝑖)(1 − 𝑛𝑖) − 𝛽𝑛(𝑣𝑖)𝑛𝑖 , (3.24)

𝑑𝑚𝑖

𝑑𝑡
= 𝛼𝑚(𝑣𝑖)(1 − 𝑚𝑖) − 𝛽𝑚(𝑣𝑖)𝑚𝑖 , (3.25)

𝑑ℎ𝑖

𝑑𝑡
= 𝛼ℎ(𝑣𝑖)(1 − ℎ𝑖) − 𝛽ℎ(𝑣𝑖)ℎ𝑖 , (3.26)

𝑑𝑝𝑖

𝑑𝑡
=
𝑝∞(𝑣𝑖) − 𝑝𝑖

𝜏𝑝(𝑣𝑖)
, (3.27)

with the gating functions,

𝛼𝑛(𝑣) =
−0.032(𝑣 −𝑉𝑡 − 15)

𝑒
𝑉𝑡+15−𝑣

5 − 1
,

𝛽𝑛(𝑣) = 0.5𝑒
𝑉𝑡+10−𝑣

10 ,

𝛼𝑚(𝑣) =
−0.032(𝑣 −𝑉𝑡 − 13)

𝑒
𝑉𝑡+13−𝑣

4 − 1
,

𝛽𝑚(𝑣) =
0.28(𝑣 −𝑉𝑡 − 40)

𝑒
𝑣−𝑉𝑡−40

5 − 1
,

𝛼ℎ(𝑣) = 0.128𝑒
𝑉𝑡+17−𝑣

18 ,

𝛽ℎ(𝑣) =
4

𝑒
𝑉𝑡+40−𝑣

5 + 1
,

𝑝∞(𝑣) =
1

𝑒
35−𝑣

10 + 1
,

𝜏𝑝(𝑣) =
𝜏𝑚𝑎𝑥

3.3𝑒 𝑣+35
20 + 𝑒 −𝑣−35

20
.

(3.28)

𝑣𝑖 is the voltage and (𝑛𝑖 , 𝑚𝑖 , ℎ𝑖 , 𝑝𝑖) are the corresponding gating variables of the 𝑖th
neuron. The spike emission 𝑡𝑠𝑝 is set for this model to time steps in which the membrane
potential 𝑣 exceeded a voltage threshold of 10 mV. The membrane capacitance is set to
𝑐𝑚 = 200 pF/cm2. The maximal conductance for the leakage current (L), sodium current
(Na), potassium current (K) and the slow non-inactivating potassium current (M) were
set to 𝑔𝐿 = 10 mS/cm2, 𝑔𝑁𝑎 = 20 mS/cm2, 𝑔𝐾 = 6 mS/cm2 and 𝑔𝑀 = 0.03 mS/cm2

(𝑔𝑀 = 0 mS/cm2 for inhibitory neurons), with corresponding reversal potential 𝑉𝐿 =
−65 mV, 𝑉𝑁𝑎 = 50 mV, 𝑉𝐾 = −90 mV, and 𝑉𝑀 = 𝑉𝐾 , respectively. The spiking threshold
is set to 𝑉𝑇 = −53.5 mV and 𝜏𝑚𝑎𝑥 = 0.4 s.
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Morris-Lecar model

The dynamics of the Morris-Lecar model is described by the system of differential
equations [Morris and Lecar, 1981]:

𝑐𝑚
𝑑𝑣𝑖

𝑑𝑡
= 𝑔𝐿(𝑉𝐿 − 𝑣𝑖) + 𝑔𝐶𝑎𝑀𝑠𝑠(𝑣𝑖)(𝑉𝐶𝑎 − 𝑣𝑖) + 𝑔𝐾𝑁𝑖(𝑉𝐾 − 𝑣𝑖)

+ 𝐼𝑠𝑦𝑛 + 𝐼0, (3.29)
𝑑𝑁𝑖

𝑑𝑡
=
𝑁𝑠𝑠(𝑣𝑖) − 𝑁𝑖

𝜏𝑁 (𝑣𝑖)
, (3.30)

with the membrane capacitance 𝑐𝑚 = 2𝜇F/cm2, 𝑣𝑖 is the membrane potential in mV,
and 𝑁𝑖 and 𝑀𝑠𝑠 are the fraction of open potassium and calcium channels, respectively.
𝐼0 = 0.2 nA/cm2 is a reference DC external current. Spiking thresholds set to 𝑉𝑇 =

−53.5 mV, as in the HH model. The maximal conductances for the leakage current
(L), calcium current (Ca), and potassium current (K) were set to 𝑔𝐿 = 20 mS/cm2,
𝑔𝐶𝑎 = 80 mS/cm2, and 𝑔𝐾 = 160 mS/cm2, with corresponding reversal potential
𝑉𝐿 = −50 mV (𝑉𝐿 = −70 mV for inhibitory neurons), 𝑉𝐶𝑎 = 120 mV, and 𝑉𝐾 = −84 mV.
The quantities 𝑀𝑠𝑠 and 𝑁𝑠𝑠 are modeled as:

𝑀𝑠𝑠(𝑣) =
1
2

[
1 + 𝑡𝑎𝑛ℎ

(
𝑣 −𝑉1
𝑉2

)]
, (3.31)

𝑁𝑠𝑠(𝑣) =
1
2

[
1 + 𝑡𝑎𝑛ℎ

(
𝑣 −𝑉3
𝑉4

)]
, (3.32)

with

𝜏𝑁 (𝑣) =
1
2

[
𝜙𝑐𝑜𝑠ℎ

(
𝑣 −𝑉3
𝑉4

)]
, (3.33)

where𝑉1 = −1.2 mV,𝑉2 = 18 mV,𝑉3 = 2 mV and𝑉4 = 30 mV are tuning parameters that
determine the half activating voltage and slope of the activation curves for calcium and
potassium conductances. Such choice of parameters was made in order the ML neuron
is te in a type II class of excitability, i.e., its response to a DC current is discontinuous
and the neuron firing increases very slowly with the injected current.

3.2.3 Mean-field formalism

Mean-field theory scales the analysis of interacting pointwise neurons to their
macroscopic, collective, dynamics based on the moment-statistics of the system, requir-
ing a self-averaging hypothesis for physical quantities. We make here an additional
hypothesis that the biological neural network is set to asynchronous dynamical regime.
The latter is chosen for its biological plausibility [Destexhe et al., 2003] as observed
in awake cortical states of adult mammalian brains. The master equation formalism
is borrowed from Ref. [El Boustani and Destexhe, 2009]. Such formalism provides us
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a system of ordinary differential equations that describe the evolution of the mean
and variance of the neuronal firing rate of excitatory and inhibitory neurons. The
main argument of this formalism is to consider the network dynamics as Markovian
on an infinitesimal (a time resolution 𝑇, typically ∼ 20 ms) scale [Ohira and Cowan,
1993, Ginzburg and Sompolinsky, 1994, Buice et al., 2010]. Furthermore, this a theory is
based on the assumption that neurons emit maximum one spike over the Markovian
step 𝑇, i.e., assuming a low firing rate of neurons, lower than 1/T∼ 50 Hz [El Boustani
and Destexhe, 2009], as is the case of asynchronous regimes here investigated. It is
described by the system of differential equations:

𝑇
𝑑𝑣𝜇

𝑑𝑡
= (𝐹𝜇 − 𝑣𝜇) +

1
2 𝑐𝜆𝜂

𝑑2𝐹𝜇

𝑑𝑣𝜆𝑑𝑣𝜂
, (3.34)

𝑇
𝑑𝑐𝜆𝜂

𝑑𝑡
= 𝛿𝜆𝜂

𝐹𝜆(𝑇−1 − 𝐹𝜂)
𝑁𝜆

+ (𝐹𝜆 − 𝑣𝜆)(𝐹𝜂 − 𝑣𝜂) +
𝑑𝐹𝜆

𝑑𝑣𝜇
𝑐𝜂𝑢

+
𝑑𝐹𝜂

𝑑𝑉𝜇
𝑐𝜆𝜇 − 2𝑐𝜆𝜂 , (3.35)

where 𝜇 = 𝐸, 𝐼 is the population index (excitatory or inhibitory, respectively), 𝑣𝜇 the
population firing rate, and 𝑐𝜆𝜂 the covariance between populations 𝜆 and 𝜂. The transfer
function 𝐹𝜇 = 𝐹𝜇(𝑣𝐸 , 𝑣𝐼) describes the firing rate of population 𝜇 as a function of
excitatory and inhibitory inputs (with rates 𝑣𝐸 and 𝑣𝐼). In a first order approximation
the model reduces to the well known Wilson-Cowan model, with the specificity that the
function F needs to be obtained according to the specific single neuron model under
consideration. We introduce this procedure in the next subsection.

3.2.4 Transfer function estimation

The transfer function (TF) relates the firing rate of a postsynaptic neuron to
a presynaptic excitatory and inhibitory firing rates. The particular form of the TF is
related to the dynamics describing neuronal activity. Deriving an analytical expression
for the transfer function is a nontrivial endeavor due to the nonlinear character of
the dynamics, e.g., through conductance based interactions. Therefore, we use here a
semi-analytic approach to fit a family of plausible transfer functions to the data obtained
by means of numerical simulations with the desired neuron model. The method was first
developed by Zerlaut et al. [Zerlaut et al., 2016] where it was applied on experimental
data from mouse layer 𝑉 pyramidal neurons. It is based on the assumption that the
transfer function depends only on the statistics of the subthreshold membrane voltage
dynamics, which is assumed to be normally distributed. These statistics are the average
membrane voltage, 𝜇𝑣 , its standard deviation 𝜎𝑣 , and autocorrelation time 𝜏𝑉 . Under
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these assumptions the neuronal output firing rate, 𝐹𝑣 , is given by the following function:

𝐹𝑣 =
1
2𝜏𝑣𝑒𝑟 𝑓 𝑐

(
𝑉
𝑒 𝑓 𝑓

𝑡ℎ𝑟
− 𝜇𝑉

√
2𝜎𝑉

)
, (3.36)

where 𝑒𝑟 𝑓 𝑐 stands for the Gauss error function and𝑉 𝑒 𝑓 𝑓

𝑡ℎ𝑟
is an effective or phenomenologi-

cal threshold accounting for nonlinearities in the single-neuron dynamics. Note that when
dealing with extremely high spiking frequencies, e.g., in the case of Hodgkin–Huxley
model close to depolarization block, a multiplicative factor 𝛼 can be added in front of
right-hand side of Eq. 3.36 allowing then the fitting procedure to deal with such high
frequencies. In the asynchronous dynamical regime, neurons have relatively low firing
rate (smaller than 30 Hz). Accordingly, we did not use this extension.

From input rates to subthreshold voltage moments

We start by calculating the averages (𝜇𝐺𝐸 ,𝜇𝐺𝐼 ) and standard deviations (𝜎𝐺𝐸 ,𝜎𝐺𝐼 )
of the conductances given by Eq. 3.20 under the assumption that the input spike trains
follow the Poisson statistics (asynchronous regime). Thus, we obtain [Zerlaut et al.,
2018]:

𝜇𝐺𝐸(𝑣𝐸 , 𝑣𝐼) = 𝑣𝐸𝐾𝐸𝜏𝐸𝑄𝐸 ,

𝜏𝐺𝐸(𝑣𝐸 , 𝑣𝐼) =
√
𝑣𝐸𝐾𝐸𝜏𝐸

2 𝑄𝐸 ,

𝜇𝐺𝐼 (𝑣𝐸 , 𝑣𝐼) = 𝑣𝐼𝐾𝐼𝜏𝐼𝑄𝐼 ,

𝜏𝐺𝐼 (𝑣𝐸 , 𝑣𝐼) =
√
𝑣𝐼𝐾𝐼𝜏𝐼

2 𝑄𝐼 ,

(3.37)

where 𝐾𝐸,𝐼 is the average input connectivity received from the excitatory or inhibitory
population (in our cases typically 𝐾𝐸 = 400 nad 𝐾𝐼 = 100) and in our model 𝜏𝐸 = 𝜏𝐼 = 𝜏

(see Eq. 3.20).

The mean conductances will control the total input of the neuron 𝜇𝐺 and therefore
its effective membrane time constant 𝜏𝑒 𝑓 𝑓𝑚 :

𝜇𝐺𝐸(𝑣𝐸 , 𝑣𝐼) = 𝜇𝐺𝐸 + 𝜇𝐺𝐼 + 𝑔𝐿 , (3.38)

𝜏
𝑒 𝑓 𝑓
𝑚 (𝑣𝐸 , 𝑣𝐼) =

𝑐𝑚

𝜇𝐺
. (3.39)

Here we make the assumption that the subthreshold moments (𝜇𝑉 , 𝜎𝑉 , 𝜏𝑉 ) are
not affected by the dynamics of the currents coming into play at the spiking time (e.g.,
sodium channel dynamics or the exponential term of the AdEx model). We thus consider,
for all neurons, only the leakage term and the synaptic input to estimate subthreshold
moments. Accordingly, we can write the equation for the mean subthreshold voltage as:

𝜇𝑉(𝑣𝐸 , 𝑣𝐼) =
𝜇𝐺𝐸𝐸𝐸 + 𝜇𝐺𝐼𝐸𝐼 + 𝑔𝐿𝐸𝐿

𝜇𝐺
. (3.40)
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The final equation for 𝜎𝑉 and 𝜏𝑉 follow from calculations introduces in Ref. [Zerlaut
et al., 2018], they read:

𝜎𝑉(𝑣𝐸 , 𝑉𝐼) =
√∑

𝑠

𝐾𝑠𝑣𝑠
(𝑈𝑠 · 𝜏𝑠)2

2(𝜏𝑒 𝑓 𝑓𝑚 + 𝜏𝑠)
, (3.41)

𝜏𝑉(𝑣𝐸 , 𝑉𝐼) =
{ ∑

𝑠

[
𝐾𝑠𝑣𝑠(𝑈𝑠 · 𝜏𝑠)2

]∑
𝑠 𝐾𝑠𝑣𝑠(𝑈𝑠 · 𝜏𝑠)2(𝜏𝑒 𝑓 𝑓𝑚 + 𝜏𝑠)−1

}
, (3.42)

where we defined 𝑈𝑠 = 𝑄𝑠(𝐸𝑠 − 𝜇𝑠)𝜇−1
𝐺

and 𝑠 =(E,I). Notice that neglecting all the
currents for the generation of action potentials (e.g., sodium current) becomes a poorer
assumption as the neuron activity increases. Although, as we show in the following
subsection, the fitting procedure will account for discrepancies in the actual evaluation
of voltage moments by permitting an accurate prediction of neuron output firing rate

From subthreshold voltage moments to the output firing rate

The quantities 𝜇𝑉 , 𝜎𝑉 , and 𝜏𝑉 , obtained in the previous subsection, can now be
plugged into Eq. 3.37 when an additional relation is taken into account. This relation
follows from theoretical and experimental considerations [Zerlaut et al., 2016] showing
that the voltage effective threshold 𝑉 𝑒 𝑓 𝑓

𝑡ℎ𝑟
can be expressed as a function of (𝜇𝑉 , 𝜎𝑉 , 𝜏𝑉).

In Zerlaut et al. [Zerlaut et al., 2016], the phenomenological threshold was taken as a
second order polynomial in the following form:

𝑉
𝑒 𝑓 𝑓

𝑡ℎ𝑟
(𝜇𝑉 , 𝜎𝑉 , 𝜏𝑁𝑉 ) = 𝑃0 +

∑
𝑥∈{𝜇𝑉 ,𝜎𝑉 ,𝜏𝑁𝑉 }

𝑃𝑥 ·
(
𝑥 − 𝑥0

𝛿𝑥0

)
+

∑
𝑥,𝑦∈{𝜇𝑉 ,𝜎𝑉 ,𝜏𝑁𝑉 }2

𝑃𝑥𝑦 ·
(
𝑥 − 𝑥0

𝛿𝑥0

) (
𝑦 − 𝑦0

𝛿𝑦0

)
,

(3.43)

where we introduced the quantity 𝜏𝑁
𝑉

= 𝜏𝑉𝐺𝑙/𝑐𝑚 . We evaluated {𝑃} through a fit
according to simulations on single neurons activity setting first 𝜇0

𝑉
= −60 mV, 𝜎0

𝑉
=

0.004 mV, (𝜏𝑁
𝑉
)0 = 0.5, 𝛿𝜇0

𝑉
= 0.001 mV, 𝛿𝜎0

𝑉
= 0.006 mV, and 𝛿(𝜎𝑁

𝑉
)0 = 1. By the

fitting procedure we find the values of the 𝑃 parameters for the three neuronal model
considered here (taking into account two neuronal types: excitatory regular-spiking (RS)
and inhibitory fast-spiking (FS)). We report the results in the Tables 1 , 2 and 3.

3.3 Experimental methods in vitro

Cortical slices were prepared as previously described [Sanchez-Vives and Mc-
Cormick, 2000]. Briefly: adult ferrets (3 − 7 months old, either sex) were anesthetized
with sodium pentobarbital (40 mg/kg) and decapitated. The entire forebrain was rapidly
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Table 1 – Fit parameters AdEx neurons

Cell type 𝑃0 𝑃𝜇𝑉 𝑃𝜎𝑉 𝑃𝜏𝑉 𝑃𝜇2
𝑉

𝑃𝜎2
𝑉

𝑃𝜏2
𝑉

𝑃𝜇𝑉𝜎𝑉 𝑃𝜇𝑉𝜏𝑉 𝑃𝜎𝑉𝜏𝑉

RS -49.8 5.06 -23.4 2.3 -0.41 10.5 -36.6 7.4 1.2 -40.7
FS -49.8 5.06 -23.4 2.3 -0.41 10.5 -36.6 7.4 1.2 -40.7

Values are in mV. AdEx, adaptive exponential integrate-and-fire model; FS, fast-spiking; RS,
regular-spiking. See Eq. 3.43 for parameter definitions.

Table 2 – Fit parameters Hodgkin-Huxley neurons

Cell type 𝑃0 𝑃𝜇𝑉 𝑃𝜎𝑉 𝑃𝜏𝑉 𝑃𝜇2
𝑉

𝑃𝜎2
𝑉

𝑃𝜏2
𝑉

𝑃𝜇𝑉𝜎𝑉 𝑃𝜇𝑉𝜏𝑉 𝑃𝜎𝑉𝜏𝑉

RS -48.1 3.2 10.9 -0.32 0.98 1.1 -1.2e-3 -1.4 3.9 -0.11
FS -51.2 1.8 -6.1 -0.86 1.6 -0.70 -11 -0.18 1.2 -1.2

Values are in mV. FS, fast-spiking; RS, regular-spiking.

Table 3 – Fit parameters Hodgkin-Huxley neurons

Cell type 𝑃0 𝑃𝜇𝑉 𝑃𝜎𝑉 𝑃𝜏𝑉 𝑃𝜇2
𝑉

𝑃𝜎2
𝑉

𝑃𝜏2
𝑉

𝑃𝜇𝑉𝜎𝑉 𝑃𝜇𝑉𝜏𝑉 𝑃𝜎𝑉𝜏𝑉

RS -48.1 3.2 10.9 -0.32 0.98 1.1 -1.2e-3 -1.4 3.9 -0.11
FS -0.615 -2.56 -17.6 -164 0.83 -55 108 -7.4 24.6 288

Values are in mV. FS, fast-spiking; RS, regular-spiking.

removed to oxygenated cold (4− 10◦ C) bathing medium and cut in 400𝜇m thick coronal
slices from the occipital cortex containing primary and secondary visual cortical areas
(areas 17, 18, and 19). Then, slices were placed in an interface style recording chamber
(Scientific Systems Design, Inc.), and bathed for 30 minutes in an equal mixture of the
sucrose-substituted solution and ACSF (Artificial Cerebro- Spinal Fluid). Afterwards
slices were maintained 2 hours in ACSF for recovery. Finally, an in vivo like ACSF solution
was applied throughout the rest of the experiment. Electrophysiological recordings
started after allowing at least 1 hour of recovery.

Extracellular local field potential (LFP) was recorded using 16-channel multi-
electrode arrays or with 2 − 4ΩM tungsten electrodes. Signals were amplified using a
PGA16 Multichannel System at a sampling rate of 5 or 10kHz. All experiments were
carried out in accordance with protocols approved by the Animal Ethics Committee
of the University of Barcelona, which comply with the European Union Guidelines
on Protection of Vertebrates used for Experimentation (Directive 2010/63/EU of the
European Parliament and the Council of 22 September 2010).

For the sake of clarity, none of the experimental recordings used in this thesis
were acquired by the author, who has been involved only in the post hoc analysis. All
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the experimental procedures and data acquisition were performed by qualified and
authorized members of the Sanchez-Vives lab.

3.4 Data analysis

3.4.1 Relative firing rate (LogMUA)

A good estimate of the population firing rate is given by the normalized multiunit
activity (MUA) spectrum, once the normalized Fourier components at high frequencies
have densities proportional to the spiking activity of the involved neurons [Mattia and
Del Giudice, 2002]. We followed the implementation described in [Reig et al., 2010].
Briefly, the MUA is estimated as the power change in the Fourier components of the
recorded local field potential (LFP) at high frequencies. The time-dependent MUA is
computed from the power spectrum in 50 ms windows, each frequency normalized by
the corresponding amplitude of the power spectrum computed over the whole time
series, and averaged within the 0.2 − 1.5 kHz band. MUAs were logarithmically scaled
to balance the large fluctuations of the nearby spikes and further smoothed by a moving
average with a sliding window of 80 ms. After this preprocessing with have the so called
LogMUA.

3.4.2 Experimental Up and Down states detection

Up and Down states were singled out by setting a threshold in the LogMUA
(see 3.4.1) time series. The threshold was set to 60% (adjusted when needed) of the
interval between the peaks in the bimodal distributions (typical from slow oscillations,
SO) of LogMUA corresponding to Up and Down states [Reig et al., 2010, Sanchez-Vives
et al., 2010]. From the detection of Up and Down states we estimate many parameters
reported in this thesis. We calculated the following: i) Up and Down state durations; ii)
cycle frequency (Up + Down events; UD-cycle); iii) as a measure of SO variability the
coefficients of variation (CV=SD/mean) of Up state duration, Down state duration and
UD duration; iv) the relative firing rate during Up and Down states as well UD-cycle,
defined as the mean LogMUA across time; and v) the upward (Down to Up) and
downward (Up to Down) transition slopes were the gradients of the linear fits of the
average LogMUA in the time intervals (−10, 25 ms) and (−25, 10 ms), respectively.
For the scatter plots of Up versus Down state durations, Kernel density estimation
(KDE) was used to obtain and construct univariate (1D histogram) and bivariate (2D
histogram) [Waskom, 2021]. For the dataset recorded with multielectrode array, only the
channels located at the infragranular region were considered.
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3.4.3 Up and Down durations in the cortical network model

Up state durations in the model were evaluated in two forms: i) locally, based on
the mean neuronal burst duration (also called mean network burst duration), and ii)
globally, based on the total activity of the network (a quantity similar to experimental
LogMUA). For i) we computed the spike-train autocorrelation functions (ACF) for each
neuron in the network and estimated the width of the central peak of ACF by fitting a
Gaussian function. Then, the Up state duration was defined as two standard deviations
of the Gaussian distribution (see 17). For ii) we chose arbitrarily a threshold to define
the initiation and termination of Up and Down states.

3.4.4 Spectral analysis and network synchronization

From the simulated network model we obtained from the spike-trains the
power spectrum. For each neuron in the network the spike-train power spectrum was
computed with a multi-tapper estimator (5 slepian tapers with bandwidth 0.1 Hz).
Power spectra were then averaged to obtain the network’s activity spectrum, which was
then normalized by the average firing rate to compare across simulations with different
parameter conditions. Furthermore, power spectra were smoothed by a Gaussian
kernel with prescribed standard deviation 𝜎 = 0.25 Hz. The software Chronux (http:
//chronux.org/) was used for such analysis.

The Kuramoto order parameter (𝑅) was estimated as:

𝑅(𝑡) = 1
𝑁

����� 𝑁∑
𝑘=1

𝑒 𝑖𝜙𝑘(𝑡)

����� , (3.44)

where 𝜙(𝑡) is the phase vector overt time. The phase of neuron 𝑘 is obtained by:

𝜙𝑘(𝑡) = 2𝜋
𝑡 − 𝑡𝑘,𝑚

𝑡𝑘,𝑚+1 − 𝑡𝑘,𝑚
, (3.45)

where 𝑡𝑘,𝑚 corresponds to the time of the m−𝑡ℎ spike of neuron 𝑘 (𝑡𝑘,𝑚 < 𝑡 < 𝑡𝑘,𝑚+1).
𝑅(𝑡) varies between 0 and 1, where 𝑅 = 1 stands for a fully synchronized network while
𝑅 = 0 to a fully desynchronized one [Pikovsky et al., 2002, Di Santo et al., 2018].

The synchrony measure 𝜒 quantifies the normalized average voltage fluctuation.
𝜒 is defined as:

𝜒2 =
𝜎2
𝑉

1
𝑁

∑𝑁
𝑖=1 𝜎

2
𝑉𝑖

, (3.46)

http://chronux.org/
http://chronux.org/
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where 𝜎2
𝑉
=< [𝑉(𝑡)]2 > −[< 𝑉(𝑡) >]2 is the mean variance over time of the population

average voltage:

𝑉(𝑡) = 1
𝑁

𝑁∑
𝑘=1

𝑉𝐾(𝑡). (3.47)

𝜎2
𝑉𝑖

=< [𝑉𝑖(𝑡)]2 > −[< 𝑉𝑖(𝑡) >]2 is the mean variance over time of the single-cell
membrane potential. 𝜒 varies between 0 (asynchronous state, i.e., fully desynchronized)
and 1 (fully synchronized state) [Hansel and Sompolinsky, 1992, Golomb and Rinzel,
1993, Golomb et al., 2006, Golomb, 2007].

Pairwise spiking cross-correlation was computed as:

𝐶𝐶 =

〈
𝐶𝑜𝑣(𝑆𝑖 , 𝑆𝑗)

𝜎𝑖𝜎𝑗

〉
, (3.48)

where 𝐶𝑜𝑣(𝑆𝑖 , 𝑆𝑗) is the covariance between two spikes trains 𝑆𝑖 and 𝑆 𝑗 . 𝜎(𝑆𝑖 , 𝑗) is the
standard deviation of each spike train and <> stands for average over all the possible
neuron pairs. CC is between −1 and 1. and takes high values only for synchronous
states [Destexhe, 2009, Renart et al., 2010, Fontenele et al., 2019]

The autocorrelation firing rate function (ACF) was computed as [Harris et al.,
2020]:

𝐴𝐶𝐹(𝜏) =
∑𝑁−1
𝑖=0 (𝑥𝑖− < 𝑥 >)(𝑥𝑖+𝜏− < 𝑥 >)∑𝑁−1

𝑖=0 (𝑥𝑖− < 𝑥 >)2
, (3.49)

where 𝜏 is the time lag, 𝑥 is the network firing rate and <> stands for the mean over
time. The global firing rate was defined as the sum of all network spikes in time bins.

3.4.5 Perturbational complexity index (sPCI)

In order to estimate perturbational complexity in brain slices and in the model,
we used an adaptation of the PCI used in humans [Casali et al., 2013], named sPCI
[D’Andola et al., 2018]. The stimulation electrode was placed in infragranular layers.
Pulses had a duration of 0.1 ms, an intensity of 150 − 200 mA, and were applied every
10 s, with a random jitter from 0.5 − 1.5 s to avoid activity entrainment to the specific
frequency of stimulation. A binary spatiotemporal distribution of significant activity was
calculated in the multiunit activity (MUA) signal: we assessed the statistical differences
between the network activity baseline and its response to the electrical stimulation
using a bootstrap procedure as in [D’Andola et al., 2018]. The significance threshold
was estimated as the one tail (1 − 𝛼) 99th percentile of the bootstrap distribution. Also,
we first low-pass filtered (< 10 Hz) the trial average computed on the MUA signal, and
considered significant only the periods in which the activity of each channel lay above
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the significance threshold for > 50 ms. The sPCI was then defined as the normalized
Lempel-Ziv complexity of the binary matrix of significant evoked MUA spatiotemporal
patterns [D’Andola et al., 2018]. It is worthy of note that members of the Sanchez-Vives
lab developed this algorithm, and it is not a result of the present thesis.

For the stimulation procedure performed in the model, described in Sec. 3.1.2,
we depolarized all the neurons by a brief (40 ms) external stimulation current of 0.5 nA
with an interval of stimulation of 5 ± 1 s (mean ± SD given). The sPCI was obtained
exactly as described above for brain slices.
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Chapter 4

Results

This thesis thoroughly investigates the mechanisms and dynamics of slow
oscillations (SO), an emergent pattern of activity generated by the cerebral cortex, from
a combined experimental and computational approach. SO is characterized by the
rhythmic alternations between periods of neuronal depolarization and discharge (Up
states) followed by periods of neuronal hyperpolarization and thus, silence (Down states,
also called off-periods). This pattern of activity is characteristic of slow wave sleep and
deep anesthesia but also spontaneously emerges in isolated cortical networks. Here, we
have used in vitro experimental data to shed light on the mechanisms by which SO are
maintained and thus also understand the mechanisms mediating brain transitions. Also,
we have implemented, modified and thoroughly investigated a network model of slow
oscillations. The development of these computational models is one of the central part
of this thesis, which allowed us to a directly comparison with experimental data and a
more detailed exploration of the parameter space. In the following, I will specifically
describe the results obtained in this thesis.

4.1 Role of SK calcium-activated potassium channels on cortical
slow oscillations

We first recorded from cerebral cortex slices (𝑛=8) that generated spontaneous
slow oscillations (SO), consisting of interspersed Up (active) and Down (silent) states. To
investigate the role of SK calcium-activated potassium channels (KCa) [Sah and Faber,
2002] on this network activity, we next applied apamin, a bee toxin that specifically
blocks this ionic current (IKCa) [Castle et al., 1989], and studied the changes in the
emergent pattern. Next, since there are experimental limitations to the understanding of
the mechanisms bridging from neuronal membrane properties to networks, we studied
the role of KCa channel in a biologically-plausible Hodgkin-Huxley model of the cerebral
cortex network.
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4.1.1 Effects of KCa channel blockade on the Up/Down state cycles

Figure 10 – Effect of KCa channel blockage on slow oscillations of a single recording.
(A), left: Local field potential (LFP; bandpass filtering), recorded with a tung-
sten electrode, and relative firing rate (LogMUA) of the spontaneous slow
oscillations (SO). Up states were detected from the LogMUA (see Methods
Sec.3.4). Middle: histogram of the relative firing rate values illustrating the
bimodality of SO. Right: raster plot of the relative firing rate. (B), Same as in
(A) for blockade of KCa channel by bath application of apamin (200 nM).
(C), Average firing rate for Up states during the control (orange) and apamin
(purple). Dashed line illustrating the increase of the firing rate slope of
Down to Up state transition. (D), Scatter plot of Up and Down duration.
Irregular ellipses stand for the bivariate (2D) kernel density estimate (KDE;
see Methods Sec.3.4 for details).

The baseline frequency of the slow oscillations (SO) in our experimental sample
was 0.40 Hz (mean 0.40 ± 0.14 Hz, n= 8), with a duration of Up/Down states of
0.82 ± 0.33 s and 2.27 ± 1.53 s respectively. KCa channel antagonist, apamin 200 nM,
after applied to the bath resulted in several changes in the Up states of the cortical slices
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(see Fig. 10 for a representative slice). The two main changes that were observed were
an increase in the population firing rate during the Up state and a shortening of this
period following the blockade of KCa channel (Fig. 10A, B, C and D). In the distribution
of Up and Down states in the case illustrated in Fig. 10B and D, there is also a visible
elongation of the Down states, albeit this was not significant at the population level.

Regarding the firing rate during Up states, the raster plots displayed in Fig. 10A
and B suggest a more synchronized, higher firing rate, with a change in the firing pattern
that appears less dispersed in the presence of apamin (compare Fig. 10A right column
with 10B right column). This relevant aspect of the Up state’s firing pattern and how it
is shaped by potassium adaptation (KCa channel) was later explored in detail in the
computational model.

We investigated different properties of slow oscillations at the population level
(Fig. 11). We found both the shortening of Up states (Control: 0.82 ± 0.33 s; Apamin:
0.55 ± 0.23 s, p= 0.0234, n=8) and an increase in the firing rate (Control: 1.05 ± 0.18
a.u.; Apamin: 1.43 ± 0.37 a.u., p= 0.0156, n= 8) to be significant at the population level.
Both properties are indeed mechanistically related, since it has been proposed that
the termination mechanism of the Up state is the recruitment of adaptation, being
dependent on the firing rate during the Up states [Compte et al., 2003]. Indeed, the slope
of Up state initiation was also significantly steeper in apamin (Control: 3.53 ± 2.85 s−1;
Apamin: 9.75 ± 4.26 s−1; p= 0.0312, n=8), suggesting a link between these three features
of the oscillation that we subsequently explored in the cerebral cortex model.

Other properties (Table 4), such as the Down states duration, the frequency of the
full oscillatory cycle, or the regularity (coefficient of variation) of the Up and Down states
and oscillatory cycle, did not significantly vary when blocking KCa channel (Fig. 11).
This is highly suggestive that the impact of the KCa channel is largely on the Up states’
firing pattern and initiation mechanisms, but less noticeable for the rest of the cycle,
even when in individual cases, the effect on the Down states is significant (Fig. 10D).

4.1.2 Impact of KCa channel on the cortical network model

To carry out a detailed, mechanistic, and quantitative exploration of the role
of KCa channel in the cortical network, we implemented a biophysically detailed
computational model of the cortical network (see Methods Sec. 3.1). The model can
reproduce many features of slow oscillations observed in in vitro [Compte et al.,
2003, Compte et al., 2008, ?]. It consists of pyramidal and inhibitory conductance-based
neurons equidistantly distributed on a line and interconnected through biologically
plausible synaptic dynamics. In the network, neurons are sparsely connected with
a probability that decays with the distance between them. This together with some
randomly distributed intrinsic parameters are the only source of noise in the model, i.e.,
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Figure 11 – Relative changes of Up and Down state properties during the blockage of
KCa channel. (A), Frequency of the Up and Down cycle (UD-cycle). (B), Up
state duration. (C), Down state duration. (D), Coefficient of variation (CV)
of UD-cycle duration. (E), CV of Up state duration. (F), CV of Down state
duration. (G), Relative firing rate of UD-cycle. (H), Relative firing during
Up states. (I), Relative firing rate during down states. (J), Transition slope
of Down to Up states . (K), Transition slope of Up to Down states. Relative
firing rate is defined as the mean LogMUA across time (see Methods Sec.3.4
for details). ∗ stands for a p-value p<0.05 (two-sided Wilcoxon signed rank
test).

neurons do not receive any external input (see Methods Sec. 3.1).

Our computational model generated spontaneous activity in the form of Up
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Table 4 – Relative changes of Up and Down state properties during the blockage of KCa
channel. P-value of a two-sided Wilcoxon signed rank test

Parameter Control (mean±sd) Apamim (mean±sd) p-value

Frequency (Hz) 0.40 ± 0.14 0.48 ± 0.18 0.19
Up state duration (s) 0.82 ± 0.33 0.55 ± 0.23 0.02
Down state duration (s) 2.27 ± 1.53 2.40 ± 0.92 0.38
CV Up-Down state cycle duration 0.38 ± 0.20 0.63 ± 0.31 0.05
CV Up state duration 0.29 ± 0.07 0.35 ± 0.16 0.25
CV Down state duration 0.26 ± 0.07 0.34 ± 0.16 0.31
Up-Down cycle relative firing rate 1.19 ± 0.58 1.21 ± 0.53 1
Up state relative firing rate 1.05 ± 0.18 1.43 ± 0.37 0.01
Down state relative firing rate 0.1 ± 0.09 0.12 ± 0.11 0.64
Down to Up transition slope (s−1) 3.53 ± 2.85 9.75 ± 4.26 0.03
Up to Down transition slope (s−1) −12.40 ± 6.63 −15.74 ± 7.40 0.21

(periods of persistent activity) and Down (periods of quiescence) states and the cortical
activity under blockade of KCa channels (Fig. 12A). In the model, the blockage was
performed by parametrically decreasing the maximal conductance (gKCa) from 100%
to 10% of KCa current (IKCa) in the pyramidal neurons. Representative dynamics of
pyramidal cells, their intracellular calcium concentration and interneurons, under
control, and KCa channel blockade are illustrated in Fig. 12B. Even when this is the
membrane potential of individual cells, the network dynamics are determined by the
recurrent connectivity between the cells and the intrinsic excitability, in absence of
any external input. The firing rate for individual excitatory neurons displays a typical
pattern, as the one that has been reported from intracellular recordings both in in
vitro [Sanchez-Vives and McCormick, 2000, Mann et al., 2009, Sanchez-Vives, 2012] and
in in vivo [Steriade et al., 1993c, Timofeev et al., 2000, Compte et al., 2009]. During an
Up state, with each action potential, there is calcium entering the cell and increasing
intracellular calcium in the submembrane compartment, which activates KCa channel
(Fig. 12B). Fast spiking neurons (interneurons) also express slow oscillations, however,
in our mode, they do not have KCa channel (Fig. 12B, bottom). When KCa channel
is decreased in the model through the blockage of KCa current (IKCa), simulating
experimental blockade with apamin, firing rate increased during Up states (Fig. 12A)
and the network activity became more regular (Fig. 12C), as a consequence of blocking
the SK-mediated adaptation. Interestingly, not only the pyramidal cells that have the
expression of KCa channel have an increment in its firing rate (Control: 1.05 ± 0.41 Hz,
90% KCa blockade: 2.41 ± 0.73 Hz) as fast spiking neurons too (Control: 17.28 ± 4.44 Hz,
90% KCa blockade: 26.69 ± 7.78 Hz) (Fig. 13A and B). This was concurrent with a more
regular spiking pattern, revealed by the absence of intermediate ISI (interspike intervals;
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Figure 12 – Impact of KCa channel on the cortical network model. (A), Slow oscillatory
activity in the form of Up and Down states in a control network (slow
oscillations, SO). (B), Effect of KCa channel blockade (90%) on the slow
oscillatory activity. (B), Representative membrane potential of pyramidal cell
(blue) and interneuron (red) as well as the intracellular calcium concentration
of pyramidal neurons, during SO (left) and blockage of KCa channel (right).
(C), Autocorrelation function of the network firing rate depicted in (A), for
control and blockage of KCa channel, respectively.

Fig. 12B and Fig. 13C).

To better understand the relationship between the firing rate and duration
of Up states we carried out a parametric variation of the KCa channel expression
(Fig. 13). We found that there was an inverse relationship with the firing rate, such
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Figure 13 – Impact of KCa channel on the cortical network model. (A) and (B), Mean
neuronal firing rate during control (slow oscillations, SO) and blockade
of KCa channel for pyramidal cells and interneurons, respectively. (C),
Pyramidal cells mean interspike interval during control (slow oscillations,
SO) and blockage of KCa channel. (D), Up state duration and neuronal firing
rate versus blockade of KCa. The Up state duration was estimated as the
mean network burst duration, see Methods Sec. 3.4.3). (E), Pairwise spiking
correlation histogram, where mean and standard deviations are 0.89 ± 0.06
and 0.97±0.02 for control and a blockage of 90% of KCa channel, respectively.
(F) the normalized average voltage fluctuations (𝜒) order parameter as a
function of KCa channel blockage.
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Figure 14 – Intrinsic neuronal properties shape emergent cortical activity. (A), Raster plot
of a control network (slow oscillations, SO; left) and during the blockade of
KCa channel (right). (B) Firing rate of subpopulation of neurons (15 neurons
per group) during an Up state for control (left) and during blockade of KCa
channel (right). (C), Average firing rate for Up states during the control
(orange) and blockage of KCa channel (purple). Dashed line illustrating the
increase of the firing rate slope of Down to Up state transition. (D), Wave
velocity propagation dependence on the KCa channel concentration. Blue
dot represents the full presence of KCa channel and orange dot the blockage
of 90% of KCa channel. Colors in (A), (B) and (C) stand for the concentration
of KCa channel depicted in (D).

that the lower the expression, the higher the firing rate and the shorter the duration
of Up states (here estimated as the mean pyramidal burst duration over the network
(Fig. 13D; see Methods Sec. 3.4.3). This effect suggests that, together with the regularity
expressed by the firing rate autocorrelogram (ACF; Fig. 12C) and the ISI distribution
(Fig. 13C), the network activity is more synchronized during the absence of KCa
channel expression. Through the analysis of spiking correlations, we found that the
pairwise spiking correlation structure under KCa channel blockage is different from
that observed in a control situation (Fig. 13E). The mean of pairwise spiking correlation
increased (Control: 0.89, KCa blockage: 0.97) together with a decrease in the standard
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Figure 15 – Effect of KCa channel on the cortical network dynamics and the slow
oscillatory cycle mechanisms. Top: firing rate versus Up state duration for
slice data (top left) and the cortical network model (top right) show the
critical role of KCa channel on the firing pattern and Up state duration.
Bottom: schematic representation of the periods composing an oscillatory
cycle and the KCa channels role.

deviation (Control: 0.06, KCa blockage: 0.02), indicating a more synchronous regime.
Also, the absence of intermediate interspike intervals during blockage of KCa channel
suggests, that the cellular membrane fluctuations may also reflect a synchronous regime.
In order to test that we implemented an order parameter (𝜒) proposed in [Golomb
et al., 2006] which quantifies the normalized average cellular membrane fluctuations.
By parametrically changing the KCa concentration, we found that, concurrent with
the network autocorrelogram (Fig. 12C), ISI distribution (Fig. 13C), and pairwise
spiking correlation (Fig. 13E), the absence of KCa introduce more regularity in the
membrane potential, i.e., a more synchronized state. Therefore, KCa has an important
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role decorrelating neuronal firing, as previously described in [Wang et al., 2003].

Also, in the model, we could detect a slight influence of KCa channel on the Down
states. However, given the time constant of the channel (150 ms; see Methods Sec. 3.1.1.1),
based on experimental data [Markram et al., 1995, Helmchen et al., 1996, Svoboda
et al., 1997, Wang, 1998] and the spikes per Up state, results on a weak influence on
the Down state which has an average duration of ∼ 5 seconds. However, this does not
imply that in other situations, for example, the response of a stimulus, or a pre-epileptic
discharge [Sanchez-Vives et al., 2010] it may have a different role.

Furthermore, the increment in the network synchronization (Fig. 13E and F)
caused by the blockage of KCa channel suggests that intrinsic properties of the neurons
become network properties. To examine it, we next evaluated a population phenomenon
(group of neurons) and a network property (interaction between group of neurons),
namely the slope of Down-to-Up transition (which had a significant difference for the
experimental data, Fig. 11J), and the velocity of propagation. As discussed above a more
regular activity is achieved when KCa channel is blocked, which becomes visible in
the raster plot (Fig. 14). By grouping nearby neurons in a population (15 neurons per
group) we were able to evaluate two aspects of the network: i) the slope of the transition
between Down to Up states (Fig. 14C) which was visually steeper for blockage of KCa
channel, following the experimental data (Fig. 11J); and ii) the wave propagation velocity
that is faster with the absence of KCa channel (Fig. 14D).

Together, all the above described metrics suggest that calcium dependent potas-
sium channel has a critical role in the firing pattern during Up states and in the membrane
fluctuations. We proceed then to analyze the experimental and model data relation
between each detected Up state and its firing rate. A relationship between both is
observed in the two cases (Fig. 15), i.e., the presence of KCa regulates the firing rate of
Up states and its duration. Within this picture, we proposed a cycle between Up and
Down states based on the intrinsic properties of the cells. Specifically, increasing the
intracellular calcium concentration activates the KCa channels which in turn determines
the firing pattern and firing rate in Up states as well as its duration, however having no
significant effects on the down state duration.

4.2 Impact of KCa and KNa channels on the dynamics of the
cortical network

Our model reproduced the slow alternation between periods of active states,
(Up states) and periods of almost no firing (Down states) observed experimentally
in in vitro preparations [Sanchez-Vives and McCormick, 2000, Compte et al., 2003].
Neurons are sparsely connected forming a recurrent network and were modeled by a
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Figure 16 – Network model. (A), Schematic representation of the spatial connectivity
and the neuron model. Our network is assumed to be 5 mm long and
is composed by pyramidal cells (E-cells) and interneurons (I-cells). The
probability of connection between neurons are given by Gaussian probability
distribution with distance decay, centered at each neuron, and with a
prescribed standard deviation 𝜎 (Methods Sec. 3.1.1.3). (B) Response of
a single pyramidal neuron when depolarized by a current of 0.5 nA for
0.5 s. The average firing is ∼ 36 Hz. Below intrinsic conductances for
sodium dependent potassium (gKNa) and calcium dependent potassium
(gKCa) channels, and the intracellular concentration for sodium ([Na]i) and
calcium ([Ca]i). (C) Rastergram of spontaneous network activity. Below
a representative pyramidal neuron intracellular somatic voltage and the
intrinsic conductance dynamics for gKNa and gKCa. For the simulations in
(B-C) gKNa= 1.0 mS/cm2 and gKCa= 0.9 mS/cm2.

variety of ionic channels (Fig. 16A; see Methods Sec. 3.1.1.1 for details). Disconnected
pyramidal neurons, when depolarized by a current of 0.5 nA during 0.5 s, fired at an
average of ∼ 36 Hz followed by spike-frequency adaptation, modeled here as sodium
and calcium dependent potassium currents, KNa and KCa, which are dependent on
the intracellular concentration of sodium and calcium, respectively (Fig. 16B). When
synaptically connected, neurons fired in bursting followed by long-lasting periods of
silence, ∼ 2s (Fig. 16C). These spontaneous Up and Down dynamics are guided by
recurrent excitation and slow afterhyperpolarization currents. When an adjacent group
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of neurons is together activated they trigger a cascade of recurrent excitation that brings
the network into the active state (firing regime). During this active state, slow activity-
dependent K+ start to accumulate reducing the neuronal excitability and eventually
bringing the network to a down state. After a slow recovery, guided by the decay time of
KNa and KCa currents, the neuronal excitability is recovered and the neurons are able
to engage again in an active state (Fig. 16C). Notice that the contribution of KNa and
KCa currents follow different intrinsic dynamics, where the latter accumulates faster
but also decay faster when compared to the former (Fig. 16C).

We call the attention here to the fact that the main features of the model can be
qualitatively reproduced even by changing intrinsic neuronal properties [Sancristóbal
et al., 2016]. However, some intrinsic parameters can directly affect the collective network
dynamics. In the next sections we explored potassium slow afterhyperpolarization
currents, namely IKCa and IKNa, that have been suggested to be critically implicated
in the stability of Up and Down dynamic [Steriade et al., 1993a, Sanchez-Vives and
McCormick, 2000, Bhattacharjee and Kaczmarek, 2005] (for a review see [Neske, 2016]).

4.2.1 Effect of modulating Ca2+-dependent K+ channel on network stability

To explore how the presence of KCa channel modulates the emergent pattern of
cortical slow oscillations, we departed from an expression in all cells and parametrically
blocked the activation of this channel on pyramidal neurons (randomly from 0% to 90%).
For each concentration of blockade, we also tested the dependence on the KCa maximal
conductance (gKCa, from 0.4 to 1.2 mS/cm2).

We first observed that blockade of KCa channel induced a more regular firing
pattern in the spontaneous network activity (Fig. 17A and B). For instance, in a control
network (with no KCa blockage), there is some spiking prior to the onset of an Up state
(Fig. 17A and B, left column), which indeed is part of the mechanism mediating the
initiation of a new Up state [Compte et al., 2003]. Conversely, when KCa channel is
blocked, fewer cells show spiking during the Down states followed by more firing rate
during Up states (Fig. 17A and B, middle and right column).

For a detailed quantification of the KCa impact on the spontaneous slow oscilla-
tions, we analyzed the Up state duration by estimating the average width of the peak of
spike-train autocorrelation function (ACF) for each neuron in the network (Fig. 17C). As
observed in the single membrane potential of the embedded neurons in the network
(Fig. 17B), when blocking the activation of KCa channel, the width of ACF becomes
narrow and high, indicating a shortening in the Up state and an increment in the
neuronal firing rate (Fig. 17C). Indeed, when we parametrically altered the blockade of
KCa, we observed that the Up state duration became shorter, reaching stable values for
a blockade greater than 50% (Fig. 18A). We also noticed that the Up state’s duration
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Figure 17 – Network activity under Ca2+-dependent K+ channel modulation. (A), Impact
of Ca2+-dependent K+ (KCa) modulation on spontaneous network slow
oscillations (visualized as multi-unit recordings, 15 neighboring cells per
site). (B), Representative network neurons membrane potential (Vm). Arrow
point at −86 mV for voltage traces. (C), Spike-train autocorrelation (ACF):
solid lines represent the Gaussian fit to the autocorrelation’s central peak,
from which the Up state duration is estimated. KCa blockage in (A-C):
control 0% (left column), 40% (middle column) and 80% (right column),
respectively. Simulations in (A-C) were run with gKCa= 1.1 mS/cm2.

for low blockage of KCa is larger for higher values of KCa maximal conductance (gKCa,
Fig. 18A). Furthermore, we notice how the standard variation of the Up state duration
reached low values for large values of KCa blockage, suggesting though a more regular
dynamics (Fig. 18A inset).

We next evaluated the evolution of the mean neuronal firing rate (FR). We
observed an almost linear increment on the FR while progressively blocking the
activation of KCa, independent of the KCa maximal conductance (Fig. 18B). Also, the
autocorrelogram peaks of the global network FR indicate an even more synchronized
network when KCa activation was blocked (Fig. 18C, ACF peak values are: 0.79, 0.82
and 0.85 for a blockage of 10%, 70% and 90%, respectively). ACF also indicates that the
down duration becomes longer for larger blockage of KCa current (compare the time lag
for different concentrations in Fig. 18C). To further quantify the synchronization in these
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Figure 18 – Effects of progressive Ca2+-dependent K+ channel modulation on slow
oscillations. (A), Duration of Up states, estimated as the spike-train autocor-
relation width averaged over all neurons as a function of Ca2+-dependent K+

(KCa) channel modulation. Inset: standard deviation of Up state durations
for gKCa= 0.6 nS. (B), Mean neuronal firing rate (F.R.) as a function of KCa
modulation. (C), Global network F.R. autocorrelation function. (D), Pairwise
spiking correlation histogram, where mean and standard deviation are
0.70 ± 0.24, 0.77 ± 0.20 and 0.81 ± 0.18 for a blockage of 10%, 70% and 90%
of KCa channel, respectively. Shadow areas in (A-B) represent the standard
deviation over 10 different simulations; markers stand for different values of
KCa maximal conductance (gKCa), described in (B). The color code in (C-D)
represents different values of KCa blockage, as described in (C). Simulations
in (C-D) were run with gKCa= 1.1 mS/cm2.

networks, we computed the pairwise spiking correlations. In those networks where KCa
channel was more active a slightly wider histogram was observed (mean correlation:
0.70 ± 0.24, for 10% of KCa blockage), than those with less KCa activation (mean
correlation: 0.81 ± 0.18, for 90% of KCa blockage), indicating than a less synchronized
state (Fig. 18D).
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Figure 19 – Modulation of Na+-dependent K+ channel breaks-off Up and Down network
dynamics. (A), Impact of Na+-dependent K+ (KNa) channel modulation on
spontaneous network slow oscillations (visualized as multi-unit recordings,
15 neighboring cells per site). (B), Representative network neuron membrane
potential, where Vw stands for neurons with the presence of KNa channel
and Vwo stands for those without KNa channel. Arrows point at −80 mV
for voltage traces. (C), Global network firing rate (F.R.) autocorrelation
function (ACF) for the three cases depicted in (A). (D), Pairwise spiking
correlation histogram, where mean and standard deviation are 0.96 ± 0.05,
0.82 ± 0.15 and 0.48 ± 0.20 for a blockage of 0%, 60% and 80% of KNa
channel, respectively. (E) Mean neuronal firing rate (F.R.) as a function of
KNa modulation. Simulations in (A-D) were run with gKNa= 0.4 mS/cm2.

4.2.2 Effect of modulating Na+-dependent K+ channel on network stability

We next explored whether the alone manipulation of the sodium-dependent
potassium channel (KNa) might modulate the regime of slow oscillations (SO). KNa
activation blockage had a strong effect on the modulation of the spontaneous Up and
Down network dynamics (Fig. 19A). For an increment on the KNa blockage the network
departs from Up and Down dynamics to a more asynchronous irregular activity state,
which is reflected by the multi-unit activity (Fig. 19A), the neuronal membrane potential
(Fig. 19B), the global network firing rate autocorrelation function (Fig. 19C) and by the
pair-wise spike correlation (Fig. 19D). Indeed, looking at the membrane potential of
those neurons embedded in such networks, we noticed the transition from bursting
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firing to a persistent firing (tonic-firing) which is characteristic of states of vigilance or
awake-like states (Fig. 19B). Such transition was also followed by an increment in the
mean neuronal firing rate, independently of the KNa maximal conductance (Fig. 19D).
Interestingly, independent of the network state, those neurons which had (Vw) and
did not have (Vwo) the presence of KNa channel, displayed similar dynamics (Fig. 19B,
compare Vw with Vwo. We will return to this point in the next section).

Figure 20 – Network synchronization dependence on Na+-dependent K+ channel. (A),
Spike-train power spectrum, estimated with a multi-taper estimator, for
different Na+-dependent K+ (KNa) channel modulation. (B), Main oscillatory
frequency as a function of the KNa channel’s modulation. Network synchrony
measures: (C) the normalized average voltage fluctuations (𝜒), and (D)
complex phase order parameter (R). The same color code and markers apply
to (B-D).

We next looked at the frequency content modulation by KNa activation blockage
evaluating the normalized spike-train power spectrum. We observed a departure from
low frequencies (∼ 1 Hz) with high power, to higher frequencies (∼ 5 Hz) with low
power (Fig. 20A). The main network frequency was modulated by the presence of KNa
channel in an exponential-like way, being independent of the KNa maximal conductance
(gKNa) (Fig. 20B). To further characterize the network transition, from synchronous
to asynchronous states, we used two different metrics, one based on the neuronal
membrane potential fluctuations (𝜒) and the other based on the spiking phase of the
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neurons (R) (see Methods Sec. 3.4). Both metrics (𝜒 and R) exhibited the same panorama:
a transition from synchronous (𝜒 and R values close to one) to desynchronized (𝜒 and R
values close to zero) states (Fig. 20C and D), independently of gKNa. Furthermore, 𝜒 and
R metrics showed a slow decay of synchronization for blockage less than 60%, and a
steeper decay for values above 60%.

4.2.3 Single neurons dynamics within a network

The spontaneous neuronal activity dynamics of each neuron, when embedded in
a network, are almost indistinguishable, even though the neurons have different intrinsic
properties, i.e., the presence or not of KNa channel (Fig. 19B). This is a critical finding
of this study, since it evidences that intrinsic, ionic channels-dependent properties, are
seamlessly transmitted to the recurrent network, such that the emergent patterns are
virtually identical in cells with and without the ionic channels. To better understand if
this effect is exclusively due to KNa or due to the heterogeneity of the network (e.g.,
maximal conductance of K+ leak channel, see Methods), we proceeded to analyze two
isolated identical neurons (i.e. with the same set of parameters, except for the presence
or not of KNa) subject to a plausible network input (Fig. 21A). In Fig. 21B we show the
membrane potential traces for two isolated neurons when submitted to the same network
input (Fig. 21B EPSP and IPSP) where the incidence was 90%, 70% and 10% of KNa
channel. A more excitable membrane potential for the neuron without KNa (Vwo) can be
observed when compared to the one with KNa (Vw) channel (Fig. 21B). To quantify these
differences we measured the mean firing rate (Fig. 21C), the mean inter-spike-interval
(Fig. 21D) and the minimum membrane potential (Fig. 21E) of these two neurons. As
illustrated by the membrane potential traces (Fig. 21B), the neurons without KNa show
a higher firing rate (Fig. 21C) followed by a shorter inter-spike-interval (Fig. 21D) when
compared to the neuron with KNa. The minimal membrane potential also indicates a
more depolarized membrane potential for the neurons without KNa (Fig. 21E).

4.2.4 Dependence of slow afterhyperpolarization currents on off-periods

We next simulated the evoked network activity to shed light on the activity-
dependent K+ afterhyperpolarization channels role on the off-periods [Pigorini et al.,
2015, Rosanova et al., 2018]. Our approach consisted in, during a regime of slow
oscillations, stimulating by a depolarizing current a group of neurons to evoke a network
response. Once the network activity starts to fell down to an off-period we then block KCa,
KNa, or both together (AHP) to better understand the contribution of each current on
the break of causality (off-period). First, we characterized the network response without
any channel activation blockage (Fig. 22 left column). The stimulation procedure evoked
an active state followed by the occurrence of an off-period, characterized by almost no



Chapter 4. Results 64

Figure 21 – Contribution of Na+-dependent K+ channel to spontaneous neuronal activ-
ity. (A), Schematic representation of the excitatory postsynaptic potential
(EPSP) and inhibitory postsynaptic potential (IPSP) extraction from a neuron
embedded in a network and converting it to an input to an isolated neuron
with (red, Vw) and without (blue, Vwo) the presence of Na+-dependent
K+ (KNa) channel. (B), Neuronal membrane potential for neurons with
(Vw) and without (Vwo) KNa channel, under three different network inputs
(EPSP+IPSP), representing the distinct dynamical states. Below, excitatory
(EPSP) and inhibitory (IPSP) postsynaptic potential served as external input:
network input with 90% (left column), 70% (middle column) and 10% (right
column) of KNa concentration. (C-E), Comparison of the KNa channel
activation impact on single neuron properties: (C) firing rate, (D) mean
inter-spike-interval and (E) minimum membrane potential. The same color
code from (A) applies to (C-E).

spiking activity (Fig. 22A left column) and consequently without excitatory or inhibitory
post-synaptic potentials (EPSP and IPSP; Fig. 22B left column). Also, the simulated local
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Figure 22 – Impact of slow potassium dependent currents on evoked network activity.
(A), Network response (200 neurons depicted) to a brief stimulation: control
condition (no blockage, left column), blockage of Ca2+-dependent K+ (KCa)
channel (middle-left column), blockage of Na+-dependent K+ (KNa) chan-
nel (middle-right column) and blockage of afeterhyperpolarization (AHP,
KCa+KNa) channels (right column). Stimulation was applied to a group of
52 neurons and channel activation blockage occurred 400 ms after stimu-
lation. (B), Mean excitatory and inhibitory postsynaptic potentials (EPSP
and IPSP, respectively). (C), Network local field potential (mean neuronal
membrane potential). (D), Mean network conductance dynamics for KCa,
KNa and AHP (KCa+KNa). Below, representation of network stimulation:
neurons are depolarized by a 0.5 nA current during 100 ms. Simulations
were run for networks with 90% KNa concentration, 100% KCa concentration,
gKNa= 0.8 mS/cm2 and gKCa= 0.9 mS/cm2.

field potential (Fig. 22C left column) showed a clear network response after stimulation
followed then by an off-period. We also observed that Ca2+-dependent K+ (KCa) channel
accumulated faster than Na+-dependent K+ (KNa) channel during the active stated,
although KCa decayed faster than KNa, suggesting though a different participation of
KCa and KNa in the off-period (Fig. 22D left column). We next evaluated the individual
contribution of each K+-dependent channel on the off-period. The blockage of KCa
channel allowed the network activity to re-enter in an active state again and only after that
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reached a period of silence (Fig. 22 middle-left column), which was probably caused by
the high activation of KNa channel (Fig. 22D middle-left). Conversely, when we blocked
the activation of KNa channel, the network also re-entered the active state, although
not falling back into a Down state. Instead, the after stimulation state was characterized
by a reverberating-like activity (similar to the effect of cholinergic and noradrenergic
neuromodulation [Barbero-Castillo et al., 2021]; Fig. 22 middle-right column). Finally,
when we blocked the activation of both activity-dependent K+ afterhyperpolarization
channels, the network entered in a fully active state where the spontaneous activity was
characterized by an asynchronous-like dynamics (Fig. 22 right column).

4.3 Role of voltage gated K+ channel (M-current) on cortical
slow oscillations

The voltage-gated K+ channel 7 (KV7) generates the M-current (IM) and is
suppressed by the activation of muscarinic acetylcholine receptors, which in turn
leads to a transient increase in excitability and underlies some forms of cholinergic
excitation [Brown, 2010, Radnikow and Feldmeyer, 2018]. Here, we first recorded
from cerebral cortex slices (n= 7) that generated spontaneous slow oscillations (SO),
consisting of interspersed active (Up states) and almost silent (Down states) periods. In
order to investigate the role of voltage-gated K+ channel (IM current) on this network
activity, we next bath applied 100𝜇M of XE991, which specifically blocks the M-current,
and studied the changes in the emergent pattern (Fig. 23A). Finally, since there are
experimental limitations to the understanding of the mechanisms bridging from neuronal
membrane properties to networks, we implemented and studied the role of M-current
in a biologically-plausible Hodgkin-Huxley network model of the cerebral cortex.

4.3.1 Effects of M-current blockade on the Up/Down state cycles

The baseline frequency of the slow oscillations (SO) in our experimental sample
was 0.42 Hz (mean 0.42 ± 0.13 Hz, n= 7), with a duration of Up/Down states of
0.50 ± 0.08 s and 2.58 ± 0.99 s respectively (Fig. 23B). M-current blocker, XE991 100𝜇M,
applied to the bath resulted in changes in the Up states of the cortical slices (Fig. 23C).
The main changes that were observed were an increase in the population firing rate
during the Up and Down states (Fig. 24) and elongation of Up states following the
blockade of M-current (Fig. 24A and B). In the distribution of Up and Down states in the
case illustrated in Fig. 24B, there is also a visible elongation of the Down states, albeit
this was not significant at the population level.

In Table 5, we summarized the effects of M-current blockage described in Fig. 25.
Notice that, as shown in the raster and density plot of Fig. 24, the Up duration and firing
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Figure 23 – Effect of M-current blockage on slow oscillations of a single recording. (A),
Schematic representation of multielectrode array (16-channels) recording
during control (slow oscillations, SO) and after the blockage of M-current
through bath application of 100𝜇M of XE991. (B), Representative recording
during control slow oscillations (purple; left), and its firing rate distribution
(right). (C), Representative recording after bath application of XE991, the M-
current blocker (green; left) and its firing rate distribution (right). Grey and
red shadowed area represent the Up and Down state detection, respectively.

rate were widely distributed compared to the control condition , i.e., more dispersed
than control (see standard deviation in Table 5). Next, we explored these features in
detail in the computational model.

Table 5 – Relative changes of Up and Down state properties during the blocakge of
M-current. P-value of a two-sided Wilcoxon signed rank test

Parameter Control (mean±sd) XE991 (mean±sd) p-value

Frequency (Hz) 0.42 ± 0.13 0.31 ± 0.11 0.10
Up state duration (s) 0.50 ± 0.08 1.59 ± 0.93 0.01
Down state duration (s) 2.58 ± 0.99 2.56 ± 1.48 0.81
Up state relative firing rate 0.61 ± 0.30 1.35 ± 0.59 0.01
Down state relative firing rate 0.05 ± 0.04 0.18 ± 0.12 0.01
Relative firing rate per second 34.42 ± 22.04 116.19 ± 69.49 0.01
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Figure 24 – Modulation of Up and Down states through the blockage of M-current. (A)
Raster plots of relative firing rate (LogMUA) of all Up and Down states
detected in control (top row) and blockage of M-current (bottom row). (B),
Scatter plot of Up and Down durations. Irregular ellipses stand for the
bivariate (2D) kernel density estimated (KDE). For details see Methods
Sec. 3.4
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Figure 25 – Relative changes of Up and Down state properties during the M-current
blockage. (A), Frequency of the Up and Down cycle (UD-cycle). (B), Up state
duration. (C), Down state duration. (D), Relative firing during Up states. (E),
Relative firing rate per second. Relative firing rate is defined as the mean
LogMUA across time (see Methods Sec. 3.4). ∗ stands for a p-value p<0.05
(two-sided Wilcoxon signed-rank test).

4.3.2 Impact of M-current on the cortical network model

In order to explore the role of M-current in the cortical network, we implemented
a cortical network model of slow oscillations (SO) proposed by Compte et al. [Compte
et al., 2003]. Although this model has been able to reproduce many features of SO
observed in in vitro [Compte et al., 2003, Compte et al., 2008, Sanchez-Vives et al., 2010]
it does not account for the M-current. With the aim of exploring the effects of M-current
on the cortical network model, we slightly modified the original model including the
M-current model described in [McCormick et al., 1993] (see Methods 3.1.1.4 for details).

Our model was able to reproduce the Up (active state) and Down (silent state)
dynamics observed during the slow oscillations as well as the activity under blockage
of M-current (Fig. 26). To explore the M-current effect on the model we parametrically
decreased its maximal channel conductance (𝑔𝑀) from 100% to 10% in the pyramidal
neurons. The periodic alternation between Up and Down states during control slow
oscillations (Fig. 26A) became more irregular after the blockage of the M-current
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Figure 26 – Impact of M-current on the cortical network model. (A) left, Slow oscillatory
activity in the form of Up and Down states in a control network (slow
oscillations, SO) visualized as the sum of network activity (top) and raster
plot (bottom). (A) right, Effect of M-current blockage (80%) on the slow
oscillatory activity. (B), Representative membrane potential of the pyramidal
cell as well the intrinsic channel conductances for M, sodium (KNa) and
calcium (KCa) dependent potassium currents for control (left column) and
under partial blockage of M-current (right). Blue and red dots in (A) stand
for pyramidal cells and interneurons, respectively.
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(compare autocorrelation function, ACF, in Fig. 26A, left and right). Also, irregular waves
emerged in the system after M-current blockage (see raster plot in Fig. 26A, right). The
dynamics of single neurons during control display typical dynamics of pyramidal cells
during SO [Sanchez-Vives and McCormick, 2000, Steriade et al., 1993b]. Following each
action potential, there was an increase in the main afterhyperpolarization currents of the
model: M-current, sodium-dependent potassium current (IKNa) and calcium-dependent
potassium current (IKCa). When the network was no more excitable enough to sustain
the periods of high activity (Up states) it entered in a silent state (Down state). After the
decay of M, KNa, and KCa currents the network, through its recurrent excitation, was
able to trigger a new Up state. After the blockage of M-current, the single neuron activity
reverted to activity with less periodicity and longer Up states showing periods of longer
tonic firing, a pattern reminiscent of the awake-like states (see data in [Timofeev et al.,
2001] for comparison).

Seeking to better understand the relationship between the firing rate and duration
of Up states we carried out a parametric variation of the M-current (Fig. 27). As visible by
the membrane potential of single neurons in Fig. 26B, the neuronal firing rate increase,
when the M-current is decreased, not only for pyramidal neurons (Control: 3.02±0.99 Hz,
80% M blockage: 6.81± 1.94 Hz), but also for inhibitory neurons (Control: 7.04± 1.74 Hz,
80% M blockage: 16.29 ± 3.39 Hz), that does not contain the M-current (Fig. 27A and
B). The interspike interval distribution, for the control situation, shows a clear decrease
in density for intermediate time values, which are typical of slow oscillations where it
represents the Down state. Conversely, when M-current is decreased a more uniform
distribution of ISI is observed, i.e., a less clear time separation - resembling the tonic firing
(Fig. 27C). We also found that there was a correlated relationship between the duration of
Up states with the firing rate, such that the lower the expression, the higher the duration
of Up states and the firing rate (Fig. 27D). We next, looked at the synchronization within
neurons. The mean of pairwise spiking correlation decreased (Control: 0.90, 80% M
blockage: 0.72) together with an increase in the standard deviation (Control: 0.06, 80%
M blockage: 0.20), indicating a less synchronous regime after the blockage of M-current.
Also, the absence of intermediate ISIs during blockage of M-current suggests a less
synchronous regime, due to the lack of quiescent periods. In order to test that we
implemented an order parameter (𝜒) proposed in [Golomb et al., 2006] which quantifies
the normalized average cellular membrane fluctuations. By parametrically changing the
M-current concentration, we found that, concurrent with the network autocorrelogram
(ACF in Fig. 26A), ISI distribution (Fig. 27C), and pairwise spiking correlation (Fig. 27E),
the low expression of M-current introduce, in a nonlinear shape, more fluctuations in
the membrane potential, i.e., a more desynchronized state (Fig. 27F).
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Figure 27 – Network features under M-current blockage in the cortical model. (A) and (B),
Neuronal firing rate distribution during control (slow oscillations, SO) and
blockage (80%) of M-current for pyramidal cells and interneurons, respec-
tively. (C), Interspike interval distribution (ISI) for pyramidal cells during
SO and M-current blockage. (D), Pairwise spiking correlation distribution
as a function of M-current expression. Inset: normalized average voltage
fluctuations (𝜒) order parameter. (E) and (F), Up and Down state duration
and neuronal firing as a function of M-current expression, respectively. Up
and Down state were detected arbitrarily thresholding the network activity.
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Figure 28 – Effect of H-current blockage on slow oscillations of a single recording. (A),
Schematic representation of multielectrode array (32-channels) recording
during control (slow oscillations) and after the blockage of H-current through
bath application of 10𝜇M of ZD7288. (B), Representative recording during
control slow oscillations (red; left) and its firing rate distribution (right). (C),
Representative recording after bath application of ZD7288, the H-current
blocker (blue; left) and its firing rate distribution (right). Grey and red
shadowed area represent the Up and Down state detection, respectively.

4.4 Role of hyperpolarization-activated cation channel (H-current)
cortical slow oscillations

The hyperpolarization-activated cation current (H-current, IH) is believed to be
critical to the generation of slow periodic rhythms in the thalamocortical system [Lüthi
and McCormick, 1998b, Lüthi and McCormick, 1999]. Studies of thalamocortical relay
neurons have shown that H-current inactivation results in hyperpolarization of the cells
slowing the frequency of spindle oscillations [Lüthi and McCormick, 1998b, McCormick
and Pape, 1990, McCormick and Huguenard, 1992]. Although, H-current has been
proposed to have a substantial role in the slow periodicity of thalamocortical rhythms
during sleep (such as spindle waves) [Williams et al., 1997, Hughes et al., 1999, Lüthi and
McCormick, 1999] it is still not clear the H-current impact the slow rhythmic oscillations
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in an isolated cortical model (see [Lüthi and McCormick, 1998a, Neske, 2016] for a
review).

4.4.1 Effects of H-current blockade on the Up/Down state cycles

Here, we first recorded from the isolated cerebral cortex slices (n= 7) that
generated spontaneous slow oscillations (SO), consisting of interspersed active (Up states)
and almost silent (Down states) periods. To investigate the role of the hyperpolarization-
activated cation current (IH) on this network activity, we next bath applied 10𝜇M of
ZD7288, a blocker of IH, and studied the changes in the emergent pattern (Fig. 28A).
Finally, since there are experimental limitations to the understanding of the mechanisms
bridging from neuronal membrane properties to networks, we implemented and studied
the role of H-current in a biologically-plausible Hodgkin-Huxley model of the cerebral
cortex network. The baseline frequency of the slow oscillations in our experimental
sample was 0.44 Hz (mean 0.44 ± 0.2 Hz, n= 7), with a duration of Up/Down states
of 0.28 ± 0.04 s and 3.59 ± 1.92 s respectively (Fig. 28B and Fig. 29A, top row; Table 6).
H-current blocker, ZD991 10𝜇M, applied to the bath resulting in changes in the Up
and Down of the cortical slices (Fig. 28C and Fig. 29A, bottom row). The main changes
that were observed were an elongation of Up and Down states duration following the
blockade of H-current (Fig. 29), and no significant differences in the Up and Down cycle
frequency. Also, regarding the firing rate, no significant changes were observed at the
population level (Fig. 30). In Table 6, we summarized the effects of H-current blockage.

Table 6 – Relative changes of Up and Down state properties during the blockage of
H-current. P-value of a two-sided Wilcoxon signed rank test

Parameter Control (mean±sd) ZD7288 (mean±sd) p-value

Frequency (Hz) 0.44 ± 0.20 0.32 ± 0.11 0.40
Up state duration (s) 0.28 ± 0.04 0.57 ± 0.22 0.03
Down state duration (s) 3.59 ± 1.92 8.14 ± 5.94 0.03
Up state relative firing rate 1.75 ± 0.32 1.64 ± 0.55 0.68
Down state relative firing rate 0.22 ± 0.06 0.24 ± 0.05 0.62
Relative firing rate per second 75.62 ± 13.10 73.79 ± 9.04 0.43

4.4.2 Impact of H-current on the cortical network model

To further explore the role of H-current on the slow oscillations we imple-
mented a modified version of a cortical network model of SO proposed by Compte
et al. [Compte et al., 2003]. It consists of pyramidal and inhibitory conductance-based
neurons interconnected through biologically plausible synaptic dynamics. Such model
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Figure 29 – Modulation of Up and Down states through the blockage of H-current. (A)
Raster plots of relative firing rate (LogMUA) of all Up and Down states
detected in control (top row) and blockage of H-current (bottom row). (B),
Scatter plot of Up and Down durations. Irregular ellipses stand for the
bivariate (2D) kernel density estimated (KDE). For details see Methods
Sec. 3.4.
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Figure 30 – Relative changes of Up and Down state properties during the H-current
blockage. (A), Up state duration. (B), Down state duration. (C), Frequency
of the Up and Down cycle (UD-cycle). (D), Relative firing during Up states.
(E), Relative firing during Down states (F), Relative firing rate per second.
Relative firing rate is defined as the mean LogMUA across time. ∗ stands for
a p-value p<0.05 (two-sided Wilcoxon signed rank test).

is able to reproduce many features of slow oscillations observed in vitro [Compte et al.,
2003, Compte et al., 2009, Sanchez-Vives et al., 2010]. Nevertheless, it does not account
for the H-current. By adjusting the ionic current’s maximal conductances we introduced
a model of H-current described in [Hill and Tononi, 2005]. Importantly, only 30% of the
pyramidal neurons were modeled with the presence of H-current (see Methods 3.1.1.4
for details). Thus, when we refer to blockage of H-current it means that we are decreasing
the maximal conductance of H-current on the 30% of neurons that are modelled with it.

Our model was able to display the periods of persistent activity (Up states)
followed by quiescent periods (Down states) (Fig. 31A and B, left). Also, it reproduces
the dynamic activity under blockage of H-current (Fig. 31A and B, right). We explored the
H-current effect on the cortical network model by parametrically decreasing its maximal
channel conductance (𝑔𝐻) from 100% to 10% in the pyramidal cells that account for the
H-current (see Methods 3.1.1.4). The periodic alternation between Up and Down states
during control slow oscillations remained after the blockage of H-current, although
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Figure 31 – Impact of H-current on the cortical network model. (A) left, Slow oscillatory
activity in the form of Up and Down states in a control network (slow
oscillations, SO) visualized as the sum of network activity (top) and raster
plot (bottom). (A) right, Effect of H-current bloackge (80%) on the slow
oscillatory activity. (B), Representative membrane potential of pyramidal
cell as well the intrinsic channel conductances for H, sodium (KNa) and
calcium (KCa) dependent potassium currents for control (left column) and
under partially blockage of H-current (right). Blue and red dots in (A) stand
for pyramidal cells and interneurons, respectively.

it showed larger Up and Down states duration (Fig. 31A). By looking into the single
pyramidal cells voltage membrane we observed how the intrinsic properties changed
over time (Fig. 31B). For the control SO we observed a typical dynamics pyramidal cells
during SO observed in vitro and in vivo preparations [Sanchez-Vives and McCormick,
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2000, Steriade et al., 1993b]. The hyperpolarization-activated cation current (H-current)
was activated during periods of quiescence while afterhyperpolarization currents were
inactivated (Fig. 31B, left). After the blockage (20%) of H-current, through the reduction
of 𝑔𝐻 , we observed a longer period of silence (Down states) followed by longer periods of
depolarization (Up states), where the H-current was active for a longer period (Fig. 31B,
right).

To better understand the relationship between SO and the expression H-current
we performed a parametric variation of H-current in the network model. The mean
pyramidal firing rate decreased when the H-current expression was lowered (Control:
2.91 Hz, 80% H-blockage: 2.06 Hz) as well as the mean interneurons firing rate (Control:
7.04 Hz, 80% H-blockage: 4.46 Hz; Fig. 32A and B). The interspike interval (ISI)
distribution showed an absence of intermediate values for the blockage of H-current,
due to the longer period of afterhyperpolarization (Fig. 31B and Fig. 32C). The presence
of longer quiescent periods (Down states) could reflect a more synchronous regime
in the network. We next proceed to measure the network synchronization evaluating
spiking correlations and fluctuations of the membrane potential. The mean spiking
correlation indicated a less pronounced synchrony of the network after lowering the
expression of H-current (Control: 0.90 ± 0.06, 80% H-blockage: 0.86 ± 0.10 Hz; Fig. 32D).
However by evaluating the synchronization through membrane potential fluctuations a
more synchronous regime was found when the network expressed less concentration of
H-current (Fig. 32D, inset). Regarding the firing rate and Up and Down state relationship,
we observed an anticorrelated increment with the firing rate, such that the lower the
expression, the lower the firing rate and the longer the duration of Up and Down states
(Fig. 31E and F).

4.5 Spatiotemporal complexity on cortical states

The cerebral cortex exhibits a rich dynamic repertoire of activity ranging from
highly synchronized to asynchronous states. Each of these states, either physiological or
pathologic, can be characterized by its spatiotemporal complexity. An approach used in
the clinic to quantify cortical complexity is the perturbational complexity index (PCI),
which quantifies the causal interactions that follow an exogenous perturbation of the
cortex [Casali et al., 2013]. It consists of estimating the Lempel-Ziv [Ziv and Lempel,
1977, Ziv and Lempel, 1978] complexity of the spatiotemporal matrix of cortical activation
after perturbation. However, how cellular, synaptic and network parameters modulate
cortical spatiotemporal complexity are not clear. It is known that cortical processing
there is co-occurrence of excitation and inhibition both during spontaneous activity
and in response to stimulation. Here, we sought to investigate the relevance of fast
inhibition, GABA-A receptors-mediated, and slow inhibition, mediated by GABA-B-Rs,
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Figure 32 – Network features under H-current blockage in the cortical model. (A) and
(B), Neuronal firing rate distribution during control (slow oscillations, SO)
and blockage (80%) of H-current for pyramidal cells and interneurons,
respectively. (C), Interspike interval distribution for pyramidal cells during
SO and H-current blockage. (D), Pairwise spiking correlation distribution
as a function of H-current expression. Inset: normalized average voltage
fluctuations (𝜒) order parameter. (E) and (F), Up and Down state duration
and mean neuronal firing as a function of H-current expression, respectively.
Up and Down state were detected arbitrarily thresholding the network
activity.

on cortical complexity. This section is based on our publication Barbero-Castillo et
al. [Barbero-Castillo et al., 2021] and Dalla Porta and Sanchez-Vives [DALLA PORTA
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and Sanchez-Vives, 2021].

4.5.1 Impact of slow and fast inhibition on perturbational complexity in cortical
slices

In vitro extracellular 16−channel local field potentials (LFPs) were recorded from
ferret primary visual cortex (V1) coronal slices (𝑛 = 58) during two different regimes of
spontaneous activity: i) synchronous activity consisting in spontaneous Up and Down
states organized in slow oscillations (SO) (Fig. 33 A, left); and (ii) asynchronous activity
(Fig. 33 A, right).

In our experimental paradigm, cortical slices displayed spontaneous SO similar to
the ones occurring in vivo during slow wave sleep (SWS) [Sanchez-Vives and McCormick,
2000]. Oscillatory frequencies in the different slices ranged from 0.2 to 0.92 Hz (mean
0.476 ± 0.02 Hz, n= 58). While the synchronous slow oscillatory activity replicates the
dynamics of SWS, asynchronous activity in the slice can mimic that of awake states .
In cortical slices, asynchronous states can be mimicked by adding neurotransmitters,
through bath application of noradrenaline (NE) and acetylcholine (ACh), present in
awake states [McCormick, 1992, Brumberg et al., 2000, Jones, 2005, D’Andola et al.,
2018]. Even when cholinergic and noradrenergic agonists are reported to block SO
through the blockade of afterhyperpolarizations [Steriade et al., 1993a], we still observe
synchronization at a frequency higher than spontaneous SO, at ∼ .4 Hz (see Fig. 33 A−C).
In order to obtain a more asynchronous (desynchronized) activity, we used additional
strategies based on previous studies, recording at 32°C [Reig et al., 2010] and lowering
calcium in the bath from 1˘1.2 mM to 0.8˘0.9 mM [Markram et al., 2015] to enhance
excitability (see Fig. 33 A−C).

Aiming to quantify the complexity of network responses to single-pulse electrical
stimulation (ES), we used an adapted version of the PCI [Casali et al., 2013] for slice
recordings (sPCI) [D’Andola et al., 2018]. During ongoing SO, ES evoked a response
followed by a sudden decrease in activity, Down state (Fig. 33 D, left) or what, in humans,
has been referred to as "off-periods" [Rosanova et al., 2018], resembling reported findings
for LFP recordings in humans [Pigorini et al., 2015, Rosanova et al., 2018]. According to
the sPCI algorithm by [D’Andola et al., 2018] and to quantify the spatiotemporal patterns
of response to ES, we converted the raw LFP traces obtained from multielectrode array
recordings to firing rate signals (specifically to LogMUA) and computed the binary
matrices of significant activity (Fig. 33 D; see Methods Sec. 3.4.5 for details). We then
compressed the spatiotemporal binary matrices of significant sources with a Lempel-Ziv
algorithm and normalized them by the source entropy to finally obtain the sPCI. Under
synchronous, SO activity, the sPCI was 0.1 ± 0.002 (range 0.07 − 0.14, n= 58), similar to
what has been previously reported[D’Andola et al., 2018, Dasilva et al., 2021b].
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Figure 33 – Network complexity increased from spontaneous synchronous slow oscilla-
tions to asynchronous activity (desynchronized). (A), Local field potential
(LFP, top) and multiunit activity (MUA, bottom) recording of 5 s of sponta-
neous slow oscillations (SO, left), noradrenaline and carbachol (NE+CCh,
middle) and asynchronous activity (right). (B) and (C), Autocorrelograms
and spectrograms of LFPs recording shown in (A), respectively. (D), Aver-
aged LFP (top) and MUA (bottom) responses to electrical stimulation (ES)
during spontaneous SO (left), NE+CCh (middle), and asynchronous activity
(right). Binary matrices of significant sources of activity [𝑆𝑆(𝑥, 𝑡)] following
ES delivered to neocortical slices (bottom). Population slice perturbational
complexity index (sPCI; n=20) measured during control SO, NE+CCh, and
asynchronous activity (∗∗𝑝 < 0.01).

We next calculated sPCI in the two described conditions: (1) NE+CCh; and
(2) asynchronous (desynchronized) state (Fig. 33). As said above, following the bath
application of NE+CCh the regime of Up/Down states was transformed (Fig. 33A,
middle), the network went on to generate a higher frequency (∼ 2.4 Hz; Fig. 33C, middle).
The sPCI following the ES revealed a significant increase of the sPCI with respect to
that in SO (Fig. 33D, right), similar to what was reported previously [D’Andola et al.,
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2018]. In the asynchronous state, the mean sPCI was also significantly larger than
that in SO, but not higher than in NE+CCh, despite being more desynchronized (SO:
0.103±0.004; desynchronized: 0.141±0.005, p= 1.301×10−6, n= 20; Fig. 33D, right). When
cortical complexity was calculated by means of sPCI, there was a significant increase in
complexity following the blockade of network Up/Down state bistability, which is a
highly synchronous state. However, the more subtle change in dynamics taking place
between NE+CCh and desynchronized conditions did not convey a complexity increase
as detected by sPCI. From this point on, we used two departing points or baselines
that we compared: (1) the slow oscillatory, synchronous state; and (2) the asynchronous
(desynchronized) state. These two extremes of the dynamics mimic awake versus slow
wave sleep, or awake versus deep anesthesia, respectively.

4.5.1.1 Role of GABAA-Rs on cortical complexity

Blocking of GABAA-Rs in the desynchronized state

To investigate the GABAergic role in cortical complexity we explored how a
progressive blockade of inhibition affected sPCI while departing from two different
dynamic states, either (1) the asynchronous (desynchronized) state or (2) the synchronous,
slow oscillatory state (Fig. 34A). We first induced the asynchronous (desynchronized)
state (Fig. 34A) and next we blocked fast inhibition by application of the selective GABAA-
R blocker GBZ (Fig. 34; 50˘200 nM). When GABAA-Rs were blocked, desynchronized
dynamics progressively shifted toward pre-epileptiform dynamics as described in
[Sanchez-Vives et al., 2010] (Fig. 6D). Such modification of spontaneous dynamics was
also reflected in the spatiotemporal pattern of responses to perturbation (Fig. 34A,
middle), that were used for the calculation of sPCI (Fig. 34A, right).

As shown above, from slow oscillatory regime to desynchronized regime, there
was an increase in sPCI. However, following the maximum sPCI reached in the desyn-
chronized state, the progressive blockade of GABAA-Rs resulted in a progressive decline
of sPCI (n= 10; Fig. 34A, right). Interestingly, whereas the sPCI was significantly re-
duced compared with the desynchronized state for concentrations above 50 nM GBZ
(GBZ 100 nM: p= 0.003; GBZ 150 nM: p= 1.588 × 10−4; GBZ 200 nM: p= 4.128 × 10−8;
n= 10; Fig. 34A, right), it was only at the highest concentration of GBZ that the sPCI
significantly decayed below control levels (p= 7.525 × 10−4, n= 10; Fig. 34A, right). In
summary, these results indicate that blockade of GABAA-Rs in the desynchronized
state decreases perturbational complexity in cortical slices, or conversely, physiological
GABAA-mediated inhibition contributes to cortical complexity during desynchronized
dynamics. Furthermore, highly synchronous epileptiform discharges (in 200 nM GBZ)
display decreased complexity. A decreased information content and complexity in
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Figure 34 – Progressive blockade of GABAA-Rs reduces sPCI during desynchronized and
slow oscillations activity. (A)-left, Raw local field potential (LFP) recordings
of spontaneous activity in neocortical slices, during slow oscillation (SO),
desynchronized activity and blockade of GABAA-Rs by bath application
of increasing concentrations of GBZ demonstrated progressively shifted
toward preepileptiform dynamics; (A)-middle, Averaged LFP (top) and
multiunit activity (MUA; middle) to electrical stimulation (ES) during
distinct regimes of activity. Binary matrices of significant sources of activity
[SS(x,t)] following ES delivered to neocortical slices (bottom). (A)-right,
Population sPCI (n= 10) demonstrated that presence of large Down-states
breaks the causal interactions and decreased the complexity of the response
(∗p< 0.05, ∗∗p< 0.01). (B)-left, Raw LFP recordings of spontaneous activity in
control SOs and blockade of GABAA-Rs by bath application of increasing
concentrations of GBZ induced shortening of evoked Up states. (B)-middle,
Averaged LFP and MUA and binary matrices of significant sources of activity
[SS(x,t)] following ES. (B)-right, Population sPCI (n= 9) demonstrated that
presence of large Down states breaks the causal interactions and correlates
with low complexity states (∗∗p< 0.01).

synchronous, epileptic discharges has also been described in both animal models and
humans [Lehnertz and Elger, 1995, Artinian et al., 2011, Trevelyan et al., 2013].
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Blocking of GABAA-Rs in the slow oscillatory state

We next investigated the effect of GABAA-R blockade on complexity but departing
from synchronous slow oscillations (Fig. 34B). We bath-applied increasing concentrations
of GBZ (50, 100, 150, and 200 nM) and recorded network responses to electrical
stimulation. Raising GBZ concentrations induced a gradual shortening of evoked Up
states and augmented Up-state amplitude, as previously described [Sanchez-Vives
et al., 2010](Fig. 34B, left). Such an increase in Up-state amplitude corresponded to
a linear increase in the firing rate during Up states with the removal of inhibition
because of an enhanced excitatory reverberation [Sanchez-Vives et al., 2010]. Up states of
larger amplitude resulted in binary matrices with shorter significant periods of activity
(Fig. 34B, middle). sPCI was significantly decreased with increasing GBZ concentrations
(n= 9). In particular, the sPCI reduction with respect to the SO condition was significant
above 100 nM GBZ (GBZ 150 nM: p= 1.94 × 10−4; GBZ 200 nM: p= 1.36 × 10−4; n= 9;
Fig. 34B, right).

Thus, these results indicate that removal of fast inhibition reduces perturbational
complexity in cortical slices. Enhanced excitability during Up states because of excitatory
recurrency in cortical circuits induced stereotypical responses to stimulation that resulted
in lower sPCI values. Balanced GABAA-R-mediated inhibition in cortical activity provides
richness in the emergent patterns, contributing to the complexity of causal interactions.
Later, in our computer model, we explored the limits of the relationship between
inhibition and complexity, in a range that is unattainable experimentally.

4.5.1.2 Role of GABAB-Rs on cortical complexity

Blocking of GABAB-Rs in the desynchronized state

Next, we followed a similar approach (as described above) to investigate the
effects of progressive GABAB-R blockade during desynchronized activity in cortical
slices (Fig. 35). Departing from slow oscillatory spontaneous activity, we induced
desynchronized activity. The transformation of the activity is illustrated in the raw
recordings (Fig. 35A-left). We then bath-applied increasing concentrations of CGP55845,
a specific antagonist of GABAB-Rs. Such application had a progressive effect enhancing
the synchronization in the network (Fig. 35A-left; compare raw traces of desynchronized
with +1𝜇M CGP activity). However, it did not turn activity into epileptiform activity
as GABAA-R blockade did (Fig. 34A-left). We proceed then to compute the sPCI for
each condition and significant differences were found (Fig. 35A-middle and right;
p= 0.029; n= 7). Although sPCI significantly increased during desynchronized condition
compared with SO, post hoc tests did not reveal significant differences, neither between
control versus CGP condition (CGP 100 nM: p= 0.348; CGP 200 nM: p= 0.837; CGP
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Figure 35 – Progressive blockade of GABAA-Rs reduces sPCI during desynchronized and
slow oscillations activity. (A)-left, Raw local field potential (LFP) recordings
of spontaneous activity in neocortical slices, during slow oscillation (SO),
desynchronized activity and blockade of GABAA-Rs by bath application
of increasing concentrations of GBZ demonstrated progressively shifted
toward preepileptiform dynamics; (A)-middle, Averaged LFP (top) and
multiunit activity (MUA; middle) to electrical stimulation (ES) during
distinct regimes of activity. Binary matrices of significant sources of activity
[SS(x,t)] following ES delivered to neocortical slices (bottom). (A)-right,
Population sPCI (n= 10) demonstrated that presence of large Down-states
breaks the causal interactions and decreased the complexity of the response
(∗p< 0.05, ∗∗p< 0.01). (B)-left, Raw LFP recordings of spontaneous activity in
control SOs and blockade of GABAA-Rs by bath application of increasing
concentrations of GBZ induced shortening of evoked Up states. (B)-middle,
Averaged LFP and MUA and binary matrices of significant sources of activity
[SS(x,t)] following ES. (B)-right, Population sPCI (n= 9) demonstrated that
presence of large Down states breaks the causal interactions and correlates
with low complexity states (∗∗p< 0.01).

500 nM: p= 0.941; CGP 1𝜇M: p= 0.996; n= 7, Fig. 35A-right) nor desynchronized versus
CGP groups (CGP 100 nM: p= 0.768; CGP 200 nM: p= 0.281; CGP 500 nM: p= 0.171; CGP
1𝜇M: p= 0.072; n= 7, Fig. 35A-right). In summary, these results indicate that blockade of
GABAB-Rs during desynchronized activity showed a trend toward a decreased sPCI
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but did not reach significance. Thus, the contribution of GABAB-mediated inhibition
to causal complexity in the awake state is less relevant than that of GABAA-mediated
inhibition.

Blocking of GABAB-Rs in the slow oscillatory state

During slow oscillations, GABAB-Rs have been found to play a role in Up-
state termination since their blockade results in longer persistent activity [Mann et al.,
2009, Perez-Zabalza et al., 2020, Sanchez-Vives et al., 2021]. In order to further investigate
the role of GABAB-R-mediated inhibition in emergent activity and cortical complexity,
we gradually blocked GABAB-Rs while departing from slow oscillatory activity (Fig. 35B-
left). Progressive blockade of GABAB- Rs induced Up states of longer duration followed
by prominent Down states that decreased the frequency of Up states and increased their
regularity, as described in [Perez-Zabalza et al., 2020] (Fig.6A,B). The sPCI decreased
following GABAB-R blockade (p= 1.97 × 10−5; n= 11; Fig. 35B-middle and right).
Significant sPCI reductions were confirmed by post hoc analysis for the three tested
conditions (CGP 200 nM: p= 0.004; CGP 500 nM: p= 0.002; CGP 1𝜇M: p= 1.45 × 10−5;
n= 11; Fig. 35B-right). Interestingly, the removal of slow inhibition by bath-application
of increasing concentrations of CGP55845 significantly increased the firing rate during
Up states, although to a lesser extent than GABAA-R blockade did (compare Fig.6C with
Fig.4C in [Barbero-Castillo et al., 2021]). Finally, we showed that blockade of GABAB-Rs,
while in SO, reduced perturbational complexity, confirming that GABAB-R-mediated
inhibition contributes to the richness of activity patterns, spatiotemporal variability, and
cortical complexity during the slow oscillatory regime.

4.5.2 Impact of slow and fast inhibition on perturbational complexity in a
cortical network model

In order to further investigate the cellular and network mechanisms involved in
the spatiotemporal dynamics of spontaneous and induced cortical complexity, here we
proposed a modified version of a biophysically detailed neuronal model [Compte et al.,
2003] - that follows the Hodgkin-Huxley formalism - in a two-dimensional network. The
model consists of pyramidal and inhibitory conductance-based neurons synaptically
connected within a local range. Pyramidal cells have a larger range of connectivity than
inhibitory neurons, which are more locally connected (Fig. 36A; see Methods Sec. 3.1.2).
Our neuronal model includes GABAA as in Compte et al. [Compte et al., 2003] and
additionally accounts for GABAB inhibitory synapses, as well as potassium leakage
current which is modulated by acetylcholine (ACh) and noradrenaline (NE) [Bazhenov
et al., 2002, Li et al., 2017]. We simulated population local field potentials LFPs (sLFP), and
recorded from 20 different locations organized in a matrix (see Methods Sec. 3.1.2). The
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Figure 36 – A network cortical model to reproduce the sPCI measured during different
regimes of network activity. (A), The model consists of pyramidal (blue) and
inhibitory neurons (red) arranged in a 50 × 50 square lattice. The excitatory
neurons may connect locally to a 50% fraction of its neighbors (gray circles)
within a 7 × 7 square, while the inhibitory neurons to a 90% fraction within
a 5 × 5 square (see Methods Sec. 3.1.2). (B) The model reproduces similar
spontaneous and evoked neuronal activity, as observed experimentally
during (from left to right) SOs, SOs + blocking GABAA (SO+BLOCK GA),
SOs + blocking GABAB (SO+BLOCK GB) and desynchronized activity.
Single spontaneous sLFP (top), averaged sLFP (middle top), MUA (middle
bottom), and binary matrices of significant sources of activity [SS(x,t)]
following stimulation delivered in a cortical model. (C), Population sPCI
for different cortical activity, SOs with GABA A (left-top) and GABA B
(left-bottom) progressively blockade, the same for desynchronized activity
(right column).

sLFP signal was analyzed with exactly the same techniques as the ones experimentally
recorded in the cortical slices.
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The model is able to reproduce slow oscillatory dynamics and desynchronized
activity as observed in vitro, as well as the cortical activity under blockade of GABAA-Rs
and GABAB-Rs (Fig. 36B). The transition from synchronized toward desynchronized
activity was modeled by blocking the potassium leak current, mimicking the action
of ACh and NE [McCormick, 1992], a strategy that has been used in thalamocortical
models to this end [Bazhenov et al., 2002, Li et al., 2017] (see Methods Sec. 3.1.2). We
then evaluated the perturbational complexity in the cortical network model. For SO
and desynchronized activity, the sPCI showed similar values to those observed in vitro:
0.08 ± 0.01 and 0.10 ± 0.01, respectively. We next tested the effects of the progressive
blockade of GABAA and GABAB during both different dynamics corresponding to the
conditions of SO and desynchronized states. The maximal effect of GABAA blockade
on the sPCI during SO occurred by reducing the receptor availability by 20%, when
we obtained values of sPCI 0.05 ± 0.01 that remained unchanged for lower availability
(Fig. 36C top left). On the other hand, the sPCI during desynchronized dynamics
progressively decreased with the GABAA-R blockade, reaching a plateau for blockade
of > 80% of receptors, 0.08 ± 0.01 (Fig. 36C, top right). Interestingly, for large GABAA

blockade during desynchronized activity, the sPCI values approach those observed
during SO, as observed experimentally. For the GABAB-Rs blockade, we observed a
progressive slow decay of the sPCI values from SO conditions (Fig. 36C, bottom left),
while for desynchronized dynamics we did not observe any trend in sPCI (Fig. 36C,
bottom right). To a lesser extent, the GABAB effects were also similar to those observed
experimentally.

Since GABAA modulation presented a stronger effect on the perturbational com-
plexity in both conditions (i.e., SO and desynchronized dynamics), we next proceeded
to evaluate the network dynamics in two scenarios: i) in a disinhibited network and ii)
in an inhibited network (see Methods Sec. 3.1.2 ). As observed experimentally during
SO, when we blocked GABAA (i.e., disinhibited the network) the spontaneous activity
presented a shorter Up state with higher firing rate (Fig. 36B, compare top left and top
middle left). In the model, we observed that the dynamics of spontaneous activity in a
disinhibited network during SO is fully integrated, while weakly segregated, giving rise
to activation waves that rapidly span the whole network (Fig. 37A, right; see Movie 1).
Conversely, when the network is inhibited, the spontaneous activity is highly segregated
and weakly integrated, and the activation waves propagate more locally and do not span
over the whole network (Fig. 37A, left; Movie 1). Nonetheless, when there is a balance
between integration and segregation, the activation waves span over the whole network
recruiting their nearest neighbors (Fig. 37A, middle; Movie 1). Finally, we evaluated
the perturbational complexity networks where the inhibition was not only decreased
(as in the experiments), but also increased. While departing from the slow oscillatory
regime, we found that increasing inhibition by +20% further increased sPCI (0.10± 0.01),

https://www.jneurosci.org/content/41/23/5029/tab-figures-data#fig-data-movies
https://www.jneurosci.org/content/41/23/5029/tab-figures-data#fig-data-movies
https://www.jneurosci.org/content/41/23/5029/tab-figures-data#fig-data-movies
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Figure 37 – sPCI for an inhibited and disinhibited cortical network model. (A), Example
snapshot of cortical network activity for three networks with different inhibi-
tion (GABAA) concentration (E/I balance). The color scale indicates the time
since each neuron last spiked, thus illustration the temporal dynamics of
activity propagation. Right, Networks with low inhibition blockade (−80%)
show high integration, while with high inhibition blockade (+80%) show
high segregation (left). Middle, Networks with an intermediate segrega-
tion/integration balance. See the simulations in Movie 1. (B), Population
sPCI for inhibited and disinhibited cortical networks. The shadow area
represents the model predictions. (C), Membrane potential traces for three
neurons in the cortical network model during SOs (CTRL), disinhibited
(orange), slightly inhibited (red), and high inhibited (blue) cortical network
activity. Notice the increase and decrease afterhyperpolarization (AHP)
following the up state for slightly inhibited and high inhibited neurons,
respectively.

remaining high during SO for highly inhibited networks (+90%, 0.09 ± 0.02; Fig. 37B).
In summary, these results indicate that there is a close link between integration and
segregation with E/I balance, as suggested by [Lord et al., 2017], and that higher/lower

https://www.jneurosci.org/content/41/23/5029/tab-figures-data##fig-data-movies
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sPCI values are not the consequence of merely increasing/decreasing excitability.

4.5.3 Cortical complexity of spontaneous activity

Figure 38 – Spontaneous cortical waves complexity in a cortical network model. Top,
Energy trajectory of cortical activity in the three-dimensional space defined
by the first three principal components for three networks with different
inhibition (GABAA, GA) concentration (E/I balance). Left, Network with high
inhibition blockade (+80%); Middle, Network under control slow oscillations;
Right, Network with low inhibition blockade (−80%). Middle, Matrices
of Euclidean distance (Distance Matrix, DM) between waves’ trajectories.
Bottom, Shannon entropy on the distribution of the values contained in each
DM as a function of GabaA concentration.

In the previous chapter, we have characterized the cortical complexity quantifying
the causal interaction that follows an exogenous perturbation of the cortex. We have
shown that there is a close link between perturbational complexity with E/I balance.
Here, we sought to further characterized the spatiotemporal dynamics of SO, although
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exploring the spontaneous complexity of the network. We used a method proposed
by [Camassa et al., 2021b] in order to estimate the complexity of spontaneously generated
slow oscillations (different from sPCI that consists in perturbation of the cortex). The
method, called the Energy-based Hierarchical Waves Clustering method (EHWC),
consists of the following steps: i) detect the occurrence of global waves; ii) reduce the
data dimensionality via single value decomposition; iii) cluster hierarchically the singled
out waves; iv) compute the matrices of pairwise Euclidean distance between waves
(distance matrix, DM) and v) compute the entropy of the probability distribution from
DM.

We evaluated the network complexity in two scenarios (similar to that done
in 37B): i) in a disinhibited network, i.e., decrease GABAA (GA) conductance, and, ii)
in an inhibited network, i.e., increasing GA conductance (see Methods Sec. 3.1.2 ). As
previously observed the dynamics of spontaneous activity in a disinhibited network
(decreased GA) is fully integrated, while weakly segregated, giving rise to activation
waves that rapidly span the whole network (Movie 1). The energy trajectories of these
spontaneous waves were regular (Fig. 38 top right) giving rise to a homogeneous DM
and subsequently a low entropy state, or less complex state (Fig. 38, bottom). On the other
hand, in a inhibited network (increase GA), we observed that the trajectories are more
independent of each other (Fig. 38 top left), which in turn generates a homogeneous DM
with larger distances, resulting also in a less complex state (Fig. 38, bottom). Both cases
are different from the control network, where a rich matrix of distance can be observed
(Fig. 38, top-center), meaning that there are an interplay between local and global waves
propagation, giving rise then to a more complex state (Fig. 38 bottom). These results
strengthen the fact that there is a close link between integration and segregation with
E/I balance.

https://www.jneurosci.org/content/41/23/5029/tab-figures-data#fig-data-movies
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4.6 From spiking neurons to mean-field model

We have previously used a biophysically detailed model to shade light on the
mechanisms of cortical activity. Although this kind of model are extremely useful
to understand the impact of intrinsic mechanism on network activity, it can be not
appropriate to study large scale networks, as the whole brain mouse for example. In
order to join the gap between detailed neuronal models and mean-field (also called
neural mass models) we used a mean-field approach of complex neurons, using three
types of them, to show how from the network activity we can extract a mean-field
equation models. We show in this section one approach to connect Hodgkin Huxley
models with mean-field formalism. This section is based on our publication [Carlu et al.,
2020]. It is also noteworthy that this research resulted from student project during the
Spring School of European Institute of Theoretical Neuroscience http://eitn.org.

4.6.1 Mean-field formalism

We use here the master equation formalism proposed by [El Boustani and
Destexhe, 2009], appropriate for a second-order mean-field description of network
activity. This approach has some assumptions: i) it assumes the network dynamics as
a Markovian process§ on an infinitesimal scale (∼ 20 ms); ii) it assumes the neurons
to emit no more than one spike over the Markovian step 𝑇. Consequently, this theory
assumes relatively low firing rate, as it is the case in the asynchronous regimes here
studied (Methods Sec. 3.2).

4.6.2 Transfer function for simple and complex neuronal models

We present here the results of a comparison between mean-field predictions
and direct simulations for the three models studied: AdEx, Hodgkin-Huxley, and
Morris-Lecar. We start by estimating the transfer function of single cell and then proceed
to test with large networks of neurons.

The transfer function for a simple AdEx neuron is well approximated by a
sigmoidal function but its specific parameters follow from a complex combination of
microscopic information, e.g., neuron resting potential (Fig. 39. See black and gray
dots for comparison). Two main spiking patterns can be observed in the neuronal
dynamics. One is characterized by a low firing rate, where spikes mainly result from the
membrane voltage fluctuations (Fig. 39 bottom inset)). The second is characterized by a
highly deterministic and regular firing rate (larger than 50 Hz, Fig. 39 top inset). The
semi-analytic approach corresponded well with values reported from direct simulations
§ A Markov process is a random process in which the future depends on the present, ignoring the

late history of the process. In other words, in a discrete form, 𝑃(𝑋𝑛 = 𝑥𝑛 |𝑋𝑛−1 = 𝑥𝑛−1 , ..., 𝑋0 = 𝑥0) =
𝑃(𝑋𝑛 = 𝑥𝑛 |𝑋𝑛−1 = 𝑥𝑛−1)

http://eitn.org
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Figure 39 – Transfer function (TF) for an Exponential Integrate-and-Fire model (AdEx).
Dots stand for numerical simulations while continuous line for the semi-
analytic approach for the TF. The inhibitory Poissonian spike train has a
fixed rate of 8 Hz, while we show neuron average output firing rate as the
fiction of the Poissonian rate of excitatory input spike train. Inset: excitatory
membrane potential for two combination of parameters. Color stands for
different values of the leakage reversal potential as indicated in the figure.

as shown previously by other groups [El Boustani and Destexhe, 2009, Zerlaut et al.,
2016]. For high firing rates the semi-analytic approach differs from the direct simulation.
It is a direct consequence of the approach , once it assumes that neurons fire in an
irregular manner strongly driven by fluctuation around the mean membrane voltage.
Therefore, we only consider the case where the neuronal neuron activity is low, irregular
and strongly fluctuation driven.

More complex models, such as Hodgkin-Huxley (HH) and Morris-Lecar (ML),
permit to describe the details of sodium and potassium channel dynamics neglected in
the simple AdEx model. The semi-analytic approach proposed for AdEx models can
be applied exactly in the same way. Excitatory cells (regular spiking) were modeled
as lower gain while inhibitory cells (fast spiking) were modeled with a higher gain.
A lower/higher gain of the transfer function can be achieved by changing the cell’s
excitability, by means of resting membrane potential or by adaptation strength. Indeed,
when comparing the semi-analytical approach to the direct simulation we obtained
a good fit (of excitatory RS and inhibitory FS cells)for both HH and ML type models
(Fig. 40 B and C).

Notice that the ML model shows a decrease of firing rate at frequencies higher
than ∼ 8 Hz, eventually reaching to no firing. Such dynamics is a consequence of the
depolarization block observed at high input frequencies (high average external current)
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Figure 40 – Transfer function for single cells. Regular-spiking (RS, excitatory neurons,
green) and fast-spiking (FS, inhibitory neurons, red) for: (A) AdEx, (B)
Hodgkin-Huxley, and (C) Morris-Lecar model. Dots stand for numerical
simulations while continuous line for the semi-analytic approach for the
transfer function. Bottom row excitatory membrane potential for the three
models, (A), (B), and (C), respectively.

and has been described previously by Kim and Nykamp [Kim and Nykamp, 2017].
Accordingly, we obtained a bell-shaped transfer function that was well predicted by our
semi-analytical formalism.

Our results show that even if the details of the mechanism that generate a
specific transfer function are very different, is is possible to adjust neuron parameters
(e.g.,excitability) in a way allowing to obtain similar transfer function (at least in the
region before entering a depolarization block). As a consequence, according to the
mean-field theory where what matters for the population dynamics is only the transfer
function, we expect different models to have a comparable emergent dynamics at the
population (collective) scale.

4.6.3 Collective dynamics and mean-field predictions for spontaneous and
evoked activity

In this section we used networks of neurons (AdEx, HH and ML model) to
compare mean-field prediction with direct simulations. Specifically, we simulated
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a sparse network of regular-spiking (RS, excitatory neurons) and fast-spiking (FS,
inhibitory neurons) cells (Fig. 41) coupled through conductance base interactions (see
Methods Sec. 3.2.1).

Figure 41 – Transfer function for single cells. Regular-spiking (RS, excitatory neurons,
green) and fast-spiking (FS, inhibitory neurons, red) for: (A) AdEx, (B)
Hodgkin-Huxley, and (C) Morris-Lecar model. Dots stand for numerical
simulations while continuous line for the semi-analytic approach for the
transfer function. Bottom row excitatory membrane potential for the three
models, (A), (B), and (C), respectively. Inset of (B): the transfer function
estimated over very large values of input rates.

We observed that in the different networks the dynamics stabilizes on an asyn-
chronous regime. In all cases, this regime is characterized by irregular microscopic
dynamics (i.e., neuron’s spiking statistics are Poissonian) and displays the typical spiking
patterns observed during awake states in cortical regions. Furthermore, as expected,
inhibitory FS cells fired at a higher frequency with respect to excitatory RS cells. Through
the mean-field model it is possible to measure both the average population rate and its
covariance (see Methods Sec. 3.2.3). In Fig. 41 we show that the mean-field model gave a
good quantitative prediction of both quantities. The higher discrepancy observed for
the complex neuronal models (in our case HH and ML models) was related to a higher
mismatch of the transfer function linked to the higher complexity of the model.

To complete the comparison between the mean-field model and the network
dynamics, we explored the response of the system to external stimuli. Specifically, we
considered an Poissonian train of spikes characterized by time-varying frequency and
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targeting both RS and FS cells according to the following equation:

𝑣(𝑡) = 𝐴

(
Θ(𝑡0 − 𝑡)𝑒

−(𝑡−𝑡0)2

𝑇2
1 + Θ(𝑡 − 𝑡0)𝑒

−(𝑡−𝑡0)2

𝑇2
2

)
, (4.1)

where Θ is the Heaviside function and 𝑇1 and 𝑇2 are the rise and decay time constants,
respectively.

Figure 42 – Transfer function for single cells. Regular-spiking (RS, excitatory neurons,
green) and fast-spiking (FS, inhibitory neurons, red) for: (A) AdEx, (B)
Hodgkin-Huxley, and (C) Morris-Lecar model. Dots stand for numerical
simulations while continuous line for the semi-analytic approach for the
transfer function. Bottom row excitatory membrane potential for the three
models, (A), (B), and (C), respectively. Inset of (B): the transfer function
estimated over very large values of input rates.

In Fig. 42 we show the comparison between the mean-field prediction and the
network dynamics given an external stimuli. Considering AdEx and HH models, we
observed that both mean-field models under investigation compared favorably with their
corresponding network dynamics. We also verified, as it has been shown in ref. [Di Volo
et al., 2019a], that the faster the input dynamics is, the worse the agreement becomes.
Indeed, for the Markovian hypothesis to hold, we need the time scale 𝑇 to be much
larger than the autocorrelation time in the spontaneous activity 𝑇 ∼ 𝜏 ∼ 10 ms.

For the Morris-Lecar model, we observed that a relatively strong input would
bring singles neurons to a depolarization block, which appeared at relatively low activity
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levels (Fig. 40 C). Given this difference between ML and AdEx and HH models, we
expected to obtain different population dynamics properties in response to external
perturbations. Indeed, as we show in Fig. 42 C, the response to an external stimuli differed
from the one observed in the HH and AdEx models (compare Fig. 42 A and B against
C). In this case the external excitatory stimuli turned out to inhibit both population
activities. Such anticorrelation between external stimuli and network response as well its
time course was well captured by the mean-field model (Fig. 42 C bottom). These results
showed that also for a more complex and highly nonlinear setup the mean-field model
was capable of predicting the ongoing activity and the time course of the response of a
network of neurons operating in the asynchronous dynamical regime.

Finally, we compared the results of the first and second order mean field on
average population rates. In Fig. 42 we superimposed the continuous green (red) line for
excitatory (inhibitory) rate obtained with the second order mean field with the results
obtained with the first order (black dots). We observed that the two quantities almost
overlapped (the difference is too small to be appreciated at this scale). Nevertheless, it is
worth noticing that the second order mean field permits to obtain nontrivial information
on the population dynamics and its fluctuations in time, with good quantitative
predictions of the covariance of population rates.
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Chapter 5

Discussion

This thesis has investigated the emergence of activity generated by the cortical
network, its mechanisms and properties, by combining experiments and a computational
modelling approach. A large part of the focus has been on the study of slow oscillations,
the coordinated activity of large populations of neurons consisting of an alternation of
active periods (Up states) and silent periods (Down states, also referred to as off-periods).
These oscillations occur with a slow frequency (≤ 1 Hz) in the corticothalamocortical
network during slow wave sleep and deep anesthesia, and they spontaneously occur
also in cortical slices. This rhythmic activity emerges in the cortical network when there
are no other driving inputs and it can be considered its default activity [Sanchez-Vives
and Mattia, 2014]. During the active periods, or Up states, neocortical neurons (both
excitatory and inhibitory) are depolarized, receive barrages of synaptic inputs and
fire action potentials. During Down states neurons remain hyperpolarized and the
synaptic activity is almost non-existent. This ”on and off” synaptic activity results in a
bimodal distribution of the membrane potential values, an intracellular signature of
slow oscillations. Here, I will first discuss the role of ionic current in the generation
of this rhythmic pattern and how they also participate - by modulation through
neurotransmitters - on the transition to other brain states, in particular to wakefulness.
Then, I will discuss the impact of fast (GABAA) and slow (GABAB) inhibition on the
spatiotemporal complexity of cortical networks. Finally, I will discuss a computational
method that seeks to derive mean-field equations from spiking networks.
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5.1 Impact of ion channels on cortical dynamics

5.1.1 SK calcium-activated potassium channels (KCa)

We have investigated the role of apamin-sensitive SK calcium-activated potassium
channel (KCa) on spontaneous emergent activity in the form of slow oscillations. By
doing this we attempted to connect the role of specific ionic channels types on the
emergent patterns generated by the cortical network. We found that during physiological
activity, KCa contributes to the modulation of neuronal firing and maintenance of Up
states, and its blockage results in a shorter Up duration and higher neuronal firing. In
our cortical network model, we parametrically explore the impact of KCa channels on
network dynamics.

The KCa channel mediates the afterhyperpolarization that follows a train of
action potential [Pennefather et al., 1985]. In other words, IKCa is a spike-frequency
adaptation current [McCormick and Williamson, 1989]. Due to its slow time course
(order of 100 ms) during the hyperpolarization period (Down state), KCa has been
suggested to be involved on the termination of Up states [Steriade et al., 1993c, Compte
et al., 2003, Neske, 2016]. This suggestion also relays on the fact that KCa is modulated by
acetylcholine via muscarinic receptors[McCormick and Williamson, 1989, McCormick,
1992], therefore suggesting the role of the KCa block in the transition from sleep to
awake[Stocker et al., 1999].

Here, in order to investigate how KCa channel impact the cortical SO, we resorted
to its blockage. KCa channel blocker apamin was applied to cortical slices resulting in
an significant increase in the population firing rate during the Up state and a shortening
of this period (Fig. 10). Indeed both properties are mechanistically related, since it
has been proposed that the termination mechanism of the Up state is the recruitment
of activity-dependent adaptation, thus dependent on the firing rate during the Up
states [Compte et al., 2003]. We also observed that the KCa channel is involved on the
recruitment of the local network, i.e., its blockage resulted in a steeper slope in the Down
to Up transition (Fig. 10C).

Finally, our network model allowed us to bridge the gap between intrinsic
mechanisms and emergent activity of brain networks. We implemented the Compte et
al. [Compte et al., 2003] network model that was originally tuned based on experimental
observations of cortical SOs, and further studies have validated that it reproduces
diverse features of excitability and oscillations [Sancristóbal et al., 2016], and of cortical
emergent properties such as 𝛽 and 𝛾 frequencies [Compte et al., 2008]. We were able to
reproduce the physiological Up and Down dynamics of SO as well as systematically
explore the effects under blockage of KCa channel. We have shown how the KCa controls
the neuronal firing during Up states, not only of the pyramidal neurons (that were
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simulated containing the KCa channel) but also, indirectly, the inhibitory neuronal
firing rate. By parametrically blocking the KCa channel, we showed that there was a
anticorrelation between the duration of Up states with the firing rate, such that the lower
the expression of the channel, the lower the duration of Up states and the higher the
firing rate (Fig. 27) during the block. Also, KCa channel had a significant role on the
network synchronization and membrane fluctuation, such that the lower the expression,
the higher the synchronization and the lower the membrane fluctuation (Fig.13). Finally,
we reproduced the steeper transition form Down to Up observed experimentally, and
showed that the faster recruitment results in faster propagating waves (Fig.14). In
summary, we suggested that activation of KCa channel determines the firing pattern
and firing rate during Up states as well as its duration (Fig.15).

How to explain the observed changes and what does it tell us about the role of
KCa? A main conclusion is that KCa, due to its properties and time course, is well fit to
regulate firing rates during excitation and thus, during Up states, given that it is activated
by the calcium that enters the cell with the firing [Sah and Faber, 2002]. For this reason, it
also regulates the recruitment of the local network, acting as a ”brake” that slows down
recruitment, and therefore as a control for hyperexcitability and epileptiform discharges.
For this reason, its block results into higher firing rates and steeper activation. Such
Up states with higher firing rates are not consistently followed by longer Down states,
as it is the case when blocking GABAA [Sanchez-Vives et al., 2010]. Higher firing rates
recruit activity dependent mechanisms of hyperpolarization, like sodium-dependent
potassium currents. Of course, if we are blocking KCa, then this mechanism is no longer
available [Wang et al., 2003] in order to induce an elongation of the Down state. The
dominant effect (prolongation o shortening of the Down state) will depend on the
departing point and the global level of excitability, for example, if the Down state had
some dependence on KCa, then it can be shorter, but longer if it relies on KNa current.

5.1.2 Calcium and sodium -dependent potassium channels

An open question is how does a ionic current that is present in only a group of
cortical cells influences network activity. We explored up to what point the network is
sensitive to ionic currents present within only a fraction of neurons by parametrically
changing the expression of IKCa or IKNa (calcium and sodium -dependent potassium
currents, respectively). We found that while we gradually vary such currents from
random neurons in different proportions, several properties of the network were affected,
such as Up state duration, oscillation frequency or synchrony in the state transition,
demonstrating the large impact that ionic channels had at the network level, even if
present in only < 40% of neurons. Furthermore, we observed that neurons without
those specific currents were indistinguishable from the remaining ones at both their
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extracellular and intracellular spontaneous activity. Finally, we showed these potassium
dependent channels were involved in the off-periods that followed network perturbation.

Considerable progress has been made towards a detailed understanding of
the mechanisms controlling SO. For instance, in a thalamocortical model, Hill and
Tononi [Hill and Tononi, 2005] suggested that ionic currents (IH and INaP) are responsible
for the initiation of Up states. Conversely, Holcman and Tsodyks [Holcman and Tsodyks,
2006] have suggested that high level of recurrency may be responsible for Up and
Down dynamics. Both ideas are not mutually exclusive. Indeed, experimental and
theoretical studies have suggested a joint mechanism, integrating both intrinsic cellular
properties and network recurrent connectivity as the driving force fot the generation
of Up states [Sanchez-Vives and McCormick, 2000, Compte et al., 2003]. The proposed
mechanism suggests an interplay between neuronal firing amplified by recurrent
excitation and a negative feedback due to slow activity-dependent K+ currents. In other
words, the Down state is generated by the failure of the network to maintain persistent
activity due to the negative feedback provided by activity-dependent K+ currents, which
drives the sudden transition from the Up to the Down state. Once in the Down state, the
slow afterhyperpolarization slowly decreases in amplitude, allowing the network to,
through recurrent excitation, generate another Up state.

To investigate how intrinsic mechanisms in the form of depended K+ currents
impact collective phenomena we have parametrically varied the fraction of neurons that
include ionic currents such as Na+-dependent K-current or Ca2+-dependent K-current.
Lowering the expression of KCa currents was not enough to break-off the Up and Down
network dynamics. Instead it promoted shorter Up states with more neuronal firing
(Fig. 18, in agreement with the effects of apamin blockage previously discussed). We also
observed and elongation of Down states, although it may be due to the high activation
of KNa current, once it has a longer time scale than KCa current.

Exploring the dependence of the network dynamics on the expression of neurons
containing KNa current, we observed a high impact on the network dynamics. By
lowering the KNa expression we observed a transition from a high synchronized
network, to a low synchronized one (Fig. 19), resembling the awake state. This impact
on network dynamics generated by IKNa has been previously described by Compte
et al., although there they lowered the maximal channel conductance (gKNa) instead
of it expression, as we did here [Compte et al., 2003]. This result is in agreement
with experimental observations that suggested that activation of IKNa current play
an important role in the termination of Up states [Sanchez-Vives and McCormick,
2000, Neske, 2016]. Interestingly, when comparing those neurons that contained the KNa
current versus those that did not, were indistinguishable from their extracellular and
intracellular spontaneous activity. We have shown, by analyzing isolated neurons, that
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KNa current controls the excitability of single neurons, as previously described [Schwindt
et al., 1989], but that the recurrency from the network keeps the neurons, with and
without KNa current, in the same dynamical regime (Fig.21).

Finally, we evaluated the effect of KNa and KCa currents on the off-periods (a
period of suppressed firing after an stimulation; Fig. 22). As we previously discussed,
KCa acts slowing down the fast network recruitment, thus its blockage after stimulation
is not enough to avoid the presence of off-periods. Conversely, KNa seems to be the main
responsible for the off-periods, since its blockage after stimulation resulted in an active
reverberating-like state, without falling into silence. By blocking both, KCa and KNa, we
have shown that the off-periods are abolished, being replaced by an asynchronous-like
activity. Together our results are a first step into describing how different adaptation
K+ currents may contribute to the off-periods. Also, our results are in agreement with
the work from Rosanova and collaborators, who have suggested that the tendency of
neurons to go to an off-period is due an enhancement of adaptation K+ currents, since
it is the main mechanism responsible for cortical bistability [Rosanova et al., 2018].

5.1.3 Voltage gated K+ channel 7: the M-current

M-current is a time and voltage-dependent K+ current, non-inactivating and
non-rectifying, which exerts a clamping effect of the membrane potential [Brown and
Adams, 1980]. The molecular basis of this current were identified by [Wang et al., 1998],
corresponding to the KCNQ2 and KCNQ3 potassium channels. Being the M-current
a powerful stabiliser of the membrane potential, controlling subthreshold activity
and synaptic responses, abnormal function of neuronal KCNQ channels have been
associated to diseases related to hyperexcitability: just a loss of 25% of KCNQ2 or KCNQ3
channels are the cause of benign familial neonatal seizures ([Schroeder et al., 1998]; for a
review see [Jentsch, 2000]). The control of neuronal excitability by M-current has also
been exploited as a therapeutic strategy, enhancing this current for the treatment of
epilepsy [Tatulian et al., 2001] of to reduce the stroke related brain injury [Bierbower
et al., 2015].

In the current work we investigated the effect of reducing M-current over a
physiological network activity of the cerebral cortex: slow oscillations. Slow occur in
slow wave sleep and in deep anesthesia (for a review see [Neske, 2016, Sanchez-Vives
et al., 2017]) but also in isolated cortical tissue, such as isolated cortical gyri, cortical
slabs [Timofeev et al., 2000], cortical slices [Sanchez-Vives and McCormick, 2000], or
tissue isolated by injury [Sarasso et al., 2020]. Such pervasive activity acts as a default
activity of the cortical circuitry [Sanchez-Vives and Mattia, 2014], integrating intrinsic
properties of neurons such as ionic channels, cellular and synaptic properties and
connectivity. We have carried out this study in cortical slices expressing spontaneous
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slow oscillatory activity in vitro, allowing us to study the isolated effect of M-current
on the cortical network, and without the influence of other connected brain areas. The
block of M-current was originally described in bullfrog sympathetic neurons [Adams
et al., 1982]. Specific blockade was caused by muscarinic and by other agents, resulting
in an inward rectification causing depolarization, increased input resistance, reduced
outward rectification and increased excitability. Such an increase of excitability reflected
in the emergent network activity, has also been observed in our study, in which we have
used XE991 dihydrochloride (100𝜇M) as a specific M-current blocker [Wang et al., 2000]
to explore the transformation of the slow oscillations. We found that M-current has an
important role in the mechanisms controlling the Up state, specifically modulating its
persistence and termination. Blocking the M-current resulted in a prominent elongation
(∼ 3 times) of the periods of activation (Up states) of the cortical network, while the Down
states or silent periods hardly varied in duration (Fig. 24). The population firing rate
was also significantly increased during the Up and also in Down states, also reflecting
the hyperexcitability of the circuit. It should be noted that this excitability includes
depolarization of the membrane potential, but also an increase of the input resistance,
such that the synaptic inputs evoke larger responses.

Given that Up states are driven by bursts of synaptic inputs from neighboring
neurons [Steriade et al., 1993c], the global activity is enhanced. The effect on Up states
if very prominent, prolonging them to the point that they remind of the so-called
microarousals that occur during slow wave sleep as a result of activation of the arousal
systems [Halasz et al., 1979], and that also appear along with slow oscillations in the
transition slow wave dominated, deep anesthesia, towards light anesthesia [Tort-Colet
et al., 2021]. Interestingly, the blockade of M-current in the isolated neocortical network
does not result into epilepsy, as it occurs in the case of newborns with deficits in
the current [Schroeder et al., 1998]. We can suggest that the recurrent connections
with more epileptogenic areas in this circumstances, such as the hippocampus [Hu
et al., 2007, Peña and Alavez-Pérez, 2006] can drive the neocortex in vivo into epileptic
discharges. However, such epileptic discharges do not seem to be originated through
this mechanism in the cortical network, not even in highly excitable cortical areas like
the entorhinal cortex [Yoshida and Alonso, 2007].

In order to do a systematic exploration of the role of M-current on the network,
being able to vary its expression parametrically, we reproduced a conductance-based
computational model of the cortical network that expresses slow oscillations [Compte
et al., 2003]. In it, the M-current was integrated in the excitatory neurons following the
model in [McCormick et al., 1993] and locating it in the somatic compartment [Wang,
1999]. In this new implementation of the model we were able to reproduce the physiolog-
ical Up and Down dynamics of the slow oscillations as well as the experimental effects
of blocking the M-current. As observed in the experiments, in the model the block of
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the M-current resulted in an increase of the firing rate. Interestingly, even when only the
excitatory neurons expressed M-current, the increase of the firing rate did also occur
in the inhibitory neurons, by virtue of the recurrent connectivity. By parametrically
blocking the M-current (from 0 to 100%), we found a correlation between the elongation
of the Up states and the increase in the firing rate, such that the lower the expression,
the higher the duration of Up states and the firing rate (Fig. 27D). We also found that
the presence of M-current induced a higher global synchrony and more periodicity in
the network (Fig. 26A), which was reduced by blocking the channel. Higher excitability
lead a less regular rhythmic pattern, which was reflected in the autocorrelogram of
the population activity. Further, the calculation of the synchrony order parameter as
in [Golomb, 2007], reflected a nonlinear decay with the reduction of the M-current,
reflecting a less synchronized network. In contrast, we can say that M-current contributes
to the synchronous firing in the network, with higher correlation across spikes (Fig. 27E)
and more synchronous and regular Up states.

The role of the block of the M-current in the modulation of firing and syn-
chronization of the network is highly relevant if we consider that this current owns
its name to ”muscarine”: Brown and Adams [Brown and Adams, 1980] discovered a
novel voltage-sensitive K+ current that was suppressed by muscarine, and that they
called M-current. Indeed, since McCormick and Prince [McCormick and Prince, 1986], a
majority of the studies of M-current in the cerebral cortex have been carried out in the
context of the studies of the effects of cholinergic innervation. Acetylcholine is one of the
main neurotransmitters inducing the transition from slow wave sleep to wakefulness.
Particularly, the cholinergic action in the cerebral cortex takes place largely through
muscarinic rather than nicotinic receptors, and as shown here, an important actor - but
not the only one - is by blocking the M-current. As generated in our computational
model in the individual neuron level (Fig. 26), just the reduction of this current induces
quite a radical change in the network dynamics, going from regular and synchronous
slow oscillations to more prolonged and irregular firing periods. However, this is not
yet the asynchronous, persistent activated state that it is associated to wakefulness [Con-
stantinople and Bruno, 2011], because there are other potassium channels (sodium and
calcium dependent potassium currents) that remain open, repolarizing the membrane
potential towards Down states (Fig. 5). The similarity of this activity pattern with those
described in the transition periods towards wakefulness that are achieved by light (versus
deep) levels of anesthesia, when microarousals occur, is remarkable (Fig. 5A in [Deco
et al., 2009]). In conclusion, our experimental results together with our computational
model, supports a highly relevant role of M-current on cortical network dynamics. This
effect is even more relevant if we consider that probably only a fraction of the neurons
express this channels, but its effects reverberate through the recurrent connectivity. The
block of M-current induces a significant increased excitability, with longer and less
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synchronous periods of activity or Up states, that also express higher firing rates. Since
cholinergic action in the cerebral cortex critical to induce the transition from slow wave
sleep to wakefulness, our observations suggest a relevant role of the M-current block by
muscarinic action into this transition. On the contrary, the physiological activation of the
M-current plays an important role maintaining hyperpolarized the neuronal membrane
potential and facilitating, in the absence of cholinergic inputs, that the cortical network
expresses slow waves.

5.1.4 Hyperpolarization-activated cation current: the H-current

We explored the role of the hyperpolarization-activated cation current (H-current,
for a review see [Pape, 1996]) on the spontaneous generated activity of slow oscillations.
We found that H-current a relevant role on the maintenance of Up and Down states. The
bath applied 10𝜇M of ZD7288, a selective blocker of HCN channels (hyperpolarization-
activated cyclic nucleotide–gated) that generates the H-current, resulted in larger periods
of activation (Up states) and also in large periods of inactivation (Down states) (Fig. 28).
In our detailed conductance-based model of SO, we implemented the H-current and
explored more extensively the relationship between this ionic current and its impact on
the network dynamics.

The hyperpolarization-activated cation current (H-current) is suggested to be
involved in the generation of slow periodic rhythms, such as spindle waves, in the
thalamocortical system [Lüthi and McCormick, 1998b, Lüthi and McCormick, 1999]. In
thalamocortical single cell dynamics, it is known that the H-current has an important
role, such as, modulating the resting membrane potential, controlling the response to
hyperpolarization, and contributing to oscillatory frequency [Lüthi and McCormick,
1998a]. Conversely, it’s role on network dynamics, a global effect emerging from the
interaction of single neurons, was mainly studied in thalamic networks [McCormick
and Pape, 1990, Pape, 1996, Lüthi and McCormick, 1998a, Yue and Huguenard, 2001].
Despite of all these studies regarding H-current, it is still not clear how its impact on
cortical slow rhythmic oscillations (see [Lüthi and McCormick, 1998a, Neske, 2016] for a
review). One exception is the work from Mao and collaborators [Mao et al., 2001] have
shown that, at single cell resolution, spontaneous activity is delayed when H-current is
blocked, albeit this study was not done in slow oscillatory activity.

Here, we have resorted to H-current blockage during network slow oscillations
to better understand its effects at a population level. H-current blockage resulted in an
significant increment on the Up and Down state duration (Fig. 29). Although neither the
network periodicity nor in its neuronal firing were significant affected (Fig. 30). In our
cortical network model of SO, we implemented in a subset of pyramidal neurons the
H-current. We successfully reproduced the physiological Up and Down dynamics of
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slow oscillations as well as the effects under H-current blockage (Fig. 31). We have shown
that there was a modulation on the firing rate of the pyramidal cells and interneurons
such that lower the concentration higher the firing rate (Fig. 32). Furthermore, by
parametrically blocking the H-current, we showed that there was a correlation between
the duration of Up states and Down with the firing rate, such that the lower the
expression, the higher the duration of Up and Down states and the firing rate (Fig. 32).
The increment in the duration of Down states is consistent with a previous modelling
study of the thalamocortical system [Hill and Tononi, 2005]. Finally, we showed how
the presence of H-current induced a higher global synchrony in the network (Fig. 26),
reflected in a higher order parameter. Our model suggests that the increased firing rates
during the Up states and their longer duration, result into a larger accumulation of
sodium and a slower time course of the KNa current, that keeps the Down states longer.
HCN channels are a target of noradrenaline, which maintains the channels open [Pape
and McCormick, 1989]. Since noradrenaline is one of the activating neurotransmitters
contributing to the transition from slow wave sleep to awake, the shortening of Down
states that is due to H-current could contribute to the transition to arousal. Future studies
should model our simulations of cholinergic with noradrenergic action to investigate in
depth the mechanisms of this transition.

5.2 Impact of slow and fast inhibition on cortical complexity

We have investigated the role of GABAA-R-mediated and GABAB-R-mediated
inhibition on cortical emergent activity and complexity, in particular on complexity
measured by means of perturbing the network with stimulation. By doing this we
have attempted to bridge a macroscale clinical measure (PCI), with the synaptic and
cellular components of the local cortical circuits. We found that during physiological
activity, both types of inhibition, fast and slow, contribute to the generation of richness of
spatiotemporal activity patterns and cortical complexity, and the progressive blockade of
fast or slow inhibition results in enhanced synchronization and breakdown of complexity.
However, the contribution of GABAA-R-mediated and GABAB-R-mediated inhibition is
different in the desynchronized and in the slow oscillatory (SO) regimes, and this is
discussed below. In our computational model, we explore areas of the parameter space
that cannot be reached experimentally, exploring more extensively the relationship
between excitatory and inhibitory balance, network dynamics, and cortical complexity.

The PCI [Casali et al., 2013] is a measure of cortical complexity that has been used
to quantify consciousness levels, in awake/sleep, in anesthesia [Hudetz, 2012, Sarasso
et al., 2015] and in patients with disorders of consciousness [Rosanova et al., 2018,
Casarotto et al., 2016]. This measure consists in the perturbation of the brain network
by means of cortical stimulation to engage the cortico-thalamocortical circuit in causal
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interactions, and then capturing the spatiotemporal properties of the response in an
index that reflects cortical complexity. It is based on the hypothesis that for consciousness
to occur, simultaneous integration and segregation of information in the network are
needed, resulting in high complexity in the awake state [Tononi and Edelman, 1998].
This perturbational approach presents advantages with respect to an observational one
(based on spontaneous activity) because it is less affected by noise or isolated processes,
and only assesses information generated through deterministic interactions, which
also gives advantages that are useful clinically [Casali et al., 2013]. Given that there
is accumulating evidence that brain complexity is a relevant property that informs
about the brain state and consciousness levels [Massimini et al., 2005, Pigorini et al.,
2015, Sarasso et al., 2015, Casarotto et al., 2016, Dasilva et al., 2021b], we sought to link
this measure to the properties of cells and circuits, to understand how the different
mechanisms may sculpt the resulting complexity. This understanding is also important
to eventually devise strategies to recover complexity in pathologic situations.

To investigate how inhibition contributes to complexity, we resorted to the pro-
gressive blockade of GABAergic receptors. However, network complexity in humans
has been found to be different in the synchronized, slow oscillatory state (low com-
plexity) and in the awake state (high complexity) [Massimini et al., 2005, Casali et al.,
2013, Rosanova et al., 2018]. For this reason, we conducted the GABAergic blockade
while departing from these two extreme conditions, to understand the different role
GABAergic inhibition plays in both regimes, i.e., during synchronized and desynchro-
nized states. Our preparation reproduced several features of these different dynamics.
Bath application of NE+CCh shifted SO to low-frequency 1− to 5−Hz oscillations
(Fig. 33; as in [D’Andola et al., 2018]), which in part resemble the cortical activity
observed during wakefulness. Further, we lowered the temperature by 2◦C to 32◦C,
which we have demonstrated previously diminishes cortical synchronization [Reig
et al., 2010], and increases excitability by increasing electrical compactness and synaptic
summation [J. Trevelyan and Jack, 2002]. We also lowered [Ca2+]◦ levels to enhance
excitability (0.8 − 0.9 mM; [Markram et al., 2015]). Both manipulations resulted in larger
desynchronization as illustrated in the autocorrelograms (Fig. 33B) and spectrograms
(Fig. 33C). Both manipulations led to higher sPCI values (Fig. 33D) as well as increased
SampEn with respect to the SO regime, which is consistent with the idea of different
cortical dynamics. Our experimental model thus allows the study of transitions between
different cortical dynamics, SO to desynchronized states.

Departing from SO as well as from desynchronized activity, GABAA-R blockade
resulted in Up states of higher amplitude and shorter duration than those observed in
control conditions (Fig. 34B). This property has been described [Sanchez-Vives et al.,
2010], but only for the evolution of Up states in SO. Interestingly, when departing from
desynchronized activity, it is also possible to induce rhythmicity in low frequencies by
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partially blocking GABAA-Rs (Fig. 34A). It should be noticed that this is not epileptiform
activity, although progressive inhibition would eventually lead to epileptiform discharges
(Fig. 34A). Disinhibition causes higher firing rates that induces a hypersynchronization
of the network, as we also find in our computer model simulations. In the simulations,
the activation of potassium channels is critical to induction of the silent periods. Such
hypersynchronization of the network results in a decrease in complexity.

GABAB-R blockade during SOs increased Up-state duration [Mann et al., 2009,
Perez-Zabalza et al., 2020], resulting in highly regular oscillatory patterns and prominent
bistable responses to electrical perturbation (Fig. 35B). This finding is revealing of the role
of GABAB-Rs in increasing richness of activity patterns and irregularity in the Up and
Down states [Perez-Zabalza et al., 2020]. This is also translated in a consistently decreased
sPCI with GABAB-R blockade. A different situation takes place when departing from
the desynchronized state (Fig. 35A). In this situation, the blockade of GABAB-Rs tends
to induce, but does not fully induce, a bistable oscillatory regime, nor significantly
decreases sPCI. These findings suggest that the role of GABAB-Rs in the desynchronized
state for introducing richness of activity patterns and thus complexity, is not as relevant
as it is for the SO regime. It is probably the case that the intense firing of neurogliaform
neurons necessary for the activation of GABAB-Rs is more commonly achieved in
synchronized than in desynchronized states (for review, see [Sanchez-Vives et al., 2021]).

Local network excitability, bistability, and the integration-segregation balance
in brain slices

A straightforward explanation of our observation of increased sPCI during
desynchronized states is that the sPCI merely reflects network excitability. In other
words, the sPCI scored higher just because bath-application of modulators such as CCh or
NE increased the excitability of the slice. However, if that were the case, any experimental
manipulation increasing the excitability of the slice would result in higher sPCI values
compared with those obtained under the SO regime. However, previous studies already
demonstrated the opposite, showing that either bath-application of a glutamate receptor
agonist (kainate) [D’Andola et al., 2018] or electric field modulation [Barbero-Castillo
et al., 2019] in cortical slices increased network excitability without affecting sPCI. Finally,
the authors did not find a relationship between network excitability and sPCI [D’Andola
et al., 2018]. Here, we further explored the relationship between excitability, inhibition
and connectivity in our experiments and our newly implemented network model and
provided a number of novel insights. On one hand, the progressive reduction of fast
inhibition gradually increased the firing rate (Fig. 34), even leading to epileptiform
discharges in some cases. We found that excessive excitability can in fact reduce the
sPCI, and statistical analysis indicated that following GABAA-R blockade, the sPCI was
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significantly reduced while the relative firing rate increased (Fig. 34). On the other hand,
GABAB-R blockade also reduced the sPCI without significantly increasing the firing
rate (Fig. 35), supporting the idea of the independence of firing rates or excitability and
complexity.

Finally, our network model (Fig. 9) allowed us to investigate areas of the parameter
space that were not visited experimentally. The model that has been used for these sim-
ulations, as described, is a biologically inspired, Hodgkin and Huxley model [Hodgkin
and Huxley, 1952], in which pyramidal neurons have two compartments: somatic and
dendritic (see Methods Sec. 3.1), where excitatory synapses target the dendritic compart-
ment and inhibitory synapses are localized on the somatic compartment of postsynaptic
pyramidal neurons [Compte et al., 2003]. The Compte et al. [Compte et al., 2003] network
model was originally tuned based on experimental observations of cortical SOs, and
further studies have validated that it reproduces diverse features of excitability and
oscillations [Sancristóbal et al., 2016], and of cortical emergent properties such as 𝛽 and
𝛾 frequencies [Compte et al., 2008]. Activation of GABAergic receptors in the soma
compartment hyperpolarizes the membrane potential and decreases the input resistance,
while those in dendrites modulate NMDA potentials [Doron et al., 2017], calcium spikes,
block back-propagation of action potentials and neuronal bursting, all without modi-
fying the membrane potential in the soma [Larkum et al., 1999, Pouille and Scanziani,
2004, Breton and Stuart, 2012, Palmer et al., 2012]. Previous study have demonstrated
that this model could reproduce at the cellular and network level the transformation of
the SOs when GABAA-Rs were progressive blocked [Sanchez-Vives et al., 2010]. In the
current study, we implemented a new version (see Methods Sec. 3.1.2) of the cortical
network model aimed to reproduce population features that we observed while blocking
as well GABAB-R: an elongation of the Up states (as in [Mann et al., 2009, Perez-Zabalza
et al., 2020], and the spatiotemporal response to stimulation (or perturbation), which
results in a decrease in the resulting sPCI with GABAergic block. Somatic GABAergic
receptors located in the soma in our model were sufficient to reproduce both sponta-
neous and evoked population responses observed in cortical slices, although a further
exploration of a more detailed somatic versus dendritic influence on network dynamics
could be a valuable future development. In the model we explored parametrically
the variation of GABAA-R blockade and found the rate of decrease of sPCI reached a
minimum for about a 25% decrease in inhibition (Fig. 36). Interestingly, we were also
able to enhance inhibition, and found that there is a window of excitatory/inhibitory
balance, around the physiological values, in which complexity is maximal, but either
enhancing or decreasing inhibitions diminishes complexity (Fig. 37). However, when we
look at the spatial patterns (see Movie 1) we can see how the spatiotemporal pattern to
reach decreased complexity can be very different, from a highly disaggregated activity
in enhanced inhibition, to hypersynchronization in low inhibition.

https://www.jneurosci.org/content/41/23/5029/tab-figures-data#fig-data-movies
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Furthermore, given the spontaneous spatial patterns observed in the model, we
applied a different measure of cortical complexity based on the wave propagation [Ca-
massa et al., 2021b], differently from sPCI that is based on cortical response to stimulation.
In agreement with the results obtained for sPCI (Fig. 37), the entropy of wave propa-
gation also showed high complexity values for a window where excitatory/inhibitory
balance is kept around physiological values (Fig. 38). These finds bridge the activity of
receptors with the activation of the network at the mesocortical level and connects circuit
properties with large-scale causal interactions in the cortical network. Furthermore,
it suggests that there is a close link between integration and segregation with E/I
balance and that higher/lower sPCI values and wave propagation entropy are not the
consequence of merely increasing/decreasing excitability.

5.3 Mean-field approach to the dynamics of networks of complex
neurons

We reviewed and applied a formalism to derive mean-field (MF) models and
showed that it can be applied for simple and complex neuronal models such as Adaptive
Exponential Integrate-and-Fire (AdEx), Hodking-Huxley (HH) and Morris-Lecar (ML).
The key aspect to achieve biologically plausible MF models is to be able to obtain the
transfer function (TF) of the desired neuronal model. Our approach followed a MF
formalism based on a master equation, which is applicable to every neuron, once the
TF is known [El Boustani and Destexhe, 2009]. Recently, Zerlaut et al. [Zerlaut et al.,
2016] have shown that the usual mathematical form of the TF, known analytically for
the Integrate-and-Fire model, can be applied to more complex neuronal models. This
gave rise to a semianalytic approach, where the TF can be parameterized and fitted
numerically to the neuron model, while the MF remains analytic. This approach has
been applied to the AdEx model [Zerlaut et al., 2018, Di Volo et al., 2019a], and here we
applied it to more complex models, namely the Morris–Lecar and the Hodgkin–Huxley
model.

We studied the predictions of the considered MF models on neuronal networks
of excitatory (modelled as regular spiking neurons) and inhibitory (modelled as fast
spiking neurons) cell populations during the asynchronous regime, typical of awake-
like cortical regime. In order to explore different cortical regimes where neurons can
exhibit different patterns of activity, e.g. bursting, a different methodology must by
employed [Ostojic and Brunel, 2011, Di Volo et al., 2019b]. Nevertheless, in the context
of tonic neuronal activity, as assumed here, the method is shown to be able to capture
the response function of highly realistic models. Our results positively compare in the
case of ML and HH models for both the average and the variance of network population
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activity.

We have shown that the MF predictions are strongly dependent on the goodness
of the fitting procedure for single neurons TF. Even if such procedure works very well
for neurons working in a low rate regime, whenever the firing rate becomes very high
(> 100 Hz) the quantitative agreement gets worse. A more refined technique for the
evaluation of the transfer function in different states (low and high rates activity) is
an important topic for future research [recent work has addressed this issue in AdEx
model [Capone et al., 2019a]]. A step forward in this direction can be important when
dealing with neurons entering depolarization block at high firing rates, a mechanism
playing an important role in focal seizures [Meĳer et al., 2015] or in dopaminergic
neurons under normal condition or under drugs assumption [Dovzhenok and Kuznetsov,
2012, Di Volo et al., 2019b]. In both the ML and HH models, the semianalytic fitting was
found to give quite good predictions on the presence of depolarization block, especially
in the ML case as this setup does not consider very high spiking frequencies. Even if
work remains to be done to extend this framework to obtain a more reliable quantitative
prediction on the depolarization block at very high frequencies, these preliminary
results indicate the possibility to use these MF techniques to connect the physiology at
the cellular scale with pathological states at the population level, as the case of focal
seizures.

We also reported that, in the framework of the asynchronous regime here
considered, corrections to first order mean field due to second order terms (see Eqs. 3.34
and 3.35) were relatively small but gave a good quantitative indication on the covariance
of population rates (see histograms in Fig. 41). Nevertheless, in the case of dynamical
regimes with higher neuronal correlation with respect to the ones here considered,
we expect the second order mean field (explicitly taking into account the dynamics of
covariances) to play an important role in the prediction of population average collective
dynamics. The goodness of the MF prediction depends indeed also on the emergent
dynamics of the network, i.e., in a highly synchronous dynamical regime the Markovian
hypothesis fails and the MF model cannot give accurate predictions. Nevertheless, even
if light synchronization is considered, e.g., during slow-wave sleep, the MF models have
been shown to correctly predict such collective oscillations [Di Volo et al., 2019b]. In this
case it is, however, necessary to consider a MF model that includes the slow dynamics of
spike frequency adaptation, e.g., the M current in the case of Hodgkin–Huxley model.
The possibility to include a conductance based adaptation to this formalism, e.g., by
considering the slow dynamics of M current, is a stimulating perspective for future
works and will permit to obtain mean-field models for realistic neuronal models beyond
the asynchronous irregular regime.

Moreover, beyond the input-output transfer function used here, a more complex
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transfer function has been used to take into account other features of neuron response,
e.g., response in frequency [Ostojic and Brunel, 2011]. The addition of variables to
account for a richer spiking pattern is an interesting direction, in case one is interested in
modeling brain regions characterized by nontonic firing of neurons (e.g., bursting cells in
the thalamus). The general framework presented here could be extended in this direction,
as it has been done to account for spike frequency adaptation yielding slow oscillations
at the population scale [Di Volo et al., 2019b]. Another possible extension is to apply the
same formalism to complex neuronal models that include dendrites. A first attempt has
been made in this direction [Zerlaut and Destexhe, 2017] by considering simple “ball
and stick” neuron models, where some analytic approximation is possible. In principle,
it should be possible to apply this approach to models based on morphologically
reconstructed neurons and to calculate the transfer function of such models. This will
lead to mean-field models based on morphologically realistic neuronal models. However,
the presence of dendritic voltage-dependent currents complicates this approach and
should be integrated in the formalism. This suggests an exciting future development of
our approach.

Finally, the positive results obtained here for complex models, by showing the
generality of our approach, motivate the future step of the application of this technique
directly to experimental data. To this end, neurons must be recorded intracellularly in the
absence of network activity (as typically in vitro), and many combinations of excitatory
and inhibitory inputs must be injected as conductances (using the dynamic-clamp
technique). The first attempt of this sort was realized on the layer 5 neurons from
mouse primary visual cortex [Zerlaut et al., 2016], where the transfer function could be
reconstructed for a few dozen neurons. The same dynamic-clamp experiments should
be done in the future to characterize the transfer function of inhibitory interneurons.
Based on such experiments, it will be possible to obtain a mean-field model based on the
properties of real neurons. Such a model will evidently be more realistic than the models
we have presented here, which must be considered as a first step toward a quantitative
population modeling of cerebral cortex and other brain regions.
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Chapter 6

Conclusions

1. Computational models accompanied by experimental data are a powerful tool to
obtain mechanistic insights of network dynamics.

2. Departing from a biophysical-detailed model, this thesis has allowed for its
modification in terms of newly incorporated ionic channels and more realistic
topology. Thus, allowing for a more detailed exploration of cortical activity
mechanisms.

3. SK calcium-activated potassium channel (KCa), during slow oscillations, acts as a
control for hyperexcitability controlling the neuronal firing rate during Up states.
Also, KCa regulates the recruitment of the local network, where its blockage results
in steeper transition from Down to Up states and faster wave propagation, thus
reflecting its role on neuronal synchronization.

4. Ionic currents present within only a fraction of neurons are able to modulate the
collective behaviour. Due to the network recurrent connectivity neurons with and
without the specific ionic currents are indistinguishable at both their extracellular
and intracellular spontaneous activity.

5. The sodium-dependent potassium channel (KNa) is crucial to the maintenance of
slow oscillations in the cortical network model due to its slow time course with a
duration in the range of that of the Down states.

6. The off-periods or Down states caused by potassium currents (KCa and KNa)
share properties with those described in the brain of unresponsive wakefulness
syndrome patients that have been found to disrupt causality and complexity.

7. M-current has an important role on the generation of rhythmic slow oscillatory
activity. It controls the Up state termination and the network synchronization.
Its blockage results in larger Up states and more excitable Up and Down states.
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Our results suggest that the cholinergic blockade of this current is a relevant
mechanism in the transition towards wakefulness.

8. H-current has an important role on the frequency of emergent cortical slow
oscillations. Its blockage induce larger Up and Down states. In the cortical network
model, H-current blockage increase duration of Up and Down states and reduces
the neuronal firing rate.

9. Fast (GABAA) and slow (GABAB) synaptic inhibition are both required for spa-
tiotemporal cortical complexity. The reduction of gabergic inhibitions results in a
reduced cortical complexity.

10. Fast (GABAA) synaptic inhibition is necessary for the balance between neuronal
segregation and integration in the cortical network model.

11. A two-dimensional computational model is able to reproduce the experimental
observations during the study of perturbational complexity. Perturbation and spon-
taneous estimation of cortical complexity revealed that complexity is maximized
when there is a balance between excitation and inhibition.

12. From a master equation formalism, mean-field models can be derived from
different complex neuronal models being able to describe its temporal dynamics.
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