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Abstract

In current mobile networks, data is increasing day by day due to massive Machine

Type Communication (mMTC), emerging AR (Augmented Reality)/VR (Virtual

Reality) applications and UltraHD (Ultra-High-Definition) or 360-degree streaming

video and many more. The ever growing data demand in mobile networks requires

high capacity to meet user satisfactions. 5G and beyond 5G networks are promised

to handle the huge volume of data. To transport the large volume of data, a cost-

effective high capacity transport solution is a key. In that flows, 5G and beyond 5G

networks are moving towards much higher frequencies (e.g., mmWave) that provide

more larger bandwidth, hence, reduces the coverage of the cells, which makes 5G and

beyond 5G networks more denser. In order to manage the large number of cell sites

(known as small cell), centralized network like SDN (Software-Defined Networking)

can provide huge advantages by controlling and managing the SCs in an efficient

way by enabling programmability in the networks.

The SDN architecture separates the data and the control planes of the networks.

It logically centralizes the control of a network in a central point that is an SDN

controller, which acts as a brain of the network and is in charge of telling each net-

work node how to forward incoming packets by installing the appropriate forwarding

rules. One of the main advantages it brings is programmability through this single

entity (the logical controller) with which network management applications must

interact to apply their policies. Through agreed-upon APIs, the network managers

can exploit the full potential of SDN.

SDN generally assumes ideal control channels between the SDN controller and the

network nodes, which may be true in a certain controlled context, data center,

for instance, where control packets exchanged between the SDN controller and the

forwarding nodes experience almost no loss or very low loss. This may not be the

case in challenging environments (e.g., wireless condition) that are becoming more

common due to dense deployment of small cells (SCs) with reduced coverage in 5G

and beyond 5G deployments to meet the capacity demand. In 5G and beyond 5G use

cases, cost-effective wireless transport networks are required to connect the SCs. In

this context, mmWave technology is a good player to connect the SCs, as mmWave
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provides larger radio spectrum chunks that in turn provide larger bandwidth and

higher data rate.

To manage the dense deployment of SCs in the mobile networks, on the network

management/control front, network programmability and virtualization are also an

integral part of 5G and beyond 5G networks. In this regard, to provide end-to-end

connectivity, management and orchestration of all the segments of the networks,

ranging from RAN (Radio Access Network), to the transport network, and to the

core, is vital. On the transport networks side (the main focus of the dissertation),

SDN plays an important role, as SDN enables programmability and virtualization

in the networks.

Though SDN provides huge flexibility in network management by splitting the con-

trol plane from the data plane, it has some limitations in the wireless networks

context, as the separation of the control plane from the data plane introduces ex-

tra points of failure in the SDN-based control (e.g., control communication channel

failure, SDN controller failure). In wide area network (WAN) scenarios, where in-

band channels (e.g., microwave or mmWave links) are responsible to carry control

traffic between the forwarding nodes and the SDN controller, the assumption of the

availability of a reliable network may not be possible, as the performance of the

wireless link changes with the environmental conditions, which leads to a high risk

of experiencing channel impairments, which might cause centralized SDN operation

failure by affecting communication between the transport component of SCs and the

SDN controller.

Therefore, the reliability of SDN in the wireless context needs to be taken into

account. In what follows, we have investigated the performance of centralized SDN

during unreliable control communication channel conditions. In the dissertation,

we propose that the forwarding node is responsible to inspect the reliability of the

control communication channel. We also propose a metric named control packet

loss ratio (CPLR) to measure the reliability of the control communication channel

as well as the control plane. As control packet loss is the major concern to inspect

the reliability of the control communication channel, from the point of view of a

network node, the failure of the SDN controller is equivalent to the failure of the

control communication channel. Thus, we introduce a local agent in the node that

is coupled with a monitoring framework to detect the unreliability of the control
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communication channel. The experimental results show that during a high loss

regime, SDN fails to operate, as control packets that are exchanged between the

SDN controller and the forwarding nodes experience high losses.

To recover the SDN control from failure, the dissertation also presents a hybrid

SDN (Hybrid Software-Defined Networking) scheme that explores the benefits of

centralized and distributed operations depending on control communication channel

conditions. Our hybrid SDN approach combines both centralized and distributed

modes in the same node to form a hybrid control plane architecture. We introduce

a local agent in the node that is composed of a monitoring framework to detect

reliability of the control communication channel and a decision module that embeds

a novel control logic switching algorithm to make the decision whether to oper-

ate in a centralized or distributed mode. The monitoring framework periodically

gathers control communication channel status by measuring CPLR and based on

information gathered by the monitoring framework during various states, the de-

cision module predicts the network conditions in advance and dynamically switch

the mode of operations from centralized to distributed if required. We evaluate the

proposed solution under a variety of unreliable network conditions (e.g., link impair-

ments, control packet loss) to investigate the operational performance of the hybrid

SDN during high loss conditions. The experimental results show that the proposed

hybrid SDN solution substantially improves the aggregated throughput and latency,

particularly when control channel packet loss ratios increase, which in turn keeps

the network operational in hard conditions where centralized SDN would result in a

non-operational network.

Our proposed solution shows huge potential in wireless transport solution of 5G and

beyond 5G networks where a more denser networks is formed by deploying SCs or

even in the scenario of non-terrestrial networks (NTNs) that is an increasing attrac-

tion in 5G and beyond 5G scenarios. Besides capacity, 5G and beyond 5G networks

are committed to provide Ultra-Reliable Low-Latency Communication (URLLC),

which requires high reliable communication channels to ensure exchange of control

messages with the relevant nodes on time. But in wireless condition, the assump-

tion of reliable communication channel may not be the case due to environmental

condition. In such condition, advantages of SDN, which is a key player in 5G and

beyond 5G notworks in control/management front, may not be exploited properly as
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the SDN controller loses the control of the network. Our hybrid SDN, by integrat-

ing centralized and distributed operations can show robustness in such scenario by

switching mode of operation. Our solution, by integration of both operations in the

same node able to exploit the advantages of centralized operation and at the same

time brings robustness to the network by quickly react to failure of the centralized

operation.
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Chapter 1

Introduction

This chapter summarizes the general motivation behind the research work that has

been carried out to tackle a research problem in today’s communication networks.

This chapter also presents main goal of the research work, the outline of the disser-

tation and a brief description of the contents of each chapter.

1.1 Motivation

With the improvement of new network technologies, Software-Defined Networking

(SDN) [37] provides a new network paradigm as well as new network architecture

to handle the programmability and the data growth in current and future data

networks. Unlike legacy networks, where the forwarding plane and control plane

coexist on the same node, the SDN architecture decouples the forwarding plane and

the control plane. As a result, to build highly scalable and flexible networks to adapt

to rapid changes in business requirements, it is necessary to substantially increase

programmability, automation of the networks and more control over the networks.

On the other hand, in order to meet the anticipated growth of data demand of

mobile networks, a significant evolution in mobile transport networks have been

performed and the trend is set to continue for the foreseeable future. Due to the

limited availability of radio spectrum, current mobile networks cannot provide the

required throughput to the increased mobile traffic volumes. By deploying small

1
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cells (SCs) [27], [29] with shorter cell radii, the capacity of the mobile networks

can be increased by spatial reuse of the radio spectrum. Wireless technology (e.g.,

mmWave) to interconnect the SCs could be a good choice to provide a cost-effective

mobile transport solution (including backhaul and fronthaul). The densification of

mobile network infrastructure with SCs deployment requires proper control over

the network and at the same time proper utilization of resources. The adaptation

of SDN to wireless mobile transport networks can improve the management and

control over the networks and at the same time provide better resources allocation

in the mobile transport networks, by acquiring a global view of the networks as well

as the centralized control over the networks.

In addition, SDN provides huge advantages for managing networks by splitting the

control logic, which was previously tightly bound to the forwarding entity. Even

though SDN provides better manageability and programmatic flexibility to innova-

tive network applications, there are still important issues to solve, such as network

failure handling, particularly that due to control plane failure. Therefore, the sepa-

ration of the control plane from the forwarding plane leads to additional points of

failure, i.e., the network administrator will have to pay additional attention to the

control plane to handle the SDN controller failure. The SDN controller failure or

control channel(s) failure may be really harmful for centrally managed SDN. The

SDN controller acts as a brain of the network to manage several forwarding devices.

So, in order to keep SDN alive, connection between the control plane and the for-

warding plane must be consistent, i.e., communication between the control plane

and the data plane must be fully operational. And in fact, this is what is assumed

for high-capacity wired networks (e.g., data centers or campus networks), but this

may not be the case for dense mobile networks and all-wireless transport networks

with in-band control. In in-band control networks, data and control packets are

carried out by the same network and in wireless contexts, the channels are more

prone to impairments due to environmental conditions.

The motivation of the research work lays on the trade-off between centralized con-

trol and distributed control during unreliable network conditions. This research

work tries to find the solution by implementing a hybrid control plane architecture

where both centralized and distributed control co-exist in order to provide higher



Chapter 1. Introduction 3

reliability, resiliency and to improve the performance of the network during unre-

liable control plane conditions by alternating the control logic. In order to drive

SDN-based networks in case of impairment, as well as to maintain operational re-

siliency, several kinds of research have been performed. Most of the researches are

concentrated on impairment at the data plane level. Very little attention is paid to

the control plane failure as well as control channel failure, or even degraded channel

condition. On the other hand, in wireless networks, the radio links are more likely

to be affected by environmental conditions and interference, which leads to a high

risk of experiencing channel impairments.

1.2 Goal of The Thesis

The main objective of the dissertation is to design a network architecture to preserve

simple network management by conceiving centralized network control and also to

provide robustness during unreliable network conditions. To formulate the thesis,

the main goals are defined as:

• Investigating performance of centralized SDN during unreliable conditions.

• Inspecting the performance of distributed operation during unreliable condi-

tions.

• Defining a network metric to determine the status of the control communica-

tion channel as well as that of the control plane.

• Designing a network architecture to preserve the benefit of both centralized

and distributed operations and to mitigate their limitations during different

use cases.

• Designing and implementing an algorithm to perform network operation switch-

ing depending on the reliability of the control communication channel.

1.3 Outline of The Thesis

The dissertation has been organized into nine chapters.
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• Chapter 2 presents the background of the work that includes a brief overview

of SDN and OpenFlow. This chapter also includes an overview of various

deployment models of hybrid SDN and also an overview of mobile transport

networks.

• Chapter 3 describes the state-of-the-art solutions to prevent centralized SDN

from failing or to handle them when they appear. We have categorized the

related works to formulate the main building blocks of our work.

• Chapter 4 specifies the problem statement, which remains unsolved by the

research community, and also describes the validity of the research question.

• Chapter 5 presents our proposed hybrid control plane architecture. This chap-

ter also illustrates details of the hybrid node architecture, which is the main

building block of our proposed hybrid control plane.

• Chapter 6 depicts a novel network operation switching algorithm that periodi-

cally infers the status of the control communication channel and takes network

operation switching decisions in advance based on the reliability of the control

communication channel.

• Chapter 7 starts with a comparison between existing frameworks that could be

used to implement the solution. Finally, the chapter focuses on the framework

that has been used to implement the proposed solution.

• Chapter 8 mainly focuses on the performance evaluation of the proposed ap-

proach under different use cases. This chapter also describes the evaluated

scenarios and experimental setup.

• Chapter 9 concludes with the main findings of this research work and also

describes future research directions.
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Background

The mobile transport networks lay between Radio Access Network (RAN) and Core

Network (CN). Softwarization and virtualization of the network’s control from a cen-

tral point (e.g., SDN) may provide huge flexibility to manage the transport networks

in an efficient way. On the other hand, combination of centralized control and dis-

tributed control (e.g., hybrid SDN) may introduce better reliability and robustness

to the networks.

In this direction the background chapter introduces a generic overview of SDN,

Hybrid SDN and mobile transport networks, which are the technologies that set the

framework for this thesis.

2.1 Introduction to Software-Defined Networking

Software-Defined Networking (SDN) [37] is an emerging networking architecture in

today’s communication networking paradigm, which allows programmability in net-

working and also provides more granular controls over the networks. SDN brings

openness in networking by exposing a network management API (Application Pro-

gramming Interface) that also allows building virtual networks. The principal idea

of separation of the control plane and the data plane provides the networks more

manageability, adaptability and cost-effectiveness. Decoupling of the control plane

from the data plane makes the network move from distributed control, like OSPF

5
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(Open Shortest Path First) [51] to centralized logic. In this case, network intelli-

gence is logically centralized in the software-based SDN controller. Moreover, the

SDN controller maintains a global view of the whole network from network topol-

ogy to the state of the network resources, like switches. Thus, traffic shaping and

applying routing policies become more flexible compared to legacy networks. For

instance, if a forwarding link is congested, the SDN controller can dynamically ad-

just new routing policies to avoid the congested route. One more beneficial aspect

of SDN is that of centralized control over multi-vendor environments [37]. Devices

like switches and routers from any vendor that is OpenFlow-enabled [49] can be

controlled by the SDN controller and hence significantly reduces the operation and

management complexity of a network.

Figure 2.1: SDN Architecture

A logical overview of the SDN architecture has been depicted in Figure 2.1. The

SDN architecture consists of three layers which are the application layer, the control

layer and the infrastructure layer. For fulfilling user requirements as well as business

needs, corresponding application resides in the SDN application layer. The SDN ap-

plication layer communicates with the control layer by the northbound interfaces

which provide services access points in various forms, for example, an Application

Programming Interface (API) [71]. Several SDN applications like dynamic access
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control, seamless mobility and migration, server load balancing and network moni-

toring can access and control the infrastructure layer devices (e.g., switch) through

the control layer. The control layer is the bridge between the infrastructure layer and

the application layer. The control layer maintains communication with the applica-

tion layer and the infrastructure layer through the northbound and the southbound

interfaces, respectively. The control layer is not only responsible for providing rel-

evant information to the SDN applications, but also to collect network status and

send the update of packets forwarding rules to the infrastructure layer devices. Sev-

eral popular open-source SDN controller frameworks, such as NOX [7] , POX [17],

Floodlight [3], OpenDayLight [13], Beacon [1], ONOS [10], and RYU [19] are avail-

able. The infrastructure layer is responsible for forwarding packets based on rules

set up by the control layer. This layer mainly contains forwarding devices (e.g.,

Open vSwitch [16]) and network media. The SDN controller exchanges control

information with the infrastructure layer devices via southbound interfaces using

southbound protocols. NETCONF (Network Configuration Protocol) [5], OVSDB

(Open vSwitch Database Management Protocol) [12], and OpenFlow [49], [14] are

some examples of southbound protocols, which may comprise control but also man-

agement functions. Additionally, several OpenFlow-compliant commercial products

have appeared in the market, as well as open-source ones, such as Open vSwitch

[16]. As a consequence, OpenFlow is the most popular candidate among the other

southbound protocols. With the introduction of SDN, designing and operating a

network become significantly less complex for the network carriers and companies,

since the infrastructure layer becomes vendor-independent.

2.1.1 OpenFlow Protocol

OpenFlow [49], [14] is the first standardized communication protocol between the

control plane and the forwarding plane (also referred to as southbound protocol)

in the SDN architectures. The main purpose of this protocol is to provide com-

munication interfaces to the control and the infrastructure layer devices and at the

same time to allow direct access and manipulation of the configuration stored in the

forwarding devices (e.g., switches and routers).
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Figure 2.2: Components of OpenFlow Switch [15]

OpenFlow resides in both the control layer and the infrastructure layer to maintain

communication between these two layers. The OpenFlow principle is based on three

basic components (see Figure 2.2): (i) the data plane – which mainly consists of

OpenFlow-compliant switches (ii) the control plane - which consists of one or more

SDN controllers, and (iii) the secure control channel – which connects the data

plane and the control plane [31]. The manipulation and population of flow entries

of the flow tables in the OpenFlow-compliant forwarding devices are managed by

the SDN controller through the control channels. Such channels may use plain TCP

(Transmission Control Protocol) or can be encrypted using TLS (Transport Layer

Security). The infrastructure layer devices (e.g., Open vSwitch) forward packets

according to flow table entries.

2.1.1.1 OpenFlow Messages and Events

The OpenFlow protocol supports three types of messages that are listed below:

1. SDN controller to forwarding device message

2. Asynchronous message
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3. Symmetric message.

The SDN controller initiates controller-to-forwarding device messages to manage or

inspect the state of the forwarding node (e.g., Open vSwitch). While asynchronous

messages are initiated by the forwarding node to give update to the SDN controller

about network changes as well as forwarding node’s state. On the other hand, Sym-

metric messages can be initiated either by the SDN controller or by the forwarding

node. For instance, while entry of a new forwarding node is detected by the SDN

controller, the SDN controller sends Hello message, which is a symmetric message

and then followed by Feature and Configuration message that are SDN controller-

to-forwarding device message (see Figure 2.3).

Different types of OpenFlow messages that are exchanged between the SDN con-

troller and the forwarding nodes are described briefly in the Table 2.1.

2.1.2 Forwarding Device

In SDN architectures, the forwarding device forwards packets according to rules im-

posed by the SDN controller into its flow tables. The Open vSwitch [16] is one of the

good candidates in this context. Open vSwitch is an open-source software switch to

support OpenFlow and can be used as a virtual switch in virtualized environment.

The Open vSwitch provides standard and vendor-independent management inter-

faces and at the same time enables the forwarding functions through programmatic

control. The OpenFlow switch database contains one or more flow tables or group

tables which contain set of rules imposed by the SDN controller. The SDN controller

manipulates i.e., add, delete and modify the flow entries reactively or proactively

using OpenFlow protocol.

Table 2.1: OpenFlow messages [15]

Message Type Message(s) Description

Symmetric

Hello

Exchanged between forwarding nodes

and the SDN controller during boot-

strap. OpenFlow versions are negoti-

ated.
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Echo Request
Verify liveliness of the SDN controller

and the forwarding nodes connection.

Echo Reply A reply message to Echo Request.

Error Message

Mostly used by the forwarding node

that indicates failure of a request that

has been initiated by the SDN con-

troller.

SDN controller-to-

forwarding

nodes

Handshake

OpenFlow Features Request/Reply

messages to determine forwarding

nodes’ capability and information

about forwarding nodes’ ports.

Configuration

The SDN controller sets and queries

configuration parameters in the for-

warding nodes (e.g., Timeout of flow

rules).

Flow Table Con-

figuration

Flow tables are numbered and the

SDN controller configures dynamic

state in the flow tables.

Modify-State

The SDN controller modifies state of

the forwarding nodes. Add, delete or

modify flow entries, for instance.

Multipart

OpenFlow message that carries large

amount of data and does not fit into

single OpenFlow message is encoded

by using multipart messages.

Packet-Out

Policies that are set by the SDN con-

troller to forward packets are sent to

the data plane devices.

Barrier

The SDN controller receives notifica-

tions of a completed operations and

also ensure message ordering.

Role Request
If the SDN controller wants to change

its role, it sends role request.
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Bundle
The SDN controller can create, de-

stroy and commit bundle messages.

Set Asyn-

chronous Con-

figuration

Defines whether the SDN controller

should receive a given asynchronous

message that is generated by the data

plane device.

Asynchronous

Packet-In

Triggered by the forwarding nodes to

send a packet to the SDN controller

for policy making,

Flow-Removed

The data plane nodes instruct the

SDN controller about removing of flow

entries from its flow table.

Port-Status

The forwarding nodes notify the SDN

controller about topology change in

the network. For instance, if link be-

tween two nodes goes up/down or port

goes up/down.

SDN Con-

troller’s Role

Status

The forwarding node notifies the cor-

responding SDN controller when the

SDN controller’s role is changed by

the forwarding node in multiple SDN

controllers environment.

Table Status

The SDN controller is notified by the

forwarding nodes when table state is

changed.

Request Forward

In multiple SDN controllers environ-

ment, the data plane device informs

other SDN controllers about the mod-

ification of the state of groups and me-

ters.
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SDN Con-

troller’s Status

When status of a SDN controller

changes the forwarding node sends

status change message to all of the

SDN controllers to which the forward-

ing node is connected.

Error

The forwarding node sends Error mes-

sages to the SDN controller while an

error is detected by the forwarding

node.

2.1.2.1 Interfaces

In OpenFlow-enabled forwarding devices, OpenFlow ports are network interfaces for

receiving and forwarding packets. Packets are received on an ingress port and go

through a pipeline processing and then may be forwarded to an output port. There

are three types of ports specified in OpenFlow switch specification [15] which are as

follows:

• Physical Port: Physical ports are simply physical interfaces of the devices (e.g.,

Ethernet interfaces). In case of virtualized deployment of OpenFlow switches

over switch hardware, OpenFlow physical port may represent a virtual slice of

the corresponding hardware interface.

• Logical Port: Encapsulation of a packet and mapping different physical ports

may be possible at these ports. Logical ports specify link aggregation groups,

tunnels and loopback interfaces.

• Reserved Port: Responsible for generic forwarding actions. For instance, send-

ing packets to the SDN controller, flooding or forwarding using traditional

routing or switching. The required reserved ports that must be supported by

the forwarding device are a follows:

– ALL: Represents all the ports that can be used for forwarding of a specific

packet.
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– CONTROLLER: Represents the control communication channel with the

SDN controller. When the port is used as an egress port, the packet is

encapsulated in a Packet IN messages and the packet is sent to the SDN

controller using OpenFlow protocol. On the other hand, if the port is

used as an ingress port, this identifies a packet originating from the SDN

controller.

– TABLE: This port submits the packet to the first flow table for the Open-

Flow pipeline processing and only valid in an output action, in the list of

actions of a Packet Out message.

Figure 2.3: SDN controller and forwarding device handshaking during boot-
strapping
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– IN PORT: Represents the packet ingress port and can also be used as an

output port to send the packet out through its ingress port.

– ANY: When no port is specified, ANY as the port number allows to

apply OpenFlow request instance to any and all ports.

– UNSET: To specify the output port that has not been set in the Action-

Set.

– LOCAL: The local port enables remote entities (e.g., the SDN controller)

to interact with the forwarding nodes via in-band connection rather than

separate control network.

– NORMAL: Allows forwarding using the traditional non-OpenFlow pipeline

of the forwarding devices.

– FLOOD: Allows flooding of packets using traditional non-OpenFlow pipeline

of the forwarding nodes to all standard ports but not to the ingress port.

2.1.2.2 Flow Table Structure

A flow table is a set of flow entries that are stored in memory of a forwarding device.

Each flow entry consists of several fields (see Figure 2.4) to apply matching and

action to incoming packets.

Figure 2.4: Flow entry components of a Flow Table [15]

• Match Fields – check for matching with incoming packets. It comprises ingress

port, packet header and metadata specified by a table.

• Priority – prioritize the matched flow entry.

• Counter – updated while packet header become matched.

• Instructions – a set of actions to take care of incoming packets.

• Timeouts – determines validity of a flow entry.
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• Cookie – set by the SDN controller for filtering flow statistics, flow modification

and deletion.

• Flags – defines the way of managing flow entry.

2.1.2.3 Packet Processing in OpenFlow-compliant Devices

Matching: When the forwarding devices (e.g., Open vSwitch) that are OpenFlow-

enabled, receive a particular packet, they extract the packet header of the incoming

packet to find the match with match field of the flow table(s). The forwarding nodes

must contain at least one flow table and can contain more than one flow table. After

receiving a packet, the forwarding node starts searching in its flow table(s) for the

match and the search always starts at the first flow table i.e., search for the match

against the flow entries stored in flow table 0 (zero). If the switch contains multiple

flow tables and if no match is found in the first flow table (e.g., table 0) then the

node starts searching for a match on the next flow table, and so on. This process

is known as OpenFlow pipeline [15] process (see Figure 2.5). Pipeline processing

happens in two stages, ingress and egress processing. Distinguishing between two

stages is done by numbering the ingress and egress tables. Ingress tables always

have lower numbering than the first egress table. Pipeline processing always starts

with ingress processing from the first flow table. When the outcome of the ingress

processing is to forward packet(s) to the output port, the forwarding device performs

egress processing if valid egress table is configured as the first egress table, otherwise

packet is simply forwarded out of the switch.

Table-miss: The table-miss flow entry of the flow table defines how to process

the packet that has no match entry in the flow tables. For instance, the incoming

packet that has no match may be dropped, or forwarded to the SDN controller. The

table-miss flow entry rule has lower priority (in most cases it is zero (0)) in the flow

table, so that the incoming packet can be matched against the higher priority rules,

if there is any match. Otherwise the packet will be processed by the table-miss flow

entry rule. The table-miss flow entry does not exist by default in the flow table.

The controller may add this rule to the flow table of the forwarding devices during

their bootstrap process and may further modify the rule if needed.
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Figure 2.5: Pipeline processing for per packet flow [15]

While there is no match for incoming packet(s) in switch flow table(s), the table-

miss flow entry is triggered, which specifies the action for the unmatched packet(s).

Depending on the rules set by the SDN controller for unmatched packet(s), the

unmatched packet(s) could be dropped by the forwarding node or the packet(s)

could be sent to the SDN controller through the CONTROLLER reserved port (see

section 2.1.2.1) using Packet In (see Table 2.1) message for forwarding decision. If

the packet is sent to the SDN controller, then the SDN controller is responsible

to apply a policy to forward the packet. The SDN controller sets the priority,

instruction, timeout, cookie and flag in the flow rule(s). The SDN controller also

instructs the forwarding nodes to install the flow rule(s) into flow table(s) of the

nodes and the nodes simply forward the packet(s) according to the instruction set

by the SDN controller. When the next packet (same type) arrives, the forwarding

node again searches for the match in its flow table(s). When there is match for the

packet in its flow table(s), the flow entry with highest priority must be selected for

that match. The Figure 2.6 depicts the flow chart of packet flow in an OpenFlow-

compliant forwarding node.

Actions: Each flow entry of the flow table(s) contains a set of instructions that are

executed while an incoming packet matches with any of the flow entries of the flow

table(s). A set of actions that are enlisted in actions-list, are then executed in a

cumulative way. The execution of actions from the actions-list follows a sequential
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Figure 2.6: Flow chart of per-packet flow [15]
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process. The Table 2.2 refers to a list of actions.

Table 2.2: OpenFlow Actions

Actions Description

Output:port no
Forwards a packet to a specified OpenFlow port for

egress processing.

Group:group id Packets are processed through the specified group.

Drop

This action does not require explicit representation.

Packets without any output action set or no group ac-

tion must be dropped.

Set-

Queue:queue id

Sets the queue id for a packet and it is useful to provide

basic Quality-of-Service (QoS).

Push-Tag/Pop-

Tag:ether-type

This action push/pop tags (e.g., VLAN tags) to/from

the packet header.

2.1.3 OpenFlow Control Channel

The OpenFlow control channel enables the communication between OpenFlow com-

pliant forwarding nodes and the SDN controller. The OpenFlow control channel is

generally encrypted using Transport Layer Security (TLS) or maintains TCP con-

nection between forwarding nodes and the SDN controller. The OpenFlow-enabled

forwarding nodes may support single or multiple control channels to have a con-

nection with single or multiple SDN controller. The SDN controller configures and

manages the forwarding devices via OpenFlow control channel. Moreover, the for-

warding nodes also communicate with the SDN controller through the control chan-

nel for policy making of the incoming packets, update the SDN controller about

network events or any ambiguity in the forwarding nodes state. The OpenFlow con-

trol messages that are exchanged between the SDN controller and the forwarding

devices have been described in Table 2.1.
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2.1.3.1 Connection URI

The SDN controller connection is identified by the forwarding nodes by a unique

Connection URI (Uniform Resource Identifier). Two forms of Connection URI are

present.

1. protocol:name-or-address:port

2. protocol:name-or-address

The protocol field defines the transport protocol used for connection setup between

forwarding nodes and the SDN controller. To set up a connection the acceptable

value for the protocol field is TLS or TCP. The name-or-address field defines the

hostname or IP address of the controller. The port field is the transport port

on which the SDN controller listens to the connection. The default value of the

transport port is 6653. An example of a typical Connection URI can be given as

tcp:192.168.10.1:6653.

2.1.3.2 Connection Setup

The SDN controller and the forwarding nodes must establish a connection through

either a user-specified transport port or the default OpenFlow transport port, 6653.

The forwarding node initiates a standard connection according to Connection URI,

which is a TLS or TCP connection. However, the forwarding nodes may allow the

SDN controller to initiate the connection setup and accept the connection (TLS or

TCP) set by the SDN controller.

During first establishment of OpenFlow connection, the forwarding devices and the

SDN controller exchange OFPT HELLO message, which includes OpenFlow proto-

col version supported by both sides. If the OpenFlow protocol version is negotiated

successfully by the forwarding device and the SDN controller, the connection setup

gets successful and standard OpenFlow messages can be exchanged over the con-

nection. On the other hand, while OpenFlow version negotiation fails, the recipient

replies with a Hello Failed error message and terminates the connection.
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2.1.3.3 Connection Maintenance

The underlying transport mechanism of OpenFlow connection is TLS or TCP. There-

fore, OpenFlow connection maintenance mostly depends on the TLS or TCP, i.e.,

detection of connection interruption mostly relies on TCP timeouts and TLS session

timeouts. While the connection is broken between the SDN controller and the for-

warding nodes, the re-connection attempt should be taken by the originator (either

forwarding node or the SDN controller) of the connection. The connection originator

keeps attempting to reconnect the other party until a new connection is established

or until the Connection URI of the other party is removed from its configuration.

Processing of OpenFlow messages by the forwarding device may take longer time as

OpenFlow messages are processed out of order [15]. Therefore, the SDN controller

must keep the connection alive for too late reply except for the echo replies message.

In case of late reply of echo replies, the SDN controller and the forwarding node

may terminate the connection. However, this feature may be disabled by setting the

timeout large enough [15]. Moreover, if the SDN controller can not process incoming

OpenFlow messages rapidly, the SDN controller stops serving that connection to

induce TCP flow control to stop the sender.

2.1.3.4 Connection Interruption

In case of control connection failure with the control plane, as a result of echo

request timeouts, TLS session timeouts or any other impairments, the forwarding

node, depending on its configuration immediately enters into fail secure mode or

fail standalone mode. In case of fail secure mode, the packets that are destined to

the SDN controller are dropped and the flow entries installed by the SDN controller

expire depending on their timeout value. On the other hand, in case of fail standalone

mode (available on hybrid nodes), the forwarding node acts as legacy Ethernet node

and processes all the incoming packets using the OFPP NORMAL reserved port.
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2.2 Hybrid Software-Defined Networking Overview

The idea of hybrid SDN is quite imprecise. The idea behind hybrid SDN is to retain

advantages of SDN (i.e., centralized) and the legacy network (i.e., distributed) as

well. Though SDN eases operation and management of the networks, some limitation

of SDN in terms of reliability, robustness and scalability are considered as SDN

deployment challenges [65]. On the other hand, distributed networks provide better

scalability by spreading control decisions over multiple devices. So, the idea of

hybrid SDN is to integrate centralized and distributed networks to potentially sum

advantages of centralized and distributed networks as well as at the same time to

mitigate their corresponding limitations.

Hybrid SDN combines both centralized networks and the traditional distributed

networks that mitigates the respective challenges of the centralized and the dis-

tributed networks. Table 2.3 presents four types of hybrid SDN models proposed

in [65], which are i) Topology-based hybrid SDN ii) Service-based hybrid SDN iii)

Class-Based hybrid SDN iv) Integrated hybrid SDN.

Table 2.3: Hybrid SDN Models [65]

Models Description

Topology-based

More likely to be partitioned into centralized and dis-

tributed networks zone. In centralized zone all the

nodes are logically controlled by the SDN controller.

On the other hand in distributed zone, control logics

are integrated into forwarding devices. In this context,

communication between two zones is needed to forward

packet(s) between any pair of source and destination in

the network.

Service-based

Different services are provided by SDN and traditional

networks separately. For instance, network-wide for-

warding can be delegated to traditional networks while

SDN can provide edge-to-edge services like enforcement

of traffic engineering and access policies.
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Class-based

A certain traffic class, e.g., TCP, can get service by

SDN controlled classes while traditional networks can

provide best-effort service to other traffic.

Integrated

All the network services are provided by SDN and tra-

ditional networks protocols are used to interface to

node’s Forward Information Base (FIB). For example,

SDN can control forwarding path by injecting routes

into routing system.

2.2.1 Advantages of Hybrid SDN

The canonical SDN (i.e., only centralized) architecture provides programmability in

the networks by decoupling network logic from the forwarding devices that in turns

eases management of the networks and also enforcement of several network policies

(e.g., network security). But deployment of canonical SDN in the whole network at

a time would be expensive solution as legacy network devices needed to be replaced

by SDN-enabled forwarding devices. On the other hand, hybrid SDN models offer

several advantages by containing legacy network devices and SDN-enabled devices

in the same network.

A comparison between legacy network, canonical SDN and hybrid SDN is described

in the Table 2.4.

Table 2.4: Comparison between different networking approaches

Attributes Legacy Network Canonical SDN Hybrid SDN

Deploy-

ment Cost

Low, as existing

network devices not

needed to be replaced.

High, legacy net-

work devices required

to be replaced by

SDN-enabled devices.

Moderate, legacy net-

work devices can be

used alongside with

SDN-enabled devices.

Network

Operation
Fully distributed. Fully centralized.

Centralized and dis-

tributed.
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Program-

mability
Not possible.

Fully programmable

network. The SDN

controller controls all

the forwarding devices

in the networks.

Partially pro-

grammable network.

Some devices that

are SDN-enabled are

controlled by SDN

controller while rest

of the devices are op-

erated in traditional

fashion.

Protocols Traditional protocols.

SDN-based protocol.

OpenFlow protocol

for instance.

Traditional proto-

col and SDN-based

protocol.

Network

Manage-

ment

Difficult as there is no

programmability.

SDN provides fine-

grained control over

the network by the

feature of programma-

bility that eases net-

work management.

A portion of the

network that requires

fine-grained control,

are managed centrally

while the rest of the

network uses tradi-

tional networking.

Reliability

High, in a sense that

only one fault domain

exist (e.g., data plane

fault).

Low, as three fault

domains can be iden-

tified (e.g., data plane

fault, control plane

fault and control

channel fault).

High, based on de-

ployment model net-

work operation can be

switched when one op-

eration fails [54].

Robust-

ness

High, as quickly reacts

to failure.

Low, as fully depen-

dent on centralized

control, so during im-

pairments all devices

depend on SDN con-

troller for policy mak-

ing.

High, as a portion of

the network is con-

trolled centrally, so re-

action time is lower

during failure.
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2.2.2 Different Deployment Models of Hybrid SDN

Hybrid SDN approaches are aimed to combine both traditional network and canon-

ical SDN in the same network and offers a range of advantages that have been

summarized in section 2.2.1. The deployment of the hybrid SDN principle can fall

into two major categories:

• Deployment of SDN-enabled forwarding devices

• Deployment of hybrid forwarding devices

Deployment of SDN-enabled Forwarding Devices

In this category, SDN-enabled forwarding devices are placed alongside with legacy

devices in order to form hybrid SDN. In this approach, small portion of the network

contains SDN-enabled devices and are controlled centrally by the SDN controller to

get fine-grained control for that portion of the network. On the other hand, rest of

the portion of the network contains legacy IP devices and are operated in traditional

network fashion. This approach is beneficial for a gradual upgrade of the network to

adopt SDN. But this approach requires translation of complex distributed routing

tables into SDN rules and vice-versa in order to maintain communication between

SDN-enabled devices and the legacy devices.

Deployment of Hybrid Forwarding Devices

This deployment model focuses on integrating both centralized operation and dis-

tributed operation into the forwarding nodes. In order to enable SDN functionalities

into the legacy devices, a hardware module can be integrated into the legacy devices

so that SDN-based protocols can be used alongside legacy distributed protocols.

According to [33], both legacy network protocols and SDN-based protocols can be

operated in legacy devices by installing a hardware named SDN shim. Installation

of hardware like SDN shim enables following hybrid SDN principles in the net-

work. This deployment model is more concerned about reliability and robustness

of the network. This approach recovers network connectivity during impairment by

switching network operation [54]. This deployment model is of main interest in this

dissertation.
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2.3 Overview of Mobile Transport Networks

The mobile transport network infrastructure provides connectivity between the RAN

and the CN (core network). A typical mobile access network consists of many base

stations. On the other hand, the CN sites are very few. In this context the trans-

port network provides transparent delivery of mobile network originated traffic by

interconnecting large number of base stations to the core sites. Due to geographical

issues, several network elements and processing requirements between access net-

work and the core/control network, the mobile transport network is subdivided into

two major domains, i) the access domain and ii) the aggregation domain (see Figure

2.7).

Figure 2.7: Transport network to connect SCs

2.3.1 The Access Domain

In the access domain, a number of small cells are interconnected to an access gateway

(which may be co-located with the macro-cell). The access domain technologies are

microwave links, DSL (Digital Subscriber Line), plain Ethernet and NG-SDH (Next
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Generation Synchronous Digital Hierarchy). Among them, directional microwave

links are the most popular option in such mobile transport links [26].

2.3.2 The Aggregation Domain

The aggregation domain aggregates traffic from the access domain. Hence, high

capacity transport technology is required to support large number of traffic flows.

This domain has traditionally adopted plain optical transport network and IP/MPLS

(Multi-Protocol Label Switching) solutions to meet the demand. The aggregation

domain connects the access domain to the core domain of the mobile networks.

2.3.3 Transport Solution to Connect Small Cells

Data traffic in mobile networks is growing exponentially day by day. In contrast,

availability of radio spectrum is not enough in mobile networks like LTE (Long

Term Evolution), to provide capacity to the growing demands [30]. The idea of

small cells is to enhance coverage area of macro-cells by adding more base stations

with reduced coverage. The cell with shorter radius is named as small cell (SC). The

macro-cell site usually acts as a gateway site aggregating the traffic of a set of SCs

and to connect SCs to the aggregation domain. By deploying SCs overall system

performance can be enhanced by offloading some traffic to the SCs. In this context,

the SC architecture can greatly increase capacity by reusing radio spectrum [30].

The number of SCs in a given macro-cell coverage can rise up to certain numbers

that require large numbers of transport connections between SC sites to the access

gateway. Offering the connectivity between SCs and the access gateway in a cost-

effective way is a great challenge. Two types of transport technologies, namely wired

and wireless, can be deployed to connect SCs to the access gateway.

2.3.3.1 Wired

Due to capacity concerns of the mobile networks, fiber-based technology can be a

good option for the mobile transport solution. Fiber technology not only provides
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capacity but also provides better reliability in wired transport solution, since there

are no interference or NLOS/LOS issues. Though a fiber-based transport solution

has some advantages, it has some drawbacks as well. The main drawback of fiber-

based transport solution is its implementation cost. Laying fiber to connect all the

SCs in a high density area would not be very cost-effective.

2.3.3.2 Wireless

Wireless transport solution to connect small cells can be divided into line-of-sight

(LOS) and non-line-of-sight (NLOS). LOS links require a direct path between a

transmitter and a receiver without any obstacle. On the other hand, refraction,

diffraction and reflection are acceptable in signal propagation between a transmitter

and a receiver in case of NLOS link. Carrier frequencies under 6 GHz are suitable for

NLOS. In dense urban areas where high rise buildings create obstacles, NLOS offers

better adaptability. Though NLOS links have advantages in urban areas, they have

capacity limitations [29]. As LOS and NLOS have some drawbacks and advantages,

depending on the necessity a better wireless transport solution can be made by

composing LOS and NLOS. In this context, to implement a potential transport

solution, the preference has been given to licensed sub-6 GHz for NLOS link and

unlicensed 60 GHz band for LOS link [27].
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Related Works

This chapter focuses on previous works that are specific to the research problem

that the thesis tackles.

Though SDN offers better manageability of the networks and at the same time

provides flexibility to meet the current business demands over operational networks,

it has some limitations in terms of network reliability. In traditional networks, the

forwarding device (e.g. router) maintains a mechanism to react to topology changes

as well as to link or node failures. By running a distributed protocol (e.g. OSPF

[51]) on it, every node gets information about all nodes in the network by exchanging

LSAs (Link State Advertisement). Such distributed information database (e.g.,

LSDB (Link State Database)) exploits to offer reliability in legacy networks. But in

SDN, the forwarding device (e.g. switch) has no equivalent mechanism to react to

network’s impairments, which turns the device into a black hole if the forwarding

device loses connection with the SDN controller. For example, in the event of link

failure in the data plane, the forwarding device fully depends on the SDN controller

to forward packet(s) through a new forwarding path.

Furthermore, in SDN, the SDN controller maintains a global view of the network,

which is an advantage of SDN in terms of better resource allocation. But the SDN

controller becomes a single point of failure. However, failure of the SDN controller

is very much crucial in SDN, as the SDN controller is the brain of the network and

the forwarding devices explicitly need forwarding decisions from the SDN controller

to handle new incoming packets. If we consider the wireless networks with in-band

28
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control scenario, handling SDN control unreliability becomes a relevant problem to

maintain the network operational in case of failure.

With the goal of solving SDN limitations, several studies have been done so far.

Two types of recovery mechanisms were conceived to react to failure in carrier-

grade networks, which can be referred to as restoration mechanisms and protection

mechanisms [64]. A protection mechanism is most likely proactive, i.e. resources are

precomputed and reserved before failure occurs and it does not require additional

signaling. On the other hand, a restoration mechanism is reactive, i.e. resources

are assigned after a failure occurs and it requires additional signaling. In [62],

both mechanisms were studied for SDN, which shows that failure recovery time

using protection mechanisms is smaller than failure recovery time in restoration

mechanisms in carrier-grade large-scale networks.

In the following subsections, an overview of research works done in the field of SDN

that are most related to reliability of SDN are included. Addressing the reliability

issue in SDN, three major fault domains can be identified, which are data plane

fault, control channel fault and SDN controller fault. Work-related to every domain

describes one by one in the next subsections. Moreover, this research work also

focuses on hybrid SDN [65] approaches to tackle unreliability of centralized SDN

by integrating centralized and distributed operations in the same network. Works

related to hybrid SDN are also included in this chapter.

3.1 Reliability in Canonical SDN

The term reliability in networking can be defined as maintaining and providing

an acceptable level of services during network failure. Reliability in carrier-grade

networking can be achieved by assigning backup paths during a network failure.

In SDN-based networks, there are potential points of failure not present in legacy

distributed networks (i.e., with a distributed control plane). Specifically, we can

identify three types of fault domains [44]:

1. Data Plane Fault: Network element(s) or port(s) associated to network ele-

ment(s) failures.



Chapter 3. Related Works 30

2. Control Plane Channel Fault: Channel between the SDN controller and the

data plane element(s) fails or degrades.

3. SDN Controller Fault: The SDN controller fails.

3.1.1 Data Plane Fault

In SDN networks, failure recovery due to data plane faults requires modification

of flow entries in the flow tables for the corresponding affected path. The two

recovery mechanisms, protection and restoration, are explained more in the next few

subsections.

3.1.1.1 Protection Mechanism

In SDN, a protection mechanism relies on a proactive technique to quickly react

to failures without intervention of the SDN controller, as shown in [62], [64], [43],

[32]. Using the proactive technique, the SDN controller pre-installs rules into the

forwarding devices (e.g. Open vSwitch) and also backup rules to avoid black holes

in the network during link or node failure. This mechanism requires large numbers

of flow rules for various kinds of flows, which in turn may overflow the memory space

of the forwarding devices.

An approach presented in [32], utilizes protection scheme to overcome single link or

single node failure. In this proposed approach, no additional signaling overhead is

needed. A crankback technique is used to notify failures in the networks. When a

link failure occurs between two nodes, the detecting node tags the data packet and

using a crankback approach backtracks the data packet along the primary path up

to the source node (also known as reroute node) that can determine an alternative

path to the destination. As long as the first tagged packet is received by the reroute

node, all the subsequent packets coming from the source node will be forwarded

through the precomputed backup path to the destination. This approach requires

to send the tagged packet to the source node to notify the source node about the

link failure. But during the unreliable condition (e.g., degraded channel) the tagged
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packet may also get dropped and the source node will never be aware of the link

failure in the primary path.

In [43], a protection mechanism adopted to meet Transport Applications demand

of network failure recovery time below 50 ms. In their proposed approach, a mon-

itoring function is implemented in the data plane to reduce the processing load on

the SDN controller. To detect link or node impairment in the data plane, an Op-

eration, Administration and Maintenance (OAM) message generator is included in

every switch. In contrast to Link Layer Discovery Protocol (LLDP)-based network

monitoring, it sends OAM probe messages to the switches to discover data plane

links and to maintain the network topology. Upon detection of the link failure, pack-

ets are rerouted through a backup path that is installed previously. This mechanism

requires an extension of the OpenFlow protocol to process OAM packets.

A protection mechanism also considered in [62]. To overcome packet loss regarding

flow entry restoration delay during link failure, the protection mechanism is adopted

in this study. The group table concept specified by OpenFlow Switch Specification

1.3.1 [15] is considered in this paper to implement a protection mechanism. To

perform fast failure recovery without the intervention of the SDN controller, the

group table concept plays a vital role during a network failure. Unlike flow table,

the group table comprises a set of group entries. A group entry contains group ID,

group type and action buckets. An action bucket contains the alive status of the

corresponding actions associated to one or more group types. The actions in the

bucket are applied to the packets that are sent to the group type. A group can

be linked to one or more action buckets. While network failure is detected by the

Bidirectional Forward Detection (BFD) [42] technique, the forwarding path in the

action bucket of the group table is declared unavailable by changing the value of

the alive status. If the action bucket is declared unavailable, the packets are treated

according to the next available bucket, which contains predetermined actions.

One of the main issues in a protection mechanism is that switch memory limitation

to store a significant amount of flow table entries. By addressing this issue, authors

from [57] present FatTire (Fault Tolerating Regular Expressions), a solution to

optimize the number of backup flows as well as backup-links to overcome the lim-

itation of switch memory to store more flow tables. FatTire is a new language for

writing fault-tolerant network programs, which specify a set of legal paths with the
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association of fault-tolerance requirements for those paths without the SDN con-

troller intervention. FatTire creates an avenue for the programmer to set policies at

path level that must be enforced all times, even at the time of network failure. It

normalizes the policies by combining the separate policies into a single policy. By

doing this, the number of backup paths can be reduced in the switch database.

Authors from [44], presented CORONET (Controller Based Robust Network), a

system to recover SDN from multiple data plane link failures. CORONET provides a

scalable and efficient fault tolerance system with multi-path support. It periodically

collects topology information through its Topology Discovery module and receives

asynchronous events, such as link or node failure events. A Route Planning module

computes multiple routing paths based on topology information. Routing paths

are calculated based on VLAN growing algorithm that creates multiple link-disjoint

shortest routing paths using Dijkstra’s algorithm.

3.1.1.2 Restoration Mechanism

In contrast to protection mechanisms, restoration mechanisms require the SDN con-

troller intervention to handle network failure recovery. A restoration mechanism is

somewhat related to reactive techniques. It is usually slower than the protection

mechanism to compute a new route during link or node impairments in the net-

works, as this mechanism does not precompute the backup route in advance. While

a link or node goes down, the forwarding device interacts with the SDN controller

to get information about the new route. The SDN controller defines the new route

in terms of flow rule and instructs the forwarding device to install the rule to restore

the connectivity.

An approach regarding a restoration mechanism presented in [45]. Automatic Failure

Recovery for OpenFlow (AFRO) illustrated in this paper works on two modes of

operations: record mode and recovery mode. In record mode, AFRO records all

the events of the SDN controller, such as PacketIn, FlowMod and FlowRemove.

Once the failure in the network is detected, AFRO enters the recovery mode. It

first spawns a new SDN controller instance that runs in an emulated environment

that comprises the network topology eliminating the failed element. The new SDN

controller, known as shadow-controller, is then filled up by AFRO with the recorded
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PacketIn messages processed by the original SDN controller before the occurrence

of the impairment. Once the replay ends, the shadow-controller contains a new

forwarding state and pushes the flows to the forwarding devices.

In [62], the time taken by the restoration mechanism to restore connectivity was

observed. In this paper, failure recovery using a restoration mechanism performed

by the close intervention of the SDN controller during failure. Upon detection of a

link failure, the affected nodes inform the SDN controller about the link failure in

the data plane. Then, the SDN controller instructs the affected nodes to remove

affected flow entries and install new flow entries to restore the connectivity. This

is a slow process and packet(s) may be lost during the time interval from failure

detection to completion of flow restoration.

One more approach named predetermined restoration illustrated in [61]. According

to the authors of the paper, the administrator will provide all the paths in the SDN

controller to reach the destination and set the priority among the paths. As soon as

the SDN controller detects the link failure in the data plane, it immediately instructs

the forwarding nodes to remove the affected flow entries. The SDN controller calcu-

lates new shortest path and instructs the forwarding nodes to install and establish

a new path. This approach requires a static route to the SDN controller to send

control traffic.

3.1.2 Control-Channel Fault

In the SDN paradigm, the SDN controller manages data plane nodes (e.g. switch)

through secure control channels. The data plane nodes communicate with the SDN

controller through these channels and the SDN controller instructs the data plane

nodes to install flow rules through these channels. It is therefore important to high-

light that failure of the control channel(s) will be hazardous in a centrally managed

network like canonical SDN.

To prevent SDN from unexpected control channel failures, [70] presented Resilient-

Flow, that restores the control channel through alternate paths (path redundancy)
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in the presence of channel failure. A module named Control Channel Mainte-

nance Module (CCMM) is implemented in the OpenvSwitch and the SDN con-

troller. CCMM enables the forwarding nodes to detect control plane channel failures

and its restoration through an alternative path. To detect control channel failure,

CCMM monitors link status by exchanging heartbeat packets between two neigh-

boring CCMMs (it can be CCMMs of two neighboring switches or switch and SDN

controller). Furthermore, the CCMM also maintains flow entries of the forwarding

node that connect the forwarding node to the SDN controller. Upon detection of the

control link failure, the CCMM restores the control channel via an alternative con-

trol channel. To calculate path from the data plane elements to the SDN controller,

the CCMM exchanges topology map with the neighboring CCMMs. After calculat-

ing path, CCMM does restoration of control channel by maintaining flow entries in

the data plane element which connect the data plane element to the SDN controller.

In this approach if the link between the SDN controller and the node that connects

other nodes in the network to the SDN controller goes down, the whole network

becomes non-operational, as the SDN controller loses control of the network.

3.1.3 SDN Controller Fault

In an SDN context, network functionalities (e.g. forwarding or routing decision)

are centralized in the SDN controller. So, in an SDN architecture, SDN controller

failures would have an adverse effect on the operation of the networks. For the

sake of simplicity, initial SDN design and implementation focused on a single SDN

controller. But the SDN controller may crash due to software bugs or hardware

failures, which causes performance degradation of centralized networks .

Though the idea of multiple SDN controllers may lead to the solution of SDN con-

troller failure, several issues must be taken into account to ensure correct network

behavior. The OpenFlow version 1.3 supports the attachment of multiple SDN

controllers with forwarding devices. But some inconsistent issues, like Event Order-

ing, Unreliable Event Delivery and Duplication of Commands are still a matter of

concern.

The introduction of Ravana in [41] could be a solution to overcome the inconsis-

tency concerns of multiple SDN controllers in SDN. Ravana proposes an extension
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of OpenFlow interfaces to handle SDN controller failure. To ensure consistency dur-

ing SDN controller failure, Ravana uses a two-stage replication protocol across the

SDN controllers. Each stage involves adding event-processing information to the

replicated in-memory log that keeps track of processed/unprocessed events and the

log is shared among the controllers. In the two-stage replication procedure, the very

first stage involves in reliably replicating events in the log and the second stage en-

sures event-processing is completed or not. In this approach one master and a slave

controller is used to overcome SDN controller failure. The master replica of the SDN

controller decides event ordering in the first stage and then indicates which event

should be processed in the second stage. On the occurrence of master failover, the

slave SDN controller resumes transaction for unprocessed events from the shared log.

Ravana ensures event ordering, correct event processing and execution of commands

for exactly once during the SDN controller failure but it requires the extension of

OpenFlow.

The distributed SDN controller presented in [63], could be the solution for the afore-

mentioned SDN contrller fault. HyperFlow [63], is an event-based control plane,

which is logically centralized but physically distributed. HyperFlow supports Open-

Flow but it requires slight modification on existing control applications. It provides

scalability by sharing consistent network-wide view among the SDN controllers. Hy-

perFlow uses publish/subscribe messages to replicate SDN controller events to other

SDN controllers. To facilitate failure detection at the control plane, each SDN con-

troller periodically advertises itself through the control channel.

In [36], an integrated SDN principle is proposed. In this approach, a centralized

SDN controller controls data traffic forwarding and OLSR (Optimized Link State

Routing) is used to route OpenFlow control traffic between the SDN controller and

forwarding devices. A module named OLSR-to-OpenFlow (O2O) is presented to

configure control rules that are used to forward OpenFlow control packets. The

O2O module configures control rules by inspecting the IP routing table handled by

the OLSR daemon. When a packet is needed to be destined to the SDN controller,

the control rule(s) is/are used to forward the packet to the SDN controller and

the SDN controller sets routing logic, which is installed into the flow table of the

forwarding nodes. Moreover, the O2O module periodically controls the liveliness

of the SDN controller. During the SDN controller failure, the O2O module deletes
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all the rules from the flow table of the forwarding nodes and dumps all the OLSR

routing table, i.e., as long as the SDN controller failure happens, the OLSR takes

the control of packet routing. This approach requires translation of complex routing

tables into flow rules.

3.2 Work Related to Hybrid SDN

In order to leverage the advantages of the centralized network in today’s traditional

networks, one approach is deployment of SDN-enabled devices besides the legacy de-

vices to form hybrid SDNs. The other approach is installing a hardware module into

legacy forwarding nodes. In the following sections, existing hybrid SDN approaches

are illustrated that are related to the second approach to form hybrid SDN.

Reference [28] describes a hybrid SDN architecture for Wireless Distributed Network

(WDN) where link-state information is processed by the SDN controller in a cen-

tralized manner. For instance, based on link-state information, the weight of each

link is calculated by the SDN controller and then the SDN controller broadcasts the

calculated weight to the forwarding nodes. Based on the information received from

the SDN controller, each forwarding node maintains their routing table that specifies

the route with minimum total link cost to go from one node to any other node in

the network. The goal of the approach is to distribute computational complexity

between the forwarding node and the SDN controller where forwarding nodes deter-

mine path in a distributed manner and the SDN controller provides information for

decision making.

The approach in [59], presents hybrid IP/SDN network, which is a coexistence of

both regular IP forwarding and SDN forwarding. A hybrid IP/SDN node combines

an SDN capable switch (SCS), an IP forwarding engine and an IP routing daemon.

In that way coexistence of distributed operation for regular IP traffic and centralized

operation for SDN-based path (SBP) are maintained. Based on the requirements,

different applications can get services from the centralized or the distributed opera-

tion.
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3.2.1 Controller Platforms for Hybrid SDN

The control plane is a key part of the centralized networking context. The control

plane is responsible for computing path for providing end to end connectivity. In

hybrid SDN, the controller also plays an important role in controlling both legacy

and SDN-capable devices. In the following sections, the existing controller platforms

for hybrid SDN are explained.

The work [40] presents a hybrid SDN model that contains both programmable and

legacy network nodes in the same network to retain some advantages of an SDN

network for path selection and network performance. A network controller named

Telekinesis is presented in their work, which provides control over both SDN and

legacy paths using OpenFlow. This approach requires modification in legacy for-

warding nodes in order to offer SDN functionality in legacy nodes. By modifying

the legacy nodes, remote manipulation of forwarding entries on a legacy node can

be done using OpenFlow, the Telekinesis, which acts as a hybrid network controller,

can then improve path diversity by providing control over the legacy nodes.

In order to control and manage the hybrid SDN, a management framework named

HybNET is presented in [47]. In this approach, SDN-capable forwarding nodes are

managed by the SDN controller for carrying out network control and management

operations. On the other hand, the legacy devices are used for forwarding, and they

are controlled by HybNET. HybNET provides a common configuration interface for

both SDN-capable switch and legacy switch by translating legacy network configu-

ration into OpenFlow configuration. In this approach, for managing legacy devices,

network virtualization is achieved through VLANs. The HybNET framework trans-

lates the VLAN configuration into OpenFlow rule. In the HybNET framework, the

legacy network configuration remain hidden from the SDN controller, that in turn

converts the global view of the network to an SDN view (i.e., the SDN controller

only view the SDN-capable switch in the topology). On the other hand, the global

view of the topology (includes legacy switch and SDN-capable switch) is maintained

by the HybNET.

In the work [35], SYMPHONY integrates both legacy and centralized control planes

in legacy devices. In this framework, a distributed routing protocol and a Legacy
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Router Server (LRS) are used to maintain communication between forwarding de-

vices and the SDN controller. In this architecture, LRS maintains the information

related to network connectivity, topology information, for instance, and also pro-

vides seamless connectivity between centralized networks and legacy networks. On

the other hand, the SDN controller contains some modules for path computation,

ARP (Address Resolution Protocol) handling, etc.

In [48], the SDN Hybrid Embedded Architecture (SHEAR) presents a hybrid net-

work architecture where a small number of SDN-enabled forwarding devices co-exists

with legacy nodes in the same network. By minimizing the number of SDN-enabled

switches in the networks, SHEAR simplifies traffic engineering and also provides

a loop-free network. The legacy control plane learns about topological information

while the SDN-enabled nodes are used as ”observability points” that gather the data

plane information and acknowledge the SHEAR controller about relevant data plane

events. This approach leverages a legacy distributed protocol to detect impairments

in the data plane and outsources the recovery of the failure to the SHEAR controller.

3.3 Remarks

This chapter presents a comprehensive study on reliability issues in SDN by cate-

gorizing them into three fault domains, i.e., data plane fault, control channel fault

and SDN controller fault. The study shows that very little attention has been given

to the control plane failure by the research community. There are still some relia-

bility issues like control channel failure or even degraded control channel in wireless

context that need to be improved. By addressing limitation of existing approaches,

this dissertation investigates reliability of SDN in wireless networks and proposes

a solution to overcome SDN during failure. The next chapter describes limitations

of the existing approaches. Based on limitations of the exiting approaches, a re-

search question is stated in the next chapter. It also includes validity of the research

question that is tackled in the dissertation.
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Problem Statement

This chapter illustrates the research question that has been tackled in this work and

also the validity of the research question. Section 4.1 states the specific problem

statement that is answered in this dissertation. Section 4.2 demonstrates the limi-

tations of existing approaches, which are described in chapter 3. This section also

describes the novelty of our research work that has been carried out to tackle the

problem statement. Finally, section 4.3 discusses about how worthwhile is the tack-

led question in the dissertation from a technical point of view and the contribution

of the work to the research community.

4.1 Research Question

As new radio technologies are explored in higher frequency ranges, efficient and dense

deployments of SCs become increasingly relevant as they improve the capacity of

mobile networks through spatial reuse of the radio spectrum. However, and as

proven in current deployments, laying fiber to each base station or SC may not

be cost-effective, hence the need to explore wireless backhauls/midhauls, or even,

fronthauls. This is particularly relevant in architectures such as Open Radio Access

Network (O-RAN) [8]. In this context, wireless mesh networking may offer such

a cost-effective solution. On the other hand, to ripe the benefits of such wireless

transport networks, proper control and management is key. The adaptation of SDN

39
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in such networks may bring better resource allocation as well as better control by

maintaining a clear view of the whole network. But SDN itself has some limitations

in terms of reliability in a wireless networking context.

By addressing reliability issues of SDN in wireless contexts, the main goal of the

dissertation is to answer the following research question

• Can hybrid SDN , where nodes have certain autonomy to take control

plane switching decisions, improve the reliability showed by centralized

SDN models in terms of control and management to manage all-wireless

multi-hop mesh networks?

In what follows, we provide a definition of the most relevant aforementioned concepts

when defining the research question of this thesis.

Hybrid SDN: In this dissertation, the term hybrid SDN refers to the network

where centralized and distributed operation can both be supported by a network

node. By retaining logically centralized control over the network, SDN provides

simple network management and better resource allocation and improved network

flexibility. On the other hand, distributed network operation provides robustness to

network failure by quickly reacting to failures of the centralized operation.

Autonomy: We want to find the most appropriate trade-off between centralization

and distribution of control and management decisions depending on the network

conditions (traffic load, wireless channel impairments etc.). A centralized decision

is useful because it maintains a global view of the network based on which decisions

can be taken that, in turn, offer better network configuration and management. But

gathering and processing this information takes some time. On the other hand,

decentralized decisions are faster to take (e.g., fast recovery), but they may result

in less optimal configuration and management. Our goal is to inspect control plane

reliability from the point of view of the node that experiences the impairments,

and so, the node will autonomously decide whether to operate in a centralized or

distributed way.

Reliability: In this dissertation, the word reliability refers to protection against

any network impairment to provide non-stop packet forwarding/routing. In wire-

less transport networks, SDN is a key player to manage and control the transport
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networks in a centralized way. On the other hand, wireless channels are more likely

to be affected by the interference and the environmental condition, which in turn

makes wireless channels to experience more link impairments. Therefore, to keep

the network alive, reliability of the SDN-based wireless transport networks must be

improved.

Control and management channel: In SDN, control and management channels

are used to control and manage the forwarding devices in a centralized manner. The

difference between control and management is often small, but at a high-level, control

would be related to path setup and modification (i.e., what mostly OpenFlow does)

and management would be related to setup up the network, such as IP addresses

configuration and node configuration in general (e.g., transmission power, a channel

for transmission) before establishing paths through the control. This is what OF-

CONFIG [9], NETCONF [5], and RESTCONF [18] do.

The control and management channels could be either out-of-band or in-band. Out-

of-band channels are separated from data traffic channels. On the other hand,

in-band channels share the same links and network environment in general with the

data plane traffic, this may also have implications. So, we focus on this problem

because it is of fundamental importance for the correct operation of the networks.

All-wireless multi-hop mesh networks: Wireless multi-hop mesh network is

a cost-effective solution for the mobile transport networks to provide connectivity

between SCs and to connect SCs through a gateway (which may be co-located with

the macro-cell, for instance) to a certain aggregation point. The aggregation point

connects the SCs to the core network with a desired QoS (Quality of Service) level

(see Figure 2.7). Deployment of SCs within the coverage of a certain macro-cell

provides higher capacity by reusing radio spectrum and also provides better coverage

in that specific area.

4.2 Validity of The Question

Since the first instantiation of SDN architecture done in data centers and campus

networks (for research experimentation), most of the works were done initially fo-

cused on wired networks and making the network work under this new paradigm. In
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this context, it is in general assumed that there is a really-low (almost zero) latency

with really high capacity (almost infinite, in practical terms) connections between

the SDN controller and the forwarding devices, and so, the SDN controller has a

perfect view of what is happening at the dumb forwarding plane devices.

However, as this paradigm becomes mainstream and moves to other environments,

this initial assumption must be relaxed. In our case, we consider SDN for an in-band

solution in multi-hop wireless mesh networks. We focus on the in-band solution, as in

multi-hop in-band solution, communication channels jeopardize the control packets

in wireless transport networks because of dynamicity of the wireless environment.

Therefore, a new solution is needed in terms of reliability of control/management

communication channels in wireless contexts.

The state-of-the-art of the thesis emphasizes on reliability in SDN where most of the

focus is on data-plane reliability. However, separation of the control plane from the

data plane raises another point of failure (e.g., SDN controller failure or control/-

management channel failure or even degraded channel) in the networks, which must

be considered. But the reliability of the control plane, especially control channel fail-

ure studied much less. On the other hand, the performance of SDN during degraded

channels has not been studied much to the best of our knowledge. Moreover, wireless

network technologies are of great interest nowadays due to cost-effectiveness in cer-

tain deployments. Furthermore, the increasing relevance of non-terrestrial networks

(NTNs) [58] may also bring additional value to this work. In this context, wireless

links are highly susceptible to interference and environmental conditions that cause

wireless link impairments very often. Therefore, reliability of the control plane in

wireless SDN is a major concern, but it has rarely been studied. Furthermore, wire-

less networks offer a cost-effective transport solution for mobile networks where SDN

is a key player for controlling and managing it. Therefore, a more comprehensive

study on SDN-based wireless transport networks as well as their reliability in an

SDN context is required.

Moreover, the previous works only focus on one type of control plane failure at a

time. These approaches can not handle controller fault or control channels fault or

even degraded channel at the same time. Our scheme provides a solution for all

types of control plane failure simultaneously.
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4.3 Is It a Worthwhile Question?

Future beyond 5G/6G deployments will be much denser as new much higher fre-

quencies are explored, with deployments of SCs everywhere for offering the required

capacity (particularly in urban environments, but also in other less accessible ones,

e.g., rural). To reach the capillarity required, the wireless transport networks will

play a key role closer to the edge because wireless backhauling/midhauling/fron-

thauling may be more cost-effective than the fiber-based transport due to the un-

availability of fiber everywhere. This acquires more importance in scenarios related

with underserved regions and/or NTNs.

In addition, we would like to exploit the programmability that new networking

paradigms, like SDN, bring. Therefore, it is a key factor to guarantee that the control

and the management information reliably reaches the relevant network entities at

the right moment, or alternatively, if this is not possible, the decision may be taken

in a distributed fashion. Otherwise, the vision of such dense network will not be

realized. Therefore, solving the research question we are proposing in the right way is

fundamental for reaping all the benefits that SDN brings in the wireless networking

field.
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Hybrid Control Plane

Architecture

In this chapter we first illustrate our proposed architecture to form the DenseNet-

hybrid SDN infrastructure that adopts wireless mesh networks to provide transport

connectivity between SCs. Second, we describe hybrid node architecture where both

centralized and distributed operations coexist in the same node and an integrated

local agent based on a monitoring framework that periodically monitors the channels

for occurrence of any impairment. Finally, we describe the interaction between com-

ponents inside the forwarding nodes during centralized and distributed operations.

5.1 DenseNet-Hybrid SDN infrastructure

The idea of SCs is to complement macro-cells by adding more base stations with

smaller coverage, but higher end-user rates. The macro-cell site usually acts as

a gateway site for aggregating the traffic of a set of SCs. The transport network

connects SCs to the aggregation point and also to the core network.

Due to capacity concerns of mobile networks, fiber-based technology can be a good

option for the mobile transport networks. But due to implementation cost (e.g.,

laying fiber to all the SCs) in a high density area or for some specific scenarios may

not be very cost effective. On the other hand, a wireless mesh networks can provide

44
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a cost-effective solution. SC deployments can greatly increase capacity by reusing

radio spectrum. In this context, SDN, by maintaining a global view of the network

can provide huge advantages for managing the transport networks and can provide

better resource allocation. Even though SDN provides better manageability of the

network, in wireless contexts where control messages are sent over in-band channels,

performance of SDN may degrade due to channel impairments, which may in turn

generate losses of control messages. As Figure 5.1 illustrates, we propose a hybrid

control plane architecture for DenseNet. In this way, our architecture attempts to

preserve the benefits of both worlds (i.e., centralized and distributed control). Specif-

ically, we propose to maintain a centralized control logic to preserve the benefits of

canonical SDN (i.e., simple network management, programmability) under reliable

control plane conditions, whereas the distributed control plane is in charge of act-

ing under unreliable conditions to quickly react to failures that avoid the inefficient

use of a centralized control logic. Our hybrid control plane architecture proposes

changes to the architecture of data plane nodes while preserving the architecture of

centralized controllers with respect to canonical SDN models.

Figure 5.1: Hybrid control plane architecture for DenseNet
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5.2 Hybrid Node Architecture

In-band SDN solution simplifies deployment of SDN as it does not require a sepa-

rate network. But it introduces new challenges while deployed in multi-hop wireless

networks as condition of the wireless channel degrades significantly by the envi-

ronmental conditions. In such a case, control packets that are exchanged between

the SDN controller and the forwarding nodes experience losses due to unreliable

channels. To overcome canonical SDN from failure during unreliable conditions, we

propose a hybrid control plane architecture where we change the architecture of for-

warding nodes that combines both centralized and distributed operations. We also

argue that the forwarding nodes will be responsible for inspecting control communi-

cation channel condition and will also switch the mode of operation from centralized

to distributed and vice versa depending on the reliability of the control channel. In

what flows, we introduce the high-level architecture illustrated in Figure 5.2, which

aims to quickly adapt to changes in the control plane by combining both centralized

and distributed control logic in the same node, thus, creating a hybrid node as data

plane device. The hybrid node is divided amongst the data plane forwarding pipe

and a control logic switching algorithm to decide the operation of the data plane

forwarding pipe. In what flows, we describe the architecture of the main components

embedded in a data plane node. Last but not least, we describe the work-flow be-

tween the aforementioned building blocks and the centralized SDN controller. The

architectural design of the hybrid node has been presented in [53], [54].

5.2.1 Implementation Details

We have adopted the Open-Source Hybrid IP/SDN networking (OSHI) framework

that has been designed in [59, 60, 11]. This framework allows nodes to concurrently

run a distributed control plane and a centralized control plane. To attain this goal,

the hybrid node embeds an SDN Capable Switch (SCS), such as Open vSwitch, an

IP-based forwarding engine (i.e., the one provided by the Linux kernel), and an IP

routing daemon based on Quagga to calculate distributed routes (see Figure 5.2).

The SCS is connected to the physical network via the physical interfaces while the

IP forwarding engine is connected to the SCS via a set of internal virtual ports
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endowed in the SCS. In this way, the hybrid node features two types of forwarding,

namely IP forwarding (for distributed operation) and SDN forwarding (for central-

ized operation).

5.2.1.1 Interaction Between Physical and Virtual Interfaces

Interaction between physical and virtual interfaces of the SCS is vital during the

presence of distributed operation. While distributed operation is active in the node,

the incoming packets (on the physical interface) need to be traversed through the

virtual port to the IP forwarding engine for policy making by the IP routing daemon.

After accomplishment of policy making, the packet is again sent back to the physical

Figure 5.2: Hybrid Node Architecture and Connectivity
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Figure 5.3: Flow rules that interconnect physical-virtual interfaces

interface through the virtual interface of the SCS (see Figure 5.3). In that direction,

Figure 5.3 describes the rules that bridge between physical interfaces to virtual

interfaces and vice versa. During distributed operation, while a packet is received

by the SCS’s physical interface, the packet is directed to the flow table-2 by following

the flow rules in the flow table-0 (see the first rule in Figure 5.3). Here, we have

leveraged the benefits of multiple flow tables functionality of Open vSwitch, which

is described in the section 2.1.2.3. In our configuration, the flow table-2 of the SCS

contains the rules to maintain interaction between physical and virtual interfaces.

During initial configuration of SCS, which is an Open vSwitch, these rules are fetched

into the SCS flow table. By following the rules in the flow table-2, packets are sent

from physical interface to the IP forwarding engine via virtual port and vice versa.

For instance, the second rule shows in the Figure 5.3 forwards packets that are

received on physical interface number 4 (i.e., in port = 4 ) to IP forwarding engine

via virtual interface number 3 (which is action=output:3 ). The IP plane then takes

necessary routing decisions and using the third rule that shows in the Figure 5.3, the

IP plane forwards the packets to the corresponding physical interface of the SCS via

the virtual interface. Then the packets are forwarded to the intended destination

via the physical interface.
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5.2.1.2 Traffic Classification: IP Traffic or SBP Traffic

The flow entry of the main flow table (i.e., table-0) of SCS distinguishes traffic that

needs regular IP forwarding or SDN-based Paths (SBPs). VLAN (Virtual LAN) IDs

are used to distinguish between packets that need to be processed by a distributed

control plane (i.e., IP forwarding) and packets that have to be processed by SDN

controller (i.e., SBPs). In our case, by default, packets come to the ingress port of

SCS with a tagged VLAN ID. The flow entry embedded into the SCS flow table-

0 contains rules to take the necessary steps to forward the incoming packets with

VLAN ID.

Figure 5.4: Flow rules that distinguish packets for SBPs

Figure 5.4 describes, the flow entry rules for the incoming packets with a VLAN ID.

After bootstrapping of the nodes, during initial communication between the SDN

controller and the nodes, the SDN controller installs a rule into nodes’ flow table

(i.e., table-0) to handle incoming packets with a VLAN ID. The SDN controller also

installs a flow-miss entry rule into SCS flow table-1. The flow-miss entry rule is

used by the SCS to forward the incoming packets to the SDN controller when no

matching rule can be found for the incoming packets in SCS flow table.

When a packet comes to an ingress port of the SCS with a VLAN ID, the packet is

matched against the flow entry rule of the flow table-0 with priority 302 (see Figure

5.4). Then, by following the OpenFlow pipeline processing the packet is directed to

the another flow table (i.e., table-1). In the OpenFlow pipeline processing, the flow

entry can only direct packets to the flow table with higher flow table number. If

the corresponding flow table does not contain any flow entry for further redirection

of packets to another flow table, then the OpenFlow pipeline processing stops at

that flow table. The incoming packets are then processed according to the action

associated in the flow entry of that flow table. From Figure 5.4, it can be noticed

that while a packet is directed to the flow table-1, if there is no matching rule for the
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packet, the incoming packet is then forwarded to the SDN controller using flow-miss

entry rule (e.g., using instruction, action=CONTROLLER:65535). Then, the SDN

controller installs rules to forward the packet to the intended destination. In this

way, the SDN operation is preserved and SBP is maintained.

In order to process the incoming packets according to the distributed operation,

the VLAN tag is removed. While a packet comes to the ingress port of the SCS,

the packet is matched against the flow entry rule embedded into the flow table-0

with priority 301. The flow entry rule then removes the VLAN ID from the incoming

packets by following instruction (action=pop vlan) set in the rule. Then, the packets

are directed to the flow table-2 by following OpenFlow pipeline processing. The flow

entry rules integrated into the flow table-2 forward the packets to the IP forwarding

engine for distributed policy making (for details see section 5.2.1.1).

Figure 5.5: Flow rules to enable IP forwarding

Figure 5.6 describes the flow chart of the processing of packets in the SCS flow

table depending on the network operation mode (i.e., distributed or centralized).

In the case of centralized mode of operation, the VLAN ID is not removed from

the incoming packets and the packets are directed to the flow table-1. If there is a

matching rule for the packet, the corresponding action is taken against the packet.

Otherwise, the packet is forwarded to the SDN controller for policy making. On the

other hand, while distributed operation prevails in the network and is responsible

for distributed policy making, the VLAN ID is removed from the packets and the

packets are directed to the flow table-2. The actions set that are integrated into the

flow table-2 are then executed to perform IP routing.
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5.2.1.3 Integrated Local Agent

In our work, the forwarding node is responsible to inspect impairments, i.e., control

plane failure, link failure or even degraded communication channel between forward-

ing nodes and the SDN controller. For this reason, we included a local agent in the

data plane node in order to enable centralized or distributed control depending on

the reliability of the control communication channel between data plane devices and

the centralized SDN controller. The local agent is composed of i) CPLR detector,

ii) decision module, and iii) rules modifier. The module CPLR detector is based on

a monitoring framework that continuously infers the reliability of the control plane

by periodically monitoring the status of the control communication channel. In this

work, the metric is based on determining the packet loss ratio of the control com-

munication channel, i.e., node-to-controller communication channel. The resulting

metric referred to as Control Packet Loss Ratio (CPLR) (as well as the slope of the

CPLR vs. t curve) that determines the status of the control communication channel

between the data plane node and the SDN controller. To calculate CPLR of a link,

Figure 5.6: Packet processing in the SCS flow table
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we first measure the number of sent and dropped control packets on each link of a

node by using Traffic Control (TC) [21] tool, which is a Linux utility. The CPLR

detector contains a small piece of software that calculates the percentage of loss of

packets of each link, which in turn gives us CPLR value of each link. Depending

on the reliability of the control communication channel, which is determined by the

CPLR value of the links, as well as the CPLR trend, the decision module integrated

into the data plane nodes (see Figure 5.2) decides about the activation of the dis-

tributed operation from the centralized operation and vice versa. In this sense, it

embeds a control logic switching algorithm (see chapter 6) that selects the mode of

operation of the network nodes by detecting trends that describe the quality of the

control communication channels. The prediction is based on the various measure-

ments gathered from the centralized or the distributed control plane logic, which

is active in a given data plane node. Under a high-loss regime, the decision mod-

ule triggers the action to perform network switching from centralized to distributed

control plane operation. Then, the rules modifier of the local agent pushes some

predefined rules to activate the distributed operation in the node that is decided by

the decision module. When the network switching operation happened because of

the failure of the centralized operation, the module CPLR detector of the local agent

keeps monitoring the control communication channel as well as the control plane.

While the control plane as well as control communication channel performance im-

proves and the CPLR detector of the local agent characterizes the control channel

as a reliable-enough medium by measuring the CPLR of the channel, the decision

module again triggers the action to switch back network operation to centralized

mode.

5.3 Data Plane Node Forwarding Pipe and Net-

work Operation

This section describes how the data plane forwarding pipe works in a node during

presence of centralized or distributed network operation.
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5.3.1 Interaction Between The Data Plane Node Forward-

ing Pipe, The Local Agent, and The Centralized SDN

Controller

In our setup, by default packets are tagged with a VLAN ID to enable the use of a

centralized control plane logic embedded in the SDN controller (see Figure 5.7). In

the following, we summarize the centralized operation.

1. When a packet with VLAN ID is received by a physical interface of the SCS,

the SCS conducts a lookup in its flow tables to find a match for the current

packet.

2. If a match is found in one of the flow tables, the packet is then forwarded

according to the rule installed previously by the SDN controller into that

flow table. Otherwise, the incoming packet is forwarded to the centralized

SDN controller for defining policies for appropriate handling of the incoming

packets.

3. The centralized SDN controller installs the necessary OpenFlow rules to serve

the current incoming packet. Thus, the forwarding data plane node simply

follows the instructions set by the SDN controller to forward a packet.

4. The CPLR detector module of the local agent periodically monitors the control

communication channel as well as the control plane by inspecting CPLR.

5.3.2 Interaction Between The Data Plane Node Forward-

ing Pipe, The Local Agent, and The IP Forwarding

Engine

In our setup, when the distributed operation is prevailed in the network, the VLAN

ID is removed from the incoming packets to interact the data plane forwarding pipe

to the distributed operation (see Figure 5.8). In the following, we summarize the

data plane forwarding pipe under distributed mode of operation.
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1. While the distributed operation is active in the given data plane node and

a packet with VLAN ID is received by a physical interface of the node, the

VLAN ID header is removed from the packet.

2. The packet is then forwarded to the IP forwarding engine via virtual interface

for policy making in distributed fashion. The virtual interface acts as a bridge

between the SCS and the IP forwarding engine. In the IP forwarding engine,

the distributed protocol (OSPF) is integrated for policy making.

3. When the policy making for the packet is done by the distributed protocol,

the packet is then again forwarded to SCS via virtual interface.

4. The SCS again encapsulates the VLAN ID before the packet leaves the SCS

egress port.

Figure 5.7: Interaction-Data plane forwarding pipe and centralized operation
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5. The CPLR detector module of the local agent periodically monitors the control

communication channel by inspecting CPLR of the channel.

Figure 5.8: Interaction-Data plane forwarding pipe and distributed operation



Chapter 6

Network Control Logic Switching

Algorithm

This chapter begins with a description of the operation of (centralized) canonical

SDN and it also describes how the data plane failure is recovered in this case.

Control plane failure has a huge impact on recovering canonical SDN from data plane

failure and, at some points, canonical SDN becomes non-operational under control

plane failure. Section 6.3 of this chapter describes the conceived novel network

switching algorithm that decides on network operation switching between centralized

and distributed mode and vice versa in our hybrid control plane architecture during

control plane impairments. This chapter also includes all the steps that are followed

to switch between network operation modes.

6.1 Canonical SDN Operation

In our canonical SDN setup, which is only centralized, when a new packet comes

to the ingress port of a node (e.g., Open vSwitch), the node looks up in its flow

tables for a flow entry match for the packet. If no match is found in the flow tables,

the node sends the packet as a PacketIn message to the SDN controller using the

flow-miss entry rule. Then, the SDN controller calculates the shortest path for the

packet using shortest-path-first algorithm (SPF) (i.e., Dijkstra algorithm) and, using
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PacketOut message, the SDN controller instructs the forwarding node to install flow

rules into the flow table of the nodes. The forwarding nodes keep the rules for an

infinite period unless the nodes get further instruction from the SDN controller to

modify or delete the rules. With the subsequent flow of packets, the forwarding

nodes simply forward the packet according to the rules installed previously with the

intervention of the SDN controller.

6.1.1 Canonical SDN Operation with Perfect Control Plane

and Imperfect Data Plane

In case of change of network topology (for instance, the link between two nodes

goes down), the nodes that get affected inform the SDN controller immediately

about the impairment by sending PortStatus messages. In our setup, when the

SDN controller receives PortStatus messages, it instructs, by means of FlowMod

messages, the affected nodes as well as all the nodes in the affected path to delete

all the previous rules from their flow tables except the flow-miss entry rule. The

flow-miss entry rule is not deleted because using this rule the forwarding node sends

new packets to the SDN controller when the matching rule can not be found in the

forwarding table of the node. When the forwarding nodes in the affected path get

instructions from the SDN controller to delete rules, the nodes perform deletion of

rules according to the instructions of the SDN controller. As the rules are deleted

from the flow table of the nodes, when a packet comes to the ingress port of the

nodes, the nodes again send the packet as a PacketIn message to the SDN controller

using the flow-miss entry rule. The SDN controller then again sets a new policy

for the incoming packets and instructs all the nodes in the new path to install new

rules in their flow table. The nodes then forward subsequent packets according to

the new rules.
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6.1.2 Canonical SDN Operation with Imperfect Control plane

and Imperfect Data Plane

To keep canonical SDN operational in case of data plane impairments, control mes-

sages (e.g., PortStatus, FlowMod, PacketIn and PacketOut messages) and also topol-

ogy discovery messages (e.g., LLDP) need to be exchanged between the SDN con-

troller and the forwarding devices regularly. The exchange of control messages re-

quire having a low loss, as in canonical SDN scenario the SDN controller is the central

point that makes the policies for incoming packets and the forwarding devices follow

the instructions set by the SDN controller to forward the packets. During imperfect

control plane conditions, loss of control messages due to degraded control channel

or failure of control channel, or even, failure of the SDN controller, may hamper the

correct operation of canonical SDN, as the control messages can not reach the SDN

controller from the forwarding devices and vice versa. As the SDN controller and the

forwarding devices maintain TCP connections, lost control messages are retransmit-

ted, which may protect SDN operation from failure in a low-loss regime. However,

the high-loss regime imposes several retransmissions of lost packets or even loss of

a packet completely after several retransmissions, which substantially degrades the

performance of canonical SDN or it even makes it non-operational.

6.2 Distributed Operation

Under distributed network operation, network intelligence (i.e., routing decisions)

is distributed among the network nodes (e.g., routers) and tightly bound to each

network node. A distributed routing protocol (e.g., OSPF) running in a single area

within the same Autonomous System (AS) determines the route to each destination.

In our distributed network scenario, OSPF version 2 (OSPFv2) is deployed. OSPF

uses link-state information to make routing decisions and the SPF (Shortest Path

First) algorithm (Dijkstra algorithm) is used to calculate the shortest path to the

destination. Each node in the same area runs the algorithm and maintains an

individual topological database. Hello messages are exchanged periodically between

neighbor nodes to acknowledge their existence. Each node in the area floods Link-

State Advertisements (LSAs) that advertise node state (i.e., interface or link state)
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and also carries information about its neighbors to adjacent routers in the same

area.

6.2.1 Distributed Operation During Topological Change with

Perfect Channel Conditions

During topological changes in the network, due to link failure or interface of the

router becoming unavailable, the OSPF protocol detects the topological change in

the network and calculates the new loop-free route. Each node in the network floods

LSAs periodically to advertise its state. In case of any impairments, the affected

node floods the LSA immediately and whenever the neighbor nodes of the affected

node receive a copy of the LSA, the nodes again flood the copy of the LSA. However,

if a node receives a duplicate copy of the LSA, the node simply discards the LSA.

By receiving LSAs, the other nodes in the area update their topological database

and the network topology diagram becomes stable again. The OSPF protocol then

calculates the new loop-free route to the destination.

6.2.2 Distributed Operation During Topological Change with

Imperfect Channel Conditions

In case of imperfect channel conditions while there is a topological change in the

network, the affected node floods the LSA, and all the nodes in the area receive a copy

of the LSA and update their routing table. Due to imperfect channel conditions,

some LSAs may be lost. Lost LSAs are retransmitted by the source node. LSA

flooding brings some benefits during the high-loss regime. In a high-loss regime,

LSAs may get lost and a node may not receive the LSA from a neighbor node, but

because of LSA flooding, it may receive a copy of LSA from other neighbor nodes. In

this way, each node in the network knows about the topological change and updates

its individual topological database.
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6.3 Control Logic Switching Algorithm

During imperfect control plane conditions, the SDN performance degrades (see sec-

tion - 8.2) due to loss of control messages and at critical conditions (e.g., high-loss

regime), the SDN may become non-operational. On the other hand, legacy dis-

tributed operation keeps the network operational by flooding LSAs (see section 8.3),

which makes the networks stable during topological change in a high-loss regime.

To recover SDN from failure, we have integrated a control logic switching algorithm

(also referred to as the decision module) into the data plane nodes (see section

5.2) that autonomously takes network switching decisions by predicting network

conditions. The network condition is being predicted based on periodical measure-

ments performed by the module CPLR detector, which inspects channel conditions

by means of the metric named CPLR. The metric CPLR goes as an input to the

algorithm and based on the trend of the CPLR metric over time during different

states, the algorithm decides which network operation will be active in the network

to perform packet forwarding or routing.

As a consequence of any impairment experienced by the control plane, due to either

failure of the SDN controller or a degraded control channel, CPLR values will in-

crease, and an anomaly will be inferred by the network node. Algorithm 1 describes

the control logic switching algorithm. All the state decisions have been explicitly

reflected for the sake of clarity. This algorithm is periodically run in the local agent

of each node in the network. Each of these periods is referred to the Algorithm 1

with subindex k ∈ N. The local agent will call this algorithm by providing some

input parameters, such as the current state, the measured CPLR (calculated by

the CPLR detector module), and the slope of the CPLR vs. t curve, calculated in

the previous period (Sk−1) and the current one ((Sk)). Based on the input parame-

ters the algorithm predicts network conditions of the upcoming periods and decides

which operational mode will be active in the network which comes as an output of

the algorithm. If the current state (i.e., centralized or distributed) is different from

the output of the algorithm, the local agent integrated into each node performs some

actions (see section 6.3.1 and 6.3.2) to apply the network operation switching.
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Algorithm 1 Pseudo code of the control logic switching algorithm.
Input: current state,CPLR,Sk−1, Sk

Output: next state . centralized or distributed

1: procedure DECIDE STATE
2: if current state=centralized then
3: if (CPLR < CPLRmax) then
4: if Sk ≤ δ then . If low CPLR increasing trend
5: next state=centralized
6: else
7: if Sk−1 > δ then
8: next state=distributed
9: else

10: next state=centralized
11: end if
12: end if
13: else . CPLR ≥ CPLRmax

14: next state=distributed
15: end if
16: else . current state=distributed
17: if Sk >= 0 then
18: next state = distributed
19: else
20: if CPLR < CPLRmax then
21: next state=centralized
22: else
23: next state=distributed
24: end if
25: end if
26: end if
27: return next state
28: end procedure

There are various design criteria behind this algorithm. Since our goal is to stay

as much as possible in the centralized mode and only use the distributed mode as

a backup operational mode, the algorithm is more conservative (i.e., it attempts to

make sure) when switching from centralized to distributed than vice versa (lines #3–

15). The rationale behind this is that the application of network-wide management

policies is easier when operating in centralized mode due to easier programmability

through the SDN controller APIs and functionality.
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Furthermore, switching to distributed operation implies certain control message ex-

change and processing (section 6.3.1). On the other hand, the algorithm will decide

to switch to the centralized mode in a greedier manner (i.e., based on slight improve-

ments in network conditions), for the reasons explained above (lines #16 et seq.),

as soon as network conditions improve.

To control its operation, there are two main parameters in the algorithm. First,

CPLRmax that is the CPLR under which TCP retransmissions are enough to guar-

antee (even if delayed) the interaction between the SDN controller and the node,

though there may be an impact in network performance, as observed in chapter 8.

Second, the conservative behavior is represented by parameter δ, the value of the

slope (Sk) of the curve CPLR vs. t during the current period k, if exceeded, implies

a noticeable increasing trend of CPLR (line #6).

Therefore, it is based on an increasing trend and not based on instantaneous CPLR

values that the algorithm decides to switch to distributed operation. That is, the

algorithm at least takes the increasing slope above δ during two consecutive evalua-

tion periods to switch network operation from centralized to distributed(lines #6–7).

However, if the instantaneous value is such that CPLR is above CPLRmax, which

means that network performance cannot be guaranteed (even if with high-losses), the

switching decision is taken without waiting for evaluating the slope in the following

period (line #13).

When in distributed operation (lines #16 et seq.), the aim is to switch back to

centralized when an improvement in the network’s conditions is detected. To restore

centralized operation in the network, this is coded in the algorithm as measuring a

non-positive slope in this period (no need to wait for two periods, as above) (line

#19), and the CPLR value is below the one that guarantees that the network can

operate in centralized mode (CPLRmax) (line #20). Under other conditions, the

algorithm decides that the problem persists and decides to stay in distributed mode.



Chapter 6. Network Switching Algorithm 63

6.3.1 Network Operation Switching: Centralized to Dis-

tributed

In case of high-loss conditions, when the CPLR of the control communication chan-

nel is increasing and the decision module detects that the CPLR curve is sloping

upwards or the CPLR value reaches CPLRmax, the switching algorithm integrated

into the local agent of the nodes takes the network operation switching decision from

centralized to distributed mode. In order to perform network operation switching

from centralized to distributed, the following steps are followed by the local agent:

1. The rules modifier module deletes the old rules, except the flow-miss entry

rule, from the SCS flow tables that were installed with the intervention of

the SDN controller. The flow-miss entry rule is not deleted as this rule is

important while network operation is again restored to centralized mode (see

section 6.3.2).

2. The rules modifier module installs new rules in the SCS flow table, which

include an OpenFlow POP VLAN action, aiming to remove the VLAN tag of

the incoming packets to the ingress port of a node and to forward the incoming

packets to the IP forwarding engine.

3. Incoming packets arriving at the SCS ingress port are then forwarded to the IP

forwarding engine via the internal virtual port, in order to process the packets

through the IP routing daemon. In the IP routing daemon, a distributed

routing protocol (in our case, Open Shortest Path First (OSPF)) makes the

policies to route packets to their intended destination and send the packets to

the SCS egress port via the internal virtual port (see section 5.3).

4. On the other hand, the rules modifier module of the local agent also updates

the SCS flow table by adding another rule that pushes the VLAN tag again to

the packets using an OpenFlow PUSH VLAN action before the packets leave

the SCS egress port and sends the packets toward the following hop toward

the destination host. All these modifications (e.g., deletion and installation)

of rules in the SCS flow table are performed without the intervention of the

SDN controller.
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Whenever the network operation in the node is switched to distributed mode, the

node acts as a legacy device where a distributed routing protocol (e.g., OSPF)

ensures the policy making and routing of incoming packets. The SDN controller,

in that case, does not have any influence over the nodes in the network because of

control packet loss due to impairment in the control communication channel.

6.3.2 Network Operation Switching: Distributed to Cen-

tralized

During the distributed mode of operation, the module CPLR detector of the local

agent continues measuring the CPLR (and its slope) of the control communication

channel, and when the CPLR goes below CPLRmax (and there is a non-increasing

CPLR trend), the switching algorithm takes the network operation switching deci-

sion from distributed to centralized again. The local agent then restores centralized

operation back by following these steps:

1. The rules modifier module deletes the rules from the SCS flow table that

includes POP VLAN and PUSH VLAN OpenFlow actions that were installed

by the local agent during network operation switching from centralized to

distributed. When the control plane performance becomes fair again, the SDN

controller starts receiving LLDP (Link Layer Discovery Protocol) messages

and, by receiving LLDP messages, the SDN controller discovers the network

topology again.

2. As during switching from centralized to distributed, all the flow rules installed

by the SDN controller were deleted, except the flow-miss entry rule, when the

SCS ingress port receives a packet, it sends the packet to the SDN controller

for policy making using the flow-miss entry rule, as there is no matching rule

remaining in the SCS flow table. In this way, network operation switches back

again to centralized mode and the SDN controller takes control of the network.



Chapter 7

Framework for Experimental

Evaluation

This chapter discusses about the considerations behind selecting the tools we selected

for the framework used to assess the research statement explained in the chapter 4.

The selection of a simulator or an emulator to evaluate the network topology is one

of the main components to take into account together with the selection of the SDN

controller platform. This chapter begins by describing the reasons behind choosing

the emulator Mininet and then illustrates the architectural overview of the emulator.

This chapter also explains the architecture of the SDN controller platform that has

been used in the research work.

7.1 Network Simulator and Emulator

A network simulator or emulator provides flexibility to evaluate network perfor-

mances efficiently without having real deployment. It provides an environment to

deploy that behaves like an actual network, which eases carrying out realistic evalu-

ations on top of it. The following paragraphs briefly describe the simulator and the

emulator.

65
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• Simulator: A simulator is a software program that creates an environment to

mimic the behavior and configurations of a real device. Unlike doing experi-

ments on real devices, executing simulation on the simulator to do experiments

is flexible, cost-effective, more controllable and scalable. A simulator has its

own simulation clock to precisely control the execution of the simulated com-

ponents and the simulation clock may be faster or slower than real-time [67].

For this reason, several executions of the same experiment as well as the same

model, generate the same results. However, the results generated by the sim-

ulator deviate from the results generated by the real components if modeling

of the real device is not accurate.

• Emulator: An emulator duplicates the hardware and software features of a

real component. An emulator utilizes the virtualization technique to emulate

components that run real operating systems and application programs [69]. An

emulator does not have its own clock to control the execution order of emulated

components, rather it uses a real-time clock. All the components running on

the emulator share the same kernel and the kernel’s CPU (Central Processing

Unit) scheduler schedules the execution order of emulated components. Due

to uncontrollable events (e.g., the processes running on the system), results

generated by an emulator for several executions of the same experiments may

differ. However, results generated by the emulator are almost the same as the

results generated by the real components.

7.1.1 Simulator and Emulator for SDN

A very relevant tool used by the network research community is Network Simulator

3 (ns-3) [39]. NS-3 supports OpenFlow but it has some limitations to deploy SDN

scenarios. EstiNet [2] also supports OpenFlow, and it can be used in both simulator

and emulator modes. But the most popular tool used by the SDN research commu-

nity is Mininet [46], [4]. The following Table 7.1 compares the functionalities and

compatibility of the tools to conduct experiments on SDN.

Table 7.1: A comparison of SDN tools

Mininet EstiNet ns-3
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Operational

Mode
Emulator

Simulator and Em-

ulator
Simulator

OpenFlow

support
OpenFlow 1.3 OpenFlow 1.3

OpenFlow 1.3 (us-

ing the module OF-

Switch13 [34] )

Working Prin-

ciple

Mininet uses the

virtualization tech-

nique to emulate

hosts and uses

Open vSwitch to

create software

switches. It uses

the virtual Ether-

net pair approach

to connect switches

and also hosts.

EstiNet utilizes

kernel re-entering

[68] procedure that

allows multiple

hosts to run on a

single kernel. The

EstiNet simulation

engine process

allows simulating

multiple Open

vSwitches. Ex-

change of packets

between appli-

cation programs

running on dif-

ferent hosts, go

through real

TCP/IP layer of

the kernel and also

go into a tunnel

network interface

that connects to

the simulation

engine where each

host has its own

simulated protocol

stack.

In NS-3, the op-

eration of the

devices (e.g., Open

vSwitch) is simu-

lated by compiling

and linking the

device´s module

(written in C++)

with its simula-

tion engine code

to form a user-

level executable

program.
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Compatibility

with real

world SDN

controller

The emulated host

on Mininet is like

a virtual machine

that allows running

any real applica-

tions to exchange

information. The

virtualization tech-

nique provides the

flexibility to run

the real SDN con-

troller on an emu-

lated host and to

control the software

switch (e.g., Open

vSwitch) by setting

up a TCP connec-

tion.

The kernel re-

entering scheme

in EstiNet allows

running a real

application on a

simulated host

which in turn

gives the flexibility

of running the

SDN controller in

EstiNet without

any modification.

To create a TCP

connection between

the switch and the

SDN controller,

the operation of

the switch is sim-

ulated inside the

simulation engine

and let it to create

a TCP/IP socket

bound to a tunnel

interface [69].

In ns-3, a real SDN

controller can not

readily be run on

a node without

modification, as

ns-3 is a user-level

program and a real

SDN controller is

also a user-level

program that can

not be compiled

and linked to-

gether to form a

single executable

program. As a

result, the SDN

controller needs to

be implemented

from scratch as a

C++ module.

Openness Open-Source Proprietary Open-Source

In this research work, Mininet has been chosen to deploy the SDN scenario as Mininet

is an open-source tool that provides enormous flexibility to create, customize, share

and test SDN networks in a very simple way.
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7.2 Mininet

Mininet is an open-source network emulator for deploying an entire network on a sin-

gle PC or on a virtual machine (VM). Mininet provides flexibility to design network

topologies and new functionalities by using the high-level programming language

Python. Mininet uses a Linux container as an emulated host which is a lightweight

VM with individual network interface. The OS-level virtualization features, includ-

ing processes and network namespaces, provide Mininet with a scalable prototyping

environment and also allows managing hundreds of nodes.

In contrast to currently available prototyping environments, Mininet code can easily

be deployed on hardware-based networks and testbeds. In that sense, Mininet is an

interactive prototyping environment for real networks.

7.2.1 Mininet - Virtual Network Architecture

Four fundamental network elements are available in Mininet to create a topology,

which are the following ones:

• Links: Act like a wire that connects virtual interfaces of different nodes to

provide connectivity. These are also known as Virtual Ethernet pair or veth

pair. Packets that are sent via one interface are delivered to another interface

just like a fully functional Ethernet port.

• Host: An emulated host in Mininet is a Linux container, which is simply

a shell process moved into its own namespace, from where commands can

be executed. Each host has its own virtual Ethernet interface(s). The real

application program (e.g., SDN controller) can readily be run on an emulated

host.

• Switches: Switches are Linux-based software switches that provide the same

packet delivery semantics that would be provided by a hardware switch.

• SDN controller: The SDN controller can be placed on an emulated host within

the same emulated network or anywhere in the real network, as long as the
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Figure 7.1: Mininet Architecture [46]

switches running on the machine have IP-level connectivity with the SDN

controller.

The emulation of a simplified virtual network in Mininet has been depicted in Figure

7.1. Figure 7.1 shows that two hosts (labelled as h2 and h3) are connected to a switch

(labelled as ofdatapath). The switch communicates with the SDN controller through

the OpenFlow protocol using a secure control channel. Hosts are inside separate

Linux namespaces with their own virtual Ethernet interfaces that are privileged to

run real application programs, like packet sniffer tools (e.g., Wireshark [25]) on each

interface to capture packets within the emulated scenario.

7.3 SDN Controller Platform

The SDN controller is a core component in the SDN paradigm, as the SDN controller

is the brain of the network where network policies (e.g., routing) are applied in a

centralized fashion to manage the underlying infrastructure layer.



Chapter 7. Framework for Experimental Evaluation 71

Figure 7.2: SDN Controller Architecture

7.3.1 Architecture of SDN Controller

Figure 7.2 depicts a generic architecture of the SDN controller. The modularized

design of the SDN controller consists of several modules where each module is re-

sponsible to perform a certain functionality and cooperation between modules is

maintained to provide complete functionality.

The core of the SDN controller accommodates some basic modules that include the

topology discovery module, link discovery module, storage module, policy making

module, flow table module and control data module. Furthermore, to provide buffer-

ing functionality the core of the SDN controller contains some additional modules

like receiving queue, processing queue and sending queue [66], [72]. The core of the

SDN controller is surrounded by the interfaces that manage communication between

the core of the SDN controller and different layers.

7.3.1.1 Functionality of Core Modules of SDN Controller

As the SDN controller is the brain of the network, it needs to have a total view of

the network resources (e.g., nodes and links) in order to control the network and to

make strategies. Link discovery, topology discovery and traffic flow handling are the

main functionalities of the controller core.
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• Link Discovery Module: According to OpenFlow technical specifications,

the OpenFlow switch should have two initial configurations. Firstly, the IP

address and the TCP port of the SDN controller (in case of multiple controllers,

IP address and TCP port of the master controller and a pool of IP addresses

of the slave controllers) have to be set in the OpenFlow switch. Secondly, a

default flow rule has to be pre-installed in the OpenFlow switch to route the

LLDP packets to the SDN controller encapsulating in OpenFlow Packet In

message [38], [52], [55].

In the initial stage, the OpenFlow switch searches for the SDN controller in

the network and attempts to establish a secure connection with the SDN con-

troller through Transport Layer Security (TLS) protocol to send and receive

configuration messages. As a part of the initial handshake, the SDN con-

troller requests the features of the SDN-based forwarding nodes (e.g., Open

vSwitch) employing FEATURE REQUEST MESSAGE. The node responds

with FEATURE REPLY MESSAGE, which contains data-path ID, list of ac-

tive ports and corresponding MAC address of the ports. After receiving FEA-

TURE REPLY MESSAGE, the SDN controller knows about the features of

the forwarding node.

To discover links between forwarding nodes in the infrastructure layer, the link

discovery module is used by the SDN controller. The link discovery module of

the SDN controller periodically sends LLDP messages to the SDN-based nodes

(e.g., Open vSwitch) to discover the links between SDN-based switches. The

SDN controller uses OpenFlow Packet Out message to send the LLDP packets

to the SDN-based node. For instance, while the forwarding node (A) receives

the Packet Out message, the node decapsulates the LLDP packets and outputs

the packet via every active port except the ingress port. However, the LLDP

packet received by node (B) from node (A), is unknown to node (B). Then

node (B) encapsulates the LLDP packet in Packet In message and sends it to

the controller (see Figure 7.3). On the other hand, the SDN controller also

sends LLDP packet to node (B) and by following the same procedures, the

SDN controller also gets a Packet In from node (A). After receiving Packet In

messages from node (A) and node (B), the link discovery module of the SDN

controller learns that node (A) and node (B) are directly connected.
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• Topology Manager: The topology manager periodically reads link informa-

tion provided by the link discovery module and creates a topology graph of

the whole network by combining all the relevant information of the forwarding

nodes. The topology manager creates a topology instance and puts it into the

storage manager.

• Policy Manager: The policy manager is responsible to make the decision

to forward the incoming packets. For instance, the policy manager using the

topological information calculates the shortest path based on the shortest path

calculation algorithm (e.g., Dijkstra algorithm).

• Flow Manager: The flow manager creates the flow rules based on the policy

applied by the policy manager and pushes the flow rules to the forwarding

nodes by encapsulating them into Packet Out messages.

7.3.1.2 Interfaces

To maintain interaction between different layers, the core of the SDN controller is

surrounded by several interfaces which are explained next:

• Southbound Interface: The Southbound Interface (SBI) of the SDN con-

troller is responsible to maintain communication with the infrastructure layer.

In SDN, OpenFlow is a de-facto standard as SBI. SBI allows the SDN con-

troller to provision physical and virtual network devices in an intelligent way.

• Northbound Interface: The Northbound Interface (NBI) provides flexibility

to the network administrators to develop their own applications (e.g., load

balancing, QoS, firewall) and integrate the applications to the SDN controller.

To maintain the interaction with the application layer the SDN controllers

support a number of APIs (e.g., REST).

• East-West Bound Interface: To manage the cluster of multiple controllers

as well as communication between multiple controllers, Westbound Interface

can be used. On the other hand, Eastbound Interface can be used to interact

with other third-party applications. However, there is no standard interface

for these purposes.
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Figure 7.3: LLDP protocol methodology

7.3.2 Classification and Comparison of SDN Controllers

The working principle of the SDN controllers is almost the same but the classification

criteria of the SDN controllers mostly depends on some properties that include pro-

gramming language, architecture, application programming interface (API), plat-

form, and interface. Table 7.2 presents a comparison of the most popular SDN

controllers.
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Table 7.2: Comparison of SDN Controllers.

Floodlight NOX ONOS POX Ryu OpenDaylight

Programming

Language
Java C++ Java Python Python Java

Architecture Centralized Centralized
Distributed

Flat

Distributed

Flat
Centralized

Distributed

Flat

Northbound

API

REST, Java

RPC, Quan-

tum

ad-hoc
REST, Neu-

tron
ad-hoc REST

REST, REST-

CONF, XMPP,

NETCONF

Southbound

API

OpenFlow

1.0, 1.3
OpenFlow 1.0

OpenFlow

1.0, 1.3
OpenFlow 1.0

OpenFlow

1.0-1.5,

NETCONF,

OF-Config

OpenFlow 1.0,

1.3

Supported

Platform

Linux, Ma-

cOS, Win-

dows

Linux

Linux, Ma-

cOS, Win-

dows

Linux, Ma-

cOS, Win-

dows

Linux, Ma-

cOS

Linux, MacOS,

Windows

Interface CLI, Web UI CLI, Web UI CLI, Web UI CLI, GUI CLI CLI, Web UI

Documentation Good Limited Good Limited Good Good



Chapter 7. Framework for Experimental Evaluation 76

Figure 7.4: Architecture of Ryu framework

Among the other SDN controller platforms, we have chosen Ryu for our experimental

evaluation as Ryu is an open-source, component-based SDN controller platform that

is entirely implemented in Python. Like other SDN controller platforms, Ryu also

provides software components with well-defined APIs, which adds more flexibility

to the developer to create new applications for network management and control.

7.3.3 RYU Architecture

Ryu architecture provides the developer with a platform that is equivalent to an

operating system without any application software installed in it. According to the

demand, the developers need to write their own applications based on the framework

and API (e.g., REST) provided by Ryu. Figure 7.4 presents the architecture of Ryu

framework. The Ryu framework has the following main features:

• Ryu Libraries: Ryu enriched with a collection of libraries that allows parsing

and building various protocol packets, such as VLAN, MPLS (Multiprotocol
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Label Switching), GRE (Generic Routing Encapsulation). Ryu also has li-

braries to support non-OpenFlow protocols (e.g., NETCONF, OVSDB).

• Protocol Support: Ryu brings one important strength by supporting mul-

tiple southbound protocols (e.g., OpenFlow, NETCONF, OVSDB, OpenFlow

Management and Configuration Protocol (OF-Config) [9]) to manage forward-

ing devices.

• OpenFlow Protocol (OFP) Parser and Controller: In the Ryu frame-

work, the controller is a key component that manages configurations of flow

rules in the forwarding devices and also managing events. When an OpenFlow

message is received in the receiving queue, the OpenFlow protocol parser is

called by the controller to understand the OpenFlow message. The OFP Parser

then generates the proper OFP Event and labels it as OFPxxx. For instance,

a Packet In event becomes OFPPacketIn.

• Event Dispatcher: After the generation of the proper OFP event, the event

dispatcher is called by the controller to construct the event object. The event

dispatcher has specifications about how to dispatch an event to the appropriate

Ryu app.

• Ryu Manager: The Ryu manager is the executable of the Ryu framework.

When the Ryu manager is executed, it listens to the specific IP address and spe-

cific TCP port (by default:6633). The OpenFlow switch (e.g., Open vSwitch)

gets connected to the Ryu manager to this port.

• App Manager: The main functional component for all Ryu applications in

the Ryu framework is the app manager. All the Ryu applications inherit the

app manager´s RyuApp class.

• Ryu Applications: The Ryu framework is distributed with multiple applica-

tions, like simple switch, router, firewall. Ryu applications contain user logic

and are single-threaded entities that implement various functionalities in the

Ryu framework. Each application receives events in its Event queue, which is

mainly a FIFO (First IN First Out) queue in order to preserve the order of the

events. Each Ryu application runs a thread to consume the events from the

queue. The Event processing thread pops out the event from the queue and
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Figure 7.5: Functional Architecture of Ryu Application

calls the appropriate Event handler for the event. In this context, the Event

handler works in a blocking mode, i.e., when an event handler is given control,

no further event is processed by the Event processing thread until the control

is returned to the Event processing thread. Figure 7.5 presents the functional

architecture of Ryu applications.

• Northbound Interface: In the northbound interface, Ryu supports a num-

ber of APIs (e.g., REST) to interact with the application layer.

7.4 Experimental Setup

Figure 7.6 illustrates experimental setup where custom topologies that include data

plane nodes (e.g., Open vSwitch), are created in Mininet. The veth pair, which is

one of the fundamental network elements in Mininet, is used to connect the nodes

in the topology. The SDN controller (e.g., Ryu) to make the policies for data plane

nodes, is placed on an emulated host in Mininet. More explanations of the evaluated

scenario are presented in chapter 8.
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Figure 7.6: Experimental Scenario Setup in Mininet



Chapter 8

Scenario Evaluation and

Experimental Results

This chapter first presents the performance evaluation of canonical SDN, which is

only centralized, under unreliable conditions. The analysis of the distributed mode

of operation during unreliable channel conditions is also reported in this chapter.

Furthermore, this chapter also includes the performance of hybrid SDN during un-

reliable conditions. Hybrid SDN switches the mode of operation at the node level

depending on the decision taken by the control logic switching algorithm described

in section 6.3. The contributions of this chapter have been published in [53], [54].

8.1 Overview of Evaluated Network Scenario

Using Mininet, we evaluated custom topologies of 9-node and 16-node grid mesh

networks (see Figure 7.6). The reason for considering mesh networks is that in

a mmWave mobile transport network, a mesh topology is an ideal candidate to

interconnect the SCs at the transport level, where, for instance, the SC is placed

on the street furniture (e.g., a lamppost) [27]. Moreover, we considered an in-band

deployment of the SDN scenario, which is realistic when deploying SDN in multi-

hop wireless transport scenarios. In contrast to the out-of-band deployment of SDN,

where a separate network is required to exchange control messages between the data

80
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plane node and the SDN controller, the in-band solution minimizes the requirement

of a separate network by sending control messages over the same channel used for

data packets. We considered Ryu as SDN controller platform to make policies for

packet forwarding. We developed our Ryu application that contains the user logic

for packet forwarding, data plane failure handling and network loop handling.

In the evaluated multi-hop wireless scenario, only one SC is connected directly to

the aggregation node (i.e., macro-cell) and acts as a gateway node for other SCs

that are in the coverage area of the macro-cell. Optical fiber technology or mmWave

technology can be used to connect the gateway SC to the macro-cell base station.

The other SCs in the coverage area are connected to each other through wireless

links to form a mesh network. The main idea behind this is that mmWave-based

transport network is a cost-effective candidate to connect SCs rather than laying

fiber to connect SCs to each other. Moreover, mmWave is able to achieve data

rates up to gigabit-per-second [56], which is very close to the data rate provided by

fiber technology. In this way, the coverage of the macro-cell is complemented with

that of SCs. Moreover, the SDN controller is also connected to the gateway SC

and communication between the SDN controller and the SCs is maintained via (the

transport component) the gateway SC.

In our evaluated SC based transport scenario, the transport node associated with

each SC is a hybrid node that connects heterogeneous networks (e.g., sensor net-

works, wifi networks, and mobile ad-hoc networks) to the macro-cell base station

of a mobile network. We use TCLink [24] to emulate high capacity mmWave links

(60GHz 802.11ad WiGig links) as wireless transport links and to set their link rate

up to 1 Gbps. Multiple TCP flows were generated from different SCs by using iPerf

[22], which, on average, resulted in a traffic rate of 50 Mbps each. All the TCP

traffic flows generated from each SC are sent toward the macro-cell base station via

a gateway SC, which in a realistic scenario may be co-located with a macro base

station cell site and SCs deployed in lampposts, for instance.

8.1.1 Parameters Used in The Experimental Evaluation

Table 8.1 explains the parameters used in our evaluations. Extensive evaluation

campaigns of the centralized and the distributed network under various unreliable
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network conditions for different network sizes allowed tuning the algorithm param-

eters (CPLRmax and δ) to the values reflected in the table. Furthermore, 10 s. was

found to present an appropriate trade-off between the processing overhead (much

higher if evaluation periods were much shorter) yet being able to detect steady trends

based on which the algorithm takes decisions.

Finally, the tested network sizes, CPLR values, and number of impaired links were

selected to reflect networks with various complexities and a variety of operational

conditions ranging from perfect to really bad, so that the algorithm could show

its operation under stress and have its operational limits assessed. All tests were

repeated 10 times, and their min, 25-percentile, median, average, 75-percentile, and

max values are represented in the boxplots.

Table 8.1: The experimental parameters and their corresponding values.

Parameter Value Explanation

CPLRmax(%) 15
CPLR value over which the network is

not operational in centralized mode.

δ 0.5

Slope that if exceeded for two consec-

utive periods implies switching to dis-

tributed mode.

Period 10
Period (in s.) with which CPLR is eval-

uated by local agent of each node.

Network size 9, 16 Number of nodes in the grid.

CPLR (%) 5, 10, 15, 20, 25
Average CPLR values generated to test

network performance.

Links impair-

ments
0, 1, 2, 3, 4, 5

Number of link impairments (switching

links up/down) randomly distributed

through the network (yet guaranteeing

having a connected graph).
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8.2 Canonical SDN Operation: Imperfect Con-

trol Channel and Imperfect Data Plane Con-

dition

Several experiments were conducted to observe the throughput and latency perfor-

mance of canonical SDN during unreliable control channel and data plane conditions.

To observe the impact of the unreliable control plane over data plane throughput

and latency in a controlled way, we generated losses of control messages that were

exchanged between the forwarding nodes and the SDN controller. We used netem

[23] in combination with TCLink to add impairments to all of the communication

channels (including the channel that connects the SDN controller to the gateway

node) in our emulated scenarios.

We also broke data plane links (e.g., the link between two nodes) randomly by main-

taining a sequence of link down/up at arbitrary periods of our emulation time. We

did so to emulate the extreme instability that could appear in a wireless channel,

and, in this sense, it represents a quite complex situation to be handled by the con-

trol plane. As with data plane link failure, control messages (PortStatus, FlowMod,

PacketIn, and PacketOut messages) [14] continue being exchanged between the SDN

controller and data plane nodes in order to redirect these control messages to the

SDN controller over the degraded channels. Moreover, in our evaluated scenarios,

every 5 s., LLDP messages are exchanged between the SDN controller and the for-

warding nodes; the SDN controller knows about the topology by receiving LLDP

packets from the data plane nodes.

We performed evaluations with different network sizes under unreliable conditions,

by injecting various flows in order to understand what were the CPLRs that allowed

the control communication channel to operate (even if with difficulties) and those for

which it was impossible in most repetitions. Figures 8.1–8.4 depict the data plane

performance metrics (aggregated throughput and average latency) during unreliable

control plane conditions of canonical SDN for various network sizes (blue curve for

three flows and red curve for five flows in the centralized case).
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Figure 8.1: Data plane performance metric (aggregated throughput) comparison
between centralized and distributed operations, during imperfect control channel

conditions in a 9-node grid network.

Figure 8.2: Data plane performance metric (average latency) comparison be-
tween centralized and distributed operations, during imperfect control channel

conditions in a 9-node grid network.
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We injected three and five TCP flows in each topology and varied the CPLR of each

link. We also broke four data plane links randomly during our emulation time. For

both network sizes, the results reveal that the increase of CPLR caused degradation

of the data plane throughput and substantial growth of the latency in the canonical

SDN scenario, which is very high for a CPLR of 25% (not represented). In the

evaluated scenario, during the presence of link impairments in the data plane, the

affected nodes sent PortStatus messages to the SDN controller to inform the SDN

controller about data plane link failure.

In this case, due to the presence of faulty control communication links between the

SDN controller and the forwarding nodes, the control messages (i.e., PortStatus,

PacketIn, PacketOut, and FlowMod) were dropped and could not be exchanged on

time. Moreover, LLDP messages that were used by the SDN controller for discov-

ering network topology, were also dropped. As the SDN controller and forward-

ing nodes used a TCP connection to maintain the communication between them,

dropped packets were retransmitted again.

Therefore, for low CPLR values (e.g., 10%) throughput was maintained to an ac-

ceptable level through TCP retransmission of control messages. However, in the

case of high values of CPLR (e.g., 25%), although dropped control packets were

retransmitted again, the high-loss of the control packets affected the restoration of

a new path at the data plane, which rendered the network unusable, as the impact

was the same as if the SDN controller had failed. The impact on the aggregated

throughput and latency were also highly noticeable.

To evaluate the impact of control message loss over data plane performance, we

generated different numbers of link failures at the data plane with the intention of

redirecting control messages to the SDN controller over lossy control communication

channels. Figures 8.5–8.8 report the data plane performance of canonical SDN while

the network was experiencing an increasing number of data plane link impairments

under a certain CPLR value. We repeated the experiments for different network

topologies by injecting seven TCP flows in each topology.
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Figure 8.3: Data plane performance metric (aggregated throughput) comparison
between centralized and distributed operations, during imperfect control channel

conditions in a 16-node grid network.

Figure 8.4: Data plane performance metric (average latency) comparison be-
tween centralized and distributed operations, during imperfect control channel

conditions in a 16-node grid network.
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We observe that, for both topologies, the aggregated throughput at the data plane

substantially degraded, and the latency increased with the increasing number of

broken links at the data plane. This was evaluated for various values of CPLR

to assess its dependency on varying degrees of data plane link impairments. As

CPLR increased, so did the restoration time due to control packet loss and the

consequent retransmission of control packets between the network nodes and the

centralized SDN controller. For both network topologies, for CPLR values of 25%,

the degradation of the aggregated throughput at the data plane was remarkable, and

the latency was substantially higher due to the high-loss of control packets, which

caused several retransmissions that affected the proper communication between the

SDN controller and the forwarding nodes.

As latency is very high during a CPLR of 25%, for both cases, this is not represented

in the figures. The network topology is a grid, and the connectedness of the graph is

maintained, which may not be the case in a real deployment with lower nodal degrees

of the graph. In this sense, the network performance presented in the figures may

be considered the best possible case in terms of the path diversity.

Figure 8.5: Aggregated throughput behavior of centralized network operation
during data plane link failures for various times under imperfect control channel

conditions in a 9-node grid network.
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Figure 8.6: Average latency behavior of centralized network operation during
data plane link failures for various times under imperfect control channel condi-

tions in a 9-node grid network.

Figure 8.7: Aggregated throughput behavior of centralized network operation
during data plane link failures for various times under imperfect control channel

conditions in a 16-node grid network.
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Figure 8.8: Average latency behavior of centralized network operation during
data plane link failures for various times under imperfect control channel condi-

tions in a 16-node grid network.

8.3 Distributed Operation: Imperfect Channel Con-

dition

We evaluated the same network topologies with the same number of TCP flows in the

distributed network. We conducted our experiments in the distributed case where all

the links were degraded communication links, and, in a controlled way, we increased

the loss of control messages exchanged between two neighbor nodes. In the case

of our evaluated distributed scenario, Hello and LSA (Link State Advertisement)

messages are periodically exchanged among the neighbor nodes.

In our setup, within every 2 s., Hello messages are exchanged between two neighbor

nodes that confirm the availability of the neighboring nodes. On the other hand,

every 5 s., LSAs are exchanged by the nodes in order to learn about the topology

of the network. During any change in the network topology that may be caused by

link failure or the unavailability of a node, the affected node floods updated LSAs
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in the same area network. By receiving a copy of updated LSA the other nodes in

the same area learn about the changes in the topology.

In our evaluated scenario, we generated losses of these control messages in order to

investigate the throughput and latency performance of distributed operation during

unreliable conditions. We degraded the control communication channel by dropping

control messages, and we also changed the network topology by breaking links in the

network. We did so in order to flood the LSA by the affected node in the area and

to observe the behavior of the network in terms of network metrics during unreliable

conditions.

When there is a change of topology (e.g., link failure happens), the nodes exchange

the updated LSAs to learn about the topology changes. However, due to the de-

graded control communication channels, some control messages are dropped, which,

in turn, affects the network convergence time. The dropped control messages are

retransmitted again; however, such losses affect the throughput and latency perfor-

mance, as there is some delay in the reestablishment of routes caused by control

packet loss.

Figure 8.9: Aggregated throughput behavior of distributed network operation
during link failures for various times under imperfect channel conditions in a 9-

node grid network.
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Figure 8.10: Average latency behavior of distributed operation during link fail-
ures for various times under imperfect channel conditions in a 9-node grid network.

Figure 8.11: Aggregated throughput behavior of distributed network operation
during link failures for various times under imperfect channel conditions in a 16-

node grid network.
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From Figures 8.1–8.4, it can be observed that, in distributed network operation

(green curve for three flows and purple for five flows in distributed case) and for

low CPLR values (e.g., 5%), the aggregated throughput was higher, and the latency

was lower because of lower control packet loss and also due to the lower retrans-

mission rate of lost control messages. As CPLR increased, there was a degradation

of the aggregated throughput while the latency went upward. With the increase of

CPLR values, the loss of control messages increased, which also increased the rate

of retransmissions. For this reason, and for higher values of CPLR (e.g., 25%), the

aggregated throughput declined while the latency increased.

Figure 8.12: Average latency behavior of distributed operation during link fail-
ures for various times under imperfect channel conditions in a 16-node grid net-

work.

In another experiment, we investigated the performance of distributed operation

during topology changes under unreliable channel conditions. In this way, for a cer-

tain value of CPLR, we changed the network topology several times by varying the

number of broken links. As Figures 8.9–8.12 depict, a high number of link failures

under the high CPLR regime (e.g., 25%) caused a decline in the aggregated through-

put and an increase in the latency. Due to a high-loss of control messages, during

topology changes for several times, the exchange of the updated LSAs between nodes
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suffered from losses, which caused more retransmissions and the consequent delay

of control messages that affected the throughput and latency of the network.

8.4 Performance Comparison: Canonical SDN and

Distributed Networks During Imperfect Chan-

nel Condition

To observe the performance of centralized canonical SDN and distributed opera-

tion under unreliable channel conditions, for both cases we generated losses of the

following messages in a controlled way.

• Centralized case: control messages (i.e., PortStatus, PacketIn, PacketOut, and

FlowMod) exchanged between the forwarding nodes and the SDN controller.

• Distributed case: control messages (i.e., Hello and LSA) exchanged between

nodes that keep track of neighbor availability.

As Figure 8.1–8.4 report, for both network sizes during low CPLR values, cen-

tralized operation performed better (in terms of the throughput and latency) than

distributed operation due to lower retransmissions of control packets due to low loss

of control packets, and the delay of control packets to reach the SDN controller is

lower.

When the CPLR increased above 15%, distributed operation outperformed cen-

tralized operation by maintaining higher throughput and lower latency, as higher

retransmission of control packets was required for centralized operation, and also

delay was incurred by the control packets. Moreover, Figures 8.5–8.8 illustrate that,

for both network sizes and for high CPLR values (e.g., 25%), while the topology

of the network changed very often, centralized operation failed to operate correctly.

On the other hand, distributed operation kept the network operational (see Fig-

ures 8.9–8.12).

For low values of CPLR, the centralized operation performed well, as lower retrans-

missions and small delays were experienced by the control packets to reach the SDN
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controller, and there was a lower convergence time as the network graph was already

known by the SDN controller. However, for high CPLR values, due to the high-loss

of control packets, the exchange of control messages substantially affected (due to

higher retransmissions and consequent delay) the TCP-based control communica-

tion between the SDN controller and forwarding nodes. For this reason, if the CPLR

of the links increased, the performance of the centralized operation substantially de-

graded, as it depends on a centralized SDN controller, which becomes a single point

of failure in high-loss conditions.

On the other hand, in the case of distributed mode, while there is a topological

change in the networks, LSAs are being flooded. During high-loss conditions if a

node fails to receive a copy of the LSA from a neighbor node due to the degraded

channel, it might still receive a copy of that LSA from another neighbor node. In

this way, the distributed link-state routing can converge during topology changes

and shows better performance than the centralized operation under high control

packet loss conditions.

8.5 Hybrid SDN Operation

Sections 8.2 and 8.3 illustrate the performance evaluation of the canonical SDN

and the distributed networks during unreliable conditions. To investigate the per-

formance of the canonical SDN and distributed network operation, the network

performance metrics, i.e., aggregated throughput and average latency, have been

analyzed for different network sizes and several injected flows. From our evaluated

scenarios, by examining the performance of the centralized and distributed modes

during unreliable control communication channel conditions, we characterized the

switching point between centralized and distributed operation in our hybrid control

plane to the CPLR value of 15% and set it as CPLRmax.

From the previous sections 8.2 and 8.3, it can be observed that below the point

CPLRmax, centralized operation performed better, and, above it, distributed op-

eration outperformed the centralized operation (see Figures 8.1–8.4). Section 8.4

describes the reasons behind this. In this section, we quantify the gains that hybrid

SDN operation offers. In this direction, we emulate the same network topologies by
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injecting the same number of flows; however, the difference is that the forwarding

nodes are hybrid nodes, where centralized and distributed operations coexist and

the nodes can take autonomous switching decision between both modes.

Figure 8.13: Aggregated throughput metric of data plane in hybrid SDN for
increasing CPLR in 9-nodes topology.

8.5.1 Centralized to Distributed: Recovery Operation

In our hybrid SDN setup, initially the control communication channels are in reli-

able condition and the network is operated in centralized mode. The module CPLR

detector of the local agent that is integrated into nodes (see Figure 5.2) period-

ically monitors the CPLR of the communication links every 10 s. Then, we start

increasing the CPLR, and when the CPLR of the links increases, the decision module

(running Algorithm 1) of the local agent that is integrated into the each node, dy-

namically takes network operation switching decisions, and the local agent performs

network operation switching from centralized to distributed as described in section

6.3.1. In this case, the conceived algorithm predicts the conditions of the control

communication channels by inspecting trends of impairments and takes network op-

eration switching decisions in-advance before the centralized SDN operation reaches
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the critical conditions. Figures 8.13-8.16 report data plane performance based on

aggregated throughput and average latency in hybrid SDN for different topologies.

Figures 8.13 and 8.15 depict, that with hybrid SDN, by switching network logic

from centralized to distributed, aggregated throughput performance is improved in

high-loss regimes as compared to only centralized canonical SDN (to compare please

see Figure 8.1 and 8.3). For instance, 28% throughput improvement can be achieved

during 20% of CPLR and a higher improvement can be achieved during higher loss

periods. On the other hand, Figures 8.14 and 8.16 illustrate that, in hybrid SDN, the

average latency can be maintained to an acceptable level during high-loss regimes

(e.g., 25% of CPLR), while during the same conditions, the average latency is very

very high in canonical SDN (see Figures 8.2 and 8.4).

Figure 8.14: Average latency metric of data plane in hybrid SDN for increasing
CPLR in 9-nodes topology.

8.5.2 Distributed to Centralized: Reliable Control Plane

Condition

During unreliable control communication channel conditions, by inspecting trends of

the impairments, the decision module of the local agent, which is integrated into each
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node, takes network operation switching decision to distributed. While distributed

mode is present in the node, the CPLR detector of the local agent keeps monitoring

the control communication channel periodically. As soon as the channel condition

became good, which is determined by measuring the CPLR, the decision module

takes the decision to restore the centralized operation in the network and the local

agent again performs network operation switching from distributed to centralized

mode by following the procedure illustrated in section 6.3.2.

Figure 8.15: Aggregated throughput metric of data plane in hybrid SDN for
increasing CPLR in 16-node topology.

8.5.3 Network Mode Switching Back-and-Forth: Central-

ized - Distributed

To illustrate the operation of the control logic switching algorithm, Figure 8.17 de-

picts the data plane performance during the network mode switching (i.e., centralized-

distributed switching back and forth) in our hybrid SDN approach by measuring the

trends of impairments of the control communication channel.
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Figure 8.16: Average latency metric of data plane in hybrid SDN for increasing
CPLR in 16-nodes topology.

Initially, all the nodes in the 16-node grid network are in centralized mode. We begin

increasing impairments to the links and, at around 60 s., a high CPLR is measured,

and the decision module of the local agent takes a decision based on the integrated

algorithm to perform network mode switching and performs switching to the dis-

tributed operation. At around 120 s, the performance of the control communication

channel becomes reliable (i.e., low loss), and, as a consequence, the CPLR become

low, and the local agent restores the centralized operation based on the decision

taken by the decision module. By doing so, the SDN controller gains control of the

network, and the network is managed in a centralized fashion.
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Figure 8.17: Aggregated throughput behavior over time during network opera-
tion switching.

Overall, these evaluations confirm that the conceived node architecture and algo-

rithm are capable of handling multiple impairments (including those of the control

plane) and maintain a stable network operation.
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Conclusions

Given its promise and advantages, SDN is rapidly evolving to adapt to the needs

of future networks, which are increasingly embedding software components. Fur-

thermore, the programmability of SDN avoids vendor lock-in, which enhances the

interoperability between devices from different vendors, which is increasingly impor-

tant in a software-oriented network in which the number of stakeholders is increasing.

Moreover, the centralization feature of the SDN provides more flexibility in network

management, which in turn provides remarkable benefits to manage the increasing

amount of heterogeneous traffic in future networks. However, for the correct op-

eration of SDN, it is still required to investigate several aspects of SDN operation

during unreliable conditions. The separation of the control plane from the data plane

imposes extra fault domains in the SDN paradigm, which brings new challenges in

centralized SDN scenarios.

This research work tackles the research question defined in chapter 4 by addressing

reliability in SDNs. In this direction, a novel approach has been proposed in the

dissertation. This chapter describes the concluding remarks of the research work and

its contribution to the research community. Finally, this chapter provides possible

future research directions on this topic.

100
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9.1 Concluding Remarks

In chapter 4, we addressed a problem statement, which is answered in this disserta-

tion.

1. In chapter 5, we presented a hybrid node architecture that combines both

centralized and distributed operation in the same node. The hybrid node is

able to switch between the mode of operations to ripe the benefits of centralized

and distributed operations.

2. To find out a appropriate trade-off between centralized and distributed oper-

ation, in the chapter 8, a fair comparison between centralized and distributed

operations is presented. The comparison reveals that during the low loss regime

centralized operation shows better performance. On the other hand, during

the high-loss regime, the distributed operation outperforms the centralized op-

eration. The SDN scenario generally assumes to have an ultra-reliable control

communication channel between the SDN controller and the forwarding nodes.

Nevertheless, in wireless multi-hop scenario control packets are carried by the

wireless channel that is vulnerable due to environmental conditions. This re-

search work investigates such scenarios which show that during a high-loss

regime the performance of canonical SDN degrades enormously. This work

also investigates the performance of the distributed operation under degraded

channel scenarios and find that during a high-loss regime distributed operation

maintains the throughput to an acceptable level.

3. To improve reliability of SDN in wireless transport networks, our proposed

scheme autonomously switches mode of operation based on a control logic

switching algorithm integrated into the node. Our proposed hybrid SDN, not

only leverages the advantages of canonical SDN (e.g., simple network man-

agement, managing heterogeneous traffic) but also mitigates the drawbacks of

canonical SDN in terms of reliability. Hybrid SDN indeed keeps the network

operational irrespective of the level of control plane impairments by switching

network control from centralized to distributed. In fact, our hybrid SDN ap-

proach switches network control logic when the CPLR of the control channel

reaches an unacceptable level that limits proper communication between the
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SDN controller and the forwarding nodes. In our hybrid SDN approach, due

to better manageability shows by the centralized SDN, the network opera-

tion is targeted to keep in centralized mode as much as possible if the control

communication channel condition as well as control plane condition allows. If

the distributed operation prevails in a given node due to degraded channel

conditions, by measuring the reliability of the control communication channel

conditions the centralized control is restored in the networks.

4. The proposed hybrid SDN approach maintains the throughput level equiva-

lent to the canonical SDN during low loss conditions. On the other hand,

during high-loss conditions, the throughput level is maintained equivalent to

the distributed operation by switching the control logic to distributed which

significantly improves the throughput level.

9.2 Summary of Contributions

The main contributions of this thesis are listed below:

• One of the main contributions of the research work is the way the control

plane impairments are handled. In this work, we proposed that the data plane

node is responsible to measure the reliability of the control communication

channels. We proposed that the CPLR is the metric that is used by the

nodes to determine the reliability of the control communication channel. As

the responsibility has been given to the data plane node, the failure of the

controller or the control communication channel, or even degraded control

communication, can be detected from the node point of view, which allows

handling all kinds of failures of the control plane that may occur and are

difficult to handle in centralized SDN.

• In chapter 5, the hybrid node is presented, which is the main building block of

our hybrid SDN architecture. The hybrid node concurrently runs the central-

ized and distributed logic. A local agent has been integrated that is composed

of the CPLR detector module, decision module and rules modifier module.

The CPLR detector module periodically inspects the reliability of the control
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communication channel by measuring the CPLR. The decision module adopts

a network logic switching algorithm that determines the presence of the active

logic in a given node. If the decision module takes the decision to switch the

network logic, the rules modifier pushes some predefined rules to the node´s

flow table.

• In chapter 6, a novel algorithm has been proposed that predicts network con-

ditions in advance, based on the analysis of the trends of impairments by

inspecting the slope of CPLR vs. t curve and dynamically switches the oper-

ational mode from centralized to distributed and vice versa depending on the

reliability of the control communication channel.

• We have implemented and experimentally evaluated our proposed solution

in Mininet, which is the most popular emulator for conducting research on

SDN. We have emulated different network topologies that mimic the wireless

transport network that may be required in Small Cells (SCs) deployments

where fiber is not a cost-effective solution. Moreover, we have injected several

flows from the SCs to the macro-cell site (the aggregation point at the transport

level). During our emulation period, we varied CPLR values and generated a

number of impaired links to operate the networks with various complexities.

We have investigated a variety of operational conditions ranging from perfect

to really bad control plane conditions, so that the algorithm could show its

performance under stress and its operational limits could be assessed.

• It has been shown in chapter 8 that during critical conditions (e.g., high CPLR)

canonical SDN operation fails due to lack of controller-device communication.

However, our proposed hybrid SDN solution substantially improves network

performance in terms of aggregated throughput and latency, particularly when

control channel packet loss ratios increase. For instance, 28% throughput im-

provement for 20% control packet losses and even more during higher control

packet losses. Moreover, our proposed solution also brings a significant im-

provement in latency during high-loss condition, which is very high in canonical

SDN. This allows offering a reliable network operation in hard conditions under

which a centralized canonical SDN control would result in a non-operational

network.
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9.3 Future Work

The dissertation not only contributes to the research community to tackle the re-

liability issue of canonical SDN, but it also opens a window for future research

directions:

• In our experiments, we have degraded all the communication channels at a

time and all the nodes in the network perform operational mode switching to

distributed. It could be worth investigating in more detail in the future scenar-

ios in which there may be heterogeneous nodes in the network, trying to reflect

incremental deployments of the technology. In such scenarios, maintaining a

complete coherent network view and the interaction between nodes operated

in centralized mode and nodes operated in distributed mode smoothly may

pose some additional challenges.

• Throughout the work, reliability has been translated into maintaining stable

values of throughput and latency despite impairments. But Available Band-

width (ABW) [50] measurement is one of the significant metrics in SDN to

get information about the current load on the links as well as on the net-

work to be able to apply more advanced traffic engineering. In an SDN sce-

nario, to measure ABW, the controller periodically performs polling from the

forwarding devices using PortStatusReq messages. While delay increases in

communication between the controller and the forwarding devices, the ABW

estimation error also increases, which has an adverse impact on path selec-

tion for some services. This may require further analysis in in-band SDN

deployments in wireless multi-hop scenarios for which communication between

the controller and the forwarding devices may be repeatedly impaired. The

degraded control-communication link may incur delay or even loss of control

packets. Adequately handling such measurements, may improve traffic engi-

neering in such transport networks.

• Artificial Intelligence (AI) and Machine learning (ML) are the key technologies

adopted by future communication networks for automated network manage-

ment. It would be worth investigating under what circumstances and to what

extent AI/ML-based techniques can improve hybrid SDN network operation
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without adding much additional computational complexity to transport nodes

also considering the control communication channel impairments.
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