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Por las giras por Europa, a Alberto, Arturo, Daniel, Eduardo, Néstor, Óscar y Pablo.
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Summary in English

This thesis develops, validates, and explores applications of the Franzese-Stanley (FS)

coarse-grained (CG) model for bulk water, ultimately intended to represent the solvent

in large-scale simulations of biological systems. The model coarse-grains the positions

of the water molecules through a discrete density field, but keeps a detailed account of

the hydrogen bond (HB) contributions to local density heterogeneity. It was initially

proposed for hydrophobically confined water monolayers and is suitable for analytic

calculations and Monte Carlo simulations. The FS monolayer displays dynamic and

thermodynamic anomalies qualitatively consistent with experiments and atomistic cal-

culations. Moreover, its extension to hydration water in protein solutions unveils the

water contribution to protein folding, protein design, and protein aggregation, includ-

ing effects arising from changes in temperature, pressure, salinity, and pH.

Here, we extend to bulk the FS model. Although going from monolayer to bulk

could drastically change the thermodynamic behavior of the model, we show that the

bulk FS reproduces well the experimental data of water. Furthermore, we prove that

the model is suitable for simulations of large biological systems in explicit solvent. On

the one hand, we account for water interactions at the molecular level, at variance

with commonly employed coarse-grained models. On the other hand, we equilibrate

systems at length scales and times so large that it would be unaffordable for current

atomistic simulations.

First, we develop efficient parallel distributed algorithms for Metropolis and Swendsen-

Wang Monte Carlo simulations. We benchmark accessible size systems of 2603 ∼ 107

water molecules using parallel Metropolis and 1283 ∼ 106 with Swendsen-Wang. Sec-

ond, we calibrate the model parameters according to ab initio calculations and exper-

imental results. We find that the model fits the experimental data in a wide range of

temperatures T and pressures P around ambient conditions. Third, we transfer the

model to deep supercooled conditions and compare the model’s predictions to those

obtained from atomistic models. We find that the FS model displays a liquid-liquid

critical point (LLCP) at TC = (186± 2) K and PC = (174± 14) MPa, consistent with

estimates from the most accepted atomistic models.

Finally, we investigate applications of the bulk FS model to hydrate large biological

systems. More specifically, we develop a simulation approach to estimate the contri-

bution of the solvent to the free energy of hydrated systems previously calculated with
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14 Summary in English

implicit solvent models. We consider two cases of application. First, we studied the

unfolding upon increasing hydrodynamic stress of the globular domains A1, A2, and

A3 of the von Willebrand factor (vWf). Here, we identify four characteristic states

of the system and estimate the free energy barriers that separate them as a func-

tion of the shear rate. Second, we consider the SOD1 protein sequestration into FUS

biocondensates and the anti-sequestration action of the BSA crowder, mimicking the

high cytoplasm concentration. BSA are globular proteins, while FUS are intrinsically

disordered proteins. Our results suggest that the decrease of the SOD1 partitioning

coefficient into FUS biocondensates when BSA is present is a consequence of the in-

crease in water’s entropy. In both the vWf and SOD1 examples, we show that the

explicit calculation of water contribution to the free energy is essential to interpret

the phenomena’ physics correctly. Within this approach, we overcome the intrinsic

limitation of implicit solvent models that, by construction, average over the solvent

degrees of freedom.



Resumen en castellano

El agua es de suma importancia para los sistemas biof́ısicos y bioqúımicos debido

a que ejerce un papel determinante en la funcionalidad de protéınas, membranas o

nanopart́ıculas. Por ejemplo, las interacciones agua-protéına modifican el paisaje de

enerǵıa libre en el que interactúan los aminoácidos, afectando al plegamiento y a la

agregación de las protéınas o a los procesos de selección natural de sus secuencias.

Desde las últimas décadas, la investigación por simulación ha contribuido a nues-

tra comprensión acerca de los mecanismos subyacentes al comportamiento de sistemas

biológicos a escalas micro y mesoscópoicas, incluida la influencia del entorno (confi-

namiento, presión, temperatura, salinidad, etc.). En este contexto, la modelización

del agua es esencial: a mayor precisión en la representación de sus propiedades, mayor

fiabilidad de los resultados obtenidos. Desafortunadamente, una mayor precisión suele

conllevar un mayor coste computacional. En las simulaciones que representan el agua

exṕıcitamente, el modelo de agua puede convertirse en el factor limitante de las es-

calas de longitud y tiempo accesibles. El motivo es que por cada unidad biomolecular

(átomo, aminoácido, etc.) se deben incluir cientos o miles de moléculas de agua,

incrementando enormemente el número de interacciones que se deben calcular.

Dado el interés por abordar problemas que requieren mayores escalas de longitud

y tiempo, muchos cient́ıficos han propuesto modelos de grano grueso [coarse-grained

models] que, promediando sobre los grados de libertad menos relevantes para el prob-

lema en cuestión, permiten reducir enormemente el coste de las simulaciones. En 2002,

Franzese y Stanley (FS) propusieron un modelo de grano grueso para monocapas de

agua hidrofóbicamente confinadas (2D). El modelo promedia sobre las posiciones de

las moléculas mientras que mantiene una descripción detallada de la red de puentes

de hidrógeno y cómo su presencia introduce heterogeneidades en la densidad local.

El estudio de la monocapa de agua FS muestra la presencia de anomaĺıas dinámicas

y termodinámicas cualitativamente consistentes con resultados experimentales y los

cálculos de modelos atomı́sticos. En particular, destacamos que el modelo presenta

una transición de fase ĺıquido-ĺıquido entre dos fases ĺıquido-de-alta-densidad y ĺıquido-

de-baja-densidad que termina en un punto cŕıtico. Este resultado contribuye al de-

bate sobre el origen de las anomaĺıas del agua, apoyando la hipótesis del punto cŕıtico

ĺıquido-ĺıquido. Además, la extensión del modelo llevada a cabo por Bianco y Franzese

(BF) para reproducir la hidratación de protéınas ayuda a desvelar las contribuciones
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16 Resumen en castellano

del agua a los procesos de plegamiento, diseño y agregación de protéınas, teniendo en

cuenta además los efectos derivados de cambios de temperatura, presión, salinidad y

pH.

Objetivos de la tesis

A lo largo de la presente tesis, extendemos a 3D el modelo FS, lo validamos de-

mostrando que se ajusta en un amplio rango de presiones y temperaturas a los resulta-

dos experimentales, y lo aplicamos para calcular la contribución del agua a la enerǵıa

libre de sistemas biológicos de gran extensión.

El objetivo principal es demostrar que el modelo en 3D es aplicable a simulaciones

de gran escala, calculando expĺıcitamente las contribuciones del solvente. Para ello,

el modelo debe reproducir las propiedades del agua a condiciones ambiente, y en

otras condiciones relevantes para los procesos biológicos, y debe ser posible, mediante

simulaciones, equilibrar sistemas de tamaño muy grande. La consecución de este

objetivo abriŕıa un nuevo método para llevar a cabo simulaciones de sistemas biológicos

muy grandes, con una descripción sin precedentes de las interacciones agua-residuo, y

de los puentes de hidrógeno en la interfaz.

Por otro lado, la extensión del modelo de 2D a 3D puede afectar drásticamente

al comportamiento del sistema. Por tanto, es pertinente estudiar las propiedades

dinámicas y termodinámicas del modelo en 3D y, a pesar de ser menos relevante para

la cuestión de las simulaciones de sistemas biológicos, si el modelo en 3D muestra o

no el punto cŕıtico ĺıquido-ĺıquido. De ser aśı, el modelo FS quedaŕıa reforzado por su

consistencia con los modelos atomı́sticos más aceptados.

Estructura de la tesis y Resultados

• Caṕıtulo 1: Contextualizamos el problema de la modelización del agua y las

simulaciones de sistemas biológicos y revisamos los resultados obtenidos en in-

vestigaciones de la monocapa FS.

• Caṕıtulo 2: Extendemos el modelo a 3D introduciendo una partición de la red

FS que garantiza que todas las moléculas de agua puedan formar hasta cua-

tro puentes de hidrógeno. Además, desarrollamos algoritmos Monte Carlo par-

alelizados que tienen en cuenta las propiedades espećıficas de la red FS. Las

simulaciones se ejecutan en GPUs y muestrean eficientemente sistemas de agua

de tamaño sin precedentes de hasta 17.576.000 moléculas mediante Metrópolis

y hasta 2.097.152 con Swendsen-Wang. Para los sistemas más grandes las sim-

ulaciones se realizan 140 y 70 veces más rápido respecto a su implementación

secuencial en CPUs, con Metrópolis y Swendsen-Wang respectivamente.
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• Caṕıtulo 3: Calibramos los parámetros del modelo de manera que sus predic-

ciones se ajusten a la densidad experimental y las funciones respuesta del agua,

al menos en condiciones ambiente. Para ello, nos servimos de cálculos ab initio y

resultados experimentales. Ajustando a funciones de rescalado lineales, el mod-

elo reproduce cuantitativamente la ecuación de estado del agua (experimental)

presión ambiente P = 0.1 MPa y temperaturas 270 ≤ T/ K ≤ 330. Aumen-

tando la presión P , el intervalo de T se reduce hasta 290 ≤ T/ K ≤ 310 para

P = 50 MPa. Dicho rango de T y P cubre sobradamente las condiciones de

trabajo de la mayoŕıa de protéınas.

• Caṕıtulo 4: Estudiamos el comportamiento del modelo en la región sobreenfriada.

En particular, mostramos presencia del punto cŕıtico ĺıquido-ĺıquido a PC =

(174 ± 14) MPa y TC = (186 ± 2) K en el ĺımite termodinámico, condiciones

cuantitativamente comparables a las estimaciones de los modelos atomı́sticos

más aceptados. Además, el diagrama de fases en la región cŕıtica es consistente

con la presencia de polimorfismo (ĺıquido) que recuerda al poliamorfismo (hielo

amorfo) observado experimentalmente.

• Caṕıtulo 5: Proponemos un método de simulación que toma trayectorias de

sistemas biológicos previamente calculadas con modelos de modelos de agua

impĺıcita y mapea las configuraciones de protéınas en su representación cor-

respondiente en la red FS. El objetivo es calcular la contribución del agua a

la enerǵıa libre de solvatación de grandes sistemas biológicos. En este caṕıtulo

aplicamos el método al desplegamiento de los dominios globulares A1, A2 y A3

del factor de von Willebrand (vWf), bajo condiciones de estrés hidrodinámico.

Gracias a la inclusión de la componente del agua, identificamos los cuatro esta-

dos caracteŕısticos del sistema y calculamos las barreras de enerǵıa libre que los

separan.

• Caṕıtulo 6: Aplicamos el método de simulación desarrollado en el Caṕıtulo 5

al caso del secuestro de protéınas SOD1 en condensados de FUS y el efecto

antisecuestro producido por el medio de BSA que imita el citoplasma celular.

La comparación entre ambos casos es relevante porque FUS es una protéına

intŕınsecamente desordenada y BSA, globular. Mediante la descripción del sis-

tema incluyendo la contribución del agua, explicamos el efecto de antisecuestro

producido cuando los condensados de FUS están en un medio de BSA por el

aumento de la entroṕıa del agua en la solución de BSA.

Tomados en conjunto, los Caṕıtulos 5 y 6 muestran que es necesario incluir

los grados de libertad del solvente para describir de forma adecuada la f́ısica

del sistema y, en consecuencia, para calcular las barreras de enerǵıa libre que

separan los estados caracteŕısticos de los procesos examinados. Aśı, superamos
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la limitación intŕınseca de los modelos de agua impĺıcita que, por construcción,

promedian sobre los grados de libertad del solvente.

• Caṕıtulo 7 Reunimos los principales resultados y conclusiones generales de la

tesis. Concluimos que la tesis ha demostrado satisfactoriamente que el modelo FS

en 3D, junto con la parametrización propuesta, es capaz de simular grandes sis-

temas de agua con resultados consistentes con los datos experimentales. Además,

hemos aplicado con éxito el modelo a problemas de interés biológico, mostrando

que la inclusión del agua de forma expĺıcita es necesaria para caracterizar ade-

cuadamente dichos sistemas.
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L’aigua és de summa importància per als sistemes biof́ısics i bioqúımics a causa del seu

paper determinant en la funcionalitat de protëınes, membranes o nanopart́ıcules. Per

exemple, les interaccions aigua-protëına modifiquen el paisatge d’energia lliure en el

qual interactuen els aminoàcids, influint sobre el plegament i l’agregació de protëınes

o els processos de selecció natural de les seves seqüències.

Des de les últimes dècades, la recerca per simulació d’aquesta mena de sistemes ha

contribüıt a la nostra comprensió al voltant dels mecanismes subjacents al seu compor-

tament a escales micro i mesoscòpiques, inclosa la influència de l’entorn (confinament,

pressió, temperatura, salinitat, etc.). En aquest context, la modelització de l’aigua

és essencial: a major precisió en la representació de les seves propietats, major fia-

bilitat dels resultats obtinguts. Malauradament, una major precisió sol comportar un

major cost computacional. En les simulacions que representen l’aigua expĺıcitament,

el model d’aigua pot esdevenir el factor limitant de les escales de longitud i temps

accessibles. El motiu és que per cada unitat biomolecular (àtom, aminoàcid, etc.)

s’han d’incloure centenars o milers de molècules d’aigua, incrementant enormement el

nombre d’interaccions que s’han de calcular.

A causa de l’interès de tractar problemes que requereixen majors escales de lon-

gitud i temps, molts cient́ıfics han proposat models de gra gruixut [coarse-grained

models] que, fent una mitjana de sobre els graus de llibertat menys rellevants per

al problema en qüestió, redueixen enormement el cost de les simulacions. En 2002,

Franzese i Stanley (FS) van proposar un model de gra gruixut per a monocapes d’aigua

hidrofòbicament confinades (2D). El model fa una mitjana de sobre les posicions de les

molècules mentre que manté una descripció detallada de la xarxa de ponts d’hidrogen

i com la seva presència introdueix heterogenëıtats a la densitat local. L’estudi de la

monocapa d’aigua FS mostra la presència d’anomalies dinàmiques i termodinàmiques

qualitativament coherents amb resultats experimentals i càlculs atomı́stics. En partic-

ular destaquem que el model presenta una transició de fase ĺıquid-ĺıquid entre dues fases

ĺıquid-d’alta-densitat i ĺıquid-de-baixa-densitat que acaba en un punt cŕıtic. Aquest

resultat contribueix al debat sobre l’origen de les anomalies de l’aigua, donant suport

a la hipòtesi del punt cŕıtic ĺıquid-ĺıquid. A més, l’extensió del model duta a terme per

Bianco i Franzese (BF) per a reproduir la hidratació de protëınes ajuda a revelar les

contribucions de l’aigua als processos de plegament, disseny i agregació de protëınes,
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tenint en compte a més els efectes derivats de canvis de temperatura, pressió, salinitat

i pH.

Objectius de la tesi

Al llarg de la present tesi, ampliem a 3D el model FS, el validem demostrant que

s’ajusta en un ampli rang de pressions i temperatures als resultats experimentals, i

l’apliquem per a calcular la contribució de l’aigua a l’energia lliure de sistemes biològics

de gran grandària.

L’objectiu principal és demostrar que el model en 3D és aplicable a simulacions de

gran escala, calculant expĺıcitament les contribucions del solvent. Per a això, el model

ha de reproduir les propietats de l’aigua a condicions ambient, i en altres condicions

rellevants per als processos biològics, i ha de ser possible, mitjançant simulacions,

equilibrar sistemes de grandària molt gran. La consecució d’aquest objectiu obriria un

nou mètode per a dur a terme simulacions de sistemes biològics molt grans, amb una

descripció sense precedents de les interaccions aigua-residu, i dels ponts d’hidrogen a

la interf́ıcie.

D’altra banda, l’extensió del model de 2D a 3D pot afectar dràsticament el com-

portament del sistema. Per tant, és rellevant estudiar les propietats dinàmiques i

termodinàmiques del model en 3D i, malgrat ser menys rellevant per a la qüestió de

les simulacions de sistemes biològics, si el model en 3D mostra o no el punt cŕıtic

ĺıquid-ĺıquid. En aquest cas, el model FS quedaria reforçat per la seva consistència

amb els models atomı́stics més acceptats.

Estructura de la tesi i Resultats

• Caṕıtol 1: Contextualitzem el problema de la modelització de l’aigua i les simu-

lacions de sistemes biològics i revisem els resultats obtinguts en recerques de la

monocapa FS.

• Caṕıtol 2: Ampliem el model a 3D introduint una partició de la xarxa FS que

garanteix que totes les molècules d’aigua puguin formar fins a quatre ponts

d’hidrogen. A més, desenvolupem algorismes Monte Carlo paral·lelitzats que

tenen en compte les propietats espećıfiques de la xarxa FS. Les simulacions

s’executen en GPUs i mostregen eficientment sistemes d’aigua de grandària sense

precedents de fins a 17.576.000 molècules mitjançant Metròpolis i fins a 2.097.152

amb Swendsen-Wang. Per als sistemes més grans les simulacions es realitzen 140

i 70 vegades més ràpid respecte a la seva implementació seqüencial en CPUs,

amb Metròpolis i Swendsen-Wang respectivament.
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• Caṕıtol 3: Calibrem els paràmetres del model de manera que les seves predic-

cions s’ajustin a la densitat experimental i les funcionis resposta de l’aigua,

almenys en condicions ambient. Per a això, fem servir càlculs ab initio i resul-

tats experimentals. Ajustant a funcions de rescalat lineals, el model reprodueix

quantitativament l’equació d’estat de l’aigua (experimental) a pressió ambient

P = 0.1 MPa i temperatures 270 ≤ T/ K ≤ 330. Augmentant la pressió P ,

l’interval de T es redueix fins a 290 ≤ T/ K ≤ 310 per a P = 50 MPa. Aquest

rang de T i P engloba àmpliament les condicions de treball de la majoria de

protëınes.

• Caṕıtol 4: Estudiem el comportament del model a la regió sobrerefredada. En

particular, vam mostrar presència del punt cŕıtic ĺıquid-ĺıquid a PC = (174 ±
14) MPa y TC = (186 ± 2) K en el ĺımit termodinàmic, condicions quantitati-

vament comparables a les estimacions dels models atomı́stics més acceptats. A

més, el diagrama de fases a la regió cŕıtica és consistent amb la presència de

polimorfisme (ĺıquid) que recorda al poliamorfisme (gel amorf) observat experi-

mentalment.

• Caṕıtol 5: Proposem un mètode de simulació que pren trajectòries de sistemes

biològics prèviament calculades amb models de models d’aigua impĺıcita i amb

el qual obtenim les configuracions de protëınes en la seva representació correspo-

nent en la xarxa FS. L’objectiu és calcular la contribució de l’aigua a l’energia

lliure de solvatació de grans sistemes biològics. En aquest caṕıtol apliquem el

mètode al desplegament dels dominis globulars A1, A2 i A3 del factor de von

Willebrand (vWf), sota condicions d’estrès hidrodinàmic. Gràcies a la inclusió de

la component de l’aigua, identifiquem els quatre estats caracteŕıstics del sistema

i calculem les barreres d’energia lliure que els separen.

• Caṕıtol 6: Apliquem el mètode de simulació desenvolupat en el Caṕıtol 5 al cas

del segrest de protëınes SOD1 en condensats de FUS i l’efecte antisegrest prodüıt

pel medi de BSA que imita el citoplasma cel·lular. La comparació entre tots

dos casos és rellevant perquè FUS és una protëına intŕınsecament desordenada

i BSA, globular. Mitjançant la descripció del sistema incloent-hi la contribució

de l’aigua, expliquem l’efecte d’antisegrest prodüıt quan els condensats de FUS

estan en un medi de BSA per l’augment de l’entropia de l’aigua en la solució de

BSA.

Conjuntament, els Caṕıtols 5 i 6 mostren que és necessari incloure els graus de

llibertat del solvent per a descriure de forma adequada la f́ısica del sistema i, en

conseqüència, per a calcular les barreres d’energia lliure que separen els estats

caracteŕıstics dels processos estudiats. Aix́ı, superem la limitació intŕınseca dels

models d’aigua impĺıcita que, per construcció, fan una mitjana de sobre els graus
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de llibertat del solvent.

• Caṕıtol 7: Reunim els principals resultats i conclusions generals de la tesi. Con-

cloem que la tesi ha demostrat satisfactòriament que el model FS en 3D, jun-

tament amb la parametrització proposada, és capaç de simular grans sistemes

d’aigua amb resultats consistents amb les dades experimentals. A més, hem apli-

cat amb èxit el model a problemes d’interès biològic, mostrant que la inclusió de

l’aigua de manera expĺıcita és necessària per a caracteritzar adequadament els

sistemes.
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Chapter 1

Introduction

Chapter adapted from Ref. [1].

Water plays a fundamental role in the behavior of biomolecular systems, since its

unique structural and dynamical properties strongly affect their macromolecular con-

formations and functioning [2,3]. For example, water hydrating proteins play a key role

in denaturation [4–7] or in the regulation of protein aggregation [8, 9]. On the other

hand, water between cell membranes is responsible for self-assembly of phospholipids

into bilayers [10, 11] and stabilizes the membrane structure [12–14]. To rationalize

the effects of water on such systems, we must pay attention to the so-called biolog-

ical or hydration layer, a thin shell of two to three layers of water molecules that

envelopes biological systems [15]. It is commonly understood that the hydration layer

is constitutive of the behavior of such systems, since water-amino acid interactions

and water-water hydrogen bonds (HBs) modulate the free energy landscape [2]. From

the thermodynamic point of view, the total free energy that governs the system re-

sults from the balance between enthalpic solute-solute and solute-solvent interactions

(van der Waals, electrostatic, HB) and the entropic cost of breaking and forming the

(distorted) HB network at the hydration shell [16]. Therefore, it is clear that a more in-

depth understanding of water properties is essential in biomolecular modeling [17,18].

Despite the extensive research effort, many features of the behavior of water are

still poorly understood [19]. Water has more than 60 thermodynamic, dynamic, and

structural anomalies [2] whose origin is largely debated [20–24]. For example, in con-

trast with normal fluids, water has the property of polyamorphism, that is, it has

at least three amorphous solids [20, 25–27], whose formation depends on the prepa-

ration route [23], and numerous (crystal) ice polymorphs: 17 have been confirmed

experimentally and others are predicted computationally [28]. Water can be super-

cooled in its liquid state almost 50 degrees below its melting temperature [29]. Ice

27
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has a lower density than liquid water at ambient pressure, and its density decreases

below 4◦C. Experiments [30–32] have shown that water’s isobaric specific heat CP

and isothermal compressibility KT have a non-monotonic behavior with minima at

approximately 35◦C and 46◦C, respectively, at ambient pressure, while isobaric ther-

mal expansivity αP turns negative at approximately 4◦C. All the anomalies of water

become more relevant in the supercooled region, where the fluctuations increase upon

cooling [22,24,31,33], instead of decreasing as in normal liquids.

Several thermodynamic scenarios have been proposed to explain the origin of the

anomalies and polyamorphism. The singularity free (SF) scenario hypothesizes that

the uncommon volume-entropy and volume-energy anticorrelations of water, due to the

water hydrogen bonds (HBs) properties, are responsible for the increase of fluctuations

in the supercooled region with no singular behavior [34,35]. Three other scenarios, the

stability limit (SL) conjecture [36], the liquid-liquid critical point (LLCP) scenario [37],

and the critical point free (CPF) hypothesis [38, 39], instead postulate a singular be-

havior that enhances the fluctuations at low temperature: a reentrant spinodal for the

first, a critical point for the second, and a first-order phase transition for the third sce-

nario. Stokely et al. demonstrated that all the scenarios belong to the same theoretical

framework and that it is possible to go from one to another by tuning a single param-

eter related to the water’s cooperativity [40]. Nevertheless, which of these scenario

holds for water is still a matter of debate, because so far no definitive experimental

evidence has been found, although many recent experiments are contributing to enrich

our insight [29, 41–44]. One of the issues is that water freezes before experimental

measurements are made in the region, conventionally called ‘no-man’s land’ [23,45,46],

where the different scenarios predict different behaviors.

Several strategies have been explored to overcome the inevitable crystallization of

supercooled water, including strong confinement [47–49] and anti-freezing solutions

[43, 50, 51] with results possibly related to the bulk case [52–55]. Experiments [56, 57]

and simulations on confined water [58–60] show controversial phenomena, as water

under confinement can have properties significantly different from those found in bulk

water. For instance, experiments on water confined between flat crystals of graphite

and hexagonal boron nitride find a decay of two orders of magnitude in the dielec-

tric constant of water as a function of the sample thickness (down to 1 nanometer)

compared to the bulk case [61]. The mobility of water is also strongly affected by

confinement, as different regimes can be observed depending on the structure, compo-

sition and geometry of the confining surfaces, going from subdiffusive to superdiffu-

sive [62–64]. Moreover, confinement also modifies the phase diagram, as crystallization

can be avoided, at least partially, at temperatures down to 160 K for water confined

in silica MCM-41 nanopores [55, 65,66].

The peculiar properties of confined water are also relevant for the behavior of

biological systems, e.g. in biomolecular crowded environments or in membrane chan-
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nels [67, 68]. A noteworthy example is that of water in the cellular cytoplasm envi-

ronment, although its study is challenging due to the large complexity of such system.

NMR experiments in living Escherichia coli and Haloarcula marismortui (Hmm) show

that 85% of the water molecules have bulk-like dynamics while the remaining 15%, in

contact with biomolecules, are retarded by a factor 15 [69]. However, the results for

Hmm are in apparent conflict with neutron scattering experiments showing a transla-

tional diffusion 250 times slower compared to the bulk-case, whereas they are consistent

for E. coli [70]. A possible rationale of this difference is that NMR and neutron scat-

tering resolve different motions, rotational and translational respectively, that could

decouple upon such environmental conditions [70].

In this chapter, we describe in detail the state-of-the-art of the Franzese-Stanley

(FS) coarse-grained (CG) model for water [71, 72] and its contributions to the ongo-

ing debate on the origin of water anomalies and the role of water in the behavior of

biological systems. In Sec. 1.1, we motivate the introduction of the FS model in the

context of other atomistic and CG water models. Next, we describe the FS model for

water monolayers (2D) in Sec. 1.2. The Secs. 1.3 and 1.4 review how the FS monolayer

accounts for the dynamic and thermodynamic anomalies of water, relating the cooper-

ativity of the HB network to the occurrence of a possible liquid-liquid phase transition

(LLPT) in the supercooled water region. In Sec. 1.5, we describe the Bianco-Franzese

(BF) extension of the FS monolayer to represent water at biological interfaces [5, 6].

The BF model rationalizes how the HBs at the hydration shell contribute to protein

folding [5, 7], design [6] and aggregation [8, 9, 73].

The goal of this Thesis is to extend the FS (BF) model from monolayers (Secs. 1.2-

1.5) to bulk, i.e. from 2D to 3D systems. In Sec. 1.6, we motivate the interest of this

project, describe our objectives, and relate the chapters structure of the Thesis.

1.1 Atomistic and coarse-grained water models

Modeling water is a notorious difficult problem [74, 75], in particular because it is

not settled how to include the quantum many-body, or cooperative, effects in water

interactions. In the literature there are more than a hundred water models [76], from

those parametrized based on experimental data to those fitting ab-initio calculations,

and each model is coarse-grained at a different level, from atomistic non-polarizable

and rigid, to polarizable and/or flexible, from spatially resolved to spatially coarse-

grained. For a number of these models, it is possible to explore the no-man’s land,

although it could require considerably large computational times [77] and elaborated

analysis [78–82].

Specifically, for those models belonging to the family of ST2, TIP4P and TIP5P

potentials [22], the LLCP hypothesis is, among the different scenarios, the one that

better adjusts to the low-temperature phase diagram. In particular, if the correct order



30 Chapter 1. Introduction

parameter, defined as a combination of energy and density [83], is considered, it has

been shown by all-atoms simulations that the ST2 [77,84], TIP4P/2005, TIP4P/Ice [85]

and WAIL [86] models have a LLCP between two metastable liquid phases, low-density

liquid (LDL) and high-density liquid (HDL), that belongs to the 3D Ising universality

class. Furthermore, ST2 water show different local structures of LDL and HDL that

are better discriminated by structural parameters quantifying the amount of diamond

structure in the first shell and the amount of hcp structure in the second shell [87].

Similar conclusions have been reached for different models, for example recently in

Refs. [88–90], with results that are in principle model-dependent. Therefore, under-

standing which feature of these models regulates the occurrence of the anomalies of

water and its peculiar properties is a task that requires a detailed analysis for each of

them [88].

Regarding simulations of biological systems, the inclusion of water contributions is

essential to adequately describe the behavior of the system and functioning, including

macromolecular conformations, protein dynamics, or unfolding and aggregation paths.

Atomistic simulations of hydrated systems extend over time scales going from 10 fs to

1 µs and length scales from 1 Å to 100 nm, adopting water models such as SCP/E,

ST2, TIP3P, TIP4P/2005 and TIP5P [12–14, 77, 87, 91–93]. Recently, Zheng et al.

probed µs-long atomistic simulations of 98912 TIP4P/2005 water molecules and 40

chains of 163-residue Fused in Sarcoma (FUS) proteins, previously equilibrated with

a CG model [94]. Nevertheless, these models have extremely large equilibration times

at very low temperature or at extreme pressure [95–97] and have free-energy minima

that differs from those of more realistic polarizable models [98,99].

Alternatively, CG models represent the system in a simplified manner, keeping the

degrees of freedom that are essential for its behavior. Typically, they represent multiple

atoms or molecules into single beads that interact through effective potentials. The

most straightforward strategy consists in mapping one molecule into one interacting

bead. For example, core-softened potentials [100–102] exhibit water-like structural and

thermodynamic anomalies, mW employs a Stillinger-Weber potential with explicit

three-body contributions [103], and BUMPER maps three-body interactions into a

pure basis set of two-body terms [104, 105]. Other models consider interacting beads

representing more than one water molecule. For instance, the MARTINI model maps

four molecules into a single bead [106] and SIRAH [107, 108], eleven molecules into

four beads [109]. Their reduced computational cost has prompted its use in biological

simulations [110]. However, they neglect polarization and cooperative contributions to

the HBs, which makes them unsuitable to accurately describe the role of the solvent in

the behavior of biological systems [111]. Recently, machine learning techniques have

been employed to develop CG water models [89, 112]. The major advantage is that

neural networks can be trained to optimize the representation of large sets of reference

data, in a clear departure from traditional model fitting [113].
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In the following we will describe our approach to define a model of water that

• is suitable for large-scale, long-time simulations as needed in biologically relevant

problems;

• is suitable for theoretical calculations, important to understand general proper-

ties;

• includes many-body interactions as required for a proper water model;

• can be equilibrated at extreme conditions.

1.2 The Franzese-Stanley coarse grained water

model

In 1979, in a seminal paper that was marking the conclusions of a CECAM workshop

about computer simulations of liquid water, Barnes, Finney Nicholas and Quinn stated

that the use of pair-additive interactions for water is a “serious oversimplification” that

“is necessary to abandon” because it does not account for many-body forces, to which

“solution and interfacial properties of aqueous systems are particularly sensitive” [74].

For example, they reviewed quantum calculations for small water clusters, showing

that HB energy in trimers and tetramers is 20-30% stronger than in dimers. More

recently, James et al. [98] and Hernández-Rojas et al. [99] have studied the configura-

tions that minimize the energy of water clusters made of up to 21 molecules adopting

non-polarizable and polarizable models. The comparison shows structural differences

for clusters with more than 5 molecules, in particular with 6 or more than 10. This

observation emphasizes that many-body effects in water are especially important when

there are at least 5 molecules.

To account for these many-body effects, in 2002 Franzese and Stanley (FS), pro-

posed a Hamiltonian model1 that is analytically tractable [71,72,115] and is suitable

for MC calculations at constant pressure P and temperature T [116–122]. Thanks to

a percolation mapping [123], the model can be equilibrated with efficient MC methods

(cluster MC) [40, 124, 125], at extreme T < 125 K and P > 10 GPa or negative

pressures [126–133], for very large systems with more than 160.000 molecules [134].

On the other hand, by adopting local MC dynamics [117] and a rescaling of time units

based on experimental data, it is possible to simulate the model for times up to 100

s [135]. Furthermore, using diffusive MC dynamics, transport properties can be eval-

uated [121,122] offering new interpretations for the related anomalies [125,126,132].

1A preliminary version of the model and its mean field solution at zeroth order was proposed in

2000 [114].
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The FS model is defined as follows. For N water molecules distributed in a volume

V , we partition V into N equal cells, each with an average volume v ≡ V/N ≥ v0,

where v0 is the van der Waals volume of a water molecule and v0/v is the cell density

in van der Waals units. Each molecule i ∈ [i, . . . , N ] has an index ni = 0 if v0/v ≤ 0.5,

and ni = 1 otherwise. If, for sake of simplicity, we consider the case of a water

monolayer with height h = 0.5 nm, then v ≡ hr2 with r(v0) ≡ r0 ≃ 2.9 Å being

the van der Waals diameter, and ni = 0 when r ≥ 3.7 Å≡ rmax. Because rmax is

the maximum O–O elongation of a straight HB, as calculated by ab initio molecular

dynamics simulations from the proton-transfer coordinate [136] assuming a covalent

distance O–H ≃ 1 Å, when ni = 0 the molecule i cannot form HBs because its neighbor

molecules are too far. Hence, the first condition to form HBs for molecule i is that

ni = 1.

It is worth noticing at this point that the discretized density field ni reminds the

two-states variable of a lattice-gas model for the liquid-gas phase transition, where

⟨ni⟩ is the order parameter. However, here by definition it is ni = nj, ∀i ̸= j, hence

⟨ni⟩ = ni in any configuration and the order parameter, as we will discuss, is a more

complex function of the molecular configuration. The index ni is introduced in this

model to check the first condition for the HB formation in a simple way. As we will

discuss, there is also a second condition.

FS, following previous works [34], make the reasonable assumption that the forma-

tion of HBs is the primary source of local density fluctuations. A water molecule fully

bonded to its hydration shell, formed by other four water molecules in a tetrahedral

configuration, occupies approximately the same volume as a hydrated water molecule

with no HBs and larger coordination number [137]. Therefore, to each HB we can

associate a proper volume vHB given by 1/4 of the proper volume fluctuation in the

hydration shell. A reasonable choice for this parameter is vHB/v0 = 0.5, equal to the

average volume increase between (high density) ices VI and VIII and (tetrahedral, low

density) ice Ih. Hence, the total volume Vtot occupied by the system increases linearly

with the number of HBs, NHB, i.e.,

Vtot ≡ V +NHBvHB. (1.1)

While V is the volume without HBs, used for partitioning the system, and is homo-

geneously distributed among the N water molecules, Vtot includes the local hetero-

geneities in the density field due to the HBs.

The FS Hamiltonian is by definition

H ≡ HvdW +HHB +HCoop (1.2)

where the first term accounts for the van der Walls (dispersive) attraction and hard

core (electron) repulsion between water molecules and is

HvdW =
∑
i,j

U(rij), (1.3)
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summed over all the water molecules i and j at O–O distance rij, with

U(r) ≡


∞ if r ≤ r0

4ϵ
[(

r0
r

)12 − ( r0
r

)6]
if r0 ≤ r ≤ 25r0

0 if r > 25r0,

(1.4)

a truncated Lennard-Jones (LJ) interaction with ϵ ≡ 5.8 kJ/mol, close to the estimate

based on isoelectronic molecules at optimal separation ≃ 5.5 kJ/mol [138].

The LJ potential is a function of the continuous variable r and it is truncated at

large distance and at short distance for numerical efficiency. Our previous analysis [126]

shows that both truncations do not affect the results. This interaction is necessary to

reproduce the liquid-gas phase transition, and dominates above the liquid-gas spinodal

temperature.

Because the formation of HBs, does not affect the distance r between a molecule

and those in its hydration shell [137], the van der Waals interaction is not affected by

the HBs. This observation is crucial to state that the FS model is not mean-field 2.

The second term accounts for the directional, covalent [139], short-range two-bodies

component of the HB, with J = 0.5× 4ϵ ≃ 11 kJ/mol, close to the estimate from the

optimal HB energy and a HB cluster analysis [40]

HHB = −J
∑

<i,j>n.n.

ninjδσij ,σji
= −JNHB, (1.5)

where NHB is the number of HBs, with the sum performed over nearest neighbors

(n.n.) pairs of water molecules i and j at a distance r ≤ rmax [140, 141] (i.e., with

ninj = 1) and in the same bonding state (δσij ,σji
= 1), where σij = 1, . . . , q is the

bonding variable of molecule i facing the n.n. molecule j, with δab = 1 if a = b, 0

otherwise. While the factor ninj = 1 enforces the first condition for the HB formation

that we already discussed, the factor δσij ,σji
= 1 represents the second condition once

we set q = 6. Indeed, consistent with Debye-Waller factors estimates [141, 142], a HB

is broken if the angle between two oxygen atoms and the intermediate hydrogen atom

is ÔOH > 30◦, or ÔOH < −30◦. Hence, only 1/6 of the entire range of possible values

[0, 360◦] of the ÔOH is associated to a bonded state, as required by δσij ,σji
= 1 with

q = 6. Furthermore, each HB formation leads to an entropy decrease equal to −kB ln 6

(kB is the Boltzmann constant) that is consistent with the entropy loss due to the

formation of a HB. In its tetrahedral configuration, a water molecule has 4 n.n. in its

hydration shell. Therefore, in the FS model each molecule has 4 bonding variables,

both in 2D and 3D, regardless of the number of n.n.

The third term of the Hamiltonian accounts for the HB cooperativity due to many-

body correlations [74] that lead to the local order in the hydration shell [137] and are

a consequence of the quantum nature of the HB [74, 143, 144]. This term is modeled

2We acknowledge the late Professor David Chandler for noticing this.
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in classical atomistic potentials with a long range dipolar interaction, for example in

Ref. [145]. In the FS Hamiltonian, it is modeled as a five-bodies term in which each

molecule i is interacting with all its hydration shell

HCoop = −Jσ
∑
i

ni

∑
(k,l)i

δσik,σil
(1.6)

where (l, k)i indicates each of the six different pairs of the four indexes σij of the

molecule i and Jσ is the extra energy-gain provided by each HB when it is locally

ordered with the other HBs in the hydration shell. A direct experimental evaluation

of such a term is not available, however it can be estimated by attributing to it [146]

the 3 kJ/mol increase in strength of the HBs in ice Ih with respect to liquid water [147].

Considering that each HB participates to three terms in Eq.(1.6), we can estimate the

value of Jσ to be ≃ 1.0 kJ/mol. Because Jσ ≪ J , this term is relevant only when

NHB ≫ 1. This asymmetry between the two components of the HB interaction is

necessary for the model to represent water.

In the NPT ensemble, the partition function of the system is

Z(T, P ) ≡
∑

{σ}{v}

e−H/kBT , (1.7)

where the sum is over all the possible configurations of bonding variables {σ} and cell

volumes {v}, and

H ≡ H + PVtot ≡ HvdW − Jeff
∑
⟨i,j⟩

ninjδσij ,σji
HCoop + Pv (1.8)

is the enthalpy and where Jeff ≡ J − PvHB is the effective interaction between σ-

variables of n.n. molecules that depends on P .

Eq. (1.7) can be rewritten as

Z(T, P ) =
∑
{v}

e−[U(v)+Pv]/kBT × Z{σ}, (1.9)

where

Z{σ} ≡
∑

{σ} e(Jeff/kBT )
∑

⟨i,j⟩ ninjδσij ,σji × e(Jσ/kBT )
∑

i ni
∑

(k,l)i
δσik,σil

=
∑

{σ}
∏

⟨i,j⟩

[
1 +

(
e(Jeff/kBT ) − 1

)
ninjδσij ,σji

]

×
∏N

i=1

∏
(k,l)i

[
1 +

(
e(Jσ/kBT ) − 1

)
niδσik,σil

]
.

(1.10)

Here
∏

⟨i,j⟩ runs over all the n.n. molecules j of the molecule i,
∏N

i=1 runs over all

molecules and
∏

(k,l)i
extends over all the six pairs of bonding variables of a specific

molecule i.
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Due to its simplicity, it is possible to perform a thorough analysis of how the

macroscopic properties of the model depend on its limited number of parameters, each

describing a molecular mechanism, both with theoretical calculations under mean field

assumptions and with MC simulations [40, 71, 72, 115, 117, 120, 124, 125, 131, 133, 135,

148–151].

1.3 Dynamic behavior of the FS water monolayer

1.3.1 Two dynamic crossovers in FS water

Data on protein hydration water and confined water show the presence of a dynamical

crossover from a non-Arrhenius to an Arrhenius regime [120] at ∼ 220 K. For example,

this crossover is found in the translational correlation time of water molecules hydrating

lysozyme proteins [152] or in the structural relaxation time of water confined in silica

pores [65,153]. Also, simulations of the TIP5P water model show a dynamic crossover

from a non-Arrhenius to an Arrhenius regime in the diffusivity of water hydrating

lysozyme and DNA [91]. As this crossover takes place at much higher temperatures

than TG, the so-called glass transition temperature, Kumar et al. discard any relation

with the glass state. According to these numerical and experimental evidences, a

possible hypothesis, among others [154, 155], for the origin of this crossover is the

local rearrangement of the HB network at low temperatures [117,156].

In particular, MC simulations of the FS model display a dynamic crossover from

a non-Arrhenius to an Arrhenius regime that is a consequence of the local rearrange-

ment of the water HBs [117, 119]. Kumar et al., by mean field calculations and MC

simulations of the FS water monolayer, estimate the orientational correlation time,

i.e. the relaxation time τ of the autocorrelation function CS(t) ≡
〈
Si(t)Si(0)

〉
/
〈
S2
i

〉
where Si ≡

∑
j σij/4, for an FS monolayer. The physical meaning of Si is the total

bond ordering of the i-th water molecule, and τ is defined as the time at which CS(t)

decays by a factor 1/e. Kumar et al. find a non-Arrhenius regime at high-T upon

cooling at constant pressure, where τ can be fitted with the Vogel-Fulcher-Tamman

(VTF) function

τVTF ≡ τVTF
0 exp

[
T1

T − T0

]
, (1.11)

with τVTF
0 , T0 and T1 fitting parameters. At low-T , τ displays Arrhenius behav-

ior, τ = τ0 exp[EA/kBT ], where τ0 is the limiting time at high-T and EA is the T -

independent activation energy. The crossover occurs at the same temperature where

the specific heat displays a maximum. The authors discuss that they interpret this

dynamic crossover as an effect of the breaking and reorientation of HBs, leading to a

more tetrahedral structure for the HB network at low-T . In Ref. [117], Kumar et al.

also investigate how the cooperative term affects the dynamics. At constant J = 0.5,
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they compare the results for Jσ = 0.05 and Jσ = 0, corresponding to the LLCP sce-

nario and the SF scenario, respectively, as we will discuss in the following. In both

scenarios, they find that (i) the crossover time τC is approximately P -independent,

(ii) the Arrhenius activation energy EA(P ) decreases upon increasing P and (iii) the

temperature TA(P ), at which τ reaches a fixed macroscopic time τA ≥ τC , decreases

upon increasing P . Furthermore, they show that (iv) while EA/(kBTA) increases upon

pressurization in the LLCP scenario, it remains constant in the SF scenario.

These new predictions have been tested in experiments in a protein hydration

layer [120,157]. In particular, quasi-elastic neutron scattering (QENS) [120,157] veri-

fies that the predictions (i)-(iii) are correct for a water monolayer hydrating lysozyme.

Nevertheless, these experiments cannot settle which among the LLCP and SF sce-

nario is satisfied by proteins’ hydration water based on prediction (iv) because the

difference between the two forecasted behaviors lies within the error bars of the mea-

surements [120].

Further research on water monolayers at lower T , surprisingly, has shown the pres-

ence of not one, but two dynamic crossovers [135]. Mazza et al. measure the dielectric

relaxation time of water protons τWP, as it is sensitive to breaking and formation of

HBs [158], in a water monolayer hydrating lysozyme proteins, and compare it with MC

simulation of an FS water monolayer. In both cases, the authors find two crossovers

at ambient pressure. The first is at T ∼ 252 K, as previously reported by Kumar and

coworkers. The second is at T ∼ 181 K.

They find that the high-T crossover is from VTF behavior to another VTF behav-

ior. This can be interpreted as a change in the diffusion of water protons, between a

high-T diffusive regime to a low-T subdiffusive regime.

At the second dynamic crossover, τWP changes from a VTF regime to an Arrhenius

regime, corresponding to the rearrangement of the HB network structure.

The experimental measurements of τWP compare well with FS water calculations

of the Si relaxation time from MC simulations τMC. Mazza and coworkers consider

the autocorrelation function

CM(t) ≡ 1

N

∑
i

〈
Si(t0 + t)Si(t0)

〉
− ⟨Si⟩2〈

S2
i

〉
− ⟨Si⟩2

, (1.12)

which decays to 0 as t→∞ and, by definition, CM(0) = 1. Following Ref. [117], τMC

is defined as CM(τMC) = 1/e. They find two dynamic crossovers and relate them to

the presence of two specific heat maxima: the high-T weak maximum and the low-T

strong maximum. At high-T , the CP weak maximum occurs when the fluctuations

of NHB are maximum. At low-T , the CP strong maximum is due to the maximum

in the fluctuations of the cooperative term (Eq. 1.6) of the Hamiltonian. Then, the

high-T crossover is associated with the formation of the HB network and the low-T

crossover is due to the local rearrangement of the HBs in an ordered structure, as close

as possible to tetrahedral in 3D.
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1.3.2 Effect of pressure and temperature on the dynamics

Protein hydration water undergoes a liquid-glass transition (LGT) with the glass state

characterized by a huge increment of viscosity and the freezing of long-range transla-

tional diffusion [159]. The macroscopic structural arrest of the glass state emerges from

the slowing down of nearest neighbors HBs dynamics. Doster and coworkers performed

neutron scattering experiments on myoglobin at hydration level h = 0.35 gH2O/g, as

this technique allows for monitoring displacements at the micorscopic scale. They mea-

sure the incoherent intermediate scattering functions I(q, t) at T = 320 K (above the

LGT but relevant for translational diffusion) and for scattering vector 0.4 ≤ q/Å−1 ≤ 2

[160]. They find a two-step time-decay in I(q, t) that, at high-q and long times t, can

be fitted to a stretched exponential

C(t) = C0 exp[−(t/τ0)β], (1.13)

where τ0 is the correlation time, 0 < β ≤ 1 is the stretched exponent and C0 is a

normalization factor. For large q their results show that 0.3 ≤ β ≤ 0.4.

When they measure I(q, t) at constant q = 1.8Å−1 and 180 ≤ T/K≤ 320, as

the temperature decreases, the two-step decay turns into a plateau, which leads to a

relaxation time that exceeds the observation time [159].

Calculations from MC calculations of the FS model are consistent with these two

experimental results. In particular, to study the microscopic origins of the complex

dynamics of water on low-hydrated proteins, de los Santos and Franzese consider

a monolayer of FS water adsorbed on a generic inert substrate at 75% hydration

[121, 126, 132]. At such hydration level, adsorbed water molecules are restricted to

diffuse on a surface geometry with an up to four coordination number. They calculate

CM(t) at different T and P [121] finding that at high pressure P ≥ 1ϵ/v0 the correlation

function decays exponentially for any T , allowing the system to equilibrate easily. At

these pressures, the HB network is inhibited inducing rapid dewetting and large dry

cavities with decreasing temperature.

At lower pressure P = 0.7ϵ/v0 and low-T the behavior of CM(t) can be fitted with

a stretched exponential function, with no strong increase in the correlation time as T

decreases (Figure 1.1). The authors associate this behavior with (i) the rapid ordering

of the HBs that generates heterogeneities and (ii) with the lack of a single timescale

due to the vicinity of the liquid-liquid critical point, as we will discuss in the next

section.

At even lower pressures, the gradual formation of the HB network, starting at

higher T , is responsible for the dynamic slowing down as T decreases and for the

dynamical arrest at (P, T ) = (0.1ϵ/v0, 0.05ϵ/kB), with an increase in τ0 of more than

four orders of magnitude, as in a glass. Under these conditions, the dewetting process

is strikingly different, with the formation of many small cavities.
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Figure 1.1: The correlation function CM (t) for pressures P ≤ 1.0ϵ/v0 and temperatures

T ≤ 0.4ϵ/kB. CM (t) decays exponentially (dotted lines) at P = 1.0ϵ/v0 for all T (triangles)

and at P < 1.0ϵ/v0 for any T ≥ 0.4ϵ/kB (not shown). For T ≤ 0.1ϵ/kB and P = 0.7ϵ/v0

(diamonds, continuous line) or P = 0.4ϵ/v0 (squares, dashed line), CM (t) can be described

by a stretched exponential, with a exponent β that decreases as T is lowered. At low

pressure P = 0.1ϵ/v0 (circles), CM (T ) is exponential for T ≥ 0.1ϵ/kB and non-exponential at

T = 0.05ϵ/kB (solid circle). Figure reprinted from Ref. [121] “Dynamically slow processes in

supercooled water confined between hydrophobic plates”. Copyright (2009) IOP Publishing.

Reproduced with permission. All rights reserved.

Comparison between FS results and experiments [159,160] show that the complex

dynamic behavior of protein hydration water at low h can be well reproduced by

solely taking into account the dynamics of the HB network. The LGT emerges as a

consequence of the slowing of the HBs by decreasing T , that at extreme low-T results

in a dynamic arrest of the system.

1.3.3 The diffusion anomaly

Experiments and simulations of the diffusion of confined water show controversial re-

sults. For water confined in NaX and NaA zeolites and for T between 310 K and 260

K, experiments observe a reduction of two orders of magnitude of the translational

diffusion coefficient D in respect to the bulk case [161]. Other researchers show that D

decreases upon increasing the confinement in either hydrophilic [162] or hydrophobic

conditions [162,163]. However, for confined water in carbon nanotubes with diameter

smaller than 2 nm, experiments find an extremely fast mass transport [164]. Fur-

thermore, water confined in smooth graphene capillaries shows a fast flow (of ∼ 1

m/s) that is enhanced if the height of the channel can accommodate only a few water

layers [165]. The authors relate the fast flow to the great capillary pressure, and the

enhancement to the increased structural order of nanoconfined water.
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Several models, e.g. [166, 167], can reproduce numerically the diffusion anomaly,

but they display a variety of different results still controversial. Classical molecular

dynamics simulations of SPC/E water in hydrophilic MCM-41 or Vycor show that the

mobility of water molecules decreases as the hydration level is lowered [63]. This can

be interpreted as a consequence of the greater proportion of molecules bonded to the

surface at low hydration level. A decrease of diffusion by two orders of magnitude with

respect to the bulk is found also in simulations of TIP5P water between hydrophobic,

smooth, planar plates, for which diffusion is normal in the direction orthogonal to

the walls, while it is anomalous for the parallel direction [168, 169]. However, first

principle molecular dynamics simulations of SPC/E water confined in graphene sheets

and carbon nanotubes show a faster diffusion with respect to the bulk case [170],

possibly due to weaker hydrogen bonding at the interface.

In order to shed light into this controversy, de los Santos and Franzese perform MC

simulations of a water monolayer confined in a smooth slit pore at partial hydration.

Their results provide a description of the origins of the diffusion anomaly [126, 132]

in terms of Cooperative Rearranging Regions (CRR) of water. They calculate the

diffusion coefficient D|| parallel to the walls by means of Einstein’s formula

D|| = lim
t→∞

〈
|r⃗i(t+ t0)− r⃗i(t)|2

〉
4t

(1.14)

where r⃗i is the projection of the position of molecule i onto the plates. The average

⟨·⟩ is over all molecules and different times t0. The analysis of D|| shows the presence

of maxima and minima along isotherms at high temperature (Figure 1.2).
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Figure 1.2: Diffusion coefficient D|| from MC simulations (symbols) as a function of pressure

along isotherms. For T < 972 K, D|| has maxima (dotted-dashed line) and minima (dashed

line). Solid lines are from Wν,µ calculations (defined in the text). Reprinted figure with

permission from Ref. [132]. Copyright (2012) by the American Physical Society.
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The authors describe the anomaly in terms of the joint probability

Wν,µ(P, T ) ≡ Pν
F µPb

1

Z
exp[−H(T, P )/(kBT )] (1.15)

of finding ν molecules with a free cell available for diffusion within a region with a

number µPb of HBs, where Z is the partition function, PF and Pb are the probability for

each cell to have a free n.n. and the probability for each HB to be formed, respectively,

with PF ≡ ⟨nF⟩ /4, Pb ≡ ⟨nHB⟩ /4, ⟨nF⟩ the average number of free n.n. cells per

molecule and ⟨nHB⟩ the average number of HBs per molecule.

The authors find that D|| is proportional to Wν,µ, implying that the diffusion is

dominated by the cooperativity of water (Figure 1.3 main panel). The resulting value

for ν = 12.5± 0.5 suggests that diffusion requires a CRR that reaches ∼ 3.5 molecules

(Figure 1.3 lower inset). Thus, the FS model clarifies that the diffusion anomaly, at

constant T by increasing P , originates from the competition between, on the one hand,

the increase of free volume ⟨nF⟩ and the decrease of the energy cost for a molecule to

move due to the reduction of ⟨nHB⟩ (Figure 1.3 upper inset), and, on the other hand,

the decrease of free volume due to the increase of density. The diffusion is favored by

pressurizing at constant T until the HB formation is unfavorable for enthalpic reasons,

giving origin to the D|| maxima.

The diffusion coefficient D|| correlates to the phase diagram of FS water (Figure

1.4). The loci of Dmax
|| and Dmin

|| along isotherms lie between the temperature of

maximum density (TMD) line and the liquid-gas spinodal and the resulting constant

o

Figure 1.3: Upper inset: Average number of free n.n. cells around a molecule ⟨nF⟩ and
average number of HBs formed by a molecule ⟨nHB⟩ at T = 693 K. There is a discontinuity

in ⟨nF⟩ at low P corresponding to the gas-liquid phase transition. At high P they are both

monotonic. Main panel: Linear dependency of D|| vs. Wν,µ along the isotherms represented

in Figure 1.2. Lower inset: Example of a CRR (shaded) of about 1 nm size, with ν= 12

molecules and µ < nHB > /4 = 5 HBs. Reprinted figure with permission from Ref. [132].

Copyright (2012) by the American Physical Society.
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Figure 1.4: Phase diagram of a water monolayer nanoconfined between hydrophobic plates.

Z-axis and color scale represent the diffusion constant D|| for values 0.12 ≥ D||/(Å/ps2) ≥
0.03. At high T and low P there is the liquid-gas phase transition line (open diamonds)

ending in the liquid-gas critical point (diamond symbol at highest T), as discussed in section

5. The loci of isothermal D|| extrema, Dmax
|| (solid squares), and minima, Dmin

|| (open circles),

envelope the TMD line (solid triangles). Loci at constant D|| (e.g., the dashed line marked

as “Iso D”) resemble in their reentrant behavior the water melting line. Reprinted with

permission from Ref. [126]. Copyright (2011) American Chemical Society

D|| lines resemble the melting line of bulk water. In the deep supercooled region

there is a subdiffusive regime due to the increment of the relaxation time (that turns

eventually in a dynamincal arrest of the system at low P and T , as we have already

discussed). This is a consequence of the HB network dynamics and can be associated

with the observed amorphous glassy water [23].

1.4 Phase Diagram of the FS water monolayer

The phase diagram of the FS model has been extensively studied in the case of a

water monolayer by analytic [71, 72, 114] and numerical methods [116]. By changing

the model’s parameters [122] Stokely et al. reveal the relations among the different

scenarios for the anomalies of water [40].

In particular, Bianco and Franzese (Figure 1.5) find in the T -P plane (i) the TMD

line along isobars with negative slope at high P , as in the experiments, turning into a

line with positive slope near P = 0 that (ii) asymptotically approaches the liquid-gas

(LG) spinodal at P < 0. (iii) At the turning point the TMD is crossed by the line of

minima of the isothermal compressibility along isobars, Kmin
T (T ). (iv) At low T , the

TMD line turns into a negatively-sloped line of temperature of minimum density along

isobars, as suggested by experiments [47], avoiding crossing with the LG spinodal line.

(v) The low-T turning point of the locus of extrema of density occurs where the line
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of (weak) minima of αP along isobars, αwmin
P (T ), crosses it. This point is also where

the line of specific heat (weak) maxima along isotherms, CwMax
P (P ), is aiming for. (vi)

The locus of (weak) maxima of compressibility along isobars, KwMax
T (T ) turns, at its

minimum P , into the locus of minima of KT along isobars, Kmin
T (T ) and, all together,

they coincide within the error bar (not shown) with the locus of (weak) minima of

αP along isotherms, αwmin
P (P ). All the observations (i)-(vi) are consistent with ther-

modynamic relations [171], confirming the correctness of the numerical calculations

performed in Ref [134] and showing that the model recovers what has been shown to

be valid also in atomistic models [171].

However, thanks to its mapping onto a percolation formulation [123], the FS water

can be easily simulated adopting a fast (cluster) MC algorithms [124] that allows us to

explore in detail the deeply supercooled states [115] and the high pressure region [120,

125, 148]. In particular, in the deeply supercooled region, Mazza et al. [131, 135] and

Bianco et al. [133,134] reveal the presence of strong extrema, for the response functions

CP , KT and αP , occurring at temperatures lower than those for the (weak) extrema

known also from atomistic water models. In fact, the deeply supercooled region is

inaccessible to atomistic water models because their dynamics slows down by orders

of magnitude, transforming the supercooled liquids into glasses [77, 78,87].

Mazza et al. [135]. show that the weak and strong maxima of the response functions

correspond to the two dynamic crossovers discussed in section 1.3.1. In this way they

establish a connection between thermodynamics and dynamics that extends up to

moderate supercooling at low P .

As initially observed by Franzese and coworkers [115,117,119,120,131,134,148], all

the loci of extrema of response functions converge toward a point where the extrema

reach their maximum values, as expected at a critical point in a finite-size system. This

point corresponds to the LLCP, as shown by analyzing the fluctuations at extreme

supercooling [135] and extreme pressure [131]. In particular, as described with more

detail in the next section, Bianco et al. study the liquid-liquid critical point region

showing that it belongs to the 2D Ising universality class [134].

This result is consistent with those for ST2 water [77, 78, 172], TIP4P/2005 wa-

ter [97, 173], but not with those for the three-body interactions mW model [81]. The

difference with the mW model is understood as a consequence of the fact that the

non-ideality of mixing is entropy driven, instead of energy-driven as in the models

with the LLCP, and it is not strong enough to induce the liquid-liquid phase separa-

tion [174, 175]. Furthermore, although pair-wise additive atomistic models have the

LLCP, upon pressurization they do not show fluctuations as large as those extrapolated

from experiments [29, 176, 177], while models with many-body interactions, including

the FS model, do, revealing an important difference between those water models with

explicit many-body interactions and those without it.

Above the critical pressure, at very low T , the FS water monolayer presents the
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Figure 1.5: Phase diagram of a water monolayer. In all panels, the black dashed line rep-

resents the LG spinodal, while all the colored dashed lines turning into solid lines of the

same color represent loci of minima and maxima, respectively, of different quantities: e.g.,

in green the temperature of minimum density and the TMD. Each panel focuses on one

response function: (a) on KT along isobars (isotherms) in orange (blue), with dashed (con-

tinuous) lines for weak minima (maxima) and symbols for strong maxima; (b) on CP along

isobars (isotherms) in red (turquoise), with lines (symbols) for strong (weak) maxima; (c)

on αP along isobars (isotherms) in magenta (violet), with dashed (continuous) lines for weak

(strong) minima. All the loci of extrema of response functions converge toward the large

circle with label A corresponding to the LLCP. Reprinted with permission from Ref. [134].
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first-order LLPT between two liquid phases with different energy and local structure.

A similar result is found also in atomistic models that adopt a two-state description of

water [22,88,174,175,178,179]. In the FS model, the phase transition occurs between

a HDL with a disordered HB network and high energy, and a LDL with an ordered

HB network and low energy [116].

1.4.1 The critical point analysis

Bianco and Franzese study the universality class of the LLCP [134]. To define the

correct order parameter M for the LLCP, they first analyze the free-energy landscape.

At the finite-size LLCP the landscape has two equivalent minima, each with a basin

of attraction, with different energy and density, corresponding to two coexisting HDL

and LDL phases (Figure 1.6.a). They find that the two basins are separated by a free

energy barrier ∼ kBT . Hence, as expected near a critical point, under these conditions

the system has enough thermal energy to cross the barrier between the two basins.

The order parameter M is by definition the reaction coordinate between the two

minima, i.e. the linear combination of energy and density M ≡ ρ + sE, as in the

mixed-field approach [180–182]. M is related to the diagonal connecting the centers

of the two wells, as its probability distribution must be symmetric at the LLCP. By

Figure 1.6: The free-energy landscape in the vicinity of the LLCP. (a) The Gibbs free energy

G in units of kBT is represented as heat-map in the energy-density plane, showing two basins

separated by a barrier ∆G ∼ kBT , as expected near a critical point. The phase transition is

described by the order parameter M given by the reaction coordinate (a straight line in the

plane) between the two minima. Reprinted with permission from Springer Nature Customer

Service Centre GmbH: Springer Food Biophysics Ref. [180], Copyright (2013). (b) The size-

dependent probability distribution, QN , of the rescaled order parameter M at the LLCP

approximates the 2D Ising universality class (blue solid line) as the size L of the system

increases. Here, B is a scaling factor and the black reference distribution holds for the 2D

Ising model. Reprinted with permission from Ref. [134].



1.4. Phase Diagram of the FS water monolayer 45

performing a finite-size scaling analysis at fixed sample thickness h = 0.5 nm, and by

varying the number of water molecules from 2500 to 40000 at fixed density, Bianco

and Franzese find that the FS monolayer in the thermodynamic limit displays a LLCP

belonging to the 2D Ising universality class.

The probability distribution of M shows a crossover from 3D to 2D Ising universal-

ity class as the number of water molecules in the monolayer increases (Figure 1.6.b).

The system crosses from 3D to 2D behavior for L/h > 50, where L is the system

lateral size, while for normal liquids this crossover takes place for L/h > 5. This can

be interpreted as a consequence of the high cooperativity, and the low coordination

number, of the water molecules. For small L, the strong cooperativity at the LLCP

increases the HBs fluctuations, resulting in a (3D-like) probability distribution for M

broader than the one in 2D. The water coordination number–four both in 3D and

2D–emphasizes the effect because it reduces the fluctuations differences between the

two cases when the system is small [134,180].

1.4.2 The Widom line

The Widom line (WL) is defined as the locus of maxima of the statistical correlation

length ξ, emanated from the critical point as analytic continuation of the first order

transition line, and spanning into the supercritical region [115, 183, 184]. To the best

of our knowledge, the expression “Widom line” was first used in a work by Xu and

coworkers in 2005 as the locus where the lines of the maxima for different response

functions asymptotically converge approaching the critical point from the supercritical

region [185].

Close to the critical point the thermodynamic response functions can be expressed

as power law functions of ξ. Since ξ exhibits a maximum along the WL, the loci of

maxima of thermodynamic response functions converge toward the WL on approaching

the critical point and near (Tc, Pc) are often used as proxies for the Widom line [173,

186].

Following ref. [134], within the FS model it is possible to define the correlation

length ξ by means of the spatial correlation function G(r) defined

G(r) =
1

4N

∑
|r⃗i−r⃗l|=r

[〈
σij(r⃗i)σlk(r⃗l)

〉
−
〈
σij

〉2]
. (1.16)

Far from the critical region, at high T and for any P , G(r) ∼ e−r/ξ at high temper-

atures in a broad range of pressures. By decreasing T , the correlation function can

be written as G(r) ∼ e−r/ξ/rd−2+η, being d the system dimension and η a (critical)

positive exponent. The correlation length, computed along isobars, exhibits a maxi-

mum, ξMax at all the P explored. The T–P locus of ξMax overlaps with the LLPT

at high P , and with the locus of strong maxima of the specific heat at lower P . This

line, at low P , identifies the WL, with a large slope in the T–P plane (it is almost
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T independent), consistent with extrapolations from experiments [176,187]. Previous

experiments [188], simulations [120, 173, 183, 189] and analytic calculations [115], re-

vealed a WL with a larger T -dependence. A possible argument for this incongruence

is that several approaches could identify the WL along the lines of weak extrema of

the thermodynamic response functions predicted by the FS model. In a recent work,

Bianco and Franzese have used a percolation approach [190,191] to identify the regions

(clusters) of statistically correlated water molecules [123]. According to this mapping,

the FS model undergoes to a percolation transition along a T–P locus that is numer-

ically consistent with the line of extrema of ξMax. A detailed cluster analysis reveals

that at high P , along the LLPT line, the percolation transition is due to the building

up of HB network. At lower P the origin of the percolation transition is related to the

local tetrahedral reordering of the water molecules. This percolation approach allows

to compute the connectivity length ξC , that measures the average size of the connected

clusters. This quantity shows maxima along the T–P line of ξMax. Nevertheless, as

pointed out by the authors, the equivalence ξ ∼ ξC can be guaranteed only in the

critical region [123,190,191].

1.4.3 The effect of cooperativity in the phase diagram

To conclude this section, we discuss how the phase diagram of liquid water depends on

the ratio between the directional and cooperative component of the HB, respectively

encoded by the parameters J and Jσ of the FS model. Stokely et al. have shown

that, by tuning Jσ/J the FS model accounts for most of the scenarios proposed for

the origin of the water anomalies.

By setting Jσ = 0, meaning that there is no cooperativity effect among the HBs,

the FS model reproduces the SF scenario independently of the J value. By increasing

Jσ/J > 0 the model presents a LLPT. If Jσ increases keeping J constant, the LLPT

terminates in a LLCP. By increasing the ratio Jσ/J > 0 the LLCP moves from positive

pressures and low temperatures to negative pressures and larger temperatures. By

further increasing Jσ/J > 0 the LLPT cross the limit of stability of the liquid phase

respect to the gas phase, consistent with the CPF scenario.

According to estimations made from experimental data on the structural and dy-

namical properties of liquid water [138,146,147,192,193], the hypothesis of the LLCP

scenario, with the critical point occurring at positive pressure, seems to be the most

probable for water.
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1.5 The Bianco-Franzese model for water and pro-

tein interfaces

We motivated the introduction of the FS water model for its ability to equibrate

large water samples, as required for simulations of biological systems, including a

detailed description of HBs and cooperativity (Sec. 1.1). Here, we review the efforts

by Bianco, Franzese and coworkers to extend the FS model to reproduce water and

protein systems [5–7].

The BF model accounts for water-water interactions as in the FS model, adopting

the same volume partition into cells, but assumes that some cells are occupied by pro-

tein residues. BF proteins are self-avoiding lattice polymers that keep sequence speci-

ficity. Although BF lattice proteins seem a serious oversimplification compared with

real proteins, multiple lattice models have been proposed for macromolecules [194],

proteins [195–197], hydrated ions [198], membranes [199], or bacteria nucleoids [200].

This sort of model takes advantage of its versatility and the simplified account of the

physical interactions, easing the description of the mechanisms underlying the behavior

of the systems.

The Hamiltonian of the BF model can be separated into residue-residue, residue-

water, and water-water terms:

H ≡ HR,R +HR,w +Hw,w. (1.17)

The protein interactions are given by

HR,w +HR,R ≡ −
NR∑
i

Nw∑
j

CijS
w
ij +

NR∑
k ̸=i

CikSik

 , (1.18)

where NR is the number of protein residues, Nw is the number of water molecules,

Cij is a contact matrix, i. e. Cij = 1 if the cells i and j are nearest neighbors and

Cij = 0 otherwise, and Sw
ij and Sij are the water-residue and residue-residue interaction

energy. In Ref. [6], Bianco et al. expressed Sij in terms of a rescaled Miyazawa-Jernigan

solvent-independent interaction matrix [201]. Regarding Sw
ij , they adopted the Doolitle

hydropathy scale [202], assigning Sw
ij = J if the residue is hydrophobic and Sw

ij = 0

otherwise.

Experiments and numerical calculations support the hypothesis that HBs at the

hydration shell are more stable and correlated for longer times than those in the

bulk [203–207]. The BF model defines the hydration shell as those water molecules that

are first neighbors of protein residues. Hence, HBs that are formed at the hydration

shell have different properties compared with bulk:

Hw,w ≡ Hb
w,w +Hh

w,w, (1.19)
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where Hb
w,w ≡

∑
ij U(rij)− JbNb

HB − Jb
σN

b
σ is the Hamiltonian of bulk water as in the

FS model (Eq. 1.2), and

Hh
w,w ≡ −

[
JPHONPHO

HB + JPHO
σ NPHO

σ

]
−
[
JPHINPHI

HB + JPHI
σ NPHI

σ

]
, (1.20)

where JPHO(PHI) and J
PHO(PHI)
σ substitute Jb and Jb

σ for the HBs formed at the hy-

drophobic (hydrophilic) interface. Analogously, the volume attributed to HB formation

at the hydration shell is v
PHO(PHI)
HB and the total volume

V ≡ Nr3 +Nb
HBv

b
HB +NPHO

HB vPHO
HB +NPHI

HB vPHI
HB . (1.21)

The water-water HBs at the hydrophobic hydration shell are stronger and more

stable than those in the bulk [204–208]. The BF model accounts for this behav-

ior setting JPHO > Jb and JPHO
σ > Jb

σ , ensuring enthalpy compensation upon cold-

denaturation [209]. In addition, the compressibility of water at the PHOB interface

increases upon pressurization [205,210–212]. The BF model assumes that the volume

fluctuations associated to HB formation increase linearly in P

vPHO
HB ≡ (1− k · P ) vPHO

HB,0, (1.22)

where k > 0 and vPHO
HB,0 corresponds to the volume change associated with HB formation

at the PHO interface for Pv0/(4ϵ) = 0.

Finally, the BF model assumes that HBs at thy PHI interface behave as those in

the bulk. Hence, JPHI = Jb, JPHI
σ = Jb

σ , v
PHI
HB = vbHB. For those HBs formed between

a water molecule at a PHO interface and another molecule at PHI interface, the

associated parameters are
(
JPHO + JPHI

)
/2,
(
JPHO
σ + JPHI

σ

)
/2, and

(
vPHO
HB + vPHI

HB

)
/2.

1.5.1 Applications of the BF model

In the first place, the BF model was applied to study protein denaturation [5, 7]. Ac-

cording to Hawley’s theory, protein surfaces show elliptical iso-free energy contours in

the P -T phase diagram [213]. Hence, proteins unfold upon heating, cooling, pressur-

ization and depressurization [214–219]. Heat unfolding is well understood in terms of

the increase of thermal fluctuations and entropy, depressurization unfolding has been

experimentally observed [220], and high-P unfolding can be attributed to the loss of

cavities in the native state [221]. The rationale for cold unfolding is debated [222],

although it can be attributed to changes in the total free energy balance of the protein

and solvent [223].

The BF model shows that the change of enthalpy and density fluctuations of the

HB at the hydration shell is enough to predict the elliptical shape of protein stability

regions (Fig. 1.7), consistently with Hawley’s theory [213]. In particular, Bianco and

Franzese attributed high-T unfolding to the increase of water and protein entropy and

high-P unfolding to the decrease of enthalpy H ≡ U + PV when PHO residues are
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Figure 1.7: Example of the stability region (red ellipse) of a BF homopolymer of hydrophobic

residues (green). Color code: density field of water from black (low-ρ) to yellow (high-ρ).

Figure adapted from Ref. [5]. Reprinted figure with permission from Ref. [5]. Copyright

(2015) by the American Physical Society.

exposed thanks to the higher compressibility of water at PHO interfaces. At low-T ,

unfolding is a consequence of the decrease of the hydration water internal energy when

more PHO residues are exposed, and at low-P to the decrease of enthalpy of hydration

water. Both mechanisms are due to the increase of NPHO
HB . Further analysis showed

that these results are robust against changes of model parameters (properties of the

solvent) or protein sequence [7].

Next, Bianco and coworkers addressed the protein design problem, i. e. finding the

protein sequence that folds into a target backbone structure [6]. Despite the hardness of

the problem [224], it is of great interest in Biophysics for its implications in drug design

engineering and a to better understand biological evolutionary processes. The BF

model allows to study the role of the solvent in the selection of protein sequences thanks

to its ability to rapidly sample a large amount of water configurations, and comparing

for different protein sequences. Following a previous approach by Coluzza [225, 226],

Bianco et al. developed two protocols for protein design based on 1) minimizing the

enthalpy calculated for a fixed protein sequence by averaging over equilibrium water

configurations, or 2) maximizing the enthalpy gap between folded and unfolded protein

configurations, averaged over equilibrium water configurations [6].

Their results show that the stability regions of designed proteins are positively

correlated with the design temperature Td. More precisely, proteins designed at high-

Td are superstable and their sequence is less segregated into hydrophobic core and

hydrophilic surface. Surprisingly, they find that an increase of segregation induces less

stable proteins upon changes of T and P , suggesting that there is an optimal fraction
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of hydrophobic residues exposed to the solvent [227, 228]. Bianco et al. interpreted

that the exposure of hydrophobic residues arises as a consequence of water properties,

rather than a compromise between stability and biological functionality [6].

Finally, Bianco and coworkers studied protein aggregation of homogeneous [9] and

heterogeneous [8] protein mixtures. Protein and peptide aggregation is related to the

development of neurological diseases such as Alzheimer’s or Parkinson’s [229–231].

Simulations of the BF model show that proteins first partially unfold and then aggre-

gate upon increasing concentration [9]. In this process, water mediates protein-protein

interactions, prior to protein contact. Also, they find and induces a free energy barrier

against aggregation [9], a relevant observation for drug engineering. By considering

heterogeneous mixtures, Bianco et al. find that proteins tend to aggregate with other

proteins of the same species, a result confirmed by light-scattering expriments [8]. More

recently, March, Bianco and Franzese studied the effects of salt concentration and hy-

drophobic confinement on the folded ↔ unfolded ↔ aggregation process [73]. They

reproduced the increase of salt concentration by reducing J and JPHO, representing

the screening effect of ions on HB interactions and hydrophobic confinement as a flat

surface with excluded-volume interactions with both water and proteins. Their results

show that the threshold concentrations for unfolding and aggregation increase upon

decreasing salt concentration and that the presence of a hydrophobic wall decreases

them [73].

1.6 Motivation and Objectives of the Thesis

In this chapter, we have presented a Hamiltonian CG approach, proposed by Franzese

and Stanley (FS) [71, 72], to model water under confinement and its extension, by

Bianco and Franzese (BF), to model hydrated protein systems [5, 6]. The FS model

is essentially based on a discretization of the position of water molecules, and on the

description of the water-water hydrogen bonding in terms of two terms, accounting

for the covalent and cooperative components of the HB interaction, indicated with J

and Jσ respectively. The discrete nature of the water degrees of freedom allows the

implementation of efficient Monte Carlo algorithms that makes accessible to simulation

a wide range of temperatures and pressures, often prohibitive to correctly sample

for atomistic water models. Furthermore, the BF model describes proteins as a self

avoiding chains of beads, at a resolution of one bead per residue. By assuming that

the HBs at the hydration shell have different properties than those in the bulk, the BF

model rationalizes the role of water in protein denaturation, design, and aggregation.

This Thesis is devoted to extend the FS model from monolayer (2D) to bulk water

systems (3D). The main objective is opening a new path for simulations of large biologi-

cal systems with unprecedented detail, including explicit water-residue, and interfacial

cooperative HBs. To achieve this goal, we must first develop a simulation method
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that allows to equilibrate systems including a large number of FS water molecules,

reproducing the water’s experimental density and response functions in quantitative

agreement with experiments, at least at conditions of biological interest.

From the thermodynamic point of view, the change of dimension modifies the

balance between entropy and enthalpy that determines the free energy of the system.

More specifically, there is a large increase in entropy that is not followed by a significant

variation of enthalpy. Thus, the second objective of the Thesis is to investigate which of

the aforementioned properties of the FS monolayer are intrinsic to the model and which

result from the hydrophobic confinement of the monolayer, if any. We are particularly

interested in investigating the thermodynamic anomalies at the supercooled regime

and further contribute to the debate on the origin of the anomalies of water and the

possible thermodynamic scenarios. By the time we started this project, the LLCP

had only been located in simulations of the ST2 model [77]. At present, it has also

been rigorously located for atomistic TIP4P/2005, TIP4P/Ice [85], and WAIL [86]

water models, highlighting the interest of this research field [24]. Although the LLCP

occurs at T conditions far below those of biological interest, its identification at the

bulk FS model further validates it by showing its transferability to deep supercooled

conditions, with results comparable to atomistic models.

After benchmarking and validation, we consider the application of the 3D BF

model to hydrate large biological systems. In particular, we develop a simulation ap-

proach that maps configurations of proteins simulated with implicit solvent models,

e.g. OPEP [232, 233], and equilibrates BF water keeping the proteins fixed. Our

objective is to calculate how water thermodynamic properties depend on the protein

configuration and the water contribution to the free energy of the system. We find that

the inclusion of solvent coordinates is necessary to adequately describe the character-

istic configurations of the system. Our approach overcomes an intrinsic limitation of

implicit solvent models, since by construction they integrate over the degrees of free-

dom of the solvent. This work was carried out in collaboration with the group of Dr.

Fabio Sterpone, at the Institute de Biologie Physico-Chimique (CNRS, Paris), during

a three-month research stay.

The Thesis is structured as follows. In Chapter 2, we extend the FS model to bulk

and design parallel distributed algorithms for local and cluster MC simulations. Our

implementation of the algorithms enormously reduce the computational cost of the

simulations, making accessible large water samples of at least 107 water molecules. In

Chapter 3, we calibrate the parameters of the bulk FS model to reproduce experimental

data around ambient conditions, a prerequisite for its use in simulations of biological

interest. The following chapters describe applications of the bulk FS model. In Chap-

ter 4, we study the transferability of the model to the supercooled regime. Here, we

localize the LLCP belonging to the Ising 3D universality class at T and P conditions

comparable to the estimates in atomistic models. Next, in Chapter 5, we extend the
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BF model to bulk. We consider two cases of application: the conformational changes

of the von Willebrand factor (vWf) upon extreme shear stress (Chapter 5) and the

sequestration of Superoxide Dismutase 1 (SOD1) proteins in Fused in Sarcoma (FUS)

and Bovine Serum Albumin (BSA) highly concentrated solutions (Chapter 6). We

summarize our conclusions in Chapter 7.



Chapter 2

Methodology: Parallel distributed

algorithms

As we have discussed in Chapter 1, water modeling is a challenging task due to the

difficulty of reproducing its thermodynamic, dynamic and structural anomalies. They

arise from weakly covalent hydrogen bonding (HB) interactions that also exhibit coop-

erative effects. In this chapter, we extend to bulk the FS model and develop efficient

parallel MC algorithms specifically designed for it. The algorithms are executed in

GPUs using CUDA. In particular, we develop two parallel algorithms: local Metropo-

lis and cluster Swendsen-Wang (SW). Our implementation of Metropolis considers a

layered partition of the lattice that, to our knowledge, is novel in simulations using

CUDA. On the other hand, for cluster SW simulations, we adapt the multi-cluster

labeling algorithm by Hawick and Kalentev to the FS model. The Metropolis algo-

rithm allow simulating large size systems of 2603 ∼ 2 · 107 water molecules, whereas

we benchmark 1283 ∼ 2 ·106 for SW simulations. The model offers a good compromise

between accuracy, as it accounts for the HBs and their cooperativity, and access to

large-size systems, as required for problems of biological relevance.

2.1 Introduction

Water models play an essential role in simulations of biological systems. First, the

properties of the solvent strongly affect the behavior of the whole system [2]. Second,

the computational cost to equilibrate water around the proteins and estimate water-

protein interactions determines the accessible length and time scales of the represen-

tation [234]. All-atom simulations that include explicit solvent such as TIP4P/2005 or

AMOEBA water models provide the most accurate descriptions of the systems [235],

but they are not affordable for large-scale simulations. On the contrary, coarse-grained

(CG) models come at a reduced computational cost but represent the system in a sim-

plified manner. For each particular problem, researchers must reach a compromise

53
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between the desired accuracy of the representation and the computational cost of

simulating the characteristic length and timescale of the problem [234].

The quest for a water model that both accounts for a detailed description of the HB

network, including cooperativity, and being suitable for large-scale simulations is still

open. Within this effort, the Franzese-Stanley (FS) model (Sec. 1.2, Refs. [1, 72, 120,

132,134,135]) is a promising approach. It is suitable for analytic calculations [115] and

Monte Carlo (MC) simulations [131] that reach scales from 1 nm to 1 µm in space and

from 10 ns to 0.1 s in time [1]. The model describes in detail the HB network, including

cooperativity [40], while coarse-grains the positions of the molecules through a discrete

density field. Moreover, as we discussed in Sec. 1.5, it has been applied to biological

problems such as protein folding [5, 7], protein design [6], and aggregation [8, 9, 73].

In these studies, the model has helped to unveil the role of HB interactions in the

complex behavior of the proteins at different thermodynamic conditions.

In this chapter, we extend to bulk the FS model and benchmark the accessible

scales using MC simulations. To this aim, we develop efficient parallel distributed

algorithms using CUDA, a C-style programming language, to develop kernels that

are executed in the GPU [236]. During the last decade, CUDA has been extensively

used in Computational Physics, including lattice spin models simulated with local and

cluster MC [237–239], molecular engines [240], stochastic differential equations [241],

or Brownian motors [242]. Among these models, the architectures of the GPUs are

especially useful for performance gains in spin models on a regular lattice [237]. This

feature holds for the FS model, as it accounts for the HB formation and breaking

through a regular lattice of Potts variables, as described in Sec. 1.2.

The algorithms developed here are designed considering the specific structural prop-

erties of the 3D FS lattice, i.e. how the bonding variables σij are spatially distributed

and connected. Hence, our algorithms cannot be straightforwardly generalized to other

models. However, our work may inspire the search for parallel algorithms for other

models. In the context of water, this holds for the model proposed by Cerdeiriña

et al. [243] or the model for the hydration of ions proposed in Ref. [198].

The algorithms described in this chapter are significant because they open the

possibility of performing large-scale simulations of a CG water model that includes a

detailed description of the HB network. They clear the way towards more realistic

simulations of large protein systems in explicit solvent, including the effects that arise

from individual HBs and their cooperativity.



2.2. Bulk FS model and simulation method 55

2.2 Bulk FS model and simulation method

2.2.1 Extension from monolayer to bulk FS model

In the bulk FS model, each molecule has six nearest neighbors (n.n.) with which it

can form a HB. However, a water molecule can form up to four HBs. For this reason,

the model must introduce a constraint to avoid a molecule forming more than four

HBs. A possible solution consists in setting to zero the enthalpy change of the system

if a molecule forms or breaks a fifth or sixth HB. In other words, if δσij ,σji
= 1, but the

molecule i or j already forms four HBs, this bond does not contribute to the energy

nor the volume of the system.

Unfortunately, this solution is not free from problems. First, for a given configura-

tion of σ variables, the calculation of NHB depends on the order in which the molecules

are visited. Let us consider a configuration for which all the σ variables are in the

same state. Hence, NHB = 2N . However, when estimating NHB, the algorithm may

find that, for a given molecule, three or more of its neighbors have already formed four

HBs. Thus, this molecule cannot form its corresponding four HBs, and the calculated

NHB is < 2N . Second, although this solution is easy to implement in the Metropolis

algorithm, it cannot be adapted to cluster MC straightforwardly. Conflicts occur when

deciding which pairs of adjacent σ variables should be added to the cluster. Moreover,

after updating a cluster, many molecules at the boundaries may have formed more

than four HBs at once. If we check the border to eliminate the extra bonds, we face

the first problem again.

Therefore, we look for a criterion that defines NHB uniquely and that can be uni-

formly implemented in both local and cluster MC algorithms. We introduce this

criterion through the allowing η variables. Thus, we rewrite NHB of the FS monolayer

(defined in Eq. 1.5) as

NHB ≡
∑
<i,j>

ninjηijδσij ,σji
, (2.1)

where ηij switches on and off connections between n.n. so that all molecules in the

system can form up to four HBs. We describe how we accomplish this in the following.

Let us regard the FS lattice as a graph G(V , η), where each cell i is a vertex, i ∈ V ,
and η is the set of edges (ηij ∈ η). Here, ηij links the pair of n.n. molecules (cells i

and j) in a 3D simple cubic lattice. Next, we split η into two sets η0 ≡ {ηij = 0} and
η1 ≡ {ηij = 1}, with η = η0 ∪ η1 and η0 ∩ η1 = ∅. We use these sets to define the

graphs G0(V , η0) and G1(V , η1). Our goal is to generate sets η1 so that all the vertices

(molecules) i are connected to exactly four n.n.. We achieve this by letting G0 be a

Hamiltonian cycle [244]. A Hamiltonian cycle is a path that visits all the vertices once.

In other words, if we start from any vertex i, we can follow the edges in η0 so that we

visit all the vertices once and, eventually, return to the initial vertex. We note that if

G0 is a Hamiltonian cycle, then all the cells have exactly two allowing variables ηij = 0
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and four ηij = 1, which is the desired result.

There are algorithms that find all edge sets of a graph which are vertex-disjoint

unions of cycles [245]. In particular, the algorithm outputs all Hamiltonian cycles (if

any). However, we are not interested in listing all the possible pairs (η0, η1) of the

system, but in generating different sets during the simulation. Then, the molecules

will form up to four HBs with alternating neighbors. For this reason, we develop a

method specifically designed for our model.

We partition the system into a set of 3D checkerboard cubes (c.c.), in such a way

that (i) the eight vertices of a cube correspond to eight molecules i ∈ V , and (ii) each

molecule belongs to two, and only two, cubes (Fig. 2.1 left). A Hamiltonian path G0 is
built by setting four edges of each cube to ηij = 0, in such a way that each vertex i has

one edge with ηij = 0 and two with ηij = 1. If this is satisfied in all cubes, and each

vertex (water molecule) belongs to two cubes, then we find that G0 is a Hamiltonian

cycle. We find nine possible ways of setting the ηij edges of the cubes that fulfill the

desired conditions, as shown in Fig. 2.1 (right). The restrictions for the use of this

method are (i) the vertices must be in a cubic simple structure with periodic boundary

conditions PBCs, and (ii) the number of vertices at each lateral edge LX , LY , and LZ

of the lattice must be multiple of 4. Otherwise, the checkerboard partition cannot be

formed.

Regarding the cooperative interaction, we keep the same expression as for the FS

monolayer (Eq. 1.6). The only difference arises from the fact that, in 3D, there are six

σij variables per molecule instead of four. Thus, a water molecule can form up to 15

cooperative bonds in the bulk, instead of 6 as in the monolayer.

Figure 2.1: Left panel: Example of the Checkerboard partition. Water molecules mark the

center of the cells in the system. The molecule labeled “A” belongs to the blue and yellow

cubes in the checkerboard partition. Red broken lines represent ηij = 0 edges, while all

other edges correspond to ηij = 1. Green double arrows highlight the allowed bonds for the

molecule “A”. Right panel: The nine possible sets of ηij for a checkerboard cube, where

thick lines represent ηij = 1, and dotted lines ηij = 0. The yellow cube in the example of

the left panel corresponds to the central set, while the blue one, to the bottom-central set.
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2.2.2 Simulation method: Definition of the MC step

We perform MC simulations in the NPT ensemble. The configuration of the system is

fully determined by the radius of the cells r, the σ variables, and the η variables. At

each simulation step, we perform the following tasks to generate new configurations:

1. We update r keeping σ and η fixed, according to the Metropolis algorithm [246].

2. We update η keeping r and σ fixed, according to the Metropolis algorithm.

3. We update σ keeping r and η fixed. We perform this update according to either

parallel Metropolis, parallel Swendsen-Wang (SW) [247] algorithms.

In this section, we briefly describe the application of the Metropolis algorithm

to update r and the η variables. In Sections 2.3 and 2.4, we explain in detail the

parallelization of Metropolis and SW algorithms to update σ variables.

The Metropolis algorithm in the NPT ensemble accepts a new configuration ac-

cording to the probability

pMET = min
{
1, exp (−β∆H)

}
, (2.2)

where β ≡ 1/kBT and ∆H is the enthalpy difference between the new and the old

configurations.

To update r, we perform a single proposal of change r′ = r + δr, where r′ and r

are the new and old radius, respectively, and δr is chosen at random within the range

−0.01 ≤ δr/r0 ≤ 0.01. The move is accepted with the probability given in Eq. 2.2,

taking the enthalpy change as

∆H(r → r′) =

∑
i,j

U(r′ij)− U(rij)

+ PN(r′
3 − r3), (2.3)

where U(r) is the Lennard-Jones (LJ) potential

U(r) ≡

4ϵ
[(

r0
r

)12 − ( r0
r

)6]− Uc, if r < rc

0 if r ≥ rc,
(2.4)

where rc = 6r0 is a cutoff distance introduced to save computational cost. We shift

the potential by Uc ≡ 4ϵ
[(
r0/rc

)12 − (r0/rc)6] to avoid a discontinuity at rc. The LJ

potential considered here differs to the considered for FS monolayers (Eq. 1.4) but the

results are qualitatively consistent.

To generate new configurations of η variables, we apply the algorithm described

in Section 2.2.1. In particular, we propose a new state for each c.c. among the nine

possible states in Fig. 2.1. The enthalpy change due to a single c.c. update is
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∆H
(
η → η′

)
= −Jeff∆NHB, (2.5)

where Jeff is the enthalpy change due to HB formation, as defined in Eq. 1.8, and

∆NHB =
∑

⟨i,j⟩c.c.

(
η′ij − ηij

)
δσij ,σji

. (2.6)

The sum is performed over the ⟨i, j⟩c.c. pairs of n.n. cells that belong to the c.c..

We note that the update of a c.c. is independent of the others. For this reason, we

parallelize this step by assigning the update of a single c.c. to a single thread.

2.2.3 Parallel code setup

In CUDA applications, tasks are distributed between the GPU (device) and the CPU

(host), depending on whether they are parallelized or not. Arrays that are read/written

by both of them must be allocated in both of them. To distinguish them, the usual

criterion is to add the dev prefix if it is allocated in the device. In order to improve

the performance of the application, communication between host and device must be

done only if necessary.

We show the workflow scheme of our application in Fig. 2.2. We start generating

the initial configuration of the system {σ, η} in the host, initializing a vector of seeds

that will be used by the CUDA random number generator. Next, we allocate the

vectors dev σ, dev η, and dev seed in the device and copy the values stored in the

host. Then, we generate arrays of random numbers vectors in the device using the

cuRand library. These arrays contain the random numbers which will be read by

the CUDA kernels, following the principle of deferred decisions. In Appendix A we

report more details on the random number generation and their usage. The main loop

performs N RUN MC steps (update r, η, and σ) as described in Section 2.2.2.

2.3 Parallel Metropolis

The Metropolis algorithm can be easily parallelized for a regular spin-lattice. The

procedure consists in dividing the lattice into domains of σ variables that are updated

simultaneously. To satisfy detailed balance, if σij and σkl belong to the same domain,

then

∆H(σij → σ′
ij) = −Jeff∆NHB − Jσ∆Nσ

= −Jeffηij(δσ′
ij ,σji
− δσij ,σji

)− Jσ
∑
k ̸=j

(δσ′
ij ,σik

− δσij ,σik
) (2.7)

must not depend on σkl and vice versa. For the Ising model, there are two widely

used partition schemes: layered [248] and checkerboard [249]. Another method for
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Figure 2.2: Schematic workflow of the CPU-GPU program.

improving the efficiency of the code is storing multiple spins (σ variables in our model)

in a single memory word [237, 250]. For example, eight spins can be stored in an

uint8 t word, where each bit is 0 or 1 depending on whether the spins are up or

down. This technique is useful in GPU computing due to the reduced cost of memory

transactions. Unfortunately, it holds for two-states spins, while the FS model considers

six-states spins.

CUDA implementations of the checkerboard parallelization scheme for the 2D and

3D Ising model can be found in [237, 238, 251]. These algorithms cannot be adapted

straightforwardly to the FS model due to the specific decoration of the σ variables

at the lattice. Alternatively, we consider a layered partition at σ variables level in

combination with a smart sorting of the arrays that allow memory coalescing, as

described in the following. To our knowledge, the parallelization of the Metropolis

algorithm for the Ising model following the layered scheme has not been implemented

in CUDA yet.

We partition the σ variables into six domains, each containing all the σ variables

with the same sense and direction (forward X, backward X, etc.). We can update at

the same time all the spins of a block since all the σ variables involved in the ∆H

estimate belong to other blocks, as shown in Fig. 2.3.

We implement a CUDA kernel gpu metropolis(sp) that launches one thread
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per water molecule, where sp indicates which of the six independent domains will

be updated. We define a parallel Metropolis update as six sequential calls to

gpu mertopolis(sp), where sp is chosen randomly to mimic the random selection

of σ variables in the sequential Metropolis, and to avoid the propagation of correlation

waves.

In CUDA applications, the main bottleneck in the execution comes from data-

accessing latency [252]. The performance can be improved by smartly sorting the mem-

ory, taking advantage of memory coalescing [236,253,254]. The GPU creates, manages,

schedules, and executes simultaneously blocks of 32 threads called warps [237]. When

a kernel reads (writes) global memory directions, it performs a single coalesced read

(write) transaction every half-warp of 16 threads. In view of that, we are interested

in sorting the vectors in such a way that consecutive threads read (write) consecutive

memory addresses. We achieve this by sorting the vectors dev σ and dev η according

to the index idx = arm·N+cell, where arm ∈ {0, 1, ..., 5}, and cell ∈ {0, 1, ..., N−1}.
The index arm stands for the six possible neighbors of the cell (from 0 to 5: left, right,

Figure 2.3: Metropolis parallelization in layered domains. Schematic depiction of the system,

where the arrows represent the σ variables’ lattice. Dashed lines represent cells in planes

with constant X. Arrows with the same color belong to the same domain. For clarity, the six

σ variables are represented only for the central cell. We update in parallel all the σ variables

of the same domain, while the others remain fixed. Here we consider the case in which all

the σij in blue (forward X direction) are updated. The enthalpy variation ∆H(σij → σ′
ji)

depends on ηij , σji (black, J
eff), and the five σi,k, k ̸= i (black, red, yellow, green, and brown,

Jσ). The bottom bar shows how the vectors dev σ and dev η are nested, according to the

index formula described in the text. This ordering is relevant, as the algorithm performs

coalesced reads, improving its performance.
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front, back, top, bottom), and cell = x + yLX + zLXLY , where x, y, and z are the

Cartesian coordinates of the cell (see Fig. 2.3).

We illustrate how the kernel gpu metropolis(sp) performs coalesced memory

transactions with the following example. We consider a half-warp that updates the

left arm (forward X direction, sp= 0) of the water cells idx=0 to 15. When the

kernel estimates ∆NHB, it reads the right arms of the neighboring cells 1 to 16, i.e.,

the (consecutive) positions sp = 65 to 80. The same happens when estimating ∆Nσ.

These reads go from arm · N + 0 to arm · N + 15, where arm ̸= 0. We note that an

exception to this rule comes when the neighboring cell is placed on the opposite side

of the simulation box, due to the PBCs.

We measure the performance of our parallel Metropolis algorithm and compare it

to the results obtained in a sequential implementation in the CPU. The results were

obtained in a workstation with an AMD Ryzen 7 5800H processor, with 4.4 GHz, and

one NVIDIA GeForce RTX 3060 with 6 GB of global memory and 3840 CUDA cores.

The CUDA Toolkit version used is 11.5.1 (released on November 2021).

For the sake of a fair comparison between the sequential and parallel algorithms,

the measurement of the time cost of the GPU algorithm includes the GPU time spent

on the generation of the random numbers (Appendix A) and the cost of GPU→ CPU

memory transactions. The time cost of the CPU algorithm includes only the CPU

time spent on updating the system (including the generation of random numbers when

needed), as there is no need for memory transactions. We define the speedup factor

(SF) as the ratio tCPU/tGPU. Thus, the GPU-parallel algorithm is more efficient than

the CPU-sequential if SF > 1.

Table 2.1 reports the estimated SF for the Metropolis algorithm. We fix the model’s

parameters to J/4ϵ = 0.5, Jσ/4ϵ = 0.03, and vHB/v0 = 0.5. The thermodynamic

conditions are TkB/4ϵ = 0.5, Pv0/4ϵ = 0.0. Then, we estimate SF for a wide range of

sizes of the system 64 < 6N < 2, 097, 152. Depending on the size, we perform between

2 and 10 independent simulations of 5000 MC steps. We find that the results shown

in Table 2.1 are robust against a change of thermodynamic conditions in the range

0.05 ≤ TkB/4ϵ ≤ 0.5 and 0.0 ≤ Pv0/4ϵ ≤ 0.6. This was expected, since the change

of thermodynamic conditions only modify the values of β and Jeff , leaving unaffected

the computational cost of the algorithm.

The results show that, for small-size systems (N = 64 molecules), the parallel

algorithm is less efficient than the sequential one. This is not surprising, as a suffi-

ciently large number of threads must be executed to take full advantage of the GPU

resources [240]. In Ref. [251], Wojtkiewicz and Kalinowski also find SF < 1 for small-

size systems. In Appendix B, we study the scaling of the sequential and parallel

Metropolis algorithms. We benchmark accessible parallel Metropolis simulations of

N = 2603 ∼ 1.8 · 107 molecules (Fig. B.2). Moreover, we show that SF exhibits a

crossover between two power laws at N = 32, 768 (Fig. B.3). Within the range of N
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Metropolis Speedup Factor (SF)

Lattice size L Number of molecules N ≡ L3 SF= tCPU/tGPU

4 64 0.1159(6)

16 4,096 7.09(3)

20 8,000 13.42(9)

32 32,768 37.8(3)

52 140,608 63.8(3)

64 262,144 63.5(3)

128 2,097,152 136.72(3)

Table 2.1: Speedup factor (SF) of the GPU Metropolis algorithm respect to the se-

quential implementation in the CPU. Results were obtained using model parameters

J/4ϵ = 0.5, Jσ/4ϵ = 0.03, and vHB/v0 = 0.5. Shown data correspond to TkB/4ϵ = 0.5

and Pv0/4ϵ = 0.0, but the SF does not change at other thermodynamic conditions, as

described in the text.

considered here, SF does not reach a plateau.

2.4 Parallel Swendsen-Wang

Local MC algorithms such as Metropolis suffer from a critical slowdown of the dynam-

ics when the correlation length of the spins is comparable with the size of the system.

On the contrary, cluster MC algorithms smartly update correlated regions of bonded

spins (clusters) at once. Thus, they generate statistically independent configurations

at a much lower computational cost. This is crucial at the supercooled region, where

the FS monolayer exhibits a liquid-liquid phase transition ending in a liquid-liquid

critical point [123, 134]. Here, we consider the SW multi-cluster algorithm [247]. At

each step, we generate clusters of bonded σ variables that cover the whole system

(unbounded σij variables will form clusters of size 1). The new configuration is ob-

tained by updating all the σ variables in the same cluster accordingly. The sequential

implementation of the SW algorithm for the bulk FS model reads

1. Visit all the cells i. For each i, loop over all the pairs of variables (σij, σik). If

they are in the same state, place a bond between them with probability pσ =

1− exp (−βJσ).

2. Visit all the pairs of n.n. cells ⟨i, j⟩. If Jeff > 0, ηij = 1, and δσij ,σj,i
= 1, place

a bond with probability peff = 1 − exp
(
−β
∣∣Jeff

∣∣). Instead, if Jeff < 0, place a

bond with probability peff if δσij ,σj,i
= 0.

3. Use the Hoshen-Kopelman algorithm [255] to identify the clusters.
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4. Visit all the clusters. For each, choose a random integer RND int ∈ {0, ..., q−1}.
Change the state of all the σ variables in the cluster to σij ←

(
σij + rnd int

)
%q,

where ← is the assignation operator.

The SW algorithm performs three independent tasks. First, it places bonds be-

tween connected σ variables if they belong to the same cluster. Second, it identifies all

the clusters. Third, it updates each cluster. The first and third tasks are highly local

and can be parallelized straightforwardly. However, this does not hold for the cluster

labeling operation. A possible way to parallelize it consists in dividing the lattice into

domains that are assigned to different threads. Then, each thread computes the labels

of the lattice site in its domain by applying a sequential algorithm. Obviously, this

strategy fails whenever a cluster crosses the domain barriers. To solve this problem,

another process must check the borders sequentially. This overall strategy, with some

modifications, is followed in Refs. [238,248,256].

In our approach, we follow the efforts of Hawick et al., who implemented different

parallel labeling algorithms for arbitrary and lattice graphs in CUDA [257]. Among

these, the label equivalence algorithm was sophisticated by Kalentev et al. [258] and

later applied by Komura and Okabe to SW simulations of the 2D Potts model [239].

Here, we adapt the Hawick-Kalentev label-equivalence algorithm to the 3D FS model.

For a given SW step, we first generate the clusters. We apply a direct parallelization

of this task, in which each thread works on one water cell. The thread is responsible

for placing the Jσ interactions within its cell and the J interactions in the left, front

and top directions.

Once the bonds are placed, we apply the label equivalence algorithm. We allocate

in the device the label1 vector of size 6N that indicates to which cluster each σij

belongs. Thanks to the Kalentev sophistication, this array is also used to resolve

the label equivalences [258]. The advantage is the reduction of the memory cost of

the algorithm, which is relevant due to the limited storage resources of the GPUs.

We initialize label as, for each k, label[k] = k, where k is the index idx of a σ

variable defined in Section 2.3. The algorithm resolves the label equivalences through

iterative callings to the scanning and analysis functions [239,258]. When the algorithm

converges, all the σ variables in the same cluster will take the same label value.

The scanning function compares the label of a lattice site k to the label of all the

bonded sites (nearest neighbors within the cluster). For each k, label[k] is updated

to the minimum value among all the labels of the bonded sites, including itself. In

Ref. [239], Komura and Okabe implemented this function with a single kernel for the

2D Potts model. However, due to the particular decoration of the the σ variables in

the 3D FS model, we find it more convenient to split this function into two kernels.

First, in gpu scanning covalent each thread scans through left, front, and up J

1Since there is no copy of the array label in the host, we omit the prefix dev
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interactions of the cell Second, gpu scanning cooperative scans the Jσ interactions.

An alternative implementation in a single kernel leads to race conditions when two

threads attempt to update the same element of label. To avoid them, we could use

the CUDA atomic min function, but we found a slower performance due to the greater

thread divergence [258].

Next, the analysis function updates label[k] according to

if ( label[label[k]] != label[k] )

label[k] = label[label[k]].

This step further propagates the minimum value of label to other σ variables in the

same cluster. The parallel implementation of the analysis function suffers from race

conditions, but these collisions between threads will be resolved eventually in successive

applications of the scanning and analysis functions [258]. In any case, to minimize the

occurrence of thread conflicts, we define the gpu analysis(arm) kernel to only update

label of those σ variables in the direction of arm. We make a loop of six calls to the

kernel, to include all the lattice sites.

To check whether the algorithm has converged or not, we copy the label vector to

prev label before calling the scanning function. Then, after the calling to analysis,

we compare the present value of label to prev label. To parallelize this task, each

thread compares the six σ variables in the cell. The algorithm converges whenever

label[:] = prev label[:]. As an example, Table 2.2 shows how label converges after

successive applications of the scanning and analysis functions.

We estimate the speedup factor of the parallel SW algorithm relative to the se-

quential one (see Table 2.3). We use the same workstation and model parameters as in

Section 2.3. In this case, we show results for four different thermodynamic conditions:

TkB/4ϵ = 0.05 and 0.06, both temperatures at Pv0/4ϵ = 0.0 and 0.6. Contrary to the

Metropolis algorithm, the time cost of the SW algorithm depends on the size of the

clusters, which in turn depends on the thermodynamic conditions. For simulations at

T = 0.05(4ϵ)/kB, there is a percolating cluster, while at T = 0.06(4ϵ)/kB, there is

not [123]. The effect in P is that at low-P the average cluster size is larger than at

high-P . For each thermodynamic condition and algorithm, we perform between 2 and

10 independent simulations of 103 MC steps.

In Appendix B, we study the scaling of the SW algorithms. As in the Metropolis

case, we find that SF displays a crossover between two power laws at the same size

N = 32, 768 and that SF does not saturate for the large N considered here.

2.5 Dynamic behavior of the algorithms

In this section, we calculate the autocorrelation time τ of the σ variables, in both

parallel Metropolis and SW algorithms. This time is an estimate of the number of
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cell index ↔ (x, y, z) 0 ↔(0,0,0) 1↔(1,0,0) 17↔(1,0,1) 18↔(2,0,1)

σij index 64 0 65 257 337 17 82

initial label 64 0 65 257 337 17 82

scan covalent 64 0 0 257 257 17 17

scan cooperative 0 0 0 0 17 17 17

analysis 0 0 0 0 17 17 17

converged? No

scan covalent 0 0 0 0 0 17 17

scan cooperative 0 0 0 0 0 0 17

analysis 0 0 0 0 0 0 0

converged? No

scan + analysis 0 0 0 0 0 0 0

converged? Yes

Table 2.2: Example of parallel label equivalence algorithm. We consider a small cluster

of seven σ variables with indices in “σij index” row. The lattice has N = 43 = 64

cells. Each pair of σ variables in the same cell (cell index ↔ Cartesian coordinates

row) are bonded through a Jσ interaction. The pairs of spins (0, 65), (257, 337), and

(17, 82) are bonded through a J interaction. The initial value of label coincides with

the spin index. The following lines show the resulting label after the application of the

kernels scan covalent, scan cooperative, and analysis. At the third iteration, label

does not change, so this cluster has converged. The SW step ends when all the clusters

converge.

Swendsen-Wang Speedup Factor SF= tCPU/tGPU

L N ≡ L3 Temperature and pressure (TkB/4ϵ, Pv0/4ϵ)

(0.05,0.0) (0.05,0.6) (0.06,0.0) (0.06,0.6)

4 64 0.0617(12) 0.060(2) 0.052(12) 0.0549(9)

16 4,096 3.17(4) 2.6(8) 2.04(3) 2.14(3)

20 8,000 7.38(10) 6(2) 4.57(3) 4.77(4)

32 32,768 30.3(5) 22(8) 16.57(13) 17.2(2)

52 140,608 41.5(3) 25(6) 20.7(2) 21.6(2)

64 262,144 47.8(7) 49.1(7) 21.89(11) 22.79(11)

128 2,097,152 65.0(2) 72(2) 24.99(6) 26.21(9)

Table 2.3: Speedup factor (SF) of the GPU Swendsen-Wang algorithm respect to the

sequential implementation in the CPU. The thermodynamic conditions are specified

in the second row.
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MC steps that are necessary to obtain statistically uncorrelated configurations. As we

shall see, τ depends on the sampling algorithm and the thermodynamic conditions.

We estimate the time correlation function (Ref. [121], Sec. 1.3)

CM(t) ≡ ⟨Mi(t0 + t)M(t0)⟩ − ⟨M⟩2

⟨M2⟩ − ⟨M⟩2
, (2.8)

where M(t) ≡ 1
6N

max{Nq′}, and Nq′ is the number of σ variables in the state q′ ∈
{0, ..., q − 1}. We define τ as C(τ) = 1/e.

We plot CM(t) in Fig. 2.4. We consider the same parameters of the model as

in Tables 2.1 and 2.3. The thermodynamic conditions are T = 0.05(4ϵ/kB) for a

wide range of pressures −0.6 ≤ P (v0/4ϵ) ≤ 0.8, corresponding to deep supercooled

conditions. For the Metropolis algorithm, we find dynamic arrest of the system at

low Pv0/(4ϵ) = −0.6, with τ → ∞, corresponding to a glassy state. At intermediate

P (v0/4ϵ) = 0.1 and P (v0/4ϵ) = 0.6, close to the Widom line, we find τ ∼ 300 MC

Steps. For larger P (v0/4ϵ) = 0.7 and P (v0/4ϵ) = 0.8, the system is in the HDL region,

where the σ variables decorrelate fast (τ < 100). Comparison with SW shows that

cluster MC avoids the critical slowdown of the dynamics, even at the glassy state and

close to the Widom line (τ ∼ 20).

Finally, we measure the time cost of generating statistically independent configu-

rations in our workstation (Table 2.4). We find that, for TkB/4ϵ = 0.05 (supercooled

conditions), SW is faster than Metropolis at all P . We note that the time gain is

notable at low and intermediate-P . However, at high-P , the time difference almost
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Figure 2.4: Time correlation function CM (t) at T · kB/4ϵ = 0.05 for selected pressures (see

legend). Dashed line is set to CM = 1/e, as a guide to eye to estimate τ , CM (t = τ) ≡ 1/e.

Left: Parallel Metropolis algorithm. We distinguish three regimes for the HB dynamics. At

Pv0/4ϵ ≥ 0.7, fast CM decay corresponds to liquid water. At intermediate pressures 0.6 ≥
Pv0/4ϵ ≥ 0.1, the larger correlation time indicates we are close to the LDL-HDL transition.

At extreme low-Pv0/4ϵ = −0.6, we find dynamical arrest of the system corresponding to a

glassy state (τ →∞). Right: Swendsen-Wang algorithm. Critical slowdown of the dynamics

is avoided. The timescale of the x-axis has been zoomed to distinguish the curves better.

The size of the system is N = 32, 768.



2.6. Conclusions 67

N = 32, 768 Parallel Metropolis Parallel Swendsen-Wang

TkB/4ϵ Pv0/4ϵ τ/ MC Steps Time cost / ms τ/ MC Steps Time cost / ms

0.05

-0.6 >2000 >772.0 12 29.64

0.1 320 119.04 12 30.12

0.6 288 107.14 22 56.1

0.7 60 22.32 1 3.04

0.8 12 4.46 1 2.31

0.1 0.7 2 0.732 1 1.50

Table 2.4: Correlation time τ for parallel Metropolis and Swendsen-Wang algorithms

in MC Steps (TkB/4ϵ = 0.05 in Fig. 2.4) and the computational cost of simulating τ

MC steps in ms. The time cost of a single Metropolis update is ∼ 0.37-0.39 ms, while

for Swendsen-Wang is ∼ 2.3-3.0 ms for TkB/4ϵ = 0.05 and 1.5 ms for TkB/4ϵ = 0.1.

vanishes. This corresponds to a system forming small clusters. At higher T we find

that the time cost of computing these small clusters is not compensated by the faster

dynamics. For example, at TkB/4ϵ = 0.1 and Pv0/4ϵ = 0.7 the Metropolis algorithm

offers a better performance compared with SW.

2.6 Conclusions

In this chapter, we extended to bulk the FS water model, implement a parallel

Metropolis algorithm based on a layered partition, and adapt the label equivalence al-

gorithm from Hawick [257] and Kalentev [258] for simulations with the SW algorithm.

The parallel sampling of the FS model allows for reaching unprecedentedly large-size

water systems, while keeping a detailed description of the HB network. This work,

along with the parametrization around ambient conditions (Chapter 3), opens the path

for using of the FS model in problems of biological significance, as demonstrated for

monolayers (Sec. 1.5 and Refs. [5–9,73]). Employing the Metropolis algorithm, we have

benchmarked size systems of 17,576,000 water molecules, corresponding to a simula-

tion box of 75x75x75 nm3. This algorithm is suitable for simulations around ambient

conditions of hydrated large biological systems. On the other hand, we reach systems

of 2,097,152 molecules using SW, corresponding to a simulation box of 37x37x37 nm3.

Finally, we compare the performance of cluster and local MC at T corresponding to

the deep supercooled region. We estimate the computational time cost of generating

independent configurations, finding that SW is faster at the supercooled conditions

considered here. However, for increasing T Metropolis overcomes SW, since computing

small clusters is more expensive than local updates of the σ variables.
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Chapter 3

Parametrization and Phase

Diagram

In Chapter 2, we have developed parallel distributed Monte Carlo (MC) algorithms

that allow to simulate systems of the order of 107 Franzese-Satanley (FS) water

molecules. In this chapter, we adjust the parameters of the bulk FS model: J , Jσ,

and vHB (defined in Sec. 1.2) to quantitatively reproduce water experimental results

(density and response functions) around ambient conditions, a prerequisite for its use

as solvent in biological simulations. To this aim, we consider ab initio calculations

to estimate the ratio between Jσ and J and experimental results for bulk water to

estimate the definitive set parameters. The region of quantitative agreement extends

from atmospheric to 50 MPa, covering almost all pressure conditions allowing life on

Earth, in a temperature range that can be as large as 270 ≤ T/K ≤ 330 at ambient

pressure.

3.1 Introduction

As we have discussed in Chapter 1, water is of the utmost importance for biophys-

ical and biochemical systems due to its role in the function of proteins [259, 260],

membranes [68,235,261] or nanoparticles [262,263]. Computational research on these

systems has proven its power to unveil the relevant mechanisms underlying their be-

havior [264]. In this context, water modeling is essential: greater accuracy of the

solvent properties implies more reliable systems’ representations [235]. However, accu-

racy typically comes at a larger computational cost. In explicit solvent simulations, the

water model can become the limiting factor for accessible length and time scales [234].

In Chapter 2, we have extended to bulk the Franzese-Stanley (FS) water model that

represents the hydrogen bond (HB) network at the resolution of the water molecule [72,

134]. Thanks to efficient parallel distributed algorithms, we benchmarked accessible

size systems of ∼ 1.76 · 107 water molecules. To our knowledge, this limit is far

69
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beyond the already obtained in any other explicit solvent model with hydrogen-bonded

molecular resolution and cooperative effects. Hence, we have accomplished the first

requisite for the use of the FS model to hydrate large biological systems: reaching

large-size systems.

In this chapter, we address the second requisite for the use of the model in biological

simulations: its ability to reproduce the experimental equation of state of water, at

least around ambient conditions. To this aim, we parametrize the FS model according

to quantum ab initio calculations and experimental data (water density and response

functions) under life-relevant conditions. We validate the model and describe the

temperature T and pressure P thresholds of quantitative agreement. Beyond these

limits, the bulk FS phase diagram is qualitatively consistent with water, showing

dynamic and thermodynamic anomalies as the FS monolayer (Sections 1.3 and 1.4).

Concerning the Thermodynamics of the model, we note that the Gibbs free energy

of the bulk FS system is not the same as in the FS monolayer. More precisely, in

2D, each water molecule has four σij variables and the number of accessible states is

Ω = q4 ∼ 1.3 · 103 (q = 6) whereas, in 3D, each molecule has six nearest neighbors,

thus Ω = q6 ∼ 4.7 · 105. In terms of entropy, S ∝ ln(Ω), it corresponds to an increase

of ∼ 50%. Regarding the enthalpy, it is controlled by NHB and Nσ. Since a water

molecule cannot form more than four tetrahedral HBs, the coordination number of

the HB network is 4 in both monolayer and bulk cases (Sec. 2.2.1). As a consequence,

the covalent contribution to the HB enthalpy remains upon change from monolayer

to bulk. On the other hand, the change of dimension increases the total number of

cooperative bonds from 6 to 15. However, the impact of this change on the enthalpy can

be controlled by tuning Jσ. In summary, the enthalpy of the system is approximately

the same regardless the dimension of the sample but the entropy is larger for the bulk

case. Hence, the change of Gibbs free energy G ≡ H − TS implies that the results

obtained in 2D cannot be straightforwardly generalized to the 3D system. In any case,

the results of this chapter will show that this effect has no qualitative impact at the

thermodynamic conditions of biological interest.

The significance of the work developed in this chapter, along with Chapter 2, lies

in opening a path to developing simulations for biological systems in explicit-solvent,

using lattice representations. In particular, in Chapter 5 we consider models that

represent proteins at residue or sub-residue resolution, e.g. the OPEP force field [232],

and map protein configurations into their corresponding lattice representation. This

approach allows including effects that arise from HB interactions and cooperativity,

thus improving the reliability of the predictions without a significant increase of the

computational effort. As a future perspective, the bulk FS model developed here can

be adapted for its use in combination with lattice representations of proteins [265],

membranes [199] or bacteria nucleoids [200].
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3.2 Parametrization of the model

3.2.1 Estimate of Jσ/J

To estimate the relative contributions from covalent (Eq. 1.5) and cooperative (Eq. 1.6)

terms to the total HB energy, we pay attention to energy decomposition analysis (EDA)

methods. EDA is employed in Computational Quantum Chemistry to divide total

interaction energies obtained from ab initio methods into physically meaningful terms.

Here, we follow absolutely localized molecular orbitals (ALMO) EDA [266] applied

to density functional theory (DFT) calculations on water clusters [267]. ALMOs are

molecular orbitals expressed in the basis set of atomic orbitals of a single molecule.

ALMOEDA separates the total interaction energy of a water cluster into three

terms [266]:

ETOT = EFRZ + EPOL + EDEL. (3.1)

The first is the frozen energy term, defined as the energy change due to bringing

infinitely separated molecules into the complex geometry of the system. It collects

all isotropic contributions to the total energy: molecular orbitals (MOs) relaxation to

satisfy the Pauli exclusion principle, permanent electrostatic interactions and van der

Waals dispersion, if included in the DFT potential. This term collects all isotropic

contributions to the total energy.

EPOL is the polarization energy, defined as the energy decrease due to ALMO’s

relaxation in the field of all other molecules in the system. The MOs are constrained

to remain absolutely localized; hence no charge transfer is accounted for. Three-body

contributions are dominated by EPOL [267].

EDEL accounts for the remaining part of the total energy. It corresponds to the

delocalization energy, defined as the energy difference between the state of polarized

ALMOs and the fully optimized state of delocalized MOs. This term can be further

decomposed into

EDEL = ECT + EHO, (3.2)

charge transfer and high-order energy terms, respectively. The latter are small and

can be safely neglected. Then, delocalization energy can also be called charge transfer.

In the following, we assume that EDEL corresponds to the FS covalent term, while

EPOL corresponds to the FS cooperative term. Although EDEL includes cooperative

effects to some extent [268], we justify our assumption by the strong directional dipole-

dipole component of the HB interaction that is originated by the charge transfer in

MOs, which is included in the FS covalent term. Moreover, ALMOEDA polarization

energy accounts for the orbital relaxation in the field of all other molecules in the

system. This energy decrease is dominated by many-body effects, precisely those in

the FS cooperative term.
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Recently, ALMOEDA has been applied to clusters of ∼ 125 water molecules at am-

bient conditions in bulk liquid [268], air-water interface [269,270], and water and ions

solutions [271]. However, the authors restricted their analysis to the charge transfer en-

ergy, while frozen and polarization terms were not explicitly computed. For this reason,

we focus on the research performed by Erika A. Cobar et al. in Ref. [267]. They esti-

mate minimum-energy configurations of water clusters of N = 2− 5, 13, 17 molecules,

compute EFRZ, EDEL, and EPOL, and further decompose them into many-body expan-

sions. Based on their results, we compute the ratio between total polarization and

delocalization energies. Letting EPOL(N) = −JσNσ(N) and EDEL(N) = −JNHB(N),

we find

Jσ
J

=
EPOL(N)

EDEL(N)

NHB(N)

Nσ(N)
, (3.3)

where NHB(N) and Nσ(N) are the number of directional and cooperative bonds in the

minimum-energy configuration of the FS cluster of size N . More precisely, NHB(N) is

the maximum number of HBs that N water molecules in a simple cubic lattice can form

and Nσ(N) = 15N . Table 3.1 reports the estimates of Jσ/JHB for each N . We find

that EPOL/EDEL apparently reaches a plateau for increasing N . Hence, we assume

that (EPOL/EDEL)(N = 17) = 1.25 is valid in the thermodynamic limit N → ∞.

Then, for arbitrary large N :

Jσ
J

=
EPOL

EDEL

NMax
HB

NMax
σ

= 1.25
2N

15N
= 0.167, (3.4)

which is the desired result.

ALMOEDA FS MODEL

N EPOL/(kcal ·mol−1) EDEL/(kcal ·mol−1) EPOL/EDEL Nσ NHB Jσ/J

2 -1.6 -1.3 1.231 30 1 0.04

3 -7.5 -4.9 1.530 45 2 0.10

4 -16.6 -10.9 1.523 60 4 0.10

5 -23.5 -14.8 1.589 75 5 0.11

13 -65.8 -54.1 1.216 195 21 0.13

17 -101.5 -81.2 1.250 255 29 0.14

≫ 17 1.250 15N 2N 0.17

Table 3.1: Estimate of Jσ/J based on ALMOEDA results. For each cluster size N , we

calculate EPOL and EDEL summing up the many-body contributions of Cobar et al.’s

Ref. [267] obtained with the ωB97X-D functional. The fourth column reports the ratio

EPOL/EDEL. Next, the table contains the number of Nσ(N) and NHB(N) defined in

the text. The last column shows the resulting Jσ/J using Eq. 3.3. Finally, assuming

EDEL/EPOL = 1.25 is valid for arbitrary large N , we estimate Jσ/J = 0.17 (last row).
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3.2.2 Choice of parameters and fitting to experimental data

In this section, we describe our procedure to find a set of parameters and rescaling

functions that translate the equation of state from internal units into SI units. We

note that the rescaling functions cancel all the uncertainty encoded in the choice of

parameters, so the obtained equation of state is quantitatively consistent with water

around ambient conditions. Comparison with experiments (Sec. 3.4) determines the

P and T thresholds for the agreement between model predictions and experimental

results.

We restrict the fitting to linear rescaling functions:

f = a · f̂ + b, (3.5)

where a and b are constants, f is any thermodynamic observable, and f̂ is the di-

mensionless f . Despite it may be seen as a serious oversimplification, we obtain good

results under the linear assumption. Alternatively, machine-learning approaches could

be employed to fit more complex functions, but this is beyond the scope of this work.

We perform simulations with different sets of parameters, where J and Jσ are

chosen under the constraint in Eq. 3.4 and vHB is changed freely. In particu-

lar, we consider {J/4ϵ = 0.5, Jσ/4ϵ = 0.08} with vHB/v0 ∈ {0.5, 0.6, 0.7}, and

{J/4ϵ = 0.2, Jσ/4ϵ = 0.03} with vHB/v0 ∈ {0.2, 0.5}. For each set of parameters,

we find rescaling functions for T and P fitting best the T -P phase diagram of the

model with experiments (Appendix C). First, we calculate the density1 ρ ≡ N/V , the

isothermal compressibility

KT ≡ −
1

⟨V ⟩

(
∂⟨V ⟩
∂P

)
T

=
⟨V 2⟩ − ⟨V ⟩2

kBT ⟨V ⟩
, (3.6)

and the specific heat

CP ≡
(
∂⟨H⟩
∂T

)
P

=
⟨H2⟩ − ⟨H⟩2

kBT 2
. (3.7)

Second, we describe the phase diagram by the maxima of ρ (Temperature of maxi-

mum Density, TMD) and the minima of KT and CP along isobars. To identify the

atmospheric pressure, we calculate the ratio

r̂(P̂ ) ≡
T̂Kmin

T
(P̂ )− T̂TMD(P̂ )

T̂Cmin
P

(P̂ )− T̂TMD(P̂ )
, (3.8)

and compare it to the experimental value r(1 atm) = (319.65 − 277.15) K/(309.15 −
277.15) K = 1.33 [272]. Based on the P̂ -value corresponding to atmospheric pressure,

we propose linear functions that rescale P̂ and T̂ to fit the phase diagram of water

1For simplicity, we write V instead of Vtot ≡ Nr3 +NHBvHB (Eq. 1.1) hereafter.
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to the experimental results. After comparison among different sets of parameters

(Appendix C), we find that the best candidate is

J/4ϵ = 0.5

Jσ/4ϵ = 0.08

vHB/v0 = 0.6.

(3.9)

Next, we perform extensive simulations with the set of parameters in Eq. 3.9,

following the method described in Sec. 3.3. The equation of state relates the ther-

modynamic conditions (T̂ , P̂ ) with the enthalpy and density (ĥ, ρ̂) of the system. To

obtain the equation of state in SI units, we independently fit T , P , ρ, and CP to

experimental data according to the formulas

T = (T̂ · 140.57 + 185.47)K

P = (P̂ · 469.46− 217.89) MPa

ρ = (ρ̂ · 1527.3− 23.102) kg/m3

CP = (ĈP · 4.455 + 3.568) J · g−1 ·K−1.

(3.10)

We fit CP instead of h because there is no experimental evaluation of absolute h,

since only enthalpy differences ∆h bear physical meaning. To estimate h in SI units,

we integrate CP along T , according to Eq. 3.7.

3.3 Simulation Method

We performMonte Carlo (MC) simulations ofN = 32, 768 water molecules, at constant

P and T in a cubic (variable) volume V with periodic boundary conditions. We update

the HB network with the parallel Monte Carlo (MC) algorithm designed to the present

model, as explained in Chapter 2. For high temperatures TkB/4ϵ ≥ 0.16, we apply

parallel local Metropolis algorithm, otherwise parallel cluster Swendsen-Wang (SW).

We recall that SW avoid the critical slowdown of the dynamics at low-T , but the

performance of Metropolis is better at the high-T regime (see Sec. 2.5). We calculate

the equation of state along isobars in the range of Pv0/(4ϵ) ∈ [−0.8, 1.0] separated
by intervals of ∆P ≤ 0.1(4ϵ)/v0. The temperature ranges from TkB/(4ϵ) ∈ [0.01, 2.0]

with ∆T ≤ 0.1(4ϵ)/kB if TkB/(4ϵ) ∈ (0.1, 2.0], and 10−4∆TkB/(4ϵ) ≤ 10−2(4ϵ)/kB,

if TkB/(4ϵ) ∈ [0.01, 0.1]. We calculate each isobar by sequential annealing starting at

T = 2(4ϵ)/kB and letting the system equilibrate. For every state point, we average over

104 - 105 MC steps after equilibration, with a number of independent configurations

between 103 - 104 depending on the state point. We check that the system is in

equilibrium probing the fluctuation-dissipation theorem as discussed in Appendix D.
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3.4 Results

First, we analyze the behavior of density. We consider that the model results agree

with the experiments if their relative difference is smaller than 0.4%. According to

this criterion, the density calculations from the model agree with the experimental

results in the range 233 ≤ T/ K ≤ 425, 0.101 ≤ P/ MPa ≤ 120 (Fig. 3.1). At negative

pressures P = −20 MPa and −70 MPa, the model calculations agree with the complete

range of temperatures available in Ref. [273]: 257 ≤ T/ K ≤ 333. For P = −100 MPa,

we find no quantitative agreement. At high-P 160 MPa and 200 MPa, the low-T

thresholds are 315 K and 323 K, respectively, and the high-T threshold is 425 K.

200 250 300 350 400 450

Temperature T / K

900

950

1000

1050

1100

D
en

si
ty

 ρ
 /

 (
k

g
 ·

 m
-3

)

P=200 MPa

P=160 MPa

P=120 MPa

P=100 MPa

P=70 MPa

P=40 MPa

P=20 MPa

P=0.101 MPa

P=-20 MPa

P=-70 MPa

P=-100 MPa

Figure 3.1: Isobaric density: comparison with experiments. Lines correspond to FS calcu-

lations and symbols to experimental results reported in Refs. [274] △, [275] ⃝, [273] ▽,

and [276,277] □. The colors indicate the pressure as listed in the legend.

The FS model can equilibrate large water systems at low-T conditions far from

the experimental limit [1,123,134]. To benchmark the accessible thermodynamic con-

ditions of the model, we extend our analysis of the density to the deep supercooled

region T ≥ 180 K, for a wide range of pressures −590 ≤ P/ MPa ≤ 260 (Fig. 3.2). For

P ≥ 180 MPa, ρ increases monotonously, as an Argon-like liquid. In the model, this

corresponds to an enthalpy penalty on HB formation ∆HHB = −J+ P̂ vHB < 0. Under

these conditions, NHB decreases upon cooling, resulting in a monotonous increase of ρ.

For P < 180 MPa, we find the TMD, as in water. By further decreasing T , we find that

ρ displays a sharp decrease that becomes weaker as P decreases. We understand this

behavior as a consequence of the dependence of ρ on NHB [123], since NHB displays a

sharp increase at high-P that becomes smooth at low-P . This apparent discontinuity

of ρ is consistent with the presence of a first order liquid-liquid phase transition end-

ing in a liquid-liquid critical point, as demonstrated for the FS monolayer [123, 134].

By further lowering T , we find a locus of density minima along isobars (Temperature
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of minimum Density, TminD), as in atomistic models [171]. Experimental results in

confined water are consistent with the occurrence of the TminD line [47,49], but they

are controversial [278]. At low-P and high-T we find the liquid-gas (LG) spinodal,

defined as the stability limit of the liquid with respect to the gas phase.
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Figure 3.2: Equation of state (T, P, ρ) of the system, including supercooled conditions. (a):

Black lines represent the isobaric density variation of the FS model. From top to bottom:

P/4ϵv−1
0 = 1 (260 MPa) to P/4ϵv−1

0 = −0.8 (−590 MPa) every ∆P/4ϵv−1
0 = 0.1 (∼ 50 MPa).

In addition, the orange line corresponds to the density variation at atmospheric pressure,

with P/4ϵv−1
0 = 0.45. The red line indicates the LG spinodal, the brown line the TMD,

and the turquoise, the TminD. Symbols correspond to experimental results for the TMD in

Refs. [274] ⃝ and [273] ♢. The gray shadow highlights the region of experimental results

considered in Fig. 3.1. On top of it, the green area marks the region where the model results

agree with the experiments, as described in the text. The blue ellipse is a guide for the

eye marking ambient conditions (300 K, 0.1 MPa). (b): Black and blue lines correspond to

isochores at the T -P phase diagram calculated with the FS model. From top to bottom,

ρv0 = 0.8 (1200 kg · m−3) to ρv0 = 0.4 (600 kg · m−3) every ∆ρv0 = 0.02 (30 kg · m−3).

Symbols correspond to experimental results for the TMD line, from Refs. [274] ⃝, [279] ♢,

and [280] □. Any other element in this panel bears the same meaning as in (a).
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We further characterize the quality of the model calculations through the response

functions KT , αP , and CP . We estimate the isothermal compressibility by numer-

ical derivation of ρ in Eq. 3.10: KT = 1/⟨ρ⟩
(
∂⟨ρ⟩/∂P

)
T
. We consider that the

model calculations and experimental results agree if they coincide within the error

bar (Fig. 3.3 a). At P = 0.101 MPa and 10 MPa, the calculated KT agrees with

experiments within the temperature range 255 ≤ T/ K ≤ 354. At larger pres-

sures P = 50 MPa and 100 MPa the T -range shifts towards higher values, being

298 ≤ T/ K ≤ 368 and 350 ≤ T/ K ≤ 376, respectively. We do not find agreement

at higher-P . The model also reproduces the position of the KT minima in the phase

diagram for −130 ≤ P/ MPa ≤ 70 (Fig. 3.3 b). However, the locus of KT maxima is

shifted toward lower-T than in experiments [280].

Next, we calculate the thermal expansivity

αP ≡
1

⟨V ⟩

(
∂⟨V ⟩
∂T

)
P

= ⟨ρ⟩
(
∂1/⟨ρ⟩
∂T

)
P

=

(
∂ ln

(
1/⟨ρ⟩

)
∂T

)
P

(3.11)

as a numerical derivative of the density. We manipulate Eq. 3.11 to avoid numerical

errors arising from finite difference calculations. We find better agreement for αP

compared with KT (Fig. 3.4). At atmospheric pressure, the temperature thresholds

are 253 K and 383 K. For higher-P , 10 ≤ P/ MPa ≤ 100, the model agrees with the

experiments at the range of temperature 273 ≤ T/ K ≤ 373, covering the entire range

of available data for P ≤ 70 MPa. At P = 160 MPa, we find that the model agrees
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Figure 3.3: Isobaric KT calculated as the numerical derivative of the density along isotherms.

(a): Comparison of FS calculations (lines) with experiments (symbols), as in Fig. 3.1. The

experimental results were obtained from Refs. [281, 282] △, [29] ⃝, [277, 283] ◁, [284] ▽,

[31, 277] ♢, and [282, 285] □. (b): Regions of experimental data considered in panel (a)

(grey) and agreement between model and experiments (green) for KT in the P -T phase

diagram. We plot the locus of KT minima (indigo line) and maxima (magenta line) along

isobars calculated with the model. Experimental results for KT minima were obtained from

Ref. [286]⃝, [285] △, and [280] brown ♢ and KT maxima from Ref. [280] black ♢. The blue

ellipse indicates the ambient conditions, as in Fig. 3.2.
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Figure 3.4: Isobaric αP calculated as the numerical derivative of the density along isobars.

Lines and symbols in both panels are as in Fig. 3.3. (a): We consider experimental results

in Refs. [286] △, [287] ⃝. (b): Magenta line is the FS calculation of the locus αP (T ) = 0,

while symbols correspond to experimental measurements in Refs. [286] ⃝, and [287] ♢.

within the range 324 ≤ T/ K ≤ 410. Unlike KT , αP does not display maxima or

minima around 300 K. Therefore, we plot the locus of T where αP changes its sign,

i.e. αP (T ) = 0. By definition, this locus is the TMD line. Our results show that

the FS estimate of αP (T ) = 0 follows the same trend as the experimental results, but

shifted to a slightly higher T . Quantitative agreement is only found for atmospheric

pressure and 10 MPa (Fig. 3.4 b).

Finally, we calculate the specific heat as the numerical derivative of the enthalpy

H with respect to T and as H fluctuations (Eq. 3.7). After rescaling ĈP according

to Eq. 3.10, we compare results with experiments in Fig. 3.5 (a). We find that model

calculations agree with experiments in a range of 270 ≤ T/ K ≤ 333 at atmospheric

pressure. The T range decreases as P increases, up to 297 ≤ T/ K ≤ 307 K for

P = 100 MPa. At all P , we find the locus of CP minima along isobars. However,

experiments only show a minimum at atmospheric pressure [288].

We summarize the results in Fig. 3.6 and plot the phase diagram containing the

experimental results and model calculations for the TMD and the loci of minima of

CP and KT . The gray shadow highlights the T conditions where experimental data

along isobars are available, i.e. the union of the gray regions in Figs. 3.2-3.5. We

advert that it does not cover experimental results on the projection of extrema of the

thermodynamic observables into the T -P phase diagram. In light green, we indicate

the conditions where the model agrees with at least one observable, i.e. the union of

the green regions in Figs. 3.2-3.5. We note that it coincides with ρ agreement. Last, in

dark green, we highlight the region where the model is validated, i.e., where the model

agrees with all the experiments under consideration. We find that it corresponds to

the intersection of KT and CP regions of agreement. As a consequence, the model

is validated in a range of T 270 ≤ T/ K ≤ 333 at ambient pressure. This interval

decreases as P increases up to 297 ≤ T/ K ≤ 307 for P = 50 MPa.
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Figure 3.5: Isobaric CP calculated as numerical derivative of the enthalpy. Lines and symbols

in both panels are as in Fig. 3.3. (a): Experimental results are obtained from Refs. [287]

△, [30] ⃝, [289, 290] ◁, [288] ♢, and [291] □. (b): Red line is the locus of CP minima along

isobars, calculated with the FS model, while symbol corresponds to the experimental value

in Ref. [288] ⃝.
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available, for at least some observable f . This shadow covers only data relating (T , P , f),

excluding the projections of extrema of f into the phase diagram. Light-green highlights

the region where the FS model calculations agree with at least some observable (density).

On top of it, the green region describes the thermodynamic conditions where there is a

full agreement between the model and the experiments. The blue ellipse indicates ambient

conditions, as in Fig. 3.2. Lines (FS model) and symbols (experiment) correspond to the loci

of TMD (brown), Cmin
P (T ) (red), Kmin

T (T ) (violet), and KMax
T (T ) (black). For each locus we

use the same symbol code as in Figs. 3.2, 3.3, and 3.5.



80 Chapter 3. Parametrization and Phase Diagram

3.5 Discussion

The results show that the FS model with parameters J/4ϵ = 0.5, Jσ/4ϵ = 0.08, and

vHB/v0 = 0.6, with the rescaling functions in Eq. 3.10, reproduce the experimental

equation of state of water in a range that extends for 60 degrees around ambient

conditions (300 K, 0.1 MPa). For increasing P , the range of T decreases to nearly 40

and 10 degrees, for P = 10 MPa and 10 < P/ MPa ≤ 50, respectively. This region

covers almost all thermodynamic conditions allowing life on Earth, prompting the FS

model for its use as a solvent in biological simulations. The average ocean depth is

3.7 km [292] , which corresponds to a pressure of ∼ 40 MPa.

According to our results, the FS model represents the density of water in good

agreement for a wide region of the phase diagram (Fig. 3.2). In contrast, the specific

heat (enthalpy) poorly agrees with experiments. In particular, we note that for P

above 50 MPa, the model results are not in qualitative agreement with the experiments

(Fig. 3.5): whereas experimental CP monotonously decreases upon cooling, the model

finds a minimum. We argue that this different behavior of the model compared with

the experiments arises from the hypothesis that the cooperativity in the model does

not depend on P (Sec. 1.2). The model decouples the formation of directional and

cooperative bonds, the former governed by Jeff , the latter by Jσ. To represent water,

cooperative bonds must be formed once the HB network is already built, i.e. Jσ ≪
Jeff . Our results indicate that this assumption fails at 50 MPa (P̂ = 0.55), where

Jeff = 0.17 ∼ Jσ.

We note that the atomistic model q-TIP4P/F shows a similar trend compared to

FS, with increasing CP upon cooling even at extremely high-P 400 MPa [90]. Moreover,

theoretical equations of state of water display minima of CP for P up to 50 MPa [293] or

70 MPa [290], but at lower T . From these considerations, we conclude that introducing

a P dependence on the cooperative interaction could be sufficient to shift the CP

minima toward lower T to be consistent with experiments and in accordance with

atomistic models and equations of state.

3.6 Conclusions

In this chapter, we parametrize the FS model for bulk water according to quantum ab

initio calculations [267] and experimental data [29–31, 272–277, 279–291]. The results

show good agreement between model results and experimental data around ambient

conditions: from 270 ≤ T/ K ≤ 330 at P = 0.1 MPa to 295 ≤ T/ K ≤ 305 at

P = 50 MPa. Beyond these thresholds, the model is still qualitatively consistent

with water. Thanks to the efficient parallel Monte Carlo algorithms developed in

Chapter 2, the bulk FS model can equilibrate unprecedentedly large-size systems of the

order of 1.76 ·107 water molecules, reproducing the experimental density and response
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functions. Thus, the model is suitable for simulating large systems in explicit solvent,

as necessary for biological problems. Contrary to other explicit solvent CG models, the

FS model includes a full description of the HB network at molecular resolution. This

is essential to study the possible effects of polarization and cooperativity of the HBs

in the behavior of proteins. We can conclude that the extended FS model is suitable

for simulations of large biological systems.



82 Chapter 3. Parametrization and Phase Diagram



Chapter 4

Supercooled Water

Water is of great interest due to its unusual behavior compared to Argon-like fluids,

showing thermodynamic, structural, and dynamic anomalies. To explain its unique

properties, several thermodynamic scenarios for supercooled water have been pro-

posed. Recent experiments and simulations support the hypothesis that water ex-

hibits a liquid-liquid phase transition (LLPT) between low density liquid (LDL) and

high density liquid (HDL) phases, ending in a liquid-liquid critical point (LLCP).

However, definitive experimental evidence is elusive due to rapid crystallization at

the low-temperature conditions at which the LLCP is predicted. In this chapter, we

study the Franzese-Stanley (FS) model for bulk water at deep supercooled conditions.

Our results show the presence of a LLPT ending in a LLCP at TC = (186± 2) K and

PC = (174±14) MPa, consistent with estimates from atomistic models. Moreover, the

FS phase diagram recalls the structural transformation occurring among experimen-

tally observed LD-amorphous (LDA), HD-amorphous (HDA) and VHD-amorphous

(VHDA). We rationalize the transition between VHDA-HDA as a continuous struc-

tural change, and between HDA-LDA as a first order phase transition.

4.1 Introduction

Despite the importance of water in many aspects of life, there are still open questions

concerning its complex nature [20,22–24]. As we have already mentioned in Chapter 1,

water exhibits more than 60 anomalies [2], like the existence of a density maximum in

the liquid phase at ambient pressure and temperature T ∼ 4◦C or the anomalous in-

crease in the specific heat CP , isothermal compressibility KT , and absolute value of the

thermal expansivity αP upon cooling liquid water toward the melting line and below

it, in the supercooled liquid state [20, 22, 24,294]. Another intriguing feature of water

is polyamorphism [23,25]. Experiments on amorphous ice reveal the presence of three

structurally and dynamically distinct amorphous states, the low density amorphous

(LDA), the high density amorphous (HDA), and the very high density amorphous

83
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(VHDA) [295]. However, the nature of the transitions between them is unclear: the

LDA → HDA resembles a first order phase transition, whereas HDA → VHDA looks

like a weakly discontinuous or continuous transition [23,296].

The origin of anomalous properties of water has been largely debated since the

80s [23, 24, 36, 40, 78, 85, 297] and a series of thermodynamic scenarios have been pro-

posed [34, 36, 37, 39]. In particular, Poole et al., based on molecular dynamic sim-

ulations, proposed a liquid-liquid second critical point (LLCP) in the supercooled

region [37]. According to this scenario, the LLCP is located at the end of a first order

phase transition separating low density liquid (LDL) and high density liquid (HDL)

metastable water phases with different density, structure and energy. The experimen-

tally observed polyamorphism is usually interpreted as a signature of liquid polymor-

phism, as predicted in the LLCP scenario [45,298]. However, these phenomena are not

necessarily connected, as LDA-HDA transition is mechanically induced in non-ergodic

states, while LDL-HDL is thermodynamically induced in ergodic states [299].

Multiple experiments and computational approaches support the LLCP hypothe-

sis. On the experimental side, structure factor measurements can identify the frac-

tion of HDL(HDA) and LDL(LDA) in a sample through neutron diffraction, neu-

tron scattering or X-ray scattering techniques [137]. For instance, X-ray scattering

experiments on amorphous ice show results consistent with a first order phase tran-

sition [300, 301]. More recently, Kim et al. conducted experiments on micro-sized

liquid water droplets [29, 41, 42] and bulk [44]. Their results show a sudden change

in the structure factor at one order of magnitude shorter times than subsequent crys-

tallization, consistent with LLPT for T = (205± 10) K and pressures between 1 atm

and 350 MPa [44], and the presence of a LLCP at positive pressure [29, 44]. On the

computational side, the presence of the LLCP has been proven for the ST2 [302], hy-

drophobically confined Franzese-Stanley (FS) monolayer [134], rigid TIP4P/2005 and

TIP4P/Ice [85], and flexible and polarizable WAIL [86] water models, or Stillinger-

Weber model for silicon [303]. Moreover, the phenomenological two-states equation

of state (TSEOS) assumes the LLCP hypothesis [175] and fits remarkably well to a

number of water models [86, 89, 90]. Although the TSEOS fitting method does not

constitute a definite proof, it is particularly useful if simulation data are not available

at the hypothesized critical point, showing that the model is at least consistent with

the presence of a LLCP.

In this chapter, we study the phase diagram of supercooled bulk FS water, that has

been parametrized according to ab initio calculations and experiments to reproduce

the experimental equation of state of water around ambient conditions (Chapter 3).

Thanks to a percolation mapping [123], cluster Monte Carlo (MC) simulations of

the bulk FS model are suitable to equilibrate large samples of N ∼ 2 · 106 water

molecules at deep supercooled conditions (Sections 2.4,2.5), far above the accessible

sizes in atomistic models. Such large-size systems are necessary to simulate problems
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of biological relevance, including explicit solvent (Chapters 5 and 6).

Following a state-of-the-art procedure [85, 86, 134, 304], we show the presence of a

LLCP in the bulk FS model belonging to the Ising 3D universality class. The bulk FS

LLCP is located at thermodynamic conditions in accordance to the calculated in atom-

istic models. Regarding the phase diagram at the critical region, the FS model offers

a coherent interpretation of water’s polymorphism in terms of a continuous structural

change between very high density liquid (VDHL) and HDL and a first order LLPT

between HDL and LDL phases. Below the critical pressure, we distinguish among

three states of water: VHDL-like, HDL-like, and LDL-like separated by continuous

transitions. The distinct forms of water differ in their density, energy, and dynamical

properties of the HBs.

4.2 Methods

4.2.1 MC simulations for the phase diagram

We follow the same protocol as in Sec. 3.3. For the sake of consistency, we describe it

here using SI units.

We perform MC simulations at constant N , P and T in a cubic (variable) volume V

with periodic boundary conditions, adopting the parametrization described in Eqs. 3.9

and 3.10. We conduct extensive simulations for N = 32, 768 water molecules. We

calculate the equation of state along isobars in the range of −540 ≤ P/ MPa ≤ 160,

separated by intervals of ∆P ≤ 50 MPa. The range of temperatures is 186 ≤ T/ K ≤
470, with simulated thermodynamic points at variable resolution 0.014 ≤ ∆T/ K ≤ 14,

depending on the region of interest. The selected minimum resolution corresponds to

∆T · kB/4ϵ = 10−4, two orders of magnitude below the characteristic T -scale given

by Jσ. We apply the sequential annealing protocol along isobars, starting at high

T and letting the system equilibrate. Then, the last configuration, equilibrated at

temperature T , is employed as the starting configuration of the following temperature

T − ∆T . We average over 104 - 105 MC steps after equilibration, with a number

of independent configurations between 103 - 104 depending on the state point. For

high temperatures T ≥ 215 K, we apply parallel local Metropolis algorithm, otherwise

parallel cluster Swendsen-Wang (SW) to avoid the critical slowdown of the dynamics

(Sec. 2.5).

For all pressures P and the entire range of simulated T , we check that the sys-

tem is in equilibrium probing the fluctuation-dissipation theorem, as discussed in Ap-

pendix D.
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4.2.2 MC simulations for the estimation of the LLCP

To analyze the finite size effects associated with the divergence of the fluctuations

near criticality, we perform simulations of systems of N = 512, 1,728, and 4,096

molecules. Considering such small-size systems is necessary to obtain trajectories that

show HDL and LDL coexistence, thus adequately describing the free energy barrier

between them. Larger size systems display a single HDL→LDL transition upon cooling

within accessible simulation times.

For 512 ≤ N ≤ 4, 096, we apply the sequential annealing protocol starting at

T = 270 K, as we are interested in the low-T regime. We perform sequential Wolff

cluster simulations [305], since we find that this algorithm enhances the crossing of the

free energy barrier compared with SW. The minimum resolution in T is ∆T = 0.014 K,

the same as for N = 32, 768, to consistently compare results obtained at all sizes. For

each N and P , we tune the simulation time at T conditions close to coexistence so that

the system displays multiple transitions between the two states. In particular, we find

that the time window required to observe multiple transitions increases in at least one

order of magnitude for increasing N , ranging from 105 to 108 MC steps (Table 4.1).

For N = 4, 096 we only observe coexistence for P ≥ 110 MPa.

Finally, we attempted to observe multiple transitions at larger sizes. In particular,

we performed additional simulations for N = 8, 000 at P ≥ 95 MPa. According to our

results for smaller-size systems, the expected number of MC steps required to observe

multiple transitions should be 109 − 1010. However, even using faster parallel SW

algorithm we reach 108 MC steps within accessible computational effort (Table 4.1).

4.2.3 Estimation of the LLCP

To rigorously prove the presence of the LLCP, we need to find the correct order pa-

rameter x describing the phase transition. In fluid-fluid phase transitions of liquids

with short-range interactions, the critical point belongs to the 3D Ising universality

class [33, 86]. Hence, a definite proof that the FS model displays a LLCP is that the

fluctuations of x behave as expected the expected for the magnetization of the Ising

3D model at the critical point.

According to the NPT -ensemble finite size scaling theory for fluids [83], the order

parameter describing a fluid-fluid phase transition is a linear combination M ≡ ρ̄+sē,

where ρ̄ and ē are dimensionless density and energy and s is the so-called mixing

parameter. This linear combination is necessary to symmetrize the probability dis-

tribution of the states corresponding to HDL and LDL phases, as required at the

LLCP.

We apply the histogram reweighting method [306] to find the combination of TC ,

PC , and s for which the fluctuations of M behave as expected for the Ising 3D crit-

ical point. First, we perform simulations at Ti and Pi conditions close to the phase
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N Pressure P/ MPa Multiple transitions? MC steps (Time Cost)∗

512
P ≥ −120

YES

1e05 (1 min)

P < −120 1e06 (10 min)

1,728
P ≥ −20 1e07 (2-3 h)

P < −20 1e08 (20-30 h)

4,096
P ≥ 110

1e08 (2-3 days)
P < 110

NO
8,000 P ≥ 95 1e08 (1-4 days)∗∗

Table 4.1: Simulation times considered to analyze the HDL-LDL transition, depending

on N and P . We increase the simulation time in one order of magnitude by decreasing

P at constant N and by one or two orders by increasing N at constant P . Hence, the

analysis is limited to N = 4, 096 at high P ≥ 120 and N ≤ 1, 728 for any P . The time

cost in parentheses corresponds to a workstation with CPU XenonW-2155 of 3.5 GHz

(sequential Wolff update of the σij variables) and GPU NVIDIA RTX 2080Ti (parallel

Metropolis update of the ηij variables, Sec. 2.2.2).
∗ “MC Steps (Time Cost)” stand for a single T . For each isobar, we simulate at least

five temperatures around the transition.
∗∗ Parallel Swendsen-Wang simulations (N = 8, 000).

transition and estimate the histogram of visited configurations with a given e and ρ,

Hi(Ti, Pi; e, ρ). Hi is an approximate calculation of the correct probability density dis-

tribution corresponding to a simulation run of infinite time. Next, we combine a set

of histograms Hi and calculate the corresponding H(T, P ; e, ρ) at T and P conditions

close to the simulated Ti and Pi. Further details on the histogram calculation are

described in Appendix E. Then, we integrate H(T, P ; e, ρ) along the direction of M

and rescale the order parameter m ≡ B(M−MC) so that its probability density distri-

bution Q(m) have zero mean and unit variance. Q(m) is ultimately compared to the

probability density distribution of the order parameter at the critical point belonging

to the Ising 3D class of universality, Q3(m).

This method allows for consistently calculating both the location of the critical

point (TC , PC) and the s defining M , constituting rigorous proof of the occurrence

of the LLCP. It has been previously applied in a number of cases, including the FS

monolayer [134], confined Lennard-Jones fluid [304], rigid [77,85] and flexible [86] water

models, and the Stillinger-Weber model for silicon [303].

Here we find that the calculated Q(m) systematically deviates from Q3(m) (Ap-

pendix F, Fig. F.1). To overcome this issue, we add a correction term to m, testing

a new order parameter x = x(m) such that Q(x) fits well to Q3(m). The corrected

order parameter is

x ≡ B0

(
m+ λ2 sin(m/λ)−MC,0

)
, (4.1)
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where λ is a new free parameter in the fitting procedure, andB0 andMC,0 are calculated

so that Q(x) has zero mean and unit variance. Further details on the functional form

of x and its justification are discussed in Appendix F.

4.3 Results

4.3.1 Bulk FS thermodynamics at the supercooled region

At temperatures below the gas-liquid phase transition (LG Spindoal), we find along

isobars a temperature of maximum density (TMD) as in water, see Fig. 4.1 a). By fur-

ther decreasing T , we observe a sharp decrease in the isobaric density ρ ≡ N/VTot (we

write V instead of VTot hereafter) and a temperature of minimum density (TminD).

The sharp decrease seems to turn into a continuous decrease for decreasing P . This

behavior is consistent with the LLPT between HDL and LDL as postulated for super-

cooled liquid water [37]. However, a similar behavior, but without any discontinuity,

is predicted also by the “singularity free” scenario [34, 35, 40]. We therefore analyze

the enthalpy behavior in detail.

We find that H follows the density, but with sharper changes at low-P (Fig. 4.1 b).

At high-P , the sharp changes in H seemingly turn into continuous changes as P

increases, inverting the trend with respect to the density.

We understand the behavior of ρ as a consequence of its dependence on NHB from

Eq. 1.1. A direct calculation shows that, by decreasing T , the model displays a rapid

increase of NHB at high-P , while the increase is progressive at low-P , as we show in

Fig. 4.1 c). In particular, we find that NHB saturates at low-T to two HBs per molecule

(NMax
HB ≡ 2N), corresponding to the case where every water molecule is involved in

four HBs. Nevertheless, the changes of NHB at low-P are not discontinuous as in the

enthalpy, clearly showing that the contribution to H coming from the other terms in

Eq. 1.8 are relevant. The explicit calculation of these terms shows that the dominant

contribution comes from the behavior of Nσ (Fig. 4.1 d). We find that Nσ has a

sharp increase at low-P that becomes continuous for P > 70 MPa. Furthermore, at

variance with what observed for NHB, the temperature of the largest increase of Nσ

is almost independent on P and coincides with the largest variation of H at low-P .

Therefore, the large decrease of H is associated with the cooperative contribution that,

in turn, is a consequence of a large structural rearrangement of the HBs toward a more

tetrahedral configuration. However, this reorganization implies only a minor change

in ρ at low-P , as it occurs when the number NHB of HBs is almost saturated. On

the other hand, at high-P the restructuring of the internal degrees of freedom of the

molecules occurs at higher-T than the formation of a large amount of HBs. Therefore,

at high-P the effect of NHB on the density is large and collective, as expected at a

critical phase transition, while the effect of Nσ is local (for individual water molecules).
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Figure 4.1: Isobaric variation of a) density ρ, b) enthalpy per molecule h, c) normalized

number of HBs nHB, and d) normalized number of cooperative bonds nσ. In panels c) and

d), we normalize the number of bonds with respect to the maximum number of bonds the

system can form. Each color corresponds to a different P , as shown in the legend. Squares

indicate the LG spinodal, diamonds the temperature of maximum density along isobars

(TMD) line, and triangles, the temperature of minimum density along isobars (TminD).

The results in this plot correspond to the system of size N = 32, 768.

A further way to clarify if the observed thermodynamic behavior is consistent with

the occurrence of a LLPT ending in a critical point is to calculate the response functions

CP , KT and αP and to study if they diverge at the hypothesized LLCP. We find sharp

maxima in CP ≡
(
⟨H2⟩ − ⟨H⟩2

)
/kBT

2 at any P and low-T . For P ≤ 20 MPa, the

maxima occur all at (approximately) the same T and increase as the pressure increases,

with an apparent divergence of CP at P = (−20± 50) MPa (Fig. 4.2 a). However, for

P > 20 MPa, the sharp maxima decrease in intensity and move toward lower-T . This

behavior is consistent with a LLCP where CP (T ) apparently diverge, at the end of a

first-order phase transition occurring at higher-P along a line with a negative slope in

the P -T thermodynamic plane (Fig. 4.2 b), as expected in the LLCP scenario [37].

At T between the TMD line and the LG spinodal, CP displays a locus of minima

(Fig. 4.2 a, inset). The minima occur at a T that is approximately independent on

P for P ≥ 70 MPa. For decreasing P , the locus Cmin
P (T ) follows the TMD line,

but shifted at higher-T . By further decreasing P , the locus of minima asymptotically

approaches the TMD line and the LG spinodal. At extreme low-P , the locus of minima

of CP merges to the locus of maxima of CP (Fig. 4.2 b).

At P ≥ 70 MPa, for thermodynamic consistency [307], the locus of minima of CP

must merge with a locus of maxima of CP occurring at lower T . However, this locus

of maxima cannot be the one we find at very low-T with strong dependence on P



90 Chapter 4. Supercooled Water

190 200 210 220 230 240

Temperature T / K

0

50

100

150

200
S

p
ec

if
ic

 H
ea

t 
C

P
 /

 J
 K

-1
 g

-1

160
120
70
20
-20
-70
-120
-210
-300
-400

C
P

smMax

200 250 300 350 400

4

5

6

7

8

9 C
P

 min
(T)

LG Spinodal
P / MPa

High-P

Low-P

(a)

180 200 220 240 260 280 300 320 340

Temperature T / K

-600

-500

-400

-300

-200

-100

0

100

200

P
re

ss
u

re
 P

 /
 M

P
a

C
P

min
(T)

C
P

shMax
(T)

C
P

smMax
(T)

C
P
(T,P)

Max

TMD

LG Spinodal

T
 m

in
 D

(b)

Figure 4.2: (a): Isobaric specific heat CP calculated as function of T for different P . For

the sake of clarity we show only the results from the fluctuation-dissipation theorem. We

find loci of minima (Cmin
P (T ), inset) and sharp maxima CshMax

P (T ) along isobars. For P ≥
120 MPa, we find smooth maxima CsmMax

P (T ) at T ∼ 200K. (b): Projection of the loci of

extrema of CP into the P -T phase diagram. Above the temperature of maximum density

(TMD) line (black solid line) and below the liquid-to-gas (LG) spinodal (red line) at low-P ,

the locus of Cmin
P (T ) (blue diamonds). At low-T and above the temperature of minimum

density (TminD) line (black dashed line), the loci of CshMax
P (T ) (magenta left triangles) and

CsmMax
P (T ) (brown upper triangles). The smooth maxima merge to the sharp maxima where

CP apparently diverges (CP (T, P )Max, cyan highlighted region).

(and discussed above) because this latter locus moves toward T̂ = 0 (T = 185.47 K

according to Eq. 3.10) for increasing P , consistent with its interpretation as the mark

of the first-order LLPT. Hence, there must be another locus of maxima of CP in

this high range of P at intermediate T below the temperature of the minima of CP .

This intermediate locus of maxima encloses the anomalous region of CP together with

the locus of minima of CP at higher T . Indeed, we find that CP displays a smooth

maximum at T ∼ 200 K at constant P ≥ 70 MPa. By decreasing P , the locus of

smooth maxima merge to the sharp maxima. Although we do not reach the high-

P region where the smooth maxima and the minima of CP merge as in water-like

models [307], the likely existence of this merging region goes beyond the scope of this

work.

It is worth noticing that two maxima of CP were found by Mazza et al. [131] in

the monolayer case. However, the two maxima occur in the monolayer at any P ,

also approaching the LG spinodal, at variance with what we observe here. The two

low P maxima found by Mazza et al. were consistent with experimental results for a

water monolayer hydrating a protein surface [135]. Our understanding is that the two

maxima found by Mazza et al. are relevant for monolayer water, but are not present

in bulk water or cases that resemble the bulk. This interpretation is consistent with

atomistic models for bulk water [90,97,178] and experiments of confined water [308,309]

showing that the CP displays a single maximum upon cooling.
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Figure 4.3: (a): The isobaric thermal expansivity αP displays sharp minima along isobars

that decrease for decreasing P . For P ≤ −300 MPa, the sharp minima become weaker up to

disappear (inset, yellow triangles). At these low-P conditions, αP displays smooth minima

(inset, gray squares) at higher-T . (b): Projection of the loci of αsh min
P (T ) (maroon right

triangles) and αsm min
P (T ) (orange diamonds) into the P -T phase diagram. The locus of

αsh min
P (T ) follow the sharp maxima of CP (green line). The locus of αsm min

P (T ) shifts into

higher-T and retracts to lower-T as it approaches the LG Spinodal (red line). The TMD,

TminD and LG Spinodal lines and the region CMax
P (T, P ) are defined as in Fig. 4.2.

Next, we calculate the thermal expansivity αP ≡ (1/V )(∂V/∂T )P along isobars

(Fig. 4.3 a). We find sharp minima at low-T and high-P that decrease for decreasing

P , occurring at the same T as the sharp maxima of CP (Fig. 4.3 b). At P = −210 MPa,

αP develops a flat shoulder at T above the sharp minimum. For decreasing P , the

shoulder turns into a smooth minimum occurring at higher-T . At the range of P

between −250 MPa and −400 MPa, αP exhibits two minima: a sharp (local) minimum

that follows the sharp maxima of CP , and a smooth (global) minimum at higher-T .

We interpret the sharp minimum of αP at low-T as a result of the increase of crossed

enthalpy-volume fluctuations due to the HB rearrangement towards a more tetrahedral

ordering.

Finally, we calculate the isothermal compressibility KT ≡ ⟨V 2⟩/kBT ⟨V ⟩, along

isobars (Fig. 4.4 a). We find maxima that resemble the minima of αP . In particular,

KT displays sharp maxima for that decrease for decreasing P and occur at the same

T as the sharp extrema of CP and αP . As for αP , at P below the region where CP

apparently diverge, KT displays smooth maxima at higher-T . However, at variance

with αP , KT does not display sharp and smooth maxima along isobars but a kink and

a smooth maximum. Furthermore, we observe that the smooth maxima of KT that,

approaching P ≃ −350 MPa, turn into minima (Fig. 4.4 b). The minima of KT occur

at T increasing with P > −350 MPa and cross the TMD line at its turning point, as

can be demonstrated by thermodynamic argument [171], showing that our results are

thermodynamically consistent [134].
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Figure 4.4: (a): Isothermal compressiblity KT along isobars. The maxima rapidly decrease

upon decreasing P and they turn into minima (inset, triangles indicate the maxima and

squares, the minima). (b): Projection of the loci of maxima KMax
T (T ) (brown upper trian-

gles) and minima Kmin
T (T ) (blue down triangles) along isobars. The TMD, TminD and LG

Spinodal lines, and the region CMax
P (T, P ) are defined as in Fig. 4.2. For thermodynamic

consistency, the locus of Kmin
T (T ) must cross the TMD line in its turning point (point of

maximum slope), as we observe in our calculations within the error bars.
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Figure 4.5: (a): Trajectory of the simulation for L = 16, T = 194.65 K, and P = 117 MPa.

The system undergoes four transitions between HDL and LDL during the simulation time

t. The energy and density are positively correlated, showing that the probability density

distribution Q(e, ρ) is bimodal (two distinct HDL and LDL phases). (b): Frequency of

transitions ν(P ) along iso-N lines N = 512 (black circles), N = 1, 728 (red squares), and

N = 4, 096 (green diamonds). Green dashed line hypothesizes the behavior at lower-P for

N = 4, 096, as we cannot calculate ν within accessible simulation times. The dashed blue

line indicates the maximum P where FS water displays density anomaly. Above this limit,

there cannot be a LLPT.
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4.3.2 Finite size analysis for the LLPT and the LLCP

Along the LLPT, two distinct phases coexist at fixed T and P , one characterized by

high-e and high-ρ (HDL), the other by low-e and low-ρ (LDL). We directly observe

phase coexistence in MC simulations as flips of e and ρ during the simulation trajec-

tory (Fig. 4.5 a). The clear correlation between energy and density shows that the

probability density distribution Q(T, P ; ρ, e) is bimodal, as required at the phase tran-

sition. We find coexistence at the entire range of P for small size systems N = 512

and N = 1, 728, and at P ≥ 110 MPa for N = 4, 096, within accessible simulation

times (Table 4.1). The estimate of the frequency of transitions ν as a function of

N and P shows that, for the investigated N , ν is maximum at P ≃ 120 MPa and

rapidly decreases for decreasing P (Fig. 4.5 b). Furthermore, ν decreases in at least

two orders of magnitude for increasing N at constant P . We interpret this behavior

at low-P as an apparent phase coexistence induced by finite size effects that become

a continuous transition at the thermodynamic limit. On the other hand, the fact that

ν(N,P ) exhibits a maximum along iso-N lines is consistent with a LLCP at the P

where ν is maximum.

To rigorously localize the LLCP, we need to define the correct order parame-

ter describing the LLPT. To this aim, the method described in Sec. 4.2.3 is well-

established [85, 86, 134, 304] and allows for consistently calculating the mixing pa-

rameter s that defines the order parameter M ≡ ρ + s · e, and the location of the

LLCP {TC , PC}. Due to the reasons discussed in Appendix F, we consider an alter-

native order parameter x with an additional parameter λ, but the method still holds.

Regardless the chosen order parameter, the claim that a model exhibits a LLCP is

justified by finding an order parameter x = x(e, ρ) whose fluctuations are critical at a

thermodynamic point {TC , PC}.
Our results show the presence of the LLCP belonging to the Ising 3D univer-

sality class (Fig. 4.6 a). As expected, the free energy landscape ∆G(e, ρ)/kBT =

− log(Q(e, ρ)) at the LLCP has two basins corresponding to HDL and LDL phases sep-

arated by a barrier of ∆G ∼ 2kBT that thermal fluctuations easily overcome (Fig. 4.6

b).

We report in Table 4.2 the critical parameters calculated for each size L. For

N = 512, we find fluctuations of x that are critical for a wide range of P and a

limited range of T . This region follows the locus of sharp maxima of CP , which is

almost constant in T . The range of P compatible with a LLCP becomes narrower

for increasing N , indicating that the fluctuations become less relevant for large-size

systems and that finite size effects are relevant.

Given the strong dependence of TC and PC on N , we analyze how they extrapolate

to the thermodynamic limit. This analysis is necessary to assess whether the observed

LLCP results from finite size effects or is intrinsic of the model. According to the

finite size scaling theory [83], the scaling laws of TC(N) and PC(N) are governed by
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N TC/ K PC/ MPa s λ

512 202.7± 2.3 −141± 164 −36± 30 1.61/π

1,728 200.4± 3.4 59± 35 −76± 38 1.61/π

4,096 194.6± 1.0 117± 10 −142± 15 1.53/π

Table 4.2: Critical parameters considered in Fig. 4.6. The rescaled order parameter

is x ≡ B0

(
λ2 sin(m/λ) +m−MC,0

)
, with m ≡ B(ρ + s · e − MC) as described in

Sec. 4.2.3 and further discussed in Appendix F. We fix λ for a given N , then it has no

associated error.

the critical exponents of the class of the class of universality. For the 3D Ising model

θ = 0.53 is the correction to scaling, and ν = 0.63 is the critical exponent that governs

the correlation length ξ, and d = 3 [304]. The fitting of

PC(N) = APN
−(θ+1)/dν + PC

TC(N) = ATN
−(θ+1)/dν + TC

(4.2)

to the three calculated LLCP(N) gives PC = (174 ± 14) MPa and TC = (196 ± 5) K

(Fig. 4.7). We find that the calculated PC(N) follow well the expected power law.

However this does not hold for TC(N). Indeed, the estimate of TC is biased by the

smallest-size system N = 512. Since we need at least three points to fit the two

independent parameters in Eq. 4.2, we cannot estimate TC considering only the results

for N = 1, 728 and 4,096. To overcome this problem, we include a third point (T ∗
C , red

diamond in Fig. 4.7 b) calculated under the assumption that the extrapolated PC is

correct and the thermodynamic argument that the LLCP must occur at the locus of

sharp maxima of the response functions. We find that TC(N = 1, 728), TC(N = 4, 096),

and T ∗
C follow the expected power law, giving TC = (186± 2) K.
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Figure 4.6: (a): Best fit of the probability density distribution of the order parameter Q(x)

to the distribution of the Ising 3D at the critical point. The critical parameters are reported

in Table 4.2. (b): Free energy landscape at the located LLCP for N = 4, 096, calculated

with the histogram reweighting method.
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Figure 4.7: The size-dependent PC(N) (a) and TC(N) (b) extrapolate to PC = (176 ±
14) MPa and TC = (196 ± 5) K. We consider the scaling laws in Eq. 4.2 where θ = 0.53,

ν = 0.63 are the critical exponents of the Ising 3D universality class and d = 3. Panel

(b): By thermodynamic argument, we add the critical temperature T ∗
C = (186.7 ± 1.1) K

(red diamond) corresponding to the sharp maxima of CP at the calculated PC . The three

temperatures TC(N = 1, 728), TC(N = 4, 096) and T ∗
C extrapolate to TC = (186 ± 2) K

(black dashed line). Hence, we conclude that the bulk FS model shows a LLCP at PC =

(176± 14) MPa and TC = (186± 2) K.

Remarkably, the prediction of the LLCP for the FS model compares well with the

one calculated in rigid TIP4P/Ice [85] and the approximate estimation from polarizable

iAMOEBA [310] (Fig. 4.8). According to analytic calculations and MC simulations

on the FS monolayer, the location of the LLCP is sensitive to the choice of Jσ and

J , and thus to HB cooperativity [40]. Therefore, the fact that the bulk FS LLCP

compares well to models that include cooperative effects (iAMOEBA) or are fitted to

reproduce the low-T phase diagram (TIP4P/Ice [311]) supports the calculation of HB

cooperativity in FS water. We recall that our choice of Jσ and J is based on ab initio

energy decomposition analysis of small water clusters (Sec. 3.2.1).

Finally, we observe that according to our choice of parameters, the limiting P for

the density anomaly is P = 180 MPa. Above this pressure the LLPT is unlikely.

Since we estimate the critical pressure as PC = (174 ± 14) MPa, our results support

the LLCP scenario [37] (Fig. 4.8).

4.3.3 FS water polymorphism at the critical region

The phase diagram of the bulk FS model recalls that of non-crystalline water [20].

We propose a coherent scenario for supercooled water including three liquid states at

pressures above and below PC with different dynamic and thermodynamic properties

(Fig. 4.9). At very low-T and P > PC , there is LDL separated from HDL by a

phase transition ending in a LLCP. The LLPT coincides with the locus where the

response functions display sharp maxima. We note that the pressure for which the
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Figure 4.8: Estimations of the LLCP: TIP4P/2005 and TIP4P/Ice [85], ST2 [302], WAIL [86],

E3B3 [312], iAMOEBA [310], DeePMP [89], q-TIP4P/F (MD and PIMD) [90] and FS (this

work). The thick turquoise line is a guide for the eye indicating the locus of sharp maxima

of CP . By thermodynamic argument, the LLCP (FS model) must occur along this line.

Dashed-dotted violet line indicates the limit of density anomaly in the FS model. Above this

P , the FS water behaves as a normal liquid, without LLPT.
∗ void symbols correspond to approximate calculations.

sharp maxima of CP seem to diverge does not coincide with the estimated PC . We

argue that the LLCP is located, by definition, where the correlation length ξ diverges,

rather than CP . Hence, the divergence of CP should be considered as an independent

but approximate estimate of the location of the LLCP. At high-P , we find smooth

maxima for CP that converge to the sharp maxima where they apparently diverge.

We interpret the smooth maxima as a continuous structural change between HDL

and VHDL states of water without first or second order singularity in the free energy

(Fig. 4.9).

Below PC we distinguish three states of water: LDL-like, HDL-like, and VHDL-like

that reflect the polymorphism above PC . From the LLCP and following the locus of

sharp maxima of CP , the Widom line separates LDL-like and HDL-like forms of water

without phase transition. In particular, we find that, upon crossing the Widom line

at extreme low-P , the system undergoes a change in energy (through the cooperative

term) with almost no change in density. Thus, Q(e, ρ) is bimodal in energy but uni-

modal in density. By increasing P , the change in density upon crossing the Widom

line increases monotonously, giving rise to a bimodal distribution in both density and

energy. We show this by estimating the Challa-Landau-Binder parameter [313] of the

density Uρ ≡ 1 − ⟨ρ4⟩/3⟨ρ2⟩2 upon crossing the locus of sharp maxima of CP along

isobars (Fig. 4.10). Uρ measures the bimodality of the probability density distribution

Q(ρ): Uρ → 2/3 if unimodal, otherwise Uρ < 2/3. We find that for P ≥ 20 MPa
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Fig. 4.8. All the data in this plot correspond to N = 32, 768, except the locus of LLCP.

Black solid lines correspond to isochores separated by 30 kg/m3. We highlight ρ = 750,

900, 1050, and 1200 kg/m3, as indicated in the panel. On top of the CP -maxima line, the

region where the sharp maxima of CP seem to diverge (large down triangle). Empty symbols

correspond to extrema of the response functions along isobars, as shown in the legend. For

the sake of clarity, we do not include the minima of αP . The LLCP separates the CP -maxima

line into the LLPT between LDL and HDL (P > PC) and the Widom line between the LDL-

like and the HDL- like liquid (P < PC). Dashed lines are a guide for the eye that mark

the continuous structural change between VHDL and HDL (red) and between VHDL-like

and HDL-like (magenta). Maroon stars indicate the thermodynamic conditions for which we

calculate the HB autocorrelation function (Fig. 4.11).

(N = 512 and 1,728) and P ≥ 120 MPa (N = 4, 096), the distribution is bimodal

in density, but unimodal at lower P . This is indicative of a LLPT at P > PC and

a continuous transition along the Widom line. Regarding the loci of (smooth) ex-

trema of KT and αP , they initially follow the Widom line but separate as P decreases.

We interpret these loci as a reflection of the locus of smooth maxima of CP above

PC . Hence, we argue that they mark a continuous transition between HDL-like and

VHDL-like forms of water (Fig. 4.9).

Finally, we focus on the dynamic behavior of the HB network. To this aim, we

perform local Metropolis simulations, as cluster MC avoids the critical slowdown of the

dynamics. We calculate the time correlation function CM(t) defined in Eq. 2.8. and
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estimate the autocorrelation time of the HB network τ as CM(τ) = 1/e (see Sec. 2.5).

At the LDL phase, the system is dynamically arrested, as expected for amor-

phous ice, while HDL and VHDL have fast dynamics (Fig. 4.11). Our results show

that τLDL ≫ τHDL > τVHDL, which is consistent with LDA, HDA, and VHDA ices

corresponding to our LDL, HDL and VHDL [300], although we recall that liquid poly-

morphism does not necessarily imply ice polyamorphism nor vice versa [299]. Below

the LLCP, we do not find dynamic arrest of the system but it could be expected

for lower-T in the LDL-like region. The slow dynamics of the HDL-like compared

with VHDL-like can be explained due to the proximity of the smooth minimum of

αP to the simulated HDL-like sample. Franzese and de los Santos found a similar

non-monotonous behavior of τ at low-P for the FS monolayer [121].
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4.4 Conclusions

In this chapter, we show the presence of LDL and HDL phases separated by a

LLPT ending in a LLCP in the coarse-grained (CG) FS model for bulk water. This

result follows recent simulations of atomistic water models, such as TIP4P/2005,

TIP4P/Ice [85] and flexible and polarizable WAIL [86]. Altogether, these models

advocate the LLCP scenario for supercooled water [37]. Noteworthy, we find that the

estimated TC = (186 ± 2) K and PC = (174 ± 14) MPa are close to estimations from

TIP4P/Ice [85] and iAMOEBA [310]. Hence, we argue that this work reinforces the

use of the coarse- grained FS model as a significant water model, not only around

ambient (Chapter 3) but also at supercooled conditions.

Regarding the phase diagram in the vicinity of the critical region, we propose a

coherent scenario for water polymorphism. More precisely, we distinguish three states

of water in terms of their thermodynamic and dynamic properties: the LDL and

HDL phases separated by a LLPT, and VHDL separated from HDL by a continuous

structural change. The polymorphism above the LLCP is reflected below PC in terms

of LDL-like, HDL-like, and VHDL-like forms of water, separated by structural changes

without discontinuities in the free energy.

Since in the FS model all water anomalies arise from the presence of (coopera-

tive) HBs, this work highlights the relevance of HBs and their cooperativity in water

modeling. This observation is especially relevant for CG approaches, as models that

pack several water molecules into single interacting beads cannot adequately account

for HBs nor cooperativity at molecular resolution, most likely impacting their predic-

tions [111].
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Chapter 5

Hydration effect in biomolecular

simulations: the von Willebrand

factor case.

Calculations of conformational free energy barriers for large-scale hydrated biologi-

cal systems are challenging due to the large number of water interactions and the

difficulty of generating statistically uncorrelated configurations. Coarse-grained (CG),

implicit solvent (IS) models reduce the computational cost by averaging over the water

degrees of freedom and incorporating the water contributions as effective interaction

potentials. A noteworthy example is the OPEP model for amino acids. However,

by definition, CG-IS models cannot explicitly calculate the solvent contribution to

the free energy landscape. In this chapter, we show how to overcome this issue by

hydrating CG-IS-generated configurations with the Bianco-Franzese (BF) CG water

model (Sec. 1.5), extended to bulk. As proof of concept, we consider the case of the

von Willebrand factor (vWf)––a protein involved in cardiovascular diseases made by

globular domains connected by intrinsically disordered regions––that expands under

hydrodynamic stress. We fully hydrate OPEP configurations of the vWf with ∼ 4 ·105

BF water molecules. We consider three vWf globular (A1, A2, A3) domains and cal-

culate how their hydration free energy landscape depends on the externally applied

shear rate. We estimate the solvation contribution to the barriers separating collapsed,

detached, and extended conformations of three domains for each shear rate.

5.1 Introduction

Biomolecular systems, such as proteins or membranes, have evolved to adapt their

functionality to the aqueous media in which they live [6]. Therefore, considering

the properties of water is essential to adequately describe the behavior of these sys-

tems [2,3]. According to Thermodynamics, the free energy governs the system. As we

101
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discussed in Chapter 1, for biomolecular systems it results from the interplay between

enthalpy (solute-solute and solute-solvent: van der Waals, hydrogen bonding (HB),

and electrostatic interactions) and entropy (formation and breaking of distorted HBs

at the hydration shell) [16].

Computer simulations are a powerful tool to uncover the physicochemical mech-

anisms that underline the behavior of biological systems [264]. Depending on the

level of description of the solvent, models can be classified into explicit or implicit

solvent [234]. Explicit solvent models account directly for solute-solvent interactions

(see also Sec. 1.1). Atomistic water models, such as the TIPnP family [314, 315] and

polarizable AMOEBA [235, 316], are among the most accurate. Unfortunately, their

applications to solvate large biological systems suffer from two main drawbacks that

limit the accessible length and time scales. First, the number of water molecules in

the simulation can be ten times larger than the number of protein atoms [234]. There-

fore, most of the computational cost is spent on calculations of water interactions. To

overcome this problem, explicit coarse-grained (CG) water models as MARTINI [110]

and SIRAH [107,108] represent the water molecules in a simplified manner. More pre-

cisely, MARTINI maps four water molecules into a single interacting bead (4:1), while

SIRAH represents tetrahedral structures of eleven molecules as four interacting beads

(11:4) [109]. However, their level of description is not suitable to account for the HBs,

nor their cooperativity. Due to the relevance of HB interactions, these models are

unsuitable to accurately describe the role of the solvent in the behavior of biological

systems [111].

The second drawback of atomistic simulations concerns the free energy calculations

for complex biological systems, as they typically display local minima separated by

large barriers [317]. Direct sampling of the conformational space is challenging because

of the huge computational cost to generate uncorrelated configurations [318]. To im-

prove the sampling of the conformational space, including metastable states, enhanced

sampling methods have been proposed [317, 318], as umbrella sampling [319, 320] or

replica exchange [321].

In contrast to explicit solvent, implicit solvent models represent solute-solvent inter-

actions as effective solute-solute energy terms [232,322–324]. These models enormously

reduce the computational cost of the simulations because the number of interactions

is reduced. However, by neglecting solvent configurations, the solvent contribution to

the free energy landscape remains unspecified.

In this context, the CG Franzese-Stanley (FS) model for water describes the HB

network at water’s molecular resolution, including cooperative effects [1,134]. In Chap-

ter 2, the FS model has been extended from monolayers to bulk. Thanks to efficient

parallel distributed Monte Carlo (MC) algorithms, the model is suitable for large-scale

simulations up to at least 107 water molecules. Moreover, it reproduces the experimen-

tal equation of state of water around thermodynamic conditions of biological interest
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(Chapter 3). The FS model for water allows defining the Bianco-Franzese (BF) model

for water and proteins (Sec. 1.5, Refs. [5, 6]). The BF model has been applied to in-

vestigate protein folding [5,7], design [6], and aggregation [8,9,73]. By assuming that

the enthalpy and density fluctuations associated with the HBs at the hydration shell

are different from those at the bulk [5,6], the BF model accounts for the decisive role

of water-protein interactions in macromolecular protein conformations.

In this chapter, we investigate the role of water in the free energy landscape of

large biological systems previously simulated with implicit solvent models. We solvate

each configuration along the trajectory with bulk BF water. After equilibrating, we

estimate water-water and water-protein interactions, keeping the protein fixed. Hence,

we evaluate how water thermodynamic observables depend on the configuration of

the proteins. Assuming that the implicit solvent force field includes all water and

protein contributions, this method is suitable to subtract the water interaction energy,

provided the energy scales are balanced. Furthermore, as we describe the system in

terms of protein and water configurations, we can estimate both the contributions

from the protein and the solvent to the free energy of the system. We note that

the combination of implicit and explicit solvent models is not novel. For example,

Zheng et al. equilibrate condensates of intrinsically disordered proteins using a CG

model before mapping the final configuration into all-atom description with explicit

water [94]. Similarly, Timr et al. backmap from CG to all-atom selected states of

local packing of BSA around SOD1 [325] and BSA and lysozyme around CI2 [326].

However, our approach has a major advantage, as we consider the whole trajectory of

the large biomolecular system, rather than a single configuration.

As a proof of concept, we study the rotational dynamics of the A1, A2, and

A3 neighboring domains of the von Willebrand factor (vWf) under extreme shear

flow [327], previously simulated with the implicit solvent model OPEP [232] and us-

ing the Lattice Boltzmann Molecular Dynamics technique [233]. The vWf is a blood

plasma giant glycoprotein involved in hemostasis (prevention of blood loss from an

injured vessel) and is mainly active in conditions of high blood flow and shear stress

as in organs with extensive small vessels, such as skin, gastrointestinal tract, and

uterus. A defective function of the vWf protein could lead to blood disorders (e.g.,

the vW disease [328], or the Heyde’s syndrome [329]), especially in those capillaries

with higher shear stress, and an increased risk of thrombosis. In vivo it is composed

of 40 to 200 monomers, each of 2050 amino acids [330,331]. Its large size enables me-

chanical response upon hydrodynamic stress, as shown in experiments [331, 332] and

simulations [327,333–335]. In particular, vWf exhibits abrupt conformational changes

from collapsed to extended conformations [336] under high shear rate conditions such

as those produced in atherosclerosis or vessel injuries, prompting collagen and platelet

adhesion. Platelets (or thrombocytes) are the blood complement in charge of initiating

a blood clot. On the contrary, in healthy blood vessels (low shear rate conditions) vWf
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remains collapsed, hiding adhesion sites to platelets [337].

Several experimental studies consider the neighboring A1, A2, and A3 globular

domains as an elementary model for vWf functioning [338,339], as they enable platelet

adhesion under shear stress conditions. First, the A1 domain binds GPIbα platelets

receptors, a first step to produce a hemostatic plug at the injured site [340]. Second,

the A2 domain is responsible for the size control of vWf [341]. Third, collagen binding

sites for initial thrombosis are located in the A3 domain. The domains are connected

by intrinsically disordered regions, often called linkers. Their flexibility is essential for

the mechanical response of the vWf upon hydrodynamic stress [327,335,336,342,343].

In summary, vWf plays a key role in hemostasis and subsequent thrombosis, while its

dysfunction is related to cardiovascular diseases [336].

Based on the OPEP simulations on the A1A2A3 fragment [327], we calculate the

free energy barriers that separate collapsed and extended conformations, including

solvent configurations, and rationalize how they change for increasing shear rate. The

comparison to the free energy landscape calculated with implicit solvent data reveals

that the solvent contribution is necessary to characterize properly the free energy

basins associated to different conformations. Moreover, we estimate the force required

to overcome the solvent free energy barrier that separates the A1 domain from the

attached pair A2A3. Further experimental approaches could test this result.

5.2 Model and methods

We distribute this section into three subsections. In Sec. 5.2.1 we briefly outline the

implicit solvent (IS) CG model for proteins OPEP and in Sec. 5.2.2 we extend to bulk

the BF model. Next, in Sec. 5.2.3 we describe in detail our algorithm to map arbitrary

OPEP protein configurations into their corresponding bulk BF representation. This

algorithm can be easily generalized to other IS models for proteins, membranes or

nanoparticles. Finally, in Sec. 5.2.4 we relate the simulation protocol.

5.2.1 The OPEP protein model

OPEP is a multi-resolution CG model for proteins that has been developed to repro-

duce peptide and protein folding without ad-hoc biases and aggregation [232,344–346].

It is based on a single-bead description of the amino acid side-chain, while the back-

bone is represented at atomistic resolution [232]. There are two exceptions to this

rule: glycine and proline are described at full atomistic resolution. The Hamiltonian

of the OPEP model can be split into two sets of potential energy terms that account

for bonded (neighboring beads) and non-bonded (both intra- and inter-protein) inter-

actions, and is described in details in Ref. [232]. A fully flexible force-field is necessary

to describe large conformational changes, as in the analysis of the exposure of the A2
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cleavage site [327]. However, the A1, A2 and A3 domains considered in this work do

not undergo such conformational changes [327]. For these cases, an elastic network

model based on the OPEP force field, at a reduced amino acid resolution, allows both

to describe the dynamics of the system and save computational effort. The elastic

network version of the OPEP model represents each amino acid at two-beads reso-

lution: one for the side chain and one for the backbone placed at the carbon alpha

(Cα). Exceptions to this rule are alanine, proline and glycine, that are represented

using only the Cα bead. The bonded interactions are represented by harmonic springs,

while non-bonded interactions are modeled through a variety of short range potentials

depending on the amino-acid type.

The combination of Lattice-Boltzmann molecular dynamics (LBMD) with the

OPEP force field [233] allows incorporating hydrodynamic effects in the simulations.

This method has been exploited in a number of cases, including amyloid aggrega-

tion [347, 348], crowded protein solutions [325, 326, 349], nanoscale vesicles [350], and

protein unfolding under shear flow [351, 352]. The trajectories considered here corre-

spond to LBMD simulations of the elastic-network OPEP representation of the A1,

A2 and A3 domains of the vWf under extreme shear flow [327].

5.2.2 Extension to bulk of the BF model

We extend the monolayer BF model to bulk by introducing the allowance variables

ηij, as in Eq. 2.1, to guarantee that all molecules form up to four HBs (Sec. 2.2.1).

To ensure that the MC algorithms developed in Chapter 2 are still valid, the ηij are

defined for every cell in the system, regardless of its occupation by a water molecule

or a protein residue.

Regarding the proteins, the BF model for monolayers considers self-avoiding poly-

mers embedded in the lattice partition of the FS water monolayer [5,6]. Here we depart

from this approach, adopting the OPEP coarse-grained description at a resolution of

two beads per protein amino acid (Sec. 5.2.1). Depending on its size, each OPEP bead

occupies a different number of cells, as we will discuss in Sec.5.2.3.

The Hamiltonian term describing water-residue interactions reads

HR,w ≡
NR∑
i

Nw∑
j

CijS
w
i

 , (5.1)

where NR is the number of cells occupied by amino acids, Nw is the number of water

molecules, Sw
i is the water-residue interaction energy, and Cij = 1 if the cells i and

j are nearest neighbors and 0 otherwise. If the residue is hydrophilic, then Sw
i < 0;

otherwise Sw
i = 0. The model adopts the hydropathy scale from the OPEP force

field, considering the non-polar beads as hydrophobic, and polar and charged beads as

hydrophilic [349]. The model assumes that the total water-residue interaction energy
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is equal for all hydrophilic residues, if they are fully exposed to the solvent. However,

beads of larger size occupy more cells, and so the number of water-residue contacts

increases. Then, Sw
i depends on the radius of the beads, as described in Table G.1. At

variance with the BF monolayer case, we do not account for residue-residue interactions

because these interactions, already accounted for by the OPEP force field, do not

contribute to the hydration free energy, the goal of our calculations. Hence, we set

Sij = 0 (Eq. 1.18).

The presence of the hydrophobic or hydrophilic protein interface affects the water-

water hydrogen bonding in the hydration shell [6, 204–208, 353–356]. The model as-

sumes that the hydration shell extends to nl = 3 layers, consistent with recent all

atoms molecular dynamics studies [261]. The first is composed by water molecules

that are first and second neighbors of protein cells (Fig. 5.1). The subsequent i-th

layer is defined analogously as the first and second neighbors of water molecules in the

(i−1)-th layer. We classify the water molecules in the hydration shell as hydrophobic,

hydrophilic, or mixed depending on whether they hydrate hydrophobic, hydrophilic or

both classes of residues, respectively (Fig. 5.1).

The parameters for the bulk water have been calibrated to reproduce the experi-

mental water enthalpy and density around ambient conditions (Chapter 3). However,

Figure 5.1: Schematic representation of the BF model. Circles indicate protein residues;

otherwise, the cell is occupied by a water molecule. For the sake of simplicity: i) protein

amino acids occupy a single cell, as in the BF monolayer case (Sec. 1.5), instead of a few cells

(bulk BF model), ii) we show a hydration shell of nl = 1 layer and iii) we do not depict the

water molecules at the bulk (white cells). Colored cells indicate the hydration shell. Water

molecules in blue cells hydrate hydrophobic (PHO) residues (blue circles), molecules in red

cells hydrate hydrophilic (PHI) residues (red circles), and molecules in violet cells hydrate

both PHO and PHI residues (mixed, MIX shell).
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the parametrization of water-water (in the hydration shell) and water-residue interac-

tions is not trivial, and it is beyond the scope of this work, that is limited to a proof

of concept. The results described in Sec. 5.3 were obtained in terms of the number of

water molecules at the hydration shell Nh, thus they are independent on the choice of

parameters. In order to explore the role of the parameters, in Appendix G we consider

two possible sets of parameters for the HB interactions at the hydration shell. We find

that the results obtained in terms of the enthalpy of water are robust against change

of parameters.

5.2.3 Mapping of OPEP protein configurations into the BF

volume partition

We develop an algorithm to map arbitrary configurations of OPEP proteins into the

lattice volume partition of the BF model. In particular, we consider amino acids

coarse-grained at two beads resolution (side-chain and Cα), as described in Sec. 5.2.1.

The goal is to keep the protein conformation, i.e. the relative distances and angles

among the OPEP beads, in the BF representation as possible. We are limited by the

spatial resolution of the BF lattice r0 = 2.9 Å, the vdW diameter of a water molecule.

Prior to describe the algorithm, we need to assign a characteristic radius to each

OPEP bead, since the radius determines the volume that a bead occupies in the BF

lattice. We find it convenient to consider the list of van der Waals volumes Vi for each

amino acid reported in Ref. [357] (Table G.1). We assign to each side-chain bead the

radius ri =
(
3Vi/4π

)1/3
, where i stands for each amino acid. The mapping algorithm

is described in the following.

First we map all the side-chain beads, as we assume that they take precedence over

the Cα beads. For each side-chain bead we draw a virtual sphere around its center, of

radius ri. Those BF cells whose center is encapsulated by the sphere will be occupied

by that side-chain, provided that no other side-chain beads overlap. If several beads

overlap at the same cell, we calculate the probability that the OPEP bead i will occupy

the cell j as

pij ∝
exp

(
−d2ij/2r2i

)
2πri

, (5.2)

where ri is the radius of the bead and dij is the distance between the center of the

bead and the center of the cell. For each cell j, the probabilities are normalized so

that p̂ij = pij/Mj,
∑

i p̂ij = 1, where the sum is performed over the beads that overlap

at the cell j. This choice of pij assigns larger probability to those beads that are

small and close to the cell, reducing the possibility that small beads disappear as a

consequence of the mapping algorithm. In the limiting case that there is no overlap,

the normalization is over a single term, and p̂ij = 1.
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Next, we map the Cα beads. Regardless of the amino acid, Cα beads are mapped

into alanine residues, except the Cα of glycine and proline. We consider that back-

bones are hydrophobic, as alanine residues. To map the Cα beads we apply the same

procedure as for the side-chains, with the only difference that if a side-chain and a Cα

overlap, then the cell will be always occupied by the side-chain.

We note that this mapping algorithm can be easily generalized to any hydrated

system as nanoparticles, membranes, surfaces, etc. The only restriction is that the

radius of the building units (OPEP beads in our case) must be larger (or at least of

the same order) than the wdW radius of the water molecule r0/2. Otherwise, the

resolution of the lattice is too large to capture the building units. As an example,

we show in Fig. 5.2 the application of the mapping method to a collapsed configura-

tion of the OPEP vWf, excluding the two flexible chains that link the three globular

domains [327].

OPEP OPEP BF
(a) (b)(a) (c)

Figure 5.2: Mapping of an OPEP protein configuration into the BF lattice. This example

corresponds to the three globular domains A1, A2 and A3 of the vWf, excluding the link-

ers [327]. (a) OPEP protein where green beads correspond to side-chain, PRO-Cα (i.e., Cα

of proline amino acid), or GLY-Cα (i.e., Cα of glycine amino acid) beads; while blue beads

represent any other Cα. Blue beads in this panel will be mapped into ALA amino acids,

while green beads will be mapped into their respective amino acid. (b) OPEP protein where

each color correspond to a different amino acid. Blue beads correspond to the same beads

as in the left panel but are plotted in transparent, for the sake of clarity. (c) Result of

the mapping into the BF lattice, using the same color code as in the central panel. In this

panel each color bead correspond to a BF cell. We clearly note the correspondence between

OPEP and BF conformations. Single OPEP beads are mapped into one or a few BF cells,

depending on their size.

5.2.4 Simulation method

We consider LBMD-OPEP elastic-network trajectories for the A1, A2, and A3 domains

of the vWf [327]. The authors performed simulations with shear rates that expand

over four orders of magnitude 1.4 · 105 ≤ γ̇ s ≤ 1.1 · 109. The simulation times range
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from 400 to 600 ns, with protein configurations collected each 0.04 ns. In this work

we map the OPEP configurations each 0.4 ns, to save computational cost. The total

number of configurations mapped into their BF representation is 13, 668.

For each configuration, we perform a parallel Metropolis (Sec. 2.3) MC simulation

at fixed T = 300 K and P = 1 atm, following our parametrization of the model around

ambient conditions (Chapter 3). The initial configuration of the water molecules

{σij, ηij} is set at random. We average over 104 independent configurations of wa-

ter after equilibration.

In Ref. [327], Languin-Cattoën et al. considered a simulation box of 800 Å in

X, and 200 Å in Y and Z directions. Here we consider a BF lattice of 152x80x80

cells containing ∼ 4 · 105 water molecules. The size of the box is 440 Å in X, and

230 Å in Y and Z directions. We find this size is sufficient for our purposes because the

maximum elongation of the protein system in the X direction is 340 Å. Extending the

simulation box merely increases the volume of bulk reservoir, and the computational

cost, without affecting the results. We include periodic boundary conditions.

5.3 Results

Results in Ref. [327] show that there is a shear threshold γ̇C ∼ 108 s−1 below which the

rotational dynamics of the A1 and A3 domains respect to the central A2 critically slow

down. For shear rates below the critical γ̇ ≤ γ̇C the three domains remain collapsed

(C), while at high γ̇ the system fluctuates between C and expanded (E) conformations.

To characterize these conformations, Languin-Cattoën et al. estimated the distances

between A1(A3) and A2 centers of masses. If both distances are short, then the system

is collapsed, while if both are large, then it is extended. The system transits between

C and E conformations through intermediate detached (D) states in which the A1

domain separates from A2 and A3. The three conformations are shown in Fig. 5.3.

The goal of this work is to estimate the free energy barriers due to the solvent, between

the three conformations, and analyze how these barriers change as a function of the

shear rate.

We first analyze the time evolution of the number of water molecules at the hydra-

tion shell Nh (Fig. 5.4). We identify three characteristic levels of hydration (dashed

lines) corresponding to C, D and E conformations. If the domains are separated, then

each domain accommodate a full hydration shell with three layers. Thus, Nh is maxi-

mum. On the contrary, if the domains approach the hydration shells overlap, reducing

Nh.

At low shear rates γ̇ ≲ 106 s−1 the system equilibrates at the C conformation,

while D conformations are metastable. By increasing the shear rate γ̇ ∼ 106-107 s−1,

D conformations become more frequent. We find a critical γ̇ ∼ 108 s−1 above which

the system cyclically fluctuates between C, E and intermediate D conformations. Our
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COL DET EXTCOL

30 A

DET

30 A

EXT

30 A

Figure 5.3: Example of collapsed (COL or C), detached (DET or D) and extended (EXT or

E) conformations of the A1, A2 and A3 domains of the vWf. Each color correspond to a

different amino acid, using the same color scale as in Fig. 5.2 right. We do not consider the

linkers between the domains for the BF representation. Scale bar: 30 Å.

results are clearly consistent with those of the original work [327], showing that BF

water is sensitive to changes in protein conformations.

For comparison, we estimate the inter-domain OPEP interaction energy ∆E, sum-

ming over all pairs of beads at different domains. By definition, the reference ∆E = 0

corresponds to E conformations, since the OPEP potential is expressed in terms of

short-range interactions. ∆E accounts for all protein and water interactions in the

system, excluding intra-domain interactions and the work exerted by the flow. We

argue that intra-domain contributions remain approximately constant because the

conformations of the domains are preserved. The time evolution of ∆E is shown in

Fig. 5.5.

For low shear rates γ̇ < 108 s−1, ∆E progressively decreases towards a minimum.

This is consistent with the observation in Ref. [327] that below the shear threshold,

the behavior of the system is dominated by thermal fluctuations. For γ̇ > 108, ∆E

fluctuates between 0 (E conformations) and negative values corresponding to either C

or D conformations. For all the values of γ̇ considered here, ∆E displays sharp spikes

with ∆E > 0. The spikes correspond to configurations in which one or more pairs

of beads approach to such short distances that they experiment strong electrostatic

repulsion. We argue that this is a consequence of the dragging of the amino acids by

the hydrodynamic flow. For clarity, high values of ∆E have been truncated in Fig. 5.5.

We plot the complete range of ∆E in Fig. H.1.

Qualitative comparison of ∆E and Nh leads to the conclusion that ∆E is not a

good observable for distinguishing between C, D and E conformations, due to both
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Figure 5.4: Number of water molecules at the hydration shell Nh (with nl = 3 water layers)

along the trajectory obtained from OPEP simulations. The shear rates are shown in the

legend. Dashed lines are a guide for the eye to identify the characteristic hydration levels

for (from bottom to top) collapsed, detached and extended conformations. For shear rates

γ̇ < γ̇C ∼ 108 s−1 (left panels) the system is dominated by thermal fluctuations, while for

γ̇ > γ̇C (right panels) the system fluctuates among C, D and E conformations.

the absence of characteristic levels (as in Nh) and the occurrence of spikes.

As we have already mentioned, LBMD-OPEP simulations of proteins under Cou-

ette shear flow incorporate the hydrodynamic effects as effective drag forces F⃗γ on the

amino acids [352]. Since F⃗γ are not conservative, they cannot be derived from the

Hamiltonian and the system is out-of-equilibrium. However, we can approximate the

shear flow as an external work W (γ̇) ≡ F⃗γ (γ̇) · ∆⃗x exerted on the amino acids [352].

From the point of view of water, the move of the proteins occur at larger timescales

than the relaxation of the HB network, so water molecules regard the proteins as if
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Figure 5.5: Inter-domain energy calculated with the OPEP force field along the OPEP

trajectories, expressed in internal units (IU). The shear rates follow the same color code as

in Fig. 5.4. We truncate the ∆E > 0 axis to highlight the ∆E < 0 region of interest. The

complete ∆E axis is shown in Fig. H.1
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they were at equilibrium. Hence, from the equilibrium Thermodynamics point of view,

the behavior of the system is governed by the total free energy

∆G ≡ ∆U + P∆V − T∆S +W (γ̇), (5.3)

where ∆U ≡ ∆Uw + ∆Up is the internal energy, ∆V ≡ ∆V w is the volume change

due to breaking and formation of HBs, ∆S ≡ ∆Sw + ∆Sp is the entropy. Here,

the superindex ’w’ indicates water-water and water-protein contributions, while ’p’

indicates intra- and inter-protein interactions. On the one hand, the OPEP force field

accounts for ∆U and ∆S, while W (γ̇) is included through effective collisions in LBMD

simulations. As the OPEP model is calibrated to implicitly include water interactions,

we cannot separate the internal energy nor the entropy computed with OPEP into

water and protein contributions. On the other hand, the BF model accounts for ∆Uw,

∆V w, and ∆Sw terms. However, quantitative evaluation of ∆Uw requires previous

calibration of water-protein interactions, as discussed in Appendix G. Anyhow, direct

comparison between energy estimates from OPEP and BF force fields is not allowed,

as the energy scales have not been balanced. For these reasons we calculate the global

free energy with the Statistical Physics approach:

∆G(q⃗) = kBT log
(
Q (q⃗)

)
, (5.4)

where kB is the Boltzmann constant, q⃗ are generalized coordinates that define a

macrostate of the system, and Q(q⃗) is the probability density of finding the system in

the macrostate q⃗. As we consider a system including both the protein and the solvent,

we adopt a two-components q⃗ ≡ {RG, N
h}, where RG is the radius of gyration of the

domains. We argue that RG itself is not a good descriptor of the protein conformation,

as it cannot distinguish between C and D conformations if the detached A1 domain

is relatively close to A2 and A3. Likewise, if A1 is far from A2 and A3, RG does not

distinguish well between D and E conformations. However, the combination of RG and

Nh is a good descriptor of the system. C conformations are characterized by a short RG

and a low Nh. When A1 detaches, Nh increases to the characteristic D hydration level

while RG remains approximately constant. Next, if A1 separates further from the other

two but A2 and A3 remain attached, then RG increases while Nh remains constant.

Hence, q⃗ allows to further distinguish D conformations into detached-collapsed (DC)

and detached-extended (DE), see Fig. H.2. Lastly, E conformations are characterized

by both long RG and large Nh.

In Fig. 5.6 (central panels) we show the results of ∆G(q⃗) for four characteristic shear

rates. In Figs. H.3 and H.4, we reproduce the results for all the shear rates considered

in this work. To clearly show which conformations the system explores, we plot Nh

as a function of minimum and maximum distances, where dmin(max) is the minimum

(maximum) distance between the centers of masses of the three domains (Fig. 5.6

left panels). This is a slightly different from the criterion adopted in Ref. [327] of
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estimating the distances between A1(A3) and A2, but the spirit is the same. If both

dmax and dmin are short, then the domains are collapsed, if both are large they are

extended; otherwise they are in a detached conformation.

For the lowest value of the shear rate γ̇ = 1.4 · 105 s−1, the free energy landscape

shows a barrier of ∼ 5kBT separating two basins corresponding to C (stable) and

DC (metastable) conformations. For increasing γ̇ = 7 · 107 s−1, we find three basins

corresponding to C, DC and DE states. The barrier separating C and DC decreases

for increasing γ̇, while the barrier separating DC and DE is of the order of 2.5 kBT .

By further increasing γ̇ = 4.3 · 108 s−1, we find that the barrier separating C and DC

vanishes, and the two basins merge. The free energy landscape for RG ≳ 50 Å is almost

flat, at ∼ 2 kBT above the basin. For this shear rate, the system does not explore

E conformations, but DE, as we appreciate in the left panel. Lastly, for the highest

γ̇ = 1.1 · 109 s−1 we barely appreciate any barrier, and the system explores a rugged

free energy landscape covering all the possible conformations. This corresponds to a

system dominated by the effect of the hydrodynamic flow that completely flattens the

free energy landscape.

We can estimate the force F required to overcome the free energy barrier

∆G(C↔DC). F (C→DC) is the force necessary to separate the A1 domain from the

attached A2 and A3 in the field of all protein and water interactions, i.e., the force

required to activate the hemostasis response. On the contrary, F (DC→C) is the force

that thermal fluctuations must exert to deactivate the system. We calculate the ther-

modynamic force F ≡ ∆G/∆l, where ∆G is the free energy barrier and ∆l is the

increase in the distance between A1 and the nearest domain A2 upon detachment

(attachment), as a function of the shear rate. We find that the maximum force that

the collapsed system stands prior to A1 detachment is

FMax(C→ DC) ≡ (4± 0.5) · 300 K · kB
(17± 6) Å

= (10± 5) pN, (5.5)

calculated for γ̇ = 7 · 105 s−1. We report the calculated forces for all shear rates

γ̇ < 10−8 s−1 in Table H.1. These predictions could be tested in future experiments.

Finally, we compare ∆G(q⃗) with an alternative description of the system that only

considers information from the implicit solvent simulations: q⃗ IS = {RG,∆E}. As we
have already discussed, ∆E is less sensitive than Nh to changes of protein confor-

mations, particularly between C and D. Moreover, the sharp spikes in Figs. 5.5, H.1

impede the interpretation of the free energy landscape in terms of C, D and E basins.

Snapshots with ∆E > 0 correspond to either C or D conformations, but they are

disconnected in the q⃗ IS landscape to other macrostates corresponding to the same

conformations. We plot ∆G(q⃗ IS) in Fig. 5.6 (right panels). For the lowest shear rate

γ̇ = 1.4 · 105 we distinguish two basins separated by a barrier. These are consis-

tent with the free energy landscape ∆G projected into q⃗ coordinates. For increasing

γ̇ = 7 · 107 s−1, we find a single basin for C and DC conformations separated by a
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Figure 5.6: From left to right: number of water molecules in the hydration shell Nh as

a function of minimum and maximum distances, ∆G(q⃗) ≡ ∆G(RG, N
h), and ∆G(q⃗ IS) ≡

∆G(RG,∆E), where RG is the radius of gyration of the protein system and ∆E is the inter-

domain energy calculated with the OPEP force field. From top to bottom: four characteristic

shear rates γ̇ · s ∈ {1.4 · 105, 7.0 · 107, 4.3 · 108, 1.1 · 109}. The results corresponding to other

shear rates are plotted in Figs. H.3 and H.4
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barrier form DE. Here we note two clear differences between the ∆G projections into

q⃗ and q⃗ IS. While for the description in terms of q⃗ we still find a free energy bar-

rier between C and DC, it vanishes in the q⃗ IS diagram. Moreover, we find that DC

conformations correspond to either ∆E ∼ 0 (γ̇ = 1.4 · 105 s−1 panel) or ∆E ∼ −10
(γ̇ = 7 · 107 s−1 panel). For higher γ̇ = 4.3 · 108 s−1 we find a basin corresponding

to C and DC conformations, and a flat free energy plateau for large RG, as in the q⃗

description. Next, for the largest shear rate γ̇ = 1.1 · 109 s−1, we find that this de-

scription gives no relevant information. We find a narrow region where G is minimum

around ∆E/IU ∼ 0 for all RG, collecting configurations at D and E states. We do not

interpret this locus as the collapse of the basin in the q⃗ projections as many of these

conformations correspond to −10 < ∆E/IU < 0. Thus, ∆E is unable to distinguish

properly among C, DC and DE conformations.

Comparison between ∆G(q⃗) and ∆G(q⃗ IS) landscapes shows that the former is

much more informative than the latter. We find that the inclusion of a coordinate

for the solvent is necessary to separate C and DC conformations into distinct free

energy basins. Otherwise they collapse into a single basin, i.e. if the macrostate is

described in terms of RG and/or ∆E. RG accounts for the separation of DC and DE,

as they are indistinguishable from either energetic or hydration shell points of view.

Last, separation between DE and E should be accounted for by the solvent coordinate.

However, the change of Nh depends on the conformation of the globular domains A2

and A3 before they separate. The more the hydration shells overlap, the larger the

increase in Nh will be. We find a broadening of the accessible regions in the q⃗ landscape

with a plateau in ∆G(q⃗) for large values of γ̇, instead of clearly distinct DE and E

basins.

In Appendix G (Figs. G.3 and G.4) we reproduce the results in this section in

terms of the enthalpy of water ∆HSol (Eq. G.1), calculated with two different sets of

parameters of the BF model, instead of Nh. We find that the results are robust against

changes of the solvent descriptor and parametrization.

5.4 Conclusions

In this chapter, we introduce a theoretical method to estimate the solvent contribution

to the free energy landscape of large biological systems. We consider the BF model

for water and proteins that accounts explicitly for water-residue interactions and de-

scribes the HB network at molecular resolution, including cooperative effects [1, 134].

The model is suitable for large-scale simulations, up to the order of 107 water molecules

(Chapter 2 and Appendix B) around ambient conditions (Chapter 3). Our method

maps arbitrary solute (proteins, membranes, nanoparticles, etc.) configurations cal-

culated with implicit solvent models into the CG representation of the BF water and

protein model. After equilibrating the HB network, keeping the solute fixed, we calcu-
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late the enthalpy of water. Assuming that implicit solvent trajectories already include

all water effects, our method makes explicit the contributions coming from water to

the total free energy.

As a proof of concept, we consider implicit solvent OPEP model simulations of

the rotational dynamics of the A1, A2, and A3 domains of the vWf under extreme

shear flow [327]. Our results show that BF water is sensitive to changes in protein

conformations through changes in the shape (number of hydration water molecules)

and enthalpy of the hydration shell. We find that these solvent descriptors, together

with the protein radius of gyration, allows us to characterize properly the free energy

basins of the different conformations. On the one hand, our approach allows us to

estimate the free energy barriers between the conformations as a function of the shear

rate, showing that the barriers flatten out above the critical shear rate γ̇C ∼ 108 s−1.

On the other hand, it conveys that, below the critical shear rate, thermal fluctuations

are enough to overcome these free energy barriers. In both cases, although the quanti-

tative estimate of the free energy barriers depends on the model parametrization and

should be optimized comparing with experiments, the results in terms of the number

of hydration water molecules is robust. Also, we demonstrated that the experiment-

based quantitative optimization of the parameters would allow us to better estimate

the maximum tensile strength the protein can sustain as a function of the shear rate.

Overall, our approach demonstrates that the inclusion of the explicit solvent allows

a better description of the free energy landscape, compared with descriptions involving

only the solute. More precisely, the solvent coordinate is necessary for characterizing

properly different free energy basins. Therefore, we overcome an intrinsic limitation

of implicit solvent CG models since, by construction, they average over the solvation

coordinates.



Chapter 6

Effect of crowding in FUS

condensates

Water is a constitutive part of biomolecular materials, as it plays a decisive role in bal-

ancing energy and entropy. In particular, hydrogen bonds (HBs) within the hydration

shell modulate the amino acid interactions and control local physical properties such

as dielectric permittivity, viscosity, etc. Despite the water relevance, coarse-grained

(CG) models for proteins with implicit solvent, e.g., the OPEP, are popular because

they allow us to study large length and time scales that are unreachable for atom-

istic simulations with water. Here, we consider an alternative approach based on the

Bianco-Franzese (BF) model for water (Sections 5.2.2 and 5.2.3). In this chapter, we

combine the OPEP and the BF models to study the effect of crowding on Superoxide

Dismutase 1 (SOD1) sequestration into Fused in Sarcoma (FUS) biomolecular conden-

sates. SOD1 proteins are involved in the disease progression of amyotrophic lateral

sclerosis (ALS) and, under heat stress, are sequestered into Stress Granules (SGs) in

vivo and into FUS biocondensates in vitro. A crowded in vitro cytomimetic medium

–a Bovine Serum Albumin (BSA) solution– decreases the SOD1 partition coefficient

(PC) even after 60 min of heat stress [349]. OPEP Lattice Boltzmann Molecular Dy-

namics simulations of SOD1 with FUS Low-Complexity Domain and BSA show almost

no preferential interactions of SOD1 with BSA, despite the conformational difference

of (intrinsically disordered) FUS and (globular) BSA. Samanta et al. concluded that

the decrease in PC with BSA is due to the lack of preference for SOD1 between FUS

and BSA [349]. By studying the hydration contribution to the system’s free energy

balance, we show that the hydration free energy landscape of SOD1 in solution with

BSA is entirely different from the case of SOD1 in a FUS condensate. We find for

SOD1 three preferred associative states in BSA and only one in FUS and show that

the hydration controls the transition rates and the residency times of each associative

state. Our study concludes that the in vitro SOD1 PC decrease in FUS condensate in

the presence of BSA crowders is due to the hydration entropy increase in BSA. This

mechanism could be relevant not only in vitro but also in vivo.

117
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6.1 Introduction

Biomolecular condensates organize the cellular fluid and play an important role in cell

functioning as ribosome biogenesis, DNA damage response, signal processing and con-

trol [358,359]. They are often called membraneless organelles (MLOs) and correspond

to the droplet phase upon protein liquid-liquid phase separation (LLPS) [358,360–363].

Experimental studies have shown that a common feature of many MLOs is that they

exhibit liquid-like properties, such as fusion, dripping [364], high viscosity [365, 366],

or wetting [367]. Other studies addressed physicochemical factors that affect droplet

stability, such as temperature [368,369], pH [370,371], or ionic strength [372].

Stress granules (SGs) are MLOs formed at cell stress conditions, such as star-

vation [361] or heat stress [373]. Proteins are known to global or partially un-

fold upon heating, and misfolded proteins can aggregate into toxic assemblies [374].

SGs constitute a cytoprotective mechanism, sequestering misfolded proteins or ag-

gregates [375–378] and thus preventing the development of diseases. For example,

Superoxide Dismutase 1 (SOD1) proteins, which are related to the progress of amy-

otrophic lateral sclerosis (ALS) [379, 380], are sequestered upon heating in cell into

SGs and in vitro into Fused in Sarcoma (FUS) condensates [349].

Low complexity domains of intrinsically disordered proteins, such as FUS [381–

383], heterogeneous nuclear ribonucleoprotein A1 (nhRNPA1) [384,385], or DEAD-box

helicase protein LAF-1 [365], commonly drive LLPS [365,386,387]. Although simplistic

in vitro experiments show that homotypic FUS interactions are enough to induce phase

separation [381], the cellular environment is a complex, crowded, multi-component

mixture of biomolecules. Crowded environments typically favor LLPS by excluded

volume effects, co-condensation of crowding agents and phase-separating biomolecules,

or by inducing segregative phase separation [362]. In in vitro experiments, synthetic

polymer molecules such as Ficoll 70 or polyethylene glycol (PEG) are employed to

mimic cellular crowding [388]. However, these molecules are relatively inert respect

to the phase separating protein, neglecting the chemical specificity of the protein-

crowder (CWD) interactions. Bovine Serum Albumin (BSA) constitutes a step toward

a more realistic representation of cytoplasm crowding in in vitro experiments [349,389,

390], since it is highly water-soluble and introduces, at some extent, protein-protein

interactions as in the cellular milieu [391].

In this work, we study by simulations the SOD1 sequestration in FUS condensates

and in BSA crowded mediums. The motivation for comparing SOD1 sequestration

into these CWDs is two-folded. On the one hand, this simulation study helps to

rationalize in vitro experiments comparing SOD1 partition into FUS condensates in

synthetic polymer Ficoll 70 and in globular protein BSA crowded mediums [349].

These results show that the partition coefficient (PC) of SOD1 in FUS is reduced

for the case of FUS condensate in BSA compared to Ficoll 70. On the other hand,
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the comparison is relevant due to the different sequence-specific interactions, crowding

and excluded volume effects, and solvent composition in both environments. For BSA

(globular), most of the volume is occupied by a reservoir of bulk water, while FUS

chains (intrinsically disordered) are homogeneously distributed over the entire volume

of the systems, with SOD1s experiencing larger excluded volume effects.

Despite these differences, Lattice-Boltzmann molecular dynamics (LBMD) simu-

lations of the OPEP model [233, 352] -an implicit-solvent coarse-grained model for

proteins that keeps sequence specificity and assumes short range interactions [232]-

, yielded no relevant SOD1-CWD interaction energy differences but slightly stronger

preference for partitioning into BSA compared to FUS [349]. Samanta et al. concluded

that the minor PC of SOD1 into FUS condensates when BSA crowders are present,

compared to Ficoll 70, is rationalized by the finding that SOD1 interaction energy

with BSA is, at least, of the same order of magnitude as the interaction energy with

FUS.

Water and, in particular, hydrogen bonds (HBs) at the hydration shell modulate

the free-energy landscape of biomolecular systems [2, 16]. However, implicit-solvent

models integrate over the solvation degrees of freedom of the system. Hence, their

level of description hides the solvation coordinates of the system. In this work, we

hypothesize that including explicit solvent interactions is essential to elucidate the

different behavior of SOD1 sequestered into FUS and BSA environments. Following

the method described in Sec. 5.2.3, we map configurations sampled with the implicit-

solvent OPEP model [232, 233, 349] into their corresponding BF water-protein repre-

sentation and estimate the solvent contributions to the free energy of the SOD1s. We

find that the hydration free energy landscape of a) SOD1 into FUS and b) SOD1 with

BSA are entirely different, something that was revealed in the implicit solvent calcu-

lations. In particular, we rationalize the experimental preference of SOD1 adsorption

into BSA by the increase in the hydration entropy in the BSA environment.

6.2 Methods

Lattice Boltzmann molecular dynamics (LBMD) simulations of the implicit solvent

OPEP model [232,233,352] have been performed to analyze SOD1 sequestration into

BSA [325, 389], as well as Chymotrypsin Inhibitor 2 (CI2) sequestration into BSA

and Lysozyme [326] crowded environments. In this chapter we consider the sequestra-

tion of folded SOD1 in BSA and FUS highly concentrated solutions [349]. Following

the method described in detail in Sec. 5.2.3, we map the configurations of the sys-

tem calculated with the OPEP model into their corresponding BF protein and water

representation and sample water configurations keeping the protein fixed. Then, we

analyze how the thermodynamic properties of water, namely the enthalpy, density,

and response functions, change with the protein configuration.
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The size of the BF simulation box and the temperature T and pressure P conditions

are set to mimic those of the original work [349]. We consider a cubic box of 88 cells of

lateral size, corresponding to 255 Å. Periodic boundary conditions (PBC) apply in all

directions. The LBMD-OPEP simulations extend for ∼ 1 µs and configurations were

collected every 0.2 and 5 ns for the SOD1 in BSA and FUS cases, respectively. Here, we

map the configurations into their respective BF representation every 2 ns (BSA) and

5 ns (FUS). The system is then solvated with Nw ∼ 6.3·105 water molecules, filling the

free volume left after mapping the proteins. Among the water molecules, those located

at the first three water layers from the protein surface belong to the hydration shell.

For every configuration, we equilibrate the solvent at ambient conditions (T = 300 K,

P = 1 atm as in Chapter 3) and sample over 104 independent water configurations.

The sampling algorithm is Metropolis Monte Carlo in the NPT -ensemble, parallelized

in GPUs (Sec. 2.3).

The simulated systems are of comparable concentration, containing 10 SOD1 in 70

FUS chains (150 g/L) and 10 SOD1 in 15 BSA proteins (100 g/L) [349]. In Fig. 6.1,

we represent a typical configuration of the systems, mapped into their corresponding

BF representation, as described in Sec. 5.2.3.

6.3 Results

We classify the Nw water molecules in the system into bulk and hydration shell,

Nw ≡ Nb + Nh, and further distribute the water molecules at the hydration shell

BSA SOD1 FUS SOD1
Figure 6.1: SOD1 sequestration in BSA (left) and FUS (right) condensates, mapped into

the BF lattice. Blue beads correspond to cells occupied by SOD1, while red correspond to

cells occupied by the other protein. Water molecules fill all the available volume left by the

proteins. For the sake of clarity, they are not represented. Blue lines represent the limits of

the simulation box (255 Å), where PBC apply.
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into three groups depending on whether they hydrate SOD1, CWD, or both. Hence,

Nh ≡ Nh
SOD1 + Nh

CWD + Nh
mix. More precisely, Nh

mix is the number of water molecules

in the hydration shell that are at the same distance from the SOD1 and the CWD.

In Fig. 6.2, we depict a section of the system to illustrate the classification of water

molecules into bulk and SOD1, CWD, and mixed hydration shells.

As expected from the different CWD conformational properties, Fig. 6.2 shows that

the composition of the solvent in BSA and FUS solutions is entirely different. In the

BSA solution, most of the volume of water is in the bulk, while the hydration shell

extends to a limited region surrounding the proteins. Oppositely, in the FUS solution,

most of the water molecules hydrate FUS chains. It is a consequence of the different

conformational properties of the crowders: BSA is globular, while FUS is intrinsically

disordered and flexible. Therefore, the amino acids of FUS are both homogeneously

distributed in the system and more exposed to the solvent.

Despite the different composition of the solvent, our estimates of the total enthalpy

of water (water-water and water-protein interactions) are similar for both cases, being

just ∼ 0.6 kJ/mol larger (more negative) for the FUS condensate (see Table I.1 in Ap-

pendix I). We rationalize this difference to the larger enthalpy of HBs at the hydration

shell and to the increase in the number of water-protein contacts in the FUS solution

compared to BSA.

Following the Chapter 5, we estimate the free energy landscape of an individual

SOD1

∆G(q⃗i) = kBT log
(
ρP (q⃗i)

)
, (6.1)

SOD1-BSA SOD1-FUS

Figure 6.2: Typical configuration of the system, including proteins and water. Left: SOD1

and BSA, right: SOD1 and FUS. For clarity, we represent a section of the system. Each

color point represents a BF cell, i.e., either a water molecule or a fragment of an amino acid.

Color code: proteins are represented in blue (SOD1) or red (BSA and FUS in the left and

right panel, respectively). Bulk water molecules are in cyan. We depict the hydration layer

in magenta (molecules hydrating a SOD1), yellow (molecules hydrating the other protein in

solution) and black (molecules hydrating both proteins in solution).
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where kB is the Boltzmann constant and ρP (q⃗i) is the probability density that the

i-th SOD1 is in a macrostate described by the generalized coordinates q⃗i. We consider

a descriptor of the macrostate of the SOD1 with two components, where the first

describes the configuration of the proteins and the second, the solvent. Hence, the

first component collects information from OPEP implicit solvent simulations, while

the second accounts for new information arising from BF explicit water. We let q⃗i ≡
{Ci, Nh

SOD1,i}, where Nh
SOD1,i is the number of water molecules hydrating the i-th SOD1,

and Ci is the adsorption factor, as defined in the following.

For each SOD1 i and configuration of the system at the time t, we define the

adsorption profile as ci(d, t) ≡ Ni(d, t)/Ni(t), where Ni(d, t) is the number of BF cells

of the i-th SOD1 exposed to the solvent and at a distance d from the crowder, and

Ni(t) is the total number of BF cells of the i-th SOD1 exposed to the solvent. The

physical meaning of ci(d, t) is the fraction of the i-th SOD1 surface that, at the time

t, is at the distance d from the CWD. In Fig. I.1, we plot the thermodynamic average

of SOD1-BSA and SOD1-FUS adsorption profiles c(d) ≡ ⟨ci(d, t)⟩, where ⟨·⟩ indicate
the average over time and the ten SOD1s. We find that c(d) reflects the different

conformational properties of the CWDs. In particular, c(d) of SOD1 in FUS exhibits

a single peak at short distances d, while that of SOD1 in BSA broadens to large

d values. As we discuss in the following, this result indicates that the SOD1s can

separate from the BSA, contrary to the FUS case. We define the adsorption factor as

the integral

Ci(t) ≡
∫

d · ci(d, t) · dd. (6.2)

Hence, Ci(t) is the average distance between the surface of the i-th SOD1 and the

surface of the CWD at the time t.

Our results, including the solvent, show that the free energy landscape of SOD1

in BSA and SOD1 FUS are entirely different (Fig. 6.3 top panels). The SOD1s in the

BSA solution explore three characteristic states connected in a single free energy well.

We label the states ’A’, ’B’, and ’C’. We define the states A as those with adsorption

factors shorter than two hydration shells Ci < 2dHyd. shell ∼ 25 Å(six water layers). At

these short Ci, the hydration shell of the SOD1 overlaps with the hydration shell of the

BSA. At these short Ci, the hydration shell of the SOD1 overlaps with the hydration

shell of the BSA. Hence, the SOD1s in state A interact with the BSA, at least through

water-mediated interactions. For larger Ci, we find two basins (B and C) separated

by a free energy barrier of ≲ 3kBT . B and C states differ in the number of water

molecules at the hydration shell. For Nh
SOD1,i > 3, 350 the SOD1 is surrounded by a

completely-formed hydration shell (state C). On the contrary, if Nh
SOD1 < 3, 350, the

hydration shell of SOD1 overlaps with another hydration shell. As Ci > 2dHyd. shell,

the only possibility is that two SOD1s interact between them (state B). Regarding

the free energy landscape of SOD1 in FUS, we find a single basin corresponding to A
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states. This was expected, as FUS is homogeneously distributed in the system, and

there is no bulk reservoir for the SOD1 to escape (states B and C). In Fig. 6.4, we

depict the three typical configurations of the SOD1s in BSA.

For the sake of comparison, we calculate the free energy landscape using generalized

coordinates that only account for information obtained from OPEP implicit solvent

simulations. We consider q⃗ IS
i ≡ {∆Ei, Ci}, where ∆Ei is the interaction energy of

the i-th SOD1 with all the other proteins in the system, calculated with the OPEP

force field (see Fig. 6.3 bottom panels). The free energy landscape of SOD1 in BSA

resembles the calculated including a coordinate of the solvent. However, configurations

with ∆E ≲ 0 are much more populated that those with large and negative ∆E.

In other words, states of SOD1s with different hydration volume Nh
SOD1 collapse to

similar values of ∆E. We rationalize this observation to the fact that the short range

interactions calculated with the OPEP force field extend up to 10 Å, while water-
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Figure 6.3: Hydration free energy landscape of SOD1 into BSA (left panels) and FUS (right

panels) solutions. Top panels: ∆G(q⃗), calculated from explicit solvent simulations. Magenta

and blue solid lines indicate C = dHyd. shell and C = 2dHyd. shell, respectively. Black dashed

lines separate the landscape into three regions corresponding to A, B and C states, as de-

scribed in the text. The dashed line separating A from B and C states is at C = 2dHyd. shell.

Bottom panels: ∆G
(
q⃗ IS
)
≡ ∆G(∆E, C), calculated from implicit solvent simulations. Lines

bear the same meaning as in top panels. “B/C” indicates that this basin of ∆G includes

both B and C states, as discussed in the text.



124 Chapter 6. Effect of crowding in FUS condensates

A B C

Figure 6.4: The three associative states for a SOD1 in solution with BSA. The states are

defined for individual SOD1 (green), whereas the remaining SOD1s in the system are rep-

resented in blue. BSA proteins are plotted in red. A: the green SOD1 is close to BSA

protein(s). B: the green SOD1 is in contact with another SOD1. C: the green SOD1 moves

freely in bulk water.

mediated interactions calculated with the BF model reach distances up to 25 Å(two

hydration shells). Although this is not relevant for A and C basins (A states are

characterized by short Ci, and the interaction energy of SOD1s in C is ∆E = 0 by

definition), it strongly affects the distribution of the B states in the q⃗ISi diagram. We

find that, at the projection of the free energy landscape on q⃗ IS
i , the basin above

the barrier collects both B and C states. For the case of SOD1 in FUS solution,

the free energy landscape exhibits a single basin corresponding to A states, as in ∆G

including the solvent. Consistently with the BSA case, we also find that configurations

of different Nh
SOD1 collapse to ∆E ∼ 0.

Next, we focus on the kinetics of the SOD1s in the BSA solution. We are interested

in analyzing how the SOD1s explore the free energy landscape, to assess whether the

SOD1s rapidly shift among the three states or tend to remain for long time is the same

state. First, we estimate the fraction of the total time spent by the SOD1s in A, B

and C states (Fig. 6.5 c). We find that SOD1s are preferably at A or B rather than

C. We argue that the SOD1s lower their interaction energy when they approach to

other protein, regardless it is a BSA (A state) or another SOD1 (B state). Second, we

estimate the frequency of transitions between the different states νX→Y as the number

of transitions per unit time, where X and Y stand for A, B and C (see Fig. 6.5 d).

We find that the transition rates are symmetric (νX→Y ∼ νY→X), with the highest

frequency between A and B, followed by A and C, consistent with the fact that there

are no free energy barriers between these states. Transitions between B and C also

happen but at a lower frequency, showing that thermal energy is large enough to let

the SOD1s overcome the free energy barrier between these states. Third, we estimate

the histogram of uninterrupted times of residence tR, i e. the elapsed time in which

a SOD1 remains in the same state (see Fig. 6.5 b). We find that accessible tR span
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over three orders of magnitude (from a few ns up to 200 ns), showing that there is no

characteristic time tR. Based on this observation and reckoning that negative values of

tR bear no physical meaning, we consider the log-normal distribution to fit our data.

The probability density function of the log-normal distribution with parameters µ and

σ is

f(tR) =
1

tRσ
√
2π

exp

(
−(ln(tR)− µ)2

2σ2

)
. (6.3)

We fit data in the range tR ≤ 20 ns, as the histograms estimated from the simula-

tions are poorly sampled for larger times (the total simulation time is 1 µs). For each

state, Table 6.1 reports the parameters resulting from the fitting of the log-normal dis-
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Figure 6.5: (a): Schematic hydration free energy landscape for SOD1 into the BSA solution.

The blue region corresponds to ∆G/kBT ≲ 0.5, green to 0.5 ≲ ∆G/kBT ≲ 2, and red to

2 ≲ ∆G/kBT ≲ 4.5. A, B, and C letters mark the associative states described in Fig. 6.4.

(b): Symbols correspond to the probability density that a SOD1 resides a time tR at the state

A, B, or C. Lines represent the fit of log-normal distribution to ρP (tR) (see Table 6.1). (c):

Time spent in each of the three states relative to the total simulation time. (d): Frequency

of transitions between the three states, calculated as the number of transitions per unit

time. All the results in this figure correspond to the average over ten SOD1s. Figs. I.2-I.6

in Appendix I describe individual trajectories.
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µ σ ⟨tR/ns⟩ Var(tR/ns) α

A 1.35± 0.03 1.00± 0.03 6.4± 0.4 16± 2 −1.6± 0.2

B 0.83± 0.09 0.95± 0.03 3.6± 0.2 4± 2 −1.8± 0.3

C 0.94± 0.11 0.95± 0.05 4.0± 0.6 5± 2 −1.6± 0.2

Table 6.1: Parameters of log-normal distribution (µ, σ) obtained from the fit of f(tR)

in Eq. 6.3 to the estimated probability density function ρP (tR). The fourth and fifth

column report the expected value ⟨tR⟩ = exp
(
µ+ σ2/2

)
and the variance Var(tR) =

(exp
(
σ2
)
−1) ·(exp

(
2µ+ σ2

)
) of tR. The last column shows the exponent of the power

law decay ρP (tR) ∝ tαR. We fit µ, σ, and α to data in the range 2 ≤ tR/ ns ≤ 20.

tribution, the corresponding mean and variance of tR, and the exponent of the power

law decay ρP (tR) ∝ tαR.

The results for the kinetics of SOD1 in the BSA solution reported in this section

were obtained averaging over the ten SOD1s. Hence, it describes the expected behavior

of a SOD1 protein. However, a more detailed analysis shows that individual SOD1s

describe different trajectories. For example, 1-st and 2-nd SOD1s spend approximately

60 % of the time in the state B, while 8-th SOD1 less than 10 %. Figs. I.2-I.6 show the

same results as in Fig. 6.5, but for the individual trajectories of the SOD1s Moreover,

we plot the time evolution of Ci(t), Nh,SOD1i(t), and the visited states (A, B, C) in

Fig. I.7.

6.4 Discussion

In Ref. [349], Samanta et al. concluded that the interaction energies of the SOD1s with

FUS and BSA crowders, calculated with the implicit solvent force field OPEP, were

comparable. Thus, they argued that SOD1s show no essential preference to adsorb

into one or another solution. Although their result helped to rationalize in vitro

experiments on the PC of SOD1 into FUS condensates in BSA and Ficoll 70 crowded

solutions [349], it was unexpected. From the physicochemical point of view, we would

anticipate that the different sequence-specific and crowding interactions should have

an impact on the preference of the SOD1s to partition into BSA or FUS solutions.

Indeed, our results including explicit solvent show that the SOD1s behave entirely

different in the two condensates. The SOD1s in the BSA solution explore three typical

associative states (SOD1-BSA, SOD1-SOD1, and SOD1 free-in-the-bulk), while SOD1s

in the FUS solution only interact with the FUS. We argue that the origin of the different

behavior of the SOD1s rests on the solvent composition: in the BSA solution there is

a large reservoir of bulk water, while most of the water molecules in the FUS solution

hydrate FUS chains. Hence, the SOD1s in the BSA solution can escape from the

crowder by cooperating with another SOD1 or spontaneously separating and moving
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into the bulk. Since the implicit solvent SOD1-CWD energy [349] and the water

enthalpy (Table I.1) are comparable for both systems, we argue that the solvation free

energy difference between both systems arises from a) the larger entropy of water and

b) the role of homotypic SOD1 interactions in the BSA solution.

Regarding the kinetics of the SOD1s in the BSA solution, our analysis reveals that

SOD1s undergo, on average, 90 transitions per µs between the three associative states.

We also find that accessible times tR span over at least three orders of magnitude,

between 2 and 200 ns. However, shorter and longer tR are possible, as we are limited by

the selected time resolution (2 ns) and the total time of the implicit solvent simulation

(1 µs). We suggest that the kinetic analysis could be biased due to our artificial

definition of the borders separating A, B, and C regions of the free energy landscape.

If this holds, high transition frequencies and short residence times indicate that (some)

individual SOD1s move close to the borders.

6.5 Conclusions

We study the effects of crowding on the behavior of SOD1 sequestered in BSA and FUS

highly concentrated solutions. The comparison is motivated by the different conforma-

tional properties of the crowders (BSA is globular and FUS, intrinsically disordered)

and to rationalize in vitro experiments showing a decrease in the PC of SOD1s in

FUS condensates when BSA is present compared to Ficoll 70 crowded solutions [349].

Our method, described in detail in Sec. 5.2, considers trajectories previously calculated

with the OPEP implicit solvent model [232,349], and maps the configurations into their

corresponding BF water and protein representation. We then calculate water-water

and water-protein contributions to the thermodynamic observables (density, enthalpy,

and response functions) along the trajectory of the system, as well as the contribution

from the solvent to the Gibbs free energy.

At variance with implicit-solvent energy-calculations [349], we find that the explicit-

solvent free energy landscape reveals an entirely different behavior of the SOD1s in

FUS and BSA solutions. While SOD1 proteins only interact with FUS chains, in the

BSA solution they cyclically fluctuate among three associative states: SOD1-BSA (A),

SOD1-SOD1 (B), and SOD1 free in the bulk (C). Our results show that A and B are

more frequent than C states, and that B and C states are separated by a free energy

barrier. We argue that crowding effects, and their impact on the composition of the

solvent, rationalize the behavior of the SOD1s. While most of the volume of the BSA

solution is occupied by a bulk water reservoir, FUS chains are distributed homoge-

neously over the whole system. Therefore, most of the water molecules hydrate FUS

amino acids, and the excluded volume for the SOD1s in the FUS solution increases

compared to the BSA solution. We conclude that the experimentally observed pref-

erence of SOD1 proteins to partition into BSA solutions [349] arises from the larger
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entropy of water compared to FUS solutions.



Chapter 7

Conclusions

In this Thesis, we i) extend to bulk the FS model, ii) validate the model through

comparison with experimental data around ambient conditions, iii) analyze its trans-

ferability to deep supercooled conditions, and iv) present a theoretical approach to

calculate the water contribution to the free energy of large biological systems starting

from configurations generated by an implicit solvent model.

According to the partition of the volume into cubic lattice, FS water molecules in

each cell have six nearest neighbors with which they can form HBs. However, water

molecules cannot form more than four HBs. In Chapter 2, we introduce a checkerboard

partition that ensures that all the water molecules can form up to four HBs. Moreover,

we design parallel-distributed MC algorithms taking advantage of the specific topology

of the cubic lattice. The simulations are executed in GPUs and efficiently sample un-

precedentedly large-size water systems of the order of 17, 576, 000 molecules if sampled

with Metropolis and 2, 097, 152 with Swendsen-Wang. These systems correspond to a

simulation box of 75x75x75 nm3 and 37x37x37 nm3, respectively.

As a prerequisite for the use of the bulk FS model in biological simulations, in

Chapter 3 we calibrate the parameters so that the model fits the experimental density

and response functions of water around ambient conditions. To this aim, we estimate

the ratio Jσ/J between the cooperative and covalent contributions to the HB inter-

action energy based on ALMOEDA ab initio calculations of minimum-energy water

clusters [267]. Then, fixed Jσ/J to the estimated value, we look for a set of linear

rescaling functions such that the model calculations best-fit the experimental data of

water around ambient conditions. The bulk FS model under the selected parametriza-

tion reproduces quantitatively the experimental equation of state of water at ambient

pressure for the range 270 ≤ T/ K ≤ 330. By increasing P the range of T reduces

up to 290 ≤ T/ K ≤ 310 for P = 50 MPa. This range of T and P cover the working

conditions of most proteins. Hence, the bulk FS model is a remarkable candidate for

simulations of biological interest with explicit solvent, since i) it equilibrates large-size

water systems ii) it is quantitatively consistent with water around ambient conditions,

and iii) accounts for HBs at molecular resolution, including cooperativity, at variance

129



130 Chapter 7. Conclusions

with spatially based coarse-grained models such as MARTINI and SIRAH [106,107].

In Chapter 4, we study the transferability of the model to deep supercooled con-

ditions. As shown for the monolayer case, cluster MC simulations of the FS model

are suitable to equilibrate the system at extreme low-T conditions for a wide range

of P (Sec. 1.4 and Refs. [123, 134]). Here, we show the presence of a LLCP at the

end of a first-order LLPT between LDL and HDL phases for the bulk FS model, in

accordance with atomistic models [77, 85, 86]. The estimated critical pressure PC and

critical temperature TC exhibit a strong dependence on the size of the system, and

extrapolate to PC = (174±14) MPa and TC = (186±2) K at the thermodynamic limit.

Furthermore, the phase diagram of the bulk FS model around the critical conditions

offers a coherent picture of water polymorphism, consistent with the experimentally

observed polyamorphism [20, 23]. Above PC , we identify three forms of water with

different thermodynamic and dynamic properties: LDL and HDL phases separated by

a LLPT and VHDL separated from HDL by a continuous structural change marked

by the internal ordering of the degrees of freedom of the water molecules. Below PC ,

the Widom line emerges from the LLCP separating LDL-like and HDL-like states,

without discontinuity in the free energy, following the locus of strong maxima of CP .

The loci of maxima of KT and smooth minima of αP emerge from the Widom line,

separating HDL-like and VHDL-like forms of water. This continuous structural change

is originated by the formation of the HB network, that in turn implies an increase in

density fluctuations. The two maxima of the response functions that are described for

the FS monolayer are not present in bulk because they are a consequence of the lower

dimensionality. At high-P , above the LLPT, for thermodynamic consistency, the bulk

CP has smooth maxima matching the high-T minima and enclosing the anomalous

region for this response function.

In Chapter 5, we extend to bulk the BF model for water and protein systems. We

propose a theoretical approach that considers trajectories of large biological systems

previously calculated with implicit solvent models, e.g., the OPEP [232], and maps

the protein configurations into their corresponding BF representation (Sec. 5.2). The

aim of this method is to estimate the water contribution to the free energy of large

biological systems. We successfully apply this approach to two cases of study: the

conformational changes of the A1, A2, and A3 domains of the von Willebrand factor

(vWf) under extreme shear rate (Chapter 5), and the analysis of the effects of BSA-

crowding on SOD1 sequestration into FUS highly concentrated solutions (Chapter 6).

Thanks to the combination of solvent and protein descriptors, we characterize four

typical configurations of the globular A1, A2, and A3 domains of the vWf: collapsed

(C), detached-collapsed (DC), detached-extended (DE), and extended (E). Our results

show that, for low shear rates γ̇, C conformations are stable and CD metastable,

separated by a free energy barrier of ∼ 5 kBT . This barrier decreases upon increasing

γ̇. For intermediate-γ̇, the system explores DE conformations. At high-γ̇, the free
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energy landscape becomes almost flat and the system cyclically visits all the possible

conformations. We interpret that, under these conditions, the work exerted by the

shear rate is the dominating contribution to the free energy of the system.

In Chapter 6, we find that the inclusion of the solvent is necessary to unveil the dif-

ferent behavior of SOD1 proteins sequestered into crowded (globular) BSA and (intrin-

sically disordered) FUS environments. Previous calculations with an implicit-solvent

force-field show that SOD1-BSA and SOD1-FUS interaction energies are comparable,

contrary to the intuition that the specific protein interactions should have a larger

impact on the energy [349]. Here, we find three characteristic associative states for

SOD1 in the BSA solution, namely SOD1-BSA (A), SOD1-SOD1 (B), and SOD1 free

in the bulk (C), whereas SOD1s always interact with FUS chains. The free energy

landscape of SOD1 in BSA solution shows a free energy basin connecting A with B

and A with C, without any barrier, and a barrier separating B and C of approximately

3 kBT . Since the enthalpy of BF water is comparable in both BSA and FS solutions,

we interpret that the different behavior of SOD1 in the BSA solution is a consequence

of the increase in water’s entropy. We argue that our results rationalize the experimen-

tal observation that the partition coefficient of SOD1 in FUS condensates decreases

for FUS solvated in a BSA medium instead of Ficoll 70 [349].

Our results on biological systems reveal that we can adequately characterize their

free energy landscapes by including the solvent explicitly to interpret and understand

their behavior. Therefore, the proposed theoretical approach overcomes an intrinsic

limitation of implicit solvent models, that coarse-grain the degrees of freedom of the

solvent, and paves the way for future studies of large-scale biological systems in explicit

solvent.



132 Chapter 7. Conclusions



Appendix A

Generation and usage of random

numbers

Random numbers are required for tasks such as proposing σ and η new states or

deciding whether to accept or reject a new configuration. In sequential MC, one

usually generates a random number only if needed. However, this strategy is not

convenient in parallel algorithms, as it is desirable to avoid thread divergence. This

occurs if some of the threads that are executed in parallel must generate a random

number while others do not.

In our parallelization scheme, we adopt the principle of deferred decisions strategy.

For each computation that requires a random number, we allocate in the device an ar-

ray of random numbers of size N ·N RANDOM. This array contains the maximum number

of random numbers required for N RANDOM executions of the kernels, where each kernel

launches a thread per molecule. We index the arrays of random numbers according

to rnd idx = r · N + cell, where 0 ≤ r < N RANDOM. Then, for a given calculation

that involves a random number, each thread reads its corresponding random number,

taking advantage of memory coalescing. To avoid thread divergence, the computation

is done even if unnecessary. An example of this is whenever ∆H ≤ 0 in a Metropolis

update.

We generate random numbers in the GPU using the cuRAND library. In particular,

we generate N uncorrelated sequences of random numbers and overwrite the arrays of

random numbers every N RANDOM steps, when they have been spent (see Fig. 2.2).
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Appendix B

Scaling of the algorithms

We study the scaling laws (time cost versus N) of the four implementations considered

in this work: Metropolis and SW algorithms, both in sequential and in parallel. We

find that all scale linearly in a limited range of N , as explained in the following.

A sequential Metropolis step is defined as 6N trials of updating a σij variable

chosen at random. Although the time spent in a single update depends on the sign

of ∆H in Eq. 2.7, the probability of finding it positive or negative does not depend

on N . Then, we expect that the time cost of the algorithm scales linearly with N , as

shown in Fig. B.1. However, we find that for large N ≳ 8.8 ·105, the time cost of a MC

step deviates from linearity. For even larger N ∼ 2.1 · 106, it becomes twice the time

expected. We rationalize this behavior on the extra time cost of loading the large σ

and η arrays in the RAM (16 GB). For the largest N = 1283 ∼ 2.1·106 considered here,

the size of the σ and η arrays is sizeof(σ) =sizeof(η) = 6 · N · 1 byte = 12 GB, if

the arrays are allocated as uint8 t. Thus, the total size of the arrays (24 GB) exceeds

by far the storage capacity of the RAM. Under such circumstances, the RAM loads

each time the portion of the arrays needed for calculation. The extra computational

cost is spent in loading portions of arrays.

Regarding the parallel Metropolis algorithm, we measure the time spent in the gen-

eration of arrays of random numbers (Appendix A), the execution of the kernels, and

the time spent in copying the σ and η arrays to the host. In parallel algorithms, data

access by the device is the most time-consuming task. We find that the performance

scales linearly in an intermediate range of N : 3.3 · 104 ∼ 323 ≤ N ≤ 1283 ∼ 2.1 · 106

(Fig. B.2). This can be explained as the time spent in data accessing scales linearly

with N if the GPU resources are not saturated (large N), nor under-exploited (small

N). For small N ≤ 8000, the computational resources of the GPU are not optimized.

We obtain that in this range, the time cost of a MC step remains approximately con-

stant. For large N ≥ 2163 ∼ 107, N RANDOM must be reduced to fill in the GPU global

memory. The extra time cost owes to both the increasing number of executions of the

kernels for generating random numbers and the time cost of memory transactions.

Next, we find that two power laws SFMET ∝ Nγ fit the speedup factor of the
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Figure B.1: Performance of the sequential implementation of the Metropolis algorithm

(CPU). The red line is the linear fit of the data in circles (N ≤ 262, 144), using least squares

method. For larger N (diamonds) the performance deviates from linear scaling, as explained

in the text. Error bars are smaller than the size of the symbols.
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Figure B.2: Performance of the parallel implementation of the Metropolis algorithm (GPU).

We use the same symbol and color code as in Fig. B.1. Error bars are smaller than the size

of the symbols.
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Figure B.3: Scaling of the Metropolis speedup factor respect to N . We find a crossover from

N0.94 to N0.3 at N = 32, 768. Error bars are smaller than the size of the symbols.

Metropolis algorithm (Table 2.1), see Fig. B.3. For small N ≤ 323 ∼ 3.3 · 104, γ =

0.94± 0.04 is close to 1, i.e., SF increases approximately linearly with N . The reason

is that in this range of N , tGPU is almost constant, while tCPU increases linearly. For

3.3·104 ≤ N ≤ 1283 ∼ 2.1·106, SF follows the power law with exponent γ = 0.30±0.03.
In this range tGPU, increases linearly with N , but tCPU increases with γ > 1 due to the

extra time cost of loading large arrays in the RAM.

We compare the performance of the SW algorithms in two temperatures at P =

0.0(4ϵ/v0), corresponding to percolation T = 0.05(4ϵ/kB) and non-percolation T =

0.06(4ϵ/kB). At both T , the performance of the sequential SW algorithm scales linearly

with N for N ≤ 643 ∼ 2.6 · 105 (Fig. B.4). For larger N = 1283 ∼ 2.1 · 106, the
computational time increases above linearity due to the extra time cost of managing

large arrays, as we have described in the sequential Metropolis case. We find that

the sequential SW algorithm is faster under non-percolating than under percolating

conditions. This is explained as the Hoshen-Kopelman algorithm is applied iteratively

until it converges. The total time of the update depends on the size of the largest

cluster, as it requires more iterations to converge.

Concerning the parallel SW algorithm, the time spent in a MC update increases

linearly for N ≤ 643 ∼ 2.6 · 105, although data at small values of N are noisy. As in

the parallel Metropolis algorithm, we attribute this to the fact that the usage of GPU

resources is not optimized. At large N , we find extra time cost compared with linearity,

as in the other three algorithms. Again, we attribute this to the limited resources
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Figure B.4: Time cost of a sequential SW update. We use the same color and symbol code

as in Fig. B.1

to store large arrays. We note that, contrary to the sequential SW algorithm, the

parallel SW update is faster at percolating conditions than without percolation. This

is surprising since we would expect that the total time cost of the update is governed

by the largest-size cluster, as in the sequential algorithm. A possible explanation is

that the analysis function converges rapidly regardless of the size of the cluster, making

not so relevant the size of the largest cluster. Then, the different time cost between

percolation and non-percolation must arise from less efficient memory readings of the

label array in small clusters by the scanning and labeling functions.

Finally, we find that the speedup factor of the SW algorithm shows a crossover

at N = 32, 768, as in Metropolis. For low-N , the scaling is almost linear without

percolation, γ = 0.92 ± 0.02, and consistent with linearity under percolation, γ =

0.99 ± 0.02. For larger N , the exponents are γ = 0.182 ± 0.015 and γ = 0.10 ± 0.02

with and without percolation, respectively.
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Appendix C

Rescale of the phase diagram under

different parameters

In this appendix, we show the rescaling of the phase diagram under different sets

of parameters (Sec. 3.2.2). In Fig. C.1, we plot the phase diagram of five sets of

parameters and compare them with experimental data. The slope and intercept of the

rescaling functions are reported in Table C.1.

We find that the set of parameters with J/4ϵ = 0.2, Jσ/4ϵ = 0.03, and vHB/v0 = 0.2

fails to reproduce the density anomaly at high-P . In particular, the model predicts that

the density does not display a maximum along isobars above P = 46 MPa (dashed line

in Fig. C.1). However, the experimental TMD line reaches up to 140 MPa. Regarding

the other sets of parameters, we find better agreement with experiments, with the

best compromise between the loci of the TMD and Kmin
T obtained with J/4ϵ = 0.5,

Jσ/4ϵ = 0.08, and setsvHB = 0.6.

FS Parameters Temperature Pressure

(J/4ϵ, Jσ/4ϵ) vHB/v0 a/K b/K a/MPa b/MPa

(0.5, 0.08)

0.5 151.79 175.45 390.13 -200.22

0.6 140.57 185.47 469.46 -217.89

0.7 212.50 117.78 405.47 -100.64

(0.2, 0.03)
0.2 141.67 241.73 113.30 -67.01

0.5 204.00 188.76 450.80 -22.68

Table C.1: Coefficients of the linear rescaling functions for T and P , where a is the

slope and b is the intercept (Eq. 3.5).
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Figure C.1: Phase diagram of the FS model under different sets of parameters (see each

panel), with rescaling functions from Table C.1. Lines and symbols are defined as in Fig. 3.6,

omitting the locus of maxima ofKT . The dashed line indicates the P -threshold for the density

anomaly. In the FS model, this threshold corresponds to Jeff(P̂ ) = 0→ P̂ = J/vHB.



Appendix D

The fluctuation-dissipation theorem

At equilibrium, the response functions correspond to thermodynamic fluctuations.

Therefore, we calculate CP , αP , and KT along isobars both by numerical derivative

and the fluctuation-dissipation theorem:

CP ≡
(
∂H

∂T

)
P

≡ ⟨H⟩
2 − ⟨H2⟩
kBT 2

(D.1)

αP ≡
1

V

(
∂V

∂T

)
P

≡ ⟨V H⟩ − ⟨V ⟩⟨H⟩
kBT 2⟨V ⟩

(D.2)

KT ≡ −
1

V

(
∂V

∂P

)
T

≡ ⟨V ⟩
2 − ⟨V 2⟩
kBTV

. (D.3)

In this way, we guarantee that the system is equilibrated by verifying the validity

of the fluctuation-dissipation theorem, i.e. if both estimates hold within the error bar.

We find a good agreement between both estimates, for all the response functions and

for the entire range of simulated T and P (Fig. D.1).
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Figure D.1: Response functions CP (top), αP (center), and KT (bottom), calculated as

numerical derivative (symbols) and fluctuations (lines). Each color corresponds to a different

P , as shown in the legend. The results correspond to the system of N = 32, 768 molecules.



Appendix E

The histogram reweighting method

Histogram reweighting is an enhanced sampling method that predicts the partition

function of the system Z, provided a set of independent estimates Zi. This method can

be employed to calculate the unbiased distribution of a system from a set of simulations

performed with biased potentials, as in umbrella sampling [303, 317]. Here, we apply

the histogram reweighting method in the NPT -ensemble to predict the probability

distribution Q(T, P, e, ρ) given Q(Ti, Pi, e, ρ) calculated in simulations at temperature

Ti and Pi sufficiently close to T and P [86, 134]. Then, the integral of Q(T, P, e, ρ)

along the direction M = ρ+ s · e gives Q(T, P,M) that is compared to the probability

distribution of the LLCP of the Ising 3D class of universality, Q3(M).

The partition function of the system is

Z(β, P ) ≡
∑
E

∑
V

Ω(E, V ) exp
(
−β(E + PV )

)
≡ exp

(
−βG(β, P )

)
, (E.1)

where Ω(E, V ) is the density of states, β = 1/kBT , and G(β, P ) is the Gibbs free

energy. From simulations, we estimate the histogram H(E, V ) as the frequency of

configurations having energy E and volume V along the trajectory. For the run i at

thermodynamic conditions (βi, Pi), the histogram is

Hi(βi, Pi, E, V ) =
Ni(βi, Pi, E, V )

Nc,i

∼ Ω(E, V ) exp(−βi(E + PiV ))

exp(−βiG(βi, Pi))
, (E.2)

where Nc,i is the total number of sampled configurations during the run i. Hi

becomes the correct probability distribution (right-hand term) in the limit of infinite

time simulations Nc,i →∞. Hence, given a set of independent simulations at different

thermodynamic conditions, we have a set of approximate estimates of the correct

density of states Ω(E, V ). The new histogram at β and P is given by a combination

of the simulated histograms

H(β, P,E, V ) =

∑
i Hi(βi, Pi, E, V ) exp(−β(E + PV ))∑
i Nc,i exp(−βi[E + PV −G(βi, Pi)])

, (E.3)
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where the Gibbs free energy is unknown a priori. To overcome this problem, the

Eqs. E.3 and E.4 are solved iteratively

exp(−βiG(βi, Pi)) =
∑
E

∑
V

H(βi, Pi, E, V ). (E.4)



Appendix F

Estimation of the order parameter

x(m) for the LLPT

We addressed two major issues during the search of the order parameter M ≡ ρ+ s · e
and the location of the LLCP. First, we find that only negative values of the mixing

parameter s were acceptable to symmetrize the joint probability distribution Q(e, ρ) at

variance with previous results in the literature [85,86,134,303]. Second, the probability

distribution of the order parameter m ≡ B(M−MC) systematically fail to fit the Ising

3D critical point Q3(m) for the entire range of simulated N and P . More precisely,

we find that the tails of the distributions are overrated and the peaks underrated. We

show the estimated Q(m) for N = 4, 096 in Fig. F.1 (a, red squares).

We relate the origin of both issues to the shape of the probability distribution

Q(e, ρ) in the bulk FS model. To estimate s, we rotate Q(e, ρ) with the 2D Euclidean

rotation matrix, so that M = e sin(α) + ρ cos(α). Clearly, M ≡ M/ cos(α) and

s ≡ tan(α). The only possible α that symmetrize Q(m) lie within π/2 < α < π and

3π/2 < α < 2π, leading to negative s. We find that by tuning the parameters, the

slope of Q(e, ρ) in the energy-density plane changes, making s > 0.

Regarding the second issue, we argue that what is relevant to assess the presence

of the LLCP is the existence of an order parameter whose fluctuations are critical,

rather than its functional form M = M(ρ, e). Therefore, we tested alternative order

parameters X(m) = X(ρ, e) such that Q(X) best fit to Q3(m).

We start the quest for X = X(m) noting that for m = 0 and m = ±m0 = ±1.53,
Q(m) coincides with Q3(m). Thus, we look for x = x(m) invariant with respect to

m = 0 and ±m0. Next, we note that x(m) should slightly shrink the tails (|m| > m0)

and stretch the peaks (|m| < m0) of the distribution Q(m).

Under these considerations, we find that the function

X(m) = α0λ
2 sin

(
m

λ

)
+ α1m (F.1)

fits well to our purposes. By letting α1 = 1 and λ = m0/π, the set of m = k ·m0, with

k ∈ Z, are fixed points. Moreover, the sinus alternatively changes its sign shifting m
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Figure F.1: (a): Best fit to Q3(φ) (black line) for N = 4, 096. Red squares correspond to

Q(m), following the usual definition of the order parameter M ≡ ρ + s · e. Blue circles

correspond to Q(x), the order parameter considered in this work. (b): Correction of the

order parameter X = X(m), assuming λ = 1.53/π and different α0 and α1. The red line

corresponds to the usual order parameter, and the blue line to the corrected x, following the

same color code as in the panel (a). Dashed lines highlight the fixed points upon X = X(m),

provided α1 = 1.

as convenient. The parameter α0 modulates the correction term, as shown in Fig. F.1

(b).

We rescale the order order parameter X

x ≡ B0(X −MC,0) ≡ B0

[
α0λ

2 sin
(
m/λ

)
+ α1m−MC,0

]
, (F.2)

where B0 and MC,0 are calculated so that Q(x) has mean zero and unit variance. By

setting λ = 1.53/π, α0 = 1, and α1 = 1, Q(x) best fits to Q3(x) (Fig. F.1 a, blue

circles). Hence, the selected order parameter is

x = B0

[
λ2 sin

(
m/λ

)
+m−MC,0

]
= B0λ

2 sin
(
m/λ

)
+B0

(
m−MC,0

)
, (F.3)

that is a monotonic function of m (Fig. F.1 b) that deviates from m less than 30% for

±m0/2 (where the sinus is ±1).
We test whether the normalization factor B · B0 follows or not the power law

estimated in the NPT -ensemble finite size scale theory for fluids, B ∝ Nβ/dν [83],

finding a negative result (Fig. F.2). We argue that there are at least two possible

reasons that explain this result: i) that we are considering small size systems compared

to the thermodynamic limit and ii) that the scaling law is only valid for the order

parameter m, but not for x. We argue that ii) is the most relevant, since B0 =

0.99± 0.02.

We understand that the negative sign of s and the inclusion of the correcting term

are particular features of the bulk FS model arising from the calculated fluctuations

of ρ and e. However, in this appendix, we have shown that these problems can be
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Figure F.2: The normalization factor for X, B · B0 apparently does not follow the scaling

law B ∝ Nβ/dν , estimated for m. We consider d = 3, and the critical exponents β = 0.33

and ν = 0.63 of the Ising 3D universality class.

addressed without affecting the conclusion of this work: the presence of the LLCP in

the bulk FS model.
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Appendix G

Free energy landscape in terms of

BF water enthalpy

At variance with the bulk FS parameters, that are set to reproduce the experimental

equation of state of water around ambient conditions (Chapter 3), the calibration of

the BF parameters at the hydration shell is still missing. In a first approximation, we

consider two possible sets of parameters for the HBs at the hydration shell, labeled

’A’ and ’B’. On the other hand, as the configurations of the domains are preserved,

we assume that the fluctuations of the water-protein contact interaction term (HR,w

in Eq. 5.1) are not relevant. For this reason, we consider a single set of Sw
i parameters

(Table G.1). We describe the sets A and B, and their motivation, in the following.

Set A adapts the parameters considered in a previous work for BF protein in a water

monolayer [6] to the bulk case. The hydrophobic interface strengthens the water-

water hydrogen bonding in the first hydration layer [204–208], therefore we assume

JPHO,1 > J and JPHO,1
σ > Jσ. Moreover, the local density of water at the hydrophobic

interface increases upon pressurization [205, 210–212]. The model reproduces this

behavior assuming that the local volume change associated with the formation of a

HB at the first hydration shell depends linearly on P as vPHO,1
HB ≡ (1 − k · P )vPHO,1

HB,0 ,

where vPHO,1
HB,0 = vHB is the volume change at P (4ϵ)/v0 = 0, and k > 0. We note that

the variation of vPHO,1
HB on P is not relevant for our purposes, as we do not change the

thermodynamic conditions in this work. However, we apply this formula to estimate

the corresponding vPHO,1
HB at P = 1 atm. Following Ref. [6], set A assumes JPHO,1 = 4J ,

JPHO,1
σ = 4Jσ, and vPHO,1

HB (1 atm) = 4vHB. Regarding the hydrophilic hydration shell,

the set A assumes that the HBs are not affected by the interface, so JPHI,1 = J ,

JPHI,1
σ = J , and vPHI,1

HB = vHB (see Table G.2).

According to the set A, changes in the enthalpy of water are mainly due to the

changes in the shape of hydrophobic and mixed interfaces. Naively, we may expect that

the volume of the hydrophobic interface is much smaller than that of the hydrophilic

interface. If this were the case, the set A may not be sufficiently sensitive to changes in

the shape of the hydration shell. For the case of the A1, A2 and A3 domains, we find

151



152 Appendix G. Free energy landscape in terms of BF water enthalpy

Amino acid vdW radius [Å] Ref. [357] Sw/4ϵ
D. S. Goodsell, The Machinery of Life, 2nd ed.,

Springer (2010)ARG 3.3 -0.1

LYS 3.2 -0.1

ASP 2.8 -0.5

GLU 3.0 -0.1

ASN 2.8 -0.5

GLN 3.0 -0.1

CYS 2.7 -0.5

MET 3.1 0

HIS 3.0 -0.1

SER 2.6 -0.5

THR 2.8 -0.5

VAL 2.9 0

LEU 3.1 0

ILE 3.1 0

PHE 3.2 0

TYR 3.2 -0.1

TRP 3.4 0

GLY 2.3 -0.5

ALA 2.5 0

PRO 2.8 0

Table G.1: Table of amino acid-water interactions. In the second column, we report

the van der Waals (vdW) radius of each amino acid. In the third column, we report

the interaction energy per contact with BF water. If the residue is hydrophobic, then

Sw = 0. Otherwise, Sw/4ϵ = −0.5 if the radius of the amino acid is ri < r0 = 2.9 Å and

Sw/4ϵ = −0.1 if r0 < ri < 2r0 = 5.8 Å, with ϵ ≡ 5.5 kJ/mol [1,138]. Right: Schematic

representation of the amino acids, following the same ordering as in the first column.

Figure adapted from Ref. [392]: Copyright (2009) Springer-Verlag New York.
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BF WATER PARAMETERS - SET A

BULK PHO PHI MIX

J/4ϵ 0.5 2 0.5 1.25

Jσ/4ϵ 0.08 0.32 0.08 0.2

vHB,0/v0 0.6 4 0.6 2.3

k · (4ϵ/v0) 0 0.889 0 0.773

Jeff(P = 1 atm)/4ϵ 0.23 0.92 0.23 0.575

vHB(P = 1 atm)/v0 0.6 2.4 0.6 1.5

Table G.2: Set of parameters A. The values reported for BULK have been parametrized

to reproduce the experimental density and enthalpy of water, and fluctuations, around

ambient conditions (Chapter 3). The parameters for PHOB, PHIL and MIX follow

Ref. [6], and are equal for the three hydration layers. The last two rows show the

resulting enthalpy and volume change due to HB formation at ambient pressure: Jeff ≡
J − PvHB and vHB ≡ (1− k · P )vHB,0 respectively, with P = 0.45(4ϵ/v0) = 0.1 MPa.

that 62% of the exposed surface is hydrophilic, while 38% is hydrophobic. This large

extent of hydrophobic exposed surface is consistent with recent findings, based on the

BF model, showing that globular proteins at ambient conditions only have ≈ 70%

of their hydrated surface that is hydrophilic [6]. However, it may be an artifact of

the mapping algorithm, as it maps any backbone into hydrophobic alanine residues

(Sec. 5.2.3). In particular, 15% of the total protein exposed surface correspond to

hydrophobic side chains, while 23% correspond to either alanine residues or backbones.

To explore how the results are affected by considering HBs at the hydrophilic

interface different from those at the bulk, we propose the set B of parameters. The

set B assumes that the enthalpy change due to HB formation at the PHO interface is

1.8 times stronger than that of the bulk, while that of HBs at the PHI interface is 1.5

times stronger (see Table G.3).

Finally, for both sets A and B we let JMIX,1 ≡ (JPHO,1 + JPHI,1)/2, JMIX,1
σ ≡

(JPHO,1
σ + JPHI,1

σ )/2, and vMIX,1
HB ≡ (vPHO,1

HB + vPHI,1
HB )/2. Moreover, the parameters for

the second and third layers of the hydration shell are equal to those at the first layer.

We reproduce the results obtained with Nh (Sec. 5.3). Here, we consider the BF

solvation enthalpy as observable:

∆HSol ≡
(
Hb +Hh +HR,w

)
−HE, (G.1)

that corresponds to the enthalpy difference between the total BF enthalpy of water

and the reference level of E conformations. For the set A HE = −8.57 kJ/mol, while

for the set B, HE = −8.51 kJ/mol, corresponding to the average total BF enthalpy

at E conformations. ∆HSol includes all the enthalpy terms arising from water, thus

excluding intra- and inter-protein interactions, and the work exerted by the hydrody-

namic flow. The time evolution of ∆HSol is plotted in Figs. G.1 (set A) and G.2 (set
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BF WATER PARAMETERS - SET B

BULK PHOB PHIL MIX

J/4ϵ 0.5 0.56 0.5 0.53

Jσ/4ϵ 0.08

vHB,0/v0 0.6

k · (4ϵ/v0) 0 1

Jeff(P = 1 atm)/4ϵ 0.23 0.4115 0.3515 0.3815

vHB(P = 1 atm)/v0 0.6 0.33

Table G.3: Same as Table G.2, but for the set of parameters B.

B). For both cases we identify three levels of enthalpy (dashed lines) corresponding

to C, D and E conformations, as for Nh. The changes of ∆HSol during the OPEP

trajectory are dominated by Hh, while fluctuations of the other terms are not relevant.

We find that HC > HD > HE, consistent with the variation of Nh. If Nh is large (E

conformations), then there is a higher number of HBs at the hydration shell, and the

enthalpy decreases.

Qualitative comparison of the time evolution of ∆E (Fig. 5.5) and ∆HSol

(Figs. G.1, G.2) shows a competing effect between water and protein contributions

to the total enthalpy. While enthalpic HB interactions tend to separate the three

domains (the minimum ∆HSol is found at E conformations), inter-domain energy min-

imizes when the beads of different domains approach to their equilibrium distances. As

the domains tend to collapse due to thermal fluctuations (for low shear rate), we may

conclude that the contribution from water-water HBs is weaker than residue-residue

interactions. However, this observation neglects the role of entropic contributions to

the Gibbs free energy that governs the system.

Free energy calculations ∆G(RG,∆HSol) are in agreement with the results obtained

considering Nh (see Figs. G.3 and G.4). We find that both sets of parameters succeed

in separating the protein conformations into distinct free energy basins. Hence, the

calculated free energy barriers considering either Nh or ∆HSol are comparable.
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Figure G.1: Time evolution of the solvation enthalpy ∆HSol along the trajectories obtained

from OPEP simulations, calculated with the set of parameters A. The shear rates are shown

in the legend. Dashed lines are a guide for the eye to identify the characteristic enthalpy

levels for (from top to bottom) collapsed, detached and extended conformations.
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Figure G.2: Same as in Fig. G.1 but ∆HSol is calculated with the set of parameters B. Note

that the y-axis scale here is one order of magnitude smaller than in Fig. G.1.
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Figure G.3: From left to right: ∆G(RG, N
h), ∆G(RG,∆HSol) calculated with the set of

parameters A, and ∆G(RG,∆HSol) calculated with the set of parameters B. From top to

bottom: shear rates γ̇ < 108 s−1.
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Figure G.4: Same as Fig. G.3 but for shear rates γ̇ > 108 s−1.
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Figure H.1: Same as in Fig. 5.5 but showing the entire range of ∆E. The spikes are more

frequent and reach higher values of ∆E as the shear rate increases, supporting our hypothesis

that they are a result of the interaction between the beads and the hydrodynamic flow.

DET-COL

30 A 30 A

DET-EXT

Figure H.2: Example of detached-

collapsed (DET-COL or DC) and

detached-extended (DET-EXT or

DE) conformations of A1, A2 and

A3 domains of the vWf. They are

indistinguishable from both hydra-

tion and energetic points of view,

but they differ in the radius of gy-

ration. For the configurations in

this figure, RG = 46 Å and 73 Å,

respectively.

159



160 Appendix H. Supporting Information for Chapter 5

50

100

150

200

250

300

20 40 60 80 100 120

1.40 e+5 s−1

10

11

12

13

CDC

9.5

10

10.5

11

11.5

12

12.5

13

13.5

20 40 60 80 100 120

1.40 e+5 s−1

0

1

2

3

4

5

6

7

C

DC

−50

−40

−30

−20

−10

0

10

20

20 40 60 80 100 120

1.40 e+5 s
−1

0

1

2

3

4

5

C

DC

50

100

150

200

250

300

20 40 60 80 100 120

7.02 e+5 s−1

10

11

12

13

CDC

9.5

10

10.5

11

11.5

12

12.5

13

13.5

20 40 60 80 100 120

7.02 e+5 s
−1

0

1

2

3

4

5

6

7

C

DC

−50

−40

−30

−20

−10

0

10

20

20 40 60 80 100 120

7.02 e+5 s−1

0

1

2

3

4

5

C

DC

50

100

150

200

250

300

20 40 60 80 100 120

1.40 e+6 s−1

10

11

12

13

C
DC

9.5

10

10.5

11

11.5

12

12.5

13

13.5

20 40 60 80 100 120

1.40 e+6 s−1

0

1

2

3

4

5

6

7

C

DC

−50

−40

−30

−20

−10

0

10

20

20 40 60 80 100 120

1.40 e+6 s−1

0

1

2

3

4

5

C

DC

50

100

150

200

250

300

20 40 60 80 100 120

7.02 e+6 s−1

10

11

12

13

CDC

9.5

10

10.5

11

11.5

12

12.5

13

13.5

20 40 60 80 100 120

7.02 e+6 s−1

0

1

2

3

4

5

6

7

C

DC

−50

−40

−30

−20

−10

0

10

20

20 40 60 80 100 120

7.02 e+6 s−1

0

1

2

3

4

5

C

DC

50

100

150

200

250

300

20 40 60 80 100 120

1.40 e+7 s
−1

10

11

12

13

C
DC

9.5

10

10.5

11

11.5

12

12.5

13

13.5

20 40 60 80 100 120

1.40 e+7 s
−1

0

1

2

3

4

5

6

7

C

DC

−50

−40

−30

−20

−10

0

10

20

20 40 60 80 100 120

1.40 e+7 s−1

0

1

2

3

4

5

C

DC

50

100

150

200

250

300

20 40 60 80 100 120

7.02 e+7 s−1

10

11

12

13

C
DC

DE

9.5

10

10.5

11

11.5

12

12.5

13

13.5

20 40 60 80 100 120

7.02 e+7 s−1

0

1

2

3

4

5

6

7

C

DC
DE

−50

−40

−30

−20

−10

0

10

20

20 40 60 80 100 120

7.02 e+7 s−1

0

1

2

3

4

5

C DC
DE

O
P
E
P
 I
N

T
E
R

-D
O

M
A

IN
 E

N
E
G

Y
 Δ

E
 /

 I
U

M
A

X
 D

IS
TA

N
C

E
 /

  
Å

#
. 

M
O

LC
U

LE
S

 A
T
 T

H
E
 H

Y
D

. 
S

H
E
LL

 N
h
 ·

 1
0

-3

MIN DISTANCE /  Å RG / Å RG / Å 

Nh · 10-3 ΔG/ kB T ΔG/ kB T

Figure H.3: From left to right: as in Fig. 5.6. From top to bottom: shear rates γ̇ < 108 s−1.
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C→DC DC→C

Shear rate γ̇·s ∆G/kBT F/ pN ∆G/kBT F/ pN

1.4 · 105 4.5± 0.5 8.3± 3.6 2.0± 0.5 3.7± 2.1

7.0 · 105 4.0± 0.5 9.8± 4.6 1.3± 0.8 3.2± 2.9

1.4 · 106 4.5± 0.5 8.2± 3.4 0.5± 0.5 0.9± 1.1

7.0 · 106 2.3± 0.5 2.9± 1.1 2.0± 0.5 2.6± 1.1

1.4 · 107 3.3± 0.8 7.5± 3.1 2.0± 0.5 4.6± 2.0

7.0 · 107 1.5± 0.3 1.7± 0.6 2.0± 0.5 2.3± 1.0

Table H.1: Thermodynamic force F (Eq. 5.5) calculated for each shear rate γ̇ < γ̇C

and in both directions: C→DC (hemostatic activation) and DC→C (deactivation).
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ENTHALPY [kJ/mol] - SET OF PARAMETERS A

SOD1-BSA SOD1-FUS ∆ [FUS-BSA]

Total: H ≡ Hbulk +Hhyd -14.0248(9) -14.6546(14) -0.630(2)

Hhyd ≡ Hhyd
SOD1 +Hhyd

CWD +Hhyd
mix -1.922(2) -3.933(2) -2.011(4)

Hhyd
SOD1 ≡ Hw,w

SOD1 + ER,w
SOD1 -0.2816(8) -0.1958(9) +0.084(2)

Hhyd
CWD ≡ Hw,w

CWD + ER,w
CWD -1.6298(14) -3.689(3) -2.059(4)

Hhyd
mix ≡ Hw,w

mix -0.0107(2) -0.0478(2) -0.0371(4)

Table I.1: BF water enthalpy calculations expressed in kJ/mol. First line: total en-

thalpy of water, including isotropic van der Waals, water-water HBs and water-residue

interactions. Second line: enthalpy of water within the hydration shell, including

water-water HBs and water-residue interactions. Third-to-fifth lines: enthalpy of wa-

ter within the hydration shell separated into SOD1, crowder and mixed contributions.

The fourth column corresponds to the difference between the third and the second

column. Results calculated considering the set of parameters A in Appendix G.

ENTHALPY [kJ/mol] - SET OF PARAMETERS B

SOD1-BSA SOD1-FUS ∆ [FUS-BSA]

Total: H ≡ Hbulk +Hhyd -13.1789(2) -14.0982(3) -0.9193(5)

Hhyd ≡ Hhyd
SOD1 +Hhyd

CWD +Hhyd
mix -1.3133(10) -4.105(2) -2.792(3)

Hhyd
SOD1 ≡ Hw,w

SOD1 + ER,w
SOD1 -0.1675(4) -0.1150(5) +0.0525(9)

Hhyd
CWD ≡ Hw,w

CWD + ER,w
CWD -1.140(9) -3.962(2) -2.822(11)

Hhyd
mix ≡ Hw,w

mix -0.00562(8) -0.02766(12) -0.0220(2)

Table I.2: Same as Table I.1 but considering the set of parameters B in Appendix G.
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Figure I.3: Same as in Fig. I.2, but for SOD1s ID 2 and 3.
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Figure I.4: Same as Fig. I.2 but for SOD1s ID 4 and 5.



168 Appendix I. Supporting Information for Chapter 6

 0

 0.2

 0.4

 0.6

 0.8

 1

A B C

SOD1 ID 6

R
e
la

ti
v
e
 t
im

e
 s

p
e
n
t

 0

 0.2

 0.4

 0.6

 0.8

 1

A B C

SOD1 ID 7

R
e
la

ti
v
e
 t
im

e
 s

p
e
n
t

 0

 10

 20

 30

 40

 50

A<->B A<->C B<->C

SOD1 ID 6

F
re

q
u
e
n
c
y
 o

f 
tr

a
n
s
it
io

n
 /
 µ

s
-1 ->

<-

 0

 10

 20

 30

 40

 50

A<->B A<->C B<->C

SOD1 ID 7

F
re

q
u
e
n
c
y
 o

f 
tr

a
n
s
it
io

n
 /
 µ

s
-1 ->

<-

0 20 40 60 80 100 120 140 160 180 200 220 240
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
B
C

0 20 40 60 80 100 120 140 160 180 200 220 240

Time of residence t
R
 / ns

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
B
C

0.1 1 10 100
0.001

0.01

0.1

1

0.1 1 10 100
0.001

0.01

0.1

1

P
ro

b
ab

il
it

y
 D

en
si

ty
 ρ

P
 (

t R
)

SOD1 ID 6

SOD1 ID 7

Figure I.5: Same as in Fig. I.2, but for SOD1s ID 6 and 7.
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Figure I.6: Same as in Fig. I.2, but for SOD1s ID 8 and 9.



170 Appendix I. Supporting Information for Chapter 6
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[332] A. Löf, P. U. Walker, S. M. Sedlak, S. Gruber, T. Obser, M. A. Brehm, M. Benoit,

and J. Lipfert, “Multiplexed protein force spectroscopy reveals equilibrium pro-

tein folding dynamics and the low-force response of von Willebrand factor,” Pro-

ceedings of the National Academy of Sciences, vol. 116, no. 38, pp. 18798–18807,

2019.

[333] M. J. Morabito, M. Usta, X. Cheng, X. F. Zhang, A. Oztekin, and E. B. Webb,

“Prediction of Sub-Monomer A2 Domain Dynamics of the von Willebrand Fac-

tor by Machine Learning Algorithm and Coarse-Grained Molecular Dynamics

Simulation,” Scientific Reports, vol. 9, p. 9037, Jun 2019.

[334] K. Rack, V. Huck, M. Hoore, D. A. Fedosov, S. W. Schneider, and G. Gompper,

“Margination and stretching of von Willebrand factor in the blood stream enable

adhesion,” Scientific Reports, vol. 7, p. 14278, Oct 2017.

[335] A. V. Belyaev, “Intradimer forces and their implication for conformations of von

Willebrand factor multimers,” Biophysical Journal, vol. 120, no. 5, pp. 899–911,

2021.

[336] S. Okhota, I. Melnikov, Y. Avtaeva, S. Kozlov, and Z. Gabbasov, “Shear Stress-

Induced Activation of von Willebrand Factor and Cardiovascular Pathology,”

International Journal of Molecular Sciences, vol. 21, no. 20, 2020.

[337] J. T. B. Crawley, R. de Groot, Y. Xiang, B. M. Luken, and D. A. Lane, “Unrav-

eling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand

factor,” Blood, vol. 118, pp. 3212–3221, 09 2011.

[338] T. Wu, J. Lin, M. A. Cruz, J.-f. Dong, and C. Zhu, “Force-induced cleavage of

single VWFA1A2A3 tridomains by ADAMTS-13,” Blood, vol. 115, pp. 370–378,

01 2010.

[339] Z. Li, J. Lin, T. Sulchek, M. A. Cruz, J. Wu, J.-f. Dong, and C. Zhu, “Domain-

specific mechanical modulation of VWF–ADAMTS13 interaction,” Molecular

Biology of the Cell, vol. 30, no. 16, pp. 1920–1929, 2019. PMID: 31067148.

[340] T. Yago, J. Lou, T. Wu, J. Yang, J. J. Miner, L. Coburn, J. A. López, M. A. Cruz,
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