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Preface

Most of the energy density content of the Universe (around 70%) is not baryonic matter, ra-
diation, or Dark Matter, but an entity or substance whose true nature is unclear and called
Dark Energy (DE). The name reflects its lack of interaction with radiation and our ignorance
regarding its provenance. To clarify the terminology, DE is responsible for the accelerated
expansion of the Universe, which was discovered 25 years ago, although we cannot attribute
its origin to anything specific. According to the standard vision of DE, it is a form of energy
that possesses negative pressure, and its gravitational interaction with matter produces a re-
pulsive effect. Since DE is the prominent component, it dominates the dynamical behavior of
space-time at large scales, resulting in the accelerated expansion mentioned earlier.

The most common belief is that DE may correspond to vacuum energy. This is a subtle concept
in cosmology that has challenged theoretical physicists and cosmologists for many decades,
especially with the advent of Quantum Theory. The problem stems from the interpretation of
the Cosmological Constant (CC) or Cosmological Term, Λ, in Einstein’s equations as a term
connected with the notion of vacuum energy density (VED), ρvac, a fundamental concept in
quantum field theory (QFT). In particular, some contributions to the vacuum energy may
come from the zero-point energy of quantum matter fields of the Standard Model of particle
physics, as well as the vacuum expected value of the Higgs potential, among other contributions.
However, the usual identification of DE with vacuum energy poses a troublesome enigma known
as the Cosmological Constant Problem. This problem is traditionally formulated as the huge
difference between its observed energy density associated value, ρDE ∼ 10−47 GeV4, and the
naive predictions of its value within the Quantum Field Theory framework, which may be
proportional to the fourth power of Planck’s mass, M4

Pl ∼ 1076 GeV4. This accounts for a
difference of 123 orders of magnitude! However, even a typical contribution from the Standard
Model to the vacuum energy budget can pose a problem when compared to ρDE. For instance,
the zero-point energy of the electron field contributes around ρZPE ∼ m4

e ∼ 10−13 GeV4, while
the ground state energy of the effective Higgs potential, 〈Veff〉, is around −108 GeV4. Even with
this reduction from 123 to “only” 34 or 56 orders of magnitude, there is still a big difference
that leads to the famous fine-tuning of the formulas to match our observations. In fact, the
fine-tuning problem seems to persist in all forms of dark energy and is not limited only to the
cosmological constant. This means that the essence of the problem does not lie in the simplicity
of the cosmological constant model, but in the very conception of dark energy and its relation
to fundamental physical theories. It is of paramount importance to point out this fact and to
not only focus on the mathematical modeling of dark energy, but to go beyond and understand
that the true problem resides in the correct interpretation of dark energy in any of its forms
within the context of quantum field theory or, eventually, in quantum extensions of gravitational
theory.

The precise connection between the CC and the current value of dark energy is given by the
equation ρ0

DE = Λ/(8πGN ), where GN is the locally measured Newton’s constant. It is im-
portant to note that in cosmological modeling, the CC is a mathematical term that does not
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have a specific physical interpretation. Rather, it is a parameter that is used to produce the
desired effect in the Field Equations. Despite initially being disregarded by evidence, the CC is
now considered a fundamental component of the Λ-Cold-Dark-Matter model (ΛCDM), which
is the Standard Model of Cosmology. The ΛCDM model assumes the existence of dark energy,
dark matter, and an almost scale-invariant Primordial Power Spectrum. While the model is
not without its flaws, it provides the most accurate phenomenological description of overall
observations, including cosmic acceleration, chemical element abundances, structure formation,
and the cosmic microwave background.

The cosmological constant problem is one of the biggest dilemmas that theoretical physics faces.
There is a lot of uncertainty regarding the nature of Λ and its origin at a fundamental level.
However, as scientists, it is natural for us to seek to reconcile equations with reality, and it
is inevitable to try to determine what kind of entity constitutes Λ or, more generically, Dark
Energy and how it behaves. Is it an exotic fluid that permeates the entire cosmos, or is it just
a pure geometrical effect? Although the literature on this issue is vast, we may still be far from
being able to answer the question.

Another intriguing aspect is the fact that DE and matter have comparable energy densities
at the present time, namely ρDE/ρm ∼ O(1). This ratio is strange because ρm and ρDE are
expected to have very different evolutions with the expansion. While ρDE is assumed to be
constant with time, ρm is inversely proportional to the physical volume, which increases with
the expansion, and hence there is in principle no a priori reason why at this time it is of order
of ρDE. The unexpected naturalness of this ratio at our times is also a source of mystery.

Nowadays, we are in a golden era of abundant and accurate observations in cosmology. How-
ever, this seemingly ideal situation may also bring us nightmares, as there are observational
problems that pose challenges to cosmologists, in addition to theoretical ones. The precision
data surveys have revealed conflicts between the results of different experiments, which could
shake the foundations of the ΛCDM model. The most significant challenge is the value of the
current Hubble parameter, H0. The local observations from SH0ES collaboration, which stands
for Supernova, H0, for the Equation of State of Dark Energy, show a discrepancy of ∼ 5σ com-
pared to the results of the Planck Collaboration studying the Cosmic Microwave Background,
originated in the early universe. Another crucial parameter that displays a significant discrep-
ancy is σ8, which is the root mean square of fluctuations in density perturbations at the 8 h−1

Mpc scale and is closely related to the growth of structure. In this case, the discrepancy is less
intense but still severe, at around 2.5σ, and it arises from weak lensing surveys that conflict
with the results of the Planck Collaboration. Other tensions, such as the lensing amplitude AL

and other minor anomalies in the Cosmic Microwave Background anisotropies, are also under
debate. It is still unknown whether these cosmological tensions result from systematic errors in
observations or are signals of the existence of new physics.

This dissertation is a summary of our investigations on the nature of DE both from theoretical
and phenomenological perspective under the direction of Prof. Joan Solà Peracaula. This means
to go beyond the Standard Cosmological Model by exploring the possibility that DE is in fact a
dynamical quantity in Quantum Field Theory in curved space-time, namely a DE which is the
result of the fluctuations of the quantum vacuum in the universe, and hence evolving with the
background expansion rather than being a true cosmological constant. Our aim is to go beyond
the usual approach based on just ad hoc scalar fields, such as quintessence, phantom fields and
the like, and rather treat the DE as quantum vacuum under appropriate QFT renormalization.
This possibility is consistent with the cosmological principle, which requires homogeneity and
isotropy at large scales, or at least to a great extent according to observations. But even if such a
principle has been partially disputed recently, this is not in conflict with the possible dynamical
evolution of the DE, quite the opposite, as in fact it could even acquire an enhanced protagonism
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in such an extended context, although a possible violation of the cosmological principle is not
considered in this dissertation. Our interest is in examining the implications of these ideas for the
fundamental questions surrounding the cosmological constant and its connection with Quantum
Field Theory, and hence with the fundamental principles of Theoretical Physics. Despite the
obvious relevance of these fundamental questions, our interest extends beyond technical and
theoretical details, as we keep in mind that in Physics experimental evidence is the ultimate
arbiter of reality. Therefore, testing our models against available evidence is a must in our work,
with particular attention to the aforementioned cosmological tensions.

The structure of the work is explained in the following paragraphs. The first chapter provides an
introduction to Vacuum Energy in Cosmology, which includes the history of the cosmological
constant and Vacuum Energy in Quantum Field Theory (QFT), and an outline of the main
features of today’s cosmology. In Chapter 2, the first part of our research involving the study
of Vacuum Energy Density (VED) in Quantum Field Theory is shown. What is presented
here is a derivation from first principles of the VED evolution with the expansion. It is based
on an extension of the traditional adiabatic regularization technique present in many classical
textbooks of QFT in curved space-time. Taking that method as a starting point, we extend and
systematize the procedure in a way that allows us to renormalize the vacuum energy-momentum
tensor and hence the vacuum energy density itself in a manner which is unprecedented in the
literature. We perform these computations for a free scalar field non-minimally coupled to
curvature in full detail and by different paths, including the renormalization of the effective
action. Despite the fact that our calculations are done in a specially simple context with a free
field, we are convinced that our procedure captures the most essential points which, among other
results, state that vacuum energy density in the expanding universe has a dynamical character
and evolves smoothly in terms of powers of the Hubble function, H, and its derivatives. This
corresponds to the family of Running Vacuum Models (RVM), which have been around for
some years and were originally justified by general renormalization group arguments. Models
exploring the possibility of DE evolving with a dynamical quantity are not new in the literature,
but their rigorous derivation from QFT principles is not so common. Much less common is to
revive the quantum vacuum and present it as the ultimate cause of the (dynamical) DE despite
the aforementioned cosmological constant problem. This is possible thanks to this new approach
to the adiabatic renormalization procedure developed here.

Related with the previous results, in Chapter 3 we investigate the structure of Vacuum’s pres-
sure in an analogous procedure. This led us to find an important result, the equation of state of
the quantum vacuum (the relation between VED and its pressure), which is computed here from
first principles, namely from QFT in curved spacetime in our case, and its seen to depart from its
traditional constant value: wvac = −1. Remarkably, our investigations lead us to a new mech-
anism of inflation, which is completely unrelated to the traditional ones based on scalar fields
(e.g. using inflatons or scalarons, etc.). The mechanism is again based on the quantum effects
from the quantized matter fields in Friedmann-Lemâıtre-Robertson-Walker (FLRW) space-time.
In Chapter 4 we generalize our previous results for non-minimally coupled scalar fields in the
presence of an arbitrary number of species of them (once more all of them non-minimally cou-
pled to curvature) and including also an arbitrary number of spin 1/2-fields using the same
techniques described in previous chapters. Altogether it implies a rather nontrivial extension of
the calculation previously performed for the scalar fields non-minimally coupled to gravity since
the calculations with fermions (spinor fields) in curved spacetime involve considerable technical
difficulties.

The last two chapters, Chapter 5 and Chapter 6, describe our phenomenological investigations.
In Chap. 5, we present a detailed exploration of the Brans-Dicke (BD) model, which is the
first and simplest example of a modified gravity theory in the context of scalar field theories.
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This modification of general relativity includes a new scalar degree of freedom that mediates
gravitational strength, with the scalar field providing a time-varying Newton’s gravitational
constant. We test the model using different datasets and scenarios and present the outcomes
of the fits, discussing them in relation to cosmological tensions. In Chap. 6, we study a family
of models called Ricci Running Vacuum Models (RRVM), a variation of the traditional RVM,
where the vacuum energy density evolves with the Ricci scalar, R. We properly fit the models
studied there and report promising results.

The final reflections of this dissertation are presented in the Conclusions, where we summarize
the contents and the results obtained in the different chapters of the thesis and do some final
reflections regarding the Cosmological Constant Problem.

At the end, some appendices have been added for completeness and to avoid a flood of large for-
mulas and some technical explanations that can be omitted in the main chapters. Appendix A
contains useful formulas, sign conventions, and expressions that are used throughout the disser-
tation. Appendix B explains how dimensional regularization may be used in conjunction with
adiabatic regularization in calculations related to the renormalization of the Vacuum Energy
Density (VED) in Chapter 2. Appendix C explores the running of the VED and the gravitational
constant in more detail than in the main text.

Appendix E and D contain lengthy formulas related to the adiabatic expansion of the Fourier
modes and the Energy-Momentum tensor of fermion fields of Chapter 4, respectively. We chose
not to include these formulas in the main text for clarity. Appendix F and G provide two
alternative ways to inspect the BD Model through semi-analytical and fixed points techniques
of the equations of motion that govern this cosmological model. These techniques provide
insight into the behavior of the model.

In Appendix H and Appendix I we summarize the perturbation equations of the Brans-Dicke
model in Synchronous and Newtonian gauges, respectively, at linear order. Finally, Appendix J
is a small overview of Bayesian Statistics and Model Selection, while Appendix K provides a
brief description of the different data sources used in the analysis of the models.

The CC has been a double-edged sword in the cosmological puzzle, presenting an immeasurable
challenge while also raising questions that have baffled the physics community for decades.
Throughout this entire period of research, these disquisitions we explored were fascinating to
examine. However, the results have also led to new questions and uncertainties, emphasizing the
endless path we have yet to follow. As the author of this dissertation, I would like to express my
gratitude to the reader for their interest in this work and hope that they will find it enjoyable
to read.
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Resum de la tesi

La Constant Cosmològica, Λ, ha sigut un element controvertit des que Einstein les va intro-
duir en les seves pròpies equacions de camp al 1917. Tot i mantenir una reputació irregular al
llarg dels anys, el descobriment de l’expansió accelerada de l’Univers a finals del segle XX van
confirmar que Λ és un ingredient vital del trencaclosques cosmològic, formant part del model
estàndard de cosmologia, el ΛCDM. Encara que el ΛCDM és capaç d’acomodar la major part
de les observacions, encara presenta diversos problemes de caràcter teòric i fenomenològic que
necessiten una atenció urgent.

La causa de l’expansió accelerada s’anomena de manera general Energia Fosca, la qual es mod-
elitza matemàticament amb Λ, i que té un origen incert, tot i que s’acostuma a assumir que és
energia de buit. Estimacions teòriques genèriques de la densitat d’energia de buit en el context
de la teoria quàntica de camps es diferencien de les observacions fins a 123 ordres de magnitud
en el pitjor dels casos. Addicionalment, els intents d’ajustar el seu valor col·leccionant diverses
contribucions de buit han sigut un fracàs, produint el denominat problema de fine-tuning. Aque-
sta incapacitat per derivar el resultat observacional de l’energia de buit constitueix el Problema
de la Constant Cosmològica, un dels majors misteris al qual s’enfronta la f́ısica teòrica. El
problema encara és més gran si un considera el fet que l’energia fosca i la matèria tenen una
densitat del mateix ordre de magnitud en el present, tot i que la densitat d’energia de buit és
constant, mentre que la matèria es dilueix amb l’expansió. Aquest problema és conegut com el
problema de coincidència.

Per si això no fos suficient, també hi ha problemes des de l’àmbit fenomenològic. Espećıficament,
hi ha tensions cosmològiques entre les observacions de l’univers primigeni i observacions locals,
afectant dos paràmetres importants en el model cosmològic. El primer és H0 (la funció de
Hubble o rati d’expansió en el present) i el segon és σ8 (relacionat amb la formació d’estructura
en l’Univers). Les discrepàncies poden arribar a 4− 5σ i 2− 3σ, respectivament.

Inspirats per aquests reptes, el treball realitzat sota la direcció del Prof. Joan Solà Pera-
caula ha seguit dos camins diferents, però ı́ntimament relacionats que queden reflectits en dues
parts diferenciades de la tesi. Després de la introducció al primer caṕıtol, els Caṕıtols 2, 3,
4 formen un primer bloc on mostrem les nostres investigacions respecte a la renormalització i
regularització de la densitat d’energia de buit en el context de la teoria quàntica de camps a
través d’un nou formalisme que estén la tradicional regularització adiabàtica. Hem obtingut
resultats significatius i valuosos en relació amb el comportament dinàmic de l’energia de buit,
la qual sembla evolucionar suaument amb l’expansió en termes de la funció de Hubble, ρvac(H).
Aquests resultats coincideixen amb els coneguts Running Vacuum Models (RVM), els quals han
estat presents a la literatura des de fa uns anys, però que ara queden justificats amb arguments
més rigorosos.

En el segon bloc (caṕıtols 5 i 6), amb les tensions cosmològiques en ment, vam confrontar
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dos models relacionats amb les investigacions teòriques prèvies contra un gran conjunt de dades
cosmològiques per tal de restringir els paràmetres cosmològics:

1) El model de Brans-Dicke, al caṕıtol 5, consisteix en una modificació de Relativitat General
promocionant la constant gravitacional a un grau de llibertat escalar. Això pot ser refor-
mulat com un model efectiu de Relativitat General amb una component de buit dinàmica,
similar al RVM.

2) El Ricci-RVM, al caṕıtol 6, és una variació del tradicional RVM en el qual reemplacem
la dependència en H per R, l’escalar de Ricci. Això té alguns avantatges com ara no
pertorbar les prediccions usuals de la teoria de Big Bang Nucleosynthesis.

Les conclusions que segueixen a aquests caṕıtols resumeixen els resultats principals i algunes
reflexions finals. La tesi està complementada per una sèrie d’Apèndixs que estenen la informació
dels caṕıtols principals.

Resumint, aquesta tesi presenta una investigació rigorosa de la possible desviació respecte del
paradigma del model ΛCDM, considerant la possibilitat que la densitat d’energia de buit sigui
una quantitat dinàmica i amb una evolució ben determinada per la teoria quàntica de camps.
Aquesta predicció es mostra de manera detallada i acabem obtenint resultats sorprenents i sense
precedents en la literatura. Addicionalment, explorem dos models basats en aquesta dinàmica
de buit contra diferents conjunts de dades i escenaris per tal d’aconseguir una perspectiva més
àmplia. Els nostres fits mostren resultats prometedors envers una possible desviació respecte
del tradicional model ΛCDM.
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J. Solà Peracaula, A. Gómez-Valent, J. de Cruz Pérez and C. Moreno-Pulido
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Chapter 1

Introduction

In this first introductory chapter, the aim is to contextualize what will be presented in sub-
sequent chapters. The literature on the Cosmological Constant (CC) and Vacuum Energy is
vast, so it is logical to review some historical and theoretical insights. On the other hand, there
is currently strong research in Cosmology aimed at including new elements or modifying the
traditional Standard Model of Cosmology1, or ΛCDM, in a specific direction. This is also the
case of our research. For this reason, the basics of the ΛCDM will be briefly reviewed, and we
will argue the reasons that motivate us to go beyond it.

More specifically, the chapter starts with Sect. 1.1, where the history of the CC is summarized,
starting with Sir Isaac Newton and leading up to its modern role. It is followed by Sect. 1.2,
where we summarize the physical interpretation of vacuum energy in Quantum Field Theory
and Cosmology. In Sect. 1.3, the basics of Modern Cosmology, such as ΛCDM and Inflation, are
reviewed for completeness. In Sect. 1.4, we present the main reasons that cosmologists have to
be suspicious of the validity of ΛCDM for explaining the totality of observations. Finally, the
last section of this introduction is Sect. 1.5, where comments on some proposals as alternatives
to the Standard Model, specifically those related to Dark Energy (DE), can be found.

1.1 History of the Cosmological Constant

The history of the Cosmological Constant (CC) or Cosmological Term chronicles its periods of
rise and fall in popularity as a major ingredient for describing the Universe. Throughout its
modern history, it has never been ruled out as a mathematical term in Einstein’s field equations,
as it is allowed by general covariance. However, it is true that it has not always been favored
from the phenomenological point of view.

The concept of the Cosmological Constant (CC) was proposed by Einstein in the early part
of the last century. However, attempts to modify the laws of gravity to accommodate reality
were made even earlier. The introduction of Newton’s law of universal gravitation in the 17th
century marked the unification of Heaven and Earth, making physical cosmology mathematically
possible for the first time. Interestingly, there is a parallelism between Newtonian theory and
General Relativity, as both were used by their authors for the exact same purpose of obtaining
a model of a static Universe. Thus, our historical view of the CC starts in the 17th century,

1Throughout this work, we will refer to ΛCDM simply as the Concordance Model or Standard Model. Referring
to it as the Standard Model may cause confusion, as the same short name is given to the Standard Model of
Particle Physics. We will make it clear in the text which model we are referring to, if necessary.
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during the Age of Enlightenment, and ends in the current era where the Cosmological Constant
is a fundamental building block of the ΛCDM model.

1.1.1 Newtonian Cosmology

In the times of Sir Isaac Newton (1642-1727), the question regarding the origin and physical
structure of the Universe [1,2] was unknown. Newton did not seem to be concerned about the
topic, at least not publicly. However, we are able to recover some of his contemplations on the
matter through his private and unpublished documents.

In De Gravitatione [3] (probably written around 1684-1685, although this date is a matter
of debate [4]), , Newton responds to the notion of an infinite material system embedded in
an infinite space, which was defended by René Descartes in his 1644 publication Principles
of Philosophy [5]. On the contrary, Sir Isaac claimed that space extended infinitely in all
directions and was eternal in time. In his view, matter was clearly differentiated from space
and was thought to be distributed along a finite volume, enveloped in an infinitely extended
empty space.

Later on, Newton further pondered and expanded upon his previous ideas in a series of letters
[6–9] exchanged with the cleric Robert Bentley at the beginning of the 1690s. Of course, in the
17th century, theology and physics were not separate from each other. In fact, Bentley used these
letters to prepare a series of lectures against prevailing atheism, arguing that physical laws alone
were insufficient to explain the system of the world, and that divine intervention was necessary.
Nevertheless, these attempts to explore the cosmological consequences of the recently discovered
laws of gravitation may be considered one of the earliest examples of physical cosmology, and
these documents are of great value. In the first letter of this series to Robert Bentley, Newton
wrote the following reflection:

“It seems to me that if the Matter of our Sun and Planets, and all the Matter of the Universe,
were evenly scattered throughout all the Heavens, and every Particle had an innate Gravity
towards all the rest, and the whole Space, throughout which this Matter was scattered, was but
finite; the Matter on the outside of this Space would by its Gravity tend towards all the Matter on
the inside, and by consequence fall down into the middle of the whole Space, and there compose
one great spherical Mass. But if the Matter was evenly disposed throughout an infinite Space, it
could never convene into one mass, but some of it would convene into one Mass and some into
another, so as to make an infinite number of great masses, scattered at great distances from one
to another throughout all that infinite Space.”

Newton begins by describing a finite Universe with a uniform distribution of masses that are
gravitationally bound and surrounded by an immeasurable void, which would ultimately lead
to collapse into a bigger mass. Although Newton did not consider the possibility of any random
or systematic motion of the constituents that could lead to a potential dynamical equilibrium,
the idea of collapse was a reasonable inference based on the law of gravitation. In the following
sentences, he discusses the possibility of an infinite space filled with uniformly distributed stars.
However, he assumes that the same scenario of local collapses would occur throughout the entire
Universe. It is important to note that, in his view, space was absolute and at rest, and it is
only when motion of matter takes place that it becomes relevant.

”In a later letter, Richard Bentley proposed the thought-provoking idea of a perfect, immutable,
and infinite universe that was initially balanced by divine forces as an attempt to address the
previous problem and provide a mechanical explanation for the immobility of distant stars:

“Every particle of matter in an infinite space has an infinite quantity of matter on all sides &
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by consequence an infinite attraction every way and therefore must rest in equilibrio because all
infinites are equal. ”

In that case, Newton expected the universe to remain perfectly balanced, with no motion
possible between its constituents. However, Richard Bentley proposed the idea of a perfect,
immutable, and infinite universe initially balanced by divine forces as an attempt to explain
the immobility of distant stars. This idea was challenged by Newton, who argued that a naive
interpretation of infinity could be problematic, using arithmetic arguments to demonstrate that
such a system is unstable and that any finite addition would produce disequilibrium. However,
despite these disquisitions, Newton ultimately concluded that the masses remain in equilibrium.
At this point, Newton had changed his mind regarding the size of the universe, becoming
more inclined to consider an infinite universe with uniformly distributed matter. In the second
edition of the Principia, [10], Newton introduced new ideas, particularly emphasizing the role
of Providence in the complexity of the world. Providence was responsible for the stability of the
solar system, the possibility of distant stars forming their own systems similar to the Sun, and
the perfect balance of stars at long distances to avoid mutual attraction and prevent a collapse.

Although Newton was satisfied with this qualitative picture, it was far from complete and
had several gaps if we avoid the Providence argument. For instance, the regularization of
such an unstable situation raised conceptual issues. At the end of the 19th century, both
Hugo von Seeliger [11] (1849–1924) and Carl Neumann (1832-1925) (although Neumann was
more interested in Coulomb forces, [12]) objected that different methods of calculating the net
force that a test mass would experience in a boundless Universe due to a uniformly distributed
energy density could lead to a divergent integral. Therefore, within Newtonian physics, different
approaches to the integral could produce any possible value of the force, finite or infinite. This
problem can also be formulated in other terms, such as computing the force exerted by concentric
spheres growing up to infinity and seeing how the result depends on the chosen coordinate
origin, [13].

Seeliger considered this a true paradox and thus a severe blow to Newtonian Gravity. In an
attempt to show at least one solution to what is now modernly called the “Seeliger’s paradox”,
he proposed (without any fundamental theory behind) that the gravitational attraction between
two bodies was somehow diluted by the presence of matter between them, suggesting a new
form for the Law of Universal Gravitation with an exponential decay2:

|~F12| =
GNM1M2

r2
12

e−αr12 , (1.1)

where r12 is the distance between two masses M1 and M2 and α is a positive constant with units
of inverse of length and GN is Newton’s Gravitational Constant3. It is possible to show that
with this modification, (1.1) avoids the computational issues commented on previously, and the
exponential term has a regularization effect. One may think that (1.1) reflects, at some point,
the ambiguous suggestion of Newton that the attraction between stars decays at sufficiently
long distances, since a sufficiently small α assures that its effects are only of great impact at
large cosmological distances and, as a consequence, do not disturb astronomical observations in
an extended way.

We can analyze the situation from another point of view, more in the line of the calculations
of Neumann. Poisson’s equation for a full-filled space with constant mass density ρ (modelling
the sky plenty of uniformly distributed stars) is

∇2ϕ = 4πGNρ , (1.2)

2A similar kind of law was suggested for the first time by Laplace decades earlier [14].
3Its recomended value, at the time of writing, is reported to be GN = 6.67430(15) × 10−11m3kg−1s−2 by

CODATA committee [15].
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where ∇2 is the Laplacian operator and ϕ is the Gravitational Potential. The acceleration
condition of a test particle in that field configuration is

~a(t) = −~∇ϕ = 0 , (1.3)

so that to remain in a static situation. But it will suppose that eq. (1.2) is also 0 and then the
energy density should vanish. As a consequence both equations are inconsistent. Again, one may
extend the Gravitational Laws to overcome the problem by modifying Poisson’s equations (1.2).
For instance, Neumann proposed the following,

∇2ϕ− ΛNϕ = 4πGNρ . (1.4)

Now, by solving this equation inside a spherical distribution of radius R the following result is
yielded:

ϕ(r) = −4πGNρR
2

(
1

R2ΛN
+ e−

√
ΛNR

1 +RΛN
R2ΛN

e
√

ΛNr − e−
√

ΛNr

2
√

ΛNr

)
, (1.5)

for r < R. If we now proceed to do the limit R→∞, the solution tends to a finite term,

ϕ∞ ≡ lim
R→∞

ϕ(r) = −4πGNρ

ΛN
. (1.6)

A constant potential implies that its gradient is zero, resulting in a net force of zero at any point
in space. This is essential for a static Universe. By substituting ϕ(r) = ϕ∞ into (1.4), a solution
is obtained for an infinite extension of matter (R = ∞). The whole situation is equivalent to
introducing a new force given by:

~FΛ = −ΛNϕ∞
3

rr̂ =
4πGNρ

3
rr̂ , (1.7)

where r is the radial coordinate with respect to a test mass or an arbitrary origin point in the
coordinate system. This force grows linearly with distance and is repulsive, counterbalancing
the attractive force at large distances that has the opposite sign but the same magnitude.
Without a diverging potential at infinity, there could be a problem of “evaporation” where a
low potential at infinity may result in stars being eventually ejected from the more dense region
as they gain enough kinetic energy to escape the bounded system. A constant potential also
solves this problem since it avoids any preferred direction for the gradient inwards/outwards
the system.

Although we have seen some modifications (see, [16,17] for a more complete set of solutions to
Seeliger’s paradox), there are no fundamental reasons to include them, and they do not provide
a completely satisfactory answer. Overall, they are just ad-hoc mathematical terms added to
the theory in an attempt to fit the pieces of the puzzle. In fact, some authors have followed
Newton’s position by denying that there is any problem at all: the problem that Seeliger tried
to address may just be an artifact related more to the realm of mathematics and the Riemann
rearrangement theorem than to any fundamental problem in the laws of gravitation, [18,19]. The
final physical solution should come from symmetry arguments. Moreover, some of these Modified
Newtonian Gravity theories were tested against existing data and, in general, performed poorly.
For instance, they were not able to solve the famous problem of the perihelion of Mercury4,
giving them scarce phenomenological support.

4In 1859, U. Le Verrier, a French mathematician, reported that the observed precession of Mercury’s orbit
had a discrepancy of around ∼ 43 arcseconds per year compared to the predictions of Newtonian theory [20].
Solving this discrepancy was one of the first successes of GR.
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Advancing several years to the beginning of the 20th century, it was widely believed that the
Universe was made up of the Milky Way, which was thought to be bounded, with the density
of stars decreasing near the boundary [21, 22]. The presence of nebulae among the stars had
been observed since the 17th century, but without further clues, they were commonly assumed
to be part of the Milky Way. On the other hand, the Island Universe theory proposed the
idea that some of those nebular objects in the sky were not part of our galaxy but were instead
independent objects, requiring a revision of the Universe’s structure [23]. Immanuel Kant (1724-
1804) is usually credited with conceiving the theory [24], although the idea was already present
in the works of Thomas Wright (1711-1786) and other researchers [25]. The lack of powerful
telescopes made it difficult to definitively discern whether other Island Universes, such as the
Milky Way, existed. Revised: Closure on this matter did not arrive until much later. Firstly,.
Slipher (1875-1969) calculated the recession velocity of several of those nebulae [26–29] and
observed that most of them were redshifted, moving away at great speeds compared to the
typical star’s velocity. This suggested that they were not gravitationally bound with the Milky
Way. The final proof arrived in the 1920s, a decade after the emergence of General Relativity.
This was thanks to the astronomer Edwin Hubble (1889-1953), who successfully calibrated
the distances of Cepheid variables in spiral nebulae such as M33. The measurements were
consistent with M33 being an independent object from the Milky Way, which confirmed the
existence of other Island Universes, or galaxies, [30–32]. This discovery was of great importance
in Astronomy and Cosmology. However, with respect to Seeliger’s paradox, replacing an infinite
web of stars with galaxies (if they are motionless) does not change the essential point. All in
all, the stability of a Newtonian Universe seems to be compromised in the classical framework
of Newtonian physics.

1.1.2 The beginning of Relativistic Cosmology

Let us advance to the beginning of the history of General Relativity (GR) at the end of 1915,
when Einstein’s Field Equations,

Gµν =
8πGN
c4

Tµν , (1.8)

were presented [33]. The preceding equations are the pivotal result of the theory, describing the
relationship between the geometrical structure of the Universe and its material content. They
consist of a set of non-linear, second-order differential equations on gµν , the metric tensor.
The left-hand side (LHS) of this equation is the geometrical part, where Gµν ≡ Rµν − 1

2gµνR
represents the so-called Einstein tensor. The Ricci tensor is denoted by Rµν and R ≡ Rµνgµν is
its trace, the Ricci Scalar. On the right-hand side (RHS), there is the matter part of Einstein’s
equations. Tµν is the Energy-Momentum tensor (EMT) of matter.

Einstein’s field equations constituted a generalization of Newtonian laws of gravitation, as the
classical limit can be derived in the weak-field approximation and low velocities. This particular
form (1.8) of Einstein’s Field Equations was not written in the original work, including the
sign convention and notation. Gµν was not present (Einstein reserved that notation for the
Ricci tensor), and they were written equivalently in terms of the Energy-Momentum trace5.
Throughout this dissertation, we will not use this original formulation. Besides, we will make
use of natural units in subsequent equations, setting c = 1 and ~ = 1 unless said otherwise.
More details about the conventions and notations used in this work can be found in Appendix
A.

A remarkable fact is that a static infinite Universe, similar the one imagined by Newton, is also

5We do not pretend to present an exhaustive nor chronological overview of the history of GR and Field
Equations here. For a historical approach, see, [34,35].
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not possible in the framework of the original Einstein’s equations. It is important to clarify
something: a static Universe was still very reasonable as in Newton’s times. The existence
of extra-galactic objects was still matter of debate, the size of the Universe was still an open
question and the observed peculiar velocities of stars were not great. Einstein, at those times,
was probably not aware of the aforementioned works of Slipher [26–29] about the redshifting of
spiral Nebulae, which constituted the first evidence pointing out a possible dynamical behaviour
rather than a static regime. So that, part of Newton’s ideas were still very alive and it was
natural to deal with an approximate motionless Universe. However, conceptually speaking,
there is a huge difference regarding Newton’s absolute space consideration: In GR the structure
of space-time is a much more complex than absolute space, it is not just the fixed scenario where
the matter’s motion happens. Indeed, in GR, dynamical cosmological models emerge naturally,
although it took several years to ponder these ideas seriously.

Einstein had a genuine interest in applying GR to the largest scales. He shown curiosity in the
boundary conditions at infinity, the extension of the Universe and the origin of inertia as one
can see from his letters with the mathematician William de Sitter and other colleagues [36–38].
In fact, as affirmed by Einstein in [39], one of his foundational principles for GR was Mach’s
Principle:

“The G-field is completely determined by the masses of the bodies [...] Mach’s principle (c)
is a different story. The necessity to uphold it is by no means shared by all colleagues; but I
myself feel it is absolutely necessary to satisfy it. With (c), according to the Field Equations of
gravitation, there can be no G-field without matter. Obviously, postulate (c) is closely connected
to the space-time structure of the world as a whole, because all masses in the Universe will
partake in the generation of the G-field.”

With G-field, he means the metric. But the greatest signal pointing out he had in mind to
do Cosmology is that Kosmologische Betrachtungen zur allgemeinen Relativitaetstheorie [40]
appeared shortly after the Field Equations of GR were released. We can consider this paper
the kickoff of Relativistic Cosmology [40]. He starts by recalling the intricacies of Poisson’s
equation (1.2) to find a solution with boundary conditions such that the potential tends towards
a constant value at spatial infinity, or the density decays vastly with distance. He announces
that a similar problem arises in GR and peculiarly talks about the same solution that Neumann
and Seeliger presented some years earlier6, i.e., equation (1.4) and its constant solution (1.6).
He also reasoned that the extra term in the equation should be negligible in the presence of
larger masses, like stars, which would lead to the recovery of the original form of Poisson’s
equation, and would not cause any significant deviation at local scales. This seemed to address
all the issues with the Static Universe model within (an extended) Newtonian gravity. However,
Einstein did not give much attention to this idea as it was only an analogy of what he aimed
to achieve with GR.

Actually, his model of a static Universe is spatially finite, with an infinite temporal extension
and whose spatial curvature is positive and constant: a closed Universe of radius RE, with no
need for boundary conditions at far infinity. Matter is uniformly distributed at large scales, and
the staticity condition is the existence of a reference frame in which matter is at rest. Although
small peculiar motions of stars were not denied, assuming large volume scales, these effects
become negligible. Sometimes this model is just called “Einstein’s Universe” or “Einstein’s
World”.

The heart of the paper is the proposal of extending Einstein’s equations to

Gµν + Λgµν = 8πGNTµν . (1.9)

6Without citing them, so it is assumed that he was not aware of their work at this point.
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An additional new term containing the fundamental tensor gµν multiplied by a constant, Λ > 0,
is added. Naively speaking, the effects of attraction of ordinary matter may be counterbalanced
by the repulsive effect produced by the term proportional to Λ, which posteriorly was known
as Cosmological Constant (CC) or Cosmological Term. The computations then easily carried
Einstein to calculate the radius of the Universe RE, the matter content and its relation with Λ,

1

R2
E

= Λ = 4πGNρ . (1.10)

Einstein estimated the value of RE based on rough estimations of the mean energy density in
the Universe. In his paper, he mentioned that astronomers had determined the spatial density
of matter, ρ, through star counting, and he claimed its value to be ρ ∼ 10−22g/cm3. This
value corresponds to RE being 107 ly. However, this value was not published but only appeared
in private correspondence [41–44]. The reason why Einstein did not pay much attention to
comparing his model with existing empirical data may have been due to the lack of a reasonable
explanation for the fact that RE was much larger than the farthest observed stars at around
104 ly. It seems that Einstein lacked confidence in astronomical observations, which may have
contributed to his lack of interest in comparing his model with the data available at the time.

At the end of the paper, Einstein admits that this extra term Λ has the only purpose of
describing a static Universe and does not have strong theoretical grounds, as he concludes:

“In order to arrive at this consistent view, we admittedly had to introduce an extension of the
Field Equations of gravitation which is not justified by our actual knowledge of gravitation. It is
to be emphasized, however, that a positive curvature of space is given by the presence of matter,
even if the supplementary term is not introduced. That term is necessary only for the purpose
of making possible a quasi-static distribution of matter, as required by the fact of the small
velocities of the stars.”

Some points must be remarked regarding the introduction of Λ by Einstein:

• Λ was originally not admitted to be part of the energy/matter content of the Universe,
but is a geometrical term that can be added to the Field Equations.

• As Einstein admits in the paper, their current knowledge of gravitation on those times
was not able to give a justification for its inclusion. However, the addition of the new
term Λgµν does not remove the general covariance of the equations. What is more, now
we know that, from the mathematical point of view, the addition of Λgµν to the Field
Equations is totally allowed by Lovelock’s theorem [45, 46].

• Bianchi identities ensure local covariant conservation of energy. This follows from the fact
the Einstein tensor Gµν is divergentless,

∇µGµν = 0⇒ ∇µTµν = 0. (1.11)

The inclusion of Λgµν does not change anything since,

∇µ (Λgµν) = 0⇒ ∂µΛ = 0, (1.12)

if Λ is constant. Here we are supposing a Levi-Civita connection, thus we demand metric
compatibility of the covariant derivative, ∇γgµν = 0. Thus, covariant conservation of the
EMT still holds.

• If the value of Λ is sufficiently small, it can be introduced without altering the former
applications of GR to the Solar System scale that already existed in that epoch, such as
the precise calculation of the perihelion of Mercury.
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• The analogy with (1.4) that he presents in the paper is quite clear, although not exactly
equivalent. A correct analogy would take this form:

∇2ϕ+ Λ = 4πGNρ, (1.13)

which admits a constant solution for the potential when Λ = 4πGNρ, as obtained pre-
viously in (1.10). In fact, (1.13) is not only an analogy, but the Newtonian limit of the
Field Equations for the Newtonian potential [47].

Although there are some differences highlighted in the previous point, one can recognize some
parallelisms between the aims of Newtonian Gravity and Einsteinian gravity in finding a suitable
system of the world adapted to the perceived reality of their times. Both started with the
discovery of the laws of gravitation and applied them to cosmology. However, the inability
to reconcile these laws with the paradigm of a static Universe led to efforts to modify the
original framework. In Newton’s case, theological arguments were used, but later authors such
as Neumann introduced modifications to gravity by adding extra terms to the Newtonian force
or Poisson equation. In Einstein’s case, he introduced an ’ad-hoc’ cosmological term to modify
the laws of gravitation.

Just a few months after the publication of Einstein’s paper on the cosmological term, William
de Sitter presented his own model of the Universe, the de Sitter Universe. At first, it was
misunderstood as a static cosmological model, but it was reinterpreted as a non-static one some
years later7. This model is characterized by a Universe completely dominated by a cosmological
constant and devoid of matter, proposed in 1917, making it a vacuum solution. The idea of
a Universe without any matter component was controversial for Einstein, as it contradicted
Mach’s principles and his notion of inertia being solely determined by matter. Nevertheless,
Einstein admitted it as a correct mathematical solution. In its early days, the de Sitter Universe
was of special interest because it was thought to provide an explanation for the observed redshift
of the distant spiral nebulae found by Slipher around the time GR appeared [47]. Although
it enjoyed some attention from the scientific community, it was later realized that it describes
a Universe that expands forever and was gradually abandoned in favor of other frameworks
of expanding Universes with material content. Nowadays, de Sitter Universes are of special
interest because they may represent an inflationary period similar to the one that the Universe
underwent during the so-called inflation (see Sect. 1.3.3).

After his famous paper on the Cosmological Constant, Einstein had identified a mathematical
term that allowed him to model his cosmological ideas, but still had reservations about the
physical interpretation and implications of adding Λ to the equations. This is evident from his
correspondence with colleagues [49,50].

It was E. Schrödinger [51, 52] who first recognized, or at least communicated, that the cosmo-
logical constant in the field equations could be interpreted as a negative pressure fluid when
transferred to the right-hand side of equation (1.9),

Tµν(Λ) =


PΛ 0 0 0
0 PΛ 0 0
0 0 PΛ 0
0 0 0 PΛ

 , (1.14)

where PΛ ≡ −Λ/(8πGN ). Einstein was not impresed by this fact as he had already noticed this
when dealing with the modified Field Equations. Although the mathematical equivalence was
mere, Einstein was aware that a dynamical quantity such as pressure requires an underlying

7For a detailed discussion on the change of interpretation of de Sitter’s Universe, see [48], chapters 5 and 6.
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theory. In his response to Schrödinger’s work in 1918 [53], Einstein gave a mysterious physical
interpretation of the CC as a property of space:

“Empty space takes the role of gravitating negative masses which are distributed all over the
interstellar space.”

Unfortunately, he did not elaborate on this topic or make an attempt to provide a proper
mathematical description of this sentence in subsequent texts. Many years later, in 1945, he
introduced an appendix in his book The Meaning of Relativity [54] where he stated that for a
static universe to exist,

“ One has to introduce a negative pressure, for which there exists no physical justification. In
order to make that solution possible, I originally introduced a new member into the equation.”

This is an advance of the fundamental problems of modern Dark Energy and Vacuum energy,
although Einstein did not explicitly relate the Cosmological Term with a vacuum energy density
with negative pressure in any of his letters [55]. It seems that Einstein was clueless with respect
to a possible physical origin of the Cosmological Constant. Later on, he even tried to reformulate
it by treating Λ as a kind of integration constant [50].

Returning to the historical picture, during the 1920s, observational and theoretical evidence
started to accumulate, suggesting that the Universe was not static [56,57]. Many authors began
to consider this possibility as realistic. Friedmann (1888-1925) was the first to conceive non-
static solutions to Einstein’s equations, [58]. However, his results were unnoticed by a great part
of the community, and he did not attempt to connect his findings with astronomical observations.
Friedmann realized that, depending on the magnitude of the cosmological constant, a Universe
with plenty of ordinary matter could either expand or contract. In 1924, Knut Lundmark (1889
– 1958), a Swedish astronomer, published a distance-velocity diagram [59]. Georges Lemâıtre
(1894-1966) independently discovered a set of dynamical Friedmann-like solutions in 1927. He
applied these solutions to explain the redshifting of galaxies, suggesting that their receding
implied the existence of an initial static state of the cosmos with a radius of R = Λ−1/2, which
eventually started to expand. He also theoretically demonstrated that the relation between the
recession velocity v and proper distance D was given by:

v = H0D (1.15)

where H0 is a proportionality constant. Lemâıtre even provided an estimate of this value, which
in current units would be around H0 ∼ 600 km/s/Mpc [60], based on Hubble’s distances and
Slipher’s measures of galaxy redshifts. Unfortunately, Lemâıtre’s work went largely unnoticed
when it was released [61]. Finally, Hubble’s work [62, 63] provided definitive evidence of the
dynamical nature of the Universe, based on observations of extragalactic nebulae (galaxies)
receding according to the now called Hubble-Lemâıtre Law (1.15). In his honor, H0 is called
the Hubble Constant. The value of H0 reported in [62] was around 500 km/s/Mpc for the
1929 work and around 560 km/s/Mpc for the 1931 work. Curiously, Hubble did not mention
the “Expanding Universe” even once in his paper, and was actually doubtful regarding this
fact [64]. On the contrary, Lemâıtre was truly convinced of the expansion of the cosmos, as he
demonstrated with his models and arguments.

It is useful to introduce now the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric [58,
60,65–69], which describes a homogeneous, isotropic, and dynamical background (expanding or
contracting) spacetime. It was discovered independently by different authors in the decades of
1920-1930 when they tried to develop dynamical cosmological models, although the idea of a
non-static universes was independently conceived by the first two authors, as said. However,
Howard P. Robertson (1903-1961) and Arthur G. Walker (1909-1931) were responsible for gen-
eralizing a mathematical expression for the metric tensor used in dynamical models. FLRW
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cosmology relies on one of the most fundamental assumptions about our universe: the Cosmo-
logical Principle. This principle states that the universe is isotropic and homogeneous at large
scales, constituting a maximally symmetric solution to Einstein’s equations. Within the FLRW
framework, calculations over models that respect these symmetries are easier to perform. The
FLRW interval can be expressed in spherical coordinates as:

ds2 = gµνdx
µdxν = −dt2 + a2(t)

(
dr2

1− kr2
+ r2δθ2 + r2 sin2 θdφ2

)
. (1.16)

Here a(t) is the scale factor, a dimensionless parameter representing the relative expansion of the
Universe between two different values of the cosmic time. Normally, it is normalized in such a
way that at the present time a = 1, although it is just a convention. The parameter k is related
to spatial curvature, with natural units [k] = E2, E being energy units. Spatial curvature
is determined by the matter/energy content of the universe. Sometimes k is normalized as a
dimensionless value depending on its sign: +1, 0,−1. In this convention, the scale factor has
units of length.

The cosmological fluids are usually treated as perfect fluids,

Tµν = Pgµν + (ρ+ P )uµuν , (1.17)

where ρ and P are the energy density and the pressure of the fluid and uµ is the 4-velocity of
the fluid. Matter at cosmological scales is modelled in terms of energy densities as if matter
were distributed in a continuum fluid.

Having a mathematical object that encapsulates the cosmological principle is a powerful tool
that makes it possible to formulate dynamical models in a more systematic way. For instance,
these tools can be used to analyze Einstein’s world to understand the impossibility of a static
universe without the introduction of a Cosmological Term. Generalizing the sky filled with
discrete stars that Bentley and Newton discussed can be achieved by assuming a constant energy
density ρ for matter, as shown in (1.2) and subsequent equations. Notice that, by assuming
a uniform distribution of matter, Einstein implicitly accepted the universe to be isotropic and
homogeneous at large scales, even without explicitly introducing the FLRW metric.

When introducing (1.16) and (1.17) in (1.9) we are lead to the well-known Friedmann Equations:(
ȧ

a

)2

=
8πGN

3
ρ+

Λ

3
− k

a2
(1.18)

and
ä

a
= −4πGN

3
(ρ+ 3P ) +

Λ

3
. (1.19)

The above equations are the form that Einstein’s equations take in cosmology when the Cosmo-
logical Principle is assumed. The dots represent derivatives with respect to cosmic time, where
(̇) ≡ d () /dt.

The former equations can describe, for instance, Einstein’s world. The staticity condition
implies ȧ = 0 and ä = 0. If Λ = 0, then k/a2 = 8πGNρ/3 and ρ+ 3P = 0 must be satisfied [70].
However, this last equality cannot hold for pressureless dustlike matter or radiation, as both
have non-negative pressure. For Λ > 0 and assuming dustlike matter with P = 0, we have
k/a2 = Λ = 4πGNρ. It is sometimes useful to define ρΛ ≡ Λ/ (8πGN ) so that Λ can be
interpreted as a fluid with negative pressure, PΛ = −ρΛ. This was the point defended by
Schrödinger, as explained earlier. We can use the equations to study of de Sitter Universes,
which is much more clear from this perspective. By using (1.18) and (1.19) for k = 0, the
relative variation of the scale factor with cosmic time is exactly constant, ȧ/a ≡ HDS ≡

√
Λ/3,
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and the scale factor admits exponential solutions as a(t) ∝ e±HDSt. For k > 0, it admits a
solution a(t) ∝ cosh(HDSt), which expands from R0 = 1/H2

DS at t = 0. Therefore, de Sitter
Universes are actually not static.

Using this machinery, it is easy to realize that there is an additional problem that undermines
the foundations of Einstein’s Universe, a problem that Einstein was not aware of, which concerns
the mathematical consistency of the model. This is a stability problem that was discovered by
Arthur Eddington [71]. In essence, he wrote the Einstein field equations for a FLRW metric,
which depend on a scale factor a(t) as the dynamic radius of a Universe that changes with time:

6

a

d2a

dt2
= 2Λ− 8πGN (ρ+ 3P ) . (1.20)

For a static Universe with pressureless dust-matter (a similar argument applies for radiation),
d2a/dt2 = 0 and thus Λ = 4πGNρ. A uniform distribution of matter may not only be useful for
computations but also very reasonable to conceive. However, it is also natural to expect small
variations from uniformity, as ρ represents only an average density. If there is a small fluctuation
δρ in the energy density, such that δρ > 0, the RHS of (1.20) becomes unbalanced, and d2a/dt2

becomes negative. If the Universe contracts, the matter and energy density increase, assuming
that the mass is conserved. Then d2a/dt2 becomes even more negative, and the contracting
effect is reinforced. Conversely, if δρ < 0, then an enhanced expansion begins, and equilibrium
is not restored at all.

Einstein eventually abandoned the idea of an immutable Universe in 1931, [61, 72, 73]. Despite
the abundance of observational clues, Eddington’s arguments about the instability of Einstein’s
world was the coup de grace to the model. Einstein also abandoned Λ as the “Biggest blunder”
of his life8. Einstein finally commented that his reason for refusing the use of a Cosmological
Constant was that it could no longer provide a static stable model, and static models had been
ruled out by observations [75].

Finally, let’s mention that several other interesting models of the Universe have appeared since
the publication of Kosmologische Betrachtungen zur allgemeinen Relativitaetstheorie [40]. In
particular, we will briefly summarize the Einstein-de Sitter cosmological models. After aban-
doning the idea of an immutable Universe, Einstein embraced the new paradigm of evolutionary
Universes and exiled Λ from his new models. Together with de Sitter [76–78], they proposed
this especially simple model in which, as a difference from other works, spatial curvature is set
to zero and only matter is considered. In this sense, the destiny of the Cosmos has only to do
with the density of matter. They did not claim any physical argument against curvature or
the Cosmological Constant; they just set both to 0 following Occam’s razor: without them, the
model was still compatible with observations, but much simpler. In modern formulations, the
relation between the energy density and the “coefficient of expansion”, H ≡ ȧ/a, can be written
as

H2 ≡
(
ȧ

a

)2

=
8πGN

3
ρ . (1.21)

As a consequence, we have a clear description of the Universe in terms of two measurable
parameters: H and ρ. Surprisingly, their first paper had sparse content, and they did not
study the evolution of the model or address questions about the beginning of space-time or
the boundary conditions at infinity. Because it was a simple model of a dynamical Universe
and there was no evidence of non-null spatial curvature at the time, it gained popularity as a
baseline model in the 20th century. Currently, an Einstein-de Sitter Universe is considered a

8This expression is extracted from an article by the Russian physicist George Gamow in 1956 [74], but it is
unclear if Einstein literally said this to Gamow or if it is just embellishment.
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good approximation for the period in which our Universe was dominated by cold matter prior
to the current era.

1.1.3 From the 1930’s up to the end of the Century

Despite Einstein’s abandonment of Λ, other authors did not give up easily and continued to
develop their models of non-static universes with Λ still in the equations. Several motivations
existed for this in the 1930s. First, although observations suggested that Λ should be extremely
small so as not to affect astrophysical considerations, the cosmological term was not required to
be zero by any fundamental argument. Neglecting Λ so easily may have been a mistake, as seen
by some researchers such as R.C. Tolman [79] and de Sitter [80]. Second, a non-zero Λ was
proposed in cosmological models by Eddington [81] and Lemâıtre [82–84] in order to reconcile
the short timespan of expansion predicted by many models without CC, which was much shorter
than the estimated age of the oldest stars. An additional utility of Lemâıtre’s models was
that they naturally incorporated differentiated stages: cosmic acceleration, a stagnant phase,
and deceleration. During the momentary balance between CC and gravitational attraction, a
possible mechanism for structure formation could arise by the growth of matter perturbations
into large structures such as galaxies or clusters. Finally, even though Friedmann’s original
solutions set a framework for an expanding universe, there were no clues as to the origin and
cause of this expansion. Eddington and de Sitter argued that the origin of the expansion
should be the Λgµν term. Lemâıtre went further and related the CC to a negative density ρΛ

corresponding to −10−27g/cm3 and a positive pressure PΛ = −ρΛ [83, 84].

After the 1930s, the cosmological term was invoked by various researchers on several occasions
to address the complexities encountered by more established models of GR with Λ = 0. Fur-
thermore, some intriguing and conceptual ideas in cosmology emerged that were directly or
indirectly related to the cosmological term. To provide clarity, let us list some events chrono-
logically9:

1948 The appearance of the steady-state models, which generalized the cosmological principle
by assuming a Universe that, at large scales, not only has the same properties at different
points and directions but also remains immutable in time [86, 87]. Thus, for mantaining
the energy densities, the expansion of the Universe gets compensated by an uninterrupted
creation of matter. This model required the addition of a new tensor in Einstein’s equa-
tions that had some similarities to a Cosmological Term. Meanwhile, the Big Bang theory
encapsulated the idea of Lemâıtre’s primeval atom that evolves dynamically and was able
to predict the genesis and abundances of light elements such as Hydrogen and Helium in
a process called Big Bang Nucleosynthesis (BBN) [88] and expected the observation of
an imprint of an evolving Universe possessing an early hot stage [89–92].

1955 In the 1950s, the deceleration parameter q(t) ≡ −äa/ȧ2 began to play a crucial role in
observational cosmology. In 1955, Robertson calculated corrections to the relation between
redshift and the apparent magnitude of galaxies [93], and q0 ≡ q(t0) (where t0 is the
present cosmic time) appeared in the expression. At that time, it was widely believed that
the Universe would eventually stop expanding due to the gravitational effect of matter.
Therefore, the parameter q0 was introduced to measure the degree of deceleration. In
1956, F. Hoyle and A. Sandage [94] used q0 to mathematically classify the curvature
of Einstein-de Sitter Universes and to determine whether the Universe was in a steady-
state or in a Lemâıtre-Eddington “exploding state” with a positive cosmological term

9For a detailed explanation of the history of the CC around these years, see [85] and references therein.
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(corresponding to negative values of q0). Precise evaluations of this term could have
helped distinguish between models. However, contemporary measurements suffered from
significant uncertainty, and there were observational challenges in reaching higher redshifts
in the magnitude-redshift relation for galaxy clusters.

1961 In his paper, A. Sandage studied models with Λ > 0 in order to raise the predicted age of
the Universe. The measured values of Hubble’s Constant at those times were reduced to
H0 ∼ 75 km/s/Mpc, so the timespan of expansion raised considerably. Even in this case,
they still encountered a problem of mismatch when comparing with older star’s age [95]
by a factor 2, approximately.

1965 The steady-state models were ultimately overturned by the Big Bang Theory after the
discovery of the Cosmic Microwave Background (CMB) by Penzias and Wilson in 1965
[96,97]. The CMB is an isotropic source of radiation, with fluctuations of only one part in
105, and consists of a photon gas that behaves as a perfect black body with a temperature
of T0 = 2.72548 ± 0.00057K [98]. The origin of the CMB is in the recombination epoch
of the early Universe. The steady-state hypothesis, which proposed an almost immutable
Universe, was ultimately discarded in favor of the evidence of major events in the cos-
mological past revealed by the CMB. As a result, the Big Bang theory emerged as the
dominant model. The CMB not only helped to differentiate between these two compet-
ing conceptions but also provided valuable and accurate information regarding the early
Universe. It played a crucial role in triggering the development of precision cosmology
and nowadays has become a fundamental tool for theoretical cosmology and the search
for new physics.

1967 Another study by V. Petrosian et al [99] contemplated the possibility of a non-zero cosmo-
logical constant as a way to explain the anomalous high quasar count at redshifts around
z ≈ 2. Shortly after and with the same purpose in mind, N. Kardashev [100] consid-
ered an expanding Lemâıtre universe with positive curvature and a cosmological constant
slightly above its value in an Einstein’s world.

1968 Theoretical work by the Russian physicist Yakov Zel’dovich was important for under-
standing the cosmological constant and its possible value in the context of Quantum Field
Theory (QFT), particularly in his papers from 1967 and 1968 [101,102]. Zel’dovich com-
puted the Zero-Point Energy and found that it leads to an immense value of Λ, more than
44 orders of magnitude greater than the estimated values. This was concerning, given that
the effects of Zero-Point Energy had already been demonstrated through the discovery of
the Casimir effect in the 1950s [103,104]. Zel’dovich’s findings contributed to what is now
known as the cosmological constant problem, which we will discuss in more detail below.

1970 H. R. Dicke [105, 106] formulated the flatness problem, which arises from the fact that
even a small deviation from flatness in the early Universe would be amplified during
cosmological evolution. Conversely, a curvature near 0 in the present time would imply
an even closer to 0 value in the past by a factor of 1060 or bigger.

1970-74 An ongoing challenge for Einstein-de Sitter models of the Universe was the mismatch
between the expected and observed fraction of energy associated with matter. Specifically,
if we use the Hubble constant at present time, H0, to define a critical energy density, then

ρ0
c ≡

3H2
0

8πGN
, Ωm ≡

ρm

ρc
, q0 =

Ωm

2
. (1.22)

The critical energy density in an Einstein-de Sitter Universe (with Λ = 0) represents
the exact value of the total energy density the Universe needs to be spatially flat. Ωm
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represents the fraction of energy associated with matter with respect to the critical density,
and q0 is the deceleration parameter at present. A flat Einstein-de Sitter Cosmos has
Ωm = 1, an open Universe has Ωm < 1, while a closed one has Ωm > 1.

The first part of the decade saw several groups attempting to estimate the energy frac-
tion contributed by galaxies to the cosmological budget. J. R. Gott et al. presented a
comprehensive review [107], summarizing constraints on cosmological parameters inferred
from contemporary studies, including local data (age of elements in meteorites, dynamics
of nearby galaxies, etc.), and galaxies at large redshifts. Some of the physical assump-
tions used to constrain the parameters may be inaccurate or model-dependent. However,
the combination of all constraints tightly restrict the parameter space to low values of
Ωm < 0.1 within an Einstein-de Sitter universe. This points to an open Universe, con-
trary to common beliefs at the time. Gott and collaborators concluded that the data
were highly compatible with an Open Universe, although it could be a problem of missing
mass: most of the mass in the Universe cannot form part of galaxy clusters and has yet
to be detected.

1975 In the paper by A.H. Gunn et al., [108,109], they carried out a spectrophotometry study
of galaxies in clusters. When introducing evolutionary effects in the modeling of elliptical
galaxies, a negative value of the deceleration parameter arises that is not compatible with
0 at the present time. Interestingly, Gunn and collaborators did not discard so easily
this result, opening the possibility of an accelerated cosmic expansion. The only known
possibility within the context of GR that could lead to this accelerated expansion was a
closed Lemâıtre-like universe with a non-zero value of Λ.

1981 The theory of inflation is considered as a possible explanation for the horizon problem
(the fact that apparently causally disconnected regions in space can share almost identi-
cal properties, as observed in the small anisotropies of the CMB) and the aforementioned
flatness problem. It was formulated by Guth in 1981, [110] and developed in subsequent
years by many authors [111,112]. Inflation describes an early stage in the cosmic history
characterized by an abrupt process of expansion due to a tremendous vacuum energy den-
sity. The mechanism for inflation possesses some characteristics of a CC. Inflation can also
explain the larger growth of primordial density fluctuations in linear perturbation theory
and provides a mechanism to solve the flatness problem. For more detailed explanations
on these topics, see Sect. 1.3.3 and references therein. For now, let us mention that one of
the results of inflation is to account for a Universe that is flat on hypersurfaces of constant
time. The total energy density then adds up to the critical energy density, which may
indicate a missing piece in the cosmological puzzle, such as the Cosmological Term or
other possibilities, such as relativistic decays of massive relics [113,114].

Whilst we have enumerated some examples of uses and mentions of Λ in the literature through
those years, it is true that most part of the conundrums they faced disappeared in the light
of new data, better understanding of phenomena or more accurate modelization. Over time,
it can not be denied that the CC suffered from a loss of reputation after Einstein’s rejection,
nonetheless it was incorporated to the models with some regularity. The incorporation of a
non-null CC to cosmological or astrophysical models was just seen as an alternative or an
extra ingredient of a baseline model in contexts where the simpler Einstein-De Sitter framework
did disappointing predictions. This started to change after the conception of inflation and
its possible phenomenological consequences, although no definite clues were present yet. The
transcendental turning point was about to appear, at the end of the 20th century.
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1.1.4 Modern Cosmology

At the beginning of the 1990s, there was a paradigm shift in cosmology due to the addition
of some new elements. In particular, Cold Dark Matter (CDM)10 was introduced to solve or
alleviate the problem of Missing Mass, and it was widely believed that the Universe was flat
(thus, the total energy density equaled the critical one). These features led to the birth of the
Cold Dark Matter model (CDM model). However, researchers were also considering additional
ideas. The theoretical convenience of inflation led some researchers [113, 116] to expand the
CDM model by reintroducing Λ 6= 0. This allowed them to accommodate a low matter density
Universe that is spatially flat, as favored by observations.

The improvement in instruments during the 1990s had a significant impact on the quality
and quantity of cosmological data. One example of this is the Cosmic Background Explorer
(COBE), a satellite launched in 1989 to investigate the anisotropies and spectrum of the CMB
[117, 118]. COBE’s Far-Infrared Absolute Spectrophotometer (FIRAS) experiment confirmed
the predictions of Big Bang models that the CMB has a thermal spectrum with no major
deviations from a blackbody spectrum over the spectral range of 500 µm to 1 cm. FIRAS also
detected the dipole anisotropy. Another experiment, the Differential Microwave Radiometers
(DMR), found upper limits for the variation of different multipole temperature amplitudes, all
of which were around ∆T/T . 10−5, and a scale-invariant fluctuations spectrum. In short, the
basic assumptions of inflation appeared to be in agreement with observations.

Later on, the launch of the Hubble Telescope in 1990 enabled the measurement of the Hubble
rate, H0, to be H0 = 80 ± 17 km/s/Mpc, by measuring distances to Cepheids in the Virgo
Galaxy Cluster M100 [119]. This value, within the framework of Einstein-de Sitter Universes
with energy density equal to the critical one, contradicts the inferred low age of the Universe,
a problem that had been observed repeatedly in the past. Therefore, once again, the data
indicated a model with low energy density and a non-negligible Cosmological Term.

The accumulated evidence started to point towards an extension of the CDM model to a new
model called ΛCDM, which incorporates a non-zero cosmological constant [120,121]. However,
the constraints were not yet sufficiently strict to claim a discovery. This model of low energy
density seemed to be favored by other probes, such as gravitational lensing [122, 123], large-
structure observations [124], and galaxy clustering [125].

The final boost for Λ Cosmology arrived at the end of the 20th century when collaborations
began to focus on measuring luminosity distances to type Ia supernovae (SNIa) in order to
investigate the deceleration parameter and the possible presence of a non-zero cosmological
constant. A brief description of these objects can be found in Appendix K.

A precise measurement of their apparent brightness and redshift could lead to constraints on the
parameters of the cosmological models of interest. Two different collaborations were successful in
this quest and were able to determine the cosmic late-time acceleration and the positivity of the
Λ term at a great confidence level. In 1998, the High-Z Supernova Search Team (HSST) found
34 low-redshift SNIa and 16 high-redshift ones, independently and shortly after, the Supernova
Cosmology Project (SCP) collaboration found 42 SNIa in the range z = 0.18− 0.83 [126,127].
The clarity of the results and the agreement between both parties were enough to quickly
convince the members of the scientific community that such a surprising claim was reliable.
The newly confirmed component responsible for the accelerated expansion of the Universe was
called Dark Energy (DE) [128,129]. The name does not only reflect its lack of interaction with
electromagnetic radiation but also our deep ignorance about its nature.

10Although Dark Matter is another milestone of modern cosmology, we did not mention it during this chapter.
The reader may find a historical review in [115].
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Since then, richer and richer cosmological data have emerged from different experiments, leading
us into an era of precision cosmology. To mention a couple of significant space satellites,
WMAP (launched in 2001) [130] and Planck (launched in 2009) [131], have improved our
measurements regarding the CMB and its anisotropies, shaping what we know as the currently
accepted standard model, widely known as the ΛCDM or concordance model. The fractional
energy density of matter and Dark Energy in the Universe with 68% errors from Planck 2018
baseline data (TT,TE,EE+lowE+lensing) analysis are (see Table 2 in [132]) Ω0

m = 0.3153 ±
0.0073 and ΩΛ = 0.6847 ± 0.0073. Therefore, the fraction of energy density corresponding
to DE (represented by a CC) is now around 70%, which is larger, but at the same order of
magnitude, than the fraction of matter (Cold Dark Matter+Non Relativistic Matter), near
30%. The solution to the problem of Missing Mass in spatially flat Universes is to assume that
our Universe is filled with Dark Matter and Dark Energy. The latter is assumed to be a sort
of unidentified substance with some unusual properties, such as a repulsive gravitational effect.
It is incredible how quickly this huge surprise has been widely accepted and incorporated into
our prior knowledge. However, after all, this possibility has been chasing us for many decades,
so we have had enough time to get used to it.

So far, we have summarized the history of the CC: its reminiscences to modifications of Newto-
nian Gravity, its appearance as the savior of static Cosmology, his fall and his lately victorious
come back into fashion in light of new evidence as a model for DE. It has become the dominant
component and is dictating the dynamics of the Cosmos at the largest scales.

1.2 Aspects of Vacuum Energy Density

In Sect. 1.1, we presented a summary of the history of the CC, which is a mathematical term in
Einstein’s field equations (1.9). Einstein’s gravity with a Cosmological Term was also formulated
in terms of a variational principle, so it admits a Lagrangian description as an extension of the
Einstein-Hilbert Action (EH Action):

S =

ˆ
d4x
√
−g
[

1

16πGN
R− ρΛ

]
+

ˆ
d4x
√
−gLmat. , (1.23)

where g is the determinant of the metric tensor, R is the Ricci Scalar, ρΛ ≡ Λ/(8πGN ), and Lmat.

is the matter Lagrangian that needs to be specified. In this interpretation, Λ is a parameter in
the gravitational action not being part of the matter described by Lmat.. It would be written in
the left-hand side (LHS) of equation (1.9). Thus, gravity is described by two different constants:
GN and Λ. Alternatively, the former action can be written as follows,

S =

ˆ
d4x
√
−g 1

16πGN
R+

ˆ
d4x
√
−g [Lmat. − ρΛ] . (1.24)

In this manner, the CC is understood to have something to do with matter fields, as a shift to
the matter lagrangian, rather than being a pure geometrical effect. This fact does not change
any inch of other matter fields’ physics, since Λ = constant means that their equations of motion
are unaltered. So Λ should take part of the RHS of (1.9). As a consequence, the equation of
state of this Λ-fluid, i.e the parameter relating its energy density and pressure, is -1 since the
EMT can be computed to be

TΛ
µν = − 2√

−g
δSΛ

δgµν
= −ρΛgµν , (1.25)

where SΛ ≡ −
´
d4x
√
−gρΛ. Comparing it with the EMT for a perfect fluid (1.17), we see that

PΛ = −ρΛ. A negative pressure has little to do with daily experience, but it is easily shown
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to have this repulsive effect at large scales, as we discussed after (1.19). One more bizarre
consequence is that a CC that is interpreted as a fluid is expected to have an energy density
ρΛ that is constant with the expansion. Other components, such as Non-Relativistic Matter or
Radiation, decrease their energy densities when the scale factor a gets bigger. Eventually, we
can expect the Universe to be dominated entirely by a CC in this simple picture.

The discussion about placing ρΛ in one side or another in the action may seem superfluous.
Einstein had a similar opinion with respect where to place Λ in the field equations and he
expressed into his note to Schrödinger, as said in the last section. A geometrical or a material
explanation are, of course, mathematically equivalent. But, maybe this question may have a
deeper purpose since it evokes the true nature of the Cosmological Constant. The description of
DE as the responsible of late cosmic acceleration does not constitute in any manner a satisfactory
description: we know its effects (in an axiomatical way) but a connection of Λ or any other
form of DE with reality is still missing. Is it just a pure geometrical effect or may be better
described through an Energy Momentum Tensor (EMT) like (1.14)? More in general, there are
several different Dark Energy conceptions and most of them can be summarized in one of the
following options:

1. DE corresponds to a fluid associated to Quantum or Classical field and can be described
through an Energy-Momentum tensor. This may be similar to what Schrödinger had in
mind [51,52].

2. DE is just a geometrical effect connected to a particular extension of Einstein’s gravity.

3. What we currently attribute to DE may simply be an “illusion”; the apparent acceleration
that we observe in our cosmos could be a consequence of local peculiarities, such as
overdensities or voids. In other words, the cause of the observed cosmic acceleration
may not be a separate entity or form of energy, but rather a result of the way matter is
distributed in our local region of the Universe.

4. DE is the result of different contributions from fields and/or geometry.

So far, we have refrained from delving into the physical interpretations of CC in Sect. 1.1, and
instead, preferred to focus on their use in Cosmology throughout history. We briefly mentioned
the vague ideas of Einstein and Lemâıtre, who considered Λ as a property of empty space
or connected to the vacuum, and Zel’dovich’s computations relating it to Zero-Point Energy
(ZPE), which we will discuss later. In this section, we will talk about vacuum energy, which
is the candidate par excellence as the physical interpretation of Dark Energy. We will start
with a summary of the first ideas about the nature of the vacuum in antiquity and leading up
to its first mathematical formulation in the context of quantum mechanics. Afterward, we will
explore the developments in the 20th century regarding the vacuum, Zero-Point energy, and
related notions such as renormalization.

1.2.1 From ether to Quantum theory

Vacuum, as the total absence of matter and energy, has always been a fascinating source of
mystery. Its existence and naturalness have been a matter of philosophical discussions and
experimental tests for several centuries. Its conception has changed a lot since the very early
philosophical discussions in antiquity to the modern idea of vacuum as a state of quantum field
theories and UV extensions of gravity.
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An early starting point may be found in pre-Socratic philosophy, particularly in the philosophy
of atomism. The two major exponents of atomism were the philosophers Leucippus (born in
the early 5th century BCE) and Democritus (c. 460 BCE - c. 370 BCE). They defended the
idea that the universe is composed of two components: the void (empty space of non-finite
extent where motion takes place, “what is not”) and atoms (constituents of matter that are
indestructible and indivisible, “what it is”) [133]. Void cannot be understood without atoms
and vice versa: Atoms are plural and divided entities and are separated by the void, while void
needs the atoms to be distinguished and plural to separate them. They gave the same degree
of existence to void and atoms.

Aristotle (384 BCE - 322 BCE) is one of the most famous philosophers of antiquity. In his work
Physics, he denies the existence of void by analyzing hypothetical situations and using reductio
ad absurdum arguments [134]. Void space is defined as not containing bodies, but being able
to receive them. For instance, he reasoned that bodies falling in empty space should eventually
acquire infinite velocity independently of their size and form, which is not observed at all.
Aristotelian physics is interesting on its own from the perspective of modern physicists [135].
He differentiates between the matter of the heavens (beyond the Moon) and that of Earth. The
former is made of a kind of exotic substance called the fifth element, which fills the space around
celestial bodies and is immutable. The Stoic school of philosophy (founded around the beginning
of the 3rd century BCE [136]) has some similar ideas to Aristotle. They assume a finite world
enveloped in an infinite void that cannot interact with the material world. Interestingly, this
is quite similar to the very first ideas of Newton about the shape of the Universe that we
summarized in the previous section.

The ideas of Aristotle were translated into Latin during the medieval era, and although they
gained popularity, they also concerned some theologians who feared their conflict with the om-
nipotence of God. The existence of vacuum was commonly denied until the 17th century. Galileo
Galilei (1564 – 1642) questioned the belief that nature abhorred vacuum and was particularly
interested in the motion of bodies in vacuum rather than in its specific nature. He avoided
theological or cosmological discussions. Vacuum was simply unable to oppose the motion of
bodies traversing it [137]. Evangelista Torricelli (1608-1647), who was Galileo’s pupil, and
Blaise Pascal (1623-1662) conducted experiments with the goal of creating artificial vacuums
by evacuating the atmosphere above a mercury column. The success of these experiments con-
vinced Pascal that, after all, nature does not abhor vacuum. In approximately the same period,
Robert Boyle (1627-1691) and Otto von Guerike (1602-1686), inventors and researchers, were
also interested in the properties of artificially created vacuums. Guerike distinguished between
the three-dimensional vacuum artificially evacuated by machines and the nothingness, the ori-
gin of the world created by God. The image that Boyle had in mind was simpler: vacuum
was merely defined as space emptied of air, avoiding sophisticated explanations, despite having
genuine questions regarding the nature of the created vacuum.

The birth of physics as an experimental and theoretical science gave rise to the concept of
vacuum being related to many other phenomena. In particular, the concept of ether emerged,
with some similarities to Aristotle’s fifth element or quintessence. It was thought to be a subtle
substance rather than pure emptiness and was used to explain various physical processes, such
as electricity and gravity. James Clerk Maxwell (1831-1879) defended the existence of an ether
as a complement to his theory of electromagnetism, [138], since electromagnetic phenomena
were observed to occur even in empty space. He even later wondered if this ether could also be
the origin of gravitation, assuming the ether to possess a positive energy whose disturbance by
dense bodies produces gravitational attraction. Many other scientists made efforts to construct
more sophisticated theories of ether or provide mathematical grounds for its existence, and its
presence was well-established in the heart of electromagnetic theory for a great part of the 19th

36



century.

The famous experiment performed by A. Michelson (1852-1931) and Morley (1838-1923) [139]
was an experimental test to measure the relative motion of Earth with respect the luminiferous
ether, responsible for the propagation of electromagnetic fields and light, through an interfer-
ometer invented by Michelson. Incidentally, their results were compatible with the absence of
relative motion, so a stationary luminiferous ether was harshly discredited and the experiment
constitute one of the clues pointing out towards Special Relativity.

To be fair, the concept of ether was not entirely ruled out. In the first part of the 20th century,
many scientist identified ether with vacuum, however this vacuum was not expected to be empty
space. For instance, H.Lorentz ( 1853 — 1928) still had in mind ideas similar to Maxwell’s ether,
defining the vacuum as the seat of electromagnetic fields, its energy and vibrations. Another
example is O.Lodge (1851 - 1940), who did not identify empty space with a space without any
content but plenty of ether with an extremely highly energetic medium and where matter is
embedded. Although his description was vague and did not go much further, assigning intrinsic
energy to the medium is very similar to the idea of Zero-Point Energy (ZPE) or to the modern
concept of vacuum energy. But these ideas had their origin in quantum theory and its nature
and formulation are quite different from previous considerations.

The concept of Quantum Vacuum has its foundational origin in the concept of Nullpunktsenergie
or Zero-Point Energy (ZPE) back in the 1900’s. Let us start with the Raylegh-Jeans Formula
which is a classical prediction for the spectral energy density distribution of a Black Body11,

ρ(ν, T ) =
8πν2

c3
kBT , (1.26)

where ν is the frequency of the radiation, c is the speed of light in vacuum, kB is the Boltz-
mann constant and T is Black Body’s temperature. This result matches observations for lower
frequencies but not for larger frequencies, as the quadratic increase with ν provides a huge
value that departs from the experimental results. This problem was known as the Ultraviolet
(UV) Catastrophe and was an open question at the time. The German physicist Max Planck
(1858-1947) proposed a revolutionary theory in 1900 that could solve the UV catastrophe. He
imagined the boundaries of the Black Body to be constituted by harmonic oscillators and real-
ized that if ν is the frequency of the absorbed or emitted radiation, the energy of the system
changed discretely as a multiple of the energy element or quanta hν:

En = nhν , (1.27)

where n = 0, 1, 2, . . . and h is a new constant of nature currently know as Planck’s Constant12

which Planck estimated to be h = 6.55 × 10−34 Js. Additionally, he derived a formula for the
spectral distribution different from Raylegh− Jeans formula at high frequencies

ρ(ν, T ) =
8πν2

c3

hν

exp
(
hν
kBT

)
− 1

. (1.28)

Nevertheless, Eq. (1.28) not only reproduces eq. (1.26) at low frequencies hν � kBT but also
reproduces the Stefan-Boltzmann Law and Wien’s Displacement Law. Such an amazing result,
however, did not appease Planck’s distrust of the idea of the quanta of energy as physically
realistic rather than a useful mathematical formulation. Some years later, he reformulated his
theory in such a way that it resulted in a more recognizable form from a classical perspective
[140,141]. In this new view, the emission of radiation is a probabilistic quantized phenomenon,

11We will not use natural units for this section, as we would like to remain closer to the original formulas.
12The current recommended value from CODATA committee [15] is h = 6.62607015× 10−34 Js
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although the absorption process has no restrictions and can occur in a continuous manner, we
know this theory as his “second theory”. He then derived an expression for the average energy
of an oscillator with temperature T vibrating at a frequency ν,

Ē =
hν

2
+

hν

exp
(
hν
kBT

)
− 1

, (1.29)

with the appearance of the extra term hν/2 which remains in the limit T → 0. This is the
birth of the concept zero-point energy (ZPE). Planck was conscious that ZPE was something
totally unfamiliar to classical physics and a non-measurable quantity. Trying to remove it from
the equations made sense, but there was a good reason for not doing so. Thanks to the ZPE
term, one can recover the average energy of an oscillator at a fixed temperature T in thermal
equilibrium, Ē = kBT , from (1.29) in the classical limit kBT � hν.

Overall, the second theory of Planck was controversial and was disproved by many physicists
such as Niels Bohr in light of his atomic theory. However, the concept of ZPE and whether this
quantity was real or a spurious character in quantum theory attracted attention in the physics
community from both theoretical and experimental sides [142–145]. Progressively, evidence for
the existence of Zero-Point energy started to accumulate, but it was not until the appearance
of quantum mechanics that the concept started to be backed up by a fundamental theory.
Heisenberg [146] and Schrödinger [147] independently derived the energy levels of the quantum
harmonic oscillator as

En =

(
n+

1

2

)
hν , (1.30)

recovering the ZPE result obtained by Planck’s second theory back in 1911. Additionally, this
result gained much more intuition thanks to Heisenberg’s uncertainty principle, which means
that even the ground state of the system should not possess null energy.

It is necessary to mention at this point that there were cosmological applications of the concept of
ZPE prior to quantum mechanics. In 1916, Walther Nernst, [148] proposed a revised concept of
the ether, which was thought to be filled with electromagnetic zero-point radiation. This etherial
light medium stored a vast amount of energy in the form of ZPE, which had the capability to
produce new atoms or absorb their decays. The ether was conceived to be in equilibrium with
radiation inside the medium, in a continuous exchange of energy with the material content of
the Universe, and the conservation of energy could only be understood statistically. The energy
density of ZPE was obtained by applying the classical statistical mechanics Rayleigh-Jeans
formula (1.26), but replacing kBT with hν,

ρZPE(ν) =
8πh

c3
ν3 . (1.31)

The previous formula, when integrated over all the possible frequencies, is quadratically diver-
gent,

ρZPE =

ˆ νmax

0
ρvac(ν)dν =

2πh

c3
ν4

max . (1.32)

In modern language, the introduction of νmax is called an UV cutoff, a regularization technique
used in many works in posterior decades.

1.2.2 Vacuum energy in Quantum Field theory and Cosmology

The ideas of Nernst were considered fringe at the time and somewhat vague, probably due to
their lack of connection with general relativity. Nevertheless, many people were aware of his
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work. For example, Wolfgang Pauli repeated Nernst’s calculations but with a cutoff equal to the
classical electron radius of about 10−13 cm. By relating the cosmological constant of Einstein’s
equation with the value of the calculated ZPE, it yielded a value of about 30 km for the radius of
Einstein’s world, which, as he claimed, “would not even reach the moon”. It is also important to
note a paper from Max Born, Werner Heisenberg, and Pascual Jordan [149,150] in which they
attempted to directly quantize the electromagnetic field. In addition to the thermal energy of the
oscillators, a ZPE term appeared in their computations,

∑
hνk/2, summed over the k degrees of

freedom of the system, and resulting in the re-derivation of Einstein’s formula for the statistical
fluctuations of Planckian blackbody radiation. Jordan was still not convinced of the real nature
of ZPE, first because of the lack of intuition regarding its physical origin, and second, because
it still yielded a divergent contribution for an infinite number of degrees of freedom. To deal
with this unnatural prediction, they tried a subtraction procedure [150] together with Born and
Heisenberg. This involved removing the ZPE contribution of the oscillators to the Hamiltonian
operator, thereby removing the infinite contribution in the example of a one-dimensional string.
This constitutes the first example of a manifest divergence in quantum field theory (QFT) and
also a primeval example of renormalization [151].

It became apparent from the works of Pauli and Jordan that they did not rely on the concept of
ZPE in non-material systems such as the electromagnetic field. Rather, they viewed it more as
a mathematical formality. In his work in 1933, Pauli derived a finite energy density associated
with the electromagnetic field, dropping out the ZPE contribution in a procedure similar to the
normal ordering in QFT which would be developed in the following decades. He stated that ZPE
gave rise to an infinitely large energy per unit volume which was apparently unobservable, as
it could neither be emitted nor absorbed, interact with other media, nor produce new particles
out of the vacuum. As QFT developed, the concept of vacuum became more intricate, no longer
as simple as previously imagined. One well-known example is the concept of Dirac’s sea and
its interpretation of the vacuum as a region full of negative energy states. However, we will not
delve further into the history of QFT and the mathematical modeling of the vacuum state.

The cosmological constant present in Einsten’s equation and the Vacuum energy arising from
QFT are two concepts with different origins. While the cosmological constant (CC) is a math-
ematical term introduced by Einstein in his field equations to describe his own model, vacuum
energy is a rather obscure ingredient of QFT that may or may not emerge from the ZPE. The
latter has been the subject of some naive calculations in the cosmological context. But, as
we mentioned in the previous section, one of the first clear interpretations of Vacuum Energy
identified as the origin of the CC was given by Lemâıtre [83]:

“We must associate the pressure p = −ρc2 to the density of energy ρc2 of vacuum. This is
essentially the meaning of the cosmical constant λ which corresponds to a negative density of
vacuum according to ρ0 = λc2/4πG ≈ 10−27g/cm3.”

Notice Lemâıtre’s identificacion of Vacuum Energy with a positive cosmological constant corre-
sponding to a negative energy density and positive pressure. He did not mention any ZPE nor
QFT connection, though.

An important result on the matter appeared in 1948, by the hand of Hendrik Casimir, discoverer
of the Casimir effect as an attractive force acting on macroscopic uncharged boundaries due
to the fluctuations of the ZPE associated to the electromagnetic field [103, 152]. For instance,
for two parallel plates, the force per unit area is proportional to d−4, where d is the distance
between the plates. The calculation of the Casimir force arises from the the computation of the
total zero-point energy between the plates on a particular geometry compared with free space
and assumes the assignation of ZPE of hν/2 to each mode of the electromagnetic fields. At
the time, it was one of the first results associated to a direct effect of zero-point fluctuations
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whose experimental evidence arrived 10 years later [153]. Modern experiment with atomic force
microscopy in [154]) confirmed this effect with higher precision. Whether if this effect is really
a consequence of the ZPE emergence of the quantum fields or not [155,156] is out of the scope
of this introduction. What we can say from the historical point of view is that the discovery of
Casimir effect was another milestone in the history of vacuum energy and ZPE.

Yakov Zel’dovich, a russian cosmologist, was a capital figure in the theoretical understanding
of the cosmological constant and its connection to the vacuum energy. He wrote a complete
review on the matter [101, 102], revisiting some old ideas regarding the Cosmological Term as
well as incorporating new novelty ideas to the topic. He shown that a small, but non-zero, value
of the CC did not contradict any cosmological observation but can accommodate the paper of a
zero-point vacuum fluctuations in the cosmological realm. He starts his review mentioning the
contemporany works of Petrosian, Salpeter, Szekeres, Shklovskii and Kardashev in dynamical
models of universe incorporating a cosmological constant, Λ, motivated by the discoveries of
several remote quasars at a narrow redshift range around z = 1.95. In the first part of the
review he used the sentence

“The genie has been let out of the bottle, and it is no longer easy to force it back in.”

referring to the lack of fundamental arguments or observations that would set the value of Λ
to zero. It was noted that a small value of |Λ| . 10−54 cm2 was naturally expected, and its
influence could only be relevant at the largest (cosmological) scales. In his paper, he defined an
Energy-Momentum tensor equivalent of the cosmological constant, in which ρΛ ≡ c2Λ/(8πGN )
and PΛ = −ρΛ. This tensor preserves relativistic invariance since ρΛ and PΛ have the same
constant value at each coordinate point. Later, in an appendix of the same paper, he presented
the regularization of the vacuum energy density associated with a scalar field from Zero Point
fluctuations,

ρΛ = K

ˆ ∞
0

√
p2 +m2c2p2dp ≡ KI(m) , (1.33)

where K ≡ c/(4π2~3) and m is the rest mass of the scalar field and, similarly, the pressure can
be obtained from the diagonal T11 component of the Vacuum Expected Value of the Energy-
Momentum tensor,

PΛ = K
1

3

ˆ ∞
0

p4√
p2 +m2c2

dp ≡ KF (m) . (1.34)

Both integrals in (1.33) and (1.34) are manifestly divergent. A similar calculation follows for
spin-1/2 fermions. After adding up the contributions from several fields, the regularization
process of these quantities is presented by a promotion of the discrete sum to an integral and
the constant K to be an arbitrary function of the rest mass, f(m).

ρΛ =

ˆ ∞
0

f(m)I(m)dm, PΛ =

ˆ ∞
0

f(m)(m) . (1.35)

After introducing and UV cutoff much greater than the masses of the fields on I(m) and F (m)
he realized that the former function f(m) need to satisfy the following regularization conditions

ˆ ∞
0

f(m)dm =

ˆ ∞
0

f(m)m2dm =

ˆ ∞
0

f(m)m4dm = 0 , (1.36)

and, after performing the limit to infinity of the cutoff the remaining vacuum energy and pressure
are

ρΛ = −PΛ ≡
1

8

ˆ ∞
0

f(m)m4 ln(m)dm . (1.37)

For Zel’dovich, this calculation showed that the ZPE was not equal to 0 and led to the natural
equation of state, wΛ ≡ PΛ/ρΛ = −1, for the cosmological constant. At the end of the review,
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he presented his famous formulas for estimating the value of the cosmological constant and
vacuum energy density. The first estimation is related with the lead contribution of the cutoff
procedure,

ρΛ = m4
p

c5

~3
∼ 1050eV/cm3, Λ = 10−10cm−2 , (1.38)

for mp, the mass of the proton.This guess is dimensionally correct but far away from the
order of magnitude estimated by cosmological observations at the time, |Λ| . 10−54 cm2. In
order to refine the previous estimate, Zel’dovich used the numerology of dimensionless ratios,
as previously done by Dirac, [157], to obtain the quantity Gm2

p/(~c) ∼ 10−38 (as a way to
characterize the smallness of gravitational interaction). So that,

ρΛ =
Gm2

p

~c
m4

p

c5

~3
=
Gm6

pc
4

~4
∼ 1012eV/cm3, Λ = 10−48cm−2 , (1.39)

which is closer, but still some orders of magnitude above the cosmological measures. He ends the
review by admitting the crucial connection between the question of the magnitude of the cos-
mological constant and elementary particle physics, as any use of typical particle physics scales
seems to fail in order to match a prediction for the estimated value of Λ from observations.
We can say that this review is the first manifestation of the so-called Cosmological Constant
Problem (CCP). The CCP is a gigantic problem that is still active today, probably more than
ever, associated with the estimations of the value of the Cosmological Constant through calcu-
lations of the ZPE and other vacuum contributions. In a simplified scenario in QFT, such as
the one studied by Zel’dovich, the leading contribution of the ZPE yields a gigantic contribution
of order m4, where m is the mass of an elementary particle. When compared to the reported
values of the critical energy density of the Universe, ρc = 3H2

0/(8πGN ) (or to the cosmological
vacuum energy density, which we now know is of the same order of magnitude as ρc), we are
left with an huge difference of several orders of magnitude.

The fact that naive computations of the ZPE yield enormous values is just the beginning of
the problem. It is natural to consider other contributions to the vacuum energy that could
act like a cosmological constant. An additional vacuum contribution can shift the value of
the cosmological constant, of course [158]. This can be done by introducing a VEV Energy-
Momentum tensor in the form:

〈Tµν〉 = −〈ρ〉gµν , (1.40)

which describes a contribution the vacuum energy in a Lorentz invariant form. Introducing
again natural units, the effective vacuum energy density presents a shift from its original value

ρeff
vac ≡ Λ/(8πGN ) + 〈ρ〉 . (1.41)

or
Λeff ≡ Λ + 8πGN 〈ρ〉 , (1.42)

in terms of the effective cosmological constant, with ρeff
vac = Λeff/(8πGN ). For instance, in 1974,

Joseph Dreitlein [159] speculated that a broken symmetry may produce a non-zero Vacuum
Expected Value (VEV) of the physical Energy-Momentum tensor, 〈Tµν〉 6= 0, appearing as a
sort of effective cosmological term in Einstein’s equations. As an example, we can illustrate
this fact with the model of electroweak interaction (EW) [160–162] and the mechanism of
Spontaneous Symmetry breaking for generating the mass of elementary particles. In fact, the
role of vacuum energy in cosmology acquired a new dimension after the success of the EW
theory, and particle physicists started to ask about its applications to cosmology. In the early
80s, the proposal of the theory of inflation [110, 111, 163, 164] was a great revolution for our
view of the history of the early Universe. Basically, it is characterized by a short period of
accelerated expansion in the early Universe carried by a high density of vacuum energy as a
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possible solution to several problems in cosmology, such as the horizon and flatness problems.
We will say more about inflation and these problems in Sect. 1.3.3.

To study a simple model of Spontaneous Symmetry Breaking, let us consider a simplified sce-
nario with a classical potential for a single scalar field ϕ,

V (φ) =
1

2
m2
φ +

λ

4!
φ4 . (1.43)

with λ > 0. The classical action including the matter part is

S =

ˆ
dx4√−g 1

16πGN
R+ Smatt[φ,Λ] , (1.44)

where

Smatt[φ,Λ] ≡ −
ˆ
dx4√−g

[
1

2
gµν∂µφ∂νφ+ (V (φ) + ρΛ)

]
. (1.45)

Here we have included the term ρΛ ≡ Λ/(8πGN ) in the matter action. From the matter action,

one can compute the matter Energy-Momentum tensor (EMT) to be Tmatt
µν ≡ TΛ

µν +T φµν , being

TΛ
µν ≡ −ρΛgµν , T φµν ≡ ∂µφ∂νφ−

1

2
gµν∂αφ∂

αφ− V (φ)gµν . (1.46)

In the ground state of the field, no kinetic energy is remaining and we are left with〈
TΛ
µν

〉
= − (ρΛ + 〈V (φ)〉) gµν ≡ −ρeff

vacgµν , (1.47)

as explained before (1.42). However, this is just the classical vacuum energy, since we still have
to implement the symmetry breaking. For m2 < 0, the ground state of the field is not trivial,

〈φ〉 =

√
−6m2

λ
, (1.48)

The existence of a non-zero ground state generates an electrowak phase transition by the Higgs
potential, inducing a contribution

ρEW = 〈V (φ)〉 = −1

8
M2
Hv

2 . (1.49)

The physical mass of the field is can be recognized from the oscillations around the minimum
of the potential,

MH ≡
∂2V (φ)

∂φ2

∣∣∣∣∣
φ=v

= −2m2 . (1.50)

The induced energy density can also be written in terms of the Fermi constant, ρEW ∼ 〈V 〉 ∼
−M2

H/GF, where MH is the mass of the Higgs boson and GF ∼ 1.17 × 10−5 GeV−2. The
discovery in 2012 of the Higgs Boson [165,166], of mass MH ≈ 125 GeV, hence would suppose
an additional contribution of −108 GeV4 (now in natural units) to the vacuum energy density
budget. What are the consequences of this fact? A current estimate of the critical density of the
Universe is ρ0

c ∼ 10−47 GeV4. If we believe that the effective vacuum energy density, composed
by different contributions, is to be identified by the cosmological observations then,

ρ0
c ∼ ρeff

vac = ρΛ + ρEW . (1.51)

In this case, ρΛ is related with the parameter of Einstein-Hilbert action (1.23) as ρΛ = Λ/(8πGN ).
If we identify this quantity with the usual ZPE interpretation of Zel’dovich, the leading con-
tribution to this term would be of order m4 (coming from the leading term of the cutoff reg-
ularization). For instance, for the electron, this would suppose ρΛ ∼ m4

e ∼ 6.8 × 10−14 GeV4,
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almost 34 order of magnitude bigger than ρ0
c . If we believe QFT up to the Planck scale, we

have then ρΛ ∼ m4
Pl = 2.2 × 1076 GeV4, more than 120 orders of magnitude of difference! Of

course, one can decide to left free the value of ρΛ by the moment, but we should not forget the
contribution of the SSB, which at the same time satisfies |ρEW/ρ

0
c | = O(1055). The decompo-

sition of the vacuum energy in several terms of different orders of magnitude tells us that they
have to conspire to add up the remaining tiny term ρ0

c . Thus, we have to choose the original
term ρΛ with a precision of at least 55 decimal places in order to satisfy the equation (1.51):

10−47GeV4 = ρΛ − 108GeV4 . (1.52)

We call fine tuning to this unnatural adjust we perform in order to solve the CCP. This kind of
formulation is common to each Dark Energy model, that is, it is not only proper of a model of
Dark Energy modelized as a Cosmological constant, similar patologies can affect other models
such as quintessence scalar fields [167].

Of course, the previous situation is a quite simplified scenario that only serves to illustrate the
problem. We should recall that the ZPE of quantum fields consists of all the vacuum-to-vacuum
diagrams, those which do not possess external tails. This is a pure quantum effect whose loop
order corrections can be labeled by powers of ~:

ρZPE = ~ρ(1)
ZPE + ~2ρ

(2)
ZPE + . . . (1.53)

The first term is the one-loop approximation, that we already reviewed, see (1.33). However,
let us take a closer look to it:

ρ
(1)
ZPE =

1

4π2

ˆ MUV

0
dpp2

√
p2 +m2 =

M4
UV

16π2

(
1 +

m2

M2
UV

− 1

4

m4

M4
UV

ln
M2

UV

m2
+ . . .

)
. (1.54)

Here MUV is an Ultraviolet cutoff mass scale. Eq. (1.54) constitutes just a bare quantity, prior
renormalization. The term proportional to m4 lnm2 is independent of MUV and is of capital
importance since it will appear in the final renormalized result, which is expected to be cutoff
independent and similar to

ρ
(1)
ZPE = − m4

64π2
ln
µ2

m2
+ . . . (1.55)

In the previous formula, µ represents a mass or energy renormalization scale that persists after
renormalization. However, the quartic term m4 continues to provide a large contribution. For
any standard choice of the mass m within the Standard Model of particle physics, the resulting
contribution to the ZPE would be enormous, exceeding the quantity we wish to estimate, ρobs

vac,
which is comparable to the critical density ρ0

c .

There are renormalization schemes which can motivate the result (1.55). One of the most
common ones is the Minimal Subtraction Scheme (MS-Scheme) under the dimensional regular-
ization formalism. We replace the dimensionality of the integral in order to make explicit the
divergences of the integral in the form of a simple pole,

ρ
(1)
ZPE =

1

2
µ2ε

ˆ
d3−2εk

(2π)3−2ε

√
k2 +m2 =

1

2

m4

2(4π)2

(
−1

ε
− ln

4πµ2

m2
+ γE −

3

2

)
. (1.56)

The scale µ is the ’t Hooft mass unit, necessary to preserve the correct dimensionality of ρ
(1)
ZPE

and acts as a renormalization scale The constant γE is the Euler-Mascheroni constant. We
redefine the dimensionality of the integral through ε ≡ (4− n)/2, and we understand the limit
ε→ 0. The reader may find more information about this computation in the appendices A.1 and
B of this work with useful formulas and details which explicitly implement the aforementioned
calculation. In these appendices, we also present our perspective on this regularization procedure
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and its relation to our work. To avoid overwhelming the reader with explanations here, let us
skip the details. In equation (1.56), we see another example of regularization, which must be
followed by a renormalization procedure. This process removes the former divergences and
produces a final finite result that is closer to the physical one. An example of this procedure
is the introduction of counterterms. The key idea is to consider the original Einstein-Hilbert
action as a bare action13.

SEH = −
ˆ
d4x
√
−g
(

1

16πG(b)
R+ ρ

(b)
Λ

)
. (1.57)

The superindex (b) means that the couplings of the action are just bare quantities that will
play a role in the renormalization process. When considering the full action the combined

effect of ρ
(b)
Λ + ρ

(b)
ZPE should be taken into account. The final result does not depend on the

renormalization scale, and we expect ρ
(b)
Λ + ρ

(b)
ZPE = ρΛ(µ) + ρZPE(µ). At this point, we should

split ρ
(b)
Λ in the renormalized term plus a counterterm, ρ

(b)
Λ = ρΛ(µ) + δρΛ. So that,

ρ
(b)
Λ + ρ

(b)
ZPE = ρΛ(µ) + δρΛ + ρ

(b)
ZPE = ρΛ(µ) + δρΛ + ρ

(1)
ZPE + . . . (1.58)

where the dots represent contribution beyond one-loop. In the (modified) Minimal Subtraction
Scheme, denoted by MS, we define the counterterm as

δρMS
Λ ≡ −1

2

m4

2(4π)2

(
1

ε
+ ln 4π − γE

)
. (1.59)

By introducing this at (1.60) we obtain the following result at one-loop:

ρ
(1)
ZPE(µ) = −1

2

m4

2(4π)2

(
ln
µ2

m2
+

3

2

)
. (1.60)

The above expression is the renormalized result for the one-loop ZPE contribution to the vacuum
energy, yielding a term of the style of (1.55). The combined renormalized effect of ρΛ and ZPE
is then,

ρ(1)
vac = ρΛ(µ) +

m4~
4(4π)2

(
ln
m2

µ2
− 3

2

)
, (1.61)

the one-loop approximation of the vacuum energy density, which does not depend on the renor-
malization scale µ, as mentioned before (1.60). The overall expression is µ-independent, despite
some of the terms are explicitely depending on this scale. The dependence on µ should cancel
in the full renormalized effective action, and we obtain the beta function for the parameter ρΛ,

after imposing the Renormalization group (RG) equation, dρ
(1)
vac/d lnµ = 0,

β
(1)
Λ ≡ µdρΛ(µ)

dµ
=

~m4

2(4π)2
. (1.62)

The result is quite standard in flat space-time QFT, however it may have its own problems as
we will discuss in the main text (cf. Sect. 2.5.3). More in general, there are more quantum
effects in the effective potential beyond the ZPE (those taking into account not only the ZPE
vacuum-to-vacuum diagrams, but also diagrams with external tails) that we have neglected

13Strictly speaking, this action is not renormalizable in the context of QFT in curved space-time. Short
distance effects are important when studying the quantum fluctuations, and for this reason one has to incorporate
higher-order tensors (such as R2,�R, . . . ) in the action of General relativity to make the theory renormalizable
in semiclassical QFT in curved space-time, where gravity is not quantized, only matter fields. Again, this is well
understood in the main text of this dissertation (see Chap. 2) and we will not provide more details here, as we
only need to focus in the low-energy regime for the sake of the explanations we plan to give in this introduction.
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previously. The calculational procedure is more involved (see [167] for a complete review on
the matter), and the structure of the vacuum energy is then

ρvac = ρren
Λ + 〈V ren

eff (φ)〉 , (1.63)

which is valid to all orders of perturbation theory and, again, the total vacuum energy is
expected to satisfy the RG equation dρvac/d lnM = 0, so that the total dependence on the
generical renormalization scale M (which is not necessarily related to µ used in dimensional
regularization as it can come from alternative renormalization procedures) should not appear
in the final result.

But, after all these historical and conceptual details, the final (and most important message)
that we have to transmit in this section is that the Cosmological Constant Problem is not
only the difficult problem of matching the naive prediction provided by the ZPE naive formu-
las like (1.38). Once we start to take into account more vacuum related effects such as the
mentioned Spontaneous Symmetry breaking of Electroweak interactions (EW) and Effective
potential contributions at different loops in perturbation theory the problem starts to grows
immesurably,

ρ0
c ∼ ρ0

vac = ρΛ + ρEW +
〈
V

(1)
eff (φ)

〉
+
〈
V

(2)
eff (φ)

〉
. . . (1.64)

the term ρΛ has to be readapted order by order in perturbation theory against the other several
contributions, at least up to 55 decimal places (because the EW vacuum contribution).

And we are not even talking about of the curvature dependent effects of QFT in curved space-
time. In path integral formulation, the generating functional with a source J is

Z[J ] =

ˆ
Dφ exp

(
i

~

[
S[φ, gµν ] +

ˆ
d4x
√
−g(x)J(x)φ(x)

])
, (1.65)

from which we can obtain Green’s functions by taking functional derivatives over J . The action
S[φ, gµν ] here, for the example of a scalar field, is

S[φ, gµν ] = −
ˆ
d4x
√
−g(x)

(
1

2
gµν∂µφ∂νφ+

1

2
ξφ2R+ V (φ)

)
, (1.66)

can be obtained by promoting the flat space-time action for the matter field changing the mea-
sure to

√
−gdx4 and incorporating a non-minimal coupling with gravity ξφ2R. We will not

provide further elaboration on this matter in this section, as we intend to address it compre-
hensively in the main text and corresponding appendices. Nonetheless, it is worth noting that
this consideration adds an additional facet to the cosmological problem.

Therefore, the problem is not only at the calculational level. We need a dynamical mechanism
capable of adjusting the value of the vacuum energy in the present time from its enormous value
that presumably had in the early Universe. For instance, a possibility suggested by the tininess
of the measured value of Λ was to find a framework in which its value is actually 0; however,
the search of symmetries or other arguments justifying the vanishing of Λ seems not to reach
successful results. Some early hopes with Supersymmetry [168, 169], the maximum exponent
of this philosophy, followed that direction. In that case, a global symmetry may lead to a null
vacuum energy associated with the supersymmetric states, although the absence of evidence of
supersymmetric partners in particle accelerators may suggest that the symmetry is extremely
broken in nature or simply does not reflect reality. Such a mechanism is, then, still unveiled
and, since Quantum theories of Gravity are still not a consistent theory yet, we should just
accept to work within the context of QFT in curved space-time.

In this thesis, we show our works on this matter. Not with the goal of solving the cosmological
constant problem in its ultimate form, but with the more humble objective of shedding light on
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new ideas related to the vacuum energy in QFT and its cosmological evolution in the expanding
Universe as the Dark Energy candidate par excellence.

1.3 Basics of Cosmology

The Λ-Cold Dark Matter model (ΛCDM) has been the “concordance model” of modern cos-
mology for more than 20 years. Although not perfect, it is currently the best model we have to
explain most of the observations and basic features of the universe and its constituents [170,171].
As the current paradigm in cosmology, despite its simplicity, the ΛCDM has passed many tests
when confronted with available data from the Cosmic Microwave Background and structure
formation in the Universe, among others. It describes an accelerated expanding Universe that
evolved from a primeval hot and dense state in its early stages to its current condition. As two
complementary master pillars for understanding such evolution, the ΛCDM can accommodate
the “Big Bang Nucleosynthesis”, a process for the genesis of light elements in the early Universe,
and “inflation”, a process of rapid exponential expansion at the beginning of its history (see
Sect. 1.3.3). TThe model can be well described by six parameters, which can be selected in
various ways. One possible selection is: the physical baryon density fraction (Ω0

bh
2), physical

dark matter density fraction (Ω0
dmh

2), the age of the Universe (t0), the spectral index (ns),
the optical depth to the epoch of reionization (τreio), and the amplitude of primordial scalar
curvature perturbations (∆2

R). The parameter h is defined as H0 ≡ 100h km/s/Mpc, where H0

is the value of the Hubble parameter at the present time.

The mathematical framework on which the ΛCDM relies is General Relativity14, characterized
by the metric gµν . This geometrical object is used to calculate the generalized distance between
events in space-time and describe the causal structure.:

ds2 = gµνdx
µdxν . (1.67)

In flat space-time or Minkowski space-time, as in special relativity, the metric is gµν = ηµν ≡
diag(−1, 1, 1, 1). However, space-time is naturally curved in the presence of matter and energy,
and it is not expected to be static. Our Universe is in a state of accelerated expansion as
discovered at the end of the 20th century.

The Cosmological Principle is implemented at the heart of the model, defining that at sufficiently
large scales, the Universe is thought of as a smooth object, and the distribution of matter-
energy is homogeneous and isotropic, with anisotropies restricted to the perturbation level. This
principle is encoded in the structure of the so-called Friedmann-Lemâıtre-Robertson-Walker
(FLRW) metric, which we introduced in Sect. 1.1.2, but let us elaborate a bit more. In Cartesian
coordinates with cosmic time as the time coordinate, the metric can be written as:

−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)

 (1.68)

Here, a(t) is the scale factor, a dimensionless quantity that parametrizes the relative growth of
physical distance with respect to a reference distance, and t is the cosmic time coordinate of
expansion. The scale factor can be related to redshift z, which measures the relative change in
the wavelength of light emitted from a receding object due to the expansion,

1 + z ≡ λobs

λemit
=
a0

a
, (1.69)

14The reader may find our conventions and useful geometric formulas in Appendix A.
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where a0 ≡ a(t0) is the scale factor at the present time t0. The scale factor is usually normalized
to be a0 = 1, as we will do.

Alternative, we can use spherical coordinates to describe the interval:

ds2 = gµνdx
µdxν = −dt2 + a2(t)

(
dr2

1− kr2
+ r2δθ2 + r2 sin2 θdφ2

)
. (1.70)

The parameter k is related to spatial curvature, with natural units [k] = E2, where E is in
energy units. Spatial curvature is determined by the matter/energy content of the universe.
Sometimes k is normalized as a dimensionless value depending on its sign: +1, 0, or −1. In this
convention, the scale factor has units of length. Throughout this work, we restrict ourselves to
the particular value of k = 0 for a Universe that is flat on constant time hypersurfaces, as it
is the common assumption. Although we will adopt k = 0 for the rest of the dissertation, it is
worth mentioning that the possibility of an open (k < 0) or closed (k > 0) Universe cannot be
completely ruled out, and the spatial curvature of the Universe is still subject to study [172–179].

The coordinates (r, θ, φ) of an object appearing in (1.70) are the comoving coordinates, which
do not change with cosmological expansion (only due to possible peculiar motions of the object
independent of the Hubble flow). In subsequent chapters, we will use the so-called conformal
time, which corresponds to the comoving distance that light can travel since t = 0 (assuming it
does not interact at any point),

η(t) ≡
ˆ t

0

dt′

a(t′)
. (1.71)

Conformal time can serve as a parametrization of the time variable, just like t or the scale factor
a. However, each variable has distinct interpretations and may be more appropriate in different
contexts. Regions separated by a comoving distance bigger than η are causally disconnected,
as η is defined as the maximum comoving distance that light could have traveled since the
beginning of the expansion. The comoving distance between a distant emitter (emitting at
cosmic time t) and us (at present time) is

χ(t) = η(t0)− η(t) =

ˆ t0

t(a)

dt′

a(t′)
=

ˆ 1

a(t)

da′

(a′)2H (a′)
. (1.72)

On the other hand, proper or physical distance, takes into account the evolution of the distance
and is evaluated at a specific cosmological times. Proper distance is related to comoving distance
as d(t) = a(t)χ(t).

In a non-expanding universe, there are several equivalent ways to calculate distances. However,
in an expanding universe, this is no longer the case. Therefore, alternative distance measures
need to be defined, and we need to understand how they are related to one another if we wish
to connect experimental observations with model parameters. The first example of such an
alternative distance measure is the angular diameter distance, which is the ratio of the known
physical size of an object, l, to the angle it subtends in the sky, θ. This can be expressed as:

dA ≡
l

θ
. (1.73)

In the spatially flat ΛCDM, the angular diameter distance turns out to be

dflat
A (z) ≡ χ(z)

1 + z
. (1.74)

A second example is the luminosity distance, dL, which relates the observed light flux from an
astronomical source to the distance of the object. This relation can be obtained by tracking
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the evolution of a spherical shell in an expanding background, along with the redshift of the
emitted photons. Accounting for these effects, the flux is

F =
L

4πd2
L(a)

. (1.75)

In the flat space scenario, dL can be expressed as χ(a)/a. For expressions in the case of arbitrary
spatial curvature and more details, standard textbooks such as [170,171] can be consulted.

1.3.1 Cosmological Background Equations

The expanding Universe’s background evolution is described using the Friedmann equations,
which are a form of Einstein’s equations specifically for cosmology. These equations are derived
by assuming that the FLRW metric with a spherical symmetry (as given in Equation (1.70))
is the solution. In addition to the Friedmann equations, the Cosmological principle plays an
important role in modeling matter at cosmological scales. To describe the distribution of matter,
we often use energy densities as if matter were a continuum fluid. This approach is typically
based on treating matter as perfect fluids, which are described using an Energy-Momentum
Tenso of the form

Tµν = Pgµν + (ρ+ P )uµuν , (1.76)

where ρ and P are the energy density and the pressure of the fluid and uµ is the 4-velocity of
the fluid. If we use cosmic time as time coordinate then uµ = (1, 0, 0, 0) and uµ = (−1, 0, 0, 0).

The first Friedmann equation is

H2 = − k

a2
+

8πGN
3

ρ(t) +
Λ

3
, (1.77)

where GN is the Gravitational Constant, ρ(t) ≡
∑

N ρN(t) is the total energy density of matter
in the Universe for the different components labeled by N, Λ is the Cosmological Constant and
H is the Hubble function, which accounts for the expansion rate of the Universe. Measures of
the Hubble rate at the present time, H0 ≡ H(t0), are oftenly parametrized as

H0 = 100h km/s/Mpc . (1.78)

The parameter h is dimensionless and is typically expected to have a value of around 0.7. In
natural units, the Hubble rate at the present time H0 is approximately 2 × 10−33 eV. This is
an extremely small energy scale when compared to any energy scale in the Standard Model of
particle physics. The second Friedmann equation is

2Ḣ + 3H2 = − k

a2
− 8πGNP (t) + Λ , (1.79)

which introduces the total pressure, P (t) ≡
∑

N PN(t), defined as the sum of the pressures of
the different components labeled by N. We use the dot for indicating the derivative with respect
cosmic time, (̇) ≡ d/dt(). Both, the pressure and the density are expected to evolve with matter,
as dictated by the Cosmological principle. One of the former equations (1.77) or (1.79) can be
exchanged by the Bianchi identity,∇µGµν = 0. That identity enforces the matter part to satisfy
the covariant conservation equation,∇µTµν = 0, or, in terms of the densities and pressures,∑

N

[ρ̇N + 3H (ρN + PN)] = 0 . (1.80)

In addition to the Friedmann equations, one can impose the condition that all species are self-
conserved and that there are no interactions between different components at the background
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level. This is given by the equation ρ̇N + 3H(ρN + PN) = 0 for each species labeled by N. This
equation expresses the conservation of the energy-momentum tensor for each component in the
absence of external sources or interactions with other components. The combination of the
Friedmann equations and the conservation equations provides a complete set of equations that
describe the evolution of the Universe at the background level. It is also useful to define the
equation of state of a fluid, wN as the ratio between its pressure and its density,

wN ≡ PN/ρN . (1.81)

For a constant equation of state and assuming covariant self-conservation, each species have a
well defined background evolution with the expansion in terms of the scale factor,

ρN = ρ0
Na
−3(1+wN) , (1.82)

being ρ0
N ≡ ρN(t0).

1.3.2 Cosmic inventory

Now we have given some context to the concordance model and written the basic equations,
let us talk about its material content. In the early Universe, reactions between different species
occurred rapidly, resulting in particles being in thermal equilibrium and sharing a common
temperature. To describe the energy densities of different species, it is useful to introduce dis-
tribution functions, denoted by fN(~p), which account for the statistical distribution of particles
in a volume of phase space around a particular physical momentum ~p. The total energy density
of a species labeled by N can be obtained by calculating the number of particles per phase space
volume with a particular energy E(p) =

√
p2 +m2 (where p is the modulus of momentum),

integrated over all momenta and weighted by E(p), i.e.,

ρN =
gN

(2π)3

ˆ
d3pfN(~p)E(p) , (1.83)

where gN accounts for the number of internal degrees of freedom of the species labeled by N. The
distribution functions allow us to describe the occupation of different energy states by particles
and are used to derive the energy densities and pressures of the different components of the
Universe. The equilibrium distribution function takes the form

fN =
1

exp
(
E(p)−µN

T

)
± 1

, (1.84)

where we choose −1 in the denominator for Bosons such as photons and +1 for spin-1/2 fermions
such as electrons. The quantity µN is the chemical potential, which can be neglected if the
temperature is high enough, a condition fullfilled in the early Universe. Similarly, the pressure
is

PN =
gN

(2π)3

ˆ
d3pfN(~p)

p2

3E(p)
. (1.85)

Using the previous expressions, the total entropy density takes the following form:

s ≈ 1

T

∑
N

(ρN + PN) . (1.86)

Equipped with the previous formulas, we can now proceed describe the energy budget of the
background Universe.
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Photons

The almost isotropic radiation that arrives from the Cosmic Microwave Background (CMB)
is composed of photons with a temperature of T0 = 2.72548 ± 0.00057 K [98]. The energy of
the photons decreases with the inverse of the scale factor, and therefore, the temperature is
inversely proportional to the scale factor,

T (a) = T0/a(t) . (1.87)

The energy density associated to the CMB photons can be obtained from (1.83) for a relativistic
boson species,

ργ = 2

ˆ
d3p

(2π)3

p

ep/T − 1
, (1.88)

with no spatial dependence at the background level. At a good approximation, the Cosmic
Microwave Background (CMB) can be considered as having a perfect black body spectrum with
zero chemical potential due to the thermalization process resulting from various interactions,
including Compton scattering and bremsstrahlung. Deviations from the black body spectrum
have been well constrained to |µ/T | . 10−4 based on pioneering measurements by FIRAS
[180,181]. After some manipulations, the former integral (1.88) can be written as

ργ = 2
8πT 4

(2π)3

ˆ ∞
0

dx
x3

ex − 1
=
π2

15
T 4 ≈ 2× 10−51

(
GeV

a

)4

, (1.89)

in natural units. Therefore, it follows from equation (1.82) that wγ = 1/3. The energy fraction
at is

Ωγ =
ρ0
γ

ρ0
c

a−4 =
8πGNρ

0
γ

3H2
0

a−4 ≈ 5× 10−5a−4 , (1.90)

for h = 0.7. Therefore, the contribution of photons to the current energy budget is quite limited.

Baryons

Baryons are part of the non-relativistic contribution to the total energy density. They cannot
be traced through their temperature since they do not behave as a gas. Instead, we know that
their energy density should scale as a−3, as their energy correspond to their rest mass, E ≈ m:

ρb = ρ0
ba
−3 . (1.91)

Here ρ0
b is the energy density of baryons at the present time. The corresponding equation

of state is wm = 0. We cannot use the same description as for photons, which is based on
their temperature, to describe baryons, as they do not behave like a gas. Therefore, we need
to rely on cosmological measurements of baryon density, such as those obtained from CMB
observations [132] or Big Bang Nucleosynthesis constraints [182].

Dark Matter

The largest fraction of non-relativistic matter in the Universe does not correspond to baryons.
In fact, the total energy density associated with non-relativistic matter is about 5-6 times larger
than that of baryonic matter. The remaining energy may come from a substance that we do
not have direct evidence for, as it appears to not interact electromagnetically. We conclude
that most of the matter in the Universe is not in the form of baryons but is a different entity
that we call Dark Matter (DM), usually together with the adjective cold because we expect
a large fraction of it to behave non-relativistically. Its nature and origin are matters of vivid
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debate not only in cosmology but also in particle physics since several candidates for DM can
represent extensions of the Standard Model of Particle Physics or be connected to the existence
of primordial black holes, [183–185]. Let us just say that some indirect ways to measure the
fractional energy of matter (incorporating both baryonic matter and DM) exist, for instance,
generalizing the fraction Ω0

b/Ω
0
m of galaxy clusters to be representative of the universe as a

whole [186], or studying the anisotropies of the CMB [132], which are sensitive to the combined
quantity Ω0

mh
2.

Same arguments as for baryons apply here, as we cannot infer the energy density of DM from
its temperature, and we also need to find the energy density (or the fraction of energy) of DM
through parameter inference in the light of cosmological data. Since direct observations are not
possible, the evidence of its existence relies on its gravitational effects on the growth of large-
scale structure. Let us simply remark that the evolution of DM follows the same expression as
that of baryons:

ρDM = ρ0
DMa

−3 . (1.92)

Neutrinos

Fermions are light particles that rarely interact with matter, however they were expected to be
in equilibrium with the rest of the components of the primordial plasma in the early universe.
Neutrinos are, at first approximation, expected to be relativistic since their masses are expected
to be extremely tiny and are often totally neglected. They are classified in three different
generations: electron neutrino (νe), muon neutrino (νµ) and tau neutrino (ντ ). There is only
one spin degree of freedom for each neutrino.

As fermions, neutrinos follow a Fermi-Dirac distribution with null chemical potential in good
approximation and with a temperature decaying with the scale factor equally as for the photons,
behaving as radiation for most part of the cosmological history. The decoupling of neutrinos
from the cosmic plasma happened before electron-positron annihilation, earlier than Big Bang
Nucleosynthesis (BBN) happened. Following a similar computations to the one performed
for photons we arrive to the expression of the energy density in terms of the temperature of
neutrinos,

ργ = Neff
7π2

120
T 4
ν . (1.93)

In principle, Neff ≡ gγ/2 accounts for the number of internal degrees of freedom. We should
expect Neff = 6/2 = 3 for the standard model with 3 generation of relativistic neutrinos and
antineutrinos. But it is usual to leave Neff as a free parameter in order to allow for extra
degrees of freedom that this simple description cannot capture. It is possible to constrain to
the effective parameter Neff from the abundances of light elements predicted by BBN [187].
Current estimations set its value to be slightly greater than 3, Neff = 3.04.

We can relate, the neutrino and photon temperature today. It can be done, using the conserva-
tion of entropy before and after electron and positron annihilation. It is also important the fact
that entropy density s scales as s ∝ a−3. This yields a relation between photon and neutrino’s
temperature:

Tν
Tγ

=

(
4

11

)1/3

. (1.94)

With this information one may construct the energy density of neutrinos as compared to photons
by taking also into account the degeneracy number for neutrinos and the difference in the
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thermal distribution function between photons and neutrinos [171]:

ρν = Neff
7

8

(
4

11

)4/3

ργ ≈ 0.68ργ . (1.95)

The enegy fraction from radiation (relativistic neutrinos plus CMB photons) is

Ωr =
ργ + ρν
ρ0

c

≈ 1.68Ω0
γa
−4 ≈ 8× 10−5a−4 . (1.96)

Nevertheless, the former is just an approximation of the energy density for when neutrinos
behaved relativistically. Neutrinos at some point started to behave non-relativistically because
of the drop in temperature with the cosmological expansion. We will not elaborate more on this
topic, since it is out of the scope of this simple introduction. It is worth mentioning, however,
that modeling the change of regime from relativistic to non-relativistic neutrinos produces the
absence of an analytical form for ργ with respect to the scale factor for the entire history. As a
result, numerical methods are usually necessary to deal with this issue.

Dark Energy

Beyond radiation and matter, the most predominant component in the Universe is some-
thing else. The combination of radiation and matter only accounts for approximately 0.3
of the total energy density, as determined by observations. Additionally, observations
suggest that the spatial curvature of the Universe is close to zero, implying that the
total energy density is expected to be equal, or at least extremely close, to the critical
energy density. Therefore, we expect the total fraction of matter and energy to add up
to 1. The remaining energy fraction is attributed to the presence of a mysterious and
smooth substance known as Dark Energy (DE), which is the responsible for the acceler-
ated expansion of the Universe. Although its nature and origin are still unknown, DE
has been confirmed by various independent probes such as the luminosity distance de-
pendence on redshift from Supernovae SnIa, Baryon Acoustic Oscillations (BAO), and
Cosmic Microwave Background (CMB). As a result, DE is considered to be a key piece
of the cosmological puzzle and an essential part of the standard model of cosmology.

In the concordance model, DE is modeled through a cosmological constant Λ, with an
associated energy density ρΛ = Λ/(8πGN). This implies that the equation of state for
DE is wDE = PDE/ρDE = −1, with negative pressure. Dark energy is responsible for the
accelerated expansion of the Universe because the source of acceleration for a particular
component is given by ρ+ 3P ,

ä

a
= −4πGN

3
(ρ+ 3P ) . (1.97)

A fluid with w < −1/3 would produce ä > 0 if it were the unique component. More
generally, if DE’s equation of state were a function of the scale factor, DE energy density
would evolve with time as

ρDE(a) = ρ0
DE exp

{
−3

ˆ a

1

1 + wDE(ã)

ã
dã

}
. (1.98)

1.3.3 Inflationary Universe

The ΛCDM, even if able to explain a large set of observations, is an incomplete image.
There are some problems that the vanilla Standard Model is unable to deal with [170,
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171,188]

• Setting initial condition to primordial fluctuations. To accurately describe the evo-
lution of the large-scale structure in our universe, we must solve the perturbation
equations that govern its growth around a smooth background. However, to do this,
we first need to establish initial conditions for primordial fluctuations that occur in
the very early universe. The primordial fluctuations, which are thought to have
originated from quantum processes, provide the seeds for the formation of cosmic
structures like galaxies and clusters. Thus, we need a mechanism to explain how
tiny quantum fluctuations were stretched to cosmic scales, generating the primordial
density fluctuations that are observed today.

• The horizon problem. This disquisition has many facets, but it can be formulated in
a simple manner. On the one hand, the temperature map of the cosmic microwave
background (CMB) is nearly isotropic, exhibiting a relative difference of ∆T/T ∼
10−5 at all scales. On the other hand, the photons that we receive today from the
last scattering surface were initially separated by distances much larger than the
cosmological horizon. As a result, these large scales were unable to reach thermal
equilibrium since they were not causally connected until later in cosmic history.
Nevertheless, we observe equal temperatures for photons reaching us from different
points in the sky.

The comoving horizon, η, provides a reference distance for determining the causal
connection between objects separated by a certain distance. If their comoving dis-
tance is greater than η, then the objects were not causally connected in the past,
since information could not travel the entire path from one point to another by
definition. From Eq. (1.71), we see that η depends on the integration of the comov-
ing Hubble radius, rH = 1/(aH). An estimation of the comoving Hubble radius
during the radiation-dominated epoch (RDE) yields rH ∝ a2, so the comoving hori-
zon received only very small contributions in the early universe, of order η ∝ a2.
In other words, if we naively extrapolate this dependence to the beginning of the
cosmos (extending the RDE up to a = 0), photons could not have traveled large
distances in the past, and the sky would consist of non-causally connected patches.
This means that solving the horizon problem within the traditional paradigm of an
RDE followed by a matter-dominated epoch (MDE) is not possible.

• The flatness problem. The universe is commonly assumed to have an almost neg-
ligible spatial curvature. For instance, the Baseline dataset from Planck 2018
[132] in combination with BAO data constrains the curvature parameter to be
Ω0
k = 0.0007 ± 0.0019. If Ωk(a) = −k/(aH(a))2 was not forced to be exactly 0

since the very beginning, this would be difficult to explain, since |Ωk(a)| is expected
to grow during the matter and radiation dominated epochs. One option is to fine-
tune the initial value of Ωk to an unreasonably small value around 0 in such a way
that it can provide the still tiny value it has today, but this would seem unnatural.
Another option is to consider an early phase of expansion (ä) in the remote past
that reduced the Hubble radius and, as a consequence, the curvature parameter by
several orders of magnitude. In order to achieve the present level of flatness, we
require a cosmic inflationary phase prior to the RDE, where the scale factor grows
by a factor of more than 60 e-folds, or e60 times.

• The monopole problem. The Standard Model of Particle Physics has some extensions
that predict hypothetical particles produced in the very early Universe, such as
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magnetic monopoles, which behave as isolated magnetic charges [189]. The difficulty
in detecting magnetic monopoles (and other hypothetical extensions of the SM) can
be explained if their formation occurred prior to the inflationary period. In this
scenario, after the exponential expansion, the density of these particles became so
diluted that it is now impossible to detect them in experiments.

It is clear that the common factor in the solution to these problems is the existence of a
short period of exponential expansion in the early Universe, which effectively behaves as
a De Sitter Universe. This is known as the theory of inflation [110, 111, 164, 171]. It is
interesting to note that in order for the Universe to undergo an accelerating expansion
stage, the energy budget must be dominated by a negative pressure fluid (or a mechanism
that behaves similarly to it), similar to Dark Energy. However, this process cannot be
explained by a simple cosmological constant, as it only had a very short duration.

An active field of research is to describe the physics of the underlying mechanism capable
of producing the inflationary process. The very early epoch is not currently accessible by
experiments, since it involves very high energy scales and temperatures. This means that
particle physics cannot make robust affirmations, despite the fact that there are several
well-studied insights, such as Grand Unified Theories (GUT) [110,111], characterized by
energy scales beyond 1015−16 GeV4. However, the most common mechanism for inflation
is carried by a scalar field, since it consists of a simple model that may describe the
essential features of inflation. This scalar field φ of this model is usually called the
inflaton, but it is important to remark that it has not been identified with any field of
nature yet. Schematically, in the model of the inflaton, the scale factor is expected to
evolve exponentially as a ∝ exp (HIt), where HI is the Hubble function during inflation.
The scalar field is thought to possess a self-interacting potential V (φ), and the pressure
and energy density associated to the scalar field are

Pφ ≡
1

2
φ̇2 − V (φ) , ρφ ≡

1

2
φ̇2 + V (φ) (1.99)

Then, the equation of state of the scalar field is

wφ ≡
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (1.100)

Here φ̇ ≡ dφ/dt. In the slow-roll regime, where the field is expected to carry a negligible
kinetic energy, and the equation of state is dominated by the huge value of the potential
and is wφ ≈ −1, similar to a cosmological constant. When inflation stops, V (φ) ∼ φ̇2

and the scalar field oscillates around the minimum of the potential, releasing radiation
and different particles. This process is known as reheating and leads to the traditional
Big Bang picture and subsequent RDE.

For completeness it is also necessary to mention Starobinsky model [164, 190]. In this
case, the inflationary process is carried out by the higher-order correction R2 into the
Einstein-Hilbert Action, where R is the Ricci scalar. This term and similar ones will
appear in subsequent chapters when trying to renormalize our theory in the context of
General Relativity, so that correcting Einstein’s Field equations with higher-derivative
terms.
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1.4 Why going beyond the Standard Model?

We have already stressed the fact that the concordance ΛCDM model is afflicted by sev-
eral theoretical conundrums. The most prominent one is the CC problem, which actually
affects all forms of dark energy (DE) [167, 191–198]. Jointly with the aforementioned
coincidence problem, we urgently require a non-trivial explanation that can answer these
questions in their entirety, possibly through physics beyond the Standard Model of Par-
ticle Physics or with the development of a successful quantum description of gravity. At
present, we are restricted to the more pedestrian Quantum Field Theory, which, as we
will see in the following chapters, may have something to say regarding these intriguing
problems after all.

On the other hand, one may feel relieved because, despite the fact that we do not control
all the fundamental pillars of the model, from an effective phenomenological perspective,
the ΛCDM seems to accommodate the overall cosmological observations with success.
Nonetheless, the observational situation in recent years does not present a fully positive
picture of the phenomenological status of the ΛCDM anymore. Namely, several dis-
crepancies in crucial parameters plague the landscape. These discrepancies emerge in
various forms, ranging from mere curiosities in some parameters related to the cosmolog-
ical probes to the level of true cosmological tensions in crucial parameters that threaten
the viability and trust in the concordance model [199].

This is particularly true concerning two main observables [200–205]. The most noticia-
ble and perturbing one is the so-called Hubble tension and is related to the dissimilar
indepedently obtained measurements of the Hubble parameter H0 from local and early
universe data coming from the Cosmic Microwave Background (CMB). The constrains
imposed by the CMB predict a low value of the parameter, H0 = 67.36±0.54 km/s/Mpc
in the baseline scenario presented in Planck collaboration’s results [132]. On the other
hand, local geometrical estimations relying in the distance ladder method [206–210] in-
fer a greater value of the current value of the parameter. We can take as a reference
the value H0 = 73.04 ± 1.04 km/s/Mpc in the baseline scenario from [210], the lattest
result from SH0ES Team. It is also remarkable that the missmatch arisen by the two
results is not a recent trend, the discrepancy has escalated with time since the original
publications of SH0ES were released [206, 207] and even enhanced when combined with
other cosmological probes. For instance, when the value H0 = 73.5 ± 1.4 km/s/Mpc
from [209] is combined with other independent observation, such as the Strong-Lensing
results from the H0LICOW collaboration [211], which leads to H0 = 73.3+1.7

−1.8 km/s/Mpc,
the combination produces H0 = 73.42 ± 1.09 km/s/Mpc, and this result amounts to an
astounding ∼ 5σ tension with respect to the Planck 2018 result. This tension is in the
line of the ∼ 5σ level in light of the aforementioned result from [210].

The second one is also worrysome and related to the structure formation data. The
concordance model predicts a value of σ8 (the current matter density rms fluctuations
within spheres of radius 8h−1,Mpc, where h ' 0.7 is the reduced Hubble constant) in
excess by 2 − 3σ over the direct data values at low redshifts [201, 202, 204, 212–215].
Specifically, the tension is between measurements of the amplitude of the power spectrum
of density perturbations inferred using CMB data and those directly measured by large-
scale structure (LSS) formation on smaller scales, from redshift space distortions (RSD)
(see e.g. [216]) and weak-lensing (WL) data [217–220].

Whether all these tensions are the result of yet unknown systematic errors or really hint
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at some underlying new physics is still unclear and constitutes a hot topic in modern-day
cosmology. There is still a strong possibility that these discrepancies may just be a signal
of a deviation from the ΛCDM model. This would mean exploring alternatives to the
ΛCDM that arise after slight modifications of the former, i.e., by the introduction of
new degrees of freedom with respect to the vanilla concordance model. These extensions
cannot be arbitrarily far away from the ΛCDM, as it has the ability to explain and
accommodate several phenomena over the entire expansion history and explain the main
features of cosmological observations. In general, the best practice for judging satisfactory
approaches is to consider models that can ameliorate the H0 tension without enhancing
the σ8 one and vice versa. This “golden rule” will be our guiding principle for finding
promising models in chapters 5 and 6.

Of course, there are many attempts to solve these tension in the literature. Condens-
ing all of them here is simply impossible, and any list would be surely incomplete and
unavoidably biased. Nevertheless, let us mention some of them, e.g. see [221–241]. In
general these attempts are purely phenomenological, e.g. those using phantom equation
of state for the DE since they have no consistent theoretical support and usually they
further spoil the σ8-tension [242,243]. This drawback was repeatedly emphasized in dif-
ferent existing analyses in the literature [244–250]. There are also attempts to introduce
early dark energy (EDE), but different works seem to reach different conclusions on the
effectiveness of these models to improve the tensions, see e.g. [251–254]. For reviews on
the tensions or their solutions, please see [199,203–205,255] and references therein.

1.5 Some alternatives to the ΛCDM

The quest for extensions of the ΛCDM is a well-motivated task, as discussed in the
previous section. However, there are many valid approaches to this problem. Together
with my PhD supervisor, Prof. Joan Solà Peracaula, we have chosen a particular direction
in this plethora of possibilities, focusing our studies on finding theoretical results on
dynamical DE (or vacuum energy density) and related cosmological models that emerge
from this framework.

This line of research was initiated by my PhD supervisor’s devoted research on the cos-
mological constant problem some decades ago. Our motivation regarding dynamical DE
is twofold. First, the Cosmological Problem has an unstimable interest on its own. Sec-
ond, there is a potential solution to the cosmological tensions in the form of dynamical
DE models in cosmology. Notice that exploring this particular direction is quite natural,
since if DE can evolve with time, it is easier to understand how it can adapt its value at
different epochs in the cosmological expansion than if it were stuck at a constant value,
i.e., a cosmological constant.

In our works (see the subsequent chapters of this thesis) we do not consider general models
where the cosmological constant is simply promoted to a generical expression of cosmic
time, Λ(t). Instead, we seek fundamental motivations for the running of the vacuum
coming from Quantum Field Theory, which provides strong theoretical grounds for our
models, particularly for the so-called family of “Running Vacuum Models” (RVM).

Probably, the very first suggestion that the cosmological constant can be, in fact, be
a function of time was given by the Russian physicist Matvei Bronstei [85, 256]. In
his paper of 1933, he treated the cosmological constant as a new kind of matter-energy
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fluid, capable of interact with ordinary matter. This proposal envisioned a time-varying
cosmological constant, a prediction that can be seen as a precursor of modern ideas such as
quintessence. More in general, the idea that the DE could be not just the CC of Einstein’s
equations but a dynamical variable, or some appropriate function of the cosmic time, has
been explored since long ago and sometimes on purely phenomenological grounds [257],
see particularly [193–197, 258–262]. In this last section of our introductory chapter, we
will summarize some of these possibilities.

1.5.1 Generical Parametrizations of the equation of state

In the introduction of the basic background equations in Sect. 1.3.1 we shown that the
covariance conservation for each species individually implies a differential equation for
the energy density in terms of the equation of state (EoS) of the fluid. If the EoS is
constant, then the energy density of the fluid evolves as a power of the scale factor, see
eq. (1.82). For Dark Energy, the traditional scenario is a Cosmological Constant term,
i.e. wDE = −1 al along the cosmological history, and thefore the DE density remains
constant as one may see from (1.82). But this condition is not in any way mandatory,
and cosmologies with ˙wDE 6= 0 are a possible extension of the vanilla ΛCDM. The simplest
way to implement this approach consists in a Taylor expansion of wDE, as a function of
the scale factor around the present time, a = 1,

wDE(a) = wDE(a = 1) +
dwDE

da

∣∣∣∣∣
a=1

(a− 1) + . . . (1.101)

The dots indicate higher order beyond the linear one in the Taylor expansion. If we
neglect linear orders and keep the first constant term, wX ≡ wDE(a = 1), we are left with
the traditional picture of a constant EoS, however there is no need to adjust this constant
to its former value −1, typical for a cosmological constant and wX may be treated as a
free parameter of the model. Therefore, the DE energy density evolves with the scale
factor as

ρX = ρ0
Xa
−3(1+wX) , (1.102)

where ρ0
X is the energy density of DE at the present time. This parametrization is called

XCDM (also known as wCDM) cosmology [263].

If we go to linear order in (1.101) we encounter the very well-known Chevallier-Polarski-
Linder (CPL) parametrization [264, 265]. If we truncate the series at linear order and
define w0 ≡ wDE(a = 1), wa ≡ −dwDE

da
|a=1, then the EoS is parametrized as the following

simple expression:
wDE(a) = w0 + wa(1− a) . (1.103)

which has the nice property of not growing uncontrolabily for values of the scale factor
close to 0. Since the covariance conservation of DE is

ρ̇DE + 3H(1 + wDE)ρDE = 0 , (1.104)

plugging eq. (1.103) yields the following expression for the energy density

ρDE(a) = ρ0
DEa

−3(1+w0+wa) exp{3wa(a− 1)} (1.105)

and again ρ0
DE is the DE energy density at the present time.
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Both the XCDM and CPL do not rely in fundamental theory nor have a microphysical
explanation supporting them, but represent the most generical evolution one may expect
from wDE, and they are sometimes used as a reference model, meaning that when testing
more sophisticated models they have to prove to perform better than the most generical
and simple parametrizations.

1.5.2 Scalar Field cosmology

Scalar fields have been widely used in cosmology for different purposes because of their
simplicity and versatility. Some of these examples include attempts to cancel out or
relax the cosmological constant contribution through a dynamical mechanism. Some
examples are [266–269]. For what we interested in, let us focus in scalar fields in the
postinflationary regime including a potential [270, 271]. In there, the energy density of
the homogeneous scalar field φ(t), considered to be a remnant of the inflatonary field,
resembles a non-null cosmological constant density with a slow evolution, though. Such
models were conceived to reconcile with observational data, rather than as mechanisms
for the cancellation of the cosmological constant. On the contrary, the mimicking of
scalar fields to the cosmological constant is crucial.

The action of the model is

STot =

ˆ
d4x
√
−g 1

16πGN

(
R− 1

2
gµν∂µφ∂νφ− V (φ)

)
+ Sm . (1.106)

The matter part is represented by Sm. The equation of state (EoS) for the ideal fluid
approximation for the scalar field is different from −1:

wφ =
Pφ
ρφ

=
φ̇2

2
− V (φ)

φ̇2

2
+ V (φ)

. (1.107)

The kinetic term is φ̇/2, where the time derivative is indicated by the dot. The potential
should be chosen to ensure that it is sufficiently small in the past and that the energy
density only dominates at recent times, so as not to disturb Big Bang Nucleosynthesis
nor the growth of matter structure on small scales in earlier stages. If we want the EoS to
behave as a cosmological constant, the potential term should dominate the kinetic one,
i.e. φ̇2 � V (φ). A typical example is V (φ) ∼ φ−α, with α > 0, although there are other
possibilities. On the other hand, since the field is not expected to interact with ordinary
matter (or at least in a noticiable manner) the Klein-Gordon equation for the scalar field
is just a rewritting of the covariant conservation of the energy density of the field

φ̈+ 3Hφ̇+
dV

dφ
= 0 . (1.108)

A final comment is necessary. Even if we could think that the dynamical nature of the
scalar field may prevent some of the pathologies of the traditional cosmological constant
approach, namely fine-tuning, this is not true. In fact, the greatest difficulty of the
cosmological constant problem is that it seems to afflict any know form of DE. As a
simple argument, in order to identify the rolling scalar field with DE, we should have ρφ ∼
ρ0

Λ ∼ 10−47 GeV4. Since the initial value of the field is fixed shortly after inflation, and
the kinetic term is very small, it approximately mantains its value during the expanding
history. A typical energy scale in inflation is given by MX ∼ 1016 GeV, from Gran Unified
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Theories. That means one should adjust carefully the parameters of the potential V (φ)

to compare such different energy scales, MX and ρ
1/4
Λ , which leads to unnatural values

for the dimensionless parameters of the potential or the mass of the scalar field.

1.5.3 Running Vacuum Models

Running Vacuum Models (RVM) conform a family of models in which DE (identified as
vacuum energy) runs with the cosmic expansion as a series of powers of the Hubble func-
tion H and its derivatives, ρvac(H). They represent an essential part of our investigations
along the years, and of course, of this thesis. Its original conception was formulated in
terms of generic arguments of Renormalization Group formalism, as we are about to ex-
plain, but one of the main outcomes presented in this Thesis is how this structure ρvac(H)
naturally emerges from the rigorous computations in Quantum Field Theory presented in
detail in Chapters 2, 3 and 4. However, let us stick here to the more intuitive and general
arguments and reserve the details for later.

The key idea of Running Vacuum Models came from the very fundamental ideas of
General Relativity and Standard Cosmology: general covariance of the theory and the
cosmological principle. When using the FLRW metric, the curvature invariants R, R2,
RµνR

µν are limited to be composed from H and its derivatives, the available energy scale
characteristic of the expanding universe. Take for instance the Ricci scalar

R = −12H2 + 6Ḣ . (1.109)

It depends on H2 = ȧ2/a2 and ä/a, both containing two derivatives of the cosmic time,
which we will simply denote as O(H2). On the other hand R2, RµνR

µν , . . . depend on

H4, Ḣ2, ḢH2 (similary, collectively denoted by O(H4)). Each of the former invariants
contain terms with an even total number of time derivatives of the scale factor O(H2n).
Equivalently, they all scale as even powers of energy in natural units15. No odd terms
can be present in covariant theory can be present, then. These simple arguments suggest
that the form of the cosmological effective action may should be written in the following
general way [167],

Leff = c0 + c1H
2 + c2H

4 +O(H6) + . . . (1.110)

where c0, c1, c2, etc. are constants. If (1.110) is interpreted as the part of the effec-
tive action describing the corrections to the vacuum energy density (VED), it means
that we can expect the VED to inhenerit the same analytical description, leading to a
Renormalization Group (RG) Equation of the form

dρvac(H)

d lnH2
=

1

(4π)2

∑
N

[
ANM

2
NH

2 +BNH
4 +O

(
H6

M2
N

)]
. (1.111)

Here, AN and BN are dimensionless constants, N is supposed to run among the different
massive fields, and MN is the mass of these fields. Higher-order terms, represented by
O(H6/M2

N), decouple for MN →∞, as they should happen in a physically renormalizable
theory. The role of H in the previous expansion is to act as a running scale in the cosmo-
logical scenario. Therefore, the former equation describes the running of vacuum energy

15One cannot discard, a priori, the appearence of other terms such as R1/2 ∼ O(H). However, we will not
consider such possibility here. First, because it would complicate the general ideas and second, General Relativity
and its usual UV renormalizable extensions in cosmology contain only terms of the desired form O(H2n).

59



density, triggered by quantum fluctuations of the matter fields, with the background
cosmological expansion.

Rather than predicting the exact value of the Cosmological Constant or Vacuum Energy
at a particular time, equation (1.111) describes a more modest but still powerful result: if
we are provided with an observational value of the vacuum energy density at a particular
renormalization point, i.e. at a particular time, then (1.111) would leave us to predict
its value at another renormalization point. This is not at all an unprecedented result:
as we know, the RG formalism in flat space-time already does afirmations of similar
nature in the context of Particle Physics. For instance, is able to do predictions of the
electromagnetic structure fine at a particular scale αEM(µ1), once we know its value at
another renormalization scale αEM(µ2). However, it is totally unable to do any prediction
of αEM(µ1) nor αEM(µ2) from first principles if one of the two is not measured experi-
mentally. This is well-stablished in particle physics in flat space-time and (1.111) may be
interpreted in a similar philosophical current, although with some extra intricacies, such
as working in a curved background [272].

Phenomenologically speaking, we usually use a low-energy regime version derived from
equation 1.111,

ρvac(H) = c0 +
3ν

8π
M2

PlH
2 . (1.112)

where MPl ∼ 1019 GeV is Planck’s mass and ν ≡ 1/(6π)
∑

N ANM
2
N/M

2
Pl is a small

parameter (since M2
N � M2

Pl for each mass of the Standard Model of particle Physics)
that emerges from the solution of the RGE. The term c0 is of extreme importance, if
ν were exactly 0 we would recover the standard ρvac=constant of the standard model.
Additionally, if we want to retrieve standard results, a transition from a decelerated state
to an accelerated one is only possible for c0 6= 0. Another way to write eq. (1.112) is
subtracting the same equation at the present time, H = H0. The result explicitates what
was mentioned before, the prediction ρvac(H) can be done if we have total knowledge of
ρ0

vac ≡ ρvac(H0):

ρvac(H) = ρ0
vac +

3ν

8π
M2

Pl(H
2 −H2

0 ) . (1.113)

Up to this point, there is nothing that prevents us to change νH2 in the previous formulas
with a linear combination νH2 + ν̃Ḣ. After all, Ḣ is also “allowed” by the aforemen-
tioned general arguments of general covariance and RG. From the point of view of the
phenomenology this could be an interesting possibility too, however let us just consider
the simpler version, i.e. ν̃ = 0. The energy conservation equation dictated by the Bianchi
identity is

d

dt
[G(ρm + ρΛ)] + 3GH(ρm + Pm) = 0 (1.114)

Notice that we have not imposed self-conservation of matter and vacuum separatedly,
besides we admit the possibility of G, the gravitational coupling, being a function of
the renormalization scale too. Starting from here, seveal possibilities arise [167]. Some
examples are:

• Model I. G=const. , ρvac=const.
This is the traditional ΛCDM where Dark Energy is represented by a cosmological
constant.

• Model II. G=const. , ρ̇vac 6= 0.
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Matter can interact with vacuum and exchange energy:

ρ̇m + ρ̇Λ) + 3H(ρm + Pm) = 0 . (1.115)

We can solve ρm(z), because of the existence of the running vacuum law (1.113)

• Model III. Ġ 6= 0 , ρ̇vac 6= 0 and matter conserved.
Vacuum can exchange energy with the background gravitational field:

Ġρvac +Gρ̇vac = 0 . (1.116)

We can solve G(H), because of the existence of the running vacuum law (1.113).

This just shows a small part of the rich and non-trivial phenomenology that these models
have. In Chapter 6, we fully explore a particular subfamily of models where one replaces
the Hubble function by the Ricci scalar, ρvac(R), which has the virtue of not perturbing
the well-known physics of Big Bang Nucleosynthesis. To sum up, running vacuum models
can potentially alleviate cosmological tensions and clarify some fundamental questions
regarding the cosmological constant.

61



62



Chapter 2

Renormalizing the vacum energy in
cosmological space-time:
implications for the cosmological
constant problem

The cosmological constant (CC) term, Λ, in Einstein’s equations has been for some three
decades a fundamental building block of the ‘concordance’ or standard ΛCDM model of
cosmology [273]. The model, however, was phenomenologically favored only as of the time
Λ became a physically measured quantity some twenty years ago [126, 127]. Nowadays
Λ, or more precisely the associated current cosmological parameter Ω0

Λ = ρΛ/ρ
0
c became

a precision quantity [132]. Here ρΛ ≡ Λ/(8πGN) is the (vacuum) energy density induced
by Λ, GN is Newton’s constant and ρ0

c = 3H2
0/(8πGN) is the current critical density. The

accurate knowledge of Ω0
Λ around 0.7 is an important observational achievement, but it

does not mean that we fully understand its nature and origin at a fundamental level.
In the introduction of this dissertation we have already talked about the cosmological
constant problem. It is a preeminent example of a fundamental theoretical conundrum.
But, the abstruse theoretical problems, though, are not the only nagging ones afflicting
the concordance model (see Sect. 1.4). In practice, the ΛCDM appears to be currently
in tension with some important measurements, most significantly the discordant values
of the current Hubble parameter H0 obtained independently from measurements of the
local and the early universe. Whether these tensions are the result of as yet unknown
systematic errors is not known, but there remains perfectly upright the possibility that
a deviation from the ΛCDM model could provide an explanation for such discrepancies
[208]. As it has been shown in the literature, models mimicking a time-evolving Λ (and
hence a dynamical vacuum energy density ρΛ) could help in alleviating these problems,
see e.g. [244–246,248,250,274–280] and [172,221,222,232,232,234,234,235,238–240,242,
281–283]. Although the potential phenomenological implications of dynamical VED or,
more in general, a dynamical DE may have, it is true that such an evolution is not often
well-motivated from fundamental reasons and is rather an ad-hoc hypothesis added to
the cosmological models.

In this chapter we present the research performed on theoretical aspects of dynamical
vacuum energy density (VED) in the context of Quantum Field Theory (QFT) in curved
space-time [284–287]. In the works in which this chapter is based [198,288–290] we tried
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to explain from first principles the dynamical behaviour of VED as a consequence of the
running of ZPE of quantum fields in an expanding background. The renormalization of
the vacuum energy in QFT is usually plagued with theoretical conundrums related not
only with the renormalization procedure itself, but also with the fact that the final result
leads usually to very large (finite) contributions incompatible with the measured value of
Λ in cosmology that we mentioned previously. As a consequence, one is bound to extreme
fine-tuning of the parameters and so to sheer unnaturalness of the result and of the entire
approach.

Up to the moment there is not a completely successful quantum theory of gravity that
combines QFT and General Relativity (GR) that can dispense the problem straightfor-
wardly. However, there are many simplifications and techniques in the literature to study
the quantum fields in the context of a curved space-time [284, 285], which can help us
to get over this adversity. Here, we encompass our works related with one of these tech-
niques, a renormalization method based on the WKB approximation of the field modes
in the expanding universe called adiabatic regularization. This method has been applied
successfully since its original description many decades ago and it is present in all the
classic textbooks on QFT in Curved space-time [284,285]. However, in this chapter we
present a novelty application of how to use this machinery in our particular area of inter-
est, VED in a dynamical expanding background. The prescription dictated by adiabatic
regularization, together with our definition of EMT renomalization is called Adiabatic
Regularization Procedure (ARP). Above all we wish to focus on the dynamics associated
to the running vacuum model (RVM) [272,291–293]; for a review, see [167,294–297] and
references therein. For related studies, see e.g. [298–301] and [302–306], some of them
extending the subject to the context of supersymmetric theories [307–309] and also to
supergravity [310]. More recently the matter has also been addressed successfully in the
framework of the effective action of string theories [311–313]. Here, however, we aim at
the computation of the VED in QFT in a curved background, specifically in the spatially
flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric. Recall that in the momen-
tum subtraction scheme, the renormalized Green’s functions and running couplings are
obtained by subtracting their values at a renormalization point p2 = M2 (space-like in
our metric, which becomes an Euclidean point after Wick rotation) or at the time-like
one p2 = −M2 (depending on the kinematical region involved). Here the situation is sim-
ilar, but since for vacuum diagrams we do not have external momenta, we renormalize
the ZPE by subtracting (to its on-shell value) the corresponding value computed to 4th
adiabatic order, which we will introduce later on, but at an arbitrary mass scale M . This
suffices both to eliminate the divergent terms in the first four adiabatic orders, which are
the only ones that can be divergent in the renormalization of the EMT [288] and to relate
the ZPE at different scales. However, if we wish to compute the zero-point energy at the
value of the particle mass m, then the renormalization is to be performed on-shell, i.e.
at M = m. In such a case it is evident that a subtraction at 4th-order would give a van-
ishing result. Therefore, since general covariance of the effective action requires that the
vacuum energy can only be expanded in even adiabatic orders, the leading contribution
to the on-shell renormalized ZPE must appear at the sixth order of adiabaticity.

Hence, our first goal here is to compute the Zero-Point Energy (ZPE) of quantum fields
and then, our second goal, is to determine the running of VED as well as the running of
the other couplings in the theory. In particular, we perform the computation for a free
real scalar field, whose inclusion is just for practical reasons, as it simplifies the calcula-
tions. However, we replicate the computation for a free Dirac fermion in Chapter 4. The
corresponding VED involves the cosmological term Λ (or, more precisely, the parameter
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ρΛ) in the Einstein-Hilbert (EH) action and the zero-point energy (ZPE) of the quantum
matter fluctuations. We should emphasize from the beginning that we do not address
here the issues of quantum gravity (QG) and the functional integration over metrics, with
or without the Λ term, see e.g. [314–317]. While these are potentially important matters,
in the current context gravity is treated as a classical background field and hence the QG
considerations in connection to quantizing the metric lie out of the scope of our semi-
classical approach. Needless to say, the QFT calculation of vacuum-to-vacuum diagrams
implies to perform renormalization since we meet UV-divergent integrals. The usual pro-
cedures to account for the regularization and renormalization of divergent quantities in
QFT, such as e.g. the minimal subtraction (MS) scheme [318,319], do not yield a sensible
answer for the VED. Despite producing finite results, these are useless and incongruent
with the physical facts. They lead to a quartic dependence on the mass of the fields
(∼ m4) and this enforces a very serious (in fact incommensurable) fine-tuning among the
parameters, this being so both in Minkowski and in curved space-time 1. In this chapter,
we forgo making use of such an unsuccessful method and rather adhere to the adiabatic
renormalization procedure (ARP) mentioned above [284–286], in order to renormalize
the ZPE in a more meaningful way2 The connection with the general framework of the
running vacuum model (RVM) mentioned earlier it is also studied in detail in the main
text and in an appendix.

Noticiably, we perform the calculation in three different ways: one through a modified
form of the ARP [305], the second (presented in one appendix) involving dimensional
regularization (DR) and the third through the heat-kernel technique which lead us to the
computation of the effective action. The common result is that the properly renormalized
running VED, obtained upon inclusion of the renormalized value of ρΛ at a given scale,
does not contain the unwanted contributions proportional to the fourth power of the
particle masses (∼ m4) and hence it is free from large induced corrections to the VED.
This is tantamount to subtracting the Minkowskian contribution from the curved space-
time result, as we show. In addition, we find that the final expression for the VED adopts
the RVM form for the current universe, namely it contains not only the usual constant
term but also one that evolves with the square of the Hubble rate (∼ νH2, with |ν| � 1).
The latter represents only a mild (dynamical) correction to the constant contribution and
it can mimic quintessence or phantom DE depending on the sign of ν.

Finally, let us specify the structure of this chapter. First, we will try to motivate and
contextualize the framework of these calculations in Sect. 2.1, which consists of a neu-
tral scalar field non-minimally coupled to gravity and with no self-interactions. We also
compute the classical energy-momentum tensor (EMT). In Sect. 2.2, we define our quan-
tum field theoretical model under study, which consists in the quantum fluctuations of
the mentioned scalar field. We assume a spatially flat Friedmann-Lemâıtre-Robertson-
Walker (FLRW) background and solve for the mode functions of the scalar field using
the WKB approximation up to 4th and 6th adiabatic orders. This enables us to com-
pute, in Sect. 2.3, the vacuum expectation value of the energy-momentum tensor (EMT)
within QFT in curved space-time up to the same orders. For renormalization purposes,
it is only necessary the calculation up to 4th order suffices. In Sect. 2.4, we employ an
off-shell generalization of the usual adiabatic renormalization procedure to compute the
zero-point energy (ZPE) of the quantum fluctuations and show that the scaling evolution

1See e.g. [167,198] for a pedagogical introduction to the ZPE calculation in flat and curved space-time.
2The method was introduced for the study of the running couplings in curved space-time in [305], although

it was not applied to the VED nor to the study of the running of this quantity throughout the cosmic evolution.
This was done for the first time in [288].
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of the vacuum energy density (VED), ρvac, is free from quartic powers of the masses. We
discuss the absence of fine-tuning in Sect. 2.5. Remarkably, we find that ρvac carries a
dynamical component ∼ H2 which is characteristic of the running vacuum model (RVM)
at low energies as stated in Sect. 2.6. In Sect. 2.7, we compute the trace of the EMT up
to 6th adiabatic order, which will be used to extract the quantum vacuum pressure at
the same adiabaticity order. In passing we verify, as a useful cross-check, that our results
correctly reproduce the trace anomaly. Next, with the purpose of bolt securing the renor-
malization results for the EMT that have been obtained from direct calculation of the
expansion modes in the previous sections, we recompute them anew in Sect. 2.8 within
the effective action formalism using the heat-kernel expansion of the propagator with the
DeWitt-Schwinger technique. We use the effective action to compute the running cou-
plings, in particular the β-function and renormalization group equation (RGE) for the
vacuum energy density (VED) itself, ρvac(H), showing it to be consistent with the absence
of quartic mass scales in the running. To our knowledge, this is the first time that the
dynamical VED is derived from first principles. The final discussion and a summary of
the conclusions is presented in Sect. 2.9. Three appendices at the end furnish complemen-
tary material. Specifically, Appendix A defines our conventions and collects some useful
formulas. Appendix B reconsiders the main parts of the renormalization of the EMT
using Dimensional Regularization and the standard counterterm procedure, starting of
course from the same WKB expansion of the field modes. Finally, Appendix C presents
more details on our computations on the running graviational constant and the low en-
ergy regime of the VED near the presents time, besides more details on the dynamical
evolution of the latter.

2.1 Classical Energy-Momentum tensor for a non-minimally cou-
pled scalar field

We start from the EH action for gravity plus matter:

SEH+m = SEH + Sm =
1

16πG

ˆ
d4x
√
−g R−

ˆ
d4x
√
−g ρΛ + Sm . (2.1)

The (constant) term ρΛ has dimension of energy density and is it usually identified with
the vacuum energy density. However, we will not call it that way here since it is not yet
the physical vacuum energy density (VED), ρvac, as we shall see. The term ρΛ is at this
point just a bare parameter of the EH action, as the gravitational constant G itself. We
prefer not to introduce special notations by now. The physical values will be identified
only after renormalizing the bare theory 3.

Varying the part involving the ρΛ term yields

δSΛ = −
ˆ
d4x δ

√
−g ρΛ = −1

2

ˆ
d4x
√
−g (−ρΛ gµν) δg

µν . (2.2)

3If we would write ρΛ = Λ/(8πGN ), where GN is the value of G as measured in Cavendish-like experiments
at the surface of the Earth, the parameter Λ could not be interpreted as a physical cosmological constant, but
just as the bare cosmological term. As mentioned in the introduction, the quantity that can be associated with
the physically measured cosmological constant, Λ , is defined through ρvac = Λ/(8πGN ), where ρvac and GN
are the physical quantities. The latter, however, can only be identified after properly renormalizing the QFT
calculation.
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Together with the variation of the EH and matter terms of (2.1), the gravitational field
equations read

1

8πG
Gµν = −ρΛgµν + Tm

µν , (2.3)

where Gµν = Rµν − (1/2)gµνR is the usual Einstein tensor and Tm
µν is the stress-energy-

momentum tensor, or just energy-momentum tensor (EMT for short) of matter 4

Tm
µν = − 2√

−g
δSm

δgµν
. (2.4)

In eq. (2.3), ρΛ ≡ Λ/(8πGN) can be thought as the VED associated to Λ. Alternatively,
the latter can be cast as a contribution to the total EMT as a term TΛ

µν ≡ −ρΛgµν .
However, in general, there will be also other contributions to the total VED, in particular
those associated to the quantum fluctuations of the fields, and also to their classical
ground state energy (if it is non-vanishing). For simplicity we will suppose that there is
only one (matter) field contribution to the EMT on the right hand side of (2.3) in the
form of a real scalar field, φ, with mass m. Such contribution will be denoted T φµν . Hence

the total EMT reads T tot
µν = TΛ

µν +T φµν . We neglect for the moment the incoherent matter
contributions (e.g. from dust and radiation). They can be added a posteriori without
altering the pure QFT aspects on which we wish to focus right now. Suppose that the
scalar field is non-minimally coupled to gravity and that it does not couple to itself. The
part of the action involving φ, then, reads

S[φ] = −
ˆ
d4x
√
−g
(

1

2
gµν∂νφ∂µφ+

1

2
(m2 + ξR)φ2

)
, (2.5)

where ξ is the non-minimal coupling of φ to gravity. In the special case ξ = 1/6,
the massless (m = 0) action is conformally invariant in 4 space-time dimensions, i.e.
symmetric under simultaneous local Weyl rescalings of the metric and the scalar field:
gµν → e2α(x)gµν and φ → e−α(x)φ, for any local space-time function α(x). However, we
will keep ξ general since our scalar field will be massive.

In our study, no classical potential for φ is present in our analysis we need not consider the
quantum corrections and corresponding renormalization of the effective potential. Here
we wish to concentrate mainly on the zero-point energy (ZPE) of the quantum fields,
which in itself is already rather cumbersome. In general, the non-minimal coupling ξ is
needed for renormalization since it is generated by loop effects even if it is absent in the
classical action [284]. However, ξ is not needed for the renormalization of the action in
the present case since the scalar field is free as a quantum field, its interaction being only
with the classical geometric/gravitational background. Under these conditions ξ is not
necessary for renormalizing the theory. Even so, by keeping ξ 6= 0 we can obtain more
general results, which will be particularly useful for the connection with the Running
Vacuum Model (RVM) framework in Sect. 2.6. Furthermore, it allows us to perform a
non-trivial test of our calculations by reproducing the conformal anomaly for the quantum
corrected action that we present in Sect. 2.7.2. In addition, the presence of a non-minimal
coupling is expected in a variety of contexts of extended gravity theories [320–323]. For
instance, f(R) gravity is equivalent to scalar-tensor theory, and also to Einstein theory
coupled to an ideal fluid [324]. The non-minimal coupling is crucially involved in models
of Higgs-induced inflation [325]. Furthermore, higher order and non-minimally coupled
terms can be transformed, by means of a conformal transformation, into Einstein gravity

4A list of geometric quantities of interest here are shown in Appendix A, where we also define our conventions.
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plus one or more scalar fields minimally coupled to curvature. These are only a few
examples in QFT, see e.g. [323] and references therein. Let us also mention that non-
minimal coupling of dilaton fields to curvature are also common in the context of the
effective action of string theory at low energies (we do some comments on an interesting
connection of the RVM with strings in Sect. 3.4.2). Nevertheless, as previously indicated,
even in the absence of V (φ) the presence of ξ can be very useful.

From hereon in, we will exclusively target the adiabatic renormalization of the ZPE of φ,
which in itself is already quite involved in curved space-time. In the case of general non-
minimal coupling ξ, the classical EMT can be computed through the functional derivative
with respect to the metric of (2.5):

T φµν =− 2√
−g

δS[φ]

δgµν
= (1− 2ξ)∂µφ∂νφ+

(
2ξ − 1

2

)
gµν∂

σφ∂σφ

− 2ξφ∇µ∇νφ+ 2ξgµνφ�φ+ ξGµνφ
2 − 1

2
m2gµνφ

2.

(2.6)

For ξ = 0 we recover the trivial result for the free and minimally coupled scalar field.
The field φ obeys the Klein-Gordon (KG) equation in curved space-time, which follows
from varying the action (2.5) with respect to φ:

(�−m2 − ξR)φ = 0 , (2.7)

where �φ = gµν∇µ∇νφ = (−g)−1/2∂µ (
√
−g gµν∂νφ) is the standard box operator in

curved space-time. As it is well-known, the time and space variables in the KG equation
can be separated, i.e. placed in the form φ(t, x) ∼

∑
k ψk(x)φk(t) (the sum usually

being in the continuum limit) provided the metric is conformally static [286], which
means ds2 = −dt2 + a2(t)γij(x)dxidxj in cartesian coordinates, where a(t) is the scale
factor and γij is the metric of any three-dimensional Riemannian manifold as its basic
spatial section. The space-time metric can then be put in the form ds2 = C(τ)(−dτ 2 +
γij(x)dxidxj), where the conformal scale factor C(τ) = a2(τ) is a function of the conformal
time τ . The latter is connected to the cosmic time through τ =

´
dt/a. The separability

condition certainly holds for any FLRW metric. In the following, however, we will focus
on the spatially flat three-dimensional case, γij = δij. The FLRW line element is then
conformally static and even conformally flat, and can be written ds2 = a2(τ)ηµνdx

µdxν ,
where ηµν = diag(−1,+1,+1,+1) is the Minkowski metric in our conventions. The
derivative with respect to the conformal time will be denoted ′ ≡ d/dτ and thus the
Hubble rate in conformal time reads H(τ) ≡ a′/a. Since dt = adτ , the relation between
the Hubble rate in cosmic and conformal times is H(τ) = aH(t), where H(t) = ȧ/a (with
˙≡ d/dt) is the usual Hubble rate. We will present most of our calculations in terms of
the conformal time, but at the end it will be useful to express the VED in terms of the
usual Hubble rate H(t), as this will ease the comparison with the RVM results in the
literature.

Because our metric is conformally flat, gµν = a2(τ)ηµν , we have the inverse gµν =
a−2(τ)ηµν and

√
−g = a4(τ), and as a result the action (2.5) can be rewritten as

S[φ] =
1

2

ˆ
dη d3x a2

(
φ′2 − (∇φ)2 − a2(m2 + ξR)φ2

)
. (2.8)

If we perform the field redefinition φ = ϕ/a and disregard total derivatives, the previous
action becomes the following functional of ϕ:

S[ϕ] =
1

2

ˆ
dηd3x

{
ϕ′2 − (∇ϕ)2 − a2

[
m2 +

(
ξ − 1

6

)
R

]
ϕ2

}
, (2.9)
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where we have used (cf. Appendix A) R = 6a′′/a3. The above field redefinition enables us
to have a simpler field equation for ϕ as if we were in Minkowski space (with conformal
time) and an effective time-dependent mass different from that in (2.7). Computing
δS[ϕ]/δϕ = 0 from (2.9) we find:

(�̃−m2
eff(η))ϕ = 0 , m2

eff(η) ≡ a2(η)

[
m2 +

(
ξ − 1

6

)
R(η)

]
, (2.10)

where �̃ϕ ≡ ηµν∂µ∂νϕ = −ϕ′′ + ∇2ϕ is the Minkowskian box operator acting on ϕ in
conformal coordinates xµ = (η,x). The above equation for ϕ is, of course, equivalent to
(2.7) for the original field φ, as one can check by computing the curved space-time box
operator in the conformal metric.

Altenatively, another way to present the KG equation (2.7) in conformally flat coordinates
is as follows:

φ′′ + 2Hφ′ −∇2φ+ a2(m2 + ξR)φ = 0 , (2.11)

where �φ = −a−2 (φ′′ + 2Hφ−∇2φ). The separability condition in these coordinates,
namely the factorization φ(τ, x) ∼

´
d3k Akψk(x)φk(τ) + cc, can be implemented with

ψk(x) = eik·x, but in contradistinction to the Minkowskian case we cannot take φk(τ) =
e±iωkτ since the frequencies of the modes are no longer constant. The precise form of the
modes φk(τ) in the curved space-time case are determined by the KG equation. In fact,
starting from the Fourier expansion with separated space and time variables

φ(τ,x) =

ˆ
d3k [Akuk(τ,x) + A∗ku

∗
k(τ,x)] =

ˆ
d3k

(2π)3/2

[
Ake

ik·xφk(τ) + A∗ke
−ik·xφ∗k(τ)

]
(2.12)

(Ak and A∗k being the Fourier coefficients, treated still classically at this point) and
substituting it into (2.11) we find that the mode functions φk(τ) are determined by the
non-trivial differential equation

φ′′k + 2Hφ′k +
(
ω2
k(m) + a2ξR

)
φk = 0 . (2.13)

Because ω2
k(m) ≡ k2 + a2m2, the mode functions depend only on the modulus k ≡ |k| of

the momenta, where k is the comoving momentum and k̃ = k/a the physical one. The
frequencies are seen to be functions of the time-evolving scale factor a = a(τ). This is the
first unmistakable sign that a particle interpretation will become hard in this context, or
in other words, it amounts to the phenomenon of particle creation in a time-dependent
gravitational field [326–328] – for a review see e.g. [329–332]. If we perform the change
of field mode variable φk = ϕk/a the above equation simplifies to a more amenable one
in which the damping term is absent:

ϕ′′k +
(
ω2
k(m) + a2 (ξ − 1/6)R)

)
ϕk = 0 . (2.14)

Despite it being the equation of an harmonic oscillator, it has a time-dependent frequency
and cannot be solved analytically except in a few cases. For example, for conformally
invariant matter, i.e. for massless scalar field (m = 0) and conformal coupling (ξ = 1/6),
the above equation boils down to the form ϕ′′k + k2ϕk = 0, whose positive- and negative-
energy solutions are just e−ikτ and e+ikτ , respectively. These are the very same solutions
as in the massless Minkowskian case (for which R = 0), which is ultimately the reason
why no particles are created in the quantized version of the theory (in which Ak and

A†k – the latter replacing A∗k – become the annihilation and creation operators) in the
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conformally invariant case. In the massless case with minimal coupling (ξ = 0) Eq. (2.13)
takes on the form

ϕ′′k + (k2 − a2R/6)ϕk = 0 . (2.15)

In the radiation epoch (a ∝ τ , thus R = 6a′′/a3 = 0) we find once more the trivial modes
ϕk(τ) = e±ikτ . On the other hand, both in the de Sitter (a = −1/(Hτ), H =const.)
and matter-dominated (a ∝ τ 2) epochs we have a2R = 12/τ 2, which leads to ϕ′′k + (k2 −
2/τ 2)ϕk = 0 . This equation is non-trivial but admits an exact (positive-energy) solution
in terms of Bessel functions. In the de Sitter case (τ < 0) one may impose the Bunch-
Davies vacuum limit ∼ e−ik|τ | in the far remote past (τ → −∞)5 and one finds the

solution in terms of Bessel/Hankel functions: ϕ(τ) ∝
√
k|τ |

(
J3/2(k|τ |)− iJ−3/2(k|τ |)

)
=√

k|τ |H(2)
3/2(k|τ |). Because of the half-integer order of these functions in this case, it leads

to a close analytic form: ϕk(τ) ∝ (1 − i/(k|τ |))e−ik|τ |. The same solution is valid for
the matter-dominated era (for which τ > 0). The corresponding solutions for φk are of
course φk(τ) = ϕk(τ)/a(τ) for each relevant epoch. For m 6= 0 and/or ξ 6= 1/6 a solution
in terms of modified Bessel functions is also possible in the de Sitter epoch.

In general, however, there is no analytic solution of (2.13) for the whole cosmic expansion
history of the universe up to the current DE epoch. Therefore, we are generally led to
search for a WKB (Wentzel-Kramers-Brillouin) expansion of the solution. But before
doing that let us take up the quantization of the scalar field φ, since we are mainly
interested in computing the vacuum fluctuations.

2.2 Quantum fluctuations and adiabatic vacuum

Let us now move from classical to quantum field theory. We can take into account the
quantum fluctuations of the field φ by considering the expansion of the field around its
background (or classical mean field) value φb:

φ(η, x) = φb(η) + δφ(η, x). (2.16)

We wish to compute the vacuum expectation value (VEV) of the EMT of φ, i.e. 〈T φµν〉 ≡
〈0|T φµν |0〉. The VEV of the field is identified with the background value, 〈0|φ(τ, x)|0〉 =
φb(τ), whereas we assume zero VEV for the fluctuation: 〈0|δφ|0〉 = 0. Not so, of course,
the VEV of the bilinear products of fluctuations, e.g. 〈δφ2〉 6= 0. These and other bilinear
VEV’s will be responsible for the ZPE of the field. We will define vacuum state for the
QFT in a curved background, called the adiabatic vacuum [333], we are referring to with
more precision below.

For an appropriate definition of the ZPE, given the above field decomposition into a
classical plus fluctuating part the corresponding EMT decomposes itself as 〈T φµν〉 =

〈T φb
µν 〉 + 〈T δφµν 〉, where 〈T φbµν 〉 ≡ 〈0|T δφµν |0〉 = T φbµν is the contribution from the classical

or background part, whilst 〈T δφµν 〉 ≡ 〈0|T δφµν |0〉 is the genuine vacuum contribution from
the field fluctuations δφ. The 00-component of the latter is connected with the zero-point
energy (ZPE) density of the scalar field in the FLRW background. Because ρΛ is also
part of the vacuum action (2.1), so the total vacuum contribution to the EMT reads

〈T vac
µν 〉 = TΛ

µν + 〈T δφµν 〉 = −ρΛgµν + 〈T δφµν 〉 . (2.17)

5For a given mode k this condition insures k|τ | � 1 and hence the modes can be thought of as being essentially
insensitive to curvature effects, since a2R = 12/τ2 → 0 in this limit. In this way we are free to fix the convenient
initial condition φk(τ) ∼ eikτ = e−ik|τ | in the remote past.

70



The above equation says that the total vacuum EMT is made out of the contributions
from the cosmological term and of the quantum fluctuations of the field. However, since
these quantities are formally UV-divergent, the physical vacuum contribution can only
be identified upon suitable regularization and renormalization of our calculation. We will
use later on a renormalized version of this equation and extract a relation satisfied by the
renormalized VED. Rather than using minimal subtraction, as it has been customary in
addressing the vacuum problem in QFT, we will use the adiabatic method. We remind
the reader that ρΛ = Λ/(8πGN) denote a parameter in the Einstein-Hilbert action. This
is not yet the physical vacuum energy density, ρvac, which we are aiming at. The latter
is obtained from the 00-component of the LHS of (2.17), see Sect. 2.5 for its precise
definition. In this respect, let us note that it is common in the literature to denote the
physical quantity in the conventional form ρΛ, but this should not be confused with the
more precise notations used hereafter.

The field (2.16) obeys the curved space-time KG equation (2.7)independently by the
classical and quantum parts. Similarly, ϕ and δϕ obey separately the Minkowskian KG
equation (2.10). Let us concentrate on the fluctuation δϕ. Denoting the frequency modes
of the fluctuating part δϕ by hk(τ), we can write

δϕ(τ,x) =

ˆ
d3k

(2π)3/2

[
Ake

ik·xhk(τ) + A†ke
−ik·xh∗k(τ)

]
. (2.18)

Since φ = ϕ/a, the expansion of δφ is, of course, the same as that of (2.18) but divided by

the scale factor a. Here Ak and A†k are no longer the classical Fourier coefficients but are
now promoted to be (time-independent) annihilation and creation quantum operators,
which satisfy the usual commutation relations

[Ak, Aq
†] = δ(k− q), [Ak, Aq] = 0. (2.19)

Notice that Ak and hk have mass dimensions−3/2 and−1/2 in natural units, respectively.
Upon substituting the Fourier expansion (2.18) in (�̃−m2

eff(η))δϕ = 0 we find that the
frequency modes of the fluctuations satisfy the (linear) differential equation

h′′k + Ω2
khk = 0 , Ω2

k(τ) ≡ k2 +m2
eff(τ) = ω2

k(m) + a2 (ξ − 1/6)R , (2.20)

with ω2
k(m) ≡ k2 + a2m2. As we can see, hk depends only on the modulus k ≡ |k| of

the momentum. Notice that Ωk(τ) is a non-trivial function of the conformal time, so
the modes cannot be found in a simple form except in the simple cases mentioned at the
end of Sect. 2.1. However, one can generate an approximate solution from a recursive
self-consistent iteration based on the phase integral ansatz

hk(τ) =
1√

2Wk(τ)
exp

(
−i
ˆ τ

Wk(τ̃)dτ̃

)
. (2.21)

The latter is normalized through the Wronskian condition

h′kh
∗
k − hkh∗′k = i, (2.22)

which insures that the standard equal-time commutation relations between the field op-
erator ϕ and its canonical momentum, πϕ = ϕ′, are preserved. The effective frequency
function Wk in the above ansatz follows from the differential equation obtained from
inserting (2.21) into (2.20):

W 2
k = Ω2

k −
1

2

W ′′
k

Wk

+
3

4

(
W ′
k

Wk

)2

. (2.23)
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Although this equation is non-linear, it can be solved using the WKB approximation
or Carlini-Liouville–Green approximation [286]. The leading term holds when the time
variation of the frequency Wk(τ) is supposed to be very small as compared to k. In that
case, the derivative terms on the RHS of (2.23) can be neglected and the phase integral
in (2.21) with Wk(τ) ' Ωk(τ) furnishes a sufficient approximation. The remaining terms
of (2.23) improve the accuracy and can be computed by iterating the procedure in what
is known as the adiabatic expansion. The implementation in the gravitational context
is well-known since long [285, 286]. Taking into account that the WKB solution is valid
for large k (i.e. for short wave lengths, as e.g. in geometrical Optics) the function Ωk

is slowly varying for weak fields. In our case such a regime is appropriate to study the
short-distance behavior of the theory, i.e. the UV-divergences and the renormalization
procedure. Because the general mode functions hk(τ) are not the canonical ϕk(τ) =
e±iωkτ anymore, particles with definite frequencies cannot be strictly defined in a curved
background. This motivates a notion of vacuum6 called the adiabatic vacuum [333],
see also [284–287]. Our VEV’s actually refer to that adiabatic vacuum. Rather than
formulating it as the state without particles, we can at least say it is a state essentially
empty of high frequency modes. Indeed, particles with definite frequencies cannot be
strictly defined in a curved background, since Ωk(η) is a function of time. Nonetheless
an approximate Fock space interpretation is still possible, and the adiabatic vacuum can
be formally defined as the quantum state which is annihilated by all the operators Ak
of the above Fourier expansion, see [284–287] for details. Our VEV’s actually refer to

that adiabatic vacuum. In such conditions, the minimal excited state is hk ' eikη/
√

2k,
with k ' Ωk, and hence one can maintain an approximate particle interpretation of
the quantized fields in a curved background provided the geometry is slowly varying.
However, in general, the physical interpretation of the modes (2.20) with time varying
frequencies must be sought in terms of field observables rather than in particle language.
In practice, the adiabatic vacuum approximation assumes both short wavelengths and
weak (or at least non strong) gravitational fields, such that the effective frequencies Ωk

are slowly varying functions of time around the Minkowskian values defined through
the masses and momenta. Therefore both m2

eff ≡ a2 (m2 + (ξ − 1/6)R) and Ω2
k remain

safely positive in our domain of study. Simple estimates show that this is so for the
most accessible part of the cosmic history, starting from the radiation-dominated epoch
(where R = 0) until the present time and into the future, in which R ∼ H2 is very small as
compared to the usual particle masses (squared). The Bunch-Davies vacuum mentioned
above was a particular form of adiabatic vacuum for the case of the de Sitter space.
We emphasize that in all cases, including the situation with the stronger gravitational
fields in the inflationary epoch (see Sect. 3.4.2 for further discussion), in the absence of a
clear-cut particle interpretation, a more physical approach to the vacuum effects of the
expanding universe can be obtained by computing the vacuum part of the EMT of the
scalar field in the cosmologically expanding background. To accomplish this task, we need
to insert the above Fourier expansions in (2.6) and compute the VEV in Fourier space,

hence integrating over all modes,
´

d3k
(2π)3 (...). In the process we must use the expansion of

(2.23) in order to compute the explicit form of the modes, and this yields UV-divergent
integrals.

6A simple physical example in hydrodynamics is that of small amplitude adiabatic acoustic waves in an
otherwise homobaric fluid (i.e. whose unperturbed pressure is constant). If the equilibrium/background state
(the counterpart of the adiabatic “vacuum” in QFT) varies only little over the characteristic lengthscale λ = 1/k
of variation of the wave, then a “wave-like solution” can be found through the WKB method for the pressure
perturbation δp [334].
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2.3 Adiabatic Regularization of the Energy-Momentum tensor

Sometimes the following notation is used in the literature. Let T be a dimensionless
parameter and let us replace Ωk → TΩk. The power of T−1 defines the adiabaticity order.
Upon rescaling, this is equivalent to replace a(τ) → a(τ/T ). Then the derivatives of
Ωk(a(τ)) with respect to τ all go to 0 for T → ∞. The number of derivatives coincides
with the power of T−1, i.e. the adiabaticity order. This shows that the condition of
validity of the expansion is that Ωk(a) varies slowly in time, whence the name adiabatic
expansion. In practice we will not keep T explicitly, it suffices to count the number of
time derivatives of the various terms of the expansion and we will indicate adiabaticity
order N of a quantity by a superindex (N). But the power T−N of a given term serves
as a practical book-keeping device to identify the Nth adiabaticity order of such a term.

As mentioned in the last section, we need to renormalize the VEV of the EMT (sometimes
referred to here as ‘vacuum EMT’). We will see that, to accomplish this task, it would
be necessary to appropriately subtracting the first four adiabatic orders, which are UV-
divergent. Adiabatic orders higher than 4 decay sufficiently quick at large momentum k
(short-distances) so as to make the corresponding integrals convergent. This is a reflex of
the Appelquist-Carazzone decoupling theorem [335]. For an adiabatic (slowly varying)
Ωk, we can use (2.23) as a recurrence relation to generate an (asymptotic) series solution.
In the gravitational context, such WKB approximation is organized through adiabatic
orders and constitutes the basis for the adiabatic regularization procedure (ARP)7. Notice
that the adiabatic expansion is an asymptotic expansion, and therefore going to higher
and higher orders (which become extremely cumbersome in practice) does not necessarily
imply a degree of better convergence of the series. We will reach 6th adiabatic order in
the computation of the EMT, which is already messy, but is feasible and necessary for the
study of the on-shell renormalized theory and other properties of the quantum vacuum.

Before going to compute the EMT in this perturbative way, we need to seek the expansion
of the modes hk. In order to do that, let us specify a little bit more about the adiabatic
orders in the FLRW context. The quantities that are taken to be of adiabatic order 0
are: k2 and a. Of adiabatic order 1 are: a′ and H. Of adiabatic order 2: a′′, a′2,H′ and
H2. Each additional derivative increases the adiabatic order by one unit. Therefore, the
solution of the “effective frequency” Wk is found from a WKB-type asymptotic expansion
in powers of the adiabatic order:

Wk = ωk + ω
(2)
k + ω

(4)
k + ω

(6)
k + . . . , (2.24)

where each ω
(j)
k is an adiabatic correction of order j (and ωk ≡ ω

(0)
k ). Then the above

series (2.24) can be regarded as an expansion in T−2 for T →∞. In this way we obtain
an adiabatic expansion of the mode functions hk in powers of even order adiabatic terms
(0, 2, 4, ...), such as a, a′′ ∝ R, (ωk

′)2, ωk
′′, (ωk

′′)2, R2, etc. The non-appearance of odd
adiabatic orders is justified by arguments of general covariance, which forbid tensors of

odd adiabatic order in the effective action and in gravitational field equations. The ω
(j)
k

can be expressed in terms of Ωk(τ) and its time derivatives. However, since Ωk(τ) in
our case adopts the explicit form indicated in (2.20), with R being of adiabatic order 2,
to insure that the adiabaticity order is preserved it suffices that the derivatives in the

7The ARP was first introduced for minimally coupled (massive) scalar fields in [336–339] and subsequently
generalized for arbitrary couplings [333]. For a review, see e.g. the classic books [284, 285]. The method has
been applied to related studies of QFT in curved backgrounds [302,303,305] and has also been extended for spin
one-half fields in [340–343].
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terms on the RHS of (2.23) are performed on ωk(τ) only. We will see this feature in the
formulas given below.

2.3.1 Relating different renormalization scales through the ARP

We start by defining the first term of the above WKB expansion and compute its first
two derivatives:

ω
(0)
k ≡ ωk =

√
k2 + a2M2,

ω′k = a2HM
2

ωk
, ω′′k = 2a2H2M

2

ωk
+ a2H′M

2

ωk
− a4H2M

4

ω3
k

.
(2.25)

Notice that in this approach the WKB expansion is performed off-shell, i.e. we use the
arbitrary mass scale M instead of the original mass m. In this fashion the ARP can be
formulated in such a way that we can relate the adiabatically renormalized theory at two
scales [305]. The mass scale M is an 0th order adiabatic quantity which plays a role
similar to the scale µ in DR, but it can be given a more physical meaning8. When M
is fixed at the physical mass of the quantized field (M = m) we expect to obtain the
renormalized theory on-shell. By keeping the M -dependence we can subtract the EMT
at such value, thus obtaining the renormalized theory at M . Physically, it means that
we can explore other scales away from the one associated to the mass of the particle.
In the subtraction procedure, the divergences will be cancelled and the quadratic mass
differences ∆2 ≡ m2 − M2 will appear in the correction terms relating the theory at
the two renormalization scales. These differences must be reckoned as being of adiabatic
order 2 since it is mandatory for the renormalization procedure off-shell [305]. For ∆ = 0
we recover M = m and corresponds to the usual ARP (where one renormalizes the theory
only at the scale of the particle mass) [284, 285]. We will use this procedure to explore
the behavior of the VED throughout the cosmological evolution. In principle, the masses
m could be associated to fields of the Standard Model of particle physics, but it is also
possible (and maybe convenient) to consider also heavier fields, such as the ones present in
some Grand Unified Theories (GUT) and explore the behavior in the low energy domain
M2 � m2. Needless to say, for the sake of simplicity, we model here all particles in terms
of (real) scalar fields.

From these elementary differentiations in (2.25) one can then compute the more labori-

ous derivatives appearing in the above expressions, such as (ω
(2)
k )′, (ω

(2)
k )′′, (ω

(4)
k )′, (ω

(4)
k )′′,

etc. The explicit form with all of the terms after computing the various derivatives and
expanding the products and powers of the different terms leads to a rather formidable
output. We refrain from quoting it here, but of course it will be used for the computation
of the EMT up to O(T−6). One can see immediately that the adiabatic expansion be-
comes an expansion in powers ofH and its time derivatives. For instance, an even number
of derivatives of ωk (hence of even adiabatic order) is equivalent to an expansion in even
powers of H and odd powers of H′ (notice e.g. that H2 and H′ are homogeneous), as in
both cases it involves an even number of derivatives of the scale factor. In this way, the
expansion is compatible with general covariance, as indicated above. This is a noticeable

8We distinguish M from ’t Hooft’s mass unit µ in DR, which will be used together with M in Sec. 2.8 to
regularize the UV divergences of the effective action. The parameter µ is unphysical and is used in the MS scheme
with DR to define the renormalization point. We should stress, however, that we do not use such a scheme at all
in our calculation, even if we make some (optional) use of DR in certain parts. In our physical results, µ always
cancels out and the final renormalized quantities depend on M only.
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property which will be of paramount importance for our considerations. Notice that if
the final formulas for the physical quantity (in our case the ZPE) are written in terms
of the ordinary Hubble function, H(t), no factor of a can remain. All the terms with n
cosmic time derivatives of the scale factor in different ways are of adiabatic order N . For

example, for N = 4 one can have, in principle, 5 possible combinations: H4, Ḣ2, H2Ḣ,
...
H

and HḦ, all of them being O(T−4); and for N = 6 we can have 11 structures of or-

der O(T−6), to wit: H6, H4Ḣ, Ḣ3, H3Ḧ,H2
...
H, Ḣ

...
H, Ḧ2, H

....
H ,H2Ḣ2, HḢḦ and

.....
H . We

shall find explicitly all the actual terms. Somewhat unexpectedly, though, we will find
that terms of a given order in the list do not show up in the final result. So the correct
adiabaticity order is a necessary but not a sufficient condition to appear in the final result.
Notice also that, for the current universe, the powers H2 and H′ are sufficient for the
phenomenological description, as it is obvious from the fact that R = (6/a2)(H2 +H′),
whereas the higher powers bring corrections which can be important in the early universe.

2.3.2 Computing the adiabatic orders and the regularized ZPE

The ZPE is related to the 00 component of the EMT associated to the quantum vacuum
fluctuations in curved space-time with FLRW metric. We have now all the necessary
ingredients to calculate it. Our interest is to compute the field modes up to 6th order, for
reasons that will be clarified later on. To obtain the different orders, we start with the

initial solution Wk ≈ ω
(0)
k indicated in Eq.(2.25). For a = 1 this would yield the standard

Minkowski space modes. But since a = a(η) we have to find a better approximation.
Introducing that initial solution on the RHS of (2.23) and expanding it in powers of ω−1

k

we may collect the new terms up to adiabatic order 2 to find ω
(2)
k . Next we iterate the

procedure by introducing Wk ≈ ω
(0)
k +ω

(2)
k on the RHS of the same equation, expand again

in ω−1
k and collect the terms of adiabatic order 4, etc. Since this mathematical procedure

implies an expansion in powers of ω−1
k ∼ 1/k ∼ λ (i.e. a short wavelength expansion) it is

obvious that the UV divergent terms of the ARP are the ones containing the first lowest
powers of 1/ωk, and hence are concentrated in the first adiabatic orders, whilst the higher
adiabatic orders represent finite contributions [333,336–339]. The result is intuitive: for
any given physical quantity, the UV divergences are concentrated in the first adiabatic
orders whereas the higher orders must decay sufficiently quick at high momentum so as
to make the corresponding integrals convergent and yielding a suppressed contribution.
For the main quantity at stake in our case, the EMT, its regularization implies to work,
at least, up to 4th adiabatic order, as we shall show in detail below in Sect. 2.4. Upon
renormalization, we will obtain a finite expression for the EMT.

The starting procedure is to insert the decomposition (2.16) of the quantum field φ in
the EMT as given in Eq. (2.6) and select only the fluctuating parts δφ decomposed as in
(2.16). However, we are interested just on the contribution from the fluctuations, so we
pick out the quadratic fluctuations in δφ only since, as previously indicated, we have zero
VEV for the fluctuation itself. By the same token, the crossed terms with the background
part φb and the fluctuation δφ vanish, since they are independent.
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Using (2.25) and working out up to 6 th adiabatic order9 in (2.23), one finds

ω
(0)
k = ωk,

ω
(2)
k =

a2∆2

2ωk
+
a2R

2ωk
(ξ − 1/6)− ω′′k

4ω2
k

+
3ω′2k
8ω3

k

,

ω
(4)
k = − 1

2ωk

(
ω

(2)
k

)2

+
ω

(2)
k ω′′k
4ω3

k

− ω
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k

4ω2
k

− 3ω
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k ω′2k
4ω4

k

+
3ω′kω

(2)′
k

4ω3
k

ω
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(
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4ω4
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+

(
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(2)
k

)′′
ω
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k

4ω3
k

−

(
ω

(4)
k

)′′
4ω2

k

− 3 (ω′k)
2 ω

(4)
k

4ω4
k

+
9 (ω′k)

2
(
ω

(2)
k

)2

8ω5
k

,

+

3

((
ω

(2)
k

)′)2

8ω3
k

+
3ω′k

(
ω

(4)
k

)′
4ω3

k

−
3ω′k

(
ω

(2)
k

)′
ω

(2)
k

2ω4
k

− ω
(2)
k ω

(4)
k

ωk
.

(2.26)

We are now ready to compute the energy density associated to the quantum vacuum
fluctuations in curved space-time with FLRW metric, i.e. the ZPE. We start from the
EMT given in Eq. (2.6) with φ decomposed as in (2.16). However, we are interested
just on the fluctuating part, and select the quadratic fluctuations in δφ only since, as
previously indicated, we have zero VEV for the fluctuation itself. For the 00-component,
related to the energy density of the vacuum fluctuations, we find〈

T δφ00

〉
=

〈
1

2
(δφ′)

2
+

(
1

2
− 2ξ

)∑
i

∂iδφ∂iδφ+ 6ξHδφδφ′

− 2ξδφ
∑
i

∂iiδφ+ 3ξH2δφ2 +
a2m2

2
(δφ)2

〉
.

(2.27)

To clarify the notation, notice that (δφ′)2 ≡ (δ∂0φ)2 = (∂0δφ)2. We may now substitute
the Fourier expansion of δφ = δϕ/a, as given in (2.18), into Eq. (2.27) and apply the
commutation relations (2.19). After symmetrizing the operator field product δφδφ′ with
respect to the creation and annihilation operators,

δφδφ′ → 1

2
(δφδφ′ + δφ′δφ) , (2.28)

we end up with the following expression in terms of the amplitudes of the Fourier modes
of the scalar field:〈

T δφ00

〉
=

1

4π2a2

ˆ
dkk2

[
|h′k|

2
+ (ω2

k + a2∆2) |hk|2

+

(
ξ − 1

6

)(
−6H2 |hk|2 + 6H (h′kh

∗
k + h∗′k hk)

)]
,

(2.29)

where we have integrated
´

d3k
(2π)3 (...) over solid angles and expressed the final integration

in terms of k = |k|.
9We are not aware that his result has been previously reported in the literature
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We expand the various terms of the above integral consistently up to 6th order using the
WKB approximations (2.26). After some tedious calculations, we find

|hk|2 =
1

2Wk

=
1

2ωk
− ω

(2)
k

2ω2
k

− ω
(4)
k

2ω2
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(6)
k

2ω2
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+

(
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(2)
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)2

2ω3
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+
ω

(2)
k ω

(4)
k

ω3
k

−

(
ω

(2)
k

)3

2ω4
k

, (2.30)
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(2.31)

h′kh
∗
k + (h∗k)

′ hk = − W ′
k

2W 2
k

= − ω′k
2ω2
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1− 2ω
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+
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ω
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−
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(2.32)

Upon substituting the above WKB expansions in (2.29) and using the relations (2.26)
and (2.25), the result can be phrased as follows after a significant amount of algebra:〈
T δφ00

〉(0−4)

=
1

8π2a2

ˆ
dkk2

[
2ωk +

a4M4H2

4ω5
k

− a4M4

16ω7
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+
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)
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+
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+
1

8π2a2

ˆ
dkk2

[
a2∆2

ωk
− a4∆4

4ω3
k

+
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−3a2∆2H2

ω3
k

+
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)]
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(2.33)
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Here (0 − 4) means that the EMT has been computed up to the 4th order. Let us note
the presence of the ∆-dependent terms in the last two rows, which contribute at second
(∆2) and fourth (∆4) adiabatic order. As expected, only even powers of H remain in the
final result. Mind that k in the above formulas is the comoving momentum, whereas the
physical momentum is k̃ = k/a.

In view of these explicit results it is obvious that the VEV (2.29) is UV-divergent, specif-
ically the integrals

´
dkk2 |h′k|

2 and
´
dkk2ω2

k |hk|
2 in it are both quartically divergent,´

dkk2 |hk|2 is quadratically divergent and
´
dkk2 (h′kh

∗
k + h∗′k hk) is logarithmically diver-

gent. No terms can be left in the EMT being linear in H, nor any odd power of it, as
they would violate the covariance of the result. Only even powers of H can remain in
the final result (strictly speaking, terms with an even number of derivatives of the scale
factor), as we shall further reconfirm below.

The result (2.33) constitutes the WKB approximation up to 4th adiabatic order. It is
enough to encompass all the UV-divergences that appear in the WKB expansion of the
ZPE. However, we need to continue such an expansion one more step since we want to
compute the on-shell value of the ZPE and, as it will be clear in the next section, the effort
is necessary. Thus, we can reach higher orders and the result can be conveniently split
into the various contribution up to 6th adiabatic order (plus higher orders, if necessary,
but not in our case):〈
T δφ00

〉
=
〈
T δφ00

〉(0)

+
〈
T δφ00

〉(2)

+
〈
T δφ00

〉(4)

+
〈
T δφ00

〉(6)

+ ... =
〈
T δφ00

〉(0−4)

+
〈
T δφ00

〉(6)

+ ...

(2.34)
where for convenience we have collected the contribution from the terms up to 4th adi-

abatic order in the expression T
δφ(0−4)
00 ≡ T

δφ(0)
00 + T

δφ(2)
00 + T

δφ(4)
00 . We now move on to

the calculation of the 6th-order contribution, 〈T δφ00 〉(6), which is more cumbersome than
the contributions up to 4th-order, Eq. (2.33). We will quote the expression only at the
on-shell point M = m (so all of the terms proportional to ∆ vanish in this case). Our
renormalization procedure is based in a subtraction between different scales. There is
no need to compute 〈T δφ00 〉(6) at an arbitrary scale M since no subtraction is needed for
a contribution which is fully convergent, piece by piece. We will see all the details in
Sect. 2.4. In Fourier space, it reads as follows:
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〈
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(2.35)
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Some of the integrals in (2.33) are UV-divergent, as we have seen, and others are con-
vergent. The integrals in (2.35), instead, are all convergent. One possibility is to com-
pute/regularize every single integral in these formulas (convergent or divergent) using
the master formula for DR in Sect. A.1, but this is not mandatory since an alternative
regularization procedure is going to be presented.

Let us consider the ZPE part of the EMT, as given by Eq. (2.33). We can split it into
two parts as follows:〈

T δφ00

〉
(M) =

〈
T δφ00

〉
Div

(M) +
〈
T δφ00

〉
Non−Div

(M), (2.36)

where〈
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〉
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(M) ≡ 1
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(2H′′H−H′2 − 3H4)

]
(2.37)

is the UV-divergent contribution, which involves ωk =
√
k2 + a2M2 and the powers 1/ωnk

up to n = 3.

The terms in (2.33) which are not in (2.37) are the ones which are finite (as they involve

powers of 1/ωk higher than 3), and constitute the 〈T δφ00 〉Non−Div(M) part of (2.36). Com-
puting the (manifestly convergent) integrals with the help of Eq. (A.25) (for ε = 0) in
Sect. A.1, the final result reads〈
T δφ00

〉
Non−Div

(M) =
m2H2

96π2
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+
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+

9
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(H′H2 +H4)

+

(
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)
3∆2H2

8π2
+ . . .

(2.38)

where the dots in the last expression correspond to higher adiabatic orders. Since the
complete adiabatic series is an asymptotic series representation of Eq. (2.27), there is some
arbitrariness in the way of choosing the leading adiabatic order because, independently
of our choice, such series does not really converge and only serves as an approximation,
which is obtained after one cuts the series at some particular order. There is, however,
a minimum number of steps to do in order to obtain a meaningful result. To start with,
let us set the arbitrary scale M to the on-shell mass value of the quantized scalar field,
M = m, hence ∆ = 0. In such a case, the divergent part (2.37) reduces to

〈
T δφ00

〉
Div

(m) =
1

8π2a2

ˆ
dkk2

[
2ωk(m)−

(
ξ − 1

6

)
6H2

(
1

ωk(m)
+

a2m2

ω3
k(m)

)

−
(
ξ − 1

6

)2
9

ω3
k(m)

(2H′′H−H′2 − 3H4)

]
.

(2.39)
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Again, (2.39) is a bare integral, formally divergent and does not depend on any renor-
malization scale. It possesses divergences which are similar to the ones of (2.37), but not
exactly the same. This is related with our normalization prescription. In fact, what we
are going to follow in order to renormalize the ZPE (and, in general, the EMT) is some-
how reminiscent of the momentum subtraction scheme, although is certainly different in
many respects. In the latter the renormalized Green’s functions and running couplings
are obtained by subtracting their values at a renormalization point p2 = M2 (space-like
in our metric, which becomes an Euclidean point after Wick rotation) or at the time-like
one p2 = −M2 (depending on the kinematical region involved) [344, 345]. Since for vac-
uum diagrams we do not have external momenta, here, instead, we renormalize the ZPE
by subtracting the terms that appear up to 4th adiabatic order at the arbitrary mass
scale M . This suffices to eliminate the divergent terms through the ARP, as it is amply
discussed in the literature [284–286].

2.3.3 Particular case: ZPE with minimal coupling and in Minkowski space-
time

Before analyzing the renormalization of the ZPE, let us analyze what is the situation
in Minkowski space. Suppose we fix the scale M at the physical mass of the particle
(M = m), so that the ∆-terms vanish. Let us project the UV-divergent terms of order

H2 and neglect those of higher adiabatic order. The first two adiabatic orders T
δφ(0−2)
00 ≡

T
δφ(0)
00 + T

δφ(2)
00 can be easily identified:〈

T δφ00

〉(0−2)

(m) =
1

8π2a2

ˆ
dkk2

[
2ωk(m) +

a4m4H2

4ω5
k(m)

−
(
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6

)(
6H2

ωk(m)
+

6a2m2H2

ω3
k(m)

)]
,

(2.40)
where ωk(m) ≡

√
k2 + a2m2. Let us next project the UV-divergent terms of this formula

only and assume that the non-minimal coupling to gravity is absent (ξ = 0). We are then
left with〈

T δφ00

〉(0−2)

Div
(m)

∣∣∣∣
ξ=0

=
1

8π2a2

ˆ
dkk2

(
2ωk(m) +

H2

ωk(m)
+
a2m2H2

ω3
k(m)

)
. (2.41)

Formula (2.41) is in agreement with previous results found in the literature for ξ = 0, in
the O(H2) approximation [336–338] – see also [299–301, 307, 308]. Notice that k is the

comoving momentum, whereas the physical momentum is k̃ = k/a. Defining the physical

energy mode ω̃k(m) =
√
k̃2 +m2, and keeping in mind that H = aH, we can re-express

the above result as〈
T δφ00

〉(0−2)

Div
(m)

∣∣∣∣
ξ=0

=
a2

4π2

ˆ
dk̃k̃2

[
ω̃k(m) +

H2

2ω̃k(m)

(
1 +

m2

ω̃2
k(m)

)]
. (2.42)

Finally, the Minkowskian space-time result is obtained for a = 1 (H = 0):〈
T δφ00

〉Mink

(m) =
1

4π2

ˆ
dkk2ωk =

ˆ
d3k

(2π)3

(
1

2
~ωk

)
, (2.43)

where ~ has been restored only in the trailing term for a better identification of the
result. The last quantity is the vacuum energy density of the quantum fluctuations
in flat space-time, i.e. the ZPE in Minkowski space-time [167, 294, 295, 346]. It is of
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course the traditional contribution found in usual calculations. It is quartically UV-
divergent. Usual attempts to regularize and renormalize this result by e.g. cancelling
the corresponding UV-divergence against the bare ρΛ term in the action (2.1) within the
context of a simple cutoff method or appealing to the Pauli-Villars regularization [347],
more formal, procedure; or even using the Minimal subtraction (MS) scheme and related
ones, leads in all these cases to the well-known ugly fine-tuning problem inherent to the
CCP, see Sec. 2.5.3 for a summarized discussion. We will certainly not proceed in this
way here. We seek out (and will find) an alternative way for renormalizing the above
result (2.33) in its full general form 10.

The previous formulas (2.43) require appropriate regularization and renormalization.
But, the ZPE in FLRW space-time is even more involved, containing different kinds
of divergences as we have seen in Eq. (2.33), which constitutes a WKB approximation up
to 4th adiabatic order.

2.4 Renormalization of the ZPE in the FLRW background

We may compare the evolving vacuum energy density (VED) of cosmological space-
time with a Casimir device wherein the parallel plates slowly move apart (“expand”)
[294, 295]. While the total vacuum energy density cannot be measured, the ‘differential’
effect associated to the presence of the plates, and then also to their increasing separation
with time, it can. Similarly, in the expanding FLRW space-time there is a genuine non-
vanishing space-time curvature, R, as compared to Minkowskian space-time and such
a curvature is changing with the expansion. The VED must vary accordingly and we
naturally expect that there is a contribution proportional to R, hence to H2 and Ḣ (plus
higher derivative (HD) effects R2, RµνRµν , etc. in the early universe). Both space-times,
Minkowski and FLRW, are obviously similar at short distances, in the sense that the
curved background is locally flat. However, the short distance singularities are not really
identical since the curvature carries additional ones related to the non-trivial geometric
structures.

More formally, the energy-momentum tensor (EMT), Eq. (2.6), is a quadratic functional
of the field φ(x). However, in the context of QFT, φ(x) is an operator-valued distribution
and hence terms like gµνm

2φ2(x), ∂µφ(x)∂νφ(x), etc. in EMT are not well defined at a
given point x since a square of a distribution is not generally defined. This is ultimately
the source of the UV-divergences of QFT in configuration space. For this reason it is
advisable to consider a bilinear functional replacing the original EMT, which we may
denote as Tµν(x, x

′) = Tµν(φ(x)φ(x′)), where a point-splitting has been operated in order
to avoid the UV-divergence [284–286]. The coincidence point limit in configuration space
amounts, of course, to the UV-limit in momentum space. In practice, we need the VEV
of that bilinear functional and the point splitting regularization of 〈Tµν(x, x′)〉 is carried
out through a (differential) operator Dµν acting on an appropriate two-point (Green’s,
Hadamard’s, etc.) function G(x, x′) as follows: 〈Tµν(x, y)〉 = DµνG(x, y). The operator

10Let us note that Supersymmetry is not sufficiently helpful for solving the CCP since the cancellation of
quartic divergences (warranted e.g. in the Wess-Zumino model [348], cf. also [349]) does not guarantee the
cancellation of the subleading ones, e.g. the quadratic divergences [307]. The quadratic parts are of the form
Λ2
cH

2 (where Λc can serve as a UV cutoff). See [299–301, 350, 351] for a discussion in non-supersymmetric
contexts. For Λc around the Planck mass, it can be phenomenological acceptable only if Λ2

cH
2 carries a small

coefficient, as it was noticed much earlier in [291,293]. The current calculation substantiate these results for the
first time in a rigorous QFT context, see Sec. 2.5.
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Dµν can be easily identified from the terms involved in (2.6) and is usually expressed in a
symmetrized form. For instance, the VEV of the first term on the RHS of (2.6) is treated
as

(1− 2ξ) 〈∇µφ∇νφ〉 −→ (1− 2ξ)
1

2
(∇µ∇ν′ +∇µ′∇ν)G(x, x′) , (2.44)

where the derivatives with primed indices are assumed to act on x′ and those without
primes on x. In the jargon of QFT, this part would be regularization. The renormalization
of the EMT is then performed by subtracting the vacuum expectation value through the
coincidence limit x′ → x. In the simplest case of Minkowski space, with Minkowskian
vacuum |0〉Mink, it would be natural to define the renormalized EMT operator as

Tµν(x) = lim
x′→x

[
Tµν(x, x

′)− 〈0|Tµν(x, x′)|0〉Mink
]
, (2.45)

since in this case the VEV of the renormalized EMT is expected to be zero for sound
physical reasons. In our Casimir example, the short-distance behavior in the region
between the plates is the same as that outside the plates and the limit gives a finite
result. However, as warned above, curved space-time induces new types of infinities
as compared to Minkowskian space-time. The latter, however, are still there and may
still carry the core of the quantum vacuum problem if the Minkowskian result is not
renormalized to zero (cf. Sect. 2.5.3).

The generalization of (2.45) in curved space-time is more delicate, but under appropriate
conditions it is natural to use a similar definition where we replace the Minkowskian
vacuum |0〉Mink with the adiabatic vacuum, simply denoted |0〉 as we have been doing
in the previous sections. We may define the renormalized EMT operator performing a
suitable subtraction, but in this case we should not presume a zero result for the VEV of
the renormalized EMT. We would rather extract the non-vanishing renormalized vacuum
energy density and pressure in curved space-time as a function of the background itself,
in such a way that when the background is Minkowskian we ought to recover the previous
vanishing VEV. There are, however, some additional specifications to handle correctly
the UV-divergences. Moreover, we wish to provide an off-shell definition enabling us to
explore the VED at different scales. Thereby we define the renormalized EMT operator
in n-dimensional curved space-time (with n−1 spatial dimensions) up to adiabatic order
N ≥ n through the following off-shell subtraction prescription (which we shall refer to
also as the off-shell ARP):

T (0−N)
µν (x)ren(M) = T (0−N)

µν (x)(m)−
〈
0
∣∣T (0−n)
µν (x)

∣∣ 0〉 (M) . (2.46)

In this equation, T
(0−N)
µν (x)(M) refers to the computation of the renormalized ETM to

adiabatic order N ≥ n at the scale M (not necessarily equal to the on-shell mass value

m), whereas 〈0|T (0−n)
µν (x)|0〉(M) is the VEV of the EMT computed up to adiabatic order

n (the dimension of space-time, i.e. n = 4 in our context). The on-shell value is just

T
(0−N)
µν (x)(m), of course. The subtraction is, therefore, performed upon that on-shell

value. By virtue of general covariance, the adiabatic orders involved in the EMT must be
even (N = 0, 2, 4, 6, ...). However, irrespective of the adiabaticity order N at which the

on-shell value is computed, the subtracted quantity at the scale M , i.e. T
(0−n)
µν (x)(M),

must include just the first n
2

+ 1 (non-vanishing) even orders N = 0, 2, 4 · · ·n, as these
are the only ones which are UV-divergent (in n space-time dimensions). In n = 4, this

means that T
(0−4)
µν (x)(M) must contain the first three even adiabatic orders N = 0, 2, 4.
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We have mentioned point-splitting regularization [329], see also [352–354], because it
illustrates very clearly the origin of the UV-divergences in QFT computations and because
it is in general a consistent, and physically justified, covariant procedure to define the
rnormalized EMT. Proceeding in this way, however, can be rather cumbersome. Indeed,
in the general case one has to start from the adiabatic expansion of the Green function
G(x, x′) and the structure of divergences is not apparent until the mode integral has been
performed. Examples are well described in the literature [284–286]. Fortunately, however,
the ARP procedure defined above for renormalizing the EMT and other local quantities
can be shown to be equivalent to the point-splitting procedure [355]. In particular, when
the field equation can be solved by separation of variables, as in the case under study, one
can resort to a simpler method of renormalization which is to perform a mode by mode
subtraction process under the integral sign in Eq. (2.18) using the adiabatic expansion
of the modes [286]. In Sec. 2.1 we have seen that the properly normalized form of these
modes is

uk(τ,x) = (2π)−3/2 a−1(τ) eik·x ϕk(τ) , (2.47)

in which the space and time variables are separated and the time-evolving part ϕk(τ)
obeys the non-trivial Eq. (2.13). Similarly for the equations satisfied by the fluctuating
parts, (2.18) and (2.20). When the field modes can be expressed in separated form it
is possible to arrange for the explicit cancellation of UV-divergences before the mode
integral is computed. The advantage is clear since the arrangement of terms can be made
inside the subtracted integrand such that no UV-divergence is present and the integral
appears manifestly convergent ab initio.

The VEV of the 00th-component of T
(0−N)
µν (x)(m) in (2.46) is precisely given by Eq. (2.27)

in our case. Thus, the renormalized vacuum EMT up to O(T−N) in n = 4 space-time
dimensions reads〈

0
∣∣T (0−N)
µν (x)

∣∣ 0〉
ren

(M) =
〈
0
∣∣T (0−N)
µν (x)

∣∣ 0〉 (m)−
〈
0
∣∣T (0−4)
µν (x)

∣∣ 0〉 (M) , (2.48)

where it is supposed, of course, that the mode expansion has been performed to adiabatic
order N . Since the EMT structure is made of quadratic expressions of the fields, they are
expanded at that order in terms of the above mentioned modes (2.47) and the creation
and annihilation operators, and finally one can move to momentum space by integrating´
d3k(...) the result. The detailed computational results of this procedure have already

been given in Sec. 2.3. Here we just discuss the formal procedure and furnish the practical
recipe (2.48), which is necessary to achieve a renormalized finite result using such a mode
by mode subtraction at any order.

2.4.1 Off-shell renormalization of the EMT

It goes without saying that to call Eq. (2.46) ‘renormalized’ EMT and (2.48) its VEV
is almost unnecessary since the mode by mode subtraction in the integrand makes the
integral manifestly finite. The ARP procedure (based on the adiabatic expansion) defines
automatically the renormalized quantity. However, as mentioned above, while in the usual
adiabatic regularization method [284–286] the subtraction is always performed on-shell,
here we shall instead perform the subtraction off-shell, i.e. at a scale M which is generally
different from the mass of the particle. This enables us to test the scale dependence of
the renormalized result (2.48). We will use these results to extract physical consequences
as to the scale dependence of the ZPE.
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If dimensional regularization is used, the needed counterterms to cancel the poles can be
generated from the basic three parameters G−1, ρΛ and α appearing in the generalized
form of Einstein’s equations (compare with the original form (2.3)):

1

8πG
Gµν + ρΛgµν + α (1)Hµν = Tµν . (2.49)

Here (1)Hµν is the HD tensor which appears from the metric variation of the R2-term in
the higher derivative vacuum action for FLRW space-time. We remind the reader that
the term emerging from the variation of the square of the Ricci tensor, called (2)Hµν , is not

necessary in our case since it is not independent of (1)Hµν for FLRW space-times (see Ap-
pendix A). All three couplings G−1, ρΛ and α are necessary to generate the counterterms
that cancel all the divergences in the regularized EMT:

G−1 = G−1(M) + δεG
−1,

ρΛ = ρΛ(M) + δερΛ,

α = α(M) + δεα.

(2.50)

The counterterms are denoted with the subscript ε to emphasize that they depend on
the regulator ε and become infinite for ε→ 0 (see below and Appendix B). The subscript
is also useful to distinguishing this notation from other quantities introduced in Sec. 2.5
which bare some notational resemblance. The specific forms of the three counterterms
mentioned above is:

δεG
−1 = −m

2

2π

(
ξ − 1

6

)
Dε ,

δερΛ = +
m4

64π2
Dε ,

δεα = − 1

32π2

(
ξ − 1

6

)2

Dε ,

(2.51)

with

Dε ≡
1

ε
− γE + ln 4π =

2

4− n
− γE + ln 4π . (2.52)

The pole is at n − 1 = 3 space (resp. n = 4 space-time) dimensions, where ε = 0. No
more counterterms are needed in the present calculation. In particular, we do not need
the non-minimal coupling ξ to generate an additional counterterm for the free scalar field
theory that we are addressing here. Even so it is useful to keep a non-vanishing value of
ξ in the action (2.5) for the general reasons explained in Sect. 2.1 and for more specific
ones that we will consider in the coming chapters. Overall the results obtained using
the counterterm method and renormalization of constants in the generalized Einstein’s
equations is identical to that of performing the mode by mode subtraction directly in the
integrand until evincing the convergent nature of the integrals. The reader may find the
details on the counterterm method in full in Appendix B, were a lengthy explanation of
this alternative is presented. We have just reminded the reader that in these cases the
two procedures are equivalent.

After computing the adiabatic WKB expansion of the integrand of the divergent integrals
a subtraction is carried out at an arbitrary scale M , i.e. we apply the off-shell ARP (2.48).
Taking into account that in four space-time dimensions the only adiabatic orders that
are divergent in the case of the EMT are the first four ones, the subtraction at the scale
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M is performed only up to the fourth adiabatic order. The on-shell value of the EMT
can be computed of course at any order, all terms beyond 4th-order being finite. Let us
apply this procedure to the UV-divergent ZPE as given by Eq. (2.33).

In view of the previous considerations, we will define the renormalized ZPE in curved
space-time at the scale M as follows:〈

T δφ00

〉
Ren

(M) ≡
〈
T δφ00

〉
(m)−

〈
T δφ00

〉(0−4)

(M) (2.53)

where we have used the fact that 〈T δφ00 〉Non−Div(m) − 〈T δφ00 〉
(0−4)
Non−Div(M) yields precisely

the last term of (2.53) before the dots (which represent higher orders), as it follows
immediately from (2.38). This subtraction prescription is, of course, equally valid for
any component of the EMT, as it is obvious from Eq. (2.48). In the above equation and
hereafter we omit the adiabaticity order N up to which the EMT is computed. In our
context, the space-time dimension is n = 4 and hence it is understood that N ≥ 4. The
value N = 4 is the minimum one which is necessary to perform the renormalization of the
EMT, but for some applications we will consider also up to N = 6. We already presented
the 6th order of the EMT on-shell in eq. (2.35)

To ease the presentation of the result, it proves convenient to use a more explicit notation
in order to distinguish explicitly between the off-shell energy mode ωk(M) =

√
k2 + a2M2

(formerly denoted just as ωk) and the on-shell one ωk(m) =
√
k2 + a2m2. With this

notation, calculations lead to the following result up to fourth adiabatic order:〈
T δφ00

〉(0−4)

ren
(M) =

1

8π2a2

ˆ
dkk2

[
2 (ωk(m)− ωk(M))− a2∆2

ωk(M)
+

a4∆4

4ω3
k(M)

]
−

3
(
ξ − 1

6

)
H2

4π2a2

ˆ
dkk2

[
1

ωk(m)
− 1

ωk(M)
− a2M2

ω3
k(M)

− a2∆2

2ω3
k(M)

+
a2m2

ω3
k(m)

]
−

9
(
ξ − 1

6

)2
(2H′′H−H′2 − 3H4)

8π2a2

ˆ
dkk2

[
1

ω3
k(m)

− 1

ω3
k(M)

]
−
(
ξ − 1

6

)
3∆2H2

8π2
.

(2.54)

Even though some of the individual terms in the integrand of (2.54) look formally UV-
divergent, one can check upon careful inspection that the overall integral is not, and this
explains why the final result is perfectly finite. For instance, the expression under square
brackets in the first line of (2.54) can be written

2(ωk(m)− ωk(M))− a2∆2

ωk(M)
+

a4∆4

4ω3
k(M)

= ∆6a6 ωk(m) + 3ωk(M)

4ω3
k(M)(ωk(m) + ωk(M))3

, (2.55)

where the RHS of the equality goes as ∆6a6 1
k5 as k →∞. Through these algebraic steps
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we can arrive to this expression for (2.54)〈
T δφ00

〉
ren

(M) =
∆6

8π2

ˆ ∞
0

dkk2a4

[
ωk(m) + 3ωk(M)

4ω3
k(M)(ωk(m) + ωk(M))3

]
−

3a2
(
ξ − 1

6

)
H2

4π2

ˆ ∞
0

k2dk

[
∆2m2

2ωk(m) (ωk(m) + ωk(m))2 −
m4

ω3
k(m)

+
M4

2ω3
k(M)

− ∆2m2

2ωk(M)ωk(m) (ωk(m) + ωk(M))

+
∆2M2

2ωk(M) (ωk(m) + ωk(M))2 +
M2m2

2ω3
k(M)

]

−
9
(
ξ − 1

6

)2
(2H′′H−H′2 − 3H4)

8π2

×
ˆ ∞

0

k2dk

ω3
k(m)ω3

k(M)

[
−k2∆2

ωk(m) + ωk(M)
+M2ωk(M)−m2ωk(m)

]

−
(
ξ − 1

6

)
3∆2H2

8π2
+ . . .

=
a2

128π2

(
−M4 + 4m2M2 − 3m4 + 2m4 ln

m2

M2

)
−

3
(
ξ − 1

6

)
H2

16π2

(
m2 −M2 −m2 ln

m2

M2

)
+

9
(
ξ − 1

6

)2
(2H′′H−H′2 − 3H4)

16π2a2
ln
m2

M2
+ · · · ,

(2.56)

in which all the integrals are seen to be manifestly convergent since the power counting
for all of them leads to ∼

´
dkk−3 in the UV region. The dots in the former expression

represent higher adiabatic orders. While we want to consider terms of 6th adiabatic order
in our analysis, but remember that the divergences are located up to 4th adiabatic order.

As noted, the same result can be obtained from the counterterm procedure, see Ap-
pendix B. The counterterms take the precise form (2.50), which only depends on the
physical mass m of the particle, not on the arbitrary scale M . Hence they cancel in the
subtraction (2.53). However, the counterterms can also be used to cancel the poles and
write down the generalized Einstein’s equations (2.49) fully in terms of finite, renormal-
ized, quantities at the scale M , as we shall do in the next section. Let us emphasize that
the last expression in (2.54) is not yet the renormalized vacuum energy density, it is only
the renormalized ZPE.

2.4.2 The full renormalized ZPE up to 6th adiabatic order

The explicit form of the 6th adiabatic order is obtained by computing the integrals in
the expression (2.35), which is one of the main objectives of this work. In the absence
of the 6th-order terms, the 4th-order result that we have obtained, Eq. (2.54), vanishes
on-shell (i.e. for M = m), as it should be expected from the definition itself in (2.54).
As a matter of fact, this is the reason why we need to include the next non-vanishing
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adiabatic order so as to get the first non-vanishing contribution to the on-shell value of the
ZPE. The higher order finite effects must satisfy the Appelquist-Carazzone decoupling
theorem [335] since they must be suppressed for large values of the physical mass m of
the quantum field. We may now compute these finite contributions. We may use the
master integral formulas given in Appendix A.1 for this, and the final renormalized result
computed up to 6th-order is:〈
T δφ00

〉(0−6)

ren
(M) =

a2

128π2

(
−M4 + 4m2M2 − 3m4 + 2m4 ln

m2

M2

)
−
(
ξ − 1

6

)
3H2

16π2

(
m2 −M2 −m2 ln

m2

M2

)
+

(
ξ − 1

6

)2
9 (2H′′H−H′2 − 3H4)

16π2a2
ln
m2

M2

+
1

20160π2a4m2

(
4 (H′)3 − 24H3H′′ − 6H′H′′′ + 96H4H′ − 12HH′H′′

+ 6HH′′′′ + 3 (H′′)2 − 12H2 (H′)2 − 24H2H′′′
)

+

(
ξ − 1

6

)
1

160π2a4m2

(
12H3H′′ − (H′′)2 − 40H4H′ + 2H′H′′′ − 2HH′′′′

+ 10H2 (H′)2
+ 8H2H′′′

)
+

(
ξ − 1

6

)2
3

32π2a4m2

(
4H6 + 48H4H′ − 12H2 (H′)2 − 16H3H′′ + (H′′)2

− 8H2H′′′ − 2H′H′′′ + 2HH′′′′
)

−
(
ξ − 1

6

)3
9

8π2a4m2

(
H2 +H′

) (
11H4 +H2H′ + 2 (H′)2 − 6HH′′

)
.

(2.57)

The first two lines of this expression embody just the 4th-order renormalized result. We
can easily convince ourselves that the remaining terms of (2.57) are of 6th adiabatic order,
i.e. O(T−6), where we are using the notation introduced at the beginning of Sect. 2.3 for
the adiabaticity order. Moreover, they are all suppressed by two powers of the particle’s
mass m, i.e. they fall off as ∼ 1/m2, or to be more precise as O(T−6)/m2. Thus, as
formerly announced, the 6th-order terms satisfy the Appelquist-Carazzone decoupling
theorem11 for large m [335]. The next adiabatic order would be the 8th one. These
terms also fulfill the decoupling theorem and are further suppressed as O(T−8)/m4. We
shall not be concerned with them.

We should also note that the 6th-order terms do not depend on the arbitrary mass scale
M , but only on the mass of the particle, m. The reason is that M enters only the
terms up to adiabatic order 4, which are the only ones which are subtracted (because
they are the only ones which are originally UV-divergent), as it is obvious from the
definition (2.53). As a consequence, the on-shell value of (2.57) is now non-vanishing and

11An alternative way to express this decoupling result for large m is to say that in the opposite limit (m→ 0)
the higher order adiabatic terms beyond N > 4 (all of them of even order owing to covariance, N = 6, 8, ...)
are infrared divergent for m → 0 in four dimensions. This is a well-known behavior expected from the effective
action [284], which e.g. can be immediately appraised in the explicit form of the 6th order adiabatic integral
(2.35). Although we are not affected by IR effects (m is in our case very large), the IR limit of ARP must be
treated with care [356].
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it is exclusively determined by the higher order adiabatic terms beyond O(T−4). It is
convenient to express the result in terms of the ordinary Hubble rate defined in terms of
the cosmic time, H(t), with H(τ) = aH(t). We may now use the conversion relations
between the derivatives of H with respect to the conformal time and the derivatives of
H with respect to the cosmic time (see Appendix A). After some algebra we find the
following expression for the renormalized on-shell value (M = m) at 6th adiabatic order,
i.e. at O(T−6) (which, we stress again, is the first and hence the leading non-vanishing
order in the on-shell case):〈
T δφ00

〉(6)

ren
(m) =

a2

20160π2m2

(
−8H6 − 36H4Ḣ − 20Ḣ3 + 42H3Ḧ + 3Ḧ2 − 6Ḣ

...
H

+84H2Ḣ2 + 36H2
...
H + 60HḢḦ + 6H

....
H
)

+

(
ξ − 1

6

)
a2

160π2m2

(
2H6 + 12H4Ḣ + 8Ḣ3 − 14H3Ḧ − Ḧ2 + 2ḢḦ − 34H2Ḣ2

−12H2
...
H − 24HḢḦ − 2H

....
H
)

+

(
ξ − 1

6

)2
3a2

32π2m2

(
−24H4Ḣ − 8Ḣ3 + 10H3Ḧ + Ḧ2 − 2Ḣ

...
H + 32H2Ḣ2

+12H2
...
H + 24HḢḦ + 2H

....
H
)

−
(
ξ − 1

6

)3
9a2

8π2m2

(
2H2 + Ḣ

)(
2H4 − 19H2Ḣ + 2Ḣ2 − 6HḦ

)
.

(2.58)

2.5 Renormalized vacuum energy density

Renormalization theory is concerned with the relations of renormalized couplings, oper-
ators and Green’s functions at different renormalization points. It is not our intention to
compute any of these quantities from first principles, in particular the VED. Ultimately
this is an input from experiment at a given scale, and once it is given one can predict its
value at another scale.

It is also important to remark that, in order to make possible the renormalization program
in the context of QFT in curved space-time, we need to count on the higher derivative
(HD) terms in the classical effective action of vacuum [284], in addition to the usual
Einstein-Hilbert (EH) term with a cosmological constant, Λ. In four dimensions, the
HD part is composed of the O(R2) terms, i.e. the squares of the curvature and Ricci
tensors: R2 and RµνR

µν . No more HD terms are needed in our case since the one
associated to the square of the Riemann tensor, RµνρσR

µνρσ, is not independent owing to
the topological nature of the Euler’s density in 4 dimensions, which involves all these HD
terms together: E = RµνρσR

µνρσ−4RµνR
µν+R2. Moreover the square of the Weyl tensor,

C2 = RµνρσR
µνρσ− 2RµνR

µν + (1/3)R2, exactly vanishes for conformally flat space-times
such as FLRW. The full action, therefore, boils down to the relevant EH+HD terms
mentioned above plus the matter part (consisting here of the scalar field φ only) with a
non-minimal coupling to gravity, Eq. (2.5). Its variation of the action with respect to the
metric provides the modified Einstein’s equations, which become extended as compared
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to their original form (2.3) as follows:

M2
Pl(M)Gµν + ρΛ(M)gµν + α(M) (1)Hµν =

〈
T δφµν
〉

ren
(M) . (2.59)

where we use renormalized quantities and hence we have indicated explicitly the depen-
dence of the parameters and of the EMT on the subtraction point M . The background
(classical) part of the EMT does not depend on it. Baring in mind that we wish to
relate the theory at different renormalization points we can safely ignore any classical
contribution present in (2.59) since it will cancel when doing the subtraction.

The higher order tensor H
(1)
µν is obtained by functionally differentiating R2 with respect

to the metric (see Appendix A). A further simplification is possible here since the cor-
responding term associated to the functional differentiation of the square of the Ricci

tensor, called H
(2)
µν , is not necessary since it is not independent of H

(1)
µν for FLRW space-

times [284]. This follows from the aforementioned properties of the Euler density and the

Weyl tensor for conformally flat space-times. The higher order tensor H
(1)
µν is indeed to

be included in the extended field equations since it is anyway generated by the quantum
fluctuations and is therefore indispensable for the renormalizability of the theory.

The fact that Eq. (2.59) has been written with all couplings defined at some arbitrary
mass scale M is because we have shown that the EMT used in our calculation is the
renormalized one at that scale following the ARP. However, in the Appendix B we offer
an alternative approach based on the more conventional counterterm procedure, starting
from the bare parameters of the action.

2.5.1 Vacuum energy density at different scales. Absence of ∼ m4 terms.

The renormalized expression for the vacuum fluctuations, 〈T δφµν 〉ren(M), is not yet the
final one for the renormalized VED. As indicated in (2.17), the latter is obtained upon
including the contribution from the ρΛ-term in the Einstein-Hilbert action (2.1). This
term is initially a bare quantity, as in the traditional counterterm method with Eq. (2.50),
but we take its renormalized value at the same scale M . Therefore, the renormalized
vacuum EMT at the scale M is given by〈

T vac
µν

〉
ren

(M) = −ρΛ(M)gµν +
〈
T δφµν
〉

ren
(M) . (2.60)

For the considerations in this section we will use only the renormalized expressions up to
4th adiabatic order, since these suffice to discuss the renormalization of the EMT. The
renormalized VED is obtained from extracting the 00th-component of the expression
(2.60) is

ρvac(M) =
〈T vac

00 〉ren (M)

a2
= ρΛ(M) +

〈
T δφ00

〉
ren

(M)

a2
, (2.61)

where we have used the fact that g00 = −a2 in the conformal metric that we are using.
The above equation stems from treating the vacuum as a perfect fluid, namely with an
EMT of the form 〈

T vac
µν

〉
= Pvacgµν + (ρvac + Pvac)uµuν , (2.62)

where uµ is the 4-velocity. In conformal coordinates in the comoving cosmological (FLRW)
frame, uµ = (1/a, 0, 0, 0) and hence uµ = (−a, 0, 0, 0). By the moment, there are no
clues pointing out any relation between vacuum’s pressure and vacuum’s energy den-
sity. Nevertheless, taking the 00th-component of (2.62), the relation 〈T vac

00 〉 = −a2Pvac +
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(ρvac + Pvac) a
2 = a2ρvac follows, irrespective of Pvac. Finally, inserting the 00th-component

of (2.60) into (2.62) we obtain Eq. (2.61), as desired. Equating the last expression to
Eq. (2.17), and taking the 00-component of the equality (keeping also in mind that
g00 = −a2(η) in the conformal frame), we obtain

ρvac(M) = ρΛ(M) +

〈
T δφ00

〉
ren

(M)

a2
. (2.63)

Notice that we distinguish between VED and ZPE. When they are both renormalized
quantities, the sum (2.61) provides the physically measurable quantity which includes the
dependence on the renormalization point since we are using the renormalized theory at
that scale. The total VED at an arbitrary scale M is then the sum of the renormalized
contributions from the cosmological term plus that of the quantum fluctuations of the
scalar field at that scale (i.e. the renormalized ZPE). In a symbolic way, we can write

VED = ρΛ + ZPE . (2.64)

More explicitly, we can write it out on taking cognizance of the important result presented
in Eq. (2.56):

ρvac(M) = ρΛ(M) +
1

128π2

(
−M4 + 4m2M2 − 3m4 + 2m4 ln

m2

M2

)
+

(
ξ − 1

6

)
3H2

16π2a2

(
M2 −m2 +m2 ln

m2

M2

)
+

(
ξ − 1

6

)2
9 (2H′′H−H′2 − 3H4)

16π2a4
ln
m2

M2
+ · · ·

(2.65)

Here the dots denote that we have not written higher order adiabatic orders beyond the
4th one. It is important to remark that these terms do not depend on the renormalization
parameter M . The simplified notation ρvac(M) should not obscure the fact that the VED
in FLRW space-time is dynamical, as it rests on the expansion rate of the universe and
its derivatives, apart from the scale M , i.e. ρvac(M) ≡ ρvac(M,H,H′,H′′, ...). We note
that M itself is dynamical in cosmology since we will associate M with a cosmological
variable. Thus, the dynamical character of the VED enters both through the explicit
dependence in the Hubble rate and also implicitly through M (cf. Sect. 2.6).

Now it is time to relate different renormalization points. Subtracting the renormalized
result at two scales, M and M0, we find:

ρvac(M)− ρvac(M0) =
〈T vac

00 〉ren (M)− 〈T vac
00 〉ren (M0)

a2

= ρΛ(M)− ρΛ(M0) +

〈
T δφ00

〉
ren

(M)−
〈
T δφ00

〉
ren

(M0)

a2
,

(2.66)

where〈
T δφ00

〉
ren

(M)−
〈
T δφ00

〉
ren

(M0) = − a2

128π2

(
M4 −M4

0 − 4m2(M2 −M2
0 ) + 2m4 ln

M2

M2
0

)
+

3
(
ξ − 1

6

)
H2

16π2

(
M2 −M2

0 −m2 ln
M2

M2
0

)
+

9
(
ξ − 1

6

)2

16π2a2

(
H′2 − 2H′′H + 3H4

)
ln
M2

M2
0

.

(2.67)
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To account for this difference we have just used the 4th-order form (2.56) since, as noticed,
the 6th adiabatic contribution does not carry along any new dependency on the scale M
(it only adds up new contributions which depend on the mass m); and hence all the higher
order adiabatic effects beyond 4th-order cancel out when one is just relating scales rather
than computing the result at a given scale. The same subtraction can be performed using
the generalized Einstein’s equations (2.49). We take now these equations in vacuo and in
terms of the renormalized couplings at the scale M .

Apart from ρΛ(M) and α(M) we have defined another renormalized coupling at the scale
M ,

M2
Pl(M) =

G−1(M)

8π
, (2.68)

which is nothing but the reduced Planck mass squared at that scale. Its relation with
the ordinary Planck mass is MPl(M) = mPl(M)/

√
8π. As we shall further discuss in

what follows (see also Appendix C), the setting M = H is the most appropriate one to
make contact between the renormalized value of a parameter and its physical value at the
epoch H. In accordance with this prescription, the measured local value of gravity, GN , is
obtained when M is set to the current value of the Hubble parameter, i.e. G(H0) ≡ GN =
1/m2

Pl, where mPl ' 1.2× 1019 GeV. Performing the subtraction of the 00th-component
of (2.59) at the two scales M and M0, we find:〈
T δφ00

〉
ren

(M)−
〈
T δφ00

〉
ren

(M0) = −a2 (ρΛ(M)− ρΛ(M0)) +
(
M2

Pl(M)−M2
Pl(M0)

)
G00

+ (α(M)− α(M0)) (1)H00 ,
(2.69)

where in the first line we have used once more that g00 = −a2. Comparison between
(2.67) and (2.59) yields the important relation

δρΛ(m,M,M0) ≡ ρΛ(M)−ρΛ(M0) =
1

128π2

(
M4 −M4

0 − 4m2(M2 −M2
0 ) + 2m4 ln

M2

M2
0

)
.

(2.70)

Upon using the known form of G00 and (1)H00 in the conformal metric (given in Ap-
pendix A) we collect also the two relations:

δM2
Pl(m,M,M0) ≡M2

Pl(M)−M2
Pl(M0) =

(
ξ − 1

6

)
1

16π2

[
M2 −M2

0 −m2 ln
M2

M2
0

]
(2.71)

and 12

δα(M,M0) ≡ α(M)− α(M0) = − 1

32π2

(
ξ − 1

6

)2

ln
M2

M2
0

. (2.72)

These relations are important not only because they furnish the scaling laws of the cou-
plings M2

Pl(M) and α(M) in the modified Einstein’s equations, but also because they
help to properly identify the various terms in Eq. (2.69). In particular they contribute to
isolate the shift of the renormalized vacuum parameter ρΛ(M), Eq. (2.70). Using (2.70)

12The scale shifts quoted in equations (2.70)-(2.72) are finite quantities in our renormalization scheme and
should not be confused with counterterms, such as those in (2.50)-(2.51). Strictly speaking, we do not need
counterterms in the ARP since we perform a subtraction of UV-divergent quantities at two scales, and this
renders a finite result.

92



we can rewrite (2.67) in the following form〈
T δφ00

〉
ren

(M)−
〈
T δφ00

〉
ren

(M0)

a2
= −δρΛ(m,M,M0)

+

(
ξ − 1

6

)
3H2

16π2a2

(
M2 −M2

0 −m2 ln
M2

M2
0

)
+

(
ξ − 1

6

)2
9

16π2a4

(
H′2 − 2H′′H + 3H4

)
ln
M2

M2
0

.

(2.73)

Finally, on combining equations (2.66) and (2.73) we see that the expression δρΛ(m,M,M0)
exactly cancels and we are left with

ρvac(M) = ρvac(M0) +

(
ξ − 1

6

)
3H2

16π2a2

(
M2 −M2

0 −m2 ln
M2

M2
0

)
+
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ξ − 1

6

)2
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16π2a4
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H′2 − 2H′′H + 3H4
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ln
M2

M2
0

=

(
ξ − 1
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)
3H2

16π2

[
M2 −M2

0 −m2 ln
M2

M2
0

]
+

(
ξ − 1

6

)2
9

16π2

(
Ḣ2 − 2HḦ − 6H2Ḣ

)
ln
M2

M2
0

,

(2.74)

where in the second equality we have written the result in terms of the Hubble rate in the
ordinary cosmic time, and for this reason it does not depend explicitly on the scale factor.
The formal quantity ρΛ(M) − ρΛ(M0) indeed never shows up physically and hence only
the difference of VED’s at the two renormalization points M and M0 remains, Eq. (2.74).
The exact cancellation of the quantity (2.70) in Eq. (2.74) is very important since such a
term is precisely the potentially conflicting quantity carrying all of the awkward quartic
powers of the mass scales. Its remarkable cancellation in our renormalization setup,
however, shows that the values of ρvac(M) and ρvac(M0) differ only by a small quantity
proportional to H2 and another which is of O(H4), both small in the current universe (the
latter being utterly irrelevant for the entire FLRW regime). Such a physically measurable
quantity is a smooth function ∼ m2H2 of the cosmic evolution. Thus, no fine-tuning is
needed to relate ρvac(M) and ρvac(M0) in the present renormalization framework. This
is also true in the special case of Minkowskian space-time, where neither ρΛ(M) nor the
ZPE can be measured in an isolated way, just the sum, which in this case is exactly zero
(see next section). The foregoing considerations show that, in the context of the running
vacuum model, the dark energy that we observe is just the (non-constant)vacuum energy
density predicted within QFT in FLRW space-time, which remains naturally of order H2

at all times without fine tuning. At any cosmic time t characterized by H(t) there is
a (different) ‘CC’ term Λ(H) = 8πGNρvac(H) acting (approximately) as a cosmological
constant for a long period around that time, but there is no true CC valid at all times!

The result (2.74) is the value of the VED at the scale M once we know its value at another
scale M0, i.e. it expresses the ‘running’ of the VED. Only in the case of conformally
invariant fields (ξ = 1/6) the result would be the same at all scales, if the VED would
receive only contributions from scalar fields. But in general, this is not the case since
one has to add the contribution from fermions and vector boson fields, which we do not
consider here, so in general the total VED appears a running quantity with the expansion.
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As mentioned, the running is slow for small H, as it depends on terms of the form O(H2)
times a mass scale squared, and on O(H4) contributions, but not on quartic mass scales.
We repeat once more that ρvac(M) cannot be computed from the above expression, even
if the expansion rate H is known at a given time since we do not know the value of
the renormalized parameter ρΛ(M) in the action. As usual, we need some experimental
input, we will comment more on this fact in Sect. 2.6. We should not forget that the
main aim of renormalization theory is not so much to predict the value of a quantity, for
example the VED, at a certain scale (and time, in cosmology) but to relate it at different
scales or renormalization points, and hence to account for its evolution with the scale M .

2.5.2 Equivalent approach: subtracting the Minkowskian contribution

It cannot be overstated that the above result (2.74) is free from quartic powers of the
masses. These would still be present if we had subtracted just the ZPE part at different
scales without including the renormalized ρΛ. This is obvious from Eq. (2.67), where we
can see that the problem actually stems from Minkowskian space-time, see [167,294,295]
for a discussion. The renormalized ZPE in flat space-time is obtained from Eq. (2.67) in
the limit a = 1 (which implies that H and all its derivatives are zero). Only the first
term of it remains, although it is the one carrying the mentioned quartic powers. This
term vanishes for M = m since the renormalized on-shell value was computed only up
to fourth adiabatic order. As previously emphasized (cf. Sect. 2.4.1), this does not mean
that the exact renormalized ZPE in curved space-time vanishes on-shell, of course. One
still has to add the higher order adiabatic terms, but they are finite and subleading since
they decouple for larger and larger values of the physical mass m (i.e. they satisfy the
decoupling theorem [335]), and we have not tracked them explicitly. Our main aim here
is to pick out just the leading contributions to the renormalized ZPE up to 4th adiabatic
order. Since we compute the total VED, defined as the sum of the renormalized value
of ρΛ and the renormalized ZPE, the difference of VED values at two scales is free from
the quartic powers of mass scales. Of course this is possible owing to the renormalized
form for the ZPE that we have used, Eq. (2.53), which involves a subtraction of the on-
shell value at another arbitrary mass scale. In the Appendix B, we provide an alternative
calculation leading to the same result (2.74) and further comments on this fact.

In Minkowski space we should expect zero vacuum energy, as in such a case we can apply
the normal ordering of the quantum operators in the canonical formalism. In our context
we encounter the same result. To start with, the renormalized ZPE in Minkowski space
is the value of 〈T δφ00 〉ren(M), given by Eq. (2.56) for a = 1 and H = 0:〈

T δφ00

〉Mink

ren
(M) =

1

128π2

(
−M4 + 4m2M2 − 3m4 + 2m4 ln

m2

M2

)
. (2.75)

However, this quantity is purely formal and does not appear in physical results since it
cancels exactly against ρΛ(M). The correct renormalized VED result can be viewed as
subtracting the Minkowskian contribution in analogy with the Casimir effect. Namely,
one expects that if we compute the expression for 〈T vac

µν 〉 in Minkowskian space-time and
subtract it from its equivalent in curved space-time the result should depend only on the
curvature of the latter and hence evolve only mildly with the cosmic evolution through a
function of the Hubble rate (which is the key term providing the departure of the FLRW
background from Minkowskian space-time) [167, 294, 295]. In fact, the subtraction of
the Minkowskian space-time result has been argued from different perspectives [299–
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301, 307, 308]. In the Minkowski limit, the subtraction of scales in (2.69) leaves only the
term δρΛ(m,M,M0)gµν = δρΛ(m,M,M0)ηµν on its RHS. Taking the 00-component (with
η00 = −1 in our conventions), we find〈
T δφ00

〉Mink

ren
(M)−

〈
T δφ00

〉Mink

ren
(M0) = −δρΛ(m,M,M0)

= − 1

128π2

(
M4 −M4

0 − 4m2(M2 +M2
0 ) + 2m4 ln

M2

M2
0

)
.

(2.76)

Following the above proposal, we define now the physical VED in the expanding universe
as the outcome of subtracting the Minkowskian ZPE from its value in FLRW space-time:

ρvac(M) ≡

〈
T δφ00

〉
ren

(M)

a2
−


〈
T δφ00

〉
Ren

(M)

a2

Mink

=

〈
T δφ00

〉
Ren

(M)

a2
−
〈
T δφ00

〉Mink

Ren
(M) .

(2.77)

Thus, inserting equations (2.69) and (2.76) in the above relation and recalling again that
g00 = −a2, we are led to

ρvac(M) =

〈
T δφ00

〉
ren

(M0)

a2
−
〈
T δφ00

〉Mink

ren
(M0)

+
δρΛ(m,M,M0)

a2
g00 +

δM2
Pl(m,M,M0)

a2
G00

+ δα(m,M,M0)a2H
(1)
00 + δρΛ(m,M,M0)

= ρvac(M0) +
3H2

a2
δM2

Pl(m,M,M0)− 18

a4

(
H′2 − 2H′′H + 3H4

)
δα(m,M,M0) .

(2.78)

The result for the total VED is indeed the same as in Eq. (2.74) after we cast H and
its derivatives in terms of the ordinary Hubble rate, H. In other words, we can reach
again the same relation between the values of VED at two different scales, which does
not involve ∼ m4 contributions.

The two quantities ρΛ(M) and 〈T δφ00 〉Mink
ren (M) both carry quartic dependencies on the

mass scales, but they exactly conspire to sum up to zero in Minkowski space-time since
(2.59) implies that 〈

T δφ00

〉Mink

ren
(M) = η00ρΛ(M) = −ρΛ(M), (2.79)

so its sum became the VED in Minkowski space-time as dictated by (2.63),

ρMink
vac (M) = ρΛ(M) +


〈
T δφ00

〉
ren

(M)

a2

Mink

= ρΛ(M) +
〈
T δφ00

〉Mink

ren
(M) = 0. (2.80)

Hence the detailed structure of these formal quantities plays no role in the physically
measured quantities. In contrast to the Minkowski case, in curved space-time such quan-
tities cannot be isolated since the sum is not zero, see Eq. (2.65), but it yields a smooth
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quantity mildly evolving with the cosmological evolution. For a→ 1 (H → 0) the LHS of
(2.65) goes to zero, as we have seen, and hence the RHS goes to zero too. At this point we
retrieve the Minkowskian space result (2.80) from the curved space-time case (2.65). But
at any intermediate stage of this limit we cannot determine ρΛ(M) separately from the
ZPE, only the sum is physically relevant and it defines the dynamical vacuum energy den-
sity in curved space-time. Recall that the renormalization point itself M is dynamical in
curved space-time. As it was previously indicated, the scale setting prescription M = H
is an appropriate ansatz for testing the cosmological evolution of the VED at different
stages of the expansion history (cf. Sect. 2.6 and Appendix C.1). It is remarkable that
the VED of the expanding universe despite it being currently very small (of order ρ0

vac)
is dynamical and such dynamics could be measured since it is of O(H2). The VED is ex-
actly zero only in Minkowski space-time, where the vacuum energy plays no cosmological
role. In actual fact, the scale M becomes in this case a purely formal quantity devoid of
any physical meaning, much the same as the artificial mass unit µ employed in DR (as
discussed in the next section). There is no dynamics of gravity in Minkowski space and
therefore nothing can physically run with M (or µ). In contrast, in FLRW space-time the
gravitational field is dynamical and hence the prescription M = H is physically mean-
ingful and enables exploring the running of the vacuum energy density with the cosmic
expansion (cf. and Appendix C.1 for a thorough discussion). This is actually the original
point of view of the RVM from the renormalization group approach [167,198].

On the other hand, remember that the divergences associated to our calculation are of
course of UV type, hence short-distance effects. The leading effects of this kind are
similar to the ones of QFT in Minkowski space-time and therefore are independent from
the possible boundary effects of the cosmological space-time. We have just seen that an
alternative way to renormalize the energy-momentum tensor is precisely to subtract the
Minkowskian contribution following the adiabatic regularization procedure up to fourth
order. Furthermore, if one takes into account only wavelengths under the horizon (i.e.

for k̃2 � H2, with k̃ = k/a the physical momentum defined in Sect. 2.3.3), the situation
remains as in the Minkowskian space-time, namely the integrals with low inverse powers
of the function ωk =

√
k2 + a2M2, corresponding to the lowest adiabatic orders, are still

divergent in the UV. The short-distance region where the UV effects are encountered is of
course contained within the horizon. The presence of a causal horizon can only produce
long distance effects, and therefore they can be related with IR (infrared) divergences.
The IR behavior of gravity theories can indeed be non-trivial in some cases but we do
not address these aspects in our work as they are out of its scope. However, if we would
consider effects of this kind in our momentum integrals they would rather be related with
the lower limits of integration, which should be of order H, since the (apparent) horizon is
of order 1/H (in fact, it is exactly so in the spatially flat case, which we are considering)
and the effects that could produce are subleading. To see this, take for instance the
simple cases analyzed in Sect. 2.3.3, say Eq. (2.42). Since the physical momenta satisfy

k̃2 � m2 in the IR, the contribution from these integrals in the IR region provides powers
of H higher than H2 involving also masses, e.g. mH3, H5/m etc. Similar terms carrying
suppressed powers would appear if the more complete expression (2.33) would be used.
The presence of odd powers of H is not surprising since we have put boundaries to an
otherwise covariant integration.
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2.5.3 Minimal Subtraction scheme and the fine-tuning problem

The former are certainly properties we should expect from a correct, physically meaning-
ful, renormalization of the vacuum energy density, in contrast to other formal treatments
in the literature in the framework of different renormalization schemes. In particular, the
absence of fine-tuning among the different terms is much welcome as well as the vanish-
ing value of the VED in Minkowskian space-time, which in the simplified notation (2.64)
introduced above reads ρΛ+ZPE= 0. This condition can be thought of as a necessary
condition for the physical renormalization prescription for the quantum vacuum energy,
that is Eq. (2.45), and is encoded in the general form (2.61). Many other approaches
and renormalization prescriptions have been advocated to deal with the vacuum energy,
see [272, 291, 293, 298, 299, 302–307, 309, 346, 350–360], for instance. Arguably, the sim-
plest treatments are those based on the Minimal Subtraction (MS) scheme [318, 319]
(cf. [345, 361–363] for further explanations and practical applications). Its use was soon
extended to QFT in curved space-time [364]. But in this context, simplicity does not
necessarily mean adequacy to the physical purposes, and in fact the MS scheme does not
lead to a physically acceptable approach to the renormalization of the VED, cf. [272] and
references therein. Let us briefly summarize the situation of the fine-tuning problem in
the MS scheme (we refer the reader e.g. to [167,198] for more details). It will suffice to
focus on Minkowskian space-time for this consideration.

In flat space-time (a = 1, H = 0) the ZPE (2.33) shrinks just to the compact form
(2.43) (for ξ = 1/6), where we shall continue with ~ = 1 in natural units. Using DR in
Minkowskian n- space-time (with n−1 spatial dimensions), a simple calculation with the
notation and formulas of Sect. A.1 in Appendix A leads to the result [167,198]〈

T δφ00

〉Mink

(m) =

ˆ
µ2εdn−1k

(2π)n−1

(
1

2
ωk(m)

)
=

1

2
In−1(p = −1, Q = m)

=
m4

4(4π)2

(
−Dε + ln

m2

µ2
− 3

2

)
,

(2.81)

where Dε contains the pole at n−1 = 3 (i.e. at ε = 0, or equivalently at n = 4 space-time
dimensions) as given by Eq. (B.3). It is natural to assume that the VED in Minkowskian
space is given by a similar equation to (2.61), but with the bare quantities at this point

since (2.81) is divergent, i.e. ρMink
vac = ρΛ + 〈T δφ00 〉Mink. We next split the bare term ρΛ

into the renormalized quantity ρΛ(µ) plus the counterterm, as shown in Eq. (2.50). As
we know, in the MS scheme the running scale is usually represented by means of the
arbitrary ’t Hooft’s mass unit µ, which displays dimensions away from n = 4 and keeps
control of dimensional analysis. Using the MS scheme (or its variant MS [345, 365]) to
deal with the UV-divergences is very tempting for we can choose the counterterm δρΛ

in the form given in Eq. (2.51), which precisely cancels the pole in (2.81) and this allows

to define the renormalized ZPE in Minkowski space, 〈T δφ00 〉Mink
Ren (µ). One may then be

tempted to interpret that the MS-renormalized VED in Minkowskian space-time is the
finite expression

ρMink
vac = ρΛ(µ) +

〈
T δφ00

〉Mink

Ren
(µ) = ρΛ(µ) +

m4

4(4π)2

(
ln
m2

µ2
− 3

2

)
. (2.82)

However, in spite of its formal simplicity the above formula leads to the usual fine-
tuning nightmare associated to the CCP, which is brought about by the fact that the
renormalized ZPE is proportional to the quartic power of the mass of the particle ∼ m4.
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As a result, the MS-renormalized term ρΛ(µ) must be fine tuned in a preposterous way
against the renormalized ZPE contribution so as to get a VED value in a reasonable
phenomenological range, see [167,198] for a detailed exposition of the fine-tuning problem.
Since µ was introduced on mere dimensional grounds there is no special physical meaning
to be ascribed to it. To set µ = H does not make much sense here since the above formula
applies to Minkowskian space-time, where H = 0. Besides, any attempt to make sense
of the above VED formula (using DR or Pauli-Villars regularization [347], for example)
leads to nowhere. No matter what physical quantity is chosen for µ or the type and
number of fields involved, the numerical results are completely astrayed [350, 366]. Let
us stress once more that one should not aim at a prediction of the value of the VED at
present, as this is out of the scope of renormalization theory. Equation (2.82) is certainly
not the VED neither in flat nor in curved space-time. Such an expression is unphysical,
it just describes the mathematical running of the parameter ρΛ(µ) and the renormalized
ZPE with µ in such a way that their sum remains equal to the original bare (hence RG-
invariant) parameter ρΛ in the action. There is not an inch of physics in it since µ cannot
be related to any quantity of cosmological interest; we reiterate that (2.82) was derived
in Minkowki space, where we have seen that the VED is just zero. In Sect. 2.8.6 we come
back to this point, after discussing the running couplings in curved space-time.

Nothing of this sort occurs in our renormalization scheme, where the VED is given by
(2.65). To start with, the value of that expression in Minkowski space is exactly zero,
as we have shown above, in stark contrast with the MS formula (2.82). Furthermore, as
long as we hold on to the aforementioned prescription for Minkowskian space-time, the
implication on the corresponding calculation for curved space-time is that the VED is
no longer zero but a mildly dynamical quantity, which evolves smoothly (without fine-
tuning) from one scale to another throughout the cosmic evolution following the ‘running
law’ (2.74) 13. Thus, while we do not aim at a prediction of the value of the VED at
present from pure renormalization theory, a prediction is made of its value at some scale,
given its value e.g. at present. Such an evolution is governed by the Hubble flow and a
quadratic (not quartic) dependence on the mass scale, which is made extremely smooth
since it is accompanied by H2 and thereby evolving as ∼ m2H2. In what follows we take
up what are the implications for the late time universe and in particular for our present
time.

2.6 Running vacuum connection

Eq. (2.74) constitutes our desired outcome for relating a dynamical VED between two
different renormalization points, but does not provide the calculated value of the vacuum
energy density at a given scale, e.g. it says nothing on the value of ρvac(M0) and hence it
has no implication on the cosmological constant problem mentioned in the Introduction.
That is to say, it has no bearing on it if such problem is meant to be the computation
of the value itself of the VED at some point in the history of the universe. However, our
result can be useful to explore the ‘running’ of the VED when we move from one scale

13If one naively extends the MS renormalization to curved space-time, the fine-tuning problem persists un-
modified, see [167, 198] for a summarized account. The two fine-tuning-generating pieces on the RHS of (2.82)
remain exactly as they are. The curved background only adds purely geometric terms O(R,R2, RµνRµν , ...) and
the essence of the fine-tuning problem embodied in the Minkowskian space-time replicates identically in curved
space-time in such scheme, see [364] for more technical details. Renormalization of the VED à la MS seems to
be completely hopeless in cosmology.
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to another. In other words, if ρvac is known at some scale M0, we can use the obtained
relation to compute the value of ρvac at another scale M . Such connection of values
from one renormalization point to another is what we have been calling “running” of the
VED, and in fact it was suggested long ago from the point of view of the renormalization
group in curved space-time from different perspectives [272,291–293] – for a review of the
running vacuum model (RVM), see [167, 294–297] and references therein. Interestingly
enough, it can provide also a framework for the possible time variation of the so-called
fundamental constants of nature [367–369].

Before entering into the study of the VED in the current Universe, we recommend the
reader to peruse Appendix C, where the technical items are presented. Here we are
focused in the physical details. While for the present (H = H0) we may neglect all
terms of order O(H4) (which comprise also Ḣ2, HḦ and H2Ḣ) the piece proportional
to H2 in (2.74) may be significant in the present universe. It entails that the vacuum
energy density is dynamical and such a dynamics is amenable to being measured. This
property leads to the notion of ‘running VED’. By running we mean that the VED is
not static but changing with the cosmic evolution. A good tracking of that evolution
in the FLRW context is provided by the Hubble rate H. In our aim to find a proper
physical interpretation of Eq. (2.74) setting M = H may be a reasonable election. At
any given cosmic time, H(t) (Hubble rate) constitutes a characteristic energy of the
expanding Universe and may serve to parametrize the scaling evolution of the VED, see
[167,198,294–296] and references therein for the old connection with the renormalization
group arguments [291,293].

Within this approach, if ρvac is known at some reference scale M0, M0 is taken to be the
current Hubble parameter H0, we can use the relation Eq. (2.74) to compute the value
of ρvac at another scale M associated to some other epoch H. If , then ρvac(H0) = ρ0

vac

can be identified as being the presently observed value of the VED at H = H0. We may
relate ρ0

vac with the value ρvac(M = H) at another scale in the past corresponding to the
cosmic epoch H, which we typically select within the accessible FLRW cosmic history.
On Sect. C.1 in Appendix C we present the notations and details of how to use Eq. (2.74)
to connect two values of the VED which lead to the Late-Universe regime:

ρvac(H) ' ρ0
vac +

3νeff

8π
(H2 −H2

0 )m2
Pl = ρ0

vac +
3νeff

κ2
(H2 −H2

0 ) , (2.83)

where κ2 = 8πGN . Here we have defined the ‘running parameter’ νeff , which is approxi-
mately given by

νeff '
1

2π

(
ξ − 1

6

)
m2

m2
Pl

ln
m2

H2
0

. (2.84)

The more detailed treatment in Appendix C.1 shows that νeff is actually a slowly changing
(logarithmic) function of the Hubble rate. But, to a fairly good approximation, νeff can
be taken essentially as the constant value given above for values of H corresponding to
the relatively recent universe. As it was foreseen from the beginning, the structure of
the RVM vacuum does not necessarily require the non-minimal coupling of matter to the
external gravitational field.

Let us mention that different extensions of gravity can mimic the effective behavior of
the running vacuum model (RVM). This is a fact confirmed in a variety of contexts. For
instance, in the context of Brans-Dicke Theory with a cosmological term, it has been
shown that a kind of RVM behavior emerges when one tries to rewrite the theory in
a GR-like picture [370, 371]. This turns out to be phenomenologically very favorable,
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as it has been recently demonstrated from detailed analyses where the model has been
confronted with a large and updated set of cosmological observations [278,279]. Another
potentially interesting example can be found in gravity theories with torsion, see e.g. [372]
and references therein. Since the torsion scalar T differs only by a total derivative with
respect to the Ricci scalar, the EH action with R replaced by T is equivalent to GR. One
may generalize the action structure through the replacement T → T + f(T ), with f(T ) a
function of the torsion scalar. This is characteristic of teleparallel gravity theories [372].
Since T = −6H2 in the FLRW background, by an appropriate choice of f(T ) one may, in
principle, mimic the RVM as well. In Sect. 3.4.2 we include some comments on another
example, in this case in the context of the low-energy effective action of string theory,
which also behaves as the RVM.

Remarkably, for general ξ the structure obtained for νeff is very close to that obtained
within the RVM approach, see [167, 294, 295]. In such context, it defines the coefficient
of the one-loop β-function for the renormalization group equation of ρvac. The presence
of the additional logarithmic piece lnm22/H2

0 appears in the direct QFT calculation
employed here, but it does not make any difference in practice since it is constant and
νeff must be fitted directly to the observations as an effective coefficient. In our case we
have simplified the theoretical calculation by considering just the contribution from one
single scalar field to νeff . We expect it to be small, i.e. |νeff | � 1, owing to the ratio
m2/m2

Pl � 1. We can see from (2.84) that ξ = 0 does not imply νeff = 0. The vanishing of
νeff and hence of the dynamical ∼ H2 part of (2.83) is obtained only for ξ = 1/6. In that
specific case, there are no corrections to the vacuum energy density from scalars since we
are then in the conformal limit of QFT. If the scalar field pertains to a typical GUT, i.e.
m ∼ MX ∼ 1016 GeV, the ratio m2/m2

Pl ∼ 10−6 remains sizeable. Taking into account
that the parameter ξ can be, in principle, arbitrary and that the multiplicity of states in
a GUT is usually high, the value of νeff can actually be much larger. For ξ 6= 0, the sign of
νeff depends entirely on the value of ξ (if only a scalar field would contribute), so we can
provide a discussion within a more general class of theories and also carrying potential
phenomenological consequences. As indicated in Sect. 2.5.1, ξ does not automatically
determine the sign of νeff . Other contributions (e.g. from fermion fields) should be added
in our calculation. A detailed account of the fermionic quantum effects on the RVM
vacuum structure will be provided in Chapter 4. Ultimately, the final value could have
either sign and be much larger since νeff depends also on the multiplicity and nature of
the fields involved, so we cannot predict νeff with precision on mere theoretical grounds.
It has to be determined by fitting the model to data. However, we understand that the
basic facts derived from the renormalization procedure followed here should also hold in
the general case.

As we can see from Eq.(2.83), for νeff > 0 the vacuum can be conceived as decaying into
matter since the vacuum energy density is larger in the past (where H > H0), whereas
if νeff < 0 the opposite occurs. The former situation, however, is more natural from
a thermodynamical point of view, for if the vacuum decays into matter one can show
that the Second Law of Thermodynamics is satisfied by the general RVM, see [373] for
a detailed discussion. Moreover, for νeff > 0 the RVM effectively behaves as quintessence
since the vacuum energy density decreases with time. For νeff < 0 the behavior is that of
phantom DE. One may also interpret here that G is changing with time owing to vacuum
decay. Both possibilities have been discussed within the RVM in Ref. [367–369], see also
Sect. 3.2.

Recall that we expect |νeff | � 1 from the theoretical structure (2.84); we cannot hope
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for observing dramatic deviations from the standard ΛCDM model. This would actually
not be welcome, given the considerable success of the concordance cosmology. Remark-
ably enough, we confirm it from the phenomenological fits of RVM against the overall
cosmological data [246, 248, 250, 374], whereby we do not observe dramatic deviations
from the standard ΛCDM model. But the fact that the fitting results point to a positive
νeff = O(10−3) suggests that the effects are not necessarily negligible and in fact they can
be helpful to cure or alleviate some of the existing tensions in the context of the ΛCDM
model, as actually shown in the aforementioned references and also in the framework of
alternative cosmological models which also mimic the RVM behavior [278–280,374,375].
Notice that the standard model particles is not expected to make significant contribu-
tions to νeff , since for all of the known particle masses, m2/m2

Pl � M2
X/m

2
Pl ∼ 10−6,

where MX ∼ 1016GeV is the typical mass scale associated to GUT theories. In this
sense, a moderate value of νeff may be an indication of the presence of extremely massive
fields, for instance around the order of the Great Unified Theories (GUT) scale. Curi-
ously, the accurate determination of νeff determines the low-energy regime of evolution of
VED in the Late-Universe and, at the same time, can serve as a probe of physics beyond
the Standard Model of Particle Physics. A recent analysis of Big Bang nucleosynthesis
(BBN) constraints points to the same order of magnitude mentioned before, although is
not sensitive to the sign of νeff [376]. However an extended study on this topic it is going
to be carried in the future, incorporating some of the new features regarding the VED
that are presented in this Chapter and in the coming ones.

2.7 Trace of the vacuum EMT in curved space-time

We may now explicitly compute the VEV of the trace of the vacuum part of the EMT.
There are, at least two very good reasons to do that. First, it can be used to compute the
pressure o the vacuum fluid, in analogy to the computation performed in former sections
for the VED. This will, in fact, guide us to the computation of the equation of state of
the quantum vacuum, which presumably can deviate from -1 due to the quantum effects.
Secondly, we may try to recover the well-known result of the trace anomaly, i.e. the non-
vanishing VEV trace associated to quantum fluctuations in the massless limit in curved
space-time [284].

We start by computing the trace of the classical EMT, which we denote T cl. ≡ T µµ. Using
(2.6), it can be expressed as

T cl. = (6ξ − 1) ∇µφ∇µφ+ 6ξφ�φ− ξRφ2 − 2m2φ2

= (6ξ − 1)∇µφ∇µφ+ (6ξ − 1)φ�φ−m2φ2 ,
(2.85)

where in the last step we have used the equation of motion (2.7). This last form is
useful since it makes transparent that the trace is null in the conformal limit (m = 0 and
ξ = 1/6), as it should be (in four space-time dimensions). An alternative form which
will be more helpful for our purposes and still makes apparent the previous property, is
obtained by trading φ�φ for Rφ2 as follows:

T cl. = (6ξ − 1)∇µφ∇µφ+ 2(3ξ − 1)m2φ2 + ξ (6ξ − 1)Rφ2

= (6ξ − 1) gµν∇µφ∇µφ+ 2(3ξ − 1)m2φ2 + 6

(
ξ − 1

6

)2

Rφ2 +

(
ξ − 1

6

)
Rφ2 ,

(2.86)
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where the last rearrangement is just for convenience. On examining the quantum fluc-
tuations (2.16) about the background field, we note that the vacuum expectation value
(VEV) of the trace T φµν with the quantum field φ, can only comprise terms quadratic (or,
more rigorously, bilinear under the coincidence limit) on its fluctuations δφ. Denoting by
〈T δφ〉 ≡ 〈0|T δφ|0〉 such a result, we find

〈
T δφ
〉

=

〈
(6ξ − 1) gµν∇µδφ∇µδφ+ 2(3ξ − 1)m2δφ2 + 6

(
ξ − 1

6

)2

Rδφ2 +

(
ξ − 1

6

)
Rδφ2

〉
.

(2.87)
This result for the vacuum trace (i.e. the vacuum expectation value of the trace) adopts
the same form as (2.86), with φ replaced by its fluctuating part δφ. By using the Fourier
decompositions of the field fluctuation δφ in the mode functions hk(τ) and also utilizing
the commutation relations between the creation and annihilation operators, i.e. we pro-
ceed along the lines we already followed in Sect. 2.2 with the components of the EMT,
we can rewrite Eq. (2.87) as follows:

〈
T δφ
〉

= −(6ξ − 1)

(2π)3a4

(
H2

ˆ
d3k|hk|2 +

ˆ
d3k|h′k|2 −H

ˆ
d3k (hkh

′∗
k + h′kh

∗
k)

)
+

(6ξ − 1)

a2

1

(2π)3a2

ˆ
d3kk2|hk|2 + 2(3ξ − 1)m2 1

(2π)3a2

ˆ
d3k|hk|2

+ 6

(
ξ − 1

6

)2

R
1

(2π)3a2

ˆ
d3k|hk|2 +

(
ξ − 1

6

)
R

1

(2π)3a2

ˆ
d3k|hk|2

=
1

(2π)3a2

ˆ
d3k

(
(6ξ − 1)

k2 −H2

a2
+ 2(3ξ − 1)m2 + 6

(
ξ − 1

6

)2

R +

(
ξ − 1

6

)
R

)
|hk|2

− (6ξ − 1)

a2

1

(2π)3a2

ˆ
d3k|h′k|2 +

(6ξ − 1)

a2

H
(2π)3a2

ˆ
d3k (hkh

′∗
k + h′kh

∗
k) .

(2.88)

The first equality makes it clearer the structure of the result. For instance, using the fact
that gµν∇µδφ∇µδφ = −a−2 ((δφ′)2 −∇2δφ) and taking into account that the expansion
of δφ′ = (δφ)′ involves the calculation of (d/dτ)(hk(τ)/a) = (h′k −Hhk)/a), it is easy to
understand the origin of the first line of Eq. (2.88), and similarly with the other terms.
Up to this point this result is generic and no approximation has been performed (apart
from using the adiabatic vacuum, on which the creation and annihilation operators act
upon). We must now expand the above VEV with respect to such vacuum state up to
the 6th-order. To this aim we employ the 6th-order adiabatic expansions of the mode
functions given in equations (2.30)-(2.32) in combination with the relations (2.25). On
substituting them in the above formula the result is a rather lengthy expression. Thanks
to the use of Mathematica [377] the computation can be performed exactly. It is better
to show the complete formula up to 6th order decomposed in some pieces, organized in
powers of (ξ − 1/6):

〈
T δφ
〉(0−6)

=
〈
T δφ
〉
A

+

(
ξ − 1

6

)〈
T δφ
〉
B

+

(
ξ − 1

6

)2 〈
T δφ
〉
C

+

(
ξ − 1

6

)3 〈
T δφ
〉
D

(2.89)

Each one of these pieces contain terms of adiabatic order from 0 to 6. Their expressions
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are:

〈
T δφ
〉
A

=
1

4π2a4

ˆ
dkk2

{
− a2M2

ωk
− a4M4

4ω5
k

(
2H2 +H′

)
+
a4M4

16ω7
k

(
8H4 + 24H2H′ + 6(H′)2 + 8HH′′ +H′′′

)
+

5a6M6

8ω7
k

H2 − 7a6M6

32ω9
k

(
28H4 + 36H2H′ + 3(H′)2 + 4HH′′

)
− a4M4

64ω9
k

(
32H6 + 240H4H′ + 60 (H′)3

+ 160H3H′′ + 20 (H′′)2

+ 30H′H′′′ + 360H2 (H′)2
+ 60H2H′′′ + 240HH′H′′

+ 12HH′′′′ +H′′′′′
)

+
3a6M6

128ω11
k

(
1264H6 + 1512H3H′′ + 23 (H′′)2

+ 228 (H′)3
+ 38H′H′′′

+ 940HH′H′′ + 18HH′′′′ + 4672H4H′ + 3276H2 (H′)2

+ 256H2H′′′
)

+
231a8M8

32ω11
k

(
2H4 +H′H2

)
− 1155a10M10H4

128ω13
k

− 11a8M8

128ω13
k

(
3152H6 + 61 (H′)3

+ 1116H3H′′ + 258HH′H′′

+ 2364H2 (H′)2
+ 75H2H′′′ + 6660H4H′

)
+

429a10M10H2

256ω15
k

(
492H4 + 572H2H′ + 83 (H′)2

+ 40HH′′
)

− 255255a12M12H4

512ω17
k

(
2H2 +H′

)
+

425425a14M14H6

1024ω19
k

+ ∆2

(
− a2

ωk
+
a4M2

2ω3
k

− a4M2 (2H2 +H′)
2ω5

k

+
5a6M4

8ω7
k

(
5H2 +H′

)
− 35a8M6

16ω9
k

H2

)
+ ∆4

(
a4

2ω3
k

− 3a6M2

8ω5
k

)}
,

(2.90)
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〈
T δφ
〉
B

=
1

4π2a4

ˆ
dkk2

{
6H′

ωk
+

3a2M2

ω3
k

(
H2 + 2H′

)
− 9a4M4H2

ω5
k

− a2M2

2ω5
k

(
3H′′′ + 12HH′′ + 9(H′)2 + 12H2H′

)
+

3a2M2

8ω7
k

(
32H4H′ + 96H2 (H′)2

+ 24 (H′)3
+ 40H3H′′ + 92HH′H′′

+ 13 (H′′)2
+ 20H2H′′′ + 18H′H′′′ + 6HH′′′′ +H′′′′′

)
+
a4M4

4ω7
k

(
210H4 + 390H2H′ + 45(H′)2 + 60HH′′

)
− a6M6

8ω9
k

(
1365H4 + 840H2H′

)
− 21a4M4

16ω9
k

(
152H6 + 57 (H′)3

+ 288H3H′′ + 7 (H′′)2

+ 12H′H′′′ + 232HH′H′′ + 6HH′′′ + 724H4H′

+ 642H2 (H′)2
+ 61H2H′′′

)
+

945a8M8H4

8ω11
k

+
63a6M6

32ω11
k

(
1332H6 + 40 (H′)3

+ 636H3H′′ + 172HH′H′′

+ 1359H2 (H′)2
+ 52H2H′′′ + 3276H4H′

)
− 693a8M8H2

64ω13
k

(
860H4 + 1117H2H′ + 180 (H′)2

+ 88HH′′
)

+
9009a10M10H4

128ω15
k

(
173H2 + 94H′

)
− 675675a12M12H6

128ω17
k

+ ∆2

(
3a2

ω3
k

(
H2 +H′

)
− 9a4M2

2ω5
k

(
5H2 + 2H′

)
+

45a6M4

2ω5
k

H2 +
45a6M4H2

2ω7
k

)}
,

(2.91)

〈
T δφ
〉
D

=
1

4π2a4

ˆ
dkk2

{
81

ω5
k

(
5H4H′ − (H′)3 − 4HH′H′′ − (H′′)2 −H′′′

(
H2 +H′

))
+

135a2M2

2ω7
k

(
H2 +H′

) (
H4 + 29H2H′ + 4 (H′)2

+ 12HH′′
)

− 2835a4M4H2

2ω9
k

(
H2 +H′

)2

}
.

(2.92)
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In the previous equation some terms of adiabatic order 6 have been omitted. Namely,
those which are proportional to O (H4) ∆2, O (H2) ∆4 and ∆6, where O(Hn) encompass
terms with n derivatives of the scale factor. In other words, the collection of all the
contributions of adiabatic order 6 or higher which are constructed from the product of
∆2 times other contributions of adiabatic order 4th such as ∆2H4, ∆2 (H′)2, ∆2H′′′, ∆4H2,
∆4H′ , ∆6, . . . We do not include these terms in our analysis because they vanish on-
shell, thereby playing no role in the renormalization of 〈T δφ〉 according to the subtraction
prescription we will provide below.

2.7.1 Trace renormalization

It is important to realize that the vacuum trace (2.88) is UV-divergent and therefore needs
renormalization. For instance, similar to the situation with Eq. (2.29), the integrals in
the first line of (2.88) are quadratically, quartically and logarithmically UV-divergent,
respectively, cf. Eqs. (2.30)-(2.32). We are going to proceed analogously to Sect. 2.4 with
〈T δφ〉 instead of 〈T δφµν 〉. We start by recognizing in the above expression Eq. (2.89) the
mentioned UV-divergent terms. All of them are of 4th adiabatic order or lower, exactly
as stated before Eq. (2.33):

〈
T δφ
〉

Div
≡ 1

4π2a4

ˆ
dkk2

{
− a2M2

ωk
+

(
ξ − 1

6

)(
6

ωk
H′ + 3a2M2

ω3
k

(
H2 + 2H′

))
+

(
ξ − 1

6

)2(
1

ω3
k

(
−54H2H′ + 9H′′′

))
− a2∆2

ωk

+
a4

2ω3
k

(
M2∆2 + ∆4

)
+

(
ξ − 1

6

)
3a2∆2

ω3
k

(
H2 +H′

)}
.

(2.93)

The remaining terms, given of course by 〈T δφ〉Non−Div ≡ 〈T δφ〉 − 〈T δφ〉Div, are finite. In
order to meet a well defined renormalized expression within the ARP we must perform
the subtraction of the trace of the EMT up to the 4th adiabatic order at an arbitrary
scale M . Let us emphasize that we are following the same prescription as for the 00th-
component of the EMT (cf. Sect. 2.3), namely the subtraction is performed in this case
over all of the terms of 〈T δφ〉ren(M), whether UV-divergent or UV-convergent:〈

T δφ
〉

ren
(M) =

〈
T δφ
〉

(m)−
〈
T δφ
〉(0−4)

(M) . (2.94)

This is of course the same subtraction prescription that we have already followed with
the components of the EMT, see (2.53). This overall subtraction is crucial to insure
the consistency of the procedure, namely to avoid that the net finite part that remains
in the subtractions turns out to be ambiguous. After the subtraction the integrations
left in that expression are finite and can be performed with the help of the formulas of
Appendix A, in Sect. A.1. Albeit the overall integration left is indeed convergent it is not
evident if one considers the isolated pieces. Following the method of Appendix B one can
either proceed by explicitly exhibiting the divergent parts of these isolated pieces (for
example through the poles in DR) and showing that they cancel out altogether, or one
can rearrange that expression to show that the integrals can be put in a convergent form
as done in previous sections, Eq. (2.56). If one wishes to follow the last procedure, the
following relations prove useful to show that upon performing the subtraction (2.94) on
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the integral (2.93) one finds manifestly convergent expressions:

− a2m2

ωk(m)
+

a2M2

ωk(M)
+

a2∆2

ωk(M)
− a4

2ω3
k(M)

(
M2∆2 + ∆4

)
= − a6m2∆4

2ω3
k(M)ωk(m) (ωk(m) + ωk(M))

(
1 +

ωk(M)

ωk(M) + ωk(m)

)
,

(2.95)

and

6H′

ωk(m)
+

3a2m2

ω3
k(m)

(H2 + 2H′)− 6H′

ωk(M)
− 3a2M2

ω3
k(M)

(H2 + 2H′)− 3a2∆2

ω3
k(M)

(H2 +H′)

= −H′
[

3a4∆4

ω2
k(m)ωk(M)(ωk(m) + ωk(M))

(
1

ωk(m)
+

1

ωk(m) + ωk(M)

)

− 3a4(m4 −M4)

ω2
k(M)ωk(m)

(
1

ω2
k(m)

+
1

ωk(M)(ωk(m) + ωk(M))

)]

−H2 3a4m2∆2

ω2
k(M)ωk(m)

(
1

ω2
k(m)

+
1

ωk(M)(ωk(m) + ωk(M))

)
.

(2.96)

As we can see after these rearrangements, the integration
´
dkk2 of these expressions

leads to convergent integrals. They all behave as ∼
´
dkk2/k5 ∼

´
dk/k3 in the UV

region, similarly as in the situation indicated after Eq. (2.56). The remaining task is to
compute these converging integrals, which is not completely trivial. With the help of
Mathematica [377] the final result can be expressed as in Eq. (2.97) of the main text.
Alternatively, if one performs the calculation in DR one may account for all the integrals
(whether UV-divergent or convergent) on using the master formula (A.25) of Sect. A.1.
Anyway, computational details are lengthy and involved. Fortunately, the final form of
the renormalized trace of the vacuum EMT, exact up to 6th adiabatic order, can be cast
in a relatively compact form as follows:
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〈
T δφ
〉(0−6)

ren
(M) =

1

32π2

(
3m4 − 4m2M2 +M4 − 2m2 ln

m2

M2

)
+

3
(
ξ − 1

6

)
8π2

(
m2 −M2 −m2 ln

m2

M2

)(
2H2 + Ḣ

)
− 9

8π2

(
ξ − 1

6

)2 (
12H2Ḣ + 4Ḣ2 + 7HḦ +

...
H
)

ln
m2

M2

+
1

10080π2m2

(
16H6 + 96H4Ḣ − 44Ḣ3 − 66H3Ḧ − 54Ḣ

...
H − 96H2Ḣ2

−93H2
...
H − 267HḢḦ − 30H

....
H − 36Ḧ2 − 3

.....
H
)

−
(
ξ − 1

6

)
80π2m2

(
4H6 + 30H4Ḣ − 44H2Ḣ2 − 18Ḣ3 − 22H3Ḧ − 103HḢḦ

− 14Ḧ2 − 31H2
...
H − 20Ḣ

...
H − 10H

....
H −

.....
H
)

+
3
(
ξ − 1

6

)2

16π2m2

(
48H4Ḣ − 16Ḣ3 − 8H3Ḧ − 14Ḧ2 − 20Ḣ

...
H − 16H2Ḣ2

− 29H2
...
H − 95HḢḦ − 10H

....
H −

.....
H
)

−
9
(
ξ − 1

6

)3

4π2m2

(
−8H6 + 60H4Ḣ + 11Ḣ3 + 42H3Ḧ + 45HḢḦ + 3Ḧ2 + 3Ḣ

...
H

+102H2Ḣ2 + 6H2
...
H
)
.

(2.97)

We have used once more the conversion relations between the derivatives of H with
respect to the conformal time and the derivatives of H with respect to the cosmic time
(see Appendix A) so as to express the final result in terms of H = H(t). Notice that the
first three lines of the above expression comprise the terms up to the 4th adiabatic order
while the remaining lines stand for the complete 6th-order contributions. The subsequent
contribution would be of adiabatic order 8th, which we are not interested in here.

2.7.2 Trace anomaly

Let us use our results to reproduce the famous trace or conformal anomaly of the energy-
momentum tensor in curved space-time. In our case it is obtained upon computing
Eq. (2.99) in the limit m → 0. While this is not the interesting limit for our purposes,
it serves nevertheless as a non-trivial calculational check. We know, at the classical level
the trace of the EMT vanishes in the massless (m = 0) conformal limit (ξ = 1/6). Indeed,
using equation (2.86) it is obvious that for (ξ = 1/6) we get the result

T cl. = −m2φ2 . (2.98)

Moreover, it is evident that limm→0 T
cl. = 0, and hence the classical trace of the EMT

vanishes in the massless conformal limit, a well-known result which corresponds to the
Noether identity following from the conformal invariance of the theory in that limit.
However, if we move to the part of the trace inherent to the quantum fluctuations, we
find from (2.87) that in the conformal limit the trace takes the form 〈T δφ〉 = −m2〈δφ2〉,
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still consistent with (2.98) since equations (2.87) and (2.86) are formally identical, as
we noted. We may naturally wonder if limm→0〈T δφ〉 = 0 holds good too. The naive
answer is yes, but the correct (and also well-known) answer is no. This is the origin of
the famous trace anomaly (also called conformal anomaly), see e.g. [284] and references
therein. Basically, what happens is that the quantum fluctuation 〈δφ2〉 involves terms
∼ 1/m2, which make the limit non-vanishing and independent of m. Setting ξ = 1/6 in
Eq. (2.88) we find the reduced result:

〈
T δφ
〉∣∣
ξ=1/6

= − m2

(2π)3a2

ˆ
d3k|hk|2 = − m2

2π2a2

ˆ
dkk2|hk|2 . (2.99)

The explicit form of the result remains non-vanishing for m → 0 and can be easily
extracted from Eq. (2.90) (see also Eq. (2.89)) above by setting ξ = 1/6 and M = m.
Notice that only the 4th adiabatic order terms contribute to the limit for m → 0 since
the 6th adiabatic order must decouple for m → ∞, so it cannot be independent of m.
Then, we have to pick out just the terms of 4th adiabatic order which are independent
of m under an appropriate change of integration variable (see below). These are the
following:

lim
m→0

〈
T δφ
〉∣∣∣

(ξ=1/6,M=m)
= lim

m→0

ˆ
dkk2

4π2a4

{
a4m4

16ω7
k

(
8H4 + 24H2H′ + 6(H′)2 + 8HH′′ +H′′′

)
− 7a6m6

32ω9
k

(
28H4 + 36H2H′ + 3(H′)2 + 4HH′′

)
+

231a8m8

32ω11
k

(
2H4 +H′H2

)
− 1155a10m10H4

128ω13
k

}
(2.100)

The involved integrals are actually independent of m. To see that, let us make the change
of variable k = amx in the last equation. Then, ωk =

√
k2 + a2m2 = am

√
1 + x2, and

we realize that the powers of m in the numerator of all the above terms (plus the three
added ones from dkk2) exactly cancel against those in the denominator, so the integrals
do not actually depend on m and hence the expression (2.100) cannot vanish for m→ 0:

lim
m→0

〈
T δφ
〉∣∣∣

(ξ=1/6,M=m)
= lim

m→0

ˆ ∞
0

dxx2

4π2a4

{
8H4 + 24H2H′ + 6 (H′)2 + 8HH′′ +H′′′

16 (1 + x2)7/2

− 7(28H4 + 36H2H′ + 3 (H′)2 + 4HH′′)
32 (1 + x2)9/2

+
231 (2H4 +H′H2)

32 (1 + x2)11/2
− 1155H4

128 (1 + x2)13/2

}
.

(2.101)

The result after some computations (with the help of the master integral formula in
Sect. A.1) reads

lim
m→0

〈
T δφ
〉∣∣∣

(ξ=1/6,M=m)
=

1

480π2a4

(
−4H2H′ +H′′′

)
=

1

480π2

(
ä2

a2
+

....
a

a
+ 3

ȧ
...
a

a2
− 3

ȧ2ä

a3

)
.

(2.102)
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The latter is the result associated to the finite part of the effective action. Since the above
calculation comes up from the unrenormalized part of the EMT, the trace anomaly is
just minus the above result since the vacuum trace of the total EMT derived from the full
effective action must be zero in the massless conformally coupled limit [284]. The latter
can be computed first in the conformal metric and subsequently expressed in a covariant
form, with the final result (for more details see the next section, particularly Sect. 2.8.7):

lim
m→0

〈
T δφ
〉∣∣∣anomaly

(ξ=1/6,M=m)
=

1

480π2a4

(
4H2H′ −H′′′

)
=

1

2880π2

[
RµνRµν −

1

3
R2 +�R

]
.

(2.103)
The last equation coincides with the standard covariant formulation of the anomaly,
except that the square of the Weyl tensor (see its definition in Appendix A) does not
show up here (while it appears for more general backgrounds [284]) since the FLRW
space-time is conformal to Minkowski space-time (i.e. it is a conformally flat space-time)
and hence the Weyl tensor vanishes identically.

2.8 Effective action of QFT in curved space-time

The effective action describing the quantum matter vacuum effects of QFT in curved
space-time, W , is defined through its relation to the VEV of the EMT [284–286]. In our
conventions,

〈T µν〉 =
2√
−g

δW

δgµν
⇐⇒ 〈Tµν〉 = − 2√

−g
δW

δgµν
. (2.104)

Such an effective action provides the quantum matter vacuum effects on top of the classical
action. These quantum effects can be computed through a loopwise expansion in powers
of ~. Thus, if the expansion is truncated at the one loop level it contains all terms of the
complete theory to order ~. It is well-known that at leading (one loop) order the value
of W for the free theory is essentially given by the trace of the logarithm of the inverse
of the Green’s function. More specifically:

W =
i~
2
Tr ln(−G−1

F ) = −i~
2
Tr ln(−GF )

=− i~
2

ˆ
d4x
√
−g lim

x→x′
ln [−GF (x, x′)] ≡

ˆ
d4x
√
−g LW ,

(2.105)

wherein in the second line we have indicated the precise computational meaning of the
trace in the space-time continuum. The last equality defines the Lagrangian density√
−g LW , and for simplicity we will call the piece LW the (effective) quantum vacuum

Lagrangian, as it accounts for the quantum vacuum effects from the quantized matter
fields (in our case just the scalar field φ). We retain ~ in the above expression just to
emphasize the aforementioned fact that the above formula describes a pure quantum effect
at one loop. From now on, however, we continue with ~ = 1 (as it has been done in most
of the dissertation). The above action gives the vacuum effects, i.e. the effects originating
from the matter vacuum-to-vacuum (‘bubble’) diagrams. These are closed loop diagrams
without external tails, thereby rendering the zero-point energy contributions (ZPE). Let
us note that, in the case of the free field theory based on the action (2.5), we have no
self-interactions of φ since there is no effective potential. In this situation we have one
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single bubble diagram and the one-loop effective action is the exact result since in the
absence of matter interactions we cannot have additional vertices to insert in the bubble
diagram to produce higher order loops.

The ZPE is usually discarded in flat space-time on account of normal ordering of the
operators (in the operator formulation) or by normalizing to one the generating functional
of the Green’s functions at zero value of the source (in the functional approach to QFT).
In the context of gravity, none of these arbitrary settings is permitted. Although we
have already performed the computation of the ZPE by directly computing the VEV of
the enery-momentum tensor, i.e. the LHS of Eq. (2.104), here we wish to dwell further
on these considerations in the context of the effective action approach by computing W
and then re-deriving the vacuum EMT using Eq. (2.104). While the procedure is well-
known [284–286,378], we wish to discuss the changes introduced in it when we compute
the effective action off-shell, as this is convenient to better understand the connection
with the previous sections, in which we subtracted the EMT off-shell.

In curved space-time, the Feynman propagator, GF , is the solution to the following
distributional differential equation [284–286]:(

�x −m2 − ξR(x)
)
GF (x, x′) = − (−g(x))−1/2 δ(n)(x− x′) , (2.106)

where δ(n) is the Dirac δ distribution in n space-time dimensions. For all practical pur-
poses in our work, n = 4. Notwithstanding we can keep n general at the moment since
DR will be employed for regularizing the UV divergences in the calculations presented in
this section. We now reformulate the above on-shell equation in an appropriate form as
follows: (

�x −M2 −∆2 − ξR(x)
)
GF (x, x′) = − (−g(x))−1/2 δ(n)(x− x′) . (2.107)

Here we have introduced a new scale, M , and also the important quantity:

∆2 ≡ m2 −M2 . (2.108)

Although we have already introduced ∆2 in the context of the WKB expansion (cf.
Sect. 2.3.1), we now endow it with a different perspective that may help to better under-
stand its meaning. The strategy behind Eq. (2.107) is to delve into the solution to the
propagator equation (and hence of the effective action) for an arbitrary mass scale M .
We can recover the on-shell case M = m by simply setting ∆ = 0. But if the quantity ∆2

is to be used to explore the off-shell regime it must be dealt with as being of adiabatic
order higher than M (which is of order zero). Hence ∆2 must be conceived as being of
adiabatic order 2, which is the next-to-leading order compatible with general covariance.
Taking into account that the term ξR in (2.107) is also of adiabatic order 2, the combina-
tion ∆2 + ξR can be treated as a block of adiabatic order 2. This adiabaticity assignment
for ∆2 is consistent with our former considerations in Sect. 2.3.1 and can be regarded as
an alternative justification for it. As long as the adiabaticity order of the terms must be
hierarchical respected, the fact that the mass scale M is of adiabatic order zero whereas
the special quantity ∆2 is of adiabatic order 2 is precisely what makes the solution to
the Green’s function equation (2.107) different from the solution to the original (on-shell)
equation (2.106). The adiabatic expansion of the solution to Eq. (2.107) will generate
new (∆2-dependent) terms which are genuinely distinct as compared to the adiabatic
expansion of the solution to (2.106). In what follows we work out such an expansion
of the Green’s function for a scalar field in curved space-time [284], with the purpose
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of identifying the (extra) ∆-dependent terms characteristic of our off-shell subtraction
procedure. See also the approach of [306], which is however slightly different as we will
comment later on.

To solve the Green’s function equation in curved space-time, Eq. (2.107), is not such a
simple task as to find the corresponding solution in the flat space-time case. Here we
summarize the well-known procedure [284–286, 378] putting special emphasis on high-
lighting the differences introduced by the parameter ∆2 ≡ m2 −M2, Eq. (2.108), which
is crucial in our off-shell approach, see also [305] for a related formulation.

2.8.1 Computing the effective Lagrangian from the heat-kernel

The solution to (2.107) can be obtained from the adiabatic expansion of the Green’s
function. The method is well-known [284,285] but is outlined here. A traditional method
to circumvent the difficulty of dealing with a curved space-time manifold has been to
expand the metric around Minkowski space. A suitable implementation of this idea is
to make a local expansion of the metric in Riemann normal coordinates, up to four
derivatives of the metric (hence up to fourth adiabatic order). In these coordinates, the
metric admits the following expansion up to 4th order [378]:

gµν(y) = ηµν −
1

3
Rµανβy

αyβ − 1

6
Rµανβ;γy

αyβyγ

+

[
− 1

20
Rµανβ;γδ +

2

45
RαµβλR

λ
γνδ

]
yαyβyγyδ + . . .

(2.109)

Here y stands for the difference between the space-time coordinate x and the source
point x′ taken as a reference point in normal coordinates, i.e. y = x− x′. The different
curvature tensors and its derivatives (for instance Rµανβ) that appear in the expansion
above are assumed to be computed at the source point x′ (i.e. at y = 0). The same is
true for the expansion of the determinant and the inverse of the metric. For simplicity it
is easier to define

GF (x, x′) = (−g(x))1/4GF (x, x′) . (2.110)

We can operate using the standard definition of curved space-time box operator:

�xGF (x, x′) = �x
(
(−g(x))−1/4GF (x, x′)

)
=

1

(−g(x))1/2
∂µ
(
(−g(x))1/2∂µ

(
(−g(x))−1/4GF (x, x′)

))
= (−g(x))1/4

[
3

16
GF (x, x′)

∂µ(−g(x))∂µ(−g(x))

(−g(x))2
− ∂µ (GF (x, x′)) ∂µ(−g(x))

4(−g(x))

− GF (x, x′)∂µ∂
µ(−g(x))

4(−g(x))
+
∂µ (GF (x, x′)) ∂µ(−g(x))

4(−g(x))

+ ∂µ∂
µ (GF (x, x′))

]
.

(2.111)

In order to continue, we need to know the expansion of the determinant of the metric as
well its inverse. For convenience, we define

gµν(y) = ηµν + hµν , (2.112)
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where the deviation hµν from flat space-time is written in powers of the normal coordinate
y according to (2.109). We denote it as follows:

hµν = h(1)
µν + h(2)

µν + h(3)
µν + h(4)

µν + · · · = h(2)
µν + h(3)

µν + h(4)
µν + · · · (2.113)

where h
(i)
µν stands for the ith-term in the indicated order of (2.109). The missing term in

the second equality is because (2.109) tells us that h
(1)
µν = 0. Such linear term is missing

because the expansion refers to a local inertial (Lorentz) frame, which is the tangent
Lorentz frame at the point x′ of the curved space-time manifold. This demands not only
gµν(0) = ηνν but also ∂αgµν(0) ≡ ∂gµν/∂y

α(0) = 0, both being satisfied at x′ (i.e. at
y = 0). From the above expansion of the metric we can Taylor expand the corresponding
determinant of it, g(y):

g(y) = g(0) +
∂g

∂gµν

∣∣∣∣∣
y=0

hµν +
1

2!

∂2g

∂gγλ∂gµν

∣∣∣∣∣
y=0

hµν hγλ + · · · , (2.114)

with g(0) = −1 and hµν given by (2.109). The derivatives of the determinant can be
computed as follows:

∂g

∂gµν
= g(y)gµν(y),

∂2g

∂gγλ∂gµν
= g(y)gγλ(y)gµν(y)− g(y)gµγ(y)gλν(y). (2.115)

Furthermore, the expansion of the inverse of the metric in powers of the normal coordinate
reads

gab = ηab − ηaµηbν hµν +
1

2!

(
ηaληµρηbν + ηaµηbληνρ

)
hµν hρλ + · · · (2.116)

Thus, the previous calculations can be expanded up to fourth order as follows:

g(y) =g(0) + hµν
∂g

∂gµν

∣∣∣∣∣
y=0

+
1

2!
h(2)
µν h

(2)
ρλ

∂2g

∂gρλ∂gµν

∣∣∣∣∣
y=0

+ · · ·

=g(0)−
(
h(2)
µν + h(3)

µν + h(4)
µν + · · ·

)
ηµν − 1

2!
h(2)
µν h

(2)
ρλ

(
ηρληµν − ηµρηλν

)
+ · · ·

(2.117)

and

gab = ηab − ηaµηbν
(
h(2)
µν + h(3)

µν + h(4)
µν

)
+

1

2!

(
ηaληµρηbν + ηaµηbληνρ

)
h(2)
µν h

(2)
ρλ + · · · (2.118)

Using (2.109) and the previous results we find, after some calculations:

g(y) = −1 +
1

3
Rαβy

αyβ +
1

6
Rαβ;γy

αyβyγ

+

[
1

20
Rαβ;γδ −

1

18
RαβRγδ +

1

90
Rµ

αβλR
λ
γδµ

]
yαyβyγyδ + · · ·

(2.119)

and

gab = ηab +
1

3
ηaµηbνRµανβy

αyβ +
1

6
ηaµηbνRµανβ;γy

αyβyγ

+

[
1

20
ηaµηbνRµανβ;γδ −

2

45
ηaµηbνRαµβλR

λ
γνδ

+
1

18

(
ηbνηakηλµ + ηaµηbkηλν

)
RµανβRkγλδ

]
yαyβyγyδ + · · ·

(2.120)
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It will be useful to consider the Fourier integrals and transforms

GF (x, x′) =
1

(2π)n

ˆ
dnkeikyGF (k), (2.121)

iηαβyβGF (x, x′) =
1

(2π)n

ˆ
dnkeiky

∂

∂kα
GF (k) , (2.122)

with ky ≡ ηαβyαkβ. Note that in normal coordinates we can raise and lower indices with
the Minkowskian metric, as it can be easily shown from (2.109). We organize the solution
in adiabatic orders, i.e. counting the number of time derivatives of the metric:

GF (k) = G(0)
F (k) + G(1)

F (k) + G(2)
F (k) + G(3)

F (k) + G(4)
F (k) + · · · (2.123)

Introducing this expansion in the propagator equation (2.107) one can generate a solution
of it in terms of an adiabatic series. The results, up to 4th-order, are

G(0)
F (k) =

1

k2 +M2
,

G(1)
F (k) = 0 ,

G(2)
F (k) = − 1

(k2 +M2)2

((
ξ − 1

6

)
R + ∆2

)
,

G(3)
F (k) = − i

2

(
ξ − 1

6

)
R;α

∂

∂kα

(
1

(k2 +M2)2

)
,

G(4)
F (k) =

1

3
Qαβ

∂2

∂kα∂kβ

(
1

(k2 +M2)2

)
+

[(
ξ − 1

6

)2

R2 + ∆4 + 2∆2R

(
ξ − 1

6

)
− 2

3
Qλ

λ

]
1

(k2 +M2)3
,

(2.124)

where we have defined

Qαβ ≡
1

2

(
ξ − 1

6

)
R;αβ+

1

120
R;αβ−

1

40
Rαβ;λ

λ+
1

30
Rα

λRλβ−
1

60
Rκ

α
λ
βRκλ−

1

60
Rλµκ

αRλµκβ.

(2.125)
As we know, of the two parameters M2 and ∆2 = m2 − M2 entering the propagator
equation (2.107), the former is of adiabatic order 0 whereas the latter is of adiabatic order

2. One can easily recognize that the terms G(i)
F (k) are of adiabatic orders i = 0, 1, 2, 3, 4,

respectively, and represent successive corrections to the propagator solution up to 4th-
order.

The obtained solution represents an adiabatic expansion of the propagator in momentum
space. Using Fourier integral formulas such as (2.121)-(2.122) we can transfer the solution
to position space. Integrating by parts and neglecting the boundary terms, we find:

GF (x, x′) =
1

(2π)n

ˆ
dnkeiky

{
â0(x, x′) + â1(x, x′)

(
− ∂

∂M2

)

+ â2(x, x′)

(
− ∂

∂M2

)2

+ · · ·

}(
1

k2 +M2

)
,

(2.126)
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with

â0(x, x′) = 1,

â1(x, x′) = −
(
ξ − 1

6

)
R−∆2 − 1

2

(
ξ − 1

6

)
R;αy

α − 1

3
Qαβy

αyβ,

â2(x, x′) =
1

2

(
ξ − 1

6

)2

R2 +
∆4

2
+ ∆2R

(
ξ − 1

6

)
− 1

3
Qλ

λ .

(2.127)

As we can see, these bilocal coefficients receive ∆2-dependent corrections in our case.
The quantity Qλ

λ in the last expression can be found explicitly by taking the trace of
(2.125):

Qλ
λ = − 1

60
RαβγδRαβγδ +

1

60
RαβRαβ +

1

2

(
ξ − 1

5

)
�R . (2.128)

Using the Euler’s density E and the square of the Weyl tensor (C2) – see Appendix A –
we can rewrite (2.128) as follows:

1

3
Qλ

λ = − 1

120
C2 +

1

360
E +

1

6

(
ξ − 1

5

)
�R , (2.129)

The pole in (2.126) must be shifted M2 → M2 − iε in order to have a time ordered
product. In addition, we employ Schwinger’s proper time representation [379, 380] of
the zeroth order propagator through the following identity and corresponding derivatives
with respect to the scale M :

(k2 +M2 − iε)−1 = i

ˆ ∞
0

dse−is(k
2+M2−iε),(

− ∂

∂M2

)j
(k2 +M2 − iε)−1 = i

ˆ ∞
0

(is)je−is(k
2+M2−iε)ds.

(2.130)

This is the basis for subsequently obtaining the DeWitt-Schwinger representation of the
sought-for Green’s function in curved space-time [329], originally derived by DeWitt [381]
following the work of Schwinger [379, 380]. Using the integral representations (2.130) in
the expression (2.126) we can interchange the order of integration and perform first the
following Gaussian integral in momentum space

ˆ
dnkeiky−isk

2

= i
( π
is

)n/2
e−σ(x,x′)/(2is) , (2.131)

where the characteristic function σ(x, x′) (sometimes called the world function [286]) is
one-half of the square of the geodesic distance between x and x′: σ(x, x′) = 1

2
yαy

α ≡
1
2

(x − x′)2. In this way the desired final form for the proper time representation of the
Green’s function (2.110) ensues:

GF (x, x′) =
iD1/2(x, x′)

(4π)n/2

ˆ ∞
0

ids
e−iM

2s−σ/(2is)

(is)n/2
[
â0(x, x′) + isâ1(x, x′) + (is)2â2(x, x′) + · · ·

]
,

(2.132)

where D(x, x′) ≡ − det (−∂µ∂ν′σ(x, x′)) /
√
g(x)g(x′) is the general expression for the

Van Vleck-Morette determinant, which reduces to D(x, x′) = (−g(x))−1/2 for the case
of normal coordinates. This, of course, agrees with the redefinition we made in (2.110).
One can easily recognize in (2.132) a generalized form of the fundamental solution of
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the heat (or diffusion) equation, i.e. its integral kernel. Once we have the proper time
representation of the propagator we may compute the effective Lagrangian LW associated
to the quantum vacuum effective action,

W = − i
2
Tr ln(−GF ) =

ˆ
d4x
√
−gLW . (2.133)

The trace in this expression is to be computed as specified in Eq. (2.105). Proceeding
now in the standard way [284] the effective Lagrangian in n space-time dimensions can
finally be put in the form of a DeWitt-Schwinger expansion at the arbitrary scale M :

LW (M) =
µ4−n

2(4π)n/2

∞∑
j=0

âj(x)

ˆ ∞
0

(is)j−1−n/2e−iM
2sids, (2.134)

where µ is ’t Hooft’s mass unit introduced by dimensional purposes (viz. in this case to
maintain LW with natural dimension 4 in n space-time dimensions) and âj(x) ≡ âj(x, x)
are the corresponding DeWitt-Schwinger coefficients, which appear after computing the
coincidence limits x → x′ (i.e. y → 0) of the bilocal coefficients (2.127). Upon imple-
menting this limit, the final DeWitt-Schwinger coefficients carry ∆2-dependent correction
terms, as follows:

â0(x) = 1 = a0(x),

â1(x) = −
(
ξ − 1

6

)
R−∆2 = a1(x)−∆2,

â2(x) =
1

2

(
ξ − 1

6

)2

R2 +
∆4

2
+ ∆2R

(
ξ − 1

6

)
− 1

3
Qλ

λ = a2(x) +
∆4

2
+ ∆2R

(
ξ − 1

6

)
,

(2.135)

where include the zero, second and fourth adiabatic orders, respectively. The hatless aj(x)
represent the ordinary DeWitt-Schwinger coefficients when ∆ = 0 (on-shell expansion),

a0(x) = 1,

a1(x) = −
(
ξ − 1

6

)
R,

a2(x) =
1

2

(
ξ − 1

6

)2

R2 − 1

3
Qλ

λ .

(2.136)

Expressed in this way we can more clearly see what is the effect of performing the ex-
pansion off-shell. Computing the integral involved in (2.134) with the help of the Euler
Γ function, we find

LW =
µ4−n

2(4π)n/2

∞∑
j=0

âj(x)

ˆ ∞
0

(is)j−1−n/2e−iM
2sids

=
1

2(4π)2+ ε
2

(
M

µ

)ε ∞∑
j=0

âj(x)M4−2jΓ
(
j − 2− ε

2

)
,

(2.137)

where ε ≡ n− 4 and the limit ε→ 0 is understood; µ is ’t Hooft’s mass unit to keep the
effective Lagrangian with natural dimension +4 of energy in n space-time dimensions.
The final results will not depend on it. The sum is over j = 0, 1, 2, ... and includes the
even adiabatic orders only.
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2.8.2 Renormalization of effective Lagrangian of QFT in curved space-time

We wish to pay special attention to the modification introduced by the presence of the
extra terms ∆2 on top of the usual procedure. The final result (2.137) allows us to
determine the effective Lagrangian defined in Eq. (2.105) and express it in the form of
an asymptotic DeWitt-Schwinger expansion [329]. We have explicitly checked that one
can obtain the same results with the subtraction procedure used to renormalize the EMT
in the previous sections. The effective Lagrangian (2.137) and corresponding effective
action are UV-divergent quantities since the Euler’s Γ-function is divergent for j = 0, 2, 4
in n = 4 space-time dimensions.

Let us now consider some renormalization issues. Our starting point was the Einstein-
Hilbert action (2.137) together with the quantum matter action (2.2). The former is
associated to the Lagrangian

LEH = −ρΛ +
1

16πG
R = −ρΛ +

1

2
M2

PlR , (2.138)

which represents the starting (classical) vacuum action. We have nevertheless observed in
our discussion on the EMT renormalization in Sect. 2.4 that, even though we did not start
with higher derivative (HD) terms in the action, such as R2(x), Rµν(x)Rµν(x), . . . these
purely geometric structures are generated by the quantum fluctuations of the matter field,
which probe the short distances around x. Therefore, renormalizability of QFT in the
FLRW background requires that the more general classical action comprises also these
HD geometric structures. Let us write the extended classical gravitational Lagrangian
for the vacuum with all the necessary terms in two alternative ways as follows:

Lcl.
G = LEH + LHD =− ρΛ +

1

2
M2

PlR + αQ
Qλ

λ

3
+ α2R

2

=− ρΛ +
1

2
M2

PlR + α1C
2 + α2R

2 + α3E + α4�R ,
(2.139)

in which the notation in Lcl.
G indicates that this is the classical Lagrangian part of the

gravitational field, to which we still have to add the quantum vacuum effects. Coefficients
αi for i = 1, 3, 4 in the second expression can be easily related with the coefficient αQ if
we take into account that the combined HD structure Qλ

λ can be phrased in terms of
the square of the Weyl tensor (C2), the Euler density (E) and a total derivative term as
follows (cf. Appendix A):

1

3
Qλ

λ = − 1

120
C2 +

1

360
E +

1

6

(
ξ − 1

5

)
�R . (2.140)

These HD terms did not appear when we renormalized the EMT in Sect.2.4 since we used
a restricted generalization of Einstein’s equations, viz. Eq. (2.49), which is sufficiently
general for the FLRW space-time. The three terms (2.140) appear in a natural way in
the effective action approach since they are involved as part of the DeWitt-Schwinger
coefficient a2 of Eq.(2.136), so we have just computed them within the natural flow of
the effective action procedure, but none of these terms actually plays any role for FLRW
space-time since the latter in conformal to the Minkowski metric and hence the Weyl
tensor vanishes identically. The other two are also irrelevant at the level of the action
since E leads to a topological invariant in n = 4 dimensions, the Gauss-Bonnet term G
(cf. Appendix A), and �R is a total derivative. We have carried along these HD terms
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up to this point just for completeness, but in effect the only HD term which stays in
the FLRW background is R2, as we warned in Appendix 2.4. We will nonetheless still
keep these terms in the next section so as to close our discussion on the effective action
method in a more complete way.

Starting from LW and following a procedure similar to our definition of adiabatically
renormalized EMT, see Eq. (2.53), we define now the renormalized quantum vacuum
Lagrangian at the scale M . It is obtained by subtracting the divergent adiabatic orders
at this scale from the on-shell value LW (m):

Lren
W (M) = LW (m)− L(0−4)

W (M) ≡ LW (m)− Ldiv(M) , (2.141)

where Ldiv(M) ≡ L
(0−4)
W (M) is the divergent part of Eq. (2.137); by this we mean that

Ldiv is that part of LW involving only the terms j = 0, 1, 2, i.e. up to fourth adiabatic
order. Of course both LW (m) and Ldiv(M) are divergent, but the former is assumed to
involve the full DeWitt-Schwinger expansion at the scale m, whilst the latter stops the
expansion at j = 2 and is evaluated at a different scale M . This subtraction prescription
for the quantum vacuum Lagrangian is the exact analogue of the off-shell ARP that we
used for the EMT and it is sufficient to make Lren

W (M) a finite quantity. The above
renormalized Lagrangian describes the vacuum effects from the quantum matter (in this
case, the scalar field φ) and it must be added up to the classical vacuum Lagrangian so
as to form the total vacuum Lagrangian. We do this in the next section.

Upon expanding Euler’s Γ-function in the limit ε → 0 and using the explicit form of
the modified DeWitt-Schwinger coefficients (2.135), we find after a relatively lengthy but
straightforward calculation the following result:

Lren
W (M) = δρΛ(M)− 1

2
δM2

Pl(M)R− δαQ(M)
Qλ

λ

3
− δα2(M)R2 + · · · , (2.142)

where the dots stand for subleading contributions which decouple at large m, and

δρΛ(M) =
1

8 (4π)2

(
M4 − 4m2M2 + 3m4 − 2m4 ln

m2

M2

)
,

δM2
Pl(M) =

(
ξ − 1

6

)
(4π)2

(
M2 −m2 +m2 ln

m2

M2

)
,

δαQ(M) = − 1

2(4π)2
ln
m2

M2
,

δα2(M) =

(
ξ − 1

6

)2

4(4π)2
ln
m2

M2
.

(2.143)

As promised, the dependence on µ fully cancelled out along with the poles at n = 4. We
have used DR to verify the cancellation of the UV-divergences (similarly to the procedure
used in the Appendix B). We emphasize that the use of DR is auxiliary here, it can be done
with other regulators, the final result has no memory of this intermediate step. The chief
difference here is not so much about regularization but about renormalization 14. The
quantities (2.143) are finite renormalization effects associated to the quantum vacuum
Lagrangian LW .

14We emphasize that the subtracted term Ldiv(M) at the scale M in (2.156) involves not just the UV-
divergences but the full expression obtained from the sum of the first three terms (j = 0, 1, 2) in the DeWitt-
Schwinger expansion (2.137), including their finite parts (cf. Eq. (2.154)), hence fully in consonance with the
procedure Eq. (2.53) utilized for the EMT. This renormalization prescription is, of course, entirely different from
MS renormalization.
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2.8.3 Running couplings

We are now ready to modify the classical or background vacuum Lagrangian (2.139) by
including the quantum matter effects generated in our scalar field model and in this way
to track the shift received by each parameter as a function of the renormalization point
M . This will allow us to derive the running couplings. The full effective Lagrangian from
which we can extract physical information up to one loop (actually the complete result
at the quantum level, in the absence of scalar self-interactions) is obtained by adding the
extended classical Lagrangian of gravity plus the (renormalized) quantum effects, i.e. the
sum of equations (2.139) and (2.142):

Leff = Lcl.
G (M) + Lren

W (M) = −ρΛ(M) +
1

2
M2

Pl(M)R + α1(M)C2 + α2(M)R2 + α3(M)E

+ α4(M)�R + δρΛ(M)− 1

2
δM2

Pl(M)R− δαQ(M)
Qλ

λ

3
− δα2(M)R2 + · · ·

(2.144)

where the dots represent the subleading finite pieces emerging from the DeWitt-Schwinger
expansion (2.137) presented earlier15. Notice that the couplings of the classical part are
dependent on the renormalization scale M since the above expression represents the full
effective renormalized Lagrangian of the theory. Overall it is independent of M (i.e. RG-
invariant), but each coupling ‘runs’ (scales) with M even though there is a net internal
compensation among all the scaling dependencies. It is convenient to rearrange (2.144)
as follows:

Leff = [−ρΛ(M) + δρΛ(M)] +
1

2

[
M2

Pl(M)− δM2
Pl(M)

]
R

+

[
α1(M) +

1

120
δαQ(M)

]
C2 +

[
α3(M)− 1

360
δαQ(M)

]
E

+

[
α4(M)− 1

6

(
ξ − 1

5

)
δαQ(M)

]
�R + [α2(M)− δα2(M)]R2 + . . .

(2.145)

where we have used Eq. (2.140). As previously remarked, the full effective Lagrangian
Leff must be independent of the renormalization point M . It follows that each one of the
quantities in the square brackets of (2.145) must be independent of the scale M , and this
allows us to readily compute the β-functions for each of the couplings:

βρΛ
(M) =

1

2(4π)2
(M2 −m2)2 (2.146)

βM2
Pl

(M) =

(
ξ − 1

6

)
8π2

(M2 −m2) (2.147)

and

βα1 = − 1

120(4π)2
βα2 = −

(
ξ − 1

6

)2

2(4π)2
(2.148)

15We have not computed these terms in the effective action formalism (in contrast to the calculation that
we have previously performed within the direct EMT approach, where we have reached up to the (finite) 6th
adiabatic order. Here we just want to cross-check the core design of the renormalization procedure within the
effective action method and confirm that we obtain the same results.
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βα3 =
1

360(4π)2
βα4 =

ξ − 1
5

6(4π)2
. (2.149)

We have used the explicit expressions (2.143) for the calculation of the β-functions
through

βi = M
∂λi(M)

∂M
(2.150)

for each of the couplings (λi = ρΛ,M
2
Pl, α1, ..., α4) present in the effective lagrangian 16.

Let us note that in our approach the decoupling effects of physical quantities, such as the
vacuum energy density itself, satisfy the Appelquist-Carazzone theorem [335]. This is
apparent in our 6th-order formulas, in the limit of large m, see e.g. Eq. (2.57). This is not
to be expected for the couplings in general, as they do not have the same level of physical
significance. For example, we know that ρΛ(M), which satisfies the first renormalization
group equation (RGE) above, is a formal quantity which does not appear in the physical
results. Only the vacuum EMT has physical meaning, and in particular the VED, so
there is no need in general for the couplings to satisfy manifest decoupling.

It is straightforward to integrate the corresponding RGE’s and derive the explicit running
of the couplings with the renormalization point M , assuming that they are defined at
some initial value M0:

ρΛ(M) = ρΛ(M0) +
1

8(4π)2

(
M4 −M4

0 − 4m2(M2 −M2
0 ) + 2m4 ln

M2

M2
0

)
,

M2
Pl(M) = M2

Pl(M0) +

(
ξ − 1

6

)
(4π)2

(
M2 −M2

0 −m2 ln
M2

M2
0

)
,

α1(M) = α1(M0)− 1

240(4π)2
ln
M2

M2
0

,

α2(M) = α2(M0)−
(
ξ − 1

6

)2

4(4π)2
ln
M2

M2
0

,

α3(M) = α3(M0) +
1

720(4π)2
ln
M2

M2
0

,

α4(M) = α4(M0) +
ξ − 1

5

12(4π)2
ln
M2

M2
0

.

(2.151)

The equation for the running (reduced) Planck mass squared M2
Pl(M) = 1/ (8πG(M))

given above can also be cast in terms of the running Newton’s constant:

G(M) =
G(M0)

1 +
(ξ− 1

6)
2π

G(M0)
(
M2 −M2

0 −m2 ln M2

M2
0

) . (2.152)

The previous equation can be related to the physical running of the gravitational coupling
during the cosmological expansion. In Sect. 3.2, in the next chapter, we further dwell upon
the running of the gravitational coupling in combination with that of the VED, and will
come back to Eq. (2.152).

16Related formulas have been considered in [306]. Let us, however, note that they differ from ours in that we
consider the scale M as the primary off-shell quantity from which to parameterize the quantum effects, rather
than the difference ∆2 (called −µ2 in their case).
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We can see that the first two Renormalization Group Equations (RGE) solutions and
the fourth one in (2.151) are nothing but equations (2.70), (2.71) and (2.72), respectively
(with α2 = α/2) which we found in the process of renormalization of the EMT. Overall we
have met at this point a rather non-trivial consistency check between the renormalization
procedure of the EMT from which we started our calculation in Sect. 2.4, and the alter-
native approach based on the renormalization of the effective action (and corresponding
effective Lagrangian), which we have undertaken in this section 17. In other words, it
confirms that the renormalized couplings that we have now computed from the effective
Lagrangian method are indeed the same parameters which appeared in the renormalized
EMT following from the original prescription (2.53) and performing the corresponding
subtraction δX(M,M0) = X(M)−X(M0) in the renormalized Einstein’s equations (2.59).
In a similar way, we can easily check that the relations (2.143) can be recovered now as
a particular case of the above running solutions for the case M0 = m upon defining
δX(M) ≡ δX(M,m) = X(M) −X(m) for each of the parameters X = ρΛ,M

2
Pl, αi. For

instance, using the first relation in (2.151) we find

δρΛ(M) = ρΛ(M)− ρΛ(m) =
1

8 (4π)2

(
M4 − 4m2M2 + 3m4 − 2m4 ln

m2

M2

)
, (2.153)

which matches the first one of (2.143). Similarly for the other parameters. Let us finally
pause at this point to observe that there is a long way mediating between these two
approaches, namely, the one based on tackling a direct renormalization of the EMT by
means of the adiabatic procedure and the other based on computing the effective action
from the DeWitt-Schwinger expansion. However different they are, they appear to be fully
consistent. This fact is, of course, very much welcome as it demonstrates the cogency
and congruence of the results obtained in our calculation. The touchstone of such a
consistency can be made even more transparent if we compute the functional derivative
of the action associated to the renormalized vacuum effective Lagrangian with respect to
the metric, i.e. if we show how to recover the renormalized EMT obtained in previous
sections using the effective action itself, Eq. (2.104).

2.8.4 Renormalizing the effective action

The effective vacuum action W and corresponding Lagrangian LW obtained in the pre-
vious section shows up in the form of a DeWitt-Schwinger expansion. However, it is
divergent since the first terms j = 0, 1, 2 are UV-divergent and include the contributions
up to 4th adiabatic order. This so-called divergent part of LW at the scale M is defined
through

Ldiv(M) ≡ L
(0−4)
W (M) = lim

ε→0

1

2(4π)2+ε

(
M

µ

)ε 2∑
j=0

âj(x)M4−2jΓ
(
j − 2− ε

2

)
. (2.154)

The divergent character is apparent since the Γ function has poles for j ≤ 2 in the limit
ε → 0. Therefore it requires renormalization. Since we are tracking the poles through

17Although the RGEs for α1, α3 and α4 were not discussed in Sect. 2.4, we have derived them en route in the
effective action approach only for completeness.
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DR, it is convenient to expand Ldiv for ε→ 0. We find

Ldiv(M) =
1

2 (4π)2

(
1 +

ε

2
ln

M2

4πµ2
+O

(
ε2
))[

â0(x)M4

(
−1

ε
− γE

2
+

3

4
+O (ε)

)

+ â1(x)M2

(
2

ε
+ γE − 1 +O (ε)

)
+ â2(x)

(
−2

ε
− γE +O (ε)

)]

=
1

2 (4π)2

[
1

ε

(
−â0(x)M4 + 2â1(x)M2 − 2â2(x)

)
+ γE

(
−1

2
â0(x)M4 + â1(x)M2 − â2(x)

)

+ â0(x)M4

(
3

4
− 1

2
ln

M2

4πµ2

)
+ â1(x)M2

(
−1 + ln

M2

4πµ2

)
− â2(x) ln

M2

4πµ2

]
.

(2.155)

To perform the renormalization, we could generate UV-divergent counterterms by split-
ting the parameters of the extended classical Lagrangian (including the HD terms) into
a renormalized parameter plus an UV-divergent counterterm – cf. Eq. (2.50) – and then
cancel the divergences of LW leaving some arbitrary finite parts. However, we do not
want to use this procedure (MS scheme or variations thereof) since it does not produce
acceptable results in this context. Instead, we wish to renormalize the effective action W
and corresponding effective Lagrangian in the same way as we did with the EMT, namely
by performing a subtraction at another scale. Thus, we define the renormalized vacuum
effective Lagrangian LW at the scale M through the subtraction prescription

Lren
W (M) = LW (m)− Ldiv(M), (2.156)

with Ldiv(M) the divergent part of LW , as defined in (2.154)-(2.155). The latter involves
terms only up to adiabatic order 4, precisely as in the case of the definition of the
renormalized EMT – see Eq. (2.53). Thus, Lren

W (M) is a finite quantity. Notice that
Lren
W (m) = LW (m) − Ldiv(m) is also finite, of course: it is zero if LW (m) is evaluated

up to j = 2 but is non-vanishing if LW (m) is evaluated beyond j = 2 (i.e. beyond 4th
adiabatic order).

To exhibit the finiteness of the renormalized Lagrangian, let us compute Lren
W (M) explic-

itly. Notice that

Lren
W (M) = LW (m)− Ldiv(M) = Ldiv(m)− Ldiv(M) + · · · (2.157)

The dots in this expression represent finite subleading terms (viz. higher than 4th adi-
abatic order) emerging from the DeWitt-Schwinger expansion (2.137) of LW (m). These
subleading terms decouple for large values of the mass m of the scalar field, as can be
easily seen from Eq. (2.137) for j > 2 and M = m. Thus, if we are just interested in
tracking the cancellation of divergences and the finite parts left in the process, it is enough
to compute Ldiv(m) − Ldiv(M). For the sake of convenience concerning other formulas
used in the main text, it will be more useful to first perform the subtraction between two
arbitrary scales M and M0:

Lren
W (M)− Lren

W (M0) = Ldiv(M0)− Ldiv(M) . (2.158)

Although the calculation of this quantity is straightforward it is a bit laborious, as there
are many terms. In particular, one has to use the explicit form of the modified DeWitt-
Schwinger coefficients (2.135). Notice that these coefficients depend on the quantity
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∆2(M) = m2−M2 when we perform the calculation of Ldiv(M), whereas they depend on
∆2(M0) = m2−M2

0 when we compute Ldiv(M0). All these terms must be tracked carefully,
as they are responsible for the precise expressions (2.160) quoted in the final result given
below. Most important, one has to check that the poles cancel in the subtraction and that
no trace is left of the arbitrary mass unit µ either. Some terms can be shown immediately
to vanish in this subtraction, e.g. it is easy to check that the overall coefficient of γE
in (2.155), namely −1

2
â0(x)M4 + â1(x)M2 − â2(x), does not depend on M and therefore

this term will automatically cancel in the subtraction. Other terms require more work
and one has to go through all the details. After some tedious algebra one finds that the
poles which appear in the limit ε → 0 indeed cancel along with the dependence on the
arbitrary mass unit µ, and the final result can be cast in the compact form

Ldiv(M0)− Ldiv(M) = δρΛ(m,M,M0)− 1

2
δM2

Pl(m,M,M0)R

− δαQ(M,M0)
Qλ

λ

3
− δα2(M,M0)R2 ,

(2.159)

where the various contributions read as follows:

δρΛ(m,M,M0) =
1

8 (4π)2

(
M4 −M4

0 − 4m2M2 + 4m2M2
0 + 2m4 ln

M2

M2
0

)
,

δM2
Pl(m,M,M0) =

(
ξ − 1

6

)
(4π)2

(
M2 −M2

0 −m2 ln
M2

M2
0

)
,

δαQ(M,M0) =
1

2(4π)2
ln
M2

M2
0

,

δα2(M,M0) = −
(
ξ − 1

6

)2

4(4π)2
ln
M2

M2
0

.

(2.160)

In the light of these general subtraction formulas we may now evaluate the leading terms
involved in our original expression (2.157) by just setting M0 = m in the above equations.
We can easily check that the result is precisely given by the equations (2.70), (2.71).

In the original renormalization approach to the EMT some of these quantum effects
appeared as parameter differences computed at the two scales under consideration, i. e.
δX ≡ X(M) − X(M0), for the various couplings X and using the renormalized form
of Einstein’s equations (2.59), see Sect.2.5. This is because we renormalized the EMT
following the subtraction prescription defined in Eq. (2.53). We can indeed recognize the
first two expressions in (2.160) as being identical to the parameter subtractions (2.70)-
(2.71). The third and fourth expressions in (2.160) are related to the coefficients of the
HD terms Qλ

λ and R2. In particular, δα2(M,M0) is just one half of δα given in Eq. (2.72).
The factor of 1/2 is because the parameter α2 in the Lagrangian (2.139) is related to the
parameter α in the generalized Einstein’s equations (2.49) through α2 = α/2. Recall that

α is the coefficient of the HD tensor (1)Hµν in these equations, and that tensor is given
by the functional derivative of R2 with respect to the metric, see Appendix A.

At this point we have fully justified the important Eq.(2.142), which gives the renor-
malized effective Lagrangian of vacuum. From here we may construct the full effective
Lagrangian (2.145) and reproduce the remaining considerations. In particular, we can
obtain the coefficients of the β-functions for the various couplings (2.146)-(2.149) and
solve the corresponding renormalization group equations, with the result (2.151).
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2.8.5 Full consistency between the EMT and effective action results

We take up the renormalized quantum vacuum Lagrangian defined in the previous section,
Eq. (2.156). The effective action associated to such Lagrangian is

Wren(M) ≡
ˆ
d4x
√
−g Lren

W (M) =

ˆ
d4x
√
−g (LW (m)− Ldiv(M)) . (2.161)

Let us now show that with this action we can recompute the renormalized vacuum EMT
that we have previously found in Sect. 2.4.1. In fact, on inserting Eq. (2.142) in it we find

Wren(M) =

ˆ
d4x
√
−g
(
δρΛ(M)− 1

2
δM2

Pl(M)R− δαQ(M)
Qλ

λ

3
− δα2(M)R2

)
.

(2.162)

The renormalized vacuum EMT now follows from〈
T δφµν
〉

ren
(M) = − 2√

−g
δWren(M)

δgµν
. (2.163)

Using (2.162) on the RHS of (2.163) we may compute the metric functional variation. In
performing the variation of the HD term 1

3
Qλ

λ as given in Eq. (2.140), we can use some
of the formulas quoted in Appendix A. In particular, we drop the contribution from the
Euler density E (since the metric functional variation of the Gauss-Bonnet term G is
exactly zero in n = 4 space-time dimensions) and of course that of the total derivative
term �R. Therefore, using the mentioned appendix,

1√
−g

δ
(
Qλ

λ/3
)

δgµν
=

1√
−g

δ

δgµν

(
− 1

120
C2

)
= − 1

60

(
(2)Hµν −

1

3
(1)Hµν

)
. (2.164)

With this proviso, the sought-for metric functional variation can be easily performed and
(2.163) can be written in the compact form〈

T δφµν
〉

ren
(M) = δM2

Pl(M)Gµν + δρΛ(M)gµν + δα(M)(1)Hµν

− 1

30
δαQ(M)

(
(2)Hµν −

1

3
(1)Hµν

)
,

(2.165)

where we have used the fact that 2δα2 = δα and we recall that the coefficients of the
various tensor expressions on the RHS of the previous formula are given explicitly by
Eqs. (2.143). For conformally flat space-times (which comprise, in particular, all the

FLRW backgrounds) the two HD tensors (1)Hµν and (2)Hµν are related in the form (2)Hµν =
1
3

(1)Hµν – cf. Eq. (A.14) of Appendix A for more details18. As a consequence, the previous
equation simplifies into〈

T δφµν
〉

ren
(M) =δρΛ(M)gµν + δM2

Pl(M)Gµν + δα(M)(1)Hµν . (2.166)

18The notations ‘(1)’ and ‘(2)’ as upper indices on the left for these HD tensors is standard [284], it has nothing
to do with adiabatic orders.
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If we take the 00th-component of this result and use the formulas given in Appendix A
we find 〈

T δφ00

〉
ren

(M) = δρΛ(M)g00 + δM2
Pl(M)G00 + δα(M)(1)H00

=
a2

128π2

(
−M4 + 4m2M2 − 3m4 + 2m4 ln

m2

M2

)
−
(
ξ − 1

6

)
3H2

16π2

(
m2 −M2 −m2 ln

m2

M2

)
+

(
ξ − 1

6

)2
9 (2H′′H−H′2 − 3H4)

16π2a2
ln
m2

M2
+ . . .

(2.167)

The upshot is that we are led once more to Eq. (2.56), as it should be. The corresponding
result for the VED obtains now from (2.167) using the relation (2.61). In this way we
reach again the final result (2.65) and hence we have demonstrated the perfect consistency
between the two renormalization procedures.

We can perform a similar computation to find the scaling evolution of the EMT between
the renormalization point M and M0. One option is to use Eq. (2.167) to reproduce the
results we have already found in Sect. 2.5. But we may also repeat the above procedure
ab initio, now using the subtracted effective action at the two mentioned scales:

Wren(M)−Wren(M0) =

ˆ
d4x
√
−g (Lren

W (M)− Lren
W (M0))

=

ˆ
d4x
√
−g (Ldiv(M0)− Ldiv(M))

=

ˆ
d4x
√
−g
(
δρΛ(m,M,M0)− 1

2
δM2

Pl(m,M,M0)R

− δαQ(M,M0)
Qλ

λ

3
− δα2(M,M0)R2

)
.

(2.168)

Here we have used Eq. (2.159) and we note that the coefficients of the various tensor
expressions on the RHS of the previous formula are not the same as in (2.162) but are
given explicitly in Eq. (2.160). The difference of vacuum EMT values at the two scales
reads

δ
〈
T δφµν
〉
≡
〈
T δφµν
〉

ren
(M)−

〈
T δφµν
〉

ren
(M0) = − 2√

−g
δ

δgµν
(Wren(M)−Wren(M0)) . (2.169)

and upon computing the metric functional variation we find

δ
〈
T δφµν
〉

= δM2
Pl(m,M.M0)Gµν + δρΛ(m,M,M0)gµν + δα(M,M0)(1)Hµν

− 1

30
δαQ(M,M0)

(
(2)Hµν −

1

3
(1)Hµν

)
.

(2.170)

For conformally flat space-times we can repeat the same argument as given above and
the above result boils down to

δ
〈
T δφµν
〉

= δM2
Pl(m,M,M0)Gµν + δρΛ(m,M,M0)gµν + δα(M,M0)(1)Hµν . (2.171)

The obtained expression is just the subtracted form of Eq. (2.59) at the two scales M
and M0. Thus, if we take the 00th-component of this result and use the formulas given

124



in Appendix A to perform the identifications on both sides and the definition of VED we
encounter once more the important Eq. (2.74) which gives the smooth evolution of the
VED between the two scales with the total absence of quartic mass contributions. This
corroborates the perfect consistency between the two approaches. Having found the very
same renormalization results with the effective action formalism, all of the discussions
made in Sec. 2.5 can be iterated exactly as they are there.

2.8.6 Renormalization group equation for the VED

To compute the RGE for ρvac(M) we have to take into account that only up to the 4th
adiabatic order carry M -dependence since the higher orders are finite and hence need not
be subtracted. It follows that the exact β-function for the VED can be obtained from
Eq. (2.65) as follows:

βρvac = M
∂ρvac(M)

∂M
= βρΛ

+
1

128π2

(
−4M4 + 8m2M2 − 4m4

)
−
(
ξ − 1

6

)
3H2

16π2a2

(
−2M2 + 2m2

)
+

(
ξ − 1

6

)2
9 (2H′′H−H′2 − 3H4)

16π2a4
(−2)

=

(
ξ − 1

6

)
3H2

8π2a2

(
M2 −m2

)
+

(
ξ − 1

6

)2
9 (H′2 − 2H′′H + 3H4)

8π2a4
.

(2.172)

In the first line we have used the β-function for ρΛ(M) that we have just obtained in
(2.146). It is seen that βρΛ

exactly cancels against the contribution from the second term
on the RHS of the above equation. This cancellation is most welcome, as it leaves the
β-function of the VED completely free from quartic mass contributions. It follows that
the running of ρvac(M) rests only on the presence of quadratic mass scales in the final
result. Integrating the above RGE we find

ρvac(M) = ρvac(M0) +

(
ξ − 1

6

)
3H2

16π2a2

(
M2 −M2

0 −m2 ln
M2

M2
0

)
+

(
ξ − 1

6

)2
9

16π2a4

(
H′2 − 2H′′H + 3H4

)
ln
M2

M2
0

.

(2.173)

Thus we have recovered the expected result (2.74), which gives the evolution of the
VED with the scale M , starting from another scale M0, and such relation involves only
quadratic mass scales which in leading order are highly tempered by the presence of
quadratic powers of the Hubble rate. In other words, rather than the hard ∼ m4 behavior
we obtain the much softened one ∼ m2H2.

The following observation is now in order. As we warned in Sect. 2.5, the renormalization
of the EMT and in particular of the VED involves the renormalization of formal quantities
which do not ever play a role in the physical interpretation of the VED. Such is the case
of the quantity (2.70), which carries the quartic powers of the masses. This quantity
cancels exactly in the important expression (2.74), which physically relates the VED at
the two scales M and M0 and hence no dependence is left of the unwanted terms ∼ m4.
As we know, this is the clue to avoid the need for fine-tuning in our renormalization
procedure. Now we can see that the primary reason for that stems from the soft behavior
of the VED β-function (2.172).
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In contrast, the β-function for the parameter ρΛ(M) is proportional to the quartic power
of the particle mass, as indicated in Eq. (2.146), and for this reason the solution to the
corresponding RGE, as represented by the first equation in (2.151), is also proportional
to those quartic terms. However, the running of ρΛ with M has no physical implication
since these terms exactly cancel out in the VED, as we have just seen. This situation can
be compared to the running of ρΛ with the unphysical mass unit µ in the MS approach
to the VED, as discussed in Sect. 2.5.3. Yet there is an important difference: in the MS
case19 one usually interprets that the renormalized VED is given by Eq. (2.82). If so, then,
as a (purported) physical quantity one is enforced to fine tune ρΛ(µ) against the large
∼ m4 contribution (represented by the second term in that expression). The counterpart
of these formulas in our calculation is just given by a single piece of our Lagrangian
(2.145) (since all the others are geometric contributions from curved space-time), to wit:
it is just (minus) the first term, or ρΛ(M)− δρΛ(M). The last equation indeed contains,
among others, the terms involved in Eq. (2.82). This can be checked from Eq. (2.153),
conveniently rewritten as

−δρΛ(M) =
m4

64π2

(
ln
m2

M2
− 3

2
− M4

2m4
+

2M2

m2

)
, (2.174)

upon replacing M with µ and neglecting the last two terms since we consider M2 =
H2 � m2. The RG-invariant expression ρΛ(M) − δρΛ(M) = ρΛ(m) is not at all the
VED. In Minkowski space-time, we saw that the correctly renormalized VED is zero in
our framework (cf. Sect. 2.5.2). What is more, on comparing the VED at two different
scales the effect of ρΛ(M) always cancels against the quartic terms emerging from the
renormalized ZPE, and the net result is free from the influence of the quartic masses,
cf. Eq. (2.173). Thanks to this crucial fact the observable running of the VED in curved
space-time depends only on the quadratic mass scales times the Hubble rate square, i.e.
∼ m2H2, as shown in that expression. The presence of H2 makes the running rate much
more temperate: it just follows the evolution of the cosmic flow itself. In fact, this is
nothing but the characteristic running law of the RVM [167,198].

2.8.7 Trace anomaly and effective action

The trace anomaly can also be elucidated in the framework of the effective action, W
[284]. The latter is related to the VEV of the EMT, as noted in (2.104). The effective
action is purely geometric and involves the quantum effects of φ in our case. Since the
UV-divergences are inherent to short-distance effects, they all involve the behavior of
geometric tensors R2, RµνR

µν , . . . at short distances. The non-trivial local behavior of
the curved space-time at the level of the effective action is the counterpart to the UV
behavior of the field modes in the EMT. The two languages lead to the same answer.
Thus, although one can use W and the UV-divergences associated to these geometric
terms to derive the trace anomaly [284], here we have used directly the VEV of the EMT
corresponding to the quantum matter field φ. The divergences of W are of course the
same as those of the vacuum EMT. So, if we write W = Wdiv + Wren, the divergent and
renormalized parts of the vacuum EMT must correspond respectively to Wdiv and Wren.
This means that the obtained expression (2.101) can be identified with the vacuum trace
emerging from the divergent part of the effective action, which in the massless conformal

19Recall the footnote on page 98
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limit turns out to be finite. Thus,

lim
m→0

〈
T δφ
〉∣∣∣

(ξ=1/6,M=m)
=

2√
−g

gµν
δWdiv

δgµν
. (2.175)

Because the vacuum trace of the total EMT derived from the effective action must vanish
in the massless conformally coupled limit [284], the trace associated to Wren (the so-called
renormalized part of the effective action) is given by minus the previous result (2.175),
and this defines the trace anomaly:

lim
m→0

〈
T δφ
〉∣∣∣anomaly

(ξ=1/6,M=m)
=

2√
−g

gµν
δWren

δgµν
= − 2√

−g
gµν

δWdiv

δgµν
= − lim

m→0

〈
T δφ
〉∣∣∣

(ξ=1/6,M=m)
.

(2.176)
It can be expressed in an invariant form, showing that the anomaly is a general coordinate
scalar. With the help of the geometric relations given in Appendix A one can readily show
that the obtained expression can be written in a covariant way as follows:

lim
m→0

〈
T δφ
〉∣∣∣anomaly

(ξ=1/6,M=m)
= − lim

m→0

〈
T δφ
〉∣∣∣

(ξ=1/6,M=m)
= − 1

480π2a4

(
−4H2H′ +H′′′

)
= +

1

2880π2

[
RµνRµν −

1

3
R2 +�R

]
.

(2.177)

It is well known that there is no contribution from the square of the Weyl tensor C2 =
CαβγδCαβγδ for conformally flat space-times since that tensor vanishes identically for
them. The above expression is the form which we have quoted in the main text, see
Eq. (2.103). In general the conformal anomaly can also be written in a very succinct
way in terms of the DeWitt-Schwinger coefficient of adiabatic order 4 – cf. Sect. 2.8.1
and [284]. Borrowing equations (2.129) and (2.135), one finds

lim
m→0

〈
T δφ
〉∣∣∣anomaly

(ξ=1/6,M=m)
= +

a2

16π2

∣∣∣
ξ=1/6

= − 1

48π2
Qλ

λ

∣∣∣∣
ξ=1/6

= +
1

1920π2

[
C2 − 1

3
E +

2

3
�R

]
.

(2.178)

Using (A.6), with Cαβγδ = 0 for FLRW space-time, the previous expression boils down
to the particular form (2.177). Notice that â2 = a2 in this case, since M = m and hence
∆ = 0 in (2.135).

2.9 Discussion of the chapter

We have devoted this chapter to investigate the possible dynamics of vacuum in the
context of quantum field theory in the expanding FLRW space-time and the possible
connection with the cosmological term in Einstein’s equations. The quantum field the-
oretical context is well-known [284–287] but, the difficulties in reconciling QFT (and
string theory) predictions with cosmological observations in connection to this subject
are at the basis of the so-called Cosmological Constant Problem (CCP) [191,192]. Such
mystery is perhaps the greatest conceptual challenge faced by theoretical physics ever,
owing to the mind boggling discrepancy existing between the measured value of the vac-
uum energy density (VED) and the typically predicted one by our most cherished QFT’s,
say quantum chromodynamics and specially the electroweak standard model, both being
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essential parts of what we call the standard model of particle physics, which in itself is a
highly successful theory of the fundamental interactions. Time and again this is one of
the main problems of theoretical physics and cosmology that demands an urgent expla-
nation at a fundamental level. The methods to deal with QFT in curved space-time are
well-known since long, and yet some of the most pressing problems of modern cosmology
still remain unaccounted. The CCP is certainly a focus issue for any formal theory of
the cosmic evolution. It is a must to be addressed in this kind of field theoretical studies
since the physical interpretation of the cosmological term Λ has traditionally been linked
to the current value of the VED, ρ0

vac, through Lemâıtre’s formula ρ0
vac = Λ/(8πGN). As

we have mentioned in the introduction, the discrepancy existing between the measured
value of ρ0

vac and the generic prediction made in field theories of the fundamental inter-
actions (e.g. the standard model of particle physics) is utterly disproportionate. Such an
appalling clash of theoretical concurring ideas versus direct astrophysical observations is
at the root of the CCP. Furthermore, irrespective of the fact that there are many sources
of vacuum energy in QFT (which are, in principle, uncorrelated), each one of them is very
large as compared to ρ0

vac ∼ 10−47 GeV4, and hence the possible compensation among
these sources leads to hopeless fine-tuning among the parameters of the theory. If that
is not enough, the adjustment must be redone order by order in perturbation theory.
Such an unending process of tuning and retuning makes the CCP even harsher, in fact
unacceptable as a natural solution [167,198].

Even though tackling such problems may require the concepts and the sophisticated
theoretical tools underlying quantum gravity (QG) and string theory [192], QG does
not exist as a consistent theory yet; and string theory somehow abhors de Sitter space,
as ‘swampland’ conjectures preclude the construction of metastable de Sitter vacua in
the string framework [373, 382–384]. We may say that difficulties appear in all fronts.
While we remain agnostic about these problems a lot of exciting QG phenomenology
is still possible with the advent of the multi-messenger era, characterized by a steep
increase in the quantity and quality of experimental data that are being obtained from
the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and
gravitational waves) from numerous origins [385]. The bare truth, however, is that neither
one of them has succeeded in improving significantly the situation for the time being. In
the meantime, we expect that some sort of provisional result should perhaps be possible
within the – much more pedestrian – semiclassical QFT approach, in which quantum
matter fields interact with an external gravitational field may still shed some light on
those pending issues in the cosmological arena, in particular on the vacuum energy and
its renormalization. This has been the main aim guiding our task here.

Specifically, in this chapter we have reconsidered the calculation of the renormalized
energy-momentum tensor (EMT) of a real quantum scalar field non-minimally coupled
to the FLRW background. Even though a full-blown calculation of the VED in QFT can-
not be faced at this point, here we have focused on the simplest, and yet non-trivial, QFT
model interacting with the FLRW space-time background that we can think of, namely
a scalar field φ non-minimally coupled to gravity. For the sake of a more simple presen-
tation and, therefore, to avert ‘not seeing the forest for the trees’, we have assumed that
φ has no self-interactions and hence no spontaneous symmetry breaking. This assump-
tion allows us not only to avoid dealing with the renormalization of the corresponding
effective potential but also to concentrate on the computation of the zero-point energy
(ZPE) part, which is a pure quantum effect and thereby constitutes the most genuine
quantum vacuum piece within the whole VED structure. With these basic assumptions,
we have undertaken the renormalization of the corresponding energy-momentum tensor
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(EMT) using the adiabatic regularization and renormalization method. A key point in
our approach has been to implement an appropriate renormalization of the EMT by per-
forming a subtraction of its on-shell value at an arbitrary renormalization point M . The
presence of this floating scale brings into play the renormalization group flow. Since the
renormalized EMT becomes a function of M , we can compare the renormalized result at
different epochs of the cosmic history characterized by different energy scales, which we
have tested with the value of H (the Hubble rate) at each epoch. This is certainly along
the lines of the original RG approach [167,198] but goes well beyond it since it provides
a more formal and explicit QFT calculation. The renormalization program described
here is based on adiabatic orders, and we presented the EMT up to the 6th order. This
is a computationally demanding task, but it has allowed us to determine the on-shell
renormalized form of the EMT and will help us in the derivation of the equation of state
(EoS) of the quantum vacuum presented in Chapter 3.

We have performed the calculation following three different lines of approach. Two of
them are based on adiabatic regularization/renormalization of the EMT and another one
based the on effective action through the Heat-Kernel. The perfect match between the
three approaches strengthen our conclusion, so our analysis seems to be robust. Let us
start talking about the first two cases. We started from the WKB expansion of the field
modes in the FLRW space-time. Then we defined an appropriately renormalized EMT by
performing a subtraction of its on-shell value (i.e. the value defined at the mass m of the
quantized field) at an arbitrary renormalization point M . The resulting EMT becomes
finite because we subtract the first four adiabatic orders (the only ones that can be diver-
gent). Since the renormalized EMT becomes a function of the arbitrary scale M , we can
compare the renormalized result at different epochs of the cosmic history characterized
by different energy scales. In the main text we have shown by direct calculation that the
renormalized EMT defined in that way is finite. In Appendix B we presented and alter-
native path and used Dimensional Regularization (DR) to subtract the poles of the low
adiabatic orders. In particular, we use the more conventional method based on cancelling
the poles using the counterterms associated to the fundamental parameters ρΛ, G

−1
N and

a1 (the coefficient of R2). We have subsequently corroborated all of this with a third
approach: from the perspective of the effective action formalism. It means that we have
solved the curved space-time Feynman propagator of the non-minimally coupled scalar
field to gravity using the adiabatic method and computed the effective action using the
heat-kernel expansion. Since that expansion has also been performed off-shell (i.e. at the
arbitrary scale M rather than at the physical mass m), it was necessary to compute the
corresponding corrections induced on the DeWitt-Schwinger coefficients. With the help
of the effective action we have rederived the renormalized EMT and all three approaches
concur to the same renormalized result for the Zero-Point Energy of the Quantum field,
i.e. the 00th component of the EMT associated to the quantum fluctuations of the fields.
A renormalization program for the effective Lagrangian, totally analogous to the one used
for the ZPE, has been used.

The next important point is the extraction of the VED from the renormalized EMT,
which is composed not only of the ZPE part (involving the quantum fluctuations of the
scalar field) but also of ρΛ(M), the renormalized value of ρΛ at the scale M . We find it
remarkable that when we compute the evolution of the VED from one scale to another
within our renormalization framework, the result is free from quartic contributions ∼ m4,
which are usually responsible for the exceedingly large contributions to the VED. This is
in stark contrast with other renormalization schemes in which the ∼ m4 effects are present
and hence are badly in need of extreme fine-tuning arrangements. In our opinion, even if
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being well aware of the many other difficulties ahead of us, with the absence of these terms
in our framework we might be inching into an eventual solution of the CCP. Additionally,
we have shown that the renormalized VED obtained from this QFT calculation takes on
approximately the usual form of the running vacuum models (RVM’s) [167, 294, 295],
in which ρvac = ρvac(H) appears in the manner of an additive constant plus a series of
powers of H (the Hubble rate) and its time derivatives. Originally, the RVM approach
was motivated from general considerations involving the renormalization group in QFT in
curved space-time (cf. [167,198,294,295] and references therein). With the present QFT
calculations we have provided for the first time a solid foundation of the RVM, in which
the dynamical structure of the VED is seen to ensue from first principles, namely from
the quantum effects associated with the proper renormalization of the EMT. In it, all
the terms made out of powers of H (and its time derivatives) are of even adiabatic order.
This means that all these powers effectively carry an even number of time derivatives of
the scale factor, which is essential to preserve the general covariance of the action.

The lowest order dynamical component of the vacuum energy density (VED) consists
of an additive constant together with a small dynamical component ∼ νeffH

2. The
dimensionless parameter νeff is predicted to be small (|νeff | � 1), but it must ultimately
be determined experimentally by confronting the model with cosmological data. This
parameter is sufficient to describe the dynamics of the vacuum in the current universe,
while the higher-order terms can play a role in the early universe, particularly in describing
inflation. We will comment more on the latter at the end of the next chapter. On the
other hand, νeff is seen to be proportional to the coefficient of the β-function of the
running VED, although they have opposite signs. This is a reflection of the fact that the
two leading effects on the late-time dynamics of the VED, namely one from the scaling
evolution with M (before we fix its value) and the other from the expansion rate H, are
actually opposed. However, the second one is dominant, and this fact implies that the
net sign of the slope of the VED is fixed by the sign of νeff . For νeff > 0 (resp. νeff < 0),
the evolving VED mimics quintessence (resp. phantom dark energy). In previous works,
the model has been phenomenologically fitted to a large amount of cosmological data,
and the running parameter νeff has been found to be positive and in the ballpark of
∼ 10−3 [244–246,248,250,274–277,386–388].

In a completely analogous procedure, we have been able to compute the vacuum expec-
tation value (VEV) of the trace of the EMT, as well as its renormalized value. This will
be used to compute the pressure associated with the vacuum in the next chapter. Addi-
tionally, we have explicitly checked that we were able to recover the standard calculation
of the trace anomaly for the scalar field. An extension of our discussions regarding the
trace anomaly will be seen in Chapter 4.

As a bonus we have extracted the renormalization group equations (RGE’s) for the cou-
plings and also for the VED itself. For this we have had to find out the explicit form of
β-function for the VED running, Eq. (2.172). The latter appears to be free from quar-
tic mass scales, which otherwise would recreate the usual (unfathomable) fine-tuning
problem which we wanted to eschew. The smoothly behaving RGE for the VED that
we have found was long suspected from semi-qualitative RG arguments, see [167, 198]
and references therein, but on [288, 289] (the works in which this chapter is based) we
demonstrated for the first time in the literature in a full-fledged QFT context. Besides,
we provide the RGE for the gravitational coupling, although we reserve the details for
Chapter 3.
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Let us also mention that even though our QFT calculation has been simplified by the
use of a single (real) quantum scalar field and just focused on the ZPE. But further
investigations will be needed to generalize these results for multiple fields, interacting
fields and Spontaneous Symmetry Breaking contributions. By the moment, in Chapter 4
we extend this method also to fermions, encountering the same conclusions shown here.
Up to computational details, however, we expect that a similar dynamical structure
should emerge from the VED in the general case since the expansion of the full effective
action in powers of momenta in the context of FLRW space-time should result in an even
power series of the Hubble rate (owing once more to general covariance).
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Chapter 3

Equation of state of the quantum
vacuum and other features

In the last chapter, we presented a lengthy computation that resulted in a running law for
the vacuum energy density (VED) in curved space-time. Appropriate renormalization of
the energy-momentum tensor shows that the VED is a smooth function of the Hubble rate
and its derivatives: ρvac = ρvac(H, Ḣ, Ḧ, ...). However, we did not exhaustively explore
this idea. This chapter is based on our works from [289, 290], and its aim is to analyze
some of the consequences of the computational machinery described in preceding pages.

For example, we did not mention anything regarding the vacuum’s pressure or the equa-
tion of state (EoS) of the quantum vacuum. We should not presume that the vacuum’s
EoS is exactly Pvac = −ρvac, as we must first carefully evaluate the quantum effects.
Obviously, the EoS cannot depart too much from the traditional one, at least around the
present time, but we will see that it is not exactly −1. The vacuum pressure is defined
in a way similar to the vacuum energy density (2.61). Assuming the vacuum to be a
homogeneous and isotropic medium (it should preserve the cosmological principle), we
may define the pressure using any diagonal ii-component of the renormalized vacuum
stress tensor. This is not the only interesting continuation of the previous chapter. The
Einstein field equations within our framework, i.e., the Friedmann equations incorporat-
ing not only a dynamical VED but also a running G(H), are presented. The running of
the VED means that the conservation equations should also be revisited.

The contents of this chapter can be summarized in the following manner. In the first
section, Sect. 3.1, we present the pressure of the quantum vacuum and show an effective
approach to generalized Running Vacuum Models through the Friedmann equation’s.
Such a picture may have interesting phenomenological applications, however a formal
treatment is mandatory to show rigorously the mathematical behaviour of Vacuum’s
EoS. In the second section, Sect. 3.2, we study Friedmann’s equation in the presence
of the running ρvac(H) and observe that the gravitational coupling G is also a running
quantity, although evolving only logarithmically with the expansion rate: G = G(lnH).
We analyze the Bianchi identity for this particular scenario and the local conservation
law for ρvac and verify (as a robust check of our calculation) that it only depends on the
4th adiabatic terms (all of the 6th order effects cancel non-trivially in it). The vacuum
pressure is used in the next section, Sect. 3.3, to find out the equation of state (EoS) of
the quantum vacuum up to 6th adiabatic order. We also do a good estimation of the
EoS as a function of redshift z which encapsulates its behaviour up to deep Radiation
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Dominated Epoch (RDE). We observe that it is not stuck to −1, in contrast to the usual
situation. Owing to the quantum effects, the EoS becomes dynamical. In particular we
present a simpler version of this equation which applies for the late Universe, for very
low redshifts, and mimics quintessence near the present. In Sect. 3.4, we present the
possible phenomenological implications of the RVM. First, we relate its implications in
the later universe with previous studies [374] (see Chapter 6). In the second part of the
section our 6th order calculation is instrumental to unveil a generalized form of the RVM
at high energies with potential implications for the physics of the very early universe.
Particularly, we explore the idea of Running Vacuum as framework for a mechanism of
inflation. Such a mechanism is specially simple and it is based on the higher powers
of H in the adiabatic expansion of VED which may enhance the magnitude of VED in
the Early Universe, enough to produce an exponential inflationary period of expansion.
Finally, our discussion of the chapter is delivered in Sect. 2.9.

3.1 Renormalized Vacuum Pressure

In order to find a suitable expression for Vacuum’s Pressure, our starting point are the
results from the last chapter. Adopting once more the perfect fluid form (2.62) for the
vacuum EMT, we may infer the expression for the vacuum pressure by following the
same logic as for the vacuum energy density (2.61). We start taking the 11th-component,
T vac

11 , of the mentioned EMT. As we said, any iith-component would do equally well
owing to isotropy, and we find T vac

11 = a2Pvac in the conformal metric. Mind that since
we are using again the comoving cosmological frame there is no contribution from the
4-velocity part. We subsequently equate this result to the 11th-component of (2.17),

〈T vac
11 〉 = −ρΛg11 + 〈T δφ11 〉 = −ρΛa

2 + 〈T δφ11 〉. Thus, the renormalized vacuum pressure at
the scale M is given by

Pvac(M) ≡ 〈T
vac
11 〉ren (M)

a2
= −ρΛ(M) +

〈
T δφ11

〉
ren

(M)

a2
, (3.1)

which looks similar to the renormalized VED, Eq. (2.61), up to a sign in the ρΛ term.
This sign points to the expected EoS for the vacuum, but we need to proceed carefully
before unveiling the final result. Having computed the 00th-component of the EMT
and its trace in the previous sections, the isotropy condition enables us to compute the
11th-component of the EMT simply by means of the relation〈

T δφ11

〉
ren

(M)

a2
=

1

3

〈T δφ〉
ren

(M) +

〈
T δφ00

〉
ren

(M)

a2

 . (3.2)

Using now our definition (2.61) of VED, we can eliminate ρΛ(M) in favor of ρvac(M) in
the above equations, and we find

Pvac(M) = −ρvac(M) +
1

3

(
〈T δφ〉ren(M) + 4

〈T δφ00 〉ren(M)

a2

)
. (3.3)

This equation clearly shows that the EoS of the quantum vacuum is not exactly −1, and
the departure from this value can be obtained from the previously computed expressions.
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We can provide a rather precise result by including terms up to 6th adiabatic order 1:

Pvac(M) =− ρvac(M) +

(
ξ − 1

6

)
8π2

Ḣ

(
m2 −M2 −m2 ln

m2

M2

)
− 3

8π2

(
ξ − 1

6

)2 (
6Ḣ2 + 3HḦ +

...
H
)

ln
m2

M2

+
1

10080π2m2

(
8H4Ḣ − 28Ḣ3 + 6H3Ḧ − 10Ḧ2 − 22Ḣ

...
H

+24H2Ḣ2 − 7H2
...
H − 49HḢḦ − 6H

....
H −

.....
H
)

+

(
ξ − 1

6

)
240π2m2

(
−6H4Ḣ + 34Ḣ3 − 6H3Ḧ + 12Ḧ2 + 24Ḣ

...
H − 24H2Ḣ2

+7H2
...
H + 55HḢḦ + 6H

....
H +

.....
H
)

−
(
ξ − 1

6

)2

16π2m2

(
32Ḣ3 − 12H3Ḧ + 12Ḧ2 + 24Ḣ

...
H − 48H2Ḣ2

+5H2
...
H + 47HḢḦ + 6H

....
H +

.....
H
)

+
9
(
ξ − 1

6

)3

4π2m2

(
4H4Ḣ − 5Ḣ3 − 6H3Ḧ − 11HḢḦ − Ḧ2

−Ḣ
...
H − 24H2Ḣ2 − 2H2

...
H
)

+ . . .

(3.4)

where . . . represent the 8th-order contributions and above, which we shall not consider
at all. The obtained expression takes the generic form

Pvac(M) = −ρvac(M) + f2(M, Ḣ) + f4(M,H, Ḣ, ...,
...
H) + f6(Ḣ, ...,

.....
H ) + · · · , (3.5)

in which f2, f4 and f6 involve second, fourth and sixth adiabatic contributions, respec-
tively. Near the present, they represent a small correction to the canonical relation
Pvac(M) = −ρvac(M) for the vacuum EoS and therefore, strictly speaking, make the
quantum vacuum a quasi-vacuum state. Notice that the adiabatic contributions fi are
specific effects on the pressure not present in the vacuum energy density, which in its own
also contains contributions to all these orders.

3.1.1 Generalized RVM at low energies

The result (3.4), derived in previously, reveals an interesting new feature. Among the
various terms that we have collected on its RHS (all of which are contributions to the
vacuum pressure beyond those entering the VED), the ones of adiabatic order 2 are
particularly worth noticing, namely the term

f2(M, Ḣ) =

(
ξ − 1

6

)
8π2

Ḣ

(
m2 −M2 −m2 ln

m2

M2

)
. (3.6)

This term can have implications on the vacuum dynamics at low energy since Ḣ is of the
same order as H2. To see this, let us write down the two ordinary Friedmann’s equations

1The reader may carefully track the calculation and observe that there is once more an exact cancellation of
the quartic mass scales in the sum of the two terms in parenthesis on the RHS of Eq. (3.3). To check this one
has to use equations (2.56) and (2.97). It follows that the scaling evolution of the vacuum pressure is also free
from quartic mass dependencies. This is of course reassuring and shows the consistency of our calculation.
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for flat three-dimensional space and in the presence of a dominant matter component
and vacuum energy (neglecting any dynamical effect on G and assuming a constant value
G = GN):

3H2 = 8πGN(ρm + ρvac) ,

2Ḣ + 3H2 = −8πGN(pm + Pvac) ,
(3.7)

where ρm and pm are the density and pressure of the dominant matter component (rel-
ativistic or non-relativistic). From these two equations one can derive the differential
equation that is satisfied by the Hubble rate:

Ḣ +
3

2
(1 + ωm)H2 = 4π GN (wmρvac − Pvac) , (3.8)

where wm = pm/ρm is the EoS of the dominant matter component. For the present
universe, we have wm = 0 and the above equation reduces to

Ḣ +
3

2
H2 = −4π GNPvac ≡ 4π GNρ

eff
vac . (3.9)

Here we have defined an effective vacuum pressure ρeff
vac = −Pvac as if the EoS of the

quantum vacuum would be exactly −1 . However, as we know, this does not imply
ρvac = −Pvac. We use ρeff

vac only to mimic the situation in the ΛCDM, but in reality the
quantum vacuum contributes with a term that produces a departure of the EoS from
the usual value. From Eq. (3.4) we have the dominant contribution (3.6) at the scale M ,
which is of second adiabatic order, and can still be sizeable in the current universe. In
fact, we have two pieces of second adiabatic order on the RHS of (3.4), one contained in
ρvac and the other given by f2, which when combined lead to

ρeff
vac(M) = −Pvac(M) = ρvac(M)− f2(Ḣ) + ...

≈
(
ξ − 1

6

)
3H2

16π2

(
M2 −m2 +m2 ln

m2

M2

)
+

(
ξ − 1

6

)
Ḣ

8π2

(
M2 −m2 +m2 ln

m2

M2

)
+ ...

(3.10)

Here we have used Eq. (2.65) and neglected the higher order adiabatic terms. The meaning
of ≈ is that we have also omitted the first two terms of the mentioned equation, since
we know that when we compare the VED at two scales in the same manner as we did in
(2.74) these terms will exactly cancel each other and only the indicated terms of (3.10)
will contribute. In fact, when we insert Eq. (3.10) on the RHS of (3.9) and solve for H, it
will all occur as though the effective vacuum energy density contains not only the ∼ H2

dynamical component but also the new one proportional to Ḣ. We can repeat a very
similar argument to that in Sect. 2.6, with the two scales M = H and M0 = H0, and we
find that the effective expression for the vacuum energy density in the present universe
can be expressed in a generic form as follows:

ρeff
vac(H, Ḣ) = ρ0

vac +
3νeff

8πGN

(H2 −H2
0 ) +

3ν̃eff

8πGN

(Ḣ − Ḣ0) . (3.11)

We have normalized this relation such that ρeff
vac(H = H0, Ḣ = Ḣ0) = ρ0

vac at the present
time, where H0 and Ḣ0 stand for the respective current values of H and Ḣ. Notice also
that we have placed two generic coefficients νeff and ν̃eff for each of the two terms of
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adiabatic order 2, H2 and Ḣ, rather than the specific ones in (3.10) (which would entail
just ν̃eff = (2/3)νeff for a single scalar field and no other matter field) because in general
we expect that these coefficients will receive contributions from different sorts of fields,
fermions and bosons. These coefficients are naturally small in magnitude, viz. of order
∼ m2/m2

Pl � 1, cf. Eq. (2.84), but not hopelessly small if m is the mass of a GUT particle.
In the limit νeff , ν̃eff → 0 we just recover the ΛCDM with constant ρ0

vac = Λ/(8πGN), but if
they are small though non-vanishing they can impact non-trivially on the phenomenology
of the dark energy. Here we have computed the effect from a single scalar field only, but
in general we have to sum over the concomitant contributions from other bosons and
fermions [389].

The above formula (3.11) obviously extends the structure of Eq. (2.83). In this way we
have found a justification for a generalized form of the RVM. Basically, one expects an
extended form for the vacuum structure (2.17) such that it comprises more geometric
structures which are not possible in Minkowski space-time but are certainly available in
curved space-time. Namely, one may naturally conceive a generalization of the form〈

T vac
µν

〉
= −ρΛgµν +

〈
T δφµν
〉

+ α1Rgµν + α2Rµν +O(R2) . (3.12)

In the above expression, O(R2) represents possible contributions from geometric tensors
of adiabatic order 4, that is R2, RµνR

µν , . . . , and αi are parameters of dimension +2
in natural units. In a more realistic picture, contributions from all fields (bosons and
fermions) are expected, and general covariance leads to a generic form as represented
by (3.11). In fact, the prospect for new terms in the effective vacuum action has been
discussed in various ways in the literature [299,307,309]. These terms are also expected
in the aforementioned stringy version of the RVM, see [390,391].

Even though the vacuum dynamics from cosmological observations will receive contribu-
tions from all fields at a time, and in this sense the values of the coefficients νeff and ν̃eff

can only be determined observationally, what matters here is that the theoretical frame-
work leads to small values for them, as we have seen. After all the ΛCDM with a rigid
cosmological constant works relatively well. Even so we know that the latter is afflicted
with persisting tensions which call for an explanation. The RVM seems to encode the key
theoretical features for such an explanation and appears phenomenologically preferred as
well 2.

3.2 Friedmann’s equations and conservation laws with running
vacuum

Friedmann’s equations in the presence of running vacuum are a bit more complicated
than usual. They have been dealt with previously in (3.7) assuming the traditional EoS
for Vacuum and neglecting a possible evolution with the expansion of the gravitational
constant, G. We see that VED which boils down to (3.11) at low energy. This is sufficient
for an effective treatment of the RVM since they offer the possibility to confront the
predictions with the data and put bounds to the νeff parameter. This has led to a
fruitful phenomenology, cf. [245, 246, 248, 250, 274–280, 374–376, 386–388, 392–396], for

2The fitting results with different data sets confirm that the coefficients νeff and ν̃eff are of order 10−3 at
most, see e.g. [246,248,250,278–280,375,376,392–397]. This suffices to have a non-trivial impact on the σ8 and
H0 tensions [374].
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instance. The phenomenological approach is very useful because there may be many
QFT models (even string models [390,391]) whose effective behaviour leads to a vacuum
energy density of the form (2.83), with even higher corrections of order O(H4). However,
it is also interesting to study the exact form of Friedmann’s equations of the RVM using
directly the field variables involved in the QFT model under consideration, which in the
present instance is based on a non-minimally coupled scalar field with action (2.5). As
can be expected, this part is more cumbersome but it reveals some new clues on the
internal consistency of our calculation. Assuming an FLRW background, the starting
point is Einstein’s equations in renormalized form, see (2.59), which we have to combine
with the explicit formulas that we have derived in the previous sections for the vacuum
energy density and pressure in our adiabatically renormalization approach.

3.2.1 Field equations and matter conservation law

In the context of the model (2.5), we have to distinguish between the background field
density and pressure and their fluctuating or vacuum components (cf. Sect. 2.2). We
denote by (ρφ, Pφ) the background components. The fluctuating parts of these quantities
have been object of devoted study in the previous sections and are represented by the
quantities (ρvac, Pvac), which have been computed up to 6th adiabatic order. The gen-
eralized Friedmann’s equation emerging from the 00th-component of Eq. (2.59) can be
written as follows,

H2 =
8π

3
G(M) [ρvac(M) + ρφ + ρX(M)] , (3.13)

where the running gravitational coupling G(M) is related to the parameter M2
Pl(M) fre-

quently used in the previous sections through Eq. (2.68). Needless to say, if this equation
were to apply to the current universe we would need to add baryons and CDM, but here
we just want to illustrate the interplay between the field φ and the vacuum without in-
troducing more elements. In fact, the main actor here are the quantum vacuum effects
produced by φ. Its background part is not the main focus, but we include it for complete-
ness and self-consistency. In this context, we have got also the gravitational contribution
from the HD tensor (1)Hµν in the generalized Einstein’s equations, which contributes the
term ρX in the above Friedmann’s equation as follows:

ρX ≡ −α(M)
(1)H00

a2
= 18α(M)(Ḣ2 − 2HḦ − 6H2Ḣ) . (3.14)

This effective energy density (acting as an effective fluidX) stems from the 00th-component
of the mentioned HD tensor (cf. Appendix A). Similarly, the generalized pressure equation
within the Friedmann’s pair can be written as

3H2 + 2Ḣ = −8πG(M) [Pvac(M) + Pφ + PX ] , (3.15)

where

PX ≡ −α(M)
(1)H11

a2
= α(M)

(
108H2Ḣ + 54Ḣ2 + 72HḦ + 12

...
H
)
. (3.16)

Combining the two generalized Friedmann’s equations given above we find

Ḣ = −4πG(M) [Pvac(M) + ρvac(M) + Pφ + ρφ + PX + ρX ] . (3.17)
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The conservation equation for the fluid X reads

ρ̇X + 3H (ρX + PX) = 18α̇
(
Ḣ2 − 2HḦ − 6H2Ḣ

)
=
α̇

α
ρX . (3.18)

For completeness, we show the local conservation law for the background field φb (denoted
φ here for simplicity) which ensues from the fact that ∇µT φµν = 0. Indeed, using the
explicit form of the classical EMT, Eq. (2.6), we find

∇µT φµν = (1− 2ξ) (�φ) (∇νφ) + (1− 2ξ) (∇µφ) (∇µ∇νφ) +

(
2ξ − 1

2

)
∇ν (∇αφ∇αφ)

− 2ξ (∇µφ) (∇µ∇νφ)− 2ξφ∇µ∇µ∇νφ+ 2ξ∇ν (φ�φ) + ξ (∇µGµν)φ
2

+ ξGµν∇µφ2 − 1

2
m2∇νφ

2

=
(
�−m2

)
φ∇νφ+ 2ξφ (Gµν∇µφ+∇ν�φ−�∇νφ)

= ξRφ∇νφ+ 2ξφ (Gµν∇µφ−Rµν∇µφ) = 0 .
(3.19)

In the above derivation we have used the Klein Gordon equation (2.7) and the Bianchi
identity ∇µGµν = 0. At the same time we have made use of the formula (A.19) in the
Appendix A in order to commute the covariant box operator � and ∇ν . Equation (3.19)
for ν = 0 can be rephrased in terms of the energy density and pressure:

∇µT φµν = gµα
(
∂αTµν − ΓσαµTσν − ΓσανTµσ

)
= −ρ′φ − 3H (ρφ + Pφ) = 0 , (3.20)

which, if rewritten in cosmic time differentiation (using d/dτ = a(d/dt)), implies that

ρ̇φ + 3H (ρφ + Pφ) = 0 , (3.21)

with

ρφ ≡
T φb

00

a2
=

1

2
φ̇2 +

1

2
m2φ2 + 3ξ

(
2Hφφ̇+H2φ2

)
(3.22)

and

Pφ ≡
T φb

11

a2
=

1

2
φ̇2 − 1

2
m2φ2 − ξ

(
2φ̇2 + 4Hφφ̇+ 2φφ̈+ 3H2φ2 + 2Ḣφ2

)
. (3.23)

The ratio wφ = Pφ/ρφ from the last two equations defines the EoS of the non-minimally
coupled (ξ 6= 0) scalar field φ, which is seen to be non-trivial. All in all, we have found
that the background matter field φ does not interact with the vacuum, and hence its
energy density is covariantly self-conserved during the expansion, cf. (3.21).

It is easy to see that the local conservation law (3.21) is just another way to write the
Klein-Gordon equation for the background field φ:

φ̈+ 3Hφ̇+ (m2 + ξR)φ = φ̈+ 3Hφ̇+m2φ+ ξ
(

12H2 + 6Ḣ
)
φ = 0 . (3.24)

This equation is, of course, the same as Eq. (2.11), but written in terms of the cosmic
time and after having neglected the term ∇2φ owing to homogeneity and isotropy for the
background field φ – which, as advertised, corresponds to φb(t) in Eq. (2.16).
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We may ask ourselves for the vacuum contribution of the background scalar field. For
instance, a suitable constant field configuration φb = φcb in the minimal coupling case,
reduces the background EMT (2.6) to

T φb
µν = −1

2
m2 (φcb)2 gµν . (3.25)

It has exactly the same EMT that it is associated to the CC defined in Sect. 2.1. Hence,
it is tantalizing to include this contribution to our vacuum EMT (2.17). However, even if
it is the case, notice that after doing the subtraction of scales (2.69) the independence of
the former quantity on the renormalization point scale M yields no explicit contribution
to the running law. The contribution of φb gets encapsulated in ρ0

vac in (2.83), i.e.
the input value of the running formula. This points out once more the fact that QFT
fails in the task of yielding the value of ρvac at any point in time from first principles.
Only comparison between two different renormalization points is possible. Hence, all the
background contributions get eventually camouflaged in the RVM law, so that we can
just ignore them in our manipulations since the subtraction procedure, performed in the
renormalization of VED, eventually get rid of them.

3.2.2 Conservation equation for the quantum vacuum

The vacuum, however, does not obey the same conservation equation as matter in general.
In point of fact, it is not generally conserved. We find

ρ̇vac + 3H (ρvac + Pvac) =
3Ṁ

8π2M

(
ξ − 1

6

)
H2(M2 −m2)

+
9Ṁ

8π2M

(
ξ − 1

6

)2 (
Ḣ2 − 2HḦ − 6H2Ḣ

)
.

(3.26)

It is remarkable that this equation can be written very succinctly in terms of the β-
function of the running vacuum obtained in (2.172):

ρ̇vac + 3H (ρvac + Pvac) =
Ṁ

M
βρvac . (3.27)

Here we have taken into account that the scale M in cosmology is associated to a dy-
namical variable (H in our case, although we do not implement any particular choice at
this point), and hence it evolves with the cosmic time, Ṁ 6= 0. The compact form (3.27)
illustrates the fact that the non-conservation of the VED is due to both the running of
ρvac with M (i.e. the fact that βρvac 6= 0) and to the cosmic time dependence of M . This
feature is in contradistinction to ordinary gauge theories of strong and electroweak inter-
actions [367–369], and allows us to probe the effect of the time-dependence of M in the
running couplings and in particular in the VED. This is possible and even necessary in
cosmology since the scale M should be linked with cosmological variables changing with
the cosmic time. When one studies situations where the ordinary gauge couplings partic-
ipate in cosmological problems, it is perfectly possible to find out that they run both with
the (time-independent) ’t Hooft’s mass unit µ and also with the cosmic (time-dependent)
scale M , which is associated to H [367–369]. In Appendix C.2 we use Eq. (3.27) to further
investigate the time evolution of the VED. We show that the result is consistent with
Eq. (2.83), as it should.
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The following comments are pertinent at this point. We remark that equation (3.26), or
equivalently (3.27), is exact, that is to say, fulfilled to all adiabatic orders. This must be
so since the scale dependence of the running quantities stops at order four. The higher
order adiabatic terms do not bring additional M -dependent terms. However, let us not
forget that the time-dependence is carried by all orders through the powers of H(t) and
its derivatives. We have used this fact to explicitly check that even in the presence of
the complicated 6th order contributions in the structure of ρvac and Pvac – see Sections
Sect. 2.4.2 and Sect. 3.1 – Eq. (3.26) is exactly satisfied and the 6th order effects in it
just cancel out precisely. The calculation has been performed in the following way. The
quantity ρvac(M) depends on time implicitly through M but also through the many terms
which depend on the Hubble rate and its time derivatives: H, Ḣ, Ḧ . . .

.....
H . Let’s separate

the first term on the LHS of (3.26) as follows :

ρ̇vac + 3H (ρvac + Pvac) = Ṁ
∂ρvac

∂M
+
∂ρvac

∂t

∣∣∣∣∣
M

+ 3H (ρvac + Pvac) , (3.28)

where Ṁ = dM/dt and |M in the second term on the RHS is to emphasize that we keep
M constant in time when performing such a differentiation. The first term on the RHS,
Ṁ ∂ρvac

∂M
, is entirely responsible for the result (3.26). The last two terms on the RHS of

(3.28) can be shown to yield an identically vanishing result:

∂ρvac

∂t

∣∣∣∣∣
M

+ 3H (ρvac + Pvac) = 0 . (3.29)

We have verified the exactness of this equation. Carrying out the check explicitly is a
bit ponderous as it implies using the full structure (up to 6th adiabatic order) of the
expressions for the vacuum density and pressure, i.e. equations (2.57) and (3.4). For
this reason we have performed it with the help of Mathematica [377]. We believe it
constitutes a pretty robust consistency check of our formulas. The net outcome is just
the expression on the RHS of (3.26), which involves effects up to 4th adiabatic order. All
the remaining contributions from higher order cancel identically.

As emphasized above, the VED is not locally conserved since the scale M evolves with the
cosmic time and the VED runs with M . The integration of Eq. (3.26) yields, of course, the
characteristic RVM evolution law (2.65). The full local conservation equation containing
all the ingredients is more complicated. Let us find it. We first extend the generalized
Einstein’s equations (2.59) by including also the background EMT contribution from the
scalar field (i.e. by inserting the term T φµν on its RHS), as in this way we take into account
all of the components exchanging energy in the system:

M2
Pl(M)Gµν + ρΛ(M)gµν + α(M)(1)Hµν = 〈T δφµν 〉ren(M) + T φµν . (3.30)

We multiply next this equation by 8πG(M) = 1/M2
Pl(M) and take the covariant diver-

gence on both sides (i.e. we apply the operator ∇µ on each term). Taking into account
that Gµν is a conserved tensor (i.e. we have the Bianchi identity ∇µGµν = 0) and that

the HD tensor (1)Hµν is also conserved (∇µ (1)Hµν = 0, see Appendix A, we are left with
a reduced expression where ∇µ acts now only on the running parameters and on the
vacuum part of the EMT:

∇µ (G(M)ρΛ(M)) gµν +∇µ (G(M)α(M)) (1)Hµν

= ∇µ
(
G(M)〈T δφµν 〉ren(M)

)
+∇µ (G(M))T φµν .

(3.31)
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We have used ∇µT φµν = 0 as well —cf. Eqs. (3.20)-(3.21). Performing the remaining
derivatives and writing down the ν = 0 component of the final result, one finds after
some calculations the following expression:

Ġ(M) (ρφ + ρvac) +G(M)ρ̇vac + 3HG(M) (ρvac(M) + Pvac(M))

=
(
α(M)Ġ(M) +G(M)α̇(M)

) (1)H00

a2
.

(3.32)

With this result it is straightforward to show that the generalized Friedmann’s equations
and local conservation laws given above lead to the following overall conservation law in-
volving all of the ingredients entering our quantum matter system non-minimally coupled
to gravity:

d

dt
[G(M) (ρφ + ρvac(M) + ρX)]

+ 3HG(M) (ρφ + ρvac(M) + ρX + Pφ + Pvac(M) + PX) = 0.
(3.33)

3.2.3 Running gravitational coupling

If we neglect the effect of the HD term in the current universe, the RHS of (3.32) can be
set to zero and we are left with

Ġ(M) (ρφ + ρvac(M)) +G(M)ρ̇vac(M) + 3HG(M) (ρvac(M) + Pvac(M)) = 0 , (3.34)

where we have used the conservation law for the background component of the scalar
field, Eq. (3.21). A further simplification can be obtained if we assume that the EoS of
the quantum vacuum is exactly Pvac = −ρvac. We shall check right next what is the effect
of the correction we have found in Sect. 3.1. In the meantime, if we just take the standard
EoS of vacuum it allows us to dispense with the last term in the above equation. Because
the two terms left involve derivatives with respect to the cosmic time we can write down
(3.34) as a simple differential form:

(ρφ + ρvac) dG+Gdρvac = 0 . (3.35)

This equation can be used together with Friedmann’s equation (3.13) in the same ap-
proximation (i.e. neglecting the HD terms and hence ignoring the ρX component in it).
The two equations can be easily combined in the nicely separable form,

3H2

8πG
dG+Gdρvac =

3H2

8πG
dG+G

3νeff

4π
m2

PlHdH = 0 , (3.36)

in which the sum ρφ + ρvac has been replaced with 3H2/(8πG) thanks to Friedmann
equation, and dρvac has been computed from (2.83) within the approximation of constant
νeff – cf. Eq. (2.84). Notice that G varies with H and our aim is to find this function in
this approximation. Dividing out the above equation by G and upon identifying G(H0) =
GN = 1/m2

Pl with the current local value measured in Cavendish-type experiments, we
can solve for the function G(H), with the result

G(H) =
GN

1 + νeff ln H2

H2
0

, (3.37)

where νeff here is given by the constant coefficient (2.84). This equation was previously
met in [367–369] within a more simplified theoretical context and used to study the
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potential variation of the fundamental constants of Nature. However, equation (3.37) is
only approximate in our context. Remember that we assumed that νeff is constant in its
derivation, but we know from Appendix C.1 that it is not a strict constant.

It is natural to compare the above formula with Eq. (2.152) at this point. The latter
stems from the existence of running couplings, which is of course a direct reflex of the
RG invariance of the effective action. In it, M can be arbitrary since the effective action
is independent of M . Moreover, our assumption that Pvac = −ρvac, which we also used
in the above derivation, is not a sufficiently good approximation since we know from
Sect. 3.1 that there is indeed a departure of the quantum vacuum EoS from −1, see
Eq. (3.4). Admittedly the last equation is a bit cumbersome, but if we consider only
the contributions that can be relevant for the current universe, the departure is given by
the term f2(M, Ḣ) on the RHS of Eq. (3.5). This is the same approximation used in our
discussion of the EoS of the quantum vacuum for the current universe, see Sect. 3.3. Thus,
from Eq. (3.6) and setting M = H, according to our usual prescription (cf. Appendix C.1
for details), we find

Pvac(H) + ρvac(H) '
(
ξ − 1

6

)
8π2

Ḣ

(
m2 −H2 −m2 ln

m2

H2

)
'
(
ξ − 1

6

)
8π2

Ḣm2

(
1− ln

m2

H2

)
,

(3.38)
where we have neglected a term of O(ḢH2) = O(H4) but we have kept the terms
proportional to m2Ḣ as they are not necessarily negligible in the present universe. The
above expression gives the leading deviation of the quantum vacuum EoS from −1 at
low energy (check next section 3.3 for a complete discussion regarding Vacuum’s EoS.
), being such a deviation of the same order of magnitude as the ∼ H2 term involved in
ρvac(H). The above correction to the quantum vacuum EoS genuinely originates from
our calculation of the vacuum pressure in Sect. 3.3. Therefore, it must be considered on
equal footing with the dynamical term of ρvac(H) in the correct calculation. By duly
taking into account Eq. (3.38) in the calculation of G(H) and using the exact function
νeff(H) given in the Appendix C.1 rather than just inserting the approximate constant
result (2.84), we find after some calculations the following expression for the running of
the gravitational coupling (see the details in Appendix C.3):

G(H) =
GN

1− (ξ− 1
6)

2π
m2

m2
Pl

ln H2

H2
0

. (3.39)

This formula is not only more rigorous than Eq. (3.37) in our context, but in contrast
to the latter it is entirely consistent with the running coupling formula (2.152) when we
set M = H and M0 = H0 in it and use the fact that H2 − H2

0 is fully negligible versus
m2 ln (H2/H2

0 ) for all H (in post-inflationary times). In fact, for H around the current
value H0, this follows from

H2 −H2
0

m2 ln H2

H2
0

=
H2

0

m2

(
1 +

1

2
x+O(x2)

)
� 1 (0 ≤ |x| < 1) , (3.40)

with x ≡ (H2−H2
0 )/H2

0 and H2
0/m

2 � 1 for any known particle. On the other hand, for
large values of H we also have H2/m2 � 1 since m is assumed to be a mass of a typical
GUT particle. Notice that the running of G(H) from Eq.(3.39) is very mild, not only
because it is a logarithmic running but also because the coefficient of the log is of order
m2/m2

Pl � 1, which holds good even for m in the GUT range, i.e. m ∼MX ∼ 1016 GeV,
assuming that ξ is not very big.
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We should emphasize that the setting M = H used above to study the running of G(H)
is the same one employed to infer the running vacuum formula (Appendix C.1). The fully
consistent derivation of (3.39) from two diverse roads; namely one (more physical) relying
on the overall local conservation law (3.34), and the other (more formal) based on the
running coupling formula (2.152) – and ultimately on the RG-invariance of the effective
action – is a most remarkable feature. At the end of the day, the scale setting prescription
M = H proves to be the clue for exploring the physical consequences of our renormal-
ization framework. Overall the obtained results speak up of the full mathematical and
physical consistency of our approach.

Finally, we should note that although our discussion in this section has focused on the
background and vacuum effects from the single quantum matter field φ, this does not
exclude the possibility that additional contributions from incoherent dust matter and
radiation become involved. In the discussion of Sect. C.3 we show that the presence of
ordinary matter does not alter at all the results presented above, provided one assumes
that such an ordinary matter is conserved. Apart from that, there is also the possibility
that matter components interact with the running vacuum. The safest possibility would
be to assume potential interactions between Cold Dark Matter (CDM) and vacuum, as
in this way the most sensitive and well known components of the universe (baryons and
photons) are unaffected. These new types of interaction between Dark Matter (DM) and
vacuum can certainly be important but are model dependent, as they rely on introducing
new parameters in the theory.

3.3 EoS of the quantum vacuum and the CCP problem

Let us start with the traditional, on-shell approach to the study of the EoS of the Quantum
Vacuum. The specific f6 terms shown above in Sect. 3.1 for the pressure are essential if
we want to compute the EoS on-shell since f2 = 0 and f4 = 0 for M = m, as it is obvious
from the first two lines of (3.4). Therefore, at leading order, the on-shell value of the
vacuum EoS is

Pvac(m) = −ρvac(m) + f6 = −ρΛ(m)− 〈T
δφ
00 〉

(6)
ren(m)

a2
+ f6 , (3.41)
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where 〈T δφ00 〉
(6)
ren(m) is given by Eq. (2.57). The EoS “parameter” therefore reads

wvac(m) =
Pvac(m)

ρvac(m)
= −1 +

f6(m)

ρvac(m)

= −1 +
1

10080π2m2ρvac(m)

(
8H4Ḣ − 28Ḣ3 + 6H3Ḧ − 10Ḧ2 − 22Ḣ

...
H

+ 24H2Ḣ2 − 7H2
...
H − 49HḢḦ − 6H

....
H −

.....
H
)

+

(
ξ − 1

6

)
240π2m2ρvac(m)

(
−6H4Ḣ + 34Ḣ3 − 6H3Ḧ + 12Ḧ2 + 24Ḣ

...
H − 24H2Ḣ2

+ 7H2
...
H + 55HḢḦ + 6H

....
H +

.....
H
)

−
3
(
ξ − 1

6

)2

48π2m2ρvac(m)

(
32Ḣ3 − 12H3Ḧ + 12Ḧ2 + 24Ḣ

...
H − 48H2Ḣ2

+5H2
...
H + 47HḢḦ + 6H

....
H +

.....
H
)

+
9
(
ξ − 1

6

)3

4π2m2ρvac(m)

(
4H4Ḣ − 5Ḣ3 − 6H3Ḧ − 11HḢḦ − Ḧ2

− Ḣ
...
H − 24H2Ḣ2 − 2H2

...
H
)
.

(3.42)

Quite obviously wvac(m) = wvac(m,H, Ḣ, Ḧ, , ...) is actually a function of H and its
derivatives. These terms can be relevant at the very early stages of the cosmological
evolution. However, even during the short inflationary period deviations from the vac-
uum EoS wvac = −1 are tiny since all the terms that can trigger a departure depend on
derivatives of H, but H remains essentially constant during inflation. We discuss RVM-
inflation in Sect. 3.4.2. At this point the important result that we have just obtained
must be emphasized in a twofold manner, quantitatively and qualitatively. First, quanti-
tatively, we have just proven that the on-shell EoS of the quantum vacuum is essentially
the expected one, i.e. close to wvac = −1, and hence this is no longer an assumption or
imposition; second, qualitatively, we have found that the quantum vacuum is not a static
state but is dynamical: it changes very slowly at present but it could well have been
a powerful driving force in the past. Both of these conclusions are perfectly reasonable
for a primeval vacuum which might have been highly “creative” in the past but became
much more tempered at present.

3.3.1 Derivation of the quantum vacuum EoS for the FLRW regime

Despite of the fact that the we have presented the complete expression for the equation of
state (EoS) of the quantum vacuum on-shell, it seems natural to extend its computation
off-shell as to use the renormalized expressions of both vacuum Presure and VED. In
that sense, we can make use of Eq. (3.4) to relate them. Quantum effects (starting at
the end of the inflationary epoch) trigger a fully dynamical behavior of wvac during the
subsequent cosmic evolution within the conventional FLRW regime. As a result, the EoS
of the quantum vacuum does not remain stuck to the classical value wvac = −1 and indeed
changes throughout different epochs. Such an evolution can be explicitly derived from
the QFT framework.

145



Our goal is to provide some details about the derivation of the important EoS for-
mula within the renormalization approach presented above, which is valid for the post-
inflationary epoch, i.e. for the whole FLRW regime. For all the considerations made
during the FLRW regime we will neglect the quantum corrections of order O(H4) or
above, which can only be relevant for the inflationary epoch. Thus, for the EoS determi-
nation during the post-inflationary epoch, it suffices to keep the terms of adiabatic orders
2 in Eq. (3.5) only. We find

wvac(H) =
Pvac(H)

ρvac(H)
= −1 +

1

ρvac(H)

(
ξ − 1

6

)
8π2

Ḣm2

(
1− ln

m2

H2

)
+O(H4) (3.43)

where ρvac(H) in the denominator of the above formula is given by Eq. (2.83). The
O(H4) terms are to be neglected hereafter. We can see from Eq. (3.43) that at leading
order the vacuum EoS is coincident with that of the ΛCDM (wvac = −1), as it could not
be otherwise. Up to second adiabatic order, it reads

wvac(H) = −1 +
εm2

Pl

4πρvac(H0)
Ḣ

(
1− ln

m2

H2
0

)
' −1− νeff m

2
Pl

Ḣ

4πρ0
vac

, (3.44)

where the small parameter ε is defined by

νeff ≡ νeff(H0) ' ε ln
m2

H2
0

, ε ≡ 1

2π

(
ξ − 1

6

)
m2

m2
Pl

. (3.45)

We have set H = H0 in the log since the change is extremely slow within long cosmological
periods, for example around our time, and used ln m2

H2
0
� 1 in the last step. This expression

is the result at O(νeff) for very low redshift. By simple manipulations upon using (3.45)
and the ΛCDM form for Ḣ ≈ −3Ω0

mH
2
0 (1 + z)3 /2 (which is consistent at this order) we

can reach now a beautiful and compact expression for the current EoS of the quantum
vacuum, which just depends on νeff and on the current cosmological parameters Ω0

m and
Ω0

Λ, and can be written in terms of the cosmological redshift z:

wvac(z) ' −1 + νeff
Ω0

m

Ω0
vac

(1 + z)3 , z < O(1). (3.46)

Here, Ωvac ≡ ρ0
vac/ρc = 8πGNρvac/(3H

2
0 ) and similarly for Ω0

m. However, we would like to
generalize that formula for arbitrarily large redshift within the FLRW epoch and for this
we cannot approximate the denominator of (3.43) through the constant ρ0

vac = ρvac(H0)
as we did before. We need to use now the dynamical form of the VED during the FLRW
epoch, i.e. Eq (C.6), in which the parameter νeff itself is running:

νeff(H) ≡ ε

(
−1 + ln

m2

H2
− H2

0

H2 −H2
0

ln
H2

H2
0

)
. (3.47)

Its approximately constant form for H in the late time universe is given by (3.45). To
find out the vacuum EoS such that it be valid for any redshift from now up to the initial
stages of the radiation-dominated epoch, we have to insert Eq. (3.47) into the canonical
RVM form for the VED, i.e. Eq. (C.6), and use the latter in the denominator of the
EoS equation (3.43). To further proceed we need an explicit form for H. For νeff strictly
constant, the RVM can be solved analytically [245, 246, 248, 386]. However, the QFT
form of the RVM is more complicated since the effective parameter (3.47) is a function
of H and then an exact analytical solution is not feasible. Even so, taking into account
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that νeff(H) is a slowly varying function of H and that |ε| � 1, the function νeff(H)
remains always small, and hence we can obtain a very good approximate solution for the
full FLRW regime by expanding the solution in the small parameter ε. In this way we
will be able to split the corrected H2 (involving the QFT effects) into the leading ΛCDM
part plus O(ε) corrections or higher. The standard or concordance ΛCDM model part of
H2 is simply

H2
ΛCDM(z) = H2

0

[
Ω0

m(1 + z)3 + Ω0
r (1 + z)4 + Ω0

vac

]
. (3.48)

Now upon inserting Eq. (C.6) into Friedmann’s equation and separating the ΛCDM con-
tribution, we find the following result:

H2 =
8πG(H)

3
ρ ' H2

ΛCDM + ε
(
H2

ΛCDM −H2
0

)(
−1 + ln

m2

H2
0

)
+O(ε2) , (3.49)

where ρ = ρm(z) + ρr(z) + ρvac(H) + · · · is the total density and the dots stand for
the neglected O(H4) corrections to Friedmann’s equation in the present universe (3.14)
(which we neglect in all the considerations of this section). In the above expression, the
term departing from the ΛCDM result has been calculated up to order O(ε), but we
should remark that G(H) in (3.49) is given by by Eq. (3.39) and hence it had also to be
expanded to O(ε) so as to obtain the complete O(ε) correction indicated in Eq. (3.49).
In a similar way we find

Ḣ = ḢΛCDM + εḢΛCDM

(
−1 + ln

m2

H2
0

)
+O(ε2) . (3.50)

Finally, introducing the above equations in Eq. (3.43), we arrive after some calculations
at the formula

wvac(z) ' −1 +

νeff

(
1− lnE2

ΛCDM

ln m2

H2
0

)(
Ω0

m(1 + z)3 + 4
3
Ω0

r (1 + z)4
)

Ω0
vac + νeff

[
−1 + E2

ΛCDM(z)

(
1− lnE2

ΛCDM(z)

ln m2

H2
0

)] , (3.51)

in which E2
ΛCDM(z) ≡ H2

ΛCDM(z)/H2
0 , with νeff given by (3.45). Once more we have used

lnm2/H2
0 � 1 to simplify the final result. In practice, it is sufficient to use the even more

simplified form

wvac(z) = −1 +
νeff

(
Ω0

m(1 + z)3 + 4
3
Ω0

r (1 + z)4
)

Ω0
vac + νeff [−1 + E2

ΛCDM(z)]
, (3.52)

since lnE2
ΛCDM/ ln (m2/H2

0 )� 1 in the entire FLRW regime, as it can be easily checked.
It is fully model-independent as the mass of the scalar particle has been absorbed by
the generalized coefficient νeff (within the very good approximation used to derive it).
Moreover, as indicated above, for small redshift values Eq. (3.52) trivially reduces to the
much simpler form (3.46).

The above EoS formula for the quantum vacuum can still be further refined to include the
next-to-leadingO(ν2

eff) terms. This implies more work since we need to consistently collect
all of ε2 terms and in particular also those from expanding up to that order the running
gravitational coupling (3.39). We shall omit the details of this lengthier calculation. The
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result stays, however, rather compact and we find that up to the next-to-leading order in
ε we have

H2(z) = H2
0 +

(
H2

ΛCDM −H2
0

)(
1 + ε

(
−1 + ln

m2

H2
0

)
+ ε2

(
−1 + ln

m2

H2
0

)2
)

(3.53)

or

E2(z) ≡ H2(z)

H2
0

' E2
ΛCDM(z) + νeff

(
E2

ΛCDM(z)− 1
)

+ ν2
eff

(
E2

ΛCDM(z)− 1
)

(3.54)

and

Ḣ = ḢΛCDM + εḢΛCDM

(
−1 + ln

m2

H2
0

)
+ ε2ḢΛCDM

(
−1 + ln

m2

H2
0

)2

' ḢΛCDM + νeffḢΛCDM + ν2
effḢΛCDM .

(3.55)

These expressions obviously extend the previous ones up to O(ε2). We can use them to
compute the EoS at this order. Once more we see that the expansion in ε is such that at
leading order it can be expressed as an expansion in νeff . The final result for the EoS to
O(ν2

eff) takes on the form in Eq. (3.51) with only the replacement νeff → νeff(1 + νeff) in
the parameter νeff of its numerator. Thus, since 0 < νeff � 1, the next-to-leading O(ν2

eff)
terms obviously imply a tiny correction to the O(νeff) formula, which in practice can be
neglected.

We remark that the model at this point is solved. Indeed, from Eq. (3.54) the quantum
correction to the ordinary ΛCDM parameter Ω0

vac can be expressed directly in terms of
the redshift as follows:

Ωvac(z) ' Ω0
vac + νeff

(
E2

ΛCDM(z)− 1
)

+ ν2
eff

(
E2

ΛCDM(z)− 1
)
. (3.56)

Obviously Ωvac(z = 0) = Ω0
vac is satisfied, as it should be. Interestingly enough, to within

O(νeff) this expression is similar to the one found in previous calculations based on the
phenomenological RVM, see e.g. [245,246,248,386], except that here we have derived the
fundamental RVM formulas, including the quantum vacuum EoS, from QFT in curved
space-time within the framework put forward in earlier sections. The above equation can
be written to O(νeff) in terms of the vacuum energy density itself as follows:

ρvac(z) ' ρ0
vac + νeff ρ

0
c

(
E2

ΛCDM(z)− 1
)
, (3.57)

where ρ0
c = 3H2

0/(8πGN) is the current critical density. This expression has been used
for the VED plots in Fig. 3.1.

3.3.2 Chameleonic Vacuum

A sufficiently accurate approximation to the quantum vacuum EoS during the entire
FLRW cosmic stretch can be derived directly from (3.52):

wvac(z) = −1 +
νeff

(
Ω0

m(1 + z)3 + 4
3
Ω0

r (1 + z)4
)

Ω0
vac + νeff [−1 + Ω0

m(1 + z)3 + Ω0
r (1 + z)4 + Ω0

vac]
, (3.58)

where Ω0
vac = ρ0

vac/ρ
0
c ' 0.7 is the current vacuum cosmological parameter, whereas

Ω0
m = ρm0/ρ

0
c ' 0.3 and Ω0

r = ρ0
r/ρ

0
c ∼ 10−4 are the corresponding matter and radiation
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Figure 3.1: Evolution of the different energy densities with the expansion in the RVM context.
The plot on the right provides a complementary view in a (vertical) logarithmic scale. The VED
exhibits a very mild dynamics up to the early radiation dominated epoch. Parameters H0 and
Ω0

m are taken from the best-fit values of [132]. The vacuum evolution is very mild and to make
it more apparent it is shown for different values of νeff . The additional (gren-dotted) line on the
right plot corresponds to νeff = 0.0005. Since it could not be appreciated on the left plot (which
uses a linear scale), it has not been marked there.

Figure 3.2: Vacuum EoS for different (positive) values of νeff . Some regimes to be noted: i)
wvac ' −1 for very low redshift, ii) −1 < wvac < −1/3, vacuum mimics quintessence for low
and intermediate redshift (the horizontal dotted line marks off the DE threshold wvac = −1/3),
iii) wvac = 0 plateau, vacuum imitates dust matter, and iv) wvac = 1/3 plateau, vacuum mimics
radiation. The quantum vacuum behaves as a cosmic chameleon.
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parts. The above EoS formulas depend on the crucial coefficient νeff , which we have
computed in QFT but it must ultimately be fitted to the cosmological data [245, 246,
248,249,374,386,398,399]. These analyses show that νeff ∼ 10−2−10−3 and that νeff > 0 is
the preferred sign. From the foregoing considerations, we find that the quantum vacuum
never has the exact EoS wvac = −1 during the FLRW stage, not even at z = 0, where

wvac(0) ' −1 + νeff
Ω0

m

Ω0
vac

& −1 (νeff > 0) . (3.59)

Thus, amazingly, the quantum vacuum currently behaves as quintessence or phantom 3.
Such an effective behavior is triggered by the quantum effects and there is no need to
introduce ad hoc quintessence fields (nor ad hoc inflatons, as shown in the previous
section). In Fig. 3.2 we provide a detailed plot of the EoS (3.58) for a large window of
the FLRW regime well beyond the inflationary epoch. The plot is performed for different
values of νeff in a wide redshift range spanning from the present time up to the radiation
epoch. The approximate EoS (3.46) is only valid for the most recent universe and deviates
significantly from the more accurate one (3.58) for intermediate or large values of z. This
can be clearly seen in Fig. 3.3 where the two formulas are plotted to ease the comparison
and to evince the large deviation at higher and higher redshifts. Notice that the detailed
plot of the vacuum EoS in Fig. 3.2 interpolates in a numerical way the results that can
be directly inferred analytically from Eq. (3.58) for the different redshift intervals all the
way from the radiation epoch, down to the matter-dominated epoch until reaching the
current epoch. Denoting by zeq = Ω0

m/Ω
0
r − 1 ' 3300 the equality point between matter

and radiation, we find for νeff 6= 0:

wvac(z) =



1
3

for z � zeq with Ω0
r (1 + z)� Ω0

m, radiation behavior,

0 for O(1) < z � zeq with Ω0
m � Ω0

r (1 + z), dust behavior,

−1 + νeff
Ω0

m

Ω0
vac

(1 + z)3 for − 1 < z < O(1) , phantom/quint. behavior.

(3.60)
As we can see, the quantum vacuum EoS follows the EoS of relativistic matter in the
radiation-dominated epoch, then the EoS of non-relativistic (dust) matter in the matter-
dominated epoch, the EoS of quintessence at present (for νeff > 0) and asymptotes to de
Sitter era in the future (z → −1), where ωvac → −1.

In the presence of the quantum vacuum effects, the deceleration parameter q = −1 −
Ḣ/H2 can be easily derived. Using the expression for the quantum corrected H up to
order O(νeff), eq. (3.49), and requiring that q = 0 we find that the transition redshift
from deceleration to acceleration becomes slightly shifted with respect to that of the
concordance model (ΛCDM), as follows:

zt =

(
2 (Ω0

vac − νeff)

Ω0
m(1 + νeff)

)1/3

− 1 . (3.61)

As expected, the ΛCDM result is recovered for νeff = 0. Since, however, νeff is small and
zt cannot be measured with precision yet, it is not the ideal signature. What it really acts

3Equation (3.46) resembles previous effective EoS forms for the dynamical VED derived phenomenologically
in [400–402], although it is fundamentally different from them since it predicts a quintessence behavior of the
quantum vacuum already at z = 0, in contrast to the aforementioned forms which predict the conventional
behavior wvac = −1 at z = 0. Not to mention, of course, that the EoS we have found here is derived from explicit
QFT calculations.
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Figure 3.3: Vacuum EoS at low redshifts including the quantum effects presented in this work.
We show both the curve corresponding to the of the approximate vacuum EoS formula (3.46)
with respect to the more precise one given by Eq. (3.58) for a typical value νeff = 0.005, observing
a deviation at low redshifts. Because the fitting analyses [374] generally favour the sign νeff > 0,
the EoS deviates ωvac = −1 already at z = 0 and mimics quintessence.

as a useful signature of the quantum vacuum is its effective behavior as quintessence in
the low redshift range, as we have seen above. Indeed, amazingly enough, the quantum
vacuum is kind of ‘chameleonic’. It behaves as ‘true’ vacuum (wvac = −1) only in the
very early times when it triggers inflation. It then remains silent for eons (hidden as if
being relativistic or pressureless matter). Today, it appears as (dynamical) dark energy
(DE), specifically as quintessence (−1 < wvac . −1/3), cf. Fig. 3.2. As a result of this
multifaceted behavior, it may crucially help in solving the σ8 and H0 tensions afflicting the
ΛCDM model, see e.g. [199,204,204,205,227,278,279,403] and the long list of references
therein on different models and alternative points of view. We will comment more on
these phenomenological implications in the next section, but first some comments are
required.

Through the former derivations we have set ρm = ρ0
ma
−3 = ρ0

m(1+z)3, just as in the matter
conservation law for the ΛCDM. This is justified to O(νeff) as we now argue. Recall that
in the presence of running vacuum the matter conservation law can be affected in some
cases. For example, if there is an exchange between vacuum and cold dark matter (CDM),
the matter conservation law takes corrections of the type ρ0

cdma
−3(1−νeff) [246, 248, 250].

However, even in these cases it does not modify the leading form of the EoS that we
have found, as it only amounts to add a O(ν2

eff) correction to it. In other situations,
such as e.g. the one that will be studied in Chapter 6 (so-called type-II) the gravitational
coupling also runs with the cosmic expansion but the running is of the form ∼ νeff lnH.
This term would induce once more a negligible O(ν2

eff) correction to the equation of state
(3.58). As it turns out, therefore, the EoS that ensues from our QFT approach is pretty
universal for the RVM in its various implementations, at least to order O(νeff) and for
the indicated low redshift range. A more detailed treatment of the EoS in the general
regime will be presented elsewhere.

In summary, Eq. (3.46) reconfirms what we had already advanced in Sec.2.6, namely that
for νeff > 0 (resp. νeff < 0) the evolving VED mimics quintessence (resp. phantom DE).
This result is a bit provocative and comes as something of a surprise. The usual picture
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of the vacuum is that it is a kind of medium with a strict EoS equal to −1. However,
the QFT analysis of vacuum in curved space-time shows that it is not so. The so-called
quintessence or phantom fields (and in fact DE in general) could be nothing else but
a manifestation of the (dynamical) quantum vacuum, and if so there is no need of ad
hoc fields with particular potentials to explain the DE. Vacuum fluctuations of quantum
matter fields could just make it since upon proper renormalization they lead to small
contributions of order m2H2. The current fits to νeff suggest that it should be in the
ballpark of ∼ 10−3 and positive [245, 246, 248, 250, 274–280, 374–376, 386–388, 392–396],
and hence the favored dynamical DE mimicked by the quantum vacuum seems to be
that of quintessence. A related result was already hinted at long ago but on much more
phenomenological grounds [400]. Surprisingly, it also holds in Brans-Dicke theory with a
cosmological constant (see Chapter 5), as this context has recently been shown to mimic
the RVM, see [370, 371] and [278, 279]. After we have studied the impact of the new
pressure terms of adiabatic order 2 at low energies, in the next section we consider the
impact of the higher adiabatic terms at high energies.

3.4 Running vacuum: some phenomenological implications

We have devoted most of this chapter and the previous one to put the foundations of the
running vacuum model (RVM) on a sound theoretical basis within QFT in curved space-
time. In this last section, which precedes the discussion of this chapter, we would like
to put forward some phenomenological considerations in order to illustrate the possible
physical impact of the quantum running vacuum in the light of the observational data
and its implications in the early Universe, providing a simple mechanism for inflation.

3.4.1 Post-Inflationary implications of RVM

Although a more detailed phenomenological analysis will be presented elsewhere [399],
here we just highlight a few potentially significant consequences of our study. We have
already mentioned that the RVM has been tested in the past in a variety of phenomeno-
logical contexts, where the basic parameter νeff has been fitted to different sets of cos-
mological data [245, 246, 248, 250, 274–280, 374–376, 386–388, 392–396]. The fact that we
have now been able to account for the structure of the RVM on QFT grounds, it obvi-
ously strengthens its position. Let us focus in a particular variation of the RVM that
we recently investigated in one of our works [374], the RRVM (Ricci RVM). It is fully
revisited Chapter 6, however we would like to advance some aspects since some imprints
of these theoretical derivations are reflected on the results of this model. The RRVM
arises from the generalized expression for the VED which we have predicted in Sec. 3.1.1.
It includes the two low energy terms H2 and Ḣ, each one with independent coefficients.
More specifically, we consider a generic RVM structure of the form (3.11). From the
QFT perspective, the two coefficients νeff and ν̃eff depend both on the number of bosons
and fermions in a way which can be computed theoretically. Albeit in this work we have
presented the calculation for the scalar contribution only, the yield from the fermionic
part will be reported in a separate study [389], but advanced in Chapter 4. Nevertheless,
note that despite the fact that the vacuum running is theoretically computable in QFT,
which is perhaps the most remarkable observation of our published works [198,288–290],
we have limited ourselves to the free theory and in practice a more realistic picture would
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arise after the introduction of interactions. Therefore, at present we cannot predict the
precise quantitative evolution of the VED. But this does not preclude us, of course, from
testing the phenomenological performance of the model.

What we are going to do now is to advance some results regarding the model we will
revisit in in full detail in Chapter 6. While the general VED form (3.11) was analyzed
on pure phenomenological grounds in [245, 386], here we will minimize the number of
parameters and shall consider the convenient situation ν̃eff = νeff/2, as in this way the
VED adopts the form

ρvac(H) =
3

8πGN

(
c0 + νeff H

2 + ν̃eff Ḣ
)

=
3

8πGN

(
c0 +

νeff

12
R
)
, (3.62)

with R = 12H2 + 6Ḣ the curvature scalar. This scenario was analyzed in [374] under
different hypotheses, in particular it was assumed that the vacuum was interacting with
cold dark matter. We restrict the number of assumptions to the minimum and just adapt
to the precise situation that we have encountered in the QFT analysis presented in this
work, in which matter is locally conserved (as in the standard ΛCDM) and the VED
and gravitational coupling G possess a mild cosmic evolution (as studied in the previous
section). Interactions between matter and vacuum are not considered. This scenario
is particularly well-behaved in the radiation dominated era since the relativistic matter
density is not altered as compared to the standard model and hence cannot impinge on
the BBN physics [245, 386]. This is all the more true if we take into account that the
vacuum energy density (3.62) remains also subdominant in the radiation epoch since
R ' 0 in it.

In fact, in [374] it was shown that if there is a ‘DE threshold’ z∗ near our time where
the DE dynamics of the vacuum gets suddenly activated, this can be extremely helpful
for solving the σ8 tension within the RVM. At the same time, it was shown that if the
gravitational coupling runs slowly (logarithmically) with the expansion, this can help
to fix the H0 tension. In Fig. 3.2 we can see that a continuous (i.e. not abrupt) DE
‘threshold’ window with low z∗ = O(1) does indeed exist for the quantum vacuum, in
the sense that for z < z∗ the vacuum gets progressively activated as DE (wvac < −1/3),
whereas for z > z∗ the EoS of the quantum vacuum transmutes successively into that of
dust matter and radiation. Additionally, in Sect. 3.2.3 we have found that the dynamics
of the vacuum is intertwined with that of the gravitational coupling through a log of
the Hubble rate: G = G(lnH). Being these two crucial factors simultaneously present
in our QFT approach, they combine constructively to relieve both tensions at a time.
Incidentally, we note that the vacuum EoS for the current universe (3.46) in our QFT
approach is similar to the EoS of the effective dark energy (DE) in a Brans-Dicke (BD)
theory in the presence of a cosmological constant, see Chapter 5.

As previously indicated, the RVM under consideration preserves local matter conserva-
tion. However, the VED evolves together with G such that the Bianchi identity can be
satisfied, just as explained in Sect. 3.2. On solving explicitly the model (details will be
provided in Chapter 6) we find the following evolution for the VED in linear order in the
small parameter νeff :

ρvac(a) =

(
Ω0

vac

Ω0
m

− 1

4
νeff

)
ρ0

m +
1

4
νeffρ

0
ma
−3 +O(ν2

eff) , (3.63)

where the current cosmological parameters Ω0
i = (8πGN)ρ0

i /(3H
2
0 ) satisfy Ω0

vac + Ω0
m = 1.

For νeff = 0 the VED is constant and ρvac =
3H2

0

8πGN
Ω0

vac = ρ0
vac =const. (i.e. we recover the
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Figure 3.4: Comparative contours at 1σ and 2σ c.l. in the (σ8, H0)-plane corresponding to the
RVM and the ΛCDM for the data sets mentioned in the text. It can be seen that the RVM is
quite effective in alleviating the H0 tension and at the same time it reduces the σ8 one.

ΛCDM behavior, as it should be), but for non-vanishing νeff the VED has a moderate
dynamics since this parameter is small. In Fig. 3.1 we plot the various energy densities
for matter, radiation and vacuum (from (3.63)) using the best-fit values from Planck
TT,TE,EE,+low E+lensing data [132].

If νeff > 0 (as it follows from different phenomenological studies mentioned above), the
EoS of the quantum vacuum satisfies wvac > −1 even at z = 0 and also (3.63) predicts the
VED to decrease with time. Hence it mimics quintessence without need of invoking ad
hoc scalar fields. This is quite revealing, as it suggests that such an effective quintessence
behaviour may emerge from a fundamental QFT origin. Finally, in Fig. 3.4 we illustrate an
important phenomenological implication of the present framework, namely the possibility
that the RVM could help in solving or at least alleviating the persistent H0 and σ8 tensions
mentioned in the introduction. We refer the reader to the previous studies [278,374] for
a detailed definition and description of these data and the methodology used in the
fitting analysis. These tensions are still the main focus of interest of many cosmologists
[199, 200, 203–205, 208, 214, 403]. In that figure we show the 1σ and 2σ c.l. contours
in the (σ8, H0) plane both for the RVM and the ΛCDM. The used data sets in this
analysis involve type Ia supernovae, baryonic acoustic oscillations, cosmic chronometers,
large scale structure formation data (on fσ8) and the cosmic microwave background
observations from Planck 2018 (i.e. the data string SnIa+BAO+H(z)+LSS+CMB). In
the light of the results presented in Fig. 3.4, we can say that the comparative performances
between the RVM and ΛCDM clearly show that the RVM may alleviate the two tensions
σ8 and H0 at a time, which is remarkable. The value of H0 tends to be higher in the
case of the RVM as compared to the ΛCDM and as a result the current 5σ tension [210]
between the measurements of the local value of H0 and from the early universe (CMB)
is rendered at the residual level of ∼ 1.6σ. Similarly, the σ8 value is also reduced and the
corresponding tension is brought to the inconspicuous level of ∼ 1.3σ. A more detailed
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and exhaustive presentation including additional data sources (e.g. from BICEP2/Keck
Array CMB polarization experiments [404] as well as updated observations from the data
string mentioned above) will be undertaken in a future phenomenological study. However,
we believe that even from the short considerations highlighted in this section the reader
can already get a flavor of the real potential of the RVM for improving the description of
the cosmological data, i.e. when the cosmological vacuum becomes dynamical, and more
specifically when it runs according to the QFT description presented in this work.

We remind the reader that all these disquisitions discussed in this section are going to
be expanded in Chapter 6. We have advanced some of the discussions here. However,
there is a good reason for doing that. Our main point is to express that some of the
features attributed to the vacuum fluid that were invoked in the aforementioned papers
regarding the RVM (including [374]), were just contemplated from general arguments or
for the sake of the fits. Now, we have seen how these emerge naturally from the QFT
considerations presented here. Namely, a variable G, a late activation of the vacuum
fluid as dynamical DE, and a mildly evolving VED which may behave as quintessence
(or phantom) at the present time. Moreover, we have seen that only one parameter is
needed to connect all these effects (although the possibility of considering a generalized
RVM version may require more than one parameter (3.11)). So that we have a strong
motivation to study models incorporating these attributes jointly, as we expect to do in
the near future [399].

3.4.2 Implications for the early universe: RVM-inflation

So far we have elaborated on the VED expression (2.74) in the low energy regime, in
which we can neglect the O(H4) terms of the form Ḣ2, HḦ and H2Ḣ. In such regime
we know that the VDE can be put in the alternative form (2.83), which fits in with the
traditional RVM structure of the vacuum evolution and represents a small dynamical
departure with respect to the ΛCDM since |νeff | � 1. Rephrased in this fashion we can
see that the obtained VED around our time represents a small variation with respect
to the current value of the vacuum energy density, ρ0

vac. While the previous discussion
obviously applies to the current universe only, since we have neglected the O(H4) terms
on the RHS of Eq. (2.74), we should emphasize that these terms can play a significant
role in the early universe. They are generated from the functional differentiation of the
R2-term in the higher derivative part of the vacuum action (cf. Chapter A), and therefore
they play a similar role as in the case of Starobinsky’s inflation [164, 190, 405]. Notice
that even though all the terms of the form Ḣ2, HḦ and H2Ḣ in Eq. (2.74) are denoted
here as being of O(H4), none of them is really proportional to H4. As a result, they
all vanish for H strictly constant. In fact, Starobinsky’s inflation is not triggered by
an early epoch in which H =const. but by one in which H decreases at constant rate
Ḣ =const, see e.g. [296] for a summarized discussion focusing on these well-known facts.
The corresponding inflation period is characterized by a final phase with rapid oscillations
of the gravitational field, which is when the universe leaves the inflationary phase and
enters the radiation epoch after a reheating period. Prior to the oscillatory phase, hence
within the inflationary period, H decreases fast and Ḣ remains approximately constant
(thence Ḧ ' 0) [296]. After the inflation period is accomplished we know that the
universe enters the radiation epoch, where R = 0 and the higher order terms become
irrelevant for the driving of the cosmic expansion.

After this brief summary of Starobisnky’s inflation, we would like to note that once the
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vacuum energy density in cosmological space-time is renormalized through the adiabatic
procedure a definite prediction for a mechanism of early inflation emerges which is char-
acterized by a short period where H=const. This constant must take, of course, a large
value which we expect to lie around a characteristic GUT scale. It is nevertheless totally
unrelated to the ground state of a scalar field potential and hence does not require any
ad hoc inflaton field. Such an alternative form of inflation, based on the constancy of H
for a short lapse of time, is called ‘RVM-inflation’. To set off an inflationary phase with
this mechanism we need powers of H higher than H2, see [296, 373, 406–408] for a phe-
nomenological description. All that said, there are features of the RVM in the very early
universe which our analysis (strictly based on QFT) could not be sensitive to, and hence
we would like to comment on them here. These features are connected with string theory
contributions. As we have mentioned, the higher order terms of Eq. (2.74) seems to vanish
for H =const. , and can not be source of such an inflation mechanism. Nevertheless, the
effective generation of terms proportional to H4 in the early universe is perfectly possible
from string-inspired mechanisms, see [311–313], in which the ∼ H4 power is generated
in the early universe from the vacuum average of the (anomalous) gravitational Chern-

Simons term ∼ MPα
′b(x)Rµνρσ(x) R̃µνρσ(x), which is characteristic of the bosonic part

of the low-energy effective action of the string gravitational multiplet. Here b(x) is the

Kalb-Ramond axion field and α′ is the slope parameter (Ms =
√

1/α′ being the string
scale). An effective metastable vacuum is conceivable in this context since such state can
be sustained until the universe transits into the radiation phase, and this occurs only
after the gravitational anomalies are cancelled. This must indeed happen because mat-
ter (relativistic and nonrelativistic particles) cannot coexist with gravitational anomalies.
These can actually be cancelled by the chiral anomalies of matter itself, see [311–313] for
details. Before such thing occurs, a metastable de Sitter period remains temporally active
and can bring about inflation through the (anomaly-generated) H4 term. The type of
inflation produced by the H4-term — and, in general, by higher order (even) powers of H
— is characteristic of RVM-inflation. The latter follows a different pattern as compared
to Starobinsky’s inflation, but graceful exit is still granted – see [373,406–408] for details
and particularly [296] for a comparison with Starobinsky’s inflation4.

It seems clear that the presence of the higher powers of the Hubble rate in the early
universe can be very important from different perspectives. For example, as noted in
[311, 312], they could help eschewing the possible trouble of string theories with the
‘swampland’ criteria on the impossibility to construct metastable de Sitter vacua in the
string framework [382–384], which if so it would forbid the existence of de Sitter solutions
in a low energy effective theory of quantum gravity. The existence of the H4- terms
does not depend on picking out a particular potential for the scalar field since, as we
should recall here, no potential has been introduced at any time in our framework nor
in that of [311–313]. Thus, the RVM string inflation approach could provide a loophole
to the swampland no-go criterion applied to fundamental scalar fields. But, of course,
to fully establish it requires of a detailed investigation in the context of string-induced
RVM [311–313], which is certainly not the subject of the present work.

Although is unclear that such a term proportional to H4 term is present in our QFT
framework, we can indeed establish ’RVM-Inflation’ from first principles by recurring to
even higher order terms, i.e. of adiabatic order 6. The O(T−6) terms accounted for here
take now the lead, see Eq. (2.58). They originate from finite contributions unrelated to

4A detailed study of H4-induced (and, in general, H2n-induced) inflation and related considerations concern-
ing cosmological horizons and entropy can be found in [373].
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renormalization. Collecting the relevant terms from our 6th-order calculation, we find

ρinf
vac(m) =

〈T δφ00 〉
(6)
ren(m)

a2
=

ξ̃

80π2m2
H6 + f(Ḣ, Ḧ,

...
H...) , (3.64)

which we have labeled with a superindex ‘inf’ because such an effective VED triggers
inflation, as we shall see immediately. In computing the overall coefficient of H6, we have
defined the parameter

ξ̃ =

(
ξ − 1

6

)
− 2

63
− 360

(
ξ − 1

6

)3

. (3.65)

Notice that in (3.64) we have only stood out the contributions from (2.58) which can be
responsible for fast inflation in a transient H =const. regime. The only relevant terms for
such an inflationary interval are those carrying the power H6 with some constant coeffi-

cient. The remaining terms, collected in the function f(Ḣ, Ḧ,
...
H...), consist of different

combinations of powers of H accompanied in all cases with derivatives of H, and hence
all these terms vanish for H =const. In other words, f = 0 for H =const. in Eq. (3.64).
As a result, up to 6th adiabatic order the only terms which do not vanish for constant
Hubble rate are the isolated powers H6. The overall coefficient upon collecting all these
terms is given by (3.65).

For the current discussion on inflation we may admit the presence of incoherent matter
with density and pressure (ρm, pm) beyond our original field φ, which is of course a most
realistic assumption for this consideration. The primeval, highly energetic, vacuum can
then decay into relativistic particles of all species. In the mentioned phenomenological
approach, it is considered a generalized RVM model of the form

ρvac(H) =
3

κ2

(
c0 + νH2 + α̃

H2p+2

H2p
I

)
(p = 1, 2, 3, ...) , (3.66)

where α̃ is another dimensionless coefficient. For α̃ = 0 we recover the low-energy form of
the RVM, i.e. Eq. (2.83), after we impose the boundary condition ρvac(H = H0) = ρ0

vac to
determine the coefficient c0. At higher energies, however, the presence of higher powers
of H beyond H2 can bring about inflation in the early universe, and in this case HI

defines (up to a coefficient) the scale of inflation, as we shall see. The effect of the higher
powers of H is negligible for the current universe. For α̃ 6= 0 the primeval vacuum can
decay into matter (most likely relativistic) at high energies (when H ∼ HI very large),
thus we can set ρm = ρr and pm = pr = wrρr (with wm = wr = 1/3 in this case) in
(3.7) and (3.9). Additionally, since f6 = 0 for H =const. we have ρeff

vac = (4/3)ρvac on
the RHS of (3.9) for the inflationary period. Coefficients c0 and ν are not important
for the early universe, and hence we may just concentrate on the effect of H2p+2 for
the study of the RVM-inflationary mechanism. Once more the presence of only even
powers H2p+2 (p = 1, 2, 3, ...) is related to the general covariance. Our QFT calculation
has revealed that p = 2 is singled out as the lowest possible power (∼ H6) available for
triggering inflation in the present framework.

Let us summarize the main traits of implementing RVM-inflation from our predicted VED
form (3.64) in the very early universe. First, we observe that we can take Pvac ' −ρvac

for an inflationary regime in which H remains approximately constant since functions
f2, f4 and f6 are essentially vanishing in Eq. (3.5) during such an inflationary phase. In
these conditions, taking p = 2 in (3.66) and neglecting the terms c0 and νH2 in front of
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the higher power H6, we can actually solve for H directly from (3.9):

H(a) =
H̃I[

1 +

(
a

a∗

)8
]1/4

. (3.67)

where we have traded cosmic time for the scale factor variable, a. Next, using equations
(3.7) we can solve for the explicit form of the radiation and vacuum energy densities 5:

ρr(a) = ρI

(
a

a∗

)8

[
1 +

(
a

a∗

)8
] 3

2

, ρvac(a) =
ρI[

1 +

(
a

a∗

)8
] 3

2

. (3.68)

We are expressing the above results in terms of the point a∗, which defines the transition
between vacuum dominance and the radiation era, i.e. the point which satisfies ρr(a∗) =
ρvac(a∗). It can be estimated as a∗ ∼ 10−29 within a typical GUT defined at the scale at
MX ∼ 1016 GeV [373]. Furthermore, we have defined

H̃I =
HI

α̃1/4
, ρI =

3

κ2
H̃2
I . (3.69)

Since H(a = 0) = H̃I , it follows that this is the value of the Hubble rate in the very
early universe. Similarly, ρvac(0) = ρI is the VED at that initial point. We can see that
they are both finite. The model, therefore, presents no early singularities at all. On
comparing (3.64) with the generic form (3.66) – with p = 2 in our case – and using the
above definitions we can easily identify

H̃I =

(
240π2

ξ̃

)1/4√
MPl m. (3.70)

Clearly, in order to have inflation near a typical GUT scale we need very massive particles
with massesm in the neighborhood of that scale. In addition, it is imperative, of course, to
have ξ̃ > 0. For a single scalar field non-minimally coupled to gravity, we find numerically
from (3.65) that this occurs for ξ . 0.1023. Such a range excludes ξ = 1/6, for which

ξ̃ < 0, but it admits the minimal coupling situation ξ = 0, and the negative values ξ < 0.
In general, we can expect to have many fields non-minimally coupled to gravity with
different couplings and masses, especially if we consider the matter content of GUT’s.
Therefore, a proper study of inflation must take into account the fact that we have a much
wider parameter space than with just one scalar field. We have checked that, in general,
RVM-inflation can be made compatible with non-vanishing running of the VED at low
energies, see Eq.(2.83). However, a detailed account of RVM-inflation in the QFT context
requires a dedicated study and will be presented elsewhere. In particular, we note that
the fermionic contribution might be important as well. Although the generalization of the
point-splitting and ARP methods for fermions have been amply discussed in the literature
[340–343, 353], its application to compute the scaling evolution of the VED, and more
specifically within the off-shell ARP procedure that we have been using for scalar fields,
has been considered only very recently [389]. Overall, theoretical scenarios indeed exist
for which RVM-inflation occurs along with νeff > 0 in Eq.(2.84), thereby being consistent
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Figure 3.5: Inflationary period. Left: It is shown the evolution of the energy densities (3.68)
of vacuum and relativistic matter before and after the transition point a∗ ∼ 10−29 from inflation
to the early radiation epoch (see the text). The constant vacuum energy density during inflation
decays into radiation and the standard FLRW regime starts. Right: The vacuum EoS is shown
around the transition point. It is attached to -1 during the inflationary period, then it tends to
mimic radiation after the reheating starts.

with the sign picked up by the current phenomenological analyses [246, 250, 374]. From
equations (3.68) we learn that the VED is initially constant and large, ρvac(a) ' ρI for
a � a∗, and decreases very fast beyond that point. On the other hand, the radiation
energy is initially zero, ρr(0) = 0, but increases very fast in the beginning (ρr ∼ a8) owing
to the vacuum decay into radiation. We can appraise this behavior in Fig. 3.5, where,
on the left, we can see the transition from the pure vacuum state that brings about the
inflationary phase, in which the VED remains approximately constant, into an incipient
radiation epoch, which soon dominates the evolution of the universe. At the beginning
(â = 0) there is no radiation (ρ(0) = 0) whilst the VED reaches its maximum value, i.e.
ρvac(0) = ρI ∝ M2

PlH
2
I . For a � a∗, the frenzied growing ∼ a8 of the radiation density

turns into the dilution law ρr(a) ∼ a−4 and hence we retrieve the standard behavior of
the radiation until our days. The VED, on the other hand, remains negligible during
the radiation epoch as compared to ρr and therefore it cannot perturb in any significant
way the BBN processes which will occur much later at a ∼ 10−9. In the long run, after
entering the matter-dominated epoch, the VED will recover the (much more tranquil)
form (2.83), which is characteristic of the current universe and evolves just as a constant
plus a mild componentH2 ∼ a−3 with a small coefficient. Obviously such form will appear
in the solution only if we keep the terms c0 and ν in solving the equations, but in this
section we focus exclusively on the very early times when the inflationary regime turns
into the primeval radiation epoch. Needless to say, the above solution is approximate
and is in effect only when the terms carrying the time derivatives of H are negligible as
compared to H6 during the short inflationary stage set off by H ' const. This estimate
is nonetheless sufficient to exhibit the main features of the early phase of RVM-inflation.
The terms with time derivatives of H are suppressed and cannot perturb significantly
the inflationary period characterized by H 'const. nor can have any sizeable influence

5See Appendix B of Ref. [373], where the analytic solution is given for arbitrary ν, α̃ and p, but still with
c0 = 0. The analytic solution for c0 6= 0 is only possible for the late universe, where the high power H2p+2 (p ≥ 1)
is negligible [373].
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beyond the very early universe once the H2 terms take over until the constant term c0

becomes eventually dominant around our present time.

The EoS of the quantum vacuum in the early Universe follows from computing the cor-
responding vacuum pressure at that primeval stage up to 6th adiabatic order. The result
is Eq. (3.5) which remember that adopts the form

Pvac(M) = −ρvac(M) + f2(M, Ḣ) + f4(M,H, Ḣ, ...,
...
H) + f6(Ḣ, ...,

.....
H ) + · · · , (3.71)

in which the functions f2, f4 and f6 involve adiabatic contributions of second, fourth and
sixth order, respectively, and all of them carry at least one time derivative of H as one
may see from Eq. (3.4). Therefore, all these functions vanish for H =const. (â� 1) and
we get Pvac = −ρvac to a very good approximation. The RVM inflationary period is thus
characterized by the traditional EoS of vacuum, wvac = −1. This can be appreciated in
Fig. 3.5, on right.

All in all approximations made in Starobinsky and RVM inflation cases are similar since
during the Ḣ ' const. regime all higher time derivatives are neglected – cf. Ref. [296]
for a comparative discussion of Starobinsky inflation versus RVM-inflation. The latter
have been explored phenomenologically in the mentioned previous works (cf. [296, 373,
406–408]), all of them were based on assuming the ad hoc structure (3.66). Here, in
contrast, we have been able to show that such a structure indeed emerges from QFT
in curved space-time and that p = 2 is the lowest possible value. In other words, we
have proven from an explicit QFT calculation that RVM-inflation can be unleashed by
the ∼ H6-term in the vacuum energy density. Thus, the two specific powers H2 and H6

are the ones which are picked out by the quantum effects of matter fields in the FLRW
background. The former power affects the dynamics of the current universe, whilst the
latter is responsible for inflation in this context. Remember that only even powers are
allowed by general covariance. The conspicuous absence of the power H4 is not surprising:
it is a built-in consequence of the subtraction procedure in the adiabatic renormalization
of the EMT in four dimensions. At the end of the day, the RVM description has the ability
to encompass the entire history of the universe from inflation up to our days from first
principles 6. A thorough account of the RVM mechanism of inflation will be presented in
a devoted study.

3.5 Discussion of the chapter

While in the previous chapter we focused more in the technical and mathematical aspects
of our QFT calculation of dynamical VED, here we are centered in the possible cosmolog-
ical consequences. The computation of the renormalized expression of Vacuum’s pressure
we performed at the beginning of the chapter, in Sect. 3.1, is a first step to scrutanize
potential and crucial phenomenological consequences of the dynamical quanum vacuum.
Before analyzing the whole form of Friedmann’s equations in this case, we studied in
Sect. 3.1.1 an effective behaviour of VED at low energies in which the EoS is stuck to -1,

6We remind the reader that a related inflationary mechanism, based on the power H4, is conceivable in
the framework of [311, 312, 390, 391]. However, such a proposal is not based on the QFT action considered
here but on gravitational-anomaly aspects which are specific of the bosonic part of the effective action of string
theory. Because the leading power in this case is H4 rather than H6, such a stringy RVM-inflation is, in principle,
distinguishable from the QFT one addressed here. These two independent options strengthen the general support
for RVM inflation.
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as usual. We then derived the form of the effective VED in Eq. (3.11) which generalizes
the results of the previous chapter by the incorporation of linear corrections proportional
to Ḣ.

In Sect. 3.2, the Friedmann equations, which incorporate the effects of renormalization,
are presented. These equations describe the background evolution of the Cosmos, in-
cluding higher-order derivative effects. At low energies, these higher-order effects can be
neglected, and the Friedmann equations reduce to the standard ones, albeit with a mild
evolution of both the vacuum energy density (VED) and the gravitational constant. This
evolution is reflected in the conservation equations for the vacuum component, which,
assuming the rest of the fluids to be covariantly conserved with the expansion, show that
the Bianchi identity modifies the conservation equation for the quantum vacuum, result-
ing in an exchange of energy with the dynamically evolving background. Through this
dynamical interplay with the VED, we find that the gravitational constant also evolves
very mildly, following a logarithmic function of the Hubble rate: G = G (lnH)

One of the main contributions of this chapter is the prediction of the EoS of the quantum
vacuum, denoted as wvac, which has been computed using the quantum field theoret-
ical approach introduced in the previous chapter. The computation of wvac has been
performed for the entire FLRW regime, and its potential phenomenological implications
have been explored. Our study has shown that a proper renormalization of the quantum
matter effects is necessary in order to understand the QFT vacuum in a curved back-
ground, and that the modification of the EoS of the quantum vacuum with respect to
the classical result wvac = −1 is nontrivial and significant. The dynamical behavior of
the quantum vacuum EoS, expressed as a function of redshift wvac = wvac(z), represents
a clear departure from the rigid value of wvac = −1 characteristic of the classical vac-
uum. Moreover, the EoS dynamics of the quantum vacuum are important because they
carry a measurable imprint at present, behaving like quintessence with wvac(z) & −1.
Remarkably, no additional fields are needed to explain the cosmic acceleration, as it can
be explained entirely by the quantum vacuum composed of fluctuations of the quantized
matter fields. The evolution of the quantum vacuum is described as a cosmic chameleon,
triggering inflation as the ”true vacuum” with wvac = −1, adopting the EoS of matter
(wvac = 1/3 first, and wvac = 0 later), and reappearing in our days as quintessence. In
the late universe, the quantum vacuum acts as dark energy, whose EoS is dynamically
evolving.

In the last section, Sect. 3.4, we have also highlighted some of these important phenomeno-
logical applications of the RVM, which may help to improve the description of the overall
cosmological data, and in particular to alleviate the H0 and σ8 tensions [205]. First, we
related our results with the most recent studies [374, 409] performed in the context of
the RVM, and observe that different speculative features attributted to vacuum can be
justified by the analysis done here. Secondly, we predict a new mechanism for inflation
in Sect. 3.4.2, which is triggered by the aforementioned ∼ H6 terms. As a difference
from the O(H4) terms, which vanish for H =const. (as they all depend on time deriva-
tives), the term ∼ H6 can perfectly bring about a short but fast period of H =const.
inflation. We should stress, however, that the RVM inflationary mechanism is distinct
from Starobinsky’s inflation [164, 190], for which it is the time derivative of the Hubble
rate which remains constant for a short stretch of time (viz. Ḣ = const.) Noteworthy,
there exists a stringy version of the RVM inflationary mechanism which can operate with
H4 terms, i.e. for which these terms appear without time derivatives and hence do not
vanish for H =const. [390, 391]. This is in contrast to the QFT version that we have
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described here, being characterized by H6-inflation. This means that the stringy and
non-stringy (QFT) mechanisms of RVM-inflation can, in principle, be distinguished. In
both cases inflation is unleashed during a short time interval of the early universe where
H =const. and therefore requires that the effective behavior of the VED carries a higher
(even) power HN (N = 4, 6, ...) (beyond H2). The existence of a high power of the Hubbe
rate in the VED is the characteristic trademark of RVM-inflation. In the QFT case, it
appears as a fundamental mechanism of inflation solely induced by the pure quantum
matter effects on a classical gravitational background.
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Chapter 4

Fermionic and bosonic contributions
to the VED

If we take quantum theory seriously, the most universal contribution to this vacuum
energy density is the Zero-Point Energy (ZPE) of the massive quantum fields in the
standard model of particle physics, and in fact in any QFT model. It has been repeteadly
mentioned in earlier chapters that a naive calculation of this quantity leads to very large
contributions proportional to the quartic power of the mass of the particles, ρZPE ∼
m4, responsible of the so-called Cosmological Constant Problem (CCP) [191]. In fact,
in Chap. 2 and Chap. 3, the adiabatic regularization prescription (ARP) was used to
compute the renormalized VED, ρvac, in the case of a non-minimally coupled real scalar
field with gravity [198, 289]. We fully demonstrated how the final result of the running
of VED in Curved space-time (2.74) is free from the gigantic contribution coming from
the ZPE. The overall contribution from bosons to the VED that we have found is well-
behaved and can perfectly accommodate the measured value of the CC from observational
cosmology without any fine-tuning. Basically this is because the typical contribution
expected for the VED in each epoch of the cosmic evolution is proportional to the tiny
values of the β-function coefficients for bosons.

The main goal of this chapter, based on [410], is to extend the computations previously
done with scalar fields and check if fermions also support the conclusions drawn from
them, especially with regards to whether their corresponding vacuum fluctuations are free
from the traditional fine-tuning problem, i.e., independent of the quartic powers of their
masses. However, the extension proves to be rather non-trivial due to the involvement of
Fermi-Dirac statistics and formal peculiarities associated with spinor calculus. Despite
these complexities, it is reassuring to find that the many technicalities involved in the
calculation do not alter the main conclusions derived from the scalar field calculation.
Thus, the final results concerning the renormalized VED can be obtained by combining
the contributions from an arbitrary number of quantized scalar and fermion fields. The
formula obtained in this way is referred to as the bosonic and fermionic contributions to
the VED. It is important to note that the theory does not have interactions between gauge
fields and matter fields, so additional effects from such interactions are not necessary for
the present study. However, the non-minimal coupling of the quantized scalar fields with
the external (non-quantized) gravitational field is taken into account. Therefore, we will
omit the gauge fields in our considerations, with the understanding that a more complete
calculation would be necessary in an interacting theory. All that said, the computation
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of the free field contribution from bosons and fermions in curved spacetime is already
a formidable task, so for the sake of a stepwise and clearer presentation we will present
the fermionic contributions here on equal footing to that of the scalar contribution in
Chapter 2 and Chapter 3. Additionally, we present in this chapter the equation of state
(EoS) of the quantum vacuum with the contributions from boson and fermions. As
the rest of the dissertation, all our calculations are performed assuming a spatially flat
Friedmann-Lemâıtre-Robertson-Walker (FLRW) background.

The presentation of this chapter is structured in the following manner: In Sect. 4.1, we
review the quantization of a Dirac fermion in a curved background, the corresponding
Dirac equation and its spinor solutions obtained from adiabatic expansion of the field
modes. In Sect. 4.2, the off-shell adiabatic renormalization of the EMT for spin-1/2
fermions is addressed and we extract the renormalized ZPE, VED (ρvac) and vacuum
pressure (Pvac) in this context. Additionally, some remarks on the trace anomaly and its
role in our approach are discussed and expand what is said in Sect. 2.7. Sect. 4.3 contains
the combined results from all the quantized matter fields. Specifically, we compute the
renormalized VED for a system made of an arbitrary number of quantized scalar fields
non-minimally coupled to curvature (with different masses and non-minimal couplings)
and an arbitrary number of quantized spin-1/2 free fermion fields. In the same section
we report on the corresponding running of the gravitational coupling G = G(H), which
goes hand in hand with the running of ρvac in order to preserve the Bianchi identity.
We also discuss the mechanism of ‘RVM-inflation’ with the combined contribution from
all these fields, and derive the equation of state (EoS) of the quantum vacuum for that
system of quantized bosons and fermions fluctuating in it. Remarkably, the vacuum EoS
is no longer equal to wvac, the reason being that the vacuum pressure and the VED
are not exactly related in the usual manner (viz. Pvac = −ρvac) since Pvac and ρvac

are independent functions of the Hubble rate H and its time derivatives owing to the
quantum effects. In the current universe, there is still some remnant of these quantum
effects which induce a small (but potentially measurable) departure making the quantum
vacuum mimic quintessence. The conclusions are delivered in Sect. 4.4 together with
some additional discussion. Finally, Appendix D and Appendix E are rather bulky since
they collect a number of cumbersome expressions related to the adiabatic expansion of
the VEV of the EMT and the Fourier modes of the fermionic field (computed up to 6th
order for the first time in the literature).

4.1 Quantization of a fermionic field in curved spacetime

Our goal is to extend the QFT results for the VED obtained for quantized scalar fields,
which we have summarized in the previous section, to the case of quantized spin-1/2
Dirac fermion fields and then combine the two types of contributions in closed form.
The calculation of the renormalized VED for free spin-1/2 fermions is also nontrivial
and rather cumbersome, and requires a devoted study, which we present here (see also
the appendices provided at the end for bulky complementary details). While the QFT
treatment is analogous to the case of scalars, the specific technicalities are quite different
and no less intricate, but fortunately the final result proves to be in consonance with the
one previously derived for the scalars, so it is perfectly possible to furnish a close form for
the combined contribution to the VED involving an arbitrary number of non-interacting
scalar and spin-1/2 fermion fields, cf. Sect. 4.3.
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The study of the solutions of the Dirac equation in curved spacetime goes back to the
works from many decades ago by Fock, Tetrode, Schrödinger, McVittie, Bargmann,
Wheeler and others: see e.g. [411–415], where the relevant historical references are given
and different aspects of spin-1/2 fermions in curved spacetime are studied, including a
detailed account for the solutions in FLRW spacetime – see also the review [416], with a
rather complete list of references. On the other hand, the subject of adiabatic regular-
ization for fermions has been previously treated in the literature in different applications,
see e.g. [353] as well as the more recent papers [340–343] where emphasis is made on
exact solutions e.g. in de Sitter spacetime. The calculation of the renormalized VED
in FLRW spacetime is, however, more complicated for it does not admit an exact so-
lution. Our strategy to circumvent this problem is based on using an off-shell variant
of the ARP framework [288, 289] which leads to the RVM behavior of the vacuum en-
ergy [167, 198]. The RVM framework has proven rather successful in mitigating the
cosmological tensions [199, 205, 417], as shown in different phenomenological analyses,
such as [374] and [249, 398]. On the theoretical side, attempts at computing the VED
with other procedures has led to the traditional calamity with the quartic powers of the
masses. Here we will show that using the off-shell ARP to tackle the VED contribution
from fermions generates a result which is free from these difficulties and fully along the
lines of what has been obtained for the scalar fields in the previous sections and originally
in [288,289]. Therefore, the combined contribution from fermions and scalar fields to the
VED is compatible with a smooth running of the cosmological vacuum energy and is
consistent with the aforementioned phenomenological analysis of the RVM as a possible
solution to the cosmological tensions.

Since it will be necessary a considerable amount of formalism to treat fermions within
the adiabatic approach, it is convenient to summarize first the necessary aspects of that
formalism before we can put forward our main results concerning their contribution to
the vacuum energy density. It will be useful to fix some notation as well. Once more we
perform the calculations in FLRW spacetime with flat three-dimensional metric. Consider
a free Dirac spin-1/2 field, described by the four-component spinor ψ. In our conventions,
the Dirac action in curved spacetime is given by

Sψ(x) = −
ˆ
d4x
√
−g
[

1

2
i
(
ψ̄γµ∇µψ −

(
∇µψ̄

)
γµψ

)
+mψψ̄ψ

]
. (4.1)

In the above expression, mψ denotes the mass of the Dirac field and ψ̄ ≡ ψ†γ0 the ad-
joint spinor. Since we are in a curved background, the partial derivative of a spinor
∂µψ has been replaced with the corresponding covariant derivative ∇µψ, which is defined
below. Moreover, gamma matrices in curved spacetime are also needed, they are some-
times indicated (as above) with an underline to distinguish them from the Minkowski
space gamma matrices. The former are γµ(x) (which are generally functions of the
coordinates) whereas the latter are the constant matrices γα in flat spacetime. As it
is well-known, to obtain a representation for the curved spacetime gamma matrices in
terms of the Minkowskian gamma matrices we need to introduce the local tetrad or
vierbein field (in 4-dimensional spacetime) eµα . It is defined in each tangent space of
the spacetime manifold and relates the curved spacetime metric with the Minkowskian
one in the usual way: gµν(x) = eµα(x)eνβ(x)ηαβ, where ηαβ is the Lorentz metric in the
local inertial frame specified by the normal coordinates at the given spacetime point.
The general relation between the two sorts of gamma matrices is γµ(x) = eµα(x)γα.
Specifically, in a spatially flat FLRW spacetime the vierbein in conformal coordinates is
eµα = diag (1/a(τ), 1/a(τ), 1/a(τ), 1/a(τ)) where a(τ) is the scale factor as a function of
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the conformal time. Whence the gamma matrices in this background are time-dependent
and related to the constant flat spacetime ones as follows: γµ(τ) = γµ/a(τ). This relation
insures that they satisfy the following anti-commutation relations:{

γµ, γν
}

= −2gµνI4 , (4.2)

provided, of course, the (constant) flat space gamma matrices satisfy
{
γα, γβ

}
= −2ηαβI4.

In order to obtain the equation of motion, i.e. the covariant Dirac equation in curved
spacetime, one has to vary the covariant action (4.1) with respect to the spinor field,
giving

iγµ∇µψ +mψψ = ieµαγ
α∇µψ +mψψ = i

1

a
(γα∂α − γαΓα)ψ +mψψ = 0 . (4.3)

The covariant derivative is defined through the spin connection, ∇µ ≡ ∂µ − Γµ. The
spinorial affine connection Γµ satisfies the equation [412]

[
Γν , γ

µ(x)
]

=
∂γµ(x)

∂xν
+ Γµνργ

ρ(x) , (4.4)

where Γµνρ are the Christoffel symbols. The above equation is tantamount to require the
vanishing of the covariant derivative of the curved space gamma matrices: ∇νγ

µ(x) = 0
[285], i.e. the curved-space gamma matrices are defined to be covariantly constant over the
spacetime manifold. Using the Christoffel symbols in the conformally flat FLRW metric
as given in Appendix A, the explicit solution of Eq. (4.4) can be found, with the following
result: Γ0 = 0,Γj = − (H/2) γjγ0 = − (a′/2a) γjγ0. Therefore, γαΓα = 3(a′/2a)γ0 =
−3(a′/2a)γ0. This expression can then be inserted in Eq. (4.3).

In this way we have obtained an explicit form for the Dirac equation in FLRW spacetime
with spatially flat metric. We are now in position to attempt a solution by expanding
the quantized fermion field in mode functions:

ψ(x) =

ˆ
d3k

∑
λ=±1

(B~k,λu~k,λ (τ, ~x) +D†~k,λv~k,λ (τ, ~x)) . (4.5)

Here B~k,λ and D†~k,λ are creation and annihilation operators which satisfy the standard

anticommutation relations{
D~k,λ, D

†
~q,λ′

}
=
{
B~k,λ, B

†
~q,λ′

}
= δλ,λ′δ

(3)
(
~k − ~q

)
,{

D~k,λ, D~q,λ′

}
=
{
D†~k,λ, D

†
~q,λ′

}
=
{
B~k,λ, B~q,λ′

}
=
{
B†~k,λ, B

†
~q,λ′

}
= 0 .

(4.6)

The momentum expansion of the mode functions u~k,λ and their charge conjugates v~k,λ
can be conveniently written in terms of two 2-component spinors ξλ(~k) and corresponding
spinor modes hI

k and hII
k :

u~k,λ(τ, ~x) =
ei
~k·~x√

(2πa)3

(
hI
k(τ)ξλ(~k)

hII
k (τ)~σ.

~k
k
ξλ(~k)

)
,

v~k,λ(τ, ~x) =
e−i

~k·~x√
(2πa)3

(
−hII∗

k (τ)~σ.
~k
k
ξ−λ(~k)

−hI∗
k (τ)ξ−λ(~k)

)
,

(4.7)
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with
~σ · ~k
k

ξλ(~k) = λξλ(~k), λ = ±1 , ξ†λ(
~k)ξλ(~k) = 1 . (4.8)

Using this representation, (4.3) splits into a system of two coupled first order equations
for each of the two types of spinor modes hI

k and hII
k :

hI
k =

ia

k
(
1

a
∂τ + imψ)hII

k (τ), hII
k =

ia

k
(
1

a
∂τ − imψ)hI

k(τ) . (4.9)

After straightforward calculation these equations can be rewritten as two second order
decoupled equations:(

∂2
τ − imψa

′ + a2m2
ψ + k2

)
hI
k(τ) = 0→

(
∂2
τ + Ω2

k(τ)
)
hI
k(τ) = 0,(

∂2
τ + imψa

′ + a2m2
ψ + k2

)
hII
k (τ) = 0→

(
∂2
τ + (Ω2

k(τ))∗
)
hII
k (τ) = 0 ,

(4.10)

where
Ω2
k ≡ ω2

k + a2∆2 − iσ(τ) , (4.11)

with

ωk(M) ≡
√
k2 +M2a2,

σ ≡ mψa
′ =
√
M2 + ∆2 a′ .

(4.12)

The fact that (4.10) only depends on the modulus of the momentum, k, justifies the
notation used for the modes hI

k, h
II
k , with no arrows. Following the same prescription

as in the case of scalar fields (cf. Sect. 2.3), we have introduced an off-shell scale M ,
which again will take the role of renormalization scale. Correspondingly, we have defined
∆2 ≡ m2

ψ−M2 and once more assigned adiabaticity order 2 to it. We did not change the
notation ∆ as compared to the scalar case since the final formulas do not depend on ∆
but on M and the respective physical masses. The argument of ωk will be omitted from
now on, unless it takes a different value from M . The normalization conditions for the
mode functions involved in ψ are implemented through the Dirac scalar product:

(u~k,λ, u~k′,λ′) =

ˆ
d3x a3u†~k,λu~k′,λ′ = δλλ′δ

3(~k − ~k′) (4.13)

and similarly for (v~k,λ, v~k′,λ′) = δλλ′δ
3(~k − ~k′). It follows that

|hI
k|2 + |hII

k |2 = 1 . (4.14)

As mentioned in the previous section, the number of time derivatives of the cosmological
scale factor a(τ) that appear in a term of the expansion is called adiabatic order of the
term.

In order to solve the differential equations (4.10) we may follow a recursive process which
preserves the adiabatic hierarchy, just as we did with the scalar fields. Let us first redefine
hI
k and the time variable as follow

hI
k,1 ≡

√
Ωkh

I
k dτ1 = Ωkdτ. (4.15)
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Substituting these relations into the equation for hI
k in (4.10) we find

d2

dτ 2
1

hI
k,1 + Ω2

k,1h
I
k,1 = 0, Ω2

k,1 ≡ 1 + ε2, ε2 ≡ −Ω
−1/2
k

d2

dτ 2
1

Ω
1/2
k . (4.16)

Since ε2 includes two derivatives, it contains terms of second and higher adiabatic order.
We can ignore it to find the leading order solution

hI
k,1 ≈ e−iτ1 , (4.17)

so that we get a first approximation

hI
k ≈

e−i
´ τ Ωkdτ̃

√
Ωk

. (4.18)

Notice that hI
k,1 formally satisfies a differential equation with the same form as (4.10) for

hI
k. So that, we can repeat the process:

hI
k,2 ≡

√
Ωk,1h

I
k,1, dτ2 ≡ Ωk,1dτ1 . (4.19)

The corresponding differential equation for hI
k,2 is(

∂2

∂τ 2
2

+ Ω2
k,2

)
hI
k,2 = 0, Ω2

k,2 ≡ 1 + ε4, ε4 ≡ −Ω
−1/2
k,1

d2

dτ 2
2

Ω
1/2
k,1 . (4.20)

Once again, ε4 consists of terms of adiabatic order 4 and higher. We can approximate a
solution of (4.20) by neglecting ε4:

hI
k,2 ≈ e−iτ2 , (4.21)

whereby the approximation to hI
k can be further improved:

hI
k ≈

e−i
´ τ ΩkΩk,1 dτ̃√
ΩkΩk,1

. (4.22)

By iterating the procedure, we can obtain a better and better approximation to hI
k, and

after ` > 1 steps we find

hI
k ≈

e−i
´ τ Ωk···Ωk,`−1 dτ̃√
Ωk · · ·Ωk,`−1

, (4.23)

where, for ` ≥ 1,

Ω2
k,` ≡ 1 + ε2`, dτ` ≡ Ωk,`−1dτ`−1, ε2` ≡ −Ω

−1/2
k,`−1

d2

dτ 2
`

Ω
1/2
k,`−1 . (4.24)

Now that the general method has been set up, let’s find the 0th order solution for hI
k.

From (4.18), the most generic solution for hI
k is

hI
k(τ) ≈ f

(0)
k√
Ωk

e−i
´ τ Ωk dτ̃ =

f
(0)
k

(ω2
k + a2∆2 − iσ)1/4

e−i
´ τ√ω2

k+a2∆2−iσ dτ̃ , (4.25)

As for hII
k , by comparing both lines of f

(0)
k (of adiabatic order 0) accounts for the inte-

gration ‘constant’ (strictly speaking, a function of the momentum but not of conformal
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time) in the exponential. As for hIIk , by comparing both lines of (4.10) it is clear that it
is possible to proceed in an analogous manner. So we obtain

hII
k (τ) ≈ g

(0)
k√
Ω∗k
e−i

´ τ Ω∗k dτ̃ =
g

(0)
k

(ω2
k + a2∆2 + iσ)1/4

e−i
´ τ√ω2

k+a2∆2+iσ dτ̃ , (4.26)

where g
(0)
k has the same paper as f

(0)
k . To find the zeroth adiabatic order it is just enough

to expand this solution and keep zero order terms. However, some extra caution is needed
when dealing with the integrand in the exponential of (4.25), which may be expanded up
to 1st order as

Ω
(0−1)
k = ωk + ω

(1)
k , (4.27)

where

ω
(1)
k ≡ −

iaM

2ωk

a′

a
. (4.28)

The reason is that the integration of the second term in the exponential factor is:

e−i
´
ω

(1)
k dτ =

(
ωk + aM

k

)−1/2

=

(
ωk − aM
ωk + aM

)1/4

, (4.29)

so it yields a real term of adiabatic order zero, meaning that the expansion of Ωk up to
1st order in the integral was mandatory. We have not included an explicit multiplicative

factor related with the constant of integration1 since it is already represented by f
(0)
k .

We choose f
(0)
k such that the above solution can be compatible with mode functions in

Minkowskian spacetime, so we can write

f
(0)
k =

√
k

2
, h

I(0)
k (τ) =

√
ωk − aM

2ωk
e−i

´ τ ωk dτ̃ ,

g
(0)
k =

√
k

2
, h

II(0)
k (τ) =

√
ωk + aM

2ωk
e−i

´ τ ωk dτ̃ .
(4.30)

Next we move on to the solution at 1st adiabatic order. As we have mentioned, the
quantity ε2 defined in (4.16), contains terms of adiabatic order two and higher, so it is
not necessary to find the first order solution. It is enough to find the first order term
from the denominator of (4.25). So,

h
I(0−1)
k ≈

[
1
√
ωk

(
f

(0)
k + f

(1)
k

)(
1 +

iMa′

4ω2
k

)
e
−
´ τ Ma′

2ωk
dτ̃

]
e−i

´ τ ωk dτ̃

=

√
ωk − aM

2ωk

(
1 + i

Ma′

4ω2
k

+

√
2

k
f

(1)
k

)
e−i

´ τ ωk dτ̃ .
(4.31)

Similarly for the second spinor mode hII
k :

h
II(0−1)
k ≈

[
1
√
ωk

(
g

(0)
k + g

(1)
k

)(
1− iMa′

4ω2
k

)
e
−
´ τ Ma′

2ωk
dτ̃

]
ei
´ τ ωk dτ̃

=

√
ωk + aM

2ωk

(
1− iMa′

4ω2
k

+

√
2

k
g

(1)
k

)
e−i

´ τ ωk dτ̃ ,
(4.32)

1The same situation happens with indefinite integrals of higher order terms in the imaginary exponential
of Eq. (4.23). They are written in an appropriate manner, contributing at bigger adiabatic orders. The final

results, though, just depend on f
(0)
k and not on the other higher order integrations constants, as dictated by the

normalization condition (4.14). See Appendix D for more details.
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where f
(1)
k and g

(1)
k come from integration constants, as mentioned in the footnote of the

previous page. By imposing the normalization condition (4.14), which has to be satisfied
at each adiabatic order, it is possible to see that these constants are purely imaginary,
that is

Re f
(1)
k = Re g

(1)
k = 0 . (4.33)

To continue, we deal with the 2nd adiabatic order of the mode functions, i.e. h
I,II(2)
k . At

this time, we have to include Ω2
k,1 = 1 + ε2 in our considerations (this term contains 2nd

order adiabatic terms and beyond). Starting from Eq. (4.22), we have

hI
k ≈

f
(0)
k + f

(1)
k + f

(2)
k√

Ωk(1 + ε2)1/2
e−i

´ τ Ωk(1+ε2)1/2 dτ̃ , (4.34)

where ε2 can be computed to be

ε2 =
5

16Ω6
k

(
2aa′m2

ψ − imψa
′′)2 − 1

4Ω4
k

(
2a′

2
m2
ψ + 2aa′′m2

ψ − imψa
′′′
)
. (4.35)

With this result, it is immediate to obtain an approximation for Ωk,1 valid up to the third
adiabatic order:

Ωk,1 = (1 + ε2)1/2 = 1− a2M2

4ω4
k

a′′

a
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4ω4
k

(
a′

a
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(
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a

a′′

a
+ . . .

(4.36)

On the other hand, an expansion of the product ΩkΩk,1 is necessary to improve the

approximation of hI,II
k , as one can see from equation (4.22). As earlier, if we wish to

present a second order approximation of the modes we have to expand that product up
to 3rd adiabatic order in the exponential. The expansion can be presented as follows:
and

ΩkΩk,1 = Ωk (1 + ε2)1/2 = ωk + ω
(1)
k + ω

(2)
k + ω

(3)
k + . . . (4.37)

where the dots represent the contributions of adiabatic order bigger than 3, and the
indicated terms in the expansion read
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(4.38)

As noted before, ω
(1)
k and ω

(3)
k are purely imaginary, while ωk and ω

(2)
k are real. Again,

when integrated inside the exponential of equation (4.22) the former two give a real
contribution, whereas the latter two become part of the phase of the mode and play the
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role of an effective frequency:
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(4.39)

The last result holds good up to an arbitrary function of momentum (constant in con-
formal time) multiplying the whole result. We account for this arbitrary constant by

introducing the functions f
(0)
k , f

(1)
k , f

(2)
k , . . . at each order. An efficient strategy to com-

pute the integrals involved in the above calculation (and many other ones of a similar
sort, see Appendix D for a sample of them) is to set up an ansatz which respects the
adiabaticity order of the calculation. The ansatz consists of a finite number of terms
(in fact, a linear combination of them) taken each at the given adiabatic order and with
coefficients (or ‘form factors’) which must be determined. The terms of the ansatz are
constructed out of the derivatives of the scale factor and the parameter ∆2 (which we

recall is of second adiabatic order). For instance, in order to compute the integral of ω
(3)
k

in Eq. (4.38), we know that the result must be of second adiabatic order. Hence as a
suitable ansatz we use a linear combination of second order adiabatic terms:

−i
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ω
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k dτ̃ = Q1 (a, ωk)

(
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a

)2

+Q2 (a, ωk)
a′′

a
+Q3 (a, ωk) ∆2 + const. (4.40)

where again the term ‘const.’ at the end means that it does not depend on the integration
variable, τ̃ . By taking derivatives with respect to (conformal) time of the last expression

and comparing with ω
(3)
k one can identify the form factors Q1 = −5a3M3

16ω5
k

, Q2 = aM
8ω3
k

and

Q3 = − a
4Mωk

. Using (4.39) together with (4.38) and (4.34), the expansion of hI
k up to

2nd order is
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(4.41)

In a similar way,
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(4.42)
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e−i
´ τ Ωk(1+ε2)1/2dτ̃ ≈
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(4.43)

Using this last result together with (4.38) and (4.34), the expansion of hIk up to 2nd order
is
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(4.44)

In a similar way,
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(4.45)

The normalization condition fixes the following relations:∣∣∣f (1)
k

∣∣∣2 = −
√

2kRe f
(2)
k ,∣∣∣g(1)

k

∣∣∣2 = −
√

2kRe g
(2)
k .

(4.46)

So far, the expansion for the modes hIk and hIIk up to 2nd order has been presented. One
can continue with the procedure formerly described to reach higher orders, although of
course the calculation becomes more and more involved. We should keep in mind, though,
that the adiabatic expansion is an asymptotic expansion. While for renormalization
purposes it is enough to stop the expansion at 4th adiabatic order (in 4-dimensional
spacetime), it is nonetheless necessary to reach up to 6th order to meet the finite terms
∼ H6 that are dominant in the early universe and capable of triggering inflation in this
framework (cf. Sect. 4.3.3)2 . We shall refrain from presenting these cumbersome formulas
in the main text, see Appendix D.

It is worth noticing that there is some residual freedom in the previous calculations
since, we can not determine entirely the set of integration constants that appear during

2As explained in Chap. 2, owing to the renormalization prescription of the EMT – see e.g. Eq. (2.53) for the
scalar case and its fermionic counterpart, Eq. (4.54) below – the explicit 4th order powers H4 just cancel out. As
a result, the 6th order is the first non-vanishing contribution on-shell.
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the calculations f
(1)
k , g

(1)
k , f

(2)
k , g

(2)
k , . . . Because of the normalization condition (4.14) of

the mode functions, some restrictions such as (4.33) and (4.46) apply. Fortunately, as
commented in more detail in Appendix D, the satisfaction of these restrictions is enough
for the observables to be independent of this residual freedom. So that, is enough to set
all of them to 0 to get, for instance, the desired values of the energy density and pressure.

4.2 ZPE and VED for a fermionic field in FLRW spacetime

The computation of the Fourier modes for a quantized fermion field through adiabatic
expansion as explained in the previous section is just the first step to compute the vacuum
energy density (VED). The next step towards the VED is to obtain the ZPE associated
with Dirac fermions in curved spacetime. As it well known, traditional computations of
ZPE suffer from the well-known headache of carrying highly unacceptable contributions
proportional to the quartic powers of the masses, ∼ m4. This is so both for scalar and
fermion fields, and it is already the case in flat, Minkowskian, spacetime, see e.g. [167,198]
for a detailed discussion and more references. In curved spacetime we have the same
situation, in principle, but in addition we encounter subleading, curvature dependent,
contributions which do not exist in the flat case, as we shall see in a moment. To handle
this issue, an adequate renormalization prescription is called for.

The derivation done here for fermions is closely related with the one performed for scalar
fields in Chapter 2. Once more the computation will be done up to 6th adiabatic order,
since is the first non-vanishing order on-shell, i.e. when fixing the renormalization scale
M to the value of the mass of the fermion mψ. However, the off-shell computation at 4th
order is already very useful as a means to determine the renormalization group running
of the VED as a function of the scale M . This is one of the main new features of the ARP
method proposed in [288, 289] which leads to the cosmic evolution of the VED. Next we
consider the actual calculation for spinor fields.

To find out the ZPE, we start from the definition of EMT. In this case we have to evaluate
the functional derivative

Tψµν = − 2√
−g

δSψ
δgµν

, (4.47)

applied to the fermion action (4.1). Upon a straightforward calculation we arrive at the
following symmetric expression:

Tψµν =
i

4
ψ̄
(
γ
µ
∇ν + γ

ν
∇µ

)
ψ − i

4

((
∇µψ̄

)
γ
ν

+
(
∇νψ̄

)
γ
µ

)
ψ , (4.48)

in which the equation of motion (4.3) and its hermitian conjugate have been used. We
treat this spinor field as a field operator and upon using its expansion in Fourier modes and
utilizing the anticommuting algebra of the creation and annihilation operators, Eq. (4.6),
we can compute the VEV of the various components, which reflect the contribution from
the vacuum fluctuations of the quantized fermion fields. The method is exactly the same
as the one used in previous chapters for scalar fields. After significant work, we find that
the VEV of the 00th component of the EMT can be cast as follows:〈

T δψ00

〉
=

1

2π2a

ˆ
dkk2ρk , (4.49)
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where ρk is a function of the previously defined mode functions (which can be computed
through adiabatic expansion):

ρk =
i

a

(
hI
kh
′I∗
k + hII

k h
′II∗
k − hI∗

k h
′I
k − hII∗

k h′IIk
)
. (4.50)

The explicit form of the adiabatic expansion of ρk is rather cumbersome; the reader may
find the final result of 〈Tψ00〉 in the Appendix E. Let us note that for off-shell renormaliza-
tion at a point M it suffices to adiabatically expand the solution up to 4th order (as it
was prescribed in Eq. (4.54) below). However, we will provide the result up to 6th order
so as to be sensitive to the on-shell result (occurring for M = mψ) and also because it
is important for the inflationary mechanism in the early universe (cf.Sec. 4.3.3). Renor-
malization of the above expressions is indeed necessary since the VEV of the EMT is
formally divergent. The UV-divergent contributions appear up to 4th adiabatic order (in
n = 4 spacetime dimensions), so that one has to subtract terms up to this order to obtain
a finite result.

4.2.1 Divergence balance between bosons and fermions in vacuum

The unrenormalized VEV of the EMT can be split into two different parts, divergent (in
the UV sense) and non-divergent. Explicit calculation using the formulas of Appendix E)
shows that the divergent part reads as follows:〈
T δψ00

〉
=

1

2π2a2

ˆ ∞
0

dkk2

(
−2ωk −

a2∆2
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4ω3
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)
+

1

2π2

ˆ ∞
0

dkk2

(
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4ω3
k

+
∆2

4ω3
k

)
H2 .

(4.51)

As it is easy to see, there are terms diverging quartically, quadratically and logarithmi-
cally. The non-divergent part contains the remaining terms, all of them being finite. The
above ZPE is, as warned, an unrenormalized result at this point. However, before we
proceed to renormalize that expression in the next section, it may be instructive to check
if there is a chance for a cancellation between UV-divergent terms between fermions and
bosons in the supersymmetric (SUSY) limit, if only for the leading divergences. In the
on-shell case (M = m and hence ∆2 = 0) the above equation (4.51) simplifies to

〈T δψ00 〉
∣∣∣
(M=m)

= − 1

π2a2

ˆ
dkk2ωk(m) +

1

8π2

ˆ ∞
0

dkk2 m2

ω3
k(m)

H2 . (4.52)

It coincides with the Minkowskian result for a = 1 (since H = 0). Now, in a SUSY
theory, in which the number of boson and fermion degrees of freedom (d.o.f.) is perfectly
balanced, we should expect that the leading (quartic) divergences cancel among the
fermionic and bosonic contributions in the vacuum state [348, 418] since in such case
the scalar and fermionic fields have the same mass m. Thus the quartically divergent
contribution from the first term of (4.52) should be minus four times the corresponding
result for one real scalar field3. We can check it is indeed so using the above formulas,
for in the on-shell limit and projecting the UV-divergent terms of the first two adiabatic
orders only, we find that the contribution from one real scalar field in FLRW spacetime

3In the chiral supermultiplets of SUSY theories the number of d.o.f. from bosons and from fermions is
balanced, and they have the same mass.
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with spatially flat metric is

〈T δφ00 〉(0−2)
∣∣∣
(M=m)

=
1

4π2a2

ˆ
dkk2ωk(m)−

3
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)
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ˆ
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a2m2H2

ω3
k(m)

)
,

(4.53)
We confirm that the first term (the quartically divergent one) of this expression is of
opposite sign to (4.52) and is a factor of 4 smaller, as we indicated. So, in a SUSY
theory, where we would have 4 real scalar d.o.f. for each Dirac fermion, there would be
an exact cancellation of the leading UV-divergent terms. In addition, we can see at once
from (4.53) that both the quadratic and logarithmic divergences of bosons hinge on effects
of the spacetime curvature since they are proportional to H2. These terms, therefore,
vanish in Minkowski spacetime but are unavoidably present in the FLRW background
(except if ξ = 1/6). On the other hand, from the second term on the r.h.s. of Eq. (4.52) it
is clear that for fermions we only have subleading divergences of logarithmic type, which
also hinge on curvature effects since they are again proportional to H2 and would also
vanish in Minkowski space. Hence there is no possible cancellation of these subleading
divergences between bosonic and fermionic d.o.f., in FLRW spacetime, even in the exact
SUSY limit. Of course, our framework is not placed in the context of supersymmetry, but
it serves as a consistency check of our calculations. See also the discussion in [299,307].

Although it is possible to introduce a cutoff for a preliminary treatment of the sub-
leading divergences (and maybe to speculate on its possible meaning) it is not really
necessary. One simply has to implement appropriate renormalization since renormaliza-
tion is anyway necessary to deal meaningfully with the VED, as there is no way to cure
the divergences from the combined contributions from bosons and fermions and it is not
useful to be left with a “physical” cutoff. Dealing with a cutoff is always ambiguous as
it is generally not a covariant quantity. Renormalization gets rid of cutoffs and one can
preserve covariance, which is safer for a physical interpretation of the final results. The
adiabatic renormalization is ideal in this sense since the adiabatic expansion generates
automatically a covariant result.

It is well-known that the renormalization program in QFT requires the presence of a
renormalization point, as well as a renormalization prescription. The renormalization
point is a floating scale characteristic of the RG. As in the ordinary adiabatic procedure,
to implement the renormalization of the EMT in 4 spacetime dimensions we perform a
subtraction of the first four adiabatic orders, which are the only ones that can be UV-
divergent [284–286]. However, in contrast to the usual recipe, in which the subtraction is
performed on the mass shell value m of the quantum field, we perform it at an arbitrary
scale M since this enables us to explore the RG evolution of the VED and ultimately
connect it with its cosmic evolution. This is the specific feature of the adiabatic renormal-
ization procedure (ARP) for the VED that was proposed in [288,289] – see also [198] for
additional details and a comparison with other renormalization schemes. The resulting
renormalized VED ensuing from this procedure is free from the usual troubles with the
quartic powers of the masses and their inherent fine tuning problems.

Finally, let us note that dealing with the CCP in Minkowski spacetime using, for instance,
the MS scheme and assigning some value to the ’t Hooft’s mass unit µ in DR (as discussed
so many times in the literature), is entirely meaningless. It is not only devoid of meaning
in that a non-vanishing cosmological constant cannot be defined in Minkowski space
without manifestly violating Einstein’s equations; it is meaningless also on account of the
fact that there is no sense in associating the scale µ with a cosmological variable, say H,
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since, if Einstein’s equations are invoked, the Λ term as such in these equations cannot
exist in Minkowski spacetime unless the VED is exactly ρΛ + ZPE = 0. So there is no
cosmology whatsoever to do in flat spacetime, despite some stubborn attempts in the
literature. Persisting in this attitude leads to the nonsense of having to cope with ∼ m4

effects which must then be fine tuned among all the particles involved. This point has
been driven home repeatedly e.g. in [167] and also recently in [198], see also [419]. A
realistic approach to the VED within QFT in curved spacetime must get rid of Minkowski
space pseudo-argumentations. The approach that we present here is fully formulated
in curved spacetime and the vacuum energy density evolves with the participation of
the curvature effects (powers of H) rather than with only powers of the masses, i.e.
we pursue the successful renormalization program of [288, 289]. Therefore, when the
background curvature vanishes, we consistently predict that the non-trivial effects which
are responsible for the value of the vacuum energy density and the cosmological constant
disappear (and hence we are left with no Λ nor VED in the universe). Such is, of
course, the situation in Minkowski space. In practice, however, we cannot reach that
flat spacetime situation in our universe since there exists four-dimensional curvature
at all times during the indefinite process of expansion. But by the same token such
an impossibility evinces the fact that the VED and its dynamical nature is a direct
consequence of the expansion process (and of the spacetime curvature inherent to it).
The expected size of the VED and of Λ in our framework is indeed provided by the
magnitude of the spacetime curvature, which is of the typical value of the measured
Λ. It is therefore not caused by the quartic power of the masses of the fields (which is
the very root of the CC problem in most approaches). These powers do not affect the
running of the VED in our framework. To put it in a nutshell: the renormalized VED
in our framework is like a small quantum ‘ripple’ imprinted on the existing (classical)
background curvature owing to the vacuum fluctuations of the quantized matter fields.
In the absence of the background curvature, the ripple would disappear too since it is
proportional to it through the coefficient νeff , which encodes the quantum effects from
the quantized matter fields.

Following the same approach as for scalar fields, in the next section we compute the
quantum effects contributing to the VED from the quantized spin-1/2 fields and express
them in renormalized form using the same subtraction scheme devised in [288,289].

4.2.2 ZPE for fermions

Thus, following the same prescription (2.53) as in the case of the scalar field, the renor-
malized form of the fermionic VEV of the EMT reads:〈

T δψµν
〉

ren
(M) ≡

〈
T δψµν
〉

(mψ)−
〈
T δψµν
〉(0−4)

(M) . (4.54)
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Since our aim is to study the ZPE we will focus into the 00th-component of the former
equation for the moment. Alternatively, it is written as 4〈
T δψ00

〉
ren

(M) =
〈
T δψ00

〉
Div

(mψ)−
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〉
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(M) +
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+
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+
〈
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〉(0−4)
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〈
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〉(0−4)

Non−Div
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〈
T δψ00
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(4.55)

where we have used the calculational results for the unrenormalized components of the
VEV of the EMT recorded in Appendix E and we have introduced the notation ωk(M) ≡√
k2 + a2M2 and ωk(mψ) ≡

√
k2 + a2m2

ψ. The last line of (4.55) contains all the non-

divergent terms, which constitute a perfectly finite contribution and is made of finite
parts from the 4th order expansion and of the entire 6th order term, which is fully finite
but rather cumbersome. On the other hand, the first two lines in the last equality are
a collection of terms that are individually divergent, but whose combination makes the
integral convergent. In fact, by making use of simple algebraic manipulations at the level
of the integrand one can show that explicitly. For instance, the rearrangement in the
integrand

dkk2

(
ω(mψ)− ω(M)− a2∆2

2ω(M)
+

a4∆4

8ω3(M)

)
= dkk2a6∆6 ω(mψ) + 3ω(M)

8ω3(M)(ω(mψ) + ω(M))3

(4.56)
shows that terms seemingly diverging as ∼ k4 organize themselves to eventually con-
verge as ∼ 1/k2. Needless to say, this is the consequence of the subtraction that has
been operated. Similarly with the second integral in (4.55), whose individual terms are
logarithmically divergent, but overall the integral is once more convergent thanks to the
involved subtraction.

The above renormalized result (4.55) would, of course, vanish for M = mψ if we were
to stop the calculation at 4th adiabatic order, so in case that one wishes to obtain the
renormalized on-shell result one has to either compute the exact unrenormalized EMT
on-shell before subtracting the divergent adiabatic orders – which is possible but only in
simpler cases such as in de Sitter space [340, 341] – or one has to face the calculation of

the adiabatic expansion up to 6th-order at least. In the last case the term 〈T δψ00 〉(6)(mψ)
indicated at the end of Eq. (4.55) must be computed. This is what we have done here
since an exact solution in the FLRW case is not possible.

The necessary work to reach up to 6th adiabatic order for fermions is again significant,
as it was previously for the scalar case. The unrenormalized components of the EMT
up to the desired order are explicitly collected in Appendix E. To subsequently obtain

4The subscript ‘Div’ refers to the part of the EMT calculation comprising divergent integrals. These appear
only up to the 4th adiabatic order. The subscript ‘Non-Div’, on the other hand, refers, of course, to the part of
the EMT calculation involving finite integrals only.
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the renormalized EMT one has to implement the subtraction (4.54) and compute all the
involved integrals. Despite the considerable amount of work involved, the final result to
the desired order can nevertheless be presented through a rather compact formula, as
follows5:〈
T δψ00

〉(0−6)

ren
(M,H) =

a2

32π2

(
3m4

ψ − 4m2
ψM

2 +M4 − 2m4
ψ ln

m2
ψ

M2

)
+
H2

16π2

(
m2
ψ −M2 −m2

ψ ln
m2
ψ

M2

)
+

1

20160π2a4m2
ψ

(
204H4H′ + 26 (H′)3 − 30H3H′′ + 9 (H′′)2

+ 27H2 (H′)2

− 72H2H′′′ − 18H′H′′′ +H(−78H′H′′ + 18H′′′′)
)

=
a2

32π2

(
3m4

ψ − 4m2
ψM

2 +M4 − 2m4
ψ ln

m2
ψ

M2

)
+
a2H2

16π2

(
m2
ψ −M2 −m2

ψ ln
m2
ψ

M2

)
+

a2

20160π2m2
ψ

(
− 31H6 − 108H4Ḣ − 46Ḣ3 + 126H3Ḧ + 9Ḧ2 − 18Ḣ

...
H

+ 27H2
(

7Ḣ2 + 4
...
H
)

+ 6H(23ḢḦ + 3
....
H )

)
.

(4.57)

The final equality corresponds to the expression in terms of the cosmic time (d()/dt ≡ (̇))
with H ≡ ȧ/a. We point out that there is an explicit dependency on the Hubble func-

tion (and its derivatives) coming from Gµν . This justifies the notation 〈T δψ00 〉ren(M,H),
with two arguments, where the dependence on the time derivatives of H is omitted for
simplicity.

We note that in the fermionic case there are no terms of O(H4) in the evolution of the
ZPE (and the VED, see next section), in stark contrast to the situation with scalars, see
the last line of Eq. (2.57), where we can recognize terms of the form H2Ḣ,HḦ and Ḣ2 all
of them of O(H4). We also remark what has been previously anticipated: for M = mψ

(on-shell point) only the 6th-order terms remain, which are the ones in the last two lines
of Eq. (4.57). These terms are relevant for the RVM mechanism of inflation in the very
early universe (cf. Sect. 4.3.3). However, for the study of the renormalized theory at the
point M (generally different from the on-shell mass point mψ) it is enough to consider
the terms up to 4th adiabatic order in Eq. (4.57), see the next section.

So far, we have been able to provide the desired formula for the ZPE at the energy scale
M up to 6th adiabatic order, cf. (4.57). This is, however, not the end of the story,

5We refer the reader to AppendixA for the computation/regularization of the involved integrals (depending
on whether they are convergent or divergent) with the help of the master DR formula quoted there. Use of DR
can be convenient since in certain cases the needed rearrangement of terms in the integrand to verify that the
overall integral is actually convergent can be complicated. Let us emphasize, however, that DR is only used as
an auxiliary regularization tool for intermediate steps. The final result has no memory of this intermediate step,
see Appendix B for an explicit nontrivial example. To be sure, no MS prescription is used for renormalization
at any point of our calculation. The crucial difference between the ARP and the MS-like schemes is that the
subtraction (4.54) involves not just the UV-divergences but also the finite parts.
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since a proper expression for the VED needs to take into account also the renormalized
parameter ρΛ in Einstein-Hilbert Action, as this parameter is part of the unrenormalized
vacuum action and after renormalization it also runs with the scalae M , i.e. ρΛ(M). Both
the ZPE and ρΛ(M) run with the scale and this will be crucial to study the properties
of the renormalized VED. The running of the ZPE part between two different scales M
and M0 can be illustrated by considering the difference of the respective ZPE values at
these scales. From (4.57) we find〈
T δψ00

〉
ren

(M,H)−
〈
T δψ00

〉
ren

(M0, H) =
a2

32π2

(
M4 −M4

0 − 4m2
ψ(M2 −M2

0 ) + 2m4
ψ ln

M2

M2
0

)
+
a2H2

16π2

(
−M2 +M2

0 +m2
ψ ln

M2

M2
0

)
.

(4.58)

The finite parts, and in particular the 6th order terms cancel of course in the above
difference, but the latter will be essential in the on-shell case since the result would be
zero without these higher order effects 6. We should notice that, in contradistinction to
the case with scalar fields, there are no contributions of O(H4) such as H2Ḣ, HḦ or
Ḣ2 in the expression for the ZPE, as can be seen on comparing equations (2.57) and

(4.57). For this reason it is unnecessary to use the higher derivative (HD) tensor (1)Hµν

(cf. Appendix A) as part of the renormalized Einstein’s equations in the case of the
fermion fields, again in contrast to the situation with the scalar fields – see Sect. 2.5 for
details. Therefore, for fermions the subtraction at the two scales of the renormalized
form of Einstein’s equations can be done using the ordinary form of Einstein equations,
i.e. Eq. (2.3), without higher order curvature terms, and we find〈
T δψµν
〉

ren
(M,H)−

〈
T δψµν
〉

ren
(M0, H) = (ρΛ(M)− ρΛ(M0)) gµν+

(
1

8πG(M)
− 1

8πG(M0)

)
Gµν .

(4.59)
By comparison equations (4.58) and (4.59), and taking into account the tensorial structure
of (4.59) and the explicit form of Gµν in FLRW spacetime (cf. Appendix A), we can
perform the following identifications:

ρΛ(M)− ρΛ(M0) = − 1

32π2

(
M4 −M4

0 − 4m2
ψ(M2 −M2

0 ) + 2m4
ψ ln

M2

M2
0

)
,

1

8πG(M)
− 1

8πG(M0)
=

1

48π2

(
−M2 +M2

0 +m2
ψ ln

M2

M2
0

)
.

(4.60)

4.2.3 Renormalized VED

The same consideration of the scalar field case presented in Chapter 2 can be done here.
So that, the VED associated to the fermionic field is

ρδψvac(M,H) =
〈T vac

00 〉 (M,H)

a2
= ρΛ(M) +

〈
T δψ00

〉
ren

(M,H)

a2
. (4.61)

6Let us remark that the difference (4.58) is an exact result, in the sense that it does not depend on the
adiabaticity order we are working. This is obvious from the renormalization prescription (4.54), as all higher
orders beyond the 4th one (not only the 6th) cancel out in the subtraction, the reason being that these adiabatic
orders are independent of the renormalization point M . The latter is involved in the calculation of the EMT up
to 4th order only (as these are the only adiabatic orders that are UV-divergent).
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Now, if the subtraction of scales is done, we can write

ρδψvac(M,H)− ρδψvac(M0, H) =
〈T vac

00 〉 (M,H)− 〈T vac
00 〉 (M0, H)

a2

= ρΛ(M)− ρΛ(M0) +

〈
T δψ00

〉
ren

(M,H)−
〈
T δψ00

〉
ren

(M0, H)

a2

= ρΛ(M)− ρΛ(M0)− (ρΛ(M)− ρΛ(M0))

+
3H2

8π

(
1

G(M)
− 1

G(M0)

)
=

H2

16π2

(
−M2 +M2

0 +m2
ψ ln

M2

M2
0

)
,

(4.62)

where in the last equality (4.60) was used. As expected, when written in terms of the
ordinary Hubble function H in cosmic time, the evolution of the VED does not depend
explicitly on the scale factor. For the sake of emphasizing the point, in the above equation
we have explicitly indicated the cancellation of the terms carrying along the quartic
powers of the masses, see the third equality in the above equation. As we can see, it is
essential that the structure of the VED is obtained from the sum “VED = ρΛ +ZPE”, i.e.
as we mentioned in a symbolic way in Eq. (2.64), since the mentioned cancellation occurs
between the renormalized expressions of ρΛ and ZPE upon being subtracted at the two
arbitrary scales M and M0. This means that the two values of the VED at these scales
are related in a very smooth manner: in fact, they differ only by a term proportional to
H2, as it is obvious from (4.62). Therefore, the evolution of the VED is well behaved,
which means that, given its value at one scale, all other values at nearby scales are very
close to it. The evolution is indeed slow and can be encoded into an effective contribution
to the νeff parameter, as we did for bosons in Eq. (2.84). The overall contribution from
bosons and fermions to this parameter will be given in Sect. 4.3.

Even though Eq. (4.62) is formally correct, our job is not finished in the physical arena yet.
Despite of the fact that such an equation describes the precise mathematical evolution of
the VED with the renormalization scale, M , it is necessary to associate the latter with
a suitable physical scale in order to extract useful phenomenological information out of
it, exactly as we did for the scalar field in previous chapters. Again, the Hubble rate H
is a characteristic energy scale (in natural units) of the expanding universe in the FLRW
metric, and hence proves to be a natural candidate for a representative physical scale in
this context. Whereby by following the same prescription used in Chap. 2, we set the
renormalization energy scale to M = H(t) (at the end of our calculations) in order to
track the physical evolution of the VED. In other words, this prescription should allow us
to explore the VED at different expansion history times H(t) in a physically meaningful
way. In this way we obtain a well behaved evolution of the VED, which means that,
given its value at one scale all other values at nearby scales are very close to it. The
dynamics of the VED is slow and can be encoded into an effective contribution to the
νeff parameter. The combined contribution from bosons and fermions to this parameter
will be given in Sect. 4.3. Let us finally clarify the sense of this scale setting, Namely,
the full effective action does not depend on M , of course, but the renormalized VED
indeed does since the effective action of vacuum is only a part of the full effective action.
The scale dependence on M from the other terms of the action, for example the terms
carrying the running couplings of the RG-improved classical action, compensates for the
M -dependence of the vacuum action. Put another way, only the full effective action
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(involving the classical part plus the nontrivial quantum vacuum effects) is scale- (i.e.
RG-) independent. This is of course the standard lore of the renormalization group
(RG), see also [198] for an expanded discussion. The choice of a particular scale helps
of course in enhancing the physical significance of particular sectors of the full effective
action. The procedure is of course akin to the usage of the RG in conventional gauge
theories of strong and electroweak interactions, except that here one has to pick out an
appropriate cosmological energy scale which is most adequate for the description of the
universe’s expansion. The distinguished scale H appears to be the natural choice if the
universe where we live is indeed suitably described by the FLRW metric. In the next
section we apply this approach to derive the important RG equation of the VED itself.

4.2.4 Renormalization group equation for the vacuum energy

One can also compute the β function of the running vacuum associated to fermionic
quantum fluctuations. Only the adiabatic terms below 4th order carry M -dependence by
definition since the higher orders are finite and hence are not subtracted in the renormal-
ization procedure. As it was noted before, in contrast to the scalar case the terms of 4th
adiabatic order are not present for fermions. The computation follows the same strategy
as for scalars. In this case we make use of equations (4.58) and (4.61), and we find

βδψρvac
=M

∂ρδψvac(M)

∂M
= βδψρΛ

+
1

8π2

(
M2 −m2

ψ

)2 − 1

8π2
H2
(
M2 −m2

ψ

)
= − 1

8π2
H2
(
M2 −m2

ψ

)
.

(4.63)

The second equality holds immediately after computing the β-function of the parameter
ρΛ. From the first equation (4.60) we find that

βδψρΛ
= M

∂ρΛ(M)

∂M
= − 1

8π2

(
M2 −m2

ψ

)2
(4.64)

and hence contains a term proportional to the quartic power of the particle mass; what’s
more, there is an exact cancellation between the terms of the ZPE containing quartic
powers of M and mψ and the expression of βρΛ

. The result (4.63) can also be consistently
obtained directly from Eq. (4.62). Notice that neither the parameter ρΛ nor the ZPE have
physical meaning in an isolated way, only the sum makes physical sense and defines the
VED in the present context. Let us compare the above results with those following from
the contribution of one real scalar field φ, see Eq. (2.172):

βδφρvac
=

(
ξ − 1

6

)
3H2

8π2

(
M2 −m2

φ

)
+O(H4) (4.65)

and

βδφρΛ
(M) =

1

2(4π)2
(M2 −m2

φ)2 , (4.66)

We can see that in both cases the β-function of the VED is proportional to βρvac ∝
H2 (M2 −m2), where m = mφ or mψ, and therefore has a very smooth behavior thanks to
the factor H2. In contrast, the β-function for the parameter ρΛ in the gravitational action
(which is often incorrectly identified as the VED in some explicit QFT calculations of the

vacuum energy in the literature) behaves in both cases as βρΛ
∝ (M2 −m2)

2
and hence

leads to undesired quartic contributions ∼ m4 to the running. These are the problematic
terms leading to fine tuning problems, but as can be seen these terms exactly cancel in
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βρvac for the vacuum energy both for fermions and bosons in our renormalization scheme.
Notice that there is a factor of 4 between equations (4.64) and (4.66) and have opposite
sign. In a SUSY context, Eq. (4.66) should by multiplied b 4to equalize bosonic and
fermionic d.o.f in a given matter supermultiplet, all of whose members possess the same

mass. Then βδφρΛ
→ 4βδφρΛ

≡ β
δφ (SUSY)
ρΛ , and the sum of the two coefficients will indeed

vanish in a supersymmetric context:

βδψ (SUSY)
ρΛ

+ βδφ (SUSY)
ρΛ

= 0 . (4.67)

But this is, of course, not a cancellation of the β-function coefficients for the VED of
bosons and fermions in the SUSY limit, but only the cancellation of the contributions
to the β-function coefficient for the formal parameter ρΛ in the EH action (2.1). This
property is obviously connected with the discussion in Sec. 4.2.1 about the balance of
UV-divergences between fermions and bosons. In a SUSY theory the quartic divergences
cancel prior to any renormalization process, as we have noticed, and the resulting β-
function for the parameter ρΛ is zero. By the same token the running of the VED is freed
from ∼ m4 effects, which cancel among fermions and bosons in a SUSY context. The
quartic powers are independent of the curvature of spacetime. However, the subleading
divergences do depend on the background curvature and do not cancel at all, even in the
exact SUSY limit 7. The “residual” (finite) parts left in the renormalization process do not
cancel either; they are actually proportional to the curvature of the FLRW background,
R ∼ H2. This fact translates into a correction to the physical vacuum energy density
of order ∼ m2H2 both for bosons and fermions, which is far smaller than m4. So the
finite, curvature dependent, terms that remain after ARP renormalization are de facto
the most important ones for our purposes since they lead to the RVM form of the VED!
The renormalization of the formal parameter ρΛ, in contrast, has no physical imprint in
the final result for the VED, except that the unwanted m4 terms cancel against those
involved in the ZPE, thus rendering the renormalized V ED = ρΛ +ZPE free from quartic
mass dependencies.

From the above RG equations we may write down the total contribution to the β-function
of the VED from the matter fields. Consider Nf species of fermion fields with masses
mψ,` for each species ` ∈ {1, 2, . . . , Nf}, and similarly let Ns be the number of scalar field
species with masses mφ,j, j ∈ {1, 2, . . . , Ns}. Some of these species may have the same
mass, but this aspect is not relevant here, our formulas will include a summation over
all contributions irrespective if some of them may be equal. The total β-function of the
VED from an arbitrary number of quantized matter fields can now be cast as follows:

βρvac ≡
Ns∑
j=1

βδφjρvac
+

Nf∑
`=1

βδψ`ρvac
=

3H2

8π2

[
Ns∑
j=1

(
ξj −

1

6

)
(M2 −m2

φj
)− 1

3

Nf∑
`=1

(M2 −m2
ψ`

)

]
+O(H4) .

(4.68)
The net outcome, therefore, is that the β-function of the vacuum energy density is free
from undesirable contributions proportional to quartic mass powers of the quantized
fields, ∼ m4, and hence these contributions do not appear in the renormalized theory.

7The SUSY considerations we have made here in passing only intend to clarify that in curved spacetime,
irrespective of whether the quantized matter fields belong to a supersymmetric theory or not, the renormalization
program is in any case mandatory to finally get rid of all the UV divergences. The calculations in this work,
however, do not presume any SUSY context at all, not even a SUSY-broken theory. Our treatment of scalar and
fermion fields is indeed completely general, in the sense that we are dealing with an arbitrary number of matter
fields of both species without enforcing any balance between bosonic and fermionic d.o.f. – see Sec. 4.3 for more
details.
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This is of course an extremely welcome feature of our renormalization framework, which
is, on inspection of the above equation, fully shared by both scalar and fermion fields.
Indeed, up to numerical factors fermions and scalar fields provide the same kind of leading
contribution to the time evolution of the cosmological vacuum energy. Overall we find
that the running of ρvac depends only on quadratic terms in the fermion mass, namely
∼ m2

ψ`
H2, which are of the same type as in the case of bosons, namely ∼ m2

φj
H2, as

discussed in Sect. 2.6 and previously demonstrated in great detail in [288,289]. These are
actually very smooth owing to the presence of the H2 factor.

Integrating the RG equation corresponding to the β-function (4.68) one finds the expres-
sion for the evolution of the VED as a function of the renormalization scale M in the
presence of any number of matter fields, see Sec. 4.3. In particular, integrating (4.63)
for the case of one single fermion it is easy to verify that it leads exactly to (4.62).

The kind of much tempered behavior of the VED evolution that we have found here
within our ARP renormalization program is of the sort that was expected on the basis
of semi-qualitative RG arguments and constitutes the characteristic running law of the
so-called Running Vacuum Models (RVM), see [167, 198] and references therein. Thus,
there is no need for fine-tuning in this scenario, since in such a renormalization procedure
we have already gotten rid of the ugly contributions carried along by the quartic powers of
the masses. In other words, the ‘problem’ with the quartic powers of the masses does not
appear in the physically renormalized theory. While the running of the formal parameter
ρΛ with M indeed carries ∼ m4 contributions, as it is obvious from the formulas above,
this fact has no physical implication since ρΛ is not itself a physical parameter (if taken
in isolation) and the unwanted terms carried by it exactly cancel out in the β-function
for the VED, as we have just proven. As a result, the running of the VED is much softer,
the ‘slope’ is ∼ m2H2 rather than ∼ m4. At variance with this result, in the context
of the MS renormalization approach, in which ρΛ runs with the unphysical mass unit µ
coming from dimensional regularization, one is enforced to fine tune ρΛ(µ) against the
large contribution proportional to ∼ m4 terms [198].

4.2.5 Renormalization of the fermionic vacuum pressure

Taking into account the perfect fluid form of the EMT associated with the vacuum,
the corresponding pressure is defined through the iith-components. Any of them can be
utilized owing to the assumed homogeneity and isotropy. So, it is just enough to compute
the 11th-component8:

Pvac(M) =
〈T vac

11 〉
a2

= −ρΛ(M) +

〈
T δψ11

〉ren

(M)

a2
. (4.69)

From (4.48) and using once more the expansion of the spin-1/2 fermion fields in Fourier
modes (cf. Appendix D) the result can be expressed in the following way:〈

T δψ11

〉
=

1

2π2a

ˆ ∞
0

dkk2Pk , (4.70)

8One can either compute the VEV of the T11 component, as we do here, or use the formula (3.2), which
allows to compute the vacuum pressure from the 00th component and the trace of the EMT. The result is the
same, of course, owing to the isotropy of vacuum.
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with

Pk ≡ −
2k

3a

(
hIkh

II∗
k + hI∗k h

II
k

)
. (4.71)

Notice that there is a relation between ρk and Pk

Pk ≡ −
2k

3a

(
hI
kh

II∗
k + hI∗

k h
II
k

)
(4.72)

and where the explicit expressions (in WKB-expanded form) for the fermion modes hI
k

and hII
k can be found in the appendices. Notice that there is a relation between ρk and

Pk,

Pk = − ρ′k
3H

, (4.73)

which follows from (4.50) using the mode equations (4.9). This relation can be used as

an alternative way to calculate 〈T δψ11 〉 from 〈T δψ00 〉:〈
T δψ11

〉
= − 1

3H

(〈
T δψ00

〉′
+H

〈
T δψ00

〉)
. (4.74)

For the sake of simplicity, the remaining discussions of this section will be restricted to
the case of one single field. We shall retake the multifield case in Sec. 4.3. Following the
same steps and considerations made in the previous sections for the 00th-component of
the EMT, we reach the following expression for the renormalized value of the VEV of the
11th-component of the EMT up to 6th adiabatic order:〈
T δψ11

〉(0−6)
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+
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+
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...
H − 100Ḣ
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H − 6H(65ḢḦ + 9

....
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.....
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.

(4.75)

We may now proceed to compute the vacuum EoS for the fermion fields up to the sixth
adiabatic order. The best strategy is to compute first the pressure through Eq. (4.75),
which can be inserted into the relation (4.69). Using next the VED expression (4.61) for

fermions – with 〈T δψ00 〉 given by (4.57) – the vacuum pressure can be seen to be equal to
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minus the VED plus some additional terms:

Pvac(M) = −ρvac(M) +
1

24π2

(
M2 −m2

ψ +m2
ψ ln

m2
ψ

M2

)
Ḣ

+
1

20160π2m2
ψ

(
62H4Ḣ + 144H2Ḣ2 − 126Ḣ3 + 36H3Ḧ − 46Ḧ2 − 42H2

...
H

− 118Ḣ
...
H − 6H(42ḢḦ + 6

....
H )− 6

.....
H
)

+ . . .

(4.76)

The additional terms represent a small (but worth noticing) deviation from the classical
vacuum EoS relation Pvac = −ρvac. The dominant vacuum EoS is still the classical one
up to a leading correction of O(Ḣ) (the second term on the r.h.s of the above equation)
and several sorts of higher order corrections of O(H6) indicated in the last two lines. The
∼ Ḣ correction in the first line of Eq. (4.76) – can obviously be relevant for the present
universe, and in particular it can modify the equation of state of the vacuum it to depart
from −1 at present.

The higher order terms in the last two lines, in contrast, might be relevant only for the
very early universe, in principle. However, these terms involve time derivatives and hence
vanish for H =const. This fact will have implications for our discussion of RVM-inflation
in Sect. 4.3.3), since inflation can be shown to exist in this framework for H =const. So
at the end of the day, the higher order terms in the last two lines of Eq. (4.76) become
irrelevant both at low and high energies in this framework. The consequence is that the
EoS of the quantum vacuum stays very close to −1 during inflation, in contrast to the
vacuum EoS in subsequent eras of the cosmic evolution (cf. Sect. 4.3.4).

4.2.6 Trace Anomaly

It is a very well known result that if a field theory has a classical action which is con-
formally invariant, then the trace of the classical EMT vanishes exactly. For this it is
necessary to work with a massless field, otherwise the presence of a mass breaks the sym-
metry since it introduces a fixed length scale. For instance, for a massless scalar field,

lim
ξ→1/6

lim
mφ→0

TCl. (φ) = 0 . (4.77)

This follows immediately from (2.7) and (2.6). However, it is also true that this simple
result does not hold when one takes into account the quantum effects from the scalar
field and constitutes the scalar part of the conformal anomaly, [284]. This follows after a
careful study of the diverging part of the vacuum effective action, WDiv

eff , in which Weff was
defined in Sect. 2.8. The part WDiv

eff is not conformally invariant for an arbitrary number
of spacetime dimensions n (although Weff is so in the massless limit), except for the case
n = 4. As a consequence, WDiv

eff receives a finite payoff for n → 4 owing to the existing
pole 1/(n− 4) in it. Correspondingly, the VEV of the on-shell EMT receives a nontrivial
contribution in the massless limit coming from the divergent part of the effective action,
even in the case ξ = 1/6:

lim
mφ→0

lim
ξ→1/6

〈
T δφ
〉

= − lim
mφ→0

m2
φ

〈
δφ2
〉
. (4.78)
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The term 〈δφ2〉 contains some elements of 4th adiabatic order proportional to 1/m2
φ, so

that the corresponding limit results in a finite contribution. The same idea applies in the
fermionic case,

lim
mψ→0

〈
T δψ
〉

= − lim
mψ→0

mψ

〈
ψ̄ψ
〉
. (4.79)

Here the term
〈
ψ̄ψ
〉

contains 4th adiabatic order terms that are proportional to 1/mψ

which make the limit non-trivial. Technically speaking (4.78) and (4.79) are not yet what
we call the trace anomaly or conformal anomaly. This is due to the fact that the total
effective action is conformally invariant and the corresponding EMT is traceless, so the
part of the trace associated with the finite and divergent parts should be equal but with
opposite sign in the conformal limit [284]. The anomaly is generated from the finite part,
so its actual value for the scalar field case is〈

T δφ
〉Anom.

= − lim
mφ→0

〈
T δφ
〉

=
1

480π2a4

(
4H2H′ −H′′′

)
=

1

2880π2

(
RµνRµν −

R2

3
+�R

)
,

(4.80)

where the conversion of the anomaly result into an invariant expression in the last step
can be performed using the formulae of Appendix A. This result was explicitly verified
in the calculation of Sect. 2.7. We remark that for an arbitrary curved background the
expression for the conformal anomaly is more involved [284]. However, since the spa-
tially flat FLRW spacetime is conformally flat (i.e. conformal to Minkowski space) the
contribution from the Weyl tensor vanishes identically and hence also its square (entering
the anomaly). Additional terms beyond 4th adiabatic order decouple when mφ → ∞,
satisfying the Appelquist-Carazzone decoupling theorem [335]. These terms are not fi-
nite in the massless limit, and hence do not take part of the anomaly. In practice we
have derived the anomaly (4.80) from the unrenormalized trace of the vacuum EMT for
scalar fields,

〈
T φ
〉
, which is given in full detail in Sect. 2.7. The corresponding conformal

anomaly for fermions can be similarly extracted from the unrenormalized
〈
T δψ
〉

and it
is a bit cumbersome as well, so we shall spare details here. We limit ourselves to provide
the final result. Once more we can recognize the expression of the anomaly as a linear
combination of finite terms of adiabatic order 4 which are independent of the mass scale.
We find 〈

T δψ
〉Anom.

= − lim
mψ→0

〈
T δψ
〉

=
1

240π2a4

(
7H′H2 − 3H′′′

)
=

11

2880π2

(
RµνRµν −

R2

3
+

6

11
�R

)
.

(4.81)

One natural question is related with the physical consequences of the conformal anomaly.
It is well-known that it is a valuable theoretical concept encoding essential information
on the VEV of the renormalized EMT [284], although it need not be itself part of the
observable quantities of the renormalized theory. There are some attempts in the litera-
ture to remove the anomaly by particular prescriptions or definitions of the renormalized
EMT [420]. This is also the case of the renormalization procedure employed in this chap-
ter, as defined in (2.53) and (4.54), where the anomaly has no physical effects. The reason
is that the on-mass-shell VEV of the EMT is subtracted at an arbitrary scale, M , up to
4th adiabatic order. Since the anomaly is of 4th adiabatic order and it is independent
of the mass of the fields and, of course, also from the arbitrary renormalization point,
it gets cancelled exactly in our ARP renormalization procedure. Alternatively, one can
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think in terms of the effective action. Indeed, in Sect. 2.8 we defined the renormalized
effective lagrangian density off-shell at an arbitrary scale M ,

LRen
W (M) ≡ LW (m)− LDiv

W (M) (4.82)

and it was shown by expanding it through the DeWitt-Schwinger series that it eventually
leads exactly to the same renormalized EMT defined by (2.53). This result was obtained
explicitly for a scalar field φ and can be repeated for fermions, although we shall not
provide details here. Now the anomaly is related with the divergent part of the effective
Lagrangian, corresponding to the lowest adiabatic orders (up to 4h order). As a conse-
quence it gets once more exactly cancelled in (4.82) analogously to the subtraction of the
EMT.

As previously indicated, the anomaly part of the trace is contained in the unrenormalized
trace of the EMT (even though the anomaly itself is a finite part of it). In our framework,
however, the anomaly cancels since the anomaly is independent of the mass scale and our
renormalized VEV of the EMT is defined through a subtraction of its value at two different
scales, see equations (2.53) and (4.54). Thus the conformal anomaly is not involved in the
renormalized expressions for the vacuum energy density and pressure in our framework.
Despite it not having physical consequences in our approach, the explicit calculation of
the anomaly is certainly useful as a nontrivial cross-check of our intermediate results.

4.3 Combined fermionic and bosonic contributions

Let us now determine the combined vacuum contributions from a multiplicity of non-
interacting fermionic and bosonic degrees of freedom. We consider Nf species of fermion
fields with masses mψ,` (` ∈ {1, 2, . . . , Nf}), and Ns scalar field species with masses mφ,j

(j ∈ {1, 2, . . . , Ns}).

4.3.1 Running vacuum from an arbitrary number of bosons and fermions

The renormalized expression of the vacuum energy density is, in that case,

ρvac(M,H) = ρΛ(M) +

∑Ns

j=1

〈
T
δφj
00

〉
ren

(M,H) +
∑Nf

`=1

〈
T δψ`00

〉
ren

(M,H)

a2
. (4.83)

Exactly as we did in Sect. 4.2.2, we need to subtract Einstein’s equations at two different
energy scales M and M0 in order to obtain the running of the couplings with the change
of the scale. We find:
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Ns∑
j=1

(〈
T
δφj
00

〉
ren

(M,H)−
〈
T
δφj
00

〉
ren

(M0, H)
)

+

Nf∑
`=1

(〈
T δψ`00

〉
ren

(M,H)−
〈
T δψ`00

〉
ren

(M0, H)
)

=
Ns∑
j=1

[
a2

128π2

(
−M4 +M4

0 + 4m2
φj

(
M2 −M2

0

)
− 2m4

φj
ln
M2

M2
0

)

+
3
(
ξj − 1

6

)
a2H2

16π2

(
M2 −M2

0 −m2
φj

ln
M2

M2
0

)
+

9
(
ξj − 1

6

)2
a2

16π2

(
Ḣ2 − 2ḦH − 6H2Ḣ

)
ln
M2

M2
0

]

+

Nf∑
`=1

[
a2

32π2

(
M4 −M4

0 − 4m2
ψ`

(
M2 −M2

0

)
+ 2m4

ψ`
ln
M2

M2
0

)

+
a2H2

16π2

(
M2

0 −M2 +m2
ψ`

ln
M2

M2
0

)]

= (ρΛ(M)− ρΛ(M0)) g00 +

(
1

8πG(M)
− 1

8πG(M0)

)
G00 + (a1(M)− a1(M0)) (1)H00 .

(4.84)

Notice the appearance of the 00th component of (1)Hµν , which is a HD tensor of O(H4),
hence of adiabatic order 4, see Appendix A. Its presence in the generalized Einstein’s
GR equations is indispensable for renormalization purposes and constitutes a UV com-
pletion of the field equations. No additional HD tensors are needed for conformally flat
spacetimes [284]. In our case, (1)Hµν is necessary for the renormalization of the short-
distance effects produced by the quantum fluctuations of the scalar fields, as these involve
O(H4) corrections. However, as previously indicated in Sec. 4.2, the renormalized EMT

for fermions does not contain O(H4) terms. By using the expression of (1)H00 in Ap-
pendix A we can recognize the tensorial structure of the various terms, and from it we
can pin down immediately the running of the couplings:

ρΛ(M)− ρΛ(M0) =
1

128π2
(−4Nf +Ns)

(
M4 −M4

0

)
+

1

32π2

(
4

Nf∑
`=1

m2
ψ`
−

Ns∑
j=1

m2
φj

)(
M2 −M2

0

)
+

1

64π2

(
−4

Nf∑
`=1

m4
ψ`

+
Ns∑
j=1

m4
φj

)
ln
M2

M2
0

,

(4.85)

1

8πG(M)
− 1

8πG(M0)
=

1

48π2

(
−Nf + 3

Ns∑
j=1

(
ξj −

1

6

))(
M2 −M2

0

)
+

1

48π2

(
Nf∑
`=1

m2
ψ`
− 3

Ns∑
j=1

(
ξj −

1

6

)
m2
φj

)
ln
M2

M2
0

,

(4.86)
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a1(M)− a1(M0) = − 1

32π2

Ns∑
j=1

(
ξj −

1

6

)2

ln
M2

M2
0

. (4.87)

From the above formulas we can now use Eq. (4.83) to find out the difference between
the values of the VED at two different scales:

ρvac(M,H)− ρvac(M0, H0) =
3

16π2
H2

Ns∑
j=1

(
ξj −

1

6

)(
M2 −m2

φj
+m2

φj
ln
m2
φj

M2

)

− 3

16π2
H2

0

Ns∑
j=1

(
ξj −

1

6

)(
M2

0 −m2
φj

+m2
φj

ln
m2
φj

M2
0

)

+
1

16π2
H2

Nf∑
`=1

(
−M2 +m2

ψ`
−m2

ψ`
ln
m2
ψ`

M2

)

− 1

16π2
H2

0

Nf∑
`=1

(
−M2

0 +m2
ψ`
−m2

ψ`
ln
m2
ψ`

M2
0

)

+
9

16π2

(
2HḦ + 6H2Ḣ − Ḣ2

) Ns∑
j=1

(
ξj −

1

6

)2

ln
m2
φj

M2

− 9

16π2

(
2H0Ḧ0 + 6H2

0Ḣ0 − Ḣ2
0

) Ns∑
j=1

(
ξj −

1

6

)2

ln
m2
φj

M2
0

+

∑Ns

j=1

〈
T
δφj
00

〉(6)

ren
(M,H) +

∑Nf

`=1

〈
Tψ`00

〉(6)

ren
(M,H)

a2

−

∑Ns

j=1

〈
T
δφj
00

〉(6)

ren
(M0, H0) +

∑Nf

`=1

〈
Tψ`00

〉(6)

ren
(M0, H0)

a2
+ . . .

(4.88)

In the last line, the dots collectively represent all the terms of adiabatic 8 or beyond, which
are not considered in our analysis. Notice that in the previous expression we have used
the important relation (4.85), which is essential to cancel the quartic mass contributions
from the matter fields.

Following the same prescription that we used before to derive equations Eq. (2.83) and
Eq. (2.84) for a single scalar field, we may implement now the scale settings M = H and
M0 = H0 in order to compare the evolution of the VED between these two points, in the
present case involving the full contributions from all the matter fields. For simplicity, let
us call ρvac(H) ≡ ρvac(H,H) and ρvac(H0) ≡ ρvac(H0, H0) when using the above expression
(4.88). The expansion history times H and H0 can be arbitrary, of course, but for obvious
reasons we choose H0 = H(t0) to be the value of the Hubble function at the present time,
t0, and H = H(t) a value at a point in our past (t < t0). Therefore, the running of the
VED between these two points can be expressed as follows:
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ρvac(H)− ρvac(H0) =
3

16π2
H2

Ns∑
j=1

(
ξj −

1

6

)(
H2 −m2

φj
+m2

φj
ln
m2
φj

H2

)

− 3

16π2
H2

0

Ns∑
j=1

(
ξj −

1

6

)(
H2

0 −m2
φj

+m2
φj

ln
m2
φj

H2
0

)

+
1

16π2
H2

Nf∑
`=1

(
−H2 +m2

ψ`
−m2

ψ`
ln
m2
ψ`

H2

)

− 1

16π2
H2

0

Nf∑
`=1

(
−H2

0 +m2
ψ`
−m2

ψ`
ln
m2
ψ`

H2
0

)

+
9

16π2

(
2HḦ + 6H2Ḣ − Ḣ2

) Ns∑
j=1

(
ξj −

1

6

)2

ln
m2
φj

H2

− 9

16π2

(
2H0Ḧ0 + 6H2

0Ḣ0 − Ḣ2
0

) Ns∑
j=1

(
ξj −

1

6

)2

ln
m2
φj

H2
0

+

∑Ns

j=1

〈
T
δφj
00

〉(6)

ren
(H,H) +

∑Nf

`=1

〈
Tψ`00

〉(6)

ren
(H,H)

a2

−

∑Ns

j=1

〈
T
δφj
00

〉(6)

ren
(H0, H0) +

∑Nf

`=1

〈
Tψ`00

〉(6)

ren
(H0, H0)

a2
.

(4.89)

Obviously, if the point H is in the nearby past we can neglect all the O(H4) terms gener-
ated in the above expression since they are much smaller than the O(H2) contributions.
We will do this in the next section, where we study in more detail the low energy regime,
in particular the late time universe where we live. Let us however clarify that the O(H2)
terms are dominant not only for the late time universe around our time, but in actual
fact for the entire post-inflationary regime. Finally, we can extract the running of the
gravitational constant from eq. (4.86), with the following result:

G(M) =
G(M0)

1 + G(M0)
2π

[(
Ns∑
j=1

(
ξj − 1

6

)
− Nf

3

)
(M2 −M2

0 ) +

(
Nf∑̀
=1

m2
ψ`

3
−

Ns∑
j=1

(
ξj − 1

6

)
m2
φj

)
ln M2

M2
0

] .
(4.90)

We discuss the running of ρvac and G in terms of H in the next section.

4.3.2 The low energy regime: evolution of ρvac and G in the present universe

Of paramount importance is the evolution of the VED and of the gravitational coupling
G in the low energy regime, especially around our time. Therefore, following our pre-
scription, we evaluate (4.89) for the late universe, when the dominant powers of H are
the H2 ones. Such an expression then boils down to

ρvac(H) = ρvac(H0) +
3νeff(H)

8π
m2

Pl

(
H2 −H2

0

)
+O(H4) , (4.91)
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where the function νeff(H) is defined as follows:

νeff(H) =
1

2π

[
Ns∑
j=1

(
ξj −

1

6

)
m2
φj

m2
Pl

(
ln
m2
φj

H2
0

− 1

)
− 1

3

Nf∑
`=1

m2
ψ`

m2
Pl

(
ln
m2
ψ`

H2
0

− 1

)

+
H2

H2 −H2
0

ln
H2

H2
0

(
1

3

Nf∑
`=1

m2
ψ`

m2
Pl

−
Ns∑
j=1

(
ξj −

1

6

)
m2
φj

m2
Pl

)]
.

(4.92)

It is indeed a function evolving with the Hubble rate, but is almost constant since the
dependence on H is very mild, as we shall make manifest in a moment.

Let us emphasize that the O(H4) terms correcting the r.h.s. of Eq. (4.91) are completely
irrelevant for the current universe, and hence they can be safely ignored for the FLRW
regime, that is to say, during the entire period following the inflationary stage (cf. next
section). Therefore, equation (4.91) should actually be relevant for the full cosmological
evolution that is accessible (directly or indirectly) to our physical measurements and
observations.

It is convenient to define the parameter

ε ≡ 1

2π

(
Ns∑
j=1

(
ξj −

1

6

)
m2
φj

m2
Pl

− 1

3

Nf∑
`=1

m2
ψ`

m2
Pl

)
. (4.93)

This parameter is connected to the β-function (4.68) at low energies. Indeed, when we
consider M = H in the low energy regime, it is obvious that H2 � m2 for any particle
mass, and hence Eq. (4.68) reduces to

βρvac = − 3

4π
εm2

Pl H
2 , (4.94)

within a very good approximation. Quite obviously we can see that ε plays the role of
coefficient of the low-energy β-function of the VED. However, the eventual coefficient
that effectively controls the final evolution of the VED is actually enhanced with respect
to ε by a big logarithmic factor. To see this, let us take the current limit (H → H0) of
the function (4.92):

ν0
eff ≡ lim

H→H0

νeff(H) =
1

2π

[
Ns∑
j=1

(
ξj −

1

6

)
m2
φj

m2
Pl

(
ln
m2
φj

H2
0

− 2

)
− 1

3

Nf∑
`=1

m2
ψ`

m2
Pl

(
ln
m2
ψ`

H2
0

− 2

)]
.

(4.95)
A simple rearrangement now shows that we can rephrase (4.92) in terms of ε and ν0

eff :

νeff(H) = ν0
eff +

(
1− H2

H2 −H2
0

ln
H2

H2
0

)
ε . (4.96)

This formula is exact, but in practice some simplifications are perfectly possible. For
example, consider the big logarithms lnm2

i /H
2
0 (with mi any particle mass, boson or

fermion) involved in νeff but not in ε. For any known massive particle, we have lnm2
i /H

2
0 �

1, this being true even for the lightest neutrinos (recall that H0 ∼ 10−42 GeV= 10−30

meV). Typically lnm2
i /H

2
0 = O(100) in all cases. But as a matter of fact the only relevant

contributions to νeff(H) come from the heavy massive particles that belong to a GUT at
a characteristic scale MX ∼ 1016GeV. For these particles (whether bosons or fermions,
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with masses mi ∼ MX) we have m2
i /m

2
Pl ∼ M2

X/m
2
Pl and this number is not so small

since it may thrust the value of νeff up to νeff ∼ 10−3, if one takes into account the large
multiplicities of heavy fields existing in a typical GUT. This was first estimated long ago
in [293]. Thus, it is natural to expect |ν0

eff | � |ε|.It follows that we can safely neglect
the term proportional to ε in (4.96). It also means that we can neglect the very mild
time-dependence of νeff(H) and replace it with the constant coefficient ν0

eff in which H
is evaluated at the current time, H = H0. By the same token we can also ignore the
numerical additive terms accompanying the big logarithms in (4.95). All in all, in very
good approximation the evolution of the vacuum energy density can be described through
the formula

ρvac(H) = ρvac(H0) +
3νeff

8π
m2

Pl(H
2 −H2

0 ) , (4.97)

with an effective νeff ' ν0
eff given by

νeff =
1

2π

[
Ns∑
j=1

(
ξj −

1

6

)
m2
φj

m2
Pl

ln
m2
φj

H2
0

− 1

3

Nf∑
`=1

m2
ψ`

m2
Pl

ln
m2
ψ`

H2
0

]
. (4.98)

As it turns out, in practice it all amounts to replace νeff(H) → νeff in (4.91) since the
result still retains a great degree of accuracy. From the previous two equations, coefficient
νeff is seen to play the role of β-function for the running vacuum directly as a function of
H. If we compare (4.98) with (4.93) we can see that νeff and ε are roughly ‘proportional’
through a big log:

νeff ∼ ε ln
m2
i

H2
0

∼ O(100) ε . (4.99)

Despite there being a summation over different masses, and hence such a proportionality
not being strict, the above relation is nevertheless true in order of magnitude. The
presence of the big log factor in νeff makes the running of the VED faster than the tiny
value of ε might convey at first sight. On the other hand, as we shall see below, it is ε
alone that controls the (much softer) running of the gravitational coupling G, which does
not receive any enhancement from big log factors.

Equations (4.97) and (4.98) suffice to study the behavior of the VED near our time9.
These simplified formulas have been previously used de facto to fit the value of νeff from
the latest cosmological data, see e.g. [374] and references therein. Here, however, we
provide for the first time the full theoretical structure behind this parameter in the QFT
context from the quantum effects induced by an arbitrary number of quantized matter
fields. The typical fitting value obtained in the mentioned reference is νeff ∼ 10−3 and
positive, which is well within the said expectations. This phenomenological determination
picks up of course the net outcome from the various quantum matter fields involved in
(4.98), which at this point cannot be discriminated in an individual way. Finally, insofar
as the running gravitational constant is concerned, it can be written using the same
renormalization scale as follows:

G(H) =
GN

1 + 1
2π

(
Ns∑
j=1

(
ξj − 1

6

)
− Nf

3

)
H2−H2

0

m2
Pl
− ε ln H2

H2
0

. (4.100)

9It is apparent that for one single neutral scalar field and no fermion field the above expressions we can reduce
to the formulas for the scalar field presented earlier. For instance, compare (4.98) with (2.84).
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The former expression can be derived straightforwardly from eq. (4.90) by setting M = H
and M0 = H0, with H0 being the current value of the Hubble function, and we have
defined GN ≡ G(M0) (the current value of the gravitational coupling). We follow exactly
the same recipe as for the VED. In the low energy regime, where H2 � m2

Pl, we can
approximate with high accuracy the former expression by just

G(H) =
GN

1− ε ln H2

H2
0

, (4.101)

where ε receives contributions from all the matter fields, see Eq. (4.93). Recall from
(4.99) that |ε| � |νeff |, and also that the running of G(H) is logarithmic, in contrast to
the running of ρvac(H) which is quadratic in H2 at low energies. Therefore, the running
of G is much lesser than that of the VED. It may, however, be interesting to note that
when H approaches mPl the term ∼ H2/m2

Pl in the denominator of the more accurate
formula Eq. (4.100) could be dominant over the logarithmic one. If the multiplicity of
matter fields is large enough, such a term could make the gravitational coupling to evolve
asymptotically free at very large energies when we approach the Planck scale. Until that
point, G increases at high energies for ε > 0. Beyond that point, decreases.

As an additional cross-check, we can see that the running of the vacuum energy den-
sity and of the gravitational coupling are compatible through the Bianchi identity. This
can be translated into a local energy exchange between the vacuum fluid and the back-
ground gravitational field due to the quantum fluctuations. A deeper insight on the local
(covariant) energy conservation and the Bianchi identity can be found in the previous
works [289, 290], where the reader may find a detailed derivation of the logarithmic evo-
lution law, that is to say, equation (4.101), in the simpler scenario of one real scalar field.
In fact, one finds that the β-function (4.65) for the VED running is crucially involved
also in the local conservation law of the VED, which can be written in two alternative
ways:

ρ̇vac + 3H (ρvac + Pvac) =
Ṁ

M
βρvac = −Ġ

G

3H2

8πG
. (4.102)

The first equality expresses the fact that the non-conservation of the VED is due to both
the running of ρvac with M (i.e. the fact that βρvac 6= 0) and also to the cosmic time

dependence of M (viz. Ṁ 6= 0), whereas the second equality is a direct reflex of the
Bianchi identity in Einstein’s equations with variable ρvac and G, and hence provides a
link between the time variation of the VED and that of the gravitational coupling G.
The former equation does not depend on the number or nature of the fields involved, and
holds as long as the matter components are covariantly conserved on their own. The non-
conservation of ρvac, however, preserves the Bianchi identity thanks to the corresponding
running of the gravitational coupling. This does not preclude, however, that one can still
formulate scenarios where matter can exchange energy with ρvac, but we do not address
this situation here. Taking the leading terms of βρvac from the r.h.s. of (4.68) for the
present universe, and setting M = H, we immediately obtain the following differential
equation

1

G2

dG

dt
=

2ε

GN

Ḣ

H
, (4.103)

where ε is the full expression (4.93) involving the contributions from all the matter fields.
Its solution is precisely Eq. (4.101), as can be readily checked.

It is also interesting to note from the above formulas that this framework predicts a (mild)
cosmic time variation of the “fundamental constants”, such as the gravitational coupling
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G and ρvac, as a function of H(t). Whence, it implies a small evolution of these ‘constants’
with the cosmological expansion. The possibility for such a variation is not new. It has
long been discussed in the literature [421] and is still a hot matter of debate and of
intensive test by different groups, see also [422] and the ample bibliography provided in
them. Specific theoretical models accounting for such a possible variation are manifold,
and in some cases they imply a time-dependence of the running couplings and masses in
the particle and nuclear physics world, see e.g. [423,424]. While most of the proposals are
based on strict particle physics scenarios, in particular on GUT’s, testing the evolution
of the VED in curved spacetime is a novel feature suggested in our framework, which
was actually put forward on more phenomenological grounds sometime ago in [367–369].
The QFT calculations presented in the current work provide indeed a solid theoretical
support to these same ideas but from first principles. Recall the golden rule in this arena:
when one “fundamental constant” varies, then all of them vary!

The formulas discussed above concern important epochs of the cosmological expansion
such as the radiation-dominated epoch, matter-dominated epoch and the current epoch
in which the vacuum energy resurfaces and became finally dominant over matter. During
the entire FLRW regime the dominant power of the Hubble rate in the VED is H2 or Ḣ
(which are of the same adiabatic order). The terms with powers ofH (or of equal adiabatic
order) higher than H2 (indicated by O(H4) in (4.91)) acquire real relevance much early
on in the expansion history since only during the most primitive stages of the universe we
encounter a truly high energy scenario. As previously anticipated, an interesting feature
regarding these higher powers is that they can provide us with a possible mechanism
for inflation. Namely, if the early cosmic era possesses a short period where H remains
approximately constant and very large (typically near a GUT scale), the universe may
go through a phase of exponential expansion in which the VED starts from a huge value
which then quickly decays into radiation and triggers the ordinary FLRW regime. This
situation is possible also in the RVM framework, and is called ‘RVM-inflation’ [289,296].
See also [390] for a ‘stringy’ version. We reassess RVM-inflation in the next section in
the extended QFT context of the present considerations, where we now have both scalar
and fermion fields.

4.3.3 Inflation from running vacuum

It was noted in Sect. 3.4.2 (see also [289])that the quantum effects computed from the
adiabatic expansion lead to higher powers of the Hubble rate and its derivatives, which
are irrelevant for the current universe but capable to bring about inflation in the very
early universe. They are characterized by a short period where H=const., provided
this constant value is, of course, very large, namely around a characteristic GUT scale.
The regime H=const. in our case is totally unrelated to the ground state of a scalar
field potential and therefore this new mechanism does not require any ad hoc inflaton
field. As said, it is called ‘RVM-inflation’. Here we consider the contribution from the
fermions fields and provide a formula for the dominant term of the energy density receiving
contributions from an arbitrary number of non-minimally coupled scalar fields and also
an arbitrary number of fermions fields. The payoff from the latter stems from setting
H =const in Eq. (4.57), where we can see that all the time derivatives of the Hubble rate
vanish except for a single term which is proportional to H6/m2

ψ. The contribution from
a non-minimally coupled scalar field was computed in [289] and here we just combine it
with that of fermions assuming any number of both species. Overall, we find that the
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total VED involving the contributions from bosons and fermions at very high energies
(hence relevant for triggering RVM-inflation in the very early universe) can be put in the
following fashion:

ρinf
vac =CinfH

6 + F (Ḣ, Ḧ,
...
H...), (4.104)

where

Cinf ≡
1

80π2

{
Ns∑
j

1

m2
φj

[(
ξj −

1

6

)
− 2

63
− 360

(
ξj −

1

6

)3
]
− 31

252

Nf∑
`

1

m2
ψ`

}
. (4.105)

The terms collected in the function F (Ḣ, Ḧ,
...
H...) depend on different combinations of

powers ofH involving derivatives ofH in all cases, and hence they all vanish forH =const.
Thus F = 0 for H =const. Overall we see that the dominant contribution is of the form
ρinf

vac ∝ H6 with a complicated coefficient Cinf which depends on the number of scalar and
fermions fields, their masses, multiplicities and also on the non-minimal couplings of the
different scalars. In the case of fermions this contribution is seen to be negative-definite,
whereas in the case of the scalars it can be positive.

Let us note that during the inflationary period the EoS of the quantum vacuum is essen-
tially −1, with very tiny deviations caused by terms which depend on the various time
derivatives of the Hubble rate. To the extent that the condition H=const. is fulfilled
these deviations are extremely small, see Eq. (4.76). In the next section we shall see that,
in contrast, the EoS of the quantum vacuum in the present time can deviate from −1
by a small amount which is not as negligible as in the very early universe and therefore
could be detected and even mimic quintessence behavior.

The solution of the cosmological equations proceeds along the same lines as in [289],
except that now the fermionic contribution is also included but it only modifies the
specific coefficient of H6. Therefore, one finds again that a short period of inflation
can be generated with H ≈ const. and subsequently the vacuum decays quickly into
radiation [289]:

H(a) =
HI

(1 + â8)
, (4.106)

ρr(â) = ρI â
8
(
1 + â8

)− 3
2 , ρvac(â) = ρI

(
1 + â8

)− 3
2 , (4.107)

in which â ≡ a/a∗, with a∗ is the transition point from the regime of vacuum dominance
into one of radiation dominance, which can be estimated to be around a∗ ∼ 10−30 (see
Eq. (4.113) below). Moreover, HI and ρI are the value of H and ρvac, respectively, at the
beginning of inflation, with ρI = CinfH

6
I . Applying the Friedmann equation, we find

HI =

(
3

8πGICinf

)1/4

, (4.108)

ρI =
3

8πGI

H2
I =

3

8πGI

(
3

8πGICinf

)1/2

= C
−1/2
inf

(
3

8πGI

)3/2

, (4.109)

where GI ≡ G(HI) is the gravitational coupling at H = HI , the latter being value of
the Hubble parameter at the inflationary era. Needless to say, the difference between GI

and the usual GN is not very important here since the running of G is logarithmic, and
hence the effect is very small as compared to the fast evolution of the H6 term, so in
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practice we can neglect the running of G for these considerations. To trigger inflation in
an effective way, we must have a positive coefficient Cinf > 0. In the light of Eq. (4.105)
we can see that this is perfectly possible since the couplings ξj and masses of the fields
can take a variety of values that make this possible, as can be shown in a devoted study
that will be presented elsewhere.

The masses of the relevant fields involved must be very large, say around a typical GUT
scale, MX ∼ 1016 GeV. This may not be obvious at first sight. A naive interpretation
of the higher order terms of the VED, which are related with the 6th adiabatic order
of the ZPE (see equation (4.57)), may give the erroneous impression that the relevant
masses are to be the lightest possible ones, but this is by no means true since in such
a situation the adiabatic expansion would break down. On the other hand, the analysis
through the Friedmann equations reveals the correct dependency of the VED and of the
Hubble function on the masses during the inflationary regime. From equation (4.105)

it is obvious that C
−1/2
inf ∝ mφ,ψ, where the notation stands for a linear combination

of the typical masses of the matter fields. The inflationary parameters (4.108)-(4.109),
therefore, depend on a positive power of mφ,ψ, and as a result the process of RVM-inflation
is actually dominated by the heaviest masses, in contrast to naive expectations; namely,
masses mφ,ψ ∼MX ∼ 1016GeV of order of a typical GUT, as mentioned above. It follows
that the same heavy masses which may generate a mild (but non-negligible) quadratic
running ∼ H2 of the VED (with a coefficient νeff ∼ 10−3) in the late universe can also be
responsible for driving fast inflation in the primeval stages of the cosmological evolution.
To see this feature more explicitly, let us recall that the differential equation driving the
Hubble function in the presence of a high powerH6 in the VED (4.104) reads [373,406,407]

Ḣ +
3

2
(1 + ωm)H2

(
1− H4

H4
I

)
= 0 , (4.110)

where ωm = 1/3 is the EoS of matter in the relativistic epoch, and HI is given in (4.108).
We have neglected the influence of the term H2 and also of the constant term in the very
early universe. It is obvious from (4.110) that there is a constant solution H = HI to
that equation, which is precisely the one which triggers the inflationary period. From this
observation one can then solve equation (4.110) exactly to find Eq. (4.106). The latter
shows clearly the departure of H from HI when â > 1 (i.e. a > a∗). The inflationary
phase actually occurs during the short period when the departure remains small, namely
when H remains approximately constant, H ' HI . During such period the F -term on

the r.h.s. of Eq. (4.104) just vanishes, F (Ḣ, Ḧ,
...
H...) = 0, since all dependence on H is

through time derivatives. From equations (4.108) and (4.109), we find that the order of
magnitude of the physical scales involved in RVM-inflation is the following:

HI ∼ (MX mPl)
1/2 ∼ 1017 GeV , ρI ∼MX m

3
Pl ∼

(
1018GeV

)4
, (4.111)

up to numerical coefficients and multiplicity factors, of course. Thus, if the masses
of the relevant matter fields lie in the expected range for a GUT, the right order of
magnitude for the relevant physical parameters at the inflationary epoch can be obtained.
Keeping in mind that the mechanism of RVM-inflation can also be motivated in ‘stringy’
scenarios [311, 313, 390, 391, 425, 426], it should be natural to expect RVM-infation in
the range between the GUT scale and the Planck scale. This is exactly what the above
estimates suggest in order of magnitude.

One more observation is in order. One can easily check from (4.107) that for â � 1
(i.e. a� a∗) we retrieve the standard decaying behavior of radiation, ρr(a) ∼ a−4. This
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condition enforces the following relation between ρ0
r (the current value of radiation energy

density) and ρI (the energy density at the inflationary time):

ρI ≈ ρ0
ra
−4
∗ . (4.112)

Following the line of the previous estimations, it yields an equality point between vacuum
energy and radiation around the value

a∗ =

(
Ω0
r

ρ0
c

ρI

) 1
4

'
(

10−4 10−47

1072

)1/4

∼ 10−30 , (4.113)

where ρ0
c ∼ 10−47 GeV4 is the current critical density. In the meantime the vacuum

energy becomes negligible and does not disturb primordial BBN, see [289, 290] for more
details. See also [296,373,406,407] for interesting phenomenological applications prior to
the QFT treatment of RVM-inflation, first presented in [289].

Finally, we should stress that RVM-inflation is genuinely different from e.g. Starobinsky’s
inflation [164], as explained in detail in [296]. While it may be natural to conceive that
a consistent inflationary model of the very early Universe should be a good candidate for
an effective theory of quantum gravity, at least at energies much less than the Planck
scale, RVM-inflation reveals itself as one such possible candidate, all the more if we take
into account that a low-energy ‘stringy’ version of RVM-inflation has been also identified
and sharing most of the virtues of the current QFT formulation [390,391].

4.3.4 Equation of state of the quantum vacuum

The quantum effects of the fields have an imprint on the vacuum equation of state, which
is not exactly the traditional one Pvac = −ρvac. From the expressions of the renormalized
energy density and pressure of the vacuum that have been obtained in the previous
sections and considering their generalization to an arbitrary number of fermions and
scalars, we arrive at the following expression for the EoS of the quantum vacuum:

ωvac(H) = −1 +
1

8π2ρvac(H)

{[
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)}

+O
(
H6
)
.

(4.114)

HereO (H6) stands for the terms of adiabatic order 6 or higher, such asH6/m2, Ḧ2/m2, . . .
(m = mψj ,mφ` ). All these higher order terms can be neglected during the postinflation-
ary era. The above relation shows that the quantum vacuum EoS is of dynamical nature.
As we can see there is a deviation from the rigid value −1, which is the traditional EoS
ascribed to the cosmological constant in the ΛCDM framework. The correction terms
due to both bosonic and fermionic fields are small in the present era, in comparison with
the constant term −1, but need not be negligible since the particle masses involved can
be from a typical GUT, and hence one can estimate that the effective parameter νeff – the
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parameter defined in Eq. (4.98) –could reach up to 10−3 [293]. Furthermore, if we focus
only on the O(Ḣ) ∼ O(H2) terms relevant for the current universe and the radiation
epoch we may also neglect the higher order adiabatic terms of O(H4) in the last lines
of Eq. (4.114). Following the steps of [290], the EoS can finally be written in a rather
compact form as a function of the cosmological redshift:

wvac = −1 +
[νeff + ε (1− lnE2(z))]

[
Ω0

m(1 + z)3 + 4Ω0
r

3
(1 + z)4

]
Ω0

vac + νeff (−1 + E2(z))− ε (1− E2(z) + E2(z) lnE2(z))
+O

(
ν2

eff

)
,

(4.115)
where νeff contains the combined effects from fermions and bosons, see Eq. (4.95), and we
have defined the normalized Hubble rate with respect to the present time (H0):

E2(z) ≡ H(z)

H0

= Ω0
vac + Ω0

m (1 + z)3 + Ω0
r (1 + z)4 . (4.116)

Here Ω0
vac = ρ0

vac/ρ
0
c ≈ 0.7, Ω0

m = ρ0
m/ρ

0
c ≈ 0.3 and Ω0

r = ρ0
r/ρ

0
c ≈ 10−4 are the current

fractions of vacuum energy, dust-like matter and radiation, respectively. The EoS formula
may be further simplified if we neglect the effect of the small coefficient ε in Eq. (4.96).
This is justified since

∣∣νeff

∣∣ � ∣∣ε∣∣ owing to the logarithmic extra terms lnm2/H2
0 con-

tained in ν0
eff , which can typically be of O(100), see (4.99). Thus, to within a very good

approximation, we can write

wvac ' −1 + νeff

Ω0
m(1 + z)3 + 4Ω0

r

3
(1 + z)4

Ω0
vac + νeff (−1 + E2(z))

. (4.117)

Notice that the term proportional to νeff in the denominator cannot be neglected at large
z since it becomes dominant. In this case, the EoS takes on the form

wvac ≈ −1 +
Ω0

m(1 + z)3 + 4Ω0
r

3
(1 + z)4

E2(z)
(z � 1) , (4.118)

where νeff has cancelled. For example, for z large enough but within the matter-dominated
epoch the dominant term in equation (4.116) is the ∼ (1 + z)3 one, and we can see from
(4.118) that the vacuum EoS then mimics matter since wvac ' 0. Similarly, at much larger
values of z already in the radiation-dominated epoch, where ∼ (1 + z)4 is the dominant
term, then wvac ' 1/3 and the vacuum imitates radiation. Such a ‘chameleonic’ behavior
of the quantum vacuum was first noticed in [290], and in fact the formula for the vacuum
EoS that we have found here is a generalization for an arbitrary number of fermion and
boson fields of the expression previously found in [290]. Last but not least, the evolution
of the vacuum EoS in the late universe is no less remarkable and striking. From (4.117)
we find

wvac(z) ' −1 + νeff
Ω0

m

Ω0
vac

(1 + z)3 (z . 5) . (4.119)

In this approximation we recover once more the form (3.46) of Sect. 3.3.1, but in this case
with νeff involving the contributions from all the quantized matter fields. Taking into
account that the last fits of the RVM to the overall cosmological data favor a positive
value of νeff > 0 and of order 10−3 [374] (see also the previous phenomenological studies
on the RVM reported in recent years [245,246,248–250,275,386,398]), we learn that the
deviation of the EoS from −1 in the present universe is not completely negligible. The
vacuum appears disguised as quintessence since wvac & −1.
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To summarize, the running vacuum mimics the EoS of the dominant component at a
given time of the cosmic evolution, and at present is dynamical. This was first confirmed
for scalar fields in [290]. In the present work, we have found that the formal structure
of the EoS does not change when we evaluate the fermionic contribution. Therefore,
we find that wvac is −1 during inflation; stays close to 1/3 in the radiation dominated
epoch, and then close to 0 in the matter dominated epoch. Furthermore, at present it
mimics quintessence since νeff is found to be positive in the phenomenological tests of the
RVM and hence wvac is slightly above −1. Therefore, the quantum EoS deviates from
the traditional value wvac = −1 of the classic vacuum. The remarkable consequence is
that we can have at present an effective quintessence behavior of the quantum vacuum
without need of invoking ad hoc scalar fields. Finally, the vacuum EoS in the remote
future will be as that in the very early (inflationary) universe, i.e. wvac → −1, since the
cosmic expansion asymptotes towards a new inflationary period.

4.4 Discussion of the chapter

In this chapter, we have evaluated the contributions to the vacuum energy density (VED)
from the quantized matter fields in a semiclassical gravity approach. By using the same
regularization technique of Quantum Field Theory (QFT) in curved spacetime of Chap-
ter 2 and Chapter 3 and making use of a specific (off-shell) subtraction prescription, we
have been able to calculate the mode functions and the renormalized zero-point energy
(ZPE) from spin-1/2 quantum fields in a FLRW background up to sixth adiabatic order.

Together with the contribution from the ρΛ term in the Einstein-Hilbert action, we have
obtained the properly renormalized VED. Since the corresponding computation for scalar
fields had already been accounted for in the aforementioned works, we have put forward
here the combined contribution to the VED from an arbitrary number of quantized matter
fields. We did not consider interactions among them, however, as the free field calculation
in curved spacetime is already rather cumbersome in itself. One interesting difference
between the expression of the ZPE of these two types of fields is that in the fermionic
case the terms of fourth adiabatic order (viz. those involving four time derivatives) are
not present. The final result is that the overall VED of the quantized matter fields upon
adiabatic renormalization appears to be a soft dynamical quantity with the cosmological
evolution. This is a most remarkable outcome of the present study. More specifically,
the VED shows up in the form of an expansion in powers of the Hubble rate H and
its time derivatives, all these powers being of even adiabatic order, a property which is
fully consistent (and expected) from the general covariance of the theory. Such a series
expansion appears to take the canonical form of the running vacuum model (RVM),
see [167,198] and references therein. This means, in particular, that the leading quantum
effects obtained for the late universe are of second adiabatic order, thus ∼ H2 and ∼ Ḣ.
Obviously, this may have consequences for the present universe, and these consequences
have been tested in previous phenomenological works. What is more, these quantum
effects turn out to have a positive impact on a possible solution to the ΛCDM tensions,
see e.g. [245,246,248–250,275,374,386,398]10

In this chapter, we have also discussed some of the theoretical difficulties in trying to
renormalize the cosmological term, Λ, and its relation with the VED. To start with,

10In the upcoming study [409], fully updated information will be provided on the phenomenological perfor-
mance of the RVM and its implications on the current ΛCDM tensions.
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it should be emphasized that these are two different concepts that can only be prop-
erly related in non-flat spacetime. If Λ is taken to be the physically measured value
of the cosmological term at present, Λphys, then its relation with the current VED is
ρ0

vac = Λphys/(8πGN). However, at a formal QFT level these quantities have to be de-
rived from a gravitational action in curved spacetime and a lot more of care needs to be
exercised. Leaving for the moment quantum gravity considerations for a better future
(viz. for when, hopefully, the quantum treatment of the gravitational field becomes possi-
ble), the more pedestrian renormalization of ρvac in QFT in curved spacetime proves to be
already quite helpful at present [288,289]. It shows, for example – and the present works
attest once more for this fact – that the renormalized VED in the FLRW background is a
mild dynamical quantity evolving with the cosmic expansion, and hence that ρ0

vac is just
its value at present. There is in fact no such thing as a rigid, everlasting, cosmological
constant in the context of QFT in the FLRW background. In general, ρvac = ρvac(H) is
a function of the Hubble rate and its time derivatives. What we call the ‘cosmological
constant’ Λ appears in our framework as the nearly sustained value of the renormalized
quantity 8πG(H)ρvac(H) around (any) given epoch H, where G(H) is the renormalized
gravitational coupling, which is also running, although very mildly (logarithmically) with
H, i.e. G = G(lnH). At present, G(H0) = GN and ρvac(H0) = ρ0

vac, and this defines
Λphys = 8πGNρ

0
vac in a precise way in QFT in FLRW spacetime (within our renormaliza-

tion framework).

The longstanding and widespread confusion in the literature about the notion of cos-
mological constant, Λ, and that of vacuum energy (density), ρvac, has prevented from
achieving a proper treatment of the renormalization of these quantities in cosmologi-
cal spacetime. In particular, the attempts to relate these concepts in the context of
flat spacetime calculations are meaningless and their repeated iteration has been highly
counterproducing [198].

In the simplified scenario considered here, where only interactions with the gravitational
background are allowed, the VED is the sum of two contributions, a parameter in the
effective action, ρΛ, and the ZPE of the quantized fields. After renormalization, the VED
depends on a scale M , and the setting M = H at the end of the calculation allows us
to compare the VED at different epochs of the cosmic history, in a manner similar to
the standard association made of the renormalization point with a characteristic energy
scale of a given process in ordinary gauge theories. Thus the difference between the VED
values at any two points of the cosmological expansion, say H(t1) and H(t2), provides a
smooth running of the VED. Remarkably, such an evolution turns out to be free from the
undesirable ∼ m4 contributions that emerge from the quantized matter fields in other
frameworks. As a result there is no fine tuning involved in the evolution of the VED
in the present calculation. The VED, in fact, adopts the standard form of the RVM,
which in the late universe reads ρvac(H2) = ρvac(H1) + 3νeff/(8π)m2

Pl(H
2
2 − H2

1 ), where
H1 and H2 can be, for example, the current value, H0, and another value H near our
past. Finally, νeff is a small parameter related to the β-function of the renormalization
group running of the VED, whose value has been explicitly computed in this work from
the fluctuations of the quantized matter fields. Depending on the sign of νeff , the VED
can mimic quintessence or phantom-like behavior.

Much earlier in the cosmic history, the higher powers of H (larger than H2 and of even
adiabatic order to preserve covariance) took their turn and could be relevant for the in-
flationary regime, in the sense that they had the capacity to trigger inflation through a
mechanism that has been called ‘RVM-inflation’ [288–290]. While the scalar field contri-
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bution to this inflationary mechanism had been computed in the previous references, in
this work we have accounted for the spin-1/2 fermionic contribution and combined the two
types of effects for an arbitrary matter content. In both cases (scalar and fermion fields)
the sixth order adiabatic terms O(H6) had to be computed. Finally, the renormalized
vacuum fluid’s pressure, Pvac, has been determined using the same QFT techniques as for
ρvac. Equipped with these nontrivial results the equation of state (EoS) of the quantum
vacuum can be computed from first principles. The entire contribution from quantized
matter fields (bosons and fermions) can be encoded in the effective νeff parameter. We
find that the EoS function wvac = Pvac/ρvac deviates from the traditional result -1, a fact
which is worth emphasizing. This is true in most of the cosmological history, especially
after inflation (which is the only period in our past where the vacuum EoS stayed very
close to −1). It is no less noteworthy, as previously mentioned, that in the late universe,
and most particularly near our time, the vacuum EoS behaves as quintessence for νeff > 0,
the latter being the sign preferred by the existing phenomenological fits to the overall
cosmological data – see [374], for example. For higher and higher redshifts during the
FLRW regime, the vacuum EoS mimics the equation of state of the dominant matter
component (relativistic or non-relativistic) at the corresponding epoch. Such a peculiar
behavior of the running vacuum energy density was referred to as “chameleonic” in [290].
The tracking of the EoS of matter by the vacuum ceases to exist in the late universe,
where the DE epoch breaks through and wvac behaves as effective quintessence, the reason
being that the EoS is then in the process to asymptote towards −1 in the remote future,
exactly as it was in the primeval inflationary time. In fact, the inflationary process in
the late universe is eventually resumed, but very slowly.

Overall, by combining the results from an arbitrary number of quantized matter fields we
find that the main cosmic running of ρvac depends on the quadratic terms in the boson and
fermion masses times the square of the Hubble function, i.e. ∼ m2

ψH
2 and∼ m2

φH
2. These

effects are obviously much softer than the naively expected (hard) contributions∼ m4
ψ and

∼ m4
φ. As remarked, the soft terms have been profusely tested in phenomenological works

on the RVM existing in the literature, see e.g. [245,246,248,250,275,374,386] – and the
upcoming [399]. The QFT effects that we have computed here and in the preceding studies
[288–290] provide a solid theoretical underpinning of those phenomenological analyses.
They even bring to light new relevant features, such as the dynamical character of the
EoS of the quantum vacuum, which is unprecedented in the literature to the best of
our knowledge. In particular, they suggest that if in future cosmological observations
we can collect clear signs that the EoS of the dark energy deviates from −1, such a
feature could be explained by the running vacuum. It therefore opens the possibility that
such observations (if confirmed) may be accounted from fundamental properties of QFT
attributable to the fluctuations of the quantized matter fields in curved spacetime rather
than to the existence of ad hoc quintessence fields and the like. This could be an extremely
interesting smoking gun of this approach. The EoS dynamics is prompted here by the
virtual quantum effects produced by quantized fermion and boson fields, the same kind
of effects which trigger a smooth evolution of the vacuum energy density in cosmological
spacetime. As it turns out from the above considerations, in the RVM framework the
need for fundamental quintessence fields and also for inflaton fields subsides dramatically,
for they can both be replaced by the running effect of the quantum vacuum.

On pure cosmological/observational grounds, the physical outcome of the theoretical
framework presented here can be summarized in the following way. The renormalization of
the vacuum energy density in QFT in the FLRW background leads to the non-constancy of
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the ‘cosmological constant’, Λ, in Einstein’s equations and predicts a slow time variation of
the vacuum energy density and of its equation of state at the present time, which departs
slightly from the traditional EoS value −1 for the vacuum. This conclusion emerges from
explicit QFT calculations in our approach and may point to a possible explanation for
a wide range of cosmological problems that have been dealt with phenomenologically in
the past in terms of ad hoc quintessence or phantom fields. In our context, the currently
measured cosmological ‘constant’ is neither mimicked nor supplanted by any ersatz entity
from the already too crammed black box of the dark energy. We could simply phrase
it in a nutshell as follows: the quantum vacuum shows up here as if it were a form of
dynamical dark energy, but it is (quantum) vacuum after all. In fact, it is the same
vacuum producing inflation in the early universe by means of higher (even) powers of the
Hubble rate Hn beyond n = 2, and still leaving a smoothly evolving cosmological term in
the late universe through the lowest possible power compatible with general covariance,
which is H2. Formally, all these powers of the Hubble rate emerge as quantum effects that
are part of the effective action of vacuum. Today’s physical cosmological term appears as
a quantity directly connected with the (properly renormalized) vacuum energy density in
QFT in curved spacetime: Λphys = 8πGρvac. As a running parameter, it is sensitive to the
fluctuations of the quantized matter fields. Taking into account that in our framework
the scale of renormalization is linked with the cosmological expansion, represented by the
Hubble rate, it turns out that Λphys, despite it appearing as an approximately rigid term
during a typical cosmic span around any given epoch, it is actually a physical observable
in evolution during the entire cosmic history. Its time variation, which is ultimately of
quantum origin, is very small at present but it helps in relieving the current tensions of
the ΛCDM and it might eventually provide an explanation for the cosmic acceleration
observed in our Universe from first principles.

Hence, the computations done here reaffirms the position at which we arrived at the end
of Sect. 4.3.4. We claim that these effects are not disturbed by the presence of several
fields, in this sense, they are very robust since do not rely in the specific kind of field. This
could be an extremely interesting signature of this approach, which does not depend at all
on ad hoc quintessence fields to display a dynamical evolution at the current time. The
EoS dynamics is prompted here by the virtual quantum effects produced by quantized
fermion and boson fields, the same kind of effects which trigger a smooth and very mild
evolution of the vacuum energy density in cosmological spacetime. It might as well be
ultimately responsible for the cosmic acceleration.
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Chapter 5

Brans–Dicke cosmology with a
Λ-term: a possible solution to
ΛCDM tensions

The canonical picture of our universe, formulated in the context of the GR paradigm, is to
assume that the cosmic acceleration is caused by a rigid cosmological constant (CC) term,
Λ, in Einstein’s equations, whose value has been pinned down from a large set of cosmo-
logical observations, which by themselves also point to the existence of large amounts of
dark matter (DM). We call such an overall picture of the universe the “concordance (or
standard) cosmological model” [273], or simply GR-ΛCDM, where we append GR explic-
itly in the name because in this chapter we wish to study the ΛCDM model also from
a different perspective to that of the GR paradigm. In particular, as a difference from
the previous chapter, we wish to stick firmly to the Λ-term as the simplest provisional
explanation for the cosmic acceleration. But we want to do it in the context of Brans
Dicke theory of gravity, a fundamental change of the conceptual construct on gravitation
which consists in a modification of General Relativity. It was conceived in the sixties
by C. H. Brans and R. H. Dicke (“BD” for short) [427–429]. The main departure from
GR was that G was boldly assumed to be a dynamical variable rather than a constant
of Nature. It actually traces back to early ideas in the thirties on the possibility of a
time-evolving gravitational constant G by Milne [430] and the suggestion by Dirac of
the large number hypothesis [157,431], which led him also to propose the time evolution
of G. Along similar lines, Jordan and Fierz speculated that the fine structure constant
αem together with G could be both space and time dependent [432–435]. Finally, G was
formally associated to the existence of a dynamical scalar field ψ ∼ 1/G coupled to the
curvature. BD theory was the first historical attempt to extend GR in order to accommo-
date variations in the Newtonian coupling G. Subsequently these ideas were generalized
in the form of scalar-tensor theories [436–438], and thereafter further extended in multi-
farious ways still compatible with the weak form of the Equivalence Principle [439,440],
see e.g. [320, 322, 441, 442] for a review. We may call the to the cosmological framework
still encompassing all the phenomenological ingredients of the concordance ΛCDM model,
in particular a strict cosmological constant term Λ and dark matter along with baryons,
but now all of them ruled over by a different gravitational paradigm: BD-gravity, instead
of GR.

As it could not be in another way, we wish to explore the cosmological tensions (see
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Sect. 1.4) on H0 and σ8 in the context of the BD-ΛCDM model. The simultaneous
solution/alleviation of the two tensions is not to easy to achieve since any new physics
introduced to explain the severeH0-tension should not aggravate the σ8 one in a noticeable
way. This “golden rule” to ameliorate the acute H0-tension will be our guiding principle.
We will see that the BD-ΛCDM naturally implements the aforesaid golden rule for safely
quenching the two tensions with a minimal number of extra parameters with respect the
concodance model within GR.

Many alternative Dark Energy (DE) proposal have been addressed in the literature to
improve the overall fit to the cosmological data and possibly to relax the main tensions,
but most of them are still based on Einstein’s GR. This may represent a fundamental
limitation to the possible solution of the mentioned tensions, even more so if we take
into account that these problems can be affected by assumptions on the basic parameters
of gravitation. Recent analyses comparing different models of dark energy using similar
data can be found e.g. in [244, 443], and references therein. It is remarkable that the
BD-ΛCDM can be rewritten as an effective GR framework (with G and Λ remain both
constant), in which the combinations of the dynamical character of G in the context of
BD-gravity with a cosmological term Λ can be seen as an effective dynamical dark energy
(DDE) capable to overcome the mentioned tensions. This DDE possesses a time-evolving
component of a very specific nature, as a constant term plus a small dynamical term
∼ νH2 (|ν| � 1). This form is well-known in the literature and goes under the name of
Running Vacuum Model (RVM) similarly to the description of vacuum energy obtained
in Chapter 2 – see also [167,296,297] and references therein.

A first hint that Brans-Dicke gravity could lead to such a promising (BD-like) version
of the RVM, was put forward in [370]. Further elaboration on this idea and a first
comparison with data was subsequently given in [371], and finally a more sophisticated
study using a full Boltzmann code for the CMB part was presented in [279]. We would
also like to remark recent studies on testing BD theories and on attempts at mitigating the
tensions using particular potentials in the BD framework, see e.g. [444–446]. At the same
time, there are different works trying to loosen the GR-ΛCDM tensions by considering
the possibility of a variable Newton’s constant G. Usually these models are essentially
GR-like, in the sense that the basic term of the gravitational action still has the form of
the Hilbert-Einstein term, plus a non-minimal coupling of curvature with a scalar field.
This type of models and variations thereabout are valuable and have been recently used
to try to mitigate the H0 or the σ8 tensions [447–451], but more difficult is to try to fulfill
the mentioned golden rule – which requires not to aggravate one of the two tensions when
improving the other. In point of fact, in some cases the σ8 one actually gets significantly
worse. We further comment on these models in our section of discussion.

Here we present a comprehensive study of BD-ΛCDM cosmology vis-à-vis observations
[278] using a significant amount of new and updated data, in particular we make use of
the full Planck 2018 likelihood as well as of additional datasets (e.g. on Strong-Lensing
and updated structure formation data) which prove quite revealing. Furthermore, we
discuss here at length many analytical and numerical details of the calculation and the
possible implications that the BD-ΛCDM model can have on the current cosmological
observations, most particularly on the σ8 and H0 tensions. If a successful phenomenolog-
ical description of the data and the loosening of the tensions could be reconfirmed with
the advent of new and more precise data and new analyses in the future, it would be
tantalizing to suggest the possibility that the underlying fundamental theory of gravity
might actually be BD rather than GR. But there is still a long way to follow, of course.
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The layout of this chapter reads as follows. In Sect. 5.1 we introduce the basics of the
Brans-Dicke (BD) model. In particular, we discuss the introduction of the cosmological
term in this theory and the notion of effective gravitational coupling. Section 5.2 is a
preview of the following sections, and may help the reader to get a road map of the
basic results of the chapter and above all an explanation of why BD-cosmology with a
CC can be a natural and efficient solution to the H0 and σ8 tensions. Section 5.3 shows
how to parametrize BD-cosmology as a departure from GR-cosmology. We show that BD
with a CC appears as GR with an effective equation of state (EoS) for the dark energy
which behaves quintessence-like at a high confidence level. The remaining of the chap-
ter presents the technical details and the numerical analysis, as well as complementary
discussions. Thus, Section 5.4 discusses the perturbations equations for BD-gravity in
the linear regime (leaving for Appendix H and Appendix I an extended discussion with
more technical details in different gauges); Section 5.5 defines four scenarios for the BD-
cosmology in the light of Mach’s Principle; Sect. 5.6 carefully describes the data used
from the various cosmological sources; Section 5.7 presents the numerical analysis and
results. In Section 5.8 we perform a detailed discussion of the obtained results and we
include a variety of extended considerations, in particular we assess the impact of massive
neutrinos in the BD-ΛCDM framework. Finally, in Sect. 5.9 we discuss the final results.
Four appendices at the end provide additional complementary material. In Appendix F
we compute semi-analytical solutions to the BD equations in different epochs, which are
helpful to further understand the numerical results. We also recall the reader at this
point why BD-cosmology mimics the Running Vacuum Model (RVM); in Appendix G
we compute the fixed points of the BD-cosmology with a cosmological constant. The
aforementioned Appendix H and Appendix I provide the perturbations equations in the
synchronous and conformal Newton gauges, respectively, and illustrate the correspon-
dence between the two.

5.1 BD-ΛCDM: Brans-Dicke gravity with a cosmological con-
stant

Since the appearance of GR, more than one hundred years ago, many alternative theories
of gravity have arisen, see e.g. [320, 322, 441, 442] and references therein. The most
important one, however, was proposed by Brans and Dicke almost sixty years ago [427].
This theoretical framework contains an additional gravitational d.o.f. as compared to GR,
and as a consequence it is different from GR in a fundamental way, see the previously
cited reviews. The new d.o.f. is a scalar field, ψ, coupled to the Ricci scalar of curvature,
R. BD-gravity is indeed the first historical attempt to extended GR to accommodate
variations in the Newtonian coupling G. A generalization of it has led to a wide panoply
of scalar-tensor theories since long ago [436–439]. The theory is also characterized by a
(dimensionless) constant parameter, ωBD, in front of the kinetic term of ψ.

5.1.1 Action and field equations

In our study we will consider the original BD-action extended with a cosmological con-
stant density term, ρΛ, as it is essential to mimic the conventional ΛCDM model based
on GR and reproduce its main successes. In this way we obtain what we have called the
‘BD-ΛCDM model’ in the introduction, i.e. the version of the ΛCDM within the BD
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paradigm. The BD action reads, in the Jordan frame, as follows 1:

SBD =

ˆ
d4x
√
−g
[

1

16π

(
Rψ − ωBD

ψ
gµν∂νψ∂µψ

)
− ρΛ

]
+

ˆ
d4x
√
−gLm(χi, gµν) . (5.1)

The (dimensionless) factor in front of the kinetic term of ψ, i.e. ωBD, will be referred to as
the BD-parameter. While it is true that this parameter is not restricted to be a constant,
throughout this chapter we will consider just the canonical option ωBD =const. The last
term of (5.1) stands for the matter action Sm, which is constructed from the Lagrangian
density of the matter fields, collectively denoted as χi. There is no potential for the BD-
field ψ in the original BD-theory, but we admit the presence of a CC term associated to ρΛ.
By not introducing any specific potential we keep the number of additional parameters
to the minimum.

The Brans-Dicke field, ψ, has dimension 2 in natural units (i.e. mass dimension squared),
in contrast to the dimension 1 of ordinary scalar fields. This is because we wish the
effective value of G at any time to be given directly by 1/ψ. It goes without saying that
ψ must be a field variable evolving very slowly with time.

The field equations of motion ensue after performing variation of the action (5.1) with
respect to both the metric and the scalar field ψ. While the first variation yields

ψGµν +

(
�ψ +

ωBD

2ψ
(∇ψ)2

)
gµν −∇µ∇νψ −

ωBD

ψ
∇µψ∇νψ = 8π (Tµν − gµνρΛ) , (5.2)

the second variation gives the wave equation for ψ, which depends on the curvature scalar
R:

�ψ − 1

2ψ
(∇ψ)2 +

ψ

2ωBD

R = 0 . (5.3)

To simplify the notation, we have written (∇ψ)2 ≡ gµν∇µψ∇νψ. In the first field equa-
tion, Gµν = Rµν−(1/2)Rgµν is the Einstein tensor, and on its RHS Tµν = −(2/

√
−g)δSm/δg

µν

is the energy-momentum tensor of matter. We can take the trace of Eq.(5.2) to eliminate
R from (5.3), what leads to a most compact result for the wave equation of ψ:

�ψ =
8π

2ωBD + 3
(T − 4ρΛ) , (5.4)

T̃µν = Tµν − ρΛgµν = p gµν + (ρ+ p)uµuν , (5.5)

with ρ ≡ ρm + ργ + ρν + ρΛ and p ≡ pm + pγ + pν + pΛ. The matter part ρm ≡ ρb + ρcdm,
contains the pressureless contribution from baryons and cold dark matter. Photons are
of course relativistic, so pγ = ργ/3. The functions ρν and pν include the effect of massive
and massless neutrinos, and therefore must be computed numerically.

As in GR, we have included a constant vacuum energy density, ρΛ, in the BD-action
(5.1), with the usual equation of state pΛ = −ρΛ. The quantum matter fields usually
induce an additional, and very large, contribution to ρΛ. This is of course the origin of
the Cosmological Constant Problem [167,191,193–197]2.

1Our conventions may be found in Appendix A
2A recent proposal to alleviate the CCP within BD-gravity was made in [370]. Interestingly, the Higgs

potential itself can be motivated in BD-gravity theories [370,452].
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Let us write down the field equations in the flat FLRW metric, ds2 = −dt2 +a2δijdx
idxj.

Using the total density ρ and pressure p as indicated above, Eq. (5.2) renders the two
independent equations

3H2 + 3H
ψ̇

ψ
− ωBD

2

(
ψ̇

ψ

)2

=
8π

ψ
ρ (5.6)

and

2Ḣ + 3H2 +
ψ̈

ψ
+ 2H

ψ̇

ψ
+
ωBD

2

(
ψ̇

ψ

)2

= −8π

ψ
p , (5.7)

whereas (5.4) yields

ψ̈ + 3Hψ̇ =
8π

2ωBD + 3
(ρ− 3p) . (5.8)

Here dots stand for derivatives with respect to the cosmic time and H = ȧ/a is the
Hubble rate. For constant ψ = 1/GN , the first two equations reduce to the Friedmann
and pressure equations of GR, and the third requires ωBD → ∞ for consistency (except
in the pure radiation-dominated epoch, where ρ − 3p = 0) . The connection between
GR and the ωBD → ∞ limit is sometimes not as straightforward as one might naively
think [453, 454]. We will have due occasion in this work to appraise the significance of
this important observation (cf. de BD scenarios described in Sect. 5.5).

By combining the above equations we expect to find a local covariant conservation law,
similar to GR. This is because there is no interaction between matter and the BD-field.
Although the details are more involved than in GR, the result can be obtained upon
straightforward calculation of the covariant derivative on both sides of Eq. (5.2) and
using the Bianchi identity satisfied by Gµν and the field equation of motion for ψ. The
final result turns out to be the same:

ρ̇+ 3H(ρ+ p) =
∑
N

[ρ̇N + 3H(ρN + pN)] = 0 , (5.9)

where the sum is over all components, i.e. baryons, dark matter, neutrinos, photons and
vacuum.

Here we take the point of view that all of the matter components are separately conserved
in the main periods of the cosmic evolution. In particular, the vacuum component ρΛ

obviously does not contribute in the sum since it is assumed to be constant and ρΛ+pΛ = 0
.

Hereafter, for convenience, we will use a dimensionless BD-field, ϕ, and the inverse of the
BD-parameter, according to the following definitions:

ϕ(t) ≡ GNψ(t) , εBD ≡
1

ωBD

. (5.10)

In this expression, GN = 1/m2
Pl, with mPl the Planck mass as defined previously; GN gives

the local value of the gravitational coupling, e.g. obtained from Cavendish-like (torsion
balance) experiments. Note that a nonvanishing value of εBD entails a deviation from GR.
Being ϕ(t) a dimensionless quantity, we can recover GR by enforcing the simultaneous
limits εBD → 0 and ϕ → 1. We emphasize that it is not enough to set εBD → 0. In this
partial limit, we can only insure that ϕ (and ψ, of course) does not evolve, but it does
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not fix its constant value. As we will see later on, this feature can be important in our
analysis. Using (5.10), we can see that (5.1) can be rewritten

SBD =

ˆ
d4x
√
−g
[

1

16πGN

(
Rϕ− ωBD

ϕ
gµν∂νϕ∂µϕ− 2Λ

)]
+

ˆ
d4x
√
−gLm(χi, gµν) ,

(5.11)

where Λ is the cosmological constant, which is related with the associated vacuum energy
density as ρΛ = Λ/(8πGN).

5.1.2 Cosmological constant and vacuum energy in BD theory

There are several ways to introduce the cosmological constant in the BD framework, so
a few comments are in order at this point, see e.g. the comprehensive exposition [440]
and the works [158,455–457] in the context of inflation. We can sum up the situation by
mentioning essentially three ways. In one of them, the BD-action (5.1) is obtained upon
promoting GN in the Einstein-Hilbert (EH) action with the ρΛ term into a dynamical
scalar field 1/ψ, adding the corresponding kinetic term and keeping ρΛ = const. The
CC term Λ is then related with the vacuum energy density through ρΛ = Λ/(8πGN).
The EoS of the vacuum fluid is defined as pΛ = −ρΛ. With these definitions, which we
adopt throughout this work, the CC is not directly coupled to the BD-field. The latter,
therefore, has a trivial (constant) potential, and the late-time acceleration source behaves
as in the GR-ΛCDM model.

Alternatively, one could also adopt the EH action with CC and promote GN to a dynam-
ical scalar, adding the corresponding kinetic term as before, but now keeping Λ = const.
instead of ρΛ = const. In this case, Λ is linearly coupled to ψ. The potential energy
density for the scalar field takes the form ρΛ(ψ) = ψΛ/(8π), so it is time-evolving. The
coupling between the cosmological constant and the BD-field modifies the equations of
motion. Thus, it may also alter the physics with respect to the option (5.1), at least
when the dynamics of the scalar field is not negligible [457–463].

A third possibility, of course, is to consider more general potentials, but they do not have
a direct interpretation of a CC term as in the original GR action with a cosmological
term, see e.g. [464–467]. Let us briefly explain why. If one starts from a general potential
for the BD-field in the action, say some arbitrary function of the BD-field U(ψ) (not
carrying along any additive constant) in place of the constant term ρΛ in (5.1), then it is
not so straightforward to generate a CC term and still remain in a pure BD framework.
For if one assumes that ψ develops a vacuum expectation value 3, then the theory (when
written in terms of the fluctuating field around the ground state) would split into a non-
minimal term coupled to curvature and a conventional EH term, so it would not be a
pure BD theory.

This point of view is perfectly possible and has been considered by other authors, on
which we shall comment in some detail in Sect. 5.8. However, proceeding in this way
would lead us astray from our scientific leitmotif in this work (which is, of course, to

3We may assume, for the sake of the argument, that it is a classical ground state, since the BD-field is
supposed to be part of the external gravitational field. Recall that we do not assume gravity being a quantized
theory here but just a set of background fields, in this case composed of the metric components gµν and ψ (or
equivalently ϕ).
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remain fully within the BD paradigm). Yet there is another option which preserves our
BD philosophy, which is to perform a conformal transformation to the Einstein frame,
where one can define a strict CC term. Then we could impose that the effective potential
in that frame, V , is a constant. However, once this is done, the original potential in the
(Jordan) BD frame, U , would no longer be constant since it would be proportional to V
times ϕ2, with ϕ defined as in (5.10). Conversely, one may assume U = ρΛ = const. in
the Jordan frame (as we actually did) and then the vacuum energy density will appear
mildly time-evolving in the Einstein frame (for sufficiently large ωBD, of course). This
last option is actually another way to understand why the vacuum energy density can
be perceived as a slightly time-evolving quantity when the BD theory is viewed from
the GR standpoint. It is also the reason behind the fact that the BD-ΛCDM framework
mimics the so-called running vacuum model (RVM), see Sect. F.5 and references therein
for details.

As indicated, in this work we opt for considering the definition provided in (5.1), as we
wish to preserve the exact canonical form of the late-time acceleration source that is
employed in the GR-ΛCDM model. At the same time we exploit the connection of the
BD framework with the RVM and its well-known successful phenomenological properties,
see e.g. [245–250,386,398]. In addition, in Sect. 5.3 we consider a direct parametrization
of the departures of BD-ΛCDM from GR-ΛCDM.

5.1.3 Effective gravitational strength

From (5.11) it follows that the quantity

G(ϕ) =
GN

ϕ
(5.12)

constitutes the effective gravitational coupling at the level of the BD-action. We will argue
that G(ϕ) is larger than GN because ϕ < 1 (as it will follow from our analysis). The
gravitational field between two tests masses, however, is not yet G(ϕ) but the quantity
Geff(ϕ) computed below.

Let us remark that if one would like to rewrite the BD action in terms of a canonically
normalized scalar field φ (of dimension 1) having a non-minimal coupling to curvature
of the form 1

2
ξφ2R, it would suffice to redefine the BD-field as ψ = 8πξ φ2 with ξ =

1/(4ωBD) = εBD/4, and then the scalar part of the action takes on the usual form

SBD =

ˆ
d4x
√
−g
(

1

2
ξφ2R− 1

2
gµν∂νφ∂µφ− ρΛ

)
+

ˆ
d4x
√
−gLm(χi, gµν) . (5.13)

This alternative expression allows us to immediately connect with the usual parametrized
post-Newtonian (PN) parameters, which restrict the deviation of the scalar-tensor the-
ories of gravity with respect to GR [441, 442, 468]. Indeed, if we start from the generic
scalar-tensor action

S =

ˆ
d4x
√
−g
(

1

2
F (φ)R− 1

2
gµν∂νφ∂µφ− V (φ)

)
+

ˆ
d4x
√
−gLm(χi, gµν) , (5.14)

we can easily recognize from (5.13) that F (φ) = ξφ2, and that the potential V (φ) is just
replaced by the CC density ρΛ. In this way we can easily apply the well-known formulae
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of the PN formalism. We find the following values for the main PN parameters γPN and
βPN in our case (both being equal to 1 in strict GR):

1− γPN =
F ′(φ)2

F (φ) + 2F ′(φ)2
=

4ξ

1 + 8ξ
=

εBD

1 + 2εBD

' εBD +O(ε2BD) (5.15)

and

1− βPN = −1

4

F (φ)F ′(φ)

2F (φ) + 3F ′(φ)2

dγPN

dφ
= 0 , (5.16)

where the primes refer here to derivatives with respect to φ. We are neglecting terms of
O(ε2BD) and, in the second expression, we use the fact that dγPN/dφ = 0 since ωBD =
const. (hence εBD = const. too) in our case. Therefore, in BD-gravity, γPN deviates from
1 an amount given precisely by εBD (in linear order), whereas βPN undergoes no deviation
at all. Furthermore, the effective gravitational strength between two test masses in the
context of the scalar-tensor framework (5.14) is well-known [441,442,468]. In our case it
leads to the following result:

Geff(ϕ) =
1

8πF (φ)

2F (φ) + 4F ′(φ)2

2F (φ) + 3F ′(φ)2
=

1

8πξφ2

1 + 8ξ

1 + 6ξ
= G(ϕ)

2 + 4εBD

2 + 3εBD

, (5.17)

where G(ϕ) is the effective gravitational coupling in the BD action, as indicated in Eq.
(5.12). Expanding linearly in εBD, we find

Geff(ϕ) = G(ϕ)

[
1 +

1

2
εBD +O(ε2BD)

]
. (5.18)

We confirm from the above two equations that the physical gravitational field undergone
by two tests masses is not just determined by the effective G(ϕ) of the action but by
G(ϕ) times a correction factor which depends on εBD and is larger (smaller) than G(ϕ)
for εBD > 0 (εBD < 0).

From the exact formula (5.17) we realize that if the local gravitational constraint ought
to hold strictly, i.e. Geff → GN , such formula would obviously enforce

ϕ =
2 + 4εBD

2 + 3εBD

. (5.19)

Due to Eq. (5.15), the bound obtained from the Cassini mission [469], γPN − 1 = (2.1±
2.3)× 10−5, translates directly into a constraint on εBD ' (−2.1± 2.3)× 10−5 (in linear
order), what implies ωBD & 104 for the BD-parameter. Thus, if considered together with
the assumption ϕ ' 1 we would be left with very little margin for departures of Geff

from GN . However, as previously indicated, we will not apply these local astrophysical
bounds in most of our analysis since we will assume that εBD may not be constrained in
the cosmological domain and that the cosmological value of the gravitational coupling
G(ϕ) is different from GN owing to some possible variation of the BD-field ϕ at the
cosmological level. This can still be compatible with the local astrophysical constraints
provided that we assume the existence of a screening mechanism in the local range which
‘renormalizes’ the value of ωBD and makes it appear much higher than its ‘bare’ value
(the latter being accessible only at the cosmological scales, where matter is much more
diluted and uninfluential) — cf. Sect. 5.5 for details on the various possible BD scenarios.
We know that this possibility remains open and hence it must be explored [470], see
also [197,441] and references therein.
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Henceforth we shall stick to the original BD-form (5.1) of the action since the field
ψ (or, alternatively, its dimensionless companion ϕ) is directly related to the effective
gravitational coupling and the ωBD parameter can be ascribed as being part of the kinetic
term of ψ. In contrast, the form (5.13) involves both φ and ξ = 1/(4ωBD) in the definition
of the gravitational strength.

5.2 Why BD-ΛCDM alleviates at a time the H0 and σ8 tensions?
Detailed preview and main results of our analysis.

The field ϕ and the parameter εBD defined in the previous section, Eq. (5.10), are the
fundamental new ingredients of BD-gravity as compared to GR in the context of our
analysis. Any departure of ϕ from one and/or of εBD from zero should reveal an extra
effect of the BD-ΛCDM model as compared to the conventional GR-ΛCDM one. We
devote this section to study the influence of ϕ and εBD on the various observables we use
in this work to constrain the BD model. This preliminary presentation will serve as a
preview of the results presented in the rest of the chapter and will allow us to anticipate
why BD-ΛCDM is able to alleviate so efficiently both of the H0 and σ8 tensions that are
found in the context of the traditional GR-ΛCDM framework.

Interestingly, many Horndeski theories [439] reduce in practice to BD at cosmological
scales [470], so the ability of BD-ΛCDM to describe the wealth of current observations
can also be extended to other, more general, scalar-tensor theories of gravity. Hence, it
is crucial to clearly identify the reasons why BD-ΛCDM leads to such an improvement
in the description of the data. Only later on (cf. Sec. Sect. 5.7) we will fit in detail the
overall data to the BD-ΛCDM model and will display the final numerical results. Here,
in contrast, we will endeavour to show why BD-gravity has specific clues to the solution
which are not available to GR.

We can show this in two steps. First, we analyze what happens when we set εBD = 0 at
fixed values of ϕ different from 1. From Eq. (5.17) we can see that this scenario means
to stick to the standard GR picture, but assuming that the effective Newtonian coupling
can act at cosmological scales with a (constant) value Geff = G(ϕ) different from the local
one GN . In a second stage, we study the effect of the time dependence of ϕ (triggered
by a nonvanishing value of εBD), i.e. we will exploit the departure of Geff in Eq. (5.17)
from GN caused by εBD 6= 0 and a variable G(ϕ). It will become clear from this two-step
procedure why BD-gravity has the double ability to reduce the two ΛCDM tensions in an
harmonic way. On the one hand, a value of ϕ below 1 in the late universe increases the
value of Geff and hence of H0, so it should be able to significantly reduce the H0-tension;
and on the other hand the dynamics of ϕ triggered by a finite (but negative) value of
εBD helps to suppress the structure formation processes in the universe, since it enhances
the Hubble friction and also leads to a decrease of the Poisson term in the perturbations
equation. The upshot is that the σ8-tension becomes reduced as well. Let us note that
the lack of use of LSS data may lead to a different conclusion, in particular to εBD > 0,
see e.g. [471]. This reference, in addition, uses only an approximate treatment of the
CMB data through distance priors.
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5.2.1 Role of ϕ, and the H0-tension

Let us start, then, by studying how the observables change with ϕ when εBD = 0, for
fixed values of the current energy densities. In the context of BD-gravity, as well as in
GR, if the energy densities are fixed at present we can fully determine their cosmological
evolution, since all the species are self-conserved, as discussed in Sect. 5.1. In BD-gravity,
with εBD = 0, the Hubble function takes the form

H2(a) =
8πGN

3ϕ
ρ(a) , (5.20)

where ϕ = const. We have just removed the time derivatives of the scalar field in the
Friedmann equation (5.6). We define H0 from the value of the previous expression at
a = 1 (current value). Recall from the previous section that ρ is the sum of all the energy
density contributions, namely ρ ≡ ρm + ργ + ρν + ρΛ. Therefore,

H2
0 =

8πGN

3ϕ
ρ0 =

8πGN

3ϕ

(
ρ0

m + ρ0
γ + ρ0

ν + ρΛ

)
. (5.21)

ρ0 = ρ(a = 1) is the total energy density at present, ρ0
γ is the corresponding density of

photons and ρ0
ν that of neutrinos, and finally ρΛ is the original cosmological constant

density in the BD-action (5.1). Using (5.21) it proves now useful to rewrite (5.20) in the
alternative way:

H2(a) = H2
0

[
1 + Ω̃m(a−3 − 1) + Ω̃γ(a

−4 − 1) + Ω̃ν(a)− Ω̃ν

]
, (5.22)

where we use the modified cosmological parameters (more appropriate for the BD theory):

Ω̃i ≡
ρ0
i

ρ0
=

Ωi

ϕ
, ρ0 =

3H2
0

8πGN

ϕ = ρ0
cϕ . (5.23)

The tilde is to distinguish the modified Ω̃i from the usual cosmological parameters Ωi =
ρ0
i /ρ

0
c employed in the GR-ΛCDM model. In addition, Ω̃m = Ω̃cdm + Ω̃b is the sum of

the contributions from CDM and baryons; and Ω̃γ and Ω̃ν are the current values for the

photons and neutrinos. For convenience, we also define Ω̃r = Ω̃γ +Ω̃ν . We remark that he
current total energy density ρ0 is related to the usual critical density ρ0

c = 3H2
0/(8πGN)

through a factor of ϕ, as indicated above. The modified parameters obviously satisfy the
canonical sum rule

Ω̃m + Ω̃r + Ω̃Λ = 1 . (5.24)

The form of (5.22) is completely analogous to the one found in GR-ΛCDM since in BD-
ΛCDM the Ω̃i’s represent the fraction of energy carried by the various species in the
current universe, as the Ωi’s do in GR, so from the physical point of view the Ω̃i’s in
BD and the Ωi’s in GR contain the same information4. H0 represents in both cases the
current value of the Hubble function. Nevertheless, there is a very important (although
maybe subtle) difference, namely: in BD-ΛCDM there does not exist a one-to-one corre-
spondence between H0 and ρ0. In contradistinction to GR-ΛCDM, in the BD version of
the concordance model the value of ϕ can modulate H0 for a given amount of the total
(critical) energy density. In other words, given a concrete value of H0 there is a 100%
degeneracy between ϕ and ρ0. This degeneracy is broken by the data, of course. The
question we want to address is precisely whether there is still room for an increase of H0

4For |εBD| 6= 0 and small, the Ω̃i parameters defined in Eq. (5.23) receive a correction of O(εBD), see Sect. 5.2.2.
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with respect to the value found in the GR-ΛCDM model once the aforementioned degen-
eracy is broken by observations. We will see that this is actually the case by analyzing
what is the impact that ϕ has on each observable considered in our analyses.

Supernovae data

In the case of Type Ia Supernovae data (SNIa) we fit observational points on their ap-
parent magnitudes m(z) = M + 5 log10[DL(z)/10pc], where M is the absolute magnitude
of the SNIa and DL(z) is the luminosity distance. In a spatially flat universe the latter
reads,

DL(z) = c(1 + z)

ˆ z

0

dz′

H(z′)
, (5.25)

where we have momentarily kept c explicitly for the sake of better understanding. Con-
sidering (5.22), we can easily see that if we only use SNIa data, there is a full degeneracy
between M and H0 in the computation of the apparent magnitudes, so it is not possible to
obtain information about ϕ, since we cannot disentangle it from the absolute magnitude.
As in GR-ΛCDM, we can only get constraints on the current fraction of matter energy
in the universe, i.e. Ω̃m.

Baryon acoustic oscillations

The constraints obtained from the analysis in real or Fourier space of the baryon acous-
tic oscillations (BAO) are usually provided by galaxy surveys in terms of DA(z)/rs and
rsH(z), or in some cases by a combination of these two quantities when it is not possible
to disentangle the line-of-sight and transverse information, through the so-called dilation
scale DV (cf. Sect. 5.6),

DV (z)

rs

=
1

rs

[
D2

M(z)
cz

H(z)

]1/3

, (5.26)

DM = (1 + z)DA(z) being the comoving angular diameter distance, DA(z) = DL(z)/(1 +
z)2 the proper angular diameter distance, and

rs =

ˆ ∞
zd

cs(z)

H(z)
dz (5.27)

the comoving sound horizon at the baryon drag epoch zd. In the above equation, cs(z)
is the sound speed of the photo-baryon plasma, which depends on the ratio ρ0

b/ρ
0
γ. The

current temperature of photons (and hence also its associated current energy density ρ0
γ)

is already known with high precision thanks to the accurate measurement of the CMB
monopole [98]. Because of (5.20) it is obvious that we cannot extract information on ϕ
from BAO data when εBD = 0, since it cancels exactly in the ratio DA(z)/rs and the
product rsH(z). Thus, BAO data provide constraints on Ω̃m and ρ0

b, but not on ϕ.

Redshift-space distortions (RSD)

The LSS observable f(z)σ8(z), which is essentially determined from RSD measurements,
is of paramount importance to study the formation of structures in the universe. In
BD-gravity, the equation of matter field perturbations is different from that of GR and is
studied in detail in Sect. 5.4. Here we wish to make some considerations which will help
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to have a rapid overview of why BD-gravity with a cosmological constant can also help to
improve the description of structure formation as compared to GR. The exact differential
equation for the linear density contrast of the matter perturbations, δm = δρm/ρm, in
this context can be computed at deep subhorizon scales and is given by (cf. Sect. 5.4):

δ′′m +

(
3

a
+
H ′(a)

H(a)

)
δ′m −

4πGeff(a)

H2(a)

ρm(a)

a2
δm = 0 , (5.28)

where for the sake of convenience we express it in terms of the scale factor and hence
prime denotes here derivative w.r.t. such variable: ()′ ≡ d()/da. In the above equation,
Geff(a) is the effective gravitational coupling (5.17) with ϕ = ϕ(a) expressed in terms of
the scale factor:

Geff(a) = G(ϕ(a))
2 + 4εBD

2 + 3εBD

. (5.29)

It crucially controls the Poisson term of the perturbations equation, i.e. the last term
in (5.28). As we can see, it is Geff(ϕ) and not just G(ϕ) the coupling involved in the
structure formation data since it is Geff(ϕ) the gravitational coupling felt by the test
masses in BD-gravity. It is obvious that the above Eq. (5.28) boils down to the GR form
for εBD = 0 and ϕ = 1.

With the help of the above equations we wish first to assess the bearing that ϕ can have
on the LSS observable f(z)σ8(z) at fixed values of the current energy densities and for
εBD = 0. Recall that when εBD = 0 the BD-field cannot evolve at all, so it just remains
fixed at some value. For this consideration, we therefore set ψ =const. in equations
(5.6) and (5.7) and of course the BD-theory becomes just a GR version with an effective
coupling Geff = G(ϕ) =const. which nevertheless need not be identical to GN . In these
conditions, it is easy to verify that Eq. (5.28) adopts the following simpler form, in which
Geff drops from the final expression:

δ′′m +
3

2a
(1− w(a)) δ′m −

3

2a2

ρm(a)

ρ(a)
δm = 0 . (5.30)

In the above expression, w(a) = p(a)/ρ(a) is the equation of state (EoS) of the total
cosmological fluid, hence ρ(a) and p(a) stand respectively for the total density and pres-
sure of the fluids involved (cf. Sect. 5.1). In particular, during the epoch of structure
formation the matter particles contribute a negligible contribution to the pressure and
the dominant component is that of the cosmological term: p(a) ' pΛ = −ρΛ.

It is important to realize that ϕ = const. does not play any role in (5.30). This means
that its constant value, whatever it may be, does not affect the evolution of the density
contrast, which is only determined by the fraction of matter, ρm(a)/ρ(a), and the EoS of
the total cosmological fluid. The equation that rules the evolution of the density contrast
is exactly the same as in the GR-ΛCDM model. Matter inhomogeneities grow in the
same way regardless of the constant value Geff that we consider. Matter tends to clump
more efficiently for larger values of the gravitational strength, of course, but the Hubble
friction also grows in this case, since such an increase in Geff also makes the universe
to expand faster. Surprisingly, if εBD = 0, i.e. if Geff =const., both effects compensate
each other. Thus, the BD growth rate f(a) = aδ′m(a)/δm(a) does not change w.r.t. the
GR scenario either. But what happens with σ8(z)? It is computed through the following
expression:

σ2
8(z) =

1

2π2

ˆ ∞
0

dk k2 P (k, z)W 2(kR8) , (5.31)
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in which P (k, z) is the power spectrum of matter fluctuations and W (kR8) is the top hat
smoothing function in Fourier space, with R8 = 8h−1 Mpc. Even for εBD = 0 one would
naively expect (5.31) to be sensitive to the value of ϕ, since some relevant features of the
power spectrum clearly are. For instance, the scale associated to the matter-radiation
equality reads

keq = aeqH(aeq) = H0Ω̃m

√
2

Ω̃r

, (5.32)

and H0 ∝ ϕ−1/2, so the peak of P (k, z) is shifted when we change ϕ. Also the window
function itself depends on H0 through R8. Despite this, the integral (5.31) does not
depend on the Hubble function for fixed energy densities at present, and hence neither
on ϕ. To see this, let us first rescale the wave number as follows k = k̄h, and we obtain

σ2
8(z) =

1

2π2

ˆ ∞
0

dk̄ k̄2 P (k = k̄h, z)h3︸ ︷︷ ︸
≡P̄ (k̄,z)

W 2(k̄ · 8 Mpc−1) . (5.33)

The only dependence on h is now contained in P̄ (k̄, z). We can write P (k, z) = P0k
nsT 2(k/keq)δ

2
m(z),

with T (k/keq) being the transfer function and

P0 = As
8π2

25

k1−ns
∗

(Ω̃mH2
0 )2

, (5.34)

with As and ns being the amplitude and spectral index of the dimensionless primordial
power spectrum, respectively, and k∗ the corresponding pivot scale. The last relation
can be found using standard formulae, see e.g. [197, 472]. Taking into account all these
expressions we obtain

P̄ (k̄, z) = As
8π2

25

k̄1−ns
∗ k̄ns

(104ς2Ω̃m)2
T 2(k̄/k̄eq)δ

2
m(z) , (5.35)

where we have used H0 = 100h ς with ς ≡ 1 km/s/Mpc = 2.1332×10−44 GeV (in natural
units). We see that all factors of h cancel out. Now it is obvious that σ8(z) is not sen-
sitive to the value of ϕ. We have explicitly checked this with our own modified version
of the Einstein-Boltzmann system solver CLASS [473], in which we have implemented the
BD-ΛCDM model (see Sect. 5.6 for details). The product f(z)σ8(z) does not depend on
ϕ when εBD = 0, so RSD data cannot constrain ϕ either.

Strong-Lensing time delay distances, distance ladder determination of H0,
and cosmic chronometers

In this chapter, we will use the Strong-Lensing time delay angular diameter distances
provided by the H0LICOW collaboration [211], see Sect. 5.6. Contrary to SNIa and BAO
data, these distances are not relative, but absolute. This allows us to extract information
not only on Ωm, but on H0 too. Furthermore, the data on H(z) obtained from cosmic
chronometers (CCH) give us information about these two parameters as well. Cosmic
chronometers have been recently employed in the reconstruction of the expansion history
of the universe using Gaussian Processes and the so-called Weighted Function Regression
method [474–476], which do not rely on any particular cosmological model. The extrap-
olated values of the Hubble parameter found in these analyses are closer to the best-fit
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GR-ΛCDM value reported by Planck [132], around H0 ∼ (67.5 − 69.5) km/s/Mpc, but
they are still compatible within ∼ 1σ c.l. with the local determination obtained with the
distance ladder technique [207–209] and the Strong-Lensing time delay measurements by
H0LICOW [211]. The statistical weight of the CCH data is not as high as the one ob-
tained from these two probes, so when combined with the latter, the resulting value for
H0 is still in very strong tension with Planck [475,476]. As mentioned before, H2

0 ∝ ρ0/ϕ
when εBD = 0. Thus, we can alleviate in principle the H0-tension by keeping the same
values of the current energy densities of all the species as in the best-fit GR-ΛCDM model
reported by Planck [132], lowering the value of ϕ down at cosmological scales, below 1,
and assuming some sort of screening mechanism acting on high enough density regions
that allows us to evade the solar system constraints and keep unmodified the stellar
physics needed to rely on CCH, SNIa, the H0LICOW data, and the local distance ladder
measurement of H0. By doing this we do not modify at all the SNIa, BAO and RSD
observables w.r.t. the GR-ΛCDM, and we automatically improve the description of the
H0LICOW data and the local determination of H0, which are the observables that prefer
higher values of the Hubble parameter. Let us also mention that the fact that ϕ < 1
throughout the cosmic history (which means G > GN) allows to have a larger value of H
(for similar values of the density parameters) at any time as compared to the GR-ΛCDM
and hence a smaller value of the sound horizon distance rs, Eq. (5.27), what makes the
model to keep a good fit to the BAO data. This is confirmed by the numerical analysis
presented in Tables 5.3, 5.4, 5.5, 5.6 and 5.10 as compared to the conventional ΛCDM
values, see 5.3, 5.4, 5.5 and 5.7. While the claim existing in the literature that models
which predict smaller values of rs are the preferred ones for solving the H0-tension is
probably correct, we should point out that this sole fact is no guarantee of success, as
one still needs in general a compensation mechanism at low energies which prevents σ8

from increasing and hence worsening such tension. In the BD-ΛCDM such compensation
mechanism is provided by a negative value of εBD (as we will show later), and for this
reason the two tensions can be smoothed at the same time in an harmonic way.

Overall, as we have seen from the above discussion, according to the (long) string of
supernovae, baryonic acoustic oscillations, cosmic chronometers, Strong-Lensing and lo-
cal Hubble parameter data (SNIa+BAO+RSD+CCH+H0LICOW+H0) it is possible to
loosen the H0-tension, and this is already very remarkable, but we still have to see whether
this is compatible with the very precise measurements of the photon temperature fluctua-
tions in the CMB map or not. More specifically, we have to check whether it is possible to
describe these anisotropies while keeping the current energy densities close to the best-fit
GR-ΛCDM model from Planck, compatible with ϕ < 1.

CMB temperature anisotropies

We expect the peak positions of the CMB temperature (TT, in short) power spectrum to
remain unaltered under changes of ϕ (when εBD = 0), since they are always related with
an angle, which is basically a ratio of cosmological distances (a transverse distance to
the line of sight divided by the angular diameter distance). If ϕ =const., such constant
cancels in the ratio, so there is no dependence on ϕ. In the right-bottom plot of Fig. 5.1
we show the derivative of the DTTl ’s for three alternative values of ϕ. It is clear that the
location of the zeros does not depend on the value of this parameter. Hence ϕ does not
shift the peaks of the TT CMB spectrum when we consider it to be a constant throughout
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Figure 5.1: Left-upper plot: Theoretical curves of the CMB temperature anisotropies obtained
by fixing the current energy densities, τ and the parameters of the primordial power spectrum
to the GR-ΛCDM best-fit values obtained from the analysis of TTTEEE+lowE data by Planck
2018 [132] (which we will refer to as the ΛCDM baseline configuration, denoted by a dot-dashed
black line), against the BD-ΛCDM model keeping εBD = 0 for two different constant values
ϕ = 0.9, 1.1 (orange and dashed blue lines, respectively); Right-upper plot: The same, but using
a logscale in the x-axis to better appreciate the integrated Sachs-Wolfe effect at low multipoles;
Left-bottom plot: Absolute differences of the data points and theoretical curves for ϕ = 0.9, 1.1
w.r.t. the ϕ = 1 case; Right-bottom plot: Derivative of the functions plotted in the upper plots,
to check the effect of ϕ on the position of the peaks, which corresponds to the location of the
zeros in this plot. No shift is observed, as expected (cf. the explanations in the main text).

the entire cosmic history, as expected. Nevertheless, there are two things that affect its
shape and both are due to the impact that ϕ has on the Bardeen potentials. We have
seen before that the matter density contrast is not affected by ϕ when it is constant,
but taking a look on the Poisson equation in the BD model (cf. Appendix D), we can
convince ourselves that ϕ does directly affect the value of Ψ and Φ, since both functions
are proportional to ρmδm/ϕ at subhorizon scales, see Eqs. (I.29)-(I.32). This dependence
modifies two basic CMB observables:

• The CMB lensing, at low scales (large multipoles, 500 . l . 2000). In the left-
bottom plot of Fig. 5.1 we show the difference of the TT CMB spectra w.r.t. the
GR-ΛCDM model. A variation of ϕ changes the amount of CMB lensing, which in
turn modifies the shape of the spectrum mostly from the third peak onwards. In
that multipole range also the Silk damping plays an important role and leaves a
signature [477].

• The integrated Sachs-Wolfe effect [478], at large scales (low multipoles, l . 30).
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Figure 5.2: Left plot: Differences between the CMB temperature spectrum obtained using the
original ΛCDM baseline configuration (as used in Fig. 5.1) and those obtained using ϕ = 0.9
(with the baseline ns = 0.9649) and ns = 0.99 (with the baseline ϕ = 1). This is to show that
the effects induced by a lowering of ϕ can be compensated by an increase of the spectral index;
Right plot: We also show the 1σ and 2σ c.l. regions in the (ϕini, ns)-plane, obtained using the
baseline dataset, together with the Gaussian prior on H0 from [209], see Sect- 5.6 for details.
Here one can clearly see the anticorrelation between these two parameters.

Values of ϕ < 1 (which, recall, lead to higher values of H0) suppress the power
of the DTTl ’s in that range. This is a welcome feature, since it could help us to
explain the low multipole “anomaly” that is found in the context of the GR-ΛCDM
model (see e.g. Fig. 1 of [132], and [479]). Later on, we further discuss and confirm
the alleviation of this intriguing anomaly in light of the final fitting results, see
Sect. 5.8.7 and Fig. 5.12. This is obviously an additional bonus of the BD-ΛCDM
framework.

Even though in Fig. 5.1 we are considering large (∼ 10%) relative deviations of ϕ with
respect to 1, the induced deviations of the DTTl ’s are fully contained in the observational
error bars at low multipoles, and they are not extremely big at large ones. The latter
are only 1 − 2σ away from most of the data points. We emphasize that we are only
varying ϕ here, so there is still plenty of room to correct these deviations by modifying
the value of other parameters entering the model. To do that it would be great if we could
still keep the values of the current energy densities as in the concordance model, since
this would ensue the automatic fulfillment of the constraints imposed by the datasets
discussed before. But is this possible? In Fig. 5.2 we can see that e.g. an increase of
ns can compensate for the decrease of ϕ pretty well. This is why in the BD model we
obtain higher best-fit values of the spectral index w.r.t. the GR-ΛCDM, and a clear
anti-correlation between these two parameters (cf. Fig. 5.2, tables 5.3, 5.4, 5.5, 5.10 and
Sect. 5.7 for details). Small variations in other parameters can also help to improve the
description of the data, of course, but the role of ns seems to be important. In Fig. 5.3 we
can appreciate the change in the matter power spectrum induced by different values of ns.
There is a modification in the range of scales that can be observationally accessed to with
the analysis of RSD, but these differences are negative at k . 0.07hMpc−1 and positive
at larger values of the wave number (lower scales), so there can be a compensation when
σ8 is computed through (5.31), leaving the value of the latter stable. Moreover, we will
see below that εBD can also help to decrease the value of P (k) at k & 0.02hMpc−1, so
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Figure 5.3: Left plot: Here we compare the linear matter power spectrum obtained for the
ΛCDM baseline configuration (dot-dashed black line) and two alternative values of the spectral
index ns. The vertical red line indicates the value of the wave number at which there is the break
in the right plot; Right plot: The absolute relative differences in P (k) w.r.t. the baseline ΛCDM
model. The “positive” (“negative”) region is the one in which P (k) is larger (lower) than in the
baseline setup. Both zones are delimited by a vertical red line. See the comments in the text.

the correct shape for the power spectrum is therefore guaranteed.

The upshot of this section is worth emphasizing: as it turns out, the sole fact of con-
sidering a cosmological Newtonian coupling about ∼ 10% larger than the one measured
locally can allow us to fit very well all the cosmological datasets, loosening the H0-tension
and keeping standard values of σ8. It has become common in the literature to divide the
theoretical proposals able to decrease the H0-tension into two different classes depending
on the stage of the universe’s expansion at which new physics are introduced [480]: pre-
and post-recombination solutions. The one we are suggesting here (see also [279]) cannot
be identified with any of these two categories, since it modifies the strength of gravity at
cosmological scales not only before the decoupling of the CMB photons or the late-time
universe, but during the whole cosmological history, relying on a screening mechanism
able to generate Geff = G = GN in high density (nonrelativistic) environments where
nonlinear processes become important, as e.g. in our own solar system5. That there is
indeed a change of the gravity strength throughout the entire cosmological history in our
study follows from the fact that εBD 6= 0 in the BD framework, and this is exactly the
feature that we are going to exploit in the next section, a feature which adds up to the
mere change of the global strength of the gravity interaction, which is still possible for
εBD = 0 in the BD context, and that we have explored in the previous section.

5.2.2 Role of εBD, and the σ8-tension

Next we study the effect of εBD 6= 0. We know that when we introduce the matter
bispectrum information from BOSS [216] (which definitely prefers a lower amount of

5The study of these screening mechanisms, see e.g. [170, 197, 441, 481] and references therein, can be the
subject of future work, but here we remark that e.g. chameleon [482], symmetron [483] or Vainshtein mechanisms
(see [484] and references therein), do not screen the value of ϕ during the radiation-dominated epoch. This is
important to loose the H0-tension in the BD-ΛCDM framework through the increase of H(z) at both, the early
and late universe.
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structure in the universe than the data reported in [485]) in our fitting analyses, we find
a stronger signal for negative values of εBD (cf. Sect. 5.7). When εBD 6= 0 equation (5.30)
is not valid anymore, since it was derived under the assumption of ϕ =const. We start
once more from the exact perturbations equation for the matter density contrast in the
linear regime within the BD-gravity, i.e. Eq. (5.28). Let us consider its form within the
approximation |εBD| � 1 (as it is preferred by the data, see e.g. Table 5.3). We come
back to the BD-field equations (5.6) and (5.7) and apply such approximation. In this way
Eq. (5.28) can be expanded linearly in εBD as follows (primes are still denoting derivatives
with respect to the scale factor):

δ′′m +

[
3

2a
(1− w(a)) +

F ′

2
− ϕ′

2ϕ

]
δ′m −

3

2a2

ρm(a)

ρ(a)
δm

(
1 +

εBD

2
−F

)
= 0 , (5.36)

where we have defined

F = F
(
ϕ′

ϕ

)
= −aϕ

′

ϕ
+
ωBD

6
a2

(
ϕ′

ϕ

)2

. (5.37)

In particular, we have expanded the effective gravitational coupling (5.29) linearly as
in (5.18). As we can show easily, the expression (5.37) can be treated as a perturba-
tion, since it is proportional to εBD. To prove this, let us borrow the solution for the
matter-dominated epoch (MDE) derived from the analysis of fixed points presented in
Appendix G. Because the behavior of the BD-field towards the attractor at the MDE is
governed by a power law of the form ϕ ∼ aεBD (cf. Eq. (G.23)), we obtain

a
ϕ′

ϕ
= εBD +O(ε2BD) , (5.38)

F = −5

6
εBD +O(ε2BD) ' −5

6
εBD ; F ′ = O(ε2BD) ' 0 . (5.39)

This proves our contention that the function F in (5.37) is of order εBD and its effects
can be treated as a perturbation to the above formulas. Incidentally, the relative change
of ϕ does not depend on ϕ itself. From the definition of F we can now refine the old
Friedmann’s equation (5.20) or (5.22) (only valids for εBD = 0) as follows. Starting from
Eq. (5.6), it is easy to see that it can be cast in the Friedmann-like form:

H2(a) =
8πGN

3ϕ(a)(1−F(a))
ρ(a). (5.40)

Despite F(a) evolves with the expansion, as shown by (5.37), it is of order εBD and evolves
very slowly. In this sense, Eq. (5.40) behaves approximately as an O(εBD) correction to
Friedmann’s equation (5.20). Setting a = 1, the value of the current Hubble parameter
satisfies

H2
0 =

8πGN

3ϕ0(1−F0)
ρ0, (5.41)

where ϕ0 ≡ ϕ(a = 1) and F0 ≡ F(a = 1). The above equation implies that ρ0 =
ρ0
cϕ0(1−F0). We may now rewrite (5.40) in the suggestive form:

H2(a) = H2
0

[
Ω̂m(a)a−3 + Ω̂γ(a)a−4 + Ω̂ν(a) + Ω̂Λ(a)

]
, (5.42)

provided we introduce the new ‘hatted’ parameters Ω̂i(a), which are actually slowly vary-
ing functions of the scale factor:
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Figure 5.4: Exact numerical analysis of the evolution of ϕ as a function of the redshift across
the entire cosmic history, starting from the radiation-dominated epoch up to our time. We
use here the values of the BD-ΛCDM Baseline+H0 dataset indicated in the figure itself (cf.
Sect. 5.6 and Sect. 5.7). In particular, εBD = −0.00199+0.00142

−0.00147. The band around the central
(dotted) curve shows the computed 1σ uncertainty from the Markov chains of our statistical
analysis.

Ω̂i(a) =
Ωi

ϕ(a)

1

1−F(a)
' Ωi

ϕ(a)
(1 + F(a)) , (5.43)

with Ωi = ρ0
i /ρ

0
c as previously. These functions also satisfy, exactly, the canonical sum

rule at present:
∑

i Ω̂i(a = 1) = 1. For εBD = 0, the hatted parameters reduce to the

old tilded ones (5.23), Ω̂i = Ω̃i, and for typical values of |εBD| ∼ O(10−3) the two sets of
parameter differ by O(εBD) only:

Ω̂i(a) =
Ωi

ϕ
+O(εBD) = Ω̃i +O(εBD) . (5.44)

From (5.36) we obviously recover the previous Eq. (5.30) in the limit εBD → 0, and it is
easy to see that for non-null values of εBD the density contrast acquires a dependence on
the ratio ϕ′/ϕ and its derivative, so it is sensitive to the relative change of ϕ with the
expansion. Its time evolution is now possible by virtue of the third BD-field equation
(5.8), which can be expanded linearly in εBD in a similar way. After some calculations,
we find

ϕ′′ +
1

2a
(5− 3w(a))ϕ′ =

3εBD

2a2
(1− 3w(a))ϕ . (5.45)

For εBD = 0 we recover the solution ϕ =const. In the radiation dominated epoch (RDE),
w ' 1/3, the RHS vanishes and in this case ϕ need not be constant. It is easy to see that
the exact solution of this equation in that epoch is

ϕ(a) = ϕ(0) +
ϕ(1)

a
, (5.46)

for arbitrary constants ϕ(i). The variation during the RDE is therefore very small since
the dominant solution is a constant and the variation comes only through a decaying
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Figure 5.5: Left plot: Relative difference between the friction term T1 of Eq. (5.36), δ′′m+T1δ
′
m−

T2δm = 0, using the best-fit values of the BD-ΛCDM model obtained with the Baseline+H0

dataset, i.e. with εBD = −0.00199, and the case with εBD = 0 (cf. Table 5.3 for the values of
the other parameters); Right plot: The same, but for the last term of Eq. (5.36), T2 (Poisson
term). We can clearly appreciate that negatives values of εBD produce a higher Hubble friction,
i.e. a higher T1, and a lower T2, w.r.t. the εBD = 0 case. Both things lead to a decrease of
δm. The two plots have been obtained with our modified version of CLASS. See the main text for
further details.

mode 1/a ∼ t−1/2 (t is the cosmic time). For the MDE (for which w = 0) there is some
evolution, once more with a decaying mode but then through a sustained logarithmic
term:

ϕ(a) ∼ ϕ(0) (1 + εBD ln a) + ϕ(1)a−3/2 → ϕ(0) (1 + εBD ln a) , (5.47)

where coefficient ϕ(0) is to be adjusted from the boundary conditions between epochs6.
The dynamics of ϕ for εBD 6= 0 is actually mild in all epochs since εBD on the RHS of
Eq. (5.45) is small. However mild it might be, the dynamics of ϕ modifies both the friction
and Poisson terms in Eq. (5.36), and it is therefore of pivotal importance to understand
what are the changes that are induced by positive and negative values of εBD on these
terms during the relevant epochs of the structure formation history. An exact (numerical)
solution is displayed in Fig. 5.4, where we can see that ϕ remains within the approximate
interval 0.918 . ϕ . 0.932 for the entire cosmic history (starting from the RDE up to
our time). This plot has been obtained from the overall numerical fit performed to the
observational data used in this analysis within one of the BD-ΛCDM baseline datasets
considered (cf. Sect. 5.7). The error band around the main curve includes the 1σ-error
computed from our statistical analysis. Two very important things are to be noted at
this point: on the one hand the variation of ϕ is indeed small, and on the other hand
ϕ < 1, and hence G(ϕ) > GN for the whole cosmic span.

We can start considering what is the influence of the scalar field dynamics on the per-
turbations during the pure MDE. Using the relations (5.38) and (5.37) in (5.36) we find
(setting w = 0, ρ ' ρm and neglecting ρΛ in the MDE):

δ′′m +
δ′m
2a

(3− εBD)− 3

2a2
δm

(
1 +

4εBD

3

)
= 0 . (5.48)

6Approximate solutions to the BD-field equations for the main cosmological variables in the different epochs
are discussed in Appendix F.
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If εBD < 0 the Poisson term (the last in the above equation) decreases and, on top of that,
the Hubble friction increases w.r.t. the case with ϕ =const. (or the GR-ΛCDM model,
if we consider the same energy densities). Both effects help to slow down the structure
formation in the universe. Of course, if εBD > 0 the opposite happens. This is confirmed
by solving explicitly Eq. (5.48). Despite an exact solution to Eq. (5.48) can be found,
it suffices to quote it at O(εBD) and neglect the O(ε2BD) corrections. The growing and

decaying modes at leading order read δ+
m(a) ∼ a1+εBD and δ−m(a) ∼ a−

1
2

(3+εBD), respectively.
The latter just fades soon into oblivion and the former explains why negative values of εBD

are favored by the data on RSD, since εBD < 0 obviously slows down the rate of structure
formation and hence acts as an effective (positive) contribution to the vacuum energy
density7. The preference for negative values of εBD is especially clear when the RSD data
include the matter bispectrum information, which tends to accentuate the slowing down of
the growth function, as noted repeatedly in a variety of previous works [245,246,248,250].
We may clearly appraise this feature also in the present study, see e.g. Tables 5.3 and
5.4 (with spectrum and bispectrum) and Table 5.5 (with spectrum but no bispectrum),
where the σ8 value is in general well-behaved (σ8 ' 0.8) in the BD-ΛCDM framework
when εBD < 0, but it is clearly reduced (at a level σ8 ' 0.78 − 0.79) in the presence of
bispectrum data. And in both cases the value of H0 is in the range of 70−71 km/s/Mpc.
Most models trying to explain both tensions usually increase σ8 substantially (0.82−0.85).

We can also study the pure vacuum-dominated epoch (VDE) in the same way. In this
case ϕ ∼ a2εBD (cf. Appendix G), and hence

a
ϕ′

ϕ
= 2εBD +O(ε2BD) ' 2εBD , (5.49)

again with F ′ = O(ε2BD) ' 0. The Poisson term can be neglected in this case since
ρm � ρ ' ρΛ, and hence,

δ′′m +
δ′m
a

(3− εBD) = 0 . (5.50)

When the vacuum energy density rules the expansion of the universe, there is a stable
constant mode solution δm =const. and a decaying mode that decreases faster than in the
GR scenario if εBD < 0, again due to the fact that the friction term is in this case larger
than in the standard picture, specifically the latter reads δ−m(a) ∼ a−2+εBD in the O(εBD)
approximation. The analytical study of the transition between the matter and vacuum-
dominated epochs is more difficult, but with what we have already seen it is obvious that
the amount of structure generated also in this period of the cosmic expansion will be
lower than in the ϕ =const. case if εBD takes a negative value. In Fig. 5.5 we show this
explicitly.

From this analysis it should be clear that if εBD < 0 there is a decrease of the matter
density contrast for fixed energy densities when compared with the GR-ΛCDM scenario,
and also with the BD scenario with ϕ = const. In Fig.5.6 we can see this feature
directly in the matter power spectrum, which is seen to be suppressed with respect to
the case εBD = 0 for those scales that are relevant for the RSD, i.e. within the range of
wave numbers 0.01hMpc−1 . k . 0.1hMpc−1 (corresponding to distance scales roughly
between a few dozen to a few hundred Mpc). However, we still don’t know whether these
negative values of εBD can also be accommodated by the other datasets.

7This feature was already noticed in the preliminary treatment of Ref. [371] for the BD theory itself, and
it was actually pointed out as a general feature of the class of Running Vacuum Models (RVM), which helps to
cure the σ8-tension [249,398]. This is remarkable, since the RVM’s turn out to mimic BD-gravity, as first noticed
in [370]. For a summary, see Appendix F.5.
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Figure 5.6: As in Fig. 5.3, but comparing now the ΛCDM baseline configuration defined there
with the case εBD = −0.003 (and ϕini = 1) of the BD-ΛCDM model.

Figure 5.7: As in Fig. 5.1, but comparing the GR-ΛCDM baseline scenario (equivalent to the
BD-ΛCDM one for εBD = 0, ϕ = 1) with the case εBD = ±0.003, using as initial condition
ϕini = 1.

To check this, let us recall from our discussion above (see also Appendix F and Appendix G
for more details) that the evolution of the BD-field takes place basically during the
MDE. In the RDE the scalar field is essentially frozen once the decaying mode becomes
irrelevant, and although in the late-time universe ϕ evolves faster than in the MDE
(compare (5.38) and (5.49)) it remains almost constant in the redshift range z . O(1), in
which all the non-CMB data points lie, particularly the LSS data. Let us note that the
typical values of εBD fitted from the overall set of data used in our analysis (cf. Sect. 5.6)
place that parameter in the ballpark of |εBD| ∼ O(10−3) (cf.Tables 5.3,5.4 and 5.5, for
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example). Schematically, we can think that the field takes a value ϕini during the RDE,
then if εBD < 0 it decreases an amount ∆ϕini < 0 with respect to its original value ϕini,
during the MDE, and finally ϕ0 ≈ ϕini + ∆ϕini, with ϕ(z) ≈ ϕ0 at z . O(1). Thus, Eq.
(5.20) still applies in good approximation during the RDE and the late-time universe,
but with two different values of the cosmological Newton’s coupling in the two (widely
separated) cosmological eras. Taking these facts into account it is easy to understand
why SNIa data are not able to tell us anything about εBD when used alone, since again ϕ0

is fully degenerated with the absolute magnitude parameter M of the supernovae. This
does not mean, though, that SNIa data cannot tell us anything about the H0-tension
when they are considered together with other datasets that do provide constraints on H0,
since the constraints that SNIa impose on Ωm help to break degeneracies present in the
other datasets and to tighten the allowed region of parameter space. H0LICOW and CCH
data, for instance, will allow us to put constraints again on Ωm and also on H0 (hence
on ρ0/ϕ0). BAO will constrain ρ0

b, Ωm, and now also ∆ϕini/ϕini, which is proportional to

εBD. For instance, rsH(z) ∝
(

1− ∆ϕini

2ϕini

)
.

The BD effect caused on the temperature spectrum of CMB anisotropies is presented
in the fourfold plot in Fig. 5.7. Due to the fact that now we have εBD 6= 0, ∆ϕ 6= 0, a
small shift in the location of the peaks is naturally generated. In the right-bottom plot
of such figure one can see that negative values of εBD move the peaks slightly towards
lower multipoles, and the other way around for positive values of this parameter. It is
easy to understand why. To start with, let us remark that we have produced all the
curves of this plot using the same initial condition ϕini = 1 and the same ρ0

b, ρ0
cdm and ρΛ

and, hence, fixing in the same way the complete evolution of the energy densities for the
different plots in that figure. This means that the differences in the Hubble function can
only be due to differences in the evolution of the BD scalar field. The modified expansion
histories produce changes in the value of θ∗ = rs/DA,rec (with DA,rec being the angular
diameter distance to the last scattering surface), so also in the location of the peaks. If
εBD < 0, ϕ decreases with the expansion, so its value at recombination and at present is
lower than when εBD = 0, and correspondingly G(ϕ) will be higher. Because of this, the
value of the Hubble function will be larger, too, and the cosmological distances lower, so
the relation between θ∗(εBD 6= 0) and θ∗(εBD = 0) can be written as follows:

θ∗(εBD 6= 0) =
rs(εBD 6= 0)

DA,rec(εBD 6= 0)
=

X · rs(εBD = 0)

Y ·DA,rec(εBD = 0)
=
X

Y
θ∗(εBD = 0) , (5.51)

where the rescaling factors satisfy 0 < X, Y < 1 for εBD < 0. As we have already
mentioned before, most of the variation of ϕ occurs during the MDE, so the largest
length reduction will be in the cosmic stretch from recombination to the present time,
and thereby Y < X. Thus, if εBD < 0 we find θ∗(εBD < 0) > θ∗(εBD = 0) and the
peaks of the TT CMB spectrum shifts towards lower multipoles. Analogously, if εBD is
positive X, Y > 1, with Y > X, so θ∗(εBD > 0) < θ∗(εBD = 0) and the peaks move to
larger multipoles. It turns out, however, that these shifts, and also the changes in the
amplitude of the peaks, can be compensated by small changes in the baryon and DM
energy densities, as we will show in Sect. 5.7.

At this point we would like to recall why in the GR-ΛCDM concordance model it is
not possible to reconcile the local measurements of H0 with its CMB-inferred value. In
the concordance model, which we assume spatially flat, the current value of the cold
dark matter density is basically fixed by the amplitude of the first peak of the CMB
temperature anisotropies, and ρ0

b by the relative amplitude of the second and third peaks
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with respect to the first one. As a result, even if the cosmological term plays no role in the
early universe, one finds that in order to explain the precise location of the CMB peaks
the value of ρΛ obtained from the matching of the predicted θ∗ with the measured peak
positions determines ρΛ so precisely that it leaves little margin. This causes a problem
since such narrow range of values is not in the right range to explain the value of the
current Hubble parameter measured with the cosmic distance ladder technique [207–209]
and the Strong-Lensing time delay angular diameter distances from H0LICOW [211].
In other words, despite the concordance model fits in a remarkably successful way the
CMB and BAO, and also the SNIa data, there is an irreducible internal discordance in
the parameter needs to explain with precision both the physics of the early and of the
late-time universe. This is of course the very expression of the H0-tension, to which we
have to add the σ8 one.

Cosmographic analyses based on BAO and SNIa data calibrated with the GR-ΛCDM
Planck preferred value of rs also lead to low estimates of H0. This is the so-called inverse
cosmic distance ladder approach, adopted for instance in [486–489]. This has motivated
cosmologists to look for alternative theoretical scenarios (for instance, the generic class of
EDE proposals) able to increase the expansion rate of the universe before the decoupling
of the CMB photons and, hence, to lower rs down. This, in principle, demands an
increase of the Hubble function at present in order not to spoil the good fit to the BAO
and CMB observables. Nevertheless, not all the models passing the BAO and CMB
constraints and predicting a larger value of H0 satisfy the ‘golden rule’ mentioned in the
Introduction, since they can lead e.g. to a worsening of the σ8-tension. As an example,
we can mention some early DE models, e.g. those discussed in [251]. In these scenarios
there is a very relevant DE component which accounts for the ∼ 7% of the total matter-
energy content of the universe at redshifts ∼ 3000 − 5000, before recombination. This
allows of course to enhance the expansion rate and reduce rs. After such epoch, the DE
decays into radiation. In order not to alter the position of the CMB peaks and BAO
relative distances, an increase of the DM energy density is needed. According to [252],
this leads to an excess of density power and an increase of σ8 which is not welcome by
LSS measurements, including RSD, Weak-Lensing and galaxy clustering data. Another
example is the interesting modified gravity model analyzed in [447], based on changing
the cosmological value of G also in the pre-recombination era, thus mimicking an increase
of the effective number of relativistic degrees of freedom in such epoch. The additional
component gets eventually diluted at a rate faster than radiation in the MDE and it is not
clear if an effect is left at present8. This model also fits the CMB and BAO data well and
loosens at some extent the H0-tension, but violates the golden rule of the tension solver,
as it spoils the structure formation owing to the very large values of σ8 ∼ 0.84 − 0.85
that are predicted (see the discussion in Sect. 5.8] for more details).

Our study shows that a value of the cosmological gravitational coupling about ∼ 10%
larger than GN can ameliorate in a significant way the H0-tension, while keeping the
values of all the current energy densities very similar to those found in the GR-ΛCDM
model. If, apart from that, we also allow for a very slow running (increase) of the
cosmological G triggered by negative values of order εBD ∼ −O(10−3), we can mitigate at
the same time the σ8-tension when only the CMB TT+lowE anisotropies are considered.
When the CMB polarizations and lensing are also included in the analysis, then σ8 is
kept at the GR-ΛCDM levels, and the sign of εBD is not conclusive. In all situations we

8In stark contrast to the model of [447], in BD-ΛCDM cosmology the behavior of the effective ρBD (acting as
a kind of additional DE component during the late universe) mimics pressureless matter during the MDE epoch
and modifies the effective EoS of the DE at present, see the next Sect. 5.3 for details.
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can preserve the golden rule. We discuss in detail the numerical results of our analysis in
Sect. 5.7.

5.3 Effective equation of state of the dark energy in the BD-
ΛCDM model

Our aim in this section is to write down the Brans-Dicke cosmological equations (5.6)-
(5.8) in the context of what we may call the “effective GR-picture”. This means to rewrite
them in such a way that they can be thought of as an effective model within the frame
of GR, thus providing a parametrized departure from GR at the background level. We
will see that the main outcome of this task, at least qualitatively, is that the BD-ΛCDM
model (despite it having a constant vacuum energy density ρΛ) appears as one in the GR
class, but with a dynamical DE rather than a CC. The dynamics of such an effective form
of DE is a function of the BD-field ϕ. We wish to compute its effective EoS. In order to
proceed, the first step is to rewrite Eq. (5.6) à la Friedmann:

3H2 = 8πGN(ρ+ ρϕ) , (5.52)

where ρ is the total energy density as defined previously (coincident with that of the
GR-ΛCDM model), and ρϕ is the additional ingredient that is needed, which reads

ρϕ ≡
3

8πGN

(
H2∆ϕ−Hϕ̇+

ωBD

6

ϕ̇2

ϕ

)
. (5.53)

Remember the definition ϕ(t) ≡ GNψ(t) made in (5.10), and we have now introduced

∆ϕ(t) ≡ 1− ϕ(t) , (5.54)

which tracks the small departure of ϕ from one and hence of G(ϕ) from GN (cf. Sect. 5.1).
Note that ϕ = ϕ(t) evolves in general with the expansion, but very slowly since εBD is
presumably fairly small.

From the above Eq. (5.53) it is pretty clear that we have absorbed all the terms beyond
the ΛCDM model into the expression of ρϕ. While it is true that we define this quantity
as if it were an energy density, it is important to bear in mind that it is not associated to
any kind of particle, it is just a way to encapsulate those terms that are not present in the
standard model. This quantity, however, satisfies a local conservation law as if it were a
real energy density, as we shall see in a moment. From the generalized Friedmann equation
(5.52) and the explicit expression for ρϕ given above we can write down the generalized
cosmic sum rule verified by the BD-ΛCDM model in the effective GR-picture:

Ωm + Ωr + ΩΛ + Ωϕ = 1 , (5.55)

where the Ωi are the usual (current) cosmological parameters of the concordance ΛCDM,
whereas Ωϕ is the additional one that parametrizes the departure of the BD-ΛCDM model
from the GR-ΛCDM in the context of the GR-picture, and reads

Ωϕ =
ρ0
ϕ

ρ0
c

. (5.56)

Notice that the above sum rule is exact and it is different from that in Eq. (5.24) since
the latter is only approximate for the case when εBD = 0 or very small. These are two
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different pictures of the same BD-ΛCDM model. The modified cosmological parameters
(5.23) depend on ϕ whereas here the ϕ-dependence has been fully concentrated on Ωϕ.
It is interesting to write down the exact equation (5.55) in the form

Ωm + Ωr + ΩΛ = 1− Ωϕ = 1−∆ϕ0 +
ϕ̇0

H0

− ωBD

6

ϕ̇2
0

H2
0ϕ0

. (5.57)

in which ϕ0 = ϕ(z = 0) and ϕ̇0 = ϕ̇(z = 0). For εBD ' 0 we know that ϕ 'const.
and we can neglect the time derivative terms and then we find the approximate form
Ωm + Ωr + ΩΛ = 1 − Ωϕ ' 1 − ∆ϕ0. This equation suggests that a value of ∆ϕ0 6= 0
would emulate the presence of a small fictitious spatial curvature in the GR-picture.
See e.g. [175, 490, 491] and references therein for the study of a variety models explicitly
involving spatial curvature.

The second step in the process of constructing the GR-picture of the BD theory is to
express (5.7) as in the usual pressure equation for GR, and this forces us to define a new
pressure quantity pϕ associated to ρϕ. We find

2Ḣ + 3H2 = −8πGN(p+ pϕ), (5.58)

with

pϕ ≡
1

8πGN

(
−3H2∆ϕ− 2Ḣ∆ϕ+ ϕ̈+ 2Hϕ̇+

ωBD

2

ϕ̇2

ϕ

)
. (5.59)

On the face of the above definitions (5.53) and (5.59), we can now interpret the BD theory
as an effective theory within the frame of General Relativity, which deviates from it an
amount ∆ϕ. Indeed, for ∆ϕ = 0 we have ρϕ = pϕ = 0 and we recover GR. Mind that
∆ϕ = 0 means not only that ϕ =const (hence that εBD = 0, equivalently ωBD → ∞),
but also that that constant is exactly ϕ = 1. In such case Geff is also constant and
Geff = GN exactly. The price that we have to pay for such a GR-like description of the
BD model is the appearance of the fictitious BD-fluid with energy density ρϕ and pressure
pϕ, which complies with the following conservation equation throughout the expansion of
the universe 9:

ρ̇ϕ + 3H(ρϕ + pϕ) = 0. (5.60)

One can check that this equation holds after a straightforward calculation, which makes
use of the three BD-field equations (5.6)-(5.8). Although at first sight the above conser-
vation equation can be surprising actually it is not, since it is a direct consequence of the
Bianchi identity. Let us now assume that the effective BD-fluid can be described by an
equation of state like pϕ = wϕρϕ, so

wϕ =
pϕ
ρϕ

=
−3H2∆ϕ− 2Ḣ∆ϕ+ ϕ̈+ 2Hϕ̇+ ωBD

2
ϕ̇2

ϕ

3H2∆ϕ− 3Hϕ̇+ ωBD

2
ϕ̇2

ϕ

. (5.61)

The contribution from those terms containing derivatives of the BD-field are subdominant
for the whole cosmic history. We have verified this fact numerically, see Fig. 5.4. While
the variation of ϕ between the two opposite ends of the cosmic history is of ∼ 1.5% and is
significant for our analysis, the instantaneous variation is actually negligible. Thus, Hϕ̇

9The new ‘fluid’ that one has to add to GR to effectively mimic BD plays a momentous role to explain the
H0 and σ8-tensions. In a way it mimics the effect of the ‘early DE’ models mentioned in the previous section,
except that the BD-fluid persists for the entire cosmic history and is instrumental both in the early as well as in
the current universe so as to preserve the golden rule of the tension solver: namely, it either smoothes the two
tensions of GR or improves one of them without detriment of the other.
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Figure 5.8: Left plot: Effective equation of state of the DE in the BD-ΛCDM model as a
function of the redshift. The inner plot magnifies the region around our time. We can see that
the BD model mimics quintessence with a significance of more than 3σ; Right plot: It shows
once more Fig. 5.4 in order to ease the comparison of the EoS evolution, which is associated to
the evolution of the BD-field ϕ – cf. Eq.(5.63). The shadowed bands in these plots correspond
to the 1σ regions.

and ϕ̈ are both much smaller than Ḣ∆ϕ, and in this limit we can approximate (5.61)
very accurately as

wϕ(t) ' −1− 2

3

Ḣ

H2
(for Hϕ̇, ϕ̈� Ḣ∆ϕ) . (5.62)

This EoS turns out to be the standard total EoS of the ΛCDM, which boils down to the
EoS corresponding to the different epochs of the cosmic evolution (i.e. w = 1/3, 0,−1 for
RDE, MDE and VDE). This means that the EoS of the BD-fluid mimics these epochs.
We can go a step further and define not just the BD-fluid but the combined system of
the BD-fluid and the vacuum energy density represented by the density ρΛ associated to
the cosmological constant. We define the following effective EoS for such combined fluid:

weff ≡
pΛ + pϕ
ρΛ + ρϕ

= −1 +
pϕ + ρϕ
ρΛ + ρϕ

= −1 +
−2Ḣ∆ϕ+ f1(ϕ, ϕ̇, ϕ̈)

Λ + 3H2 ∆ϕ+ f2(ϕ, ϕ̇)
, (5.63)

where the two functions

f1(ϕ, ϕ̇, ϕ̈) = ϕ̈−Hϕ̇+ ωBD
ϕ̇2

ϕ
, f2(ϕ, ϕ̇) = −3Hϕ̇+

ωBD

2

ϕ̇2

ϕ
(5.64)

involve differentiations with respect to the slowly varying field ϕ and as before they
are negligible, in absolute value, as compared to Ḣ∆ϕ and H2∆ϕ. The effective EoS
(5.63) is a time-evolving quantity which mimics dynamical DE at low redshifts. At very
high redshifts z � 1, well beyond the DE dominated epoch, we can neglect Λ in the
denominator of the EoS and the dominant term is 3H2 ∆ϕ. Similarly, in the numerator
the dominant term is always −2Ḣ∆ϕ. Therefore, at high redshifts the effective EoS (5.63)
behaves as (5.62) since ∆ϕ cancels out: weff(z) ' wϕ(z) (z � 1), which means that it
just reproduces the standard EoS of the GR-ΛCDM. The exact EoS (5.63), however, must
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be computed numerically, and it is displayed in Fig.5.8, together with the numerical plot
of ϕ (which we have already shown in Fig.5.4). We have used the Baseline+H0 dataset
defined in Sect. 5.6. For a semi-qualitative discussion of the combined EoS it will suffice
an analytical approximation, as we did before with wϕ. The most relevant part of weff(z)
as to the possibility of disentangling the dynamical DE effects triggered by the underlying
BD model is near the present time (z < 1). Thus, neglecting the contribution from the
functions f1,2, but now keeping the Λ-term in the denominator of (5.63) we can use the
Hubble function of the concordance model and we find the following result at linear order
in ∆ϕ:

weff(z) ' −1− 2Ḣ∆ϕ

Λ
' −1 + ∆ϕ

Ω0
m

Ω0
Λ

(1 + z)3 , (5.65)

where Ω0
m and Ω0

Λ are the current values of the cosmological parameters, which satisfy
Ω0

m + Ω0
Λ = 1 for spatially flat universe. As has been stated before, the previous approx-

imate formula is valid only for z < 1, but it shows very clearly that for ∆ϕ > 0 (resp.
< 0) we meet quintessence-like (resp. phantom-like) behavior. As we have repeatedly
emphasized, our analysis points to εBD < 0 and hence ϕ decreases with the expansion,
remaining smaller than one. From Eq. (5.54) this means ∆ϕ > 0 and therefore we find
that the effective GR behavior of the BD-ΛCDM is quintessence-like. We can be more
precise at this point. We have numerically computed the value of the exact function
(5.63) at z = 0, taking into account the contribution from all the terms, in particular
the slowly varying functions (5.64), see Tables 5.3, 5.4, 5.5 and 5.6. The results obtained
from three of the most prominent datasets defined in Sect. 5.6 read as follows:

Baseline : weff(0) =− 0.983+0.015
−0.014 (5.66)

Baseline + H0 : weff(0) =− 0.966+0.012
−0.011 (5.67)

Baseline + H0 + SL : weff(0) =− 0.962± 0.011. (5.68)

As can be seen, there is a non-negligible departure from the constant EoS value −1 of the
GR-ΛCDM, which reaches the ∼ 3σ c.l. when the prior on H0 from the local distance
ladder measurement by SH0ES [209] is included in the analysis, and ∼ 3.5σ c.l. when
also the angular diameter distances from H0LICOW [211] are taken into account. The
effective quintessence EoS weff(0) > −1 is one of the ingredients that allows the BD-
ΛCDM model to significantly loosen the H0-tension, since it is a direct consequence of
having ϕ < 1 (or, equivalently, G > GN) (cf. Sect. 5.2 for details).

We have obtained the above results from the equations of motion once a metric was
assumed; however, it is possible to obtain all the expressions listed in this section starting
from the BD action (5.1) itself and then considering the FLRW metric. To show this, let
us use the dimensionless field ϕ = GNψ and the variable ∆ϕ defined in (5.54). First of
all we split the whole action in three pieces

SBD[ϕ] = SEH + SGR[ϕ] + Sm, (5.69)

where

SEH ≡
ˆ
d4x
√
−g
[

R

16πGN

− ρΛ

]
, (5.70)

is the usual Einstein-Hilbert action, whereas

SGR[ϕ] ≡
ˆ
d4x
√
−g 1

16πGN

[
−R∆ϕ− ωBD

ϕ
gµν∂νϕ∂µϕ

]
, (5.71)
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is the action parametrizing the deviation of the BD theory from the GR-picture expressed
in terms of the scalar field ϕ. As expected, for ϕ = 1 that action vanishes identically.
Finally,

Sm ≡
ˆ
d4x
√
−gLm(χi, gµν) (5.72)

is the action for the matter fields. Since there is no interaction involving ϕ with other
components, the BD-field ϕ is covariantly conserved, as remarked in Sect. 5.1. In order
to compute the energy-momentum tensor and find out the effective density and pressure
of the BD-field, we apply the usual definition of that tensor in curved spacetime:

TBD
µν = − 2

√
g

δSGR[ϕ]

δgµν
. (5.73)

After some calculations we arrive at

TBD
µν =

Rµν

8πGN

∆ϕ− ∇ν∇µϕ

8πGN

+
gµν�ϕ
8πGN

+
ωBD

8πϕ
∂νϕ∂µϕ

− gµν
16πGN

(
R∆ϕ+

ωBD

ϕ
gαβ∂αϕ∂βϕ

)
.

(5.74)

Since ϕ has no interactions it behaves as any free scalar field, so its energy-momentum
tensor must adopt the perfect fluid form at the background level:

TBD
µν = pϕgµν + (ρϕ + pϕ)uµuν . (5.75)

Now we can compare this form with (5.74). It is straightforward to obtain the energy
density as well as the corresponding pressure, we only need to compute ρϕ = TBD

00 and
pϕ = (TBD + ρϕ)/3, being TBD = gµνTBD

µν the trace of the tensor. Using at this point
the spatially flat FLRW metric one can work out the explicit result for ρϕ and ρϕ and
reconfirm that it acquires the form previously indicated in the equations (5.53) and (5.59).
This provides perhaps a more formal derivation of these formulas and serves as a cross-
check of them.

5.4 Structure formation in the linear regime. Perturbations
equations

In order to perform a complete analysis of the model, we need to study the evolution
of the perturbed cosmological quantities in the context of BD theory. For a review
of the standard model perturbations equations, see e.g. [188, 492, 493]. We assume a
FLRW metric written in conformal time, denoted by η, in which the line element is
ds2 = a2(η)[−dη2 + (δij + hij)dx

idxj]. Here hij is a perturbation on the spatial part of
the metric which can be expressed in momentum space as follows,

hij(η, ~x) =

ˆ
d3k e−i

~k·~x
[
k̂ik̂jh(η,~k) +

(
k̂ik̂j −

δij
3

)
6ξ(η,~k)

]
. (5.76)

As we see, in momentum space the trace h ≡ δijhij decouples from the traceless part of
the perturbation, ξ. Now, we are going to list the perturbations equations at late stages
of expansion in momentum space at deep subhorizon scales, that is, we assume H2 � k2,
with H ≡ a′/a. Although primes were used previously for derivatives with respect to the

231



scale factor, they will henceforth stand for derivatives with respect to the conformal time
within the main text (except in Appendix G): ()′ ≡ d()/dη. For example, it is easy to
see that H = aH. One may work with the standard differential equation for the density
contrast at deep subhorizon scales,

δ′′m +Hδ′m − 4πGN ρ̄ma
2δm = 0, (5.77)

where δm ≡ δρm/ρ̄m is the density contrast, the bar over ρ̄m indicates that is a background
quantity and the evolution of H and ρ̄m is the one expected by the background equations
of the BD theory in Section Sect. 5.1. This expression is just the corresponding one for
the ΛCDM, completely neglecting any possible perturbation in the BD-field, namely δϕ.
However, it is possible to see that a second order differential equation for the density
contrast can be written, even if the perturbation in ϕ is not neglected. This is done in
detail in the Appendix H and Appendix I for the Synchronous as well as for the Newtonian
gauges, respectively. In this section, we present the main perturbations equations in the
case of the Synchronous gauge and discuss the interpretation of the result.

If ~vm is the physical 3-velocity of matter (which is much smaller than 1 and can be treated

as a perturbation), then we can define its divergence, θm ≡ ~∇ · (~vm). At deep subhorizon
scales it is possible to see that the equation governing its evolution is

θ′m +Hθm = 0. (5.78)

Since da−1/dη = −H/a, we arrive to a decaying solution θm ∝ a−1. A common assump-
tion is to set θm ∼ 0 in the last stages of the universe, which is what we will do in our
analysis. This allows us to simplify the equations. Another simplification occurs if we
take into account that we are basically interested in computing the matter perturbations
only at deep subhorizon scales, namely for k2 � H2, which allows us to neglect some
terms as well (cf. Appendix H). Altogether we are led to the following set of perturbations
equations in the synchronous gauge:

δ′m = −h
′

2
. (5.79)

k2δϕ+
h′

2
ϕ̄′ =

8πGN

3 + 2ωBD

a2ρ̄mδm , (5.80)

ϕ̄(Hh′ − 2ξk2) + k2δϕ+
h′

2
ϕ̄′ = 8πGNa

2ρ̄mδm , (5.81)

2k2δϕ+ ϕ̄′h′ + ϕ̄
(
h′′ + 2h′H− 2k2ξ

)
= 0 . (5.82)

Combining these four equations simultaneously (cf. Appendix H for more details) and
without doing any further approximation, one finally obtains the following compact equa-
tion for the matter density contrast of the BD theory at deep subhorizon scales:

δ′′m +Hδ′m −
4πGNa

2

ϕ̄
ρ̄mδm

(
4 + 2ωBD

3 + 2ωBD

)
= 0 . (5.83)

In other words,
δ′′m +Hδ′m − 4πGeff(ϕ̄)a2 ρ̄mδm = 0 . (5.84)

The quantity

Geff(ϕ̄) =
GN

ϕ̄

(
4 + 2ωBD

3 + 2ωBD

)
=
GN

ϕ̄

(
2 + 4εBD

2 + 3εBD

)
(5.85)
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is precisely the effective coupling previously introduced in Eq. (5.29); it modifies the
Poisson term of the perturbations equation with respect to that of the standard model,
Eq. (5.77). There is, in addition, a modification in the friction term between the two
models, which is of course associated to the change in H.

The argument of Geff in (5.85) is not ϕ but the background value ϕ̄ since the latter is what
remains in first order of perturbations from the consistent splitting of the field into the
background value and the perturbation: ϕ = ϕ̄+ δϕ. Notice that there is no dependence
left on the perturbation δϕ. As we can see from (5.85), the very same effective coupling
that rules the attraction of two tests masses in BD-gravity is the coupling strength that
governs the formation of structure in this theory, as it could be expected. But this does
not necessarily mean that the effective gravitational strength governing the process of
structure formation is the same as for two tests masses on Earth. We shall elaborate
further on this point in the next section. At the moment we note that if we compare the
above perturbations equation with the standard model one (5.77), the former reduce to
the latter in the limit ωBD →∞ (i.e. εBD → 0) and ϕ̄ = 1.

The form of (5.84) in terms of the scale factor variable rather than in conformal time
was given previously in Sect. 5.2.1 when we considered a preview of the implications of
BD-gravity on structure formation data10. The transformation of derivatives between the
two variables can be easily performed with the help of the chain rule d/dη = aHd/da.

5.5 Different BD scenarios and Mach’s Principle

As previously indicated, the relation (5.29), which appears now in the cosmological con-
text in the manner (5.85), follows from the computation of the gravitational field felt by
two test point-like (or spherical) masses in interaction in BD-gravity within the weak-field
limit [427, 429], see also [440] and references therein. Such relation shows in a manifest
way the integration of Mach’s principle within the BD context, as it postulates a link
between the measured local value of the gravitational strength, GN , as measured at the
Earth surface, and its cosmological value, Geff(ϕ), which depends on ϕ and ωBD. In par-
ticular, ϕ may be sensitive to the mean energy densities and pressures of all the matter
and energy fields that constitute the universe. If there is no mechanism screening the
BD-field on Earth, Geff(ϕ̄)(z = 0) = GN . However, one can still fulfill this condition if
Eq. (5.85) constraints the current value of the cosmological BD-field ϕ̄

ϕ̄(z = 0) =
4 + 2ωBD

3 + 2ωBD

=
2 + 4εBD

2 + 3εBD

' 1 +
1

2
εBD +O(ε2BD) . (5.86)

That is to say, such constraint permits to reconcile Geff(ϕ̄)(z = 0) with GN by still keeping
ϕ̄(z = 0) 6= 1 and εBD 6= 0. Hence the BD-field can be dynamical and there can be a
departure of G(ϕ̄) from GN even at present. This constraint, however, is much weaker
than the one following from taking the more radical approach in which Geff(ϕ) and GN

are enforced to coincide upon imposing the double condition εBD → 0 (i.e. ωBD → ∞)
and ϕ̄ = 1. It is this last setup which anchors the BD theory to remain exactly (or very
approximately) close to GR at all scales.

10Recall, however, that prime in Eq. (5.84) stands for differentiation w.r.t. conformal time whereas in Eq. (5.28)
denotes differentiation w.r.t. the scale factor. These equations perfectly agree and represent the same perturba-
tions equation for the matter density field in BD-gravity in the respective variables. They are also in accordance
with the perturbations equation obeyed by the matter density field within the context of scalar-tensor theories
with the general action (5.14) (see [468]) of which the form (5.13) is a particular case.
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However, if we take seriously the stringent constraint imposed by the Cassini probe on
the post-Newtonian parameter γPN [469], which leads to a very large value of ωBD &
104 (equivalently, a very small value of εBD = 1/ωBD), as we discussed in Sect. 5.1, ϕ̄
must remain almost constant throughout the cosmic expansion, thus essentially equal to
ϕ̄(z = 0). However, the Cassini limit leaves ϕ̄(z = 0) unconstrained, so this constant is
not restricted to be in principle equal to 1. In this case the relation (5.86) may or may
not apply; there is in fact no especial reason for it (it will depend on the effectiveness of
the screening mechanism on Earth). If it does, i.e. if there is no screening, Geff is forced
to be very close to GN ∀z; if it does not, ϕ̄ can freely take (almost constant) values which
do not push Geff to stay so glued to GN . It is interesting to see the extent to which
the cosmological constraints can compete with the local ones given the current status of
precision they can both attain.

So, as it turns out, we find that one of the two interpretations leads to values of Geff very
close to GN ∀z on account of the fact that we are imposing very large values of ωBD and
assuming (5.86), whereas the other achieves the same aim (viz. Geff can stay very close
to GN) for intermediate values of ωBD provided they are linked to ϕ̄(z = 0) through the
constraint (5.86). This last option, as indicated, is not likely since this would imply the
existence of a screening at the scales probed by Cassini that may become ineffective on
Earth, where the densities are higher. Finally, we may as well have a situation where
the cosmological Geff remains different from GN even if the Cassini limit is enforced. For
this to occur we need an (essentially constant) value of ϕ̄ 6= 1 (different from the one
associated to that constraint) at the cosmological level. This can still be compatible with
the local constraints provided ϕ is screened on Earth at z = 0.

A more open-minded and general approach, which we are going to study in this work, is to
take the last mentioned option but without the Cassini limit. This means that εBD is not
forced to be so small and hence ϕ can still have some appreciable dynamics. We assume
that the pure BD model applies from the very large cosmological domains to those at
which the matter perturbations remain linear. Equation (5.85) predicts the cosmological
value of Geff once ωBD and the initial value ϕini are fitted to the data. We can dispense
with the Cassini constraint (which affects ωBD only) because we assume that some kind
of screening mechanism acts at very low (astrophysical) scales, namely in the nonlinear
domain, without altering the pure BD model at the cosmological level. To construct
a concrete screening mechanism would imply to specify some microscopic interaction
properties of ϕ with matter, but these do not affect the analysis at the cosmological
level, where there are no place with high densities of material particles. But once such
mechanism is constructed (even if not being the primary focus of our work) the value of the
BD-field ϕ is ambient dependent, so to speak, since ϕ becomes sensitive to the presence
of large densities of matter. This possibility is well-known in the literature through the
chameleon mechanism [482] and in the case of the BD-field was previously considered
in [470] without letting the Brans-Dicke parameter ωBD to acquire negative values, and
using datasets which now can be considered a bit obsolete. Here we do, instead, allow
negative values for ωBD (we have seen in Sect. 5.2 the considerable advantages involved
in this possibility), and moreover we are using a much more complete set of observations
from all panels of data taking. In this scenario we cannot make use of (5.85) to connect the
locally measured value of the gravitational strength GN with the BD-field at cosmological
scales. We just do not need to know how the theory exactly connects these two values. We
reiterate once more: we will not focus on the screening mechanism itself here but rather
on the properties of the BD-field in the universe in the large, i.e. at the cosmological level.
As it is explained in [470] – see also [441] – many scalar-tensor theories of gravity belonging
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to the Horndeski class [439] could lead to such kind of BD behavior at cosmological level
and, hence, it deserves a dedicated and updated analysis, which is currently lacking in
the literature.

To summarize, the following interpretations of the BD-gravity framework considered here
are, in principle, possible in the light of the current observational data:

• BD-Scenario I: Rigid Scenario for both the Local and Cosmological domains. In
it, we have Geff(ϕ(z)) ' G(ϕ(z)) ' GN , these three couplings being so close that
in practice BD-gravity is indistinguishable from GR. In this case, the BD-gravity
framework is assumed to hold on equal footing with all the scales of the universe,
local and cosmological. There are no screening effects from matter. In this context,
one interprets that the limit from the Cassini probe [469] leads to a very large value
of ωBD, which enforces ϕ to become essentially rigid, and one assumes that such
constant value is very close to 1 owing to the relation (5.86). Such a rigid scenario
is, however, unwarranted. It is possible, although is not necessary since, strictly
speaking, there is no direct connection between the Cassini bound on ωBD and the
value that ϕ can take. Thus, in this scenario the relation (5.86) is just assumed. In
point of fact, bounds on ωBD can only affect the time evolution of ϕ, they do not
constraint its value.

• BD-Scenario II (Main): Locally Constrained but Cosmologically Unconstrained
Scenario. It is our main scenario. It assumes a constrained situation in the local
domain, caused by the presence of chameleonic forces, but permits an unconstrained
picture for the entire cosmological range. In other words, the Cassini limit that holds
for the post-Newtonian parameter γPN in the local astrophysical level (and hence
on ωBD) is assumed to reflect just the presence of screening effects of matter in that
nonlinear domain. These effects are acting on ϕ and produce the illusion that ωBD

has a very large value (as if ‘dressed’ or ‘renormalized’ by the chamaleonic forces).
One expects that the ‘intrusive’ effects of matter are only possible in high density
(hence nonrelativistic) environments, and in their presence we cannot actually know
the real (‘naked’) value of ωBD through local experiments alone. We assume that the
screening disappears as soon as we leave the astrophysical scales and plunge into the
cosmological ones; then, and only then, we can measure the naked or “bare’ value of
ωBD (stripped from such effects). We may assume that the screening ceases already
at the LSS scales where linear structure formation occurs, see e.g. [170] for examples
of potentials which can help to realize this mechanism. The bare value of ωBD can
then be fitted to the overall data, and in particular to the LSS formation data.
Since ωBD does no longer appear that big (nor it has any a priori sign) the BD-field
ϕ can evolve in an appreciable way at the cosmological level: it increases with the
expansion if ωBD > 0, and decreases with the expansion if ωBD < 0. In this context,
its initial value, ϕini, becomes a relevant cosmological parameter, which must be
taken into account as a fitting parameter on equal footing with ωBD and all of the
conventional parameters entering the fit. Using the large wealth of cosmological
data, these parameters can be fixed at the cosmological level without detriment of
the observed physics at the local domain, provided there is a screening mechanism
insuring that Geff(ϕ)(0) stays sufficiently close to GN in the local neighbourhood.
The numerical results for this important scenario are presented in Tables 5.3, 5.4,
5.5, 5.6 and 5.9.

• BD-Scenario III: Cassini-constrained Scenario. A more restricted version of sce-
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nario II can appear if the ‘bare value’ of ωBD is as large as in the Cassini bound.
In such case ωBD is, obviously, perceived large in both domains, local and cosmo-
logical. Even so, and despite of the fact that ϕ varies very slowly in this case,
one can still exploit the dependence of the fit on the initial value of the BD-field,
ϕini, and use it as a relevant cosmological parameter. In practice, this situation has
only one additional degree of freedom as compared to Scenario I (and one less than
in Scenario II), but it is worth exploring – see our results in Table 5.10. As these
numerical results show, the Cassini bound still leaves considerable freedom to the
BD-ΛCDM model for improving the H0 tension (without aggravating the σ8 one)
since the value of ϕ is still an active degree of freedom, despite its time evolution is
now more crippled.

• BD-Scenario IV: Variable-ωBD(ϕ) Scenario. Here one admits that the parameter
ωBD is actually a function of the BD-field, ωBD = ωBD(ϕ), which can be modeled and
adapted to the constraints of the local and cosmological domains, or even combined
with the screening effects of the local universe. We have said from the very beginning
that we would assume ωBD =const. throughout our analysis, and in fact we shall
stick to that hypothesis; so here we mention the variable ωBD scenario only for
completeness. In any case, if a function ωBD(ϕ) exists such that it takes very
large values in the local universe while it takes much more moderate values in
the cosmological scales, that sort of scenario would be in the main tantamount to
Scenario II insofar as concerns its cosmological implications.

In our analysis we basically choose BD- Scenarios II and III (the latter being a particular
case of the former), which represent the most tolerant point of view within the canonical
ωBD =const. option. Scenario II offers the most powerful framework amenable to provide
a cure for the tensions afflicting the conventional ΛCDM model based on GR. Thus,
we assume that we can measure the cosmological value of the gravity strength in BD
theory – i.e. the value given in Eq. (5.85) – by using only cosmological data. We combine
the information from the LSS processes involving linear structure formation with the
background information obtained from low, intermediate, and very high redshift probes,
including BAO, CMB, and the distance ladder measurement of H0. The values of ϕini and
ωBD are fitted to the data, and with them we obtain not only ϕ(z = 0) but we determine
the effective cosmological gravity strength at all epochs from (5.85). The cosmological
value of the gravity coupling can be considered as the ‘naked’ or ‘bare’ value of the
gravitational interaction, stripped from screening effects of matter, in the same way as
ωBD measured at cosmological scales is the bare value freed of these effects. Even though
Geff can be different from GN , we do not object to that since it can be ascribed to
screening forces caused by the huge amounts of clustered matter in the astrophysical
environments. For this reason we do not adopt the local constraints for our cosmological
analysis presented in this chapter, i.e. we adhere to Scenario II as our main scenario.
Remarkably enough, we shall see that Scenario III still possesses a large fraction of the
potentialities inherent to Scenario II, notwithstanding the Cassini bound. In this sense
Scenarios II and III are both extremely interesting. A smoking gun of such overarching
possible picture is the possible detection of the dynamical dark energy EoS encoded in
the BD theory within the GR-picture (cf. Sect. 5.3), which reveals itself in the form
of effective quintessence, as well as through the large smoothing achieved of the main
tensions afflicting the conventional ΛCDM. From here on, we present the bulk of our
analysis and detailed results after we have already discussed to a great extent their
possible implications.
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5.6 Data and methodology

We fit the BD-ΛCDM together with the concordance GR-ΛCDM model and the GR-
XCDM (based on the XCDM parametrization of the DE [263]) to the wealth of cosmolog-
ical data compiled from distant type Ia supernovae (SNIa), baryonic acoustic oscillations
(BAO), a set of measurements of the Hubble function at different redshifts, the Large-
Scale Structure (LSS) formation data encoded in f(zi)σ8(zi), and the CMB temperature
and low-l polarization data from the Planck satellite. The joint combination of all these
individual datasets will constitute our Baseline Data configuration. Moreover, we also
study the repercussion of some alternative data, by adding them to the aforementioned
baseline setup. These additional datasets are: a prior on the value of H0 (or alternatively
an effective calibration prior on M) provided by the SH0ES collaboration; the CMB high-
` polarization and lensing data from Planck; the Strong-Lensing (SL) time delay angular
diameter distances from H0LICOW; and, finally, Weak-Lensing (WL) data from KiDS.
The following is a description of the data points included in our datasets, which we used
in our analyses, along with the corresponding references11:

CMB: The baseline dataset contains the full Planck 2018 TT+lowE likelihood [132].
In order to study the influence of the CMB high-` polarizations and lensing we consider
two alternative (non-baseline) datasets, in which we substitute the TT+lowE likelihood
by: (i) the TTTEEE+lowE likelihood, which incorporates the information of high mul-
tipole polarizations; (ii) the full TT-TEEE+lowE+lensing likelihood, in which we also
incorporate the Planck 2018 lensing data. In Tables 5.6 and 5.7 these scenarios are de-
noted as B+H0+pol and B+H0+pol+lens, respectively.

SNIa: We use the full Pantheon likelihood, which incorporates the information from
1048 SNIa [494]. In addition, we also include the 207 SNIa from the DES survey [495].
These two SNIa samples are uncorrelated, but the correlations between the points within
each sample are non-null and have been duly incorporated in our analyses through the
corresponding covariance matrices.

BAO: We use data on both, isotropic and anisotropic BAO analyses. We provide the
detailed list of data points and corresponding references in Table 5.1. A few comments
are in order about the use of some of the BAO data points considered in this chapter.
Regarding the Lyα-forest data, we opt to use the auto-correlation information from [496].
Excluding the Lyα cross-correlation data allows us to avoid double counting issues be-
tween the latter and the eBOSS data from [497], due to the partial (although small)
overlap in the list of quasars employed in these two analyses. It is also important to
remark that we consider in our baseline dataset the BOSS data reported in [216], which
contains information from the spectrum (SP) and the bispectrum (BP). The bispectrum
information could capture some details otherwise missed when only the spectrum is con-
sidered, so it is worth to use it12. Therefore, we study the possible significance of the
bispectrum component in the data by carrying out an explicit comparison of the results
obtained with the baseline configuration to those obtained by substituting the data points
from [216] with those from [485], which only incorporate the SP information. The results
are provided in Table 5.3 and Table 5.5, respectively. In Tables 5.4, 5.6, 5.7, 5.8, we use

11For more general explanations of the datasets, the reader may refer to Appendix K.
12See also Ref. [244] for additional comments on the significance of the bispectrum data as well as its potential

implications on the possible detection of dynamical dark energy.
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Survey z Observable Measurement References

6dFGS+SDSS MGS 0.122 DV (rs,fid/rs)[Mpc] 539± 17[Mpc] [498]

WiggleZ 0.44 DV (rs,fid/rs)[Mpc] 1716.4± 83.1[Mpc] [499]
0.60 DV (rs,fid/rs)[Mpc] 2220.8± 100.6[Mpc]
0.73 DV (rs,fid/rs)[Mpc] 2516.1± 86.1[Mpc]

DR12 BOSS (BSP) 0.32 Hrs/(103km/s) 11.549± 0.385 [216]
DA/rs 6.5986± 0.1337

0.57 Hrs/(103km/s) 14.021± 0.225
DA/rs 9.389± 0.1030

DR12 BOSS (SP) 0.38 DM(rs/rs,fid)[Mpc] 1518± 22 [485]
H(rs,fid/rs)[km/s/Mpc] 81.5± 1.9

0.51 DM(rs/rs,fid)[Mpc] 1977± 27
H(rs,fid/rs)[km/s/Mpc] 90.4± 1.9

0.61 DM(rs/rs,fid)[Mpc] 2283± 32
H(rs,fid/rs)[km/s/Mpc] 97.3± 2.1

DES 0.81 DA/rs 10.75± 0.43 [500]

eBOSS DR14 1.19 Hrs/(103km/s) 19.6782± 1.5867 [497]
DA/rs 12.6621± 0.9876

1.50 Hrs/(103km/s) 19.8637± 2.7187
DA/rs 12.4349± 1.0429

1.83 Hrs/(103km/s) 26.7928± 3.5632
DA/rs 13.1305± 1.0465

Lyα-F eBOSS DR14 2.34 DH/rs 8.86± 0.29 [496]
DM/rs 37.41± 1.86

Table 5.1: Published values of BAO data, see the quoted references and text in Sect. 5.6.
Although we include in this table the values of DH/rs = c/(rsH) and DM/rs for the Lyα-forest
auto-correlation data from [496], we have performed the fitting analysis with the full likelihood.
The fiducial values of the comoving sound horizon appearing in the table are rs,fid = 147.5 Mpc
for [498], rs,fid = 148.6 Mpc for [499], and rs,fid = 147.78 Mpc for [485].

the SP+BSP combination [216]. In Table 5.10 we employ both SP and SP+BSP.

Cosmic Chronometers: We use the 31 data points on H(zi), at different redshifts,
from [501–508]. All of them have been obtained making use of the differential age tech-
nique applied to passively evolving galaxies [509], which provides cosmology-independent
constraints on the Hubble function, but are still subject to systematics coming from the
choice of the stellar population synthesis technique, and also the potential contamination
of young stellar components in the quiescent galaxies [510–512]. For this reason we con-
sider a more conservative dataset that takes into account these additional uncertainties.
To be concrete, we use the processed sample presented in Table 2 of [513]. See therein
for further details.

LSS: In this chapter the LSS dataset contains the data points on the product of the
ordinary growth rate f(zi) with σ8(zi) at different effective redshifts. They are all listed
in Table 5.2, together with the references of interest. In order to correct the potential
bias introduced by the particular choice of a fiducial model in the original observational
analyses we apply the rescaling correction explained in [201]. See also Sec. II.2 of [202].
The internal correlations between the BAO and RSD data from [216], [485] and [497] have
been duly taken into account through the corresponding covariance matrices provided in
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Survey z f(z)σ8(z) References

6dFGS+2MTF 0.03 0.404+0.082
−0.081 [514]

SDSS-DR7 0.10 0.376± 0.038 [515]

GAMA 0.18 0.29± 0.10 [516]
0.38 0.44± 0.06 [517]

DR12 BOSS (BSP) 0.32 0.427± 0.056 [216]
0.57 0.426± 0.029

WiggleZ 0.22 0.42± 0.07 [518]
0.41 0.45± 0.04
0.60 0.43± 0.04
0.78 0.38± 0.04

DR12 BOSS (SP) 0.38 0.497± 0.045 [485]
0.51 0.458± 0.038
0.61 0.436± 0.034

VIPERS 0.60 0.49± 0.12 [519]
0.86 0.46± 0.09

VVDS 0.77 0.49± 0.18 [520], [521]

FastSound 1.36 0.482± 0.116 [522]

eBOSS DR14 1.19 0.4736± 0.0992 [497]
1.50 0.3436± 0.1104
1.83 0.4998± 0.1111

Table 5.2: Published values of f(z)σ8(z), see the quoted references and text in Sect. 5.6.

these three references.

Prior on H0: We include as a prior in almost all the non-baseline datasets the value
of the Hubble parameter measured by the SH0ES collaboration, H0 = (73.5 ± 1.4)
km/s/Mpc [209]. It is obtained with the cosmic distance ladder method using an im-
proved calibration of the Cepheid period-luminosity relation. It is based on distances
obtained from detached eclipsing binaries located in the Large Magellanic Cloud, masers
in the galaxy NGC 4258 and Milky Way parallaxes. This measurement is in 4.1σ tension
with the value obtained by the Planck team under the TTTEEE+lowE+lensing dataset,
and using the GR-ΛCDM model, H0 = (67.36 ± 0.54) km/s/Mpc [132]. In only one
alternative dataset we opt to use instead the SH0ES effective calibration prior on the
absolute magnitude M of the SNIa, as provided in [523]: M = −19.2191± 0.0405. This
case is denoted “M” in our tables. It is obtained from the calibration of ‘nearby’ SNIa
(at z . 0.01) with Cepheids [208]. It has been recently argued in [523,524] (and later on
also in [525, 526]) that in cosmological studies it is better to use this SH0ES constraint
rather than the direct prior on H0 when combined with low-redshift SNIa data to avoid
double counting issues. We show that the results obtained with these two methods are
compatible and lead to completely consistent results (see the discussion in Sect. 5.7, and
also Table 5.3 and Table 5.6 ).

SL: In one of the non-baseline datasets we use, in combination with the SH0ES prior
on H0, the data extracted from the six gravitational lensed quasars of variable luminos-
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ity reported by the H0LICOW team13: B1608+656, RX51131-1231, HE0435-1223, SDSS
1206+4332, WFI 2033-4723 and PG 1115+080. As explained in Sect. 5.2, the fact of be-
ing absolute distances (instead of relative, as in the SNIa and BAO datasets) allows them
to directly constrain the Hubble parameter in the context of the GR-ΛCDM as follows:
H0 = 73.3+1.7

−1.8 km/s/Mpc. Interestingly, the non-detection of Strong-Lensing time delay

variations can be used to put an upper bound on Ġ/G at the redshift and location of the
lens [527]. These constraints, though, cannot be applied to our model since we assume
that the field is screened in these dense regions (see Scenarios II and III in Sect. 5.5).
Moreover, they are still too weak – Ġ/G . 10−2 yr−1 [527] – to have an impact on our
results.

WL: We used data from the Kilo-Degree Survey (KiDS) [217–220] as an alternative
dataset. Nonlinear effects for small angular scales cannot be calculated for the BD-ΛCDM
model using the Halofit module [528], which only implements the GR-ΛCDM model and
minimal extensions. However, we found that without information from the small scales,
predictability is significantly reduced and S8 remains largely unconstrained. In Table 5.6
and Table 5.7 we show the results obtained using the full KiDS likelihood [217,219]14, i.e.
including all the scales (also the small ones). The results, though, should be interpreted
with caution.

We study the performance of the BD-ΛCDM, GR-ΛCDM and GR-XCDM models under
different datasets. In the following we briefly summarize the composition of each of them:

• Baseline (B): Here we include the Planck 2018 TT+lowE CMB data, together with
SNIa +BAO+H(zi)+LSS (see Table 5.3 and Table 5.8). It is important to remark
that for the BOSS BAO+LSS data we consider [216], which includes the information
from the spectrum (SP) as well as from the bispectrum (BSP). We construct some
other datasets using this baseline configuration as the main building block. See the
other items, below.

• Baseline+H0 (B+H0): Here we add the SH0ES prior on the H0 parameter from
[209] to the baseline dataset (see again Table 5.3 and 5.8).

• Baseline+H0+SL: The inclusion of the Strong-Lensing (SL) data from [211] ex-
acerbates more the H0-tension in the context of the GR-ΛCDM model (see e.g. [200]
and Sect. 5.8), so it is interesting to also study the ability of the BD-ΛCDM to fit the
SL data when they are combined with the previous B+H0 dataset, and compare the
results with those obtained with the GR-ΛCDM. The corresponding fitting results
are displayed in Table 5.4.

• Spectrum: In this dataset we replace the SP+BSP data from [216] used in the
Baseline dataset (see the first item, above) by the data from [485], which only
contains the spectrum (SP) information (i.e. the usual matter power spectrum).

• Spectrum+H0: As in the preceding item, but including the H0 prior from SH0ES
[209].

The aforementioned datasets are all based on the BD-Scenario II (cf. Sect. 5.5) and can
be considered as the main ones (cf. Tables 5.3, 5.4, 5.5 and 5.8), nevertheless we also

13http://shsuyu.github.io/H0LiCOW/site/
14See http://kids.strw.leidenuniv.nl/sciencedata.php for more details.
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consider a bunch of alternative datasets (also based on the BD-Scenario II). We present
the corresponding results in Table 5.6 and the first five columns of Table 5.7 for the BD-
ΛCDM and GR-ΛCDM models, respectively.

• B+M : In this scenario we replace the prior on H0 [209] employed in the B+H0

dataset with the effective SH0ES calibration prior on the absolute magnitude of
SNIa M provided in [523].

• B+H0+pol: Here we add the CMB high-` polarization data from Planck 2018 [132]
to the B+H0 dataset described before, i.e. we consider the Planck 2018 TT-
TEEE+lowE likelihood for the CMB.

• B+H0+pol+lens: In addition to the datasets considered in the above case we
also include the CMB lensing data from Planck 2018 [132], i.e. we use the Planck
2018 TTTEEE+lowE+ lensing likelihood.

• B+H0+WL: In this alternative case we consider the Weak-Lensing (WL) data
from KiDS [217,219], together with the B+H0 dataset.

• CMB+BAO+SNIa: By considering only this data combination, we study the
performance of the the BD-ΛCDM and the GR-ΛCDM models under a more limited
dataset, obtained upon the removal of the data that trigger the H0 and σ8 tensions,
i.e. the prior on H0 from SH0ES and the LSS data. The use of the BAO+SNIa
data helps to break the strong degeneracies found in parameter space when only the
CMB is considered. Here we use the TT+lowE Planck 2018 likelihood [132].

Finally, in Table 5.10 we present the results obtained for the BD-ΛCDM in the context
of the Cassini-constrained scenario, or Scenario III (see Sect. 5.5 for the details). The
corresponding results for the GR-ΛCDM are shown in the third column of Table 5.3, and
the last three rows of Table 5.7. In all these datasets we include the Cassini bound [469]
(see Sect. 5.1 for details). The main purpose of this scenario is to test the ability of the
BD-ΛCDM to fit the observational data with εBD ' 0 and ϕ 6= 1.

• B+H0+Cassini: It contains the very same datasets as in the Baseline+H0 case,
but here we also include the Cassini constraint.

• B+H0+Cassini (No LSS): Here we study the impact of the LSS data in the
context of Scenario III, by removing them from the previous B+H0+Cassini dataset.

• Dataset [447]: To ease the comparison with the results obtained in [447], here
we use exactly the same dataset as in that reference, namely: the Planck 2018
TTTEEE+lowE+lensing likelihood [132], the BAO data from [485, 529, 530], and
the SH0ES prior from [208], H0 = 74.03± 1.42 km/s/Mpc.

• Dataset [447]+LSS: Here we consider an extension of the previous scenario by
adding the LSS data on top of the data from [447].

We believe that all the datasets and scenarios studied in this work cover a wide range of
possibilities and show in great detail which is the phenomenological performance of the
BD-ΛCDM, GR-ΛCDM and GR-XCDM models.
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The speed of gravitational waves at z ≈ 0, cgw, has been recently constrained to be
extremely close to the speed of light, |cgw/c−1| . 5·10−16 [531]. In the BD-ΛCDM model
cgw = c ∀z, so this constraint is automatically fulfilled, see Appendix C.6 and references
[532,533] for further details. We have also checked that the BD-ΛCDM respects the bound
on G(ϕ) at the Big Bang Nucleosynthesis (BBN) epoch, |G(ϕBBN)/GN − 1| . 0.1 [421],
since G(ϕBBN) ' G(ϕini) and our best-fit values satisfy G(ϕini) > 0.9GN regardless of the
dataset under consideration, see the fitting results in Tables 5.3, 5.4, 5.5, 5.6 and 5.10.

To obtain the posterior distributions and corresponding constraints for the various dataset
combinations described above we have run the Monte Carlo sampler Montepython15 [534]
together with the Einstein-Boltzmann system solver CLASS16 [473]. We have duly modified
the latter to implement the background and linear perturbations equations of the BD-
ΛCDM model. We use adiabatic initial conditions for all matter species. Let us note that
the initial perturbation of the BD-field and its time derivative can be set to zero, as the
DM velocity divergence when the synchronous gauge is employed, see Sect. H.5 for a brief
discussion. To get the contour plots and one-dimensional posterior distributions of the
parameters entering the models we have used the Python package GetDist17 [535], and to
compute the full Bayesian evidences for the different models and dataset combinations,
we have employed the code MCEvidence18 [536]. The Deviance Information Criterion
(DIC) [537] has been computed with our own numerical code. The results are displayed
in Tables 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, and also in Fig. 5.9 Figs. 10-11. They are
discussed in the next section.

5.7 Numerical analysis. Results

In the following we put the models under consideration to the test, using the various
datasets described in Sect. 5.6. We will review some statistical concepts of our analysis,
however the reader may refer to Chapter J for additional explanations. Please note that
the notation used in the appendix may differ from that used in this section. Here we
perform the statistical analysis of the models in terms of a joint likelihood function,
which is the product of the individual likelihoods for each data source and includes the
corresponding covariance matrices. For a fairer comparison with the GR-ΛCDM we use
standard information criteria in which the presence of extra parameters in a given model
is conveniently penalized so as to achieve a balanced comparison with the model having
less parameters. More concretely, we employ the full Bayesian evidence to duly quantify
the fitting ability of the BD-ΛCDM model as compared to its GR analogue. Given a
dataset D, the probability of a certain model Mi to be the best one among a given set of
models {M} reads,

P (Mi|D) =
P (Mi)E(D|Mi)

P (D)
, (5.87)

where P (Mi) is the prior probability of the model Mi, P (D) the probability of having
the dataset D, and the normalization condition

∑
j∈{M} P (Mj) = 1 is assumed. The

quantity E(D|Mi) is the so-called marginal likelihood or evidence [197]. If the model Mi

has n parameters contained in the vector ~pMi = (pMi
1 , pMi

2 , ..., pMi
n ), the evidence takes the

following form:
15http://baudren.github.io/montepython.html
16http://lesgourg.github.io/class%_public/class.html
17https://getdist.readthedocs.io/en/latest/
18https://github.com/yabebalFantaye/MCEvidence
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Figure 5.9: The full Bayesian evidence curves for the BD-ΛCDM as compared to the GR-
ΛCDM, using different datasets and as a function of ∆X = ∆εBD/10−2 = ∆ϕini/0.2, with
∆εBD and ∆ϕini being the (flat) prior ranges for εBD and ϕini, respectively. The curves are
computed using the exact evidence formula, Eq. (5.88). The marked evidence ranges conform
with the conventional Jeffreys’ scale, see the main text in Sect. 5.7.

E(D|Mi) =

ˆ
L(D|~pMi ,Mi)π(~pMi)dnpMi , (5.88)

with L(D|~pMi ,Mi) the likelihood and π(~pMi) the prior of the parameters entering the
model Mi. The evidence is larger for those models that have more overlapping vol-
ume between the likelihood and the prior distributions, but penalizes the use of ad-
ditional parameters having a non-null impact on the likelihood. Hence, the evidence
constitutes a good way of quantifying the performance of the model by implementing
in practice the Occam razor principle. We can compare the fitting performance of BD-
ΛCDM and GR-ΛCDM models by assuming equal prior probability for both of them,
i.e. P (BD−ΛCDM) = P (GR−ΛCDM) (“Principle of Insufficient Reason”). The ratio
of their associated probabilities can then be directly written as the ratio of their corre-
sponding evidences, i.e.

P (BD−ΛCDM|D)

P (GR−ΛCDM|D)
=
E(D|BD−ΛCDM)

E(D|GR−ΛCDM)
≡ B , (5.89)

where B is the so-called Bayes ratio (or Bayes factor) and is the quantity we are interested
in. Notice that when B > 1 this means that data prefer the BD-ΛCDM model over
the GR version, but of course depending on how much larger than 1 it is we will have
different levels of statistical significance for such preference. It is common to adopt in the
literature the so-called Jeffreys’ scale to categorize the level of evidence that one can infer
from the computed value of the Bayes ratio. Jeffrey’s scale actually is usually written
not directly in terms of B, but in terms of 2 lnB. The latter is sometimes estimated
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Baseline Baseline+H0

Parameter GR-ΛCDM BD-ΛCDM GR-ΛCDM BD-ΛCDM

H0 (km/s/Mpc) 68.20+0.41
−0.40 68.86+1.15

−1.24 68.57+0.36
−0.42 70.83+0.92

−0.95

ωb 0.02227+0.00019
−0.00018 0.02251+0.00026

−0.00027 0.02238± 0.00019 0.02275+0.00024
−0.00026

ωcdm 0.11763+0.00090
−0.00092 0.11598+0.00159

−0.00152 0.11699+0.00092
−0.00083 0.11574+0.00164

−0.00158

τ 0.050+0.004
−0.008 0.052+0.006

−0.008 0.051+0.005
−0.008 0.053+0.006

−0.008

ns 0.9683+0.0039
−0.0038 0.9775+0.0084

−0.0086 0.9703+0.0038
−0.0036 0.9873+0.0076

−0.0075

σ8 0.797+0.005
−0.006 0.785± 0.013 0.796+0.006

−0.007 0.789± 0.013

rs (Mpc) 147.83+0.29
−0.30 145.89+2.26

−2.49 147.88± 0.31 142.46+1.84
−1.86

εBD - −0.00184+0.00140
−0.00142 - −0.00199+0.00142

−0.00147

ϕini - 0.974+0.027
−0.031 - 0.932+0.022

−0.023

ϕ(0) - 0.960+0.032
−0.037 - 0.918+0.027

−0.029

weff(0) - −0.983+0.015
−0.014 - −0.966+0.012

−0.011

Ġ(0)/G(0)(10−13yr−1) - 2.022+1.585
−1.518 - 2.256+1.658

−1.621

χ2
min 2271.98 2271.82 2285.50 2276.04

2 lnB - -2.26 - +4.92

∆DIC - -0.54 - +4.90

Table 5.3: The mean fit values and 68.3% confidence limits for the considered models us-
ing our baseline dataset in the first block, i.e. SNIa+H(z)+BAO+LSS+CMB TT data, and
baseline+H0 in the second one (cf. Sect. 5.6 for details). These results have been obtained within
our main BD scenario (Scenario II of Sect. 5.5). In all cases a massive neutrino of 0.06 eV has
been included. First we display the fitting results for the six conventional parameters, namely:
H0, the reduced density parameters for baryons (ωb = Ωbh

2) and CDM (ωcdm = Ωcdmh
2), the

reionization optical depth τ , the spectral index ns of the primordial power-law power spectrum,
and, for convenience, instead of the amplitude As of such spectrum we list the values of σ8. We
also include the sound horizon at the baryon drag epoch, rs, obtained as a derived parameter.
Right after we list the values of the free parameters that characterize the BD model: εBD (5.10)
and the initial condition for the BD-field, ϕini. We also include the values of the BD-field, the
(exact) effective EoS parameter (5.63), and the ratio between the derivative and the value of
Newton’s coupling, all computed at z = 0. Finally, we report the values of the minimum of the
χ2-function, χ2

min, the exact Bayes ratios (computed under the conditions explained in the main
text of Sec. 8), and the DIC. It is also worth to remark that the baseline dataset employed here
includes the contribution not only of the spectrum, but also the bispectrum information from
BOSS [216], see Sect. 5.6 for details.

with a simple Schwarz (or Bayesian) information criterion ∆BIC [538, 539], although
2 lnB is a much more rigorous, sophisticated (and difficult to compute) statistics than
just the usual ∆BIC estimates based on using the minimum value of χ2, the number
of points and the number of independent fitting parameters. If 2 lnB lies below 2 in
absolute value, then we can conclude that the evidence in favor of BD-ΛCDM (against
GR-ΛCDM) is at most only weak, and in all cases not conclusive; if 2 < 2 lnB < 6 the
evidence is said to be positive; if, instead, 6 < 2 lnB < 10, then it is considered to be
strong, whereas if 2 lnB > 10 one is entitled to speak of very strong evidence in favor
of the BD-ΛCDM over the GR-ΛCDM model. For more technical details related with
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Baseline+H0+SL

Parameter GR-ΛCDM BD-ΛCDM

H0 (km/s/Mpc) 68.74+0.37
−0.40 71.30+0.80

−0.84

ωb 0.02242+0.00018
−0.00019 0.02281± 0.00025

ωcdm 0.11666+0.00087
−0.00086 0.11560+0.00158

−0.00169

τ 0.051+0.005
−0.008 0.053+0.006

−0.008

ns 0.9708+0.0036
−0.0038 0.9901+0.0075

−0.0070

σ8 0.795+0.006
−0.007 0.789± 0.013

rs (Mpc) 147.93+0.30
−0.31 141.68+1.69

−1.73

εBD - −0.00208+0.00151
−0.00140

ϕini - 0.923+0.019
−0.021

ϕ(0) - 0.908+0.026
−0.028

weff(0) - −0.962± 0.011

Ġ(0)/G(0)(10−13yr−1) - 2.375+1.612
−1.721

χ2
min 2320.40 2305.80

2 lnB - +9.22

∆DIC - +9.15

Table 5.4: Fitting results as in Table 5.3, but adding the Strong-Lensing data, i.e. we use here the dataset
Baseline+H0+SL, for both the GR-ΛCDM and the BD-ΛCDM.

the evidence and the Bayes ratio we refer the reader to [197, 539, 540]. Notice that the
computation of (5.89) is not easy in general; in fact, it can be rather cumbersome since
we usually work with models with a high number of parameters, so the multiple integrals
that we need to compute become quite demanding from the computational point of view.
We have calculated the evidences numerically, of course, processing the Markov chains
obtained from the Monte Carlo analyses carried out with CLASS+MontePython [473,534]
with the numerical code MCEvidence [536], which is publicly available (cf. Sect. 5.6).
We report the values obtained for 2 lnB (5.89) in Tables 5.3, 5.4, 5.5, 5.6, 5.8 and
5.10. Table 5.3 contains the fitting results for the BD- and GR−ΛCDM models obtained
with the Baseline and Baseline+H0 datasets. In Table 5.4 we present the results for the
Baseline+H0+SL dataset. In Table 5.5 we show the output of the fitting analysis for
the same models and using the same data as in Table 5.3, but changing the BOSS data
from [216], which contain both the mater spectrum and bispectrum information, by the
BOSS data from [485], which only incorporate the spectrum part (i.e. the usual matter
power spectrum). In Table 5.6 we plug the results obtained for the BD-ΛCDM with the
alternative datasets described in Sect. 5.6, and in Table 5.7 we show the corresponding
results for the GR-ΛCDM. Next, in Table 5.8 we present the results with the Baseline
and Baseline+H0 data configurations obtained using the GR-XCDM parametrization. In
Table 5.9 we display the values of the parameters σ8 and S8 for the GR- and BD-ΛCDM
models, as well as the parameter S̃8 = S8/

√
ϕ(0) for the BD. Finally, in Table 5.10 we

present the fitting results for the BD-ΛCDM model, considering the (Cassini-constrained)
Scenario III described in Sect. 5.5.
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Spectrum Spectrum+H0

Parameter GR-ΛCDM BD-ΛCDM GR-ΛCDM BD-ΛCDM

H0 (km/s/Mpc) 68.00+0.47
−0.48 68.86+1.27

−1.34 68.61+0.46
−0.49 70.94+1.00

−0.98

ωb 0.02223+0.00020
−0.00021 0.02241± 0.00027 0.02239+0.00020

−0.00019 0.02264+0.00026
−0.00025

ωcdm 0.11809+0.00112
−0.00095 0.11743+0.00168

−0.00170 0.11695± 0.00104 0.11702+0.00169
−0.00167

τ 0.051+0.005
−0.008 0.053+0.006

−0.008 0.053+0.006
−0.008 0.054+0.007

−0.008

ns 0.9673+0.0039
−0.0044 0.9742+0.0086

−0.0090 0.9705+0.0040
−0.0041 0.9845+0.0076

−0.0077

σ8 0.800+0.006
−0.007 0.798± 0.014 0.798± 0.007 0.801+0.015

−0.014

rs (Mpc) 147.75+0.31
−0.35 145.82+2.33

−2.52 147.88+0.33
−0.32 142.55+1.71

−1.96

εBD - −0.00079+0.00158
−0.00157 - −0.00081+0.00162

−0.00165

ϕini - 0.976+0.028
−0.032 - 0.935+0.020

−0.024

ϕ(0) - 0.970+0.034
−0.038 - 0.929+0.028

−0.030

weff(0) - −0.987+0.016
−0.014 - −0.971+0.013

−0.011

Ġ(0)/G(0)(10−13yr−1) - 0.864+1.711
−1.734 - 0.913+1.895

−1.791

χ2
min 2269.04 2268.28 2283.66 2274.64

2 lnB - −2.94 - +3.98

∆DIC - −3.36 - +4.76

Table 5.5: As in 5.3, but replacing the BOSS BAO+LSS data from [216] with those from [485],
which only includes the spectrum information. See the discussion of the results in Sect. 5.7.

Datasets H0 ωm σ8 rs (Mpc) εBD · 103 weff(0) 2 lnB

B+M 71.19+0.92
−1.02 0.1390+0.0014

−0.0015 0.788+0.012
−0.013 141.87+2.06

−1.81 −2.16+1.42
−1.36 −0.963+0.012

−0.011 +10.38

B+H0+pol 69.85+0.81
−0.85 0.1409+0.0012

−0.0011 0.801± 0.011 144.72+1.51
−1.83 −0.30+1.20

−1.23 −0.985+0.012
−0.009 −1.44

B+H0+pol+lens 69.74+0.82
−0.77 0.1416+0.0011

−0.0010 0.808± 0.009 144.66+1.56
−1.61 0.00+1.11

−1.07 −0.986± 0.010 −1.98

B+H0+WL 70.69+0.91
−0.90 0.1398+0.0015

−0.0013 0.794+0.011
−0.012 142.76+1.79

−1.86 −1.42+1.29
−1.37 −0.970+0.011

−0.010 +4.34

CMB+BAO+SNIa 68.63+1.44
−1.50 0.1425± 0.0019 0.818+0.017

−0.018 146.62+2.92
−2.93 1.14+1.84

−1.68 −0.999+0.020
−0.017 −3.00

Table 5.6: Fitting results for the BD-ΛCDM model obtained with some alternative datasets
and in all cases within the main BD Scenario II. Due to the lack of space, we employ some
abbreviations, namely: B for the Baseline dataset described in Sect. 5.6; pol for the Planck 2018
(TE+EE) high-` polarization data; and lens for the CMB lensing. The ωm parameter contains
the contribution of baryons and dark matter. In the last row, CMB refers to the TT+lowE
Planck 2018 likelihood (cf. Sect. 5.6 for details on the data). H0 is given in km/s/Mpc. For a
discussion of the results, see Sect. 5.7.

The evidence (5.88) clearly depends on the priors for the parameters entering the model.
For the 6 parameters in common in the BD- and GR-ΛCDM models, namely, (ωb =
Ωbh

2, ωcdm = Ωcdmh
2, H0, τ, As, ns), if we use the same flat priors in both models they

cancel exactly in the computation of the Bayes ratio (5.89). Thus, the latter does not
depend on the priors for these parameters if their ranges are big enough so as to not alter
the shape of the likelihood severely. The Bayes ratio is, though, sensitive to the priors
for the two additional parameters introduced in the BD-ΛCDM model in our Scenario
II (cf. Sect. 5.5), i.e. ϕini and εBD, since they are not canceled in (5.89). We study the
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dependence of the evidence on these priors in Fig.5.9, where we plot 2 lnB obtained for
the BD-ΛCDM model from different datasets, and as a function of a quantity that we
call ∆X , defined as

∆X ≡
∆εBD

10−2
=

∆ϕini

0.2
, (5.90)

with ∆εBD and ∆ϕini being the flat prior ranges of εBD and ϕini, centered at εBD = 0 and
ϕini = 1, respectively. ∆X will be equal to one when ∆εBD = 10−2 and ∆ϕini = 0.2, which
are natural values for these prior ranges. The former implies ωBD > 100 and the latter
could be associated to the range 0.9 < ϕini < 1.1. We do not expect ωBD . 100 since this
would imply an exceedingly large departure from GR, even at cosmological scales, where
this lower bound was already set using the first releases of WMAP CMB data almost
twenty years ago, see e.g. [541,542]. Regarding the prior range 0.9 < ϕini < 1.1, it is also
quite natural, since this is necessary to satisfy the BBN bounds [421]. In all tables we
report the values of 2 lnB obtained by setting the natural value ∆X = 1, and in Fig.5.9,
as mentioned before, we also show how this quantity changes with the prior width, in
terms of the variable ∆X (5.90).

In the Cassini-constrained Scenario III (cf. again Sect. 5.5), we also allow variations of
ϕini and εBD in our Monte Carlo runs, of course, but the natural prior range for εBD is now
much smaller than in Scenario II, since now we expect it to be more constrained by the
local observations. It is more natural to take in this case a prior range ∆εBD = 5 · 10−5

(still larger than Cassini’s bound), and this is what we do in all the analyses of this
scenario. See the comments in Sect. 5.8, and Table 5.10.

In Tables 5.3, 5.4 and 5.5 apart from the Bayes ratio, we also include the Deviance Infor-
mation Criterion [537], which is strictly speaking an approximation of the exact Bayesian
approach that works fine when the posterior distributions are sufficiently Gaussian. The
DIC is defined as

DIC = χ2(θ̂) + 2pD . (5.91)

Here pD = χ2 − χ2(θ̂) is the effective number of parameters of the model and χ2 the
mean of the overall χ2 distribution. DIC is particularly suitable for us, since we can
easily compute all the quantities involved directly from the Markov chains generated
with MontePython. To compare the ability of the BD- and GR-ΛCDM models to fit the
data, one has to compute the respective differences of DIC values between the first and
second models. They are denoted ∆DIC in our tables, and this quantity is the analogous
to 2 lnB.

5.7.1 Comparing with the XCDM parametrization

As mentioned, in our numerical analysis of the data we also wish to consider the effect of a
simple but powerful DDE parametrization, which is the traditional XCDM [263]. In this
very simple framework, the DE is self-conserved and is associated to some unspecified
entity or fluid (called X) which exists together with ordinary baryonic and cold dark
matter, but it does not have any interaction with them. The energy density of X is
simply given by ρX(a) = ρX0a

−3(1+w0), ρX0 = ρΛ being the current DE density value
and w0 the (constant) EoS parameter of such fluid. More complex parametrizations of
the EoS can be considered, for instance the CPL one [264,265], in which there is a time
evolution of the EoS itself. However, we have previously shown its incapability to improve
the XCDM performance in solving the two tensions, see [244]. Thus, in this work we
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Datasets H0 ωm σ8 rs (Mpc)

B+M 68.64+0.39
−0.38 0.1398± 0.0009 0.796+0.005

−0.006 147.87+0.29
−0.30

B+H0+pol 68.50+0.33
−0.36 0.1408+0.0007

−0.0008 0.799± 0.006 147.53± 0.022

B+H0+pol+lens 68.38+0.35
−0.33 0.1411± 0.0007 0.803± 0.006 147.44+0.22

−0.21

B+H0+WL 68.64± 0.37 0.1399+0.0008
−0.0009 0.795+0.005

−0.007 147.89+0.31
−0.29

CMB+BAO+SNIa 67.91+0.39
−0.41 0.1413± 0.0009 0.805+0.006

−0.007 147.66+0.31
−0.29

B+H0 (No LSS) 68.38+0.42
−0.37 0.1405± 0.0009 0.802+0.007

−0.008 147.76± 0.30

Dataset [447] 68.17+0.43
−0.44 0.1416± 0.0009 0.810+0.006

−0.007 147.35+0.22
−0.24

Dataset [447] + LSS (SP) 68.36± 0.42 0.1412± 0.0009 0.806± 0.006 147.43±0.23

Table 5.7: Different fitting results for the GR-ΛCDM model. The first five rows correspond to
the different non-baseline datasets explored for the BD-ΛCDM in Table 5.6. The last three rows
correspond to other scenarios tested with the BD-ΛCDM model in Table 5.10, see Sect. 5.8 for
more details. H0 is given in km/s/Mpc.

GR-XCDM

Parameter Baseline Baseline+H0

H0 (km/s/Mpc) 67.34+0.63
−0.66 68.40+0.60

−0.62

ωb 0.02235+0.00021
−0.00020 0.02239+0.00019

−0.00020

ωcdm 0.11649+0.00108
−0.00111 0.11671+0.00117

−0.00109

τ 0.053+0.006
−0.008 0.051+0.005

−0.008

ns 0.9709± 0.0043 0.9707+0.0042
−0.0043

σ8 0.782+0.011
−0.010 0.792± 0.011

rs (Mpc) 148.05+0.32
−0.34 147.95+0.33

−0.34

w0 −0.956± 0.026 −0.991+0.026
−0.024

χ2
min 2269.88 2285.22

2 lnB −2.23 −5.21

Table 5.8: As in Table 5.3, but for the XCDM parametrization (within GR). Motivated by
previous works (see e.g. [244]), we have used the (flat) prior −1.1 < w0 < −0.9.

prefer to stay as closer as possible to the standard cosmological model and we will limit
ourselves to analyze the XCDM only. By setting w0 = −1 we retrieve the ΛCDM model
with constant ρΛ. For w0 & −1 the XCDM mimics quintessence, whereas for w0 . −1 it
mimics phantom DE. The fitting results generated from the XCDM on our datasets are
used in our analysis as a figure of merit or benchmark to compare with the corresponding
fitting efficiency of both the BD-ΛCDM and the GR-ΛCDM models. In the next section,
we comment on the comparison.
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5.8 Extended considerations

In this work, we have dealt with Brans-Dicke (BD) theory in extenso. Our main goal
was to assess if BD-gravity can help to smooth out the main two tensions besetting
the usual concordance ΛCDM model (based on GR): i) the H0-tension (the most acute
existing discordance at present), and ii) the σ8-tension, which despite not being so sharp
it often occurs that the (many) models in the market dealing with the former tend to
seriously aggravate the latter. As we have explained in the Introduction, the ‘golden
rule’ to be preserved by the tension solver should be to find a clue on how to tackle
the main discrepancy (on the local H0 parameter) while at the same time to curb the
σ8 one, or at least not to worsen it. We have found that BD-gravity could be a key
paradigm capable of such achievement. Specifically, we have considered the original BD
model with the only addition of a cosmological constant (CC), and we have performed
a comprehensive analysis in the light of a rich and updated set of observations. These
involve a large variety of experimental inputs of various kinds, such as the long chain
SNIa+H(z)+BAO+LSS+CMB of data sources, which we have considered at different
levels and combinations; and tested with the inclusion of other potentially important
factors such as the influence of the bispectrum component in the structure formation data
(apart from the ordinary power spectrum); and also assessed the impact of gravitational
lensing data of different sorts (Weak and Strong-Lensing).

Although BD-gravity is fundamentally different from GR, we have found very useful to
try to pick out possible measurable signs of the new gravitational paradigm by considering
the two frameworks in the (spatially flat) FLRW metric and compare the versions of the
ΛCDM model resulting in each case, which we have called BD-ΛCDM and GR-ΛCDM,
respectively. We have parametrized the departure of the former from the latter at the
background level (cf. Sect. 5.3) and we have seen that BD-ΛCDM can appear in the form
of a dynamical dark energy (DDE) version of the GR-ΛCDM, in which the vacuum energy
density is evolving through a non-trivial EoS (cf. Fig.5.8). We have called it the ‘GR-
picture’ of the BD theory. The resulting effective behavior is ΛCDM-like with, however, a
mild time-evolving quasi-vacuum component. In fact, such behavior is not ‘pure vacuum’
– which is why we call it quasi-vacuum – despite of the fact that the original BD-ΛCDM
theory possesses a rigid cosmological constant. Specifically, using the numerical fitting
results of our analysis we find that such EoS shows up in effective quintessence-like form
at more than 3σ c.l. (this is perfectly appreciable at naked eye in Fig.5.8). Our fit to the
data demonstrates that such an effective representation of BD-gravity can be competitive
with the concordance model with a rigid Λ-term. It may actually create the fiction that
the DE is dynamical when viewed within the GR framework, whilst it is just a rigid CC
in the underlying BD action. The practical outcome is that the BD approach with a CC
definitely helps to smooth out some of the tensions afflicting the ΛCDM in a manner very
similar to the Running Vacuum Model, see e.g. [246–250, 398], and this success might
ultimately reveal the signs of the BD theory. We conclude that finding traces of vacuum
dynamics, accompanied with apparent deviations from the standard matter conservation
law [367] could be the ‘smoking gun’ pointing to the possibility that the gravity theory
sitting behind these effects is not GR but BD.
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Scenarios σ8(GR) σ8(BD) S8(GR) S8(BD) S̃8(BD)

Baseline 0.797+0.005
−0.006 0.785± 0.013 0.800+0.010

−0.011 0.777+0.019
−0.020 0.793± 0.012

Baseline+H0 0.796+0.006
−0.007 0.789± 0.013 0.793+0.011

−0.010 0.758± 0.018 0.792± 0.013

Baseline+H0+SL 0.795+0.006
−0.007 0.789± 0.013 0.789+0.011

−0.010 0.753+0.017
−0.018 0.791+0.012

−0.013

Spectrum 0.800+0.006
−0.007 0.798± 0.014 0.807± 0.013 0.793+0.021

−0.022 0.805± 0.014

Spectrum+H0 0.798± 0.007 0.801+0.015
−0.014 0.794+0.012

−0.013 0.773+0.019
−0.021 0.802+0.013

−0.014

Table 5.9: Fitted values for the σ8(M) (here M stands for GR or BD) obtained under different

dataset configurations. We also include the derived values of S8(M) = σ8

√
Ωm/0.3 and the

renormalized S̃8 = σ8

√
Ω̃m/0.3, with Ω̃m defined as in Sect. 5.2.1. These results correspond to

the main Scenario II of the BD-ΛCDM model.

5.8.1 Alleviating the H0-tension

Our analysis of the BD theory with a CC, taken at face value, suggests that the reason
for the enhancement of H0 in the BD model is because the effective gravitational coupling
acting at cosmological scales, Geff ∼ GN/ϕ, is higher than the one measured on Earth
(see Fig.5.4). This possibility allows the best-fit current energy densities of all the species
to remain compatible at . 1σ c.l. with the ones obtained in the GR-ΛCDM model (cf.
e.g. Tables 5.3, 5.4 and 5.5). Thus, since ϕ < 1 we find that the increase of the Hubble
parameter is basically due to the increase of the effective G, and there is no need for a
strong modification of the energy densities of the various species filling the universe. This
is a welcome feature since the measurable cosmological mass parameter in the BD-ΛCDM
model is, for sufficiently small εBD, not the usual Ωm, but precisely the tilded one, related
to it through Ω̃m = Ωm/ϕ. The latter is about ∼ 8− 9% bigger than its standard model
counterpart (Ω̃m > Ωm) as it follows from Fig.5.4, where we can read off the current
value ϕ(z = 0) ' 0.918. Now, because at the background level it is possible to write
an approximate Friedmann’s equation (5.22) in terms of the tilded parameters, these are
indeed the ones that are actually measured from SNIa and BAO observations in the BD
context19. The differences, however, as we have just pointed out, are not to be attributed
to a change in the physical energy content of matter but to the fact that ϕ < 1 throughout
the entire cosmic history, as clearly shown in Fig.5.4. Obviously, the measurement of
the parameters Ω̃i can be performed through the very same data and procedures well
accounted for in the context of the GR-ΛCDM framework. This explanation is perfectly
consistent with the fact that when the Friedmann’s law is expressed in terms of the effetive
G, as indicated in Eq. (5.20), the local value of the Hubble parameter H0 becomes bigger
owing to Geff = GN/ϕ being bigger than GN . Thus, when we compare the early and
local measurements of H0 we do not meet any anomaly in this approach.

We also recall at this point that there is no correction from ωBD on the effective coupling
Geff , Eq. (5.85), in the local domain. This is because in our context ωBD appears as being
very large owing to the assumed screening of the BD-field caused by the clustered matter
(cf. Sect. 5.5). From Fig.5.4 and Table 5.3 we find that the BD model leads to a value

of H0 a factor G
1/2
eff (z = 0)/G

1/2
N ∼ 1/ϕ1/2(z = 0) = 1/

√
0.918, i.e. ∼ 4.5%, bigger than

19Recall that for εBD 6= 0 the tilded parameters Ω̃i (which were originally defined for εBD = 0) receive a
correction and become the hatted parameters Ω̂i introduced in Eq. (5.43). However, the difference between them
is of O(εBD), see Eq. (5.44), and since |εBD| ∼ O(10−3) it can be ignored.

250



BD-ΛCDM (Scenario III: Cassini-constrained)

Parameter B+H0 (No LSS) B+H0 Dataset [447] Dataset [447] + LSS (SP)

H0 (km/s/Mpc) 70.99+0.94
−0.97 70.80+0.81

−0.91 70.01+0.86
−0.92 70.03+0.90

−0.88

ωb 0.02257± 0.00021 0.02256+0.00019
−0.00020 0.02271± 0.00016 0.02272+0.00015

−0.00016

ωcdm 0.11839+0.00093
−0.00094 0.11748± 0.00089 0.11885+0.00092

−0.00095 0.11827+0.00089
−0.00093

τ 0.057+0.007
−0.008 0.050+0.004

−0.008 0.061+0.007
−0.008 0.058+0.006

−0.008

ns 0.9824+0.0057
−0.0058 0.9811+0.0051

−0.0052 0.9783+0.0052
−0.0059 0.9701+0.0056

−0.0054

σ8 0.815+0.008
−0.009 0.804+0.006

−0.007 0.817± 0.007 0.812+0.006
−0.007

rs (Mpc) 142.14+1.91
−1.72 143.31+1.72

−1.63 143.58+1.62
−1.55 144.10+1.62

−1.52

εBD −0.00002± 0.00002 −0.00002± 0.00002 −0.00002± 0.00002 −0.00002± 0.00002

ϕini 0.933± 0.021 0.944± 0.020 0.955+0.018
−0.019 0.960+0.020

−0.018

ϕ(0) 0.933+0.020
−0.021 0.944+0.019

−0.020 0.955+0.018
−0.019 0.960+0.020

−0.017

weff(0) −0.972± 0.009 −0.977± 0.008 −0.981+0.008
−0.007 −0.983± 0.008

Ġ(0)/G(0)(10−13yr−1) 0.025+0.025
−0.026 0.026+0.027

−0.028 0.023+0.026
−0.027 0.020± 0.026

χ2
min 2256.14 2278.34 2797.44 2812.68

2 lnB +9.03 +5.21 +3.45 +2.21

Table 5.10: Fitting results for the BD-ΛCDM, in the context of the BD-Scenario III explained
in Sect. 5.5 under different datasets. As characteristic of Scenario III, in all of these datasets the
Cassini constraint on the post-Newtonian parameter γPN has been imposed [469]. In the first two
fitting columns we use the Baseline+H0 dataset described in Sect. 5.6. However, we exclude the
LSS data in the first column while it is kept in the second. In the third and fourth fitting columns
we report on the results obtained using the very same dataset as in Ref. [447], just to ease the
comparison between the BD-ΛCDM and the variable G model studied in that reference (cf. their
Table 1). This dataset includes the Planck 2018 TTTEEE+lensing likelihood [132], BAO data
from [485, 529, 530] and the SH0ES prior from [208]. In the last fitting column, however, we
add the LSS data to the previous set but with no bispectrum (cf. Table 5.2 and Sect. 5.6). The
corresponding results for the GR-ΛCDM can be found in Table 5.3 and Table 5.7.

the one inferred from the CMB in the GR-ΛCDM model, in which Geff = GN (∀z). It
is reassuring to realize that such a ‘renormalization factor’ can enhance the low Planck
2018 CMB measurement of the Hubble parameter (viz. H0 = 67.4±0.5 km/s/Mpc [132])
up to the range of 70 − 71km/s/Mpc (cf. e.g. Tables 5.3, 5.4, 5.5 and 5.6), hence
much closer to the local measurements. For example, SH0ES yields H0 = (73.5 ± 1.4)
km/s/Mpc [209]; and when the latter is combined with Strong-Lensing data from the
H0LICOW collab. [211] it leads to H0 = (73.42± 1.09) km/s/Mpc. This combined value
is 5σ at odds with the Planck 2018 measurement, a serious tension.

On the other hand, if we compare e.g. the fitting value predicted within the BD-ΛCDM
model from Table 5.3 (namely H0 = 70.83+0.92

−0.95 km/s/Mpc) with the aforementioned
SH0ES determination, we can see that the difference is of only 1.58σ. If we next com-
pare our fitting result from Table 4 (H0 = 71.30+0.80

−0.84 km/s/Mpc), which incorporates
the H0LICOW Strong-Lensing data in the fit as well, with the combined SH0ES and
H0LICOW result (viz. the one which is in 5σ tension with the CMB value) we obtain
once more an inconspicuous tension of only 1.55σ. In either case it is far away from any
perturbing discrepancy. In fact, no discrepancy which is not reaching a significance of at
least 3σ can be considered sufficiently worrisome.
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Figure 5.10: Triangular matrix containing the two-dimensional marginalized distributions
for some relevant combinations of parameters in the BD-ΛCDM model (at 1σ and 2σ c.l.),
together with the corresponding one-dimensional marginalized likelihoods for each of them. H0

is expressed in km/s/Mpc, and rs in Mpc. See Table 5.3 and Table 5.4 for the numerical fitting
results.

5.8.2 Alleviating the σ8-tension

Furthermore, the smoothing of the tension applies to the σ8 parameter as well, with the
result that it essentially disappears within a similar level of inconspicuousness. In fact,
values such as σ8 = 0.789±0.013 and S̃8 = 0.792±0.013 (obtained within the Baseline+H0

dataset, see Table 5.9) are in good agreement with weak gravitational lensing observations
derived from shear data (cf. the WL data block mentioned in Sec. Sect. 5.6). Let us
take the value by Joudaki et al. 2018 of the combined observable S8 = 0.742 ± 0.035,
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Figure 5.11: Constraints obtained for σ8 and S̃8 versus H0 (in km/s/Mpc) from the fit-
ting analyses of the GR- and BD-ΛCDM models, and the GR-XCDM parametrization. We
show both, the contour lines in the corresponding planes of parameter space, and the associ-
ated marginalized one-dimensional posteriors. The centering of the parameters in the ranges
σ8 < 0.80 and H0 & 71 km/s/Mpc is a clear sign of the smoothening of the σ8-tension and,
more conspicuously, of the H0 one within the BD-ΛCDM model. We can also see that while a
simple XCDM parametrization for the DE can help to diminish σ8 as compared to the concor-
dance model, it is however unable to improve the H0 tension, which is kept at a similar level as
within the concordance model.

for example, obtained by KiDS-450, 2dFLenS and BOSS collaborations from a joint
analysis of weak gravitational lensing tomography and overlapping redshift-space galaxy
clustering [218]. These observations can be compared with our prediction for S8 =

σ8

√
Ωm/0.3 and with the ‘renormalized’ form of that quantity within the BD-ΛCDM

model, namely S̃8 = σ8

√
Ω̃m/0.3, which depends on the modified cosmological parameter

Ω̃m, which is slightly higher, recall our Eq. (5.23)20. Both S8 and S̃8 are displayed together
in Table 5.9 for the main scenarios, also in company with σ8 values for the GR and BD
models. Differences of the mentioned experimental measurements with respect to e.g.
our prediction for the Baseline+H0 dataset, are at the level of 0.5σ − 1.3σ depending on
whether we use S8 or S̃8, whence statistically irrelevant in any case. More details can be
appraised on some of these observables and their correlation with H0 in Figs. 10 and 11,
on which we shall further comment later on.

20Although we could use the hatted parameter Ŝ8 = σ8

√
Ω̂m/0.3, instead of S̃8, we have already pointed out

that the difference between Ω̂m and Ω̃m is negligible for |εBD| ∼ O(10−3), and so is between Ŝ8 and S̃8.
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5.8.3 Comparing different scenarios

We have also tested the performance of the BD- and GR-ΛCDM models when we include
the CMB high-` (TE+EE) polarization data from Planck 2018, with and without the
CMB lensing, in combination with the baseline dataset and the SH0ES prior on H0 (cf.
Table 5.6 and Table 5.7). The values of the Hubble parameter in these cases are a little
bit lower than when we consider only the temperature and low-l polarization (TT+lowE)
CMB data, but the tension is nevertheless significantly reduced, being now of only ∼ 2.2σ
c.l., whereas in the GR-ΛCDM model it is kept at the ∼ 3.5σ level. The values of σ8

are still low, ∼ 0.80 − 0.81. The information criteria in these cases, though, have no
preference for any of the two models, they are not conclusive.

We also examine the results that are obtained when we do not include in our fitting
analyses any of the data sources that trigger the tensions. We consider here the CMB,
BAO and SNIa datasets (denoted as CMB+BAO+SNIa in Table 5.6 and Table 5.7), but
exclude the use of the SH0ES prior on H0 and the LSS data. As expected, the evidence
for the BD model decreases since now we do not give to it the chance of showing its power.
Even though the description of the data improves, it is not enough to compensate for the
penalty received owing to the use of the two additional parameters (εBD, ϕini), and in this
case we read 2 lnB = −3.00 (from Table 5.6). Thus, there is here a marginal preference
for the GR scenario, but as previously mentioned, this is completely normal, since we are
removing precisely the data sources whose correct description demands for new physics.
Even so, the H0-tension is again remarkably reduced from 3.8σ in GR-ΛCDM to only
2.4σ in the BD-ΛCDM. The respective values of σ8 remain compatible with 0.80 within
∼ 1σ.

It is also interesting to compare the results that we have obtained within the BD frame-
work with other approaches in the literature, in which the variation of G is dealt with
as a small departure from GR, namely in a context where the action still contains a
large mass scale M near the Planck mass mPl, together with some scalar field which
parametrizes the deviations from it. This is of course fundamentally different from the
BD paradigm but it bears relation owing to the variation of the effective G, and it has
also been used to try to smooth out the tensions. However, as already mentioned (see
Sect. 5.2), it is not easy at all for a given model to fulfill the ‘golden rule’, i.e. to loosen
the two tensions at a time, or just to alleviate one of them without worsening the other.
Different proposals have appeared in the market trying to curb the H0-tension, e.g. the
so-called early dark energy models [251,253,254], and the model with variable G recently
considered in [447–449]. Although the physical mechanism of the EDE and the afore-
mentioned models with variable G is of course very different, their aim is pretty similar.
They reduce the sound horizon rs at recombination in order to force the increase of the
Hubble function in the late universe. This allows them to generate larger values of H0 in
order to keep a good fit to the CMB and BAO data, but this happens only at the expense
of increasing the tension in σ8, since they do not have any compensation mechanism able
to keep the structure formation in the late universe at low enough levels. Some of these
models appear not to be particularly disfavored notwithstanding. But this is simply be-
cause they did not use LSS data in their fits, i.e. they did not put their models to the test
of structure formation and for this reason they have more margin to adjust the remaining
observables without getting any statistical punishment. So the fact that the significant
increase of σ8 that they find is not statistically penalized is precisely because they do not
use LSS data, such as e.g. those on the observable f(z)σ8(z) displayed in our Table 5.2.
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In this respect, EDE cosmologies are an example; they seem to be unable to alleviate the
H0-tension when LSS data are taken into account, as shown in [252].

5.8.4 Imposing the Cassini constraint

To further illustrate the capability of the BD-ΛCDM model to fit the data under more
severe conditions, in Table 5.10 we consider four possible settings to fit our Cassini-
constrained BD-Scenario III defined in Sect. 5.5. Recall that this BD scenario involves
the stringent Cassini bound on the post-Newtonian parameter γPN [469], which we have
discussed in Sec. 5.1. The first two fitting columns of Table 5.10 correspond to our usual
Baseline+H0 dataset, in one case (first fitting column in that table) we omit the LSS
data, whereas in the second column we restore it. In this way we can check the effect
of the structure formation data on the goodness of the fit. The comparison between the
results presented in these two columns shows, first and foremost, that the Cassini bound
does not have a drastically nullifying effect, namely it does not render the BD-ΛCDM
model irrelevant to the extent of making it indistinguishable from GR-ΛCDM, not at
all, since the quality of the fits is still fairly high (confer the Bayes factors in the last
row). In truth, the fit quality is still comparable to that of the Baseline+H0 scenario
(cf. Table 5.3). However, the description of the LSS data is naturally poorer since εBD

is smaller and the model cannot handle so well the features of the structure formation
epoch, thus yielding slightly higher values of σ8. Second, the fact that the scenario with-
out LSS furnishes a higher Bayes factor just exemplifies the aforementioned circumstance
that when cosmological models are tested without using this kind of data the results may
in fact not be sufficiently reliable. When the LSS data enter the fit (third fitting colum in
that table), we observe, interestingly enough, that the BD-ΛCDM model is still able to
keep H0 in the safe range, it does improve the value of σ8 as well (i.e. it becomes lower)
and, on top of that, it carries a (‘smoking gun’) signal of almost 2.9σ c.l. – encoded in
the value of weff – pointing to quintessence-like behavior. Overall it is quite encouraging
since it shows that the Cassini bound does not exceedingly hamper the BD-ΛCDM model
capabilities. Such bound constraints the time evolution of ϕ (because |εBD| is forced to be
much smaller) but it does not preclude ϕ from choosing a suitable value in compensation
(cf. BD-Scenario III in Sect. 5.5).

In the last two columns of Table 5.10, we can further check what are the changes in
the previous fitting results when we use a more restricted dataset, e.g. the one used
in Ref. [447], in which the Cassini bound is also implemented. These authors study a
model which represents a modification of GR through an effective G ∼ 1/M2, with M a
mass very near the Planck mass, mPl, which is allowed to change slowly through a scalar
field φ as follows: M2 → M2 + βφ2, where β is a small (dimensionless) parameter. The
authors assume that the Cassini bound on the post-Newtonian parameter γPN [469] is in
force (see Sect. 5.6 for details). However, they do not consider LSS data (only CMB and
BAO). We may compare the results they obtain within that variable G model (cf. their
Table 1) with those we obtain within the BD-Scenario III under the very same dataset
as these authors. The results are displayed in the third fitting column of Table 5.10.
We obtain H0 = (70.01+0.86

−0.92) km/s/Mpc and σ8 = 0.817 ± 0.007, whereas they obtain
H0 = (69.2+0.62

−0.75) km/s/Mpc and σ8 = 0.843+0.015
−0.024. Clearly, the BD-ΛCDM is able to

produce larger central values of H0 and lower values of σ8, even under the Cassini bound,
although the differences are within errors. The value of 2 ln B lies around +3.5 and hence
points to a mild positive evidence in favor of the BD model. This is consistent with the
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associated deviation we find of G(0) from GN at 2.43σ c.l., and with a signal of effective
quintessence at 2.53σ c.l. within the GR-picture.

Let us now consider what is obtained if we add up the LSS data to this same BD-
Scenario III, still with the restricted dataset od Ref. [447]. As expected, the inclusion of
the structure formation data pushes the value of σ8 = 0.812+0.006

−0.007 down as compared to
their absence (σ8 = 0.817±0.007). This is the most remarkable difference between the two
cases, as one cannot appreciate significant changes in the other parameters. Something
very similar happens when we compare the values of σ8 of the first two fitting columns
of Table 5.10, in which we consider the B+H0 dataset without LSS data (first fitting
column) and with LSS data (second fitting column). The relative improvement w.r.t.
the model of [447] is therefore greater in the presence of LSS data, whose use has been
omitted in that reference. In that variable G model one finds a larger value of H(z) at
recombination thanks to the larger values of G in that epoch, but at present G is forced
to be almost equal to GN (being the differences not relevant for cosmology). This means
that: (i) in that model G decreases with time, which leads to a kind of effective εBD > 0;
(ii) the model cannot increase H0 with a large value of G(z = 0). Both facts do limit
significantly the effectiveness of the model in loosening the tensions. In the BD-ΛCDM
model under consideration, instead, we find that G has to be ∼ 8 − 9% larger than GN

not only in the pre-recombination universe, but also at present, and this allows to reduce
significally the H0-tension. Moreover, we find that a mild increase of the cosmological G
with the expansion leads also to an alleviation of the σ8-tension.

Under all of the datasets studied in Table 5.10 we obtain central values of |εBD| ∼ O(10−5),
which are compatible with 0 at 1σ. Notice that this value is just of order of the Cassini
bound on εBD, as could be expected. Notwithstanding, and remarkably enough, the
stringent bound imposed by the Cassini constraint, which enforces εBD to remain two
orders of magnitude lower than in the main Baseline scenarios, is nevertheless insufficient
to wipe out the positive effects from the BD-ΛCDM model. They are still capable to
emerge with a sizeable part of the genuine BD signal. This is, as anticipated in Sect. (5.5),
mainly due to the fact that the Cassini bound cannot restrict the value of the BD field
ϕ, only its time evolution.

5.8.5 More on alleviating simultaneously the two tensions

A few additional comments on our results concerning the parameters H0 and σ8 are now in
order. Their overall impact can be better assessed by examining the triangular matrix of
fitted contours involving all the main parameters, as shown in Fig.5.10, in which we offer
the numerical results of several superimposed analyses based on different datasets, all of
them within Baseline scenarios. We project the contour lines in the corresponding planes
of parameter space, and show the associated marginalized one-dimensional posteriors.
The fitted value of the EoS parameter at z = 0 shown there, weff(0), is to be understood,
of course, as a derived parameter from the prime ones of the fit, but we include this
information along with the other parameters in order to further display the significance
of the obtained signal: & 3σ quintessence-like behavior. Such signal, therefore, mimics
‘GR+ DDE’ and hints at something beyond pure GR-ΛCDM. What we find in our study
is that such time-evolving DE behavior is actually of quasi-vacuum type and appears as
a kind of signature of the underlying BD theory21.

21As we recall in subsection F.5 of Appendix F, such kind of dynamical behavior of the vacuum is characteristic
of the Running Vacuum Model (RVM), a version of the ΛCDM in which the vacuum energy density is not just a
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Figure 10 provides a truly panoramic and graphical view of our main fitting results, and
from where we can comfortably judge the impact of the BD framework for describing the
overall cosmological data. It is fair to say that it appears at a level highly competitive
with GR – in fact, superior to it. In all datasets involving the local H0 input in the fit
analyses, the improvement is substantial and manifest. Let us stand out only three of the
entries in that graphical matrix: i) for the parameters (σ8, H0), all the contours in the
main dataset scenarios are centered around values of σ8 < 0.80 and H0 & 71 km/s/Mpc,
which are the coveted ranges for every model aiming at smoothing the two tensions at a
time; ii) for the pair (H0, rs), the contours are centered around the same range of relevant
H0 values as before, and also around values of the comoving sound horizon (at the baryon
drag epoch) rs . 142 Mpc, these being significantly smaller than those of the concordance
ΛCDM (cf. Table 5.7) and hence consistent with larger values of the expansion rate at
that epoch; iii) and for (weff(0), H0), the relevant range H0 & 71 km/s/Mpc is once more
picked out, together with an effective quintessence signal weff(0) > −1 at more than 3σ
(specifically 3.45σ for the scenario of Table 5.4, in which strong lensing data are included
in the fit).

It is also interesting to focus once more our attention on Fig.5.11, where we provide
devoted contours involving both S̃8 and σ8 versus H0. On top of the observations we have
previously made on these observables, we can compare here our basic dataset scenarios
for the BD-ΛCDM model with the yield of a simple XCDM parametrization of the DDE.
In previous studies we had already shown that such parametrization can help to deal
with the σ8 tension [244]. Nonetheless, as we can see here, it proves completely impotent
for solving or minimally helping to alleviate the H0-tension since the values predicted for
this parameter stay as low as in the concordance model. This shows, once more, that in
order to address a possible solution to the two tensions simultaneously, it is not enough
to have just some form of dynamics in the DE sector; one really needs a truly specific
one, e.g. the one provided (in an effective way) by the BD-ΛCDM model.

5.8.6 Predicted relative variation of the effective gravitational strength

In the context of the BD framework it is imperative, in fact mandatory, to discuss the
current values of the relative variation of the effective gravitational strength, viz. of
Ġ(0)/G(0), which follow from our fitting analyses (see the main Table 5.3, Table 5.4
and Table 5.5). The possible time evolution of that quantity hinges directly on εBD,
of course, since the latter is the parameter that controls the (cosmological) evolution
of the gravitational coupling in the BD theory. It is easy to see from Eq. (5.10) that
Ġ(0)/G(0) = −ϕ̇(0)/ϕ(0) ' −εBDH0, where we use the fact that ϕ ∼ aεBD in the
matter-dominated epoch (cf. Appendix G). Recalling that H0 ' 7 × 10−11 yr−1 (for
h ' 0.70), we find Ġ(0)/G(0) ' −εBD · 10−10 yr−1. Under our main BD-Scenario II
(cf. Sect. 5.5) we obtain values for Ġ(0)/G(0) of order O(10−13) yr−1 (and positive), just
because εBD ∼ O(10−3) (and negative). Being Ġ(0)/G(0) > 0 it means that the effective
gravitational coupling obtained by our global cosmological fit increases with the expan-
sion, and hence it was smaller in the past. This suggests that the sign εBD < 0, which
is directly picked out by the data, prefers a kind of asymptotically free behavior for the
gravitational coupling since the epochs in the past are more energetic, in fact character-
ized by larger values of H (with natural dimension of energy). The central values show a

constant but involves also a dynamical term ∼ H2. The description of the BD-ΛCDM model in the GR-picture
mimics a behavior of this sort [370,371].
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Figure 5.12: CMB temperature power spectrum for the GR-ΛCDM (in black) and BD-ΛCDM
(in orange), obtained from the fitting results within the Baseline+H0 dataset (cf. Table 5.3 and
Sec. 5.6). We plot the central curves together with the corresponding 1σ bands. In the inner
plot we zoom in the multipole range l ∈ [0, 30] and include the Planck 2018 [132] data error
bars (in green). At low multipoles (l . 30) the BD-ΛCDM model produces less power than the
concordance GR-ΛCDM model owing to the suppression of the Integrated Sachs-Wolfe effect
that we have discussed in Sect. 5.2. The differences are & 1σ, and allow to soften a well-known
low-multipole CMB anomaly. See the main text for further discussion.

mild time variation at present, at a level of 1.3σ, both for εBD and Ġ(0)/G(0), when the
bispectrum data from BOSS is also included in the analysis (cf. Table 5.3 and Table 5.4).
Such departure goes below 1σ level when only the spectrum is considered (see Table 5.5).
In the context of the BD-Scenario III, in which εBD is very tightly constrained by the
Cassini bound [469], namely at a level of O(10−5), we find Ġ(0)/G(0) ∼ 10−15 yr−1, which
is compatible with 0 at 1σ. All that said, we should emphasize once more that the fitting
values that we obtain for Ġ(0)/G(0) refer to the cosmological time variation of G and,
therefore, cannot be directly compared with constraints existing in the literature based
on strict local gravity measurements, such as e.g. those from the lunar laser ranging
experiment – Ġ(0)/G(0) = (2 ± 7) · 10−13yr−1 [543] – (see e.g. the review [421] for a
detailed presentation of many other local constraints on Ġ(0)/G(0)). Even though this
bound turns out to be preserved within our analysis, it is not in force at the cosmological
level provided an screening mechanism acting at these scales is assumed, as in our case.
Thus, the local measurements have no bearing a priori on the BD-ΛCDM cosmology.
The opposite may not be true, for despite the fact that the values reported in our tables
are model-dependent, they prove to be quite efficient and show that the cosmological
observations can compete in precision with the local measurements.

5.8.7 One more bonus: suppressing the power at low multipoles

An additional bonus from the BD cosmology is worth mentioning before we close this
lengthy study. It is found in the description of the CMB temperature anisotropies. As
we have discussed in Sect. 5.2, the BD-ΛCDM model is, in principle, able to suppress the
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Baseline Baseline+H0

Parameter GR-ΛCDM BD-ΛCDM GR-ΛCDM BD-ΛCDM

H0 (km/s/Mpc) 67.75+0.46
−0.48 68.86+1.26

−1.22 68.35+0.49
−0.46 70.81+0.95

−0.92

ωb 0.02231+0.00018
−0.00020 0.02214± 0.00031 0.02239± 0.00019 0.02239+0.00029

−0.00032

ωcdm 0.11655+0.00110
−0.00111 0.11860+0.00194

−0.00197 0.11625+0.00099
−0.00106 0.11821+0.00214

−0.00200

τ 0.053+0.006
−0.008 0.054+0.006

−0.008 0.053+0.006
−0.008 0.054+0.006

−0.009

ns 0.9706+0.0041
−0.0040 0.9691+0.0104

−0.0093 0.9717+0.0041
−0.0042 0.9791+0.0097

−0.0090

σ8 0.770+0.016
−0.018 0.759+0.0184

−0.0163 0.780+0.018
−0.015 0.762+0.021

−0.018

rs (Mpc) 148.03± 0.33 146.16+2.40
−2.58 148.04+0.32

−0.34 142.81+1.91
−2.03

mν (eV) 0.161+0.058
−0.059 0.409+0.139

−0.198 0.118+0.053
−0.058 0.409+0.183

−0.228

εBD - 0.00459+0.00316
−0.00319 - 0.00433+0.00395

−0.00336

ϕini - 0.979+0.028
−0.032 - 0.938+0.023

−0.024

ϕ(0) - 1.016+0.041
−0.049 - 0.972+0.042

−0.043

ωeff (0) - −1.005+0.021
−0.017 - −0.986+0.017

−0.016

Ġ(0)/G(0)(10−13yr−1) - −5.048+3.485
−3.434 - −4.915+3.749

−4.501

χ2
min 2270.54 2268.44 2285.02 2274.76

2 lnB - -0.12 - +9.34

∆DIC - -0.81 - +8.22

Table 5.11: As in Table 5.3, but here we allow the variation of the mass of the massive neutrino
(mν) in the Monte Carlo routine, instead of setting it to 0.06 eV. The other two neutrinos remain
massless. We have used the same conservative prior range for mν ∈ [0, 1] eV in both, the GR-
and BD-ΛCDM models.

power at low multipoles (l . 30), thereby softening one of the so-called CMB anomalies
that are encountered in the context of the GR-ΛCDM model. This is basically due to
the low values of ϕ < 1 preferred by the data, which in turn produce a suppression of the
Integrated Sachs-Wolfe (ISW) effect [478,479]. We have confirmed that this suppression
actually occurs for the best-fit values of the parameters in our analysis, cf. Fig.5.12. The
aforementioned anomaly is not very severe, since the power at low multipoles is affected
by a large cosmic variance and cannot be measured very precisely. Nevertheless, it is
a subtle anomaly which has been there unaccounted for a long time and could not be
improved in a consistent way: that is to say, usually models ameliorating the low tail
of the spectrum do spoil the high part of it. However, here the suppression of power
with respect to the GR-ΛCDM at l . 30 is fully consistent and is another very welcome
feature of the BD-ΛCDM model, which is not easy at all to attain. It is interesting to
mention that the ISW effect can be probed by cross correlating the CMB temperature
maps with the LSS data, e.g. with foreground galaxies number counts, especially if using
future surveys which should have much smaller uncertainties. This can be a useful probe
for DE and a possible distinctive signature for DDE theories [544, 545] 22. The upshot
of our investigation is that once more the ‘golden rule’ mentioned in the Introduction
is preserved here and the curing effects from the BD-ΛCDM stay aligned: the three
tensions of the GR-ΛCDM (H0, σ8 and the exceeding CMB power at low multipoles) can
be improved at a time.

22We thank L. Pogosian for interesting comments along these lines.
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5.8.8 The effect of massive neutrinos

Finally, it is worth assessing the impact of leaving the sum of the three neutrino masses
(Mν ≡

∑
mν) as a free parameter, rather than fixing it. We model this scenario in two

different ways:

• Considering one massive (mν) and two massless neutrinos, so Mν = mν . Here we
try to mimic the physics encountered when the neutrino masses follow the normal
hierarchy, in which one of the neutrinos is much heavier than the other two, for
reasonable values of Mν .

• Considering three massive neutrinos of equal mass mν , such that Mν = 3mν . This
is the degenerated case, utilized also in the analysis by Planck 2018 [132] (cf. Sec.
7.5.1 therein).

In both cases, the BD-ΛCDM has one additional parameter w.r.t. the same model with
fixed mass Mν = mν = 0.06 eV that we have discussed in the previous sections, and
three more than the vanilla ΛCDM model: (εBD, ϕini,Mν). Upon taking into account the
constraints obtained from neutrino oscillation experiments on the mass-squared splittings
through the corresponding likelihoods we would perhaps find more precise bounds on the
sum of the neutrino masses [546], but here we want to carry out a more qualitative
analysis to study how massive neutrinos may impact on our results, considering only
cosmological data. The results of the first mass scenario are shown in Table 5.11. Those
for the second scenario are not tabulated, but are commented below.

As can be seen from Table 5.11, the effect of having a neutrino with an adjustable mass
picked out by the fitting process is non-negligible. It produces a significant lowering of
the value of σ8 while preserving the value of H0 at a level comparable to the previous
tables in which the neutrino had a fixed mass of 0.06 eV, therefore preserving what we
have called the ‘golden rule’. Let us note, however, that the sign of εBD has changed now
with respect to the situation with a fixed light mass, it is no longer negative but positive
and implies a value of the BD parameter of ωBD ' 230. Last but not least, the fitted
value of the neutrino mass is mν = 0.409 eV, which is significantly higher than the upper
bound placed by Planck 2018 under the combination TTTEEE+lowE+lensing+BAO:
Mν ≡

∑
mν < 0.120 eV (95% c.l.) [132].

Similar results are obtained with the second mass scenario mentioned above. Let us
summarize them. For the Baseline+H0 dataset, the common fitted mass value obtained
for the three neutrinos is mν = 0.120+0.054

−0.068 eV, which means that Mν ' 0.360 eV, slightly
lower than in the first scenario. The corresponding BD parameter reads comparable,
ωBD ' 261, and the values for σ8 and H0 are also very close to the previous case, so the
two scenarios share similar advantages. The fact that the Planck 2018 upper limit for Mν

is overshooted in both neutrino mass scenarios does not necessarily exclude them, as the
limits on Mν are model-dependent, see e.g. [546] and [449]. In particular, Planck 2018
obviously used GR-ΛCDM. We can check in Table 5.11 that the neutrino mass values for
BD-ΛCDM are substantially different. The results that we have obtain for GR-ΛCDM
are fully compatible with those from Planck 2018.

We conclude that the influence of neutrino masses on the BD-ΛCDM fitting results is
potentially significant, but it cannot be settled at this point. The subject obviously
deserves further consideration in the future.
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5.9 Discussion of the chapter

To summarize, we have presented a rather comprehensive work on the current status of
the Brans-Dicke theory with a cosmological constant in the light of the modern observa-
tions. Such framework constitutes a new version of the concordance ΛCDM model in the
context of a distinct gravity paradigm, in which the gravitational constant is no longer
a fundamental constant of Nature but a dynamical field. We have called this framework
BD-ΛCDM model to distinguish it from the conventional one, the GR-ΛCDM model,
based on General Relativity. This chapter is based in our paper [278] which, at the same
time, is an expanded and fully updated analysis of our previous and much shorter presen-
tation [279], in which we have replaced the Planck 2015 data by the Planck 2018 data, and
we have included additional sets of modern cosmological observations. We reconfirm the
results of [279] and provide now a bunch of new results which fit in with the conclusions
of our previous work and reinforce its theses. To wit: in the light of the figures and tables
that we have presented in the current study we may assert that the BD-ΛCDM model
fares better not only as compared to the GR-ΛCDM with a rigid cosmological constant
(cf. Tables 5.3, 5.4, 5.5, 5.6, 5.7 and 5.10) but also when the CC term is replaced with
a dynamical parametrization of the DE, such as the traditional XCDM, which acts as a
benchmark (cf. Table 5.8). We find that the GR-XCDM is completely unable to enhance
the value of H0 beyond that of the concordance model. In particular, in Table 5.3 and
Table 5.4 we can see that the information criteria (Bayes factor and Deviance Informa-
tion Criterion) do favor significantly and consistently the BD-ΛCDM model as compared
to GR-ΛCDM and GR-XCDM. There is a very good resonance between the Bayesian
evidence criterion and the DIC differences, which definitely uphold the BD framework
at a level of +5 units for the Baseline+H0 dataset scenario, meaning that the degree of
support of BD versus GR is in between positive to strong (cf. Sec. 5.7). This support is
further enhanced up to more than +9 units, hence in between strong to very strong, for
the case when we include the Strong-Lensing data in the fit (see Table 5.4). The exact
Bayesian evidence curves computed in Fig. 5.9 reconfirm these results in a graphical way.
The pure baseline dataset scenario (in which the local H0 value is not included) shows
weak evidence; however, as soon as the local H0 value is fitted along with the remaining
parameters the evidence increases rapidly and steadily, reaching the status of positive,
strong and almost very strong depending on the datasets.

Another dataset scenario which is particularly favored in our analysis is the one based
on considering the effective calibration prior on the absolute magnitude M of the nearer
SNIa data in the distance ladder (as defined in Sect. 5.6), instead of the local value H0

from SH0ES. The results for the Baseline dataset in combination with M (denoted B+M)
can be read off from Table 5.6 (first row). We can see it yields a tantalizing overall out-
put, with values of H0 and σ8 in the correct ranges for solving the two tensions, and
fully compatible with the results obtained using the prior on H0, as expected. In addi-
tion, the corresponding Bayes factor for this scenario points to a remarkably high value
2 lnB > +10, thereby carrying a very strong Bayesian evidence, in fact comparable to
the Baseline+H0+SL scenario of Table 5.4. In all of the mentioned cases in our summary
the information criteria definitely endorse the BD-cosmology versus the GR one.

Finally, we have also assessed the influence of the neutrino masses in the context of
the BD-ΛCDM model, see Table 5.11. We have found that massive neutrinos can help to
further reduce the predicted value of σ8 to the level of what is precisely needed to describe
the weak gravitational lensing observations derived from direct shear data. This would

261



completely dissolve the σ8-tension without detriment of the positive results obtained to
loosen the H0-tension, i.e. by preserving the ‘golden rule’. Such a conclusion is, however,
provisional as it requires a devoted study of the neutrino sector (extending the analysis
of Sect. 5.8.8).

Overall, the statistical support in favor of the BD-ΛCDM model against the concordance
GR-ΛCDM model is rather significant. It is not only that the H0 and σ8 tensions are
simultaneously dwarfed to a level where they are both rendered inessential (. 1.5σ),
but also that all tested BD scenarios involving the local H0 value provide a much better
global fit than the concordance model on the basis of a rich and updated set of modern
observations from all the main cosmological data sources available at present. If we take
into account that the BD-ΛCDM framework is not just some ad hoc phenomenological
toy-model, or some last-minute smart parametrization just concocted to solve or mit-
igate the two tensions, but the next-to-leading fundamental theory candidate directly
competing with GR, it may give us a sense of the potential significance of these results.
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Chapter 6

Running vacuum against the H0 and
σ8 tensions

Despite Einstein’s original formulation [40], in which the cosmological term Λ is treated
as a strict constant in the gravitational field equations, the idea that Λ (and its associated
vacuum energy density ρvac) can be a dynamical quantity should be most natural in the
context of an expanding universe. This point of view has led to the notion of dynamical
dark energy (DDE) in its multifarious forms [194–197]. Herein, however, we stick to the
notion of dynamical vacuum energy (DVE) as the ultimate cause of DDE. Despite the
fact that ρvac has long been associated with the so-called cosmological constant problem
[167,191,294,547], which involves severe fine-tuning of the parameters, such a conundrum
actually underlies all of the DE models known up to date, with no exception [167,294,547].
Our calculations of ρvac in the context of quantum field theory (QFT) in curved space-time
have brought new light into this problem (see Chapter 2 and Chapter 3) and suggest that
if the vacuum energy density (VED) is renormalized using an appropriate regularization
procedure, it evolves in a mild way as a series of powers of the Hubble rate H and
its cosmic time derivatives: ρvac(H, Ḣ, ...), denoted ρvac(H) for short. This fact was long
foreseen from general renormalization group arguments which led to the notion of running
vacuum models (RVM’s), see the reviews [167,294,296,547] and references therein. For
the current universe, the leading VED term is constant but the next-to-leading one is
dynamical, specifically it evolves as a power ∼ H2 with a small coefficient |ν| � 1.
For the early universe, terms of order ∼ H4 or higher appear and these can trigger
inflation [296,373,406,408]. It is remarkable that the fourth power H4 can be motivated
within the context of string theory calculations at low energy (meaning near the Planck
scale) [311, 313], what reveals a distinctive mechanism of inflation different from that of
Starobinsky inflation [164], for example. See [288, 390] for a detailed discussion. Here,
however, we will concentrate on the post-inflationary universe, where only the leading
power ∼ H2 is involved in the dynamics of ρvac. A variety of phenomenological analyses
have supported this possibility in recent years [245–250, 275, 278, 279, 386, 387, 392, 393,
398,552].

In this chapter, based on our paper [374], we present a devoted study of the class of
RVM’s based on a large and updated string SNIa+BAO+H(z)+LSS+CMB of modern
cosmological observations, in which for the first time the CMB part involves the full
Planck 2018 likelihood. We also test the potential dependence of the results on the
threshold redshift z∗ at which the DVE becomes activated in the recent past. We find
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Baseline

Parameter GR-ΛCDM type I RRVM type I RRVMthr. type II RRVM BD-ΛCDM

H0(km/s/Mpc) 68.37+0.38
−0.41 68.17+0.50

−0.48 67.63+0.42
−0.43 69.02+1.16

−1.21 69.30+1.38
−1.33

ωb 0.02230+0.00019
−0.00018 0.02239+0.00023

−0.00024 0.02231+0.00020
−0.00019 0.02245+0.00025

−0.00027 0.02248± 0.00025

ωdm 0.11725+0.00094
−0.00084 0.11731+0.00092

−0.00087 0.12461+0.00201
−0.00210 0.11653+0.00158

−0.00160 0.11629+0.00148
−0.00151

νeff - 0.00024+0.00039
−0.00040 0.02369+0.00625

−0.00563 0.00029± 0.00047 -

εBD - - - - −0.00109±+0.00135
−0.00141

ϕini - - - 0.980+0.031
−0.027 0.972+0.030

−0.037

ϕ0 - - - 0.973+0.036
−0.033 0.963+0.036

−0.041

τreio 0.049+0.008
−0.007 0.051+0.008

−0.009 0.058+0.007
−0.009 0.051± 0.008 0.051± 0.008

ns 0.9698+0.0039
−0.0036 0.9716+0.0044

−0.0047 0.9703± 0.038 0.9762+0.0081
−0.0091

σ8 0.796± 0.007 0.789+0.013
−0.014 0.768+0.010

−0.009 0.791+0.013
−0.012 0.790+0.013

−0.012

S8 0.796± 0.011 0.791+0.014
−0.013 0.797+0.012

−0.011 0.781+0.021
−0.020 0.777+0.021

−0.022

rs (Mpc) 147.90+0.30
−0.31 147.99+0.35

−0.36 147.81± 0.30 146.30+2.39
−2.30 145.72+2.44

−2.90

χ2
min 2290.20 2289.72 2272.44 2288.74 2289.40

∆DIC - -2.70 +13.82 -4.59 -3.53

Table 6.1: The mean values and 68.3% confidence limits for the models under study using
our Baseline dataset, which is almost the same as the one employed in [278, 279] (see previous
chapter and Appendix K), with few changes: (i) for the eBOSS survey we have replaced the
data from [497] with the one from [548]; (ii) the LyF data have been updated, replacing [496]
with [549]; (iii) finally, we have replaced the two fσ8 data points [514,550] with the one provided
in [551]. We display the fitting values for the usual parameters, to wit: H0, the reduced density
parameter for baryons (wb = Ω0

bh
2) and CDM (wdm = Ω0

dmh
2), with Ω0

i = 8πGNρ
0
i /3H

2
0 and

h the reduced Hubble constant, the reionization optical depth τreio, the spectral index ns and
the current matter density rms fluctuations within spheres of radius 8h−1 Mpc, i.e. σ8. We
include also a couple of useful derived parameters, namely: the sound horizon at the baryon drag
epoch rs and S8 ≡ σ8

√
Ω0

m/0.3. For all the RRVM’s we show νeff , and for the type II and BD-
ΛCDM [278,279] we also report the initial and current values of ϕ, ϕini and ϕ0, respectively. The
parameter εBD ≡ 1/ωBD (inverse of the Brans-Dicke parameter [427]) controls the dynamics of
the scalar field [278, 279]. We provide the corresponding values of χ2

min and ∆DIC.

that different RVM’s prove very helpful to alleviate the persisting tensions between the
concordance ΛCDM model and the structure formation data (the so-called σ8 tension)
and the mismatch between the local values of the Hubble parameter and those derived
from the CMB [132] (the H0 tension). These tensions are well described in the literature,
see e.g. the reviews [200,203,204]. Many models in the market try to address them, see
e.g. ref. [242] and the long list of references therein.

In the current (fully updated) study we find significant signals of DVE (using z∗ ' 1) at
∼ 3.6σ c.l., which can be enhanced up to∼ 4.0σ. Finally, we show that the RVM’s provide
an overall fit to the cosmological data which is comparable or significantly better than in
the ΛCDM case, as confirmed by calculating the relative Deviance Information Criterion
(DIC) differences obtained form the Monte Carlo chains of our numerical analysis.

6.1 Running vacuum Universe

As indicated, the total vacuum part of the energy-momentum tensor, T vac
µν , can be appro-

priately renormalized into a finite quantity which depends on the Hubble rate H and its
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Baseline + H0

Parameter GR-ΛCDM type I RRVM type I RRVMthr. type II RRVM BD-ΛCDM

H0 (km/s/Mpc) 68.75+0.41
−0.36 68.77+0.49

−0.48 68.14+0.43
−0.41 70.93+0.93

−0.87 71.23+1.01
−1.02

ωb 0.02240+0.00019
−0.00021 0.02238+0.00021

−0.00023 0.02243+0.00019
−0.00018 0.02269+0.00025

−0.00024 0.02267+0.00026
−0.00023

ωdm 0.11658+0.00080
−0.00083 0.11661+0.00084

−0.00085 0.12299+0.00197
−0.00203 0.11602+0.00162

−0.00163 0.11601+0.00161
−0.00157

νeff - −0.00005+0.00040
−0.00038 0.02089+0.00553

−0.00593 0.00038+0.00041
−0.00044 -

εBD - - - - −0.00130±+0.00136
−0.00140

ϕini - - - 0.938+0.018
−0.024 0.928+0.024

−0.026

ϕ0 - - - 0.930+0.022
−0.029 0.919+0.028

−0.033

τreio 0.050+0.008
−0.007 0.049+0.009

−0.008 0.058+0.008
−0.009 0.052± 0.008 0.052± 0.008

ns 0.9718+0.0035
−0.0038 0.9714± 0.0046 0.9723+0.0040

−0.0039 0.9868+0.0072
−0.0074 0.9859+0.0073

−0.0072

σ8 0.794± 0.007 0.795± 0.013 0.770± 0.010 0.794+0.013
−0.012 0.792+0.013

−0.012

S8 0.788+0.010
−0.011 0.789± 0.013 0.789± 0.011 0.761+0.018

−0.017 0.758+0.019
−0.018

rs (Mpc) 147.97+0.29
−0.31 147.94+0.35

−0.36 147.88+0.33
−0.29 143.00+1.54

−1.96 142.24+1.99
−2.12

χ2
min 2302.14 2301.90 2288.82 2296.38 2295.36

∆DIC - -2.36 +10.88 +5.52 +6.25

Table 6.2: Same as in Table 6.1, but also considering the prior on H0 = (73.5±1.4) km/s/Mpc
from SH0ES [208, 209].

time derivatives [288]. The corresponding 00-component defines the vacuum energy den-
sity (VED), ρvac(H). Let us denote by ρ0

vac ≡ ρvac(H0) = Λ/(8πGN) (GN being Newton’s
constant) the current value of the latter, with H0 today’s value of the Hubble parameter
and Λ the measured cosmological constant term. We define two types of DVE scenarios.
In type I scenario the vacuum is in interaction with matter, whereas in type II matter
is conserved at the expense of an exchange between the vacuum and a slowly evolving
gravitational coupling G(H). The combined cosmological ‘running’ of these quantities
insures the accomplishment of the Bianchi identity (and the local conservation law).

Let us therefore consider a generic cosmological framework described by the spatially flat
Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric. The vacuum energy density in
the RVM can be written in the form [167,294,296,547]:

ρvac(H) =
3

8πGN

(
c0 + νH2 + ν̃Ḣ

)
+O(H4) , (6.1)

in which the O(H4) terms will be neglected for the physics of the post-inflationary epoch.
The above generic structure can be motivated from the aforementioned explicit QFT cal-
culations on a FLRW background [288], see also Sect. 3.1.1 of this work. The additive
constant c0 is fixed by the boundary condition ρvac(H0) = ρ0

vac. Notice that the two
dynamical components H2 and Ḣ are dimensionally homogeneous and, in principle, in-
dependent. Their associated (dimensionless) coefficients ν and ν̃ encode the dynamics
of the vacuum at low energy and we naturally expect |ν, ν̃| � 1. An estimate of ν in
QFT indicates that it is of order 10−3 at most [293]. In the calculation of [288] these
coefficients are expected to be of order ∼ M2

X/m
2
Pl � 1, where mPl ' 1.22 × 1019 GeV

is the Planck mass and MX is of order of a typical Grand Unified Theory (GUT) scale,
times a multiplicity factor accounting for the number of heavy particles in the GUT. We
will be particularly interested in the RVM density obtained from the choice ν̃ = ν/2.

As a result, ρvac(H) = 3/(8πGN)
[
c0 + ν

(
H2 + 1

2
Ḣ
)]

. We will call this form of the

VED the ‘RRVM’ since it realizes the generic RVM density (6.1) through the Ricci scalar
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R = 12H2 + 6Ḣ, namely

ρvac(H) =
3

8πGN

(
c0 +

ν

12
R
)
≡ ρvac(R) . (6.2)

Such a RRVM implementation has the advantage that it gives a safe path to the early
epochs of the cosmological evolution since in the radiation dominated era we haveR/H2 �
1, and hence we do not generate any conflict with the BBN nor with any other feature
of the modern universe. Of course, early on the RVM has its own mechanism for in-
flation (as we have already mentioned), but we shall not address these aspects here,
see [167,294,296,373,390,406,408,547].

6.1.1 Type I RRVM

Friedmann’s equation and the acceleration equation relate H2 and Ḣ with the energy
densities and pressures for the different species involved, and read

3H2 = 8πGN (ρm + ρncdm + ργ + ρvac(H)) , (6.3)

3H2 + 2Ḣ = −8πGN (pncdm + pγ + pvac(H)) . (6.4)

The total nonrelativistic matter density is the sum of the cold dark matter (CDM) com-
ponent and the baryonic one: ρm = ρdm + ρb. The contributions of massive and massless
neutrinos are included in ρncdm (‘ncdm’ means non-CDM). Therefore the total (relativis-
tic and nonrelativistic) matter density is ρt = ρm +ργ +ρncdm. Similarly, the total matter
pressure reads pt = pncdm + pγ (with pγ = (1/3)ργ). We note that there is a transfer of
energy from the relativistic neutrinos to the nonrelativistic ones along the whole cosmic
history, and hence it is not possible (in an accurate analysis) to make a clear-cut separa-
tion between the two. Our procedure adapts to our own modified version of the system
solver CLASS [473]. The latter solves the coupled system of Einstein’s and Boltzmann’s
differential equations for any value of the scale factor and, in particular, provides the
functions ρh = ρncdm − 3pncdm and ρν = 3pncdm for the nonrelativistic and relativistic
neutrinos, respectively. This allows to compute the combination R/12 = H2 + (1/2)Ḣ
appearing in (6.2) in terms of the energy densities and pressures using (6.3) and (6.4):

R = 8πGN (ρm + 4ρvac + ρh) . (6.5)

Notice that the photon contribution cancels exactly in this expression and hence ρvac from
(6.2) remains much smaller than the photon density in the radiation epoch, entailing no
alteration of the thermal history. While neutrinos do not behave as pure radiation for the
aforementioned reasons, one can check numerically (using CLASS) that the ratio r ≡ ρh/ρm

is very small throughout the entire cosmic history up to our time (remaining always below
10−3). Thus, we can neglect it in (6.2) and we can solve for the vacuum density as a
function of the scale factor a as follows:

ρvac(a) = ρ0
vac +

ν

4(1− ν)
(ρm(a)− ρ0

m) , (6.6)

where ‘ 0’ (used as subscript or superscript) always refers to current quantities. For a = 1
(today’s universe) we confirm the correct normalization: ρvac(a = 1) = ρ0

vac. Needless to
say, ρm(a) is not just ∼ a−3 since the vacuum is exchanging energy with matter here.
This is obvious from the fact that the CDM exchanges energy with the vacuum (making
it dynamical):

ρ̇dm + 3Hρdm = −ρ̇vac . (6.7)
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Baryons do not interact with the vacuum, which implies ρ̇b + 3Hρb = 0, and as a result
the total matter contribution (ρm) satisfies the same local conservation law (6.7) as CDM:
ρ̇m + 3Hρm = −ρ̇vac. Using it with (6.6) we find ρ̇m + 3Hξρm = 0, where we have defined
ξ ≡ 1−ν

1− 3
4
ν
. Since ν is small, it is convenient to encode the deviations with respect to the

standard model in terms of the effective parameter νeff ≡ ν/4:

ξ = 1− νeff +O
(
ν2

eff

)
. (6.8)

It is straightforward to find the expression for the matter densities:

ρm(a) = ρ0
ma
−3ξ , ρdm(a) = ρ0

ma
−3ξ − ρ0

ba
−3 . (6.9)

They recover the ΛCDM form for ξ = 1 (νeff = 0). The small departure is precisely what
gives allowance for a mild dynamical vacuum evolution:

ρvac(a) = ρ0
vac +

(
1

ξ
− 1

)
ρ0

m

(
a−3ξ − 1

)
. (6.10)

The vacuum becomes rigid only for ξ = 1 (νeff = 0).

6.1.2 Type II RRVM

For type II models matter is conserved (no exchange with vacuum), but the vacuum can
still evolve provided the gravitational coupling also evolves (very mildly) with the expan-
sion: G = G(H). Following the notation of [278,279], let us define (just for convenience)
an auxiliary variable ϕ = GN/G – in the manner of a Brans-Dicke (BD) field [427],
without being really so. Notice that ϕ 6= 1 in the cosmological domain, but remains very
close to it, see Table 6.1 and Table 6.2. For convenience, in the last column of Table 6.1
and Table 6.2 (and Fig. 6.2) we include the updated results of [278,279] (BD model with
a cosmological constant) with the data changes indicated in the caption of Table 6.1.

Friedman’s equation for type-II model takes the form

3H2 =
8πGN

ϕ

[
ρt + C0 +

3ν

16πGN

(2H2 + Ḣ)

]
, (6.11)

with C0 = 3c0/(8πGN). The Bianchi identity dictates the correlation between the dy-
namics of ϕ and that of ρvac

1:
ϕ̇

ϕ
=

ρ̇vac

ρt + ρvac

, (6.12)

where ρt is as before the total matter energy density and ρvac adopts exactly the same
form as in (6.2). Using these equations one can show that the approximate behavior of
the VED in the present time is (recall that |νeff | � 1):

ρvac(a) = C0(1 + 4νeff) + νeffρ
0
ma
−3 +O(ν2

eff) . (6.13)

Again, for νeff = 0 the VED is constant, but otherwise it shows a moderate dynamics
of O(νeff) as in the type I case (6.10). Here, however, the exact solution must be found

1For type-II models the running of G is triggered by that of ρvac via the Bianchi identity (6.12). If matter is
self-conserved, such running is unavoidable from the existence of the quantum effects ∼ H2 (and/or Ḣ) inducing
the running of ρvac, see [288]. This does not exclude other microscopic mechanisms, but for type-II the running
of G is necessary to comply with general covariance. In the BD case [278, 279], instead, ϕ is an explicit field
ingredient of the classical action.
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Figure 6.1: Theoretical curves of f(z)σ8(z) for the various models and the data points employed
in our analysis, in two different redshift windows. To generate this plot we have used the central
values of the cosmological parameters shown in Table 6.1. The type I running vacuum model
with threshold redshift z∗ ' 1 has a most visible and favorable impact on solving the σ8 tension.

numerically. One can also show that the behavior of ρvac(a) in the radiation dominated
epoch is also of the form (6.13), except that the constant additive term can be completely
neglected. It follows that ρvac(a) � ρr(a) = ρ0

ra
−4 for a � 1 and hence the VED for

the type II model does not perturb the normal thermal history (as in the type I model).
Finally, one finds ϕ(a) ∝ a−ε ≈ 1− ε ln a in the current epoch (with 0 < ε� 1 of order
νeff), thus confirming the very mild (logarithmic) evolution of G.

6.2 Threshold redshift scenario for type I models

One possibility that has been explored in the literature in different type of models is to
admit that the dynamics of vacuum is relatively recent (see e.g. [221, 235]). This means
to study the consequences of keeping deactivated the interaction between the vacuum
energy density and the CDM for most of cosmic history until the late universe when
the DE becomes apparent. We denote the threshold value of the scale factor when the
activation takes places by a∗. According to this scenario the VED was constant prior
to a = a∗ and it just started to evolve for a > a∗. While ρvac is a continuous function,
its derivative is not since we mimic such situation through a Heaviside step function
Θ(a − a∗). If we would have a microscopic description of the phenomenon it should
not be necessary to assume such a sudden (finite) discontinuity. However, a Θ-function
description will be enough for our purposes. Therefore, we assume that in the range
a < a∗ (hence for z > z∗) we have

ρdm(a) = ρdm(a∗)

(
a

a∗

)−3

,

ρvac(a) = ρvac(a∗) = const. (a < a∗) , (6.14)

where ρdm(a∗) and ρvac(a∗) are computed from (6.9) and (6.10), respectively. In the
complementary range, instead, i.e. for a > a∗ (0 < z < z∗) near our time, the original
equations (6.9) and (6.10) hold good.

Notice that the above threshold procedure is motivated specially within type I models
in order to preserve the canonical evolution law for the matter energy density when the
redshift is sufficiently high. In fact, the threshold redshift value need not be very large
and as we shall see in the next section, if fixed by optimization it turns out to be of order
z∗ ' 1. Above it (z > z∗) the matter density evolves as in the ΛCDM and in addition
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ρvac remains constant. Its dynamics is only triggered at (and below) z∗. An important
consequence of such threshold is that the cosmological physics during the CMB epoch
(at z ' 1000) is exactly as in the ΛCDM. For type II models there is still some evolution
of the VED at the CMB epoch, but the matter density follows the same law as in the
ΛCDM case. For this reason we will not investigate here the threshold scenario for type
II models.

6.3 Cosmological perturbations

So far so good for the background cosmological equations in the presence of dynamical
vacuum. However, an accurate description of the large scale structure (LSS) formation
data is also of paramount importance, all the more if we take into account that one
of the aforementioned ΛCDM tensions (the σ8 one) stems from it. Allowing for some
evolution of the vacuum can be the clue to solve the σ8 tension since such dynamics
affects nontrivially the cosmological perturbations [249,398]. We consider the perturbed,
spatially flat, FLRW metric ds2 = −dt2 + (δij + hij)dx

idxj, in which hij stands for the
metric fluctuations. These fluctuations are coupled to the matter density perturbations
δm = δρm/ρm. We shall refrain from providing details of this rather technical part,
which will be deferred for an expanded presentation elsewhere. However, the reader can
check e.g. [245, 247–250, 275, 278, 279, 386, 387, 398, 398, 552] for the basic discussion of
the RVM perturbations equations. The difference is that here we have implemented the
full perturbations analysis in the context of the Einstein-Boltzmann code CLASS [473]
(in the synchronous gauge [492]). Let us nonetheless mention a few basic perturbations
equations which have a more direct bearing on the actual fitting analysis presented in
our tables and figures. Since baryons do not interact with the time-evolving VED the
perturbed conservation equations are not directly affected. However, the corresponding
equation for CDM is modified in the following way:

δ̇dm +
ḣ

2
− ρ̇vac

ρdm

δdm = 0 , (6.15)

with h = hii denoting the trace of hij. We remark that the term ρ̇vac is nonvanishing for
these models and affects the fluctuations of CDM in a way which obviously produces a
departure from the ΛCDM. The above equation is, of course, coupled with the metric
fluctuations and the combined system must be solved numerically.

The analysis of the linear LSS regime is performed with the help of the weighted linear
growth f(z)σ8(z), where f(z) is the growth factor and σ8(z) is the rms mass fluctuation
amplitude on scales of R8 = 8h−1 Mpc at redshift z. The quantity σ8(z) is directly
provided by CLASS and the calculation of f(a) (with z = a−1 − 1 in our normalization)

can be obtained as follows. If ~k denotes the comoving wave vector and ~k/a the physical
one, at subhorizon scales its modulus (square) satisfies k2/a2 � H2. If, in addition, we are

in the linear regime the matter density contrast can be written as δm(a,~k) = D(a)F (~k)

[171,197], where the dependence on ~k factors out. The properties of F (~k) are determined
by the initial conditions and D(a) is called the growth function. The relation between the

matter power spectrum and the density contrast reads Pm(a,~k) = C〈δm(a,~k)δ∗m(a,~k)〉 ≡
D2(a)P (~k), where C is a constant and P (~k) = C〈F (~k)F ∗(~k)〉 is the primordial power

spectrum (determined from the theory of inflation). Since neither F (~k) nor P (~k) depend
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Figure 6.2: 1σ and 2σ contours in the H0-σ8, S8, S̃8 planes and the corresponding one-
dimensional posteriors for the GR- and BD- ΛCDM and the RRVM’s obtained from the fitting
analyses with our Baseline+H0 data set. The type II model manifestly alleviates the H0 tension
without spoiling the σ8 one (even if phrased through the alternative parameters S8 or S̃8, see
text), whereas the type I model with threshold redshift z∗ ' 1 can fully solve the latter (see also
Fig. 6.1) but cannot address the former.

on a, the linear growth f(a) = d ln δm(a,~k)/d ln a is given by f(a) = d lnD(a)/d ln a, and
ultimately by

f(a) =
d lnP

1/2
m (a,~k)

d ln a
=

a

2Pm(a,~k)

dPm(a,~k)

da
. (6.16)

It follows that we may extract the (observationally measured) linear growth function

f(a) directly from the matter power spectrum Pm(a,~k), which is computed numerically

by CLASS for all values of a and ~k (assuming adiabatic initial conditions). This allows us
to compare theory and observation for the important LSS part.

6.4 Fitting results and Discussion of the chapter

To compare the RRVM’s (types I and II) with the ΛCDM, we have defined a joint
likelihood function L. The overall fitting results are reported in Table 6.1 and Table 6.2.
The used data sets are the same as those described in detail in Ref. [278,279], except the
updated values pointed out in the caption of Table 6.1. Assuming Gaussian errors, the
total χ2 to be minimized in our case is given by

χ2
tot = χ2

SNIa + χ2
BAO + χ2

H + χ2
fσ8

+ χ2
CMB . (6.17)

The above χ2 terms are defined in the standard way from the data including the covariance
matrices [197]. In particular, the χ2

H part may contain or not the local H0 value measured
by Riess et al. [208, 209] depending on the setup indicated in the tables (apart from
the cosmic chronometer data employed also in [278, 279]). The local determination of
H0 (which is around 4σ away from the corresponding Planck 2018 value based on the
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CMB) is the origin of the so-called H0 tension [200, 203, 204]. Taking into account
that the RRVM’s of type I and II have one and two more parameters, respectively,
as compared to the ΛCDM, a fairer model comparison is achieved by computing the
differences between the Deviance Information Criterion [537], of the ΛCDM model and
the RRVM’s: ∆DIC = DICΛCDM −DICRRVM. These differences will be (and in fact are)
positive if the RRVM’s fit better the overall data than the ΛCDM. The DIC is defined
as

DIC = χ2(θ) + 2pD . (6.18)

Here pD = χ2 − χ2(θ) is the effective number of parameters of the model, and χ2 and
θ the mean of the overall χ2 distribution and the parameters, respectively. The DIC
is a good approximation to the exact Bayesian approach and works optimal if the pos-
terior distributions are sufficiently Gaussian. To obtain the posterior distributions and
corresponding constraints for the various dataset combinations we have used the Monte
Carlo cosmological parameter inference code Montepython [534] in combination with the
mentioned Einstein-Boltzmann code CLASS [473].

The value of DIC can be computed directly from the Markov chains generated with
MontePython. For values +5 < ∆DIC < +10 we would conclude strong evidence of
the RRVM’s as compared to the ΛCDM, and for ∆DIC > +10 the evidence is very
strong. Such is the case when we use a threshold redshift z∗ ' 1 in type I RRVM
(cf. Table 6.1 and Table 6.2). In contrast, when the threshold is removed we find only
moderate evidence against it (−3 < ∆DIC < −2), although the fitting performance
keeps on being slightly better (smaller χ2

min) than the GR-ΛCDM, similar to e.g. coupled
dark energy [443]. Quite obviously, the effect of the threshold can be very important
and indicates that a mild dynamics of the vacuum is very much welcome, especially if
it is activated at around the very epoch when the vacuum dominance appears, namely
at around z ' 1. To be more precise, the vacuum dominance in the ΛCDM starts at
around z ' 0.3. Therefore, these results suggest that if the vacuum starts to be slightly
dynamical at an earlier point which is ‘close’ (in redshift terms) to the transition from
deceleration to acceleration (z ' 0.7), then the impact on the description of the overall
SNIa+BAO+H(z)+LSS+CMB data becomes extraordinarily significant on statistical
terms. Before the transition point, physics can remain basically unaltered with respect
to the standard ΛCDM model, but the vacuum dynamics allows to suppress an exceeding
amount of LSS in the universe, leading to a better description of the f(z)σ8(z) data set.
It is not just that the total χ2

min is 13 to 18 units smaller as compared to the ΛCDM
in the presence of the threshold z∗ (cf. Table 6.1 and Table 6.2), but the fact that the
information criteria (which take into account the penalty to be paid by the RRVM’s
for having more parameters) still decides very strongly in its favor. In the absence of
the H0 prior [208, 209], type II RRVM performs a bit better than the GR-ΛCDM (cf.
Table 6.1), but the improvement is not sufficient. Occam’s razor penalizes the model for
having two additional parameters than GR-ΛCDM and leads to a moderately negative
evidence against it. When we include the prior, however, we get a strong evidence in its
favor (∆DIC & +5, cf.Table 6.2), since this model can accommodate higher values of the
Hubble parameter and hence loosen the H0 tension. This is similar to what we found
in [278,279] for Brans-Dicke cosmology with Λ 6= 0.

Finally, we want to remark a few things about the RRVM’s under study, in connection
with the cosmological tensions, cf. Table 6.1 and Table 6.2, and the contours in Fig. 6.2:
(i) the only model capable of alleviating the H0 tension is RRVM of type II; (ii) the
values of S8 in all RRVM’s are perfectly compatible with recent weak lensing and galaxy
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clustering measurements [553]. For type II a related observable analogous to (but different
from) S8 is possible: S̃8 ≡ S8/

√
ϕ0. It is connected with the time variation of G = GN/ϕ

and can be viewed also as a rescaling Ω0
m → Ω0

m/ϕ0 in the effective Friedmann’s equation
for type II models, see Ref. [278,279]. We show the corresponding countours in Fig. 6.2;
(iii) Quite remarkable is the fact that the value of σ8 is significantly lower in the type I
RRVMthr. to the point that the σ8 tension can be fully accounted for. We have checked
that this feature is shared by the more general RVM class (6.1) using the same threshold
redshift.

We find significant evidence that a mild dynamics of the cosmic vacuum would be helpful
to describe the overall cosmological observations as compared to the standard cosmolog-
ical model with a rigid Λ-term. For type I models the level of evidence is very strongly
supported by the DIC criterion provided there exists a threshold redshift z∗ ' 1 where the
vacuum dynamics is triggered. With such dynamics the σ8 tension is rendered virtually
nonexistent (. 0.4σ) [553]. The H0 tension, however, can only be improved within the
type II model with variable G and also with the related BD-ΛCDM model [278,279]. For
both the two tensions can be dealt with at a time, the H0 remaining at ∼ 1.6σ [208,209]
and the σ8 one at ∼ 1.3σ (or at only ∼ 0.4σ if stated in terms of S8) [553]. The simul-
taneous alleviation of the two tensions is remarkable and is highly supported by the DIC
criterion.
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Chapter 7

Conclusions

In this dissertation, we present the most relevant works and results from the PhD period.
In Chapters 2, 3, and 4, we report our theoretical calculations concerning the running
of the vacuum energy density (VED) in the context of Quantum Field Theory (QFT)
and obtain significant results that were previously absent from the literature. Unfor-
tunately, the widespread confusion in the literature between the cosmological constant,
Λ, and the VED, ρvac, has hindered a proper treatment of the renormalization of these
quantities in cosmological space-time. Perhaps the most pernicious practice has been
the repeated attempts to relate these concepts in the context of flat space-time calcula-
tions, which is meaningless [198,419]. As we indicated in Sect. 2.5.3, if we consider Λ as
the physically measured value, then its relation with the current ρvac is straightforward:
ρ0

vac = Λ/(8πGN). However, more care needs to be taken at a formal level where these
quantities are derived from a gravitational action in curved space-time. Even though a
quantum theory of gravity is currently inaccessible, we show that studying ρvac in QFT
in curved space-time can be quite helpful.

On the other hand, in Chapters 5 and 6, we have presented our fits and analysis of two
different kinds of extensions of the cosmological standard model: the family of Ricci
Running Vacuum Models (RRVM) and Brans-Dicke ΛCDM (BD-ΛCDM). These models
represent small but noticeable deviations from the ΛCDM model. We have studied them
in detail, both at the background and perturbation levels, and have confronted them
against a robust dataset composed of a variety of cosmological probes.

Let us start summarizing the main conclusions obtained in the chapters dedicated to the
QFT in Curved space-time computations (cf. Chapters 2, 3 and 4):

• We reviewed the formalism of adiabatic regularization in curved spacetime for an
expanding universe. This method consists of an adiabatic expansion of the interest
quantities, such as the mode functions satisfying the wave equation, which yields an
asymptotic series that can be used to approximate physical observables. Previously,
one had to get rid of the manifest divergences that appear in the form of diverg-
ing integrals. This is solved after performing a renormalization procedure based on
the subtraction of the given UV-divergent quantity at an off-shell scale, M , which
regularizes the integrals. Thanks to this method, we were able to renormalize the
value of the so-called zero-point energy (ZPE), which receives contributions from
several free fields with bosonic or fermionic nature. Not only was the ZPE renor-
malized, but we were also able to properly renormalize the running couplings of the
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theory, in particular, ρΛ(M) of the Einstein-Hilbert action and G, the gravitational
coupling. As for our definition of Vacuum Energy Density (VED), in our simplified
framework, ρvac receives contributions from two different origins: the aforemen-
tioned ZPE, coming from the various quantum fields present in the standard model
of particle physics (or even beyond), and ρΛ(M), which has to be interpreted as a
geometrical contribution to the VED.

• Because of inappropriate renormalization schemes and computational procedures,
the computation of the vacuum energy density (VED) has been persistently affected
by severe fine tuning problems owing to the presence of m4 terms in these schemes.
Only an approach based on the effective action and/or an appropriate renormaliza-
tion of the energy-momentum tensor (EMT) has the capability to capture all the
essential physical features. The equivalence between both procedures in the con-
text of adiabatic renormalization of a non-minimally coupled scalar field has been
proven in Chapter 2. We show there that the appropriate calculation and renormal-
ization of the zero-point energy (ZPE) in curved space-time, together with the ρΛ

parameter in the action, produces a dynamical quantity, ρvac(M), whose running
is free from undesired m4 contributions, where m is the mass of a field involved
in the computation. Indeed, the VED is given schematically by ρΛ + ZPE, and
upon renormalizing the energy-momentum tensor directly, or indirectly through its
relation with the effective action of vacuum (cf. Sect. 2.8), the two procedures
converge to the same result. We find that although both ρΛ and ZPE bring forth
quartic powers ∼ m4, they do not affect the running of the VED. Formally, this is
because the β-function of the VED does not depend on m4 terms, as we have seen in
Appendix C.2. Thus, there is no need for fine-tuning if our desire is to compute the
evolution of ρvac with time. While this is not equivalent to solving the problem of
the cosmological constant, it is remarkable enough that we can free our results from
these undesirable contributions. Notice that a naive application of other methods
such as the MS-scheme renormalization has several problems with fine-tuning when
dealing with this quartic power.

• Scale dependencies (explicit and implicit) obviously cancel out in the full effective
action of the theory, which is renormalization group invariant, and involves in par-
ticular the vacuum action as well as many other scale-dependent terms, such as the
classical Lagrangian with the corresponding running couplings, which contribute
also in a crucial way to warrant the overall scale-independence of the full effective
action. Now except for the effective action itself, which is a rather formal object,
in cosmology we cannot play with RG-invariant quantities which are more common
in particle physics (such as scattering cross-sections, decay rates, etc. and in gen-
eral different kinds of Green’s functions related to observable quantities). Thus, we
must content ourselves with using different parts of the full effective action that
remain scale dependent. The VED is one of these parts and hence it appears as one
of the scale-dependent quantities upon renormalization. Therefore, after applying
the renormalization procedure, it is necessary to fix the off-shell scale to a suitable,
relevant physical scale if we want to obtain meaningful results. This is in no way dif-
ferent from the case of ordinary gauge theories. The only difference is that we are in
a cosmological context and one has to make a choice and test its effectiveness. In our
case we have proposed as a most natural quantity for this role, the Hubble function,
which has dimension of energy in natural units and it therefore can be considered a
characteristic energy scale in an expanding Friedmann-Lemâıtre-Robertson-Walker
(FLRW) space-time.
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• As indicated in the previous point, the most natural quantity selected for this role
in FLRW spacetime is the Hubble function, H, which traces the characteristic
energy scale of the expanding universe. Therefore, we set M = H and end up
with a smooth, dynamical vacuum energy density parametrized as ρvac(H), where
H designates, generically, the dependency of ρvac on H and its derivatives. The
low-energy regime, near our time, is characterized by a mild evolution propor-
tional to the difference H2 − H2

0 , where H0 is the value of the Hubble function
at the present time, and H is a close value in the recent past. In other words,
if a1 and a2 are two values of the scale factor close to its current value, then
ρvac(a1) − ρvac(a2) ∼ νeffm

2
Pl(H

2(a1) − H2(a2)), up to a great degree of approxi-
mation. Here, |νeff | is an effective parameter proportional to the quadratic powers
of the masses of the particles. The detailed structure of νeff depends on all the quan-
tum matter fields involved in the calculation. However, its numerical value must
ultimately be determined experimentally by confronting the model with cosmolog-
ical data. The H2 term is nevertheless sufficient to describe the dynamics of the
vacuum in the current universe, while the higher-order components can play a role
in the early universe, and in particular for describing inflation. This path also leads
to a mildly logarithmic running of the gravitational coupling G (or equivalently, a
running M2

Pl).

• The law governing the vacuum energy density that we have rigorously derived was
proposed a long time ago for the Running Vacuum Models (RVM). These models
have the same low-energy regime for the vacuum energy density as presented here.
Previously, they were motivated by generic Renormalization Group arguments, but
now we have derived the dynamic expression for the first time within the context of
Quantum Field Theory, using the adiabatic regularization procedure and a renor-
malization scheme with all detail. Furthermore, we have observed that deviations
from the more traditional law, ρvac(H) = ρvac(H0) + 3ν/(8πGN)(H2 − H2

0 ) are
possible, such as replacing H2 with a linear combination of H2 and Ḣ. This fact
motivates the study of alternative models originated from the RVM, such as the
Ricci-RVM (RRVM) of Chapter 6.

• The fundamental approach described here does not require invoking ad-hoc phantom
or quintessence fields, or even particular forms for the effective potentials, which are
absent in our simple model. The vacuum-to-vacuum fluctuations of quantum fields
in curved space-time are sufficient to describe the dynamical behavior of the vacuum
fluid, after appropriate renormalization following our adiabatic procedure.

• An analogous procedure applies to the vacuum pressure as well. This allows us to
compute the equation of state wvac ≡ Pvac/ρvac of the quantum vacuum from first
principles, which does not remain fixed at -1 as in the traditional cosmological con-
stant of the ΛCDM model. Instead, it appears to mimic the dominant component of
the universe throughout cosmic evolution, approaching -1 only in the late period of
expansion. This surprising result is obtained from the direct calculation performed
in QFT and to the best of our knowledge is unprecedented in the literature. Inter-
estingly, the effective picture of the Brans-Dicke-ΛCDM model presented in Chap. 5
exhibits a similar behavior. The reason is that one can show that the Brans-Dicke-
CDM model with a cosmological constant mimics the RVM.

• The higher-order terms in the adiabatic expansion correspond to higher powers of
the Hubble function and/or a higher number of time derivatives. While these terms
do not affect in a significant way any fit of the RVM to the modern cosmological
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data, such as the SNIa + H(z) + BAO + LSS + CMB observations, they may play
a crucial role in the early Universe. Specifically, a simple but interesting mechanism
for inflation relying on the higher-order terms in the expansion of ρvac(H) has been
described. These terms are proportional to H6 and can lead to an enhancement
in the magnitude of ρvac(H) at high redshifts, in the remote past. This simple
mechanism predicts a graceful end to inflation followed by a reheating process that
fills the Universe with radiation. Although many details still need to be addressed
and a dedicated study is necessary, this possibility is worth considering.

• The conclusions presented here originated from our calculations with one real scalar
field, which are summarized in Chapters 2 and 3. However, after analyzing a more
general scenario where several free spin-1/2 and scalar fields were present, as dis-
cussed in Chapter 4, we arrived at the same conclusions, thus providing a general-
ization of our previous results. This reinforces our position and raises the question
of whether the characteristic running law of the vacuum energy density from QFT
is universal.

Now, we will list our conclusions with respect the phenomenological part of this disser-
tation (cf. Chapter 5 and 6).

• In chapter 5, we dedicate an extensive study to the Brans-Dicke model, or Brans-
Dicke-ΛCDM (BD-ΛCDM), as we call it. In this model, we explore a simple but non-
trivial extension of the ΛCDM by allowing the gravitational constant G to vary with
time. This variation is parametrized using a BD-field, such that G = GN/ϕ, where
GN ≈ 6.67× 10–11m3kg–1s−2 is the gravitational constant measured by Cavendish-
like experiments at the surface of our planet. The action contains a kinetic term for
the field and the traditional cosmological constant ρΛ, but we did not assume any
potential for the BD-field.

• We studied different scenarios depending on how we interpret the Cassini constraint
and how we fix the initial condition of the BD-field. When the initial value of the
BD-field is considered as a free parameter, our fits indicate that the preferred value
of the BD-field (or the gravitational constant) is lower than 1 (or higher than GN),
and the mean value of the H0 parameter is higher than that of the ΛCDM in each
possible dataset. In particular, when including the SH0ES’ prior on the value of H0,
the mean value of this parameter falls in the range of 70-72 km/s/Mpc, depending
on the dataset, thereby reducing the tension to smaller values.

• On the other hand, the dynamics of the field can play an important role in the σ8

tension. The variation of the field with time is encoded in the parameter εBD. In
the ΛCDM model, this parameter is exactly 0, while in Brans-Dicke models, it may
have a small but significant value. In our analysis, we concluded that a non-zero
εBD has a relevant impact on structure formation, lowering the mean value of σ8

with respect to the ΛCDM model and increasing the errors under different datasets,
thus reducing the associated tension. The combination of both effects, the freeing
of the initial value and its dynamical nature, may ameliorate both tensions at the
same time.

• In Chapter 6, we present a detailed analysis of RRVM models, or Ricci-RVM, emerg-
ing from some effective approaches to the traditional RVM that have been mentioned
in a previous point. They consist in a slight modification of the classical law of the
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RVM, where the Hubble parameter is replaced by the Ricci scalar, ρvac(R). This
model can be motivated by an effective approach (see Sect. 3.1.1) or by purely phe-
nomenological motivations. We test two different scenarios: one where there is
an interaction between matter and vacuum (type I), and another where matter is
conserved, but the vacuum can evolve by exchanging energy with the background
gravitational field (type II). In the former, we even consider the possibility of this
interaction being activated recently at a low redshift, which we call the threshold.
These features appear to be very useful in reducing cosmological tensions.

• The concept of a step function threshold may appear entirely ad hoc and without any
fundamental reason beyond the scope of pure phenomenology. However, as discussed
in Chapter 3, this threshold could be interpreted as the point at which the equation
of state (EoS) of the vacuum fluid drops below−1/3 at recent redshifts of around z ∼
1−10 (as shown in Figure 3.2 in Chapter 3). This indicates that vacuum behaving as
a dynamical dark energy is a relatively recent event in cosmological history. While
this is not precisely the same as the step function used in our analysis, it could be
a fundamental reason why our approach appears to work well in addressing the σ8

tension. Nevertheless, it remains essential to fit a model that incorporates the extra
features of quantum vacuum encountered in this work, and we plan to do so soon
[399].

• The effective parameter that controls the running of the VED, νeff , is found to be
positive based on the fitting results. In the type I scenario with a threshold, this
parameter is different from 0 at the ∼ 3σ level, while in the type II scenario, there
is still a signal at the ∼ σ level. This suggests that the VED decreases slowly with
expansion, and thus the RVM model behaves similarly to quintessence. This result
is consistent with previous studies, and readers can find a comprehensive list of
references in the introduction of Chapter 6.

• Type I models with a recent threshold can perfectly handle the σ8 tension and
reduce it to a harmless discrepancy below 0.4σ. For type II models, the tension is
reduced at the 1.3σ level in terms of σ8 and ∼ 0.5σ in terms of S̃8. Moreover, it
shares similarities with the Brans-Dicke model presented earlier in this dissertation.
It should be noted that its effect in reducing the H0 tension is noticeable, remaining
at the 1.6σ level. The alleviation of both tensions at the same time is a significant
signal and is supported by the DIC criterion.

• In summary, RRVM and BD offer promising extensions of the ΛCDM that can
accommodate the general fit of cosmological data and hold potential for addressing
the tensions that plague modern cosmology. However, our work is not yet complete.
Further analyses are required to test our predictions against the latest cosmological
data. Fortunately, in this era of precision cosmology, performing these tests will
not take long, with vast amounts of data coming from independent surveys about
to appear in the next years.

To conclude, let us reflect once more on the Cosmological Constant Problem (CCP).
It poses a significant challenge in reconciling the predictions of general Quantum Field
Theory (QFT) and string theory with the measurements from cosmological probes, [191,
192]. Given its magnitude and significance, it can be argued that the CCP is one of the
most important (if not the most important) questions facing theoretical physics today,
and an urgent need exists for a fundamental-level explanation.
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The heart of our findings is that the QFT calculations carried out in this study indicate
that the vacuum has dynamic properties. If the CCP is reframed as the necessity to
determine the specific value of the VED at any given time based on first principles, then
we are bound to fail. We have emphasized that while the renormalization program is
extremely useful in providing us with a law for the evolution of the vacuum energy density
at any point in cosmic history, it is important to remember that we require observational
data that cannot be obtained from the formalism. This additional ingredient is crucial
for renormalization theory to make predictions at other points in time. Despite years of
continued attempts, this is an insurmountable challenge, and it seems that QFT does not
provide any insight in this task of predicting the value of VED without any experimental
input. Instead, within the QFT framework, we encounter a humble yet astounding and
satisfactory result: the CCP in QFT is no longer the issue of comprehending how the
enormous contributions of ∼ m4 from quantum fields cancel each other out. Rather, once
we measure the precise value of the current VED, denoted as ρ0

vac ≡ ρvac(H0), which is
unknown to us a priori, it will no longer be disturbed by the enormous ∼ m4 effects from
any kind of quantum field we come across in the Universe.

Additionally, QFT informs us that there is no definite cosmological constant viewed as
an everlasting fundamental entity of Nature. In other words,ρ0

vac = ρvac(H0) should not
be interpreted as a fixed cosmological constant term, but merely as the value of the
vacuum energy density at present (H = H0). At any cosmic time characterized by the
cosmological energy scale H(t), there is a VED that evolves smoothly, known as ρvac(H).
The dynamics are smooth such that Λ = 8πG(H)ρvac(H) changes very gradually for a
long period, creating the illusion of an almost constant quantity that the standard model
explains as the cosmological constant.

However, we should remark once again that the CCP has many faces. While bringing some
light to the problem of fine-tuning is a step forward, it is still different from solving the
problem in its entirety. We must conclude that the so-called ‘old cosmological constant
problem’ [191], formulated as the problem of explaining the value of the cosmological
constant rather than its running, unfortunately persists.

Throughout the years of dedicated study on the dynamical vacuum energy, we have found
promising signs from both a theoretical and phenomenological perspective. The theoret-
ical framework presented here reinforces the position of the RVM family and related
models. Despite enduring admonitions and severe criticisms over time, the quantum vac-
uum may very well be the ultimate raison d’être for dark energy within the fundamental
framework of QFT in curved space-time. It could provide a clue to solving cosmological
tensions and the ultimate explanation for cosmic acceleration.
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Appendix A

Conventions, Notations and Useful
Formulas

All along this text we will use natural units (with some exceptions that will be indicated),
therefore ~ = c = 1 and GN = 1/m2

Pl., where GN is the Gravitational Constant measured
on Earth by Cavendish-like torsion experiments and mPl ' 1.22 × 1019 GeV stands for
Planck’s Mass. As for the conventions on geometrical quantities used throughout this
work, they read as follows:

• Signature of the metric gµν , (−,+,+,+) .

• Riemann tensor, Rλ
µνσ = ∂ν Γλµσ + Γρµσ Γλρν − (ν ↔ σ) .

• Ricci tensor, Rµν = Rλ
µλν .

• Ricci scalar, R = gµνRµν .

Overall, these correspond to the (+,+,+) conventions in the classification by Misner-
Thorn-Wheeler [554]. Our Framework is a Friedmann-Lemâıtre-Robertson-Walker (FLRW)
background with null spatial curvature. As usual, the Einstein tensor is defined through
Gµν = Rµν − 1

2
Rgµν and the Einstein field equations read Gµν + Λgµν = 8πGN Tµν . We

assume spatially flat three-dimensional geometry along the different works summarized
in the dissertation.

We denote with primes the derivatives with respect to conformal time (τ) and with dots
the derivatives with respect to cosmic time (t). Thus, H = aH, a′ = aH = a2H and
a′′ = a3(2H2 + Ḣ). The Christoffel symbols associated to the conformally flat metric
ds2 = a2(η)ηµνdx

µdxν , with ηµν = diag(−1,+1,+1,+1), are the following:

Γ0
00 = H, Γ0

ij = Hδij, Γij0 = Hδij . (A.1)

We can also derive the following useful relations to convert the derivatives of the Hubble
rate with respect to conformal time into derivatives with respect to cosmic time, which
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are repeatedly used in the calculations quoted in the main text:

H′ =a2(H2 + Ḣ) ,

H′′ =a3
(

2H3 + 4HḢ + Ḧ
)
,

H′′′ =a4
(

6H4 + 18H2Ḣ + 4Ḣ2 + 7HḦ +
...
H
)
,

H′′′′ =a5
(

24H5 + 96H3Ḣ + 52HḢ2 + 46H2Ḧ + 15ḢḦḦ + 11H
...
H +

....
H
)
,

H′′′′′ =a6
(

120H6 + 600H4Ḣ + 548H2Ḣ2 + 52Ḣ3 + 326H3Ḧ + 271HḢḦ + 15Ḧ2

+ 101H2
...
H + 26Ḣ

...
H + 16H

....
H +

.....
H
)
.

(A.2)

For convenience we quote the Ricci scalar and the non-vanishing components of the
curvature tensors in alternative forms:

R = 6
a′′

a3
=

6

a2
(H′ +H2) = 6

(
ȧ2

a2
+
ä

a

)
= 6(2H2 + Ḣ) (A.3)

and
R00 = −3H′ = −3a2(H2 + Ḣ) , G00 = 3H2 = 3a2H2 . (A.4)

For reference we also quote the well-known definitions of Euler’s density E and the square
of the Weyl tensor (C2):

E = RαβγδRαβγδ − 4RαβRαβ +R2 , C2 = RαβγδRαβγδ − 2RαβRαβ +
1

3
R2 . (A.5)

It follows that

RαβγδRαβγδ = 2C2 − E +
1

3
R2, RαβRαβ =

1

2
(C2 − E) +

1

3
R2 . (A.6)

From the density E one defines the Gauss-Bonnet term,

G =

ˆ
dnx
√
−gE , (A.7)

which is a topological invariant in n = 4 (not so in other dimensions). Such a topological
invariance implies that the metric functional variation of G vanishes identically in four
dimensions:

δG

δgµν
= 0 (n = 4) . (A.8)

From the basic HD terms one may construct the higher derivative (HD) part of the
vacuum action, henceforth n = 4:

SHD =

ˆ
d4x
√
−g
(
α1C

2 + α2R
2 + α3E + α4�R

)
≡
ˆ
d4x
√
−gLHD . (A.9)

The purely geometric terms in (A.9) are generated by the quantum matter contributions,
and hence these HD terms are necessary for the renormalization procedure. The bare
couplings αi become renormalized couplings αi(M) which run with the renormalization
scale M . That HD gravitational action (with effective Lagrangian LHD) is to be added to
the EH action plus matter, cf. Eq. (2.1), in order to have a well-defined and renormalizable
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semiclassical theory of quantum fields in curved space-time. The total action of gravity
plus matter therefore reads

Stot = SEH + SHD + Sm . (A.10)

In it, the total vacuum action is the sum of the first two pieces, whereas the last piece is
the matter action. By functionally differentiating the R2 and RαβR

αβ terms with respect
to the metric, we obtain two (conserved) higher order curvature tensors (of adiabatic
order 4), namely

(1)Hµν =
1√
−g

δ

δgµν

ˆ
d4x
√
−g R2 = −2∇µ∇νR + 2gµν�R−

1

2
gµνR

2 + 2RRµν . (A.11)

and

(2)Hµν =
1√
−g

δ

δgµν

ˆ
dx4
√
−gRαβR

αβ

= 2Rα
µRαν − 2gµβ∇α∇νR

αβ +�Rµν +
1

2
gµν�R−

1

2
gµνR

αβRαβ .

(A.12)

One can also define Hµν = 1√
−g

δ
δgµν

´
dx4
√
−gRαβγδRαβγδ. However, because of the topo-

logical property (A.8) in n = 4, one can easily show that the new HD tensor can be

written in terms of the previously defined ones as follows: Hµν = 4(2)Hµν − (1)Hµν . Using
this property to compute the functional derivative of the Weyl tensor squared defined in
(A.5) we find

1√
−g

δC2

δgµν
= Hµν − 2(2)Hµν +

1

3
(1)Hµν = 2(2)Hµν −

2

3
(1)Hµν . (A.13)

The previous relation implies that for conformally flat space-times (like FLRW), for which

the Weyl tensor vanishes identically, the basic two HD tensors (2)Hµν and (1)Hµν are not
independent:

(2)Hµν =
1

3
(1)Hµν . (A.14)

We remark that the two HD tensors , (1)Hµν and (2)Hµν , are conserved tensors, namely
they satisfy the local conservation laws

∇µ (1)Hµν = 0 , ∇µ (2)Hµν = 0 . (A.15)

These laws are fulfilled identically and independently of each other, even if the background
geometry is non-conformally flat and the relation (A.14) is not satisfied. This should not

be surprising for the following reason. Tensors (1)Hµν and (2)Hµν represent the most
general modification of the l.h.s. of Einstein’s equations in the presence of HD terms. In
fact, the metric variation of the total action (A.10) produces the generalized Einstein’s
equations:

Gµν + b1(M)(1)Hµν + b2(M)(2)Hµν = 8πG(M)
〈
T tot
µν

〉
ren

(M) . (A.16)

One would expects that (1)Hµν and (2)Hµν should not perturb the consistency between the
Bianchi identity ∇µGµν = 0 satisfied by the Einstein tensor and the local conservation
law ∇µT tot

µν = 0 (where the EMT T tot
µν involves all forms of energy, matter and vacuum,

whether interacting or not). One can verify, of course, by explicit calculations from the
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above definitions that the two local conservation laws (A.15) are indeed satisfied. This
fact insures that acting with ∇µ on both sides of (A.16) gives consistently zero. For the
explicit derivation of the relations (A.15), the following standard relation can be used:

(∇ν∇µ −∇µ∇ν) vα = Rσ
αµνvσ , (A.17)

which holds for any covariant vector field vα. In particular, for vα = ∇αφ we find

(∇ν∇µ −∇µ∇ν)∇αφ = Rσ
αµν∇σφ . (A.18)

It shows that in curved space-time the successive action of three ∇µ operators cannot be
performed by commuting the last two being applied, while of course ∇ν∇µφ = ∇µ∇νφ
(because the Christoffel symbols are symmetric). The relation (A.18) can be used to
derive the rule for commuting the nabla and box operators, which we need as well in the
text:

∇µ�φ−�∇µφ = −Rµν∇νφ . (A.19)

Additional formulas which are used in the main text involving the above HD tensors in
the specific context of the FLRW metric are the following. The 00th and 11th-components
of the (1)Hµν tensor in the conformally flat metric reads

(1)H00 =
−18

a2

(
H′2 − 2H′′H + 3H4

)
= −18a2

(
Ḣ2 − 2HḦ − 6H2Ḣ

)
, (A.20)

(1)H11 = −a2
(

108H2Ḣ + 54Ḣ2 + 72HḦ + 12
...
H
)
. (A.21)

We will also need the invariants

RµνRµν =
12

a4

(
H′2 +H′H2 +H4

)
, �R = − 6

a4

(
H′′′ − 6H′H2

)
, (A.22)

which hold good for flat three-dimensional FLRW spacetime.

For gamma matrices (in flat spacetime), the standard Dirac basis is chosen for our cal-
culations with spin-1/2 fermions:

γ0 =

(
I 0

0 −I

)
γk =

(
0 σk

−σk 0

)
, (A.23)

where σk (k = 1, 2, 3) are the usual Pauli matrices. In terms of the above γα, the curved
spacetime γ-matrices read γµ(x) = eµα(x)γα, where eµα(x) is the vierbein (cf. Sect. 4.1).

A.1 Master Integrals

Integrals over 3-dimensional momentum appear quite often in our calculations. For our
purposes it will suffice to focus on integrals of the form

I3(p,Q) ≡
ˆ

d3k

(2π)3

1

ωpk(Q)
=

1

2π2

ˆ
dkk2 1

ωpk(Q)
=

1

2π2

ˆ
dkk2 1

(k2 +Q2)p/2
, (A.24)
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where k ≡ |k|, ωk(Q) =
√
k2 +Q2 and Q is an arbitrary scale. In n−1 spatial dimensions,

In−1(p,Q) ≡
ˆ
µ3−(n−1)dn−1k

(2π)(n−1)

1

(k2 +Q2)p/2
=

µ3−(n−1)

(4π)(n−1)/2

Γ
(
p−(n−1)

2

)
Γ
(
p
2

) (
Q2
) (n−1)−p

2

=
1

(4π)3/2

Γ
(
p−3

2
+ ε
)

Γ
(
p
2

) (
Q2
) 3−p

2

(
Q2

4πµ2

)−ε
.

(A.25)

Here Γ(x) is Euler’s Γ function, which satisfies the functional relation Γ(x+ 1) = xΓ(x).
The scale µ (with natural dimension one) has been introduced such that the new integra-

tion measure dn−1k → µ2εdn−1k has the same dimension as d3k, where ε ≡ 3−(n−1)
2

= 4−n
2

.
Of course, the limit ε → 0 (i.e. n − 1 → 3) at the end of the calculation is understood.
Such a limit is trivial for p > 3, but not so for p ≤ 3 since in the last case poles ∼ 1

ε
appear in the result of (A.25), which can be used to regularize the UV-divergent terms
appearing in many of the integrals appearing in our calculation, see e.g. Eq. (2.33). The
limit ε→ 0 also generates finite parts which must be carefully included. Despite the fact
that the adiabatic subtraction procedure provides overall UV-convergent integrals, as ex-
plained in detail in the main text, one can also use dimensionally regularized integrals to
track the poles found in intermediate results. The following properties of the Γ function
are useful:

Γ(ε) =
1

ε
− γE +O(ε) , Γ(−1 + ε) = −1

ε
− 1 + γE +O(ε) , (A.26)

where γE is Euler’s constant. Using the functional definition of Γ mentioned above, one
can easily extend these formulas to parameterize the divergent behavior of Γ around any
negative integer.

A simpler version of (A.25), that may be used for explicitly convergent integrals is

I3 ≡
ˆ ∞

0

k2

ωpk(Q)
dk =

ˆ ∞
0

k2

(k2 +Q2)p/2
dk =

1

Qp−3

(p− 5)!!

(p− 2)!!
, (A.27)

valid for odd numbers p ≥ 5, and !! represents the double factorial, defined recursively
as N !! = N × (N − 2)!! and 1!! = 0!! = 1.

With respect Chap. 2 and Chap. 4, the following observation is in order at this point.
It is important to clarify that, in our renormalization scheme, the auxiliary ’t Hooft’s
mass unit µ used in the above formulae plays no role and cancels out completely at the
level of the final results. This is so in all the computations presented in this work. The
appearance of µ in intermediate steps is related to have used (optionally) dimensional
regularization in some parts of our calculation. Use of DR, however, is not essential at
all and it can be totally circumvented. This was shown e.g. in the calculations given in
Sect. B, where the regularization of the EMT was performed using DR after the results
had already been obtained using the subtraction prescription in the main text. Similarly,
use of DR in the effective action approach of Sect. 2.8 is only for convenience, we have
rederived the same results using the scale subtraction procedure, i.e. the one we have
employed in Sect. 2.4 and Sect. 2.5. The same is true for Chap. 4: The presented results
do not depend on the mathematical procedure used for solving/regularize integrals and
it is ultimately a matter of choice. We emphasize, however, that we did not use the
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MS scheme of renormalization at any point in our study of the VED, although this is of
course independent of using DR as an intermediate regularization technique, if desired.
In contrast, the subtracting scale M remains always in our results as it is inherent to
our renormalization method, no matter whether we decide to use DR in intermediate
steps for regularization or just proceed to rearrange the terms of the integrands of our
subtracted integrals to show by explicit calculation that the result is overall convergent.
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Appendix B

Combining adiabatic and
dimensional regularization in
Chapter 2

In this appendix, we sketch the calculation of the regularized EMT by using dimensional
regularization (DR). Let us nonetheless emphasize that while we will use minimal sub-
traction of poles as a regularization procedure, we do not intend to renormalize the theory
with this prescription. If we would do that the renormalized vacuum energy would still
exhibit the unwanted ∼ m4 contributions. In the following, we show that after the ARP
has been performed, the divergent integrals appearing in the intermediate calculations
can be regularized through DR and then we can recover exactly the same result (2.74)
for the renormalized VED.

B.1 Dimensionally regularized ZPE in FLRW space-time

Next we summarize how to obtain the same expression for the renormalized VED as the
one we have found in Sect. 2.5.1, but now using DR in the intermediate steps to regularize
the divergent integrals. Our common starting point is Eq. (2.36),

〈T δφ00 〉(M) = 〈T δφ00 〉Div(M) + 〈T δφ00 〉Non−Div(M), (B.1)

where the divergent and non-divergent contributions are the same ones as in equations
(2.37) and (2.38), respectively. The order of adiabaticity of these expressions, therefore
is the same as in the calculation presented in the main text, and we shall take this fact
for granted hereafter. We should remind the reader that in these expressions the WKB
expansion of the modes has been performed off-shell, i.e. at an arbitrary mass scale M
which is generally different from the physical mass, m. However, at this point we take
a different route for the rest of the calculation, namely we compute the divergent parts
with the help of the DR formula (A.25). Next we expand in ε before taking the limit
ε → 0 and leave only the ε dependence at the poles located at ε = 0 (i.e. N = 3). The
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final result is

〈T δφ00 〉Div(M) = −M
4a2

64π2

[
1

ε
+

3

2
− γE + ln 4π + ln

µ2

M2

]
− 3M2H2

16π2

(
ξ − 1

6

)[
1

ε
− 1− γE + ln 4π + ln

µ2

M2

]
− 9

16π2a2

(
ξ − 1

6

)2

(2H′′ −H′2 − 3H4)

[
1

ε
− γE + ln 4π + ln

µ2

M2

]
− ∆2a2M2

32π2

[
1

ε
+ 1− γE + ln 4π + ln

µ2

M2

]
− ∆4a2

64π2

[
1

ε
− γE + ln 4π + ln

µ2

M2

]
−
(
ξ − 1

6

)
3∆2H2

16π2

[
1

ε
− γE + ln 4π + ln

µ2

M2

]
(B.2)

This equation can be conveniently split into a UV-divergent part involving the poles at
ε = 0 and a finite part. Defining

Dε =
1

ε
− γE + ln 4π (B.3)

and recalling that ∆2 = m2 −M2, we obtain

〈T δφ00 〉Div(M) = −m
4a2

64π2
Dε −

3m2H2

16π2

(
ξ − 1

6

)
Dε −

9

16π2a2

(
ξ − 1

6

)2

(2H′′ −H′2 − 3H4)Dε

+ 〈T δφ00 〉FR(M) .
(B.4)

The UV-divergent part, in the first line, depends only on the physical mass of the particle,
m, whereas the finite remainder (denoted with the label FR) depends both on the mass
and on the renormalization point M :

〈T δφ00 〉FR(M) = −M
4a2

64π2

[
3

2
+ ln

µ2

M2

]
− 3M2H2

16π2

(
ξ − 1

6

)[
−1 + ln

µ2

M2

]
− ∆2a2M2

32π2

[
1 + ln

µ2

M2

]
− ∆4a2

64π2
ln

µ2

M2
−
(
ξ − 1

6

)
3∆2H2

16π2
ln

µ2

M2

− 9

16π2a2

(
ξ − 1

6

)2

(2H′′H−H′2 − 3H4) ln
µ2

M2

=
a2

128π2

(
M4 − 4m2M2 − 2m4 ln

µ2

M2

)
+

3

16π2

(
ξ − 1

6

)
H2

(
M2 −m2 ln

µ2

M2

)
− 9

16π2a2

(
ξ − 1

6

)2

(2H′′H−H′2 − 3H4) ln
µ2

M2
,

(B.5)

where in the second equality we have used once more ∆2 = m2 −M2. At this stage, the
DR procedure carries a dependence on the artificial mass scale µ. However, in our case
µ will play no role since we are not just aiming at a conventional renormalization based
on minimal subtraction, so µ serves only as an auxiliary variable which will eventually
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disappear from the renormalized result. We should emphasize that the relevant renor-
malization scale in our calculation is not µ but M . DR is used here only as a technique
to display explicitly the divergences of the EMT and to enable their subtraction with the
conventional counterterm procedure.

B.2 Counterterms

While the calculation can be fully carried out without any use of DR, provided one defines
a properly subtracted EMT from the beginning with the ARP (cf. Sect. 2.4), we follow
now the more conventional approach. Thus we remove the unphysical divergences of the
EMT by generating counterterms from the coupling constants present in the extended
gravitational action with the HD terms. The modified Einstein’s equations read formally
as in Eq. (2.49) but carrying the bare couplings, i.e. couplings which are formally UV-
divergent and scale independent:

1

8πGN

Gµν + ρΛgµν + a1H
(1)
µν = 〈T δφµν 〉+ T φb

µν . (B.6)

We will focus on the 00-component of this equation since we are interested in the ZPE.

Following the standard renormalization procedure, we split each of the bare couplings
on the l.h.s of the above equation into the renormalized term (which depends on the
renormalization point M), and a counterterm (which does not depend on M):

G−1
N = G−1

N (M) + δG−1
N ,

ρΛ = ρΛ(M) + δρΛ,

a1 = a1(M) + δa1.

(B.7)

We define the counterterms such that we can subtract the universal terms γE and 4π
of the DR procedure alongside with the poles, as it is conventional in the modified MS
(or MS) [344, 345]. That is why we have defined the quantity Dε in Eq. (B.3). As we
can see, three ‘primitive divergences’ appear in the unrenormalized form of the EMT,
which are proportional to ∼ m4, ∼ m2(ξ − 1/6) and (ξ − 1/6)2, respectively. These can
be cancelled by the corresponding counterterms generated from the bare couplings in
Eq. (2.50), i.e. the counterterms can now be precisely used to cancel the three divergent
quantities proportional to Dε in Eq. (B.4). Using the 00-components of the geometric
tensors given in Appendix A, they are readily found to be

δG−1
N = −m

2

2π

(
ξ − 1

6

)
Dε ,

δρΛ = +
m4

64π2
Dε ,

δa1 = − 1

32π2

(
ξ − 1

6

)2

Dε .

(B.8)

We confirm that they depend on the physical mass m and not on the renormalization
point M . The renormalized Einstein equation resulting from cancelling the poles with
the counterterms take on the same form as in Eq. (2.49), in which the couplings are now
the renormalized ones and explicitly depend on the mass scale M . The 00-component
reads

1

8πGN(M)
G00 + ρΛ(M)g00 + a1(M)H

(1)
00 = 〈T̃ δφ00 〉(M) + T φb

00 , (B.9)
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where the tilded quantity

〈T̃ δφ00 〉(M) = 〈T δφ00 〉FR(M) + 〈T δφ00 〉Non−Div(M) . (B.10)

is the finite part left of the EMT (B.1) after removing the poles. Being finite we might
be tempted to call it (provisionally) the renormalized ZPE, but in fact is not our final
renormalized expression. Some further insight on it can be achieved by considering the
term labelled FR, which is given by (B.5). If we apply the limit a = 1 (so that H and all
its derivatives vanish) and project the result on-shell (M = m, hence ∆ = 0), the whole
expression (B.5) shrinks to just one of the equivalent forms

〈T δφ00 〉FR(m)
∣∣∣
Minkowski

= − m4

64π2

[
3

2
+ ln

µ2

m2

]
=

m4

128π2

[
−3− 2 ln

µ2

m2

]
=

m4

64π2

[
ln
m2

µ2
− 3

2

]
.

(B.11)
This is nothing but the standard (one-loop) ZPE in flat space-time, namely it is the
renormalized form of the UV-divergent integral (2.43) within the MS. As we can see,
Eq. (B.11) brings a explicit dependence on µ and above all it grows as the quartic power
of the mass of the field. Because the total VED is the sum of (B.11) plus the renormalized
ρΛ – cf. Eq. (2.17) – we are led to face a huge contribution from the quartic term ∼ m4

(for virtually every known particle, except a very light neutrino), which amounts to a
large fine-tuning between these two quantities. This is odd, in fact unacceptable. As
discussed in detail in [167,294,295], the flat space formula carries indeed the core of the
cosmological constant problem [191] and the curved space-time calculation just inherits it
at this point, but it does not aggravate it further. Thus, not surprisingly the subtraction
of this part leaves a well-behaved result (cf. Sect. 2.5.2). However, let us continue with
our renormalization procedure and evade this conundrum within the present context.

B.3 Renormalized ZPE and absence of ∼ m4 contributions

The problem stems from the tilded definition of the renormalized EMT given in (B.10),
which is just a variant of the MS-renormalized one, although carrying off-shell ∆2-
corrections. However, a well-defined expression can be obtained if we call back anew our
definition of renormalized EMT as in (2.53) of the main text. The prescription amounts
to take the on-shell value (at the physical mass m) and subtract from it the terms up
to 4th adiabatic order at some arbitrary mass scale M . This provides automatically an
overall finite result, as we have proven in the main text without using DR. Taking into
account that in this alternative procedure we have already removed the poles appearing
in the intermediate steps with the help of DR, it suffices to perform the aforementioned
subtraction directly with the finite expression (B.10):

〈T δφ00 〉Ren(M) = 〈T̃ δφ00 〉(m)− 〈T̃ δφ00 〉(M)

= 〈T δφ00 〉FR(m)− 〈T δφ00 〉FR(M) + 〈T δφ00 〉Non−div(m)− 〈T δφ00 〉Non−div(M)

= 〈T δφ00 〉FR(m)− 〈T δφ00 〉FR(M)−
(
ξ − 1

6

)
3∆2H2

8π2
+ . . . (B.12)
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Upon some simple rearrangements, it finally yields

〈T δφ00 〉Ren(M) =
a2

128π2

(
−M4 + 4m2M2 − 3m4 + 2m4 ln

m2

M2

)
−
(
ξ − 1

6

)
3H2

16π2

(
m2 −M2 −m2 ln

m2

M2

)
+

(
ξ − 1

6

)2
9 (2H′′H−H′2 − 3H4)

16π2a2
ln
m2

M2
+ . . .

The µ-dependence has cancelled at this point, and as we can see this equation turns out
to be exactly the same one as in Eq. (2.56). Therefore, from this point onwards we can
reproduce the same renormalized VED (2.74), just starting from (2.63) and subtracting
its value at the two scales M and M0. Once more the result is that the VED at the scale
M can be related with its value at another scale M0 without receiving any contribution
from the quartic values of the mass scales or of the mass of the particle. Thus, on using
this renormalization procedure we can get rid of the dependence on the quartic powers
of the masses as well as on the spurious DR parameter µ.

The lesson we can learn is the following. While the mere MS renormalization of the VED
(based on using DR together with the subtraction of the poles by the counterterms) leaves
a result which is explicitly dependent both on the artifical DR scale µ and on the quartic
powers of the masses [302, 303], the extended ARP technique [305] allows to relate the
renormalized quantities at different scales. With detailed calculations, which we have
presented here through two different approaches (one of them not using DR at all), we
have shown that we can avert the mentioned problems associated to a mere removal of the
poles by the counterterms. The common final result emerging from the two procedures
is an expression for the running of the renormalized EMT in a FLRW background as
a function of the Hubble rate, thus allowing to trace the VED evolution throughout
the cosmic history. The result we have obtained is indeed much closer in spirit to the
renormalization group approach of the RVM, cf. [167, 294–296] and references therein –
particularly [272,291–293] – in which such mild evolution of the vacuum energy density in
terms of (even) powers of the Hubble rate was predicted on very general grounds. Here we
have provided for the first time a detailed account from explicit QFT calculations under
an appropriate renormalization scheme leading to a possible physical interpretation of
the results. The outcome is Eq. (2.74).

We should perhaps repeat once more that such relation is not a prediction of the value of
the CC and in general of the VED, as this is out of the scope of renormalization theory.
Every renormalization calculation needs a set of renormalization conditions. Behind these
renormalization conditions there is a set of physical (and hopefully known) inputs and
from these observational inputs we can predict other physical results. In the present
instance, this means that given the VED at one scale (entailing a physical input) we can
predict its value at another scale. What is, however, distinctive in the kind of calculation
we have presented here is the fact that the connection between the renormalized values
of the VED at different points appears smooth enough, i.e. it does not involve ∼ m4

terms, which are usually very large for ordinary particle masses in the standard model
of particle physics (let alone in GUT’s) and this suggests that no fine tuning is actually
involved.

The unsatisfactory status of the m4 terms in cosmology is very similar to the hierarchy
problem associated to the m2 terms in ordinary gauge theories [555], but even worse in
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magnitude. In stark contrast to the usual situation with these terms, in the approach we
have outlined in this work we do not need to call for special cancellations (fine-tuning)
among the various m4 contributions from different particles, such as e.g. when using the
Pauli sum rules – see [350] for a detailed discussion –, nor to invoke the existence of
emergent scales or very small dimensionless parameters suppressing the undesired effects,
see e.g. [452, 556–561] for a variety of contexts of this sort. The problem is fixed here
automatically by the renormalization process itself that we have used.

292



Appendix C

Running vacuum and gravitational
coupling in the RVM presented in
Chapter 2

In this appendix, we provide calculational details on the formulas for the running vacuum
and gravitational coupling introduced in the main text, and their interrelationship. Recall
that ρvac(M) is an abridged notation for ρvac = ρvac(M,H, Ḣ, Ḧ, ...), i.e. the vacuum
energy density (VED), which is a function not only of the scale M but also of the Hubble
rate and its time derivatives. The value of H = H(t) defines an expansion history time t.
When compared with our current cosmic time, t0, the difference t0−t defines our lookback
time to the events occurring around the expansion history epoch H. It is advisable to
make the original shorthanded notation a bit more explicit for the kind of discussion in
this appendix. Rather than denoting the renormalized value of the VED at the scale
M for a fixed expansion rate H (and corresponding time derivatives) by just ρvac(M) ,
we will use ρvac(M,H). The second argument denotes generically all the dependency in
H, Ḣ, Ḧ, . . . The values of M and H are independent, of course, but a selected choice
of the renormalization point M near H corresponds to choose the RG scale around the
characteristic energy scale of FLRW space-time at a given moment, and hence it should
have more physical significance. This is actually in analogy with the standard practice
in ordinary gauge theories, where the choice of RG scale is usually made near the typical
energy of the process. For the FLRW universe, the natural choice for the process of
expansion is M = H and we will see it is consistent. In what follows we derive the ‘low
energy’ form of the VED along these lines. Subsequently we will focus on the running
gravitational coupling G(M) and its relation with the running ρvac(M).

C.1 Running VED

The expression for VED at the scale M for a given expansion history time H is provided
by our renormalization procedure and it is given by Eq. (2.65). This expression contains
the contributions from all the possible adiabatic orders up to the limit of the asymptotic
expansion. Suppose, however, that we consider the renormalized VED at a given expan-
sion history time H for different values of the renormalization scale, say M and M0. The
difference of renormalized VED values at these scales at a fixed H can be computed in
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an exact way, see Eq. (2.74). The exactness of such formula stems from the fact that
the renormalization scale dependence of the EMT (i.e. the M -dependence) can only be
carried by the terms that are originally divergent (those up to 4th adiabatic order). The
renormalized EMT at the scales M and M0 at fixed cosmic time (hence at fixed H) is
obtained upon subtracting the corresponding on-shell value at these respective scales, as
explained in Sect. 2.4. Therefore, the difference of renormalized VED values at M and
M0 is free from all of the finite contributions from 6th adiabatic order and higher. Only
O (H2) and O (H4) (i.e. second and fourth adiabatic orders, respectively) remain, as it
is manifest in Eq. (2.74). However, despite of the fact that such result is exact, we wish
to focus on lookback times accessible to observations, hence with values of H which are
moderate enough for the O (H4) terms to be negligible. The desired difference between
ρvac(M,H) and ρvac(M0, H) within our lookback observational range therefore reads

ρvac(M,H)− ρvac(M0, H) = ρΛ(M)− ρΛ(M0)

+
1

128π2

(
−M4 +M4

0 + 4m2(M2 −M2
0 )− 2m4 ln

M2

M2
0

)
+

(
ξ − 1

6

)
3H2

16π2a2

(
M2 −M2

0 −m2 ln
M2

M2
0

)
+ · · ·

=

(
ξ − 1

6

)
3H2

16π2

(
M2 −M2

0 −m2 ln
M2

M2
0

)
+ · · ·

(C.1)

where the dots denote the kind of neglected contributions mentioned above. As we know,
the first two terms in the above formula cancel against each other thanks to the relation
(2.70). The obtained result is given, of course, by the O (H2) part of Eq. (2.74).

Similarly, from Eq. (2.65) we may also find the difference between the values of the VED
corresponding to two accessible lookback times for a given renormalization point M :

ρvac(M,H)− ρvac(M,H0) = 3

(
ξ − 1

6

)
16π2

(H2 −H2
0 )

(
M2 −m2 +m2 ln

m2

M2

)
+ · · · (C.2)

In this expression we have disregarded not only the O (H4) terms but also the higher
order ones (which are indeed present here, in contrast to Eq. (C.1)), as they entail no
significant contribution at present. They can be important only for the early universe,
e.g. during the inflationary regime, see Sect. 3.4.2.

We may as well compute the scaling evolution of the VED when we change both the
cosmic times and the renormalization points. Keeping our focus on cosmic epochs H and
H0 accessible to our observations, the result immediately follows from Eq. (2.65) upon
neglecting the O (H4) terms and higher:

ρvac(M,H)− ρvac(M0, H0) =
3
(
ξ − 1

6

)
16π2

[
H2

(
M2 −m2 +m2 ln

m2

M2

)
−H2

0

(
M2

0 −m2 +m2 ln
m2

M2
0

)]
+ · · · ,

(C.3)

where again the first two terms on the RHS of Eq. (C.1) are involved here, but cancel
each other for the aforementioned reasons. Finally, let us consider what should be the
physical (measurable) difference between the VED values at different epochs of the cos-
mic evolution within our observational range. According to our prescription, choosing the
renormalization point M near H (and hence bringing the RG scale near the characteristic

294



energy scale of the FLRW space-time at the given epoch) ought to be the most suited
physical choice in consonance with the usual practice based on selecting the RG scale
choice near the typical energy of the process in particle physics. As indicated, in our
case the ‘process’ is nothing but the cosmic expansion of the universe at a given epoch.
Thus, to compute the scaling evolution of the VED in the span mediating in between the
two cosmic epochs H and H0, follows directly from Eq. (C.3) upon picking out the renor-
malization points M and M0 at precisely the values of the Hubble rate in those epochs,
respectively: M = H and M0 = H0. Defining for convenience ρvac(H) ≡ ρvac(M = H,H)
and similarly ρvac(H0) ≡ ρvac(H0, H0), and neglecting as always the higher order terms
O (H4) , we find

ρvac(H)− ρvac(H0) =
3
(
ξ − 1

6

)
16π2

[
H2

(
H2 −m2 +m2 ln

m2

H2

)
−H2

0

(
H2

0 −m2 +m2 ln
m2

H2
0

)]
+ · · ·

'
3
(
ξ − 1

6

)
m2

16π2

[
−
(
H2 −H2

0

)
+H2 ln

m2

H2
−H2

0 ln
m2

H2
0

]
=

3
(
ξ − 1

6

)
m2

16π2

[
−1 + ln

m2

H2
− H2

0

H2 −H2
0

ln
H2

H2
0

] (
H2 −H2

0

)
.

(C.4)

The previous formula shows that there is in effect a ‘running’ or change of the VED from
H0 to H. Notice that if m is an ordinary particle mass (e.g. within the standard model of
particle physics) the running would be very small. Suppose, however, that m is a particle
mass near some GUT scale, then it is natural to measure its value in units of the Planck
mass mPl and factor out the ratio m/mPl. We do this in defining the effective running
parameter

νeff(H) ≡ 1

2π

(
ξ − 1

6

)
m2

m2
Pl

(
−1 + ln

m2

H2
− H2

0

H2 −H2
0

ln
H2

H2
0

)
. (C.5)

The running VED formula (C.4) can now be written in a rather compact form as follows:

ρvac(H) ' ρ0
vac +

3νeff(H)

8π
(H2 −H2

0 )m2
Pl = ρ0

vac +
3νeff(H)

8πGN

(H2 −H2
0 ) , (C.6)

where ρvac(H0) is identified with today’s VED value, ρ0
vac, and GN is assumed to be the

currently measured value of the gravitational constant. As a matter of fact, νeff(H) in
(C.5) is not a parameter, of course, since it is a function of H. However, it varies very
slowly with the Hubble rate. The last term of (C.5) is logarithmic and becomes quickly
suppressed for increasingly large values of H above H0, whereas the second term furnishes
(on account of ln m2

H2 � 1) the dominant contribution to the effective running parameter:

νeff(H) ' 1

2π

(
ξ − 1

6

)
m2

m2
Pl

ln
m2

H2
. (C.7)

In the approximation H = H0 (valid to within a few percent in the accessible part of the
expansion history for large m), it just renders Eq. (2.84) in the main text, and Eq. (C.6)
is nothing but the canonical form of the VED for the running vacuum model (RVM), as
given in the main text in Eq. (2.83). In it, the running parameter is treated essentially
as a constant.
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In actual fact, for a large stretch of the recent universe we can just set H = H0 in Eq. (C.7)
since it differs less than 7% through the entire period from now up to the decoupling time.
Even if ξ is not known, the ratio m2/m2

Pl � 1 in the prefactor of (C.5) is very small, so
we can expect that νeff is essentially a tiny quantity with a very mild variation with H.
From the foregoing, it follows that it can be treated to a good approximation as a small
parameter within the observable universe. Notice, however, that for m large, say of order
of a GUT scale MX ∼ 1016 GeV, we have m2/m2

Pl ∼ 10−6, which is not hopelessly small.
Since ξ is, in principle, arbitrary and we have in general a large multiplicity of heavy
scalar particles in a typical GUT, the effective value of νeff can not be excluded to be in
the small but sizeable range 10−4 − 10−3 [293]. This theoretical expectation is actually
corroborated by the phenomenological analysis. The RVM has been fitted to the data
and the obtained results for νeff lie in expected ballpark of ∼ 10−3, see e.g. [246,248,250]
and [374].

C.2 Time versus scaling evolution of the VED

To further illustrate the meaning and consistency of the above formulas for the running
VED, it is interesting to compare the scaling versus time evolution laws of the VED
at the differential level. The former is, of course, determined by the β-function (2.172)
of the VED, whereas the latter can be computed as follows. For two given expansion
epochs H and H0, the time evolution is determined by Eq. (C.4), or equivalently by (C.5)
and (C.6). However, we would like this result for an infinitesimal change of H around
H = H0, which means to compute the derivative of ρvac(H) with respect to H at H = H0,
or, for convenience, the logarithmic derivative dρvac(H)/d lnH = Hdρvac(H)/dH. The
result follows from Eq. (C.4). We find

H0
dρvac(H0)

dH
=

(
ξ − 1

6

)
3H2

0m
2

8π2

(
−2 + ln

m2

H2
0

)
. (C.8)

This equation can be written in an approximate way as follows:

H0
dρvac(H0)

dH
'
(
ξ − 1

6

)
3H2

0m
2

8π2
ln
m2

H2
0

=
3νeff

4π
m2

PlH
2
0 . (C.9)

where in the last step we used ln m2

H2 � 1 and took the approximate expression (2.84)
for the coefficient νeff . It is also instructive to obtain the same result using the chain
rule to compute the total derivative with respect to M and set M = H0 at the end of
the calculation, as in this way the role of the β-function for the VED, βρvac , becomes
manifest:

M
dρvac(M,H)

dM
=M

(
∂ρvac

∂M
+
∂ρvac

∂H

∂H

∂M

)
= βρvac +M

∂ρvac

∂H

∂H

∂M
, (C.10)

or, more explicitly, for H = H0:

M
dρvac(M,H0)

dM
=

(
ξ − 1

6

)
3H2

0

8π2

(
M2 −m2

)
+M

(
ξ − 1

6

)
3H0

8π2

(
M2 −m2 +m2 ln

m2

M2

)
∂H0

∂M
,

(C.11)
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where both for the VED expression (2.65) and for its β-function (2.172) we used the
relevant O(H2) terms only, and of course we borrowed the β-function for the renormalized
coupling ρΛ(M), as given in Eq. (2.146). Setting at this point M = H0 and dropping the
terms higher than O(H2) we strike once more Eq. (C.8). From the latter we can see that
the sign of the total variation of the VED is given by the sign of ξ − 1

6
and hence also by

the sign of νeff , see (C.9). This is in full accordance with the result (2.83). In particular,
we can see from the last derivation that the total evolution of the VED is dominated by
the variation of ρvac with H rather than with the scale M (before setting M = H). When
we set M = H at the end, the dominant term is that one carrying ∂ρvac/∂H in (C.10),
whose sign is the same as that of νeff . It is therefore the total, rather than just the partial,
derivative with respect to M what matters for the study of the physical evolution of the
VED. This is a consequence of the time dependence of M in cosmology, in contrast to
the situation in ordinary gauge theories. Writing the leading term of Eq. (2.172) at low
energies as

βρvac =
3 bvac

4π
H2

0m
2 bvac ≡ −

1

2π

(
ξ − 1

6

)
, (C.12)

we find from (C.7) the approximate formula relating νeff with the coefficient bvac of the
β-function for the running VED:

νeff = −bvac
m2

m2
Pl

ln
m2

H2
0

. (C.13)

The sign between νeff and bvac reflects the mentioned antagonism between the variations
of the VED with H and with M before the latter is set equal to the former. Recall that
H0 here may be the current value of the Hubble rate, but for that matter it can represent
any point of the expansion history at low energies. As noted in the previous section, νeff

remains essentially constant since the change of ln m2

H2 is bound within a few percent from
now until recombination.

Finally, it is also instructive to derive once more the above result using a third alternative
procedure, as in this way we may crosscheck our formulas from different perspectives. In
particular, let us remember that Eq. (3.26) provides direct and precious information about
the time evolution of the VED and it involves the influence from the vacuum pressure,
which as we know is not exactly equal to minus the vacuum density in this QFT framework
(i.e. the EoS of the quantum vacuum is not exactly equal to −1, see Sect. 3.1). We want
to show that we can test the consistency of this feature as well. Upon inserting (3.38)
into the term ρvac + Pvac of Eq. (3.27) we find

ρ̇vac =
Ṁ

M
βρvac − 3H(ρvac + Pvac) =

Ṁ

M
βρvac − 3H

ξ − 1
6

8π2
Ḣm2

(
1− ln

m2

H2

)
+ · · · (C.14)

where the dots just denote that we are not considering terms higher than O(H2), which
is our usual assumption for the present considerations. Using once more the β-function
(2.172) of the VED to the same consistent order and setting M = H0, we find

ρ̇vac(t0) =

(
ξ − 1

6

)
3m2

8π2
H0Ḣ0

(
−2 + ln

m2

H2
0

)
. (C.15)

This equation gives the rate of change of the VED at t = t0 (corresponding to H = H0),
which may refer to the present time or for that matter any other cosmic time. For νeff > 0
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(respectively for νeff < 0) and taking into account that Ḣ < 0 at all (post-inflationary)

times, together with the fact that ln m2

H2 � 1, it is not difficult to see that the VED
increases (resp. decreases) towards the past and decreases (resp. increases) towards the
future. We can actually show that the above equation coincides with Eq. (C.8). Indeed,
bearing in mind that ρ̇vac(t) = Ḣ dρvac

dH
we find

H
dρvac

dH
=
H

Ḣ
ρ̇vac(t) =

(
ξ − 1

6

)
3H2m2

8π2

(
−2 + ln

m2

H2
0

)
, (C.16)

which for t = t0 exactly matches Eq. (C.8) (q.e.d.) Thus the three approaches do converge
to the same result, which can be summarized as follows: for νeff > 0 the VED is larger
in the past and behaves effectively as quintessence, whereas for νeff < 0 the VED is
smaller in the past (equivalently, it increases towards the future) and hence it behaves
effectively as phantom DE. This is exactly the same message encoded in Eq. (2.83). The
fact that the quantum vacuum can mimic both quintessence and phantom DE shows that
it may not be necessary to introduce ad hoc scalar fields in the classical action to generate
dynamical DE, since the latter could just be caused by the fact that the quantum vacuum
is in permanent cosmic evolution!

C.3 Running G

Here we elaborate further on the derivation of Eq. (3.39) in the main text. We take up the
discussion from Eq. (3.34), in which we have disregarded the HD contributions present in
Eq. (3.32), as they are negligible for the present universe (and for that matter, also at all
times after inflation). We can admit the concurrence of relativistic and non-relativistic
ordinary matter components (ρm, pm) apart from the background scalar field (ρφ, pφ). If
the former are locally conserved (ρ̇m + 3H(ρm + pm) = 0) it is not difficult to see that the
structure of (3.34) remains unaltered:

Ġ(M) (ρm + ρφ + ρvac(H)) +G(H)ρ̇vac(H) + 3HG(H) (ρvac(H) + Pvac(H)) = 0 , (C.17)

where we have set M = H, according to the prescription discussed in the previous
section. Using the Friedmann equation we can get rid of the total energy density in the
above expression no matter the number of components involved in it: ρm + ρφ + ρvac =
3H2/(8πG). In addition, we insert the expression ρvac(H) from (2.83) in the above
equation, and also ρvac(H) + Pvac(H) from (3.38). As always we neglect of course the
higher order terms O (H4) generated in intermediate calculations, which are irrelevant
after the inflationary epoch. All in all, Eq. (C.17) can be rewritten

3H2Ġ

8πG
+ 3G

d

dt

[
ρ0

vac +
1

κ2
νeff(H)(H2 −H2

0 )

]
+ 3HG

(
ξ − 1

6

)
8π2

Ḣm2

(
1− ln

m2

H2

)
=

3H2Ġ

8πG
+ 3

G

κ2

(
ν̇eff(H)(H2 −H2

0 ) + 2HḢνeff(H) +H

(
ξ − 1

6

)
π

Ḣ
m2

m2
Pl

(
1− ln

m2

H2

))

=
3H2Ġ

8πG
+ 3

G

κ2

(
ν̇eff(H)(H2 −H2

0 )− 2H2
0

HḢ

H2 −H2
0

(
ξ − 1

6

)
2π

m2

m2
Pl

ln
H2

H2
0

)
= 0 ,

(C.18)

where we recall that κ2 = 8πGN is constant, whereas G = G(H(t)) is the function
that we wish to determine by solving the above differential equation. Notice that to
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compute ν̇eff(H) = d
dt
νeff(H) we use the exact expression (C.5) rather than just a constant

approximation. At this point it is important to keep all terms since, in general, expressions
that are neglected are not necessarily negligible after being differentiated. We find that
there is a partial cancellation between the last two terms of (C.18) in the second line,
which can be pinpointed if we use the explicit form of (C.5). The intermediate result
at this point, prior to calculating the time derivative of the last term of (C.5), reads as
follows:

3H2Ġ

8πG
+ 3

G

κ2

(ξ − 1
6

)
2π

m2

m2
Pl

(H2 −H2
0 )

−2
Ḣ

H
−H2

0

d

dt

 ln H2

H2
0

H2 −H2
0


−
HḢ

(
ξ − 1

6

)
π

m2

m2
Pl

H2
0

ln H2

H2
0

H2 −H2
0

 = 0 .

(C.19)

Computing the pending derivative it is possible to produce further simplifications among
the various terms until reaching the following beautifully simple and compact expression:

dG

G2
=

(
ξ − 1

6

)
π

m2dH

H
, (C.20)

in which we have replaced the time derivatives Ġ = dG/dt and Ḣ = dH/dt by just
the differentials dG and dH since dt cancels on both sides. Finally, integrating by sim-
ple quadrature Eq. (C.20) from the present time (H0, G(H0) = GN) up to an arbitrary
moment around the present (H,G(H)) we meet after some elementary algebra the final
result

G(H) =
GN

1− (ξ− 1
6)

2π
m2

m2
Pl

ln H2

H2
0

=
GN

1 + bvac
m2

m2
Pl

ln H2

H2
0

, (C.21)

in which GN defines the local gravity value usually associated to the inverse Planck mass
squared: G(H0) = GN = 1/m2

Pl (in natural units). In this way we have proven (3.39)
(q.e.d.) The obtained formula is our QFT prediction for the physical running of the
gravitational coupling with the cosmic expansion. The presence of the coefficient bvac in
it – cf. Eq. (C.12) – denotes its connection with the scaling evolution of the VED. See
Sect. C.3 for more discussions on Eq. (C.21).
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Appendix D

Adiabatic Expansion of the
fermionic modes of Chapter 4

In the main text (cf. Sect. 4.1) we have presented an iterative procedure which allows us
to determine the two types of field modes hI

k and hII
k which are necessary to construct

the 2-component spinor fields. They are functions of both momentum (k) and conformal
time (τ) and have the following structure:

hI
k(τ) =

√
ωk − aM

2ωk
F (τ) e−i

´ τ Wk(τ̃)dτ̃ ,

hII
k (τ) =

√
ωk + aM

2ωk
G(τ) e−i

´ τ Wk(τ̃)dτ̃ ,

(D.1)

where
F ≡ 1 + F (1) + F (2) + F (3) + · · · , (D.2)

G ≡ 1 +G(1) +G(2) +G(3) + · · · , (D.3)

Wk ≡ ωk + ω
(2)
k + ω

(4)
k + ω

(6)
k + · · · (D.4)

Here Wk is a real function playing an analogous role to the effective frequency intro-
duced (with the same notation) in the scalar field case, Eq. (2.23). The superscript
(n = 1, 2, 3, ...) indicates that the corresponding quantity is of adiabatic order n. The
modes (D.1) are constrained to satisfy the normalization condition

|hI
k|2 + |hII

k |2 = 1 . (D.5)

Some of the notation is similar to that of [340–342], although we use conformal metric
and different conventions, and moreover we deal with FLRW spacetime rather than with
de Sitter (where the EMT takes a simpler form). In addition, as explained in the main
text, we perform the renormalization at the arbitrary scale M (not at the on-shell point).
This is important in order to test the scaling dependence of the renormalized VED, which
is the main aim of our calculation.

In what follows we use the notation ωk ≡
√
k2 +M2a2. Recall that unless it is explicitly

noted the mass scale involved is the off-shell point M . When the subtraction (4.54)
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is implemented within our renormalization procedure, one just sets M = mψ in the
subtracted part. The mass mψ can be conveniently expanded in even adiabatic orders as

mψ =
√
M2 + ∆2 = M +

∆2

2M
− ∆4

8M3
+

∆6

16M5
+ . . . (D.6)

After completing ` ≥ 1 steps in the process described in Sect. 4.3 we end up with expres-
sion (4.23), which depends on the following expression:

ΩkΩk,1 · · ·Ωk,`−1 = ωk + ω
(1)
k + ω

(2)
k + · · ·+ ω

(2`−1)
k + . . . (D.7)

where ω
(j)
k represents a function of adiabatic order j. Functions Wk(τ,M), F (τ,M) and

G(τ,M) in the ansatz (D.1) can be estimated with the help of this product. However
the following clarifications may be necessary to better understand this process, together
with the explanations already given in the main text, see Sec. 4.1:

• For ` = 1 we only have performed one iterative step, and at this point we need to
deal with the square root of

Ω2
k = ω2

k − iσ + a2∆2 = ω2
k − iMa′ + a2∆2 − ia∆2

2M

a′

a
+ . . . (D.8)

The dots “...” in (D.8) account for terms of adiabatic order 4 and beyond. The
square root of the previous result yields

Ωk =ωk + ω
(1)
k +

a2ωk
8

[
M2

ω4
k

(
a′

a

)2

+
4∆2

ω2
k

]

− iaM

16ωk

a′

a

[
4∆2

M2
− 4a2∆2

ω2
k

− a2M2

ω4
k

(
a′

a

)2
]

+ . . .

(D.9)

with

ω
(1)
k ≡ −

iaM

2ωk

a′

a
. (D.10)

From the r.h.s of (D.9), the first two terms, ωk and ω
(1)
k , are used in the first order

approximation of the modes (see (4.31) and previous equations in the main text).

Now suppose that we proceed with a further step in the iterative process, ` = 2.
We have to deal with the square root of

Ω2
kΩ

2
k,1 =

(
ω2
k − iMa′ + a2∆2 − ia∆2

2M

a′

a
+ . . .

)
(1 + ε2) . (D.11)

The introduction of
ε2 = ε

(2)
2 + ε

(3)
2 + . . . , (D.12)

whose expression can be seen in (4.35), does not alter the 0th nor the 1st orders of
(D.8) and (D.9) since ε2 is a sum of terms of adiabatic order 2 and higher:

ΩkΩk,1 =ωk + ω
(1)
k +

ωk
2
ε

(2)
2 +

a2∆2

2ωk
+
a2M2

8ω3
k

(
a′

a

)2

+
ωk
2
ε

(3)
2 −

iaM

4ωk
ε

(2)
2

a′

a

− ia∆2

4Mωk

a′

a
+
ia3M∆2

4ω3
k

a′

a
+
ia3M3

16ω5
k

(
a′

a

)3

+ . . .

(D.13)
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Nonetheless, the 2nd, 3rd, . . . adiabatic orders of (D.13) do not coincide with the
ones of (D.9). Similarly, by going to the next iterative step, ` = 3, implies working
with the square root of the product

Ω2
kΩ

2
k,1Ω2

k,2 =
(
ω2
k − iMa′ + a2∆2 + . . .

)
(1 + ε2) (1 + ε4) (D.14)

with
ε4 = ε

(4)
4 + ε

(5)
4 + . . . (D.15)

The introduction of ε4 does not alter neither the 0th, 1st, 2nd nor the 3rd adiabatic
orders of (D.11) or (D.13), since ε4 is a sum of terms of adiabatic order 4 and higher.
By the same token, the 4th and 5th adiabatic orders and beyond in (D.11) do not
coincide with the ones in (D.14). Similar considerations apply to the square root of
these quantities.

We can sum up this by saying that for each iterative step we can compute two
consecutive adiabatic orders of (D.7) that will not be altered by the subsequent
steps. Then, after ` steps, the 0, 1, . . . , 2`− 1 adiabatic orders of the product (D.7)
are trustworthy for the estimation of the modes.

• The r.h.s. of (D.7) has a pure imaginary part conformed by the odd orders, precisely
those which do no take part in the computation of Wk:

− i
ˆ τ (

ωk + ω
(1)
k + ω

(2)
k + · · ·+ ω

(2`−1)
k

)
dτ̃

= −i
ˆ τ (

W
(0−2(`−1))
k

)
dτ̃ − i

ˆ τ (
ω

(1)
k + ω

(3)
k + · · ·+ ω

(2`−1)
k

)
dτ̃ .

(D.16)

However, because of the factor −i in front of the integral, the imaginary terms in
the integrand become real and are then necessary for the computation of F and G
in (D.1).

• We did not specify the limits of integration in (4.23) for the following reasons. On
the one hand, even terms take part in the pure imaginary exponential of (D.1). Now
because the imaginary exponential does not appear in the final result of the relevant
quantities that we compute in the main text (since they cancel in the products of a
function times its complex conjugate) one might wrongly be led to conclude that Wk

does not influence the calculation of the EMT. This would, however, be incorrect
since the derivatives of the modes hI,II

k are present in these calculations. On the other
hand, after integrating the odd terms without specifying the limits in the integral,
there exists some residual freedom in the form of a set of functions of the momentum
only (i.e. not depending on time). These are called f

(0)
k , g

(0)
k , f

(1)
k , g

(1)
k , . . . where the

superscript indicates the adiabatic order. If our goal is to compute an adiabatic
expansion of the modes up to 6th order we need 7 arbitrary constants for hI, namely

f
(0)
k , . . . , f

(6)
k . Similarly for hII, which we denote g

(0)
k , . . . , g

(6)
k .

• From Eqs. (4.9) (4.10), it is clear that hI
k(τ,M) = hII

k (τ,−M) so F (τ,M) =

G(τ,−M) and f
(n)
k (M) = g

(n)
k (−M).

With this considerations in mind let’s us put forward the adiabatic expansion of Wk

explicitly. As said, Wk can be specified though the even terms of (D.7). We are interested
to compute at least up to 6th adiabatic order (that means, at least, ` = 4 steps). Therefore
we find:

W
(0−6)
k (τ) = ωk + ω

(2)
k + ω

(4)
k + ω

(6)
k , (D.17)
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with
ω

(0)
k = ωk , (D.18)

ω
(2)
k =

a2∆2

2ωk
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8ω3
k

(
a′

a

)2

+
5a4M4

8ω5
k

(
a′

a

)2

− a2M2

4ω3
k

a′′

a
, (D.19)

ω
(4)
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)(
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a
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+
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)(
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)2
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−
(
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)(
a′′

a
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(
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ω
(6)
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−
(
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(

631a6M6

128ω11
k

− 109a4M4

128ω9
k

)(
a′′

a

)3

+

(
1055a8M8

16ω13
k

− 3171a6M6

128ω11
k

+
69a4M4

128ω9
k

)(
a′

a

)3
a′′′

a

−
(
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(
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(D.21)

The odd terms in the expansion (D.7) yield a real exponential contribution in the integrals
involved in (D.1) and hence do not contribute to the expansion of Wk in (D.4), but
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are nevertheless necessary to compute the amplitude of the modes. Notice that after
computing the integral, the adiabatic order decreases by one unit, so in order to estimate

the amplitude up to 6th order is mandatory to compute up to ω
(7)
k . The corresponding

integrals for these terms are listed below:

−i
ˆ
ω

(1)
k dτ =

ˆ τ [
−Ma′

2ωk

]
dτ̃ = log

(
ωk − aM
ωk + aM

)1/4

, (D.22)

−i
ˆ
ω
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4ω3
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+
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(
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Use of Mathematica [377] has been helpful to work out the above integrals. The com-
putational strategy consists in using a sufficiently general ansatz for the structure of the
result that is compatible with the adiabaticity order of the calculation, and then solve
for the coefficients (form factors) of the ansatz from pure algebraic manipulations. The
procedure has been illustrated with a specific example in equation (4.56) of the main
text.

Finally, by applying the normalization condition (D.5) for the modes at each order, there
exists a constraint to fix the residual freedom mentioned earlier, which is parametrized
by the time independent factors fk and gk (only depending on the momentum k):

Ref (1)
k = 0 ,(

Imf (1)
k

)2

+
√

2kRef (2)
k = 0 ,

2Imf (2)
k Imf (1)

k +
√

2kRef (3)
k = 0 ,∣∣∣f (2)

k

∣∣∣2 + 2Imf (1)
k Imf (3)

k +
√

2kRef (4)
k = 0 ,

2Imf (1)
k Imf (4)

k + 2Imf (2)
k Imf (3)

k + 2Ref (2)
k Ref (3)

k +
√

2kRef (5)
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2Imf (1)
k Imf (5)

k + 2Imf (2)
k Imf (4)

k +
∣∣∣f (3)
k

∣∣∣2 + 2Ref (2)
k Ref (4)

k +
√

2kRef (6)
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(D.26)

307



Notice that, imposing the former conditions is equivalent to claim that∣∣∣∣∣1 +

√
2

k

(
f

(1)
k + f

(2)
k + f

(3)
k + f

(4)
k + f

(5)
k + f

(6)
k

) ∣∣∣∣∣
2

≈ 1 , (D.27)

where the departure from 1 are just terms of adiabatic order 7 or bigger. Similarly for
the functions gk. It can be shown that the observables made out of quadratic terms in
the modes hI

k, h
II
k (such as e.g. the EMT), depend on the particular values of fk in the

form (D.27). It follows that they are not actual degrees of freedom if they satisfy the
conditions (D.26). It is then safe to set particular values for the functions as long as
quantities are computed up to 6th adiabatic order. The simplest solution satisfying the

normalization conditions (D.26) is f
(1)
k = f

(2)
k = f

(3)
k = f

(4)
k = f

(5)
k = f

(6)
k = 0 and it is

the chosen option for the formulas shown in the rest of this Appendix.

Equipped with these results we are able to calculate the different orders of F (τ,M) up
to 6th order. A comparison between the general equation (4.23) and the ansatz (D.1), the
different orders of F are conformed by the rightful combinations of terms of the denomina-
tor
√

ΩkΩk,1Ωk,2Ωk,3 and the real factors of the exponential exp
(
−i
´ τ

ΩkΩk,1Ωk,2Ωk,3dτ̃
)
.

Now the different orders of F are 1:
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, (D.28)
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1For hII
k , one can make use of the relation G(n)(M) = F (n)(−M).
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F (6)(M) =
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Appendix E

Adiabatic expansion of
〈
Tµν
〉

for
spin-1/2 fields in Chapter 4

The unrenormalized components of the VEV of the EMT, 〈T δψµν 〉, for spin-1/2 fermions
can be obtained through the adiabatic expansion, which we compute up to 6th order.
For the 00 component we have〈

T δψ00

〉
=
〈
T δψ00

〉(0)

+
〈
T δψ00

〉(2)

+
〈
T δψ00

〉(4)

+
〈
T δψ00

〉(6)

+ · · · (E.1)

The various terms in the expansion (E.1) read as follows:〈
T δψ00

〉(0)

=
1

2π2a

ˆ ∞
0

dkk2

[
−2ωk

a

]
, (E.2)

〈
T δψ00

〉(2)

=
1

2π2a

ˆ ∞
0

dkk2
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−a∆2

ωk
− a3M4

4ω5
k

(
a′

a

)2

+
aM2

4ω3
k

(
a′

a

)2
]
, (E.3)

〈
T δψ00

〉(4)

=
1

2π2a

ˆ ∞
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〈
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To obtain the component 〈Tψ11〉 a similar expansion as in (E.1) holds. However, it is

possible to use the following relation with the previously computed 〈Tψ00〉 component:〈
T δψ11

〉
= − 1

3H

(〈
T δψ00

〉′
+H

〈
T δψ00

〉)
. (E.6)

As a result we find1: 〈
T δψ11

〉(0)

=
1

2π2a

ˆ ∞
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(E.9)

1We refer the reader to Appendix A.1 for the explicit computation of the integrals below.
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Appendix F

Semi-analytical solutions in different
epochs of Chapter 5

Our aim in this appendix is to find semi-analytical solutions for the BD equations in the
various epochs of the cosmic history, by using a perturbative approach. We express the
BD-field and the scale factor up to linear order in εBD as follows1,

ϕ(t) = ϕ(0) + εBDϕ
(1)(t) +O(ε2BD), (F.1)

a(t) = a(0)(t) + εBDa
(1)(t) +O(ε2BD) , (F.2)

with the functions with superscript (0) denoting the solutions of the background equations
in standard GR with a constant Newtonian coupling that can be in general different from
GN , and the functions with superscript (1) denoting the first-order corrections induced
by a non-null εBD. Neglecting the higher-order terms is a very good approximation for all
the relevant epochs of the expansion history due to the small values of εBD allowed by the
data. Plugging these expressions in Eqs. (5.6)-(5.9) we can solve the system and obtain
the dominant energy density at each epoch and the Hubble function, which of course can
also be written as

ρN(t) = ρ
(0)
N (t) + εBDρ

(1)
N (t) +O(ε2BD) , (F.3)

H(t) = H(0)(t) + εBDH
(1)(t) +O(ε2BD) , (F.4)

respectively, where N = R,M,Λ denotes the solution at the radiation, matter, and Λ-
dominated epochs2. We make use of the following relations,

1

2ωBD + 3
=
εBD

2
+O(ε2BD) ,

ϕ̇

ϕ
= εBD

ϕ̇(1)

ϕ(0)
+O(ε2BD) ,

ωBD

2

(
ϕ̇

ϕ

)2

=
εBD

2

(
ϕ̇(1)

ϕ(0)

)2

+O(ε2BD) .

(F.5)

The Klein-Gordon equation is already of first order in εBD,

ϕ̈(1) + 3H(0)ϕ̇(1) = 4πGN(ρ
(0)
N − 3p

(0)
N ) , (F.6)

1The use of the superindex (n) indicates the order in the expansion in terms of εBD. It has nothing to do to
with the adiabatic orders we presented in previous chapters.

2For the sake of simplicity and to ease the obtention of analytical expressions, in this appendix we consider
three massless neutrinos.
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and this allows us to find ϕ(1) without knowing H(1) nor the linear corrections for the
energy densities and pressures. The Friedmann equation leads to

H(0) =

(
8πGN

3ϕ(0)
ρ

(0)
N

)1/2

, (F.7)

at zeroth order, and

6H(0)H(1) + 3H(0) ϕ̇
(1)

ϕ(0)
− 1

2

(
ϕ̇(1)

ϕ(0)

)2

= 3
(
H(0)

)2

(
ρ

(1)
N

ρ
(0)
N

− ϕ(1)

ϕ(0)

)
, (F.8)

at first order, which let us to compute a(1)(t) once we get ρ
(1)
N (t, a(1)(t)) from the con-

servation equation and substitute it in the r.h.s. H(1) is then trivially obtained using
the computed scale factor. Alternatively, one can also combine (F.8) with the pressure
equation to obtain a differential equation for H(1) and directly solve it. Proceeding in
this way one obtains, though, an additional integration constant that must be fixed using
the Friedmann and conservation equations.

F.1 Radiation dominated epoch (RDE)

In the RDE the trace of the energy-momentum tensor is negligible when compared with
the total energy density in the universe, so we can set the right-hand side of (F.6) to
zero. The leading order of the scale factor and the Hubble function take the following
form, respectively: a(0)(t) = At1/2, H(0)(t) = 1/(2t), with A ≡ (32πGNρ

0
r/3ϕ

(0))1/2 and
ρ0

r the current value of the radiation energy density. Using these relations we can find
the BD-field as well as the scale factor at first order. They read,

ϕ(t) = ϕ(0) + εBD

(
CR1 + CR2 t

−1/2
)

+O(ε2BD) , (F.9)

and

a(t) = At1/2
(

1 + εBD

[
C2
R2 ln(t)

24(ϕ(0))2t
− CR1

4ϕ(0)
+
CR3

t

]
+O(ε2BD)

)
, (F.10)

where CR1, CR2 and CR3 are integration constants. Let us note that in the RDE the
evolution of the BD-field ϕ is essentially frozen, since there is no growing mode. The
term evolving as ∼ t−1/2 is the decaying mode, and after some time we are eventually
left with a constant contribution.

Finally, it is easy to find the corresponding Hubble function

H(t) =
1

2t

(
1 + εBD

[
− C2

R2

12(ϕ(0))2

ln(t)

t
+

1

t

(
C2
R2

12(ϕ(0))2
− 2CR3

)]
+O(ε2BD)

)
. (F.11)

At late enough times it is natural to consider that decaying mode is already negligible,
and this allows us to simplify a lot the expressions, by setting CR2 = 0. The scalar field
remains then constant in very good approximation when radiation rules the expansion
of the universe, and the other cosmological functions are the same as in GR (a ∼ t1/2,
H ∼ 1

2t
), but with an effective gravitational coupling G = GN/ϕ.
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F.2 Matter dominated epoch (MDE)

When nonrelativistic matter is dominant in the universe the scalar field evolves as

ϕ(t) = ϕ(0) + εBD

[
CM1

t
+

2ϕ(0)

3
ln(t) + CM2

]
+O(ε2BD) , (F.12)

where CM1 and CM2 are integration constants. At leading order the scale factor and the
Hubble function take the following form, a(0)(t) = Bt2/3 and H(0)(t) = 2/3t respectively,

with B ≡
(
6πGNρ

0
m/ϕ

(0)
)1/3

and ρ0
m the current value of the matter energy density. If

we neglect the decaying mode in (F.12) we find ϕ(a) = ϕ(0)(1 + εBD ln a+O(ε2BD)). This
solution is also found from the analysis of fixed points of Appendix G, at leading order
in εBD. The scale factor reads in this case,

a(t) = Bt2/3

(
1 + εBD

[
−
(
CM1

ϕ(0)

)2
1

8t2
− CM2

3ϕ(0)
− 1

18
− 2

9
ln(t) +

CM3

t

]
+O(ε2BD)

)
,

(F.13)
where CM3 is another integration factor, and the Hubble function,

H(t) =
2

3t

(
1 + εBD

[(
CM1

ϕ(0)

)2
3

8t2
− 1

3
− 3CM3

2t

]
+O(ε2BD)

)
. (F.14)

Once more, after we neglect the contribution from the decaying modes, the usual cos-
mological functions are as is GR in the MDE (a ∼ t2/3, H ∼ 2

3t
). However, in contrast

to the RDE there is some mild evolution (a logarithmic one with the cosmic time) of
the BD-field. Since ϕ(0) is obviously positive, it follows from Eq. (F.12) that the sign of
such evolution (implying growing or decreasing behavior) is entirely defined by the sign
of the BD-parameter εBD. Our fit to the overall data clearly shows that εBD < 0 (cf.
Sect. 5.7) and hence ϕ decreases with the expansion during the MDE, which means that
the effective gravitation coupling G = GN/ϕ increases with the expansion.

F.3 Λ-dominated or VDE

Here we assume that the energy density of the universe is completely dominated by a
vacuum fluid, with constant energy density ρΛ. This period occurs in the very early
universe during inflation, and in the very late one when matter has diluted significantly
and a new period of inflation occurs. The usual solution for the Hubble function in that
epoch is H(0)(t) = HΛ, where HΛ is a constant, fixed by (F.7). Taking this into account
we find

ϕ(t) = ϕ(0) + εBD

(
2HΛϕ

(0)t+ CΛ1e
−3HΛt + CΛ2

)
+O(ε2BD), (F.15)

and for the scale factor

a(t) = CΛ4e
HΛt

(
1 + εBD

[
−H

2
Λt

2

2
−
(
CΛ1

ϕ(0)

)2
e−6HΛt

8
+ CΛ3HΛt

(
CΛ2

2ϕ(0)
+

2

3

)])
+O(ε2BD),

(F.16)

where CΛ1, CΛ2, CΛ3, and CΛ4 are integration constants. Note that by performing the
limit εBD → 0 we recover the usual GR expressions, as in all the previous formulas. The
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Hubble function at first order takes the form

H(t) = HΛ

(
1 + εBD

[
−2

3
+

3

4

(
CΛ1

ϕ(0)

)2

e−6HΛt −HΛt−
CΛ2

2ϕ(0)

]
+O(ε2BD)

)
. (F.17)

The term accompanied by the constant CΛ1 in (F.15) is a decaying mode, which we
considered to be negligible already in the RDE. Thus, we can safely remove it, and CΛ2

can be fixed by the condition ϕ(t∗) = ϕ∗, at some t∗ deeply in the VDE. The scalar field
evolves then as ϕ(t) ∼ 2εBDHΛt ∼ 2εBD ln a, which is the behavior we obtain also from
the analysis of fixed points (cf. Appendix G). We can also see that during this epoch the
BD-field decreases with the expansion because εBD < 0, as indicated before.

F.4 Mixture of matter and vacuum energy

In a universe with a non-negligible amount of vacuum and matter energy densities, it is
also possible to obtain an analytical expression for the BD scalar field at leading order in
εBD. Unfortunately, this is not the case for the scale factor and the Hubble function, so
we will present here only the formula for ϕ. In the ΛCDM the scale factor is given by

a(0)(t) =

(
Ω̃m

Ω̃Λ

)1/3

sinh2/3

(
3

2

√
Ω̃ΛH0t

)
, (F.18)

so

H(0)(t) = H0

√
Ω̃Λ coth

(
3

2

√
Ω̃ΛH0t

)
. (F.19)

Solving the Klein-Gordon equation, we obtain

ϕ(1)(t) =

√
Ω̃ΛH0t coth

(
3

2

√
Ω̃ΛH0t

)
+

2

3
ln

(
sinh

(
3

2

√
Ω̃ΛH0t

))
. (F.20)

One can easily check that in the limits H0t� 1 and H0t� 1 we recover the behavior that
we have found in previous sections for the matter and Λ-dominated universes, respectively.
When we substitute the previous expression in Eq. (F.1), we confirm once more that ϕ
decreases with the expansion (since εBD < 0 and ϕ̇(1)(t) > 0 ∀t). This is the period
when the universe is composed of a mixture of matter and vacuum energy at comparable
proportions, and corresponds to the current universe. Thus G = GN/ϕ increases with the
expansion in the present universe as it was also the case in the preceding MDE period,
which is of course an important feature that helps to solve the H0-tension, as explained
in different parts of the chapter, and in particular in the preview Sect. 5.2.

F.5 Connection of the BD-ΛCDM model with the Running Vac-
uum Model

Analytical solutions to the system (5.6)-(5.8) are not known and for this reason our actual
analysis proceeds numerically. However, as we have seen in the previous sections it is
possible to search for approximate solutions in the different epochs, which can help to
better understand the numerical results and the qualitative behavior of the BD-ΛCDM
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model. Actually, a first attempt in this direction trying to show that BD-ΛCDM can
mimic the Running Vacuum Model (RVM) was done in [370,371] and we refer the reader
to these references for details. Here we just summarize the results and adapt them to
the current notation. It is based on searching for solutions in the MDE in the form of a
power-law ansatz in which the BD-field ϕ evolves very slowly:

ϕ(a) = ϕ0 a
−ε (|ε| � 1) . (F.21)

Obviously ε must be a very small parameter in absolute value since G(a) ≡ G(ϕ(a))
cannot depart too much from GN . On comparing with the analysis of fixed points given
in Appendix G – cf. Eq. (G.23) – we can anticipate that ε ∝ −εBD, although we do not
expect perfect identification since (F.21) is a mere ansatz solution in the MDE whereas
(G.23) is an exact phase trajectory in that epoch. For ε > 0 (hence εBD < 0), the
effective coupling increases with the expansion and hence is asymptotically free since
G(a) is smaller in the past, which is the epoch when the Hubble rate (with natural
dimension of energy) is bigger. For ε < 0 (εBD > 0), instead, G(a) decreases with the
expansion.

Using the power-law ansatz (F.21) we find

ϕ̇

ϕ
= −εH ,

ϕ̈

ϕ
= −εḢ + ε2H2. (F.22)

Plugging these relations into the system of equations (5.6)-(5.8) and after some calculation
it is possible to arrive at the following pair of Friedmann-like equations to O(ε) [370,371]:

H2 =
8πG

3

(
ρ0

ma
−3+ε + ρDE(H)

)
(F.23)

and
ä

a
= −4πG

3

(
ρ0

ma
−3+ε + ρDE(H) + 3pΛ

)
, (F.24)

with G = GN/ϕ0. The first equation emulates an effective Friedmann’s equation with
time-evolving cosmological term, in which the DE appears as dynamical:

ρDE(H) = ρΛ +
3 νeff

8πG
H2 . (F.25)

Here

νeff ≡ ε

(
1 +

1

6
ωBDε

)
(F.26)

is the coefficient controlling the dynamical character of the dark energy (F.25). The
structure of this dynamical dark energy (DDE) is reminiscent of the Running Vacuum
Model (RVM), see [167, 296, 297] and references therein. In the language used in this
chapter, the analogue of the above RVM form of the Friedmann equation can be derived
from Eq. (5.40) upon taking into account that the function F is of O(εBD). In fact, F is
the precise analogue of νeff , for if we set ε → −εBD in (F.26) it boils down to the value
quoted in Eq. (5.37). The two languages are similar, but not identical, for the reasons
explained above.

Notice from (F.23) that, to O(ε):

Ω0
m + Ω0

Λ = 1− νeff , (F.27)
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so the usual sum rule of GR is slightly violated by the BD model when parametrized as a
deviation with respect to GR.Only for ε = 0 we have νeff = 0 and then we recover the usual
cosmic sum rule3. The parameter νeff becomes associated to the dynamics of the DE.
Worth noticing, the above expression adopts the form of the RVM, see [167,296,297] and
references therein, in particular [272, 291, 293] – where the running parameter is usually
denoted ν and is associated to the β-function of the running vacuum. Recently, the
parameter ν (and in general the structure of the RVM) has been elucidated from direct
calculations in QFT in curved spacetime within GR [288]. For additional discussions
on the running of the CC term, see e.g. [298, 304, 359]. The RVM has been shown to
be phenomenologically promising to alleviate some of the existing tensions within the
ΛCDM, particularly the σ8-tension [245–250, 280, 386, 393, 398, 562]. It is therefore not
surprising that the mimicking of the RVM by the BD-ΛCDM model enjoys of the same
virtues. In actual fact, the particular RVM form obtained in BD-gravity (we may call it
“BD-RVM” for short) is even more successful since it can cure both tensions, the H0 and
σ8 one. The reason why the BD-RVM can cure also the H0-tension is because we need
the evolution of the effective gravitational coupling Geff to achieve that, as we have seen
in the preview Sect. 5.2, whereas the σ8-tension can be cured with νeff , which is associated
to ε ∝ −εBD (the second ingredient characteristic of BD-gravity), and hence the two key
elements are there to make a successful phenomenological performance.

On the other hand, from (F.24) it follows that the EoS for the effective DDE is

weff(z) =
pΛ

ρDE(H)
' −1 +

3νeff

8πGρΛ

H2(z) = −1 +
νeff

ΩΛ

H2(z)

H2
0

, (F.28)

where use has been made of (F.25). It follows that the BD-RVM, in contrast to the
original RVM, does not describe a DE of pure vacuum form (pΛ = −ρΛ) but a DE
whose EoS departs slightly from the pure vacuum. In fact, for ε > 0 (ε < 0) we have
νeff > 0 (νeff < 0) and the effective DDE behaves quintessence (phantom)-like. For ε→ 0
(hence νeff → 0) we have weff → −1 (ΛCDM). As could be expected, Eq. (5.63) is the
BD-RVM version of the effective EoS that we obtained in Sect. 5.3 – see Eq. (5.65). The
two languages are consistent. Indeed, by comparison we see that νeff here plays the role
of ∆ϕ there. We know that ∆ϕ = 1 − ϕ > 0, i.e.ϕ < 1, for εBD < 0, as we have shown
previously, which is consistent with the fact that νeff ∝ ε ∝ −εBD > 0. Finally, since
weff approaches −1 from above (cf. Fig.5.8) it corresponds to an effective quintessence
behavior, which is more pronounced the more we explore the EoS into our past.

3It is interesting to note that the presence of νeff 6= 0 emulates a fictitious spatial curvature. This is the
analog, in RVM language, of the similar situation noted in Sect. 5.3 when we defined the GR-picture of the BD
model. A persistent irreducible value of this parameter in future observations might serve also as a hint of the
underlying BD physics.
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Appendix G

Fixed Points in BD-ΛCDM
cosmology of Chapter 5

In order to study the fixed points of this system of differential equations we must define
new variables such that the system becomes of first order in the derivatives when it is
rewritten in terms of the new variables. It is useful though to firstly carry out the change
t → N ≡ ln(a). This preliminary step will help us to identify in an easier way how we
must define the new variables. When written in terms of N the system takes the following
form1:

ψ′′

ψ
+
H ′

H

ψ′

ψ
+ 3

ψ′

ψ
=

8π

3 + 2ωBD

(
ρm + 4ρΛ

ψH2

)
, (G.1)

3 + 3
ψ′

ψ
− ωBD

2

(
ψ′

ψ

)2

=
8π

ψH2
(ρr + ρm + ρΛ) , (G.2)

3 +
H ′

H

(
2 +

ψ′

ψ

)
+
ψ′′

ψ
+ 2

ψ′

ψ
+
ωBD

2

(
ψ′

ψ

)2

=
8π

ψH2

(
ρΛ −

ρr

3

)
, (G.3)

ρ′r + 4ρr = 0 , (G.4)

ρ′m + 3ρm = 0 . (G.5)

Now one can define the following quantities:

xψ ≡
ψ′

ψ
; x2

i ≡
8πρi
H2ψ

, (G.6)

where i = r,m,Λ. In terms of these variables the system of equations can be easily
written as follows:

x′ψ + x2
ψ +

H ′

H
xψ + 3xψ =

x2
m + 4x2

Λ

3 + 2ωBD

, (G.7)

3 + 3xψ −
ωBD

2
x2
ψ = x2

r + x2
m + x2

Λ , (G.8)

3 +
H ′

H
(2 + xψ) + x′ψ + x2

ψ + 2xψ +
ωBD

2
x2
ψ = x2

Λ −
x2

r

3
, (G.9)

1Primes in this appendix stand for derivatives w.r.t. to the variable N = ln a, i.e. ()′ ≡ d()/dN . We consider,
as in Appendix F, three massless neutrinos.
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x′r = −xr

(
H ′

H
+ 2 +

xψ
2

)
, (G.10)

x′m = −xm

(
H ′

H
+

3

2
+
xψ
2

)
. (G.11)

This system is of first order, as wanted. We have five equations and five unknowns,
namely: xr, xm, xψ, xΛ, H

′/H. We can reduce significantly the complexity of the system
if we just isolate H ′/H from (G.7) and xΛ from (G.8),

H ′

H
=

1

xψ

[
x2

m + 4x2
Λ

3 + 2ωBD

− x′ψ − 3xψ − x2
ψ

]
, (G.12)

x2
Λ = 3 + 3xψ −

ωBD

2
x2
ψ − x2

r − x2
m , (G.13)

and substitute the resulting expressions in the other equations, i.e. in (G.9), (G.10), and
(G.11). Doing this, and after a little bit of algebra, one finally obtains three equations
written only in terms of xr, xm, xψ:

x′ψ = −xψ
[
3 + 3xψ −

1

2
ωBDx

2
ψ −

2

3
x2

r −
x2

m

2
−
(

1

xψ
+

1

2

)(
12 + 12xψ − 2ωBDx

2
ψ − 4x2

r − 3x2
m

3 + 2ωBD

)]
,

(G.14)

x′r = −xr

[
2 +

5

2
xψ −

ωBD

2
x2
ψ −

2

3
x2

r −
x2

m

2
− 1

2

(
12 + 12xψ − 2ωBDx

2
ψ − 4x2

r − 3x2
m

3 + 2ωBD

)]
,

(G.15)

x′m = −xm

[
3

2
+

5

2
xψ −

ωBD

2
x2
ψ −

2

3
x2

r −
x2

m

2
− 1

2

(
12 + 12xψ − 2ωBDx

2
ψ − 4x2

r − 3x2
m

3 + 2ωBD

)]
.

(G.16)
They allow us to search for the fixed points of the system. There is an important restric-
tion produced by (G.10) and (G.11). Supposing that xr 6= 0 and xm 6= 0, we see that the
mentioned equations impose that

x′r
xr

= −x
′
m

xm

+
1

2
. (G.17)

This equation is not compatible with the conditions of fixed point, so that we should
assume that xr = 0, xm = 0 or both conditions at the same time. The fixed points are:

RDE
(xr, xm, xΛ, xψ)RD =

(√
3, 0, 0, 0

)
, (G.18)

the Jacobian of the nonlinear system (G.14), (G.15), (G.16) has eigenvalues λRD1 = −1,
λRD2 = 1/2, λRD3 = 4 so that is an unstable point.

MDE

(xr, xm, xΛ, xψ)MD =

(
0,

√
12 + 17ωBD + 6ω2

BD√
2|1 + ωBD|

, 0,
1

1 + ωBD

)
, (G.19)
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the Jacobian of the nonlinear system (G.14), (G.15), (G.16) has eigenvalues λMD
1 = −1/2,

λMD
2 ≈ −3/2, λMD

3 ≈ 3 so that is also an unstable point.

Λ-dominated or VDE

(xr, xm, xΛ, xψ)ΛD =

(
0, 0,

√
15 + 28ωBD + 12ω2

BD

|1 + 2ωBD|
,

4

1 + 2ωBD

)
(G.20)

the Jacobian of the nonlinear system (G.14), (G.15), (G.16) has eigenvalues λΛ
1 = −2,

λΛ
2 = −3/2, λΛ

3 ≈ −3 so that is a stable point.

The first and second fixed points are unstable, whereas the latter is stable. We have
assumed that |ωBD| � 1 for approximating the eigenvalues.

The first one is very well-known, since regardless of the initial conditions for the BD
scalar field we already know that the velocity of the scalar field decays during the RDE,
and the solution tends to the attractor with ψ′ = 0 (xψ = 0) and full domination of

radiation, i.e. xr =
√

3. The Hubble function and BD scalar field are:

ψRD(a) = ψr , (G.21)

H2
RD(a) =

8π

3ψr

ρ0
ra
−4 , (G.22)

where ψr is an arbitrary constant and ρ0
r is the value of the radiation energy density

at present. This fixed point is unstable because at some moment nonrelativistic matter
starts to dominate the expansion. When this happens the solution starts to look for the
new attractor, the one of the MDE. We stress that this is an exact solution. The BD
scalar field and the Hubble function during the MDE take the following form:

ψMD(a) = Ca
1

1+ωBD , (G.23)

H2
MD(a) =

16πρ0
m(1 + ωBD)2a

−
(

4+3ωBD
1+ωBD

)
C(12 + 17ωBD + 6ω2

BD)
, (G.24)

where C is an arbitrary constant and ρ0
m is the value of the matter energy density at

present. The MD fixed point is, again, unstable, because the MDE finishes and the VDE
starts. The solution searches now for the last fixed point, which is stable. In this last
case, we have obtained the following Hubble function and BD-field,

ψΛ(a) = Da4/(1+2ωBD) , (G.25)

H2
Λ(a) =

8πρΛ

D

(1 + 2ωBD)2

15 + 28ωBD + 12ω2
BD

a−4/(1+2ωBD) , (G.26)

where D is an arbitrary constant and ρΛ is the constant value of vacuum energy.

One can easily check that the solutions computed in Appendix F, of first order in εBD =
1/ωBD, coincide (once the decaying modes become irrelevant) with the ones presented
here when the latter are Taylor-expanded up to first order in this parameter as well.
The results we have found here are consistent with previous studies on fixed points in
cosmological dynamical systems, see e.g. [563] and references therein.
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Appendix H

Cosmological perturbations in the
synchronous gauge for Brans-Dicke
Models of Chapter 5

In this appendix we explicitly derive the set of perturbed equations for the Brans-Dicke
model in the synchronous gauge, and up to linear order in the perturbed quantities. The
perturbed FLRW metric written in conformal time η reads

ds2 = a2(η)[−dη2 + (δij + hij)dx
idxj] , (H.1)

where η is the conformal time, ~x the spatial comoving coordinates, and hij is the metric
perturbation. We apply in this work the usual metric formalism and therefore we assume
that the Christoffel symbols are unequivocally determined by the metric through the
Levi-Civita connection. Thus, the perturbed Chrystoffel symbols together with the per-
turbed Riemann and Ricci tensors, and the perturbed Ricci scalar, can be easily written
in terms of hij, its trace h ≡ δijhij, and their spacetime derivatives. Although the cor-
responding expressions can be already found in the literature, we have opted to provide
them together with the perturbed energy-momentum tensor in Sect. H.1 for complete-
ness. In Sect. H.2 and Sect. H.3 we write the main perturbed equations in position and
momentum space, respectively, and in Sect. H.4 we derive and discuss the equation that
rules the growth of matter perturbations in the matter and Λ-dominated universe at
deep subhorizon scales. In Sect. H.5 we provide a brief note on the initial conditions for
all the perturbed quantities. Finally, in Sect. H.6 we discuss tensor perturbations in the
BD-ΛCDM cosmology.

H.1 Perturbed geometric quantities, energy-momentum tensor,
and other relevant terms appearing in the field equations

The elements of the metric tensor and its inverse can be straightfordwardly obtained from
(H.1). They read as follows,

g00 = −a2 gij = a2(δij + hij) ; g00 = −1/a2 gij =
1

a2
(δij − hij). (H.2)
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Plugging them into the formula of the Levi-Civita connection one gets the following
expressions for the Christoffel symbols:

Γ0
00 = H , Γ0

i0 = Γi00 = 0 , Γ0
ij = H(δij + hij) +

h′ij
2
,

Γij0 = Hδij +
h′ij
2
, Γijl =

1

2
(hij,l + hil,j − hjl,i) ,

(H.3)

where each prime denotes a derivative with respect to the conformal time, i.e. d/dη, the
lower commas partial derivatives with respect to spatial (comoving) coordinates, andH ≡
a′/a. The contributions of all the second and higher order terms in perturbation theory
have been neglected since we are not interested here in analyzing nonlinear structure
formation processes, in which also the details of the screening mechanism acting in the
nonlinear regime could become important. The Ricci tensor components can be computed
making use of the above formulas,

R00 =− 3H′ − h′′

2
− H

2
h′, R0i =

1

2

(
∂jh

′
ij − ∂ih′

)
,

Rij =(δij + hij)(H′ + 2H2) +
h′′ij
2

+
H
2
h′δij +Hh′ij +

1

2
(hli,jl + hlj,il − hij,ll − h,ij) .

(H.4)

Notice that we have applied Einstein’s summation convention. Contracting the Ricci
tensor with the metric we finally obtain the scalar curvature,

a2R = 6(H′ +H2) + h′′ + 3Hh′ + hli,li − h,ll . (H.5)

Equipped with these tools we can proceed to compute the components of the Einstein
tensor, which read

G00 =3H2 +Hh′ + 1

2
(hli,li − h,ll) ,

Gi0 =
1

2

(
∂jh

′
ij − ∂ih′

)
,

Gij =− (δij + hij)(2H′ +H2) +
h′′ij
2
− h′′

2
δij −Hh′δij +Hh′ij

+
1

2
(hli,jl + hlj,il − hij,ll − h,ij − hlt,ltδij + h,llδij) .

(H.6)

It is also convenient to obtain the trace of Gij, since it will be employed in subsequent
calculations,

Gii = −(3 + h)(2H′ +H2)− h′′ − 2Hh′ + 1

2
(h,ll − hli,li) . (H.7)

As in Ref. [492], we can express hij as follows,

hij(η, ~x) =

ˆ
d3k e−i

~k·~x
[
k̂ik̂jh(η,~k) +

(
k̂ik̂j −

δij
3

)
6ξ(η,~k)

]
, (H.8)

where k̂i = ki/k with k = |~k|, and h(η,~k) the Fourier transform of the trace of hij(η, ~x).
When we work in Fourier space we will denote it h, like in position space, without

specifying its dependence on the wave number ~k explicitly. Plugging (H.8) into the
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perturbed part of (H.6) we obtain the elements of the perturbed Einstein tensor in Fourier
space. We will employ them later on. They read,

δG00 =Hh′ − 2ξk2 ,

δGi0 =− iki2ξ′ ,
δGii =− h(2H′ +H2)− h′′ − 2Hh′ + 2ξk2 .

(H.9)

We do not write here the Fourier transform of δGij because we will not use it later.

In order to compute the perturbed energy-momentum tensor of the perfect fluids that
fill the universe with Eq. (5.5) we must know which is the form of their perturbed
4-velocities. It is easy to show that they are just given by

uµ =
1

a
(1, vi) ; uµ = a(−1, vi) , (H.10)

with vi = dxi

dη
. Using this in Eq. (5.5) and splitting the total energy density and pressure

in a background and a perturbed parts, i.e. considering ρ(η, ~x) = ρ̄(η) + δρ(η, ~x) and
p(η, ~x) = p̄(η) + δp(η, ~x), we obtain the following elements of the perturbed energy-
momentum tensor,

T00 = a2(ρ̄+ δρ) ,

Tij = a2p̄(δij + hij) + a2δijδp ,

T0i = − a2(p̄+ ρ̄)vi ,

T ≡ gµνTµν = 3(p̄+ δp)− ρ̄− δρ ,

(H.11)

where a sum over all the species in the universe is taken for granted. The following
quantities will also be useful in subsequent calculations.

∂αϕ∂
αϕ = − 1

a2

[
(ϕ̄′)2 + 2ϕ̄′δϕ′

]
,

a2�ϕ = − ϕ̄′′ − 2Hϕ̄′ − δϕ′′ +∇2δϕ− 2Hδϕ′ − h′

2
ϕ̄′ ,

∇0∇0ϕ = ϕ̄′′ + δϕ′′ −Hϕ̄′ −Hδϕ′ ,
∇i∇0ϕ = ∂iδϕ

′ −H∂iδϕ ,

∇i∇j =∂i∂jδϕ− ϕ̄′
[
H(δij + hij) +

h′ij
2

]
− δijHδϕ′ .

(H.12)

Here we have split the BD-field as the sum of the mean (background) field ϕ̄ and its
corresponding perturbation δϕ, i.e. ϕ(η, ~x) = ϕ̄(η) + δϕ(η, ~x).

H.2 Perturbation equations in position space

We apply now the machinery derived in the previous subsection to perturb the modified
Einstein’s Eqs. (5.2), the covariant conservation of the energy-momentum tensor and the
Klein-Gordon equation (5.4). The last one reads,

−δϕ′′ − 2Hδϕ′ +∇2δϕ− h′

2
ϕ̄′ =

8πGN

3 + 2ωBD

a2(3δp− δρ) , (H.13)
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where ∇2 ≡
3∑
i=1

∂2
i . The perturbed 00, 0i, and ij components of Einstein’s equation lead,

respectively, to

ϕ̄

(
Hh′ + hli,li − h,ll

2

)
+3H2δϕ−∇2δϕ+ 3Hδϕ′ + h′

2
ϕ̄′

+
ωBD

2ϕ̄

[
δϕ

ϕ̄
(ϕ̄′)2 − 2ϕ̄′δϕ′

]
= 8πGNa

2δρ ,

(H.14)

ϕ̄

(
∂jh

′
ij − ∂ih′

2

)
− ∂iδϕ′ +H∂iδϕ−

ωBD

ϕ̄
ϕ̄′∂iδϕ = −8πGNa

2(ρ̄+ p̄)vi , (H.15)

δij

[
−δϕ(2H′ +H2)− ϕ̄

(
h′′

2
+Hh′

)
−Hδϕ′ − δϕ′′ +∇2δϕ− h′

2
ϕ̄′ + ϕ̄

(
h,ll − hlt,lt

2

)
+
ωBD

2ϕ̄

(
δϕ

ϕ̄
(ϕ̄′)2 − 2ϕ̄′δϕ′

)]
+ h′ij

(
Hϕ̄+

ϕ̄′

2

)
− ∂i∂jδϕ+

h′′ij
2
ϕ̄

− hij
[
ϕ̄′′ + ϕ̄(2H′ +H2) +Hϕ̄′ + ωBD

2ϕ̄
(ϕ̄′)2

]
+
ϕ̄

2
(hli,jl + hlj,il − hij,ll − h,ij) = 8πGNδTij .

(H.16)

Finally, the covariant conservation of the energy-momentum tensor leads to the following
pair of extra equations, i.e. ∇µTµν = 0, for ν = 0 and ν = i, respectively,∑

j

ρ̄(j)

[
δ′(j) + 3H

(
δp(j)

δρ(j)

− w(j)

)
δ(j) + (1 + w(j))

(
θ(j) +

h′

2

)]
= 0 , (H.17)

∑
j

ρ̄(j)(1+w(j))

[
θ′(j) +

(
H(1− 3w(j)) +

w′(j)
1 + w(j)

)
θ(j) +

∇2δp(j)

(1 + w(j))ρ̄(j)

+
w(j)

1 + w(j)

∂i∂lhil

]
= 0 ,

(H.18)
where θ(j) ≡ ∂iv

i
(j), δ(j) ≡ δρ(j)/ρ̄(j), w(j) ≡ p̄(j)/ρ̄(j), and the sums run over all the species

j that fill the universe.

H.3 Perturbation equations in momentum space

As it is well-known, working in momentum space simplifies a lot the treatment of the
cosmological perturbations, basically because at linear order in perturbation theory the
different modes of the perturbed quantities do not couple to each other, i.e. there is no
mixture of wave numbers and we can safely omit the subscript k for the modes. Here we
limit ourselves to just write the expressions provided in the previous subsection, but in
momentum space. The calculations are straightforward and no further details are thus
needed.

Equation (H.13)

δϕ′′ + 2Hδϕ′ + k2δϕ+
h′

2
ϕ̄′ =

8πGN

3 + 2ωBD

a2(δρ− 3δp) . (H.19)
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Equation (H.14)

ϕ̄(Hh′ − 2ξk2) + (3H2+k2)δϕ+ 3Hδϕ̄′ + h′

2
ϕ̄′

+
ωBD

2ϕ̄

[
δϕ

ϕ̄
(ϕ̄′)2 − 2ϕ̄′δϕ′

]
= 8πGNa

2δρ .
(H.20)

Equation (H.15)

−2ϕ̄k2ξ′ + k2δϕ′ −Hk2δϕ+ ωBDk
2δϕ

(
ϕ̄′

ϕ̄

)
= −8πGNa

2(ρ̄+ p̄)θ . (H.21)

Trace of equation (H.16), and after making use of the pressure equation (5.7)

−δϕ(6H′ + 3H2 + 2k2)− 3δϕ′′ − 3Hδϕ′ − ϕ̄′h′ + 3ωBDϕ̄
′

2ϕ̄

(
ϕ̄′

ϕ̄
δϕ− 2δϕ′

)
+ ϕ̄

(
−h′′ − 2h′H + 2k2ξ

)
= 24πGNa

2δp .

(H.22)

Equation (H.17)∑
j

ρ̄(j)

[
δ′(j) + 3H

(
δp(j)

δρ(j)

− w(j)

)
δ(j) + (1 + w(j))

(
θ(j) +

h′

2

)]
= 0 . (H.23)

Equation (H.18)

∑
j

ρ̄(j)(1+w(j))

[
θ′(j) +

(
H(1− 3w(j)) +

w′(j)
1 + w(j)

)
θ(j) −

k2δ(j)

(1 + w(j))

δp(j)

δρ(j)

−
k2w(j)

1 + w(j)

(h+ 4ξ)

]
= 0 .

(H.24)

Another useful and compact relation can be obtained from the k̂ik̂j part of Eq. (H.16) in
momentum space. The result, after using again the pressure equation (5.7), reads

h′′ + 6ξ′′ + (h′ + 6ξ′)

(
2H +

ϕ̄′

ϕ̄

)
+ 2k2

(
δϕ

ϕ
− ξ
)

= 0 . (H.25)

H.4 Matter density contrast equation at deep subhorizon scales

Let us restrict us now to the matter and Λ-dominated epochs and see what is the evolution
of matter perturbations in the late stages of the universe’s expansion and deeply inside
the horizon. Using the fact that vacuum does not cluster when it is described by a
cosmological constant and matter is covariantly conserved, and also taking into account
that radiation has only very mild impact on the Large-Scale Structure formation processes
we want to study, we can obtain the following relation from (H.24),

θ′m = −Hθm . (H.26)

This leads to a decaying solution for the velocity potential gradient, θm = θ0
m/a, and in

practice we can take θm ∼ 0. By doing this in (H.23) we find

δ′m = −h
′

2
. (H.27)
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At low scales, Eqs. (H.19), (H.20) and (H.25) simplify, after neglecting some terms which
are clearly subdominant at large k’s, giving rise to

k2δϕ+
h′

2
ϕ̄′ =

8πGN

3 + 2ωBD

a2ρ̄mδm , (H.28)

ϕ̄(Hh′ − 2ξk2) + k2δϕ+
h′

2
ϕ̄′ = 8πGNa

2ρ̄mδm , (H.29)

2k2δϕ+ ϕ̄′h′ + ϕ̄
(
h′′ + 2h′H− 2k2ξ

)
= 0 . (H.30)

Using (H.27) in (H.28) one can isolate δϕ = δϕ(δm, δ
′
m), and doing the same in (H.29)

one gets ξ = ξ(δm, δ
′
m). Introducing these expressions in (H.30), and after making use

again of (H.27), one finally obtains the equation for the matter density contrast at deep
subhorizon scales,

δ′′m +Hδ′m −
4πGNa

2

ϕ̄
ρ̄mδm

(
4 + 2ωBD

3 + 2ωBD

)
= 0 . (H.31)

The expression in terms of the scale factor is given in the main text, Eq. (5.28), where we
recall that primes there mean d/da whereas here d/dη. A quick comparison of the last
term of this equation with the one that is obtained in the GR-ΛCDM allows us to note
that the effective value of the gravitational constant that is controlling the formation of
linear structures at subhorizon scales is

Geff(ϕ̄) =
GN

ϕ̄

(
4 + 2ωBD

3 + 2ωBD

)
. (H.32)

More details are provided in the main body of the thesis, see Sect. 5.4.

H.5 Brief note on the initial conditions

We consider adiabatic initial conditions for the various species filling the universe. For the
DM velocity divergence, we use the usual synchronous condition θcdm,ini = 0. We would
like to point out here that the initial perturbation of the BD-field and its time derivative
can also be set to zero. This is because the modes of interest were superhorizon modes
during the radiation-dominated epoch, and in that period of the universe’s expansion
Eq. (H.13) reduces to

δϕ′′ +
2

η
δϕ′ + k2δϕ = 0 , (H.33)

where we have used H = η−1. The solution of this equation reads,

δϕ(k, η) =
A(k)

kη
cos(kη + β(k)) , (H.34)

with A(k) and β(k) being an amplitude and a phase, respectively. This solution cor-
responds to a damped oscillation, which is decaying fastly and can be naturally set to
zero [564]. The initial conditions are thus equal to the ones in the GR-ΛCDM sce-
nario [492], but substituting GN by G(ϕ̄ini).
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H.6 Gravitational waves in BD-ΛCDM cosmology

Gravitational waves (GWs) are given by the traceless and transverse part of the metric
fluctuations, hTij, which contains two degrees of freedom (corresponding to the two polar-

ization states, usually denoted as × and +). Hence, they satisfy hT = 0 and ∂ih
T
ij = 0. As

scalar, vector and tensor cosmological perturbations decouple from each other at linear
order, we can consider the line element

ds2 = a2(η)[−dη2 + (δij + hTij)dx
idxj] (H.35)

and study the ij component of Einstein’s equations. In order to do so we can directly
take the traceless and transverse part of equation (H.16). We obtain,

−hij
[
ϕ̄(2H′ +H2) + ϕ̄′′ +Hϕ̄′ + ωBD

2ϕ̄
(ϕ̄′)2

]
+h′ij

(
Hϕ̄+

ϕ̄′

2

)
+
ϕ̄

2
h′′ij+

ϕ̄

2
k2hij = 8πGNa

2p̄ hij .

(H.36)
Notice that we have omitted the superscript T for simplicity, doing hTij → hij. This
equation can be reduced by using the background pressure equation (5.7), yielding

h′′ij + h′ij

(
2H +

ϕ̄′

ϕ̄

)
+ k2hij = 0 . (H.37)

For a general scalar-tensor theory of gravity one has

h′′ij +Hh′ij (2 + αM) + k2(1 + αT )hij = 0 , (H.38)

where αM and αT are functions that parametrize the deviations from standard GR. The
former modifies the friction term, and is basically the running of the effective Planck
mass, whereas the latter is directly related with the speed of propagation of the GWs,
cgw, since αT = c2

gw−1. In BD, αM = d ln(ϕ̄)/d ln(a) (e.g. at leading order in εBD, we have
αM = εBD in the pure MDE and αM = 2εBD in the VDE, cf. Appendix G) and αT = 0,
so cgw = 1. This function, αT , has been recently constrained to be |αT (z ≈ 0)| . 10−15

using the measurement of the gravitational wave event GW170817 and the accompanying
electromagnetic counterpart GRB170817A [531], located both at a distance of 40+8

−14 Mpc
from us. BD theory automatically satisfies this constraint [532,533], since GWs propagate
exactly at the speed of light.
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Appendix I

Pertubation theory in Newtonian
gauge for Brans-Dicke Models of
Chapter 5

In the main text, we have been working with the synchronous gauge in BD linear pertur-
bation theory. For completeness we are going to provide the equations in the conformal
Newtonian (or longitudinal) gauge. This appendix has the same structure as the previ-
ous one (we only skip the recomputation of tensor perturbations in this gauge, and the
discussion of the initial conditions). In particular, we will show that the same density
contrast differential equation for subhorizon scales that we found in Sect. H.4 arises also
for the Newtonian gauge, as expected. In the last section we provide the transformation
equations of the perturbed quantities from one gauge to another in analogy to [492].

I.1 Perturbed geometric quantities, energy-momentum tensor,
and other relevant terms appearing in the field equations

The square of the line element in the perturbed flat FLRW universe in the Newtonian
Gauge reads as follows,

ds2 = a2[−(1 + 2Φ)dη2 + (1 + 2Ψ)δijdx
idxj] , (I.1)

where the pair Φ and Ψ the so-called Bardeen potentials, which are functions of conformal
time and space. In the following we provide the perturbed expressions (at linear order) for
the various geometrical quantities that will be used later. As before, the primes denote a
derivative with respect to the conformal time, and H ≡ a′/a. Thus, the metric elements
are

g00 = −a2(1 + 2Φ), gij = a2(1 + 2Ψ)δij ; g00 = − 1

a2
(1− 2Φ), gij =

1

a2
(1− 2Ψ)δij.

(I.2)

We can compute the Christoffel symbols associated to the metric in the usual way:

Γ0
00 = H + Φ′, Γ0

0i = Γi00 = ∂iΦ, Γ0
ij = δij[H(1 + 2Ψ− 2Φ) + Ψ′], (I.3)

Γij0 = δij(H + Ψ′), Γijl = δij∂lΨ + δil∂jΨ− δjl∂iΨ.
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The components of the Ricci tensor are

R00 = −3H′ +∇2Φ− 3Ψ′′ + 3H(Φ′ −Ψ′), R0i = −2∂iΨ
′ + 2H∂iΦ, (I.4)

Rij = −∂i∂j(Ψ + Φ) + δij
[
(2H2 +H′)(1 + 2Ψ− 2Φ)−∇2Ψ + Ψ′′ + 5HΨ′ −HΦ′

]
.

Contracting the indices of the previous tensor we are able to compute the Ricci scalar

Ra2 = 6(H2 +H′)(1− 2Φ)− 2∇2(Φ + 2Ψ) + 6Ψ′′ − 6HΦ′ + 18HΨ′. (I.5)

The components of the Einstein tensor entering Einstein’s equations are

G00 = 3H2 + 6HΨ′ − 2∇2Ψ, (I.6)

Gij = −∂i∂j(Ψ+Φ)+δij
[
−(H2 + 2H′)(1 + 2Ψ− 2Φ) + 2H(Φ′ − 2Ψ′) +∇2(Ψ + Φ)− 2Ψ′′

]
,

G0i = −2∂iΨ
′ + 2H∂iΦ.

As we have done for the synchronous gauge, we consider the energy-momentum tensor
of a perfect fluid, Eq. (5.5), and split the energy densities and pressures as before. The
perturbed 4-velocity uµ and its covariant form uµ read now, respectively,

uµ =
1

a
(1− Φ, vi) uµ = a(−[1 + Φ], vi) , (I.7)

where ~v is the physical 3-velocity of the fluid, whose modulus is much lower than 1, so
we can treat it as a linear perturbation. Taking all this into account one can compute
the perturbed elements of Tµν and its trace:

T00 = a2[(1 + 2Φ)ρ̄+ δρ],

Tij = a2δij[p̄(1 + 2Ψ) + δp],

T0i = −a2vi(ρ̄+ p̄),

T = 3(p̄+ δp)− ρ̄− δρ.

(I.8)

Now, we provide the formulas of some other perturbed expressions depending on ϕ that
will be also useful in subsequent computations:

a2�ϕ = −ϕ̄′′ − 2Hϕ̄′ − δϕ′′ + 2ϕ̄′′Φ +∇2δϕ− 2Hδϕ′ + ϕ̄′(Φ′ − 3Ψ′) + 4HΦϕ̄′, (I.9)

∂αϕ∂
αϕ = −(ϕ̄′)2

a2
(1− 2Φ)− 2

a2
ϕ̄′δϕ′, (I.10)

∇0∇0ϕ = ϕ̄′′ + δϕ′′ − ϕ̄′(H + Φ′)−Hδϕ′, (I.11)

∇i∇jϕ = ∂i∂jδϕ− ϕ̄′δij[H(1 + 2Ψ− 2Φ) + Ψ′]−Hδϕ′δij, (I.12)

∇i∇0ϕ = ∂i(δϕ
′ − ϕ̄′Φ−Hδϕ). (I.13)
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I.2 Perturbation equations in position space

The perturbed Einstein equations read as follows,

For µ = i, ν = j, i 6= j:

Ψ + Φ = −δϕ
ϕ̄
. (I.14)

As we can see, the presence of the perturbation of the BD-field, δϕ 6= 0 induces anisotropic
stress since it violates the usual Φ = −Ψ setting of GR-ΛCDM, which holds good only
in the absence of anisotropic stress (induced e.g. by massive neutrinos).

For i = j:

(Φ′ − 2Ψ′)(2Hϕ̄+ ϕ̄′) + (Φ−Ψ)

[
2ϕ̄(H2 + 2H′) + 2ϕ̄′′ + 2Hϕ̄′ + ωBD

ϕ̄
(ϕ̄′)2

]
− 2Ψ′′ϕ̄− δϕ′′ −Hδϕ′ − δϕ(H2 + 2H′) +

ωBD

2ϕ̄

[
δϕ

ϕ̄
(ϕ̄′)2 − 2ϕ̄′δϕ′

]
= 8πGNa

2(2p̄Ψ + δp) .

(I.15)

For µ = 0, ν = 0:

ϕ̄(6HΨ′ − 2∇2Ψ) + 3H2δϕ−∇2δϕ+ 3Hδϕ′ + 3Ψ′ϕ̄′

+
ωBD

2ϕ̄

[
δϕ

ϕ̄
(ϕ̄′)2 − 2ϕ̄′δϕ′

]
= 8πGNa

2(2Φρ̄+ δρ) .
(I.16)

The perturbed covariant conservation equations leads to:

∑
j

ρ̄(j)

[
δ′(j) + δ(j)

ρ′(j)
ρ(j)

+ 3Hδ(j)

(
1 +

δp(j)

δρ(j)

)
+ (1 + w(j))(θ(j) + 3Ψ′)

]
= 0 , (I.17)

∑
j

[
4Hθ(j)ρ̄(j)(1 + w(j)) +

d

dη
(θ(j)ρ̄(j)(1 + w(j))) + ρ̄(j)(1 + w(j))∇2Φ +∇2δp(j)

]
= 0,

(I.18)
where again, as in Appendix H θ(j) ≡ ∂iv

i
(j), δ(j) ≡ δρ(j)/ρ̄(j), w(j) ≡ p̄(j)/ρ̄(j), and the

sums run over all the species j that fill the universe.

On the other hand, the perturbed part of the Klein-Gordon equation can be written as

−δϕ′′ + 2ϕ̄′′Φ +∇2δϕ− 2Hδϕ′ + ϕ̄′(Φ′− 3Ψ′) + 4HΦϕ̄′ =
8πGN

3 + 2ωBD

a2(3δp− δρ). (I.19)

I.3 Perturbation equations in momentum space

From now on we will work in momentum space. Let us show first the Einstein equations.
For µ = i, ν = j, i 6= j:

Ψ + Φ = −δϕ
ϕ̄
. (I.20)
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For i = j:

(Φ′ − 2Ψ′)(2Hϕ̄+ ϕ̄′) + (Φ−Ψ)

[
2ϕ̄(H2 + 2H′) + 2ϕ̄′′ + 2Hϕ̄′ + ωBD

ϕ̄
(ϕ̄′)2

]
− 2Ψ′′ϕ̄− δϕ′′ −Hδϕ′ − δϕ(H2 + 2H′) +

ωBD

2ϕ̄

[
δϕ

ϕ̄
(ϕ̄′)2 − 2ϕ̄′δϕ′

]
= 8πGNa

2(2p̄Ψ + δp) .

(I.21)

Finally for µ = 0, ν = 0:

ϕ̄(6HΨ′ + 2k2Ψ) + 3H2δϕ+k2δϕ+ 3Hδϕ′ + 3Ψ′ϕ̄′

+
ωBD

2ϕ̄

[
δϕ

ϕ̄
(ϕ̄′)2 − 2ϕ̄′δϕ′

]
= 8πGNa

2(2Φρ̄+ δρ) .
(I.22)

Notice that the previous equation yields the usual perturbed Poisson equation for δϕ = 0
– which implies Φ = −Ψ, according to (I.20). Doing also ϕ̄ = 1, at deep subhorizon
scales it boils down to the expected simpler form k2Ψ = −k2Φ = −4πGNa

2δρ, since
k2 � a2GNρ ∼ a2H2 = H2.

The perturbation of the covariant conservation equation, with ν = 0, gives∑
j

ρ̄(j)

[
δ′(j) + 3Hδ(j)

(
δp(j)

δρ(j)

− w(j)

)
+ (1 + w(j))(θ(j) + 3Ψ′)

]
= 0. (I.23)

And for ν = i, we obtain:∑
j

[
4Hθ(j)ρ̄(j)(1 + w(j)) +

d

dη
(θ(j)ρ̄(j)(1 + w(j)))− ρ̄(j)(1 + w(j))k

2Φ− k2δp(j)

]
= 0.

(I.24)
So far, these conservation equations take the same form as in the GR-ΛCDM. On the
other hand, the perturbed Klein-Gordon equation reads

−δϕ′′ + 2ϕ̄′′Φ− k2δϕ− 2Hδϕ′ + ϕ̄′(Φ′ − 3Ψ′) + 4HΦϕ̄′ =
8πGN

3 + 2ωBD

a2(3δp− δρ). (I.25)

I.4 Matter density contrast equation at deep subhorizon scales

As done in Appendix C for the synchronous gauge, we study now the evolution of matter
perturbations at deep subhorizon scales, i.e. at those scales at which k2 � H2 (deep
subhorizon scales). In this limit, Eq. (I.23) boils down to

δ′m + θm + 3Ψ′ = 0 , (I.26)

and (I.24) can be written as

θ′m +Hθm − k2Φ = 0. (I.27)

These equations can be easily combined to make disappear the dependence on θm. If we
do that, we obtain the following approximate second order differential equation for the
matter density contrast,

δ′′m +Hδ′m + k2Φ = 0. (I.28)
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The problem is now reduced to find an expression for k2Φ in terms of background quan-
tities and δm. Collecting (I.20), (I.22) and (I.25),

−δϕ
ϕ̄

= Ψ + Φ, (I.29)

2k2Ψ + k2 δϕ

ϕ̄
=

8πGNa
2

ϕ̄
ρ̄mδm, (I.30)

k2δϕ =
8πGNa

2

3 + 2ωBD

ρ̄mδm, (I.31)

respectively. We can see, as expected, that for ωBD → ∞ and ϕ̄ = 1 the first equation
above gives Φ = −Ψ (no anisotropy stress) and the third one renders a trivial equality
(0 = 0), whereas the second equation yields Poisson equation k2Ψ = −k2Φ = 4πGNa

2δρ.
In the general case, by combining the above equations one finds:

k2Φ = −4πGNa
2ρ̄mδm

ϕ̄

(
4 + 2ωBD

3 + 2ωBD

)
. (I.32)

So, finally, inserting the previous relation in (I.28) we are led to the desired equation for
the density contrast at deep subhorizon scales:

δ′′m +Hδ′m −
4πGN

ϕ̄
a2ρ̄mδm

(
4 + 2ωBD

3 + 2ωBD

)
= 0 , (I.33)

or, alternatively, in terms of the cosmic time t,

δ̈m + 2Hδ̇m −
4πGN

ϕ̄
ρ̄mδm

(
4 + 2ωBD

3 + 2ωBD

)
= 0 , (I.34)

with the dots denoting derivatives with respect to t. As expected, these equations coincide
with the density contrast equation at deep subhorizon scales for the synchronous gauge
and we can recover the standard ΛCDM result for ωBD →∞ and ϕ̄→ 1.

As already mentioned above, because of (I.29) non-null scalar field perturbations induce
a deviation of the anisotropic stress, −Ψ/Φ, from 1, i.e. the GR-ΛCDM value. At scales
well below the horizon,

−Ψ

Φ
=

1 + ωBD

2 + ωBD

= 1− εBD +O(ε2BD) , (I.35)

so constraints on the anisotropic stress directly translate into constraints on εBD, and a
deviation of this quantity from 1 at the linear regime would be a clear signature of non-
standard gravitational physics. A model-independent reconstruction of the anisotropic
stress from observations has been recently done in [565]. Unfortunately, the error bars
are still of order O(1), so these model-independent results cannot put tight constraints
on εBD (yet).

I.5 Transformations between Gauges

It is possible to establish a set of equations relating the different perturbation quantities
in both gauges at the same coordinates in momentum space. For the potentials, we have
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the well known relations of [492],

Φ(~k, η) =
1

2k2

{
h′′(~k, η) + 6ξ′′(~k, η) +H

[
h′(~k, η) + 6ξ′(~k, η)

]}
, (I.36)

Ψ(~k, η) = −ξ(~k, η) +
1

2k3
H
[
h′(~k, η) + 6ξ′(~k, η)

]
, (I.37)

and for the other perturbed quantities we find,

δS = δN − α
ρ̄′

ρ̄
,

θS = θN − αk2 ,

δpS = δpN − αp̄′ ,
δϕS = δϕN − αϕ̄′ .

(I.38)

Here, the subscripts N and S mean newtonian and synchronous, respectively, and

α ≡ 1

2k2
[h′ + 6ξ′] . (I.39)
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Appendix J

Bayesian statistics and cosmology

Cosmology is a science wrapped with an increasing amount of data and complexity, which
needs of the most advanced techniques in order to analyse observations, give meaning-
ful predictions of parameters and test cosmological models. It is not the goal to do a
comprehensive nor exhaustive overview, but in this Appendix we will review some of the
fundamental concepts in Bayesian statistics and related topics [197,566]. In this context,
the probability is a measure of the degree of belief about a proposition.

The fundamental block of Bayesian statistics is the Bayes’ theorem. One illustrative way
to state this result is considering that we have a dataset consisting of several surveys
or measures, D ≡ (D1, D2, . . . Dm). On the other hand we want to test a cosmological

model, M . The model is described by some parameters ~θ = (θ1, θ2, . . . θn). Some of these
parameters are physically relevant, in the sense that they have a role in the description
of phenomena. On the other hand, we call a nuisance parameter those with influence
over data and its uncertainties, playing an intermediate role in the analysis, but do not
have interest for being determined at the end. The Bayes theorem can be written in the
following way1

P (~θ | D,M) =
P (D | ~θ,M)P (~θ |M)

P (D |M)
. (J.1)

From the previous formula,

• P (~θ | D,M) is the posterior probability, after considering the data.

• P (~θ |M) is the prior probability, which gives the degree of believe before incorpo-
rating any data. For instance, when constructing a prior probability, one may take
into account the outcomes of a previous experiment or consider physical arguments
of the model.

• P (D |M) is the Bayesian evidence or marginal likelihood, which constitutes a nor-
malization constant. The law of total probability let us to write it as a sum over

1A potential source of confusion in our notation is the use of P to represent both probabilities and probability
density functions. Specifically, if X is a continuous random variable,

´
R
P (X)dx represents the probability of

X being within the region R, while if X is a discrete variable, P (X = x) refers to the probability of X taking
the value x. Typically, parameters and data are continuous variables. However, P (M) represents the prior
probability of a model (assuming a finite set of competing models).
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the model space (i.e. over the region of possible values of the parameters),

P (D |M) =

ˆ
P (D | ~θ,M)P (~θ |M)d~θ . (J.2)

• P (D | θ,M) is the sampling distribution of the data, provided that M is true. For

a fixed data D it is just a function of ~θ, called the likelihood function, L(~θ).

Our ultimate goal is to use statistical methods to estimate the parameters that charac-
terize each cosmological model and to conduct a fair comparison between the candidates
in order to determine which is most suitable for the data.

J.1 Bayesian parameter inference

In chapters 6 and 5 we studied different extensions of the ΛCDM (or GR-ΛCDM, if we
are more precise). Let us take the example of the BD-ΛCDM. It supposes an extension
of the concordance cosmological model by the inclusion of a scalar field, φ taking the
role of evolving gravitational constant. In particular, as a nested model, the BD-ΛCDM
contains two more parameters with respect the standard GR-ΛCDM which describe new
physics: εBD and φini. As an extension, one can recover the ΛCDM from the BD-ΛCDM
for specific values of the extra parameters. That is, their GR-ΛCDM values, εBD = 0
and ϕini = 1. Although the final problem is actually a model comparison against the
concordance model, the first step is to look for the constrains that the data imposes on
the different parameters. In particular, those describing new physics or those related with
the cosmological tensions such as H0 can be of special interest. This is possible with an
extensive and precise dataset, which makes possible to accurately fit cosmological models
to observational data and estimate their values.

The first step in the parameter inference process is to determine the likelihood function
for the measurement, L(M), which describes the plausability of the data for a given model

M = (~θ, ~φ), where ~θ represents the vector of interest parameters and ~φ is the vector of

nuisance parameters. Furthermore, a prior for the parameters ~θ and ~φ is required, which
can be obtained from a previous experiment, physical arguments, a flat prior if we admit
any possible value of the parameters. The Bayesian evidence can be constructed from
(J.13) as a normalization factor and it is not necessary to be given in this context. The
posterior distribution is then just proportional to the product of the likelihood and the
prior,

P (~θ, ~φ|D,M) ∝ L(~θ, ~φ)P (~θ, ~φ|M). (J.3)

It is usual to focus in the interest parameters and simplify the model by marginalizing
the nuisance parameters at some point, by integration of the joint posterior pdf:

P (~θ|D,M) =

ˆ
P (~θ, ~φ|D,M)d~φ ∝

ˆ
L(~θ, ~φ)P (~θ, ~φ|M)d~φ . (J.4)

The final step of inference from the posterior pdf is to present information about the
parameters, either by providing its mean, median, standard deviation, etc. or by pre-
senting a marginalized one or two dimensional plot after the posterior probability density
function with respect to the other parameters.
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The process of finding the posterior distribution is not always straightforward, particu-
larly when analytical methods are not possible. In such cases, sophisticated techniques
and approximations may be utilized. For instance, Gaussian functions can be used to ap-
proximate the likelihood and priors. Alternatively, numerical tools such as Markov Chain
Monte Carlo (MCMC) techniques can be used to evaluate the likelihood and sample from
the posterior probability density function (pdf). MCMC is a widely used and well-known
method for handling complex scenarios.

J.1.1 The Fisher Matrix

The maximum likelihood (ML) estimators are values of the parameters, although de-
pending on the data, that maximize the likelihood. In the simplest scenario, they can be
computed through standard mutivariable calculus, by solving the set of equations

∂L(~θ)

∂θi
= 0, for i = 1, 2, . . . , n . (J.5)

The Fisher Matrix formalism holds for an unimodal likelihood which can be well approx-
imated by a multidimensional Gaussian function near the maximum. They key idea is to
approximate the full likelihood as a multigaussian distribution

L(~θ) ≈ L∗ exp

{
−1

2

[
~θ − ~θ∗

]T
F
[
~θ − ~θ∗

]}
, (J.6)

where ~θ∗ (D) is the vector containing the ML estimators and L∗ ≡ L(~θ∗), both functions
of the data. The matrix F is called the Fisher Matrix, and is well approximated by the
inverse of the covariance matrix of the parameters, F = C−1. The covariance matrix is
defined as

C ≡


σ1 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σn




1 ρ1,2 · · · ρ1,n

ρ2,1 1 · · · ρ2,n

...
...

. . .
...

ρn,1 ρn,2 · · · 1



σ1 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σn

 . (J.7)

where diag(σ1, . . . , σn) is the matrix of the 1D-marginal variances and ρi,k is the correla-
tion between the parameters θi and θk. In general, the Fisher Matrix, can be written as

Fij = −
∂2 lnL

(
~θ
)

∂θi∂θj
. (J.8)

Within the context of this approximation it is easy to perform parameter estimation
and to compute their uncertainties, mean values, etc. This is a first method that may
be useful for parameter estimation, albeit non-gaussianities can be a serious issue that
may prevent this formalism to apply in a satisfactory way. In such a case it would be
necessary to require another method such as the mentioned MCMC, in order to estimate
the posterior pdf.
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J.1.2 The Joint Likelihood Function χ2

When dealing with a dataset D conformed by independent experiments D1, D2, . . . Dm

the joint likelihood can be factorized as

Ltot = L1 × L2 × · · · × Lm . (J.9)

It is useful to define the χ2
i function for each experiment Di as χ2

i ≡ −2 lnLi. With this
definition, a maximization of the likelihood is equivalent to a minimization of the χ2.
From (J.9), it follows that the total χ2 can be expressed in an additive way,

χ2
tot = χ2

1 + χ2
2 + · · ·+ χ2

m . (J.10)

or, within the gaussian approximation,

χ2
tot(

~θ) = χ2
∗ +

m∑
i=1

(
gi(~θ)− ~di

)T

Fi

(
gi(~θ)− ~di

)
, (J.11)

where the sum runs over the different datasets involved in the analysis (for instance

i = CMB, BAO, LSS, . . . ), gi(~θ) contains the theoretical predictions as a function of the

free parameters and ~di is the data vector containing the information of the data set Di.
The first term χ2

∗ is the logarithm of the normalization factor of the Likelihood (J.6) and
is a constant value.

There is a clear advantage in using a comprehensive data set conformed of different kinds
of observations. Combining independent and and compatible sources can aid in breaking
degeneracies in the parameters of the fitted model. After obtaining the likelihood for
the different observations and computing the total χ2, one can proceed to compute the
1D-marginalized posterior pdf of the interest parameters or the 2D posteriors contours
of the joint distribution of two parameters.

J.1.3 Markov Chains and Monte Carlo estimates

A classical method for cosmological parameter estimation is to use grid in order to search
the minimum of the χ2 function. This is a brute force procedure which either covers the
entire parameter space or covers a localized region containing the maximum, meaning
that we need some previous information about its approximate location. This task usually
demands a lot of computational resources once the number of dimensions of the parameter
space grows. ofently making the process non-viable if we need a precise and fast evaluation
of the χ2. An alternative procedure based on a Bayesian approach is Markov Chains
and Monte Carlo (MCMC) methods. There are different codes, such as MontePython

[534] and CosmoMC [567], that may implement this method. Working together with a
Boltzmann code they may calculate the model parameters and matter power spectrum.
In particular we used the pair MontePython+CLASS [473] to perform our analysis in
Chapters 6 and 5. MontePython runs a Metropolis-Hastings algorithm for sampling.

Basically, without going into the details, an MCMC code explores the parameter space
through a random process, constructing a sequence of points referred to as chains. The
distribution of these chains approaches the posterior probability density function for the
parameters of the model with every step. After enough iterations, we can use the chains as
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samples of the posterior pdf, allowing us to perform parameter inference and computing
different statistics as the mean value of a parameter,

〈θ〉 ≈
ˆ
θ p (θ|d,M) dθ ≈ 1

N

N−1∑
t=0

θ(t) , (J.12)

expected values of any function, standard deviations, correlations between parameters or
the 1D or 2D marginalized distributions.

J.2 Bayesian Model comparison

Fitting the parameters of our cosmological model is not always sufficient. For instance,
if our model includes extra physics, such as the BD-ΛCDM or Running Vacuum Models
presented in this work, we are not only interested in determining the values of its param-
eters, but also in comparing its performance with the standard cosmological model to see
if it fits the data better.

This contest between models should be conducted in a fair manner, taking into account
their complexity. One guiding principle when choosing between different models is Oc-
cam’s razor. In plain words, when comparing two models with the same predictivity and
quality of fit, one should choose the simpler model. Of course, a model with a large num-
ber of parameters and/or wider ranges of values may fit the data just as well as a simpler
model, but at the cost of increased complexity. This complexity should be avoided if
a simpler model provides a satisfactory description of the phenomena that is consistent
with observations. Bayesian model comparison provides the tools to objectively deter-
mine whether a more complex model is truly necessary based on the data.

New observations may update our degree of believe in a particular theory. However, one
can not simple refuse it because of the implausibility of the data given the model, unless
it is compared with an alternative one which gives better agreements. We have to start

with a model M characterized by a set of parameters ~θ and its prior probability, p(~θ|M).

As a difference from the parameter inference, the key ingredient in model comparison is
the so-called Bayesian evidence in Bayes’ Theorem,

P (D|M) =

ˆ
L(~θ)P (~θ|M)d~θ , (J.13)

with L (θ) ≡ P (D|θ,M) .

Let’s consider two different models MA and MB and the ratio of their posterior probabil-
ities, also called posterior odds,

P (MA|D)

P (MB|D)
=

P (MA)P (D|MA)
P (D)

P (MB)P (D|MB)
P (D)

= BA,B
P (MA)

P (MB)
, (J.14)

where BA,B is called Bayes Factor and is defined as

BA,B ≡
P (D|MA)

P (D|MB)
. (J.15)
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or, equivalently,

BA,B =

P (MA|D)
P (MB|D)

P (MA)
P (MB)

, (J.16)

written in this way, we can understand the Bayes Factor as the factor that accounts for
the change in the ratio odds between the two models, before and after the data has been
taking into account. Thus, BA,B reflects an update of the relative degree of belief of the
models. If there are no reasonable clues prior the data, it is natural to assign equal degree
of plausability to both models, P (MA) = P (MB). In that case, the Bayes factor coincides
with ratio of posteriors odds. When BA,B � 1, it is clear that the Bayesian evidence for
model MA is much greater than the Bayesian evidence for model MB. Equivalently, we
may interpret this fact as an enhancement of the odds ratio due to the new information
provided by the data, as shown in equation (J.16). In such a case, we should favor model
A over model B.

Once again, it must be emphasized that calculating Bayesian evidence is not straightfor-
ward, as it requires integration over the entire parameter space, a task that can demand a
lot of computational resources. Some approximations exist to mitigate the problem, but
we will not focus on these in what follows. Instead, we will describe a simple procedure
for Bayesian model selection that takes into account the complexity of the model.

J.2.1 Bayesian Complexity and Information criteria

We can naively associate the complexity of a model with the number of free parameters,
but this may not be accurate. Some parameters may be poorly constrained by the data
and effectively have no role. To take this into consideration when defining a measure for
complexity, we need to account for the number of parameters that the data can support.
We start by defining the Kullback-Leibler (KL) divergence,

DKL ≡
ˆ
P (θ|D,M) ln

P (θ|D,M)

p(θ|M)
dθ =

〈
ln
P (θ|D,M)

P (θ,M)

〉
, (J.17)

which is the expected value of the information gain (under the posterior distribution) from
the prior to the posterior pdf. Remember the definition we did of χ2(θ) ≡ −2 lnL(θ). So
that, an equivalent form for the KL term coming from the Bayes theorem is

DKL = − lnP (D|M) +

ˆ
p(θ|D,M) lnL(θ)dθ = − lnP (D|M)− 1

2

〈
χ2 (θ)

〉
, (J.18)

where, the 〈χ2〉 is the mean χ2 function over the posterior distribution, which can be

obtained by MCMC methods. On the other hand, we can define D̂KL as,

D̂KL = − lnP (D,M)− 1

2
χ2(θ̂) , (J.19)

where θ̂ is the value of the information gain at an estimated value of the parameters (the
posterior mean, the ML estimator,etc.). The Bayesian complexity will be defined as

Cb = −2
(
DKL − D̂KL

)
=
〈
χ2 (θ)

〉
− χ2(θ̂) , (J.20)

and gives the number of effective parameters that the data can constrain. Bayesian com-
plexity provides an additional step when comparing several models with similar evidence.
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In such a case, we may choose the one with lesser Bayesian complexity (i.e., with a lesser
number of effective parameters and greater simplicity) in order to respect the philosophy
of Occam’s razor.

Although we introduced the concepts of Bayesian evidence and complexity for complete-
ness, when comparing the models in Chapters 6 and 5, we adopted a simpler approach
using information criteria. These provide a method for model selection that penalizes
models with more parameters, on the assumption that such models are more complex
and therefore have a greater potential to overfit the data. Unlike Bayesian evidence,
information criteria typically penalize models with a higher number of free parameters,
whether or not they are well-constrained by the data. Consequently, model selection
based on information criteria is oftenly more reliable when the data constrain all the free
parameters satisfactorily, which is approximately the case for our models.

Different information criteria can be used in Cosmology, let us summarize the main three:

a) The Akaike Information Criterion (AIC) [568] is a widely used criterion that adds a
penalization of the double of independently adjusted parameters, k. To calculate the
AIC for a particular model, one starts by fitting the model to the data and obtaining
the maximum likelihood estimate of the model parameters. The likelihood function
is then evaluated at this estimate, and the AIC is calculated using

AIC ≡ −2 lnL∗ + 2k = χ2
∗ + 2k . (J.21)

Here L∗ ≡ p (d|θ∗,M) is the value of the likelihood maximized by the parameter θ∗
and χ2

∗ ≡ χ2(θ∗). When comparing different models, the model with the lowest AIC
is usually considered the best fit, balancing goodness of fit and model complexity.
AIC has the advantage of being relatively easy to calculate and widely applicable
across a range of statistical models.

b) The Bayesian Information Criterion (BIC) [538], is also based on the maximum
likelihood estimate (MLE) of the parameters of the model, and penalizes models
with more parameters by adding a term proportional to the logarithm of the number
of parameters, multiplied by a factor that depends on the sample size,

BIC ≡ −2 lnL∗ + k lnN , (J.22)

where L∗ is the maximum likelihood value of the model, k is the number of param-
eters in the model, and N is the number of data points. This criterion is especially
useful when N � k. In this regime, the BIC tends to favor simpler models that are
more likely to generalize well to new data. Again, the model with the lowest BIC
is typically considered the best among the models being compared.

c) The Deviance information Criterion (DIC) [537],

DIC ≡ −2D̂KL + 2Cb = −2 (lnL∗ − lnP (D|M)) + 2Cb (J.23)

is a generalization of AIC, replacing the number of parameters, k, by the number of
effective parameters, Cb. In the limit of well-informative data lnP (D|M) ≈ 0 and
Cb ≈ k, so that recovering (J.21). Compared to the AIC, the DIC is more accurate as
it can take into account unconstrained parameters, which the AIC cannot. However,
it is also more complex than the AIC, and can be computationally intensive to
calculate.
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Appendix K

Description of the data

As a final step to rigorously evaluate the quality of a cosmological model it is vital to con-
front it against the existing empirical evidence. Our phenomenological works presented
in chapters 5 and 6 represent our efforts to judge our theoretical investigations on the
dynamical behaviour of the vacuum energy against the available cosmological data. In
there, we try to give our best to perform an exhaustive and complete statistical analysis
presenting not only the fit of the models, but also their fair model comparision under
different datasets in order to decide which one is the most favoured by the data. The
variety of sources that we can enjoy in this era of precision cosmology is vast and, albeit
it is impossible to consider all of them in our analysis, we decided to collect the most con-
sistent and reliable sets under our own criteria. Needless to say that this is a delicate and
nonstop process in which experience plays a crucial role as one has to carefully scrutinize
multitudinous results in the literature along the years. This intrincate task implies to
be aware of correlations and double counting between the outcome of different surveys,
which are usually not completely independent and may be fundamented in overlapping
samples.

In this appendix we summarize the different sources of cosmological data that have been
used in our particular selection for the works presented in the main text.

CMB

The discovery of the cosmic microwave background (CMB) in the 1960s was a turning
point in the history of cosmology. It provided a definitive clue to the validity of the Big
Bang framework and a priceless tool for obtaining information from the early stages of
the Universe. The CMB is a remnant of the hot, dense state of the Universe shortly after
the Big Bang. At the recombination epoch, (redshift of z ≈ 1100, when the temperature
was below 1 eV), the Universe had cooled enough for electrons and protons to combine
into neutral hydrogen atoms. This caused a sudden drop in the opacity of the Universe
to radiation, allowing it to freely stream across space. This radiation has been traveling
through the Universe ever since, and has been stretched to longer wavelengths by the
expansion of the Universe, resulting in its detection as microwaves today.

Prior to this time, the photon-to-baryon ratio was high enough to maintain photons
coupled to electrons, even if it was not favored by the energetic distribution. This caused
an ionization of any neutral hydrogen atom that could be bound. The effective decoupling
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occurred when the rate of photon-electron scattering became less frequent due to the
expansion of the Universe. As a result, the mean free path of photons became much
higher, producing the almost homogeneous and isotropic radiation that we can detect
today, coming from the so-called surface of last scattering.

CMB observations are fundamental to constraint the free parameters of our cosmological
models. In particular, CMB temperature and polarization anisotropies are a rich source of
information, which are mainly originated by scalar perturbations of Einstein’s equations
[171,197].

Due to the spherical simmetry, the temperature anistropies can be decomposed in spher-
ical harmonics,

Θ (~x, z, n̂) ≡ δT (~x, z, n̂)

T (z)
=
∞∑
`=1

∑̀
m=−`

a`m (~x, z)Y`m (n̂) , (K.1)

where ~n indicates the direction of the incoming radiation and a`m (~x, z) are space-time
dependent coefficients. The index ` is usually called multipole moment and is related to
the angular size as θ = π/`. For that reason, low (respt. high) multipoles are associated
to large (respt. small scales).

The harmonics are normalized asˆ
Y`m (n̂)Y ∗`′m′ (n̂) dn̂ = δ``′δmm′ . (K.2)

The latter expression let us to isolate a`m as

a`m =

ˆ
Θ (~x, z, n̂)Y ∗`m (n̂) dn̂ . (K.3)

The coefficients are understood to have a zero mean, 〈a`m〉 = 0, because our initial
perturbations are likely to be either positive or negative. However, the variance is non-
zero:

C` ≡ 〈|a`m|2〉 =
1

2`+ 1

∑̀
m=−`

|a`m|2 . (K.4)

The CMB power spectrum is described through the C`’s. In particular, we compare our
theoretical predictions for `(`+ 1)C`/(2π) as a function of the multipole (or the angular
scale) with observations. Unfortunately, the exact shape of C` is not accessible through
analytical computations. The photons and other matter components are coupled, and
this situation is described by a system of Boltzmann differential equations that cannot
be solved analytically without approximations. Nevertheless, numerical tools can do the
job. In our case, we used CLASS [473], as described in Chapters 6 and 5.

In both chapters we have worked with the results from Planck 2018 [132], considering
different datasets: the full Planck 2018 TT + lowE likelihood (in the Baseline scenario),
the full Planck 2018 + TTTEEE+ lowE likelihood to study the effect of the higher
multipoles and full Planck 2018TTTEEE+lowE+lensing in order to study the lensing
data. In our baseline dataset we consider the full Planck 2018 TT+lowE likelihood [132].
CMB part of the Baseline dataset is common for both chapters. In order to study the
influence of the CMB high-` polarizations and lensing we consider in Chap. 5 two alter-
native (non-baseline) datasets, in which we substitute the TT+lowE likelihood by: (i)
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the TTTEEE+lowE likelihood, which incorporates the information of high multipole po-
larizations; (ii) the full TTTEEE+lowE+lensing likelihood, in which we also incorporate
the Planck 2018 lensing data. In 5.6 and 5.7 these scenarios are denoted as B+H0+pol
and B+H0+pol+lens, respectively.

Supernovas

The late-time acceleration was confirmed by the observation of distant supernovae, as
explained in the introduction. The independent reports of two different groups, the
High-z Supernova Search Team (HSST) [127] and the Supernova Cosmology Project
(SCP) [126], marked a milestone in modern cosmology, confirming the existence of so-
called dark energy as the agent responsible for this acceleration. By 1998, the HSST had
discovered a set of 16 high-redshift supernovae and a set of 34 nearby supernovae, while
the SCP had studied 42 supernovae in the redshift range of 0.18-0.83. The main subject
of the study of supernovae was to set constraints on the cosmological parameters.

Supernovae are superluminous events that can be classified into different kinds. Among
them, Type Ia supernovae (SnIa) share a nice feature in that their absolute luminosity is
approximately constant at the peak of brightness. This makes it possible to relate their
apparent luminosity to their distance; they are considered ”standard candles” and can be
used to construct Hubble diagrams. Type Ia supernovae are characterized by a spectral
line of hydrogen and an absorption line of ionized silicon. They are superluminous events
that occur due to explosions in white dwarfs composed of carbon and oxygen in binary
systems. When the white dwarf absorbs gas from the other star, its mass eventually
exceeds the Chandrasekhar limit (approximately 1.44 solar masses), and it explodes in
an extremely bright release of energy. The peak absolute magnitude of a SnIa is around
M=-19. After correcting the observed magnitudes, we may relate the apparent magnitude
(m) to the absolute one (M) as:

m−M = 5 log10

(
DL

1Mpc

)
+ 25 , (K.5)

here DL is the luminosity distance measured in Mpc. In cosmologies based on the FLRW
metric, DL is a function of the cosmological parameters, making it of special interest. For
instance, for null spatial curvature as assumed along this work, the luminosity distance
up to redshift z takes the form:

DL(z; ~θ) = (1 + z)

ˆ z

0

dz̃

H(z̃)
. (K.6)

Here, ~θ generically denotes the parameters of the model. Since the peak absolute magni-
tude is well-known, information regarding the luminosity distance can be inferred from
Eq. (K.5). In particular, what is fitted against data is the distance moduli,

µp(z; ~θ) ≡ 5 log10DL(z; ~θ) + α , (K.7)

where α can be treated as a nuisance parameter and be marginalized in the corresponding
χ2.

In this chapter we use the full Pantheon likelihood, which incorporates the information
from 1048 SNIa [494]. In addition, we also include the 207 SNIa from the DES survey
[495].
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Large Scale Structures

Understanding how large-scale structures evolve in an expanding Universe may lead us to
a powerful tool for cosmological model testing. In this context, an intereseting possibility
is to study the quantity conformed by the product fσ8(z) ≡ f(z)σ8(z), known as weighted
linear growth, where f is the growth rate, defined as

f(a,~k) =
d lnD(a,~k)

d ln a
, (K.8)

being D the growth function and a the scale factor or, in terms of the density contrast
for matter δm ≡ δρm/ρm,

f(a,~k) =
d ln δm(a,~k)

d ln a
. (K.9)

If one assumes general relativity, the growth rate can be expressed in a simple way as [569]

f(a) ≈ Ωm(a)γ , (K.10)

being Ωm(z) the energy density fraction of matter and γ ≈ 0.55. This parametrization
may not hold in an arbitrary cosmological model with modifications of gravity, as the BD
model presented in Chap. 5 or type II RRVM of Chap. 6. In fact, we described a method
for obtaining f(a) at subhorizon scales (aH � k) directly from CLASS, without assuming
any parametrization like (K.8) at the end of Sect. 6.3. In this case, we observed that f
is independent of k. The density contrast is seen to satisfy, in general, a second order
differential equation,

d2δm

da2
+ F (a, ~θ)

dδm

da
+G(a, ~θ)δm = 0 , (K.11)

where F and G are functions depending on the free parameters of the model, ~θ, and
therefore change from one model to another.

On the other hand, σ8 is the root mean square of the mass fluctuation amplitude in
spheres of 8h−1 Mpc radii at a particular redshift. It is related to the normalization of
matter power spectrum. Its expression is

σ2
8(z) =

1

2π2

ˆ ∞
0

dkk2Pm(z,~k)W 2(|~k|R8) , (K.12)

where R8 ≡ 8h−1Mpc and W is defined as

W 2(x) ≡ 3(sin(x)− x cos(x))

x3
. (K.13)

The combination fσ8 is measurable from galaxy surveys and its the observable that enters
in the analysis. For instance, by measuring the two-point correlation function of the mass
density field or studying redshift space distorsions (RSD) of peculiar velocities as a probe
of the gravitational interaction of galaxies and the density constrast. Our dataset for
Chap. 5 and Chap. 6 is composed by a set of measures of fσ8(zi) for different effective
redshifts zi. The datapoints entering in our analysis of Chap. 5 are explicitly written
in Table 5.2 in Sect. 5.6, together with corresponding references and more details. For
chapter Chap. 6, we use a similar dataset, with some differences remarked at the caption
of Table 6.1.
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Gravitational Lensing

General relativity states that the presence of mass can bend the path of a nearby light
ray. For instance, the image of a distant galaxy behind a massive structure in the same
line of sight can be distorted. When this effect is accentuated it can produce noticiable
distorsions such as Einstein rings or multiple images of the same source and we generically
call this phenomena Strong Lensing. On the other hand, when the magnitude of these
effects is not as significant the distorsions can only be tracked by statistical analysis to
measure the cosmic shear around a particular region produced by this Weak Lensing. All
together both Strong and Weak gravitational lensing can constitute an alternative tool
for parameter estimation.

Weak Gravitational Lensing

The Kilo-Degree Survey (KiDS) has measured the Weak-Lensing statistical distortion of
angles and shapes of galaxy images caused by the presence of inhomogeneities in the low-
redshift universe [217–220]. The two-point correlation functions of these angle distortions
are related to the power spectrum of matter density fluctuations, and from it it is possible
to obtain constraints on the parameter combination S8 = σ8

√
Ωm/0.3. It seems not to

perform great in general for non-ΛCDM scenarios, as nonlinear effects for small angular
scales are calculated with the Halofit module [528], which only works fine for the GR-
ΛCDM and minimal extensions of it, as the aforementioned XCDM [263] and also for the
CPL parametrization of the DE EoS parameter [264,265]. Thus, it is not able to model
accurately the potential low-scale particularities of the BD-ΛCDM model in our analysis
in Chapter 5.

Strong Gravitational Lensing

As part of one of our non-baseline datasets in Chap. 5 we use the data extracted from
the six gravitational lensed quasars of variable luminosity reported by the H0LICOW
team. They measure the time delay produced by the deflection of the light rays due
to the presence of an intervening lensing mass. After modeling the gravitational lens
it is possible to compute the so-called time delay distance D∆t (cf. [211] and references
therein). The fact of being absolute distances and not relative ones (as for the SNIa and
BAO datasets) allows them to directly constrain the Hubble parameter in the context
of the GR-ΛCDM as follows: H0 = 73.3+1.7

−1.8 km/s/Mpc . It turns out that for the
three sources B1608+656, RX51131-1231 and HE0435-1223, the posterior distribution
of D∆t can be well approximated by the analytical expression of the skewed log-normal
distribution,

L(D∆t) =
1√

2π(D∆t − λD)σD
exp

[
−(ln(D∆t − λD)− µD)2

2σ2
D

]
, (K.14)

where the corresponding values for the fitted parameters µD, σD and λD are reported in
Table 3 of [211]. On the other hand, the former procedure cannot be applied to the three
remaining lenses, i.e. SDSS 1206+4332, WFI 2033-4723 and PG 1115+080. From the
corresponding Markov chains provided by H0LICOW1 we have instead constructed the

1http://shsuyu.github.io/H0LiCOW/site/
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associated analytical posterior distributions of the time delay angular diameter distances
for each of them. Taking advantage of the fact that the number of points in each bin is
proportional to L(D∆t) evaluated at the average D∆t for each bin, we can get the values
for − ln(L/Lmax) and fit the output to obtain its analytical expression as a function of
D∆t. The fitting function can be as accurate as wanted, e.g. using a polynomial of order
as high as needed. The outcome of this procedure is used instead of (K.14) for the three
aforesaid lenses.

BAO

Probes of Primordial baryon acoustic oscillations (BAO) are also a fundamental tool
in modern cosmology for imposing constraints to the parameters of the ΛCDM and its
extensions. The strongly coupled Photon-Plasma fluid that almost homogeneously filled
the early Universe was a medium for the propagation of acoustic oscillations resulting
from the interplay between gravity and radiation pressure. After the Universe cooled
down, photons decoupled from the fluid and acquired a huge mean free path bigger than
the Hubble distance, in what is know as recombination (zdec ≈ 1100). After this scenario,
photon pressure cannot prevent gravitational instability and overdensities are formed, in
which baryonic (and also dark matter due to gravitational interaction) were distributed
around the Universe. At the drag epoch, when baryons effectively decouple from photons
after recombination (zd . zdec), these overdensities had a comoving characteristic scale

rs(zd) =

ˆ ∞
zd

cs(z)

H(z)
dz , (K.15)

where cs(z) = (3(1+3ρb(z)/4ργ(z)))−1/2 is the speed sound in the fluid, depending on the
energy densities of photons and baryons. Its value is rs ≈ 150 Mpc, and it is called sound
horizon at the drag epoch. As a consequence, after the oscillations became frozen, there
is an imprint in the CMB in the form of acoustic peaks in power spectrum. Additionally,
it can be trace in the matter distribution, from the oscillations in the matter power
spectrum (in Fourier space) or by the peak in the 2-point correlation functions around
the BAO scale (in real space).

More in detail, the matter power spectrum Pm(~k, z) can be obtaned from galaxy surveys,
which measure the angular (perpendicular to the line of sight) and redshift (along the
line of sight) distributions of galaxies. Translating this information to distances depends
on the cosmological model, which is usually the concordance model. For this study the

comoving vector ~k is decomposed in a parallel to the line of sight component, ~k‖ and a

transverse one, ~k⊥. The BAO standard ruler from the analysis of the 2D power spectrum
serves as a measurement of the angular diamater distance as a function of redshift,

∆θs(z) =
rs(zd)

(1 + z)DA(z)
(K.16)

where DA is the proper diameter angular distance,

DA(z) ≡ 1

1 + z

ˆ z

0

dz′

H(z′)
. (K.17)

The BAO standard ruler can also be applied along the line of sight to obtain redshift
separations:

∆zs(z) = rs(zd)H(z) . (K.18)
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Galaxy surveys impose constraints on the former quantities and to extract anisotropic
BAO information. To be precise, a comparison with the fiducial cosmology the survey
has used to convert angles and redshift to distance (we denote it by ”fid.”) is performed.
We then define the perpendicular and parallel dilation scale factors:

α⊥ ≡
∆θfid.

s (z)

∆θs(z)
=
rfid.

s (zd)/Dfid.
A (z)

rs(zd)/DA(z)
,

α‖ ≡
∆zfid.

s (z)

∆zs(z)
=
rfid.

s (zd)Hfid.(z)

rs(zd)H(z)
,

(K.19)

and, hence, we can extract information of H(z) and DA(z). But BAO DATA is not
only formulated in terms of these observables. Sometimes, when the data do no let
us disentangle the perpendicular and parallel directions, it is convenient to define the
volume-averaged spectrum in a particular volume V . The associated observable is in this
case rs(zd)/DV(z), where DV(z) is the so–called dilation scale [570], defined as

DV(z) ≡
[
zD2

M(z)DH(z)
]1/3

. (K.20)

Here DM(z) ≡ (1 + z)DA(z) is the comoving angular diameter distance and DH is the
Huble radius, DH(z) ≡ 1/H(z). Similarly, we define a isotropic dilation scale factor
as [529]

αV ≡
Dfid.

V (z)

Dfid.
V (z)

, (K.21)

or, in other cases [499,530], as

αV ≡
rfid.

s (zd)/Dfid.
V (z)

rs(zd)/DV(z)
. (K.22)

As a difference from the anisotropic dilation factors, which provide us information of
DA(z) and H(z), for the estimators αV we cannot disentangle this information and as a
consequence is not as valuable at the time of imposing constraints to the cosmological
parameters.

All in all we constructed a complete dataset conformed by anistropic and isotropic data
from different surveys and tracers for BAO data. . The particular data points together
with the corresponding observable used for the analysis can be found in Table 5.1. As a
final comment, galaxy surveys provide measurements of the BAO standard ruler distance
measurements, but sometimes are combined with measurements of the growth of structure
in the Universe obtained from the Redshift Space Distorsion (RSD) signature [216]. This
implies underlying correlations that are need to be carefully accounted for when analyzing
the data and interpreting the cosmological constraints.

Cosmic Chronometers

The Cosmic chronometers (or cosmic clocks) method, allows us to obtain direct mea-
surements of the Hubble parameter at different redshifts, H(zi), rather than inferring
its value indirectly from observables such as the luminosity distance [509]. The method
relies on the estimation of the variation of redshift with cosmic time, dz/dt. To do that,
we make use of the aforementioned chronometers: spectroscopic datings of galaxy ages.
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Two nearby galaxies separated by ∆z in redshift space, with a relative age difference of
∆t, are used to estimate the derivative from the ratio ∆z/∆t. The galaxies selected for
this method should possess similar metallicity and have a poor star formation rate with
an old stellar population so that they are not fast-evolving. By studying the relative ages,
we can find the Hubble rate,

H(z) ≈ − 1

1 + z

∆z

∆t
, (K.23)

in a cosmological model-independent way. The observables we compare with the theory
are then the H(zi) values. It is worth mentioning that, although relying on the theory of
spectral evolution of galaxies, they are uncorrelated with the BAO data points. In our
analysis in chapters 5 and 6, we use a selection of 31 data points extracted from Table 2
of [513].

H0 prior from SH0ES collaboration

Keeping in mind the tension surrounding the H0 parameter, we explored an alternative
dataset beyond our Baseline scenarios by examining the effect of incorporating a prior
on the value of the H0 parameter reported by the SH0ES collaboration, which is 73.5±
1.4km/s/Mpc in [209]. This value was obtained through the estimation of the angular-
diameter distance to the galaxy NGC 4258, by studying the dynamics of water masers near
the galaxy nucleus. In conjunction with other geometric calibrators, such as Milky Way
parallaxes and detached eclipsing binaries in the Large Magellanic Cloud, the distance
ladder of Cepheids/SnIa can be calibrated to obtain a determination of H0. The distance
ladder is a concatenation of methods for measuring distance to farther objects in which
each step serves as a calibrator for the next.

Our interest in this prior is to observe how the models respond when combined with the
CMB dataset considered in our Baseline analysis. The results reported in [132] under
TT,TE,EE+lowE +lensing data yield the value H0 = 67.36 ± 0.54km/s/Mpc, with a
disagreement of 4.1σ with SH0ES’ value. This significant discrepancy between the two
values has sparked considerable interest in the scientific community and has motivated
the search for a new cosmological framework that can reconcile the discrepancy within
an analysis including CMB data. Therefore, a model that can deal with this discrepancy
is highly promising and could provide new insights into the nature of our Universe.
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[83] G. Lemâıtre, “Evolution of the expanding universe,” Proceedings of the National
Academy of Sciences, vol. 20, no. 1, pp. 12–17, 1934.
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[452] J. Solà, E. Karimkhani, and A. Khodam-Mohammadi, “Higgs potential from ex-
tended Brans–Dicke theory and the time-evolution of the fundamental constants,”
Class. Quant. Grav., vol. 34, no. 2, p. 025006, 2017, [arXiv:1609.00350].

[453] V. Faraoni, “The omega —> infinity limit of Brans Dicke theory,” Phys. Lett. A,
vol. 245, pp. 26–30, 1998, [arXiv:gr-qc/9805057].

[454] V. Faraoni, “Illusions of general relativity in Brans-Dicke gravity,” Phys. Rev. D,
vol. 59, p. 084021, 1999, [arXiv:gr-qc/9902083].

[455] C. Mathiazhagan and V. B. Johri, “An inflationary universe in brans-dicke theory:
A hopeful sign of theoretical estimation of the gravitational constant,” Class. Quant.
Grav., vol. 1, pp. L29–L32, 1984.

[456] D. La and P. J. Steinhardt, “Extended Inflationary Cosmology,” Phys. Rev. Lett.,
vol. 62, p. 376, 1989. [Erratum: Phys.Rev.Lett. 62, 1066 (1989)].

[457] J. D. Barrow and K.-i. Maeda, “Extended inflationary universes,” Nucl. Phys. B,
vol. 341, pp. 294–308, 1990.

382



[458] H. Nariai, “On the Brans solution in the scalar-tensor theory of gravitation,” Prog.
Theor. Phys., vol. 42, pp. 742–744, 1969.
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Nichol, and P. Väisänen, “Age-dating Luminous Red Galaxies observed with the
Southern African Large Telescope,” Mon. Not. Roy. Astron. Soc., vol. 467, no. 3,
pp. 3239–3254, 2017, [arXiv:1702.00418].

[509] R. Jimenez and A. Loeb, “Constraining cosmological parameters based on relative
galaxy ages,” Astrophys. J., vol. 573, pp. 37–42, 2002, [arxiv:astro-ph/0106145].

[510] M. Lopez-Corredoira, A. Vazdekis, C. M. Gutierrez, and N. Castro-Rodriguez,
“Stellar content of extremely red quiescent galaxies at z > 2,” Astron. Astrophys.,
vol. 600, p. A91, 2017, [arXiv:1702.00380].

[511] M. Lopez-Corredoira and A. Vazdekis, “Impact of young stellar components on qui-
escent galaxies: deconstructing cosmic chronometers,” Astron. Astrophys., vol. 614,
p. A127, 2018, [arXiv:1802.09473].

[512] M. Moresco, R. Jimenez, L. Verde, L. Pozzetti, A. Cimatti, and A. Citro, “Setting
the Stage for Cosmic Chronometers. I. Assessing the Impact of Young Stellar Pop-
ulations on Hubble Parameter Measurements,” Astrophys. J., vol. 868, no. 2, p. 84,
2018, [arXiv:1804.05864].
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