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After years of obscurity, Causality is here to stay: from medicine, to social sciences,
to econometrics, to artificial intelligence, many fields have started integrating the
findings of the field of Causal Inference. However, the essential tool for any ap-
plication based on causality, Causal Query Estimation, has typically been limited
by techniques defined around estimands, formulas that translate causal expressions
into observational terms that can be computed with passive data. This reliance on
an estimand for each and every query results in ad hoc models, hard to apply to
different contexts with more nuanced causal connections and requiring the training
of one model for each new query. Here we propose Deep Causal Graphs (DCGs),
a general estimand-agnostic framework capable of answering any identifiable causal
query using one single model; trained only once per dataset with the same general
procedure, it can adapt to many kinds of causal queries through three simple op-
erations. Despite being an abstract framework, DCGs can leverage the expressive
power of Deep Neural Networks and Normalizing Flows, allowing to model com-
plex real-world distributions. We showcase the estimation capabilities of DCGs in
comparison with the state of the art in Causal Query Estimation, and provide appli-
cations to the fields of Black-Box Interpretability, Explainability and Fairness.
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Notation

We use uppercase letters (X) for random variables (r. v. s) and the corresponding
lowercase letters (x) for values of these variables. We denote sets of variables with
boldface type (e.g., X = (X1, . . . XK)), again with corresponding lowercase letters
for values of this set (x = (x1, . . . , xK)). We follow this rule unless the symbol itself
already conveys a set of variables (e.g., PaX for the set of Markov parents of X),
therefore with no possible ambiguity.

We refer to the distribution of a r. v. X as P(X). We denote a sampled value from
any of these r. v. s by x ∼ P(X). We often operate with discrete and continuous vari-
ables indistinctly; whenever we use the term P(x) we might be referring to the Prob-
ability Mass Function (PMF) for the discrete case or the Probability Density Function
(PDF) for the continuous case. In the same way, we avoid decompressing expecta-
tions unless necessary: given an arbitrary function f of X, EX[ f (X)] = ∑x f (x) · P(x)
for the discrete case, or EX[ f (X)] =

∫
f (x)P(x)∂x for the continuous case.

We denote "X is independent of Y in distribution P" by (X ⊥⊥ Y)P. We also
denote "X is independent of Y conditional on Z in distribution P" by (X ⊥⊥ Y | Z)P.
We denote non-independence with the ̸⊥⊥ symbol in the same way. We omit some of
these terms for simplicity (e.g., X ⊥⊥ Y) provided it does not lead to ambiguity.
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Chapter 1

Introduction and Background

The notion of cause and effect is fundamental to our understanding of the real world;
ice cream sales correlate with jellyfish stings (both increase during summer), but a
ban on ice cream could hardly stop jellyfishes. This discrepancy between the pat-
terns that we observe and the results of our actions is essential: without causal knowl-
edge we are mere spectators of the world, unable to understand its inner workings,
enact effective change, explain which factors were responsible for a specific outcome
or imagine potential scenarios resulting from alternative decisions.

The field of statistics has traditionally stayed in the realm of observations, pow-
erless in the measurement of causal effects unless by performing randomized ex-
periments. These consist of dividing a set of individuals in two groups at random
and assigning a certain action/treatment to each subgroup, to then compare the out-
comes of both. This could be applied, for instance, to measure the impact of large-
scale advertisement campaigns on sales, test the effects of smoking on the develop-
ment of lung cancer, or determine the influence of new pedagogical strategies on
eventual career success. However, randomized experiments are not always feasible,
as is the case in these examples, due to economic, ethical or timing concerns.

Causal Inference is the field that studies how to circumvent this problem: only
using observational data, not subject to randomization, it allows us to measure causal
effects. Even so, the standard approach for Causal Estimation (CE), estimand-based
methods, results in ad hoc models that cannot extrapolate to other datasets with
different causal relationships, and often require training a new model every time we
want to answer a different query on the same dataset. Contrary to this perspective,
estimand-agnostic approaches train a model of the observational distribution that acts
as a proxy of the underlying mechanism that generated the data; this model needs
to be trained only once and can answer any identifiable queries reliably. However,
this latter approach has seldom been studied, primarily because of the difficulty of
defining a good model of the target distribution satisfying every causal requirement
while still flexible enough to answer the desired causal queries.

This dissertation is focused on the definition of a general estimand-agnostic CE
framework, Deep Causal Graphs, that can leverage the expressive modelling ca-
pabilities of Neural Networks and Normalizing Flows while still providing a flex-
ible and comprehensive estimation toolkit for all kinds of causal queries. We will
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contrast its capabilities against other estimand-agnostic approaches and measure its
performance in comparison with the state of the art in Causal Query Estimation.

Finally, we will also illustrate the connection between CE and Machine Learn-
ing Interpretability, Explainability and Fairness: since the examination of black-
boxes often requires to answer many causal queries (e.g., what is the effect of each
input variable on the outcome, or how would the outcome have changed had we
intervened on a certain input), estimand-based techniques would force us to train
as many different models; in contrast, estimand-agnostic frameworks allow us to
ask as many questions as needed with just a single trained model, and therefore are
essential for this kind of application.

1.1 Estimand-Based Causal Estimation

In order to explain the shortcomings of the estimand-based CE approach, we need
to define the tools of Causal Inference, particularly from Pearl’s perspective using
Causal Graphs [1]; for an overview from the Potential Outcomes perspective, please
refer to [2]. In the following subsections, we will establish the required graph ter-
minology, define d-separability and show its importance for identifying independen-
cies in complex probability distributions, explain the concept of intervention and its
effect on Bayesian Networks, define identifiability and the rules of do-calculus, to fi-
nally describe the estimand-based approach, relevant works on the subject and its
assumptions and limitations.

1.1.1 Graph Terminology

A graph is a tuple G = (V, E) with V = {V1, . . . , VK} a set of nodes and E a set of
edges, pairs of connected nodes in V. Any edge between variables Vk, Vl ∈ V can be
directed (Vk → Vl or Vk ← Vl), bidirected (Vk ↔ Vl) or undirected (Vk — Vl). A graph
consisting only of directed edges is called a directed graph. A path is an ordered
collection of node-pairs (Vk, Vl) where every pair is connected by an edge e ∈ E fin-
ishing on a node that is the beginning of the next pair (e.g., ((A, B), (B, D), (D, C))).
A path that begins and finishes on the same node is a cycle. A path where all edges
are directed and point in the same direction (e.g., A→ B→ C) is a directed path. A
directed graph with no cycles is called a Directed Acyclic Graph (DAG).

Consider a DAG. Given a directed edge X → Y, X is a parent of Y and Y a child
of X. An ancestor of Y is any node X ∈ V such that there exists a directed path
from X to Y (including Y). A descendant of X is any node Y ∈ V such that X is an
ancestor of Y. We denote the set of parents, children, ancestors and descendants of
X as PaX, ChX, AnX and DeX, respectively. We use the notation Pak := PaVk for any
Vk ∈ V without loss of generality. A graph G can have its set of nodes V defined in
an arbitrary order; a topological order of a DAG G is any ordering V = {V1, . . . , VK}
such that ∀Vl , ∀Vk ∈ An(Vl) then k ≤ l. A graph G is complete when all pairs of
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nodes are connected by an edge. Given a set of nodes V in an arbitrary order, we
can create a complete DAG G = (V, E) by defining E := {Vk → Vl | k < l}, which
results in {V1, . . . , Vk} being the topological order of the graph.

X Y Z

(A) Chain: X → Y → Z.

X

Y

Z

(B) Fork: Y ← X → Z.

Z

X

Y

(C) Collider: X → Z ← Y.

FIGURE 1.1: Three-node path patterns: chains, forks and colliders.

Consider the three graphs in Fig. 1.1; each graph exemplifies a kind of pattern for
paths with three nodes. Graph 1.1a shows a chain X → Y → Z, where every node
points to the next one. Graph 1.1b contains a fork Y ← X → Z, with both edges
emerging from the fork-node X. Graph 1.1c describes a collider X → Z ← Y, with
both arrows converging on the collider-node Z. We will discuss the importance of
these structures in the following subsection.

1.1.2 Bayesian Networks and d-separability

Given a probability distribution P on a set of random variables (r.v.) V in an arbitrary
order V := {V1, . . . , VK}, with V<k := {Vl | l < k} denoting the set of predecessors
of any variable Vk ∈ V , we define the Markovian Parents of Vk, denoted by Pak, as
the minimal subset Pak ⊆ V<k such that Vk is independent of V<k \ Pak conditioned
on Pak: (Vk ⊥⊥ V<k \ Pak | Pak)P. Given the Markovian Parents of every variable
Vk ∈ V , we can factorize the joint distribution P of these variables:

P(V) = P(V1, . . . , VK) = ∏
k=1..K

P(Vk | V<k) = ∏
k=1..K

P(Vk | Pak). (1.1)

Given a DAG G = (V, E) where every node Vk represents a r. v. and Pak denotes
the parents of Vk in G, and given a joint probability distribution P(V1, . . . , VK) on
these variables, we say that P is Markov relative to G if P admits a factorization
based on Markov Parents through the parent sets Pak in G. We define such a graph
as a Bayesian Network for distribution P.

Theorem 1.2.6 in [1] states that a necessary and sufficient condition for a proba-
bility distribution P to be Markov relative to a DAG G is that every variable Vk must
be independent of its predecessors V<k in some topological order of G conditioned
on its parents Pak. Theorem 1.2.7 proposes an equivalent condition not requiring a
given order: every variable must be independent of all its nondescendants condi-
tional on its parents in G. This property is essential, since constructing a graph G
that is Markov relative to a distribution P of interest allows us to determine inde-
pendencies in its distribution through a graphical criterion: d-separability.
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A path p is d-separated (blocked) by a set of nodes Z ⊂ V (possibly empty) if
and only if any of the following conditions is true:

• p contains a chain A→ B→ C such that B ∈ Z.

• p contains a fork A← B→ C such that B ∈ Z.

• p contains a collider A → B ← C such that Z does not contain any descendant
of B (including B), DeB ∩ Z = ∅.

Given disjoint sets X, Y, Z ⊂ V, we say that Z d-separates X from Y in G, denoted
by (X ⊥⊥ Y | Z)G , if Z d-separates every path p from a node X ∈ X to a node Y ∈ Y.
Theorem 1.2.4 in [1] states that if sets X and Y are d-separated by Z in a DAG G, then
(X ⊥⊥ Y | Z)P in every distribution P Markov relative to G. Moreover, if X and Y
are not d-separated by Z, then (X ̸⊥⊥ Y | Z)P for at least one distribution P Markov
relative to G; not only that, but almost all such distributions show this dependency.

This reflects the importance of d-separability, as it allows us to determine inde-
pendencies in probability distributions P Markov relative to a DAG G. Given a dis-
tribution P and an arbitrary order of its nodes V = {V1, . . . , VK}, we can study its in-
dependencies by determining the Markov Parents Pak of every variable Vk and then
defining the corresponding DAG G = (V, E), with V representing every variable in
V and E defined by the set of Markov Parents, E := {Vl → Vk | ∀k, ∀Vl ∈ Pak}. Note
that the resulting graph depends on the initial node ordering.

Something that must be taken into consideration is that the same distribution P
can be Markov relative to two different graphs G1,G2, in which case they are said
to be observationally equivalent. Consider Fig. 1.2, consisting of two graphs with
the same variables but different topological order: V1 = {X, Y, Z}, V2 = {Y, X, Z}.
Using d-separability, the only independence relationship (conditional or uncondi-
tional) that can be inferred from both graphs is (X ⊥⊥ Z | Y), which makes them
observationally equivalent. However, were we to perform causal estimation with
these graphs, we would arrive at different conclusions; therefore, it is imperative to
address this ambiguity before any causal analysis. This is what we explore in the
next subsection.

X Y Z

(A) G1: original ordering.

Y

X

Z

(B) G2: alternative ordering.

FIGURE 1.2: Two observationally-equivalent graphs.
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1.1.3 Interventions and Causal Bayesian Networks

Consider the following two variables: room temperature T and thermometer read-
ing R. Under normal circumstances, T and R output identical results except for
small calibration errors, so T ̸⊥⊥ R. Therefore, there are three possible Bayesian Net-
works describing them, contained in Fig. 1.3: G := (T → R), G ′ := (T ← R), or
G ′′ := (T ← Z → R), with Z being an unmeasured variable connecting them. Note
that all three graphs are equally valid from an observational standpoint, since
T ̸⊥⊥ R in all of them.

T R

(A) G := (T → R).

T R

(B) G ′ := (T ← R).

Z

T

R

(C) G ′′ := (T ← Z → R).

FIGURE 1.3: Observationally equivalent Bayesian Networks
for the Thermometer example.

The key concept here is intervention: if we were to alter one of these variables,
change its value to a predetermined one irrespective of what it would result in nat-
urally, would we see an effect on the other variables? Let us say that we intervene on
R by putting the thermometer in the freezer at a certain temperature r. We denote
this by do(R = r), and we are now interested in the distribution of T subject to this
intervention; it remains unaltered as, naturally, putting a thermometer in the freezer
would not alter room temperature. As such, P(T | do(R = r)) = P(T). The same
cannot be said about the opposite case: if we intervene on T by turning on the room
heating to a certain temperature t, we would observe a change in the thermometer’s
distribution P(R | do(T = t)) = P(R | T = t).

This asymmetry, where intervening one variable affects the other but not the
other way around, provides information about the independencies of the intervened
distributions and graphs. Given a variable X intervened with value x, the inter-
vened distribution is denoted by Px and the intervened graph by Gx

1.

T R

(A) Gr: remove T → R.

T R

(B) G ′r: identical to G ′.

Z

T

R

(C) G ′′r : remove Z → R.

FIGURE 1.4: Intervention do(R = r) on the graphs from figure 1.3.

1We normally write Px or Gx instead of Pdo(X=x) or Gdo(X=x) for economy of notation, unless it leads
to ambiguity.
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T R

(A) Gt: identical to G.

T R

(B) G ′t : remove T ← R.

Z

T

R

(C) G ′′t : remove Z → T.

FIGURE 1.5: Intervention do(T = t) on the graphs from figure 1.3.

Let us determine the shape of all three possible graphs G,G ′,G ′′ subject to inter-
ventions do(R = r) on the thermometer and do(T = t) on room temperature. In
general, when intervening a variable X, the natural process with which we sample
values from it is altered by one that just samples a single value, x, irrespective of
what the other variables in the graph say. Such an intervention mutilates the graph
by removing any edges that point towards the intervened variable (the reasoning
being that its parents do not affect the intervened variable’s value, as it is now fixed
by something else); figures 1.4 and 1.5 show the resulting intervened graphs. From
each of these, we can infer independence relationships in the intervened distribu-
tions, which lets us discern which is the correct Bayesian Network in this case. G ′r
tells us that (T ̸⊥⊥ R)G ′r , which we know is not true; this discards G ′. G ′′t proves that
(T ⊥⊥ R)G ′′t , which again is not true since P(R | do(T = t)) = P(R | T = t) ̸= P(R).
However, Gr entails (T ⊥⊥ R)Gr and Gt entails (T ̸⊥⊥ R)Gt ; therefore, P, Pr and Pt are
Markov relative to G, Gr and Gt, respectively.

This example illustrates what a Bayesian Network needs to properly represent
the effect of interventions. Consider a set of variables V and a distribution P(V). We
define a Causal Bayesian Network (CBN) compatible with P to be any DAG G such
that, for all subsets ∅ ⊆ X ⊆ V and interventions do(X = x):

1. Px is Markov relative to Gx.

2. Px(vk) = 1 for all Vk ∈ X whenever vk is consistent with X = x.

3. Px(vk | pak) = P(vk | pak) for all Vk ̸∈ X whenever pak is consistent with X = x.

This criterion allows us to filter any Bayesian Networks that do not follow the
interventional structure underlying P. From the resulting graph, we can ascertain
independences between the variables in the intervened distributions, which is es-
sential for Causal Estimation.

One last important aspect is that interventions need not be constant, such as
do(X = x). Consider the example in figure 1.6; season S affects room temperature
T, which in turn affects thermometer reading R, and we have an additional variable
H, people at home, that tells us if there is anyone present. Let us assume the effect
of people on temperature negligible. We can now study an intervention do(T = t),
constant, produced by a thermostat that enables the room heating to bring tempera-
ture up to a certain stable t; that results in graph 1.6b. However, we could also have



1.1. Estimand-Based Causal Estimation 9

a smart thermostat provided with a sensor that sets temperature to t when people
are present in the room, H = 1, or reduces it to t′ to save energy when not, H = 0.
We denote this behaviour by a deterministic function, f (H) := t · H + t′ · (1− H),
and we intervene variable T with this function f , resulting in graph 1.6c. Note how
in this case the intervention still removes the edge S → T but creates a new edge
H → T given that H acts a non-negligible input of f . Therefore, one must consider
interventions not as simple value assignments, but as replacements of the sampling
process that generates values for these r. v. s.

T

S

H

R

(A) Natural process.

T

S

H

R

(B) Constant Thermostat:
do(T = t).

T

S

H

R

(C) Smart Thermostat:
do(T = f (H)).

FIGURE 1.6: Thermostat example. Variables: season S, room temper-
ature T, thermometer reading R and people at home H.

1.1.4 Identifiability and do-calculus

We will now explicit the connection between Causal Estimation and CBNs. Our
main object of study is the query, a probabilistic expressionQ defined on a distribu-
tion P compatible with a CBN G. We will illustrate how the estimation of the causal
effect of X on Y, the query Q := P(Y | do(X = x)) = Px(Y), varies depending on
which CBN is compatible with the distribution P; see Fig. 1.7. Note the use of dashed
bidirectional arrows between X and Y in graph 1.7b, which denotes the existence of
a third variable that hasn’t been measured, a latent variable, U{X,Y}, that acts as a
fork X ← U{X,Y} → Y for the other two. We omit these variables in the graph rep-
resentation for economy of notation, instead denoting them by dashed bidirectional
edges, but the graph remains a DAG, as they translate into directed edges.

Z

Y

X

(A) G1: back-door example.

Z

Y

X

(B) G2: front-door example.

Z

Y

X

C

B

A

(C) G3: do-calculus example.

FIGURE 1.7: Estimand derivation examples.

Note that do(X = x) embeds Q into Px, which in general is different from P.
This means that Q cannot be estimated directly from P unless we perform a ran-
dom experiment to obtain data from Px. The common alternative is to transform
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this query into an estimand, an equivalent formula consisting only of observational
terms, which can be derived from the observational P. Causal Inference [1, Chap-
ter 3] provides tools to achieve this, which we will explain in this subsection.

Theorem 1 (Back-Door Adjustment)
Given a probability distribution P compatible with a CBN G and three disjoint sets of vari-
ables X, Y, Z ⊂ V , we say that Z satisfies the Back-Door Criterion relative to X and Y if,
∀X ∈ X, ∀Y ∈ Y:

1. No node in Z is a descendant of X.

2. Z d-separates every back-door path from X to Y (i.e., a path between X and Y that
contains an arrow into X, X ← · · · ).

If that is the case,

Px(Y) = EZ [P(Y | x, Z)] . (1.2)

This formula allows us to estimate Q for the graph G1 in Fig. 1.7a. Since Z is not
a descendant of X and the only back-door path between X and Y (X ← Z → Y) is
d-separated by Z (fork), Z satisfies the Back-Door Criterion. As a result, Q, a causal
term, can be transformed into observational terms, Q := Px(Y) = EZ [P(Y | x, Z)],
which in turn can be estimated using P. For example, consider a dataset D =

(v(i))i=1..N consisting of N i. i. d. samples v(i) = (z(i), x(i), y(i)). The expectation can
be estimated with Monte Carlo, using these N samples, while P(Y | x, Z) can be
modelled with any Density Estimation method. Let us say, for simplicity, that Y is
a Bernoulli r. v. and that we model this term using Logistic Regression trained with
the dataset D, with X and Z as inputs and Y as the output. Then,

QG1 = EZ [P(Y | x, Z)] ≈ 1
N

N

∑
i=1

P(Y | x, z(i)).

Theorem 2 (Front-Door Adjustment)
Given a probability distribution P compatible with a CBN G and three disjoint sets of vari-
ables X, Y, Z ⊂ V , we say that Z satisfies the Front-Door Criterion relative to X and Y if,
∀X ∈ X, ∀Y ∈ Y,

1. Z d-separates all directed paths from X to Y.

2. All back-door paths from X to Z are blocked.

3. All back-door paths from Z to Y are blocked by X.

If this criterion is satisfied and P(X, Z) > 0, then:

Px(Y) = EZ|x [EX [P(Y | X, Z)]] . (1.3)
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We can now estimate Q for G2 in Fig. 1.7b. Note that we cannot use the Back-
Door Criterion on U{X,Y} because it is an unmeasured variable, so we cannot con-
dition on it. However, Z satisfies the Front-Door Criterion since: 1) Z blocks the
only directed path from X to Y (chain), 2) the only back-door path from X to Z
(X ← U{X,Y} → Y ← Z) is blocked by Y (collider) and 3) the only back-door path
from Z to Y (Z ← X ← U{X,Y} → Y) is blocked by X (chain). As a result, we can
apply the Front-Door formula, which results in an estimand for Q that can again be
estimated with Density Estimation methods and Monte Carlo.

Finally, we can introduce the last tool at our disposal: do-calculus, a set of three
basic inference rules to transform interventional queries. Let us define some notation
to simplify the following statements. Given a CBN described by a graph G with
Markov relative probability P and disjoint subsets of variables X, Y, Z ⊂ V , we use
GX to refer to the removal of incoming arrows to nodes X ∈ X (· → X) and GX to the
removal of outgoing arrows from nodes X ∈ X (X → ·); hence, GXZ represents graph
G without all incoming arrows to X and all outgoing arrows from Z.

Theorem 3 (do-calculus)
For any disjoint subsets of variables X, Y, Z, W ⊂ V (X and W possibly empty):

1. Insertion/deletion of observations:

Px(Y | Z, W) = Px(Y |W) if (Y ⊥⊥ Z | X, W)GX
. (1.4)

2. Exchange of interventions/observations:

Px,z(Y |W) = Px(Y | z, W) if (Y ⊥⊥ Z | X, W)GXZ
. (1.5)

3. Insertion/deletion of interventions:

Px,z(Y |W) = Px(Y |W) if (Y ⊥⊥ Z | X, W)GX∪Z(W)
, (1.6)

where Z(W) := Z \ AnGX
(W), the set of nodes in Z that are not ancestors of W

(including W) in graph GX.

This set of rules (R1-3) constitutes the base of the so-called do-calculus. Let us
derive an estimand of Q for graph G3 in Fig. 1.7c.

Px(Y) =EZ,C|do(X=x) [Px(Y | Z, C)] =

EZ,C|do(X=x) [P(Y | x, Z, C)] =

EZ,C

[
P(Y | x, Z, C) · Px(Z, C)

P(Z, C)

]
=

EZ,C

[
P(Y | x, Z, C)

P(Z, C)
·EA|x [EX [P(Z, C | X, A)]]

]
.
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The first step comes from the marginalization of (Z, C) on the distribution Px.
Next, we can transform Px into P(· | x) using R2, since (Y ⊥⊥ X | Z, C)GX . Then, we
use importance sampling2 to transform the expectation on Px(Z, C) to P(Z, C), and
finally we derive Px(Z, C) into the new expectation at the last line by the Front-Door
Adjustment Formula, since A satisfies the criterion.

The sequential application of the rules of probability and do-calculus transforms
causal queries that operate on interventional distributions Px into formulas that
only require the observational distribution P; this process is called identification,
and plays a central role in Causal Query Estimation, both for estimand-based and
estimand-agnostic approaches. Once we derive an estimand, we can estimate the
query with an i. i. d. dataset as before.

We can also prove the Back-Door and Front-Door Criterions with do-calculus.

Proof of Theorem 1.
Given conditions C1-2 from the Back-Door Criterion on a distribution P with three
disjoint sets X, Y, Z ⊂ V ,

Px(Y) = EZ|do(X=x) [Px(Y | Z)] = EZ|do(X=x) [P(Y | x, Z)] = EZ [P(Y | x, Z)] .

We marginalize Px(Z) on the first step. Then we can use R2 with (Y ⊥⊥ X | Z)GX

so that Px(Y | Z) = P(Y | x, Z), since any path between X and Y in GX must be a
back-door path, which we know are blocked (C2). Finally, (Z ⊥⊥ X)GX

and by R3,
Px(Z) = P(Z), because any path from X to Z in GX must either contain a collider
(therefore blocked) or be a directed path, which is impossible (C1, Z ̸∈ De(X)).

Proof of Theorem 2.
Given conditions C1-3 from the Front-Door Criterion on a distribution P with three
disjoint sets X, Y, Z ⊂ V ,

Px(Y) = EZ|do(X=x) [Px(Y | Z)] = EZ|x [Px(Y | Z)] .

Again, we marginalize Px(Z) on the first equality. Then, by R2, knowing that
(Z ⊥⊥ X)GX (GX can only contain back-door paths from X to Z, all blocked by C2),
then Px(Z) = P(Z | x), which lets us change the expectation. The Px(Y | Z) term
requires more steps.

Px(Y | Z) = Px,Z(Y) = PZ(Y) = EX|do(Z=Z) [PZ(Y | X)] = EX [P(Y | X, Z)] .

Note that the uppercase Z here is a value that comes from the marginalization
in the previous equation. Firstly, to transform Px(Y | Z) into Px,Z(Y), we apply R2
with (Y ⊥⊥ Z | X)GXZ

, since we only have back-door paths from Z to Y in GXZ, which

2Importance sampling. For any pair of disjoint sets of r. v. s X, Z and an arbitrary function f (X),
EX|z [ f (X)] = ∑x f (x)P(x | z) = ∑x f (x) P(x)

P(x) P(x | z) = EX

[
f (X) P(X|z)

P(X)

]
. The continuous case is analo-

gous. We use this technique throughout this work to derive expectations on conditional distributions.
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are blocked by X (C3). Secondly, we can apply R3 with (Y ⊥⊥ X | Z)GZX
to remove

do(X = x), because we only have front-door paths from X to Y in GZX and these
are either directed, which are controlled by Z (C1), or have a collider of which Z
cannot be a descendant (the incoming edges of Z are removed in GZX). Next, we
marginalize by PZ(X), and we solve the last equality in two steps. PZ(X) = P(X)
by R3, since (X ⊥⊥ Z)GZ

due to C2 blocking any back-door paths from X to Z and
any front-door paths being either directed, which is not possible in GZ, or having an
uncontrolled collider, which blocks the path. Finally, PZ(Y | X) = P(Y | Z, X) by R2,
since (Y ⊥⊥ Z | X)GZ because all back-door paths from Z to Y are blocked by X (C3).
Putting it all together, we arrive at formula 1.3, which proves the theorem.

It can be quite difficult to derive an estimand by hand for complex CBNs G,
as it usually involves a set of several steps using the rules of do-calculus, with no
guidance on which approach would help us transform the causal terms into obser-
vational ones. However, there are three algorithms that automatically derive es-
timands for particular types of queries, if they exist, or demonstrate that such an
estimand cannot exist otherwise: [3] for Q := Px(Y), [4] for Q := Px(Y | Z) or [5] for
counterfactual queries (see section 1.2.2). These algorithms can be quite complex to
apply manually, but fortunately there are implementations for the first two in R and
Python, with [6] and [7], respectively.

We now have all the required tools for the estimation of Causal Queries. Given
an i. i. d. dataset D following a distribution P compatible to a CBN G, and assuming
we know that graph structure, estimand-based approaches consist of transforming
the target query Q into an estimand through do-calculus, and once that estimand
has been found, dataset statistics are computed and Density Estimation models are
trained to answer each of the terms in the estimand. With this, we can finally com-
pute an estimate of the causal query only using observational data.

1.1.5 Related Work

In the following, we will summarize recent estimand-based approaches, specifi-
cally the ones that have measured their performance against the most standard
datasets on causal estimation, which we will cover in chapter 6. These methods
operate with the Potential Outcomes Perspective [2] and three sets of variables:
X, the confounding variables; T, the treatment (usually binary); and Y, the target
variable, for which there are two potential outcomes Y0 or Y1 depending on which
treatment t = 0 or t = 1 is applied. Additionally, they follow the common as-
sumptions of Consistency (i.e., the potential outcome Yt given the observed treat-
ment t is equivalent to the observed outcome Y) and Strong Ignorability (i.e., con-
ditioning on X, the factual and counterfactual outcomes of Y are independent of
the observed treatment t). Every one of the following methods focuses on estimat-
ing the Individual Treatment Effect (ITE), Q := E

[
Y1 −Y0 | x(i)

]
for a particular

individual/sample i in our i. i. d. dataset D. Given the previous two assumptions,
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Q = E
[
Y | x(i), T = 1

]
−E

[
Y | x(i), T = 0

]
, with both terms estimated by a model

f (x, t) ≈ E [Y | X = x, T = t] to be trained.
The immediate approach is to apply a standard Machine Learning Regressor or

Classifier (depending on which kind of r. v. Y is). However, (X ̸⊥⊥ T), so certain
clusters of X are more likely to receive treatment than others, making the estimation
of this function a problem akin to domain adaptation; that is the approach taken
by most of the following techniques. Balancing Neural Network (BNN) [8] learns
a representation h(X) used by a prediction network f (h(X), t), forcing these repre-
sentations to adapt to both treatments. Treatment-agnostic Representation Network
(TARNet) [9] goes a step further by adding an Integral Probability Metric (e.g., Max-
imum Mean Discrepancy or Wasserstein Distance) on the representations of both
groups as regularization for the model training, in order to make these represen-
tations independent of the treatment. Adaptively similarity-preserved representa-
tion learning for Causal Effect estimation (ACE) [10] adopts the previous ideas and
adds further regularization to ensure that similar units in terms of X have a stronger
impact on the eventual prediction of their peers. Subspace Learning Based Coun-
terfactual Inference (SCI) [11] includes an additional subspace to the representation
layer that takes into account both X and T, so as to exploit treatment-agnostic and
treatment-aware representations. Finally, Causal Optimal Transport (CausalOT) [12]
employs Optimal Transport Theory in order to alleviate the issues derived from lim-
ited overlapping between the treated and control subpopulations.

Every method listed here is focused on a particular query for a particular kind
of graph that fulfills the given assumptions. This makes these methods difficult
to apply to different settings without extensive adjustments, demonstrating the ad
hoc nature of estimand-based frameworks. In the following section, we discuss the
limitations of CE, and particularly of estimand-based approaches.

1.1.6 Assumptions and Limitations

First and foremost, to perform any kind of causal estimation, we need to know
the corresponding CBN G for a distribution P, but, in general, observational data
alone cannot distinguish between different causal scenarios: multiple graphs can be
compatible to an observational distribution P despite not being compatible with an
interventional Px. Therefore, finding an appropriate graph for P’s distribution is a
prerequisite for any kind of estimation, with or without an estimand.

Secondly, some queries, applied to certain graphs G, might not be identifiable
(i.e., no estimand exists). When that is the case, we need to make some adjustments
to our data collection process to ensure that the query becomes identifiable: for ex-
ample, we can measure additional variables that block certain paths in the graph,
allowing us to transform one of the causal terms into an observational one; alterna-
tively, we can perform a random experiment, either for the query itself, or for one
of the derived sub-terms in the estimand that we cannot identify otherwise. On the
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other hand, some CE approaches include additional assumptions on the data dis-
tribution P (e.g., functional restrictions to the sampling process of its r. v. s, such as
linear equations), which simplifies the identification process and makes the query
identifiable. While these restrictions extend the applicability of the techniques to
other graphs, their assumptions cannot apply to any data distribution. Neverthe-
less, both the estimand-based and estimand-agnostic approaches suffer from this
problem, because if the query is not identifiable, neither of them can provide a reli-
able answer to the query without some adjustments.

Note that every new estimand for a given causal query requires a careful design
of the different Density Estimation models needed to estimate its terms, and cer-
tain graph-query combinations may result in complex estimands, which are harder
to employ. As an example, consider Q := Px(Y) on graph 1.7c, discussed in sec-
tion 1.1.4; its estimand requires the computation of at least three different proba-
bility terms and three nested expectations, one of them conditional. Consequently,
estimand-based techniques can get significantly more complex depending on the
graph structure, and result in highly specific models that are hard to adapt to any
other settings.

On the other hand, the exact same query can result in vastly different estimands
depending on the underlying graph structure, as we saw in the aforementioned ex-
ample of Fig. 1.7; in other words, estimand-based approaches lead to completely
different models to answer the same query. In contrast, estimand-agnostic ap-
proaches learn a model of the observational distribution following the causal struc-
ture imposed by the CBN, resulting in a proxy of the underlying data generating
process, with which we can answer any queries pertaining to that system, as long as
they are identifiable in the graph. These queries can be estimated through general
procedures applicable to arbitrary graphs, and so, the same query, despite resulting
in completely different estimands, can be resolved with the same technique by using
estimand-agnostic approaches.

Finally, since estimand-based models are designed specifically for a particular
dataset and query, it is possible to optimize the estimand’s density models to deliver
better estimation performance on that particular case. In contrast, estimand-agnostic
approaches learn a model of the data distribution and then answer any query from
that single model, but that makes it harder to optimize specifically for a particu-
lar expression. This trade-off between specificity (estimand-based) and flexibility
(estimand-agnostic) is specially relevant. For sensitive estimations, where the prior-
ity is to minimize estimation error, estimand-based techniques might be preferable.
On the other hand, certain applications such as Black-Box Introspection (discussed
in section 1.3) benefit from more flexibility in their application, in order to interro-
gate the system with many different queries using a single model.
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1.2 Estimand-Agnostic Causal Estimation

We devote this section to the discussion of estimand-agnostic approaches. We be-
gin by introducing Structural Causal Models (SCMs), the main concept behind this
framework, followed by the definition of counterfactuals in the context of SCMs,
using the Parallel Worlds Graph framework. We continue by discussing SCM train-
ing and the role of identifiability in SCM-based estimation, list the desiderata for
estimand-agnostic approaches and evaluate the state of the art with these require-
ments, and finish by explaining their limitations.

1.2.1 Structural Causal Models

We define a Structural Causal Model as the tupleM = (V , E ,U ,P ,F ) with:

• V := {V1, . . . , VK} measured variables, for which we have observed samples
in our dataset.

• E := {E1, . . . , EK} exogenous noise signals, one for each Vk, which provide
stochasticity to the otherwise deterministic functions fk ∈ F .

• U ⊆ {U{k,l} | k, l = 1..K, k ̸= l} latent confounder variables, U{k,l} := U{Vk ,Vl},
that correlate pairs3 of measured variables Vk, Vl . Can be empty.

• P(E ,U ) prior distribution for both sets of latent variables. E and U are mutu-
ally and internally independent: P(E ,U ) = ∏E∈E P(E) ·∏U∈U P(U).

• F := { fk | Vk := fk(Pak, U{k,·}, Ek)}k=1..K functional assignments describing
the relationship between each variable Vk ∈ V and its corresponding Ek, its
confounders U{k,·} and its measured parents Pak ⊂ V \ {Vk}.

Let us denote Pa′k := Pak ∪ U{k,·}, the set of Vk’s Markov parents4. The re-
lationships between the inputs in each fk and the resulting variable Vk define a
directed graph structure GM = (V, E) with nodes V := V ∪ E ∪ U (every mea-
sured and latent variable) and edges E connecting every input-output pair in F ,
E := {X → Vk | ∀k, ∀X ∈ Pa′k ∪ {Ek}}. In this work, we focus on SCMsM defined
by Directed Acyclic Graphs (DAGs) GM with V listed in topological order.

By way of example, let us define an SCM M with variables Rain (R, "Has it
rained in the last 24 hours?"), Sprinkler (S, "Did the user activate the sprinkler yes-
terday?") and Wet (W, "Is the grass wet?"). There is a confounder between Rain and

3 This definition of SCMs limits its structure to latent confounders that are root nodes with ex-
actly two children. Tian et al. [13] show that for arbitrary latent confounders (e.g., non-root latent
confounders in between measured variables, or root confounders with more than two descendants)
we can project them onto a new set of confounders that follows our restriction. This projection pre-
serves the set of d-independences between measured variables; therefore, it does not preclude the set
of queries we can compute from the model, nor their validity.

4Note that in presence of latent confounders (U ̸= ∅), Pak ⊆ V are not always the Markov parents
of Vk, since U{k,·} create dependencies between some variables in V<k, but Pa′k always are.
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(A) Explicit graph.
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(B) Implicit graph.

FIGURE 1.8: Sprinkler example. We normally omit the variables in E
(they are considered implicit) and the latent confounders U are rep-
resented by dashed bi-directional edges between both affected vari-
ables. The explicit, unfolded representation (A) is usually summa-

rized by means of the implicit graph (B)

Sprinkler that has not been measured (and hence is latent), called Weather (U{Z,X}),
which affects both rain and the probability of activating the sprinkler. The resulting
graph G is the one in Fig. 1.8a; consequently, V := {R, S, W}, E := {ER, ES, EW},
U := {U{R,S}}. We normally omit E from the graph, since every observable vari-
able implicitly has its own, and any latent confounders U ∈ U are represented by
bi-directed dashed edges between both affected nodes; Fig. 1.8b shows the corre-
sponding implicit graph.

An SCM describes a sampling procedure through its latent priors P and its func-
tional relationships F : we take a sample (ε, u) ∼ P(E ,U ) and then progressively
apply each function fk ∈ F to generate a new value for Vk. Since V follows a topo-
logical order of the graph, applying each function fk in order guarantees that we
have a value for each of its inputs (pak, u{k,·}, εk), and can deterministically generate
a new value vk for Vk. In other words, F is a function from (E ,U ) to V ; the result is
M’s observational distribution P(V).

Due to the SCM’s structure, Pa′k are the Markov Parents of Vk in P(V), since
(Vk ⊥⊥ V<k \ Pa′k | Pa′k). Consequently, given V in topological order,

P(V ,U ) = ∏
k=1..K

P(Vk | V<k,U ) P(U ) = ∏
k=1..K

P(Vk | Pa′k) ∏
U∈U

P(U). (1.7)

Interventions do(X = x) result in intervened SCMsMx
5 where, for every X ∈ X,

the corresponding functionals fX are replaced by the assignment X := x. This alters
the graph GM to GMx , where any incoming edges to X are removed, and results in a
new distribution originating from the intervened sampling process, Px.

Continuing with the example from graph 1.8b, we define a set of functions F
that describe a possible sampling mechanism ofM. Let us denote U := U{R,S} for
brevity in this example. Given priors P(U), P(ER), P(ES), P(EW) all following a

5For general interventions do(X = f (x)), we denote the resulting model and graph by M f and
GM f , respectively. Graph GM f replaces any edges leading to the intervened nodes with the new input-
output relationships of f .
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uniform distribution U (0, 1), we can define an SCM with parametric functions FΘ:

r := fR(u, εR) = εR ≤ u · θR,1 + (1− u) · θR,0

s := fS(u, εS) = εS ≤ u · θS,1 + (1− u) · θS,0

w := fW(r, s, εW) = εW ≤ rs · θW,1,1 + r(1− s) · θW,1,0 +

(1− r)s · θW,0,1 + (1− r)(1− s) · θW,0,0

with every binary r, s, w functioning both as a logical value and a 0− 1 value, and
every θ ∈ (0, 1). Let Θ be the set of parameters θ; every configuration of Θ results in
a different distribution for P(V), so it is natural to define that distribution as relative
to Θ: PΘ(V). Note that every functional set FΘ requires a certain domain for its
parameters; this is relevant when defining the architecture of our models.

1.2.2 Counterfactuals and the Parallel Worlds Graph

A counterfactual is the hypothetical result that an intervention may have on an indi-
vidual for whom we have already observed a different factual outcome. For example,
we measured a certain blood sugar level on a patient who was not treated and we
want to know what the blood sugar would have been had they taken the treatment.
This parallel world where certain variables are intervened upon and consequently
result in a different outcome is what we call the counterfactual world.

Returning to the Sprinkler example with graph 1.8b, let us describe a certain sam-
ple v = (r, s, w), where we observe that the grass is not wet (w = 0), even though it
did rain yesterday (r = 1), but the sprinkler had not been turned on (s = 0). Know-
ing this factual observation gives us insight about the latent variables (maybe it was
a particularly hot day after the rain and the water had evaporated since); we extract
that information by computing P(E ,U | v), a process called abduction. We then
study what effect a new intervention, turning the Sprinkler on, would have had on
the eventual outcome variable, Wet, knowing the posterior state of the latent variables
thanks to the factual observations. This results in a prediction of that counterfactual
outcome, which lets us answer the query "Would the grass be wet had we turned
the sprinkler on, knowing that it is dry now, and that it did rain yesterday but we
did not turn the sprinkler on?". The three-step process described above, abduction-
intervention-prediction, is the counterfactual process defined by Pearl [1], which lets
us consider this kind of hypothetical causal query.

Counterfactuals are essential for explainability applications [14]: knowing the
effects that certain interventions would have had in contrast with the factual out-
come we observe allows us to study the effect of these variables for particular in-
dividuals. "How would my salary change had I been a man?" is an example of a
counterfactual query, where the interest is not on applying the intervention, but in
finding the reasons behind a certain outcome, or even the fairness of a decision [15].

For the previous example, the counterfactual query consists of estimating an in-
tervention on the modified SCM Mdo(S=s′)|v := (V , E ,U ,P(E ,U | v),Fs′) with its
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(A) Original graph. (B) Parallel worlds graph.

FIGURE 1.9: Parallel World Graph example. Based on the original
graph (left), we construct the Parallel Worlds Graph (right) with two
subgraphs, the factual (up) and the counterfactual (down), linked by
all latent variables. Any edges towards Xx′ are removed due to the
intervention. To better convey the "parallel world" concept, here we

do not remove Xx′ or fuse Z and Zx′ .

latent priors conditioned on the observed variables v and its functions F affected
by do(S = s′). However, the current notation is ambiguous, as the variables in V
are duplicated between the factual and counterfactual model, and it is essential to
distinguish them in order to derive the proper expressions.

An alternative notation is the so-called Parallel Worlds Graph [5]; we extend the
original SCM M with a second one, where every variable in V is replicated (nor-
mally denoted by a subscript with the intervention value, e.g., Yx′) but with every
variable in E and U shared between the two. Consider graph 1.9b; EY points towards
Y and Yx′ . Normally, for constant interventions do(X = x), we omit any intervened
variable in the counterfactual graph, as they become constant variables; also, any
duplicated variables with the exact same parents and distribution should be fused
together as one (Z = Zx′ , since both share U{Z,X} as the only parent and fZ as their
functional assignment, therefore having the exact same distribution). However, in
this particular figure, we do not omit Xx′ nor fuse Z and Zx′ for clarity of exposition.

When we talk about counterfactuals, we normally condition on some factual out-
come v ∼ P(V) and query the variables in the counterfactual world subject to inter-
vention do(X = x’). Therefore, to bridge the gap between both worlds, we must
compute the posterior for every latent variable in E and U ; in the Rain example,
given the factual information and an intervention do(S = s′), EW ’s prior changes,
which affects the counterfactual variable Ws′ . Note that Rs′ is not affected by the
intervention, since R is not a descendant of S. We do not need to abduct ES either
since the intervention already provides a constant value for the intervened variable.
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1.2.3 SCM-based Estimation

Given an i. i. d. dataset D = (v(i))i=1..N sampled from a certain distribution P with
associated CBN G, if the graph is a DAG, it can be assumed that an underlying
SCM M with graph GM = G generated this dataset. Consider the case where we
know the shape of that graph G. We can define our own proxy SCMM′ following
that same graph, and given a flexible implementation of FΘ with appropriate priors
PM′(E ,U ) (both potentially different from the ones inM), we can train this model
by finding the appropriate parameters θ such that the resulting distribution Pθ(V) is
a good enough approximation of the original P(V). With this proxy SCM, it should
be possible to estimate causal queries as if we had the original underlying SCMM.

There are three obstacles with this approach: how to define appropriate functions
FΘ and priors PM′(E ,U ) that can model P(V) (model architecture); how to train
the model to find the right values θ so that Pθ(V) ≈ P(V) (model training); and
whether the resulting proxy SCM M′ would result in unbiased estimations of the
queries (identifiability).

Regarding model architecture, we take advantage of the fact that neural net-
works are universal approximators; for every node Vk ∈ V , we can define f ′k ∈ FM′

as an expressive enough neural network, and train the whole DCG to model P(V).
We will elaborate on this topic when we define our Deep Causal Unit implementa-
tions in chapter 3.

In order to train an SCM M′ to adjust to a certain observational distribution
P(V) using an i. i. d. dataset D, assuming a flexible enough architecture for F ′, we
can use Maximum Likelihood Estimation. Given a sample v = (v1, . . . , vK) ∈ D, we
can compute its log-likelihood as:

log Pθ(v) = log EU [Pθ(v | U )] = log EU

[
∏

k=1..K
Pθ(vk | pa′k)

]
. (1.8)

Therefore, training consists of finding the set of parameters θ̂ such that:

θ̂ := arg max
θ

∏
i=1..N

Pθ(v(i)) = arg max
θ

∑
i=1..N

log Pθ(v(i)) =

arg max
θ

∑
i=1..N

log EU

[
exp ∑

k=1..K
log Pθ(vk

(i) | pa′k
(i)
)

]
≈

arg max
θ

∑
i=1..N

log ∑
j=1..M

exp ∑
k=1..K

log Pθ(vk
(i) | pa′k

(i,j)
).

(1.9)

We use Monte Carlo to approximate the expectation, taking N ·M i. i. d. samples
u(i,j) ∼ P(U ) that give value to the Markov parents pa′k

(i,j) for every pair (v<k
(i), u(i,j)).

We add exp log to the inside of the expectation so that we can employ the log-sum-
exp trick6 for numerical stability. Finally, note that if U = ∅ (there are no latent

6Log-sum-exp trick. Given a set of values x := (x(i))i=1..N and a constant C := max
i

xi, we can

compute the LogSumExp (LSE) of x as: LSE(x) := log ∑i=1..N exp x(i) = C− C + log ∑i=1..N exp x(i) =
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confounders) this expectation is not required and simplifies the expression to:

θ̂ := arg max
θ

∑
i=1..N

log Pθ(v(i)) = arg max
θ

∑
i=1..N

∑
k=1..K

log Pθ(vk
(i) | pa′k

(i)
). (1.10)

Finally, we evaluate the topic of identifiability w.r.t. proxy SCM estimation. We
operate on a finite i. i. d. dataset D coming from an underlying SCMM with graph
GM. We do not know what its functional assignments F nor latent priors P(E ,U )
are, but we do assume to know its graph structure GM, either through domain exper-
tise, experimental testing or using causal discovery algorithms [16]. We also assume
positivity, i.e., its observational distribution P(V) > 0 throughout its domain.

Consider a query Q(.), whose result depends on which SCM it is applied (e.g.,
Q(M) := E [Y | do(X = x)]). We want to find an estimator for Q(M) by defining a
proxy SCMM′ with equivalent graph GM′ = GM and observational distribution
PM′(V) = PM(V); we will answer the query with M′ as if it were the underlying
M. Can we use Q(M′) as an estimator of Q(M) if the functions inFM′ or the priors
PM′(E ,U ) are not the same as the ones inM? Yes, but only if the query is identifiable.

Let us define the class of models M(M) consisting of all SCMs M′ such that
GM′ = GM and PM′(V) = PM(V). We say that a query Q is identifiable in M(M)

if ∀M′ ∈ M(M), Q(M′) = Q(M). Identifiability can be proven by finding an
estimand for Q [1]: if it exists, then bothM andM′ would output the same result
for that estimand, since they share the same causal structure (hence the estimand ap-
plies for both models) and observational distribution P(V) (hence each term in the
formula returns the same results). Additionally, as discussed at the end of section
1.1.4, queries can be proven to be identifiable by automatic algorithms, which ei-
ther provide an estimand, proving identifiability, or prove that it cannot exist, prov-
ing non-identifiability. Note that we only need to prove the existence of an estimand;
if it exists, the query is identifiable, we can discard the estimand and estimate the
query directly with our proxy SCM.

In conclusion, given a proxy SCMM′ with the same causal structure as GM and
the same distribution PM(V)7, if a certain query is identifiable, we can estimate it
withM′ as if we were using the original underlyingM. Note that our model need
not have the same functions F nor latent priors P(E), P(U ), only that PM′(V) =

PM(V). More importantly, we do not need the estimand that proved the query’s
identifiability, as the SCM itself can estimate the query using its own estimation
procedures (see section 4.1).

As a final note, Xia et al. [17] propose an alternative technique for identifiability.
Given that flexible-enough Deep-Learning-powered SCM models can encompass

C + log(e−C ·∑i=1..N exp x(i)) = C + log ∑i=1..N exp(x(i) − C). This ensures that the largest exponen-
tiated value is 1, stabilizing the computation of the LSE. We use this technique throughout this work.

7Note that we can never expect to achieve a perfect match between our SCM’s PM′ (V) and the
real underlying distribution PM(V). This miscalibration has an effect on the eventual estimations we
perform with the model; an analysis on this topic is left for future work.
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many different SCMs all with the same observational distribution P(V) but possi-
bly different interventional distributions Px(V), if a certain query were not identi-
fiable, by initializing the same SCM model with different parameters and running
its training procedure, each of these models would output different results for that
query. As a result, tests can be defined to determine if the differences in their estima-
tions are significant or not, proving non-identifiability in the latter case. We do not
cover this technique, focusing instead on non-parametric identification of queries
for their subsequent estimation using our trained SCMs, but this is a promising re-
search topic for complex queries for which we cannot derive an estimand nor prove
its non-existence.

1.2.4 Related Work

SCM-based approaches have been studied previously, beginning with Wright’s [18]
first SCM, which consisted of linear equations. However, their modelling capabili-
ties have typically been limited by simplistic architectures or restrictive distributions
(e.g., Bernoulli, Normal). Since a proxy SCM needs to model the observational dis-
tribution of the underlying CBN in order to correctly estimate causal queries, this
was not a feasible approach for real-world data until very recently, when the latest
advances in density estimation provided by Deep Learning strategies were adapted
to the field of Causal Query Estimation. Some of these works employ Generative
Adversarial Networks (GANs), with CausalGAN [19] as an example, or Variational
Autoencoders (VAEs), such as CEVAE [20] or VACA [21]. Adopting a different per-
spective focused on modelling each node’s distribution through a network function,
we can mention two parallel works that share some aspects with our techniques.
Pawlowski et al. [22] proposed Deep SCMs (DSCMs), powered with Normalizing
Flows for continuous multidimensional variables, applied to image generation. Xia
et al. [17] followed a similar approach and proposed Neural Causal Models (NCMs),
but their work is concerned with theoretical aspects of proxy-SCM estimation and is
currently limited to discrete datasets in the examples they provide.

Although these works suggest several avenues for tackling the problem of proxy
SCM estimation, we find that they lack several desirable aspects for such a system.
Let us define the following desiderata for a practitioner-ready, Deep Learning pow-
ered estimand-agnostic framework:

1. Explicit Likelihood: being able to estimate likelihood queries (e.g., P(Y | Z)),
with or without interventions or conditioning terms. In addition to estimating
likelihoods of values, this also helps with conditional sampling, as we will see
in section 4.1.

2. Latent Confounders: accounting for the existence of latent confounders, with-
out restricting8 the kinds of identifiable queries that can be estimated.

8Compiling two confounded variables into a single multidimensional variable lets us model them
as part of a graph, but prevents us from intervening on only one of them.



1.2. Estimand-Agnostic Causal Estimation 23

TABLE 1.1: Desiderata for an estimand-agnostic CE framework.

METHOD EXPLICIT LK. LATENT CF. COUNTERF. EXPRESSIVENESS SCALABILITY GENERALITY

CAUSALGAN [19] ✗ ✗ ✗ ✓ ✗ ✗
CEVAE [20] ✗ ✓ ✗ ✗ ✗ ✗
VACA [21] ✗ ✗ ✓ ✓ ✓ ✓
DSCM [22] ✓ ✗ ✓ ✓ ✗ ✓
NCM [17] ✗ ✓ ✗ ✗ ✗ ✓

DCN [23] ✓ ✗ ✗ ✗ ✗ ✓
DCG ✓ ✓ ✓ ✓ ✓ ✓

3. Counterfactuals: allowing counterfactual estimation, not only purely inter-
ventional queries. This means enabling abduction using factual variables to
propagate the abducted noise signals to the counterfactual graph.

4. Expressiveness: providing expressive implementations capable of modelling
complex real-world data. Finding the appropriate probability distribution for
each and every node can be time-consuming (not scalable) or even unfeasible
(real-world data need not fit within any of these families), so a method adopt-
ing this approach would not fulfill the requirement.

5. Scalability: instead of defining a different network for each node, defining a
single network for all variables at the same time. This limits the number of
trainable parameters in the model for graphs with a large number of variables,
therefore mitigating overfitting.

6. Generality: the method can follow the structure of arbitrary causal graphs,
and its training and estimation procedures should be immediately applicable.
Most methods derive an expression for each graph and query they want to es-
timate, instead of defining general procedures that can adapt to each situation.

With this in mind, we proposed Deep Causal Graphs (DCGs), a general, mod-
ular, estimand-agnostic framework, which fulfills all of the above points. In order
to present our contributions and explain the differences with previous and parallel
works, we provide Table 1.1, which lists the items in the desiderata covered by each
method. Together with our proposal (DCG) we include Distributional Causal Nodes
(DCN) [23], our first contribution to the problem, in which we introduced the most
basic implementation of our approach, later discussed in chapter 2.

It is worth noting that only DSCMs provide a method for computing the ex-
plicit likelihood of a sample (given an invertible-explicit implementation for its
nodes). Latent Confounders are only covered in CEVAE (the latent space) and
NCMs, whereas VACA proposes collapsing variables affected by the same latent
confounder as a multidimensional, heterogenous node, which limits the kinds of
queries the model can answer. Counterfactuals are only discussed in VACA and
DSCM; the NCM paper talks about the third rung on Pearl’s Ladder of Causa-
tion [24], the counterfactual level, but focuses only on purely interventional queries



24 Chapter 1. Introduction and Background

P(Y | do(X)) in the examples given. Regarding expressiveness, we say that CEVAE
and NCM are not expressive enough in the implementations that they provide, since
they require the assumption of a certain probability distribution in modelling each
node rather than a more flexible alternative, such as the Normalizing Flows used
in our own approach or DSCMs. With respect to scalability, every method except
for VACA requires defining a separate network for each node, which leads to over-
fitting on larger graphs. Finally, in relation to generality, we say that CausalGAN
and CEVAE are not general: the former requires the definition of a discriminator and
two labeller networks for the GAN node, which is not clear how to extend when
modelling more than one node with GANs; the latter defines a specific architecture
for the particular kind of graph the authors work with, with no indication of how
that structure would change with other kinds of graphs. As for our initial proposal,
DCNs, we did not cover either the latent confounder case or counterfactual estima-
tion, focusing instead on an implementation very similar to the one later found in
NCM, which limited expressiveness. We did not use our new Graphical Conditioner
either (see section 4.2), which affected scalability.

As stated above, our approach, DCG, fulfills every requirement in the desiderata.
Furthermore, none of the previous methods provide an algorithmic solution for es-
timating general queries, leaving the derivation to the reader, which is not trivial
in some cases. We devote section 4.1 to this problem, covering observational/inter-
ventional/counterfactual sampling, likelihood and expectation queries, all with or
without a conditioning term. We also provide an open-source library with all of our
implementations ready for practitioners to use and researchers to extend.

1.2.5 Limitations

We finish this section discussing the limitations of estimand-agnostic approaches.
The identifiability results discussed in section 1.2.3 state that we can estimate

identifiable queries as long as our SCMs use the same graph G and model the same
distribution P(V) as the underlying SCM that generated our data. However, this
adjustment to the distribution is rarely exact, as our models are trained to converge
towards an approximation of P(V); this mismatch at the distribution level can result
in miscalibrations at the estimation level.

There are two factors which can result in these miscalibrations. Proxy SCM ap-
proaches need to model the whole graph, node by node, before any estimation is
carried out; this means that if a certain node has a complex distribution (e.g., out-
liers, density discontinuities) and has not been modelled properly, it can affect the
eventual estimations. Additionally, if the DAG G has a high depth (the length of the
longest path from roots to leaves) this could have a stronger effect when sampling
from each node, as samples from an imperfect adjustment can affect all its descen-
dants’ samples.

On the other hand, the fact that our model’s training objective is to estimate
P(V), and query estimations come as a result of a later procedure, means that they
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cannot be optimized to answer specific queries, in contrast with estimand-based
techniques that do optimize for each and every query. However, as stated before,
SCMs can estimate many (identifiable) queries with the same model; in this sense,
there is a trade-off between the flexibility of estimand-agnostic models and the speci-
ficity of estimand-based techniques, which can prove beneficial depending on the
use case.

1.3 Black-Box Introspection

Ever since the publication of the General Data Protection Regulation (GDPR) [25]
by the European Commission, concerns about algorithmic decision-making and the
black-box nature of most Machine Learning models have fostered interest on Inter-
pretability, Explainability and Fairness techniques. These try to elucidate the in-
ternal processes by which algorithms perform decisions, identify the effect that each
input variable has on a particular outcome, or discern whether the resulting deci-
sion is fair w.r.t. some sensitive variables, respectively. There is no consensus on the
different concepts and categorizations concerning these topics, so we will describe
our own interpretation as a starting point.

Given a certain model Y = f (X) to inspect, we can approach it from two per-
spectives: assuming that f is a black-box (i.e., we know nothing about the internal
processes with which an output y is computed and we can only examine the model
through its input-output routine x f y) or that it is a white-box (i.e., we know the
exact architecture of the model —e.g., the hidden layers in a Neural Network— and
can examine and tweak its parameters as much as needed). We work on the former,
in order to provide techniques applicable to any kind of model f , irrespective of its
internal architecture.

Orthogonal to the black- and white-box axis, we can explore three different ques-
tions. Interpretability deals with inspecting the general rules by which the system
operates at the population level, discussing its input-output routine for any input.
Explainability, on the other hand, works at the individual level, explaining why a
certain input has been given an output, and what could change in the input variables
to affect that outcome. Finally, Fairness considers the effect that certain protected vari-
ables (e.g., gender, ethnicity, age) have on the outcome, as it would be deemed unfair
to favour one demographic group over the other basing the decision on these factors.
Related to the previous two points, Fairness can be discussed at the population level
(Interpretability) or at the individual level (Explainability), but it can also be consid-
ered as an objective to attain, training a new model towards a fairer distribution. We
refer to these three topics as the more general Black-Box Introspection, since their
subsequent application on a black-box of interest allows us to progressively examine
the process so as to discern its inner workings.
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These topics have been studied in myriad ways, such as gradient-based methods
[26] (estimating the effects of individual input dimensions by measuring their gradi-
ents w.r.t. the point of study) or local surrogate models such as LIME [27] (training
simpler interpretable models of the original predictor in the region of the given input
so as to explain the function in that local region), both estimating feature importance
by considering perturbations on the input variables, which might not always be
realistic.

Instead, we focus on Counterfactual Reasoning, understood as contrastive ex-
planations between the factual, observed outcome, and an hypothetical (not always
causal) counterfactual outcome subject to input variable changes. Numerous works
discuss the topic of contrastive/counterfactual explanations. Wachter et al. [28] de-
fine counterfactuals as data points similar to the object of study with certain strate-
gic interventions in its input dimensions in order to change the predictor’s outcome;
these changes do not take into account the underlying causal structure, so the re-
sulting input perturbations might not agree with the effects of such an intervention.
Mothilal et al. [29] employ a similar approach, but also considering the feasibility
of the counterfactual action (whether the individual can effectively impose the in-
tervention) and the diversity of the resulting counterfactual examples. Hendricks
et al. [30] describe counterfactuals as samples including some information that was
missing in the original input, resulting in a prediction change; their technique iden-
tifies these traits and expresses them through natural language explanations. Goyal
et al. [31] operate on visual explainability, identifying distractor images and regions
within these images so that, when replacing the original image with these regions,
the model results in different predictions, thereby signaling the visual features re-
sponsible for the prediction. Finally, Guidotti et al. [32] adopt the local surrogate
approach, by training a local interpretable model in the original point’s region, and
then generate explanations as decision rules describing the factual decision, along
with counterfactuals showcasing which changes would result in a different outcome.

Note that all of the previous examples operate from a purely observational per-
spective, modifying the variables of study by looking for similar data points, dis-
regarding any causal effects that these alterations may have on some other input
variables, which eventually affects the outcome. Alternatively, we can consider the
implications of these changes through a causal lens: comparing two outcomes sub-
ject to a change in input (intervention) and the downstream effects of this change.
This is the approach we adopt to define our black-box introspection tools.

Finally, note that Interpretability, Explainability or Fairness are not meant to an-
swer one single query on the distribution of interest. For example, in a study about
gender discrimination on salary assignment, we are not only interested in the effect
of gender of salary (which can be answered at the population level or at the individ-
ual level), but also how gender affects the other input factors in the salary black-box
decision system, and how each of them affects salary in turn. Effectively, we will
need to answer many different questions as we explore the system, something akin
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to a dialogue between user and system through these introspection tools, which
results in many different queries to answer on the same distribution. As a result,
one can see why estimand-based CE approaches are not suited for this application,
as every new query would require graph- and query-specific estimands and mod-
els. In contrast, estimand-agnostic techniques result in a single model capable of
answering any of the required queries. Additionally, our proposed framework Deep
Causal Graphs provides general procedures, applicable to any kind of graph, to an-
swer many of these queries; hence, it is specially suited to this use case.

1.4 Contributions and Thesis Outline

We finish this chapter listing the contributions of this dissertation.

• Álvaro Parafita and Jordi Vitrià. Explaining visual models by causal attribu-
tion. In 2019 IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW), pages 4167–4175. Seoul, Korea, 2019. IEEE.

• Álvaro Parafita and Jordi Vitrià. Deep causal graphs for causal inference, black-
box explainability and fairness. Artificial Intelligence Research and Development,
339:415–424, 2021.

• Álvaro Parafita and Jordi Vitrià. Estimand-agnostic causal query estimation
with Deep Causal Graphs. IEEE Access, 10:71370–71386, 2022.

• Álvaro Parafita and Jordi Vitrià. A unified framework for causal analysis, ex-
plainability and fairness. Submitted.

• Martí Pedemonte, Jordi Vitrià, and Álvaro Parafita. Algorithmic causal effect
identification with causaleffect. arXiv preprint arXiv:2107.04632, 2021.

The initial goal in our research was to bridge the gap between Machine Learn-
ing Introspection and Causal Query Estimation. Given an image classifier, we pro-
vided an explainability tool based on causality with the introduction of Distribu-
tional Causal Graphs [23]. We discuss this first approach in chapter 2 as an illustra-
tive example of the general approach.

We then expanded the original proposal to a general framework called Deep
Causal Graphs [33], including an implementation based on Normalizing Flows to
improve its modelling performance, and finished with an Explainability and Fair-
ness study using these techniques.

We completed the previous contribution with even more implementations of the
framework to increase its applicability to different problems, and defined a set of
general estimation procedures applicable to any graph and many kinds of causal
queries; this work constitutes the most comprehensive and complete exposition of
DCGs [34]. We cover these topics in chapters 3 and 4, respectively. Along with this
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work, we also developed an open-source software library9 that implements this gen-
eral framework, ready for practitioners to use and researchers to extend. We discuss
these libraries in chapter 5, cover the performance of DCGs in CE benchmarks in
chapter 6 and their application to complex causal queries in chapter 7.

Finally, we explored the application of DCGs to the field of Black-Box Introspec-
tion with a complete study [35] that reflects the necessity of estimand-agnostic tech-
niques for explainability tools; we show this study also in chapter 7. Additionally,
we also collaborated in the implementation of identifiability algorithms for purely-
interventional and conditioned interventional causal effect queries [7].

9See https://github.com/aparafita/dcg for the dcg library and the code for the experiments
discussed throughout this work.

https://github.com/aparafita/dcg
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Chapter 2

Distributional Causal Graphs

This chapter exemplifies our DCG framework in its simplest form, before we explore
it in depth in chapters 3 and 4. This is our first contribution [23] to the topic, focused
on determining feature importance in an image classifier. We will describe the goals
of this approach and the proposed solution in the following sections.

2.1 Motivation

Consider a classifier y := f (X), X being a three-dimensional matrix of pixel values
(RGB colours) and y being the logits of a binary classification (i.e., with the thresh-
old at 0, f (X) ≥ 0 predicts class 1, while f (X) < 0 predicts class 0). Our objective
is to explain which factors motivated the classifier to decide for a certain class.
Most methods in the literature explore this problem from a pixel attribution (saliency
maps) perspective (e.g., [36, 37, 38, 39]), meaning, by creating a bi-dimensional ma-
trix with values indicating the importance of the corresponding pixel in the even-
tual prediction. We take issue with this approach because the pixels themselves only
serve to locate the position of the salient features, and it is the researcher, with their
preexisting knowledge, who can interpret these results in order to explain a certain
prediction. Being that the case, it is difficult to determine if the explanation is de-
rived purely from the available data or from subjective interpretations after the fact.

With this in mind, we focus on an alternative approach. Given certain latent
factors1 that describe the image in question, if we know how these factors affect one
another causally, can we explain the classifier’s prediction based on these feature
effects? For example, given a dog/cat predictor, we could define latent factors such
as pose, iris shape, time of day, background, etc. Note that some features can affect
others (time affects which background the picture was taken in, and both affect the
animal’s action and pose), so we can describe these relationships with an SCM. All
of these latent factors affect what is shown in the final picture, which constitutes a
multivariate node X (an image/matrix of dimension width× height× 3) with every
latent factor pointing at it. Finally, we also represent the classifier as another node
Y, with only the picture X as a parent and with the classifier itself f as its generative

1In this chapter we preserve the original nomenclature and name the features that describe the
picture as latent factors, not in the sense used in chapter 1, but as underlying features of the image.
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function fY. If we aggregate every latent factor as a set of variables Z, the resulting
graph is Z→ X → Y.

If we want to study the effect of each factor Z ∈ Z on the classifier, we can
intervene on Z with different values, resulting in some changes to its descendants,
which configure a new picture that will be later passed through the classifier to ob-
tain the new predictions y; we average these outcomes to estimate the effect of each
intervened value on the classifier.

2.2 3D Shapes Dataset

The main difficulty of this approach is how to sample new images, which can be
achieved with an image generation model; we discuss this in more detail in section
2.5. In this chapter, however, we operate with a synthetic dataset that allows us to
bypass this step, so as to focus on the latent factor approach. We use the 3D Shapes
Dataset [40]; see Fig. 2.1a for some sample images. These pictures consist of an ob-
ject with different possible shapes, colours and sizes, sitting in a room with a certain
floor and wall hue and different camera orientations. There is an image for every
possible configuration of these six factors in the dataset. We also create two addi-
tional factors: brightness, the average brightness of the picture, that we artificially
impose when sampling; and type, a binary value not visible in the image that will
be the target variable for the classifier. We create an artificial causal graph relat-
ing these eight factors, so that the resulting factor configurations determine which
pictures are sampled more frequently; given that there is a picture for every con-
figuration in the dataset, we can "generate" an image by taking the corresponding
picture from the dataset, thereby bypassing the necessity of an image generator. See
the proposed graph in Fig. 2.1b, with the following nodes: Type (Tp), Orientation
(Or), Shape (Sh), Floor Hue (Fh), Wall Hue (Wh), Scale (Sc), Object Hue (Oh) and
Brightness (Br). Note that type affects almost every factor, so even if it is not visible
in the final picture, its nature can be discerned from the remaining visual factors.

(A) Sample images.

Tp

Sh Fh

Or

Wh

Sc Oh Br

(B) 3D-Shapes Example Graph. Or is considered a
latent node, not measured.

FIGURE 2.1: 3D Shapes example. The left image shows four sample
pictures from the dataset. The right image shows the artificial causal

graph describing the relationships between its latent factors.

We add three more complications to this synthetic problem. We filter out any
samples that result in a Brightness (Br) level outside of [0.4, 0.6]; as a result, the
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dataset contains selection bias, in the sense that by conditioning on Br, we are open-
ing a path between Fh and Wh that was closed before by the unconditioned collider
Br. We perform this filtering during the sampling process, but we do not take it into
account in our SCM, using the graph in 2.1b instead; consequently, we can use the
difference between the data generating process and the estimating SCM to test the
resilience of our technique to graph mismatch. Additionally, when specifying the
functional assignments of our SCM, we will not enforce this domain restriction to
the Br node, using [0, 1] as its domain instead, to also test our technique against dis-
tribution mismatch. On the other hand, the Orientation (Or) node will not be mea-
sured (therefore it is a latent node, although disconnected to the rest of the nodes) so
as to have 15 different pictures with the same factors, adding some stochasticity to
the image generation part of the graph.

2.3 Node Modelling

Consider a given DAG G, consisting of variables/nodes V := {V1, . . . , VK} with a
certain distribution P(V) from which samples D := (v(i))i=1..N are generated. We
define an SCMMΘ with the same variables V and graph structure G depending on
some parameters Θ = (Θ1, · · · , ΘK) (one set per node) that need to be trained in
order to model the resulting distribution PΘ(V). In this method, we assume there
are no latent confounders (U = ∅).

Given any node X ∈ V with Markov parents PaX, we want to model the node’s
distribution conditioned on its parents, P(X | PaX). Distributional Causal Nodes
(DCNs) assume that P(X | PaX) belongs to a certain probability distribution fam-
ily (e.g., Normal, Exponential, Bernoulli, Categorical), each with some parameters
ΘX (e.g., ΘX = (µX, σX)). Note that since the distribution depends on the values
of PaX, we can define ΘX as a function of its parents: θX = ΘX(paX). This is the
process by which we model every variable X: looking at its shape, we determine
which distribution fits the data and then define a feed-forward Neural Network fX

that takes as input paX and returns a value for the distribution’s parameters θX.
Now, given the parameters θX for a node X, we want to be able to sample from

the distribution P(X | θX). Depending on the chosen node’s distribution, we need to
define an appropriate sampling process; this method suggests using a reparametriza-
tion formula [41] as the sampling operation. For example, consider graph G :=
(Z → X → Y), with P(X | Z) fitting a univariate Normal Distribution N (µ, σ).
We can specify EX’s prior (the exogenous noise signal distribution, from which we
add stochasticity to the node’s sampling process) to be a standard univariate Nor-
mal Distribution N (0, 1), and set the sampling operation as x ← σ · εX + µ, with
the parameters coming from the parameters network: (µ, σ) = θX = ΘX(paX). We
can replicate this approach for many other distributions (e.g., Beta, Poisson); we will
provide more details about DCNs and alternative parametrizations in section 3.2.
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Finally, we need to compute log P(X | θX = ΘX(paX)) in order to train the
parameter’s network: since we know the node’s distribution family, we can simply
use the corresponding Probability Mass Function or Probability Density Function.
As a result, we can compute the joint log-likelihood of a full sample v ∼ P(V) as:

log P(v) = log
K

∏
k=1

P(vk | pak) =
K

∑
k=1

log P(vk | θk = Θk(pak)). (2.1)

Therefore, we can train the overall SCM consisting of these DCN modules with
Maximum Likelihood Estimation, as detailed in section 1.2.3.

2.4 Visual Explainability

We now describe how to measure latent factor importance with our SCM model.
DCNs as they were at this point had no general mechanism to perform abduction, an
essential step for counterfactual estimation. For this reason, this work [23] focused
on an alternative query to explain the classifier’s predictions.

Given a particular image X described by factors Z, of type Tp = 0 but classified
incorrectly ( f (X) > 0), we want to identify the factor responsible for the wrong
prediction. For any factor Vk ∈ V , we consider interventions vk for every possible
value of the variable (every factor has a finite set of values in this dataset, despite
some of them representing a continuous variable) and plot the average logits and
their confidence intervals when we generate the intervened images and pass them
through the classifier. However, in order to estimate this query using the information
observed in Z, we would need a counterfactual query that takes into account the
factual information; what we do instead is intervene every non-descendant of the
intervened variable Vk′ ∈ V \ De(Vk) with the observed value in Z (the same as
what happens in a counterfactual, where any non-descendant would not be affected
by the intervention, thus resulting in the same value as the factual configuration),
and every descendant of Vk is sampled anew taking into account its new parents.
This ignores the information contained in the factual values of every descendant of
Vk, but it is unavoidable given that no abduction mechanism was provided at this
point; please refer to the following chapters where we detail the abduction operation
and provide proper counterfactual estimation techniques.

See Fig. 2.2 for a visualization of these effects. This particular image was pre-
dicted as class 1 despite being class 0, so we are looking for whichever variable
reduces the classifier’s logit to negative values when intervened. The only variable
capable of this is Floor Hue, that was 0.3 originally and set the classifier right at the
decision boundary, but changes the prediction for values bigger than 0.4. In other
words, this kind of query/visualization allows us to attribute decisions to individual
factors through contrastive explanations and therefore interpret a black-box.
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FIGURE 2.2: 3D Shapes Intervention Effects. Every plot describes the
effect of intervening a particular variable with every possible value,
showing the expected logit with a blue line and the confidence inter-
val of this expectation with a blue area. Finally, the red cross shows
the factual value for the variable. The dashed horizontal line repre-
sents the decision boundary at y = 0; positive values result in class 1,

while negative values are class 0.
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2.5 Causal Image Generator

An important part of this technique is the model responsible for the generation of
counterfactual images according to a given latent factor configuration. One pos-
sible approach for such a model is a Conditional Generative Adversarial Network
(Conditional-GAN), that creates realistic images (fitting the data distribution) based
on some conditioning values (the latent factors Z). However, there are some aspects
of the image X that cannot be encoded only through its latent factor description,
defined by the exogenous signal EX, so they must be taken into account when com-
puting counterfactuals of that particular image (in other words, some sort of abduc-
tion mechanism). This has been attempted by adding the original, factual image as
an additional input of the model, along with some reconstruction loss during train-
ing that ensures that the factual and counterfactual images are similar enough. Fader
Networks [42] and AttGAN [43] are two examples of this approach. However, this
setup results in a number of difficulties.

First and foremost, a Causal Image Generator needs to be able to generate realis-
tic images given any configuration of the latent factors, even if it is not likely in the
observational distribution. As an example, consider a cisnormative gender classi-
fier working on portraits, with latent factors gender→ moustache. Observationally,
"woman with moustache" would be found very unlikely, but it could be a plausible
configuration given an intervention on the latent factor moustache; however, if we
train the model to generate images only fitting the observational, non-intervened
distribution, we can find multiple artifacts "adding masculinity" to the resulting im-
age just to make it feasible in the original distribution. This is specially important in
an adversarial training context, as it requires a secondary network, the Discrimina-
tor, that distinguishes between realistic and unrealistic images; such a Discriminator
would discard "woman with moustache" due to it being unrealistic in the context of
the training dataset, thereby encouraging the Generator to avoid this kind of image.

On the other hand, if we use some kind of reconstruction loss to ensure that the
generator respects the factual image information when computing its counterfac-
tual, we need to define this loss according to the causal graph of the factors. Since
we are asking for a different factor configuration subject to an intervention, the coun-
terfactual image needs to differ from the factual one in the intervened factor and its
descendants, but nowhere else. Despite this, common reconstruction losses usually
work at the pixel level, such as an L2 difference between both images, which disre-
gards this aspect. This could be avoided with a Generator that actually allows for
abduction, sampling from the exogenous noise signal distribution conditioned on
the factual values, but this had not been studied yet at the time of this experiment.
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2.6 Conclusion

The field of Causal Query Estimation was —and still is— dominated by estimand-
based approaches, while the proxy-SCM approach had not been sufficiently ex-
plored at the time of this work. DCNs provided a promising direction for further
research, given its many flexible implementations (adjusting for distributions other
than Bernoulli or Categorical variables) and the fact that proxy SCMs allow for in-
terventions on continuous variables seamlessly (while the rest of the literature is
commonly restricted to binary treatments); not only that, but its estimand-agnostic
nature extended their applicability to many other graphs and queries not supported
by most estimand-based techniques.

On the other hand, we also showcased a potential application of this framework
to Visual Explainability, given an appropriate Causal Image Generator; we identi-
fied a number of challenges for these generative models that are still open for future
work. However, given the potential of DCNs as an alternative to the estimand-based
approach, irrespective of its application to Visual Explainability, we opted to focus
on this topic instead, as there were many different problems to solve before DCNs
could become a complete, general and flexible framework for Causal Estimation. We
will cover these challenges in the following chapters.
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Chapter 3

Deep Causal Unit

In this chapter we describe the main building block in our framework, Deep Causal
Units (DCUs), with which we model the distribution of a node while also providing
every required functionality for the eventual estimation of causal queries. We begin
with the definition of the DCU to then explore four different implementations of this
abstract specification, each with its own use cases.

3.1 DCU Specification

A DCG is an SCM where every variable/node is modelled by a submodule, called
the Deep Causal Unit (DCU). For any X ∈ V , each DCU can be understood as a
subnetwork with trainable parameters ΘX that models the distribution of its own
node conditioned on its Markov parents, P(X | Pa′X), while providing functionality
for three distinct operations:

1. Sample: sampling from P(X | pa′X) by taking a value ϵX ∼ P(EX) and passing
it through the function fX modelled by the node.

2. Loglk: computing the log-likelihood log P(x | pa′X) corresponding to the ran-
dom variable X that results from using fX as the sampling operation. This
operation must be differentiable w.r.t. the distribution’s parameters ΘX, as it
will employed to compute the training loss for the overall DCG.

3. Abduct: sampling from the posterior P(EX | x, pa′X). This is required for coun-
terfactual estimation.

This definition of the DCU requires that every node in the graph defines its own
subnetwork, the Conditioner, which would not scale when the number of variables
is too high. Alternatively, we can employ the Graphical Conditioner, discussed in
section 4.2, which encompasses every node’s network into a single network, thereby
bypassing the problem. For clarity of explanation, we will proceed as if we defined
a specific network for each node; when we explain the Graphical Conditioner, we
will see how this is simply an abstraction for a single all-encompassing network.

This abstract definition allows DCG graphs to include different implementa-
tions of DCU nodes for every variable and still use the same training and estima-
tion procedures. By accessing these three operations, the actual structure inside the
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node is irrelevant for the graph. In the following sections, we will cover four pos-
sible implementations of this specification; as long as they can execute these three
operations, they are DCUs and can be integrated within the overall DCG framework.

3.2 Distributional Causal Node

The most basic implementation for DCUs is the Distributional Causal Node (DCN),
previously described in section 2.3. We assume that a random variable P(X | Pa′X)
behaves like a certain parametric distribution family (e.g., the Exponential distri-
bution) with parameters ΘX. These parameters come as a function of its parents
Pa′X (θX := ΘX(pa′X)), which we model with a feed-forward network and pertinent
activation functions for each parameter depending on its domain (e.g., a softplus
function for σ > 0, or a softmax for (pk)k=1..K so that ∑K

k=1 pk = 1); this network is
the DCN’s Conditioner.

Distributional Causal Nodes are valid DCUs given the following implementa-
tions for the three DCU operations:

• Sample. We define a certain prior for P(EX) independent to ΘX and a deter-
ministic sampling function fX that transforms samples εX ∼ EX into samples
x ∼ P(X | pa′X) with x := fX(εX, θX = ΘX(pa′X)). This can be done using
the reparametrization trick [41], as explained in chapter 2, or using inverse
transform sampling if possible: εX ∼ U (0, 1), x := PPFθX (εX), with PPFθX the
Percentile Point Function of PθX (X) = P(X | θX = ΘX(pa′X)) = P(X | pa′X).
Note that the sampling operation need not be differentiable w.r.t. ΘX.

• Loglk. Since we know the distribution family, we can use the log-likelihood
formula corresponding to that family.

• Abduct. We need to sample from P(EX | x, pa′X). If the sampling operation is
invertible, this distribution is constant and we just invert the formula; alterna-
tively, we need a different strategy, discussed in the following paragraphs.

Table 3.1 contains the DCN implementation of several distribution families. As
an example of a more involved abduction process, consider the Categorical dis-
tribution (of which the Bernoulli distribution is a special case) with K levels. For
sampling, we need K i. i. d. Gumbel values to use the Gumbel-argmax trick [44, 45],
which allows samples to be generated differentiably w.r.t. parameters p; this, how-
ever, results in a non-injective sample function. Nonetheless, abduction is still pos-
sible: given the observed category k′ (x = k′) and pa′X, from which we compute
θX = ΘX(pa′X) = (pk)k, we sample gk′ ∼ G(0, 1) and based on this value, we sample
the remaining K − 1 values from G(log pk, 1) truncated by the previous gk′ . Finally,
we transform these g values back to a G(0, 1) so as to decouple them from the pa-
rameters log p. See [44] and [46] for more details.
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FIGURE 3.1: NCF architecture. The flow’s invertible function allows
us to transform between X and EX in either direction, conditioned on
the parents Pa′X . Sampling moves from EX to X; abduction moves
from X to EX . The log-likelihood can be computed from the flow’s

architecture.

In the case of the Beta distribution, we cannot find a reparametrization formula
that allows for abduction. However, inverse transform sampling covers these two
operations and allows the distribution to be applied to a DCN, as long as we can
compute its log-likelihood differentiably w.r.t. ΘX and we have algorithms for its
Cumulative Distribution Function (CDF) and PPF, one inverse of the other. With
these, we can transform from our X to U (0, 1) and back. This general strategy is
applicable to a number of other distributions, and even allows for distributions X
truncated to intervals (a, b) (possibly infinite) as long as its CDF is differentiable
w.r.t. ΘX: we compute the CDF of its extremes εa, εb and use them on all three steps
of the DCU, as shown in the table.

In summary, DCNs are general, expressive DCU implementations that encom-
pass a wide array of distributions. None of the remaining DCUs discussed in this
chapter work for discrete distributions, so DCNs are the de facto DCU in these cases.
However, for the continuous case, the requirement to specify a certain distribution
family for every single variable does not scale to graphs with many nodes; it can also
be too restrictive, as a known family might not fit real world data. To avoid these
scalability and expressiveness problems, we propose an alternative DCU implemen-
tation in the following subsection. However, when dealing with simpler distribu-
tions or a small number of training samples, DCNs are still a good option.

As a final note, if we wanted to use a linear SCM embedded in the DCG frame-
work, this would be possible with DCNs, by forcing every node’s Conditioner net-
work to be a simple Linear layer with appropriate activations. This means that every
procedure described in section 4.1 is also applicable to the linear case. However, we
must be sure that such a restrictive architecture is capable of modelling P(V); other-
wise, its estimations would not be reliable.

3.3 Normalizing Causal Flow

A different strategy for continuous distributions is the use of Conditional Normaliz-
ing Flows (see [47] for an extensive survey on the topic), density estimation methods
based on defining an invertible function between two random variables X and E,
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given a conditioning Z, E = f (X | Z). For our purposes, E := EX and Z := Pa′X.
We define Normalizing Causal Flows (NCF) —see Fig. 3.1— as a flow-based DCU
implementation:

• Sample. By sampling a value ϵX ∼ P(EX) (with P(EX) predetermined by the
flow), we compute the corresponding x sample with x := f−1

X (εX | pa′X).

• Loglk. Given the Jacobian J fX
of fX,

log PX(x | pa′X) = log PEX ( fX(x | pa′X)) + log |det J fX
(x | pa′X)|. (3.1)

If J fX
(x | pa′X) is a triangular matrix, we only need its diagonal terms, with:

log |det J fX
(x | pa′X)| = log |

D

∏
j=1

∂ fX,j(x | pa′X)
∂xj

| =
D

∑
j=1

log |
∂ fX,j(x | pa′X)

∂xj
|. (3.2)

• Abduct. P(EX | x, pa′X) is a constant r. v. with its values computed determinis-
tically through fX: εX = fX(x | pa′X).

An essential aspect of Normalizing Flows is that they are composable, meaning,
they can be defined as the composition of a finite number of subflows. Consider
a flow fX := fX

(K) ◦ · · · ◦ fX
(1); its Jacobian is the matrix product of the subflows’

Jacobians, therefore log |det J fX
(x)| = ∑k=1..K log |det J fX

(k)(x)|. In other words, we
can stack a number of flow operations to progressively transform from our data
distribution P(X) to its exogenous noise signal prior P(EX), usually N (0, 1).

Regarding the flow operation fX, it is normally defined as the conjunction of a
Transformer (the actual function that transforms between X and EX, which depends
on some parameters ΘX) and a Conditioner (a network that takes the conditioning
values pa′X as input and outputs θX). For example, an Affine Transformer defines
two parameters per dimension θk := (µk, σk) so that εk := σk · xk + µk. Given such a
Transformer operation defined dimension-wise with parameters Θk, an Autoregres-
sive (Conditional) Conditioner defines an arbitrary network hk for every dimension
so that θk := hk(x<k, pa′X) with x<k the dimensions in x before the k-th dimension.
With such a structure, the Jacobian is triangular and its log-likelihood is feasible to
compute no matter the number of dimensions. In particular, for unidimensional
variables, the Conditioner just takes into account the parents’ values; as a result,
we can stack multiple Transformer layers powered by a single Conditioner that
encompasses them all, providing values for the parameters of every layer.

This implementation of the DCU imposes no restrictions on the Transformer
operation, and for unidimensional variables (as is the case for most nodes in a
causal graph) the Conditioner need not have any particular architecture. As such,
we can use any Transformer architecture from the literature and it will work like any
other DCU in the overall DCG framework; this allows us to leverage any advances in
the field for our models, which is essential in properly modelling the desired P(V).
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For multi-dimensional variables, the Conditioner might require special restric-
tions (e.g., an autoregressive structure, coupling layers, etc.). If that is the case,
we can isolate the Conditioner for this variable as a separate network, leaving the
shared Graphical Conditioner for the rest of variables in V ; as a result, we can use
highly specialized networks for complex nodes, while leaving the general Condi-
tioner, which is less prone to overfitting, for simpler nodes.

3.4 Mixture DCU

X

AX E(k)
X

Pa′X E(A)
X

(A) Mixture DCU.

X

ΘX

Pa′X E′′X

E′X

(B) Compound DCU.

FIGURE 3.2: Mixture and Compound DCU subgraphs.

An interesting finding is that mixtures of any DCU implementation are them-
selves valid DCUs. Let us consider a node X, with parents Pa′X, and assume we have
K DCU implementations (X(k))k=1..K for X (not necessarily homogeneous), each with
its own E(k)

X and likelihood function f (k)X . Let us define an additional exogenous noise
signal AX modelled by a Categorical distribution with weights/probabilities depen-
dent on Pa′X: wX = WX(pa′X) = (wX

(k))k=1..K, with ∑k wX
(k) = 1. In practice, we

extend the node’s parameters to include these weights: Θ′X := (ΘX, WX). Alterna-
tively we can assume (AX ⊥⊥ Pa′X), in which case the parameters are learnt in iso-
lation without the Conditioner network. Fig. 3.2a shows the subgraph of a Mixture
DCU. We can now define their K-mixture:

• Sample. Generate aX ∈ {1, . . . , K} ∼ P(AX | pa′X); this can be done with
Gumbel sampling, as in the Categorical-DCN implementation. Then, we sam-
ple from the aX-th DCU component P(X(aX) | pa′X) as usual.

• Loglk. We only need the likelihood of a mixture:

log f (x | pa′X) = log ∑
k=1..K

WX
(k)(pa′X) · f (k)X (x | pa′X) =

log ∑
k=1..K

exp (log WX
(k)(pa′X) + log f (k)X (x | pa′X)).

(3.3)

We add exp log inside the summation in order to use the log-sum-exp trick, for
numerical stability.
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• Abduct. With a Mixture Node, our exogenous variables are AX and (E(k)
X )k=1..K,

so we need to sample from P(AX, (E(k)
X )k | x, pa′X), but we do not know which

component X(k) generated x. However,

P(AX, (E(k)
X )k | x, pa′X) =

P(AX | x, pa′X) P((E(k)
X )k | x, pa′X, AX) =

P(AX | x, pa′X) ∏
k

P(E(k)
X | x, pa′X, AX) =

P(AX | x, pa′X) P(E(AX)
X | x, pa′X, AX) ∏

k ̸=AX

P(E(k)
X ).

(3.4)

We split the first conditional term in two, and then split P((E(k)
X )k | x, pa′X, AX)

into individual terms given that ∀k ̸= k′, (E(k)
X ⊥⊥ E(k′)

X | x, pa′X, AX) (since AX

cuts every E(k)
X , k ̸= AX, from X, thereby removing any possible path between

them). Finally ((E(k)
X )k ̸=AX ⊥⊥ X, Pa′X | AX) by the same reasoning, and then

we simplify P(E(k)
X | AX) to P(E(k)

X ) since ((E(k)
X )k ̸=AX ⊥⊥ AX).

Now, in order to sample from this distribution, we can sample term by term.
Given a value aX for AX, we can independently sample from every E(k)

X , k ̸=
aX and only abduct from P(E(aX)

X | x, pa′X, aX). The term P(AX | x, pa′X) is
solved by conditional sampling: generate N i. i. d. samples aX ∼ P(AX | pa′X)
and then use weights s(log P(x | pa′X, aX)) to subsample, with s the softmax
operation. Refer to section 4.1.3 for an explanation of conditional sampling.

Mixture Nodes can be used to empower more restrictive DCUs (DCNs, in par-
ticular, benefit from this). By way of example, we can define Gaussian Mixtures with
this technique using the simple Gaussian-DCN implementation. Additionally, it is
possible to create mixtures from models trained with different splits in a Cross Val-
idation setup; this helps in datasets with a limited number of training samples, as
the validation set in one split can also be employed when training the rest. We will
elaborate on this point in chapter 6.

3.5 Compound DCU

A natural extension to Mixture DCUs is the Compound DCU. A Compound distri-
bution is a parametrical distribution X dependent on parameters ΘX that are them-
selves random variables with prior P(ΘX). As a result, X is an uncountable mixture,
P(X) = EΘX [P(X | ΘX)], with every possible value θX ∼ P(ΘX) describing a differ-
ent component with a certain likelihood of being selected. Compound DCUs gen-
eralize the work in [48], which proposed a similar implementation for uncountable
mixtures of Asymmetric Laplace Distributions.
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We will assume the components of this mixture to be homogeneous. Each sub-
component is defined by the same set of parameters ΘX, which in turn are com-
puted with a network that takes its parents’ values as input, θX = ΘX(pa′X). How-
ever, to model the uncountable mixture with a single network, what we do instead
is extend the corresponding exogenous signal EX with a second source of stochas-
ticity, EX := (E′X, E′′X), where E′X follows the usual role in the DCU implementa-
tion and E′′X is not used for the sampling operation, but rather employed in com-
puting the parameters θX = ΘX(pa′X, ε′′X). Given any arbitrary prior for E′′X (e.g.,
E′′X ∼ N (0, 1)), using it in the Conditioner network as an additional input adds a
source of stochasticity to the parameters’ computation, resulting in an uncountable
mixture of DCUs.

The simplest way to implement a Compound DCU for a certain node X is to
create an additional latent variable E′′X; this latent only affects the corresponding X
(it is not a confounder) through the Conditioner’s network, adding it as an input.
See Fig. 3.2b for the subgraph of a Compound DCU; ΘX is a r. v. with a deterministic
computation given values for Pa′X and E′′X. The result is a DCU, since:

• Sample. We sample ε′′X ∼ P(E′′X), compute the parameters θX = ΘX(pa′X, ε′′X)

and then apply the DCU’s sample operation for X as usual.

• Loglk. We compute log-likelihoods with X’s loglk operation as usual, but
marginalizing over E′′X:

log f (x | pa′X) = log EE′′X |pa′X

[
f (x | pa′X, ε′′X)

]
=

log EE′′X

[
exp log f (x | θX = ΘX(pa′X, ε′′X))

]
.

(3.5)

We can simplify the expectation since (E′′X ⊥⊥ Pa′X), with X as a collider. We
also use the log-sum-exp trick for numerical stability.

• Abduct. As with the Mixture DCU, the downside to this method is that we
cannot find the ε′′X that generated θX and the corresponding x. However:

P(E′X, E′′X | x, pa′X) = P(E′′X | x, pa′X) P(E′X | x, pa′X, E′′X) =

P(E′′X | x, pa′X) P(E′X | x, θX = ΘX(pa′X, E′′X)).
(3.6)

The first term is covered by conditional sampling, generating N i. i. d. samples
ε′′X ∼ P(E′′X | pa′X) = P(E′′X) since (E′′X ⊥⊥ Pa′X), using s(log P(x | pa′X, ε′′X)) as
weights. The second term comes directly from the internal DCU abduction, as
conditioning on pa′X and ε′′X gives us θX = ΘX(pa′X, ε′′X).

This technique allows us to implement more flexible forms of simpler DCU im-
plementations with ease: with just one component, we can implement uncountable
mixtures of components by moving the stochasticity of the mixture to this additional
noise signal, introduced as a new input to the parameter’s network. See Fig. 3.3 for
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FIGURE 3.3: Compound DCN density estimation example. This fig-
ure shows the histograms of the training data and a sample extracted
from the model, in addition to the estimated density. Given data fol-
lowing a mixture of three Normal components, a Compound Normal-

DCN models their mixture only using a secondary noise signal.

a density estimation example using a Compound Normal-DCN. Note that this tech-
nique can be applied to any other kinds of DCU, as it makes no assumptions about
their internal structure. In the example in section 7.1 we will also see the potential
of Compound DCUs, especially for training in small datasets.
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Chapter 4

Deep Causal Graphs

In this chapter we will show how DCUs fit in the overall Deep Causal Graph frame-
work, detail its estimation procedures and explain how to aggregate every DCU’s
Conditioner network into a single Graphical Conditioner.

4.1 Estimation Procedures

Let us define some notation needed for the following equations. When referring to
a subset of variables V ⊂ V or E ⊆ E , let Vc := V \ V, Ec := E \ E. Let us also
denote EV := {EV ∈ E | V ∈ V} (then E c

V := E \ EV). We will operate with the
Parallel Worlds Graph model [5] described in section 1.2.2, where we replicate all
variables in V to the new counterfactual world Vx subject to intervention do(X = x),
with only E and U being shared. This allows us to distinguish between expressions
like P(Yx | Z) and P(Yx | Zx) (pre- and post-intervention conditionals).

4.1.1 Observational and Interventional Queries

First and foremost, we define the training objective. As discussed in section 1.2.3,
SCMs and therefore DCGs can be trained using Maximum Likelihood Estimation: if
there are no latent confounders (U = ∅), then,

log P(V) = ∑
V∈V

log P(V | Pa′V); (4.1)

otherwise,

log P(V) = log EU [P(V | U )] = log EU

[
exp ∑

V∈V
log P(V | Pa′V)

]
. (4.2)

This expectation can be approximated by sampling N i. i. d. values from our
SCM’s prior P(U ). The use of logarithms helps with numerical stability, and we
also use the log-sum-exp trick for the latter case. Each of the terms log P(V | Pa′V)
can be estimated with the corresponding DCU loglk operation, which is required
to be differentiable w.r.t. the network’s parameters. This allows us to optimize the
modelM, with a view to maximizing the average log-likelihood of an i. i. d. dataset
D generated with the underlying distribution P(V) that we wish to model.
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Secondly, we develop the sampling routine to generate samples v ∼ P(V). To
this end, we sample values ε ∼ P(E), u ∼ P(U ) from their respective priors, and,
for each node V ∈ V , following a topological order of the graph, we use its sample
operation, passing its parents’ values (which may include subsets from u) and its
exogenous noise signal εV . This generates values v, which follow the DCG’s obser-
vational distribution P(V). Additionally, to sample from P(Vx) (V in Mx, subject
to do(X = x)), we employ the previous procedure on the intervened model Mx,
replacing each fX by X := x for all X ∈ X.

Next, we study how to estimate log-likelihoods of subsets V ⊂ V . Note that:

log P(V) = log EE c
V,U [P(V | E c

V,U )] = log EE c
V,U

[
exp ∑

V∈V
log P(V | Pa′V)

]
(4.3)

Each term comes from the DCU’s loglk operation and its parent values result
from applying the previous sampling procedure to fill any variables in Vc. We can
also compute conditional queries, simply by realizing that P(V | z) = P(V,z)

P(z) , both
of these terms being computable with the previous procedure. Then, in the presence
of interventions do(X = x), we can simply consider the intervened model Mx to
answer the aforementioned kinds of queries, either P(Vx) or P(Vx | zx).

Finally, let us consider expectation queries EV [ f (V)] for arbitrary functions f .
These can be estimated using Monte Carlo by taking N i. i. d. samples from V with
the methods detailed above and then averaging the resulting samples ( f (v(i)))i=1..N

to estimate the expectation. For conditional queries, in the form EV|z [ f (V)], we can
use importance sampling along with the softmax trick:

Theorem 4 (Softmax trick)
Given disjoint sets V, Z ⊂ V , a sample z ∼ P(Z), and N i. i. d. unconditional samples
v := (v(i))i=1..N ∼ P(V), we can approximate expectations over conditional distributions
using the so-called softmax trick:

EV|z [ f (V)] ≈ ∑
i=1..N

f (v(i)) · s(log P(z | v))(i), (4.4)

with s the softmax operation applied on the set (log P(z | v(i)))i=1..N .

Proof of Theorem 4.
We apply importance sampling to add a weighting term, that we transform as such:

EV|z [ f (V)] = EV

[
f (V)

P(V | z)
P(V)

]
= EV

[
f (V)

P(z | V)

P(z)

]
.
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We can approximate the expectation and the denominator (P(z) = EV [P(z | V)])
using Monte Carlo by taking N i. i. d. samples v := (v(i))i=1..N ∼ P(V) so that

EV|z [ f (V)] ≈ 1
N ∑

i=1..N
f (v(i)) · P(z | v(i))

1
N ∑i=1..N P(z | v(i))

=

∑
i=1..N

f (v(i)) · exp log P(z | v(i))

∑i=1..N exp log P(z | v(i))
=

∑
i=1..N

f (v(i)) · s(log P(z | v))(i).

Lastly, any of these queries subject to an intervention do(X = x) (if conditional,
only if the conditioning Z is post-interventional, Zx) are treated as previously, con-
sidering the intervened modelMx.

4.1.2 Counterfactual Queries

In this section, we will cover counterfactual expectations. Although we employ
the 3-step process (abduction, intervention, prediction) described by Pearl in [1],
we derive the formula to point out where abduction should take place and how
DCU operations help perform the desired estimation. We begin with the simplest
counterfactual query (no "missing" variables) and extend it to the general case.

Given a DAG G with no latent confounders (U = ∅), disjoint sets V, X ⊂ V ,
a sample v ∼ P(V) and an intervention do(X = x), let us consider the query
EVx|v [ f (Vx)]. In simpler terms, we want to perform an expectation of a function
of some variables V subject to an intervention do(X = x) and conditioned on ev-
ery factual variable in V . In order to sample from Vx, we need values for E c

X (no
need for the exogenous variables corresponding to X, since they attain their value
directly from the intervention), with which we can apply the sampling mechanism
of the graph to obtain values deterministically for Vx. Therefore the expectation over
P(Vx | v) is equivalent to an expectation over P(E c

X | v):

EVx|v [ f (Vx)] = EE c
X|v [ f (Vx(E c

X))] . (4.5)

We can approximate this expectation with Monte Carlo using M i. i. d. samples
from P(E c

X | v), which results from applying the DCU abduct operation on every
node independently:

P(E c
X | v) = ∏

k=1..K, Vk ̸∈X
P(Ek | v, E<k ∩ E c

X) =

∏
k=1..K, Vk ̸∈X

P(Ek | vk, pa′k, E<k ∩ E c
X) =

∏
k=1..K, Vk ̸∈X

P(Ek | vk, pa′k).

(4.6)
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Note that ∀k ̸= l, Vl ̸∈ Pa′k, (Ek ⊥⊥ Vl | Vk, Pa′k, E<k ∩ E c
X), since every path

connecting them (if one exists) is either Ek → Vk → . . . , with Vk as a chain, or
Ek → Vk ← Pak

? · · · , with Pa′k as a chain or a fork; hence, either Vk or Pa′k blocks
these paths, which allows us to remove every other Vl ∈ V from the conditional. Sec-
ondly, ∀k ̸= l, (Ek ⊥⊥ El | Vk, Pa′k) by the same reasoning; therefore, we can simplify
the conditional to (vk, pa′k). What results is precisely the DCU abduct operation.

In summary, EVx|v [ f (Vx)] can be approximated with Monte Carlo by abducting
M i. i. d. samples independently node by node in V \X; then we can use these latent
samples to generate values for Vx \Xx (every remaining value inMx) and pass them
through f before finally averaging them to obtain an estimation.

Let us now consider the query EVx|z [ f (Vx)] with a sample z ∼ P(Z) from Z ⊂ V ,
and a graph G that may contain latent confounders; if U ∪ (V \ Z) ̸= ∅, there is
"missing" information and the estimator becomes more complex. Since the DCU
abduct operation requires a value for every parent of the node and the node itself,
some nodes will be missing information; hence, we need to marginalize over E c

Z and
U conditioned on z, given that these two variables and Z allow us to obtain values
for the remaining Zc deterministically:

EVx|z [ f (Vx)] = EE c
Z,U|z

[
EVx|z,E c

Z,U [ f (Vx)]
]
=

EE c
Z,U

[
EVx|z,E c

Z,U [ f (Vx)]
P(z | E c

Z,U )
P(z)

]
≈

N

∑
i=1

EEZ\X|z,εc
Z
(i),u(i)

[
f (Vx(ε

c
Z
(i), u(i), EZ\X

(i)))
]

s(log P(z | εc
Z, u))(i).

(4.7)

We use importance sampling and the softmax trick to sample unconditionally.
On the other hand, the internal expectation can be estimated with the previous pro-
cedure, by abducting every node independently with the available information and
sampling in the intervened model; this generates values for Vx \ Xx as before, which
we use to finally answer our query.

Further queries could be answered by means of the three DCU operations, using
similar derivations. Evidently, each estimation procedure results in different estima-
tors with more or less variance, but the fact that we can train a single model for an
arbitrary graph and employ it for any of these (identifiable) queries using a general
estimator is, in our view, more powerful for the end-user than the variety of ad-hoc
models present in the estimand-based literature. Moreover, our library already pro-
vides utilities for all of these procedures, so that practitioners can apply them to their
problems directly.
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4.1.3 Conditional Sampling

The remaining operations concern the procedure by which we can sample from ob-
servational, interventional and counterfactual distributions when there are some
conditioning values. Let us consider an observational distribution P(V | z), from
which we want to generate N i. i. d. samples (v(i))i=1..N . Since P(V | z) = P(V) P(V|z)

P(V)
,

we can:

1. Generate M samples (v(i,j))j=1..M ∼ P(V) from unconditioned V.

2. Choose one of these M samples by weighted sampling, with unnormalized
weights w̃(i,j) := P(v(i,j)|z)

P(v(i,j))
.

3. Repeat N times, to generate each v(i).

The corresponding normalized weights w(i,j) result in the softmax operation:

w(i,j) :=
w̃(i,j)

∑j=1..M w̃(i,j)
=

exp log w̃(i,j)

∑j=1..M exp log w̃(i,j)
= s(log w̃(i,.))

(j)
. (4.8)

Note that log w̃(i,j) = log P(v(i,j) | z) − log P(v(i,j)), and both terms can be ob-
tained through the above procedures.

One downside of this technique is that it requires M unconditional samples to
generate each conditional sample. In order to mitigate this problem, we can generate
M samples once, and then take N subsamples with replacement. Both alternatives
are valid procedures, provided M is big enough. Another potential point of failure
happens if the conditioning term Z = z is highly unlikely for most of the sampled
values v. In these cases, a bigger value for M is also required.

This solves the observational case P(V | z). Interventional conditioned distri-
butions P(Vx | zx) (subject to intervention do(X = x)) are handled in the same way,
but in the intervened SCMMx. Finally, for counterfactual distributions P(Vx | z),
note that we can focus on sampling from every latent variable (conditioned on z),
and then follow the deterministic functions in F . Let us split E = EZ ∪ E c

Z. Then:

P(U , EZ, E c
Z | z) = P(U , E c

Z | z) · P(EZ | z,U , E c
Z) =

P(U , E c
Z | z) · ∏

k: Vk∈Z
P(Ek | z,U , E c

Z, E<k ∩ EZ) =

P(U , E c
Z) ·

P(U , E c
Z | z)

P(U , E c
Z)
· ∏

k: Vk∈Z
P(Ek | vk, pa′k).

(4.9)

We transform the first term as before, in order to bypass the conditional with
weighted sampling. The second term can be decomposed following the topological
order of the graph, focusing on each Ek ∈ EZ individually. The long conditional can
be simplified, since (Ek ⊥⊥ U \ Pa′k, E c

k | Vk, Pa′k) (either Vk acts as a chain or Pa′k acts as
a chain or a fork); therefore, we can simplify the conditional to the corresponding vk

value (given by z) and its parents pa′k (computed deterministically from z, U and the
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required noise in E<k). Finally, each of these terms can be sampled independently
using the DCU’s abduct operation.

To summarize, in order to generate N i. i. d. samples (vx
(i))i=1..N ∼ P(Vx | z):

1. Generate M values ((u(i,j), εc
Z
(i,j)))j=1..M ∼ P(U , E c

Z) from the unconditioned
priors P(U , E c

Z), mutually and internally independent.

2. Choose one of these M samples by weighted sampling, with unnormalized

weights w̃(i,j) := P(u(i,j),εc
Z
(i,j)|z)

P(u(i,j),εc
Z
(i,j))

. Again, the corresponding normalized weights

result from the softmax operation: w(i,j) := s(log w̃(i,.))(j).

3. Repeat N times, to generate each pair (u(i), εc
Z
(i))i=1..N .

4. Abduct every node Vk ∈ Z to generate values {εZ
(i)}i=1..N , using the given vk

(in z) and its parents’ values, that come either from z or from the deterministic
application of F .

5. Apply the deterministic functions in Fx (subject to intervention do(X = x)) to
obtain the desired counterfactual samples (vx

(i))i=1..N .

Again, we can avoid sampling N × M unconditioned samples by subsampling
with replacement, provided M is big enough. This procedure allows us to inspect
counterfactual distribution shapes, not only expectations of counterfactuals, which
we will explore in chapter 5.3.

4.2 Graphical Conditioner

We finish this chapter describing the technique that allows us to encompass all DCU
subnetworks into a single network, the Conditioner. This is based on [49], which
proposes a Conditioner for Normalizing Flows that respects any independencies
described by a DAG. Our Conditioner, however, has an additional requirement, as
it models every node’s parameters ΘX, which are heterogeneous between nodes.

Let us consider a DCGMwith variables V . For simplicity of notation, we denote
V ′ := V ∪ U , K := |V|, K′ := |V ′| = |V|+ |U |, with V = (V1, . . . , VK) in a topological
order and U = {UK+1, UK′} in an arbitrary fixed order. Each node Vk ∈ V depends
on parameters Θk; let us define Θ̂ := (Θ̂1, . . . , Θ̂D), the concatenation of all Θk in
order and D := |Θ̂|, the total dimensionality of the concatenated parameters. Since
P(V1, . . . , VK) = EU

[
∏k=1..K P(Vk | Pa′k)

]
and each term depends on θk = Θk(Pa′k),

we define a masking matrix A with shape K′ ×D, where each term ak,d is an indica-
tor for whether the k-th variable (either from V or U ) is an input for Θ̂d

1. Given the

1Normally, every single parameter inside a node depends on the whole set of Markov Parents for
that node; therefore, every one of their masking matrix columns is identical. Nonetheless, we provide
a general definition to include the case where certain parameters are dependent on a subset of their
node’s parents; this does not affect performance, since identical columns are processed simultaneously,
as we will see in the following.
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(A) Example graph. (B) Masking matrix.

FIGURE 4.1: Graphical Conditioner Masking Matrix example.

graph in Fig. 4.1a, the corresponding masking matrix is the one found in Fig. 4.1b.
Assuming that every variable is binary, we model them with Bernoulli-DCNs, each
with a single p parameter; hence, Θ̂ = (pZ, pX, pY).

We can define an arbitrary neural network h with K′ inputs and D outputs that,
given values for V and U , returns values for parameters Θ̂. Note that the resulting
parameters still need an activation function pass to transform them to their appro-
priate domain; each DCU implementation takes care of this step internally.

If we used this network directly, Θ̂ = h(v, u), we would not be respecting the in-
dependencies defined by our graph G. However, when computing a parameter Θd

corresponding to a certain node Vk, we can multiply the concatenated vector (v, u)
by A.,d, so that any variable not a parent of Vk will be masked. Naturally, any pa-
rameters with identical columns in A (even from different nodes) can be computed
simultaneously with only one mask, optimizing the procedure substantially. We will
elaborate on this point in the following.

We first exemplify the sampling and log-likelihood procedure using a shared
Graphical Conditioner. These procedures are already implemented in our software
library, but we showcase them here to illustrate how to appropriately use the Con-
ditioner in our estimations. In order to sample, i.e., generate a value v ∼ P(V), we
start by sampling from all latent variables in (E ,U ), and then follow the topological
order of the graph to process each node sequentially, as usual. Given a node Vk ∈ V
and the values v<k sampled beforehand, we employ the Graphical Conditioner h to
compute the values θk corresponding to that node:

1. Pass (v, u) to h (zero-padding any variables not sampled yet), masking the
input using the corresponding mask A.,Jk , with Jk being the set of columns
corresponding to parameters Θk.

2. Slice the resulting vector to columns Jk to obtain the desired values θk.

3. Pass θk along with pa′k and εk to the DCU sample operation for Vk. The resulting
sample vk can then be employed to sample the node’s descendants.

The log-likehood operation is equivalent, but we do not need to follow a topo-
logical order of the graph, as we already have values for all its nodes.
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An important optimization of this procedure is that we can compute several sets
of parameters at once (in a way, fusing their columns in the matrix A), thereby re-
ducing the number of passes required for the Conditioner. Consider a certain topo-
logical order of the graph, and divide all nodes into levels based on their depths;
given a level of nodes, any nodes with exactly the same Markov parents (therefore,
the same mask for their parameters) can be resolved in a single pass of the network.
On the other hand, we can replicate the input matrix for each of the masks required
for the current level, mask them, concatenate them in the same input matrix and
compute all of them at once with a single pass. Moreover, since the log-likelihood
operation does not need to consider depth levels separately, this effectively reduces
the passes through the Conditioner to a single pass. Note that the alternative, not
using a Graphical Conditioner and having separate networks for every node, still
results in multiples passes, one per each node subnetwork; therefore, a Graphical
Conditioner can optimize these computations substantially, depending on the shape
of the graph.

In practice, we can define any network h with arbitrary architecture to compute
our parameters Θ̂. Not only that, but the use of a single network, instead of indi-
vidual networks for each node, reduces model complexity, overfitting risk, mem-
ory requirements and training and estimation times significantly. Nevertheless,
if a particular DCU implementation requires a more complex Conditioner architec-
ture (e.g., multivariate distributions modelled with an NCF), it is always possible to
model it individually, restricting the shared Graphical Conditioner to the rest of the
nodes in the graph, thus allowing for specialized modelling in complex nodes while
reducing model weight and overfitting risk for simpler distributions.
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Chapter 5

DCG Software

This chapter is devoted to the implementation of the DCG framework through
three custom libraries: torch-misc, flow and dcg, all of them based on the PyTorch
Deep Learning library [50]. We will illustrate their functionalities through a syn-
thetic example, covering DCG training modelled with discrete DCNs and continu-
ous NCFs, then estimating many causal queries of observational, interventional and
counterfactual nature. The code corresponding to this example can be found as the
tutorial notebook in the dcg library Github page.

5.1 Salary Dataset

We begin by describing the Salary dataset, a synthetic data generating process de-
signed to mimic gender biases in the workplace, with which we can ask causal
queries to ascertain fairness w.r.t. salary assignment. We specify the causal graph in
Fig. 5.1 with several paths through which gender affects salary indirectly, modelled
after common societal biases: gender affects both work field and seniority, which in
turn affects salary; gender and age are correlated, having a downstream effect on
salary through education level or seniority (mothers, who are generally older, may
stop working, which leaves older workers more likely to be males; we model this
with a latent confounder named stay-at-home).

A

E

G

Se Sa

F

FIGURE 5.1: Salary Dataset Causal Graph.
Nodes: age (A), education (E), gender (G),

field (F), seniority (Se), salary (Sa).

These variables correspond to three kinds of distribution: gender is a Bernoulli
variable (assuming binary gender as a simplification), field is a Categorical variable
with three levels, and every other variable is a continuous non-negative variable.
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Therefore, we will model these variables with a Bernoulli-DCN, a Categorical-DCN
and NCFs, respectively.

5.2 DCG Training

We start by creating the DCG model that will describe this dataset. For that, we need
to import the main DCG class, all three types of DCU and an additional one for latent
nodes (which we will model after a N (0, 1)), all classes needed for the definition of
a Flow Transformer and some additional imports:

# DCG c l a s s :
from dcg . graph import CausalGraph

# DCU c l a s s e s :
from dcg . d i s t r i b u t i o n a l . d i s c r e t e import Bernoul l i , C a t e g o r i c a l
from dcg . flow import NCF
from dcg . l a t e n t s import Normal as Latent

# NCF− r e l a t e d i m p o r t s :
from flow . flow import Sequent ia l as SequentialFlow , inv_flow
from flow . transformer import Affine , RQ_Spline
from flow . modules import Sca ler , Normalizer , S o f t p l u s
from flow . p r i o r import Normal as NormalPrior

# Other i m p o r t s :
import torch
from torch import nn
from f u n c t o o l s import p a r t i a l

FIGURE 5.2: General imports.

First and foremost, we will use a shared Graphical Conditioner, so we need to
define the architecture for its network. However, we do not create it directly, but
specify a function that receives dimensions and returns the corresponding network,
so that the dcg library itself creates it with the appropriate inputs. This is what we
cover in section 5.2.1. Secondly, for NCF nodes, we need to define their Transformer
flow, which will receive its parameters from the Shared Conditioner; we discuss
their architecture in section 5.2.2. Then, we create and train a DCG model, pass-
ing it the dataset’s graph structure and both creation functions, covered in section
5.2.3. After training, we finish by inspecting the adjustment of the model to the
observational distribution. This is an iterative process, as the imperfections found
in this latter phase inform us of possible architectural changes and hyperparameter
calibration that help in defining a better model for P(V). Once we are satisfied with
the adjustment, we can proceed to query estimation in section 5.3.
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5.2.1 Graphical Conditioner

The Conditioner network can follow any architecture, as long as its input accepts
input_dim dimensions and returns output_dim dimensions. We will define a func-
tion f (input_dim, output_dim, init=None) that creates a PyTorch feed-forward net-
work; see Fig. 5.3. We use the init parameter to specify initialization values for the
last bias layer, its values provided by the dcg library itself taking into account each
node’s DCU. Any activation functions required to adjust the domain of the resulting
parameters are applied by the DCU classes themselves.

def n e t _ f ( input_dim , output_dim , i n i t =None ) :
net = nn . Sequent ia l (

nn . BatchNorm1d ( input_dim , a f f i n e =Fa l se ) ,
nn . Linear ( input_dim , 2 5 6 ) ,
nn . ReLU ( ) ,
nn . Dropout ( ) ,
nn . Linear ( 2 5 6 , 1 2 8 ) ,
nn . ReLU ( ) ,
nn . Dropout ( ) ,
nn . Linear ( 1 2 8 , output_dim )

)

i f i n i t i s not None :
net [ − 1 ] . b i a s . data = i n i t

return net

FIGURE 5.3: Graphical Conditioner network definition.

5.2.2 NCF Transformer

In order to use flows with the dcg library, we define functions f(dim, cond_dim=0)

that create the desired flows. dim is the dimension of the variable to model, while
cond_dim is the dimension of the conditioning tensor (the sum of dimensions of the
node’s parents). Since the Graphical Conditioner already provides values for the
flow’s parameters, we can ignore cond_dim, as we do not need a Conditioner.

We can define a sequence of flow-Transformers with flow.flow.Sequential,
that we imported as SequentialFlow. We pass our sequence of flows as arguments
to its constructor and end it with two keyword arguments: dim, to inform the di-
mension of each of these blocks, and prior, to specify the prior distribution of EX

(usually N (0, 1), imported as NormalPrior). See Fig. 5.4 for this code.
The flow is defined to transform from X to EX, so we need to take into account

the domain of X before we carry out any additional steps. In this example, all our
continuous variables are non-negative, so we use the inverse of a Softplus as the first
step, to transform back to all reals: for that, we use the function inv_flow, which
returns the inverse of the flow passed as argument, in this case a Softplus. We’ll
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precede it with a Scaler flow that learns an appropriate scale parameter to mitigate
numerical instability. Afterwards, we use a Normalizer to transform to mean 0 and
standard deviation 1, followed by five blocks of Spline [51] transformers (with 8
splits in the (−3, 3) interval) and an Affine flow (ε = σx + µ) after each spline.

def f low_f ( dim , cond_dim = 0 ) :
return SequentialFlow (

Sca ler ,
inv_flow ( S o f t p l u s ) ,
Normalizer ,
*sum ( (

[ p a r t i a l ( RQ_Spline , K=8 , A= −3. , B = 3 . ) , Aff ine ]
for _ in range ( 5 )

) , [ ] ) ,

dim=dim , p r i o r=NormalPrior
)

FIGURE 5.4: Flow-Transformer definition.

5.2.3 DCG Creation and Training

The final step is to define the causal structure of the DCG and couple it with both
functions to create the model. We define the graph with a special formatting, listing
every variable with a DCU-alias, its dimensionality and a whitespace-separated list
of parents. We then link each DCU-alias with the corresponding DCU class and pass
both creation functions. Finally, we need to warm-start the model; given an Xtrain

PyTorch Tensor with N training samples for every measurable variable (V) in the
graph, we pass it to the warm_start method. See Fig. 5.5.

Next we train the created DCG model. We will use several utility functions from
dcg.training (inherited from torch_misc.training), which we will describe first.

The train function trains a PyTorch module (our DCG) using Stochastic Gradi-
ent Descent with Early Stopping given training and validation data in the form of
PyTorch DataLoader instances (torch.utils.data.DataLoader). The list of param-
eters for this class is the following:

• graph: graph to train.

• train_loader: DataLoader for the training set.

• val_loader: DataLoader for the validation set.

• loss_f: loss function f(module, batch) to train. Returns the loss of every
sample in the given batch individually.

• optimizer: optimizer to use, inheriting from torch.optim.Optimizer. De-
faults to AdamW[52].
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# D e f i n e t h e graph s t r u c t u r e
d e f i n i t i o n = ’ ’ ’
s t a y _ a t _ h o m e l a t 1
ge nde r be rn 1 s t a y _ a t _ h o m e
f i e l d c a t 3 gend e r
age c o n t 1 s t a y _ a t _ h o m e
e d u c a t i o n c o n t 1 age
s e n i o r i t y c o n t 1 age e d u c a t i o n ge nde r f i e l d
s a l a r y c o n t 1 e d u c a t i o n s e n i o r i t y f i e l d
’ ’ ’

# D e f i n e t h e NCF DCU with t h e f l o w _ f network
NCF_trnf = p a r t i a l (NCF, f low_f=f low_f )

# P a r s e d e f i n i t i o n s t r and c r e a t e t h e DCG model
p a r s e d _ d e f i n i t i o n = CausalGraph . p a r s e _ d e f i n i t i o n (

d e f i n i t i o n ,

l a t =Latent ,
bern=Bernoul l i ,
c a t =Categor ica l ,
cont=NCF_trnf

)

graph = CausalGraph . f r o m _d e f i n i t i on (
parsed_def in i t ion ,
n e t _ f = n e t _ f # Shared C o n d i t i o n e r

)

# Don ’ t f o r g e t t o warm s t a r t and move t o GPU
graph = graph . warm_start ( Xtra in ) . cuda ( )

FIGURE 5.5: DCG definition and creation.

• optimizer_kwargs: keyword arguments to pass to the optimizer (e.g., learning
rate lr, L2 regularization weight_decay).

• scheduler: learning rate scheduler to use, from torch.optim.lr_scheduler.

• scheduler_kwargs: keyword arguments to pass to the scheduler.

• n_epochs: maximum number of epochs to train.

• patience: maximum number of epochs without improvement.

• gradient_clipping: maximum magnitude of the gradient.

• callback: callback function to call at every step of training.

• use_tqdm: use the tqdm1 library to track training progress.

1TQDM Python library: https://github.com/tqdm/tqdm

https://github.com/tqdm/tqdm
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This function returns:

• train_losses: tuples (epoch, loss) with the average training loss per epoch.

• val_losses: tuples (epoch, loss) with the average validation loss per epoch.

We can use dcg.training.loss_f to create the loss function to pass to the train

procedure. We also use dcg.training.data_loader to create a DataLoader from
torch.utils.data.TensorDataset instances containing our training and validation
tensors. Finally, dcg.training.plot_losses allows us to plot both loss curves to
monitor training, passing it the result of the train function directly. See Fig. 5.6 for
the training call. Note that we can use a different training procedure if we so desire:
graph.nll returns the negative log-likelihood of every inputted sample, so we can
use it for our training loss directly.

from dcg . t r a i n i n g import *
# Th i s i mp or t i n c l u d e s : t r a i n , d a t a _ l o a d e r , T e n s o r D a t a s e t ,
# l o s s _ f , p l o t _ l o s s e s , t e s t _ l o g l k , among o t h e r s .

t r a i n _ l o s s e s , v a l _ l o s s e s = t r a i n (
graph ,
data_loader (

TensorDataset ( Xtra in ) ,
b a t c h _ s i z e =256 , drop_las t=True

) ,
data_loader (

TensorDataset ( Xval ) ,
b a t c h _ s i z e =256 , drop_las t=Fa l se

) ,
l o s s _ f = l o s s _ f ( ex_n =100) ,
optimizer_kwargs= d i c t ( l r =1e −3 , weight_decay=1e −2) ,
pa t ience =100

)

FIGURE 5.6: DCG training.

We can inspect the adjustment of our trained model by various means. First, by
using the training loss on a held-out test split of the dataset; this metric can be used
to compare between several trained models. The dcg.training.test_loglk func-
tion accepts a trained DCG model and a Tensor with the test data and returns the
average test log-likelihood (higher is better). On the other hand, we can also visu-
ally inspect the model’s adjustment to the probability distribution by generating N
samples from the trained graph calling graph.sample, which returns a Tensor with
N samples of the model’s distribution, and plotting these samples in a scatterplot-
histogram matrix. See Fig. 5.7; we can see how the marginal distribution of every
continuous variable matches with the one resulting from DCG samples, and the
scatterplots depict the same pair-wise relationships between these variables. This
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kind of plots are mere sanity checks, but allow us to find discrepancies in our DCG
adjustments, together with the test metric.

5.3 DCG Estimation

Here we describe the main DCG methods we will use throughout the next sections.

• sample(self, n, target_node, interventions, return_all): generates n
samples from the distribution. If we only want to obtain samples from a cer-
tain node, we pass the node’s name to target_node. If we want to sample
from the intervened distribution, we can pass any desired interventions to the
interventions parameter, as a dictionary. The method will return a Tensor
with all variables or only the requested target variable. If return_all is True,
it will also return a dictionary with every node’s value (including latent con-
founders and exogenous noise signals).

• loglk(self, x, target_node, interventions, cond, ex_n): computes the
log-likelihood of the given samples x: log P(x). If we pass a target_node, it
will only compute log P(Y) where Y is the target_node. If we pass a condi-
tioning dictionary Z = { node: value } with the cond parameter, it returns
log P(x | Z). Finally, we can pass any interventions we desire, if we want to
compute log-likelihoods in the intervened model. ex_n determines how many
samples can be generated for any missing variable in equation 4.3.

• cond_exp(self, x, f, ex_n): returns conditional expectations EV|x [ f (V)],
where V are all observable variables in the graph, f is the provided function
(or the identity if None), and x are the conditioning terms, defined by the passed
dictionary x = { node: value }. If we need to compute additional samples,
ex_n determines how many will be sampled, as in equation 4.4.

• counterfactual(self, x, target_node, interventions, ex_n, f, agg):
computes the counterfactual expectation EVt|x [ f (Vt)] where x are the factual,
observed variables (either a dictionary or a Tensor with all measured vari-
ables), f is a function that is applied to the counterfactual variables (the iden-
tity if f is None) and t are the provided interventions. If target_node is spec-
ified, the method only computes the counterfactual target_node and passes
it to f , instead of every other variable. ex_n determines how many missing
and/or abducted samples will be generated for equation 4.7. Finally, if agg
is False, the method doesn’t compute the aggregated result, but returns the
counterfactual samples along with the associated unnormalized weights (use
the softmax operation to normalize them), indexing terms, etc., that can be
used to perform other kinds of queries (counterfactual sampling, for example);
see the documentation for more details.
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Most of these functions accept different formatting for its inputs. Values can
be passed either as a torch.Tensor (in which case it is a matrix with every mea-
sured variable in the graph, in the order specified in the definition) or as a dictio-
nary { node: value }. Note that you can always pass dictionaries; full Tensor
matrices are only accepted in the loglk and counterfactual operation x parame-
ter. For a dictionary input, its keys can either be node names (strings) or the actual
nodes in the graph (accessed with graph[name]); its values can either be single val-
ues (booleans, integers, floats), NumPy arrays for single dimensional variables or
matrices for multi-dimensional variables, or torch.Tensor.

We will now exemplify these methods while computing queries of interest.

5.3.1 Observational and Interventional Queries

Let us start with the causal effect of variables X on salary Y, E [Y | do(X = x)], and
compare it with the conditional query E [Y | X = x]. X will be either a Bernoulli
variable, a Categorical variable, or a continuous variable; the procedure will essen-
tially be the same. See Fig. 5.8 for the gender-on-salary query: the results for the
interventional query are $35137.79 and $26399.20 for men and women, respectively,
while the observational query returns $36474.39 and $25918.47. Note that the obser-
vational query overestimates the effect of males on salary, most probably as a result
of the latent confounder, which the interventional mechanism ignores because any
incoming arrows are discarded when intervening. The Categorical example is anal-
ogous, simply intervening with IdD, the identity matrix of size D, one for each level
of the Categorical variable; this results in D samples, one pointing to each level.

Finally, for continuous variables, we define K equidistant points in [0, 1] and com-
pute the corresponding quantiles from the intervened/conditioned variable using
training data directly; these are our intervened values, which we can use to sample N
values each from the target variable, with which to estimate the interventional/ob-
servational effects. See Fig. 5.9 for the corresponding code. We plot both curves for
every variable; see Fig. 5.10.

5.3.2 Likelihood Queries

The loglk operation allows us to compute many kinds of density queries. Next,
we compute the density of salary in three cases: unconditioned, conditioning on
gender and intervening on gender, all using the same DCG method. See Fig. 5.11
for the required code. We plot the resulting curves along with the corresponding
histograms to test their adjustment; Fig. 5.12 shows these estimations. As we can
see, every density curve fits its corresponding histogram, which shows that indeed
DCGs learn these densities, even the interventional curve, despite only ever training
with observational unconditioned data.
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with torch . no_grad ( ) : # no need t o compute g r a d i e n t s
# I n t e r v e n t i o n a l e f f e c t
sample = graph . sample (

N * 2 , target_node= ’ s a l a r y ’ ,
i n t e r v e n t i o n s ={ ’ gender ’ : [ True , Fa l se ] }

)
# We a s k e d f o r 2N samples ,
# N f o r g end e r=True ( male ) , N f o r g end e r= F a l s e ( f e m a l e ) .
# We a g g r e g a t e e a c h one s e p a r a t e l y .
i n t v = sample . view (N, 2 ) . mean ( 0 )

# O b s e r v a t i o n a l e f f e c t ( c o n d i t i o n a l )
# We c o n d i t i o n on g end er f o r t h e e x p e c t a t i o n on s a l a r y .
# We p a s s t h e c o n d i t i o n i n g t e rms f i r s t ,
# th en s p e c i f y f t o compute E [ f (V) | G=g ] .
# I f f i s a s t r , f f i l t e r s V t o t h e s p e c i f i e d node .
obs = graph . cond_exp (

{ ’ gender ’ : [ True , Fa l se ] } ,
f = ’ s a l a r y ’ , ex_n=N

)

FIGURE 5.8: Bernoulli intervention/conditional estimation.

5.3.3 Counterfactual Queries

For counterfactual queries, we focus on individuals for whom we have observed
some of their variables, and we want to explore the counterfactual world where a
certain variable is intervened. We will operate on this space from the perspective
of fairness: "what would my salary be had I been a man?". Given a woman with
average salary, we will study the (average) counterfactual salary had she been a
man; we will also sample from her counterfactual distribution to study its shape.

See Fig. 5.13 for the associated code; the observed salary is $27101.51 while the
(average) counterfactual salary is $37676.84. We also inspect the histogram of coun-
terfactual samples in Fig. 5.14a. This distribution has some multi-modality, proba-
bly due to the effect of each of the three different fields; we test this hypothesis by
also conditioning on the first field, with the resulting histogram in Fig. 5.14b, which
removes this multi-modality as expected.

This simple example shows the importance of counterfactual sampling, since
only estimating the expectation would not give us information about the multi-
modality in the underlying distribution. However, thanks to these counterfactual
samples, we can inspect its shape.
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K = 20 # g e n e r a t e K v a l u e s f o r t h e i n t e r v e n i n g v a r i a b l e

for v in [ ’ age ’ , ’ education ’ , ’ s e n i o r i t y ’ ] :
# d f _ t r a i n i s a pd . DataFrame o f our t r a i n i n g d a t a
# G e n e r a t e q u a n t i l e s from 0 t o 1
i n t v = d f _ t r a i n [ v ] . q u a n t i l e ( np . l i n s p a c e ( 0 , 1 , K ) ) . values

with torch . no_grad ( ) :
# I n t e r v e n t i o n a l e f f e c t
intv_sample = graph . sample (

N * K, target_node= ’ s a l a r y ’ ,
i n t e r v e n t i o n s ={v : i n t v }

)
# sample i s a Tensor with N * 20 samples , a g g r e g a t e N
intv_sample = intv_sample . view (N, K ) . mean ( 0 )

# C o n d i t i o n a l e f f e c t
# graph . cond_exp n e e d s more memory than graph . sample
# so ex_n=N n e e d s a l o t o f memory
# i f we p a s s e v e r y g e n e r a t e d q u a n t i l e .
# We compute them one by one f o r t h i s r e a s o n .
cond_sample = np . array ( [

graph . cond_exp ( { v : x } , ’ s a l a r y ’ , ex_n=N) . item ( )
for x in i n t v

] )

# P l o t b o t h c u r v e s
# . . .

FIGURE 5.9: Continuous intervention/conditional estimation.

FIGURE 5.10: Continuous intervention/conditional estimation.
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N = 1000
K = 100

# Compute l o g l k f o r a s p r e a d o f q u a n t i l e s
qs = d f _ t r a i n . s a l a r y . q u a n t i l e ( np . l i n s p a c e ( 0 , 1 , K ) ) . values

with torch . no_grad ( ) :
# U n c o n d i t i o n e d o b s e r v a t i o n a l
uncond_loglk = graph . l o g l k (

{ ’ s a l a r y ’ : qs } , target_node= ’ s a l a r y ’ , ex_n=N
)

# C o n d i t i o n e d o b s e r v a t i o n a l
cond_loglk = [

graph . l o g l k (
{ ’ s a l a r y ’ : qs } , target_node= ’ s a l a r y ’ ,
cond ={ ’ gender ’ : v } , ex_n=N

)
for v in [ True , Fa l se ]

]

# I n t e r v e n e d
i n t v _ l o g l k = [

graph . l o g l k (
{ ’ s a l a r y ’ : qs } , target_node= ’ s a l a r y ’ ,
i n t e r v e n t i o n s ={ ’ gender ’ : v } , ex_n=N

)
for v in [ True , Fa l se ]

]

# P l o t c u r v e s
# . . .

FIGURE 5.11: Likelihood estimation.
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(A) Observational density.

(B) Conditional density.

(C) Interventional density.

FIGURE 5.12: Density estimation.
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avg_salary = d f _ t r a i n [~ d f _ t r a i n . gender ] . s a l a r y . mean ( )

with torch . no_grad ( ) :
# C o u n t e r f a c t u a l E x p e c t a t i o n
c f = graph . c o u n t e r f a c t u a l (

{ ’ gender ’ : False , ’ s a l a r y ’ : avg_salary } ,
target_node= ’ s a l a r y ’ ,
i n t e r v e n t i o n s ={ ’ gender ’ : True } ,

)

# C o u n t e r f a c t u a l Sampling
x , w, _ , _ , _ = graph . c o u n t e r f a c t u a l (

{ ’ gender ’ : False , ’ s a l a r y ’ : avg_salary } ,
target_node= ’ s a l a r y ’ ,
i n t e r v e n t i o n s ={ ’ gender ’ : True } ,
agg=False ,
ex_n =10000

)

# Normal iz e w e i g h t s and compute i t s l o g
log_w = torch . nn . f u n c t i o n a l . log_softmax (w, 0 )

from dcg . sampling import weighted_sampling
x = weighted_sampling ( 1 0 0 0 , x , log_w=log_w )

FIGURE 5.13: Counterfactual estimation and sampling.

(A) Counterfactual samples. (B) Counterfactual samples with factual field=A.

FIGURE 5.14: Counterfactual sampling.
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Part III

Experiments and Applications
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Chapter 6

Estimation Benchmark

This chapter verifies DCG’s estimation capabilities for causal queries. The main dif-
ficulty in measuring estimation performance in a causal setting is that we can never
measure both the factual and counterfactual outcome: for every individual/sample,
we only have access to one intervention-outcome pair, but never the counterfactual
outcome under a different intervention. It is for this reason that we cannot measure
error metrics either. As a result, most estimation experiments opt for semi-synthetic
datasets: real datasets, normally from a randomized experiment, but subject to an
artificial sampling process that follows a known Causal Graph. Consequently, we
can test our methods against certain causal metrics based on real-world data, even
if the underlying causal mechanism is synthetic in nature.

We employ the IHDP-Jobs benchmark [9], a well-established estimation bench-
mark in the Potential Outcomes literature. It consists of two semi-synthetic datasets:
the Infant Health Development Program Dataset (IHDP) [53], with a continuous
outcome Y, and the Jobs Dataset [54], with a discrete outcome. Working on a graph
(X → T, Y; T → Y), the objective query is the Individual Treatment Effect (ITE),
Q := E [Y1 −Y0 | X], subject to a binary intervention on T. Along with it, we can
also estimate the Average Treatment Effect (ATE), Q := E [Y1 −Y0], considering
that E [Yt] = EX [E [Yt | X]]. Please refer to the dcg library Github page for the code
of this experiment.

Since both datasets are semi-synthetic, we do have access to these terms and so
we can compute the following metrics proposed in [9]: eATE, Mean Absolute Error
(MAE) in the ATE;

√
ePEHE, Root Mean Squared Error (RMSE) in the ITE; eATT, MAE

in the ATE for the Treated (T = 1); and Rpol , policy risk, also related to ITE. We
follow the benchmark’s experimental setup: same train, validation and test splits,
with estimations performed on 1,000 replications of the IHDP Dataset and ten repli-
cations of the Jobs Dataset, which allows for confidence intervals to be obtained for
each metric (±1.96 standard deviations).

We compare our results against many different Potential Outcome strategies:
simple and bi-headed Linear Regression (LR1, LR2), Causal Effect Variational Au-
toencoder (CEVAE, the only method in the Desiderata table discussed in section
1.2.4 that offered results for this benchmark) [20], Balancing Neural Networks (BNN)



74 Chapter 6. Estimation Benchmark

[8], Treatment-Agnostic Representation Network (TAR) [9], Counterfactual Regres-
sion (CFR) [9], Adaptively similarity-preserved representation learning for Causal
Effect estimation (ACE)1 [10], Subspace Learning Based Counterfactual Inference
(SCI) [11] and Causal Optimal Transport (CausalOT)2 [12]. Except for CEVAE and
our own technique, all methods are estimand-based and therefore specialized in the
estimation of these particular queries. These methods constitute the state-of-the-art
in estimand-based Causal Query Estimation.

6.1 Experiment Setup

For this particular benchmark, we compare against methods that learn E [Yt | X],
with T binary and X confounder covariates (25 dimensions for IHDP, 17 for Jobs).
Normally, we would model the whole graph node by node, but here we are only
interested in the distribution P(Y | X, T) (modelled by Y’s DCU), as the estimation
procedure for each metric does not require modelling either T or X (X → T, therefore
intervening T cannot affect X). What we can do instead is define what the dcg library
calls an Input DCU, a placeholder node that accepts i. i. d. values from the dataset.
We can employ the training values for these variables as "samples" when performing
the usual estimations so that we avoid modelling those nodes, as we do not need to
perform either loglk or abduct with them.

We employ this simplification for two reasons. Firstly, the IHDP experiment con-
sists of 1,000 replications, and a model must be trained for each of them. Not only
that, but we employ a 5-Fold Cross-Validation (CV) strategy (detailed below), requir-
ing 5,000 models. Were we to train the whole 27-variable graph, training times for
the whole benchmark would be prohibitively long. Additionally, modelling errors
in the variables of X would propagate to the outcomes in Y. This would be unfair
on our model, which is designed to be graph- and query-agnostic, when comparing
against highly specialized models designed for one singular graph and query. We
therefore decided on this simplified strategy for the benchmark. This means that
we cannot evaluate the effect of error propagation on our estimations, and such an
experiment remains for future research.

Regarding the CV strategy, since the number of samples in the IHDP dataset is
quite limited (672 training samples) and our flows are highly flexible models, we
train five different models instead — one for each CV split of the original training
and validation subsets — and join them all together in a single model with a Mixture
DCU, discussed in section 3.4. We fix their weights as a constant (independent of
Pa′Y), the softmax of their average validation log-likelihood. This mixture allows us
to use the available data effectively, as the data normally employed for validation
can also be used for training in every other submodel. In the following section, we

1ACE provide results for ePEHE on IHDP, but not for
√

ePEHE, which makes it impossible to compute
when averaging the errors for all replications.

2CausalOT provides results for both metrics on IHDP, but they do not specify if these metrics come
from the train or test split.
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refer to this mixture as Mixture-DCG, whereas Single-DCG represents the single best
model in validation from the five splits.

With respect to the DCG architecture, each dataset requires a different type of
DCU model, as the IHDP outcome is continuous and the Jobs outcome is binary.
For the former, we employ an NCF with Rational Quadratic Flows [51] as in chap-
ter 5.2.2’s example, whereas for the latter, we only require a Bernoulli DCN. Both
methods use the same Conditioner architecture, consisting of a bi-headed Network,
following the example of [9]. Finally, we use the same training procedure as before,
with slight hyperparameter adjustments depending on the dataset.

Note that no method in the benchmark uses the factual outcome of Y, denoted
by Yf , in their estimation, only the covariates X and the treatment T. However,
our DCGs can employ this information if available, using counterfactual estima-
tion. We compute the resulting metrics without Yf (DCG) and with Yf (DCG*) to
evaluate how our method responds when we have post-facto information about
the treatment outcome (e.g., "Would we have recovered had we administered the
treatment?"). Table 6.1 presents all of these results; we highlight every method that
improves on the rest (except DCG*), and also DCG* if it is the best among them.

6.2 Discussion

DCGs achieve the best performance on eATE for the IHDP dataset, and second place
on eATT test for the Jobs dataset, improved on only by CEVAE, which is the best
model for this query. Note, however, that the train split attains better results when
using far simpler methods (LR1), which suggests that overfitting might be damag-
ing the performance of the rest of the models. On the other hand, CFR [9] is a clear
improvement on ITE metrics (

√
ePEHE and Rpol) except for Rpol on the training set,

whereas DCGs achieve third place for the IHDP dataset, close to TAR. Note that the
DCGs we implement for this experiment are essentially equivalent to TAR [9] in all
regards (the exact same Conditioner architecture) except that instead of estimating
the expected treatment outcome, they model the actual distribution through Nor-
malizing Flows, from which we later estimate the expectation. We believe that the
added complexity in modelling the distribution (an additional functionality missing
from the other methods) might account for this slight drop in performance. CFR, on
the other hand, uses balancing regularization between both treatment distributions
to improve its results, something that we omitted for this experiment in benefit of
simple, general models for arbitrary query estimation. Regarding Single-DCG and
Mixture-DCG, the mixture accomplishes better results overall, demonstrating the
applicability of the CV-Mixture technique on small datasets. Finally, DCG* results
in better performance than DCG as expected, since the addition of the factual out-
come provides more information to draw from; this is a functionality that the other
methods do not provide directly.



76 Chapter 6. Estimation Benchmark

T
A

B
L

E
6.1:M

etrics
on

the
IH

D
P-Jobs

potentialoutcom
es

benchm
ark.Low

er
is

better.

IH
D

P
JO

B
S

eA
T

E
√

eP
E

H
E

eA
T

T
R

pol

T
R

A
IN

T
E

ST
T

R
A

IN
T

E
ST

T
R

A
IN

T
E

ST
T

R
A

IN
T

E
ST

L
R

1
.73
±

.04
.94
±

.06
5.8
±

.3
5.8
±

.3
.01
±

.00
.08
±

.04
.22
±

.00
.23
±

.02

L
R

2
.14
±

.01
.31
±

.02
2.4
±

.1
2.5
±

.1
.01
±

.01
.08
±

.03
.21
±

.00
.24
±

.01

C
E

V
A

E
[20]

.34
±

.01
.46
±

.02
2.7
±

.1
2.6
±

.1
.02
±

.01
.03
±

.01
.15
±

.00
.26
±

.00

B
N

N
[8]

.37
±

.03
.42
±

.03
2.2
±

.1
2.1
±

.1
.04
±

.01
.09
±

.04
.20
±

.01
.24
±

.02

TA
R

[9]
.26
±

.01
.28
±

.01
.88
±

.02
.95
±

.02
.05
±

.02
.11
±

.04
.17
±

.01
.21
±

.01

C
FR

[9]
.25
±

.01
.27
±

.01
.71
±

.02
.76
±

.02
.04
±

.01
.09
±

.03
.17
±

.01
.21
±

.01

A
C

E
[10]

-
-

-*
-*

-
-

.22
±

.01
.22
±

.01

SC
I

[11]
-

-
-

-
-

-
.21
±

.01
.23
±

.01

C
A

U
SA

LO
T

[12]
-*

-*
-*

-*
-

-
.20
±

.01
.21
±

.03

S
IN

G
L

E-D
C

G
.19
±

.02
.22
±

.02
1.0
±

.08
1.0
±

.08
.08
±

.02
.08
±

.02
.24
±

.01
.24
±

.03

M
IX

T
U

R
E-D

C
G

.12
±

.01
.17
±

.01
.93
±

.07
.96
±

.08
.07
±

.01
.07
±

.02
.23
±

.01
.25
±

.05

S
IN

G
L

E-D
C

G
*

.16
±

.01
.19
±

.01
.94
±

.07
.96
±

.09
.09
±

.02
.07
±

.02
.19
±

.01
.19
±

.04

M
IX

T
U

R
E-D

C
G

*
.12
±

.01
.15
±

.01
.85
±

.06
.87
±

.08
.08
±

.02
.07
±

.02
.10
±

.02
.10
±

.03



6.3. Modelling Error vs. Estimation Error 77

In conclusion, DCGs achieve competitive results against state-of-the-art mod-
els in potential outcome estimation, even though they do not use ad-hoc estimands
of the query at hand. Rather, they employ general training procedures valid for
arbitrary graphs that result in models capable of answering any identifiable query,
again with general procedures valid for any other graph. Also note that our model
architecture can be interchanged for any other, providing high modularity that could
even obtain better results than those achieved here. We expect future work to pro-
vide extensions for our technique with more powerful model architectures.

6.3 Modelling Error vs. Estimation Error

Section 1.2.3 explains why the correct estimation of an identifiable Causal Query is
viable using our techniques if the model follows the same Causal Structure G and
the same observational distribution P(V) as the underlying data generating process.
Although Neural Networks are universal approximators, in practice we cannot re-
alistically achieve the exact same distribution, only approximate it. Further work
on this subject should study the effect of this discrepancy, and the variance of our
estimations resulting from error propagation across every node in the graph.

Regarding the former problem, here we perform a minor experiment as a sanity
check: will the estimation metrics in the previous benchmark improve throughout
training, while getting closer to the underlying distribution P(V)? We study this by
means of the scatterplot in Fig. 6.1, which relates the average negative log-likelihood
(training loss) on the test dataset with every metric in the former experiment (includ-
ing the estimations with Yf , denoted with a star (*)). Although this does not prove
that diminishing modelling errors entail better estimations, it does corroborate the
hypothesis, at least for this experiment.
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Chapter 7

Applications

In this chapter we showcase our techniques on two real-world datasets; the first
experiment deals with Causal Query Estimation, as a means of understanding an
underlying mechanism, while the second one covers Black-Box Introspection and
Counterfactual Fairness. Please refer to the dcg library Github page for the prepro-
cessing and experimental code of these examples.

7.1 Bike Sharing Dataset

We start our exposition with the Bike Sharing Dataset [55], which contains the num-
ber of bikes used on a Bike Rental service in Washington, D.C., USA on a daily basis
between 2011 and 2012 (731 samples), along with weather data for each day. Our
aim here is to study the effect of temperature (T) on bike rental (Y), assuming that the
underlying DGP follows the causal graph shown in Fig. 7.1. Here, season and weather
are Categorical variables (4 and 3 levels, respectively); working day is a Bernoulli vari-
able; temperature, humidity, windspeed and feeling temperature are continuous variables
normalized to the (0, 1) interval, and bikes is the target variable, a count of rented
bikes on a given day (which we assume to be continuous for ease of modelling). We
define a latent confounder between humidity and wind speed to reflect weather fac-
tors that affect both but are not captured by the Categorical variable weather. We do

FIGURE 7.1: Bike Sharing Dataset, proposed Causal Graph.
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FIGURE 7.2: Bike Sharing Dataset, variable histograms (blue) with
DCG densities: Compound-DCN and NCF.

not wish to make any claims regarding the real underlying graph; henceforth, we
assume this graph to be valid only for illustrative purposes.

7.1.1 Data Adjustment

First we need to decide which DCU implementation will be employed for each
node. To illustrate the potential of the different DCUs mentioned in this work, we
train two different models, one consisting of Compound-DCNs and one with NCFs.

For the former case, since temperature, humidity, wind speed and feeling tempera-
ture are all bounded to the (0, 1) interval, we employ the Beta Distribution for their
variables. As for bikes, the counting variable, we use the Normal Distribution (ND).
Note that despite modelling these nodes with a Beta or a Normal distribution, they
only follow them when conditioned by all its parent values; when we marginalize
those conditioning terms, the result is a mixture of their base distributions, which
is far more expressive than first assumed. Not only that, but the Compound DCU
allows for further expressivity in their modelling.

Regarding the NCF implementation, we use the same Transformer as in Fig. 5.4,
except for the two beginning layers: bikes operates in non-negative reals, but we
do not restrict its domain; however, every other variable is restricted to the (0, 1)
interval, so we start with a Logit flow that transforms it back to all reals.

Fig. 7.2 shows the dataset histograms for every continuous variable and the cor-
responding marginalized likelihood curves, evaluated by each DCG. Although both
alternatives are quite similar, C-DCNs struggle with cnt (count of rented bikes), pos-
sibly due to its multi-modality, whereas NCFs can be as flexible as required given
a powerful flow architecture. The choice of DCU depends on the complexity of
the data and the number of samples (the smaller the dataset, the more overfitting
introduced by NCFs; in that case, DCNs or C-DCNs are preferable). In the following
section, we will evaluate three identifiable queries with the NCF model.
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7.1.2 Causal Query Estimation

FIGURE 7.3: Bike Sharing Dataset, interventional effect of
temperature t on rentals Yt, estimated with DCGs

and the back-door formula for comparison.

We start with an interventional query: the average number of rented bikes when
intervening temperature by a certain value t. Fig. 7.3 plots the effect (y-axis) of each
intervention do(T = t) (x-axis) computed using our DCG model, but also with the
back-door formula E [Yt] = ES

[
EY|T=t,S [Y]

]
for comparison. For the latter, we use

Random Forests to model each term needed to compute the query. As can be seen
from the figure, there are no significant differences between the two curves, which
shows that, despite following a completely different strategy to the back-door ap-
proach, DCGs still manage to answer the query reliably.

FIGURE 7.4: Bike Sharing Dataset, counterfactual effects of inter-
vened temperature t′ on rentals when we have observed an average

number of rentals and different values of temperature t.
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Next, we study a counterfactual query: the expected number of rented bikes in-
tervened by temperature with value do(T = t′), when we have already observed a
different temperature T = t and the rented bikes are observed to be their average
number (Y = Y). Fig. 7.4 shows a heatmap of this counterfactual quantity (colour
is the counterfactual value) when we have observed a certain t value (x-axis) and
intervened on temperature with a different t′ (y-axis). From the previous query, we
know that Y and interventions on T are directly correlated, which tells us that days
with higher temperatures should expect above-average number of bikes, whereas days
with lower temperatures expect below-average counts. However, a factual average
number was observed in both cases; this means that higher values of t start from
an average Y, and can only go down as the intervention reduces temperature. Con-
versely, lower values of t start from an average count and go to the highest values as
t′ increases. In layman’s terms, if today was a cold day but we still had an average
number of rentals, this must mean that it was a busier day than usual, and increasing
the temperature can only result in higher rentals.

FIGURE 7.5: Bike Sharing Dataset, KDE curves resulting from coun-
terfactual sampling, where we observe temperature t and an average

number of rentals, but we intervene on temperature 1− t.

Finally, Fig. 7.5 showcases an example of counterfactual sampling. Having again
observed an average count of rentals (Y = Ỹ) and a certain temperature t, we inter-
vene by inverting the temperature do(T = 1− t) (remember that T is normalized to
(0, 1)) and obtain samples from the counterfactual variable Y1−t. We use Kernel Den-
sity Estimation (KDE) to plot the density curves from these samples, so we can see
all curves at once. t is coded by colour, with lower temperatures in blue and higher
temperatures in red. As we can see, observing low temperatures t (blue) means inter-
vening with high temperatures, which increases the number of rentals, resulting in
above-average values (past the dashed vertical line, the average number of rentals).
Higher temperatures (red), on the other hand, are intervened on with lower tempera-
tures, which can only result in lower counts.
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As stated before, the fact that we can obtain these counterfactual samples instead
of only expectations of these distributions allows for extra flexibility in our causal
studies; since we are not only restricted to expectation studies, we can, for example,
look for multi-modalities or asymmetries in their distributions. This is a significant
advantage of DCGs in comparison to estimand-based approaches, and even some
other estimand-agnostic models that do not provide abduction mechanisms.

7.2 City of Phoenix Employee Compensation Dataset

Our final experiment explores the City of Phoenix Employee Compensation Dataset
[56] for the year of 2016, which lists the salaries of public employees along with sev-
eral variables describing the person and their work situation. We will study this
dataset in three steps: firstly, we will analyze the data itself with interventional and
counterfactual queries, in order to understand the hiring process, especially with
regard to salary assignment and gender; secondly, we will measure the Counterfac-
tual Fairness of salary towards gender and train a black-box predictor to be coun-
terfactually fairer; finally, we will inspect this black box with Causal Introspection
techniques, from Feature Importance to Counterfactual Explainability. In the end,
we will also measure the effect that this predictor would have on contract termina-
tion, so as to evaluate the impact of the new policy.

This dataset consists of 15,026 entries and 11 variables, including employee name,
hire date, salary, etc. We perform several preprocessing steps:

• We compute the seniority of an employee by subtracting hire date from termina-
tion date (or the last day of the year if not terminated).

• We define salary as the sum of the regular, overtime and other pay columns.

• We aggregate every department and benefits values (both categorical) that ac-
count for less than 5% of the data as a new category: "Other".

• We determine the employee’s gender from their name using an automated pre-
dictor service [57]. While there is a degree of uncertainty in this prediction of
gender, it is the only way for us to exemplify a study of fairness on this dataset.

• We remove any part-time employees so as to study the effects of unfairness for
full-time positions only. The part-time group constitutes a 10% of the dataset
and has a substantially higher ratio of females (47%) than the full-time group
(29%), with much lower salaries. While this constitutes a source of unfairness,
it is hard to study this subgroup as, given the variability of its salaries, it re-
quires a higher number samples and additional variables to which we do not
have access (e.g., number of weekly hours or hiring period length).
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FIGURE 7.6: Phoenix Salary Dataset, causal graph.

• We remove any employees with a salary above the 99% percentile; these sam-
ples are extreme values belonging primarily to males (87%), which also ex-
plains a considerable source of unfairness. However, if we included these val-
ues, it would bias the numerical estimations, so we omit them.

As a result of this preprocessing step, the dataset consists of 13,139 samples with
6 variables: gender (binary), department, benefits (type of indirect work pay perceived
by the employee), salary, seniority and termination (whether the employee’s contract
has been terminated during the year). Descriptive statistics of the resulting dataset
are included in Table 7.1. We divide the dataset in three random subsets -train, val-
idation and test- with 70%, 15% and 15% of the samples, respectively; only training
and validation will be used for the graph and predictor training.

See Fig. 7.6 for the proposed causal graph. We operate on the assumption that
gender affects the choice of department due to societal pressure, while both affect ben-
efits, seniority and salary. On the other hand, department, seniority and salary affect the
eventual termination of the contract.

We acknowledge several limitations in the choice of variables and graph. Gender
is a flawed variable since we do not have access to it directly, forcing us to extrapo-
late it from the employee’s name; more so, since the gender predictor only considers
binary gender, it does not account for non-binary genders. Department and benefits
are aggregated when their values account for less than 5% of the dataset, as stated
before, which semantically is not always appropriate for these categories. Salary as-
signment and contract termination depend on the necessities of each department and
the allocated budget, which would create a feedback loop in this Causal Graph for
other to-be-hired employees, something that we cannot account for with DCGs at
the moment. We also omit any latent confounders, as we do not see any relevant
relationship in this structure that would require them; nonetheless, were there any,
DCGs can model them without limitations to their capabilities, as long as the queries
to be estimated are identifiable. We choose this Causal Graph attaining to the lim-
itations present in the data and our own judgement of how these variables interact
with one another. However, as with every other causal study, the graph is subject to
revision, and subsequently the results derived from it.
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Dataset Mean Dataset S.E. DCG Mean DCG S.E.

P(Gender=Male) 0.709 0.004 0.706 0.004
P(Termination) 0.057 0.002 0.053 0.002

Department[Aviation] 0.063 0.002 0.061 0.002
Department[Fire Dep.] 0.151 0.003 0.154 0.003
Department[Police Dep.] 0.304 0.004 0.289 0.004
Department[Public Works] 0.074 0.002 0.073 0.002
Department[Water Services] 0.104 0.003 0.098 0.003
Department[Other] 0.305 0.004 0.325 0.004

Benefits[1] 0.075 0.002 0.079 0.002
Benefits[2] 0.124 0.003 0.118 0.003
Benefits[3] 0.175 0.003 0.176 0.003
Benefits[4] 0.193 0.003 0.179 0.003
Benefits[5] 0.122 0.003 0.125 0.003
Benefits[7] 0.244 0.004 0.264 0.004
Benefits[Other] 0.067 0.002 0.059 0.002

Seniority (days) 4,799 27.7 4,728 27.561
Salary ($) 66,660 263.244 65,220 267.531

TABLE 7.1: Phoenix Salary Dataset, dataset statistics per variable
vs. estimated statistics from DCG’s samples.

FIGURE 7.7: Phoenix Salary Dataset, continuous variable histograms
vs. estimated densities using DCGs.

7.2.1 Data Adjustment

Before we perform a Causal Analysis, we need to train the DCG model to adjust to
the dataset’s distribution. We begin by demonstrating the adjustment of the model
to the target distribution. Table 7.1 lists the mean and standard error (S.E.) for every
variable in the dataset across N = 13, 139 samples, along with the estimated means
and S.E. computed from N DCG-generated samples. Additionally, we plot the his-
tograms of the two continuous variables, seniority and salary, together with their
DCG-estimated densities; see Fig. 7.7. Both of these results show a good adjustment
to the underlying distribution.
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FIGURE 7.8: Phoenix Salary Dataset, observational vs. interventional
effects for several continuous variables.

7.2.2 Causal Analysis

Interventional effects

We start by measuring interventional causal effects between pairs of variables, the
first of which would be the effect of intervening gender on every other variable. We
compute the effect on the target variable Y (seniority, salary or P(termination)) when
intervening gender to males (do(G = 1)) or to females (do(G = 0)), with G, gender,
as an indicator of male. We compare the difference in expectation between the in-
tervened population of males against females, E [YG=1] − E [YG=0]; the results are
290 days, $11, 734 and−1% (1% less likely of being terminated if male), respectively.
Note that especially the first two results denote a certain bias against women, which
will reappear throughout the next estimations.

We will not compute the effect of categorical variables (department and benefits)
since their levels do not provide enough meaningful information. However, if we
were interested in them, we would simply need to intervene with every possible
level of the variable, as with the Bernoulli case, and compare between them.

Finally, for continuous variables X, let us define K evenly-spaced terms between
0 and 1 (extremes excluded), u := (ui)i=1..K , ui := i

K+1 , and compute the corre-
sponding u-quantiles for the intervening variable, (qi)i=1..K, qi := CDF−1(ui). We
can then estimate the observational and interventional effects, yi := E [Y | X = qi]

and ŷi := E [Y | do(X = qi)], respectively, both using DCG procedures. We plot
the pairs (qi, yi) and (qi, ŷi) in Fig. 7.8, to compare the effects of conditioning and
intervening X on Y. The ticks on the x-axis represent distribution density on the
intervening variable.

When interpreting these effects, we see several trends that are consistent with our
intuition: salary and seniority are directly proportional, with a slower slope as senior-
ity increases; seniority reduces the likelihood of termination at first, but after a certain
point around 8,000 days (more than 20 years), we see the trend increase again, likely
due to retirement; regarding the last plot, we see that salary and the probability of ter-
mination are inversely proportional, with it being much more likely on lower salaries
(less than $40,000), either because these individuals look for alternative job offers,
or because management finds it easier to let them go. This latter trend in particular
is important, as it will inform some of the counterfactual analyses carried out later.
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FIGURE 7.9: Phoenix Salary Dataset, counterfactual effects for indi-
viduals i1 and i2. The interventional effect for the whole population
is included for comparison. The coloured x-marks show the individ-

uals’ observed values for both axes/variables.

Finally, we see no remarkable differences between the interventional and observa-
tional effects; while they are technically not the same, in practice they can be quite
similar in some datasets. Nevertheless, one should never take observational estima-
tions as proxies for causal queries, as they can considerably diverge depending on
the problem.

Counterfactual effects

The former computations all relate to interventional expectations, queries that de-
scribe the behaviour of the whole population when submitted to a certain interven-
tion. Now, we focus on counterfactual queries, that can be understood as focused
on an individual of whom we know some factual information; we want to estimate
what effect a certain intervention would have had on this particular person. For
the remainder of the experiment, we will consider two individuals, i1 = 7, 071 and
i2 = 5, 352 (their 0-indexed position in the dataset), chosen according to certain re-
quirements. Both are women with salaries between the 25th and 75th quantiles, one
whose contract has not been terminated, the other that has, respectively. With these
restrictions, we choose the woman with the highest gain in salary had they been
males; in other words, we compute the counterfactual expectation of salary given an
intervention of gender for every individual in these subsets and select the one with
the highest difference between the counterfactual and factual salaries. We are inter-
ested in these individuals so as to measure how they are affected by the unfairness
of the salary mechanism, but also to see how the other variables affect that decision.

In terms of the counterfactual gender effect, i1 has a factual salary of $77, 740 and
a counterfactual salary of $128, 524 (a differential of $50, 785), while i2 has a factual
salary of $48, 817 and a counterfactual salary of $93, 728 (a differential of $44, 911). We
are not restricted to binary interventions; we can also compute the counterfactual
effects with the aforementioned intervening quantiles (qi)i and plot them as before
on Fig. 7.9; here we also include the previous interventional effects to compare how
each individual differs from the population as a whole. The x-marks represent the
observed (factual) data for these individuals along the two axes.
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As we can see, there is a remarkable difference between both counterfactuals
when intervening on each continuous variable. i1 is a more prototypical individual
w.r.t. the whole population (the interventional curve) for all three plots, while i2 be-
haves quite differently: even though seniority does have an effect on her salary, it is
still remarkably lower than the average trend, and the likelihood of termination is
also quite high. Informed by the factual information that this individual did indeed
terminate their employment, the counterfactual reflects this with higher likelihoods
of termination and gives us additional information: the individual was more likely
to terminate the contract as seniority increased, and the factual value of seniority was
indeed quite high, which suggests that this person might have been close to retire-
ment. On the other hand, salary also had an effect on this decision, as the plots tells
us that if this person had had a higher salary, the likelihood of termination would
have progressively decreased, but lower salaries would not have changed that de-
cision, as expected. In summary, these counterfactual queries help us ascertain the
causes behind a certain decision, focused on an individual instead of the popula-
tion as a whole. This relates directly to Black-Box Introspection, understanding the
natural processes through which this dataset was created as a black box.

7.2.3 Counterfactual Fairness

In this section we will measure the unfairness inherent in the observed salary assign-
ment mechanism. Consider Counterfactual Fairness [15], defined as the stipulation
that the factual and counterfactual distributions remain identical when intervening
on a protected variable (in our case, gender). In order to measure the deviation from
this objective, for a Bernoulli intervened variable, we define a metric called Coun-
terfactual Unfairness (CU) of degree k, CUk, as:

CUk := EV
[
EE ,U|V

[
|Y1−x(E ,U )−Y(E ,U )|k

]]
, (7.1)

where the expectation is across all measured variables V in the Causal Graph, E
and U are the SCM’s latent variables, X is the intervened variable with x the factual
value and 1− x the intervened value, and Y, the target variable. Note that Y acts as
a deterministic function with inputs E and U , given that the deterministic functions
in the SCM provide a sampling procedure that transforms stochastic samples from
E ,U into samples for every variable in V . As an example, CU of degree 1 estimates
the average absolute difference between the factual result of Y and its counterfactual
value Y1−x where we intervene variable X by taking the opposite value 1− x. In our
use case, X is the indicator for male, so we measure the average absolute difference
between the factual outcome (the individual’s gender) and the counterfactual out-
come (intervened with the opposite gender). If the system was Counterfactually Fair,
then CUk = 0 ∀k, so we can consider CU as a loss metric representing unfairness.

Both expectations are estimated using Monte Carlo. The first one, by averaging
across every sample in the dataset D = {v(1), . . . , v(N)}, described by variables V ;
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the second one, by abducting the exogenous noise signals E and latent confounders
U from each factual configuration v. In any case, the dcg library takes care of this
process to compute the desired expectation. The result on this dataset is CU1 =

$16, 723, which lets us gauge how much of an effect gender has on salary assignment.
CU can also be employed as a regularization term, and that allows us to train

fairer predictors using an adequate weighting value. Let us assume we want to re-
place the original salary assignment policy by a black-box predictor of salary (with
V := {gender, department, benefits, seniority} as input variables) that mitigates this
unfairness in its estimations; this will be called f , the fairness-aware predictor. Ad-
ditionally, we will train another model, the fairness-unaware predictor f0, which
serves as a point of comparison in how the fairness-aware training of f diverges
from the estimations of f0. Both models are defined with the same generic Neural
Network architecture and training procedure, with the only difference that f also has
CU2 as a regularization term, directing the learning process towards fairer decisions.
Please refer to the associated code for more details.

In this case, we want to balance predictive performance with fairness (the fairest
predictor possible would simply assign a constant salary to every individual); we
train f with five possible values for the regularization weight hyperparameter λ

and compare the regression metrics resulting from each value (including λ = 0,
which represents the fairness-unaware predictor f0). See Table 7.2 and Fig. 7.10 for
the relation between the regularization weight and every regression metric. We com-
pute the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) on the
estimation of salary, the R2 regression coefficient and also the Spearman correlation
between the original and predicted salaries, amongst the whole population and for
each demographic group in isolation. We use the Spearman correlation as a way to
measure how much the ordering of the predicted salaries differs from the original
ones. We also include two fairness metrics, CU1 and

√
CU2.

Note that adding this regularization term to the network training makes the pre-
dictor learn from a different distribution than the one that created the dataset, one
that is fairer; because of that, it is natural for some metrics to worsen, since we are in-
deed changing the real salary for a different one to make it fairer. It is for this reason
that we also study the Spearman correlation between males and females; it allows
us to measure the ordering in which they are assigned salaries, and we would not
expect differences in ranking inside each group when we are training the model to
reduce the gender gap. Therefore, this metric should be more stable than the oth-
ers to measure predictive performance. With this in mind, we select λ = 1 as the
regularization weight, as it achieves a considerable decrease in unfairness (more
than half the f0’s and the dataset’s values) while still preserving good results for
the predictive metrics in comparison with f0 (specially on Spearman correlations).
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TABLE 7.2: Phoenix Salary Dataset, metrics for each CU2-regularized
predictor. λ is the regularizing weight and λ = 0 denotes the fairness-
unaware model f0. Lower is better for RMSE, MAE, CU1 and

√
CU2;

higher is better for R2 and every Spearman Correlation (Sp.) metric
(Global, Female and Male, respectively). We highlight the rows per-
taining to f0 (λ = 0), the fairness-unaware predictor, and the chosen

fairer predictor f (λ = 1).

λ RMSE (↓) MAE (↓) R2 (↑) Sp. (↑) Sp. F. (↑) Sp. M. (↑) CU1 (↓)
√

CU2 (↓)

0.0 20,383 15,218 0.53 0.76 0.66 0.78 16,867 22,067
0.1 20,382 15,063 0.53 0.75 0.67 0.78 14,838 20,116
0.5 21,724 16,426 0.47 0.73 0.62 0.77 9,402 13,266
1.0 23,282 17,949 0.39 0.71 0.60 0.76 6,994 9,952
5.0 30,863 24,435 -0.07 0.65 0.55 0.70 2,925 4,472
10.0 40,148 33,192 -0.81 0.60 0.52 0.65 1,866 2,822

FIGURE 7.10: Phoenix Salary Dataset, counterfactual unfairness vs.
regression metrics for every regularization weight λ. Lower is better

for RMSE, MAE and CU1; higher is better for the rest.

7.2.4 Black-Box Introspection

In this final section, we want to explain the salaries predicted by these new policies,
so we will perform Black-Box Introspection with the two models trained before;
this can be carried out at the population level, with interventional effects, or at the
individual level, with counterfactual effects. Note that we can consider a modified
Structural Causal Model M f0 and M f where we replace the original salary node
(representing the variable measured in the dataset) with the Machine Learning mod-
els. In this new graph, the altered salary variable would have as parents every input
variable in the predictor, as their values affect its outcome; in our case study, that is
every parent of the original variable. Black-Box Introspection can be carried out by
studying the causal effects of these altered SCMs.

We start with the interventional effects of gender and seniority on the predictor’s
salary. The fairness-unaware predictor f0 results in a difference of $10, 419 (close
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FIGURE 7.11: Phoenix Salary Dataset, observational vs. interven-
tional effect of seniority on each predictor’s salary. We include the

interventional effect of the original process for comparison.

to the original gender effect on the natural salary mechanism), while f reduces it
to $2, 163, a remarkable improvement. Regarding the effect of seniority on salary, see
Fig. 7.11; here we compare the observational and interventional effects as before, but
for each predictor. We include the dataset’s interventional effect to compare against
the predictor curves. We can see a linear effect, something that does not fit the natu-
ral process, which had a decelerating curve; this discrepancy happens both for f and
f0, which might mean that the input variables had not enough informative data to
model that trend more faithfully. In any case, from the perspective of Introspection,
we can see the difference in effect that seniority has between both predictors, with f
leading to lower salaries overall (compensating for the higher men salaries) despite
having the same slope.

Regarding counterfactual effects, we can measure the effect of gender on each
predictor for both individuals i1 and i2; in other words, what their predicted salaries
would be had they been males. We compute the differential between the counterfac-
tual and factual estimates for both predictors and individuals; for i1, the differentials
are $39, 609 and $6, 343 for f0 and f , respectively; for i2, $39724, 74 and $6, 351. As
expected, we see a remarkable reduction in gender gap for these individuals.

Finally, we would like to ascertain if the new policy could have a negative effect
on contract termination. In order to do that, we need to intervene salary (Y) with
the f -predicted salary for each individual, and then sample from the termination (T)
variable as usual, so as to estimate its ratio: EV [T | do(Y = f (V))]. We can com-
pare the termination rate from the dataset (a simple average) and the termination
rate resulting from the policy change: 5.7% and 2.5%, respectively. In this case, the
fairness-aware predictor also results in less than half terminations, showing that fairer
salaries, in this case, would actually discourage contract termination.
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Conclusion

Motivation

Over the last few years, Causal Theory has progressively been adopted in many
different fields to study the effect of interventions, to understand the causes behind
certain decisions or to consider alternative outcomes depending on our actions. Ex-
amples of such studies can be found in medicine (determine the recovery rate when
subject to a certain treatment), social sciences (measure the impact of policies) or
criminology (uncovering the main causes behind recidivism), to name a few. This
kind of questions can sometimes be answered with randomized experiments, but
depending on the use case it may be expensive, unethical or ultimately unfeasible.
Causal Theory provides tools to circumvent this problem by employing passively-
obtained (observational) datasets and some form of estimator.

The main object of study is the causal query, a probabilistic expression describ-
ing the behaviour of random variables subject to interventions. This results in ex-
pressions that are purely observational, interventional or counterfactual in nature;
all can be answered through the lens of causality, given a causal graph describing
these variables and the relationships between them. This graph consists of asym-
metrical cause-effect relationships between pairs of variables, and allows us to de-
termine if a certain causal query can be estimated or not (identifiability) and which
form of estimand we need to answer it.

An estimand is a formula transforming causal terms into observational terms,
resulting in probabilistic expressions that can be computed from observational data.
This estimand can be derived through automatic algorithms, if it exists, or deter-
mined not to exist, in which case the query is said to be non-identifiable and there-
fore unable to be estimated unless we impose additional restrictions on the assumed
underlying process that governs the data. Given an identifiable query and the cor-
responding estimand, the estimand-based approach to Causal Query Estimation
employs Machine Learning tools to model some of the observational terms in the
estimand, and computes an answer to the formula with these estimated terms.

This is the default approach to the problem, but it comes with a number of short-
comings. Firstly, each estimand depends on the query and the causal graph in
which it is defined, sometimes resulting in non-trivial expressions, requiring a com-
plex case-by-case definition of the estimator procedure to answer the query. Con-
sequently, the literature on estimand-based causal estimation presents practitioners
with a wide range of different approaches, each specialized on a particular kind of
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graph and query; this hyper-specificity makes these methods extremely ad hoc, hard
to apply to more complex scenarios. Secondly, were we to ask a second query on the
same dataset, the resulting estimand might require a completely different model to
answer it, forcing practitioners to start from scratch. Therefore, every new query,
despite it concerning the same dataset, can result in training new models; use cases
that require an iterative interrogation of the causal mechanism, answering many dif-
ferent queries as we study the system, suffer from this shortcoming especially.

Alternatively, we can employ Structural Causal Models (SCMs) to learn the ob-
servational distribution, but subject to certain structural constraints imposed by the
dataset’s causal graph. These models can be used as proxies of the underlying mech-
anism that generated this data, as long as they follow the same causal graph and
learn the observational distribution P(V). Given estimation procedures defined di-
rectly on these models, we can define estimators that completely circumvent esti-
mands. We call this kind of techniques estimand-agnostic approaches, because they
do not follow an estimand to perform estimation; rather, they learn from the target
distribution once and then can estimate any causal query, provided it is identifiable
and we have appropriate estimation procedures to estimate it.

The main difficulty concerning these approaches is how to design models capa-
ble of modelling real world distributions while following the desired causal struc-
ture, but also providing estimation procedures for many kinds of causal queries.
The structural requirements forbid us to employ most density estimation methods,
as they usually learn the joint probability distribution with no independence restric-
tions between its dimensions. On the other hand, even if we manage to mirror the
target distribution perfectly along with the structural restrictions, we still need this
model to provide estimation procedures so as to answer the desired causal queries,
with counterfactuals being the primary example of difficult queries to solve. The
estimand-agnostic perspective has been hindered by these difficulties until recent
years, when the advances in Deep Learning were adopted to the field of Causal
Query Estimation.

The current literature, however, has a number of shortcomings that we mean
to address with our technique. We identify the desiderata for a practitioner-ready,
Deep-Learning-powered estimand-agnostic framework: provide tools to compute
likelihoods of its variables; account for the existence of latent confounders in the
graph; allow for counterfactual estimation through the abduction mechanism; pro-
vide expressive modelling to account for complex real-world distributions; be scal-
able to the number of nodes in the graph; and be applicable to arbitrary causal
graphs in its training and estimation procedures. We identify several estimand-
agnostic approaches proposed in recent years, determine its shortcomings with re-
spect to this desiderata and provide a novel approach that encompasses each of
these requirements.
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Contributions

We propose Deep Causal Graphs (DCGs), an SCM-based abstract framework that
allows for estimand-agnostic estimation of many kinds of identifiable causal queries
(including counterfactuals), all through general procedures applicable to any causal
graph that can be represented with a Directed Acyclic Graph, even in the presence
of latent confounders. It consists of submodules called Deep Causal Units (DCUs),
one for each node in the graph, that are meant to model their conditional distribution
while still providing functionality for three distinct operations: sampling, comput-
ing likelihoods and abducting noise signals. When a differentiable model accounts
for these three operations, it can be employed as a DCU inside a DCG.

The DCU is an abstract specification, but it admits many expressive implemen-
tations based on Deep Learning models. We present Distributional Causal Nodes,
representing probability distributions through a neural network that outputs its
parameters, and Normalizing Causal Flows, employing Conditional Normalizing
Flows as a node modelling mechanism for continuous variables. These two imple-
mentations can be further extended through the use of Mixture DCUs, modelling
mixtures of DCU submodules as a new type of DCU, and Compound DCUs, which
allow for unmeasurable mixtures of DCUs through the use of an additional noise
signal. We propose these four implementations for the DCU specification, allow-
ing to model complex real-world distributions through the use of Neural Networks.
We demonstrate the expressiveness of these models through several experiments
described in this work.

Once we have defined our DCU implementations, we can discuss the overall
DCG model. We derive the training mechanism for the overall model and several
estimation procedures, all based on the three DCU operations, applicable to many
kinds of observational, interventional and counterfactual queries. These proce-
dures are defined for arbitrary graphs, as long as their corresponding queries are
identifiable in the causal graph of study, which allows for an easy application in
many different settings once the model has been trained, in contrast with the ad hoc
nature of estimand-based techniques. Additionally, we define the shared Graphi-
cal Conditioner, a simple technique that allows any arbitrary feed-forward Neural
Network to be employed as the sole network for all DCU nodes in a graph, thereby
guaranteeing scalability of the model in terms of memory requirements and training
times with respect to the number of nodes in the graph.

Nonetheless, these contributions come with some limitations, all shared with
other estimand-agnostic approaches. Firstly, the main assumption is that the un-
derlying causal graph that generated the dataset of study is known, which is not
always the case. For this reason, any causal estimations are contingent on the ade-
quacy of the graph. More so, the graph is assumed to be a Directed Acyclic Graph;
any cyclic causal relationships between variables are discarded in the current frame-
work, which forbids its use on use cases with this requirement. Secondly, the exact
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estimation of an identifiable causal query through an SCM is only ensured if the
model represents the exact same observational distribution P(V) that describes the
dataset. Given that stochastic training can only aim to approximate the target distri-
bution, the mismatch between the learned and real distributions can have an effect
on our estimations; furthermore, in graphs with high depth, this mismatch could
result in compounding errors affecting the eventual quality of our estimators. Fi-
nally, the fact that estimand-agnostic techniques are not trained with one particular
query in mind means that these models cannot be optimized towards more precise
estimators of that particular query, while estimand-based techniques can do so by
their ad hoc nature. These shortcomings are left for further research, to extend the
applicability of our techniques.

Finally, despite the complexity of the framework and all its subsystems and pro-
cedures, we created a complete open-source software library based on the PyTorch
Deep Learning library that allows for the use of each of these techniques by prac-
titioners while being flexible enough for researchers to extend with further imple-
mentations of the abstract DCU and DCG specification. The goal of this library is the
democratization of our techniques, as a way to promote the use and further study
of estimand-agnostic approaches. We also include a complete use case in this work
describing the application of the library to an example dataset, from DCG creation
and training to causal query estimation employing DCG procedures.

Experiments and Applications

In order to demonstrate the capabilities of our technique, we perform several ex-
periments with synthetic, semi-synthetic and real-world datasets. We test its mod-
elling performance by learning the observational distribution of these datasets and
comparing the dataset’s histograms with DCG samples and density curves esti-
mated with DCGs. By choosing the appropriate DCU architecture and training pa-
rameters, we observe good adjustment to these distributions, specially through the
use of Normalizing Causal Flows or Compound Distributional Causal Nodes, de-
pending on dataset size and distribution complexity.

We evaluate estimation performance with the semi-synthetic IHDP-Jobs poten-
tial outcomes estimation benchmark. Despite using an estimand-agnostic approach,
and therefore unable to optimize the model to specifically obtain the best perfor-
mance for a particular query, DCGs achieve competitive results with the state of
the art. Moreover, given the highly modular nature of DCGs, alternative implemen-
tations of DCUs could be employed to improve these results further.

We finish this work with two case studies on real world datasets, with which
we showcase the breadth of causal queries that can be estimated using a single
DCG model. We also demonstrate the connection between Causal Query Estima-
tion and Black-Box introspection: no matter if the black-box is a Machine Learning
model or the data itself, we can interrogate the system with several causal queries



Conclusion 97

so as to understand the underlying mechanism governing it, determining the causal
effects of its variables and contrasting scenarios with interventional and counterfac-
tual queries at the population and individual levels, respectively.

Given this connection, the applicability of Causal Estimation and DCGs in partic-
ular to Machine Learning Interpretability, Explainability and Fairness is clear. We
exemplify this application with the last experiment, in a setting detailing gender bi-
ases in the workplace. Given a mechanism to measure Counterfactual Fairness, we
can even train black-box Machine Learning predictors towards counterfactually
fairer distributions.

In conclusion, we propose Deep Causal Graphs, a general, modular, estimand-
agnostic framework for Causal Query Estimation that allows for the estimation of
many kinds of causal queries, all with the training of a single model capable of
learning complex real-world distributions through its implementations leveraging
the modelling capabilities of Neural Networks and Normalizing Flows. We detail
many possible implementations of the base specification, each useful in different set-
tings, along with several estimation procedures that cover a wide range of queries.
We include a complete software library implementing these techniques and provide
several experiments showcasing the framework’s capabilities. We finish with an ap-
plication of the technique to Black-Box Introspection, covering Machine Learning
Interpretability, Explainability and Counterfactual Fairness.
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