
UNIVERSITAT POLITÈCNICA DE CATALUNYA

Programa de Doctorat:
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Abstract

Maintenance is indispensable in every industry that uses machines and is inevitable regardless of
the attention paid to it. The cumulative effect of its neglect or a non-optimized approach is a long
or short-term shock on a company’s growth. It, therefore, comes as no surprise, the overwhelming
interest in the area of intelligent maintenance where comprehensive control units can detect, alert
personnel, predict when a failure will occur, and manage faults to extend the life of components.

Borne out of this is a new field of study, Prognostics and Health Management, which emerged
only about two decades ago.

This thesis contributes to this nascent field of study, and most importantly to a novel interest in
the field of incorporating component prognostic information into control to manage the extent
of influence degradation has on the efficient output of a plant. In sum, the thesis seeks to (1.)
Contribute to component prognostics and how uncertainty can be efficiently handled and (2.)
Promote the incorporation of prognostic information in a control scheme (i.e. Model Predictive
Control).

For prognostics, the thesis considers two critical components, a wind turbine blade composite
material and an insulated gate bipolar transistor utilizing two different types of prognostic meth-
ods, the model and data-based methods respectively. Wind turbine blades are by far the most
exposed component to damage predominately due to their level of mechanical activity in the
turbine operation. Forces such as gyroscopic and gravity, debris in wind, and the effect of the
stochastic nature of wind contribute to a gradual damaging effect culminating in a complete blade
breakdown. Given that the blade material itself is innate, mathematical degradation equations
dependent on material properties to predict the extent of the material damage in the absence of
sensor information is used. Therefore, with a stiffness degradation algorithm aided by a zonotopic
Kalman filter, the remaining useful life of a wind turbine’s blade is predicted with a model-based
prognostic technique. For the data-based technique on the insulated gate bipolar transistor, a run-
to-failure data set from NASA Ames was used on a novel data-based Evolving Ellipsoidal Fuzzy
Information Granule modelling (EFFIG) scheme to predict the remaining useful life of the com-
ponent with appropriate metrics proving its effectiveness when compared to other methods and
also offers an online recursive learning advantage and explainability characteristics, a sought-after
quality in practice. The issue of uncertainty quantification has been one of the main conundrums
in prognostics, thus in both cases, this thesis contributes to using set-based methodologies which
are known to be easy to formulate and computational friendly to quantify and propagate. Two
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geometric candidates are considered, a zonotope for the model-based case (wind turbine blade)
and interval sets for the data-based (Insulated gate bipolar transistor).
For health management by a suitable control scheme, two variants are proposed. First, a controller
that takes a direct consideration of prognostics information via the stiffness degradation algorithm
proposed as done in the model-based prognostics case and a health management scheme that
considers the characteristic property of reliability of pumps in a network.
Various contributions were made in this research undertaking. For, the reliability aware control,
an MPC controller is designed that ensures reliability of the Drinking Water Networks using the
Bayesian theorem, specifically for the Barcelona drinking water network. Even though some pa-
pers have indeed tackled the issue of network reliability in the literature, they fail to account for
uncertainties that arise from consumer demand, which cannot be ignored. This thesis thus con-
siders the effects of uncertainty in a set-based concept aided by zonotopic sets.
It is axiomatic that in a multi-objective optimization problem such as in Model predictive control
design, there is a fated trade-off between primary set goals and other peripheral requirements
from controller designers. Therefore, the use of model predictive controllers for wind turbines
considering health variables results in a deration of turbines of which most papers in the liter-
ature fail to appropriately consider the long-term viability of a purported constant deration for
health reasons. In this thesis, a controller that relates the deration of the turbine according to the
rate and extent of degradation of the blade with the conflicting health index is proposed. It ba-
sically involves scheduling the extent of deration of the wind turbine according to a predefined
degradation path acquired from a run-to-failure test on a wind turbine blade using the stiffness
degradation algorithm. The results prove its efficacy and practicality when tested on the high
fidelity FAST.



Resumen

El manteniment és indispensable en tota indústria que utilitza màquines i és inevitable indepen-
dentment de l’atenció que se li presti. L’efecte acumulat de la seva negligència o un enfocament
no optimitzat és un xoc a llarg o curt termini en el creixement de l’empresa. Per tant, no sorprèn
l’aclaparador interès en l’àmbit del manteniment intel·ligent on les unitats de control integrals po-
den detectar, alertar el personal, predir quan es produirà una fallada i gestionar les avaries per
allargar la vida útil dels components.

D’això neix un nou camp d’estudi, Pronòstic i gestió de la salut, que va sorgir fa només unes dues
dècades.

Aquesta tesi contribueix a aquest camp d’estudi naixent i, sobretot, a un nou interès en l’àrea
d’incorporar informació pronòstica dels components al control per gestionar l’abast de la in-
fluència que té la degradació en la producció eficient d’una planta. En resum, la tesi pretén (1.)
Contribuir al pronòstic dels components i com es pot gestionar de manera eficient la incertesa i
(2.) Promoure la incorporació d’informació pronòstica en un esquema de control (és a dir, Model
Predictive Control).

Per al pronòstic, la tesi considera dos components crı́tics, un material compost de pales d’aerogenerador
i un transistor bipolar de porta aı̈llada que utilitza dos tipus diferents de mètodes de pronòstic,
el model i els mètodes basats en dades, respectivament. Les pales de l’aerogenerador són, amb
diferència, el component més exposat a danys, principalment pel seu nivell d’activitat mecànica
en el funcionament de la turbina. Forces com la giroscòpica i la gravetat, les deixalles del vent
i l’efecte de la naturalesa estocàstica del vent contribueixen a un efecte danyós gradual que cul-
mina amb una ruptura completa de la paleta. Atès que el material de la fulla en si és innat,
s’utilitzen equacions de degradació matemàtiques que depenen de les propietats del material per
predir l’abast del dany material en absència d’informació del sensor. Per tant, amb un algorisme
de degradació de la rigidesa ajudat per un filtre de Kalman zonotòpic, la vida útil restant de la
pala d’un aerogenerador es preveu amb una tècnica de pronòstic basada en models. Per a la
tècnica basada en dades sobre el transistor bipolar de porta aı̈llada, es va utilitzar un conjunt
de dades d’execució fins a la fallada de la NASA Ames en un nou esquema de modelització de
grànuls d’informació difusa elipsoı̈dal en evolució (EFFIG) basat en dades per predir la vida útil
restant del component amb mètriques adequades que demostren la seva eficàcia en comparació
amb altres mètodes i també ofereix un avantatge d’aprenentatge recursiu en lı́nia i caracterı́stiques
d’explicabilitat, una qualitat buscada a la pràctica. El tema de la quantificació de la incertesa
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ha estat un dels principals enigma en pronòstic, per la qual cosa, en ambdós casos, aquesta tesi
contribueix a utilitzar metodologies basades en conjunts que se sap que són fàcils de formular i
computacionalment fàcils de quantificar i propagar. Es consideren dos candidats geomètrics, un
zonotop per al cas basat en el model (pala de la turbina eòlica) i conjunts d’intervals per al basat
en dades (transistor bipolar de porta aı̈llada).

Per a la gestió sanitària mitjançant un esquema de control adequat, es proposen dues variants.
En primer lloc, un controlador que té una consideració directa de la informació de pronòstic
mitjançant l’algoritme de degradació de la rigidesa proposat tal com es fa en el cas de pronòstic
basat en models i un esquema de gestió de la salut que considera la propietat caracterı́stica de
fiabilitat de les bombes en una xarxa.

S’han fet diverses contribucions en aquesta tasca de recerca. Per al control de fiabilitat, es dissenya
un controlador MPC que garanteix la fiabilitat de les xarxes d’aigua potable mitjançant el teorema
bayesià, especı́ficament per a la xarxa d’aigua potable de Barcelona. Tot i que alguns articles han
tractat el tema de la fiabilitat de la xarxa a la literatura, no tenen en compte les incerteses que
sorgeixen de la demanda dels consumidors, que no es poden ignorar. Per tant, aquesta tesi con-
sidera els efectes de la incertesa en un concepte basat en conjunts ajudat per conjunts zonotòpics.

Es consideren dos candidats geomètrics, un zonotop per al cas basat en el model (pala de la
turbina eòlica) i conjunts d’intervals per al basat en dades (transistor bipolar de porta aı̈llada).

Per a la gestió sanitària mitjançant un esquema de control adequat, es proposen dues variants.
En primer lloc, un controlador que té una consideració directa de la informació de pronòstic
mitjançant l’algoritme de degradació de la rigidesa proposat tal com es fa en el cas de pronòstic
basat en models i un esquema de gestió de la salut que considera la propietat caracterı́stica de
fiabilitat de les bombes en una xarxa.

S’han fet diverses contribucions en aquesta tasca de recerca. Per al control de fiabilitat, es dissenya
un controlador MPC que garanteix la fiabilitat de les xarxes d’aigua potable mitjançant el teorema
bayesià, especı́ficament per a la xarxa d’aigua potable de Barcelona. Tot i que alguns articles han
tractat el tema de la fiabilitat de la xarxa a la literatura, no tenen en compte les incerteses que
sorgeixen de la demanda dels consumidors, que no es poden ignorar. Per tant, aquesta tesi con-
sidera els efectes de la incertesa en un concepte basat en conjunts ajudat per conjunts zonotòpics.

És axiomàtic que en un problema d’optimització multi-objectiu, com en el disseny de control pre-
dictiu del model, hi ha una compensació predestinada entre els objectius principals establerts i
altres requisits perifèrics dels dissenyadors de controladors. Per tant, l’ús de controladors pre-
dictius de models per a aerogeneradors tenint en compte les variables de salut es tradueix en una
disminució de les turbines de la qual la majoria dels articles de la literatura no tenen en compte ad-
equadament la viabilitat a llarg termini d’una suposada disminució constant per motius de salut.
En aquesta tesi, es proposa un controlador que relaciona la deració de la turbina segons la velocitat
i l’extensió de degradació de la pala amb l’ı́ndex de salut conflictiu. Bàsicament implica progra-
mar l’extensió de la deració de l’aerogenerador d’acord amb un camı́ de degradació predefinit
adquirit a partir d’una prova d’execució fins a fallada en una pala d’un aerogenerador mitjançant
l’algoritme de degradació de la rigidesa. Els resultats demostren la seva eficàcia i practicitat quan
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es prova en el FAST d’alta fidelitat.
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Chapter 1

Introduction

1.1 Introduction and Motivation

Maintenance in every industry is undoubtedly one of the most crucial aspects of industrial opera-
tions to protect and preserve companies’ assets. However, considering all its essence, a lack of in-
sightful approach may only lead to counterproductive consequences, such as unintended cost and
unnecessary downtime. Hence, it is only prudent to consider inventive ways of maintenance that
do not only regard the mere preservation of assets but factors in other relative important elements
such as minimization of its associated cost and most importantly, a complete information and
control over all constituents and variables of maintenance in what is termed as a System Health
Monitoring (SHM) procedure, a part of the much-touted digital transformation drive. According
to (Ofsthun, 2002), a System Health Monitoring (SHM) module once implemented in a monitored
system, must have the real-time capabilities of diagnosing the root cause of an anomaly from a
normal machinery operation (i.e fault, cyberattacks), supply relatable data on the abnormalities,
prognosticate when needed based on the available data and recommend prescriptive solutions
including recently, managing the resulting deterioration before a critical failure state (Compare
et al., 2020) .

This digitalization of maintenance is essential to a modern Asset Management (AM) regime. In-
deed according to the ISO 55 000, it is standard for advanced AM systems to explicitly introduce
risk management during an asset’s life cycle, especially in the era of industry 4.0. The advent
of advanced and increasingly reliable sensors have aided in this cause with the ability to collect
meaningful large amounts of relevant real-time data for different levels of maintenance purposes
(Pech et al., 2021).

The precursor to failure in a component is a gradual or abrupt degradation that is initiated when
a fault occurs, in a dormant state or when active. For degradation initiated by a fault, it is im-
portant to detect this deviation via fault diagnosis procedures which abound in literature for e.g.
in reviews on the subject such as (Gertler, 1998);(Isermann, 2011);(Patton et al., 1989), to isolate
fault sources, collect data that could be used to evaluate the Remaining Useful Life (RUL) values
of a Unit Under Test (UUT). The field of FDI is a much more matured field compared to prognos-
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tics, primarily due to the fact that FDI is based on interpretation and decisions based on real-time
data whilst prognostics has the challenge of predicting a future behaviour based on present and
assumed future variables (Onori et al., 2012).

Prognostics, a Condition-Based Maintenance (CBM) module, has recently been a part of a new rev-
olution in maintenance. Its end goal is to afford practitioners the opportunity to not only use data
for instantaneous maintenance purposes, but also forecast behaviours based on available data.
The use of such information offers exciting applications such as appropriately planned mainte-
nance and control designs that manage degradation before maintenance can be undertaken (Cies-
lak and Gucik-Derigny, 2018) or optimally delay degradation to meet mission targets (Karimi Pour
et al., 2021). But forecasting is an uncertain undertaking, which is at present the main conundrum
in prognostics as discussed at length in (Sankararaman and Goebel, 2013). The effort in uncer-
tainty description must henceforth outweigh the point-wise predictions as produced in most pa-
pers.

From the aforementioned relevance of deploying these modern maintenance schemes, it is quite
clear its importance in industries where the cost of operation is relevant in staying competitive. A
prime example is in the energy sector. With many competing options, such as fossil fuel plants that
offer relatively cheaper and more mature technologies, clean energies are essentially viable invest-
ments primarily due to government subsidies. Therefore, there is a push for sustainable models
of operation to ensure a more global clean energy mix. It is for this reason that savings gained
through effective CBM methods cannot be overlooked. Thus in wind turbines, there have been
works on a number of it’s components in the field of fault detection (Gong and Qiao, 2015);(Ren
et al., 2019), prognostics (Xiong et al., 2018); (Rezamand et al., 2020) and health related control
(Odgaard et al., 2015b);(Badihi et al., 2015) for all categories of failure modes, which is categorized
and discussed in (Aisha Sa’ad, 2022) as a catastrophic failure, critical failures, and minor failure,
primarily dependent on the affected component. Therefore, there has been a plethora of works in
the literature on certain critical components of the wind turbine with good results, most featured
been the gearbox (Chen, 2010) (Kia et al., 2009), bearings Gong et al. (2010), pitch system (Schulte
et al., 2012) and electrical system (Karimi et al., 2008; Campos-Gaona et al., 2013; Parker et al., 2013;
Bernal-Perez et al., 2013; Freire et al., 2013; Vedreño Santos et al., 2014). The blades are by far the
most exposed component to factors of degradation and are ranked the second most failure-prone
component in the plant (Beauson et al., 2022). This is especially prevalent of late due to the in-
creasing size of turbines for an increased rating of turbines (Sanchez et al., 2015). Fatigue and thus
degradation of a wind turbine’s rotor blade is on a microscopic level, which subsequently requires
fatigue models for predicting degradation’s trend to failure. For example, the popular Palmgren-
Miner’s rule (Miner, 1945) has been used to good effect in many works (Gray and Watson, 2010),
(Horn and Leira, 2019) as well linear crack propagation models such as (Lampman, 2009); (Gray
and Watson, 2010).

The level of safeguarding in Critical Infrastructure (CI) such as sewage systems and Drinking
Water Network(DWN) must comparatively be stringent as much as possible due the dire con-
sequences when unaccounted failure occurs. Maintenance in such systems most follow a strict
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organised protocol to ensure a high level of availability. Most of these CIs are networked systems,
that is, failure in a component can have a cascading effect on other components and hence the net-
work as a whole. Thus the interacting relationship through the network needs investigation be-
fore concise prognostics can take place, extrapolating aging behaviour of individual components
as well the overall system. There are papers that have sought to solve this problem, fundamen-
tally posing the problem based on dynamical interactions from a component, sub-component and
system level such as in (Onori et al., 2012); (Lakehal and Laouacheria, 2017). To better manage
the level of failure in these systems, it is only right to solve the problem from a controller design
perspective which is dependent on these dynamical interaction. That is to consider degradation
dependent models in control designs or identify degradation variables, such that variables can
be manipulated to contain faults or extended failure time before an organized maintenance pro-
cedure takes place. Fundamentally, the dynamical relationships between components allows to
ensure availability of service through compensation from unaffected components in the network.

1.2 Thesis Objectives

The objectives of this thesis are as follows:

• To investigate on a suitable degradation algorithm for the degradation of an innate plant’s
component such as a wind turbine blade.

• To propose a methodology to predict the RUL of a wind turbine’s blade using algorithm from
objective 1, including an appropriate uncertainty quantification specifically, a set-based one.

• To design a health aware controller using information from objective 2 that ensures extension
of components’ life in a practical manner as against other methods in the literature.

• To propose a novel data-based prognostics scheme which is simple but yet promotes explain-
ability and investigate on an accompanying suitable set-based uncertainty quantification.

• To propose the design of a controller that preserves the health of an interconnected network
of components, considering known individual prognostic information.

1.3 Outline of the Thesis

This thesis manuscript is organized in seven chapters. Chapter 2 presents the background theory
and bibliographical review of prognostics and health management in general. Chapter 3 Presents
some introductory information for itself and subsequent chapters in wind turbine modelling and
zonotopes. It then proceeds to propose a set based prognostics methodology for wind turbine’s
blades. Chapter 4 proposes a health ware control drawing inspiration from Chapter 3. Chapter
5 proposes a data-based prognostics scheme for IGBTs using an EEFIG methodology. Chapter 6
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proposes a reliability-aware control of a DWN considering the overall as well as individual relia-
bility of pumps in the network using MPC. Finally, the conclusions are outlined in Chapter 7 with
suggested future works.

The outline of the thesis is detailed below:

• Chapter 2: This chapter presents a detailed summary from the literature about the concept
of degradation leading to maintenance and ending with how maintenance can be managed
from a controller point of view. In all, a historical background of maintenance is given,
showing the trend over the years to the current condition-based maintenance schemes from
which is the modern scheme of prescriptive maintenance employed in chapters 4 & 6 of the
thesis. The chapter elaborates on condition-based maintenance schemes of fault detection
and isolation and also prognostics, primarily it’s types, the model-based, data-based and
hybrid, with relevant reference on each case. A bibliographical review of uncertainty quan-
tification and propagation is also given in this chapter. The chapter ends with a review on
how maintenance is considered in controller designs.

• Chapter 3: The wind turbine modelling is detailed in this chapter as well as some mathemat-
ical preliminaries on zonotopes and reachability analysis for subsequent chapters. Stiffness
degradation algorithm with its application to a wind turbine blade’s composite material is
explained mathematically, discretized and appended to the nonlinear wind turbine model
which is then represented in an LPV form. A zonotopic Kalman filter is used to quantify
various uncertainties as a zonotope which is then propagated to determine the RULs with
associated uncertainty for wind turbine’s blades.

• chapter 4: In this chapter, the stiffness degradation is utilized once again but for its incor-
poration into a controller, an MPC. A wind turbine blade is run to failure considering stress
from a flapwise root moment. The path to failure is then segmented in chosen stages of
degradation from the algorithm, each with predefined weights. All this information is in-
cluded in a health-ware controller design.

• Chapter 5: This chapter deals with the data based prognostics of an IGBT. Using data sets
from NASA AMES, the RUL of an IGBT is determined through a novel method using EEFIG.
The chapter then introduces an extension where the issue of uncertainty for data-based prog-
nostics based on set-based theory is introduced using set-based membership and interval
arithmetic.

• Chapter 6: Considering the reliability of pumps in a network, the cumulative reliability via
a Bayesian theorem is evaluated. This information of the overall network’s reliability with
individual reliabilities in a dynamic mathematical form is included in a DWN model which
is used in the design of a Reliability-aware MPC for DWNs.
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• Chapter 7: The main contributions and conclusions of the thesis are outlined as well some
ideas for future works and research directions proposed.





Chapter 2

Bibliography Review

A bibliographical review of the important areas of interest that motivates the contributions of this
thesis is presented in this chapter. A review of the classification of the concept of component
degradation, culminating in various associated branches of study: Fault diagnosis, Reliability, and
Prognostics is presented. Consequently, how the problem of uncertainty related to prognostics is
handled in the literature is also presented. The chapter ends with the diverse schemes of incorpo-
rating health management in control theory from the literature.

2.1 Degradation Of System Components

Degradation of components is an inevitable part of any system´s lifetime when subjected to cer-
tain endogenous and/or exogenous factors no matter the extent of precautionary measures taken
to curb it. Such variables which (Zagórowska et al., 2020) terms as influencing factors, like tem-
perature, friction, etc. interact with the component’s composite material causing deficiencies in
suitable fabrication properties that affect their optimal functionalities.
As (Kang et al., 2020) rightly puts it ”The second law of thermodynamics implies that any animate
or inanimate system degrade and inevitably stops functioning”. Degradation is defined by (Gor-
jian et al., 2010b) as a reduction in performance, reliability, and lifespan of assets. Even though
this definition and others from (Peng et al., 2017);(Nikulin et al., 2010) capture an expansive view
of degradation, it fails to establish the temporal nature of degradation and also the fact that degra-
dation is more or less a material level deterioration, thus a definition by (Zagórowska et al., 2020)
as the detrimental change in physical condition, with time, use, or external cause is considered the
most appropriate.
It is thus imperative to understand this phenomenon, employing countermeasures, that would
seek to manage their extent of influence in machine processes. This is important to minimize plant
downtime, increasing profit, and ensuring that mission targets are met (Madhav, 2016), especially
in modern plant processes where unplanned offline scenarios may be detrimental to the every-
day life of modern societies, for example in Critical Infrastructure (CI) such as Drinking Water
Networks (DWN). This has been considered and researched in works such as in (P. Weber, 2012);

6
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(Puig and Ocampo-Martı́nez., 2015). Other considerations in the literature with respect to CI are
the ones developed in (Gono et al., 2012);(Liang et al., 2018) for power networks and (Nagy-Kiss
et al., 2015); (C. Ocampo-Martinez and Ingimundarson., 2006) in sewage systems. It is also worth
noting that the majority of these CIs are interconnected systems. The interconnection between
different components and their subsequent dynamic interactions makes them susceptible to the
propagation of faults due to degradation between components, emanating from a single degraded
component. Placement of sensors on every component in the network is of course not econom-
ically prudent, thus works such as in (Nejjari et al., 2015); (Casillas et al., 2015) provide optimal
sensor placement procedures that help in detecting influencing factors such as water pressure for
leak detection.
Unplanned running costs as a consequence of failure due to degradation may also render cer-
tain technologies with slim profit margins not worth investing in if degradation of its constituent
components triggers frequent unexpected failures. This is evident in industries where diverse
competing technologies exist. For instance, in the field of energy, there is a dilemma for clean en-
ergy technologies to minimize the Levelized Cost of Energy (LCoE) to stay competitive in an era
of subsidy cuts from governments, hence factoring in the impact of degradation in cost analyses
becomes a must. Indeed, this motivated the inclusion of degradation as a factor in a projected
Net Present Value (NPV) assessment of projects, as done by (Kharait et al., 2017), considering a
study on the viability of a Photo Voltaic (PV) project with a degradation model considered. Also
in (Urbano et al., 2021), risk analyses were conducted on the back of uncertainties in equipment
degradation for renewable energy investments by considering component degradation’s effect
on economic variables. A study into battery degradation in smart homes was also conducted by
(Toosi et al., 2022), the authors were able to establish the importance of decreasing the carbon foot-
print of domestic households with an understanding of battery degradation. (Javidsharifi et al.,
2022), also concluded by performing a reduced unscented transformation (RUT) test, that a sub-
stantial decrease in operational cost is achievable considering battery degradation in smart homes.
One may argue for the case of investments in improving material properties to produce resilient
components, but as alluded in (Li et al., 2020), today’s consumer behavior is one that requires com-
ponents with high-performance indices that also factor in cost-effectiveness. R&D investments in
material science increase price.
There are no clear standards in the literature concerning degradation, but existing reviews attempt
to formalise it differently from the perspective of its branches, namely: Fault diagnosis (Isermann,
2011), Maintenance (Kang et al., 2020); (Peng et al., 2010), Prognostics (Liao and Kóttig, 2004);(Jar-
dine et al., 2006), Component reliability (Weber et al., 2012); (Gorjian et al., 2010a) and Degradation’s
application in control (Zagórowska et al., 2020). However broadly speaking, degradation can be con-
sidered an event observable or sudden. The evolution of an observable degradation as shown in
Fig.2.1, involves initially an upstate where degradation is assumed to be absent. Subsequently, at
t0, substantial degradation d0 is assumed to have occurred such that it is observable and mostly
represented by plant variables or a function of them. From this point onwards, the progression
of degradation can be observed, whose impact on the plant’s functionality invariably depends on
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its level of progress. The gradual/accelerated (i.e. due to external factors) process of degradation
thus occurs between t0 ≤ t ≤ tf , where d is considered manageable, in essence by decreasing
ḋ = f(d(t), t) through Engineering Asset Management (EAM) schemes either online or offline. At
tf , the material property is thought of as deteriorated to such an extent df , that further degrada-
tion becomes evident from noticeable variability from a considered norm in the plant’s operation.
The ultimate price of degradation is thus a failure and hence a fault occurrence i.e d > df when
components are installed.

Fault

Degradation trend

up
state

T ime

D
eg

ra
d
a
ti
on

d0

df

t0 tf

Failure

Figure 2.1: Trend of degradation in relation to system’s behaviour. from (Zagórowska et al., 2020)

Faults basically occur when degradation triggers an abnormal state. As defined by (Isermann,
2011), ”A fault is an unpermitted deviation of at least one characteristic property (feature) of the
system from the acceptable, usual, standard condition.” and ”A failure is a permanent interrup-
tion of a system’s ability to perform a required function under specified operating conditions”.
Thus the knowledge of these deviations in features must necessarily be observable as explained
with Fig.2.1 to detect a fault that could be incipient or abrupt. For example, degradation such as
in condensing boilers as done in (Baldi et al., 2017), affects the behaviour of the plant, such that
they can be quantified by deviation in water mass flow rate to ultimately detect an anomaly in a
system property of the boiler efficiency which is regarded as synonymous to a fault in a diagnosis
procedure. In some cases, this knowledge of feature, parameter, or variable deviations is unknown
until a detrimental change in behaviour at a future time affects the material properties to levels
that are conspicuous in the plant’s behaviour, thus a failure event occurrence. For example, cracks
occur on wind turbine’s blades due to interactions between stochastic wind disturbance and the
blade’s material. They primarily commence immediately after installation, but these progressive
cracks do not affect the behaviour of the wind turbine until they reach disruptive levels, such that
if precautionary actions are not taken, the turbine ceases to function. The behaviour of this type
of degradation is acquired through accelerated tests under controlled environments to attain ma-
terial property constants that modify with time and with influencing factors’ effects. Some exam-
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ples are in lubricants (reaction rate experiment) (Pfaendtner and Broadbelt, 2008), wind turbine’s
blade (blade crash testing) (Yang et al., 2013), insulation (Use-rate acceleration tests) (Johnston
et al., 1979);(Meeker et al., 2003) etc.
It must, however, be noted that degradation does not merely occur when components are active,
but could occur in events such as deterioration due to manufacturing defects, storage (e.g. rust),
intrinsic material deficiencies, etc. The conventional measures against degradation involved un-
dertaking frequent inspections and scheduled maintenance by operators such as regular oiling
of machine moving parts to avoid wear and tear, a passive approach of maintenance which in-
volved taking action only when a failure occurs. The definition of maintenance as standardized
in (Gouriveau et al., 2016a) is a ”Combination of all technical, administrative and managerial ac-
tions during the life cycle of an item intended to retain it in, or restore it to, a state in which it can
perform the required function”. There has been immense progress in the area of maintenance as
shown in Fig.2.2. The first generation of maintenance, the corrective maintenance involved a pas-
sive approach of allowing a failure to occur before maintenance is effected. Since the time of failure
is uncertain, this approach does not allow for rapid system restoration, thus system availability is
low (Luo et al., 2003). This is exacerbated in circumstances where the plants are not ”easy to ac-
cess”, for example with offshore wind turbines or off-shore oil rigs, where even one repair requires
substantial man-hours and financing. Also, since the plant’s health is left to chance with no prior
knowledge before maintenance, the complexity of health restoration is greater in this approach,
since there is no mechanism to isolate and understand the behaviour of a particular fault mode or
the root cause of a failure. In an era of intricate machinery, this may require an overhaul of a plant,
instead of a targeted approach to maintenance. Thus, this approach is definitely not practical at
this moment in time and is indeed archaic. The second generation of maintenance called the pre-
ventive maintenance approach involves “maintenance carried out at predetermined intervals or
according to a prescribed criterion and intended to reduce the probability of failure or the degra-
dation of the operation of an item” (Gouriveau et al., 2016a). It considers either a ”condition-based
maintenance” or a ”predetermined maintenance” where scheduled maintenance is prescribed no
matter the current health of the system, usually based on reliability prediction based on manu-
facturer’s recommendations or historical data. Even though this may lead to good availability
compared to corrective maintenance (Luo et al., 2003), it leads to ”over care” (Gouriveau et al.,
2016a) and ”wasted maintenance” (Kim et al., 2017) and hence is not the most financially prudent
option. It only becomes useful when all the components are deemed to fail at the same time (Kim
et al., 2017). The probability of such an event is very unlikely. As such, in 1979, the maintenance
cost of industries in the USA was upwards of $200 billion, increasing by 10− 15% year on. There-
fore, the introduction of a new type of maintenance became necessary, thus the emergence of the
condition-based approach.

Condition-based maintenance is defined as “a preventive maintenance based on performance
and/or parameter monitoring and the subsequent actions” (Gouriveau et al., 2016a). This in-
volves the real-time analysis of a health variable (temperature, vibration etc.) of a system such
that decisions can be undertaken considering an understandable behaviour’s anomaly. Under
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Figure 2.3: Modern maintenance proposal.

this, a diagnostic or predictive maintenance (prognostic) approach can take place. With the ob-
served variables from the plant’s operation, the remaining useful life (RUL) of a component can be
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forecasted with knowledge of the degradation behaviour for a comprehensive decision on main-
tenance.
With the emergence of industry 4.0, IoT technologies enable communication of sensor data in real-
time with cloud technology, making optimal decentralized decisions on machine health, therefore
presenting a suitable platform for the complexities a modern condition-based maintenance ap-
proach poses. Many works, e.g. (Elattar et al., 2016a);(Baur et al., 2020) in the literature seek to
distinguish ”condition-based maintenance” as a third kind of maintenance from preventive main-
tenance, but from the accepted definition of preventive maintenance, it certainly, does not only
involve the time scheduling of maintenance but also proactive measures. Thus, it is accepted in
this thesis as a branch of preventive maintenance.
A new type of maintenance, prescriptive maintenance, enables the introduction of decisions with
respect to an available RUL from the predictive sub-level so as to extend the RUL of associated
components. This can be achieved by a health management decision system with an appropriate
degradation considered in a cost function that manipulates influencing factors of degradation or
gives optimal cost-effective decisions with respect to operational conditions. The topology of vari-
ous decisions of maintenance when there is degradation is as shown in Fig.2.4. Even though most
maintenance methodologies in industry end with predictive maintenance, a holistic approach as
shown in Fig.2.3, should be considered. Degradation-based software should be able to identify a
fault, know why and where it occurred, know components’ RULs and finally propose solutions
or take actions locally against it. In an optimal framework, variables such as the availability and
cost associated with:

• Maintenance operators.

• Logistical resources e.g transport, inventory, etc.

• Environmental and operational conditions.

• Cost associated with managing degradation before repair or failure.

should be considered to make optimal decisions such as:

• Determining the optimal time to attend to maintenance.

• Set a maintenance order.

• Create a purchase order to replenish inventory.

• Managing degradation locally (e.g Fault-tolerant, Health-Aware controllers).

This thesis is focused on the predictive and prescriptive maintenance approaches. Henceforth, the
classification of degradation from two schools of thought is considered. In the area of prognostics
and diagnostics, degradation is popularly classified as:

• model-based- Knowledge of the physics of degradation.
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• Data-based- Relationship of degradation derived from system’s data.

• Hybrid-based- Combination of model and data-based techniques.

From (Zagórowska et al., 2020), the concept of degradation is formalised with respect to controller
design. The authors classify it based on its interaction with model variables and vice versa. They
categorize it into two primary groups with respect to the degradation effect on model behaviour.
Considering a dynamic model and outputs y(t) ∈ Ry devoid of degradation,

ẋ = f(x(t), u(t), t), (2.1a)

y(t) = g(x(t), u(t)). (2.1b)

such that x ∈ Rn and u ∈ Rm are vectors of system states and inputs, respectively. f(.) : R+ ×
Rn × Rm 7→ Rn is the flow map and g(.) : Rn × Rm 7→ Ry the output function.
Then the above dynamic model is described as a Degradation independent model. Degradation af-
fecting the behaviour of the system is thus termed as a Degradation dependent model, where there is
a possibility of observability of degradation. Hence, this can be represented as:

ẋd = f(xd(t), ud(t), hd(t), t), (2.2a)

yd(t) = g(xd(t), ud(t), hd(t), t). (2.2b)

Therefore for the degradation of the system affecting the model variables (ud, xd), the system
behaviour degenerates from its normal behaviour. Indeed, (Frank et al., 2000) argues that it is
only appropriate if possible, to consider (2.2) in all modeling undertakings, stating that models
without consideration for degradation are only a partial representation. For the effects of the
system variables on degradation, two classes of models are suggested. A factor-free model and
a factor-based model. The factor-free model is basically a time function of degradation that does
not depend on influencing factors such as the plant and exogenous variables, whereas factor-
based models depend on these variables. This could be appropriate degradation path models that
inherently involve time functional models involving material properties of the UUT. They are,
therefore, mathematically represented as

hd(t) = h(d(t), t) −→ (Factor-free degradation model), (2.3a)

hd(t) = h(d(t, w(t), u(t), y(t)) −→ (Factor-based degradation model). (2.3b)

Each model from, (2.2) can be used with models from (2.3) to capture degradation behaviours. As
evident, these descriptions are controller design-friendly.
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Figure 2.4: Topology of maintenance strategies updated from (Madhav, 2016)
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2.2 Prognostics and Health Management

(Lee et al., 2014) describes prognostics and health management (PHM) as a condition-based main-
tenance scheme that involves the detection of incipient faults, monitoring current health condi-
tions, and predicting remaining useful life.
After a conspicuous degradation event is detected, as shown in Fig.2.6, a prediction of the time
before failure can be deduced, hence prognostication, for various maintenance schemes to be em-
ployed. As stated in the prequel, that may not always be the case as some degradation processes
may not be observable, in which case a time-dependent factor-free or factor-based degradation
model can be used to monitor the degradation in time to an End of Life (EOL). But regardless
of the type of degradation, there must be a concrete prior knowledge of the behaviour of the
drift of degradation to the EOL, to make good predictions enabling improved system safety, in-
creased system reliability, improved system availability, avoidance of unnecessary maintenance,
and decreased system life-cycle cost (Sun et al., 2012). Caution must, however, be taken when
performing this exercise, as invalid predictions may be tantamount to wasted maintenance as in
predetermined maintenance or may conversely lead to a corrective maintenance scenario where
actions are taken when the failure has already occurred i.e when there is a substantial negative
forecast error. Thus, inasmuch as it is a desirable tool to have, it is a very delicate endeavor that
requires a high level of attention to detail. As a matter of fact, prognostics is only a calculated
(informed) ”guess” of a future event, thus it is important to consider attentively all factors prior
to the forecast to arrive at a well-informed conclusion, as well as to account for future conditions
which are uncertain. Unfortunately, most works do not even quantify uncertainty when perform-
ing prognostics.
There is a plethora of definitions of prognostics (Bayington et al., 2002); (Vachtsevanos and Roe-
mer, 2016); (Wu and J., 2007); (Zio and Di Maio, 2010) mostly biased towards their area of ap-
plications in the literature. However, the accepted standardized definition of prognostics is the
”estimation of time to failure and risk for one or more existing and future failure modes” (ISO-
13381-1, 2004). From this definition, there must first be a quantification of this time of failure pri-
marily dependent on the system under study. This could be the state of charge (SoH) in the case
of batteries or RUL quantified in terms of blade material deterioration in wind turbine’s blades
etc. Consequently, this quantified time of failure must have characteristic variables readily avail-
able through sensor measurements whose behaviour signifies a degradation course of the UUT
to failure. These variables are termed failure precursor parameters are events or series of events
that signify an impending failure. This could be the collector-emitter voltage for RUL predictions
in semi-conductors (Samie et al., 2015);(Patil et al., 2009), vibration signals for bearing (Hong L.,
2014);(Heng et al., 2009) or charge-discharge cycles for batteries (Zheng et al., 2015).
For illustrative purposes, we assume an observed degradation for the prediction of a RUL as
shown in Fig.2.6 from (Gouriveau et al., 2016a). RUL is the time interval between a forecast time
tc; (tc > tD) after detection of a degradation at tD to a prescribed failure threshold at tf . This
threshold most often than not is minimized from its true value to prevent negative forecast errors
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that may arise due to inevitable uncertainties in modellings. Thus the RUL is:

RUL = tf − tc (2.4)

RUL is a forecast, therefore as stated earlier, it is cogent to have an accompanying uncertainty
description, as shown on the right side of figure 2.6. Health management can also be represented
in terms of the reliability of a component or system in the area of reliability engineering. Reliability
is defined as the ability of an item to perform a required function, under given environmental and
operational conditions and for a stated period of time (ISO8402). That is to say, given an imperfect
perception of the reliability state of a system and/or component, an estimate of future failure
can be evaluated for a system or its component availability assessment in a probabilistic manner.
Thus, a probabilistic reliability function for an unrepairable component can be described as:

R(t) = 1− F (t) = pr(T > t), for, t > 0 (2.5)

1

0

t0 tf

R
(t
)

time

Figure 2.5: Reliability or survival function of an unrepairable component.

where F(t) is the lifetime distribution function and R(t), the reliability function. Repairability is
used in the context here to associate (2.5) to components that are assumed not repairable after
failure. The distributions used in the literature are the exponential distribution (Khelassi et al.,
2011); (Theilliol et al., 2015), normal distribution (Yang, 2004), log-normal distribution, Birnbaum-
Saunders distribution (Birnbaum and Saunders, 1969), inverse Gaussian distribution, Weibull dis-
tribution (Mudholkar and Srivastava, 1993); (Jiang and Murthy, 1999) as well as binomial, geomet-
ric and Poisson (Nelson, 1982) distributions for discrete-time domain applications. The authors
in (Compare et al., 2017) discuss how to integrate the two fields of reliability engineering and
prognostics, mainly by considering how metrics of prognostics can be incorporated in reliability
modelling such as the α− λ prognostic metric. A good review of all areas of interest in reliability
engineering can be found in (Marvin Rausand, 2004).
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To promote the inclusion of health management in everyday industrial activities a step-by-step
module as shown in Fig.3.7 is proposed, which has been standardized (ISO-13381-1, 2004) into
seven modules

Health Index

Figure 2.6: Illustration of a prognostic process. From (Gouriveau et al., 2016a)

namely:

1. Data acquisition: In this module, a critical component is identified from a dependability and
risk management analysis such as fault trees(Fan et al., 2012), failure mode, effects and criti-
cality analysis (FMECA)(Chen et al., 2011b), experience feedback etc. Thereafter, a physical
parameter is identified as representative of degradation whose data is acquired from an ap-
propriate sensor.

2. Data processing: Data from the sensors may sometimes, be corrupted with noise or not make
useful sense to an algorithm or operator. Therefore meaningful features are extracted from
the data called health indicators, which are indicative of a degradation initiation, a fault, or
an evolution of a degradation.

3. Detection: This real-time module should have the capability of alerting an anomaly based on
the nature of the health indicator compared to healthy conditions. Usually a fault detection
and isolation unit. This could be model-based involving the use of Kalman filters (Donders,
2002); (Karami et al., 2010); (Sheibat-Othman et al., 2013); parity equations (Ozdemir et al.,
2011); (Blesa et al., 2011b) observers (Schulte et al., 2012); (Odgaard et al., 2009); (Casau et al.,
2012); (Chen et al., 2011a) etc. It may also involve data-based techniques that uses statistical
(Zimroz et al., 2012); (Vapnik, 2012); (Niknam et al., 2013); (Li and Frogley, 2013) time (Futter,
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1995); (Miller, 1999), frequency domain (Shuting et al., 2006); (Liu et al., 2012) analysis or
lately an artificial intelligence approach (Duda and Stork., 2012);(Choi et al., 2021).

4. Diagnostics: This is an identification and isolation module that seeks to identify the cause,
localize the source of probable failure and determine its magnitude.

5. Prognosis: With information from the previous modules, the future time to failure (RUL) at
the present specified time is deduced.

6. Decision analysis: Optimal maintenance/control actions are recommended in this module
with respect to the available RUL estimates to ensure mission accomplishments or manage-
ment before repair or scheduled actions.

7. Presentation: A human-machine interface (HMI) must be available for understanding with
probable explainability of the algorithm of the PHM algorithm. It should be easy to under-
stand and devoid of mathematical complexities (Gouriveau et al., 2016a).

Data
Acquisition

Data
Preprocessing

Detection Diagnosis Prognostics
Decision
analysis

Presentation

Figure 2.7: Standardized module for industrial prognostics

Prognostics can be classified into a physics-based, a data-based or a combination of both as shown
in Fig.2.8.

Physics− based
model

Hybrid
model

Data− based
model

Prognostics

Figure 2.8: Taxonomy of prognostic approaches
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2.2.1 Model-based prognostics

Model-based or physics-based prognostics are methods of prognostics that utilize mathematical
models of degradation to predict a RUL either in a deterministic or stochastic form.
It involves an integration of sensory data with high fidelity models that permits in-situ identifica-
tion of degradation of a healthy state of a system (Daigle et al., 2012). Therefore a complete model
of a system must not only have the normal behaviour of the plant but also the time progressive
failure behaviour (Daigle and Goebel, 2011).
Usually the erroneous impression created is that this type of prognostics is completely unrelated
to data. That is far from the truth, as it must be noted that most good models are built on good
domain knowledge of the system as well as rich and relevant model data for useful model param-
eters which may be updated and adaptable online.

Indeed, models can even be solely formulated on the basis of good behavioural data. Some de-
rived physics-based models such as the Paris law (Paris and Erdogan, 1963) has been used to
great effect for the prediction of crack growth on materials, dependent on the material proper-
ties of these components. This has been applied in various applications such as (Behzad et al.,
2017) and (Pugno et al., 2006). Some other widely known examples are the Palmgren-Miner rule,
a popularly accepted cumulative damage model in industry as well as the stiffness degradation
algorithm, used in (Yuan et al., 2022) on cross-ply laminate materials.
A good implementation of a model-based approach must be on a micro and macro level as sug-
gested by (Robinson, 2018), that is to say, there must be a physic of failure (PoF) model of how
critical components affect the system as a whole and PoF models of individual critical compo-
nents.
(Daigle and Goebel, 2011) provides the necessary steps for the implementation of model-based
prognostics as shown in Fig.3.7. Firstly, there must be a developed physical understanding of
the physical behaviour of the system. Then identify the influencing factors from the plant that
contributes to degradation or failure, such that they serve as inputs to a progressive degradation
model after the initiation of degradation. These variables or parameters can be estimated via esti-
mators such as Kalman filters (Ompusunggu et al., 2016); (Al-Mohamad et al., 2021) or its various

Figure 2.9: model-based prognostics architecture
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variants such Extended Kalman filter (Loesch Vianna et al., 2015), unscented Kalman filter (Fan
et al., 2012) ; (Sangwan et al., 2018) or particle filters (Jensen and Foster, 2019); (Wang et al., 2021);
(Daroogheh et al., 2014) etc. Finally, a dynamic damage function such as the Paris law ((Paris
and Erdogan, 1963)) takes as inputs estimated system’s states for propagation to an EOL at each
stipulated propagation time for a RUL value. Emphasis must be placed on the reduction of un-
certainties in the estimation phase. As incurred prediction errors, only add to a more uncertain
RUL estimation. The model-based method has the advantage of incorporating the physical under-
standing of the monitored system, broadening the scope of investigation, even though the process
of development and validation may be tedious and is based on the assumption of a complete
knowledge of the physical behaviour of the UUT (Madhav, 2016).

2.2.2 Data-based prognostics

With the availability of sufficient in-situ data, characteristics that represents the evolution of degra-
dation are used to train models that estimate current states and also predict future states towards
a EOL. In place of physics-informed models, mathematical models with parametric weights are
used based on training data (An et al., 2013). The majority of prognostics algorithms are based on
this method, primarily because it offers relatively easier implementation since it does not require a
tedious understanding of the operational principles of the system (Elattar et al., 2016b). However,
the data-based method is known to have less accuracy compared to its physics and hybrid-based
counterparts. The use of AI especially deep learning models produces better accuracy, but they
produce models that are essentially ”black box” in nature, which is a lack of explainability of
the intricacy of how results are obtained to encourage its deployment in industry. Lately, there
has been an emergence of interest in refined data-based methods that offers explainability, the
so-called explainability AI concept. (Kraus and Feuerriegel, 2019) proposed a structured-effect
neural network, that outperforms other approaches in the literature but most importantly offers
interpretability of the sources of degradation using variational Bayesian inferences. Also for the
prediction of RUL for a turbofan engine fan, (Hong et al., 2020) employs Shapley additive expla-
nation (SHAP) techniques for interpretability purposes using a deep neural network technique
that combines 1D CNN, LSTM, and Bi-LSTM. Some reviews on the area of data-based prognostics
in the literature are (Schwabacher and Goebel, 2007); (Elattar et al., 2018).

2.2.3 Hybrid prognostics

Hybrid prognostics combines the two fields of data and physics-based methods to predict RULs.
It offers a trade-off between precision, applicability, and complexity, i.e the pros and cons of data
and model-based prognostics (Medjaher and Zerhouni, 2013). There are primarily two classes
of hybrid prognostics, a series approach, and a fusion approach. The series approach is used
when there is an established physical model such that unobservable variables of the physics-based
model are estimated via a data-based model (Baraldi et al., 2013); (Dong and Jin, 2014); (Dalal
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et al., 2011). Alternatively, the fusion approach involves a parallel architecture where both models
functions in tandem to augment each other for varied purposes (Cheng and Pecht, 2009); (Mangili,
2013). For example, a new research area has arisen in the area of physics-based or informed deep
learning where physical models are used to augment deep learning algorithms that ensure better
results and offer some form of explainability. This has been employed in prognostics undertakings
such as in (Chao et al., 2022); (Gong et al., 2021) for fleet prognostics using physics-informed
recurrent neural network and (Sara et al., 2022) for battery state of health. (Zhou et al., 2022) gives
a good review on the merits of considering such models.

2.3 Uncertainty Identification and Quantification

Even though it is common for some articles on prognostics to only yield deterministic remaining
useful life (RUL) values, it is emphatically clear that prognostics in engineering is an uncertain
endeavor since it involves a prediction of a future event based on current conditions and assumed
future measurements. Thus, it is only prudent to present these point-wise estimations with ac-
companying confidence intervals that afford a good interpretation of a reliable RUL prediction in
real-life situations. Therefore, the answer to a posed RUL question should be an ”about” not an
”is”. It could not have been reiterated more by (Sankararaman and Goebel, 2013) that ”it is not
even meaningful to make such predictions without computing the uncertainty associated with
RUL”. Recently though, there has been a conscious effort to make the management of uncertainty
in prognostics a standard procedure, with efforts on different proposed methods of identifying
uncertainties, representing them, and using resource-efficient propagation methods. It is impor-
tant to highlight early works such as (Sankararaman and Goebel, 2013); (Dewey et al., 2019) that
sought to review the subject, emphasising the importance of uncertainty description in prognos-
tics and equally from (Saxena et al., 2017) that goes ahead to propose the inclusion of uncertainty
description in some generic prognostic metrics such as the prediction horizon (PH) and α − λ

performance metrics, offering a method of comparing different quantification methods. Uncer-
tainty in most articles in the literature seeks to formalise the types of uncertainties as epistemic
uncertainty, which accounts for uncertainty in modelling, and aleatoric uncertainty which in-
volves exogenous uncertainty sources such as sensor noise and environmental disturbances. But
(Sankararaman and Goebel, 2013) contend this notion for application to condition-based moni-
toring, rather prescribing for an uncertainty classification involving: (i) Present uncertainty, that
is uncertainty pertaining to the estimation of states before prognostics are undertaken, (ii) Fu-
ture uncertainty, that describes unaccounted conditions during prognostication, (iii) Uncertainty
modelling that represents the discrepancy between measured response and the true response and
(iv) Prediction method uncertainty, which involves the uncertainty that arises even with the final
quantification process of the RUL’s uncertainty. The second classification offers a more compre-
hensive description that encompasses different possible uncertainty sources. Thus offering a good
foundation to capture all uncertainties.
However, some authors (Gu et al., 2007); (Celaya et al., 2011) consider the use of sensitivity analy-



2.3. UNCERTAINTY IDENTIFICATION AND QUANTIFICATION 21

sis to take into account only the dominantly influential input uncertainty sources on the output in
the quest to save computational cost. This may, however, result in under-representation in some
cases when propagation times are long, such that the least uncertainty has a major cumulative
effect.
Essentially, uncertainty management involves a transformation of input PDF to an eventual RUL
output PDF (Orchard et al., 2008) such that in the literature, uncertainty quantification more of-
ten assumes a Gaussian distribution. However, this assertion is far from the truth as even with
a simple prognostics model, the eventual probability distribution of RUL does not yield Gaus-
sian distributions. Thus, such an assumption is strong and should be avoided (Sankararaman and
Goebel, 2014). Indeed for this reason, for condition-based monitoring, Bayesian interpretation has
become the go-to methodology. It is therefore not surprising that the particle filter has become
the most featured prognostics estimator in most articles that consider prognostics uncertainty( see
for e.g. (Cadini et al., 2018);(Haque et al., 2018) ) as it offers suitable uncertainty representation
suited for nonlinear dynamics and non-Gaussian uncertainty descriptions. The Bayesian theory
has also been applied in the area of artificial intelligence (AI) in an attempt to quantify uncertain-
ties which must be said is a difficult endeavor. However, in (Wu and Ma, 2019),(Li et al., 2020),
and (Cornelius et al., 2020), different variants of Bayesian-inspired deep learning algorithms are
suggested. For example in (Huang et al., 2021), a hybrid Bayesian deep learning-based prognos-
tics approach is proposed that combines an LSTM-autoencoder with a Bayesian Neural Network
(BNN) for uncertainty quantification. Other approaches such as the Confidence Prediction Neural
Network, Radial Basis Function Neural Nets (RBFNN), and Probabilistic Neural Nets have also
been proposed to handle uncertainty. But as stated in (Orchard et al., 2008), these approaches
remain unproven as they are formulated on limited parameters and with unimodal distribution
assumptions. For a system-level quantification, (Amssaouet et al., 2019) consider the use of inop-
erability input-output modelling for uncertainty description that handles component interactions
structure, allowing for uncertainty description under component interaction. This was done con-
sidering the particles in particle filtering as representative of each system component’s health. For
the propagation step, it is commonplace to use Monte Carlo\ Quasi-Monte Carlo sampling, but
this results in a high computational cost. In light of this, some works consider other resource-
efficient methods to tackle this issue. In (Robinson et al., 2017), a concept borrowed from relia-
bility engineering termed the inverse First Order Reliability Method (inverse FORM), is used for
propagation. This offers less computational expense as only probable uncertainty sources asso-
ciated with a reliability index are forecasted. The concept of stochastic response surface method
(SRSM) has also been employed in (Robinson et al., 2017), where the basic function selected is
polynomial. Computational costs are vastly reduced. According to the authors, similar results are
obtained from just 27 simulations compared to 100,000 simulations for a Monte Carlo simulation.
The method of non-intrusive polynomial chaos approach has also shown its merit as proposed by
(Duong and Raghavan, 2017).
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2.4 Integration of Prognostics with Control Techniques

According to Zagórowska et al. (2020), control approaches that consider the tolerance or mitiga-
tion of degradation can be classified into two main groups: (i) Control systems aware of degradation
and (ii) Control systems mitigating degradation. In the first group, controllers are designed with
the ability to compensate for the degradation of a controlled system with prior knowledge of the
process. For example, the authors in Zagórowska et al. (2020) consider faults as a consequence
of component degradation, thus classifying fault tolerant controllers as control systems aware of
degradation, where there is a prerequisite for a knowledge of the fault process Isermann (2011).
However, the latter involves control frameworks that seek to mitigate the extent of degradation
over a component’s lifetime by manipulating system variables and parameters delaying the time
of failure. All these types of control methodology fall under the branch of prescriptive mainte-
nance.

2.4.1 Control systems aware of degradation

In this control process, there must be available a degree of knowledge of degradation in other to
take action against it. This process is in the field of control performance monitoring (CPM) where
deterioration from different constituents of a control system is observed and actions are taken to
accommodate or compensate for it. For example, this could be when a fault had already occurred
in the case of fault tolerant control or other applications where compensation is initiated when the
degraded behavior of the system deviates from a considered norm. Thus, from considered related
fields to CPM as suggested by (Ding and Li, 2021), a Control system aware of degradation can be
categorized with respect to (i) FDI (ii) Fault tolerant control (FTC) (iii) Controller optimization. In
the sequel, FTC and FDI are discussed.

Fault Tolerant Control

Fault, as described in (Zhang and Jiang, 2008), can be seen as discrete events which affect a sys-
tem by changing specific structural and/or parametric properties, leading to a system producing
erroneous results and transitively leading to the system’s failure (Shyama and Pillai, 2019). Faults
in control systems are categorized into three forms.

• Sensor fault, fs : Faults associated directly with the system measurements.

• Actuator fault, fa : Fault that causes changes in actuator action.

• Process fault, fp : Malfunction within the system process.

Occurrence of faults f = [fs, fa, fp] in a closed-loop network has the ability to change system
behaviour from intended operating conditions which can be realised from its inclusion into the
generic control model (2.6). Considering only additive faults, a model with faults, f can be repre-
sented as

ẋ = Ax+B(u+ fa) + Edd+ Epfp (2.6a)



2.4. INTEGRATION OF PROGNOSTICS WITH CONTROL TECHNIQUES 23

y = Cx+D(u+ fa) +Gdd+ fs +Dpfp (2.6b)

where u and d are control input and disturbance respectively. FTC should be able to maintain
an acceptable level of performance with a tolerable level of degradation (Ocampo-Martinez and
Puig, 2009). FTC are generally categorised as passive and active. Passive Fault Tolerance Control
(PFTC) involves an off-line fixed structure, which is not subject to change no matter the prop-
erties of the fault. Schemes such as H∞ and sliding mode are used in (A.Vargas-Martı́nez and
R.Morales-Menendez, 2010) and (Alwi and Edwards, 2008) respectively as PFTC with promising
results. On the other hand, Active Fault Tolerance Control (AFTC) relies on fault information from
the detection level to initiate the reconfiguration of control actions ensuring control stability and
acceptable performance (Ocampo-Martinez and Puig, 2009). An active Fault Tolerant Control (FTC)
scheme should be able to detect and isolate faults and possibly estimate their magnitudes (fault
diagnosis), from the FDI level, and adapt accordingly to faulty situations through control actions
such that necessary operating conditions are satisfied even in the event of faults (Zhang and Jiang,
2008). The design of FDI should enable rapid and efficient detection and isolation from the in-
ception of these faults to avoid further deterioration of the system’s health. Resources abound
in the area of model and model-free detection schemes in literature that gives a comprehensive
review of various fault detection and isolation schemes over the years, the reader is referred to
(Isermann, 2011);(Yassine et al., 2019). An example of an early prominent research is presented
in (Isermann, 2011) that demonstrates a detection mechanism with emphasis on non-measurable
quantities in models such as process parameters and process state variables. Results from this
paper were particularly different from technologies at the time, which were dependent on fault
detection based on upward and downward transgression of limits as well as trends that are moni-
torable to detect faults. The author in (Isermann, 2011) goes ahead to apply parameter monitoring
and cross-correlation tools with applications to an electrical-driven centrifugal pump, and leaks
in pipes respectively, concluding for instance the need for a low-order model to ensure high pre-
cision in parameter estimation. In (Yassine et al., 2019), data collected from system output were
used to make inferences on deviation from a standard norm of operation, by comparing data from
faulty scenarios to data from normal operations using statistical tools.

Trendy research tools such as machine learning using Artificial Neural Networks(ANN), Support
Vector Machines (SVM) among others to detect faults (Zhang et al., 2019) have not surprisingly
attracted the interest of late. (Zhang et al., 2019) provides good documentation of these meth-
ods as applied to fault detection in bearings, going further by introducing the application of deep
learning in fault detection, making a case for its adoption due to better algorithms, which have
improved speed, convergence and generalisation, combined with an increased amount of datasets
and modern hardware to match. However, this approaches lack necessary explainability which
is important in FDI. In DWNs, the method of Principal Component Analysis (PCA) has been ap-
plied in (Gertler et al., 2010) with mixed results. This is mainly due to the difficulty of spatial
separation of faults from normal data. This arises as a result of the presence of disturbances that
are co-linear with faults limiting the reduction in dimensionality, whereas Veldman - de Roo et al.
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(2015) utilises an observer-based residual generators to effectively detect leaks in pipes. Fault de-
tection in pumps has also been studied in Kallesøe et al. (2004). FDI serves as the precursor for
fault-tolerant mechanisms, after a fault has been duly detected and possibly diagnosed, FTC is
applied.
As a further illustration, consider that an automated system is subject to control actions u, these
control variables, u ⊆ U are designed based on a control law such that certain control objectives
O are satisfied with an associated performance index J. The system is controlled in a manner
such that the evolution of the dynamic states x ⊆ X and control actions u respect strict or relaxed
constraints C. C can be described in an affine, linear or nonlinear equality and inequality form de-
pending on the system dynamics and process requirements. Constraint C therefore has a specific
structure S and parameters θ, hence the control problem can be presented by the tuple ⟨ O, C(S,
θ), U ⟩. Considering that in real life, systems are prone to parametric variation and uncertainties,
the control structure can be reformulated considering ”real” parameters θ ∈ Θ, where Θ is a set
of possible parameters as a result of variation from normal operations (Blanke et al., 2000). The
problem thus becomes ⟨ O, C(S, Θ), U ⟩ which can employ robust or adaptive control laws for
desirable solutions.
Assuming nominal conditions with structure and parameter as (S∗,θ∗), under normal operation,
there should be a control action u∗ restricted by U ×X (i.e u∗ as a function of state variable) as a
solution for the problem ⟨ O, C(S∗, θ∗), U ⟩ . Therefore a fault can be thought of as occurred when
(S, θ) ̸= (S∗, θ∗).
For a case of fault, let the properties of the constraints be (Ŝ, θ̂) to form the real constraints C(Ŝ,
θ̂) under faulty conditions, a fault-tolerant control (FTC) should have the ability to accommodate
a deviation from the nominal constraints but still find a feasible solution for a problem ⟨ O, (Ŝ,
θ̂), U ⟩ with an acceptable degree of degradation. (Ŝ, θ̂) is estimated beforehand at the FDI level,
this process leads to what is called fault accommodation. When there is no solution for the problem
during fault accommodation due to the extent of the fault, the tolerance level of the actuator, a
restructuring of ⟨ O, C(S, Θ), U ⟩ is required. Henceforth, there is the introduction of a new feasi-
ble pair of constraint elements, (Σ, λ) ∈ (S̄, Θ), where S̄ comprises of different restructuring of the
system which keeps the system’s functionality. Therefore considering that (Σ, λ) do not result in
faulty conditions, the setup must have a solution for ⟨ O, C(Σ, λ), U ⟩, usually done with aid of re-
dundant elements in the system. This type of FTC is an AFTC known as reconfiguration. Estimation
can be done from the FDI to improve the possibility of a solution but is not really a prerequisite
(Blanke et al., 2000).

Controller optimization

With information about the degraded state, the degradation is optimized to manage degradation
or failure. The predominant controller used in this instance is an optimization-based or adaptive
controller. In (Zaccaria et al., 2019) an adaptive control for the compensation of degraded perfor-
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mance from a micro-gas turbine is proposed. With results from a diagnostic sub-level, showing de-
viation from the unhealthy operation, an MPC control is designed for compensation. Also in (Hua,
2021), reinforcement learning approaches of Q-learning and natural actor-critic methods were ap-
plied to input/output recovery and performance index-based approaches for robustness and per-
formance optimization of feedback control systems containing degraded components. This was
tested on a brushless direct current motor test rig. With a load-sharing control scheme through
real-time optimization via modifier adaptation, (Milosavljevic et al., 2016) proposed compensation
of degraded parallel gas compressors depending on the magnitude of a plant-model mismatch.

2.4.2 Control system mitigating degradation

This basically involves the control management of innate degradation-related model variables
or integrated degradation models that are dependent on a system’s controllable variables, pre-
dominantly using optimization-based controllers. It involves the manipulation of these variables
arriving at a trade-off between satisfying primary control objectives and the mitigation of degra-
dation, usually to prolong a degraded state to fulfill mission targets.
The incorporated model may involve the use of characteristic quantities such as reliability of com-
ponents or SoC (State of Charge) of batteries that invariably are dynamic functions of controllable
states such that a supervision layer can be set up to manage degradation via the selection of opti-
mal operational set-points. Considering the constraints on a race track, (Pour et al., 2021) employs
a health-aware control that considers the RUL of batteries of an autonomous vehicle, essentially
it’s SoC, optimizing it’s performance to meet mission goals. For reliability-oriented applications,
control allocation of an aircraft based on actuators’ reliability was done in Khelassi et al. (2011)
using an LQR control. The results show improved actuator health and thus overall system relia-
bility. Similarly, in Chamseddine et al. (2014), control allocation was used based on an MIT-based
reliability rule for an over-actuated octocopter helicopter testbed to maximize global reliability. In
the area of DWN, Salazar et al. (2017) and Pour et al. (2018) used the interconnections between the
system components to model the cumulative reliability of the system, using different statistical
methods (Bayesian and Markov chains). Using an MPC, the health of the actuators was included
as an objective criterion, such that through load sharing, the rate of decrease of the network’s re-
liability was minimized at the expense of primary control goals. Also, certain variables of health
are appended to plant models, thus factor-based models can be directly included in control de-
signs. for example, in the area of wind turbines, many works include variables of health such as
tower-fore aft, slip angle, etc in control designs, especially an optimization-based one, promoting
component health against power extracted. Also by the prediction of component deterioration
through fatigue estimation techniques, another school of thought employs directly this informa-
tion into control schemes. This approach has the advantage of giving operators direct information
on approximated degradation which could help operators optimize operations to maximize profit.

For example, in (Barradas-Berglind et al., 2015), an MPC strategy that incorporates online fatigue
estimation has been studied. The authors consider an online estimation of drive train shaft dam-



26 CHAPTER 2. BIBLIOGRAPHY REVIEW

age through Preiscach hysteresis which is then incorporated into a data-based MPC; consequently
tested on the nonlinear OpenFAST model showing promising results. Authors in (Sanchez et al.,
2015), instead present an offline approach to fatigue estimation of wind turbine’s blades, establish-
ing a relationship between the remaining useful life (RUL) and the stress history with the help of
the widely known Palmgren-Miner’s damage accumulation rule, aimed at maximizing the RUL
of the blades, but the authors only consider a simple case of an assumed constant wind thus ne-
glecting the cyclic nature of stress. To include the cyclic behaviour of stress, (Löw et al., 2020)
henceforth considers an external inclusion of a cycle counting technique, the rainflow counting
in a process termed as Parametric Online Rainflow-counting (PORFC). But most of these tech-
niques mentioned only considers a fixed penalization of the damage criterion, thus presenting
solutions that have a notion of a perpetual deration of the turbine which is not economically vi-
able. (Beganovic et al., 2018) thus employs the Palmgren-Miner’s damage accumulation rule to
model a damage function over a wind turbine’s lifetime and then considers an ensemble of LQR
controllers, each tuned differently per a predefined selection of weights such that an online switch-
ing mechanism is proposed on the controller at different damage points mitigating damage at a
marginal cost of reduced power production. Crack mitigation in aircraft applications has also been
studied by (Ray and Caplin, 2000);(Ray et al., 2000). The propagation of the cracks was modelled
considering the effect of the plant’s variables.





Chapter 3

Set Based Prognostics for Wind Turbine
Blade

The content of this chapter is based on the following works:

• (Khoury et al., 2022e) Khoury, B., Puig, V., and Nejjari, F. (2022e). A set-based prognostics
approach for wind turbine blade health monitoring. IFAC-PapersOnLine, 55, 402–407. doi:
10.1016/j.ifacol.2022.07.162.

• (Khoury et al., 2020b) Khoury, B., Puig, V., and Nejjari, F. (2020b). Model-based prognosis
approach using a zonotopic kalman filter with application to a wind turbine. In Proceedings
of the 5th European Conference of the Prognostics and Health Management Society (PHME 2020)),
volume 5, 9. doi: p.1258:1-1258:9.ISBN978-1-936263-32-5.

Productive operation of wind turbines requires structural installations at most often unforgiving
environmental conditions which invariably leads to a high rate of component damage. Due to
the inevitability of these occurrences, the knowledge of the life expectancy of these components
subject to adverse conditions is of importance for the effective planning of maintenance and oper-
ation to minimize the Levelized Cost of Energy (LCoE); increasing profits and accelerating wind
energy’s contribution to a more environmentally sustainable energy mix. Prediction of the life
expectancy of components at a specific time in a plant’s operation involves an efficient design of
prognostic tools to establish whether operational goals can be fulfilled, whilst also considering the
possibility of including online decision-making frameworks such as fault-mitigation, operational
replanning, and other prescriptive policies (Sankararaman and Goebel, 2014).
Uncertainty in prognostics is inevitable since it involves an assumed knowledge of future oper-
ating conditions and also presents the prediction of states and/or parameters that are uncertain.
Quantification of uncertainty in prognostics according to (Sankararaman and Goebel, 2014) can
basically be posed as an uncertainty propagation problem, which can either be online or offline.
(Sikorska et al., 2011) acknowledges the fact that the main bottleneck of online implementation is
the computational burden that most methodologies present. In lieu of this, it is imperative to pro-
pose prognostics algorithms that are practical for easy deployment. In this chapter, to overcome
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computational complexities that may arise in prognostics methodologies, a set-based prognostics
of a wind turbine blade is proposed and the problem is posed as a reachability analysis problem.
Reachability analysis has been extensively studied and used in diverse applications such as ro-
bust control, state-based prediction in autonomous systems, computation of region of attraction
for stability, and fault detection purposes, among others. For linear dynamics, since convexity is
preserved in set propagation when convex sets are used, appropriate convex sets are considered in
reachability analysis. Moreover, manipulations of convex sets under mathematical operators such
as linear transformation, Minkowski sum, and convex hull are also easily possible and practically
implementable. The choice of the type of set however mainly depends on the computational de-
mands of convex operands under these operators. For example, a Minkowski sum of a polytope
can be a computationally demanding operation as compared to a zonotope, which is closed under
linear maps and Minkowski sums for the same bounding representation. Henceforth, zonotopic
sets are chosen primarily because it offers simplicity in computation of sets and flexibility in op-
eration compared to other geometric representations e.g ellipsoids, interval sets, etc. During the
estimation step, for lesser computational burden, an LPV zonotopic Kalman filter is formulated
taking into account a damage-appended wind turbine model in an LPV format such that at each
propagation time, with the estimated state (degradation) and its uncertainty, propagation of posi-
tive invariant zonotopic sets can be undertaken.
This chapter also introduces the nonlinear wind turbine and its blade for chapter 4 and mathemat-
ical preliminaries for chapter 6.

3.1 Non-Linear Wind Turbine

The closest mathematical representation to the complete functionality of a wind turbine, the high
fidelity OpenFAST (Jonkman and Buhl, 2005) is a 24-degree-of-freedom model, thus undesirable
for control design purposes (Georg, 2015). Therefore two reduced models by (Bianchi et al., 2007)
and (Odgaard et al., 2015a), which capture most key dynamics of the plant are considered in this
thesis. Above a certain sweeping wind speed, wind turbines capture useful kinetic energy via
the blades to influence the velocity of the rotor, hence prompting the conversion of kinetic wind
flows into useful electricity via internal mechanical energy. The wind turbine can therefore be
categorized as an interaction between the aerodynamic, flexible drive train, power generator, and
the pitch actuator sub-models.

3.1.1 Mechanical model

It is assumed that the rotor trust force FT that acts on the tower not only causes a displacement in
the tower but the blade tip. A single-shaft model which consisting of two rigid bodies linked by a
flexible shaft is also considered for the drive-train. On either side of the shaft are the mechanical
components represented as rigid bodies. Hence by means of Lagrangian dynamics, given a vector
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of generalized coordinates:

q = (yT,yB, θr, θg)

and a vector of external forces:

Q = (FT,FT,Ta,Tg)

the mechanical model can be described from the equation of motion, with mass matrix M, damp-
ing matrix C, and stiffness matrix K as:

Mq̈ + Cq̇ +Kq = Q (q̇, q, t, u) . (3.1)

Considering that the blade tip displacement involves the tower as well, ∴ yBT
= yT + yB . A

Lagrange’s equation with kinetic energy, EK , dissipating energy Ed and potential energy Ep is
given as:

d

dt

(
∂EK

∂q̇i

)
+

∂Ep

∂qi
+

∂PD

∂q̇i
= fi (3.2)

Pitch
system

Aerodynamics
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Tg(t) Pg(t)

Pg(t)Tgref (t)

Figure 3.1: Interactions between sub-models of the wind turbine.
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With the respective energies given as:
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mT ẏ

2
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1

2
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2
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. (3.3c)

Resulting in a four-degree-of-freedom mechanical model considering (3.2) as:

(mT +NmB) ÿT +NmB ÿB + dT ẏT + kT yT = FT (3.4a)

NmB ÿT +NmB ÿB +NdB ẏB +NKByB = FT (3.4b)

Jrθ̈r + ds

(
wr −

1

ng
wg

)
+Ks

(
θr −

1

ng
θg

)
= Ta (3.4c)

ds

(
wr −

1

ng
wg

)
+Ks

(
θr −

1

ng
θg

)
− Jg θ̈g = Tg (3.4d)

The equations are rearranged in matrix form as in (3.1):

M =


mT +NmB NmB 0 0

NmB NmB 0 0

0 0 Jr 0

0 0 0 Jg

 , (3.5a)

C =


dT 0 0 0

0 NdB 0 0

0 0 ds
−ds
ng

0 0 −ds
ng

−ds
n2
g

 , (3.5b)

K =


KT 0 0 0

0 NKB 0 0

0 0 Ks
−Ks
ng

0 0 −Ks
ng

Ks
n2
g

 . (3.5c)

.

3.1.2 Pitch and generator dynamics

Pitch-controlled wind turbines control the power extracted from the wind by ensuring maximum
extraction at below-rated speeds and prevent Wind-turbine damage when wind speeds are consid-
ered high by alternating the blade’s surface for wind attack via the blade pitch angle. A first-order
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Figure 3.2: Drive-train

delay model, a common feature in most literature is used.

β̇ =
1

τβ
β +

1

τβ
βref (3.6)

where β and βref are the pitch angle and the pitch control input respectively. Also, a simple first-
order delay model is employed for the generator and converter dynamics given as:

Ṫg =
1

τg
Tg +

1

τg
Tgref (3.7)

Tg is the generator torque and Tgref , the control input from the generator. τg and τβ are their
respective delay time constants.

3.1.3 Aerodynamics model

The nonlinearity in the chosen wind turbine models emanates from the aerodynamic model. It
consists of the thrust force on the rotor, FT , and the aerodynamic torque Ta from captured aerody-
namic power Pr available in wind power Pw that sweeps across the blades’ surface. The forces Ta

and FT are given as:

Ta =
Pr

wr
=

1

2
ρARCp (λ(t), β(t))V

2
w(t), (3.8a)

FT =
1

2
ρACt (λ(t), β(t))V

2
w(t). (3.8b)

where ρ is the air density, A, the rotor swept area, Vw is the available wind speed and R, the radius
of the rotor. The power and thrust coefficients are denoted as Cp and Ct respectively which are
both functions of the pitch angle β and blade tip speed λ given as:

λ(t) =
Rwr(t)

Vw(t)
. (3.9)
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Figure 3.3: The Cp and Ct coefficients as functions of the pitch angle and the tip-speed ratio.

3.1.4 Complete state space model

Considering the torsion angle as a state, θs = θr−θg and the mechanical model in state space form
from (3.1),

q̈ = −M−1Cq̇ −M−1Kq +M−1Q (3.10)

The complete model involving all the interacting sub-models is given by:

ẋ = Ax+Bu+ f(x, Vw) (3.11)

A =



03×3 L3×4 03×1 03×1
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− 1
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]
01×3 01×4 − 1

τβ
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,
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1
τβ

0

0 1
τg

 ,

f(x, Vw) =


04×1

1
NmB

FT (x, Vw)
1
Jr
Ta(x, Vw)

03×1

 .
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The states x = [yT , yB, θs, ẏT , ˙yB, wr, wg, β, Tg] are the tower and blade displacements, torsion an-
gle, tower, and blade velocity, rotor and generator speed, the pitch angle and the generator torque
respectively. The inputs u =

[
βref , Tgref

]
are the reference control pitch angle and generator

torque. In the sequel, the nonlinearity from f(x, Vw) is reformulated into a pseudo-linear form
through LPV nonlinear embedding.1. An LPV model of the wind turbine is obtained from (3.11)
by means of a non-linear embedding approach as described in (Rugh and Shamma, 2000). This
allows to the introduction of a model that is linear in the state space, but nonlinear in parameter
space offering an optimization problem where simple convex optimization tools can be applied.
A further reduced wind turbine by (Odgaard et al., 2015a) which considered only the pitch, torque,
and rotor speed dynamics are considered in this chapter as the degradation as shown in the sub-
sequent sections depends on these variables.

3.1.5 A further reduced model from (Odgaard et al., 2015a)

Neglecting torsion angle and friction and with the assumption that the low and high-speed shaft
is one complete model, a simple wind turbine model is proposed as:

ẇr =
1

J
(Ta −NgTg) (3.13a)

β̇ =
1

τp
(−β + βref ) (3.13b)

Ṫg =
1

τg
(−Tg + Tgref ) (3.13c)

(3.13d)

where wr is the rotor speed, Tg is the generator torque and β the pitch angle for capturing wind
depending on wind speeds Vw.

3.1.6 A general description of a wind turbine blade

Wind turbine blades are purposely designed for maximum extraction of kinetic energy from a
minimum available wind, whilst taking into account their cost of fabrication, therefore ideally
manufacturing an efficient blade from an economically viable material. Wind turbine blades as
described by (Leon et al., 2017) are composed of composite materials, conventionally fibre rein-
forced polymers, and glass fibre or recently a hybrid of carbon and fibre. This is primarily due
to their comparatively high stiffness, stiffness-to-density ratio, and toughness. The suction and
pressure face is adhesively bounded together by shear webs joining the lower and upper parts
of the blade shell. They may also be fabricated as a unit through the process of infusion. The
convenient selection of appropriate composite materials enables the development of longer and
larger blades which are cost-effective mainly due to their strength-to-mass utilization ratio (Chen

1Plant’s model parameters can be found at https://www.nrel.gov/docs/fy13osti/57228.pdf

https://www.nrel.gov/docs/fy13osti/57228.pdf
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and Eder, 2020). Aerodynamic and structural considerations such as the designed blade shape,
number of blades, aerofoil selection, and optimal attack angles play a major role in enhancing an
optimal tip-speed ratio (ratio of the speed of the rotor tip to wind speeds over the blade ) which is
basically a metric to measure maximum captured energy from wind. Due to the exposure of the
blades to the stochastic wind as well as forces such as gravity, these composite materials are liable
to gradual degradation due to cracks. In the sequel, a method of determination of the material
degradation through a stiffness degradation algorithm under stress is discussed.

3.1.7 Fatigue estimation Of wind turbine blades with stiffness degradation

Fatigue in structures occurs when subjected to repeated cyclic stress below their peak static strength
resulting in a localized, progressive, and eventual permanent structural alteration (cracks or com-
plete fracture) of a UUT (Krasnosel’skiı̌ and Pokrovskiı̌, 1989). Estimating fatigue in wind turbine
structures subjected to stochastic wind loadings and other forces has been a subject of study for
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Figure 3.4: Curve showing stages of stiffness degradation.

many decades. These studies, therefore, present grounds to compute the fatigue life of compo-
nents of wind turbines to enable predesigns, either active or passive, which averts rapid loss of
structural strength for a longer operational lifetime enhancing the economic viability of wind en-
ergy technology. Ideally, wind turbine blades are designed to withstand up to about a 108 mag-
nitude of load cycles during its stipulated target lifetime of 20-25 years. Directional and magni-
tudinous variation in stochastic wind results in the phenomenon of wind shear, a consequence of
larger winds at the top of the structure compared to the bottom resulting in an unbalanced load-
ing of the wind turbine structure resulting in structural stress (Blanke et al., 2006). Gyroscopic
and gravitational forces also contribute to loadings on the structure. Attention to mitigating these
fatigues in wind turbines has garnered even more prominence with the introduction of large wind
turbines for higher power output. Large wind turbines inherently introduce an increase in masses
of components exacerbating stress. For example, large blade sizes increase the surface of attack of
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wind amplifying the effects of aerodynamic forces on the structure when subjected to turbulent
wind. Longer and larger blades may also deflect causing destruction to the tower. Also, massive
masses mean an increased effect of gravity on the structure leading to pronounced stress effects.
Thus it is cogent to understand the behaviour of these occurrences to better maximize profits
putting in mind that their cumulative effect over time leads to costly unplanned maintenance.
Due to the difficulty in measurement of deterioration in materials over time, predictive tools
dependent on specific material parameters in functions derived from rigorous experiments are
considered. One such method is the stiffness degradation algorithm. According to (Vassilopou-
los et al., 2010), the modulus decay of most fiber-reinforced composite materials occurs in three
stages as shown in Figure 3: E0 is undamaged stiffness, E is the stiffness at a specific point in the
material fatigue life cycle, N is the total test cycles and Nf is the fatigue life in cycles. In the first
stage, there is a rapid degrading of stiffness of about 2-5% mostly due to transverse matrix cracks,
at this stage, microscopic cracks in the material start. Stage two involves a gradual degradation
over the fatigue lifetime. Damage here is mostly caused by edge delaminations and additional
longitudinal cracks. Eventually, in the final state, degradation occurs in abrupt steps, culminating
in an overall fatigue failure of the specimen.

From (Van Paepegem and Degrieck, 2002), under the assumption that our UUT, the blade is a solid
beam, the damage model considering compressive stress can be described as:

dD

dN
= fi(ϕ,D) + fp(ϕ,D), (3.14)

where fi is the initial stage function of a steep decline in stiffness and fp is the damage propagation
function of the second and final stages. These two functions are given by

fi(ϕ,D) =

[
C1Σ(ϕ,D) exp(−C2

D√
Σ(ϕ,D)

)

]3
, (3.15a)

fp(ϕ,D) = C3DΣ(ϕ,D)2

[
1 + exp(

C5

3
(Σ(ϕ,D)− C4)

]
. (3.15b)

where failure index Σ(ϕ,D) is a function of the damage D resulting in material strength reduction
and the stress value ϕ

Σ(ϕ,D) =
ϕ

(1−D)Xc
. (3.16)

The constant Xc is the comprehensive static strength. The damage growth model from initiation
to final fatigue failure is thus given as :

dD

dN
=

[
C1Σexp(−C2

D√
Σ
)

]3
+ C3DΣ2

[
1 + exp(

C5

3
(Σ− C4)

]
(3.17)

where C1 and C2 are the material constants, C3 is the damage propagation rate, and C4 is a thresh-
old below which there is no initiation of fibre fracture. When the threshold C4 is crossed, the initial
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fibre fracture occurs on the specimen, which causes an exponential rapid decrease in strength and
enables the final fatigue failure of the material. As long as the failure index is below the threshold
C4, the parameter C5 assumes a large value to ensure a strongly negative exponential function.
When C4 is crossed, it assumes a large positive for accelerated degradation of the material. The
third power is used for compressive stress as they show from experiments to have considerably
less effect than tensile stress. From (Van Paepegem and Degrieck, 2002), the parameters for a dam-
age model for a fibre-reinforced composite of which some wind turbine blades are made up of
with the stiffness degradation algorithm is given in Table 3.1. Even though the UUT is presumed
to have reached a predefined threshold of damage after this test, it is by no means an indication
that the component is not usable. Ideally, the natural assumption is to run the algorithm till a
100 % deterioration of material strength, but it must be noted that since most of these predictive
or statistical methods are thought of as not exact, under conditions of fluctuating mean stress or
pronounced sequence effects, a value below 100% is normally chosen (Pedersen, 2018).

Table 3.1: Parameters for stiffness degradation model.
Parameter Value Unit
C1 0.002 (1/cycle)
C2 30 -
C3 4× 10−4 (1/cycle)
C4 0.85 -
C5 93 -
Xc 341.5 Mpa

3.2 Mathematical Background

In this section, the zonotope is described for sections 3 and 6 as well as reachability analysis for
chapter 3.

3.2.1 Zonotope

For clarity, calligraphic capital letters are used to represent sets, ∆(.) for the uncertain component
of a variable, and lower letter cases for deterministic representations. □(.) signifies the interval
hull of a set. Considering the Minkowski sum of two sets S1 and S2 as S1 ⊕ S2 = {s1 + s2|s1 ∈
S1, s2 ∈ S2}, with a unitary box of r unitary elements and Br ∈ Rr given as Br = [−1, 1]r.
A zonotope can be defined as a class of geometric set with a center p and a generator matrix
H ∈ Rn×r in a linear affine image as

Z := ⟨p,H⟩ = p⊕HBr (3.18)
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The Minkowski sum of two zonotopes Z1 = ⟨p1, H1⟩ and Z2 = ⟨p2, H2⟩ is thus given as:

Z1 ⊕Z2 = ⟨p1, H1⟩ ⊕ ⟨p2, H2⟩ = ⟨p1 + p2, [H1H2]⟩ (3.19)

The linear mapping of a zonotopic set, Z by a vector or a matrix K is given as :

K ⊙ ⟨p,H⟩ = ⟨Kp,KH⟩ (3.20)

and the smallest box (interval hull) containing the zonotope is described by □Z = p ⊕ rs(H)Br,

where rs(H) is a diagonal matrix such that rs(H)i,j =
m∑
j=1
|Hi,j |. Hence, Z ⊂ □Z .

Figure 3.5: A 3D zonotope.

3.2.2 Reachability Analysis

Reachability analysis is a technique to evaluate resultant reachable sets which are computed through
diverse means, mainly grouped into set propagation (Althoff et al., 2021) and simulation-based
methods (Meslem and Martinez Molina, 2019). It fundamentally involves a union of all feasible
trajectories under all possible input realizations and constraints that a dynamic system can reach
within a finite or infinite time span, commencing from a bounded initial set (Amr et al.). There is a
plethora of its applications, from real-time motion planning (Bansal et al., 2020); (Manzinger et al.,
2021), stability analysis in control (Rakovic et al., 2012); (Desimini and Prandini, 2019), neural
network verification(Xiang et al., 2018), multiplayer reach-avoid games (Yan et al., 2020), through
backward reachability analysis, safety planning (Harno and Kim, 2019); (Bui et al., 2021) etc. For
a feasible reachable set realization, there are requirements of initial and transition conditions that
ensure computational feasibility and promote interpretability. Thus, this encourages the use of
convex sets which are easily mathematically computable under linear reachability mapping and
interpretation of final reachable sets either through conservatively inner or outer approximation
through desirable bounding techniques. However, some methodologies such as the Hamilton-
Jacobi reachability formalism encourages nonlinear reachability and non-convex input maps but
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leads to exponential computational complexity when the number of variables involved increases
(Bansal et al., 2017). Reachability analysis intrinsically involves uncertain conditions which differ
from a deterministic case, such that transitions hereafter are not known but can be bounded as
shown in Fig 3.6. For a continuous dynamic system given as :

ẋ(t) = f(x(t), w(t)) (3.21)

where x(t) ∈ Rn is the n dimensional states, w(t) ⊂ W , the exogenous input variable that takes
its value from a compact convex set W and f(.), the flow map. The reachable set Rt(.) for the
time interval t ⊆ [t0, T ] ∈ R+ is defined by all possible trajectories ξ (t, x0, w (t0, T )) defined on
an initial set X0, ∀x0 ⊂ X0 and inputs w[t0,T ] ⊂ W . The assumed resultant compact convex set can
thus be described as a union of sets:

R[t0, T ](X0, W) =
⋃

t∈[t0, T ]

Rt(X0, W)

(Althoff et al., 2021) formalises the set R[t0, T ](X0, W) in discrete time domain considering the
semi-group property of differential equations, with sampling time τ as:

R[0, N−1](X0, W) =
N−1⋃
k=0

Rkτ

(
R[0, τ ](X0, W)

)
(3.22)

which signifies a sequential construction of sets with memory at each time step k in [0, T ]. This
involves extensive use of Minkowski sums, thus the motivation of zonotopes as the preferred
candidate set representation.
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Figure 3.6: Illustration of reachability analysis temporally [t0, T ], from left to right, showing de-
terministic reachability from a single point from state space, x01 ; non-deterministic from x02 and
a set-based reachability from the set X0.
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3.2.3 LPV model

In order to obtain the effective stress value ϕ, which affects a damage event on the composite
material, the flap-wise loadings are considered. Taking into account different wind conditions
from the high fidelity FAST (Jonkman et al., 2009), (Sanchez et al., 2015) established a relationship
between the flapwise root moment, the pitch angle, and the exogenous wind as follows:

ϕ(t) = a1β(t) + a2w(t). (3.23)

(3.17) is thus included in the wind turbine model for the prognostic procedure. It must be con-
verted from cycles to the time domain to be included in the wind turbine model. Since the rainflow
counting algorithm produces a discontinuous output, from its algorithmic branches and loop pol-
icy, (3.17) can be thought of as a discontinuous function and thus problematic for direct online
implementation. Luckily some works such as in (Löw et al., 2020) employ the assumption of the
use of Light Detection and Ranging (LIDAR) devices to predict future wind conditions to circum-
vent this problem, by essentially taking advantage of the delay of wind contact with the blades.
With a pre-knowledge of the wind profile from the LIDAR a pre-processing stage enables an on-
line implementation. The delay given as the contact time (tc) between wind and the structure is
given as:

tc =
d

vw
. (3.24)

where d is the measuring distance and vw the mean flow velocity. Therefore with the known
number of cycles, nc within a time frame tc in the pre-processing stage using rainflow counting,
an estimated cycle per sampling time Ts is taken as:

Θ(t) =
Ts

tc
× nc.

The prognostic-based model is therefore given as :

ẇr =
1

J
(Ta −NgTg) (3.25a)

β̇ =
1

τp
(−β + βr) (3.25b)

Ṫg =
1

τg
(−Tg + Tgr) (3.25c)

Ḋ = Θ(t)(fi(ϕ,D) + fp(ϕ,D)) (3.25d)

The non-linear model, (3.25) is posed as an LPV model by embedding the nonlinearity in schedul-
ing parameters θ(k). As such, the resultant nonlinear time-varying degradation model is formu-
lated mathematically into a pseudo-linear form through embedding. The LPV model in discrete
time with a sampling time Ts is, therefore:
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x(k + 1) = A(θ(k))x(k) +Bu(k) (3.26)

where x = [wr β Tg D]T ∈ Rn are the states, u = [Tgr βr]
T ∈ Rm the inputs and w(k) ∈ Rd the

disturbance from the wind.

The system matrices are given as follows:

A(θ(k)) = I + Ts


k1θ1(k) 0 −Ng

J 0

0 − 1
τp

0 0

0 0 − 1
τg

0

0 θ2(k) 0 θ3(k)

 ,

B = Ts


0 0

0 1
τp

1
τg

0

0 0

 ,

k1 =
1
2ρπR

2, and the variable scheduling parameters are: θ1(k) =
Cp(λ(k),β(k))
λ(k)wr(k)

,
θ2(k) = Θ(k)( 1

(1−D(k)Xc
)3(a31β(k)

2 + 3a21β(k)(a2w(k)) + 3a1(a2w(k))
2 + (a2w(k))

3) and θ3(k) =

Θ(k)C3Σ(k)
2

[
1 + exp(C5

3 (Σ(k)− C4)

]
.

3.3 Model-based Prognostics under set-based uncertainty description

The proposed prognostics approach is primarily based on the generic model-based prognostics
formalism, adapted to a set-based description of uncertainties. The plant model is subjected to
control and exogenous disturbance (wind) inputs u(k) and w(k), under sensor noise v(k) condi-
tions, such that w(k) and v(k) are described as unknown but compact convex sets,

x(k + 1) = f(x(k), θ(k), u(k), w(k), k) (3.27)

y(k) = h(x(k), θ(k), u(k), v(k), k) (3.28)

where v(k) ∈ V and w(k) ∈ W , with the compact sets V andW described as zonotopic sets. The
output data y(k) and information from the model, under uncertainty is used in the ZKF estimation
of zonotopic bounded states including the damage variable.

the description of this compact set is subsequently used as the premise to predict the EOL and
RUL at a specific time instant kp that take their values from resultant feasible compact uncertainty
propagated sets that retain desirable properties for interpretability due to the initial zonotopic
set. Future conditions during predictions are also considered bounded in sets and influence the
penultimate degradation reachable set and thus the EOL and RUL, □EOL(□x(kp),□θ(kp)|□y(kp))

and □RUL(□x(kp),□θ(kp)|□y(kp)), respectively. Considering TEOL ∈ Rnx × Rnθ as a threshold
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Figure 3.7: Illustration of a set-based model-based prognostics.

of failure, TEOL maps to a Boolean domain, such that a failure is 1 and 0 otherwise. TEOL :

Rnx × Rnθ → B, the EOL(kp) is formalised in (Daigle et al. (2012)) as

EOL(kp) = inf{k ∈ N : k ≥ kp∧
TEOL(x(k), θ(k), u(k)) = 1},

(3.29)

The remaining useful life, at kp is thus given as (3.30) in set form:

□RUL(kp) = □EOL(kp)− kp. (3.30)

3.4 Implementation of Zonotopic Kalman filter

Considering the fact that the process of estimation of states is crucial in various procedures such as
prognostics of systems, the effect of uncertainties on observed states is essential to examine. This
warrants state estimation methods, such as the well-established Kalman filter which has seen an
abundance of applications over the decades with variant modifications, to enhance its efficiency
and alternative uses.

Different methods of representing these uncertainties motivate different types of estimation schemes.
These are mainly through the stochastic paradigm and set-based formulations with the latter in-
volving unknown disturbances and noise that are considered bounded in compact sets. Various
geometrical representations for bounded uncertainty sets have been used in a number of works
yielding good results. The resultant estimate of set-membership methods is feasible sets that are
consistent with the states, inputs, and model output data, with the center of the resultant sets
representing the reference point of the estimate (Evans et al., 2015). It is, therefore, necessary to
represent them with compact sets that provide less complexity from a computational point of view.
Convex sets such as the interval-based set (Xiong et al., 2013), ellipsoidal (Liu et al., 2016), poly-
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topic or zonotopic sets (Wang et al., 2018) have been used which enables estimation of sets of ad-
missible values of states at every time instant enabling robustness to the worst-case scenario with
designated a priori bounds on uncertainties (Körber and King, 2010). Some works (Cembrano
et al., 2011a) go a step further by merging the two paradigms of stochastic and set-membership
methodologies to formulate a somewhat ”hybrid” state estimation. Each geometrical represen-
tation offers different characteristics which may result in ease or setbacks in the computation of
propagated uncertainty sets in set-based Kalman filter formulations. Zonotopes, a special class of
polytopes, offers simplicity in the computation of sets and flexibility in operation.
As stated earlier, the stages of prognostics involve uncertainties. Due to the sensitivity of this pro-
cess, it is important to quantify all uncertainty sources appropriately. The zonotopic uncertainties
in this chapter are considered to be additive and constructed from symmetric interval sets. The
quantified uncertainties are (i) the sensor noise, v(k) ∈ [−∆v ∆v] (ii) modelling uncertainties
which are considered to emanate from the uncertain measured wind in the nonlinear embedded
nonlinearities, from θ1 and θ2, which are calculated from appropriate interval analysis operation,
such that, θ1 ∈ [−∆θ1 ∆θ1] and θ2 ∈ [−∆θ2 ∆θ2] and (iii) Uncertainty from the exogenous wind
input, w(k) ∈ [−∆w ∆w]. From the interval sets, the zonotopic sets are formulated for the Kalman
filter procedure.
Considering that the dynamical LPV system can be represented as

x(k + 1) = A(θ(k))x(k) +Bu(k) + Eww(k) (3.31a)

y(k) = Cx(k) + Evv(k) (3.31b)

Ew and Ev are set up to represent the resultant uncertainty bounds from all the uncertainty
sources. w and the noise v are assumed bounded in a unitary hypercube centered at the origin,
w ∈ [−1, 1]nw = ⟨0, Inw⟩ and v ∈ [−1, 1]nv = ⟨0, Inv⟩, Inw ∈ Rnw×nw and Inv ∈ Rnv×nv are identity
matrices. Considering the quasi-LPV model (4.1), a polytopic LPV model is used to formulate the
estimation, such that the estimated states x̂(k) with nθ varying parameters is given as:

x̂(k + 1) =
2nθ∑
i=1

(µi(θ(k))) (Ai(θ(k))x(k) +Bu(k))+

+ L (θ(k)) (y(k)− ŷ(k))

(3.32)

The observer gain L (θ(k)) ∈ Rnx×ny takes its solution from the convex hull of a 2nθ vertex poly-
tope.

L (θ) =
2nθ∑
i=1

µi (θ)Li (3.33)

2nθ∑
i=1

µi (θ) = 1

Li are the 2nθ observer gains for each of the polytope’s vertices.
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Assumption 1: The system matrices A(θ(k)) and C are observable for any realization of θ(k).

The gains Li are obtained by solving an LQC duality problem. Let the observer gain tuning pa-
rameters be Q = QT = HTH ≥ 0 and R = RT > 0 and Ai be for each vertex of the polytope.
Thus, with an optimal bound γ, the polytopic observer gains are obtained by solving an LMI
minimization problem to find Υ and Wi.

min
γ,Υ=ΥT ,W

γ (3.34)

subject to

[
γIn In
In Υ

]
> 0 (3.35)


−Υ ΥAi −WTC ΥHT WT

AT
i Υ− CTW −Υ 0 0

HΥ 0 Inx 0

W 0 0 −R−1

 < 0 (3.36)

[
−rΥ qΥ+ AT

i Υ− CTW
qΥ+ΥAi −WC −rΥ

]
< 0 (3.37)

q = 0 and r = 1 are the center and radius of a unitary circle, respectively. (3.37) is included
to guarantee the stability of the observer. The disturbances, (ω ∈ Rnx) and measurement noise,
(υ ∈ Rny ) are unknown but assumed to be bounded and represented by zonotopes

W = ⟨cω, Rω⟩ (3.38a)

V = ⟨cυ, Rυ⟩ (3.38b)

where cω and cυ are the centers of the sets with Rω ∈ Rnx×nx and Rυ ∈ Rny×ny as their generator
matrices representing the uncertainties. The state is thus estimated as x̂ = ⟨cx, Rx⟩.

cx(k + 1) = cp(k) + L (y(k)− Ccp(k)) (3.39a)

Rx(k + 1) = [(I− LC)Rp(k),−LEv] (3.39b)
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Figure 3.8: Estimation of states by ZKF with bounded sets.

cp(k + 1) =
2nθ∑
i=1

µi(θ(k))Ai(θ(k))x(k) +Bu(k) (3.40a)

A(θ(k)) =
2nθ∑
i=1

µi(θ(k))Ai(θ(k)) (3.40b)

Rp(k + 1) = [A(θ(k))Rx(k) Eω] (3.40c)

L is given as in (3.33).

With the estimated cx state and associated uncertainty Rx description as shown in Fig. 3.8, the
prediction stage at each designated prediction time can be undertaken.

3.5 Prediction of the RUL

The time prediction distribution of the EOL at prediction instants kp can be thought of as a
reachability analysis problem based on set propagation considering initial set conditions from
the estimator i.e X̂kp ⊂ ⟨cxkp

, Rxkp
⟩, with inputs sourced through random sampling from an as-

sumed known distribution of inputs. Assuming the matrices A(θ(k)) are always shur, then the
propagation of the sets with respect to the system ensures that a set of positive invariant sets,
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Figure 3.9: Monotonic degradation state with bounds.

[ζ(kp), ζ(kp + 1)....ζ(kEOL)], can be constructed. Thus, the evolution of the centers of the set is
guaranteed to be x(k) ⊂ ζ(k). The propagated positive invariant sets are just unions of the con-
stituents convex sets (3.41) and the uncertainty sets constructed via Minkowski sums (3.42):

ζ(kEOL) ⊆ R[kp, kEOL](X̂kp , Wkp) =

kEOL⋃
k=kp

Rkτ

(
R[0, τ ](X̂kp)

)
(3.41)

∆X(kp + j) ⊆
⊕kEOL

j=1 A(θ(j))j∆x(kp)⊕A(θ(j))(j−1)

B∆u(kp + j − 1)⊕ Ew∆w(kp + j − 1))
(3.42)

Since the control inputs are dependent on the wind conditions and the degradation is a function
of only the wind, only a distribution of the wind is considered. Wkp ⊃ [w(kp) + ∆w(kp), w(kp +

1) + ∆w(kp + 1), ......w(kEOL) + ∆w(kEOL)]. The procedure is illustrated in Fig. 3.10.

Remark 1 Since the degradation model is strictly monotonous with respect to the initial state
x0 ∈ Rn and inputs wi ∈ Rw ⊂ W , for all trajectories υ(t, x0, w) : R>0 × X × Rw → X , : x2 >

x1, υ(t2, x2, w2) >> υ(t1, x1, w1). From (Althoff et al., 2021), it can be inferred, that ∀x0 ≤ x,w ≤ w,
each state trajectory can be constructively, bounded as in ∀i ∈ N+, t > 0, υi(t, xi,0, w) < υi(t, xi, w)

and υi(t, xi,0, w) > υi(t, xi, w) . The reachable zonotopic convex sets ζ(k) are therefore over-
approximated with hypercubes. Hypercubes are themselves zonotopes, so the process involves a
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Figure 3.10: Evaluation of RUL with associated bounds via set propagation

mapping of a zonotope to another zonotope that invariably increases conservativeness but for the
purposes of interpretability. The RUL prediction can be summarized in Algorithm 1.
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Figure 3.11: Propagation of degradation uncertainty set to EOL.
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Algorithm 1 Proposed set-based prognostics procedure.
1: Inputs {(cxkp

, Rxkp
,Wkp , A(θ(kp)), kp}

2: Output {RUL,RUL,RUL}
3: c(k)←− cxkp

, Rx(k)←− Rxkp
, A(θ(k))←− A(θ(kp))

4: for k = kp, kp + 1, ... do
5: while TEOL(Dkmin

(k)) = 0 do
6: Dcen(k)←− D(c(k)) ▷ Propagation of damage set’s center
7: Dmin(k)←− D(c(k)− rs(Rx(k))) ▷ Propagation of damage set’s lower bound
8: Dmax(k)←− D(c(k) + rs(Rx(k))) ▷ Propagation of damage set’s upper bound
9: c(k + 1) = (A(θ(k))c(k) +Bu(k) ▷ Propagation of states

10: Rx(k + 1) = [(A(θ(k))Rx(k) Ew] ▷ Propagation of uncertainty bounds
11:
12: if TEOL(Dkcen(k)) = 1
13: then kcen ←− k
14: if TEOL(Dkmin

(k)) = 1
15: then kmin ←− k
16: if TEOL(Dkmax(k)) = 1
17: then kmax ←− k
18: end while
19: RUL←− kcen − kp
20: RUL←− kmin − kp
21: RUL←− kmax − kp
22: end for
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Figure 3.12: PDFs of degradation at the EOL.
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Figure 3.13: Remaining useful life Predictions .

To show the efficacy of the proposed methodology an accelerated degradation experiment is un-
dertaken by amplifying the otherwise small degradation events. A degradation threshold of 0.7 is
chosen and the degradation is assumed to start from 0.2 and 0.5. Fig. 3.11 mainly shows desirable
results of a more certain EOL and thus remaining useful life when the degradation of the material
is close to the threshold, conversely, the uncertainty is more distributed when prediction time is
far from the threshold. This is also shown in Fig. 3.13 where the minimization of the width of the
interval is realised. It must be noted that the prediction times are selected set of instants during
the online operation of the plant with the estimator.

3.6 Conclusions

This chapter has proposed a model-based prognostics procedure using a zonotopic Kalman filter
that is able to provide a set-based propagation of degradation, aiding in the quantification of the
fated uncertainties associated with prognostics. The prognostics procedure is then applied to the
degradation of a wind turbine blade material subjected to a forecasted bounded set description of
the wind profile. To facilitate an online condition-based implementation, an otherwise nonlinear
based Kalman filter from the nonlinear wind turbine model is presented in a pseudo-linear form,
a polytopic linear parameter varying representation, decreasing computational cost and easing in
the propagation of the positive invariant zonotopic uncertainty sets to a reachable set that triggers
an end of life. Using this information on health, the remaining useful life with its associated
uncertainties can be predicted. The proposed approach has been tested in a benchmark wind
turbine using a high-fidelity simulator.





Chapter 4

Health-Aware LPV Model Predictive
Control of Wind Turbines

The content of this chapter is based on the following works:

• Khoury et al. (2020a) Khoury, B., Nejjari, F., and Puig, V. (2020a). Health-aware lpv model
predictive control of wind turbines. IFAC-PapersOnLine, 53(2), 826–831. doi: https://doi.
org/10.1016/j.ifacol.2020.12.838.

• Khoury et al. (2022c) Khoury, B., Nejjari, F., and Puig, V. (2022c). Health-aware linear param-
eter varying model predictive control of wind turbines. IEEE Transactions on Control Systems
Technology (submitted).

In the quest to achieve a more environmentally sustainable global energy mix, wind energy has
seen immense growth over the last decades, becoming one of the most promising renewable en-
ergy resources that exist today. From the latest global energy growth reports, total installed ca-
pacity as of 2020 stood at 65GW, an increment of 8% from 2019 (IEA, 2020) primarily due to gov-
ernment subsidies and incentives. However, in recent times these subsidies have seen substantial
cuts (Quintana-Rojo et al., 2020) mainly due to the classification of wind technology as a matured
one, thus presenting a challenge for wind energy suppliers to adapt to market changes. Therefore,
there is a call for innovative operational schemes to make wind energy a more competitive energy
source compared to its conventional counterparts such as fossil fuels, further enhancing its contri-
bution to global energy participation and therefore promoting the mitigation of global warming. It
is henceforth imperative to present cost-effective models of operation that seek to reduce levelized
cost of energy (LCoE) and thus increase return on investment. One of the major costs involved in
wind turbine operation is their operation and maintenance (O&M) cost. Considering that wind
turbine structures are subjected to unforgiving extreme conditions, components are susceptible to
rapid failure before their projected end of life (EOL) resulting in a number of costly, most often
unplanned replacements during the plant’s estimated 20-25 year lifespan. Also, wind turbines
tend to be classified as not easy-to-access structures due to their predominately remote locations,
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therefore, increasing O&M costs and downtime (Colak et al., 2015). This is further exacerbated in
the case of offshore wind turbines which have structurally larger rotor diameters and a more slen-
der tower, resulting in a more pronounced effect of dynamic loadings (Zhang et al., 2019). Based
on reports (Colak et al., 2015), O&M costs account for roughly 15− 20% of total operational cost.
In this chapter, a health-aware control (HAC) that takes into account information about the plant’s
health utilizing the technique of direct component deterioration incorporation is proposed. This
involves specifically predicting through the method of stiffness degradation algorithm, the prog-
nosticated degradation of the wind turbine’s blade, our unit under test (UUT) with the objective
of extending the useful life of the blades with MPC. Considering that wind turbines exhibit non-
linear dynamics and operate in different operating zones depending on the range of wind speeds,
modelling, and control using parameter-varying models (Shirazi et al., 2012); (Inthamoussou et al.,
2014) is motivated. The advantage of using this class of systems is the use of an extension of linear
techniques to perform gain-scheduling control of non-linear systems. This enables the formula-
tion of a convex optimization problem that is readily solved with an off-the-shelf solver whilst
also providing the advantage of working in wide operational points, a limitation of Jacobian lin-
earization as done in (Sanchez et al., 2015) for wind turbine control.

4.1 LPV modelling of a Wind turbine model

In this section, a brief description of wind turbine control is presented. Subsequently, with the
nonlinear model of the wind turbine as described in (3.11) from chapter 3, two different LPV
models are presented for the design of a two-level control scheme.

4.1.1 Wind turbine control

The control of wind turbines depends on the measured effective wind speed (see Figure 4.1).
Below a cut-in wind speed (4m/s), the plant ceases to operate since wind speed is deemed inad-
equate for power production. The pitch angle is fixed at 0◦ to allow for a maximum extraction of
power when the wind speed is above the cut-in wind speed but below the rated speed (11.5m/s

), an alternating generator torque control is employed here. Above it, the pitch angle is varied
to ensure a rated rotor torque albeit a fixed rated generator torque Tg,opt such that the rated rotor
speed wr,rated is achieved and hence the rated turbine power. Between these regions is a transition
region ([11.5m/s, 12m/s]) where the generator torque is rapidly increased to maximum using a
fast controller based on the control law Tg ∽ w2

r . Above cut-off speed (≤ 25m/s), the blades are
halted to avoid damage to the turbine structure.
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Figure 4.1: Regions of wind turbine control.

4.1.2 LPV model I

An LPV model is designed for the entire control region of the wind turbine. This is used for the
lower level of the control scheme, which will be described in detail in the subsequent sections.
Considering the nonlinearity in f(x, Vw) from (3.11), with a sampling time of Ts and under Euler
discretization, the dynamic model of the LPV can be expressed as follows:

x(k + 1) = Ax(k) +Bu(k) +Bw(θ(k))Vw(k), (4.1)

where Vw(k) ∈ Rd is the disturbance from the wind.

The system matrix containing the nonlinear embedding Bw(θ(k)) (4.1) is as follows:

Bw(θ(k)) =


04×1

1
NmB

ϑθ1(k)
1
Jr
ϑRθ2(k)

03×1

 . (4.2)

(4.3)

where ϑ = 1
2ρA and the varying parameters are:

θ1(k) = Ct(λ(k), β(k))Vw(k) and θ2(k) =Cp(λ(k), β(k))Vw(k).
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4.1.3 LPV model II

In the 3rd region, the torque as has been shown in Fig. 4.1 is constant. Thus, the dynamic model
can be reformulated into a simple model as done in (Georg, 2015) which considers only the dy-
namics of the rotor speed and the pitch angle avoiding the unnecessary excess computational time
of control in this region. The state matrices of this model are as follows:

A =

[
1

Jr+Jg
(Ta(xu, Vw)− Tg) 0

0 − 1
τβ

]
, (4.4)

Bu =

[
0
1
τβ

]
. (4.5)

In an LPV form, the matrix A(θ(k)) is therefore:

A(θ(k)) =

[
1

Jr+Jg
(ϑRθ2(k)− Tg

θ3(k)
) 0

0 − 1
τβ

]
. (4.6)

θ3(k) = wr(k); wr(k) ̸= 0, where xu = [wr, β].

Assumption 1 The states x(k) and the wind, Vw(k) are assumed observable at each time instant k.

At every time instant, depending on the region of operation, the dynamics of the system is ob-
tained as linear in state space determined by the nonlinear parameter embedding θi(k) bounded
in a box θi ∈

[
θi, θi

]
, that varies in a defined operational region, appropriately a convex polytopic

set. Therefore, the system matrices are linear time variant and function of the scheduling param-
eters which are bounded in a compact polytopic set. Therefore with nθ varying parameters for
each case, a polytopic representation of the dynamic matrices is given as the linear combination
of nv = 2nθ vertices (θi) of a polytope as follows depending of the LPV model.
For LPV I:

Bw(θ(k)) =

nv∑
i=1

αi(k)Bw(θi), (4.7)

and LPV II:

A(θ(k)) =

nv∑
i=1

αi(k)A(θi), (4.8)

where in both cases

nv∑
i=1

αi = 1, αi = [0, 1]. (4.9)
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4.2 Offline Degradation Prognostics of a Wind Turbine Blade

The degradation of the wind turbine’s composite material based on the stiffness degradation is
presented in this section. The degradation vs accumulated stress is then segmented into zones
based on the stress accumulated by the blade over time.

4.2.1 Prediction of degradation function

With the stiffness degradation algorithm as explained and represented mathematically in Chapter
3, the composite strength degradation of the wind turbine’s blade subjected to accumulated stress
is studied. Wind turbines are subjected to a simultaneous combination of stress components such
as the flapwise, edgewise bending, and torsion forces that contribute to fatigue (Chen and Eder,
2020). However, in this work, only the flapwise root moment is considered. This blade root
moment caused by aerodynamic forces acquired from the high fidelity OpenFAST is subjected in
a cumulative manner on the component material till a predefined deterioration level (EOL). The
EOL is chosen as 0.8 .i.e 80% loss in material strength as shown in Fig. 4.2. The degradation vrs
accumulated stress function is then segmented into linear and bilinear functions that best fit, see
Fig. 4.3 & Fig. 4.4, this is done to appropriately capture the dynamic behaviour in stages 1 and 3
of degradation. The 2nd stage of the blade lifetime degradation is largely minimal and considered
as the most productive period of the blade’s lifetime, therefore is not included in the controller’s
health-aware design. At any instant k, degradation Deg is represented per each j-segments with
the following model

φ(k)j ≈ b2jϕ
2
acc(k) + b1jϕacc(k) + b0j

where b0j = 0 for a 1st degree polynomial fit. With respect to accumulated stress ϕacc, the degra-
dation is given as

Deg(k) ≈
{

φ(k)j for ϕaccminj
≤ ϕacc(k) ≤ ϕaccmaxj

. (4.10)

where ϕaccminj
and ϕaccmaxj

are the bounds of segment j. A simple linear mathematical model
proposed by (Sanchez et al., 2015) is chosen for the blade root moment. In this model, a mean
flapwise root moment of the blades as a result of wind loadings is described as a function of the
alternating pitch angle and the wind itself:

ϕ(t) ≈ f(β(t), w(t), t) = a1β(t) + a2w(t). (4.11)
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Figure 4.2: Curve showing stages of stiffness degradation.

4.2.2 Procedure of Rainflow Counting Integration

In this section, the integration of the discontinuous rainflow counting procedure is illustrated. Fa-
tigue and thus degradation events occur as per the occurrence of a cycle of stress as evident in
(3.17). In other to account for the effective cycle of stress from a history of mechanical stress on the
blade, a cycle counting method must be employed. The go-to methodology in practice, the rain
flow counting method (RFC) initially proposed by (Endo et al., 1967) is used. It interprets com-
plex cyclic behaviour of stress as the probability of occurrence of load cycles in different ranges,
ideally extracting closed loading reversals (or cycles). Fluctuating stress and strain on structures
are represented as peaks in the RFC method. Counting these peaks results in a histogram of peaks
in which the random history of stress (or strain) can be transformed into a statistical distribution
of amplitudes of fluctuating stress or strain as a function of time. The algorithm has a complex se-
quential and nonlinear structure to decompose arbitrary sequences of loads into cycles, hence it is
unsuitable for direct incorporation into control frameworks. In this context, some papers propose
the externalization of the RFC from the control and present the output of the algorithm as exter-
nal parameters to the control unit. This has been termed Parametric Online Rainflow-counting
(PORFC) and has been successfully applied to wind turbines in (Löw et al., 2020). This chapter
draws inspiration from this methodology, by basically identifying the instances of cyclic stress
occurrences in the MPC prediction horizon. Assuming a stress history as given in Fig. 4.5, char-
acteristics of the effective stress cycles (Fig. 4.6) either closed or unclosed is given from the RFC
methodology. This is typically made up of the start, (kstart) and end times (kend) of cycles, the
range, mean stress values (σr, σm) and a factor of 1 or 1

2 signifying a complete or half cycle. Half
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Figure 4.3: Segmented 1st and 3rd stages of the stiffness degradation vs accumulated stress curve.
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Figure 4.4: Estimated segments of the stiffness degradation vs accumulated stress curve.

cycles are long-term transition cycles that are not complete in the observed stress history. They
are either neglected, conservatively treated as full cycles, or handled as residue carried along to a
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future batch of stress. Neglecting half cycles may be an over-approximation since half cycles nor-
mally contribute to a high magnitude of effective damage when complete. A variant of the RFC
proposed by (Downing and Socie, 1982) which allows for a better online RFC that does not require
total knowledge of the stress history is used in this work. Unlike the generic RFC, the proposed
methodology is not rearranged to begin and end with maximum peaks, thus avoiding most half
cycles. The few half cycles are approximately treated as half of their original magnitude.
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Figure 4.5: (Top) Wind speed. (Bottom) Blade root moment(stress).

Figure 4.6: Information from rainflow counting from Matlab®.

Assuming a prior knowledge of 10 s wind information and stress (Fig. 4.5). The rainflow counting
information is given in Table 2. The cycles’ start and end times are then allocated on the prediction
horizon of MPC as shown in Fig. 8.
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Table 4.1: Rainflow information from stress input.

cycle # Count Range Mean Start End

1 1 7 8534.5 0.008 0.016
2 1 2 7028 0.024 0.032
3 1 29 6880.5 0.04 0.048
4 1 1 6467.5 0.056 0.064
5 1 1 6455.5 0.072 0.08
...

...
...

...
...

124 1 307 7583.5 1.936 1.992
125 1 1698 7622 1.68 1.896
126 0.5 8467.2 4328.4 0 1.64
127 0.5 8467.2 4328.4 1.64 2.016
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Figure 4.7: Allocation of cycles in MPC’s prediction horizon.

4.3 Health-Aware Control

This section formulates the health-aware control, by presenting how the two-level control is de-
signed.

4.3.1 Control configuration

The health management control is only considered for the above-rated wind speeds since it is in
this region that requires pitch actuator action. Below rated wind speeds, the blade must be at fine
pitch angle as discussed in earlier sections. Thus, the proposed control setup consists of a two-level
control configuration where the upper level undertakes the function of Prognostics and Health
Management (PHM) as shown in Fig.4.8. The lower level has the dual purpose of controlling
the turbine below rated wind speeds and also preventing a complex optimization problem in the
upper level which will be elaborated on in detail. For designing the controllers, the following
assumptions are considered.

Assumption 2 A considerable future wind information for a pre-simulation and MPC control is made
available by a LIDAR.

Assumption 3 All other components’ degradation is not considered. The chapter is based on the premise
that plant life is only dependent on blade degradation.



58CHAPTER 4. HEALTH-AWARE LPV MODEL PREDICTIVE CONTROL OF WIND TURBINES

However, it must be noted that components such as the drive train is a strong contributor to the
economics of a wind turbine operation.

Under these assumptions, the parameter values from the RFC and the segmented degradation as
explained in Section 4.2.1 are fed into the upper-level MPC optimization setup for health manage-
ment in stages 1 and 3 of the offline stiffness degradation test. Normal control operation occurs
in the 2nd stage. The RFC parameter values are acquired through a pre-simulation considering
future stress history from the stochastic wind.

4.3.2 Lower Level MPC

A set point tracking MPC is designed for the lower level control. This involves reference set points
tracking of the pitch angle (β∗), rotor speed (w∗

r ), and generator torque (T ∗
g ), with a quadratic cost

function in an optimization loop as:

Ll(k, ul(k), x(k)) = φ1(wr(k)− w∗
r)

2 + φ2(Tg(k)− T ∗
g )

2..

...+ φ3(β(k)− β∗)2 + φ4∆ul

The optimization problem solved is hence:

min
ul(1...Np),ŷ(1...Np)

Np−1∑
i=0

Ll(k, ul(k), x(k)) (4.12)

subject to (4.13)

x(i+ 1|k) = Ax(i|k) +Bul(i|k) +Bw(θpi)Vw(i|k), (4.14)

ul(i|k) ⊆ U ,

x(i+ 1|k) ⊆ X, (4.15)

∆ul(i+ 1|k) = ul(i+ 1|k)− ul(i|k). (4.16)

(4.17)

where X and U are box constraints of the states and inputs respectively. The lower level is de-
signed to have a faster sampling time than the upper level ensuring that its output is available to
the upper level. After every optimization loop, ŷ is fed into the upper level and ul as input to the
plant for below-rated speed control and torque control during the health management control.

4.3.3 Upper level PHM-EMPC

An economic MPC is formulated in the upper level which involves the conflicting performance
indices of maximizing power P to its rated value in the presence of varying wind Vw(k) and
minimizing the degradation of the blade composite material Deg. At each time instant, k, with
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pre-simulated values of the cycle properties from the RFC and selected degradation parameters
with prioritization weights as per the accumulated stress value, an economic MPC is solved for
a pitch actuator input βh. The pre-simulated inputs are: Ψ(k) = [Rf ,Wj ,Λ, ŷ] where Rf ∈ R

pt
Tu

is a vector with entrants of 1
2 for when a cycle occurs (start and end instances) at a sample time

and 0 otherwise. pt is the prediction horizon time and Tu, the upper-level sampling time. Wj

is a selected weight depending on the current degradation segment j, Λ, is a set of degradation
parameters at j and ŷ the input from the lower level which serves as initial states and also pitch
angle values β to prevent bilinear functions that arise for 2nd-degree polynomial fits from Section
4.2.1. Therefore the multi-objective criteria are setup as:

Lu(k, u(k), x(k),Ψ(k)) = WjDeg(k)−W1P (k) +W2∆u(k)

and the optimization solved is:

min
βh(1...Np),xu(1...Np),Deg(1...Np)

Np−1∑
i=0

Lu(k, u(k), xu(k),Ψ(k)) (4.18)

subject to (4.19)

xu(i+ 1|k) = A(θ(k))xu(i|k) +Buβh(i|k) (4.20)

Deg(i+ 1|k) = Deg(i|k) + (Rf (i).f(ϕ(k),Λ(k))).Tu, (4.21)

P (i+ 1|k) = ngTgoptwg(i|k), (4.22)

P (i|k) ≤ Pmax, (4.23)

βmin ≤ βh(i|k) ≤ βmax, (4.24)

[wrmin , βmin]
⊺ ≤ xu(i+ 1|k) ≤ [wrmax , βmax]

⊺, (4.25)

∆βh(i+ 1|k) = βh(i+ 1|k)− βh(i|k). (4.26)

(4.27)

From the sequences βh(1, .., ., Np) and Deg(1, .., ., Np), the first values represent the health-aware
pitch angle control input to the plant and the initial degradation for the next sampling time.
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Figure 4.8: Control configuration of the proposed Health Aware scheme.

4.4 Simulation and results

In this section, graphical performance of the proposed health-aware scheme based on simulations
is presented. The merit of the proposed scheme is illustrated. To illustrate the performance of
the lower MPC, it is compared with the OpenFAST baseline control which is designed such as
considering the actuator inputs as Tgref and βref as follows

• For below rated wind speeds, βref is kept constant at 0◦ and the variable torque given as
Tgref = Koptw

2
g

• For above wind speed, Tgref is constant and the pitch angle is controlled with a gain sched-
uled PI controller.

A comparison in Fig. 4.9 shows a relatively good fit between the two control schemes across
all regions with selected means of wind speeds of 8m/s and 15m/s for the 2 regions of control,
respectively. In the pitch control zone (mean wind of 15m/s), the MPC maintains a rated power
of 5MW by alternating the pitch angle in the presence of the varying wind. For the torque control
zone, the pitch is constant at 0◦ whilst the torque alternates. From the setup of the upper-level
optimization problem, a minimization of degradation, must invariably result in a degradation of
the plant as shown in Fig. 4.10, which involves 3 selected segments of degradation with different
weights from a mean wind speed of 18m/s. The pitch angle increases to decrease the sweeping
area of the stochastic wind which results in a minimized degradation, but this results in a decrease
in aerodynamic energy extraction and thus a reduced power is produced.
The upper level acts as a complementary control for health management in certain periods in
the plant’s lifetime. Hence, weights can be arbitrarily selected per operators’ discretion for each
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segment of the degradation with respect to accumulated stress levels. Table 4.2 shows the trade-off
in numbers between the steady state power and it is associated accumulated stress with respect to
different selected weights Wj at the end of the simulation run for an extended period.
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Figure 4.9: The lower level MPC in the two regions of control.
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Figure 4.10: Operation of the upper-level control.

Varying weights Wj , the Pareto front presented in Figure 4.11 can be obtained that for reduced
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Table 4.2: Table showing power and accumulated stress with varied weights, Wj .
Wj Power(MW) Acc. Stress
Wj,1 5 4.11×1010
Wj,2 4.54 3.74×1010
Wj,3 4.164 3.43×1010
Wj,4 3.97 3.26×1010

2600 2800 3000 3200 3400 3600 3800 4000 4200
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Figure 4.11: Pareto front of power and accumulated stress

accumulated stress on the blades, the control actions from the MPC results in the deration of
power, which involves an increase of pitch angle to decrease the blades exposure to varying wind
loading, decreasing aerodynamic thrust in the process.

4.5 Conclusions

This chapter presented a mechanism to directly include the health of a wind turbine blade in its
control framework. It involved the design of a two-level control scheme; a lower-level MPC for
normal control below rated wind speed and torque control above rated speed. An upper-level
economic MPC is designed for pitch control above rated wind speeds that take into account the
degradation of the blade, modeled via the stiffness degradation algorithm. Given the nature of the
degradation curve, it is segmented into zones to attenuate degradation in each region represented
with models that are included in the optimization setup according to accumulation stress levels.
Considering that stress is a cyclic phenomenon, the method of rain flow counting is used to extract
externally through a pre-simulation the occurrence of the effective cycle of degradation along a
moving prediction horizon. The scheme shows its efficacy and practicality in illustrated results.





Chapter 5

Data-driven Prognostics Of Power
Semiconductor Devices

The content of this chapter is based on the following works:

• Khoury et al. (2022b) Khoury, B., Bessa, I., Puig, V., Nejjari, F., and Palhares, R.M. (2022b).
Data-driven prognostics based on evolving fuzzy degradation models for power semicon-
ductor devices. In Proceedings of the 7th European Conference of the Prognostics and Health Man-
agement Society 2022. PHM Society, 241 Woodland Drive, State College, PA 16803.

• Khoury et al. (2022a) Khoury, B., Bessa, I., Nejjari, F., and Puig, V. (2022a). A set-based un-
certainty quantification of evolving fuzzy models for data-driven prognostics. In 15th Inter-
national Conference on Diagnostics of Processes and Systems.

The Insulated gate bipolar transistor (IGBT) has long established itself as a competent successor to
prior power semiconductors such as the power bipolar junction transistor (BJT), Darlington tran-
sistor, and metal oxide semiconductor field-effect transistor (MOSFET). It functions by combining
the desirable properties of a high input impedance and high switching speeds of the MOSFET
with the low saturation voltage of the BJT, enabling a voltage-controlled transistor that is capable
of containing large collector-emitter currents with a virtually zero-gate current drive. The product
is a transistor variant that offers medium to high power application abilities, low ON-resistance,
and fast switching compared to its predecessors.
As with any component in a system, IGBTs are prone to failure under certain operating conditions,
primarily from electrical and thermal stress caused by conditions such as high temperature and
cycling effects (Lu and Sharma, 2009). However, the critical nature of power semiconductors in
the chain of operation of most systems may cause a total shutdown emanating from an otherwise
inexpensive source. From an industrial survey by (Yang et al., 2011), the majority of respondents
indeed assert that power electronic devices are one of the most fragile components in most indus-
tries and the need for increased research interest in reliability monitoring and improvement. This
monitoring is essential, especially in critical systems such as aviation, where the neglecting cost

63
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may be more than just monetary. In lieu of this, there is a need for reliable and robust diagnostic
and prognostic techniques that seek to avert to a low degree any spontaneous call for maintenance
that introduces unplanned expenditures and manages faults or deterioration during inception be-
fore they escalate to disruptive levels. Using a model-based method, a failure precursor’s features
or both, a fault source can be detected, isolated, and the RUL of an IGBT predicted for mainte-
nance responses such as planned replacements undertaken at an optimal time before its EOL.
Some common failure modes in IGBTs are gate diode degradation, body diode degradation, the
bond wire, and solder layer fatigues (Nguyen and Kwak, 2020). For appropriate health manage-
ment algorithms, it is desirable to study a component’s observable parameters that conspicuously
show deviation from their normal behaviour reflecting an associated anomaly, i.e., a failure mode
when in operation. For instance, during failure modes such as the bond wire and solder layer
fatigues, there is an associated increase in measured Collector- gate voltage (VCE), which results
from an increased bond wire resistance for bond wire fatigues and thermal resistance associated
with the latter due to the lack of effective heat dissipation between adjacent layers. The transistor
turn-off time has also been identified as a parameter of interest for latch-up faults in (Brown et al.,
2010). These parameter-failure mode pairings are acquired through a procedure termed FMMEA
(Failure Modes, Mechanisms and Effects Analysis) under accelerated aging procedures. The cri-
teria for choosing a specific prognostics parameter depends on its sensitivity to the failure mode
and also the ease of attaining accurate measurements from sensors. For example, the junction
temperature as a precursor is indicative of most thermal failure modes. Still, the difficulty in sen-
sor integration during predesigns and inaccurate measurements limits its applicability. Therefore,
works such as (Eleffendi and Johnson, 2016) considers the junction temperature as a failure pre-
cursor but are obtained through a lookup table considering measured VCE. With appropriately
measured precursors from IGBTs, different prognostic procedures have been studied in the litera-
ture.
In (Saha et al., 2009), a model-based prognostics procedure using a particle filter is used based on
a fitted model on the collector-emitter leakage current obtained from an accelerated aging proce-
dure. However, in (Haque et al., 2018) an auxiliary particle filter proved to have a better variance
and robustness of RUL predictions compared to particle filters using the VCE as a failure pre-
cursor, a predominant choice in most papers. Data-based algorithms have also been extensively
studied, both statistically and in the area of artificial intelligence. Statistically, for data-based prog-
nostics of IGBTs, (Ismail et al., 2019) employed the Gaussian process regression, while later in (Is-
mail et al., 2020) the authors used a modified maximum likelihood method to predict the RUL. The
results show that the Gaussian process regression has better prognostic metrics than the modified
maximum likelihood method. With the VCE as a chosen precursor in (Ahsan et al., 2016), Neural
Network (NN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) models are used to predict
the RUL, the NN showed better performance compared to the ANFIS. In (Alghassi et al., 2016),
the authors proposed a time delay neural network algorithm in tandem with a probabilistic func-
tion with VCE as the precursor parameter, which proved to be more efficient than a stand-alone
NN model. Comprehensive reviews exist in the literature on the broad subject, encompassing the
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type of failures (Nguyen and Kwak, 2020; Hanif et al., 2019), precursor parameter attainment, and
prognostics methods (Degrenne et al., 2019; Kabir et al., 2012) employed on power semiconduc-
tors in general.
Although adaptive prognostics methods are able to modify their parameters according to the data
stream behaviour to reduce the modelling error, their structure is fixed and there is no clear re-
lationship between their evolving degradation stage and their parameters Angelov (2012). Oth-
erwise, evolving systems are known for their ability to modify both parameters and structure
to provide explainable representations for data streams. While their parameters are adapted to
minimize the modelling error, the structure becomes more complex to represent novel dynamics
which can be related to the achievement of novel degradation stages in prognostics problems.
Recently, evolving fuzzy degradation models are proposed for aiding data-stream-driven PHM
systems Camargos et al. (2020); (Camargos et al., 2021); (Ahwiadi and Wang, 2022). In particular,
those models are used to capture the degradation dynamics and predict the equipment RUL. In
this regard, evolving prognostic approaches have been successfully applied to ball bearings (Ca-
margos et al., 2020) and lithium-ion batteries providing (Camargos et al., 2021); (Ahwiadi and
Wang, 2022) competitive results with some interpretability features. This motivates the applica-
tion of those methods for the challenging IGBT prognostic problem. Properties such as monotonic-
ity and trendability of a chosen extracted feature or dimensionally reduced subspace of selected
features are a strong prerequisite for attaining a good RUL prediction, employed in prognostics
algorithms. However, the downside of this procedure is that the granularity of the degradation
data is diminished or lost when smoothing tools are applied to attenuate these properties. This
result in algorithms that sacrifice interpretability for improved RUL predictions. Even though it
is agreed that the primary end goal of prognostics algorithms is to improve the RUL prediction,
there must be a motivation to consider characteristics of the degradation trend, which may be
used for secondary purposes or aid in a better RUL prediction. This especially comes in handy
when considering degradation data as used in this chapter, a stage-based degradation process,
where classification of the stages may prove to be important for better estimating the RUL.
The approach in this chapter considers a data-based evolving fuzzy model that uses two classes
of input features: an interpretable feature as a premise variable and an RUL prediction-friendly
counterpart in the auto-regressive consequent of the fuzzy model. In particular, the degradation
representation is based on the Evolving Ellipsoidal Fuzzy Information Granules (EEFIG), which
has already been applied for clustering (Cordovil et al., 2020), fault diagnosis (Cordovil et al.,
2020), and leaning-based control (Cordovil et al., 2022) approaches. The merit of this methodol-
ogy over others is that it provides a platform with a dual function mode: (1) Providing a good
RUL prediction in conjunction with (2) classifying the different stages of degradation, as shown
in Figure 5.1, enabling interpretability. Given the importance of uncertainty quantification, an
extension on the topic of set-based quantification was undertaken in (Khoury et al., 2022a).
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5.1 IGBT Aging and Degradation

As stated in the prequel, for prognostics, it is imperative to acquire parameters that explicitly rep-
resent the failures, such that a study of their behaviour can inherently constitute knowledge of
the failure mechanism. To measure all useful related precursor parameters, the IGBT is subject to
aggressive thermal or electrical cycles of stress in an experimental environment until a failure hap-
pens. In this work, a run-to-failure experiment on 4 IGBT undertaken by (Sonnenfeld et al., 2008)
is considered. The experiment involves subjecting power transistor devices to DC square wave
signals at the gate, placing the devices under thermal stress. This aging process is undertaken
until a latch-up or thermal runway (EOL) when signals are switched steadily between 0V and
4V , with temperature controlled between 329◦C and 330◦C outside the rated temperature of the
test transistors. The transient data collected when the devices switch are the (i) Collector-emitter
turn-on Voltage; (ii) Gate Voltage; and (iii) Collector current.
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Figure 5.1: Measured collector-emitter voltage from aging test of IGBT1 showing stages of degra-
dation.

5.2 Data-driven Prognostics based on evolving fuzzy degradation model

5.2.1 Degradation features extraction and selection

From the literature, the VCE is the predominantly chosen precursor, which has proven its efficacy
as well as practicability compared to other parameters, with various pre-evaluated metrics sup-
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porting its selection. Therefore, the VCE is selected as the parameter of interest in this chapter.
With VCE as the selected condition-based Monitoring (CM) data, features are extracted serving
as a pseudo-representation of the degradation behaviour. The raw data, shown in Figure 5.2,
are almost always noisy, an undesirable characteristic for a RUL prediction. These features, ei-
ther frequency or temporal based, must exhibit desirable characteristics that ensure accurate RUL
extrapolations with less uncertainty (Gouriveau et al., 2016b). Two types of characteristics of in-
put data into the proposed algorithm are considered. First, a feature that satisfies the traditional
desirable properties of monotonicity, trendability, and prognosticability for an accurate and less
uncertain RUL prediction is considered, and a feature that represents the shape of degradation
shows the different stages. Unlike the first case, the accuracy of the RUL is not deemed a factor.
Thus, for the auto-regressive consequent feature, a feature construction from (Javed et al., 2015) is
considered. The authors employ the standard deviation (SD) of a Cumulative trigonometric (C-
trig) function on the data set. This was proven to possess overall better prognostic characteristics
backed with more accurate RUL compared to generic features when tested on a case study. Two
C-trig functions, as proposed in (Javed et al., 2015), are considered and the best selected based on
the suitability metric (5.1), as proposed in (Celaya et al., 2011).

Suitability =

Monotonicity

Trendability

Prognosability


⊤  1

0.976

1

 (5.1)

For the premise variable of the fuzzy model, features of the mean and the root mean square are
considered for selection presented in Table 5.2. Smoothing is done with the moving average and
the window length selected equal to the number of samples in each test set performed on individ-
ual IGBT. Considering a data-stream X = [x1, x2, . . . , xn] ∈ Rn the selected features are presented
in Table 5.1.

Table 5.1: Trigonometric features for the premise variable.

Feature Formula

SD of asinh(X) σ
(
log
[
xi + (x2i + 1)

1
2

])
SD of atan(X) σ

(
i
2 log

(
i+xi
i−xi

))

Table 5.2: Features for the auto-regressive consequent variable.

Feature Formula

Energy
∑n

i=1E(xi)

Root Mean Square (RMS)
√

1
n

∑n
i=1 x

2
i
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The cumulative function as from (Javed et al., 2015), is done by considering a simultaneous point-
wise running total and scaling of a time series:

CFi(X) =

∑n
i=1X(i)

|
∑n

i=1X(i)|
1
2

(5.2)
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Figure 5.2: Measured collector-emitter voltage from aging test of 4 IGBT.

Feature selection: For the auto-regressive consequent feature of the fuzzy model, the cumulative
SD of (atan) is selected, with a suitability score of 2.972 compared to 2.957 of (asinh). For the
premise variable, the RMS feature was selected based on the best results from the two features (i.e
Table 5.2) as inputs.

5.2.2 Evolving Ellipsoidal Fuzzy Information Granules

In (Cordovil et al., 2020), the Evolving Ellipsoidal Fuzzy Information Granules (EEFIG) model and
its evolving granular learning algorithm are introduced. The learning algorithm is an online data
processing that employs evolving fuzzy information granules based on the parametric principle
of justifiable granularity (Pedrycz and Wang, 2016). In this chapter, we propose employing the
EEFIG algorithm to model the degradation of the IGBT.
An EEFIG is a collection of N granules Gk =

{
G1k , . . . ,GNk

}
, where each granule is a fuzzy set Gik =
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Figure 5.3: Selected auto-regressive consequent feature of the 4 IGBTs. (Top.) SD(atan) (Bottom.)
C-SD(atan).

(
Rnz , gik

)
, where gik : Rnz → [0, 1] is the membership function of the EEFIG Gik. The membership

function ωi
k is parameterized by the granular prototype P i

k of the i-th granule at the time instant
k, which is also a numerical evidence basis for the granulation process. The granule prototype is
defined as follows:

P i
k =

(
µi
k
, µi

k, µ
i
k,Σ

i
k

)
, (5.3)
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Figure 5.4: Considered premise features of the 4 IGBTs.

where µi
k
, µi

k and µi
k are the lower, mean, and upper bound vectors of the i-th EEFIG at time k

and Σi
k is the inverse of its covariance matrix. Given the granule prototype P i

k, the membership
function of an EEFIG is parameterized as

ωi
k (zk) = exp

{
−
[
(zk − µi

k)
⊤ (∆i

k

)−1
(zk − µi

k)
] 1

2

}
, (5.4)
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where, for p ∈ N≤nz ,

∆i
k = diag


(
µi
k,1 − µi

k,1

2

)2

, . . . ,

(
µi
k,p − µi

k,p

2

)2
 ,

being µi
k, and µi

k
the semi-axes of the i-th EEFIG prototype such that µi

k
< µi

k < µi
k (Wang et al.,

2014). The normalized membership functions gik at the k-th time instant for i-th granule is

gik(zk) =
ωi
k(zk)∑N

i=1 ω
i
k(zk)

. (5.5)

Moreover, the distance of a given data sample zk ∈ Rnz to the i-th EEFIG is given by the square of
Mahalanobis distance:

d(zk, µ
i
k) = (zk − µi

k)
⊤Σi

k(zk − µi
k). (5.6)

The granulation process is the updating of the EEFIG model based on the data stream. The updates
are performed aiming to improve the so-called granular performance index with respect to a data
sample. The performance index of the i-th granule with respect the sample zk, denoted Q̄i

k, is
defined as

Q̄i
k(zk) = d(zk, µ

i
k)|Gik| (5.7)

where | · | is the fuzzy cardinality operator of the i-th EEFIG, whose update is performed as follows

|Gik| = |Gik−1|+ gik(zk)−
∂gik(zk)

∂P i
k

, (5.8)

where the term ∂gik(zk)

∂Pi
k

is computed as described in (Cordovil et al., 2022). The total EEFIG perfor-
mance index is the sum of the data sample contribution index of each granule:

Qi
k =

1

k

k∑
j=1

Q̄i
j(zj). (5.9)

To decide whether a granule must be updated or not, the concept of data sample admissibility
is used. A data sample zk is said to be admitted by a given granule prototype P i

k if it is used to
update the granule prototype parameters. In this sense, two criteria are used to evaluate the data
sample admissibility:

d(zk, µ
i
k) < ν, (5.10)

Qi
k > Qi

k−1, (5.11)
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where ν =
(
χ2
)−1

(γ, n) is a threshold parameterized by the inverse of chi-squared statistic with
n+m degrees of freedom, leading EEFIG prototype to cover around 100γ% of the stream sample.
A data sample zk which does not meet the first condition (5.10) for some granule is denominated
an anomaly. In parallel, as the data samples are available and evaluated, a structure named tracker
whose objective is to follow the data stream dynamics to indicate change points is established.

The tracker is parameterized by a mean vector µtr
k and an inverse covariance matrix Σtr

k , which
are recursively updated (Moshtaghi et al., 2016). A new granule is created if the following condi-
tions hold:

1. The tracker is c-separated from all the existing granule prototypes. The c-separation condi-
tion is expressed as follows

∥µtr
k − µi

k∥ ≥ c
√
nz max(ξ̄(Σtr

k ), ξ̄(Σ
i
k)), (5.12)

for all Gik ∈ Gk, where ξ̄
(
Σtr
k

)
is the largest eigenvalue of Σk and, c ∈ [0,∞) specifies the

separation level. Here, c is assumed as 2.

2. The number of consecutive anomalies is na > ζ where ζ is a hyper-parameter defined by the
user to control the minimum amount of anomalies that may enable the rule creation.

5.2.3 EEFIG-based degradation modelling and RUL estimation

Based on the EEFIG model described in the previous section, the following Takagi-Sugeno fuzzy
model is proposed for the degradation modelling

Rule i : IF zk is Gik
THEN yik = θ⃗i

⊤
k [yk−1, yk−2, . . . , yk−L]

⊤ ,
(5.13)

for i ∈ N≤Ck
, where yk ∈ R is the health index, zk ∈ Rnz is the vector of premise variables, θ⃗ik ∈ RL

are the coefficients of the i-th fuzzy rule at instant k, L ∈ N is the number of regressors in the auto-
regressive consequent, and Ck ∈ N is the number of rules at instant k. Using the center-of-gravity
defuzzification for (5.13), the health index yk is

yk =

Ck∑
i=1

gik (zk) θ⃗
i⊤
k [yk yk−1 . . . yk−L+1]

⊤ (5.14)

Θ⃗khk (y⃗k) , (5.15)
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where

Θ⃗k =
[
θ⃗1

⊤
k . . . θ⃗Ck

⊤

k

]
,

y⃗j =


yj
...

yj−L+1

 , hk (y⃗l) =


g1k (zk) y⃗j

...
gCk
k (zk) y⃗j

 .

As described in (Cordovil et al., 2020); (Cordovil et al., 2022), the consequent parameters Θ⃗k are
estimated based on Recursive Least Squares (RLS) methods. In particular, here we use the Sliding-
windowed Fuzzily Weighted Recursive Least Square (SFWRLS) where the weights are the mem-
bership degrees and the data window contains the last φ samples:

Hk = [hk (y⃗k−1) . . . hk (y⃗k−φ)] (5.16)

Xk = [yk . . . yk−φ+1] (5.17)

Therefore, the recursive equations for the SFWRLS estimator are provided as follows

Υk = PkHk

(
ηIφ +H⊤

k PkHk

)−1
(5.18)

Pk+1 = η−1
(
Pk −ΥkH

⊤
k Pk

)
(5.19)

Θ⃗k+1 = Θ⃗k +
(
Xk − Θ⃗kHk

)⊤
Υ⊤

k (5.20)

where Pk ∈ RLCk×LCk is an estimate of the inverted regularised data autocorrelation matrix, Υk ∈
Rnx is the SFWRLS gain vector and η ∈ (0, 1] is the forgetting factor.

Given the estimate of the parameters of (5.13), the one-step ahead prediction of the degradation at
instant k is computed as follows

ŷk+1|k =

Ck∑
i=1

gik (zk) θ⃗
i⊤
k [yk yk−1 . . . yk−L+1]

⊤ (5.21)

For any N ∈ N, define

ˆ⃗yk+N |k =


[yk, yk−1, . . . , yu]

⊤ , if N = 1,

[ŷw, . . . , ŷk+1, yk, . . . , yu]
⊤ , if 1 < N < L,

[ŷw, . . . , ŷu]
⊤ , if N ≥ L,

(5.22)

where u = k + N − L and w = k + N − 1. The N -step ahead health index prediction ŷk+N |k is
computed as follows:

ŷk+N |k = A⃗k
ˆ⃗yk+N |k, (5.23)

where A⃗k =
∑Ck

i=1 ω
i
k (zk) θ⃗

i⊤
k .
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Based on the long-term prediction described in (5.23), the RUL can be estimated by predicting the
future health state of the system given the current and past system’s condition, which are provided
by ˆ⃗yk+N |k and zk. Indeed, the RUL can be defined as the amount of time until the system’s health
index reaches a predefined threshold, that is:

ˆRULk = inf {N ∈ Z≥0 : ŷk+N |k ≤ η}, (5.24)

where ˆRULk ∈ Z≥0 denotes the RUL estimate computed at instant k given the observations of
degradation state until k, and η is the end of life threshold, which must be defined based on
historic data.

5.2.4 Uncertainty quantification

Consider a state transition function given by a TS model, with rules as in (5.13). The degradation
propagation (5.23) can be rewritten as

ŷk+N |k = A⃗ky⃗k+N |k + ϵk+N , ∀N > 0. (5.25)

To account for prediction uncertainties, white Gaussian noise is added to (5.25) from

ϵk ∼ N
(
0, σ2

ϵ

)
, (5.26)

where σ2
ϵ is considered constant. The noise variance can be estimated through Monte Carlo simu-

lations using the consequent parameters’ covariance matrix estimated via RLS until time instant k
(Camargos et al., 2020) or by recursively tracking the covariance of estimation errors through the
online learning operation, i.e., for time instances n ∈ N≤k (Camargos et al., 2021). In the univariate
case, the mean error is recursively tracked as

∆ϵ,k = ϵk − µ̂ϵ,k−1, (5.27)

µ̂ϵ,k = µ̂ϵ,k−1 +
1

k
∆ϵ,k. (5.28)

The initial mean error is µ̂ϵ,0 = 0. Given the estimated mean error, the sum of squares is obtained
recursively from

sϵ,k = sϵ,k−1 + (ϵk − µ̂ϵ,k−1)
2, (5.29)

being sϵ,0 = 0. The variance σ2
ϵ in (5.26), used for long-term prediction, is then approximated by

the error covariance matrix at time instant n:

σ2
ϵ =

sϵ,k
k − 1

. (5.30)
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5.2.5 Uncertainty propagation

After obtaining the initial uncertainty in one-step estimates, its long-term propagation considers
the input vector (5.22) to be a vector composed of estimated random variables. Note that if N = 1,
the previous degradation states are known and, naturally, are non-random variables. Accordingly,
the output x̂k+N of the state transition relation (5.25) is also a random variable. Computing vari-
ances in a multi-step prediction framework is needed for uncertainty propagation. The first step
gives

Var
(
ŷk+1|k

)
= A⃗kCov(y⃗k+1|k)A⃗

⊤
k + σ2

ϵ

= A⃗kΛ⃗
L
1 A⃗

⊤
k + σ2

ϵ

= σ2
ϵ

= λ2
1, (5.31)

in which Λ⃗L
N ≜ Cov(y⃗k+N |k), and λ2

N ≜ Var(ŷk+N |k). Note that Λ⃗L
1 = 0, since previous degradation

states are known at N = 1. Then, the N⃗ -step variance is computed recursively as

Var(ŷk+N |k) = A⃗kΛ⃗
L
N A⃗⊤

k + σ2
ϵ . (5.32)

The covariance matrix of the random vector y⃗k+1|k is

Λ⃗L
N =


λ2
N−1 · · · λN−LλN−1ρ̂L,1

...
. . .

...
λN−1λN−Lρ̂1,L · · · λ2

N−L

 . (5.33)

Moreover, λ2
i = 0 when i < 0, meaning that xk+N is known. The covariance matrix (5.33) is

weighted by Pearson correlation coefficients, ρ̂, estimated through historic data.

Considering the degradation to be a random variable with Gaussian distribution whose expected
value is propagated by successive iterations of (5.25), then RUL lower and upper bounds at an
α(100)% significance level are given as

ˆRUL
lb
k = inf {N ∈ Z≥0 : ŷk+N |k + z1−α

2
λN ≤ η}, (5.34a)

ˆRUL
ub
k = inf {N ∈ Z≥0 : ŷk+N |k + zα

2
λN ≤ η}. (5.34b)

5.3 Experimental Setup

To evaluate the proposed data-driven prognostics based on evolving fuzzy degradation model,
we use the accelerated aging IGBT dataset from the NASA Ames Research Center1. This dataset
contains sensor data from four devices. In particular, there are aging time series for the VCE,

1The dataset is available for download in ti.arc.nasa.gov/project/prognostics-data-repository

ti.arc.nasa.gov/project/prognostics-data-repository
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gate-emitter voltage, collector current, thermal and electrical resistance, and the times at which
the switch is on and off. The health index yk is selected to be

yk = SD (arctan (VCEon)) , (5.35)

and the premise variables vector is

zk =
[
Ēk Ēk−1 Ēk−τ+1

]⊤ (5.36)

where Ēk is the energy of VCE described in Table 5.2.

The proposed evolving fuzzy prognostics require the tuning of some hyper-parameters, namely:
L, the number of lags in the autoregressive model for the health index yk (cf. (5.13)); τ , the number
of lags of Ek used in the premise vector zk; η, the forgetting factor of SFWRLS (cf. (5.18), (5.19)
and (5.20)); φ, the size of the data windows used in SFWRLS (cf. (5.16) and (5.17)); and ζ, the
number of necessary consecutive anomalies to enable the granule creation.

For choosing the hyper-parameters of the proposed algorithm, we designate a test dataset regard-
ing one of the four devices and perform a grid search to solve the following problem

ℓ(D) =l

EOLD∑
k=1

krak(D, l) s.t. l ∈ L (5.37)

where l = (L, τ, η, φ, ζ) is the vector of hyper-parameters, L = [2, 5]× [2, 5]× [0.96, 1]× [2, 6]× [2, 6]

is the search space, EOLD is the end of life of the D-th device, and ℓ(D) are the optimal parameters
within the the search space L, and the ra is

rak = 1−

∣∣∣RULk − ˆRULk

∣∣∣
RULk

, (5.38)

5.4 Experimental Results

In this section, the results for the RUL prediction for IGBTs based on evolving fuzzy models are
presented and discussed. For evaluating the results, the Mean Absolute Percentage Error (MAPE)
is used as figure of merit:

MAPEk =
100

EOL− k + 1

EOL∑
i=k+1

∣∣∣∣∣RULi − ˆRULi

RULi

∣∣∣∣∣ , (5.39)

where EOL is the end of life of the UUT; RULk and ˆRULk are the current and estimated RUL at k,
respectively.

Table 5.3 provides the MAPE results computed from k = 20. Notice that the EEFIG-based prog-
nostics were able to guarantee MAPE results below 50% for the IGBT devices 1, 2, and 4. However,
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the third IGBT presents more challenging data which results in higher MAPE for any parameter
set.

Table 5.3: MAPE20 results

Parameter tuning dataset

1 2 3 4
U

U
T

da
ta

se
t

1 20.3560 31.5868 59.6492 48.3150

2 23.0306 15.1883 34.4047 15.2904

3 67.4113 76.0535 70.8395 74.9962

4 40.7839 31.4586 37.6570 28.2187

Figures 5.5-5.7 depict the RUL prediction results in α-λ plots with accuracy cones of ±30%. In
particular, Figure 5.5 presents the results for the second IGBT using the parameters obtained by
solving (5.37) for the dataset extracted from the fourth IGBT. Figure 5.11 presents the results for the
first IGBT using the parameters obtained by solving (5.37) for the dataset extracted from the sec-
ond IGBT. And, Figure 5.7 presents the results for the second IGBT using the parameters obtained
by solving (5.37) for the dataset extracted from the third IGBT.
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Figure 5.5: RUL prediction for the 2nd IGBT with parameters obtained for the test dataset with
data from the 4th IGBT.
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Figure 5.7: RUL prediction for the 2nd IGBT with parameters obtained for the test dataset with
data from the 3rd IGBT.
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Figure 5.6: RUL prediction for the 1st IGBT with parameters obtained for the test dataset with
data from the 2nd IGBT.

In Figures 5.5 and 5.11, notice that the RUL predictions remain inside of the accuracy cone in most
of the time, and the true RUL tends to be within the predicted RUL bounds. However, the results
become considerably worse for Figure 5.7, as already indicated in Table 5.3.

One of the key advantages of applying evolving fuzzy methods is interpretability. In this regard,
the bottom plots of Figures 5.5, 5.11, and 5.7 indicate the granule with maximum membership
degree at each sample. It is possible that new granules are being created and becoming more
relevant since they are capturing novel degradation stages. Indeed, the transitions between the
most relevant granules could be used as a failure or degradation stage indicator.

5.5 Set-Based Uncertainty Quantification

In this section, a set-based approach is proposed for uncertainty quantification and subsequent set
propagation for prognostics. As a matured field of study, the set-based methodology offers ease of
quantifying all uncertainty sources which is then propagated with minimal computational effort.
The uncertainty is quantified aided by the interval predictor estimation methodology and repre-
sented by boxes. Manipulations are undertaken with relevant interval analysis (IA) properties to
arrive at an appropriate uncertainty representation. This is applied to Evolving Ellipsoidal Fuzzy
Information Granules (EEFIG).
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5.5.1 Interval Arithmetic

This section presents the main concepts and notations used. Calligraphic capital letters are used to
represent sets and lower letter cases for deterministic representations. Assuming an uncertainty
set X , ∆x = [x, x] is the uncertain part with a center xc i.e. X = xc + ∆x . The sets of real and
integer numbers are defined by R and Z. [(.)] signifies the interval hull of a set and I(R), real
interval of a variable.

5.5.2 Interval predictor estimation

Uncertain models bounding

Bounding uncertain mathematical models into interval forms has seen a number of applications
in the field of robust system identification, robust fault detection as well as stability and perfor-
mance robustness of uncertain feedback systems. Different geometric forms such as polytopes,
ellipsoids, and zonotopes have been successfully employed for this purpose. Interval models are
used in prognostics in the spirit of interval bounds aided by set-based parameter estimation theo-
rem which is mostly used in robust fault detection. For estimating these intervals, two options are
normally considered; the interval predictor approach and the bounded error approach, the differ-
ence between the two is dependent on how the types of uncertainties are algorithmically handled.
In this chapter, the interval predictor approach is considered. For a comprehensive comparison of
the two approaches, the reader is referred to Blesa et al. (2011a).

Considering a model in a regressor form that is linear in parameter space as:

y(k) = θ(k)ϕ(k) + w(k) ≜ ŷ(k) + w(k) , y(k) ⊆ Y (5.40)

w(k) ≤ σ(k)

σ(k) ≥ 0 , k ∈ Z+.

where θ(k) and ϕ(k) ⊆ Φ both ∈ Rnθ are the regressor and parameter vectors, respectively. The
additive errors such as sensor noise and modelling uncertainties are considered bounded to a
limit σ(k). Φ is therefore a set that is constructed with interval parameter estimation elaborated in
the sequel to bound parametric uncertainties in state predictions which is described with interval
boxes as:

Φ ∈ I(Rnθ) =
[
ϕ
1
, ϕ1

]
× · · · ×

[
ϕ
i
, ϕi

]
× · · · ×

[
ϕ
nϕ
, ϕnϕ

]
(5.41)

where ϕi = ϕi
c − λi and ϕi = ϕi

c + λi, λi ≥ 0. ϕi
c is the center and λi, the endpoint of a symmetric

interval set.
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Interval predictor parameter estimation algorithm

Given a sequence of interval regressor values, θ(k) ∈ IRNnθ and measurements y(k). The set Φ
should be constructed to ensure the inclusion of all possible realization of uncertainties. Hence it
is desirable to consider the worst-case scenario of an uncertainty descriptive set that represents a
complete membership of all uncertainties. Hence from (5.40), a suitable worst-case set description
can be described as:

y(k) ∈
[
ŷ(k)− σ, ŷ(k) + σ

]
∀k ≤ Z[1,...,N ] (5.42)

(5.42) is thus equivalent to :

ŷ(k) ≤ y(k) + σ and ŷ(k) ≥ y(k)− σ

where ŷ(k) = max
ϕ(k)∈Φ

(θ(k)ϕ(k)) and ŷ(k) = min
ϕ(k)∈Φ

(θ(k)ϕ(k)). As such, the uncertainty set Φ can be

described as an intersection of unbounded admissible sets resulting from the half-spaces Φk and
Φk considering the worst case scenario (5.42):

Φ =
N⋂
k=1

{θ ∈ Rnθ : θ(k)ϕ(k) ≤ y(k) + σ} and Φ =
N⋂
k=1

{θ ∈ Rnθ : θ(k)ϕ(k) ≥ y(k)− σ} (5.43)

Hence, the ultimate uncertainty set is satisfied where Φ ∩ Φ ̸= ∅ & Φ ∩ Φ ̸= ∅ in the parameter
space. The uncertainty set is therefore:

Φ =
N⋂
k=1

{θ ∈ Rnθ : |y(k) + θ(k)ϕ(k)| ≤ σ} .

Assuming a symmetric interval set [−∆ŷ, ∆ŷ] with center yc. Then the maximum endpoints for
any variation from the nominal regressors can be described as:

ŷ(k) = ŷc + θ(k)∆y

ŷ(k) = ŷc − θ(k)∆y

where ŷc = θ(k)ϕc; ϕc =
[
ϕc
1, . . . , ϕ

c
nϕ

]
is the nominal model devoid of uncertainty. Therefore,

assuming a predefined symmetric interval ∆y0 = [−∆y0, ∆y0], a mathematical problem is formu-
lated such that an optimal λ is evaluated ensuring that all uncertainties are accounted for when
∆y = λ∆y0. This is achieved by solving an optimization problem with a cost function considering:

f(λ) =

N∑
k=1

W(∆ŷ(k)) = 2λ

N∑
k=1

θ(k)∆y0 , λ > 0 (5.44)
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Figure 5.8: Left shows half spaces of Θk and Θk for 1 dimension and right shows Θk and Θk from
dimensions 1 to 3 from Blesa et al. (2011a).

whereW() is the width of the uncertainty set ∆ŷ and the constraint is as follows from (5.42):

λθ(k)∆y0 ≥ |y(k)− ŷc(k)| − σ −→ λ ≥ |y(k)− ŷc(k)| − σ

θ(k)∆y0
(5.45)

Thus, the optimization problem to be solved is:

min
λ

f(λ)

s.t. λ ≥ |y(k)−ŷc(k)|−σ
θ(k)∆y0

∀ k ∈ Z[1,...,N ]

(5.46)

The optimal solution is therefore:

λ = sup
k∈Z[1,·,N ]

(
|y(k)− ŷc(k)| − σ

θ(k)∆y0

)
(5.47)

In summary, this methodology is henceforth used to evaluate a factor λ which ensures a worst-
case set Φ that bounds all uncertainties with regards to the present and modelling uncertainties σ
under initial set conditions ∆y0. Since the constraint in (5.46) is an epigraph of a piecewise linear
function, the optimization problem is convex, therefore finding a solution can be done with ease
with common solvers. The bounded set is then propagated to a future predefined End Of Life
(EOL).
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5.6 Interval set-based uncertainty description.

For quantifying and propagating the uncertainty sets, the following conditions are assumed:

Assumption 4 The unknown uncertainties in the process and measurement can be represented with an
appropriate convex set.

Assumption 5 From Assumption 1, since the one-step ahead degradation fuzzy model (5.21) is linear,
then a multi-step propagation with a convex uncertainty initial set ensures conservation of convexity. Thus
the final uncertainty set is convex and easily interpretable.

The initial noise and parametric uncertainties are quantified by finding an optimal λ solving the
optimization problem (5.47). This allows to bound all realization of the considered uncertainty
sources. For a one-step propagation i.e. N = 1, the input as from (5.22), considers only a cer-
tain measurement vector ˆ⃗yk+N |k ∈ Rk+N−L with its uncertain component of prediction (5.23)
described as:

∆ŷk+N |k = ∆A⃗k
ˆ⃗yk+N |k, (5.48)

where ∆ŷk+N |k and ∆A⃗k are the uncertain components described as symmetric intervals. For a
multi-step forecast to the EOL, the uncertain set is constructed recursively considering propaga-
tion of the recursive sum of sets as:

∆ŷk+N |k = ∆A⃗k
ˆ⃗yk+N |k +∆A⃗k∆ˆ⃗yk+N |k +∆A⃗k∆ˆ⃗yk+N |k +∆ϵk. (5.49)

Where ∆ŷk+NEOL|k as the uncertainty set at k+NEOL|k of the UUT’s EOL and ∆ϵk as the bounded
noise value during forecasting. For clarity, two noise components are considered, first from sensor
noise in the prediction of the states and another ϵk for noise in future times of prognostication. The
upper and lower bounds of the RUL are therefore given as:

RUL = sup
(
x ∈ R ∪ {−∞, +∞} |∆ŷk+NEOL|k ∈ ŷk+NEOL|k, x ≤ ŷk+NEOL|k

)
(5.50)

RUL = inf
(
x ∈ R ∪ {−∞, +∞} |∆ŷk+NEOL|k ∈ ŷk+NEOL|k, ŷk+NEOL|k ≤ x

)
(5.51)

Since the parametric uncertainty and the propagation noise (ϵk) are propagated in time, the future
uncertainty and predicted uncertainty as stated in the introduction are considered in part taken
care of in the prognostics process.

5.7 Results and discussion

The bound on the noise value ϵk is taken as the maximum variation of each cycle of stress from
the given data Fig. 5.2 given their respective mean values Fig. 5.4 and . Whilst the uncertainty
∆y0 ⊆ σ(k) is taken as a varying error between predicted and original feature at the propagation
stage. The prognostic model is trained with data from IGBT2 and two test scenarios considered.
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Figure 5.9: Predicted and real health index with error at each cycle..

First, the model is used for RUL prediction of the IGBT2 itself and a more realistic prediction on a
different device, the IGBT1. Fig. 5.9 depicts the real and the estimated health index, whose error
at each prognostic time instant is quantified with the process noise in a hyperbox for propaga-
tion, performed for each test scenario. The final uncertainty set at each prognostic time differs
in width which depends on the initial uncertainty set and the duration of the EOL. As evident
from Fig 5.11, the width of the uncertainty set generally decreases as more data are available for a
better prediction by the algorithm. That is because the model becomes better as more data is avail-
able for training and thus fewer uncertainties in the prediction stage. Considering that unknown
future conditions constitute uncertainties, the farther away from the EOL, the bigger the size of
the interval sets. As expected, the magnitude of prediction error is greater in RUL prediction of
the IGBT1, therefore the uncertainty set is wider than the self-test case as shown in Fig.5.12. The
convergence of the sets from both scenarios shows a desirable property of the algorithm.

5.8 Conclusions

This chapter presented a novel data-driven prognostics approach based on the evolving granular
fuzzy models denominated EEFIG for IGBTs. The EEFIG is able to learn degradation processes
from the data stream adapting the parameters of the degradation process representation and mod-
ifying its structure by means of granule creation for representing novel stages of the degradation



5.8. CONCLUSIONS 85

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

Real RUL

Predicted RUL

Interval Uncertainty

Accuracy cone

(+/- 30%)

Figure 5.10: RUL prediction and uncertainty set description for the IGBT2 with parameters ob-
tained for the test dataset with data from the IGBT2.
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Figure 5.11: RUL prediction and uncertainty set description for IGBT1 with parameters obtained
for the test dataset with data from the IGBT2.

process. The results indicate that the application of EEFIG for data-driven prognostics of IGBTs is
promising, mainly due to its interpretability features. To tackle the inevitable presence of uncer-
tainty in prognostics a novel set-based quantification and propagation for data-based prognostics,
enabled by set-membership theory is proposed. The methodology proves its merits as easy to em-
ploy with reasonable uncertainty description. For future research, more complicated geometric
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Figure 5.12: Width of uncertainty set at each RUL prediction cycle.

options such as zonotopes will be used for less conservative results. It would also be interesting to
have a comparative analysis with different uncertainty quantification methods using the metrics
as proposed in Saxena et al. (2017). The methodology will also be extended to other data-driven
techniques such as deep learning.





Chapter 6

Reliability-Aware Zonotopic
Tubed-Based MPC Of A DWN

The content of this chapter is based on the following works:

• Khoury et al. (2022d) Khoury, B., Nejjari, F., and Puig, V. (2022d). Reliability–aware zonotopic
tube–based model predictive control of a drinking water network. Int. J. Appl. Math. Comput.
Sci., 32(2), 197–211. doi: 10.34768/amcs-2022-0015. URL https://doi.org/10.34768/

amcs-2022-0015.

• Boutros et al. (2020) Boutros, K., Puig, V., and Nejjari, F. (2020). Robust economic model
predictive control of water transport networks. In 28th Mediterranean Conference on Control
and Automation, MED 2020, Saint-Raphaël, France, September 15-18, 2020, 121–126. IEEE. doi:
10.1109/MED48518.2020.9183029. URL https://doi.org/10.1109/MED48518.2020.

9183029.

For reliability modelling of interconnected components, there exist methods based on statistical
inferences that present desirable mathematical representation of such stochastic processes. Pop-
ular amongst them are the Markov chain process, Stochastic Petri Nets and the use of Bayesian
networks. Bayesian networks are by far the most common method applied in literature mainly
due to the fact that Markov chains leads to combinatorial explosions of the number of states re-
quired when the number of model components increases. This makes such a method undesirable
for evaluating the cumulative reliability of complex large networks such as a DWN, which con-
tains many interacting components (Zeller and Montrone, 2018). Also since Stochastic Petri Net
depends on Monte Carlo simulations, it may demand massive simulations for very low proba-
bility evaluations (Philippe and Lionel, 2006). Therefore, for reliability tests on a complex inter-
connected system of a power network, (Haghifam, 2015) opted for Bayesian networks leading
to improved system efficiency evaluations as compared to other methods. (Philippe and Lionel,
2006) goes a step further by applying the concept of a Dynamical Object Oriented Bayesian Net-
works (DOOBN) modelling on a not so complex system, a water heater process. Comparison with
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a Markov chain method by the authors shows that DOOBN yields good results for reliability eval-
uation, which is also deemed to be more compact and readable than Markov chains.

Model-based controllers such as MPC offer a suitable platform to include in its multi-objective op-
timization framework, a reliability index or/and reliability constraint function with the purpose
of alleviating degradation against other competing criterion. Recently, the concept of incorporat-
ing directly an economic stage cost of an industrial processes in an MPC design termed economic
MPC (eMPC) has garnered interest. This procedure involves an update of the generic cost func-
tion which normally involves tracking a set-point to one which explicitly involves economic terms
such as energy, cost of production etc. eMPC allows an improvement during transients and the
ability to manipulate control variables to satisfy various economic requirements (Müller et al.,
2013). eMPC in the area of water supply has been extensively studied with numerous papers to
that effect (e.g. (Cembrano et al., 2011b); (Wang et al., 2017a)). As the name suggests, the for-
mulated control problem constituted by economic variables (e.g. cost, price or demand) which
are mostly exogenous. Some of these variables are undoubtedly subject to stochastic variations
which requires further control design considerations for a suitable operation. For example, and
in relation to our case, in the design of an eMPC for a DWN with variable demand as done in
(Wang et al., 2017a), a forecast of water demands is required to enable future predictions of states
in an MPC optimization loop. But, forecasted demand as a variable is subject to human behaviour
which can be described as uncertain at best. Therefore, there is the need to ensure that controllers
are built robust considering these design variations, which are inevitable in real life situations.
Methods of stochastic MPC (Wang et al., 2017b), the Min-Max Robust formulation (Löfberg, 2003),
the tree-based method (Velarde et al., 2016) and other proposed concepts have been successfully
applied to problems of uncertainties in MPC.
In this chapter, a robust eMPC that takes into account reliability modelled with Bayesian networks
is proposed. The topology of the network showing flow relationships between actuators linked
by pipes is utilized in the Bayesian probability formulations. The reliable robust eMPC is ap-
plied to a DWN, specifically in the Barcelona Drinking Water Network, considering uncertainties
in the forecasted demand. The variations in demands are considered unknown but bounded in
zonotopic sets. Zonotopic sets show desirable characteristics of less complexity, flexibility and
reliable computation of linear transformation and Minkowski sums compared to other geometric
counterparts such as interval or ellipsoidal sets (Le V. and Camacho, 2013). It must be noted that
even though a robust MPC (RMPC) is achieved after this procedure, there is a certain degree of
robustness for some magnitude of uncertainty beyond which the optimization problem ceases to
be feasible.

6.1 Problem formulation and Preliminaries

In this section, a brief description of the selected DWN model and its condensed version will be
discussed. Then an account of the primary predictive control for DWNs is given. Finally, as a
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precursor to the sequel, some important mathematical preliminaries are introduced.

6.1.1 A general description of a control oriented DWN model

There exist in literature some models of DWNs that seek to capture key dynamics at different
levels of a DWN’s architecture. There are however, two predominant models that are commonly
used in controller designs with numerous successful outcomes. Through graph theory, flow direc-
tions of water at network nodes as well as interactions at the tanks leading to a simple flow-based
model description of the network is studied in (Grosso et al., 2014), whilst in (Wang et al., 2017b),
some considerations are made from both the network’s flow and pressure characteristics, specifi-
cally taking into account the interactions when flow and hydraulic head equations are considered
in the modelling process.

Considering only the transport sub-level, the flow-based model offers an easier option to work
with, largely due to its linearity but fails to capture key pressure dynamics which is important
to present a complete mathematical behaviour of the network. Inclusion of pressure in the DWN
dynamics introduces non-linearity from the pressure-flow affine equality equation into the opti-
mization problem’s constraints formulation resulting in a non-convex problem. Some works have
been successful in designing nonlinear MPC (Wang et al., 2017b) for the control of these nonlinear
models, whilst (Wang et al., 2018a) considers nonlinear constraints relaxation to produce a set of
linear inequality constraints for a linear eMPC formulation. Despite its complexity, the nonlin-
ear pressure-flow model offers a more realistic case to work with. The purpose of this chapter is
primarily to illustrate the ability of a control law to enhance the reliability of DWNs whilst consid-
ering the real life scenario of demand uncertainties via a set-based method (zonotope) of robust
MPC, henceforth the comparatively less complex flow based model will be used.

In (Puig et al., 2015), a flow-based model of the Barcelona water network is presented, which
has been extensively used in literature, primarily for control design purposes. Basic relationships
between elements considering mass balance at tanks and equilibrium of flow directions at nodes,
give rise to a discrete-time invariant system as follows:

x(k + 1) = Ax(k) +Buu(k) +Bdd(k), (6.1a)

0 = Euu(k) + Edd(k). (6.1b)

where x(k) ∈ Rnx
+ is the vector of system states, denoting tank volumes at each time instant k. u(k)

∈ Rnu denotes the manipulated input from actuators affecting changes in states in combination
with the non-negative model disturbance d(k) ∈ R+

nd , the consumer demand. A, Bu, Bd, Eu and
Ed are time-invariant matrices of suitable dimensions. From (6.1b), it can be inferred that the con-
trol variable u(k) does not take its value from Rnu but in a linear variety. This inference enables
an affine parameterisation of the control variables in terms of a minimum set of disturbance, map-
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ping the control problem to a space with a smaller decision vector and with less computational
burden due to the elimination of the equality constraint (6.1b).
Proposition 1 (Wang et al., 2017a):Considering that there are more control variables than algebraic
equations (i.e. nq < nu), the matrix Eu in (6.1b) has a maximal rank. Assuming that the equation
has a solution, it can be expressed in a reduced staggered form using the Gauss-Jordan elimina-
tion.
From Preposition 1, the control variable is parameterized such that:

u(k) = P̃ M̃1û(k) + P̃ M̃2d(k). (6.2)

The model can be represented as (6.3) by replacing (6.2) into (6.1a)

x(k + 1) = Ax(k) + B̂û(k) + B̂dd(k). (6.3)

where B̂ = BP̃M̃1 and B̂d = BP̃M̃2 +Bd.

From (6.2), û(k) ∈ Rnû ⊆ Rnu can be expressed as a function of the demand variable d(k) and u(k).
Then, an evaluation of the control invariant set from the affine relationship between the input and
demand can be developed. Reader is referred to (Wang et al., 2017a) for an in-depth description
of how (6.3) is formulated from Proposition 1.

6.1.2 Conventional eMPC as applied to DWNs

The operation of a DWN is such that network elements, active (pumps and valves) or passive
(pipes and tanks) interact to satisfy operational network objectives. Thus, the MPC paradigm of-
fers a platform to introduce in a multi-objective framework, a control scheme that encompasses
all these objectives whilst respecting system constraints. These control objectives include:

Minimization of operational cost (Economic term): The dominant objective index in the MPC optimiza-
tion problem is the minimization of the cost of operation in relation to constant water production
and variable electricity cost used for pumping water between source and demand. The MPC is
designed such that an optimal cost is achieved whilst servicing demand under process constraints.
Thus, the function is given as :

JE(k) = (α1 + α2(k))
Tu(k), (6.4)

where α1 ∈ Rnu and α2(k) ∈ Rnu represent respectively the constant water production costs and
variable daily electricity costs. u(k) is the actuator activity at each sample time k.

Guarantee of safe water storage: For operational security, it is imperative to maintain a safe level of
water in tanks to ensure a consistent supply of water to demand nodes between two consecutive
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time instants of the MPC and also to keep a safe stock of water in the event of any uncertainties
related to supply availability. A penalty equal to the sum of the squares of the deviation of the
volume in each tank from a predefined safety threshold is therefore posed as:

Js(k) =


∥x(k)− xs∥2 if x(k) ≤ xs

0 otherwise

(6.5)

A vector of safety levels of each tank is denoted by xs. The cost function is reformulated as (6.6)
with the inclusion of a slack variable ε(k) and an introduction of constraint (6.7) in a bid to cir-
cumvent the occurrence of a problematic piece-wise affine cost

Js(k) = ∥ε(k)∥2, (6.6)

x(k) ≥ xs − ε(k) (6.7)

Penalization of actuator slew rate: For purposes of increasing the lifespan of actuators (pumps and
valves) which is generic in MPC formulations, the deviation between two consecutive time in-
stants of control actions is penalised for a smooth operation of control :

J△U (k) = ||△u(k)||2, (6.8)

where△u(k) = u(k)− u(k − 1).
The volume of water in the tanks, x(k) and the actuator actions, u(k) are bounded in compact
polyhedral sets U and X defined by

x(k) ∈ X = {x(k) ∈ Rnx |x ≤ x(k) ≤ x} (6.9a)

u(k) ∈ U = {u(k) ∈ Rnu |u ≤ u(k) ≤ u} (6.9b)

With the aforementioned objectives and constraints, a finite horizon optimal control problem
which minimizes a cost

L(k, û, x) = Λ1Js(k) + Λ2J△Û (k) + Λ3JE(k) (6.10)

where L(k, û(k), x(k)) ∈ N+ × Rnû × Rnx → R+ is formulated taking into account that Λ1, Λ2

and Λ3 (Λi > 0 ∀i) are design weights for each objective criterion that can be tuned following the
procedure presented in (Toro et al., 2011). Thus, at each time instant k, considering the condensed
dynamic equation (6.3), the optimization problem to be solved is:
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min
û(k),x(k)

Np−1∑
i=0

L(k, û(k), x(k))

subject to

x(i+ 1|k) = Ax(i|k) + B̂û(i|k) + B̂dd(i|k),

û(i|k) ⊆ U(i|k), (6.11)

x(i+ 1|k) ⊆ X,

x(i|k) ≥ xs − ε(i|k),

Remark 1: Considering that the control variable û ∈ U ⊆ U is mapped to a reduced space from
Proposition 1. For the inclusion of an input constraint, a novel time-varying input domain set
U(k + i|k) is introduced such that

{û(k) ∈ Rnû |u− P̃ M̃2d(k) ≤ P̃ M̃1û(k) ≤ u− P̃ M̃2d(k)}

under the assumption that the optimization problem (6.11) is feasible, i.e., there exists a non-empty
solution given by the optimal sequence of control inputs (û∗(0), û∗(1), ..., û∗(Np − 1)), where Np

is the prediction horizon. From the principles of receding horizon, only the first control action
û∗(0|k) of the sequence Np values obtained from the solution of the MPC optimization problem is
applied to the plant,

û(k) = û∗(0|k),

disregarding the rest of control actions. At the next time instant k, the optimization problem is
solved again using the current measurements of states and disturbances, with the most recent
forecast of the latter over the next future horizon.

Definition 1: (Robust Positive Invariant (RPI) set): Assuming a solution φ(x0, k) exists for a discrete
time-invariant system : x(k + 1) = Ax(k) +Bu(k) +w(k), ∀w(k) ∈W. Ω ⊆ X is defined as an RPI
set if φ(x0, k) ∈ Ω ∀x0 ∈ Ω for all k = N[1,..,∞), such that (A+BK)Ω⊕W ⊆ Ω.

Definition 2: (minimal RPI (mRPI) set:) a mRPI, Ω∞ set is a set contained in all possible RPI sets of
a system as described in Definition 2.

6.2 Tube-based MPC

The fundamental intent of designing a robust MPC controller must be such that the designed con-
troller satisfies the tenets of robust stability and recursive feasibility, robust constraint satisfaction and
robust performance for all realization of a system behaviour Σ = f(k, x(k), u(k), d(k)), subjected to
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unaccounted variations of function variables; in essence, the system must operate at near normal
in the event of some extent of uncertainties. Assuming an additive demand uncertainty in (6.3),
the effects of unknown uncertainties on the exogenous known demand variable d(k), ∆d(k) ⊆ δD
results in a subsequent variation in the state ∆x(k) ⊆ δX and input variables ∆u(k) ⊆ δU as evi-
denced from the affine relationships of the variables in equations (6.2) and (6.3). These variations
can result in feasibility as well as stability issues. The model variables can therefore be thought
of as a composition of an uncertainty ’free’ and an unknown uncertain component dependent on
the demand uncertainty, with the latter involving a realization of variables at each time instant
from bounded uncertainty sets (δX, δU, δD) with the assumption that the uncertain demand is
unknown but bounded. State and input uncertainty sets (δX, δU) are accordingly described as
zonotopes generated from the known zonotopic bounded set of the demand uncertainty δD. RPI
sets are subsequently utilized in the tightening of original state and input constraints. Also con-
sidering that in the presence of uncertainty, asymptotic stability to an equilibrium point cannot
be achieved like the nominal case, robust asymptotic stability is guaranteed with a terminal set
Ω∞. Ω∞ presents a suitable region of attraction for the perturbed system ensuring stability and
recursive feasibility.

Assumption 1. The states x(k) and demands d(k) are considered known at each time instant k and
the pair (A,B̂) is controllable.

δD(k) is generated from a symmetric interval set considering bounded demand uncertainty under
additive uncertainty assumptions at each time instant k such that δd(k)l ∈ [-δd(k)l, δd(k)l], where
l denotes a particular demand node in the network. The description of the set δD(k) is chosen
appropriately to ensure that δX(k) ⊂ interior(X) and δU(k) ⊂ interior(U) (Mayne et al., 2005).
The uncertain set δD(k) can therefore be represented in a zonotopic form as:

δD(k) ≜ [0]nd ⊕Hd(k)B
nd . (6.12)

where [0]nd is a column vector of dimension nd (nd is the number of demand nodes), considered as
the center the zonotope and Hd(k) is a time varying diagonal matrix of the generators representing
the bounds of variations at each demand node j at each time instant k ∈ N≥0: Bnd ; B = [−1, 1].
Consider x̃, ˜̂u and d̃ as the real dynamic states, inputs and demand, respectively. Taking into
account the uncertainty effects, appropriate decomposition of model variables are therefore given
as: x̃ = x+∆x, ˜̂u = û+∆û and d̃ = d+∆d.
∆(.) is the uncertain component of each variable. The DWN model considering uncertainty in the
demand variable is therefore given as from (6.2) and (6.3) as:

x̃(k + 1) ≜ Ax̃(k) + B̂ ˜̂u(k) + B̂dd̃(k), (6.13a)

0 ≜ Eu
˜̂u(k) + Edd̃(k). (6.13b)
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Nominal states and inputs, x ∈ R+
nx , û ∈ R+

nu are considered bounded in a compact polyhe-
dron X and U, containing the origin in their interiors, with û ⊆ U and x ⊆ X. In the presence of
uncertainty, it is desirable to generate a tube of trajectories, meaning a sequence of RPI reachable
sets such that for every transition of states and inputs of the nominal system, the resultant states
and inputs after the effect of uncertainty remain in a closed and bounded set of the system con-
straints (X,U) as well as is asymptotically stable to an approximate equilibrium set Ω̃; with RPI
sets (δX(k) ⊆ X, δU(k) ⊆ U, Ω̃ ⊂ X). A state RPI tube, X̃ = {X̃0, X̃1, ..., X̃N}, ∀ X̃k = x(k)⊕ δX(k)
and an accompanying control tube Ũ = {Ũ0, Ũ1, ..., ŨN}, ∀ Ũk = û(k) ⊕ δU(k), is constructed on-
line considering the bounded uncertainty description and the center of measured demands at k.
x(k) and û(k) are centers of the respective propagated state and control RPI tubes. The mismatch
between nominal and real states influenced by uncertainties are mitigated by a local feedback con-
troller K, in our case an LQR controller, such that the selection of this feedback gain, K satisfies a
system with the assumption that d̃(k) = 0;

∆x(k + 1) ≜ (A+ B̂K)∆x(k). (6.14)

with ∆x(k) ⊆ δX(k). The local controller ensures that the deviation of the system dynamics in the
closed-loop with (A+ B̂K) is asymptotically stable. The primary aim is to have an optimal control
problem, which keeps trajectories around the neighbourhood of the nominal optimal trajectory in
the presence of uncertainties, for x̃(0) ∈ x(0)+ δX, therefore minimizing the spread of trajectories.

Remark 2: Considering that (A+ B̂K) is strictly stable and x̃ = x+∆x, with an uncertain dynamic part
∆x(k + 1) ≜ (A+ B̂K)∆x(k) + B̂d∆d(k). Since δX is an RPI, (A+ B̂K)δX⊕ B̂dδD ⊆ δX ⊂ X, then
it can be inferred that the transition of states from one time instant to another with any control law π(u(x))

depends on the dynamics of the centers, x(k + 1) = Ax(k) + B̂û(k) + B̂dd(k).

6.2.1 Online computation of zonotopic reachable sets

The feedback gain K is computed and kept constant at each time instant k throughout the predic-
tion horizon of the MPC controller to minimize the deviation of the perturbed state and ensures
asymptotic stability to a predefined terminal set. An optimal local controller for state error mini-
mization,

J[˜̂u0,.,˜̂u∞) =

∞∑
i=0

(x̃(k)− x(k))TQ(x̃(k)− x(k)) + ˜̂u(k)TR˜̂u(k) (6.15)

where Q is semi-positive definite and R, a positive definite matrices of appropriate dimensions is
proposed. x̃(k) is the real state at time k from the plant under uncertainty and ˜̂u, the actual inputs,
with x(k) as the nominal state prediction from the MPC at time instant k. From the real state, x̃(k)
(i.e. x̃(k) = x(k) + ∆x(k)), the uncertain dynamic part is:
∆x(k + 1) ≜ (A+ B̂K)∆x(k) + B̂d∆d(k),
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where ∆û = K∆x.
From the uncertain component, a corresponding Np ∈ N>0 length of tube is computed at every k,
where Np is the selected prediction horizon of the MPC controller. Therefore, a set δX from which
the realization of the error ∆x assuming that initial deviation, ∆x(0) = 0 can be described as:

δX(k + i) ⊆
i⊕

j=1

(A+ B̂K)i−jB̂dδD(i). (6.16)

Given that δD(i) = 0 ⊕ Hd(i)B
nd, and from Properties 1 and 2 of zonotopes from 3, it therefore

follows that:
δX(k + i) ⊆ 0⊕Ψ[1,i](i)B

nd , (6.17)

Ψ[1,i](i) =

i⊕
j=1

(A+ B̂K)i−jB̂dHd(i). (6.18)

The control variable ˜̂u at each time instant can be described as:

˜̂uk = ûk +K∆xk, (6.19)

where û(k) is the certain control variable obtained from the nominal MPC at time instant k. From
equation (6.2), and under decomposition into certain and uncertain parts, considering that the
actual control variable ˜̂uk, ˜̂u ∈ δU, the uncertain control RPI set is given as:

δU(k + i) ⊆ P̃ M̃1KδX(k + i)⊕ P̃ M̃2δD(k + i), (6.20)

The sequence of cross-sections of the control tube can therefore be described in a zonotopic form
as:

δU(k + i) ⊆ 0⊕ [P̃ M̃1KΨ[1,i](K + i), P̃ M̃2Hd(k + i)]B2nd . (6.21)

6.2.2 Terminal state constraint set

For robust stability and recursive feasibility, a terminal constraint set is formulated considering a
mRPI as done in (Raković et al., 2005). A terminal mRPI set Ω̃, which is compact and convex is
constructed as an outer approximation of the exact equilibrium state set

Ω∞ ≜
∞⊕
j=0

(A+ B̂K)jB̂dδD, (6.22)

where Ω∞ ⊆ Ω̃. (A+ B̂K) = Â and B̂dδD ⊆ W , under the assumption that Â is strictly stable. An
outer set approximation of Ω∞ is defined if there exist a certain k ∈ N>0 such that, (Â)k W ⊆ αW ,
∀α = [0, 1). The infinite Minkowski sum of sets (6.22) under strict stability conditions ensures that
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convergence is guaranteed. Considering the infinite Minkowski sum,

∞⊕
j=0

(Â)jW ⊆
k−1⊕
j=0

(Â)jW ⊕
2k−1⊕
j=k

(Â)jW ⊕
3k−1⊕
j=2k

(Â)jW ⊕ ..., (6.23)

(6.23) can be simplified to achieve the condition (Â)k W ⊆ αW as follows:

∞⊕
j=0

(Â)jW ⊆
k−1⊕
j=0

(Â)jW ⊕
k−1⊕
j=0

(Â)j(Â)kW⊕

k−1⊕
j=0

(Â)j(Â)2kW ⊕ ........ (6.24)

From (Â)kW ⊆ αW , it can be stated that (Â)nkW ⊆ αnW .
⊕k−1

j=0(Â)jW is thus convex and
compact since δD is assumed to hold the same properties. Assigning

⊕k−1
j=0(Â)jW as ζ. Ω∞ is

approximated from a truncation of (6.24) as:

Ω̃ ⊆ (1 + α+ α2 + ......)ζ, (6.25)

which results in an approximated set:

Ω̃ ⊆ 1

1− α
ζ. (6.26)

The set in a zonotopic form is given as:

Ω̃ ⊆ 0⊕ (1− α)−1Ψ[0,k]B
nd . (6.27)

x1

x2

Figure 6.1: RMPC’s state transition in 2D, showing the constraint set (outer box), the mRPI( inner
box) and RPIs (interior polygons)
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where

Ψ[0,k] =

k−1⊕
j=0

(Â)jB̂dĤd.

Ĥd is taken as the worst case demand uncertainty in reference to the demand profile of each node.
The size of the set is therefore dependent on the design parameter α, the description of the uncer-
tainty set δD and the appropriate selection of k.

Remark 3: The constructed approximated mRPI approaches the actual mRPI if for a significantly
small α ∈ (0, 1], there exists a finite k chosen large enough, such that (Â)kW ⊆ αW holds. Appro-
priate selection of α and k is discussed in (Raković et al., 2005).
The constructed sequence of uncertain zonotopic sets and the terminal set will then be used in the
the design of the robust eMPC by considering only alterations in the constraints and inclusion of
the terminal set.

6.3 Evaluation of a DWN reliability

Definition 4: Reliability is defined as the ability of an item to perform a required function, under
given environmental and operational conditions and for a stated period of time (ISO8402).

Evaluating the reliability of a system is a complex stochastic undertaking that calls for the appli-
cation of appropriate statistical inference techniques in order to model such a phenomenon (Cai
et al., 2020). In this section, the concept of Bayesian Networks (BN), fundamentally based on the
structure of the DWN using graph theory, considering conditional dependencies between graph
nodes (i.e. actuators in the network) related through arcs (flow in pipes) is considered.

For a BN parameter, we make use of a quantitative index of failure rate λ(t) which assists to
evaluate individual reliabilities of components, that is the probability of each component to func-
tion for a specified time. This information is then used in the broad BN modelling according to
the structure of the network. Keeping in mind that the ultimate goal is to inculcate the reliability
in the performance index and the constraints, a resultant dynamic nonlinear network reliability
model from a dynamic BN is represented in a pseudo-linear form, avoiding any additional com-
putational burden, basically escaping a laborious nonconvex problem.

6.3.1 Reliability based on component failure rate

Consider a continuously distributed random variable T denoting a time to failure having a distri-
bution function F (t), where F (t) signifies the probability of a component to fail within the time
interval (0, t] (Rausand and Hoyland, 2004). Then with an associated probability density function,



98 CHAPTER 6. RELIABILITY-AWARE ZONOTOPIC TUBED-BASED MPC OF A DWN

f(t), F (t) can be described as:

F (t) = Pr(T ≤ t) =

∫ t

0
f(u) du, ∀t ≥ 0, (6.28)

Conversely, the reliability of the component R(t) is accordingly represented as the probability of
survival in time interval (0, t] and subsequently functioning at t.

R(t) = Pr(T ≥ t) = 1−
∫ t

0
f(u)

=

∫ ∞

t
f(u), du∀t ≥ 0. (6.29)

Similarly, to evaluate the failure rate, the instance of an element functioning at t is considered, such
that the probability of failing between the interval [t, t + ∆t] having survived to t is represented
with a conditional probability as :

Pr(t < T ≤ t+∆t|T > t) =
Pr(t < T ≤ t+∆t)

Pr(T > t)

=
F (t+∆t)− F (t)

R(t)
(6.30)

dividing both sides by ∆t, and as ∆t→ 0, the failure rate of the component is thus:

λ(t) = lim
∆t→0

F (t+∆t)− F (t)

∆t

1

R(t)
=

f(t)

R(t)
(6.31)

A relationship can therefore be established between the failure rate λ(t) and the reliability function
R(t) from (6.31) considering the probability density function of the failure distribution in (6.28) as:

f(t) =
dF (t)

dt
=

d(1−R(t))

dt
=
−d(R(t))

dt
(6.32)

It follows from the formula of the failure rate (6.31) that:

λ(t) =
dR(t)

dt
.

1

R(t)
= − d

dt
lnR(t) (6.33)

Note that R(0) = 1, therefore: ∫ t

0
λ(t) dt = − lnR(t) (6.34)

R(t) = e−
∫ t
0 λ(u) du (6.35)

where (6.35) provides a relationship between the reliability of a component and the failure rate.

A plethora of methods have been proposed for finding a suitable function for failure rates that
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approximately represents a component’s functional property decay over time. In this chapter,
we consider the effect of loadings on the failure rate as done in (Karimi Pour et al., 2019) and
establish a load versus failure rate relationship, such that an exponential function establishing the
relationship between each actuator, i-th failure rate and their corresponding loadings is given

λi(t) = λ0
i e

(βiui(t)) (6.36)

where λ0
i is the baseline failure rate, ui(t), the control effort of each actuator and βi is a constant

parameter that depends on the actuator characteristics. Therefore under nominal operating con-
ditions, the reliability is characterized as

R0,i(t) = e(−λ0
i (t)) (6.37)

The equation below therefore holds for the probability of a component avoiding failure between
the time interval (0, t] considering the failure rate and the nominal failure rate

Ri(t) = R0,ie
−

∫ t
0 λi(u) du (6.38)

Consequently, a discrete-time representation, taking into account loading at different time in-
stances, k sampled at Ts is as follows

Ri(k) = R0,ie
(−Ts

k∑
s=0

λi(u(s)))
(6.39)

6.3.2 The Bayesian Network Theory

Consider the 3-tuple, BN = (P,AB, NB), representing a BN. BN is therefore a Bayesian network,
essentially a Directed Acyclic Graph (DAG) composed of a set of nodes NB , with corresponding
set of arcs, AB accounting for direct dependencies between nodes. Each node ni ∈ NB is subse-

n1

n2

Figure 6.2: Two nodes in a simple acyclic graph,showing direct dependencies between nodes

quently associated with a probability distribution from the set P . From Fig. 6.2, the relationship



100 CHAPTER 6. RELIABILITY-AWARE ZONOTOPIC TUBED-BASED MPC OF A DWN

between nodes n1 and n2 is such that, (n1, n2) ∈ AB , n1 is therefore defined as the parent of n2,
hence n2 possesses a direct dependency to n1. A set of parent nodes of each node ni in the net-
work is indicated as Pa(ni). The direct dependencies of each node with its parents Pa(ni) is conse-
quently computed considering the conditional probability distribution, Pr(ni|Pa(ni)) , Pa(ni) ̸= Ø.

Assigning a discrete random variable Yi to each node ni ⊂ NB , a finite number of m states set,
Sn can be established for each node such that Sn ≜ {sn1 , sn2 , ...., snm}, under trivial Bayesian as-
sumptions of, sni ∩ snj = Ø, ∀i ̸= j, Pr(s

n
i ) ≥ 0 and Pr(

⋃m
i=1 s

n
i ) = 1, where Pr(Yi = sni ) is the

marginal probability that the state of node ni is sni . Therefore for an acyclic graph BN (P,AB, NB),
∀n(NB) = N with designated probability distributions Pr(Y1, Y2, ..YN ), the joint probabilities of
the nodes under conditional probability assumptions and chain rule is simplified as:

Pr(ni, n2, ....nN ) = Pr(n1)

N∏
i=2

Pr(ni|Pa(ni)) (6.40)

where, n1 is considered a root node, ∴ Pa(n1) = Ø. Note that only prior probabilities are assigned
to these nodes.

Dynamic Bayesian Network:

The Bayesian representation thus far presented in (6.40) is static, therefore to successfully include
the reliability dynamics in the MPC, a temporal dimension that describes the time connection
between two time instances of actuator loadings is added, hence an introduction of temporal de-
pendencies in the modelling. For temporal dependencies in BN, the assumption is made that the
system is a first order Markov, that is: (1.) Arcs between nodes are located in the same time pe-
riod between instances or 2 neighbouring ones. (2.) Time homogeneous parameters of conditional
probability are time invariant. Henceforth, the transition probability of a random variable Xi of
reliability of each nodes ni ∈ Nb between two time instances say k+1 and k, with two states, F as
a failed state and A as active is given as :

Pr(Xi(k + 1)) = (A|Xi(k) = A) = R0,ie
(−Ts

k∑
s=0

λi(u,k))
(6.41a)

Pr(Xi(k + 1)) = (F |Xi(k) = A) = 1−R0,ie
(−Ts

k∑
s=0

λi(u,k))
(6.41b)

6.3.3 Bayesian network structure modelling of a DWN

The procedure of BN representation of a system primarily depends on the structuring and pa-
rameter definition stages, with the later dependent on the acyclic graphical representation of the
system under study. The DWN as with its modelling as discussed in 6.1 involves a graphical
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representation of actuators as nodes that are linked by unidirectional flow through pipes as arcs,
hence an acyclic graph is duly presented. From the graph, based on minimum path sets in the net-
work, that is the set of successful paths from the source to the demand, a resultant series-parallel
arrangement is attained for the network reliability model. The BN parameter definition however
is defined on the pair of probabilities of the root nodes and the conditional probabilities of nodes
and their parents in individual minimum paths of the network. Therefore, the network reliability
with the conditions prescribed at a certain time instant k according to the structure of the network
is:

Rs(k) = 1−
s∏

j=1

(1−
∏
i∈Pj

Ri(k)) (6.42)

where, Pj is a minimum path set and Ri, the reliability of each node in the set considering prior
and conditional probabilities.

The reliability term Ri from (6.37) includes exponential terms from the failure rate, introducing
nonlinearities. To aid in including the reliability term in the MPC, the log of both sides is taken
and subsequently represented in a pseudo-linear form such that:

log(Rs(k)) = log(

s∏
j=1

(1−
∏
i∈Pj

Ri(k)). (6.43)

Assigning
(1−

∏
i∈Pj

Ri(k))

as φj(k), then

log(Rs(k)) =

s∑
j=1

logφj(k). (6.44)

where

log(φj(k)) =
log(φj(k))

log(1− φj(k))

∑
i∈Pj

log(Ri(k)) (6.45)

Thus, with log(φj(k))
log(1−φj(k))

as ϑj(k), the reliability of the network is given as:

log(Rs(k)) =

s∑
i∈Pj

ϑj(k)
∑
i∈Pj

logRi(k) (6.46)

Therefore, considering the DBN formulations in (6.41) and the baseline reliability, the dynamic
model is

log(Rs(k + 1)) = log(Rs(k)) +
s∑

i∈Pj

ϑj(k)
∑
i∈Pj

logRi(k) (6.47)
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6.4 Reliability Aware eMPC of DWN

In this section, finally the reliability aware Robust control problem, considering all procedures in
the preceding sections is discussed. Considering that the reliability model in (6.47) is nonlinear,
a quasi-LPV (qLPV) nonlinear representation of the nonlinear model through the embedding of
nonlinearities in scheduling parameters (θ(k)) is formulated. The time varying matrices of appro-
priate dimensions representing the qLPV approximate model are hence:

Ar(θ(k)) =

[
1

∑s
i∈Pj

ϑj(k)

0nu×1 Inu×nu

]
,

Br(θ(k)) =

[
01×nu

−λi(k).Inu×nu

]
.

where A(θ(k)) ∈ R(nu+1)×(nu+1) and B(θ(k)) ∈ R(nu+1)×nu and with states
xr = [log(Rs), log(R1), log(R2).... log(Rnu)] ∈ Rnu+1. Therefore, the reliability model (6.41) is in-
cluded as additional dynamics in the constraints with a new performance index for network re-
liability enhancement, JR. The MPC is robustified by only updating the constraints considering
U ⊕ δU ⊆ U and X ⊕ δX ⊆ X and robust asymptotic stability with the terminal set Ω̃. Thus, a
similar complexity to the nominal case. The cost function with the additional term of reliability,
L(k, û, x) ∈ N+ × Rnû × Rnx → R+ is given as :

L(k, û, x) = Λ1Js(k) + Λ2J△Û (k) + Λ3JE(k)− Λ4JR(k)

The reliable ReMPC controller is therefore posed as follows:

min
û(k),x(k),xr(k)

Np−1∑
i=0

L(k, û(k), x(k))

subject to

x(i+ 1|k) = Ax(i|k) + B̂û(i|k) + B̂dd(i|k),

û(i|k) ⊆ U(i|k)⊖□δU(i|k), (6.48)

x(i+ 1|k) ⊆ X⊖□δX(i|k),

x(i|k) ≥ xs − ε(i|k),

x(Np − 1|k) ⊆ Ω̃,

xr(i+ 1|k) = Ar(θ(k))xr(i|k) +Br(θ(k))u(i|k)

xr(i|k) ⊆ (0, 1].

where ⊖ is a Pontryagin difference of the sets. From the control parameterization, the control



6.5. APPLICATION EXAMPLE 103

input to the plant at every time instance k is given by

u∗(0|k) = P̃ M̃1û
∗(0|k) + P̃ M̃2d̃(k) +K∆x(k). (6.49)

where d̃(k) is the forecasted demand.

6.5 Application Example

To demonstrate the capabilities of the proposed controller, first for robustness, an additive de-
mand uncertainty taken as the variation around the demand profile is considered as shown in
Figure.6.4. This scenario of actual demand is assumed on the controller to test its level of robust-
ness. With a prediction horizon of 24 hrs (a day of water supply) and a sampling time of 1hr, the
robust MPC optimization problem considering reliability (6.48) is solved with CPLEX® QP solver,
on Matlab® R2019b (64 bits) using a PC with an Intel core i7 of 8 GB RAM. An aggregate net-
work of the Barcelona water network, Fig. 6.3 composed of 17 tanks, 61 actuators and 25 demand
nodes is used as a case study. Tanks store water during off peak hours and supply water when

Figure 6.3: Barcelona drinking water network.
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demand is at peak or in the occasions of unexpected demand and supply scarcity. This presents a
cyclic actuator behaviour in relation to the peak-off peak demand profile. An acyclic graph of the
network showing relationships between nodes (actuators) linked by unidirectional pipes (arcs) is
used for the network and reliability models. The following assumptions are made (1.) Sources
supply required amount of water to demands (2.) The pipes and tanks of the network are always
reliable and (3.) The actuators at the start of simulation is perfectly reliable (value of 1).
The minimum paths Pj , which is the set of successful paths from source to demand, through an
ensemble of components (pipes, valves and tanks) evaluates the reliability of each path, consid-
ering only the actuators. The various paths are then lumped for a network reliability measure,
considering their series-parallel arrangement, taking each path as a single entity. Table 6.1 shows
some traced minimal paths in the network, there are 607 minimal paths in total. The robustness of

Table 6.1: Examples of Minimum cost paths in the network.
Path Components sets

1 {aMs, bMs, c125PAL}
2 {AportA, VALVA, VALVA45, c70PAL}
3 {AportA, VALVA, CPII, C110PAP}
4 {AportA, VALVA, VALVA45, CPIV, C125PAL}
. .
. .
. .

607 {AportT, VALVA312, c135SCG}

the designed controller is tested taking Tank 1 (d125PAL) and its associated elements as reference,
as shown in the WDN network (Figure 6.3). Tank 1 is directly connected to demand node c125PAL
and the nearest supply actuators are CPIV and bMS. These actuators are chosen since they show
major changes when there are demand alternations. An eight day demand profile, subdivided
into an 80 hour test scenarios is used for the simulations as shown in Figure 6.5. In the first two
regions, the extremities of the controller is tested, additive uncertainty is added until the nomi-
nal controller ceases to be feasible, thus us labeled as real demand. Thus not shown in the plots,
the nominal MPC control is intractable in these regions. The last region is the nominal loading
condition. For the actuators’ action as shown in Figure 6.7 and 6.6, during the first and second
stages of the demand profile, the actuators work to offset the demand variation aided my the tank
in Figure 6.8. Since the stored reserve in d125PAL is exhausted in the first region, the actuators
function to retain supply to the demand, whilst respecting their own constraints, the feasibility of
the control. This is especially evident considering Figure 6.6 (bMS), which shows the controller
just maintaining feasibility which was otherwise not the case with the nominal MPC.

In Figure 6.8, the level of water in the tank in the first region is emptied to satisfy the added
demand, but the stability and recursive feasibility is preserved due to the RMPC control. The tank
starts restocking in the second region and finally converges to the nominal conditions in the third
region.
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Figure 6.4: A 24 hrs demand profile of node C129PAL with symmetric bounded uncertainty.
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Figure 6.5: 80 hour test scenarios for robust control considering demand node c125PAL.

Figure 6.9 shows that with the inclusion of the reliability cost, not only is there a short term
economic gain but also there is a safe operation of the network in the long run. Thus reliable ac-
tuators against faults minimizing downtime and maintenance cost. But the improvement of the
reliability do not come cheap since the problem presented has two prime conflicting objectives of
improving the reliability and minimizing the cost of operations, the short term cost of operation.
A set of weights are selected to show the effect of the included reliability index on the cost of oper-
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Figure 6.6: Control action of bMS.
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Figure 6.7: Control action of CPIV.
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Figure 6.8: Level of Tank d125PAL during robust control test scenarios.

ation presented in a Pareto front presented in Figure 6.11. The selection of appropriate weights is a
designer discretion but an optimal solution or point on the front can be sought taking into account
the long run economic gain of considering reliability in the control framework. Since the aim of
the added reliability index is to achieve long term gain the marginal loss in short term economical
gain as shown in Figure 6.10 can be accommodated.

Table 6.2: Cost and reliability after different selection of weights
- Nominal Weight 1 Weight 2 Weight 3 Weight 4
Cost 600 587 561 518 400
Reliability 0.965 0.94 0.921 0.9 0.8
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Figure 6.9: Network reliability under different controller configurations.
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Figure 6.10: Accumulated cost for the 10 day period under different controller configurations.
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6.6 Conclusions

In this chapter, the improvement of the reliability of a DWN is considered through appropriate
controller design that takes into account a model of the network’s reliability, by means of Bayesian
network modelling. The resultant nonlinear dynamic Bayesian model is represented in a pseudo-
linear form, easing computational cost. Results show an improved reliability of the network when
the reliability index is added, at the expense of a marginal cost of operation, which was seen to
be minimal, thus offering a long term economic gain. Considering that the forecasted demand is
uncertain, that is to present a more realistic control problem for our case, a tube based ReMPC is
designed with zonotopic sets to ensure the controller operate close to normal in the presence of
unknown but bounded uncertainty. The robustness of the controller is tested with additive loads
from a symmetric bounded demand profile on the known forecasted load, results demonstrated
the efficacy of desirable controller properties of robust constraint satisfaction, recursive feasibility
and robust performance, presenting a more realistic controller suitable for real life deployment
that takes into account DWN network reliability.





Chapter 7

Conclusions and Future Work

This chapter summarizes this thesis’ contributions to the field of prognostics in general and how
prognostics information can be incorporated into control. It also summarizes the proposed set
based approaches to prognostics and control; It’s merits to both fields and why it should be a con-
sidered research interest. Finally the chapter explores the possibilities of future research directions
emanating from this thesis.

7.1 Conclusions

The main contributions and conclusions of each chapter are set out as follows:
In Chapter 3, the various sub-models of the wind turbine is mathematically explained by means
of a reduced model which is validated with the high fidelity FAST simulator on a 5MW wind
turbine reference model which is thus far the most realistic mathematical representation of a wind
turbine produced by NREL.
A degradation model via stiffness degradation methodology is explained and mathematically
given for the degradation of the composite material of a wind turbine’s blade effected by the
flapwise root moment. With the intent of appending the nonlinear degradation model to the wind
turbine’s model, the stiffness degradation which is in cycles is represented in time domain. There-
fore with an appended nonlinear degradation model to the nonlinear model of the wind turbine,
an approximated LPV is formulated for the degradation dependent model of a wind turbine.
This LPV model is used in the formulation of a zonotopic Kalman filter with appropriate LMIs for
an initial zonotopic set formulation that encompasses all considered uncertainty sources; from the
stochastic projected wind speed via the LIDAR and sensor noise during estimation stage.
Subsequently the initial uncertain zonotopic set is propagated through reachability set theory into
the future to attain the RUL at different instants of the blades lifetime, accompanied with ap-
propriate uncertainty sets. This work presented a novel means of uncertainty quantification and
propagation through set-based reachable set theory in prognostics set quantification and propa-
gation, presenting a new paradigm of research.
In Chapter 4, drawing inspiration from chapter 3, the prognostic information of a wind turbine’s
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blade through stiffness degradation is included in an MPC design culminating into a Health-
Aware control i.e. a two level MPC control, each control unit for each control stages of the wind
turbine.
With the reduced wind turbine explained and validated from the previous chapter, the operational
control of a wind turbine is described. Two LPV models are formulated based on the control
requirements of each control stage of the wind turbine.
The stiffness degradation is composed of three stages; a 1st stage, where degradation is abrupt, a
second stage where it is steady and the longest term and a final stage where deterioration occurs
most rapidly. The health-aware control is considered for the 1st and 3rd stages only. The 2nd
stage is considered the most active period of the turbine lifetime. Also since degradation is very
minimal, it is deemed not economically prudent to employ health-aware control here .
The blade is then run to failure with stress from the flapwise root moment and a plot of the degra-
dation and accumulated stress values given. It is then segmented into various linear and bilinear
functions, thus producing a set of piece-wise affine functions which are functions of the accumu-
lated stress. The linear stress model is as given in (Sanchez et al., 2015), which is a function of the
model states.
Bearing in mind that the accumulative stress values for the run to failure functions are cyclic, a
cycle counting procedure is required. The complex sequential and nonlinear structured rainflow
counting methodology is combined with the discontinuous stiffness degradation model for the
piece-wise affine functions formulation. To circumvent the discontinuity of the rainflow counting
algorithm in the cycle counting, the process of Parametric Online Rainflow- counting (PORFC) is
used to allocate cycles in a prediction horizon under the assumption of a preview of wind speed
from a LIDAR.
Thus parameters of the piece wise affine functions with pre-allocated weights (in ascending mag-
nitude) for each segment are allocated in the MPC per the accumulated stress value at a particular
instant. Cycles are also assigned for each sampling time in the prediction horizon. With these as-
signments, a two level MPC is formulated where a Health-aware MPC is designed for the control
stage where wind speeds is considered most damaging , i.e. wind speed ≤ 12m/s. The results
presents an advantage over other methods by offering a deration scheme of the plant for life ex-
tension in a practical ways by derating according to when needed most (according to extent of
damage), against other methods like (Sanchez et al., 2015) which offers a kind of constant deration
in the plants life which is not economically viable.
In Chapter 5, A data-based prognostics is undertaken in this chapter using an evolving fuzzy
degradation models via EFFIG. This was employed on an IGBT. The problem of explainability has
been identified as a notorious hindrance to data-based prognostics approaches in their quest for
deployment in industry. This chapter sought to produce a simple but yet transparent prognostics
procedure for the prediction of the RUL of power semiconductors which not only predicts RULs
but ensures explainability.
Thus, with a run-to-failure data on an IGBT which shows a peculiar ”stage based” behaviour, two
types of features are extracted. One group of features that are very sensitive to the degradation
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stages is used as a premise variable of the fuzzy model, and another group that provides good
trendability and monotonicity is used for the auto-regressive consequent of the fuzzy model for
degradation prediction.
Therefore the product is a prognostics prediction which is not only competitive with other pro-
posed methods but also has the ability to predict the stage of degradation reached, thus enabling
explainability.
Considering the importance of uncertainty quantification and propagation to prognostics under-
takings, research based on work done in chapter 3 for set based uncertainty quantification in
data-based prognostics proposed via set membership theory and interval analysis is studied.
All uncertainty sources were duly captured in a set form and via set membership theory and
interval analysis, the sets were propagated for predictions of bounded RUL. It was tested on two
cases, a self-validation and a cross validation case, and as expected the width of the uncertainty set
was wider in the cross validation case over the self validation case, since uncertainty is naturally
considered more in this scenario.
The results of this work presents a novel data-driven technique which is simple and yet offers
advantages over some complex methods such as deep learning which requires a lot of resources
in terms of data and computational resource but naturally lacks explainability without external
augmentations. Also a novel process of set-based quantification and propagation applied to data-
based prognostics technique is proposed. This offers a simple way to represent all uncertainty
sources and an easy and computational resourceful path to uncertainty quantification and propa-
gation.
In Chapter 6, a characteristic function of degradation, the reliability is included in an MPC control
formulating a reliability-aware control which is employed in a DWN.
The reliability of the network is modelled via the Bayesian network theory producing a nonlinear
model using the flow path directions of water in the network. Given that MPC requires predicted
demand values in its prediction horizon, there is a high possibility of the optimization problem
been intractable. Thus, it calls for a robustification of the MPC problem considering uncertain
demand. This is done by considering uncertainty to be bounded in zonotopes.
The nonlinear reliability model is appended to the DWN model and the resultant model paramet-
rically approximated via LPV. Hence, with a degradation- dependent reliability DWN LPV model
and a zonotopic based robustification, a Reliability-aware Robust MPC is formulated.
First with robustness, it proofs its merit of being robust to such extents of uncertainty which oth-
erwise rendered a nominal case intractable and also increases the reliability of the network but at
an expense of increased electricity cost from the network pumps.
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7.2 Future Work

This section presents some plausible future research directions that could be an extension of this
thesis in the field of prognostics, most especially set-based uncertainty quantification and propa-
gation and the inclusion of prognostic information into control designs.
In the area of set-based uncertainty quantification in physics-based prognostics, a more holistic
uncertainty that captures the individual types of uncertainties, such as the propagation uncer-
tainty, parametric uncertainty etc could be applied in chapter 3 as done in chapter 5 . For the
uncertainty quantification for data-based prognostics it would be interesting to test the method
on other complex data based methodologies such as deep learning. The use of less-conservative
geometric options such as zonotopes can also be employed and tested with the case in chapter 3.
It would be of interest to the field to test the efficacy of the methods used here against statistical
quantification procedures based on metrics as proposed by (Saxena et al., 2017).
For the direct inclusion of prognostics information via degradation or its characteristic functions,
the problem of uncertainty in the degradation functions could be taken into account in future
research works. Given that prognostics is a sequence of future state, a research interest could be
a robustified control design to prevent the advent of any infeasibility when applied to real life
scenarios.
The external allocation of parameters in the MPC might also result in excess use of computational
resources in chapter 4. Therefore a research direction will be to investigate the use of lineariza-
tion or constraint relaxation of the nonlinear degradation-stress accumulation model employed
in chapter 4 using a similar technique as done in (Wang et al., 2018b). In terms of circumvent-
ing the discontinuous nature of the rainflow counting, utilization of statistical interpretation of
degradation data that aid in controller inclusion as proposed by (David et al., 2021) can be consid-
ered and compared with the proposed methodology used in chapter 4 in terms of accuracy and
computational cost.
With prognostic information from a data-based prognostics that includes a explainability feature
as done in chapter 5, a FDI could work in tandem with a prognostic sub level, such that a compre-
hensive predictive based maintenance regime is acquired. This could then be applied to a control
unit for an all-inclusive prescriptive maintenance controller by employing the methods in chapter
4. An interest could be in investigating the adoption of variant methods of reachability analy-
sis procedure that have been successfully applied in other fields, like sampling based methods
(Thomas et al., 2022) or as done in (Amr et al.) using matrix zonotopes a more suitable geometric
representation compared to interval sets
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Mayne, D., Seron, M., and Raković, S.V. (2005). Robust model predictive control of constrained
linear system with bounded disturbances. Automatica, 41, 219–224. doi: 10.1016/j.automatica.
2004.08.019.

Medjaher, K. and Zerhouni, N. (2013). Framework for a hybrid prognostics. Chemical Engineering
Transactions, 33, 91–96. doi: 10.3303/CET1333016.

Meeker, W.Q., Escobar, L.A., and Zayac, S. (2003). Use of sensitivity analysis to assess the effect of model
uncertainty in analyzing accelerated life test data. In Case Studies in Reliability and Maintenance.(W.
R. Blischke and D. N. Prabhakar Murthy, eds.). Wiley., New York, NY, USA, 1st edition.

Meslem, N. and Martinez Molina, J.J. (2019). Reachability-Based Method for Control Per-
formance Analysis. In CCTA 2019 - 3rd IEEE Conference on Control Technology and Applica-
tions, 805–810. Hong Kong, China. doi: 10.1109/CCTA.2019.8920594. URL https://hal.

archives-ouvertes.fr/hal-02267149.

https://hal.archives-ouvertes.fr/hal-02267149
https://hal.archives-ouvertes.fr/hal-02267149


128 BIBLIOGRAPHY

Miller, A. (1999). A New wavelet basis for the decomposition of gear motion error signals and its application
to gearbox diagnostics. Master Thesis, Pennsylvania State University, United States of America.

Milosavljevic, P., Cortinovis, A., Marchetti, A.G., Faulwasser, T., Mercangöz, M., and Bonvin, D.
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