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ABSTRACT

W ith societal and technological developments, new services and use cases have emerged,
such as autonomous vehicles and smart manufacturing. These services have stringent
and diverse requirements for bandwidth, user density, latency, and reliability, which

traditional evolved packet core (EPC) networks are unable to support. Therefore, a new network
architecture capable of meeting these requirements while ensuring system efficiency, cost savings,
and revenue growth was designed: the fifth generation (5G) of mobile networks.

The 5G system is capable of overcoming current network limitations and providing a wider
range of business opportunities to almost all spheres of society. These networks are driven by soft-
ware and programmability principles and heavily rely on technologies such as software-defined
networking (SDN), network function virtualization (NFV), and multi-access edge computing
(MEC). SDN and NFV provide flexibility, scalability, programmability, and agility, while NFV
enhances QoS and resource usage, it allows VNFs to be deployed and provisioned on demand in
the most suitable locations. MEC brings computing, storage, and networking capabilities to the
network edge, reducing network response time and backhaul traffic as network functions and
applications are deployed close to users.

However, the placement of network functions, especially 5G user plane functions (UPFs), at
the network edge is challenging due to numerous factors and attendant trade-offs; 5G require-
ments, edge nodes constrained resources, dynamic network conditions, and rising expenditures
all add complexity to the problem.

This doctoral thesis focuses on the design of strategies (i.e., exact and heuristic-based meth-
ods) to optimize the placement and reconfiguration of UPFs in 5G and beyond networks. These
solutions seek to ensure QoS satisfaction while reducing the expenditures associated with deploy-
ing and operating 5G services. To this end, we study the UPF placement problem (UPP) using
three lines of research: static placement, dynamic placement, and reconfiguration scheduling. For
each, we consider packet data unit (PDU) service requests composed of single or multiple UPF
instances.

For static UPF placement, we envision several solutions that aim to minimize expenditures
related to the deployment and operation of UPFs while fulfilling service requirements. First, we
address the case in which all UPF functionalities are centralized in a single instance. Then, we
extend the problem to include more complex service topologies (i.e., single- and multiple-branch
service function chains [SFCs]), which we refer to as the UPF placement and chaining (UPC)
problem.

For the centralized UPF functionalities, we conceive two integer linear programming (ILP)
models and a heuristic algorithm. These solutions contemplate several aspects of the system,
such as node available capacities and service requirements for latency, reliability, and mobility.
Then, we propose an ILP and two approximated solutions (i.e., a heuristic and a simulated
annealing (SA)-based metaheuristic) to address the UPC problem. These solutions consider
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additional aspects of the UPP, such as UPF-specific requirements, virtual network function
(VNF) order in the service chains, and routing paths. The heuristic-based strategies combine
various mechanisms to enhance their performance. Specifically, the heuristic algorithm reduces
SFC rejections and provisioning costs by considering service demands, available resources, and
the effects of VNF mapping decisions on the VNFs forming the service chain. The envisioned
metaheuristic approach incorporates several mechanisms, such as restart-stop and variable
Markov chain length, that reduce its solution time and improve the solution’s quality.

Different approaches are adopted to address the dynamic UPF placement and session-
mapping reconfiguration problem. We conceive two exact solutions and a heuristic algorithm to
determine the best reconfiguration setup. Their primary goal is to minimize expenditures associ-
ated with the service operation and reconfiguration procedure and guarantee satisfaction with
the service requirements. Therefore, these approaches consider multiple cost components (e.g.,
server activation, VNF deployment, and migration) and system specificities (e.g., node available
capacity). The proposed heuristic aims to enhance the problem’s solution efficiency in online
scenarios by incorporating two strategies: partial unmapping of SFCRs and an improvement
phase.

Furthermore, three scheduling mechanisms are provided to determine the best time to
readjust the UPF placement and session-mapping configuration to cope with latency violations
produced by user mobility. More specifically, we design two optimal stopping theory-based sched-
ulers and a machine learning-based framework to anticipate poor QoS events and proactively
trigger reconfiguration procedures. These scheduling solutions make reconfiguration decisions
based on historical system data (e.g., system QoS), current QoS values, and a pre-established
tolerance threshold.

Extensive simulation results validate the applicability and efficiency of the proposed solutions.
Overall, the heuristic-based approaches provide near-optimal results with significantly lower
execution times than the mathematical models. Moreover, the conceived scheduling methods
display outstanding performance, reducing the number of reconfiguration events and maintaining
the QoS of the system under desirable levels for nearly the entire simulation.

Keywords: 5G, ILP, machine learning, MEC, NFV, optimal stopping theory, placement,

reconfiguration, scheduling, SFC, user plane function, VNF
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INTRODUCTION

The fifth generation (5G) of mobile networks marked the beginning of a new era charac-

terized by a more intelligent and efficient world in which everyone and everything is

connected. Bringing new opportunities to almost all spheres of society, including educa-

tion, industry, transport, and healthcare, 5G technology is a game-changer. In the industry sector

alone, more than 1000 applications are projected to benefit from 5G capabilities [1]. Furthermore,

5G is expected to offer tremendous growth in connectivity density, with millions of devices per

km2; mobile traffic capacity with downlink and uplink data rates of up to 20 Gbps and 10 Gbps,

respectively; and end-to-end (E2E) data plane delay as low as 1 ms.

The 5G technology provides diverse use cases and services, and three main service types have

been defined: enhanced mobile broadband (eMBB), ultra-reliable low-latency communications

(URLLC), and massive machine-type communication (mMTC). Services under the eMBB category

(e.g., augmented and virtual reality) are characterized mainly by an enhanced data rate and

lower latency compared to long-term evolution (LTE) services. URLLC includes use cases with

stringent latency and reliability requirements, such as emergency services and autonomous

vehicles. Finally, mMTC services are characterized by a massive number of connected devices, for

example, smart factories and agriculture applications.

However, many use cases (e.g., smart factory) cannot be defined by a single service type since

they may combine requirements related to multiple categories, such as low latency and high

device density. Additionally, service demands may vary in density, user mobility, energy efficiency,

reliability, and so on. The 5G system (5GS) must support all these service types and their diverse

requirements efficiently and cost-effectively. In general, 5G networks must fulfill eight technical

requirements (see Fig. 1.1), which set them apart from their precedents.

Designing a single network capable of supporting all the above-mentioned service require-
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FIGURE 1.1. 5G technical requirements [2, 3].

ments while providing seamless access, high quality of service (QoS) and quality of experience

(QoE), expenditure reductions, and revenue growth is a complex and challenging task. Doing

so requires innovative and radical changes regarding networks’ design and operation, users’

communication (e.g., human-to-machine and machine-to-machine communication), and services’

creation, commercialization, provisioning, and management. An E2E transformation from the

user terminal to the core network provides the required flexibility, efficiency, scalability, robust-

ness, and feasibility to provide current and oncoming services and use cases while optimizing

resource usage and expenditures.

In this regard, technologies such as software-defined networking (SDN), network function

virtualization (NFV), and multi-access edge computing (MEC) have become fundamental pillars

[4, 5] for deploying 5G networks. SDN provides control and forwarding plane separation, thereby

enabling intelligent, programmable, scalable, and flexible architectures. NFV decouples network

functions from proprietary hardware by defining them as software instances called virtual

network functions (VNFs). It allows for flexible and dynamic deployment of VNFs in the most

suitable locations, and it enables more efficient usage of infrastructure resources since VNFs can

be instantiated and scaled on demand. Thus, NFV is expected to lower 5G capital expenditures

(CAPEX) and operational expenditures (OPEX) and improve business agility by introducing new

revenue-generating services more quickly and easily than before.

Finally, MEC brings computing, storage, and networking capabilities closer to users at the

network edge. MEC will likely help satisfy demands for 5G requirements regarding expected
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throughput, latency, scalability, availability, and automation [4]. Additionally, MEC promises

enhanced security and privacy by preventing data from arriving at centralized servers and thus

avoiding a centralized point of trust [6].

A key concept for the 5GS design is control and user plane separation (CUPS) in both access

and core networks. CUPS enables flexible deployment of network functions at centralized or

distributed locations. Moreover, it enables efficient usage of resources and better life-cycle man-

agement since network functions in both planes can be scaled and updated independently. Thus,

CUPS is a straightforward solution capable of providing the necessary flexibility and capabilities

to fulfill stringent 5G service demands (e.g., high connection density, high bandwidth, and low

latency) while reducing expenditures and simplifying network management and configuration.

With the adoption of the CUPS strategy and the maturation of edge computing technol-

ogy, applications and network functions such as user plane functions (UPFs) can be deployed

more closely to users at the network edge. Doing so satisfies service latency and bandwidth

requirements since it reduces the data path length considerably compared to cloud deployments.

Moreover, NFV provides more efficient utilization of MEC resources. It also enhances QoS since

VNFs can be scaled and instantiated on demand in the most suitable locations.

In the 5GS, UPFs are the evolution of traditional serving gateway (SGW) and packet data net-

work gateway (PGW) in evolved packet core (EPC) networks under the CUPS concept. UPFs are

the primary network function in the 5G user plane architecture defined by the Third-Generation

Partnership Project (3GPP) [7, 8]. UPFs’ primary function is to process data plane packets be-

tween the access network and data network (DN). They may perform different functionalities,

acting as anchor points for the mobility of intra-/inter-radio access technologies (RAT) or as

external packet data unit (PDU) session points of interconnection to the DN. Additionally, they

are responsible for packet inspection, routing and forwarding, traffic steering, lawful interception,

and QoS handling. However, these functionalities do not need to be supported by a single UPF

instance but rather can be implemented and tailored as required, consequently providing higher

specialization, flexibility, scalability, and faster processing times in the user plane.

To meet diverse 5G requirements, UPFs can be flexibly deployed in diverse service scenarios

and forms (e.g., dedicated, cloudified, and lightweight UPF implementation) in which they perform

different roles. Typical deployment scenarios are central, regional, and edge data centers (DCs)

[9], each of which has particularities, advantages, and disadvantages. For instance, centralized

deployments allow for fully converged access and service continuity since the UPF service areas

and capacities are greater. However, these greater capacities come at the expense of higher

network response time and backhaul traffic. Therefore, this deployment type is suitable for

non-latency-sensitive services, such as web browsing.

Regional UPF deployment, commonly placed in the city DC [9], helps reduce backhaul conges-

tion and response time by performing local data service offloading. Therefore, this deployment is

appropriate for video applications. Finally, edge UPFs are suitable for services with low latency
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or security requirements that must be processed at the network edge. However, this approach

implies a significant increase in the UPF number.

Of these scenarios, UPF deployment at the network edge is the most challenging due to

numerous aspects and involved trade-offs. Edge-based systems are characterized by limited

resources and a high number of computational nodes, in the order of thousands [10]. This

situation increases the complexity of the UPF placement problem (UPP) since many potential

candidate servers must be analyzed to determine the UPFs’ most suitable locations. Moreover,

the constrained capabilities of edge nodes (ENs) limit the available resources of UPFs to values

considerably lower than those of centralized deployments. Consequently, a significant number of

ENs and UPFs must be deployed and managed.

Services with low latency and high bandwidth demands require UPFs to be placed more

closely to users to reduce the service data path and, consequently, the network response time

and link congestion. Additionally, ultra-reliable services require the assignment of redundant

network functions and links to ensure high availability. Furthermore, high-density scenarios

require an increase in UPF processing capacities and the number of deployed instances. In MEC

ecosystems, frequent PDU session relocations are also more likely due to UPF’s smaller service

areas and the presence of highly mobile users. All these translate into a rise in both CAPEX and

OPEX.

However, this situation could be avoided by reducing the number of UPFs and consolidating

their deployment into a small subset of ENs. Nevertheless, doing so may compromise QoS and

QoE, violate service requirements, and increase routing costs. Therefore, a fair trade-off between

all the involved objectives (i.e., cost reduction and service requirement fulfillment) must be found.

UPFs’ different roles must also be considered, as these roles add to the complexity of the

UPP problem. These roles may have diverse requirements and need to be chained in a specific

order by accounting for their inter-dependency under constrained latency demands and resource

availability at edge locations.

Furthermore, in dynamic environments where users’ traffic demands and access points

change over time, readjustment of the UPF placement and PDU session mapping is necessary for

optimizing resource utilization and avoiding QoS and QoE degradation. However, the activation

time of these reconfiguration events must be optimally selected since they may introduce temporal

service interruption, additional delay and signaling exchange, and increased expenditures.

The literature addressing the placement of 5G network functions, particularly UPF placement

[11–14], is scarce. Most studies [12, 13] have focused on minimizing the user plane latency,

dismissing the optimization of UPF associated costs. Moreover, no study has investigated the

effects of UPF reconfiguration events, such as reconfiguration costs and session relocations.

Therefore, studying strategies to plan and reconfigure the 5G UPF placement and PDU session

mapping effectively is of utmost importance.

Extensive research has examined topics and problems closely related to UPF placement
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and reconfiguration problems, including the placement of EPC gateways [15–19] and generic

virtual network function placement (VNFP) problems [20–25]. However, the solutions proposed

by this research have several limitations that restrict their applicability to solve the 5G UPP.

For instance, they do not consider a 5G architecture based on the 3GPP standard or 5G strict

requirements. Moreover, limited literature has integrated aspects such as latency, resource

utilization, reliability, relocation, and cost optimization in the proposed solutions.

5G is the fastest-growing generation of cellular networks to be deployed [26]. In 2019, 5G

became a commercial reality with around 10 million subscriptions. Since then, 5G adoption has

proliferated, reaching 161 million connections in 2020 and 550 million at the end of 2021 [27].

The number of connections is estimated to reach 1 billion by the end of 2022 and 2 billion in 2025,

representing 25% of all mobile connections [28]. According to Ericsson’s mobility report, 5G will

become the dominant mobile access technology by subscriptions in 2027, with around 48% of all

mobile subscriptions [29].

Nevertheless, despite its fast development, many design aspects and research topics still need

to be addressed, such as efficient network management under increasingly complex networks

[30]. Therefore, this doctoral thesis focuses on designing solutions to solve the 5G UPP in MEC

ecosystems efficiently. These solutions aim to reduce expenditures while fulfilling 5G service

requirements and ensuring proper levels of QoS and QoE.

1.1 Research Problem and Objectives

As previously stated, this doctoral thesis tackles the UPF placement problem in MEC environ-

ments. Therefore, we identified three main research challenges that must be addressed to solve

this problem. The following challenges have guided and motivated our investigation.

• How to plan an initial UPF deployment capable of minimizing overall provisioning expendi-

tures while satisfying 5G stringent service requirements?

• How to appropriately readjust a UPF placement setup and their assigned PDU sessions to

guarantee a cost-effective usage of resources while enhancing the system QoS?

• What is the best time to reevaluate the UPF placement and session mapping configuration

so that the impact of reconfiguration events is reduced while QoS is kept under acceptable

levels?

We define a set of primary and secondary objectives to address these research problems. The

main goals of this doctoral thesis can be summarized as follows:

1. Design, develop, and assess exact and approximate solutions to help service providers and

network operators plan and operate the deployment of 5G UPFs cost-effectively in static

and dynamic MEC environments while ensuring 5G services meet satisfaction demands.
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2. Design, implement, and evaluate scheduling mechanisms to determine proactively the best

time to readjust UPF placement to enhance the overall system QoS while reducing the

negative impact of reconfiguration events.

Furthermore, a set of secondary objectives is specified to help attain the main research goals,

as follows.

1. Conduct an extensive and systematic literature review on topics and technologies closely

linked to our research problem (e.g., 5G, NFV, and MEC).

2. Define a reference architecture for 5G networks capable of providing flexibility, scalability,

and programmability to fulfill 5G service requirements while cost-effectively addressing

the UPP.

3. Identify the existing solutions related to the UPP (EPC gateways, 5G network functions,

and VNFP problems) to identify their solution approach, scope, and limitations.

4. Formulate exact mathematical programming models and heuristic algorithms in line with

5G system requirements to solve the UPP in both static and dynamic scenarios.

5. Evaluate the effects of user mobility, through simulations, on the UPF placement and PDU

session-mapping configuration regarding the system QoS.

6. Develop mechanisms to optimize resource utilization dynamically and enhance the system

QoS in terms of network response times.

7. Assess the effectiveness and benefits of the proposed methods by comparing their perfor-

mance with existing solutions.

1.2 Contributions

The main contributions of this thesis, which are based on several articles published in recognized

journals and conferences (see Appendix A), can be summarized as follows:

1. A comprehensive review of the literature addressing the VNFP problem in different sce-

narios (static and dynamic), network architectures (generic, EPC, and 5G), and service

function chain (SFC) topologies (single- and multi-branch).

2. A rigorous analysis of existing solutions for placing user plane network functions in EPC

and 5G network topologies by addressing their solution approaches, requirements, and

limitations.
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3. A formulation of the 5G UPP in an MEC ecosystem addressing different variants of

the problem (e.g., PDU session data paths formed by single or multiple UPFs) in static

and dynamic scenarios. The main target is determining the best UPF placement and

service demand mapping configuration to reduce network operators’ and service providers’

expenditures while ensuring 5G stringent service requirements.

4. Three exact solutions based on integer linear programming (ILP) to address the UPP during

the planning phase. These solutions optimize multiple cost components by considering

technical and non-technical aspects of the system, such as resource limitations in the

underlying physical infrastructure, user mobility, and 5G service requirements (session

processing capacity, latency, and reliability demands).

5. Development of two heuristic-based algorithms to reduce the time complexity of mathemat-

ical models when solving the UPP in large-scale static scenarios.

6. A proposed simulated annealing (SA) metaheuristic that enhances the quality of heuristic

algorithms in static scenarios. This solution incorporates several strategies that signifi-

cantly improve its efficiency and effectiveness compared with classical SA approaches.

7. Two multi-objective ILP models conceived to reconfigure the UPF placement and PDU

session mapping in dynamic scenarios. These models’ primary goal is minimizing capital

and operational costs related to reconfiguration events while ensuring service requirements.

In addition, a heuristic algorithm called the dynamic priority and cautions UPCR (DPC-

UPCR) is devised to remap SFC requests (SFCRs) and readjust UPF placement in online

scenarios efficiently.

8. Three scheduling mechanisms based on optimal stopping theory (OST) and machine learn-

ing (ML) principles that determine when to readjust the UPF placement and session-

mapping configuration. These mechanisms determine the best reconfiguration time based

on historical data, instantaneous values of sessions with latency violations, an upper QoS

threshold, and expected values (e.g., cost, reward, or QoS). Their primary objective is to

anticipate the occurrence of QoS degradation events to activate a UPF reconfiguration

proactively.

1.3 Thesis Outline

A detailed description of each chapter of the work presented in this doctoral thesis is provided

below.

Chapter 2 presents a comprehensive background regarding different aspects of 5G networks,

such as key technology enablers and architectural approaches for the core network design. This

chapter also provides an extensive review of relevant research studies addressing the VNFP
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problem. It analyzes their solutions as well as their main contributions and drawbacks. This

analysis allows us to identify the most popular methods and mechanisms in the literature for

solving placement and reconfiguration problems, as well as the leading open issues concerning

the UPP.

Chapter 3 introduces the 5G UPP in an MEC environment under limited resources and

stringent service demands. This chapter provides several solutions (i.e., two ILP models and a

heuristic algorithm) to solve the problem. These solutions aim to reduce service providers’ and

network operators’ expenditures when planning the deployment of new services while ensuring

5G service demands for latency and reliability.

Chapter 4 proposes a multi-objective ILP model for the dynamic reconfiguration of the UPF

placement and session mapping. This model aims to minimize operational and deployment costs

and QoS degradation events while executing placement reconfiguration events. Therefore, it con-

siders multiple cost components associated with the UPF placement (e.g., deployment, operation,

and migration costs) and system QoS (network response time and reassigned sessions). Further-

more, the chapter presents a scheduling mechanism that determines the optimal reconfiguration

time according to instantaneous values of latency violations and established QoS thresholds.

Chapter 5 addresses the UPF placement and chaining (UPC) problem. In contrast to previous

chapters, Chapter 5 contemplates the possibility of splitting UPF functionalities into different

instances and chaining them together as required to serve PDU session requests. Specifically,

this chapter proposes one exact and two approximated solutions to address the problem. These

solutions’ primary objective is optimizing expenditures associated with service provisioning

and QoS regarding network response time. Several aspects of the system, such as service de-

mands, network capacity limitations, and UPF requirements, are contemplated for this aim, and

performance simulations showcase the effectiveness of the conceived solutions.

Chapter 6 investigates the problem of dynamic UPF placement and chaining reconfiguration

(UPCR). It describes an ILP model and a heuristic-based solution. The devised solutions aim to

determine the best UPC setup during reevaluation events to reduce expenditures while satisfying

service requirements. The solutions comprise multiple cost components (e.g., server activation,

VNF deployment, and session reassignment) and system specificities. This chapter also presents

a scheduling technique to determine when to readjust the UPC configuration to cope with latency

violations produced by user mobility.

Chapter 7 introduces an ML-based framework to anticipate QoS degradation events. Based

on system information, this solution applies ML algorithms to predict the QoS value or status at

a given time horizon. Proactive UPCRs are determined by leveraging the predictor output and an

established QoS threshold. Extensive simulation results validate this solution’s applicability.

Finally, Chapter 8 summarizes the main conclusions of this thesis and highlights possible

future research directions.
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2
BACKGROUND AND LITERATURE REVIEW

This chapter reviews the state-of-the-art literature and background information related

to concepts and technologies covered by this doctoral thesis. First, Section 2.1 outlines

the leading technology enablers necessary for developing 5G and beyond networks. Then,

Section 2.2 introduces different architectural designs proposed in the literature for implementing

the core of 5G networks. Next, Section 2.3 focuses on existing solutions for addressing the virtual

network function placement (VNFP) problem, analyzing the solutions’ main contributions and

limitations. Section 2.4 provides an overview of the most popular methods for solving placement

and reconfiguration problems. Finally, Section 2.5 highlights the main limitations and open

research challenges regarding the UPF placement problem (UPP).

2.1 5G Key Enablers

The 5G network architecture must be flexible, adaptable, elastic, scalable, sustainable, pro-

grammable, and cost-effective to fulfill current and future use case and service requirements. To

achieve these requirements, technologies including software-defined networking (SDN), network

function virtualization (NFV), and multi-access edge computing (MEC) have been defined as 5G

key pillars.

2.1.1 Software-Defined Networking

SDN [31] is a networking paradigm developed and standardized by the Open Networking

Foundation (ONF). SDN is characterized by decoupling the control and data planes. In essence,

the network intelligence is logically centralized at one or a set of control entities commonly

referred to as SDN controllers. Moreover, the data forwarding plane is simplified and abstracted
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for applications and network services. Therefore, the data plane is less complex, allowing fast-

forwarding mechanisms and better data plane performance [5].

SDN architecture provides flexibility, dynamism, adaptability, and efficient management of

network resources. It accelerates service provisioning and facilitates the dynamic and automatic

programmability of network nodes in data forwarding.

2.1.2 Network Function Virtualization

NFV [5, 32] decouples network functions from proprietary hardware by defining them as software

instances, called VNFs, that run over the NFV infrastructure (NFVI). The European Telecom-

munications Standards Institute Industry Specification Group for NFV (ETSI ISG NFV) is the

leading working group in developing requirements and guidelines for NFV.

NFV enables flexible and dynamic deployment of VNFs in the most suitable locations. It also

allows for more efficient use of infrastructure resources since VNF capabilities can be scaled

according to traffic demand variations. Thus, NFV is not only expected to lower CAPEX and

OPEX but also to improve business agility by introducing new revenue-generating services and

functions more quickly and easily than before.

2.1.3 Multi-access Edge Computing

MEC [5, 33, 34] provides an IT service environment and cloud-computing capabilities at the edge

of the network within the (radio) access network ((R)AN) and in close proximity to subscribers

[33]. The ETSI ISG on MEC produces standards and norms regarding MEC use cases, reference

architecture, requirements, and so on.

Some distinctive features of MEC are low latency, high bandwidth, proximity, location aware-

ness, and real-time insights in radio network information [33]. These characteristics make MEC

appealing for network operators and service providers. MEC also enables the flexible deployment

of network functions and applications closer to the users, thereby reducing network congestion

by eliminating the need to route data through the core network and improving QoE by offering

lower response time.

MEC is recognized as a key 5G technology that complements NFV, enables innovative

services, optimizes network performance, and creates new business opportunities [33]. MEC will

likely help satisfy 5G requirements for expected throughput, latency, scalability, availability, and

automation [4]. Additionally, it provides enhanced security and privacy by preventing data from

arriving at centralized servers, thereby avoiding a centralized point of trust [6].

2.1.4 SDN, NFV, and MEC Combination

From previous subsections, we can appreciate that SDN, NFV, and MEC provide significant bene-

fits and capabilities to pave the way toward 5G and beyond networks. Moreover, their advantages
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multiply when combining them since they are tightly interrelated and highly complementary.

SDN helps NFV by providing isolation, abstraction, network resource sharing, VNF intercon-

nections, and service organization. In an NFV ecosystem where the VNFs are created, adjusted,

and removed on demand, VNF interconnection is challenging. This is particularly the case in

MEC environments, where the VNFs are distributed and flexibly deployed under constantly

changing traffic conditions and stringent latency requirements. In this context, SDN has been

considered a complementary technology for improving the flexibility and simplicity of delivering

the network service [5]. Precisely, SDN provides flexible and efficient network connectivity among

VNFs. In turn, NFV allows the virtualization of SDN elements, such as controllers and forwarding

entities, thereby allowing the dynamic adjustment of their assigned resources as well as their

deployment in optimal locations.

The combination of MEC and NFV ensures low latency, as well as reliability for end-users.

Implementing VNFs at the network edge shortens the service’s E2E data path, reduces bandwidth

consumption, and avoids traffic congestion at the network core. NFV also improves MEC resource

utilization by scaling it up or down according to network demands. Moreover, the integration of

NFV and MEC enhances the service scalability since the data can either remain at the network

edge or be offloaded to the cloud when computing demands peak.

Furthermore, SDN can enhance the flexibility of the MEC-based infrastructure by enabling a

global view of the underlying network. For instance, SDN can enable traffic steering rules for

service chaining, computational load balancing, unified control plane interfacing, and retrieving

the network context or device information.

Overall, only a 5G network built upon SDN, NFV, and MEC principles will achieve the re-

quired performance, scalability, and agility. The combination of these principles enables dynamic

and flexible deployment, on demand scaling of network functions, enhanced QoS, and reduced

costs.

2.2 5G Network Architecture

This section discusses some of the principal approaches proposed in the literature for designing

the 5G core network architecture. We have classified these design lines into two main groups:

evolutionary and revolutionary.

2.2.1 Evolutionary Approaches

Different 5G core architectures have been proposed to address EPC network limitations. These

architectures are mainly evolutionary as they are based on the current EPC system (see Fig. 2.1)

with some modifications that will allow them to become SDN and NFV compatible. In this

regard, the literature review highlights three major approaches: SDN-based, NFV-based, and

SDN/NFV-based.
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FIGURE 2.1. EPC system architecture [35].

2.2.1.1 SDN-based Cellular Network

This subsection covers 5G architecture proposals based mainly on SDN principles. The utilization

of SDN in these proposals can be either partial [36] or complete [37], as shown in Fig.2.2. Partial

SDN adoption implies the decoupling of user and control planes of some network functions of the

EPC (e.g., SGWs and PGWs) through using SDN. In contrast, a complete SDN design requires

major modifications since the traditional EPC architecture is purely based on SDN.
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(a) Partial SDN-based 5G architecture
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MM: Mobility management

CM: connectivity management

AM: authentication management

DFE: Data forwarding entitie

APP: Application

(b) Complete SDN-based 5G architecture

FIGURE 2.2. Examples of SDN-based architectures for 5G networks [35].

In [36], a 5G architecture partially based on SDN is presented. This architecture is similar to

the current EPC architecture, except for the SGW implementation. More specifically, the SGW

is replaced by OpenFlow switches, and an OpenFlow controller called a resources allocator is
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introduced. In contrast, Kozat et al. [37] propose a hierarchical SDN control plane architecture in

which the traditional EPC entities no longer exist. Instead, a hierarchical control plane enables

different grades of performance and service differentiation.

Each implementation option has advantages and disadvantages. On the one hand, complete

SDN architecture provides more flexibility and programmability to the network, but compatibility

with the existing EPC is reduced. On the other hand, partial SDN adoption has a lower impact

on compatibility but does not fully exploit the benefits of a completely programmable network.

2.2.1.2 NFV-based Cellular Network

In the NFV-based EPC approach, also known as virtual EPC (vEPC), the EPC entities are mi-

grated from dedicated hardware to commodity servers (see Fig. 2.3). Besides the NFV advantages

mentioned in Subsection 2.1.2, this approach seems to be the most common and practical to

implement as it does not require modifications to the core entities or their interfaces and protocols,

which guarantees compatibility with the current EPC elements.

Data
Control

SGW-USGW
VM

SGW-UPGW
VM

SGW-USGW
VM

SGW-U
VM

HSS SGW-U
VM

PCRFSGW-U
VM

MME

FIGURE 2.3. Example of NFV-based architecture for 5G networks [35].

In [38], an architecture for the 5G control plane based on the virtualization of the EPC entities

is presented. This paper uses the vEPC entities to offload the mobile traffic from the legacy EPC

on demand by dynamically creating a vEPC network architecture and allocating the necessary

components. Three models for offloading traffic are proposed: entirely offloading (full vEPC), data

plane-only offloading (vSGW and vPGW), and signaling-only offloading.

However, this architectural design still has some limitations. For instance, the processes for

scaling and placing on demand are inefficient since the control and user planes of some network

functions, such as SGWs and PGWs, are coupled.
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2.2.1.3 SDN/NFV-based Cellular Network

SDN/NFV-based solutions combine SDN and NFV technologies in their architectural design.

In this approach, the EPC gateways (SGW and PGW) are split into control and user plane

functions following SDN principles. The gateway control planes and the remaining EPC entities

are virtualized. The user plane functions can either be virtualized (fully virtualized) or remain

on dedicated hardware (partially virtualized), as shown in Fig. 2.4.

SDN ControllersSDN Controllers

SGW-USGW-U

SGW-USGW-U

SGW-UPGW-U

Data
Control

SGW-U

VM

MME

SGW-U

VM

HSS

SGW-U
VM

SGW-C SGW-UVM
VM

PGW-C

SGW-U

VM

PCRF

(a) Partial SDN/NFV-based 5G architecture
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FIGURE 2.4. Examples of SDN/NFV-based architectures for 5G networks [35].

An example of this design approach is presented in [39], in which the user and control planes

of the SGWs and PGWs are decoupled using an SDN controller as the intermediate layer. The

SGW and PGW control functionalities are then merged as one entity. The implementation of this

architecture can be fully or partially virtualized.

Unlike the NFV-based approach, the control and user planes are decoupled in this case. This

facilitates independent scalability of network elements and more flexible placement. However,

introducing a new SDN controller and its interfaces to communicate with the control and user

planes results in higher response times in the network. Furthermore, the scalability of the

SDN controllers is a significant issue, which could be overcome using multiple controllers or a

hierarchical design of controllers [35].

Despite the plethora of architecture proposals and innovative designs, these architectures still

present some significant limitations, which render them incapable of supporting 5G envisioned

services. The leading cause of these limitations lies in adopting an EPC architecture with minor

modifications. In this context, a more revolutionary and radical approach capable of overcoming

all existing network limitations is mandatory.
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2.2.2 Revolutionary Approaches: The 3GPP Standard

The 3GPP is the primary driver for developing 5G standards [4]. To meet the requirements of

current and forthcoming services, which have diverse demands and characteristics, the 3GPP

organization began developing a new 5G system architecture at the end of 2015.

The first standardized 5G architecture was defined by the 3GPP in the organization’s technical

specifications (TS) 23.501 [7] and 23.502 [8]. The architecture is an evolution of the 4G system

and is based on the CUPS concept, service-based architecture (SBA), and network slicing (NS).

It overcomes EPC-based architecture limitations because it has been designed to support SDN,

NFV, and MEC technologies. 5G has been designed to be cloud-native in the sense that it should

utilize NFV, SDN, and service-based interactions between control plane functions [40].

CUPS guarantees that the resources of each plane can be scaled independently, allowing for

further improvements in the flexibility of the network architecture. Moreover, CUPS reduces

the complexity of service configuration and the amount of signaling exchanged among network

elements. Thus, CUPS allows network costs to be diminished and network performance to be

improved noticeably.

SBA decouples the end-user service from the underlying network and platform infrastructure,

enabling both functional and service agility. It enables operation in a cloud model, where different

functions can be composed into an end-to-end service over standardized application programming

interfaces (APIs). Furthermore, SBA simplifies how VNFs are added, modified, or removed from

a network processing path (functional agility) and creates new service-specific service paths on

demand (service agility) [40]. More specifically, it permits control plane functions to access any

service that other logical nodes provide directly since all these network functions connect through

a bus interface called a service-based interface (SBI) [41].

NS allows network operators to operate multiple logical network functions running on a

standard, shared physical infrastructure. Network slices can be general slices that support

a broad spectrum of services or fine-grained slices designed for specific services with certain

requirements. Thus, they provide the required flexibility and cost efficiency that network and

service providers need. This ability to support multiple customers and services is perhaps the

most crucial commercial driver for 5G [40].

Some of the key principles that guide the design of the 5G architecture are as follows [4, 40]:

• Support of multi-vendor integration

• Flexibility for user plane and control plane deployment

• Independent scaling of control and user plane network functions.

• Support of stateless network functions

• Modular function design that allows for different network configurations according to the

use case requirements (e.g., NS)
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• Unified authentication independent of the access method

2.2.2.1 5G Core Network Functions: Architecture Overview

The 3GPP standard describes the interaction between 5G core network functions in service-based

and reference point representation. In service-based representation, the control plane network

functions connect through an SBI bus, as shown in Fig. 2.5. In reference point representation, a

point-to-point connection exists between the network functions, as depicted in Fig. 2.6.

FIGURE 2.5. 5G network architecture in service-based representation [7].

FIGURE 2.6. 5G network architecture in reference point representation [7].

The primary 5G core network functions and their capabilities can be summarized as follows:

• Access and mobility management function (AMF): Provides registration, mobility, connec-

tion, and reachability management. It supplies transport for session messages between the
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user equipment (UE) and the session management function (SMF), access authentication,

and authorization. It acts as a termination point for the (R)AN control plane interfaces

(N2) and non-access stratum procedures (N1).

• Session management function: Handles the session establishment, modification, and release,

including tunneling maintenance between UPFs and access network nodes. It is also

responsible for DHCP functions and UE IP address allocation and management, and

it supports charging interfaces and data collection. The SMF configures traffic steering

capabilities at UPFs to route traffic to their proper destination and selects and controls the

UPFs for PDU sessions.

• User plane function: Processes data plane packets between the access network and DN. It

provides access control, packet routing and forwarding, QoS handling for the user plane,

and lawful interception. Moreover, it acts as an anchor point for intra/inter-RAT mobility

and an external PDU session point of interconnection to the DN.

• Policy Control Function (PCF): It is expected to perform similar functionalities to the Policy

and Charging Rules Function (PCRF) in 4G networks. Namely, it supports a unified policy

framework to govern network behavior, provides policy rules to control plane functions, and

accesses subscription information for policy decisions.

• Network exposure function (NEF): Acts as an API gateway or proxy, providing security when

external applications and functions access the 5G core nodes. The NEF allows network

function exposure of capabilities and events to other network functions, translates internal-

external information, and receives and stores information.

• Network repository function (NRF): Provides registration and discovery functionality so

that network functions can discover each other and communicate via APIs. It maintains

profiles of network function instances and their supported services within the network.

• Unified data management (UDM): Stores subscribers’ data and profiles. It is similar to the

Home Subscriber Subsystem (HSS) in 4G networks but is used for fixed and mobile access.

It generates authentication credentials and access authorization based on subscription

data and keeps records of the network functions serving the users.

• Authentication server function (AUSF): Acts as an authentication server by storing data for

UE authentication.

• Network slice selection function (NSSF): Selects the network slice instances to serve the

UE as well as the AMF to be used by the user.

• Application function (AF): Interacts with the 3GPP core network to provide application

services to the subscriber.
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The 5G user plane’s main network function is the UPF, while all the rest core network

functions (e.g., AMF, AUSF, SMF, and PCF) constitute the control plane of the 5G system. Apart

from these network functions, other network elements form the 5G architecture:

• (Radio) access network: It is compounded by a set of access network nodes (ANN) that

connect users to the 5G core (AMF and UPF).

• Data network: It offers services (e.g., operator services, internet access, and third-party

services) to users.

• User equipment: Defines any device connected to the network.

The 5G system promises ubiquitous access to a wide range of services and applications. The

5G access network comprises fixed and heterogeneous wireless resources (Wi-Fi, 4G RAN, and

5G RAN). The 5G RAN, also known as next-generation RAN (NG-RAN), comprises the gNB,

which is composed of the radio unit (RU), the distributed unit (DU), and the centralized unit

(CU). Hereinafter, we refer to the RU as the radio resource head (RRH) and the union of the DU

and CU as the baseband unit (BBU). Different terms are used in the literature to refer to these

elements; see [42].

There are two main possibilities for deploying gNBs: distributed RAN (D-RAN) and central-

ized RAN (C-RAN). In a flat or distributed gNB deployment, the RRH and the BBU are installed

at the cell site, similar to a traditional RAN architecture. Meanwhile, in a C-RAN deployment,

the BBU is removed from the cell site and physically centralized, while the RRH remains dis-

tributed at the antenna site. The connection between RRHs and BBUs is called fronthaul, and

the connection between BBUs and the core network elements is referred to as backhaul.

2.2.2.2 5G User Plane Functions

The 5G user plane consists of a single network function type, the UPF, which processes PDU

sessions between the access network and external networks, such as the internet, application-

specific DNs, and local area data networks (LADNs). Namely, UPFs act as gateways, combining

functionalities from traditional SGW and PGW in the EPC architecture.

UPFs may perform different functions, such as an external PDU session point of interconnec-

tion to DN and an anchor point for intra/inter-RAT mobility. They are also responsible for packet

inspection, routing and forwarding, traffic steering and usage reporting, lawful interception, and

QoS handling for the user plane (e.g., data-rate enforcement). In addition, UPFs provide downlink

packet buffering, downlink data notification triggering, and uplink traffic verification. They rely

on the SMFs in the control plane to perform these functionalities; these SMFs are responsible for

selecting and managing the UPFs associated with a PDU session.

The PDU session data path usually requires a single UPF instance, which may perform

all above-mentioned functionalities. However, the 5G standard allows UPF to be split between
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multiple roles to divide the load and enable functionality specialization. Thus, UPF functionalities

can be selected and tailored as necessary, either during or after session establishment and

transparently to the user. Regarding UPFs’ functionalities, four main roles can be defined:

• PDU session anchor (PSA) or anchor UPF (aUPF)1: Terminates PDU sessions at the DN

end and is responsible for IP anchoring.

• Intermediate UPF (IUPF): Forwards traffic between the access network and the PSA. This

type of UPF can be used to guarantee the continuity of the service, either when the user

moves in a vast range network or due to transport network limitations.

• Uplink classifier (UL-CL): This functionality allows local traffic to be steered toward local

and central services. It determines how the user traffic should be routed based on matching

traffic filters provided by the SMF. Additionally, it classifies flows based on the source and

destination IP addresses. This functionality can be inserted in the PDU session data path

to create new data paths for the same session [7].

• Branching point (BP): A PDU session may be associated with multiple IPv6 prefixes (multi-

homing PDU sessions), which provide access to the DN through multiple PSAs that branch

out from a common UPF that supports the BP function [43]. The UPFs that support the BP

functionality forward UL traffic toward different PSAs based on the source IPv6 prefixes,

and they also merge the downlink traffic from different PSAs toward the UE.

UL-CLs and BPs are inserted into the session data path between the access network and

PSAs. However, unlike the IUPFs, these functionalities allow a single PDU session to be served

by multiple PSAs connected to the same DN to support SSC mode 3, selective traffic routing, and

user plane re-selection. The latter is especially useful for edge computing scenarios and LADN,

where services are hosted closer to the users. UPF roles are not mutually exclusive. Specifically,

UPFs acting as UL-CLs or BPs may also support the PSA functionality. Moreover, a single UPF

entity can hold different roles for one or various PDU sessions [44].

Additionally, according to UPFs’ location in the data path, they can be divided into two cate-

gories: terminated and intermediate UPFs (tUPFs and iUPFs). The first category is compounded

by PSAs, whereas the second one embraces all the UPFs (i.e., IUPF, UL-CL, and BP) that connect

with the access network and other UPFs or solely with other UPFs. Notably, UPFs that support

BP and UL-CL functionalities are classified as iUPFs, but not all iUPFs support UL-CL or BP. In

this work, the term miUPF is used to distinguish intermediate UPFs that connect to multiple

PSAs (i.e., UL-CL and BP).

The 5G 3GPP specifications place no limit on the number of UPFs simultaneously serving

a PDU session. These UPFs can be chained together in different topologies as required. This,

along with the role specialization option in the user plane, allows for UPF deployment in multiple

1In this work, the terms PSA and aUPF are used interchangeably.
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configurations and locations, which are fundamental for reducing the network response time. For

instance, some UPFs may be placed in the core network, while others may be located closer to

the access network.

The UPF has four distinct reference points (i.e., N3, N4, N6, and N9), as shown in Fig. 2.7.

The N3 interface transport GPRS Tunneling Protocol user plane (GTP-U) packets between the

RAN (gNodeB, gNB) and the initial UPF in the uplink direction. The SMF controls (setup, modify,

and delete) the UPFs to manage PDU sessions through the N4 interface, which is a control plane

interface that employs the packet forwarding control protocol (PFCP). The UPFs connect to the

DN through the N6 interface. Finally, the N9 interface is used for the communication between

UPFs (e.g., PSA and iUPF) when intermediate UPFs are inserted into the session data path.
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Figure 2.7: 5G user plane overview with reference point representation.

2.3 VNF Placement Problem

In the following subsections, we analyze several studies related to the UPP by describing their

design goals and solution approaches. We cover various research studies dealing with the place-

ment of both generic VNF instances with single and multiple constituent VNFs as well as EPC

and 5G-specific network functions.

2.3.1 Generic VNF Placement

The VNFP problem refers to the placement of VNF instances over an NFV-based network

infrastructure. Solutions to the VNFP problem can be grouped into different categories according

to selected criteria [45]. For example, they can be classified as generic or specific solutions

based on the VNF type. The first category focuses on defining placement strategies without

particularizing their solution to a specific network function type. In contrast, the second category

addresses its solutions to specific network function types by considering distinctive requirements

20



2.3. VNF PLACEMENT PROBLEM

or metrics. Both categories can be solved by adopting static or dynamic approaches concerning

flow handling. Additionally, the VNFP has been addressed in different deployment environments,

such as MEC [46, 47], central cloud [22], or a mixture of both technologies [20, 21, 48].

This subsection presents relevant studies addressing the placement of generic VNF instances

for both single and multiple VNF types, while Subsections 2.3.2 and 2.3.3 investigate the adopted

state-of-the-art approaches for placing some specific network elements (e.g., EPC gateways and

5G UPFs). For more insights about the VNFP problem, the reader can refer to the following

surveys: [45, 49–51]

2.3.1.1 Single VNF Placement

A significant number of research papers address the placement problem of single VNF instances

using either static [20, 21, 47, 48] or dynamic approaches [22, 46, 52, 53].

Jemaa et al. [20] present a multi-objective mixed integer linear programming (MILP) model

to address the VNF placement and provisioning problem in a two-tier carrier cloud infrastructure.

They aim to reduce cloud overload and resource utilization and avoid violation of SLA require-

ments by considering latency and host capacity. Therefore, they apply optimization techniques

and queuing QoS models. Behravesh et al. [21] investigate the joint user association and VNFP

problem to reduce service-provisioning costs (i.e., VNF deployment and routing). They formulate

the problem as an MILP and consider multiple restrictions, such as available link and host

resources, service delay, and path continuity. However, they do not account for service reliability

requirements.

Yala et al. [48] approach the VNFP problem with the design goal of jointly optimizing latency

and availability. Since they face conflicting objectives, they adopt a weighted sum method to

transform the problem into a single objective. Moreover, they design a genetic algorithm (GA)-

based metaheuristic to solve the problem in polynomial time. Both solutions consider availability

requirements, cost budget, and node capacity constraints. Neither latency nor backup instance

restrictions are considered.

In [47], the latency-aware and survivable VNF mapping problem is formulated as a multi-

objective MILP problem. The authors of this study seek to deploy VNF instances reliably while

optimizing provisioning costs (i.e., node activation, VNF deployment, and routing costs). They

consider several restrictions, such as backup VNF instances, anti-affinity, capacity, and latency

demands. Additionally, they show that the problem is NP-hard and propose a simulated annealing

(SA) metaheuristic to obtain near-optimal solutions in polynomial time.

Ghaznavi et al. [52] propose an optimization model and a heuristic for the elastic placement

of VNFs in response to traffic variations (workload arrival and departure). Their objective

function comprises multiple cost components (VNF installation, transportation, reassignment,

and migration) that are mainly subject to link capacity constraints. The main design goal in [22]

is to optimize the VNF relocations and the QoE in 5G DCs jointly. The problem is formulated as
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an MILP and transformed into a single-objective optimization function by applying weight factors.

The authors demonstrate that the problem is NP-hard for large-scale scenarios and propose an

ant colony optimization (ACO) metaheuristic to increase the problem solution efficiency. These

solutions, which focus on re-evaluating the VNFP due to user mobility, run on each DC to manage

the VNF requests of its underlying eNBs. However, both studies are reactive in nature.

Cziva et al. [46] propose an ILP model to minimize user latency subject to capacity limitations

and delay requirements when placing VNFs in MEC environments. Additionally, they present a

scheduler mechanism to re-evaluate the VNFP dynamically according to a maximum threshold

of the cumulative sum of latency violations and an expected migration cost. However, their

conceived placement solution does not consider VNF reconfiguration costs when readjusting the

placement.

In [53], Kawashima et al. present a solution for the dynamic VNFP based on a model predictive

control. Their objective is to predict the traffic demands to begin migration decision-making in

advance. The proposed optimization model minimizes the weighted sum of the number of active

hosts and the expected number of migrated VNFs. Although multiple restrictions are considered,

including VNF mapping, path continuity, and available resources in nodes and links, the service

latency requirement is not considered in their solution.

2.3.1.2 Single-branch SFC Placement

The placement of VNFs on top of the NFVI, as well as the mapping of virtual links among them

to compose a network service (i.e., service function chain), is a popular research topic, and one

of the most important and sophisticated problems within NFV management and orchestration

(MANO) operations [54]. Despite its novelty, the virtual network function placement and chaining

(VNFPC) problem, also referred to as the SFC placement or mapping problem, has been widely

addressed in the literature.

Mouaci et al. [23] attempt to solve the VNF placement and routing problem. To this end, they

introduce a path-based MILP model to optimize node opening and VNF deployment costs. Their

model considers VNF order, anti-affinity, routing, and latency restrictions but ignores the link

capacity limitation. In [55], Alleg et al. formalize the VNFPC problem as an ILP and propose a

degree-based heuristic solution. They seek to minimize the E2E delay and resource allocation cost.

Their model accounts for node and link capacity, VNF mapping, E2E delay, and flow conservation

constraints.

Song et al. [56] investigate the resource-efficient VNFP problem to minimize computing and

communication (bandwidth) resources. An ILP and a heuristic are provided based on the hidden

Markov model. In [57], the main objective is optimizing the utilization of VNF instances and

links in a cloud data center environment. To this aim, a mathematical model and a heuristic

approach are developed, and an online scenario in which service demands arrive at different time

instants is assumed. Both [56] and [57] consider several aspects related to the VNFPC problem,
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such as resource capacity, VNF order dependency, and flow conservation. However, they overlook

the E2E service latency requirement.

The main design goal in [24, 25] is optimizing routing and VNF deployment costs. Allybokus

et al. [24] formulate the problem as an MILP that encompasses several constraints, such as

service delay, VNF order, anti-affinity, and resource limitations. Moreover, they develop a heuristic

algorithm that combines the linear relaxation of the problem with a greedy approach. Similarly,

Li et al. [25] formalize the problem as a multi-objective ILP model and propose a greedy-based

heuristic to solve the problem in large-scale networks. They examine the SFC placement problem

in a hierarchical MEC ecosystem to minimize the weighted costs associated with substrate

resources subject to capacity and propagation delay restrictions. In [58], Liu et al. formulate the

SFC traffic steering problem as an ILP aimed at minimizing node running, VNF deployment,

and communication costs. They present an algorithm for improving the solution efficiency of the

problem by considering it as a multi-stage decision problem in which the decision for each stage

relies on the stage’s current state.

The previous studies approach the VNFPC problem using static scenarios. More specifically,

they consider static SFC demands and network topologies. However, in dynamic environments

in which user demands and locations change over time, this solution approach may lead to

sub-optimal deployments with higher operational costs and poor QoS. Thus, a different approach

is adopted in [59–72] by which the VNFPC configuration is dynamically readjusted to cope with

service demands.

Liu et al. [59] investigate the joint optimization problem of new and in-service SFCR provision-

ing. Their main objective is maximizing operator revenue by optimizing the profit of acceptance

requests and reducing deployment costs. They formulate the problem as an ILP model and

present a column generator-based solution to reduce time complexity. However, they do not

consider service latency requirements, and the proposed solution presents scalability limitations.

Askari et al. [60] design an algorithm for dynamic SFC placement in metro-area networks. Their

main objective is reducing resource consumption regarding the number of active VNF nodes

while ensuring service latency requirements and low blocking probability. However, neither [59]

nor [60] contemplates placement and chaining reconfiguration costs in their solutions.

In [61], the VNF migration cost is optimized subject to node capacity and SFC latency

restrictions. The problem is formulated as an ILP model, and a heuristic algorithm is developed to

solve it in polynomial time. Additionally, in [62], the authors provide a multi-objective ILP model

to minimize SFC reconfiguration costs for value-added services in content delivery networks.

Several cost components are considered (i.e., routing, migration, VNF hosting, and instantiation),

along with resource capacity, service latency, and mapping constraints.

Li et al. [63] address the problem of dynamic VNF mapping and scheduling to maximize

revenue by increasing the service acceptance ratio. They formulate the problem as an MILP

subject to service latency and available infrastructure capacity. They design a two-stage online
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algorithm that greedily maps the SFC constituent VNFs based on their waiting time. A delay-

aware rescheduling scheme is also triggered if the latency requirement is not satisfied; this

scheme remaps existing VNFs.

The authors of [64] and [65] investigate the impact of user mobility in MEC and fog envi-

ronments, respectively, with the primary objective of enhancing VNF migration performance

due to user mobility. Chen and Liao [64] formulate the problem as an ILP aimed at optimizing

user satisfaction by minimizing the effects of handovers in the SFC migration delay and service

downtime. To this aim, they consider resource limitations in MEC servers and link bandwidth,

service propagation delay requirement, and VNF migration time. They show the problem as

NP-hard and propose a heuristic solution called Follow-Me Chain. Likewise, Zhao et al. [65]

examine how to remap and migrate SFC constituent VNFs efficiently so that the reconfiguration

cost, the blocking ratio, the migration time, and the downtime of the SFC requests are minimized.

They thus develop a mathematical model, a heuristic solution, and two SFC migration strategies.

However, these two studies adopt a user-based reactive approach since they assume the migration

decision upon user handover.

Pei et al. [66] seek to minimize the overall SFC embedding cost, which comprises bandwidth,

memory, CPU, E2E delay, and VNF placement, through the dynamic VNFP. They formulate

the problem as a binary integer programming model and provide two algorithms, called SFC

eMbedding APproach (SFC-MAP) and VNF Dynamic Release Algorithm (VNF-DRA). The SFC-

MAP algorithm maps SFC requests in the infrastructure while VNF-DRA periodically checks the

VNF utilization rate to release those instances with low utilization.

Liu et al. [67] address the SFC dynamic reconfiguration problem to balance the service

provider revenue and reconfiguration costs. They formulate the problem as an ILP model and pro-

pose a heuristic solution that combines Tabu search (TS) and Fuzzy C-means. The reconfiguration

trigger condition is based on the substrate network utilization thresholds (i.e., lower and upper

bounds). Likewise, in [68], the migration of VNFs is triggered based on network resource overload

or node failures. Their study formulates the VNF instance migration and SFC reconfiguration

problem as an ILP model and derives a heuristic algorithm for solving the problem in polynomial

time. Their main objective is minimizing SFC E2E delay along with network imbalance. Since

they deal with a multi-objective optimization problem (MOOP), they use a weighted sum method

to reflect the relative importance of each term in the objective function.

The main limitation of the above-mentioned literature is its reactive nature since it decides

the readjustment of the SFC mapping upon a given event (e.g., threshold violation). Thus, these

approaches may further degrade the QoS and introduce higher delays.

The objective in [69] is minimizing VNF deployment and routing costs of Internet of things

(IoT) mobile devices at the edge. Therefore, mobility prediction methods are applied to determine

the probability of IoT devices visiting a set of destinations. The problem is formulated as an

ILP model, and a heuristic is proposed to reduce the model computation time. The proposed
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solutions are executed periodically as a batch-like processing service. Likewise, Wang et al. [70]

present a user-managed framework for the online orchestration of SFCs at the edge in which

every user is responsible for managing and allocating resources to its service based on learned

information. The authors aim to minimize the E2E delay by leveraging contextual information

(i.e., user demand and mobility). They formulate the problem as mixed integer programming

(MIP) subject to affinity, link capacity, and path-related constraints and present a bandit-based

algorithm. However, these two studies do not consider the cost associated with the placement

reconfiguration procedure.

Gu et al. [71] propose an online learning algorithm to predict the SFC flow rate to make

horizontal scaling decisions. They focus on minimizing NFV provider OPEX by proactively

scaling and provisioning VNF instances. They formulate the problem as a multi-objective MILP

model and design an algorithm for its online solution. These methods optimize the overall

operational expenditure, a compound of multiple cost components (i.e., VNF running, deployment

and migration, traffic forwarding, and backup facility costs). Moreover, they consider restrictions

related to the physical infrastructure (i.e., node and link capacity) and path continuity. However,

they neglect the service latency requirement.

In [72], a cluster-based proactive solution is introduced to reduce the complexity of SFC

mapping and reconfiguration. This solution comprises an ILP model and an optimized k-medoids

clustering approach. The mathematical model considers multiple optimization objectives: latency,

service-level objective (SLO) violation cost, hardware resource utilization, and VNF readjustment

cost. They contemplate restrictions regarding host and link resources and energy and operational

cost budgets. Each cluster in the solution checks placement constraints and provides specific

placement and readjustment configurations.

2.3.1.3 Multiple-branch SFC Placement

The studies discussed in the previous subsection consider single-branch SFCRs in which the

constituent VNFs are sequentially connected in a line graph. However, the literature addressing

multiple-branch SFC mapping is scarce.

Luizelli et al. [73, 74] approach the VNFPC as an optimization problem combined with

heuristic solutions. Their main objective is reducing the number of deployed VNF instances

subject to the resource limitations of nodes, VNFs and links, VNF mapping, E2E delay, and

flow conservation rules. To overcome the scalability limitations of the models, a binary search

heuristic is proposed in [73], while in [74], an algorithm based on a variable neighborhood search

(VNS) metaheuristic is introduced. These studies consider VNF sharing and the existence of

different SFC topologies.

The goal in [75] is minimizing the VNF deployment and link costs subject to resources, delay,

and traffic-routing constraints. An MILP model and a heuristic algorithm are provided. These

solutions consider traffic splitting into multiple branches and multiple ingress/egress nodes.
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Similarly, Leivadeas et al. [76] adopt a path-splitting approach to address SFC mapping in an

MEC-cloud infrastructure to minimize the overall deployment cost and E2E communication

delays. They present two solutions: an MIP model and a TS algorithm. The MIP formulation

accounts for aspects related to resource capacity, flow conservation, traffic splitting, and VNF

mapping. However, the definition of constraints for ensuring the correct order of VNFs in the

chain and service latency demands are omitted. Jalalitabar et al. [77] address the branching

SFC embedding and routing problem, defining a set of policies to be considered, such as VNF

dependency, branching, and anti-affinity. Additionally, they propose an algorithm for optimizing

node and link utilization jointly.

In [78], Alhussein et al. address multicast service orchestration for single and multiple ser-

vices. They aim to optimize two conflicting objectives (i.e., VNF deployment and link provisioning

costs) that are subject to node capacity and flow conservation constraints. Additionally, they

show the NP-hardness of the problem and conceive low-complexity heuristics to find efficient

solutions. However, they do not consider E2E latency requirements, and they solve the problem

with the assumption that VNFs cannot be shared among multiple SFCRs. Ren et al. [79] propose

using the service function tree to embed SFC for multicast tasks. They propose an ILP model

and a heuristic to optimize deployment and routing costs. They solve the problem subject to node

capacity, flow conservation, and multicast flow constraints; however, no restrictions regarding

either link capacity or E2E delay are included.

The main design goal in [80] is maximizing the number of admitted SFCRs in a multicast

network by considering several restrictions, such as node and link-limited resources, delay

requirement, and a maximum number of instances. In the study, the problem is formulated as an

MILP, and a column generation decomposition and two heuristic solutions are provided.

In [81], Awad et al. address the problem of dynamic resource adaptation in which VNF

resources can be readjusted by performing either migration or scaling procedures (vertical and

horizontal). The problem is formulated as an ILP model that minimizes energy consumption,

resource utilization, and SLO violation subject to node capacity limitations and service latency

requirements. Additionally, several multi-objective metaheuristics are designed to reduce the

problem solution time. Although these solutions contemplate linear and non-linear SFC topologies,

restrictions regarding VNF inter-dependency, path continuity, VNF anti-affinity, and link band-

width capacity are neglected. Moreover, a scheduler mechanism to decide when VNF resources

must be readjusted is missing.

Miotto et al. [82] design a framework for adaptive VNFPC called NFV-PEAR. This framework

has an optimization modulo that reconfigures the VNFPC according to demand fluctuations.

The VNFPC problem is formulated as a multi-objective ILP model aimed at reducing resource

consumption, VNF and flow mapping changes, and SFC reassignments.
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2.3.2 EPC Core Network Function Placement

The placement of EPC network functions has been widely addressed in the literature. Some

studies have focused on the placement of multiple EPC functions [83–87] through SFC approaches.

Others have concentrated on single network functions, with the SGW and PGW being the most

common, and approach the problem through VNFP solutions.

Authors of [83–85] optimize the placement of the most common network functions of the

EPC architecture (i.e., MME, SGW, PGW, and HSS) modeled as service chains. Baumgartner

et al. [83, 84] aim to minimize the utilization cost of links and nodes while considering VNF

requirements (e.g., processing and storage) and available infrastructure resources. Additionally,

in [84], the authors extend their conceived solution by including aspects such as VNF processing

time and E2E propagation delay. In [85], an MILP model is proposed to minimize the combination

of several cost components (VNF deployment and infrastructure utilization) subject to resource

capacity limitations, VNFP constraints, flow conservation, and latency requirements. Moreover,

SFCRs are divided into user and control plane sub-chains.

Dietrich et al. [86] also approach the EPC VNFP in terms of bandwidth and resource utiliza-

tion. Their primary focus is optimizing the load distribution among server nodes and links. To

this aim, an MILP formulation, its relaxed variant, and a greedy heuristic are proposed. Capacity

constraints and delay budgets between EPC components are some of the considerations for net-

work function placement. Similarly, Papagianni et al. [88] propose an MILP model to minimize

VNF deployment and bandwidth-associated costs through VNF sharing. They consider several

placement restrictions, such as link and node capacities, VNF placement, and flow conservation.

To minimize bandwidth consumption, Gupta et al. [87] address the EPC VNF placement.

They propose an ILP for VNF placement and traffic routing along the SFC constituent VNFs. To

this end, they consider VNF interactions in the control and data planes, as well as application

latency and NFVI resources (i.e., CPU). They not only show that distributed vEPC replicas reduce

bandwidth but also that not all the vEPC functions need to be distributed.

Basta et al. [19] propose the possibility of using a 5G hybrid architecture in which the

PGW and SGW functions could be deployed either by VNFs or SDN controllers. Their main

aim is determining the optimal sizing and planning for DCs, VNFs (PGW and SGW), and SDN

controllers by jointly analyzing SFCRs from both data and control planes. The authors present

three models to minimize the network load and costs of DC resources. They account for several

aspects of the system, such as SFC latency requirements, core network topology, and the DC

number.

Unlike previous studies that model the EPC VNF placement through SFCs, Bagaa et al. [89]

develop an algorithm based on the coalition formation game to find the optimal number and

placement of the vEPC core instances over a federated cloud. Each cloud is considered a game

participant in this solution that seeks to reduce the deployment cost while ensuring QoS.

Despite addressing the placement of EPC network functions, in which users are highly mobile,
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none of the above-mentioned studies addresses this issue in their solutions. Authors in [90]

amend this limitation by approaching the EPC network function placement in a mobility-aware

manner. They formalize the problem as an ILP model and conceive a sub-graph-based approach to

solve it in large topologies. Their main target is minimizing the average latency during handovers

while meeting constraints for latency budget and processing resources.

Moreover, none of the aforementioned studies considers the necessity to readjust the place-

ment configuration due to dynamic traffic variations. In this regard, Moratta and Kassler [91]

proposed the use of robust optimization due to the difficulty of predicting VNF demands. They

seek to minimize energy consumption by optimizing the VNF-assigned resources and flow routing

jointly. They validate the effectiveness of the solution in a virtualized EPC scenario.

Other state-of-the-art approaches, such as [92, 93], address workload variation in the EPC

core elements (i.e., MME, SGW, and PGW) through scaling mechanisms. The authors in [92]

model the vEPC core as an open network of G/G/m queues and propose a dimensioning algorithm

to auto-scale the VNFs dynamically. Additionally, Arteaga et al. [93] introduce a threshold-based

mechanism for horizontally and vertically auto-scaling vEPC elements based on CPU usage and

the number of registrations.

2.3.2.1 SGW and PGW Placement

The placement of SGW and PGW has been addressed in a wide variety of research studies

[15–19] with different points of view.

In [15, 18, 94], the SGW placement problem is approached to minimize SGW relocations.

Taleb and Ksentini [15] asserted the importance of avoiding mobile gateway relocations through

the optimal placement of SGWs to reduce costs and enhance the overall QoE. To this end, they

model the SGW placement as a service area planning problem and design a greedy algorithm.

They aim to reduce the SGW relocation cost subject to capacity restrictions.

In [18, 94], the authors divide the SGW functionalities into user and control plane components

denoted as SGW-U and SGW-C, respectively. Both articles focus on the placement of the SGW-

C to reduce relocations and balance SGW-C load. In [18], two ILP models are conceived, and

the Nash Bargaining game is adopted to determine a fair trade-off between both optimization

objectives. However, latency requirements are overlooked, and the SGW-C placement is addressed

by assuming that the SGW-Us have already been deployed. Similar optimization objectives are

pursued by Basu et al. [94], albeit under latency restrictions. The latency parameter is measured

regarding the transmission time between a service area and its assigned SGW-C and the SGW-C

processing time.

The authors in [95] investigate the effects of SGW placement strategies on the backhaul

bandwidth consumption. Specifically, they study three solution approaches for the SGW placement

(i.e., centralized, distributed, and optimal deployment). They conclude that a distributed SGW

placement in which each base station is co-located with an SGW performs similarly to an
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optimized SGW placement. Moreover, this deployment approach significantly reduces the cost

of backhaul traffic. However, no restrictions regarding the SGW capacity or service latency are

considered.

The authors of [16] address placement of virtual PGW to reduce costs while ensuring QoE.

The PGW load and imbalance are optimized by considering PGW capacity, application/service

type, and geographical location when selecting a PGW to serve user requests. They model the

PGW placement problem as a non-linear optimization problem and provide three heuristics to

solve it. However, aspects such as relocation and service latency requirements are not considered.

Studies such as [17, 96] address the placement problem of SGW and PGW. Taleb et al. [17]

present different solutions for optimizing user plane response time and SGW relocations by

considering user mobility patterns along with delay and relocation constraints. However, since

these design goals represent conflicting objectives, a solution based on game theory techniques is

provided, similar to [18]. Nonetheless, the authors do not consider VNF resource requirements.

In [96], Kiess and Khan analyze the gateway transmission cost for centralized and distributed

architectures in a nationwide network. However, they do not address latency requirements.

The dynamic placement of both SGW and PGW is addressed in [97, 98]. These studies propose

solutions based on constraint programming for the dynamic adaptation of SGW and PGW to user

and service demands. Similar to [17], their main goal is to determine the optimal location for

these network functions so that SGW relocations, the length of the path between the users and

their assigned GWs, and the number of VNF instances are minimized.

Yousaf et al. [98] introduce the concept of softEPC for the virtualization of EPC network

functions over a physical transport network topology. To investigate the virtualization benefits,

they develop a load-aware greedy algorithm that dynamically places SGW and PGW instances

according to service traffic demands to minimize network capacity (i.e., bandwidth and processing

capacity). Other studies, such as [99], design load-balancing solutions for the dynamic gateway

selection to avoid QoS degradation.

Based upon the previous studies, the main lines of research for solving the gateway placement

problem in EPC networks are the optimization of relocations, network response time, load

distribution, and deployment cost in regards to the number of gateway instances or traffic routing.

Despite the wide variety of studies in this field, a solution integrating multiple aspects related to

the problem, such as user mobility, resource capabilities (i.e., links, servers, and gateways), and

service latency and reliability requirements, is missing. Moreover, none of the studies account for

reliability when proposing solutions. Furthermore, solutions approaching the dynamic placement

reconfiguration of these network functions are also lacking.

2.3.3 5G Core Network Function Placement

The literature reviewing the placement of 5G core network functions in a 3GPP-based architecture

is scarce due to its novelty.
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Bagaa et al. [100] address the core function placement in EPC/5G architectures with the main

target of minimizing VNF deployment cost. To this aim, they propose an MILP model to derive

the optimal number of VNF instances required to serve specific traffic demands. Additionally,

they design an algorithm based on a coalition formation game to determine the best location

of the EPC/5G core elements. Similarly, a Bayesian coalition formation game is proposed in

[101] to determine 5G core VNF placement with unknown information about players (i.e., cloud

providers). This study seeks to determine the optimal number of VNF instances and their location

over a federated cloud at the minimum cost. Therefore, tracking areas are assigned to VNF

instances based upon their available capacity. However, the latency requirement is neglected.

The performance of the proposed approach is evaluated by creating a 5G core, which consists of

AMF, SMF, and UPF. Neither [100] nor [101] accounts for VNF interrelation.

The authors of [102] devise a management architecture for 5G services by leveraging the

combination of NFV, SDN, and MEC technologies. Their framework provides distributed and

online deployment of VNFs. The VNF allocation problem is formulated as multi-objective mixed

non-linear integer programming (MNIP), and an algorithm is proposed to solve the problem. Their

solutions aim to minimize the overall cost associated with backhaul traffic, energy consumption

in edge and cloud nodes, and revenue loss due to backhaul delays.

Do and Kim in [103, 104] address the placement of state management functions (StateMFs)

–unstructured data storage function, user data repository, and NRF– over a geo-distributed cloud

infrastructure. In [103], the design goal is to minimize the signaling transfer (state transfer)

cost between the StateMFs and their traffic load. They considered the frequency of handovers

between the StateMF service areas and the number of PDU sessions per user in the problem

formulation. However, technical requirements like 5G latency or network function maximum

capacity are not addressed.

Similarly, in [104], the primary goal is to minimize the state transfer between StateMFs and

the total packet latency in the entire network. Although packet latency is analyzed as a design

parameter, the chosen approach is not the most suitable. The overall latency can demonstrate a

brief status of the network, but it cannot show the worst case. Both studies formulate the problem

as a multi-objective optimization model and propose three solutions for the StateMF placement

based on ε-constraint and adaptive weighted sum.

In [105], the joint placement of RAN and core network functions (e.g., AMF, UDM, SMF, and

UPF) in an edge-cloud environment is considered through the introduction of weights. Specifically,

preference-weighted costs are assigned to network functions according to their type, service/slice,

and layer number. This paper’s main objective is minimizing costs subject to node capacity and

latency constraints. The problem is formulated as a non-linear and non-integer programming

model, and a GA solution is provided to reduce the solution’s complexity.

The authors in [14, 106] address the joint user association and SFC placement problem in

a 5G network. They formulate the problem as an ILP model and design a heuristic algorithm
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to tackle scalability issues associated with exact solutions. In [106], they address different

optimization approaches (E2E latency, provisioning cost, VNF migration, and handovers) subject

to several constraints, such as latency, capacity, and path continuity. Additionally, in [14], different

VNF scaling strategies (i.e., vertical, horizontal, and hybrid) and their effects on the service

provisioning cost are investigated. In this study, 5G core functions are divided into three categories

(i.e., stateful, control, and user plane functions). Furthermore, SFCRs are formed by elements for

both the user and control planes. However, the authors did not consider certain aspects of SFC

placement, such as VNF order or E2E latency requirements.

2.3.3.1 5G UPF Placement

The number of studies related to the 5G UPF found in the literature review is very limited. On

the topic, we encounter three main research directions. The first investigates the implementation

of UPF functionalities through technologies such as SDN, NFV, and P4, while the second and

third research groups focus mainly on designing strategies for placing and selecting UPFs.

Studies such as [107–109] examine the implementation of UPFs through different technolo-

gies with the primary goal of improving UPF performance (throughput and response time) and

scalability. For example, Costa-Requena et al. [107] propose the deployment of UPF as a separate

programmable module integrated with SDN switches to fulfill 5G latency and bandwidth require-

ments. They investigate the performance of 5G UPFs as an SDN-based solution in a realistic

testbed. Specifically, they analyze two deployment scenarios (i.e., cloud and edge). Their results

show that an edge deployment is possible without affecting UPF performance and helps reduce

network congestion.

In [108], the authors virtualize the UPF using Docker containers and Intel DPDK to provide

high-performance packet processing. Fattore et al. [109] propose a light UPF solution to adapt

UPF deployment to constrained edge devices (i.e., drones). In this solution, UPF functionality

and base stations are co-located with the drones and implemented through open-source software

(vector packet processing [110]) on a lightweight, single-board computer. This solution approach

reduces user plane delay and backhaul traffic. Other studies, such as [111–113], implement the

UPF as a P4 program running on programmable switches.

Fewer studies address the UPF placement problem [11–14]. Li et al. [11] examine the problem

of joint placement for edge servers and UPFs. Their main objective is minimizing service latency

subject to cost and resource limitations (i.e., UPF and EN capacity). They formulate the problem

as an ILP model and show its NP-hardness. Then, they prune the solution space and design a

heuristic algorithm to simplify the problem and improve the solution’s efficiency. They assign

service demands per traffic generators (access nodes), not at PDU session or user levels.

The authors in [12] introduce a framework to place UPFs at edge locations dynamically to

minimize the number of hops between user base stations and their assigned anchor UPFs (i.e.,

latency optimization). They evaluate the latency and execution time of different UPF allocation
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algorithms (e.g., random, greedy-based, and k-means). These algorithms are simple solutions

that periodically determine UPF placement according to a specific number of UPF instances.

Moreover, the authors did not consider UPF capacity constraints, service latency requirements,

or more complex aspects associated with placement reconfiguration events, such as numbers of

migrated VNFs and reassigned sessions.

Subramanya et al. [13] address the problem of joint user association and SFC placement in a

hierarchical MEC environment. They formulate the problem as an ILP model whose optimization

objective is minimizing E2E service delay. A heuristic algorithm is proposed to overcome the

scalability limitations of the exact solution. This solution maps SFCRs in the network according

to latency requirements. Moreover, they apply machine learning (ML) techniques to proactive

auto-scaling UPFs. Specifically, two neural network-based models (i.e., a classifier and a regressor)

are presented to predict the required number of UPFs according to traffic demands. Nevertheless,

no placement constraints associated with UPF requirements or VNF-order are considered since

the authors assume that SFCRs are composed of only one UPF.

Harutyunyan et al. [14] study the joint user association and SFC placement in a 5G network.

Their primary focus is investigating the effects of VNF scaling decisions (i.e., horizontal, vertical,

and hybrid scaling) on the service provisioning cost. To this aim, they propose an ILP model

and a heuristic algorithm to minimize service provisioning costs while satisfying users’ data

rate requirements. The authors represent the user service requests as SFCs formed by one UPF

instance.

Table 2.1 summarizes the studies addressing the UPP and their solution approach, opti-

mization objective, and considerations. As seen in this table, the main optimization objective for

solving this problem is the minimization of user plane latency. Of the analyzed articles, only [14]

considers optimizing deployment costs, measured in terms of VNF scaling and usage of links and

gNB nodes. Furthermore, the problem is typically formulated as a mathematical problem, and a

heuristic-based solution is presented to overcome the scalability limitations of exact solutions

due to the NP-hard nature of the problem [11]. Additionally, none of the articles addresses

reconfiguration costs associated with UPF deployment in dynamic environments. Moreover, only

studies [13, 14] consider UPFs to be part of the SFC data paths. Nevertheless, both works assume

that all UPF functionalities are centralized in a single UPF instance.

Finally, other studies [114–117] propose different solution approaches for selecting the best

UPF in the session data paths. For example, Ge et al. [114] introduce an SFC framework for

determining the optimal set of UPFs that traffic flows should traverse. They define different flow

categories and SFC templates to identify the set of UPFs forming a flow data path. Moreover,

through testbed implementation, they demonstrate that UPF deployment methods directly

impact SFC performance. Nevertheless, they do not discuss any solution concerning the UPP. In

[115], the problem of dynamic selection of UPF through an evolutionary game theory model is

addressed. In this study, users attempt to optimize their performance by selecting UPF instances
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Table 2.1: Summary of UPF placement solutions.

Paper Objective Constraints Solution approach Flow handling SFCExact Aprox. Static Dynamic

[11] Min latency

service latency

x x x
cost
EN capacity
UPF capacity
BS-UPF mapping

[12] Min latency Number of UPFs x x

[13] Min latency

VNF-node mapping

x x x

VNF capacity
EN capacity
gNB capacity
path continuity
link bandwidth

[14]
Min cost (VNF
scaling, link
and gNB)

gNB related

x x x

EN capacity
VNF capacity
UE-VNF mapping
empty VNF
link bandwidth
path continuity

with lower latency. However, the authors assume that UPFs have already been deployed and that

UPF locations do not change over time.

In [116, 117], the authors introduce the concept of anticipatory user plane management to

decrease the user plane reconfiguration time during handover. They rely on the predictions

of individual user behavior (e.g., target access point) to proactively select and configure the

PDU session data paths. Two solutions (i.e., anticipatory iUPF placement and proactive UPF

configuration) are provided in [116]. However, these are management mechanisms for selecting

iUPF, not for placement optimization. In [117], the authors present an overview of a heuristic

approach for iUPF placement optimization. This solution selects the best location by evaluating a

cost function that ranks feasible candidates according to 5G use cases (i.e., URLLC and eMBB).

2.4 Placement Optimization and Scheduling Strategies

This section provides an overview of the most prominent placement strategies and reconfiguration

mechanisms adopted in the literature for solving the VNFP problem.

2.4.1 Placement Methods

Placement strategies addressing the VNFPC problem can be grouped into two main categories:

mathematical modeling (linear and non-linear programming) and approximate algorithms (spe-

cific heuristic and metaheuristic). Mathematical programming techniques use mathematical
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models to describe the characteristics of the optimal solution for an optimization problem. The

problem’s solution consists of the optimum variable values that maximize or minimize the

objective function and satisfy a specified set of constraints. Linear programming (LP) is an

optimization method in which the objective function and constraints are expressed linearly. LP

solutions can be placed into three categories according to the domain of the decision variables:

LP, ILP, and MILP. In non-linear programming, at least one of the constraints or the objective

function represents a non-linear relationship.

From the literature review, we observed that linear programming, especially ILP [25, 46, 55,

61, 62] and MILP [21, 23, 24, 47, 63], is the most commonly used technique. However, only a small

subset of studies applies non-linear programming methods [102, 105] to formulate the problem.

These models aim to optimize single or multiple criteria, though most approach the problem in a

multi-objective fashion. Multi-objective optimization problems typically have conflicting design

goals, so optimizing one objective comes at the expense of others. There are various methods to

solve MOOP [118], such as weighted sum [48, 52, 68], ϵ-constraint [103, 104], and game theory

(e.g., Nash bargaining game) [18].

Although mathematical programming methods provide optimal solutions to the problem, they

are characterized by scalability limitations. In other words, they cannot solve the problem for

large-scale scenarios in a reasonable time due to the NP-hardness nature of the VNFPC problem.

Conversely, metaheuristic and heuristic solutions do not necessarily achieve optimal results but

have significantly lower execution times than exact methods. Therefore, a common approach in

the literature is the combination of both methods. More specifically, exact solutions are usually

used to solve the problem in small scenarios or as benchmarks for assessing the performance of

heuristic-based algorithms. Heuristic or metaheuristic methods are the research community’s

preferred approaches to provide online solutions to the problem.

Approximate algorithms can be categorized into two classifications: specific heuristics and

metaheuristics [119]. Heuristic methods are a procedure that determines good or near-optimal

solutions to an optimization problem [120] by trial and error in a reasonable time. They are

problem dependent since they are designed to solve a particular problem [119]. In contrast,

metaheuristics [119, 121] are more general methods that can be applied to many problems. They

typically perform better than simple heuristics due to the diversification and intensification of

the search space, also referred to as exploration and exploitation. In essence, metaheuristics are

strategies that guide the search process, intending to determine near-optimal solutions. They

can generally solve optimization problems faster than exact approaches and provide more robust

solutions than specific heuristics.

A wide range of metaheuristic algorithms exists, as well as classification categories, such

as type of search strategy (local or global), the number of simultaneously improved solutions

(single or population-based), and source of inspiration (e.g., human-, nature-, and physics-based).

Many metaheuristics are inspired by natural processes, such as evolution (GA) and the process of
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annealing a metal (SA), while others, such as Tabu search and VNS, are not. Moreover, they can be

classified as simple or classical, improved, hybrid, or adaptive according to their implementation

design.

The number of works proposing approximation algorithms to address the VNFPC problem

is extensive. Most of these studies design specific algorithms [25, 58, 61, 65, 67, 68, 71, 80]

that typically follow greedy-based approaches to solve the problem. A lower percentage adopts

metaheuristic solutions. Among these metaheuristics, SA [47], GA [48, 105], ACO [22], TS [67, 76],

and VNS [74] are the most frequently used.

2.4.2 Reconfiguration Scheduling Mechanisms

In event-based mechanisms, the execution of a reevaluation procedure is initiated as a consequence

of an event (e.g., node failure). These mechanisms are reactive by nature and include more specific

mechanisms, such as time- and threshold-based reconfigurations.

Time-based mechanisms determine the readjustment of the placement configuration based

on time indicators such as periodicity, specific hours of the day, or dates. This strategy is simple

and easy to implement since it only needs the configuration of the time condition. However, the

execution of these mechanisms does not guarantee a better system performance (e.g., QoS or

utilization) since it is unaware of the system status. Moreover, the number of reconfiguration

events depends on the specified time condition. For instance, in [12], a time-slotted model is

considered to determine the best UPF deployment at each time interval to minimize the user-

perceived latency.

In threshold-based strategies, reconfiguration events are triggered according to metric values

and predefined thresholds (upper or lower), which can be static or variable. Threshold-based

solutions are mainly based on metrics related to traffic variations, as well as resource availability

[52, 66–68, 82, 93]. Therefore, specific system metrics, such as VNF utilization, may need to be

monitored over time.

The authors of [52] optimize the VNF placement in response to new service requests and

workload variations (i.e., demand arrival and departure). In [66], the proposed strategy peri-

odically checks VNF utilization rates and releases the ones with values lower than a specified

threshold, which can be dynamically adjusted according to load variation. Miotto et al. [82]

propose using a VNF CPU threshold to readjust the VNFPC. Similarly, a scaling mechanism

based on CPU utilization and used registration capacity per second is proposed in [93]. This

solution uses three region zones in the monitored metrics to determine the scaling strategy to be

applied. In [67], the SFC readjustment is triggered when the real-time utilization ratio of the

servers reaches the lower/upper threshold and lasts for a certain duration. This solution aims

to reduce reconfiguration costs due to frequent reconfigurations by verifying that the threshold

violation is sustained over time.

In [68], the trigger condition for VNF instance migration is determined based upon network
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resource overload (i.e., computing capacity and link bandwidth) and physical node failure. Li et al.

[63] introduce a rescheduling scheme to readjust VNF mapping and accommodate incoming ser-

vices without degrading the QoS of previously mapped SFCs. The VNF mapping and scheduling

are readjusted when newly arrived service requests cannot be mapped into the network without

guaranteeing their delay requirement. Additionally, the authors of [64, 65] reconfigure the SFC

mapping upon user handover to ensure user connectivity.

A recent trend in modern networks is not only to react to changes but also to foresee them

to diminish their effects, such as QoS deterioration. The variety of predictive methods and

their applicability are substantial. Some of the most popular techniques are stochastic methods

(optimal stopping), probabilistic forecasting (Markovian models), and machine learning (neu-

ronal networks). In this study, we refer to the methods under this category as prediction-based

mechanisms.

The optimal stopping theory (OST) [122] is concerned with the problem of determining the

best time to take a given action based on sequentially observed random variables to maximize

(minimize) an expected reward (cost). Optimal stopping problems (OSPs) exist in many areas,

such as statics, economics, and computing science. The secretary, parking, or house-selling

problems are some of the most common OSPs.

The OST has been widely adopted to solve optimization problems [46, 123–125] due to

its effectiveness and simplicity. In [46], Cziva et al. propose a dynamic placement scheduler

to forecast when the VNF placement needs to be readjusted. They rely on OST principles to

dynamically determine the optimal reconfiguration time. Their main objective is to guarantee

the established QoS levels (i.e., the cumulative sum of sessions with latency violations), whereas

frequent placement recalculations are avoided.

Anagnostopoulos and Kolomvatsos [123] propose a model based on OST to determine the

correct time to take a mitigation action in ENs (e.g., upgrade the current services/resources or

offload tasks). In this manner, the ENs can adapt their configuration to ensure the desired QoS.

In [124], a dynamic service migration strategy is presented to optimize the energy consumption of

the MEC platform. To this aim, OST is applied to obtain the optimal migration energy expectation

and select the target migration node. Similarly, in [125], Wu et al. use OST to choose the best

nodes for the cache placement to maximize energy saving.

Machine learning [126, 127] is another strategy that has attracted much attention for manag-

ing resource allocation proactively (e.g., estimating resource demands or determining when the

VNFP should be readjusted). ML algorithms can capture hidden data patterns and work quickly

in changing network conditions [50]. These algorithms can be classified into three main categories:

supervised, unsupervised, and reinforcement learning. Supervised learning solutions learn the

relationship between feature data and labeling data, while unsupervised algorithms must find

the data structure on their own since no labeling data are provided. Reinforcement learning

models learn to take actions through system feedback (reward) in dynamic environments.
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The objective in [128] is to optimize MEC resource usage by making virtual infrastructure

management decisions (scaling, migrating, or retaining) based on user mobility predictions. In

[129], the authors present several classification models based on deep neuronal networks and

long short-term memory (LSTM) to accurately forecast the required number of VNF instances to

satisfy traffic demands and avoid QoS degradation. Similarly, [130] integrates ML algorithms

(i.e., support vector regression [SVR], linear regression [LR], and multi-layer perceptron [MLP])

with VNF placement and scaling solutions to predict VNF-required resources to serve a given

traffic load. Subramanya and Riggio [131] apply federated learning techniques to scale VNF

instances proactively in an MEC environment according to QoS or cost optimization objectives. To

this aim, they model the problem as a time series forecasting problem that predicts the required

number of VNF instances to satisfy traffic demands at a given time horizon.

Bendriss et al. [132] design an ML framework for SLA management. They apply MLP and

LSTM algorithms to predict violations in SLA (SLO breaches or no SLO breaches). The authors

in [133] approach the problem of SLA and SLO violation prediction for a latency-sensitive VNF

through a multi-label classification methodology. They divide SLA into a set of SLO categories

and apply a deep neural network (MLP)-based multi-label classification to predict SLO breaches

associated with an application state.

2.5 Open Issues

Extensive research can be found regarding topics and problems closely related to 5G UPF

placement (e.g., SGW and PGW placement or generic VNFPC problems). However, existing

solutions still possess several limitations that restrict their applicability for solving the UPP.

Some of these limitations and open issues can be summarized as follows:

• Despite the wide range of studies tracking the EPC gateway placement (i.e., SGWs and

PGWs), a solution integrating user mobility, latency, and reliability requirements, as well

as available resource capacities, is missing.

• Most existing studies addressing the VNFPC for 5G networks assume generic network

functions, and only a few consider the 5G architecture proposed by the 3GPP, including its

characteristic network elements and their specificities.

• Some UPF characteristics and particularities, such as the possibility of deconstructing UPF

functionalities in smaller micro-services and chaining them together, have not yet been

investigated in the literature.

• Solutions approaching the VNFPC for non-linear SFC topologies (multi-branch SFCs) in

static or dynamic environments are lacking.
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• Little or no research has approached the dynamic placement reconfiguration of UPF or its

analogous in EPC networks (i.e., SGW and PGW).

• Limited literature has addressed the dynamic VNFPC reconfiguration problem through

configuration readjustment solutions (mathematical models, heuristics, or metaheuris-

tics) and scheduling mechanisms to determine the most convenient time to rearrange its

configuration.

• Most state-of-the-art solutions decide to rearrange the VNFPC configuration according

to VNF resource utilization to select the best scaling mechanism (horizontal, vertical,

or hybrid) capable of meeting user traffic demands. However, other criteria, such as the

user-perceived delay, must be investigated since resource utilization may not always reflect

degradation in the QoS. More specifically, VNF utilization may be under acceptable levels,

but users may experience high network response time. This may be caused by an increase in

propagation delay due to user mobility and the absence of available VNFs in the new point

of attachment. Moreover, most existing solutions are reactive and make this decision based

on events (threshold violation or predefined time intervals) or per-user basis in mobile

scenarios.

• Most research studies providing VNF scaling solutions do not determine the best placement

to deploy new instances when horizontal auto-scaling is applied.

• Despite the plethora of studies proposing reconfiguration solutions for the VNFPC, most

focus only on optimizing aspects relevant to service providers, such as node activation,

VNF deployment, traffic routing, and VNF migration. User aspects like latency and session

reassignment are neglected.
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STATIC UPF PLACEMENT

This chapter is based on:

• I. Leyva-Pupo, C. Cervelló-Pastor, and A. Llorens-Carrodeguas, "Optimal Place-

ment of User Plane Functions in 5G Networks," in International Conference on

Wired/Wireless Internet Communication (IFIP WWIC’17), Bologna, Italy, Jun. 2019,

Lecture Notes in Computer Science, vol. 11618, Springer, Cham, 2019.

• I. Leyva-Pupo, A. Santoyo-González, and C. Cervelló-Pastor, “A Framework for the

Joint Placement of Edge Service Infrastructure and User Plane Functions for 5G,"

MDPI Sensors, vol. 19, no. 18, pp. 3975, 2019.

To address 5G-and-beyond networks’ stringent service requirements, such as ultra-low user

plane latency and high bandwidth, the placement of applications and network functions

at the network edge –mainly user plane functions– is necessary. This approach implies

a significant increase in UPF numbers, which are expected to grow 20–30 times their original

amount [134]. However, MEC nodes are characterized by limited resources compared to cloud

infrastructure, which leads to the necessity of effective placement solutions to help network

operators and service providers to make efficient use of their resources when planning the UPF

deployment.

In this context, this chapter presents two mathematical models and a heuristic-based algo-

rithm to address the UPP in MEC ecosystems. The envisioned solutions aim to guarantee 5G

service demands (i.e., latency and reliability) while reducing expenditures. Additionally, they

enable enhanced QoE and extra operational cost savings by optimizing the occurrence of UPF

relocations when planning the UPF placement for services with mobility requirements.
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The rest of this chapter is structured as follows. Section 3.1 provides insights into the UPP

and introduces the network model and notation. Next, Sections 3.2 and 3.3 present two optimal

solutions to the problem. Section 3.4 provides a heuristic approach and its complexity analysis.

The performance of the proposed solutions is assessed and analyzed in Section 3.5. Finally,

Section 3.6 summarizes the main conclusions of this chapter.

3.1 Problem Statement: Static UPF Placement

Increasing traffic demands and the stringent requirements of forthcoming services, such as

latency and reliability, require further network transformations. Specifically, by placing network

functions (e.g., UPFs) closer to the users at the network edge, network metrics like response time

and bandwidth consumption can be significantly reduced. Additionally, service reliability could

be enhanced by assigning several instances of the same type (e.g., UPFs) to access nodes, thus

providing higher resilience against failures.

However, these deployment approaches imply an increase in the UPF number, which results in

higher costs and UPF relocations, which are largely due to user mobility and handover procedures

in mobile networks. Concretely, a UPF relocation occurs when a user with an active PDU session

registers in a radio access node served by a UPF instance different from the one assigned to

its source access node. Frequent and unnecessary relocations can severely impact the overall

QoE by introducing additional delays and signaling overhead for bearer establishment during

handover procedures [15]. Moreover, relocations may increase operational costs due to extra

signaling traffic exchanged among UPFs to maintain session and service continuity. Therefore,

efficient UPF placement strategies that satisfy 5G service requirements, such as latency and

reliability, while reducing expenditures are important.

3.1.1 Network Model

The 5G network topology is represented as a graph G(N,E), where N denotes the set of network

nodes and E the links among them. The network nodes are formed by UPF candidate location

(Nc) and access nodes (Nr). The candidate locations may comprise edge servers and data center

facilities, while Nr can include fixed and radio access technologies. The capacity of a UPF instance

is indicated by Cu, while Lrc represents the lowest propagation delay between an ANN r ∈ Nr and

a candidate location c ∈ Nc. Lreq and Vu denote the maximum permissible propagation latency

between an ANN and its assigned UPFs and the minimum number of assigned UPFs required by

an access node to satisfy reliability requirements, respectively. Tables 3.1 and 3.2 summarize the

sets, parameters, and variables used in the proposed solutions to solve the UPP.

The minimum number of UPFs (Vu = Ku +1) to which an access node must be assigned to
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Table 3.1: Used notation for sets and parameters.

Notation Description

Nr Set of access nodes
Nc Set of UPF candidate locations
dr Traffic demand of access node r ∈ Nr
α Maximum percentage of capacity utilization allowed in the main UPFs
Cu Capacity of a UPF instance
Vu Minimum number of UPFs required by an access node
Ku Minimum number of backup UPFs required by an access node (Ku <Vu)
Lrc Propagation delay between access node r ∈ Nr and candidate c ∈ Nc
Lreq Propagation delay requirement between access nodes and their assigned UPFs
hi j Frequency of handovers between access nodes r i and r j (r i, r j ∈ Nr)
Fc Cost of deploying and operating a UPF at candidate node c ∈ Nc
Fh Cost associated with UPF relocations
m 1 if mobility optimization is required

ensure the desired reliability levels (R[r]) can be determined upon expression (3.1).

R[r]= (1− pr) ·
[
1− ∏

∀u∈Vu[r]
[1− (1− pu)]

]
(3.1)

where pr represents the failure probability of access node r ∈ Nr and pu the UPF failure proba-

bility.

Table 3.2: Used notation for binary variables.

Notation Description

xc 1 if there is a main UPF placed at candidate node c ∈ Nc
yc 1 if there is a backup UPF placed at candidate node c ∈ Nc
zc 1 if backup UPF at node c ∈ Nc, shares its capacity
prc 1 if access node r ∈ Nr has a main UPF in node c ∈ Nc
brc 1 if access node r ∈ Nr has a backup UPF in node c ∈ Nc
ai jc 1 if access node r i or r j ∈ Nr is assigned to a main UPF in candidate node c ∈ Nc
ki jc 1 if access node r i or r j ∈ Nr is assigned to a backup UPF in node c ∈ Nc
wrcc′ 1 if access node r ∈ Nr has assigned a main UPF in node c ∈ Nc and a

backup in node c′ ∈ Nc

3.2 Model 1: Optimal Cost and Mobility-aware UPF Placement

The optimal cost- and mobility-aware UPF placement (CMUP) solution aims to minimize de-

ployment and operational costs associated with UPF placement while considering 5G service

requirements and limited capacity in the candidate locations (e.g., ENs). This can be achieved by

reducing the number of UPF instances and placing them in the optimal locations as determined

by activation and operational costs. Additionally, the CMUP model also optimizes operational

costs related to UPF relocations by accounting for user mobility effects when forming UPF
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service areas. Therefore, considering the notation in Tables 3.1 and 3.2, the CMUP model can be

formulated as follows:

Min
∑

c∈Nc

Fc · (xc + yc)+m · ∑
c∈Nc

∑
r i ,r j∈Nr

Fh ·hi j ·ai jc (3.2)

The first term in the objective function (3.2) indicates the cost associated with the deployment

and operation of primary and backup UPF instances (Fc) regarding a given candidate location,

while the second is related to relocation costs (Fh) in the main UPFs. The relocation cost compo-

nent is determined in terms of the handover frequency (hi j) between radio access nodes served by

different UPFs. Since not all services have mobility requirements, the proposed model specifies

whether the UPF relocation cost is an optimization objective to be considered using the binary

indicator m.

To generate feasible solutions to the problem, the following constraints must be satisfied.

A primary or backup UPF can be placed at each candidate location for a given service category,

but both types cannot be placed simultaneously. This distinction in the location of primary and

backup UPFs enhances the system’s availability concerning node failures. Specifically, in the case

of a failure in a node hosting a main UPF instance, the location of its backup UPF may remain

unaffected, thereby avoiding service affectations. Moreover, this approach also allows for energy

saving. Backup UPFs can be instantiated only when failures occur since they do not serve any

access node during normal network operation (i.e., no-failure scenarios).

xc + yc ≤ 1 ∀c ∈ Nc (3.3)

The inequalities (3.4) and (3.5) prevent the assignment of ANNs to the candidate locations

where no UPF instance is placed as either the main or backup UPF. In addition, expression (3.6)

restricts the assignment of an access node to a specific main UPF when both the node and

the UPF are collocated. Specifically, if a primary UPF instance is placed on a candidate node

along with an ANN, the UPF must serve the access node. This helps reduce network traffic and

response time for users associated with this access node. Otherwise, the ANN can be assigned to

a main UPF instantiated in any other location, as indicated by the constraint (3.7).

prc ≤ xc ∀r ∈ Nr,∀c ∈ Nc (3.4)

brc ≤ yc ∀r ∈ Nr,∀c ∈ Nc (3.5)

Locr = Locc ⇒ prc ≥ xc ∀r ∈ Nr,∀c ∈ Nc (3.6)

Locr ̸= Locc ⇒ prc ≤ xc ∀r ∈ Nr,∀c ∈ Nc (3.7)

To meet the required service reliability levels, the ANN demands must be served by a

minimum number of primary and backup UPFs (Vu = 1+Ku). This allows a service can resist up

to a maximum of Ku simultaneous failures in the UPF instances serving an access node, thereby
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mitigating the UPF failure effects, such as service interruption and QoS degradation.

∑
c∈Nc

prc ≥ 1 ∀r ∈ Nr (3.8)

∑
c∈Nc

brc ≥ Ku ∀r ∈ Nr (3.9)

Expression (3.10) ensures the fulfillment of service latency requirements (Lserv) by forcing

the assignment of access nodes to the UPFs with either main or backup roles that comply with the

specified budget of propagation delay (Lreq) between access nodes and UPF candidate locations

(Lrc). The value of the Lreq parameter is determined by considering the round-trip time (RTT)

processing delay (Lproc) of all the network elements present in the service data path (e.g., access

node and UPF), as well as the service latency requirement.

2 ·Lrc · (prc +brc)≤ Lreq ∀r ∈ Nr,∀c ∈ Nc (3.10)

where Lreq = Lserv −2 ·Lproc.

Equations (3.11) and (3.12) guarantee that the total traffic demand assigned to main and

backup UPFs, respectively, does not exceed the UPFs’ maximum processing capacity. Furthermore,

the α factor further restricts the maximum capacity utilization of the main UPFs to avoid slowing

their performance.

∑
r∈Nr

dr · prc ≤α ·Cu ∀c ∈ Nc (3.11)

∑
r∈Nr

dr ·brc ≤ Cu ∀c ∈ Nc (3.12)

Expression (3.13) aims to determine the occurrence of UPF relocations due to user handovers

between access nodes served by different main UPFs. It describes the relationship between two

access nodes with reference to their assignment to a main UPF location. This expression is an

additional restriction to the problem to consider when optimizing user mobility effects on the

UPF placement (i.e., m = 1).

ai jc = pic ⊕ p jc ∀r i, r j ∈ Nr,∀c ∈ Nc (3.13)

Notice that constraint (3.13) is non-linear. However, it may be expressed in a linear form as

follows:

ai jc ≤ pic + p jc ∀r i, r j ∈ Nr,∀c ∈ Nc (3.14)

ai jc ≥ pic − p jc ∀r i, r j ∈ Nr,∀c ∈ Nc (3.15)

ai jc ≥ p jc − pic ∀r i, r j ∈ Nr,∀c ∈ Nc (3.16)

ai jc ≤ 2− pic − p jc ∀r i, r j ∈ Nr,∀c ∈ Nc (3.17)
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Finally, expression (3.18) indicates the binary nature of the variables xc, yc, prc,brc and ai jc.

xc, yc, prc,brc,ai jc ∈ {0,1} ∀r ∈ Nr,∀r i, r j ∈ Nr,∀c ∈ Nc (3.18)

Thereby, the linear form of the CMUP model can be summarized as follows:

Min
∑

c∈Nc

Fc · (xc + yc)+m · ∑
c∈Nc

∑
r i ,r j∈Nr

Fh ·hi j ·ai jc

s. t.:

xc + yc ≤ 1 ∀c ∈ Nc

prc ≤ xc ∀r ∈ Nr,∀c ∈ Nc

Locr = Locc ⇒ prc ≥ xc ∀r ∈ Nr,∀c ∈ Nc

Locr ̸= Locc ⇒ prc ≤ xc ∀r ∈ Nr,∀c ∈ Nc∑
c∈Nc

prc ≥ 1 ∀r ∈ Nr∑
c∈Nc

brc ≥ Ku ∀r ∈ Nr

2 ·Lrc · (prc +brc)≤ Lreq ∀r ∈ Nr,∀c ∈ Nc∑
r∈Nr

dr · prc ≤α ·Cu ∀c ∈ Nc∑
r∈Nr

dr ·brc ≤ Cu ∀c ∈ Nc

brc ≤ yc ∀r ∈ Nr,∀c ∈ Nc

ai jc ≤ pic + p jc ∀r i, r j ∈ Nr,∀c ∈ Nc

ai jc ≥ pic − p jc ∀r i, r j ∈ Nr,∀c ∈ Nc

ai jc ≥ p jc − pic ∀r i, r j ∈ Nr,∀c ∈ Nc

ai jc ≤ 2− pic − p jc ∀r i, r j ∈ Nr,∀c ∈ Nc

xc, yc, prc,brc,ai jc ∈ {0,1} ∀r, r i, r j ∈ Nr,∀c ∈ Nc

3.3 Model 2: Optimal Cost and Mobility-aware UPF Placement
with Backup Sharing

The optimal cost and mobility-aware UPF placement with backup sharing (CMUP-BS) model

pursues similar optimization objectives to the CMUP; see (3.19). Its main difference from the

solution approach presented in Section 3.2 is the extension of the cost component associated with

UPF relocations to consider the effects of handovers on backup UPFs. Additionally, it introduces

the concept of capacity sharing in the backup UPFs to reduce their required number.

Min
∑

c∈Nc

Fc · (xc + yc)+m · ∑
c∈Nc

∑
r i ,r j∈Nr

Fh ·hi j · (ai jc +ki jc) (3.19)
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Constraints (3.3) to (3.11), as well as constraint (3.13), are included in the CMUP-BS model.

Moreover, an additional set of restrictions mainly related to the possibility of sharing backup

UPF capacities must be considered. This set of extra constraints can be defined as follows:

The occurrence of relocations in the backup UPFs is indicated by constraint (3.20). This

expression can be linearized by repeating the same procedure used for (3.13).

ki jc = bic ⊕b jc ∀r i, r j ∈ Nr, ∀c ∈ Nc (3.20)

Inequality (3.21) restricts the possibility of capacity sharing to backup UPFs. This capability

is recommended only for UPFs operating in backup mode since the main UPF instances must

serve all their assigned users during normal network conditions. The main goal of sharing the

capacity of backup UPFs is downsizing their number of deployed instances. This downsizing may

be possible by sharing the backup capacity among access nodes assigned to different main UPFs

since the simultaneous failure of all UPF instances is unlikely. In this regard, expression (3.22)

indicates the relationship between primary and backup UPF instances that may serve a given

access node.

zc ≤ yc ∀c ∈ Nc (3.21)

wrcc′ = prc ∧brc′ ∀c, c′ ∈ Nc,∀r ∈ Nr (3.22)

Since constraint (3.22) is non-linear, further transformation is required to express it in a

linear form. Specifically, it can be replaced with the following linear expressions:

wrcc′ ≤ prc ∀c, c′ ∈ Nc,∀r ∈ Nr (3.23)

wrcc′ ≤ brc′ ∀c, c′ ∈ Nc,∀r ∈ Nr (3.24)

wrcc′ ≥ prc +brc′ −1 ∀c, c′ ∈ Nc,∀r ∈ Nr (3.25)

Vaticinating the combination of UPF instances, either primary or backup, that will fail at a

given time, along with the amount of backup capacity required to serve the affected access nodes,

is nearly impossible. To overcome this limitation, we made the following assumption: If a backup

UPF shares its capacity, the total demand of its assigned access nodes belonging to the same main

UPF cannot exceed the backup capacity divided by the maximum number of failures the system

must resist. Thus, any backup UPF sharing its capacity will be able to serve all the affected

access nodes in the case of up to Ku failures in the UPFs. This approach considers the worst-case

scenario in which all failed instances are primary UPFs. The overall traffic demand assigned to

backup UPFs with capacity sharing will be greater than the backup UPF’s maximum available

capacity, which allows for reductions in the required number of instances. This consideration will

not affect the UPFs’ performance since their placement has been planned to serve only a portion

of the traffic assigned to a main UPF.

Expressions (3.26) and (3.27) restrict the capacity utilization in backup UPFs with and

without capacity sharing, respectively. Constraint (3.26) indicates that when a backup UPF
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shares its capacity, the demands of its assigned access nodes mapped to the same main UPF

should be less than the backup’s capacity divided by the number of UPF failures that the system

must resist. In contrast, the overall demands assigned to backup UPFs with no capacity sharing

cannot exceed their maximum capacity.

zc = 1⇒ ∑
r∈Nr

dr ·wrcc′ ≤ Cu/Ku ∀c, c′ ∈ Nc (3.26)

zc = 0⇔ ∑
c∈Nc

∑
r∈Nr

dr ·wrcc′ ≤ Cu ∀c′ ∈ Nc (3.27)

Though constraints (3.26) and (3.27) are non-linear, they can be expressed in a linear form as

follows:

∑
r∈Nr

dr ·wrcc′ ≤ Cu/Ku +M1 · (1− zc) ∀c, c′ ∈ Nc (3.28)

∑
c∈Nc

∑
r∈Nr

dr ·wrcc′ ≤ Cu +M2 · zc ∀c′ ∈ Nc (3.29)

∑
c∈Nc

∑
r∈Nr

dr ·wrcc′ ≤ Cu +ε+M3 · (1− zc) ∀c′ ∈ Nc (3.30)

where M1, M2, and M3 are sufficiently large constants and ε is a small positive tolerance

(ε> 0).

Constraint (3.31) stipulates that xc, yc, prc,brc, ai jc and ki jc are binary variables.

xc, yc, prc,brc,ai jc,ki jc ∈ {0,1} ∀r, r i, r j ∈ Nr,∀c ∈ Nc (3.31)

Finally, the linearized CMUP-BS model can be defined as follows:

Min
∑

c∈Nc

Fc · (xc + yc)+m · ∑
c∈Nc

∑
r i ,r j∈Nr

Fh ·hi j · (ai jc +ki jc)

s. t.:

xc + yc ≤ 1 ∀c ∈ Nc

prc ≤ xc ∀r ∈ Nr,∀c ∈ Nc

brc ≤ yc ∀r ∈ Nr,∀c ∈ Nc

zc ≤ yc ∀c ∈ Nc

wrcc′ ≤ prc ∀c, c′ ∈ Nc,∀r ∈ Nr

wrcc′ ≤ brc′ ∀c, c′ ∈ Nc,∀r ∈ Nr

wrcc′ ≥ prc +brc′ −1 ∀c, c′ ∈ Nc,∀r ∈ Nr

Locr = Locc ⇒ prc ≥ xc ∀r ∈ Nr,∀c ∈ Nc

Locr ̸= Locc ⇒ prc ≤ xc ∀r ∈ Nr,∀c ∈ Nc∑
c∈Nc

prc ≥ 1 ∀r ∈ Nr
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∑
c∈Nc

brc ≥ Ku ∀r ∈ Nr

2 ·Lrc · (prc +brc)≤ Lreq ∀r ∈ Nr,∀c ∈ Nc∑
r∈Nr

dr · prc ≤α ·Cu ∀c ∈ Nc∑
r∈Nr

dr ·wrcc′ ≤ Cu/Ku +M1 · (1− zc) ∀c, c′ ∈ Nc∑
c∈Nc

∑
r∈Nr

dr ·wrcc′ ≤ Cu +M2 · zc ∀c′ ∈ Nc∑
c∈Nc

∑
r∈Nr

dr ·wrcc′ ≤ Cu +ε+M3 · (1− zc) ∀c′ ∈ Nc

ai jc ≤ pic + p jc ∀r i, r j ∈ Nr,∀c ∈ Nc

ai jc ≥ pic − p jc ∀r i, r j ∈ Nr,∀c ∈ Nc

ai jc ≥ p jc − pic ∀r i, r j ∈ Nr,∀c ∈ Nc

ai jc ≤ 2− pic − p jc ∀r i, r j ∈ Nr,∀c ∈ Nc

ki jc ≤ bic +b jc ∀r i, r j ∈ Nr,∀c ∈ Nc

ki jc ≥ bic −b jc ∀r i, r j ∈ Nr,∀c ∈ Nc

ki jc ≥ b jc −bic ∀r i, r j ∈ Nr,∀c ∈ Nc

ki jc ≤ 2−bic −b jc ∀r i, r j ∈ Nr,∀c ∈ Nc

xc, yc, prc,brc,ai jc,ki jc ∈ {0,1} ∀r ∈ Nr,∀r i, r j ∈ Nr,∀c ∈ Nc

3.4 Heuristic: Near-Optimal UPF Placement

The CMUP and CMUP-BS solutions for no mobility considerations can be seen as variants of the

facility location problem (FLP) [135, 136] and the resilient controller placement problem (RCPP)

[137–139], two well known NP-hard problems. Additionally, when minimizing the effects of user

mobility on UPF relocations is an optimization objective, the proposed models can be expressed

as a combination of the previous models (i.e., FLP and RCPP) and the location area planning

problem [15, 140], which is also NP-hard. Thus, both CMUP and CMUP-BS models are NP-hard

in either variant (with and without user mobility considerations).

Exact solutions to NP-hard problems, such as ILP models, may require excessive computation

time and resources. Moreover, optimal solutions in large-scale scenarios in which the number of

possible combinations is significantly high may be impossible. To cope with this limitation, we

devise a low-complexity heuristic, referred to as near-optimal UPF placement (NOUP), capable of

determining efficient solutions to the problem in polynomial time.

The proposed heuristic aims to determine the best candidate locations and service areas

to attend to the service demands of a given set of access nodes. These demands represent

services with similar placement requirements, such as latency, reliability, and user mobility.
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Since the access nodes may require the assignment of multiple UPF instances to guarantee

certain reliability levels, a sequential assignment is adopted. Concretely, UPF levels are placed

according to their role (primary and backup), starting with the highest-priority level (main) and

ending with the lowest-priority level (last backup level). This ensures that the best locations

always belong to UPFs with higher roles in the service. The pseudo-code of the NOUP solution is

depicted in Algorithm 1.

Algorithm 1: Near-Optimal UPF Placement (NOUP)
Input: Nr , Nc, Nr−c, Nc−r , Cumax , Dr , Ku, Hi j , m
Output: Su, Ssa, Srre ject

1 Su, Ssa, Srre ject ←; // Initialize output variables
2 f lag_main ← True // Place a main UPF level
3 forall l in range(Ku +1) do
4 Sl

u, Sl
sa, Sl

rre ject ←;
5 Sl

r ← Set of access nodes that require a UPF at level l
6 N l

c ← Set of available candidate nodes at level l
7 N l

c−r ← Set of available candidates per access node at level l
8 while Sl

r ̸= ; do
9 scorebest ← 0

10 forall c ∈ N l
c do

11 Sl
rc ← Unassigned access nodes near c (N l

r−c[c])
12 Sl

sac , Sc
rre jected

← Procedure 1 // Form service area for candidate c (Sl
sac)

13 if Sl
sac ̸= ; then

14 scorec ← Evaluate candidate c
15 if scorec > scorebest then
16 scorebest ← scorec // Update best candidate score
17 cbest ← c // Update best candidate
18 Sl

sabest
← Sl

sac // Update best service area

19 else
20 N l

c ← N l
c − c // Remove candidate with empty SA

21 Sl
rre ject ← Sl

rre ject +Sc
rre jected

22 if scorebest ̸= 0 then
23 Update Sl

u, Sl
sa, Sl

r , N l
c, N l

c−r , N l
r−c

24 else
25 Sl

rre ject ← Sl
rre ject +Sl

r
26 break

27 Sl
u, Sl

sa, Sl
rre ject , N l

c ← Procedure 2 // Improve placement solution at level l
28 Update Su, Ssa, Srre ject

29 if l = 0 then
30 Nc ← Nc −N l

c // Remove candidate with main UPFs
31 f lag_main ← False // Start placing backup UPF levels

As inputs, the NOUP strategy takes the network topology with the sets of UPF possible

locations (Nc) and access nodes (Nr); the UPF maximum processing capacity (Cumax ) and service

requirements, such as traffic processing demand per access node (dr ∈ Dr), number of UPF levels
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to ensure the desired reliability (Ku +1); and the frequency of handover between access nodes

(Hi j). The frequency of handover is only needed when considering the effects of user mobility

on UPF placement (m = 1). Additionally, the sets of candidate locations per access node (Nc−r)

and access nodes near each candidate (Nr−c) must be specified. These sets may be previously

computed using service latency requirements. This algorithm outputs the best UPF locations

(Su) and service areas (Ssa) along with the set of rejected access nodes (Srre ject ) per UPF level.

Algorithm 1 begins by creating the output variables where the placement configuration will

be saved. Then, the Boolean f lag_main is set to true to indicate that the procedure begins with

the deployment of main UPFs (line: 2). Afterward, the algorithm begins an iterative process to

determine the best candidates and service areas for each level of UPF (lines: 3–28). Inside this

loop, three temporal variables corresponding to each output element in the current UPF level are

initialized as empty sets. Next, access nodes requiring the assignment of UPFs at the specified

level (Sl
r) are selected, along with the set of available candidates (N l

c) for the deployment of

the UPFs (lines: 5–6). After this preparatory stage, an assignment process determines the best

combination of UPF locations and their service areas. This process is repeated while there are

unassigned access nodes and available candidates (lines: 8–26). At each iteration, all available

candidates are analyzed by formulating their potential service areas to choose the best candidate

(lines: 10–20).

The UPF service areas are created by calling Procedure 1 (line: 12) upon the unassigned

access nodes near each candidate location that requires a UPF at the specified level (Sl
r). The

first step of this procedure is to initialize the output variables Sl
sac

and Sc
rre jected

where the access

nodes forming the candidate service area and the critical nodes rejected by the candidate during

the procedure will be stored. Then, the unassigned ANNs are sorted according to their proximity

to the candidate location. Next, the procedure verifies whether the candidate under analysis

corresponds to a main UPF co-located with an unassigned access node (line: 3). This ensures the

satisfaction of constraint (3.6) when deploying a level of main UPFs. If this condition is met, the

co-located access node is assigned to the candidate service area, and the set of unassigned access

nodes is updated along with the candidate’s available capacity (lines: 3–5). The UPF available

capacity for assigning the co-located node is not verified since we assume that UPFs have enough

capacity to serve the access node’s maximum demand. Next, the procedure searches for critical

ANNs in the set of unassigned access nodes near c (line: 6). Here, the term critical access nodes is

used to identify those access nodes that have only one available candidate for deploying their

UPFs.

After determining the set of critical access nodes (Srcritical ), Procedure 1 initiates an iterative

process to assign the access nodes to the candidate service area. This process is executed while

there are unassigned access nodes in the neighborhood of the candidate (Sl
rc ̸= ;) and the

candidate has enough capacity available to serve its less loaded neighbor ANN (lines: 7–30).

Inside this loop, critical access nodes are prioritized to reduce the likelihood of leaving them
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Procedure 1: UPF Service Area Creator
1 Sl

sac , Sc
rre jected

←;
2 Sort unassigned access nodes (Sl

rc) by proximity to c
3 if f lag_main and loc(c)= loc(Sl

rc[0]) then // Check if c and Sl
rc[0] are co-located

4 Sl
sac ← Sl

sac +Sl
rc[0] // Assign the co-located access node to c service area

5 Update Sl
rc, Cuc

6 Srcritical ← Set of critical access nodes in Sl
rc

7 while Sl
rc ̸= ; and Cuc ≥ min(Drc) do // Drc : Traffic demands of r ∈ Sl

rc
8 Src ← Sl

rc
9 if Srcritical ̸= ; then

10 if
∑

r∈Srcritical

dr ≤ Cuc then // Check if all the r ∈ Sl
rc can be assigned to c

11 Sl
sac ← Sl

sac +Srcritical // Assign all the critical access nodes to c
12 Update Sl

rc, Srcritical , Cuc

13 else Src ← Srcritical

// Select best access node (rbest) to be assigned to c service area
14 if f lag_main and m = 1 then
15 rbest ← Select r ∈ Src with the highest handover frequency w.r.t. c current service area

16 else
17 rbest ← Select the access node r ∈ Src closest to c

18 if drbest ≤ Cuc then // Check selected access node for assignment
19 Sraf f ected ←;
20 if f lag_main and loc(rbest) ∈ loc(N l

c) then
21 Sraf f ected ← Search for affected access nodes in Sl

r // Verify location constraint

22 if Sraf f ected =; then // If no access node is affected
23 Sl

sac ← Sl
sac + rbest // Assign the rbest to c service area

24 Cuc ← Cuc −drbest // Update c available capacity
25 if Srcritical ̸= ; then
26 Srcritical ← Srcritical − rbest

27 else if Srcritical ̸= ; then
28 Srcritical ← Srcritical − rbest
29 Sc

rre jected
← Sl

rre jected
+ rbest

30 Sl
rc ← Sl

rc − rbest // Remove rbest from the set of unassigned access nodes

31 return Sl
sac , Sc

rre jected

unattended (i.e., without a UPF) (lines: 9–13).

The first step when dealing with a set of critical access nodes is to determine whether

the candidate has enough available capacity to cover the demands of the entire set (line: 10).

If all the critical nodes can be served, they are added to the candidate service area and the

sets of unassigned and critical ANNs (Sl
rc and Srcritical ) are updated by removing these nodes.

Additionally, the amount of available capacity in the candidate is readjusted (lines:11–12).

Otherwise, further analysis is required to determine which critical node is more convenient to

map to the candidate service area. To do so, the unassigned access nodes in Src are replaced with

the critical nodes (line: 13). The Src is an auxiliary set used to store the unassigned access nodes

under analysis at each iteration stage. When there are no critical access nodes, the execution of
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lines 10–13 is omitted, and the entire set of unassigned nodes is considered for the selection of

the best node.

The best access node to be assigned (rbest) is determined in the remaining steps of the

procedure (lines: 14–30). At each iteration, the best node is selected from the set Src according to

the UPF role (main or backup) and mobility considerations, which are indicated by the parameters

flag_main and m, respectively. In particular, when the service area under analysis corresponds to

a main UPF with mobility requirements (m = 1), the best ANN is the unassigned node (r ∈ Src)

that has the highest overall handover frequency concerning those ANN currently forming the

candidate service area. Otherwise, the closest ANN to the candidate is elected as the best option

(lines: 17).

Once rbest has been identified, the procedure checks whether the candidate has enough

available capacity to serve the node service demand (line: 18). If this is the case, another verifica-

tion is required before deciding whether the selected node can be assigned to the service area

(lines: 20–21). This action is related to constraint (3.6); thus, it is only required when planning the

service area of a main UPF. Specifically, the procedure verifies whether the assignment decision

affects other unassigned access nodes (r ∈ Sl
r). Access nodes are affected when rbest is co-located

with a candidate that is the only option for deploying their main UPF. Consequently, the selected

best node could be mapped to the candidate, provided that no affected access node is detected

(lines: 22–24).

When an assignment occurs, the candidate’s service area and available capacity are readjusted.

Additionally, the set of critical nodes (Srcritical ) is updated every time a critical access node is

assigned. If a critical node cannot be served by the candidate’s available capacity, it is classified

as rejected and is transferred from the set of critical nodes to the output set Sc
rre jected

(lines: 27–29).

Last, the set Sl
rc is updated by removing the selected access node (line: 30) regardless of whether

it was assigned.

After executing Procedure 1, Algorithm 1 proceeds to inspect the candidate service area

(lines: 13–20). If the service area is not empty, the candidate is evaluated by considering utilization

and maximum latency metrics. Moreover, relocation avoidance is analyzed for placement with

mobility consideration. This evaluation process returns a candidate score (scorec) and compares

it with the best score found thus far. If a more optimal location is detected, it is saved along

with its service area configuration, and the best score is modified (lines: 15–18). In contrast, the

candidate is removed from the available candidates when it cannot serve any unassigned access

node (line: 20), and the set of rejected access nodes is automatically adjusted in the next step.

Once all the candidates have been evaluated, the algorithm determines whether a best

candidate is available (lines: 22–26). When user mobility is considered, the best candidate has

the highest number of assigned access nodes and avoids the highest number of UPF relocations.

Then, the involved sets are updated (i.e., Sl
u, Sl

sa, Sl
r, N l

c, N l
c−r, and N l

r−c) to reflect the selected

placement configuration. Alternatively, the set of rejected access nodes at the current level is
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extended to include the current set of unassigned access nodes, and the assignment process is

interrupted due to the absence of feasible candidates (lines: 25–26).

At the end of each assignment process, an improvement process occurs (line: 27) through

the execution of Procedure 2. The main goal of this procedure is enhancing the quality of the

current placement configuration by finding candidates for the set of rejected access nodes and

reducing the number of UPFs and UPF relocations for placement with mobility requirements.

Following these design objectives, the procedure’s pseudo-code is structured in two phases. First,

it begins with the mapping of the rejected access nodes since guaranteeing service requirements

is critical (lines: 1–14). Second, the phase related to cost reductions is executed as the mapping of

the rejected ANNs may produce variations in the number of UPFs (lines: 15–36).

The mapping phase, which occurs in Procedure 2, attempts to reduce the number of rejected

access nodes by reassigning already assigned access nodes with the hope of enabling enough

capacity in their candidates to serve their demands. To accomplish this, the procedure begins by

sorting the unassigned access nodes in ascending order according to their available candidates at

the beginning of the assignment procedure. This increases the chance of finding a candidate for

the most critical nodes. Then, the ANNs assigned to its potential candidates for each rejected

access node (r ∈ Srre jected ) that could release enough resources to serve it are selected (line: 5).

These ANNs are sorted by their number of candidates (descending) and traffic demands

(ascending) to speed up the search process. For each selected node, the capacity available in

its near candidates is analyzed to determine whether remapping is possible (lines: 2–13). If it

is, the best candidate is selected to reassign the node under analysis, and the rejected node is

mapped to the released candidate. The corresponding sets are then updated, and the search for a

candidate for the unassigned node ends (lines: 9–14). Otherwise, the process continues until all

the possibilities of reassigning a mapped access node are exhausted. If no valid candidates are

found, further analysis of the situation by the network operators or service providers is required.

For instance, the rejected nodes could be assigned to a UPF located in a further candidate by

relaxing the latency requirement, or additional infrastructure could be deployed. However, these

approaches imply either QoS degradation or additional expenditures.

The first action in the second phase of Procedure 2 is computing the overall available capacity

(Cl
uT

) at the current UPF level (line: 15) to determine whether the number of UPFs can be reduced.

In particular, some UPFs could be discarded when the overall available capacity is greater than

the UPF maximum capacity (lines: 16–24). In this case, the UPFs are sorted in descending order

based on their available capacity (line: 17) so that those with the lowest utilization have higher

priority during the removal analysis. For each UPF, the procedure verifies whether all the UPF’s

assigned access nodes can be served by other UPFs (lines: 18–24). This allows the UPF to be

removed, as none of its assigned access nodes will be unattended. When this condition is satisfied,

the access nodes are reassigned, and the UPF under analysis is removed from the set of UPFs

(lines: 22–24). The sets of available candidates and UPFs at the current level (N l
c and Sl

u), as
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Procedure 2: UPF Placement Improvement
// Phase 1: Mapping rejected access nodes

1 Sort r ∈ Sl
rre jected

by their initial number of available candidates in ascending order

2 forall r ∈ Sl
rre jected

do
3 Nr

c ← Set of candidates near r (N l
c−r)

4 forall c ∈ Nr
c do

5 Sc
r ← Set of access nodes (rc) in Sl

sac with drc ≥ dr and more than one candidate
6 Sort rc ∈ Sc

r according to their number of candidates and demands
7 forall rc ∈ Sc

r do
8 Nrc

c ← Search for available candidates to remap rc
9 if Nrc

c ̸= ; then
10 cbest ← Select best candidate (the most loaded) to reassign rc
11 Remap rc to cr and map r to c
12 Update Sl

rre jected
, Sl

sa, Sl
u,..

13 break

14 if Nrc
c ̸= ; then break

// Phase 2.1: Reducing UPF costs
15 Cl

uT ← Compute the overall UPF available capacity
16 if Cl

uT ≥ Cu then
17 Sort u ∈ Sl

u according to their available capacity in descending order
18 forall u ∈ Sl

u do
19 forall r ∈ Ssau do
20 utarget ← Find a candidate to remap r
21 if utarget =; then break

22 if utarget ̸= ; then
23 Reassign ∀r ∈ Ssau and remove u
24 Update N l

c, Sl
u, Sl

sa, Cu

// Phase 2.2: Reducing relocation costs
25 if f lag_main and m=1 then
26 Sr ← Set of assigned access nodes at the current level
27 while True do
28 scorerbest ←∞
29 forall r ∈ Sr do
30 ubest, scorer ← Find a candidate with lower relocations
31 if scorer < scorerbest then
32 Update scorerbest , rbest, ubest

33 if scorerbest ̸=∞ then
34 Reassign rbest to ubest
35 Update Sl

sa, Cu

36 else break

37 return Sl
u, Sl

sa, Sl
rre ject , N l

c

well as UPF service areas (Sl
sa) and available capacity are then updated (line: 24).

The final part of the improvement procedure is executed when a reduction in the number of

relocations among main UPFs is desired (lines: 25–36). To this aim, the mapped access nodes are

analyzed to find better UPFs in terms of relocation avoidance. At each iteration of the main loop,
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the best candidate for each ANN is determined, and the overall number of relocations that the

remap will produce is computed (lines: 28–32). Once all access nodes have been assessed, the

remap with the lowest relocations is applied if any (lines: 33–35). The previous step implies a

readjustment of the UPF service areas and available capacities. This iterative process is repeated

while improvements in the number of relocations are detected.

Procedure 2 could be extended to include more improvement actions, such as latency reduction

and balanced load distribution among UPFs. It returns the final sets of UPF locations, UPF

service areas, rejected access nodes, and available candidates (line: 27 in Algorithm 1). This

information is then used by Algorithm 1 to update the output variables (line: 28). Finally, the

indicator f lag_main is modified to indicate that the remaining levels correspond to backup

UPFs (line: 31). The main procedure of the algorithm is repeated until the placement of all UPF

levels has been analyzed (lines: 3–28).

3.4.1 Complexity Analysis

This subsection addresses the time complexity of the NOUP algorithm. The overall complexity

of Algorithm 1 is determined by the loop in lines 3–31, which will be executed L times, where

L denotes the required number of UPF levels (i.e., L =Vu = Ku +1). The complexity associated

with the iterative processes inside this loop is given by the assignment procedure (lines: 8–26),

arbitrarily referred to as W , the number of candidate locations (C) evaluated in its innermost loop;

and the improvement procedure (P2), which is executed at the end of each assignment process.

Another significant time-consuming aspect of the candidate evaluation process is the creation of

the service areas in Procedure 1, which is denoted as P1. W cannot be found beforehand since it

depends on several factors, such as the number of assigned nodes at each iteration, their traffic

demands, and UPF maximum capacity. As a result, a first overview of the total time complexity

of NOUP can be expressed as O(L · (W ·C ·P1 +P2)).

The time complexity of Procedure 1 is linked to the sorting process in line 2 and the iterative

process concerning the assignment of the best ANN to the candidate service area (lines: 7–30).

Assuming the worst-case scenario in which the entire set of access nodes (Sr = A) forms the

candidate neighboring area (Sl
rc = A), the time complexity of the sorting process is O(A · log A), in

which the while procedure is executed at most A times. Generally, Sl
rc << Sr and this iterative

procedure is typically interrupted due to capacity limitations in the candidate. Moreover, the

size of the set of unassigned access nodes is reduced with the best candidate selection in the

assignment process. Inside the while loop, different processes are triggered to determine the best

access node according to UPF roles and mobility considerations; these determine the complexity

of the procedure. The most demanding process is that which occurs for a main level of UPFs with

mobility requirements; this process has a complexity of O(A ·S+ A). In this expression, the first

term corresponds to the process of determining the ANN with the highest handover frequency

concerning the candidate service area (S). A represents the complexity of determining the set
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of affected access nodes. Therefore, in the worst-case scenario, the computation complexity of

Procedure 1 is O(A · log A+ A · (A ·S+ A)) = O(A2 ·S).

Similarly, Procedure 2 has the worst time complexity during the placement of primary UPFs

with mobility considerations. In this case, its total time complexity is O(R ·C ·S · (logS+C)+
U · (logU +S)+T · A ·U ·S). The first term derives from the mapping of rejected access nodes

(phase 1), while the second is derived from reducing the number of deployed UPFs. The execution

of these processes depends on the presence of unassigned access nodes (R << A) at the end of

an assignment procedure and on the possibility of removing UPF instances (U), respectively.

Additionally, the T ·A ·U ·S term corresponds to the UPF relocation reductions where T indicates

the time complexity of the iterative process (lines: 27–36). Thus, the maximum run time of

Procedure 2 can be defined as O(R ·C ·S ·(logS+C)+T ·A ·U ·S) = O(S ·(R ·C ·(logS+C)+T ·A ·U).

Table 3.3 showcases the computational complexity of these procedures according to the UPF role

and mobility considerations.

Table 3.3: Time complexity of the procedures.

Flag_main m Procedures

Procedure 1 (P1) Procedure 2 (P2)

False - O(A · log A+ A)= O(A · log A) O(R ·C ·S · (logS+C)+U · (logU +S)
True 0 O(A · log A+ A2)= O(A2) O(R ·C ·S · (logS+C)+U · (logU +S)
True 1 O(A · (log A+ A ·S))= O(A2 ·S) O(R ·C ·S · (logS+C)+U · (logU +S)+T · A ·U ·S)

Globally, the computational complexity of the proposed heuristic can be specified as O(W ·C ·
(A ·log A ·L+A2 ·(Ku+Sm))+L·R ·C ·S ·(logS+C)+m·T ·A ·U ·S) where m is a binary indicator used

to represent the computational time associated with mobility considerations. The first term of this

expression is derived from the assignment process and the service area creation procedure, while

the other two represent the maximum run time of the improvement procedure. This expression

can be simplified by determining its dominant terms and considering U ·S ≈ A. Thus, overall

complexity of NOUP is in the order of O(W ·C · A2 · (Ku +Sm)+L ·R ·C ·S · (logS+C)+m ·T · A2)

= O(W ·C · A2 · (Ku +Sm)+L ·R ·C ·S · (logS+C)). Given that, generally, the size of the sets of

unassigned access nodes (R), UPF service area (S), and candidate locations is considerably

smaller than the overall set of access nodes (R,S,C << A), the worst time complexity of NOUP

can be defined as O(W ·C · A2 · (Ku +Sm)).

3.5 Evaluation and Results

In this section, we describe the experiments conducted to evaluate the performance of the devised

solutions. Then, we analyze the results.
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3.5.1 Simulation Setup

To evaluate the performance of the proposed solutions, we generated a map grid of 10,000 km2,

with fixed and radio access nodes randomly deployed to emulate urban and rural regions

(see Fig. 3.1). Two urban areas referred to as City_1 and City_2 were considered, while the

rest of the territory represented rural zones. In the cities, the radio access nodes represented cen-

tralized BBUs with a maximum coverage radius of 3 km, whereas, in the rural areas, they were

distributed with the RRHs and had coverage radii of 10 and 20 km. The frequency of handovers

and traffic demands was measured at the BBU level for the urban scenarios. According to their

underlying user density (region), the access nodes had different traffic demands ranging from

0–1 Tbps. These traffic demands were generated by considering several services with different

requirements in terms of latency, reliability, bandwidth, and user mobility [4, 141]. Table 3.4

summarizes the requirements of the use cases.
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Figure 3.1: Map grid representing nodes distribution per type.

We classified the aforementioned services into two categories according to latency and re-

liability requirements: high-requirement services (i.e., automated factories, massive IoT, and

cooperative sensing) and low-requirement services (i.e., traffic efficiency, 50 Mbps everywhere,

and home and office). Thus, the categories presented services with different mobility require-

ments, allowing us to assess the performance of the proposed solutions under similar placement

conditions for UPF placement with and without mobility considerations.

For the first group, 1 ms in the user plane delay and one backup UPF were assumed, while the

latency requirement was fixed to 5 ms for the low-demand category, and no backup was needed.

To ensure service delay below 1 ms in the user plane, the overall latency RTT in the user-ANN
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Table 3.4: 5G service requirements.

Service Latency Data rate Density Reliability Mobility (m)1

(ms) (Mbps) (users/km2) (%)

Rural Urban Rural Urban

Automated factories ≤ 1 1 104 0 99.999 0
massive IoT ≤ 1 1 103 104 99.999 0/1
Cooperative sensing ≤ 1 5 10 102 99.999 1
Traffic efficiency ≤ 5 25 5 50 90 1
50 Mbps everywhere ≤ 10 50 50 400 90 1
Home and office ≤ 10 50 300 102 103 90 0
1 Binary indicator for mobility requirements: m = 1 service with mobile users, 0 otherwise.

segment had to be less than 0.5 ms [142]. Considering that UPFs and DNs are co-located with a

maximum overall processing time of 0.3 ms, a latency budget (Lreq) of 0.2 ms RTT was left for the

segment ANN-UPF. For the low-demand services, the Lreq parameter was relaxed to 1 ms. These

constraints for latency propagation were translated into Euclidean distances considering the

propagation time of direct links between any ANN-EN pair and optical fiber as the underlying

transport layer (5 µs/km) [19, 143]. Furthermore, the minimum number of UPFs to which a

given access node must be assigned (Vu = Ku +1) to ensure the desired reliability levels was

determined upon (3.1) by considering pr = 10−6 and pu = 10−4. Parameter values related to the

UPF placement are provided in Table 3.5.

Table 3.5: Simulation parameters for the UPP.

Notation Description Value

Lreq Propagation delay requirement (ms) [0.2, 1]
Cc Resource capacity of a server (Tbps) 2.5
Cu Resource capacity of a UPFs (Tbps) [0.5-2.5]
dr RTT overall delay in the (R)AN (ms) 0.5
du Processing time of UPFs (ms) 0.1
dDN Processing time of DN (ms) 0.1
- Propagation delay in optical links (µs/km) 5
pr Failure probability of access nodes 10−6

pu Failure probability of UPFs 10−4

For the UPF placement, a set of candidate locations formed by the point of presence (PoP) and

ENs was considered. The number of PoPs for the cities was estimated based on real data1 from

the PoPs of internet service providers operating in Spain. Additionally, the number and location

of the ENs required to cover the access node demands were determined by running a hybrid SA

algorithm [144]. To this aim, the access nodes and their underlying demands were simplified

and modeled as traffic generators [144]. These generators were considered with the PoPs as EN

potential locations. Table 3.6 depicts some characteristics of the scenarios mentioned above, such

1https://www2.telegeography.com/en/globalcomms-database-service
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as the numbers of candidate and access nodes per type as well as overall traffic demands per

service category.

Table 3.6: Network nodes and traffic distribution per region.

Region Candidate nodes Access nodes Total demands (Tbps)

EN PoP Radio Fixed Category 1 Category 2

City_1 13 12 10 22 2.67 17.93
City_2 12 12 11 21 2.34 14.62
Rural 33 0 16 20 6.34 15.66

We coded all solutions (e.g., exact and heuristics) proposed in this thesis using Python

programming language 3.7. The mathematical models were implemented in the Python-based

package Pyomo [145], and Gurobi [146] was selected as its underlying solver. All experiments

were performed on a computer with 64 GB of RAM and a 3.30 GHz Intel Core-i9 processor.

3.5.2 Models’ Performance

This subsection discusses the performance of the exact solutions envisioned for the UPP. We

selected the urban City_1 scenario for high-requirement services since it had more candidate

locations and traffic demands than City_2. Additionally, in this region, the effects of user mobility

on UPF relocations could be better appreciated because of the higher difference in the numbers of

radio and fixed access nodes (see Table 3.6) and smaller coverage radius than in the rural zones.

We compared the proposed models with two relevant studies on optimizing placement solu-

tions with reliability requirements. Specifically, the resilient controller placement (RCP) [147]

and the resilient capacitated controller placement problem (RCCPP) [137] were selected as

baselines. Both methods pursue optimization objectives similar to that of our models since they

aim to minimize the number of deployed instances (i.e., SDN controllers) subject to latency,

resilience, and capacity constraints. To adapt these benchmarks to the UPP, we considered the

SDN controllers and switches as UPFs and access nodes, respectively. For the RCCPP model, the

constraint associated with inter-controller delay was relaxed.

These solutions were evaluated using numerous metrics, such as the number of deployed

UPFs, UPF utilization, UPF relocations, and computational time. Some evaluation criteria, such

as UPF relocations, maximum delay, and load distribution, were measured only in the main

UPFs because the backups did not process traffic from their assigned access nodes under normal

network conditions. As the RCCPP solution does not distinguish primary from backup UPFs,

two variants were contemplated when analyzing RCCPP’s performance for metrics related to the

number of active instances. The first variant was RCCPP_total, which assumed that all UPFs

were active, whereas the other was called RCCPP_main and considered that the main UPF of an

ANN was its nearest one.
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We show results with a 95% confidence interval for these experiments, as estimated by

running the solutions 10 times on each evaluation scenario.

3.5.2.1 Number of UPFs

Figure 3.2 depicts the obtained results regarding the number of UPFs (total and active UPFs) for

all solutions under study. The models based on the backup capacity sharing approach (CMUP-

BS_M1 and CMUP-BS_M0) provided the best performance since they required the lowest number

of UPFs (see Fig. 3.2(a)). The CMUP-BS achieved reductions ranging from 25–40% compared to

the baselines for capacity values below 2 Tbps. This difference was more significant for small

values of processing capacity where the total number of deployed UPFs was higher. In contrast,

CMUP had the worst performance when the UPF capacity was high (Cu ≥ 2 Tbps) with an

additional UPF.
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Figure 3.2: Number of UPFs for different UPF capacity values.

All conceived solutions always required considerably fewer active UPFs than the benchmarks,

as illustrated in Fig. 3.2(b). In particular, CMUP and CMUP-BS decreased the number of

active UPFs in at least one to three instances compared to the established baselines. Thus, the

distinction between primary and backup UPFs provided significantly more energy savings since

backup UPFs could only be activated when failures occurred.

In general, the CMUP-BS method was more cost-effective than the other approaches since

it reduced the overall number of deployed UPFs by sharing the backup capacity. Specifically,

for these experiments, it met the reliability requirement of all access nodes by placing one

backup UPF. Furthermore, both variants of the proposed models –with and without mobility

considerations– always obtained similar results for all capacity values for the total and active

number of UPFs.
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3.5.2.2 UPF Utilization

Figure 3.3 represents UPF load distribution in the primary UPFs against various UPF processing

capacities for all analyzed solutions. It also includes the utilization distribution of the overall

number of UPFs deployed by the RCCPP model (RCCPP_total). As shown, the devised solutions

(CMUP and CMUP-BS) outperformed the baselines for all evaluated capacity values. Our models

provided a UPF average utilization between 50% and 90% with a characteristic imbalance below

25%. Conversely, the RCCPP_main and RCP benchmarks were characterized by lower utilization

in their primary UPFs, with typical values around 50%, while the average utilization provided by

RCCPP_total exceeded 90% of the UPF capacity most of the time. Furthermore, the RCCPP_main

and RCP baselines provided an uneven load distribution, with imbalance values ranging from

20–95%. This behavior was due to the reference models, which distributed traffic demands among

all deployed instances without UPF role differentiation.
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Figure 3.3: UPF utilization for different UPF capacity values.

These satisfactory outcomes in the devised models were partly due to the utilization of the α

factor, which restricted the assigned capacity in the main UPFs (see expression (3.11)), thereby

allowing for enhanced load distribution in the main UPFs. This factor was determined as a

function of the total traffic demands and the expected number of UPFs for each capacity value.

Overall, a decreasing trend in the primary UPF imbalance and average utilization with the

capacity rise was observed for all solutions.
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3.5.2.3 UPF Relocations

Figure 3.4 summarizes the average UPF relocation rates for all evaluated methods. As expected,

the mobility-aware placement approaches always obtained the best results. A remarkable dif-

ference in relocations was evident in the proposed models, despite possessing the same number

of active UPFs. More specifically, the CMUP_M1 and CMUP-BS_M1 solutions produced up to

50% and 60% fewer UPF relocations compared to CMUP_M0 and CMUP-BS_M0, respectively.

These results elucidate significant performance improvements when considering user mobility

requirements during the UPF placement planning. Subsequently, mobility-aware placement solu-

tions can guarantee enhanced QoE without additional deployment costs regarding the number of

deployed UPFs.
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Figure 3.4: UPF relocation rate for different UPF capacity values.

3.5.2.4 Maximum and Average Latency

Figure 3.5 provides the results regarding the worst and average propagation delay between

access nodes and their primary UPFs. The RCP model consistently obtained the best performance

for these metrics, with less than 30 µs and 15 µs in its maximum and average delays. This was

because the RCP solution was the only method that contemplated latency optimization in the

objective function. In contrast, the RCCPP_total and the CMUP-BS_M0 approaches had the

worst performance, with maximum values close to 80 µs. Nevertheless, this value was under the

established threshold required to meet the propagation delay budget in the segment ANN-UPF

(Lreq ≤ 100 µs in one way). Furthermore, the proposed models obtained similar outcomes to the

RCCPP baseline in terms of mean and maximum delays, despite having considerably fewer active

UPFs.
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Figure 3.5: Average and maximum delays in the segment ANN-UPF for different UPF capacity
values.

3.5.2.5 Execution Time

Figure 3.6 depicts the average execution times required by the envisioned models and the

selected benchmarks. The RCCPP and CMUP_M0 models provided the best performance with

average computational times of 1 s. In contrast, the mobility-aware approaches (CMUP_M1 and

CMUP-BS_M1) demanded the highest execution times with differences of up to three orders of

magnitude compared to the other models. This showed the main drawback of these approaches

since such high running times limit their applicability for online resource allocation in real

scenarios. Nevertheless, due to their remarkable performance in terms of relocation reductions,

they could be used to benchmark heuristic approaches or for planning phases. Moreover, no

significant difference between the solutions for no mobility considerations and the baselines was

observed most of the time.
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Figure 3.6: Execution times for different UPF capacity values.

62



3.5. EVALUATION AND RESULTS

No trend was noticed regarding the effects of UPF capacity on computational times. For

instance, models such as RCCPP, RCP, CMUP-BS_M1, and CMUP_M1 required the lowest

processing time for the smallest UPF capacity value, while the CMUP-BS_M0 and CMUP_M0

had their worst performance.

3.5.3 NOUP Performance

In this subsection, we evaluate the mobility and no-mobility considerations of the proposed

heuristic (NOUP_M0 and NOUP_M1) for the three simulation scenarios presented in Table 3.6,

as well as for both service categories. Since these categories have different service requirements,

the assignments of their demands to the UPFs were determined separately. Specifically, the

UPF placement problem was first solved for high-demand services, and after updating avail-

able resources in the underlying infrastructure, the second group of service placements was

addressed. The performance of NOUP was compared with both variants of the CMUP model (i.e.,

CMUP_M0 and CMUP_M1) in terms of the number of UPFs, UPF utilization, UPF relocations,

and computation time for several values of UPF capacity.

3.5.3.1 Number of UPFs

Figures 3.7 and 3.8 represent the total number of UPFs (main and backup) for each scenario

and service category. As shown in these figures, NOUP provided near-optimal performance.

Specifically, in urban scenarios, all solutions, both with and without mobility considerations,

deployed the same number of UPFs for both service categories and all analyzed values of UPF

capacity. The only exception was the low-demand category in the City_2 scenario for a UPF

capacity of 1.5 Tbps. In this scenario, NOUP_M1 required one UPF more than the other solutions.

We could believe that these satisfactory results are due to the shorter distance among ENs and

the higher number of neighboring candidates per ANN that characterize these regions.

Nevertheless, similar outcomes were acquired in the rural zones. Especially for high-demand

services, for which the latency budget was more restrictive, both heuristic variants (NOUP_M1

and NOUP_M0) consistently deployed the same number of UPFs, and their difference with the

optimal solution was at most one additional UPF for the lowest value of UPF capacity (Cu = 1

Tbps). For this use case, all solutions obtained more main UPFs than backups. This was due to

two isolated access nodes that could not be assigned to backup UPFs without violating placement

constraints (e.g., service latency and main-backup relationship).

Overall, a reduction in the number of deployed UPFs with UPF capacity can be appreciated.

This behavior was more noticeable for the low-demand category in rural areas since the latency

requirement was less constrictive. For this case study, the total number of main UPFs was

significantly smaller than high-demand services despite higher traffic demands. Furthermore,

the inclusion of user mobility considerations in the UPF placement solutions design did not

significantly alter the required number of UPFs.
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Figure 3.7: Number of UPFs versus UPF capacity for high-requirement services.
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Figure 3.8: Number of UPFs versus capacity for low-requirement services.
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3.5.3.2 UPF Utilization

Figure 3.9 depicts the results regarding the main UPF load distribution for the high-demand

service category. In urban scenarios, all solutions obtained similar utilization levels for all UPF

capacity values. Specifically, the load distribution among UPFs was relatively even, with less

than 25% in the maximum imbalance, and typical values around 10%. In contrast, the UPF

load in rural areas was significantly uneven, with a characteristic imbalance of at least 50%

and an average UPF utilization below 40%. This was due to isolated access nodes with low user

density and service demands. Furthermore, as seen in the figure, the imbalance and UPF average

utilization were reduced when UPF capacity increased. This behavior was evident in the City_1

and the rural scenario, where the number of UPFs remained constant most of the time.
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Figure 3.9: UPF utilization versus UPF capacity for high-requirement services.

Rural scenarios, where service demands are scattered, require a different provisioning ap-

proach from urban scenarios when planning UPF placement for services with restrictive require-

ments (e.g., latency). For instance, deploying UPFs with smaller processing capacities that are

scalable according to their underlying service demands may enhance the system’s performance

in terms of capacity utilization and imbalance. Therefore, we readjusted the UPFs capacity by

considering a granularity factor of 0.25 Tbps.

Figure 3.10(a) summarizes the results regarding the required number of UPFs for every value

of capacity considered. As shown in this figure, small processing values (i.e., 0.25 and 0.5 Tbps)
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were the most frequent, while a UPF capacity higher than 1.5 Tbps was not often required. This

was a general trend for all evaluated values of maximum capacity. The UPF utilization for the

customized UPF capacities is shown in Fig. 3.10(b). After readjustment, significant improvements

in the UPF utilization were achieved, with average values above 80% and most UPFs with loads

above 60%. However, the imbalance was still significant, ranging from 45–80% because some

isolated UPFs had few loads (around 20%). These results could have been improved by applying

a smaller granularity factor, such as 0.1 Tbps.
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(b) UPF utilization with adjusted capacity

Figure 3.10: Adjusted capacity and load distribution versus UPF maximum capacity for services
with high requirements in the rural scenario.

The load distribution for services belonging to the low-demand category is shown in Fig. 3.11.

All proposed solutions obtained similar results in all scenarios, with an average utilization above

95% and a characteristic imbalance below 25%. These utilization values indicated that most of

the UPFs were overloaded, although there were some exceptions (see outliers in Fig. 3.11) that

had less than 70% utilization. This metric could have been improved by reducing the α factor in

the UPF capacity. However, doing so would have increased the number of deployed UPFs.

Based upon these results, both solutions (i.e., NOUP and CMUP) for mobility and non-mobility

requirements provided similar results in terms of load distribution, regardless of the service

category or region under study.

3.5.3.3 UPF Relocations

The results regarding the relocation rate among the main UPFs for both service categories are

shown in Figs. 3.12 and 3.13. As seen in the figures, the best results were always provided

by placement solutions with mobility considerations (i.e., CMUP_M1 and NOUP_M1), while

CMUP_M0 and NOUP_M0 produced the highest amount of relocations. This difference between

user mobility and non-mobility-aware approaches was more noticeable for low-demand services,

for which the relocation rate was significantly higher due to a greater number of services with

mobility requirements and greater traffic demands. Specifically, for this use case, CMUP_M1
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(a) City_1 scenario.
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(b) City_2 scenario.
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(c) Rural scenario.

Figure 3.11: UPF utilization versus capacity for low-requirement services.

and NOUP_M1 reduced the relocation rates up to 72% and 57%, respectively, compared to their

variants for non-mobility considerations.

For high-demand services in urban scenarios, the performance of NOUP_M1 was close to

that of the optimal CMUP_M1. Conversely, a higher gap between these approaches was observed

during the UPF placement for low-demand services. This was due to different placement con-

ditions (available candidates) since a sequential placement approach was adopted during their

evaluation, beginning with the most demanding services.

Notable reductions in the UPF relocation rate were attained when implementing user

mobility-aware UPF placement solutions. Moreover, these metric values were usually decre-

mented along with the number of deployed UPFs as the processing capacity increased. This is

seen in Fig. 3.12(b); the occurrence of UPF relocations was completely avoided for Cu = 2.5 Tbps

due to the existence of a unique UPF. Nonetheless, some exceptions to this behavior occurred,

especially in the rural scenario for high-requirement services, for which the UPF relocation rates

were incremented for NOUP_M1 and Cu ≥ 2 Tbps.

Based upon these outcomes, a lower number of deployed UPFs does not necessarily imply

fewer relocations. Instead, contemplating user mobility patterns when planning the UPF service

area is critical.
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Figure 3.12: UPF relocation rate versus UPF capacity for high-requirement services.

3.5.3.4 Execution Time

Table 3.7 summarizes the execution times, in seconds, of the proposed heuristic and CMUP model

for every scenario, service category, and UPF capacity considered in the simulations. As seen

in this table, the NOUP solution consistently outperformed the ILP model for both variants

(mobility and non-mobility considerations) with outstanding reductions in the computation times.

Specifically, when compared to CMUP_M0, NOUP provided reductions ranging from 55% up

to 95% and 35% to 45% for high-requirement services in urban and rural zones, respectively.

Similar outcomes were achieved for the second group of services, with decreases in computing

times between 70% and 85% for urban scenarios and 22% to 55% for the rural scenarios.

Moreover, the introduction of mobility requirements did not produce remarkable variations

in the computation times of the heuristic approach. In contrast, these requirements severely

impacted the CMUP_M1 exact solution as the number of combinations drastically increased

when forming the UPF service areas. A notable difference in the execution times of both models

was observed. Specifically, the solution time of CMUP_M1 was in the order of hundreds or even

thousands of seconds, while CMUP_M0 barely required more than 1 s. These results disproved the

CMUP_M1 model as a feasible solution for solving the mobility-aware UPF placement problem

in practical scenarios and validated the necessity of heuristic-based approaches. Regarding the
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Figure 3.13: UPF relocation rate versus capacity for low-requirement services.

Table 3.7: Execution times (s) for different values of UPF capacity.

Region Method UPF capacity (Tbps)

Group 1 Group 2

1.0 1.5 2.0 2.5 1.5 2.0 2.5

City_1 CMUP_M0 3.41 0.37 0.43 0.45 1.11 1.18 0.47
CMUP_M1 10,428 8352 5370 940 244 190 121
NOUP_M0 0.11 0.11 0.11 0.12 0.17 0.17 0.10
NOUP_M1 0.16 0.14 0.15 0.13 0.21 0.16 0.13

City_2 CMUP_M0 3.16 0.43 0.45 0.38 0.56 0.52 0.48
CMUP_M1 36,065 17192 4757 5.73 1420 176 30,058
NOUP_M0 0.10 0.12 0.14 0.08 0.17 0.11 0.09
NOUP_M1 0.12 0.14 0.14 0.14 0.16 0.14 0.12

Rural CMUP_M0 0.61 0.59 0.52 0.57 0.58 0.51 0.32
CMUP_M1 13.30 13.15 13.04 13.13 20,440 182,811 526
NOUP_M0 0.37 0.36 0.33 0.29 0.33 0.25 0.09
NOUP_M1 0.40 0.29 0.33 0.31 0.56 0.43 0.18

effects of UPF maximum capacity on the solution computation times, no significant difference

was detected for the first group of services. For the second category, however, the execution time

slightly decreased with capacity growth.
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3.6 Conclusion

This chapter presented two ILP models and a heuristic-based solution to address the UPF

placement problem in an MEC environment under limited resources and stringent service

demands. These solutions aim to reduce the number of deployed UPF instances and their

relocations while considering latency, reliability, and mobility service requirements. Achieving

these aims will allow service providers and network operators to plan their infrastructure and

available resources cost-effectively when deploying UPFs.

Extensive simulations and experiments were conducted to evaluate the solutions’ performance.

Overall, the proposed CMUP and CMUP-BS models evidenced a significant decrease in active

UPFs compared with the baselines. This outcome was due to the distinction between UPF roles

(i.e., main and backup). Moreover, CMUP-BS considerably reduced the overall number of deployed

UPFs by sharing the capacity of the backup UPFs. Specifically, it required up to 40% fewer UPFs

than the other models.

Additionally, the proposed mathematical models provided better load distribution concerning

imbalance and average utilization metrics, partly due to the introduction of the alpha factor in the

primary UPFs. Regarding the effects of user mobility on the UPF placement, the mobility-aware

variants (i.e., CMUP_M1 and CMUP-BS_M1) outperformed their analogous, with remarkable

reductions in the number of UPF relocations. Moreover, they demonstrated that the user QoE

could be enhanced without incurring additional deployment costs regarding the number of

deployed UPFs by accounting for user mobility patterns. However, this improvement was made

at the expense of a dramatic increase in running times, therefore discarding the possibility of

using mobility-aware models for online placement applications.

The NOUP algorithm obtained satisfactory results with near-optimal performance, especially

in urban scenarios. The worst-case scenario required only one additional UPF compared to the

optimal solution. Furthermore, NOUP’s approach to mobility considerations provided outstanding

reductions in the computation time compared to the mobility-aware models (i.e., CMUP_M1).

Therefore, the obtained results showcased the ability of the proposed approaches to attain their

objectives.
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This chapter is based on:

• I. Leyva-Pupo, C. Cervelló-Pastor, C. Anagnostopoulos, and D. P. Pezaros, "Dynamic

Scheduling and Optimal Reconfiguration of UPF Placement in 5G Networks," in

Proceedings of the 23rd International ACM Conference on Modeling, Analysis and

Simulation of Wireless and Mobile Systems (ACM MSWIM’20), Alicante, Spain, Nov.

2020, Association for Computing Machinery, pp. 103-111, 2020.

MEC technology significantly reduces network response times and backhaul utilization

since network functions and service applications are closer to the end users. However,

this technology also presents new challenges for dynamic network function placement

and resource management. ENs have limited resources (networking and computing) and thus

host network functions with smaller processing capacities and service areas. The latter and the

presence of highly mobile users increase the likelihood of QoS degradation events, such as UPF

relocations and service latency violations. Thus, frequent and dynamic readjustment of the UPF

placement and UPFs’ assigned PDU sessions may be required to ensure satisfactory QoS levels.

However, placement reevaluation events may produce additional delays in the sessions’ data

path and service interruptions due to UPF migration and session relocations.

Designing strategies to optimize the UPF placement and reconfiguration (UPR) dynamically

is crucial for addressing this challenge. Therefore, this chapter presents a multi-objective ILP

solution for determining the optimal UPF placement and PDU session assignment. This model

aims to reduce operational and deployment expenditures (e.g., migration and routing costs)

while ensuring service requirements and avoiding QoS degradation (i.e., session relocations).

Additionally, a scheduling mechanism based on OST is presented to determine the optimal
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reconfiguration time concerning QoS levels as measured in the instantaneous number of sessions

with latency violations.

The remainder of this chapter is organized as follows. In Section 4.1, the UPR problem is

presented along with a mathematical model proposed to solve the problem. Similarly, Section 4.2

introduces the conceived strategy for dynamically scheduling the UPR. In Section 4.3, we evaluate

and discuss the performance of the proposed solutions. Finally, we highlight the main conclusions

of this chapter in Section 4.4.

4.1 Optimal UPF Placement Reconfiguration

This section introduces the UPR problem. The problem is formulated as a multi-objective ILP

model aimed at minimizing expenditures related to the UPF placement readjustment, guar-

anteeing service demands, and reducing service disruptions due to session relocations during

reconfigurations.

4.1.1 Problem Statement

Given a placement configuration in which multiple UPF instances have been located in different

EN locations and in which PDU session requests were mapped to these UPFs according to service

demands and available resources, we must consider certain variations over time in their initial

configuration due to user mobility and traffic demands. For instance, network response times may

increase as users move, implying QoS degradation and higher routing costs for network operators.

Under these circumstances, readjusting the current UPF placement and service request mapping

configuration may be required to re-establish QoS satisfaction. However, this reconfiguration

must be carefully set due to the multiple combinations and trade-offs.

Thus, we address the problem of finding optimal 5G UPF placement and user request mapping

setup in a dynamic MEC system to enhance the system QoS. This new configuration must also

use the infrastructure’s available resources cost-effectively and avoid additional QoS degradation

due to session relocations.

4.1.1.1 Network Model

We consider a 5G network represented by graph G(N,E,S), where N, E, and S denote the sets of

nodes, links, and active PDU sessions, respectively. The set of network nodes comprises access

nodes (Nr), aggregation points (APs) (Na), and UPF candidate locations (Nc). Additionally, U

represents the set of already deployed UPF instances.

A PDU session s ∈ S is characterized by a latency requirement (Ls
ser), a minimum number of

UPFs (V us) which must be assigned to satisfy the service reliability levels, and resource demands

(ds), such as CPU and memory. Moreover, Cuc indicates the maximum UPF processing capacity

associated with a given candidate location, whereas Tu denotes the UPF maximum processing
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time. For simplicity, we assume that all links have sufficient bandwidth capacity to process their

assigned traffic. Tables 4.1 and 4.2 showcase the used notations and their descriptions.

Table 4.1: Used notation for sets and parameters.

Notation Description

E Set of network links
N Set of network nodes
Na Set of aggregation points
Nr Set of access nodes
Nc Set of UPF potential locations (e.g., MEC servers)
U Set of already deployed UPFs
S Set of PDU session requests
Ls

ser Service latency requirement of PDU session s ∈ S
Ls

ra Propagation delay between ANN r ∈ Nr of PDU session s ∈ S and its AP a ∈ Na
Ls

ac Propagation delay between AP a ∈ Na of PDU session s ∈ S and candidate c ∈ Nc
Ts

proc Processing time in the data path of PDU session s ∈ S
Ts

prop Propagation time in the data path of PDU session s ∈ S
V us Number of UPFs required for PDU session s ∈ S
ds Computing resources required by PDU session s ∈ S
Cuc UPF processing capacity (e.g., CPU and RAM) associated with candidate c ∈ Nc
Fdc Cost of installing a UPF in location c ∈ Nc
Foc Cost of running a UPF in location c ∈ Nc
Ftac Cost of routing associated to link ac, a ∈ Na and c ∈ Nc
Fmc′c Cost of migrating a UPF from location c to c′ ∈ Nc
Frs Cost of reassigning a PDU session s ∈ S
Ps

c 1 if PDU session s ∈ S had a UPF in c ∈ Nc before the reconfiguration
X c 1 if there was a UPF deployed in node c ∈ Nc before the reconfiguration
V u

c 1 if UPF u ∈U was deployed in location c ∈ Nc

Table 4.2: Used notation for binary variables.

Notation Description

xc 1 if there is a UPF deployed at location c ∈ Nc
hc 1 if it has been a change in location c ∈ Nc
nc 1 if a new UPF has been deployed in location c ∈ Nc
δc 1 if there is a UPF deployed in location c ∈ Nc
vu

c 1 if UPF u ∈U is deployed in location c ∈ Nc
mu

c′c 1 if UPF u ∈U located in c′ is migrated to c ∈ Nc
ps

c 1 if PDU session s ∈ S is assigned to a UPF in c ∈ Nc

4.1.2 Model: Optimal Cost-aware UPF Placement Reconfiguration

The cost-aware UPF placement reconfiguration (CUPR) model aims to reduce capital and opera-

tional expenditures associated with UPR events. To this aim, the following cost components have

been considered:
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• Deployment cost (Cdep): Encompasses costs associated with the deployment of new UPFs.

Cdep = ∑
c∈Nc

Fdc ·nc (4.1)

• Running cost (Crun): Includes costs related to UPF operation and is expressed in terms of

the number of deployed UPFs.

Crun = ∑
c∈Nc

Foc · xc (4.2)

• Routing cost (Crou): Deals with the cost of routing PDU sessions traffic from their APs to

their assigned UPFs. The network response time can be improved by reducing the value of

this component since it is expressed in terms of the propagation delays (Lac).

Crou = ∑
c∈Nc

∑
a∈Na

∑
s∈S

Ftac ·Ls
ac · ps

c (4.3)

• Migration cost (Cmig): Expresses the cost of migrating UPF instances from one location

to another. This cost is determined by considering already deployed UPFs (U) at the

reconfiguration time.

Cmig =
∑

c∈Nc

∑
c′∈Nc

∑
u∈U

Fmc′c ·mu
c′c (4.4)

• Reassignment cost (Crea): Embraces expenditures related to the relocation of service

sessions during the placement reconfiguration. Specifically, this solution is expressed

as a penalty (Frs) applied to service providers for interrupting PDU sessions due to

reconfiguration events. Different penalties can be applied depending on user subscriptions

and service types. The reassignment of a PDU session is indicated by a change in the

location of its assigned UPFs, [ps
c −Ps

c]+ where [ f (x)]+ = max{ f (x),0}. Thus, the previous

expression equals 1 when a session is assigned to a UPF placed at a different location from

its location prior to the reconfiguration.

Crea = ∑
c∈Nc

∑
s∈S

Frs · [ps
c −Ps

c]+ (4.5)

The CUPR model seeks to minimize the above-mentioned cost components’ effects when

readjusting the UPF placement and mapping configuration. However, given its multi-objective

nature and conflicting objectives, such as optimization of UPF operation and routing costs, a

trade-off among these terms has to be defined when solving the UPR problem. Therefore, we

adopt a weighted sum method to transform the problem into a mono-objective optimization

problem. A weight factor (αi) can be associated with each optimization term to specify its relative
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importance in the overall objective function. Additionally, these terms should be normalized to

avoid dominant effects. Thus, the CUPR model can be formulated as follows:

Min: α1 ·
∑

c∈Nc

Fdc ·nc +α2 ·
∑

c∈Nc

Foc · xc +α3 ·
∑

c∈Nc

∑
a∈Na

∑
s∈S

Ftac ·Ls
ac · ps

c+

α4 ·
∑

c∈Nc

∑
c′∈Nc

∑
u∈U

Fmc′c ·mu
c′c +α5 ·

∑
c∈Nc

∑
s∈S

Frs · [ps
c −Ps

c]+ (4.6)

subject to the below constraints.

Each PDU session request must be mapped to a minimum number of UPFs (V us) to provide

service while guaranteeing reliability. The value of the V us parameter can be established by the

network operator or determined using (3.1).∑
c∈Nc

ps
c ≥V us ∀s ∈ S (4.7)

Constraint (4.8) restricts the assignment of PDU sessions to those candidate locations where

UPF instances are deployed. Namely, a PDU session s ∈ S cannot be assigned to a candidate

location c ∈ Nc if no UPF is deployed. Additionally, inequality (4.9) prevents the deployment of

empty UPFs by ensuring that all UPF instances have some sessions assigned.

ps
c ≤ xc ∀s ∈ S,∀c ∈ Nc (4.8)

xc ≤
∑
s∈S

ps
c ∀c ∈ Nc (4.9)

Expression (4.10) stipulates that the service demands assigned to a UPF instance cannot

exceed the physical resources available at its associated location.∑
s∈S

ds · ps
c ≤ Cuc ∀c ∈ Nc (4.10)

As stated previously, the occurrence of UPF migrations is determined by considering the

set of UPFs already instantiated at the reconfiguration time. In this regard, expression (4.11)

indicates whether a UPF has been migrated from a source location c ∈ Nc to a target candidate

c′ ∈ Nc. Moreover, constraint (4.12) expresses that a UPF instance can be migrated once during a

placement readjustment event at most.

mu
c′c = vu

c ∧V u
c′ ∀u ∈U ,∀c′, c ∈ Nc, c′ ̸= c (4.11)∑

c∈Nc

∑
c′∈Nc

mu
c′c ≤ 1 ∀u ∈U (4.12)

The set of already UPFs deployed before the reconfiguration event cannot increase in size

due to a placement reevaluation. More specifically, the number of UPF instances forming this

set (u ∈U) either remains constant or decreases with the removal of some UPFs. However, new

instances cannot be added to this set during reconfiguration. This distinction avoids mistakenly

interpreting new deployments as existing ones during the model implementation.∑
c∈Nc

∑
u∈U

vu
c ≤ |U | (4.13)
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The presence of a UPF at a given location can be the result of a new deployment or a UPF’s

deployment during previous placement events, such as an initial placement or a reconfiguration.

The latter may be because the UPF did not change its location or migrated to this location during

reconfiguration.

xc = 1⇒ nc ⊻
∑

u∈U
vu

c = 1 ∀c ∈ Nc (4.14)

Constraint (4.14) is not linear. However, it can be expressed in a linear form with the help of

the binary variable δc. This variable indicates the presence of an already deployed UPF u ∈U at

a given location c ∈ Nc.

nc +δc ≤ 2− xc ∀c ∈ Nc (4.15)

nc +δc ≥ xc ∀c ∈ Nc (4.16)∑
u∈U

vu
c ≥ δc ∀c ∈ Nc (4.17)∑

u∈U
vu

c ≤ |U | ·δc ∀c ∈ Nc (4.18)

Expressions (4.19) and (4.20) are related to the detection of changes with negative impact

concerning the reconfiguration cost in the candidate locations. In particular, constraint (4.19)

indicates that a negative change at a given location is produced by a new UPF deployment or

the migration of an existing instance to the candidate. A change in a candidate is determined

by comparing its current state with the one it had before the placement readjustment in terms

of deployed UPFs, hc = [xc − X c]+. We omit changes regarding the removal of UPF instances.

Additionally, inequality (4.20) restricts the type of change in the candidate nodes. Specifically, a

variation in a candidate is caused by a new deployment or migration, but not for both reasons

simultaneously.

hc = nc ⊻
∑

c′∈Nc

∑
u∈U

mu
c′c ∀c ∈ Nc (4.19)

nc +
∑

c′∈Nc

∑
u∈U

mu
c′c ≤ 1 ∀c ∈ Nc (4.20)

To keep the linearity of the model, constraint (4.19) can be replaced by the following expres-

sions:

hc ≤
∑

c′∈Nc

∑
u∈U

mu
c′c +nc ∀c ∈ Nc (4.21)

hc ≥
∑

c′∈Nc

∑
u∈U

mu
c′c −nc ∀c ∈ Nc (4.22)

hc ≥ nc −
∑

c′∈Nc

∑
u∈U

mu
c′c ∀c ∈ Nc (4.23)

hc ≤ 2−nc −
∑

c′∈Nc

∑
u∈U

mu
c′c ∀c ∈ Nc (4.24)
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Inequality (4.25) guarantees service latency requirements by forcing the mapping of PDU

sessions to those candidates capable of meeting the round trip user plane delay. The latency of

a PDU session is computed regarding the processing time (Ts
proc) of the network elements that

form its data path and the propagation delay (Ts
prop) between the elements.

Ts
proc +Ts

prop ≤ Ls
serv ∀s ∈ S,∀c ∈ Nc (4.25)

where Ts
proc = 2 · (Ts

r +Ts
a+Tu · ps

c)+Td and Ts
prop = 2 · (Ls

ra+Ls
ac · ps

c+Ls
cd). The terms Ts

r , Ts
a,

Tu, and Td represent the processing time of access nodes, APs, UPFs, and DNs whereas Ls
ra, Ls

ac

and Ls
cd indicate the propagation delays in the segments between them. In this study, application

servers and UPFs are assumed to be co-located in the ENs. Thus the propagation delay in the

segment UPF-DN is neglected (Ls
cd = 0).

The binary nature of the used variables is indicated below:

xc,hc,nc,vu
c ,mu

c′c, ps
c ∈ {0,1} ∀s ∈ S,∀u ∈U ,∀c, c′ ∈ Nc (4.26)

Thereby, the conceived ILP model for the UPRP can be summarized as follows:

Min α1 ·Cdep +α2 ·Crun +α3 ·Crou +α4 ·Cmig +α5 ·Crea

s. t.:∑
c∈Nc

ps
c ≥V us ∀s ∈ S

ps
c ≤ xc ∀s ∈ S,∀c ∈ Nc

xc ≤
∑
s∈S

ps
c ∀c ∈ Nc∑

s∈S
ds · ps

c ≤ Cuc ∀c ∈ Nc

mu
c′c = vu

c′ ∧V u
c ∀u ∈U ,∀c, c′ ∈ Nc, c′ ̸= c∑

c∈Nc

∑
c′∈Nc

mu
c′c ≤ 1 ∀u ∈U

∑
c∈Nc

∑
u∈U

vu
c ≤ |U |

nc +δc ≤ 2− xc ∀c ∈ Nc

nc +δc ≥ xc ∀c ∈ Nc∑
u∈U

vu
c ≥ δc ∀c ∈ Nc∑

u∈U
vu

c ≤ |U | ·δc ∀c ∈ Nc

hc ≤
∑

c′∈Nc

∑
u∈U

mu
c′c +nc ∀c ∈ Nc

hc ≥
∑

c′∈Nc

∑
u∈U

mu
c′c −nc ∀c ∈ Nc
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hc ≥ nc −
∑

c′∈Nc

∑
u∈U

mu
c′c ∀c ∈ Nc

hc ≤ 2−nc −
∑

c′∈Nc

∑
u∈U

mu
c′c ∀c ∈ Nc

nc +
∑

c′∈Nc

∑
u∈U

mu
c′c ≤ 1 ∀c ∈ Nc

Ts
proc +Ts

prop ≤ Ls
serv ∀s ∈ S,∀c ∈ Nc

xc,hc,nc,vu
c ,mu

c′c, ps
c ∈ {0,1} ∀s ∈ S,∀u ∈U ,∀c, c′ ∈ Nc

4.2 Dynamic Scheduling for the UPR

This section presents a scheduling mechanism to determine the best time for the UPR. First, we

formulate the problem as an optimal stopping problem (OSP) called skeptical scheduling of the

reconfiguration (SSR). The optimal reconfiguration time is determined according to QoS metrics

(i.e., number of sessions with latency violations) and OST principles. This section also provides

some OST-related fundamentals and an optimal stopping rule for the SSR problem are provided.

4.2.1 Problem Statement: Skeptical Scheduling of the Reconfiguration

In dynamic mobile environments, placement conditions vary with user locations over time. This

dynamism implies that an optimal placement configuration, determined under certain conditions,

may no longer be optimal or feasible as time passes. For example, at a given instant, a placement

event, either initial or reconfiguration, is executed, and all the PDU sessions are satisfactorily

mapped to a given number of UPFs according to their service requirements (e.g., latency and

processing demand). However, as users move, their access nodes change, and therefore, their

perceived network response time also varies. The perceived delay may vary due to numerous

factors, such as relocation of the assigned UPFs or a simple modification in the data path. These

data path modifications may deteriorate the QoS when the distance between users and their

assigned UPFs (propagation delay) increases and a nearby UPF is not available to provide the

service. Specifically, a service latency violation occurs when the user plane response time of a

PDU session surpasses its service latency requirement (i.e., Ls > Ls
serv).

Thus, we define Is
t ∈ [0,1] as a random variable indicating whether the QoS of a PDU session

s ∈ S is poor or not due to service latency violation at a given time t.

Is
t =

{
1 if the service latency requirement of session s ∈ S is exceeded at instant t

0 otherwise

Thereby, at time t, the total number of PDU sessions with latency violations (L t) can be

expressed as:

L t =
∑
s∈S

Is
t (4.27)
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A UPF placement is no longer optimal when users have poor QoS (L t ̸= 0). In this case,

reevaluation of the UPF placement configuration is required to re-establish the desired QoS level.

However, reconfiguration events are not only resource and time-consuming but may occasion

additional delays or even service interruption. Moreover, these events may increase expenditures

due to the deployment of new UPFs, the migration of existing instances, and the reassignment

of PDU sessions. Subsequently, unnecessary and frequent placement re-computations must be

avoided as much as possible, triggered only when needed. Therefore, the problem of deciding the

optimal readjustment time to reduce reconfiguration adverse effects must be determined while

maintaining the overall QoS under proper values.

Therefore we assume that at each time t, the system can tolerate a maximum number of la-

tency violations denoted as Θ (Θ> 0) without needing to execute a reconfiguration event. Namely,

the offered QoS is considered acceptable, and no placement readjustment is required as long as

the number of sessions with latency violations does not surpass the Θ threshold. In contrast,

violating this threshold deteriorates the system QoS, rendering a new placement reconfiguration

mandatory. As mentioned previously, a readjustment event implies a reconfiguration cost, which

is defined as a function of the expected number of affected sessions (E[Sr]) due to the reconfigu-

ration procedure; see (4.28). The service providers can establish the Θ parameter according to

specific service-level agreements regarding application types and user profiles.

E[Sr]= ∑
c∈Nc

∑
s∈S

[ps
c −Ps

c]+ ·P(ps
c ̸= Ps

c) (4.28)

The main objective of the SSR problem is determining in advance when the system is about

to exceed the established QoS threshold so that UPF placement can be readjusted to avoid

QoS deterioration, as well as frequent reconfiguration events. In other words, at each instant,

the system tries to tolerate as many sessions with latency violations as possible as long as the

QoS is kept under acceptable levels to delay or even avoid reconfiguration procedures. When

the Θ parameter is exceeded, a placement reevaluation event is activated, thus incurring an

expected reconfiguration cost. Accordingly, we represent the decision process for the placement

reconfiguration as the following reward function:

Yt(L t)=
{

L t if L t ≤Θ
−λ ·E[Sr] if L t >Θ

(4.29)

where the weight factor λ indicates the importance of the reconfiguration cost (i.e., E[Sr]) to

the reward function.

Our aim with the SSR problem is determining the optimal time t∗ when it is worthy of

stopping observing the selected QoS metric denoted by the L t parameter and reconfiguring the

UPF placement. In other words, we need to determine the stopping rule that maximizes the

expected reward function in (4.29). Therefore, we can formulate the SSR problem as follows:

Problem 1. Given a sequence of events defined by the L t parameter, a maximum QoS tolerance

threshold Θ, and an expected reconfiguration cost E[Sr], the SSR problem seeks the optimal
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decision epoch t∗ where the supremum of Yt is attained:

sup
t≥0

E[Yt(L t)] (4.30)

4.2.2 Solution Fundamentals

The SSR problem belongs to the group of OSPs with infinite horizons where, at each time interval

or decision epoch t, we must make one of the following decisions: (i) continue to the next time slot

(t+1) and do not reconfigure the placement or, (ii) stop and readjust the placement.

The theory of optimal stopping is concerned with the problem of choosing a time to take a

given action based on sequentially observed random variables to maximize an expected payoff or

minimize an expected cost [122]. OSPs are characterized by a sequence of observations X1, X2,

. . . , X t whose joint distribution is assumed to be known, as well as a sequence of reward or cost

functions Y1, Y2, . . . , Yt, where Yt = yt(x1, x2, . . . , xt). Thus, an OSP can be defined as follows. A

decision-maker or agent observes a sequence of random variables (X1, X2, . . . , X t) and, at each

time t, must decide whether to stop observing and receive a reward Yt (or cost) or continue and

observe the next variable (X t+1) [122]. The objective is to stop observing at the best time t∗ for

which the expected payoff is maximized or the expected cost is minimized.

Due to its simplicity and efficiency, an approach widely used to solve OSPs is the one-stage-

look ahead (1-SLA) rule, also referred to as the myopic rule. This rule indicates at each decision

epoch t whether to stop or continue based on the expected value of the reward/loss function in

the next time epoch (t+1). Specifically, for OSPs aimed at maximizing an expected reward, the

1-SLA rule calls for stopping at the first time t for which the payoff Yt for stopping is at least

as good as the expected reward for continuing to the next stage and then stopping. Thus, the

decision-making at each epoch depends only on the current observations and the expected reward

in the next stage. Mathematically, the 1-SLA rule can be defined as follows:

Definition 1. For stopping problems, aimed at maximizing an expected payoff Yt, the 1-SLA rule

is described by the stopping time

t∗ = inf {t ≥ 0 : Yt ≥ E[Yt+1|Ft]} (4.31)

where Ft is the σ-fields generated by the observations X1, X2, . . . , X t. Specifically, it represents

the knowledge of the random variable X t up to time t.

Generally, the 1-SLA rule is not optimal [148]. However, it has been demonstrated to be

optimal in monotone-stopping problems (see [122]).

Definition 2. Let At denote the event {Yt ≥ E(Yt+1|Ft)}. The stopping problem is monotone if the

sets At are monotone non-decreasing, i.e., A0 ⊂ A1 ⊂ A2 . . . almost surely (a.s.).
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A monotone stopping rule problem can be described as follows: If the 1-SLA rule calls for

stopping at time t due to event At, then it will also call for stopping at all future stages (e.g., t+1,

t+2, . . . ) regardless of the value of the future observations, since At ⊂ At+1 ⊂ At+2 . . .

Theorem 1. The 1-SLA rule is optimal in monotone-stopping rule problems.

Proof. Refer to Chapter 5 of [122] for more details. ■

4.2.3 Optimal Skeptical Scheduling of the Reconfiguration

This subsection proposes an optimal stopping rule for the SRR problem based on the 1-SLA rule.

This section also shows the optimality of this rule.

Theorem 2. Given an upper bound Θ upon which the system QoS is considered to deteriorate

and a sequence of latency violations L1,L2, . . . , L t concerning the last optimal UPF placement

(L0 = 0), the optimal reconfiguration time (stopping time) t∗ for the SSR problem stated in (4.30)

is defined as:

t∗ = inf {t ≥ 0 :
Θ∑

l=0
l ·P(L = l)−λ ·E[Sr] · (1−

Θ∑
l=0

P(L = l))≤ L t} (4.32)

where P(L = l) and
Θ∑

l=0
P(L = l) denote the probability mass function (PMF) and cumulative

distribution function (CDF), respectively, of the random variable L t defined in (4.27).

Proof. Given that L t ≤Θ, the conditional expectation of Yt+1 (i.e., E[Yt+1|L t ≤Θ]) is given by

E[Yt+1|L t ≤Θ]=E[L t+1|L t ≤Θ,L t+1 ≤Θ] ·P(L t+1 ≤Θ)−E[λ ·E[Sr]|L t ≤Θ,L t+1>Θ] ·P(L t+1>Θ)

=E[L t+1|L t+1≤Θ] ·P(L t+1 ≤Θ)−E[λ ·E[Sr]|L t+1 >Θ] · (1−·P(L t+1≤Θ))

=
Θ∑

l=0
l ·P(L = l)−λ ·E[Sr] · (1−

Θ∑
l=0

P(L = l))

Thus, by comparing the current reward, Yt(L t)= L t, with the one expected at the next stage,

we find that the UPF placement readjustment must be triggered at the first time instance t such

that E[Yt+1|L t ≤Θ]≤ L t. ■

According to Theorem 2, the UPF placement must be readjusted at the first time t ≥ 0 where

condition (4.32) is met since, at this moment, the supremum of the expected reward defined in

(4.29) is attained. Based on Theorem 1, the 1-SLA stopping rule proposed in Theorem 2 is optimal

for the SSR problem, as long as the problem is monotone.

Theorem 3. For the SSR problem, the 1-SLA presented in (4.32) is optimal and maximizes the

expected reward defined in (4.29).
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Proof. The SSR problem in (4.30) is monotone when the difference between the expected and

current rewards (E[Yt+1|L t ≤ Θ]−Yt(L t)) is non-increasing with L t. The latter is satisfied if

the E[Yt+1|L t ≤ Θ] is non-increasing and Yt(L t) is non-decreasing. Given that the left side of

expression (4.32) remains constant and its right side increases over L t as long as the number

of sessions with latency violations do not exceed the established QoS threshold (L t ≤ Θ), the

difference E[Yt+1|L t ≤Θ]−Yt(L t) is not increasing. Therefore, the 1-SLA rule proposed in (4.32)

is optimal for the SSR problem. ■

We assume that, at each instant, an agent is measuring the offered QoS and verifying

condition (4.32) to determine when to readjust the UPF placement. Thus, a UPF placement

reconfiguration will be triggered at the first time instant t where the current reward (Yt = L t)

is at least as good as the expected reward at the next observation (Yt ≥ E[Yt+1]). In the case of

overpassing the QoS threshold (L t >Θ), a placement reconfiguration is immediately triggered.

After each reconfiguration event, the decision process is restarted with t = 0 and L0 = 0.

4.3 Evaluation and Results

This section presents the simulation results obtained for the proposed solutions (i.e., UPR model

and SSR scheduler). It begins by describing the simulation setup used during the conducted

experiments. Afterward, we investigate the effects of the conceived solution for placement

reconfiguration by considering various sets of weight factors. Finally, we evaluate the performance

of the SSR mechanism and compare its behavior against three baselines.

4.3.1 Simulation Setup

The performance of the envisioned solutions for the dynamic UPR was evaluated in a medium-

scale 5G scenario of 5x5 km2. This setup represented an urban city in a MEC ecosystem in which

edge nodes and aggregation points were co-located along with access nodes. The access nodes

had different coverage radii according to their location in the city. In dense areas, the inter-site

distance was 200 m, while they were spaced 500 m apart in less-populated regions. Additionally,

13 MEC servers with a coverage radius of 1 km and a processing capacity of 15 CPUs were

available to host UPFs. We assumed that the topology of the AP was a full mesh where every AP

had a direct link with the others.

For the service demands, we considered 1000 users, each one with an active PDU session.

These sessions require just one UPF and 0.1 CPU to be served and have a service latency

requirement of 1 ms. The users represented vehicles whose mobility was modeled in a downtown

model using the mobility patterns generator CityMob1. In this model, the vehicle’s traffic density

was not uniformly distributed but was higher in downtown, where the users move more slowly

1http://www.grc.upv.es/Software/oldsw/citymob/citymob.rar
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than in the outskirts of the city [149]. Table 4.3 summarizes the parameters required by the

CityMob program and their specified values.

Table 4.3: Simulation parameters used in CityMob.

Notation Description Value

m Mobility model 31

n Number of users 1000
t Simulation time (s) 60000
s Maximum speed of the users (m/s) 40
d Distance between streets or block sizes (m) 100
w x d Dimensions of the grid (km2) 5x5
a Number of accidents 0
x, y, X, Y Downtown limits (km) 1, 1, 2, 2
p Probability of starting a user located in the downtown 0.45

1 The m parameter takes numeric values to indicate the mobility model (e.g.,
m = 3 for the downtown model).

The initial UPF placement and their assigned PDU sessions were determined using the

UPR model by removing the terms that depend on previous time instances (i.e., migration and

reassignment costs) from the objective function and setting the indicators Ps
c , X c, and V u

c at

zero. Specifically, we considered the following weight factors α1 = 0.3, α2 = 0.3, and α3 = 0.4 for

the deployment, running, and routing costs, respectively. Table 4.4 provides the values of the

simulation parameters used for the UPR problem.

Table 4.4: Simulation parameters for the UPR.

Notation Description Value

Nc Set of candidate locations (i.e., ENs) 13
Nr Set of access nodes 121
Na Set of aggregation points 13
U Set of already deployed UPFs 7
S Set of PDU sessions 1000
Tr RTT delay in the RAN (µs) 500
Tu Processing time of UPFs (µs) 100
Ta Processing time of AP (µs) 15
Td Processing time of DN (µs) 100
– Propagation delay in optical links (µs/km) 5
– Number of gNBs per MEC server [8,10]
Ls

ser Service latency requirement of a PDU session (ms) 1
ds Computing demand of a PDU session (CPU) 0.1
Cuc Capacity of a UPF (CPU) 15

4.3.2 UPR Solution Performance

This subsection evaluates the performance of the proposed ILP model for the UPF placement

reconfiguration. It focuses on the results provided by the optimization objectives under study by
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analyzing their associated costs and their effects on more general aspects of the system. Several

metrics were considered, such as the number of deployed and migrated UPFs, maximum and

average propagation delays in the segment ANN-UPF, average UPF imbalance, and reassigned

sessions. Additionally, metrics related to the offered QoS (i.e., sessions with latency violations), the

number of reevaluation events (RE), and average execution times were collected. We determined

the optimal reconfiguration time based on the SSR mechanism by considering a maximum

tolerance threshold of 3% of sessions with latency violations.

Table 4.5 showcases the obtained results for different sets of weight factors in the objective

function and a simulation period of five hours. Given the high number of weight combinations, we

did not include all the Pareto-optimal solutions but rather a representative set. Mainly, we focused

on the analysis of the importance of the routing cost (Crou) since the activation of a placement

reconfiguration event by the envisioned SSR strategy depends directly on the optimization of this

parameter to reduce the number of sessions with latency violations.

Table 4.5: Simulation results for the UPR model for different sets of weight factors.

ID Weight Components Metrics
Max
Delay
(µs)

Mean
Delay
(µs)

No.
UPF

No.
Mig.

Imb
(%) No. Relocations

∑
t

Lt
No.
RE

Execution
Time (s)

α1 α2 α3 α4 α5 Aver Aver Aver Max Aver Max Aver Total Total Max Aver
a 0.2 0.2 0.1 0.3 0.2 18.42 6.43 7 0 0.29 67 48 3763 4878 79 26.79 18.32
b 0.2 0.2 0.2 0.2 0.2 18.32 6.32 7 0 0.28 71 50 4808 4942 96 36.92 20.96
c 0.2 0.2 0.3 0.1 0.2 17.55 5.66 7 0 0.23 124 94 6971 4595 74 46.88 29.27
d 0.2 0.2 0.4 0 0.2 17.58 4.97 7 0 0.30 213 160 9300 4410 58 56.27 31.86
e 0.2 0.2 0.4 0.2 0 12.91 3.06 7 0 0.32 745 716 19343 3683 27 53.72 38.55
f 0.2 0.1 0.5 0.1 0.1 14.23 3.09 7 1 0.31 675 545 11987 2327 22 45.40 19.88
g 0 0.3 0.5 0.2 0 9.75 2.10 7 3 0.28 880 782 3127 2301 4 52.92 33.12
h 0.1 0.1 0.6 0 0.2 12.75 3.54 7 1 0.25 422 422 422 164 1 8.07 8.07
i 0.1 0.2 0.6 0 0.1 10.03 2.15 7 3 0.28 772 634 5704 2296 9 21.55 17.96
j 0.1 0.1 0.7 0 0.1 10.62 2.15 7 3 0.28 772 642 4492 2254 7 9.42 7.56
k 0.1 0.1 0.7 0.1 0 7.91 2.07 8 0 0.73 805 805 805 88 1 10.27 10.27
l 0 0.1 0.8 0.1 0 9.01 1.76 8 2 0.63 842 842 842 88 1 5.23 5.23
m 0 0.1 0.9 0 0 9.01 1.44 9 2 0.66 850 850 850 88 1 5.29 5.29

The propagation delays in the segment ANN-UPF (Lac) decreased with the importance of the

routing cost (α3). Specifically, the maximum and average delays after reconfiguring the placement

were decremented around two and three times for experiments with α3 ≥ 0.7 compared to the

delay obtained by experiments with lower importance in the routing cost (i.e., row IDs a-i). By

more closely examining the tests for which the optimization of the routing term was equally

important (i.e., d–e, f–g, h–i, and j–k), we found that these outcomes were not only conditioned by

the use of higher values in the α3 weight but also by the importance of other terms in the objective

function. These pairs of experiments evidenced more significant reductions in the maximum and

average delays when omitting or decrementing the weight factor linked to the reassignment cost

component.

Moreover, we also noticed that a higher weight factor value did not necessarily imply a

better performance of its associated cost, as we have to contemplate all terms under optimization

and their attendant trade-offs. An example of these trade-offs can be observed by comparing

experiments with row IDs f and e or h and g. In this case, experiments e and g had better

performance in terms of delay than samples f and h, respectively, despite having a smaller
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α3 factor. The cause of this outcome was the omission of the reassignment cost component in

experiments e and g.

Conversely, we observed an increased number of deployed and migrated UPFs and reassigned

sessions since more transformations were produced to reduce the routing cost further. This

behavior was more remarkable for values of α3 ≥ 0.5, where the placement reevaluation required

the migration or/and deployment of additional UPFs. For those experiments where new UPFs

were placed, the average UPF imbalance increased by more than 30%. A considerable increase was

also observed in the maximum and average numbers of reassigned sessions during reconfiguration

events. In particular, for α3 ≥ 0.5, most sessions were relocated with typical values ranging

between 60% and 80%, while for α3 ≤ 0.3, less than 13% of the sessions were reassigned. These

results were also reflected in the total number of reassigned sessions, which increased with the

routing component’s importance in the objective function. This trend was more noticeable in

experiments in which the UPF placement remained unchanged regarding the number of deployed

instances and selected locations (i.e., experiments a–e) since frequent reconfiguration events

were necessary due to the high number of sessions with latency violations. In contrast, fewer

reconfigurations were triggered for the remaining experiments, translating into lower session

reassignments.

Overall, the number of placement reevaluations decreased with the increasing importance of

the routing cost, as seen in Table 4.5. This was because more users were reassigned to nearer

UPFs to reduce the impact of the routing component in the objective function. However, this

behavior was not steady but instead presented some exceptions (i.e., row IDs b, i, and j) in which

a higher value in α3 with reference to previous experiments resulted in more reconfigurations. In

some cases, this increment was caused by a variation in the importance of the reassignment cost

(α5), as evidenced when comparing experiment j with k. Thus, when this term (i.e., Crea) was

considered (α5 ≥ 0.1) in the optimization problem, fewer sessions were reassigned, increasing the

probability of latency violations and, therefore, re-computation events.

However, by comparing experiments b or i with others with similar weights, such as a and

h, respectively, we can see that the reassignment cost does not cause this behavior. The latter

may be due to different reconfiguration conditions, such as session mapping, user locations, and

affected sessions. Additionally, all these use cases produced different placement configurations,

even when their weight factors were similar. In the end, these slight differences accumulate, and

their effects are reflected in global metrics, such as the overall number of reconfigurations and

sessions with poor QoS.

Concerning the execution times of the proposed ILP model, the model always determined the

optimal UPF placement and session mapping reconfiguration in less than a minute. Concretely,

it provided maximum values ranging from 5–57 s and average computing times of approximately

30 s.

These experiments revealed a complex and robust relationship among the optimization
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objectives of the UPR problem. Hence, optimizing one or more parameters significantly impacted

the others since we dealt with conflicting objectives. Specifically, we can classify these objectives

into three main categories. The first is related to the number of UPFs formed by the deployment

and running costs. The second is linked with the relocation of PDU sessions and comprises the

migration and reassignment components, while the third includes the routing cost. In general, no

single best solution addresses multi-objective optimization problems but rather a set of multiple

optimal solutions that form the Pareto-Fronts. Therefore, selecting one solution over another

depends on optimization goals.

4.3.3 Dynamic Scheduling for the UPR

In this subsection, we assess the performance of the conceived SSR mechanism to determine

the optimal UPR reconfiguration time. We analyzed its performance in terms of the number

of reconfiguration events, number of reassigned sessions during the reconfiguration events,

number of sessions with latency violations at the reconfiguration moment, and QoS status at

each sampling time. Moreover, to evaluate the benefits of the SSR solution, we compared it with

the following benchmarks:

• Periodic placement scheduling (PPS): The UPF placement is readjusted periodically at

fixed time intervals. In particular, two variants with low and high reconfiguration periods

(i.e., every 5 and 60 minutes) were selected; these were referred to as PPS_P5 and PPP_P60,

respectively.

• Dynamic placement scheduling (DPS): This strategy embraces the scheduling solution

presented in the related work [46]. This approach determines the optimal reconfiguration

time according to the system’s maximum allowed number of cumulative latency violations.

A maximum tolerance threshold of 1000 latency violations was considered.

We conducted our experiments using a set of 1000 users, each with one active PDU session.

The effectiveness of the SSR mechanism and the baselines was evaluated by considering two sets

of weights in the objective function of the UPR model. The first set, denoted as weight_set_1,

considered that all cost components in (4.6) are equally important (i.e., αi = 0.2). In contrast, the

second set of weights (weight_set_2) gave more importance to the routing cost and ignored the

optimization of the terms related to deployment and reassignment expenditures (α1 = α5 = 0,

α2 = 0.3, α3 = 0.5, and α4 = 0.2).

For these simulations, we ran the system for 10 hours and collected QoS metrics every minute

for a total of 600 samples. The expected number of relocated sessions during a reconfiguration

event was estimated based on the obtained results for the PPS with a reconfiguration period

every 5 minutes (PPS_P5). Furthermore, a maximum QoS tolerance threshold (Θ) of 3% of active

sessions with latency violations was established for the SSR scheduler. The instantaneous number

of sessions with latency violations of the system was modeled as a Poisson distribution with a
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mean rate of 21 sessions (µ= 21). We fitted this distribution based on the observed number of

latency violations at each time instance for a UPF placement without reconfiguration during

the entire simulation time (see Fig. 4.1). In addition, we assumed each user’s mobility was

independent of the mobility of other users; that is, the movement of one user does not affect other

users.
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Figure 4.1: Number of sessions with latency violations over time for a static UPF placement.

4.3.3.1 Reconfiguration Costs

In the following sections, we analyze the performance of the SSR and baseline solutions according

to several metrics associated with the reconfiguration costs.

Number of reconfiguration events: Figure 4.2 shows the cumulative sum of UPF place-

ment readjustment events for both sets of weight factors. When all optimization objectives were

equally important (weight_set_1), the SSR strategy provided the worst results, triggering almost

twice as many reconfiguration events as the PPS_P5 approach, with a frequency of about 2–3

minutes between reconfigurations. The leading cause of this behavior lay in the SSR mechanism,

which unlike the others, directly depended on the instantaneous values of the selected QoS metric

(i.e., L t). In particular, this set of weights produced minor transformations in the placement

configuration, mostly reassigning only the sessions with latency violations. The latter resulted in

a UPF placement with poor QoS given the frequent and persistent number of users with latency

violations.

In contrast, significant improvements in the number of readjustment events were achieved

by the conceived mechanism when considering the second set of weight factors (see Fig. 4.2(b))

since this set allowed for more transformations in the placement configuration. This was possible

because the set favored the routing cost and ignored the session reassignment term. In this case,

the SSR method not only outperformed both periodic schedulers with an average reconfiguration

time of 70 minutes but obtained results similar to the DSP baseline. Moreover, the number
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Figure 4.2: Cumulative sum of UPF placement reconfiguration events.

of placement reevaluation events triggered by the SSR and DPS mechanisms decreased when

the second set of weights was selected, as seen in the sub-figures. Specifically, for this set, the

SSR and DPS solutions required around 95% and 60% fewer reconfigurations, respectively. By

contrast, this metric remained constant for the periodic approaches since they were unaware of

the placement conditions.

Figures 4.3 and 4.4 show the effects of the selected weight factors on the number of relocated

PDU sessions, as well as the number of deployed and migrated UPFs during the placement

reconfiguration. As seen in the figures, the cumulative sum of reassigned sessions and migrated

UPFs rose dramatically when the second set of weights was used. This behavior was more

remarkable in the periodic schedulers, especially PPS_P5, since they produced the same number

of reevaluation events in both scenarios. The number of reassigned sessions for the periodic

mechanisms increased by more than 15 times compared with the first weights’ obtained results.

Moreover, as expected, the scheduler solutions with more reconfiguration events always provided

the worst results regarding the number of relocated sessions. Specifically, for the weight_set_1, the

SSR and PPS_P5 schedulers produced many more reassignments than the other two approaches,

while for the second set of weights, SSR obtained similar results to PPS_P60 and DPS.

Figures 4.4(a) and 4.4(b) depict the number of deployed and migrated UPFs, in dark and

light blue, respectively, for both sets of weights. No variation in the overall number of deployed

UPFs produced for either of the analyzed sets was observable during the entire simulation time.

This behavior was because the deployment cost always had equal or higher importance than the

migration and reassignment components. Alternatively, modifications in the UPF locations were

produced for all schedulers when using weight_set_2. Specifically, SSR, DPS, and PPS_P60 only

modified UPF placement during the first reconfiguration event with three migrations, whereas

PPS_P5 activated 15 migration events with one UPF migration most of the time. Overall, the

PPS_P5 baseline had the worst performance, with 19 UPF migrations.

88



4.3. EVALUATION AND RESULTS

0 200 400 600 800 1000
Simulation time (min)

101

102

103

104

Cu
m

ul
at

iv
e 

su
m

 o
f r

ea
ss

ig
ne

d 
se

ss
io

ns

1021

9074

756

18091

DPS =1000
PPS P=5 
PPS P=60 
SSR =30

(a) weight_set_1

0 200 400 600 800 1000
Simulation time (min)

103

104

105

Cu
m

ul
at

iv
e 

su
m

 o
f r

ea
ss

ig
ne

d 
se

ss
io

ns

6080

149473

11877
9846

DPS =1000
PPS P=5 

PPS P=60 
SSR =30

(b) weight_set_2

Figure 4.3: Cumulative sum of session relocations.
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Figure 4.4: Number of deployed and migrated UPFs.

4.3.3.2 QoS Metric

To assess the suitability of the scheduler approaches, we analyzed the behavior of the L t parame-

ter and the overall system QoS.

We began by analyzing the system QoS status at the reconfiguration moment to verify

under which conditions these events were triggered. We classified the QoS into three levels

concerning the relationship between the selected QoS metric and the tolerance threshold to

create a more intuitive representation. The system QoS was considered good for a low number

of latency violations (L t ≤ 2
3Θ), acceptable for moderate latency violations (L t > 2

3Θ and L t ≤Θ),

and poor for L t values above the established threshold (L t >Θ).

Figure 4.5 showcases the obtained results for both weight sets. As shown, the proposed

mechanism provided the best performance since it activated the reconfiguration events when the

number of sessions with latency violations was considerably high (i.e., L t > 2
3Θ). Moreover, it did

89



CHAPTER 4. DYNAMIC UPF PLACEMENT

not decide to activate a placement readjustment when the value of this metric was low L t ≤ 2
3Θ)

and thus avoided unnecessary reconfigurations. Conversely, many placement reevaluations

triggered by the baselines were determined when the latency violations were scarce or above

the established QoS upper threshold. Specifically, for the first set, the percentage of UPR events

triggered under good QoS ranged from 19% to 40% while between 6% and 25% of the events were

activated when the system QoS had deteriorated. The benchmarks performance was even worse

for weight_set_2. For this set, they executed the UPR reconfiguration under good QoS levels

(L t ≤ 2
3Θ) most of the time, as shown in Fig. 4.5(b). In this scenario, the SSR solution had an

outstanding performance as it always reconfigured the placement when the QoS threshold was

close to being exceeded.
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Figure 4.5: Percentage of reconfigurations grouped according to L t values with reference to the Θ
threshold at the reconfiguration time.

Figure 4.6 also represents the QoS status regarding the established Θ threshold during

the entire simulation time. For the first set of weights (see Fig. 4.6(a)), none of the schedulers

could avoid the occurrence of QoS degradation events due to the high number of sessions with

poor QoS. Nevertheless, the proposed mechanism offered a better QoS than the rest, with

only 2% of the samples with bad QoS. This outcome was expected since the SSR solution was

designed to diminish events with bad QoS. Most of the time, the tolerance threshold was exceeded

almost immediately after a reconfiguration due to the high number of sessions with latency

violations. These were mainly due to high user mobility and limited placement transformations

(e.g., reassigned sessions and UPF migrations) performed during the reconfigurations.

In contrast, when the second set of weights was chosen, more stable UPF placement and

session mapping were produced at the cost of higher transformations and, therefore, expenditures.

In this case, the number of reconfiguration events was decreased for the QoS-aware scheduling

approaches (i.e., SSR and DPS). However, a significant improvement in the overall QoS was

achieved since the Θ threshold was hardly overpassed. Additionally, the SSR strategy reduced

the number of events with bad QoS to zero, thus providing similar or better results to solutions
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Figure 4.6: Values of L t with reference to the Θ threshold during the simulation time.

with a greater number of reconfiguration events (i.e., PPS_P5 and PPS_P60).

Figure 4.7 presents the instantaneous and cumulative values of sessions with latency viola-

tions. Moreover, it also indicates the reconfiguration events activated for each scheduler with

dashed grey lines. As shown, the SSR solution had a lowest number of events overpassing the

QoS threshold (L t >Θ) for both sets of weights. Furthermore, in the cases where this threshold

was violated, it immediately executed a placement readjustment, which was not the case for the

other approaches, which did not account for the instantaneous values of the offered QoS. Most of

the time, the baselines reconfigured the placement when the number of sessions with latency

violations was low. This behavior was more remarkable for the second set of weights than the

first, as shown in Fig. 4.7(b).

Regarding the cumulative sum of latency violations, this metric was highly related to the

number of readjustment events. As shown in Fig. 4.7(a), the overall number of sessions with bad

QoS decreased as the reconfigurations increased. In this case, the SSR approach provided the best

results, with reductions of at least 10% compared to the baselines. Similarly, for the second set of

weights, the scheduler with more reconfigurations (i.e., PPS_P5) provided the lowest amount of

sessions with latency violations. Nonetheless, SSR outperformed the other two benchmarks (DPS

and PPS_P60) since it could keep the QoS parameter under acceptable values all the time.

Through the experiments and results, we validated the effectiveness and assertiveness of

the conceived scheduling solution for the UPR problem. We showed that the SSR mechanism

could reduce the number of events with bad QoS by accounting for instantaneous values of the

selected metric (L t). Specifically, SSR decreased the number of events with bad QoS by at least 5%

compared to established baselines for UPF placement configurations with frequent and elevated

sessions with latency violations. Furthermore, we found that the proposed SSR mechanism

ensured the established QoS levels and avoided unnecessary placement recalculations. Its benefits

were more remarkable when combined with UPR models that allowed further transformations
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Figure 4.7: Number of sessions with latency violations and their cumulative sum over time.

during the placement reconfiguration. In contrast, periodic reconfiguration strategies produced a

lower or higher number of reevaluations according to the selected period. However, they often

resulted in unnecessary reconfigurations or poor QoS.

4.4 Conclusion

This chapter presented the dynamic UPR problem. To address this problem, we proposed a multi-

objective ILP model (CUPR) to determine the optimal placement and mapping configuration

along with a scheduling mechanism (SSR) based on OST to decide the best re-computation time.

The CUPR solution seeks the optimal UPF placement (number of UPFs and candidate

locations) and PDU session mapping that allows more efficient use of the infrastructure resources

while guaranteeing service latency requirements and minimizing service interruption. To this

aim, its objective function consideres several cost components associated with UPF deployment

and operation (e.g., running and migration costs), as well as the system QoS expressed in terms

of network response time (routing cost) and session reassignments. Based on experimental

simulations, we demonstrated that a unique best solution does not exist for solving the UPR
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problem since doing so depends on the selected cost components and their respective importance

in the objective function. For instance, better QoS regarding lower network response times and

fewer readjustment events can be achieved by increasing the importance of the routing cost.

However, this came at the expense of more transformations during the placement reconfiguration,

such as UPF deployments and migrations or session reassignments.

In addition, the conceived SSR strategy was shown to be a practical and straightforward

approach for proactively determining the optimal reconfiguration time. Concretely, it revealed

that, by accounting for instantaneous values of the selected QoS metric (i.e., sessions with latency

violations), the desired levels of QoS can be guaranteed most of the time, and the number of

placement reevaluation events can be significantly reduced. Therefore, substantial improvements

were obtained by selecting a reconfiguration model that favored the routing cost over others.
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5
STATIC UPF PLACEMENT AND CHAINING

This chapter is based on:

• I. Leyva-Pupo, and C. Cervelló-Pastor, "Efficient solutions to the placement and

chaining problem of User Plane Functions in 5G networks," Journal of Network and

Computer Applications, vol. 197, p. 103269, 2022.

We addressed the UPP in previous chapters by considering that a single UPF instance

forms PDU session data paths. This assumption is suitable for general planning and

operation purposes. For example, in some deployment scenarios in which the number

of candidate locations or available resources is scarce, a single UPF instance can support various

functionalities. Nevertheless, 5G standards allow PDU sessions to be served simultaneously by

multiple UPFs, chained together and dividing load and functionalities. Based upon this fact, the

work in this chapter targets to extend previous solutions by introducing chaining requirements

to the UPP. In short, this chapter presents the UPF placement and chaining (UPC) problem.

The chapter provides an exact solution and two heuristic-based approaches to tackle the

UPC problem. These solutions aim to minimize network operator expenditures and enhance the

QoS measured in terms of network response time. The ILP model is bound by stringent service

latency requirements and physical network capabilities, such as server processing capacity and

link bandwidth. Moreover, it encompasses several aspects, such as UPF-specific requirements,

VNF order in the SFC, and routing path. To overcome scalability issues associated with exact

solutions, we design a heuristic and a metaheuristic algorithm called priority and cautious

UPF placement and chaining (PC-UPC) and simulated annealing-based UPF placement and

chaining (SA-UPC), respectively. These approaches introduce several mechanisms to boost their

performance. Specifically, PC-UPC avoids rejections of SFCRs by prioritizing mapping the most
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demanding services and considering the effects of VNF mapping decisions on the subsequent

VNFs forming the chain. The SA-UPC approach incorporates several strategies, such as variable

Markov chain length (VMCL) and restart-stop, which significantly improve the computation time

and quality of the output solution.

The chapter is structured as follows. Section 5.1 introduces the UPC problem and the system

model and notation. In Section 5.2, we present an optimal solution to the UPC problem. Next,

Section 5.3 describes the proposed heuristic and metaheuristic solutions and analyzes their

complexity. The obtained simulation results are discussed in Section 5.4, and finally, Section 5.5

concludes the chapter.

5.1 Problem Statement: Static UPF Placement and Chaining

In 5G networks, unlike previous mobile network generations, the UPF can be divided into

different functional roles called micro-services, which can be chained together and steered as

necessary. This functionality specialization allows PDU sessions to be served simultaneously by

multiple UPFs. However, this complicates the UPF placement problem due to the presence of

different UPF roles with diverse and specific requirements that must be chained in a specific

order by accounting for their inter-dependency.

In this chapter, we define the UPC problem as follows: Given a virtualized infrastructure and

a set of PDU session requests, the optimal number and location of UPF instances, as well as their

routing paths must be determined to optimize the overall provisioning cost and QoS. Moreover,

session requirements such as VNF order and latency must be met while considering physical and

virtual network infrastructure limitations, such as available resources and topology.

Thus, we deal with the problem of determining the optimal placement and chaining of UPF

instances at the network edge so that 5G service requirements are satisfied while minimizing

expenditures.

5.1.1 System Model and Considerations

We represent the 5G network topology as a directed graph G(N, E), where N and E indicate

the set of nodes and links, respectively. The set of network nodes is formed by VNF candidate

locations (Nc), aggregation points (Na), and access nodes (Nr). Each candidate node c ∈ Nc has

an associated processing capacity (Cc), expressed in the number of CPUs.

A physical link between two nodes u,v ∈ Nc in the direction u to v is denoted as (u,v) ∈ E.

Each link is characterized by a propagation delay (du,v) and a bandwidth capacity (βu,v). The

link latency indicates the time required for a data package to go from a source to a target node.

It is computed in terms of the propagation delay and the processing time of the transmission

nodes. Additionally, the set of all paths (P) in the network, as well as the subset of paths between

a specific pair of nodes (Pn,m ⊂ P), are included. Every path p ∈ P is identified by its endpoints (n,
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m) and an ID (h) to distinguish different paths between the same pair of nodes. Moreover, the

mapping of a physical link (u,v) ∈ E to a specific path p ∈ P is described by the parameter Hp
u,v,

where Hp
u,v = 1 if the link (u, v) belongs to path p, 0 otherwise.

Table 5.1 provides the notations related to the physical and virtual networks. Different VNF

types (T) can be deployed in the network, where t ∈ T denotes a specific type. In particular, we

represent the UPF types as follows; t=1: aUPF, t=2: miUPF (i.e., UL-CL and BP), and t=3: IUPF.

Moreover, each VNF type characterizes by a processing capacity (Ct), a processing delay (dt), and

a maximum number of instances that can be deployed (I t).

Table 5.1: Used notation for physical and virtual networks.

Notation Set Param. Description

N x Set of all network nodes
Nr x Set of access nodes, Nr ⊂ N
Nc x Set of VNF candidate locations (e.g., MEC servers), Nc ⊂ N
Na x Set of aggregation points, Na ⊂ N
E x Set of physical links
P x Set of paths between all network nodes
Pn,m x Set of paths between nodes n and m, (n,m ∈ N), Pn,m ⊂ P
T x Set of VNF types
Cc x Processing capacity at candidate location c ∈ Nc
Ct x Processing capacity of VNF of type t ∈ T
βu,v x Bandwidth capacity of link (u,v)
du,v x Latency associated to link (u,v)
dp x Latency associated to path p ∈ P
dt x Processing delay of VNF of type t ∈ T
I t x Maximum number of instances of type t ∈ T
Hp

u,v x 1 if path p ∈ P is mapped to physical link (u,v) ∈ E
V t

n x 1 if node n ∈ N supports VNFs of type t ∈ T
T f ,t

s x 1 if VNF f ∈ Fs in SFCR s ∈ S is of type t ∈ T
O f ,g,b

s x 1 if VNF f goes just before VNF g ( f , g ∈ Fs) in branch b ∈ Bs of SFCR s ∈ S
Q f ,b

s x 1 if VNF f ∈ Fs is present in branch b ∈ Bs of SFCR s ∈ S

The set of active PDU sessions is represented by S. We model PDU session requests as SFCRs

and represent their properties by a 10-tuple <us, rs, Fs, Cs, βs, Ls, Bs, T f ,t
s , O f ,g,b

s , Q f ,b
s >. The

user ID, access node, and VNF associated with a given SFCR are denoted as us, rs, and Fs,

respectively. For simplicity, we define the source access node of a service request as a VNF of type

t = 0 and extend the set of VNFs forming the SFCR to include this node (F+
s = Fs∪rs). Every PDU

session is characterized by a processing capacity demand (Cs), a required bandwidth (βs), and a

maximum E2E user plane delay (Ls). Additionally, parameters Bs, T f ,t
s , O f ,g,b

s , and Q f ,b
s specify

the number of branches in an SFCR, the VNF type, VNF order, and VNF presence in each branch,

respectively. Our SFCR model does not include the destination nodes since we assume that they

are DNs co-located with the aUPFs, and therefore, their location before the UPF placement is

unknown. Table 5.2 summarizes the notation used for modeling SFCRs.

In this study, we assume that PDU sessions can have different characteristics (e.g., number

and type of constituent UPFs and SFC topology), which may vary according to several aspects,
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Table 5.2: Sets and parameters related to SFCRs.

Notation Description

S Set of PDU sessions (SFCRs)
us ID of the user requesting PDU session s ∈ S
rs Access node (rs ∈ Nr) of SFCR s ∈ S
Fs Set of VNFs forming SFCR s ∈ S
|F t

s| Number of VNFs of type t ∈ T in SFCR s ∈ S
Cs Computing resources required by SFCR s ∈ S
βs Bandwidth capacity required by SFCR s ∈ S
Ls E2E latency requirement of SFCR s ∈ S
Bs Number of aUPFs (branches) in SFCR s ∈ S

such as service type and network conditions. In particular, we consider three basic topologies

when modeling the SFCRs as depicted in Fig. 5.1. These topologies account for the main UPF

functionalities, although they can be extended to include other VNF types or UPF roles and

combined to create more complex structures. Additionally, according to 3GPP specifications [7, 8],

the following aspects must be considered when orchestrating PDU sessions in 5G networks: (1) at

least one UPF is required to act as a PSA; (2) all UPFs acting as PSAs must terminate the data

path with the DN; (3) more than one iUPF (e.g., IUPF, UL-CL, and BP) may be inserted in the

path, but only one connects with the ANN via the N3 interface, except for session continuity

during UL-CL/BP relocation [7]; (4) if a UL-CL or BP functionality is inserted in the data path of

a PDU session, then multiple PSAs are assigned to this session; and (5) the use of UL-CL and BP

is independent of the SSC mode and is mostly linked to QoS metrics or network policy rules.

ANN aUPF DN

Source Destination

  ANN IUPF aUPF DN 

Source Destination

DN

Destinations

aUPF

aUPF DN

Type 1:

Type 2:

Type 3:

Source

ANN miUPF
(UL-CL/BP)

Figure 5.1: Uplink representation of PDU sessions with different SFC topologies.

To simplify the UPC problem, the following assumptions were made:

• The use of the UL-CL or BP functionality is determined by the PDU session type (e.g.,

IPv4 or IPv6), which is out of this thesis’s scope. Hence, both types of UPFs are treated

interchangeably as miUPF.

• In the 3GPP technical specifications, there is no restriction concerning the maximum
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number of UPFs assigned to a given PDU session. Nevertheless, we limit the number of

iUPFs serving a PDU session to one. This assumption avoids extra signaling between SMFs

and UPFs and reduces resource utilization in the user plane.

• Every UPF instance has a unique and identical role for all its assigned PDU sessions.

• The propagation delay is constant and proportional to the link lengths.

The decision variables used for the UPC problem solution are described in Table 5.3.

Table 5.3: Used notation for the decision variables.

Notation Description

wn 1 if candidate node n ∈ Nc is open
xi,t,n 1 if instance i ∈ I t of VNF type t ∈ T is deployed on node n ∈ N
z f ,s

i,t,n 1 if VNF f ∈ Fs of SFCR s ∈ S is mapped to instance i ∈ I t of VNF type t ∈ T placed in node n ∈ N

a f ,b,s
i,t,n 1 if VNF f ∈ Fs in branch b ∈ Bs of SFCR s ∈ S is mapped to instance i ∈ I t of VNF type t ∈ T

placed in node n ∈ N
y f ,g,b,s

p 1 if path p ∈ P routes traffic between VNFs f and g ( f , g ∈ Fs) of branch b ∈ Bs in SFCR s ∈ S

5.2 Model: Optimal UPF Placement and Chaining

The UPC model aims to optimize provisioning costs and service response time during UPF place-

ment and chaining. Therefore, it contemplates three cost components concerning the activation

of candidate nodes, the deployment of VNF instances (i.e., UPF), and the routing of SFCRs. The

objective functions of the UPC model can be defined as follows:

Min
∑

n∈Nc

wn (5.1)

Min
∑
i∈I t

∑
t∈T,
t ̸=0

∑
n∈Nc

xi,t,n (5.2)

Min
∑

f ,g∈F+
s

∑
b∈Bs

∑
s∈S

∑
p∈P

dp · y f ,g,b,s
p (5.3)

Equation 5.1 minimizes expenditures associated with opening candidate locations due to the

deployment of VNFs. Likewise, the objective function (5.2) seeks to optimize the VNF deployment

cost by reducing the number of instantiated VNFs. Expression (5.3) aims to decrease the traffic

routing cost between VNFs that form the SFCs. We have expressed the routing cost regarding the

propagation delay between the segments comprising the SFC data path. In this manner, more

than one objective (i.e., routing cost and network response time) is optimized simultaneously.

Given the multi-objective nature of the UPR model, we adopt a weighted sum approach with

normalized terms to transform it into a single-objective function:

Min α · ∑
n∈Nc

wn +β ·
∑
i∈I t

∑
t∈T,
t ̸=0

∑
n∈Nc

xi,t,n +γ ·
∑

f ,g∈F+
s

∑
b∈Bs

∑
s∈S

∑
p∈P

dp · y f ,g,b,s
p (5.4)
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where the weight factors α, β, and γ express the relative importance of each term in the

objective function, such that α+β+γ= 1

To facilitate reading and improve the legibility of the model, we group its associated con-

straints into four main categories: VNF, SFC, QoS, and capacity.

VNF constraints: Expressions (5.5)–(5.8) restrict the VNF placement in the candidate

locations. In particular, constraint (5.5) limits the maximum number of instances of a given type

(I t) that can be deployed. The parameter I t can be determined by the infrastructure’s available

resources or the number of licenses. Expression (5.6) guarantees that each VNF is placed, at

most, in one location. Moreover, inequality (5.7) forces the deployment of VNFs on the candidates

that are open and have the capabilities to support the particular requirements of the VNF

type. Additionally, expression (5.8) forces a candidate to be closed if it has not mapped any VNF

instance. ∑
i∈I t

∑
n∈Nc

xi,t,n ≤ I t ∀t ∈ T; t ̸= 0 (5.5)

∑
n∈Nc

xi,t,n ≤ 1 ∀i ∈ I t,∀t ∈ T; t ̸= 0 (5.6)

xi,t,n ≤ wn ·V t
n ∀i ∈ I t,∀t ∈ T,∀n ∈ N (5.7)

wn ≤ ∑
i∈I t

∑
∀t∈T

xi,t,n ∀n ∈ N (5.8)

SFC constraints: Constraints (5.9)–(5.19) are associated with the mapping of SFCRs. In-

equality (5.9) ensures the assignment of each VNF service comprising an SFCR (i.e., f ∈ F+
s ) to

one VNF instance. In addition, constraint (5.10) forces the mapping of the VNF service requests

to the candidates hosting VNF instances of the requested type. Moreover, restriction (5.11) avoids

the deployment of empty VNFs by ensuring that the launched instances have assigned service

requests of at least one PDU session. Expression (5.12) states that each SFCR s ∈ S must be

assigned to at least a minimum number of VNFs of a given type (|F t
s|).∑

i∈I t

∑
t∈T

∑
n∈N

z f ,s
i,t,n = 1 ∀ f ∈ F+

s ,∀s ∈ S (5.9)

z f ,s
i,t,n ≤ xi,t,n ·T f ,t

s ∀ f ∈ F+
s ,∀s ∈ S,∀i ∈ I t,∀t ∈ T,∀n ∈ N (5.10)

xi,t,n ≤ ∑
s∈S

∑
f ∈Fs

z f ,s
i,t,n ∀i ∈ I t,∀t ∈ T,∀n ∈ Nc (5.11)

∑
f ∈Fs

∑
i∈I t

∑
n∈Nc

z f ,s
i,t,n ≥ |F t

s| ∀s ∈ S,∀t ∈ T; t ̸= 0 (5.12)

To reduce the effects of VNF failures on the SFCs, we define an anti-affinity rule for VNF

instances of the same type that serve the same PDU session, see (5.13). Specifically, this constraint

stipulates that VNFs of the same kind that serves a PDU session must be deployed in different

locations. Therefore, if a failure occurs in a VNF’s underlying physical infrastructure, the SFC

can remain operative as long as it has a mapped VNF with the same role operating in another
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candidate location. Similarly, constraint (5.14) forces the placement of aUPFs and IUPFs (i.e.,

iUPFs connecting to a single PSA) to different locations. Since IUPFs are inserted in a PDU

session data path to guarantee service continuity due to PSA limitations such as coverage area

or transport network.∑
f ∈Fs

∑
i∈I t

z f ,s
i,t,n ≤ 1 ∀s ∈ S,∀t ∈ T; t ̸= 0,∀n ∈ Nc (5.13)

∑
f ∈Fs

∑
i∈I t

zs, f
1,i,n +

∑
f ∈Fs

∑
i∈I t

zs, f
3,i,n ≤ 1 ∀s ∈ S,∀n ∈ Nc (5.14)

Restriction (5.15) ensures that the mapping of a VNF service f ∈ F+
s , comprising an SFCR, to

a given VNF instance is conditioned by a service request of this VNF type from at least one of its

branches. Likewise, inequality (5.16) expresses that a VNF instance can serve a branch of an

SFCR as long as the VNF has been mapped onto the network. Additionally, a VNF service request

associated with a given branch can only be assigned to a VNF instance if the SFC topology

requires this VNF type; see (5.17).

z f ,s
i,t,n ≤ ∑

b∈Bs

a f ,b,s
i,t,n ∀ f ∈ F+

s ,∀s ∈ S,∀i ∈ I t,∀t ∈ T,∀n ∈ N (5.15)

a f ,b,s
i,t,n ≤ z f ,s

i,t,n ∀ f ∈ F+
s ,∀b ∈ Bs,∀s ∈ S,∀i ∈ I t,∀t ∈ T,∀n ∈ N (5.16)∑

i∈I t

∑
n∈N

a f ,b,s
i,t,n ≤Q f ,b

s ·T f ,t
s ∀ f ∈ F+

s ,∀b ∈ Bs,∀s ∈ S,∀t ∈ T (5.17)

Inequalities (5.18) and (5.19) guarantee the mapping of SFC data paths. Concretely, con-

straint (5.18) enforces the existence of a path between two consecutive VNFs in the required

direction ( f → g), thereby ensuring the required routing order among VNFs that form the

branches of an SFCR. Likewise, constraint (5.19) restricts the assignment of the VNFs forming

an SFCR branch to those nodes through which its traffic passes. It also avoids loops in the traffic

flow between two consecutive VNFs by preventing them from using more than one data path for

communication.∑
p∈P

y f ,g,b,s
p ≥O f ,g,b

s ∀ f , g ∈ F+
s ,∀b ∈ Bs,∀s ∈ S (5.18)

∑
p∈Pn,m

y f ,g,b,s
p ≤ ∑

i∈I t

∑
t∈T

a f ,b,s
i,t,n · ∑

i∈I t

∑
t∈T

as,b,g
t,i,m ∀ f , g ∈ F+

s ,∀b ∈ Bs,∀s ∈ S,∀n,m ∈ N (5.19)

Constraint (5.19) is non-linear since it implies the product of two binary variables. To better

illustrate the latter, we add the binary variable λ f ,b,s
m which takes value 1 when

∑
t∈T

∑
i∈I t

a f ,b,s
i,t,n = 1

and 0 otherwise. To linearize this constraint, we introduce the binary variable δ f ,g,b,s
n,m such that:

δ
f ,g,b,s
n,m ≤λ f ,b,s

m ∀ f , g ∈ F+
s ,∀b ∈ Bs,∀s ∈ S,∀n,m ∈ N (5.20)

δ
f ,g,b,s
n,m ≤λg,b,s

m ∀ f , g ∈ F+
s ,∀b ∈ Bs,∀s ∈ S,∀n,m ∈ N (5.21)

δ
f ,g,b,s
n,m ≥λ f ,b,s

m +λg,b,s
m −1 ∀ f , g ∈ F+

s ,∀b ∈ Bs,∀s ∈ S,∀n,m ∈ N (5.22)
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∑
p∈Pn,m

y f ,g,b,s
p ≤ δ f ,g,b,s

n,m ∀ f , g ∈ F+
s ,∀b ∈ Bs,∀s ∈ S,∀n,m ∈ N (5.23)

QoS constraint: To guarantee proper levels of QoS, the round trip data plane delay of

a PDU session cannot overpass its service latency requirement. The former is ensured by

constraint (5.24), which forces the mapping of VNFs that form an SFCR along with their traffic

routing to the candidates and data paths capable of meeting the specified threshold. This

expression contemplates the VNF processing times and the propagation delay between VNFs for

each branch forming an SFCR.

2 ·
( ∑

f ∈F+
s

∑
i∈I t

∑
t∈T

∑
n∈N

dt ·a f ,b,s
i,t,n + ∑

f ,g∈F+
s

∑
p∈P

dp · y f ,g,b,s
p

)
+dDN ≤ Ls ∀b ∈ Bs,∀s ∈ S (5.24)

Capacity constraints: Expressions (5.25)–(5.27) represent the resource limitation in the

candidate nodes, VNF instances, and physical links. Specifically, constraint (5.25) stipulates that

the processing capacity demanded by the VNF instances embedded in a given candidate (MEC

server) cannot exceed its physical resource capabilities. Likewise, constraint (5.26) restricts the

amount of traffic processed by a VNF instance to avoid overload, given its limited processing

capacity. Moreover, the available bandwidth on physical links must be sufficient to handle the

traffic demands of their assigned data flows, see (5.27).∑
i∈I t

∑
t∈T,
t ̸=0

Ct · xi,t,n ≤ Cn ∀n ∈ Nc (5.25)

∑
f ∈Fs

∑
s∈S

Cs · z f ,s
i,t,n ≤ Ct ∀i ∈ I t,∀t ∈ T; t ̸= 0,∀n ∈ Nc (5.26)

∑
f ,g∈F+

s

∑
b∈Bs

∑
s∈S

∑
p∈P

βs · y f ,g,b,s
p ·Hp

u,v ≤βu,v ∀(u,v) ∈ E (5.27)

Finally, the binary nature of the attendant variables is indicated as follows:

wn, xi,t,n, z f ,s
i,t,n,a f ,b,s

i,t,n , y f ,g,b,s
p ∈ {0,1} ∀ f , g ∈ F+

s ,∀b ∈ Bs,∀s ∈ S,∀i ∈ I t,∀t ∈ T,∀p ∈ P,∀n ∈ N

(5.28)

The linear form of the UPR model is provided below:

Min α · ∑
n∈Nc

wn +β ·
∑
i∈I t

∑
t∈T,
t ̸=0

∑
n∈Nc

xi,t,n +γ ·
∑

f ,g∈F+
s

∑
b∈Bs

∑
s∈S

∑
p∈P

dp · y f ,g,b,s
p

s.t.:∑
i∈I t

∑
n∈Nc

xi,t,n ≤ I t ∀t ∈ T; t ̸= 0

∑
n∈Nc

xi,t,n ≤ 1 ∀i ∈ I t,∀t ∈ T; t ̸= 0

xi,t,n ≤ wn ·V t
n ∀i ∈ I t,∀t ∈ T,∀n ∈ N
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wn ≤ ∑
i∈I t

∑
∀t∈T

xi,t,n ∀n ∈ N

∑
i∈I t

∑
t∈T

∑
n∈N

z f ,s
i,t,n = 1 ∀ f ∈ F+

s ,∀s ∈ S

z f ,s
i,t,n ≤ xi,t,n ·T f ,t

s ∀ f ∈ F+
s ,∀s ∈ S,∀i ∈ I t,∀t ∈ T,∀n ∈ N

xi,t,n ≤ ∑
s∈S

∑
f ∈Fs

z f ,s
i,t,n ∀i ∈ I t,∀t ∈ T,∀n ∈ Nc∑

f ∈Fs

∑
i∈I t

∑
n∈Nc

z f ,s
i,t,n ≥ |F t

s| ∀s ∈ S,∀t ∈ T; t ̸= 0

z f ,s
i,t,n ≤ ∑

b∈Bs

a f ,b,s
i,t,n ∀ f ∈ F+

s ,∀s ∈ S,∀i ∈ I t,∀t ∈ T,∀n ∈ N

a f ,b,s
i,t,n ≤ z f ,s

i,t,n ∀ f ∈ F+
s ,∀b ∈ Bs,∀s ∈ S,∀i ∈ I t,∀t ∈ T,∀n ∈ N∑

i∈I t

∑
n∈N

a f ,b,s
i,t,n ≤Q f ,b

s ·T f ,t
s ∀ f ∈ F+

s ,∀b ∈ Bs,∀s ∈ S,∀t ∈ T

∑
p∈P

y f ,g,b,s
p ≥O f ,g,b

s ∀ f , g ∈ F+
s ,∀b ∈ Bs,∀s ∈ S

δ
f ,g,b,s
n,m ≤λ f ,b,s

m ∀ f , g ∈ F+
s ,∀b ∈ Bs,∀s ∈ S,∀n,m ∈ N

δ
f ,g,b,s
n,m ≤λg,b,s

m ∀ f , g ∈ F+
s ,∀b ∈ Bs,∀s ∈ S,∀n,m ∈ N

δ
f ,g,b,s
n,m ≥λ f ,b,s

m +λg,b,s
m −1 ∀ f , g ∈ F+

s ,∀b ∈ Bs,∀s ∈ S,∀n,m ∈ N∑
p∈Pn,m

y f ,g,b,s
p ≤ δ f ,g,b,s

n,m ∀ f , g ∈ F+
s ,∀b ∈ Bs,∀s ∈ S,∀n,m ∈ N

∑
f ∈Fs

∑
i∈I t

z f ,s
i,t,n ≤ 1 ∀s ∈ S,∀t ∈ T; t ̸= 0,∀n ∈ Nc∑

f ∈Fs

∑
i∈I t

zs, f
1,i,n +

∑
f ∈Fs

∑
i∈I t

zs, f
3,i,n ≤ 1 ∀s ∈ S,∀n ∈ Nc

2 ·
( ∑

f ∈F+
s

∑
i∈I t

∑
t∈T

∑
n∈N

dt ·a f ,b,s
i,t,n + ∑

f ,g∈F+
s

∑
p∈P

dp · y f ,g,b,s
p

)
+dDN ≤ Ls ∀b ∈ Bs,∀s ∈ S

∑
i∈I t

∑
t∈T,
t ̸=0

Ct · xi,t,n ≤ Cn ∀n ∈ Nc

∑
f ∈Fs

∑
s∈S

Cs · z f ,s
i,t,n ≤ Ct ∀i ∈ I t,∀t ∈ T; t ̸= 0,∀n ∈ Nc∑

f ,g∈F+
s

∑
b∈Bs

∑
s∈S

∑
p∈P

βs · y f ,g,b,s
p ·Hp

u,v ≤βu,v ∀(u,v) ∈ E

wn, xi,t,n, z f ,s
i,t,n,a f ,b,s

i,t,n , y f ,g,b,s
p ∈ {0,1} ∀ f , g ∈ F+

s ,∀b ∈ Bs,∀s ∈ S,∀i ∈ I t,∀t ∈ T,∀p ∈ P,∀n ∈ N

5.3 Approximate Solutions

The UPC problem is a specific variant of the VNFPC problem, which has been shown to be

NP-Hard [25, 74, 78, 150]. Consequently, the UPC problem is also NP-Hard. Thus, developing

heuristic algorithms is required to obtain efficient solutions for large-scale scenarios in polynomial
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time. In this regard, we propose two solutions (i.e., a heuristic and an SA metaheuristic). The

following subsections explain the conceived solutions in detail.

5.3.1 Heuristic: Priority and Cautious UPC

The PC-UPC algorithm maps SFCRs on the underlying infrastructure by applying priority classi-

fication of PDU session demands and cautiously locating their constituent VNFs. Algorithm 2

provides a general overview of the proposed PC-UPC heuristic. As input, it takes a set of SFCRs

and the substrate network topology (e.g., nodes, physical links, and paths) along with their

respective requirements and capabilities.

Algorithm 2: Priority & Cautious UPC (PC-UPC)
Input: N, E, P, S
Output: Set of UPFs (Nu), Sets of mapped and unmapped SFCRs (Sm and Su)

1 Initialize output variables and parameters
2 forall s ∈ S do
3 Determine available candidates for s and SFCRs near each candidate
4 Classify s as critical or not regarding their number of available candidates

5 Sort SFCRs (Ssort) according to the established criteria
6 while Ssort ̸= ; do
7 s ← Ssort[0]
8 Procedure 3: SFCR-mapping Procedure
9 if mapping_success then

10 Sm ← Sm ∪ s
11 Update network and infrastructure resources
12 if number of available servers changed then
13 Update available candidates near each SFCR
14 Sort SFCRs according to the established criteria

15 else
16 Su ← Su ∪ s

17 Ssort ← Ssort − s

Algorithm 2 begins by determining the candidate locations that could host the VNFs that

form every SFCR as well as the SFCRs that each candidate could serve according to session

latency requirements (line: 3). The first determination reveals whether an SFCR is in a critical

stage, whereas the latter helps decide which server is more convenient to deploy a UPF in

terms of popularity. Specifically, we classify an SFCR as critical if it has a number of candidates

equal to or lower than the minimum needed to map its constituent VNFs (line: 4). Next, the

algorithm sorts the SFCRs according to the established criteria (line: 5). Specifically, we order

the PDU sessions in terms of criticism level, service latency requirements (ascending), length

of the SFCS (descending), available candidates for their mapping (ascending), and closeness

between their point of attachment to the network. This approach increases the possibility of

successfully mapping the most critical and demanding PDU sessions. Once the SFCR order has

been established, the algorithm begins the mapping process by selecting the most demanding

SFCR and executing the SFCR-mapping procedure (lines: 7–8).
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Procedure 3 in line 8 is responsible for determining the best candidates and routing data

paths for the VNFs and path segments that form the SFCR under analysis. A VNF mapping

decision is made by considering the mapping effects on the current stage and the next VNFs that

remain unmapped. Specifically, this procedure analyzes how the placement decision of a given

VNF affects other VNFs that directly depend on it (i.e., the next VNFs in every branch). This

enables more effective VNF mapping and reduces SFCR rejection and reassignment procedures

by avoiding dead ends during the SFC mapping. To keep the SFCR-mapping procedure simple

and reduce its execution time, we only consider the influence of the VNF mapping decision in the

current and subsequent stages. Nevertheless, it could be extended to include more stages.

The SFCR-mapping procedure begins by initializing the output variables. In particular, it

marks the SFC mapping indicator as successful and creates an empty set to store the mapping in-

formation concerning selected VNF candidates and routing paths (line: 1). Afterward, it proceeds

to map the SFCR constituent VNFs (Fs) by iterating through each VNF, thus forming the chain

(line: 2). These VNFs are mapped by their order of appearance in the SFCR branches, beginning

from the source access node to the destination UPFs (PSAs). Given that a VNF may have been

previously mapped by the look-ahead process, the procedure must verify whether the chosen

VNF has not been mapped before analyzing its mapping options (line: 3).

In the case of an unmapped VNF, the procedure sets the best mapping cost to a significant

value (i.e., infinite) and determines the VNF source nodes, the next VNFs in the chain (if any),

and possible candidates. This step is executed for each branch comprising the chain since each

VNF can have different source nodes, destination VNFs, and candidate servers (lines: 5–8). The

possible locations for the chosen VNF are determined by considering its source node and available

propagation delay budget in each branch. From these candidates, the ones that are common to all

the branches are selected (N f
c ), and their feasibility and mapping costs are analyzed (lines: 9–10).

The feasibility of a candidate is assessed based on the UPC constraints presented in Sec-

tion 5.2. A candidate is feasible when all the attendant constraints are satisfied. For every feasible

candidate, the mapping cost of the VNF under analysis (f ) is computed according to the objective

function (5.4). Since this cost is estimated based on the selected VNF mapping, considering the

remaining fraction of unassigned PDU sessions when creating a new instance is required. This

favors the instantiation of VNFs in the candidate nodes that can serve a greater number of

unmapped SFCRs, which we refer to as the most popular candidate locations. Furthermore, the

shortest virtual path with enough bandwidth to serve the traffic flow demand is also obtained for

each feasible candidate.

Once the feasibility of the candidates has been evaluated, the procedure selects the subset of

feasible candidates, denoted as N f
c′ , and sorts them in ascending order according to the estimated

VNF mapping costs (lines: 11–12). For each candidate in this subset with a lower estimated cost

than the current best cost Costc < Costbest, the mapping of VNF f is simulated by reserving

the required resources (lines: 13–37). The previous step reduces the solution computation time

105



CHAPTER 5. STATIC UPF PLACEMENT AND CHAINING

Procedure 3: SFCR-mapping
1 mapping_success ← True, Fmapped ←;
2 forall f ∈ Fs do
3 if f ∉ Fmapped then
4 Costbest ←∞
5 forall b ∈ Bs do
6 if f ∈ b then
7 Determine source and next VNFs
8 Determine candidates for f

9 Select candidates common to all the branches (N f
c )

10 Evaluate feasibility and mapping cost for c∈N f
c

11 Select feasible candidates (N f
c′ )

12 Sort c ∈ N f
c′ by cost in ascending order (N f

c′sort
)

13 forall c ∈ N f
c′sort

do
14 if Costc < Costbest then
15 Make a copy of current placement configuration and SFCR mapping
16 Simulate deployment of f in c
17 if f ̸= last_vnf then
18 Sort next_vnfs by their requirements
19 forall nf ∈ next_vnf s do
20 Determine candidates for nf (Nnf

c )

21 Evaluate feasibility and mapping cost for all nc ∈ Nnf
c

22 Select feasible candidates (Nnf
c′ )

23 if Nnf
c′ ̸= ; then

24 Select candidate with the best cost (ncbest)
25 Simulate deployment of nf in ncbest
26 Costc ← Costc +Costncbest

27 else
28 Costc ←∞
29 break

30 if Costc < Costbest then
31 nbest ← c
32 Costbest ← Costc
33 if f = penultimate_vnf then
34 Save placement configuration and SFCR mapping

35 else
36 Update placement configuration and SFCR mapping
37 return

38 if Costbest =∞ then
39 mapping_success ← False
40 return

41 Update Fmapped , placement configuration and SFCR mapping

42 return

since poor candidates are instantaneously discarded. Furthermore, when f is not the last VNF in

the chain data path, the look-ahead process analyzes the implications of its assignment to the

current candidate for the next VNFs (lines: 17–34).

The look-ahead procedure begins by sorting the VNFs that directly depend on the VNF under

analysis (next_vnfs). It sorts these VNFs according to their propagation latency budget, although

other criteria, such as criticism level, may be used. For each next VNF (nf ), candidates are
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determined and evaluated according to their feasibility and mapping cost. If feasible candidates

exist for the mapping of nf, the one with the lowest cost is selected, and the mapping of nf is

simulated in the selected candidate by reserving the required resources (lines: 23–26). This step

requires updating the mapping cost (Costc) by considering the expected cost of the nf mapping.

If no feasible candidate is available for the assignment of a next VNF, the candidate c ∈ N f
f csort

under analysis is discarded by setting its cost to infinite (lines: 28–29). The latter avoids selecting

candidates that may lead to unmapped VNFs in the chain at future steps.

After analyzing the future implications of a given candidate selection, the procedure compares

the candidate’s mapping cost with the best cost found thus far to determine if it is a better

candidate (lines: 30–34). If a better candidate is found, the current best cost and candidate are

updated. In addition, the best-simulated mapping configuration is also saved when VNF f is the

penultimate virtual node in the chain (lines: 33–34). This avoids repeating the mapping process

for the next VNFs since they have already been analyzed as part of the look-ahead process.

Once all candidates have been evaluated, the one with the lowest mapping cost is selected,

and the placement configuration is updated with the best SFCR mapping configuration. If no

feasible candidate exists, the mapping process is marked as failed and interrupted. Otherwise,

the mapping procedure continues until all the VNFs that form the SFCR have been analyzed. No

look-ahead is performed for mapping the final VNF. Thus, the first candidate in the sorted set of

feasible candidates is considered the best. This step requires the update of the placement and

SFCR mapping configuration and ends the SFCR-mapping procedure (lines: 35–37).

Algorithm 2 classifies an SFCR as mapped or rejected according to the outcome of the SFCR-

mapping procedure (i.e., the mapping_success indicator). When an SFCR is successfully mapped,

the network and infrastructure resources are updated according to the performed mapping

decisions. Additionally, the occurrence of any change in the set of available candidates is verified

(lines: 12–14). In the latter case, the subset of candidates for each SFCR is updated by removing

the unavailable locations. This last step requires reordering the set of unmapped SFCRs since

their possible locations and criticism levels may have changed. In contrast, when the SFCR-

mapping procedure fails, the selected SFCR is marked as unmapped (lines: 15–16). Finally, the

currently picked SFC is removed from the set of PDU session requests (Ssort) regardless of its

mapping outcome (line: 17). The SFCR-mapping procedure is executed as long as there are SFCRs

pending analysis.

5.3.2 Metaheuristic: Simulated Annealing-based UPC

This section presents the SA-based metaheuristic for the UPC (SA-UPC) problem. This approach

incorporates several strategies, such as restart-stop and variable Markov chain length, to en-

hance its performance. Subsection 5.3.2.1 provides a detailed description of the solution’s main

components, while Subsection 5.3.2.2 describes its procedure using a flowchart scheme.
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5.3.2.1 SA-UPC Components

SA metaheuristics are characterized by several parameters that must be defined and adjusted

according to the problem under study. In this section, we present the main components of the

proposed solution. We focus on aspects such as neighborhood function, MCL, restart strategy, and

termination condition.

The initial solution is the starting point for the solution space exploration. The proposed

SA can accept any initial solution (e.g., random or heuristic-specific) as long as it is feasible.

Specifically, the solution must satisfy the UPC constraints specified in Section 5.2. However, a

good initial solution is recommended since it can provide better results than random approaches

[151].

The acceptance criterion determines whether a candidate solution is accepted according to the

acceptance probability (pa). Our proposed solution adopts the Metropolis condition [152], which

is the criterion utilized in the traditional formulation of the SA metaheuristic [153].

The cooling or annealing schedule specifies how the temperature decreases during the search

process [154]. A set of parameters, such as initial temperature, decrement function, MCL, and

final temperature, defines the cooling schedule. In this study, we utilize a geometric cooling

schedule, which computes the next temperature value according to the decrement formula

Tk+1 =α·Tk. The α factor in the previous function has typical values ranging from 0.8 to 0.99. We

select this scheduling technique due to its popularity and simplicity. However, other approaches,

such as adaptive, arithmetic, or monotonic scheduling, can be used.

Given the wide variety of research studies [154–156] addressing the performance of the

acceptance criterion and cooling scheduling parameters, we focus on the analysis of other aspects

of the SA algorithm. Specifically, we investigate the neighbor solution (NS), MCL, and restart

solution.

Most state-of-the-art SA-based solutions generate neighbor solutions based on the same

neighborhood strategy during their search. Moreover, these strategies are typically character-

ized by introducing small changes to the current solution. We believe that combining different

strategies can significantly improve the efficiency of the SA algorithm. Therefore, we propose two

approaches (i.e., NS_ST and NS_3T) that combine intensification with diversification techniques

when exploring the solution space. The benefits of this approach are twofold. First, it allows a

better solution space exploration, and second, it prevents the SA algorithm from being trapped in

local optima.

Our conceived neighborhood functions use three strategies to introduce changes to the current

solution. The first mechanism exploits the current solution neighborhood by introducing small

changes. In particular, it randomly chooses an SFCR from the set of PDU sessions and maps it

onto the underlying infrastructure. This SFCR mapping can either be random or can follow a

specific optimization criterion (i.e., minimize the objective function (5.4), in Section 5.2). With this

strategy, the generated neighbor solutions will mainly differ from the current solution in mapping
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one SFCR. However, this approach may also involve changes to other system parameters, such as

the number of open servers and VNFs. Based on this variant, a subset of neighboring solutions of

a pre-established size is generated.

The other two strategies aim to explore the solution space more efficiently and escape from

local optima (if it is trapped in any) by further modifying the current solution. The second and

third approaches remap all SFCRs mapped to a randomly selected VNF instance and candidate

server, respectively. In these variants, mapping selected SFCRs is determined by following only

the cost reduction criteria. This mapping approach attempts to avoid deterioration of the current

solution’s quality through overlay due to the presence of a more significant number of unmapped

PDU sessions.

In all previously mentioned strategies, mapping the selected PDU sessions is performed by

verifying placement and chaining constraints; see Section 5.2. Moreover, mapping SFCRs is done

by considering only those candidates that satisfy service latency requirements (near candidates).

In this way, we increase the likelihood of generating feasible solutions. Accordingly, we propose

the following two methods to create neighbor solutions:

• NS_3T: The set of neighboring solutions is generated by simultaneously considering the

three strategies mentioned above. Specifically, this function generates two neighbor so-

lutions by introducing changes of types two and three, along with a subset of type one

solutions.

• NS_ST: Unlike NS_3T, this method selectively applies a change based on the quality of the

generated solutions and current temperature values. First, it simultaneously considers the

three previous strategies when generating new solutions. This approach is applied until a

better solution is detected. Once a better solution is found, it generates only neighboring

solutions of the first type to explore its neighborhood better. The decision to apply a

diversification strategy is made at the end of a temperature length with probability pd.

Using diversification depends on the fraction of remaining temperatures (Tr), and the best

solution ratio updates at each temperature (Q). Specifically, the diversification strategy is

selected when pd is greater than Q and lower than Tr. Diversification probability is more

probable at the beginning of the algorithm since both Tr and Q decrease with temperature.

Once all neighbor solutions have been generated according to the selected method, their

associated cost is determined. Then, the one with the best cost is selected as the neighbor

solution.

The Markov chain length, also known as temperature length (Lmkv), defines the number of

iterations performed for a given temperature. A considerable length of Markov chains allows an

exhaustive exploration of the solution. However, this comes at the expense of higher execution

times. To avoid long Markov chains, cooling schedule methods with small decrements in the

temperature may be adopted [157].

109



CHAPTER 5. STATIC UPF PLACEMENT AND CHAINING

Using a fixed temperature length during simulation time is the most common practice.

However, this may not be the most suitable strategy for large-scale optimization problems [158],

thereby different strategies based on variable MCL have been adopted. For instance, the authors

of [159, 160] vary the chain length inversely to the temperature update. In [161], the higher the

temperature, the longer the MCL, whereas in [158], a higher MCL in intermediate temperatures

is proposed.

As in the previous studies, we embrace a VMCL approach. However, instead of varying the

chain length with the temperature, we adjust it according to the quality of the generated solutions.

Specifically, our strategy assumes two possible values for the MCL and switches between them.

It chooses a lower value (Lmkvmin ) when no better solution is found at a current temperature;

otherwise, it sets the length of the chain to a maximum value (Lmkvmax ). Another technique is

gradually increasing or decreasing this parameter using adjusting factors or an ordered list of

possible values. However, we prefer our strategy due to its simplicity and ability to accelerate

the algorithm execution time. The MCL is adjusted at the end of a temperature length when

required. This strategy favors the exploitation of effective solutions and decreases the algorithm

computation time.

Restart strategies are a widespread diversification mechanism used to avoid being trapped at

strong local optima and increase the probability of finding a global optimum. This strategy is

characterized by two main aspects: the restart conditions and the restart point.

The restart condition adopted by the conceived SA is straightforward and widely used in the

literature. Our algorithm restarts if the current best solution has not improved for a fixed number

of consecutive temperatures, which is referred to as the restart period (Pr). In addition, the restart

point requires the specification of the restart temperature and solution. Many approaches can be

followed for the temperature reset, such as re-establishing the initial temperature, multiplying

the current temperature by a factor greater than one, or using the system’s temperature value

when the current best solution was found. Nevertheless, we do not adopt any of these re-heating

methods; rather, we keep the current temperature value unchanged. We select this approach to

reduce the probability of accepting worse solutions and the time needed for solution computation.

For the solution reset, a popular approach is selecting the current best solutions [162, 163].

However, a drawback to this approach is that it may always restart to the same point of the

solution space if the best solution is not updated during the restart period. Thus, it may end up

in the local optimum from which the algorithm is trying to escape. In contrast, some studies

generate random restart solutions [164] or combine different strategies [165].

Our proposed strategy for selecting the restart solution is more in line with the latter since

we adopt different methods to generate the solution. A solution is chosen randomly from a set

of possible solutions (e.g., the initial, current, and best solutions), and a new restart point is

constructed upon the selected solution. We randomly select a number of open servers much lower

than the total and remap their assigned SFCRs based on the criteria of the best cost optimization.
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We do this to construct a new solution that differs from the current solution but not completely to

avoid selecting poor reset solutions. After defining a new restart point (solution), we must ensure

that it is located in a different region of the solution space to escape from a current local optimum

if trapped in one.

Furthermore, to promote diversification during the process, we determined whether the

selected restart point has not been used in previous restarts. We record all the neighboring

solutions generated during the current restart period and inspect whether the new solution is

significantly different (an outlier) from the ones forming the set. The z-score formula is used to

compare how far the restart solution cost is from the mean cost of the neighboring solutions. In

this manner, we determine whether we are in the presence of an outlier, thereby ensuring the

exploration of a different region and escaping from the local optimum.

Additionally, to promote diversification during restarts, we define a Tabu list in which the

costs of the selected restart solutions are stored. The length of this list is conditioned by the

number of permissible restarts (i.e., stopping condition). Overall, a new restart solution will

be accepted as long as it has not been previously used as a restart point and it significantly

differs from the solutions recently visited during the restart period. The acceptance criterion of

the restart point is based on the solution cost instead of the placement configuration since this

parameter is much simpler to analyze.

The stopping condition indicates when the SA algorithm should terminate exploring the

solution space. Our proposed solution has two stopping conditions. The first is the one used by

classical SA; the algorithm stops when a specific temperature value (T f ) is reached. The second

condition terminates the execution when a fixed number of restarts (R f ) has been performed.

Thus, our SA will stop executing when one of the aforementioned criteria is met.

5.3.2.2 SA-UPC Procedure

The flowchart of the proposed SA-UPC algorithm is represented in Fig. 5.2. This algorithm begins

by generating an initial solution and assessing its cost according to (5.4). Afterward, it proceeds

to initialize the SA parameters, such as initial and final temperatures (Ti and T f ), Markov chain

length, and restart period (Pr), and it specifies the neighborhood solution strategy (i.e., NS_ST or

NS_3T). Additionally, the current and best solutions (Sc and Sb), as well as their associated costs

(Fc and Fb), are defined based on the initial solution parameters (i.e., placement and mapping

setup and cost). Given that the probability of improving the current best solution and accepting

worse solutions is initially higher, the Lmkv parameter is set to its minimum value.

The algorithm performs Lmkv explorations of the solution space for each temperature value.

Specifically, it generates a set of neighbor solutions according to the specified method at each

iteration of its inner loop. The UPC constraints are verified for each solution, and only feasible

solutions are accepted. If an unfeasible solution is detected, a new one must be generated.

Subsequently, the solutions’ costs are determined, and the best solution (the one with the lowest
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Figure 5.2: Flowchart of the proposed SA-UPC.

cost) is selected as the neighbor solution.

Next, the algorithm compares the costs of the neighbor and current solutions (∆F = F(Sn)−
F(Sc)). If the neighbor solution is better than the current one, the latter is updated, and the

algorithm verifies whether a better solution has been detected. If so, the placement configuration
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of the best solution and its associated cost are replaced by the neighbor solution. When using

the NS_ST method, the neighbor function is instructed only to generate solutions of type one

during successive iterations until otherwise specified, and the MCL is instructed to switch to

its maximum value at the next temperature iteration. These two strategies further exploit the

solution space in the following iterations. Worse neighbor solutions are accepted as current

solutions with probability pa following the Metropolis criterion.

The algorithm updates the restart counter at the end of a temperature length. It increases

this counter if no best solution improvement occurs during the process or sets it to zero otherwise.

The algorithm restarts when no better solution is found during a restart period (Pr). As a result

of this process, the current solution is modified, the MCL is increased, and the NS_ST method, if

selected, adopts a diversification phase.

Finally, the termination criteria are verified. If a stopping condition is satisfied, the algorithm

terminates and returns the best solution found thus far. Otherwise, it updates the current

temperature value, the MCL, and the neighborhood strategy if required by the NS_ST method.

Furthermore, the MCL parameter is set to its minimum value when the best solution is not

updated during the current temperature value.

5.3.3 Complexity Analysis

This subsection discusses the complexity analysis of PC-UPC and SA-UPC algorithms.

In algorithm 2 (lines: 2–4), we first need to find the available candidates for each SFCR as

well as the SFCRs near each candidate, which requires S ·Nc steps. Next, the set of SFCRs is

ordered according to the established criteria. Thus, the time complexity of this part is S · (Nc +K ·
logS), where K denotes the number of sorting criteria under consideration. Then, an iterative

process for mapping the PDU sessions takes place (lines: 6–17). This process will be executed S

times according to the number of PDU sessions. Inside this loop, Procedure 3 is responsible for

determining the best SFCR mapping configuration. Moreover, when a variation in the number

of available candidates is detected, the update of the subset of SFCR available candidates and

SFCR mapping order is required.

Regarding the complexity of the SFCR-mapping procedure, for the mapping of a VNF service,

we first need to determine its source and destination VNFs as well as available candidates for

each branch forming the SFC, which runs in Bs ·(Nc+Fs). Then, the subset of common candidates

for all the branches is determined in the subsequent line. In the worst case, this requires Bs ·Nc,

assuming that the selected VNF is presented in all the branches. Afterward, the feasibility of

each candidate is assessed, and the feasible candidates are sorted according to their estimated

cost. The complexity of this step is expressed as Nc ·M+Nc ·log Nc, where M denotes the run time

of the feasibility evaluation process. Please note that this expression considers all candidates’

feasible locations for deploying the selected VNF, which rarely happens in practice.

For each feasible candidate, the implications of its selection are investigated by simulating
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the VNF deployment and verifying the mapping costs and options for the next VNFs in the chain.

This iterative process can be expressed as Nc · (Bs · logBs +Bs ·Nc(1+M)). Assuming that all the

constituent VNFs are analyzed, Fs · (Bs · (2 ·Nc +Fs)+Nc · (M+ log Nc +Bs · (logBs +Nc · (1+M))

steps are required for the mapping of one SFCR. Therefore, Procedure 3 complexity is at the

level of O(Fs ·N2
c ·M ·Bs). Notice that not all the constituent VNFs and candidates are usually

evaluated due to the 1-SLA and the candidate sorting procedures.

The total complexity of the conceived PC-UPC algorithm is S · (Nc +K · logS)+S · (Fs ·N2
c ·

M ·Bs +S ·Nc +K ·S · logS). From this expression, we can see that the dominant term is the one

associated with the mapping of SFCRs and their constituent VNFs (S ·Fs ·N2
c ·M ·Bs). Generally,

the number of constituent VNFs (Fs) and branches (Bs) in an SFCR is significantly smaller than

the size of the service request and candidate node sets. Thereby, the overall complexity of the

PC-UPF solution can be expressed as O(S ·N2
c ·M).

The computational time of the SA-UPC solution is proportional to the number of moves

performed by the algorithm. These are conditioned by the temperature values and the MCL

(L). Specifically, several neighbor solutions are generated for each temperature t ∈ T based on

the neighboring method and the MCL. Assuming the worst-case scenario, in which the NS_3T

method and the maximum length of the Markov chain are always selected (L = Lmkvmax ), we

can define the SA-UPC running time as T ·L ·S ·Fs ·N2
c ·M ·Bs. In the previous expression, T

represents the number of temperature evaluations determined by the cooling factor and initial

and final temperatures for the geometric scheduling. Additionally, S denotes the total number of

sessions remapped by the three types of changes, and Fs ·N2
c ·M ·Bs is the maximum running

time of the SFCR-mapping procedure. Generally speaking, Bs ≤ Fs << S, thus the computational

complexity of the SA-UPC algorithm can be expressed as O(T ·L ·S ·N2
c ·M).

5.4 Evaluation and Results

5.4.1 Simulation Setup

For the simulations, we considered a network topology representing a 5G medium-scale scenario

of 5x5 km2 (see Fig. 5.3). In this scenario, the gNBs were connected through aggregation points,

and the gNB inter-site distances were 500 m and 200 m for gNBs located in urban and dense

urban areas [166], respectively. The VNF candidate location comprised 13 MEC servers, which

were co-located with the APs and had a service area with a radius of 1 km. We represented the

bidirectional links as two individual links, one in each direction. Regarding link capacity, we

assumed that the links between gNBs and APs had enough resources to support their associated

users and traffic. In contrast, the bandwidth between ENs was set to 10 Gbps [64].

For the service demand, we contemplated three types of SFCRs formed by one to three UPFs.

Their service requirements, such as latency, processing demand, and bandwidth, were randomly

generated according to the parameters specified in Table 5.4. The number of active PDU sessions
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Dense urban gNB EN gNBs assigned to an ENUrban gNB

Figure 5.3: 5G access network topology.

varied in the interval of [10–400]. Table 5.4 presents the simulation parameters for the UPC

model and proposed heuristics.

In the following sections, we analyze the simulation results. We ran every solution 15 times

for each experiment, which enabled us to present results with confidence intervals of 95%.

5.4.2 PC-UPC Performance Evaluation

To evaluate the effectiveness of the proposed PC-UPC solution, we compared its performance with

two benchmarks in terms of the total cost, the number of reassigned VNFs during the mapping

procedure, and execution time. Two greedy-based baselines, referred to as Greedy and Sorted

Greedy Heuristics (GH and SGH, respectively), were considered. Both solutions assign SFCRs to

the VNF instances and servers that minimize the objective function (5.4). Moreover, SGH sorts

SFCRs by following the criteria of our proposed algorithm (PC-UPC). Given that these baselines

generate solutions with rejected SFCRs, we developed a VNF reassignment procedure. This

procedure returns one step back in the mapping process when a VNF service request cannot be

mapped due to the absence of feasible candidates. Concretely, it attempts to remap the previous

VNF in the chain to a different candidate (the following best location, if any). This procedure

repeats until the current VNF is mapped successfully or no feasible candidate remains for the

previous VNF. In this manner, we avoid SFCR rejections in the baselines and guarantee similar
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Table 5.4: Simulation parameters for the UPC.

Parameter Value

Number of gNBs 121
Number of ENs 13
Number of links 174
Number of shortest paths 1742
Scenario dimensions 5 x 5 km2

Number of PDU sessions [10–400]
Bandwidth requirement [1 Mbps, 10 Mbps, 20 Mbps]
Processing demand [0.1 CPU, 0.2 CPU]
Latency requirement [0.9 ms, 1 ms]
RTT delay in the RAN (Tr) 500 µs
Processing time of UPFs (Tu) 50 µs
Processing time of DN (Td) 100 µs
Processing time of AP (Tap) 5 µs
Propagation delay in optical links 5 µs
Links capacity 10 Gbps
MEC server capacity 16 vCPU
UPF processing capacity 2 vCPU
UPF types 1: aUPF, 2:miUPF, 3: IUPF
Number of VNF instances per type [1: 72, 2: 16, 3: 16]
Weight factors α= 0.4, β= 0.4, γ= 0.2

comparison conditions with our conceived PC-UPC algorithm.

Figure 5.4 summarizes the gathered results. as shown in the figure, our proposed heuristic

outperformed both benchmarks for all analyzed metrics. It had not only the best cost behavior

but also the lowest execution time and reassignments. Specifically, the PC-UPC heuristic mapped

all SFCRs without requiring the reassignment of any constituent VNFs. No the case was for the

baselines, in which the number of remapped VNF instances increased with the number of active

PDU sessions. Thus, the GH provided the worst results, with up to 13 more reassigned sessions

than the SGH baseline. Moreover, the reference solutions would have rejected the reassigned

sessions if it had not been for the reassignment procedure.

Higher cost reductions and fewer VNF reassignments were achieved during SFCR mapping

when accounting for SFC requirements and current network conditions. This can be better

appreciated by comparing the priority-based solutions (i.e., PC-UPC and SGH) with the GH.

Consequently, these results demonstrated the importance and benefits of the look-ahead and

priority sorting processes.

Regarding the execution time, no significant difference was found among the solutions for the

number of PDU sessions equal to or lower than 200. In contrast, for PDU session values greater

than 200, the conceived PC-UPC solution required between two and six seconds less than the

benchmarks. This wider gap was due to the greater number of reassigned sessions during the

mapping procedures. Moreover, the comparison of the greedy-based heuristics showed that the

priority sorting process did not significantly influence the overall computing time.
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Figure 5.4: Performance of the heuristic-based solutions versus different numbers of PDU
sessions.

The obtained results generally revealed an increase in the examined metrics with the number

of PDU sessions for all solutions.

5.4.3 SA-UPC Performance Evaluation

This subsection evaluates the performance of the presented SA-based solution. Since the pro-

posed solution had several modifications compared to the classical SA (CSA), we ran various

experiments by gradually introducing each change. This allowed us to investigate the advantages

and implications of the changes in depth. First, we assessed the proposed neighborhood methods

for a fixed MCL (FMCL) of 20 iterations without a restart-stop mechanism. Then, we studied the

impact of the proposed restart-stop technique by comparing it with a classical restart approach

that uses the current best solution as the restart point. Finally, we analyzed the performance of

the variable MCL strategy versus a fixed approach. For these experiments, we considered initial

and final temperatures of 100 and 0.01, respectively, and geometric scheduling with a cooling
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factor (α) of 0.9.

5.4.3.1 Initial Solution and Neighborhood Method

This subsection provides the simulation results in terms of total cost and execution times for the

proposed NS approaches (i.e., NS_3T and NS_ST). We compared the approaches’ performance

with a traditional method that introduces slight modifications to the current solution. We refer to

this reference method as NS_T1 since it generates neighbor solutions by applying only type-one

modifications. For type-one changes, we used a neighborhood set with a size of five samples.

Moreover, we investigated their behavior when different approaches were applied to determine

the initial solution (IS). Specifically, we considered two initial solution types: the first was

generated by randomly assigning the SFCRs to candidate locations that complied with UPC

constraints, while the second solution was the PC-UPC heuristic presented in Section 5.3.

Figure 5.5 summarizes the total cost obtained by the considered neighbor methods for

different initial solutions and numbers of PDU sessions. This figure reveals that NS_3T and

NS_ST always had the best performance, achieving substantial cost reductions compared to

NS_T1. Their capacity to decrease the initial solution costs was more significant for the random

initial solution, which was characterized by poor quality (see Fig. 5.5(a)). For this case scenario,

the proposed neighborhood methods improved the initial solution by at least 60%, whereas NS_T1

only provided a cost reduction of up to 37% in the best-case scenario (i.e., S = 50).
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Figure 5.5: SA-UPC placement cost for different neighborhood methods.

As seen in the figure, the initial solution quality highly conditioned the final cost obtained by

the baseline method since it could not attain significant improvements. This can be better seen in

Fig. 5.5(b), where the costs of the initial and final solutions for NS_T1 do not differ significantly.

In contrast, the conceived strategies provided similar results regardless of the initial solution

quality, with a maximum difference of 0.02 in the overall normalized cost.
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Figure 5.6 displays the SA running times for each method, as well as the numbers of PDU

sessions. The NS_T1 method had the lowest execution times, with values around two and

four times smaller than NS_ST and NS_3T, respectively. This outcome was anticipated since

our proposed methods performed more transformations in the generated neighbor solutions.

Regarding the effects of the IS quality on this metric, the execution time of NS_T1 was similar

for both initial solutions since it was unaware of the quality of the generated solutions. This was

not the case for NS_ST and NS_3T strategies, which experienced a significant increment when

the PC-UPC heuristic was selected as the initial state of the SA. The cause of this behavior lies

in the IS quality. Specifically, good-quality initial solutions have more sessions mapped to the

same VNFs and servers since fewer VNFs and servers are required. Thus, more PDU sessions

are reassigned when applying type-two and -three changes. Moreover, NS_ST performs more

diversification processes to improve the solution, given the fewer updates of the best solution.
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Figure 5.6: SA-UPC execution time for different neighborhood methods.

The simulation time of NS_ST remained much lower at all times than that of NS_3T, with

a difference of at least 1.6 times for both types of initial solutions. Therefore, NS_TS provided

similar costs to NS_3T at a lower execution time by adapting the neighborhood search to the

generated solution quality and temperature values.

These results demonstrate that NS methods that combine exploration with exploitation of

the solution space provide superior results to traditional methods. However, this outcome comes

at the expense of higher execution times.

5.4.3.2 Restart–stop Criteria

In this subsection, we compare the performance of the proposed restart (PR) mechanism with

a classical restart (CR) approach in which the current best solution is used as the restart

point. We also analyze the impacts of using different stop periods on the final solution quality

and SA execution time. We conducted these experiments for an FMCL of 20 iterations per

temperature value and a random initial solution. We preferred a random initial solution because
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the cost reductions in the output solution were more noticeable. Additionally, our proposed restart

approach generated the restart solution based on the current best solution by reassigning the

PDU sessions assigned to a maximum of two servers that were randomly selected.

Figure 5.7 provides the SA output costs for a restart period of three temperatures (Pr = 3)

and different stop conditions (i.e., three and five restarts, Ps = 3 and Ps = 5). This figure shows

that the proposed restart approach, represented by bars without stripes, provided lower-cost

solutions than the baseline (striped bars) regardless of the selected NS method. Moreover, slight

improvements in the proposed NS methods were observed for both the classical and proposed

restart approaches when more restart attempts were considered in the stopping condition. In

contrast, the algorithm based on the NS_T1 method obtained more significant reductions in its

output cost for the stopping condition with more restart attempts (see Fig. 5.7(b)). This was

because the baseline NS depends on additional diversification strategies, such as restarts, to

explore the solution space further since it only introduces minor modifications to the generated

neighbor solutions. Therefore, unlike the PR approach, the CR could not further improve the

output solution quality for NS_T1, despite the increment in the number of restarts shown in

Fig. 5.7(a). This outcome demonstrated that a classical restart may not help the SA algorithm

escape from local optima and may thus be inefficient.
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Figure 5.7: Obtained cost for different restart-stop periods.

In Fig. 5.8, the execution time of both restart-stop strategies is presented. The proposed

restart mechanism required higher execution times than the baseline. However, this difference

was insignificant except for the NS_3T method with 150 PDU sessions; most of the time, the

proposed restart strategy improved the current best solution, which delayed the occurrence of

restarts, and subsequently, that of meeting the stopping condition.

By comparing these results with those obtained for no restart-stop condition discussed in the

previous subsection, we observed that the initial solution quality was significantly improved with

the adoption of the proposed restart-stop strategy, as was the algorithm running time. Specifically,

for NS_ST, NS_T1, and NS_3T methods, the restart-stop with Ps = 3 and Pr = 3 decreased the SA
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Figure 5.8: SA algorithm execution time for different restart-stop periods.

execution time by at least 50%, 65%, and 70%, respectively. Correspondingly, for Ps = 3 and Pr = 5,

the SA algorithm execution time was reduced by more than 40%, 50%, and 65%. Additionally, the

utilization of the restart-stop mechanism significantly decreased the gap between NS_3T and

NS_ST running times. These results demonstrate the effectiveness of the proposed restart-stop

approach in increasing the probability of finding better solutions and reducing the SA running

time. Nevertheless, the stop period must be carefully set since the algorithm execution time

tended to increase with this parameter.

5.4.3.3 VMCL Strategy

In this subsection, we evaluate the impacts of the envisioned VMCL strategy under different

conditions. Concretely, we investigated the strategy’s behavior for the proposed NS methods with

and without the restart-stop condition and compared it to an FMCL approach. Different values of

the MCL were assessed for fixed and variable approaches. To facilitate analysis of the results,

we grouped them into two categories based on the MCL (see Table 5.5). As was described in the

previous subsection, we considered a random solution as the algorithm’s initial state.

Table 5.5: Values of MCL considered in the experiments.

Group Approach MCL Notation

Variable 10 & 20 VMCL_1020
I Variable 10 & 30 VMCL_1030

Fixed 20 FMCL_20

Variable 20 & 40 VMCL_2040
II Variable 20 & 50 VMCL_2050

Fixed 40 FMCL_40

Figure 5.9 shows the impact of different MCL approaches on the UPC output cost provided by

the SA solution. These results revealed no significant improvements in the quality of the output
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solutions with the increased number of inner iterations. Comparison of FMCL_20 and FMCL_40

revealed that the output cost reductions obtained by FMCL_40 were relatively slight despite

having twice as many iterations as FMCL_20. Concerning the performance of variable versus

fixed MCLs, the former strategy provided similar or better costs than its fixed analogous for most

examined use cases. This outcome was more remarkable for the second group of MCLs, which

had greater MCLs than the other. Overall, the worst performance was provided by VMCL_1020

since this variant performed fewer iterations and, therefore, poorer scans of the solution space.
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(b) NS_3T without restart-stop.
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(c) NS_ST with restart-stop (Pr = 3 and Ps = 3).
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(d) NS_ST without restart-stop.

Figure 5.9: SA output cost for different MCL strategies with and without restart-stop.

Figure 5.10 represents the running time of the SA algorithm for all analyzed use cases. As

expected, the value of this metric increased with the MCL. Nonetheless, the proposed VMCL

solutions required shorter execution times than their corresponding fixed variants. This was

most notable in the second group of MCL values, as well as SA without restart-stop. For these

combined use cases, VMCL_2040 decreased the overall execution time of the algorithm between

25% and 42 % for NS_ST and around 43% for the NS_3T neighbor solution compared to FMCL_40.

Overall, the combination of restart-stop with VMCL did not degrade the algorithm’s final
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(a) NS_3T with restart-stop (Pr = 3 and Ps = 3).
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(b) NS_3T without restart-stop.
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(c) NS_ST with restart-stop (Pr = 3 and Ps = 3).
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(d) NS_ST without restart-stop.

Figure 5.10: SA execution time for different MCL strategies with and without restart-stop.

solution quality. In fact, we obtained better results when using restart-stop than when excluding

it, as evidenced by the above-described experiments.

5.4.4 UPC Performance Evaluation

In this subsection, we analyze the performance of the proposed solutions in terms of normalized

cost, execution time, average E2E delay, number of open servers, and deployed UPFs. Additionally,

we describe a variant of the classical SA, which generated neighbor solutions by introducing only

type-one changes. This baseline, called CSA_T1, had an FMCL of 20 iterations per temperature

value and always used the best current solution as the restart point. In contrast, the SA-UPC

algorithm adopted the VMCL_1030 and the proposed restart method. We considered a restart

period of three consecutive temperatures without updating the best solution and a stopping

condition of three restarts. The proposed PC-UPC heuristic was used for the SA initial solution.

Regarding the exact solution approach (ILP model), we present simulation results for up to 100

active PDU sessions since it could not solve the problem for higher numbers of sessions within a

reasonable time.
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5.4.4.1 Overall Cost

Figure 5.11 depicts the average total cost provided by all analyzed solutions for different values

of PDU session requests. We observed that the total cost increased linearly with SFCRs. This

outcome was expected since more servers and VNF instances must be activated to cope with

increasing service demands. The proposed ILP model and the SA-UPC solution provided the best

costs. Moreover, the conceived metaheuristic obtained almost identical results to the optimal one

in both of its variants (i.e., SA-UPC_3T and SA-UPC_ST).
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Figure 5.11: Total cost versus different numbers of SFCs.

The devised SA with the NS_ST mechanism provided similar results to NS_3T when using

an IS with acceptable quality and the proposed restart-stop strategy. The PC-UPC had the

worst performance in these experiments since it was selected as the initial point of the SA-

based solutions. Nevertheless, its difference from the optimal was at most 22% in the worst-case

scenario.

Additionally, the conceived SA-UPC solution provided cost reductions ranging from 2.3%

to 17%, whereas the CSA_T1 improved the quality of the initial solution by only 8.5% in the

best-case scenario. Furthermore, the improvement achieved by this method was mainly null

or scarce, with less than 3%. In the cases in which the proposed SA had similar results to the

baseline, the proposed heuristic, used as the initial solution, obtained near-optimal results (i.e.,

S = 40) or the minimum numbers of VNFs and open servers (i.e., S = 300 and S = 400) needed to

fulfill the service’s demand. Thus, the only possibility for improvement in those cases was the

latency, which held minor importance for the objective function.

5.4.4.2 Running Time

The average running time required for each solution to solve the UPC problem is summarized

in Fig. 5.12. As seen in the figure, the running time of the ILP model significantly differed from
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that of the heuristic-based solutions. The execution time of the ILP model grew exponentially

with the number of active PDU sessions. Moreover, for SFCRs higher than 100, the model could

not converge toward the optimal solution due to the vast number of combinations. In contrast,

the heuristic-based solutions’ running time increased linearly with the number of active PDU

sessions. In this respect, the PC-UPC heuristic provided the best computing time, which solved

the problem within a couple of seconds (i.e., less than 10 s), with an average optimality gap below

13.5%. Additionally, the computation time of the baseline compared to the proposed SA was,

on average, 2.8 and 5.5 times faster than SA-UPC_ST and SA-UPC_3T, respectively. However,

this speed was achieved at the expense of fewer improvements regarding the quality of the final

solution.
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Figure 5.12: Running time versus different numbers of SFCs.

5.4.4.3 Other Metrics

In this section, we discuss other aspects of the designed solutions by describing the behavior of

each term in the objective function (5.4).

Figure 5.13 shows the average number of active servers and deployed UPFs obtained by all

analyzed solutions for different SFCRs. As seen in the figure, the PC-UPC heuristic provided

solutions that differed from the optimal, at most, in the activation of one server or a VNF instance,

but not both simultaneously. Moreover, both variants of the conceived SA-UPC obtained identical

results to the mathematical model, outperforming the other heuristic approaches.

Similar results were attained regarding the average E2E delay parameter, as indicated

by Fig. 5.14. Concretely, the SA-UPC approach was the one that most closely resembled the

performance of the ILP model. Moreover, the NS_3T and NS_ST solutions behaved similarly for

all analyzed SFCR sets. Furthermore, our proposed SA typically required lower average delays

than the classical SA baseline, even in cases with fewer active servers or deployed UPFs.
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Figure 5.13: Numbers of active servers and UPFs versus different numbers of SFCs.
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Figure 5.14: Average E2E latency versus different numbers of SFCs.

5.5 Conclusion

In this chapter, we investigated the 5G UPC problem. We described an ILP and two heuristic-

based solutions to address this problem, which we referred to as PC-UPC and SA-UPC. Their

main objective is to minimize expenditures associated with PDU session provisioning and to

enhance QoS (i.e., network response time).

The mathematical model became computationally intractable as the size of the involved sets

increased. As evidenced by the conducted experiments, the model’s computational time grew

exponentially with the number of PDU sessions until it was unable to determine a solution

in a reasonable time when the number of SFCRs was higher than 100 in a medium-size 5G

topology. We presented heuristic and metaheuristic-based solutions to overcome these limitations,

introducing various mechanisms that enhanced their performance.

The simulation results revealed that the proposed solutions not only outperformed some
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existing benchmarks but obtained near-optimal results in significantly less time than the exact

solution when the problem scale was small. Specifically, the PC-UPC heuristic solved the problem

within seconds with an average optimality gap of around 13.5%. Additionally, the SA algorithm

allowed for results almost identical to the optimal solution, although at the expense of higher

running times than the heuristic. We verified that the introduced modifications significantly

improved the solution’s performance, enabling it to provide near-optimal results regardless of

the quality of the initial solution. Our proposed strategies provided the necessary flexibility and

efficiency to meet 5G service stringent requirements, such as latency and device density, while

reducing their deployment and operational costs.
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DYNAMIC UPF PLACEMENT AND CHAINING

This chapter is based on:

• I. Leyva-Pupo, C. Cervelló-Pastor, C. Anagnostopoulos, and D. P. Pezaros, "Dynamic

UPF Placement and Chaining Reconfiguration in 5G Networks," Computer Networks,

vol. 215, p.109200, 2022.

This chapter addresses the problem of dynamic UPF placement and chaining reconfigu-

ration (UPCR) in MEC environments to cope with user mobility while guaranteeing cost

savings and acceptable QoS. We proposed an ILP model and a heuristic algorithm, called

dynamic priority and cautions UPCR (DPC-UPCR) to solve the problem. These solutions aim to

minimize multiple cost components involved in the UPCR procedure, such as VNF migration and

session reassignments. The DPC-UPC algorithm seeks to reduce the solution time complexity

to extend its applicability to online scenarios. The algorithm is based on the SFCR-mapping

procedure presented in Chapter 5 and incorporates two strategies (i.e., partial unmapping of

SFCRs and an improvement phase) to enhance the solution’s efficiency.

Moreover, a decision-making mechanism based on OST referred to as the optimal scheduling

of the reconfiguration (OSR) is provided to determine the optimal time to readjust the UPC

configuration. This decision is made according to instantaneous values of sessions with latency

violations, a pre-established QoS threshold, and an expected reconfiguration cost.

The rest of the chapter is organized as follows. Section 6.1 describes the system model and

the solutions for the UPCR problem. Section 6.2 provides a scheduling mechanism to decide the

optimal reconfiguration time. Next, Section 6.3 investigates the performance of the proposed

solutions, while Section 6.4 presents the chapter’s conclusions.
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6.1 UPF Placement and Chaining Reconfiguration

This section first presents the UPCR problem, the system model, and the used notation. Next, it

provides an exact solution and a heuristic-based approach to tackle this problem. These solutions

aim to optimize deployment and operational expenditures associated with reconfiguration events.

6.1.1 Problem Statement

The existence of multiple UPFs performing different functionalities in a PDU session data path

adds extra complexity to the UPF placement problem. We had to account for UPF order and

inter-dependency requirements under stringent service latency demands and edge nodes’ limited

resources. This requires higher deployment and operational costs, as more EN and UPF instances

must be deployed to fulfill service requirements such as latency, bandwidth, and user density.

Furthermore, frequent session relocations in MEC ecosystems are likely to occur due to highly

mobile users and UPF’s smaller service areas. Costs and session relocations can be reduced by

decreasing the number of UPF instances and consolidating their deployment on a small subset of

edge servers. However, this approach may provoke QoS deterioration and higher routing costs.

In dynamic environments, where user positions and demands change over time, the reconfig-

uration of the UPF placement and chaining setup may be needed to ensure QoS and guarantee

efficient usage of resources. Therefore, we addressed the problem of determining the best UPC

configuration that allows reduced expenditure while ensuring 5G service requirements.

6.1.1.1 System Model

We model the 5G network as a directed graph G(N, E), where N and E denote the sets of network

nodes and links, respectively. The set of nodes is formed by three subsets: access nodes (Nr),

aggregation points (Na), and server nodes (Nc). For the VNF placement, the server nodes are

analyzed as candidate locations since they provide virtualization resources required to host VNF

instances. The parameter Cc represents the resources, such as memory and CPU, available at a

candidate location c ∈ Nc. A physical link (u,v) ∈ E is characterized by bandwidth capacity (βu,v)

and latency (du,v). This latency comprises the link propagation delay and the processing time of

the underlying transmission nodes. Additionally, we consider a set of pre-calculated paths (P),

where each path p ∈ P is identified by its two endpoints (n,m) and an ID (h). This ID helps to

distinguish different paths between the same pair of nodes. Moreover, the binary indicator Hp
u,v

specifies a link mapping (u,v) to a path p ∈ P.

We denote the available VNF types as T, where t ∈ T represents a specific VNF type. Every

VNF type has an associated processing capacity (Ct), a processing time (dt), and a maximum

number of instances that can be deployed (I t). Additionally, the set F represents those VNF

instances that were deployed during previous placement events, where (i, t) identifies the i-th
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instance of type t in F. Table 6.1 summarizes the used notation for sets and parameters associated

with physical and virtual networks.

Table 6.1: Notation for physical and virtual network elements in the UPCR problem.

Notation Description

N Set of all nodes
Nr Set of access nodes
Nc Set of candidate locations (e.g., MEC servers)
Na Set of aggregation points
E Set of physical links
P Set of paths between all network nodes
Pn,m Set of paths between nodes n and m, (n,m ∈ N)
T Set of all types of available VNFs
F Set of deployed VNF instances
Cc Resource capacity at candidate location n ∈ Nc
Ct Resource capacity of VNF of type t ∈ T
βu,v Bandwidth capacity of link (u,v)
du,v Latency associated with link (u,v)
dp Latency associated with path p ∈ P
dt Processing delay of VNF of type t ∈ T
I t Maximum number of instances of type t ∈ T
Ψ Cost component

We consider a set of mobile devices connected to the (R)AN through their nearest access node

(ns
r ∈ Ns

r ) that are requesting PDU sessions. The set of PDU service requests is denoted as S. A

PDU session s ∈ S is compounded by an ordered set of VNF services (Fs) and demands certain

processing capacity (Cs), bandwidth (Bs), and E2E service delay (Ls) to be mapped. We represent

the properties of a given SFCR s ∈ S using a tuple (ns
r,Fs,Cs,βs,Ls,Bs,T

f ,t
s ,O f ,g,b

s ,Q f ,b
s ), where

parameters Bs, T f ,t
s , O f ,g,b

s and Q f ,b
s denote the number of branches in an SFCR, the type of

each VNF, and their order and presence in the branches forming the SFC, respectively. Table 6.2

provides the used notation for the SFCR representation.

Table 6.2: Notation for sets and parameters associated with SFCRs

Notation Description

S Set of PDU sessions (SFCRs)
Ns

r Set of access nodes (Nr) per PDU sessions (S)
Fs Set of VNFs forming SFCR s ∈ S
ns

r Access node (nr ∈ Nr) of SFCR s ∈ S
|Fs| Number of VNFs forming SFCR s ∈ S
Cs Computing resources required by SFCR s ∈ S
βs Bandwidth capacity required by SFCR s ∈ S
Ls E2E latency requirement of SFCR s ∈ S
Bs Number of aUPFs (branches) in SFCR s ∈ S

Table 6.3 describes the binary variables and parameters used for the UPCR problem solution.
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Table 6.3: Notation for decision variables and binary parameters (Param.) involved in the UPCR
problem.

Notation Var. Param. Description

wn x 1 if candidate node n ∈ Nc is open
rs x 1 if PDU session s ∈ S was reassigned during the reconfiguration.
vi,t x 1 if as a result of the placement reconfiguration there is a new instance

i ∈ I t of VNF type t ∈ T
xi,t,n x 1 if instance i ∈ I t of VNF type t ∈ T is deployed on node n ∈ Nc
mi,t,n′,n x 1 if the i-th instance of VNF type t ∈ T was migrated from node n′ to node n

( n′,n ∈ Nc)
z f ,s

i,t,n x 1 if VNF f ∈ Fs of SFCR s ∈ S is mapped to instance i ∈ I t of VNF type t ∈ T
located at node n ∈ Nc

a f ,s
n x 1 if VNF f ∈ Fs of SFCR s ∈ S is assigned to node n ∈ Nc

y f ,g,s
p x 1 if path p ∈ P is used to route traffic between VNFs f and g ( f , g ∈ F+

s ) of
SFCR s ∈ S

δ
f ,g,s
n,m x 1 if VNFs f and g ( f , g ∈ Fs) of SFCR s ∈ S are mapped on nodes n and m

(n,m ∈ Nc), resp.
ξt x 1 if there is at least one new VNF of type t ∈ T deployed in the network
X̄ i,t,n x 1 if instance i ∈ I t of VNF type t ∈ T was placed on node n ∈ Nc before the

reconfiguration
Ā f ,s

n x 1 if VNF f ∈ Fs of SFCR s ∈ S is hosted in node n ∈ Nc
Hp

u,v x 1 if physical link (u,v) ∈ E is mapped to path p ∈ P
V t

n x 1 if node n ∈ N supports VNFs of type t ∈ T
T f ,t

s x 1 if VNF f ∈ Fs in SFCR s ∈ S is of type t ∈ T
O f ,g,b

s x 1 if VNF f goes just before VNF g in branch b ∈ Bs of SFCR s ∈ S
Q f ,b

s x 1 if VNF f ∈ Fs is present in branch b ∈ Bs of SFCR s ∈ S

6.1.2 Model: Optimal UPF Placement and Chaining Reconfiguration

The main objective of the optimal UPCR (O-UPCR) solution is to minimize deployment and

operational costs associated with the UPF placement and chaining during reconfiguration events.

To this aim, we consider multiple cost components:

• Node activation cost (Cact): The cost associated with the activation of a server.

Cact =
∑

n∈Nc

Ψn
a ·wn (6.1)

• VNF deployment cost (Cdep): The cost related to instantiating new VNFs (e.g., software

license cost).

Cdep = ∑
i∈I t

∑
t∈T
Ψt

d ·vi,t (6.2)

• VNF running cost (Crun): The cost of running VNF instances at a given candidate location

(e.g., power consumption).

Crun = ∑
i∈I t

∑
t∈T

∑
n∈Nc

Ψ
t,n
r · xi,t,n (6.3)
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• VNF migration cost (Cmig): The cost of migrating a VNF instance from one location to

another. Thus, we define it in terms of the set of already deployed VNF instances (F).

Cmig =
∑

(i,t)∈F

∑
n′∈Nc

∑
n∈Nc

Ψ
t,n′,n
m ·mi,t

n′,n (6.4)

• Routing cost (Crou): The cost of routing traffic between the VNF services forming the PDU

sessions. This expression can also improve network response time since it includes the

propagation delay of the virtual links that form the SFC data path.

Crou = ∑
f ,g∈F+

s

∑
s∈S

∑
p∈P

Ψs,p ·dp · y f ,g,s
p (6.5)

• Session reassignment cost (Crea): The cost for reassigning PDU sessions during the UPC

recalculation. This cost is measured as a penalty that the service provider must pay for

interrupting user sessions or exceeding the service delay requirement. We consider a session

to be reassigned if at least one of its requested VNF services has been relocated from its

previously assigned server.

Crea = ∑
s∈S
Ψs · rs (6.6)

The O-UPCR solution aims to determine the optimal UPC arrangement, thereby minimizing

the total costs incurred during reconfiguration events. To achieve this goal, we express its

objective function as a linear combination of the cost components mentioned above. Additionally,

we introduce weight factors (αi) to reflect the relative importance of each component. Thus, the

objective function of the O-UPCR model can be expressed as follows:

Min: α1 ·
∑

n∈Nc

Ψn
a ·wn +α2 ·

∑
i∈I t

∑
t∈T
Ψt

d ·vi,t +α3 ·
∑
i∈I t

∑
t∈T

∑
n∈Nc

Ψ
t,n
r · xi,t,n+

α4 ·
∑

(i,t)∈F

∑
n′∈Nc

∑
n∈Nc

Ψ
t,n′,n
m ·mi,t

n′,n +α5 ·
∑

f ,g∈F+
s

∑
s∈S

∑
p∈P

Ψs,p ·dp · y f ,g,s
p +α6 ·

∑
s∈S
Ψs · rs (6.7)

A set of constraints must be satisfied to generate feasible solutions. We group these constraints

into VNF, path, reconfiguration, QoS, and capacity restrictions.

VNF constraints: Inequality (6.8) restricts the maximum number of instances of a given

type to be deployed according to the I t parameter. Constraint (6.9) confines the placement of

a VNF instance to a unique location in the network. Additionally, constraint (6.10) guarantees

the deployment of VNF instances in open candidates that support the requested VNF type.

Expression (6.11) forces the deactivation of MEC servers that are not hosting VNF instances.∑
i∈I t

∑
n∈Nc

xi,t,n ≤ I t ∀t ∈ T (6.8)

∑
n∈Nc

xi,t,n ≤ 1 ∀i ∈ I t,∀t ∈ T (6.9)
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xi,t,n ≤ wn ·V t
n ∀i ∈ I t,∀t ∈ T,∀n ∈ Nc (6.10)

wn ≤ ∑
i∈I t

∑
∀t∈T

xi,t,n ∀n ∈ Nc (6.11)

Inequality (6.12) expresses that a VNF service forming an SFCR can be assigned to a VNF

instance as long as this VNF has already been mapped in the infrastructure and is of the same

VNF type. Additionally, constraint (6.13) ensures that a VNF service request f ∈ Fs is served by

only one VNF instance. Moreover, restriction (6.14) avoids the deployment of empty VNFs by

ensuring that all the deployed VNF instances have assigned at least one SFCR.

z f ,s
i,t,n ≤ xi,t,n ·T f ,t

s ∀ f ∈ Fs,∀s ∈ S,∀i ∈ I t,∀t ∈ T,∀n ∈ Nc (6.12)∑
i∈I t

∑
t∈T

∑
n∈N

z f ,s
i,t,n = 1 ∀ f ∈ Fs,∀s ∈ S (6.13)

xi,t,n ≤ ∑
s∈S

∑
f ∈Fs

z f ,s
i,t,n ∀i ∈ I t,∀t ∈ T,∀n ∈ Nc (6.14)

The relationship between the binary variables a f ,s
n and z f ,s

i,t,n is established through expres-

sions (6.15) and (6.16). Specifically, these two expressions state that if a VNF service request is

mapped to a location, it has been assigned to a VNF instance deployed on that node.

a f ,s
n ≤ ∑

t∈T

∑
i∈I t

z f ,s
i,t,n ∀ f ∈ Fs,∀s ∈ S,∀n ∈ Nc (6.15)

a f ,s
n ≥ z f ,s

i,t,n ∀ f ∈ Fs,∀s ∈ S,∀i ∈ I t,∀t ∈ T,∀n ∈ Nc (6.16)

Inequality (6.17) defines the anti-affinity property for VNFs of the same type (e.g., anchor

UPFs) serving an SFCR. Concretely, it forces the deployment of VNF instances of the same type

serving the same SFCR on different servers. Constraints (6.18) is specific for UPFs; it stipulates

that anchor and IUPFs (iUPF with no BP or UL-CL functionality) assigned to the same PDU

session must be mapped to different locations.

∑
f ∈Fs

∑
i∈I t

z f ,s
i,t,n ≤ 1 ∀s ∈ S,∀t ∈ T,∀n ∈ Nc (6.17)

∑
f ∈Fs

∑
i∈I t

z f ,s
1,i,n +

∑
f ∈Fs

∑
i∈I t

z f ,s
3,i,n ≤ 1 ∀s ∈ S,∀n ∈ Nc (6.18)

Path mapping constraints: Constraint (6.19) guarantees that a path exists in the specified

direction (i.e., f → g) between two consecutive VNFs in every branch forming an SFCR. Moreover,

expression (6.20) limits the maximum number of assigned paths between any pair of VNFs to

one. This avoids the existence of loops between successive VNFs that form an SFC. For these two

constraints, we extend the set of SFCR constituent VNFs to include the requests’ access node

(F+
s = Fs ∪ns

r). In this manner, the path between the access node and the first VNF in the chain

is also mapped. Furthermore, inequality (6.21) ensures the mapping of consecutive VNFs to the

endpoints of the established data paths. Similarly, constraint (6.22) is an adaptation of (6.21) to
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include paths with an access node as one of their endpoints.∑
p∈P

y f ,g,s
p ≥O f ,g,b

s ∀ f , g ∈ F+
s ,∀b ∈ Bs,∀s ∈ S (6.19)

∑
p∈P

y f ,g,s
p ≤ 1 ∀ f , g ∈ F+

s ,∀s ∈ S (6.20)

∑
p∈Pn,m

y f ,g,s
p ≤ a f ,s

n ·as,g
m ∀ f , g ∈ Fs,∀s ∈ S,∀n,m ∈ Nc (6.21)

∑
p∈Pns

r ,m

yns
r ,g,s

p ≤ as,g
m ∀g ∈ Fs,∀s ∈ S,ns

r = Ns
r [s],∀m ∈ Nc (6.22)

Inequality (6.21) represents a non-linear constraint since it implies the product of two binary

variables. However, we can express it in linear form using the following expressions:

δ
f ,g,s
n,m ≤ a f ,s

n ∀ f , g ∈ Fs,∀s ∈ S,∀n,m ∈ Nc (6.23)

δ
f ,g,s
n,m ≤ as,g

m ∀ f , g ∈ Fs,∀s ∈ S,∀n,m ∈ Nc (6.24)

δ
f ,g,s
n,m ≥ a f ,s

n +as,g
m −1 ∀ f , g ∈ Fs,∀s ∈ S,∀n,m ∈ Nc (6.25)∑

p∈Pn,m

y f ,g,s
p ≤ δ f ,g,s

n,m ∀ f , g ∈ Fs,∀s ∈ S,∀n,m ∈ Nc (6.26)

Reconfiguration constraints: Expressions (6.27)–(6.30) help determine the type of changes

produced during a reconfiguration event. Restriction (6.27) indicates the migration of a VNF

instance when its location is different before and after the reconfiguration. This constraint is

linear since X i,t,n is a binary indicator, not a variable. Regarding VNF new deployments, we

define expressions (6.28) and (6.29). Mainly, they indicate the placement of new instances of a

given type, as the activation of new VNF IDs and the incremental in the number of deployed

instances with reference to the previous placement configuration. These two constraints promote

VNF migration over new deployments when the deployment component is omitted from the

optimization function in (6.7). Otherwise, deploying new instances could be preferred when

optimizing migration effects.

mi,t
n′,n = xi,t,n · X̄ i,t,n′ ∀(i, t) ∈ F,∀n,n′ ∈ Nc;n ̸= n′ (6.27)

vi,t =
[ ∑

n∈Nc

xi,t,n −
∑

n∈Nc

X̄ i,t,n
]+ ∀i ∈ I t,∀t ∈ T (6.28)

∑
i∈I t

vi,t =
[ ∑

n∈Nc

∑
i∈I t

xi,t,n −
∑

n∈Nc

∑
i∈I t

X̄ i,t,n
]+ ∀t ∈ T (6.29)

Expression (6.30) indicates the reassignment of PDU sessions during the reconfiguration

procedure. It stipulates that an SFCR has been reassigned when at least one constituent VNF

has been relocated. We assume that the relocation of VNF service requests ( f ∈ Fs) between

VNF instances deployed inside the same server does not affect the session and service continuity.

However, for more restrictive considerations, this constraint could be adjusted to express the rs

variable in terms of the variable z f ,s
i,t,n instead of a f ,s

n .

rs = 1⇔|Fs|−
∑

f ∈Fs

∑
n∈Nc

a f ,s
n · Ā f ,s

n ≥ 1 ∀s ∈ S (6.30)
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Constraints (6.28)-(6.30) are non-linear. Nonetheless, they can be reformulated in a linear

form as follows:

(6.28)⇔


vi,t ≥ ∑

n∈Nc

xi,t,n − ∑
n∈Nc

X̄ i,t,n ∀i ∈ I t,∀t ∈ T

2vi,t ≤ 1+ ∑
n∈Nc

xi,t,n − ∑
n∈Nc

X̄ i,t,n ∀i ∈ I t,∀t ∈ T
(6.31)

(6.29)⇔



∑
i∈I t

vi,t = ξt · ( ∑
n∈Nc

∑
i∈I t

xi,t,n − ∑
n∈Nc

∑
i∈I t

X̄ i,t,n) ∀t ∈ T

ξt ≥ (
∑

n∈Nc

∑
i∈I t

xi,t,n − ∑
n∈Nc

∑
i∈I t

X̄ i,t,n)/I t ∀t ∈ T

ξt ≤ (I t +∑
n∈Nc

∑
i∈I t

xi,t,n −∑
n∈Nc

∑
i∈I t

X̄ i,t,n)/(I t +1) ∀t ∈ T

(6.32)

(6.30)⇔


∑

f ∈Fs

∑
n∈Nc

a f ,s
n · Ā f ,s

n ≥ |Fs|(1− rs) ∀s ∈ S∑
f ∈Fs

∑
n∈Nc

a f ,s
n · Ā f ,s

n ≤ |Fs|− rs ∀s ∈ S
(6.33)

QoS constraints: We measure the system QoS in terms of service latency. This parameter

is expressed as the combination of VNF processing times and the propagation delays between

consecutive VNFs in every branch forming an SFCR. In this respect, constraint (6.34) guarantees

that the E2E delay of a given PDU session does not violate its service latency requirement by

mapping the constituent VNFs and data path to candidate locations and routing paths capable of

fulfilling it.

2 · ( ∑
f ∈F+

s

∑
t∈T

∑
n∈Nc

dt ·Q f ,b
s ·T f ,t

s + ∑
f ,g∈F+

s

∑
p∈P

dp ·O f ,g,b
s · y f ,g,s

p )+dDN ≤ Ls ∀b ∈ Bs,∀s ∈ S (6.34)

Capacity constraints: Expressions (6.35), (6.36), and (6.37) refer to resource limitations in

the edge servers, VNF instances, and physical links, respectively. Expressly, inequality (6.35)

guarantees that the VNF instances deployed in a candidate location do not exceed the server’s

resources (e.g., CPU and memory). Similarly, inequalities (6.36) and (6.37) enforce the mapping

of SFCRs to the VNF instances and links with enough processing capacity and bandwidth,

respectively, to serve their demands.

∑
i∈I t

∑
t∈T

Ct · xi,t,n ≤ Cn ∀n ∈ Nc (6.35)

∑
f ∈Fs

∑
s∈S

Cs · z f ,s
i,t,n ≤ Ct ∀i ∈ I t,∀t ∈ T,∀n ∈ Nc (6.36)

∑
f ,g∈F+

s

∑
s∈S

∑
p∈P

βs · y f ,g,s
p ·Hp

u,v ≤βu,v ∀(u,v) ∈ E (6.37)

The binary nature of the variables is indicated as follows:

wn, rs,vi,t, xi,t,n,mi,t,n′,n, z f ,s
i,t,n,a f ,s

n , y f ,g,s
p ,δ f ,g,s

n,m ,ξt ∈ {0,1} ∀ f , g ∈ F+
s ,∀b ∈ Bs,∀s ∈ S,

∀i ∈ I t,∀t ∈ T,∀p ∈ P,∀n ∈ N (6.38)
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The linear form of the O-UPCR model can be summarized as follows:

Min: α1 ·
∑

n∈Nc

Ψn
a ·wn +α2 ·

∑
i∈I t

∑
t∈T
Ψt

d ·vi,t +α3 ·
∑
i∈I t

∑
t∈T

∑
n∈Nc

Ψ
t,n
r · xi,t,n+

α4 ·
∑

(i,t)∈F

∑
n′∈Nc

∑
n∈Nc

Ψ
t,n′,n
m ·mi,t

n′,n +α5 ·
∑

f ,g∈F+
s

∑
s∈S

∑
p∈P

Ψs,p ·dp · y f ,g,s
p +α6 ·

∑
s∈S
Ψs · rs

s. t.:∑
i∈I t

∑
n∈Nc

xi,t,n ≤ I t ∀t ∈ T

∑
n∈Nc

xi,t,n ≤ 1 ∀i ∈ I t,∀t ∈ T

xi,t,n ≤ wn ·V t
n ∀i ∈ I t,∀t ∈ T,∀n ∈ Nc

wn ≤ ∑
i∈I t

∑
∀t∈T

xi,t,n ∀n ∈ Nc

z f ,s
i,t,n ≤ xi,t,n ·T f ,t

s ∀ f ∈ Fs,∀s ∈ S,∀i ∈ I t,∀t ∈ T,∀n ∈ Nc∑
i∈I t

∑
t∈T

∑
n∈N

z f ,s
i,t,n = 1 ∀ f ∈ Fs,∀s ∈ S

xi,t,n ≤ ∑
s∈S

∑
f ∈Fs

z f ,s
i,t,n ∀i ∈ I t,∀t ∈ T,∀n ∈ Nc

a f ,s
n ≤ ∑

t∈T

∑
i∈I t

z f ,s
i,t,n ∀ f ∈ Fs,∀s ∈ S,∀n ∈ Nc

a f ,s
n ≥ z f ,s

i,t,n ∀ f ∈ Fs,∀s ∈ S,∀i ∈ I t,∀t ∈ T,∀n ∈ Nc∑
f ∈Fs

∑
i∈I t

z f ,s
i,t,n ≤ 1 ∀s ∈ S,∀t ∈ T,∀n ∈ Nc∑

f ∈Fs

∑
i∈I t

z f ,s
1,i,n +

∑
f ∈Fs

∑
i∈I t

z f ,s
3,i,n ≤ 1 ∀s ∈ S,∀n ∈ Nc∑

p∈P
y f ,g,s

p ≥O f ,g,b
s ∀ f , g ∈ F+

s ,∀b ∈ Bs,∀s ∈ S

∑
p∈P

y f ,g,s
p ≤ 1 ∀ f , g ∈ F+

s ,∀s ∈ S

∑
p∈Pn,m

y f ,g,s
p ≤ a f ,s

n ·as,g
m ∀ f , g ∈ Fs,∀s ∈ S,∀n,m ∈ Nc

δ
f ,g,s
n,m ≤ a f ,s
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s ,∀b ∈ Bs,∀s ∈ S,

∀i ∈ I t,∀t ∈ T,∀p ∈ P,∀n ∈ N

6.1.3 Heuristic: Dynamic Priority and Cautious UPCR

The pseudo-code of the proposed heuristic, called DPC-UPCR, is provided in Algorithm 3. This

algorithm has four main phases. First, data related to the current placement setup and SFC

mapping are gathered (line: 2). For instance, the algorithm collects information about the location

of each VNF, its available processing capacity, and resource utilization in the underlying infras-

tructure (i.e., servers and links). These data help determine the SFCR mapping and placement

locations that imply fewer transformations and have the lowest impact on the overall reconfigu-

ration cost. Next, the algorithm selects the set of sessions to be remapped (Sremap) during the

placement reconfiguration (line: 4). This set can encompass all active PDU sessions in the system

or a subset of them, as indicated by the parameter Pr. In the latter case, it prioritizes the sessions

with worse QoS, those with latency violations, or those close to exceeding their service latency

requirement. Afterward, the algorithm proceeds to release resources assigned to the selected

sessions (line: 5). As part of this step, SFCRs assigned to underutilized VNF instances can also

be remapped, implying an update of the set of selected sessions (line: 6). Subsequently, VNF

instances can be removed, and active servers can be closed.

Second, the algorithm determines the set of possible locations for each unmapped SFCR. It

starts by choosing the set of available servers to be used during the SFC remapping procedures
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Algorithm 3: DPC-UPCR
Input: Percentage of additional SFCs to remap (Pr), Improvement attempts (Fi)
// Phase 1: Prepare variables and indicators

1 Initialize output variables and parameters
2 Gather information about previous placement and mapping configuration
3 if Pr!= 100 then
4 Sremap ← Select sessions (s ∈ S) to be remapped based on QoS and Pr
5 Release resources assigned to selected sessions
6 Update Sremap if required

7 else Sremap ← S
// Phase 2: Find possible candidates and classify SFCRs

8 Select candidates with available capacity
9 forall s ∈ Sremap do

10 Determine possible candidates
11 Classify SFCR s as critical or not according to its number of available candidates

// Phase 3: Map SFCRs
12 Sort s ∈ Sremap according to established criteria (sortc)
13 while Sremap ̸= ; do
14 s ← Sremap[0]
15 SFCR-remapping procedure(s)
16 Sremap ← Sremap − s
17 if mapping_success then
18 Smap ← Smap ∪ s
19 Update network and infrastructure resources
20 if available servers changed then
21 Update available candidates and determine criticism level for each SFCR
22 Sort selected SFCRs according to sortc

23 else Sunmap ← Sunmap ∪ s

// Phase 4: Improve solution and apply configuration
24 if Sunmap =; then
25 Determine the cause of VNF temporal IDs if any
26 costbest ← Compute solution’s cost
27 while Fi ̸= 0 do
28 Make a copy of the current best solution
29 sortc, fremap ←Randomly select a sorting criterion and a VNF
30 Sremap ← Sessions assigned to fremap
31 Release resources assigned to selected sessions
32 Repeat steps 8–23
33 if Sunmap =; then
34 Determine cause of temporal VNF IDs
35 cost ← Compute solution’s cost
36 if cost < costbest then
37 costbest ← cost
38 Update best solution

39 Fi ← Fi −1

40 Update VNF temporal IDs if any
41 Apply mapping and placement configuration

(line: 8). A server is available when it disposes of enough resources to instantiate a new VNF

or when its deployed VNFs can serve at least one unmapped SFCR. Once this step has been

executed, the algorithm finds potential candidates for each SFC according to its service latency
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demand (lines: 9–11). This information helps determine whether an SFCR is in a critical stage.

An SFCR is considered critical if its number of possible candidates is lower or equal to the

minimum number required to map its constituent VNFs.

Third, the algorithm maps the SFCRs. To this aim, the selected SFCRs (Sremap) are sorted

according to the established criteria (line: 12). Specifically, the SFCR mapping order is decided

according to their criticism level (critical or not), latency requirement, SFC length, access node

location, and the number of potential candidates. This combination of parameters increases the

possibility of successfully mapping the most demanding and critical sessions. After the mapping

order of the specified sessions is established, the algorithm begins looping over them by choosing

the most demanding one (line: 14).

The SFCR-remapping method determines the best mapping combination for every unmapped

PDU session (line: 15). This method is a variant of the SFCR-mapping procedure presented in

Section 5.3, with some minor modifications. The main difference between the procedures lies in the

function used to evaluate the mapping cost of a VNF instance. Specifically, the SFCR-remapping

procedure computes the mapping cost according to expression (6.7), whereas SFCR-mapping

utilizes (5.4). Moreover, the remapping procedure does not consider the candidate’s popularity

when deploying a new VNF.

The SFCR-remapping procedure determines all possible candidates for each VNF service that

forms the selected SFC. This step is required given that the latency budget and source nodes

change when previous VNFs in the chain are mapped. Then, these candidates are classified

as feasible or infeasible locations according to whether they satisfy the UPCR constraints (e.g.,

latency and anti-affinity). Additionally, the algorithm obtains the shortest virtual path with

enough bandwidth to support the requested traffic flow and estimates the VNF remapping cost

for each feasible candidate. Given that mapping a VNF instance to a different server may incur

additional costs in terms of VNF migrations and SFC relocations; this procedure endeavors to

maintain a similar configuration to the previous one as long as possible.

When selecting a server implies the relocation of a VNF service request, the procedure first

checks if this node has available instances of the same type from previous placement events. If so,

one of these instances is designated to provide the VNF service. Otherwise, a VNF migration or a

new VNF deployment is required. Like the ILP model, the DPC-UPCR algorithm considers a new

deployment when the current number of instances of a given type is higher than it was before the

reconfiguration event. Otherwise, the algorithm assumes the migration of a VNF instance. Since

several SFCs share the same VNF instance, and this decision is based on the mapping of the

PDU session under analysis, further analysis is required to determine the cause of the change.

The algorithm assigns a temporal ID to the instances, which helps determine the real cause of

the VNF deployment (i.e., new instantiation or migration) in the selected candidate.

At the end of the evaluation process, the algorithm maps a VNF instance to the candidate

location, implying the lowest reconfiguration cost. This process continues until all VNFs in the

140



6.1. UPF PLACEMENT AND CHAINING RECONFIGURATION

SCF have been evaluated or no feasible candidate is left. Once the SFCR-remapping procedure

has finished, the algorithm removes the selected session from the Sremap set, and the session is

classified as mapped or rejected (lines: 16–23). Successfully mapping an SFC requires updating

the network and the infrastructure’s available resources (lines: 17–22). Moreover, the algorithm

updates the subset of available candidates and verifies the criticism level for each SFCR when the

number of available candidates varies. A change in the number of available candidates implies

that the algorithm reorders the remaining SFCRs (line: 22). When no feasible candidate is found

for mapping a VNF service, the SFCR-remapping procedure is interrupted, and the SFCR is

classified as unmapped (line: 23).

The last phase of Algorithm 3 is optional, and its execution depends on the input parameter

Fi (lines: 27–39). This phase’s main objective is enhancing the quality of the generated solution by

introducing some modifications. It first determines the cost of the current placement configuration

and establishes this cost as the best one. Then, it performs Fi improvement attempts (line: 29).

Each improvement attempt begins with the random selection of a sorting criterion for the SFCRs’

mapping, as well as a VNF instance from the set of VNFs ( fremap ∈ F) (line: 29). Our algorithm

offers three sorting strategies. One is the strategy previously mentioned in phase 3, which is

used to generate the initial reconfiguration solution. Another is a variant of the above-mentioned

sorting criterion in which the order of the number of candidates and access node location

parameters are exchanged. The other strategy only considers service latency requirements to

determine the mapping order. Furthermore, different approaches can be defined as desired by

the service provider.

Regarding VNF selection ( fremap), the only condition is that the VNF be different from

the one previously analyzed. These two approaches promote diversification in the generated

solutions, thus reducing the chances of obtaining consecutive improvement attempts with similar

outcomes. Next, the algorithm proceeds to release the resources assigned to the sessions mapped

to the selected VNF (Sremap) and generates a new solution by remapping them. Similar to the

initial solution, it investigates the cause of temporal IDs for the feasible generated solutions

(i.e., Sunmap =;) before determining the solution cost. Then, it compares the obtained cost with

the best one found thus far, and an update process occurs when a better solution is detected

(lines: 33–38). At the end of this phase, the algorithm removes any temporal VNF IDs and applies

the best placement and chaining configuration.

6.1.3.1 Complexity Analysis

In this subsection, we analyze the time complexity of the DPC-UPCR solution in depth. For each

reconfiguration event, the main processes involved are variables and indicators preparation,

candidates determination and classification of SFCRs, SFCR mapping, and solution improvement.

The time complexity of the first phase of Algorithm 3 depends on the selection of partial or full

unmapping of the SFCR set. When no partial unmapping is selected, the complexity of this process
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is O(1). By contrast, when Pr ̸= 100, the complexity increases due to the execution of lines 4–6.

Concretely, the selection of Sremap has complexity S · log2 S+S
′
where Sremap denotes the subset

of sessions with latency violation along with the additional percentage obtained from Pr. In

the worst-case scenario, Sremap ≈ S. However, the main goal of selecting a partial unmapping

approach is to reduce the number of sessions under analysis during the reconfiguration procedure;

thus, typically, Sremap < S. In addition, for each s ∈ Sremap, the resources assigned to each

constituent VNF and link (Fs and Ps) are released. Thus, this step introduces Sremap · (Fs +Ps)

complexity. Finally, the update of Sremap due to the existence of low-loaded instances requires

iteration over each deployed VNF instance ( f ∈ F) as well as the release of resources used by

their assigned SFCRs. Hence, the time complexity of this phase, in the worst-case scenario, can

be summarized as O(|S| · log2 |S|+ |Sremap| · (|Fs|+ |Ps|)+|F|).
The second stage determines the available candidates and classifies SFCRs according to

their criticism level. In this vein, it first requires the analysis of the capacities available in

each candidate server (|Nc|). Moreover, in the case of no available capacity to instantiate a new

VNF instance, it proceeds to check if any of its instantiated VNFs has some capacity to serve

any SFCRs. The complexity of this step is indicated as C. It must be noted that C cannot be

determined beforehand since it depends on several factors, such as the maximum capacity of

a VNF, SFCR processing demands, and the maximum number of instances that it can host.

Therefore, the complexity of this step is formulated based on C as O(|Nc| · |C|). Next, all the

SFCRs are analyzed to determine their possible candidates and criticism levels. In the worst

case, assuming that the entire set of SFCRs is analyzed and that all the candidates are available,

it requires |S| · |Nc| iterations. Thereby, the second phase of Algorithm 3 can be performed in time

complexity (|Nc| · (|S|+ |C|)).
The third phase begins by sorting the SFCRs according to the established criterion. In

the worst case, this can be done in time complexity |k| · |S| · log2|S| where K indicates the

number of parameters in the sorting criterion and S represents the complete set of SFCRs

(i.e., Sremap = S). Afterward, an iterative process begins to remap every VNF and link, forming

each SFCR. The SFCR-remapping procedure conditions the complexity of this while loop. From

Subsection 5.3.3, it was shown that the SFCR-mapping approach follows the order of O(|Nc|2 ·|M|·
|Fs| · |Bs|) where |S|, |Nc|, |Fs|, and |Bs| indicates the sizes of the sets of SFCRs, available

candidates, VNFs and branches forming a service chain, respectively. In addition, M represents

the runtime complexity associated with the candidate evaluation process. Similar to C, M cannot

be determined beforehand, as it depends on several factors, such as servers and VNF capacities,

UPF-specific constraints, and available paths. Hence, the complexity of this phase is formulated as

a function of M. Thereby, the total complexity of this phase is |S|·(|k|·log2|S|+|Nc|2 ·|M|·|Fs|·|Bs|)
which is the level of O(|S| · |Nc|2 · |M| · |Fs| · |Bs|).

Finally, the improvement procedure determines the complexity of the last part of Algorithm 3.

Each improvement attempt implies the analysis of the sessions assigned to the randomly selected

142



6.2. DYNAMIC SCHEDULING FOR THE UPCR

VNF instance (Sremap). For this set of sessions, its resources must be released, and phases 2 and

3 must be executed. It should be noted that the number of sessions assigned to a VNF instance

is typically much lower than the size of the overall set of SFCRs (i.e., |Sremap| << |S|). Given

that this process performs Fi number of improvement attempts, the complexity of this phase, in

the worst scenario, becomes O(|Fi| · |S| · |Nc|2 · |M| · |Fs| · |Bs|). In contrast, when no improvement

attempt is considered (i.e., Fi = 0), this phase’s complexity is as simple as O(|Ftemp|), where

|Ftemp| indicates the size of the VNF set with temporal IDs. In the latter case, the complexity of

this algorithm stage is negligible compared to phase three.

Based on the previous analysis, the time complexity of the proposed heuristic is mainly

determined by the third and last phases of Algorithm 3, as these phases involve more iterative

processes than the first two. Thus, the maximum run time of DPC-UPCR depends on the number

of iterations over phase three (Fi+1). In this regard, the overall complexity of the proposed heuris-

tic can be formulated as O(|Fi| · |S| · |Nc|2 · |M| · |Fs| · |Bs|). However, the number of improvement

attempts can be omitted in large-scale scenarios where the numbers of candidate locations (Nc)

and PDU sessions are elevated (S). Concretely, the Fi parameter does not contribute as much to

the problem size as these other parameters (i.e., Fi << Nc and Fi << S). Similarly, the numbers

of VNFs and branches (|Fs| and |Bs|) forming the SFC topologies are, generally, significantly

smaller parameters than S and Nc. Thus, the overall complexity of Algorithm 3 can be reduced to

O(|S| · |Nc|2 · |M|). From this expression, we note that the complexity of the DPC-UPCR is strongly

dependent on the size of the considered sets for SFCRs (S) and candidate locations (Nc). For this

reason, the envisioned DPC-UPCR heuristic is a polynomial-time algorithm.

6.2 Dynamic Scheduling for the UPCR

This section introduces the OSR scheduler mechanism to execute UPF placement and chaining

readjustments dynamically according to desired QoS levels.

6.2.1 Problem Statement

Like in the SSR solution presented in Chapter 4, the OSR deals with the problem of deter-

mining the optimal time to initiate a UPC reconfiguration procedure so that adverse effects of

reevaluation events are minimized, and QoS is kept under acceptable values.

Given a UPC arrangement obtained as a result of an initial deployment or a reconfiguration

event, in which all PDU sessions were mapped according to their service requirements (e.g.,

latency), we have to consider some degradation in the QoS over time (refers to Section 4.2.1 for

more details). Moreover, we assume that at each time instant t, an agent measures the offered QoS,

which has been defined in terms of the number of sessions with latency violations (L t = ∑
s∈Ns

Is
t ,

where Is
t = 1 if the service delay of PDU session s ∈ S exceeds its service requirement). This
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metric is desired to be as small as possible, being the QoS optimal when the latency requirement

of all the sessions is satisfied (i.e., L t = 0).

We also assume that at each time interval, the system can tolerate a maximum number

of sessions with latency violations, denoted as Θ, where Θ > 0, without needing to activate a

reconfiguration event. Namely, the offered QoS is considered acceptable, and placement and

chaining reconfiguration is not required as long as the value of the selected QoS metric is below

the established threshold. Conversely, the QoS is considered degraded, and the UPC configuration

must be readjusted when the Θ threshold is overpassed. Thus, the reevaluation time must be

selected so that the value of the L t metric is as close to the pre-established upper bound as

possible without exceeding it. In this way, UPCRs can be delayed or even avoided while the QoS

is maintained at acceptable levels. In other words, we have to determine when the system is

about to exceed the established threshold to activate a reconfiguration event in advance and

avoid QoS deterioration.

To facilitate the decision process, we present the cost function (6.39). This expression is

defined as a function of the number of sessions with latency violations and the maximum QoS

tolerance threshold Θ. If the number of sessions with latency violations is below the established

threshold, no readjustment is needed, and the service provider avoids paying its users an amount

of money proportional to the expected number of users with good QoS that will be affected due

to the reconfiguration event (Ψ · (E[Sr]−L t)). In contrast, when the Θ threshold is exceeded,

the placement and chaining configuration must be readjusted, thereby incurring an expected

reconfiguration cost E[Crec].

Yt(L t)=
{
Ψ · (E[Sr]−L t) if L t ≤Θ
λ ·E[Crec] if L t >Θ

(6.39)

where the Ψ is a cost component and λ is a weight factor to adjust the importance of the

reconfiguration cost.

Our objective is to determine the time instance t when to stop observing the QoS parameter

(L t) and proceed to readjust the UPF placement and chaining configuration. Specifically, we aim

to determine the optimal stopping rule that minimizes the expected loss function (6.39).

Problem 2. Given a sequence of observations defined by L t, an upper bound Θ of the accepted

tolerance on the QoS and an expected reconfiguration cost E[Crec], determine the optimal decision

epoch t∗, which minimizes the cost function Yt:

inf
t≥0

E[Yt(L t)] (6.40)

6.2.2 Optimal Scheduling of the UPCR

In this subsection, we derive an optimal stopping rule to determine the optimal time at which

to stop observing the L t parameter and activate the UPCR. This stopping rule is based on the
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1-SLA rule, which for stopping problems aims to minimize an expected loss, as follows:

t∗ = inf {t ≥ 0 : Yt ≤ E[Yt+1|Ft]} (6.41)

where Ft is the σ-fields generated by the observations L1,L2, . . . ,L t. Specifically, it represents the

knowledge of the random variable L t up to time t.

Theorem 4. Given an upper bound (Θ) upon which the system QoS is considered degraded and a

sequence of observations regarding the number of sessions with latency violations L1, . . . ,L t with

reference to the last optimal UPF placement and chaining configuration (i.e., L0 = 0), the optimal

stopping time (t∗) for the problem stated in (6.40) is:

t∗ = inf {t ≥ 0 :Ψ · (E[Sr]−L t)≤λ ·E[Crec]+ (Ψ ·E[Sr]−λ ·E[Crec]) ·
Θ∑

l=0
P(L = l)}−Ψ ·

Θ∑
l=0

l ·P(L = l)

(6.42)

Proof. Given a time interval t where L t ≤Θ, the conditional expectation of Yt+1 at the next stage

is given by:

E[Yt+1|L t ≤Θ]=E[Ψ · (E[Sr]−L t+1)|L t ≤Θ,L t+1 ≤Θ] ·P(L t+1 ≤Θ)+E[λ ·E[Crec]|L t ≤Θ,

L t+1 >Θ] ·P(L t+1 >Θ)

=E[Ψ · (E[Sr]−L t+1)|L t+1 ≤Θ] ·P(L t+1 ≤Θ)+E[λ ·E[Crec]|L t+1 >Θ] · (1−P(L t+1 ≤Θ))

=Ψ · (E[Sr]−E[L t+1|L t+1 ≤Θ]) ·P(L t+1 ≤Θ)+λ ·E[Crec] · (1−P(L t+1 ≤Θ))

= (Ψ ·E[Sr]−λ ·E[Crec]) ·
Θ∑

l=0
P(L = l)+λ ·E[Crec]−Ψ ·

Θ∑
l=0

l ·P(L = l)

Thus, by comparing the current cost, Yt(L t) =Ψ · (E[Sr]−L t), with the one expected at the

next time interval, we find that the UPC setup must be readjusted at the first time instance t

such that Ψ(E[Sr]−L t) ≤ E[Yt+1|L t ≤Θ]. In other words, stopping is optimal when the current

loss is equal to or less than the expected cost at the next stage. ■

Based on Theorem 1, presented in Section 4.2.2, the stopping rule provided in (6.42) must be

monotone to guarantee the optimality of the 1-SLA rule.

Theorem 5. The 1-SLA rule defined in (6.42) is optimal for the OSR problem and minimizes the

expected loss defined in (6.39).

Proof. In order the problem be monotone, the difference E[Yt+1|L t ≤Θ]−Yt(L t) must be non-

decreasing with L t. This condition is satisfied since the right side of expression (6.42) remains

constant, and its left side is non-increasing over L t as long as L t is below the predefined QoS

threshold (L t ≤ Θ). Thus, the problem is monotone, and the 1-SLA rule provided in (6.42) is

optimal. When L t >Θ, we must stop immediately and proceed to readjust the UPF placement

and chaining configuration. ■
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6.3 Evaluation and Results

This section describes the conducted experiments to investigate the performance of the proposed

solutions and analyzes the obtained results. First, it introduces aspects of the simulation setup,

such as network topology and parameters. Next, Subsections 6.3.2 and 6.3.3 investigate the

performance of the designed methods for the UPC reconfiguration. Finally, Subsection 6.3.5

evaluates the effectiveness of the OSR mechanism.

6.3.1 Simulation Setup

Figure 6.1 provides an overview of the considered network topology. It represents a 5G medium-

scale scenario comprising 121 ANNs and 13 APs and edge servers. The gNBs connected through

the APs and had an inter-site distance of 500 m and 200 m for gNBs located in urban and dense

areas. Additionally, the ENs were co-located with the APs and had a service area with a maximum

radius of 1 km. Some of these ENs had already deployed UPFs, for which the initial placement

and chaining configuration was determined using the PC-UPC solution presented in Section 5.3.

The PC-UPC algorithm was run by prioritizing the optimization of node activation and UPF

deployment costs over the routing term (i.e., α=β= 0.4, and γ= 0.2).

Urban gNB

1

2 3

4

5 6
7

8 9

10

11 12

13

gNB EN gNB-EN link EN-EN link

Figure 6.1: 5G access network topology in a MEC ecosystem.

For the service demand, we considered three types of SFCRs, formed by one to three UPFs.

PDU session requirements, such as service latency, processing demand, and bandwidth, were
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randomly generated based on the parameters specified in Table 6.4. Additionally, the number

of connected users varied in the interval of [5–1000], and each one was assumed to have one

active PDU session. To simulate user mobility, we selected the CityMob [149] mobility pattern

generator with a Manhattan model (m = 2). Moreover, we developed a Python-based program to

manage user location and assigned gNB and UPFs over the entire simulation time. Table 6.5

provides the simulation parameters utilized by the CityMob program.

Table 6.4: Simulation parameters for the UPC problem.

Notation Description Value

S Number of PDU sessions (SFCRs) [5–1000]
βs Bandwidth requirement (Mbps) [1, 10, 50]
Cs Processing demand (CPU) [0.01, 0.05, 0.1]
Ls Latency requirement (ms) [0.95, 1]
Nr No. of access nodes 121
Nc No. of candidate locations (ENs) 13
E Number of links 172
P Number of shortest paths 1742
βu,v Bandwidth capacity of links (Gbps) 10
Cc Resource capacity of a server (CPU) 40
Ct Resource capacity of a VNF (CPU) 2
I t Maximum number of instances +31

dr RTT delay in the RAN (µs) 500
dt Processing time of UPFs (µs) 50
Tap Processing time of AP (µs) 5
dDN Processing time of DN (µs) 100
- Prop. delay in optical links (µs/km) 5

1 For each VNF type, the maximum number of instances was deter-
mined by adding three extra instances to the minimum number
of VNFs required to meet SFCR’s demands.

Table 6.5: Simulation parameters used in CityMob.

Notation Description Value

m Mobility model 21

n Number of users 1000
t Simulation time (s) 36000
s Maximum speed of the users (m/s) 15
d Distance between streets or block sizes (m) 100
w x d Dimensions of the grid (km2) 5x5
a Number of accidents 0

1 The m parameter takes numeric values to indicate the mobility
model (e.g., m = 2 for the Manhattan model).

To evaluate the solutions, we considered two sets of weight factors. The first set (weight_set_1)

assumes similar weights for all the terms in the objective function except for the reassignment

cost, which is omitted. The second weight set (weight_set_2) considers that all cost components
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need to be optimized and equally important.

6.3.2 DPC-UPCR Solution Performance

In the following section, we analyze the impacts of the partial SFC unmapping and improvement

attempts on the performance of the proposed heuristic. In particular, we focus on the average

reconfiguration cost and computation time metrics for different numbers of active PDU sessions

(i.e., S = 50, S = 100, and S = 200). Every sample contains 10 reconfiguration events performed

by a periodic scheduling mechanism with a reconfiguration period of 30 minutes.

6.3.3 DPC-UPCR Performance

6.3.3.1 Partial Unmapping

We performed these experiments by unmapping an extra percentage of SFCRs apart from those

with latency violations at the reconfiguration moment, as indicated by the Pr parameter. This

additional percentage of unmapped sections was formed by SFCs close to exceeding their service

latency requirement. In addition, sessions assigned to UPF instances with low capacity utilization

(i.e., below 20%) were also unmapped. Moreover, we did not consider any improvement phase for

the heuristic solution for these experiments.

Figure 6.2 represents the average reconfiguration cost for various percentages of additional

unmapped SFCs and both sets of weight factors. This figure shows how the behavior of the cost

function changed notably with the considered cost components. More precisely, for weight_set_1,

which is represented in light-blue, the overall reconfiguration cost decreased with the additional

percentage of unmapped sessions. All examined sets of SFCRs obtained the highest costs when

remapping only sessions with latency violations at the reconfiguration moment. In contrast, they

had the lowest reconfiguration costs when reconfiguring the UPC with a full unmapping of the

SFCR set (Pr = 100).

This outcome was expected since there were more combinations when all the sessions were

unmapped. Therefore, the possibility of finding better UPF locations, mapping, and chaining was

higher. The latter was sustained by the reassigned session behavior, which increased in value with

the Pr parameter as indicated in Fig. 6.3(a). The relocation term was not reflected in the overall

reconfiguration cost since this set of weights omitted it from the objective function. Moreover,

greater values of Pr also allowed further improvements in the average system response time

despite significant reductions in the total number of deployed UPFs, as illustrated in Figs. 6.3(c)

and 6.3(b).

The behavior of the cost function was more complex for the second set of weights, which are

represented in the figure in dark-blue, as it did not immediately seem to follow a clear trend

related to Pr (see Fig. 6.2). In contrast to our initial assumptions, a partial unmapping resulted in

lower reconfiguration costs than a full one in cases such as S = 50 and S = 100. This behavior was
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Figure 6.2: Average reconfiguration cost versus percentage of partially unmapped SFCs (Pr).
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Figure 6.3: Performance of DPC-UPC solution in terms of relocated sessions, deployed VNF
instances, and average latency for different percentages of partial unmapping.
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conditioned by an increase in the number of relocated sessions with the percentage of unmapped

sessions (see Fig. 6.3(a)). For the set formed by 200 PDU sessions, the cost function decreased for

values of Pr ≤ 40% and slightly increased for Pr ≥ 50% due to higher variations in the number of

reassigned sessions.

Nevertheless, unlike the other two SFCR sets, a complete unmapping required lower expen-

ditures than when only SFCRs with poor QoS were reassigned (Pr = 0). By closely examining

the relocation and cost functions, we noticed that both graphics had similar behavior when the

number of sessions was small (i.e., S = 50 and S = 100). This is because the impact of session

reassignments on the normalized cost function was more significant for small numbers of sessions.

This can be better appreciated for S = 100, which experienced scarce improvements in the number

of deployed instances.

As seen in Fig. 6.3(c), the second set of weights presented higher average latency values than

the first set. In particular, for weight_set_2, the obtained delays rose with the Pr parameter,

while the number of UPF instances usually decreased with Pr. Furthermore, unlike the results

obtained for the other set of weights, considerably fewer sessions were relocated due to the

consideration of this cost component in the objective function. Concerning the heuristic running

time, Fig. 6.4 shows that for both sets of weights, this metric increased with the number of

unmapped SFCRs (Pr), thereby requiring the highest execution time for complete UPF placement

and chaining readjustment (i.e., Pr = 100).

0 10 20 30 40 50 70 100
Additional percentage of unmapped SFCs (P)

0

1

2

3

4

5

6

7

Ex
ec

ut
io

n 
tim

e 
(s

)

ws=0 S=50
ws=0 S=100
ws=0 S=200
ws=0.16 S=50
ws=0.16 S=100
ws=0.16 S=200

r

Figure 6.4: Average computing time of DPC-UPC heuristic versus different percentages of
partially unmapped SFCs (Pr).

These results showed that partial rather than complete unmapping was a more appropriate

option concerning the session reassignment cost and a small number of SFCRs. We obtained

a relatively strong cost performance when considering partial unmapping of 30% to 50% of

the sections. When omitting this cost component, a complete rather than partial unmapping

of the SFCR set provided higher reductions in the reconfiguration cost. However, the complete
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unmapping approach still required higher running times. Accordingly, a partial unmapping of the

SFCR set may be adopted to reduce the computational time of the UPC reconfiguration events.

6.3.3.2 Improvement Phase

We assessed the impact of the improvement phase on the heuristic performance in terms of

reconfiguration cost and execution time for different improvement attempts as well as a no-

improvement phase (i.e., Fi = 0). Multiple samples (i.e., five) for the same Fi value were collected

to reflect more stable behaviors. This was due to the random selection of the VNF instances and

sorting criteria, which produce a different configuration at each iteration. The experiments were

conducted by considering that all components in the objective function are equally important (i.e.,

weight_set_2).

Figure 6.5 represents the average reconfiguration costs for different SFCRs. Even in the

simplest case (i.e., Fi = 1), the average reconfiguration cost was reduced with the introduction of

the improvement phase. These reductions were more remarkable as the number of improvement

attempts increased. For instance, the set formed by 50 PDU sessions experienced decrements

between 1% and 6% for the studied values of the Fi parameter compared with the no improved

version of the DPC-UPCR heuristic. For the other two SFCR sets, slighter reductions were

achieved due to the high quality of their reconfiguration solutions. These reconfiguration solutions

were close to the optimal ones, with an optimality gap of 5% (refer to Subsection 6.3.4 for more

details).
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Figure 6.5: Average reconfiguration cost of DPC-UPC versus numbers of improvement attempts.

As shown in Fig. 6.6, these improvements in the solution cost came at the expense of higher

execution times, which incremented with the rise of the Fi parameter. For instance, the execution

times when selecting Fi = 15 were between four and seven times greater than the non-improved

reconfiguration solutions (Fi = 0) for the selected SFC sets.
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Figure 6.6: Average computing time of DPC-UPC versus numbers of improvement attempts.

6.3.4 UPCR Solutions Performance

In this subsection, we evaluate the performance of the presented solutions for the UPCR problem.

Specifically, we consider two variants of the conceived DPC-UPCR heuristic. The first is a basic

version with no improvement attempts, while the second applied 15 improvement attempts,

which we refer to as BDPC-UPCR and IDPC-UPCR. Both solution approaches adopted a full

unmapping of the PDU sessions. The optimal solutions (O-UPCR) were determined with a zero

optimality gap.

First, we compared the efficiency of BDPC-UPCR with two baseline solutions referred to as

Greedy- and Sorted Greedy-UPCR (i.e., G-UPCR and SG-UPCR). These solutions are greedy-

based approaches that map each SFCR to the VNFs and candidates that further minimize the

objective function presented in (6.7). The G-UPCR does not prioritize SFCR mapping, whereas

the SG-UPCR obeys the same criteria as the designed heuristic. Moreover, they ignore the VNF

mapping effects on the remaining VNFs that form the chain, which may cause the rejection of

SFCRs. As discussed in Chapter 5, we extended both baselines to include a reassignment proce-

dure to avoid rejections and ensure similar comparison conditions (refer to Subsection 5.4.2 for

more details). Afterward, we analyzed the performance of BDPC-UPC and IDPC-UPC compared

to the optimal approach.

The performance of all solutions was investigated in terms of overall normalized reconfigura-

tion cost and average reconfiguration time for different demands of PDU sessions. Additionally,

we examined the number of reassignment events when comparing the BDPC-UPCR with the

aforementioned benchmarks. All cost components of the objective function were considered

equally important (i.e., weight_set_2) for these experiments.
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6.3.4.1 BDPC-UPCR versus Greedy Approaches

As seen in Fig. 6.7, the proposed heuristic, in its basic version (BDPC-UPC), always obtained

the reconfiguration solution with the lowest cost. Its reductions in the reconfiguration cost were

significant compared with the greedy-based baselines. More specifically, BDPC-UPC decreased

the reconfiguration costs up to 24% and 21% concerning GH-UPCR and SGH-UPCR, respectively.
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Figure 6.7: Reconfiguration cost of the BDPC-UPC heuristic versus greedy approaches.

Regarding SFCR reassignments, our solution approach remapped all examined SFCRs with-

out executing the VNF reassignment procedure, see Fig. 6.8(a). Conversely, the benchmarks

required the reassignment of some SFCRs, even in cases with small numbers of sessions. Gen-

erally, their number of reassignments increased with the size of the SFCR set. Additionally,

Fig. 6.8(b) also shows that both benchmarks had similar computational times. Furthermore, their

differences from the one provided by the BDPC-UPC approach were more distinctive as the size

of the SFCR set increased. This was due to their execution of more reassignment events to avoid

SFCR rejections. The results demonstrate that the proposed heuristic outperformed the baselines

for all analyzed metrics.

6.3.4.2 UPCR Solutions

Figure 6.9 illustrates the average reconfiguration cost of the proposed solutions (i.e., O-UPCR,

BDPC-UPCR, and IDPC-UPCR) for increasing demands of SFCRs. The performance of the

BDPC-UPC approach was within 15% of the optimum, with an average optimality gap of 7.27%.

IDPC-UPCR further narrowed this gap by incorporating the improvement phase and considering

15 improvement attempts (i.e., Fi = 15). This approach had an average optimality gap of 4.25% of

the optimum, with a difference of 8.62% in the worst-case scenario (i.e., S = 50). Thus, it provided

lower reconfiguration costs for values of S ≥ 100 given the greater number of deployed VNFs

and, consequently, the options for SFCR mapping. These outcomes indicated that the proposed
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Figure 6.8: Performance of the BDPC-UPC heuristic versus greedy-based approaches.

improvement method significantly enhanced the quality of the reconfiguration solutions with

near-optimal results.
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Figure 6.9: Average reconfiguration cost of the proposed solutions versus different numbers of
SFCRs.

Figure 6.10 summarizes the average CPU execution time of the proposed solutions. As seen

in the figure, the computational time increased with the number of PDU sessions for all solutions.

The ILP model required the highest running time, whereas the basic heuristic solution was the

fastest. Specifically, BDPC-UPC was between 4–9 and 10–22 times faster than its improved

version and the mathematical model, respectively. Moreover, both heuristics scaled well with

increasing numbers of SFCRs, while the exact solution’s running time increased considerably

until it was unable to solve the problem in a reasonable time for SFCRs greater than 200.

In terms of wall-clock time, the ILP model required several hours to conduct a reconfigura-

tion event for instances of the problem with more than 150 SFCRs. In contrast, the heuristic

approaches only needed a few seconds.
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Figure 6.10: Average running time of the proposed solutions versus different numbers of SFCRs.

6.3.5 Dynamic Scheduling for the UPCR

In this subsection, we evaluate the effectiveness of the conceived scheduling mechanism by

comparing it with the following benchmarks:

• Periodic scheduling of the reconfiguration (PSR): The UPC readjustment is executed period-

ically at fixed time intervals (i.e., every 30 and 60 minutes).

• Skeptical scheduling of the reconfiguration (SSR): The UPC is readjusted regarding a

maximum threshold of allowed latency violations and an expected reconfiguration cost that

is estimated in terms of the expected number of reassigned PDU sessions (see Section 4.2).

We ran the system for 10 hours for these experiments and measured the established QoS met-

ric every minute until we gathered 600 samples. The performance of the scheduling mechanisms

was investigated by considering several metrics of the system: the number of reconfiguration

events, the number of sessions with latency violation at the reconfiguration moment, and QoS

status. The number of relocated sessions and reconfiguration cost for the SSR and OSR models

were estimated using the results obtained from the periodic reconfiguration with 30 minutes

between reconfiguration events (PSR_P30) and a total of 1000 users with one active PDU session.

For these mechanisms, we selected an upper bound on the QoS metric of 3% of PDU sessions

with latency violations (Θ= 30). The number of sessions with latency violations was modeled as

a Poisson distribution with a mean of µ= 27. This distribution was fitted on observed latency

violations for a UPC configuration without readjustment for two hours.

To adjust the UPC configuration, we applied the proposed heuristic with a partial unmapping

of 30% of additional sessions and one improvement attempt (i.e., Pr = 30 and Fi = 1). Furthermore,

we conducted simulations by considering both sets of weight factors in the objective function

(weight_set_1 and weight_set_2).
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6.3.5.1 Reconfiguration Events

Figure 6.11 shows the number of reconfiguration events regarding the value of the established

QoS metric (L t) at the time of the reconfiguration procedures. We classified the number of

sessions with latency violations into three groups (low, moderate, and high) with reference to the

Θ threshold. To provide a more intuitive and legible representation, these groups are represented

in different shades of blue (from light to dark).
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Figure 6.11: Number of reconfiguration events with reference to QoS values at the reconfiguration
moment for different scheduling mechanisms and sets of weight factors.

The experiments revealed that the proposed mechanism had the best performance. Precisely,

it triggered the lowest number of reevaluation events and did it when the QoS threshold was

close to being exceeded most of the time. Likewise, the SRR approach did not readjust the UPF

placement and chaining configuration when the number of sessions with latency violations

was low. However, it required significantly more reconfiguration events than the OSR solution.

Specifically, SSR activated around twice and five times more reconfiguration events than the

OSR mechanism for the first and second pair of weights, respectively.

The periodical approaches performed most of the reconfigurations when the number of

sessions with poor QoS was low. Specifically, more than 60% and 40% of the reconfigurations for

the PSR_P30 and PSR_P60 baselines, respectively, were triggered when L t ≤ θ
2 . The proposed

OSR mechanism downsized the number of reconfiguration events between 65% and 85% and 30%

and 70% compared to PSR_P30 and PSR_P60, respectively.

6.3.5.2 QoS Metric

Figure 6.12 summarizes the status of the QoS regarding the established threshold. The OST-based

solutions (i.e., OSR and SSR) outperformed the periodic schedulers. For the OSR mechanism, the

selected QoS metric was above the established threshold only once for the first set of weights and

never for the second. Similarly, the SSR method always maintained under acceptable values the
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system QoS although at the expense of more reconfiguration events than the OSR mechanism.

Overall, they avoided QoS degradation for almost the entire simulation time in both cases.
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Figure 6.12: QoS status for different scheduling mechanisms and sets of weight factors.

In contrast, the periodic schedulers had the worst performance since they produced more

violations of the established QoS threshold. The PSR_P30 resulted in a poor QoS for approximately

1% of the simulation time despite triggering the highest number of reconfiguration events for

both sets of weight factors. Additionally, PSR_P60 had a more significant number of events with

a poor QoS for around 7.3% of the simulation time for the first set and 4.2% for the second set.

Figure 6.13 depicts instantaneous and cumulative values of the number of sessions with

latency violations over time for both sets of weight factors. It also illustrates the solution recon-

figuration times using dashed grey lines. As seen in the figure, the OSR mechanism readjusted

the UPC configuration when the number of sessions with a poor QoS was close to the established

upper bound. The proposed OSR method only once exceeded the QoS threshold, for which a

reconfiguration process was immediately activated. Furthermore, it did not trigger any reconfigu-

ration event when the number of sessions with latency violations was small. Although the SSR

mechanism showed similar behavior to the OSR, it produced more readjustment events due to its

stopping rule, which initiated reconfigurations at lower values of the established QoS metric.

Inspecting the reconfiguration events revealed that both schedulers did not follow a fixed

reconfiguration frequency since they depended on the values of the selected QoS metric, which

is a random variable. The PSR approaches triggered the UPC reevaluation at fixed time in-

tervals without accounting for the system QoS. For both sets of weight factors, the periodic

approaches triggered these events independently of the QoS level, resulting in either unnecessary

reconfigurations or poor QoS.

Concerning the cumulative sum of sessions with latency violations, the OSR mechanism had

lower values than either variant of the PSR despite performing considerably fewer reconfigura-

tions. Unlike the periodic approaches, it maintained the QoS parameter under acceptable values.
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Figure 6.13: Number of sessions with latency violation and their cumulative sum per time
instance for the DPC-UPC heuristic with partial unmapping (i.e., Pr = 30) and one improvement
attempt (Fi = 1).

Therefore, PSR_P60 had the most significant number of sessions with latency violations since it

was unaware of the QoS status and had the highest reconfiguration period.

6.4 Conclusion

This chapter investigated the problem of dynamic UPF placement and chaining reconfiguration.

An ILP model and a heuristic-based solution were conceived to address this problem. These solu-

tions minimize the overall reconfiguration cost while ensuring 5G stringent latency requirements

and UPF and SFC specificities. The reconfiguration cost comprises multiple components, such as

server activation, VNF migration, and SFC reassignment.

The DPC-UPC solution combines partial unmapping of SFCRs with an improvement phase

to enhance the solution efficiency. Specifically, selecting a partial unmapping allows for faster

running times, whereas the improvement phase enhances the reconfiguration costs at the expense

of higher execution times. We compared its performance with two greedy-based algorithms and
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the exact solution. The experiments revealed that DPC-UPC outperformed both heuristics

concerning the analyzed metrics (e.g., reconfiguration cost and execution time). Furthermore, it

provided near-optimal results in considerably less time than the baselines. Specifically, DPC-UPC

determined solutions to the problem with average optimality gaps of 7.27% in its basic form and

4.25% for its improvement variant.

Furthermore, we devised a scheduler mechanism (i.e., OSR) based on OST to determine

the optimal reconfiguration time. This scheduler made readjustment decisions according to

instantaneous values of QoS (i.e., the number of sessions with latency violations), a maximum

tolerance threshold, and the expected reconfiguration cost. Simulation results showcased sig-

nificant improvements in the offered QoS and the number of reconfiguration events compared

with the selected benchmarks. OSR provided the best QoS by keeping the QoS metric under

the desired values for nearly the entire simulation. Moreover, it required the lowest number of

reconfigurations compared to periodical schedulers, with reductions between 30% and 85%.
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INTELLIGENT SCHEDULING OF THE UPF PLACEMENT AND

CHAINING RECONFIGURATION

This chapter is based on:

• I. Leyva-Pupo, and C. Cervelló-Pastor, "An Intelligent Scheduling for 5G User

Plane Function Placement and Chaining Reconfiguration," Submitted to a Journal,

2022.

This chapter addresses the problem of determining the best time to readjust the UPC

configuration to avoid QoS deterioration in the system. To this aim, we rely on machine

learning (ML) techniques to predict the system QoS at a given time. These predictions help

to decide, according to a pre-established QoS threshold, whether a UPCR is required. Specifically,

we develop an ML-based framework called intelligent scheduling of the reconfiguration (ISR) to

automate the decision process. This framework is responsible for data processing, model training,

and UPCR decision and execution.

This chapter is organized as follows. Section 7.1 introduces the problem, while the conceived

ML-based framework is detailed in Section 7.2. In Section 7.3, the performance of the proposed

solution is investigated. Finally, Section 7.4 summarizes the main conclusions of this chapter.

7.1 Problem Description

In a set of 5G services and applications running close to the users at the network edge, service

access is provided through a subset of UPFs, co-located with the edge data centers. As mentioned

in previous chapters, theseUPFs may have different functionalities and may be chained together,

thus forming different SFC topologies. Moreover, users are connected to the network and use

161



CHAPTER 7. INTELLIGENT SCHEDULING OF THE UPF PLACEMENT AND CHAINING
RECONFIGURATION

these services through UPFs. The service requests have been provisioned as a result of either

an initial UPF placement and chaining configuration or a readjustment event by accounting for

their service demands satisfaction and available infrastructure resources.

Initially, the QoS perceived by users is optimal, at least in terms of latency satisfaction.

However, in dynamic scenarios, in which user demands and locations vary over time, the occur-

rence of QoS degradation events must be accounted for. For instance, user-perceived delays may

increase due to their mobility toward less-available zones in terms of UPF capacities and due to

an increase of the session data path length between the new access point and its anchor UPF.

Our main objective is to predict these QoS degradation events to reestablish the system

QoS proactively through UPCRs. With the utilization of accurate ML-based prediction solutions,

not only can the system QoS be kept under desired values, but frequent and unnecessary

reconfiguration events can also be avoided. Similar to previous scheduling mechanisms, we

measure the system QoS in terms of the instantaneous number of sessions with latency violations

(L t). We consider a session as having poor QoS when its perceived delay is higher than the one

defined in its SLA. Thus, to ensure proper QoS levels, the E2E latency between users and their

assigned data networks must be lower or equal to the service delay requirement (Ls ≤ Ls
ser).

7.2 Solution Proposal: Intelligent Scheduling of the
Reconfiguration

In this section, we describe our ML-based framework for the intelligent scheduling of the UPCR.

The main goal is to anticipate reconfiguration decisions based on QoS predictions. Figure 7.1

provides an overview of the proposed framework and its main modules: data preprocessing, ML

engine, and scheduler. Our conceived framework relies on supervised learning models –either

regression or binary classification algorithms– to learn the relationship between the feature and

labeled data during the training phase. In the following sections, we describe the framework’s

main modules and their interworking.

7.2.1 Data Preprocessing

The data preprocessing module performs data-related tasks: collection, processing, normalization,

and feature selection (FS). It converts the raw monitoring data into time series samples suitable

for training of the ML models (X t−1,Yt−1) and prediction (xt).

This module collects and stores metric measurements from the virtual and physical networks,

such as the number of deployed VNFs per type (Nutype ), VNF utilization level (Cutype ) and the

number of active MEC servers (Ncact ). Additionally, it gathers information regarding the number

of active PDU sessions (S), their service latency requirement, and user-perceived response time.

These data are formatted as a multi-variate time series according to the specified sampling time

(ts). The module can also work with historical data to increase the number of samples.
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Figure 7.1: Architecture overview of the conceived ML-based framework for scheduling UPCRs
based on QoS predictions.

Moreover, feature engineering is conducted to provide additional information about the

system. For instance, the module extracts the maximum, minimum, and average values for

parameters such as VNF utilization and user-perceived latency, which are multi-dimensional.

Apart from these variables, another subset of features is built upon the collected data. This subset

comprises aspects such as time since the last UPCR event (Tlastreconf ) and change in the number

of sessions with latency violation with reference to the last sampling time (L tchange = L t −L t−1). It

also includes the maximum, minimum, and average numbers of sessions with poor QoS between

sample times (L tsmax , L tsmin , and L tsaver ). To provide more information about the system, these

three last parameters are constructed when the sampling time is greater than the collection time.

Once all input variables have been obtained, data normalization is applied to transform

all the features into a similar scale (e.g., [0,1]). This technique avoids dimensional differences

between the data, thereby ensuring a significant impact for all input variables and improving the

convergence speed of the machine learning model.

Next, we select the most relevant features to predict the target variable. The FS sub-module

implements several mechanisms belonging to the three main categories for feature extraction

(i.e., filter, wrapper, and embedded methods). Currently, it supports the following methods:

Pearson correlation, univariate selection, recursive feature elimination, random forest (RF), back-
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ward elimination, forward elimination, lasso regularization, and principal component analysis.

However, it can be easily extended to support other mechanisms.

Given that each FS method captures a particular relationship between the input and target

variables, we adopt a combined approach to analyze multiple methods and thus provide more

robust results. To this aim, we must specify the methods to be evaluated, as well as a decision

threshold, which is upper bound by the number of selected techniques. The feature dataset is

evaluated for every method, and a score of either zero or one is given to the input variables

based on their significance. After assessing all specified FS techniques, the input variables with

an overall method score greater than or equal to the decision threshold are selected as the

independent variables for the ML module.

Furthermore, a data-labeling process occurs to convert the data into a supervised learning

dataset. This is done by shifting the input variables backward according to the specified prediction

horizon (th) and using the output variable (L t) as the label at the proper time step (Tsamp).

Furthermore, this block determines the class labels for the binary classification methods. Namely,

each sample is binarized according to the QoS value and the defined threshold (Θ). When the

number of sessions with latency violation is above the established threshold, the QoS is considered

deteriorated, as indicated by a label equal to 1. Otherwise, it takes the value of zero.

Additionally, this module splits the data into subsets for training procedures. This task is

initially performed when launching the framework or when model retraining is required. This

may be necessary based on predefined time intervals or model performance metrics that need

to be defined by the system administrator along with the splitting proportions (Tr%:V%:Ts%)

for training (Tr), validation (V ), and test (Ts). Since the framework works with a time series,

the dataset split must be done without shuffling to maintain the temporal relationship among

consecutive observations. As a result, we obtain three subsets corresponding to training (XTr,YTr),

validation (Xv,Yv), and test (XTs,YTs) datasets.

Finally, this module outputs the processed data in a suitable form for the prediction procedure

and model training. It returns the current time sample (xt, yt), which is passed to the scheduler

block for predicting the QoS indicator at the specified time horizon (yp = yt+th). Additionally, the

training, validation, and test datasets, up to the previous timestamp, are transferred to the ML

engine when a model readjustment is required.

The FS and data splitting steps are not always required, as indicated through a dotted block

representation. These two processes are executed when the framework is launched or the tuning

and training procedures are activated.

7.2.2 ML Engine

The machine learning engine determines the ML algorithm and parameters that best fit the

dataset. To determine this, we must stipulate the models we want to use. Moreover, we must

specify the hyper-parameters to tune for each ML algorithm and their possible values. At least

164



7.2. SOLUTION PROPOSAL: INTELLIGENT SCHEDULING OF THE RECONFIGURATION

one model must be specified, or already-tuned models can be loaded, which would avoid the tuning

phase. This module currently supports the following algorithms, which have been implemented

for classification and regression solutions:

• Random forest (RF) [167]: It is a supervised algorithm that uses an ensemble learning

method for classification and regression problems. It consists of a set of decision trees

forming a forest. For regression, the prediction output is the mean of the individual trees,

while for classification, the output is the majority of the classes. These algorithms do not

overfit since they work with average values. Moreover, they have a few hyper-parameters

to tune. The most common are the number of trees, the maximum number of features, and

the minimum number of leaves.

• Support Vector Machine (SVM) [168]: A supervised algorithm based on statistical learning

theory. Support vector classification (SVC) separates samples into different classes by

constructing hyper-planes in a multidimensional space. Hyper-planes are boundaries used

to classify the samples, the dimensions of which depend on the number of features. Support

vector regression (SVR) [169, 170] is a method derived from SVM to solve multi-variate

regression problems. Overall, these two methods are characterized by two main parameters:

the kernel and cost (C) functions.

• Multi-layer Perceptron (MLP) [13]: A type of neuronal network with at least three sequen-

tially connected layers: an input layer, one or more hidden layers, and an output layer.

Its hyper-parameters include the number of epochs and batch size, the optimizer, and the

learning rate. It uses a supervised learning technique called back-propagation.

• Bidirectional Long Short-Term Memory (BLSTM) [171]: LSTM is a special kind of recurrent

neuronal network (RNN) capable of learning long-term dependencies [172]. BLSTM trains

two LSTMs on the input data. Specifically, it trains the input flows for each LSTM in

different directions (backward and forward) to preserve past and future information.

When initializing the framework, the ML engine’s first step is determining the optimal set

of hyper-parameters that best fit the dataset. Therefore, the model tuning block builds a base

model and performs a grid search over these parameters. Each model is characterized by specific

parameters that must be carefully tuned to improve its performance. For instance, in the case

of the SVM models, hyper-parameters such as gamma, penalty loss, and kernel function can

be adjusted. In addition, for MLP and BLSTM-based models, a higher set of parameters must

be tuned, such as activation function, the number of hidden layers, and neurons per hidden

layer. The hyper-parameter tuning process may be a laborious and time-consuming task. Thus, it

should be performed it offline. Additionally, manual exploration of the hyper-parameter values

can be performed to reduce the number of possible combinations and, thereby, the models’ tuning

time.
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For classification problems, the resulting class distribution may be highly imbalanced since the

number of QoS degradation events are usually less common. However, an imbalanced distribution

depends on several aspects, such as the established QoS threshold, the generated placement and

chaining configuration quality, and user mobility patterns.

When working with classification problems, a standard optimization metric is accuracy.

However, this can be a misleading performance indicator for imbalanced datasets since accuracy

can be biased to the majority class [129]. That is, the model may show high accuracy but poor

performance in detecting the minority class. To overcome this issue, we implement two techniques

that reduce the effects of an uneven dataset distribution; we set the F1 score as a performance

metric and modify the training algorithm to consider the classes’ imbalanced distribution by

defining the class weight parameter as balanced. Although other approaches can be implemented,

such as re-sampling and synthetic data generation, we prefer these two due to their simplicity.

As a result of the tuning step, we obtain the parameter set that provides the best performance

for each model. Then, the models are fitted with the selected combination of parameters. The

training process can be repeated to adjust the model to data variations. The training times

depend on the complexity of the ML model and its parameters. To save time, long training-time

models can be fitted offline and loaded when ready.

The evaluation block assesses the performance of the models under study and selects the

best when more than one is specified. Similarly to the other blocks composing this module, the

evaluation process is not always required unless a model retraining based on performance has

been indicated. In this case, it keeps track of the model performance based on the predicted and

actual values of the target variable (QoS indicator) and a chosen metric. This metric value is sent

to the preprocessing module to train decision-making.

Every model must be tuned, trained, and evaluated with the generated dataset to determine

the best one. The scheduler module uses the selected model to predict the system QoS.

7.2.3 Scheduler

The scheduler is in charge of triggering the UPCR based on the predicted QoS of the system and

a decision threshold (i.e., Θ). It consists of three sub-modules: the predictor, the decision maker,

and the UPCR solution.

The predictor block loads the ML model generated by the ML engine and predicts the system

QoS (yp) at the specified time horizon based on the preprocessed data for the current sample (xt).

Depending on the model type (classifier or regressor), the predictor output can be a continuous

or binary value. For regression models, the prediction corresponds to the value of the selected

QoS metric at a given time horizon (i.e., the number of sessions with poor QoS). For classification

models, the predictor output is a binary variable indicating the status of the QoS at the specified

time horizon, where zero means good QoS and one indicates poor QoS. Then, the decision

maker can determine whether a readjustment of the UPC configuration is required based on the
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established QoS threshold and the forecasted QoS value. The output of a classification algorithm

automatically indicates the action to be performed.

The final block of our framework is the UPCR solution which is in charge of readjusting UPF

placement and session mapping configuration to cope with QoS degradation events produced due

to user mobility. Its main goal is determining the best UPC arrangement that reestablishes the

system QoS to optimal values (L t = 0) and minimizes the reconfiguration costs. To this aim, it

relies on the solutions provided in Chapter 6, referred to as O-UPCR and DPC-UPCR. Similar to

the ML engine, this block can be extended to include more UPCR solutions. Heuristic methods

are recommended for large-scale scenarios to improve solution efficiency.

To solve the UPCR problem, the UPCR requires information related to the system configura-

tion, such as current VNF placement, SFC mapping, infrastructure utilization (node capacity

and link bandwidth), and service demands. As a result of the solution execution, it returns a

reconfiguration cost and a new UPC configuration.

7.3 Evaluation and Results

7.3.1 Simulation Setup and Data Generation

We considered a 5G medium-scale network topology composed of 121 access nodes and 13 MEC

servers for the dataset generation. The MEC servers connected with the access nodes through

aggregation points. Moreover, 1000 mobile users were assumed to be connected to the network,

each with an active PDU session. These sessions had different SFC topologies and requirements

(processing traffic, bandwidth, and latency) as specified in Subsection 6.3.1.

Upon initial user positions, a UPC configuration was setup by applying the PC-UPC algorithm

and giving more importance to node activation and VNF deployment costs than the routing

component in the objective function (i.e., α = β = 0.4 and γ = 0.2). User mobility traces were

generated using CityMob for a simulation period of 120 hours; see Table 6.5. During this time,

the effect of user mobility over the UPC configuration was analyzed. Moreover, random UPCRs

were conducted with reconfiguration times of 1800, 3600, and 7200 seconds to investigate the

system QoS behavior over time under different conditions. For the UPCR, the DPC-UPC heuristic

with a partial unmapping of 30% of sessions and three improvement attempts was applied by

considering all the optimization terms as equally important.

The framework modules were implemented in Python along with the conceived solutions for

the UPCR. We used Keras and sklearn libraries in Python to implement the neuronal network

(NN)-based models and the RF and SVM models, respectively.

7.3.2 Data Preparation

We collected several metrics concerning the system QoS: the number of sessions with latency

violations (L t) and user-perceived delay (Lat), UPCR time (Treconf ), number of active sessions
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(S), active servers (Ncactive ) and deployed VNF instances per type (Nutype ), and VNF and server

utilization (Cutype ).

The data generated by the system were processed and structured in time series format by the

preprocessing module of our framework according to the specified sampling time and prediction

horizon (ts = th = 60 s). This module determined the values of every metric at each sampling

time and added a time label (Tsamp). Additionally, it extracted the maximum, minimum, and

average values of multidimensional metrics, which are indicated by the max, min, and aver

sub-indexes in the variable name. Apart from these features, additional variables were built

upon the collected samples. Table 7.1 summarizes all features (both collected and constructed)

composing our data as well as their score, in descending order, obtained upon the combined

evaluation of the FS methods.

Table 7.1: Features’ score.

Feature Score Feature Score Feature Score Feature Score

Tlastreconf 7 L tsaver 4 Ncopen 2 Cuaupf min
1

L tsmax 6 Latmax 4 Nuiup f ava
2 Cuaupf aver

1
L t 6 Nuiup f all

4 Cuaupf imb
2 Cuiup f max

1
Tsamp 5 Cuiup f aver

4 Cumiupfmax
2 Cuiup f imb

1
L tchange 5 L tsmin 3 Latmin 1 Cumiupf min

1
Nuaupf ava

5 Lataver 3 Nuaupf all
1 umiupf imb

1
Cuiup f min

5 Cuaupf max
3 Numiupf all

1 Cumiupf aver
0

L tall 4 Sreloc 2 Numiupf ava
1 S 0

For the feature extraction process, we applied the eight FS methods previously mentioned

in Subsection 7.3.2. As seen in Table 7.1, the most relevant features were those related to

QoS metrics and time (Tsamp and Tlastreconf ). Other metrics, such as the number of active PDU

sessions, VNF utilization levels, and the number of deployed instances, were irrelevant since

we maintained the number of connected users and their traffic demands. This approach was

preferred to investigate the effects of user mobility on the UPC configuration and system QoS.

For our experiments, we selected the three most dominant features (threshold score equal to six).

After performing FS, our processed data had three independent variables, each with 7200

samples. This dataset was decomposed into training, validation, and test subsets following the

60%:20%:20% proportion. The first 60% and 20% of samples in the time series were selected for

training and validation, while the final 20% was used for testing. Moreover, we normalized the

selected data within a range of [0,1] using the min-max scaling function.

7.3.3 Model Tuning and Evaluation Metrics

We applied grid search and manual search strategies to find the best hyper-parameters to

boost the models’ performance for our evaluation data. To this aim, we performed an extensive

exploration by analyzing a wide range of hyper-parameter values.
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As previously mentioned, each ML model has diverse hyper-parameters that must be carefully

set. Tables 7.2 and 7.3 summarize the hyper-parameters and their range of values used to tune

the models. These values are represented as a single list when common for both regression (R)

and classification (C) algorithms. Otherwise, individual lists for each model type are provided.

The tables also show the best combination of parameter values for the conceived models and

selected features.

Table 7.2: Hyper-parameters values for RF and SVM-based regressor and classifier.

Parameters Values Models Parameters Values Models
RF_R RF_C SVR SVC

criterion
R:[’mse’, ’mae’,
’poisson’]
C:[’gini’, ’entropy’, ]

poisson entropy C
[0.001, 0.1,0.5,1,5,
10,50,100,500, 700,
1000, 2000,3000]

1000 0.1

max_depth
[25,50,100-500:100,
1000,2000,3000,
None]

None 2000 degree [1,2,3] 1 2

max_features
[1,2,3,’sqrt’, ’log2’,
’auto’] auto 3 epsilon

[0.0005, 0.001,
0.005,0.05,0.1] 0.1 __

min
samples_leaf

[1-5:1,10,20,
25,50,100] 1 1 gamma

[0.05,0.1,0.5,1,5,10,
20,30,50, 100,200,
500, ’scale’, ’auto’]

200 0.1

min
samples_split

[3,5,10,25,50,100,
200,300,500,1000] 300 2 kernel

[’rbf ’,’sigmoid’,
’poly’, ’linear’] poly poly

number
estimators

[1,5,10,50,
100-1000:100,3000] 10 1000 tolerance

[0.0001,0.001,
0.01,0.1,1] 0.001 0.01

coef0
[0,0.0001,0.001,
0.01,0.1,1] 0 0

Table 7.3: Hyper-parameters values for the NN-based classifiers and regressors.

ModelsParameters Values BLSTM_R BLSTM_C MLP_R MLP_C

activation
[’softmax’, ’softsign’, ’linear’, ’relu’,
’elu’, ’selu’, ’tanh’, ’sigmoid’] elu sigmoid elu sigmoid

batch
C:[3,5,10,25,50,100-500:100]
R:[10,50-500:50,700-1000:100] 100 5 200 3

dropout [0-0.5:0.1] (0.5) (0.3,0.3,0.3) (0, 0) (0.5,0)
epochs [50-500:50, 600-1000:100,1500] 1000 350 700 250
hidden
layers [1-5:1] 1 3 2 2

kernel
initializer

[’uniform’,’normal’,
’random_uniform’,
’random_normal’, ’he_normal’,
’he_uniform’, ’glorot_normal’,
’glorot_uniform’, ]

normal glorot_normal glorot_normal he_uniform

loss
R:[MAE, MSE, huber_loss
C:[binary_crossentropy (bc)] MSE bc MSE bc

lr
[0.5,0.1, 0.05,0.01, 0.005,
0.001 ,0.0005,0.0001] 0.0005 0.0005 0.0005 0.01

neurons [ 50-300:50,700-800:100,1000] (200) (700,50,50) (200,150) (500,100)
optimizer [ ’adam’, ’rms’, ’sgd’] adam rms adam rms
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The architecture of the neuronal networks (MLP and BLSTM) consists of an input layer

whose number of nodes depends on the number of selected features (i.e., three), a certain number

of hidden layers with a given number of neurons, and an output layer formed by one neuron. The

number of hidden layers and each layer’s number of neurons, dropouts, and activation functions

are depicted in Table 7.3. For the regression models, a linear activation function was used for the

output layer, while a sigmoid function was used for the classifiers.

The tuning process was tedious and time-consuming since it is highly conditioned by the used

ML algorithm and dataset.

We evaluated the performance of the regression models according to the following metrics:

• Mean absolute error (MAE): Expresses the average absolute difference between the actual

and predicted values (error).

MAE = 1
n

n∑
i=1

|yi − yp
i | (7.1)

• Root mean squared error (RMSE): Measures the average magnitude of the errors of the

actual value concerning the forecast.

RMSE =
√

1
n

n∑
i=1

(yi − yp
i )2 (7.2)

• R2 score: Measures how well-unseen observations are likely to be predicted by the model. In

other words, it indicates the proportion of the predicted variable (yp) that the independent

variables can explain.

R2 = 1−

n∑
i=1

(yi − yp
i )2

n∑
i=1

(yi − 1
n

n∑
i=1

yi)2
(7.3)

where n indicates the number of samples in the dataset and yi and yp
i are the actual and

predicted values of the target variable.

MAE and RMSE are two of the most widely used metrics to measure regression models’

performance. They provide a precise measurement of the prediction error since they have the

same scale of the prediction variable. The lower these metrics are in value, the better the model

performance. Conversely, the higher the R2 score, the better the model, with 1 being its maximum

value.

Additionally, the classification algorithms were evaluated based on the following metrics:

• Accuracy (ACC): Indicates the fraction of correct predictions (i.e., TP and TN) over the total

number of observations.

ACC = 1
n

n∑
i=1

TPi +TNi

TPi +TNi +FPi +FNi
(7.4)
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• Precision (P): The ability of a model to predict positive observations correctly. It indicates

the proportion of positive observations correctly classified as positive.

P = 1
n

n∑
i=1

TPi

TPi +FPi
(7.5)

• Recall (R): Represents the capacity of a model to identify positive observations from all

positive observations.

R = 1
n

n∑
i=1

TPi

TPi +FNi
(7.6)

• F1 measure (F1): Represents the weighted mean of precision and recall metrics. It gives a

measure of the balance between precision and recall.

F1= 2 · P ·R
P +R

(7.7)

where TP and TN denote the correct identification of positive and negative observations (i.e.,

true positive and true negative), respectively. Additionally, FP and FN indicate the incorrect

classification of positive and negative samples (i.e., false positive and false negative).

The higher the value of these four metrics, the better the modal performance. Their values

range from 0 to 1 and are usually expressed in percentages. Accuracy is the most common

evaluation metric in classification problems. However, in imbalanced datasets, it can be an

unreliable metric. Thus, other performance parameters, such as precision, recall, and F1 score,

are recommended for datasets with an uneven class distribution. As seen in Fig. 7.2, our dataset

was highly imbalanced since the number of events with poor QoS was significantly smaller.
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Figure 7.2: Class distribution of the target variable (i.e., QoS status).

Additionally, we also investigate the models’ performance regarding their training time and

the capability of the decision maker to determine the QoS status correctly. For the latter, we

established a QoS tolerance threshold of 3% of sessions with latency violations; upon this value,

the QoS of the system is considered deteriorated.
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7.3.4 Regressor-based QoS Predictors Performance

This subsection investigates the performance of the regression models in terms of MAE, RMSE,

and R2 score metrics. Due to the stochastic nature of the models, we ran each model multiple

times until we gathered 100 samples.

As seen in Fig. 7.3, the RF regressor (RF_R) had the poorest performance. It not only provided

significantly worse MAE and RMSE scores but also more deviation between iterations. In

particular, its average values for the MAE and RMSE scores were at least 40% and 70% higher,

respectively, than for the other algorithms.

The SVR, BLSTM, and MLP regressors (i.e., BLSTM_R, MLP_R) had typical MAE values

ranging from 2.90 to 2.95. Their RMSE metric’s most common values were between 4.25 and 4.36.

Regarding these models, the best performance was obtained by the BLSTM_R, followed by the

MLP_R. Although both models had similar average values, the deviation in the results obtained

by the BLSTM_R was smaller than the obtained by the MLP-based regressor. Conversely, the

SVR had slightly higher MAE and RMSE values. However, it was the most precise regressor,

with no difference in the obtained results between iterations.

By comparing the MAE and RMSE metrics, we found that all models had some variation in

the magnitude of errors. The RF_R had the highest variance in individual errors, with an average

difference of 3.34 between both metrics. For the other models, this value was around 1.4.

Regarding the R2 score, all the regressors under study were able to explain more than 75% of

the target variable from the independent variables, as seen in Fig 7.3(c). The regression model

based on the RF strategy explained between 76% and 81% of the number of sessions with bad

QoS at each time instance. The other regression algorithms significantly outperformed these

results, providing average values equal to or above 93%. This showed their ability to explain a

significant amount of variance.

7.3.5 Classifier-based QoS Predictors Performance

Figure 7.4 shows the obtained result for the classifiers under study regarding precision, recall,

F1 measure, and accuracy. These results were obtained by running each model 10 times.

As seen in Fig. 7.4(a), all classifiers had a precision score above 80%, which indicated that they

could correctly predict QoS violation events at least 80% of the time. The best performance was

provided by the MLP and RF-based classifiers (MLP_C and RF_C), which had a mean precision of

around 95%. In contrast, the BLSTM_C had the poorest performance, with an average precision

of 85% and a high deviation with values ranging between 82% and 90%.

Regarding the recall metric, all algorithms had a score higher than 90%, with average values

over 92%, as shown in Fig. 7.4(b). This showed that they correctly identified more than 90% of

all events with poor QoS. However, the BLSTM classifier outperformed the other models with a

typical score above 95%, followed by the SVC, which had a precision score rounding to 95%.
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Figure 7.3: Performance of the regression models for QoS prediction.

As seen in Figs. 7.4(a) and 7.4(b), the models with the highest precision provided the lowest

recall and vice-versa. Thus, these are opposite metrics; namely, a good performance in one of

these metrics comes at the expense of the other. Thus, the F1 measure plays a crucial role in

determining an equilibrium between both metrics and providing a more general view of the

models’ performance.

Figure 7.4(c) depicts the performance of the four classifiers concerning the F1 measure. All

the models had a score superior to 89%, and the precision score highly influenced its behavior. The

best performance was obtained by the MLP_C model, followed by the RF_C algorithm. Overall,

both models provided an F1 score above 93%. Similar behavior in terms of accuracy is visible in

Fig. 7.4(d), where both models outperformed the others with values higher than 98%.

7.3.6 Regression versus Classification Performance

In this subsection, we compare the performance of the regressors and classifiers in terms of

correct prediction of the QoS status and their required training times. The predicted values of the
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Figure 7.4: Performance of the classification models for QoS status prediction.

regression models were transformed into binary by comparing them with the established QoS

threshold. This allowed us to compare both categories more evenly.

Figure 7.5 shows the QoS status predicted for each model. This metric was grouped into good

and poor QoS samples, and each category was further divided regarding the prediction accuracy

(i.e., correct or wrong identification). Figure 7.5(a) shows no substantial difference among the QoS

status predicted by the regressors. However, BLSM_R and SVR provided slightly better results

than the others. They correctly identified an average of 179 samples from the 193 observations

with poor QoS in the test subset, which represented 92.7% of the total. Additionally, only eight

out of 1247 samples with high-quality service were misclassified.

The difference among the classification models’ predictions was more significant. The models

with higher recall (BLSM_C and SVC) could correctly detect more samples with deteriorated

QoS. However, this came at the cost of incorrectly predicting a higher number of events with

acceptable QoS levels. In contrast, the MLP and RF-based classifiers correctly classified a higher

number of observations with good QoS but detected fewer events with poor QoS.

By comparing both graphs, we concluded that, in general, the regression models had a
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Figure 7.5: Prediction of the system QoS status inferred for the regression and classification
models.

slightly better performance than the classifiers. They correctly predicted a higher ratio of samples

with good QoS, thus reducing the number of unnecessary reconfiguration procedures. They also

identified a considerable proportion of events with poor QoS.

However, a disadvantage of the classification models is that they had to be tuned and retrained

each time the QoS tolerance threshold (Θ) changed since this threshold determines the class

distribution of the target variable.

Regarding the models’ training time, see Fig. 7.6; notable differences were found between

both ML categories (i.e., regression and classification) and among the models in each category.

This was because this metric is highly dependent on the complexity of the model, which was

different in each case. Overall, the BLSTM_C had the worst performance, with considerably

higher training times than the rest, which made it difficult to tune. Regarding the regressors, the

training time required by the SVR model significantly exceeded the other regressors. In general,

the RF-based algorithms provided the best performance in terms of training time.

7.3.7 ISR Performance

This subsection discusses the performance of the proposed ISR strategy by comparing it to

some of the scheduling mechanisms described in Chapter 6. Specifically, we used the OSR and

periodic schedulers (i.e., PSR_P30 and PSR_P60) as benchmarks. We investigated their efficiency

regarding four main aspects: the number of UPCRs and sessions with latency violation at the

reconfiguration moment, the average reconfiguration cost, and the overall QoS. Unless specified

for the metrics under study, we showed average results obtained by running each solution 10

times and using a 95% confidence interval.

We constructed our ISR by selecting the BLSTM_R model as the predictor based on the results

discussed in the previous subsections. This ML could successfully determine most of the events
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Figure 7.6: Training times required by the regression and classification models.

with poor QoS from the test dataset, as shown in Fig. 7.7. However, due to the unstable behavior

of our target variable, the predictor could not always react as quickly as desired. Therefore, we

considered the MAE of the predictions in the decision-making phase to reduce the likelihood of

exceeding the Θ threshold. For these mechanisms, we maintained an upper threshold on the QoS

metric of 3% of sessions with latency violations (Θ= 30). For the OSR strategy, the number of

sessions with latency violations was modeled as a Poisson distribution with a mean of µ= 21.

Each scheduler was evaluated for 24 hours with a sampling time of 1 minute. Additionally, we

used a prediction horizon of 1 minute for the ISR mechanism.
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Figure 7.7: Actual versus predicted values of QoS provided by the BLSTM_R model.

7.3.7.1 Reconfiguration Events

Figure 7.8 depicts the performance of the four scheduling mechanisms in terms of the average

number of reconfiguration events and cost.

As seen in Fig. 7.8(a), the ML-based scheduler (ISR) outperformed the other mechanisms,
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Figure 7.8: Performance of the schedulers regarding the number of reconfiguration events and
normalized UPCR cost.

providing significant reductions in the number of reconfigurations. Specifically, it decreased the

activation of UPCRs by at least 72%, 79%, and 58% compared with the OSR, PSR_P30, and

PSR_P60 schedulers, respectively.

The figure also shows the number of sessions with latency violations at the reconfiguration

moment, which were categorized into three levels (low, medium, and high) in terms of the Θ

threshold. The ISR and OSR solutions never triggered a reconfiguration when the QoS metric

value was low (L t ≤ Θ
2 ); most of these events were activated before exceeding the tolerance

threshold. In fact, both schedulers had the lowest number of UPCRs executed under poor QoS

conditions. In contrast, a significant fraction of the average reconfigurations performed by the

periodic schedulers was unnecessary since the number of sessions with latency violations was far

from exceeding the Θ threshold.

We also investigated the behavior of the UPCR cost function to determine whether the ISR

performance was influenced by the resulting placement and chaining configuration. However, as

seen in Fig. 7.8(b), this was not the case; overall, the UPCR events triggered by all solutions had

a similar cost distribution.

7.3.7.2 System QoS

Figure 7.9 summarizes the overall status of the system QoS in terms of good (L t ≤Θ) and poor

(L t >Θ) QoS levels. As expected, the solutions proposed in this thesis (OSR and ISR) had the best

performance since they were aware of the system QoS. They kept the system QoS under desired

values for almost the entire simulation time with a percentage of samples with good QoS values

superior to 99.8%. The OSR strategy provided slightly better results than the ISR, but at the

expense of increased reconfigurations.

The periodic schedulers provided inferior performance. They had many samples with deterio-
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Figure 7.9: QoS status provided by the UPCR schedulers.

rated QoS and a significant deviation from the mean among experiments. The system resulted in

poor QoS 11.4% and 15.1% of the simulation time when applying the PSR_P30 and PSR_P60

mechanisms, respectively. However, by comparing both strategies, we found no significant dif-

ference in their outcomes despite PSR_P30 executing twice as many reconfigurations as the

PSR_P60.

Figure 7.10 displays an overview of the system QoS over time in terms of the instantaneous

and cumulative number of sessions with latency violations for one experiment. Furthermore, it

illustrates in dashed gray lines the UPCR times and the predicted values of QoS for the ISR

mechanism.

As seen in this figure, the conceived schedulers kept the QoS metric under the established

threshold most of the time, with a low number of samples exceeding the Θ threshold. In this case,

these schedulers activated a UPCR to return the system QoS to optimal values. Moreover, they

triggered a reconfiguration when the number of sessions with bad QoS was near the Θ indicator.

By comparing both mechanisms, we found that the ISR substantially reduced the number of

reconfigurations with reference to the OSR strategy. The ML-based scheduler makes predictions

based on recent and broader system information, while the OSR was more conservative since it

works with expected values. No fixed frequency was observed regarding their reconfiguration

times since UPCR events depend on the QoS as conditioned by user mobility and the underlying

placement and mapping configuration.

In contrast, the periodic schedulers had a high number of observations with poor QoS;

typically, these events continued until the next reconfiguration period. Moreover, most of their

reconfigurations were unnecessary since the system QoS was under acceptable values at their

execution times.

Concerning the cumulative sum of sessions with latency violations, the OSR and ISR provided

the lowest values. This was because they could keep the system QoS under the established
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Figure 7.10: Number of sessions with latency violations and their cumulative sum over time.

threshold most of the time, with sporadic exceptions. Conversely, PSR_P30 and PSR_P60 had the

worst performance, with a substantial number of sessions with poor QoS over time.

7.4 Conclusion

This chapter investigated the use of ML techniques to automate the execution of UPCR events.

An ML-based framework called ISR was conceived to readjust the UPC configuration proactively

to avoid poor QoS states due to network variations produced by users’ mobility. This framework

makes reconfiguration decisions based on QoS values/status predictions and an established QoS

threshold.
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We assessed the effectiveness of several ML models for forecasting the QoS status/values at

the next timestamp accurately. Overall, all the models showed acceptable capabilities. However,

the regressors (i.e., BLSTM, MLP, and SVR) provided slightly better results, correctly predicting

more observations than the classifiers. Moreover, we observed that the performance of ML

algorithms could change drastically based on the problem type (classification or regression). This

was the case with the models built upon RF and BLSTM techniques. Conversely, MLP and SVM

algorithms showed good performance in addressing classification and regression problems.

Additionally, we investigated the capabilities of the conceived ISR by employing a BLSTM_R

model as the framework predictor. Compared to the established benchmarks, the devised ISR

mechanism led to substantial improvements in the overall system QoS. In sum, the scheduling

showed outstanding performance, executing the fewest UPCR events and keeping the QoS metric

under established values for nearly the entire simulation time (i.e., 99.8%).
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8
CONCLUSION AND FUTURE WORK

This doctoral thesis investigated the 5G UPF placement problem (UPP) in MEC ecosystems from

diverse perspectives, including static and dynamic scenarios and PDU sessions served by one or

multiple UPFs. Several solutions (mathematical models and heuristic-based algorithms) were

designed to determine the best UPF placement and service demand mapping configuration to

minimize operational and capital expenditures and satisfy 5G service stringent requirements.

Furthermore, various scheduling mechanisms were proposed to determine the best reconfigu-

ration time based on the selected QoS metric (i.e., the instantaneous number of sessions with

latency violations). Overall, the solutions presented in this work provided substantial cost reduc-

tions and QoS satisfaction. Extensive simulation experiments were conducted to validate their

feasibility and effectiveness in attaining their design goals.

The following sections summarize the main contributions and findings of the presented thesis

and outline some perspectives for future research directions.

8.1 Research Contributions

Chapter 3 discussed the design of UPF placement solutions to equip service providers and network

operators with a set of tools to place 5G UPFs efficiently when planning the deployment of new

services in MEC environments. Two exact solutions and a heuristic algorithm were proposed,

the main target of which is to satisfy 5G service requirements (e.g., latency and reliability) while

minimizing their associated deployment and operational costs. These solutions consider several

aspects of the system, including user mobility, service latency, and reliability requirements, and

network function available capacity. These aspects had not previously been jointly addressed in

the literature, at least at their publication moment. The solutions also incorporate reliability

constraints to address the placement problem of user plane network functions. Thus, this chapter
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provided a strategy capable of providing resilience against multiple failures while reducing the

number of backup UPFs. This was possible through the distinction of primary and backup UPF

roles and through sharing the capacity of the backup instances among several access nodes

assigned to different main UPFs.

Chapter 4 presented a formulation of the dynamic UPF placement and session mapping

reconfiguration problem. In this regard, our contributions were two-fold: an ILP model that

determines the optimal UPF placement and session mapping setup and a scheduling mechanism

that decides the optimal time to trigger the execution of readjustment events.

The exact solution was formulated as a multi-objective optimization problem comprising

various cost components related not only to the UPF placement (i.e., UPF deployment, operation,

and migration) but also to the system QoS (i.e., network response time and session reassignment).

By defining weight factors, network operators and service providers can select and specify the

importance of their optimization objectives. This model is a flexible and valuable tool to evaluate,

study, and analyze the impact of different optimization terms when reconfiguring the UPF

placement. Moreover, it can also be applied in static scenarios by relaxing those terms that

depend on previous time samples (i.e., migration and reassignment).

In addition, the proposed scheduling strategy seeks to maintain the QoS under desired levels

and reduce the execution of frequent and unnecessary reevaluation events. Thus, it relies on

the principles of optimal stopping theory (OST) to determine the optimal time to reconfigure the

UPF placement according to a specified QoS tolerance threshold and the number of sessions with

latency violations at each time instance. The simulation results showed that this mechanism is

an effective, practical, and straightforward approach for managing UPF placement.

Chapter 5 described the UPP in depth by discussing the possibility of splitting UPF function-

alities into different instances, which can be chained together as required by the PDU sessions

(service type). This UPF specialization enables better load distribution and higher efficiency. How-

ever, it also introduces additional complexity to the UPP due to different UPF roles with diverse

requirements that need to be chained in a specific order. Therefore, we modeled PDU sessions

as service function chain requests (SFCRs), which had different topologies, by contemplating

UPF placement specificities such as UPF order and unknown egress point location. In summary,

this chapter defined the 5G UPP as a variant of the virtual network function placement and

chaining (VNFPC) problem. Within this chapter, we described one exact and two approximated

solutions (i.e., a heuristic and a simulated annealing metaheuristic) to tackle the UPF placement

and chaining (UPC) problem in static scenarios. These solutions seek to minimize expenditures

associated with the number of active candidate nodes, deployed VNFs, and traffic routing and

thus consider several aspects of the system, such as available resources (i.e., link bandwidth,

VNF and server capacities), service latency requirements, and VNF anti-affinity and order.

The approximated solutions incorporate several mechanisms that significantly improved

their performance compared to the baselines. The heuristic algorithm avoids SFCR rejections
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and reduces expenditures by prioritizing mapping the most demanding SFCRs and considering

the impact of VNF mapping decisions on current and subsequent VNFs that forms the service

request. The conceived simulated annealing solution incorporates several strategies, such as

restart-stop, variable Markov chain length, and two in-house neighborhood functions, which

significantly enhance the solution time and quality. These solutions provided substantial cost

reductions while ensuring 5G service stringent requirements (e.g., latency and device density).

Furthermore, they provided near-optimal results with significantly lower execution times than

the exact solutions did.

In Chapter 6, we further discussed the UPC problem by proposing solutions for dynamic

scenarios in which the placement and session mapping readjustment is required to cope with

variable network conditions (e.g., traffic demands or user mobility). We described a multi-objective

ILP model and a heuristic to solve the problem with the primary goals of minimizing multiple

cost components involved in the reconfiguration procedure (e.g., VNF migration and session

reassignments) and re-establishing QoS. The conceived heuristic adapts to dynamic scenarios the

algorithm presented in Chapter 5. Additionally, it combines partial unmapping of SFCRs with

an improvement phase to enhance efficiency. This combination provides high levels of flexibility

since these parameters can be set based on the specified optimization objectives, which renders

the algorithm suitable for online scenarios with diverse specificities. Furthermore, we designed

an OST-based scheduling strategy to determine the UPC reconfiguration time properly. The

scheduler makes UPC reevaluation decisions based on three parameters: the instantaneous value

of the selected QoS metric, a QoS tolerance threshold, and an expected reconfiguration cost. This

mechanism is very efficient in attaining its design goals since it can maintain the selected QoS

metric under desired values and reduce the number of readjustment events.

In Chapter 7, we addressed the problem of determining the best time to readjust the UPC

configuration using a machine learning (ML) approach. An ML-based framework called intelligent

scheduling of the reconfiguration (ISR) was envisioned to execute UPCRs proactively by antici-

pating events with poor QoS. We studied several ML algorithms to predict either the system’s

QoS status or its value at a given time. A decision maker determines UPCRs by leveraging the

predictor outputs and a pre-established QoS tolerance threshold. The simulation experiments

showed the superiority of the conceived ISR strategy compared to OST-based and periodic mecha-

nisms. The ISR reduced the number of reconfiguration events by at least 50% compared to the

other schedulers, and it kept the system QoS under the established threshold most of the time,

providing similar results to the optimal scheduling of the reconfiguration (OSR).

8.2 Future Work

This section provides research recommendations in consideration of the proposed solutions’ scope

and limitations. The work presented in this doctoral thesis can be extended in several directions,
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as identified below:

Session and service continuity (SSC) mode consideration during UPF placement
strategies: Different mechanisms have been introduced in the 5G system to mitigate the effects

of user handovers on UPF relocations. For example, two new modes have been proposed for SSC:

SSC modes 2 and 3. Unlike SSC mode 1 (traditional mode), in which the PDU session is likely

to maintain the same UPF regardless of the radio access technologies (RAT), SSC modes 2 and

3 may trigger UPF relocations. Each mode has advantages and drawbacks; SSC mode 1 avoids

frequent relocations but may not be proper for time-sensitive applications, in contrast to modes 2

and 3.

SSC modes 2 and 3 are appropriate in MEC systems in which data processing may be

performed close to the users for a quicker response time [173]. Although SSC mode 2 makes

more efficient usage of UPF resources during handovers by releasing the PDU session, this

mechanism introduces additional delays. Thus, it may not be suitable for services under the

URLLC category, where session continuity and low response time are mandatory. In contrast,

SSC mode 3 guarantees service continuity but with a higher consumption of resources, as the

existing PDU session is maintained in the source UPF until a new one is established. Thus, UPF

placement and relocations and their effects on overall costs and QoS depend on the SSC mode

configuration.

For instance, SSC mode 1 must keep the anchor UPF (aUPF) during the session lifetime,

which avoids the occurrence of relocations. However, this may cause QoS degradation due to

higher propagation times between the user access point to the network and the aUPFs. This

situation can be alleviated by inserting intermediate UPFs (iUPFs) to reduce the network

response time. In addition, SSC modes 2 and 3 require the presence of aUPFs near users’ new

access points with enough available capacity to satisfy their service demands. Moreover, PDU

sessions with SSC mode 3 continue using their assigned resources (link and processing capacity)

in the source UPFs until new sessions are established.

In this context, the design of UPF placement and management solutions aware of sessions’

SSC mode is mandatory to provide seamless and cost-effective mobility. One approach to address

this problem is reserving resources (links and VNF processing capabilities) at target locations.

Given the uncertainty of users’ future locations, these resources could be shared among a subset

of possible PDU sessions, thereby reducing system utilization since not all users are likely to move

to the same UPF service areas simultaneously. Moreover, these solutions should be combined

with efficient mobility management and prediction techniques to determine and provision users’

target access nodes and aUPFs proactively. Otherwise, reserving resources for every possible

user location will lead to over-provisioning, as well as a dramatic increase in expenditures for

service providers and network operators.

Network slicing (NS)-aware UPF placement: NS is one of the main features of 5G

networks. It allows network operators to build multiple isolated virtual networks on a shared
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physical network to accommodate various services and applications [174] with diversified require-

ments. In sum, NS can be defined as an E2E logical network running on top of a physical network

that may or may not share resources with other NS while providing isolation and independent

control and management. Therefore, our proposed placement solutions for either static or dy-

namic scenarios should be extended to contemplate the possibility of deploying UPF instances

managed by different tenants and supporting multiple slices with different requirements (e.g.,

eMBB, URLLC and mMTC). For instance, these solutions could contemplate the existence of

diverse slices that may cooperate by sharing resources or some common VNF instances used to

offload traffic during traffic peaks or VNF failures. This approach could be more efficient in terms

of resource utilization and provisioning since it could reduce frequent readjustment events and

over-provisioning. Thus, a thorough evaluation of the impact of VNF sharing among slices on

resource utilization and QoS for different VNF roles should be conducted.

However, placing and chaining VNF instances in a network-sliced environment differs from

traditional placement solutions and imposes additional challenges to the placement problem. In

particular, some network slices may require specific placement strategies (optimization objective

and constraints), and their performance may affect the system QoS, resource utilization, and

overall deployment and operational cost. Moreover, they may serve users with diverse mobility

and traffic patterns requiring specific readjustment strategies.

Intelligent UPF placement and management: Further investigation regarding the appli-

cability of ML and artificial intelligence (AI) technologies in different network domains, such as

network planning and optimization, is necessary for realizing the potential of 5G and beyond

networks. In particular, ML and AI solutions could be applied during planning phases to di-

mension and place VNF instances better and map PDU sessions optimally according to traffic

demands and user mobility pattern forecasts. For example, the most popular access nodes at a

given time horizon could be identified by accounting for user mobility patterns. Consequently,

QoE could be maximized by placing VNFs closer to these locations and mapping PDU sessions to

UPF instances capable of serving the users at current and future locations. Moreover, resource

utilization and the system QoS could be improved by predicting how service demand will evolve

over time and proactively taking proper actions (e.g., auto-scaling and readjustment events).

Moreover, further study of ML solutions, such as reinforcement learning, convolutional networks,

and federated learning, to predict the occurrence of service level agreement (SLA) violation

events is highly recommended. Additionally, the design of more efficient mechanisms to perform

machine learning-related tasks (e.g., feature selection, forecasting solution selection, tuning, and

training) is required since the current mechanisms are time-consuming and highly dependent on

the available data and problem under study.

Our conceived mechanisms for determining the best reconfiguration time rely on the number

of sessions with latency violations. However, we believe that more robust and efficient solutions

could be designed by combining this metric with others relevant to network performance (e.g.,
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VNF utilization, user-perceived delay, and the number of handovers). In this manner, several

aspects could be jointly optimized, such as resource utilization, QoS, and QoE.

Reliability-aware UPF placement and chaining: Although our solutions proposed in

Chapters 3 and 4 contemplate service reliability requirements when determining the best UPF

placement, they focus on the deployment of backup UPF instances and neglect the consideration of

disjointed backup links between access nodes and aUPFs. Moreover, the UPC solutions presented

in Chapters 5 and 6 do not contemplate the implementation of any reliability strategy (e.g.,

backup SFC data path or VNF protection schemes). This was to avoid further increase of their

time complexity since additional decision variables and constraints must be defined.

Therefore, the design of reliable UPF placement and chaining solutions is an open research

area that should be investigated to improve the user plane’s robustness in 5G and beyond

networks. The proposed models could be extended to consider redundant transmission on the

N3/N6 interface by selecting disjoint data paths between the access nodes and UPFs that serve

sessions with reliability requirements. However, this approach does not protect against VNF

failures. Thus, the implementation of VNF protection schemes should also be addressed.

Real-world scenario evaluation: A common limitation of the proposed solutions concerns

their performance evaluation and the study of dynamic network conditions, such as traffic

variation and user mobility in real-world scenarios. This limitation was mainly due to the lack

of data sets reflecting user behavior in 5G networks. Moreover, most data sets containing user

mobility traces are not sufficiently large to train ML models or obtain the desired user density

levels in a medium-scale scenario. Furthermore, some of these data sets do not have information

regarding user locations at small or equally spaced sampling times, which hinders the study of

users’ mobility patterns and, therefore, the design of mobility management strategies.

Likewise, the implementation of the proposed solutions in real scenarios and their perfor-

mance evaluation should be investigated. These solutions could be integrated into a placement

module as part of the management and orchestration (MANO) framework or as an external place-

ment engine accessible through standard APIs. The placement module/engine needs information

regarding service characteristics and status, as well as VNF and infrastructure resources (link

bandwidth, server capacity) to operate. This information can be collected by different system

components, such as the MANO framework (e.g., monitoring and VNF manager modules) and

Virtualized Infrastructure Managers (VIM), and can be exposed to the placement solver through

an intermediate module. Additionally, the intermediate module communicates and translates the

computed placement configuration to the orchestration module.

Nowadays, there is a wide variety of MANO platforms, including OSM [175], ONAP [176], and

SONATA [177], some of which include their placement module. For example, OSM, which is open

source, has a placement module (OSM PLA), which could be extended to incorporate the conceived

heuristics. This approach will guarantee compatibility and integration with the OSM components

responsible for VNF deployment and management (e.g., OSM RO and OSM LCM). Another
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option could be the development of the placement solver as an external application, which avoids

modifications in the source code of the OSM framework and enhances its portability. Moreover,

the placement algorithms could also be used by in-house orchestration solutions or directly by

VIMs (e.g., Kubernetes), either within their orchestration service or externally. However, aspects

such as multi-site, multi-domain, heterogeneity of resources (computing, storage, and networking)

and technologies (e.g., VIM), as well as network service modification in dynamic scenarios, must

be analyzed.
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