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Abstract

A solar sail is a method of spacecraft propulsion that uses only the solar radiation pres-
sure (SRP). It has advantages in fuel consumption, high specific impulse, high payload,
and consistent small-scale of the thrust, with wide-ranging applications in deep-space ex-
ploration missions. Solar sailing was tested successfully by JAXA in 2010 with the probe
IKAROS, by NASA with NanoSail-D2 in 2011, and more recently, in June 2019, by the
Planetary Society with LightSail 2.

When we consider the acceleration on a solar sail spacecraft due to SRP, artificial equi-
librium points appear in dynamic models of the perturbed circular restricted three-body
problem (CR3BP). These are useful, for instance, for studying Sun–Earth solar sail mis-
sions. They significantly extend the dynamics in the libration point region. These new
points are usually denoted by SL1, SL2, . . . , SL5. In addition, there are many peri-
odic and quasi-periodic orbits around the artificial libration points. These provide good
mechanical environments for relay satellites, solar observation satellites, and other appli-
cations, as we can artificially displace the equilibrium and orbits with an appropriate sail
orientation. Of course, both the new equilibrium points and orbits depend on the mag-
nitude of the SRP acceleration, which is a function of the main sail parameters, such as
the sail spacecraft’s area-to-mass ratio, its reflectivity, and orientation of the sail surface
to the Sun-line direction.

The main research object of this thesis is a solar sail spacecraft. It proposes a strategy
to accomplish impulsive maneuvers by changing the parameters of the sail. The method
is applied to spacecraft mission design, including heteroclinic orbit transfers, forbidden
zones for eclipse avoidance, and orbit maintenance.

The main new results of this work are the following:

1. Computation of artificial libration points as a function of the parameters of a solar
sail (cone angle α, clock angle δ, and lightness number β).
The SRP is an additional repulsive acceleration in the CR3BP. As a result, the
CR3BP equilibrium points L1, L2, . . . , L5 are shifted from their original positions.
The new points SL1, SL2, . . . , SL5 correspond to positions in the rotating system
where the gravitational, centrifugal, and SRP forces are balanced. These points can
be represented as functions of the sail parameters α, δ, and β. It’s worth to note
that the location of the artificial equilibrium points strongly depends on β .
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2. Determination and adjustment of the solar sail parameters, computation of impulse
maneuvers and their application to heteroclinic orbit transfers between Lissajous
orbits plus a sensitivity analysis of the parameters of the maneuver for orbit trans-
fers.
The dynamics of solar sail maneuvers is conceptually different from classical control
maneuvers, which rely only on impulsive changes to the velocity of a spacecraft.
Solar sail orbits are continuous in both position and velocity in a varying vector
field, which opens up the possibility for the existence of heteroclinic connections
by changing the vector field with a sail maneuver. Based on a careful analysis of
the geometry of the phase space of the linearized equations of motion around the
equilibrium points, the key points are the identification of the main dynamic param-
eters and the representation of the solutions using the action-angle variables. The
basic dynamic properties of the connecting families have been identified, presenting
systematic new options for mission analysis in the libration point regime using this
method for determining impulse maneuvers.
Based on the proposed method for making impulse maneuvers, this thesis has carried
out extensive research: (1) By applying a single-impulse maneuver, two spacecraft
can reach the same final Lissajous orbit despite starting from different initial phases.
(2) A transfer strategy is proposed that uses multi-impulse maneuvers. The initial
and final solar sail parameters are fixed. (3) A spacecraft can use multi-impulse
maneuvers to make back-and-forth jumps between the initial and final artificial
libration point orbits.

3. Avoidance of forbidden zones considering impulsive maneuvers with the sail.
There is a cylinder-like zone around the Sun–Earth axis where solar electromagnetic
radiation is especially strong. The L1 libration point lies on this axis and is between
the two bodies. The Earth half-shadow in the L2 region can also prevent a spacecraft
from obtaining solar energy. Both problems can be modeled by placing a forbidden
or exclusion zone in the Y Z plane (around the libration point), which should not
be crossed. To simplify and visualize the avoidance of forbidden zones, this thesis
projects the 3D forbidden zones, as well as the heteroclinic transfer orbit, into
the so-called effective phase plane (EPP), which has two dimensions. This helps
in determining the existence of a forbidden zone and its distance relative to the
spacecraft. In the proposed method of impulse maneuvers, the forbidden zones
in the EPP change depending on the parameters of the solar sail. The zones can
even sometimes “disappear,” which means that after the impulse maneuver, the
spacecraft will never cross a forbidden zone again.

4. Station-keeping of a solar sail moving along a Lissajous orbit.
The designed station-keeping procedure periodically performs a maneuver to pre-
vent the spacecraft to escape from a certain Lissajous orbit following its unstable
manifold. The maneuver is computed so that it cancels out the unstable compo-
nent of the state. Moreover, it is assumed that there is a random error in the
execution of the maneuver. Considering the maneuvers performed every month,
we show that the spacecraft can remain near the artificial libration points for at
least 5 years, which demonstrates that station-keeping using sail reorientations to
produce multiple impulses can be effective.
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RESUM

Una vela solar és un procediment de propulsió de naus espacials que només utilitza la
pressió de radiació solar (SRP). Té avantatges pel que fa al consum de combustible ja
que proporciona un impuls espećıfic elevat, una càrrega útil elevada i, a petita escala, una
empenta constant; les veles solars tenen moltes aplicacions en missions d’exploració de
l’espai profund. Les primeres veles solars van ser provades amb èxit per JAXA el 2010
amb la sonda IKAROS, per la NASA amb NanoSail-D2 el 2011 i, més recentment, el juny
de 2019, per la Planetary Society amb LightSail 2.

Quan considerem l’acceleració a la qual està sotmesa una nau espacial provëıda d’una vela
solar, en els models dinàmics pertorbats del problema de tres cossos restringit i circular
(CR3BP) apareixen punts d’equilibri artificials degut a la SRP. Aquests models són útils,
per exemple, per estudiar el moviment de les veles solars al sistema Sol-Terra, ja que
enriqueixen significativament la dinàmica en la regió al voltant dels punts de libració.
Aquests nous punts solen indicar-se amb els śımbols SL1, SL2, . . . , SL5. Al voltant
d’aquests punts apareixen noves òrbites periòdiques i quasi periòdiques que proporcio-
nen bons entorns dinàmics per a, entre altres aplicacions, satèl·lits de comunicacions i
satèl·lits d’observació solar, ja que es pot moure el punt d’equilibri i les òrbites al seu
voltant orientant adequadament la vela. Per descomptat, tant els nous punts d’equilibri
com les òrbites al seu entorn depenen de la intensitat de l’acceleració SRP que, al seu
torn, és una funció dels principals paràmetres de la vela, com ara la relació àrea-massa
de la nau espacial, la seva reflectivitat i l’orientació de la superf́ıcie de la vela respecte de
la direcció del Sol.

El principal tema d’aquesta tesi és l’estudi del moviment d’una nau espacial provëıda
d’una vela solar. Es proposa una estratègia per realitzar maniobres impulsives canviant
els paràmetres de la vela. El mètode s’aplica al disseny de missions espacials, incloent-hi
transferències heterocĺıniques entre òrbites, estratègies per evitar regions de moviment
prohibides i el manteniment en estació de la nau.

Els principals resultats nous obtinguts en aquest treball són els següents:

1. Càlcul dels punts de libració artificial en funció dels paràmetres de la vela solar
(angle del con α, angle del rellotge δ i nombre de lleugeresa β).
La SRP és una acceleració repulsiva addicional a la del CR3BP, en consequència
els punts d’equilibri CR3BP (L1, L2, . . . , L5) es desplacen de les seves posicions
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en el CR3BP. En un sistema de referència giratori, els nous punts SL1, SL2, . . . ,
SL5 corresponen a posicions on les forces gravitatòries, centŕıfugues i degudes a la
SRP estan equilibrades. Aquests punts es poden representar com a funcions dels
paràmetres de vela α, δ i β. Cal tenir en compte que la distribució dels punts de
libració artificial depèn fortament del paràmetre β.

2. Determinació i ajust dels paràmetres de la vela solar per al càlcul de maniobres im-
pulsives i la seva aplicació a transferències heterocĺıniques entre òrbites de Lissajous.
Anàlisi de sensibilitat dels paràmetres de les maniobres de transferència orbital.

El procediment per a fer maniobres amb veles solars és conceptualment diferent del
de les maniobres de control clàssiques, que es basen només en canvis impulsius de
la velocitat. Les òrbites de les veles solars són cont́ınues tant en posició com en ve-
locitat en un camp vectorial variable, la qual cosa obre la possibilitat de l’existència
de connexions heterocĺıniques canviant el camp vectorial mitjançant una maniobra
de la vela. A partir d’una anàlisi acurada de la geometria de l’espai de fases de les
equacions lineals de moviment al voltant dels punts d’equilibri, els punts clau són la
identificació dels principals paràmetres dinàmics i la representació de les solucions
mitjançant les variables d’acció-angle. S’han identificat les propietats dinàmiques
bàsiques de les famı́lies de connexions, presentant de forma sistemàtica noves op-
cions per a l’anàlisi de missió al voltant dels punts de libració i, mitjançant aquest
mètode, poder determinar les maniobres adients.

A partir del mètode proposat per fer maniobres, s’ha dut a terme un estudi ex-
haustiu dels següents problemes: (1) Determinació d’una maniobra d’un sol impuls
tal que dues naus espacials amb diferents fases inicials arribin a la mateixa òrbita de
Lissajous final. (2) Fixant els paràmetres inicials i finals de la vela solar, determi-
nació d’una estratègia de transferència mitjançant maniobres amb multiimpuls. (3)
Determinació de maniobres amb multiimpuls per fer salts d’anada i tornada entre
òrbites inicials i finals fixades al voltant d’un punt de libració artificial.

3. Evitar zones prohibides mitjançant maniobres d’impuls.

Al voltant de l’eix Sol-Terra, hi ha una zona semblant a un cilindre on la radiació
electromagnètica solar és especialment forta. El punt de libració L1 es troba sobre
aquest eix i entre els dos cossos celestes. L’ombra de la Terra a la regió al voltant
de L2 també pot impedir que una nau espacial obtingui energia solar i la vela SRP.
Tots dos problemes es poden modelar definint una zona prohibida, o d’exclusió, al
pla Y Z (al voltant del punt de libració), que no s’ha de creuar. Per simplificar,
visualitzar i evitar el moviment en les zones prohibides, aquesta tesi projecta les
zones prohibides, aix́ı com l’òrbita de transferència heterocĺınica tridimensional, en
l’anomenat pla de fases efectiu (EPP), que té dimensió dos. Això ajuda a determinar
l’existència de la zona prohibida i la seva distància relativa a la nau espacial. En
el mètode proposat per fer maniobres, les zones prohibides a l’EPP poden canviar
variant els paràmetres finals de la vela solar. Les zones prohibides fins i tot poden
”desaparèixer”, el que significa que després de la maniobra d’impuls, la nau espacial
mai més tornarà a creuar-les.

4. Estacionament d’una vela solar que es mou al llarg d’una òrbita de Lissajous.
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El procediment de manteniment de l’estació dissenyat realitza una maniobra periò-
dicament per evitar que la nau espacial s’escapi d’una determinada òrbita de Lis-
sajous seguint la seva varietat inestable. La maniobra es calcula de manera que
anul·li el component inestable de l’estat. En les simulacions fetes, se suposa que
hi ha un error aleatori en l’execució de la maniobra. Si es fan maniobres cada mes,
mostrem que la nau pot romandre a prop dels punts de libració artificial durant,
almenys, cinc anys, cosa que demostra que el manteniment de l’estació utilitzant
reorientacions de veles és efectiu.
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Chapter 11
Introduction

1.1 Motivation

In 1957, with the launch of the first satellite of the Soviet Sputnik program, space ex-
ploration began. For years, space exploration has been dominated by vehicles propelled
either by the acceleration and expulsion of gas from a gas-dynamic nozzle, as in the case
of solid or liquid propellant rockets, or by the acceleration of ionized particles, as in the
case of electric propellers. Solar sailing is a revolutionary way of propelling a spacecraft
through space. The idea is to utilize solar radiation pressure (SRP) to produce momen-
tum. A solar sail spacecraft has large reflective sail that captures the momentum of light
from the Sun and use that momentum to push the spacecraft forward. Light is made
up of particles called photons, which do not have any mass, but as they travel through
space they do have momentum. When light photons hit a sail, their momentum is trans-
ferred to the sail, giving it a small push (incident force). They also bounce off the sail,
giving it another small push (reaction force), as shown in Fig. 1.1 [1]. Both pushes are
very slight and much smaller than that from a “traditional” thruster. However, SRP acts
continuously, allowing a spacecraft to accelerate in the vacuum of space.

Mariner 10 [5], launched in 1973, was the first spacecraft to use SRP. It demonstrated for
the first time the use of solar radiation pressure only as a method for attitude control
(not for propulsion). The Cosmos 1 mission [6], which was led by the Planetary Society
and Cosmos Studios, aimed to test the deployment of a solar sail. Its altitude was
to be increased through solar sailing, and any measurable increase in the orbit of the
spacecraft would have been considered a success, however, Cosmos 1 failed because of
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rocket failure [7]. In August 2008, the NanoSail-D mission [8] aimed to deploy a sail, and
test the effect of atmospheric drag on the sail. This program was led by the National
Aeronautics and Space Administration (NASA), however, it was lost in a launch failure.

Figure 1.1: Forces exerted and produced on a perfectly reflecting surface.

Several solar sail spacecraft have already been successfully deployed. Japan Aerospace Ex-
ploration Agency (JAXA) launched on May 21, 2010, IKAROS [9, 10] that was the world’s
first deep-space solar sail demonstration spacecraft. IKAROS, shown in Fig. 1.2(a), is
an interstellar kite-craft accelerated by SRP. The objectives of the IKAROS mission [11]

were the following: deploy a solar sail in space, generate solar power with thin-film solar
cells attached to the sail, verify SRP on the solar sail, and demonstrate the guidance and
navigation technique for solar sailing.

NASA’s NanoSail-D2 [12, 13], shown in Fig. 1.2(b), demonstrated the deployment of a
small square sail in low-Earth orbit. The experiment was significant in displaying the
de-orbiting capability of such a sail configuration [12, 14].

The LightSail 2 mission, see Fig. 1.2(c), is the culmination of a decade-long program,
sponsored by the Planetary Society, to advance solar sailing. LightSail 2, integrated with
Prox-1 carrier spacecraft, was launched on June 25, 2019, and deployed into an orbital
altitude of over 720 km, a much higher low-Earth orbit than the one of LightSail 1 [15, 16].
The objective of LightSail 2 was to demonstrate controlled solar sailing in Earth orbit
using a CubeSat platform. By controlling the orientation of the sail relative to the Sun
after deployment, the orbit apogee and the orbital energy can be increased.

Solar sails have a wide new range of possible mission applications that cannot be achieved
by conventional spacecraft [4]. First, the source of energy is unlimited, so solar sails can
be used for long-term missions, like the ones for deep-space exploration [17, 18]. Within
the Solar System, sunlight continuously pushes on the sail, accelerating the spacecraft
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(a) IKAROS (b) NanoSail-D2

(c) LightSail 2

Figure 1.2: Demonstration solar sailing missions.

throughout its entire voyage, thus, a spacecraft could reach speeds that would be prac-
tically impossible for chemical rockets to achieve [19, 20]. This has been demonstrated in
several studies [21, 22]. Second, solar sailing spacecraft can be placed in completely new
orbits by using the sail acceleration as a balancing force to counteract the gravitational
attraction of the Earth or any other planet [23]. For example, the Geostorm Warning
Mission [24] is a National Ocean and Atmospheric Administration (NOAA) program with
the objective of providing warnings of solar storms using a satellite positioned at an
unnatural station that is closer to the Earth than would otherwise be possible [25].

Using the Sun–Earth system as basic reference model, this dissertation analyzes impulse
maneuvers for a solar sail spacecraft in a SRP-perturbed restricted three-body problem
(RTBP) model, moving in regions around the artificial libration point SL2. The resulting
analysis and results also apply to the SL1 artificial libration point.

3
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1.2 State of the art

1.2.1 Artificial libration points for solar sail spacecraft

The acceleration due to SRP acts on all objects exposed to it. The electromagnetic radia-
tion impinging on a body can be absorbed, transmitted, or reflected; at one astronomical
unit (1 AU), SRP is about 9.12×10−6 N/m2. SRP is hardly noticeable on Earth because
the force it exerts on an object is, relatively, very small [26]. However, for space missions,
SRP can have a significant impact on the trajectory of the spacecraft [27].

Table 1.1 [4] summarizes the history of some of the main discoveries related to SRP. In
relation with its effects on the motion of a spacecraft, Shapiro [28] and Musen [29] first
observed its effects on a spacecraft moving along geocentric orbits. In a low-Earth envi-
ronment, the most common effect of SRP is the long-term oscillations of the eccentricity
and the orbital inclination, and, in fact, it can exceed the influence of the atmospheric
drag when the orbital altitude is greater than 800 km [30, 31]. The oscillation period de-
pends on the area-to-mass ratio of the satellite [32]. Nevertheless, SRP will cause all
orbital elements to change periodically. When taking SRP into account, the traditional
RTBP becomes a solar radiation pressure restricted three-body problem (SRP-RTBP).

Table 1.1: History of discoveries related to SRP.

Year Author Research Topics
1600 Corpuscular theory of light
1619 J. Kepler Comet tails study
1744 L. Euler Wave theory of light
1754 J.-J. D. de Marian and Measurement of SRP

C. F. C. du Fay
1785 C.-A. de Coulomb Electrostatic experiments
1812 W. W. M. Olbers Demonstration that the Sun has an electrical charge
1873 J. C. Maxwell Theory of electromagnetism radiation
1876 A. Bartoli Existence of SRP: second law of thermodynamics
1900 P. Lebedew Experimentally demonstration of Maxwell’s theory

Introducing in the usual RTBP differential equations a small additional acceleration,
such as the one due to SRP, can produce new equilibrium points, which are usually called
artificial libration points [33]. Unlike a the libration points of the RTBP, an artificial
libration point is produced by an external thrust to counteract the imbalance of the
gravitational attraction between the Sun and the Earth, this corresponds to a velocity
increment of about 900 m/s per year [34].

The use of artificial libration points has been suggested and studied for some missions [35].
Observations of coronal mass ejections done from SL1, which is closer to the Sun than
the L1 point, allow more time to perform safety operations of low-Earth satellites and
ground equipment [36]. Cui Hutao et al. [37] built an attitude dynamics model, based

4



1.2 - State of the art

on the Lagrangian equations, for a complex multibody solar sail spacecraft located at
these artificial equilibrium points. They verified its feasibility and found that it has
advantages including fuel savings, a reduction in mass, and better performance. Bin et
al. [38] developed a model of a solar sail and calculated its controllability at five artificial
libration points in the Sun–Earth system. Artificial libration points have greatly enriched
the potential of the RTBP and made actual mission designs more flexible.

In the SRP-RTBP model, the distribution of artificial libration points depends on the
solar sail parameters (cone angle α, clock angle δ, and lightness number β). McInnes et
al. [39] studied the family of artificial libration points in the Sun–Earth and Earth–Moon
systems. They discussed the possibility of applying these points in engineering tasks [40].
Subsequently, McInnes [41] showed that the lightness number has a great influence on
the feasible region for a family of artificial libration points. An analysis of the dynamic
characteristics of artificial libration points found that there are (quasi-)periodic libration
point orbits (LPOs) near an artificial libration point. These are similar to halo and
Lissajous orbits. McInnes [42] obtained halo orbits near artificial libration points on the
Sun–Earth line with a numerical method. When an artificial libration point is on the
line between the Sun and the Earth, it is like there has been a change in the mass of
the Sun, which is similar to the traditional Sun–Earth RTBP. Based on a Lindstedt–
Poincaré perturbation analysis, Baoyin and McInnes [43] derived an approximate third-
order analytical solution for a halo orbit around an artificial libration point. Taking the
Sun–Earth system as an example, Waters et al. [44] constructed a high-order solution
of a large-amplitude periodic orbit near an artificial libration point in the plane. They
obtained a class of periodic orbits with special application. These can be used for long-
term observations of the polar regions of the Earth. Gong et al. [45] studied the application
of invariant manifolds near artificial libration points in the design of low-energy transfer
orbits to solve the Hill problem with a solar sail.

Using dynamical system tools for the computation of the central manifold around the
collinear points SL1 and SL2, Farrés [7] computed and described the complete phase
space structure in a large neighbourhood around these two points. This study enlarged
the results obtained by Howell [46], Gómez et al. [47], Andreu [48], and Aliasi [49] that sys-
tematically studied the distribution and dynamics of libration points in the Sun–Earth
and Earth–Moon systems as a non-perturbed RTBP. Other contributions to the SRP-
RTBP and additional perturbed RTBP models are the following: McInnes [42] computed
Lissajous orbits near an artificial libration point on the Sun–Earth line; Waters et al. [44]

calculated the halo orbits around artificial libration points that were not in specific regions
of the Sun–Earth line; Simo et al. [50] proposed a method for approximately finding arti-
ficial libration points in the Earth–Moon RTBP; Xiao et al. [51] analyzed the advantages
of using artificial libration points in the RTBP and applied the approach to deep-space
exploration; Baig [52] and Ishimura [53] discussed artificial libration points for a hybrid
propulsion probe; Shuang et al. [54] found an artificial libration point near an irregular
asteroid; Yao et al. [55] discussed the distribution of artificial libration points for incom-
pletely reflective solar sails; Grótte et al. [56] studied artificial libration points for RTBPs
comprising the Sun, a small celestial body, and a solar sail spacecraft, but the solutions
were unstable; Almeida et al. [57] identified artificial libration points under the combined
action of SRP and other disturbances, and analyzed the motion of a spacecraft around
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these points. In terms of practical engineering applications, Wu et al. [58] proposed, after
some simulation experiments, a method for determining the orbit of an autonomous satel-
lite around artificial libration points; Pan et al. [59, 60] thoroughly studied the deployment
of navigation constellations in orbits near artificial libration points; Wang et al. [61] dis-
cussed spacecraft formation flying in orbits near the artificial libration point SL2 in the
Sun–Earth system; Lazzara et al. [62] analyzed potential applications of artificial libration
points in polar meteorology, environmental remote sensing, communications, and space
weather monitoring.

There have been relatively few studies on orbits for spacecraft around the Sun–Earth
L3, because the Sun would hinder direct communications between the spacecraft and the
Earth. In this context, and selecting an appropriate orientation and lightness number for
the solar sail, Almeida [63] and Marchesin [64] improved the communications possibilities
between a spacecraft and the Earth.

1.2.2 Libration point orbits and heteroclinic transfer orbits

Orbits near the libration points L1 and L2 open up new possibilities for future deep-space
exploration and other missions [43, 65, 66]. Spacecraft are usually deployed in periodic and
quasiperiodic orbits (LPOs) near these points [67, 68] instead of at exactly the libration
points. If a spacecraft wants to maintain its position at the L1,2 libration point, it will
have to consume important amounts of propellant, which increases the overall mission
cost and runs against the mission goal of saving fuel. In addition, communications are
complex on the Sun–Earth line [69]. An orbit near the libration point L1 is often used for
observing solar activity [70]; orbits near L2 have wide observation angles and ideal lighting
conditions, and benefit from the magnetic, thermal, and mechanical environments near
this point. Furthermore, such orbits are suitable for non-cryogenic space telescopes [71],
and for assembling spacecraft that can make high-resolution observations [72]. For ex-
ample, the James Webb Space Telescope (JWST), launched on December 25, 2021, is
deployed at the Sun–Earth L2 point [73].

Farquhar [74] was the first to propose using the libration points of the Earth–Moon system
for space missions. After the success of the ISEE-3 mission in 1978, space agencies in
various countries began to research LPOs. Classical LPO missions include SOHO (which
observed the outer solar corona of the Sun) [75], Gaia [which built a three-dimensional
(3D) map of the galaxy] [76], LISA Pathfinder (which observed gravitational waves) [77],
and JWST (which is making astronomical measurements) [78].

Orbits near a libration point can be used in multiple missions, such as spacecraft orbit
transfer, i.e. Genesis, Wind, etc. Using an LPO enhances low-energy signal transmission.
These orbits can also be used for accessing Solar System satellites [79]. The QueQiao relay
satellite of Chang’e-4 was in an Earth–Moon periodic orbit at L2

[80–82]. Table 1.2 [83] lists
some missions in space orbit near a libration point. Most are in the Sun–Earth system
(SE), and a few are in the Earth–Moon system (EM).
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Table 1.2: Spacecraft missions at libration point orbits.

Mission Agency Launch date Libration point Orbit type
ISEE-3 [84] NASA/ESA 1978 SE L1 Halo
Wind [85] NASA 1994 SE L1 Quasi-Halo
SOHO [86] ESA/NASA 1995 SE L1 Halo
ACE [87] NASA 1997 SE L1 Lissajous
WMAP [88] NASA 2001 SE L2 Lissajous
Genesis [89] NASA 2001 SE L1 Quasi-Halo
ARTEMIS [90] NASA 2007 EM L1 Quasi-Halo
Herchel [91] ESA/NASA 2009 SE L2 Halo
Planck [92] ESA 2009 SE L2 Lissajous
Chang’e 2 [93, 94] CNSA 2010 SE L2 Lissajous
Gaia [95] ESA 2013 SE L2 Lissajous
Chang’e 5-T1 [96] CNSA 2014 EM L2 Lissajous
DSCOVR [97] NASA/NOAA 2015 SE L1 Lissajous
LISA Pathfinder [98] ESA 2015 SE L1 Quasi-halo
Queqiao [99] CNSA 2018 EM L2 Halo
Spektr-RG [100] Roscosmos 2019 SE L2 Lissajous
Chang’e 5 [96] CNSA 2021 SE L1 Lissajous

Spacecraft in LPOs lie in a highly perturbed environment due to the hyperbolic nature of
the collinear equilibrium points (Section 2.2) [101, 102]. Thus, the stable and the unstable
invariant manifolds associated with LPOs enhance transfer trajectories within the Solar
System [103, 104].

The unstable and stable manifolds of LPOs are of great significance for transfer missions
as they reduce fuel consumption. For example, in the Sun–Earth system, the invariant
manifolds of the L1 and L2 points extend to the vicinity of the Earth, so that near-Earth
spacecraft can use an invariant manifold to travel back and forth between the Earth and
the LPO. In addition, invariant manifolds in different RTBPs can be spliced together to
form an interstellar highway in a heliocentric system [79]. Conley [105] proved the existence
of low-energy transfer orbits, which require less fuel than a traditional Hohmann transfer.
Transfers between unstable orbits of the Solar System are possible due to the intersection
of the invariant manifolds. These interactions are called homoclinic and heteroclinic
connections [106, 107] (Fig. 1.3 [2]).

Homoclinic orbits are the result of an intersection between stable and unstable manifolds
with the same libration point or periodic orbit [2, 105, 108]. Therefore, a spacecraft can start
from an unstable manifold, move along a homoclinic orbit, and reach an LPO through
the stable manifold [109]. A heteroclinic orbit is the intersection of a stable manifold and
an unstable manifold belonging to two different LPOs [110]. For example, a spacecraft can
leave the L1 LPO through its unstable manifold and enter the L2 LPO through its stable
manifold. Heteroclinic orbit transfers are often used in deep-space exploration missions.
The Artemis spacecraft used heteroclinic transfers from the Earth–Moon L2 LPO to the
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Figure 1.3: Schematic example of a homoclinic point and heteroclinic tangency.

L1 point, as is shown in Fig. 1.4 [3].

Figure 1.4: Schematic diagram of the Artemis mission orbit.

Canalias [69] designed transfer trajectories between Lissajous orbits to avoid forbidden
zones due to eclise regions. This approach was combined with the introduction of the
effective phase plane (EPP) concept. The designed impulsive maneuvers aimed to cancel
out the unstable manifold of the target orbit by using the EPP. A similar phase plane
method, that relied on SRP and J2 around the Earth, was used by Lucking [111] and
Colombo et al. [112], however, in these studies, the influence of solar sail parameters on
the position of the libration point was not considered.

For transfers enhanced by SRP, Farrés and Jorba [113] proposed to use invariant manifolds
to realize a transfer from libration point SL1,2 to SL4,5. The effect of SRP on the posi-
tion of the libration point was acurately computed. Thus, a spacecraft injected into the
unstable manifold of SL1 reached the stable manifold of SL4 when an SRP maneuver was
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performed. Based on solar sail dynamics in the Sun–Earth RTBP, Sood and Howell [114]

studied stable and unstable manifolds for the libration points L1 and L2, respectively.
A spacecraft finally reached the artificial SL5 orbit but had to use an impulse engine to
accelerate. Perera et al. [115] realized a transfer from a halo orbit around a traditional
libration point L1 to a halo orbit around an artificial libration point SL1 for a CubeSat
spacecraft propelled by a solar sail. Heiligers et al. [116] proposed a complete orbit design
from launch, transfer, and orbit maintenance for a solar sail spacecraft for polar observa-
tion. Pezent et al. [117] used SRP, an artificial libration point transfer, and sail maneuvers
to reach areas that cannot be reached by traditional propulsion systems or require a large
amount of propellant. Fernandez [118] designed a variety of algorithms that allow a solar
sail spacecraft to transition from a low-Earth orbit to a Sun–Earth SL5 regional orbit.
They realized rapid transfers of between 391 and 1194 days. Farrés [119] and Soldini [120]

designed transfer trajectories between Lissajous orbits using different artificial libration
points SL2 in a 2D model.There has been limited work on harnessing SRP to enhance
transfer trajectories within the Sun–Earth system. In most studies, the SRP was con-
sidered to be a perturbation term. In this thesis, we investigate propellant-free transfer
trajectories between LPOs around 3D collinear equilibrium points using solar sailing.

1.2.3 Station-keeping by solar sail spacecraft

Due to their instability, a spacecraft placed around the L1 and L2 libration points will
naturally deviate from its original orbit. Thus, trajectories designed in RTBP require the
spacecraft to perform maneuvers to counteract the unwanted environmental instabilities
and maintain its nominal trajectory [101, 121]. SRP is the most common cause of such
deviations from the original nominal orbit in the Solar System. Over time, it can have
a great impact on spacecraft, especially those with a high surface-to-mass ratio and high
light-pressure parameters, such as the JWST [122].

In 1993, Howell [123] used the target point technique to keep a spacecraft near its nominal
trajectory with impulse maneuvers. Then, McInnes [39] and Keeter [124] considered this
method and included the SRP to study how to make the spacecraft remain stable in a LPO
by changing its sail orientation. Luo [125] also used the sail orientation as the control input
to maintain its position. Farrés and Jorba [126–129] used Floquét modes [130, 131] to design a
control law about an artificial equilibrium point. In this method, the solar sail spacecraft
escapes following an unstable manifold. Then, the orientation of the solar sail is changed
to bring the trajectory back to the target point [101] killing unstable components. Baoyin
et al. [132] considered using SRP to offset the nonlinear part of the three-body dynamics
of the solar sail. They studied the stability and maneuverability of the controlled orbit
by taking the orientation and surface-to-mass ratio of the sail as control variables. These
studies focused on sail orientation for fixed lightness number. However, the larger the sail
surface, the more difficult it is to adjust its orientation. Moreover, frequent adjustments
of the orientation can cause vibrations and reduce the service life of the solar sail.

Xu [133] were the first to use Hamiltonian-structure preserving control [134] with the SRP.
The lightness number and orientation were the control parameters. Based on Hamiltonian-
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structure preserving control, Soldini et al. [135] proposed a variable-structure solar sail
model. The surface area of the sail was a third control variable. Bookless [136] was the
first to use a linear quadratic regulator to achieve LPO control, using either the lightness
number or the orientation. A linear quadratic regulator is an optimal method where the
degree of control is proportional to the state error; Ceriotti [137] used a linear quadratic
regulator for station-keeping of a solar sail in high-amplitude vertical Lyapunov orbits.
The control vector was a function of the sail orientation and its area-to-mass ratio. Perera
et al. [115] used a linear quadratic regulator for a CubeSat controlled by a solar sail. It
was able to maintain its orbit despite the gravitational disturbance of Mercury, Venus, or
Jupiter.

Gong et al. [138] proposed a solar sail model with variable reflectivity and designed an
artificial LPO-keeping controller. In this model, part of the surface of the solar sail is
covered with an electrochromic sheet, which acts as a reflective control device. The overall
reflectivity of the sail can be adjusted by energizing and de-energizing different parts of
the reflective control device. This is a simple and easy way to control a solar sail and is in
addition to adjusting its orientation. It solves the underactuation in controlling the orbit
of a solar sail, but it is difficult to apply in practice. Zhu [139] and Zhang [140] followed this
model, and designed an active disturbance-rejection controller with an artificial LPO for
a solar sail. For lunar exploration, it is necessary to establish continuous communication
with the far side of the Moon; Tamakoshi et al. [141] designed an artificial halo orbit
near the Earth–Moon L2 artificial libration point. They used a reflective control device
to achieve orbit station-keeping. To realize orbit station-keeping, Lou [142] solved the
underdrive problem of traditional solar sail control in two different ways, using a light
pressure model or a hybrid solar sail thrust model. For a halo orbit in the direction of
the Sun sail, Qin Jianfei et al. [143] designed an orientation control strategy so that the
spacecraft can successfully enter the invariant manifold of a halo orbit. For a Sun–Earth
(or Moon) model, Niccolai et al. [144] studied how to stabilize an orbit near a collinear
artificial libration point by properly adjusting the solar sail parameters and the thrust
vector direction. In elliptical RTBP, Guzzetti et al. [145] studied orbit station-keeping
near the L4 region for a solar sail spacecraft.

Compared to continuous control techniques, impulsive ones are more mature and straight-
forward to apply. Therefore, all LPO missions have adopted impulsive schemes to achieve
station-keeping. Moreover, the insights provided by dynamic systems theory have been
very useful in increasing our understanding of the geometry of the controllers [146]. In
this thesis, we propose a multi-impulse strategy to achieve station-keeping by a space-
craft. The main idea is that the spacecraft periodically performs a maneuver to prevent
it from escaping from the neighborhood of a nominal Lissajous orbit along its unstable
manifold. Thus, the maneuver is computed so that it cancels out the unstable component
of the state. Moreover, it is assumed that there are random errors in the execution of the
maneuvers.
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1.3 Structure and contributions of the thesis

The main focus of the thesis is the design of impulse maneuvers for a solar sail spacecraft
in the SRP-RTBP. The remaining six chapters of this dissertation are briefly described
below.

• Chapter 2 studies the artificial libration points of the SRP-RTBP. The first part
describes the notation and introduces the dynamic models, namely RTBP and SRP-
RTBP. The second part systemically studies artificial libration points, and the influ-
ence of the solar sail parameters on the position of these points. The main solar sail
parameters are the orientation (cone angle α and clock angle δ) and the lightness
number (β).

• Chapter 3 investigates enhanced heteroclinic connections between Lissajous LPOs
based on instantaneous impulse maneuvers using a solar sail. A careful analysis
of the geometry of the phase space of the linearized equations of motion around
the equilibrium points is done. The role of the main parameters is identified. So-
lutions are represented in terms of action-angle variables. Furthermore, a general
study of all possible transfers between Lissajous orbits by changing the three main
parameters (α, δ, and β) is also performed. In a SRP reorientation maneuver, the
location of an artificial libration point is translated and, consequently, also the ref-
erence frame attached to it. A SRP reorientation maneuver is seen as a jump of
the relative position instead of a jump in velocity. Thus, this chapter systemati-
cally analyzes the impact of a maneuver on a satellite following a libration point
nominal trajectory. Using maneuvers that do not introduce unstable components
in the modes of motion (which would lead to a divergence from the libration zone),
we obtain enhanced heteroclinic connections between Lissajous orbits.

• Chapter 4 describes the extended research done about heteroclinic transfers of a
solar sail spacecraft. The chapter has three parts: (1) With the clock angle δ = π/2
and initial phase ϕ1 = 0 fixed, it is found that if two spacecraft depart from different
initial phases ϕ2, such as ϕ2 = 0 or ϕ2 = π, they can reach the same final Lissajous
orbit with a single-impulse maneuver. This conclusion has been verified by a large
number of numerical simulations. (2) This chapter proposes a transfer strategy with
a multi-impulse maneuver in which the initial and final solar sail parameters are
fixed. For example, if the initial and final cone angles are αi = 0 and αf = π/4,
then during the transfer, we introduce a middle transitional cone angle αm = π/8
to prevent the solar sail angle from changing too much. (3) It has also been found
that a spacecraft can use multi-impulse maneuvers to make back-and-forth jumps
between the initial and final artificial LPOs.

• Chapter 5 investigates the avoidance of forbidden zones using impulse maneuvers
of the sail. Solar electromagnetic radiation and the Earth half-shadow can affect
communications and power generation of a spacecraft at L1 and L2 LPOs. Both
problems can be modeled by placing a forbidden or exclusion zone in the Y Z plane
(around the libration point), which should not be crossed. The chapter develops a
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strategy, using the EPP, for avoiding forbidden zones based on impulse maneuvers.
The EPP allows a simple geometric solution, not only of the eclipse avoidance
problem itself but also when planning impulse maneuvers for transfers between
Lissajous orbits. This chapter projects the 3D forbidden zone and the heteroclinic
transfer orbit onto a 2-dimensional EPP. The results of many simulations, with
different solar sail parameters, demonstrate that the area of the forbidden zones in
the EPP will change after an impulse maneuver. Sometimes, the forbidden zone
even disappears.

• Chapter 6 discusses propellant-free station-keeping of a solar sail around the Sun–
Earth collinear equilibrium points. Due to the instability of the L1 and L2 libration
points, a spacecraft placed around the libration points will naturally deviate from
its original orbit, so trajectories designed in the SRP-RTBP require the spacecraft
to perform maneuvers to maintain its trajectory by counteracting the unwanted
environmental instabilities. In this thesis, we propose a multi-impulse strategy to
achieve station-keeping. The spacecraft periodically performs maneuvers to prevent
it from escaping from a Lissajous orbit following its unstable manifold. Random
errors in the execution of the maneuvers are also considered. The results of many
simulations demonstrate that station-keeping with multiple impulses by means of
sail reorientation to control the unstable manifold component is effective.

• Chapter 7 highlights some useful conclusions and briefly discusses future work.

The main contributions of this thesis are the following:

• Based on research in artificial libration points in the SRP-RTBP, this thesis proposes
an impulse maneuver that allows a solar sail spacecraft to achieve enhanced hetero-
clinic connections between Lissajous orbits. After an SRP reorientation maneuver,
the location of the artificial libration point is translated, and so is the corresponding
reference frame. A SRP reorientation maneuver is seen as a jump of the relative po-
sition instead of a jump of the velocity. The solar sail spacecraft follows an unstable
manifold. Then the orientation of the solar sail is changed to bring the trajectory
back to the stable manifold of the target LPO. For example, a spacecraft injected
into the unstable manifold of the initial SL2 can reach the stable manifold of SL′

2
with an SRP maneuver. Note that the same final orientation may require different
numbers of impulse maneuvers. For example, if αi = 0 and αf = −0.45, three
impulse maneuvers are used to cancel out the unstable manifold of the target orbit.

• Using the impulse maneuver design, this thesis demonstrates the following: (1) Us-
ing a single-impulse maneuver, two spacecraft can arrive at the same final Lissajous
orbit after starting with different initial phases. (2) A transfer strategy is proposed
with a multi-impulse maneuver in which the initial and final solar sail parameters
are fixed. (3) A spacecraft can use multi-impulse maneuvers to make back-and-forth
jumps between the initial and final artificial LPOs.

• The impulse maneuver strategy is combined with the EPP method to design transfer
trajectories between Lissajous orbits that avoid forbidden zones. The EPP method

12
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projects the 3D heteroclinic transfer orbit and forbidden zones onto a 2D plane,
which is more convenient and intuitive.

• Using periodic impulse maneuvers, a propellant-free station-keeping strategy is de-
signed for a solar sail traveling around Sun–Earth collinear equilibrium points. The
spacecraft periodically performs a maneuver to prevent it from escaping from the
neighborhood of a Lissajous orbit along its unstable manifold. Thus, the maneuver
is computed such that it cancels out the unstable component of the state. Moreover,
it is assumed that there is a random error in executing the maneuvers. This method
has been demonstrated to be reliable by a large number of simulations.

1.4 Published Work

The contributions aforementioned have been published in the following papers:

[1] Duan X, Gómez G, Masdemont J J, Yue X. A Picture of Solar-Sail Heteroclinic En-
hanced Connections between Lissajous Libration Point Orbits[J]. Communications
in Nonlinear Science and Numerical Simulation, 2020,85(7):1152–1184.

[2] Duan X, Gómez G, Masdemont J J, Yue X. Solar sail propellant-free transfer
maneuvers between libration point orbits around the collinear equilibrium points[C].
69th International Astronautical Congress, IAC 2018, Bremen, 2018:1-12.

[3] Duan X, Gómez G, Masdemont J J, Yue X. Propellant–free station–keeping design
of a solar sail around the Sun–Earth collinear equilibrium points[C]. 73th Interna-
tional Astronautical Congress, IAC 2022, Paris, 2022:37-50.

[4] Gao Y, Duan X. Chang’e-5 probe completes on-orbit sample transfer[N]. Chinese
Science Journal, 2020-12-07(1).

[5] Duan X, Gómez G, Masdemont J J, Yue X. Research on avoid forbidden zone for
solar sail spacecraft based on effective phase plane[C]. The 7th National Aerospace
Dynamics and Control, Shenyang, China, 2021.
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Chapter 1. Introduction

The structure of the thesis is depicted in Fig. 1.5.

Figure 1.5: Structure of the thesis
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Chapter 22
Artificial libration point family

research for solar sail
spacecraft

The application of solar sail technology is currently valued by space agencies of various
countries and organizations. Although the magnitude of SRP is relatively small, when
considering for instance the duration of deep–space exploration missions, its role cannot be
ignored. Maxwell [147] first proposed in 1873 that the solar sail spacecraft could get solar
radiation acceleration after being reflected by a solar sail surface. More than 100 years
later, McInnes [42] studied the working principle of the solar sail in detail, and summarized
a variety of solar sail dynamic models. In 2010, IKAROS [9] was the first pure solar sail
spacecraft to complete a deep–space exploration mission. In 2019, LightSail–2 [16] used
SRP to change its orbital height.

In the usual circular restricted three-body problem, there are five equilibrium points;
for the SRP–RTBP model the equivalent of the libration points, also known as artificial
libration points, are determined by the spatial position and the direction of the solar sail.
The artificial libration points provide more flexibility for space mission applications, such
as storm warning [148, 149]. A solar sail spacecraft located near the artificial Sun–Earth
libration point SL1 could provide early warnings of solar activity compared with the
traditional spacecraft location, such as the one of SOHO.

In the first section of this chapter we introduce the RTBP and SRP–RTBP models.
The second section is devoted to the research on the two-dimensional family of artificial
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libration points. Finally, by changing the solar sail parameters (lightness number β,
cone angle α, and clock angle δ), the three-dimensional artificial libration point families
are computed and drawn, and the global distribution of artificial libration points under
different parameters is analyzed in detail.

2.1 The Restricted Three–Body Problem

It is well known that the circular RTBP considers the motion of an infinitesimal small
particle, the spacecraft, under the gravitational attraction of two bodies called primaries.
The two primaries orbit around their common centre of mass in a circular way, and
the gravitational attraction of the small particle on the two primaries is discarded. We
consider the Sun and the Earth as the two primaries, while the small particle is a solar
sail spacecraft, as shown in Fig. 2.1.

Figure 2.1: Schematic diagram of Sun–Earth RTBP reference system.

The origin O of the reference system considered is at the center of mass of the system,
the i axis points in the direction from Earth to the Sun, the j axis is perpendicular to
the orbital plane of the primaries, and the k axis completes the right-handed frame.

To simplify, we normalize the units of mass, distance, and time so that the total mass of
the system is one, the Sun - Earth distance is one, and the period of their orbit is 2π.
With these units, the gravitational constant G is also 1, this is

[M ] = m1 + m2 = 1,

[L] = D = 1,

[T ] = 1√
G(m1 + m2)/D3

= 2π,

where [M ], [L] and [T ] represent the unit mass, the unit length, and the unit time,
respectively, m1 is the mass of the Sun, m2 is the Earth mass, D is the Sun-Earth
distance, and G is the gravitational constant. After normalization, the mass of the two
primaries is

1 − µ = m1

m1 + m2
, µ = m2

m1 + m2
.
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2.1 - The Restricted Three–Body Problem

In a rotating reference system, with the primeries fixed on the i-axis, and the above
system of units, the equations of the RTBP are

Ẍ − 2Ẏ = X − (1 − µ)(X + µ)
r3

1
− µ(X − 1 + µ)

r3
2

,

Ÿ + 2Ẋ = Y − (1 − µ)Y
r3

1
− µY

r3
2

,

Z̈ = − (1 − µ)Z
r3

1
− µZ

r3
2

,

(2.1)

where
r1 =

√
(X + µ)2 + Y 2 + Z2, r2 =

√
(X − (1 − µ))2 + Y 2 + Z2,

Defining Ω(X, Y, Z) = 1
2(X2 + Y 2) + (1 − µ)

r1
+ µ

r2
+ 1

2µ(1 − µ), Eqs. (2.1) can be written
as

Ẍ − 2Ẏ = ∂Ω
∂X

,

Ÿ + 2Ẋ = ∂Ω
∂Y

,

Z̈ = ∂Ω
∂Z

.

(2.2)

Equating to zero the right-hand side of the above differential equations, and solving the
nonlinear system, five particular solutions can be obtained, which are called libration
points or Lagrangian points. If the spacecraft stays at the libration point, where the
gravitational force and centrifugal force are balanced, then

Ẋ = Ẏ = Ż = 0,
Ẍ = Ÿ = Z̈ = 0.

(2.3)

Combining Eqs. (2.3) and Eqs. (2.2), the five libration points (L1,...,L5) of the RTBP can
be obtained. They are shown in Fig. 2.2 and in Table. 2.1. In the figure, L1, L2, and L3
are on the Sun-Earth connection line, and they are called collinear libration points, while
L4 and L5 are called triangular libration points. Denoting the position of a libration
point Li by (XLi, YLi, ZLi), and assuming that a small deviation from it is (x, y, z), we
can write

X = XLi + x,
Y = YLi + y,
Z = ZLi + z.

(2.4)

Using Eqs. (2.4), and ignoring higher-order terms, the linearized equations around an
equilibrium point can be written as

ẍ − 2ẏ = ΩXXx + ΩXY y + ΩXZz,
ÿ + 2ẋ = ΩY Xx + ΩY Y y + ΩY Zz,

z̈ = ΩZXx + ΩZY y + ΩZZz,
(2.5)

where Ωij are the second-order partial derivatives of Ω at the libration point Li (further
details are given in Appendix A).

17



Chapter 2. Artificial libration point family research for solar sail spacecraft

Figure 2.2: Schematic representation of the libration points in the Sun–Earth RTBP.

Table 2.1: Libration point coordinates in the RTBP.

libration point X Y Z
L1 -0.98999 0 0
L2 -1.01008 0 0
L3 1.00000 0 0
L4 -0.50000

√
3/2 0

L5 -0.50000 −
√

3/2 0

Defining now X=[x, y, z, ẋ, ẏ, ż]T , the linear equations Eqs. (2.5) can be written as

Ẍ = AX =
[

03×3 I3
Ωij D

]


x
y
z
ẋ
ẏ
ż

 , (2.6)

In Eqs. (2.6), 03×3 denotes the zero 3 × 3 matrix, I3 is the identity 3 × 3 matrix, and Ωij

is the matrix of second partial derivatives of Ω, this is

Ωij =

 ΩXX ΩXY ΩXZ

ΩY X ΩY Y ΩY Z

ΩZX ΩZY ΩZZ

 ,

evaluated at the equilibrium point, while D is the matrix

D =

 0 2 0
−2 0 0

0 0 0

 .

Defining C0 := 1 − µ

r3
1

+ µ

r3
2

, again evaluated at the equilibrium point, it can be seen that
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at the collinear libration points (L1, L2, L3) we have

ΩXX = 1 + 2 C0 > 0,
ΩY Y = 1 − C0 < 0,
ΩZZ = − C0 < 0.

(2.7)

In the Eqs. (2.7), since ΩZZ < 0, the characteristic polynomial associated to the linear
differential equations has two pure imaginary roots, and since the motion in the (x, y)
plane is uncoupled from the one in the z direction; note that the motion in this direction
is a periodic oscillation. Then, Eqs. (2.5) reduce to

ẍ = ΩXX x + 2ẏ,
ÿ = ΩY Y y − 2ẋ.

The eigenvalues associated to this reduced system are

λ1,2 = ±
√

S1, λ3,4 = ±
√

|S2|,

where

S1 = 1
2[−(4 − ΩXX − ΩY Y ) +

√
(4 − ΩXX − ΩY Y )2 − 4ΩXXΩY Y ],

S2 = 1
2[−(4 − ΩXX − ΩY Y ) −

√
(4 − ΩXX − ΩY Y )2 − 4ΩXXΩY Y ].

Thus S1 > 0, S2 < 0, and the six characteristic roots are

λ1,2 = ±d1, λ3,4 = ±d2 i, λ5,6 = ±d3 i,

where i =
√

−1, and

d1 =

√√√√√
(9C0

2 − 8C0)
2 − (1 − C0

2 ), d2 =

√√√√√
(9C0

2 − 8C0)
2 + (1 − C0

2 ) d3 =
√

C0.

The diagonalized linear equations of motion about the collinear libration points are

ẍ − 2ẏ + (1 + 2C0)x = 0,
ÿ + 2ẋ − (1 − C0)y = 0,

z̈ + C0z = 0,
(2.8)

and the solution of the Eqs. (2.8) can be written as

x = A1ed1t + A2e−d1t + A3 cos(d2t) + A4 sin(d2t),
y = k1A1ed1t − k1A2e−d1t − k2A3 sin(d2t) + k2A4 cos(d2t),
z = A5 cos(d3t) + A6 sin(d3t).

(2.9)

where the parameters k1, k2 are

k1 = d1
2 − 2C0 − 1

2d1
, k2 = d2

2 + 2C0 + 1
2d2

.
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2.2 The effect of a solar sail in the RTBP

2.2.1 Solar radiation pressure

Sunlight produces a solar radiation pressure on accessible objects. The solar pressure P
is usually expressed, by means of the energy flux W and the light speed c, as

P = W

c
, (2.10)

where the energy flux W satisfies

W = WE

(
RE

r

)2
,

where

WE = Ls

4πRE
2 ,

is the energy flux measured at the Earth’s distance from the Sun, and its average value
is 1368J/m2s, Ls is the solar luminosity, RE=1AU is the Sun–Earth distance, and and r
is the distance from the sail to the Sun. Then, the solar radiation pressure at a distance
of 1AU from the Sun is P=4.56×10−6N/m2. For a fully perfectly reflecting sail, the
observed pressure is theoretically twice this value.

2.2.2 The force on a Solar sail

Different SRP models have been proposed for a variety of mission applications, but the
most popular is the one known as the cannonball model. This model describes how
SRP would affect a cannonball like spherical object which has equally distributed optical
properties. The solar sail acceleration is determined by two parameters: the area of the
solar sail, and its orientation. The orientation is given by the normal direction n to the
solar sail, as shown in Figure 2.3.

The force exerted by the incident photons, along the direction ri, on the sail surface is

Fi = PA < ri, n > ri,

where P is the solar radiation pressure, A is the area of the sail, and < ·, · > denotes
the inner product. Similarly, the force produced by the reflected photons along the −rr

direction is
Fr = −PA < rr, n > rr.
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n

r
ri

θθ

F

r

Figure 2.3: Schematic representation of the incident (ri) and reflected (rr) photons emit-
ted by the Sun on the surface of a flat perfectly reflecting solar sail.

For a perfectly reflecting solar sail, the total force on the surface of the sail is

Fsail = Fi + Fr = 2PA < ri, n >2 n. (2.11)

Combining Eqs. (2.10) and Eqs. (2.11), the total force can be written as

Fsail = 2AWERE
2

cr2 PA < ri, n >2 n. (2.12)

The acceleration of the solar sail spacecraft can be written in terms of the gravitational
acceleration as

as = β
GmSun

r2 < r, n >2 n, (2.13)

where G is the gravitational constant, and mSun is the mass of the Sun. The solar sail
lightness number β is the ratio of the pressure acceleration generated by the solar radiation
to the acceleration produced by solar gravity. If β=1, the solar radiation pressure is equal
to the solar gravitational force; if β > 1, the solar radiation pressure is greater than the
solar gravitational force. In practice, β is less than 1 and small. Its expression is given
by

β = σ∗

σ
,

σ∗ = LS

2πGMSc
≈ 1.53g/m2,

where σ=m/A is known as the sail loading parameter, and is the ratio between the the
spacecraft’s mass m and the area of the solar sail A. The relation between the lightness
number β, the sail loading parameter σ, and the acceleration as is given in Table 2.2.
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Table 2.2: Relation between β, σ and as.

β 0.02 0.04 0.05 0.06 0.1 0.2
σ(g/m2) 76.5 38.25 30.60 25.50 15.30 7.65

as(mm/s2) 0.12 0.24 0.30 0.36 0.59 1.19

2.2.3 Solar sail orientation

The solar sail orientation is defined by the normal direction to the sail surface, which
is usually represented by two angles. There are different ways to define the angles that
define the attitude [150, 151], with explicit relations between them. In this thesis we have
used the cone angle α and clock angle δ, that are displayed in Fig. 2.4.

Figure 2.4: Schematic representation of the sail orientation angles α ∈ [−π/2, π/2] and
δ ∈ [0, π]

We consider the usual restricted three-body reference system with coordinates (X, Y, Z).
Let n be the normal direction of the solar sail spacecraft, and (ri, h, t) the unitary
vectors defining the solar sail spacecraft centered coordinate system, where ri is the Sun-
spacecraft direction, h is perpendicular to the orbital plane (so parallel to Z), and t
completes the right-handed frame. As it has already been said, the normal direction n
to the sail is determined by the solar sail cone angle α, and the clock angle δ. The cone
angle α is the angle between the normal n and the incident ray ri, which measures the
elongation of n with respect to the Sun. The clock angle δ is the angle between the h
axis and the projection of n onto the (h, t) plane, as shown in Figure 2.4.

Because the solar sail spacecraft cannot generate acceleration towards the Sun, the α
range is inside [−π/2, π/2]. In theory, the range of δ is [0, 2π], but there are two different
angles representing the same direction, such as α=π/4, δ=π/2 and α=−π/4, δ=3π/2. In
order to avoid the same solar sail direction being represented by two different angles, we
consider the α range in [−π/2, π/2], and the δ range in [0, π].
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2.3 Equations of motion

Acording to the equations (2.2) of the RTBP, the equations of motion of the SRP–RTBP
model are

Ẍ − 2Ẏ = ΩX + as
X ,

Ÿ + 2Ẋ = ΩY + as
Y ,

Z̈ = ΩZ + as
Z ,

(2.14)

where as
X ,as

Y ,as
Z , are the three components of the SRP acceleration as which, according

to [4], is given by

as = β
1 − µ

r2
1

cos2 α n. (2.15)

Introducing the unitary vector z = (0, 0, 1)T , the components of as, in terms of α and δ,
are

as
X = β(1 − µ)(X − µ)

|r1|3
cos3 α − β(1 − µ)(X − µ)Z

|r1|2|(r1 × z) × r1|
cos2 α sin α cos δ

+ β(1 − µ)Y
|r1|2|(r1 × z)| cos2 α sin α sin δ,

as
Y = β(1 − µ)Y

|r1|3
cos3 α − β(1 − µ)Y Z

|r1|2|(r1 × z) × r1|
cos2 α sin α cos δ (2.16)

−β(1 − µ)(X − µ)
|r1|2|(r1 × z)| cos2 α sin α sin δ,

as
Z = β(1 − µ)Z

|r1|3
cos3 α + β(1 − µ)(Y 2 + (X − µ)2)

|r1|2|(r1 × z) × r1|
cos2 α sin α cos δ.

Note that when the lightness number β is zero, or when α = ±π/2, we recover the RTBP
equations. Moreover, when the clock angle is δ=π/2, then n is in the plane expanded by
r1 and r1 × h, and there is no SRP acceleration in the orthogonal direction h.

2.4 The families of artificial libration points

Similar to the RTBP case, the artificial equilibrium points of the SRP–RTBP model are
the solutions of the non-linear system of equations

ΩX + as
X = 0,

ΩY + as
Y = 0,

ΩZ + as
Z = 0,

(2.17)

which, using Eqs. (2.15), can be written in a compact way as

−∇Ω = β
µ

r2 cos2 αn. (2.18)
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Using Eqs. (2.16), Eq. (2.18) can be expressed as

ΩX + β(1 − µ)(X − µ)
|r1|3

cos3 α − β(1 − µ)(X − µ)Z
|r1|2|(r1 × z) × r1|

cos2 α sin α cos δ

+ β(1 − µ)Y
|r1|2|(r1 × z)| cos2 α sin α sin δ = 0,

ΩY + β(1 − µ)Y
|r1|3

cos3 α − β(1 − µ)Y Z

|r1|2|(r1 × z) × r1|
cos2 α sin α cos δ (2.19)

−β(1 − µ)(X − µ)
|r1|2|(r1 × z)| cos2 α sin α sin δ = 0,

ΩZ + β(1 − µ)Z
|r1|3

cos3 α + β(1 − µ)(Y 2 + (X − µ)2)
|r1|2|(r1 × z) × r1|

cos2 α sin α cos δ = 0.

It is well known that the RTBP (as
X = as

Y = as
Z = 0) has five equilibrium points, usually

denoted by L1, L2,...,L5. When we further consider the SRP the new equilibrium points
will be denoted by SL1, SL2,...,SL5, as shown in the Fig. 2.5.

Earth

2

3SL
4SL

5SL

1SL

X

Y

Sun

r

Z

Solar sail

SL

Figure 2.5: Schematic representation of SRP–RTBP and its equilibrium points.

The position of the artificial equilibrium points is constrained by the orientation of the
sail, and the normal vector n must be parallel to −∇Ω, which implies

n = −∇Ω
| − ∇Ω|

. (2.20)

According to the definition of α, we can write

cos2 α =< r, n >2=
〈

r,
−∇Ω

| − ∇Ω|

〉2
. (2.21)

Substituting Eq. (2.21) in Eq. (2.18), we get that the artificial libration points satisfy the
flowing equation

β = r2

µ

| − ∇Ω|3

< r, −∇Ω >2 . (2.22)
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It must be noted that not all the solutions of Eq. (2.22) are feasible, due to the constraint
in the direction of the SRP acceleration, since it is not possible to produce acceleration
in the direction towards the Sun. So, in the computations the following inequality must
be taken into account

⟨r, −∇Ω⟩ ≥ 0.

2.4.1 The SL1 family

We are particularly interested in the location of the two libration points SL1 and SL2
when the cone angle α, the clock angle δ, and the lightness number β vary. In this thesis,
the SL1 point will be the point between the Sun and the Earth, and SL2 the one at the
far side of the Earth with respect to the Sun. According to the results obtained, when
β is small the SL1 family of equilibrium points is a closed sphere, as shown in Fig 2.6,
Fig. 2.7 and Fig. 2.8.

(a) 3D (b) XY plane (c) XZ plane

Figure 2.6: Family SL1(α, δ) of equilibrium points when β=10−5.

(a) 3D (b) XY plane (c) XZ plane

Figure 2.7: Family of SL1(α, δ) equilibrium points when β=10−4.

In Fig. 2.6 and Fig. 2.7 we represent the SL1(α, δ) family of equilibrium points for different
β values. Both families are closed spheres and the SL1(α, δ) family with β = 10−4 is
larger.
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(a) β=0.01

(b) β=0.015

(c) β=0.02

(d) β=0.025

(e) β=0.028

Figure 2.8: Family SL1(α, δ) of equilibrium points for β = 0.01, 0.015, 0.02, 0.025, 0.028.
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For β = 0.01, 0.015, 0.02, 0.025, 0.028 we show the corresponding SL1(α, δ) families in
Fig. 2.8. The first column is the 3D representation while the second and third columns
are projections on the XY and XZ planes. When β < 0.029, the SL1(α, δ) family is
always a closed spherical surface. Table. 2.3 lists the SL1(α, δ) family amplitudes when
β < 0.029. The minimum X amplitude is −0.98998628 and the Y and Z amplitudes vary
significatively when the value of β increases.

Table 2.3: Range of the SL1 family amplitudes when β < 0.029

β Xmin Xmax Ymin Ymax Zmin Zmax

10−6 -0.99 -0.98998617 -1.28×10−7 1.28×10−7 -9.67×10−8 9.67×10−8

10−5 -0.99 -0.98998517 -1.28 ×10−6 1.28 ×10−6 -9.67×10−7 9.67×10−7

10−4 -0.99 -0.98997509 -1.28×10−5 1.28×10−5 -9.68×10−6 9.68×10−6

10−3 -0.99 -0.98987316 -1.31×10−4 1.31×10−4 -9.81×10−5 9.81×10−5

10−2 -0.99 -0.98873132 -0.00157490 0.00157490 -0.00112043 0.00112043
1.5 × 10−2 -0.99 -0.98799090 -0.00267861 0.00267861 -0.00182248 0.00182248
2 × 10−2 -0.99 -0.98716700 -0.00416437 0.00416437 -0.00264999 0.00264999

2.5 × 10−2 -0.99 -0.98625546 -0.00645974 0.00645974 -0.00363520 0.00363520
2.8 × 10−2 -0.99 -0.98566562 -0.00939128 0.00939128 -0.00431925 0.00431925

For β = 0.03, the SL1(α, δ) family is shown in Fig. 2.9 and it is no longer a closed sphere.
The (b) plot gives the XY plane projection, the vertex part is disconnected and merges
into the SL3,4,5 family. The (c) plot is the SL1 XZ plane projection.

(a) 3D (b) XY plane (c) XZ plane

Figure 2.9: Family SL1(α, δ) of equilibrium points for β = 0.03.

For β = 0.04, 0.05, the SL1(α, δ) family is shown in Fig. 2.10. When compared with
Fig. 2.9, we see less connected lines as β increases.

The main results obtained for the SL1(α, δ) artificial libration point family are the fol-
lowing:

1. When β = 0 (there is no SRP), SL1 becomes the traditional L1 point.

2. When β ̸= 0, the SL1(α, δ) family expand from a point to a surface under the action
of α and δ.
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(a) β=0.04 3D (b) β=0.04 XY plane (c) β=0.04 XZ plane

(d) β=0.05 3D (e) β=0.05 XY plane (f) β=0.05 XZ plane

Figure 2.10: Family SL1(α, δ) of equilibrium points for β = 0.04, 0.05.

3. When β is close to 0.030, a part of SL1(α, δ) family merges with SL3,4,5.

4. When SL1(α, δ) the family merges with the one of SL3,4,5. There are only two
disconnected surfaces in the system, one is SL1,3,4,5, and the other one is SL2.

2.4.2 The SL2 family

When compared with the complex evolutions of the SL1 and SL3,4,5 families, the SL2
family behaves more stable and intuitive. In Fig. 2.11 we show the family SL2(α, δ) for
β = 0.01.

(a) 3D (b) XY plane (c) XZ plane

Figure 2.11: The family SL2(α, δ) of equilibrium points for β = 0.01
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Figure 2.12: Family SL2(α, δ) of equilibrium points for β = 0.02, 0.03, 0.05, 0.07, 0.09.
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For β = 0.02, 0.03, 0.05, 0.07, 0.09, the SL2(α, δ) family is shown in Fig. 2.12 and in
Table. 2.4.

Table 2.4: The amplitudes of the SL2 family for different β values.

β Xmin Xmax Ymin Ymax Zmin Zmax

0.01 -1.01007489 -1.00908220 -0.00108965 0.00108965 -0.00084222 0.00084222
0.02 -1.01007489 -1.00827950 -0.00189529 0.00189529 -0.00150443 0.00150443
0.03 -1.01007489 -1.00762435 -0.00251593 0.00251593 -0.00203741 0.00203741
0.05 -1.01007489 -1.00662946 -0.00341176 0.00341176 -0.00284115 0.00284115
0.07 -1.01007489 -1.00591423 -0.00403178 0.00403178 -0.00342009 0.00342009
0.09 -1.01007489 -1.00537556 -0.00448983 0.00448983 -0.00385957 0.00385957

Then, according to Figure. 2.12 and Table. 2.4, the main results are the following

1. For the practical values of β, the family SL2(α, δ) of equilibrium points is always a
closed ellipsoid surface (a different fact with respect to other libration point fami-
lies).

2. When β increases, the size of the closed ellipsoid surface also increases.

2.5 Chapter summary

This chapter is devoted to fix the notation and to introduce the dynamical models, used
in this work, including the RTBP and the SRP–RTBP models. It has been followed by
systematic studies of the artificial libration point families with respect to the orientation
angles (cone angle α and clock angle δ) and the lightness number (β). The most relevant
results obtained are the following:

• When α = ±π/2, the incident photon direction is parallel to the solar sail panel, and
there is no solar pressure. In this case the model can be simplified to the traditional
restricted three-body model and (SLi=Li).

• When α = 0, the plane of the solar sail is perpendicular to ri. In this case the force
due to the SRP is aligned with the gravitational attraction of the Sun, so the model
can be seen as the usual RTBP with the mass of the Sun, 1 − µ, decreased. The
position of SL1 and SL2 moves towards the Sun as the value of β increases.

• When α ̸= 0 and δ = π/2, the solar sail surface is subjected to the force in the XY
plane, and the artificial libration point will also correspond moving left or right but
inside the plane. Similarly, if δ = 0 or π, it will be subjected to a force perpendicular
to the XY plane, and the artificial libration point will move up or down.
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• When β = 0 there is no solar pressure force and the model is the traditional re-
stricted three-body model. When β is small, there are five independent and dis-
connected libration point families in the system. When β < 0.028, the SL3, SL4
and SL5 families gradually expand and merge with each other, while SL1 and SL2
families are independent closed ellipsoid surfaces. When 0.029 < β < 0.04, part of
SL1 and SL3,4,5 merge with each other, while SL2 family is always an independent
closed ellipsoid surface. Table. 2.5 shows the relation between libration point family
and lightness number β.

Table 2.5: Topology of the artificial libration point families depending on the lightness
number.

β SL2 SL1 SL3 SL4 SL5
β<10−5 ellipsoid ellipsoid surface surface surface

10−5<β<0.028 ellipsoid ellipsoid SL3,4,5 SL3,4,5 SL3,4,5
0.029<β<0.04 ellipsoid SL1,3,4,5 SL1,3,4,5 SL1,3,4,5 SL1,3,4,5
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Chapter 33
Impulse maneuver design of a

solar sail for enhanced
heteroclinic transfer research

The orbits near the libration points L1 and L2 have dynamic characteristics of great signif-
icance in the field of deep space exploration [43, 66], which provide a variety of possibilities
for future space missions. Libration point orbits are a kind of periodic and quasi–periodic
orbits [67, 68] which are relatively inexpensive to reach from Earth, and also with easy com-
munication with our planet. Usually, orbits around the L1 point can be used as a platform
for observing the activity of the Sun, and orbits around the L2 point are convenient for
deep space exploration observations [69].

Halo orbits are a frequent choice for libration point orbital missions, but Halo orbits are
slender in the direction perpendicular to the Sun-Earth line, so they need control, not
only for the orbital station-keeping, but also for the antennas to keep them pointing to
the Earth [152]. Another usual option are Lissajous orbits, which are quasi–periodic orbits
around the libration points that allow a greater mission flexibility [153].

The stable and unstable manifolds associated with the libration point orbits ensure the de-
parture and approach of the spacecraft from and towards to them. The unstable manifolds
can make the spacecraft to leave the libration point orbit neighbourhood in a relatively
short time, (about two orbital revolutions) while the stable manifolds provide the chance
for the spacecraft to come back to the libration point orbit [154]. Likewise, homoclinic and
heteroclinic connections play a key role in transfer designs [105]. Heteroclinic connections
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involve the intersection of stable and unstable manifolds, using two different manifolds at
the same energy level. For example, in the Artemis and Wind missions, the spacecraft
leaves the L1 orbit through the unstable manifold, and then enters the L2 orbit through
the stable manifold [155].

In this chapter, an impulse maneuver method for solar sail spacecraft, based on the three-
dimensional artificial libration point family, is proposed. We use the method to solve the
spacecraft heteroclinic transfer problem between two different artificial libration point
orbits. Firstly, the restricted three-body problem, including solar radiation pressure, is
linearized, solved, and tested to check it can meet the mission requirements. Secondly, we
propose the solar sail impulse maneuver method, by adjusting the solar sail parameters,
to change the artificial libration point position. A detailed algorithm of the full procedure
is given. Finally, we use the developed method to study impulsive heteroclinic transfers
between Lissajous orbits near three-dimensional artificial libration points.

The chapter is organised as follows. The solutions of the linearized CR3BP-SRP model
around the collinear equilibrium points are computed in Section 3.1. These solutions are
used in Section 3.2 to determine the enhanced heteroclinics using SRP maneuvers. The
detailed procedure and simulations are given in the last sections of the chapter.

3.1 SRP–RTBP linearization model

From now on, we focus our attention on the motion in the vicinity of SL2 (the study
around SL1 is similar). For given values of α, δ and on β, let (γ1, γ2, γ3) be the position
of SL2 in the CR3BP reference frame and units. Following [120], we perform a change of
scale, and set the origin of coordinates at the equilibrium point by means of the translation

X = γx + γ1,
Y = γy + γ2,
Z = γz + γ3,

(3.1)

where γ is a scaling factor chosen in order to normalize the Eath-equilibrium point dis-
tance. In our case, we have taken γ = 0.01, since this value is very close to the Earth-L2
distance in the CR3BP. Therefore, in the new coordinates, the adimensional distance unit
will be, approximately, 1.5 × 106 km.

Applying the above change of coordinates to the CR3BP-SRP equations we get

ẍ − 2ẏ = 1
γ2 Ωx + 1

γ
as

x,

ÿ + 2ẋ = 1
γ2 Ωy + 1

γ
as

y,

z̈ = 1
γ2 Ωz + 1

γ
as

z,

(3.2)
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and the linearized equations of motion at the equilibrium point become

ẍ − 2ẏ = a1x + a2y + a3z,
ÿ + 2ẋ = b1x + b2y + b3z,
z̈ = c1x + c2y + c3z,

(3.3)

where the coefficients ai, bi and ci, that deppend on µ, α, δ, β, γ1, γ2, γ3 and γ, are given
in Appendix B.

3.1.1 Analytical solution of the linearized equations

We look for solutions of the linear system (3.3) with one of the following two patterns,
that will be respectively associated to planar and vertical modes of motion

Case 1: x(t) = eλt, y(t) = keλt, z(t) = keλt, (3.4)
Case 2: x(t) = keλt, y(t) = keλt, z(t) = eλt, (3.5)

where, in both cases, the parameters k, k, and the exponent λ are, in general, complex
numbers to be determined independently for each case.

Inserting (3.4) into the differential equations (3.3) we get the following two systems of
equations for the parameters

Case 1:


λ2 − 2kλ = a1 + a2k + a3k,

kλ2 + 2kλ = b1 + b2k + b3k,

kλ2 = c1 + c2k + c3k,

Case 2:


kλ2 − 2kλ = a1k + a2k + a3,

kλ2 + 2kλ = b1k + b2k + b3,

λ2 = c1k + c2k + c3.

In both cases λ is an eigenvalue of the linearized system around the equilibrium point, so
it must satisfy the following equation

λ6 − (a1 + b2 + c3 − 4)λ4 + (2a2 − 2b1)λ3 − (4c3 − a1b2 + a2b1 − a1c3 + a3c1

−b2c3 + b3c2)λ2 − 2(a2c3 − a3c2 − b1c3 + b3c1)λ (3.6)
−a3b1c2 − a2b3c1 − a1b2c3 + a3b2c1 + a2b1c3 + a1b3c2 = 0.

For the equilibrium points SL1 and SL2, two roots of this polynomial, λ1,2 (λ1 > 0,
λ2 < 0), are always real, and the remaining ones are two complex conjugate pairs: λ3,4 =
η1 ± ω1 and λ5,6 = η2 ± ω2. In general, λ1 ≃ −λ2, and the equality only holds when the
cone angle α = 0.

For a given value of λ, solution of Eqs. (3.6), the associated values of k and k depend on
the case under consideration.
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In Case 1 we get

k = λ4 − (c3 + a1)λ2 + a1c3 − a3c1

2λ3 + a2λ2 − 2c3λ − a2c3 + a3c2
, (3.7)

k = c2λ4 + 2c1λ3 + (a2c1 − c2c3 − a1c2)λ2 − 2c1c3λ + a1c2c3 − a2c1c3

2λ5 + a2λ4 − 4c3λ3 + (a3c2 − 2a2c3)λ2 + 2c2
3λ + a2c2

3 − a3c2c3
. (3.8)

While in Case 2 the values of k and k are

k = λ4 − (c3 + a1)λ2 + a1c3 − a3c1

c2λ2 + 2c1λ − a1c2 + a2c1
, k = 2λ3 + a2λ2 − 2c3λ − a2c3 + a3c2

c2λ2 + 2c1λa1c2 + a2c1
.

(3.9)

From the expressions given in Appendix B it follows that if γ3 = 0 then C1 = C2 = C3 = 0;
furthermore, according to the values of c1 and c2

c1 = 1 − µ

γ3
3A1C1

D5
1

+ µ

γ3
3A2C2

D5
2

−β(1 − µ) cos2 α

γ3D3
1D3

(
3A1C1D3

D2
1

cos α − (E3D2
3 − 2)A1 sin α cos δ

)
,

c2 = 1 − µ

γ3
3C1B1

D5
1

+ µ

γ3
3B2C2

D5
2

−β(1 − µ) cos2 α

γ3D3
1D3

(
3B1C1D3

D2
1

cos α − (E3D2
3 − 2)B1 sin α cos δ

)
,

where, if γ3 = 0 (equilibrium points in the Z = 0 plane) we have that C1 = C2 = C3 = 0.
Hence, for α = 0 and δ = π/2 then c1 = c2 = 0, and the expresion (3.9) for k and k̄ in
Case 2 have a singularity. In other to avoid this situation, we can write k and k in terms
of ai and bi as

k = b3λ2 − 2a3λ − a1b3 + a3b1

λ4 − (a1 + b2 − 4)λ2 + (2a2 − 2b1)λ + a1b2 − a2b1
,

k = a3λ2 + 2b3λ + a2b3 − a3b2

λ4 − (a1 + b2 − 4)λ2 + (2a2 − 2b1)λ + a1b2 − a2b1
,

which are not singular for the above values of the parameters. Something similar happens
in Case 1, in this case the singularity disappears using the following expressions for k and
k

k = −2λ3 + b3λ2 + 2a1λ − a1b3 + a3b1

(a3 − 4)λ2 + 2(b3 − a2)λ + a2b3 − a3b2
,

k = λ4 − (a1 + b2)λ2 − 2b1λ + a1b2 − b1a2

(a3 − 4)λ2 + 2(b3 − a2)λ + a2b3 − a3b2
.

In Case 1, the solution of the differential equations (3.3) associated to the planar mode
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can be written as

x(t) = A1eλ1t + A2eλ2t + A3eη1t cos ω1t + A4eη1t sin ω1t,

y(t) = A1k1eλ1t + A2k2eλ2t + A3eη1t(k3 cos ω1t + k4 sin ω1t)
+A4eη1t(k3 sin ω1t − k4 cos ω1t),

z(t) = A1k1eλ1t + A2k2eλ2t + A3eη1t(k3 cos ω1t + k4 sin ω1t)
+A4eη1t(k3 sin ω1t − k4 cos ω1t),

and in Case 2, associated to the vertical mode, as

x(t) = A5eη2t(k5 cos ω2t + k6 sinω2t) + A6eη2t(k5 sin ω2t − k6 cos ω2t),
y(t) = A5eη2t(k5cosω2t + k6 sin ω2t) + A6eη2t(k5 sin ω2t − k6 cos ω2t),
z(t) = A5eη2t cos ω2t + A6eη2t sin ω2t.

So, in general, the final form of the solution (3.3) containing all modes becomes

x(t) = A1eλ1t + A2eλ2t + A3eη1t cos ω1t + A4eη1t sin ω1t

+A5eη2t(k5 cos ω2t + k6 sin ω2t) + A6eη2t(k5 sin ω2t − k6 cos ω2t),
y(t) = A1k1eλ1t + A2k2eλ2t

+A3eη1t(k3 cos ω1t + k4 sin ω1t) + A4eη1t(k3 sin ω1t − k4 cos ω1t)
+A5eη2t(k5 cos ω2t + k6 sin ω2t) + A6eη2t(k5 sin ω2t − k6 cos ω2t), (3.10)

z(t) = A1k1eλ1t + A2k2eλ2t

+A3eη1t(k3 cos ω1t + k4 sin ω1t) + A4eη1t(k3 sin ω1t − k4 cos ω1t)
+A5eη2t cos ω2t + A6eη2t sin ω2t.

In the above equations A1, ..., A6 are arbitrary parameters, λ1,2 are the real roots of
(3.6), (λ1 > 0, λ2 < 0), and λ3,4 = η1 ± ω1i and λ5,6 = η2 ± ω2i are the two complex
conjugate pairs. The eigenvalues λ3,4 are the ones associated to the planar oscillations of
the solutions, and λ5,6 are the ones associated to the vertical ones. The values of ki and
ki, for i = 1, ..., 6, are given in Appendix C.

An important property of the formulation chosen in (3.10) is that it gives a continuous
global representation when crossing bifurcations varying the values α, δ, β and changing
the type of equilibrium point associated. To have a general idea of the magnitude of
the eigenvalues, Table 3.1 shows some values of λ1,2, η1,2, ω1,2 depending on α and δ for
β = 0.02. From the first two lines, we see that if α = 0, the eigenvalues do not change
no matter what value of δ is. Lines 3 to 9 show how the variation of eigenvalues when
δ = π/2 and the value of α changes. Lines 10 to 20 show the behavior of the roots when
α = π/6, and the value of δ varies.

The expression (3.10) can be also written in matrix form as,

[x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)]T = H(t) [A1, A2, A3, A4, A5, A6]T , (3.11)
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Table 3.1: Some relevant example values of λ1,2, η1,2, ω1,2 depending on α and δ for a
given β = 0.02.

No. α δ λ1 λ2 η1 ω1 η2 ω2
1 0 π/2 3.30475 −3.30475 0 2.57190 0 2.51131
2 0 π/4 3.30475 −3.30475 0 2.57190 0 2.51131
3 π/6 π/2 3.00566 −3.00466 −0.00050 2.37048 0 2.32633
4 π/4 π/2 2.75492 −2.75382 −0.00055 2.21122 0 2.16727
5 π/3 π/2 2.57546 −2.57471 −0.00038 2.10685 0 2.04750
6 -π/6 π/2 3.00466 −3.00566 0.00050 2.37048 0 2.32633
7 -π/4 π/2 2.75382 −2.75492 0.00055 2.21122 0 2.16727
8 -π/3 π/2 2.57470 −2.57546 0.00038 2.10685 0 2.04750
9 ± π/2 π/2 2.48432 −2.48432 0 2.05701 0 1.98508
10 π/6 0 3.01329 −3.01329 0 2.48569 0 2.21387
11 π/6 π/6 3.01150 −3.01100 −0.00014 2.46770 −0.00011 2.23117
12 π/6 π/3 3.00762 −3.00676 −0.00027 2.41942 −0.00016 2.27808
13 π/6 π/2 3.00566 −3.00466 −0.00050 2.37048 0 2.32633
14 π/6 2π/3 3.00762 −3.00676 −0.00027 2.41942 −0.00016 2.27808
15 π/6 5π/6 3.01150 −3.01100 −0.00014 2.46770 −0.00011 2.23117
16 π/6 π 3.01329 −3.01329 0 2.48569 0 2.21387
17 π/6 7π/6 3.01100 −3.01150 0.00014 2.46770 0.00011 2.23117
18 π/6 2π/3 3.00676 −3.00762 0.00027 2.41942 0.00016 2.27808
19 π/6 3π/2 3.00466 −3.00566 0.00050 2.37048 0 2.32633
20 π/6 4π/3 3.00676 −3.00762 0.00027 2.41942 0.00016 2.27808
21 π/6 11π/6 3.01100 −3.01150 0.00014 2.46770 0.00011 2.23117

where the components of the matrix H are given in Appendix C. Inverting the above
system we get

[A1, A2, A3, A4, A5, A6]T = H−1(t) [x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)]T , (3.12)

that for t = 0 gives the values of the amplitudes as a function of the initial conditions

[A1, A2, A3, A4, A5, A6]T = H−1(0) [x0, y0, z0, ẋ0, ẏ0, ż0]T . (3.13)

Unfortunately, it is not possible to write short expressions for the components of the
matrix H−1(t) .

It is also convenient to write the oscillatory solutions (3.10) of the differential equations
(3.3) using amplitudes and the associated phases. Defining the unstable and stable am-
plitudes, Au and As, and the planar (in-plane) and vertical (out-of-plane) amplitudes,
Ax =

√
A2

3 + A2
4 and Az =

√
A2

5 + A2
6, respectively, by means of the relations

A1 = Au, A2 = As,

A3 = Ax cos ϕ1, A4 = −Ax sin ϕ1, (3.14)
A5 = Az cos ϕ2, A6 = −Az sin ϕ2,
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we can write the general solution (3.10), as a function of (Au, As, Ax, Az, ϕ1, ϕ2), as

x(t) = Aueλ1t + Aseλ2t + Axeη1t cos(ω1t + ϕ1)
+Azeη2tk5 cos(ω2t + ϕ2) + Azeη2tk6 sin(ω2t + ϕ2),

y(t) = Auk1eλ1t + Ask2eλ2t + Axeη1tk3 cos(ω1t + ϕ1) + Axeη1tk4 sin(ω1t + ϕ1)
+Azeη2tk5 cos(ω2t + ϕ2) + Azeη2tk6 sin(ω2t + ϕ2), (3.15)

z(t) = Auk1eλ1t + Ask2eλ2t + Axeη1tk3 cos(ω1t + ϕ1) + Axeη1tk4 sin(ω1t + ϕ1)
+Azeη2t cos(ω2t + ϕ2),

or, in a more compact form

x(t) = Aueλ1t + Aseλ2t + Axeη1t cos(ω1t + ϕ1) + Azeη2tk56 cos(ω2t + ϕ56), (3.16)
y(t) = Auk1eλ1t + Ask2eλ2t + Axeη1tk34 cos(ω1t + ϕ34) + Azeη2tk56 cos(ω2t + ϕ56),
z(t) = Auk1eλ1t + Ask2eλ2t + Axeη1tk34 cos(ω1t + ϕ34) + Azeη2t cos(ω2t + ϕ2),

where the relations between the values of the parameters in (3.15) and in (3.16) are

k34 cos ϕ34 = k3 cos ϕ1 + k4 sin ϕ1, k34 sin ϕ34 = k3 sin ϕ1 − k4 cos ϕ1,

k34 cos ϕ34 = k3 cos ϕ1 + k4 sin ϕ1, k34 sin ϕ34 = k3 sin ϕ1 − k4 cos ϕ1.
k56 cos ϕ56 = k5 cos ϕ2 + k6 sin ϕ2, k56 sin ϕ56 = k5 sin ϕ2 − k6 cos ϕ2,

k56 cos ϕ56 = k5 cos ϕ2 + k6 sin ϕ2, k56 sin ϕ56 = k5 sin ϕ2 − k6 cos ϕ2.

(3.17)

Note that taking Au = As = 0 in (3.16) produces quasi-periodic solutions, i.e. Lissajous
orbits, with frequencies ω1 and ω2, and respective planar and vertical amplitudes equal to
Ax and Az. The values Au and As are related to the unstable and stable manifold of the
Lissajous orbit. For instance, the relations Au = 0 and As ̸= 0 define the stable manifold
of the Lissajous orbit defined by Ax and Az (in-plane and out-of-plane amplitudes); any
orbit verifying this condition will tend forward in time to the Lissajous orbit, since the
term in As goes to zero. A similar fact happens when Au ̸= 0 and As = 0, in this case the
term with Au increases as time increases but goes to zero backwards in time, therefore,
these solutions will go away exponentially fast forward in time, and define the unstable
manifold of the Lissajous orbit.

3.1.2 Accuracy of the linear approximation

Clearly the solution given by equations (3.16) does not fulfil the equations of motion
(2.14). In order to test the accuracy of this solution we have computed the residual
acceleration RA defined as the norm of the difference between the acceleration given by
the equations of motion (2.14) (ẍ, ÿ, z̈) and the one given by the linearised equations (3.3)
(ẍL, ÿL, z̈L), this is

RA = ((ẍ − ẍL)2 + (ÿ − ÿL)2 + (z̈ − z̈L)2)1/2. (3.18)

The computation of the residual acceleration has been done taking points (position and
velocity) along Lissajous orbits with different amplitudes, computed using (3.16), during
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a certain time interval determined according to the values of the two frequencies of the
Lissajous. The Lissajous orbits considered have equal X and Z amplitudes.

Fig.3.1 shows the results obtained for both the value of the residual acceleration RA and
its relative value RRA, defined as

RRA = RA

(ẍ2 + ÿ2 + z̈2)1/2 . (3.19)

For each Lissajous orbit, we have computed both the maximum value of the residual
acceleration along the orbit and its average value.

Figure 3.1: The residual acceleration RA and relative residual acceleration RRA as a
function of the X-amplitude of the Lissajous orbit.

3.2 Lissajous orbital enhanced heteroclinic transfers
and parameter analysis at SL2 point

This section is devoted to introduce the SRP maneuver strategy that defines the hete-
roclinic enhanced connections between libration point orbits around the collinear equi-
librium points. These transfers are propellant-free and are performed by means of a
variation of the sail parameters: α (cone angle), δ (clock angle) or β (lightness number).
The influence of the phases ϕ1 and ϕ2 at the departing point, as well as the amplitudes
Ax and Az of the initial orbit, will be also analyzed.

As we have seen, the stability and location of the SRP-libration points change with
the sail parameters, for this reason we use three different reference systems to design
a transfer. The first one is the usual CR3BP synodic frame (X, Y, Z) centered on the
Sun-Earth center of mass. The second and third ones are, respectively, associated with
the departure and target libration points, and we denote by (x, y, z) and (x′, y′, z′) their
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coordinates. The three reference systems are related by the change of variables

X = γx + γ1 = γx′ + γ′
1,

Y = γy + γ2 = γy′ + γ′
2,

Z = γz + γ3 = γz′ + γ′
3,

Ẋ = γẋ = γẋ′,
Ẏ = γẏ = γẏ′,
Ż = γż = γż′,

(3.20)

where (γ1, γ2, γ3) and (γ′
1, γ′

2, γ′
3) are the coordinates of the departure and target SRP

libration points in the CR3BP reference system, and γ = 0.01, is a convenient scaling
factor introduced to normalize the Earth-equilibrium point distance (using this scaling
factor the distance from the Earth to the SL2 point in the local reference frames is
approximately one, corresponding to about 1.5 × 106 km in physical units). In Fig. 3.2
we schematically show the three reference systems involved when, by means of a solar-sail
maneuver, we intend to connect a LPO around SL2 with another one around SL

′

2.

Figure 3.2: Schematic representation of the three reference systems involved in the study
of solar-sail maneuvers. Due to the maneuver, the equilibrium point moves from SL2
(position before the maneuver) to SL

′

2 (position after the maneuver).

An interesting dynamical remark on solar-sail maneuvers using always these SLi centered
local reference frames is that, contrary to usual impulsive maneuvers that involve a change
in velocities (known as a a ∆v), the solar-sail maneuver changes the position coordinates
of the artificial equilibrium point but keeps the velocity. So it can be assumed as a
jump in position in the (lowercase) local frame, although in the usual CR3BP the orbit
is continuous in both position and velocity. For example, assume initial and final cone
angle are αi = 0, α = π/3, the corresponding position and velocity change curves in the
coordinate system are shown in Figure 3.3 and Figure 3.4.

In Fig. 3.3, the red star point is the starting point and the spacecraft moves along the
blue curve. at some time, changes the cone angle from 0 to π/3, its position will ”jump”
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(a) 3D (b) XY plane (c) YZ plane

Figure 3.3: Position change curve of the solar sail spacecraft after changing the cone
angle.

(a) 3D (b) XY plane (c) YZ plane

Figure 3.4: Velocity change curve of the solar sail spacecraft after changing the cone
angle.

to the green star point in the new coordinate system and will move along the black curve.
Similarly, in Fig. 3.4, the speed curve remains continuous.

Assuming that we are departing from a Lissajous orbit by means of a trajectory on its
unstable manifold, we accomplish an heteroclinic enhanced connection by means of a
solar-sail maneuver that injects on the stable manifold of the target one. In what follows,
we study the characteristics of the these transfers considering:

• Maneuvers that change of the cone angle α of the sail.

• Maneuvers that change of the clock angle δ of the sail.

• Maneuvers that change the lightness number β of the sail.

• Dependency on the phases, ϕ1 and ϕ2, of the departing point.

• Dependency on the amplitudes of the departing Lissajous orbit.
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3.3 Heteroclinic enhanced connections varying α

3.3.1 Heteroclinic enhanced connections when varying α for a
fixed ϕ1 and ϕ2

We note that to obtain such connection between two Lissajous orbits, the unstable com-
ponent, Au, of the arrival one should be equal to zero after the solar-sail maneuver. In
this section we explore the changes of the cone angle α that fulfill this arrival condition.
For all the computations that follow we keep fixed the value of the clock angle δ = π/2,
the lightness number β = 0.02, the phases of the departing point ϕ1 = ϕ2 = 0, and the
size of the departing orbit, given by the normalized amplitudes Ax = 1/24 and Az = 1/6.

Since the departure of the initial Lissajous orbit is done along its unstable manifold, we
must set the amplitudes As = 0 and Au ̸= 0; we have used Au = −10−4. Fixing the values
of the phases ϕ1 and ϕ2 at t0 = 0 we are selecting an orbit of the unstable manifold of
the Lissajous orbit, the whole manifold of the orbit can be obtained varying the values of
these phases. Along the selected orbit on the unstable manifold we consider a fixed time
step of ∆t = 10−4 adimensional time units, for a maximum time interval of tmax −t0 = 15
adimensional time units. At each time step we consider a potential change in the cone
angle from its initial value αi to a final one αf . This means that the cone angle variation
we consider is always equal to ∆α = αf − αi. Then, we compute the unstable component
of the resulting trajectory associated to the new sail parameters in order to check for the
condition A′

u = 0, that guarantees that we are on the stable manifold of a Lissajous orbit.
The computations are done according to the following scheme:

1. Initialize the parameters: µ, αi, αf , δ, β, ϕ1 = ϕ2 = 0, t0 = 0, ∆t, tmax, and the
amplitudes Ax and Az (from which ones we can compute A3, A4, A5 and A6 using
the Eqs. (3.14)).

2. Set α = αi, and compute the coordinates (γ1, γ2, γ3) of the equilibrium point.

3. Using the expressions given in Appendix B, compute the coefficients of the polyno-
mial in Eqs. (3.6), and its roots: λ1, λ2, λ3,4 = η1 ± ω1i, λ5,6 = η2 ± ω2i.

4. Using the expressions given in Appendix C, compute the matrix H(t) and determine
the state (x, y, z, ẋ, ẏ, ż) at time t.

5. Change αi to αf and compute the position of the new artificial equilibrium point
(γ′

1, γ′
2, γ′

3), as well as (x′, y′, z′, ẋ′, ẏ′, ż′) by means of (3.20).

6. Since the vectorfield is autonomous, we can use (3.13) to get the values of the
resulting amplitudes A′

1 = A′
u, A′

2 = A′
s, A′

3, A′
4, A′

5, A′
6 after the maneuver.

7. Store the values of t and the obtained unstable amplitude A′
u.

8. Set t = t + ∆t and, if t < tmax, go to step 5.
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We have always taken an initial cone angle αi = 0, so the cone angle reorientation is
∆α = αf − αi = αf .

3.3.1.1 Evolution of the final unstable amplitude for positive and negative
cone angle maneuvers

The analysis of the results is divided into two cases: ∆α = αf > 0 and ∆α = αf < 0.
For both cases, Fig. 3.5 shows a typical evolution of A′

u as a function of the maneuver
time (this is the time where the value of α changes from αi = 0 to αf ). In the plots of
the figure, each line represents a different value of ∆α = αf . The values that have been
explored are ∆α ∈ (0.01, π/2) (left plot) and ∆α ∈ (−0.01, −π/2) (right plot).

Figure 3.5: Behavior of A′
u with maneuver time for ∆α = αf ∈ (0.01, π/2) (left) and for

∆α = αf ∈ (−0.01, −π/2) (right).

From the left plot of the figure it follows that, for any fixed value of αf > 0, there is only
one value of the maneuver time for which A′

u is zero. These values will be the suitable
epochs (after departure) to perform the transfer maneuver by means of a change of the
cone angle.

As an example, Fig. 3.6 shows the transfer connection associated to ∆α = π/4. The solar-
sail reorientation is performed after 1.9 adimensional time units after the departure from
the initial Lissajous orbit (in blue). The red star indicates the departing point along the
unstable manifold of the initial orbit, and the green star the location of the reorientation
maneuver, from this point on the orbit follows an orbit on the stable manifold of the
arrival Lissajous orbit (in black). The explanation of the color symbols in Fig. 3.6 is
shown in Table. 3.2, and the comparison of various parameters before and after the solar
sail impulse maneuver is shown in Table. 3.3.
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(a) Au with maneuver time (b) 3D

(c) XY plane (d) XZ plane (e) YZ plane

Figure 3.6: Evolution of the final unstable amplitude Au for αf = π/4 (top left), 3D
representation and coordinate projections of the initial (in blue) and final (in black)
Lissajous orbits. The orbit plots are in the (X, Y, Z) CR3BP reference frame, but using
physical units (km).

Table 3.2: Explanation of the symbols used in Fig. 3.6.

Symbol Explanation
blue cylinder initial Lissajous orbit
black cylinder final Lissajous orbit

blue orbit unstable manifold
∗ initial SL2 artificial libration point
∗ final SL2 artificial libration point
+ starting point of the unstable manifold
∗ impulse maneuver moment for the solar sail
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Table 3.3: Variation of sail and orbit parameters before and after the solar sail impulse
maneuver when αf = π/4.

Initial parameter Initial parameter value Final parameter Final parameter value
αi 0 αf π/4
δi π/2 δf π/2
βi 0.02 βf 0.02
γ1 −1.00828 γ1f −1.00915
γ2 0 γ2f 0.00188
γ3 0 γ3f 0
Ax 0.0417 Axf 0.0062
Az 0.1667 Azf 0.1921

From the right panel of Fig. 3.5 we find that, when ∆α = αf < 0, there are four different
behaviors, according to the number of crossings with the A′

u = 0 axis of the lines associated
to different αf values. The curves A′

u(αf ) displayed in the figure have zero crossings with
A′

u = 0 when αf ∈ (−0.22, −0.01), one crossing when αf ∈ (−π/2, −0.51), two crossings
when αf ∈ (−0.40, −0.23) and three crossings when αf ∈ (−0.50, −0.41). In Fig. 3.7 we
show one example of each case and in Fig. 3.8 we show the resulting connections obtained
for each case (3D (X, Y, Z) CR3BP representation and XY -projections using physical
units in km) of the initial (in blue) and final (in black, green and pink) Lissajous orbits
associated to the transfers determined for αf = −π/4 (one A′

u = 0 crossing), αf = −0.35
(two A′

u = 0 crossings), and αf = −0.45 (three A′
u = 0 crossings). Fig. 3.8 shows also the

projection of the transfer orbit onto the X-Y plane; clearly, if the value of α changes then
the final Lissajous also does, and the corresponding impulse maneuver moments and the
terminal Lissajous amplitudes are shown in the Table. 3.4.

Table 3.4: Impluse maneuver epochs for Axf and Azf , and αf = −π/4, −0.35, −0.45.

Final cone angle Maneuver epoch Axf Azf

αf (days) (106 km) (106 km)
–π/4 113.42 15.25 28.76
–0.35 47.62 4.48 25.66
–0.35 94.12 12.15 25.52
–0.45 4.77 7.51 25.00
–0.45 34.71 1.57 26.42
–0.45 101.06 14.00 26.26

In the following we give some details about the behavior of the transitions between these
three different situations.

1. When αf varies between −0.52 and −0.50, the number of connections goes from
1 to 3, since in this interval the curve A′

u(αf ) goes through a tangency with the
A′

u = 0 line for αf ≈ −0.51. Fig. 3.9 shows the behavior of A′
u as a function of the
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Figure 3.7: Behaviour of Au with time for α = −0.15 (zero crossings with Au = 0),
αf = −π/4 (one Au = 0 crossing), αf = −0.35 (two Au = 0 crossings), αf = −0.45 (three
Au = 0 crossings).

reorientation maneuver time for two α values: −0.50 and −0.51. For α = −0.50
there are three connections, and for α = −0.51 just one.

2. When αf varies between −0.42 and −0.40, the number of connections goes from
3 to 2, since in this interval the curve Au(αf ) goes through a tangency with the
Au = 0 line for αf ≈ −0.41. The two top rows of Fig. 3.10 correspond to α = −0.40
(with two connections), and α = −0.41 (with three connections).

3. When αf varies, approximately, between −0.23 and −0.20, the number of con-
nections goes from 2 to 0, since in this interval the curve A′

u(αf ) goes through a
tangency with the A′

u = 0 line for αf ≈ −0.20. The bottom row of Fig. 3.10 shows
the unique connection for αf = −0.23.

Table 3.5 gives the values of the reorientation maneuver time and amplitudes of the
Lissajous final orbits in physical units, and Fig. 3.9 shows the departing and final Lissajous
orbits together with the transfer path that follows the unstable manifold of the departing
orbit, until the reorientation maneuver time, and the stable manifold of the final one.

47



Chapter 3. Impulse maneuver design of a solar sail for enhanced heteroclinic
transfer research

Figure 3.8: 3D representation and XY -coordinate projection for the three different cases
with existing connections of Fig 3.7. In both representations, the departure Lissajous is
blue and the final orbit black, green and magenta. The red star is the staring point from
the departure orbit, and the black, green and pink ones the points where the reorientation
maneuvers are done. The corresponding values of α, from top to bottom, are −π/4, −0.35
and −0.45, respectively. The codding of the abbreviations used in this figure and the
following ones is: DL = Departing Lissajous, FL = Final Lissajous, SP = Starting Point,
RP = Maneuver Reorientation Point, and UM = Unstable Manifold.
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Table 3.5: Maneuver time and Lissajous final amplitudes of the connections close to the
tangencies with A′

u = 0 for negative cone angle maneuvers.

Maneuver Final X–amplitude Final Z–amplitude
αf time (days) A′

x (106 km) A′
z (106 km)

–0.51 104.2 14.8 26.78
–0.50 15.06 5.1 25.58
–0.50 23.08 2.8 26.18
–0.50 103.7 14.7 26.63
–0.41 0.39 8.15 24.94
–0.41 40.20 2.82 26.15
–0.41 98.66 13.35 25.96
–0.40 41.46 3.13 26.07
–0.40 98.00 13.17 25.88
–0.23 68.06 7.48 24.95
–0.23 75.12 8.42 24.94

3.3.1.2 Evolution of the planar and vertical amplitudes of the final Lissajous
orbits for cone angle reorientation

We have seen how to perform a transfer from a given Lissajous orbit changing the cone
angle parameter of the sail and keeping fixed the remaining sail parameters. Next we show
how the X and Z amplitudes, A′

x and A′
z respectively, of the reached Lissajous orbit, as

well as the epoch of the maneuver, depend on ∆α. The results obtained are given in
Fig. 3.11. As it has already been said, for α ∈ (−0.22, −0.01) there is a gap associated
to the fact that for these values of α the unstable amplitude A′

u does not intersect the
A′

u = 0 line. In the top plots we show the amplitudes, A′
x,A′

z of the final Lissajous orbit
as a function of the cone angle maneuver ∆α. The bottom plot shows the value of the
epoch of the maneuver after the departure also as a function of the cone angle maneuver
∆α. When ∆α = αf ∈ (−0.22, −0.01), there are no connections since for these values
A′

u ̸= 0.

3.3.1.3 Evolution of the reorientation maneuver time when αi ̸= 0

In the previous computations we have set equal to zero the value of the cone angle before
the maneuver (αi = 0); when this angle changes the maneuver time also does. Next we
show how this time changes when αi varies within its range, (−π/2, π/2), keeping fixed
the values of the remaining parameters: δ = π/2, As = 0, Au = −10−4, Ax = 1/24,
Az = 1/6, and ϕ1 = ϕ2 = 0.

Figs. 3.12 and 3.13 show the results obtained when αi ∈ (0, π/2). Note that in the plots of
both figures αf ∈ (0, π) instead of αf ∈ (−π/2, π/2), so the results for αf ∈ (π/2, π) are,
in fact, the ones for αf ∈ (−π/2, 0). This is because the maneuver time for αf = −π/2
coincides with the one for αf = π/2.
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Figure 3.9: Departing (blue) and final Lissajous orbits (black, green, and magenta), to-
gether with the connecting path in the unstable manifold of the departing orbit (before
the reorientation maneuver), and in the stable manifold of the final one (after the maneu-
ver). The results correspond to αf = −0.50 (top) and αf = −0.51 (bottom). The color
and label codes are the same as in Fig 3.8.

As in the case αi = 0, we have also that, depending on the value of ∆α = αf − αi, there
are 0, 1 2 or 3 possible transfer times, giving A′

u = 0 after the the maneuver. For all
possible values of αi we get values of the solar-sail time maneuver very close to zero, which
means that we can perform a transfer without using the unstable orbit of the departing
Lissajous orbit. When αi > 1.087 it appears a gap in the possible values of the transfer
time around ttrans = 0.7. The size of the gap increases, and for αi ∈ (1.186, 1.189) there
are no possible transfers. Transfer possibilities appear again for αi = 1.189. From this
value on, the corresponding maximum maneuver time increases until the αi equals to π/2.
Note that the range of the possible maneuver values ∆α = αf − αi also varies with αi.

Finally, Fig. 3.14 shows the maneuver times and the final X and Z amplitudes, when both
the initial and final cone angles αi and αf vary in (−π/2, π/2). The right bottom plot of
this figure is the projection on the αi − αf plane of the three above plots. Note that this
projection has three unconnected regions: the smaller region on the right is related to
the gap already mentioned for αi > 1.087, the other two regions correspond to αf < αi

(lower region), and αf > αi (upper region).
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Figure 3.10: Same as Fig. 3.9 but for αf ∈ (−0.41, −0.40) (first two rows) and αf = −0.23
(bottom row).

3.3.2 Heteroclinic enhanced connections varying α, ϕ1 and ϕ2

In the previous section we studied connections associated to changes of the cone angle for
initial phases ϕ1 = ϕ2 = 0, which means that only one orbit of the unstable manifold of
the departing Lissajous orbit is considered. Next we allow variations in both phases in
order to explore the full unstable manifold of the Lissajous orbit, enlarging this way the
transfer possibilities.
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Figure 3.11: Final cone angle with X,Z Amplitudes and maneuver time.

Figure 3.12: Reorientation maneuver time as a function of αf , for different initial cone
angles αi ∈ (0, π/2). The applied reorientation maneuver is ∆α = αf − αi.

As in the preceding section, for all the explorations that follow we fix the initial and final
values of the clock angle δ = π/2, as well as the size of the departing orbit, given by the
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Figure 3.13: Reorientation maneuver time as a function of αf , for different initial cone
angles αi ∈ (−π/2, 0).

Figure 3.14: Reorientation maneuver times, and final X and Z amplitudes as a function
of the initial and final cone angles αi and αf . The right bottom plot is the projection on
the αi − αf plane of the above three plots.
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amplitudes Ax = 1/24 and Az = 1/6 in normalized units.

With the above mentioned parameters, together with αi = 0, αf = π/4, keeping fixed
ϕ2 = 0, and varying ϕ1 ∈ (−π/2, 3π/2), for each value of ϕ1 there is only one possible
connection. Fig. 3.15 shows the values of the maneuver time as well as the X and Z
amplitudes of the final Lissajous orbit reached with the solar-sail maneuver.

Figure 3.15: Maneuver times and final X and Z amplitudes, when ϕ1 ∈ (−π/2, 3π/2)
and ϕ2 = 0.

If instead of keeping fixed ϕ2 = 0 we fix ϕ1 = 0 and vary ϕ2 ∈ (−π/2, 3π/2), for each value
of ϕ2 there is only one possible connection when, as before, αi = 0 and αf = π/4. Fig 3.16
shows the maneuver times as well as the X and Z amplitudes of the final Lissajous orbit
reached with the solar-sail maneuver. Clearly in this case, the variation of ϕ2 does not
affect the maneuver time and the final X−amplitude; only the Z−amplitude of the final
Lissajous orbits varies.

Figure 3.16: Maneuver times and final X and Z amplitudes, when ϕ1 = 0 and ϕ2 ∈
(−π/2, 3π/2).

When the condition αf = π/4 is removed, allowing αf to vary in (−π/2, π/2), Figs. 3.17
and 3.18 show the values of the maneuver time, as well as the X and Z amplitudes of
the final Lissajous orbit, for ϕ1 ∈ (−π/2, 3π/2), ϕ2 = 0 and ϕ1 = 0, ϕ2 ∈ (−π/2, 3π/2),
respectively. Each transfer corresponds to different values of (αf , ϕ1) in the first figure,
and of (αf , ϕ2) in the second one. Fig. 3.18 shows that the variations of ϕ2 only modify
the final Z amplitude, not affecting the maneuver time and the final X amplitude.
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Figure 3.17: Reorientation maneuver times (left) and final X (middle) and Z (right)
amplitudes , when ϕ1 ∈ (−π/2, 3π/2), ϕ2 = 0 and αf ∈ (−π/2, π/2).

Figure 3.18: Reorientation maneuver times (left) and final X (middle) and Z (right)
amplitudes , when ϕ1 = 0, ϕ2 ∈ (−π/2, 3π/2), and αf ∈ (−π/2, π/2).

3.4 Heteroclinic enhanced connections varying δ

3.4.1 Heteroclinic enhanced connections when varying δ for a
fixed ϕ1 and ϕ2

In this section we study connections between Lissajous orbits by means of changing the
clock angle δ for different fixed values of αi. As in the preceding section, we keep fixed
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the value of the lightness number β = 0.02, and the size of the departing orbit, given by
the amplitudes Ax = 1/24, and Az = 1/6 in adimensional units.

Again, during the adimensional time interval [0, 15] we explore the leg of the unstable
manifold of the departing orbit taking Au = −10−4, As = 0, and starting phases at
t = 0: ϕ1 = ϕ2 = 0. Along the states of this orbit we consider a potential change of
the initial clock angle δi = π/2 into a fixed final value δf ∈ (0, π), so the maneuver
is given by ∆δ = δf − δi ∈ (−π, π). Then we compute the unstable component of the
resulting state, associated to the new sail parameters, looking for the connection condition
A′

u = 0. The resulting unstable amplitude curves A′
u(t) depend on the value of αi, and

for αi = −0.45, −0.78, +0.78 are given in Fig. 3.19.

Figure 3.19: Behavior of A′
u vs maneuver time for αf = −0.45, −0.78 and 0.78, and

δf ∈ (0, π).

Each curve in Fig. 3.19 corresponds to a different value of δf ∈ (0, π). It follows that
if αi = −0.45, there are three different behaviors, according to the number of crossings
of the A′

u = 0 axis of the lines associated to different δf values. This number can be
one if δf ∈ (2.33, π), two when δf ∈ (1.94, 2.19), or three when δf ∈ (0.92, 1.93) and
δf ∈ (2.20, 2.34). For the other two values of αi, there are no transfer possibilities, since
there are no crossings with the A′

u = 0 line. Fig. 3.20 shows the three amplitude curves
A′

u(t) for δf = 0 (only one A′
u = 0 crossing), δf = 1.6 (three A′

u = 0 crossings), and
δf = 2 (two A′

u = 0 crossings), and Fig. 3.21 shows the initial, transfer and final orbits
obtained for each case.

Figure 3.20: Behavior of the unstable amplitude curves A′
u(t) for αi = −0.45, δi = π/2,

and different ∆δ = δf − δi maneuvers.

Next we explore four different cases, according to the value of αi, that, as we have seen
can produce one, two, or three different connections. Fig. 3.22 shows the results obtained
for αi = π/4, −0.35, −0.45, and −π/4 = −0.7854 (with ∆α = αf − αi = 0). For all the
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computations δi = π/2 is fixed, and δf varies in (0, π).

Figure 3.21: The left, central, and right columns correspond to δf = 0 (one A′
u = 0

crossing), δf = 2 (two A′
u = 0 crossings), and δf = 1.6 (three A′

u = 0 crossings),
respectively.

From the plots in the top and bottom rows of Fig. 3.22, corresponding to αi = π/4 and
αi = −π/4, we can conclude that changing the δf value does not affect the number of
crossing with the A′

u = 0 axis. The two middle rows, corresponding to αi = −0.35, and
αi = −0.45, correspond to parameter values for which there are one, two or three transfer
possibilities when δf ∈ (0, π). Next we give some detailed results about these transitions
when αi = −0.45, which are summarized in Table 3.6. This table shows the the values
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of the maneuver time and amplitudes of the Lissajous final orbits before and after the
tangency.

Figure 3.22: Behavior of the maneuver time, the A′
x, A′

z amplitudes as a function of δ
maneuvers. The results correspond to αf = π/4, −0.35, −0.45 and −π/4.

1. When δf varies between 0.91 and 0.92, the number of transfers goes from 1 to 3,
since in this interval the curve A′

u(δf ) goes through a tangency with the A′
u = 0

line for δf ≈ 0.905. The trajectory is shown in the first row of Fig. 3.23.

2. When δf varies between 1.94 and 1.95, the number of transfers goes from 3 to 2,
since in this interval the curve A′

u(δf ) goes through a tangency with the A′
u = 0

line for δf ≈ 1.94. The trajectory is shown in the second row of Fig. 3.23.

3. When δf varies between 2.19 and 2.20, the number of transfers goes from 2 to 3,
since in this interval the curve A′

u(δf ) goes through a tangency with the A′
u = 0

line for δf ≈ 2.20. The trajectory is shown in the third row of Fig. 3.23.
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4. When δf varies between 2.31 and 2.32, the number of transfers goes from 3 to 1,
since in this interval the curve A′

u(αf ) goes through a tangency with the A′
u = 0

line for δf ≈ 2.32. The trajectory is shown in the fourth row of Fig. 3.23.

Figure 3.23: Transfers between the same departing Lissajou orbit (blue) to different final
ones (black, green, and magenta), associated to different values of δf . The color and label
codes are the same as in Fig 3.8.

Fig. 3.23 shows the departing (blue) and final Lissajous (green, magenta, and black) or-
bits, together with the transfer path that follows the unstable manifold of the departing
orbit, until the maneuver time, and the stable manifold of the final one. The first row
corresponds to the transition δf ∈ (0.91, 0.92), the second row corresponds to the transi-
tion δf ∈ (1.94, 1.95), the third row corresponds to the transition δf ∈ (2.19, 2.20), and
fourth row corresponds to the transition δf ∈ (2.31, 2.32).

If we allow αf to vary in (−π/2, π/2) and δf ∈ (0, π) while keeping δi = π/2 and ϕ1 =
ϕ2 = 0, Fig. 3.24 shows the values of the maneuver time and the X and Z amplitudes,
when αf ∈ (−π/2, π/2), δf ∈ (0, π), and ϕ1 = ϕ2 = 0 in the top line. The bottom
line shows the projection of the three surfaces on a coordinate plane: αf -maneuver time,
αf − X amplitude, and αf − Z amplitude.

In the preceding computations we have always set the value of the clock angle before the
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Table 3.6: Maneuver time and Lissajous final amplitudes of the transfers close to the
tangencies with Au = 0 for clock angle maneuvers.

Tangency Maneuver Final X–amplitude Final Z–amplitude
transition δf time (days) Ax (106 km) Az (106 km)

0.91 101.7 5.42 36.37
1 → 3 0.92 30.2 3.22 24.85

0.92 32.5 3.43 23.92
0.92 101.7 5.54 36.41
1.94 0.0009 9.05 7.67
1.94 26.3 5.22 16.37

3 → 2 1.94 100.1 14.68 8.29
1.95 26.0 5.27 16.16
1.95 100.0 14.65 8.32
2.19 68.1 7.48 24.95
2.19 75.1 8.42 24.94

2 → 3 2.20 0.003 8.21 5.83
2.20 16.4 6.12 11.20
2.20 99.2 14.17 9.92
2.31 3.59 7.41 6.69

3 → 1 2.31 8.4 6.81 8.20
2.31 98.8 14.02 10.62
2.32 98.8 14.00 10.68

Figure 3.24: The values of the maneuver time and the X and Z amplitudes, when αf ∈
(−π/2, π/2), δf ∈ (0, π), and ϕ1 = ϕ2 = 0.

maneuver, δi, equal to π/2. When this angle changes the maneuver time also does.

Fig. 3.25 shows the values of the maneuver time and the X and Z amplitudes, when
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both the initial δi and final δf vary in ∈ (0, π), keeping fixed the values of the remaining
parameters: αi = 0, αf = −0.45, Au = −10−4, Ax = 1/24, Az = 1/6, and ϕ1 = ϕ2 = 0.
The bottom line the figure shows the projection of the three surfaces on a coordinate
plane: δf -maneuver time, δf -X amplitude, and δf -Z amplitude. Comparing the bottom
line in Fig. 3.25 and Fig. 3.22, we can conclude that δi does not affect the maneuver time
and the final X and Z amplitudes.

Figure 3.25: Maneuver times and final X and Z amplitudes, when αf = -0.45, δi ∈ (0, π)
and δf ∈ (0, π).

3.4.2 Heteroclinic enhanced connections when varying δ, ϕ1 and
ϕ2

In the previous section we studied transfers associated to changes of the clock angle δf

for fixed phases ϕ1 = ϕ2 = 0. Now we allow variations in both phases, which means that
we consider different orbits of the unstable manifold of the departing Lissajous orbits.

As in the preceding section, for all the explorations that follow, we fix the initial and final
values of the cone angle αi = 0, αf = π/4, as well as the size of the departing orbit, given
by the amplitudes Ax = 1/24 and Az = 1/6.

For the Fig. 3.26, In the first and third lines, values of the maneuver time and the X and
Z amplitudes, when ϕ1 ∈ (−π/2, 3π/2), ϕ2 = 0 (first line), and ϕ1 = 0, ϕ2 ∈ (−π/2, 3π/2)
(third line). In both cases δf ∈ (0, π). The second and forth lines show the projection
of the surfaces on the coordinate planes: δf -maneuver time, δf -X amplitude, and δf -Z
amplitude, respectively.
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Figure 3.26: Values of the maneuver time and the final X and Z amplitudes, as function
of ϕ1, ϕ2 and δf .

3.5 Heteroclinic enhanced connections when varying
β

In this section, we consider the influence of variations of the β parameter when it varies
in (0.01, 0.1). The initial and final cone and clock angles are: αi = 0, αf = π/4, δi = δf =
π/2. As in the preceding sections, the amplitudes of the Lissajous orbit are: Ax = 1/24
and Az = 1/6.

Fig. 3.27 shows the values of the maneuver time and the X and Z amplitudes, when βi = 0
and βf ∈ (0.01, 0.1). The top row correspond to use as transfer orbit the one of the unsta-
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ble manifold departing from ϕ1 = ϕ2 = 0, and the bottom row when ϕ1 ∈ (−π/2, 3π/2),
ϕ2 ∈ (−π/2, 3π/2). Fig. 3.28 displays 3D representation and XY coordinate projection of
two transfers performed changing the cone angle from αi = 0 to αf = π/4, for two differ-
ent values of the β parameter. Both departing Lissajous orbits have the same amplitudes
Au = −10−4, As = 0, Ax = 1/24, Az = 1/4, βi = 0.02, but for βf = 0.01, 0.02, 0.03.

Figure 3.27: Maneuver times and final X and Z amplitudes, when βi = 0, βf ∈ (0.01, 0.1)
and ϕ1, ϕ2 ∈ (−π/2, 3π/2).

(a) βf = 0.01 (b) βf = 0.02 (c) βf = 0.03

Figure 3.28: The heteroclinic enhanced connection transfer orbits when βi = 0.02, βf =
0.01, 0.02, 0.03
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3.6 Chapter summary

This chapter investigates heteroclinic enhanced connections between libration point orbits
using solar sailing impulse maneuver. They can be seen as transfer trajectories continuous
in both position and velocity in a instantaneous changing vectorfield, with many poten-
tial applications including libration point exclusion avoidance. The dynamical model
considered is the CR3BP including the solar radiation pressure, and the key point for the
analysis is the representation of the solutions of the linearized system about the artificial
equilibrium points, that change position according to the sail attitude and its reflective
properties.

The invariant manifolds of libration point orbits are used for the design of transfer trajec-
tories between Lissajous orbits in the Sun-Earth system, and the transfer maneuvers are
performed by changing the angular parameters; the so called cone and clock angles, that
determine the orientation of the sail with respect to the Sun, as well as phases, reflectivity
parameter and initial amplitudes.

The connections considered correspond to:

1. Select one orbit of the unstable manifold of the departing Lissajous orbit, and
explore the different transfer possibilities associated to transfer maneuvers done by
means of cone and clock angle variations and, for a fixed cone (or clock) angle
variation, to different epochs at which the solar-sail maneuver is performed.

2. Consider all the orbits of the unstable manifold of the departing Lissajous orbit,
and to explore the different connection possibilities associated to the cone and clock
angles solar-sail maneuvers departing from a fixed cone angle value.

3. Apart from the above parameters, the paper considers the reflectivity parameter β
and initial X and Z amplitudes (Axi, Azi) that impact the solar-sail maneuvers and
final Lissajous orbits amplitude.

In all cases the results obtained include a description of the size of the final Lissajous
orbit together with the epoch at which the solar-sail maneuver has to be performed (i.e.
the transfer time).
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enhanced heteroclinic
transfers

In this chapter, three types of enhanced heteroclinic transfers between Lissajous orbits
using the proposed impulse maneuver strategy are extensively studied. Due to the sym-
metry of the solutions with respect to the z = 0 plane, the same final Lissajous orbit
can be reached when departing from two different points of the initial orbit. This is
achieved by changing only the value of the phase from ϕ2 to ϕ2 + π. Taking into account
the constraints on the ranges of the solar sail parameters, a strategy for determining the
multi-impulse maneuvers by a spacecraft is proposed. To make a double-impulse maneu-
ver, the parameters of the solar sail are gradually changed. The transition from the initial
orbit to the terminal one is accomplished using a transitional Lissajous orbit. Finally,
back-and-forth transfers between two artificial libration point regions of a Lissajous orbit
are realized using the proposed method.

4.1 Arriving at the same terminal Lissajous orbit

Using the impulse maneuver method described in Chapter 3, wich consists in an instan-
taneous change of the attitude of the sail, this section studies how two spacecraft starting
from different positions in an initial Lissajous orbit can transfer to the same terminal
orbit. Eqs. (3.11) and (3.16) indicate that the state vector, orbital amplitude, and pa-
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rameter amplitude of a Lissajous orbit can be transformed into each other, as shown in
Fig. 4.1.

Figure 4.1: Relation between state vector, orbital amplitude, and parameter amplitude.

We assume that the two spacecraft transfer from the same initial Lissajous orbit to the
same final orbit given by Au = 0, As = 0, with Ax, Az and the solar sail parameters α,
δ, β being fixed. From Fig. 4.1, we can see that only the initial phase angles ϕ1 and ϕ2
can change. Chapter 3 showed that ϕ1 can affect the maneuver amplitudes Axf and Azf ,
whereas ϕ2 only periodically affects Azf . So, if δi,f = π/2, then two solar sail spacecraft
can start from different positions and both will arrive at the same terminal Lissajous orbit
if the difference in the values of ϕ2 is π.

4.1.1 Arriving at the same final Lissajous orbit for different α

Fig. 4.2 shows the two connections obtained when departing from a Lissajous orbit with
Ax = 1/24, Az = 1/6, ϕ1 = 0, and ϕ2 = 0 or π. For both connections, we keep δ = π/2.
The spacecraft maneuver from α = 0 to π/4 after, approximately, 1.9 non-dimensional
time units. The departing Lissajous orbit is in blue, and the two final Lissajous orbits,
which are, in fact, the same orbit, are in black and pink. The yellow line represents the
orbit departing from the Lissajous orbit at the initial phases ϕ1 = ϕ2 = 0, and the pink
line the one corresponding to ϕ1 = 0 and ϕ2 = π. The asterisks indicate the reorientation
maneuver points along the two departure orbits. The parameter values are listed in
Table 4.1.
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(a) 3D (b) XY plane (c) XZ plane

Figure 4.2: Transfers from the Lissajous orbit (blue) toward the same final orbit (black
and pink). The initial phases at the departure orbit are ϕ1 = ϕ2 = 0 (yellow) and ϕ1 = 0
and ϕ2 = π (pink). The asterisks denote the maneuver points.

Table 4.1 shows that, when two spacecraft have the same final artificial libration point
(γ1f , γ2f , γ3f ), the same final amplitude (As, Ax, Az), the same reorientation maneuver
opportunity, and even the same terminal phase angle ϕ1f , the terminal phase angles ϕ2f

are different but the difference is π. Here, (Xc, Yc, Zc) is the impulse maneuver position.
The values of Xc and Yc are the same. Although the values of Zc are not the same,
they have the same absolute value. In summary, two solar sail spacecraft starting from
different positions, ϕ2 = 0 or π, but experiencing the impulse maneuver at the same time
with the same terminal solar sail parameters will finally reach the same terminal Lissajous
orbit.

Table 4.1: Parameters for the enhanced heteroclinic transfer orbits for ϕ2 = 0 or π when
αi = 0 and αf = π/4.

ϕ2 = 0 ϕ2 = π
Parameter Value Parameter Value

γ1f −1.0091 γ1f −1.0091
γ2f 0.00188 γ2f 0.00188
γ3f 0 γ3f 0
As 0.035602 As 0.035602
AX 0.00622 AX 0.00622
AZ 0.19210 AZ 0.19210

Time 1.95791 Time 1.95791
ϕ1f 1.61016 ϕ1f 1.61016
ϕ2f −1.39367 ϕ2f 1.74792
Xc −1.00879 Xc −1.00879
Yc 0.001817 Yc 0.001817
Zc 0.000338 Zc −0.000338

When there are two transfer opportunities along an unstable manifold, the two solar sail
spacecraft will also arrive at the same final Lissajous orbit after starting from different
positions (ϕ2 = 0 or π), as shown in Fig. 4.3, where the solar sail parameters are chosen
to be αi = 0, αf = −0.35, and βi,f = 0.02.
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Fig. 4.3(a) shows both enhanced heteroclinic orbits, and Table 4.2 lists the values of
the parameters. Fig. 4.3(b) shows the enhanced heteroclinic transfer orbits for the first
impulse maneuver. After the two spacecraft have moved along the two unstable mani-
folds for about 47.6 days, they perform an impulse maneuver. They then enter the same
terminal Lissajous orbit (blue and yellow cylinders). Fig. 4.3(c) shows the enhanced hete-
roclinic transfer orbits at the time of the second impulse maneuver. After spending about
94.1 days performing the impulse maneuver, they finally reach the same terminal orbit
(purple and black cylinders). Similarly, when there are three transfer opportunities along
the unstable manifold, the enhanced heteroclinic transfers to the same final Lissajous
orbit are shown in Fig. 4.4. Table 4.3 lists the parameters. The solar sail parameters are
αi = 0, αf = −0.45, and βi,f = 0.02.

(a) Enhanced heteroclinic transfer orbits with two impulse maneuvers.

(b) Enhanced heteroclinic transfer orbits for the first impulse maneuver.

(c) Enhanced heteroclinic transfer orbits for the second impulse maneuver.

Figure 4.3: Enhanced heteroclinic transfer orbits toward the same final Lissajous orbit
when αi = 0 and αf = −0.35.
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Table 4.2: Parameters for the enhanced heteroclinic transfer orbits when αi = 0 and
αf = −0.35, for the first and second maneuver.

ϕ2 = 0 ϕ2 = π
Parameter First Second Parameter First Second

γ1f −1.00843 −1.00843 γ1f −1.00843 −1.00843
γ2f −0.00122 −0.00122 γ2f −0.00122 −0.00122
γ3f 0 0 γ3f 0 0
As 0.01622 0.03440 As 0.01622 0.03440
AX 0.02997 0.08123 AX 0.02997 0.08123
AZ 0.17149 0.170616 AZ 0.17149 0.170616

Time 0.81925 1.61920 Time 0.81925 1.61920
ϕ1f −2.434306 −2.434306 ϕ1f −2.434306 −2.434306
ϕ2f −2.199525 −2.199525 ϕ2f 0.942068 0.942068
Xc1 −1.008507 −1.008707 Xc1 −1.008507 −1.008707
Yc1 −0.001402 0.001484 Yc1 −0.001402 0.001484
Zc1 −0.000779 −0.001003 Zc1 0.000779 0.001003

Table 4.3: Parameters for enhanced heteroclinic transfer orbits for ϕ2 = 0 or π when
αi = 0 and αf = −0.45, for the three maneuvers.

ϕ2 = 0 ϕ2 = π
Param. First Second Third Param. First Second Third

γ1f −1.00843 −1.00843 −1.00843 γ1f −1.00843 −1.00843 −1.00843
γ2f −0.00122 −0.00122 −0.00122 γ2f −0.00122 −0.00122 −0.00122
γ3f 0 0 0 γ3f 0 0 0
As 0.04142 0.02739 0.05157 As 0.04142 0.02739 0.05157
AX 0.05020 0.01046 0.09361 AX 0.05020 0.01046 0.09361
AZ 0.16710 0.17660 0.17553 AZ 0.16710 0.17660 0.17553

Time 0.08207 0.59717 1.73857 Time 0.08207 0.59717 1.73857
ϕ1f −2.36023 −2.36023 −2.36023 ϕ1f −2.36023 −2.36023 −2.36023
ϕ2f −1.89893 −1.89893 −1.89893 ϕ2f 1.24266 1.24266 1.24266
Xc1 −1.00787 −1.00827 −1.00869 Xc1 −1.00787 −1.00827 −1.00869
Yc1 0.00034 −0.00163 0.00172 Yc1 0.00034 −0.00163 0.00172
Zc1 0.00163 0.00012 −0.00057 Zc1 -0.00163 -0.00012 0.00057
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(a) Enhanced heteroclinic transfer orbits with three impulse maneuvers.

(b) Enhanced heteroclinic transfer orbits for the first impulse maneuver.

(c) Enhanced heteroclinic transfer orbits for the second impulse maneuver.

(d) Enhanced heteroclinic transfer orbits for the third impulse maneuver.

Figure 4.4: Enhanced heteroclinic transfer orbits toward the same final Lissajous orbit
for αi = 0 and αf = −0.45.

4.1.2 Arriving at the same final Lissajous orbit for different β
and αf

When using both αf and βf , Fig. 4.5 shows the two enhanced heteroclinic transfer orbits
when departing from the same Lissajous orbit (ϕ2 = 0 or π). In this particular example,
the solar sail parameters are αi = 0, αf = π/4, βi = 0.02, and βf = 0.03. The time taken
for the reorientation impulse maneuver is about 110 days. The parameters are listed in
Table 4.4.
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(a) 3D (b) XY plane (c) XZ plane

Figure 4.5: Enhanced heteroclinic transfer orbits toward the same final Lissajous orbit
when αi = 0, αf = π/4, βi = 0.02, and βf = 0.03.

Table 4.4: Parameters for enhanced heteroclinic transfer orbits for ϕ2 = 0 or π when
αi = 0, αf = π/4, βi = 0.02, and βf = 0.03.

ϕ2 = 0 ϕ2 = π
Parameter Value Parameter Value

γ1f −1.00863 γ1f −1.00863
γ2f 0.00252 γ2f 0.00252
γ3f 0 γ3f 0
As 0.00659 As 0.00659
AX 0.02563 AX 0.02563
AZ 0.18453 AZ 0.18453

Time 1.88822 Time 1.88822
ϕ1f 2.28307 ϕ1f 2.28307
ϕ2f −1.54414 ϕ2f 1.59745
Xc −1.00873 Xc −1.00873
Yc 0.00183 Yc 0.00183
Zc 0.000005 Zc −0.000005

(a) 3D (b) XY plane (c) XZ plane

Figure 4.6: Enhanced heteroclinic transfer orbits with ϕ2 = 0 or π, when αi = 0, αf =
π/4, βi = 0.02, and βf = 0.01
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Enhanced heteroclinic transfer orbits to the same final Lissajous orbit are shown in Fig. 4.6
when βf < βi. The parameters are listed in Table 4.5. After performing an impulse
maneuver for about 117 days, αf = π/4 and βf = 0.01. The two spacecraft then finally
reach the same terminal Lissajous orbit.

Table 4.5: Parameters for enhanced heteroclinic transfer orbits for ϕ2 = 0 or π when
αi = 0, αf = π/4, βi = 0.02, and βf = 0.01

ϕ2 = 0 ϕ2 = π
Parameter Value Parameter Value

γ1f −1.00964 γ1f −1.00964
γ2f 0.00105 γ2f 0.00105
γ3f 0 γ3f 0
As 0.07250 As 0.07250
AX 0.01341 AX 0.01341
AZ 0.19806 AZ 0.19806

Time 2.01564 Time 2.01564
ϕ1f −1.24175 ϕ1f −1.24175
ϕ2f −1.27850 ϕ2f 1.86310
Zc 0.00057 Zc −0.00057

4.2 Multi-impulse enhanced heteroclinic transfers

The enhanced heteroclinic transfers described above use a single-impulse maneuver to
inject the spacecraft in the stable manifold of the target orbit. Since a solar sail panel
cannot move through a large angle in a short time, the terminal Lissajous orbital am-
plitudes were chosen small in those examples. In this section, the spacecraft performs
two impulse maneuvers using a middle transitional cone angle αm, clock angle δm, and
lightness number βm.

Figure 4.7: Enhanced heteroclinic transfer orbits for initial αi = 0, δi = π/2 and final
αf = π/3, δf = π/2.

Suppose the solar sail spacecraft escapes from the Lissajous orbit near the artificial libra-
tion point SL2 (αi = 0, δi = π/2, and βi = 0.02) after a single-impulse maneuver and it
reaches the Lissajous orbit near the artificial libration point SL′

2 (αf = π/3, δf = π/2,
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and βf = 0.02). The transfer orbit is shown in Fig. 4.7, and the parameters are listed
in Table 4.6. However, Axf is small, which is not conducive for a long-term mission.
Therefore, it is necessary to apply two or more impulse maneuvers. In this section we will
analyze the effects of using a transitional cone angle αm, clock angle δm, and lightness
number βm.

Table 4.6: Parameters for the enhanced heteroclinic transfer orbits for initial αi = 0,
δi = π/2 and final αf = π/3, δf = π/2.

Parameter Value
γ1f −1.00971
γ2f 0.00133
γ3f 0
Axf 0.00536
Azf 0.19887

4.2.1 Middle transitional cone angle αm

Assume that the solar sail spacecraft escapes from the initial artificial libration point
SL2 of a Lissajous orbit (αi = 0, δi = π/2, and βi = 0.02). Fig. 4.8(a) shows the 3D
representation of the transfer orbits with two impulse maneuvers. The spacecraft starts
from the initial Lissajous orbit (blue cylinder) and enters the transitional Lissajous orbit
(black cylinder) after the first impulse maneuver (αm = π/4, δm = π/2, and βm = 0.02).
It performs the first impulse maneuver by changing the solar sail to the middle transitional
cone angle αm = π/4. Finally, it performs the second impulse maneuver to reach the
target Lissajous orbit (purple cylinder) near the artificial libration point SL′

2 (αf = π/3,
δf = π/2, and βf = 0.02). Figs. 4.8(b) and 4.8(c) are the projections onto the XY and
XZ planes, respectively. The orbital parameters are listed in Table 4.7.

(a) 3D (b) XY plane (c) XZ plane

Figure 4.8: Enhanced heteroclinic transfer orbits using as middle transitional cone angle
αm = π/4.

Comparing Tables 4.6 and 4.7 we note that for the same initial and terminal solar sail
parameters, using a transitional cone angle αm we have a greater impact on the terminal
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Table 4.7: Parameters for the enhanced heteroclinic transfer orbits using as middle tran-
sitional cone angle αm = π/4.

αm = π/4, δm = π/2, βm = 0.02 αf = π/3, δf = π/2, βf = 0.02
Parameter Value Parameter Value

γ1m −1.00915 γ1f −1.00971
γ2m 0.00188 γ2f 0.00133
γ3m 0 γ3f 0
Axm 0.00622 Axf 0.02856
Azm 0.19210 Azf 0.20160

Axf . For a single-impulse maneuver, the terminal Lissajous orbital amplitude Axf =
0.00536, whereas with the transitional cone angle αm, Axf = 0.02856, which is more
suitable for a mission. Moreover, it solves the problem that a solar sail panel cannot
rotate through a large angle in a short time.

This approach can overcome the problem when the terminal Lissajous orbital amplitude
is small. However, with the transitional cone angle αm = π/4, the transitional Lissajous
orbital amplitude is also small Axm = 0.0062. Thus, we set the transitional cone angle
αm = π/6. The transitional orbits are shown in Fig. 4.9, and the parameters are listed in
Table 4.8. Comparing with Fig. 4.8, this demonstrates that using a different transitional
cone angle αm we can change the transitional and terminal Lissajous orbital amplitudes.
In conclusion, the transitional cone angle αm can be adjusted according to the actual
needs of the mission.

(a) 3D (b) XY plane (c) XZ plane

Figure 4.9: Enhanced heteroclinic transfer orbits using as middle transitional cone angle
αm = π/6.

4.2.2 Middle transitional clock angle δm

We illustrate the procedure taking the solar sail spacecraft starting from the initial arti-
ficial libration point SL2 of a Lissajous orbit (αi = 0, δi = π/2, and βi = 0.02). Then it
performs the first impulse maneuver by changing the solar sail to the middle transitional
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Table 4.8: Parameters for the enhanced heteroclinic transfer orbits using as middle tran-
sitional cone angle αm = π/6.

αm = π/6, δm = π/2, βm = 0.02 αf = π/3, δf = π/2, βf = 0.02
Parameter Value Parameter Value

γ1m −1.00864 γ1f −1.00971
γ2m 0.00167 γ2f 0.00133
γ3m 0 γ3f 0
Axm 0.01720 Axf 0.04461
Azm 0.17890 Azf 0.20261

Transfer days 102.46 Transfer days 121.97

angles αm = π/3 and δm = π/4 and entering a transitional Lissajous orbit. Finally, the
spacecraft makes another impulse maneuver to reach the target Lissajous orbit about
the artificial libration point SL′

2 (αf = π/3, δf = π/2, and βf = 0.02). The enhanced
heteroclinic transfer orbits are shown in Fig. 4.10. The black cylinder is the transitional
Lissajous orbit after the first impulse maneuver (αm = π/3, δm = π/4, and βm = 0.02).
The orbital parameters are listed in Table 4.9.

(a) 3D (b) XY plane (c) XZ plane

Figure 4.10: Enhanced heteroclinic transfer orbits using as middle transitional clock angle
δm = π/4.

Figs. 4.7, 4.8, and 4.10 show that applying a double-impulse maneuver with different
values of the middle transitional clock angle δm could solve the problem when the middle
transitional orbital amplitude Axm and final target Lissajous orbital amplitude Axf are
small.

Since there are many possibilities for the middle transitional sail-attitude angle, it is
necessary to study the effect of different αm and δm on the transitional orbit and the
target Lissajous orbit. As an exmaple, when the transitional solar sail parameters are
αm = π/6 and δm = π/4, the double-impulse enhanced heteroclinic transfer orbits are
shown in Fig. 4.11 and the parameters are listed in Table 4.10. As we can see, when
comparing with Table 4.9, the choice of the transitional attitude angle affects the target
Lissajous orbital amplitudes Axf and Azf .
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Table 4.9: Parameters for the enhanced heteroclinic transfer orbits using as middle tran-
sitional clock angle δm = π/4.

αm = π/3, δm = π/4, βm = 0.02 αf = π/3, δf = π/2, βf = 0.02
Parameter Value Parameter Value

γ1m −1.00973 γ1f −1.00971
γ2m 0.00094 γ2f 0.00133
γ3m 0.00072 γ3f 0
Axm 0.04207 Axf 0.02829
Azm 0.12221 Azf 0.18280

Transfer days 117.20 Transfer days 53.61

(a) 3D (b) XY plane (c) XZ plane

Figure 4.11: Enhanced heteroclinic transfer orbits when αm = π/6 and δm = π/4.

Table 4.10: Parameters of the enhanced heteroclinic transfer orbits when αm = π/6 and
δm = π/4.

αm = π/6, δm = π/4, βm = 0.02 αf = π/3, δf = π/2, βf = 0.02
Parameter Value Parameter Value

γ1m −1.00867 γ1f −1.00971
γ2m 0.00118 γ2f 0.00133
γ3m 0.00096 γ3f 0
Axm 0.05801 Axf 0.029137
Azm 0.11751 Azf 0.30196

Transfer days 100.46 Transfer days 125.76

4.2.3 Middle transitional lightness number βm

Sections 4.2.1 and 4.2.2 displayed the influence of transitional cone angle αm and transi-
tional clock angle δm. This section will illustrate some facts on the influence of the middle
transitional lightness number βm on the target Lissajous orbital amplitudes Axf and Azf .

We assume the solar sail spacecraft starts from the initial artificial libration point SL2
of a Lissajous orbit (αi = 0, δi = π/2, and βi = 0.02), and we consider the transitional
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solar sail parameters αm = π/3, δm = π/2, and βm = 0.03 for the first impulse maneuver.
So the spacecraft enters in a transitional Lissajous orbit, and then it performs another
impulse maneuver to reach the terminal Lissajous orbit about the artificial libration point
SL′

2 (αf = π/3, δf = π/2, and βf = 0.02). The outcome is shown in Fig. 4.12. The
black cylinder is the transitional orbit after the first impulse maneuver and the orbital
parameters are listed in Table 4.11.

(a) 3D (b) XY plane (c) XZ plane

Figure 4.12: Enhanced heteroclinic transfer orbit under βm = 0.03.

Table 4.11: Parameters for enhanced heteroclinic transfer orbits when βm = 0.03.

αm = π/3, δm = π/2, βm = 0.03 αf = π/3, δf = π/2, βf = 0.02
Parameter Value Parameter Value

γ1m −1.00948 γ1f −1.00971
γ2m 0.00192 γ2f 0.00133
γ3m 0 γ3f 0
Axm 0.01360 Axf 0.01744
Azm 0.19670 Azf 0.19692

Transfer days 117.98 Transfer days 80.38

Comparing Tables 4.6 and 4.11 we see that Axf becomes larger. So, again the possibility
to increase the amplitude with this technique still exist, however we also considered the
transitional lightness number βm = 0.015 and there was no enhanced heteroclinic transfer
orbit.

When the transitional solar sail parameters αm = π/6 and βm = 0.03, the double-impulse
enhanced heteroclinic transfer orbits are shown in Fig. 4.13. The parameters are listed in
Table 4.12. As it can be seen, the terminal Lissajous orbital amplitude Axf is larger.

These different examples demonstrate that the selection of the transitional solar sail
parameters is very important, especially when considering a transitional lightness number
βm, which has a great influence on the terminal Lissajous orbital amplitudes Axf and Azf .
In the former example, when βm = 0.015, there is no transfer orbit, but when βm = 0.03,
the combined action of βm and αm produced an interesting increase in the final Axf with
respect to the one obtained by the direct transfer procedure.
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In summary, if the spacecraft can make two or more impulse maneuvers, it is worth to
study the impact of middle transitional parameters αm and δm.

(a) 3D (b) XY plane (c) XZ plane

Figure 4.13: Enhanced heteroclinic transfer orbits when βm = 0.03 and αm = π/6.

Table 4.12: Parameters of the enhanced heteroclinic transfer orbits for βm = 0.03 and
αm = π/6.

αm = π/6, δm = π/2, βm = 0.03 αf = π/3, δf = π/2, βf = 0.02
Parameter Value Parameter Value

γ1m −1.00800 γ1f −1.00971
γ2m 0.00208 γ2f 0.00133
γ3m 0 γ3f 0
Axm 0.06841 Axf 0.11052
Azm 0.16664 Azf 0.19608

Transfer days 80.87 Transfer days 120.86

4.3 Back-and-forth transfers

Using impulse maneuvers by means of instantaneous changes in the attitude of the sail, we
showed that a spacecraft can realize a enhanced heteroclinic transfer from an initial SL2
Lissajous orbit to another one about SL′

2. In an actual mission, the enhanced heteroclinic
transfer to another Lissajous orbit may only be a temporary docking maneuver (such as
for avoiding a forbidden zone), while the optimal mission requirement still is in the initial
SL2 Lissajous orbit. Related with this fact, in this section we consider back-and-forth
transfers between two artificial libration point regions. We also consider the potential
reversibility of the maneuvers we discussed in Section 4.2.

4.3.1 Back-and-forth transfers using α

For a Sun-pointing spacecraft, we consider the cone angle α switching from 0 to π/4 and
then switching back to 0. In the case example shown in Fig. 4.14, we perform three loops
by switching α between these values. The other parameters are δi,f = π/2 and βi,f = 0.02.
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For the first impulse maneuver, α is changed from 0 to π/4, and the spacecraft reaches
the SL′

2 Lissajous orbit. For the second impulse maneuver, αf is changed back from π/4
to 0, and it returns to the initial SL2 Lissajous orbit. The parameters considered are
listed in Table 4.13.

Fig. 4.14(a) shows the back-and-forth transfers due to all three impulse maneuvers.
Figs. 4.14(b) to 4.14(d) show the corresponding enhanced heteroclinic transfer orbits
for the first, second, and third impulse maneuvers, respectively. In Fig. 4.14(b), the solar
sail spacecraft starts from the initial Lissajous orbit (blue cylinder) near SL2. The cone
angle is αi = 0. Then the spacecraft escapes along the unstable manifold (black curve)
and reaches the black asterisk, where the cone angle is changed to αf = π/4. It then
arrives at the target Lissajous orbit near SL′

2 (black cylinder) along the stable manifold.
In Fig. 4.14(c), the spacecraft escapes along the purple curve. For the second impulse
maneuver, the cone angle becomes αf = 0, and the spacecraft returns to the Lissajous
orbit near SL2 (purple cylinder). In Fig. 4.14(d), the spacecraft escapes along the yellow
curve. For the third impulse maneuver, the cone angle is αf = π/4. The spacecraft
reaches the SL′

2 Lissajous orbit (yellow cylinder). Table 4.13 shows that the enhanced
heteroclinic transfers for the three impulse maneuvers are all around the two artificial
libration points. The amplitudes of the Lissajous orbits also change during the process.

Table 4.13: Parameters for back-and-forth transfers when α = 0 or π/4.

Parameter αi = 0 αf = π/4 αf = 0 αf = π/4
γ1 −1.00828 −1.00915 −1.00828 −1.00915
γ2 0 0.00188 0 0.00188
γ3 0 0 0 0
Ax 0.04167 0.00622 0.04639 0.00431
Az 0.16667 0.19210 0.17128 0.19758

Fig. 4.15 shows the back-and-forth transfer orbits for different phase angles. The or-
bital parameters are given in Table 4.14. A comparison of Figs. 4.14 and 4.15 indicates
that when the spacecraft starts from different initial phase angles, the amplitudes of the
terminal Lissajous orbit are also different.

Table 4.14: Parameters for back-and-forth transfers for α = 0 or π/4 with different initial
phase angles.

Parameter αi = 0 αf = π/4 αf = 0 αf = π/4
γ1 −1.00828 −1.00915 −1.00828 −1.00915
γ2 0 0.00188 0 0.00188
γ3 0 0 0 0
Ax 0.04167 0.00622 0.03776 0.02264
Az 0.16667 0.19210 0.17212 0.19350
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(a) Enhanced heteroclinic transfer with all three impulse maneuvers.

(b) First impulse maneuver: α from 0 to π/4.

(c) Second impulse maneuver: α from π/4 to 0.

(d) Third impulse maneuver: α from 0 to π/4.

Figure 4.14: Back-and-forth transfers for α = 0 or π/4.

4.3.2 Back-and-forth transfers using α and δ

In Section 4.3.1 we considered some examples of back-and-forth transfers based on varying
the cone angle α between 0 and π/4. In this section, we will see the influence of different
clock angles δ. If α = 0, it would be futile changing δ, so this section assumes that α
changes from π/6 to π/3 and that δ changes from π/2 to π/4. Also, ϕ1 = ϕ2 = 0. Back-
and-forth transfer orbits are shown in Fig. 4.16. The parameters are listed in Table 4.15.
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The results show that the enhanced heteroclinic back-and-forth transfers are all around
the two artificial libration points. Again, the Lissajous orbital amplitudes also change in
the process.

Table 4.15: Parameters for back-and-forth transfers for α from π/6 to π/3 and for δ from
π/4 to π/2.

Parameter αi = π/6 αf = π/3 αf = π/6 αf = π/3
δi = π/2 δf = π/4 δf = π/2 δf = π/4

γ1 −1.00864 −1.00973 −1.00864 −1.00973
γ2 0.00167 0.00094 0.00167 0.00094
γ3 0 0.00072 0 0.00072
Ax 0.04167 0.08825 0.05259 0.10147
Az 0.16667 0.06904 0.19940 0.08648

4.3.3 Back-and-forth transfers using α and β

In this section we show that back-and-forth transfers are also possible by changing β. In
the example we assume that α changes between π/6 and π/3, β between 0.02 and 0.03,
while ϕ1 = ϕ2 = 0. The back-and-forth transfer orbits are shown in Fig. 4.17, and the
parameters are listed in Table 4.16. Similarly, we changed the lightness number β between
0.02 and 0.01. The back-and-forth transfer orbits are shown in Fig. 4.18. In this example,
we see that the amplitudes Axf and Azf become larger after each transfer. Procedures
like this could be used to increase or decrease the sice of an artificial libration orbit.

Table 4.16: Parameters for back-and-forth transfers for α from π/6 to π/3 and for β from
0.02 to 0.03.

Parameter αi = π/6 αf = π/3 αf = π/6 αf = π/3
βi = 0.02 βf = 0.03 βf = 0.02 βf = 0.03

γ1 −1.00864 −1.00948 −1.00864 −1.00948
γ2 0.00167 0.00192 0.00167 0.00192
γ3 0 0 0 0
Ax 0.04167 0.05480 0.06204 0.07526
Az 0.16667 0.18624 0.18589 0.20767
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(a) Enhanced heteroclinic transfer with all three impulse maneuvers

(b) First impulse maneuver: α from π/6 to π/3 and β from 0.02 to 0.03.

(c) Second impulse maneuver: α from π/3 to π/6 and β from 0.03 to 0.02.

(d) Third impulse maneuver: α from π/6 to π/3 and β from 0.02 to 0.03.

Figure 4.17: Back-and-forth transfers for α from π/6 to π/3 and for β from 0.02 to 0.03.

Figure 4.18: Back-and-forth transfers for α from π/6 to π/3 and for β from 0.02 to 0.01
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(a) Enhanced heteroclinic transfer with all three impulse maneuvers.

(b) First impulse maneuver with ϕ1 = ϕ2 = 0.

(c) Second impulse maneuver with ϕ1 = ϕ2 = π/4.

(d) Third impulse maneuver with ϕ1 = ϕ2 = π/12.

Figure 4.15: Back-and-forth transfers for α = 0 or π/4 with different initial phase angles.
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(a) Enhanced heteroclinic transfers with all three impulse maneuvers.

(b) First impulse maneuver: α from π/6 to π/3 and δ from π/2 to π/4.

(c) Second impulse maneuver: α from π/3 to π/6 and δ from π/4 to π/2.

(d) Third impulse maneuver: α from π/6 to π/3 and δ from π/2 to π/4.

Figure 4.16: Back-and-forth transfers for α from π/6 to π/3 and for δ from π/4 to π/2.
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4.4 Chapter summary

This chapter describes an extensive research on three applications of the proposed impulse
maneuver method: (1) a transfer to the same terminal Lissajous orbit, (2) multi-impulse
maneuvers to achieve an enhanced heteroclinic transfer, and (3) back-and-forth transfers.
The specific work and conclusions are the following:

1. Spacecraft in different positions on the initial Lissajous orbit can transfer to the same
terminal Lissajous orbit. However, the spacecraft may miss the transfer window.
We found that when the initial and final clock angles are δi,f = π/2, and when
the difference in the initial phase angles ϕ2 is π, then the solar sail spacecraft can
transfer to the same terminal Lissajous orbit through an impulse maneuver. This
has been verified by the simulations done together with Fig. 3.17.

2. A solar sail panel cannot perform large angular variations in a short time interval.
Thus, we propose a multi-impulse maneuver method to achieve Lissajous orbital
enhanced heteroclinic transfers. As a result, the terminal Lissajous orbital ampli-
tude is larger. We investigated the effects of different values of αm, δm, and βm on
the middle transitional and terminal Lissajous orbital amplitudes. Considering that
βm has a great influence on the amplitude, and that is difficult to modify β in an
actual mission, it is more reasonable to use αm and δm as the middle transitional
parameters.

3. In some solar sail missions, the spacecraft may need to return to its original Lissajous
orbit near an initial artificial libration point. Thus, we analyzed back-and-forth
transfers between two different artificial libration points. We first assessed back-and-
forth transfers by changing the cone angle α and compared transfers for different
phase angles. Second, we studied changing the clock angle δ and the lightness
number β to achieve back-and-forth transfers. During the transfer process, the
Lissajous orbital amplitudes will change. We found that Axf and Azf became
larger after each transfer.
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Chapter 55
Avoiding the forbidden zone

In the Solar System, the solar wind, solar eclipses, and the Earth shadow all have a great
impact on the safety and work of a spacecraft. For example, in January 2017, India’s
Mars orbiter made a special orbit adjustment to avoid a solar eclipse. Sun-Earth L1
libration point missions, like the SOHO spacecraft, have to avoid an exclusion zone of
six degrees about the apparent solar disc in order to communicate with the Earth, and
space telescopes orbiting near Sun-Earth L2 must avoid the Earth shadow for the solar
panels.

In the restricted three-body problem framework, there is a cylindrical region near the
Sun–Earth axis where the Sun’s electromagnetic radiation is particularly strong. If a
Sun-Earth L1 satellite passes through this cylinder, the communication link between the
satellite and the Earth will be disrupted or interrupted. On the other hand, inside the
cylinder at the libration point L2, the Earth is in front of the Sun, so that a spacecraft will
be temporarily unable to generate solar energy. These two regions around the libration
points are collectively referred as the forbidden or exclusion zone in the Y Z plane, as
they should not be spanned by a spacecraft.

Traditionally, big halo orbits, which do not cross the exclusion zone, have been used as
nominal paths to avoid this problem [156]. The main disadvantage of this kind of periodic
motion is that the in-plane and out-of-plane amplitudes of a halo orbit have to satisfy a
fixed relation. Such orbits may not always be optimal for a mission, as they increase the
complexity and the cost of some of the hardware parts for a satellite. In contrast, Lissajous
LPOs are quasi-periodic motions that provide a high degree of freedom when choosing
their amplitudes. However, Lissajous orbits cross the exclusion zone if no maneuvers are
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applied. This is the motivation for the work presented in this chapter.

Combining impulsive maneuvers by a solar sail, together with the effective phases plane
(EPP) method, this chapter presents a strategy for eclipse avoidance based on solar sail
maneuvers that do not introduce unstable terms into the dynamics about a Lissajous
orbit. Moreover, we study the influence of the sail attitude and the lightness number on
the area of the forbidden zone inside the EPP.

5.1 Effective phase plane

From Eqs. 3.16 it follows that if a satellite is on a Lissajous orbit, then the trajectory
satisifes

x(t) = Axeη1t cos(ω1t + ϕ1) + Azeη2tk56 cos(ω2t + ϕ56),
y(t) = Axeη1tk34 cos(ω1t + ϕ34) + Azeη2tk56 cos(ω2t + ϕ56), (5.1)
z(t) = Axeη1tk34 cos(ω1t + ϕ34) + Azeη2t cos(ω2t + ϕ2),

for selected values of the in-plane and out of plane amplitudes Ax and Az, and phases
ϕ1 and ϕ2. We recall that the phases ϕ34, ϕ34, ϕ56 and ϕ56 are a function of ϕ1 and ϕ2,
according to Eqs. 3.17. Moreover, the values of η1 and η2, as shown in Table. 3.1, are
close to zero, and for the time intervals considered we can assume eη1t ≈ 1 and eη2t ≈ 11.

Taking the time derivative of Eqs. (5.1) we get the state of the spacecraft at time t, and for
a given state (x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)) on a Lissajous orbit we can assign amplitudes
Ax, Az and phases ϕ1 and ϕ2. In the other way round, given these amplitudes, phases,
and time t we can compute the state of the spacecraft at this epoch t. Moreover, at any
value of t = t0 along the trajectory we can reset time to zero, from this value on the
expression of the trajectory is again given by Eqs. (5.1), where the amplitudes Ax and
Az remain the same (in fact change into Axeη1t0 and Azeη2t0), and the phases ϕ1 and ϕ2
experience a “jump” of ω1t0 and ω2t0 units, respectively (i.e. ϕi → ϕi + ωit0).

We define the effective phase Φ (resp. Ψ) as all the epochs t and all the phases ϕ1 (resp.
ϕ2) such that

Φ(t, ϕ1) = ω1t + ϕ1 (mod, 2π), Ψ(t, ϕ2) = ω2t + ϕ2 (mod, 2π). (5.2)

Even though from this definition the effective phases are a function of time and the initial
phase, it is more convenient to identify them by numbers Φ and Ψ in [0, 2π].

Considering again Eqs. 5.1, and taking also into account the velocities, we note that
there is a biunivocal correspondence between a pair of effective phases (Φ, Ψ) and a

1This means that, for the discussion thta follows, we can consider in-plane and out-of-plane constant
amplitudes but, even for very long time intervals, the slight variation in Axeη1t and Azeη2t can be easily
taken into account, and implemented in practice, just considering a slightly bigger exclusion zone than
the one required by the nominal one.
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state (x, y, z, ẋ, ẏ, ż) on a Lissajous orbit of given amplitudes Ax and Az. In fact, from a
dynamical systems point of view, this is a consequence that Lissajous orbits are 2D tori.
Therefore, we are just using the well known action-angle variables of the torus [157, 158].
The time evolution of the effective phase angles Φ(t) and Ψ(t) are shown in Fig. 5.1 when
the solar sail parameters are αi = 0, δi = π/2, and βi = 0.02. The solid line is the
effective phase angle Φ over time, and the dotted line is Ψ over time.

Figure 5.1: Time evolution of Φ(t) and Ψ(t) when αi = 0, δi = π/2, βi = 0.02, and
ϕ1,2 = 0. The slopes are ω1 = 2.5719 and ω2 = 2.5113. Note that ω2/ω1 ≃ 1.

Similarly, Figs. 5.2 to 5.4 show the time evolution of (Φ(t), Ψ(t)) with different initial
values of ϕ1, ϕ2, αi, or βi. Except where indicated, the values of the other solar sail
parameters are αi = 0, δi = π/2, βi = 0.02, and ϕ1 = ϕ2 = 0.

(a) (b) (c) (d)

Figure 5.2: Time evolution of Φ(t) and Ψ(t) with different values of ϕ1 and ϕ2: (a)
ϕ1 = π/2, ϕ2 = π/2; (b) ϕ1 = π/2, ϕ2 = 0; (c) ϕ1 = −π/2, ϕ2 = −π/2; (d) ϕ1 = −π/2,
ϕ2 = 0. In all the cases ω1 = 2.5719 and ω2 = 2.5113.

(a) (b) (c) (d)

Figure 5.3: Time evolution of Φ(t) and Ψ(t) with different values of αi: (a) αi = π/4,
ω1 = 2.2112, ω2 = 2.1673; (b) αi = −π/4, ω1 = 2.2112, ω2 = 2.1673; (c) αi = π/3,
ω1 = 2.1068, ω2 = 2.0475; (d) αi = −π/3, ω1 = 2.1068, ω2 = 2.0475 .
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(a) (b)

Figure 5.4: Time evolution of Φ(t) and Ψ(t) with different values of βi: (a) βi = 0.03,
ω1 = 2.2884, ω2 = 2.2681; (b) βi = 0.01, ω1 = 2.1362, ω2 = 2.0734.

In the EPP, (Φ(t), Ψ(t)) ∈ [0, 2π] × [0, 2π], an orbit departs from the point (ϕ1, ϕ2) at
t = 0, and travels with constant velocity components ω1 and ω2. Using this representation,
the 2D tori defined by Lissajous orbits become straight lines with slope ω2/ω1 ≃ 1, as
we can check in Figs. 5.1–5.4. Note that each point (Φ, Ψ) of the EPP corresponds to a
position on a Lissajous orbit. Although the size of the orbit, given by the constant values
Ax and Az, is not represented, the EPP is a direct way to represent the states of the
spacecraft on a Lissajous orbit. Fig. 5.5 shows the correspondence between the EPP and
the Lissajous.

(a) Initial Lissajous (b) EPP of Initial Lissajous

Figure 5.5: Correspondence between the EPP and the Lissajous states. Different colors
in the Lissajous orbit correspond to different colors in the EPP.

Fig. 5.6 is an example of a transfer between two Lissajous orbits. Fig. 5.6(a) shows the
departure orbit (blue) and arrival orbit (black) in the configuration space. Fig. 5.6(b) is
the EPP representation of the departure orbit, and Fig. 5.6(c) the arrival orbit. The red
cross in the departure orbit indicates the starting position, whereas the red cross in the
arrival orbit indicates the maneuver insertion in the stable manifold of the arrival orbit.
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More applications will be shown in the following sections.

(a) Configuration space (b) EPP of departure orbit (c) EPP of arrival orbit

Figure 5.6: Transfer between two Lissajous orbits in the configuration space and in the
EPP.

Table 5.1: Parameters corresponding to the transfer trajectory shown in Fig. 5.6.

Value Value
Parameter before maneuver Parameter after maneuver

αi 0 αf π/4
δi π/2 δf π/2
βi 0.02 βf 0.02
ϕ1i 0 ϕ1f 1.6102
ϕ2i 0 ϕ2f 4.8895
ω1i 2.5719 ω1f 2.2112
ω2i 2.5113 ω2f 2.1673

ω2i/ω1i 0.9764 ω2f /ω1f 0.9801

5.2 Enhanced heteroclinic transfers to avoid the for-
bidden zone

For orbits around L1 in the Sun–Earth system, there is a region around the solar disk,
as seen from the Earth, that has to be avoided to ensure that any data sent from a
spacecraft are not hidden by the electromagnetic radiation from the Sun. This exclusion
zone extends for approximately 3◦ about the solar disk as seen from the Earth. Similarly,
for orbits around the L2 point of the same system, a spacecraft must avoid the regions
eclipsed by the Earth, as well as some bright regions of the sky. The exclusion zone can
be considered as a disk in the YZ plane centered at (0,0) (actually a cylinder about the
x-axis). So, in the configuration space, is defined by

y2 + z2 < R2, (5.3)

with R = 90 000 km (see [69] and references therein).
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Considering, for instance, Ax = Az (square Lissajous) that as, it was already mentioned,
implies Axeη1t ≈ Ax and Azeη2t ≈ Az, and using Eqs. (5.3), we get

[k34 cos(Φ − ϕ1 + ϕ34) + k56 cos(Ψ − ϕ2 + ϕ56)]2 +
+[k34 cos(Φ − ϕ1 + ϕ34) + cos(Ψ)]2 < R2/A2

x, (5.4)

which is a suitable formula to represent the exclusion zones in the EPP in terms of the
size R/Ax.

In general, exclusion zones, similar to ellipses, appear in the EPP. For instance, if we set
Ax = Az=1/8, then the initial Lissajous and the exclusion zones are shown in the Fig 5.7.

(a) 3D (b) EPP with a forbidden zone

Figure 5.7: Correspondence between the exclusion zones in the Lissajous orbit and in the
EPP.

In Fig. 5.7(a) we represent a 3D Lissajous orbit with the forbidden zone. The red areas
denote the places when the orbit is in the forbidden zone. A spacecraft following this
Lissajous orbit will certainly cross though the forbidden zones over time, which may
hinder the mission.

An initial trajectory on the Lissajous represented in the EPP is shown in Fig. 5.7(b). The
blue lines represent the effective phase angle of the spacecraft along the Lissajous orbit
and the areas in red are the forbidden areas. Over time, the blue line, with slope slightly
less than one, descends at each passage, and it will eventually touch a red area. In the
same Fig. 5.7 we also mark different pairs (Φ, Ψ) inside the exclusion zone Eqs. (5.4) and
their associated points in the Lissajous orbit.

Taking Ax = 1/24, and Az = 1/6, the corresponding Lissajous and the exclusion zones
are shown in the Fig.5.8, in which the same comments as for Fig. 5.7 apply to the subplots
(a) and (b). In Fig. 5.8(c) we show a time contour map. It indicates the time it would
take for the spacecraft to hit the exclusion zone if initially is inserted in the corresponding
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point of the EPP. The points in yellow require more time than the ones in blue to reach
the exclusion zone. For example, if the spacecraft starts at the red point (Φ = Ψ = 0),
it will reach the exclusion zone after 843.6 days, and if it starts at the blue and green
points, it will cross the red zone after 654.8 days and 523.9 days, respectively.

(a) 3D (b) EPP with a forbidden zone (c) Time contour map for crossing
the forbidden zone

Figure 5.8: Correspondence between the exclusion zones in the Lissajous and in the EPP
and time contour map.

5.2.1 Avoiding the forbidden zone using αf

In this section, we will show the results of the study done to avoid the forbissen zone
combining the impulse maneuver strategy with the EPP method. We will project the 3D
forbidden zone, as well as the enhanced heteroclinic transfer orbit, onto a 2D EPP.

For the solar sail parameters αi = 0, αf = −π/3, and βi,f = 0.02, the enhanced hetero-
clinic transfer orbit and corresponding EPP are shown in Fig. 5.9. Fig. 5.9(a) indicates
that the spacecraft escapes from the initial Lissajous orbit (blue cylinder) and reaches
the target Lissajous orbit (black cylinder) through impulse maneuvers. The red areas
are the forbidden zones, and Figs. 5.9(c) to 5.9(e) are the projections of the enhanced
heteroclinic transfer orbits onto the XY , XZ, and Y Z planes, respectively. Fig. 5.9(b) is
the projection of Fig. 5.9(a) onto the EPP, and it shows the enhanced heteroclinic trans-
fer orbit, Lissajous orbits, and the forbidden zone. The blue straight line corresponds to
the initial Lissajous orbit and unstable manifold. The straight black lines are the stable
manifold and the terminal Lissajous orbit. The blue ellipses are in the forbidden zone of
the initial Lissajous orbit. The black ellipses are in the forbidden zone of the terminal
Lissajous orbit. The dotted line represents the change in the effective phase angle before
and after the impulse maneuver.

Therefore, the whole enhanced heteroclinic transfer process in Fig. 5.9(a) is represented
in Fig. 5.9(b). The spacecraft starts from the red asterisk at the origin, moves along the
straight blue line, and performs an impulse maneuver by changing to αf = −π/3. The
effective phase angle jumps to the black straight line on the left and continues to move
along it. Note that the blue ellipse becomes a black ellipse after the impulse maneuver.
Since there is always a black ellipse, the straight black line will eventually touch the
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forbidden zone.

(a) 3D (b) EPP

(c) XY plane (d) XZ plane (e) Y Z plane

Figure 5.9: Enhanced heteroclinic transfer orbits and EPPs when αi = 0, αf = −π/3,
and βi,f = 0.02.

Fig. 5.10 shows the enhanced heteroclinic transfer orbit and EPP when the solar sail
parameters αi = 0, αf = π/3, and βi,f = 0.02. Note that, unlike Fig. 5.9(b), the black
ellipse in the EPP has disappeared in Fig. 5.10(b), which means that the spacecraft will
not enter the forbidden zone after the impulse maneuver. Fig. 5.10(a) shows the 3D
enhanced heteroclinic transfer orbits, and Figs. 5.10(c) to 5.10(e) are their projections
onto each plane. The red forbidden zone is in only the initial Lissajous orbit (blue
cylinder) and not in the terminal Lissajous orbit (black cylinder). In summary, when the
final cone angle αf = π/3, the solar sail spacecraft can avoid the forbidden zone through
an impulse maneuver. A comparison of Figs. 5.10(a) and 5.10(b) shows that it is more
intuitive and clear to identify the change to the forbidden zone on the EPP than with the
traditional representation.
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(a) 3D (b) EPP

(c) XY plane (d) XZ plane (e) Y Z plane

Figure 5.10: Enhanced heteroclinic transfer orbits and EPPs when αi = 0, αf = π/3,
and βi,f = 0.02.

Fig. 5.11 shows the enhanced heteroclinic transfer orbits and EPPs when αi = 0, βi,f =
0.02, and αf ∈ (0, π/2). When αf = π/12 or 5π/12, the spacecraft will enter the forbidden
zone after the impulse maneuver, and when αf = π/6 or 1.15, the spacecraft will not enter
it. Further simulations show that when αf ∈ (0.045, 1.15), the spacecraft will not enter
the forbidden zone after the impulse maneuver.

Fig. 5.12 is for the same parameter values as Fig. 5.9 but with an initial phase angle of ϕ1 =
3π/4. Fig. 5.12(a) shows the 3D orbit enhanced heteroclinic transfer, and Figs. 5.12(c)
to 5.12(e) are the projections onto each plane. After the impulse maneuver, there is no
red region on the terminal Lissajous orbit, so the spacecraft does not enter the forbidden
zone, as shown in Fig. 5.12(e). Fig. 5.12(b) shows the EPP corresponding to the enhanced
heteroclinic transfer orbit. The blue ellipses are in the forbidden zone of the initial
Lissajous orbit. The solar sail spacecraft starts from (3π/4, 0) (red asterisk) and moves
along the blue solid line with slope ω2/ω1. After the impulse maneuver, the effective
phase angle jumps to the black solid line along the dotted line. Again, unlike Fig. 5.9(b),
there are no black ellipses, which means that as the spacecraft moves along the black
solid line it will never enter the forbidden zone. The corresponding orbital parameters
are given in Table 5.2.
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(a) αf = π/12

(b) αf = π/6

(c) αf = 1.15

(d) αf = 5π/12

Figure 5.11: Enhanced heteroclinic transfer orbits and EPPs when αi = 0, βi,f = 0.02,
and αf ∈ (0, π/2).

Table 5.2: Parameters for enhanced heteroclinic transfer orbits when αi = 0, αf = −π/3,
and ϕ1 = 3π/4.

α δ β γ1 γ2 γ3 ϕ1 ϕ2
Initial 0 π/2 0.02 −1.0083 0 0 3π/4 0

Terminal −π/3 π/2 0.02 −1.0097 −0.0013 0 1.8484 −1.4023
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(a) 3D (b) EPP

(c) XY plane (d) XZ plane (e) Y Z plane

Figure 5.12: Enhanced heteroclinic transfer orbits and EPPs when αi = 0, αf = −π/3,
and ϕ1 = 3π/4.

(a) ϕ1 = 3π/4, ϕ2 = π/2 (b) ϕ1 = 3π/4, ϕ2 = π (c) ϕ1 = 3π/4, ϕ2 = 3π/2

(d) ϕ1 = π/2, ϕ2 = π/2 (e) ϕ1 = π/2, ϕ2 = π (f) ϕ1 = π/2, ϕ2 = 3π/2

Figure 5.13: EPPs with different initial phase angles when αi = 0, αf = −π/3, δi,f = π/2,
and βi,f = 0.02.

Fig. 5.13 shows the enhanced heteroclinic transfer orbit for different initial phase angles
ϕ1 and ϕ2 when αi = 0, αf = −π/3, δi,f = π/2, and βi,f = 0.02. Figs. 5.13(a) to 5.13(c)
are the EPPs corresponding to ϕ1 = 3π/4 and ϕ2 = π/2, π, or 3π/2, respectively. There
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is no forbidden zone after the impulse maneuver. Figs. 5.13(d) to 5.13(f) are the EPPs
corresponding to ϕ1 = π/2 and ϕ2 = π/2, π, or 3π/2, respectively. There is still a black
ellipse after the reorientation by the impulse maneuver. Further calculations show that
when the initial phase angle ϕ1 ∈ (1.689, 2.356), the solar sail spacecraft will not enter
a forbidden zone after an impulse maneuver. Fig. 5.10 shows the enhanced heteroclinic
transfer orbit and EPP when the initial phase angle ϕ1,2 = 0. Although the spacecraft
avoids the forbidden zone after the impulse maneuver, the terminal amplitude is too
narrow. Fig. 5.14 presents EPPs with the same solar sail parameters but for different
initial phase angles.

(a) ϕ1 = π/12, ϕ2 = 0 (b) ϕ1 = π/12, ϕ2 = π/2 (c) ϕ1 = π/12, ϕ2 = 3π/2

(d) ϕ1 = −π/2, ϕ2 = 0 (e) ϕ1 = −π/2, ϕ2 = π/2 (f) ϕ1 = −π/2, ϕ2 = 3π/2

(g) ϕ1 = −π/8, ϕ2 = 0 (h) ϕ1 = π/6, ϕ2 = 0 (i) ϕ1 = π/2, ϕ2 = 0

(j) ϕ1 = π, ϕ2 = 0 (k) ϕ1 = 5π/4, ϕ2 = 0 (l) ϕ1 = 3π/2, ϕ2 = 0

Figure 5.14: EPPs with different initial phase angles when αi = 0, αf = π/3, δi,f = π/2,
and βi,f = 0.02.
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When the initial phase angle ϕ1 ∈ (−0.39, 0.27), the solar sail spacecraft will not enter
the forbidden after the impulse maneuver. Figs. 5.14(d) to 5.14(f) suggest that the initial
phase angle ϕ2 has little impact on the forbidden zone in the EPP.

We next consider a enhanced heteroclinic transfer with two reorientation impulse ma-
neuvers. Here, αi = 0, αf = −0.35, δi,f = π/2, and βi,f = 0.02. The two enhanced
heteroclinic transfer orbits and EPPs are shown in Fig. 5.15. The solar sail spacecraft
starts from the initial Lissajous orbit (blue cylinder) and changes to the final cone angle
αf = −0.35 for the first impulse maneuver. The spacecraft then enters the black termi-
nal Lissajous orbit. After the second impulse maneuver, the spacecraft enters the green
Lissajous orbit. Figs. 5.15(d) and 5.15(e) are the EPPs for the two impulse maneuvers.
In Fig. 5.15(d), the blue and black ellipses are in the forbidden zones before and after the
first maneuver. Fig. 5.15(e) shows the EPP with the second impulse maneuver. The red
ellipses, which are after the second maneuver, are smaller than the initial blue ellipses.
However, in general, two maneuvers do not always allow the spacecraft to completely
avoid the forbidden zone, so that it will eventually touch it.

(a) 3D (b) XY plane (c) Y Z plane

(d) EPP 1st impulse maneuver (e) EPP 2nd impulse maneuver

Figure 5.15: Enhanced heteroclinic transfer orbits and EPP representations when αi = 0
and αf = −0.35.

Finally, we consider a enhanced heteroclinic transfer with three impulse maneuvers. Here,
αi = 0, αf = −0.45, δi,f = π/2, and βi,f = 0.02. The three enhanced heteroclinic transfer
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orbits and EPPs are shown in Fig. 5.16.

(a) 3D (b) XY plane (c) Y Z plane

(d) EPP 1st impulse maneuver (e) EPP 2nd impulse maneuver (f) EPP 3rd impulse maneuver

Figure 5.16: Enhanced heteroclinic transfer orbits and EPP representations when αi = 0
and αf = −0.45.

5.2.2 Avoiding the forbidden zone using δf

Section 5.2.1 mainly studied how to avoid the forbidden zone using the cone angle and
phase angle; this section will consider using αf and δf to avoid it.

(a) 3D (b) XY plane (c) EPP

Figure 5.17: Enhanced heteroclinic transfer orbits and EPPs when αi = 0 and αf = π/4.

Fig. 5.17 shows the enhanced heteroclinic transfer orbit and the EPP representation when
δi,f = π/2, αi = 0, and αf = π/4. After the impulse maneuver, the spacecraft will not
enter the forbidden zone, however, the amplitude Axf is too small, which is not suitable
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for many missions. Thus, we changed δf and observed the influence on the final Lissajous
orbital amplitude and the forbidden area. Fig. 5.18 shows the enhanced heteroclinic
transfer orbits and EPPs when δf = 1.45, 1.68, and 2. The colors in the figure are similar
to those used in previous ones. Note that the dotted line, which represents the jump, is no
longer parallel to the X-axis. This figure shows that changing δf not only can change the
terminal amplitude but also avoids the forbidden zone. The parameters of this example
are listed in Table 5.3. From further calculations when δf ∈ (1.45, 1.68), it has been found
that there is no forbidden zone after the impulse maneuver.

(a) δf = 1.45

(b) δf = 1.68

(c) δf = 2

Figure 5.18: Enhanced heteroclinic transfer orbits and EPPs when αi = 0, αf = π/4,
and δf = 1.45, 1.68, or 2.

Table 5.3: Parameters for enhanced heteroclinic transfer orbits and EPP when αi = 0,
αf = π/4, and δf = 1.45, 1.68, or 2.

αf δf βf γ1 γ2 γ3 ϕ1 ϕ2
π/4 2 0.02 −1.00915 0.00187 0 0 0
π/4 1.45 0.02 −1.00915 0.00186 0.00018 0 0
π/4 1.68 0.02 −1.00915 0.00187 0.00016 0 0
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For αf = −π/3 and δf = 0, π/6, . . . , π, the enhanced heteroclinic transfer orbits and
EPPs are shown in Fig. 5.19. As it can be seen, when αf = −π/3, regardless of the value
of δf , the terminal Lissajous orbit will enter the forbidden zone.

(a) 3D: αf = −π/3, δf = 0 (b) 3D: αf = −π/3, δf = π/6 (c) 3D: αf = −π/3, δf = π/3

(d) EPP: αf = −π/3, δf = 0 (e) EPP: αf = −π/3, δf = π/6 (f) EPP: αf = −π/3, δf = π/3

(g) 3D: αf = −π/3, δf = 2π/3 (h) 3D: αf = −π/3, δf = 5π/6 (i) 3D: αf = −π/3, δf = π

(j) EPP: αf = −π/3, δf = 2π/3 (k) EPP: αf = −π/3, δf =
5π/6

(l) EPP: αf = −π/3, δf = π

Figure 5.19: Enhanced heteroclinic transfer orbits and EPPs when αf = −π/3 and
δf = 0, π/6, 2π/6, . . . , π.
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5.2 - Enhanced heteroclinic transfers to avoid the forbidden zone

The above situations have only one transfer opportunity. However, there are two transfer
opportunities when αi = 0, αf = −0.45, and δf = 2. The enhanced heteroclinic transfer
orbits and EPPs are shown in Fig. 5.20. Note that the forbidden zone is relatively small,
and that the black forbidden zone is larger than the blue one for before the impulse
maneuver. Fig. 5.20(d) is the EPP with the first impulse maneuver. Fig. 5.20(e) is the
EPP corresponding to the second impulse maneuver. When αi = 0, αf = −0.45, and
δf = 1.6, there are three transfer opportunities. The enhanced heteroclinic transfer orbits
and EPPs are shown in Fig. 5.21.

(a) 3D (b) XY plane (c) Y Z plane

(d) EPP with the first im-
pulse maneuver

(e) EPP with the second im-
pulse maneuver

Figure 5.20: Enhanced heteroclinic transfer orbits and EPPs when αi = 0, αf = −0.45,
and δf = 2.

Compared with Fig. 5.16, when δf = 1.6, the forbidden zones after the impulse maneu-
vers depicted in Figs. 5.21(d)–5.21(f) are larger. The spacecraft successfully avoids the
forbidden zone after the second impulse maneuver. Moreover, the terminal amplitude is
larger, as shown in Fig. 5.21(f).

5.2.3 Avoiding the forbidden zone using β

5.2.3.1 Avoiding the forbidden zone using β only

The enhanced heteroclinic transfer orbits and EPPs with βf = 0.01 or 0.04 are shown
in Fig. 5.22 when the solar sail parameters αi,f = 0, δi,f = π/2, and βi = 0.02. Since
α = 0, the artificial libration point can move only along the Sun–Earth line. As a result,
the forbidden zone does not change, so changing β alone cannot avoid it.
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(a) 3D (b) XY plane (c) Y Z plane

(d) EPP with the first im-
pulse maneuver

(e) EPP with the second im-
pulse maneuver

(f) EPP with the third im-
pulse maneuver

Figure 5.21: Enhanced heteroclinic transfer orbits and EPPs when αi = 0, αf = −0.45,
and δf = 1.6.

(a) 3D: βi = 0.02, βf = 0.01 (b) XY plane: βi = 0.02, βf =
0.01

(c) EPP: βi = 0.02, βf = 0.01

(d) 3D: βi = 0.02, βf = 0.04 (e) XY plane: βi = 0.02, βf =
0.04

(f) EPP: βi = 0.02, βf = 0.04

Figure 5.22: Enhanced heteroclinic transfer orbits and EPPs when βi = 0.02 and βf =
0.01 or 0.04.
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5.2.3.2 Avoiding the forbidden zone using β and αf

The enhanced heteroclinic transfer orbits and EPPs are shown in Fig. 5.23 when the
solar sail parameters αi = 0, βi = 0.01, βf = 0.02, and αf = π/6, π/4, or π/3. When αf

is small, the terminal Lissajous orbit will pass through the forbidden zone, as shown in
Fig. 5.23(a), because the artificial libration point is closer to the forbidden zone. When
αf = π/4 or π/3, the terminal Lissajous orbits do not pass through the forbidden zone.
Further calculations show that when the solar sail parameters αf > 0.7, βi = 0.01, and
βf = 0.02, the enhanced heteroclinic transfer orbit and EPP can avoid the forbidden
zone.

(a) 3D: αf = π/6 (b) XY plane: αf = π/6 (c) EPP: αf = π/6

(d) 3D: αf = π/4 (e) XY plane: αf = π/4 (f) EPP: αf = π/4

(g) 3D: αf = π/3 (h) XY plane: αf = π/3 (i) EPP: αf = π/3

Figure 5.23: Enhanced heteroclinic transfer orbits and EPPs when αi = π/2, βi = 0.01,
βf = 0.02, and αf = π/6, π/4, or π/3.

The enhanced heteroclinic transfer orbits and EPPs for αf < 0 are shown in Fig. 5.24
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when the solar sail parameters αi = 0, βi = 0.01, and βf = 0.02. When αf = −π/4,
the forbidden zone cannot be avoided after the maneuver and becomes larger, as shown
in Fig. 5.24(c). Figs. 5.24(f) and 5.24(i) are the EPPs corresponding to αf = −π/3 and
−π/2, respectively. The forbidden zone becomes smaller after the maneuver but still
exists. In summary, when αf < 0, βi = 0.01, and βf = 0.02, the terminal Lissajous orbit
will always pass through the forbidden zone after an impulse maneuver.

(a) 3D: αf = −π/4 (b) XY plane: αf = −π/4 (c) EPP: αf = −π/4

(d) 3D: αf = −π/3 (e) XY plane: αf = −π/3 (f) EPP: αf = −π/3

(g) 3D: αf = −π/2 (h) XY plane: αf = −π/2 (i) EPP: αf = −π/2

Figure 5.24: Enhanced heteroclinic transfer orbits and EPPs for different αf when αi = 0,
βi = 0.01, and βf = 0.02.

5.2.3.3 Avoiding the forbidden zone using αf , δf , and β

The enhanced heteroclinic transfer orbits and EPPs corresponding to different terminal
clock angles δf are shown in Fig. 5.25 when the solar sail parameters αi = 0, αf = π/3,
δi = π/2, βi = 0.01, and βf = 0.02.
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(a) δf = π/3

(b) δf = 1.48

(c) δf = 1.75

(d) δf = 2π/3

Figure 5.25: Enhanced heteroclinic transfer orbits and EPPs for different δf when αi = 0,
αf = π/3, δi = π/2, βi = 0.01, and βf = 0.02.

Figs. 5.25(a) and 5.25(d) are the enhanced heteroclinic transfer orbits and EPPs when
δf = π/3 and 2π/3, respectively. They show that the spacecraft cannot avoid the for-
bidden zone with an impulse maneuver. In Figs. 5.25(b) and 5.25(c), the spacecraft
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avoids the forbidden zone after the maneuver. Compared with Fig. 5.23(g), the ampli-
tude of the terminal Lissajous orbit Axf is larger. Further calculations show that when
δf ∈ (1.48, 1.75), the spacecraft can avoid the forbidden zone after an impulse maneuver.
Thus, it is important to select the appropriate terminal solar sail parameters according
to the mission needs.

5.3 Chapter summary

This chapter uses the impulse maneuver method combined with the EPP method to
visually present enhanced heteroclinic transfer orbits that allow a spacecraft to avoid the
forbidden zone completely, or to avoid it for a long time interval. The specific work and
conclusions are the following:

1. The EPP method is introduced . To simplify and visualize the problem, we use the
EPP method to project the 3D forbidden zone and enhanced heteroclinic transfer
orbits onto the EPP. This approach gives an intuitive indication of whether the solar
sail spacecraft will enter the forbidden zone or not. We also analyze the influence of
different solar sail parameters on the effective phase angle. Finally, we plot a time
contour map to show that the spacecraft reaches the forbidden zone at different
positions in the Lissajous orbit.

2. The use of the cone angle has been introduced to avoid the forbidden zone. When
the final cone angle αf = π/3, the forbidden zone becomes smaller. Theoretically,
the spacecraft can operate for a longer time, but it will always enter the forbidden
zone. Changing the initial phase angle ϕ1, the forbidden zone can disappear in the
EPP, so that the spacecraft can avoid it. When there are two or three transfer
opportunities, the forbidden zone in the EPP will change after each maneuver, and
there may be no forbidden zone.

3. The use of the clock angle has been introduced to avoid the forbidden zone. Al-
though changing the cone angle alone can make the forbidden zone to disappear in
the EPP, the terminal Lissajous orbit may be too narrow and the amplitude too
small, which is not suitable for many missions. Changing both the cone angle and
the clock angle not only solves the small amplitude problem but also allows the
mission to avoid the forbidden zone.

4. The use of the lightness number has been introduced to avoid the forbidden zone.
When the cone angle αi,f = 0, regardless of the value of the lightness number, since
the artificial libration point is on the Sun–Earth line, the spacecraft cannot avoid
the forbidden zone. However, the forbidden zone will change in the EPP. Under the
combined action of cone angle, clock angle, and lightness number, the spacecraft can
avoid the forbidden zone after a maneuver. For example, when βi = 0.01, βf = 0.02,
and αf > 0.7, the forbidden zone in the EPP will disappear after the maneuver.
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Chapter 66
Propellant–free

station–keeping design of a
solar sail around the
Sun–Earth collinear

equilibrium points

The IKAROS [159], NanoSail-D2 [160] and LightSail–2 [161] missions have validated the
solar sail technology, showing that is possible to achieve interplanetary transfers and to
change the spacecraft’s orbit. However, still many other things need to be addressed, like
the feasibility of station–keeping around a LPO using the solar sail technology.

NASA has proposed the Geostorm warning [126, 162] mission, which aims to obtaining solar
storm data from a solar sail spacecraft positioned at an artificial equilibrium point SL1,
which is closer than the traditional Lagrangian point L1. This will enable to alert of
geo-magnetic storms at least 30 minutes earlier than the spacecraft placed in a halo orbit
around L1

[25].

In this chapter, we focus on the propellant–free station-keeping design of a solar sail
spacecraft around the unstable Sun–Earth collinear equilibrium point L2. In the libra-
tion zone, the solar sail maneuvers performed by means of changing the values of the sail
parameters, can be understood as ”jumps” in position instead of in velocity inside the
phase space. This chapter uses this fact to systematically analyze the impact of a maneu-
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ver (an instantaneous sail reorientation) on a spacecraft moving along a libration point
Lissajous orbit. The station–keeping strategy periodically performs maneuvers to prevent
the spacecraft to escape from a certain Lissajous orbit following its unstable manifold.
Random errors in the execution of the maneuvers are also considered.

6.1 The station–keeping strategy

Previous works, like the ones of McInnes [39], Lawrence [150], Bookless [136], Biggs [44],
Soldini [135] and Bianchi [163] have mainly focused on using feedback and optimal con-
trollers that change the attitude angles and the reflectivity coefficient. Based on dynam-
ical systems theory, only the work of Farrés [128, 129] studied the maintenance about an
artificial equilibrium point.

When compared to the continuous control techniques, the impulsive ones are more mature
and straightforward. Therefore, so far, all the LPOs missions adopted impulsive schemes
to achieve station–keeping. Moreover the insight provided by the dynamical systems
theory has been proved very useful to understand the geometry of the controllers [146]. In
this section, we propose a multiple impulse strategy to achieve the spacecraft’s station–
keeping. The main idea is to periodically perform a maneuver to prevent the spacecraft to
escape from the neighborhood of a certain Lissajous orbit along its unstable manifold. The
maneuver is computed in order to cancel the unstable component of the state, moreover
it is assumed that there is a random error in its execution.

We are going to assume that maneuvers that change the spacecraft cone angle α are
always executed with an error αerr normally distributed with 3σ equal to 0.5◦, and the
solar sail spacecraft actively performs impulse maneuver controls to change α every ∆t
adimensional time units (about 30 days if ∆t = 0.5). The basic loop of the procedure is
done according to the following scheme:

1. Initialize the sail parameters µ, αi, δ, β, the Lissajous orbit phases and amplitudes
ϕ1 = ϕ2 = 0, Ax, Az, the time step ∆t = 0.5, and the maximum simulation time
tmax. Set tf = 0.

2. Using the Lissajous orbit and sail parameters, compute the coordinates of the equi-
librium point (γ1, γ2, γ3), the components of the matrix H(tf ) and, using equation
(3.12), the departing state (x, y, z, ẋ, ẏ, ż).

3. Using equation (3.10), propagate the departing state up to tf = tf + ∆t.

4. At this point, compute the curve of unstable amplitudes Au(α) varying α ∈ [−π/2, π/2]
with step ∆α = π/32. It must be noted that, as α varies, the coordinates of the
equilibrium point (γ′

1, γ′
2, γ′

3) also change, as well as the matrix H(t). Since system
(3.3) is autonomous, for the computation of H time can always be set equal to zero
and use H(0).
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5. According to the behavior of Au(α), determine the maneuver cone angle αm such
that Au(αm) = 0, and is closer to the current αi value (the blue star point in the
above figure) so the new artificial libration point will be also closer to the original
one. In this case Au(α) crosses the Au = 0 line twice, which means that there are
two possible values of α such that Au = 0.

6. The performed maneuver, which gives the new value of the cone angle, is αi =
αm + αerr, where the maneuver error αerr is normally distributed with 3σ equal to
0.5◦.

7. With this new value of α the procedure is repeated from step 2, until the the
maximum time tmax is reached.

As an example, the results of the first six iterations of the above procedure are shown in
Fig. 6.1.

In the Fig. 6.1, the initial parameters are αi = π/12, δi = π/2, βi = 0.02, Au = As = 0,
Ax = 1/24, Az = 1/6, and ∆t = 0.5. In this figure, for each ∆t = 0.5 propagation, the
left-hand side plot displays the orbit, and the right-hand side one the behavior of the final
unstable amplitude Au as a function of the cone angle α at different epochs. Fig. 6.1 (a)
displays the results for t ∈ (0, 1). During the first part of the time-interval t ∈ (0, 0.5),
the spacecraft departs from the blue asterisk point and moves along the blue curve. The
blue plus sign point shows the current libration point. At t = 0.5, we do a maneuver
affected by an error and the cone angle αi is changed into αi + αerr (the maneuver point
is marked by the black asterisk). During next ∆t = 0.5 time units, the sail moves along
the black curve, and the new libration point is the black plus sign point. Due to the error
αerr, the new Au ̸= 0, and the spacecraft will escape as time increases. So, at t = 1, we
apply the new maneuver to cancel again the unstable amplitude Au.
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(a) First maneuver at t=0.5. 0 ≤ t ≤ 1

(b) Second maneuver at t=1.0. 0 ≤ t ≤ 1.5

(c) Third maneuver at t=1.5. 0 ≤ t ≤ 2

(d) Fourth maneuver at t=2.0. 0 ≤ t ≤ 2.5

(e) Fifth maneuver at t=2.5. 0 ≤ t ≤ 3.0

(f) Sixth maneuver at t=3. 0 ≤ t ≤ 3.5

Figure 6.1: Evolution of the controlled orbit after six station–keeping impulsive solar-sail
maneuvers. 112



6.2 - Numerical results

The right-hand side column of the figure shows the behavior of Au as a function of α at
t = 0.5. As it can be clearly seen, the function crosses the Au = 0 line twice, which means
that there are two possible values of α such that Au = 0. The value of α selected is the
one that requires the smaller change of αi; in this way, the new artificial libration point
will be also closer to the original one.

The remaining lines in Fig. 6.1 show the subsequent five maneuvers determined according
to the above iterative procedure. The color sequence used for the propagated orbit is:
blue–black–red–green–pink–blue–black... It can be seen that after six impulsive maneu-
vers, the spacecraft still remains close to the Lissajous orbit around the artificial libration
point SL2 without escaping.

6.2 Numerical results

According to the results shown in Fig. 6.1, the solar sail has achieved a half year station–
keeping by means of six station-keeping maneuvers. Using the orbit and the same strategy,
Fig. 6.2 shows the controlled orbit for a five-year time interval.

(a) 3D (b) XY plane

(c) XZ plane (d) YZ plane

Figure 6.2: 3D representation and coordinate projections of the controlled orbit during
five years.
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From this figure it follows that, despite the existence of the errors αerr in the execution
of the control maneuvers, the described station-keeping control performs well using a
time interval ∆t = 0.5, and the solar sail spacecraft follows the Lissajous orbit near the
artificial libration point SL2.

Fig. 6.3 shows the behavior of the unstable amplitudes Au, as a function of α, at maneuver
epochs t = 2k∆t, with k = 1, 2, ..., 6. Since at each epoch, the associated curve Au(α)
always crosses twice the line Au = 0, the blue asterisks (close to π/4) show the positive
selected values of α that define the control maneuver, according to step 8 of the previously
described iterative procedure.

Similarly, the station–keeping under different αi are shown in Fig. 6.5. In this figure, the
spacecraft also achieves long-term orbit station–keeping, which verifies the effectiveness
of the method.

Figure 6.3: Behavior of the curves Au(α) at different maneuver epochs. Note that each
curve crosses twice the line Au = 0. The blue asterisks indicate the selected values of α
used to determine the control maneuver.

For this simulation, the evolution of αf , Au, Ax, Az as a function of time along the five
years is shown in Fig. 6.4.

As it follows from this figure, because when computing the maneuver an error is introduced
in the computed cone angle α, the resulting unstable amplitude Au is not zero, although
it is always very small.

Since all the maneuvers are performed in such a way that the resulting cone angle is as
close as possible to the initial one, the new artificial libration points are also close to
the initial one (γ1, γ2, γ3). Furthermore, the size of the Lissajous orbit defined by the
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amplitudes Ax and Az remains almost constant.

(a) α after every maneuver (b) Au

(c) Ax (d) Az

Figure 6.4: Behaviour of α, Au, Ax, Az as a function of time for the five-year controlled
orbit displayed in Fig. 6.2.

6.2.1 Changing the cone angle α and the maneuver error αerr

Similar good station–keeping results are obtained for the same Lissajous orbit, but with
different initial cone angles.

For different initial cone angle αi, the results obtained for the controlled orbit and the α
after each maneuver are displayed in Fig. 6.5; note that the values of α after the maneuvers
remain close to their initial values.
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(a) αi = −π/3

(b) αi = −π/4

(c) αi = −π/6

(d) αi = π/6

(e) αi = π/4

Figure 6.5: Behavior of the orbits for five-year station–keeping control for the same Lis-
sajous orbit of figure 6.2, but with two different values of the cone angle αi.

The results obtained using values of the error parameter αerror inside other ranges are
shown in Fig. 6.6. We notice that when the size of the error range in αerr increases, the
dispersion of the artificial libration point also does, as well as the size of the amplitudes Ax

and Az of the controlled Lissajous orbit. Even the procedure exhibits a robust behavior,
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for larger errors than the ones mentioned, the controllability can be compromised.

(a) 3σ αerr of 1 ◦

(b) 3σ αerr of 2 ◦

(c) 3σ αerr of 3 ◦

(d) 3σ αerr of 4 ◦

Figure 6.6: Behavior of the orbits for five-year station–keeping control for the same Lis-
sajous orbit in figure 6.2, but with values of αerr in different ranges.

6.2.2 Changing the lightness number β and the clock angle δ

When the reflectivity of the sail is changed, the artificial libration point also changes
accordingly. The station keeping also performs well when the lightness number is large
(for instance β = 0.04), but in this case the sensitivity is higher. This is observed in
Figs. 6.7 (b) and 6.7 (c) where we can see that big values of β increase the excursions of
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the artificial libration points making the controlled orbit to oscillate in a wider range.

(a) β = 0.01

(b) β = 0.03

(c) β = 0.04

Figure 6.7: Five-year evolution of the controlled orbits for different values of the lightness
number β = 0.01, 0.03, 0.04. In this simulations α = π/6, δ=π/2 and 3σ αerr of 2◦.

As it follows from Fig. 6.8 for different values of the clock angle δ one can also achieve
controllability. The five-year simulation of the three plots represented in the figure have
been done using a relatively small constant value of the reflectivity βi,f = 0.02 and an
initial value of the cone angle αi = π/12.

Fig. 6.9 shows the results obtained, with three different values of ∆t = 0.75, 1, and 1.25
for five-year control simulations. The values of the remaining parameters for these three
simulations are: βi,f = 0.02, αi = −π/4, δi,f = π/2, and 3σ αerr of 0.5◦. We note that
in all cases the controllability is achieved.
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(a) δi,f = π/3

(b) δi,f = 2π/3

(c) δi,f = π

Figure 6.8: Five-year station-keeping simulation for δi,f = π/3, 2π/3, π, and αi = π/12,
β = 0.02.

(a) ∆t = 0.75

(b) ∆t = 1

(c) ∆t = 1.25

Figure 6.9: Five-year station-keeping simulation for ∆t = 0.75, 1, 1.25, and αi = −π/4,
δ = π/2, β = 0.02.
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According to the results obtained, some of them displayed in the last figures (from Fig. 6.5
to Fig. 6.9), it follows that, using the cone angle α as control parameter, the station–
keeping is achieved, for different initial sail attitude parameters (αi, δi, βi) and under
maneuvering errors αerr.

It is worth to note that, when αerr and ∆t increase, the spacecraft still moves around the
libration point SL2, although the excursions about this point are larger.

6.2.3 Introducing an error δerr in the clock angle of the maneuvers

The results of the preceding section show that performing multiple impulsive maneuvers
using the cone angle α, affected by an error αerr, the station–keeping is achieved for long
time intervals. The same results hold when the cancellation of the unstable amplitude of
the target Lissajous orbit is performed using the clock angle δ.

The selection of the value of δ that cancels the unstable amplitude is done according to
the number of intersections of the Au(δ) curve at each epoch (see Fig. 6.11 (d)).

1. If the Au(δ) curve crosses twice the Au = 0 line, the value selected is the one that
produces the smallest variation of the angle δ;

2. if there is only one crossing, of course, the value of δ at the intersection is the one
selected;

3. if there is no crossing, then the chosen value of δ is the one associated to the
minimum value of Au, which is the best option to reduce the unstable amplitude at
the next maneuver.

As an example of the results obtained, Fig. 6.10 shows a five-year simulation for a solar
sail with the following parameters: αi = π/12, δi = π/2, βi = 0.02, and 3σ δerr of
0.5◦. Associated with this simulation, the behavior of the amplitudes of the controlled
Lissajous orbit, as well as the value of the clock angle after each maneuver are displayed
in Fig. 6.11.

According to this figure, both the Axf and the Azf amplitudes remain close to the initial
amplitude of the Lissajous orbit. Figs. 6.11 (c) and (d) show the behavior of the unstable
component, as a function of time (note that due to the existence of δerr, the unstable
amplitude is not exactly zero). In the subplot (d) the blue asterisk mark corresponds to
the required impulsive maneuver in the clock angle δ that sets Au = 0.
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(a) 3D (b) XY plane

(c) XZ plane (d) YZ plane

Figure 6.10: Five-year station–keeping keeping simulation using clock angle δ maneuvers
affected by a 3σ error δerr of 0.5◦.

(a) Ax (b) Az (c) Au

(d) Au with δf (e) As (f) Value of δ after each
maneuver

Figure 6.11: Associated with Fig. 6.10, Lissajous amplitudes after each δ maneuver.

Fig. 6.12 and Fig. 6.13 show the station–keeping of the solar sail spacecraft under the
multi-impulse maneuver with different initial cone αi, and clock δi angles. The other
initial sail parameters are βi = 0.02, Au = As = 0, Ax = 1/24, Az = 1/6, and ∆t = 0.5.
The first six plots in Fig. 6.12, have the same initial αi = π/12 and different values of δi.
These results show that for αi = π/12 and any δi ∈ (0, π) station–keeping is achieved,
and the controlled orbit is of Lissajous type. The last four plots of the same figure have
the same initial δi = π/2 and different αi, although the shape of the orbit changes, the
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spacecraft still moves around the artificial libration point SL2.

(a) αi = π/12, δi = 0

(b) αi = π/12, δi = π/6

(c) αi = π/12, δi = π/3

(d) αi = π/12, δi = 2π/3

(e) αi = π/12, δi = 3π/4

(f) αi = π/12, δi = π

Figure 6.12: Five-year station–keeping simulations with different values of δi and fixed
value of αi = π/12, and βi = 0.02, Au = As = 0, Ax = 1/24, Az = 1/6, ∆t = 0.5.
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(a) αi = −π/3, δi = π/2

(b) αi = −π/4, δi = π/2

(c) αi = π/6, δi = π/2

(d) αi = π/3, δi = π/2

Figure 6.13: Five-year station–keeping simulations with different values of αi and fixed
value of δi = π/2, and βi = 0.02, Au = As = 0, Ax = 1/24, Az = 1/6, ∆t = 0.5.

Fig. 6.14 shows five-year station–keeping simulations with different values of βi. When
the solar sail angles are fixed to αi = −π/4, δi = π/3, then for larger values of βi, the
changes in the shape of the controlled Lissajous orbit are also larger.

Finally, Figs. 6.15 and 6.16 show five-year station–keeping simulations with different val-
ues of δerr or ∆t. From both figures, it is worth noting that when again, δerr and ∆t are
large the spacecraft is still evolving around the artificial libration point SL2, although
the excursions are larger.
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(a) αi = −π/4, δi = π/3, βi = 0.01

(b) αi = −π/4, δi = π/3, βi = 0.03

(c) αi = −π/4, δi = π/3, βi = 0.04

Figure 6.14: Five-year station–keeping simulations with different values of βi

(a) 3σ δerr of 1 ◦

(b) 3σ δerr of 1.5 ◦

(c) 3σ δerr of 2 ◦

Figure 6.15: Five-year station–keeping simulations with different values of δerr. The sail
parametres are αi = π/4, δi = π/3, βi = 0.02
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(a) ∆t = 0.60

(b) ∆t = 0.75

(c) ∆t = 0.85

Figure 6.16: Five-year station–keeping simulations with different values of ∆t. The sail
parametres are αi = π/4, δi = π/3, βi = 0.02

6.3 Chapter summary

This chapter investigates a propellant-free station–keeping design for a solar sail moving
around the Sun–Earth collinear equilibrium points. The dynamical model used corre-
sponds to the linearized equations of motion around the equilibrium points of the circular
restricted three body problem, including the solar radiation pressure.

The invariant manifolds of the orbits are used in the station-keeping design for Lissajous
orbits in the Sun-Earth system. The sequence of maneuvers are performed changing the
orientation parameters of the sail (cone and clock angles) that determine its attitude with
respect to the Sun.

Considering that there could be errors in the attitude angles of the sail, all the numerical
simulations have been carried out introducing random errors in the attitude angles when
performing the maneuvers that cancel the unstable amplitude component of the controlled
Lissajous orbit.
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One of the goals of the study has been to analyze the role of the cone angle errors in
the station–keeping design. For 3σ errors of 0.5 deg, and performing station-keeping
maneuvers every month, the spacecraft can remain near the artificial libration points
easily, even under different initial values of the cone angle as shown in Figs. 6.2 and
6.5. In this situation, the trajectory is close to the initial Lissajous orbit. When the
cone angle error becomes larger, the proposed method also keeps the spacecraft near an
artificial libration point, but it undergoes a large deviation with respect to the initial one.
The effects of the other two sail parameters, the clock angle and the reflectivity parameter,
are also studied. The change of the cone angle has little effect on the station–keeping,
while the change of the reflectivity parameter has a stronger influence on the results: for
reflectivities 0.01, 0.02, the station–keeping is clearly achieved, but when it is 0.03, 0.04,
large deviations of the artificial libration point appear.

Another goal has been to analyze the role of the clock angle error in the station–keeping
design. In this case the spacecraft can also remain near the artificial libration orbit,
consideting different initial cone and clock angles, as shown in Fig. 6.12.

As final summary, the multiple impulse design of the station–keeping control by means of
sail reorientation controlling the unstable manifold component is shown to be effective.
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7.1 Conclusions

With the successful implementation of many in-orbit verification missions of solar sail
spacecraft, solar sail propulsion will play an increasingly important role in future space
missions. considering the SRP-RTBP model we first studied the influence of the solar
sail parameters on the distribution of artificial libration points inside their families. We
then proposed an impulsive maneuver technique that accomplished enhanced heteroclinic
transfers between SL2 Lissajous orbits. We also used the proposed method to avoid the
forbidden zone, for station-keeping, and for general transfers. The main work and research
results of this thesis are the following:

1. Based on the SRP-RTBP model, the families of artificial libration points were re-
searched for solar sail spacecraft. First, we described the Sun–Earth RTBP and
basic theory for solar sail spacecraft. Then, we established the SRP–RTBP model.
Finally, we studied the influence of solar sail parameters (cone angle α, clock an-
gle δ, and lightness number β) on the distribution of artificial libration points in
families, especially SL1 and SL2. In addition to the traditional five independent
libration points, there exist families of 3D artificial libration points, which arise in
different situations with different solar sail parameters.

2. We proposed an impulse maneuver method and studied enhanced heteroclinic trans-
fers between SL2 Lissajous orbits. For this purpose, the SRP-RTBP model was
linearized and solved. Furthermore, an analysis showed that the errors of the linear
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model are very small for Sun-Earth libration points. Then, we considered changes to
the families of artificial libration points. Three coordinate systems are widely used
in the thesis. An impulse maneuver method for solar sail spacecraft was proposed
based on adjusting the solar sail parameters. An algorithm for the method was
described. Note that traditional spacecraft use impulse engines to apply sudden
velocity increments, although their position changes continuously. Finally, using
the proposed impulse maneuver method, we studied how to accomplish enhanced
heteroclinic transfers between Lissajous orbits near an artificial libration point. The
influence of each solar sail parameter on the impulse maneuver, time and the ter-
minal Lissajous orbital amplitudes was analyzed in detail. We determined that, for
different values of the terminal parameters, there are four different transfer strate-
gies, as shown in Figs. 3.8, 3.21, and so on.

3. We conducted an extensive study of heteroclinic transfers using sail impulsive ma-
neuvers for Lissajous orbits. We concluded that, when the initial and final clock
angles δi,f = π/2 and the difference in the initial phase angles ϕ2 of two space-
craft is π, the solar sail spacecraft can transfer to the same terminal Lissajous orbit
through an impulse maneuver. This was verified by a large number of numerical
simulations. Then we saw that the solar sail parameters can be gradually changed
by using multi-impulse maneuvers. Thus, transfers from an initial Lissajous orbit
to a terminal orbit can be accomplished via multiple transitional Lissajous orbits.
Finally, in case the spacecraft needs to return to its initial Lissajous orbit, we
showed the way impulsive maneuvers can realize back-and-forth transfers between
two artificial libration point orbits.

4. We researched how the spacecraft can avoid the forbidden zone using sail impulsive
maneuvers. The 3D forbidden zone and the enhanced heteroclinic transfer orbits
were projected onto a 2D EPP. With this technique it is easy to estimate the time
when the spacecraft is going to reach the forbidden zone for different phase angles.
First, we devised a strategy for avoiding the forbidden zone based on changing the
cone angle. By changing both the cone angle and the initial phase angle, the satellite
won’t be influenced by the forbidden zone any more after impulsive maneuver. Thus,
the forbidden zone can be avoided. Second, we changed the clock angle to avoid
the forbidden zone. We solved the problem that the terminal Lissajous orbital
amplitude is too narrow. Finally, we also considered the lightness number to avoid
the forbidden zone. When cone angle α = 0, regardless of the lightness number, the
forbidden zone in the EPP cannot be eliminated by an impulse maneuver. However,
under the joint action of cone angle and clock angle, the forbidden zone can be
avoided. Thus, these different approaches can be of support to diverse missions.

5. We researched station-keeping by a solar sail spacecraft in a Lissajous orbit. By
applying the designed station-keeping procedure, periodic maneuvers were identified
for a spacecraft that prevent it from escaping from a Lissajous orbit following its
unstable manifold. The maneuver was computed so that it cancels out the unstable
component of the state. Moreover, it is assumed that there is a random error in the
execution of a maneuver. By performing maneuvers every month, the spacecraft
can remain near an artificial libration point for at least 5 years, which shows that
this strategy is effective for station-keeping.
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7.2 Future work

This thesis systematically studied the use of impulse maneuvers and the applications of
heteroclinic enhanced orbits for transfers, forbidden zone avoidance, and station-keeping.
Thus, there are three areas for follow-up research:

1. Apply the impulse maneuver strategy for solar sail spacecraft to more mission sce-
narios. The strategy proposed in this thesis can realize enhanced heteroclinic trans-
fers between orbits about the same artificial libration point. It could be applied to
more mission scenarios in future research, such as for solar sail spacecraft flying in
formation near an artificial libration point and for deep-space exploration missions
that rely on multi-impulse maneuvers.

2. Study orbit transfers between families of artificial libration points. In this thesis,
our research on the impulse maneuver method was for the same artificial libration
point. Future research could consider heteroclinic transfers between different artifi-
cial libration points. For example, a spacecraft could use the SL2 unstable manifold
to escape an orbit. After performing multi-impulse maneuvers, it may be able to
enter the SL1 stable manifold.

3. Determine minimal impulse maneuvers. The impulse maneuver method proposed
in this thesis realizes heteroclinic transfers, forbidden zone avoidance, and orbit
station-keeping. In future research, the optimal control strategy could be combined
with minimal impulse maneuvers to complete the task. This would not only avoid
large changes to the solar sail parameters but could also extend the life of the
spacecraft.
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Appendix 1: Uij

UXX = 1 − 1 − µ

r13 − µ

r23 + 3(1 − µ)(X + µ)2

r15 + 3µ(X − 1 + µ)2

r25

UY Y = 1 − 1 − µ

r13 − µ

r23 + 3(1 − µ)Y 2

r15 + 3µY 2

r25

UZZ = −1 − µ

r13 − µ

r23 + 3(1 − µ)Z2

r15 + 3µZ2

r25

UXY = 3(1 − µ)(X + µ)Y
r15 + 3µ(X − 1 + µ)Y

r25

UXZ = 3(1 − µ)(X + µ)Z
r15 + 3µ(X − 1 + µ)Z

r25

UY Z = 3(1 − µ)Y Z

r15 + 3µY Z

r25

UXY = UY X

UXZ = UZX

UZY = UY Z
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Appendix 2: ai, bi, ci

Values of the coefficients ai , bi, and ci, for i = 0, ..., 3, that appear in the linearized
equations of motion (3.3). It must be noted that the values of a0, b0 and c0 are zero at
the equilibrium points, so they do not appear in the differential equations.

a0 = −A1 ∓ µ

γ
+ 1 − µ

γ3
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D3
1
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D3
2
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γ3D3
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(A1D3 cos α + C1A1 sin α cos δ

+B1D1 sin α sin δ),
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D5
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Appendix 3: ki, ki

Values of the coefficients ki and ki, for i = 1, ..., 6, that appear in the final form of the
solution (3.10).

ki = λ4
i − (c3 + a1)λ2

i + a1c3 − a3c1

2λ3
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, for i = 1, 2,
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1 + 2c2
3η1 + a2c2

3 − a3c2c3,

E = 4η3
2ω2 − 4η2ω3

2 − (2a1 + 2c3)η2ω2,

F = η4
2 − 6η2

2ω2
2 + ω4

2 − (a1 + c3)η2
2 + (a1 + c3)ω2

2 + a1c3 − a3c1,

G = 2c2η2ω2 + 2c1ω2,

H = c2η2
2 − c2ω2

2 + 2c1η2 − a1c2 + a2c1,
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A = −4c2η3
1ω1 + (4c2 − 6c1)η1ω3

1 − 2c1ω3
1 + (2a1c2 − 2a2c1 + 2c2c3)η1ω1 + 2c1c3ω1,

B = c2η4
1 − 6c2η2

1ω2
1 + c2ω4

1 + 2c1η3
1 − 6c1η1ω2

1 − (a1c2 − a2c1 + c2c3)η2
1

+(a1c2a2c1 + c2c3)ω2
1 − 2c1c3η1 + a1c2c3 − a2c1c3,

C = 10η4
1ω1 − 20η3

1ω2
1 + 2ω5

1 + 4a2η3
1ω1 − 4a2η1ω3

1 − 12c3η2
1ω1 + 4c3ω3

1

−(4a2c3 − 2a2c3)η1ω1 + 2c2
3ω1,

D = 2η5
1 − 20η3

1ω2
1 + 10η1ω4

1 + a2η4
1 − 6a2η2

1ω2
1 + a2ω4

1 + 12c3η1ω2
1

−(4c3 + 2a2c3 − a3c2)η2
1 + (2a2c3 − a3c2)ω2

1 + 2c2
3η1 + a2c2

3 − a3c2c3,

E = 6η2
2ω2 − 2ω3

2 + 2a2η2ω2 − 2c3ω2,

F = 2η3
2 − 6η2ω2

2 + a2η2
2 − a2ω2

2 − 2c3η2 − a2c3 + a3c2,

G = 2c2η2ω2 + 2c1ω2,

H = c2η2
2 − c2ω2

2 + 2c1η2 − a1c2 + a2c1.
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Appendix . Appendix

Appendix 4: H = (hij)

Components of the matrix H = (hij) appearing in the transformation (3.11).

h11 = eλ1t,

h12 = eλ2t,

h13 = eη1t cos ω1t,

h14 = eη1t sin ω1t,

h15 = eη2t(k5 cos ω2t + k6 sin ω2t),
h16 = eη2t(k5 sin ω2t − k6 cos ω2t),
h21 = k1eλ1t,

h22 = k2eλ2t,

h23 = eη1t(k3 cos ω1t + k4 sin ω1t),
h24 = eη1t(k3 sin ω1t − k4 cos ω1t),
h25 = eη2t(k5 cos ω2t + k6 sin ω2t),
h26 = eη2t(k5 sin ω2t − k6 cos ω2t),
h31 = k1eλ1t,

h32 = k2eλ2t,

h33 = eη1t(k3 cos ω1t + k4 sin ω1t),
h34 = eη1t(k3 sin ω1t − k4 cos ω1t),
h35 = eη2t cos ω2t,

h36 = eη2t sin ω2t,

h41 = λ1eλ1t,

h42 = λ2eλ2t,

h43 = η1eη1t cos ω1t − ω1eη1t sin ω1t,

h44 = η1eη1t sin ω1t + ω1eη1t cos ω1t,

h45 = η2eη2tk5 cos ω2t − ω2eη2tk5 sin ω2t + η2eη2tk6 sin ω2t + ω2eη2tk6 cos ω2t,

h46 = η2eη2tk5 sin ω2t + ω2eη2tk5 cos ω2t − η2eη2tk6 cos ω2t + ω2eη2tk6 sin ω2t,

h51 = k1λ1eλ1t,

h52 = λ2k2eλ2t,

h53 = η1eη1tk3 cos ω1t − ω1eη1tk3 sin ω1t + η1eη1tk4 sin ω1t + ω1eη1tk4 cos ω1t,

h54 = η1eη1tk3 sin ω1t + ω1eη1tk3 cos ω1t − η1eη1tk4 cos ω1t + ω1eη1tk4 sin ω1t,

h55 = η2eη2tk5 cos ω2t − ω2eη2tk5 sin ω2t + η2eη2tk6 sin ω2t + ω2eη2tk6 cos ω2t,

h56 = η2eη2tk5 sin ω2t + ω2eη2tk5 cos ω2t − η2eη2tk6 cos ω2t + ω2eη2tk6 sin ω2t,
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h61 = k1λ1eλ1t,

h62 = k2λ2eλ2t,

h63 = η1eη1tk3 cos ω1t − ω1eη1tk3 sin ω1t + η1eη1tk4 sin ω1t + ω1eη1tk4 cos ω1t,

h64 = η1eη1tk3 sin ω1t + ω1eη1tk3 cos ω1t − η1eη1tk4 cos ω1t + ω1eη1tk4 sin ω1t,

h65 = η2eη2t cos ω2t − ω2eη2t sin ω2t,

h66 = η2eη2t sin ω2t + ω2eη2t cos ω2t.

Note that h41, h41,...,h66 are the time derivatives of h11, h11,...,h36, respectively.
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sign using patched elliptic three-body models and graphics processing units,” Jour-
nal of Guidance, Control, and Dynamics, vol. 40, no. 12, pp. 3155–3166, 2017.
doi:10.2514/1.G002692. 6
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[113] A. Farrés and À. Jorba, “Solar sailing with invariant manifolds in the earth-sun
system,” in Proceedings of the 66th International Astronautical Congress, vol. 7,
(Jerusalem, Israel), pp. 412–423, 2015. 8

[114] R. Sood and K. Howell, “Solar sail transfers and trajectory design to sun-earth l
4, l 5: Solar observations and potential earth trojan exploration,” The Journal of
the Astronautical Sciences, vol. 66, no. 3, pp. 247–281, 2019. doi:10.1007/s40295-018-
00141-4. 9

[115] C. Perera, X. Wu, and H. Dullin, “Solar sailing cubesats co-orbiting around a larger
satellite near lagrange point 1,” in 43rd COSPAR Scientific Assembly, (Roma, Italy),
pp. 15–19, 2021. 9, 10

[116] J. Heiligers, M. Vergaaij, and M. Ceriotti, “End-to-end trajectory design for a solar-
sail-only pole-sitter at venus, earth, and mars,” Advances in Space Research, vol. 67,
no. 9, pp. 2995–3011, 2021. doi:10.1016/j.asr.2020.06.011. 9

[117] J. B. Pezent, R. Sood, and A. Heaton, “Configuration space and stability analysis
of solar sail near-vertical earth-trailing orbits,” Advances in Space Research, vol. 67,
no. 9, pp. 2981–2994, 2021. doi:10.1016/j.asr.2020.10.011. 9

[118] A. Fernandez Mora, Solar–sail invariant objects in the Sun–Earth system and trans-
fers to the L5 region. Ph.D. dissertation, Netherlands: Delft University, 2019. 9
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