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Abstract

We study discrete energy minimization problems on two-point homogeneous manifolds.
Since finding N -point configurations with optimal energy is highly challenging, recent
approaches have involved examining random point processes with low expected energy to
obtain good N -point configurations.

In Chapter 2, we compute the second joint intensity of the random point process given
by the zeros of elliptic polynomials, which enables us to recover the expected logarithmic
energy on the 2-dimensional sphere previously computed by Armentano, Beltrán, and
Shub. Moreover, we obtain the expected Riesz s-energy, which is remarkably close to
the conjectured optimal energy. The expected energy serves as a bound for the extremal
s-energy, s ̸= 0, thereby improving upon the bounds derived from the study of the spher-
ical ensemble by Alishahi and Zamani. Among other additional results, we get a closed
expression for the expected separation distance between points sampled from the zeros
of elliptic polynomials.

In Chapter 3, we explore the average discrepancies and worst-case errors of random
point configurations on the sphere Sd. We find that the points drawn from the so called
spherical ensemble and the zeros of elliptic polynomials achieve optimal spherical L2 cap
discrepancy on average. Additionally, we provide an upper bound for the L∞ discrepancy
for N -point configurations drawn from the harmonic ensemble on any two-point homo-
geneous space, thereby generalizing the previous findings for the sphere Sd by Beltrán,
Marzo and Ortega-Cerdà. We introduce a nondeterministic version of the Quasi Monte
Carlo (QMC) strength for random sequences of points and compute its value for the
spherical ensemble, the zeros of elliptic polynomials, and the harmonic ensemble. Finally,
we compare our results with the conjectured QMC strengths of certain deterministic
distributions associated with these random point processes.

In Chapter 4, our focus shifts to the Green energy minimization problem. Firstly,
we extend the work by Beltrán and Lizarte on spheres to establish a close to sharp
lower bound for the minimal Green energy on any two-point homogeneous manifold,
improving on the existing lower bounds on projective spaces. Secondly, by adapting a
method introduced by Wolff, we deduce an upper bound for the L∞ discrepancy of N -
point sets that minimize the Green energy.
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Notation

R The set of real numbers

C The set of complex numbers

H The set of quaternions

O The set of octonions

F R, C, H or O

M A compact connected two-point homogeneous manifold, unless stated other-
wise

d The real dimension of the manifold M

ϑ(x, y) The Riemannian distance between x, y ∈ M

D The diameter of the manifold M

σ The normalized uniform measure on the manifold M

α d
2
− 1

β α for Sd and dimR(F)
2

− 1 for FPn

κ 1/2 for Sd and 1 for FPn

Sd The d-dimensional unit sphere on Rd+1

FPn The projective space over F

P
(α,β)
ℓ (x) The Jacobi polynomial of degree ℓ and parameters (α, β)

P
(d)
ℓ (x) The Gegenbauer polynomial of degree ℓ and parameter d

λℓ The ℓ-th eigenvalue (in increasing order) of the Laplace-Beltrami operator on
M

mℓ The multiplicity of λℓ

Vℓ The eigenspace of the Laplace-Beltrami operator on M corresponding to λℓ

i



ii NOTATION

π
(α,β)
L The dimension of the subspace ΠL =

⊕L
ℓ=0 Vℓ ⊂ M

K
(α,β)
L The reproducing kernel of the subspace ΠL =

⊕L
ℓ=0 Vℓ ⊂ M

χA The characteristic function of the set A

Γ(x) The gamma function

ψ(x) The digamma function, ψ(x) = Γ′(x)
Γ(x)

ζ(x) The Riemann zeta function

ζ(x, a) The Hurwitz zeta function

(x)n The Pochhammer symbol, (x)0 = 1 and (x)n = x(x + 1) · · · (x + n − 1) for
n ≥ 1

γ The Euler-Mascheroni constant, γ = −ψ(1)

δx The Dirac’s delta at x

xn ≲ yn lim supn→∞
xn

yn
≤ C for some C ≥ 0 independent of n. Also written as xn =

O(yn)

xn ≈ yn xn ≲ yn and yn ≲ xn

xn ∼ yn limn→∞
xn

yn
= 1



Introduction

In this dissertation, we study energy minimization problems on two-point homogeneous
manifolds, with special attention to the case of the sphere S2 ⊂ R3. Given a configuration
XN = {x1, . . . , xN} of N points in a manifold M interacting pairwise through some
potential K : M×M → R ∪ {+∞}, the discrete K-energy of XN is defined by

EK(XN) =
∑
i ̸=j

K(xi, xj). (1)

We ask for N -point extremal configurations of this energy under some hypotheses on the
potential.

Some instances of this general problem have been studied from long time ago. For ex-
ample, the Coulomb potential K(x, y) = 1/|x− y| gives rise to the most famous problem
in this context, the Thomson problem, which looks for the minimal possible energy of N
electrons restricted to the sphere S2 that repel each other according to Coulomb’s law.
The problem arose in 1904 after the physicist J. Thomson proposed his atomic model. In
a system of charged particles, the equilibrium configurations are those on which the forces
acting on each particle are balanced, resulting in a state of minimum energy. Finding these
equilibrium configurations provides insights into the geometric arrangement of charges,
which may have implications in molecular structure determination and crystallography.
Despite being a centenary problem, the exact solution to the Thomson problem is only
known for N = 2, 3, 4, 5, 6 or 12 points. The problem becomes computationally demand-
ing as the number of points increases, requiring efficient algorithms and computational
resources, see [BHS19]. Beyond electrostatics, the problem has applications in various
fields such as condensed matter physics, chemistry and material science, see [Ser15].

In the present work, we study the generalization of this problem to Riesz potentials

Ks(x, y) =
1

|x− y|s
, s ̸= 0, (2)

for which we define the extremal (minimal or maximal) s-energy by

Es(N) =

{
minXN⊂S2 EKs(XN) if s > 0,

maxXN⊂S2 EKs(XN) if s < 0.

For s = 0, defining the potential K0 by (2) would yield a trivial minimal discrete
energy, since EK0(XN) = N(N − 1) for any N -point configuration. The derivative of

iii
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1/|x− y|s with respect to s at the origin suggests the definition

K0(x, y) = log
1

|x− y|
,

which is known as the logarithmic potential. The minimal discrete logarithmic energy is
given by

E0(N) = min
XN⊂S2

EK0(XN).

The study of this energy has received a lot of attention during the last years. Since points
minimizing the logarithmic energy are points maximizing the product of mutual distances,
these points are also called elliptic Fekete points.

Similar to what happens with the Thomson problem, which corresponds to s = 1 in
our context, finding N -point configurations with optimal s-energy is exceedingly difficult,
except for a few select values of N . As the number of points increases, the problem be-
comes analytically intractable due to its computational complexity. Therefore, developing
algorithms that can generate N -point configurations with low energy is of great interest.
In fact, the 7th problem listed by Smale for the XXI century [Sma00] asks for an algorithm
that produces N points XN = {x1, . . . , xN} ⊂ S2 satisfying the inequality

EK0(XN)− E0(N) ≤ c logN

for some universal constant c. The problem is far from being solved, see [Bel13] for a sur-
vey. One capital problem is the insufficient current knowledge of the asymptotic expansion
of the minimal logarithmic energy, which is

E0(N) =

(
1

2
− log 2

)
N2 − 1

2
N logN + ClogN + o(N), N → +∞, (3)

with Clog a constant such that

−0.0569 . . . ≤ Clog ≤ 2 log 2 +
1

2
log

2

3
+ 3 log

√
π

Γ(1/3)
= −0.0556 . . . , (4)

see [BS18, Lau21] and [BL22] for a recent direct computation of the lower bound. The
upper bound for Clog has been conjectured to be an equality by two different approaches,
[BHS12, BS18]. The setting of this constant is one of the main problems in the area.

For other values of the parameter s, the situation is similar. In particular, for 0 <
|s| < 2, it is known that there exist cs, Cs > 0 (depending on s) such that

−csN1+s/2 ≤ Es(N)− 21−s

2− s
N2 ≤ −CsN

1+s/2, (5)

see [RSZ94, Wag90, Wag92]. The asymptotic expansion of the optimal Riesz s-energy has
been conjectured in [BHS12] to be

Es(N) =
21−s

2− s
N2 +

(
√
3/2)s/2ζΛ2(s)

(4π)s/2
N1+ s

2 + o(N1+ s
2 ), N → +∞, (6)
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where ζΛ2(s) is the zeta function of the hexagonal lattice.
Observe that in both the Riesz and logarithmic cases the first term in the expansion

corresponds to the continuous energy of the normalized uniform measure σ on S2,ˆ
S2

ˆ
S2

1

|x− y|s
dσ(x) dσ(y) =

21−s

2− s
, s ̸= 0,

and ˆ
S2

ˆ
S2
log

1

|x− y|
dσ(x) dσ(y) =

1

2
− log 2.

We will provide more details about this relationship in Section 1.2.
In the pursuit of algorithms generating N -point configurations of our interest, recent

approaches have focused on exploring random point processes with low expected energy.
In fact, by sampling N independent points from the uniform probability measure on S2,
we already capture the leading term in the asymptotic expansion of the optimal energy.
For instance, in the case of s ̸= 0, the expected energy is

E[EKs(XN)] =
21−s

2− s
N2 − 21−s

2− s
N.

Nonetheless, this simple approach tends to yield suboptimal energy due to the indepen-
dence of the points, allowing the possibility of two points being very close to each other,
which is heavily penalized by the Riesz s-energy.

To overcome this limitation, one effective strategy is to partition the sphere S2 into N
equal-area regions and select one random point from each cell. This procedure, known as
jittered sampling, captures the correct second-order behavior in the asymptotic expansion
(6) and provides upper and lower bounds as in (5) for 0 < s < 2 and −2 < s < 0, respec-
tively. However, the constants in these bounds significantly differ from the conjectured
value, see [BHS19, Chapter 6].

Although jittered sampling partially mitigates the issue of closely located points, there
remains a possibility of adjacent cells containing randomly chosen points near their shared
edge. To further enhance the quality of configurations, it has been explored the use
of random point processes that incorporate point repulsion, mimicking the behavior of
electrons or fermions. Notable examples of such processes include determinantal point
processes, introduced by Macchi [Mac75], and the zero sets of Gaussian analytic functions,
as discussed in [HKPV09]. Moreover, since the potential Ks(x, y) depends solely on the
distance between points x and y, it is natural to choose processes exhibiting distributional
invariance under rotations of the sphere.

The spherical ensemble is a determinantal point process on S2 with rotational in-
variance. In their work [AZ15], Alishahi and Zamani computed the expected Riesz and
logarithmic energies for N -point configurations XN sampled from the spherical ensemble,

E[EKs(XN)] =


21−s

2− s
N2 − Γ(1− s/2)

2s
N1+ s

2 + o
(
N1+ s

2

)
, 0 < |s| < 2,(

1
2
− log 2

)
N2 − 1

2
N logN +

(
log 2− γ

2

)
N + o (N) , s = 0.

(7)

One advantage of the spherical ensemble over the jittered sampling is the possibility of
explicitly computing the expected energy. In the Riesz case, the N1+s/2-coefficient in (7)
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is closer to the corresponding coefficient in the conjectured asymptotic expansion (6) for
s ̸= 0. In the logarithmic case, the spherical ensemble captures the first two terms of the
expansion (3), whereas the N -coefficient is still far from the conjectured one.

Besides telling us whether a random point process yields low energy configurations on
average, the computation of the expected energy automatically provides an upper (lower)
bound for the minimal (maximal) energy. This idea was used in [AZ15] to improve the
previously known constants in (5), getting

Es(N)− 21−s

2− s
≤ −Γ(1− s/2)

2s
N1+s/2, 0 < s < 2,

Es(N)− 21−s

2− s
≥ −Γ(1− s/2)

2s
N1+s/2, − 2 < s < 0.

(8)

Among all Gaussian analytic functions (GAFs), there are ones particularly interesting
to consider when our objective is to obtain points on the sphere, because their zero sets
exhibit distribution invariance under rotations of the sphere. These functions are known
as the elliptic polynomials PN ,

PN(z) =
N∑

n=0

an

√(
N

n

)
zn,

where an are i.i.d. random variables with standard complex Gaussian distribution. These
polynomials appeared first in the mathematical physics literature [BBL92, BBL96, Han96]
and were quickly studied from a mathematical point of view, [Kos93, SS93a]. Among
the random point processes obtained from the zeros of a GAF, this one stands out as
the unique process invariant under rotations when stereographically projected onto the
sphere S2, see [Sod00].

In [SS93a], the authors proved that elliptic polynomials are well conditioned with high
probability, whereas in [SS93b] they showed that points of almost minimal logarithmic
energy are the roots of well conditioned polynomials. It was therefore natural to study
the expected energy of the XN = {x1, . . . , xN} ⊂ S2 zeros of elliptic polynomials stereo-
graphically projected to the sphere. This was done in [ABS11], where the following closed
expression for the expected logarithmic energy was derived,

E[EK0(XN)] =

(
1

2
− log 2

)
N2 − 1

2
N logN −

(
1

2
− log 2

)
N. (9)

This asymptotic expression is very close to the minimal logarithmic energy of N points
on the sphere and outperforms the result obtained with the spherical ensemble (7). From
this, a natural question that arises is whether this process also yields smaller (resp. higher)
expected energy for any s > 0 (resp. s < 0). We address this question in Chapter 2.

Specifically, by computing the second joint intensity of the random point process
given by the zeros of elliptic polynomials, in Chapter 2 we recover the previous result
(9) and obtain the expected Riesz energy (Theorem 2.1.1), which is remarkably close
to the optimal energy described in (6). Similar to the approach in [AZ15], the expected
energy provides an upper (resp. lower) bound for the minimal (resp. maximal) s-energy
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(Corollary 2.4.1), improving upon those presented in (8). Additionally, we derive a closed
expression for the expected separation distance between points sampled from the zeros
of elliptic polynomials (Theorem 2.10).

It is well known that any sequence (XN) of N -point configurations in Sd optimizing the
s-energy for s > −2 is uniformly distributed, meaning that for any Borel subset B ⊂ Sd,

lim
N→∞

|XN ∩B|
N

= σ(B),

see [BHS19, Theorem 6.1.7]. In other words, every region on Sd receives its corresponding
proportion of points from XN .

We recall that the spherical L2 cap discrepancy of XN ⊂ Sd is defined by

D2(XN) =

(ˆ π

0

ˆ
Sd

∣∣∣∣ |XN ∩B(x, r)|
N

− σ(B(x, r))

∣∣∣∣2 dσ(x) sin r dr
)1/2

,

where B(x, r) denotes the ball centered at x of radius r with respect to the geodesic
distance, and the spherical L∞ cap discrepancy is defined by

D∞(XN) = sup
x∈Sd,r>0

∣∣∣∣ |XN ∩B(x, r)|
N

− σ(B(x, r))

∣∣∣∣.
It is well known that a sequence (XN) is uniformly distributed if and only if its

discrepancy satisfies limN→+∞ Dp(XN) = 0, for p = ∞ or p = 2, [BHS19, Section 6.1].
The speed of this convergence is commonly used to measure the degree of uniformity of an
N -point set XN = {x1, . . . , xN} ⊂ Sd. According to [Ale72, Sto73, Bec84b], the optimal
order of the spherical L2 cap discrepancy is N− d+1

2d , i.e., there exist constants cd, Cd > 0
such that

cdN
− d+1

2d ≤ inf
|XN |=N

D2(XN) ≤ CdN
− d+1

2d .

With respect to the spherical L∞ cap discrepancy, Beck determined in [Bec84b, Bec84a]
its optimal order up to a logarithmic factor,

c′dN
− d+1

2d ≤ inf
|XN |=N

D∞(XN) ≤ C ′
dN

− d+1
2d

√
logN.

An alternative but related measure of the quality of a distribution is provided by the
so called worst-case error. Given s > d/2, a sequence (XN) of N -point configurations
XN ⊂ Sd is a sequence of QMC designs for the Sobolev space Hs(Sd) (or an s-QMC
design) if there exists Cd,s > 0 such that for all N ≥ 1,

wce(XN ,Hs(Sd)) ≤ Cd,sN
−s/d, (10)

where the worst-case error of XN is defined by

wce(XN ,Hs(Sd)) = sup
∥f∥Hs(Sd)≤1

{∣∣∣∣∣ 1N ∑
x∈XN

f(x)−
ˆ
Sd
f(x) dσ(x)

∣∣∣∣∣ : f ∈ Hs(Sd)

}
.
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The exponent in (10) cannot be larger than s/d, since it has been shown that there exists
a constant cd,s depending on the Hs(Sd)-norm such that for any N -point configuration
XN in Sd,

cd,sN
−s/d ≤ wce(XN ,Hs(Sd)),

see [BCC+14, Result (D)].
From [BCC+14, Theorem 3.1] it follows that if (XN) is a sequence of QMC designs for

Hs(Sd) it is also a QMC design for all Hs′(Sd) for d
2
< s′ < s, see also [BSSW14, Lemma

23]. The maximal s∗ > d
2

where (10) holds for all d
2
< s < s∗ is the QMC strength of the

sequence (XN), [BSSW14]. The strength can be seen as a measure of the regularity of the
sequence.

In Chapter 3, we study the average discrepancies and worst-case errors of some ran-
dom point configurations on the sphere Sd. These two concepts are connected through
Stolarsky’s formula. In particular, the worst-case error with s = (d + 1)/2 corresponds
to the spherical L2 cap discrepancy up to a constant. On the one hand, we show that
the spherical ensemble and the zeros of elliptic polynomials have optimal spherical L2

cap discrepancy on average and we compute their expected L2 hemisphere discrepancy,
another version of discrepancy studied in [BDM18]. On the other hand, we give a non-
deterministic version of the definition (10) and define the average QMC strength of a
random sequence (XN). We find this value for the spherical ensemble, the zeros of elliptic
polynomials and the harmonic ensemble, a determinantal point process on Sd described
in [BMOC16]. Lastly, we compare our findings with the conjectured QMC strengths of
certain deterministic distributions associated with these random point processes.

In recent years, there has been a growing interest in exploring the kind of problems
previously described in this introduction in spaces beyond the sphere. One natural direc-
tion for further investigation is to consider projective spaces, which along with the sphere
form the class of compact connected two-point homogeneous spaces. In particular, they
are the real, complex and quaternionic projective spaces RPn CPn, HPn and the Cayley
plane OP2. For results in this direction see [BCCdR19, Skr19, Skr20b, ADG+22].

In particular, in [ADG+22] the authors study the energy minimization problem on
projective spaces, using adapted versions of the Riesz and logarithmic potentials. They
extend the harmonic ensemble introduced in [BMOC16] to any two-point homogeneous
space, allowing them to derive upper bounds on the minimal energies for some values of
N . We conclude Chapter 3 by showing that N -point sets drawn from the harmonic en-
semble on projective spaces FPn satisfy D∞(XN) = O

(
N− d+1

2d logN
)

with overwhelming
probability, a result that was already known for spheres Sd, [BMOC16, Corollary 5].

In addition to the Riesz and logarithmic energies, the Green energy is also examined in
[ADG+22]. This energy, whose associated potential K(x, y) in (1) is the Green function,
was first studied in [BCCdR19], where it was shown that its minimizers are uniformly
distributed, as it is well known for the Riesz and logarithmic energies on the sphere.
In fact, for the 2-dimensional sphere the Green function is essentially equivalent to the
logarithmic potential, up to constants. This property makes the Green function a natural
kernel to consider when studying higher-dimensional spheres or projective spaces. Given
a two-point homogeneous manifold M, the minimal Green energy in M, denoted by
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EG(M, N), has an order of N2−2/d, where d = dimR(M) represents the real dimension of
the manifold M. More precisely, it satisfies the following inequality:

−cMN2−2/d ≤ EG(M, N) ≤ −CMN2−2/d, (11)

provided that d > 2. The lower bound, established in [Ste21] (see previous work by Elkies
referenced in [Lan88, Lemma 5.2]), is satisfied for general compact Riemannian manifolds
without boundary. The upper bound can be deduced by estimating the expected energy
of the jittered sampling in the manifold (Proposition 4.1.3) and in particular holds for
any two-point homogeneous manifold.

We observe that by the relation mentioned above, the Green energy minimization
problem on S2 reduces to the logarithmic energy minimization problem. Moreover, for
M = RP2 or CP1, the corresponding Green energy can be expressed in terms of the
Green energy on S2, as we will detail in Chapter 4. Consequently, the minimal Green
energy on these two-point homogeneous manifolds is related to the minimal logarithmic
energy on S2, and there is no need to separately consider the Green energy problem for
these cases. For d > 2, the Green energy and the Riesz (d − 2)-energy are related. This
relationship is utilized in [ADG+22] to establish upper and lower bounds for the minimal
Green energy in projective spaces based on the results they prove for the minimal Riesz
energy. Notably, the lower bounds derived in [ADG+22] provide explicit values for the
constant cM in (11), which is in contrast to the general result presented in [Ste21].

Since the Green and logarithmic minimization problems are equivalent on S2, the
lower bound in (3) is essentially giving a lower bound for EG(S2, N). The most recent
lower bound of Clog in (4) was established by Lauritsen in [Lau21] (building on previous
works [LN75, SM76]) by considering a renormalized energy in the plane that is related
to the energy on the sphere through [BS18, Theorem 1.5]. In [BL22], Beltrán and Lizarte
showed that Lauritsen’s argument can be adapted to directly work on the sphere S2

instead of the plane. Furthermore, they extended it to spheres of any dimension d ≥ 2,
obtaining

EG(Sd, N) ≥ −d1+2/d

d2 − 4

(
VSd

VSd−1

)2/d

N2−2/d + o(N2−2/d)

for the minimal Green energy on Sd, where VSd denotes the volume of the d-dimensional
sphere.

In Chapter 4, we present a simplified proof of the previous lower bound and extend it to
cover any two-point homogeneous manifold (Theorem 4.1.1). This extension improves the
lower bounds of the minimal Green energy established in [ADG+22]. Our proof follows
Lauritsen’s argument and is based on a decomposition of the discrete Green energy,
revealing its connection with a discrepancy measure defined in terms of Sobolev norms
(Definition 4.1.6). The derived results lead to an upper bound for this Sobolev discrepancy
(Theorem 4.1.7). As a consequence, by adapting a method introduced by Wolff in an
unpublished manuscript, we are able to establish an upper bound for the L∞ discrepancy
of N -point sets that minimize the Green energy (Theorem 4.1.4). Even for M = S2,
the Wolff’s approach gives the best result in terms of L∞ discrepancy of logarithmic (or
Green) energy minimizers.
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Chapter 1

Preliminaries

In this chapter, we present the key elements that form the basis of this thesis: the two-
point homogeneous manifolds and the point processes we are going to study. Additionally,
we gather some fundamental results concerning energy, expressed in the context of the
energies that will be explored throughout the thesis: the Riesz and logarithmic energy on
the sphere Sd and the Green energy on any two-point homogeneous manifold.

1.1 Two-point homogeneous manifolds

Let M be a Riemannian manifold with Riemannian distance ϑ and let G be its group of
isometries. In this thesis, we will always deal with compact connected two-point homoge-
neous spaces, i.e., spheres and projective spaces.

Definition 1.1.1. A connected Riemannian manifold M is said to be two-point homo-
geneous if for every two pairs (x1, x2) and (y1, y2) of points in M satisfying ϑ(x1, x2) =
ϑ(y1, y2), there exists an isometry g ∈ G such that g(xi) = yi, i = 1, 2.

The complete list of compact connected Riemannian manifolds was given in [Wan52]:
the sphere Sd, the real, complex and quaternionic projective spaces RPn,CPn,HPn and
the Cayley plane OP2. Before defining the projective spaces, we recall that

O = {x = x0 + x1i1 + . . .+ x7i7 : xi ∈ R} are the octonions,
H = {x ∈ O : x4 = x5 = x6 = x7 = 0} are the quaternions,
C = {x ∈ H : x2 = x3 = 0} are the complex numbers,
R = {x ∈ C : x1 = 0} are the real numbers.

The first three types of projective spaces FPn, F = R,C,H, can be thought as the spaces
of lines passing through the origin in Fn+1:

FPn = {p(a) = aF : a ∈ Fn+1, |a| = 1}.

This description does not extend to OP2, because the algebra O is not associative. How-
ever, there is another model for the projective spaces FPn, F = R,C,H, that admits a

1
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Sd FPn

α d
2
− 1

β α dimR(F)
2

− 1

κ 1/2 1

Table 1.1: Parameters α, β, κ associated to each two-point homogeneous manifold.

generalization to OP2, see [Skr20b] and references therein for details. The Cayley plane
can be described then as the subset of 3 × 3 Hermitian matrices Π over O with Π2 = Π
and Tr Π = 1.

Furthermore, since for each of these spaces its group of isometries G is transitive, from
[Lee13, Theorem 21.18] we have a quotient representation of M as an homogeneous space
G/Ga, where Ga := {g ∈ G : ga = a} is the isotropy group of an arbitrary point a ∈ M.

Following the notation from [ADG+22, Section 2], each two-point homogeneous space
has associated parameters α, β, κ given by Table 1.1 and is equipped with its correspond-
ing G-invariant volume form σ̃ and geodesic distance ϑ, normalized to take values in[
0, π

2κ

]
. We will usually consider the normalized uniform measure σ = σ̃/V , where V

stands for the total volume of M, i.e., V = VM = σ̃(M).
Given a sphere S(x, a) = {y ∈ M : ϑ(x, y) = a} centered at x of radius a, its surface

measure is
A(a) = VSd−1κ−2α−1 sin2α+1(κa) cos2β+1(κa),

see [Hel65, Proposition 5.6 and p.171]. Then the ball B(x, a) = {y ∈ M : ϑ(x, y) < a}
has volume

σ̃(B(x, a)) =

ˆ a

0

A(r) dr = VSd−1κ−2α−1

ˆ a

0

sin2α+1(κr) cos2β+1(κr) dr. (1.1)

Both quantities are independent of the point x ∈ M due to the symmetry of two-point
homogeneous manifolds.

If D = DM = π
2κ

is the diameter of M, that is, the maximum distance between two
points in M, from the previous formula with a = D we get the total volume of M:

VM = σ̃(B(x,D)) = VSd−1κ−2α−1

ˆ D

0

sin2α+1(κr) cos2β+1(κr) dr

= VSd−1κ−d

ˆ κD=π/2

0

sin2α+1 r cos2β+1 r dr

= VSd−1κ−dγα,β,

(1.2)

where

γα,β =

ˆ π/2

0

sin2α+1 r cos2β+1 r dr =
B(α + 1, β + 1)

2
. (1.3)
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In particular,

VSd = VSd−12d−1 B

(
d

2
,
d

2

)
=

2π
d+1
2

Γ
(
d+1
2

) ,
VFPn = VSd−1γα,β.

Instead of working with the surface area measure A(a), we will take its normalized version
v(a) = vM(a) = A(a)/V ,

v(a) =
κ

γα,β
sin2α+1(κa) cos2β+1(κa). (1.4)

Thus, if V (a) = VM(a) = σ(B(x, a)) is the normalized volume of the ball B(x, a), we
have

V (a) =

ˆ a

0

v(r) dr.

More generally, for any integrable function F : M → R such that F (x) = f(ϑ(x, x0)) for
some point x0 ∈ M, the formula

ˆ
M
F (x) dσ(x) =

ˆ D

0

f(r)v(r) dr (1.5)

holds.

1.1.1 The Laplace-Beltrami operator and its eigenfunctions

In this thesis we will follow the convention that the Laplace-Beltrami operator is given
by ∆ = −div∇. Then, the operator will have non-negative eigenvalues 0 = λ0 < λ1 < · · ·
that satisfy λℓ → ∞. For each ℓ ∈ N, let Vℓ be the corresponding eigenspace, with
dimension mℓ. In the sphere case, these are the vector spaces of spherical harmonics of
degree ℓ. The eigenvalues and their respective multiplicities are given by

λℓ = 4κ2ℓ(ℓ+ α + β + 1), (1.6)

mℓ =
2ℓ+ α + β + 1

α + β + 1

(α + β + 1)ℓ(α + 1)ℓ
ℓ!(β + 1)ℓ

. (1.7)

For the Hilbert space L2(M, σ) of real-valued square integrable functions in M with the
inner product ˆ

M
f(x)g(x) dσ(x), (1.8)

the decomposition L2(M, σ) =
⊕

ℓ≥0 Vℓ holds.
For each ℓ ≥ 0, let {Yℓ,k}mℓ

k=1 be an orthonormal basis of Vℓ with respect to the inner
product (1.8). The reproducing kernel of Vℓ is given by the addition formula:

Z
(α,β)
ℓ (x, y) =

mℓ∑
k=1

Yℓ,k(x)Yℓ,k(y) =
mℓ

P
(α,β)
ℓ (1)

P
(α,β)
ℓ (cos(2κϑ(x, y))). (1.9)
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Here P (α,β)
ℓ (t) are the Jacobi polynomials, see Section 1.1.2 for the definition and details

on the normalization.
The following result tells us how finite-dimensionalG-invariant subspacesH ⊂ L2(M, σ)

are. The importance of these subspaces for us lies in the fact that they induce G-invariant
determinantal point processes.

Proposition 1.1.2 ([ADG+22, Proposition 2.7]). Let H be a-finite dimensional G-invariant
subspace of L2(M, σ). Then there exist 0 ≤ ℓ1 < · · · < ℓm such that

H = Vℓ1 ⊕ · · · ⊕ Vℓm .

A particular instance of these G-invariant subspaces is the space of eigenfunctions
with eigenvalue at most λL,

ΠL = V0 ⊕ · · · ⊕ VL. (1.10)

By the mutual orthogonality of Vℓ, (1.9) and the summation formula (1.13), its reproduc-
ing kernel is

K
(α,β)
L (x, y) =

L∑
ℓ=0

Z
(α,β)
ℓ (x, y)

=
L∑

ℓ=0

mℓ

P
(α,β)
ℓ (1)

P
(α,β)
ℓ (cos(2κϑ(x, y)))

=
(α + β + 2)L
(β + 1)L

P
(α+1,β)
ℓ (cos(2κϑ(x, y))), x, y ∈ M.

(1.11)

The dimension of ΠL can be deduced by taking an arbitrary pair (x, x), x ∈ M, in the
previous expression:

π
(α,β)
L := dim (ΠL) =

L∑
ℓ=0

mℓ

=
(α + β + 2)L
(β + 1)L

P
(α+1,β)
ℓ (1)

=
(α + β + 2)L(α + 2)L

(β + 1)LL!
≈ L2α+2.

(1.12)

1.1.2 Jacobi polynomials

The classical Jacobi polynomials will appear in this thesis as the reproducing kernels of
the eigenspaces Vℓ of the Laplace-Beltrami operator. The Jacobi polynomials P (α,β)

ℓ (t) are
the orthogonal polynomials for the weight function (1− t)α(1+ t)β on the interval [−1, 1],
normalized as

P
(α,β)
ℓ (1) =

(
ℓ+ α

ℓ

)
.
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The summation formula [Sze39, Formula 4.5.3]

L∑
ℓ=0

2ℓ+ α + β + 1

α + β + 1

(α + β + 1)ℓ
(β + 1)ℓ

P
(α,β)
ℓ (t) =

(α + β + 2)L
(β + 1)L

P
(α+1,β)
ℓ (t) (1.13)

gives the reproducing kernel of ΠL =
⊕L

ℓ=0 Vℓ, see Section 1.1.1.

1.2 Energies

In this thesis we will be interested in N -point configurations optimizing certain energies.
Except for some specific low values of N , this is an almost impossible problem to solve
exactly, so in general our goal is to say something about the asymptotic expansion of
these energies or the behaviour of their minimizers.

Let M be a compact connected two-point homogeneous manifold and K : M×M →
R ∪ {+∞} a lower semicontinuous and symmetric function that we call a potential. In
particular, we will always work with potentials depending on the Riemannian distance,
i.e., K(x, y) = f(ϑ(x, y)) for some function f .

Let XN = {x1, . . . , xN} ⊂ M be an N -point configuration in M. The discrete K-
energy of XN is defined by

lim
N→∞

EK(XN) =
∑
i ̸=j

K(xi, xj).

Since M is compact and K is lower semicontinuous, the minimal discrete N-point K-
energy of M

EK(M, N) := min
XN⊂M

EK(XN)

is achieved by some N -point configuration X∗
N ⊂ M.

The discrete energy has a continuous version. Let P(M) denote the set of Borel prob-
ability measures on M. For any µ ∈ P(M), the continuous K-energy of µ is

IK(µ) =

ˆ
M

ˆ
M
K(x, y) dµ(x) dµ(y).

The Wiener constant is the smallest such energy, i.e., WK(M) = infµ∈P(M) IK(µ). We say
that the probability measure µM ∈ P(M) is an equilibrium measure for M relative to
the kernel K if IK [µ] = WK(M).

Both versions of the energy are intimately related for the class of potentials we will
consider in this thesis.

Theorem 1.2.1 ([BHS19, Section 4.2]). Let K be a symmetric, lower semicontinuous
and conditionally strictly positive definite kernel on M × M for which WK(M) < ∞.
Then

lim
N→∞

EK(M, N)

N2
= WK(M).
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Moreover, the equilibrium measure µM is unique and if (XN) is any sequence of N-point
minimizers of the discrete K-energy, then the sequence of normalized counting measures

ν(XN) :=
1

N

∑
x∈XN

δx

converges to µM in the weak* sense.

Although the proofs in [BHS19] are for compact subsets of Rd, they can be generalized
to compact metric spaces. The last part of the theorem says that the sequence of N -point
minimizers is uniformly distributed, that is, every region on M gets its fair share of points
as N grows, while the first part gives the leading term of the asymptotic expansion of
EK(M, N).

Next we explore this connection for the potentials considered in this thesis.

1.2.1 Riesz and logarithmic energy on Sd

Let M = Sd be the unit sphere. For s ̸= 0, the Riesz s-potential is defined by

Ks(x, y) := |x− y|−s.

For s = 0, instead of taking this potential, that would yield a trivial energy independent
of the N -point configuration, one considers its derivative, i.e.,

K0(x, y) =
d

ds

∣∣∣∣
s=0+

|x− y|−s = − log |x− y|.

This is the logarithmic potential.
We define the Riesz s-energy (logarithmic energy if s = 0) of XN = {x1, . . . , xN} ⊂ Sd

by
Es(XN) =

∑
i ̸=j

Ks(xi, xj).

The optimal N-point energy is given by

Es(N) =

{
minXN⊂Sd Es(XN), if s ≥ 0,

maxXN⊂Sd Es(XN), if s < 0.

The continuous Riesz s-energy (logarithmic energy if s = 0) of a Borel probability
measure µ on Sd is

Is[µ] =

ˆ
Sd

ˆ
Sd
fs(|x− y|) dµ(x) dµ(y),

with the optimal continuous s-energy being

Vs(Sd) =

{
minµ∈P(Sd) Is[µ], if s ≥ 0,

maxµ∈P(Sd) Is[µ], if s < 0.
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Classical potential theory yields that Vs(Sd) = +∞ for s ≥ d and that for −2 < s < d
the unique optimizer of Is[µ] is the normalized surface measure σ, with

Vs(Sd) =

2d−s−1 Γ(
d+1
2 )Γ( d−s

2 )
√
π Γ(d− s

2)
, −2 < s < d, s ̸= 0,

1
2
− log 2, s = 0, d = 2.

(1.14)

We have omitted here the logarithmic case for d ≥ 3, because we will restrict our interest
to d = 2 for this potential.

For s ≥ 0, the potential Ks is a symmetric, lower semicontinuous and conditionally
strictly positive definite kernel and satisfies WKs(Sd) < ∞ (see [BHS19, Chapter 4] for
proofs of these facts), the conclusions in Theorem 1.2.1 hold. For s < 0, the same is true
for the potential −Ks. Therefore, any sequence (XN) of N -point minimizers (maximizers
if s < 0) is uniformly distributed on Sd, i.e., σ is the weak* limit of the sequence of
normalized counting measures of the sets XN . Moreover, for −2 < s < d,

lim
N→∞

Es(N)

N2
= Vs(Sd).

Thus, we get the leading term of the asymptotic expansion Es(N) in the potential-theoretic
regime −2 < s < d:

Es(N) = Vs(Sd)N2 + o(N2), N → ∞.

Observe that in the hypersingular case s ≥ d, since Vs(Sd) = +∞, the leading term cannot
be justified as before.

In Chapter 2 we will give more details on the next-order term of Es(N) in the potential-
theoretic regime. For a complete overview on this topic we refer to [BHS19, Chapter 6].

1.2.2 Green energy

For a general Riemannian manifold M, the study of the energy given by a potential based
on the Green function was initiated in [BCCdR19]. Although one could take the definition
of Riesz and logarithmic energy as in the sphere, the Green function is somehow a more
intrinsic object to the manifold.

We recall the definition of the Green function from [Aub98, Section 4.2]. Let M be
any compact Riemannian manifold without boundary. The Green function is the unique
function G : M×M → R ∪ {∞} with the properties:

1. In the sense of distributions, ∆yG = δx − 1, where δx is Dirac’s delta.

2. G is C∞ on M×M minus the diagonal.

3. Symmetry: GM(x, y) = GM(y, x).

4. The mean of GM(x, ·) is zero for all x ∈ M, i.e.,
´
y∈MGM(x, y) dσ(y) = 0.

For an N -point configuration XN = {x1, . . . , xN} ⊂ M, the discrete Green energy of
XN is defined by

EM(XN) =
∑
i ̸=j

GM(xi, xj).
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By the lower semicontinuity, there exists some N -point configuration X∗
N reaching the

minimal Green energy,
EG(M, N) = min

XN⊂M
EM(XN).

The continuous Green energy of a measure µ ∈ P(M) is defined by

IG(µ) =

ˆ
M

ˆ
M
G(x, y) dµ(x) dµ(y).

In the context of two-point homogeneous manifolds, it was proved in [BCCdR19] that
G is a conditionally strictly positive kernel, so one can apply Theorem 1.2.1 to conclude
that the N -point minimizers are equidistributed and

lim
N→∞

EG(M, N)

N2
= WG(M). (1.15)

The equilibrium measure, which by the theorem is unique, turns out to be the normal-
ized uniform measure σ on M. By our normalization of G, its energy is zero and then
WG(M) = 0. Therefore, in this case (1.15) does not reveal the leading term of the minimal
Green energy and it only yields that

EG(M, N) = o(N2), N → ∞.

In Chapter 4 we will state the correct order of the leading term of the expansion and we
will obtain a lower bound of the main coefficient for two-point homogeneous manifolds.

1.3 Point processes

Let Λ be a locally compact Polish space, i.e., a topological space that can be topologized
by a complete and separable metric. In this dissertation, Λ is going to be either C or a
two-point homogeneous manifold M. We consider also a Radon measure µ on Λ. For the
concepts in this section we follow [HKPV09].

Definition 1.3.1. A simple point process X on Λ is a random discrete subset of Λ.

Given a subset D ⊂ Λ, we denote by X (D) or nD the random variable counting the
number of points that fall in D. A way to define the distribution of a point process is
through its joint intensities.

Definition 1.3.2. Let X be a simple point process on Λ. The joint intensities ρk of X
w.r.t. µ are functions defined on Λk such that for any family of mutually disjoint subsets
D1, . . . , Dk ⊂ Λ,

E

[
k∏

i=1

X (Di)

]
=

ˆ
∏

i Di

ρk(x1, . . . , xk) dµ(x1) · · · dµ(xk). (1.16)

If xi = xj for some i ̸= j, ρk(x1, . . . , xk) is required to vanish.
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Let X ∧k be the set of ordered k-tuples of distinct points of X . As a consequence of
(1.16) it follows that for any Borel set B ⊂ Λk,

E
[
|B ∩ X ∧k|

]
=

ˆ
B

ρk(x1, . . . , xk) dµ(x1) · · · dµ(xk), (1.17)

see [HKPV09, Formula 1.2.2]. Finally, a standard application of the monotone convergence
theorem yields

E

[ ∑
i1,...,ik distinct

ϕ(xi1 , . . . , xik)

]
=

ˆ
Λk

ϕ(x1, . . . , xk)ρk(x1, . . . , xk) dµ(x1) · · · dµ(xk)

(1.18)
for any measurable function ϕ : Λk → [0,+∞). This formula is used to compute the
expected energies of points drawn from some random point processes. Since the energies
we consider involve pairwise interactions between points, we will need the first and the
second joint intensity of these processes.

For a general point process, the number of points can depend on the realization. Since
we are interested in producing random N -point configurations, we will need to restrict to
processes giving N points almost surely.

Zeros of random polynomials

A natural way to obtain random point processes is to take the zero set of random functions.

Definition 1.3.3. Let f be a random variable taking values in the space of analytic
functions on a region Λ ⊂ C. We say that f is a Gaussian analytic function (GAF) on
Λ if (f(z1), . . . , f(zn)) has a mean zero complex Gaussian distribution for any n ≥ 1 and
every z1, . . . , zn ∈ Λ. The covariance kernel K is defined by K(z, w) = E[f(z)f(w)].

The following lemma provides a recipe to construct GAFs.

Lemma 1.3.4 ([HKPV09, Lemma 2.2.3]). Let ψn be holomorphic functions on Λ. As-
sume that

∑
n |ψn(z)|2 converges uniformly on compact sets in Λ. Let an be i.i.d. random

variables with standard complex Gaussian distribution. Then f(z) :=
∑

n anψn(z) is a
GAF with covariance kernel K(z, w) =

∑
n ψn(z)ψn(w).

Once we have this random analytic function, we can take the random subset X =
f−1(0), which by [HKPV09, Lemma 2.4.1] is a simple point process. The following formula
for the joint intensities of X was deduced by Hammersley.

Theorem 1.3.5 ([HKPV09, Corollary 3.4.2]). Let f be a GAF on Λ ⊂ C with covariance
kernel K. If det (K(zi, zj))i,j≤k does not vanish anywhere on Λ, then the k-point intensity
function ρk with respect to the Lebesgue measure exists and is given by

ρk(z1, . . . , zk) =
per(C −BA−1B∗)

det(πA)
,
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where A,B,C are the k × k matrices with entries

A(i, j) = E[f(zi)f(zj)],
B(i, j) = E[f ′(zi)f(zj)],

C(i, j) = E[f ′(zi)f ′(zj)].

For the first intensity we have a simpler expression, known as Edelman-Kostlan for-
mula [HKPV09, Formula 2.4.8]:

ρ1(z) =
1

4π
∆ logK(z, z), (1.19)

with respect to the Lebesgue measure on C.

Determinantal point processes

In the previous setting, in general it is difficult to derive the joint intensities of the zero
set. Even though they can be obtained through the Hammersley’s formula, in practice
the computation of ρk becomes hard already for k ≥ 2. Now we consider a kind of point
processes whose joint intensities are given by the determinant of the Gram matrix of a
kernel.

Definition 1.3.6. Let K : Λ2 → C be a measurable function. A simple point process X
on Λ is a determinantal point process with kernel K if, for every k ≥ 1 and x1, . . . , xk ∈ Λ,

ρk(x1, . . . , xk) = det (K(xi, xj))1≤i,j≤k (1.20)

with respect to the background measure µ.

In general, given such a function K, it is not clear whether a determinantal point pro-
cess with kernel K exists. However, it is the case for the particular kind of determinantal
processes we are going to consider throughout this thesis.

Definition 1.3.7. A determinantal projection process is a determinantal point process
whose kernel KH defines a projection operator onto a subspace H ⊂ L2(Λ, µ) or, equiva-
lently, KH(x, y) =

∑
φk(x)φk(y), where {φk}k is any orthonormal basis for H.

We will restrict ourselves to finite-dimensional subspaces H, in which case the kernel
is given by a finite sum KH(x, y) =

∑N
k=1 φk(x)φk(y). Then, by [HKPV09, Lemmas 4.2.6,

4.4.1, 4.5.1], there exists a unique determinantal projection process on Λ with kernel KH .
Moreover, the number of points in X is equal to N = dim(H), almost surely. This fact
makes determinantal projection processes a useful method to pick N random points from
Λ; otherwise the number of points could depend on the realization of the point process.
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1.3.1 Zeros of elliptic polynomials

As explained above, a source of simple point processes are the zero sets of Gaussian
analytic functions. In this section, we introduce a GAF on C satisfying two conditions:

(i) The number of points in X is N , almost surely.

(ii) If we send X to the sphere S2 through the stereographic projection, the resulting
point process is invariant in distribution under rotations of the sphere. This condition
can also be verified directly on C, see [HKPV09, Section 2.3] for the expression of
these rotations on the complex plane.

It turns out that, up to a constant, there is only one GAF on C satisfying (ii), [HKPV09,
Proposition 2.3.4, Theorem 2.5.2]:

PN(z) =
N∑

n=0

an

√(
N

n

)
zn, (1.21)

where an are i.i.d. random variables with standard complex Gaussian distribution. These
are the elliptic polynomials, also called Kostlan-Shub-Smale or SU(2) polynomials. In

terms of Lemma 1.3.4, they correspond to taking ψn(z) =
√(

N
n

)
zn for n ≤ N and

ψn(z) = 0 for n > N and have covariance kernel K(z, w) = (1 + zw)N . Observe that
condition (i) automatically holds, so the images by the stereographic projection of the
zeros of the elliptic polynomial PN give N random points on the sphere.

Applying the Edelman-Kostlan formula (1.19), we can obtain the first intensity of the
process:

ρ1(z) =
1

4π
∆ log

(
1 + |z|2

)N
= N

1

π(1 + |z|2)2
,

with respect to the Lebesgue measure dz. In other words, the intensity is N with respect
to the Lebesgue surface measure of the sphere, which means that the expected number
of points in a subset A ⊂ S2 is proportional to its area.

Since this process is not determinantal, as will be seen in Chapter 2, there is no simple
expression for the joint intensities ρk, k ≥ 2, and this complicates the application of
formula (1.18) to compute expected energies. However, in [ABS11] Armentano, Beltrán
and Shub managed to obtain the expected logarithmic energy without computing the
second joint intensity: if XN = {x1, . . . , xN} ⊂ S2 are the images by the stereographic
projection of the N zeros of the elliptic polynomial PN in (1.21),

E[E0(XN)] =

(
1

2
− log 2

)
N2 − 1

2
N logN −

(
1

2
− log 2

)
N.

Their arguments do not seem to extend to the Riesz energy, so in Chapter 2 we will
compute the second joint intensity ρ2 in order to apply formula (1.18).
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1.3.2 Spherical ensemble

Given A,B independent N×N random matrices with i.i.d. complex standard entries, the
eigenvalues {λ1, . . . , λN} of A−1B are a simple point process on C. Krishnapur [Kri09]
proved that this process is determinantal on the complex plane with kernel (1 + zw)N−1

with respect to the background measure

N

π(1 + |z|2)N+1
dz.

Moreover, its kernel defines a projection operator to the subspace

H = span

{
zk

(1 + |z|2)
N+1

2

: 0 ≤ k ≤ N − 1

}
,

so it is a determinantal projection process.
The process XN = {x1, . . . , xN} ⊂ S2 obtained when mapping the eigenvalues λi to

the sphere S2 through the stereographic projection is known as the spherical ensemble. If
the points x1, . . . , xN are taken in uniform random order, they have density

C
∏
i<j

|xi − xj|2

with respect to the surface measure σ in S2. Thus, the process is invariant in distribution
under rotations of S2. Furthermore, the kernel with respect to σ of the spherical ensemble
as a determinantal point process on S2 satisfies

|KN(x1, x2)|2 = N2

(
1− |x1 − x2|2

4

)N−1

. (1.22)

Alishahi and Zamani computed in [AZ15] the expected Riesz and logarithmic energies
of N points XN sampled from the spherical ensemble. In particular, one of their main
results is the following estimate for s < 4,

E[Es(XN)] =


21−s

2− s
N2 − Γ(N)Γ(1− s/2)

2sΓ(N + 1− s/2)
N2, s ̸= 0, 2,(

1
2
− log 2

)
N2 − 1

2
N logN +

(
log 2− γ

2

)
N − 1

4
+O

(
1
N

)
, s = 0,

1
4
N2 logN + γ

4
N2 − N

8
− 1

48
+O

(
1
N2

)
, s = 2.

(1.23)

1.3.3 Harmonic ensembles

We finally introduce the class of determinantal point processes that we are going to
study on two-point homogeneous spaces. As seen in Section 1.2, the potentials we are
considering in this dissertation are invariant under the isometries of the manifold M.
Thus, when choosing a subspace H ⊂ L2(M, σ) to induce a determinantal point process,
a natural condition is that the resulting process also exhibits invariance. By Proposition
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1.1.2, this happens if H is an orthogonal sum of eigenspaces Vℓ of the Laplace-Beltrami
operator on M.

Beltrán, Marzo and Ortega-Cerdà [BMOC16] defined in this way the harmonic en-
semble, a determinantal projection process in Sd given by the projection onto

ΠL = V0 ⊕ · · · ⊕ VL,

which makes the process invariant under rotations of the sphere. The subspace ΠL is the
vector space of spherical harmonics of degree at most L in Sd and coincides with the space
of polynomials of degree at most L in Rd+1 restricted to Sd.

More recently, in [ADG+22], a version of this process has been proposed for projective
spaces: the determinantal projection process induced by the subspace ΠL =

⊕L
ℓ=0 Vℓ,

where Vℓ are the eigenspaces of the Laplace-Beltrami operator on FPn. By analogy with
the spherical case, the authors call these processes harmonic ensembles.

Thus, for any two-point homogeneous manifold M with parameters (α, β), the har-
monic ensemble is a determinantal point process with π(α,β)

L = dim(ΠL) =
(α+β+2)L(α+2)L

(β+1)LL!
≈

Ld a.s. points whose kernel

K
(α,β)
L (x, y) =

(α + β + 2)L
(β + 1)L

P
(α+1,β)
L (cos(2κϑ(x, y))) (1.24)

defines a projection operator onto the subspace ΠL.





Chapter 2

Expected energy of zeros of elliptic
polynomials

In 2011, Armentano, Beltrán and Shub obtained in [ABS11] a closed expression for the
expected logarithmic energy of the random point process on the sphere given by the
roots of random elliptic polynomials. We consider a different approach which allows us to
extend the study to the Riesz energies and to compute the expected separation distance.

This chapter is based on [dlTM22].

2.1 Introduction and main results

In Section 1.3.1 we have introduced the elliptic polynomials PN , which are Gaussian
analytic functions defined by

PN(z) =
N∑

n=0

an

√(
N

n

)
zn,

where an are i.i.d. random variables with standard complex Gaussian distribution.
As defined in Section 1.2, the Riesz or logarithmic energy of a set of N different points

XN = {x1, . . . , xN} on the unit sphere S2 ⊂ R3 is

Es(XN) =
∑
i ̸=j

fs(|xi − xj|),

where fs(r) = r−s for s ̸= 0 and f0(r) = − log r are, respectively, the Riesz and logarithmic
potentials. We denote the extremal (minimal or maximal) energy attained by a set of N
points on the sphere by

Es(N) =

{
minXN⊂S2 Es(XN) if s ≥ 0,

maxXN⊂S2 Es(XN) if s < 0.

15
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In [ABS11], the authors obtained the following closed expression for the expected log-
arithmic energy of random points XN = {x1, . . . , xN} ⊂ S2, images by the stereographic
projection of zeros of elliptic polynomials,

E[E0(XN)] =

(
1

2
− log 2

)
N2 − 1

2
N logN −

(
1

2
− log 2

)
N. (2.1)

The asymptotic expression above is very close to the minimal logarithmic energy of N
points on the sphere, see Section 2.4. Working in a more general setting, in [Zho08, ZZ10]
the same expression (2.1) was obtained but with a o(N) remainder. Our main result in
this chapter is an extension of the above result (2.1) to the Riesz s-energies for s < 4.

Theorem 2.1.1. Let X = {x1, . . . , xN} ⊂ S2 be the image by the stereographic projection
of N points drawn from zeros of elliptic polynomials. Then,

(i) for s < 4, s ̸= 0, 2 and a fixed m ≥ 1,

E[Es(XN)] =
21−s

2− s
N2

+
Γ
(
1− s

2

)
2s+1

[
s
(
1 +

s

2

)m−1∑
j=0

B
( s
2
)

2j ( s
4
)(1− s

2
)2j

(2j)!
N

s
2
+1−2jζ

(
1− s

2
+ 2j, 1 +

4− s

4N

)

+ s
(
1− s

2

)m−1∑
j=0

B
( s
2
−1)

2j ( s−2
4
)(2− s

2
)2j

(2j)!
N

s
2
−2jζ

(
2− s

2
+ 2j, 1 +

2− s

4N

)]
+O

(
N

s
2
+1−2m

)
,

(2.2)
for N → +∞.

(ii) Moreover, the energies with s = −2n for an integer n ≥ −1 can be computed exactly:

For s = 0,

E[E0(XN)] =

(
1

2
− log 2

)
N2 − N logN

2
−
(
1

2
− log 2

)
N. (2.3)

For s = 2,

E[E2(XN)] = −Nπ
4

N−1∑
j=1

j

N
cot

(
πj

N

)
+

3N2

8
− 3N

8
. (2.4)

For s = −2n, n ≥ 1,

E[E−2n(XN)] = 22nN2

(
1

n+ 1
− n(n− 1)

n+ 1
− n

n+1∑
m=1

1

m

)
(2.5)

+ 22nnN

(
−γ +

n+1∑
m=1

(
n+ 1

m

)
(−1)mψ

(m
N

)(n− 1

n+ 1
m+ 1

))
.
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In the above result, γ is the Euler-Mascheroni constant, B(2ρ)
2j (ρ) are the generalized

Bernoulli polynomials defined by(
t

et − 1

)2ρ

eρt =
∞∑
j=0

t2j

(2j)!
B

(2ρ)
2j (ρ),

for |t| < 2π, with B(2ρ)
0 (ρ) = 1,

ζ(s, a) =
∞∑
j=0

1

(j + a)s
, ℜs > 1, a ̸∈ Z≤0

is the Hurwitz Zeta function and ψ(z) = Γ′(z)/Γ(z) is the digamma function.
By considering two terms of the asymptotic expansion of the Hurwitz Zeta function

ζ(s, 1 + a) =
∞∑
k=0

(−1)k(s)kζ(s+ k)

k!
ak,

for |a| < 1 and s ̸= 1 [DLMF, 25.11.10] and taking m = 1 in (2.2) we get, for 0, 2 ̸= s < 4,

E[Es(XN)] =
21−s

2− s
N2 + C(s)N1+s/2 +

s

16
C(s− 2)N s/2 +O(N−1+s/2), (2.6)

when N → ∞, where

C(s) =
1

2s
s

2

(
1 +

s

2

)
Γ
(
1− s

2

)
ζ
(
1− s

2

)
. (2.7)

Remark 2.1.2. The result above for the expected Riesz energy allows us to compare the
zeros of elliptic polynomials with other point processes, for example in terms of expected
p-moments of averages. Indeed, from Khintchine’s inequality [KK01, Theorem 3], it follows
that

E

[∣∣∣∣∣
N∑
i=1

xi

∣∣∣∣∣
p]

∼ Np/2

when x1, . . . , xN are uniform i.i.d. points on the sphere S2 and 1 ≤ p < ∞. For points
drawn from the spherical ensemble, for which there is repulsion between points, it follows
from

N∑
i,j=1

|xi − xj|2 = 2N2 − 2

∣∣∣∣∣
N∑
i=1

xi

∣∣∣∣∣
2

(2.8)

and the result about the expected Riesz energy s = −2 in (1.23) that the expected
2-moment is bounded. Hence, for the spherical ensemble E

[∣∣∣∑N
i=1 xi

∣∣∣p] is bounded for
1 ≤ p ≤ 2, and numerical simulations suggest that the same holds for p > 2. In our case,
for zeros of elliptic polynomials mapped to the sphere by the stereographic projection, it
follows from (2.5) that

E

∣∣∣∣∣
N∑
i=1

xi

∣∣∣∣∣
2
 = 4

ζ(3)

N
+ o(N−1), (2.9)
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for N → +∞, and the average p-moments for 1 ≤ p ≤ 2 converge to zero. Again,
numerical simulations suggest the same behavior for p > 2. It is well known that minimal
logarithmic points have center of mass in the center of the sphere, i.e. have zero dipole,
[BHS19, Corollary 6.7.5], [BBPM94]. Therefore, the behavior of the expected p-moments
matches the particularly low logarithmic energy of zeros of elliptic polynomials. For the
comparison with minimal and expected energies of other point processes, see discussion
in Section 2.4.

Figure 2.1: Plot of 4ζ(3)/N and realizations of |
∑N

i=1 xi|2 for natural N up to 1000.

In our last result, we compute a closed expression for the expected separation distance
between points drawn from zeros of elliptic polynomials. The separation distance of the
configuration XN = {x1, . . . , xN} ⊂ S2 is defined by

sep(XN) = min
i ̸=j

|xi − xj|,

and its counting version by G(t,XN) = |{i < j : |xi − xj| ≤ t}|. Recall that energy
minimizers have a separation distance of order N−1/2, [BHS19, Section 6.9].

Theorem 2.1.3. Let XN be a set of N−points drawn from zeros of elliptic polynomials
mapped to the sphere by the stereographic projection. Then

E[G(t,XN)] =
t2N2

8
− N

2
+

t2N2

8(4− t2)
((

4
4−t2

)N − 1
) [8− t2 − t2N − t2N(

4
4−t2

)N − 1

]
.

(2.10)
Therefore,

E[G(t,XN)] =
N3t4

128
(1 + o(1)), (2.11)
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if t = o(1/
√
N), and moreover

E[G(t,XN)] ≤
N3t4

128
, (2.12)

for t ≤ 2.

Note that sep(XN) ≤ t implies G(t,XN) ≥ 1, hence

P(sep(XN) ≤ t) ≤ P(G(t,XN) ≥ 1) ≤ E(G(t,XN))

and therefore, as in the harmonic case, see [BMOC16], an N -tuple drawn from the zeros of
elliptic polynomials likely satisfies sep(XN) ≳ N−3/4, Figure 2.2. See also [AZ15, Corollary
1.6] for the analogue result for the spherical ensemble.

Figure 2.2: x marks correspond to the values of the minimal separation for realizations
of N elliptic zeros for natural N from 10 up to 1000. The continuous graph are cN−3/4

for c = 1.89 (yellow) and 3.27 (brown): using Chebyshev’s inequality at least 90% of the
realizations are above yellow and at least 10% above brown.

2.2 Intensity function

In this section we compute the 2-point intensity function of the random point process on
C given by the roots of random elliptic polynomials PN . With this intensity function, we
will be able to compute the expected energy for N points drawn from this point process.

Let F (x, y) be a measurable function defined on S2 × S2 whose variables will be
considered in C through the stereographic projection, i.e., F (z, w) = F (x(z), y(w)), with
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the points x, y ∈ S2 corresponding to z, w ∈ C. By (1.18), if x1, . . . xN ∈ S2 are the images
of the zeros z1, . . . , zN of elliptic polynomials, then

E

[∑
i ̸=j

F (xi, xj)

]
= E

[∑
i ̸=j

F (zi, zj)

]
=

ˆ
C

ˆ
C
F (z, w)ρ2(z, w) dz dw, (2.13)

with ρ2(z, w) the 2-point intensity function given by (1.3.5),

ρ2(z1, z2) =
per(C −BA−1B∗)

det(πA)
, (2.14)

where A,B,C are the 2× 2 matrices

A(i, j) = E[PN(zi)PN(zj)],

B(i, j) = E[P ′
N(zi)PN(zj)],

C(i, j) = E[P ′
N(zi)P

′
N(zj)].

Here, ρ2 denotes the 2-point intensity with respect to the Lebesgue measure dz on C. By
the rotational invariance of the process, it is also natural to rewrite the intensity function
in terms of the spherical measure

dσ(z) =
dz

π(1 + |z|2)2
.

In fact, as explained in Section 1.3.1, the first intensity is then constant. If ρ∗k, k = 1, 2,
denotes the k-intensity function with respect to σ, we have ρ∗1(z) = N and

ρ∗2(z, w) = π2ρ2(z, w)(1 + |z|2)2(1 + |w|2)2, (2.15)

as can be checked by rewriting the integral in (2.13) as

ˆ
C

ˆ
C
F (z, w)

ρ∗2(z,w)︷ ︸︸ ︷
π2ρ2(z, w)(1 + |z|2)2(1 + |w|2)2 dz

π(1 + |z|2)2︸ ︷︷ ︸
dσ(z)

dw

π(1 + |w|2)2︸ ︷︷ ︸
dσ(w)

.

The relevance of ρ∗2 comes from its rotational invariance. Thus, if we assume that F is
also invariant by rotations, we have

E

[∑
i ̸=j

F (xi, xj)

]

=

ˆ
C

ˆ
C
F (z, w)ρ2(z, w) dz dw by (2.13)

=

ˆ
C
dσ(w)

ˆ
C
F (z, w)ρ∗2(z, w) dσ(z) by (2.15)

=

ˆ
C
dσ(w)

ˆ
C
F (φw(z), 0)ρ

∗
2(φw(z), 0) dσ(z) F, ρ∗2 inv. by rotations

=

ˆ
C
dσ(w)

ˆ
C
F (z, 0)ρ∗2(z, 0) dσ(z) σ invariant by rotations

= π

ˆ
C
F (z, 0)ρ2(z, 0) dz,

(2.16)
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Figure 2.3: π2

N2 (ρ2(r, 0)− ρ1(r)ρ1(0)) for r > 0 and N = 10.

where φw is any rotation of the sphere that sends the fixed w to 0.
Therefore, it is enough to compute ρ2(z1, z2) for z1 = z ∈ C and z2 = 0. The matrices

in (2.14) are then

A =

(1 + |z|2)N 1

1 1

 ,

B = N

z(1 + |z|2)N−1 0

z 0

 ,

C = N

(1 + |z|2)N−2(1 +N |z|2) 1

1 1

 ,

and we obtain

ρ2(z, 0) =

N2

[(
1− N |z|2

(1+|z|2)N−1

)2
(1 + |z|2)N−2 +

(
1− N |z|2(1+|z|2)N−1

(1+|z|2)N−1

)2]
π2[(1 + |z|2)N − 1]

,

see [Han96] and Figure 2.3 where one can notice that this point process is not determi-
nantal ([HKPV09, p.83]).

Thus, if F (x, y) = f(|x − y|) for some function f , the following expression for the
chordal metric

|x− y| = 2|z − w|√
1 + |z|2

√
1 + |w|2

(2.17)
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yields F (z, 0) = f

(
2|z|√
1+|z|2

)
and from formula (2.16) we get

E

[∑
i ̸=j

F (xi, xj)

]
= π

ˆ
C
f

(
2|z|√
1 + |z|2

)
ρ2(z, 0) dz

= 2N2

ˆ ∞

0

r f

(
2r√
1 + r2

)
γ(r) dr,

(2.18)

where

γ(r) =

(
1− Nr2

(1+r2)N−1

)2
(1 + r2)N−2 +

(
1− Nr2(1+r2)N−1

(1+r2)N−1

)2
(1 + r2)N − 1

. (2.19)

2.3 Expected logarithmic and Riesz energy

In this section we apply (2.18) to compute the expected energies for XN , the N zeros
of random elliptic polynomials stereographically projected to S2. In the logarithmic case,
the result (2.1) follows immediately, since the resulting integrand in (2.18) has a primitive
function:

E[E0(XN)] = −2N2

ˆ ∞

0

r log

(
2r√
1 + r2

)
γ(r) dr =

N2

2

[
gN(r)

]∞
0
,

with

gN(r) =
r2
(
2 ((N − 1)r2 − 2) log

(
2r√
1+r2

)
+ 1
)

(1 + r2)
(
(1 + r2)N − 1

) +
2 log

(
2r√
1+r2

)
1 + r2

+
2Nr4 log

(
2r√
1+r2

)
(1 + r2)

(
(1 + r2)N − 1

)2 − 1

1 + r2
+

log
(
(1 + r2)

N − 1
)

N
− 2 log(r).

Evaluating at the endpoints,
lim

r→+∞
gN(r)

= lim
r→+∞

(
2(N − 1)r4 log 2

r2+2N
+

2 log 2

1 + r2
+

2Nr4 log 2

r2+4N
− 1

1 + r2
+ 2 log(r)− 2 log(r)

)
= 0

and
lim
r→0

gN(r)

= lim
r→0

(
r2 (−4 log(2r) + 1)

Nr2
+ 2 log(2r) +

2Nr4 log(2r)

N2r4
− 1

1 + r2
+

log(Nr2)

N
− 2 log(r)

)
= lim

r→0

(
1

N
(−2 log 2 + 1 + logN) + 2 log 2− 1

1 + r2

)
= −1 + 2 log 2 +

1

N
(logN + 1− 2 log 2) .
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Then
E[E0(x1, . . . , xN)] = −N

2

2

(
−1 + 2 log 2 +

1

N
(logN + 1− 2 log 2)

)
=

(
1

2
− log 2

)
N2 − N

2
logN −

(
1

2
− log 2

)
N.

Next we study the expected Riesz energy. For s ̸= 0, (2.18) yields

E[Es(XN)] = 21−sN2

ˆ ∞

0

r1−s(1 + r2)s/2γ(r) dr. (2.20)

Theorem 2.1.1 deals with this integral to provide the exact Riesz energy for some specific
values of s and its asymptotic expansion as N → ∞ for any value. We also recover the
expected logarithmic energy as a limit when s→ 0.

2.3.1 Proof of Theorem 2.1.1

In this section we prove first our general result (2.2) with the auxiliary Proposition 2.3.1.
Then we prove the cases (2.4),(2.5) and finally (2.3).

Proof. To simplify the notation we write E[Es] instead of E[Es(XN)]. The change of
variables r =

√
x in (2.20) yields

E[Es] =
N2

2s

ˆ ∞

0

x−s/2(1 + x)s/2

[(1 + x)N − 1]3[(
(1 + x)N − 1−Nx

)2
(1 + x)N−2 +

(
(1 + x)N − 1−Nx(1 + x)N−1

)2]
dx.

The integrand is equivalent to x−2 at infinity, which is integrable, and to x1−s/2 at x = 0,
which is integrable iff 1− s/2 > −1. Then, the energy will be finite iff s < 4.

Now let us compute the integral. We take r = s/2 for simplicity, so we will be assuming
r < 2 throughout the proof. Using that 1

(x−1)3
= 1

2

∑∞
k=2 k(k − 1)x−(k+1) for x > 1 and

the fact that all the terms are positive, we get

E[E2r] =
N2

22r+1

∞∑
k=2

k(k − 1)

ˆ ∞

0

(1 + x)r−N(k+1)

xr
(2.21)[(

(1 + x)N − 1−Nx
)2

(1 + x)N−2 +
(
(1 + x)N − 1−Nx(1 + x)N−1

)2]
dx

=
N2

22r+1
lim

M→∞

M∑
k=2

k(k − 1)

[ˆ ∞

0

[
(1 + x)r−2−Nk + (1 + x)r−N(k+1)

] (
(1 + x)N − 1

)2
xr

dx︸ ︷︷ ︸
Ak

− 2N

ˆ ∞

0

x1−r
[
(1 + x)r−2−Nk + (1 + x)r−1−Nk

] (
(1 + x)N − 1

)
dx︸ ︷︷ ︸

Bk

+N2

ˆ ∞

0

x2−r
[
(1 + x)r−2−Nk + (1 + x)r−2−N(k−1)

]
dx︸ ︷︷ ︸

Ck

]
.
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Using the following integral representation for the beta function [GR07, 8.380 (3)],

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
=

ˆ ∞

0

tx−1

(1 + t)x+y
dt x, y > 0, (2.22)

it is immediate to obtain Bk, Ck in (2.21)

Bk = B(2−r,N(k−1))−B(2−r,Nk)+B(2−r,N(k−1)−1)−B(2−r,Nk−1), (2.23)

Ck = B(3− r,Nk − 1) +B(3− r,N(k − 1)− 1), (2.24)

so

− 2NBk +N2Ck

= Γ(2− r)

[
−2N

(
Γ(N(k − 1))

Γ(N(k − 1) + 2− r)
− Γ(Nk)

Γ(Nk + 2− r)
+

Γ(N(k − 1)− 1)

Γ(N(k − 1) + 1− r)

− Γ(Nk − 1)

Γ(Nk + 1− r)

)
+N2(2− r)

(
Γ(Nk − 1)

Γ(Nk + 2− r)
+

Γ(N(k − 1)− 1)

Γ(N(k − 1) + 2− r)

)]
.

To compute Ak we integrate by parts. Let β ∈ {r − 2 − Nk, r − N(k + 1)} denote the
exponent in (1 + x). If r ̸= 1,

Iβ :=

ˆ ∞

0

(1 + x)β
(
(1 + x)N − 1

)2
xr

dx =
1

1− r
x1−r(1 + x)β

(
(1 + x)N − 1

)2 ∣∣∣∞
0

− 1

1− r

ˆ ∞

0

x1−r
[
β(1 + x)β−1

(
(1 + x)N − 1

)2
+ 2N(1 + x)β+N−1

(
(1 + x)N − 1

)]
dx,

with the evaluation in the first line vanishing, so

Iβ =
−1

1− r

[
β

ˆ ∞

0

x1−r(1 + x)β−1
(
(1 + x)2N − 2(1 + x)N + 1

)
dx

+ 2N

ˆ ∞

0

x1−r(1 + x)β+N−1
(
(1 + x)N − 1

)
dx

]
and from (2.22),

Iβ =
−1

1− r
[β(B(2− r,−β − 2N − 1 + r)

− 2B(2− r,−β −N − 1 + r) +B(2− r,−β − 1 + r))

+ 2N (B(2− r,−β − 2N − 1 + r)−B(2− r,−β −N − 1 + r))]

= B(1− r,−β − 2N − 1 + r)− 2B(1− r,−β −N − 1 + r) +B(1− r,−β − 1 + r).

Then

Ak = Ir−2−Nk + Ir−N(k+1)

= B(1− r,N(k − 2) + 1)− 2B(1− r,N(k − 1) + 1) +B(1− r,Nk + 1) (2.25)
+B(1− r,N(k − 1)− 1)− 2B(1− r,Nk − 1) +B(1− r,N(k + 1)− 1),
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or, in terms of the gamma function,

Ak = Γ(1− r)

[
Γ(N(k − 2) + 1)

Γ(N(k − 2) + 2− r)
− 2

Γ(N(k − 1) + 1)

Γ(N(k − 1) + 2− r)
+

Γ(Nk + 1)

Γ(Nk + 2− r)

+
Γ(N(k − 1)− 1)

Γ(N(k − 1)− r)
− 2

Γ(Nk − 1)

Γ(Nk − r)
+

Γ(N(k + 1)− 1)

Γ(N(k + 1)− r)

]
,

provided that r ̸= 1. The case r = 1 will be studied as the limit r → 1.
Therefore, for r ̸= 1, writing all together

E[E2r] =
N2

22r+1
lim

M→∞

[
M∑
k=2

k(k − 1)Γ(1− r)

(
Γ(N(k − 2) + 1)

Γ(N(k − 2) + 2− r)
− 2

Γ(N(k − 1) + 1)

Γ(N(k − 1) + 2− r)

+
Γ(Nk + 1)

Γ(Nk + 2− r)
+

Γ(N(k − 1)− 1)

Γ(N(k − 1)− r)
− 2

Γ(Nk − 1)

Γ(Nk − r)
+

Γ(N(k + 1)− 1)

Γ(N(k + 1)− r)

)
+

M∑
k=2

k(k − 1)Γ(2− r)

(
−2N

(
Γ(N(k − 1))

Γ(N(k − 1) + 2− r)
− Γ(Nk)

Γ(Nk + 2− r)

+
Γ(N(k − 1)− 1)

Γ(N(k − 1) + 1− r)
− Γ(Nk − 1)

Γ(Nk + 1− r)

)
(2.26)

+N2(2− r)

(
Γ(Nk − 1)

Γ(Nk + 2− r)
+

Γ(N(k − 1)− 1)

Γ(N(k − 1) + 2− r)

))]
.

The sums get simplified by using the property Γ(z+1) = zΓ(z) and changing the indices
in such a way that all quotients have the form Γ(Nk + 1)/Γ(Nk + 2− r)

E[E2r] =
Γ(1− r)N2

22r+1

lim
M→∞

[
2

Γ(2− r)
+

M∑
k=1

(1− r +Nk(1 + r))
2rΓ(Nk)

Γ(Nk + 2− r)
− (M + 1)M

Γ(N(M − 1) + 1)

Γ(N(M − 1) + 2− r)

− (M + 1) (r (N (N(4M − 3)− 2M + 2)− 1)− 2(N − 1)N(M − 1) + (N − 1)2r2)

N(NM − 1)

Γ(NM + 1)

Γ(NM + 2− r)
+
M(M − 1)(N(M + 1)− r)(N(M + 1) + 1− r)

N(M + 1)(N(M + 1)− 1)

Γ(N(M + 1) + 1)

Γ(N(M + 1) + 2− r)

]
.

Taking the asymptotic expansion of the terms in M as M → ∞, we get

E[E2r] =
Γ(1− r)N2

22r+1
lim

M→∞

[
2

Γ(2− r)
+ 2r(1 + r)

M∑
k=1

Γ(Nk + 1)

Γ(Nk + 2− r)
(2.27)

+2r(1− r)
M∑
k=1

Γ(Nk)

Γ(Nk + 2− r)
− 2(1 + r)N r−1M r − r(N + r +Nr − r2)N r−2M r−1

]
.

Applying Proposition 2.3.1 below we obtain the following expression for every r ̸= 0, 1
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with r < 2,

E[E2r] =
Γ(1− r)N2

22r+1[
2

Γ(2− r)
+ 2r(1 + r)

m−1∑
j=0

B
(r)
2j (

r
2
)(1− r)2j

(2j)!
ζ

(
1− r + 2j, 1 +

2− r

2N

)
N r−1−2j

+2r(1− r)
m−1∑
j=0

B
(r−1)
2j ( r−1

2
)(2− r)2j

(2j)!
ζ

(
2− r + 2j, 1 +

1− r

2N

)
N r−2−2j +O

(
N r−1−2m

)]
.

Writing the expression in terms of s = 2r yields the result (2.2).
Now we prove (2.4) from the case r ̸= 1. By continuity, the evaluation of the integral

at the beginning of (2.21) can be performed by taking the limit r → 1 in Ak, Bk, Ck,
that is, in both sums in (2.26). The only tricky limit is the first one. It can be computed
using the asymptotic expansion

1

Γ(a+ γ)
=

1

Γ(a)
− ψ(a)

Γ(a)
γ + o (γ) ,

for γ → 0, where a will be a natural number. Considering γ = 1− r,

lim
γ→0

Γ(γ)

[
Γ(N(k − 2) + 1)

Γ(N(k − 2) + 1 + γ)
− 2Γ(N(k − 1) + 1)

Γ(N(k − 1) + 1 + γ)
+

Γ(Nk + 1)

Γ(Nk + 1 + γ)

+
Γ(N(k − 1)− 1)

Γ(N(k − 1)− 1 + γ)
− 2

Γ(Nk − 1)

Γ(Nk − 1 + γ)
+

Γ(N(k + 1)− 1)

Γ(N(k + 1)− 1 + γ)

]
= −ψ(N(k − 2) + 1) + 2ψ(N(k − 1) + 1)− ψ(Nk + 1)

− ψ(N(k − 1)− 1) + 2ψ(Nk − 1)− ψ(N(k + 1)− 1),

and we get from (2.26)

E[E2] =
N2

23
lim

M→∞

[
M∑
k=2

k(k − 1)(−ψ(N(k − 2) + 1) + 2ψ(N(k − 1) + 1) (2.28)

− ψ(Nk + 1)− ψ(N(k − 1)− 1) + 2ψ(Nk − 1)− ψ(N(k + 1)− 1))

+
M∑
k=2

k(k − 1)

(
−2N

(
Γ(N(k − 1))

Γ(N(k − 1) + 1)
− Γ(Nk)

Γ(Nk + 1)
+

Γ(N(k − 1)− 1)

Γ(N(k − 1))

−Γ(Nk − 1)

Γ(Nk)

)
+N2

(
Γ(Nk − 1)

Γ(Nk + 1)
+

Γ(N(k − 1)− 1)

Γ(N(k − 1) + 1)

))]
.

The first sum in (2.28),

Σ1 :=
M∑
k=2

k(k − 1)(−ψ(N(k − 2) + 1) + 2ψ(N(k − 1) + 1)− ψ(Nk + 1)

− ψ(N(k − 1)− 1) + 2ψ(Nk − 1)− ψ(N(k + 1)− 1)),
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can be rewritten as

Σ1 = (M + 2)(M + 1)ψ(NM + 1) + (M + 1)Mψ(N(M − 1) + 1)

− 2(M + 1)Mψ(NM + 1)− 2
M∑
k=0

ψ(Nk + 1)

+ (M + 1)Mψ(NM − 1)−M(M − 1)ψ(N(M + 1)− 1)− 2
M∑
k=1

ψ(Nk − 1),

while the second

Σ2 :=
M∑
k=2

k(k − 1)

(
−2N

(
Γ(N(k − 1))

Γ(N(k − 1) + 1)
− Γ(Nk)

Γ(Nk + 1)
+

Γ(N(k − 1)− 1)

Γ(N(k − 1))

−Γ(Nk − 1)

Γ(Nk)

)
+N2

(
Γ(Nk − 1)

Γ(Nk + 1)
+

Γ(N(k − 1)− 1)

Γ(N(k − 1) + 1)

))
becomes

Σ2 =
M∑
k=2

k(k − 1)

(
−2N

(
1

N(k − 1)
− 1

Nk
+

1

N(k − 1)− 1
− 1

Nk − 1

)
+ N2

(
1

Nk − 1
− 1

Nk
+

1

N(k − 1)− 1
− 1

N(k − 1)

))
,

which after playing with the indices gets simplified to

Σ2 =
M∑
k=2

k(k − 1)

(
2N −N2

Nk
− 2N +N2

N(k − 1)
+

(2N +N2)

Nk − 1
− (2N −N2)

N(k − 1)− 1

)

= −
M−1∑
k=1

2kN(2 + kN)

Nk
+
M(M − 1)

NM
(2N −N2)

+
M−1∑
k=1

2kN(−2 + kN)

Nk − 1
+
M(M − 1)

NM − 1
(2N +N2)

= −(M − 1)(4 +N)− 2

N

M−1∑
k=1

1

k − 1
N

+
M(M − 1)N(2 +N)

NM − 1
.

Now we will use the functional relation ψ(x + 1) = ψ(x) + 1
x

for the digamma function,
which allows us to obtain, for instance,

M−1∑
k=1

1

k − 1
N

= ψ

(
M − 1

N

)
− ψ

(
1− 1

N

)
.

Using this we get

Σ2 = −(M − 1)(4 +N)− 2

N

(
ψ

(
M − 1

N

)
− ψ

(
1− 1

N

))
+
M(M − 1)N(2 +N)

NM − 1
.
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We can simplify Σ1 with the same property. Since

M∑
k=1

ψ(Nk − 1) =
M∑
k=1

(
ψ(Nk + 1)− 1

Nk − 1
− 1

Nk

)
,

then

−2
M∑
k=0

ψ(Nk + 1)− 2
M∑
k=1

ψ(Nk − 1) = 2γ − 4
M∑
k=1

ψ(Nk + 1) + 2
M∑
k=1

1

Nk − 1
+ 2

M∑
k=1

1

Nk

= 2γ − 4
M∑
k=1

ψ(Nk + 1) +
2

N

(
ψ

(
M + 1− 1

N

)
− ψ

(
1− 1

N

))
+

2

N
(ψ(M + 1) + γ).

Therefore,

Σ1 + Σ2 = (M + 2)(M + 1)ψ(NM + 1) + (M + 1)Mψ(N(M − 1) + 1)

− 2(M + 1)Mψ(NM + 1) + (M + 1)Mψ(NM − 1)−M(M − 1)ψ(N(M + 1)− 1) + 2γ

+
2

N

(
ψ

(
M + 1− 1

N

)
− ψ

(
1− 1

N

))
+

2

N
(ψ(M + 1) + γ)− (M − 1)(4 +N)

− 2

N

(
ψ

(
M − 1

N

)
− ψ

(
1− 1

N

))
+
M(M − 1)N(2 +N)

NM − 1
− 4

M∑
k=1

ψ(Nk + 1).

From the relation [GR07, 8.365 (6)],

M∑
k=1

ψ(Nk + 1) =
1

N

M∑
k=1

N∑
j=1

ψ

(
k +

j

N

)
+M logN =

1

N

N∑
j=1

M∑
k=1

ψ

(
k +

j

N

)
+M logN.

Summation by parts gives

M∑
k=1

ψ

(
k +

j

N

)
=Mψ

(
M +

j

N

)
−

M−1∑
l=1

(
ψ

(
l + 1 +

j

N

)
− ψ

(
l +

j

N

))
l

=Mψ

(
M +

j

N

)
−

M−1∑
l=1

l

l + j
N

=Mψ

(
M +

j

N

)
− (M − 1) +

j

N

M−1∑
l=1

1

l + j
N

=Mψ

(
M +

j

N

)
− (M − 1) +

j

N

(
ψ

(
M +

j

N

)
− ψ

(
1 +

j

N

))
=

(
M +

j

N

)
ψ

(
M +

j

N

)
− j

N
ψ

(
1 +

j

N

)
− (M − 1),
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for every 1 ≤ j ≤ N . Thus,

Σ1 + Σ2 = (M + 2)(M + 1)ψ(NM + 1) + (M + 1)Mψ(N(M − 1) + 1)

− 2(M + 1)Mψ(NM + 1) + (M + 1)Mψ(NM − 1)−M(M − 1)ψ(N(M + 1)− 1)

+ 2γ +
2

N

(
ψ

(
M + 1− 1

N

)
− ψ

(
1− 1

N

))
+

2

N
(ψ(M + 1) + γ)

− (M − 1)(4 +N)− 2

N

(
ψ

(
M − 1

N

)
− ψ

(
1− 1

N

))
+
M(M − 1)N(2 +N)

NM − 1

− 4

N

N∑
j=1

(
M +

j

N

)
ψ

(
M +

j

N

)
+

4

N

N∑
j=1

j

N
ψ

(
1 +

j

N

)
+ 4(M − 1)− 4M logN

and simplifying

Σ1 + Σ2 = −M(M − 1)ψ(N(M + 1)− 1) + 2(M + 1)ψ(NM + 1)

+ (M + 1)Mψ(N(M − 1) + 1)− M(M + 1)

NM
+

(M − 1) ((N2 + 2N − 1)M − 2)

NM − 1

+
2

N
ψ(M + 1)−N(M − 1)− 4M logN − 4

N

N∑
j=1

(
M +

j

N

)
ψ

(
M +

j

N

)

+
4

N

N∑
j=1

j

N
ψ

(
1 +

j

N

)
+ 2γ

(
1 +

1

N

)
.

Using the asymptotic expansion ψ(z) = log z − 1
2z

− 1
12z2

+O (z−4) as z → ∞, we obtain

Σ1 + Σ2 = −1− 3

N
+ 2 logN +O

(
M−1

)
+

4

N

N∑
j=1

j

N
ψ

(
1 +

j

N

)
+ 2γ

(
1 +

1

N

)
.

Then

E[E2] =
N2

23
lim

M→∞

[
Σ1 + Σ2

]
=
N2

23

(
− 1− 3

N
+ 2 logN +

4

N

N∑
j=1

j

N
ψ

(
1 +

j

N

)
+ 2γ

(
1 +

1

N

))

=
N2

23

(
− 1− 3

N
+ 2 logN +

4

N

N∑
j=1

j

N

1

j/N︸ ︷︷ ︸
=N

+
4

N

N∑
j=1

j

N
ψ

(
j

N

)
+ 2γ

(
1 +

1

N

))

=
N

23

(
3N − 3 + 2N logN + 4

N∑
j=1

j

N
ψ

(
j

N

)
+ 2γ

(
N + 1

))

=
N

23

(
3N − 3 + 2N logN + 4

N−1∑
j=1

j

N
ψ

(
j

N

)
+ 2γ(N − 1)

)
.
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Finally, using
N−1∑
j=1

j

N
ψ

(
j

N

)
= −γ

2
(N − 1)− N

2
logN − π

2

N−1∑
j=1

j

N
cot

(
πj

N

)
,

[Bla15, (B.11)], we get (2.4)

E[E2] = −Nπ
4

N−1∑
j=1

j

N
cot

(
πj

N

)
+

3N2

8
− 3N

8
.

To compute E[E−2n] and E[E0], we start observing that for r < 0 formula (2.27) yields

E[E2r] =
Γ(1− r)N2

22r(
1

Γ(2− r)
+ r(1 + r)

∞∑
k=1

Γ(Nk + 1)

Γ(Nk + 2− r)
+ r(1− r)

∞∑
k=1

Γ(Nk)

Γ(Nk + 2− r)

)
,

since both sums are convergent in this case. Using the expression of the beta function in
terms of gamma function and the monotone convergence theorem, we get

E[E2r] =
N2

22r

(
1

1− r
+ r(1 + r)

ˆ 1

0

(1− t)−r tN

1− tN
dt+ r

ˆ 1

0

(1− t)1−r tN−1

1− tN
dt

)
.

(2.29)
For r = −n, the energy is

E[E−2n] = 22nN2

(
1

n+ 1
− n(1− n)

ˆ 1

0

(1− t)n
tN

1− tN
dt︸ ︷︷ ︸

I1

−n
ˆ 1

0

(1− t)1+n tN−1

1− tN
dt︸ ︷︷ ︸

I2

)
.

(2.30)
To compute I1 and I2 we will use the following integral representation [GR07, 8.361 (7)]
for the digamma function

ψ(z) =

ˆ 1

0

tz−1 − 1

t− 1
dt− γ, z > 0,

from which we getˆ 1

0

ta − 1

1− tN
dt =

1

N

ˆ 1

0

y(a+1)/N−1 − y1/N−1

1− y
dt = − 1

N

(
ψ

(
a+ 1

N

)
− ψ

(
1

N

))
, (2.31)

for any a > −1. Then

I1 =

ˆ 1

0

n∑
m=0

(
n

m

)
(−1)m

tN+m

1− tN
dt =

ˆ 1

0

n∑
m=0

(
n

m

)
(−1)m

tN+m − 1

1− tN
dt

= − 1

N

n∑
m=0

(
n

m

)
(−1)m

(
ψ

(
m+ 1

N
+ 1

)
− ψ

(
1

N

))
= − 1

N

n∑
m=0

(
n

m

)
(−1)mψ

(
m+ 1

N
+ 1

)
,
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where we have used
∑n

m=0

(
n
m

)
(−1)m = 0 in the second and last equality. Applying

ψ(x+ 1) = ψ(x) + 1/x,

I1 = − 1

N

n∑
m=0

(
n

m

)
(−1)mψ

(
m+ 1

N

)
+

n∑
m=0

(
n

m

)
(−1)m+1 1

m+ 1

and it is trivial to check that the second sum equals −1/(n+ 1).
The integral I2 can be computed in a similar way

I2 =

ˆ 1

0

n+1∑
m=0

(
n+ 1

m

)
(−1)m

tN−1+m − 1

1− tN
dt = − 1

N

n+1∑
m=0

(
n+ 1

m

)
(−1)mψ

(m
N

+ 1
)

=
1

N

(
γ −

n+1∑
m=1

(
n+ 1

m

)
(−1)mψ

(m
N

))
+

n+1∑
m=1

(
n+ 1

m

)
(−1)m+1 1

m
,

where the second sum is
∑n+1

m=1
1
m

, as stated in [GR07, 0.155 (4)].
Finally from (2.30) we get (2.5)

E[E−2n] = 22nN2

[
1

n+ 1
− n(1− n)

(
− 1

N

n∑
m=0

(
n

m

)
(−1)mψ

(
m+ 1

N

)
− 1

n+ 1

)

− n

(
1

N

(
γ −

n+1∑
m=1

(
n+ 1

m

)
(−1)mψ

(m
N

))
+

n+1∑
m=1

1

m

)]

= 22nN2

(
1

n+ 1
− n(n− 1)

n+ 1
− n

n+1∑
m=1

1

m

)

+ 22nnN

(
−γ +

n+1∑
m=1

(
n+ 1

m

)
(−1)mψ

(m
N

)(n− 1

n+ 1
m+ 1

))
.

In order to compute E[E0], i.e. formula (2.3) from [ABS11], we take the derivative of
E[Es] at s = 0. Consider the continuous function

g(r) =

 E[E2r], for r ̸= 0,

N2 −N, for r = 0,

where r = 0 matches the Riesz 0-energy, which trivially is N2 −N for any configuration
of points. Then

E[E0] =
1

2
g′(0).

Since g′(0) exists, we can derive it by restricting to r < 0

g′(0) = lim
r→0−

g(r)− g(0)

r
,
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where according to (2.29),

g(r) = 2−2rN2

(
1

1− r
+ r(1 + r)

ˆ 1

0

(1− t)−r tN

1− tN
dt+ r

ˆ 1

0

(1− t)1−r tN−1

1− tN
dt

)
.

Then

lim
r→0−

g(r) = N2 +N2 lim
r→0−

r(1 + r)

ˆ 1

0

(1− t)−r tN

1− tN
dt

+N2 lim
r→0−

r

ˆ 1

0

(1− t)1−r tN−1

1− tN
dt = N2 +N2 lim

r→0−
r(1 + r)

ˆ 1

0

(1− t)−r tN

1− tN
dt,

because (1 − t)1−r ↑ (1 − t) when r → 0− and
´ 1
0
(1 − t) t

N−1

1−tN
dt < ∞. By continuity, we

also have limr→0− g(r) = g(0) = N2 −N , so we deduce that

lim
r→0−

r

ˆ 1

0

(1− t)−r tN

1− tN
dt = − 1

N
. (2.32)

Therefore,

g′(0)

N2
= (1− log 4) + lim

r→0−

r(1+r)
22r

´ 1
0
(1− t)−r tN

1−tN
dt+ 1

N

r
+ lim

r→0−

r
22r

´ 1
0
(1− t)1−r tN−1

1−tN
dt

r

= (1− log 4) + lim
r→0−

r
22r

´ 1
0
(1− t)−r tN

1−tN
dt+ 1

N

r
+ lim

r→0−
r

ˆ 1

0

(1− t)−r tN

1− tN
dt︸ ︷︷ ︸

=−1/N by (2.32)

+

ˆ 1

0

(1− t)
tN−1

1− tN
dt = (1− log 4) + lim

r→0−

r
22r

´ 1
0
(1− t)−r tN

1−tN
dt+ 1

N

r︸ ︷︷ ︸
I3

− 1

N
− 1

N

(
ψ (1)− ψ

(
1 +

1

N

))
,

(2.33)
by (2.31).

It remains to compute the limit I3

I3 = lim
r→0−

r
22r

´ 1
0
(1− t)−r

(
tN

1−tN
− 1

N(1−t)

)
dt

r
+

1

N
lim
r→0−

r
22r

´ 1
0
(1− t)−r 1

1−t
dt+ 1

r

= lim
r→0−

ˆ 1

0

(1− t)−r

(
tN

1− tN
− 1

N(1− t)

)
dt+

1

N
lim
r→0−

−2−2r + 1

r

=

ˆ 1

0

(
tN

1− tN
− 1

N(1− t)

)
dt︸ ︷︷ ︸

I4

+
2

N
log 2,
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where the limit of the last integral is justified by monotone convergence theorem. Using
(2.31), we obtain

I4 =
1

N

ˆ 1

0

NtN −
∑N−1

j=0 t
j

1− tN
dt =

1

N

N−1∑
j=0

ˆ 1

0

tN − tj

1− tN
dt

= − 1

N2

N−1∑
j=0

(
ψ

(
1 +

1

N

)
− ψ

(
j + 1

N

))
= − 1

N
ψ

(
1 +

1

N

)
+

1

N2

N−1∑
j=0

ψ

(
j + 1

N

)
= − 1

N
ψ

(
1 +

1

N

)
− 1

N
(logN + γ) ,

where we have used that
∑N−1

j=0 ψ
(
j+1
N

)
= −N logN − γN.

From (2.33) we finally get

2E[E0] = g′(0) = (1− log 4)N2 +N2

(
− 1

N
ψ

(
1 +

1

N

)
− 1

N
(logN + γ) +

2

N
log 2

)
−N −N

(
ψ (1)− ψ

(
1 +

1

N

))
= (1− log 4)N2 −N logN − (1− log 4)N.

The following auxiliary result is used in the proof of Theorem 2.1.1.

Proposition 2.3.1. Let 1 ̸= r < 2 and m ≥ 1. Then

lim
M→∞

[
2r(1 + r)

M∑
k=1

Γ(Nk + 1)

Γ(Nk + 2− r)
+ 2r(1− r)

M∑
k=1

Γ(Nk)

Γ(Nk + 2− r)
(2.34)

− 2(1 + r)N r−1M r − r(N + r +Nr − r2)N r−2M r−1

]

= 2r(1 + r)
m−1∑
j=0

B
(r)
2j (

r
2
)(1− r)2j

(2j)!
N r−1−2jζ

(
1− r + 2j, 1 +

2− r

2N

)

+ 2r(1− r)
m−1∑
j=0

B
(r−1)
2j ( r−1

2
)(2− r)2j

(2j)!
N r−2−2jζ

(
2− r + 2j, 1 +

1− r

2N

)
+O

(
N r−1−2m

)
,

when N → +∞.

Proof. We will use the following Fields’ approximation for the quotient of gamma func-
tions, see [DLMF, Eq. 5.11.14] or [Fie66]

Γ(z + a)

Γ(z + b)
=

m−1∑
j=0

B
(2ρ)
2j (ρ)(b− a)2jw

a−b−2j

(2j)!
+O

(
wa−b−2m

)
,
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as w → ∞ with | arg(w + ρ)| < π where a and b are fixed complex numbers, w = z + ρ
and 2ρ = 1 + a− b. Then,

M∑
k=1

Γ(Nk + 1)

Γ(Nk + 2− r)
=

M∑
k=1

(
Nk +

2− r

2

)r−1

+
m−1∑
j=1

B
(r)
2j (

r
2
)(1− r)2j

(2j)!

M∑
k=1

(
Nk +

2− r

2

)r−1−2j

+
M∑
k=1

O

((
Nk +

2− r

2

)r−1−2m
)

and factorising,

M∑
k=1

Γ(Nk + 1)

Γ(Nk + 2− r)
= N r−1

M∑
k=1

(
k +

2− r

2N

)r−1

︸ ︷︷ ︸
D

(2.35)

+
m−1∑
j=1

B
(r)
2j (

r
2
)(1− r)2j

(2j)!
N r−1−2j

M−1∑
k=0

1(
k + 1 + 2−r

2N

)1−r+2j︸ ︷︷ ︸
Ej

+O
(
N r−1−2m

) M∑
k=1

1

k1−r+2m︸ ︷︷ ︸
F

.

In the same way,

M∑
k=1

Γ(Nk)

Γ(Nk + 2− r)
=

M∑
k=1

(
Nk +

1− r

2

)r−2

+
m−1∑
j=1

B
(r−1)
2j ( r−1

2
)(2− r)2j

(2j)!

M∑
k=1

(
Nk +

1− r

2

)r−2−2j

+
M∑
k=1

O

((
Nk +

1− r

2

)r−2−2m
)

and

M∑
k=1

Γ(Nk)

Γ(Nk + 2− r)
= N r−2

M−1∑
k=0

1(
k + 1 + 1−r

2N

)2−r︸ ︷︷ ︸
G

(2.36)

+
m−1∑
j=1

B
(r−1)
2j ( r−1

2
)(2− r)2j

(2j)!
N r−2−2j

M−1∑
k=0

1(
k + 1 + 1−r

2N

)2−r+2j︸ ︷︷ ︸
Hj

+O
(
N r−2−2m

) M∑
k=1

1

k2−r+2m︸ ︷︷ ︸
I

.

To compute the limit as M → ∞, observe that Ej → ζ
(
1− r + 2j, 1 + 2−r

2N

)
and Hj →

ζ
(
2− r + 2j, 1 + 1−r

2N

)
for j ≥ 1, since 1− r + 2j, 2− r + 2j > 1. The sums F and I are

convergent and G can be written as (see [DLMF, Eq. 25.11.5])

M∑
k=1

1(
k + 1−r

2N

)2−r = ζ

(
2− r, 1 +

1− r

2N

)
−
(
M + 1−r

2N

)r−1

1− r
−(2−r)

ˆ ∞

M−1

x− ⌊x⌋(
x+ 1 + 1−r

2N

)3−r dx.

(2.37)
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The same formula holds to approximate D for r < 1,

M∑
k=1

1(
k + 2−r

2N

)1−r = ζ

(
1− r, 1 +

2− r

2N

)
+

(
M + 2−r

2N

)r
r

−(1−r)
ˆ ∞

M−1

x− ⌊x⌋(
x+ 1 + 2−r

2N

)2−r dx,

(2.38)
while if r > 1, by the Euler-Maclaurin formula,

M∑
k=1

(
k +

2− r

2N

)r−1

=

ˆ M

1

(
x+

2− r

2N

)r−1

dx+
1

2

[(
M +

2− r

2N

)r−1

+

(
1 +

2− r

2N

)r−1
]

+ (r − 1)

ˆ M

1

x− ⌊x⌋ − 1/2(
x+ 2−r

2N

)2−r dx,

which after computing the first integral and rewritting the second as a difference of
integrals is

M∑
k=1

(
k +

2− r

2N

)r−1

=

(
M + 2−r

2N

)r
r

+

(
M + 2−r

2N

)r−1

2
−
(
1 + 2−r

2N

)r
r

+

(
1 + 2−r

2N

)r−1

2

+ (r − 1)

ˆ M

−( 2−r
2N )

x− ⌊x⌋ − 1/2(
x+ 2−r

2N

)2−r dx− (r − 1)

ˆ 1

−( 2−r
2N )

x− ⌊x⌋ − 1/2(
x+ 2−r

2N

)2−r dx.

Solving the last integral, we finally get

M∑
k=1

(
k +

2− r

2N

)r−1

=

(
M + 2−r

2N

)r
r

+

(
M + 2−r

2N

)r−1

2
−
(
1 + 2−r

2N

)r
r

+

(
1 + 2−r

2N

)r−1

2

+ (r − 1)

ˆ M

−( 2−r
2N )

x− ⌊x⌋ − 1/2(
x+ 2−r

2N

)2−r dx−
(
2− r

2N

)r−1

+

(
1 + 2−r

2N

)r
r

−
(
1 + 2−r

2N

)r−1

2

=

(
M + 2−r

2N

)r
r

+

(
M + 2−r

2N

)r−1

2
+ (r − 1)

ˆ M

−( 2−r
2N )

x− ⌊x⌋ − 1/2(
x+ 2−r

2N

)2−r dx−
(
2− r

2N

)r−1

,

(2.39)
where the last integral converges for 1 < r < 2 to ζ

(
1− r, 2−r

2N

)
when M → +∞, see

[DLMF, Eq. 25.11.26].
Thus, if we denote

gr,N(M) :=2r(1 + r)
M∑
k=1

Γ(Nk + 1)

Γ(Nk + 2− r)
+ 2r(1− r)

M∑
k=1

Γ(Nk)

Γ(Nk + 2− r)

− 2(1 + r)N r−1M r − r(N + r +Nr − r2)N r−2M r−1,



36 Expected energy of zeros of elliptic polynomials

from (2.35), (2.36) and (2.37) we have

gr,N(M) = 2r(1 + r)

(
N r−1

M∑
k=1

(
k +

2− r

2N

)r−1

+
m−1∑
j=1

B
(r)
2j (

r
2
)(1− r)2j

(2j)!

M−1∑
k=0

N r−1−2j(
k + 1 + 2−r

2N

)1−r+2j +O
(
N r−1−2m

) M∑
k=1

1

k1−r+2m

)

+ 2r(1− r)

(
N r−2

(
ζ

(
2− r, 1 +

1− r

2N

)
−
(
M + 1−r

2N

)r−1

1− r

−
ˆ ∞

M−1

(2− r)(x− ⌊x⌋)(
x+ 1 + 1−r

2N

)3−r dx

)
+

m−1∑
j=1

B
(r−1)
2j ( r−1

2
)(2− r)2j

(2j)!

M−1∑
k=0

N r−2−2j(
k + 1 + 1−r

2N

)2−r+2j

+O
(
N r−2−2m

) M∑
k=1

1

k2−r+2m

)
− 2(1 + r)N r−1M r − r(N + r +Nr − r2)N r−2M r−1.

Then, using all the previous computations, we get

lim
M→∞

gr,N(M) = lim
M→∞

[
2r(1 + r)N r−1

M∑
k=1

(
k +

2− r

2N

)r−1

− 2(1 + r)N r−1M r

−2rN r−2

(
M +

1− r

2N

)r−1

− r(N + r +Nr − r2)N r−2M r−1

]
(2.40)

+ 2r(1− r)
m−1∑
j=0

B
(r−1)
2j ( r−1

2
)(2− r)2j

(2j)!
N r−2−2jζ

(
2− r + 2j, 1 +

1− r

2N

)

+ 2r(1 + r)
m−1∑
j=1

B
(r)
2j (

r
2
)(1− r)2j

(2j)!
N r−1−2jζ

(
1− r + 2j, 1 +

2− r

2N

)
+O

(
N r−1−2m

)
.

Everything reduces to compute the limit appearing in (2.40). Let us define

hr,N(M) := 2r(1 + r)N r−1

M∑
k=1

(
k +

2− r

2N

)r−1

− 2(1 + r)N r−1M r

− 2rN r−2

(
M +

1− r

2N

)r−1

− r(N + r +Nr − r2)N r−2M r−1.

If r < 1, using (2.38),

lim
M→∞

hr,N(M) = lim
M→∞

[
2r(1 + r)N r−1

(
ζ

(
1− r, 1 +

2− r

2N

)

+

(
M + 2−r

2N

)r
r

− (1− r)

ˆ ∞

M−1

x− ⌊x⌋(
x+ 1 + 2−r

2N

)2−r dx

)
− 2(1 + r)N r−1M r

]
,
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where the integral tends to 0. Consequently,

lim
M→∞

hr,N(M)

= 2r(1 + r)N r−1ζ

(
1− r, 1 +

2− r

2N

)
+ 2(1 + r)N r−1 lim

M→∞

((
M +

2− r

2N

)r

−M r

)
= 2r(1 + r)N r−1ζ

(
1− r, 1 +

2− r

2N

)
.

If r > 1, using (2.39),

hr,N(M) = 2r(1 + r)N r−1

((
M + 2−r

2N

)r
r

+

(
M + 2−r

2N

)r−1

2

+

ˆ M

−( 2−r
2N )

(r − 1)(x− ⌊x⌋ − 1
2
)(

x+ 2−r
2N

)2−r dx−
(
2− r

2N

)r−1
)

− 2(1 + r)N r−1M r

− 2rN r−2

(
M +

1− r

2N

)r−1

− r(N + r +Nr − r2)N r−2M r−1.

Factorising terms and taking into account that the integral tends to ζ
(
1− r, 2−r

2N

)
,

lim
M→∞

hr,N(M) = lim
M→∞

[
2(1 + r)N r−1M r

((
1 +

2− r

2NM

)r

− 1

)

+ rN r−2M r−1

(
(1 + r)

(
1 +

2− r

2NM

)r−1

N − 2

(
1 +

1− r

2NM

)r−1

−
(
N + r +Nr − r2

))]

+ 2r(1 + r)N r−1

(
ζ

(
1− r,

2− r

2N

)
−
(
2− r

2N

)r−1
)
.

The function inside the limit has asymptotic expansion

rN r−2M r−1[(1 + r)(2− r) + (1 + r)N − 2− (N + r +Nr − r2)︸ ︷︷ ︸
=0

] +O
(
M r−2

)
as M → ∞, so the limit is 0 and

lim
M→∞

hr,N(M) = 2r(1 + r)N r−1

(
ζ

(
1− r,

2− r

2N

)
−
(
2− r

2N

)r−1
)

= 2r(1 + r)N r−1ζ

(
1− r, 1 +

2− r

2N

)
,

where we have used that ζ(s, a)− a−s = ζ(s, 1 + a).
Therefore,

lim
M→∞

hr,N(M) = 2r(1 + r)N r−1ζ

(
1− r, 1 +

2− r

2N

)
independently of r. Applying this limit on (2.40) we get the desired result.
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2.4 Bounds for the minimal energy asymptotic expansion

In this section we compare our results with minimal and expected energies of other point
processes. We will start recalling some known results and conjectures about the asymp-
totic expansion of the extremal energy Es(N) attained by a set of N points on the sphere
S2. For a more complete picture see [BHS19].

The current knowledge about the asymptotic expansion of the minimal energy is
far from complete even in S2, but for s ≤ −2 the situation is well known. Indeed, the
minimizers of the Riesz energy for s < −2 are points placed at each of the two endpoints
of some diameter (for even N), [Bjö56], and for s = −2, formula (2.8) shows that any
configuration with center of mass at the origin attains the maximum 2N2.

For 0 < |s| < 2, it is known that there exist c, C > 0 (depending on s) such that

−cN1+s/2 ≤ Es(N)− 21−s

2− s
N2 ≤ −CN1+s/2, (2.41)

see [RSZ94, Wag90, Wag92] and [Bra06, AZ15] for improvements in the value of the
constants leading to the bounds

Es(N)− 21−s

2− s
≤ −Γ(1− s/2)

2s
N1+s/2, if 0 < s < 2,

Es(N)− 21−s

2− s
≥ −Γ(1− s/2)

2s
N1+s/2, if − 2 < s < 0,

(2.42)

which were obtained with the bound given by the expected energy of random points from
the spherical ensemble [AZ15].

In the boundary case s = 2, it was shown in [BHS12, Proposition 3] that

−1

4
N2 +O(N) ≤ E2(N)− 1

4
N2 logN ≤ 1

4
N2 log logN +O(N2),

and the upper bound was improved in [AZ15] to

E2(N)− 1

4
N2 logN ≤ γ

4
N2, (2.43)

where γ is the Euler–Mascheroni constant.
For the logarithmic potential, it is known that there exists a constant Clog such that

−0.0569 . . . ≤ Clog ≤ 2 log 2 +
1

2
log

2

3
+ 3 log

√
π

Γ(1/3)
= −0.0556 . . . ,

for which

E0(N) =

(
1

2
− log 2

)
N2 − 1

2
N logN + ClogN + o(N), N → +∞, (2.44)

see [BS18, Lau21] and [BL22] for a recent direct computation of the lower bound. The
upper bound for Clog has been conjectured to be an equality by two different approaches,
[BHS12, BS18].
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For −2 < s < 4, s ̸= 0, 2, the asymptotic expansion of the optimal Riesz s-energy has
been conjectured in [BHS12] to be

Es(N) =
21−s

2− s
N2 +

(
√
3/2)s/2ζΛ2(s)

(4π)s/2
N1+ s

2 + o(N1+ s
2 ), N → +∞, (2.45)

where ζΛ2(s) is the zeta function of the hexagonal lattice, while for s = 2 the conjectured
expansion is

E2(N) =
1

4
N2 logN +DN2 +O(1), N → +∞, (2.46)

where D = 1
4

(
γ − log(2

√
3π)
)
+

√
3

4π
(γ1(2/3) − γ1(1/3)) ≈ −0.08577. Here, γn(a) is the

generalized Stieltjes constant in the Laurent expansion of the Hurwitz zeta function ζ(s, a)
around s = 1.

It is clear that the minimal (maximal) energy is always bounded from above (below)
by the expected energy with respect to a given random configuration. Therefore, one can
bound the asymptotic expansion of the minimal energy by the asymptotic expansion of the
expected energy. This idea was used in [ABS11] to get bounds for the minimal logarithmic
energy using (2.1) and in [AZ15] to get (2.42) and (2.43). For other computations of
expected energies in different settings, see [BS13, BMOC16, BE18, MOC18, BE19, BF20,
BDFSL22, ADG+22]. From our main result, Theorem 2.1.1, we obtain the asymptotic
expansion (2.6), which is close to the conjectured expansion for the minimal energy, see
Figure 2.4, and we can prove the following bounds.

Corollary 2.4.1. Let C(s) be the constant in (2.7). Then,

(i) for 0 < s < 2, there exists an N0 = N0(s) such that, for any N ≥ N0,

Es(N)− 21−s

2− s
N2 ≤ C(s)N1+s/2.

(ii) For −2 < s < 0 and a given ϵ > 0, there exists an N1 = N1(ϵ, s) such that, for any
N ≥ N1,

Es(N)− 21−s

2− s
N2 ≥ C(s)(1 + ϵ)N1+s/2.

(iii) For any N ≥ 2,

E2(N)− N2 logN

4
≤ 1

4

(
3

2
− log(2π) + γ

)
N2. (2.47)

Remark 2.4.2. The bound (2.47) improves (2.43), since 1
4

(
3
2
− log(2π) + γ

)
≈ 0.0598

and γ
4
≈ 0.1443. In the proof we show also that

E[E2] =
N2 logN

4
+

1

4

(
3

2
− log(2π) + γ

)
N2 − N

8
+O(1), N → +∞,

see (2.51).
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Figure 2.4: Absolute value of the second order coefficient of the asymptotic expansion of
Es(N) in several works. The blue curve is given by the conjectured valued (2.45). The
green and yellow curves corresponds to [RSZ94] and [AZ15], respectively, and the red is
our constant (2.7).

Proof. For 0 < s < 2, from (2.6),

Es(N)− 21−s

2−s
N2

N1+s/2
≤

E[Es]− 21−s

2−s
N2

N1+s/2
= C(s) +

s

16
C(s− 2)N−1 +O(N−2), N → ∞.

Since C(s−2) is negative, the last expression is bounded above by C(s) for N big enough.
For −2 < s < 0, using (2.6) again,

Es(N)− 21−s

2−s
N2

N1+s/2
≥

E[Es]− 21−s

2−s
N2

N1+s/2
−−−→
N→∞

C(s).

Therefore, given δ > 0, for N large enough the right-hand side is bounded from below by
C(s) − δ. Since the constant C(s) is negative, we can choose δ = −ϵC(s) to obtain the
result.

For s = 2, the energy is (2.4):

E[E2] = −Nπ
4

N−1∑
j=1

j

N
cot

(
πj

N

)
+

3N2

8
− 3N

8
.

We can rewrite the sum as

−
N−1∑
j=1

j

N
cot

(
πj

N

)
=

N−1∑
j=1

[
− j

N
cot

(
πj

N

)
− 1

π(1− j/N)

]
︸ ︷︷ ︸

A

+
N−1∑
j=1

1

π(1− j/N)︸ ︷︷ ︸
B

, (2.48)
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in such a way that the term corresponding to j = N in the first sum is well-defined. Let us
apply the Euler-Maclaurin formula to f(x) = g(x/N), with g(x) = −x cot(πx)− 1

π(1−x)
:

A =
N∑
j=0

f(j)− f(0)− f(N)

=

ˆ N

0

f(x) dx− f(0) + f(N)

2
+
B2

2!
[f ′(N)− f ′(0)] +

B4

4!
[f (3)(N)− f (3)(0)] +RA

N

= N

ˆ 1

0

g(x) dx− g(0) + g(1)

2
+

1

12N
[g′(1)− g′(0)]− 1

720N3
[g(3)(1)− g(3)(0)] +RA

N ,

where Bj are the Bernoulli numbers and RA
N is the remainder term, that satisfies

|RA
N | ≤

2ζ(5)

(2π)5

ˆ N

0

|f (5)(x)| dx =
2ζ(5)

(2π)5N4

ˆ 1

0

|g(5)(x)| dx. (2.49)

We get

A = − log(2π)

π
N +

3

2π
+
π2 + 3

36πN
− π4 + 45

5400πN3
+RA

N .

The second sum in (2.48) is

B =
N

π

N−1∑
j=1

1

N − j
=
N

π

N−1∑
j=1

1

j
=
N

π

(
HN − 1

N

)
,

where HN is the N -th harmonic number. Its expansion as N → ∞, see [Boa77], is

HN = logN + γ +
1

2N
− 1

12N2
+RH

N ,

where

0 < RH
N <

1

120N4
. (2.50)

With these expansions, formula (2.48) reads

−
N−1∑
j=1

j

N
cot

(
πj

N

)
= − log(2π)

π
N +

3

2π
+
π2 + 3

36πN
− π4 + 45

5400πN3
+RA

N

+
N

π

(
logN + γ − 1

2N
− 1

12N2
+RH

N

)
=

1

π

[
N logN + (− log(2π) + γ)N + 1 +

π2

36N
+NRH

N − π4 + 45

5400N3
+ πRA

N

]
.
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Plugging this into the formula (2.4), we obtain

E[E2(x1, . . . , xN)] =
N

4

[
N logN +

(
3

2
− log(2π) + γ

)
N − 1

2

+
π2

36N
+NRH

N − π4 + 45

5400

1

N3
+ πRA

N

]
=
N2 logN

4
+

1

4

(
3

2
− log(2π) + γ

)
N2 − 1

8
N

+
π2

144
+
N2RH

N

4︸ ︷︷ ︸
C

+
1

4

(
−π

4 + 45

5400

1

N2
+ πNRA

N︸ ︷︷ ︸
D

)
.

(2.51)

Finally, from (2.50), we have

C ≤ π2

144
+

1

480N2
≤ π2

144
+

1

480
< 0.25 ≤ N

8

for any N ≥ 2, and D ≤ 0 because

πN |RA
N | ≤

2πζ(5)

(2π)5N3

ˆ 1

0

|g(5)(x)| dx ≤ 2πζ(5)

(2π)5N3
|g(5)(1)| ≤ π4 + 45

5400

1

N2
,

if N ≥ 2. This proves (2.47).

2.5 Proof of Theorem 2.1.3

Proof. We use formula (2.18) with F (p, q) = χ{|p−q|≤t}:

2E[G(t,XN)] = E

[∑
i ̸=j

χ{|xi−xj |≤t}

]
= 2N2

ˆ ∞

0

r χ{
2r√
1+r2

≤t

}(r)γ(r) dr

= N2

ˆ t2

4−t2

0

[(
(1 + x)N − 1−Nx

)2
(1 + x)N−2 +

(
(1 + x)N − 1−Nx(1 + x)N−1

)2]
[(1 + x)N − 1]3

dx,
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where we have applied the change of variables r =
√
x. As in the proof of Theorem 2.1.1,

we use the identity 1
(x−1)3

= 1
2

∑∞
k=2 k(k − 1)x−(k+1) for x > 1 to get

4E[G(t,XN)] = N2 lim
M→∞

M∑
k=2

k(k − 1)[ ˆ t2

4−t2

0

[
(1 + x)−2−Nk + (1 + x)−N(k+1)

] (
(1 + x)N − 1

)2
dx︸ ︷︷ ︸

Ak

− 2N

ˆ t2

4−t2

0

x
[
(1 + x)−2−Nk + (1 + x)−1−Nk

] (
(1 + x)N − 1

)
dx︸ ︷︷ ︸

Bk

+N2

ˆ t2

4−t2

0

x2
[
(1 + x)−2−Nk + (1 + x)−2−N(k−1)

]
dx︸ ︷︷ ︸

Ck

]
.

The expression is the same than (2.21) with r = 0, but changing the upper limit of
integration. We can take advantage of our previous computations using the following
representation for the incomplete beta function

Bs/(s+1)(x, y) =

ˆ s

0

tx−1

(1 + t)x+y
dt s, x, y > 0, (2.52)

which follows from

Bz(x, y) :=

ˆ z

0

ux−1(1− u)y−1 du 0 ≤ z ≤ 1, x, y > 0

and the change of variables u = t/(t+ 1).

Therefore, if s = t2

4−t2
and s′ = s

s+1
, we have the analogues of (2.25), (2.23) and (2.24)

Ak = Bs′(1, N(k − 2) + 1)− 2Bs′(1, N(k − 1) + 1) +Bs′(1, Nk + 1)

+Bs′(1, N(k − 1)− 1)− 2Bs′(1, Nk − 1) +Bs′(1, N(k + 1)− 1),

Bk = Bs′(2, N(k − 1))−Bs′(2, Nk) +Bs′(2, N(k − 1)− 1)−Bs′(2, Nk − 1),

and

Ck = Bs′(3, Nk − 1) +Bs′(3, N(k − 1)− 1).
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Then, changing indices as in the proof of Theorem 2.1.1, we get

4E[G(t,XN)] = N2 lim
M→∞

M∑
k=2

k(k − 1)
[
Bs′(1, N(k − 2) + 1)− 2Bs′(1, N(k − 1) + 1)

+Bs′(1, Nk + 1) +Bs′(1, N(k − 1)− 1)− 2Bs′(1, Nk − 1) +Bs′(1, N(k + 1)− 1)

− 2N
(
Bs′(2, N(k − 1))−Bs′(2, Nk) +Bs′(2, N(k − 1)− 1)−Bs′(2, Nk − 1)

)
+N2

(
Bs′(3, Nk − 1) +Bs′(3, N(k − 1)− 1)

)]
= N2 lim

M→∞

(
2

M∑
k=0

Bs′(1, Nk + 1) + 2
M∑
k=1

Bs′(1, Nk − 1)− 4N
M∑
k=1

kBs′(2, Nk)

− 4N
M∑
k=1

kBs′(2, Nk − 1) + 2N2

M∑
k=1

k2Bs′(3, Nk − 1) + gN,s(M)

)
,

where

gN,s(M) = (M + 1)(M − 2)Bs′(1, NM + 1)− (M + 1)MBs′(1, N(M − 1) + 1)

− (M + 1)MBs′(1, NM − 1) +M(M − 1)Bs′(1, N(M + 1)− 1)

+ 2N(M + 1)MBs′(2, NM) + 2N(M + 1)MBs′(2, NM − 1)

−N2(M + 1)MBs′(3, NM − 1).

Observe that for any n ≥ 1,

Bs′(1, n) =

ˆ s

0

1

(1 + t)n+1
dt = −(1 + s)−n

n
+

1

n
.

Integrating by parts, one can also check that

Bs′(2, n) = −s(1 + s)−n−1

n+ 1
− (1 + s)−n

(n+ 1)n
+

1

(n+ 1)n

and

Bs′(3, n) = −s
2(1 + s)−n−2

n+ 2
− 2s(1 + s)−n−1

(n+ 2)(n+ 1)
− 2(1 + s)−n

(n+ 2)(n+ 1)n
+

2

(n+ 2)(n+ 1)n
.

If we replace this expressions in gN,s(M), we see that only the last term survives when
we take the limit. For instance,

2N(M + 1)MBs′(2, NM) = −2N(M + 1)Ms(1 + s)−NM−1

NM + 1

− 2N(M + 1)M(1 + s)−NM

(NM + 1)NM
+

2N(M + 1)M

(NM + 1)NM
,
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and all the terms containing the factor (1 + s)−NM+m go to 0 as M → ∞. Therefore,

lim
M→∞

gs,N(M) = lim
M→∞

[
(M + 1)(M − 2)

NM + 1
− (M + 1)M

N(M − 1) + 1
− (M + 1)M

NM − 1

+
M(M − 1)

N(M + 1)− 1
+

2N(M + 1)M

(NM + 1)NM
+

2N(M + 1)M

NM(NM − 1)

− 2N2(M + 1)M

(NM + 1)NM(NM − 1)

]
= lim

M→∞

(
− 2

N
+O

(
1

M

))
= − 2

N
.

On the other hand, we have

2
M∑
k=0

Bs′(1, Nk + 1) + 2
M∑
k=1

Bs′(1, Nk − 1)− 4N
M∑
k=1

kBs′(2, Nk)

− 4N
M∑
k=1

kBs′(2, Nk − 1) + 2N2

M∑
k=1

k2Bs′(3, Nk − 1)

= 2
M∑
k=0

1− (1 + s)−Nk−1

Nk + 1
+ 2

M∑
k=1

1− (1 + s)−Nk+1

Nk − 1

− 4N
M∑
k=1

k

(
−s(1 + s)−Nk−1

Nk + 1
+

1− (1 + s)−Nk

(Nk + 1)Nk

)

− 4N
M∑
k=1

k

(
−s(1 + s)−Nk

Nk
+

1− (1 + s)−Nk+1

Nk(Nk − 1)

)

+ 2N2

M∑
k=1

k2
(
−s

2(1 + s)−Nk−1

Nk + 1
− 2s(1 + s)−Nk

(Nk + 1)Nk
+

2− 2(1 + s)−Nk+1

(Nk + 1)Nk(Nk − 1)

)

= 2
(
1− (1 + s)−1

)
+ 2s

M∑
k=1

(1 + s)−Nk−1(2 + s− sNk).

Hence,

4E[G(t,XN)] = N2

(
2
(
1− (1 + s)−1

)
+ 2s

∞∑
k=1

(1 + s)−Nk−1(2 + s− sNk)− 2

N

)

= N2

(
2s

1 + s
− 2

N
+

2s(2 + s)

(1 + s) ((1 + s)N − 1)
− 2Ns2(1 + s)N

(1 + s) ((1 + s)N − 1)2

)
and with the change s = t2/(4− t2) we get the result (2.10).

Now we prove inequality (2.12). In terms of s, since t2 = 4s/(1 + s), it reads

N2

4

(
− 2

N
+

2s

1 + s
+

2s(2 + s)

(1 + s) ((1 + s)N − 1)
− 2Ns2(1 + s)N

(1 + s) ((1 + s)N − 1)2

)
≤ N3s2

8(1 + s)2
,
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or, by regrouping terms,

s2 +
4

N2
(1 + s)

(
1− Ns

(1 + s)N − 1

)(
1− Ns

(1 + s)N − 1
− (N − 1)s

)
≥ 0.

Then, if we multiply by ((1 + s)N − 1)2N2, we have to prove

fN(s) := s2N2((1 + s)N − 1)2

+4(1 + s)
(
(1 + s)N − 1−Ns

) (
(1 + s)N − 1−Ns− (N − 1)s((1 + s)N − 1)

)
≥ 0.

We expand the polynomial (1+s)N and rearrange terms in order to identify the coefficients
of the polynomial fN

fN(s) = s2N2

N∑
j=1

(
N

j

)
sj

N∑
k=1

(
N

k

)
sk

+ 4(1 + s)
N∑
j=2

(
N

j

)
sj

(
N∑
k=2

(
N

k

)
sk − (N − 1)s

N∑
k=1

(
N

k

)
sk

)

= s4N2

N−1∑
j=0

(
N

j + 1

)
sj

N−1∑
k=0

(
N

k + 1

)
sk

+ 4s4 (1 + s)
N−2∑
j=0

(
N

j + 2

)
sj

(
N−2∑
k=0

(
N

k + 2

)
sk − (N − 1)

N−1∑
k=0

(
N

k + 1

)
sk

)
︸ ︷︷ ︸

A

.

Using that
(
n
k

)
= 0 if k > n, the expression A can be expanded in the following way

A = (1 + s)
N−2∑
j=0

(
N

j + 2

)
sj

(
N−1∑
k=0

(
N

k + 2

)
sk − (N − 1)

N−1∑
k=0

(
N

k + 1

)
sk

)

=

(
N−1∑
j=0

((
N

j + 2

)
+

(
N

j + 1

))
sj −N

)(
N−1∑
k=0

(
N

k + 2

)
sk − (N − 1)

N−1∑
k=0

(
N

k + 1

)
sk

)

=
N−1∑
j=0

(
N

j + 2

)
sj

N−1∑
k=0

(
N

k + 2

)
sk − (N − 1)

N−1∑
j=0

(
N

j + 2

)
sj

N−1∑
k=0

(
N

k + 1

)
sk

+
N−1∑
j=0

(
N

j + 1

)
sj

N−1∑
k=0

(
N

k + 2

)
sk − (N − 1)

N−1∑
j=0

(
N

j + 1

)
sj

N−1∑
k=0

(
N

k + 1

)
sk

−N
N−1∑
k=0

((
N

k + 2

)
− (N − 1)

(
N

k + 1

))
sk,
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and then gN(s) := fN(s)/s
4 becomes

gN(s) = (N − 2)2
N−1∑
j=0

(
N

j + 1

)
sj

N−1∑
k=0

(
N

k + 1

)
sk − 4(N − 2)

N−1∑
j=0

(
N

j + 1

)
sj

N−1∑
k=0

(
N

k + 2

)
sk

+ 4
N−1∑
j=0

(
N

j + 2

)
sj

N−1∑
k=0

(
N

k + 2

)
sk − 4N

N−1∑
k=0

((
N

k + 2

)
− (N − 1)

(
N

k + 1

))
sk.

Now we compute the products of sums. For instance, for the first product,
N−1∑
j=0

(
N

j + 1

)
sj

N−1∑
k=0

(
N

k + 1

)
sk =

2N−2∑
m=0

m∑
j=0

(
N

j + 1

)(
N

m− j + 1

)
sm.

The same can be done with the others, yielding

gN(s) =
2N−2∑
m=0

[
(N − 2)2

m∑
j=0

(
N

j + 1

)(
N

m− j + 1

)
︸ ︷︷ ︸

B

−4(N − 2)
m∑
j=0

(
N

j + 1

)(
N

m− j + 2

)
︸ ︷︷ ︸

C

+ 4
m∑
j=0

(
N

j + 2

)(
N

m− j + 2

)
︸ ︷︷ ︸

D

−4N

((
N

m+ 2

)
− (N − 1)

(
N

m+ 1

))]
sm.

Next, we apply Vandermonde’s identity, [GR07, 0.156], to obtain the sums B, C and D:

B =
m+1∑
k=1

(
N

k

)(
N

m+ 2− k

)
=

m+2∑
k=0

(
N

k

)(
N

m+ 2− k

)
− 2

(
N

m+ 2

)
=

(
2N

m+ 2

)
− 2

(
N

m+ 2

)
C =

(
2N

m+ 3

)
− 2

(
N

m+ 3

)
−N

(
N

m+ 2

)
D =

(
2N

m+ 4

)
− 2

(
N

m+ 4

)
− 2N

(
N

m+ 3

)
.

Then

gN(s) =
2N−2∑
m=0

[
(N − 2)2

((
2N

m+ 2

)
− 2

(
N

m+ 2

))
− 4(N − 2)

((
2N

m+ 3

)
− 2

(
N

m+ 3

)
−N

(
N

m+ 2

))
+ 4

((
2N

m+ 4

)
− 2

(
N

m+ 4

)
− 2N

(
N

m+ 3

))
−4N

((
N

m+ 2

)
− (N − 1)

(
N

m+ 1

))]
sm =:

2N−2∑
m=0

cN,ms
m.
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Remember that our goal is to check that gN(s) ≥ 0 for s ≥ 0. In fact, we will see that
the coefficients of this polynomial are all positive for any N ≥ 2. To prove this, let us
successively apply the identity

(
n
k

)
= n−k+1

k

(
n

k−1

)
to get

cN,m =
1

(m+ 2)(m+ 3)(m+ 4)

((
N

m+ 1

)
hA(N,m) +

(
2N

m+ 1

)
hB(N,m)

)
,

where

hA(N,m) = 2N3(m2 + 7m+ 8) + 2N2(m3 + 8m2 + 23m+ 4)

− 4N(m2 +m+ 10) + 16(m+ 1),

hB(N,m) = 2N3(m2 −m− 4)−N2(m3 + 3m− 20) + 4N(m2 −m+ 2)− 8(m+ 1).

Using the trivial inequality

2N2(m3 + 8m2 + 23m)− 4N(m2 +m) + 16(m+ 1) ≥ 0,

we have

cN,m ≥ 1

(m+ 2)(m+ 3)(m+ 4)

((
N

m+ 1

)
hC(N,m) +

(
2N

m+ 1

)
hB(N,m)

)
, (2.53)

where
hC(N,m) = 2N3(m2 + 7m+ 8) + 8N2 − 40N.

Now we check that cN,m ≥ 0, for any 0 ≤ m ≤ 2N − 2, N ≥ 2. Let m ≥ 3. Then, both
hC and hB are positive. Indeed, for the first one,

hC(N,m) ≥ 16N3 + 8N2 − 40N = 8N(2N2 +N − 5) ≥ 0.

For the second one, taking into account that we restrict to m ≤ 2N − 2, which means
N ≥ (m + 2)/2, it is easy to see that hB(N,m) is increasing as a function of N and
therefore

hB(N,m) ≥ hB(⌈m/2⌉+ 1,m) ≥ hB(m/2 + 1,m) =
1

4
(m− 2)2

(
m2 + 7m+ 12

)
≥ 0.

Finally, from (2.53), we also have

(m+2)(m+3)(m+4)cN,m ≥


8N (6N2 − 3N − 2) , m = 0,

4N (7N3 − 6N2 − 5N + 4) , m = 1,

2N/3(5N5 − 13N4 + 20N3 − 56N2 + 68N − 24), m = 2,

which are positive for any N ≥ 2, and we are done.



Chapter 3

Average worst-case error and
discrepancies

In this chapter, we study how well-distributed are N -point configurations on the sphere Sd

given by some random point processes from two different perspectives: the QMC strength
and the discrepancy.

Following [BSSW14], a sequence (XN) ⊂ Sd of N -point sets on the d-dimensional
sphere has QMC strength s∗ > d/2 if it has worst-case error of optimal order, which
turns out to be N−s/d, for Sobolev spaces of order s for all d/2 < s < s∗, and the order is
not optimal for s > s∗. In the same paper, conjectured values of the QMC strength are
given for some well known point families in S2 based on numerical results. We study the
average QMC strength for somehow related random configurations.

In addition, we consider different notions of discrepancy: with respect to spherical caps,
which measures the asymptotic equidistribution, and with respect to hemispheres, which
measures the symmetry. We compute the expected discrepancies for some random point
processes on the spheres. As a final result, we extend a discrepancy result from [BMOC16]
for point configurations drawn from the harmonic ensemble on the sphere to any two-point
homogeneous manifold. As a corollary, we show that with high probability realizations of
the harmonic ensemble on any two-point homogeneous manifold have almost optimal L∞

discrepancy.
Part of the results in this chapter are based on [dlTM23].

3.1 Introduction and main results

3.1.1 QMC strength

Let Sd = {x ∈ Rd+1 : |x| = 1} be the unit sphere with the normalized Lebesgue measure
σ. Recall from Section 1.1 that Vℓ denotes the vector space of spherical harmonics of
degree ℓ ≥ 0, that is, the space of eigenfunctions of the Laplace-Beltrami operator ∆ with
eigenvalue

λℓ = ℓ(ℓ+ d− 1)

49
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and dimension
mℓ =

2ℓ+ d− 1

d− 1

(
d+ ℓ− 2

ℓ

)
,

as follows from (1.6) with α = β = d−2
2

. In this chapter we denote λ := d−2
2

.
Let L2(Sd) = L2(Sd, σ) be the Hilbert space of real-valued square integrable functions

in Sd with the inner product

⟨f, g⟩ =
ˆ
Sd
f(x)g(x) dσ(x), f, g ∈ L2(Sd).

One has that L2(Sd) =
⊕

ℓ≥0 Vℓ and the Fourier series expansion of a function f ∈ L2(Sd)
is given by

f =
∑
ℓ,k

fℓ,kYℓ,k, fℓ,k = ⟨f, Yℓ,k⟩ =
ˆ
Sd
f Yℓ,k dσ,

where {Yℓ,k}mℓ
k=1 is an orthonormal basis of Vℓ.

For s ≥ 0, we define the L2(Sd)-based Sobolev spaces of order s as the Hilbert space

Hs(Sd) =

{
f ∈ L2(Sd) :

+∞∑
ℓ=0

mℓ∑
k=1

(1 + λℓ)
s|fℓ,k|2 < +∞

}
,

with the norm

∥f∥Hs(Sd) =

(
+∞∑
ℓ=0

mℓ∑
k=1

1

a
(s)
ℓ

|fℓ,k|2
)1/2

,

where a(s)ℓ ≈ (1 + ℓ2)−s. Although the norm depends on the choice of a(s)ℓ , for a fixed s
all possible choices lead to equivalent norms. It is well known that Hs(Sd) is continuously
embedded in C(Sd) if s > d/2 and it has, in this range, a reproducing kernel given by

K(s)(x, y) = K(s)(x · y) =
∞∑
ℓ=0

mℓ∑
k=0

a
(s)
ℓ Yℓ,k(x)Yℓ,k(y),

i.e., for all x ∈ Sd and f ∈ Hs(Sd),

f(x) = ⟨f,K(s)(x, ·)⟩Hs(Sd).

Let XN ⊂ Sd be an N -point configuration. The worst-case error of XN is defined by

wce(XN ,Hs(Sd)) = sup
∥f∥Hs(Sd)≤1

{∣∣∣∣∣ 1N ∑
x∈XN

f(x)−
ˆ
Sd
f(x) dσ(x)

∣∣∣∣∣ : f ∈ Hs(Sd)

}
.

Given s > d/2, there exists a constant cd,s depending on the Hs(Sd)-norm such that for
any N -point configuration XN in Sd,

cd,sN
−s/d ≤ wce(XN ,Hs(Sd)),

see [BCC+14, Result (D)]. This lower bound is the reason for the next definition.
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Definition 3.1.1. Given s > d/2, a sequence (XN) of N -point configurations XN ⊂ Sd

is a sequence of QMC designs for Hs(Sd) (or s-QMC designs) if there exists Cd,s > 0 such
that for all N ≥ 1,

wce(XN ,Hs(Sd)) ≤ Cd,sN
−s/d. (3.1)

In the definition (XN) may be defined only for a subsequence of natural numbers N
converging to +∞.

From [BCC+14, Theorem 3.1] it follows that if (XN) is a sequence of QMC designs for
Hs(Sd), then it is also a sequence of QMC designs for all Hs′(Sd) with d/2 < s′ < s, see
also [BSSW14, Lemma 23]. Thus, there exists some value s∗ such that (XN) is a sequence
of s-QMC designs for all s with d/2 < s < s∗, and is not a QMC design for s > s∗.

Definition 3.1.2. Let (XN) be a sequence of N -point configurations on Sd. The maximal
s∗ > d

2
for which (3.1) holds for all d

2
< s < s∗ is called the QMC strength of the sequence

(XN).

The strength can be seen as a measure of the regularity of the sequence. The problem
of determining the strength for a given sequence seems to be quite difficult and its value
has been determined only in a few cases. It was shown by Hesse and Sloan [HS05] and
by Brauchart and Hesse [BH07] that sequences of optimal quadrature formulas satisfying
some regularity property, which in particular is true for quadrature formulas with positive
weights, are s-QMC designs for all s > d/2, i.e., they have s∗ = +∞. It was observed
in [BSSW14] that this previous result, together with the existence of optimal spherical
designs [BRV13], implies the existence of spherical designs with strength s∗ = +∞. Also
in [BSSW14, Theorem 14], the authors show that maximizers of the sum of suitable
powers of the Euclidean distance between pairs of points have s∗ = d/2 + 1. To the best
of our knowledge these are the only cases where the strength is known.

Values for the strength were conjectured in [BSSW14] for some well known point con-
figurations in S2 based on numerical results. In particular, for Fekete points the conjecture
is s∗ = 3/2, for equal area points s∗ = 2 and for minimal logarithmic energy points s∗ = 3,
see next section for definitions. The expected worst-case error of some random configu-
rations was also studied in [BSSW14]. Next we define an average version of the s-QMC
design property for random configurations.

Definition 3.1.3. Let (XN) be a sequence of random N -point configurations on Sd

following some distribution and let s > d/2. We say that (XN) is a sequence of QMC
designs for Hs(Sd) (or s-QMC designs) on average if there exists Cd,s > 0 such that for
all N ≥ 1, √

E[wce(XN ,Hs(Sd))2] ≤ Cd,sN
−s/d. (3.2)

As in the deterministic case, we allow the subindex N to follow a subsequence converging
to +∞.

The following property shows that if a sequence of random point configurations is a
sequence of s-QMC designs on average for some s > d/2, then it is also an s′-QMC design
for d/2 < s′ < s.
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Proposition 3.1.4. Given s > d/2, if E[wce(XN ,Hs(Sd))2] ≤ 1, then there exists a
constant Cd,s′,s > 0 such that

E[wce(XN ,Hs′(Sd))2] ≤ Cd,s′,s

(
E[wce(XN ,Hs(Sd))2]

)s′/s
,
d

2
< s′ < s.

For a proof in the deterministic case, see [BSSW14]. The proof of our average version
follows the same lines. From this Proposition we can define the notion of average QMC
strength for sequences of random configurations.

Definition 3.1.5. Let (XN) be a sequence of random N -point configurations on Sd

following some distribution. The maximal s∗ > d
2

for which (3.2) holds for all d
2
< s < s∗

is called the average QMC strength of the sequence (XN).

For this average version, it was shown in [BSSW14, Theorem 7] that uniform i.i.d.
points on the sphere are not an s-QMC design on average for any s > d/2. By contrast,
[BSSW14, Theorem 21,Theorem 22] shows that points from jittered sampling (i.e. uniform
i.i.d point taken with respect to an area regular partition) have average strength d/2+1.
Observe that in this last case the average strength matches the conjectured value in
[BSSW14] mentioned above for the related equal area points in S2. Now we present the
main results about the average QMC strength.

Harmonic ensemble

In our first result we show that points from the harmonic ensemble have average strength
d+1
2
. Observe that the mode of this distribution corresponds to the Fekete points, for

which it was conjectured strength 3/2 in [BSSW14]. We refer to Section 3.2.3 for an
explanation of this fact and the definition of the harmonic ensemble. The expected worst
case error of this process was previously studied in [Hir18].

Theorem 3.1.6. Let (XN) be a sequence where XN is an N-point set drawn from the
harmonic ensemble in Sd. Observe that N must be of the form πL for some natural L.
Then (XN) is a sequence of s-QMC designs on average for d

2
< s < d+1

2
. Moreover

lim
N→+∞

N
d+1
d E[wce(XN ;H

d+1
2 (S2))2] = +∞, (3.3)

therefore (XN) is not a QMC design on average if s > d+1
2

and the average QMC strength
is d+1

2
.

For the harmonic ensemble we can deduce, from results in [BSSW14, BMOC16], see
also [Ber19], almost sure optimality of the worst-case error up to a logarithmic factor.

Corollary 3.1.7. For every M > 0 and d
2
< s < d+1

2
, there exists Cd,s,M > 0 such that

P

(
wce(XN ;Hs(Sd)) ≤ Cd,s,M

(logN)
2s
d+1

N
s
d

)
≥ 1− 1

NM
, (3.4)

where XN is an N-point set drawn from the harmonic ensemble. Therefore, for fixed
d
2
< s < d+1

2
there exists Cd,s > 0 such that, with probability 1 and for N large enough,

wce(XN ;Hs(Sd)) ≤ Cd,s
(logN)

2s
d+1

N
s
d

.
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Spherical ensemble

We recall the definition of the spherical ensemble in Section 3.2.4. Applying results from
[AZ15] it was shown in [Hir18] that points from the spherical ensemble are s-QMC designs
on average for 1 < s < 2. One can easily see that 2 is indeed the average strength.
The mode of this distribution is the set of elliptic Fekete points, i.e., minimizers of the
logarithmic energy. In this case there is no coincidence with the conjectured strength from
[BSSW14], which was 3.

Theorem 3.1.8. Let (XN) be a sequence where XN is an N-point set drawn from the
spherical ensemble. Then (XN) is a sequence of s-QMC designs on average for 1 < s < 2,
and for s ∈ (2, 3) there exists a constant C > 0 such that

N2E
[
wce(XN ;Hs(S2))2

]
≥ C,

i.e., the average strength is 2.

Remark 3.1.9. A concentration result similar to Corollary 3.1.7 can be proved also for
the spherical ensemble or other configurations given by determinantal point processes,
like the jittered sampling [BGKZ20], using the concentration results for determinantal
point processes in [PP14]. The bounds are far from sharp. For the spherical ensemble
a close to optimal bound has been proved using a concentration of measure inequality
particular of the spherical ensemble, [Ber19].

Zeros of elliptic polynomials

In our last result, we prove that the average strength for the zeros of the elliptic poly-
nomials behaves better than all these previous random processes and coincides with the
conjectured strength in [BSSW14] for the logarithmic energy minimizers. We refer to
Section 3.2.5 for the definition of the zeros of elliptic polyonomials.

Theorem 3.1.10. Let (XN) be a sequence where XN is an N-point set drawn from zeros
of elliptic polynomials mapped to the sphere by the stereographic projection. Then (XN)
is a sequence of s-QMC designs on average for 1 < s < 3, and for s ∈ (3, 4) there exists
a constant C > 0 such that

N3E
[
wce(XN ;Hs(S2))2

]
≥ C,

i.e., the average strength is 3.

3.1.2 Discrepancies

Discrepancy is a usual way to quantify the degree of uniformity of a finite set of points
XN = {x1, . . . , xN} ⊂ Sd. Here we are going to consider the classical L2 and L∞ notions
of discrepancy. It is well known that a sequence of point sets (XN) is asymptotically
uniformly distributed if and only if limN→+∞ Dp(XN) = 0, for p = ∞ or p = 2, [BHS19,
Section 6.1]. Next we recall the definitions of both discrepancies.
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L2 discrepancies on the sphere Sd

The L2 discrepancy of XN with respect to spherical caps is defined by

D2(XN) =

(ˆ π

0

ˆ
Sd

∣∣∣∣ |XN ∩B(x, r)|
N

− σ(B(x, r))

∣∣∣∣2 dσ(x) sin r dr
)1/2

, (3.5)

where B(x, r) = {y ∈ Sd : ϑ(x, y) < r} is the ball centered at x of radius r with respect
to the geodesic distance.

From [Ale72, Sto73, Bec84b] the optimal order of the L2 spherical cap discrepancy is
N− d+1

2d , i.e.,
cdN

− d+1
2d ≤ inf

|XN |=N
D2(XN) ≤ c′dN

− d+1
2d (3.6)

for some constants cd, c′d > 0 depending on d.
As an immediate consequence of the results on the expected worst-case error and the

Stolarsky formula (see Section 3.2.2), we deduce that the spherical ensemble and the zeros
of elliptic polynomials projected to S2 produce N -point configurations with average L2

discrepancy of optimal order.

Proposition 3.1.11. Let (XN) be a sequence where XN is an N-point set drawn from
the spherical ensemble. Then

E [D2(XN)] = O(N−3/4).

The same bound holds if the points in (XN) are drawn from the zeros of elliptic polynomials
mapped to the sphere by the stereographic projection.

Observe that this result gives in a very straightforward way the existence of N -point
configurations with discrepancy of optimal growth and therefore the upper bound in (3.6).

Bilyk, Dai and Matzke defined in [BDM18] another version of the L2 discrepancy by re-
placing the set of all spherical caps by hemispheres, i.e., spherical caps with geodesic radius
π/2. Let H(x) = D(x, π/2) denote the hemisphere centered at x. Since σ(H(x)) = 1/2,
the natural L2 discrepancy of an N -point configuration XN with respect to hemispheres
is

D2,hem(XN) =

(ˆ π

0

ˆ
Sd

∣∣∣∣ |XN ∩H(x)|
N

− 1

2

∣∣∣∣2 dσ(x) sin r dr
)1/2

. (3.7)

Unlike the classical L2 discrepancy, the hemisphere discrepancy can be very small, even
zero, for large N . Indeed, if N is even, this discrepancy vanishes for any centrally sym-
metric distribution XN . If N is odd, the minimum value of the discrepancy is 1/2N , see
[BDM18, Theorem 3.2] for the proof and a characterization of all N -point minimizers.
Therefore, the hemisphere discrepancy could be seen as a measure of the symmetry of a
distribution.

We study the expected L2 hemisphere discrepancy for the two point processes with
optimal L2 cap discrepancy on average.
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Proposition 3.1.12. Let (XN) be a sequence where XN is an N-point set drawn from
the spherical ensemble. Then

E
[
D2,hem(XN)

2
]
=

1

2
√
π

1

N3/2
+ o

(
1

N3/2

)
.

If the points are drawn from the zeros of elliptic polynomials mapped to the sphere by the
stereographic projection, then

E
[
D2,hem(XN)

2
]
=

1

8
√
π
ζ

(
3

2

)
1

N3/2
+ o

(
1

N3/2

)
.

Both processes have an expected order of decay of N−3/2 for D2
2,hem(XN), while the

optimal order is N−2. The zeros of elliptic polynomials, however, exhibit a smaller leading
coefficient than the spherical ensemble:

1

8
√
π
ζ

(
3

2

)
= 0.1842 . . . < 0.2821 . . . =

1

2
√
π
.

Just to see the improvement on the expected hemisphere discrepancy with respect to a
trivial random point process, we will show in Section 3.4.1 that if the N points are taken
independently and uniformly from S2, then

E
[
D2,hem(XN)

2
]
=

1

4N
. (3.8)

L∞ discrepancy on two-point homogeneous manifolds

Now we consider N -point configurations in a two-point homogeneous manifold M. The
L∞ discrepancy of XN ⊂ M is given by

D∞(XN) = sup
x∈M,r>0

∣∣∣∣ |XN ∩B(x, r)|
N

− σ(B(x, r))

∣∣∣∣,
where σ stands for the normalized surface measure on M. For M = Sd, D∞(XN) is called
spherical cap discrepancy. In fact, we will refer to geodesic balls B(x, r) as caps even
when the manifold is not the sphere, so this quantity will also be called cap discrepancy.

In [Bec84b, Bec84a], Beck obtained the order of the spherical cap discrepancy up to
a logarithmic factor:

cN− d+1
2d ≤ inf

|XN |=N
D∞(XN) ≤ CN− d+1

2d

√
logN (3.9)

for constants c, C > 0. Bounds of the same order hold for the other two-point homogeneous
manifolds, with d standing for the real dimension of the manifold. The upper bound was
established in [BCC+19, Corollary 8.6] (see also [Skr20a]), whereas the lower bound comes
from [Skr19].

Alishahi and Zamani showed in [AZ15, Theorem 1.1] that the spherical ensemble has
discrepancy of order O(N−3/4

√
logN) with overwhelming probability. The proof, which
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goes through an estimate of the variance of the number of points in a cap along with
an application of Bernstein’s inequality, relies on the fact that the spherical ensemble
is a determinantal point process. Later on, the same approach was used in [BMOC16]
to deduce the order O(N− d+1

2d logN) for the discrepancy of N points from the harmonic
ensemble on Sd.

Next we extend this discrepancy result from [BMOC16] to any two-point homogeneous
manifold, which is a corollary of the following bound for the variance of the number of
points that fall in a cap.

Proposition 3.1.13. Let A = AL be a ball of radius θL ∈ [0, π/2) with

lim
L→∞

θL ∈ [0, π/2), lim
L→∞

LθL = ∞.

Let nA be the number of points in A among N = π
(α,β)
L points drawn from the harmonic

ensemble on the projective space FPn, with dimension d = n · dimR(F) and associated
parameters α = d/2− 1 and β = dimR(F)/2− 1, see definitions in Section 3.2.3. Then

Var(nA) ≲ Ld−1 logL+O(Ld−1).

Following [AZ15, Theorem 1.1], we deduce the following upper bound for the cap
discrepancy of the harmonic ensemble on M.

Corollary 3.1.14. Let M be a two-point homogeneous manifold. For every M > 0, the
L∞ discrepancy of a set of N = π

(α,β)
L ≈ Ld points drawn from the harmonic ensemble on

M satisfies
D∞(XN) = O(L− d+1

2 logL) = O
(
N− d+1

2d logN
)

with probability 1− 1
NM .

3.2 Background

3.2.1 Riesz energy and worst-case error

In Section 1.2 we defined the Riesz (logarithmic) energy of a set XN = {x1, . . . , xN} of
N points on the unit sphere Sd ⊂ Rd+1 as

Es(XN) =
∑
i ̸=j

fs(|xi − xj|),

where fs(r) = r−s, s ̸= 0, (f0(r) = − log r) is the Riesz (logarithmic) potential. From
now on, to simplify the notation, we write Es for Es(XN) when the set of points is clear
from the context. Recall that this quantity has a continuous version for measures which
for the normalized surface measure σ and 0 ̸= s < d is

Vs(Sd) =

ˆ
Sd

ˆ
Sd
fs(|x− y|) dσ(x) dσ(y) = 2d−s−1Γ

(
d+1
2

)
Γ
(
d−s
2

)
√
π Γ
(
d− s

2

) .
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In [BSSW14], the authors obtained a formula for the worst-case error of an N -point set
in terms of Riesz energies, provided s is not a positive integer. When d/2 < s < d/2 + 1,
the expression reads

wce(XN ,Hs(Sd))2 = − 1

N2

(
Ed−2s − Vd−2s(Sd)N2

)
, (3.10)

whereas for d/2 +M < s < d/2 +M + 1, with M a positive integer,

wce(XN ,Hs(Sd))2 =
1

N2

[
N∑

j,i=1

QM(xj · xi) + (−1)M+1(Ed−2s − Vd−2s(Sd)N2)

]
, (3.11)

where

QM(xj · xi) :=
M∑
ℓ=1

(
(−1)M+1−ℓ − 1

)
α
(s)
ℓ mℓP

(d)
ℓ (xj · xi),

with P (d)
ℓ (x) the Gegenbauer polynomial normalized by P (d)

ℓ (1) = 1 and

α
(s)
ℓ = Vd−2s(Sd)

(−1)M+1(1− s)ℓ
(1 + s)ℓ

. (3.12)

3.2.2 Stolarsky invariance principles

A classical result by Stolarsky [Sto73] connects the L2 discrepancy of an N -point config-
uration XN = {x1, . . . , xN} ⊂ Sd with its discrete energy:

D2(XN)
2 = γd

(
V−1(Sd)− 1

N2

N∑
i,j=1

|xi − xj|

)
, (3.13)

where

γd =
Γ(d+1

2
)

d
√
π Γ(d

2
)
.

Thus, from (3.10) for s = (d + 1)/2 one can see that there is a direct relation between
energy, discrepancy and worst-case error,

wce(XN ;H
d+1
2 (Sd)) =

(
V−1(Sd)− 1

N2
E−1(XN)

)1/2

=
1

√
γd

D2(XN).

(3.14)

We observe that in [BDM18] the following version of Stolarsky invariance principle
was shown for the hemisphere discrepancy:

D2,hem(XN)
2 =

1

2π

( ˆ
Sd

ˆ
Sd
ϑ(x, y) dσ(x) dσ(y)− 1

N2

N∑
i,j=1

ϑ(xi, xj)

)
. (3.15)

Thus, when considering this notion of discrepancy, the role of the Euclidean distance in
the classical discrepancy is replaced by the geodesic distance.
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3.2.3 The harmonic ensemble

Let M be a two-point homogenenous manifold with parameters (α, β) (see Table 1.1).
Recall from Section 1.3.3 that the harmonic ensemble is the determinantal point process
in M induced by the projection operator to the space ΠL =

⊕N
ℓ=0 Vℓ, where Vℓ are the

eigenspaces of the Laplace-Beltrami operator on M. This determinantal point process
has π(α,β)

L = (α+β+2)L(α+2)L
(β+1)LL!

≈ Ld points a.s. and kernel

K
(α,β)
L =

(α + β + 2)L
(β + 1)L

P
(α+1,β)
L (cos(2κϑ(x, y))), (3.16)

see Section 1.1 for the notation.
In the particular case M = Sd, the harmonic ensemble [BMOC16] is the determinantal

point process induced by the subspace ΠL =
⊕N

ℓ=0 Vℓ of polynomials in Rd+1 of degree at
most L restricted to Sd with

πL := dim(ΠL) = π
(λ,λ)
L =

2L+ d

d

(
d+ L− 1

L

)
≈ Ld (3.17)

points a.s. and kernel

KL(x, y) := K
(λ,λ)
L (x, y) =

πL(
L+ d

2
L

)P (1+λ,λ)
L (⟨x, y⟩), x, y ∈ Sd,

where ⟨·, ·⟩ denotes the usual inner product in Rd+1.
Observe that the mode of the distribution, in some sense the value that appears most

often in a set of data values sampled from this DPP, is the maximum of the joint density

p(x1, . . . , xπL
) =

1

πL!
det(KL(xi, xj))1≤i,j≤πL

,

for x1, . . . , xπL
∈ Sd. In order to identify these mode points, observe that if ϕ1, . . . , ϕπL

is
a basis of the space ΠL, then from

KL(x, y) =

πL∑
i=1

ϕi(x)ϕi(y)

we have
det(KL(xi, xj))1≤i,j≤πL

= | det (ϕj(xi))1≤i,j≤πL
|2.

Thus, the mode points maximize the absolute value of the determinant

VL(x1, . . . , xπL
) = |det(ϕi(xj))1≤i,j≤πL

| .

Points maximizing this quantity are known as Fekete points or called extremal funda-
mental systems, [Rei03]. Sloan and Womersley conjectured that they have all positive
cubature weights [WS01] and were shown to be asymptotically uniformly equidistributed
in [MOC10, BBWN11].
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3.2.4 The spherical ensemble

We have introduced the spherical ensemble in Section 1.3.2, together with the expected
Riesz energies from [AZ15]. One can see that if we take N points sampled from the
spherical ensemble and map them to the sphere S2 through the stereographic projection,
their joint density is

C
∏
i<j

|xi − xj|2

with respect to the surface measure in S2. Therefore, by taking the logarithm of this
quantity, we see that the mode of the spherical ensemble is given by the maximizers of∑

i ̸=j log |xi − xj| or, equivalently, the minimizers of the logarithmic energy

E0(x1, . . . , xN) =
∑
i ̸=j

log
1

|xi − xj|
,

i.e., they are the elliptic Fekete points, [BHS19].

3.2.5 Zeros of elliptic polynomials

The last point process we are going to consider is the zeros of the elliptic polynomials
projected to S2 through the stereographic projection, which was studied in Chapter 2. In
order to compute its expected worst-case error, we will need the expected Riesz energies
from Theorem 2.1.1. In particular, for s < 0 the asymptotic expansion

E[Es] =
21−s

2− s
N2 + C(s)N1+s/2 + oN→∞(N1+s/2), (3.18)

C(s) =
1

2s
s

2

(
1 +

s

2

)
Γ
(
1− s

2

)
ζ
(
1− s

2

)
,

which follows from (2.6), will be enough for our propose. Only for s = −2 we will require
more precision,

E[E−2] = 2N2 − 8
ζ(3)

N
+ oN→∞

(
1

N

)
, (3.19)

since in this case C(−2) = 0.

3.3 Proofs of average QMC strength results (Section 3.1.1)

3.3.1 Harmonic ensemble

To prove Theorem 3.1.6, we need some preliminaries.
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Let d
2
< s < d

2
+ 1. From formula (3.10), for N = πL ≈ Ld points drawn from the

harmonic ensemble on the sphere we get

E[wce(XN ;Hs(Sd))2] =
1

N2

ˆ
Sd

ˆ
Sd
KL(x, y)

2|x− y|2s−d dσ(x) dσ(y)

=
π2
L

P
(1+λ,λ)
L (1)2N2

ˆ
Sd

ˆ
Sd
P

(1+λ,λ)
L (⟨x, y⟩)2|x− y|2s−d dσ(x) dσ(y)

=
Cd

P
(1+λ,λ)
L (1)2

ˆ
Sd
P

(1+λ,λ)
L (⟨x,n⟩)2|x− n|2s−d dσ(x)

=
Cd

P
(1+λ,λ)
L (1)2

ˆ 1

−1

P
(1+λ,λ)
L (t)2(1− t)s−1(1 + t)

d
2
−1 dt,

where n stands for the north pole of Sd.
From the asymptotic property of the gamma function

lim
n→∞

Γ(n+ α)

Γ(n)nα
= 1, α ∈ R,

we get that

P
(1+λ,λ)
L (1) =

(
L+ d

2

L

)
∼ 1

Γ(d
2
+ 1)

Ld/2.

Therefore we have that for some constant Cd,s > 0,

E[wce(XN ;Hs(Sd))2] =
Cd,s

Ld

ˆ 1

−1

P
(1+λ,λ)
L (t)2(1− t)s−1(1 + t)

d
2
−1dt. (3.20)

The following lemma is an extension to −1 < a < d of a result proved in [BMOC16]
for 0 < a < d.

Proposition 3.3.1. Given −1 < a < d,

lim
L→∞

1

La

ˆ 1

−1

P
(1+λ,λ)
L (t)2(1− t)λ−

a
2 (1 + t)λ dt = 2

a
2
+d

ˆ ∞

0

J1+λ(t)
2

t1+a
dt

and the last integral converges.

Proof. The proof is essentially the same as in [BMOC16, Proposition 6] but with a few
changes in the last estimates. We split the integral

ˆ 1

−1

L−aP
(1+λ,λ)
L (t)2(1− t)λ−

a
2 (1 + t)λ dt

=

[ˆ − cos c
L

−1

+

ˆ cos c
L

− cos c
L

+

ˆ 1

cos c
L

]
L−aP

(1+λ,λ)
L (t)2(1− t)λ−

a
2 (1 + t)λ dt

=A(c, L) +B(c, L) + C(c, L),
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where c > 0 is fixed and c < πL. For the boundary parts we do a change of variables
t = cos(x/L) to get

C(c, L)

= 2a/2
ˆ c

0

L−2−2λP
(1+λ,λ)
L

(
cos

x

L

)2(sin x
L

x
L

)2λ+1
(
1− cos x

L

1
2

(
x
L

)2
)−a/2

x2λ+1−a dx.

Using the Mehler-Heine asymptotic formula [Sze39, p. 192] and the elementary limits

lim
L→∞

sin x
L

x
L

= 1, lim
L→∞

1− cos x
L

1
2

(
x
L

)2 = 1,

we conclude:

lim
L→∞

C(c, L) = 2
a
2
+d

ˆ c

0

J1+λ(x)
2

x1+a
dx.

For the other end of the interval, using the change of variables t = − cos(x/L) we get

A(c, L) =

ˆ c

0

L−2−2λP
(1+λ,λ)
L

(
− cos

x

L

)2(sin x
L

x
L

)2λ+1
(
1 + cos x

L(
x
L

)2
)−a/2

x2λ+1dx,

and using Mehler-Heine again this expression converges to zero when L → ∞. For the
middle term we use classical asymptotic estimates of the Jacobi polynomials [Sze39,
Theorem 8.21.13]

P
(1+λ,λ)
L (cos θ) =

k(θ)√
L

{
cos ((L+ λ+ 1)θ + γ) +

O(1)

L sin θ

}
,

if c/L ≤ θ ≤ π − (c/L)

k(θ) = π−1/2

(
sin

θ

2

)−λ−3/2(
cos

θ

2

)−λ−1/2

, and γ = −
(
λ+

3

2

)
π

2
.

We get

0 ≤B(c, L) ≲
1

La+1

ˆ π− c
L

c
L

1

(sin θ
2
)a+2

dθ ≲
1

La+1

ˆ π− c
L

c
L

1

θa+2
dθ

≤ 1

La+1

ˆ π

c
L

1

θa+2
dθ =

1

La+1(a+ 1)

[
La+1

ca+1
− 1

πa+1

]
=

1

ca+1(a+ 1)
+ o(L).

Finally, observe that close to zero J1+λ(x) ∼ x1+λ and J1+λ(x) ≲ x−1/2 for big x, so
the integral above converges precisely for −1 < a < d.
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Proof of Theorem 3.1.6. Now for any d
2
< s < d+1

2
we apply the proposition above to

−1 < t = d − 2s < 0 and we get from (3.20) that there exists a (different) constant
Cd,s > 0 such that

lim
L→+∞

L2sE[wce(XN ;Hs(Sd))2] = Cd,s.

This shows that points drawn from the harmonic ensemble form an s-QMC design on
average for d

2
< s < d+1

2
.

To get (3.3) we use again (3.20) for s = d+1
2

and the representation of the integral in
terms of generalized hypergeometric function [EMOT54, p. 288]

E[wce(XN ;H
d+1
2 (Sd))2] ≈ L−dΓ

(
1
2
+ L

)
Γ
(
d
2
+ L

)
Γ
(
d
2
+ L+ 1

)
Γ(L+ 1)2Γ

(
d+ 1

2
+ L

)
× 4F3

(
−L, d+ L,

d+ 1

2
,
1

2
;
d

2
+ 1, d+

1

2
+ L,−L+

1

2
; 1

)
,

where the constant depends only on d.
It is easy to see (by induction) that the quotient

(−L)n(d+ L)n
(d+ 1

2
+ L)n(−L+ 1

2
)n

is increasing as a function of 0 ≤ n ≤ L and therefore

N
d+1
d E[wce(XN ;H

d+1
2 (Sd))2] ≳

L∑
n=0

(
d+1
2

)
n

(
1
2

)
n(

d
2
+ 1
)
n

1

n!
.

Finally, this last series diverges when L → ∞ by Gauss test taking a = (d + 1)/2,
b = 1/2 and c = a+ b, because

(a)n(b)n
(c)nn!

(a)n+1(b)n+1

(c)n+1(n+1)!

=
(c+ n)(n+ 1)

(a+ n)(b+ n)
= 1 +

1

n
+
Cn

n2
,

with Cn a bounded sequence.

Proof of Corollary 3.1.7. In [BMOC16] it was proved that for every M > 0 there exist
CM > 0 such that

P
(
D∞(XN) ≤ CM

logN

N
d+1
2d

)
≥ 1− 1

NM
,

where XN is an N -point set drawn from the harmonic ensemble.
Now it follows from the result above, formula (3.14) and D2(XN) ≲ D∞(XN) that

there exists (another) CM > 0 such that

P
(

wce(XN ;H
d+1
2 (Sd)) ≤ CM

logN

N
d+1
2d

)
≥ 1− 1

NM
.
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To get (3.4) it is enough to apply the interpolation result from [BSSW14, Lemma 23], from
which we get for d/2 < s < (d+1)/2 a constant Cd,s > 0 such that wce(XN ;Hs(Sd))

d+1
2s ≤

Cd,swce(XN ;H
d+1
2 (Sd)) if wce(XN ;H

d+1
2 (Sd)) ≤ 1, see [Ber19, Section 1.5].

Finally, if we take (for example) M = 2 in (3.4) we get∑
N

P

(
wce(XN ;Hs(Sd)) > Cd,s

(logN)
2s
d+1

N
s
d

)
<∞,

and from Borel-Cantelli lemma

P

(
lim sup
N→+∞

{
wce(XN ;Hs(Sd)) > Cd,s

(logN)
2s
d+1

N
s
d

})
= 0.

3.3.2 Spherical ensemble

Proof of Theorem 3.1.8. The first part is due to [Hir18]. We include it for the sake of com-
pleteness. Let s ∈ (1, 2). Then the worst-case error is given by (3.10). Taking expectations
and using (1.23) with s′ = 2− 2s,

N sE
[
wce(XN ,Hs(S2))2

]
= −N

s

N2

(
E [E2−2s]− V2−2s(S2)N2

)
=

22sΓ(s)

4

Γ(N)

Γ(N + s)
N s

−−−→
N→∞

22sΓ(s)

4
,

since Γ(N)
Γ(N+s)

∼ N−s as N → ∞ by the asymptotic property of the gamma function. Then
N sE [wce(XN ,Hs(S2))2] is bounded and (XN) is a sequence of s-QMC designs on average
for s ∈ (1, 2).

Now we show that s∗ = 2. Let s ∈ (2, 3). The expression for the worst-case error is
(3.11) with M = 1:

wce(XN ;Hs(S2))2 =
1

N2

[
N∑

j,i=1

Q1(xj · xi) + E2−2s − V2−2s(S2)N2

]
,

with
Q1(xj · xi) = −6α

(s)
1 xj · xi,

where we have used that P (2)
1 (x) = x. Then

wce(XN ;Hs(S2))2 =
1

N2

[
−6α

(s)
1

N∑
j,i=1

xj · xi + E2−2s − V2−2s(S2)N2

]

=
1

N2

[
−6α

(s)
1

N∑
j,i=1

(
1− |xj − xi|2

2

)
+ E2−2s − V2−2s(S2)N2

]

=
1

N2

[
3α

(s)
1

(
E−2 − 2N2

)
+ E2−2s − V2−2s(S2)N2

]
(3.21)
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Taking expectations and using (1.23) with s = −2 and s′ = 2− 2s,

N2E
[
wce(XN ;Hs(S2))2

]
=
[
3α

(s)
1

(
E [E−2]− 2N2

)
+ E [E2−2s]− V2−2s(S2)N2

]
= −12α

(s)
1

N

N + 1
− 22sΓ(s)

4

Γ(N)

Γ(N + s)
N2

−−−→
N→∞

−12α
(s)
1 > 0,

since Γ(N)
Γ(N+s)

N2 ∼ N2−s. Hence, N2E [wce(XN ;Hs(S2))2] is bounded below by a positive
constant.

3.3.3 Zeros of elliptic polynomials

Proof of Theorem 3.1.10. Let s ∈ (2, 3). We have already seen in (3.21) that the expres-
sion for the worst-case error is

wce(XN ;Hs(S2))2 =
1

N2

[
3α

(s)
1

(
E−2 − 2N2

)
+ E2−2s − V2−2s(S2)N2

]
.

Taking expectations and using (3.19) for E[E−2] and (3.18) with s′ = 2− 2s,

N sE
[
wce(XN ;Hs(S2))2

]
=
N s

N2

[
3α

(s)
1

(
E [E−2]− 2N2

)
+ E [E2−2s]− V2−2s(S2)N2

]
= N s−2

[
3α

(s)
1

(
−8ζ(3)

1

N
+ o

(
1

N

))
+ C(2− 2s)N2−s + o(N2−s)

]
= 3α

(s)
1

(
−8ζ(3)N s−3 + o

(
N s−3

))
+ C(2− 2s) + o(1)

−−−→
N→∞

C(2− 2s).

Then N sE [wce(XN ;Hs(S2))2] is bounded for s ∈ (2, 3). For 1 < s ≤ 2, the result holds
automatically from Proposition 3.1.4.

Now we see that the strength is s∗ = 3. Let s ∈ (3, 4). By (3.11) with M = 2, the
square of the worst-case error is

wce(XN ;Hs(S2))2 =
1

N2

[
N∑

j,i=1

Q2(xj · xi)− (E2−2s − V2−2s(S2)N2)

]
,

where, using that P (2)
2 (x) = 1

2
(3x2 − 1),

Q2(xj · xi) = −5α
(s)
2 [3(xj · xi)2 − 1]

= −5α
(s)
2

[
2− 3|xj − xi|2 +

3

4
|xj − xi|4

]
.
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Then
wce(XN ;Hs(S2))2 =

1

N2

[
− 5α

(s)
2

(
2N2 − 3E−2 +

3

4
E−4

)
− (E2−2s − V2−2s(S2)N2)

]
.

Taking expectations and using (3.19) for E[E−2] and (3.18) with s′ = 2− 2s,

E
[
wce(XN ;Hs(S2))2

]
=

1

N2

[
− 5α

(s)
2

(
2N2 − 3E[E−2] +

3

4
E[E−4]

)
− (E[E2−2s]− V2−2s(S2)N2)

]
=

1

N2

{
− 5α

(s)
2

[
2N2 − 3

(
2N2 − 8ζ(3)

1

N
+ o

(
1

N

))
+
3

4

(
32

6
N2 + 64ζ(3)

1

N
+ o

(
1

N

))]
−
(
C(2− 2s)N2−s + o

(
N2−s

))}

=
1

N2

{
− 5α

(s)
2

[
72ζ(3)

1

N
+ o

(
1

N

)]
− C(2− 2s)N2−s

}
.

Therefore,

N3E
[
wce(XN ;Hs(S2))2

]
= −5α

(s)
2 [72ζ(3) + o (1)]− C(2− 2s)N3−s

−−−→
N→∞

−360ζ(3)α
(s)
2 > 0.

Then there exists a constant B > 0 such that

N3E
[
wce(XN ;Hs(S2))2

]
≥ B.

3.4 Proofs of discrepancy results (Section 3.1.2)

3.4.1 L2 discrepancies on the sphere Sd

Any sequence (XN) of random N -point configurations on Sd being a sequence of (d+1)/2-
QMC designs on average automatically yields N -point sets with optimal spherical L2 cap
discrepancy.

Proof of Proposition 3.1.11. From (3.14),

D2(XN)
2 = γd wce(XN ;H

3
2 (S2))2
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and applying expectations

E
[
D2(XN)

2
]
= γd E

[
wce(XN ;H

3
2 (S2))2

]
.

Since both processes are 3/2-QMC designs on average, E
[
wce(XN ;H

3
2 (S2))2

]
= O(N−3/2)

and by the previous equation E
[
D2(XN)

2
]
= O(N−3/2). From Jensen’s inequality we get

the result.

All the results concerning the hemisphere discrepancy are obtained from the Stolarsky
formula (3.15).

In the case of independent uniform points on S2, we easily get (3.8):

E
[
D2,hem(XN)

2
]
=

1

2π

( ˆ
S2

ˆ
S2
ϑ(x, y) dσ(x) dσ(y)− 1

N2
E
[ N∑

i,j=1

ϑ(xi, xj)

])
=

1

2π

( ˆ
S2

ˆ
S2
ϑ(x, y) dσ(x) dσ(y)− N(N − 1)

N2

ˆ
S2

ˆ
S2
ϑ(x, y) dσ(x) dσ(y)

)
=

1

2π

ˆ
S2
ϑ(x, s) dσ(x)

1

N
=

1

4N
,

where s = (0, 0,−1) ∈ S2 is the south pole. The choice of this point is obviously arbitrary.

Proof of Proposition 3.1.12. First we prove the result for the spherical ensemble. Let
ρS
2(x, y) and KS

N(x, y) denote the second joint intensity and the kernel of the spherical
ensemble with respect to σ, respectively. By the definition of a determinantal point process
and (1.22),

ρS
2(x, y) = KS

N(x, x)K
S
N(y, y)− |KS

N(x, y)|2

= N2 −N2

(
1− |x− y|2

4

)N−1

= N2

(
1−

(
1− |x− y|2

4

)N−1
)
.

By (1.18) and the rotation invariance of the geodesic distance and ρS
2(x, y),

E
[
D2,hem(XN)

2
]

=
1

2π

( ˆ
S2

ˆ
S2
ϑ(x, y) dσ(x) dσ(y)− 1

N2
E
[ N∑

i,j=1

ϑ(xi, xj)

])
=

1

2π

( ˆ
S2

ˆ
S2
ϑ(x, y) dσ(x) dσ(y)− 1

N2

ˆ
S2

ˆ
S2
ϑ(x, y)ρS

2(x, y) dσ(x) dσ(y)

)
=

1

2π

( ˆ
S2
ϑ(x, s) dσ(x)−

ˆ
S2
ϑ(x, s)

(
1−

(
1− |x− s|2

4

)N−1)
dσ(x)

)
=

1

2π

ˆ
S2
ϑ(x, s)

(
1− |x− s|2

4

)N−1

dσ(x),
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where s = (0, 0,−1) ∈ S2 is the south pole.
Since ϑ(x, s) = arccos⟨x, s⟩ and |x − s|2 = 2 − 2⟨x, s⟩, the integrand in the previous

equation only depends on the inner product with s. We apply the particular case of
Funck-Hecke formula in [BMOC16, Lemma 1] to get

E
[
D2,hem(XN)

2
]
=

1

2Nπ

ˆ
S2
arccos⟨x, s⟩ (1 + ⟨x, s⟩)N−1 dσ(x)

=
1

2N+1π

ˆ 1

−1

arccos t (1 + t)N−1 dt

=
1

2N+1π

ˆ π

0

θ (1 + cos θ)N−1 sin θ dθ

where we have applied the change of variables t = cos θ. Using the trigonometric identities
1+cos θ = 2 cos2(θ/2) and sin θ = 2 sin(θ/2) cos(θ/2) and putting x = θ/2, we obtain the
result:

E
[
D2,hem(XN)

2
]
=

2N

2N+1π

ˆ π

0

θ cos2N−1

(
θ

2

)
sin

(
θ

2

)
dθ

=
2

π

ˆ π

0

x cos2N−1 x sinx dx

=
2

π

B(1/2, N + 1/2)

4N

=
1

2
√
π

Γ(N + 1/2)

N2Γ(N)

=
1

2
√
π

1

N3/2
+ o

(
1

N3/2

)
,

where we have used [PBM03, 2.5.13(14)] for the integral.
Now we get the result for the zeros of elliptic polynomials. In (2.18) we have provided

a formula to compute the expected value of
∑

i ̸=j F (xi, xj) when F (x, y) = f(|x− y|) for
some function f . Since the Riemannian distance is related to the Euclidean distance by
ϑ(x, y) = 2 arcsin |x−y|

2
, the formula yields

E
[ N∑

i,j=1

ϑ(xi, xj)

]
= 4N2

ˆ ∞

0

r arcsin

(
r√

1 + r2

)
γ(r) dr,

where γ(r) has been defined in (2.19).
On the other hand, if s = (0, 0,−1) ∈ S2, by rotation invariance we haveˆ

S2

ˆ
S2
ϑ(x, y) dσ(x) dσ(y) =

ˆ
S2
ϑ(x, s) dσ(x)

= 2

ˆ
S2
arcsin

|x− s|
2

dσ(x)

= 2

ˆ
C
arcsin

(
|z|√

1 + |z|2

)
1

π(1 + |z|2)2
dz

= 4

ˆ ∞

0

r arcsin

(
r√

1 + r2

)
1

(1 + r2)2
dr,
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where we have stereographically projected x to z (and s to 0), taking into account the
expression (2.17) for the chordal distance between two points on S2 in terms of their
projections on C.

Putting all together

E
[
D2,hem(XN)

2
]
=

1

2π

( ˆ
S2

ˆ
S2
ϑ(x, y) dσ(x) dσ(y)− 1

N2
E
[ N∑

i,j=1

ϑ(xi, xj)

])
=

2

π

ˆ ∞

0

r arcsin

(
r√

1 + r2

)(
1

(1 + r2)2
− γ(r)

)
dr

=
1

πN

ˆ ∞

0

arcsin

(√
x

N + x

)(
1(

1 + x
N

)2 − γ
(√

x/N
))

dx.

In the last line we have applied the change of variables r2 = x/N . By considering the
series of the integrand at N = ∞, we obtain

E
[
D2,hem(XN)

2
]
= − 1

πN3/2

ˆ ∞

0

√
xϕ(x)dx+O

(
1

L5/2

)
.

where

ϕ(x) =

(
1− x

ex−1

)2
ex +

(
exx
ex−1

− 1
)2

ex − 1
− 1.

Integrating by parts,

ˆ ∞

0

x1/2ϕ(x) dx =

[
x1/2

(
−2 + ex(x− 2)

(ex − 1)2
x

)]∞
0

+
1

2

ˆ ∞

0

x−1/2

(
2 + ex(x− 2)

(ex − 1)2
x

)
dx.

The first term is equal to 0. The second can be obtained by integrating by parts again:

ˆ ∞

0

x−1/2

(
2 + ex(x− 2)

(ex − 1)2
x

)
dx =

[
x−1/2

(
− x2

ex − 1

)]∞
0

− 1

2

ˆ ∞

0

x−3/2 x2

ex − 1
dx

= −1

2

ˆ ∞

0

x1/2

ex − 1
dx.

The last integral can be found in [GR07, 3.411 (1)]. Then we get

E[D2,hem(XN)
2] = − 1

π

1

2

(
−1

2

)
Γ

(
3

2

)
ζ

(
3

2

)
1

N3/2
+O

(
1

N5/2

)
=

1

8
√
π
ζ

(
3

2

)
1

N3/2
+ o

(
1

N3/2

)
.
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3.4.2 L∞ discrepancy on two-point homogeneous manifolds

Proof of Proposition 3.1.13. Since the process is invariant under the isometry group of
FPn, the same is true for the variance of nA. Therefore we can assume that A = B(x0, θL),
with x0 a fixed point in FPn and θL ∈ [0, π/2), and the result will not depend on x0. We
define αL = LθL, which according to the hypothesis satisfies αL = O(L) and αL → ∞
when L→ ∞.

The variance can be computed with the following formula

Var(nA) =

ˆ
A

ˆ
Ac

|K(α,β)
L (x, y)|2 dσ(x) dσ(y)

= A2
α,β,L

ˆ
A

ˆ
Ac

|P (α+1,β)
L (cos(2ϑ(x, y)))|2 dσ(x) dσ(y),

where Aα,β,L = (α+β+2)L
(β+1)L

∼ Γ(β+1)
Γ(α+β+2)

Lα+1 is the constant in (3.16).
We start by bounding the inner integral,ˆ

Ac

|P (α+1,β)
L (cos(2ϑ(x, y)))|2 dσ(y)

≤
ˆ
FPn\B(x,ϑ(x,∂A))

|P (α+1,β)
L (cos(2ϑ(x, y)))|2 dσ(y)

=

ˆ π/2

ϑ(x,∂A)

|P (α+1,β)
L (cos(2θ))|2v(θ) dθ,

where in the equality we have applied (1.5) with

v(θ) =
1

γα,β
sin2α+1(κθ) cos2β+1(κθ),

see (1.4). Then

Var(nA)

≲ A2
α,β,L

ˆ θL

0

v(η) dη

ˆ π

2(θL−η)

|P (α+1,β)
L (cos θ)|2 sin2α+1

(
θ

2

)
cos2β+1

(
θ

2

)
dθ

≲ A2
α,β,L

ˆ θL

0

sin2α+1 η

ˆ π

2(θL−η)

|P (α+1,β)
L (cos θ)|2 sin2α+1

(
θ

2

)
cos2β+1

(
θ

2

)
dθ dη

≤ A2
α,β,L

ˆ θL

0

η2α+1

ˆ π

2(θL−η)

|P (α+1,β)
L (cos θ)|2 sin2α+1

(
θ

2

)
cos2β+1

(
θ

2

)
dθ dη

=
A2

α,β,L

L2α+2

ˆ αL

0

η2α+1

ˆ π

2(αL−η)

L

|P (α+1,β)
L (cos θ)|2 sin2α+1

(
θ

2

)
cos2β+1

(
θ

2

)
dθ dη.

Here and all along the proof the constants in ≲ can depend on α and β. Since Aα,β,L ∼
Γ(β+1)

Γ(α+β+2)
Lα+1,

Var(nA) ≲
ˆ αL

0

ηd−1

ˆ π

2(αL−η)

L

|P (α+1,β)
L (cos θ)|2 sin2α+1

(
θ

2

)
cos2β+1

(
θ

2

)
dθ dη.
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Now, as done in the proof of [BMOC16, Proposition 2], we split the inner integral above
in three summands corresponding to the regions

I =
{ c
L

≤ θ ≤ π − c

L

}
, II =

{
θ > π − c

L

}
, III =

{ c
L
< θ
}
,

for some fixed c > 0.
To bound the integral over I, we will use the following classical estimate for Jacobi

polynomials from [Sze39, Theorem 8.21.13]

P
(α,β)
L (cos θ) = L−1/2k(θ)

[
cos(Bθ + γ) + (L sin θ)−1O(1)

]
, (3.22)

where B = L+ α+β+1
2

, γ = −
(
α + 1

2

)
π
2

and

k(θ) = π−1/2 sin−α−1/2

(
θ

2

)
cos−β−1/2

(
θ

2

)
.

Then
|P (α+1,β)

L (cos θ)|2 ≲ L−1k2(θ)

≃ L−1 sin−2α−3

(
θ

2

)
cos−2β−1

(
θ

2

)
.

Therefore, integrating over I,

Var(nA)I ≲
1

L

ˆ αL

0

ηd−1 dη

ˆ π−c/L

max{2(αL−η),c}
L

1

sin2
(
θ
2

) dθ

=
2

L

ˆ αL

0

ηd−1 dη

(
cot

(
max{2(αL − η), c}

2L

)
− tan

( c

2L

))
=

2

L

[ˆ αL

0

ηd−1 cot

(
max{2(αL − η), c}

2L

)
dη︸ ︷︷ ︸

I1

− αd
L

d
tan
( c

2L

)
︸ ︷︷ ︸

order L−1αd
L

]
.

After a change of variables, the integral I1 can be expressed as

I1 =
ˆ αL

c/2

(αL − η)d−1 cot
( η
L

)
dη︸ ︷︷ ︸

I2

+

ˆ αL

αL−c/2

ηd−1 dη︸ ︷︷ ︸
order αd−1

L

cot
( c

2L

)
︸ ︷︷ ︸

order Lαd−1
L

.

To deal with I2, we expand the polynomial in η and use that x cotx ≤ 1 for x ∈ [0, π/2]
to get

I2 = αd−1
L

ˆ αL

c/2

cot
( η
L

)
dη + LO

(
αd−1
L

)
= Lαd−1

L log

(
sin
(
αL

L

)
sin
(

c
2L

))+ LO
(
αd−1
L

)
≤ Lαd−1

L log

(
4αL

c

)
+ LO

(
αd−1
L

)
= Lαd−1

L logαL + LO
(
αd−1
L

)
,
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where in the third line we have used that log is an increasing function and sinx ≤ x,
sinx ≥ x/2 for x ∈ [0, π/2]. Therefore,

Var(nA)I ≲ αd−1
L logαL +O

(
Ld−1

)
.

Now we study the contribution of II. With the trivial bound sinx ≤ 1, we have

Var(nA)II ≲
ˆ αL

0

ηd−1 dη

ˆ π

π−c/L

|P (α+1,β)
L (cos θ)|2 cos2β+1

(
θ

2

)
dθ.

The inner integral can be rewritten asˆ π

π− c
L

|P (α+1,β)
L (cos θ)|2 cos2β+1

(
θ

2

)
dθ =

ˆ c/L

0

|P (α+1,β)
L (cos(π − θ))|2 cos2β+1

(
π − θ

2

)
dθ

=

ˆ c/L

0

|P (α+1,β)
L (− cos θ)|2 sin2β+1

(
θ

2

)
dθ

≲
ˆ c/L

0

|P (α+1,β)
L (− cos θ)|2θ2β+1 dθ.

Since P (α,β)
L (cos θ) = (−1)LP

(β,α)
L (− cos θ), we have

|P (α+1,β)
L (− cos θ)| = |P (β,α+1)

L (cos θ)|

and

Var(nA)II ≲
ˆ αL

0

ηd−1 dη

ˆ c/L

0

|P (β,α+1)
L (cos θ)|2θ2β+1 dθ.

From [Sze39, Theorem 7.32.2], P (α,β)
L (cos θ) = O (Lα) for 0 ≤ θ ≤ c/L. Hence,

|P (β,α+1)
L (cos θ)|2 = O

(
L2β
)

and
Var(nA)II ≲ αd

LL
2βL−2β−2 = L−2αd

L = O
(
Ld−2

)
.

For the integral over III, observe that the inner integral is zero unless η ∈ [αL−c/2, αL].
Therefore, using that cosx ≤ 1 and sinx ≤ x,

Var(nA)III ≲
ˆ αL

αL−c/2

ηd−1 dη

ˆ c/L

0

|P (α+1,β)
L (cos θ)|2θ2α+1 dθ.

Again by [Sze39, Theorem 7.32.2],

|P (α+1,β)
L (cos θ)|2 ≲ L2α+2

and

Var(nA)III ≲ L2α+2

ˆ αL

αL−c/2

ηd−1 dη

ˆ c/L

0

θ2α+1 dθ ≲ αd−1
L = O

(
Ld−1

)
.

Summing up,

Var(nA) ≲ αd−1
L logαL +O

(
Ld−1

)
≲ Ld−1 logL+O

(
Ld−1

)
.





Chapter 4

Green energy in two-point
homogeneous manifolds

In this chapter, we prove the sharpest known to date lower bounds for the minimal Green
energy of the compact two-point homogeneous manifolds of any dimension. Moreover, we
relate the Green energy of a configuration XN to a Sobolev discrepancy from which it
is possible to deduce an upper bound for the discrepancy of N -point minimizers of the
Green energy.

Part of this chapter is based on [BdlTL22].

4.1 Introduction and main results

4.1.1 Minimal Green energy

Let M be any compact Riemannian manifold without boundary. From [Aub98, Section
4.2], the Green function is the unique function GM : M × M → R ∪ {∞} with the
properties:

1. In the sense of distributions, ∆yGM = δx − 1, where δx is Dirac’s delta.

2. GM is C∞ on M×M minus the diagonal.

3. Symmetry: GM(x, y) = GM(y, x).

4. The mean of GM(x, ·) is zero for all x ∈ M, i.e.,
´
y∈MGM(x, y) dσ(y) = 0, where

σ is the normalized uniform measure on M.

For an N -point configuration XN = {x1, . . . , xN} ⊂ M, the discrete Green energy of XN

is defined by
EM(XN) =

∑
i ̸=j

GM(xi, xj).

73
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Since GM is lower semicontinuous, the minimal discrete Green energy is achieved by some
N -point configuration X∗

N ⊂ M and we denote it by

EG(M, N) = min
XN⊂M

EM(XN).

The search for minimizers of the Green energy is an interesting and difficult mathematical
problem. If M = S2 is the 2–sphere, we have

GS2(x, y) = 2 log
1

∥x− y∥
− 1 + 2 log 2, (4.1)

where log denotes the natural logarithm. Hence, the search for minimizers of the Green
energy in S2 is closely related to Smale’s 7th problem [Sma00].

In a general compact Riemannian manifold, if x1, . . . , xN are minimizers of the Green
energy for increasing values of N , then they are asymptotically uniformly distributed, i.e.,
the associated counting probability measure converges in the weak sense to the uniform
probability measure in M, see [BCCdR19]. More quantitatively, in [Ste21] it is shown that
the Wasserstein 2–distance between these two measures is of order N−1/d, which is the
best possible for dimension greater than or equal to 3. For a general compact Riemannian
manifold, Steinerberger also proved in [Ste21, p. 4, Corollary] that

EG(M, N) ≥

{
−cMN logN d = 2,

−cMN2−2/d d ≥ 3,
(4.2)

where cM > 0 is a constant depending on the manifold M. Here and all along the chapter,
d = dM = dim(M) stands for the real dimension of the manifold M.

Our goal is to improve these lower bounds for two-point homogeneous manifolds. We
start by recalling some previous results.

Minimal value of the Green energy in spheres

Upper and lower bounds for the least possible Green energy have been investigated by
several authors. The most studied case is that of S2, where we find again the elliptic
Fekete points. As explained in Section 2.4, after [Wag89, RSZ94, Bra08, BS18, Ste22] it
is known that

min
x1,...,xN∈S2

∑
i ̸=j

log
1

∥xi − xj∥
=

(
1

2
− log 2

)
N2 − 1

2
N logN + ClogN + o(N),

where Clog is a constant whose value is not known. From [BS18] we have

Clog ≤ CBHS = 2 log 2 +
1

2
log

2

3
+ 3 log

√
π

Γ(1/3)
= −0.0556 . . .

This upper bound has been conjectured to be an equality using several different ap-
proaches [BHS12, BS18, Ste22]; see also [BHS19] for context and history of these results.
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The best currently known lower bound [Lau21] has the same form but for a slightly dif-
ferent constant log 2 − 3

4
= −0.0568 . . . instead of Clog. These bounds can be written in

terms of the Green energy using (4.1),

− N

2
+ o(N) ≤ EG(S2, N) +N logN ≤

(2CBHS + 1− 2 log 2)N + o(N) ≈ −0.49750N + o(N). (4.3)

It has been proved in [BL22] that, if M = Sd, d > 2, the argument in [Lau21, Appendix
B] (see also [LN75, SM76]) can be extended to get a seemingly almost sharp lower bound

EG(Sd, N) ≥ −d1+2/d

d2 − 4

(
VSd

VSd−1

)2/d

N2−2/d + o(N2−2/d), (4.4)

where the notation has been adapted, since the authors in [BL22] do not normalize the
volume form on M.

Minimal value of the Green energy in two-point homogeneous manifolds

Recall from Section 1.1 that the compact connected two-point homogeneous manifolds
are the sphere Sd, the real, complex and quaternionic projective spaces RPn,CPn,HPn

and the Cayley plane OP2. These spaces satisfy that if we have x1, y1, x2, y2 ∈ M with
ϑ(x1, y1) = ϑ(x2, y2), where ϑ denotes the geodesic distance, then there exists an isometry
of M taking x1 to x2 and y1 to y2. This fact implies that many geometric properties
(including minimal energy computations) can be described in a simpler manner than for
general manifolds. For each two-point homogeneous manifold, we associate parameters
α, β, κ defined in Table 4.1. We denote by d = dM = dimR(M) the real dimension of M,
whose value is d for the sphere Sd and d = n · dimR(F) for a projective space FPn.

Sd FPn

α d
2
− 1

β α dimR(F)
2

− 1

κ 1/2 1

d d n · dimR(F)

Table 4.1: Parameters α, β, κ associated to each two-point homogeneous manifold, along
with its real dimension d = dM = dim(M).

The case M = RP2 is particularly simple since, as noted in [BELG23], ERP2(x1, . . . , xN)
can be written in terms of ES2(x1, . . . , xN ,−x1, . . . ,−xN) and the lower bound on the lat-
ter implies a lower bound on the former,

EG(RP2, N) ≥ −1

2
N logN +

1

2

(
1

2
− log 2

)
N + o(N). (4.5)
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FPn CAD
FPn CBL

FPn

RPn n
4(n−2)

(
√
π

Γ(n+1
2 )

)2/n
n

n2−4

(
Γ(n

2
+1)

√
π

Γ(n+1
2 )

)2/n

CPn n
4(n−1)n!1/n

n
2(n2−1)

HPn n
2(2n−1)Γ(2n+2)1/2n

n
(2n−1)(2n+1)1+1/2n

OP2 2
7

8

√
6
11!

4

63 8√165

Table 4.2: Absolute value of the dominant coefficients in the lower bounds for EG(FPn, N)
in (4.7) and (4.9).

Moreover, CP1 is isometric to the Riemann sphere, that is, the sphere of radius 1/2 cen-
tered at (0, 0, 1/2), and hence ECP1(x1, . . . , xN) =

1
4
ES2(x̂1, . . . , x̂N), where x̂i is the result

of combining the aforementioned isometry with a transformation sending the Riemann
sphere to S2. This implies from (4.3),

EG(CP1, N) ≥ −1

4
N logN − 1

8
N + o(N). (4.6)

These are the sharpest known lower bounds for the two-point homogeneous manifolds of
real dimension 2. The higher–dimensional case has been studied in [BE18] for the complex
projective space and in [ADG+22] for general projective spaces. This last paper contains
the sharpest lower bounds for the Green energy known to date. In terms of α, β and the
dimension d, the lower bounds are

EG(FPn, N) ≥ −CAD
FPnN2−2/d + o(N2−2/d), (4.7)

with

CAD
FPn =

d

4(d− 2)

(
Γ(β + 1)

Γ(α + β + 2)

)2/d

, (4.8)

where n = 2 if F = O. In Table 4.2 we summarize the dominant coefficient in each case.
The main goal of this chapter is to show that the argument in [Lau21, BL22] can

indeed be extended quite straightforwardly to all the two-point homogeneous manifolds
of any dimension, sharpening the lower bounds for the minimal Green energy.

Theorem 4.1.1. Let M be a compact connected two-point homogeneous manifold with
d = dim(M) > 2. Then

EG(M, N) ≥ −CBL
MN2−2/d + o(N2−2/d), (4.9)

where

CBL
M =

d

d2 − 4
κ−2

(
Γ(α + 2)Γ(β + 1)

Γ(α + β + 2)

)2/d

(4.10)

with α, β, κ given in Table 4.1. Our method applies equally to S2, RP2 and CP1, which
yields the same lower bounds as in (4.3), (4.5) and (4.6), respectively.
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For the sphere Sd, the result coincides with (4.4). For the projective spaces, we show in
Table 4.2 the coefficient of the dominant term in each case. We can compare our bounds
with the ones of [ADG+22] mentioned above, and in all the cases our bounds are better.
Indeed, since κ = 1 for projective spaces, CBL

FPn < CAD
FPn is equivalent to see

4

[
Γ

(
d

2
+ 1

)]2/d
< d+ 2.

Writing x = d/2, this reduces to check

2
[Γ(x+ 1)]1/x

x+ 1
< 1 (4.11)

for x ≥ 3/2. From [LC07, Theorem 1],

2
[Γ(x+ 1)]1/x

x+ 1
<

2

e
(x+ 1)

1
2x︸ ︷︷ ︸

g(x)

and the right-hand side function g is decreasing with g(3/2) ≈ 0.9986 < 1. Thus, (4.11)
holds for x ≥ 3/2 and CBL

FPn < CAD
FPn . In Figures 4.1, 4.2 and 4.3 we plot CBL

FPn , CAD
FPn for the

comparison in the real, complex and quaternionic projective cases. For the Cayley plane,
observe that

CBL
OP2 =

4

63 8
√
165

= 0.0335 . . . < 0.0400 . . . =
2

7
8

√
6

11!
= CAD

OP2 .

The paper [ADG+22] also provides upper bounds on the minimal energies for the pro-
jective spaces, though only for some values of N . These bounds follow from the computa-
tion of the expected energies of the corresponding harmonic ensemble in FPn, introduced
in Section 1.3.3. In fact, the work studies first the expected s-Riesz energies, which are
given by the chordal Riesz s-kernel

Ks(x, y) =
1

ρ(x, y)s
=

1

sin(κϑ(x, y))s
, s > 0,

where ρ(x, y) = sin(κϑ(x, y)) is the chordal metric. Observe that for the sphere, since
ρ(x, y) is the Euclidean distance 1

2
|x−y|, the previous kernel is up to a constant the usual

Riesz s-kernel. The expected Green energies (and thus the mentioned upper bounds) fol-
low then from the relation between the Green energy and the Riesz energy with exponent
s = d− 2, that will be reviewed in (4.37). The upper bounds obtained in [ADG+22] are,
in terms of α, β and d > 2,

EG(FPn, N) ≤ − (α + 1)2

4α(2α + 1)

(
Γ(β + 1)

Γ(α + 2)Γ(α + β + 2)

)2/d

N2−2/d + o
(
N2−2/d

)
and only hold for

N = π
(α,β)
L =

(α + β + 2)L(α + 2)L
(β + 1)LL!

∼ Γ(β + 1)

Γ(α + β + 2)Γ(α + 2)
L2α+2, (4.12)
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Figure 4.1: The absolute value of the dominant coefficients in the lower bound for
EG(RPn, N) for increasing values of n. Blue dots are our constants in Theorem 4.1.1
and yellow dots are those of [ADG+22].

that is, the number of points sampled by the harmonic ensemble in FPn induced by the
kernel K(α,β)

L , see Section 1.3.3 for a review.
A similar upper bound can be obtained by applying the same method, in this case

using the expected Riesz energy from [BMOC16]. In this way we get the following upper
bound for all two-point homogeneous manifolds.

Theorem 4.1.2. Let M be a two-point homogeneous manifold with parameters α, β and
κ and real dimension d > 2. Then

EG(M, N) ≤ − (α + 1)2

4κ2α(2α + 1)

(
Γ(β + 1)

Γ(α + 2)Γ(α + β + 2)

)2/d

N2−2/d + o
(
N2−2/d

)
,

for values of N as in (4.12).

The previous result only gives upper bounds of the minimal energy for some values of
N . In order to prove our results (in particular Theorem 4.1.7) we are going to need the
following upper bound, which is valid for all N .

Proposition 4.1.3. For each two-point homogeneous manifold M with d > 2, there exists
a constant CM > 0 such that for N ∈ N sufficiently large,

EG(M, N) ≤ −CMN2−2/d. (4.13)

Although this approach does not provide explicit values for the constant, it is enough
for our purpose. For projective spaces the result is proved in [ADG+22, Corollary 4.3].
The sphere case follows the same strategy. For completeness we include a proof in Section
4.4.1.
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Figure 4.2: The absolute value of the dominant coefficients in the lower bound for
EG(CPn, N) for increasing values of n. Blue dots are our constants in Theorem 4.1.1
and yellow dots are those of [ADG+22].
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Figure 4.3: The absolute value of the dominant coefficients in the lower bound for
EG(HPn, N) for increasing values of n. Blue dots are our constants in Theorem 4.1.1
and yellow dots are those of [ADG+22].
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4.1.2 Discrepancy of minimal Green energy points

Although finding N -point sets of minimal energy is a very hard problem that becomes
unfeasible as N grows, it is possible to study some properties about their distribution. In
his thesis [CdR18], Criado del Rey proved that the minimizers XN = {x1, . . . , xN} ⊂ M
of the Green energy are well-separated for two-point homogeneous manifolds,

min
i ̸=j

ϑ(xi, xj) ≥ sepMN−1/d (4.14)

for some constant sepM > 0 depending on the manifold M. The constant is given in
[CdR19, Theorem 1.2], and in terms of our parameters it reads

sepM = κ−1

(
Γ(α + 2)Γ(β + 1)

Γ(α + β + 2)

) 1
d

. (4.15)

He also proved, together with Beltrán and Corral [BCCdR19], that any sequence of
minimizers (XN) of the Green energy are asymptotically uniformly distributed,

lim
N→+∞

1

N

N∑
i=1

f(xi) =

ˆ
M
f(x) dσ(x), for f ∈ C(M),

that is, the normalized uniform measure σ on M is the weak* limit of the sequence of
normalized counting measures of the sets XN , ν(XN) = 1

N

∑
x∈XN

δx. This property is
known to hold if and only if the cap discrepancy converges to zero,

lim
N→+∞

D∞(XN) = 0,

where
D∞(XN) = sup

x∈M,r>0

∣∣∣∣ |XN ∩B(x, r)|
N

− σ(B(x, r))

∣∣∣∣, (4.16)

see [BHS19, Section 6.1]. Here we call caps the balls in any two-point homogeneous
manifold by analogy with the sphere case. The speed of this convergence can be seen as
a measure of how well distributed are the N -point sets of minimizers.

We will obtain an upper bound for the cap discrepancy of minimizers of the Green
energy. We follow the ideas by Wolff in an unpublished manuscript, where he studied
the logarithmic energy on the sphere S2. He proved the upper bound O(N−1/3) for the
spherical cap discrepancy of the minimizers of the logarithmic energy, which are also
minimizers of the Green energy in S2 by (4.1). We observe that Wolff’s 1985 result is,
in fact, better than the upper bound of order O(N−1/4) derived by Brauchart in 2008,
[Bra08]. His method was later generalized to spheres of any dimension in [MM21] to work
with minimizers of Riesz s-energies.

In our main result, we study the discrepancy of the minimizers of the Green energy
for any two-point homogeneous space. Since the sphere S2 case corresponds to Wolff’s
work and the Green energies on RP2 and CP1 can be written in terms of S2, as detailed
in the previous section, we do not need to consider manifolds of dimension 2.
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Theorem 4.1.4. Let M be a compact connected two-point homogeneous manifold of
dimension d > 2. Let XN = {x1, . . . , xN} ⊂ M be an N-point set of minimizers of the
Green energy. Then

D∞(XN) ≲ N− 2
3d ,

with the constant depending only on M.

Remark 4.1.5. The same bound holds if the supremum in (4.16) is considered over the
so-called K-regular sets, a more general family of sets including the balls B(x, r) but also
rectifiable curves. One only needs to adapt the functions f±

ϵ in the proof of Proposition
4.4.4.

Recall from formula (3.9) that

cN− d+1
2d ≤ inf

XN⊂M,
|XN |=N

D∞(XN) ≤ CN− d+1
2d

√
logN

for any two-point homogeneous manifold. Our result is far from the optimal cap dis-
crepancy regardless of the logarithmic term. A possible reason could be the fact that, as
pointed out in the remark, our proof is not specific for caps and works for more general
sets such as the K-regular. For this family of sets, by combining ideas from [DG04], Ko-
revaar’s conjecture [Kor96] (proved by Götz [Göt00]) and the close relationship between
the Green energy and the Riesz energy s = d − 2 (4.37), it is reasonable to think that
the right order is N−1/d. Our result, although it is not optimal, is closer to this order of
magnitude.

Observe that Theorem 4.1.4 gives a quantitative proof of the asymptotic equidistri-
bution of the energy minimizers mentioned above.

Following Wolff’s approach, we will prove Theorem 4.1.4 through a sharp estimate of
another discrepancy given in terms of Sobolev norms.

Sobolev discrepancy

In this subsection, we extend the setting in [MM21] to a general two-point homogeneous
space.

The framework has already been introduced in Section 1.1.1. Recall that for each
ℓ ≥ 0, Vℓ denotes the vector space of eigenfunctions of eigenvalue λℓ = 4κ2ℓ(ℓ+α+β+1)
of the Laplace-Beltrami operator on M. The multiplicity of the eigenvalue λℓ is

mℓ =
2ℓ+ α + β + 1

α + β + 1

(α + β + 1)ℓ
ℓ!(β + 1)ℓ

.

As in the spherical setting, for the Hilbert space L2(M) = L2(M, σ) of square inte-
grable functions on the two-point homogeneous space M with inner product

⟨f, g⟩ =
ˆ
M
f(x)g(x) dσ(x)
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the decomposition L2(M) =
⊕

ℓ≥0 Vℓ holds. Then, if {Yℓ,k}mℓ
k=1 is a real orthonormal basis

of Vℓ, given a function f ∈ L2(M) we have the Fourier representation

f =
∑
ℓ,k

fℓ,kYℓ,k, fℓ,k = ⟨f, Yℓ,k⟩.

We consider the L2(M)-based Sobolev Hilbert space defined in terms of the Fourier
coefficients, that is,

H1(M) =

{
f ∈ L2(M) :

∞∑
ℓ=0

mℓ∑
k=1

(1 + ℓ2)|fℓ,k|2 < +∞

}
,

with the norm

∥f∥H1(M) =

(
∞∑
ℓ=0

mℓ∑
k=1

(1 + ℓ2)|fℓ,k|2
)1/2

.

This norm satisfies the equivalence

∥f∥2H1(M) ≈ ∥f∥2L2(M) + ∥∇f∥2L2(M). (4.17)

Indeed, as done in [MM21, Section 2.4], from the first Green’s identity and (1.6) we have
ˆ
M

|∇Yℓ,k|2 dσ =

ˆ
M
Yℓ,k ∆Yℓ,k dσ = 4κ2ℓ(ℓ+ α + β + 1) ≈ ℓ2.

Moreover, by the orthogonality of the eigenfunctions {Yℓ,k}mℓ
k=1,ℓ≥0,ˆ

M
Yℓ,k ∆

jYℓ′,k′ dσ = 0

for j ∈ {0, 1} whenever (ℓ, k) ̸= (ℓ′, k′). Then

∥f∥2H1(M) =
∞∑
ℓ=0

mℓ∑
k=1

(1 + ℓ2)|fℓ,k|2 = ∥f∥2L2(M) +
∞∑
ℓ=1

mℓ∑
k=1

ℓ2|fℓ,k|2

≈ ∥f∥2L2(M) +
∞∑
ℓ=1

mℓ∑
k=1

ˆ
M
Yℓ,k ∆Yℓ,k dσ |fℓ,k|2

= ∥f∥2L2(M) +

ˆ
M
f ∆f dσ = ∥f∥2L2(M) +

ˆ
M

|∇f |2 dσ,

where in the last equality we have applied the first Green’s identity.
For any Borel measure µ on M, we consider a “dual” Sobolev norm given by

∥µ∥H−1(M) = sup

{ˆ
M
ψ dµ : ψ ∈ C∞(M), ∥ψ∥H1(M) = 1

}
.

If the measure µ is of the form µ = hσ for some h ∈ L2(M), we write ∥h∥H−1(M).
Next we define a Sobolev discrepancy in the same way than Wolff [Wol], see also

[MM21].
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Definition 4.1.6. Let XN = {x1, . . . , xN} be an N -point configuration on M and let
ϵ > 0. We define the Sobolev discrepancy of XN by

Dϵ
M(XN) = ∥hXN ,ϵ∥H−1(M), (4.18)

where

hXN ,ϵ =
1

N

N∑
j=1

1

σ(Dj)
χDj

− 1

and Dj = B(xj, ϵN
−1/d).

Observe that we choose the radius of the balls so that the order coincides with that
of the optimal separation distance (4.14).

We prove the following sharp estimate of the Sobolev discrepancy of minimizers.

Theorem 4.1.7. Let XN = {x1, . . . , xN} ⊂ M be an N-point set of minimizers of the
Green energy of M. Then for every ϵ > 0 small enough depending only on the manifold
M,

N−1/d ≲ Dϵ
M(XN) ≲ N−1/d,

where the constants depend on M and ϵ.

4.2 Technical results

4.2.1 Basic definitions and notation

Two-point homogeneous manifolds, introduced in Section 1.1, are the most symmetric
manifolds that one can conceive. According to [Wan52], there are just five examples
of compact connected two-point homogeneous manifolds (up to dimension choices): the
sphere Sd, the real, complex and quaternionic projective spaces RPn,CPn,HPn and the
Cayley plane OP2.

Let G denote the isometry group of the manifold M. We recall that each two-point
homogeneous space is equipped with its corresponding G-invariant volume form σ̃ and
geodesic distance ϑ, normalized to take values in [0, D], where D = π

2κ
is the diameter,

that is, the maximum distance between two points in M. Here we will consider the
normalized uniform measure σ = σ̃/V , where V stands for the total volume of M, i.e.,
V = VM = σ̃(M). From (1.2),

V = VSd−1κ−dγα,β,

where
γα,β =

B(α + 1, β + 1)

2

and

VSd =
2π

d+1
2

Γ
(
d+1
2

) .
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We recall from Section 1.1 that given a sphere S(x, a) = {y ∈ M : ϑ(x, y) = a}
centered at x of radius a, its normalized surface measure is

v(a) =
κ

γα,β
sin2α+1(κa) cos2β+1(κa). (4.19)

Thus, the normalized volume of the ball B(x, a), V (a) = VM(a) = σ(B(x, a)), is

V (a) =

ˆ a

0

v(r) dr.

More generally, for any integrable function F : M → R such that F (x) = f(ϑ(x, x0)) for
some point x0 ∈ M, the formula

ˆ
M
F (x) dσ(x) =

ˆ D

0

f(r)v(r) dr (4.20)

holds.
Finally, we define two functions that will be useful in our analysis:

K(M, a) =
1

V (a)

ˆ a

0

v(r)

ˆ r

0

V (u)

v(u)
du dr, (4.21)

Θ(M, a) =
1

V (a)

ˆ
y∈B(x0,a)

GM(x0, y) dσ(y). (4.22)

Note that due to the symmetry of two-point homogeneous manifolds, the second quantity
does not depend on x0 ∈ M. In Appendix A, we provide closed-form expressions for these
functions in the cases of M = CPn,HPn,OP2, although we do not use them in our proofs.
The term K(M, a) appears in the next lemma.

4.2.2 Expected value of the Green function in a ball

The following closed formula for the expected value of the Green function in a ball will
prove useful in our computations in this chapter.

Lemma 4.2.1. Let M be a two-point homogeneous manifold.Then, for any x0, x ∈ M,

• If ϑ(x0, x) ≥ a, then

1

V (a)

ˆ
y∈B(x0,a)

GM(x, y) dσ(y) =GM(x, x0) +K(M, a).

• If ϑ(x0, x) < a, then

1

V (a)

ˆ
y∈B(x0,a)

GM(x, y) dσ(y) =GM(x, x0) +K(M, a)

− 1

V (a)

ˆ a

ϑ(x0,x)

v(r)

ˆ r

ϑ(x0,x)

du

v(u)
dr.
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In particular, for any x0, x ∈ M,

1

V (a)

ˆ
y∈B(x0,a)

GM(x, y) dσ(y) ≤ GM(x, x0) +K(M, a).

Proof. We sketch a proof for completeness. For the first identity, multiplying by V (a) and
computing the derivative with respect to a, it suffices to check that

1

v(a)

ˆ
y∈S(x0,a)

GM(x, y) dSa(y) = GM(x, x0) +

ˆ a

0

V (u)

v(u)
du, a < ϑ(x0, x), (4.23)

where Sa is the Riemannian measure induced on S(x0, a) by σ, that satisfies Sa(S(x0, a)) =
v(a).

It is clear that both sides of (4.23) are equal as a → 0. We check that their deriva-
tives also coincide. Call F (a) the left–hand term in (4.23). Writing it down in normal
coordinates with basepoint x0, we find that the derivative of the left–hand side equals

F ′(a) =
1

v(a)

ˆ
y∈S(x0,a)

∇N(y)GM(x, y) dSa(y),

where N(y) is the unit vector orthogonal to S(x0, a) at y and ∇ is the covariant derivative.
From Green’s second identity, we get

F ′(a) = − 1

v(a)

ˆ
B(x0,a)

∆GM(x, y) dσ(y) =
V (a)

v(a)
.

Hence, the derivatives at both sides of (4.23) are equal, proving (4.23) and the first claim
of the lemma in the case that ϑ(x0, x) < a. The case ϑ(x0, x) = a follows from the
continuity of both sides of the equality. Finally, if ϑ(x0, x) = t < a we can still compute
the derivative using Green’s second identity, now to the other open set delimited by
S(x0, a) and using −N(y):

F ′(a) =
1

v(a)

ˆ
M\B(x0,a)

∆GM(x, y) dσ(y) = − 1

v(a)
(1− V (a)), a > t.

All in one, we have proved

F (a) =F (t) +

ˆ a

t

V (u)− 1

v(u)
du

=F (0) +

ˆ t

0

V (u)

v(u)
du+

ˆ a

t

V (u)− 1

v(u)
du

=GM(x, x0) +

ˆ a

0

V (u)

v(u)
du−

ˆ a

t

1

v(u)
du.

The second claim in the lemma now follows, sinceˆ
y∈B(x0,a)

GM(x, y) dσ(y) =

ˆ a

0

v(r)F (r) dr.
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4.2.3 Energy of a function

Given a function f ∈ L∞(M), we define its Green transform by

GMf(x) :=

ˆ
M
GM(x, y)f(y) dσ(y).

Our first result, which relates the energy of a smooth function with its Laplace-Fourier
coefficients, is the Green version of [MM21, Proposition 2.2]. All results are stated for a
two-point homogeneous manifold M of dimension d > 2.

Proposition 4.2.2. Let {Yℓ,k}mℓ
k=1,ℓ≥0 be an orthonormal basis of eigenfunctions of the

Laplace-Beltrami operator in L2(M). Given a C∞ function f =
∑

ℓ,k fℓ,kYℓ,k ∈ L2(M),
where fℓ,k =

´
M f Yℓ,k dσ, then GMf is also smooth and

GMf =
∑
ℓ≥1,k

1

λℓ
fℓ,kYℓ,k

in the L2(M) sense. In particular, ∥GMf∥2 ≤ ∥f∥2.

Proof. From [Aub98, Theorem 4.13], there exists a constant kM such that

|GM(x, y)| ≤ kMϑ(x, y)2−d. (4.24)

Then
|GMf(x)| ≤

ˆ
M

|GM(x, y)||f(y)| dσ(y)

≤ kM∥f∥∞
ˆ
M
ϑ(x, y)2−d dσ(y)

(4.20)
= kM∥f∥∞

ˆ D

0

r2−dv(r) dr

≤ k′M∥f∥∞
ˆ D

0

r2−drd−1 dr

= k′M∥f∥∞D2/2 <∞

(4.25)

and ∥GMf∥∞ ≤ k′′M∥f∥∞. Thus, GMf ∈ L∞(M) ⊂ L2(M). We compute its Fourier-
Laplace coefficients:

⟨GMf, Yℓ,k⟩ =
ˆ
M

ˆ
M
GM(x, y)f(y) dσ(y)Yℓ,k(x) dσ(x)

=

ˆ
M

ˆ
M
GM(x, y)Yℓ,k(x) dσ(x)f(y) dσ(y),

(4.26)

where the order of integration can be exchanged by Fubini’s theorem. Indeed, from the
well known fact that ∥Yℓ,k∥∞ grows as a power of λℓ and the previous bound ∥GMf∥∞ ≤
k′′M∥f∥∞, ˆ

M

ˆ
M

|GM(x, y)f(y)Yℓ,k(x)| dσ(y) dσ(x) ≤ kM,ℓ∥f∥∞ <∞.
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To compute the inner integral in (4.26), we use the integral representation

GM(x, y) =

ˆ ∞

0

(pt(x, y)− 1) dt

from [GZ19, Proposition 4.5], where

pt(x, y) =
∞∑
ℓ=0

e−λℓt

mℓ∑
k=1

Yℓ,k(x)Yℓ,k(y) (4.27)

is the heat kernel of the Laplace-Beltrami operator on M. The virtue of this kernel is
that, in contrast with the formal expansion

GM(x, y) =
∞∑
ℓ=1

1

λℓ

mℓ∑
k=1

Yℓ,k(x)Yℓ,k(y), (4.28)

its series expansion converges uniformly in x, y ∈ M for every fixed t > 0. Then
ˆ
M
GM(x, y)Yℓ,k(x) dσ(x) =

ˆ
M

ˆ ∞

0

(pt(x, y)− 1) dt Yℓ,k(x) dσ(x)

=

ˆ ∞

0

ˆ
M

(pt(x, y)− 1)Yℓ,k(x) dσ(x) dt,

where the application of Fubini’s theorem is justified by the uniform bound of |Yℓ,k| in
terms of a power of λℓ and the global integrability

ˆ ∞

0

ˆ
M

|pt(x, y)− 1| dσ(x) dt,

see [GZ19, Lemma 4.8]. Using the uniformly convergent expansion (4.27),

ˆ
M
GM(x, y)Yℓ,k(x) dσ(x) =

ˆ ∞

0

ˆ
M

∞∑
ℓ′=1

e−λℓ′ t

mℓ′∑
k′=1

Yℓ′,k′(x)Yℓ′,k′(y)Yℓ,k(x) dσ(x) dt

=

ˆ ∞

0

∞∑
ℓ′=1

e−λℓ′ t

mℓ′∑
k′=1

Yℓ′,k′(y)

ˆ
M
Yℓ′,k′(x)Yℓ,k(x) dσ(x) dt

=

ˆ ∞

0

e−λℓt dt Yℓ,k(y)

=
1

λℓ
Yℓ,k(y)

provided that ℓ ≥ 1. If ℓ = 0, the integral vanishes. Therefore, going back to (4.26),

⟨GMf, Yℓ,k⟩ =
ˆ
M

ˆ
M
GM(x, y)Yℓ,k(x) dσ(x)f(y) dσ(y)

=

ˆ
M

1

λℓ
Yℓ,k(y)f(y) dσ(y) =

1

λℓ
fℓ,k
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for ℓ ≥ 1 and ⟨GMf, Y0,1⟩ = 0. Then the Fourier representation isGMf =
∑

ℓ≥1,k
1
λℓ
fℓ,kYℓ,k

in L2(M). From this expression it is easy to show that, since fℓ,k decays faster than any
power when f is smooth, GMf is a smooth function.

Since
∥GMf∥22 =

∑
ℓ≥1,k

1

λ2ℓ
|fℓ,k|2

and λℓ ≥ ℓ2 ≥ 1 for ℓ ≥ 1, we have

∥GMf∥22 ≤
∑
ℓ≥1,k

|fℓ,k|2 ≤ ∥f∥22

and the last result holds.

The previous Proposition allows us to extend the definition of the operator GM to
L2(M). Indeed, since C∞(M) is dense in L2(M), given a function f ∈ L2(M) we can
define

GMf := lim
j→∞

GMfj in L2(M),

where {fj} ⊂ C∞(M) is a sequence of smooth functions such that fj → f in L2(M). It
is immediate to check that the operator is well defined and that the properties

GMf =
∑
ℓ≥1,k

1

λℓ
fℓ,kYℓ,k (4.29)

and ∥GMf∥2 ≤ ∥f∥2 are preserved.
Given a function f ∈ L2(M), we define its Green energy by

EM(f) :=

ˆ
M
f(x)GMf(x) dσ(x).

If f =
∑

ℓ,k fℓ,kYℓ,k ∈ L2(M), from (4.29) we get

EM(f) = ⟨GMf, f⟩ =
∑
ℓ≥1,k

1

λj
|fℓ,k|2.

In particular, since λℓ ≈ ℓ2, we get the equivalence

EM(f) ≈
∑
ℓ≥1,k

1

ℓ2
|fℓ,k|2. (4.30)

Now we show that the Sobolev discrepancy defined in (4.18) is equivalent to the energy
of the function hXN ,ϵ.

Lemma 4.2.3. There exists a constant CM > 0 depending on the manifold M such that
for every h ∈ L2(M) with

´
M h dσ = 0,

C−1
M ∥h∥2H−1(M) ≤ EM(h) ≤ CM∥h∥2H−1(M). (4.31)

In particular,
Dϵ

M(XN)
2 ≈ EM(hXN ,ϵ). (4.32)
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Proof. We first prove the result for a smooth function h. We have seen in (4.30) that if
h =

∑
ℓ,k hℓ,kYℓ,k then

EM(h) ≈
∑
ℓ≥1,k

1

ℓ2
|hℓ,k|2.

Writing ψ ∈ C∞(M) as ψ =
∑

ℓ,k ψℓ,kYℓ,k and applying Cauchy-Schwarz inequality, we
have ∣∣∣∣ ˆ

M
ψh dσ

∣∣∣∣2 = ∣∣∣∣∑
ℓ,k

ψℓ,khℓ,k

∣∣∣∣2 = ∣∣∣∣ ∑
ℓ≥1,k

ψℓ,khℓ,k

∣∣∣∣2
≤
∑
ℓ≥1,k

1

ℓ2
|hℓ,k|2

∑
ℓ≥1,k

ℓ2|ψℓ,k|2

≲ EM(h)∥ψ∥2H1(M),

and taking the supremum on ψ ∈ C∞(M) we obtain the first inequality.
Now we prove the second inequality. Since we are assuming that h is smooth, by the

previous Proposition GMh is also smooth. From (4.29), we have

GMh =
∑
ℓ≥1,k

1

λℓ
hℓ,kYℓ,k.

Then
EM(h) =

ˆ
M
hGMh dσ ≤ ∥h∥H−1(M)∥GMh∥H1(M)

= ∥h∥H−1(M)

(∑
ℓ≥1,k

(1 + ℓ2)

∣∣∣∣hℓ,kλℓ
∣∣∣∣2
)1/2

≈ ∥h∥H−1(M)

(∑
ℓ≥1,k

1

ℓ2
|hℓ,k|2

)1/2

≈ ∥h∥H−1(M)EM(h)1/2

and we are done.
Now we extend the result to a function h ∈ L2(M). From [Gri09, Theorem 2.16],

by convolving h with a mollifier we can obtain a sequence of smooth functions hj that,
besides converging to h in L2(M), also converges in H−1(M). Then, since (4.31) holds
for each hj and ∥hj∥H−1(M) → ∥h∥H−1(M) and

EM(hj) = ⟨GMhj, hj⟩ → ⟨GMh, h⟩ = EM(h)

as j → ∞, the double inequality (4.31) holds for h.
Finally, since

´
M hXN ,ϵ dσ = 0, applying the result for hXN ,ϵ ∈ L2(M) gives the

equivalence (4.32).

4.2.4 The Green function in two-point homogeneous manifolds

The Green function is in general impossible to compute in terms of elementary functions.
However, for two-point homogeneous manifold it only depends on the distance between
x and y, i.e.,

GM(x, y) = g(ϑ(x, y)),
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g being the solution of a simple ODE, see [BCCdR19, Theorem A.10]. Alternatively, the
eigenfunction expansion (4.28) is used in [ADG+22] to derive a general expression for the
Green function on the projective spaces,

g(ϑ) =
1

4(α + β + 1)

(
∞∑
k=1

(α + β + 1)k
k(β + 1)k

cos2k ϑ− γ − ψ(α + β + 2)

)
, (4.33)

on which the authors work to obtain closed form expressions of the Green function,
[ADG+22, Proposition 2.10].

The same approach can be used for the sphere just by considering its corresponding
eigenvalues (1.6) and addition formula (1.9). Thus, for a general two-point homogeneous
space, we have

g(ϑ) =
1

4κ2(α + β + 1)

(
∞∑
k=1

(α + β + 1)k
k(β + 1)k

cos2k (κϑ)− γ − ψ(α + β + 2)

)

=
cos2 (κϑ)

4κ2(β + 1)
3F2

(
1, 1, α+ β + 2

2, β + 2

∣∣∣∣ cos2 (κϑ))
− 1

4κ2(α + β + 1)
(γ − ψ(α + β + 2)) .

(4.34)

It is easy to see that for the sphere the function coincides with that of [BL22, Proposition
3.1].

From this general expression, we can deduce the constant BM in the asymptotic ex-
pression of the Green function,

g(ϑ) =
BM

ϑd−2
+O

(
1

ϑd−3

)
, ϑ→ 0, (4.35)

in the case d > 2. Indeed, we have to compute the limit

BM = lim
ϑ→0

ϑd−2g(ϑ) =
1

4κ2(β + 1)
lim
ϑ→0

ϑd−2
3F2

(
1, 1, α+ β + 2

2, β + 2

∣∣∣∣ cos2 (κϑ))
=

1

4κ2(β + 1)

1

κd−2
lim
ϑ→0

(
κϑ

sin (κϑ)

)d−2 (
sin2 (κϑ)

) d−2
2

3F2

(
1, 1, α+ β + 2

2, β + 2

∣∣∣∣ cos2 (κϑ))
=

1

4κd(β + 1)
lim
x→1

(1− x)α 3F2

(
1, 1, α+ β + 2

2, β + 2

∣∣∣∣x).
To perform this limit, we need the asymptotics of the generalized hypergeometric function
around x = 1. From [Büh87], it turns out that

3F2

(
a, b, c

e, f

∣∣∣∣x) ∼ (1− x)s
Γ(e)Γ(f)Γ(−s)
Γ(a)Γ(b)Γ(c)

, x→ 1,

where s = e+ f − (a+ b+ c), if s < 0. In our case, s = −α < 0 and thus

BM =
1

4κd(β + 1)

Γ(β + 2)Γ(α)

Γ(α + β + 2)

=
Γ(α)Γ(β + 1)

4κdΓ(α + β + 2)
.

(4.36)
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The knowledge of this dominant term will be enough to carry on our analysis.
As a final observation, (4.35) also can be expressed in terms of the chordal distance:

g(ϑ) = BMκd−2 1

sin(κϑ)d−2
+O

(
1

sin(κϑ)d−3

)
, ϑ→ 0, (4.37)

coinciding with [ADG+22, eq. (2.9)] for projective spaces, i.e., κ = 1.

4.3 Energy decomposition

In this section we will deduce a connection between the discrete Green energy of an N -
point configuration XN and the Green energy of an associated function f ∈ L2(M) by
generalizing to two-point homogeneous manifolds an idea sketched in [LN75, SM76]. This
argument is described in detail in [Lau21, Appendix B] for a bounded region in the plane.

For a fixed a > 0, consider the following terms:

UBB = N2

ˆ
x,y∈M

GM(x, y) dσ(x) dσ(y) = 0,

Uij = GM(xi, xj),

Ûi = − 2N

V (a)

ˆ
B(xi,a)

ˆ
M
GM(x, y) dσ(x) dσ(y) = 0,

Ûij =
1

V (a)2

ˆ
B(xi,a)

ˆ
B(xj ,a)

GM(x, y) dσ(x) dσ(y).

Define α(M, a), γ(M, a) and δ(M, a) by

EM(x1, . . . , xN) = UBB +
N∑
i=1

Ûi +
∑
i,j

Ûij︸ ︷︷ ︸
α(M,a)

−
N∑
i=1

Ûii︸ ︷︷ ︸
γ(M,a)

+
∑
i ̸=j

(Uij − Ûij)︸ ︷︷ ︸
δ(M,a)

.

Observe that

α(M, a) = N2

ˆ
x,y∈M

GM(x, y)h
(a)
XN

(x)h
(a)
XN

(y) dσ(x) dσ(y)

= N2EM

(
h
(a)
XN

)
,

(4.38)

with

h
(a)
XN

(x) :=
1

N

N∑
i=1

1

V (a)
χB(xi,a)(x)− 1.

Thus,
EM(x1, . . . , xN) = N2EM

(
h
(a)
XN

)
+ γ(M, a) + δ(M, a). (4.39)
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This decomposition of the Green energy is valid for any radius a. In particular, since the
order of the optimal separation is N−1/d, a natural choice for the radius is a = ϵN−1/d.
In that case, h(ϵN

−1/d)
XN

is the function hXN ,ϵ from the definition (4.18) and (4.39) becomes

EM(x1, . . . , xN) = N2EM (hXN ,ϵ) + γ(M, ϵN−1/d) + δ(M, ϵN−1/d). (4.40)

Since EM (hXN ,ϵ) ≈ Dϵ
M(XN)

2, we have found a relationship between the discrete Green
energy and the Sobolev discrepancy.

In the next sections, we will perform our analysis by considering a radius a → 0.
Finally, we will specialize the obtained results to a = ϵN−1/d to derive a lower bound for
E(M, N) and, using the aforementioned connection with the discrete energy, an upper
bound for Dϵ

M(XN).

4.3.1 Lower bound for the discrete Green energy

The decomposition in (4.39) readily yields a lower bound for the discrete Green energy.
Indeed, since the energy of a function is nonnegative, we have EM(h

(a)
XN

) ≥ 0 for any a > 0
and then

EM(x1, . . . , xN) ≥ γ(M, a) + δ(M, a).

We now need to find lower bounds for γ(M, a) and δ(M, a). From Lemma 4.2.1, we
immediately have

δ(M, a) =
∑
i ̸=j

(
GM(xi, xj)−

1

V (a)2

ˆ
B(xi,a)

ˆ
B(xj ,a)

GM(x, y) dσ(y) dσ(x)

)

≥
∑
i ̸=j

(
GM(xi, xj)−

1

V (a)

ˆ
B(xi,a)

(GM(x, xj) +K(M, a)) dσ(x)

)
≥
∑
i ̸=j

(GM(xi, xj)− (GM(xi, xj) + 2K(M, a)))

= −2N(N − 1)K(M, a),

(4.41)

(and moreover, although we do not use it in the proof, if B(xi, a)∩B(xj, a) = ∅ then the
inequalities above are equalities).

On the other hand, an elementary symmetry argument shows that

γ(M, a) = − N

V (a)2

ˆ
B(x0,a)

ˆ
B(x0,a)

GM(x, y) dσ(x) dσ(y),

where x0 is any point in M. We obtain a simpler formula for γ using the fact that the
integral in M of GM(x, ·) is zero:

γ(M, a) = − N

V (a)2

ˆ
x∈B(x0,a)

[ˆ
y∈M

GM(x, y) dσ(y)−
ˆ
y/∈B(x0,a)

GM(x, y) dσ(y)

]
dσ(x)

=
N

V (a)2

ˆ
x∈B(x0,a)

ˆ
y ̸∈B(x0,a)

GM(x, y) dσ(y) dσ(x)

=
N

V (a)2

ˆ
y ̸∈B(x0,a)

ˆ
x∈B(x0,a)

GM(x, y) dσ(x) dσ(y).
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Again from Lemma 4.2.1, we conclude

γ(M, a) =
N

V (a)

ˆ
y ̸∈B(x0,a)

(GM(x0, y) +K(M, a)) dσ(y)

= N

(
1− V (a)

V (a)
K(M, a)− 1

V (a)

ˆ
y∈B(x0,a)

GM(x0, y) dσ(y)

)
= N

(
1− V (a)

V (a)
K(M, a)−Θ(M, a)

)
.

(4.42)

Putting all together, we have proved that for any collection of N points x1, . . . , xN ∈ M,

EM(x1, . . . , xN) ≥ γ(M, a) + δ(M, a)

≥ N

{(
1− 2N +

1

V (a)

)
K(M, a)−Θ(M, a)

}
.

(4.43)

4.3.2 Upper bound for the Green energy of h(a)XN

Let XN = {x1, . . . , xN} ⊂ M be a collection of N points minimizing the discrete Green
energy. From (4.39),

EM

(
h
(a)
XN

)
=

1

N2
(EG(M, N)− (γ(M, a) + δ(M, a))) .

Thus, combining Proposition 4.1.3 and the second inequality (4.43), we obtain that for
N ∈ N sufficiently large,

EM

(
h
(a)
XN

)
≤ 1

N2

(
−CMN2−2/d −N

{(
1− 2N +

1

V (a)

)
K(M, a)−Θ(M, a)

})
.

(4.44)

4.3.3 Upper bound for the Green energy of h(a)XN

From (4.38) and the definition of α(M, a),

EM

(
h
(a)
XN

)
=

1

N2

(∑
i ̸=j

1

V (a)2

ˆ
B(xi,a)

ˆ
B(xj ,a)

GM(x, y) dσ(x) dσ(y)

+
N∑
i=1

1

V (a)2

ˆ
B(xi,a)

ˆ
B(xi,a)

GM(x, y) dσ(x) dσ(y)

)
.

(4.45)

The second term corresponds to −γ(M, a) in (4.39). The first term in (4.45) can be
bounded from below by the minimal Green energy. Indeed, since the measures χB(xi,a)

V (a)
σ

are probability measures,

EG(M, N) ≤
ˆ
B(x1,a)

· · ·
ˆ
B(xN ,a)

∑
i ̸=j

GM(xi, xj)
dσ(x1)

V (a)
· · · dσ(xN)

V (a)

=
∑
i ̸=j

1

V (a)2

ˆ
B(xi,a)

ˆ
B(xj ,a)

GM(xi, xj) dσ(xi) dσ(xj).
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Combining this bound with (4.2), we get

EM

(
h
(a)
XN

)
≥ 1

N2

(
−cMN2−2/d − γ(M, a)

)
. (4.46)

4.4 Proofs

4.4.1 Upper bounds for the discrete Green energy

We start by proving Theorem 4.1.2 for the sphere Sd (recall that the projective cases were
already proved in [ADG+22]).

Proof of Theorem 4.1.2. The expected Green energy for π(α,β)
L -point configurations sam-

pled from the harmonic ensemble on a two-point homogeneous manifold M is

E[EM(XN)] =

ˆ
M

ˆ
M

[
K

(α,β)
L (x, x)K

(α,β)
L (y, y)−K

(α,β)
L (x, y)2

]
GM(x, y) dσ(x) dσ(y).

Since K(α,β)
L (x, x) is a constant (recall (1.24)) and

´
M

´
MGM(x, y) dσ(x) dσ(y) = 0 by

definition of the Green function,

E[EM(XN)] = −
ˆ
M

ˆ
M
K

(α,β)
L (x, y)2GM(x, y) dσ(x) dσ(y).

From (4.37), we have that GM(x, y) = g(ϑ(x, y)) with

g(ϑ) = BMκd−2 1

sin(κϑ)d−2
+O

(
1

sin(κϑ)d−3

)
, ϑ→ 0.

Thus, there exists a constant DM > 0 such that∣∣∣∣g(ϑ)− BMκd−2 1

sin(κϑ)d−2

∣∣∣∣ ≤ DM

sin(κϑ)d−3

around ϑ = 0. Since the Green function is C∞ away from the diagonal and the manifold
M is compact, the inequality above holds for any ϑ ≤ D for some updated constant
DM > 0.

Therefore,
E[EM(XN)]

=−
ˆ
M

ˆ
M
K

(α,β)
L (x, y)2g(ϑ(x, y)) dσ(x) dσ(y)

=−
ˆ
M

ˆ
M
K

(α,β)
L (x, y)2

[
g(ϑ(x, y))− BMκd−2 1

sin(κϑ(x, y))d−2

]
dσ(x) dσ(y)

− BMκd−2

ˆ
M

ˆ
M
K

(α,β)
L (x, y)2

1

sin(κϑ(x, y))d−2
dσ(x) dσ(y)

≤−DM

ˆ
M

ˆ
M
K

(α,β)
L (x, y)2

1

sin(κϑ(x, y))d−3
dσ(x) dσ(y)

− BMκd−2

ˆ
M

ˆ
M
K

(α,β)
L (x, y)2

1

sin(κϑ(x, y))d−2
dσ(x) dσ(y).

(4.47)
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Since the projective cases are already solved, we set M = Sd. Recall that the parameters
are α = β = λ, with λ := d/2− 1, and κ = 1/2. Then

1

sin(κϑ(x, y))s
=

1

sin
(

ϑ(x,y)
2

)s =
2s

|x− y|s
,

where |x− y| is the Euclidean distance, and we get

E[ESd(XN)] ≤−DSd2
d−3

ˆ
Sd

ˆ
Sd
K

(λ,λ)
L (x, y)2

1

|x− y|d−3
dσ(x) dσ(y)

− BSd

ˆ
Sd

ˆ
Sd
K

(λ,λ)
L (x, y)2

1

|x− y|d−2
dσ(x) dσ(y).

(4.48)

Observe that the expected s-Riesz energy for sets XN of N = π
(λ,λ)
L points sampled

from the harmonic ensemble on Sd is given by

E[Es(XN)] =

ˆ
Sd

ˆ
Sd

[
K

(λ,λ)
L (x, x)2 −K

(λ,λ)
L (x, y)2

] 1

|x− y|s
dσ(x) dσ(y)

= Vs(Sd)N2 −
ˆ
Sd

ˆ
Sd
K

(λ,λ)
L (x, y)2

1

|x− y|s
dσ(x) dσ(y),

where recall from (1.14) that

Vs(Sd) =

ˆ
Sd

ˆ
Sd

1

|x− y|s
dσ(x) dσ(y) = 2d−s−1Γ

(
d+1
2

)
Γ
(
d−s
2

)
√
π Γ
(
d− s

2

) (4.49)

for 0 < s < d, so the integrals in (4.48) correspond to the second order term in the
expected s-Riesz energy up to the constant 2s. From [BMOC16], for 0 < s < d,

E[Es(XN)] = Vs(Sd)N2 − Cs,dN
1+s/d + o(N1+s/d),

where

Cs,d = 2s−
s
dVs(Sd)(d!)−1+ s

d
dΓ
(
1 + d

2

)
Γ
(
1+s
2

)
Γ
(
d− s

2

)
√
πΓ
(
1 + s

2

)
Γ
(
1 + s+d

2

) . (4.50)

Thus, ˆ
Sd

ˆ
Sd
K

(λ,λ)
L (x, y)2

1

|x− y|s
dσ(x) dσ(y) = Cs,dN

1+s/d + o
(
N1+s/d

)
(4.51)

for 0 < s < d. Moreover, since trivially E
[∑

i ̸=j
1

|x−y|0

]
= N2 −N ,

ˆ
Sd

ˆ
Sd
K

(λ,λ)
L (x, y)2

1

|x− y|0
dσ(x) dσ(y) = N. (4.52)

For d > 3, using (4.51) with s = d− 3 and s = d− 2 in (4.48), we have

E[ESd(XN)] ≤−DSd2
d−3
(
Cd−3,dN

2−3/d + o
(
N2−3/d

))
− BSd

(
Cd−2,dN

2−2/d + o
(
N2−2/d

))
=− BSdCd−2,dN

2−2/d + o
(
N2−2/d

)
.
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For d = 3, using (4.52) and (4.51) with s = 1 in (4.48), we have

E[ES3(XN)] ≤−DS3N − BS3
(
C1,3N

2−2/3 + o
(
N2−2/3

))
=− BS3C1,3N

2−2/3 + o
(
N2−2/3

)
.

Therefore, for any d ≥ 3,

E[ESd(XN)] ≤ −BSdCd−2,dN
2−2/d + o

(
N2−2/d

)
.

To obtain the leading coefficient, from (4.50) we get

Cd−2,d = 2d−2− d−2
d Vd−2(Sd)(d!)−1+ d−2

d
dΓ
(
1 + d

2

)
Γ
(
d−1
2

)
Γ
(
d− d−2

2

)
√
π Γ
(
1 + d−2

2

)
Γ
(
1 + 2d−2

2

)
= 2d−3+ 2

dVd−2(Sd)(d!)−
2
d
dΓ
(
1 + d

2

)
Γ
(
d−1
2

)
Γ
(
d
2
+ 1
)

√
π Γ
(
d
2

)
Γ (d)

,

with

Vd−2(Sd) = 2
Γ
(
d+1
2

)
√
π Γ
(
d
2
+ 1
) ,

see (4.49). Then

Cd−2,d = 2d−2+ 2
d (d!)−

2
d
dΓ
(
1 + d

2

)
Γ
(
d+1
2

)
Γ
(
d−1
2

)
π Γ
(
d
2

)
Γ (d)

.

From (4.36),

BSd =
Γ(α)Γ(β + 1)

4κdΓ(α + β + 2)
=

Γ
(
d
2
− 1
)
Γ
(
d
2

)
2d−2

Γ (d)

and putting all together

BSdCd−2,d = 22d−4+ 2
d (d!)−

2
d
dΓ
(
1 + d

2

)
Γ
(
d+1
2

)
Γ
(
d−1
2

)
Γ
(
d
2
− 1
)

π Γ (d)2
.

Applying the Legendre duplication formula,

BSdCd−2,d = 22d−4+ 2
d (d!)−

2
d
d 21−(d+1)

√
π Γ (d+ 1) 21−(d−2)

√
π Γ (d− 2)

π Γ (d)2

= 2−1+ 2
d (d!)−

2
d
dΓ (d+ 1)Γ (d− 2)

Γ (d)2

=

(
d
2

)2(
d
2
− 1
)
(d− 1)

(
1

d
2
Γ(d)

)2/d

=
(α + 1)2

α(2α + 1)

(
Γ(β + 1)

Γ(α + 2)Γ(α + β + 2)

)2/d

.
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Proposition 4.1.3 is proved in [ADG+22, Corollary 4.3] for projective spaces by using
the jittered sampling, a determinantal point process that distributes one point in each
piece of a partition of M. We reproduce the proof here including the sphere case. Its first
ingredient is the existence of a partition of M with the following properties.

Proposition 4.4.1 ([GL17, Theorem 2]). For each two-point homogeneous manifold M,
there exist positive constants c1 and c2 such that for all N ∈ N sufficiently large, there
is a partition of M into N regions, each of measure 1/N , contained in a geodesic ball of
radius c1N−1/d and containing a geodesic ball of radius c2N−1/d.

We observe that in [GL17] this result is stated in a much more general setting which
includes all Riemannian manifolds.

Proof of Proposition 4.1.3. For N ∈ N sufficiently large, from Proposition 4.4.1 we have
a partition of M into N equal area regions D1, . . . , DN contained in geodesic balls of
radius c1N−1/d. Denoting dσj(x) = NχDj

(x) dσ(x), we have

EG(M, N) ≤
ˆ
M

· · ·
ˆ
M

∑
i ̸=j

GM(xi, xj) dσ1(x1) · · · dσN(xN)

= N2
∑
i ̸=j

ˆ
Di

ˆ
Dj

GM(xi, xj) dσ(xi) dσ(xj)

= N2

( ˆ
M

ˆ
M
GM(x, y) dσ(x) dσ(y)︸ ︷︷ ︸

=0

−
N∑
i=1

ˆ
Di

ˆ
Di

GM(x, y) dσ(x) dσ(y)

)
.

From (4.24), there exists a constant kM > 0 such that

GM(x, y) ≤ kM
ϑ(x, y)d−2

for x, y ∈ Di. Therefore,

EG(M, N) ≤ −N2

N∑
i=1

c3
diam(Di)d−2

σ(Di)
2

≤ −N c3
(2c1)d−2N−(d−2)/d

= − c3
(2c1)d−2

N2−2/d.

4.4.2 Proofs of Theorem 4.1.1 and Theorem 4.1.7

Here we prove Theorem 4.1.1 and Theorem 4.1.7 by applying the bounds obtained in the
previous sections for a = ϵN−1/d.

We will need the following asymptotics.
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Lemma 4.4.2. For a→ 0, we have:

V (a) =
κd

γα,β d
ad +O

(
ad+1

)
,

v(a) =
κd

γα,β
ad−1 +O

(
ad
)
,

K(M, a) =
1

2(d+ 2)
a2 +O

(
a3
)
,

Θ(M, a) =
dBM

2
a2−d +O

(
a3−d

)
.

The last of these equalities needs d > 2, but the rest of them hold in all cases.

Proof. By expanding (4.19) around a = 0,

v(a) =
κ

γα,β
κ2α+1a2α+1 +O

(
a2α+2

)
=

κd

γα,β
ad−1 +O

(
ad
)
.

Since V (a) =
´ a
0
v(r) dr, integrating the previous expansion we get

V (a) =
κd

γα,β d
ad +O

(
ad+1

)
.

This yields the third formula of the lemma:

K(M, a) =
1

ad

ˆ a

0

rd−1

ˆ r

0

u du dr + l.o.t =
1

2(d+ 2)
a2 +O

(
a3
)
.

For the last asymptotic we reason in the same way:

Θ(M, a) =
1

V (a)

ˆ
y∈B(x0,a)

GM(x0, y) dσ(y)

(4.20)
=

1

V (a)

ˆ a

0

ϕ(r)v(r) dr

(4.35)
=

d

ad

ˆ a

0

BM

rd−2
rd−1 dr + l.o.t

=
dBM

2
a2−d + l.o.t.

Proof of Theorem 4.1.1. Combining Lemma 4.4.2 with the lower bound (4.43) we have

EM(x1, . . . , xN) ≥ N

{(
1− 2N +

γα,β d κ
−d

ad

)
a2

2(d+ 2)
− dBM

2
a2−d

}
+ l.o.t.

Choosing a of the form ϵN−1/d with ϵ a constant, we conclude (up to l.o.t.):

EM(x1, . . . , xN) ≥−N2−2/d

(
ϵ2

d+ 2
+
d ϵ2−d

2

(
BM − γα,β κ

−d

d+ 2︸ ︷︷ ︸
AM

))
. (4.53)
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This last formula is maximized choosing

ϵ =

(
d(d− 2)(d+ 2)

4
AM

) 1
d

.

Observe that from (4.36) and the definition of γα,β,

AM =
Γ(α)Γ(β + 1)

4κdΓ(α + β + 2)
− Γ(α + 1)Γ(β + 1)

2κd(d+ 2)Γ(α + β + 2)

=
Γ(α)Γ(β + 1)

4κdΓ(α + β + 2)

(
1− 2α

d+ 2

)
=

Γ(α)Γ(β + 1)

κd(d+ 2)Γ(α + β + 2)
.

(4.54)

Thus,

ϵ =

(
d(d− 2)

4

Γ(α)Γ(β + 1)

κdΓ(α + β + 2)

) 1
d

= κ−1

(
Γ(α + 2)Γ(β + 1)

Γ(α + β + 2)

) 1
d

and for that concrete value of ϵ:

EM(x1, . . . , xN) ≥− d ϵ2N2−2/d

d2 − 4
+ o

(
N2−2/d

)
,

which yields the claimed lower bound.

Remark 4.4.3. The optimal radius ϵ turns out to be the constant sepM given by Criado
del Rey in his lower bound for the separation distance (4.15). This means that if we
apply our argument to a set XN minimizing the Green energy, then the inequality in the
estimate of δ(M, a) in (4.41) is indeed an equality when we take a = ϵN−1/d. Thus, all
the precision we lose comes from the term α

(
M, ϵN−1/d

)
in (4.38) we throw away in the

estimate (4.43). This discarded term, however, has the same order N2−2/d as the sum of
γ
(
M, ϵN−1/d

)
and δ

(
M, ϵN−1/d

)
as a consequence of Theorem 4.1.7 and the equivalence

Dϵ
M(XN)

2 ≈ EM(hXN ,ϵ). Therefore, the neglected term plays an important role in the
energy and the improvement of our lower bound calls for a better estimation of the term
α
(
M, ϵN−1/d

)
, since nothing is lost in the other two terms.

Proof of Theorem 4.1.7. From the equivalence Dϵ
M(XN)

2 ≈ EM(hXN ,ϵ), all we have to
see is

N−2/d ≲ EM(hXN ,ϵ) ≲ N−2/d.

The upper bound follows from (4.44). Taking a = ϵN−1/d as in the proof of Theorem
4.1.1, for N ∈ N large enough we have

EM (hXN ,ϵ) = EM

(
h
(ϵN−1/d)
XN

)
≤ 1

N2

(
−CMN2−2/d +N2−2/d

(
ϵ2

d+ 2
+
d ϵ2−d

2
AM

))
= N−2/d

(
ϵ2

d+ 2
+
d ϵ2−d

2
AM − CM

)
.
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where AM has been defined in (4.53). Then we can choose a constant depending on M
and ϵ such that the previous inequality holds for any N ≥ 2.

For the lower bound we use (4.46). Combining (4.42) with the asymptotics in Lemma
4.4.2,

−γ(M, a) = N

(
dAM

2
a2−d +O

(
a3−d

))
, a→ 0.

Applying this expansion with a = ϵN−1/d for a fixed N ∈ N and ϵ→ 0,

−γ(M, ϵN−1/d) = N2−2/dϵ2−d

(
dAM

2
+ oϵ→0 (1)

)
≥ N2−2/dϵ2−ddAM

4

for ϵ small enough, since the constant AM is positive, see (4.54).
Combining this bound with (4.46), for ϵ sufficiently small we obtain

EM (hXN ,ϵ) ≥ N−2/d

(
−cM + ϵ2−ddAM

4

)
.

Since we are assuming d > 2, this provides a non-trivial bound for ϵ small enough.

4.4.3 Theorem 4.1.4

The upper bound of Theorem 4.1.7 together with the following Proposition proves The-
orem 4.1.4.

Proposition 4.4.4. Given ϵ0 > 0 and C1 > 0, there exists C2 > 0 depending on M, ϵ0
and C1 such that, for every set XN = {x1, . . . , xN} ⊂ M with Sobolev discrepancy

Dϵ0
M(XN) ≤ C1N

−1/d, (4.55)

the discrepancy of XN satisfies

D∞(XN) ≤ C2N
− 2

3d . (4.56)

Proof. The proof is similar to that of [MM21, Proposition 5.2].
Let B = B(z, r) with z ∈ M and r > 0. We can assume that r < D/2. Let ϕ be a

smooth function on R such that χ(−∞,0] ≤ ϕ ≤ χ(−∞,1). Given 0 < ϵ < r/2, we define
f+
ϵ (x) = ϕ (ϵ−1(ϑ(x, z)− r − ϵ)) and f−

ϵ (x) = ϕ (ϵ−1(ϑ(x, z)− r + 2ϵ)). These functions
satisfy that 0 ≤ f±

ϵ ≤ 1 and

f+
ϵ (x) =

{
1 if ϑ(x, z) < r + ϵ,

0 if ϑ(x, z) > r + 2ϵ,
f−
ϵ (x) =

{
1 if ϑ(x, z) < r − 2ϵ,

0 if ϑ(x, z) > r − ϵ.

It is easy to check that there exists a constant C > 0 depending on M such that

σ(B)− Cϵ ≤
ˆ
M
f−
ϵ dσ ≤

ˆ
M
f+
ϵ dσ ≤ σ(B) + Cϵ (4.57)
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and
∥f±

ϵ ∥H1(M) ≤ Cϵ−1/2. (4.58)

In particular, to prove (4.58), it is clear that ϕ is Lipschitz continuous, i.e., there exists
C > 0 such that |ϕ(t)− ϕ(s)| ≤ C|t− s|. Therefore,

|f±
ϵ (x)− f±

ϵ (y)| ≤ C|ϵ−1(ϑ(x, z)− ϑ(y, z))| ≤ Cϵ−1ϑ(x, y),

and from [Gri09, p.296],

∥∇f±
ϵ ∥∞ ≤ sup

x,y∈M

|f±
ϵ (x)− f±

ϵ (y)|
ϑ(x, y)

≤ C

ϵ
,

so ˆ
M

|∇f+
ϵ |2 dσ ≤ C ′

ϵ2
σ (B(z, r + 2ϵ)\B(z, r + ϵ)) =

O(ϵ)

ϵ2
= O

(
ϵ−1
)
.

The same bound can be obtained for f−
ϵ . Applying the equivalence (4.17), the fact that

0 ≤ f±
ϵ ≤ 1 and the previous bound, we have

∥f±
ϵ ∥2H1(M) ≈ ∥f±

ϵ ∥2L2(M) + ∥∇f±
ϵ ∥2L2(M) ≤ C ′′ϵ−1.

Recall from (4.18) that

hXN ,ϵ0 =
1

N

N∑
j=1

1

σ(Dj)
χDj

− 1, Dj = B(xj, ϵ0N
−1/d).

Observe that if ϵ > ϵ0N
−1/d then f+

ϵ ≡ 1 in Dj for all xj ∈ B. Since f+
ϵ ≥ 0,

|XN ∩B|
N

≤ 1

N

N∑
j=1

1

σ(Dj)

ˆ
Dj

f+
ϵ dσ =

ˆ
M
f+
ϵ hXN ,ϵ0 dσ +

ˆ
M
f+
ϵ dσ.

In the same way, since f−
ϵ ≡ 0 in Dj for all xj /∈ B and f−

ϵ ≤ 1,

|XN ∩B|
N

≥ 1

N

N∑
i=1

1

σ(Dj)

ˆ
Dj

f−
ϵ dσ =

ˆ
M
f−
ϵ hXN ,ϵ0 dσ +

ˆ
M
f−
ϵ dσ.

Combining these bounds with (4.57), we have
ˆ
M
f−
ϵ hXN ,ϵ0 dσ − Cϵ ≤ |XN ∩B|

N
− σ(B) ≤

ˆ
M
f+
ϵ hXN ,ϵ0 dσ + Cϵ,

from which∣∣∣∣ |XN ∩B|
N

− σ(B)

∣∣∣∣ ≤ max

{∣∣∣∣ˆ
M
f+
ϵ hXN ,ϵ0 dσ

∣∣∣∣ , ∣∣∣∣ˆ
M
f−
ϵ hXN ,ϵ0 dσ

∣∣∣∣}+ Cϵ

≤ max
{
∥f−

ϵ ∥H1(M), ∥f+
ϵ ∥H1(M)

}
∥hXN ,ϵ0∥H−1(M) + Cϵ,
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by definition of ∥h∥H−1(M). From (4.58) and the hypothesis (4.55),∣∣∣∣ |XN ∩B|
N

− σ(B)

∣∣∣∣ ≤ C ′ϵ−1/2N−1/d + Cϵ. (4.59)

This inequality holds under the condition that ϵ > ϵ0N
−1/d. Then we can take

ϵ = N− 2
3d

for all N big enough and (4.56) follows from (4.59).



Appendix A

Closed formulas for K(M, a) and
Θ(M, a)

Although we have not used them in our analysis or proofs above, in the cases M =
CPn,HPn,OP2 it is possible to produce exact formulas for these two functions. We sum-
marize them in the following result.

Proposition A.0.1. Denoting S = sin a, we have:

K(CPn, a) =
1

4nV S2n

(
(1− S2n) log(1− S2) +

n∑
k=1

S2k

k

)
,

Θ(CPn, a) =
1

2nV

(
−Hn−1 − logS +

n

2

n−1∑
k=1

1

k(n− k)S2k

)
,

K(HPn, a) =
1

4(2n+ 1)(2n(1− S2) + 1)V

×

[
1

S4n

(
2n+1∑
k=1

S2k

k
+ log(1− S2)

)
− (2n(1− S2) + 1) log(1− S2)

]
,

Θ(HPn, a) =
1

V

(
n

2(2n(1− S2) + 1)

2n−1∑
k=1

1

k(k + 1)(2n− k)S2k

− H2n−1

2(2n+ 1)
− logS

2(2n+ 1)
− 1 + 2(n− 1)S2

4(2n+ 1)(2n(1− S2) + 1)

)
,

K(OP2, a) =
1

1219680V S16(−120S6 + 396S4 − 440S2 + 165)
×[

S2(815640S20 − 1826748S18 + 1019480S16 + 3465S14 + 3960S12

+ 4620S10 + 5544S8 + 6930S6 + 9240S4 + 13860S2 + 27720)

+ 27720(120S22 − 396S20 + 440S18 − 165S16 + 1) log(1− S2)
]
,
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Θ(OP2, a) =
1

V

[
1

9240S14 (−120S6 + 396S4 − 440S2 + 165)

(
101420S20

− 353334S18 + 427500S16 − 190150S14 + 9900S12 + 2310S10

+ 924S8 + 495S6 + 330S4 + 275S2 + 330
)
− 1

22
lnS

]
.

Proof. These are all obtained directly from the definitions (4.21) and (4.22). Once com-
puted, their correctness can be checked by automatic differentiation.



Resum en català

Estudiem problemes de minimització d’energia discreta en varietats 2-punts homogènies.
Com que trobar configuracions de N punts amb energia òptima és molt complicat, re-
centment s’ha explorat l’ús de processos de punts aleatoris amb baixa energia esperada
com a mètode per obtenir bones configuracions de punts.

Al Capítol 2, calculem la segona intensitat conjunta del procés de punts aleatoris donat
pels zeros de polinomis el·líptics, el que ens permet recuperar l’energia logarítmica esper-
ada a la 2-esfera prèviament calculada per Armentano, Beltrán i Shub. A més, obtenim
l’energia de Riesz esperada per a aquest procés, que és notablement propera a l’energia
òptima conjecturada. L’energia esperada serveix com a fita per a l’energia extremal, mil-
lorant així les fites derivades de l’estudi d’Alishahi i Zamani del conjunt esfèric. Entre
d’altres resultats addicionals, obtenim una expressió tancada per a la distància esperada
de separació entre punts aleatoris donats pels zeros de polinomis el·líptics.

Al Capítol 3, explorem les discrepàncies mitjanes i els worst-case errors de configura-
cions aleatòries de punts a la d-esfera. Trobem que els punts extrets de l’anomenat conjunt
esfèric i els zeros de polinomis el·líptics aconsegueixen discrepància L2 òptima en mitjana.
A més, proporcionem una cota superior de la discrepància L∞ per a configuracions de N
punts obtinguts del conjunt harmònic en qualsevol espai 2-punts homogeni, generalitzant
així els resultats previs per a la d-esfera obtinguts per Beltrán, Marzo i Ortega-Cerdà.
Introduïm una versió no determinista del Quasi Monte Carlo (QMC) strength per a
successions aleatòries de punts i calculem el seu valor per al conjunt esfèric, els zeros de
polinomis el·líptics i el conjunt harmònic. Finalment, comparem els nostres resultats amb
els QMC strengths conjecturats per a certes distribucions deterministes associades amb
aquests processos de punts aleatoris.

Al Capítol 4, desplacem el focus al problema de minimització de l’energia de Green.
En primer lloc, ampliem el treball de Beltrán i Lizarte en esferes per establir una fita
inferior propera a l’òptima per a l’energia de Green mínima en qualsevol varietat 2-punts
homogènia, millorant els resultats existents en espais projectius. En segon lloc, mitjançant
l’adaptació d’un mètode introduït per Wolff, deduïm una cota superior de la discrepància
L∞ per a conjunts de N punts que minimitzen l’energia de Green.
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