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Resum

Actualment, els proveïdors de serveis de navegació aèria han de gestionar i acomodar una
demanda de tràfic aeri en constant creixement en un escenari que s’espera que sigui més eficient
en temps i costos. Ajustar la demanda a la capacitat de l’espai aeri disponible és un dels problemes
més complexos als quals s’enfronta la gestió del trànsit aeri. Aquest procés col·laboratiu de gestió
de la capacitat sovint acaba imposant regulacions quan la capacitat no es pot ajustar. Assignant
retards a l’aeroport de sortida, el trànsit es distribueix i les arribades es regulen a la infraestructura
congestionada. Tot i això, decidir on i quan es necessita una regulació requereix temps i es basa
en gran manera en el coneixement i l’experiència. Això porta a regulacions subòptimes i inneces-
sàriament llargues, cosa que es tradueix en retards innecessaris i una no òptima utilització de la
capacitat.

Al llarg dels anys, molts investigadors han estudiat noves tècniques per estimar millor la
complexitat d’un sector aeri – volum aeri – o com quantificar la càrrega de treball dels controladors
aeris amb l’objectiu d’identificar les regulacions necessàries per a una correcta gestió del trànsit
aeri. A causa del gran impacte que provoquen els retards a la xarxa, es poden trobar una gran
varietat de treballs tractant d’optimitzar, millorar, minimitzar o predir l’evolució dels retards. La
literatura mostra tres tendències principals: propostes sense intel·ligència artificial, enfocaments
utilitzant aprenentatge automàtic supervisat o treballs explorant tècniques d’aprenentatge per re-
forç. Tot i això, hi ha una mancança de treballs que se centrin concretament en la identificació de
les regulacions necessàries, i els mètodes proposats per suavitzar la demanda pateixen problemes
d’escalabilitat.

La finalitat principal d’aquesta tesi és investigar l’ús de tècniques d’intel·ligència artificial
per identificar i resoldre desequilibri entre la demanda i la capacitat que requereixen la imple-
mentació de regulacions durant la fase pretàctica. És a dir, quan no hi ha informació disponible
de l’administrador de la xarxa sobre regulacions requerides i quan els nivells d’incertesa són molt
més alts.

Primer, s’ha estudiat la identificació de regulacions a escala de sector aeri, fent servir tècni-
ques supervisades i prototipant eines per l’entitat que gestiona l’espai aeri. S’estudien els dos tipus
de regulacions més freqüents per a les regions més congestionades a Europa. Els resultats reve-
len que l’arquitectura proposada és capaç d’identificar gairebé totes les regulacions durant l’estiu,
probablement la temporada més congestionada. Segon, s’investiguen tècniques d’aprenentatge
per reforç en la resolució de les regulacions prèviament identificades, centrant-se en l’escalabilitat
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del sistema gràcies a l’ús d’imatges. Finalment, s’investiguen els potencials beneficis d’identificar
les regulacions a escala de vol. En aquest últim cas, els resultats també mostren que és possible
predir les característiques de les regulacions fent servir tècniques supervisades. A més, la inte-
gració dels models permet avaluar l’impacte i la gravetat de les regulacions emeses, anticipant
possibles retards reaccionaris.

En general, els resultats mostren que és possible predir amb precisió regulacions, les seves
característiques i automatitzar el procés per suavitzar el tràfic quan es vol resoldre desequilibri
entre la demanda i la capacitat. Hi ha alguns factors a tenir en compte que poden limitar els
beneficis de les solucions proposades, començant pels problemes de disponibilitat de dades i el
nombre d’estudis realitzats. No obstant això, les eines desenvolupades han estat provades en
les regions europees més complexes. Finalment, desplegar les diferents eines desenvolupades
seria clau per estudiar els beneficis i l’impacte de les solucions proposades. Per tant, s’han creat
diferents eines per a la visualització dels resultats tenint en compte la incertesa de les solucions
proporcionades.
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Abstract

Nowadays, Air Navigation Service Providers (ANSPs) have to handle and accommodate a con-
tinuously increasing traffic demand in a scenario that is expected to be more time-efficient and
cost-efficient. Meeting the demand with the available airspace capacity is one of the most chal-
lenging problems faced by Air Traffic Management (ATM). This collaborative Demand-Capacity
Balancing (DCB) process often ends up enforcing Air Traffic Flow Management (ATFM) regu-
lations when capacity cannot be adjusted. The arrival traffic is spread out by assigning delays
on the ground at the departure airport, and the arrivals are metered at the congested infrastruc-
ture. However, deciding whether and when regulations are needed is time-consuming and relies
heavily on human knowledge. This leads to suboptimal and unnecessarily long regulation and,
therefore, to the realization of unnecessary delay and underuse of the capacity.

Over the years, many researchers have investigated new techniques to estimate better the
complexity of a given Air Traffic Control (ATC) sector – Traffic Volume (TV) – or how to quantify
the workload of the Air Traffic Controllers (ATCOs) to identify required ATFM regulations. More-
over, because of the huge impact of ATFM delays in the network, a wide variety of previous work
can be found trying to optimize, improve, minimize, or predict the evolution of delays. The litera-
ture shows three main trends: proposals without any Artificial Intelligence (AI), using supervised
Machine Learning or Reinforcement Learning (RL) techniques. However, there is a lack of work
directly focusing on the identification of required ATFM regulations and their characteristics, and
the proposed methods to smooth demand-capacity imbalances suffer from scalability issues.

The main objective of this PhD thesis is to investigate the usage of AI techniques to identify
and smooth DCB problems leading to ATFM regulations during the pre-tactical phase. That is
when there is no available information from the Network Manager (NM) about required regula-
tions and when levels of uncertainty are much higher. Different sets of frameworks are studied
and developed, considering the needs and policies of different stakeholders.

First, it is studied the identification of ATFM regulations at the TV level, using supervised
techniques and developing a framework that aims to be used by the NM. The two most frequent
regulations reasons are analyzed over two of the most congested European Civil Aviation Con-
ference (ECAC) regions. Results reveal that the proposed architecture can identify almost all the
regulations during the summer, which is probably the most congested season. Second, RL tech-
niques are investigated to solve the previously identified ATFM regulation, focusing on scalability
due to the usage of images. Finally, airlines are the stakeholders affected by ATFM regulations;

xxi



thus, the potential benefits of identifying ATFM regulations at the flight level are also analyzed.
Promising results show it is possible to predict ATFM characteristics using supervised techniques.
Moreover, the models are integrated into a framework to assess the impact and severity of issued
regulations to anticipate possible reactionary delays for specific aircraft frames.

Overall, results prove it is possible to accurately predict ATFM regulations, the characteristics
of such regulations, and automatize the smoothing process required to solve DCB issues. There are
some factors to be considered that may limit the benefits of the proposed solutions, starting with
data availability issues in some experiments. However, it is worth mentioning that the models
have been tested under the most challenging European scenarios. Finally, deploying the proposed
framework will be key to studying the benefits and impact of the proposed solution. Therefore,
specific advice capabilities are proposed for the visualization of the results taking into account
uncertainty.
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Notation

Throughout this PhD thesis and as a general rule, scalars and vectors are denoted either with
lower or upper case letters. Vectors are noted with the conventional overhead arrow, such as a⃗ or
ψ⃗. Sets are denoted using calligraphic fonts, for instance, A, B or X , while matrices use the same
font but in bold series, like R. In the notation , (·)∗ indicates optimal. Next, the principal symbols
that are used throughout this dissertation are shown along with their meaning. The reader should
note that this list is not exhaustive.

C capacity traffic volume

Ct cell state vector

Di ground delay imposed by agent i

F Fahrenheit

Ft forget gate

G cumulative reward

I(z) demand-capacity ratio

It input gate

K kelvin

M number of delayed flight

Ot output gate

Rt reward at time step t

St state vector time-step t

T trajectory from flight plan

TP time period

TX input time step X

Vt expected occupancy count in a particular traffic volume

Θ
(
N
)

function that counts the number of flights that received ATFM delay
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α learning rate

β weight adjust penalty number flight delayed

δ weight adjust penalty delay

γ discount factor

λ weight adjust penalty ratio demand-capacity

R conjunt real numbers

A set of actions

N number of interacting agent

O observation state

P counting period

P transition function

R reward function

S state space

T set of trajectories

π policy

σ sigmoid function

ait action i from set A at time-step t

at action at time-step t

f function to compute the distance between two coordinates

ht hidden state vector

ot observation at time step t

qπ(s a) value of taking action a in state s under a policy π

s seconds

s′ next state

sit state i from set S at time-step t

tahn tangent hyperbolic function

vpi(s) value function of a state

vpi(s) value function of a state

vID expected velocity of the flight in a particular segment

z represents the system under evaluation

X regulated ATFM timestamp
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One day we will be old

and think about all stories

that we could have told

— Asaf Avidan

I
Introduction

Over the past 50 years, aviation has experienced a continuous and rapid expansion, with an under-
lying annual air traffic growth rate close to 5% since 1960 (Oxley & Chaitan, 2018). Air transport
is an efficient, safe, and fast means of transport for cargo and passengers, contributing to world
development and the economy. According to Air Transportation Action Group (2019), 65.5 million
jobs (direct and indirect) were supported by aviation worldwide, carrying 4.1 billion passengers
in 41.9 million commercial flights worldwide and flying 7.75 trillion passenger kilometers in 2019.

The Performance Review Commission (PRC, 2019) reported that 2018 was the fifth consec-
utive year of air traffic growth in the European Civil Aviation Conference (ECAC) area, with a
3.8% average increase in the Instrument Flight Rules (IFR) flights over 2017. The peak traffic load
reached the highest level of traffic on September 77th, when the system handled more than 37
thousand flights. However, such continued growth contributed to a further decrease in overall
service quality, following the trend observed in past years. The number of flights arriving within
15 minutes of their scheduled time decreased by 3.9 points, reaching the lowest level in the last
ten years.

At the time of writing this thesis (October 2022), air traffic has survived its second year of the
COVID-19 pandemic. Vaccination and relaxation of travel restrictions in European resulted in a
continuous increase in demand. However, the terrible war in Ukraine set back any hopes for a sus-
tained and swift recovery from COVID-19 in early 2022. Despite the unprecedented drop in 2020,
traffic in the ECAC area recovered 6.2 million flights in 2021, corresponding to roughly just over
half of the traffic in 2019. In the base scenario forecasted by EUROCONTROL (STATFOR, 2022), it
is expected a complete recovery by 2024 (see Figure I-1).
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2 Chapter I - Introduction

Figure I-1: EUROCONTROL STATFOR 3-year forecast for Europe 2022-2024.
Source: STATFOR (2022)

The reduced traffic levels during the recovery phase presented a good opportunity to review
and remove efficiency constraints in the Air Traffic Management (ATM) system, aiming to im-
prove capacity planning and deployment to fit the increasing traffic levels during the recovery
phase and beyond. However, in 2021 there were early indications of rising inefficiency despite
traffic levels still being well below those of 2019 (PRC, 2021). Based on the latest capacity plans
(STATFOR, 2022), a high-traffic scenario is expected with a delay of 1.78 minutes per flight, which
is a reason for concern.

In view of the expected continued growth, all signs indicate that the delay situation will dete-
riorate drastically if bold actions are not taken. This so-called capacity crunch prediction indicates
that airports will be unable to accommodate approximately 1.5 million flights in 2040, or around
160 million passengers (SESAR, 2020). In Europe, the Single European Sky Air traffic management
Research (SESAR) program addresses the impact of air traffic growth by implementing novel pro-
cedures and technologies to increase airspace capacity and efficiency in the ATM system while
simultaneously improving safety and reducing the environmental impact. One of the SESAR am-
bition is to enable a 5-10% capacity increment in highly congested areas (SESAR, 2020).

The issue is not the lack of overall capacity but rather the lack of capacity in specific locations
or at certain temporal periods. On the other hand, from a time performance view, the ambition
is to reduce the average departure delay per flight in the ECAC area from 9.5 to 8.5-6.5 minutes,
which is expected to come from reactionary delays (-2.26 minutes), airports delays (-0.16 minutes),
and en-route delays (-0.04 minutes) (SESAR, 2020). Reactionary delays are caused by the late
arrival of aircraft, crew, passengers, or baggage from previous journeys. Airport delays are mainly
related to boarding, baggage handling, aircraft cleaning, fuelling, catering, technical defects, and
late crew boarding or crew shortage. En-route delay is typically linked to re-routing, holding, or
congestion issues.

Meanwhile, in the United States, 21% of the flights were delayed more than 15 minutes in
2021, with 3.38% flights canceled or diverted (FAA, 2018). In this case, the American Next Genra-
tion Air Transport System (NextGen) program (FAA, 2022a) is addressing the impact of air traffic
growth by developing and implementing novel procedures and technologies. Similarly, China
also suffers a severe issue with flight delays, even though its flight demand accounts for only
around 1/3 of United States demand with almost equal airspace size (Hsu, 2014).
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I.1 Demand-Capacity Balancing: Reaching the system capacity

In the coming years, Air Navigation Service Providers (ANSPs) will have to handle and accom-
modate a continuously increasing traffic demand in a scenario that is expected to be more time-
efficient and cost-efficient. Therefore, the most challenging problem facing the ATM will be to
meet the capacity of the airspace sectors with the growing demand, while the safety levels must
be maintained or increased. To ensure the successful distribution of flights, ANSP start defining
their capacities a year to six months prior to day of operation (D0). According to the planning
phase (i.e., strategic, pre-tactical, or tactical), maximum capacity values are typically estimated
based on historical traffic levels, geometrical characteristics of the airspace, Air Traffic Controller
(ATCO) workload models, staff availability, or weather conditions (Tobaruela et al., 2013).

The process of ensuring that the demand is under the capacity is known as Demand-Capacity
Balancing (DCB), and it is done by the Flow Manager Position (FMP) role. It starts months in
advance regarding the day of operation, typically when the airlines and flight operators submit
the initial flight intentions. It is a cyclic process that aims to ensure that no ATCO will have to
manage an airspace sector where the air traffic demand is above a predefined threshold (capacity).
Figure I-2 summarizes the main steps of the DCB process: monitoring, detection, and resolution.

Figure I-2: Main steps to detect and smooth demand-capacity imbalances.

DCB is a particularly complex problem. First, automatic tools will report the locations (place
and time) where the expected demand exceeds the predefined capacity (imbalance). Second, the
imbalance will be studied manually by the FMPs. Finally, the necessary actions are defined and
implemented to smooth the demand if required. In the ECAC region, the DCB process is carried
out in four phases (Niarchakou, 2022):

1. Strategic flow management: takes place seven days or more prior to the D0. This phase
focuses on continuous data collection and the identification of major demand-capacity im-
balances. The output of this phase is the Network Operations Plan (NOP);

2. Pre-tactical flow management: is applied during the six days prior to the D0. This phase
compares the demand for the day of the operation with the predicted available capacity and
makes any necessary adjustments to the NOP. The output is the ATFCM Daily Plan (ADP);

3. Tactical flow management: takes place on the D0 and involves considering, in real-time,
those events that affect the ADP, making the necessary modifications to it. This phase aims
to ensure that the measures taken during the previous phases are the minimum required;

4. Post operational analysis: measures, investigates, and reports on operational processes rel-
evant to DCB measures. The outcome of this phase is the development of best practices to
improve operational processes and activities.

From the previous phases, it can be seen that the DCB process has two steps: the detection
of demand-capacity imbalances and the resolution. To guarantee the detection and to ensure that
the proposed resolution is effective, two capacity values and an overload duration threshold are
defined per metric and active airspace sector (Flynn et al., 2003):
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• Maximum peak occupancy capacity represents the maximum number of flights that can
be handled in an airspace sector simultaneously. Typically, 20, 60, or 120 minutes counting
periods are used;

• Sustained occupancy capacity corresponds to the acceptable number of flights that can be
handled in an airspace sector under specific circumstances, and in particular, according to
the counting period. Typical counting periods are 20, 60, or 120 minutes.

Active airspace sectors are those present in the defined sector configuration for the day of
operation. This configuration is the decomposition of air traffic services to guarantee a manage-
able workload according to the available resources. In the European network, there are two types
of sectors: elementary sectors are the minimal division of the airspace, and grouping different
elementary sectors create collapsed sectors.

On the other hand, according to the time horizon to D0 (uncertainty, granularity, and pre-
dictability of the information), the FMP prioritizes some metrics over others to identify DCB is-
sues. More generic metrics are considered in large time horizons with high uncertainty (e.g.,
aircraft density). However, when the time horizon is close to D0 with less uncertainty, accurate
metrics such as the interactions between specific pairs of aircraft can be used. Figure I-3 shows,
from a high-level point of view, the metrics used at different stages of the DCB process. The size
of the circles and the color map are used to represent the uncertainty of the information.

Figure I-3: Metrics with respect to the temporal distance to the D0. The size and color map
represent the uncertainty according to the time horizon.

Initially, demand-capacity imbalances are solved via airspace management or flow manage-
ment solutions (e.g., STAM measures). However, when none of these solutions are enough, Air
Traffic Flow Management (ATFM) regulations are implemented, issuing extra ground delay to the
necessary flights (Bertsimas & Patterson, 1998). This cascade of events increases the uncertainty
regarding the scheduling of operations, costs (Cook & Tanner, 2015), and unforeseen effects on the
entire system. Furthermore, these events present further adverse effects for the ATM stakeholders,
including loss of reliability, customer satisfaction, and environmental effects.

Airspace management solutions are based on changing the sector configuration and redis-
tributing the available resources, aiming to reduce the expected workload. Sector configura-
tion is challenging because it mixes a graph partition problem and an NP-hard optimization
problem. Classical optimization of sector configuration has been widely studied (Xue, 2009),
while over the years, solutions based on machine learning techniques have gained popularity
(Gianazza & Alliot, 2002). On the other hand, flow management solution focus on redirecting
air traffic flows to reduce part of the expected demand, using techniques such as re-routing or
level-capping. Chan & Lin (2005) and Peeters et al. (2018) are examples showing the effects and ef-
fectiveness of re-routing and level-capping. Similarly, studies based on optimization can be found
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in Samà et al. (2012) where an alternative graph formulation was presented based on a rolling win-
dows framework, or Prats et al. (2018) highlighted the principal outcomes of the APACHE Project.

Current ATFM solutions are even more challenging because all required processes are done in
the FMPs mind by building up a mental picture of the flights’ intention (SESAR, 2019a). Moreover,
the FMPs have to consider that, in realistic operations, a certain amount of capacity overloads
are usually allowed (Melgosa et al., 2019). Several reasons could explain this phenomenon: the
lack of initial schedules for non-planed flights, the use of entry rates for assessing the demand
without considering the occupancy, or a conservative approach for estimating the capacity and
the complexity. Because of the complexity of the situations, vast amounts of information must be
processed. As a summary, the authorities use as reference Table I-1 to determine the workload
considered as overload.

Table I-1: Overload threshold for the ATCOs. Source: Flynn et al. (2003)

Demand over capacity threshold Interpretation Working time during 1 hour
70% or above Overload 42 minutes +

54% - 69% Heavy Load 32 - 41 minutes
30% - 53% Medium Load 18 - 31 minutes
18% -29% Light Load 11 - 17 minutes
0% - 17% Very light Load 0 - 10 minutes

Over the years, many researchers have investigated new techniques to estimate better the
complexity of a given Air Traffic Control (ATC) sector or how to quantify the workload of the AT-
COs. In Kopardekar & Magyarits (2003), the authors presented a multi-year, multi-organizational
research initiative related to measuring and predicting sector-level complexity using Dynamic
Density (DD). Similarly, in Welch et al. (2007), the authors presented a model to quantify the
workload impact using traffic density, sector geometry, flow direction, and air-to-air conflict
rates. A different approach was proposed in Chatterji & Sridhar (2001), trying to predict the
controllers’ workload mainly focusing on cognitive factors (e.g., number of keystrokes) or fo-
cusing on physiological factors (e.g., heart rate or electrocardiogram). However, the authors re-
alized there are better approaches than the physiological factors to measure the workload be-
cause an ATCO job is primarily cognitive and information-intensive rather than physical and
labor-intense. Finally, Gianazza (2017) compared several Machine Learning (ML) methods and
analyzed the vast majority of existing complexity metrics doing a Principal Component Anal-
ysis (PCA) (Abdi & Williams, 2010) to find that the most representative factors are related to
traffic characteristics, which are:

• Airspace volume1 of the considered ATC sector;

• Number of aircraft within the sector boundaries at time t;

• Incoming traffic flow within the next 15 minutes;

• Incoming traffic flow within a 1 hour time horizon;

• Average absolute vertical speed of the aircraft within the sector;

• Number of speed vectors interacting with an angle greater than 20 degrees.

1A traffic volume is related to a single geographical entity (either an aerodrome, a set of aerodromes, an airspace
sector, or a point) and may consider all traffic passing through that entity or only specific flows.
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As it can be seen, DCB is a time-consuming process that relies heavily on human knowledge.
When capacity cannot be adjusted, and operational constraints are required, ANSPs through the
FMP, and the Network Manager (NM) operators agree on the required ATFM regulations. These
regulations shall smooth the demand over the overloaded part of the network, ensuring the avail-
able airspace capacity meets the traffic demand, delivering a safe and ordered flow of air traffic.
With this aims, the Flow and Capacity Menagement (FCM) systems are the core of ATFM services
provided by the NM which includes the following tools (Niarchakou, 2022):

• The Enhanced Tactical Flow Management System (ETFMS) compares traffic demand, reg-
ulates demand, and load against the capacity to assess possible imbalances in the airspace
and allows the implementation of measures such as regulations;

• The PREDICT system compares forecasted traffic and capacity to evaluate the load situation
for the following days (up to 6 days in advance), using a rather simple approach to predict
the flight plans that are not yet in the system. ATFM measures may be implemented in this
system to assess their impact before being applied;

• SIMulation and EXperiment (SIMEX) is used in strategic, pre-tactical, and tactical ATFM
operations. It enables Network Operations staff to simulate ATFM measures or restrictions
before applying them to the previous systems;

• A functionality called OPTI-mise CON-figuration (OPTICON) helps in the choice of sector
configuration and enables better assessment of the impact of the change of configuration;

• The Data Distribution System (DDS) is used to distribute real-time flight data to the stake-
holders involved;

• The NOP Portal is an interface that provides a consolidated view of the different aspects of
the NOP and gives access to a set of services to support the NOP preparation and dissemi-
nation activities;

• The Collaboration Human Machine Interface (CHMI) is an application that allows users
to display data (such as information on regulations or flight lists) and graphical information
(such as routes, route attributes, airspace, and flight plan tracks) via map displays. This
real-time information enables CDM between all partners.

Even though the huge variety of metrics, tools, and systems used during the collaborative
DCB process, the methodology for deciding the configuration of the sector (opening schema) and
required operational constraints (ATFM regulations) is purely human and does not rely on au-
tomation. However, in the SESAR 2020 Exploratory Research program, some projects have tried to
improve the processes behind DCB. COTTON (Capacity Optimisation in TrajecTory-based Opera-
tioNs) (COTON, 2018) project explored how the uncertainties associated with the agreed trajectory
impact the quality of the predictions, the volume and complexity of traffic demand, and the effec-
tiveness of DCB processes regarding airspace management. ISOBAR (Artificial Intelligence Solu-
tions to Meteo-Based DCB Imbalances for Network Operations Planning) project (ISOBAR, 2020)
investigated enhanced convective weather forecasts for predicting imbalances between capacity
and demand. DART (Data-driven aircraft trajectory prediction research) project (DART, 2019) ex-
plored the potential of data-driven techniques for trajectory prediction and agent-based modeling
approaches for assessing the impact of traffic on individual trajectories.

Notice that in this document, the term FMP is used to refer to the specialized ATCO whose
main tasks focus on DCB activities. The reason is that it is a well-established acronym in the
European community. However, Air Traffic Flow & Capacity Management (ATFCM) was the first
acronym established, and the most updated name is Integrated Network management & ATC
Planning (INAP).
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I.2 Air Traffic Flow Management Regulation: A power for good

In most European airports, to handle the excess demand, a finite number of slots are provided
to airlines to schedule their flights. A slot is a permission to use the airport infrastructure and
services to operate a flight with the purpose of landing or take-off. Therefore, the number of
available slots per interval of time defines the capacity of the airport. However, when those slots
are insufficient to meet the demand, the extra demand will generate air delay at the destination
airport in the form of holdings or re-routing during the cruise (Delgado Muñoz, 2013). In the
European ATM system, ground delay, rather than airborne delay, is widely accepted because of
the reduced operational costs and environmental footprint (Cook et al., 2004).

ATFM delays, which refers to the difference between the actual time the aircraft departed
(or arrived) at the parking stand and the commercial schedule shared with the passengers, are
particularly complex. First, when a flight is affected by an ATFM regulation, they are issued with a
Calculated Take-Off Time (CTOT), which indicates a narrower time window for the flight to depart
(from 5 minutes prior CTOT to 10 minutes after). If a flight cannot depart within this window,
e.g., due to other delays, the ATFM slot will be missed and a new one assigned. This could lead to
significant extra delays being issued to the airline as early slots might not be available. Therefore,
CTOTs act as barriers when planning flights. Notice that if the delay is propagated and the ATFM
slots are missed, this might have a significant downstream impact even if the initially assigned
delay by the regulation is close or even zero. Airlines need to closely monitor if slots might be
missed and notify the NM as soon as possible to obtain a new CTOT as close as possible to their
new Estimated Take-Off Time (ETOT). On the contrary, if the initial delay is large, it can be used to
absorb the propagation of delay from previous legs. Even if the flight is ready, it will not be able
to depart until its CTOT window.

Second, in some cases, airlines can respond to the ATFM regulations. For example, if the reg-
ulation issuing the delay is in the airspace, a new flight plan which avoids the congested airspace
(re-routing or maintaining a lower altitude) can be used to avoid entering that portion of the
airspace, reducing (or eliminating) the issued delay. Moreover, suppose the aircraft is ready (crew
and passengers boarded). In that case, messages can be exchanged with the NM to try to benefit
from potential new early slots generated due to delays or cancellations by other flights. Within
all causes, airlines tend to put their operational focus on arrival rather than departure punctual-
ity. Late arrivals may cause passengers to miss their connecting flight, it causes reactionary flight
delays, and under EU law, very late arrival may trigger financial compensation to passengers (EU
regulation 261/2004) (EUROCONTROL, 2019).

In the European ATC network, ATFM delays are imposed by the Computer Assisted Slot Al-
location (CASA) algorithm (Niarchakou, 2022; Tibichte & Dalichampt, 2014), which is a heuristic
algorithm based on the principle first-planned-first-served. A similar program called the Airspace
Flow Program (AFP) or the Ground Delay Progam (GDP) has been used in the United States of
America since 1998. While CASA can apply delays to a subset of flights predicted to cross a regu-
lated region, AFP or GDP only can delay a set of flights destined for a specific airport. For further
comparison of procedures between Europe and the US, the reader is referred to Shetty et al. (2017).

According to PRC (2019), in the ECAC area ATFM delay increased by 104% in 2018, reaching
19M minutes (36.1 years), while traffic increased by 3.8% over the same period with 6.4M minutes
of airport delay. Figure I-4 shows the total minutes of ATFM (y-axis) as a function of the number of
ATFM regulated flights (x-axis). As can be seen, airport ATFM delays have stayed at a similar level
over the last four years before COVID-19. In contrast, en-route ATFM delay presents continuous
growth, especially in 2018. The most regulated locations in 2018 were Karlsruhe (21.3%), Marseille
(15.2%), Maastricht UAC (7.8%), Reims (6.7%), Brest (5.4%), Vienna (4.3%) and Barcelona (3.8%).
In 2021, the most constraining locations were Reims (18.5%), Marseille (15.2%), Karlsruhe (15.0%),
and Athens (13.6%) (PRC, 2021).
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Figure I-4: Airport and en-route minutes of ATFM delay. Source: PRC (2019)

Because of the enormous impact of ATFM delays in the network, a wide variety of work
can be found in the literature trying to optimize, improve, minimize, or predict the evolution
of delays. For instance, Ivanov et al. (2017) presented an optimization model for the en-route
demand-capacity imbalances to improve airport slot adherence, Ruiz et al. (2019) presented an
innovative technique to utilize better available airspace capacities based on the current tools
Prats Menéndez et al. (2017) presented an embedded simulator based on speed reduction, which
combines simulation, optimization, and performance assessment, and Dalmau et al. (2021b) tried
to estimate the evolution of already assigned ATFM delays.

Up to this point, it can be interpreted that ATFM regulations are purely traffic-related, but
they can be implemented due to many circumstances. For instance, under adverse weather sce-
narios, the workload of ATCOs also rises significantly, mainly because the air traffic becomes
irregular, difficult to anticipate, and there is less available airspace for conflict resolution. This
increase in controllers’ workload translates into a reduction of airspace capacity. Similarly, we can
find regulation due to insufficient staffing, inefficient procedures , or inadequate equipment that
cannot cope with the growth of air traffic. Another common reason is general disruptions, which
mainly refer to industrial actions. Table I-2 shows the percentage of delayed flights per ATFM de-
lay code in 2018. The complete list ATFM of delay codes can be found in EUROCONTROL (2022).

Table I-2: Percentatge ATFM regulations codes for flights delayed in 2018. Source: PRC (2019)

ATFM Delay code Delayed flights Delay per delayed flight Total delay
C - ATC Capacity 4.3 % 15 mins. 37.4 %
S - ATC Staffing 2.3 % 17.5 mins. 23 %
(W, D) - Weather 1.9 % 23.4 mins. 25.4 %

(I, T) - ATC Disruptions 0.4 % 32.5 mins. 7.5 %
All other codes 0.6 % 17.8 mins. 6.6 %

Traffic growth and changes in traffic patterns have caused increasing congestion and delay
in European airspace. Both the SESAR program and the Central Flow Management Unit (CFMU)
continually seeks and develops methods to improve traffic flow management to reduce delays
and congestion (Tibichte & Dalichampt, 2014).
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I.3 On-going ATM paradigm shift

Digital transformation is not a goal in itself but a means of accelerating the SESAR ambitions.
A digitally transformed aviation will use targeted data and information through automated and
connected solutions to improve the overall efficiency and cost perspective (SESAR, 2020). SESAR
aims to take full advantage of digital technologies to generate new services and optimize current
ones while delivering the best possible experience and benefits to the different stakeholders.

SESAR (2020) introduced an automated model for ATC, which emulates the five-level model
introduced by the Society of Automotive Engineers (SAE, 2018). Figure I-5 shows the different
defined levels of automation, where it can be seen that the ATM network aims to take benefit from
the progress made in the field of ML and Artificial Intelligence (AI). However, notice that it is not
expected level 5 of automation because phase D only reaches level 4. The goal is a system that
works collaboratively with hybrid human-machine teams, where flexible and adaptive automa-
tion could guide the tasks. Moreover, the synchronization between the air and the ground automa-
tion systems will make it possible to reduce the ATCO workload, thus reducing the required stuff
or increasing capacity. Similar intentions exist in the United States, within the NextGen program,
aiming to modernize the US air transportation system (FAA, 2016).

Figure I-5: ATM levels of automation. Source: SESAR (2020)

From level 0 to 2, ATC and ATFM automation will focus on increasing the level of system
support while the human is still responsible for initiating the actions. In level 3, automation be-
tween humans and machines will be enabled, and automation can initiate actions for some specific
tasks. Level 4 starts to remove the human from the loop that selects ATC actions; thus, the human
cognitive limitations will no longer limit the capacity of airspace by design (SESAR, 2020). Finally,
automation will perform all the tasks in level 5. The boundaries between ATC and ATFM will
progressively blur when automation makes possible the implementation of more flexible ATFM
concepts. The most updated European ATM Master Plan from SESAR (SESAR, 2022) shows that
automation Level 3 is under development with 130 solutions.
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Most of the proposed solutions, mainly those more advanced, rely on the notion of
Trajectory-Based Operations (TBO) enabling airspace users to fly their preferred flight trajecto-
ries. The trajectory will be defined before departure, updated in response to emerging condi-
tions and operator inputs, and shared between stakeholders and systems. The aggregate air-
craft trajectories on the day of operation will define demand and inform traffic management
actions. This free routing concept enables airspace users to fly as close as possible to their pre-
ferred trajectory without being constrained by fixed airspace structures or fixed route networks
(FAA, 2022b; EUROCONTROL, 2022). Concretely, in Europe, the concept of TBO and Free Rount-
ing (FRA) is under analysis and validation in the project SESAR (2019b), with promising results
on the sector’s efficiency, capacity, and environmental problems.

I.4 Motivation of this PhD thesis

In the current system, ATFM regulations are implemented when demand-capacity imbalances
cannot be solved using airspace or flow management solution (STAM measures). Although they
are the last option when solving DCB problems, they are widely used in the ECAC network.
Moreover, the downstream effects of such regulations cannot be neglected. The average cost de-
rived from ATFM delay per minute is €100; that is, around €1 billion annually at the European
level (EUROCONTROL, 2020; Cook & Tanner, 2015). However, as presented in SESAR (2019a),
the methodology used nowadays is purely human and does not rely on automation. The decision-
making process is done by building a mental picture of flights intent in the mind of the controllers.
For this reason, both the SESAR (Europe) and the NextGen (United States) programs aim to de-
velop a new system that performs collaboratively by hybrid human-machine teams. This ap-
proach aims to reduce the workload of humans, allowing machines to do repetitive tasks more
efficiently and cost-effectively. Thus, increasing capacity or reducing ATFM delay.

FMPs are typically conservative with ATFM regulations, preventing costly airborne holding
and maximizing safety (Dalmau et al., 2021a). Therefore, ATFM regulations are usually planned to
last longer than necessary. It is preferable to have flights held on the ground even in unnecessary
situations and cancel the ATFM regulations earlier if possible to release some demand. In 2018,
around 5% of the regulations were canceled. Therefore, a more automated system able to identify
regions and intervals of time which will have to be regulated could reduce the workload from
FMPs and ATCO, increasing the overall capacity of the network. Moreover, current techniques can
help smooth the traffic of congested regions better, taking into account different Key Performance
Indicators (KPI) rather than only considering the sequence of flights. On the other hand, airlines
need to closely monitor flights to mitigate ATFM delays and actively produce new flight plans and
solutions to reduce the impact of delays on their fleet. Not only if a flight is impacted by ATFM
delay, but the characteristics of this (amount of delay and type of regulation) are required as soon
as possible for effective fleet management.

Such automation detecting and solving ATFM regulations could heavily impact the over-
all performance of the ATM network towards the goal from the SESAR program to increase the
capacity by 5-10% in high congested regions. An automatic system to suggest the characteris-
tics of possible ATFM regulations and possible approaches to smooth the traffic perfectly fits in
Levels 3 and 4 from SESAR (2020). For these levels, automation supports the human operator
in the information acquisition and exchange, information analysis, action selection, and action
implementation for some tasks. Moreover, improved automation of the decision-making process
behind the implementation of ATFM regulations could improve other related issues, such as the
propagation of reactionary delays (De Falco & Delgado, 2021).

Last but not least, it should be mentioned that this thesis has been done in collaboration with
EUROCONTROL, under PhD research Contract No. 18-220569-C2, who aimed to study the usage
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of ML techniques to identify en-route ATFM regulations. Furthermore, part of this thesis belongs
to the exploratory research project Dispatcher3 (Dispatcher3 Consortium, 2020), a Clean Sky 2
innovation action that aims to use machine learning techniques to support the airline processes
prior to departure.

I.5 Objectives of this PhD thesis

Automating the decision-making process behind ATFM regulations opens the possibility of new
strategies for dealing with demand-capacity imbalances. As has been mentioned, it could increase
overall capacity due to the reduction in traffic complexity, improve current capacity usage, and
early identification of disruptions can enhance linked operations. This thesis focuses on the usage
of AI techniques for both the identification of DCB issues leading to ATFM regulations and
the generation of advice on their resolution. All this is in the context of SESAR and NextGen
programs, where a higher level of automation is expected. Figure I-6 depicts a block diagram for
the proposed framework, where discontinued lines are related to future work.

Figure I-6: Frameworks for the identification and resolution of ATFM regulations

Supervised machine learning and Reinforcement Learning (RL) techniques are analyzed, creating
an end-to-end system to identify and suggest solutions for DCB issues leading to ATFM regula-
tion. Different techniques are analyzed and compared to obtain the best possible performance,
with an extensive analysis of possible input features for each case study, focusing on the inter-
pretability and explainability of the results. Supervised machine learning is used to accurately iden-
tify where and when ATFM regulations are required, while RL techniques aim to generate advice
about how to smooth traffic in the identified congested regions.
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ATFM regulations in Europe are imposed by ANSPs and the FMPs, delaying flights on the
ground to smooth demand. Thus, affecting the planned operations of the airlines. Because the
operational and economic impact is different depending on the stakeholder, distinct approaches
are analyzed to develop tools that fit the necessities of the different partners. First, a set of tools
is developed to identify intervals of time when specific Traffic Volumes (TVs) will be regulated,
meeting the necessities and policies of the NM. In this context, it is analyzed the two most frequent
regulations reasons. Second, RL algorithms are tested using discrete and continuous actions to
suggest ground delays to smooth traffic. Third, a set of models that predict ATFM characteristics
for individual flights is studied, taking into account airspace users’ needs.

AI techniques are the perfect approach due to their fast response to new conditions, mak-
ing them ideal for cyclic processes such as DCB. However, some of them are considered "black
boxes" which is unacceptable in critical environments. Therefore, special attention has been paid
to model explainability to obtain theoretical guarantees on the expected behavior of machine
learning-based systems during operation. Understanding the reasons behind the outcome of the
models is crucial in assessing trust when we want to take action based on the outcome of the
models. For this purpose, SHapley Additive exPlanations (SHAP) is the main tool selected.

Finally, it is paramount to ensure that the models provide meaningful advice, ensuring that
the right level of information is displayed at every moment. Different advice capabilities to pro-
cess the outcome of the predictive engines and transform them into actionable indications are con-
sidered taking into account stakeholders’ policies. It is proposed a web application and integration
into R-NEST for the NM, an integrated view and possible reactionary delay for the airspace users,
and an image-based representation for the resolution of detected imbalances.

Summing up, the objectives of this PhD thesis can be outlined as follows:

• Build a data infrastructure, emulating a data lake, able to accommodate, store, and retrieve
the required data sources to conduct the different experiments. Moreover, the infrastructure
has to retrieve the complex input features used during the training phase of the models;

• Develop, train, and test different machine learning models to predict ATFM information
taking into account the needs of different stakeholders: regulated TV for the Network Man-
ager and ATFM characteristics for airspace users;

• Analyze, compare, and evaluate different techniques, approaches, and implementations to
figure out the best configuration for each experiment, and their hyper-parameters2;

• Use eXplainable Artificial Intelligence (XAI) techniques to study the patterns learned by
the supervised models and validate that their behavior is realistic, using mainly SHAP.

• Developed an advice framework per expected end user to provide meaningful information,
focusing on interpretability. Combination and integration of the different machine learning
models to display appropriate advice;

• Investigate different RL techniques to create advice on the resolution of demand-capacity
imbalances, focusing on scalability. Study different types of actions and configurations.

2In machine learning, a hyper-parameter is a parameter whose value is used to control the learning process.
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I.6 Scope and limitations of this PhD

In order to accomplish the objectives of this PhD thesis, the research is subject to assumptions that
define the scope:

• In the research undertaken in this PhD thesis, it is considered that the ATFM detection and
resolution strategies are conducted during the pre-tactical phase, around 24 hours before the
take-off time. The flight intentions, the Estimated Off-Block Time (EOBT), and routes used
are based on planned intentions before any regulation was applied. In each experiment,
it is used the closest available information to the prediction horizon (i.e., to the pre-tactical
planning phase);

• Real airspace and air traffic data from 2018 is used in all the experiments. Current data is not
adequate due to the current breakdown situation due to COVID-19 and the war in Ukraine;

• To develop systems as fair as possible for all the stakeholders, there is only one type of flight,
i.e., there is no aircraft with priority. Furthermore, extra costs, and environmental impact,
due to ATFM regulations are not considered;

• It is assumed that all the ATFM regulations implemented by the NM were correct and nec-
essary, ignoring those ATFM regulations canceled by the NM;

• The detection of ATFM regulations for specific TVs (i.e., at the network level) is centered
on the Maastricht Upper Area Control Centre (MUAC) and REIMS regions, which contain
the most crowded airspace sectors in Europe, ensuring that the evaluation is carried out in
challenging scenarios. However, the proposed approach is generic enough to consider other
airspace regions by training new models;

• For the detection of ATFM regulations at the flight level, the models are developed focusing
on flights operated by Vueling, one of the most active operators in Europe. This is necessary
due to computational constraints derived from trying to use the entire airspace traffic in the
ECAC area. However, Europe has a very structured and regulated ATC system with little
freedom to apply different policies, which indicates that the models could be re-trained for
other airlines due to similar patterns of behavior;

• Pre-tactical routes are defined by sets of segments composed of the initial time, the initial
coordinates, the final time, the final coordinates, and the flight level. Because the exact time
and location are only known at the beginning and end of the segments, constant speed and
flight level are assumed per segment. The reader is referred to Basora et al. (2017) for a
similar approach;

• Supervised machine learning models learn patterns from historical information and use
them in future predictions. In that sense, the models do not improve the decisions made
in the past. However, the models also have the ability to improve learning as the quantity
and quality of data increases, and thus it will benefit as better quality data become available
or improved ATFM algorithms emerge;

• For the part of this thesis that focuses on the resolution of ATFM regulations, it is assumed
that the airspace sectors with demand-capacity imbalance are known (interval of time with
overload and location). The strategic sector’s capacity is known, and rectangles can be used
to approximate the shape of the sector to reduce the implementation complexity in this pre-
liminary study;

• Many advice capabilities could be implemented according to the needs and policies of
the different studied stakeholders. However, this thesis proposes to develop visualization
frameworks as similar as possible to the current tools available.
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I.7 Outline of this PhD thesis

The present document is organized into seven Chapters and two Appendices, which are summa-
rized as follows. It is worth noting that a broad state of the art of the main topics addressed in this
PhD thesis has been presented before. A deeper and more specific review of the state of the art for
each individual topic is included at the beginning of each Chapter.

• Chapter II presents a detailed framework for ATFM regulations, including a description
of the main ML algorithms used, the proposed architecture, infrastructure, tools, pre-tactical
data sources, the performance evaluation metric used and developed, the selected technique
for model explainability, and the proposed advice capabilities of the frameworks according
to the end user;

• Chapter III investigates the usage of supervised machine learning techniques to identify the
need for C-ATC Capacity ATFM regulations at the TV level to support the NM processes.
This Chapter evaluates the performance of models that use different types of input features;

• Chapter IV extends the analysis conducted in the previous Chapter by adapting the pro-
posed architecture to identify W-Weather ATFM regulations. The goal is to validate whether
the proposed architecture can be used to predict different ATFM regulation reasons;

• Chapter V analysis the use of RL techniques to provide advice on how to smooth the traffic
of regulated TVs. Different algorithms with different configurations are tested, using images
to overcome scalability issues identified in the state-of-the-art;

• Chapter VI focuses on developing ML models to predict ATFM information at the flight
level to support the airline pre-departure processes during the operational plan definition
phase. It is studied how feasible it is to predict the probability of ATFM regulation, the
expected protected location, whether the ATFM delay is going to be zero, and the ATFM
delay for flights operated by a specific airline;

• Chapter VII gives the conclusions that are drawn from this work and point out some future
research that could be done in the direction of the presented research;

• Appendix A extends the results presented in Chapter III and Chapter IV when identifying
C-ATC Capacity and W-Weather ATFM regulation, focusing on a new airspace region. Con-
cretely, the results are centered on Spain, a highly regulated region but less than the ones
used in the main experiments;

• Appendix B shows the results obtained using different data sources to predict ATFM reg-
ulations at the flight level. It compares the performance of the models using data from
forecasts (Chapter VI) and optimal/perfect pre-tactical information, studying the impact of
the sources with respect to the time horizon day prior to operations (D-1).
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Air Traffic Flow Management (ATFM) regulations are a complex task that require the coordination
of Flow Manager Positions (FMPs) and Network Manager (NM) to identify and smooth demand-
capacity imbalances. The current Collaborative Decision Making (CDM) process behind this task
is complex and well-tested, but there is a lack of automation. It is mainly based on human skills
and knowledge; thus, Air Traffic Management (ATM) aims to move to an environment with higher
levels of information sharing, where humans and machines can collaborate to improve the current
environment.

As presented in the previous Chapter, this thesis aims to study the usage of Artificial In-
telligence (AI) systems that could improve the current approach, for instance, automatizing the
detection of ATFM regulations, indirectly increasing capacity, or reducing the number of required
ATFM regulations that have to be manually studied.

This Chapter presents the framework developed and proposed to use Machine Learning
(ML) techniques in the detection and resolution of ATFM regulations, taking into account the
needs of different stakeholders. The detection aims to identify when are where ATFM will be neces-
sary, while resolutions refers to smoothing the traffic in the identified congested region. Section II.1
introduces the supervised ML models that are proposed to use and, if desired, provides further
references to the reader. Section II.2 details the architecture and approach developed. Section II.3
shows the infrastructure and tools required to conduct the different experiments. Section II.4
details the characteristics of the data sources studied. Section II.5 presents the performance eval-
uation metrics used across experiments and case studies. Section II.6 introduces the tool used for
the model explainability analysis conducted to understand the behavior of the models. Section II.7
details the proposed advice capabilities of the different tools.

15
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II.1 Machine learning techniques

Machine learning, or automated learning, is a branch of artificial intelligence that allows machines
to learn without being explicitly programmed for this specific purpose, creating systems that are
not only smart but autonomous and capable of identifying patterns in the data to convert them
into predictions. This technology is currently present in an endless number of applications.

Back in the 19th century, the first algorithms were presented trying to emulate the human
brain neural network’s biology to attempt to create the first intelligent machines. However, the
panorama started to change at the end of the 20th century when massive volumes of data started
to be available to train models, and computing power grew significantly.

Machine learning approaches are traditionally divided into three general categories accord-
ing to learning paradigms:

• Supervised learning: The algorithm learns from a set of observations (i.e., input examples)
and their corresponding labels, and the goal is to learn a function that maps the inputs and
outputs to make predictions of observations not seen during the training;

• Unsupervised learning: No labels are given to the learning algorithm, having to find the
structure in its inputs on its own;

• Reinforcement learning: An agent, or multiple agents, interacts with a dynamic environ-
ment in which they have to perform a certain task (or several). The program provides feed-
back analogous to the reward, which agents try to maximize.

This thesis focuses on supervised and reinforcement learning techniques because the end goal
is to learn from past scenarios to build up a system able to support the current process behind the
Demand-Capacity Balancing (DCB).

II.1.1 Supervised machine learning

Supervised learning algorithms build mathematical models from a training dataset that contains
both the inputs and the labels. Each training observation has one or more input elements/features,
typically represented by an array or vector, and the desired output. Through an iterative optimiza-
tion process, supervised learning algorithms learn a function that can be used to predict the output
of new inputs that were not used during the training process. Algorithms that improve the accu-
racy of their predictions over time are said or considered to have learned to perform that specific
task (Mitchell, 1997). Note the goal is to generalize, not to memorize the training observations.

Types of supervised-learning algorithms include:

• Classification algorithms are used when the outputs are restricted to a limited set of val-
ues/categories;

• Regression algorithms when the outputs can have any numerical value within a range;

• Similarity learning uses a similarity function to learn how similar or related two objects are;

• Active learning is a case of machine learning in which a learning algorithm can query a user
interactively.

Various types of models have been used and studied for supervised machine learning sys-
tems. The following list summarizes the ones used in this thesis:
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• Feed Forward Neural Networks (FFNNs) are vaguely inspired by the biological neural net-
works that constitute animal brains, and they are also known as MultiLayer Perceptrons
(MLPs). It is a model based on a collection of connected units or nodes called "artificial neu-
rons", where each connection can transmit a signal from one artificial neuron to another. An
artificial neuron that receives a signal can process it and then signal additional artificial neu-
rons connected to it. The signal of connections between artificial neurons are real numbers,
and the outputs are computed by non-linear functions of the sum of their inputs. Typically,
neurons are aggregated into layers, where connections between neurons have a weight to
increase or decrease the strength of a signal. Different layers may perform different kinds of
transformation to their inputs, starting from the first layer (the input layer) to the last layer
(the output layer), possibly after crossing multiple intermediate layers (the hidden layers).
Figure II-1 shows the typical architecture of a MLP.

Figure II-1: FFNN or MLP architecture

• Convolutional Neural Networks (CNNs) are a class of ANN commonly used to process and
analyze visual imagery based on the convolution of kernels, or filters, that slide along the
input features to provide translation-equivariant responses known as feature maps. CNNs
are regularized1 version of MLPs. Figure II-2 presents the layers of conventional CNN.

Figure II-2: CNN architecture

• Recurrent Neural Networks (RNNs) are a class of Artificial Neural Network (ANN)
where information travels in loops from layer to layer so that the state of the model is
influenced by its previous states allowing it to exhibit temporal dynamics. Long-Short
Term Memory (LSTM) is a type of RNN widely used for sequence classification problems
(Hochreiter & Schmidhuber, 1997), typically showing better performance than Gated Recur-
rent Units (GRU) or pure RNN. A common LSTM unit is composed of an input gate (It), an
output gate (Ot), and a forget gate (Ft). The cell remembers values over arbitrary times-
tamps, and the three gates are used to regulate the flow of information into and out of the
cell. Figure II-3 is a graphical example of an LSTM cell, showing the connectivity between
elements and the mentioned gates.

1Regularization is a process that changes the resulting answer to be "simpler". It is often used to obtain results for
ill-posed problems or to prevent overfitting.
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Figure II-3: Graphical representation of an LSTM unit

• Decision trees uses a "tree" as a predictive model to go from the input observations (rep-
resented as the branches) to the prediction (represented by the leaves). In other words,
branches represent conjunctions of features, and the leaves represent the class labels. Deci-
sion trees where the target variable can take continuous values are typically called regression
trees. Figure II-4 depicts an example of the branches and leaves of a decision tree algorithm.

Figure II-4: Graphical representation of a decision tree.

• Random forest is an ensemble learning method for classification, regression, and other tasks
that operates by constructing many decision trees at training time. For classification tasks,
the output of the random forest is the class selected by most trees. For regression tasks,
the mean or average prediction of the individual trees is returned. Figure II-5 is a visual
representation of a random forest composed of three trees.

Figure II-5: Graphical representation of a random forest.
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In the literature, many types and supervised ML algorithms can be found, with many varia-
tions of the same initial idea, such as support vector machines (Cortes & Vapnik, 1995), Bayesian
network (Ben-Gal, 2008), or genetic algorithms (Mitchell, 1998). For further information, the
reader is referred to Bishop (2006), which is a mix of mathematical background and ML algo-
rithms), or Mahesh (2020) for a more actual review of ML algorithms.

II.1.2 Reinforcement learning

Reinforcement Learning (RL) problems consist of learning what to do (how to map situations to
actions) to maximize a numerical reward signal. The agent is not told which actions to take, but it
must discover which actions yield the most reward by trying them. Notice that actions may affect
not only the immediate reward but also the following states and, through that, all subsequent
rewards. These two characteristics, trial-and-error search and delayed reward, are the two most
important distinguishing features of RL. Therefore, a learning agent must be able to sense the state
of the environment, take actions that affect the state, and have a clear goal (or goals) relating to
the state of the environment (Sutton & Barto, 1999). This interaction is depicted in Figure II-6.

Figure II-6: Adapted typical framing of a RL scenario. Source: Watkins & Dayan (1992)

One of the challenges that arise in RL is the trade-off between exploration and exploitation.
To obtain as much reward as possible, a RL agent must prefer actions that it has tried in the past
and found to be effective. However, to discover them, it has to try actions it has not selected
previously. The agent has to exploit what it has already experienced to maximize reward, but also
it has to explore to make better action selections in the future. Beyond the environment and the
agent, we can identify four main sub-elements:

• Policy: roughly speaking, it maps the states of the environment to actions (i.e., the strategy).

• Reward signal: it defines the goal of the RL problem. It defines what is "good" in an imme-
diate sense.

• Value function: specifies what is "good" in the long run. Roughly speaking, it is the total
reward an agent can expect to accumulate over the future, starting from a particular state.

• Model: it mimics the behavior of the environment. It allows inference to be made about
how the environment will behave.
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II.1.3 Single-Agent Reinforcement Learning

A RL problem for a single agent interacting with an environment can be formalized as a finite
Markov Decision Process (MDP) described by the tuple (S,A, P,R), where S is the set of states
of the environment, A is the set of actions the agent can take, P is the transition function, being
P (s′|s, a) the probability of transitioning to s′ ∈ S , by applying a ∈ A in s ∈ S , and R is the
reward function. Notice, in a finite MDP, the sets of states, actions, and rewards (S, A, and R)
have a finite number of elements.

At each time step, the reward is a scalar value, Rt ∈ R. However, the agent aims to maximize
its cumulative reward G. That is, maximize both immediate reward and cumulative reward in
the long run. Thus, the rewards we set up must truly indicate what we want to accomplish. The
cumulative reward, also referred to as return, can be defined as follows:

G =

∞∑
t=0

γtRt, (II.1)

where γ is a parameter, 0γ1, called the discount rate. It determines how much the agent cares
about immediate rewards relative to distant ones.

The RL system aims to find the optimal policy π∗, which maximizes the expected commu-
tative reward. Let us define the value function of a state vπ(s), for a policy π (which may not be
optimal), as the expected return when starting in the state s following policy π. For MDPs, we can
define vπ(s), formally by:

vπ(s) = E[Gt|St = s]. (II.2)

Similarly, we define the value of taking action a in state s under a policy π as qπ(s, a), provid-
ing the expected return:

qπ(s) = E[Gt|St = s,At = a]. (II.3)

At least one policy is always better than or equal to all other policies. The optimal policy.
Although there may be more than one, all the optimal policies are denoted by π∗. They share the
same state-value function, called the optimal state-value function, denoted v∗ and defined as:

v∗(s) = max
π

vπ(s); s ∈ S. (II.4)

Optimal policies also share the same optimal action-value function, denoted by q∗:

q∗(s) = max
π

qπ(s, a); s ∈ S and a ∈ A (II.5)

Therefore, the optimal policy π∗ selects what action maximizes the expected commutative
reward. If the optimal action-value function q∗(s, a) is known, the best action in the state s is:

π∗(s) = argmax
a∈A

q∗(s, a). (II.6)

The two main approaches used to obtain the optimal policy are policy iteration which ma-
nipulates the policy directly, and value iteration, which aims to find an optimal value function
adopting a greedy policy (Sutton & Barto, 2018).
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II.1.4 Multi-Agent Reinforcement Learning

A Multi-Agent Reinforcement Learning (MARL) system involves a set of N interacting agents,
which can be cooperative, competitive, or both. It can be described by the tuple:

(N ,S, {Ai}i∈N , {Oi}i∈N , P, {Ri}i∈N ). (II.7)

At every time step, each agent i ∈ N observes a partial representation of the environment
oi ∈ Oi, and performs an action ai ∈ Ai determined by a policy function πi. Then, when an action
is taken, the environment evolves to a new state s′ ∈ S according to the transition function P.
This transition function depends on the current state and the joint action of all agents. Finally, the
reward that each agent receives is given by the reward function. For instance, agents typically
share the reward in a cooperative RL; otherwise, they become selfish.

One possible approach for MARL is to train independent agents. However, this sim-
ple approach does not perform well in practice (Tan, 1993). To overcome these limitations, in
Lowe et al. (2017) and Foerster et al. (2018), each agent has its centralized critic, only used during
learning, that approximates and learns the action-value function given the observations and ac-
tions of all agents. However, the critics require the actions and observations of all agents as input.
Consequently, their complexity is proportional to the number of agents.

A different solution is proposed in Sunehag et al. (2017) to mitigate this scalability issue. In
this case, the agents learn an individual action-value function based on their local observations,
and the sum of these functions approximates the centralized joint action-value function.

II.1.5 Q-Learning

Q-Learning (Watkins & Dayan, 1992) is one of the most well-known algorithms based on value
iterations. It makes use of a Q-table, which, typically, has the shape [states, actions], and each
Q-value Q(s, a) represents the quality of taking as action a ∈ A, in s ∈ S. Thus, the standard
Q-Learning was designed to work with discrete actions and states.

At each time step t, the agent observes the current state st and chooses the action at with the
highest Q-value in that state. After applying the selected action, the agent receives a reward rt,
enters on new state st+1, and the Q-value is updated using equation II.8:

Q(st, at)← Q(st, at) + α
(
rt + γmax

a
Q(st+1, at)−Q(st, at)

)
, (II.8)

where rt is the reward received when moving from state st to st+1, α ∈ (0, 1) is the learning rate,
and γ ∈ [0, 1] is the discount factor.

According to equation II.8, the agent adopts a greedy strategy by constantly selecting the
actions with the largest Q-value. In that case, it exists the risk of adopting a sub-optimal solution
by converging to a local minimum. The ϵ-greedy strategy is widely used to properly explore the
state-space, where ϵ corresponds to the probability of choosing a random action. Typically, ϵ is
initialized to 1 to force high exploration at the beginning, with a decay rate over time to ensure
exploitation at the end of the training.

One limitation of this well-known algorithm is the rapid growth of dimensionality in the
state-space. The traditional solution is Deep Q-learning (Arulkumaran et al., 2017), which uses a
Neural Network (NN) to approximate the Q-values. However, instead of training the NN with
the sequence of experiences as they occur during the simulations, they are saved in what is usu-
ally called the experience replay buffer. Using a buffer prevents the agent from forgetting past
experiences as time evolves and breaks the correlation between consecutive experiences. Finally,
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a target network is used to stabilize the learning. The target network is the result of periodically
replacing its weights with the ones from the online network used to select the action greedily.

II.1.6 Deterministic Policy Gradient

Deterministic Policy Gradient (DPG) (Silver et al., 2014) is an actor-critic RL algorithm used for
continuous actions that learn a deterministic policy function and a value function simultaneously
from an exploratory behavior.

It is not possible to straightforwardly apply Q-Learning to continuous actions spaces because
finding the greedy policy would require optimization of at at every time step, which is too slow
to be practical with large, unconstrained functions approximators, and nontrivial action spaces
(Silver et al., 2014). The DPG algorithm uses an actor as the current policy to map states to a
specific action. The critic determines the expected reward for an agent starting at a given state
and acting according to the previous policy.

As with Q-Learning, it is required to introduce non-linear function approximators to learn
and generalize on large-scale state spaces, which means that convergence is no longer guaranteed.
However, such approximators appear essential in those scenarios. Lillicrap et al. (2015) presented a
modification to DPG from Hafner & Riedmiller (2011), inspired by the success of Deep Q-Learning
(DQN), allowing the use of NN function approximators. This implementation is called Deep
Deterministic Policy Gradient (DDPG), and it was proved that the algorithm could learn policies
"end-to-end" directly from raw pixel inputs. Target networks are used to add stability to the
training, and an experience replay buffer is used to learn from experiences accumulated during
the training.

II.2 Architecture and approach

The first objective of this thesis is to develop a prototype for the acquisition and preparation of
historical data to provide support on the DCB process with predictive and advice capabilities for
relevant stakeholders. Concretely, the goal is the development of an infrastructure able to provide
data that is used to enhance the prediction of ATFM regulations and study possible downstream
effects, focusing on providing advice on the corresponding decision-making process and their
resolution.

The prediction horizon is set to the day prior to operations (D-1), where there are no actual
ATFM information because most regulations are implemented between 12 and 3 hours before
departure. Furthermore, this work aims to provide advice on many relevant stakeholders as pos-
sible; thus, the following target end users are identified:

• Network Manager, which aims to identify ATFM regulations at the en-route Traffic Volume
(TV)2 level and decide on the extra ground delay;

• Airlines, whose flights are directly affected by the regulations due to the associated opera-
tional constraints or the issued extra ground delay.

2A TV is an environment data structure associated with only one reference location based on geographical enti-
ties (e.g., sector, collapsed sectors, or airports). They are used to compare the traffic load and the available capacity
(Niarchakou, 2022).
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The architecture proposed in this work is organized in three layers as depicted in Figure II-7:

• Data infrastructure to support storage and management of data sources required to train
the models and provide advice;

• Predictive capabilities which comprises the definition, training, and validation of individ-
ual machine learning models;

• Advice capabilities that uses the trained individual machine learning models to present the
information to the end user in a comprehensive manner.

Figure II-7: Architecture of the proposed frameworks. Source: Dispatcher3 (2022)

II.2.1 Data infrastructure

An iterative process is used to identify and acquire datasets required by the different machine
learning models and development needs. These data are stored and managed in two data infras-
tructures set up according to the different needs. Small datasets are used locally, while the large
ones are stored in Amazon Web Services (AWS). See Section II.3 for more details on the techno-
logical solutions and infrastructure characteristics used. The different data sources used by the
machine learning models are described in Section II.4.
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II.2.2 Predictive capabilities

The predictive capabilities are developed in two different phases:

1. Data acquisition and preparations composed of two activities:

(a) Data wrangling which focuses on the preparations and cleaning of the data;

(b) Descriptive analytics based on data mining techniques to extract the Key Performance
Indicatorss (KPIs) used as target variables. It also focuses on identifying precursors for
the different target variables.

2. Models development consists of:

(a) Labelling because supervised machine learning models work on labeled data, accord-
ing to the defined KPIs;

(b) Feature engineering is the activity where the selected features are engineered from the
raw data and analyzed to see their relevance for the different experiments;

(c) Train, test, and validate of the machine learning models to obtain the system’s predic-
tive capabilities.

Different machine learning models have been developed according to different scenarios,
goals, and end users. Table II-1 summarizes the main experiments, case studies tackled, and
developed ML models:

Table II-1: Experiments, case studies, target users, and ML models

Experiment Case study Case study Targeted user Model
identifier description description

TV C-ATC Capacity Prob. ATFM for TVs Network Manager Chapter III
W-Weather Prob. ATFM for TVs Network Manager Chapter IV

RL C-ATC Capacity Resolution of ATFM Network Manager Chapter V

Flights Vueling ATFM info. for flights Airline Chapter VI

II.2.3 Advice generator

The outcome of the individual models developed as part of the predictive capabilities has to be
integrated to provide meaningful advice to the end user. Moreover, the outcome of the machine
learning models might present some discrepancies and uncertainties that need to be considered.

Therefore, the advice generators focus on the following elements according to the previously de-
fined experiments:

• Selection of the desired case study and the parameters of the analysis;

• Visualization of the pre-tactical ATFM regulations at the TV level;

• Visualization of the possible resolution of identified ATFM regulations at the TV level;

• Visualization of the ATFM characteristics at the flight level.
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Finally, the advice generator has a series of requirements that have to be met:

• Infrastructure: architecture required to load the data, obtain the predictions from the mod-
els, and show the outcome;

• User-friendly: the visualization must be easy to understand by the end user;

• Understandability: uncertainty in the predictions is always present, so it is required to en-
sure the user accounts for this uncertainty.

II.3 Infrastructure and tools

This section details the characteristics of the infrastructures used to develop the different predic-
tive and advice capabilities, which can be summarized as follows:

• Data lake: Local, or cloud, storage for the different data sources. Independently of the final
size of the data lake used in the different experiments, they have been built to sustain large
data-driven projects to train machine learning models;

• Software and control version: Programming language, development tools, and control ver-
sion for collaborative work;

• External tools: Additional tools used during the development of the models.

Table II-2 summarizes the resources used in each of the experiments:

Table II-2: Data infrastructures and tools required for each of the experiments

Experiment Case study Data lake Computer resources External tools
TV C-ATC Capacity Local Local R-NEST

W-Weather Local Local R-NEST

Flights Vueling AWS Cloud DataBricks

RL C-ATC Capacity Local Local R-NEST

II.3.1 Data lake

A data lake is a centralized repository that allows the storage of structured and unstructured
data formats. Compared to hierarchical data warehouses, which store data in specific formats or
folders, a data lake is based on a flat architecture and an object storage approach. Some of the
advantages of using a data lake in machine learning projects are:

• Data volume: Storage is elastic rather than pre-allocated, and the capacity scales with need;

• Variety: Data lakes are designed to contain different datasets and formats. Moreover, since
all data used are stored in the Data lake, they are always up to date;

• Centralized: A centralized storage eliminates problems like data silo or duplication;
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As mentioned before, two data lakes have been used during the development of the case
studies: local and cloud data lakes. Note that while the overall structure of the lakes is set a priori
and unlikely to suffer any modification, with the buckets having a reduced number of major parts,
the factual content of the files and folders in those buckets are subject to dynamic changes as the
case study advances.

The data in the local data lake are organized to the following structure:

• input: Data are stored as received from their source with no modifications;

• processed: Data are ready and prepared to be used;

– labels: It contains the different labels to be predicted by the machine learning models,
partitioned by the case study;

– features: It contains the engineered and computed featured, partitioned by the case
study;

• samples: It contains the final samples that will be used to train, validate, and test the models.

The data in the cloud data lake are organized to the following structure:

• input: Data are stored as received from its source with none (or minor) modifications;

• share: Data are ready and prepared to be used;

– sources: Input data adapted or particularized to the different case studies;
– labels: It contains the different labels to be predicted by the machine learning models,

partitioned by the case study;
– features: It contains the engineered and computed featured, partitioned by the case

study;
– training: Data sets used to train the machine learning models.

• samples: Architecture identically to the /share partition. It contains small samples of each
data set.

II.3.2 Software and control version

Python is the selected language for the development of machine learning models due to the avail-
able frameworks, libraries, and community support. However, despite its popularity, it is a high-
level language with relatively low computational performance. Therefore, to reduce the compu-
tational time required, the feature engineering process is based on parallelization to reduce the
required computational time. Similarly, the machine learning models have been trained using li-
braries that allow the usage of Graphical Processing Units (GPUs). However, notice that this is
not mandatory due to the size of the datasets.

Many frameworks are available to train supervised machine learning models and reinforce-
ment learning agents. However, because of their popularity and support, Keras and Scikit-Learn
are the frameworks selected to train the supervised models. On the other hand, rather than using
the available frameworks for reinforcement learning algorithms, they have been manually imple-
mented to ensure the proper interaction between the algorithms and the environment. On top of
the programming language and frameworks, the selected environment to do the development is
Anaconda and Jupyter Notebook for prototyping with a document-centric experience.

Last but not least, all the case studies rely on GitHub for software management. This enables
collaborative development while keeping track of the code changes and versions. The repositories
are structured based on a case-study division.
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II.3.3 External tools

Depending on the nature of the different experiments and case studies, two external tools are
required to obtain some of the input features necessary to train the supervised machine learning
models, obtain the expected flight plans, or process confidential data. Concretely, it has been
required the usage of R-NEST (see Section II.3.3.1) and DataBricks (see Section II.3.3.2).

II.3.3.1 R-NEST

R-NEST is a EUROCONTROL model-based simulation tool dedicated to research activities for
evaluating advanced ATM concepts. It is a stand-alone desktop application combining dynamic
ATFM simulation capabilities with powerful airspace design and capacity planning analysis func-
tionalities (R-NEST, 2022). Although the tool has been designed as an evaluation system, it can
also be used to visualize airspace sector configuration and compute complex features. Figure II-8
shows the interface of the tool, where it can be seen the shape of a TV, the expected entry count
and workload, and issued ATFM regulations.

Figure II-8: R-NEST interface. ATFM regulation for TV MASB3EH on 6th June 2018

It is worth mentioning the relevance of R-NEST in the computation of some complex features,
such as the workload or the airspace complexity. These features are well-known in the aviation
field, and many implementations can be found in the state-of-the-art. However, to the author’s
best knowledge, there is no official documentation from EUROCONTROL about how to compute
them. Therefore, R-NEST is the only option to obtain such input features for the models. The
following list contains the most relevant features that can be extracted from R-NEST:

• Demand/Max demand: demand counts or max demand counts for Air traffic Control Center
(ACC), Air Traffic Control (ATC) sector, or TV;

• Airport demand/Max demand: arrival, departure, or throughput counts or equivalent max
counts for any airport or group of airports;

• Occupancy/Max Occupancy: occupancy counts, or max occupancy counts, for ACC and
sectors;

• Overload / Max overload: overload values for all sectors and TVs, all for a given peak size
(20 min, 30 min, 1 hour, 2 hours) and sliding step;

• Capacities: sliding tactical capacity series for any sector or traffic volume for a given inte-
gration window and sliding step;
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• Flights list: flight information list for all flights crossing the selected entity on a given day;

• Airspace entry list: flight entry information list for all flight entries of the selected entity on
a given day;

• Delay: total delay, total daily demand, or total delay per flight expressed in minutes of
ATFM delay;

• Delayed flights: information list for all flights exceeding a given delay threshold due to
regulations of a given reason on the selected entity on a given day.

• Regulations: regulation-specific information such as total delay, regulated demand, delay
per regulated flight, delayed demand, and delay per delayed flight, as well as regulation
reason and sub-period capacities and times.

• Complexity: sliding complexity series and summary values for any ACC, sector, and TV for
a given integration window and sliding step.

Therefore, because R-NEST is a tool developed by the NM (i.e., EUROCONTROL), it seems
to be the perfect tool to compute input features for the machine learning models based on the
predictions of ATFM regulations at the TV level. However, one constraint of the tools is the fact
that it requires to use of Aeronautical Information Regulation and Controls (AIRACs) (see Sec-
tion II.4.1.1) as a source of data, which contains snapshots of released historical data.

II.3.3.2 Databricks

Databricks (Databricks, 2022) provides a unified, open platform for all the data, teams of data sci-
entists, and developers in a project. It empowers data scientists, data engineers, and data analysts
with a simple collaborative environment to run interactive and scheduled data analysis work-
loads. Databricks builds on the most popular open-source projects, such as Apache Spark, Delta
Lake, MLflow, and Koalas, to deliver a true lake house architecture, combining the best of data
lakes and data warehouses for a fast, scalable, and reliable data platform.

Built for the cloud, it requires a data lake also allocated in the cloud, which perfectly matches
the AWS S3 bucket used for the experiments related to ATFM regulations at the flight level. The
use of DataBricks is mandatory due to legal agreements that do not allow the local storage of raw
data from Vueling required in one of the experiments conducted in this thesis.

II.4 Data sources

Flight management activities cover complex tasks that start months before the day of operations
and involve different information sources. A wide range of data sources can be found storing
information from early stages, such as the flight policies or the Flight Intentions (FIs), to the final
post-operational analysis.

When developing machine learning models, ensuring that the data used to train the final
models is available during execution time is important. However, one of the challenges in the
aviation field is that datasets tend to contain snapshots of released historical data, making it very
difficult to know what data were available at a given moment. This is particularly relevant for
the network data because planned and released data evolve on time as flight plans are submitted,
updated, or canceled. Similarly, proper weather data have to be used according to the prediction
horizon of the models. Therefore, for each experiment, it is used the closest possible available
information to the prediction horizon.
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This section collects and describes all the different data sources used in the realization of
the different case studies. Section II.4.1 describes the network data sources (aka. airspace traffic
sources). Section II.4.2 presents the numerical weather data sources. Section II.4.3 details the data
sets used for labeling. The different data sources, formats, their category, and the available period
are summarized in Table II-3.

Table II-3: Summary of the data sources or formats

Data Category Data Source / Format Case study Period time
Network data AIRAC TV & RL June, July, Aug, Sept 2018

DDR2/ALLFT+ Flights 2018
PREDICT Flights 2018

Airport characteristics Airport data Flights Static

Weather ERA5 TV level June, July, Aug, Sept 2018
NOAA/GFS Flights 2018

METAR Flights 2018

Labelling EUROCONTROL TV & RL June, July, Aug, Sept 2018
Vueling Flights 2018

Static data refers to information that does not evolve over time; thus, it remains constant.
Examples are the size of the airport or whether the airport is used as a hub by an airline.

II.4.1 Network data

Network data, as the name indicates, refers to information about the situation of the network.
That is, data about the airspace traffic and the characteristics of the network. Typically, traffic
information contains a detailed description of the routes according to the planning phase, and the
characteristics of the network refer to its configuration. In Europe, the main provider for these
data sources is EUROCONTROL, which mainly releases it in two formats: AIRACs and ALLFT+
data. The AIRACs are a detailed description of the flight plans and network configuration (i.e.,
environment), while ALLFT+ only contains the flight plans information.

The AIRACs are used in Chapter III and Chapter IV as a source of data for R-NEST (see
Section II.3.3.1) to compute demand features. For instance, the expected occupancy and entry
count, the expected workload, the complexity, the number of conflicts, and the number of flights
at different phases. The AIRACs have also been used in Chapter V as a source of pre-tactical flight
plans. On the other hand, ALLFT+ data have been used in Chapter VI as a source of information
for the FIs and historical pre-tactical flight plans.

Those case studies that use R-NEST to compute complex input features require using the
AIRACs. As previously mentioned, R-NEST is mandatory to compute some features due to the
lack of documentation. However, the case studies in which all the features are computed from
zero will require using ALLFT+ data.

II.4.1.1 AIRACs

The AIRACs are a detailed description of the airspace configuration for a period equal to 28 days.
It contains information about the network configuration, such as the different ATC sectors, the
associated TV, or the opening scheme. It also contains three types of traffic data:
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• Initial (M1) traffic, which corresponds with the last filed flight plan filled by the airlines
excluding ATFM delays;

• Regulated (M2) traffic is the same as the last filled flight plan above except that ATFM
delayed flights contain a time-offset corresponding to the CASA-calculated ATFM delay,
otherwise, is equivalent to the initial trajectory;

• Actual (M3) traffic contains the actual trajectories. They start with the regulated trajectory
and are updated with radar information when the flight deviates from its more than 5 min-
utes, 7 Flight Level (FL), or 20 nautical miles.

AIRACs of June, July, August, and September 2019 have been used for the case studies cen-
tered at the TV level. That is 112 days (28 days per AIRACs). The traffic information used to
compute the different features (scalar variables and artificial images) comes from the M1 traffic
which is the closest traffic information to the prediction horizon.

II.4.1.2 ALLFT+

ALLFT+ is the format employed by the historical traffic data provider Demand Data Repository
(DDR) 3 to store airspace traffic information. The file format is plain text, which contains informa-
tion about the flight plans per flight, separated by semicolons. Typically, ALLFT+ files contain 172
data fields that can be classified into six groups:

• General: high-level information such as departure airport, destination, departure time, air-
craft identification, type of aircraft, o registration mark;

• Airport Collaborative Decision Making (CDM): departure status, collaborative decision-
making status, taxi time, and aircraft type;

• FTFM (M1 – Filed traffic flight model): it is the last filed flight plan from the airline;

• RTFM (M2 – Regulated traffic flight model): it only contains information only if the flight
has been regulated;

• CTFM (M3 – Computed traffic flight model): 4D trajectory the flight actually followed;

• Other complementary information: for example, shortest constrained route (SCR), short-
est RAD restrictions applied route (SRR), shortest unconstrained route (SUR), direct route
(DCT), and correlated positions report for a flight (CPF);

ALLFT+ data from the entire 2018 have been used for the case studies centered at the flight
level. Concretely, because of the desired prediction horizon, FTFM traffic has been used as a source
of information about the FIs and historical flight plans.

II.4.1.3 PREDICT

The PREDICT software is the NM (EUROCONTROL in Europe) support tool intended to estimate
the flight plans for the FIs when those still need to be submitted. The software aims to estimate
the expected routes mainly using historical data. According to Niarchakou (2022), PREDICT can
estimate the flight plans for the next six days (from D-6 to D-1) following the steps below:

3DDR is a service provided by Eurocontrol that provides the most accurate picture of pan-European air traffic de-
mand (DDR, 2022)
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1. Enrichment: The FIs and expected off-block time are compared with the available historical
information. Those flights flown in the past (between 6 and 28 days) with the intention to
be flown in the future are categorized as confirmed, while the FIs that do not appear in the
historical data are considered new flights.

2. Flight plan assignment: For confirmed flights, it is assumed that the flight plans will be
the same as the available historical data. For the new flights, the route assignment process
follows this sequence:

(a) The software checks the available historical flight plans for the same origin-destination
pair in the previous 28 days. If more than one flight plan is available, the searching
process uses additional information such as the operator, the day of the week, or the
aircraft ID to filter the available routes;

(b) If no routes are available in step (a), the flight plan is searched in the NM catalog;
(c) If no available flight plan, it is used the shortest route between the origin and destina-

tion airports.

3. North Atlantic Traffic (NAT): Flight plans for NAT traffic is substituted by predictions that
consider weather conditions. In these cases, the historically selected flight plans come from
days with similar meteorological conditions from the previous three days;

4. Update: The predicted flight plans are updated in the DDR portal.

The case study presented in Chapter VI uses PREDICT data assuming that the FIs and Sched-
uled Off-Block Time (SOBT) are known, but not the flight plans. The required flight plans to
estimate congestion features are obtained using a variation of the previous steps. Rigorous imple-
mentation of the PREDICT tool is not feasible due to, for instance, the missing access to the NM
catalog. However, an implementation purely based on historical routes has been used following
the steps below:

1. Historical data previous six days: The software searches historical data for the same origin-
destination pair in the previous week. If there is more than one flight plan available, the
available routes are filtered based on the following information:

(a) Day of the week: Typically, the traffic slightly changes from Friday to Sunday due to
the higher demand;

(b) Operator: To take into account possible airline policies or preferences;
(c) Aircraft ID: Final filtering in case of highly frequent origin-destination pairs.

2. Historical data previous 28 days: If no available historical information, the analysis is ex-
tended using data from the previous 28 days. This second step is used to reduce the compu-
tational time required to estimate all the FIs of flight crossing Europe.

PREDICT data from 2018 have been used for the case studies that focus on predicting ATFM
regulations at the flight level. Notice that PREDICT is not able to predict flight plans for the first
days of the year due to a lack of historical data.

II.4.2 Numerical weather data

This section describes the numerical weather information used in the different case studies. Two
different types of weather data can be found: Numerical Weather Predictions (NWPs) and ac-
tual weather information. The NWPs are a collection of processes to predict future weather at-
mospheric conditions by solving dynamic and physics equations to explain the movements and
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changes in the atmospheric conditions. In most of the NWPs, the atmosphere is assumed to be
composed of regions that define a set of grid points. The number of grid points defines the reso-
lution of the simulation, and future states for each of them are provided as a prediction. On the
other hand, actual weather data refers to recorded atmospheric conditions in real-time.

Realistic atmospheric data, as a function of the altitude and geographical location (latitude
and longitude) for different time horizons, can be obtained from many weather forecasts and
analyses generated by NWP models. However, in this thesis, European Centre for Medium-Range
Weather Forecasts (ECMRWF) and National Oceanic and Atmospherics Administration (NOAA)
data have been selected due to their outstanding accuracy and resolution (see Buizza et al. (2005)
for further details). As a source of actual weather information, it has been used METeorological
Aerodrome Reports (METARs) because it is the most common format of observational weather
data highly standardized through the International Civil Aviation Organization (ICAO).

II.4.2.1 ECMRWF – ERA5

The ECMRWF (ECMRWF, 2022) is an independent intergovernmental organization supported by
most of the nations of Europe. Although ECMRWF provides a wide variety of data sources, it
has been selected ERA5 because most of the verification measures indicate that this ensemble
forecast has the best overall performance (Buizza et al., 2005). ERA5 is based on the Integrated
Forecasting System (IFS), which provides hourly estimations for a large number of atmospheric,
land, and oceanic climate variables. The data covers the global atmosphere on a 30 km grid and
resolve the atmosphere using 137 levels from the surface up to a height of 80 km. In addition,
ERA5 includes information about uncertainties for all variables at reduced spatial and temporal
resolutions. Generally, the data are available at a sub-daily and monthly frequency and consist
of analyses and short (18 hours) forecasts, initialized twice daily from analyses at 06 and 18 UTC
(Hersbach et al., 2020).

Table II-4 summarizes the weather information that can be extracted from this NWP forecast.
Notice that because this data source is used to predict en-route ATFM regulations at the TV level,
it is assumed a FL equal to 300, which is a frequent cruise altitude (i.e., 10K meters). Furthermore,
through the available Python Application Programming Interface (API), only data for the regions
of interest have been downloaded.

Table II-4: ECMRWF – ERA5 most relevant weather-related features

Name Description Units
Divergence Rate air spreading out horizontally from a point s−1

Geopotential Gravitational potential energy of a unit mass m2s2

Vorticity Capacity for air to rotate in the atmosphere Km2kg−1s−1

Cloud ice water content Mass of cloud ice particles kgkg−1

Cloud liquid water content Mass of cloud liquid water droplets kgkg−1

Humidity Water vapour per kilogram of moist air kgkg−1

Snow water content The mass of snow (aggregated ice crystals) kgkg−1

U-component wind Eastward component of the wind ms−1

V-component wind Northward component of the wind ms−1

Cloud cover Grid box covered by cloud (liquid or ice) Dimensionless
Ozone mass ratio Mass of ozone per kilogram of air kgkg−1

Temperature Temperature in the atmosphere K
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II.4.2.2 NOAA – Global Forecast System

The Global Forecast System (GFS) (NOAA, 2022) is a NWP developed and maintained by NOAA
that generates data for dozens of atmospheric and land-soil variables, including temperatures,
winds, precipitation, soil moisture, and atmospheric ozone concentration. The system couples
four separate models (atmosphere, ocean model, land/soil model, and sea ice) that work together
to depict weather conditions accurately.

Specifically, NOAA covers the entire globe with a horizontal resolution of 28 km and look-
ahead forecast times up to 192 hours. Data are distributed in GRIB (GRIdded Binary or General
Regularly-distributed Information in Binary form) format that allows compression of weather
data and includes metadata about the file’s content. Although NOAA presents more than 100 dif-
ferent physical parameters, Table II-5 presents the most relevant for weather-related features used
in the different case studies. Notice that NOAA data source has been used to obtain weather in-
formation at the departure and arrival airports; thus, it is used information from the first available
vertical level.

Table II-5: NOAA most relevant weather-related features

Name Description Units
Visibility Horizontal opacity of the atmosphere m

U-component wind Eastward component of the wind ms−1

V-component wind Northward component of the wind ms−1

Wind Nominal wind speed s−1

Ventilation rare Height multiplied by the transport wind speed mph

Temperature Temperature in the atmosphere K

Humidity Water vapour per kilogram of moist air kgkg−1

Ozone mass ratio Mass of ozone per kilogram of air kgkg−1

Vorticity Capacity for air to rotate in the atmosphere Km2kg−1s−1

Cloud mixing ratio Amount of water vapor that is in the air kg−1

Isobaric_surface The pressure for each isobaric level Pa
Vertocity Speed of air motion in the upward or downward direction 1/s

Geopotential Height of a pressure surface above mean sea-level m2s2

II.4.3 Labelling – ATFM information

In supervised machine learning, it is crucial to have a valid ground truth to catalog the different
input observations according to the problems of interest. However, it also plays a major role in
using reinforcement learning techniques because the agents learn to solve already identified DCB
imbalances.

This thesis uses two data sources to label the input observations required to train the models.
The samples are primarily labeled depending on whether they belong to ATFM regulations. Nev-
ertheless, if necessary, they are used to catalog observations according to ATFM regulation type,
whether the imposed delay was zero, and the location of the regulation.

Supervised machine learning models learn patterns from historical data that are used to pro-
vide future advice, meaning that the models will learn from past scenarios and decisions. There-
fore, the labeling process of the input observations to predict ATFM regulations at the TV level



34 Chapter II - Framework on ATFM regulations

has been done using information from the NM (EUROCONTROL). On the other hand, labeling
the observations used to predict ATFM regulations at the flight level has been done using infor-
mation accessible by the airlines. In theory, there should not be differences between data sources.
However, the previous approach is suggested to avoid possible downstream effects or to guaran-
tee the possible industrialization of the models. Table II-6 summarizes the labeling sources per
experiment.

Table II-6: Labelling source per experiment and case study

Experiment Case study Labelling source
TV C-ATC Capacity Network Manager

W-Weather Network Manager

RL C-ATC Capacity Network Manager

Flights Vueling Airline

II.5 Performance evaluation

Once the appropriate machine learning algorithm has been selected, we move into the training
and testing of the models. As expected, learning the parameters of a model and testing it on the
same data set would cause overfitting. In other words, the model would repeat the labels of the
samples it has just seen, obtaining a perfect score in development but failing to predict yet-unseen
observations. Therefore, it is common practice to use only part of the data as a training set and
hold out part of the available data as a test set, only using it after the models have been trained.
The most common techniques are:

• Train/Test split partitions the original data set into two sub-datasets of different sizes: train-
ing and accuracy estimation. The typical sizes of the datasets are 80%/20% or 70%/30%.
Additionally, the training dataset is usually split into two sub-datasets of different sizes:
training and validation. The validation set is used for tuning the model’s hyper-parameters.

• k-fold cross-validation randomly partitions the training data set into K equal-sized sub-
datasets. K-1 sub-datasets are used to train the models and one for the validation. The
process is repeated K times. The final performance of the models is obtained from the test
set (Stone, 1978). Variations of this approach are:

– Leave-p-out cross-validation, which involves using p observations as the validation set;

– Leave-one-out cross-validation, uses one observation as the validation set;

– Nested cross-validation requires two cross-validation loops;
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• Temporal split is the sequential split of the data, using the first portion of the time series to
train the models and the remaining portion for testing. If desired, the training dataset can
be partitioned into the two sub-datasets: train and validation (Dietterich, 2002);

Notice that other variations and combinations of the previous methods can be found in the
literature. For instance, the cross-validation with temporal split (Roberts et al., 2017).

In this thesis, the Temporal split have been used for small datasets, i.e., 4-5 months, to simulate
the most restrictive and realistic possible deployment of the models because ML models are very
dependent on data. On the other hand, the random split is selected for datasets covering an entire
year to guarantee an equivalent distribution of samples, i.e., avoiding that the models are trained
with data until the summer but expected to perform on Christmas when the overload of the net-
work could be different. Moreover, this was a cooperative decision during the development of
Dispatcher3 (Dispatcher3 Consortium, 2020). However, the author of this thesis recommends the
usage of temporal split for large datasets if it is possible to avoid seasonality issues. An example
could be training with data from 2018 and testing them with data from 2019.

II.5.1 Evaluation metrics

It is paramount to consider the nature, or intended goal, of each of the models when evaluating the
performance of the models. In this thesis, four different types of ML models are used, requiring
different evaluation techniques according to the end purpose:

• Classification models predict a specific class for the input observation (e.g., cat or dog);

• Regression models are designed to predict numerical values (e.g., temperature);

– Probability distribution designed to predict the probability distribution of the target
variable according to the uncertainty of the models. The approach selected is based on
combining regression and classification models (De Falco & Delgado, 2021);

• Reinforcement learning where agents learn to interact with a particular environment.

Section II.5.1.1 presents the evaluation metrics for the different classification problems.
Section II.5.1.2 shows the selected metrics to evaluate regression models. Section II.5.1.3 exhibits
the developed approach to quantify the accuracy and uncertainty when predicting a probabil-
ity distribution. Section II.5.1.4 summarizes the conventional approach followed to evaluate the
performance of the agents when using RL techniques.
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II.5.1.1 Classification models

There are three main possible approaches to evaluate the performance of ML classifiers:

• Threshold metrics which compare the predictions from the models and the ground truth.
The prediction is obtained by comparing the probability of the class against a pre-defined
threshold (e.g., prob. > 0.5, prediction equal to 1). A well-known threshold metric is accu-
racy;

• Rank metrics are typically used to measure the ability of a classifier to distinguish between
classes. For instance, the Area Under the Receiver Operating Characteristic Curve (AUC
ROC);

• Probabilistic metrics are based on the difference between two probability distributions for
a given random variable or set of events. For instance, the Brie Score.

Between the different evaluation metrics for these types of models, the metrics based on
thresholds are selected for three main reasons. First, the training of the models has been done
using balanced datasets. Second, it facilitates the comparison of the results across experiments
due to the number of models. Thirds, they are the most used metrics in the state-of-the-art, which
also could facilitate the comparison of results. The selected evaluation metrics are:

• Accuracy: Ratio of correct predictions (both positives and negatives);

Accuracy = TP+TN
TP+TN+FP+FN

• Recall: Ratio of actual positives that were correctly predicted;

Recall = TP
TP+FN

• Precision: Ratio of correct positive predictions;

Precision = TP
TP+FP

• F1 score: Harmonic mean of the precision and recall.

F1 score = 2 Precision∗Recall
Precision+Recall

where True Positive (TP) refers to correct positive predictions, True Negative (TN) refers to correct
negative predictions, False Positive (FP) refers to wrong positive predictions, and False Negative
(FN) refers to wrong negative predictions. Figure II-9 depicts each possible category per prediction
according to the target label.

Figure II-9: True-Positive, True-Negative, False-Positive, and False-Negative predictions
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II.5.1.2 Regression models

There are many evaluation metrics available to quantify the performance of regression models.
For instance, three of the most used ones are:

• Mean Square Error (MSE) / Root Mean Square Error (RMSE) is an absolute measure of the
goodness of the fit. It is calculated by the sum of the squared errors divided by the number
of data points;

• Mean Absolute Error(MAE) is similar to MSE. However, MAE takes the sum of the absolute
value of error;

• R square is a good measure to determine how well the model fits the dependent variables. It
is calculated by the sum of squared prediction errors divided by the total sum of the square
errors replacing the calculated prediction with the mean.

The MSE gives larger penalization to large prediction errors by squaring them, while MAE
treats all errors equally. MAE has been selected as most of the expected delays are going to be
close to zero, and it has been decided not to over-penalize mistakes due to large ATFM delays as
the reason for them is not recorded; thus, it is unknown in almost all the observations.

II.5.1.3 Probability distribution ATFM delay

In this thesis, the prediction of probability distributions is based on the combination of regression
and classification models. The goal is not just to provide a real number from a regressor model
but to take into account the inherited uncertainty present in the ML models. As the end goal is
to estimate the uncertainty in the prediction, the evaluation metrics are designed with the same
intention.

The accuracy of these models is computed as the difference between the expected value of
the distribution and the actual ATFM delay. Therefore, the Mean Absolute Error (MAE) can be
computed to quantify how close the expected value is to the actual ATFM delay.

As the classifier is trained to capture a continuous variable in a range of possible values after
a binning process, it is possible to define a measure of uncertainty considering the range covered
by a given distribution percentile (De Falco & Delgado, 2021). The average minutes required to
cover 90% of the probability in the distribution is used to measure this uncertainty. The lower the
uncertainty, the narrower the distribution; therefore, fewer minutes are required to cover 90% of
the probability.

Although the probability distribution provides a range of possible values, there may still
be cases where there are significant discrepancies between the predicted distribution and actual
ATFM delay. To better understand these extreme cases, i.e., when the actual ATFM delay is much
larger or smaller than the values predicted by the distribution, the number of hits is calculated.
The number of hits represents the percentage of times the actual ATFM delay falls within the
predicted probability distribution. Note that the classifier used to characterize the distribution is
bounded by the discretization of the error of the regressor as described in Section VI.4.4.

II.5.1.4 Reinforcement learning

In RL, the reward function is an incentive mechanism that uses reward and punishment to tell the
agent what is correct and what is wrong. It is a real value that shows the agents how good or bad
the actions taken were. Therefore, one of the most widely used indicators to evaluate the agents’
performance is the sum of rewards earned at the end of each episode. However, to complement
the evaluation process, other KPIs related to the system’s goal are taken into account. For instance,
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KPIs linked to the resolution of ATFM regulations are the overall delay issued to the flights or the
number of regulated flights.

Note that the reward received by all agents in the system is taken into account to ensure that
the agents behave as expected. In cooperative environments like ATM, it is important that agents
share the reward; otherwise, they will become selfish like in competitive environments.

II.6 Model explainability

Understanding the reason behind the predictions done by complex AI systems is crucial to
ensure compliance with company policies, industry standards, and government regulations
(Force & Daedalean, 2020). Moreover, it shows stakeholders the value and accuracy of the find-
ings. Typically, they are considered "black boxes", and it can be difficult to disentangle how the
model arrives at a certain conclusion. Therefore, interpreting and understanding the reasons be-
hind the predictions done by the models becomes all the more important in critical scenarios such
as ATM.

Model explainability is a key component for a solid human-machine interface, allowing par-
tial levels of automation and human users to interact with powered AI systems in a meaningful
and collaborative way. With that goal, two analyses are performed: first, a confidence-level analysis;
second, a game theory approach called SHapley Additive exPlanations (SHAP) (Lundberg & Lee,
2017). The confidence-level analysis aims to show how sure the model is about the predictions it
makes and the trend of the models. The larger the probability, i.e., closer to one, the more confi-
dent the model is about the regulation. SHAP is used to try to explain the output of the models,
assigning contribution scores by optionally giving separate consideration to positive and negative
contributions; therefore, identifying which input features are more relevant for the trained model.

II.6.1 Confidence-Level analysis

The proposed confidence-level analysis aims to study the probabilistic output of the models based
on using MLPs. The analysis shows the activation values of the neurons in the output layer, i.e., the
probability, according to the prediction of the models and the ground truth. It analyzes the true-
negative, true-positive, false-negative, and false-positive predictions with respect to the outcome
of the models.

The end goal is to visually analyze the confidence of the system when predicting ATFM
regulations, ensuring that the models have been appropriately trained. If the confidence in the
prediction is high indicates the patterns learned from the historical data are stable.

II.6.2 SHAP analysis

In many real-life applications, especially those with high safety levels, the performance of the
models is as important as its interpretability. That is, obtaining theoretical guarantees on the
expected behavior of machine learning-based systems during operation. This section assumes
the models have been trained, and now the goal is to understand the predictions, i.e., trust the
outcome of the models and gain insight into the factors impacting them.

To understand the factors impacting the predictions, SHAP is used as it is able to explain the
output of any machine learning model (Lundberg & Lee, 2017). This technique is widely used in
ML applied to ATM; for instance, Mas-Pujol et al. (2022) employed SHAP to study the influence
of both scalar and image-based input features predicting the likelihood of traffic volumes to be
regulated. Dalmau (2022) used it to understand the outcome of the proposed ensemble method to
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predict the likelihood of re-routing to mitigate ATFM regulations. Lambelho et al. (2020) utilized
SHAP to explain the models used for strategic slot flight assignment at London Heathrow Airport.
Xie et al. (2021) used it in a more general manner to explain ML solutions in ATM.

SHAP calculates the contribution of each input feature (or pixel when using images) to each
prediction made by the model, which can be positive or negative, based on the concept of Shapley
values from cooperative game theory. Luo et al. (2021) found that SHAP provides a more intuitive
and interpretative way of understanding the relationships between input features and the model’s
predictions than other model-agnostic techniques such as Local Interpretable Model-Agnostic Ex-
planations (LIME).

II.7 Advice capabilities

The advice capabilities of a ML system are as important as its performance. It is crucial to present
the right information at the right level of detail to ensure meaningful advice. Furthermore, this
module is linked to the end-user policies because, with the same set of predictions, different advice
can be provided according to the end-user preferences. Therefore, the goal of the advice generator
module is to collect all the information from the machine learning modules, including possible
information about the quality of the predictions, and build a support tool to help the decision-
making process by providing advice to stakeholders based on the subset of predicted KPIs.

The framework shall focus on readability and interpretability, avoiding information overflow
(Edmunds & Morris, 2000). Visual representation of the information is paramount to ensure that
the end-user understands both the predictive analytics provided and the probabilistic nature of the
information. Therefore, the advice generator has to consider the interpretability accuracy trade-
off. To this end, the proposed advice generators will be composed of the following axes:

• Requirements: The advice generator needs to provide a meaningful, readable, and easy-to-
interpret visualization of the models’ outcome;

• Architecture: The main goal of the advice generator is to assemble a set of specialized mod-
els. Therefore, a software architecture is required to ensure the right data and models will
be used at each moment, enabling the connection between the different models and the gen-
eration of the desired visualization. This requires the following components:

– Data manager: Within the advice generator architecture, a data management infras-
tructure is required to reduce as much as possible the computational cost of gathering
the required data;

– Controller: Entity used to ensure that the requested information will be visualized, and
therefore, responsible using the appropriate ML models are;

– Outcome: Suitable visualizations of the models’ outcome focusing on interpretability.

Different advice capabilities are developed for the different case studies to experiment with
different representations, taking into account the possible preference of the end user. For the case
studies where the NM is the end user, Section II.7.1 presents a web application emulating the ap-
pearance of the current tools used has been developed. Moreover, at the moment of writing the
thesis, it is expected to integrate the models into R-NEST thanks to the collaboration with EURO-
CONTROL (see Section II.7.2). For the case studies where the airspace users (airlines) are the end
users, an integrated view of the different models has been created, focusing on only showing rel-
evant information and taking into account the models’ inherited uncertainty (See Section II.7.3).
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Moreover, a second approach based on visualizing the impact and severity of possible ATFM reg-
ulations through the planned rotation of a specific aircraft frame is presented in Section II.7.4. Fi-
nally, Section II.7.5 introduces the outcome of the RL system merged with the expected pre-tactical
traffic to provide visual advice on what flight could be optimal to delay.

II.7.1 Web application

The web application developed as an advice generator has been implemented using the frame-
work Django (DJANGO, 2005) and a Model-View-Controller (MVC) architecture (Deacon, 2009).
Django is a high-level open-source Python web framework that was designed for fast prototyping,
rapid development, and pragmatic design. MVC is a very well-known architecture for developing
user interfaces that divide the logic of the program into three interconnected elements:

• Model in charge of managing the data of the application;

• View for representation and rendering of any information;

• Controller responds to user inputs and contains the logic of the application.

Figure II-10 depicts the architecture used to develop a web application as the advice genera-
tor. The Controller collects the parameters the user selects and creates 30-minute intervals between
the selected start and end timestamps. The models are designed to handle samples with that spe-
cific time length. Then, the Model provides the input features for each of the 30-minute samples
and the expected open scheme for the selected day. The input samples are fitted into the ML mod-
els, and the View uses those predictions and the open scheme to create the final advice. The View
uses the open scheme to represent when the TV is expected to be operative.

Figure II-10: Advice generator architecture ATFM regulations for the NM (network level)

It is worst to mention that the developed application contains only some of the required
security measures to make it public. All the tests have been done using local or private servers;
thus, additional actions will be required to ensure a successful industrialization if desired.

II.7.2 Integration into R-NEST

As mentioned, R-NEST is a model-based simulation tool developed by EUROCONTROL and
used to evaluate advanced ATM concepts. Although the final integration of the models has to be
done with the collaboration of EUROCONTROL, this subsection explains and shows the required
steps to do such an integration.



II.7 Advice capabilities 41

The defined road map in conjunction with EUROCONTROL can be summarized as follows;
where at the moment of writing this thesis, steps 1, 2, and 3 have been done:

1. Coordination with EUROCONTROL to define a plan;

2. Convert the ML models from Python to C++;

3. Independent validation of the models in C++;

4. Integrate the models into R-NEST;

5. Validate the integration in R-NEST.

Before starting the integration of the models, it is paramount to have a stable version, en-
suring that the required input features can be computed and fitted into the models to obtain the
predictions. Next, R-NEST has been developed using C++; thus, the models must be converted
to this programming language to avoid possible problems during execution time. Finally, the
visualization of the results will be integrated into the current tool in R-NEST used to visualize
DCB issues. Figure II-11 shows the expected result combining the current visualization of the
prediction of ATFM regulations from the ML models.

Figure II-11: Example integration of the models into R-NEST

The initial models were developed using Keras (Keras, 2015), an open-source Python API
created to train different types of machine learning models. There are two possible approaches to
developing the required models in C++:

1. Develop the ML models directly using C++;

2. Convert the trained models into C++ using third-party libraries;

The second option is selected to avoid re-building from zero the models. There are plenty
of well-known libraries to convert models from Python to C++, but it is crucial to consider that
the end user is EUROCONTROL, making necessary the use of a third-party library with a license
that allows any possible usage. To this end, the API frugally-deep (frugally-deep, 2018) has been
selected because it is a specialized API to convert Keras machine learning models to C++.

The selected API converts the Keras model (H5 format) into a JSON, which later is used to
replicate the model’s architecture, taking into account the value of the weights in each layer. Then,
the built-in functionalities allow the user to obtain the prediction from the converted models.

Finally, after converting the models to C++, the performance has to be validated to ensure its
correct behavior. No loss of information during the convention can be guaranteed if both models’
accuracy, recall, precision, and F1-score are the same.
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Lastly, the steps covered in this thesis are the conversion of the models from Python to C++
and the independent validation. For the final integration, precise and detailed documentation
about how to compute the required input feature and how to execute the models has been pro-
vided to EUROCONTROL. However, further discussion with the team developing R-NEST will
be required for the final integration.

II.7.3 Integration view ATFM for specific flights

Airlines need to monitor flights affected by ATFM delays closely and actively produce new flight
plans and solutions to reduce the impact of this delay on their fleet. It is paramount as soon as
possible for effective fleet management not only if a flight is impacted by ATFM delay but the
characteristics of this (amount of delay and type of regulation). Figure II-12 presents the pipeline
of the framework for ATFM regulations at the flight level, where four different ML models are
required. First, the advice generator evaluated the likelihood of flight being regulated. Second,
for regulated flights, it extends the analysis to provide the expected ATFM protected location and
if the ATFM is going to be zero. Finally, the probability distribution of ATFM delay for non-zero
regulated flights.

Figure II-12: Pipeline of the advice generator for ATFM regulations at the flight level

The proposed integration view consists of combining the outcome of the different models
and the presented pipeline, ensuring that only the necessary information is displayed, and using
a color scheme to indicate the uncertainty of the models. Uncertain predictions are shown in red;
otherwise, green is used. Figure II-13 shows, as an example, the final integration view for a flight
from LEBL to LWDE on September 12th 2018 operated by Vueling. The example shows the advice
capabilities for a regulated flight with an expected delay different than zero, but the integration
view adapts according to the outcome of the models.

Figure II-13: Advice generator for ATFM regulation for the operators (flight level)
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II.7.4 Reactionary delay

It is important for airlines to understand the implications of disruptions on current flights on their
fleet. This is particularly relevant for the propagation of delay (and cost) due to reactionary delay.

An estimation of how flights will propagate ATFM delays through the network can be
achieved by simulating how the delay will propagate by the sequence of planned flights using
a do-nothing approach. Instead of relying on classical methods such as Monte Carlo simulation,
it is possible to explicitly consider the time distribution of the different processes involved (block
time and time on-ground) and combine them (convolution) to obtain a probabilistic represen-
tation. FigureII-14 shows the usual division of the different flight phases and the standardized
procedures associated with them:

Figure II-14: Different flight phases in a Instrument Flight Rules (IFR) flight.
Source: Prats (2011)

It is important to consider the whole distribution of possible delay rather than the expected
delay propagated as this has an implication on the probability of breaching a curfew (only the tail
of those distributions) and on the expected cost of delay (as cost of delay grows non-linearly with
delay). To this end, the set of ML models developed to provide advice on specific ATFM charac-
teristics at the flight level are combined with other operational parameters to assess the potential
impact of disruptions in the network and possible reactionary delays. Concretely, this advice gen-
erator is centered on predicting the potential propagation of reactionary delay for Vueling flights
with models trained 24 hours prior to SOBT. The architecture of the tool has been inherited from
Polit3 (Pilot3, 2022), and it has been adapted to provide advice for D-1, using the ATFM models
developed in this thesis. Figure II-15 is a high-level representation of the convolutional process
used to propagate possible reactionary delays through multiple rotations.

Examples of possible outcomes of the system are the likelihood of missing a slot or the po-
tential breaching of curfews due to ATFM delays, which are non-observable actions in historical
datasets and cannot be predicted using conventional supervised machine learning models.

It is worth mentioning that this approach focuses on possible downstream effects of issued
ATFM delays to the flights, which is the topic of this thesis. However, to have a complete view,
it will be necessary to consider other possible rotational and non-rotational reactionary delays,
possible holdings, and extra airport delays, among others. It will be necessary to create the corre-
sponding ML models or heuristics models to take into account these additional factors.
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Figure II-15: Convolutional process based on a do-nothing approach for the reactionary delay.
Source: Dispatcher3 (2022)

II.7.4.1 Architecture

Three main elements are required to estimate the propagation of ATFM delay along the differ-
ent rotations. First, developing a set of estimators to predict each aircraft operation is necessary.
Second, specific data infrastructure is required to obtain the information needed to execute the
models. Third, it is necessary to define the modeling approach to predict rotation.

The complex estimators are composed of a set of other individual estimators and a data in-
frastructure called estimator data. The estimators have two functionalities: initialize and estimate.
On the other hand, the estimator data has as an attribute a DataGatherer responsible for obtain-
ing the required information through the DataRawGatherer. This last component is the change of
accessing the data lake and collecting the required information to run each estimator.

Figure II-16 presents the class diagram of the system. Each box corresponds to one of the
main classes, where the name is presented at the top in bold. Next, the required attributes for each
of them. Finally, the methods each class has.

Figure II-16: Class diagram architecture reactionary delay

II.7.4.2 Individual estimators

Individual estimators are required to estimate the different phases present in the aircraft opera-
tions for the different rotations of an aircraft frame. These estimations are based on computing
probability distributions of the required time for each of the phases, which include:

• Block-time: gate-to-gate time, including all processes from leaving the gate at the airport of
origin to arriving at the gate at the destination);
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• Turnaround processes: including all processes of de-boarding, re-boarding, cleaning, refu-
eling (if needed), among others;

• Buffers: which can be either part of the turnaround process or the arrival time of the flight;

• Delays: unexpected delays issued, such as ATFM delays.

Table II-7 provides a more detailed description of the characteristics of the developed individual
estimators required to estimate the possible impact, or severity, of issued ATFM regulations for
specific flights. As well as the type of estimator required.

Table II-7: Characteristics individual estimators

Estimator Description Model type
Block Time Time from SOBT to SIBT Heuristic (SIBT-SOBT)

Minimum
ground time

Minimum turnaround time for a
given flight

Heuristic (Based on values from
De Falco & Delgado (2021))

Departing
within CTOT

If ATFM delay is issued, uncertainty
on when the flight will depart within
the slot [-5,+10] minutes

Heuristic (triangular distribution
centered in zero ranging from -5 to
+10 minutes)

Probability
ATFM delay

Probability of flight being regulated
due to ATFM. If the flight is known to
be regulated, the probability would
be 1. Otherwise as computed by
VI.5.2

Machine learning (see Section VI.5.2)

Probability
zero minutes
ATFM delay

Probability of flight after being regu-
lated having an ATFM delay of zero
minutes assigned

Machine learning (see Section VI.5.4)

ATFM delay if
positive

Amount of ATFM delay if regulated
and positive delay assigned

Machine learning (see Section VI.5.5)

Note that these estimators could provide either a value (e.g., the heuristic estimators are built
in that manner) or a distribution if uncertainty is present (e.g., ATFM delay and hence Calculated
Take-Off Time (CTOT)). When only a value is produced, this is considered as a probability of
certainty of being that value. However, using probability distributions allows us to use the con-
volution of distributions as an underlying process to add the duration of the different processes
involved in the flight rotations.

It is worth mentioning that all the architecture described estimating the reactionary delay
could be reused if each of these individual models is substituted by improved versions, e.g., block
time could be the combination of taxi-in, taxi-out, and take-off to create landing models as intro-
duced in De Falco & Delgado (2021).

II.7.4.3 Modeling approach

The convolutional process estimates the required time for each phase in the aircraft operations
along the different rotations. The first step is to estimate when the aircraft will be ready for
the next rotation, considering the expected departure and arrival time for the current rotation.
Second, the departure time of the next rotation is estimated taking into account the probability
of having ATFM delay. Third, with the previous information and the expected block time, it



46 Chapter II - Framework on ATFM regulations

is possible to estimate the arrival delay of the next rotation. Finally, the possible delay can be
propagated through the different rotations following the same steps. Figure II-17 describes the
interaction between these processes.

Figure II-17: Block diagram of the process estimate the different flight phases in a IFR flight

Next, each of the required flight process estimators is detailed. Note that, as previously men-
tioned, each of these processes is either a time or a distribution of possible times depending on the
outcome of the different estimators:

• Aircraft ready: convolution between the arrival time of the previous rotation and the mini-
mum turnaround time estimation;

• Departure time without ATFM: based on SOBT and aircraft ready time, i.e., flight departing
at SOBT if it is ready before, otherwise departing when aircraft is ready;

• ATFM delay: if flights are already regulated (or too close in time < 4 hours from current
time), the information on their ATFM status is considered fixed as in the fleet status obtained.
For the remaining flights, the machine learning models of ATFM delay are used to estimate
their probability of being regulated and the amount of delay experienced;

• CTOT: available CTOT in flight plan information for a given flight if the time horizon is
smaller than three hours. Otherwise, current EOBT and ATFM delay;

• Departure with ATFM: Convolution of CTOT and departing within CTOT slot distribution
which captures the uncertainty on when the departure will happen within the slot;

• Departure time: For the first flight on the sequence of rotations to estimate, it is assumed a
departure at EOBT with a probability equal to one. For the other flights, the departure time
is computed by combining (as a function of the probability of ATFM delay):

– Departure time without ATFM: based on when aircraft would be ready (aircraft ready)
and the available SOBT;

– Departure time if the flight is regulated by ATFM: based on the CTOT estimated and
the probability of Departing within the CTOT slot.

• Arrival time: convolution between the departure time and the block time

From all the previous individual estimators and the intermediate steps of the convolutional
process, it is possible to provide useful advice to the duty manager from the airline who is plan-
ning the different rotations of an aircraft frame for a specific day of operations. For instance, it is
possible to provide the probability distribution of depart/arrival time, ATFM delay, or the aircraft
ready time. Nevertheless, it is also possible to provide numerical advice such as the probability of
missing the ATFM slot, the expected buffer per rotation, the probability of breaching a curfew, or
the average reactionary delay. Therefore, two levels of granularity are provided when using the
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ATFM models to provide advice on reactionary delay. Visualizing the probability distributions
can help understand the overall citation better, while numerical advice shows the likelihood of a
particular event, such as breaching the curfew.

II.7.5 Reinforcement learning

The outcome of the RL system is the required ATFM delay (ground delay) required to smooth
already identified DCB issues. The system provides the minutes of delay per aircraft fame crossing
the TV that should be regulated.

The system tries to solve demand-capacity imbalances using 30-minute intervals. Therefore,
the advice generator will provide advice for the same time period. Concretely, the tool uses a
simple color scheme to indicate which flights the system is suggesting to regulate:

• Red: System-suggested flights for regulation

• Green: Non-regulated flights outside the sector in the corresponding timestamp

• Blue: Non-regulated flights inside the sector in the corresponding timestamp

The goal of the advice generator is to visually show which of the planned flight should be
regulated to smooth the demand-capacity imbalance. A set of images showing the location of the
flights at a specific timestamp for a particular TV are displayed using the previous color scheme.
The idea behind this is to try to see whether the system is showing any pattern of behavior or
if there is a preference when delaying flights. Figure II-18 is an example of the proposed advice
capabilities for the RL system for a particular timestamp.

Figure II-18: Advice capability example smoothing ATFM regulations using RL techniques





If I only had an hour to chop down a tree, I would spend the

first 45 minutes sharpening my axe

— Abraham Lincoln

III
C-ATC Capacity ATFM regulations

As presented previously, sector configuration and flow management solutions (e.g., STAM mea-
sures) are the first steps in aligning expected demand and capacity. However, if demand still does
not meet capacity, Air Traffic Flow Management (ATFM) measures are implemented to smooth
demand. Currently, the most common measure in Europe consists of reducing the rate at which
aircraft enter the congested Traffic Volume (TV) for a period of time. The flights subject to one
or more regulations are issued with a ground delay by the Computer Assisted Slot Allocation
(CASA) system, a simple heuristic algorithm based on first-planned-first-served.

The different Air Navigation Service Providers (ANSPs) across Europe, through the Flow
Manager Position (FMP), in collaboration with the Network Manager (NM) operators, are in
charge of deciding when and where to apply regulations to solve demand-capacity imbalances.
This implies that the global network delay is primarily controlled by the judgments of different
humans to solve their local Demand-Capacity Balancing (DCB) problems. Although humans can
handle simple scenarios with moderate overload efficiency, it is expected to deteriorate in critical
scenarios because of the complexity and interactions between different active regulations.

The introduction of new support tools for the FMPs in the detection phase could reduce the
amount of work, or at least the difficulty, of their operational tasks. Indeed, it could even result
in a capacity increment. This Chapter proposes the use of supervised Machine Learning (ML)
techniques to detect airspace ATFM regulations during the pre-tactical phase when it is required
to identify major DCBs issues. Concretely, this work focuses on two different Neural Networks
(NNs) capable of replicating the human decisions made in the past to identify where and when en-
route ATFM regulations are necessary. First, a Recurrent Neural Network (RNN) that uses scalar
variables. Second, a Convolutional Neural Network (CNN) that uses images. Third, a hybrid
architecture combines the previous RNN and CNN.

49
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III.1 State of the Art

Following pioneer work done by (Odoni, 1987) to improve ATFM performance, the literature
shows three main trends: proposals without any Artificial Intelligence (AI), approaches using su-
pervised ML, or works exploring Reinforcement Learning (RL) techniques. All three families are
present in the Single European Sky Air traffic management Research (SESAR) program, leading
the investigation into the future of ATFM in Europe.

Several studies have dealt with DCB problems in the Air Traffic Control (ATC) network
without the use of AI techniques. For instance, Tang et al. (2012) identified the gaps in existing
3D sectorization methods and presented a new approach based on minimizing four different Key
Performance Indicatorss (KPIs). Similarly, Graña (2019) presented a detailed literature review on
computational approaches to improve airspace configuration and solve DCB issues. Other exam-
ples are Melgosa et al. (2019), where trajectory optimization is used to alleviate DCB problems, and
Xu & Prats (2018) that presented a method to introduce linear holding to absorb ATFM. However,
these approaches assume that the DCB has been detected, focusing on possible solutions.

Applying ML techniques to Air Traffic Management (ATM) is a very active area of research.
It has proved to be successful in applications such as predicting Air Traffic Controllers (AT-
COs) workload (Gianazza, 2010; Gianazza & Guittet, 2006), estimating the airspace complexity
(Isufaj et al., 2021), trajectory prediction (DART, 2019; Cheng et al., 2021), or predicting the total
network delay (Sanaei et al., 2021). Despite the research activity conducted on machine learning
applications to ATM in the last years, there is a significant gap in tackling the detection of DCB
issues leading to ATFM regulations. In particular, and to the best of the author’s knowledge, there
is no existing literature on the identification of ATFM regulations using supervised ML models for
purely related demand issues at the TV level.

Even though no research has been conducted concretely on the detection of ATFM regula-
tions using AI techniques, this is implicitly done in those approaches based on RL techniques. For
instance, Barnhart et al. (2012) presented a fairness metric to measure deviation from first-planned-
first-served in the presence of conflicts, and more related to the topic of this Chapter, Kravaris et al.
(2018); Chen et al. (2021) presented a multi-agent RL system based on ground delay.

In order to fill the gap in the literature, this work focuses on the detection of ATFM reg-
ulations for en-route TVs. It aims to create a support tool that replicates past decisions made
by the FMPs to help detect more efficiently and faster possible ATFM regulations due to de-
mand–capacity imbalances. Although not optimal, the models will replicate what they have
learned from past actions in future scenarios.

III.2 Problem formulation

Demand-capacity imbalances leading to ATFM regulations are particularly complex on the Eu-
ropean ATC network. FMPs must agree on where and when these regulations are going to be
required to smooth an unsafe amount of expected traffic. The ATFM regulations are mainly char-
acterized by seven elements: the date, the regulation ID, the TV associated with the regulation,
whether the regulation is for en-route or airport traffic, the start timestamp, the end timestamp,
and the regulation reason that best indicates the reason for such regulation.

Different approaches could be used to automatize the detection of ATFM regulations. How-
ever, the use of supervised machine learning techniques aims to create a system that learns from
past scenarios and replicates patterns from historical data. Thus, it is a system that will replicate
the decision taken in the past to future scenarios, avoiding possible downstream complications of
implementing a completely new paradigm of behavior. The reader is referred to Bishop (2006);
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Abu-Mostafa et al. (2012) for further details about supervised ML techniques.

This experiment aims to efficiently identify en-route TVs likely to be regulated for a given
time interval. Concretely, the work focuses on C-ATC Capacity ATFM regulations in TVs from
both the Maastricht Upper Area Control Centre (MUAC) and REIMS 1 regions. The reason for
focusing on this particular type of regulation is because, as seen previously in Table I-2, they are
the most frequent type of regulation reason. Regulations tagged as C-ATC Capacity indicate that
the network was operating under normal conditions, but the expected demand was above the
capacity. On the other hand, the analysis focuses on the MUAC and REIMS regions because they
are two of the most regulated areas in the European airspace (PRC, 2019, 2021). Therefore, if the
selected case studies reported good performance, it could indicate that the methodology could
be extended to less congested regions as they should be less challenging regions. Appendix A
provides additional results for a less challenging TVs from Spain to show the scalability ability of
the proposed framework.

Figure III-1 is a simple representation of the intention behind the presented experiment,
where the colored ATC sector represents a congested region that should be regulated.

Figure III-1: Visual abstract identification ATFM regulations at TV level.

III.2.1 Assumptions

An inherent assumption in supervised learning is that the noise in input features and labels is low.
In our case, it is assumed that the data in the datasets (Aeronautical Information Regulation and
Controls (AIRACs)) are accurate and that the decision to apply a regulation was correct. How-
ever, depending on the exact pre-tactical time horizon with respect to the day of operation (D0),
not all pre-tactical routes may be defined for all the flights. In this case, it is assumed that the
NM has the tools to estimate the flight plans for these flights, which is the procedure followed
where PREDICT estimates the route of the pre-tactical flights (Niarchakou, 2022). Furthermore,
according to some preliminary analysis and Martín Martínez et al. (2020), between 83% and 90%
of the origin-destination pair always present the same pre-tactical route.

Another usual assumption in supervised ML is that non-modeled features have negligible
effects. Many features could be used for the work done in this Chapter, but as it was probed in
Gianazza (2010), most of the complex features are strongly correlated with the simple ones. Thus,
the simple features are the most representative ones. However, not all possible complexity indi-
cators related to ATFM regulations are used (e.g., number of available controllers), but additional
information related to the air traffic complexity is also inherent in the images used.

1The REIMS region refer to the airspace region around the city of Reims, located at the northeast of France.
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III.3 Data analysis

This section summarizes the data sources used for this case study (see Section III.3.1) and the
Exploratory Data Analysis (EDA) of the labeling (see Section III.3.2).

III.3.1 Data sources

The data sources required for the development of the case study that predicts ATFM regulations at
the en-route TV level are summarized in Table II-3. The AIRACs are used to compute the features
related to operational and demand information, while ERA5 is the selected source of weather
information. Finally, because the models are expected to be used by the NM, the observations are
labeled using data from EUROCONTROL.

Table III-1: Data sources used to predict en-route C-ATC Capacity ATFM regulations (TV level)

Data sources / Format Period time Usage Comment
AIRAC June, July, August, September 2018 Features M1 traffic

ECMWF June, July, August, September 2018 Features ERA5 forecast

EUROCONTROL June, July, August, September 2018 Labelling Boolean

III.3.2 Exploratory data analysis

The observations have been labeled according to ATFM regulations cataloged as C-ATC Capacity
provided by EUROCONTROL. Figure III-2 shows the number of instances per selected region
according to the possible regulation reasons. It can be seen that C-ATC Capacity regulations are
the most frequent regulation reason.

Figure III-2: Number of regulations per category in the available AIRACs

For the MUAC region, we have 176 C-ATC Capacity ATFM regulations for en-route traffic
along 71 different days, a mean number of regulated TVs per day equal to 2.5, and a mean du-
ration per regulation of 122.02 minutes. On the other hand, for the REIMS region, we have 570
regulations for en-route traffic in 96 days, a mean number of regulated TVs per day equal to 5.96
with a mean duration of 101.2 minutes.
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As an example, Figure III-3 shows the final regulations for the most regulated TV in the
MUAC and REIMS regions during the four months of data available. The regulations from these
four months have been stacked and used the color map to show coincidences between days and
hours. As can be seen, most of the regulations were implemented between 10 am and 11 am, but
they also appear during all the open hours. Notice that similar characteristics are present in other
TVs from both regions.

Figure III-3: Heatmap C-ATC Capacity regulations.
(Left) BOLN-MUAC (Right) LFEHYR-REIMS

III.4 Predictive capabilities

Three different ML models based on a time-distributed approach are studied to predict C-ATC
capacity regulations at the TV level to take advantage of different types of information. First, the
RNN-based model predicts ATFM regulations using scalar variables. Second, the CNN-based model
identifies regulation using images. Third, RNN-CNN hybrid models combining the previous two.

Section III.4.1 particularizes the characteristics of the input observations and input features
used for both the RNN-based and CNN-base models; thus, for the RNN-CNN hybrid models.
Section III.4.2 presents the outcome of the models and the intention behind them. Section III.4.3
shows the proposed architecture for the RNN-based models. SectionIII.4.4 presents the architec-
ture of the CNN-based model. Section III.4.5 details the different proposed hybrid architectures.

III.4.1 Inputs of the models

The developed time-distributed frameworks based on artificial NN use two types of inputs. Scalar
variables for the time-distributed RNN, and artificial images for the time-distributed CNN. In both
cases, the information is extracted from the AIRACs used in R-NEST to generate samples of 30-
minute intervals sliced into one-minute time-steps.

There are four main reasons behind using 30-minute intervals. First, despite being conserva-
tive, ATCOs look at a minimum possible interval. Second, the end tool aims to predict possible
ATFM regulations for specific intervals of time (e.g., “Is needed a regulation from 8 am to 10:30
am on 28th September?”), and for a given day (e.g., “What are the regulations required for 28th
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September?”). Third, the system aims to identify the moment a regulation shall start and ends as
precisely as possible. Fourth, the average duration of the regulations in 2018 was 110 minutes.
Thus, using 30-minute intervals allows us to show the models a wide variety of input samples:
transitions between no-regulated and regulated intervals (and vice versa), purely non-regulated,
and completely regulated intervals.

Figure III-4: 30-minute interval sliced into one-minute time-steps

Regarding the input samples, it is used a balanced dataset composed of approximately the
same number of positive and negative time-steps. Half of the negative observations were ex-
tracted from days without regulations and half from regulated days to help the ML models pre-
cisely identify the different ATFM regulations. Furthermore, to ensure that observations in the
training set are not used for the testing, from the four available AIRACs, the first three (84 days)
are used for training and the fourth (28 days) for testing. This corresponds to the conventional
70–30% split for training and testing. In the end, the dataset used contains approximately 1500
30-minute intervals for the MUAC region and 5000 30-minute intervals from REIMS.

Notice that all the input features are normalized to avoid the vanishing gradient problem,
which appears when training artificial neural networks with gradient-based learning methods
and backpropagation (Basodi et al., 2020). In such methods, during the training phase, each of
the neural network’s weights receives an update proportional to the partial derivative of the error
function with respect to the current weight. The problem is that the gradient will be vanishingly
small sometimes, preventing the weight from changing its value. In the worst case, this may stop
the neural network from further training.

III.4.1.1 Scalar variables for the RNN-based model

The input scalar variables used for the RNN-based model can be directly exported from R-NEST.
The RNN uses a combination of basic features and those presented in Gianazza (2010) as the
most representative to exhibit the traffic complexity. The following list shows the scalar variables
provided to the model for each of the 30 time-steps that compose an input sample:

• Interval: associated 30-minute interval of the studied day (from 0 to 48);

• Day of the week: day of the study (from 0 to 6);

• Capacity of the TV: sustain capacity of the TV under normal operational conditions;

• Occupancy Count: expected number of flights inside the TV for the next 20 and 60 minutes;

• Entry count: expected number of flight entering in the TV for the next 20 and 60 minutes;

• Workload: expected workload in the TV for the ATCOs;

• Conflicts: number of conflicts in the TV;

• Number of flights at the different phases: number of flight climbing, cruising, and de-
scending.
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Notice that the previous list of scalar variables is provided per time-step in the 30-minute
intervals. That is because the model aims to process information that evolves on time to capture
the moment the regulation should start and end accurately.

The interval of the day is used because, typically, more regulations are implemented in the
morning to avoid the propagation of possible disruptions in the network. Similarly, the day of the
week is used to show the model that different traffic levels are expected on different days of the
week. Traffic rises from Friday to Sunday. Capacity is provided to the model as an indicator of
the amount of considered safe traffic. The occupancy and entry count are metrics directly related
to the expected demand. Occupancy count refers to the expected number of flights inside the
sector for a specific time interval, while the entry count shows the expected number of flights
entering the sector. The expected workload computed by R-NEST is used because it is one of the
primary reasons behind the implementation of regulations. Finally, the number of conflicts and
flights at different phases are used as indirect indicators of the expected workload. The larger the
number of conflicts or flights at different phases, the larger the workload of the ATCOs because
more information must be considered.

III.4.1.2 Images for the CNN-based model

Each TV has different characteristics, not only in terms of the features used by the RNN-based
model but also shape, traffic flows, or entry and exit points. This information is not encoded in
the AIRACs; thus, it cannot be directly extracted and used as scalar input features. However, this
information can be encoded in images, allowing the ML models to figure it out by themselves.
The artificial images are intended to provide additional information related to the complexity of
the traffic and scenarios.

Similarly to the RNN-based model, the goal is to develop a CNN-based model able to process
images that evolve over time. Therefore, the input samples are sequences of images showing the
airspace configuration at consecutive time-steps. Figure III-5 presents the images used by the
CNN-based model, where the colors show if the aircraft is climbing, cruising, or descending, the
circles express the location, and the lines the heading.

Figure III-5: Example of an input sequence for the CNN-based model. The gray points show the
path of a unique aircraft. The complete sequence contains 30 images

The sequences of artificial images are generated using the pre-tactical trajectories available in
the AIRACs. The sampling rate of these trajectories varies, often providing more data points (air-
craft ID, date/time, latitude, longitude, Flight Level-FL) during the departure and arrival phases
than at the cruising phase. By assuming constant speed between data points, we can interpolate
the trajectories (see Basora et al. (2017) as another example of interpolation), and obtain both the lo-
cation (latitude, longitude, FL) and heading of each aircraft inside a TV for a particular time-step.
Finally, to represent the shape of the TV, from the file Newmaxo ASCII Region file, it is extracted the
set of pairs (latitude, longitude) that define the perimeter of a TV.
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III.4.2 Outputs of the models

The native output of the time-distributed models is a probabilistic prediction per class and input
time-step. For each 30-minute sample sliced into one-minute time-steps, the models produce 30
predictions corresponding to the probability of each time-step being regulated. Figure III-6 eval-
uates the predictions from the models for an input sample from 7:14 am to 7:44 am. Notice that
each square represents a time-step, and the ATFM regulation has been labeled using an X.

Figure III-6: Example of the outcome from the ML models

III.4.3 RNN-based model architecture

The architecture of the RNN-based model is composed of one input layer, two hidden layers, and
one output layer. Once the input observations are fitted into the model, they are passed to the
hidden layers. Each hidden layer has a time-distributed wrapper which allows the NN to process
every temporal slice as input with the same set of weights, each composed of several Long-Short
Term Memory (LSTM) cells. The first hidden layer is an LSTM composed of 32 units. The second
layer is a Dropout to reduce possible overfitting. Then, the previous two layers are repeated.
Finally, the output layer is a time-distributed dense layer that allows the model to make binary
predictions. Figure III-7 visually represents the architecture used.

Figure III-7: RNN-based model architecture for en-route C-ATC regulations

III.4.4 CNN-based model architecture

The CNN-based model aims to process images that evolve over time. Therefore, the input sam-
ples are sequences of images showing the airspace configuration at consecutive time-steps (see
Figure III-5). Similar to the previous RNN-based model (see Section III.4.3), the final developed
architecture presented in Figure III-8 captures the temporal evolution of the expected airspace
configuration since the images per time-step are processed in parallel using the time-distributed
wrapper.
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Figure III-8: CNN-based model architecture for en-route C-ATC regulations

Concretely, the first hidden layer is a time-distributed 2D convolutional layer that uses 32
filters with a kernel size (3, 3) using a Glorat initialization (aka. Xavier initialization). It is followed
by a time-distributed MaxPooling layer with a pool size equal to (2, 2). The third layer is a time-
distributed 2D convolutional layer with 64 filters and a kernel size equal to (3, 3), followed by
another MaxPooling layer. Next, The fifth layer is a Flatten, which reshapes the input tensor to
have a shape equal to the number of elements in the tensor. The Sixth layer is an LSTM cell, which
captures the temporal information. The seventh is a fully connected layer with 75 neurons. The
eighth layer is a Dropout used to reduce overfitting with an activation rate of 0.5. Finally, the
output layer is a fully connected layer with one neuron.

III.4.5 RNN-CNN Hybrid model architecture

The hybrid framework proposed to predict C-ATC Capacity ATFM regulations combines the pre-
vious two types of ML models. The RNN-based model processes general metrics based on scalar
variables, while the CNN-based model is able to process the specific airspace configuration and
the distribution of the airspace traffic. Combining both models could be key to obtaining the best
possible performance. Different types of information are processed, as well as the probabilistic
outputs, which could reduce false positive and negative predictions.

Three hybrid architectures are investigated in this Chapter. The first approach, depicted in
Figure III-9, uses the RNN-based model to extract the relevant information from the scalar vari-
ables. Then, the CNN-based model is used to extract the relevant features from the artificial im-
ages. Finally, the resulting features are passed through a time-distributed classifier to produce the
final prediction.
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Figure III-9: RNN-CNN-Classifier hybrid model architecture for en-route C-ATC regulations

The second hybrid model architecture can be seen in Figure III-10. The CNN-based model
is used to extract the main features from the images, then they are concatenated with the scalar
variables, and the final input sample is processed by the RNN-based model to obtain the final pre-
diction.

Figure III-10: CNN-RNN hybrid model architecture for en-route C-ATC regulations

Finally, the third hybrid model architecture is based on a RNN-CNN cascade architecture. It
starts making predictions on a 30-minute interval using the RNN-based model. If the model
has high confidence in the prediction, it will be the final prediction. On the other hand,
if the model presents low confidence uses the CNN-based model to refine the initial prediction
(see Figure III-11). More precisely, and taking into account the information obtained from the
confidence-level analysis in Section III.6.1, the CNN-based model is used when the average activa-
tion from the RNN-based model is between 0.35 and 0.90. Then, both models’ activation values
at the output layer are averaged and used to obtain the final prediction. Otherwise, the final
prediction only comes from the RNN-based model.

Figure III-11: RNN-CNN cascade hybrid model architecture for en-route C-ATC regulations
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The predictions are refined when they exhibit an average activation between 0.35 and 0.90
because they are considered low-confidence predictions. Correctly predicted no-regulated inter-
vals have an activation close to zero, and correctly predicted regulated intervals have an activation
higher than 0.90. Therefore, using the proposed interval, we can re-evaluate intervals where the
RNN-based model is not very confident about a possible required regulation, such as intervals
containing transitions (from non-regulated to regulated time-steps, and vice versa).

Notice that predicting each input sample with the two models increases the computational
time considerably. The predictions from the CNN-based models are more computationally expen-
sive (about ten times slower than the RNN-based model) mainly due to the cost of generating the
artificial images.

III.5 Performance evaluation

This section shows the results of the experiment that predicts C-ATC capacity ATFM regulation at
the TV during the pre-tactical phase. Section III.5.1 specifies the evaluation metrics. Section III.5.2
and Section III.5.3 present the results obtained from the individual RNN-based and CNN-based
models, respectively. Section III.5 shows the results obtained to select the final hybrid model and
the results from the final RNN-CNN cascade model that exhibits the best overall performance.

In all the experiments, results from specialized models for the three most regulated TVs in
both the MUAC and REIMS regions are presented. Together with a ML model trained to predict
regulations in all TVs composing the previously mentioned regions. Results from a model de-
signed to predict ATFM regulations over the entire region are shown to prove the scalability of
the presented architectures. Although the performance of the specialized models is higher, this
experiment provides an alternative for those TVs where not enough samples are available for the
training. Data availability is key in supervised ML models.

III.5.1 Evaluation metrics

Because of the nature of the models, the first analysis studies the ability of the models to predict
what exact time-steps are going to be regulated. This analysis is called time-step analysis. How-
ever, a prediction per time-steps could exhibit a too-fine granularity for the current Collaborative
Decision Making (CDM) process done in DCB. Therefore, it is proposed a second interval analysis
where information from the entire input sample is taken into account. Furthermore, as has been
mentioned, predicting the exact moment an ATFM regulation shall start and end is challenging.

In both cases, the accuracy, recall, precision, and F1-score are used to validate the perfor-
mance of the models. At the time-step level, each input time-step is classified as positive (regula-
tion needed) or negative (no regulation implemented). On the other hand, interval classification is
based on grouping the models’ predictions to determine whether the 30-minutes interval contains
a regulation. An interval is considered regulated if the number of positive predictions is above a
given threshold. This evaluation sets the threshold to five time-steps for two reasons. First, false-
negatives (not detecting a needed regulation) are considered more critical than false-positives
(predicting a regulation that is not needed), which can be filtered later by the operator. Second,
we want to avoid isolated positive time-steps (misclassifications of the model). Figure III-12 is a
visual representation of the grouping process used for the interval analysis.
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Figure III-12: Time-step VS Interval outputs. Example of the grouping process.
(Left) Time-steps for a 30-minute interval. (Right) Grouped time-steps.

III.5.2 RNN-based model

Table III-2 summarizes the results obtained using the RNN-based model over the three-most regu-
lated TVs in both the MUAC and the REIMS regions. The results obtained using a single model
for the whole region are also included.

From the time-step classification results, it can be seen that the specialized models exhibit
better overall performance than the models for the entire regions. If we focus on the specialized
models, we can see accuracy and recall higher than 80% for all the TVs, and precision between 70%
and 90%. In the best case of the MUAC region (BOLN), the model achieves an accuracy of 90.95%,
a recall equal to 98.11%, and a precision of 85.51%. The extremely high recall value indicates
that nearly all the regulations in this TV are being detected. In the worst scenario (B3EH), an
accuracy of 84.14%, recall equal to 92.98%, and precision equal to 70.51% are obtained. The low
precision makes this TV worse than D6WH, where an F1-score of 81.75% is obtained versus the
80.82% in B3EH. On the other hand, the best scenario for the REIMS region (LFE5R) exhibits
an accuracy equal to 92.46%, a recall equal to 88.82%, and a precision of 91.30%. In the worst
scenario (LFEHYR), the accuracy, recall, and precision obtained are 80.06%, 80.31%, and 80.25%,
respectively.

When the predictions are made at the interval level, all individual TVs in the MUAC region
improve all the metrics. However, for the model working over the whole region, despite the
improvement in both the accuracy and recall, it presents a 3% drop in the precision (78.57% vs.
75.87%). This is not the case for the REIMS region, where the interval analysis improves overall
performance in all the scenarios. Nonetheless, the important aspect of this second analysis is the
fact that all the models exhibit a recall equal to 100%. Therefore, they can detect all the 30-minute
intervals that contain a regulation.

Table III-2: Performance RNN-based model for en-route C-ATC Capacity regulations at TV level
Time-Step Classification Interval Classification

Region TV Train/Test Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score
MUAC BOLN 274/119 90.95 98.11 85.51 91.38 91.51 100 87.32 93.23

B3EH 227/100 84.14 92.98 70.51 80.82 85.54 100 73.47 84.71
D6WH 237/107 80.04 88.82 75.73 81.75 83.22 100 79.61 88.65
All 1030/343 77.88 86.23 78.57 82.22 80.73 100 75.87 86.28

REIMS LFEHYR 1061/454 80.06 80.31 80.25 80.28 88.10 100 80.29 89.07
LFE4N 806/348 87.21 90.97 82.69 86.63 95.36 100 90.59 95.06
LFE5R 764/329 92.46 88.82 91.30 90.04 97.25 100 93.75 96.77
All 3670/1573 78.29 80.52 74.82 77.57 86.97 100 79.05 88.30

Last but not least, as an example, to show the proper behavior of the models, Figure III-13
shows the learning curve reported by the RNN-based model used to detect ATFM regulation for
the TV MASBOLN in the MUAC region. We decided to present the behavior of the model in this
scenario because (a) MUAC is an intermediate region with respect to the number of regulations
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available, and (b) MASBOLN is the most regulated TV in this region, and therefore, a challenging
TV. Therefore, it is a good representation of the scenarios studied in this work.

As can be seen, the model does not present underfitting. However, there is some overfitting
at the end of the training (from epochs 140 to 200). Moreover, some noisy movements can be seen
around the validation loss, indicating that the validation dataset is not representative enough of
the model’s generalization ability. These two drawbacks come from the limited number of samples
we have available for the training/testing. Nevertheless, the results obtained indicate that the
model is working properly, and these issues can be solved by extending the datasets when more
data are available.

Figure III-13: Training RNN-based model. (Left) Loss curve. (Right) Accuracy per epoch

III.5.3 CNN-based model

Table III-3 shows the results obtained with the CNN-based model. For the time-step classification,
the specialized models also present better performance than the models for the entire regions.
For the MUAC region, the specialized models reported at least an 82% F1-Score, while the model
for the entire region exhibits an F1-Score equal to 80.41%. Similar results are obtained for the
REIMS region, with a minimum F1-Score equal to 82% in the specialized models and 81.45% for
the entire region. If we analyze the accuracy, recall, and precision, it can be seen that for the MUAC
region, the best model (BOLN) reported 81.65%, 85.34%, and 82.35%, respectively, while the worse
model showed 78.37%, 79.53%, and 82.14%. On the other hand, for the REIMS regions, the best-
specialized model reported accuracy, recall, and precision equal to 81.23%, 84.54%, and 85.63%,
respectively, while the worse scenario showed 83.57%, 84.23%, and 81.45%.

On the other hand, the interval classification presents a higher performance for all the studied
TVs across regions. For the MUAC region, a consistent improvement can be seen for the spe-
cialized models, with an increase of up to 5% in the F1-Score (BOLN). A similar improvement is
obtained in the model for the entire region, where the MUAC region exhibits the biggest improve-
ment, with a 5% increase in the accuracy and up to 14% in the recall. However, it presents a drop
of 4% in precision. For the REIMS region, the improvement in the results is also consistent across
TVs. Nonetheless, it can be seen that less regulated intervals are detected in REIMS than in MUAC
(recall around 85% VS recall around 88%).
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Table III-3: Performance CNN-based model for en-route C-ATC Capacity regulations at TV level
Time-Step Classification Interval Classification

Region TV Train/Test Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score
MUAC BOLN 227/97 81.65 85.34 82.35 83.82 82.42 88.24 83.54 85.83

B3EH 224/96 82.55 86.67 80.02 83.21 81.78 90.03 82.49 86.10
D6WH 226/97 78.37 79.53 82.14 81.81 80.45 85.23 83.42 84.32
All 840/369 77.43 78.12 82.83 80.41 82.45 92.15 78.11 84.56

REIMS LFEHYR 700/300 79.54 80.56 85.63 83.02 81.54 84.13 86.13 85.12
LFE4N 703/301 81.23 84.54 83.63 84.08 83.56 87.73 84.79 86.23
LFE5R 694/227 83.57 84.23 81.45 82.82 82.82 85.32 83.23 84.26
All 2604/1143 75.89 79.87 82.32 81.45 80.10 82.74 83.19 82.96

Finally, Figure III-14 shows the learning curve reported by the CNN-based model used to
detect ATFM regulation for the TV MASBOLN in the MUAC region. Similar to the previous
RNN-based model (see Figure III-13), the learning curves present some noisy movements indi-
cating that the validation dataset is not ideal due to the limited number of samples available for
training/testing. Nonetheless, the results obtained indicate that the model is working correctly.

Figure III-14: Training CNN-based model. (Left) Loss curve. (Right) Accuracy per epoch

III.5.4 RNN-CNN hybrid model

Finally, this section presents the results for the three hybrid models that use the previous RNN-
based model and CNN-based model. First, a general comparison between the performance of the
three models is conducted to select the final approach. Second, an extended analysis of the best
hybrid model, the RNN-CNN cascade model, is presented.

Figure III-15 shows the average recall, precision, and F1-Score reported by the three studied
architectures. The RNN-CNN-Classifier shows the results obtained by the hybrid model that uses
the RNN-based model to process the scalar variables, the artificial images are processed by CNN-
based model, and a third classification model is used to produce the final prediction. CNN-RNN
corresponds to the hybrid model that uses a CNN-based model to extract the main features from
the images, then they are concatenated with the scalar variables, and the final input sample is
processed by the RNN-based model to obtain the final prediction. Cascade refers to the hybrid
model based on a cascade architecture.
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The RNN-CNN-Classifier presents a good performance, with a higher recall than precision.
Moreover, its computational time is one of the largest because the images for all the observations
must be created. CNN-RNN is the hybrid model with the worst performance, probably because
the predominant model is the CNN-based model with the worst overall performance. Further-
more, it also requires the creation of all artificial images. Finally, the RNN-CNN cascade model
has the best overall performance, probably because the predominant model is the RNN-based
model. Therefore, we will focus on the results of the hybrid model based on the RNN-CNN cas-
cade architecture.

Figure III-15: Average recall, precision, and F1-Score exhibited by the hybrid models.
(Left) RNN-CNN-Classifier. (Middle) CNN-RNN. (Right) Cascade.

The evaluation metrics of the RNN-CNN cascade model are shown in Table III-4. The time-
step classification analysis exhibits a better performance than the previous individual RNN-based
model and CNN-based model in all the studied TVs. This architecture is able to improve precision
by up to 4% on average, which has the weakest parameter. In the best scenario (REIMS-LFE5R), it
exhibits a 10% improvement.

The interval classification analysis shows that with less granularity in the predictions, the per-
formance of the models also improves. The accuracy can improve up to 9% (LFE5R from 92.93% to
98.15%), the recall can be increased up to 15% (LFEHYR from 85.28% to 100%), and the precision
increments up to 4% (LFE4N from 87.48% to 91.43%). In all scenarios, this analysis shows an im-
provement in the overall performance of both the specialized and global models across regions,
with an average increment of the F1-Score equal to 5%. Moreover, the results show that all the
regulations are detected because the recall is equal to 100%.

Table III-4: Performance RNN-CNN cascade model for en-route C-ATC Capacity regulations at
TV level

Time-Step Classification Interval Classification
Region TV Train/Test Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score
MUAC BOLN 376/161 91.84 98.56 86.15 91.94 92.18 100 88.78 94.06

B3EH 260/112 87.56 93.76 81.18 87.02 88.39 100 82.74 90.55
D6WH 289/123 85.54 90.14 85.26 87.63 85.92 100 86.43 92.72
All 1050/450 79.94 85.89 84.76 85.32 82.56 100 85.92 92.43

REIMS LFEHYR 1061/454 84.67 85.28 88.34 86.78 89.78 100 88.43 93.86
LFE4N 806/348 88.21 91.68 87.48 89.53 97.36 100 91.43 95.52
LFE5R 764/329 92.93 93.54 92.78 93.16 98.15 100 93.97 96.89
All 3670/1573 80.26 83.97 81.35 82.64 87.58 100 82.49 90.40
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III.6 Model Explainability

Results from a specific ML model developed to predict regulations over the TV D6WH from the
MUAC region are going to be displayed. There are two reasons behind this decision: First, it is
one of the models with worse performance; therefore, it is expected to obtain better results for
the other TVs. Second, D6WH belongs to the MUAC region, which is the one with fewer training
samples. Remember, the success of the DL models mainly depends on the quality and quantity of
the input data. These two reasons make D6WH one of the most interesting sectors for the study.
Similar results have been obtained for the other TVs, independently of the region.

III.6.1 Confidence-Level analysis

Figure III-16 shows the confidence-level analysis from the RNN-based model. It shows the num-
ber of instances per prediction type as a function of the activation value from the last layer in the
NN. As can be seen, the RNN-based model is able to clearly detect the TN time-steps (activation
lower than 0.5), showing a small tail between 0 and 0.1. For the TP cases, the behavior is very sim-
ilar, presenting a small tail between 0.9 and 1 but having the largest grouping close to 1. On the
other hand, there is a small accumulation around zero and 0.5 for the FN cases. The accumulation
around zero indicates that the model cataloged some time-steps as non-regulated with high con-
fidence, but they should be predicted as regulated. The accumulation around 0.5 shows that for
a certain amount of time-steps the model was not sure about being required a regulation or not.
For the FP cases, it can be seen a larger accumulation between 0.5 and 0.7 than from 0.7 to 0.9. This
indicates that, although the model reports a considerable number of FP, it was not very confident
about the prediction in most of the cases. Finally, there is a considerable accumulation between
0.9 and 1, where the model incorrectly predicted a regulation with high confidence. Nonetheless,
it is important to notice that the occurrences of the FN prediction are smaller than the ones for the
FP cases, indicating that the model is more likely to predict a regulation.

Figure III-16: Confidence-level analysis RNN-based model for TV D6WH predicting en-route
C-ATC Capacity ATFM regulations

The Confidence-level analysis for the CNN-based model can be seen in Figure III-17. For the
FN cases, the model presents a tail between 0 and 0.1, with an accumulation of values close to
zero, and the TP cases present a tail between 0.85 and 1. On the other hand, a continuous pattern



III.6 Model Explainability 65

of behavior can be seen for the FN predictions, with an average value of occurrences under 20.
Finally, the FP cases also show a consistent pattern of behavior across activation values between
0.5 and 0.95, presenting a peak between 0.95 and 1. Nevertheless, the number of both FN and FP
are smaller compared with the TN and TP cases.

Figure III-17: Confidence-level analysis CNN-based model for TV D6WH predicting en-route
C-ATC Capacity ATFM regulations

Finally, the results for the RNN-CNN cascade model are presented in Figure III-18, exhibiting
the most significant accumulation of TN around zero, with a tail between 0 and 0.1. Regarding
the TP predictions, the model also presents the largest accumulation between 0.9 and 1. Note that
there are almost no occurrences for the rest of the possible values. On the other hand, it can be seen
that only a few occurrences are cataloged as FN cases; therefore, the majority of regulated time-
steps are identified by the model. If we analyze the FP cases, there are around ten occurrences
across all the possible activation values, with a slightly higher peak close to 1.

Figure III-18: Confidence-level analysis RNN-CNN cascade model for TV D6WH predicting en-
route C-ATC Capacity ATFM regulations
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Let us now numerically compare the results between the RNN-based model and the RNN-
CNN cascade model. We can see a 4.3% reduction in the false-negative predictions (from 8.4%
to 4.1%) and a 21.2% for the false-positive cases (from 39.2% to 18%). Therefore, the RNN-CNN
cascade model presents higher confidence in the predictions and reduces misclassifications.

III.6.2 SHAP Analysis

The SHapley Additive exPlanations (SHAP) analysis aims to provide information about what
input features are more relevant for the models or which ones have a more significant impact. It
is important to notice that it is designed to study conventional ML models; thus, it can only be
used to study the RNN-based and CNN-based models. As in the previous analysis for model
explainability, results from the TV D6WH are presented because it is the individual model with
the lowest performance in the MUAC region, being expected better results from the other studied
TVs. Notice that the results can be extrapolated to the REIMS region with very similar behavior.

Figure III-19 shows the SHAP values for the RNN-based model. The image shows, from top
to bottom, the more relevant input features. The color map indicates how larger or smaller the
value of the input feature was, and the location in the corresponding horizontal line represents
the activation it generated. The zero in the X-axis represents no contribution to the prediction.

Figure III-19: SHAP values RNN-based model en-route C-ATC Capacity regulations TV D6WH

The analysis presents the Timestamp feature as the most relevant, where samples with a
smaller Timestamp (early hours of the day) are more likely to contain a regulation. The second
most relevant feature is the Entry Count for the next 60 minutes, where larger values produce a
higher activation. Therefore, the complexity will increase if more aircraft enter the sector, and
regulation is likely required. This is also the case for the Capacity, where larger values produce a
higher activation. The higher the capacity, the larger the sector; therefore, more aircraft are more
likely to generate an overload. The fourth and fifth most relevant features are the Entry Count for
the next 20 minutes and Expected workload for the next 20 minutes, which do not present a clear pattern
of behavior. The reason could be that they are relevant features but in combination with another
one. From Number of cruising flights, it can be seen that small values produce a higher activation.
The Occupancy Count and the Workload for the next minute show the opposite trend. The Number of
descending flights and the Number of Climbing flights do not present an explicit behavior, which is
surprising because flights in these two phases should be relevant. The fact that the model cannot
properly process these features could be why this TV presents a worse performance. This is also
the case for the Number of conflicts, where larger values are creating a smaller activation.
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Figures III-20 presents the SHAP values for the CNN-based model. In this case, the analysis
highlights the contribution of each pixel to the final prediction of a model. Therefore, it indicates
what parts of the image are more (or less) relevant for the models when identifying C-ATC Ca-
pacity ATFM regulations. Notice that for clearness, only one picture is shown every five minutes

In the case of the positive prediction (see Figure III-20(a)), it can be observed that a consider-
able number of aircraft cross the images, creating a larger activation of those flights close in space
with the same heading, or flights relatively close in space but with perpendicular headings. It is
also interesting to see that the other main source of information comes from flights close to the
border of the TV (see the sixth and seventh images), indicating that flights entering or exiting are
more relevant to identify possible regulation.

On the other hand, in the case of the negative prediction (see Figure III-20(b)), it is interesting
to see a similar pattern of behavior, where aircraft close in space or entering/exiting the TV are
more relevant for the model. However, this information is lower, with a Maximum SHAP value
of 0.0003. Nevertheless, the model seems to pay attention to the interaction between the two main
flows of the TV: one horizontal, in the top part of the TV, and another from the top-left to the
bottom-right corners. If we analyze the second image, the top flow indicates that it is not required
a regulation. However, the analysis indicated that the model takes more into account the diagonal
flow. This could indicate that, even though there is currently no traffic, it is probably expected an
increment, which is why it can be seen as a “red line” without any aircraft.

(a) Positive prediction

(b) Negative prediction
Figure III-20: SHAP values CNN-based model en-route C-ATC Capacity regulations TV D6WH
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III.7 Advice capabilities

Two advice generators are proposed for predicting C-ATC Capacity regulation at the TV level.
First, it is presented a web application that relies on the visualization of the open scheme and the
likelihood of regulation along the day of study. The second approach aims to convert the trained
models to C++ to be integrated into R-NEST, a model-based simulation tool dedicated to research
activities developed by EUROCONTROL.

III.7.1 Web application for DCB

As a proof of concept, the first advice generator proposed to visualize the predictions of the ML
models is based on representation fidelity (Burton-Jones & Grange, 2013), which improves users’
understanding of the domain being represented. The idea is to create a web application that
emulates the current tools, where the user can easily see when a TV is expected to be operative
and the predictions from the models. Furthermore, the tool shall provide information about the
uncertainty of the predictions to ensure it provides meaningful advice.

The system is composed of a form (see Figure III-21) and a visualizer (see Figure III-22). The
user employs the form to specify the case study, choosing the following parameters:

• Region: of interest (MAUC or REIMS)

• Traffic Volume: ID of the traffic volume inside the region

• Day: of the study

• Metric: to analyze in the visualizer

• Start: which is the initial desired timestamp

• End: timestamp for the analysis

• Time delta: which indicates the granularity in the visualizer

The form aims to provide a flexible and user-friendly interface. All the requested information
is selected from predefined lists to avoid an incongruent selection. For instance, the region can be
MUAC or REIMS (the two regions studied in this Chapter), or some of the metrics available are the
Occupancy Count (OC), Entry Count (EC), and complexity. To provide an interactive visualizer,
the user can change the zoom (granularity) by selecting a different start, end, or delta.

Figure III-21: Advice generator form to select the input parameters
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On the other hand, the visualizer, which can be seen in Figure III-22, shows the outcome of the
models. A color scheme is used to distinguish positive predictions with high and low uncertainty
and negative predictions:

• Red: represents time-steps with demand-capacity imbalance with high probability (proba-
bility > 0.75);

• Orange: indicates time-steps with demand-capacity imbalance with uncertainty (0.25 ≤
probability of regulation ≤ 0.75);

• Green: shows the predicted time-steps without demand-capacity (probability < 0.25).

The simple proposed color scheme is recognized around the world as a problem (red), warn-
ing (Orange), and ok (green), ensuring the web application could be used and integrated around
the world.

Figure III-22: Advice generator outcome for October 6th 2018, from 0 am to 23 pm

Notice that a transparency effect has been used to ensure that the advice generator provided
insightful information for those intervals of time when the TV is expected to be operative accord-
ing to the opening scheme.

III.7.2 Integration into R-NEST

At the moment of writing this thesis, the integration of the ML models into R-NEST is still in
progress. However, this section presents the milestones achieved.

First, coordination activities have been done with EUROCONTROL to establish the initial
steps of the integration. As a starting point, all partners agree, as a proof of concept, to integrate
the RNN-based model presented in this Chapter. The models specialized on specific TVs for both the
MUAC, REIMS, and Spain (see Appendix A) regions have been converted using the Application
Programming Interface (API) frugally-deep, as well as the models able to identify regulations over
the entire regions.

After converting the models into C++, it is required to start the validation activities. Pre-
compute sets of input features have been adapted to be loaded using C++ to validate the perfor-
mance of the models, and it has been guaranteed that the outcome of the models is exactly the
same. This has been done for approximately 200 different samples. Notice that EUROCONTROL
is in charge of developing the required code to compute the input features inside R-NEST as they
are the owners; thus, external validation has to be conducted in the future.

A first release ready to be integrated with the performed activities is available, with the con-
verted models and the corresponding documentation.
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III.8 Discussion

The current process to decide whether ATFM regulations are required due to demand-capacity
imbalances is a time-consuming task, mainly dependent on previous knowledge and skills of the
FMPs and NM operators. Furthermore, despite the variety of tools and metrics available, ATFM
regulations are responsible for most of the delays and, consequently, cost. However, future ATM
aims to increase airspace capacity between 5% and 10% in the following years, increasing the
levels of automatization and information sharing.

Consistent results across different studies and regions have been obtained. The Time-step clas-
sification analysis reported that the CNN-based model performs slightly worse than the RNN-based
model, with an average F1-Score equal to 83% and 86%, respectively. This drop in performance is
especially significant in accuracy and recall. However, the CNN-based model exhibits an increment
between 3% and 10% in the precision for most of the models (especially in the weakest ones).
However, the proposed RNN-CNN cascade model benefits from the best of the previous models.
It reports accuracy between 85% and 93% for the specialized models, a recall around 90%, and
precision between 81% and 94%. In other words, the RNN-CNN cascade model exhibits a higher
accuracy, recall, and precision than previous models in all the studied TVs.

For the Interval classification analysis, a similar behavior pattern is observed. The CNN-based
model exhibits an overall slightly worse performance than the RNN-based model, and the RNN-
CNN cascade model exhibits the best results. Nonetheless, the most significant result is that the
CNN-based model cannot identify all the 30-minute regulated intervals. A recall between 80% and
90% is obtained while the RNN-based model and the RNN-CNN cascade model are able to identify all
the regulated intervals. Therefore, the final framework can detect all the intervals that contain an
ATFM regulation.

The good results indicate that the proposed approach could improve the current CDM pro-
cess linked to the detection of demand-capacity imbalances, reducing the overall workload. Fur-
thermore, it has also been found that the Model explainability analysis exposes a behavior close to
the current CDM procedure. The SHAP analysis has shown that the expected incoming traffic,
in combination with the capacity of the TV and the current occupancy, are key aspects to be con-
sidered when predicting C-ATC Capacity ATFM regulations. Moreover, aircraft close in space are
prioritized, together with aircraft entering or exiting the TV. The transfer of aircraft is one of the
main reasons for demand–capacity imbalances due to its complexity.

However, it is worth mentioning that the results obtained maybe are too optimistic. It will be
interesting to retrain the models avoiding down-sampling the train/test datasets and comparing
the performance between the two approaches. In this scenario, it will be necessary to consider
the unbalanced nature of the datasets, i.e., the number of non-regulated and regulated minutes,
and implement the required modification. Similarly, utilizing M1 traffic, despite being the closest
traffic to the pre-tactical phase, is not optimal because the flight plans are not known. Using tools
such as PREDICT2 would be ideal, but it was impossible due to the limited available data.

Additionally, three major operational constraints are identified in this Chapter. First, de-
spite the excellent performance of the specialized models, the need for models for each TV could
produce a scalability issue when deploying a system like this over the entire European network.
Perhaps, the specialized models could be used for the most regulated TVs, while the model able
to predict regulation for the entire region could be used for the other sectors. Second, a priory
the models are designed to predict a specific regulations reason, C-ATC Capacity regulation. Al-
though this is the most frequent type, the other regulation reason should be addressed. Third,
the main drawback of this case study is the limited data available to train the models. However,
it is worth mentioning that the models have been trained using historical data from the summer,

2PREDICT estimates the flight plans when they have not been filled yet, mainly using historical information, com-
paring the origin and destination, the aircraft type, or the airlines, among others.



III.8 Discussion 71

which is the season, or one of the seasons, with the largest volume of airspace traffic; thus, the
year period with more ATFM regulations. If the models can perform adequately in the most chal-
lenging months of the year, they should also show a good performance for the rest of the year.

Also related to the generalization models, one limitation identified in the proposed method-
ology and approach is that models cannot take into account possible downstream effects of the
identified regulations. For instance, the detection and implementation of an ATFM regulation in
a particular en-route TV can impact adjacent TVs.

Finally, the need for proper advice capabilities has been shown when developing ML models
that aim to be industrialized. Providing meaningful information to the end user is paramount, and
more than simply showing the probabilities is required. Two advice generators (a web application
and the integration of the ML into R-NEST) are presented based on representation fidelity. Al-
though the tools aim to be used by the NM, the airlines also could take advantage of pre-tactically
knowing congested en-route sectors.





IV
W-Weather ATFM regulations

In the previous Chapter III, it has been proven that supervised machine learning models can be
used to predict C-ATC Capacity Air Traffic Flow Management (ATFM) regulations at the Traffic
Volume (TV) level during the pre-tactical phase. Although this was the most frequent ATFM reg-
ulation reason in 2018 with a 37.4%, W-Weather ATFM regulations were the second most frequent
type with a 25.4% (PRC, 2019). These results are also supported by the Exploratory Data Analysis
(EDA) conducted in the previous Chapter (see Section III.3.2).

Convective weather is a well-known aviation hazard; turbulence, wind shear, visibility re-
duction, lighting, and hail can heavily impact aircraft and Air Traffic Management (ATM). Fur-
thermore, according to climate experts, the frequency and intensity of convective weather will
increase in the future (Parodi et al., 2021).

On days with intense convective weather, the airspace conditions are very volatile, directly
translating into an increment of the workload of the Air Traffic Controllers (ATCOs). Thus, it
implies reducing the airspace capacity to maintain the required safety levels. The reduction in
the capacity due to convective weather in conjunction with traffic scheduled to operate in normal
conditions typically triggers W-Weather ATFM regulations.

Similar to the previous case study, the introduction of a new support tool for the detection
of W-Weather en-route ATFM regulations also could reduce the workload, or at least the diffi-
culty, of the Flow Manager Positions (FMPs) and Network Manager (NM) operators during the
pre-tactical phase of the Demand-Capacity Balancing (DCB) process. Concretely, this Chapter pro-
poses to adapt the architecture of the previously presented RNN-based model, enriching the input
features for this new scenario and presenting a model explainability analysis to gain trust in the
behavior of the Machine Learning (ML) models.

73
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IV.1 State of the Art

A significant number of research activities have studied how to translate weather information into
appropriate ATFM constraints. Although some works specifically focus on convective weather,
this information is considered part of a more complex conjunct in most scenarios.

For instance, ISOBAR project ISOBAR (2020) is a SESAR Joint Undertaking action that aims to
use Artificial Intelligence (AI) solutions to Meteo-Based DCB imbalances for network operations
planning, identifying demand-capacity imbalances and selecting mitigation measures at local and
network level. Similarly, the INTUIT project (Garrigó et al., 2016) used machine learning and
visual analytics techniques to identify cause-effect relationships between ATFM regulations and
different indicators.

A more narrow approach was presented in Jardines et al. (2021), where the authors used re-
gression and classification supervised learning algorithms to predict airspace performance char-
acteristics such as entry count or the number of flights impacted by the regulations for active
weather regulation. Kamangir et al. (2020) used deep learning Neural Network (NN) and features
from numerical weather prediction models to predict thunderstorm occurrence for up to 15 hr(±2
hr accuracy) in advance. Other researchers focus on the consequences and possible preventive
actions implemented when facing ATFM regulations due to convective weather. For instance,
Marcos et al. (2017); Martín Martínez et al. (2020) used machine learning and visual analytics to
study the airline route choice in the pre-tactical planning phase. Dalmau Codina et al. (2019) is
a case study for the Maastricht Upper Area Control Centre (MUAC) region, which investigates
the predictability of take-off times under adverse weather conditions. Schultz et al. (2021); Lattrez
et al. (2022) studied the weather impact on airport performance through machine learning.

Despite some works in the literature indirectly facing the identification of W-Weather ATFM
regulations using ML techniques, to the author’s best knowledge, no specific results about the
detection of such regulations are available in the literature.

IV.2 Problem formulation

As shown previously, supervised machine learning models are used to learn patterns from histor-
ical data. Therefore, the system aims to learn and replicate past actions in future scenarios. One of
the main benefits of using ML techniques is the extremely fast ability of the algorithms to provide
advice to the user, making it very suitable for detecting W-Weather ATFM regulations due to their
volatility.

Following the good results obtained in the previous case study, this new set of experiments
aims to investigate whether the presented RNN-based model architecture could be extended to
predict a different regulations reason. The reason for focusing on the RNN-based model is that
most Numerical Weather Prediction (NWP), as the name indicates, provide weather predictions
based on specific Key Performance Indicatorss (KPIs). Combining visual traffic information and
radar predictions is required to generate the necessary images for the CNN-based models, con-
siderably increasing the required computation time. Some proofs of concept have been done, but
the CNN-based models reported very poor performance in this case study. Therefore, this case
study aims to verify whether simple numerical weather features are enough to predict W-Weather
ATFM regulations at the TV level.

With this objective in mind, the same input features related to airspace traffic are going to
be used because they have proved to be very correlated to ATFM regulations. However, due to
the different nature of the problem, it is paramount to enrich them with a set of features related
to convective weather. Although the models are trained for the same two regions (MUAC and
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REIMS) to ensure a fair comparison of results between the regulations reasons, different TVs have
to be selected. For supervised machine learning models, the quality and quantity of data are key
aspects directly linked to the performance of the models; thus, the TVs with a larger number of
recorded W-Weather ATFM regulations have been selected for each of the regions.

IV.2.1 Assumptions

The assumptions present in this Chapter are shared with the work done in Chapter III, and they
can be summarized as follows:

1. Information in the datasets (Aeronautical Information Regulation and Controls (AIRACs))
is accurate, and the decision to apply or not apply a regulation was correct;

2. It is assumed to have access to PREDICT or a similar tool to estimate any pre-tactical flight
plan which might not be defined in the prediction horizon D-1;

3. The traffic characteristics correlated with C-ATC Capacity ATFM regulations are also rele-
vant for W-Weather regulations. Traffic characteristics remain a key component.

IV.3 Data analysis

This Section summarizes the data sources used for this case study. Section IV.3.1 summarizes the
data sources required, and Section IV.3.2 presents the EDA analysis.

IV.3.1 Data sources

The data sources used for developing this case study are presented in Table IV-1. First, the AIRACs
are used to compute airspace traffic features. Second, the numerical weather features are obtained
from ECMWF. Finally, labeling the 30-minute samples have been done using a dataset provided
by EUROCONTROL; however, it is worth mentioning that equivalent labeling could be obtained
from the AIRACs with some data engineering.

Table IV-1: Data sources used to predict en-route W-Weather ATFM regulations (TV level)

Data source / Format Period time Usage Comment
AIRAC June, July, August, September 2018 Features M1 traffic

ECMWF June, July, August, September 2018 Features ERA5 forecast
EUROCONTROL June, July, August, September 2018 Labelling Boolean

IV.3.2 Exploratory Data Analysis

For the entire MUAC region, we have 151 W-Weather regulations for en-route traffic along 34
different days, a mean number of regulated TV per day equal to 4.42, and a mean duration per
regulation of 196.19 minutes. On the other hand, for the REIMS region, there are 582 regulations
for en-route traffic in 100 days, a mean number of regulated TV per day equal to 11.7, and a mean
duration of 112.5 minutes.
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Continuing with the analysis of the available data, it is a combination of weather conditions
and the traffic characteristics used to identify weather regulations (individual weather or traffic
metrics are not useful). Moreover, traffic characteristics are insufficient to detect possible overload
in normal operational conditions. In the MUAC region, if we compare the Occupancy Count (OC)
and the Entry Count (EC) metrics with the declared threshold:

• 2.68% of the minutes from regulated periods had an OC higher than the peak threshold,
and 2.38% of the minutes had an OC between the sustained and the peak thresholds. On
the other hand, for non-regulated periods, 2.53% of the minutes had an OC higher than the
peak threshold, and 2.61% of the minutes had an OC between the sustained and the peak
thresholds,

• If we analyze the EC for the next 20 minutes for the regulated periods, 14.23% of them were
above the peak threshold, and 10.89% of the minutes were between the sustained and the
peak thresholds. For the no regulated periods, the analysis showed that 15.1% of the minutes
were over the peak threshold, and 12.4% of them were between the sustained and the peak
thresholds,

• Finally, analyzing the EC for the next 60 minutes for the regulated periods, 15.35% of the
minutes had an EC higher than the peak threshold, and 5.36% of them had an EC between
the sustained and the peak thresholds. For no regulated periods, 18.8% of the cases had an
EC above the peak threshold, and 10.1% of them were between the sustained and the peak
thresholds.

Notice that the results for the REIMS regions are very similar, and only the OC and the EC
are analyzed because they are the only ones with predefined thresholds (not all the metrics have
an associated threshold or the access to them has not been provided).

As an example, Figure IV-1 shows the regulations for the most regulated TV in the MUAC
and REIMS regions along the four months of data available. The regulations from these four
months have been stacked and used the color map to show coincidences between days and hours.
As can be seen, most of the regulations were implemented between 4 PM and 8 PM. It is worth
mentioning that very similar results and characteristics are present in other TVs from both regions.

Figure IV-1: Heatmap W-Weather regulations. (Left) HRHR-MUAC (Right) LFEUXR-REIMS
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IV.4 Predictive capabilities

As mentioned previously, this case study investigates whether the RNN-based model architecture
presented in the previous Chapter (see Section III.4.3) can be used to predict W-Weather ATFM
regulations. Section IV.4.1 presents the new set of input features to predict this regulation reason.
Section IV.4.2 presents the adapted architecture.

IV.4.1 Inputs and Outputs of the model

The architecture of the RNN-based model is based on a time-distributed framework that uses
scalar variables as input. The main characteristic of this architecture is the fact that the shape of the
input and the output layer of the NN is the same (see previous Figure III-6). 30-minute intervals
sliced into one-minute time-steps are used as input samples to obtain 30 different predictions
(one per input time-step). As a reminder, 30-minute intervals are used to identify the minimum
required interval that has to be regulated, paying special attention to the moment the regulations
shall start and end.

To reflect the characteristics of the weather, and having in mind that a key concept is the
presence of cumulonimbus (SKYbraby, 2022), the following average values inside the TVs of the
following input features per time-step are used:

• Fraction of cloud cover: grid boxes covered by cloud (liquid or ice);

• Potential vorticity: potential capacity for air to rotate in the atmosphere;

• Vorticity: estimated capacity for air to rotate in the atmosphere;

• Relative humidity: relative water vapor per kilogram of moist air;

• Specific humidity: water vapor per kilogram of moist air,

• Specific cloud ice water content: mass of cloud ice particles;

• Specific cloud liquid water content: mass of cloud liquid water droplets;

• Specific rainwater content: mass of water (aggregated water droplets);

• Specific snow water content: mass of snow (aggregated ice crystals);

• Temperature: in the atmosphere;

• u_component of wind: eastward component of the wind;

• v_component of wind: northward component of the wind;

• Divergence: rate air spreading out horizontally from a point.

The same combination of input features as in the previous Chapter III is used to express the air
traffic conditions. The goal is to validate that the already presented methodology can be extended
to predict other ATFM regulation reasons. For completeness, below are the input features used in
the previous case study:

• Interval: associated 30-min interval of the studied day (from 0 to 48);

• Day of the week: of the study (from 0 to 6);

• Capacity of the TV: sustain capacity of the TV under normal operational conditions;
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• Occupancy Count: expected number of flights inside the TV for the next 20 and 60 minutes;

• Entry count: expected number of flight entering in the TV for the next 20 and 60 min;

• Workload: expected workload in the TV for the ATCOs;

• Conflicts: number of conflicts in the TV;

• Number of flights at the different phases: number of flight climbing, cruising, and de-
scending.

IV.4.2 RNN-based model architecture

The proposed architecture to predict W-Weather ATFM regulations is composed of one input layer
which receives the input features of the 30-minute samples sliced into one-minutes time-steps.
Then, the input samples are passed through three sets of hidden layers, each composed of a Long-
Short Term Memory (LSTM) cell and a Dropout layer. All the Dropout layers have an activate rate
equal to 0.5, and they aim to reduce any possible overfitting. The LSTM cells are composed of 25,
50, and 25 units, respectively, using a tangent hyperbolic activation function (aka. tanh). Finally,
the output layer is a time-distributed fully-connected dense layer that uses a sigmoid activation
function to make a binary prediction for each input time-steps. Figure IV-2 is the equivalent visual
representation of the architecture.

Figure IV-2: RNN-based model architecture for W-Weather regulations

Similar to the previous Chapter III, the proposed architecture has been obtained after a cus-
tom GridSearch (Scikit-learn, 2022b) analysis to discover the best configuration. Customizing the
analysis is necessary due to the time-distributed wrapper used to take into account information
that evolves on time.

IV.5 Performance evaluation

This Section presents the results predicting W-Weather ATFM regulations using the presented
RNN-based model. Section IV.5.1 presents the evaluation metrics and Section IV.5.2 the results.
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IV.5.1 Evaluation metrics

The previously introduced time-step and interval analyses are performed to evaluate the perfor-
mance of these models and for consistency across case studies. The time-step analysis quantifies
the ability of the models to predict precisely the time-steps the TV should be regulated. This
analysis is performed by computing the accuracy, recall, precision, and F1-Score. On the other
hand, interval analysis is based on grouping the models’ predictions to determine whether the 30-
minute interval contains a regulation. An interval is considered to have a regulation if the number
of positive predictions exceeds five time-steps, reducing possible false-positive and false-negative
identification.

IV.5.2 RNN-based model

Table IV-2 presents the results for the time-step and interval analyses of the three most regulated
TVs in the MUAC and REIMS regions, and the results from models able to predict W-Weather
regulations per entire region.

From the time-step analysis, it can be seen that for the selected TVs, the models have an accu-
racy higher than 82%, a recall around 86%, and a precision between 80% and 83%. On the other
hand, the interval analysis increases accuracy up to 3%, recall 10%, and precision up to 6%. In the
best case, recall equal to 97.44 % is reached, showing that the model almost identified all the in-
tervals that contain a regulation. Similar results are obtained in the matching analysis where more
than 87% of the regulated intervals are precisely detected (perfect and strong matching), allowing
the model to have some mismatches.

Results from the REIMS region show a drop around 2%-4% in the precision for the time-
step analysis. However, accuracy higher than 80% is obtained in all individual TVs, with a recall
between 85% and 88%. The interval analysis shows a 4%-8% increment in the precision with a
similar recall, indicating higher confidence in the detection of regulated intervals. However, there
is a 4% drop in the performance in the matching analysis due to being a much more complicated
region with a much larger volume of traffic.

Table IV-2: Performance RNN-based model for en-route W-Weather regulations at TV
Time-Step Classification Interval Classification

Region TV Train/Test Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score
MUAC HRHR 331/142 82.43 86.52 83.67 83.13 85.42 97.44 80.14 89.32

HSOL 234/101 84.36 86.83 82.35 84.38 87.13 89.36 84.21 87.47
B3LL 296/127 82.94 85.75 80.93 82.46 84.72 84.62 86.84 86.31
All 767/328 77.84 76.37 79.88 79.44 77.3 79.67 81.43 81.28

REIMS LFE4E 208/91 80.63 85.47 79.49 82.48 84.49 85.32 89.27 87.03
LFEUXR 208/91 87.21 90.97 82.69 86.63 89.78 82.96 88.19 85.18
LFE4N 206/90 83.79 86.48 78.04 80.40 80.56 88.24 94.12 91.44
All 765/328 79.01 78.57 78.73 79.42 79.43 78.79 83.11 81.37

IV.6 Model Explainability

To better understand the behavior of the model and gain trust in the predictions, Section IV.6.1
presents the confidence-level analysis, and Section IV.6.2 the results from the SHapley Additive
exPlanations (SHAP) analysis.
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Results from specific ML models developed to predict regulations over the TV MASB3LL
from the MUAC region are going to be displayed. This TV has been selected because the corre-
sponding model shows the overall worse performance; therefore, it is reasonable to expect better
results for the other TVs. Similar results have been obtained for the other TVs, independently of
the region, which are not shown to avoid redundant information.

IV.6.1 Confidence-level analysis

The confidence-level analysis presented in Figure IV-3 shows that the model is able to clearly
detect the TN time-steps (activation lower than 0.5). There is almost no activation for the majority
of these predictions. Moreover, for the TP time-steps, the model shows a high confidence level
with an activation higher than 0.9 in most of them (the higher the activation, the more sure the
model about regulation is needed). On the other hand, there is a peak around zero for the FN
predictions, and from the FP, we can see a small accumulation over 0.9. These mistakes mostly
come from the transition between regulated and no-regulated periods. The number of time-steps
in these two categories is minimal compared with the TN and the TP, corresponding with the good
performance seen in the matching analysis.

Figure IV-3: Confidence-level analysis RNN-based model for TV B3LL predicting ATFM
W-Weather regulations.

IV.6.2 SHAP values

Figure IV-4 shows the SHAP analysis for the TV B3ELL in the MUAC regions. The timestamp
feature shows that more weather regulations are declared at the last hours of the day. Then,
the u-component and the v-component of the wind are the second and fifth most relevant features.
However, notice that they show opposite trends. Larger values of the v-component produce a
higher activation, while small values of the u-component create a higher activation. The third most
important feature is the relative humidity, probably because it is directly related to the amount
of cloud and their characteristics. From the EC for the next 60 minutes, it can be seen that larger
values have a major activation. Nonetheless, the EC for the next 20 minutes has an opposite trend,
meaning that the expected traffic in a short period is less crucial. This is also the case for the OC. In
summary, the results indicate that the biggest challenge for weather regulations is a considerable
increase in the wind, together with a large expected number of incoming flights. Finally, although
the other input features have some impact on the predictions, they are not as decisive.
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Figure IV-4: SHAP values RNN-based models en-route W-Weather regulations TV B3LL

IV.7 Advice capabilities

Because both this and the previous Chapter are related to the same experiment (ATFM regulations
at the TV level), the advice generators developed are almost identical. The same web application
presented in the previous Chapter (see Section III.7.1) has been used to display the results for the
case study that estimates the probability of W-Weather ATFM regulations. The initial form used
by the user to specify the study parameters now has an additional element to specify the regulation
reason. Figure IV-5(a) shows the form from the case study C-ATC Capacity regulations, and Fig-
ure IV-5(b) shows the extended version that allows multiple regulation reasons. The visualization
of the predictions as a function of the expected open schema remains identical, using the same
legend of color to display the uncertainty of the predictions – Green, orange, and red for certain
negative, uncertain, and certain positive predictions, respectively.

(a) C-ATC Capacity regulations (b) Multiple regulations reasons
Figure IV-5: Web application form evolution
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On the other hand, the other proposed advice capability is the integration of the models in
R-NEST. At the moment of writing, the models have been converted to C++ because it is the
programming language in which the software was developed. However, it still needs the final
integration. The reader is referred to Section II.3.3.1 for further details about the integration into
the software R-NEST. Notice that the integration process is almost identical to the previously pre-
sented models to predict C-ATC Capacity ATFM regulations. The only difference is the need to
compute the extra features related to convective weather.

IV.8 Discussion

In this Chapter, it has been proposed a supervised ML model architecture able to detect specific
time-steps that must be regulated due to adverse weather conditions. For specific TVs, the model
exhibits an accuracy higher than 80%, a recall of around 85%, and a precision of around 80% across
six different TVs belonging to two different regions of the European airspace, being REIMS one of
the most regulated regions.

On the other hand, and probably more critical for the problem faced, the model shows a
high recall, up to 97% in the best case, detecting intervals of time which contains a regulation.
Therefore, the model shows that with proper training, it should be able to detect almost all the
required regulations with high precision. Additionally, comparing the results obtained, which
may be too optimistic, with models that do not use down-sampling techniques could enrich the
analysis, showing the expected performance in more realistic conditions.

Related to the model explainability analysis, the confidence-level analysis indicates that the
model is highly sure about the time-steps which must be regulated, and the SHAP analysis identi-
fies the wind and the entry count features as key factors.

Similar to the results obtained in the previous Chapter III, the work done in this Chapter suf-
fers from three major operational constraints. First, deploying specialized models for all the TVs
could introduce scalability issues. However, they could be overcome by combining the special-
ized ones for the most regulated TVs and the general one for the other TVs. Second, despite the
small dataset available, the presented models can extract the relationship between the historical
data and the implemented ATFM regulations in multiple regions, indicating that it could be used
across European airspace. Therefore, a more extensive training dataset should improve the cur-
rent performance. Third, a priory, the ML models are expected to predict only W-Weather ATFM
regulations, limiting the system’s usability.

Even though the presented model has been developed and studied for the pre-tactical phases
of the ATFM services, they could be used for the tactical or post operational phases using the cor-
responding input data. Furthermore, the presented results are close to the ones obtained when
predicting C-ATC Capacity regulations. Therefore, the combination of both models could be a
considerable improvement in the current system used to deliver ATFM services, significantly re-
ducing the workload of the FMP and the NM operators who do this task.

Finally, although other types of regulations exist, it is essential to keep in mind that it is
paramount to have related input data when using supervised models. For instance, predicting
S-Staffing regulations will require access to a data source with information about the available
staff or the expected working configuration at each moment.



V
Reinforcement Learning for

Demand-Capacity Balancing

Traffic growth and changes in traffic patterns have caused increasing congestion and delay in
European airspace. The Central Flow Management Unit (CFMU) continually seeks and devel-
ops methods to improve traffic flow management to reduce delays and congestion (Tibichte &
Dalichampt, 2014). To this end, and taking into account the available literature, as a research
question, this Chapter aims to investigate whether a Reinforcement Learning (RL) techniques
are able to smooth the traffic of demand-capacity imbalances without sharing explicit informa-
tion between agents, and using an approach whose observation states size does not depend on
the number of agents.

The Air Traffic Flow Management (ATFM) problem is formalized as a collaborative Multi-
Agent Reinforcement Learning (MARL) system where homogeneous agents representing flights
aim to decide on their ground delay jointly with the other flights while not having direct infor-
mation about the preferences of other flights. The specific goal is to smooth the traffic of already
identified ATFM regulations in specific Traffic Volumes (TVs) using images as input to the system
and to ensure efficient utilization of the airspace. The usage of images allows the system to extract
its own features for the problem instead of manually deciding which ones are more representative,
the input size is independent of the number of agents, and it provides a fixed size of the states en-
suring good scalability. Moreover, the images allow the agents to have indirect information about
other flights.

It is proposed to investigate two types of RL algorithms to smooth the demand-capacity
imbalances: first, algorithms based on discrete actions; second, algorithms based on continuous
actions. In both cases, a homogeneous population of agents is used to ensure their behavior is
the same. Furthermore, the agent-based paradigm introduced in this Chapter tries to emulate
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the first-planned-first-served basis used in the current ATFM approach (Computer Assisted Slot
Allocation (CASA)). Only flights outside the regulated sector are candidates to be agents, ensuring
that only flights outside the airspace sector will be delayed.

V.1 State of the Art

Previous research investigated optimization techniques to find optimal resource utilization.
Ivanov et al. (2017) presented an optimization algorithm to minimize the propagation of ATFM
delays to subsequent flights, Bolić et al. (2017) introduced an integer programming model for
strategic redistribution of flights to respect nominal sector capacities in short computation times
for large-scale, or Ruiz et al. (2019) investigated a new technique that could improve airspace ca-
pacity usage and reduce ATFM delays by improving the slot allocation process of CASA to avoid
wasted capacity (empty slots) at regulated sectors.

On the other hand, several works attempt to study the downstream effects of ATFM reg-
ulations and propose resolution techniques. Dalmau (2022) used gradient-boosted decision
trees to predict the likelihood of a regulated flight re-routing to mitigate the ATFM delay, and
Delgado & Prats (2012) proposed to use speed reduction on air to absorb ATFM delay at no extra
cost. Most recent works on the resolution of Demand-Capacity Balancing (DCB) issues focus on
the use of RL techniques. For instance, Fernández et al. (2017) proved it is possible to both iden-
tify and solve DCB problems comparing three RL algorithms for the pre-tactical phase. Similarly,
Spatharis et al. (2021) is the result of a set of publications where the DCB is formulated as a hierar-
chical MARL decision problem with different levels of abstraction. However, a critical drawback
of this MARLs approaches, in the context of DCB, issues is that a different agent controls each
flight, presenting a severe scalability problem, as hundreds or even thousands of different agents
would be required to handle the full European Air Traffic Management Network (EATMN).

In response to the previous scalability limitations, Huang & Xu (2021) presented a collabo-
rative Multi-Agent Asynchronous Advantage Actor-Critic (MAA3C) framework with embedded
supervised and unsupervised Neural Network (NN), where only flights crossing airspace sectors
with already identified demand-capacity issues are regarded as the candidate agents. This ap-
proach improves the scalability and generalization of the system, being able to handle a varying
number of agents. As an extension of the scalability issues, Kravaris & Vouros (2022) reviews dif-
ferent deep MARL methods examining their ability to scale up to large agent populations. That
is from hundreds up to several thousands of agents. The main conclusion drawn with respect to
possible scalability issues is the importance of parameter sharing in large agent populations. It is
impractical to train thousands of independent networks for each agent or to utilize an approach
whose input size would explode as the number of agents and their observations grew.

Similar research has been conducted outside the EATMN region. In the USA network,
Tumer & Agogino (2007) developed a MARL system for Air Traffic Management (ATM) inte-
grated with an air traffic flow simulator - FACET. In Crespo et al. (2012) was presented a dis-
tributed decision support system for tactical ATFM in Brazil, and traffic flow managers experts
analyzed the solutions proposed by the system.

V.2 Problem formulation

En-route ATFM regulations are located at specific airspace TVs (which can be informally defined
as a portion of airspace linked to a sector) where a demand-capacity imbalance is detected. Nowa-
days, the methodology used to identify where ATFM regulations are required is purely human
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and does not rely on automation. Air Navigation Service Providers (ANSPs) define two capacities
for the sectors which have to be interpreted by the Flow Manager Position (FMP): the sustained
capacity and the peak capacity. The sustained capacity indicates the maximum number of flights
that can be operated for a particular time window, while the peak capacity indicates the maxi-
mum value for a specific instant of time. Close to the day of operation, capacities are defined
based on the Occupancy Count (OC), which considers the expected number of flights inside the
traffic volume.

It is possible to have multiple demand-capacity imbalances in the network simultaneously.
However, the general principle is that a flight subject to several ATFM regulations is given the
delay of the most penalizing regulation, i.e.the regulation that issues the largest delay.

V.2.1 Assumptions

In this work, the following assumptions are considered to define the ATFM delay system for spe-
cific traffic volumes:

1. The airspace sectors with a demand-capacity imbalance are known (interval of time with
overload, location, and capacity), and squares can be used to approximate their shape;

2. Pre-tactical flight plans are available for each flight before any regulation is applied. The
flight plans contain the Scheduled Off-Block Time (SOBT) and the route of the flight. Addi-
tionally, it is assumed constant speed for each of the segments composing the routes;

3. Flights are assumed to depart at the planned SOBT;

4. There is one type of agent. There are no aircraft with priority;

5. Financial costs on commercial entities resulting from ATFM decisions are negligible;

There is a deviation from traditional state-of-the-art problems by assuming the demand-
capacity imbalances are already known for the sector of study. Assumption 1 is required because
this work aims to focus purely on resolving the issues of DCB. Only historical data from regulated
intervals and sectors are considered. Also related to assumption 1, approximating the sector’s
shape as squares aims to reduce the implementation complexity in this preliminary study.

Related to assumption 2, constant speed per segment defining the routes is assumed because
they only contain information about the starting/ending location and time. By assuming constant
speed between the origin and end of the segments, it is possible to interpolate the location of
the flights at intermediate timestamps (see Basora et al. (2017) and Corrado et al. (2020) as other
examples of interpolation).

Also related to the flight plans, assumption 3 considers the flight departs at the planned
SOBT, i.e.the flights do not have assigned departing windows, or there is no uncertainty about the
take-off time.

Assumption 4 aspires to create a prototype that is as fair as possible for all the operators. A
homogeneous population of agents guarantees that all flights are treated equally. However, us-
ing heterogeneous populations of agents in future work could be interesting from an optimization
point of view. For instance, two populations could be used to distinguish domestic or international
flights or prioritize transit flights to avoid possible downstream effects such as missing connec-
tions. Similarly, assumption 5 is used to emphasize that this prototype focuses on the current used
Key Performance Indicatorss (KPIs), although they could be extended according to additional re-
quirements if needed.
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V.2.2 Action Variable - Decision variable

The action variable in this problem corresponds to selecting the ground delay that an aircraft will
receive due to a demand-capacity imbalance. At each step ∆t, each agent i ∈ N has an associated
action variable ait ∈ A, where ait is the ATFM ground delay.

For discrete action algorithms, the action variable can be defined as:

ait ∈ A, A ∈ {0, 5, 10, 15} (V.1)

While for continuous action algorithms, the action variable can be defined as:

ait ∈ A, A ∈ [0, 15] (V.2)

V.2.3 State Variable

The state vector sit ∈ S includes the information that the population of agentsN uses to determine
the actions. Each state sit is defined per flight candidate to be an agent and step of the system.

One of the primary challenges associated with MARL is problem representation. The chal-
lenge is in defining the problem in such a way that an arbitrary number of agents can be repre-
sented without changing the architecture of the Deep Q-Learning (DQN) or Deep Deterministic
Policy Gradient (DDPG). To solve this problem, we propose the usage of image-like tensors where
each channel in the images encodes a different set of information from the global state. This rep-
resentation allows us to take advantage of Convolutional Neural Networks (CNNs), which have
been shown to work well for image classification tasks (Krizhevsky et al., 2017) and competitive
MARL systems based on images (Egorov, 2016).

The image tensor is of size HxWx3 (shown in Figure V-1), where H is the height, W is the
width of our two-dimensional images, and three is the number of channels in the image. The
channels can be broken down in the following way:

• Inside channel: Contains the representation of the regulated flights inside the sector.

• Outside channel: Contains information about the flights outside the sector of study, that is,
the flights that may be delayed.

• Self channel: Contains information about the agent making the decision.

Figure V-1: Three channels image-like representing the input states of the RL system
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Note that the three channels are depicted with white background for clearness, but it encodes
zero pixel values. The non-zero pixel values encode the location of the flights, their heading, and
the approximate shape of the sector.

V.2.4 State Transition

The state transition defines a set of conditions that determine how the state sit ∈ S evolves along
the steps. With every step, the aircraft candidates to be agents decide whether they are going to
issue ATFM delay. Three conditions must be verified to ensure a proper transition between states.

The first condition that must be verified is related to the regulations used for the training.
Each episode will start using information from a randomly selected historical regulation, and the
environment will evolve for a time period TP equal to 60 minutes with a timestep ∆t equal to one
minute. Thus, from the randomly selected regulation, we must guarantee that the regulations will
be active for more time than the TP . Furthermore, the initial timestamp of the selected regulations
is also randomly chosen, ensuring that both the starting moment and the selected regulation are
selected randomly in each episode.

The second condition to consider is related to the delay. For each state variable sit ∈ S, the
agent i will produce a new action to cooperatively decide its ground delay to ensure that the
demand meets the capacity. Actions equal to zero imply no delay for the flight moving forward
on the predefined trajectory. However, if the delay differs from zero, the new delay is added to
possible previous delays (cumulative delay).

The last required consideration is related to how the flight is assumed to move forward. A
trajectory T ∈ T is a time series of segments of the form:

T = {(IDl, begintl , endtl , lat_begintl , lon_begintl , lat_endtl , lon_endtl)} l ∈ [1,m] (V.3)

where IDl is the identifier of the segment, begintl the initial timestamp of the segment, endtl
the end timestamp of the segment, lat_begintl , lon_begintl the initial latitude and longitude of
the segment, lat_endtl , lon_endtl the ending latitude and longitude of the segment, and l is the
number of segments used to define the trajectory.

For each of the segments, we assume constant speed. Therefore, the expected velocity of the
flight in a particular segment can be defined as follow:

vIDl
=
f(lat_endtl , lat_begintl , lon_endtl , lon_begintl

endtl − begintl
(V.4)

where f is a function that computes the distance between two pairs of coordinates.

Finally, we can compute the aircraft’s location at any timestamp, knowing the required seg-
ment to use, assuming constant speed in the segments, and considering the imposed ATFM delay.

V.2.5 Objective Function

Demand reduction is one of the main goals in DCB during the pre-tactical phase. The objective is
to smooth the traffic and meet the expected demand with the predefined capacity of the airspace
sector. The objective function can be defined with Equation V.5, which corresponds to minimiz-
ing the ATFM delay while trying to ensure that the demand meets the sector’s capacity for the
counting period.
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min
t∈TP

E

{ N∑
i=0

Di

(
st, π

∗(st)
)}
∪ Vt ≤ C (V.5)

where Di is the ATFM delay of agent i, N is the population of agent, st is state of the system at
step t, π∗ is the optimal ATFM delay policy, Vt is the OC of the sector, and C is the capacity of the
sector.

V.3 Experimental Setup

This section details the developed DQN and DDPG algorithms, focusing on the dataset used to
train the agents, the RL elements, and the parameters of the algorithms.

V.3.1 Dataset

The data sources required for the development of the case study that uses RL techniques to smooth
the traffic of required ATFM are summarized in Table V-1. The Aeronautical Information Regula-
tion and Controls (AIRACs) are used as a source of information about the flight plan intentions of
the different flights, and EUROCONTROL data to know which and when TVs were regulated.

Table V-1: Data sources used to smooth en-route C-ATC Capacity ATFM regulations

Data source/Format Period time Usage Comment
AIRAC June, July, August, September 2018 Flight plans M1 traffic

EUROCONTROL June, July, August, September 2018 ATFM regulations Boolean

In the EATMN, a wide variety of regulations are applied due to many reasons across different
traffic volumes. The study done in this Chapter focuses on C-ATC Capacity ATFM regulations,
which are those regulations purely related to demand-capacity imbalances. Moreover, because of
the huge number of sectors, we have focused our attention on the Maastricht Upper Area Control
Centre (MUAC) region. In particular, to the sector EDYYBOLN with the associated traffic volume
MASBOLN. The main reason behind the selection of this particular sector is because it is one of
the most regulated airspace regions in the MUAC area, which will guarantee enough variety of
samples to train the RL agents. The available dataset contains around 200 C-ATC Capacity ATFM
regulations for en-route traffic along 71 different days, with a mean number of regulations per day
equal to 1.7 and a mean duration per regulation of 97.08 minutes.

V.3.2 Reward function

RL algorithms learn from the interactions with an environment, which provides a reward accord-
ing to how good the agent’s action was. The reward function is crucial because different reward
structures will result in different system performances.

Previous research has investigated different reward functions. Typically, the literature shows
that researchers mainly focused on delay and congestion without considering fairness impact
on different commercial entities (Tumer & Agogino, 2007; Agogino & Tumer, 2009). Similarly,
Spatharis et al. (2018) also took into account the amount of time the agents contributed to the
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demand-capacity imbalance. Fairness is usually measured by financial costs imposed on com-
mercial entities resulting from ATFM decisions (Cruciol et al., 2013).

In our case, as a proof of concept using images, we want to focus on delay and congestion.
The reward function G(z), written as Equation V.6, consists of three main components: the num-
ber of flights delayed M(z), the delay itself D(z), and the demand-capacity ratio I(z):

G(z) = −βM(z)− δD(z)− λI(z) (V.6)

where z represent the system under evaluation, M(z) and D(z) represent delay, and I(z) the con-
gestion. β, δ, and λ are the weights used to adjust the income penalty in the evaluation function.
Note that the reward function is based on penalties.

In this Chapter, the main goal is to solve DCB issues; therefore, the weight λ is set to 5 to
penalize the agent when the imbalance is not solved strongly. Then, the second objective is to
smooth the demand-capacity imbalances with the minimum delay, using a δ equal to 2. Finally,
because only small delays are allowed, β is set to 1 to allow the agent to delay the flight as desired.

When ATFM delay is issued, the number of aircraft entering the airspace traffic volume is
reduced; thus, the congestion is relieved. However, this restrictive measure has negative effects on
the ATM network. Equation V.7 counts the number of delayed flights and Equation V.8 computes
the total delays imposed:

M(z) = Θ
(
N
)

(V.7)

where N is the population of agents, and Θ is a function that counts the number of flights that
received ATFM delay.

D(z) =
P∑
t=0

di∈N ,t (V.8)

where D is the total ground delay, P is the counting period, and rti is the imposed ground delay
at step t for each agent i ∈ N .

It is required to compute the number of aircraft at the current step to determine the congestion
severity in the airspace sector; that is, the excessive number of aircraft in the sector. The congestion
function I(z) is given by:

I(z) =

{
(V − C)(V−C) V > C

0 Otherwise
(V.9)

where V is the number of aircraft in the sector (i.e.demand), and C is the pre-defined pre-tactical
capacity. Note that the function is characterized exponentially with respect to the excessive num-
ber of aircraft in a sector.

V.3.3 Deep Q-Learning

In this work, the first RL algorithm proposed to study to optimize the ATFM delay is DQN follow-
ing the approach proposed in Mnih et al. (2013). It operates directly on RGB images to play Atari
games, uses experience replay to store the agents’ experiences, and uses a second target network.

At the beginning of each episode, a new initial state is set. Subsequently, for each step and
flight candidate to be an agent, an action is chosen either randomly or greedily and stored in the
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replay buffer. In the first episode, the ϵ-greedy strategy has an ϵ equal to 1, forcing agents to
explore. However, this value linearly decreases until it reaches 0.01, ensuring the agents prioritize
exploitation in the last episodes.

The input to the system is the images used to obtain the agent’s experience tuple of the form
(st, at, rt, st+1), where st is the starting image-like state, at is the join actions taken, rt is the reward
received, and st+1 is the new state of the system. The replay buffer stores the last 25,000 experience
tuples, and batches with 64 samples are randomly selected to train the NN computing the target
value and the respective loss. This loss is the minimum squared error of the predicted and target
values, and the Adam optimizer (Kingma & Ba, 2015) is used. After training the online network,
the weights of the target network are also updated.

The input layer of the NN takes as input the 150x100x3 images. The first layer convolves 32
8x8 filters with stride 4 and uses a Rectified Linear Unit (ReLU) activation function. The second
layer is a batch normalization layer (Ioffe & Szegedy, 2015). The third layer convolves 64 4x4
filters with stride 2 using a ReLU activation function. The fourth layer is a batch normalization
layer. The fifth layer convolves 64 3x3 filters with stride 1 and uses a ReLU activation function.
The sixth layer is a batch normalization layer. The final hidden layers are a fully-connected with
256 rectifier units and a Droupout layer with a rate of 0.5. The output layer is a fully-connected
linear layer with a single output for each valid action. The output of the NN corresponds to the
predicted Q-values of the individual action for the input state. The main advantage of this type of
architecture is the ability to compute Q-values for all possible actions in a given state with only a
single forward pass through the network. Table V-2 shows the remaining hyper-parameters.

Table V-2: Hyper-parameters for the Deep Q-learning algorithm

Hyper-parameter Value Description
Episode 1000 Total number of training episodes
Max steps 60 Maximum number of steps per episode
Number of actions 4 Number of different actions
Discount factor 0.99 Discount factor of future rewards
Learning rate 0.00025 Learning rate used by the optimizer
Initial ϵ 1 Initial value for exploration
Final ϵ 0.1 Minimum value for exploration
Target update 4 Step frequency to update the target network

V.3.4 Deep Deterministic Policy Gradient

The second algorithm studied to optimize ATFM delays is DDPG. It is proposed to follow the
approach presented in Lillicrap et al. (2015), which adapts the ideas underlying the success of DQN
to continuous actions. DDPG is an actor-critic method, where a parameterized actor function µ(s)
specifies the current policy by mapping states to actions while the critic Q(s, a) learns how good is
the action. Similarly to our previous approach, this implementation of DDPG directly learns from
raw pixel information, using a replay buffer, and throughout the use of target networks (one for
the actor and one for the critic).

The chosen NN for the actor takes as input 150x100x3 images. The first layer convolves 32 8x8
filters with stride 4 and uses a ReLU activation function. The second layer is a batch normalization
layer. The third layer convolves 64 4x4 filters with stride 2 and uses a ReLU activation function.
The fourth layer is a batch normalization layer. The final hidden layers are a fully-connected with
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256 rectifier units and a droupout layer with a rate of 0.5. The output layer is a fully-connected
linear layer with a single output unit.

The chosen NN for the critic takes as input 150x100x3 images and the action predicted by the
actor. The first layer convolves 32 8x8 filters with stride 4 and uses a Rectified Linear Unit (ReLU)
activation function. The second layer is a batch normalization layer. The third layer convolves 64
4x4 filters with stride 2 with a Rectified Linear Unit (ReLU) activation function. The fourth layer is
a batch normalization layer. The fifth layer is a fully-connected with 256 rectifier units. The sixth
layer is fully-connected with 128 rectifier units and takes as input the concatenation of the output
from the fifth layer and the action from the actor. The output layer is a fully-connected linear layer
with a single output unit, with a ReLU activation function to ensure the issued delay is bigger
than zero..

A major challenge of learning in continuous action spaces is exploration. An advantage of
off-policies algorithms such as DDPG is that we can treat the exploration problem independently
from the learning algorithm. We constructed an exploration policy µ′ by adding noise sampled
from a noise process J to our actor policy:

µ′(st) = µ(st) + J (V.10)

where µ′(st) is the noised policy, µ(st) is the current policy, and J is the action noise.

In the first published article based on DDPG and raw pixel images, the authors used the
stochastic Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein, 1930) to generate random values
temporally correlated as action noise. However, in the literature, it can also be found imple-
mentations using exploratory noise from a normal distribution. Although these exploration ap-
proaches are proven to work, recent studies claim that parameter noise frequently boosts perfor-
mance (Plappert et al., 2017). Parameter noise adds adaptive noise to the parameters of the NN
policy (actor). It injects randomness directly on the weight of the NN, altering the type of ac-
tions the agent makes depending on what the agent currently senses. Different layers of the NN
have different sensitivities to perturbation, which is why we add parameter noise to the last fully
connected layers. The performance of the models is evaluated using all three types of noise.

Last but not least, batches of 64 random samples are used from a replay buffer of size 25.000
to train the networks. Online actor and critic networks are trained by computing the target value
and respective loss. The loss is the minimum squared error of the predicted and target values. The
optimizer used is Adam. The actor and critic target networks are updated using soft target updates
instead of directly copying the weights. Table V-3 shows the remaining hyper-parameters.

Table V-3: Hyper-parameters for the DDPG algorithm

Hyper-parameter Value Description
Episode 1000 Total number of training episodes
Max steps 60 Maximum number of steps per episode
Discount factor 0.99 Discount factor of future rewards
Learning rate actor 0.001 Learning rate used by the optimizer
Learning rate critic 0.002 Learning rate used by the optimizer
Initial ϵ 1 Initial value for exploration
Final ϵ 0.1 Minimum value for exploration
Target update 4 Step frequency to update the target network



92 Chapter V - Reinforcement Learning for Demand-Capacity Balancing

V.4 Performance evaluation

This section presents the results obtained for both DQN and DDPG implementations, learning
from raw pixel images to assign ATFM delay. Section V.4.1 summarizes the KPIs selected to eval-
uate the performance of the models in this experiment. Section V.4.2 shows the results of the
different studies RL techniques with different configurations.

V.4.1 Key performance indicators

A set of KPI are defined to evaluate the quality of the ATFM delay policy:

• the sum of the rewards received by all the agents;

• the sum of ATFM delay imposed by the agents;

• the total number of delayed flights;

• the sum of times the agents delayed a flight;

• the mean OC of the sector along the episode.

These KPI’s are all relevant when evaluating the ATFM plan on a MARL system. One of
the most widely used indicators to evaluate the performance of the agents is the sum of rewards
earned at the end of each episode. The total delay imposed by the flights is also crucial because it
is one of the indicators to minimize. The total number of delayed flights and the number of times
the agents applied a delay (number of actions) can be considered KPIs, showing how those delays
are distributed among aircraft and the number of micro-adjustments agents make. The OC is key
because it dictates situations with severe demand-capacity imbalances.

V.4.2 Results

To compare the performance between the different implementations, Figure V-2 shows the trend
of the different KPIs using a moving window of fifty episodes. Those values have been obtained
in all the cases, periodically testing the policy without exploratory noise.

Figure V-2: Trends KPIs used to evaluate the performance of the RL systems
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The results demonstrate the potential of using RL algorithms based on images to solve DCB
problems. As expected, the total reward per episode increases with the number of episodes, mean-
ing that the agents are able to improve their policy by gathering experience from the environment.
For the last 250 episodes where we can assume convergence of the reward, DQN reported a re-
ward around minus three-thousand while DDPG around one-thousand five-hundred. Note that
the reward will always be smaller than zero because the scenarios the agents will see always have
DCB issues; thus, ATFM delay is mandatory. From the point of view of maximizing the cumula-
tive reward, DDPG exhibits better performance than DQN.

The total ATFM delay shows a downward trend, denoting that the agents can infer which
flights are more efficient to delay. DQN is the algorithm with the largest delay in the last episodes.
DDPG with exploratory noise from a normal distribution reported the lowest delay while DDPG
with Ornstein-Uhlenbeck and parameter noise reported an intermediate amount of delay. The main
reason behind this difference in performance could come from the native characteristics of the
algorithms. DQN uses discrete actions that constrain the possible delay values, while DDPG uses
continuous actions providing much more flexibility.

The number of delayed flights also decreases with a similar behavior between all the configu-
rations, with an average value of around twenty delayed flights in the last 250 episodes. Although
DQN and DDPG with Ornstein-Uhlenbeck exploratory noise report slightly better performance, the
improvement is minor.

The number of actions applied by the agents shows that DQN is the algorithm with fewer
micro-adjustments. DDPG with Ornstein-Uhlenbeck and parameter noise reported an intermediate
similar number of actions. DDPG with noise from a normal distribution reported the highest value.
This KPI is not directly linked to the goal of solving demand-capacity imbalances. However, it is
a good indicator of how many micro-adjustments are required to smooth the expected demand.

Related to the mean congestion of the sector, after six hundred episodes, the sector’s mean
OC seems to stabilize. DDPG with Ornstein-Uhlenbeck and parameter noise reports on average an
80% usage of the airspace sector capacity, while DDPG with normal noise and DQN exhibits an
around 90% usage of the capacity. As a reference, in the European ATM network, the desired
occupancy value is around 80% of sector capacity, providing space to absorb unexpected events
and ensuring that Air Traffic Controllers (ATCOs) are not overloaded (Niarchakou, 2022).

Looking at the results of the different KPIs, it is not completely clear which approach reports
the best overall performance. While DDPG with normal noise excels at reducing the overall delay,
DQN or DDPG with Ornstein-Uhlenbeck achieve a greater reduction in the number of affected
flights, and DDPG with Ornstein-Uhlenbeck or DDPG with parameter noise further optimize the use
of sector capacity. To better analyze the behavior of the algorithms from the DCB point of view,
that is, focusing on capacity usage to smooth the expected demand, Figure V-3 shows the mean
OC per episode for the DDPG implementations. The image shows the collected values per episode
(gray) and their trend (purple), the red line represents the sustained capacity, and the green line
represents 80% of the sector’s capacity.

For the last 250 episodes where the mean OC converges, results from the DDPG with
Ornstein-Uhlenbeck show the worst performance where many episodes reported a mean OC larger
than the sustained capacity. DDPG with noise from a normal distribution reports slightly better
results with fewer episodes with a demand greater than the sustained capacity on average. DDPG
with parameter noise reports the best result with the smallest number of episodes with a mean
demand larger than the sustained capacity.

Note that even though the algorithms do not keep the mean OC under the sustained capacity
for all the episodes, for the last episodes where we can assume convergence in the performance,
the mean demand does not exceed the peak capacity. Furthermore, focusing on the parameter noise
implementation, it can be seen that the frequency and the number of consecutive episodes where
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(a) OU (b) Normal (c) Parameterized
Figure V-3: Mean occupancy count per episode for the DDPG implementations.
(a) Ornstein-Uhlenbeck noise. (b) Normal distribution noise. (c) Parameter noise

the demand exceeds the sustained capacity are much smaller than in the other implementations.

Last but not least, we would like to mention that a direct comparison between the results
presented in this article and the actual ATFM delay is not feasible since the latter is the result of
considering a broader environment. Let us imagine, for example, that a flight crosses two differ-
ent regulated sectors. Even though the CASA algorithm could impose two different delays, the
hypothetical flight would be affected only by the largest one. To directly compare the ATFM delay
between the two approaches, a RL model for the two airspace sectors would be needed. Extend-
ing the proposed system to a broader region that considers the interaction between neighboring
sectors is a relevant point to be studied in future works.

V.4.3 Case study

This section shows the outcome of the framework for two specific regulations subtracted from the
training dataset. The selected regulations are YBOLN07 from September 7th 2019, and YBOLN18A
from August 18th 2019. For each of the previous regulations, the RL system based on DDPG and
parameter noise is used to collect which flights should be delayed and the amount of delay. Then,
using this information, the original expected pre-tactical traffic is visualized using the following
color schema:

• Red: System-suggested flights for regulation

• Green: Non-regulated flights outside the sector in the corresponding timestamp

• Blue: Non-regulated flights inside the sector in the corresponding timestamp

Figure V-4 shows the results for regulation YBOLN07 that started at 8:00 am and finished
at 10:30 am. As a high-level indicator, the 141 flights crossing the sector linked to regulation
YBOLN07 had a total delay of 556 minutes (delay from YBOLN07 or any other active regulation);
thus, an average delay of 3.94 minutes per flight. On the other hand, our RL system suggests
regulating 41 (from the 141 flights crossing the traffic volume) with an average delay per flight
equal to 3.71 minutes per flight and a maximum individual delay equal to 21 minutes. Note that
the comparison of minutes of delay per flight considers all the regulated traffic crossing the sector
independently of the regulation.

Looking at the images, the selected sector (EDYYBOLN) has two traffic flows, one from top-
left to bottom-right and another from bottom-felt to top-right. Both traffic flows are similarly
regulated, indicating that the delay is spread between fights, and the system does not have a
preference. However, the RL policy sometimes decides to delay flights that do not completely
cross the sector, which seems to be not ideal (see Figure V-4, timestamp 8:57, red fight at the
bottom-right).
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Figure V-4: Advice generator outcome of the RL system for the regulation YBOLN07

Note that only five images at different timestamps per regulation are shown because of space
constraints. Furthermore, there are no regulated flights in the first timestamp to guarantee that
agents are not directly penalized due to the demand-capacity imbalance without being able to
perform any action.

Figure V-5 shows the results for regulation YBOLN18A, which started at 2:00 pm and finished
at 4:45 pm. In this case, the flights crossing the sector when the regulation was active received an
ATFM delay of 3.39 minutes per flight, while the RL framework regulated 48 (from the 159 flights
crossing the traffic volume) with an average delay per flight equal to 3.35 minutes per flight and
a maximum individual delay equal to 18 minutes. Notice that, despite the images being more
crowded than in the previous case study, the average delay per flight is slightly smaller. 3.94
versus 3.39 for the actual ATFM delay, and 3.71 versus 3.35 using the RL system. This is also the
case for the peak delay imposed on individual flights.

Figure V-5: Advice generator outcome of the RL system for the regulation YBOLN18A

The results obtained in these two case studies show the potential of the proposed new frame-
work. The RL system is able to solve already detected DCB problems using images with behavior
that could be considered valid. However, a deeper analysis is required to obtain further conclu-
sions.

V.5 Discussion

This Chapter proposes an image-based MARL solution to optimize ATFM delay in the European
network. The goal is to maximize the usage of the airspace sector’s capacity while minimizing
the ground delay. The proposed approach compares DQN and DDPG algorithms with experience
replay buffers, target networks, and different strategies for exploration. Although the obtained
results did not lead to a clear conclusion about which algorithm configuration best fits the prob-
lem, DDPG arises as a promising candidate. It exhibits lower overall ATFM delay and a mean OC
closer to optimal values, especially if parameter noise is used for exploration during training.

The results obtained as a first step towards devising MARL methods for deciding on ATFM
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delay policies using pixel images are promising. The proposed system can successfully solve com-
plex real-world DCB problems. Moreover, the work presented in this Chapter could contribute to
improving the usage of the airspace sector’s capacity and reducing current delays. One relevant
aspect to highlight from this research is that the approach based on images for DCB problems
provides a scalable architecture that allows the representation of an arbitrary number of agents
without changing the state variables architecture. This characteristic is especially relevant when
working on the entire European ATM network, where thousands of flights are operated daily.

Despite the promising results obtained in this proof of concept, some limitations are iden-
tified. Related to the delay, only positive delays are valid actions for the agents, but adding the
option of removing previously issued delays could enrich the system, providing more flexibility
to the agents.

Associated with flight plans used and the assumption related to the take-off time, the ap-
proach presented in the Chapter makes the framework more suitable for Air Traffic Control (ATC)
tasks than dealing with pre-tactical ATFM regulations. For instance, it could be more convenient
for cherry-picking measures during the day of operation (D0). The deviation between the ex-
pected and final location of the flights for specific timestamps could introduce an error too big
to be considered during pre-tactical DCB issues. However, overcoming the initial assumptions,
for instance, introducing a departing window, could make the proposed framework valid for pre-
tactical tasks too.

Another limitation of this work is that only individual TVs are studied, but the issued delay
required to solve DCB issues in one specific TV could create imbalances between the demand and
the capacity in adjacent sectors. Ideally, it would be necessary to solve the DCB issues and the
network level, but to be used in combination with the models presented in Chapter III, it was
decided to perform a proof of concept at the level of en-route TVs. The combination of this work
with the one presented in Chapter III will create an end-to-end system to precisely identify the
airspace sectors with demand-capacity imbalances and propose a possible solution to reduce such
demand during the pre-tactical phase.



Obstacles are those frightful things you see when you take your

eyes off your goal

— Henry Ford

VI
ATFM regulations at the flight level

Airlines perform their aircraft assignment between 15 and 7 days prior to the day of operations.
With this process, specific aircraft frames are allocated to schedules considering operational con-
straints, defining the different rotations for their flights through the day of operation (D0). In day
prior to operations (D-1), the operation plan is drawn to identify potential network issues and
prepare pre-tactical preventing measures, such as aircraft tail swapping or crew reassignment.
During D0, flight plans will be updated (up to 3 hours prior to departure), and pre-tactical actions
implemented, if needed by the duty manager, in order to minimize the propagation of disruption
in the network.

During the operational plan definition, airlines submit multiple flight plans, trying to op-
timize as much as possible the different rotations of flights during D0. However, flights might
experience discrepancies between their plan and execution due to many different factors, par-
ticularly demand-capacity imbalances in the network leading to Air Traffic Flow Management
(ATFM) regulations.

This Chapter studies the usage of supervised Machine Learning (ML) models to predict
ATFM regulations issued to specific flights, aiming to support the tactical planner or the duty
manager when optimizing the different rotations for D0. Concretely, because ATFM regulations
are particularly complex, this Chapter studies whether it is possible to predict four different char-
acteristics of the ATFM regulations that could be of interest to the airlines. The expected prediction
horizon is around 24 hours before Scheduled Off-Block Time (SOBT).

97
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VI.1 State of the Art

Applying machine learning techniques to Air Traffic Management (ATM) is an active area of re-
search. However, as has been seen in the previous Chapters, less work has focused on the study
of ATFM regulations and their characteristics—especially the prediction of regulation for specific
flights.

At the flight level, previous research presented a comparative analysis of models predicting
ATFM delays for specific Origin-Destination (OD) pairs (Gopalakrishnan & Balakrishnan, 2017).
Their analysis focused on the USA network and studied three different prediction problems be-
tween 2 and 24 hours in the future: classification of OD pair delay (delays above or below a
threshold), prediction of OD pair delays, and predictions of airport delay. Similarly, in the previ-
ous paper Rebollo & Balakrishnan (2014), the authors used a Random Forest algorithm to predict
future departure delays between 2 and 24 hours. In this case, a 19% error was obtained, classifying
100 different OD pairs as above or below 60 minutes.

Another approach used in previous research was to identify similar past days and estimate
possible delays through a comparison process. For instance, Gorripaty et al. (2016), the authors
used a Random Forest algorithm to learn the similarity between days and to infer possible correc-
tive actions that could be applied. They looked at airport demand figures, capacity estimations,
and METeorological Aerodrome Report (METAR) data to find the most similar past day to current
day-of-operations.

The resilience of the European Air Traffic Management Network (EATMN) was studied in
Sanaei et al. (2019), focusing on the management of emergent demand-capacity imbalances (tacti-
cal phase), regarded as disruptions due to regulations. A more recent approach based on trajectory
preferences was presented in De Giovanni et al. (2022). The authors studied the potential trade-off
between preferences and delays and the potential benefits to the development of the next gen-
eration of ATFM tools. Machine learning techniques were used to extract consistent trajectory
options in this context.

Last but not least, the other primary source of research related to ATFM regulations at the
flight level focused on studying the downstream effects of regulations or possible mitigation ac-
tions. Xu et al. (2020) proposed a new framework to improve the cost-efficiency for airspace users
when facing ATFM regulations. Dalmau (2022) studied the likelihood of airspace user re-routing
to mitigate ATFM delay using decision tree models.

Despite the vast research activity on machine learning applications to ATM in the last years,
tackling the problem of ATFM identification at the flight level for the pre-tactical phase exhibits
a significant gap. Most of the work focused on global delay and downstream effects of issued
ATFM regulations.

VI.2 Problem formulation

ATFM delays are particularly complex. First, when a flight is affected by an ATFM regulation,
they are issued with a Calculated Take-Off Time (CTOT) providing a time window for the flight
to depart (from 5 minutes prior CTOT to 10 minutes after). If a flight cannot depart within this
window, for instance, due to other delays, the ATFM slot will be missed and a new one assigned.
This could lead to significant extra delays being issued to the airline as early slots might already
not be available. Therefore, CTOTs act as barriers in the planning of flights. Suppose the delay
is propagated in a way that ATFM slots are missed. In that case, this might have a significant
downstream impact even if the initially assigned delay by the regulation is small or even zero.
Therefore, airlines need to closely monitor if slots might be missed and notify the Network Man-
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ager (NM) as soon as possible to obtain a new CTOT as close as possible to their new Estimated
Take-Off Time (ETOT). On the contrary, if the initial delay is large, then some propagation of delay
by previous legs can be absorbed by the imposed delay due to the ATFM regulation. Even if the
flight is ready, it will not be able to depart until its CTOT window.

Second, in some cases, airlines can respond to the ATFM regulations. For example, if the reg-
ulation issuing the delay is in the airspace, a new flight plan which avoids the congested airspace,
e.g., re-routing or maintaining a lower altitude to avoid entering the airspace, could reduce (or
eliminate) the issued delay. Moreover, suppose the aircraft is ready, i.e., with the crew and passen-
gers boarded. In that case, messages can be exchanged with the NM to benefit from potential new
early slots generated due to delays or cancellations by other flights.

Overall, airlines need to closely monitor flights that have been regulated and actively produce
new flight plans and solutions to reduce the impact of this delay on their fleet. As shown, not
only if a flight is impacted by ATFM delay, but the characteristics of this (amount of delay and
type of regulation) are required as soon as possible for effective fleet management. Therefore, the
following questions are considered due to their operational relevance:

• Whether an aircraft is going to be affected by an ATFM regulation: This is the first factor to
consider;

• The protected location type of the regulation (airspace or airport): Regulations are divided
between those due to issues in the airspace, which might be avoided by modifying the tra-
jectory (e.g., re-routing or flight level capping), and those due to congestion at the arrival
airport, which the airline will not be able to avoid;

• If the regulation issues a positive delay or not: In many instances, the CTOT issued to the
airline means that there is no delay to be performed with respect to their planned operations.
However, this does not mean that the flight is not constrained as it will have to depart within
its slots window ([5 minutes before CTOT, 10 minutes after CTOT]). If this constraint cannot
be met (e.g., due to reactionary delay), the ATFM slot will be missed, which could lead to
a large additional delay. Therefore monitoring these flights is crucial to ensure that delay is
not propagated in the network;

• Impact/severity of the ATFM delay if positive: Estimating not only the expected ATFM
delay that will be imposed but the uncertainty of this delay.

Therefore to answer the previous questions, four ML models are developed to produce indi-
vidual estimators with different levels of granularity to support the planning process:

1. Probability ATFM regulations: Probability of a flight being regulated;

2. Aerodrome VS Airspace: For regulated flights, whether the protected regulation location is
due to aerodrome or airspace restrictions;

3. Zero VS Non-zero delay: If the ATFM delay issued is positive, i.e., non-zero;

4. Probability distribution ATFM delay: Expected value and distribution of ATFM delay as-
signed, if non-zero.

The first two models predict whether a flight is affected by an ATFM regulation and its char-
acteristics for the regulated flights. The latter two models provide an indication of the issued delay.
First, it is studied whether the ATFM delay is zero, only reducing the departing slot. Second, for
regulated flight with an expected non-zero delay, it is estimated the probability distribution of the
possible expected ATFM delay (aka. ground delay).
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Because the results of the different models are complementary, the outcome of some models
dictates if the other ones shall be used. Figure VI-1 shows the pipeline of the proposed framework.

Figure VI-1: Pipeline of the advice generator for ATFM regulations at the flight level.

VI.2.1 Assumptions

Two main assumptions are required to predict ATFM characteristics for flight flown by a specific
operator. First, it is assumed that the Flight Intentions (FIs) of all flights operated in the same D0
are known. Second, it is assumed that historical traffic information is available to estimate the
flight plans of the known FIs.

FIs are assumed to be available to know the expected rotation of the selected operator for
D0, as well as the intention of the other operators. It is essential as it is required to estimate the
expected demand of both airports and airspace sectors, but also operational information such as
the expected departure hour and day.

The second assumption is required to guarantee that the flight plans used to estimate the air-
port/network demand will be available on D-1, ensuring no data availability issues are introduced
in the feature engineering process. Currently, this is the approach followed by EUROCONTROL
during the pre-tactical phase, where PREDICT estimates the flight plans when they have not been
filled yet (see Section II.4.1.3 for further details about PREDICT).

VI.3 Data analysis

Data are one of the key aspects of each framework based on using ML models. Section VI.3.1
summarizes the data sources used for this experiment and Section VI.3.2 the Exploratory Data
Analysis (EDA) of the labeling for the four ML models.

VI.3.1 Data sources

The data sources for the prediction of ATFM characteristics at the flight levels are summarized
in Table VI-1. ALLFT+ data is used to know the FIs, the static airport characteristics information
specifies the size of the departure/arrival airports and whether they are used as a hub, PREDICT
as a source of expected flight plans, NOAA is the selected source of weather information, and data
from Vueling guarantees that the labeling of the samples is done using information available by
the end user. Vueling is the selected operator for this case study due to its volume of operations.
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Table VI-1: Data sources used to predict ATFM regulations for individual flights (flight level)

Data source / Format Period time Usage Comment
ALLFT+ 2018 Features Flight intentions

Airports data Static Features Size and/or hub

PREDICT 2018 Features Airport/network demand

NOAA 2018 Features Weather

Vueling 2018 Labelling ATFM information

VI.3.2 Exploratory Data Analysis

The training/testing observations have been labeled according to the information available from
the NM in the selected operator. Figure VI-2(a) shows that around 33% of flights were regulated in
2018, and Figure VI-2(b) exhibits that around 80% of the issued regulations were finally applied.
As a reference, the available data source contains information for around 201,000 flights.

Figure VI-2: Percentage of ATFM regulations in 2018. (Left) Non-regulated VS regulated.
(Right) Regulations Cancelled VS Applied

FigureVI-3 shows that for the active regulations, 61% were due to airspace Demand-Capacity
Balancing (DCB) issues while 39% has as a protected location type the aerodrome.

Figure VI-3: Percentage of protected ATFM locations in 2018 for regulated flights
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If the analysis is extended to the actual issued ATFM delay, Figure VI-4 presents the number
of occurrences of ATFM delays from zero to one hundred. As can be seen, most of the issued
ATFM delays are equal or near zero, concentrating most occurrences under twenty minutes. It is
worth mentioning that some outliers over 100 minutes of delay have been identified, but they are
not represented in the following image for clarity.

Figure VI-4: Percentage of ATFM delay minutes issued to regulated flights in 2018

Finally, Figure VI-5 presents the percentage of occurrences of each possible regulation reason,
where C-ATC Capacity, W-Weather, and G-Aerodrome are the top three most frequent ones.

Figure VI-5: Percentage of ATFM regulation reason issued in 2018

From an operational point of view, the EDA shows the relevance of the selected ATFM charac-
teristics. Moreover, it guarantees a reasonable number of samples to train the different supervised
ML models.
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VI.4 Predictive capabilities

As introduced at the beginning of this Chapter, four different ML models are required. However,
not all of them belong to the same category, depending on the expected outcome. The probability
of ATFM delay, the protected location, and whether the ATFM delay is zero are based on binary
classifiers. On the other hand, to estimate the probability distribution of the expected minutes of
delay, it is used the combination of a regressor and a multi-output classifier. Table VI-2 summarises
the required algorithms for each proposed case study.

Table VI-2: Machine learning model type per ATFM characteristic

ML type ATFM characteristic Outcome
Binary classification Probability ATFM Prob. none-regulated VS regulated

Protected location Prob. aerodrome VS airspace
Probability zero delay Prob. zero VS non-zero delay

Regression ATFM delay Real value
Multi-output classification ATFM delay prob. dist. Probability distribution

The binary classifiers are used as they were designed. The objective is to predict which label
is more likely. However, not only the expected amount of ATFM delay but the distribution (and
uncertainty) associated with this prediction is relevant to the airline due to the non-linearities of
the cost of delay (Cook & Tanner, 2015).

Having introduced the different ATFM characteristics and the required ML models,
Section VI.4.1 introduces the input features selected and the output of the different ML mod-
els. SectionVI.4.2 shows the feature explainability analysis conducted and presents the obtained
results. Section VI.4.3 details the approach followed in selecting the best possible ML algo-
rithms and their hyper-parameters for the binary classifiers. Section VI.4.4 shows the process
followed to build a ML system that predicts the probability distribution of expected ATFM delay.
Section VI.5.1 collects the evaluation techniques used according to the model type.

VI.4.1 Inputs and outputs of the models

The objective of supervised ML models is to predict the different target indicators by means of
knowing the features. The input features used to predict the different ATFM characteristics at
the flight level are particularized below. Section VI.4.1.1 lists all the features computed for all the
experiments by their topic. Section VI.4.2 presents the feature explainability analysis based on the
correlation between the input features and the target labels.

The are two reasons behind the feature explainability analysis. First, performing this kind of
analysis is a good practice when training ML models. Second, to the best knowledge of the author
of this thesis, there is no previous work related to feature importance when predicting ATFM
characteristics at the flight level. Therefore, this analysis could help determine the information
more relevant for the different ATFM characteristics.

VI.4.1.1 Input features

The input features selected to predict the different ATFM characteristics are scalar variables that
can be grouped into five topics:
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• Operational time: basic information from ALLFT+ data used as the FIs;

• Airport static information: basic static information about the departure/arrival airport per
FI. Information from source airport data;

• Airport demand: expected number of flights departing from the origin and landing at the
destination airports. Input features based on PREDICT data;

• Network demand: features linked to the expected congestion in the most crowded Air Traf-
fic Control (ATC) sector the flight is expected to cross. Input features based on PREDICT
data;

• Weather: numerical indicators related to possible convective weather. Input features ex-
tracted from NOAA

For each of the previous topics, Table VI-3 summarizes all the computed features, their data
source, and details its definition:

Table VI-3: Input features grouped by topic

Topic Feature Definition
Operational Hour departure Hour from SOBT. Value from 0 to 23

time Day week departure Day week form SOBT. Value from 0 to 6
Month departure Month form SOBT. Value from 0 to 11

Airport static Size departure airport Three size {small, medium, large}
information Size arrival airport Three size {small, medium, large}

Hub departure Used as a hub by the airline {no, yes}
Hub arrival Used as a hub by the airline {no, yes}

Airport Departures hour Departures respect the same hour
demand Departures day week Departures respect the same day of week

Arrivals hour Arrivals respect the same hour
Arrival day week Arrivals respect the same day of week

Network Normalized OC OC / avg. OC. Most crowed crossed sector
demand Normalized OC OC / max. OC. Most crowed crossed sector

Normalized EC EC / avg. EC. Most crowed crossed sector
Normalized EC EC / max. EC. Most crowed crossed sector

Weather Visibility depart/arrival Directly from NOAA divided by 12000
Wind depart/arrival Directly from NOAA (Knots) divided by 30

u-wind depart/arrival Directly from NOAA (Knots) divided by 30
Temperature depart/arrival Directly from NOAA (F) divided by 125
Rel. humidity depart/arrival Directly from NOAA divided by 0.0015
Geopotential depart/arrival Directly from NOAA divided by 25000

Ventilation rate depart/arrival Directly from NOAA divided by 40000

Notice that more input features could be relevant for the different case studies. However,
ensuring that the end user (the operator/airline) has access to the required data source to compute
them is paramount.
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VI.4.1.2 Outputs of the models

According to the case study, the expected outcome of the models depends on the selected ML
algorithm type. For the binary classifiers that predict the probability of ATFM regulation, the
protected location, and whether the issued delay is zero, the outcome of the models is a value
between zero and one, showing the probability of the event. For instance, using a threshold equal
to 0.5, for the probability of ATFM regulation, a value between 0 and 0.5 indicates the flight will
not be delayed. In contrast, a value between 0.5 and 1 predicts that the flight will be regulated.

On the other hand, for the probability distribution of ATFM delay, as the name indicates, we
want to predict a probability distribution. First, the regressor is triggered to predict the minutes
of ATFM delay. The outcome of the regressor is a real number. Second, the multi-output classi-
fier predicts the probability of each bin used to build the probability distribution of ATFM delay.
Third, the outcome of both models is combined, using the outcome of the regressor as an offset
for the predicted probability distribution. Figure VI-6 is a simplified visual representation of the
approach to predict such a probability distribution.

Figure VI-6: Conceptualization probability distribution ATFM delay

VI.4.2 Feature selection analysis

Feature selection is the process of identifying and selecting a subset of relevant features from
a larger set of features to improve the performance of a ML model. It involves analyzing the
importance of each feature and selecting only those that are most informative for the given task.
A good example of the effect that the selected features can have on the performance of the models
is (Rebollo & Balakrishnan, 2014). Notice that this differs from model explainability, which studies
the final impact of a feature in the final trained model.

In this Chapter, a Filter method based on an ANalysis Of VAriance (ANOVA) (Judd et al., 2017)
between labels and the features for classification and regression tasks are used. The idea is to
compute the F-statistic for each feature, which is a measure of the difference between the means
of two or more groups of data relative to the variability within the groups. A high F-statistic
indicates that the means of the groups are significantly different, and thus the feature is more
relevant for the classification task. In regression analysis, the F-test is used to determine whether
a set of independent variables (i.e., features) as a whole are statistically significant in explaining
the dependent variable (i.e., target variable).

The following images provide the feature selection analysis for the different engineered fea-
tures for the different ATFM characteristics. The y-axis shows the reported importance of each
feature. The logarithm of the F-value is often used in machine learning because the F-value can be
very large, and taking the logarithm can make the results more manageable and easier to interpret.
In the x-axis, it is presented each of the input features sorted by their importance. Furthermore,
the different features are displayed using different colors according to their topic. The legend of
the topics is displayed at the top of each image.
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Figure VI-7 shows the feature correlation analysis for the ML models that estimate the proba-
bility of ATFM regulation per flight. The labeling is a boolean variable indicating whether the flight
was regulated, and each input feature has been colored according to the corresponding topic pre-
sented previously. As can be seen, weather information presents a high correlation with the prob-
ability of ATFM. Especially the wind components and speed, geopotential, and temperature. It is
also highly correlated with the size of the arrival airport and the network demand features. On
the other hand, the operational information and the congestion at the airports are less correlated
with the target features, but their correlation cannot be ignored. Finally, the feature that indicates
whether the arrival airport is used as a hub by the airline does not add information; thus, it is
removed from the final training dataset.

Figure VI-7: Feature explainability for the probability of ATFM regulations

Figure VI-8 presents the feature explainability analysis for the ML model that estimates
the protected ATFM region for regulated flights (aerodrome or airspace). Zero is used to label
regulated flights due to aerodrome congestion, while one corresponds to regulated flights with
airspace as a protected location region. The correlation analysis shows that the static information
about the airports has a high correlation with the labeling, especially the size of the airports and
whether the departure airport is used as a hub by the airline. Next, similar to the previous case
study, the most correlated weather features are related to the wind, followed by the geopotential
and the ventilation rate of the departure airport. The rest of the input features do not present a
clear pattern. However, the contribution is not negligible, except for the congestion in the same
hour and the ventilation rate of the arrival airport, which are removed from the training dataset
as the score is smaller than one.

Figure VI-9 indicates a different pattern of behavior. The static information about the ori-
gin/destination airports is highly correlated with the target, but the weather information plays a
minor role than in the previous case study. Furthermore, something important to notice is that the
overall score of the features is significantly smaller. Previously, the observed scores were around
three, while now are around 0.5. It indicates that the overall correlation of the selected features is
very low when predicting whether the identified ATFM regulation will issue a delay equal to zero
minutes for specific flights. The results make sense as the final imposed ATFM delay comes from
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the Computer Assisted Slot Allocation (CASA) algorithm based on the first-planned-first-served
principle. For instance, the condition of the network does not determine the issued ground delay.
Finally, the congestion at the airports, the month of the year, and the visibility are removed from
the final training dataset due to their low correlation.

Figure VI-8: Feature explainability for the protected location of ATFM regulations

Figure VI-9: Feature explainability for the probability of zero ATFM delay
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Figure VI-10 exhibits the feature correlation analysis between the selected features and the
actual ATFM delay. Interestingly, although the selected features were not very correlated with the
labeling used to predict whether the delay is zero, this is not the case for the actual ATFM delay
with an average score of around two. The most correlated features are the departing hour and the
characteristics of the departure airport. Then, the wind, the geopotential, the network congestion
normalized by the maximum historical values, and the temperature. Finally, all the features with
a score lower than one are removed from the training dataset.

Figure VI-10: Feature explainability for the ATFM delay different than zero

VI.4.3 Binary classifiers: probability, location, and zero ATFM delay

After defining the target labels and the input features more relevant for each case study, the first
task to perform is the model selection and its hyper-parameters. Hyper-parameters are parameters
that are not directly learned within estimators. They are passed as arguments to the constructor
of the estimator classes.

There are two main approaches to finding the best possible models and their hyper-
parameters: with and without brute force. Brute force exhaustively considers all parameter com-
binations within the provided search space, while none brute force techniques are based on opti-
mization techniques. In this case study, a brute force technique has been selected due to the small
search space required. An initial analysis reported that simple ML algorithms should be enough.
Moreover, the approach was validated by experts from the selected operator as the best initial
approach.

Concretely, a GridSearch analysis (Scikit-learn, 2022b) selects the best ML model algorithm
and hyper-parameters, using as a scoring function a balanced accuracy (Scikit-learn, 2022a). The
balanced accuracy score has been selected for the binary classifiers, ensuring that the selected
algorithm and hyper-parameters are as optimal as possible for both classes for the final model.
Table VI-4 collects the different studied models and the defined search space. The reader is re-
ferred to Scikit-learn (2022c) for further details about the meaning of each hyper-parameter.
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Table VI-4: Studied classification algorithms and search space definition

ML algorithm Hyper-parameter Search space
MultiLayer Perceptron (MLP) Hidden layer size 15, (15, 30), (15, 30, 60),

classifier (60, 30, 15), (30, 15), (100, 50, 10)

Batch size 32, 64, 100

Solver lbfgs, sgd, adam

Activation identity, logistic, tanh, relu

Random state True, False

Learning rate 0.001, 0.0001

Random forest Num. estimators 50, 100, 150, 200, 250, None

classifier Max. depth 25, 50, 100

Criterion gini, entropy

AdaBoost Num. estimators 25, 50, 100

classifier Learning rate 0.25, 0.5, 0.75, 1

Algorithm samme, samme.r

Decision tree Max. features auto, sqrt, log2

classifier Max. depth 25, 50, 100, None

Criterion gini, entropy

Splitter best, random

Linear SVC Penalty l1, l2

Loss True, False

Dual True, False

Class weight dict, balanced

VI.4.4 Probability distribution: ATFM delay

Different approaches for estimating probability distribution can be found in the literature. For
instance, quantile regression is one of the most popular because no assumptions are made about
the target distribution (Yu et al., 2003). NGBoost enables predictive uncertainty estimation with
Gradient Boosting through probabilistic predictions (Duan et al., 2020). Another option could be
to train a Artificial Neural Network (ANN), which predicts the parameters of the distribution,
among others.

In this thesis, a new approach based on a combination of regression and classification
models is used to estimate the amount of ATFM delay and its probabilistic distribution (uncer-
tainty), obtaining the discrete distribution of the possible expected values. The regression model
estimates the minutes of ATFM delay, while the multi-output perceptron classification model
predicts the error distribution for the previous prediction. The interested reader can refer to
De Falco & Delgado (2021). The main reason for using this approach is to test the possibilities
this technique can offer and due to consensus among all the partners in Dispacther3, where the
study conducted in this Chapter was performed. Figure VI-11 depicts the approach used and the
interaction between the different required algorithms.
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Figure VI-11: Architecture probability distribution ATFM delay.
Source: De Falco & Delgado (2021)

As mentioned previously, the labeling for the regressor comes from the actual ATFM delay
imposed on each flight. However, the missing component is the exact labeling for the multi-output
classifier that estimated the probability distribution. The goal of the classifier is to predict the prob-
ability distribution of the error. Therefore, for the classifier, the labeling is based on computing the
difference between the predicted value by the regressor and the actual delay. However, the range
of the probability distribution is limited to the most frequent range. Otherwise, the range will be
conditioned by the biggest mistake made by the regressor. For example, if the regression model
produces most of the predictions with an error between -20 and 20 minutes, this will be the range
of values the classifier will try to estimate. Thus, using twenty bins in the distributions, each bin
corresponds to a two-minutes error. Figure VI-12 is an example of the labeling for the classifier if
the error between the actual ATFM delay and the prediction by the regressor is four minutes.

Figure VI-12: Labeling ATFM delay classifier. X indicates elements equal to one.

Similar to the previous binary classifiers, after defining the target labels, it is time to select the
ML algorithms and their hyper-parameters. For consistency, an equivalent GridSearch analysis has
been conducted to identify the best candidates. Table VI-5 presents the studied ML algorithms and
the hyper-parameters search space the regressor that estimates the amount of ATFM delay and
Table VI-6 the search space for multi-output classification models that estimate the probability
distribution error. In both cases, the performance score is computed using the Mean Absolute
Error (MAE) to minimize the deviation between the predicted and actual ATFM delay.
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Table VI-5: Studied regression algorithms and search space definition

ML algorithm Hyper-parameter Search space
MLP Hidden layer size {15, (15, 30), (15, 30, 60),

regressor (60, 30, 15), (30, 15), (100, 50, 10)}

Batch size 32, 64, 100

Solver lbfgs, sgd, adam

Activation identity, logistic, tanh, relu

Random state True, False

Learning rate 0.001, 0.0001

Random forest Num. estimators 25, 50, 100, 150, None

regressor Max. depth 25, 50, 100, None

Max. features auto, sqrt, log2, None

Criterion squared_error, absolute_error, friedman_mse, poisson

AdaBoost Num. estimators 25, 50, 100

regressor Learning rate 0.25, 0.5, 0.75, 1

Loss linear, square, exponential

Decision tree Max. features auto, sqrt, log2

regressor Max. depth 25, 50, 100, None

Criterion squared_error, friedman_mse, absolute_error, poisson

Splitter best, random

Ridge Solver auto, svd, cholesky, lsqr, sparse_cg, sag, saga, lbfgs

Table VI-6: Studied multi-output classification algorithms and search space definition

ML algorithm Hyper-parameter Search space
Multi-output Hidden layer size 15, (15, 30), (15, 30, 60),
MLP classifier (60, 30, 15), (30, 15), (100, 50, 10)

Batch size 32, 64, 100

Solver lbfgs, sgd, adam

Activation identity, logistic, tanh, relu

Random state True, False

Learning rate 0.001, 0.0001

VI.5 Performance evaluation

This section presents the results obtained predicting all ATFM regulation reasons at the flight level
for a specific European airline, Vueling. Section VI.5.1 summarizes the selected evaluation metrics.
Section VI.5.2 shows the results predicting the probability of ATFM regulation. Section VI.5.3 the
performance of the model that estimates the protected region for regulated flights. Section VI.5.4
the results obtained predicting whether the ATFM delay will be zero. Section VI.5.5 exhibits the
performance of the models that estimate the final ATFM delay for regulated flights.
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The results focus on a specific operator because it is the expected end-user, being the se-
lected airline one of the operators with a larger volume of flights currently. Therefore, the results
obtained could be extended to other airlines. Moreover, Europe is a relatively constrained envi-
ronment, and other operators should behave similarly.

Before looking into the results, it is worth mentioning that for each model, it is presented the
results from the GridSearch analysis to identify the ML algorithm that best fits each problem and
its hyper-parameters, the accuracy, recall, precision, and F1-score, but also, the results from the
model explainability analysis conducted using SHapley Additive exPlanations (SHAP).

VI.5.1 Evaluation metrics

The performance of the binary classifier is based on using the accuracy, recall, precision, and F1-
score (see Section II.5.1.1 for further details). These metrics will provide a complete overview
of the models’ performance when predicting the different ATFM characteristics. The accuracy,
recall, and precision aim to quantify how good the models are identifying regulated flights, the
protected location is airspace, and whether the expected ATFM will be non-zero. However, the op-
posite target labels are also essential for an operator/airline. In this case, the F1-Score provides an
overview of the models’ performance predicting both categories. Notice that many metrics could
be computed to study the performance of the different models. However, because we decided to
train/test models using almost balanced datasets, because of the number of models, and for con-
sistency across Chapters, it has been decided to use simple and well-known metrics. Additional
metrics that could be interesting are the logloss, the ROC AUC, or the average precision.

On the other hand, to evaluate the performance of the model that predicts the ATFM delay
and the probability distribution, the evaluation process aims to estimate the deviation and un-
certainty of the predictions. First, the MAE is used to quantify the deviation between the actual
delay and the expected value from the distribution. Second, the uncertainty in the predictions
is quantified by computing the average time necessary to cover 90% of the probabilities. Third,
the number of hits quantifies how many times the actual ATFM delay is within the predicted dis-
tribution. The less uncertain, the narrower the probability distribution uncertain because fewer
minutes are likely to be the final ATFM delay. Figure VI-13 is an example of the expected outcome
and the required elements to evaluate the performance. In red, the actual delay is represented,
and the blue bars are the predicted probability distribution.

Figure VI-13: Example actual and probability distribution ATFM delay
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VI.5.2 Probability ATFM regulations

Table VI-7 collects the results from the GridSearch analysis based on a balanced accuracy. The
GridSearch analysis reports that the ML algorithm with the best-balanced accuracy is a Random
forest classifier using a criterion equal to ’gine’, a maximum depth of 50, and 200 estimators.

Table VI-7: GridSearch analysis probability ATFM regulations

ATFM characteristic ML algorithm Balances accuracy score
Probability ATFM MLP classifier 0.63

(yes VS no) Random forest classifier 0.81
AdaBoost 0.7

Decision tree classifier 0.7

Linear SVC 0.68

Table VI-8 exhibits the accuracy, recall, precision, and F1-score obtained. As can be seen,
the model can correctly predict most of the regulations with an accuracy of 0.82. Furthermore,
it can properly identify non-regulated and regulated flights, reporting an F1-score equal to 0.82.
Figure VI-14 shows the confusion matrix obtained predicting ATFMs regulations using a Random
forest classifier, 172,111 and 41,692 observations for training and testing respectably.

Table VI-8: Accuracy, recall, precision, F1-Score probability ATFM regulations

Accuracy Recall Precision F1-score
0.82 0.81 0.82 0.82

Figure VI-14: Confusion matrix probability ATFM regulations

Figure VI-15 depicts the SHAP analysis of the trained model to understand better its behavior
and the impact of the different input features.

The model prioritizes the size of the arrival airport, the expected wind, the network demand,
the geopotential, and operational information such as the day of the week or the hour. Aerodrome
ATFM regulations are issued due to high demand at the destination airport; thus, it makes sense
to take into account the size of the arrival airport because a bigger airport implies more traffic
and higher probabilities of regulations. The relevance of the wind at the arrival airport can drive
similar conclusions. The expected network demand is directly related to airspace ATFM regula-
tions, and the geopotential is linked to the altitude of the airports, e.g., to the likelihood of adverse
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header conditions. Finally, the day of the week and the expected departure hour are highly rele-
vant because most of the regulations are issued in the morning to avoid downstream effects or on
the weekends due to the larger volume of traffic.

Figure VI-15: SHAP analysis probability ATFM regulations

VI.5.3 Location ATFM regulation

Table VI-9 shows the results from the GridSearch analysis based on a balanced accuracy. The
GridSearch analysis indicated that the ML algorithm with the best-balanced accuracy is a Random
forest classifier using a criterion equal to ’gine’, a maximum depth of 50, and 200 estimators.

Table VI-9: GridSearch analysis protected ATFM location

ATFM characteristic ML algorithm Balances accuracy score
Protected location region MLP classifier 0.71

(aerodrome VS airspace) Random forest classifier 0.86
AdaBoost 0.76

Decision tree classifier 0.78

Linear SVC 0.71

Table VI-10 exhibits the accuracy, recall, precision, and F1-score obtained. Similar to the pre-
vious case study, the model can correctly predict whether the protected location was aerodrome
or airspace, reporting an F1-score equal to 0.86. However, the confusion matrix reveals that the
model predicts aerodrome ATFM regulations more accurately.
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Table VI-10: Accuracy, recall, precision, F1-Score protected ATFM location

Accuracy Recall Precision F1-score
0.87 0.84 0.89 0.86

Figure VI-16 shows the confusion matrix obtained predicting the protected location of is-
sued ATFMs regulations using a Random forest classifier, 56,146 samples for training, and 14,037
samples for testing.

Figure VI-16: Confusion matrix protected ATFM location

Figure VI-17 presents the SHAP analysis of the trained model. Clearly, the size of the arrival
airport is the most relevant input feature for the model. Then, the most relevant features are
whether the arrival airport is used as a hub by the airline, some operational information such as
the day of the week or the departing hour, and weather information mainly related to the expected
wind. All these features are mainly related to aerodrome regulations, so it makes sense that the
model performs better when predicting this class.

Figure VI-17: SHAP analysis protected ATFM location
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VI.5.4 Zero VS Non-Zero delay

Table VI-11 summarizes the results from the GridSearch analysis based on a balanced accuracy,
indicating that the ML algorithm with the best-balanced accuracy is a Random forest classifier
using a criterion equal to ’gine’, a maximum depth of 50, and 25 estimators.

Table VI-11: GridSearch analysis probability zero minutes ATFM delay

ATFM characteristic ML algorithm Balances accuracy score
Probability zeros delay MLP classifier 0.60

(zero VS non-zero) Random forest classifier 0.71
AdaBoost 0.55

Decision tree classifier 0.6

Linear SVC 0.51

Table VI-12 shows the accuracy, recall, precision, and F1-score obtained. As can be seen, this
is the most challenging problem from a ML perspective. We have seen this during the features cor-
relation analysis, which can be seen in the performance evaluation. The random forest exhibits an
accuracy of 0.68 and an F1-score of 0.69, the binary classifier with the worst performance. Suppose
we focus our attention on the confusion matrix. In that case, the model tends the overestimate the
expected ATFM delay, predicting most of the time that the ATFM delay is going to be different
from zero. As mentioned previously, this is the most challenging problem considering the engi-
neered input features. Moreover, it is challenging to distinguish very small delays from delays
equal to zero. Figure VI-18 displays the confusion matrix obtained predicting whether the ATFM
delay is going to be zero or non-zero using a Random forest classifier, 56,146 samples for training,
and 14,037 samples for testing.

Table VI-12: Accuracy, recall, precision, F1-Score zero minutes ATFM delay

Accuracy Recall Precision F1-score
0.69 0.67 0.69 0.69

Figure VI-18: Confusion matrix zero minutes ATFM delay

Figure VI-19 presents the SHAP analysis of the trained model to predict whether the expected
ATFM delay of a regulated will be zero or non-zero. Operational information, the geopotential,
and the wind are the most relevant features. However, if we focus our attention on the values
on the x-axis, the range of reported SHAP values is much smaller than in the previous models
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(previously from 0 to 0.1, and now from 0 to 0.05). This also indicates that the model cannot extract
a considerable amount of information from the features, which directly relates to the observed low
performance.

Figure VI-19: SHAP analysis zero minutes ATFM delay

VI.5.5 ATFM delay distribution

Table VI-13 collects the MAE from the GridSearch analysis for both the regressor and multi-output
classifier that estimate the probability distribution of ATFM delay. The ML algorithm that best es-
timates the minutes of ATFM is a Random forest regressor using a ’squared_error’ as the criterion,
a maximum depth of 100, a maximum number of features equal to ’auto’ which means that all the
features are used, and 25 estimators. On the other hand, the best-found multi-output classifier is
obtained by using Adam as an optimizer, one hidden layer with 35 neurons and a ’relu’ activation
function, a random state, and a learning rate equal to 0.0001. Notice that the GridSearch analysis
is used to define the input/hidden layer, not the output layer.

Table VI-13: GridSearch analysis ATFM delay

ATFM characteristic ML algorithm MAE
Minutes ATFM delay MLP regression 25

Random forest regression 10
AdaBoost 50

Decision tree regression 14

Linear SVC 17

ATFM delay distribution MLP classifier 59
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Table VI-14 shows the MAE and the mean duration in minutes required to cover 90% of the
probability (uncertainty), using the previously introduced Random forest regressor and multi-
output MLP. The average deviation between the actual ATFM delay and the expected value from
the probability distribution is around 9 minutes, with an uncertainty of approximately 12 minutes.
The results have been obtained using 56,146 samples for training and 14,037 samples for testing.

Table VI-14: MAE, uncertainty, and number of hits ATFM delay

MAE (mins.) Mean 90% probability (mins.) Hits (%)
9.58 12.87 0.88

Figure VI-20 presents the SHAP analysis of the trained random forest regressor, which esti-
mates the minutes of ATFM delay. In this case, the analysis also presents the hour of departure as
the most relevant feature. Next, the most relevant features are the wind, the network demand, the
congestion at the airports, and the geopotential. Notice that the results from the departure hour
indicate that most non-zero ATFM regulations are implemented in the morning (blue dots). The
wind, network demand, and geopotential present the opposite pattern of behavior where larger
values are reporting larger SHAP values.

Figure VI-20: SHAP analysis regressor ATFM delay

Similarly, Figure VI-21 shows the results from the SHAP analysis for the classifier. The most
important features are the hour, the day, and the size of the arrival airport. The congestion at the
airport and the size of the departure aerodrome follow them. Notice that the most likely classes
are in the range [6, 9], which indicates that the classifier is trying to compensate for the possible
overestimation of the delay from the regressor. Class zero corresponds to no deviation between
the actual and the expected delay.
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Figure VI-21: SHAP analysis multi-output classifier ATFM delay

VI.6 Advice capabilities

Two advice generators are proposed for predicting ATFM regulations at the flight level. First, it is
proposed a simple integrated view of the results from the different models for specific flights. This
could help to easily see the outcome of the different models and the uncertainty of the predictions.
Second, it is proposed to visualize the estimated ATFM delay along the different rotations plan for
a specific day and aircraft frame. This will help to see the severity and impact of the estimated
ATFM delay and the possible reactionary delay.

VI.6.1 Integration view

An integrated view that provides information about the expected ATFM regulations that can be
issued for specific OD pairs is proposed to support the operational plan definition phase and
overcome possible downstream effects of ATFM regulations. ATFM delay can severely impact the
airlines’ fleet performance as they are typically issued around 4 hours before departure, but they
can fluctuate until CTOT. As mentioned at the beginning of this Chapter, the prediction horizon
of the models proposed is around 24 hours before Estimated Off-Block Time (EOBT), anticipating
possible ATFM regulations of future flights.

Figure VI-22 shows the outcome of the advice generator for a flight that is expected to be
regulated with a ATFM different than zero. In this example, the models show high confidence in
the predictions showing all the results in green, issuing an expected delay of five minutes.

However, when the models present a lower confidence level in the predictions, to clearly
show to the end user (e.g., the duty manager) that the models are less sure about the expected
outcome, the labels are displayed in red. Figure VI-23 exhibits an example where the models are
not very sure about whether the flight is going to be regulated or whether the ATFM delay will
be zero. Despite the low confidence level, the information is still useful for the duty manager,
indicating that the flight should be monitored.
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Figure VI-22: Example certain prediction regulated flight with non-zero ATFM delay

Figure VI-23: Example uncertain prediction regulated flight with non-zero ATFM delay

Finally, as previously mentioned, it is crucial to show the right level of information at each
moment to provide meaningful advice. To do so, in those cases where the models are predicting
the negative classes with high confidence, the integration view is limited to show this character-
istic. Figure VI-24 shows the integrated view for a flight that is expected to have zero minutes
of ATFM delay. Notice that the probability distribution is not displayed in this example, as the
expected delay is zero.

Figure VI-24: Example certain prediction regulated flight with zero ATFM delay
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VI.6.2 Reactionary delay

The second advice generator proposed for the visualization of ATFM regulations at the flight
level is based on integrating the ATFM models into a system able to provide visual and numerical
advice for the planned rotation of a particular aircraft frame.

A convolutional process based on a do-nothing approach propagates ATFM delay along the
different rotations of an aircraft for a particular day of operations. The do-nothing means that
delay will be propagated without measures to prevent their excessive propagation from being
modeled. This means that the system will be able to highlight when undesirable situations (e.g.,
breaching a curfew or missing an ATFM slot) might occur, prompting the duty manager to act.
Note that for this approach to estimate the probability of these undesirable outcomes success-
fully, the expected probability distribution of delays must be predicted. The reader is referred to
Section II.7.4 for further details.

The reactionary delay model will get the fleet status at a given moment in time, gathering
information on flights flown, being operated, and planned for a given aircraft frame. This means
that at a given moment, the flight being considered might already be delayed (primary or accrued
delay up to that moment), and successive rotations might already be regulated (or not). If flights
are already regulated (or too close in time < 4 hours from current time), the information on their
ATFM status is considered fixed as in the fleet status obtained. For the remaining flights, the ma-
chine learning models of ATFM delay are used to estimate their probability of being regulated and
the amount of delay experienced. With this information and estimating block time and minimum
turnaround times (to estimate the earliest possible aircraft ready time), delays are propagated as a
convolution of the departure, operating, and arriving stochastic processes.

As an example, Figure VI-25 displays the expected rotations for the registration mark
ECMCU, assuming the system was triggered on 12/09/2018 at 7h00. As can be seen, the ATFM de-
lay assigned to the third rotation (EDDH-LEBL) produces a downstream effect introducing some
reactionary delay in the fourth rotation (LEBL-LEZL), increasing the probability of missing the
ATFM slot up to 25%. This information could be used to consider, for instance, an aircraft swap to
reduce the probability of missing the slot. Another option could be to ask the NM for a later slot
and cancel the last rotation. In any case, the final action depends on the needs or policies of the
airline.

Figure VI-25: Visual outcome of the reactionary delay system for the registration mark ECMCU
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Something very interesting about this approach is that it is possible to see the outcome of the
intermediate processes thanks to the usage of probability distributions rather than the expected
values. Therefore, they can be used to complement the previous advice. Figure VI-26 shows the
arrival time distribution for the rotation EDDH-LEBL and the SIBT (purple line). Then, Figure VI-
27 shows the expected minimum turnaround time at LEBL before the departure to LEZL. Finally,
Figure VI-28 exhibits the expected aircraft ready time, the expected CTOT (black line), and the
time until missing the slot (red). Notice that all the values of the aircraft ready at the right of
the time to miss the ATFM slot are the probability for the flight to miss this ATFM slot. Missing
this slot will require requesting a new one which could induce significant additional delay and,
potentially, losing the slot on the returning leg (LEZL-LEBL flight).

Figure VI-26: Arrival time distribution EDDH-LEBL flight

Figure VI-27: Minimum turnaround time at LEBL

Figure VI-28: Aircraft ready time for LEBL-LEZL flight
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Similar results can be obtained for any aircraft frame from which we have the planned ro-
tations. Moreover, this framework could be used to identify other non-observable actions in the
historical datasets, such as aircraft swaps, cancellations, or breaching a curfew.

VI.7 Discussion

This Chapter studied the usage of ML models to predict ATFM characteristics at the flight level(i.e.,
for individual flights). Concretely, if it is feasible to predict the probability of ATFM regulation, the
protected location, whether the ATFM delay is going to be zero, and the ATFM delay. For the airlines,
the previous information is crucial when deciding if further actions are required to avoid possible
downstream effects.

The results show that it is possible to accurately estimate the probability and protected loca-
tion of ATFM 24 hours before departure when actual ATFM information is not available. How-
ever, predicting the exact minutes of ATFM delay is a much more challenging problem using only
information available by the airlines. Predicting whether the ATFM delay is going to be zero re-
ported accuracy of 0.69, and the ATFM delay a MAE of 9.5 minutes. The prediction of the exact
minutes of delay is very complex as it depends on the CASA, which is a simple (but fair) system
based on the principle of first-in-first-serve. Therefore, it does not depend on the OD pair nor the
congestion of the network, as was presented in the future correlation analysis (see Section VI.4.2).
It mainly depends on when the flight is expected to cross the congested region. Furthermore, the
model has to distinguish zero and very small amounts of ATFM delay.

Despite some of the limitations found, the overall performance of the framework is between
70% and 88%, clearly indicating that it is possible to predict ATFM information for individual
flights. One important lesson learned in this Chapter is the need to consider the predictions’ un-
certainty. Concretely, it has been used the combination of a regressor and a classifier to predict the
probability distribution of ATFM delay increases the advice capabilities of the system. However, it
would be interesting to compare the results obtained when predicting the probability distribution
with more conventional approaches, such as NGBoost or CatBoost with RMSEwithUncertainty.

The integration of the models could allow the identification of non-observable actions in the
historical datasets, such as missing the ATFM slot or breaching a curfew. Further study is required
when integrating the ML models to provide advice on reactionary delays, but initial promising
results have been obtained.

Finally, two operational constraints are identified in this Chapter. First, using data sources
available for the end user is paramount, making the prediction of the exact ATFM delay difficult.
Second, the fact that the models are developed for a specific operator limits their possible deploy-
ment. In theory, the models should only be used to identify ATFM characteristics for flights flown
by the selected airline. However, Europe is a very regulated environment, and therefore, the be-
havior of different airlines should be very similar, indicating that the models could be extended to
other airlines.

Lastly, Appendix B summarizes and compares the results obtained using the best possible
pre-tactical information available (Last filled pre-tactical flight plans and actual weather informa-
tion). Notice that this information has not been used in this Chapter as their availability is not
guaranteed in the defined prediction horizon. However, the results show that the best results are
not always obtained using perfect data. The best option is to use the same data available when
the actions were recorded.





VII
Concluding Remarks

The Air Traffic Management (ATM) system is reaching its capacity limit, and the expected contin-
ued traffic growth indicates that the delay situation will deteriorate drastically if bold actions are
not taken. In Europe, the Single European Sky Air traffic management Research (SESAR) program
addresses the impact of air traffic growth by studying novel procedures and technologies, aiming
to improve information sharing and the levels of automation. In this thesis, Machine Learning
(ML) techniques and their use for pre-tactical delay advice were studied to support the different
stakeholders, taking into account the native uncertainty in the models.

During this work, some questions arose that were assessed; some are still open and could
be further research topics. A summary and conclusions of the achieved results and hints on the
possible directions for future work are presented in what follows.

VII.1 Summary of Contributions

The main contributions of this PhD thesis are summarized as follows:

• An software architecture for robust and consistent experimentation was presented in
Chapter II. The framework is divided into three well-known layers: data infrastructure,
predictive capabilities, and advice capabilities. It aims to use a flexible data lake to study
the best possible data sources to predict/solve Air Traffic Flow Management (ATFM) regu-
lation during the pre-tactical phase. Moreover, specialized software architectures to provide
advice for different stakeholders were presented;
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• The previous architecture was used in Chapter III to study whether it was feasible to predict
airspace ATFM regulation at the Traffic Volume (TV) level, to create a support tool for the
Network Manager (NM). Different input features, scalar variables, images, and different
ML algorithms were used. Moreover, it studied the usage of different evaluation techniques
according to the desired granularity in the results. The most important conclusion of this
study was that it is possible to predict C-ATC Capacity regulation with accuracy higher than
80% in the most regulated TVs from the most regulated European regions. Furthermore,
it is shown the importance of proper advice capabilities when showing the results of ML
models. In this case, the advice generator focused on representation fidelity with respect to
the current tools used. Although the tools aim to be used by the NM, the airlines also could
take advantage of pre-tactically knowing congested en-route sectors;

• To extend the previous work, Chapter IV investigated whether the proposed architecture
can be used to predict other ATFM regulations reasons. In this case, en-route W-Weather
regulations due to convective weather. Promising results were obtained, and more than
80% of the regulations were precisely identified. Moreover, similar to the previous exper-
iment, the behavior of the models was validated using eXplainable Artificial Intelligence
(XAI) techniques;

• After the detection phase, it is required to smooth the expected traffic to ensure that de-
mand meets the predefined capacity of the TVs. To do so, Chapter V studied the use of
Reinforcement Learning (RL) techniques to automatize the resolution of identified ATFM
regulations. Two different types of algorithms were studied with different configurations.
Although the results did not clearly conclude which algorithm configuration best fits the
problem, algorithms based on continuous actions arise as promising candidates. The agents
have more freedom when cooperatively deciding on required ground delays. Furthermore,
it has been proved that it is possible to use images to overcome scalability issues identified
in the literature;

• Airlines are the airspace users mainly affected by ATFM regulations. Continuous moni-
toring and submission of new flight plans are key to optimizing the different rotations of
flights during day of operation (D0). Chapter VI studied whether it is also possible to pre-
dict ATFM regulations and their characteristics at the flight level. To this end, four different
supervised ML models were developed. The results indicate that predicting the probability
of regulations and the protected location is feasible using ML models. However, predict-
ing the expected ATFM delay is much more challenging. This is because ground delay is
imposed by the Computer Assisted Slot Allocation (CASA) based on the principle of first-
in-first-serve. To predict such information, the airline should have information about the
intention of all other operators and the moment the flight will enter the congested region.
The main conclusions of this work are that it is possible to accurately predict ATFM at the
flight level, and more importantly, the models can be used to estimate possible reactionary
delays along for specific aircraft frames, which could be key to identify situation such as
missing departing slots or breaching curfew.

VII.2 Future Research

During this PhD thesis, new questions and research lines arose. Taking advantage of the ML
models, architecture, and approaches that have been developed, several work items that deserve
further research and/or resources have been identified. The following elements could potentially
improve the solutions proposed:
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• The combination of the work presented in Chapter III, Chapter IV, and Chapter V would
create a fully automated system able to identify required en-route ATFM regulations and
provide advice on their resolution. The behavior, advantages, and limitation of a fully au-
tomated system could be really interesting for the aviation community. Especially from the
perspective of the NM and the airlines, taking advantage of the possible early detection of
ATFM regulations;

• However, the identification of ATFM regulations is limited to two specific regulations rea-
sons. Training new models to identify other regulation reasons could enrich the outcome of
the proposed framework. However, additional data sources will be required, e.g., sources
related to the staff available or possible military actions;

• Another possible future research line could be the study of specialized VS global models.
As presented in the experiments at the TV level, the best performance was obtained using
specialized models. However, this approach could create scalability issues when deploying
models for the entire European Civil Aviation Conference (ECAC) region. Nonetheless, it
has been proved that it is possible to train models to identify regulation over specific regions
rather than unique TVs. Combining these two approaches could be the key to creating a
system that could be used for industrialization. Ideally, it would be incredibly useful to
develop a system able to apply ATFM regulations over the entire ECAC area;

• One of the major challenges in this thesis was data availability. Therefore, another possible
research could be centered on studying the models’ performance as a function of dataset
size, trying to see whether the proposed architecture provides better or worse results. More-
over, it will be really interesting to study the selected approach avoiding down-sampling
the datasets, testing the models in more realistic conditions, and having to deal with an
unbalanced number of non-regulated and regulated observations;

• On the other hand, during the resolution phase using RL techniques, the developed reward
function was centered on minimizing the overall delay. However, it could be really interest-
ing to take into account other indicators, such as the expected weather conditions or costs.
Weather information could be integrated into the images, while the cost of the actions could
be encoded in the reward function directly;

• Also related to the resolution approach, the proposed tool is centered on a specific TV with-
out taking into account the congestion of adjacent sectors. In future work, the impact/effect
of neighboring sectors/TVs could be tested. All this, introducing departing windows rather
than using exactly the Scheduled Off-Block Time (SOBT) as the take-off time;

• For the prediction of ATFM characteristics at the flight level, future research could be the
study and development of new input features to improve the accuracy of the models that
estimate the issued delay. To do so, the moment the flight enters the congested sectors must
be taken into account. A good starting point could be to combine the work from Chapter III
and Chapter VI to identify whether a flight is going to be regulated, then try to predict which
sector is congested, and finally combine this information with the expected flight plan to
predict the possible ground delay. Additionally, it would be interesting to try a temporal
split during the training and testing of the models, comparing the results with the ones
reported in this thesis;

• Finally, one specific operator has been selected to predict ATFM characteristics on the
planned rotations. However, studying whether the models can be extrapolated to other
airlines or the impact of having a system as this deployed could be critical to determine if it
is a valid approach for industrialization.





A
ATFM regulations at TV level -

Spanish case

In Chapter III and Chapter IV, it has been proved that it is possible to predict C-ATC Capacity and
W-Weather Air Traffic Flow Management (ATFM) regulations using the proposed RNN-CNN cas-
cade time-distributed architecture which combined a time-distributed Recurrent Neural Network
(RNN) and a Convolutional Neural Network (CNN).

In this Appendix, results from a different region are provided to validate the ability of the
system to be deployed in other regions. Traffic Volumes (TVs) from Spain have been selected
because it is a region with a considerable number of regulations but less challenging than MUAC
and REIMS.

Results using the same approach, methodology, and techniques are obtained to study the
performance of the mentioned models in this new region. Thus, only the final results are provided
for completeness. Section A.1 shows the results obtained predicting C-ATC Capacity regulations,
while Section A.2 focuses on identifying W-Weather regulations.

A.1 C-ATC Capacity ATFM regulations

Table A-1 shows the accuracy, recall, precision, and F1-Score predicting C-ATC Capacity regula-
tion in the top-three most regulated TV in Spain. As can be seen, the models are able to accurately
predict the time-steps that should be regulated with an accuracy of around 85% and 80% for the
specialized and global models, respectively. Compared to the results obtained in MUAC and
REIMS, the results show a drop between 2% and 4%. On the other hand, the interval analysis
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reveals that the models can identify all the regulations too.

Table A-1: Performance RNN-CNN cascade model for en-route C-ATC Capacity regulations
Time-Step Classification Interval Classification

Region TV Train/Test Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score
Spain BAS 351/136 89.47 95.75 84.01 88,49 90.58 100 85.82 92.36

CCC 234/102 85.35 91.37 79.14 84.81 85.82 100 79.73 88.72
BLI 267/113 82.78 87.34 82.62 84.91 84.23 100 84.68 91.81
All 998/373 78.54 84.46 81.19 82.92 85.99 100 78.38 87.93

After the training, the confidence level and the SHapley Additive exPlanations (SHAP) anal-
ysis exhibit very similar behavior in all the studied TVs across all the regions (Spain, MUAC, and
REIMS), indicating that the proposed architecture can be extrapolated to other regions with no
difficulty. The only operational constraint is the reduced number of samples to train the models.

A.2 W-Weather ATFM regulaitons

Table A-2 presents the accuracy, recall, precision, and F1-score obtained to predict W-Weather
ATFM regulation in Spanish TVs. The overall performance of the models is around 80% for the
time-step analysis, indicating that the proposed architecture could also be used to precisely iden-
tify W-Weather regulations in other regions without difficulties. The most interesting result of this
study is that the interval analysis no longer reports a 100% recall in all the scenarios. For one of
the specialized and the global models, it can be observed a 2% drop indicating that the framework
has not been able to identify all the regulated intervals. However, as mentioned previously, the
overall performance is still promising.

Table A-2: Performance RNN-CNN cascade model for en-route W-Weather regulations
Time-Step Classification Interval Classification

Region TV Train/Test Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score
Spain CCC 325/117 85.87 89.45 80.21 84.57 86.71 100 80.83 89.39

LVU 213/95 81.54 88.62 77.87 82.88 82.92 100 77.81 87.18
DI1 242/103 77.59 84.56 79.58 81.99 80.48 99.21 80.12 93.25
All 976/351 74.87 78.91 79.74 19.3 81.18 98.37 74.35 84.55

The model explainability analysis shows that this new set of models has very similar behavior
to the previous ones for the MUAC and REIMS regions. Only minor variations can be observed.

A.3 Discussion

This experiment aimed to transfer the proposed architecture and approach to other TVs in the
European Civil Aviation Conference (ECAC) region. Promising results have been observed with
consistent accuracy, recall, precision, and F1-score between TVs independently of the region. This
clearly shows that, if desired, the methodology proposed has a good level of scalability. Therefore,
the research question presented in this Appendix has been positively answered, and the novel ar-
chitecture to predict C-ATC and W-Weather ATFM regulations at the TV level could be considered
for industrialization.



B
ATFM regulations at the flight level -

Perfect data

Many data sources are available containing Air Traffic Management (ATM) information. However,
as previously mentioned, it is almost impossible to know what information is available at each
moment. Therefore, it is almost impossible to know precisely the available information in the
selected prediction horizon: day prior to operations (D-1).

First, results were obtained using what was called "perfect data". That is, the Last filled pre-
tactical flight plan and actual weather information. This experiment aimed to identify which of the
proposed Air Traffic Flow Management (ATFM) characteristics at the flight level is feasible to
predict from a Machine Learning (ML) perspective.

This experiment presents some operational constraints, mainly related to data availability
issues. Actual weather information is not available on D-1 nor all the flight plans. On D-1 it is
available the information used in Chapter VI: Flight Intention (FI) and weather forecast. However,
some really interesting results were found that could add value to this thesis.

B.1 Data sources

Table B-1 collects the data sources used for this experiment where "perfect data" is assumed to be
available at the prediction horizon D-1. As a source of network data, ALLFT+ data is used to know
the flight intention and the flight plans. Concretely, it has been used M1 traffic, which corresponds
with the last filed flight plan filled by the airlines before any regulation was applied. Then, the
actual convective weather recorded at the airports is used as a source of weather information.
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Section B.1.1 provides more details about this new weather data source.

Table B-1: Data sources used to predict ATFM regulations for individual flights (flight level)

Data source Period time Usage Comment
ALLFT+ 2018 Features Flight intentions and Features

Airports data Static Features Size and/or hub

METAR 2018 Features Weather

Vueling 2018 Labelling ATFM information

B.1.1 METAR

Typically, METeorological Aerodrome Report (METAR) information comes from airports or per-
manent weather observation stations and is reported every half-hour. This information is encoded
and standardized to provide information as precisely as possible. Raw METAR data is the most
common format for transmitting observational weather data. Table B-2 describes the most rele-
vant features used from this data source.

Table B-2: METAR most relevant weather-related features

Name Description Units
Airport International Civil Aviation Organization (ICAO) airpot code Dimensionless

U-component wind Eastward component of the wind ms−1

V-component wind Northward component of the wind ms−1

Wind Nominal wind speed s−1

Visibility Prevailing visibility1 m

RVR Runway Visibility Range m

Snow Snow is falling at a heavy intensity Dimensionless
Temperature Temperature in the atmosphere F

Runway Condition of the runway Dimensionless
CAVOK Ceiling And Visibility OK (no cloud below 5,000 ft) Boolean

It is worth mentioning that a specific decoder is required to extract the meteorological infor-
mation from METAR data. This decoder has not been implemented in this thesis.

B.2 Probability ATFM delay

Table B-3 contains the results using "perfect data", the ones reported in Chapter VI, and the dif-
ference in performance between the two approaches when predicting the probability of ATFM
regulations. The same methodology, approach, and labeling has been used in both cases. As can
be seen, there is a drop between 5% and 10% in the performance using the forecasts.
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Table B-3: Accuracy, recall, precision, F1-Score probability ATFM delay

Approach Accuracy Recall Precision F1-score
Perfect data 0.89 0.91 0.86 0.89

Forecast 0.82 (-0.07) 0.81 (-0.1) 0.82 (-0.04) 0.82 (-0.07)

The drop in the performance could come from the fact that the features correlation analysis
reported a higher correlation of the network demand features than using the forecast. However,
using the forecast, the most correlated features are related to possible convective weather, which
is a less frequent regulation reason.

B.3 Location ATFM regulation

This Section summarizes the result obtained predicting the protected location region of ATFM
regulations. Table B-4 contains the results using "perfect data", the ones reported in Chapter VI,
and the difference in performance between the two approaches using the same methodology, ap-
proach, and labeling has been used. It is very interesting to see that for this case study, the perfor-
mance of the models based on using forecast is better than using "perfect data".

Table B-4: Accuracy, recall, precision, F1-Score location ATFM regulations

Approach Accuracy Recall Precision F1-score
Perfect data 0.83 0.81 0.87 0.83

Forecast 0.87 (+0.04) 0.84 (+0.06) 0.89 (+0.02) 0.86 (+0.03)

The improvement in the performance seems to come from a higher correlation of the input
features to the target labels. Both analyses reported similar results, but using forecast, the scores
obtained were around 5% larger than using "perfect data". This case study is a clear example of the
importance of using data sources equivalent to the ones available when the actions were recorded.
Ultimately, the goal of using supervised machine learning models is to replicate past decisions in
future scenarios.

B.4 Zero VS Non-Zero delay

Table B-5 shows the results obtained between using "perfect data" and forecasts, using the same
methodology, approach, and labeling in both cases. Similar to the probability of ATFM delay, there
is a drop between 5% and 10% in the performance of the model that uses the forecast. However,
in this case, study, the drop in performance is more critical as the overall accuracy of the models
is lower.

The correlation and SHapley Additive exPlanations (SHAP) analysis reported similar results
in both case studies. The engineered input features and target labels have low correlation and
activation values.
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Table B-5: Accuracy, recall, precision, F1-Score zero minutes ATFM delay

Approach Accuracy Recall Precision F1-score
Perfect data 0.75 0.72 0.8 0.76

Forecast 0.69 (-0.06) 0.67 (-0.05) 0.69 (-0.11) 0.69 (-0.07)

B.5 ATFM delay distribution

Finally, Table B-6 compares the results of both models using "perfect data" and the forecasts, esti-
mating the minutes of ATFM delay. The results in this last case study do not follow a clear pattern.
As can be seen, the is a drop in the precision of the model identifying the exact ATFM delay but an
improvement in the uncertainty the model reports with equivalent number of hits (actual ATFM
delay within the predicted probability distribution).

Table B-6: MAE, uncertainty, and number of hits ATFM delay

Approach MAE (mins.) Mean 90% probability (mins.) Hits (%)
Perfect data 9.35 14.60 0.87

Forecast 9.58 (+0.23) 12.87 (-1.73) 0.88 (+0.01)

The feature correlation and SHAP analysis do not show a clear pattern of behavior. The most
interesting result is that the models predict that most of the ATFM will be around five minutes.
Therefore, a possible future work could be to change the zero VS non-zero delay models for a less
VS more than five minutes of delay.

B.6 Discussion

This experiment aims to see the impact of the data sources when predicting ATFM characteristics
at the flight level. With this objective, two sets of data sources have been used: "perfect data" and
forecast for D-1. The results do not show clear evidence of what approach is better. New trends
in ML suggest training the models with the best possible data and then using the best available
data in deployment, even though they are different. However, the author rejects this approach
because there is a loss of control over the expected behavior of the models, which is unacceptable
in safety-critical environments.
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