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Abstract

The use of semiconductors, metals, or ordinary dielectrics in the process of fabrication of nan-

odevices is at the front edge of nowadays technology. In the last decade an impressive techno-

logical progress has been made towards the miniaturization process, giving birth to the field of

nanotechnology. Currently, nanostructures are routinely fabricated and integrated in different

photonic devices for a variety of purposes and applications. At the nanoscale, light-matter inter-

action can display new phenomena, different from those occurring in homogeneous materials or

even micrometer-scale optical structures and devices. This scenario makes conventional approx-

imations to the dynamics of light-matter interactions to break down and new strategies must

be sought in order to study, understand, and ultimately harness the performance of subwave-

length nonlinear optical materials. This is the case of nonlinear interactions and in particular,

of nonlinear frequency conversion, a fundamental physical process that lies on the basis of many

modern disciplines, from bioimaging in nanomedicine to material characterization in material

science and nanotechnology. Nonlinear photonics also holds great promise in laser physics with

applications in information technology for optical signal processing and in the development of
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novel coherent light sources. Thus, a deep understanding of the specific aspects of light-matter

interaction at the nanoscale is crucial if one is to properly engineer nanodevices.

In this thesis we report comparative experimental and theoretical studies of nonlinear fre-

quency conversion in different strategic materials for photonics having nanoscale dimensions.

We start our study with homogeneous layers and project our results to nanostructures, where

second and third harmonic conversion efficiencies drastically decrease compared to typical non-

linear optics working conditions. We have developed novel experimental set-ups capable of

measuring second and third harmonic generation efficiencies arising from semicondutors, con-

ductive oxides and metal nanolayers and nanostructures. Our experimental approach allows

us to estimate very low conversion efficiencies (down to 10−13), and it is designed to perform

an exhaustive study of harmonic generation by analyzing the nonlinear signals as a function of

incident angle, wavelength and polarization, important parameters that determine and distin-

guish the origin of the nonlinear process. At the nanoscale phase matching conditions and even

absorption no longer play a primary or significant role, and new linear and nonlinear sources be-

come relevant, including magnetic dipole and electric quadrupole (surface) nonlinearities arising

from both free and bound electrons, as well as nonlocal effects, convection, and hot electrons

nonlinearities, associated with free electron dynamics, pump depletion, and phase-locking. We

perform numerical simulations based on a unique microscopic hydrodynamic model that con-

siders all these contributions to the nonlinear polarization. By comparing experimental results

with numerical simulations we are able to identify and distinguish the different mechanisms that

trigger the harmonic generated signals at visible and UV wavelengths, while extracting basic

physical properties of the material. With this knowledge we are able to make a step forward and

predict conversion efficiencies in complex structures which are specifically designed to enhance

harmonic generation. The capability to efficiently generate harmonics at the nanoscale will have

an enormous impact in the fields of nanomedicine and nanotechnology, since it would allow one

to realize much more compact devices and to interrogate matter in extremely confined volumes.



Resum

L ’ús de semiconductors, metalls o dielèctrics en el procés de fabricació de nanodispositius es

troba al davant de la tecnologia actual. Durant l’última dècada s’ha fet un impressionant progrés

tecnològic cap al procés de miniaturització, donant lloc al camp de la nanotecnologia. Actual-

ment, nanoestructures es fabriquen rutinàriament i s’integren en diferents dispositius fotònics

per a una varietat de propòsits i aplicacions. A l’escala nanomètrica, la interacció llum-matèria

pot mostrar nous fenòmens, diferents dels que ocorren en materials homogenis o fins i tot en es-

tructures i dispositius òptics micromètrics. En aquest escenari les aproximacions convencionals

per descriure la dinàmica de les interaccions llum-matèria deixen de ser aplicables i s’han de

buscar noves estratègies per estudiar, entendre i, en última instància, aprofitar el rendiment dels

materials òptics no lineals de dimensions més petites que la longitud d’ona. Aquest és el cas

de les interaccions no lineals i, en particular, de la conversió de freqüència no lineal, un procés

f́ısic fonamental que es troba a la base de moltes disciplines modernes, des de la bioimatge en

nanomedicina fins a la caracterització de materials en ciència de materials i nanotecnologia. La

fotònica no lineal també te futur potencial en la f́ısica del làser amb aplicacions en tecnologia de

la informació per al processament de senyals òptics i en el desenvolupament de noves fonts de
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llum coherent. Per tant, una comprensió profunda dels aspectes espećıfics de la interacció llum-

matèria a l’escala nanomètrica és crucial per tal de dissenyar adequadament nanodispositius.

En aquesta tesi presentem estudis comparatius experimentals i teòrics de conversió de

freqüència no lineal en diferents materials estratègics per a la fotònica amb dimensions

nanomètriques. Comencem el nostre estudi amb capes homogènies i projectem els nostres resul-

tats a nanoestructures, on les eficiències de conversió de segon i tercer harmònic disminueixen

dràsticament en comparació amb les condicions t́ıpiques de treball d’òptica no lineal. Hem

desenvolupat muntatges experimentals capaços de mesurar eficiències de generació de segon i

tercer harmònic que sorgeixen de semiconductors, òxids conductors i metalls. El nostre enfo-

cament experimental ens permet estimar eficiències de conversió molt baixes, i està dissenyat

per realitzar un estudi exhaustiu de la generació d’harmònics analitzant les senyals no lineals

com a funció de l’angle d’incidència, longitud d’ona i polarització, paràmetres importants que

determinen i distingeixen l’origen del procés no lineal. A l’escala nanomètrica, les condicions

d’acoplament de fase i fins i tot l’absorció ja no juguen un paper primordial o significatiu, i

noves fonts lineals i no lineals esdevenen rellevants, incloent les no linealitats de dipol magnètic

i quadrupol elèctric (superf́ıcie) que sorgeixen tant dels electrons lliures com dels lligats, aix́ı

com els efectes no locals, la convecció i les no linealitats dels electrons calents, associats amb

la dinàmica dels electrons lliures, i el fenòmen de phase-locking. Hem realitzat simulacions

numèriques basades en un model hidrodinàmic microscòpic únic que considera totes aquestes

contribucions a la polarització no lineal. Comparant els resultats experimentals amb les simu-

lacions numèriques, som capaços d’identificar i distingir els diferents mecanismes que generen

les senyals harmòniques generades en longituds d’ona visibles i ultraviolades, mentre extraiem

propietats f́ısiques bàsiques del material. Amb aquest coneixement, som capaços de fer un pas

endavant i predir les eficiències de conversió en estructures complexes que estan dissenyades

espećıficament per millorar la generació harmònica. La capacitat de generar harmònics eficient-

ment a escala nanomètrica tindrà un enorme impacte en els camps de la nanomedicina i la

nanotecnologia, ja que permetria realitzar dispositius molt més compactes.
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m’ha guiat i aconsellat durant aquests anys, i al Kent Hallman per ser tan bon company de

treball durant la meva estada a Alabama. Als altres investigadors del grup, al Ramon Vilaseca,

al Ramon Herrero, a la Muriel Botey, al Kestas Staliunas, a la Cristina Masoller i al Toni Pons.

Als companys de grup, a la Judith, a la primera Maria, al Riccardo, al Giulio, al Jordi, a la

Shroddha, al Nayeem, a la Eva, a la segona Maria, al Raul, al Juan i al Guillermo. I especialment
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Preface

Recent years have witnessed and impressive progress in the design and fabrication of structures

with nanometric size that are produced and integrated in different devices and applications.

At this scale light-matter interaction displays completely new phenomena. Linear and nonlin-

ear nonlocal pressure and viscosity effects, quantum tunneling and screening, propagation of

electromagnetic radiation below the absorption limit of certain materials and nonlinear har-

monic generation processes are only a few examples. Understanding how light interacts at the

nanoscale with metals and semiconductors is pivotal if one is to properly engineer and imple-

ment nanoantennas, filters and, more generally, devices that aim to harness the effects of new

physical phenomena that manifest themselves at the nanoscale.

Most of the theoretical models that describe light-matter interaction at the nanoscale are based

on classical electrodynamics, considering the medium as a continuum where macroscopic fields

are averaged over a volume of space containing millions of atoms or dipoles. These approaches

do not properly describe the observed effects at nanometric scale since at these dimensions the

medium loses this continuity and fluctuating microscopic fields created by atoms and dipoles
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have to be taken into account. To properly describe this situation, different models are needed

to describe the light-matter interaction at the nanoscale.

For what harmonic generation is concerned, most current theoretical models rely on assign-

ing effective volume and surface second order susceptibilities for second harmonic generation

and effective volume third order susceptibilities for third harmonic generation. However, while

harmonic generation triggered by surface and magnetic nonlinearities is always present in all

materials, they are preemptively neglected in most theoretical descriptions of metasurfaces and

other nanometric structures in favor of bulk second order susceptibility without properly assess-

ing their relevance. In addition, typical approaches focus on an instantaneous medium response

that lacks a detailed dynamical description of light-matter interactions, that ultimately neglect

aspects relating to the microscopic origin of the generated signals, temporal dynamics, the pres-

ence of nonlinear dispersion and competing nonlinearities, possible contributions beyond the

third order nonlinearity, pump depletion, and frequency down-conversion. At the nanoscale,

these phenomena compete and can even overcome the bulk contribution, and thus require spe-

cial attention.

In this thesis we have performed an experimental study of second and third harmonic genera-

tion in different samples with nanoscale dimensions made of strategic materials for nanophoton-

ics. These are semiconductors, metals and conductive oxides. To this end, we have developed

experimental set-ups capable of measuring second and third harmonic generation efficiencies

arising from different nanolayers and nanostructures. Our experimental approach has allowed

us to estimate low conversion efficiency processes and perform an exhaustive study of harmonic

generation by analyzing the nonlinear signals as a function of incident angle, wavelength and

polarization. The experimental observations have been compared with numerical simulations

based on a theoretical model that embraces full-scale, time-domain coupling of matter to the

macroscopic Maxwell’s equations. Our approach consists in formulating a microscopic, hydro-

dynamic model in order to understand linear and nonlinear optical properties of metals and

semiconductors by accounting for competing surface, magnetic, and bulk nonlinearities arising
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from both free and bound electrons. Just as importantly, the model preserves linear and non-

linear material dispersion, nonlocal effects due to pressure and viscosity, and the influence of

hot electrons. With this experimental-theoretical comparative investigation, we study the basic

properties of simple layers only a few tens of nanometers in thickness in order to ascertain basic

physical characteristics that may transfer to more complicated nanostructured geometries. The

samples that have been studied consist of a Gallium arsenide (GaAs) wafer, a crystalline silicon

wafer, an amorphous silicon nanolayer, crystalline silicon membranes, an Indium tin oxide (ITO)

nanolayer, gold nanolayers, and a gold nanograting.

The outline of the thesis is as follows:

Chapter 1 provides an overview of the most relevant aspects of the theoretical background in

which this thesis is based. First, we will show how nonlinear optical interactions in bulk materials

are described through the nonlinear polarization of the system. Then, we will introduce the

concepts of surface and phase-locked second harmonic generation. After that, we will talk about

the classical models used to explain optical properties of semiconductors and metals. Then, we

will overview the research that has been done on nonlinear optics at the nanoscale. We will

talk about harmonic generation in gold, GaAs, silicon and ITO nanostructures. Finally, we

will introduce a description of the theoretical approach in which our numerical simulations are

based.

In Chapter 2 we report experimental and theoretical results of phase-locked harmonic gener-

ation in the opaque region of a GaAs wafer. These harmonic components, which are generated

close to the surface, can propagate through an opaque material and correspond to the inhomo-

geneous solutions of Maxwell’s equations with nonlinear polarization sources. We will show that

measurements of the angular and polarization dependence of the observed harmonic components

allows us to infer the different nonlinear mechanisms that trigger these processes. In order to be

able to take the measurements we have developed an experimental set-up capable of measuring

the angular and polarization dependence of harmonic signals generated from a GaAs wafer in

transmission and in reflection. A description of this experimental set-up will be given at the
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beginning of this chapter. We will also introduce an explanation of our calibration procedure

to estimate harmonic generation conversion efficiencies. This will be followed by a brief de-

scription of the sample. Then, we will explain how the theoretical model explained in Chapter

1 is adapted to the particular case of a semiconductor such as GaAs. Finally, experimental

and predicted second and third harmonic generation results will be reported, followed by some

concluding remarks.

In Chapter 3 we show results of harmonic generation from different silicon samples in the

visible and ultraviolet (UV) ranges of the spectrum, showing that judicious exploitation of the

nonlinear dispersion of ordinary semiconductors can provide reasonable nonlinear efficiencies and

transformational device physics well into the UV. This chapter is divided in three parts. The first

part 3.1 will include a comparison of the nonlinear response of amorphous and crystalline silicon,

while the second part 3.2 will introduce results of harmonic generation in crystalline silicon

membranes. Using experimental results and simulations we identify basic physical properties

of the material with which we can then accurately predict the nonlinear optical properties of

complex structures. For this reason, the third part of this chapter 3.3 will present preliminary

predicted results of harmonic generation from a nanostructure made of silicon nanowires with

the aim of showing that harmonic generation conversion efficiencies can be enhanced in this

kind of arrangements. Each of these parts will include a description of the experimental and

theoretical approach used to take the measurements and perform the numerical simulations,

respectively, a brief description of the samples, and a section including the results that have

been obtained. The chapter will end with some conclusions.

In Chapter 4 we analyze second and third harmonic generation from an ITO nanolayer in

proximity of its epsilon-near-zero condition, and we demonstrate an enhancement of harmonic

generation conversion efficiencies close to this particular point. We investigate the influence of

nonlocal effects and hot electrons on the nonlinear response, as well as an induced anisotropy in

the material caused by the presence of nonlocal effects. Following the structure of the previous

chapters, we will first introduce a description of the experimental approach and of the samples.
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Then, we will explain how the theoretical approach explained in Chapter 1 is adapted to the

case of conductive oxides and finally, we will show the experimental and predicted results that

have been obtained. The conclusions extracted from this study will be introduced at the end of

the chapter.

Chapter 5 includes results on the nonlinear optical response of gold. It is divided in two parts.

In the first part we will report second and third harmonic generation experimental and theoretical

results from gold nanolayers having different thicknesses, and we will discuss the impact of bound

and hot electrons in the generated third harmonic conversion efficiencies. In the second part we

will demonstrate harmonic generation enhancement from a gold nanograting. We will see that

second harmonic generation conversion efficiencies increase more than three orders of magnitude,

while a third harmonic generation conversion efficiency enhancement factor of 3200 is obtained.

In both parts, the experimental and theoretical approach developed to carry out this study will

be specified. The samples will be briefly described and experimental and theoretical results will

be introduced at the end of each part. To finish the chapter we will include some concluding

remarks.

In Chapter 6 we present a practical, combined experimental and theoretical approach based on

our theoretical model that uses experimental results of harmonic generation conversion efficien-

cies to retrieve complex, nonlinear dispersion curves. We will provide examples of the materials

that have been studied in the previous chapters and are of special interest for nanophotonics:

silicon, gold, and ITO.

Finally, Chapter 7 presents our conclusions.

In the Appendices, specifications of optical elements used in the experimental set-ups and

measurements, and the method of solution implemented to perform the numerical simulations

will be included. We will also provide a list of publication and research activities that have been

developed during this thesis.
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1
Introduction

1.1 Nonlinear optical interactions in bulk materials

Optics is the field in physics in which the interaction between light and matter is studied. In

our everyday experience we can observe linear optical phenomena, such as light being reflected,

transmitted and absorbed by a material. This kind of phenomena occurs at low light intensities

that normally occur in nature. However, when light intensities increase, nonlinear light-matter

interaction becomes relevant.

Nonlinear optics is the study of phenomena that occur as a consequence of the modification of

the optical properties of a material system due to the presence of intense light. The intensities

needed to observe these effects can be obtained by using the output of a coherent light source

such as a laser. The field of nonlinear optics started shortly after the demonstration of the

first working laser by Maiman in 1960 [1], with the discovery of second harmonic generation

in 1961 [2], and the theoretical work of Bloembergen et al. on optical wavemixing in 1962

[3, 4]. Over the following decades, the field of nonlinear optics witnessed enormous growth,

leading to the observation of new physical phenomena and giving rise to novel concepts and

applications including high-harmonic generation and frequency mixing that can act as new light

sources or as amplification schemes, light modulators for controlling the phase or amplitude of a

light beam, optical switches, optical logic, optical limiters, and numerous ways of processing the

1
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information content of data images, which created revolutionary change in photonics technology

in the 20th century. Almost all those achievements were made on conventional bulk crystals

where the phase-mismatch, imposed by material dispersion, limits the efficiency of the nonlinear

processes. However, as it will be reviewed in Chapter 1.4, the current research trend in nonlinear

optics has moved toward miniaturized optical materials in truly compact optical devices.

Nowadays, second and third harmonic generation are well known nonlinear effects. Efficient

second or third harmonic light can be generated in bulk nonlinear crystals such as BBO (Bar-

ium borate) and KTP (Potassium titanyl phosphate) crystals under phase-matching conditions.

Bulk-generated second harmonic generation is used, for instance, to characterize an ultrashort

pulse through autocorrelation measurements [5], and in imaging microscopy [6]. It is also ap-

plied in the laser industry to make green 532 nm lasers from a 1064 nm source. One application

of third harmonic generation is the generation of ultraviolet (UV) light, and it is also used in

microscopy [7].

To describe these processes, Maxwell’s equations use the nonlinear polarization of the system.

In this section we will describe how light propagates through a nonlinear bulk material and how

nonlinear bulk interactions can be described by means of the nonlinear polarization.

1.1.1 Electromagnetic waves propagating through materials

As it is well known, four equations constitute the fundamentals of the electromagnetic wave

theory, which are known universally as Maxwell’s equations. They provide physical insights

about the scattering properties and local field distributions of a system. They can be formulated

in differential and integral form. The former will be used in the discussion that follows and can

be written as (in MKS units):

∇×E = −∂B

∂t
(1.1.1)

∇×H =
∂D

∂t
+ J (1.1.2)

∇ ·B = 0 (1.1.3)

∇ ·D = ρ (1.1.4)
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where E (V/m) and H (A/m) are the electric and magnetic fields, respectively, and D (C/m2)

andB (T) correspond to electric displacement and magnetic flux density, respectively. Generally,

these variables are time and position dependent and they are created by electric charges and

electric currents and thus expressed by the local charge density per unite volume ρ (C/m3) and

the current density J (A/m2). From a macroscopic point of view, Eqs. 1.1.1 and 1.1.2 describe

Faraday’s law of induction and Ampère’s circuital law, respectively, while Eqs. 1.1.3 and 1.1.4

give Gauss’ laws for magnetic and electric fields.

The electric field E and displacement field D (C/m2), as well as the magnetic field H (A/m)

and magnetic flux density B, are related through the constitutive equations. The instantaneous

electromagnetic response of a homogeneous dielectric medium at a certain time depends on the

fields at that time and the evolutionary progress over a period of past time. So, the constitutive

relations involve the time evolutionary variation as:

D(t) = ε0E(t) +P(t) = ε0E(t) + ε0

∫ t

−∞
χ(1)
e (t− τ)E(τ)dτ (1.1.5)

B(t) = µ0H(t) + µ0M(t) = µ0H(t) + µ0

∫ t

−∞
χ(1)
m (t− τ)H(τ)dτ (1.1.6)

where P (C/m2) and M (A/m) are the polarization and the induced magnetization within di-

electric media, respectively, ε0 ≈ 8.85 · 10−12 F/m and µ0 ≈ 4π · 10−7H/m are the electric

permittivity and magnetic permeability of free space, respectively, and χ
(1)
e and χ

(1)
m are the

linear electric and magnetic susceptibilities, respectively. Expression 1.1.5 is valid in the case of

non dispersive (or monochromatic), isotropic, homogeneous and linear interactions. The polar-

ization vector represents the macroscopic electric dipole moment. If we consider a material as a

collection of charged particles, they will move when an electric field is applied: positive charges

will move in the direction of the field, while negative charges will move the opposite way. Com-

paring to electrons, the atomic nuclei are very massive, so the electronic motion will dominate

the dynamics. In dielectric materials, the charged particles are bound together, although the

bonds do have a certain elasticity. Therefore, the motion of the charges is transitory when the

field is first applied: they are displaced slightly from their usual positions. This small movement
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results in a collection of induced electric-dipole moments. In other words, the effect of the field

on a dielectric medium is to induce a polarization.

The relative permittivity and permeability, which are different for each material, are denoted

as εr = 1 + χ
(1)
e and µr = 1 + χ

(1)
m . In the linear approximation, P and E are related through:

P = ε0χ
(1)
e E.

Equations 1.1.5 and 1.1.6 can also be written in the frequency domain as:

D(ω) = ε0(1 + χ(1)
e )E(ω) = ε(ω)E(ω) (1.1.7)

B(ω) = µ0(1 + χ(1)
m )H(ω) = µ(ω)H(ω) (1.1.8)

ε(ω) = ε0εr(ω) and µ(ω) = µ0µr(ω) are the absolute permittivity and permeability, respec-

tively. In homogeneous materials, ε and µ are constant values throughout the media, while in

inhomogeneous materials, they are position dependent within the material. For anisotropic ma-

terials (different depending on directions), ε and µ are in the form of tensors, while for isotropic

materials they are denoted as scalars. Also, as general materials are dispersive, both ε and

µ depend on the frequency of the electromagnetic field. As a consequence, χ
(1)
e is denoted as

scalar in isotropic materials, while in anisotropic materials it is represented as a matrix known

as susceptibility tensor, and it also depends on the frequency of the electromagnetic field. In

the discussion that follows in the rest of this thesis, we will omit the subindex e when referring

to the electric susceptibility χ(1).

1.1.2 Wave equation for nonlinear optical media

In the previous section we assumed that the polarization P depends linearly upon the electric

field E through the expression P = ε0χ
(1)E. For now on, we will consider a nonlinear material

so that the polarization vector depends nonlinearly with the electric field. So, we will split P

into its linear and nonlinear parts:

P = P(1) +PNL (1.1.9)

Let’s now consider a space without free charges and currents, so that ρ = 0 and J = 0. Let’s

also assume that the material is nonmagnetic, so that the induced magnetization M in Eq.
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1.1.6 vanishes. In order to extract the optical wave equation, we take the curl of Eq. 1.1.1 and

interchange the order of space and time derivatives. Then, using Eq. 1.1.2 and the constitutive

relations we get:

∇×∇×E+
1

c2
∂2E

∂t2
= − 1

ε0c2
∂2P

∂t2
(1.1.10)

where 1/(ε0c
2) = µ0, and c is the speed of light. Equation 1.1.10 is the most general form

of the wave equation in nonlinear optics. However, it can be simplified. Using the identity

∇ × ∇ × E = ∇(∇ · E) − ∇2E and assuming the slowly varying amplitude approximation so

that the term ∇(∇ ·E) can be neglected [8], Eq. 1.1.10 becomes:

∇2E− 1

c2
∂2

∂t2
E =

1

ε0c2
∂2P

∂t2
(1.1.11)

Now, writing Eq. 1.1.11 in terms of the linear part of the displacement field D(1) = ε0E+P(1),

we get:

∇2E− 1

ε0c2
∂2D(1)

∂t2
=

1

ε0c2
∂2PNL

∂t2
(1.1.12)

In the case of a lossless, dispersionless and isotropic medium, so that D(1) = ε0εrE and εr is

real, frequency independent and a scalar quantity, Eq. 1.1.12 becomes:

∇2E− εr
c2

∂2E

∂t2
=

1

ε0c2
∂PNL

∂t2
(1.1.13)

Expression 1.1.13 has the form of an inhomogeneous wave equation. The nonlinear response of

the medium, described through PNL, acts as a source term. In the absence of this source term,

Eq. 1.1.13 admits solutions of the form of free waves propagating with velocity c/n, where n is

the refractive index of the medium, which satisfies n2 = εr.

For the case of a dispersive medium, each frequency component of the field should be consid-

ered separately.

1.1.3 Nonlinear polarization: the electric dipole approximation

In the previous sections, we have seen that PNL acts as a source term in the wave equation. We

have also seen how P depends on the strength of the applied field E in the linear approximation,
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i.e., at low light intensities. In nonlinear optics, the optical response can often be described by

expressing the polarization P as a power series of E:

Pi =
∑
j

ε0χ
(1)
ij Ei +

∑
jk

ε0χ
(2)
ijkEjEk +

∑
jkl

ε0χ
(3)
ijklEjEkEl + ... (1.1.14)

where χ
(2)
ijk (m/V) and χ

(3)
ijkl (m

2/V2) are components of the second and third order nonlinear

susceptibility tensors, respectively, and they are usually complex and frequency-dependent quan-

tities. The indices i, j, k, l vary on the Cartesian components x, y, z. This expression is known

as the electric dipole approximation and is valid for describing the nonlinear interactions in

bulk materials and under phase-matching conditions [8]. As we will see later in this thesis, this

expression will not be an accurate description of the PNL when, for instance, the thickness of

the nonlinear material is reduced to the atomic scale, as bulk interactions will be minimized. In

Eq. 1.1.14 we have assumed that the polarization at time t depends only on the instantaneous

value of the electric field strength. This implies, through Kramers-Kronig relation [8], that the

medium must be lossless and dispersionless. In Eq. 1.1.14 we have treated the fields as vectors,

which makes the susceptibilities χ(n) tensors of order n + 1. However, in the discussion that

follows, for simplicity, we will assume that the nonlinear material is isotropic, so we will take

the fields P and E to be scalar quantities. As a consequence, the susceptibilities will be taken

as scalars. We will also assume a dispersionless medium so that they will be independent of

frequency. With this, Eq. 1.1.14 can be written as:

P = ε0(χ
(1)E + χ(2)E2 + χ(3)E3 + ...) =

= P (1) + P (2) + P (3) + ... =

= P (1) + PNL

(1.1.15)

where P (2) and P (3) are the second and third order nonlinear polarization. As we will see, the

physical processes that occur as a result of P (2) tend to be different from those that occur as a

result of P (3).

An order of-magnitude estimate can be done to predict the values of χ(2) and χ(3) under

highly nonresonant conditions [8]: χ(2) ∼ 10−12m/V and χ(3) ∼ 10−24m2/V2.
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1.1.4 Second order nonlinear processes

Second order bulk nonlinear interactions occur in non-centrosymmetric crystals, i.e., crystals

that do not display inversion symmetry. In centrosymmetric materials, such as liquids, gases,

amorphous solids (such as glass), and even many crystals, χ(2) vanishes. However, a number of

second order bulk nonlinear interactions can be produced by non-centrosymmetric crystals. We

will now discuss briefly some of them.

Let’s consider an optical field having two frequency components that is incident upon a χ(2)

material. We can represent it in the form:

Ein = E1e
−iω1t + E2e

−iω2t + c.c. (1.1.16)

where E1 and E2 are field amplitudes and ω1 and ω2 the carrier frequencies. The second order

contribution to the nonlinear polarization will be:

P (2) = ε0χ
(2)E2

in

= ε0χ
(2)(E2

1e
−2iω1t + E2

2e
−2iω2t + 2E1E2e

−i(ω1+ω2)t

+2E1E
∗
2e

−i(ω1−ω2)t + c.c.) + 2ε0χ
(2)(E1E

∗
1 + E2E

∗
2)

(1.1.17)

As it can be seen, P (2) has developed new frequency components not present in the incident

field. Representing the second order nonlinear polarization as:

P (2) =
∑
n

Pωne
−iωnt (1.1.18)

we can write the amplitudes of the new frequency components of the nonlinear polarization as:

P2ω1 = ε0χ
(2)E2

1 SHG

P2ω2 = ε0χ
(2)E2

2 SHG

Pω1+ω2 = 2ε0χ
(2)E1E2 SFG

Pω1−ω2 = 2ε0χ
(2)E1E

∗
2 DFG

P0 = 2ε0χ
(2)(E1E

∗
1 + E2E

∗
2) OR

(1.1.19)

Four different nonzero frequency components are generated through second harmonic generation

(SHG), sum frequency generation (SFG) and difference frequency generation (DFG). OR states
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χ(2)ω1
ω12ω1 χ(2)ω1 ω1 + ω2ω2 χ(2)ω1 ω1 − ω2ω2

ω1

ω1
ω3 = 2ω1

ω1

ω2
ω3 = ω1 + ω2 ω1

ω2

ω3 = ω1 − ω2

(a) SHG (b) SFG (c) DFG

Figure 1.1.1: Geometry representation (top) and energy level diagram (bottom) describing (a)
second harmonic generation (SHG), (b) sum frequency generation (SFG), and (c) difference
frequency generation (DFG).

for optical rectification, a process in which a static electric field is created across the nonlinear

crystal. In Fig. 1.1.1 we show the geometry representation and the energy level description

of the different nonlinear processes. For instance, in SHG, two photons at frequency ω1 are

combined and generate a new photon with twice the frequency of the initial photons.

Typically, no more than one of these processes will occur simultaneously, at least with any

appreciable intensity. This is due to the fact that the nonlinear polarization can efficiently

produce an output signal only if a certain phase-matching condition is satisfied, and usually

this condition cannot be satisfied for more than one frequency component of the nonlinear

polarization. In other words, some phase-mismatch should be close to zero in order to obtain

an efficient nonlinear interaction. The conversion efficiency of the process can be defined as

ηSHG = I2ω/Iω, were Iω and I2ω are the intensities of the fundamental and the generated

second harmonic (SH) fields, respectively. For SHG, the phase-mismatch factor is given by

∆k = k2ω − 2kω, where kω and k2ω are the wavevectors of the fundamental and SH beam,

respectively. Perfect phase-matching is achieved when ∆k = 0, a condition that requires both

fundamental and SH fields to have the same phase velocity. So, phase-matching is a condition

that essentially requires conservation of linear momentum that allows continuous energy flow

from the pump to the SH, generating high efficiency signals. However, this is a condition that
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does not generally occur naturally, and so the literature abounds with contributions that contain

techniques and stratagems attempting to circumvent a naturally occurring phase-mismatch, in

order to bring the interacting waves closer to ideal, phase-matched conditions [9–13].

In Fig. 1.1.2 we have plotted with a solid curve the normalized SHG efficiency (ηSHG) as a

function of material thickness L when perfect phase-matching (∆k = 0) exists. In this case,

the efficiency of the nonlinear process grows exponentially with the thickness of the nonlinear

material. However, when the fundamental and SH beams start to mismatch (∆k ̸= 0), this

dependence is lost and the process becomes more inefficient. This situation is depicted with

dashed curves in Fig. 1.1.2, for different mismatched scenarios.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Figure 1.1.2: Normalized SHG efficiency as a function of material thickness when there exists
perfect phase-matching between the fundamental and SH beams (solid curves), and when a
certain phase-mismatch start to appear (dashed curves).

Generally, it is necessary to account for the vector nature of the fields, which is the case when

an anisotropic material is assumed. Consequently, the second order nonlinear susceptibility

becomes a tensor of order 3 that couples the different components of the field and polarization.

Usually, it is practical to introduce the tensor:

dijk =
1

2
χ
(2)
ijk (1.1.20)

This notation is only used when Kleinman’s symmetry condition is valid: whenever dispersion

of the susceptibility can be neglected [8]. Assuming the interaction of three waves of frequencies
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ω1, ω2, and ω3 = ω1 + ω2, the second order nonlinear polarization can be written as:

Pi,ωn+ωm = ε0
∑
jk

∑
(nm)

χ
(2)
ijkEj,ωnEk,ωm = 2ε0

∑
jk

∑
(nm)

dijkEj,ωnEk,ωm (1.1.21)

where Ej,k,ωn,m are field amplitudes (E =
∑

nEωne
−iωnt), the indices i, j, k refer to Cartesian

components of the field, and the indices n and m refer to the frequencies. The notation (nm)

indicates that, in performing the summation over n and m, the sum ωn+ωm is to be held fixed,

although ωn and ωm are each allowed to vary.

If we assume that dijk is symmetric in its last two indices, which is valid whenever Kleinman’s

symmetry condition is valid, the notation can be simplified using a contracted matrix dil. With

this, we can describe the nonlinear polarization leading to SHG in terms of dil by the matrix

equation:

Px,2ω

Py,2ω

Pz,2ω

 = 2ε0

d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36




E2
x,ω

E2
y,ω

E2
z,ω

2Ey,ωEz,ω

2Ex,ωEz,ω

2Ex,ωEy,ω

 (1.1.22)

If now Kleinman’s symmetry condition is introduced explicitly (all the indices dijk can be

freely permuted) we find that dil has only 10 independent elements. Moreover, this number can

be reduced depending on the crystalline symmetry of the nonlinear material. For instance, for

(001) Gallium arsenide (GaAs) the dil tensor is given by:

dil =

0 0 0 d14 0 0
0 0 0 0 d14 0
0 0 0 0 0 d14

 (1.1.23)

In some cases, once the nonlinear interaction is known, it can be represented in terms of a

single effective nonlinear coefficient deff [8].

1.1.5 Third order nonlinear processes

In the case of third order nonlinear interactions, a study similar to that performed in the previous

section can be done to analyse the different frequency components that would be generated due

to the third order contribution to the nonlinear polarization P (3). However, as now it is a four-

wave mixing problem, and so it can be quite extensive, we will limit the discussion to the case of



1.1. NONLINEAR OPTICAL INTERACTIONS IN BULK MATERIALS 11

a monochromatic applied field E = 2E1cos(ωt). The third order contribution to the nonlinear

polarization will be:

P (3) = ε0χ
(3)(2E1cos(ωt))

3 =

=
1

2
ε0χ

(3)E3
1cos(3ωt) +

3

2
ε0χ

(3)E3
1cos(ωt)

(1.1.24)

The first term in Eq. 1.1.24 describes a response at frequency 3ω that is generated by an

applied field at frequency ω, which is called third harmonic generation (THG). In Fig. 1.1.3

we show the geometry representation (a) and the energy level diagram (b) of this third order

nonlinear process. The third harmonic (TH) frequency can be obtained directly due to the cubic

nonlinearity of the material, as exemplified by Eq. 1.1.24, and/or due to the combination of

fundamental and SH beams still via the quadratic nonlinearity, which is called cascaded THG.

In the first case three photons of the fundamental field annihilate to create directly a TH photon

(ω + ω + ω → 3ω), as shown in Fig. 1.1.3. In the second case a two-step process occurs: first

two photons of the fundamental field annihilate to create a SH photon (ω + ω → 2ω) and then

one photon from the fundamental field and one photon from the SH field combine to create a

TH photon (ω + 2ω → 3ω).

Apart from THG, there are other third order nonlinear effects. For instance, the second term

in Eq. 1.1.24 describes a nonlinear contribution to the polarization at the frequency of the

incident field, so this term leads to a nonlinear contribution to the refractive index experienced

by a wave at frequency ω. In the presence of this type of nonlinearity the refractive index is

intensity-dependent. This is called the optical Kerr effect.

χ(3)ω ω
3ω

ω

3ωω

ω

(a) (b)

Figure 1.1.3: (a) Geometry representation and (b) energy level diagram describing third har-
monic generation (THG).
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1.2 Surface and phase-locked harmonic generation

The first observation of SHG [2] belonged to a mismatched bulk second order nonlinear optical

process which, in general, is observed in the volume of non-centrosymmetric nonlinear media.

In fact, SHG has been widely studied in thick nonlinear materials with high nonlinearities,

low material absorption and phase-matching conditions, in order to achieve high conversion

efficiencies. However, later it was shown that SHG can be observed at an interface between two

centrosymmetric media with different material properties [14–16]. The reason of this is that the

symmetry is broken in the vicinity of this interface. Put it another way, the surface of a material

lacks inversion symmetry and so the nonlinear polarization generates a SH field, even though

the material is centrosymmetric. This is known as surface SHG. This process was investigated

for the first time assuming non-centrosymmetric media by Bloembergen et al. in [4], where

they outlined that energy transfer between the fundamental and its generated harmonic, far

from phase-matching conditions, always happens near the interface. The expression ”near the

interface” makes reference to the walk-off distance, i.e., the distance until the harmonic pulse

is no longer under the spatial influence of the fundamental pulse due to differences in group

velocities. The more mismatch between fundamental and harmonic beams, the faster walk off

is observed. This work was successfully experimentally verified in [17], where measurements

of SHG from a NaClO3 (Sodium hypochlorite) crystal were reported, which agreed well with

Bloembergen’s theory.

As it was explained in Section 1.1.3, in the electric dipole approximation, when the nonlinear

material is centrosymmetric, second order bulk nonlinearities are forbidden as χ(2) vanishes. So,

one would expect that in this case, only surface-generated SHG would take place. However,

volume SHG is not completely prohibited in centrosymmetric media if magnetic dipole and

electric quadrupole contributions exist. This was first pointed out in [18]. Later, in [19], it was

shown that the quadrupole source term was equivalent to a nonlinear surface contribution. It

is well known now that the nonlinear polarization of a medium can be written according to a

well-established order where the electric dipole contribution is much larger than the combination
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of electric quadrupole and magnetic dipole, which in turn is much larger than the combination

of electric octupole and magnetic quadrupole, and so on. Using this classification, Eq. 1.1.14

can be modified and written as:

Pi =
∑
j

ε0χ
(1)
ij Ei +

∑
jk

ε0χ
(2),ed
ijk EjEk +

∑
jkl

ε0χ
(3),ed
ijkl EjEkEl+

+
∑
jk

1

c
χ
(2),md
ijk EjHj +

∑
jkl

ε0χ
(2),eq
ijkl Ej∇kEl + ...

(1.2.1)

where i, j, k, l are Cartesian coordinates, χ
(2),ed
ijk and χ

(3),ed
ijkl are the tensor components of second

and third order nonlinear coefficients, the superscripts ed, md, eq stand for electric dipole,

magnetic dipole, and electric quadrupole, respectively, and Eijk and Hijk are the Cartesian

components of the electric and magnetic fields.

The primary reason to investigate SHG has consistently been the achievement of efficient

frequency doubling. Thus, the emphasis has been on phase-matched interactions between the

fundamental and SH beams, and relatively few studies of SHG under phase-mismatch conditions

have been done. In this case, researchers have been confronted with situations where, in addition

to the usual SH beam, a second component is observed. This was first revealed by J. A.

Armstrong et al. [3] and N. Bloembergen et al. [4] in 1962, where they studied the creation of

SH waves when a monochromatic plane wave at frequency ω was incident on a plane boundary

of a crystal that lacked inversion symmetry. With the wave equation at the SH frequency:

∇×∇×E(2ω) +
ε(2ω)

c

∂2E(2ω)

∂t2
= −4π

c2
PNLS(2ω)

∂t2
(1.2.2)

they found that the general solution consisted of the solution of the homogeneous equation plus

one particular solution of the inhomogeneous equation:

ET(2ω) = eTET(2ω)ei(k
T(2ω)·r−2ωt)

− 4πPNLS(2ω)(4ω2/c2)

(kT(2ω))2 − (kS(2ω))2

(
p− kS(2ω)(kS(2ω) · p)

(kT(ω))2

)
ei(k

S(2ω)·r−2ωt)
(1.2.3)

for the transmitted electric field ET(2ω), and

ER(2ω) = eRER(2ω)ei(k
R(2ω)·r−2iωt) (1.2.4)
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for the reflected electric field ER(2ω). Similar equations were obtained for the magnetic field and

can be found in [4]. In Eqs. 1.2.3 and 1.2.4, eT and eR are the polarization vectors, ET(2ω) and

ER(2ω) are the transmitted and reflected amplitudes of the SH field, kT(2ω) is the wavevector of

the transmitted homogeneous SH wave, kS(2ω) = 2kT(ω) is the wavevector of the transmitted

inhomogeneous SH wave where kT(ω) is the wavevector of the incident wave, and kR(2ω) is the

wavevector of the reflected SH wave. In Eqs. 1.2.3 and 1.2.4 it can be seen that the general

solution for SHG from a boundary layer displays a reflected signal, and two forward propagating

components, one displaying a k -vector that is a solution of the homogeneous wave equation,

i.e., the expected wave vector at the SH frequency, and the other k -vector that is the solution

of the inhomogeneous wave equation, equal to twice the pump’s wave vector. This fact is also

illustrated in Fig. 1.2.1, which is extracted from [4]. As it can be seen, the reflected SH goes

in the same direction as the reflected fundamental wave, as vacuum does not have dispersion.

However, in the transmitted case, while the inhomogeneous source wave kS(2ω) goes in the

same direction as the transmitted fundamental kT(ω), the homogeneous transmitted harmonic

kT(2ω) will in general go in a different direction due to material dispersion. In the case of exact
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I'io. 1. The incident,
reflected, and refracted
rays at the fundamental
and second harmonic
frequencies near the
boundary between a
KDP crystal and vacu-
um. There is no match-
ing of the phase veloci-
ties between the extra-
ordinary fundamental
and ordinary second har-
monic ray.

which is the optic (c) axis of the crystal. This is shown
by considering the symmetry of g. If the transmitted
fundamental wave is the extraordinary ray, the field
E& will, in general, have x' and s' components. The
coordinate system (x',y', s') is fixed with respect to the
crystal. The s' direction coincides with the optic axis
and y' coincides with y. Since the only nonvanishing
elements in the nonlinear tensor susceptibility are
X ~, , the nonlinear source term will be polarized in
y'=y direction according to Eq. (2.1).

The boundary conditions, which match the wave
solutions in Eqs. (2.5) and (2.6), can now be satisfied
by choosing harmonic waves v ith an electric Geld vector
normal to the plane of incidence, ez =eg= j.These are
the ordinary rays in the geometry of Fig. 1. The
continuity of the tangential components E~ at the
boundary a=0 leads to the condition

Since the vacuum has no dispersion, the reQected
second harmonic goes in the same direction as the
rejected fundamental wave. Whereas the inhomogene-
ous source wave goes in the same direction as the
transmitted fundamental, the homogeneous transmitted
harmonic will in general go in a somewhat different
direction. The two waves will be parallel in the limiting
case of exact phase matching, e(cv) =e(2~), or normal
incidence. The solution of the wave equation, Eq.
(2.4), requires further scrutiny in this limiting case.
This will be postponed to Sec. IV. The important
question of mismatch of the phase velocities in the
direction normal to the propagation had to remain
unsolved in the discussion of the infinite medium. ' lt
has now been resolved; this mismatch is determined
both by the orientation of the boundary and the
dispersion in the medium. The geometrical relationships
a.re sketched in Fig. 1.

The question of the intensity and polarization of the
harmonic waves will be treated here only for the case
that the nonlinear polarization is normal to the plane
of incidence, i.e., p= j. A more general discussion will
be postponed until Sec. IV. The example considered
here occurs in a KDP crystal when the fundamental
incident wave is E polarized in the plane of incidence,

'1'he continuity of the x components of the magnetic
field requires

—h."cos8a= e"'(2~)b.."cos81'
PNLS—e"'((u) cos8 '— — (2 9)

6 (2') E (N)

'1'he electric field amplitudes of the reQected and trans-
mitted harmonic follow from the solution of Eqs. (2.8)
and (2.9).

—4n.P"~s e"'(2a)) cos8r —e"'(~) cos8~
h."=— (2.10)
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62'r follows immediately from Eq. (2.8). It should be
kept in mind that the total Geld in the dielectric
medium is, of course, given by the interference between
the homogeneous and the inhomogeneous wave Laccord-
ing to Eq. (2.5)]. At the boundary the total field in
the medium is of course equal to b~. Multiplication
of both numerator and denominator of Eq. (2.10) by
e'"(2') co~8 +e'"(co) cos8 and use of the refraction
laws LEq. (2.7)] lead to

Ol

4 pNLS
8—

( ~) cps8 +cps8li']L ( ~) cps8 + (+) cps

—F8~~8 sin2P sine~
& R—

sill (8 +8 ) sill(8 +8 ) s1118'
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The amplitude of the reQected wave is not sensitive to
matching of the phase velocities in the medium. In
fact, the ordinary harmonic and the extraordinary
fundamental cannot be matched in KDP. Crudely,
one may say that a layer of about one wavelength thick
contributes to the radiation of the reQected ray. Deeper
strata of the semi-infinite medium interfere destruc-

tively and together give no contribution to the reQected
ray. This statement will be made more precise in Sec.
VI, where a dielectric slab of finite thickness will be
considered explicitly. If E,1 3&&10' V/cm denotes the
typical intra-atomic 6eM, the fraction of the incident
power that will appear in the reQected harmonic is
roughly (Elr/E. ~)'. For a, relatively modest flux density

Figure 1.2.1: Incident, reflected and refracted rays at the fundamental and SH frequencies near
the boundary between vacuum and a nonlinear crystal [4].



1.2. SURFACE AND PHASE-LOCKED HARMONIC GENERATION 15

phase-matching (∆k = 0), the two rays will be parallel.

More research on this phenomenon followed the next years. In 1969, in a mathematical treat-

ment, Glenn [20] provided a general solution of the SH field that also showed two contributions,

one arising as a surface term, traveling with the characteristic group velocity expected at the SH

frequency, and a second component that instead appeared to travel with the group velocity of

the fundamental beam. In 1987, it was theoretically shown in [21] that, in the weak conversion

efficiency regime and in the presence of group velocity dispersion, the SH signal was charac-

terized by a double-peaked structure. Then in 1990, Noordam et al. [22] reported that under

conditions of a phase and group velocity mismatch, the SH signal indeed displayed two promi-

nent features. This was the first experimental observation of the phenomenon, which, in the

years that followed was again reported theoretically and experimentally. In 2006 [23] additional

theoretical and experimental evidence that a purely second order process could lead to a double

peaked structure in the time domain profile of the SH beam was introduced. The effect was

attributed to induced group velocity dispersion, under conditions of negligible group velocity

mismatch. They argued that, as the pump and SH beams co-propagate, the pump is able to

impress its dispersive properties on the SH pulse. Also, in [24], the double peaked structure in

the SH signal was discussed theoretically in the context of femtosecond pulse propagation in a

birefrigent nonlinear material, under phase-mismatched conditions. Their results suggested that

the SH signal splits into two components, one that travels at the pump’s group velocity, and a

second component that walks off, consistent with all previous predictions and observations of the

phenomenon. We could say that what we have learnt from these studies is the following: when

a pump pulse crosses an interface between a linear and a nonlinear medium there will be always

three distinguishable SH components. One component is generated backward (reflection) into

the linear medium; the other two components are generated forward. These forward-propagating

components arise from the homogeneous and inhomogeneous solutions of the wave equation at

the SH frequency. For example, in the absence of absorption, the homogeneous component
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travels with the group velocity given by material dispersion:

kHOM
2ω = k0,2ωn2ω (1.2.5)

where k0,2ω = 2ω/c is the wavenumber expression for the SH in vacuum; while the inhomoge-

neous component is captured by the pump pulse and experiences its same effective dispersion:

kINH
2ω = 2k0,ωnω (1.2.6)

where k0,ω = ω/c is the wavenumber of the fundamental field in vacuum. In this case it is

said that the SH pulse is phase-locked. We remark that, in order to better distinguish both

the homogeneous and the phase-locked components, it is important to work far from phase-

matching conditions and use very short pulses. For instance, femtosecond pulses propagating

in millimeters long sample. This way, the fundamental and SH pulses will have enough time to

walk off. This situation is schematically shown in Fig. 1.2.2, where the propagation of a pump

Gaussian ultrashort pulse into a nonlinear material is depicted. The SH signal is characterized

by a reflected pulse and two forward-propagating pulses, one traveling at the normal group

velocity, which walks off and lags behind the other phase-locked, and located under the pump,

and traveling at the pump’s group velocity.
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Figure 1.2.2: A Gaussian pump pulse (black) propagates into a nonlinear material. The SH signal
(red) is characterized by a reflected pulse and two forward-propagating pulses, one traveling at
the normal group velocity, which walks off and lags behind the other phase-locked, and located
under the pump, and traveling at the pump’s group velocity.
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After the above mentioned studies, V. Roppo et al. reported in 2007 [25] a theoretical study

of the phase-locking mechanism in negative index media. They found that the phase-locking

phenomenon caused the forward moving, phase-locked SH pulse to experience the same negative

index as the pump pulse, even though the index of refraction at the SH wavelength was positive.

They also found that the phase-locking mechanism characterizes not only SHG, but also χ(3)

processes, as shown previously in [26] where the phase-locking mechanism was first discussed in

the context of intense field propagation and filamentation in the atmosphere.

To practically appreciate this double nature of the SH, a way to separate the two components

in time or in space is needed. In 2009 it was reported in [27] an experimental verification of the

phenomenon. A fundamental field tuned at 800 nm was incident to a LiNbO3 (Lithium niobate)

crystal, which was transparent for both fundamental and SH wavelengths. The exit interface

of the crystal was cut 20◦ respect to the orientation of the entry interface. In Fig. 1.2.3 we

show the simulated and experimental results reported in [27], as well as the experimental set-up

used to measure the SH signals. In the experiment, the fundamental beam impinged normally

to the entry of the interface of the crystal and then it was refracted at a certain angle at the
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Fig. 1. Numerical simulation of pulsed second-harmonic in a generic Lorentz medium, having 

γ=10-8, ωp=4, ω0=4, under phase-mismatched conditions. The small γ keeps absorption at 
negligible levels.  The yellow box delineates the medium. (a) pump pulse.  (b)SH pulses.  Two 
SH signals are discernable, one that tracks the pumps pulse (yellow arrow), the other that 
refracts according to material dispersion (red arrow). These two components travel with 
different group velocities and thus tend to separate as distance is gained inside the sample. The 
leading pulse is phase-locked and trapped by the pump; the second pulse propagates freely and 
at a group velocity approximately three times smaller compared to the pump.  

3. Experiment 

The pulse locking was experimentally monitored by performing a SHG experiment using the 
set-up shown in fig.2. 110-fs light pulses from an amplified Ti-Sapphire laser system with 
energies of few ten’s of micro-joule are focused onto the XZ face of a congruent lithium 
niobate crystal (from a commercial z-cut wafer) and propagated along the Y direction. At the 

entrance face the beam waist was about 600 µm, with  intensities of the order of a few 
GW/cm2. A special prismatic shape of the sample ensured the output face to be 20° tilted from 
the propagation direction. Thus, this sample acts simultaneously as a generator and a spectrum 
analyser, as each wavelength refracts at different angle and according to Snell’s law.  

 
 

Fig. 2. The experimental set-up. A prismatic lithium niobate crystal was used to generate the 
second harmonic 400 nm signal from a 800 nm pump pulse. The titled output face of the 
crystal forced the pulses to exit at different angles, according to their refractive indices. The 
locked arm was then refocused onto a thin BBO crystal at perfect phase-matching for 
ω+2ω=3ω interaction.  
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4. Phase-velocity locking 

The phase-velocity locking was initially monitored by recording the output angular 
distribution with a CCD camera in the reference position. Three cases were recorded 
according to the injected input beam.  

 

Fig. 3. Experimental images of  the fundamental (800 nm) and second harmonic (400 nm) 
signals exiting the tilted output surface. Each position corresponds to a different output angle 
according to the Snell’s law. 

In Figure 3(I) we describe the case of injecting a pump e-polarised beam (A), and 
generating two e-polarised second-harmonic pulses, thus achieving  type-0 polarisation 

coupling ee-e (∆kee-e=2.45·104 cm-1). One of the beams (B) exits at the angle that corresponds 
to ne(400nm), while the other (C) exits exactly overlapped with the pump beam, i.e. at the 
angle that corresponds to ne(800nm). This result demonstrates that the generated second 
harmonic signal separates in two different parts, one freely propagating without further 
interaction with the pump pulse, the other locked with the pump, propagating exactly at the 
same phase-velocity (A-C), i.e. having exactly the same refractive index and following 
exactly the same trajectory as the pump. It should be mentioned here that an unexpected high 
conversion efficiency was observed for the locked second-harmonic beam, whose average 
power was of the order of 10-3-10-2 of the pump one.  

In Figure 3(II) we show the case of an o-polarised fundamental frequency injected in the 

crystal (D), resulting in type I coupling oo-e (∆koo-e=1.20·104 cm-1). The generated SH signal 
is once again broken in two fragments, one freely propagating (E), and the other (F) once 
again phase-locked to the pump (D-F) that exits the lithium niobate crystal at the same angle 
as the fundamental frequency. Also in this case there is a transfer of refractive index from the 
generating to the generated wavelength: in fact the e-polarised locked pulse at 400nm 
experiences exactly the ordinary refractive index of 800nm pump pulses. 

Finally in Figure 3(III) we display the case when both e- and o-polarisations are injected 

inside the sample (G, H), such that type-0, type-I and type-II (oe-e, ∆koe-e=1.8·104 cm-1 , oe-o, 

∆koe-o=3.5·104 cm-1) couplings are obtained simultaneously. The fundamental e-polarisation 
(G) generates two e-polarised second harmonic pulses (M, O) according to the type-0 
coupling. The fundamental o-polarisation generates two e-polarised second harmonic pulses 
according to type-I coupling, (M, N). The temporal overlapping of the fundamental o- and e-
polarisations generates a second harmonic signal (L) by type-II coupling, which is the only 
second harmonic o-polarisation. Indeed, due to group velocity mismatch of the two pumps, 
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Fig. 1. Numerical simulation of pulsed second-harmonic in a generic Lorentz medium, having 

γ=10-8, ωp=4, ω0=4, under phase-mismatched conditions. The small γ keeps absorption at 
negligible levels.  The yellow box delineates the medium. (a) pump pulse.  (b)SH pulses.  Two 
SH signals are discernable, one that tracks the pumps pulse (yellow arrow), the other that 
refracts according to material dispersion (red arrow). These two components travel with 
different group velocities and thus tend to separate as distance is gained inside the sample. The 
leading pulse is phase-locked and trapped by the pump; the second pulse propagates freely and 
at a group velocity approximately three times smaller compared to the pump.  
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Figure 1.2.3: Results on SHG in a LiNbO3 crystal reported in [27]. Numerical simulations (left),
experimental results (center) and experimental set-up (right).



18 INTRODUCTION

exit accordingly to Snell’s law corresponding to nω. The generated SH was decomposed and

recorded in two spots: one refracted accordingly to Snell’s law at n2ω and the other followed

the fundamental beam direction. With this, they concluded that the SH ”read” the index of

refraction imposed by the dispersion value n2ω, but the inhomogeneous SH component ”read”

the same refractive index as the fundamental beam.

A more intriguing situation arises when the fundamental beam is tuned in the transparency

range of the material, while the harmonic wavelengths fall well below the absorption edge. Based

on the nature of the inhomogeneous solution, which travels with the phase and group velocities

of the fundamental wave, one may then expect from the Kramers-Kronig relations that the

imaginary part of the refractive index experienced by the phase-locked harmonic component

should match that of the fundamental. This conclusion leads to the counter-intuitive hypothesis

that the phase-locked harmonic component should be able to propagate inside the material

regardless of material dispersion and absorption at the harmonic wavelengths in the opaque

region of the spectrum, as long as the pump is at least partially transmitted. In [28] it was

experimentally reported for the first time the inhibition of linear absorption for phase and group

velocity mismatched SHG and THG in GaAs, at frequencies above the absorption edge. A 100 fs

pump pulse tuned to 1300 nm generated 650 nm and 435 nm SH and TH pulses, respectively, that

propagated across a 450µm-thick GaAs substrate without being absorbed. This was attributed

to a phase-locking mechanism that causes the pump to trap the harmonics and to impress on

them its dispersive properties. Later, it was shown in [29] that the phase-locked SH component

generated in opaque materials can be significantly amplified by three orders of magnitude in

a GaAs cavity that displays a resonance only at the fundamental wavelength. Later, in 2011,

V. Roppo et al. also reported in [30] the generation of a TH field tuned at 223 nm from a

GaP (Gallium phosphide) substrate 500µm-thick. The results showed that a phase-locking

mechanism that triggers transparency at the harmonic wavelengths persists regardless of the

dispersive properties of the medium, and that the fields propagate hundreds of microns without

being absorbed even when the harmonics are tuned to portions of the spectrum that display
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metallic behavior. During this thesis, we have continued the study of phase-locked harmonic

generation in an opaque material and the results will be shown in Chapters 2 and 3 for the case

of a GaAs wafer and different silicon samples.

1.3 Optical properties of semiconductors and metals

Nowadays, metals and semiconductors are usually embedded in nanostructures which are rou-

tinely fabricated and integrated in different photonic devices for a variety of purposes and

applications. The optical response of metals and semiconductors is different. In this section we

will describe it following the theoretical models for free and bound (valence) electrons.

1.3.1 Free electrons and interband transitions

In the band theory of solids there are conduction electrons and interband transition (or bound)

electrons. Conduction electrons are freely to move within bulk metals, while interband transition

electrons can only be induced by incident photons having energy greater than the bandgap

energy. Both of them can determine the complex dielectric function of the material, which

describes its optical properties.

Conduction electrons are associated principally with free carriers within metal media, and

they are described by the Drude model. Interband transitions consist of electrons jumping

from the energy band below the Fermi level (valence band) to the conduction band when being

excited by photons with enough energy. This interband transitions often occur in the light-

matter interaction at the visible or infrared (IR) wavelengths, and they can be described as an

harmonic oscillator through the Lorentz model.

Materials can be divided depending on their band structure. For an insulator, a large energy

gap exists between the valence and the conduction band. Semiconductor materials have a

similar band structure, but their bandgap is much smaller, so lower energy photons will be able

to excite electrons from the valence to the conduction band. The energy gap depends on the

semiconductor and it can be temperature dependent. In the case of metals, the energy bands

overlap each other. The overlap of valence bands and free conduction bands enables electrons
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Figure 1.3.1: (a) Geometry representation and (b) energy level diagram describing third har-
monic generation

to move freely across the bands. In semiconductors, like GaAs, free carrier doping ranges from

1014 cm−3 to 1017 cm−3, so they can be neglected in the description of their dielectric function.

Typical free carrier densities in metals are much higher, of the order 1022 cm−3. So, the optical

properties in semiconductors are described by the Lorentz model, while the Drude (or a combined

Drude-Lorentz) model is used to describe the dielectric function of metals.

1.3.2 Classical harmonic oscillator: Lorentz model

The Lorentz model treats the atom as an harmonic oscillator, and it is known to provide a good

description of the linear optical properties of nonmetallic solids. This model describes a point

electron that is bound to a nucleus as though by a spring, as depicted in Fig. 1.3.2. The electron

is under the action of a linear restoring force, which can be written as FL
Restoring = −mω2

0r, were

m is the mass of the electron, ω0 is the resonance frequency of the oscillation, and r determines

the position of the electron. However, the model can be extended by adding a nonlinearity in

the restoring force, which will be discussed later.
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Figure 1.3.2: Schematic representation of the Lorentz model of the atom, consisting of an electron
bound to the atom by a spring that provides a restoring force.

The equation of motion of a bound electron in the presence of an applied electromagnetic field

can be expressed as:

r̈+ γṙ+ ω2
0r =

e

m
(E+ ṙ×B) (1.3.1)

The right hand side of Eq. 1.3.1 contains the Lorentz force, where E and B are the applied

electric and magnetic fields, respectively. In the left hand side of Eq. 1.3.1 there is a damping

force of the form −mγṙ, where γ is the damping coefficient, as well as a linear restoring force,

where ω0 is the resonant frequency. The damping coefficient γ is introduced in the model to

explain absorption.

We now wish to connect the microscopic dynamics of the electron driven by Eq. 1.3.1 to a

macroscopic dynamical equation. This connection is done through the polarization P of the

medium. The microscopic quantity of interest is the dipole moment, defined as:

p = er (1.3.2)

where e is the charge of the electron. When the dipoles are distributed throughout the volume

with a dipole density n per unit volume, the polarization of the medium is:

P = np = ner (1.3.3)

So, Eq. 1.3.1 can be written in terms of the polarization P as:

P̈+ γṖ+ ω2
0P =

ne2

m
(E+ ṙ×B) = ω2

pε0 (E+ ṙ×B) (1.3.4)
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where ωp = (ne2/mε0)
1/2 is the plasma frequency and Ṗ = J is the current density. By Fourier

transforming Eq. 1.3.4, assuming a monochromatic field, and neglecting the magnetic part of

the Lorentz force we get:

Pω =
ω2
pε0

ω2
0 − ω2 − iγω

Eω (1.3.5)

where Pω and Eω are polarization and field amplitudes, respectively. Now, comparing Eq. 1.3.5

with the expression Pω = ε0χ
(1)
ω Eω = ε0(εr − 1)Eω, we can write the (relative) permittivity

function as:

εr = 1−
ω2
p

ω2 − ω2
0 − iγω

(1.3.6)

We note here that, in the absence of a damping coefficient (γ = 0), the permittivity of the

material would be purely real and the model would not take absorption into account.

As mentioned before, Eq. 1.3.1 can be modified by adding a nonlinearity in the restoring

force. For a non-centrosymmetric material, the equation of motion of the electron position r

can be written as:

r̈+ γṙ+ ω2
0r+ ar · r =

e

m
(E+ ṙ×B) (1.3.7)

In Eq. 1.3.7 we have added a nonlinear restoring force of the form FNL
Retsoring = −mar ·r, where a

is a parameter that characterizes the strength of the second order nonlinearity. We can assume

that the nonlinear term becomes important when linear and nonlinear internal restoring forces

are of the same order of magnitude. So, for a given spring deformation r0, one should have

ω2
0r0 ≈ ar0 · r0 which yields a ≈ ω2

0/|r0|. If we assume that the maximum spring deformation is

comparable to the size of the atom, which would give us a large, upper estimate of the oscillation

amplitude, and note that this distance is of the order of the separation between atoms, that is,

of the lattice constant L, we have that a ≈ ω2
0/L.

The nature of this form of the restoring force can be understood by noting that it corresponds

to the following potential energy function (for simplicity we analyse it in one dimension):

U(x) = −
∫
(FL

Restoring + FNL
Restoring)dx =

1

2
mω2

0x
2 +

1

3
max3 (1.3.8)
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which contains both even and odd powers of x. This means that the present model describes

only non-centrosymmetric materials as the condition U(x) = U(−x) is not fulfilled. The first

term in Eq. 1.3.8 corresponds to an harmonic potential, while the second term corresponds to

an anharmonic correction term.

For centrosymmetric media, the equation of motion of electrons can be given by:

r̈+ γṙ+ ω2
0r− b(r · r)r =

e

m
(E+ ṙ×B) (1.3.9)

where now a nonlinear restoring force of the form FNL
Restoring = mb(r · r)r is considered. The

parameter b represents the strength of the third order nonlinearity and can be estimated to

be of the order b ≈ ω2
0/L

2. In this case, the potential energy function corresponding to this

nonlinear restoring force will be symmetric under the operation x → −x, which it must be for

a medium that possesses a center of inversion symmetry.

The parameters a and b can be related to χ
(2)
ω and χ

(3)
ω , respectively [8].

1.3.3 Drude model

The Drude model is used to describe the linear optical properties of metals, which are treated

as a gas of free electrons with density n per unit volume. In this case, the electrons are not

bound to any particular nucleus and are considered to move freely around the metal lattice in

the absence of a restoring force.

In the presence of an external electromagnetic field, the equation of motion of free electrons

is given by:

r̈+ γṙ =
e

m
(E+ ṙ×B) (1.3.10)

where m, e and r are the electron mass, charge and position, respectively, and E and B are the

electric and magnetic fields. In this model, the electron motion is damped by collisions with ions

(γ ∼ 100THz for noble metals). Electron-electron interactions and the effects of crystal lattice

potential are neglected. The first term on the right-hand side of Eq. 1.3.10 is the Coulomb

interaction between the electron charge and the electric field E, while the second term is the

Lorentz force due to the presence of the magnetic flux density B. Similarly to what we did with
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the case of bound electrons, the relation between the microscopic dynamics described by Eq.

1.3.10 and the macroscopic response of the medium is given by the polarization P = enr. As a

consequence, the macroscopic version of Eq. 1.3.10 can be written as:

P̈+ γṖ = ε0ω
2
p (E+ ṙ×B) (1.3.11)

where ωp =
(
ne2/ε0m

)(1/2)
is the plasma frequency of the electron gas. It is important to note

that the mass m in the free electron model is an optical effective mass. Such mass, which mainly

depends on the band structure of the medium, may significantly differ from the electron rest

mass me. If we now assume a monochromatic field, apply Fourier transform to Eq. 1.3.11, and

neglect the magnetic part of the Lorentz force, we get:

Pω = −
ε0ω

2
p

ω2 + iγω
Eω (1.3.12)

where we have assumed that n does not depend on time. Finally, by comparing Eq. 1.3.12 with

Pω = ε0(εr − 1)Eω, the following expression for the permittivity function is obtained:

εr(ω) = 1−
ω2
p

ω2 + iγω
(1.3.13)

Eq. 1.3.13 is known as the Drude dispersion model for an ideal gas of free electrons. It can

be shown that, for frequencies below
(
ω2
p − γ2

)(1/2)
the real part of the dielectric function is

negative. For media with damping coefficient γ much smaller than the plasma frequency, ωp is

approximately the zero-crossing frequency for the dielectric function.

Interband transitions in metals, such as gold and copper, can occur in the visible range of the

spectrum. In order to take them into account, the usual approach consists in adding a number

N of Lorentz oscillators to the free electron response, so that the permittivity function becomes:

ε(ω) = εf (ω) + εb(ω) = 1−
ω2
p

ω2 + iγω
−

N∑
j=1

fjω
2
p

ω2 − ω2
j + iγjω

(1.3.14)

where εf (ω) and εb(ω) are the Drude and the Lorentz portion of the total dielectric function,

respectively, and ωj , fj and γj are resonant frequency, strength and damping coefficient of the

j-th oscillator, respectively. Equation 1.3.14 is known as the Drude-Lorentz model. A simplified
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version of it is obtained considering εb constant and by writing ε(ω) = ε∞− ω2
p

ω2+iγω
. Although this

correction improves the free electron Drude model, it does not provide an accurate description

of the optical response in the frequency region where interband transitions occur.

When metallic structures reach the nanometer size, or when the distances between metallic

regions are smaller than a few nanometers, additional effects must be included in the description

of the free electron gas. The simplicity and effectiveness of the Drude and the Drude-Lorentz

models reside in their local nature. These models predict that the response of the metal at

a certain location in space is proportional to the field evaluated at that specific location. In

other words, the induced polarization at position r is simply proportional to the applied field,

as shown in Eq. 1.3.12.

A more accurate representation of the optical response of metals is provided by the hydrody-

namic model of the free electron gas. This model corrects the constitutive relation for metals

by adding a dependence on the spatial derivative of the field. The equation of motion for a

hydrodynamic gas can be written as:

mr̈+mγṙ = e (E+ ṙ×B)− 1

n
∇p (1.3.15)

In Eq. 1.3.15 there is an additional force, ∇p/n, due to spatial differences of gas pressure p that

drives the conduction electrons from higher to lower density regions. For a three dimensional

gas, the quantum pressure can be written as p = p0(n/n0)
5/3, where p0 = n0EF is the Fermi

pressure (the pressure of the quantum electron gas at zero temperature), n0 is the equilibrium

free electron density, and EF is the Fermi energy. From Eq. 1.3.15, the following expression

for the field amplitudes at the fundamental frequency can be obtained, as explained in detail in

[31]:

β2∇(∇ ·Pω)− ω2Pω − iωγPω = ε0ω
2
pEω (1.3.16)

where β is proportional to the Fermi energy and the expression of the free electron plasma

frequency is reintroduced. If one neglects the pressure term (β = 0), the above expression

corresponds to the classical local response of the Drude model, as in Eq. 1.3.12. It is clear that
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the pressure term introduces second order spacial derivatives, hence adding to the metal optical

response a nonlocal, or spatially dispersive, contribution. If we transform the relation 1.3.16 into

the k -space domain, i.e., using the transformation ∇ → ik, we can obtain the resulting nonlocal

permittivity:

εnl(k, ω) = 1−
ω2
p

ω2 + iωγ − |k|2β2
(1.3.17)

The term |k|2β2 in Eq. 1.3.17 introduces a small perturbation of the permittivity that blue-shifts

plasmonic resonances.

1.4 Nonlinear optics at nanoscale

In the last decade an impressive technological progress has been made towards the miniatur-

ization process. Nowadays, in the multidisciplinary field of nanotechnology, structures with

nanometric and even sub-nanometric size are produced and integrated in different devices and

applications. At sub-nanometer scale light-matter interaction displays completely new phenom-

ena, different from those corresponding to the same materials at micron or millimeter size. For

example, controlling and guiding light has been one of science’s most influential achievements.

It affects everyday life in many ways, such as the development of telescopes, microscopes, spec-

trometers, and optical fibers, to name but a few. These examples exploit the wave nature of

light and are based on the reflection, refraction and diffraction of light by optical elements such

as mirrors, lenses or gratings. However, the wave nature of light limits the resolution to which

an object can be imaged, as well as the size of the transverse cross section of efficient guiding

structures to the wavelength dimension. On the contrary, plasmonic resonances in nanoantennas

overcome these constraints, allowing unprecedented control of light-matter interactions within

subwavelength volumes.

The integration of optical processes at the nanoscale may become fundamental in fields such

as quantum optics as well as in biology and medicine. The ability to generate nonlinear optical

processes in nanoscale volumes may allow boosting the efficiencies of high throughput screening

techniques and squeezing optical logic functions down to electronic chip scales, pointing to-
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wards the realization of nonlinear optical sensing probes and photonic sources operating at the

nanoscale. For instance, SHG and THG can be used in nonlinear sensing. THG in nanoantenna

arrays was the first to be tested as a probe in plasmon-enhanced nonlinear sensing [32], and a

preliminary study, reported in [33] on engineered nanoantennas demonstrated that SHG-based

plasmonic sensing can be at least as sensitive as the linear one despite the extremely low SHG

performance.

The drawback is that, at the nanoscale, conversion efficiencies of nonlinear processes such as

SHG and THG may decrease compared to their macroscopic counterparts and phase-matching

conditions and even absorption may no longer play a primary or significant role. However,

nonlinear optics in nanostructured materials offers possibilities for efficiency enhancement due

to strong field confinement by plasmonic resonances at metal-dielectric boundaries, in metama-

terials, or under conditions where the dielectric constant of the material approaches zero. So,

the research interest has shifted from phase-matched optical interactions that occur over the

bulk size with many wavelengths scale toward the optical near-field interactions within a few

wavelengths or at sub-wavelength scale [32, 34, 35]. In this case, the efficiency of nonlinear

processes is determined not by the quality of phase-matching, but by the degree of confinement

and overlap of the optical near-field with the nonlinear nanostructures. As a consequence, major

research work over the past decade has been focused on the design and fabrication of optimized

configurations of nonlinear nanostructures.

Plasmonic nanostructures are among the first exploited approach to bridge the gap between

conventional and modern nonlinear optics as they allow the local field to be significantly en-

hanced. Metal nanostructures (nanoantennas) are variously shaped objects, with a size as small

as few tens of nanometers, typically made of noble metals, such as gold and silver. The combi-

nation of the strong near-field intensity in plasmonic systems and the intrinsic nonlinearities of

metals result in efficient nonlinear optical processes. Nontheless, recently, dielectric nanostruc-

tures have emerged as an alternative to plasmonics due to their much lower loss, high refractive

index and high damage threshold. In this new route, the light-matter interaction can be en-
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hanced through Mie resonances [36]. Semiconductor Mie-resonators can confine the light inside

their volume, allowing for a large overlap of the near-fields of the resonant modes with the

semiconductor material. Thereby, nonlinear optical effects can be boosted.

In this section, we will overview the research that has been done on harmonic generation from

different materials interesting for nanophotonics: metals, semicondutors and conductive oxides.

Specifically, we will focus on the materials that have been studied in this thesis: gold, GaAs,

silicon, and Indium tin oxide (ITO).

1.4.1 Metals: gold

Interest in the nonlinear optical properties of metals arches back to the beginning of nonlinear

optics, is still a subject of debate, and is now more relevant than ever insofar as nano-plasmonics

is concerned. Plasmonics concerns to the investigation of electron oscillations in metallic nanos-

tructures and nanoparticles. Surface plasmons have optical properties, which are very interest-

ing. For instance, they have the unique capacity to confine light at the nanoscale. Moreover,

surface plasmons are very sensitive to the surrounding medium and the properties of the mate-

rials on which they propagate. In addition to the above, the surface plasmon resonances can be

controlled by adjusting the size, shape, periodicity, and material’s nature. Thus, all these optical

properties of plasmonic systems can enable a great number of applications, such as biosensors

[37, 38], optical devices [39, 40], and photovoltaic devices [41, 42].

As mentioned, the electromagnetic resonances associated with these surface plasmons depend

on the details of the nanostructure, opening up opportunities for controlling light confinement

on the nanoscale. The resulting strong electromagnetic fields allow weak nonlinear processes,

which depend superlinearly on the local field, to be significantly enhanced. In addition to

providing enhanced nonlinear effects with ultrafast response times, plasmonic nanostructures

allow nonlinear optical components to be scaled down in size.

Research of nonlinear interactions in metals, such as SHG and THG, started with the begin-

ning of nonlinear optics. From a historical point of view, it was pointed out in reference [18] that

in centrosymmetric media, where bulk χ(2) vanishes, SHG arises from a magnetic dipole term
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and from an electric quadrupole-like contribution. Later, in reference [19], it was shown that the

quadrupole source term was equivalent to a nonlinear surface contribution, and it was proposed

that SHG in metals may be explained by considering separate bulk and surface contributions

having different weights associated with free electron dynamics. Early experimental evidence of

SHG in metals may be found in reference [43], where reflected SHG was measured from a silver

mirror. In references [44] and [45] experimental results of reflected SHG were reported for silver

and gold mirrors. Additional theoretical and experimental studies followed, a small sample of

which may be found in references [46–48], where the main approach to explain the generation of

SH light was to separate and distinguish between surface and volume nonlinear contributions.

For example, based on the idea of identifying surface and volume sources, in reference [49] the

magnitude and relative phase of second order susceptibility tensor elements were determined for

thin-film metal samples of silver, gold, copper, aluminum and tantalum. However, the interest in

metals’ potential and usefulness as optical materials, beyond their use as mirrors, started when

the field of plasmonics emerged. The combination of the strong near-field intensity obtained

with plasmonic systems and the intrinsic nonlinearities of metals readily results in efficient non-

linear optical processes, which have given rise to the new research field of nonlinear plasmonics.

Various nonlinear optical processes, including SHG, have been observed in plasmonic nanostruc-

tures. For instance, in references [50–52], SHG was investigated experimentally and theoretically

from gold nanoparticles. In [53] SHG from gold nanocups was reported, with experimental con-

version efficiencies of order 10−9. As another example, in reference [54] SHG was demonstrated

from a diffraction grating of symmetric gold nanoparticles, without reporting experimental or

theoretical conversion efficiencies. Other experimental studies of SHG from gold are reported in

references [55] and [56]. Third order nonlinearities have also been studied in a variety of gold

samples in various geometries [57–62].

1.4.2 Semiconductors: GaAs and silicon

Despite the numerous advantages for near-field enhancement, metallic nanostructures suffer from

high dissipative losses and inevitable heating effect, leading to irreversible damage under high
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intensity light. As a consequence, the exploration of other materials for nonlinear engineering at

the nanoscale has been also an active research direction. Recently, dielectric nanostructures have

emerged as an alternative to plasmonics due to their much lower loss, high refractive index and

high damage threshold. The use of semiconductors such as GaAs, GaP or silicon in the process

of fabrication of nanodevices is at the forefront of modern technology, with the aim of exploiting

light-matter interactions at the nanoscale in new and sometimes surprising ways. Nonlinear

frequency conversion plays a crucial role in advancing the functionality of next generation optical

systems. Portable metrology references and quantum networks will demand highly efficient

second order nonlinear devices. In order to achieve this efficiency enhancement, several studies

reporting SHG from nanostructures made of semiconductors such as GaAs have been done. For

instance, in [63], efficient SHG in GaAs-on-insulator waveguides was demonstrated and achieved

by minimizing the propagation loss and optimizing phase-matching. Also, in [64], efficient

SHG from GaAs microdisk resonators was reported, with conversion efficiencies of order 10−6.

Microdisk resonators offer resonant field enhancement, resulting in highly efficient frequency

conversion in micrometre-scale volumes. These devices can be integrated in photonic circuits as

compact frequency converters, and sources of radiation or entangled photons. In [65], the authors

reported SHG in GaAs photonic crystal cavities. Their predictions showed SHG normalized

conversion efficiencies of the order of 10%W−1, while their experimentally measured values

were on the order of 1%W−1.

Apart from the numerous published work on efficient SHG from nanostructures made of GaAs,

another kind of studies of harmonic generation from this material have been performed in order to

investigate the phase-locked component of the SH or TH field. This component was first revealed

by J. A. Armstrong et al. [3] and N. Bloembergen et al. [4] in 1962, and experimentally observed

for the first time in 1990 [22]. Experimental and theoretical studies continued in the years that

followed [23–27]. In [28] it was experimentally reported for the first time the inhibition of linear

absorption for phase and group velocity mismatched SHG and THG in GaAs, at frequencies

above the absorption edge. A 100 fs pump pulse tuned to 1300 nm generated 650 nm and 435 nm
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SH and TH pulses, respectively, that propagated across a 450µm-thick GaAs substrate without

being absorbed. This was attributed to a phase-locking mechanism that causes the pump to trap

the harmonics and to impress on them its dispersive properties. Conversion efficiencies of order

10−8 and 10−9 were reported for SHG and THG, respectively. Later, it was shown in [29] that

the phase-locked SH component generated in opaque materials could be significantly amplified

by three orders of magnitude in a GaAs cavity that displayed a resonance at the fundamental

wavelength.

Another interesting material for nanophotonics is silicon. Recent years have witnessed im-

pressive progress in the development of functional, nonlinear silicon photonic devices which can

emit light, modulate signals electro-optically and process data at speeds higher than electronic

chips, and they are highly compatible with CMOS technology at low cost [66, 67]. Applications

include frequency conversion [68], optical switched and modulators [69], high-speed optical sig-

nal processing [70–72], optical sensing [73], and integrated quantum photonic circuits [74]. Even

though silicon is a centrosymmetric material, SHG in media with inversion symmetry has been

studied since the early days of nonlinear optics. As already mentioned in previous sections, one

of the first detailed theoretical discussions of surface SHG emanating from quadrupole-like and

magnetic dipole terms is found in [18]. In [45], reflected SHG was discussed in the context of

a thin slab of crystalline silicon. The authors measured and predicted the angular dependence

of the SH signal, resulting in a SH peak at a large angle of incidence. In [75], a study of SHG

was performed on crystalline silicon samples having different crystallographic orientations. Ad-

ditional studies of THG were carried out in the years that ensued [76–78]. For instance, in [78],

THG was analyzed in reflection from crystalline and amorphous samples of silicon.

Despite the reported experimental and theoretical studies of harmonic generation in silicon,

not high enough conversion efficiencies were obtained in order for the material to be adequate

for the development of functional nonlinear devices. For this reason, more recently, researchers

have taken measures to overcome the absence of a χ(2) term by depositing either straining layers

on top of silicon [79, 80], or by using another χ(2) nonlinear electro-optic active material as
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a cladding [81] in order to break the silicon centrosymmetry. In [79], the authors reported

SHG conversion efficiencies of order 10−8 from silicon waveguides strained by silicon nitride.

In [80] an enhancement of the SHG intensity is reported when an external cylindrical strain

is applied to silicon stripes, attributed to the contributions from the strain-induced second

order nonlinear susceptibility to the bulk dipole. Studies on THG from silicon samples having

different geometries have also been carried out with the aim to enhance the harmonic signal

[82–85]. In [82] THG is reported from a two-dimensional silicon photonic crystal waveguide.

The authors reported THG efficiencies of order 10−7. A two orders of magnitude enhancement

of THG conversion efficiencies from silicon nanodisks was observed in [83], where efficiencies

of order 10−7 were reported. In [84], the authors experimentally demonstrate THG conversion

efficiencies from a silicon metasurface which are about 300 times larger than that of bulk silicon

slab.

1.4.3 Conductive oxides: ITO

Another promising way to improve the performance of nonlinear optical devices is provided by

a new class of optical materials that display vanishing small real part of the dielectric constant,

known as epsilon-near-zero (ENZ) materials [86–98]. These materials enhance the local elec-

tromagnetic field through the condition where the longitudinal component of the displacement

vector of a TM-polarized field has to be continuous across the boundary between media with

different optical properties. For homogeneous, flat structures, this condition may be written as

εinE
z
in = εoutE

z
out, where εin and εout are dielectric constants inside and outside the medium,

respectively, and Ez
in and Ez

out are the corresponding longitudinal components of the electric

field amplitude and require oblique incidence to excite the ENZ point. Therefore, if εin de-

creases, then Ez
in increases and nonlinear optical phenomena, such as harmonic generation, are

enhanced. This situation is schematically shown for a TM-polarized field in Fig. 1.4.1, where

Ein(out), Bin(out) and Sin(out) are the electric and magnetic fields and Poynting vector, respec-

tively, inside and outside the ENZ medium.
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Figure 1.4.1: Geometric representation of TM-polarized light in and outside an ENZ material.

ENZ materials can be made artificially with periodic structures (metamaterials) and waveg-

uides. The issues that arise using these approaches are the presence of scattering and the

difficulty of miniaturization. All natural bulk materials that display a Lorentz-like response (see

Eq. 1.3.6) also exhibit a real part of the dielectric permittivity that crosses zero, in proxim-

ity of either plasma or interband transition frequencies [91]. For instance, semiconductors like

GaAs, GaP and silicon display ENZ conditions near 100 nm, deep in the UV range. Metals

such as gold, silver and copper have ENZ crossing points in the visible range, while the zero

crossing points of conductive oxides, also known as degenerate semiconductors, such as ITO and

CdO (Cadmium oxide) fall in the IR regime and can be tuned using thermal post-processing of

sputtered samples.

ITO is one of the most studied transparent conductive films. For instance, it is used to make

transparent conductive coatings for displays such as liquid crystal displays, OLED displays and

touch panels. It is also used in photovoltaic cells [99]. It is a free-electron system characterized

by absorption that is typically much smaller than that of noble metals, especially near the ENZ

point. As a consequence, conductive oxides may substitute or even supplant metals in certain
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applications and spectral wavelength regions, as they can trigger novel, low-intensity nonlinear

optical phenomena that can usually be observed only for high local fields.

The linear and nonlinear optical properties of ITO and CdO [100, 101] are under intense

investigation because of a easily available ENZ response tunable across the near-IR wavelength

range. Despite both metals and conductive oxides are free-electron systems, their linear and

nonlinear optical properties have some differences. First, free electron densities of noble metals

can be several orders of magnitude larger than that of conductive oxides, leading to significant

differences in field penetration and the excitation of surface and volume nonlinearities, and non-

local effects [102]. Second, in the case of noble metals, interband excitations lead to an increase

of free carrier density and a blueshift of the plasma frequency. On the contrary, conducting ox-

ides are prone to displaying intraband transitions and increased electron gas temperature that

lead to increased effective electron mas and a dynamic redshift of the plasma frequency [101].

Recently, several studies of SHG and THG from ITO layers have been reported. For instance,

in [87], the ENZ crossing point was exploited for the enhancement of THG in a Kretschmann

configuration (i.e., light is prism-coupled to the film). In this work, the authors experimentally

and theoretically report an enhancement factor of 200, with values of THG conversion efficiencies

of order 10−6. In [88] THG was reported for an ITO nanolayer, along with evidence that

enhancement of the generated signal came as a result of an ENZ crossing point. In [89] a

comparative study of ITO and TiN (Titanium nitride) nanolayers showed an enhancement of

SHG from ITO at the ENZ wavelength. In this study, SHG was examined in two distinct ENZ

platforms: an array of 37 nm-thick ITO films with zero-permittivity wavelengths ranging from

1150 nm to 1670 nm, and 40 nm-thick TiN films with zero-permittivity wavelengths ranging

from 510 nm to 645 nm. Pumping ITO at the ENZ wavelength resulted in the generation of

SH signals with conversion efficiencies comparable to those of a 500µm-thick quartz crystal

reference sample. The generated nonlinear signal peaked at the zero-permittivity wavelength

with a substantial reduction elsewhere. Other examples of experimental results of nonlinear

optical effects in ENZ materials can be found in [98].
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1.5 Hydrodynamic-Maxwell model

In Section 1.4 we have introduced the research that has been done on harmonic generation from

metals, conductive oxides and semiconductors, and we have given some examples reporting

experimental results on SHG and THG. However, most of the theoretical models that are used

to explain these experimental results rely on the introduction of phenomenological or effective

surface and bulk parameters. For instance, for SHG, the nonlinear polarization P2ω is usually

written as:

P2ω = Psurface
2ω +Pbulk

2ω (1.5.1)

where Psurface
2ω and Pbulk

2ω are the surface and the bulk contributions to the second order nonlinear

polarization, respectively, and they are usually written through Eqs. 1.5.2 and 1.5.3 as reported

in [16] for centrosymmetric materials:

Psurface
2ω = χ

(2)
surfaceEωEω (1.5.2)

Pbulk
2ω = γ∇(Eω ·Eω) + δ(Eω · ∇)Eω + βEω(∇ ·Eω) + ζEω∇Eω (1.5.3)

where γ, δ, β and ζ are material parameters, and Eω is the electric field at the fundamental

frequency. The nonlinear polarization in Eq. 1.5.3 originates from electric quadrupoles and mag-

netic dipoles located in the bulk. In the case of non-centrosymmetric media, an electric dipole

contribution should be added. In Eq. 1.5.2, χ
(2)
surface is the surface second order susceptibility

tensor. Usually, the surface of centrosymmetric media possesses an isotropic mirror-symmetry

plane perpendicular to the interface. Then, the surface nonlinear susceptibility χ
(2)
surface has only

three independent components χ
(2)
⊥⊥⊥, χ

(2)
⊥∥∥, and χ

(2)
∥⊥∥ = χ

(2)
∥∥⊥. This model for SHG lacks a de-

tailed, microscopic, dynamical description of light propagation and light-matter interaction, and

requires a priori knowledge of effective second order surface susceptibility tensor components as

well as material parameters.

In this section we explain an alternative route to model nonlinear processes in semiconductors

and metals. The approach was proposed by Dr. Michael Scalora and it has been reported in

[103, 104]. In this thesis it has been adapted to each material case and it has been used to
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perform numerical simulations reproducing the experimental situation. The method consists

on formulating a microscopic, hydrodynamic model in order to understand linear and nonlinear

optical properties of different materials at the nanoscale by accounting for competing surface,

magnetic and bulk nonlinearities arising from both free and bound electrons. The model also

preserves linear and nonlinear material dispersion, and, in the case of metals and conductive

oxides, it accounts for nonlocal effects due to pressure and viscosity, and the influence of hot

electrons. We estimate the efficiencies of the nonlinear signals without making assumptions

about effective surface and bulk nonlinearities. The only free parameters present in the model

are: (1) the effective mass of free and bound electrons, which determines SHG triggered by

symmetry braking at the surface, and by the magnetic Lorentz force, (2) the strength of the

second and third order bulk nonlinearities, which account for nonlinear material dispersion, and

(3) the rate at which electrons are excited from the valence to the conduction band or the rate

at which the effective mass of free electrons changes due to temperature.

The model embraces full-scale, time-domain coupling of matter to the macroscopic Maxwell’s

equations. Its starting point are the equations of motion of free and bound electrons, from which

dynamic polarization equations are obtained. Using the solutions of these equations, the total

polarization is written as the sum of free and bound electron contributions, Ptotal = Pf + Pb.

The polarization equations are integrated together with Maxwell’s equations and the integration

method outlined in [104] is used. This approach solves Maxwell’s equations using a spectral

method to advance the field, and a predictor-corrector method to solve material equations,

which is explained in Appendix C, using FORTRAN programming code. The propagation of

pulses which are plane in the transverse direction and whose temporal duration ranges from

50 fs to 100 fs is considered. Results saturate for longer pulses. Predicted conversion efficiencies

are calculated as the ratio between final energy in the scattered pulses (transmitted or reflected)

and total initial pump pulse energy.
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1.5.1 Bound electrons

In general, the nonlinear polarization of a mediummay be written according to a well-established,

ascending hierarchy of electric and magnetic dipoles and multipoles, as shown in Eq. 1.2.1.

In practical terms this means explicit introduction of a nonlinear polarization that requires a

priori knowledge of second and third order nonlinear coefficients, in either scalar or tensor form.

On the other hand, the nonlinear Lorentz model may be a more instructive starting point that

implicitly accounts for linear and nonlinear material dispersion, which turns the polarization into

an independent parameter and is able to describe an entire class of nonlinear optical phenomena.

Similarly to Eqs. 1.3.9 and 1.3.7 introduced in Chapter 1.3.2, for bound electrons that occupy

a given orbital, Newton’s second law may be written as:

r̈+ γbṙ+ ω2
0r+ ar · r− b(r · r)r =

e

m∗
b

(E+ ṙ×H) (1.5.4)

where e(E+ ṙ×H) is the Lorentz force, being E and H(= B) the electric and magnetic fields,

respectively, and e the electron charge. r is the displacement from orbital equilibrium, m∗
b and

γb are effective mass and damping coefficient of bound electrons, respectively. ω0 is the resonant

frequency of the oscillator, which is associated with a linear restoring force, and a and b are two

parameters associated with a second and a third order nonlinear restoring force, respectively.

We already showed in Chapter 1.3.2 that for an oscillator system we can approximate a ≈ ω2
0/L

and b ≈ ω2
0/L

2, where L is the lattice constant. The relationship between these coefficients and

the respective nonlinear susceptibilities χ
(2)
ω,2ω, χ

(3)
ω,3ω may be derived using the nonlinear Lorentz

oscillator model and it will be shown for the case of b.

In the discussion that follows we will assume a centrosymmetric material, so that a = 0. For

the moment, we will just focus on the process of THG, so at the electron position we can write

the total field present as a superposition of fundamental and TH fields as follows:

E = Eωe
−iωt +E3ωe

−3iωt + c.c.

H = Hωe
−iωt +H3ωe

−3iωt + c.c.
(1.5.5)

where Eω, E3ω, Hω and H3ω are complex field amplitudes that for the moment are assumed to

be nearly constant in time. As a consequence, a simplified solution for the electron displacement
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may also be written as a superposition of fundamental and TH amplitudes that vary relatively

slowly in time as compared to the optical cycle:

r = rωe
−iωt + r3ωe

−3iωt + c.c. (1.5.6)

Substituting Eqs. 1.5.5 and 1.5.6 into Eq. 1.5.4, retaining lowest order terms, neglecting the

magnetic term, and equating terms that oscillate at the same frequency, equations for rω and

r3ω can be obtained. After solving them, the expressions for the amplitude positions are:

rω =
e

m∗
b(ω

2
0 − ω2 + iγbω)

Eω +
be3

m∗3
b (ω2

0 − ω2 + iγbω)3(ω
2
0 − ω2 − iγbω)

|Eω|2Eω (1.5.7)

r3ω =
e

m∗
b(ω

2
0 − 9ω2 + 3iγbω)

E3ω

+
be3

m∗3
b (ω2

0 − 9ω2 + 3iγbω)(ω
2
0 − ω2 + iγbω)3

(Eω ·Eω)Eω

(1.5.8)

Recognizing that Pω,3ω = n0,berω,3ω is the polarization, where n0,b is the density of bound

electrons (or density of oscillators), and writing Pω and P3ω as:

Pω = χ(1)
ω Eω + χ(3)

ω |Eω|2Eω (1.5.9)

P3ω = χ
(1)
3ωEω + χ

(3)
3ω (Eω ·Eω)Eω (1.5.10)

we can extract:

χ(1)
ω =

n0,be
2

m∗
b(ω

2
0 − ω2 + iγbω)

χ(3)
ω =

n0,bbe
4

m∗3
b (ω2

0 − ω2 + iγbω)3(ω
2
0 − ω2 − iγbω)

(1.5.11)

χ
(3)
3ω =

n0,bbe
4

m∗3
b (ω2

0 − ω2 + iγbω)3(ω
2
0 − 9ω2 + 3iγbω)

(1.5.12)

where χ
(1)
ω and χ

(3)
ω,3ω are the derived linear and nonlinear susceptibilities experienced by the

fundamental and TH fields. We note that we have started using Gaussian units instead of MKS

system. The former will be used in the description of the theoretical approach. The second

part of Eq. 1.5.11 reveals that the medium is gifted with nonlinear refraction, or self-phase

modulation, via the Re(χ
(3)
ω ) portion, and by two-photon absorption via the term Im(χ

(3)
ω ). Also,

Eq. 1.5.12 shows that the generated TH field experiences both nonlinear refraction and gain/loss
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via the terms Re(χ
(3)
3ω ) and Im(χ

(3)
3ω ), respectively. The expression for the linear dielectric function

shown in Eq. 1.3.6 is recovered with ε = 1 + χ
(1)
ω , and the same strategy may be followed to

estimate the second order, nonlinear coefficients of non-centrosymmetric materials, χ
(2)
ω,2ω.

Recognizing thatPb = n0,ber and expanding the fields around an equilibrium, electron position

[103, 104], the following polarization equation for bound electrons can be derived from Eq. 1.5.4:

P̈b + γ̃bṖb + ω̃2
0Pb +PNL

b =
n0,be

2λ2
0

m∗
bc

2
E+

eλ0

m∗
bc

2
(Pb · ∇)E+

eλ0

m∗
bc

2
Ṗb ×H (1.5.13)

where we have scaled the equation respect to dimensionless time and longitudinal and transverse

coordinates: τ = ct/λ0, ξ = z/λ0, ỹ = y/λ0, where λ0 = 1µm is arbitrarily chosen as the

reference wavelength. As a consequence, coefficients have also been scaled: γ̃b = γbλ0/c, and

ω̃2
0,b = ω2

0,bλ
2
0/c

2. PNL
b = ãPb · Pb − b̃(Pb · Pb)Pb contains the second ãPb · Pb and third

b̃(Pb · Pb)Pb order bulk contributions to the total polarization. The coefficients ã and b̃ (or a

and b) are tensors that reflect crystal symmetry. If the material is assumed to be isotropic, they

can be assumed to be constants, and have the scaled expressions: ã = aλ2
0/(n0,bec

2) and b̃ =

bλ2
0/(n

2
0,be

2c2). In general, second and third order bulk nonlinearities can be written as PNL(2)

i =∑
j=1,3

∑
k=1,3 ãi,j,kPjPk and PNL(3)

i =
∑

j=1,3

∑
k=1,3

∑
l=1,3 b̃i,j,k,lPjPkPl, respectively, where

Pj are the Cartesian components of the macroscopic polarization. For instance, expanding

these summations for isotropic GaAs having (001) symmetry the second and third order bulk

contributions can be written as:PNL(2)

x

PNL(2)

y

PNL(2)

z

 =

(ãx,y,z + ãx,z,y)PzPy

(ãy,x,z + ãy,z,x)PzPx

(ãz,x,y + ãz,y,x)PyPx

 = ã

PzPy

PzPx

PyPx

 (1.5.14)

and PNL(3)

x

PNL(3)

y

PNL(3)

z

 = b̃

(P 2
x + P 2

y + P 2
z )Px

(P 2
x + P 2

y + P 2
z )Py

(P 2
x + P 2

y + P 2
z )Pz

 (1.5.15)

For simplicity we have consolidated the constants into a single coefficient.

Equation 1.5.13 contains three main contributions that are expected to participate in the

nonlinear process: (i) a nonlinear bulk contribution PNL; (ii) a purely surface contribution

triggered by the spatial derivatives of the field eλ0
m∗

bc
2 (Pb ·∇)E; and (iii) the nonlinear contribution
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from the magnetic portion of the Lorentz force eλ0
m∗

b
Ṗb ×H, which contains intrinsic surface and

bulk components since currents flow inside the bulk and at the surface. Put it another way,

Eq. 1.5.13 suggests that in the absence of bulk nonlinearities (a = 0; b = 0 ⇒ PNL
b = 0), one

still has SHG arising from the spatial derivatives of the field, which are non-zero at each surface

crossing, and the magnetic Lorentz force. The effective mass of bound electrons determines the

nonlinear gain arising from the surface and the magnetic Lorentz terms, while the parameters ã

and b̃ determine the amount of bulk-generated nonlinear signals.

1.5.2 Free electrons

Free electrons are described through the hydrodynamic model of the free electron gas, so that

their equation of motion may be written as:

m∗
f

dv

dt
+ γfm

∗
fv = e(E+ v×H)− ∇p

nf
(1.5.16)

where m∗
f , γf and nf are effective mass, damping coefficient and density of free electrons,

respectively. v is the electron velocity and p is the electron gas pressure. e(E + v ×H) is the

Lorentz force, where e is the electron charge and E and H(=B) are the electric and magnetic

fields, respectively.

Free electrons are not confined to any specific atomic site, so the temporal derivative of the

velocity v is also position dependent: dv
dt = ∂v

∂t + (v · ∇)v. Substituting this expression to Eq.

1.5.16, we get:

∂v

∂t
+ (v · ∇)v+ γfv =

e

m∗
f

(E+ v×H)− ∇p

nfm
∗
f

(1.5.17)

Identifying the current density with J = nfev and defining Ṗf = J, Eq. 1.5.17 becomes:

P̈f −
ṅf

nf
Ṗf + (Ṗf · ∇)

(
Ṗf

nfe

)
+ γf Ṗf =

nfe
2

m∗
f

E+
e

m∗
f

Ṗf ×H− e

m∗
f

∇p (1.5.18)

For free electrons the continuity equation ṅf (r, t) = −1
e∇ · Ṗf supplements the equation of

motion. It can be integrated directly to yield:

nf (r, t) = n0,f − 1

e
∇ ·Pf (1.5.19)
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where n0,f is the equilibrium free electron density, and the initial value of the polarization is

Pf (r, t = 0) = 0 in the absence of any applied field. If we assume that any local variations in

the charge density are small compared to the density itself (|n0,f | ≫ | − 1
e∇ · Pf |), the ratio

ṅf/nf can be expanded in powers of 1/(n0,fe):

ṅf

nf
=

−1
e∇ · Ṗf

n0,f − 1
e∇ ·Pf

≃ − 1

en0,f
∇ · Ṗf − 1

n2
0,fe

2
(∇ · Ṗf )(∇ ·Pf ) + ... (1.5.20)

Substituting Eqs. 1.5.19 and 1.5.20 into Eq. 1.5.18 and neglecting terms of order 1/(n0,fe)
2 and

higher, the following expression is obtained:

P̈f + γf Ṗf =
n0,fe

2

m∗
f

E− e

m∗
f

(∇ ·Pf )E+
e

m∗
f

Ṗf ×H

− 1

n0,fe
[(∇ · Ṗf )Ṗf + (Ṗf · ∇)Ṗf ]−

e

m∗
f

∇p

(1.5.21)

The impact of pressure is treated quantum mechanically. In this case, it takes the form p =

p0 (nf/n0,f )
β, where β = (D + 2)/D and D is the dimensionality of the problem. For D = 3

we have p = p0 (nf/n0,f )
5/3, where p0 = n0EF and EF = ℏ2

2m∗
f
(2π2n0,f )

2/3 is the Fermi energy.

With this, the leading pressure term that we will introduce to our polarization equation is:

− e

m∗
f

∇p = − 5EF

3m∗
fn

2/3
0,f

n2/3∇n ≈ 5EF

3m∗
f

∇(∇ ·Pf ) (1.5.22)

Substituting into Eq. 1.5.21 we get:

P̈f + γf Ṗf =
n0,fe

2

m∗
f

E− e

m∗
f

(∇ ·Pf )E+
e

m∗
f

Ṗf ×H

+
5EF

3m∗
f

∇(∇ ·Pf )−
1

n0,fe
[(∇ · Ṗf )Ṗf + (Ṗf · ∇)Ṗf ]

(1.5.23)

We now scale the equation with respect to dimensionless time and longitudinal and transverse

coordinates, as in the previous case of bound electrons. Equation 1.5.23 then becomes:

P̈f + γ̃f Ṗf =
n0,fe

2λ2
0

m∗
fc

2
E− eλ0

m∗
fc

2
(∇ ·Pf )E+

eλ0

m∗
fc

2
Ṗf ×H

+
5EF

3m∗
fc

2
∇(∇ ·Pf )−

1

n0,feλ0
[(∇ · Ṗf )Ṗf + (Ṗf · ∇)Ṗf ]

(1.5.24)

where the damping coefficient γ̃f = γfλ0/c has also been scaled.

In addition to the magnetic Lorentz force, eλ0
m∗

f c
2 Ṗf × H, Eq. 1.5.24 contains a quadrupole-

like Coulomb term that arises from the continuity equation 1.5.19, − eλ0
m∗

f c
2 (∇ ·Pf )E, convective
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terms − 1
n0,f eλ0

[(∇ · Ṗf )Ṗf + (Ṗf · ∇)Ṗf ], and nonlocal effects due to pressure, 5EF
3m∗

f c
2∇(∇ ·Pf ).

Apart from nonlocality induced by the pressure of the electron gas, it is reasonable to expect

dissipative effects in the form of viscosity, i.e., friction between particles. By modifying the

hydrodynamic model in order to treat the conduction electrons as a viscoelastic fluid [105, 106],

a nonlocal term is introduced in Eq. 1.5.24, so that the nonlocal contribution is finally given

by: 5EF
3m∗

f c
2∇(∇ ·Pf + 1

2∇
2Pf ).

The effective free electron mass determines the nonlinear gain arising from Coulomb and mag-

netic Lorentz terms, while the free electron’s density affects the nonlinear gain due to convection.

By the same token, m∗
f and n0,f determine the Fermi energy and thus the degree of blueshift of

plasmonic resonances, as previously depicted in Eq. 1.3.17.

1.5.3 Method

As mentioned, this model does not need a priori knowledge of second and third order suscepti-

bilities. Instead we simulate the nonlinear light-matter interaction using dynamic polarization

equations from which, when integrated with Maxwell’s equations, harmonic fields can be ob-

tained. In this section we will describe the method we follow to solve the theoretical problem.
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Figure 1.5.1: Real (black dashed curves) and imaginary (red dashed curves) parts of the complex
dielectric constant of (a) GaAs and (b) gold found in Palik’s handbook [107]. The solid curves
are fits to the data through Eqs. 1.5.25 and 1.5.26.

First, we describe the linear dielectric function of the material to be studied using a Drude-

Lorentz model, so it will contain a Drude portion followed by one or more Lorentzian resonances,
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as shown in Eq. 1.3.14, which we use to fit the data extracted from Palik [107], or from

ellipsometry measurements. From this fit we extract values of plasma and resonant frequencies,

and damping coefficients. For instance, in Fig. 1.5.1 we have plotted the real and imaginary

parts of the complex dielectric constant of (a) GaAs and (b) gold. The dashed curves correspond

to experimental data extracted from Palik’s handbook [107], which are fitted with theoretical

curves of their complex dielectric function. In the case of GaAs free carrier doping is low,

ranging from 1014 cm−3 to 1017 cm−3, so that in the visible and near-IR the Drude portion

may be neglected and two Lorentzian functions are enough to describe its dielectric behavior.

In contrast, in the case of gold a Drude portion must be added as now, a free electron gas

and nonlocal effects may contribute to the dielectric constant. This means that the dielectric

function of GaAs and gold (Au) can be written through Eqs. 1.5.25 and 1.5.26, respectively:

εGaAs(ω̃) = 1−
ω̃2
p,b1

ω̃2 − ω̃2
01 + iγ̃b1ω̃

−
ω̃2
p,b2

ω̃2 − ω̃2
02 + iγ̃b2ω̃

(1.5.25)

εAu(ω̃) = 1−
ω̃p,f

ω̃2 + iγ̃f ω̃
−

ω̃2
p,b1

ω̃2 − ω̃2
01 + iγ̃b1ω̃

−
ω̃2
p,b2

ω̃2 − ω̃2
02 + iγ̃b2ω̃

(1.5.26)

where ω̃ = 1/λ and it has µm−1 units. ω̃p,bj = ω2
p,bjλ

2
0/c

2 and ω̃p,f = ω2
p,fλ

2
0/c

2 are the scaled

plasma frequencies of free and bound electrons, respectively, with ω2
p,bj = 4πn0,bje

2/m∗
bj and

ω2
p,f = 4πn0,fe

2/m∗
f (in CGS units). ω̃01,02 are the scaled resonant frequencies, and γ̃b and γ̃f

are the scaled damping coefficients for free and bound electrons, respectively. These parameters,

which also appear in Eqs. 1.5.13 and 1.5.24 can be extracted by fitting the data shown with

dashed curves in Figs. 1.5.1(a) and 1.5.1(b) with Eqs. 1.5.25 and 1.5.26, respectively. In the case

of GaAs we obtain (ω̃p,b1, ω̃01, γ̃b1) = (5, 2.55, 0.75) and (ω̃p,b2, ω̃02, γ̃b2) = (9.3, 3.8, 0.95), while

for gold these parameters correspond to (ω̃p,b1, ω̃01, γ̃b1) = (3, 2.75, 0.1) and (ω̃p,b2, ω̃02, γ̃b2) =

(11, 3.3, 0.75) for bound electrons, and (ω̃p,f , γ̃f ) = (6.45, 0.05) for free electrons. So, in our

model, the dielectric constant is not introduced explicitly. Instead, fitting the dielectric con-

stant merely serves the purpose of determining damping coefficients and plasma and resonant

frequencies to be inserted in dynamical equations of motion from which a dielectric constant can

be retrieved.
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Having said that, there are still some parameters in Eqs. 1.5.13 and 1.5.24 to be determined.

In the case of bound electrons, the parameters defining the strength of the bulk nonlinearities

ã ∝ ω2
0/L and b̃ ∝ ω2

0/L
2 are first approximated considering tabulated values for L and the

resonance frequency ω0. In the cases where two different oscillators (or more) are considered,

we assume that ã1 = ã2 and b̃1 = b̃2, as the Lorentzian resonances are close to each other. To

determine the lattice constant we use average orbital diameters. For solids, L can vary from

a fraction of 1 Å to a few Å. For example, the wave function of valence electrons in silicon

peaks near 1.32 Å, suggesting that LSi ∼ 2.6 Å. However, the highest d-orbital wave function

for bound electrons in gold peaks near 0.5 Å, with LAu ∼ 1 Å. So, the magnitude of b̃ can

change considerably from material to material, and can range between 10−6 − 10−9, depending

on atomic orbital radii, densities, and resonant frequencies. As a consequence, the parameters ã

and b̃ are readjusted taking into account experimental SHG and THG efficiencies, respectively.

This means that, once the dielectric constant is fitted to the Lorentzian function, the only free

parameters in the equations of motion are the effective mass of electrons, and to some extent the

coefficients ã and b̃. The effective mass of bound electrons, which determines the strength of the

surface and magnetic Lorentz nonlinearities, is extracted from experimental SHG efficiencies.

In the case of free electrons, usually tabulated values for n0,f are used and experimental SHG

conversion efficiencies are employed to determine m∗
0,f . For instance, in gold, the known free

electron density n0,f ∼ 5.8 · 1022 cm−3 is used. Since each atom contributes approximately one

free electron to the electron density, then it is reasonable to assume that bound electron density

may be approximated with the free electron density, so n0,b ≈ n0,f . The Fermi energy, and

so the repercussion of nonlocal effects, depends on both the density and the effective mass of

bound electrons, as EF = ℏ2
2m∗

0,f
(2π2n0,f )

2/3. For typical noble metals and conductive oxides,

Σ = 5EF
3m∗

f c
2 ∼ 10−5.



2
Harmonic generation in the opaque
region of GaAs

In this chapter we present the experimental and numerical simulation results of SHG and THG

from a GaAs wafer. Phase-locked harmonic generation in the opaque region of this material is

observed and analyzed in transmission and in reflection. As it was explained in Chapter 1.2,

these harmonic components are generated close to the surface and can propagate through an

opaque material as long as the pump is tuned to a region of transparency or semitransparency

and correspond to the inhomogeneous solution of Maxwell’s equation with nonlinear polarization

sources. While previous studies on harmonic generation from GaAs gave only the total efficiency

of the nonlinear signal, in this work we make a step forward to analyze and identify the different

nonlinear mechanisms that trigger the processes of SHG and THG, including the second and

third order bulk nonlinearities, as well as the surface and the Lorentz contributions to the

nonlinear polarization. To this end, we measure the angular and polarization dependence of the

harmonic signals.

This chapter is structured as follows. In Section 2.1 we introduce a description of the experi-

mental approach, which includes a description of the experimental set-up and of the laser source

that is used. We also explain the calibration procedure we perform to estimate the conversion

efficiencies of the nonlinear processes. In Section 2.2 we give a brief description of the sample

45
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that we have studied. Then, in Section 2.3 we present the polarization equations that are used

to perform the simulations for the particular case of a semiconductor such as GaAs. We show

and comment our results on SHG and THG from GaAs in Section 2.4, and the chapter ends

with some conclusions in Section 2.5.

2.1 Experimental approach

2.1.1 Experimental set-up

We pretend to make a detailed experimental study of SH and TH signals generated by a GaAs

wafer. Our study includes the measurement of SHG and THG efficiencies and an analysis of

their angular and polarization dependence. To this end, we have developed the experimental

set-up schematically shown in Fig. 2.1.1. The harmonic fields were generated by exciting the

sample with ultrashort pulses coming from a mode-locked fiber laser (FYLA PS50) delivering

pulses at 1064 nm with a continuous wave (CW) average output power of 10W. It emits pulses

which are 400 ps in duration at full width half maximum (FWHM) at a repetition rate of 1MHz.

A compressor is used to shorten the duration of the pulses to 13 ps. After that, by means of

an acusto-optic modulator, a low frequency train of pulses is selected, usually of the order of

kHz. At this point, the average output power has been reduced to 2W, which corresponds to

2µJ/pulse. These parameters are summarized in Table 2.1.1.

λ τFWHM frep Pout Energy/pulse

Fiber laser 1064 nm 13 fs 1MHz 2W 2µJ

Table 2.1.1: Fiber laser (FYLA PS50) parameters.

When the fundamental TM-polarized light coming from our laser source enters the set-up,

it first faces a half-wave plate which allows the control of polarization of the incident field.

Experiments are carried out selecting TM- and TE-polarized fundamental beams. We have to

make sure that only fundamental radiation arrives at the sample. To this end, we use a long

pass filter (Thorlabs, FGL610) to eliminate any possible SH or TH light eventually generated

in the previous elements placed in the beam path. After that, we use a coated plano-convex
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lens with focal length f = 200mm (Thorlabs, LA1708-C) to focus the fundamental beam on the

sample plane. As we are dealing with light tuned at 1064 nm, we use a C-coated lens.

FF

Half-wave plate

Harmonic-blocking filter

Focusing lens

Sample

Rotation stage

Collimating lens

Bandpass filter 
(filter FF radiation)

Polarizer

Prism

Blocking slit

Laser line filter 
(centered around SH/TH)

PMTFFSH

TH

(a)

(b)

Figure 2.1.1: Schematic representation of the experimental set-up built to measure the angular
dependence of SH and TH signals arising from a GaAs wafer in (a) transmission and in (b)
reflection.
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The sample is mounted on top of a rotation stage that controls the angle at which the fun-

damental beam is incident to the sample. To make sure that the only harmonic radiation

arriving at the detector is the signal generated by the sample, we implement a bandpass filter

(Thorlabs, FGS900-A) that attenuates the fundamental beam right after the sample and avoids

harmonic generation in other optical elements of the set-up. A plano-convex lens with focal

length f = 100mm (Thorlabs, LA4380-UV) is used to collimate the beam, and with a polarizer

(Thorlabs, GTH10M-A) we select the harmonic beam to be either TM- or TE-polarized. Then,

by means of a dispersive prism (Thorlabs, PS863) and a blocking slit (Thorlabs, VA100) we

separate and obscure the fundamental radiation from the harmonic path. The slit is adjusted

depending on weather we want to detect a SH or a TH signal. A lens (Thorlabs, LA4380-UV)

between these two objects is sometimes used for a better blocking of the fundamental and TH

beam, in case we want to measure SH signals, and of the fundamental and SH beam, in case we

want to measure TH signals. Finally, the harmonic radiation arrives at the detector protected

with a laser line filter centered around the wavelength we want to detect. We use a laser line

filter centered at 532 nm (Thorlabs, FL532-10) for SH measurements, or centered at 355 nm

(Thorlabs, FL355-10) for TH measurements. The whole detection system is mounted on top of

a rotation arm so that harmonic signals can be measured in transmission, as depicted in Fig.

2.1.1(a), or in reflection, as depicted in Fig. 2.1.1(b). The detector consists of a photomulti-

plier tube (PMT) (Hamamatsu, H10722-04) whose sensitivity peaks at 400 nm. The PMT is

connected to its power supply (Hamamatsu, C10709) through which the control voltage can be

changed and the signal can be amplified. The electronic signal arriving at the PMT is recorded

by an oscilloscope (Tektronix, DPO3054). The value of the SH (or TH) signal in volts is taken

peak-to-peak. In order to properly detect the harmonic signal arriving at the PMT, the source

is modulated to deliver a train of N pulses which are repeated at a rate of 1 kHz. In this way,

we can integrate on the PMT signal measurement the response of N pulses and obtain a higher

signal. The number of selected pulses N is controlled by a software provided by FYLA. The

amount of average power arriving at the sample, which is of the order of mW, depends on this
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number and is shown in Fig. 2.1.2, in the range of 1 to 16 pulses which were typically used in

the experiments.
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Figure 2.1.2: Output average power as a function of selected pulses measured at the sample
place of the set-up. Measurements (cross markers) are well fitted to a line (solid curve).

2.1.2 Description of the calibration procedure

In the previous section we have explained how SH and TH signals arising from a GaAs wafer

can be measured. The electronic signal from the PMT is measured with an oscilloscope, from

which we obtain a value of the SH or TH signal in volts. If instead, we want to give values of

conversion efficiencies of these processes we have to perform a calibration of the system. The

calibration is extremely important as we expect to measure very low conversion efficiencies in

the range of 10−7 to 10−13. This procedure consists of three steps:

1. Measure the responsivity of the PMT at each wavelength to obtain the power/energy of

the harmonic signal.

2. Measure the losses in the detection arm (from the sample to the PMT).

3. Calculate the conversion efficiency as the ratio between harmonic and fundamental power

(or energy).

We briefly describe the procedure bellow:

1. Measure the responsivity of the PMT. In Fig. 2.1.3 we show a schematic representation

of the set-up built to perform this procedure. First we generate efficient harmonic light with a



50 CHAPTER 2. HARMONIC GENERATION IN THE OPAQUE REGION OF GaAs

phase-matched BBO crystal, and we place a bandpass filter (Thorlabs, FGS900-A) to eliminate

fundamental radiation. Then, we make sure that the generated harmonic light is TM- or TE-

polarized with a polarizer (Thorlabs, GTH10M-A) and a half-wave plate. We perform this

procedure for both polarizations. Then, the generated light faces the focusing lens placed in

the set-up and goes through the hole detection arm, following the usual harmonic beam path.

Now, before the light arrives at the PMT we need to use neutral density (ND) filters in order

to attenuate the harmonic radiation generated by the BBO and be able to measure this light

with the PMT. We perform the measurement and we obtain a given value in volts that we will

call VPMT. Then, we remove the ND filters and replace the PMT with a silicon photodiode

(Thorlabs, S120C). We take the measurement and obtain a value of the signal in watts, that we

will cal PPMT. With this, we can calculate the responsivity of the PMT as:

RPMT =
VPMT

TNDPPMT
(V/W) (2.1.1)

where TND is the transmission of the ND filters at the given wavelength. We need to take it into

account to make sure that the measurement performed with the photodiode ”sees” the same as

that taken with the PMT.

2. Measurement of the losses introduced by the detection arm. Notice that we are interested

in the amount of harmonic signal just after the sample. We place the silicon photodiode at the

sample place and take a measurement of the harmonic power (PSample). With this, we have the

transmission of the detection arm as T = PPMT/PSample, and we can calculate the harmonic

power (PHG) just after the sample through the following expression:

PHG =
VHG

TRPMT
(W) (2.1.2)

where VHG is the value in volts measured with the oscilloscope of the harmonic signal arising

from the GaAs wafer. Here we have to take into account the gain added by the PMT, which

is changed by its power supply through which the control voltage can be modified. From the

datasheet of the product, the following gain curve as a function of control voltage is obtained:

G(V ) = 108.64385619logV+6.301029996 (2.1.3)
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Figure 2.1.3: Schematic representation of the set-up built to measure responsivities of the PMT.

where V is the applied control voltage in volts. Then we define the parameter g =

G(V )/G(0.5V ). In order to take into account the amplification of the signal added by changing

the control voltage, we need to divide the signal measured in the oscilloscope by this value. We

take as reference the gain at 0.5V because it is the one we use to measure the responsivities.

3. Calculate the conversion efficiency. By dividing expression 2.1.2 by the power of the incident

field just before the sample, which is measured in every experiment, we obtain the conversion

efficiency of the process:

eHG =
PHG

PFF
(2.1.4)

2.1.3 Beam characterization and calculus of incident intensity

The amount of generated SH and TH radiation depends on the incident peak intensity IFF

(ISH ∝ I2FF, ITH ∝ I3FF), so we need to precisely calculate it from the measured parameters. For

a Gaussian beam, the pulse peak intensity can be given by:

IFF =
2
√
2ln2

π3/2

PFF

w2
0frepτFWHM

(2.1.5)
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where PFF is the average power of the fundamental field measured just before the sample, w0

is the beam radius when the intensity drops to 1/e2 of the maximum value, which we call the

beam waist, frep is the repetition rate, and τFWHM is the pulse duration at FWHM. The average

power is measured in each experiment, and the repetition rate and pulse duration are known and

have been already specified. To determine the beam waist we measure the beam diameter at

the sample plane implementing a beam profiler (an Ophir CCD camera with the corresponding

software - BeamGage).

Figure 2.1.4: Measurement of the beam transverse profile generated by the fiber laser at the
sample plane. The white curve corresponds to a Gaussian fit performed in the curve obtained
from a cut in the x direction from which we obtain the beam diameter at FWHM.

In Fig. 2.1.4 we show measurements of the profile of the fiber laser beam at the sample plane.

The white curve corresponds to a Gaussian fit performed to a cut of the experimental beam

profile in the x direction. From this curve, we extracted a beam diameter at FWHM (DFWHM)

of 92µm, related to the beam waist through the expression: DFWHM = w0

√
2ln2. So finally, we

obtain the measured beam waist: w0 ∼ 78µm. In Table 2.1.2 we summarize the parameters of

the laser corresponding to experimental conditions, used in the calculation of the incident peak

intensity through Eq. 2.1.5. As it can be seen, typical incident pulse peak intensities used in

the experiments were ∼ 1GW/cm2.
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PFF frep τFWHM w0 IFF

Fiber laser 1.5mW 1kHz 13 ps 1µm 1GW/cm2

Table 2.1.2: Fiber laser (FYLA PS50) parameters under experimental conditions.

2.2 Description of the sample

We use an undoped GaAs wafer of 500µm thickness, grown in the (001) crystallographic direc-

tion, purchased from Wafer Technology Ltd. (United Kingdom). It has a diameter of 50.5mm,

it is double side polished and has a resistivity greater than 107Ωcm. In Fig. 2.2.1 we repre-

sent schematically the geometric configuration of the sample for TM-polarized incident light,

where Eω, Hω and Sω are electric and magnetic fields and Poynting vector, respectively, at the

fundamental frequency, and θin is the angle of incidence.

x

y

z
Eω

Hω

Sω

θin

500 m-thick GaAs waferμ

(001)

(100)

(010)

Figure 2.2.1: Schematic representation of the (001) GaAs wafer when TM-polarized light is
incident at a certain angle θin.

2.3 Theoretical approach

For typical GaAs substrates, free carrier doping is rather low, ranging from 1014 cm−3 to

1017 cm−3, so that in the visible and near-IR ranges the Drude portion may be neglected, and

only bound electrons are assumed to play a role in SHG and THG. The dielectric function of
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GaAs may be described using two Lorentzian functions, each describing a set of bound charges:

ε(ω̃) = 1−
ω̃2
p,b1

ω̃2 − ω̃2
01 + iγ̃b1ω̃

−
ω̃2
p,b2

ω̃2 − ω̃2
02 + iγ̃b2ω̃

(2.3.1)

where ω̃ = 1/λ and it has µm−1 units. As it can be seen, each oscillator can have its own

plasma, resonant and damping frequency.
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Figure 2.3.1: Real (black dashed curves) and imaginary (red dashed curves) parts of the complex
dielectric constant of GaAs found in Palik’s handbook [107]. The respective solid curves are the
corresponding Lorentzian functions chosen to reproduce the data.

In Fig. 2.3.1 we have plotted data of the real Re(ε) and imaginary Im(ε) parts of the dielectric

function of GaAs extracted from Palik’s handbook [107]. It can be seen that the medium

is transparent for wavelengths above ∼ 900 nm and strongly absorptive below it. The solid

curves in Fig. 2.3.1 correspond to fittings of the data through Eq. 2.3.1. From this, we obtain

the parameters appearing in Eq. 2.3.1: (ω̃p,b1, ω̃01, γ̃b1) = (5, 2.55, 0.75) and (ω̃p,b2, ω̃02, γ̃b2) =

(9.3, 3.8, 0.95). We recall that in our model, the dielectric constant merely serves the purpose

of determining these parameters, which are inserted in dynamical equations of motion. In the

case of GaAs, where only bound electrons trigger the nonlinearities, this equation is:

P̈bj + γ̃bjṖbj + ω̃2
0jPbj +PNL

bj =
n0,bje

2λ2
0

m∗
bjc

2
E+

eλ0

m∗
bjc

2
(Pbj · ∇)E+

eλ0

m∗
bjc

2
Ṗbj ×H (2.3.2)

where j = 1, 2 represents two separate atomic species. Apart from the bulk nonlinearity in-

troduced by the term PNL
bj = ãPbj · Pbj − b̃(Pbj · Pbj)Pbj , Eq. 2.3.2 contains also a surface
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contribution triggered by the spatial derivatives of the fields eλ0
m∗

bjc
2 (Pbj · ∇)E, and a nonlin-

ear contribution arising from the magnetic portion of the Lorentz force eλ0
m∗

bjc
2 Ṗbj × H. The

total polarization inserted into Maxwell’s equations is Ptotal = Pb1 + Pb2. GaAs is a non-

centrosymmetric material, so PNL
b contains both second (PNL(2)

i =
∑

j=1,3

∑
k=1,3 ãi,j,kPjPk)

and third (PNL(3)

i =
∑

j=1,3

∑
k=1,3

∑
l=1,3 b̃i,j,k,lPjPkPl) order bulk nonlinearities, which are to

be interpreted as three-component vectors given by:PNL(2)

j,x

PNL(2)

j,y

PNL(2)

j,z

 = ãj

Pj,zPj,y

Pj,zPj,x

Pj,yPj,x

 (2.3.3)

and PNL(3)

j,x

PNL(3)

j,y

PNL(3)

j,z

 = b̃j

(P 2
j,x + P 2

j,y + P 2
j,z)Pj,x

(P 2
j,x + P 2

j,y + P 2
j,z)Pj,y

(P 2
j,x + P 2

j,y + P 2
j,z)Pj,z

 (2.3.4)

as it was already outlined in Chapter 1.5.3. Due to the fact that the resonances are closely

spaced, we assume that ã1 ≈ ã2 = ã and b̃1 ≈ b̃2 = b̃. However, the two electron spices probably

have different densities and effective masses.

2.4 Results and discussion

Experiments have been carried out with picosecond pulses tuned at 1064 nm being incident on

a GaAs wafer grown in the (001) crystallographic orientation, with typical peak pump pulse

intensities of ∼ 1GW/cm2. We have performed measurements of the SH and TH generated

signals as a function of incident angle and polarization.

In Figs. 2.4.1, 2.4.2 and 2.4.3 we show experimental results of the (a) transmitted and (b)

reflected SHG conversion efficiencies (ηSHG) for the GaAs wafer as a function of incident an-

gle (θin) and polarization, depicted with cross markers. As can be immediately inferred, a

transmitted SH component is generated and propagated through a 500µm-thick sample in the

presence of strong absorption, corresponding to the propagation of the phase-locked component.

Measurements are compared with numerical simulations, which are depicted with solid curves.

Simulations were performed with incident pulses whose temporal duration ranged from 50 fs

to 100 fs, were tuned at 1064 nm and were incident on a 10µm-thick GaAs wafer assumed to
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have (001) crystallographic characteristics. The method is ill-suited to model long substrates.

Nevertheless, our simulations suggest that increasing pulse duration and medium thickness si-

multaneously yields only marginal changes to the overall aspects of the results. Peak pump pulse

power densities of ∼ 2GW/cm2 were used and the polarization of the incident fundamental pulse

was selected to be either TE [E = (Ex, 0, 0)], or TM [E = (0, Ey, Ez)].

In Fig. 2.4.1 it can be seen that a TM-polarized SH component was measured, which is a clear

indication of the contribution of the surface and Lorentz terms in this process. Let’s see what

happens with SHG if we neglect both surface and magnetic Lorentz terms in Eq. 2.3.2, and only

take into account the bulk nonlinear contribution. Then, if we are incident with a TE-polarized

field [E = (Ex, 0, 0)], and we apply Eq. 2.3.3, we see that PNL(2)
= 0, which means that no SH

radiation is generated. If a TM-polarized incident field is used instead [E = (0, Ey, Ez)], then a

TE-polarized SH component is generated as PNL(2)
= ã(PzPy, 0, 0). So, with this we can explain

the presence of a bulk TE-polarized SH component generated when the sample was illuminated

with TM-polarized light, as shown in Fig. 2.4.2. However, two other components were observed.

When an incident TM-polarized field was used, a TM-polarized SH component was also detected,

which arises from both surface and magnetic Lorentz contributions (Fig. 2.4.1). Apart from

that, a TM-polarized SH component is triggered by the magnetic Lorentz nonlinearity when the

fundamental field is TE-polarized (Fig. 2.4.3). With this, it is obvious that the surface and

the magnetic Lorentz contributions to the total polarization, usually neglected in front of the

bulk contribution, play a crucial role in the nonlinear response of a 500µm-thick GaAs sample.

Moreover, in our measurements surface and Lorentz component efficiencies are of order 10−7

and 10−8. In contrast, bulk conversion efficiencies are of order 10−9. As a result, it is clear that

in our GaAs sample surface and Lorentz terms play a more important role than the bulk in the

generation of the SH field. With this comparative experimental-theoretical study we extracted

an effective mass of m∗
b1 = m∗

b2 = 0.015me, and a second order nonlinear scaled coefficient of

ã = 2.5 · 10−6 was used.
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Figure 2.4.1: (a) Transmitted and (b) reflected angular dependence of the measured (cross
markers) and predicted (solid curves) surface-generated TM-polarized SHG efficiencies triggered
by a TM-polarized incident field.
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Figure 2.4.2: (a) Transmitted and (b) reflected angular dependence of the measured (cross
markers) and predicted (solid curves) bulk-generated TE-polarized SHG efficiencies triggered
by a TM-polarized incident field.

It can also be seen in Figs. 2.4.1, 2.4.2 and 2.4.3 that experimental and predicted results

agree well regarding amplitude of the signal and peak position in most of the cases. However,

there are some discrepancies between them. In Fig. 2.4.3(b), the result of the simulation shows

a somewhat more complicated structure than the measured signal. In the bulk-generated SH

component in the case of reflection (Fig. 2.4.2(b)), the measured SH peak is shifted to larger

angles by approximately 10◦, and the maximum amplitude predicted by the simulation is nearly a
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Figure 2.4.3: (a) Transmitted and (b) reflected angular dependence of the measured (cross
markers) and predicted (solid curves) TM-polarized SHG efficiencies triggered by a TE-polarized
incident field. The SH signal arises mostly from the magnetic Lorentz nonlinearity.

factor of 13 smaller than the measured signal (in the plot the predicted curve is multiplied by 13).

We try to explain these issues with the following reasoning. In our calculations we have assumed

a GaAs substrate of uniform composition from entrance to exit, having no relevant surface

features. However, it is known that MBE-grown (molecular beam epitaxy) GaAs may display

extended regions of space charges, or depletion layers, due to the existence of surface states that

change the symmetry of the bulk inside a thin surface region [108]. In addition, the surface

may be either Ga- or As-rich, or have a thin Gallium oxide layer that also displays a dielectric

anisotropy [109] that may result in direction-dependent effective masses, damping coefficients

and resonance frequencies. Notwithstanding this differences, we find that the nonlinear oscillator

model exemplified by Eq. 2.3.2 predicts rather well surface SHG, with most discrepancies arising

from the bulk-generated SH signal.

In Fig. 2.4.4 we have plotted the same results shown in Figs. 2.4.1, 2.4.2 and 2.4.3 but in a

different configuration. In Figs. 2.4.4(a) and 2.4.4(b) we show measurements and simulations,

respectively, of transmitted SHG efficiencies for the GaAs wafer for the three different polar-

ization cases. As it can be seen, the measured ratio between them are well reproduced in the

simulations. In Figs. 2.4.4(c) and 2.4.4(d) we plot the same situation for the reflection case.
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Despite of some discrepancies already mentioned, the overall aspect of the measured results

agree quite well with the simulations.
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Figure 2.4.4: [(a) and (c)] Measured and [(b) and (d)] predicted SHG efficiencies as a function
of incident angle obtained in transmission (black) and in reflection (red). Solid curves: SH
generated by the surface and magnetic Lorentz contributions. Pointed curves: surface-generated
SH. Dashed curves: SH generated by the bulk contribution.

Transmitted THG efficiencies (ηTHG) were also measured as a function of incident angle. The

results are summarized in Fig. 2.4.5, with cross markers, along with the numerical simulation

results, depicted with solid curves, for TM- and TE-polarized pump pulses. As it can be seen,

the measured data agrees relatively well with our predictions, in which we used b̃ = 10−7.

In this case, the bulk contribution to the nonlinear polarization dominates the process, and

based on Eq. 2.3.4, it is expected that THG is triggered by either a TM- or a TE-polarized

pump generating a TM- and a TE-polarized TH, respectively, which is corroborated by our
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experiments. Reflected THG is more than one order of magnitude smaller in both cases, and

follows the angular dependence displayed by the transmitted THG. We remark that the TH

is tuned directly to the absorption resonance located near 355 nm, where one would have no

expectations to register any transmitted signal.
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Figure 2.4.5: Angular dependence of the measured (cross markers) and predicted (solid curves)
transmitted THG efficiencies as a function of incident pump polarization. (a) A TM-polarized
pump generates a TM-polarized TH signal, and (b) a TE-polarized pump triggers a TE-polarized
TH signal. Both of them arise mostly from the bulk contribution to the nonlinear polarization.

2.5 Conclusions and summary

In summary, we have experimentally demonstrated different components of SHG and THG in

the opaque region of GaAs, corresponding to the phase-locked harmonic generation and we

have identified and analyzed in detail surface and bulk nonlinear sources. We have shown that

the experimental data fits well the numerical simulations performed using a theoretical model

that includes different contributions to the nonlinear process arising from the bulk, surface and

magnetic terms, in the presence of linear and nonlinear dispersion. The polarization dependence

of the measured harmonics allows us to discern the relative contribution of each nonlinear term

to the overall nonlinear conversion efficiency. A detailed study of these phenomena can be

used to obtain relevant information about material parameters, such as effective mass of bound

electrons, and second and third order oscillator parameters.



3
Harmonic generation from Si in the
visible and UV

This chapter is divided in three main sections. In Section 3.1 we report measurements of SHG

and THG from an amorphous silicon nanolayer and a crystalline silicon wafer performed in our

laboratory. The objective of this study is to inspection the differences of the nonlinear response

in amorphous and crystalline silicon. We explain the approach used for this experimental study

in Section 3.1.1, and the samples in Section 3.1.2. Then, in Section 3.1.3, we explain how the

theoretical model is adapted for the case of amorphous and crystalline silicon. Finally, we show

the experimental and theoretical results of SHG and THG in Section 3.1.4. In Section 3.2, we

introduce results obtained from a 1340 nm- and a 200 nm-thick undoped crystalline silicon mem-

branes. Following the usual order, the experimental approach, a brief description of the samples

and the theoretical approach are reported in Sections 3.2.1, 3.2.2 and 3.2.3, respectively. Then,

results are shown in Section 3.2.4. Using experimental results and simulations we identify the

effective mass of bound electrons, which determines SHG efficiency, and oscillator parameters

that control third order processes. We can then accurately predict the nonlinear optical prop-

erties of complex structures, without including and artificially separating the effective χ(2) into

surface and volume contributions, and by simultaneously including effects of linear and nonlin-

ear dispersion. For this reason, we conclude this chapter with Section 3.3, where preliminary

61
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simulated results on SHG and THG from a nanostructure made of crystalline silicon nanowires

are reported. The objective is to show that by studying simple samples, like a nanolayer or

a wafer, and using our hydrodynamic model, we are able to predict the nonlinear response in

more complex nanostructures which are nowadays designed and fabricated as they are able to

enhance the nonlinear response of the material. This step is crucial in the field of nanophotonics

in order to have an efficient nanodevice. Finally, we end up with some conclusions in Section

3.4.

3.1 Amorphous and crystalline silicon

3.1.1 Experimental approach

The study consisted on measuring SHG and THG efficiencies from an amorphous silicon

nanolayer and a crystalline silicon wafer when being excited with two different laser sources.

The first one consists of a fiber laser delivering picosecond pulses at 1064 nm, which was intro-

duced in Chapter 2. The second one consists of a Ti:Sapphire oscillator (Coherent, Mira 900-F).

It is a mode-locked femtosecond laser system emitting pulses at λ = 800 nm, which is pumped

by a continuous wave green laser (Coherent, Verdi). The pulses are 140 fs in duration at FWHM

(τFWHM) and are emitted at a repetition rate (frep) of 76MHz, with a CW output average power

(Pout) of 1.7W, corresponding to approximately 22 nJ/pulse. These parameters are summarized

in Table 3.1.1.

λ τFWHM frep Pout Energy/pulse

Ti:Sapphire 800 nm 140 fs 76MHz 1.7W 22nJ

Table 3.1.1: Ti:Sapphire oscillator (Coherent, Mira 900-F) parameters.

The beam of this source was characterized with a CCD camera (Ophir CCD camera with the

corresponding software - BeamGage). We obtained a beam waist w0 ∼ 34µm, corresponding

to incident pulse peak intensities of ∼ 3.5GW/cm2. We also characterized the beam of the

fiber laser source. A smaller beam waist than that obtained in Chapter 2 for the same laser

source was measured because now a lens of focusing length f = 100mm (Thorlabs, LA1509-C)
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Figure 3.1.1: Measurement of the beam transverse profile generated by the fiber laser at the
sample plane. The white curve correspond to a Gaussian fit performed in the curve obtained
from a cut in the x direction from which we obtain the beam diameter at FWHM.

was used to focus the beam on the sample plane. With this, a higher fundamental pulse peak

intensity could be used in the experiments. This measurement is shown in Fig. 3.1.1, where

we show the beam transverse profile at the sample plane and the white curve corresponds to

a Gaussian fit performed to a cut of the experimental beam profile in the x direction. From

this we can extract a beam diameter at FWHM of ∼ 38µm, corresponding to w0 ∼ 32µm. As

a consequence we obtained a peak pump pulse intensity of ∼ 4.5GW/cm2. In Table 3.1.2 we

summarize the parameters of both laser sources under experimental conditions, where it can be

seen that typical peak pump pulse intensities were ∼ 4GW/cm2.

PFF frep τFWHM w0 IFF

Ti:Sapphire 1W 76MHz 140 fs 34µm 3.5GW/cm2

Fiber laser 1.5mW 1kHz 13 ps 32µm 4.5GW/cm2

Table 3.1.2: Laser parameters under experimental conditions.

SHG and THG signals were measured using the same set-up described in Chapter 2. However,

when pumping the samples at 800 nm, some of the elements had to be replaced. A B-coated

lens with focusing length f = 100mm (Thorlabs, LA1509-B) was used to focus the beam on the

sample plane. For the detection of SHG at 400 nm, another filter (Thorlabs, FGB37-A) was

used to attenuate the fundamental radiation, and the PMT was protected with a bandpass filter
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centered at 400 nm (Thorlabs, FBH400-40). In order to accurately detect SH signals reaching the

PMT when the Ti:Sapphire source was used in the experiments, a mechanical shopper (Scitec,

300CD Rotating Optical Chopper) was placed in the beam path before reaching the sample in

order to modulate the fundamental signal at typical frequencies of order of 100Hz with a duty

cycle of 50%. On the other hand, when the fiber laser was used, the source was modulated so it

delivered a train of N pulses which are repeated at a rate of 1 kHz. This way, the response of N

pulses can be integrated on the PMT signal measurements and a larger signal is obtained. The

amount of average power arriving at the sample depends on this number of pulses, as shown in

Chapter 2.1.

Conversion efficiencies were estimated performing the same calibration procedure as that

explained in Chapter 2.1.

3.1.2 Description of the samples

The crystalline silicon wafer was purchased from Biotain (Hong Kong, China). It consists of a

500µm-thick undoped crystalline silicon wafer grown in the (100) crystallographic direction. It

has a diameter of 50.8mm, it is double side polished, and has a resistivity greater than 1000Ωcm.

The amorphous silicon sample consisted on a 25 nm-thick nanolayer, and it was magnetron

sputtered [31, 110] from a silicon target on transparent fused silica glass.

We performed X-Ray diffraction (XRD) measurements on both samples to prove their amor-

phous/crystalline properties. The diffraction patterns obtained from the amorphous silicon

nanolayer and the crystalline silicon wafer are shown in Figs. 3.1.2(a) and 3.1.2(b), respectively.

The diffraction patterns of a crystalline sample are very different with respect to an amorphous

sample. A crystalline sample XRD results in very narrow intense peaks, corresponding to its

crystal planes. On the contrary, an amorphous sample results in a very broad peak or shoulder

with low intensity and at low angles. These characteristics are reflected in our results shown in

Fig. 3.1.2. In Fig. 3.1.2(c) we show an schematic representation of the problem, where Eω, Bω

and Sω are electric and magnetic fields and Poynting vector at the fundamental frequency, re-
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spectively. In the figure, TM-polarized light is incident with a certain angle θin to an amorphous

silicon nanolayer or a crystalline silicon wafer having (100) crystallographic characteristics.

Figure 3.1.2: XRD measurements performed on the (a) 25 nm-thick amorphous silicon layer and
(b) crystalline silicon wafer. (c) Schematic representation of the nanolayer/wafer when TM-
polarized light is incident at a certain angle θin.

3.1.3 Theoretical approach

As well as in the case of GaAs, for typical silicon substrates, free carrier doping is rather low,

so that they can be assumed to play a minor role in the linear and nonlinear properties of

the material. This means that the dielectric constant of silicon can be described with the

Lorentz model. In the case of amorphous silicon, just one Lorentzian resonance is enough to

fit experimental data, while in its crystalline configuration, the dielectric function is accurately



66 CHAPTER 3. HARMONIC GENERATION FROM Si IN THE VISIBLE AND UV

described by taking into account two different bound spices. Then, the dielectric constant

of amorphous (α − Si) and crystalline silicon (c − Si) can be given by Eqs. 3.1.1 and 3.1.2,

respectively:

εα−Si(ω̃) = 1−
ω̃2
p,b

ω̃2 − ω̃2
0 + iγ̃bω̃

(3.1.1)

εc−Si(ω̃) = 1−
ω̃2
p,b1

ω̃2 − ω̃2
01 + iγ̃b1ω̃

−
ω̃2
p,b2

ω̃2 − ω̃2
02 + iγ̃b2ω̃

(3.1.2)

where ω̃ = 1/λ and it has µm−1 units. In Figs. 3.1.3(a) and 3.1.3(b) we have plotted data of

the real Re(ε) and imaginary Im(ε) parts of the dielectric function of amorphous and crystalline

silicon, respectively. The amorphous silicon sample was analyzed using a variable angle spectro-

scopic ellipsometer (Woollam, VASE), while the complex dielectric data of crystalline silicon was

extracted from Palik’s handbook [107]. These data have been fitted with Eqs. 3.1.1 and 3.1.2.

From the fitting we have obtained (ω̃p,b, ω̃0, γ̃b) = (9, 2.8, 1.15) in the case of amorphous silicon

and (ω̃p,b1, ω̃01, γ̃b1) = (3, 2.75, 0.1) and (ω̃p,b2, ω̃02, γ̃b2) = (11, 3.3, 0.75) in the case of crystalline

silicon.

50 250 450 650 850 1050 1250
-15

0

15

30

50 250 450 650 850 1050 1250
-30

0

30

60
(a) (b)

Figure 3.1.3: Real (black dashed curves) and imaginary (red dashed curves) parts of the complex
dielectric constant of (a) amorphous and (b) crystalline silicon. The respective solid curves are
the corresponding Lorentzian functions chosen to reproduce the data.

As we saw in Chapter 1.5, the dynamic equation of motion for semiconductors like silicon can

be written as:

P̈bj + γ̃bjṖbj + ω̃2
0jPbj +PNL

bj =
n0,bje

2λ2
0

m∗
bjc

2
E+

eλ0

m∗
bjc

2
(Pbj · ∇)E+

eλ0

m∗
bjc

2
Ṗbj ×H (3.1.3)
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where j = 1 in the case of amorphous silicon and j = 1, 2 in the case of crystalline silicon,

corresponding to one or two Lorentzian resonances appearing in the dielectric response of the

material. The total polarization inserted into Maxwell’s equations is the sum Ptotal = Pb1+Pb2.

Silicon is a centrosymmetric material, so PNL
bj contains only third order nonlinearities: PNL

bj =

−b̃j(Pbj · Pbj)Pbj , and in the case of crystalline silicon, it is assumed that b̃1 ≈ b̃2 = b̃, as the

resonances are closely spaced. Apart from this third order bulk nonlinearity, Eq. 3.1.3 also

contains a surface contribution triggered by the spatial derivatives of the fields eλ0
m∗

bjc
2 (Pbj · ∇)E,

and a nonlinear contribution arising from the magnetic portion of the Lorentz force eλ0
m∗

bjc
2 Ṗbj×H.

3.1.4 Results and discussion

Experiments have been carried out pumping our samples with picosecond and femtosecond

pulses tuned at 1064 nm and 800 nm, respectively. Typical incident pulse peak intensities used

in the experiments were ∼ 4GW/cm2, and we recall that our set-up, schematically depicted

in Fig. 2.1.1, allows us to take measurements as a function of fundamental and harmonic

polarization, and incident angle. For what the simulations are concerned, 100 fs pulses tuned at

either 800 nm or 1064 nm were incident on a free-standing 25 nm-thick amorphous silicon layer

and on a 10µm-thick crystalline silicon wafer assumed to have (100) crystallographic orientation,

with pump pulse power densities of ∼ 4GW/cm2.
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Figure 3.1.4: Transmitted (black) and reflected (red) angular dependence of the measured (cross
markers) and predicted (solid curves) TM-polarized SHG efficiencies triggered by a TM-polarized
pump pulse tuned at 800 nm.
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We first introduce the results we have obtained on amorphous silicon. In Fig. 3.1.4 we

show transmitted and reflected SHG efficiencies (ηSHG) as a function of incident angle when the

sample is pumped at 800 nm. Both fundamental and SH fields were selected to be TM-polarized.

It can be observed that the reflected experimental and theoretical curves agree well in shape and

amplitude, having a maximum around 50◦ angle of incidence, leading to a conversion efficiency

of ∼ 1.5 · 10−12. The results for the transmission case are also satisfactory. Both measured and

predicted maximum efficiencies correspond to ∼ 0.5 · 10−12, and the shape of the curves are in

good agreement. Another thing that is reproduced in both experimental and theoretical results

is the ratio between transmitted and reflected efficiencies.

In Figs. 3.1.5(a) and 3.1.5(b) we show transmitted and reflected SHG efficiencies, respectively,

as functions of incident angle when both fundamental and SH fields are TM-polarized, and pump

wavelength is tuned at 1064 nm. Experimental efficiencies are depicted with cross markers and

are shown in the left y-axis, while theoretical predictions are depicted with solid curves and

shown in the right y-axis. In both cases experimental and simulated curves agree remarkably

well, showing a maximum detected and predicted efficiency around 50◦ incident angle for both

transmission and reflected cases. TM-polarized SHG efficiencies as a function of incident angle

generated by a TE-polarized incident field tuned at 1064 nm are shown in Figs. 3.1.5(c) and

3.1.5(d) for transmission and reflection cases, respectively. Experimental and predicted curves

are shown in a configuration similar to that in Figs. 3.1.5(a) and 3.1.5(b). Once again, both

transmitted and reflected experimental and theoretical results agree remarkably well in shape

and amplitude. From the experimental-theoretical comparison shown in Figs. 3.1.4 and 3.1.5 we

extracted an effective mass for bound electrons of m∗
b = 2.5me. We note that some discrepancies

can be found between experimental and theoretical efficiencies in the 1064 nm pump wavelength

case. However, we recall that our efficiencies are calculated making no assumptions about

effective surface or volume nonlinearities. Once the effective mass and densities are fixed, the

same values are used in all the cases. We also note that in the case of amorphous silicon, the TE-

polarized SH component generated by a TM-polarized incident field is not observed, differently
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from the GaAs case. We recall that this SH component is generated by the bulk nonlinearity,

as it was shown in Chapter 2. As silicon is a centrosymmetric material, it is expected that this

component is not observed, which is in agreement with our results.
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Figure 3.1.5: [(a)-(b)] (a) Transmitted and (b) reflected angular dependence of the measured
(cross markers, left y-axis) and predicted (solid curves, right y-axis) TM-polarized SHG effi-
ciencies triggered by a TM-polarized pump pulse tuned at 1064 nm. [(c)-(d)] (c) Transmitted
and (d) reflected angular dependence of the measured (cross markers, left y-axis) and predicted
(solid curves, right y-axis) TM-polarized SHG efficiencies triggered by a TE-polarized pump
pulse tuned at 1064 nm.

Experimental and theoretical results of the angular dependence of THG efficiencies (ηTHG)

for the pump tuned at 1064 nm are shown in Fig. 3.1.6. A TM-polarized TH signals is detected

when the incident field is TM-polarized, while a TE-polarized incident field generates a TE-

polarized TH signal. These generated curves are shown in Figs. 3.1.6(a-b) and 3.1.6(c-d),

respectively. Once again, both experimental and theoretical results agree remarkably well in
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shape and amplitude showing a maximum efficiency at normal incidence. Simulations were

obtained with b̃ = 1.2 · 10−7.
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Figure 3.1.6: [(a)-(b)] Transmitted (black) and reflected (red) angular dependence of (a) mea-
sured and (b) predicted TM-polarized THG efficiencies triggered by a TM-polarized pump pulse
tuned at 1064 nm. [(c)-(d)] Transmitted (black) and reflected (red) angular dependence of (c)
measured and (d) predicted TE-polarized THG efficiencies triggered by a TE-polarized pump
pulse tuned at 1064 nm.

We have also investigated the nonlinear signals in a 500µm-thick crystalline silicon wafer

grown in the (100) crystalographic direction. In Figs. 3.1.7(a) and 3.1.7(b) we show results

of the angular dependence of the transmitted and reflected SHG efficiencies obtained from (a)

experiments and (b) simulations. We note in the experimental results that the maximum of

the reflected curve is shifted towards a larger angle of incidence with respect to the transmitted

curve. This fact is well reproduced by the curves obtained with the simulations. Moreover,

experimental and predicted curves agree well in amplitude and shape. From the comparison
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between experimental and theoretical results we obtained an effective mass of bound electrons

of m∗
b1 = m∗

b2 = 2.5me.
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Figure 3.1.7: (a) Measured and (b) predicted SHG conversion efficiencies obtained from the
crystalline silicon wafer in transmission (black) and in reflection (red) and as a function of
incident angle when both fundamental and SH fields are TM-polarized.

In Fig. 3.1.8 we show experimental and simulated results of the angular dependence of THG

efficiencies from the silicon wafer. As well as in the case of the GaAs wafer and the amorphous

silicon nanolayer, a TM-polarized TH signal is detected when a TM-polarized field is incident

on the sample, while a TE-polarized fundamental field generates a TE-polarized TH field. By

matching experimental and predicted results we obtained a third order nonlinear parameter of

b̃ = 3.6 ·10−7. The amplitude of the transmitted signal depends on sample thickness because the

pump is absorbed as it decays inside the sample. On the contrary, if the sample is thicker than

a few tens of microns, reflected harmonic generation becomes independent of sample thickness,

because the pump is absorbed faster than the round trip time necessary to trigger meaningful

cavity effects. We note again that a transmitted TH generated at 355 nm is able to propagate

through a 500µm-thick wafer without being absorbed, which tells us that it corresponds to the

phase-locked harmonic component.

Finally, in Fig. 3.1.9 we show measurements of the TH signal generated by the crystalline

silicon wafer for TM-polarized incident and detected light taken with an spectrometer (Andor,

Shamrock 303I) with an attached camera (Andor, DV420A-OE). This measurement was per-



72 CHAPTER 3. HARMONIC GENERATION FROM Si IN THE VISIBLE AND UV

formed in the same conditions as those shown in Fig. 3.1.8, but the TH light was collected by

the above mentioned spectrometer instead of by the PMT. In the inset of the figure it can be

seen that no fundamental light, tuned at 1064 nm was detected.
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Figure 3.1.8: Measured (markers) and predicted (curves) THG efficiencies as a function of
incident angle for the crystalline silicon wafer obtained in (a) transmission and (b) reflection.
A TM-polarized TH signal is detected when the incident field is TM-polarized (cross markers,
solid curves), while a TE-polarized fundamental field generates a TE-polarized TH (plus markers,
dashed curves).

250 300 350 400 450 500 550 600

0

200

400

900 950 1000 1050 1100
-100

0

100

200

300

400

Figure 3.1.9: Spectroscopy measurement of the THG signal for the crystalline silicon wafer. A
signal was detected at 355 nm, corresponding to the TH of incident pulses tuned at 1064 nm.
Both incident and TH fields are TM-polarized.
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3.2 Silicon membranes

3.2.1 Experimental approach

The nonlinear response of the silicon membranes was studied in a different laboratory (Charles

M. Bowden Laboratory, Huntsville, Alabama), during a PhD stay abroad. There, a completely

new set-up was built, taking as a reference the one described in Chapter 2.1. This new config-

uration was specially designed for wavelength dependence measurements, as we had access to a

tunable femtosecond laser source in the laboratory. It consists of a Ti:Sapphire laser system (Co-

herent, Astrella) which pumps an optical parametric amplifier (OPA) (Coherent, Opera Solo).

The system emits pulses of ∼ 100 fs at 1 kHz repetition rate and can be set to operate at different

wavelength ranges: 1160 nm to 1600 nm range with energies > 220µJ/pulse; 480 nm to 1160 nm

range with energies > 50µJ/pulse; 290 nm to 480 nm range, with energies above 10µJ/pulse.

In Table 3.2.1 we have summarized the above mentioned parameters in the 1160 nm to 1600 nm

wavelength range, which was the most common one used in the experiments.

λ τFWHM frep Pout Energy/pulse

OPA (Coherent, Opera Solo) 1160 nm− 1600 nm 100 fs 1 kHz > 0.2W > 220µJ

Table 3.2.1: Tunable femtosecond source parameters.

The calibration procedure performed to estimate SHG and THG efficiencies was carried out in

a similar fashion as that described in Chapter 2.1. As light source we used the OPA tuned in the

range from 350 nm to 750 nm (this would correspond to the light generated by the BBO crystal

in the calibration procedure described in Chapter 2.1). Then, the responsivity of the PMT was

measured for different wavelengths and calculated as RPMT = VPMT/(TNDPPMT), where VPMT

is the reading of the signal taken with the oscilloscope to which the PMT is connected, PPMT

is the power measured with a photodiode (Newport, 918D-UV-OD3) in front of the PMT, and

TND is the transmission of the ND filters placed before the PMT. In order to have access to the

responsivity for all possible wavelengths, we fitted our measurements to the PMT’s responsivity

provided in its datasheet, which is shown in Fig. 3.2.1 with a solid curve. Measurements
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are depicted with cross markers. The transmission T of the detection arm also depended on

wavelength and was calculated for each case with transmission values given by the datasheet of

the elements (filters, lenses, polarizer, etc.) placed in the detection arm.
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Figure 3.2.1: Measurements of the responsivity of the PMT (cross markers) fitted to Thorlabs’
responsivity curve (solid curve).

Knife edge measurements were performed to characterize the size of the beam at the sample

plane. This technique consists on placing a blade in front of the laser beam and measuring

the power transmitted by the blade using a photodiode. This blade is displaced horizontally

(x) from the position were the beam is totally blocked, to the position were the hole beam is

transmitted (or the other way around). From this, a curve similar to that shown in Fig. 3.2.2 is

obtained, where we show the measured power P as a function of the displacement of the blade

x in mm. Pulses with 800 nJ of energy tuned at 1500 nm were used. This measurements are

depicted with cross markers and can be fitted to a function of the form:

P (x) = A

(
erf

(√
2(x− x0)

w0

))
+B (3.2.1)

where A and B are parameters of the fitting, w0 corresponds to the beam waist, and x0 is

the center point of the beam. From this we extracted a beam waist of w0 ∼ 175µm. The

experiment was repeated for different input wavelengths, for which a similar beam waist was

obtained. Typical incident energies per pulse used in the experiments were EFF = 100 nJ,

which leads us to incident pulse peak intensities of 1.5GW/cm2. However, the set-up allowed
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Figure 3.2.2: Knife edge measurements performed to the focused beam when the incident wave-
length was tuned at 1500 nm. Measurements (cross markers) are fitted to an error function
(solid curves) from which the beam waist w0 of the beam can be extracted.

us to vary the energy per pulse so that higher peak pump pulse intensities could be used in the

experiments. These parameters are summarized in Table 3.2.2.

EFF frep τFWHM w0 IFF

OPA (Coherent, Opera Solo) 100 nJ 1 kHz 100 fs 175µm 1.5GW/cm2

Table 3.2.2: Tunable femtosecond source parameters under experimental conditions.

In Fig. 3.2.3 we show an schematic representation of our experimental set-up. This set-

up uses as starting point that described previously in Chapter 2.1. However, it contains a

given amount of filters to eliminate the fundamental radiation instead of a dispersive prism as

alignment with a multiwavelength system and pump-wavelength sweeps would be difficult with

the prism configuration. Residual undesired frequency components coming from the OPA are

eliminated placing a silicon wafer in the beam path. Then, ND filters are used to attenuate the

fundamental energy per pulse. After that, with a pair of polarizers (Thorlabs, WP25L-UB and

LPNIR100-MP2) we can control the power and the polarization of the incident field. Then, using

colored glass longpass filters (usually two are enough) possible SH or TH radiation generated

in elements of the set-up placed between the OPA and the sample is eliminated. Depending

on the input wavelength range, the filters are chosen to have a suitable cut-on wavelength.

The beam is focused on the sample plane and then collimated with a pair of calcium fluoride
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Figure 3.2.3: Schematic representation of the experimental set-up in its transmission configu-
ration specifically built for wavelength dependence measurements of SH and TH signals arising
from crystalline silicon membranes.

(CaF2) lenses with focal length f = 500mm (Thorlabs, LA5464). The sample is mounted on

top of a motorized rotation stage (Newport, URS150BCC), again allowing measurements as

a function of incident angle. With a polarizer (Thorlabs, WP25L-UB) the harmonic field is

selected to be either TM- or TE-polarized. Then, a mirror (Thorlabs, PF10-03-F01) on a flip

mount allows the selection of either a calibrated silicon photodiode (Newport, 918D-UV-OD3),

or a PMT (Thorlabs, PMT1001) to enable easy measurements of the responsivity of the system.

The electronic signal from the PMT is filtered and amplified by a low-noise preamplifier (SRS,

SR530) before being measured with a digital oscilloscope (Agilent Technologies, DSO6104A)

connected to a computer. As can be seen in Fig. 3.2.3, several bandpass filters are placed

in different parts of the detection arm: (1) between the sample and the collimating lens, (2)

between the mirror and the PMT, and (3) at the PMT. These filters have the role of eliminating

the fundamental field, as well as SH or TH radiation depending on which harmonic frequency

we want to detect. For this reason, the choice of these filters is crucial and depends on the

incident wavelengths we are using. For spectral THG measurements with incident pulses tuned
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in the range from 1000 nm to 1600 nm, which corresponds to TH signals laying between 333 nm

and 533 nm, we use: (1) FGS900, (2) FGS900 × 2, and (3) FGS900. For TH generated from

smaller input wavelengths, each of these filters is replaced by a FGUV11-UV. In the case of SHG,

measurements were performed at a fixed wavelength due to availability of filters. For instance,

for λin = 1300 nm, 1400 nm and 1500 nm, we use: (1) FGS900 × 2, (2) bandpass filter centered

at the detection wavelength (Thorlabs, FBXXX-10) and (3) FESH0900. By choosing another

combination of filters, one is able to measure harmonic signals at different wavelength ranges.

3.2.2 Description of the samples

We studied two different silicon samples consisting of a 200 nm- and a 1340 nm-thick (100)

crystalline silicon membranes etched out [31] of silicon wafers purchased from Norcada (Alberta,

Canada). In Fig. 3.2.4(a) an schematic representation of the 200 nm-thick membrane is shown,

and in Fig. 3.2.4(b) we show the geometric representation of the problem for TM-polarized

incident light, where Eω, Hω and Sω are electric and magnetic fields and Pointing vector,

respectively, at the fundamental frequency, and θin is the angle of incidence.
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Figure 3.2.4: (a) Schematic representation of the 200 nm-thick silicon membrane. (b) Schematic
representation of the silicon membrane when TM-polarized light is incident at a certain angle
θin.
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The membranes are supported by a silicon frame. In the case of the 1340 nm-thick membrane,

this frame is 300µm thick and has 10× 10mm dimensions. The membrane size is 4.8× 4.8mm.

In the case of the 200 nm-thick membrane, the frame has 7.5×7.5mm dimensions and is 500µm-

thick. The size of this membrane is 3× 3mm. These parameters are summarized in table 3.2.3.

Membrane thickness Membrane size Frame thickness Frame size

200 nm 3× 3mm 500µm 7.5× 7.5mm

1340 nm 4.8× 4.8mm 300µm 10× 10mm

Table 3.2.3: Silicon membranes parameters.

3.2.3 Theoretical approach

The theoretical approach that was followed to perform numerical simulations of SHG and THG

efficiencies generated by the silicon membranes mimics that for the crystalline silicon wafer case,

described in section 3.1.3.

3.2.4 Results and discussion

Experiments have been carried out pumping our samples with tunable femtosecond pulses.

Typically, the incident wavelength range used in the experiments was from 1160 nm to 1600 nm.

However, smaller fundamental wavelengths could also be used by using other ports of the OPA.

This allowed us to generate harmonic signals deeper in the UV. Typical incident pulse peak in-

tensities used in the THG experiments were ∼ 1.5GW/cm2, while for SHG measurements they

were increased to ∼ 10GW/cm2. We recall that our set-up, schematically depicted in Fig. 3.2.3,

allows us to take measurements as a function of fundamental and harmonic polarization, and in-

cident angle and wavelength. For what the simulations are concerned, tunable 100 fs pulses were

incident on a free-standing 200 nm-thick or 1340 nm-thick crystalline silicon membrane assumed

to have (100) crystallographic orientation, with pump pulse power densities of ∼ 1.5GW/cm2,

which were increased for the SHG case accordingly to experimental conditions.

In Fig. 3.2.5(a) we display linear pump transmittance as a function of incident wavelength

for the 200 nm- and 1340 nm-thick membranes. These spectra were taken with a spectrometer

(Shimadzu, UV-3101PC) and they consist of a series of Fabry-Perot resonances whose free
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spectral range depends on thickness. In Fig. 3.2.5(b) we show the transmittance around the

1400 nm resonance peak, when low-intensity, 100 fs pulses, which are narrowband enough to

resolve the resonances, were injected normal to the surface of the 1340 nm-thick membrane.

Simulations (solid curve) and measurements (cross markers) of the linear transmittance agree

well in terms of amplitude and peak location.
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Figure 3.2.5: (a) Measured linear transmission as a function of incident pump wavelength for
the 1340 nm- and 200 nm-thick silicon membranes. (b) Measured (cross markers) and simulated
(solid curve) linear transmission as a function of incident pump wavelength for normally incident
pulses tuned near the 1400 nm resonance wavelength for the 1340 nm-thick silicon membrane.
Measurements in (a) were performed with a specrophotometer, while measurements in (b) were
taken with the laser source used in the nonlinear experiments, with low-intensity pulses.

We go on now to introduce our experimental results regarding the nonlinear behavior of

the two silicon membranes, which have been compared with the predictions of our numerical

simulations.

Observations and predictions of SHG transmitted efficiencies (ηSHG) as a function of incident

angle (θin) for the 1340 nm-thick membrane are depicted in Figs. 3.2.6(a)-(c), for three different

incident wavelengths: 1300 nm, 1400 nm and 1500 nm, tuning the SH field at 650 nm, 700 nm

and 750 nm, respectively. In all these cases, a TM-polarized incident field was used, and a

TM-polarized SH was selected. The obtained SH curves show maxima peaking between 65◦

and 70◦, and conversion efficiencies of order 10−12 − 10−13. According to the hydrodydamic

approach adapted for the case of crystalline silicon in Chapter 3.1.3, SHG conversion efficiencies
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Figure 3.2.6: Angular dependence of transmitted SHG measured (cross markers) and predicted
(solid curves) efficiencies for incident pulses tuned at (a) 1300 nm, (b) 1400 nm, and (c) 1500 nm,
for the 1340 nm-thick silicon membrane. (d) Predictions of the transmitted (black) and reflected
(red) SHG efficiencies for the 1340 nm-thick silicon membrane under three different scenarios:
taking only the Lorentz (dashed curves) or the surface (dashed-pointed curves) contribution into
account, and considering both terms (solid curves) in Eq. 3.1.3.

are completely determined by the spatial derivatives of the electric field, and by the magnetic

component of the Lorentz force, which is almost never explicitly and specifically discussed, and

which are multiplied by the factor eλ0/(m
∗
bjc

2). By matching the simulated and measured

conversion efficiencies we extracted an effective mass of bound electrons m∗
b1 = m∗

b2 = 2.5me.

The presence of the magnetic component of the Lorentz force is essential when the pump is

TE-polarized, and can act as a catalyst when the field is TM-polarized. In fact, as we have seen

in the previous chapter, a TE-polarized pump generated a TM-polarized SH signal thanks to

the term eλ0
m∗

bjc
2 Ṗbj ×H. For TM-polarized pumps, calculations show that while the individual
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surface component may yield several orders of magnitude more SH signal than the magnetic

Lorentz term, their combined effect can impact both quantitative and qualitative aspects of the

interaction. This situations is represented in Fig. 3.2.6(d), where we show predictions of the

transmitted and reflected SHG efficiencies obtained under three different scenarios: taking only

either the surface or the magnetic Lorentz term into account, and considering both of them

to contribute in the nonlinear polarization. SHG triggered only by the magnetic term (dashed
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Figure 3.2.7: (a) Transmitted THG efficiencies as a function of pump wavelength for the 1340 nm-
thick silicon membrane. Measurements were taken at normal incidence (cross markers) and at
45◦ incident angle (plus markers). Their corresponding simulations are depicted with a solid
curve and a dashed curve, respectively. (b) Angular dependence of the measured (cross markers)
and predicted (solid curve) transmitted THG efficiency for the 1340 nm-thick silicon membrane
when incident pulses were tuned at 1400 nm. (c) Experimental results of the angular dependence
of the transmitted THG efficiencies when pump pulses tuned at 1280 nm, 1340 nm, 1400 nm and
1520 nm are incident on the 1340 nm-thick silicon membrane. (d) The same results plotted in
Fig. 3.2.7(c) but neglecting the 1400 nm pump wavelength case.
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curves) is two orders of magnitude smaller than SH signals generated only by the surface term

(dashed-pointed curves), and barely visible on the plot. Nevertheless, when both terms are

present (solid curves) the peak of the transmitted SHG curve suffers almost a 20% reduction

compared to what is generated by the surface, while the reflected SH peak shifts to smaller

angles by a measurable amount. It is obvious then, that this term has a catalytic action and it

should not be neglected.

In Fig. 3.2.7 we show experimental and simulated results of the transmitted TM-polarized

THG efficiencies (ηTHG) for the 1340 nm-thick crystalline silicon membrane when the incident

field is TM-polarized. In Fig. 3.2.7(a) we report the spectral response at normal (θin = 0◦) and

oblique (θin = 45◦) angles of incidence. A maximum THG efficiency of 2 · 10−9 was obtained at

466 nm, with the pump tuned at 1400 nm at normal incidence. Simulations were obtained with

b̃ = 1.5 ·10−8 and agree well with experimental results in terms of amplitude and peak locations.

The agreement between theory and experimental observations evident in Fig. 3.2.7(a) repeats in

Fig. 3.2.7(b), where we show the angular response of the TH signal when incident pulses tuned

to the peak of 1400 nm were used. In Fig. 3.2.7(c) we show experimental curves obtained in other

spectral locations. Figure 3.2.7(d) is a zoom in of Fig. 3.2.7(c), neglecting the curve obtained

pumping the sample at 1400 nm. Experimental results obtained using incident wavelengths of
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Figure 3.2.8: (a) SH and (b) TH measured energies as a function of incident pulse peak intensity
for the 1340 nm silicon membrane and incident pulses tuned at 1400 nm and 1500 nm, respec-
tively.
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1280 nm, 1340 nm and 1520 nm are shown, tuning the TH signal at 426 nm, 446 nm and 506 nm,

respectively.

Finally, SHG and THG energies (ESHG and ETHG) were measured as a function of incident

pulse peak intensity for the 1340 nm silicon membrane. In the case of SHG, incident pulses were

tuned at 1400 nm, while for THG they were tuned at 1500 nm. These results are plotted in

logarithmic scale in Fig. 3.2.8. A slope of m ∼ 2.1 and m ∼ 3.1 is found for the SHG and THG

case, respectively, a result that gives us confidence on the fact that we are measuring SH and

TH signals.

The second set of measurements consisted of detecting THG efficiencies carried out on a

200 nm-thick silicon membrane. This sample gives us the opportunity to directly address the

nanoscale, and to simultaneously investigate THG in a cavity environment in the UV range,

where nonlinear dispersion, absorption, and phase-locking come robustly into play. In Fig.

3.2.9(a) we show experimental and predicted results of the spectral response of the transmitted

THG efficiency at normal and 45◦ incident angle when both incident and TH fields are TM-

polarized. As it can be seen, predicted and observed data display remarkable agreement in the

wavelength range above 300 nm (900 nm pump wavelength). However, we remark that THG

predictions below 300 nm have the right trend but are somewhat lower than our experimental

observations. This may be due to the fact that conversion efficiency is inversely proportional to

the fourth power of the electron density and lattice constant (b̃2 ∼ (L4n4
0,b)

−1), and the possibility

that the third order coefficient may be somewhat dispersive and geometry dependent, which can

account for stronger nonlinear gain.

In Figs. 3.2.9(b)-(d) we display the angular dependence of the transmitted THG when the

carrier wavelength is tuned to 1000 nm, 900 nm and 810 nm, leaving the generated TH tuned

at 333 nm, 300 nm and 270 nm, respectively, well in the UV range of the spectrum. The sharp

drops that the observed TH curves display occur because the incident beam impinges on the

substrate, with subsequent precipitous reduction in transmittance. The aperture of the 200 nm-

thick membrane is smaller compared to that of the 1340 nm-thick sample (see Section 3.2.2),
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Figure 3.2.9: (a) Transmitted THG efficiencies as a function of incident wavelength for the
200 nm-thick silicon membrane. Measurements were taken at normal incidence (cross markers)
and at 45◦ incident angle (plus markers). Their corresponding simulations are depicted with a
solid curve and a dashed curve, respectively. [(b)-(d)] Angular dependence of the transmitted
THG measured (cross markers) and predicted (solid curves) efficiencies for incident pulses tuned
at (b) 1000 nm, (c) 900 nm, and (d) 810 nm, for the 200 nm-thick silicon membrane.

thus restricting the range of incident angles we could investigate without having the laser beam

clipped by the membrane aperture. As it can be observed, this membrane is at least five times

more efficient than the thicker counterpart, and that conversion efficiencies are still relatively

large even when the TH signal is tuned to 270 nm. Predicted curves in Figs. 3.2.9(c) and

3.2.9(d) were obtained by slightly increasing the nonlinear gain coefficient to approximately

match observed conversion efficiencies. We recall that this parameter can be expressed as b̃j =

ω̃2
p,bj/(L

2e2n2
0,bj). For silicon, we have that L ∼ 2.6 Å, n0,bj ∼ 1022 cm−3 and ω̃p,bj lays between

250 nm and 450 nm. Combining these parameters, we obtain b̃ = 1.5 · 10−8. However, we
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recall also from Chapter 1.5.3 that this magnitude is flexible and is fully determined relying in

experimental efficiencies.

3.3 Silicon nanowires

The study of basic silicon structures presented in the previous Sections 3.1 and 3.2, where we

have shown SHG and THG results on an amorphous silicon nanolayer, a crystalline silicon wafer

and in two crystalline silicon membranes, has allowed us to extract basic physical properties of

the material. As we have seen, these are the effective mass of bound electrons, which determines

SHG, and oscillator parameters b̃ which determine THG. Now, we will use this knowledge to

predict harmonic generation in a more complex structure. Nowadays, the scientific interest has

been towards the design of nanostructures capable of enhancing harmonic generation efficiencies.

For this reason, our purpose now is to investigate the nonlinear response in a more complex

structure made of silicon. This structure consists of a nanograting made of silicon nanowires

having square cross section 230 nm × 230 nm, and a period of 1200 nm, which is schematically

shown in Fig. 3.3.1 were θin is the incident angle.

FF

θin

y

z

x
230nm

230nm

p=1200nm

Figure 3.3.1: Schematic representation of the silicon grating. The nanowires have a cross section
of 230 nm× 230 nm and a period of p = 1200 nm.
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3.3.1 Results and discussion

We have simulated the linear, SHG and THG spectra for two different incident peak pump pulse

intensities. In Fig. 3.3.2(a) we show predictions of the linear transmission T and reflection

R spectra for this grating, for TM-polarized incident pulses. The solid and dashed curves

are obtained with incident pulse peak intensities of 0.5GW/cm2 and 8GW/cm2, respectively.

As it can be seen, the reflected (transmitted) peak (valley) of the curve obtained at higher

incident peak intensities is shifted towards a larger incident wavelength with respect to the

curves obtained at lower incident peak intensities.
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Figure 3.3.2: (a) Predictions of the linear transmitted (black) and reflected (red) spectra for the
silicon grating when the incident peak pump pulse intensity is 0.5GW/cm2 (solid curves) and
8GW/cm2 (dashed curves). [(b)-(c)] Predictions of the transmitted (black) and reflected (red)
(b) SHG and (c) THG conversion efficiencies as a function of incident wavelength. Solid curves
correspond to incident peak intensities of 0.5GW/cm2, efficiencies shown at the left y-axis; and
dashed curves correspond to incident peak intensities of 8GW/cm2, efficiencies shown at the
right y-axis.
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In Fig. 3.3.2(b) we have plotted numerical simulation results of the transmitted and reflected

SHG efficiencies (ηSHG) as a function of incident wavelength from the silicon grating, when both

incident and SH fields are TM-polarized. The solid curves are calculated with an incident peak

pump pulse intensity of 0.5GW/cm2, and the corresponding conversion efficiencies are shown in

the left y-axis. They show a maximum transmitted and reflected efficiencies for λin ∼ 1332 nm.

The dashed curves are obtained by setting the incident pulse peak intensity at 8GW/cm2, and

the corresponding conversion efficiencies appear at the right y-axis. As it can be observed, these

curves are redshifted, peaking at λin ∼ 1340 nm for the transmission case. Conversion efficiencies

of order 10−10 and 10−9 are obtained for the low and high incident pulse peak intensity case,

respectively, which have been obtained with electrons’ effective masses of m∗
b1 = m∗

b2 = 2.5me.

Figure 3.3.2(c) presents the predicted results for TM-polarized THG efficiencies (ηTHG) from

the silicon grating when pump pulses are TM-polarized. Once again, two different fundamental

peak pulse intensities have been used. The redshifting of the curves generated with higher

intensities is also observed in this case. As it can be seen, THG conversion efficiencies of

order 10−6 and 10−4 are obtained for incident peak intensities of 0.5GW/cm2 and 8GW/cm2,

respectively. These values are obtained with b̃ ∼ 10−8. There is no doubt that these efficiencies

have to be corroborated with experimental results, with which effective masses and nonlinear

oscillator parameters can be readjusted. So, the next step would be to prepare a sample of this

kind and measure its nonlinear response. In fact, this nanograting is already under preparation.

3.4 Conclusions and summary

In summary, we have studied nonlinear frequency conversion in suspended silicon membranes of

200 nm and 1340 nm thickness, in a 500µm silicon wafer, and in a 25 nm-thick amorphous silicon

nanolayer in the visible and UV ranges, in regimes where this material tends to be opaque, and

where nonlinear dispersion and phase-locking dominate the dynamics. Our results thus suggest

that the entire UV range is available for the development of relatively efficient light sources.

Our theoretical approach is in remarkable agreement with measured results, and sheds light on
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the dynamical aspects of surface, second order phenomena, as well as third order nonlinearities.

The identification of basic parameters like the effective mass of bound electrons, which drives

SHG, and nonlinear oscillator parameters, which control THG, has allowed us to make accurate

predictions about conversion efficiencies in more complicated geometrical arrangements. With

this, we have reported preliminary results of predicted SHG and THG efficiencies from a silicon

nanograting, which shows an impressive enhancement of conversion efficiencies. However, this

study should be completed with experimental observations.



4
SHG and THG from ITO: nonlocal ef-
fects and hot electrons

In this chapter we report a comparative experimental and theoretical study of SHG and THG

from a 20 nm-thick ITO layer in proximity of its ENZ condition, which was carried out in

collaboration with ICFO (Institut de ciències fotòniques). Thanks to using a tunable OPA we

are able to record both spectral and angular dependence of the generated harmonic signals close

to this particular point. We discuss how nonlocal effects, which blueshift the ENZ resonance by

tens of nanometers and are determined by the Fermi energy, and the variation of the effective

mass of conduction electrons due to temperature, which redshifts the plasma frequency, can alter

the SH response. We refer to this variation of the effective mass as the hot electron contribution.

We also briefly debate the influence of this contribution to THG. After that, we show numerical

simulations that predict that the presence of nonlocal effects not only can cause a blueshift of

the ENZ resonance, but they also can induce an anisotropic response in ITO.

This chapter is structured as follows. In Section 4.1 we explain the experimental conditions

under which measurements were taken, as well as the experimental set-up built to measure SHG

and THG efficiencies arising from the ITO nanolayer. In Section 4.2 we describe the sample and

how it was fabricated. After that, in Section 4.3 we explain how the theoretical model explained

in Chapter 1.5 has been adapted to the particular case of conductive oxides like ITO. Then, in

89
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Section 4.4 we report the experimental and theoretical results obtained of harmonic generation

in ITO and finally, in Section 4.5 the chapter is ended with some conclusions.

4.1 Experimental approach

The measurements that are reported in this chapter were taken in collaboration with ICFO,

which gave us the opportunity to work with a tunable femtosecond source, similar to the one

used in Chapter 3.2. A Ti:Sapphire laser system (Coherent, Astrella) pumps an OPA (Light

conversion, TOPAS), which operates in a wavelength range from 1140 nm to 1600 nm, delivering

pulses with energies exceeding 500µJ/pulse generated at a repetition rate of 1 kHz. FROG

(frequency-resolved optical grating) measurements were performed to determine the pulse width.

Depending on the wavelength, pulses with duration between 50 and 102 fs were incident to the

samples. In the following table we summarize the above mentioned parameters:

λ τFWHM frep Pout Energy/pulse

OPA (TOPAS) 1140 nm− 1600 nm 50− 102 fs 1 kHz > 0.5W > 500µJ

Table 4.1.1: Tunable femtosecond source parameters.

Knife edge measurements were performed to characterize the size of the beam at the sample

plane. Depending on the wavelength, beam waists were between 4.2mm and 4.8mm. With this,

the typical power densities that we used in the experiments were between 1 and 2GW/cm2.

These parameters are summarized in Table 4.1.2 for four different wavelengths. For the SHG

measurements, the fundamental beam was directed onto the sample under these conditions,

while in the THG experiments, a 50 cm uncoated CaF2 lens was introduced in the beam path

to increase the fundamental beam intensity, leading to a focal spot size of 145µm at 1240 nm.

λin PFF τFWHM w0 IFF

OPA (TOPAS)

1140 nm 17.35mW 83 fs 3.7mm 0.9GW/cm2

1200 nm 18.4mW 102 fs 4mm 1GW/cm2

1300 nm 30.8mW 50 fs 4.3mm 2GW/cm2

1400 nm 24.8mW 52 fs 4.7mm 1.3GW/cm2

Table 4.1.2: Tunable femtosecond source parameters under experimental conditions for SHG.
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Measurements were performed using the same set-up described in Chapter 2.1. However, as

we are now dealing with different wavelengths, some of the filters were replaced or added. First,

a longpass filter (Thorlabs, FELH1100) was used to remove undesired frequency components

coming from the OPA, and the pulses were attenuated using ND filters. Second, a superachro-

matic waveplate was employed to prepare and control the input beam polarization. Third, the

longpass filter used to eliminate harmonic radiation generated by elements in the optical path

placed before the sample had, in this case, a higher cut-on wavelength (Thorlabs, FGL850). The

filters placed after the sample to attenuate fundamental radiation were also replaced (Thorlabs,

FELH1100).

Experimental efficiencies were obtained by performing a calibration procedure similar to that

explained in Chapter 2.1. We took the measurement at 620 nm by tuning the OPA at 1240 nm

and generating efficient SH light with the phase-matched BBO crystal. The responsivity was

calculated as RPMT = VPMT/(TNDPPMT), where VPMT is the signal read taken with the oscillo-

scope to which the PMT is connected, PPMT is the power measured with a photodiode in front

of the PMT, and TND is the transmission of the ND filters placed before the PMT. A more

extensive description of this method can be found in Chapter 2.1. This procedure should have

been repeated for all input wavelengths used in the experiments, as the responsivity of the PMT

may depend on it. In fact, this is what was done in the study of the silicon membranes, shown

in Chapter 3.2. However, we did not expect a strong variation because the scanned range of

frequencies was not very broad, so we assumed the responsivity of the PMT to be constant in the

range of wavelengths that we studied. The transmission T of the detection arm also depends

on incident wavelength. In Fig. 4.1.1(a) we show the input power used in the experiments

for different incident wavelength. In Fig. 4.1.1(b) we have plotted the transmission T of the

detection arm as a function of incident wavelength. As it was determined in Chapter 2.1, this

transmission is defined as T = PPMT/PSample, where PPMT and PSample are the power generated

by the BBO crystal measured in front of the PMT and at the sample plane, respectively.



92CHAPTER 4. SHG AND THG FROM ITO: NONLOCAL EFFECTS ANDHOT ELECTRONS

1100 1200 1300 1400
15

20

25

30

35

550 600 650 700
0.88

0.9

0.92

0.94
(a) (b)

Figure 4.1.1: (a) Measurements of the incident average power and (b) measurement of the
transmission of the detection arm as a function of wavelength.

4.2 Description of the samples

The ITO sample consists of a 20 nm-thick layer on top of a fused silica substrate. The ITO

nanolayer was magnetron sputtered [31, 110] from an ITO target on transparent fused silica

glass. The electro-optical properties of deposited ITO films depend on a number of processing

conditions, including substrate temperature, sputtering power, deposition pressure, oxygen par-

tial pressure, and post-annealing. The sample was fabricated at room temperature with a power

of 100W and Ar sputter pressure of 5mTorr. The sputtered ITO typically has an ENZ crossing

above 1800 nm. The samples were post-annealed in vacuum so that a zero-crossing of the real

part of the dielectric constant is blueshifted.

The samples were analyzed using a variable angle spectroscopic ellipsometer (Woollam,

VASE). Additional, angular TM-polarized transmission measurements were made to verify the

spectral location of the ENZ crossing point. The resistivity of ITO is attributed to oxygen va-

cancy and film crystallinity. Therefore, the deposition conditions as well as the post-annealing

process allow one to tune the ENZ wavelength. Our 20 nm-thick sample was annealed at 600◦C

and displays an ENZ condition near 1260 nm. An schematic representation of the geometry of

the problem is shown in Fig. 4.2.1 for TM-polarized incident light, where Eω, Hω and Sω are
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electric and magnetic fields and Pointing vector, respectively, at the fundamental frequency, and

θin is the angle of incidence.

x

y

z
Eω

Hω

Sω

θin

20nm-thick ITO

Figure 4.2.1: Schematic representation of the ITO nanolayer when TM-polarized light is incident
at a certain angle θin.

4.3 Theoretical approach

The situation in conductive oxides like ITO is different from that of semiconductors like GaAs

and silicon because now, free electrons also contribute to the linear and nonlinear optical response

of the material. As a consequence, a Drude portion must be added in the dielectric function of

this material:

ε(ω̃) = 1−
ω̃p,f

ω̃2 + iγ̃f ω̃
−

ω̃2
p,b

ω̃2 − ω̃2
0 + iγ̃bω̃

(4.3.1)

where ω̃ = 1/λ and it has µm−1 units. In Eq. 4.3.1 it can be seen that now a Drude portion

and a Lorentzian resonance describe the complex dielectric constant.

The ENZ wavelength in ITO may depend on the deposition conditions as well as the post-

annealing process. So, in this case, the samples were analyzed using a variable angle spec-

troscopic ellipsometer (Woollam, VASE), from which data of the real and imaginary parts of

the dielectric constant was extracted and is shown in Fig. 4.3.1 with dashed curves. This

data was fitted with Eq. 4.3.1 and the following values were obtained for plasma and resonant

frequencies and damping coefficients: (ω̃p,b, ω̃0, γ̃b) = (11.5, 7, 0.01) for bound electrons, and
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Figure 4.3.1: Real (black dashed curves) and imaginary (red dashed curves) parts of the complex
dielectric constant of our ITO sample measured with a variable angle spectroscopic ellipsometer.
The respective solid curves are a Drude-Lorentz fit to the data corresponding to Eq. 4.3.1.

(ω̃p,f , γ̃f ) = (1.5785, 0.1105) for free carriers. It was also obtained that the real part of the di-

electric constant crosses zero at 1260 nm. This is shown in Fig. 4.3.1, where it can be seen that

the curve is strongly indicative of the fact that material dispersion is Drude-like above 450 nm,

and Lorentz-like at smaller wavelengths. The absorption resonance becomes discernible in the

data near 300 nm. However, the presence of the Lorentz resonance ascribes a nonlinear third

order response that supplements and competes with the hot electron nonlinearity, which in turn

accounts for a dynamic redshift of the free electron plasma frequency.

As it was shown in Chapter 1.5 the dynamics of free and bound electrons can be described

with the following equations:

P̈f + γ̃f Ṗf =
n0,fe

2λ2
0

m∗
0,fc

2
E− eλ0

m∗
0,fc

2
(∇ ·Pf )E+

eλ0

m∗
0,fc

2
Ṗf ×H

+
5EF

3m∗
0,fc

2
[∇(∇ ·Pf ) +

1

2
∇2Pf ]−

1

n0,feλ0
[(∇ · Ṗf )Ṗf + (Ṗf · ∇)Ṗf ]

(4.3.2)

P̈b + γ̃bṖb + ω̃2
0Pb +PNL

b =
n0,be

2λ2
0

m∗
bc

2
E+

eλ0

m∗
bc

2
(Pb · ∇)E+

eλ0

m∗
bc

2
Ṗb ×H (4.3.3)

Equation 4.3.3 describes the dynamics of bound electrons, were PNL
b = −b̃(Pb · Pb)Pb as ITO

is a centrosymmetric material. A part from the third order bulk contribution, Eq. 4.3.3 also

accounts for surface and magnetic nonlinearities through the terms eλ0
m∗

bc
2 (Pb ·∇)E and eλ0

m∗
bc

2 Ṗb×

H, respectively. Equation 4.3.2 represents the behaviour of free electrons, and it contains a
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quadrupole-like Coulomb term, − eλ0
m∗

f c
2 (∇ · Pf )E, the magnetic Lorentz force, eλ0

m∗
f c

2 Ṗf × H,

convective terms − 1
n0,f eλ0

[(∇ · Ṗf )Ṗf + (Ṗf · ∇)Ṗf ], and nonlocal effects due to pressure and

viscosity, 5EF
3m∗

f c
2∇(∇ ·Pf +

1
2∇

2Pf ). However, in the case of conductive oxides like ITO, a term

in Eq. 4.3.2 is missing if we want to take into account the contribution of hot electrons in the

nonlinear polarization. This contribution is given by the fact that the effective mass of free

electrons is now a function of temperature.

In conductive oxides the description of hot carriers is typically done by implementing the

two-temperature model, which couples the lattice temperature to that of the free electron gas.

However, if the electron temperature is only a few thousand degrees Kelvin, as in the case of

ITO, the temperature dependence of the free electron’s effective mass may be quantified by an

expression that connects linearly the electron effective mass to the electron gas temperature (Te)

[111]:

m∗
f (Te) ≈ m∗

0,f +KBTe = m∗
0,f +KBΛ

∫
J ·Edt (4.3.4)

where KB is Boltzmann’s constant, Λ is a constant of proportionality, m∗
0,f is the free electron’s

rest mass for no applied field and Λ
∫
J · E represents absorption. For convenience, we assume

the simplified form J = σ0E, where σ0 is the conductivity. Using Eq. 4.3.4, the leading term on

the right hand side of Eq. 4.3.2 may be written as:

n0,fe
2λ2

0

m∗
f (Te)c2

E =
n0,fe

2λ2
0

m∗
0,fc

2

(
1 +

Λ

m∗
0,f

∫
J ·Edt

)−1

E

≈
n0,fe

2λ2
0

m∗
0,fc

2

1− Λσ0
m∗

0,f

∫
E ·Edt+

(
Λσ0
m∗

0,f

)2

(E ·E)2 + ...

E

(4.3.5)

For simplicity, we introduce a parameter Λ̃ proportional to the product of Λσ0
m∗

0,f
and the temporal

duration of the pulse, so that Eq. 4.3.5 takes the following form:

n0,fe
2λ2

0

m∗
f (Te)c2

E ≈ ω̃2
p,fE− Λ̃(E ·E)E (4.3.6)

where ω̃2
p,f = 4πn0,fe

2λ2
0/(m

∗
0,fc

2) is the scaled free electron plasma frequency in CGS units.

Equation 4.3.6 tells that the coefficient Λ̃ determines the spatiotemporal dynamics of the redshift

impressed upon the plasma frequency, and it includes to Eq. 4.3.2 cubic nonlinearities. We note
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that the effective mass appears in all but one term on the right-hand side of Eq. 4.3.2. However,

additional nonlinear contributions beyond Eq. 4.3.6 to the rest of the terms in Eq. 4.3.2 are of

higher order and for our purposes in this study will be neglected. The parameter Λ̃ is generally

dispersive, but for simplicity we assume it to be nearly constant in the range of wavelengths of

interest. Its magnitude can vary substantially ranging from 10−7 to 10−9, and is determined

relying on experimental conversion efficiencies.

After adding the hot electron contribution, the polarization equation describing the dynamics

of free electrons in ITO can be expressed as:

P̈f + γ̃f Ṗf =
n0,fe

2λ2
0

m∗
0,fc

2
E− Λ̃(E ·E)E− eλ0

m∗
0,fc

2
(∇ ·Pf )E

+
eλ0

m∗
0,fc

2
Ṗf ×H+

5EF

3m∗
0,fc

2
[∇(∇ ·Pf ) +

1

2
∇2Pf ]

− 1

n0,feλ0
[(∇ · Ṗf )Ṗf + (Ṗf · ∇)Ṗf ]

(4.3.7)

4.4 Results and discussion

Experiments have been performed pumping our ITO nanolayer with femtosecond pulses tuned

in the 1140 nm-1600 nm wavelength range, with incident pulse peak intensities ranging from

1GW/cm2 to 2GW/cm2. Our experiments include measurements of SHG and THG efficiencies

as a function of incident angle, wavelength and polarization. Simulations were performed with

pulses 100 fs in duration, and incident power densities were set to be ∼ 1GW/cm2, but were

allowed to vary somewhat consistently with experimental conditions.

In the first experiment, we recorded the SHG efficiency (ηSHG) as a function of fundamen-

tal wavelength around the ENZ condition, for a fixed incident angle of 60◦ and TM-polarized

fundamental and SH fields. The spectral response of the SH generated both in transmission

and in reflection is shown in Fig. 4.4.1(a), depicted with cross markers. The curves show a

clear spectral dependence of the SHG conversion efficiency and its enhancement near the ENZ

condition, appearing close to 1240 nm. In this regard, it is important to note that the locations

of the transmitted and reflected maxima clearly do not coincide most likely because transmission
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depends more on propagation through the bulk material, while the reflected component partially

benefits from conditions at the surface. This shift, as well as the amplitude of the curves, is well

reproduced by the numerical predictions, which are depicted with solid curves. Since ITO is a

centrosymmetric material, SH sources are found mainly in the free electron components. Nonlo-

cal effects, given by the term Σ[∇(∇·Pf )+
1
2∇

2Pf ] where Σ = 5EF
3m∗

0,f c
2 , which blueshift the ENZ

resonance, and the hot electron contribution, given by the term −Λ̃(E · E)E, which redshifts

the plasma frequency, may change the SHG response, altering the position of the maxima in the

SHG spectrum. The effective free electron mass and density were chosen to be m∗
0,f = 0.033me

and n0,f ∼ 1020 cm−3, which combine a Fermi energy that imparts a blueshift of nearly 50 nm to

the SHG peak spectral position, which corresponds to Σ = 3.48 ·10−5. The magnitude of the hot

electron parameter was chosen so that its effect is to redshift the SHG spectra by approximately

15 nm, for a net blueshift of ∼ 35 nm, which corresponds to Λ̃ ∼ 10−9. We highlight that the

agreement that we find between predictions and experiments is quite extraordinary and extends

to the relative locations of transmitted and reflected SH maxima. This ratio is not maintained

if, for instance, we arbitrarily set to zero the magnetic Lorentz contribution, although the peaks

remain similarly shifted with respect to each other. By the same token, artificially eliminating

Coulomb and convective terms instead leads to a completely different SH response, an indica-

tion that one should be wary of using models that merely insert effective, dispersionless surface

and/or volume nonlinearities in order to reproduce the shape of experimental curves, if not the

amplitudes.

The contrasting actions that nonlocal effects and hot electrons can have in the SHG spectra

are shown in Fig. 4.4.1(b), were we show predictions of the transmitted SHG efficiencies as a

function of incident wavelength under three different scenarios. The dashed curve is obtained

by neglecting both contributions, and shows a peak at 1260 nm incident wavelength. When

the hot electron contribution, with Λ̃ = 10−9, is introduced, the SHG peak is redshifted by

approximately 15 nm. This situation is exemplified by the pointed curve. Finally, if both

contributions are taken into account, with Λ̃ = 10−9 and Σ = 3.48 · 10−5, the solid curve is
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Figure 4.4.1: (a) Transmitted (black) and reflected (red) SHG efficiencies as a function of pump
wavelength and at an incident angle of 60◦ from the ITO nanolayer. Measurements are plot-
ted with cross markers and predictions are depicted with solid curves. (b) Predictions of the
transmitted SHG efficiency from the ITO nanolayer under three different scenarios. The dashed
curve is obtained neglecting both the hot electron contribution and nonlocal effects; the pointed
curve is calculated introducing the hot electron contribution with Λ̃ = 10−9; the solid curve is
obtained by taking both contributions into account with Λ̃ = 10−9 and Σ = 3.48 · 10−5 in Eq.
4.3.2.

obtained, which shows a blueshift of the SHG peak of ∼ 35 nm with respect to the dashed curve.

This situation corresponds to the black, solid curve, shown in Fig. 4.4.1(a). With this, it is

obvious then that taking this contributions into account, apart from the above mentioned ones,

is crucial to properly predict the SHG response in our ITO nanolayer.

A second set of experiments on SHG from the ITO nanolayer is shown in Fig. 4.4.2, where we

show the angular dependence of the transmitted SHG efficiencies when the sample is pumped

at different input wavelengths: above (1300 nm), and at (1240 nm) the ENZ condition. Their

simulated counterparts are plotted with solid curves. By examining this angular dependence,

features that may be ascribed to nonlocal effects can be revealed. The peak SHG efficiencies,

which occur near 70◦, and the shape of the curves depend on the magnitude of the nonlocal

coefficient, and to an extent, they are counteracted by pump absorption and electron cloud

heating. In Fig. 4.4.2(b) we plot SHG efficiency as a function of angle at 1300 nm, which displays

a clear shoulder below 40◦. The predicted transmitted SHG curve, depicted with a solid curve,

displays a slight shoulder below 40◦ before peaking at 70◦. However, the dashed curve can be
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Figure 4.4.2: Measured (markers) and predicted (solid curves) transmitted SHG efficiencies as
a function of incident angle for the ITO nanolayer when the pump wavelength is tuned at (a)
1240 nm and (b) 1300 nm. The curve with the prominent shoulder (dashed curve) in (b) is
calculated with an ENZ crossing point near 1235 nm.

obtained by either artificially increasing the Fermi energy, and thus the nonlocal coefficient,

or using a material dispersion curve that displays a slightly blueshifted ENZ crossing point,

in either case without modifying either m∗
0,f or n0,f so as not to affect SH gain. Specifically

it was obtained by tuning the zero crossing point at 1235 nm. Given the evident and quite

remarkable qualitative and quantitative agreement between our experimental observations and

our predictions, in terms of spectral response, peak locations, the ratio of reflected/transmitted

maxima, and angular dependence, including the ability to reproduce the shoulder shown in Fig.

4.4.2(b), the model appears to clearly and accurately capture the most prominent aspects of the

electromagnetic response of conducting oxides such as ITO.

The changes that nonlocal effects can have on the optical response of conductive oxides like

ITO are not only those illustrated in Figs. 4.4.1 and 4.4.2. Nonlocal effects can also induce

additional absorption resonances and anisotropic dielectric response: longitudinal (⟨εzz⟩) and

transverse (⟨εyy⟩) effective dielectric functions are modulated differently along the propagation

direction, and display different ENZ crossing points. The former is illustrated in Fig. 4.4.3(a),

where we depict linear pump absorption spectra (A) for 100 fs, TM-polarized pulses incident at

60◦ on a 20 nm-thick ITO film, for local (Σ = 0) and nonlocal (Σ ̸= 0) regimes. The absorption
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is calculated as the total scattered (transmitted and reflected) pump energy subtracted from

the total energy contained in the incident pulse. As it can be seen, for the pump field, nonlocal

effects manifest themselves primarily with a blueshifted main peak and additional absorption

resonances, highlighted by the arrows near 700 nm and 900 nm. As we will see later, these

additional resonances can be correlated directly to longitudinal, resonant oscillations of the free

electron gas.

Our numerical simulations reveal an anisotropic response in the presence of nonlocal effects.

At low incident power densities, in a two-dimensional geometry (invariant in the x-direction, see

Fig. 3.2.4(b)) only linear, nonlocal effects survive. In this case, Eq. 4.3.7 may be written as

follows:

P̈f + γ̃f Ṗf =
n0,fe

2λ2
0

m∗
0,fc

2
E

+
5EF

3m∗
0,fc

2

[(
∂

∂y
j+

∂

∂z
k

)(
∂Py

∂y
+

∂Pz

∂z

)
+

1

2

(
∂2

∂y2
+

∂2

∂z2

)
(Pyj+ Pzk)

] (4.4.1)

By Fourier transforming Eq. 4.4.1 and separating the polarization’s vector components, we get:

Py =

n0,f e
2λ2

0

m∗
0,f c

2 Ey − Σk̃yk̃zPz

−ω̃2 − iγ̃f ω̃ + 3
2Σk̃

2
y +

1
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2
z
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n0,f e
2λ2
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0,f c

2 Ez − Σk̃yk̃zPy

−ω̃2 − iγ̃f ω̃ + 3
2Σk̃

2
z +

1
2Σk̃

2
y

(4.4.2)

where k̃y,z = λ0ky,z. In Eq. 4.4.2 it can be seen that, in the absence of nonlocal effects (Σ = 0),

the local Drude model is recovered. Equation 4.4.2 may be solved and put into the usual form:(
Py

Pz

)
=

(
χ
(1)
yy χ

(1)
yz

χ
(1)
zy χ

(1)
zz

)(
Ey

Ez

)
.

In the discussion that follows the off-diagonal terms will be neglected, in view of the relatively

small magnitude of Σ. The form of Eq. 4.4.2 thus demonstrates that even if the medium

is assumed to be isotropic, nonlocal effects intervene by introducing an intrinsic anisotropy

that affects propagation. This is illustrated in Fig. 4.4.4, where we plot the retrieved complex

dielectric constant of ITO under different conditions by means of a method that we call numerical

ellipsometry which will be explained in Chapter 6.
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Figure 4.4.3: (a) Calculated local (solid curve) and nonlocal (dashed-pointed curve) pump ab-
sorption spectra at 60◦ incident angle. (b) Retrieved complex longitudinal (circe markers) and
transverse (pointed markers) local dielectric constants. The solid curves represent our measured
data fitted using a local Drude-Lorentz model, corresponding to that shown in Fig. 4.3.1.

In Fig. 4.4.3(b) we plot the measured complex dielectric function of our 20 nm-thick ITO

layer, fitted with the local, isotropic Drude-Lorentz model, as it was shown in Fig. 4.3.1. Also

shown in Fig. 4.4.3(b) are the spatially averaged, retrieved complex dielectric constants at

low power densities (1MW/cm2) and in the local approximation. As it can be seen, there is

excellent agreement between the experimentally retrieved data and our theoretical predictions.

Also, based on the results shown in Fig. 4.4.3(b), one may also conclude that medium response

is local and isotropic (⟨εyy⟩ = ⟨εzz⟩), notwithstanding the presence of the ENZ crossing point.

The introduction of nonlocal effects causes εyy and εzz to display unusual spatial inhomo-

geneities (Figs. 4.4.4(a-b)), while the effective dispersion ⟨εyy⟩ and ⟨εzz⟩ exhibit discordant ENZ

crossing points (Figs. 4.4.4(c-d)). In Figs. 4.4.4(a) and 4.4.4(b) we plot the retrieved complex

longitudinal and transverse dielectric constants, respectively, as a function of the longitudinal

coordinate z, for the propagation snapshot that corresponds to the peak of the pulse reaching

the ITO layer. The layer starts at z = 0 and finishes at z = 0.02µm. The carrier wavelength

is 1230 nm and the incident angle is 60◦. Besides edge effects, in Fig. 4.4.4(a) Re(εzz) displays

the expected drop to near-zero values inside the medium. On the other hand, in Fig. 4.4.4(b)

the complex εyy exhibits oscillatory behavior with periodicity on only a few nanometers. A
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Figure 4.4.4: [(a)-(b)] Retrieved complex (a) longitudinal and (b) transverse nonlocal dielectric
constants, respectively, at 60◦ incident angle as a function of the longitudinal coordinate. (c)
Total local (solid curve with pointed markers) and nonlocal longitudinal (dashed curve) and
transverse (solid curve) averaged over the thickness of the layer. (d) Fig. 4.4.4(c) in the 1200 nm-
1280 nm wavelength range.

physically meaningful way to view these rapid oscillations is to note that since we are dealing

with mostly free electrons, nonlocal effects induce currents that alternate direction inside the

layer on the scale of the Fermi wavelength, as predicted and reported before for a CdO layer

[100]. In general, the connection between conductivity and dielectric constant may be quantified

as follows: σyy = −iω0
εyy−1
4π = ω0

4π (Im(εyy)− i(Re(εyy)− 1)), and similarly for σzz. The sign of

the imaginary part thus governs the direction of local current flow. However, from an effective

medium standpoint their overall significance may be dismissed, as the averages ⟨Im(εyy,zz)⟩ are

greater than zero in all cases we have investigated.
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In Fig. 4.4.4(c) we plot the magnitudes of the total, local, and nonlocal effective dielectric

constants predicted using our numerical ellipsometry method. The minimum in each curve,

easily identified in Fig. 4.4.4(d), where we plot the same results as in Fig. 4.4.4(c) but in

a shorter wavelength range, represents the ENZ crossing point. The longitudinal dielectric

constant displays the same kind of modulation that pump absorption displays in Fig. 4.4.3(a),

an indication that it drives the dynamics. In Fig. 4.4.4(d) it can be seen that, in addition to

an evident degree of anisotropy, the nonlocal curves are blueshifted with respect to the local

dielectric constant and with respect to each other, with crossing points that are mismatched by

nearly 10 nm. It is also important to note that at certain wavelengths the difference between ⟨εyy⟩

and ⟨εzz⟩ approaches zero. These points are typically referred to as isotropic points, because

they represent the wavelengths for which the medium acts as if it were isotropic.

Finally, in Fig. 4.4.5(a) we show experimental (cross markers) and simulated (solid curve)

results of the transmitted THG efficiency (ηTHG) as a function of incident angle when the

sample is pumped at the ENZ condition. We recall that for these measurements, higher incident

pulse peak intensities were used. The minimum that occurs at relatively small angles is a unique

feature of the angular dependence of THG from an ITO layer that had been previously predicted

to occur [112]. Although we consider all sources of THG, including cascading from both free

and bound electrons, second order sources, i.e., Coulomb, Lorentz, and convective and nonlocal

terms in Eqs. 4.3.7 and 4.3.3, there are two main fonts of TH signal: (i) hot electrons, via

the term −Λ̃(E · E)E, and (ii) the bound electron nonlinear polarization component given by

PNL
b = −b̃(Pb ·Pb)Pb. Accordingly, the relative amounts of THG triggered by either nonlinear

term depends on the relative amplitudes of the scaled coefficients Λ̃ and b̃, which have been

chosen to be Λ̃ ∼ 10−8 and b̃ = 10−8, as well as proximity to the ENZ condition. These two

types of nonlinearities behave differently because they are active in different wavelength ranges,

tend to respond in different ways at large intensities, but give similar qualitative contributions

at low intensities. This can be seen in Fig. 4.4.5(b), where we have plotted our predictions

for transmitted THG spectra using an incident pulse peak power density of 20GW/cm2, and
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Figure 4.4.5: (a) Angular dependence of the measured (cross markers) and predicted (solid
curves) transmitted THG efficiencies for the ITO nanolayer when incident pulses are tuned at
1240 nm. (b) Predictions of the transmitted THG efficiencies as a function of pump wavelength
and scaled third order coefficients b̃ and Λ̃: the solid curve is obtained with b̃ = 10−6 and
Λ̃ ∼ 10−8, the dashed curve is calculated with b̃ = 10−5 and Λ̃ ∼ 10−8, while the pointed curve
refers to the case when b̃ = 10−5 and Λ̃ = 0.

as a function of the scaled third order coefficients Λ̃ and b̃. Reflection curves display similar

behavior. The solid curve is obtained with Λ̃ ∼ 10−8 and b̃ = 10−6. As it is shown in Fig. 4.3.1,

the dielectric constant of the sample may display an absorption resonance near 150 nm, with a

corresponding nonlinearity capable of significantly enhancing the THG even under condition of

high absorption. The TH peak that arises from the Lorentzian portion of the dielectric response

resonance is identified by an arrow, and is one order of magnitude smaller compared to the TH

originating at the ENZ resonance. The spectrum exemplified by the dashed curve is obtained

by increasing b̃ by one order of magnitude, so that we may ascertain the relative impact of the

bound electron resonance with respect to the hot electron contribution. This increase translates

to a two order of magnitude increase in conversion efficiency at the bound electron resonance,

which now dominates over the TH signal originating at the ENZ peak. Finally, the pointed

curve is obtained by turning off the hot electron contribution. This curve suggests that the hot

electrons govern THG by shifting and distorting the ENZ resonance, and by contributing little

near the Lorentz resonance.
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The disagreement between measurements and predictions in Fig. 4.4.5(a) may be for at least

two reasons: (i) theoretical and (ii) experimental. From a theoretical point of view, precise

location and maximum amplitude of the bound electron resonance are not known very well,

notwithstanding the agreement apparent in Fig. 4.3.1 for λ > 300 nm. In fact, in the wavelength

range shown, the fitting parameters we use for the Lorentzian portion of the dielectric response

are not unique. The amplitude at resonance ω̃0 depends on the combination of effective bound

electron mass m∗
b and damping coefficient γ̃b. The location of the resonance determines the

nonlinear parameter b̃ ∝ ω2
0

L2 , and the amplitude determines the long-wavelength behavior of the

effective third order nonlinearity. At long wavelengths, the effective third order coefficient is

triggered by the electron gas. So, at this stage we do not have enough information to state

the magnitudes of these parameters with any certainty. Further studies are required to extract

these parameters from the spectral response over a wide range of wavelengths. However, from

the experimental point of view, a direct extension of the measurements to include spectral TH

signal dependence is not a straightforward task, at least at the stage we were when this study

was performed. The main problem was related to the prospect of making accurate calibration

measurements at UV wavelengths partly because transmittance values at wavelengths below

400 nm decrease significantly the amount of the TH signal reaching the PMT. Moreover, the

sensitivity of the PMT is drastically reduced at these wavelengths. In order to accomplish

proper calibration, a TH signal must first be generated with enough intensity, which was not

possible for all wavelengths in our set-up. In fact, as already stated, the experimental THG

efficiency was approximated using the calibration done for the SH measurements. So, we cannot

rely, in this case, on experimental values of THG efficiencies to fully determine the values of b̃

and Λ̃.

4.5 Conclusions and summary

In summary, we have presented experimental results on the spectral and angular response of

SHG and THG from a 20 nm-thick ITO layer close to its ENZ crossing point. The results suggest
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that transmitted and reflected SHG spectra display maxima that are shifted by approximately

20 nm with respect to each other. This relative shift has not been reported before and persists

even in the absence of nonlocal effects and constant plasma frequency. Additional simmulations

suggest that this shift may depend on sample thickness. We have also explored the angular

dependence of THG and observed a minimum at approximately 30◦ angle of incidence.

Moreover, we have predicted that nonlocal effects can induce anisotropic medium response

and that at sufficiently large intensities, we are able to discriminate between third order free

and bound electron contributions to THG.



5
SHG and THG from gold: bound and
hot electrons

In this chapter we report experimental and theoretical results on SHG and THG from a 20 nm-

and a 70 nm-thick gold layers. We discuss the relative roles that bound and hot electrons play

in THG. In other words, how the third order bulk contribution to the nonlinear polarization

and an intensity dependent free electron density affect the TH response. We conclude that our

measured efficiencies suggest that the TH signal originates mostly from hot electrons.

The comparison between measurements and simulations has allowed us to extract basic physi-

cal intrinsic properties of this material like the effective mass of free and bound electrons and the

nonlinear oscillator parameter b̃. This knowledge allows us to make accurate predictions about

conversion efficiencies in more complicated geometrical arrangements, which are able to enhance

several orders of magnitude harmonic generation conversion efficiencies. For this reason, in this

chapter we also report experimental observations and numerical simulations of SHG and THG

from a gold nanograting which exhibits a plasmonic resonance in the near-IR. From our results

we obtain an increase of more than three orders of magnitude for SHG, while we report a THG

conversion efficiency enhancement factor of 3200.

This chapter is structured in the following way. In Section 5.1 we report the study done

with the gold nanolayers, and it includes a description of the experimental approach and the

107
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samples. We also show how the theoretical model described in Chapter 1.5 is applied to the

particular case of metals like gold, and finally experimental and theoretical results on SHG and

THG are reported. In Section 5.2 we present the research done with the gold nanograting. This

section is structured as the previous one. First we introduce the experimental approach, then a

description of the samples, after that we include a description of the theoretical approach and

finally we show our results. Then, the chapter is ended with some conclusions in Section 5.3.

5.1 Gold nanolayers

5.1.1 Experimental approach

We have measured SHG and THG efficiencies from a 20 nm- and a 70 nm-thick gold nanolayers

as a function of incident angle and wavelength. These experiments were performed using the ex-

perimental set-up described in Chapter 2.1, and the harmonic signals were generated exciting the

samples with two different laser sources, which have also been introduced in previous chapters:

a Ti:Sapphire oscillator (Coherent, Mira 900-F) delivering femtosecond pulses tuned at 800 nm

and a fiber laser (FYLA PS50) delivering picosecond pulses tuned at 1064 nm. The coated fo-

cusing lens (see Fig. 2.1.1) was chosen depending on fundamental wavelength and the amount of

incident pulse peak intensities desired in the experiments. For SHG measurements, the samples

were excited at both 800 nm and 1064 nm with a lens of focal length f = 200mm: Thorlabs,

LA1708-B and LA1708-C for the case of incident pulses tuned at 800 nm and 1064 nm, respec-

tively. THG experiments were performed using incident 1064 nm light focused on the sample

plane by means of a lens with focusing length f = 100mm (Thorlabs, LA1509-C). Measurements

of the beam waist were performed in order to estimate peak pump pulse intensities, which have

been shown in Chapters 2.1 and 3.1.1. In Table 5.1.1 we collect the parameters, where it can be

seen that typical incident pulse peak intensities used in the experiments were ∼ 1GW/cm2 for

SHG and ∼ 4.5GW/cm2 for THG.

The bandpass filters used to attenuate the fundamental radiation after the sample, as well as

the bandpass/laser line filters centered at the harmonic wavelength we want to detect placed at
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the PMT were also chosen depending on incident/harmonic wavelength and have already been

specified in previous chapters.

Fiber laser Ti:Sapphire

f = 100mm f = 200mm f = 200mm

PFF 1.5mW 1W

frep 1 kHz 76MHz

τFWHM 13 ps 140 fs

w0 32µm 78µm 71µm

IFF 4.5GW/cm2 1GW/cm2 1GW/cm2

Table 5.1.1: Laser parameters under experimental conditions.

5.1.2 Description of the samples

The samples consist of a 20 nm- and a 70 nm-thick gold layers on top of a fused silica substrate.

The gold films were deposited from a gold target on transparent fused silica glass using a

magnetron sputtering system [31, 110]. The target power was 100W and deposition pressure

3mTorr. The samples were analyzed using a variable angle spectroscopic ellipsometer (Woollam,

VASE). In Fig. 5.1.1 we show an schematic representation of the problem when TM-polarized

light is incident with a certain angle θin to the gold nanolayer, where Eω, Bω and Sω are electric

and magnetic fields and Poynting vector at the fundamental frequency, respectively.

x

y

z
Eω

Hω

Sω

θin

20nm- or 70nm-thick Au layer

Figure 5.1.1: Geometric representation of TM-polarized light incident to a 20 nm- or 70 nm-thick
gold nanolayer.
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5.1.3 Theoretical approach

As well as in the case of ITO, in metals like gold both free and bound electrons contribute to the

linear and nonlinear response of the material. This means that its complex dielectric constant

is given by a Drude portion followed by one or more Lorentzian resonances. In the case of gold

nanolayers, two Lorentzian resonances are enough to describe it, as shown in Eq. 5.1.1:

ε(ω̃) = 1−
ω̃p,f

ω̃2 + iγ̃f ω̃
−

ω̃2
p,b1

ω̃2 − ω̃2
01 + iγ̃b1ω̃

−
ω̃2
p,b2

ω̃2 − ω̃2
02 + iγ̃b2ω̃

(5.1.1)

where ω̃ = 1/λ and it has µm−1 units.
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Figure 5.1.2: Real (black dashed curve) and imaginary (red dashed curve) parts of the complex
dielectric constant of gold extracted from our ellipsometry measurements. These data have been
fitted with Eq. 5.1.1, which is depicted with solid curves.

In Fig. 5.1.2 we have plotted data of the real and imaginary parts of the dielectric constant of

gold extracted from our ellipsometry measurements, which is depicted with dashed curves. These

data have been fitted with Eq. 5.1.1. This fitting is plotted with solid curves, and from it we

have obtained that (ω̃p,b1, ω̃01, γ̃b1) = (3, 2.75, 0.1) and (ω̃p,b2, ω̃02, γ̃b2) = (11, 3.3, 0.75) for bound

electrons, and (ω̃p,f , γ̃f ) = (6.45, 0.05) for free electrons. These parameters are useful because

they will be introduced in the dynamic equations of motion used to perform the numerical

simulations.
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As it was shown in Chapter 1.5 the dynamics of free and bound electrons can be described

by:

P̈f + γ̃f Ṗf =
n0,fe

2λ2
0

m∗
0,fc

2
E− eλ0

m∗
0,fc

2
(∇ ·Pf )E+

eλ0

m∗
0,fc

2
Ṗf ×H

+
5EF

3m∗
0,fc

2
[∇(∇ ·Pf ) +

1

2
∇2Pf ]−

1

n0,feλ0
[(∇ · Ṗf )Ṗf + (Ṗf · ∇)Ṗf ]

(5.1.2)

P̈bj + γ̃bjṖbj + ω̃2
0jPbj +PNL

bj =
n0,bje

2λ2
0
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bjc

2
E+

eλ0

m∗
bjc

2
(Pbj · ∇)E+

eλ0

m∗
bjc

2
Ṗbj ×H (5.1.3)

The dynamics of bound electrons are described through Eq. 5.1.3, where j=1,2 represent two

separate atomic spices, and PNL
b = −b̃(Pb ·Pb)Pb as gold is a centrosymmetric material. A part

from the third order bulk contribution, Eq. 5.1.3 also accounts for surface and magnetic nonlin-

earities through the terms eλ0
m∗

bc
2 (Pb ·∇)E and eλ0

m∗
bc

2 Ṗb×H, respectively. Equation 5.1.2 describes

the dynamics of free electrons, and it contains a quadrupole-like Coulomb term, − eλ0
m∗

f c
2 (∇·Pf )E,

the magnetic Lorentz force, eλ0
m∗

f c
2 Ṗf ×H, convective terms − 1

n0,f eλ0
[(∇ · Ṗf )Ṗf + (Ṗf · ∇)Ṗf ],

and nonlocal effects due to pressure and viscosity, 5EF
3m∗

f c
2∇(∇ · Pf + 1

2∇
2Pf ). In Eq. 5.1.2 a

term is missing if we want to take into account the contribution of hot electrons in the nonlinear

polarization. In the case of metals, we refer to hot electrons to those that may be temporally

excited from the valence into the conduction band, provoking a transient increase of the free

electron density nf . In other words, Eq. 5.1.2 can be adapted to describe a time-varying free

electron density triggered by interband transitions in metals. From Chapter 1.5.2, we recover

the continuity equation for free electrons:

nf (r, t) = n0,f +
1

e
∇ ·Pf (5.1.4)

If the free electron density is allowed to vary as a function of applied intensity, Eq. 5.1.4 can be

modified in the following way:

nf (r, t) = n0,f +
1

e
∇ ·Pf + Λ̃(E ·E) (5.1.5)

where Λ̃ is a scaled parameter that measures changes in the free electron density as a function of

incident light intensity. It is generally dispersive, and depends on field fluence and absorption.
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For simplicity we parametrize it, and assume it to be nearly constant in the range of wavelength

of interest, ranging from 10−7 − 10−9 magnitudes.

With this correction, the polarization equation for free electrons in metals becomes:

P̈f + γ̃f Ṗf =
n0,fe

2λ2
0

m∗
0,fc

2
E+ Λ̃(E ·E)E− eλ0

m∗
0,fc

2
(∇ ·Pf )E+

eλ0

m∗
0,fc

2
Ṗf ×H

+
5EF

3m∗
0,fc

2
[∇(∇ ·Pf ) +

1

2
∇2Pf ]−

1

n0,feλ0
[(∇ · Ṗf )Ṗf + (Ṗf · ∇)Ṗf ]

(5.1.6)

5.1.4 Results and discussion

The angular dependence of SHG and THG efficiencies were obtained by pumping the nanolayers

with 13 ps and 140 fs pulses tuned at 1064 nm and 800 nm, respectively. Typical pump pulse

power densities used in SHG experiments were measured to be ∼ 1GW/cm2. For the detection

of TH signals it was increased to ∼ 4.5GW/cm2. For what the simulations are concerned, pulses

tuned at either 800 nm or 1064 nm with 100 fs temporal duration were used, with peak intensities

of ∼ 1GW/cm2. These intensities were increased in the THG case accordingly to experimental

conditions.

In Fig. 5.1.3 we plot and compare experimentally measured (cross markers) and predicted

(solid curves) transmitted and reflected SHG efficiencies (ηSHG) at 800 nm and 1064 nm fun-

damental wavelengths, respectively, as functions of the incident angle (θin) for the 20 nm-thick

gold layer. In both cases, a TM-polarized fundamental field was incident on the samples and

a TM-polarized SH was selected. The agreement between predicted and measured values is

good and occurs notwithstanding the fact that simulations are carried out using incident 100 fs

pulses. This confirms that rapid convergence is achieved as a function of incident pulse duration

for flat structures that display no geometrical spectral features. It is evident that experimental

and theoretical results agree well in both cases, in shape, amplitude, and peak locations. More-

over, in the case of Fig. 5.1.3(a) the agreement also occurs in the ratio between transmitted

and reflected curves, and the relative angular position of the maxima. As it can be seen in

both figures, at longer wavelengths the main transmitted peak shifts to larger incident angles,

field penetration depth decreases and surface charge discontinuities, exemplified by Coulomb
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− eλ0

m∗
0,f c

2 (∇ ·Pf )E
)
and convective

(
− 1

n0,f eλ0

[
(∇ · Ṗf )Ṗf + (Ṗf · ∇)Ṗf

])
terms, increase and

become the main source of SHG, although the magnetic contribution encompasses both nonlinear

surface and volume currents.
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Figure 5.1.3: Transmitted (black) and reflected (red) SHG efficiencies as a function of incident
angle for the 20 nm-thick gold nanolayer when the pump field is tuned at (a) 800 nm, and
(b) 1064 nm. Measurements and predictions are depicted with cross markers and solid curves,
respectively.
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Figure 5.1.4: Measured (cross markers) and predicted (solid curves) reflected SHG efficiencies as
a function of incident angle for the 70 nm-thick gold nanolayer when the incident field is tuned
at (a) 800 nm, and (b) 1064 nm.

The reflected SHG conversion efficiencies as a function of incident angle for 800 nm and

1064 nm pulsed laser sources for the 70 nm-thick gold layer are plotted in Fig. 5.1.4. Transmis-
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sion is negligible in both cases. Both incident and SH fields were selected to be TM-polarized. As

it can be observed, once again experimental and theoretical results agree quite well qualitatively

and quantitatively. Peak SHG performance shifts from ∼ 60◦ at 800 nm, to ∼ 75◦ at 1064 nm,

reflecting changes in field penetration depth in the two different spectral ranges. The transpar-

ent, 20 nm-thick layer was used to monitor transmitted and reflected SH signals, as the fields

carry information about combined surface and volume currents excited on and inside the sample.

On the other hand, the opaque, 70 nm-thick gold layer supports mostly surface currents, with

reflected conversion efficiencies that are largest at larger angles. By comparing experiments and

simulations of SHG efficiencies we extracted effective masses of m∗
0,f = m∗

bj = me. The density of

free electrons is similar to that of bound electrons as each atom yields one free electron, although

lower d-shell electrons may also contribute at short enough wavelengths, so n0,f ∼ 1022 cm−3.

As has been already mentioned, a system described by combined Drude and Lorentz electrons

illuminated by a pulsed pump laser source has at least two main THG sources: interband

transitions (Lorentz resonances, with nonlinear interactions governed by the parameter b̃) and

hot electrons, whose relative strength is determined by Λ̃. Experimental and predicted results of

the transmitted THG efficiencies (ηTHG) are shown in Fig. 5.1.5(a), where we have plotted the

angular dependence of the signal generated by the 20 nm-thick gold layer when it is pumped at

1064 nm. A TM- and a TE-polarized TH was detected when the incident field was TM- or TE-

polarized, respectively. The angular dependence of THG is different compared to SHG because

the inherent nonlinearity in this case is triggered by the bulk, with conversion efficiencies of order

10−8. By introducing a scaled coefficient b̃ of order 10−8 in the simulations, predicted efficiencies

of order 10−11 were obtained, clearly inadequate to explain our observations. Instead, what was

required to reproduce the conversion efficiencies that we observed is the introduction of the hot

electron contribution. The simulated curves in Fig. 5.1.5(a) were obtained with b̃ ∼ 10−8 and

Λ̃ ∼ ·10−8.
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Figure 5.1.5: (a) Angular dependence of the transmitted THG efficiencies for the 20 nm-thick
gold nanolayer. A TM-polarized TH was measured when the incident field was TM-polarized
(cross markers), and a TE-polarized TH was detected when the fundamental field was TE-
polarized (plus markers). Their corresponding predictions are depicted with a solid curve and
a dashed curve, respectively. (b) Measured THG energy as a function of incident pulse peak
intensity. (c) Predictions of the reflected THG efficiencies as a function of incident wavelength
for the 20 nm-thick gold nanolayer obtained under three different scenarios: taking only into
account either the bound electron or the hot electron contribution (pointed curve and dashed
curve, respectively), and taking both terms into account (solid curve) in Eqs. 5.1.6 and 5.1.3.

The detected THG energy (ETHG) as a function of incident pulse peak intensity is shown

in Fig. 5.1.5(b) in logarithmic scale. Measurements were performed at normal incidence with

TM-polarized pulses tuned at 1064 nm. A slope of m ∼ 2.9 is obtained, which is in agreement

with THG.

In Fig. 5.1.5(c) we show the predicted, reflected THG spectral response for 100 fs pulses

incident at 55◦ on a 20 nm-thick gold layer. The transmitted signal is predicted to display

similar behavior. In this example the parameters are chosen arbitrarily so that each nonlinear
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contribution yields similar THG conversion efficiency when the other is turned off. Then we

combine them together to ascertain the interplay between these two different TH sources. The

figure suggests that separately, each type of third order nonlinearity yields qualitatively and

quantitatively a similar response, with a TH peak for pump wavelengths of ∼ 600 nm. However,

their combined response redshifts the TH peak. This prediction runs counter intuition because

an increased free electron density should blueshift the plasma frequency, with expected similar

outcome for the TH peak. It is obvious that the two components interfere and conspire to instead

redshift the peak, an effect that encapsulates a cautionary tale for any experimental result that

may be extrapolated without the benefit of proper assumptions and theoretical support.

5.2 Gold nanograting

5.2.1 Experimental approach

The nonlinear response of the gold nanograting was analyzed with two different sets of experi-

ments. First, the harmonic generated signals were studied pumping the gold nanograting with

the Ti:Sapphire source. So pulses 140 fs in duration tuned at 800 nm were used, although the

wavelength could be tuned in the 790 nm − 810 nm range. This source has been introduced in

the first part of this chapter, as well as in Chapter 3.1.1. The second set of experiments was

performed using the laser system described in Chapter 3.2.1, so tunable pulses 100 fs in duration

were used in this case. In Table 5.2.1 we summarize some parameters of the femtosecond sources

corresponding to the conditions under which experiments were taken:

PFF frep τFWHM w0 IFF

Ti:Sapphire 1W 76MHz 140 fs 34µm 3.5GW/cm2

OPA (Coherent, Opera Solo) 100 nJ 1 kHz 100 fs 175µm 1.5GW/cm2

Table 5.2.1: Parameters of the femtosecond sources under experimental conditions.

The set-up used to perform the first set of measurements on the gold nanograting is a modi-

fication of that described in Chapter 2.1 and it is schematically shown in Fig. 5.2.1. Differently

from the first version, this set-up does not include a dispersive prism. Instead, we only use
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bandpass filters to eliminate the fundamental field radiation. In Chapter 3.2.1, we described an

experimental set-up that did not include a dispersive prism either. In that case, the reason was

that alignment with a multiwavelength system and pump-wavelength sweeps would be difficult

with the prism configuration. Now, the prism is removed because we aim to detect harmonic

light deep in the UV, at 266 nm. If only bandpass filters are used to remove fundamental radi-

ation, the alignment of the set-up can be done at any wavelength, as they will not be dispersed

differently. In contrast, using a dispersive prism requires generating light at the harmonic wave-

length we want to detect in order to perform a proper alignment of the experimental set-up. As

we did not possess a light source at 266 nm in our laboratory, we decided to change the prism

configuration shown in Chapter 2.1 to another structure more similar to that shown in Chapter

3.2.1.

Half-wave plate

FF

Harmonic-blocking filter
Focusing lens

Sample

Bandpass filters 
(filter FF radiation)

Collimating lens

Polarizer

Spectral filters 
(centered around SH/TH)

PMT

PMT

Rotation stage

TM-SH

TE-SH

Figure 5.2.1: Schematic representation of the experimental set-up in its reflection configuration
built to measure SH and TH signals arising from the gold nanograting.

We need to make sure that the total optical density added by the bandpass filters at the

fundamental wavelength is greater than the harmonic generation efficiency in order to ensure

there is no pump leakage to the filters. We also need to confirm that they are able to eliminate

SH or TH radiation in case we want to detect TH or SH signals, respectively. Moreover, this set-

up allows us to detect TM- and TE-polarized harmonic signals simultaneously. The first part of

this set-up (the elements placed before the sample) is the same as the set-up shown in Fig. 2.1.1.

A half-wave plate working at 800 nm allows us to select TM- or TE- polarized incident light, a

longpass filter eliminates SH or TH radiation previous to the sample, and with a lens (Thorlabs,
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LA1708-B) we focus the beam on the sample plane. In this case, the sample is mounted on

top of a motorized rotation stage (OptoSigma, OSMS-40YAW), which is controlled with 1-axis

stage controller (OptoSigma, GSC-01-P). The controller can be connected to a computer and, by

means of a software provided also by OptoSigma, we are allowed to control the rotation angle.

After the sample, we place two bandpass colored glass filters (Thorlabs, FGB37-A) when we

want to detect SH signals. In between these two filters, a plano-convex lens (Thorlabs, LA4380-

UV) with focal length f = 100 nm is used to collimate the beam. Then, we use another bandpass

filter (Thorlabs, FBH400-40). In the case we want to detect TH radiation, we use just one filter

which we place between the sample and the collimating lens (Chroma, ET262-20bp). To select

the polarization of the harmonic field, in this set-up we use a polarizer (Thorlabs, WPA10)

that is able to separate the harmonic radiation in its TM- and a TE-polarized components.

Each component is collected by two different PMTs, in which another bandpass filter (Thorlabs,

FBH400-40) is placed in each of them when SH radiation is wanted to be detected. In the case

of TH signal detection, this bandpass filter is replaced by a UV bandpass filter (Eksma Optics,

NSH filter). Both of the PMTs were provided by Hamamatsu (Hamamatsu, H10722-113 and

H10722-04) and their performance is very similar. Their sensitivity peaks at 400 nm, however,

the absolute value of the sensitivity of the second PMT (the one that is not used in the version

of the set-up described in Chapter 2.1) is greater. One of the reasons of choosing this new PMT

is the desire of measuring harmonic signals at 266 nm (TH of 800 nm). Usually, optics do not

have a good performance at this wavelength range. An important percentage of the signal can

be lost through the different optical elements, including the filters, which are able to eliminate

the fundamental beam but usually only transmit the 50% or less of the field at 266 nm. So,

we need the PMT to have the better possible response at this range of wavelengths in order to

optimize the detection. Finally, the PMTs were connected to their power supplies and to an

oscilloscope were the reading of the signal was taken.

Conversion efficiencies were estimated following the calibration procedure described in Chapter

2.1. However, the responsivity at 266 nm could not be measured as described due to the lack of
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a light source at this wavelength. As a consequence, it is estimated relying on the responsivity

curve provided by the PMT’s datasheet and scaled with respect to the values obtained at the

other wavelengths.

The second set of experiments was performed with the femtosecond source and the set-up

described in Chapter 3.2.1. This allowed us to complete the study by analyzing the nonlinear

response of the sample when pumped at different wavelengths.

5.2.2 Description of the sample

The grating consists of periodic parallel nanogrooves etched on the surface of a thick gold layer

substrate of thickness t = 200 nm, having a period p = 610 nm, channel width a = 385 nm, and

depth w = 50nm. These parameters are displayed in Fig. 5.2.2(a), where we show an schematic

representation of the sample.

t

w

p
a

FF

SiO2

Au

θin

(a) (b)

a

p

200 nm

y

z

x

Figure 5.2.2: (a) Schematic representation of the gold nanograting and (b) SEM image of the
fabricated nanograting.

Such a grating was fabricated by first depositing a 200 nm-thick gold layer on top of a SiO2

substrate. Subsequently, we performed electron-beam lithography [31] on a PMMA (poly methyl

methacrylate) resist and deposited an additional thickness of gold that would ultimately form

the grooves. Finally, the resist was removed with acetone. In Fig. 5.2.2(b) we show a SEM

(Scaning electron microscope) image of the fabricated nanograting.
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5.2.3 Theoretical approach

The theoretical approach that was followed to perform numerical simulations of SHG and THG

efficiencies generated by the gold nanograting departs from that developed for the gold nanolay-

ers, described previously in this chapter, in Section 5.1.3. However, in order to represent the

dielectric response more accurately in the 200 nm−300 nm wavelength range, a third Lorentzian

functions was added to the complex dielectric constant of the material:

ε(ω̃) = 1−
ω̃p,f

ω̃2 + iγ̃f ω̃
−

ω̃2
p,b1

ω̃2 − ω̃2
01 + iγ̃b1ω̃

−
ω̃2
p,b2

ω̃2 − ω̃2
02 + iγ̃b2ω̃

−
ω̃2
p,b3

ω̃2 − ω̃2
03 + iγ̃b3ω̃

(5.2.1)

where ω̃ = 1/λ and it has µm−1 units, and (ω̃p,b1, ω̃01, γ̃b1) = (3.4, 2.45, 1.25), (ω̃p,b2, ω̃02, γ̃b2) =

(4.79, 3.45, 1.45) and (ω̃p,b3, ω̃03, γ̃b3) = (6.35, 4.75, 1.25) for bound electrons, and (ω̃p,f , γ̃f ) =

(7.1, 0.05) for free electrons. This means that now we are considering three different bound

electron spices in Eq. 5.1.3 instead of two, so j=1,2,3.

Another difference between the theoretical approach used to simulate the nonlinear response

of the gold nanograting and the gold nanolayers is found on the dynamic polarization equation

of bound electrons. At resonance, the plasmonic grating confines the fields near the surface,

producing an intense field close to the corners of the grating, as it can be seen in Fig. 5.2.3 where

we show electric and magnetic field distributions in between two grooves of the nanograting. The

presence of the intense field at the edges of the grating is responsible for pump absorption and

the simultaneous enhancement of nonlinear interactions. So, we choose to expand the bound

electron’s bulk term up to seventh order, neglecting even order nonlinearities because the system

is centrosymmetric:

PNL
bj = −b̃j(Pbj ·Pbj)Pbj + ϑ̃j(Pbj ·Pbj)

2Pbj − δ̃j(Pbj ·Pbj)
3Pbj (5.2.2)

where b̃j has already been defined and ϑ̃j = b̃j/(n
2
0,bje

2L2), δ̃j = b̃j/(n
4
0,bje

4L4). These parame-

ters are real and depend on linear oscillator parameters like resonance frequency ω̃0j and lattice

constant L. The lattice constant is determined using average orbital diameters. For gold we

can approximate L ∼ 1 Å. Since each gold atom contributes approximately one free electron to
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the electron density, then it is reasonable to assume that the bound electron density may be ap-

proximated with the free electron density, which is n0,f ∼ 5.8 · 1022 cm−3. This is then sufficient

to determine b̃j , ϑ̃j and δ̃j , although their values can be readjusted according to experimental

conversion efficiencies, as we do for the parameter b̃.

Figure 5.2.3: (a) Electric and (b) magnetic field distributions at 800 nm and 16◦ angle of inci-
dence between two grooves normalized with respect incident electric and magnetic field ampli-
tudes.

5.2.4 Results and discussion

A first set of nonlinear measurements was taken pumping the sample with femtosecond pulses

tuned in the 790 nm−800 nm wavelength range, with incident peak intensities of ∼ 3.5GW/cm2.

A second set of experiments was performed exciting the nanograting with femtosecond pulses

tuned at 1000 nm and 1100 nm with peak intensities of ∼ 1.5GW/cm2. SHG and THG signals

were collected as a function of incident angle and wavelength. Simulations were performed

with pulses being 200 fs in duration, with variable peak pump pulse power densities modulated

between 1GW/cm2 and 4GW/cm2, which were incident to a nanograting having the following

dimensions: p = 605 nm, a = 385 nm and w = 62nm.

In Fig. 5.2.4(a) we show the theoretical spectral response of the grating in reflection as a

function of incident angle which is calculated by means of a rigorous coupled wave analysis

(RCWA). The resonance is seen to shift from 700 nm up to 1100 nm when the angle of the
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incident beam varies from 0◦ to 50◦. The linear characterization of the grating was performed

using a supercontinuum laser source (FYLA SCT 1000) by measuring the reflected spectrum as

a function of incident angle with a high-resolution spectrometer (Andor, Kymera 328i). These

measurements are plotted in Fig. 5.2.4(a) for TM-polarized incident light with black dots and are

in excellent agreement with our simulations. As expected, no resonances appear when the sample

is illuminated with TE-polarized light. In Fig. 5.2.4(b) we show an example of a resonance

located near 800 nm, corresponding to the dashed line in Fig. 5.2.4(a). Measurements and

simulations of the linear reflection are plotted with cross markers and a solid curve, respectively,

and are normalized to the value obtained from the unpatterned gold layer.

Figure 5.2.4: (a) Simulations of the gold grating linear reflection as a function of incident angle
and wavelength. Experimental measurements of the central resonance wavelength as a function
of incident angle are shown with black dots. (b) Experimental (cross markers) and simulated
(solid curve) linear reflection of the gold grating as a function of incident angle for an incident
wavelength of 800 nm, normalized to the value obtained from the unpatterned gold layer.

In Fig. 5.2.5 we show the spectral response of TM-polarized SH emission from the gold

grating when the incident field was TM-polarized. Figure 5.2.5(a) shows measurements of the

reflected SHG efficiency (ηSHG) when the incident wavelength is varied around 800 nm and the

incident angle (θin) was fixed at 16◦. SH efficiencies obtained from the gold grating are shown

with cross markers and correspond to the left y-axis, while the right y-axis corresponds to the

square markers curve which was obtained illuminating the unpatterned portion of the same
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Figure 5.2.5: (a) Experimental results of the reflected SHG efficiency from the gold grating
(cross markers, left y-axis) and the unpatterned gold layer (square markers, right y-axis) as a
function of pump wavelength when the incident angle is fixed at 16◦. (b) Experimental (cross
markers) and predicted (solid curve) SHG enhancement factor in reflection for the gold grating
as a function of pump wavelength when the incident angle is 16◦. (c) Experimental results of
the reflected SHG efficiency as a function of incident angle when the sample is pumped at three
different wavelengths.

sample, which was used as a reference. In the case of the grating, a maximum SHG efficiency of

∼ 1.5 ·10−9 was measured, while illuminating the unpatterned gold under the same experimental

conditions yielded to a maximum efficiency of ∼ 1.2 ·10−12. Cross markers in Fig. 5.2.5(b) show

experimental results of the enhancement factor X of the SH signal, which is obtained scaling

the SHG efficiency coming from the gold grating to the SHG efficiency originating from the

unpatterned portion of the gold sample. We obtained a maximum enhancement factor of 1400.

The simulated counterpart is depicted with a solid curve, which was obtained with m∗
0,f =

m∗
bj = me. These results clearly show excellent agreement between theory and experimental
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observations, with near-perfect resolution of shape, width, and maximum amplitude of the

spectral response.

Since the resonance wavelength changes by varying the angle of incidence, similar enhancement

is expected to occur at different wavelengths by merely tilting the sample. SHG efficiency was

also measured at two alternative incident angles and wavelengths, again when TM-polarized

incident and SH fields were selected. We measured the reflected SHG efficiency at 37◦ incident

angle, where the laser carrier wavelength maps the resonance located around 1000 nm, and at

50◦ by tuning the fundamental wavelength around 1100 nm. The combined results of the three

measured wavelengths are shown in Fig. 5.2.5(c). We note that the conversion efficiency in the

case of an incident wavelength of 800 nm is smaller than that shown in Fig. 5.2.5(a). This is due

to the fact that the SH (or TH) light emitted by the grating is diffracted. This is schematically

shown in Fig. 5.2.6 for the case of (a) SH and (b) TH wavelengths, where m is the order of

diffraction. As it can be seen, three orders of diffraction are expected in both cases. For instance,

in the case of SHG, when we are incident at 16◦ and 800 nm, we expect a zeroth diffraction order

emitting at an angle θref of 16◦, a first diffraction order at 63◦ and an additional order expected

to emit at a negative angle of −24◦. Experimentally, we were able to detect two of them, because

−24∘
−16∘ 16∘

63∘

16∘

−11∘

44∘

−16∘

FF
m = 0

m = 1

m = − 1
m = 0

m = 1
m = − 1

FF

(a) (b)

Figure 5.2.6: Schematic representation of the diffraction orders for (a) SH and (b) TH wave-
lengths.
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Figure 5.2.7: Measurement of (a) SHG and (b) THG normalized conversion efficiencies at the
zeroth and first diffraction orders.

our set-up detects signals propagating away from the grating only on one side of the incident

beam. This can also be seen in Fig. 5.2.7, where we show measurements of normalized (a)

SHG and (b) THG conversion efficiencies at the zeroth and first diffraction orders. The relative

intensity between the different orders of the SH emission is the same as the linear diffraction

result obtained by illuminating the grating with radiation at 400 nm at 16◦. In Figs. 5.2.5(a)

and 5.2.5(b) we plot the total efficiency, calculated by adding up the signal detected from the two

diffraction orders. On the contrary, in Fig. 5.2.5(c) we plot the efficiency obtained by detecting

only the zeroth diffraction order.

Measurements of the spectral response of the reflected THG efficiency (ηTHG) when the in-

cident angle was fixed at 16◦ are shown in Fig. 5.2.8(a), where it has been plotted with cross

markers and the efficiency values correspond to the left y-axis. Again, we measured the TH

response under the same experimental conditions from the unpatterend gold layer, which is de-

picted with square markers and whose efficiencies are shown in the right y-axis. TM-polarized

incident light was used, for which a TM-polarized TH signal was detected. As it can be seen,

a resonance around 800 nm was measured in the case of the grating. In Fig. 5.2.8(b) we show

the enhancement factor, obtained as in the case of SHG. Measurements are plotted with cross

markers, while the solid curve correspond to the predicted result. As it was discussed in previous
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chapters, THG has two different sources: hot electrons and bound electron contributions. Tun-

ing the pump at 800 nm places it in a regime dominated by the third order nonlinearity of free

electrons, i.e., the term Λ̃(E · E)E. In contrast, the third harmonic signal at 266 nm is subject

to the nonlinear dispersion of bound electrons and interband transitions, driven by the term

−b̃j(Pbj ·Pbj)Pbj + ϑ̃j(Pbj ·Pbj)
2Pbj − δ̃j(Pbj ·Pbj)

3Pbj . Once again, the comparison between

experimental results and simulations is in excellent agreement in terms of shape, spectral width,

and maximum amplitude, with an enhancement factor of nearly 4000.
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Figure 5.2.8: (a) Experimental results of the reflected THG efficiency from the gold grating
(cross markers, left y-axis) and the unpatterned gold layer (square markers, right y-axis) as a
function of pump wavelength when the incident angle is fixed at 16◦. (b) Experimental (cross
markers) and predicted (solid curve) THG enhancement factor in reflection for the gold grating
as a function of pump wavelength when the incident angle is 16◦.

Despite the reported enhanced performance of the nanograting with respect to the gold

nanolayers, our predictions suggest that it may be possible to harness significantly larger THG

enhancement factors with slight geometrical modifications. This situation is depicted in Fig.

5.2.9, where we plot the results of numerical simulations using 200 fs pulses incident on a grating

having the same periodicity, and by gradually increasing the width of the channel. Aside from

a sligh redshift of the resonance, Fig. 5.2.9(b) shows that the THG enhancement factor can

easily be increased by nearly a factor of two without significant geometrical modifications. On

the other hand, in Fig. 5.2.9(a) it can be seen that SHG efficiencies are not affected apprecia-
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bly when the width of the channel is changed because they depend mostly on surface charge

densities, currents, and spatial derivatives of the field rather than field localization.
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Figure 5.2.9: Predicted (a) SHG and (b) THG enhancement factors relative to a flat gold mirror
as a function of incident wavelength for different channel widths.

5.3 Conclusions and summary

In summary, we have reported experimental observations of SHG and THG in transparent

and opaque gold nanolayers. We have used our theoretical approach to model light-matter

interactions, and make no assumptions about effective surface or volume nonlinearities. Instead,

we have relied on temporal and spatial derivatives and mere knowledge of the effective electron

mass to determine the relative magnitudes of surface and volume contributions. In doing so,

we have found remarkable agreement with experimental observations. We also have reported

observations of TM- and TE-polarized, transmitted THG efficiencies from the 20 nm-thick gold

layer, and we have attributed the generated TH signal mostly to hot electron dynamics. This

combined experimental-theoretical study has provided us with knowledge that we can use to

predict harmonic generation in more complex structures. Thus, we have also reported SH and TH

emissions from a gold nanograting at different wavelengths and have compared their efficiency

to the efficiencies triggered by a flat gold mirror, and we have found unprecedented agreement

between our simulations and experimental observations of both SHG and THG at visible and UV

wavelengths. This comparison shows impressive enhancement in the SHG and THG conversion
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efficiencies by more than three orders of magnitude. Moreover, we have also shown predictions

that simple geometrical rearrangements can improve THG conversion efficiencies, leaving open

the possibility that optimization can significantly increase TH emission in the UV range.



6
Experimental-numerical ellipsometry

In this chapter we present a practical, combined experimental and theoretical approach based

on our hydrodynamic model that uses experimental results of harmonic generation conversion

efficiencies to retrieve complex, linear and nonlinear dispersion curves. From our experimental

results on harmonic generation efficiencies in silicon, ITO and gold, presented in Chapters 3,

4 and 5, respectively, we are able to extract bulk nonlinear dispersion from the equations of

motion, like the third-order nonlinear susceptibilities. However, the method is not limited to

third order processes and extraction of the bulk, second order response is straightforward and

can be done in similar fashion. Based on our assessment of THG efficiencies in silicon, we

predict χ
(3)
ω and χ

(3)
3ω of order 10−17m2/V2 in the visible and near-IR ranges, with respective

peaks of 10−14m2/V2 and 10−16m2/V2 in the UV range. Similarly, gold’s χ
(3)
ω and χ

(3)
3ω are of

order 10−17-10−16m2/V2, and predict χ
(3)
ω ∼ 10−17m2/V2 and χ

(3)
3ω ∼ 10−18m2/V2 for ITO.

These results clearly suggest that judicious exploitation of the nonlinear dispersion of ordinary

semiconductors has the potential to transform devise physics in spectral regions that extend well

into the UV range.

The structure of the chapter is as follows. In Section 6.1 we explain the theoretical method

we use to retrieve the linear and nonlinear dispersion of the materials that have been studied in

this thesis, which is based on the hydrodynamic model explained in detail in Chapter 1.5. Then,

129



130 CHAPTER 6. EXPERIMENTAL-NUMERICAL ELLIPSOMETRY

in Section 6.2 we present the results that we have obtained from this study in silicon, gold and

ITO. Finally, in Section 6.3 we finish the chapter with some conclusions.

6.1 Theoretical approach

When intense light interacts with a nonlinear material, its index of refraction can be modified,

and under certain conditions it may be written in terms of the fundamental field intensity

as: n = n0 + n2I. This is a well known third order process known as the Kerr effect, which

was introduced in Chapter 1.1.5. When nonlinear interactions occur in a bulk dielectric, for

instance, the value of n2 can be directly related to the third order susceptibility. The classical

method to determine the value (magnitude and sign) of n2 is the z-scan technique, developed

by Sheik-Bahae et al. [113, 114]. By moving the sample and measuring transmittance along

the longitudinal direction on the focal plane of a focused Gaussian beam, this technique allows

one to infer the nonlinear coefficient both in amplitude and sign. Different z-scan theories have

been proposed in the literature. However, they usually do not take into account the origin

and nature of all relevant nonlinearities present in the problem, in order to extract accurate

information from experimental measurements, and thus obtain the desired, accurate values of the

nonlinear coefficient. As we have seen in this thesis, in metals, semiconductors and conductive

oxides samples with nanoscale dimensions, new linear and nonlinear sources become relevant,

such as nonlocal effects, magnetic dipole and electric quadrupole nonlinearities, convection, hot

electrons, and phase-locking. Therefore, different terms introduced in the equations of motion

contribute to the nonlinear susceptibility and add to beam dynamics. Our technique utilizes

the constitutive relations to extract the complex nonlinear dispersion, to which we refer to as

numerical ellipsometry. In a simplified terminology, the method to retrieve nonlinear dispersion

consists of taking the following steps: first, we perform a calculation in the linear regime (low

power densities) using a pulse only a few femtoseconds in duration, incident normal to the

surface, and extract spatially averaged, complex polarizations and fields inside a 20 nm-thick

layer of material when the peak of the pulse reaches the layer. With this, we estimate a spatially-
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Figure 6.1.1: Real (black) and imaginary (red) parts of the complex dielectric constant of crys-
talline silicon. The solid curves correspond to the Lorentzian fits shown in Fig. 3.1.2. The
markers correspond to the calculated results.

averaged complex dielectric constant at any given carrier wavelength. Then, we perform the same

calculation in the nonlinear regime, to once again estimate spatially-averaged polarization and

field inside the same layer of material. Finally, we calculate χ
(3)
ω and χ

(3)
3ω using the constitutive

relations.

For a coordinate system invariant in the x-direction, the polarization of the system can be

written as: (
PL
y

PL
z

)
=

(
χ
(1)
yy χ

(1)
yz

χ
(1)
zy χ

(1)
zz

)(
EL

y

EL
z

)
(6.1.1)

Neglecting the off-diagonal terms we estimate the spatially averaged, complex transverse (εLyy)

and longitudinal (εLzz) dielectric constants at any given carrier wavelength:

⟨εLyy⟩ = 1 + 4π
⟨PL

y ⟩
⟨EL

y ⟩

⟨εLzz⟩ = 1 + 4π
⟨PL

z ⟩
⟨EL

z ⟩

(6.1.2)

where PL
y,z and EL

y,z are complex polarization and field amplitudes, respectively, the super-index

L stands for linear, and the brackets indicate spatial averages.

For planar structures and arbitrary angle of incidence, the fields are uniform along the trans-

verse coordinate, and so it suffices to perform an average along the longitudinal coordinate:

⟨εLyy,zz⟩ = 1
d

∫ d
0 εLyy,zzdz, where d is layer thickness. This straightforward procedure allows us
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to reconstruct, and verify, the linear material dispersion. In the absence of nonlocal effects,

⟨εLyy⟩ = ⟨εLzz⟩ = ⟨εL⟩, as it was discussed in Chapter 4. The results of this calculation are re-

ported in Fig. 6.1.1 in the case of silicon, for instance, with circle markers. As it can be seen,

they agree quite well with the analytical Lorentzian functions, which correspond to Eq. 3.1.2

and which are depicted with solid curves.

The second important step consists of performing the same calculation in the nonlinear regime,

to once again estimate spatially-averaged polarization and field inside the same layer of material,

such that ⟨εNL⟩ = 1 + 4π ⟨PNL⟩
⟨ENL⟩ . Now, if we wish to retrieve χ

(3)
ω , in the undepleted pump

approximation we may write:

PNL
ω = χ(1)

ω ENL
ω + χ(3)

ω |ENL
ω |2ENL

ω (6.1.3)

For simplicity, spatial averages are now implied and bracket symbols dropped. Additional con-

siderations and terms are needed on the right hand side of Eq. 6.1.3 if either the pump is

allowed to deplete, or if surface, magnetic, and/or higher order nonlinearities come into play.

In Eq. 6.1.3 a linear calculation is required to obtain χ
(1)
ω = PL

ω

EL
ω
, where PL

ω and EL
ω are the

linear, spatially-averaged polarization and field at the fundamental frequency. Removing vector

notation, we can write:

χ(3)
ω =

PNL
ω − PL

ω

EL
ω
ENL

ω

|ENL
ω |2ENL

ω

=
εNL
ω − εLω

4π|ENL
ω |2

(6.1.4)

In order to extract χ
(3)
3ω , the procedure mirrors that used to recover χ

(3)
ω . We first write the

expression for the third order polarization as:

PNL
3ω = χ

(1)
3ωE

NL
3ω + χ

(3)
3ω (E

NL
ω ·ENL

ω )ENL
ω (6.1.5)

Once again, the right hand side of Eq. 6.1.5 should be modified if additional nonlinearities

become relevant, and a linear calculation is required to obtain χ
(1)
3ω =

PL
3ω

EL
3ω
, where PL

3ω and

EL
3ω are the linear, spatially-averaged, complex polarization and field at the TH frequency,

respectively. In contrast, ENL
3ω is the field generated at the TH wavelength when pumping at the

fundamental frequency, which is necessarily nonlinear, while ENL
ω is now the nonlinear pump
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field. So, again removing vector notation, Eq. 6.1.5 may be inverted to yield:

χ
(3)
3ω =

PNL
3ω − PL

3ω

EL
3ω
ENL

3ω

(ENL
ω )3

(6.1.6)

In the case of silicon and other similarly undoped semiconductors it is possible to derive

analytical expressions for χ
(3)
ω and χ

(3)
3ω using a similar approach as that outlined in Chapter 1.5.

Provided the pump remains undepleted and no other nonlinearities or effects enter the picture,

the scaled expressions for the third order nonlinear susceptibilities for a two-resonance system

may be written as follows in Gaussian units:

χ(3)
ω =

3b̃
4π2

(
ω̃2
p,b1

(4π)2

)3

(
ω̃2
01 − ω̃2 + iγb1ω̃

)3 (
ω̃2
01 − ω̃2 − iγb1ω̃

)
+

3b̃
4π2

(
ω̃2
p,b2

(4π)2

)3

(
ω̃2
02 − ω̃2 + iγb2ω̃

)3 (
ω̃2
02 − ω̃2 − iγb2ω̃

)
(6.1.7)

χ
(3)
3ω =

3b̃
4π2

(
ω̃2
p,b1

(4π)2

)3

(
ω̃2
01 − ω̃2 + iγb1ω̃

)3 (
ω̃2
01 − 9ω̃2 − i3γb1ω̃

)
+

3b̃
4π2

(
ω̃2
p,b2

(4π)2

)3

(
ω̃2
02 − ω̃2 + iγb2ω̃

)3 (
ω̃2
02 − 9ω̃2 − i3γb2ω̃

)
(6.1.8)

where ω̃ is a scaled frequency and ω̃p,bj is the scaled plasma frequency. In MKS system,

χ
(3)
ω,3ω,MKS = 4π

(3·104)2χ
(3)
ω,3ω. For damping coefficients and resonant and plasma frequencies, we

use values extracted from the linear dielectric constant of the material, as indicated in Chapter

1.5.3, while the parameter b̃ is obtained from experimental results.

6.2 Results and discussion

In Fig. 6.2.1(a) we have plotted numerical results of the nonlinear dispersion of crystalline silicon

χ
(3)
ω,MKS calculated using Eq. 6.1.4 through markers in the visible and near-IR ranges, which

are compared with the analytical results obtained with Eq. 6.1.7, depicted with solid curves.

Figure 6.2.1(b) shows contrast extended well into the IR range. Both figures show remarkably

good agreement between analytical results derived using the nonlinear oscillator model, and
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Figure 6.2.1: [(a)-(b)] Real (black) and imaginary (red) part of the complex χ
(3)
ω,MKS obtained

analytically from Eq. 6.1.7 (solid curves) and calculated with Eq. 6.1.4 (markers), in different

wavelength regions. (c) Real (black) and imaginary (red) parts of the complex χ
(3)
3ω,MKS calculated

analytically from Eq. 6.1.8 (solid curves) and calculated with Eq. 6.1.6 (markers).

the simulations performed using ultrashort pulses. We note that while in the near-IR range

the magnitude of χ
(3)
ω,MKS is of order 10−17m2/V2 and decreasing at longer wavelengths, its

magnitude increases three orders of magnitude near resonance at UV. The comparison between

Eqs. 6.1.6 and 6.1.8 for χ
(3)
3ω,MKS is shown in Fig. 6.2.1(c), with maximum values occurring near

resonance. Again, the comparison between analytical and retrieved values is noteworthy. The

nonlinear dispersion exhibited by silicon in Fig. 6.2.1 is consistent with the THG efficiencies

reported in Chapter 3.1.4 (Fig. 3.1.8).

The third order nonlinear susceptibility of gold has also been extracted relying on experimental

results of THG in gold nanolayers, reported in Chapter 5.1.4. In this case the situation is
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Figure 6.2.2: (a) Real (black) and imaginary (red) parts of the complex dielectric constant of
gold. The solid curves correspond to the Drude-Lorentz fits shown in Fig. 5.1.2. Markers
correspond to the calculated results. (b) Real (black) and imaginary (red) parts of the complex

χ
(3)
ω obtained analytically from Eq. 6.2.1 (solid curves) and calculated with Eq. 6.1.4 (markers).

(c) Real (black) and imaginary (red) parts of the complex χ
(3)
3ω obtained analytically (solid

curves) and from our simulations (markers).

different because now, we have a third order contribution of hot electrons. Accordingly, Eq.

6.1.7 is modified as follows, with a similar alteration to Eq. 6.1.8:

χ(3)
ω =

3Λ̃

−ω̃2 − iγ̃f ω̃
+

3b̃
4π2

(
ω̃2
p,b1

(4π)2

)3

(
ω̃2
01 − ω̃2 + iγb1ω̃

)3 (
ω̃2
01 − 9ω̃2 − i3γb1ω̃

)
+

3b̃
4π2

(
ω̃2
p,b2

(4π)2

)3

(
ω̃2
02 − ω̃2 + iγb2ω̃

)3 (
ω̃2
02 − 9ω̃2 − i3γb2ω̃

)
(6.2.1)

In Fig. 6.2.2(a) we show with solid curves gold’s linear dielectric constant data found in

[107], fitted using one Drude and two Lorentzian functions, along with the data retrieved using
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our model, which is represented with markers. As it can be seen, the agreement between the

simulations and the analytical results is notable. In Figs. 6.2.2(b) and 6.2.2(c) we show the real

and imaginary parts of the third order nonlinear susceptibility χ
(3)
ω,MKS and χ

(3)
3ω,MKS, respectively.

Analytical results are plotted with solid curves, while the retrieved values from our simulations

are depicted with markers. The overall agreement between analytical and numerical results is

once again quite remarkable, despite of some disagreement in the imaginary part for wavelengths

longer than 1µm.

Finally, we have also been able to retrieve the nonlinear dispersion in ITO. In this case,

nonlocal effects become relevant and ⟨εyy⟩ ̸= ⟨εzz⟩, as already discussed in Chapter 4. In

Fig. 6.2.3(a) and 6.2.3(b) we have plotted the retrieved transverse and longitudinal dielectric

constants, respectively, using our approach, for an incident angle of 65◦. The solid curves

correspond to the real and imaginary parts of the measured local dielectric constant, coinciding

to that displayed in Fig. 4.3.1. As it can be seen, additional absorption resonances appear due

to nonlocal effects, also discussed previously in Chapter 4.
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Figure 6.2.3: Real (black) and imaginary (red) parts of the complex (a) transverse (εyy) and (b)
longitudinal (εzz) dielectric constant obtained from the calculations (markers). The solid curves
correspond to the Drude-Lorentz fits shown in Fig. 4.3.1.

No analytical solutions equivalent to Eq. 6.2.1 are known in the presence of nonlocal effects.

At oblique incidence, an expansion of the term −b̃(Pbj · Pbj)Pbj must be carried out into its

vector and frequency components. Assuming the simultaneous presence of the fundamental and
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Figure 6.2.4: Real (black) and imaginary (red) parts of the complex (a) transverse χ
(3)
ω,yy and (b)

longitudinal χ
(3)
ω,zz obtained from our calculations. (c) Real (black) and imaginary (red) parts

of the complex transverse χ
(3)
3ω,yy (solid curves with markers) and longitudinal χ

(3)
3ω,zz (dashed

curves with markers).

its generated harmonics, the total polarization can be written as:

Pbj = j
(
Pω,ye

−iωt + (Pω,y)
∗eiωt + P2ω,ye

−2iωt + (P2ω,y)
∗e2iωt + P3ω,ye

−3iωt + (P3ω,y)
∗e3iωt

)
+k
(
Pω,ze

−iωt + (Pω,z)
∗eiωt + P2ω,ze

−2iωt + (P2ω,z)
∗e2iωt + P3ω,ze

−3iωt + (P3ω,z)
∗e3iωt

)
(6.2.2)

for a coordinate system invariant in the x-direction. With this, Eqs. 6.1.4 and 6.1.6 take the

following form:

χ(3)
ω,yy =

PNL
ω,y − χ

(1)
ω ENL

ω,y

|ENL
ω,y |2ENL

ω,y + 1
3 |ENL
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ω,y )
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ω,z |2Eω,y

χ(3)
ω,zz =

PNL
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ω ENL
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|ENL
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3 |ENL
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3 |ENL

ω,y |2Eω,z

(6.2.3)
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and
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(6.2.4)

At normal incidence, Eqs. 6.2.3 and 6.2.4 yield Eqs. 6.1.4 and 6.1.6, respectively, as the

longitudinal component of the electric field vanishes. The curves that correspond to Eq. 6.2.3

are plotted in Figs. 6.2.4(a) and 6.2.4(b), while Eqs. 6.2.4 are displayed in Fig. 6.2.4(c). The

strong oscillatory behavior that characterizes especially the longitudinal nonlinear response in

Fig. 6.2.4(b) is triggered by the nonlocal resonances seen in the linear response of Fig. 6.2.3(b).

The THG data used to retrieve the nonlinear dispersion in Fig. 6.2.4 is that shown in Fig. 4.4.5,

in Chapter 4.4.

6.3 Conclusions and summary

In summary, we have presented a combined experimental and numerical method that can be

used to predict complex nonlinear dispersion curves in almost any material, based exclusively

on the experimental determination of harmonic generation conversion efficiencies. Our hydrody-

namic approach faithfully duplicates linear dispersion, and predicts the wavelength dependence

nonlinear response. The method is particularly useful when the analytical solutions are not

available, as is the case for conductive oxides like ITO, which displays nonlocal effects that

trigger an effective anisotropy, and it is extendable to second order bulk nonlinearities.



7
Conclusions

In this thesis we have developed an extensive experimental-theoretical study of nonlinear fre-

quency conversion of light in different materials and structures with nanoscale dimensions. The

experimental study has focused most of the effort and has been performed thanks to the devel-

opement of optical set-ups capable of measuring SHG and THG conversion efficiencies arising

from different samples made of semicondutors (GaAs wafers, amorphous silicon nanolayers, crys-

talline silicon wafers, and silicon membranes), conductive oxides (ITO nanolayers), and metals

(gold nanolayers and nanograting). We have performed different kind of experiments analysing

the angular, spectral and polarization dependence of the harmonic generated signals, measuring

absolute values of very low harmonic generation conversion efficiencies (down to 10−13). The ex-

perimental results have been compared with numerical simulations based on the hydrodynamic-

Maxwell model explained in Chapter 1.5, which was developed by Dr. Michael Scalora, USA,

and has been adapted in this thesis for each particular case. This way we have been able to

understand linear and nonlinear optical properties of metals and semiconductors, and obtain

quantitative comparisons between measurements and simulations providing valuable informa-

tion of the material parameters. The model accounts for competing surface, magnetic, and bulk

nonlinearities arising from both free and bound electrons, and it also preserves linear and non-

linear material dispersion, nonlocal effects due to pressure and viscosity, and the influence of hot

139
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electrons: variations in the conduction electron’s effective mass or density. This approach does

not make assumptions about effective surface and volume nonlinearities to determine harmonic

generation conversion efficiencies. Instead, we rely on temporal and spatial derivatives and mere

knowledge of the effective mass of electrons to determine the relative amplitudes of surface and

volume contributions to SHG, and on oscillator parameters to estimate THG efficiencies.

In Chapter 2 we have presented results of phase-locked SHG and THG in the opaque region

of a 500µm-thick GaAs wafer. This component corresponds to the particular solution of the

inhomogeneous equation driven by the nonlinear polarization term. Differently from the homo-

geneous solution, the phase-locked component is captured by the pump and experiences its same

effective dispersion. Under pulse illumination and under phase-mismatched conditions, the two

components walk off. The wafer was illuminated at 1064 nm, so that both SH and TH generated

fields fell in the absorption region of the semiconductor. As a consequence, the inhomogeneous

component was the only able to propagate through the 500µm of semiconductor. By performing

experiments of harmonic generation conversion efficiencies as a function of incident angle and

polarization we have analyzed in detail surface and bulk nonlinear sources. We have concluded

that a TM-polarized incident pulse generates a TM-polarized SH field due to the surface contri-

bution. A bulk-generated TE-polarized SH signal is triggered by a TM-polarized incident field,

and TE-polarized incident pulse generates a TM-polarized SH field due to the magnetic Lorentz

nonlinearity.

In Chapter 3 we have reported our results on nonlinear frequency conversion from different sil-

icon samples: a 25 nm-thick amorphous silicon nanolayer, a 500µm-thick crystalline silicon wafer

and a 1340 nm- and a 200 nm-thick crystalline silicon membranes. The study has been performed

in the visible and UV ranges, in regimes where this material tends to be opaque, and where non-

linear dispersion and phase-locking dominate the dynamics. By comparing experimental and

numerical results we have been able to extract basic physical properties of the material, which

we have used to predict nonlinear conversion efficiencies generated by a more complex structure

which we have chosen to be crystalline silicon nanowires. Our predictions show that conversion
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efficiencies can he enhanced in this type of nanostructure. However, experimental results are

needed in order to be able to complete this study. A sample of this characteristics is under

preparation, and its nonlinear frequency conversion response will be studied experimentally in

the near future.

In our experiments we have been able to measure transmission efficiencies of order 10−7-10−10

for the SH signal, and 10−10 for the TH for the case of GaAs, and of order of 10−12 − 10−13

for the SH signal, and 10−9 − 10−7 for the TH signal for the case of silicon. The fact is that

propagation phenomena and nonlinear frequency conversion studies below the absorption edge

of semiconductors are still lacking, primarily because these processes are thought to be unin-

teresting and inefficient due to absorption and to the naturally high degree of phase-mismatch.

However, as our numerical predictions on silicon nanowires suggest, harmonic generation con-

version efficiencies in absorbing materials at visible and UV wavelengths can be remarkably and

surprisingly high, and thus can be useful for realizing coherent sources and for the many other

potential applications that semiconductors find in optical technology.

In Chapter 4 we have studied the angular and wavelength dependence of SHG and THG

conversion efficiencies arising from a 20 nm-thick ITO nanolayer near its ENZ condition which

falls in the IR regime. The excitation of the ENZ mode requires TM-polarized light at oblique

incidence causing an enhancement of the electric field component inside the film and a formation

of an absorption peak in the spectrum. As a consequence, a peak is also expected in the SH

response, which is demonstrated in our experimental and theoretical results. In our numerical

predictions we take into account the fact that in conductive oxides, the effective mass of con-

duction electrons can be a function of temperature, giving birth to what we call the hot electron

contribution. Our experimental and theoretical results show that both nonlocal effects and hot

electrons can alter the SH response by blue-shifting or red-shifting the absorption peak. Not

only this, but our simulations also suggest that the presence of nonlocal effects in a nanolayer

of ITO can induce additional absorption resonances and an anisotropic dielectric response. We
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expect our theoretical model to be applicable to other nonlinear interactions in ENZ materials

and provide deeper understanding of the phenomenon.

In Chapter 5 we have analyzed harmonic generation in samples of gold having a different

configuration. First, we have studied both experimentally and theoretically harmonic genera-

tion conversion efficiencies from a transparent and an opaque gold nanolayers. The transparent,

20 nm-thick layer is used to monitor transmitted and reflected SH signals, as the fields carry

information about combined surface and volume currents excited on and inside the sample. On

the other hand, the opaque, 70 nm-thick gold layer supports mostly surface currents. We also use

the transparent nanolayer to measure transmitted THG efficiencies. The hydrodynamic model

described in Chapter 1.5 is adapted to describe the nonlinear response in metals by taking into

account the variation of the free electron’s density due to interband transitions, to which we refer

as the hot electron contribution. Our results on THG suggest that this contribution is essential

in order to explain the observed conversion efficiencies, while leaving the SH response almost un-

changed. By matching experimental and simulated conversion efficiencies, we are able to extract

the effective mass of electrons and oscillator parameters to predict the SH and TH response in

a gold nanograting. These predictions report a three orders of magnitude enhancement on SHG

and THG in both visible and UV ranges, which is corroborated by our experimental observations.

Moreover, our predicted results show that simple geometrical rearrangements can improve THG

conversion efficiencies, leaving open the possibility that optimization can significantly increase

TH emission in the UV range.

In Chapter 6 we have reported a theoretical method based on experimental conversion effi-

ciencies and our hydrodynamic approach that allows us to extract nonlinear dispersion curves.

We have seen that the method can be particularly useful when the analytical solutions are not

available, as in the case of ITO. We have reported results on third order nonlinear susceptibili-

ties, although the approach is extendable to second order bulk nonlinearities. Our experimental

results for THG in silicon suggest that it is possible to exploit large nonlinear response in the

visible and UV ranges, thus opening up new prospects for silicon photonics.
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Future work

With all these studies we have been able to understand nonlinear frequency conversion at the

nanoscale in simple geometrical arrangements, like nanolayers and wafers, made of materials

which are in the forefront of nowadays technology. This understanding involves the distinction

of the different nonlinear processes that trigger harmonic generation conversion efficiencies,

as well as basic physical parameters of the materials. In the near future our group will do

a step forward and will apply the experimental-theoretical approach developed in this thesis

to study more complex geometries, were strong field confinement by plasmonic resonances in

metallic nanostructures or in metamaterials, as well as Mie resonances in semiconductors can

boost harmonic generation conversion efficiencies. The group will also try to apply topological

photonics to nonlinear materials with the purpose of enhancing nonlinear effects. As it was

stated at the very beginning of this thesis, the capability to efficiently generate harmonics at the

nanoscale will have an enormous impact in the fields of nanomedicine and nanotechnology, since

it would allow one to realize much more compact devices and to interrogate matter in extremely

confined volumes.

These kind of studies have already started with this thesis, mostly in the case of the gold

nanograting presented in Chapter 5.2. Our numerical results suggested that simple geometri-

cal rearrangements can improve THG conversion efficiencies, leaving open the possibility that

optimizations can significantly increase TH emission in the UV range. However, the same geo-

metrical changes that appear to improve THG did not seem to affect the 1400-fold increase in

SHG efficiencies. The usual emission from the bare metal layer shows a characteristic angular

dependence that favors maximum SH emission at large angles and maximum THG at normal

incidence. However, photonic devices often require small angle applications. By using a suitable

grating with the appropriate periodicity, one may thus achieve SH and TH emissions from the

metal grating at almost any desired angle, with enhancement factors that are larger than three

orders of magnitude with respect to the emission from the bare surface. With this study we
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concluded that metals should not be discounted as suitable frequency converters, while more

optimized, complex topologies may catalyze further improvements in conversion efficiencies.
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7. L. Rodŕıguez-Suné, M. Scalora, C. Cojocaru, N. Akozbek, R. Vilaseca, and J. Trull,

”Experimental and theoretical study of second and third harmonic generation in amor-

phous silicon,” Proc. SPIE 12143, Nonlinear Optics and its Applications 2022, 1214307

(25 May 2022).
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8. C. Cojocaru, L. Rodŕıguez-Suné, M. Scalora, and J. Trull, ”Harmonic generation in

the opaque region of GaAs: the role of surface and magnetic nonlinearities”, invited talk,

Complex Materials for Nonlinear Optics Workshop (CMNO), 29-31 January 2020, Zurich,

Switzerland.
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10. L. Rodŕıguez-Suné, M. Scalora, A. S. Johnson, C. Cojocaru, N. Akozbek, Z. J. Coppens,

D. Perez-Salinas, S. Wall, and J. Trull, ”Experimental and theoretical study of second

harmonic generation from an ITO nanolayer”, oral presentation, International Conference

on Transparent Optical Networks (ICTON), 19-23 of July 2020, Online.
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Appendix B
Optical elements

In Chapters 2, 3, 4 and 5 we described the experimental set-ups built to measure harmonic signals

from our samples, and we indicated with which optical elements these set-ups were formed. In

this Appendix, we show transmission/reflection and optical density (OD) curves of these optical

elements, as well as the main characteristics of the detectors that have been used.

B.1 Filters

In this section we show the spectral transmission and OD curves for the longpass filters used

to eliminate harmonic signals before the sample (Thorlabs, FGL610, FGL850, FELH1100),

bandpass filters to attenuate the fundamental field radiation (Thorlabs, FGS900, FGS900-A,

FESH0900, FGB37-A, FGUV11-UV), and bandpass/laser line filters centered around the har-

monic wavelength (Thorlabs, FL532-10, FL355-10, FBH400-40, FB500-10, Chroma, ET262-

20bp, Eksma Optics, NSH filter).
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Figure B.1.1: Spectral transmission (black, left y-axis) and OD (red, right y-axis) curves of the
longpass filter with cut-on wavelength at 610 nm used to eliminate harmonic radiation before
the sample. Data are extracted from Thorlabs.
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Figure B.1.2: Spectral transmission (black, left y-axis) and OD (red, right y-axis) curves of the
longpass filter with cut-on wavelength at 850 nm used to eliminate harmonic radiation before
the sample. Data are extracted from Thorlabs.
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Figure B.1.3: Spectral transmission (black, left y-axis) and OD (red, right y-axis) curves of
the longpass filter with cut-on wavelength at 1100 nm used to eliminate undesired frequency
components coming from OPA (Light conversion, TOPAS). Data are extracted from Thorlabs.
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Figure B.1.4: Spectral transmission (black, left y-axis) and OD (red, right y-axis) curves of the
bandpass colored glass filter used to attenuate fundamental radiation after the sample. Data
are extracted from Thorlabs.
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Figure B.1.5: Spectral transmission (black, left y-axis) and OD (red, right y-axis) curves of the
bandpass colored glass filter used to attenuate fundamental radiation after the sample. Data
are extracted from Thorlabs.
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Figure B.1.6: Spectral transmission (black, left y-axis) and OD (red, right y-axis) curves of the
hard-coated edgepass filter used to attenuate fundamental radiation after the sample. Data are
extracted from Thorlabs.
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Figure B.1.7: Spectral transmission (black, left y-axis) and OD (red, right y-axis) curves of the
bandpass colored glass filter used to attenuate fundamental radiation after the sample. Data
are extracted from Thorlabs.
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Figure B.1.8: Spectral transmission (black, left y-axis) and OD (red, right y-axis) curves of the
laser line filter centered at 532 nm with bandpass at FWHM of 10 nm used to select SH radiation
for λin = 1064 nm. Data are extracted from Thorlabs.
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Figure B.1.9: Spectral transmission (black, left y-axis) and OD (red, right y-axis) curves of the
laser line filter centered at 355 nm with bandpass at FWHM of 10 nm used to select TH radiation
for λin = 1064 nm. Data are extracted from Thorlabs.
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Figure B.1.10: Spectral transmission (black, left y-axis) and OD (red, right y-axis) curves of
the hard-coated bandpass filter centered at 400 nm with bandpass at FWHM of 40 nm used to
select SH radiation for λin = 800 nm. Data are extracted from Thorlabs.
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Figure B.1.11: Spectral transmission (black, left y-axis) and OD (red, right y-axis) curves of the
bandpass filter centered at 500 nm with bandpass at FWHM of 10 nm used to select SH or TH
radiation. Data are extracted from Thorlabs.
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Figure B.1.12: Spectral transmission (black, left y-axis) and OD (red, right y-axis) curves of
the bandpass filter centered at 262 nm with bandpass at FWHM of 20 nm TH radiation for
λin = 800 nm. Data are extracted from Chroma.
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Figure B.1.13: Spectral transmission curve of the NSH bandpass filter used to select TH radiation
for λin = 800 nm. Our filter corresponds to the green curve. The figure is extracted from Eksma
Optics.

B.2 Lenses

In this section we show the spectral transmission and reflection curves for the CaF2 lens (Thor-

labs, LA5464) and coated lenses (Thorlabs, LA4380-UV, LA1509-B, LA1708-B, LA1509-C and

LA1708-C).
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Figure B.2.1: Spectral reflection curves for the lenses used to focus and collimate the beam.
These lenses are UV-coated (Thorlabs, LA4380-UV), B-coated (Thorlabs, LA1509-B and
LA1708-B) and C-coated (Thorlabs, LA1509-C and LA1708-C). Data are extracted from Thor-
labs.
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Figure B.2.2: Spectral transmission curve of the CaF2 lens used to focus and collimate the beam.
Data are extracted from Thorlabs.

B.3 Mirrors

In this section we show the spectral reflection curve of the mirror used to select either if the

harmonic signal is detected with the PMT or with a silicon photodiode in the set-up described

in Chapter 3.2.1.
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Figure B.3.1: Spectral reflection curve of the mirror for TM- (solid curve) and TE-polarized
(dashed curve) light. Data are extracted from Thorlabs.

B.4 Polarizers

In this section we show the spectral transmission curves of the polarizers used to control the

incident energy per pulse and the harmonic polarization.
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Figure B.4.1: Spectral transmission curves of the polarizers used to select the harmonic polar-
ization (Thorlabs, GTH10M-A) and (Thorlabs, WPA10). Data are extracted from Thorlabs.
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Figure B.4.2: Spectral transmission curves of the polarizers used to control the incident energy
per pulse (Thorlabs, WP25L-UB, PNIR100-MP2) and select the harmonic polarization (Thor-
labs, WP25L-UB). Data are extracted from Thorlabs.

B.5 Detectors

In this section we show the spectral responsivity curves of the PMTs (Hamamatsu, H10722-04),

(Hamamatsu, H10722-113) and (Thorlabs, PMT1001), as well as the responsivity curve for the

silicon photodiode used in the calibration procedure (Thorlabs, S120C).
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Figure B.5.1: Spectral responsivity curve of the silicon photodiode used in the calibration proce-
dure. It is able to measure in the power range of 50 nW-50mW and it has a resolution of 1 nW.
Data are extracted from Thorlabs. The photodiode used in the set-up described in Chapter
3.2.1 (Newport, 918D-UV-OD3) has a similar response and it is enhanced in the UV.
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Figure B.5.2: Spectral responsivity curve of the PMTs (Hamamatsu, H10722-113, H10722-04)
used to detect the harmonic signal. The figure is extracted from Hamamatsu.
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Figure B.5.3: Spectral responsivity curve of the PMT used to detect the harmonic signal. Data
are extracted from Thorlabs.



Appendix C
Method of solution

In Chapter 1.5 we saw the dynamic polarization equations which together with Maxwell’s equa-

tions are solved and numerical simulations results for SHG and THG conversion efficiencies are

obtained. In this appendix we outline the method of solution of these equations by examining

the propagation of a field coupled to a single Lorentz oscillator that contains a generic nonlinear

term PNL. Neglecting the nonlinear spring term and the magnetic portion of the Lorentz force,

we have (in CGS units):

∇×E = −1

c

∂H

∂t

∇×H =
1

c

∂E

∂t
+

4π

c

∂P

∂t

P̈+ γṖ+ ω2
0P+PNL =

n0,be
2

m∗
b

E

(C.0.1)

Our approach is based on calculating the fields’ spatial derivatives with high accuracy using

FFTs (fast Fourier transforms), while material equations are integrated using a modified, second

order accurate, predictor-corrector method. Without loss of generality, we assume the incident

field is TM-polarized, and decompose the electric and magnetic fields as products of generic,

complex envelope functions and terms that contain free-space carrier wave-vector and angular

frequency that correspond to initial conditions for a pulse located in free space approaching

the structure. The preservation of all spatial and temporal derivatives accounts for dynamical

changes to the instantaneous phases and amplitudes of the fields. The E field is polarized on the

171
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y − z plane, and the H field is polarized along the x direction, and may be written as follows:

E = Eyj+ Ezk =

(Eω
y (y, z, t)e

i(k·r−ωt) + E2ω
y (y, z, t)e2i(k·r−ωt) + E3ω

y (y, z, t)e3i(k·r−ωt) + c.c.)j

+(Eω
z (y, z, t)e

i(k·r−ωt) + E2ω
z (y, z, t)e2i(k·r−ωt) + E3ω

z (y, z, t)e3i(k·r−ωt) + c.c.)k

(C.0.2)

H = Hxi = (Hω
x (y, z, t)e

i(k·r−ωt)+H2ω
x (y, z, t)e2i(k·r−ωt)+H3ω

x (y, z, t)e3i(k·r−ωt)+ c.c.)i (C.0.3)

where kz = |k|cosθi, ky = −|k|sinθi, |k| = ω/c, and θi is the incident angle. This choice of

carrier wave vector indicates the pulse is at first traveling along the −y + z direction.

Substituting Eqs. C.0.2 and C.0.3 into Eqs. C.0.1, for each harmonic component, the field,

current, and polarization envelopes obey coupled equations of motion of the type:

∂Hx̂

∂τ
= iβ(Hx̂ + Eẑsinθi + Eŷcosθi)−

∂Eẑ

∂ŷ
+

∂Eŷ

∂ẑ
,

∂Eŷ

∂τ
= iβ(Eŷ +Hx̂cosθi) +

∂Hx̂

∂ẑ
− 4π(Jŷ − iβPŷ),

∂Eẑ

∂τ
= iβ(Eẑ +Hx̂sinθi)−

∂Hx̂

∂ŷ
− 4π(Jẑ − iβPẑ),

∂Jŷ
∂τ

= (2iβ − γ̃)Jŷ + (β2 + iγ̃β − β2
0)Pŷ +

πω2
p

ω2
r

Eŷ + PNL
ŷ ,

∂Jẑ
∂τ

= (2iβ − γ̃)Jẑ + (β2 + iγ̃β − β2
0)Pẑ +

πω2
p

ω2
r

Eẑ + PNL
ẑ ,

∂Pŷ

∂τ
= Jŷ,

∂Pẑ

∂τ
= Jẑ

(C.0.4)

where we have used the scaled coordinates ẑ = z
λr
, ŷ = y

λr
, and x̂ = x

λr
, scaled frequencies

β = 2πω
ωr

(for the fundamental field) and β0 = 2πω0
ωr

; and damping coefficient γ̃ = γ λ0
c , where

λr = 1µm is a reference wavelength such that ωr =
2πc
λr

, and PNL
ŷ and PNL

ẑ are generic, nonlinear

polarization components yet to be determined. Equations C.0.4 are solved in the time domain

using a modified FFT pulse propagation method, which we discuss in some detail next. The

electric and magnetic field equations can be put into a Schrödinger-like form:

∂Hx̂

∂τ
= VHx̂

Hx̂ −
∂Eẑ

∂ŷ
+

∂Eŷ

∂ẑ
,

∂Eŷ

∂τ
= VEŷ

Eŷ +
∂Hx̂

∂ẑ
,

∂Eẑ

∂τ
= VEẑ

Eẑ −
∂Hx̂

∂ŷ

(C.0.5)
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The potentials in Eqs. C.0.5 are VHx̂
= iβ(1 +Eẑsinθi +Eŷcosθi)/Hx̂, VEŷ

= iβ(1 +Hx̂cosθi −

4π(Jŷ − iβPŷ))/Eŷ, and VEẑ
= iβ(1 +Hx̂sinθi − 4π(Jẑ − iβPẑ))/Eẑ. As a result, the equations

can be solved using the classic, split-step beam propagation method adapted for the time domain

[115]. The split-step algorithm usually calls for separation of free-space and material equations

with differential equations that are first order in time. Equations C.0.5 are already first order in

time, have no approximations, and can be immediately separated into free-space and material

equations and integrated in the time domain. The formal solutions of the free-space propagator

may be derived from the free-space equations, obtained by setting the effective potentials equal

to zero. Then, Eqs. C.0.5 are Fourier transformed in space, resulting in:

∂H̃x̂

∂τ
= −ikŷẼẑ + ikẑẼŷ,

∂Ẽŷ

∂τ
= ikẑH̃x̂,

∂Ẽẑ

∂τ
= −ikŷH̃x̂

(C.0.6)

Equations C.0.6 may be integrated simultaneously using a midpoint trapezoidal method, so that:

H̃x̂(δτ) = H̃x̂(0)−
ikŷδτ

2
(Ẽẑ(0) + Ẽẑ(δτ)) +

ikẑδτ

2
(Ẽŷ(0) + Ẽŷ(δτ)),

Ẽŷ(δτ) = Ẽŷ(0) +
ikẑδτ

2
(H̃x̂(0) + H̃x̂(δτ)),

Ẽẑ(δτ) = Ẽẑ(0)−
ikŷδτ

2
(H̃x̂(0) + H̃x̂(δτ))

(C.0.7)

Solving for H̃x̂(δτ),

H̃x̂(δτ) = H̃x̂(0)
1− (k2ŷ+k2ẑ)δτ

2

4

1 +
(k2ŷ+k2ẑ)δτ

2

4

+
(ikẑẼŷ(0)− ikŷẼŷ(0))δτ

1 +
(k2ŷ+k2ẑ)δτ

2

4

(C.0.8)

Equation C.0.8 is then substituted back into the second and third of Eqs. C.0.7 to extract the

electric fields. All fields are then inverse Fourier transformed.
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The propagation step inside the medium is performed by integrating the material equations,

written in terms of generic envelope functions as:

∂Hx̂

∂τ
= iβ(Hx̂ + Eẑsinθi + Eŷcosθi),

∂Eŷ

∂τ
= iβ(Eŷ +Hx̂cosθi)− 4π(Jŷ − iβPŷ),

∂Eẑ

∂τ
= iβ(Eẑ +Hx̂sinθi)− 4π(Jẑ − iβPẑ),

∂Jŷ
∂τ

= (2iβ − γ̃)Jŷ + (β2 + iγ̃β − β2
0)Pŷ +

πω2
p

ω2
r

EŷEŷ + PNL
ŷ ,

∂Jẑ
∂τ

= (2iβ − γ̃)Jẑ + (β2 + iγ̃β − β2
0)Pẑ +

πω2
p

ω2
r

Eẑ + PNL
ẑ ,

∂Pŷ

∂τ
= Jŷ,

∂Pẑ

∂τ
= Jẑ

(C.0.9)

Although we have neglected magnetic currents and polarizations, which typically characterize

magnetically active and negative index materials, for example, they may be reintroduced in

straightforward fashion by adding magnetic sources. Then, an approach similar to the solution

of Eq. C.0.6 may be employed to solve Eqs. C.0.9. For instance, one may first obtain estimates

(the prediction step) of all fields, currents, and polarizations at τ = δτ with an Euler method,

using only their initial values at τ = 0. Using these predictions, the solutions for the currents

at τ = δτ are immediate and second order accurate, as follows:

Jŷ,ẑ(δτ) = Jŷ,ẑ(0)
1 + (2iβ − γ̃) δτ2 + (β2 + iγ̃β − β2

0)
δτ2

4

1− (2iβ − γ̃) δτ2 − (β2 + iγ̃β − β2
0)

δτ2

4

+
(β2 + iγ̃β − β2

0)Pŷ,ẑ(0)δτ + π
ω2
p

ω2
r
(Eŷ,ẑ(0) + EP,ŷ,ẑ(δτ))

δτ
2 + (PNL

ŷ,ẑ + PNL
P,ŷ,ẑ(δτ))

δτ
2

1− (2iβ − γ̃) δτ2 − (β2 + iγ̃β − β2
0)

δτ2

4

(C.0.10)

EP,ŷ,ẑ(δτ) and PNL
P,ŷ,ẑ(δτ) are first order accurate, predicted estimates of the fields and nonlinear

polarizations at time τ = δτ . Once the currents are known, the polarizations may be found

using the usual, second order accurate trapezaidal rule:

Pŷ,ẑ(δτ) = Pŷ,ẑ(0) + (Jŷ,ẑ(δτ) + Jŷ,ẑ(0))
δτ

2
(C.0.11)

In turn, knowledge of more accurate currents and polarizations at time δτ allows second order

accurate estimates of all electric and magnetic fields. The process is then repeated several times,

although one or two cycles usually suffice for the results to converge.
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The energy refraction angle (i.e., the direction of energy flow) may be calculated by monitoring

the normalized, transverse, and longitudinal electromagnetic momenta inside the medium as

functions of time:

Mŷ(τ) =
1

c2

∫ ẑ=∞

ẑ=0

∫ ŷ=∞

ŷ=−∞
Sŷ(ŷ, ẑ, τ)dŷdẑ

Mẑ(τ) =
1

c2

∫ ẑ=∞

ẑ=0

∫ ŷ=∞

ŷ=−∞
Sẑ(ŷ, ẑ, τ)dŷdẑ

(C.0.12)

where Sŷ and Sẑ are the components of the Poynting vector. The energy refraction angle may

be calculated as θref = tan−1(Mŷ/Mẑ).

In order to solve the full nonlinear problem, the linear data may be reproduced dynamically

in a numerical integration scheme by solving a set of coupled equations that contains: (1) an

equation that described the polarization of free electrons, Pf , and (2) a set of equations that

account for the bound electron polarizations Pbj . The linear equations are then modified to

include nonlinear contributions in the high intensity regime, as shown in Eqs. 1.5.24 and 1.5.13.
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