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Universitat Politècnica de Catalunya, in its
Electronic Engineering Program.

Supervisors:
Prof. Jose Luis Romeral Martinez

Terrassa, Barcelona
March 2023



To my parents

Heidar Selseleh Jonban

Rafat Azimi



Acknowledgements

I would like to offer my thanks to Universitat Politècnica de Catalunya
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Abstract

Nowadays, distributed energy resources are widely used to supply de-
mand in micro grids especially in green buildings. These resources are
usually connected by using power electronic converters, which act as
actuators, to the system and make it possible to inject desired active
and reactive power, as determined by smart controllers. The overall
performance of a converter in such system depends on the stability and
robustness of the control techniques. This thesis presents two bottom-
up smart control approaches to manage energy in DC microgrids that
split the demand among several generators. Firstly, an energy manage-
ment system (EMS) based on multi-agent system (MAS) controllers is
developed to manage energy, control the voltage and create balance be-
tween supply and demand in the system with the aim of supporting
the reliability characteristic. In the proposed approach, a reconfigured
hierarchical algorithm is implemented to control interaction of agents,
where a CAN bus is used to provide communication among them. This
framework has the ability to control system, even if a failure appears
into decision unit.
The second research approach presents an energy management system
based on multi-agent system under the supervision of a smart contract
with a bottom-up approach for a grid connected DC micro-grid that is
equipped with solar photovoltaic panels (PV), wind turbine (WT) and
micro-turbine (MT) and battery energy storage (BES). In the presented
approach, each unit controls and manages through a distributed deci-
sion structure. The BES agent is managed by an intelligent structure
based on a reinforcement learning model. Since charging and discharg-
ing the battery is a stepwise process, in this research, a Markov deci-
sion process is trained by using a Q-learning algorithm. The rest of the
agents are controlled and managed by heuristic algorithms. To create
interaction and coordination among agents, a tendering process is used
wherein each agent under its supervised control structure presents its
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offer to the tendered item at each time period. The tendering organiza-
tion allocates the requested power through first price sealed-bid algo-
rithm between bidders to optimize energy cost in the MG.
The two proposed approaches present online intelligent systems that
can guarantee fault-tolerance, stability and reliability in the MG espe-
cially in green houses and smart cities.

Keywords
Energy management system, multi-agent system, self-healing, fault-
tolerance, artificial intelligence, subsumption architecture, smart con-
tract, tendering process, first-price sealed-bid algorithm, reinforcement
learning, Markov decision process, c-means algorithm, Q-learning al-
gorithm.
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Chapter 1

Introduction

This chapter presents the subject of the proposed work in the thesis. The state
of the art, hypothesis and objective are included in this chapter. Finally, thesis out-
line is presented at the end of this chapter.

CONTENTS:

1.1 Research topic
1.2 Research problem
1.3 Hypotheses
1.4 Aim and objectives
1.5 Thesis outline

1



1.1. RESEARCH TOPIC 2

1.1 Research topic

Utilization of renewable energy systems (RES) such as wind and solar power is
increasing due to their environmental friendly and cost-effective operation. How-
ever, intermittent generation from RES and unpredictable changes in demand pro-
files cause concerns regarding supply-demand balance and the stability and re-
liability of power systems. For example, in a building with engaged renewable
energy resources, voltage stability and reliability of system could be significant as
well as supporting supply-demand balance [1, 2]. Energy storage systems could be
used in such system to guarantee these features [3]. However, by aggregating BES
(usually of small scale) in a micro-grid, power control and energy management be-
come more challenging. Multi-agent systems (MASs) are introduced to solve such
control problems in EMSs, where individual system components are distributed
and control is decentralized and autonomous [4, 5, 6, 7]. In the MAS, each com-
ponent acts as an agent and operates in a dynamic environment, where it has the
freedom to either join or leave the system whenever required. The agents in MASs
are able to perceive environmental changes and decide based on their own deci-
sion structure and change the environment with proper actions [8]. Consequently,
the overall challenge and objective in the EMS is divided into a set of small tasks
that could be controlled either integrated or distributed [9]. It is important to men-
tion that, by autonomous and decentralized control, the response time and control
delays are minimized, thus increasing the reliability of grid connected RES [10].

The energy management system for distributed energy sources can be divided
into centralized energy management system (CEMS) and distributed energy man-
agement system (DEMS) [11, 12, 13]. In both cases, the aim is to achieve a balance
between supply and demand; the difference lies in the control architecture and
decision type [14, 15, 16, 17, 18]. In CEMSs, associated controllable devices are di-
rectly connected to a central control unit, so that it efficiently monitors the whole
system taking into consideration the various factors such as the energy balance
and cost functions [19, 20, 21, 22, 23, 24]. The control unit receives measured vari-
able and sends suitable control signals based on certain restrictions and set points
[25, 26, 27, 28]. The DEMS, on the other hand, works on small networks and use
distributed processing and control units for regulating the entire system [29]. Each
part in the DEMS has its own decision unit and based on a specific predefined
control structure, it participates in the process of EMS [30, 31, 32]. In order to
implement the DEMS, the MAS can be used to provide maximum independence
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to the individual energy systems. In fact, each decision part, acting as an agent,
communicates and offers a robust control over the distributed energy sources [33].
This type of control presents many benefits as compared to the CEMS, such as, the
scalability and redundancy [34].

1.2 Research problem

Recently, several studies have been done to present a suitable control system for
MGs. Some of studies focused on day-ahead optimal scheduling wherein by pre-
diction of generation and demand response were tried to control and manage MG
[35, 36, 37]. For instance, in [38], an uncertainty-aware day-ahead optimal schedul-
ing tool was presented for a grid connected microgrids based on information gap
decision theory wherein additional constraints were used to bound the demand
response signals to decrease the harmful effects of response fatigue. To lighten the
peak load, in [39], a hybrid robust-stochastic model was introduced to schedule
day-ahead for plug-in electric vehicle parking lots by considering the inherent un-
certainties. In [40], with respect to the uncertainty of wind power and electricity
price, aiming to maximize income of wind farms in day-ahead market, a quantum
genetic algorithm was proposed to assign an optimal stored energy for each wind
farm.

Newly, multi-agent systems (MASs) are introduced as flexible framework to
control and manage energy in the power system [41, 42, 43]. In this system, each
agent can individually perceive the environment by its sensors, make decision and
act through its actuators [8]. Generally, distributed or centralized decision mak-
ing are used for controlling MAS. In both cases, the aim is to achieve a balance
between supply and demand; the difference lies in the control architecture and
decision type [14, 15, 16, 17, 18]. In centralized decision making, agents are con-
trolled through a central intelligent unit [44] and in distributed control, each agent
independently acts into the MAS [45]. Various algorithms are presented to control
MASs such as, hierarchical architecture [46, 47], heuristic algorithm [48, 49] and
recently, machine learning (ML) [50, 51]. For instance, in [52], a multi-party energy
management was presented to manage energy in multiple smart buildings based
on non-cooperative theory wherein each building as a player in the game tried to
decrease energy cost by considering DGs and demand response. A hierarchical
and decentralized energy management system in [53] was introduced to reduce
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household energy cost by exchanging energy between prosumers and coordinat-
ing the operation of energy resources and shiftable home appliances. A control-
lable structure based on reinforcement learning was presented in [54] for electric
vehicles charging scheduling to optimize the operating cost in electric vehicles.

Although MASs are formed by numerous independent units that could be ef-
fective for controlling large-scale systems, but implementation and management of
their action are very challengeable. Basically, controlling MAS needs a framework
wherein interaction among agents are clarified. Each agent in this framework, can
independently act so that it persuades the system to the global aim. Implementing
such framework allows user to have parallel processing, in the other word, it could
be possible to implement various controlling units in which each part is controlled,
separately. This framework will bring the following advantages to a power system
[55]:

• fault tolerance, stability and reliability as the system can continue its
operation if some agents fail

• scalability and flexibility due to capacity of adding and removing agents
• response time reduction and efficiency improvement thanks to asyn-

chronous and parallel computing
• cost reduction in the sense that development cost of some small systems

may be less than that of a large complex system
• redevelopment and reusability as the components of MAS may be ap-

plicable in new setups
Besides, MASs have capability to present an online operation to user so that,

each agent operates without requirement to any prediction and at time makes suit-
able decision. In such system, agents should independently decide through artifi-
cial intelligence algorithm and as well, a framework is needed to create interaction
among agents.

Generally, two approaches exist for implementing MASs; top-down approach
and bottom-up approach. In top-down approach, user seeks to implement the
rules in the system that cause the desired behavior between agents. In this ap-
proach agent has less discretion [56]. In bottom-up approach, user seeks the spe-
cific abilities for agents which create interaction in the whole system. In this ap-
proach, agents have more discretion in choosing actions. In other words, agent in
the bottom-up approach could be utility-based agent that pursues its own greedy
aims instead of the global aim so that, the results of these aims lead to the social
benefits in the whole system [57]. The challenge that exists in bottom-up approach
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is to implement an intelligent algorithm for each agent in a way that beside of
guarantee the individual profits, it obligates performance of agents to achieve the
global aim. The following shortcomings have recognized in the previous studies:

• Absence of an online intelligent system to control distributed energy
resources at MGs. In fact, majority of presented studies are focused on
prediction based energy management [58, 59, 60, 61].

• In most of studies, proposed energy management systems is implemented
as central control approach in which agent is not the decision maker
and set points adjusted by central unit who optimizes and processes
[62, 63, 64, 65].

• Non-existence of an intelligent framework to create interaction among
agents. Most of the studies as energy management in MGs, or the con-
trol structure is in the form of central optimization [66, 67, 68], or im-
plementation a management system for a generator without consider-
ing the control of the rest [69, 70, 71]. Absence of study in this section
decreases stability and reliability in smart systems especially, by high
penetration of RESs.

• In the online smart control of microgrids by using MAS, communication
could be used to avoid collapse in faced with failure in decision parts
and increases reliability and stability of system but it was ignored [72,
73, 74].
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1.3 Hypotheses

In order to implement a smart energy management on a system, the following
hypotheses have been adjusted for this research:

• A system with high penetration of RESs can be modeled as a MASs.
• It is possible to have smart secondary control on generators by using

MASs.
• It is possible to implement mechanism based on MASs as a framework

so that generators operate in it.
• Communication among agents will allow to decrease blackouts in the

system.
• By implementing MAS over a MG and controlling agents with artificial

intelligence algorithm, stability and reliability could be achieved and
system would be fault tolerance.
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1.4 Aim and objective

In order to address the research problem and test the research hypotheses, the main
objective of this thesis is design and implement artificial intelligence approaches
capable of controlling set points of providers to achieve balance between supply
and demand. Such control structure should support stability, reliability and fault
tolerance in the MG. For this purpose, the following steps will be developed.

• Modelling of the MG
To model the MG following sections should be considered:

– Generators such as RESs, BES, MT and the grid
– Converters and inverters
– Voltage and current controller
– AC and DC loads

• Modelling of smart control units
In order to design and implement smart control structures on the gener-
ators, the following sections are taken into account:

– Determining a structure of MASs for controlling generators
– Defining a type of smart control approach
– Creating a communication structure between agents

• Controlling the MG
To control and allocate tasks among agents in the MAS, the following
section should be taken into account:

– Clarifying and implementing a framework for controlling the
MAS

– Defining and implementing smart distributed decision unit for
each agent
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1.5 Thesis outline

To cover the exposed objective, this thesis is organized as follows:
Chapter 2 presents the implementation methods of electrical power systems in

smart grid. Control models and constraints of providers in this chapter will be
explained.

Chapter 3 introduces the intelligent control energy management systems that
proposed in this thesis. Two different approaches will be designed to control MGs.

Chapter 4 investigates the results and performance of proposed intelligent en-
ergy management systems.

Chapter 5 evaluates the performance of implemented smart energy manage-
ment systems on MGs based on fault tolerance.

Chapter 6 presents the general conclusions and future work of this research.
Chapter 7 presents the thesis disseminations and published articles as a result

of the investigation collaborations around this thesis.



Chapter 2

Problem formulation, modeling and con-
trol structure of the micro-grid

To validate and evaluate the proposed control method, two different power sys-
tems have been implemented in this thesis. In this section, the implementation
of electrical power system modeling methods in smart grids are explained. Then,
control models and constraints of each distributed generator (DG) are presented in
two separated sections. Also, in this section, the connection model of DGs to the
demand and their mathematical models are presented.

CONTENTS:

2.1 Simulation model for green building
2.2 Mathematical formulation model for smart city
2.3 Conclusions

9
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In smart grids, to evaluate a smart control method, power system can be
modeled in two different ways. Considering that the presented control method
in this thesis is a new smart online method based on multi-agent system (MAS),
therefore, in order to accurately evaluate the proposed methods, both models have
been implemented, simulation model for a green building and mathematical model
for smart city. Therefore, in this thesis, we model different power systems in two
different models. Each system has different smart control mechanism that will be
described in the next chapter. As a result, in this thesis, each chapter has two differ-
ent studied systems that are examined and controlled separately from each other.
In the following, simulated model of grid connected DC micro-grid for the green
building is presented.

2.1 Simulation model for green building

In case study I, a simple model of DC micro-grid as a green building is depicted in
figure 2.1, which is similar to the system in [55, 75]. This electrical system contains
a Photovoltaic (PV), battery, SC and the gird those are supplying a DC active load
through a DC bus.

2.1.1 Mathematical Model

The mathematical formulation of the green building is presented in this subsec-
tion. Eqs. (2.1)-(2.4) describe the average model of converters which is obtained by
applying the Kirchhoff rules on circuit shown in figure 2.2 [76].

disc/dt = 1/L1 ∗ (Vsc − U12Vdc −R1isc) (2.1)

di2/dt = 1/L2 ∗ (U43VBat − Vdc −R2i2) (2.2)

di3/dt = 1/L3 ∗ (U5VPV − Vdc −R3i3) (2.3)

di4/dt = 1/L4 ∗ (U5Vgrid − Vdc −R4i4) (2.4)

where, R and L are resistance and inductance of converters, respectively. U is the
duty cycle, where as U12 and U34 are defined in Eqs.(2.5) and (2.6), respectively.

U12 = m(1− U1) + (1−m)U2 (2.5)

U43 = m(1− U4) + (1−m)U3 (2.6)

where, m is binary variable defined as following:
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Figure 2.1: Simplified Model of a DC green building (microgrid)

m =

{
1 if Boostmode

0 if Buckmode
(2.7)

The voltage at DC bus is equal to the sum of injected currents to the DC bus
and is given by Eq.(2.8).

Vbus(t) = 1/Cbus

∫
itotaldt+ Vbus(t0) (2.8)

where, Cbus is the capacity of capacitor connected to the bus. Eq. (2.8) can be rewrit-
ten as Eq. (2.9).

Vbus(t)− Vbus(t0) = 1/Cbus

∫
itotaldt (2.9)

The total injected current itotal to the DC bus can be calculated by Eq. (2.10).
itotal =

∑
i = i1dchar − i1char + i2dchar − i2char + i3 + i4 (2.10)

where,
∑

i is the sum of injected current to the DC bus by individual converters
and it can be calculated by Eq. (2.11).
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itotal =
∑



i1dchar = η1Psc/Vbus = η1Vscisc/Vbus

i1char = Vscisc/η1Vbus

i2dchar = η2PBat/Vbus = η2VBatiBat/Vbus

i2char = VBatiBat/η2Vbus

i3 = η3Ppv/Vbus = η3VPV iPV /Vbus

i4 = η4Pgrid/Vbus = η4Vgridigrid/Vbus

(2.11)

where, η is efficiency of converter, and i1, i2, i3 and i4 respectively represent the cur-
rents for super-capacitor, battery, PV and the grid. Consequently, the total injected
current in Eq. (2.10) can be expressed as Eq. (2.12).

itotal(t) = 1/Vbus

(
η1Vscisc(t)− Vscisc(t)/η1 + η2VBatiBat(t)

−VBatiBat(t)/η2 + η3VPV iPV (t) + η4Vgridigrid(t)
)

(2.12)

By substituting Eq. (2.12) in Eq. (2.9), it can be rewritten.
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V − bus(t)− Vbus(to) = 1/CbusVbus

∫ (
η1Vscisc(t)− Vscisc(t)/η1

+η2VBatiBat(t)− VBatiBat(t)/η2

+η3VPV iPV (t) + η4Vgridigrid(t)
)
dt (2.13)

Eq. (2.13) shows voltage oscillation on the DC side, thus, a proper control strat-
egy is needed to avoid voltage fluctuations at the DC bus. The corresponding
control strategy is applied to the system by transmitting set points through the
individual agents. In order to calculate capacity of capacitance, in DC bus, the
following voltage constraint can be assumed:

Vnom −∆V ≤ Vbus ≤ Vnom +∆V (2.14)

where Vnom is the nominal voltage and ∆V signifies the maximum oscillation volt-
age at the DC bus that can be controlled by the DC bus capacitor. Eq. (2.15) shows
the relationship between the current and voltage of capacitor.

dV (t) = 1/Cbus ∗ itotal(t)dt (2.15)

Eq. (2.15) can further be modified to find the optimal value of capacitance for a
certain value of ∆, as

Cbus = Itotal∆t/∆V (2.16)

The ∆t in Eq. (2.16) represents the total time delay in the system and calculated by
Eq. (2.17).

∆t = td + tp + tm + ts + tc (2.17)

where td is the time delay for the power electronic devices such as the delay in
switching of converters, tp is related to the delay involved in the processing of
individual agent, tm indicates the delay in sending and receiving messages on a
communication port, ts represents the measurement delay caused by sensors and
tc is time delay associated with the controllers. For instance, in the system with
0.2 ms as a total time delay and 20 A as total current; if 2% voltage oscillation is
desired, a capacitor with 2 mF should be used.

2.1.2 Control structure

Figure 2.3 shows the control structure of converters which are used to control the
voltage and current [77]. Each element in this topology is controlled by an agent.
In this control structure, agent based on measured value that could be output volt-
age of PV panel or SOC of SC or battery, and also communication signal that comes
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Figure 2.3: The control structure for a dc-dc converter

from other agents, generates suitable set points. These set points include mode se-
lector, voltage and current reference. Mode selector is used to determine that a
converter is in voltage mode or in current mode. Voltage mode is considered to
maintain output voltage of converter in constant value, consequently, voltage of
DC bus will be preserved in desired value. Current mode is expected to supply
shared current by other agents. It is clear that one agent can be used to regulate
the voltage and others just participate in the current control. In order to enable a
smooth switching, to maximise the optimum use of resources and to help protect-
ing storage devices, agents share current in the system. In this control structure,
error signal that is difference between voltage/currnt reference, Vref (or Iref ), and
measured voltage/current, Vm (or Im), applied to the P.I control. The out put of the
P.I control is applied to the pulse width modulation (PWM) in order to generate
proper signal for switching MOSFET in the converter.
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2.2 Mathematical formulation model for smart city

In the case study II, it is assumed a micro-grid as a smart city equipped with re-
newable energy generations via solar PV panels and WT, has a BES system and
MT and is connected to the grid to meet the electricity demand. As shown in Fig.
2.4, at each time period t, the energy generated by the PV and WT is given priority
to meet demand. The demand beyond the PV and WT power generation can be
supported by BES, MT and the grid. These providers (BES, MT and the grid) are
considered to be controlled by smart control units. Each provider via a controllable
converter is connected to the DC load. Set point of any generator is regulated by
a smart unit that can sense signal from a central unit, measure available power in
the generator and based on proper policy changes set point to meet the demand.
As well based on BES agent policy, BES is supported to be charged from renew-
able energy generations at off-peak times when extra energy is available in the
MG and discharged when needed to support the demand at on-peak times. The
problem is formulated on the discretized planning horizon of one-day with 24 one-
hour periods based on the daily cyclic pattern for parameters. In the following, the
mathematical model and constraints of component in the micro-grid are described.

2.2.1 Economic dispatch

In this study, as shown in Eq. (2.18), the general objective is to find the optimum
operating policy for allocating the total demand between various providers.

min
∑
t∈T

(CtPt), T = {1, 2, ...} (2.18)

2.2.2 Energy Balance constraint

The deterministic equivalent model can be formulated as a linear programming
problem where the total provided power should be equal to the total consumed
power as shown in Eq. (2.19).

P PV
t + PWT

t + PES−
t + PMT

t + P gr−
t = PES+

t + PL
t + P gr+

t (2.19)
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2.2.3 WT constraints

The drawn power from WT depends on the wind speed and could be calculated
by Eq. (2.20). It can oscillate between minimum and maximum power provided by
turbine as shown in Eq. (2.21).

PWT
t =


PWT = 0 if vt ≤ v or v ≤ vt

(vt − v)/v̂WT − v) ∗ P̂WT if v ≤ vt ≤ v̂WT

P
WT

= P̂WT if v̂WT ≤ vt ≤ v

(2.20)

PWT ≤ PWT
t ≤ P

WT
(2.21)

2.2.4 PV constraints

The power generated by PV depends on the solar radiation on PV module and
could be calculated via Eq.(2.22), where β is cell efficiency of PV system. Further,
the variation in PV power could be done between minimum and maximum values
as shown in Eq. (2.23).

P PV
t = βPVAPV It (2.22)

P PV ≤ P PV
t ≤ P

PV
(2.23)

2.2.5 MT constraints

Constraints in MT could be considered as turn on/ turn off constraints as shown
in Eqs. (2.24-2.26).

πMT
t − πMT

t−1 − ϵMT
t + αMT

t = 0 (2.24)

αMT
t +

δt1∑
k=t

ϵMT
t ≤ 1, δt1 = min{t+ TMT,on, T} (2.25)

ϵMT
t +

δt2∑
k=t

αMT
t ≤ 1, δt2 = min{t+ TMT,off , T} (2.26)

πMT
t is a binary variable that indicates on/off situation at time t. It allocates

one when the unit is on, otherwise its value will be zero. αMT
t and ϵMT

t are binary
variables whose condition depends on the unit exploitation conditions change.
Eq. (2.27) shows Ramp up and down constraints in MT [78].

RL ≤ (PMT
t − PMT

t−1 ) ≤ RH (2.27)
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Output power in MT is limited between minimum and maximum power gen-
eration, as shown in Eq. (2.28). Moreover, fuel consumption by MT depends on its
efficiency and could be calculated by Eq. (2.29).

πMT
t .PMT ≤ PMT

t ≤ πMT
t .P

MT
, πMT

t ∈ {0, 1} (2.28)

FMT
t = PMT

t /µMT (2.29)

2.2.6 ES constraints

As shown by Eq. (2.30), the energy stored in BES could not exceed the minimum
and maximum capacity. Accordingly, its state of charge (SOC) could be calculated
via Eq. (2.31).

EBES ≤ EBES
t ≤ E

BES
(2.30)

SOCBES
t = SOCBES

t−1 + (EBES−
t − EBES+

t )/E
BES

(2.31)

Energy level in BES at any time period ∆t is dynamically updated by Eq. (2.32),
where πBES

t is a binary variable that remarks charge and discharge mode.
EBES

t = EBES
t−1 + (πBES

t .PBES−
t + (1− πBES

t ).PBES+
t ) ∗∆t, πBES

t ∈ {0, 1} (2.32)

The stored power in BES could not exceed the maximum charge rate, when BES
is in charging mode (πBES

t = 1), and in discharging mode (πBES
t = 0), the injected

power by BES could not pass the maximum discharge rate as shown in Eq. (2.33,
2.34).

(1− πBES
t ).PBES+

t ≤ P
BES+

, PBES+
t ≥ 0 (2.33)

πBES
t .PBES−

t ≥ P
BES−

, PBES−
t ≤ 0 (2.34)

2.2.7 Grid constraints

The exchange power between external grid and MG could not exceed the mini-
mum and maximum exchange power of the inverter as shown in Eq.(2.35-2.37).

P
GR− ≤ PGR

t ≤ P
GR+

(2.35)

(1− πGR
t ).PGR−

t ≥ P
GR−

, P
GR−

< 0 (2.36)

πGR
t .PGR+

t ≤ P
GR+

, P
GR+

> 0 (2.37)
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2.3 Conclusions

In this chapter, the implementation of two different power systems was presented
with two different models; simulation model for green building and mathemati-
cal model for smart city. In the simulation model, real behavior of the converters
connected to the DC bus was investigated and the mathematical equations and
the implemented circuit model were investigated. In the mathematical model, the
generation resources were analyzed in the form of mathematical equations based
on power exchange. The control mechanisms used in each power system and con-
straints of the systems were presented, which should be considered in the imple-
mentation a smart grid through the MAS. In this chapter, the main constraints of
each system were introduced. For green building, the goals were to maintain volt-
age of the DC bus in constant value, and in smart city, the aims were to optimize
the total cost of electricity consumed in the MG and create balance between supply
and demand. In general, this chapter presented methods of implementing power
systems for smart control by artificial intelligence algorithms, which can be a suit-
able guidance for researches in the field of smart grids.



Chapter 3

Energy management system

In order to manage energy of the power systems presented in the previous chap-
ter, two bottom-up approaches are presented in this thesis. In this section, the
presented control approaches are introduced. Two types of control systems are
considered for energy management. In first section, energy management based on
subsumption architecture is explained for managing green building, and then ten-
dering process is fully introduced in the second part to control in smart city.

CONTENTS:

3.1 Subsumption architecture for managing energy in green building
3.2 Markov decision process in a smart contract for managing energy in smart

city
3.3 Conclusions

20



3.1. SUBSUMPTION ARCHITECTURE FOR MANAGING ENERGY IN GREEN BUILDING 21

3.1 Subsumption architecture for managing energy in
green building

In this research, the aim is to fix the voltage of DC bus and supply demand in the
green building. At any time, only one agent controls the voltage in system and
shares current based on its own constrains. This request is applied by a signal
shared through the communication port. In most previous research (mentioned
earlier), the objective is to enable energy management in a system without consid-
ering any fault in the management unit [79, 80]. This may threaten the reliability
and stability of smart grids. In this research, a bottom-up approach is developed to
manage energy in a system similar to that presented in [55, 75] and results are com-
pared especially when decision part is under fault. Results show that the proposed
approach is more fault tolerant as compared to the method presented in [55, 75],
where the whole system would collapse if CEMS faced a failure or agent carries
token fails, respectively. In the proposed mechanism, when the agent is in nor-
mal operation, sets in a layer of subsumption architecture and with sending 5 bits
signal via the communication bus clarifies its cooperation in the system. When
that agent faces failure, its signal will not be received by others and hierarchical
algorithm reconfigures itself. In general, the main contributions of this research
are:

• An online smart energy management framework is proposed to sup-
port supply-demand balance in a DC microgrid. The framework is easy
to implement in a large-scale system due to simple behavioural if-then
rules.

• A multi-agent based energy management scheme is proposed to mon-
itor generators interaction. The proposed solution has high reliability
and is easy to implement.

• A low bandwidth communication is used engage agents in order to
transmit their operating conditions and status in the smart system. By
implementing it on the smart system, characteristic of fault tolerance
will be added to the system.

3.1.1 Decision algorithm

As it was mentioned that there are two decision-making structures in order to con-
trol the agents in multi-agent systems; the CEMS and the DEMS. In this study, the
DEMS is used to manage and control the energy among various available sources,
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Figure 3.1: The flowchart of agent’s decision

where each energy source is controlled through an agent. The first step for the
agents is to check the available power from the generator. Subsequently, based on
the hierarchal algorithm given in figure 3.1, agents will choose the control mode
that is either voltage mode or current mode. If the voltage control mode is chosen,
agent will control DC bus voltage and can share current based on its current shar-
ing layer (Section 3.4). In this case, shared current is supplied by another one (as
will be discussed in section (3.1.4)).
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Figure 3.2: Brooks’s subsumption architecture for our case study

3.1.2 Priority mechanism

In order to manage and control MASs, it is essential to utilize a robust intelligent
algorithm to allocate tasks between agents. Subsumption architecture is proposed
as a reactive structure to organize and define principle among agents. In this ar-
chitecture, any agent has priority in the system. Each agent takes place in one
layer and the lowest layer has the highest priority. Brooks developed this structure
in 1986 to control robot’s behaviours, wherein any behaviour is organized in a lay-
ered architecture based on a priority as shown in figure 3.2 [81]. For example, layer
1 has priority over layer 2 and 3 but if layer 0 is activated, it can be disregarded.
With this approach, the main challenge of energy management in a system is di-
vided into a set of simple challenges which can be implemented by some simple if
and then rules.

subsumption architecture designed by Brooks includes a hierarchy of compe-
tence for layers. Accordingly, a layer without any communication can override
the remaining of its higher layers at any time and control the system as long as it
is necessary [82]. It means that there is a rigid separation among the layers and
it is impossible for an agent to disregard this hierarchy any time even if a failure
exists in the decision part. Thus, when a fault occurs in a decision layer, the entire
system collapses. In order to have a robust control on the system, in this study, a
mechanism similar to the classic subsumption will be implemented but there is a
communication between agents that enables it to change priorities. This architec-
ture is developed to control the voltage of DC bus.
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As the main objective of energy management is to reduce the use of conven-
tional energy sources, thus, the external grid is located in the highest layer. Despite
an active load in the system, SC is considered in the lowest layer in order to store
energy when the load is in generation mode and supply power as soon as the load
turns to demand mode. Hence, SC has given the highest priority in suggested ar-
chitecture by allocating it the lowest layer. PV is next agent that has high priority
to make room for energy saving and maximum exploitation of its energy. Finally,
battery is located in layer 2 and when SC and PV are unable to control the voltage,
it could be controlled by the battery. As it is obvious, grid has the lowest priority
and when SC, PV, and battery could not control the voltage of DC bus, the grid
will be switched in for maintaining the system operation.

In the proposed approach, there is a distributed decision unit where agents
make their own decisions and carry out tasks independently, and in comparison
with ref. [55], communication between agents makes system robust. In order to
better understand, assume in [55], agent A is in voltage mode, if a fault occurs
in the central unit, the entire system will collapse, because all the set points are
appointed by the central unit. However, in the proposed mechanism, when an
agent collapses, system is reconfigured and rest of system controls and manages
energy.

3.1.3 Communication mechanism

To have proper reaction in the system, status of agent is transferred by a commu-
nication link. In the following, the communication between agents is explained.

3.1.3.1 Communication protocol

In order to use multi-agent systems, especially in DEMSs as depicted in figure 3.3,
it is essential to have frequent communication among the agents. For this pur-
pose, Controller Area Network-open (CANopen) can be used as a communication
protocol to transmit instructions between the agents [83]. The CAN bus is a fast
field bus control system having the possibility to transmit instructions in 0.2 ms
between various CAN stations and is used for decentralization, intelligence and
network control [84, 85]. Despite of CANbus does not need to support high data
traffic in this application; it has been selected due to its wide availability and com-
paratively low price.
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3.1.3.2 Digital message

In the proposed approach, agents communicate through CAN bus and transmit
5 bits to clarify their states. By using this data, each agent can have appropriate
reaction in the system. This data as status signal is defined as follows:

Bit 20 shows current control mode of agents. If it is 1, that means agent just sup-
plies shared current. For example, in figure 3.3, agent 2 supplies requested current
by agent 1. Bit 21 shows voltage control mode and when its value is 1, it means
agent is involved in controlling the voltage of DC bus. For instance, agent 1 in fig-
ure 3.3 is in voltage control mode. Bit 22 and 23 show the level of current sharing.
When bit 22 is 1, it means that agent shares current as defined by level 1, and when
bit 23 is 1 it implies that level 2 of the current sharing is activated. Further, when bit
22 and 23 is activated simultaneously, it means that current is shared based on level
3. For example, in figure 3.3, agent 1 shares layer 2 of its subsumption architecture
with others. In next subsection, subsumption architecture for current sharing will
be explained.

Bit 24 shows failure status of the agent. If it is 1, agent is in normal performance
and when it is 0, agent is under fault. For example, in figure 3.3, agent 3 is collapsed
and others are operating in normal state.

3.1.4 Current sharing mechanism

For optimal use of RESs and to eliminate voltage ripple on the switching, Brooks’
subsumption mechanism is implemented to share current between the available
sources. Thus, when agent wants to share current, it sends a binary code through
the CAN bus wherein agent clarifies about the shared current. Based on priority
and capability, other agents can reply to the request. In order to decrease trans-
mitted data in sharing, maximum three levels for each agent are considered. In
this case only the agent that is on voltage control mode can make the request. The
complete mechanism of current sharing is explained below.

3.1.4.1 Current sharing in SC

Assume SC is in voltage control mode, therefore, it can share current based on its
charge according to subsumption architecture shown in figure 3.4 (a). The follow-
ing set of instructions will be passed over the layers.

1. Layer 0: SC will set bit 22 if its SOC is in level 1.
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Figure 3.3: Structure of communication between agents
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Figure 3.4: The subsumption architecture for current sharing by (a) the SC agent,
(b) the PV agent and (c) by the battery agent

2. Layer 1: When its charge reaches to level 2, it triggers the bit 23.

3. Layer 2: SC activates bit 22 and 23 when its SOC is in level 3.

3.1.4.2 Current sharing in PV

Similar to SC, current sharing in PV is carried out by a hierarchy approach. As
it is shown in figure 3.4 (b), when PV agent controls voltage of DC bus; it shares
current in two states.

1. Layer 0: When terminal voltage of PV is nominal, it activates bit 22.

2. Layer 1: When terminal voltage of PV is dropped from nominal value, bit 23

is set by PV agent until it loses the voltage control.

3.1.4.3 Current sharing in battery

According to hierarchy algorithm, battery controls voltage when SC and PV are
out of service. In this case, if battery has enough stored charge, it will supply
to fulfil the demand and share current in three levels with the grid as shown in
figure 3.4 (c).

1. Layer 0: When SOC of battery is level 1, battery agent triggers bit 22.

2. Layer 1: Battery agent sets bit 23 when its charge is in level 2.

3. Layer 2: When its charge drops to level 3, before moving out of the voltage
control, battery agent activates bits 22 and 23.

When an agent is unable to supply shared current, it informs the other by acti-
vating bits 20 and 21.
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3.2 Markov decision process in a smart contract for
managing energy in smart city

In this study, a multi-agent system is implemented to manage energy at distributed
energy resources. Each DG is controlled and managed by intelligent agent. The
tendering process as a smart contract is implemented for controlling and manag-
ing MAS. In this smart contract, an agent is considered as tendering organization
which puts the requested power of consumers as a tendered item between DG
agents. Each DG agent as a bidder presents its offer price for supplying power
to the tendering organization. The tenderer chooses the lowest offer price as the
winner bid based on first price sealed-bid. The tendering organization iterates
tendering process while whole demand shared between DG agents and satisfied
balance between supply and demand. Since power system environment is a dy-
namic, utility-based agent is used in the proposed model that set of decisions to
converge the whole system to the optimum value. In the proposed model, agents
operate greedily in a way that, each agent tries to select an action which results in
more benefits. In this study, a separated decision algorithm is considered for each
agent which presents power to the system through the smart contract. Since BES
agent should store extra energy of RESs during off-peak time and support demand
during on-peak time, Markov decision process could be a suitable selection as a de-
cision framework to control BES’s set point. This framework allows BES to choose
appropriate action to move from state s to s

′ at each time period by considering fu-
ture rewards. For this purpose, BES should learn to perform the best action in each
state. To train BES in Markov decision process, Q-learning algorithm is used. BES
agent is trained by Q-learning algorithm based on historical data and participates
in the tender at each time period depending on located state by selecting an action.
The learning method for BES is based on rewards and penalties that agent receives
by performing an action at each state. The rest of agents are controlled by heuristic
algorithms wherein agents try to operate greedily. The proposed mechanism in
this study, provides a new approach in smart energy management system which if
implemented on MGs, will bring the following advantages:

• An online intelligent management system for controlling MGs without
any prediction.

• Given that decision-making in the proposed mechanism is online, it is
not necessary to consider uncertainty, unlike the scheduling manage-
ment systems.
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• The system is designed in such a way that agents make the optimum
decision at each time period and the tendering organization minimizes
the electricity cost of consumer by choosing the minimum offer price.

• Since BES agent uses reinforcement learning therefore, it stores power
at off-peak price and presents it to the consumer at on-peak price.

• In the proposed model, power is shared through the tendering process
so, at on-peak price, the grid bidder does not inject any power to the
MG due to high offer price.

• The presented mechanism has overlapping responsibilities so that if an
agent could not share power at each time period, it would not be partic-
ipated in the tendering process. Consequently, the proposed approach
could present fault tolerance, high stability and reliability to MGs.

3.2.1 Tendering process

Distributed decision making in a MAS lets user create a superior management
and as well provides balance between supply and demand in isolated and grid-
connected mode. In this study, each provider is controlled via smart unit called
agent except PV and WT which directly share their power with the MG. BES, MT
and the grid have their own smart control units which can sense signal in the sys-
tem, decide based on individual algorithm and regulate set points. In this struc-
ture, in order to control agents, a control structure is implemented over the system
that applies a smart contract among agents called tendering process.

The tendering process can be assumed as a smart contract on the MAS that
power rather being allocated by user among generators, could be allocated by a
small amount of code [86]. In a tendering process, bidders via their bid express
how much they prefer to participate in a particular contract. A tendering organi-
zation as an upstream agent supervises contracts and allocates tasks based on bids.
The tendering framework is generally utilized by companies and governments to
allocate services [87], along with in robotic industry [88, 89, 90] to devote tasks
among robots, and recently to create smart contracts in block-chain [91, 92, 93].
According to figure 3.5, in order to create a smart contract, an agent named tender-
ing organization is used which is responsible for creating balance between supply
and demand. In fact, the tendering organization takes demand from consumers
and spreads the requested power on generating agents. The proposed framework
creates a structure that makes possible for EMS to pass any failure appeared in
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the MAS. Any failure that occurs in one of the producers would result the mea-
sured power by the agent being zero, or if it happens in the agent, it would lead
to non-participation in the tender. As a result, the presented structure will be fault
tolerant against any failure in energy providers. In the presented framework, the
roles of the tendering organization is to arrange an online control, manage energy
and create cooperation between the bidders. To create smart contract and allocate
demand among generating agents, tendering organization uses FPSB algorithm.

3.2.2 First-Price Sealed-Bid algorithm

In the tendering process, FPSB algorithm is implemented by the tendering organi-
zation to allocate power among bidders [94]. In this algorithm, at the beginning,
consumer agent sends demand to the tendering organization. The tendering or-
ganization subtracts generated power by PV and WT from demand, and sets it
as a requested power and holds tender among bidders. As shown in figure 3.6
agents present offer price and power as bidders based on their evaluation and de-
cision structures. After evaluating and sending bids, the tenderer sorts them and
chooses the lowest offer price as the winning bid based on FPSB algorithm. The
winner shares its offered power with MG by regulating its set points. Tenderer
based on Eq.(3.1) in each tender considers supply-demand balance. If extra power
exist in the MG, at first, it will be offered to the BES. If the BES is full, it will be
injected to the grid. Iteration would be stopped, if balance condition is satisfied.
Figure 3.7 shows the flow chart of FPSB algorithm that is described in the follow-
ing:

1. At each discrete one-hour period, demand PD
t , available power in PV P PV

t

and wind PWT
t are sent to the tendering organization.

2. The tendering process calculates the net demand P T
t and present it as a new

tender.
3. The bidders who can support demand, send their available power and offer

price to the tendering organization.
4. The tender organization sorts bids based on agents and calls select winner

function which here is the lowest presented price.
5. The tendering organization subtracts the supplied power of winner from de-

mand, if total demand is supplied, the tendering process will be finished else
it will be iterated that Eq.(3.1) is satisfied and whole demand supplied by
generating agents.
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∑
i

Pwini
t − P T

t = 0 ; i = number of iteration (3.1)

3.2.3 Markov decision process for BES control

To manage energy in BES, a sequential decision framework is used that allows
agent to choose appropriate actions by considering available parameters at each
time period. In this study, Markov decision process (MDP) has been used to model
the sequential decision problem. MDP is a type of reinforcement learning (RL)
that deals with a set of state space s ∈ S, action space aπ ∈ A, transition func-
tion T (s, a, s

′
) and reward function R(s, a, s

′
) [95]. The transition function gives

the probability of landing on state s′ from s by choosing action a. In this study, the
planning horizon is defined as one-day consisting of 24 equal time slots. The pro-
vided power by PV, wind, requested power by the tenderer, electricity price and
stored energy by BES are defined as state variables {SPV

t , SWT
t , ST

t , S
SPOT
t , SBES

t } ∈
S. The decision-making space aπt shows the possible action of BES that could be
charging, idle, and discharging action where policy π chooses an action for each
state [96]. In the proposed system, all system variables are assumed to be constant
during each discrete-time period and it is supposed at time step t, BES agent does
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not have any preliminary information about PV and wind generation, demand,
electricity price from time step t+ 1. Therefore, the transition probability between
states always remains unknown.

In this study, Q-learning algorithm is implemented as a RL algorithm to train
BES agent. Because state variables in this study are continuous, so there are infi-
nite samples, which makes it complicated to learn by Q-learning. In order to solve
this problem, continuous state variables are discretized by c-means algorithm. By
discretization of state space, the number of samples would be finite, and conse-
quently, learning accuracy would be increased.

3.2.3.1 System state space

A state is a mathematical description of system condition that provides neces-
sary information for agent to make a suitable decision. Data included in state
space for modeling MDP consist of continuous variables of generated power by
PV and wind, requested power by the tendering organization, electricity price
and energy level of BES. To normalize the state variables, first, historical data
{SPV

t , SWT
t , ST

t , S
SPOT
t , SBES

t } is presented to c-means algorithm. C-means is a point-
based clustering algorithm that begins with the cluster centers initially placed at
arbitrary positions [97]. Then, data is allocated to the nearest center. In this al-
gorithm, by moving the cluster centers tried to minimize the sum of the squared
Euclidean distances between data Xi and the centroid mi as shown in Eq.(3.2) [98].

E(m1, ...,mk) =
k∑

j=1

n∑
i=1

||Xi −mj||2 (3.2)

The proposed approach could map the historical data, provided power by PV,
wind, requested power by the tenderer, electricity price to the discrete spaces. Each
variable set is divided into three clusters wherein each data is allocated to a cen-
ter. Any cluster supports a certain range of power or price, and the center of that
cluster is known as cluster representative. In fact, c-means algorithm maps each
data to a center. In this mapping approach, cluster centers are considered as state
spaces and during training Q-learning algorithm, they are used as discrete vari-
ables. So, the output of c-means algorithm is discrete-time variable space as de-
fined in Eq.(3.3).

Ŝt = {ŜPV
t , ŜWT

t , ŜT
t , Ŝ

SPOT
t , ŜBES

t } (3.3)

In this study, variables are divided into three clusters, i.e., charging, discharg-
ing and idle mode area. The cluster centers for each data set are utilized as discrete
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state space in MDP for training Q-learning algorithm. After training c-means algo-
rithm, once a data is inserted to the algorithm as input, one of these three cluster
determines at the output. As well, in this study, to normalize BES energy level the
following approach is applied:

• If 10% ≥ SOCBES
t ≥ 0, the first cluster that BES could just have charging

operation.
• If 90% ≥ SOCBES

t > 10%, the second cluster where BES could operate
in idle, charging or discharging mode.

• If 100% ≥ SOCBES
t > 90%, the third cluster where BES just operate in

discharging mode.

3.2.3.2 Action policy

According to state space, BES agent can select an optimal action policy aπt at each
time period to minimize the drawn power from the grid and consequently, elec-
tricity cost. As shown in Eq.(3.4), BES agent can select three actions at each time
period. The policies that BES agent can choose based on various situations are
described in the following:

• At off-peak price pireod, agent can just select the charging acion, unless
it is fully charged.

• While electricity price is between off-peak and on-peak time, BES agent
can choose one of charging, discharging and idle actions.

• At on-peak time, if a tender is held, BES can participate and perform
discharging action.

• If it is full, BES agent can not select charging action even it is at off-peak
price.

• BES agent could not preform discharging action and participate in a ten-
der, when it is empty.

Consequently, action policy for BES agent is based on requested power in a
tender and its stored energy could be considered as shown in Eq.(3.5)

A = {Charge, Idle,Discharge} (3.4)

Aπ
st =


Charging if ŜSPOT

t =Off peak time & EBES
t < EBES

t

Idle, charging, discharging if ŜSPOT
t ̸=Off/On peak time & EBES

t < EBES
t < E

BES

t

Discharging if ŜSPOT
t =On peak time & EBES

t < EBES
t

(3.5)
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BES agent gradually learns how to react in different state without any infor-
mation about the next period by using Q-learning algorithm. Consequently, BES
agent at each time period could update its energy level by performing actions ac-
cording to Eq.(3.6).

PBES
t+1 =


1/ηCh[min{(|P T

t |+ PBES
t ), (P

BES

t − PBES
t )}] Charging mode

PBES
t Idle mode

ηDis[min{(PBES
t − |P T

t |), (PBES
t − PBES

t )}] Discharging mode
(3.6)

3.2.3.3 Cost function for BES control

At each time period, state of BES agent is transferred from ŝ to ŝ′ by performing
an action and depending on the action, it receives reward or penalty. As shown
in figure. 3.8, the agent in state s performs an action on the environment based on
its action policy to moves to state s’ and gains related reward or penalty. Eq.(3.7)
shows the reward or penalty of BES agent at time t.

ft(ŝt, at, ŝ
′
t) = ηR/PC(ŝt, at, ŝ

′
t)p(ŝt, at, ŝ

′
t), ∀ ŝt ∈ Ŝ, at ∈ Aπ

ŝt (3.7)

where p(ŝt, at, ŝ
′
t) is the amount of power that BES receives or transmits to move

from state ŝ to ŝ′ by acting at. C(ŝt, at) shows the cost of kilowatt hours of electric-
ity. ηR/P is reward or penalty factor that is considered a small amount for the
reward and a large amount for the penalty. The large amount penalty causes agent
learns that wrong action at state s will result a heavy fines. Therefore, when BES
agent lies in a same situation, makes the best choice. It is clear that BES at each
time tends to maximize its profit. By implementation the proposed cost function,
the agent learns which state is the best state for charging, discharging and idle.
By choosing the proper action policy, BES agent finds the profit that finally, the sum
of these actions lead to reach the maximum profit. Based on Eq.(3.8), by selecting
the appropriate action, BES agent could calculate the total profits that would gain
in the future.

F π
t (ŝt, at, ŝ

′
t) = ft(ŝt, at, ŝ

′
t) +

∞∑
i=1

Γi[ft(ŝt+1, at+1, ŝ
′
t+1)], ∀ ŝ ∈ Ŝ, a ∈ Aπ

ŝt (3.8)

where Γ implies the future discount factor. When Γ=0 the current profit is very
critical, and Γ=1 implies that the future profits are as important as the current
profit.
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3.2.3.4 Q-learning algorithm

To solve sequential decision, Q-learning algorithm is a suitable selection. The op-
timization problem becomes complicated when the number of states and actions
increases, especially while the system is unpredictable. Therefore, in this type of
EMS, it is critical to use an algorithm not only to manage the system, but also to
increase its performance. MDP presents a mathematical framework where agent
could transfer from state ŝ to ŝ′ by action a with probability function T (ŝ, a, ŝ′) and
gain profit F . In order to implement this problem based on MPD, utility function
of agent at state ŝ could be updated based on Bellman Eq.(3.9).

ut+1(ŝ) = F (ŝ) + γmax
a

∑
s′

T (ŝ, a, ŝ′)Ut(ŝ
′) (3.9)

Considering that calculating the values of utility function and transition proba-
bility function could be challenging so, in this study, Q-learning algorithm is used
that is a model-free RL algorithm in which instead of calculating utility function
and transition probability function returns Q-value for each state-action pair, as
shown in Eq.(3.10).

Qt+1(ŝt, at)←− (1− α)Qt(ŝt, at) + α(ft(ŝt, at, ŝ
′
t) + γmax

a′
Qt(ŝ

′
t, a

′
t)),

∀ ŝt, ŝ′t ∈ Ŝ and at, a
′t ∈ A

(3.10)

In this algorithm, a Q-value is defined for each state-action pair that BES agent
updates it based on rewards and penalties gained by acting various actions in the
system. In each exploration, Q-values are stored in a lookup table. α is the learning
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rate that if α=0, BES agent more attends to use previous information and, while
α=1, agent would like to explore and learn against to use its knowledge. To escape
from local optima, ϵ-greedy policy is used to provide trade-off between exploration
and exploitation. By generating ϵ as a random number, agent selects an arbitrary
action with probability ϵ and with 1-ϵ probability, agent selects the action that is
faced with high profit in the system environment. Algorithm 1 shows the structure
of Q-learning algorithm that is implemented to control and manage energy in BES.

Algorithm 1: Q-learning algorithm for controlling BES
1 Training process:
2 Initialize Q0(ŝ, a) = 0,∀ŝ ∈ Ŝ, a ∈ A
3 Initialize learning parameters: ηR = 1 ηP = 200, γ = .95, α = .5, ϵ = .2
4 while t = 1, 2, ... do
5 Normalize S ={SPV , SWT , ST , SSPOT , SBES} by c-means algorithm
6 Determine Ŝ = {ŜPV , ŜWT , ŜT , ŜSPOT , ŜBES}
7 Generate random number β
8 if β < ϵ then
9 Select random action a ∈ A and gain ft(ŝt, at, ŝ

′
t) ▷ exploration

10 else
11 Select action aπt (optimal policy) and gain ft(ŝt, at, ŝ

′
t) ▷ exploitation

12 end
Qt+1(ŝt, at)←− (1− α)Qt(ŝt, at) + α(ft(ŝt, at, ŝ

′
t) + γmaxa′ Qt(ŝ

′
t, a

′
t))

t←− t+ 1
13 end

Testing process:
for t=1:24 do

if Existing a tender then
Normalize S ={SPV , SWT , ST , SSPOT , SBES} by c-means algorithm
Determine Ŝ = {ŜPV , ŜWT , ŜT , ŜSPOT , ŜBES}
Select action aπt ∈ A with maximum Q-value
Update PBES

t based on Eq.(3.6)
end
CBES
t = CBES

t−1 +1/|ηR/P | ∗ ft(ŝt, at, ŝ′t)
end

At any given state, in addition to the Q-value, the BES agent should consider its
capacity to choose an action at ∈ A. So that if at time t, the BES agent is placed on
charging mode according to the Q-value, it will perform the charging action on the
condition that its level of stored energy is less than the maximum energy that can
be charged. As the same way, when it is placed on discharge mode based on the
Q-value, it will choose the discharging action provided that its energy is more than
the minimum stored energy. In each tender, the BES agent updates its offer price
based on Eq.(3.11) after taking charging action, and also its revenue according to
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Figure 3.9: Overview of the proposed decision approach on BES agent

Eq.(3.12) at the end of any tender.
bES
t+1 = (PES

t−1.b
ES
t + (ϕES

t + ζES.ϕES
t ).PES−

t )/PES
t (3.11)

RES
t = RES

t−1 + πES
t .ϕES

t .PES−
t + (1− πES

t ).bES
t .PES+

t (3.12)

Figure 3.9 shows the general overview of the proposed decision approach on
BES agent. In this structure, at first, continuous historical data as input data is ap-
plied to c-means algorithm to be normalized and transformed into discrete data.
Discrete data then, is used to train Q-learning algorithm. After training both al-
gorithms, the structure is prepared to manage energy in BES. When a tender is
held, at the beginning, data set as state space is applied to the trained c-means to
be normalized then normalized state space is presented to Q-learning algorithm to
clarify the optimal action policy. While action policy is clarified, BES agent accord-
ing to SOC assigns supply power and offer price. At the end, BES agent regulates
set point of converter.

3.2.4 Structure of decision in MT agent

Heuristic decision making algorithm is used to control set point of MT in the sys-
tem. As shown in algorithm 2, MT agent based on its situation in previous state
chooses various offer prices to gain profit and satisfies on/off constraints. Its offer
price could be calculated based on Eq. (3.13). MT agent during various period,
based on its policy action as shown in Eq. (3.14), selects different set point. During
on-peak price, by considering grid constraint, MT agent can inject power to the
grid to gain more profit. While it is selected as winning agent, MT agent changes
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set point of micro turbine and then, based on its offer price updates its revenue as
shown in Eq. (3.15). If it was not selected or not cooperated in a tender, it would
not inject power to the system.

bMT
t = CMT,fu + CMT,o&m + CMT,st + CMT,inv (3.13)

πMT
t =


PMT
t = 0 if off − peak price

PMT
t = PMT if (TOUt − bMT

t ) ≤ε & PMT
t−1 ̸= 0

PMT
t = P

MT
, PMT

t = P T
t if on− peak price

(3.14)

RMT
t ← (RMT

t−1 + bMT
t .PMT

t + SPOTt.P
MT−GR
t ) (3.15)

Algorithm 2: Decision structure of MT agent
1 Input:

2 X = [t = {1, 2, ..., 24}, P T
t , TOUt, P

MT , PMT , SPOTt,PMG−GR]
3 Output:
4 Y=[Offer price and power by MT, Revenue gained by MT, set point of converter]
5 if Existing tender (P T

t > 0) then
6 if MT is on at previous time (PMT

t−1 ̸= 0) then
7 bMT

t ← b
MT

▷ Offer maximum bid
8 else
9 bMT

t ←(bMT − ζMT
t .b

MT
) ▷ Use discount

10 end
11 if It is on-peak time then
12 Select action based on πMT

t in on peak price (Eq.( 3.14))
13 PMT

t ← (pMT
t + PMG−GR

t )

14 else
15 Select action based on πMT

t in off peak price (Eq.( 3.14))
16 end
17 Wait for holding the tender
18 if Win? bMT

t = bwin
t then

19 Regulate set point
20 Update revenue based on Eq.(3.15)
21 end
22 else
23 PMT

t ← 0 ▷ Non-cooperation
24 end

3.2.5 Structure of decision in Grid agent

To control the connected inverter to the grid, a decision making algorithm is pro-
posed as shown in algorithm 3. At each time period, grid agent presents its offer
price to the tendering organization and according to existing constraints of inverter
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and requested power, can send power to the MG. Once extra power exists in the
MG, grid agent can absorb it as much as its constraints allow. After holding a ten-
der, grid agent depending on winning or losing in the tender, can regulate set point
of inverter and then updates its revenue by using Eq.(3.16).

RGR
t = RGR

t−1 + bGR
t .PGR

t (3.16)

Algorithm 3: Decision structure of the grid agent
1 Input:

2 X=[t={1, 2, ..., 24}, P T
t , TOUt, P

GR]
3 Output:
4 Y=[Offer price and power by the grid, Revenue gained, set point of converter]
5 if Existing tender P T

t > 0 then
6 bGR

t ← SPOTt ▷ Offer price

7 Based on demand, offer PGR
t ← (P

GR+ , |P T
t |) ▷ Offer power based on

requested power and constraint
8 Wait for holding the tender
9 if Extra power is available in the MG then

10 PGR
t ← (P

GR− , |P T
t |) ▷ Absorb the extra power

11 end
12 Regulate set point
13 Update revenue based on Eq.(3.16)
14 else
15 Wait for a new tender
16 end
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3.3 Conclusions

In this chapter, two intelligent control systems based on the bottom-up approach
were presented to control and manage energy in MGs. In the first section, an ap-
proach with distributed decision-making was presented, in which the agents tried
to control the DC bus and supply the demand by using subsumption architec-
ture and sharing information through the data bus. In the second section, an en-
ergy management system based on multi-agent system under supervising a smart
contract with a bottom-up approach was presented to control a grid connected
DC micro-grid. In the proposed mechanism, in order to have a robust control
structure for BES, Markov decision process is considered as a mathematical con-
trol framework, which is trained by Q-learning algorithm to clarify BES’s action
policy. Heuristic algorithms were introduced for the rest of agents in MAS to man-
age energy. In the presented structure, agents are utility-based agents who are only
trying to maximize their own profit. The structure is implemented in such a way
that set of decisions and actions of these agents maximizes the final benefit of the
system. As a general conclusion, the proposed approach in this thesis creates a
very robust coordination in the MAS, which makes the system performance better
in normal operation and in fault-facing.



Chapter 4

Results and Discussion

In this chapter, performance of the presented energy management systems is ex-
amined and analysed on the green building and smart city, separately. The simu-
lation is done in such a way that agents can online measure, decide and act in the
system without prediction.

CONTENTS:

4.1 Results of energy management by using subsumption architecture
4.2 Analysis of energy management based on smart contract
4.3 Conclusions

43
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4.1 Results of energy management by using subsump-
tion architecture

The green building as shown in figure 2.1, includes an active load and a grid con-
nected PV with two storage devices. The details are:

• 1 kW PV generator with a voltage of 190 V
• The electrical grid with a voltage of 380 V (phase to phase)
• SC with a capacity of 10 F having a nominal voltage of 75 V
• Two batteries each having a voltage of 144 V and a capacity of 60 AH

All the elements are connected to an active load through a 100 V DC bus. The
active load can be operated as a motor or generator. A current rectifier and 230/100
V buck converter is used to connect the grid to the DC bus. The SC and batteries
are connected to the load through bidirectional converter and buck converter, re-
spectively.

At first, the proposed EMS is implemented on a simulation model with a sce-
nario of 30 s while all the converters act with real behaviour. The converters are
modeled to present real behaviour and not just as a voltage source converter. For
this reason, inevitable oscillation appears in profiles.

4.1.1 Result of Energy Management

To implement the proposed mechanism on the system, some parameters have been
defined as shown in table 4.1. In order to have a suitable comparison, these pa-
rameters are obtained from [55]. Initially, it is assumed that SC and battery is fully
charged and all the agents are in normal mode, and therefore, bit 24 for all of them
is set to 1.

Table 4.1: The level of constraints for agents and respective shared currents.

Agent Level of constraints Constraints Shared current (A)
Level 1 85% < SOCSC 0

SC Level 2 70 < SOCsc ≤ 85% 6
Level 3 55% < SOCSC ≤ 70% 12
Level 1 VPV nom≥ 190 0

PV
Level 2 VPV nom < 190 15
Level 1 13% ≤SOCBat 0

Battery Level 2 10% ≤SOCBat <13% 8
Level 3 7%< SOCBat <10 16
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Figure 4.1: The injected current by SC under different time periods of decision
making
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Figure 4.2: The state of charge of SC
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Figure 4.3: The injected currents by PV under different time sections of the decision
making
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Figure 4.4: The evolution of the PV output voltage

Control voltage by SC: In the start, all the agents check for the available power
and based on subsumption architecture, SC agent overrides all requests and takes
control of DC bus and supplies the energy demand. Consequently, it sets bit 21

and, sends [10110] as signal to the communication port. It means that SC agent is
in normal mode and shares current with level 1 of its current constraint as shown
in figure 4.1. At t=1.3 s, its charge is dropped to 85% (figure 4.2) and SC enters to
second level of current constrain, so activates 23 bit, [11010], to request for sharing
current. Based on section 3.4, PV has high priority to share current with SC. Sub-
sequently, PV agent accepts to supply shared current, by activating bit 20 ([10001]).
The PV supplies 6A of demand as shown in Figure 4.3. At t=3.7s, as the SOC of
SC drops below 70%. PV increase the share to 12 A. Therefore, the communication
signal by SC is changed to [11110], and PV supplies a total of 12 A. If PV cannot
supply shared current, battery and grid can do it based on their priority.

Control voltage by battery: When charge of SC drops to 55% (t=7.9 s), SC agent
based on its voltage constraint in subsumption architecture cannot supply the de-
mand. So, the voltage control transferred completely to the agent placed in the
next layer (which was supposed to be PV). However, at t=7.9 s, terminal voltage of
PV is also dropped such that it is out of service (figure 4.4). Thus, based on figure
4.5, battery has enough charge to supply the requested demand, and by sending
[10110] as a data signal, it controls the DC bus. Further, based on the SOC of bat-
tery, the battery agent shares current in three levels with the grid agent, as shown
in figure 4.6 and figure 4.7.

Control voltage by grid: After cooperating in three levels of current share by
battery as shown in figure 4.7, at t=11 s the grid takes the control of voltage at
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Figure 4.5: The state of charge of battery

0 5 10 15 20 25 30
-40

-30

-20

-10

0

10

20

30

Time (sec)

I 
ba

tt
er

y 
(A

)

Share 8A Share 16A

Charging

Current control mode

Out of service

Voltage control mode

Out of service

Out of service

 

Figure 4.6: The injected current by battery under different time span of decision
making

DC bus by sending [10010] over the communication port. If any agent with high
priority exists with sufficient power to share, it can override the grid’s request.
However, the grid has the ability to keep it for a long time without sharing current
until one of the agents with high priority overrides its precedence.

As there is an active load in the system thus, it can provide energy in generator
mode (see figure 4.8). At t=13 s, load generates power and SC stores it. Therefore,
SC takes voltage control until t=15.6 s. During this time, the terminal voltage of PV
is also increased. The energy generated by PV is absorbed by the battery since it is
already discharged. When the SOC of battery is reached to 100%, it is disconnected
from the PV. Once the load finished generating energy, the SC is charged enough
to keep the control of DC bus by sending request [10110]. The other agents cannot
override its competence because it is in the lowest layer with high priority.
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Figure 4.7: The injected current by grid under different time section of decision
making
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Figure 4.8: The waveform for the load current variation

 

Figure 4.9: The voltage at the DC bus
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The SC agent during voltage control of DC bus shares current with PV in two
steps by sending signals [11010] and [11110] over the communication network.
After the SOC of SC drops to a critical percentage, the PV with high priority based
on hierarchical algorithm takes voltage control of DC bus. It is obvious that when
PV controls the voltage of DC bus, others can just participate in sharing the current.
It is worth mentioning that only the agent with high priority (here SC) can take
voltage control back. The PV agent will supply load until there is sunshine. To
conclude, all the interactions among the agents are assigned by a communication
signal. Agents just by reading the 5 bits signal can sense variations in the system
and take a proper control action. Figure 4.9 shows how agents control DC bus
without any fluctuation in switching.
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4.2 Analysis of energy management based on smart
contract

To evaluate the effectiveness, hourly data information and parameter settings of
the MG in a 24 one-hour period are applied as inputs to the proposed approach.
The data set includes demand, solar and wind power generation, electricity price,
and initial charge of battery. The BES capacity is considered 30 percent at the be-
ginning and maximum discharging and charging rates are assumed to be 10 and 90
percent of total BES capacity, respectively. The MG is connected to the grid through
a 20 kW inverter. A summary of data information and parameters are presented in
tables 4.2-4.4.

Table 4.2: Constraints of PV and WT agents

PPV P
PV

P
WT

bPV,WT
t

0 kW 20 kW 25 kW 0.13 USD

Table 4.3: Constraints of ES agent

EES E
ES

PES P
ES

ζES

0 kWh 10 kWh 1 kW 9 kW %30

Table 4.4: Constraints of MT agent

PMT P
MT

b
MT

ζMT
t

2.5 kW 10 kW 0.18 USD %15

4.2.1 Result and discussion

In this study, the idea is online control and manage a MG. At the beginning of
each time period, it is assumed all the renewable energy resources present their
available power and consumer agent submits its requested power to the tendering
organization. Figure 4.10 shows provided power by PV and WT as well, requested
power by consumer. The tender organization after calculating net demand (P T

t ),
presents it as a tender among BES, MT and the grid to achieve balance between
supply and demand.

While a tender is held, each agent presents offer price and power based on its
smart control units. BES agent, at the beginning of simulation, applies continuous
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Figure 4.10: Demand and supplied power by PV and WT (TOUt, SPOTt)

(a) Historical solar energy data (b) Historical wind energy data

(c) Historical Demand data (d) Historical SPOT data
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(a) Q-value of state-action pair for s1 to s120 

 

(b) Q-value of state-action pair for s121 to s240 

 

Figure 4.12: Q-value of BES for state-action pair obtained by Q-learning algorithm
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Table 4.5: Center and range of clusters created by c-means algorithm

Center of Center of Center of Range of Range of Range of
cluster 1 cluster 2 cluster 3 cluster 1 cluster 2 cluster 3

PV 0.2408 7.4173 13.9367 [0 3.8284] (3.8284 10.6763] (10.6763 19.23]
WT 5.6873 10.2224 16.811 [1.14 7.9546] (7.9546 13.5153] (13.5153 24.1]
Demand 6.7947 15.2947 26.1126 [2.2511 13.9352] (13.9352 26.178] (26.178 35.9448]
SPOT 0.1313 0.1752 0.2156 [0.1107 0.1532] (0.1532 0.1954] (0.1954 0.24]

Table 4.6: State, Q-value and action policy of BES during 24-hour

t 1 2 3 4 5 6 7 8
PV 0 0 0 0 0 0 0.115 5.757

WT 7.574 6.541 5.416 8.509 6.632 14.165 5.706 10.128
Demand 5.206 4.938 3.963 10.715 10.503 8.046 10.351 15.225

SPOT 0.1255 0.1264 0.1189 0.1156 0.1344 0.1431 0.173 0.1756
BES 53.68 69.71 84.24 84.24 84.24 90 90 90
ŝi [1 1 1 1 2] [1 1 1 1 2] [1 1 1 1 2] [1 3 1 1 2] [1 1 1 1 2] [1 2 1 1 3] [1 1 1 3 3] [2 3 3 3 3]

QCHR
i 25.78 25.69 25.69 23.36 25.78 25 -240.08 -327.7

QIDL
i -132.63 -132.63 -132.63 -117.1 -132.63 0 29.7 35.39

QDCHR
i -1.42 -1.42 -1.42 -4.88 -1.42 0 -29.3 -30.72
Action CHR CHR CHR CHR CHR CHR IDL IDL

t 9 10 11 12 13 14 15 16
PV 8.546 15.207 15.329 16.608 11.817 10.898 9.386 3.705

WT 9.276 5.103 2.725 7.212 2.936 6.391 8.297 9.674
Demand 22.632 32.437 26.178 30.897 21.192 12.787 11.256 11.542

SPOT 0.1995 0.2182 0.2232 0.2017 0.1692 0.1445 0.1396 0.1506
BES 41.9 10 10 10 10 55.02 90 90
ŝi [2 3 2 2 2] [3 1 2 2 1] [3 1 3 2 1] [3 1 2 2 1] [3 1 2 3 1] [3 1 3 1 2] [2 3 3 1 3] [1 3 3 1 3]

QCHR
i -401.8 -97.04 -38.3 -38.78 -18.24 0.56 23.37 26.19

QIDL
i -363 -168.48 -14.07 -18.04 3.41 -25.5 -104.01 -235.46

QDCHR
i 1.55 4.26 4.29 4.25 -32.23 -25.4 -8.74 -3.7
Action DCHR DCHR DCHR DCHR IDL CHR CHR CHR

t 17 18 19 20 21 22 23 24
PV 2.048 0 0 0 0 0 0 0

WT 12.818 18.766 17.521 13.403 7.565 8.594 10.355 7.993
Demand 19.355 33.132 26.954 20.018 15.634 13.935 8.765 5.692

SPOT 0.1731 0.2135 0.2215 0.2118 0.2132 0.1797 0.1606 0.1332
BES 90 10 10 10 10 10 10 33
ŝi [1 3 3 3 3] [1 2 2 2 1] [1 2 2 2 1] [1 3 3 2 1] [1 1 3 2 1] [1 3 1 3 1] [1 3 1 3 1] [1 3 1 1 2]

QCHR
i -312.49 -433.35 -41.27 -38.8 -37.9 -9.7 -9.7 23.13

QIDL
i 34.4 -384.4 -23.28 -17.08 -6.29 3.35 3.35 -117.11

QDCHR
i -33.06 4.5 4.5 4.31 4.16 -33.78 -33.78 -4.61
Action IDL DCHR DCHR DCHR DCHR IDL IDL CHR

state space to c-means algorithm. As shown in Figure (4.11), c-means algorithm di-
vides data set to three clusters and maps each cluster to a center. In table 4.5 center
of cluster, range of power and price in each cluster are shown. After normalizing,
the discrete data is applied to Q-learning algorithm. The Q-learning algorithm cal-
culates a Q-value for each action in a state. Selecting an action that has a higher
Q-value in a special state, will result in more profit for BES agent. Figure (4.12a)
and figure (4.12b) show Q-value of each state-action pair that obtained through
Q-learning algorithm. As shown there are three actions that each one has especial
Q-value. The maximum Q-value in each state indicates the action which should
be chosen through BES agent to make the best decision in the tender. In table 4.6,
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Figure 4.14: Operation results of BES, MT and grid agents

Q-values and states are presented that during 24 one-hour, BES agent is located
in. BES agent at each tender based on located state and Q-value chooses one of
actions, charging, discharging and idle. Taking the action in each state based on
the optimal control policy, push agent to achieve more reward in the system. As it
is obvious in figure (4.13), BES agent stores energy while extra power exist in the
MG and also policy is charging. While balance in the MG is negative and policy
is to take discharging action, BES injects power if its SOC is more than minimum
defined SOC.

It can be seen in figure (4.13) that BES agent charge battery while electricity
price is low and in on-peak price, based on requested power by tendering orga-
nization supports the MG. Also, BES agent at some states take idle action that
means agent does not have any tendency to participate in the tender for instance,
t = 7, 8, 13, 17 s. In fact, BES agent based on trained Q-learning, just participates
in a tender when it is on-peak time or off-peak time. As it is clear in figure (4.14),
at off-peek price, BES agent chooses charging action and stores energy, and dur-
ing on-peak price, it takes discharging action and supports MG. During charging
modes, BES agent calculates its offer price based on Eq.(2.31) in order to present
to the tendering organization in the next tender as shown in figure (4.13). As it is
clear at whole time periods, BES offer price is less than rest and it shows BES agent
charges battery while it is off-peak price.

MT and grid agent uses heuristic algorithms to participate in a tender. As
shown in figure (4.14), MT agent injects power to the MG while it is on-peak time.
In fact during these time periods, it can gain more profit due to the highest re-
quested energy through the system. As it is clear during off-peak time, MT offer
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Figure 4.15: Revenue and total revenue of agents

price is more than the grid, so MT agent makes micro-turbine off. Therefor, MT
agent can just be as winner when its offer price is less than grid offer price, oth-
erwise, the tendering organization selects the grid as the winner. Based on MT
heuristic algorithm, during on-peak price, MT can present power to the grid to
gain more profit.

Figure (4.15) shows revenue of each agent in participating in tenders during
each time period. As shown, grid agent inject energy to the MG during off-peak
price and absorbs energy while extra power exists in it especially, in on-peak price.
So, by passing time, its total revenue would decrease. Since MT agent just at on-
peak price injects power to the MG and grid, gains more profits and along time its
total revenue would increase. BES agent at off-peak time period stores energy and
at on-peak time period injects energy to the MG, its total revenue would generally
increase.
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4.3 Conclusions

In this chapter, the results of implementation of the presented control approaches
in this thesis were examined. In the first section, subsumption architecture was
used to control DC bus and supply demand, in which the agents were responsible
for supplying power according to the existed priority in the control structure. In
order to increase the reliability in the system, the agents interacted with each other
through a communication bus, wherein each agent shared its status with the rest
of agents by using a 5-bit signal. The simulation results showed that the agents
share power well under the proposed approach in the green building.

In the second section, the results of controlling power in the smart city were
presented by using smart contract. The simulation results show that the presented
control framework accurately allocates power between agents and creates coordi-
nation them. On the other hand, in this framework, BES was controlled by Markov
decision process framework. The results show that BES stores power during off-
peak time and injects power to the MG during on-peak time. The presented ap-
proach decreases electricity price in the MG and increases reliability and stability
in the system.

In general, both of the presented methods manage the energy in the system
well, and it leads to create balance between supply and demand, as well as stability
in the power system.



Chapter 5

Result of fault tolerance

One of the main advantages of MAS is fault tolerance. In fact, when MASs face
a fault, they should be able to guarantee the stability of the system. In this section,
we will evaluate the performance of presented smart control systems in this thesis
against faults. It is assumed that BES agent will face a fault in both proposed struc-
tures.

CONTENTS:

5.1 Fault tolerance in subsumption architecture
5.2 Fault tolerance in smart contract
5.3 Conclusions

57
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5.1 Fault tolerance in subsumption architecture

In this section, the system is simulated for 10 s in order to evaluate the operation of
EMS in a fault-facing at the decision part. As mentioned in section 3.1.3.2, agents
transfer 5 bits to the communication port wherein bit 24 describes about the failure
status of an agent. Assuming at the beginning that the battery agent (decision part
of battery) suffered from a breakdown. Subsequently, the signal from the battery
over the data bus will be [00000]. In this case, hierarchy in layers is reconfigured
only with sub-behaviours of SC, PV, and grid agents without considering the bat-
tery agent. This is one of the main advantages of MASs known as fault tolerance
and high reliability. It enables a system to continue its operation while even some
parts stop working.

At first, SC agent completely controls the voltage and after sharing 6 A and
12 A by sending [11010] and [11110] to the data bus, respectively, PV agent takes
the control of DC bus voltage, as shown in figure 5.1. The PV supplies demand
until t=6.3 s, this time it shares current by sending signal [11011] to the data bus.
Although battery has high the priority rather than the grid, however, the detected
signal from battery on the communication port is [00000], due to its fault. Conse-
quently, the grid agent supplies the shared current. At t=6.9 s, the grid controls
voltage of DC bus by sending [10010] signal. This situation stays until one of the
agents is able to supply the demand.

The battery failure is resolved at t=9 s, so it sets 24 bit to 1. By this signal, the
configuration among the agents is changed to 4 agents and the voltage control of
DC bus is handed over to the battery agent. Figure 5.2 shows the changes in the
DC bus voltage. It is obvious that despite of failure in battery agent, there is no
oscillation in the voltage profile and energy management is carried out smoothly
among the generators.
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Figure 5.1: The injected current of SC, PV, battery and grid under different time
periods of fault tolerance test

 

Figure 5.2: The voltage of the DC bus during fault tolerance test
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Fault zone

Figure 5.3: SOC of BES and offer price of agents during fault tolerance test

5.2 Fault tolerance in smart contract

To evaluate the performance of the presented approach in a fault-facing, it is as-
sumed that the battery agent is not able to inject power to the MG at times 18-20
due to the fault in the power part. Therefore, when a tender is held during these
times, according to figure (5.3), although BES agent stored energy and could win
the tender by submitting an offer price, but due to the fault, it is unable to inject
power. Therefore, it is excluded and the tender is held among the rest of agents. As
it is obvious in figure (5.4), during these times, demand is supplied by MG and the
grid. Although, as shown in figure (5.5), the presented approach can increase the
cost of MG energy supply at on-peak time due to fault-facing (the demand may be
supplied through the grid), but it prevents blackouts and system instability. This is
one of the main advantages of MASs known as fault tolerance and high reliability.
It enables a system to continue its operation while even some parts stop working.
At t=21, when the fault in the battery is resolved, BES agent is included in the ten-
der and can share its stored power with MG. As a result, the proposed structure
has the ability to control stability in fault-facing.
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Figure 5.4: Operation results of BES, MT and grid agents during fault tolerance test
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Figure 5.5: Revenue and total revenue of agents during fault tolerance test
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5.3 Conclusions

In this chapter, the performance of presented control approaches in the thesis was
investigated in fault-face . In the first section, it was observed that when BES agent
faced a fault and could not able to send its status signal to the data bus, presented
subsumption architecture by changing the priority, changed the configuration be-
tween the agents and prevented blackouts in the system. In fact, this adds a self-
healing feature to the smart control system, which presents fault-facing ability to
the system.

In the second section, when the battery agent faced a fault, considering that the
tender structure was implemented in such a way that the agent had to present the
offer price to the tendering organization, therefore BES agent was not able to send
any signal to participate in the tender and demand was met by the rest.

In general, the simulation results show both of the presented control structures
have ability to face fault and can avoid blackouts in the system. As a result, the
presented approaches increase stability and reliability in the system in addition
to optimal allocation of power. But, the second approach is more complex and
is useful in a highly disturbed electrical systems, as well it is more scalable and
flexible to add and remove a provider.



Chapter 6

Overall conclusion and future works

General conclusions of the thesis are presented in this chapter. At the beginning,
conclusions of the proposed approaches according to the research problem, hy-
potheses and objectives will be described, and in the following, approaches will be
proposed to show the direction of future researches in this field.

CONTENTS:

6.1 Thesis conclusion
6.2 Future works
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6.1 Thesis conclusion

In this thesis, two fault tolerant bottom-up approaches have been presented to con-
trol and manage energy in the MG. In the first approach, a multi-agent based dis-
tributed energy management system with a low bandwidth communication bus
has been proposed to control the voltage of DC bus and supply-demand balance
in a micro-grid. In the proposed system, any agent can control the voltage and cur-
rent through the set points using subsumption architecture and is supported by a
communication link. The proposed architecture provides flexibility, high speed in
decision-making, adaptability after redevelopment and fault tolerance. The fault
ride through capability enables smooth and reliable operation of the entire sys-
tem if local controllers develop faults. To achieve these objectives, agents in this
framework cooperates through a communication link wherein allocated tasks such
as voltage and current control are conveyed. The communication between agents
improves the reliability of the system, especially in mitigating the failure state by
re-configuring the sequence of agents. The proposed control for voltage and power
is validated for normal operation and in failure state. Overall, the proposed frame-
work presents the following advantages:

1. Online smart control of micro-grid

2. Flexible and easy implementation, even for large-scale systems

3. Require low communication bandwidth and low sized transmission data (5
bits)

4. High reliability and fault tolerance

5. Easy redevelopment by reassigning the priorities

In the second approach, an online smart energy management system based on
multi-agent system has been implemented wherein agents managed energy in a
MG under supervision of a smart contract with a bottom-up approach. In order to
control agents into the MAS, a tendering process as a smart contract has been used
that shared requested power as a tendered item between DGs in each time period.
Each agent separately presents its offer price to the tendering organization to sup-
ply demand. The tendering organization allocates power between bidders based
on FPSB algorithm. In the proposed approach, each agent makes online decision
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by using AI algorithm and at each time period, participates in the tendering pro-
cess depending on the electricity price and demand. In the presented mechanism,
in addition to the energy price at each time period, the tendered power is also con-
sidered in decision making of bidders to allocate optimum power in the MG. The
proposed structure presented a new approach with online distributed decision to
allocate power in MGs that implementing this approach on power systems has
following advantages:

1. It does not require any prediction and uncertainty consideration thanks to
online data processing

2. Automated power allocation among DGs via smart contract without user’s
participation

3. High reliability due to having distributed structure in decision making and
online processing as well

4. The presented approach guarantees supply-demand balance at each time pe-
riod and thus the system would be stable

5. The proposed approach optimizes the electricity cost in MGs thanks use of
reinforcement learning for BES and the tendering process for the MAS

6. Quick response time due to the asynchronous and parallel computing
7. BES lifetime would be increased because it just activates at on-peak price and

off-peak price.
8. Easy redevelopment by reprogramming agents due to distributed decision

structures in the proposed approach
9. Flexible and scalable to add or remove generation devices into the system

10. Easy implementation including large-scale systems
11. If one of agents is failed, the rest of system are able to supply demand and

control stability of the system.
Therefore, the thesis has demonstrated the capacity of the MAS to control a mi-
crogrid with high flexibility, reliability, and fault tolerance, without using exces-
sive communication resources between the different agents involved in the con-
trol. The developed controls are easily scalable and can be implemented in real
systems without excessive cost.
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6.2 Future works

This research presented a robust intelligent control structure with significant re-
sults, which in addition to providing a distributed smart structure for generators,
also provides an optimal framework for users, which can guarantee stability, re-
liability and fault tolerance in smart systems. The presented control structure is
designed for intelligent control in the generation side. As a future work, a con-
trol framework can be developed in the demand side to control the demand in the
microgrid as a demand response. Therefore, in the future, we would like to add
an artificial intelligence algorithm to the presented intelligent system in demand
side, which can improve the stability and reliability of the system for any sudden
change. Such a structure can replace user-assisted controlled systems. Another fu-
ture line of research could be the development of MAS controls for hybrid DC/AC
microgrids, including active and reactive energy transfers, and also the develop-
ment of stability studies of the resulting hybrid system, as well as the analysis of
the sensitivity of the MAS system to combined faults in the DC and AC network.



Chapter 7

Thesis results disseminations

This chapter presents a list of articles published in international journals that re-
sulted from this research, and well as, an article related to the collaboration with
Northumbria University, Newcastle, United Kingdom.

CONTENTS:

7.1 Derived publications from this thesis work
7.2 Resulting publication from additional collaboration related with this work
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7.1 Derived publications from this thesis work

7.1.1 Journal papers

1. Mansour Selseleh Jonban, Jose Luis Romeral Martinez, Adel Akbarimajd,
Zunaib Ali, Seyedeh Samaneh Ghazimirsaeid, Mousa Marzband, Ghanim
Putrus, ”Autonomous Energy Management System with Self-Healing Capa-
bilities for green buildings (Microgrids),” Journal of Building Engineering,
Volume 34, February 2021, 101604.
Impact factor: 7.144

2. Mansour Selseleh Jonban, Jose Luis Romeral Martinez, Mousa Marzband,
”Intelligent fault tolerant energy management system using first-price sealed-
bid algorithm for microgrids,” Journal of Sustainable Energy, Grids and Net-
works. Under review.
Impact factor: 5.405

3. Mansour Selseleh Jonban, Jose Luis Romeral Martinez, Mousa Marzband,
”Flexible smart energy management system through an online tendering pro-
cess framework for microgrids”, Journal of Electric Power Systems Research,
Under review.
Impact factor: 3.818

4. Mansour Selseleh Jonban, Jose Luis Romeral Martinez, Mousa Marzband, ”A
reinforcement learning approach with Markov decision process for control-
ling battery energy storage in a smart contract framework”, Draft version
completed, internal review.
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7.2 Resulting publication from additional collabora-
tion related with this work

1. Seyedeh Samaneh Ghazimirsaeid, Mansour Selseleh Jonban, Manthila Wi-
jesooriya Mudiyanselage, Mousa Marzband, Jose Luis Romeral Martinez,
”Multi-agent-based Energy Management of multiple Grid-connected green
buildings,” Journal of Building Engineering. Revised with minor changes
and preparing the pre-printed version.
Impact factor: 7.144
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